From 5adeb994654452aced7e3f7cf6387a53dc1fcb4e Mon Sep 17 00:00:00 2001 From: elisno Date: Wed, 28 Aug 2024 20:16:12 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@4cf5c9dccc966516e38d398aa18db514a3e89bef --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290735 -> 290735 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 263797 -> 264696 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 116536 -> 116536 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 4972 -> 4972 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16799805 -> 16800655 bytes master/.doctrees/index.doctree | Bin 43029 -> 43029 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1622 ++++----- .../nbsphinx/tutorials/datalab/audio.ipynb | 1210 +++---- .../tutorials/datalab/datalab_advanced.ipynb | 312 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3070 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 1331 +++---- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 602 ++-- .../tutorials/improving_ml_performance.ipynb | 306 +- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 586 ++-- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1090 +++--- .../tutorials/token_classification.ipynb | 184 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 64488 -> 64488 bytes .../tutorials/clean_learning/text.doctree | Bin 233886 -> 233888 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333645 -> 333647 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 145956 -> 145956 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 454840 -> 454840 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 121626 -> 121626 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 150907 -> 150907 bytes .../tutorials/datalab/workflows.doctree | Bin 411387 -> 411387 bytes .../tutorials/dataset_health.doctree | Bin 329657 -> 329657 bytes master/.doctrees/tutorials/faq.doctree | Bin 199351 -> 199349 bytes .../improving_ml_performance.doctree | Bin 372312 -> 372312 bytes .../tutorials/indepth_overview.doctree | Bin 224033 -> 224033 bytes master/.doctrees/tutorials/index.doctree | Bin 3181 -> 3181 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 68223 -> 68223 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 107891 -> 107891 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 20514 -> 20514 bytes master/.doctrees/tutorials/regression.doctree | Bin 110660 -> 110660 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176739 -> 176619 bytes .../datalab/guide/issue_type_description.rst | 5 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../tutorials/improving_ml_performance.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- .../datalab/guide/issue_type_description.html | 4 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1622 ++++----- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1210 +++---- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 312 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 40 +- master/tutorials/datalab/image.ipynb | 3070 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 446 +-- master/tutorials/datalab/workflows.ipynb | 1331 +++---- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 602 ++-- .../tutorials/improving_ml_performance.ipynb | 306 +- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 586 ++-- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1090 +++--- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 184 +- versioning.js | 2 +- 182 files changed, 11868 insertions(+), 12269 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index a71c46de5..5b2fb6514 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 39de6f85625e2e60a9ff0e350ff7a695 +config: f1c643852e00d370de71623b8fa97389 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index bbbf135ef106256685d5fab059c73b086762ca3a..3316053d7fc3d7db283648b2a4525101bac7aaa1 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^eWmZK-qFIijlA(p=<_^XHPBOG{axZ5D0AKVX;Q#;t diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index c6444728a7c0bd1766b809ed797eb95835193a8c..86734622eb4df9efd232e0b8509283995e970fb0 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhE_Y?!tBRFx{V;M({*ha`6ml-6q2RAeX}L!UpBI|c5nV9 z;K)R#*7w4!tYm5J*}PG*gFIV%Hh+_;=OEKoBehQQBB*C`g?0%unYOOfXCv3IIYvv! zaPVeF^Xu$nIksf;Ui*cdWNKyhdMHJf*7(Wm^|&_IrRI?ruVC$y>rw?aPs#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7bQFtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= Ou!lzi5jHclo|yI zMr%w#Q6SMxpf<#te}H#VT}7JYLWNK$L|znn(HTX|%YF7@n5*acJ@1+Kyk};{7c$2e zGAEjt)?e9iy}h-()2W3k+QR$7t~O7|6>)n!6%ltuNGsFI%C+){r|d%59Ww83W0-ve zWYJr5)%w~Qi#1wlO*fXrs6T%6mIn*;Lh?FeC9o_oX>=uEf3T<+eN7?>a%g-V`r?3; z0VC4af-QQB5x5ak;-~8QszuYQi!HurY{+F;23i6Bc9ZH$SG(KV3rd~6m%Gd>?$+C~ zGh#zsr{XV4Hqe{+Rr+Kuix@MXdy+A2hcWl{K1a36Vji~JKk#y7w%dk*dWgT>fhSOP+gYyAX+JLk4{I}qO48++6^ucj+WF5ERD8Ib_he&Y z|HGTirq3+$EDGM^WKYE9{W4FcSI_v!QOu=Yk0~sZWSDNWA2u9hkij%GgLjpy`odp6 z4;qj(Xh{Xcn|m@xui7Q-RHTRzOTsp~v~f@{OciziJ9EN2Z>jS6uMb7&;F1bcz%Nft1f hP~o~P+)6`vmUAkWT_gE%SX&yu*!+qo`6s||`~#8%J^rAD0n3wzP#auqm?|IL>=RId;Vli`K zF>|t+x%#!pg>L7i0Y|x3u7$PAu)D3YqbwBesHpNd-I~)`9%^%WDyqudp^C8Ps`3~k z>?0tH-kPt`*U!k7sK=6SEb}pc{OD~D7U+ZI^~P#og=5m_YQXkjNihbRc@pH%^jiC3 zhm--MeV`Rv^j0HqBc{Yp)$>)^rPmb8zG!UNX~=^ifWOnE=5lvWxU-09fVq>)3$S+I zuM9ZzyHx|`=KVPjYj>}WAlt-TXYw&Nj%<$&@paDbqN(X=5>sIEffUvTlYQyzHcSqx z>=8^JwX!*w%x&yBOs=*wFHFwLW>)|*i6(goLx1P7aR9n8KFGC~eS^u91?(D3o-SlZ zVDjUA>;+7oD`qX=9B8CzC;Og*4f;mPuVaH=K>Ytf?V!jV790XxM36QGz<;ZNeO#}6i^mZ4XK-H~hC52A=r4sP4He;wHT#i}581$)A`k8`?5BEsD z*_hb>@FuhBvrAGI1@B2@OT^{J^ewI_4*>OI^>MG7C46SmQXjh%vN{9;BTUL+# diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index f74d02af6229fddef27b3fb1ee10f84896ec3075..bb384f522aa584ad6f482a29a1c7e9e693d042e9 100644 GIT binary patch delta 3571 zcmX@QLh$Gc!3~~_hEz%wyyo7YElNnuuHgA;J$3>Rb@Xg^HBgn-@fuR{hC->XOrA zqZmau-@164lYBEa>)o-kCtdsWz{iXh(+#8;*|*=2X1qm)1CUHmQe!+~Ou8F@A*erj z!z+pHaZ!xR1<2PwS^p0E_Lgi$0avok5Z}(dkx|r$bp6|b;mFKSx;{|oId4DliLp|b zJk1u9*EwlS=Zs+%-TqvG=`|++*v}L< zo%mfQX{hq;3iUm!wdJ1|ssYLej-a3LGFlUaCs!D8lC zGO`#rjcf;+pvyzL^*G~q%`vLPugX>C9b}YVFlR|^4`XJT!$!Wpq_*d9v8bq%Zoqb6 I*Q-Sd0E4qBo&W#< delta 3571 zcmX@QLh$Gc!3~~_hNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7c<74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL28Nk?=5 diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index aeb848edc0716915a066b8e911c4f2175ca98590..737d34957d1fee3efe02ccaa8093718e6dca48bc 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSohE#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7EH7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aM4~Oj?Zq*)fy4`ZbDXR{b!{u>!B5qeS>{N}fliegg08CRt z^=#I3(z14=foiiRNlROk09{PAG0kS(0HG?gOR^b2l~6NV+J2}ELeH{v%?Bi5CDg{2 z4>TNstdjsGnya-8ma_>ZhU8mJsVoz1Mdrys@5Le%N?K*NJ0GCdM_rw$bv!Af*7(&X z)Ox1ZhguKz^#N8^O#MZT>VOw8YQ{KtZrwEj<3RFZ)-t$&oJ=HtnY|nSiPUPKCr0{_ zS`9QX8bz&vu@q{(l+K~nXZmB*y8O_DqC=T36dlPnptU9@-lNu;N#s)2jFDhdZ&9l) z_Z3BZUR(q=9V7Vx)L8i{h@zI)r+{Qdcm3?k8$UJ(X~o{;>rTTt^yaE}~3VfIT?9Le7D5zVjC;Y{9(x z?)|isM=2dg9@MEjN-MCf>l=Go$*UqXjTQeNuaDD}(zTb)l^!|@JU(^71^Bfa hG$*ZHs(Z%-{Nz531M|iO+>6ZG>W}F>R`VXBv0et`f delta 4228 zcmbuC-%FEG7{@th&D@suWf z28g|1Nk*>PI#V?c#i7KMx|pl2E?z6g;!d~6=2C1nhumiOINh}_*%?#pZV$UfegK#% zM;q9@;dIHyjXJ8%8zePtP6Bi>)yhw04hhD*vjr>We|FvrL7;3hUI80 zTRqa~f~->jC5Edu50$e?xdZ99m{M3K-h%9tj^6KRr%=-hyVLy;wLb3YMy(S`H)`#= z7C^1%`u(W&=)eGAWyREA)Tj)40i&v~!|~hq48S^&d>d;XT0(9nlJ8{iMt&k$b@bHe z4J50MhQ{KkH8h?=tyj`H)cQ<&f?8J}8BlaM(}SX;*+w*LV)8v|otr{_lvRBt*z{Y} zYRP>?(Y_a#fkVegeh@WQz6zsg$?G#fvtqhI_T^0wTZbUa&K|Tt_mYp*7b2L|r`8wB z*rCsJ$m50NeJoLwQFEeL&MqzfE(J3$EPpg(sJgH$G3&}Q$8fFbIkE8JED3DG3UE;% zYz5isBDn}oTobH`|M^Dp;Mdj*7&Ym;h<{>%4 iNpsT1rJ8qKz)v60E@0odfcueMTmK`!ox7)Lg#H6OH6|ed diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 0e75ae48a8c687cbb05b4ea8aa8373de94a206e3..4681b75de9b3ae9f0ab39ed39dfd4033c7fb97dd 100644 GIT binary patch delta 62 zcmZotYEs(Z#$s4ynN^XIXqKaIm|~HfVw7T#Y?@?{YHVt1k!oy_WN2b&VrFQTYHE^} PVw?n`jW?IGbn^fJPR0@= delta 62 zcmZotYEs(Z#$s5SR1lwUkXfm3oMfDooMf78o?@D2l$e}mVqs}uo@8KPoS0&0X<}hy Ro@kPsWN2Zzxtyh&2LNOg5~%?0;6v_Yq delta 64 zcmccfmGRD3#ti|ChNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN T7DncYCdo;L7M7bE8KWx!`HU4% diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 532a4779f49c0a21f19a8e3a8cbb4912138c893b..4a35521ed72b0a7a020df11329548a5e7ca0b8a0 100644 GIT binary patch delta 62 zcmZ2yxXy4xHltycWmZK-qFIijlA(p=<~fW);sA$D67>K8 diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index b28d748bc5eb9a4a0c4281a376551668f46284ed..18d7b1a68b6e921898d8259fbcdf8dbf2f5db823 100644 GIT binary patch delta 62 zcmdlUw>@q{G^1gaWmZK-qFIi@q{G^1f@QbByaL1v}CaguRTa*}DXd5US8QDSnMiG`(sd6I#Fabk+0rHO@+ Rd7?>jlA(p=<{rk?x&WRh6Yu~4 diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 98d7a0282ddc4aa70c7a9c0aae8ca1c1ce6d112f..11bbbf1f2a5a791fb7764af085c5a105860c32a5 100644 GIT binary patch delta 10062 zcmeHNX?T>yvZkv;h7iPrB`nznkUfN~lYJq`5+Okdpt4VrF_R%1S=eNEBgjE8fdW}1 zsK_Rpz=(>hB5)Lm_n;5~LEylVBg><>z)@~h_ZKpW_dL%%f9|iFA2l=mbye3}{Z?0Z zf4RHR>(>ge?KTlMJ;pKBZnfm~4$Y3v$_~p8$%@Pjv4uxQM%%)pGeaXnBP^j7TV%wu z+2NV|8Q!~MtXC(Db9eK7{^&~2sIhf7vLoA%vo!8yU^Y-{nv0$WK* z@66)d9D6B$?T({YLZ*93X>nme4jx*_u~oGk1G9L}{Vfnm5Hdt)!vN{KAq_ zb5>z~J{h8+i^*fNLhji;xYBMKTWR-s`u`(Hlk}fQusKEW#mc#rGb_82Y`q5BHGcY0(WnuMRS?wGVAYh|QoGqsyfj-2vdwvgQ}i?%bjvM4%PJV!GRT~1 z%d(c0*vx5z&H07dL{IEBP_}JByqiXREzPnME6CkaJKla3d>&KQp0(!YF@_vl0Z(%7 zblbz}{Xg=f&A;&j*S`TNrndyeXh#U%StMFId#{1#1rAyVUU+c@G*>}0t#|2xuogan z>QD@AC;ag0T4*o6Syn~zJV*JlitST7i?bM734s+M$-d$muC0RM?i<)bHQuX&p`^R? z5=59(6AgQ?H~8S1b?^enFdX_EgyU0hg0E?_F{ZbVoDMC*Fmws&Y&ROKM@t`P|F>Y6 z1alZJIVpm%`8v@b(srWP23RhlaN`CTAY$;&28e}Z>T*#8VY&yHsLi?&Izdbr_8AY+ zVmR*K2!1d!tYYY)fnpfm*=#sI0j-;0r27FLF$VW-f*z#9j_amK?%C195gyj4kv$-7 z2BvR@bn!B--V6ayt_BPjFLI}@Uh}w*pIzGh?LpM{u(R71K!8;Ss84u^d0|-ft!Rml zZi7T|7(J-l9!Yn%}u!3c>X4}!)09NV(voiCxK^UQvjCE#Upmh{wSEmCY*B=65ze?ic6ycVRyJ<%nprie>m>=44yH4$7-9x(fe~~3-qZ1 zZ5|>5;Op>;khlHetX4a%)h<(v;zc6fJ`3&q4c$hK$};Uf3q_F23bsjyN%dIIs)3js zCOqNIaGdQF{`lBYim)jHCme-9;epj>z`tVuC^NK(P`~m~Y8tX}1d7hkUA*aB zbDUTt>~%vI>!C}vsUmG^77snj{fZ8*8sCmft`nRayJR3Ni@;{Pr5ToMrOF6gk|bi$ z>m-b>)tPh>QotU8UL!<1Jb4n{fcGP?+7CkTjW1v^IS_IRj(H!8peWjV+8y?3gY;M) z)zFomlGl+YHGH;qokRHX53=2|FyVzgmq9ys6=Y2o{IMDiVYh3v7$z-&F7AItapmEBZ8*W+T=^iUH9|g4^L=Y zPvgAvFt^qrj|(ueR&(YBa;V6~p<)+@inT)p+Q@sckwMg`C4zX-C5s!|5R<-_}x(G#NsLv&^(E2y=GPHxeT4lHP&J&pKIG;77yZit%%-@F22cX3K6uptwy5H0O9P_+9COr$sGZrZgk; z9@i+(?zu3xlSMICbk?fdI|M-o3sV7lThRL?ao*4@x=t&J(o7Ts@YHqaAX4je`e~gE zrIUmwo|e9bqVvo@h(x5x4AyN1N1wU@KSQBKl{1)T!2=t?S3Fl|bBeb4q6P2dh~Z7r z{>h}I{)6qpPI_uFS8euiU5it0!ZE0_a9J%jrQOo`!)qr7I)q*9V$+ePA60ues#2VB z8`?@Zq;zyCZjyG_=&(3NK8BC{1Qw{VRBX%$7w6bO5KeeYG=Vb|*izBO>$Iib>ixiZ z^(S~zz%7ejLA_$2J^W_D2VaSH;(i^rU+DQOB9`iXRTUMh^k0Y%g3H7$wEqGRSpVQ8 z5k)Ix)vr`U1EW-u`bMdl=^mvQ-?PP{b(1u$X3;h7mJW+*J56m|nc*IcZdhd==t8~l z9)#20;lMozh2c@W*$9UxqcpO#sCvj6JICFpwDnjj8c{;ipVRkuI3yq^O7Cz??0s64 zs@zVh+|LM1Ed#Hm>*NfWMt!(&#|zm@JdY0gfEP8Sxf;@|2Ba|{gSfjY*!1b01`$|v zL%2a%l&;vDwJlY#cSq@p?Idlg*zleRyIch4 zqj<|Uk{W9ZwWntt;&eP{qRB5d$;5_{Ym5g>vQX6M01jy)yJPF7(x~M!x?ap$I6r72 zM+@xXDfL2ZYQ<5K(Q3tGD4HrQt=e7wQ#Y&5dE^8#(X1zb}KwOQTO=%BLt zUR&8&JV0|h*@+g-P+#efr-DTr_&r*4|6cuh40UdAN6dv*F)mph5Tmo&%=)R|7lYNF zGM2XKbr~JbW41ysKY2~GLTe`(igQMSn@P3bi`MBmz+c9AH6TtXF7}swAS0$?`<_5C z!o|a(G1|lQn0ic$a*hv>+XQbE7!02nO))%rdW_CUt6A<8Fg=FnCji4c%J$*~Oz$ZD z#7o-$c`<4Ouo!Q5l%u#Kr=Xb5UdO=X7@d4ubO2QH?TJyzC*EiM?wH(EbbwvT2pl3O zIRUp|pDxm$KFCO9V|Q|AGOp+%55t8RoqdyI9%i3N$17ds6AdE~g^Ar{8nghkt`mW{ zrJIb$(>-eQ%`LWG6#6=QbeEe2whgYOXg`jDTP%jIgf`CZJ>_2nbfRCp7^%%|uUM6E zy<=6v^^8>s7ZdA}a0A#vC%oHBc2cVU5^*pzR&O^mwAv7@HZ~Ry9;3~Zp)snrT=P() z%+Q#kHA=L`-1-`^q0&YgDi@Uz?RZP)tx&lKU^Q(hdGmN6LVgNw$Lh`F-bh&{R%1wv z?1}ys*#t8!a$k$x6c^WRB&n*6yiRGIDes7bD4`%iEm09#M-wgx-yqk6j0SfKvmwq zn;^G9hd3kA(~Yq>(M1G$50F8)I3GMr!;A;2gs)4IMF1&EsW#b%8yzUwGhkF)#hSbz zF@_C9z|(O$fkwpDqs};-)mI*X!Z?=csUop}$P?Zot%Wiq8SKw?Eapt#K903%ZN#+QBV`gB$BRnB|-~Ko&|m zV%NpN#v^Zx(;1#LNS+enG=!NKBt~6}CD~ zC%GwJ#Xu#wcf78!E#q~CeKcO-_m5Wz4%C%T!@`7jCeY%xxQlEes`0&{@@t5R*C}2d z_b|mh>ma4$+zeW$VlrfuSA)=G;hYR<6@Br$40##PjFes#g|heO(SHr zfT{7=;Vz~0&m(1bF$c|0$p|qOM?59d`H{-@t+Zi<%6P1%Z7eK{SLyy*yxPVK`Z!6O zFy6G9Cvixp(lDw>y7Bdw%l_Z6ruN+L$Mc>WJ}@G)M@Qy}ip+DSG;Ij?jFK0~7Ya|L zyK2gDo*FH809+);X2@ZtG9EC8jBrBT8b=(u9j_PZSH{csf%h1(K5@BEoMJ7`DRFV< zUmC}+dT93q&axz&KSBDq&t|i?@vRARu(+*;H>oBXNman1R;n+Z6Dq8;f^=v*Ce#b< zJm=r6vdSdFF=U3!aDRc#b;K`n<$V~CfJMQS_?H}V5DZSxyT;T6wZhPuV8%o_0mkX( zrm19AMKTq8Ib>=x7w1#4C{LC)E9P-EKp(7fNS{Ys`jiqRzKSWL-Ii4Maxg1_sh5Oj z@@0srlHH=A6`4~LIQQIDTR&Fl^hjSe9+38=RNlW@Ky~;nESxC^!1@Hui*to?d9!VG zK3K5BOc{u86v>XTBY|kr4No1B9mTtK9(6puJkMAPek_*#;JV9 z7tEEX-Cz_sO*!GcM@_5Ihp;`4M_!Weh&;@DS@vpQQin!NbRkO_!x;#ZG?Lkgx`3n`qKirz1h|}M^ZFx zzIa6j!*-XjZqd$sV1)JPLOI5CgqAQ${bIm2VSLz3sZX6fM&L+5P1os3FU)x6^9KK9`1*RlT9FHVToW&?ti5A#vIW3~C zlIn=!m86Igkfe$7_zGIXzG9Q4s1SK1DWa&h#!0S3d5sZWVMI9%IdY6SV#Zys%YiT` zsg5WElj;$r#+kU179DtooMfV$U$>=?afS))c^e4N$e^DuB(6OjyeR2PR>_>#_}culw_y z)fjVDu})fHn+wh@^>JQvTHci3c)&gb=RbJ-+CGfaIr&{_kx*>_Jh5GVCBDI`9daU^ zcfoR2W4UHvIlWUBnto$jq^Ph|D=hA+?Q`eK_at4_NbK_w)#iWfk{#fYWPP#uXtK&J z&tx_E?UL2ikm){~qLr}K9vKVt`Q#pX40jI#DQdEffs(z2Tax&_nr%I6z0<{DnyE60I7xsEJ0vhT90{DE^mpwyU5E-+Ub zv8~!JiYq-nlqX?+vf{m1z^HdLt6&?NC3KDXp^VT=Ow zP3~-afdOZMhNIeEO6CNp<;NlIg67AMAIsE+IsJ#hkBR$f-};#gwBz-mdF(kLzYtJk zK=Wj~wOtgnh(q!x_@@EwCQdpmzZSn>>Jd2>esh6xSI;NGpo&&yYRPtP8Zd5Z7^?02 zdN5Au;WUiGqjGG+x$(dWd|11GlnmcFQF~bH)u-O{_&8^MDoZ3J_R%N!wrsUmAAK+P z_+MqKrZAWu@zk}~kF>hNx9_w(CdT1QU&$1h&_|z(E`LRY%OL}Nss8TQa=w^=mNW8T zizzg)>uHD-6z?YVQM~KQ*2na5ov6!(FDj9%&dNaz5&CF^zBO_X`d)F}qOPuwvZr%H zjr5YRQ~Om>Wb(%Q=cPq##U0f$KMPCvpps> zc5Eeuic22P;HMX5Li;NX)%iESidll&zmZFD+a)UYhA|v@US`72|D!jvz1>slM`|nf zxlEgitvXP>I4Y}YPU!y~oD;9ecK|x3sBqW83c!WeyiFyj~+6$Ez%|X@BjoIzPTkcY3pJ^eWDg$zmJ5 zrgUs!F_wRhV$p~$g&e=rt*GNmdQ0Q@g2fa3a{!B9S=?nI=mhQfgYIV>gIEk?@f(Yu zS&ZQUpJB0|`+daX5{nD5vq`R}Q=j8a7Q?yEP!d}M}alpRywW7R>J?K;NVb}JF@ZFU+J30voG%cRW4G2ELTA+R{<o{pRjz_mt^!o9f-_$QX1`<&Mk*!d9*T z&sSi}70_}8vRvVtudtOXT=UE99T*Ao!QPC>@ZdMOLCjV>*bzdw6%Y7bxaI-B!qzA?!|p;mw2P>-pn-o^-90{|g-uCd#S{|28JrmX+~ delta 9372 zcmbtac|ep^*Y}<~Fo+wdh{|4RDyYD)4Lewp3%KQ4rl9CJZlI{ys%3pnFR!M99!f*a z%oa;ZZ8Epaib_ps(bQb9(#n<0+*03j?tPFM`o2HD@AHo{%zf@T_x#TNopaA~$E!}i z%cXvmg(7xFLD8tG(GzBOw-i_k#uUVlNgNwLE;fJ6xVR*1bYektv?YIRj5RJPHZebL zOhHVNwYzhq-`%*qu_@@;?}h7oA$r~t<2D6Dr)44&o4*2qnE49ix0y6yV&SCO;U%`h z@Su*}=UP z@Q~}hRWMIr!74})YtU~6w8eR=;d6{%4Stx>PBcf`YtTM;Z%m^`deKtTgel{umOWQC zx9rKXPPQQXKCFHT?r~N=+Cl8bm@)`+MrQ`Wp%|=973o;81_Hd-3YxbIpIie2l;I^8 zprcre@2rI&41XP-gUc~E;Bm0v;nyKZyrta;vkM!TVlieB#EJDTnmk29%UE3WwdjVS zS0G2cht9X5Ty(~$b&vy*G_?r?wNY9P+6hVG4Z z*4Xay=|EO(p}CJ^^}CQKW@Gqz2!+Shx)zufi^V0PqhAS63bsjGh%JgHf8u(3Js`jW z4a@u~FHsVUtB#9SxcGfY7oTAD`;aQ$#O50y2;Mf#tu@TO=4r0VwR8hWfbE94FWKB{ zvH0Q}qK)h9Ciq3betOhS1mgu4bQOm&#fH2;DXI?Q2-Wy4k1h55o1KtrCT5pnp?0oNb~|Z zaqX9oEUsxEZzvyy3A4T;kG-+>8whb$MnnO`sg3Z9Q-0#RRp1Rb3^$ch2!?GHVbCcK zGq;LR(WPFsqgIWJV^@bN)u0;`Zk08rsPL)N-2A+u{XEHGxKih*i~Q^gVg%;z1_}qe zHdcE$u6~&Uy-bneVdie~a73IAq@g+KLm2_{<8a}JGF-e+ull@JEmIz*JNwTL#MIs3 zOAG#44cTnPZ?I^G1HOS3R6r;uJ9%vU7P%51{0{E*|0s^o*dlFq+w4Ai-%Dwj<}g3; z;vVpVA#p0^u*8B{wX)sPSmB3}OQD_K5rbDa>wDNKj`0eeG5Qf`YW_u;vtZ0JXyuxJ z0Csy}(g7--MZ2N7=EYxeiWlN)J)A!^9Eh*yhB@~%TRMx2k3zJYi4#X5uzmaZJM~wL zaodaFctz2+@oMWk8s@$`1}(h}YiEzaHaBZk$6+>+G3x};Jd>seQITACf=HXHOo-m- zRReSDluK)1NWJpXljKQ(nDSvkg+EI}_Pap8MR$i->HyJDMISs8_=os+UbNOG7 zSzTpYJn{n|zI_UsG_I9c)HW$SU zTKQ(YDvEcuw)A%ht5-xt_J9OMb_h)1t)z1x=BjaqMkFY9FxkV^@!<)lY52rK>J_G_ z-T}KFpu?0o=lo)J1XvTCXJ&^(inf_pZ}Wb`=KjY5vHv;nG9bAgItS50xyFaHS*=t@ z`6K7yvdG8k3t)wb3Hr>OtSwKdw>*n1)4A!BdxmM8pMZUBbb#k4sDo3Dk-eSWp$&dk z3txaUflu;jKDpEtl;o^cSLr5rv?i721n4SbGiH!#R!W zw|Z1pbi8o?b?Rdp@#$29XRgETI_;yy)IhXI#OuYPJ@_Z8Y;2au*(ic=(RIkcL(@cn zPp(!?(8p_y3W_#Yg~c~vYQw|r7RF2?s5{JOC$hJA_LGYp|8b*+LoE*v7g zfY999MwB|{D+l{GXb?<*)xN}x6*s9GKiWhli$gl9-!ze(;cBApDlU75(chKUR6Zo| zMiXgt6|FdGm&tSH=daD=XIS1$8ojYP_Cu5Ou^*nK5;z#M0%bCENpdgk0c@l-o^2t! zHdN0x)bG>knOZ&1P2De7t0x(CEDFT|NK|%IvZ|+shpu1!<#7S_B)#Q<_0G3;wQViO z3an}+6U^=F$6Mi^0QoIG5kR2&jiOz8F-fQRV(riZ?a*>^NTqiOt3IEk(pzaMAJi!M zpc1^St(*rR5-yeC;qGgx1mA6VcaQOem0bDl(xI~vbbf) zv%5tsujXwvg8VIx4w2tsQMmL4Z>uU|YQoth-K~EWF0K9z$P*2i|EdVZ*a&$S+;4SO zeh>yZR-LvztU7HoX#qDk6I>@F+LNQ)s;D(O$ax=-QlafB`lhS5YNhvCnDV39NSanXmMaq0)y{>I-BsV!H zE37&v>63F(*f6+@+y(osIuUK;fbQ9iL?oA0B0d!zye1w!n!|b?J8>2jnk`4!2itbd!q&4(sNTe__cw|00sr)`ldjt&L1} z&%d5*B>*3dk#`&Fe~YfrBUyFAaKF~f(whC0=1_C4p>#A>R=6pRHiSZxat1$14uVctVU@o4i&buGxi;Ce zd8HZr@=<5Qbvjvk3D|5H2~Cw{cZ{q^B_pR&<<*v7{?mx6-V2izxgRj%oRu!GLrt=N zLq3zNOTjsf^*4?63Sm{Hpf~H#Ty@gdXgg|*psGR;oh8>ns}!RUsH6oNs7 zNjWLH8hqSK=K43_@<^i^r1q9kVkJ)KExW+0hQAetzso%RE%>01oGM|H5tgy+$FdYv z4Dj}85#>6cCtnj#m4em3i7?#IU*7Fo%_h`+5bhixTQ#k}nfX>D+@}#9O~IYN)78_b z1LWOofj3`J_t8tn;M7^*1G`f6$$d>nOH~P(s;h)os;Uw~V8nxTxV1>tRf4AS$xW}O z%FN`)z(?%Dgu(J4M5gLWv5TDWs1$@pRf=^(WKP476#%XnLbWbpsO%xKv2dvT2_8<> zm120R$JS19y)aBx3w&T06@%`V>7r`(2s+lMr7|I+a84I63p@TWLgwiye3zwKBt?;R`qk}Bu39vY78$I5XKn5IM6I?W@5b6rCV9Sm`!mHCMB&*Y~dbR8= zR_N84jVB)=o#~uT{maSO+N6ej(Gsbd^x*NH*ZFP-HCy7uOXC|4Jgmd zlfCG=fEEkE%1F`LFD2cBLK|Goo|E63pl`aOkb<*G?VmA^;3Qzq3v#V^1TVZm4OtH)zHJ~eD@k`?Em8o z!`&klynFvGe}^UMnhuz*$v10(tfV5`X`vh@Ue&>?(7{{B!OOy4FUp6_yLeerQMD2E zx@yd+)@^1m;c2xlu6%`x!+ne7poY=gU_|fpMe=@n>8Ow10ng~s4d-In!3?L}qW2}c zP&ZHEIrx%10M`sWHw-+jmdWLG2UxjG=245ge>IT-GSo@tm!a8RwOkG~f6vxPM*+H_ z0jaSo9)K1xpaTqOd_yeMoT#2Qp@Nu@hI1-pj9+qw2MG?jc2@BEeKP7vaD*4Go2OtD zuaalQNPPEYnFFIT^selBl^R?d&Rk9JqIQj9oJLV%peTP$jx_(o#z;q@7=`|8hz@G( zp$w)&U4pJ)6v;G=6SQp2KlkO3fu+ssGM{RL!cyUh<&+(orSnr1AS6;qu9%FG` ztCR_nPP*ug@>0{iY(X8srGv40IlYhMZIW4HpT@IW<2hvD8TNskYQD+_cNutgDLme4 zY=b4rZ(CnQ=eLNLDW=T5M5`(q>P)XsM4pp6Fs|` zUN9n9ImCG}q8X0T3OwZ!RL5g25jU|SK$7w z^4W%jIaOCWw#f{-p5nq%E_aG`HFPx@n3u?`)S}!(*8`m!HVg ztf|={%fxdy^J6OM|HTXRfoC%n_ZMYq?mKqMJhK=3NIDD!p2$>Pt{QtZ)15UtdD>8# z#;lq7iR{%7&`rSFn{*j-;S)JfY)Bm$pMX7XhN9< zIH-KE_zD4f>MNNAcV+3`AS}yccLH2ux125^I!krv-hpg0%vJfdjP!-{tol7`rydx} z3Ss6U`Gx3@jStIg7?`CwIPNgfZFrV`%ZWZB=Zk^3`H0-vasp|(-^-JNqTWDU^&@3@ zN4B1q<-T7h^@1ARJx67qhUfw`x(a#(iw$%OJ<)Y>MIMuW5?<3DIg8Bx_*9KdfR*I$ z8QBNLNon!l*ub}yc>hURg1;T5jx%(yXyW|J=Q(Nr+_3R<7n!sl>I>#tLS%6dj*Sr{IxHOKj`Aleu2fObir@m$s(1% zT3P(g;xvm(bi-i3$RdqJGK(`Ter1uz3-)309=#vi-(~SFi~Y$@lPsr~EBg`_J$X(K z7EiFFvsrvcy`8<9MG_tC_IMWGve?fek_-FlZj|ySwHAmsiaLe#6o{;C^27fE!fJ18(ay54bbZJm9`U z^C0#P5BLbwJlMj2F%2HDbAi@8u=8Jv2VBA-^dV$WGp zWNO>_9Q`@6%wA@0)F|J6L4WDln7`EOF9FT@%cbm1ADP++u@$R@X$y4d;mm)kn+&qw zh0$K7a6AsC_~7s!D&PA?c^n@(f{ua+jFzTFkX5Hfzk!olL~VDnUFtQdaAx78vLy$- z8mWJMM5&2sTt=^cQ6^Kci4Eh0Y0yU6BYHS%3xaTt$@C;VTxV^#vL?3R059?}1-sJ! zv>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll UER4((O_GxgEi5y839h&BN+ey delta 117 zcmX@AbyRDEFQZ{;QbByaL1v}CaguRTa*}DXd5US8QDSnMiG`(sd6I#Fabk+0rHO@+ Yd7?>jlA(p=<~qjhf@Ek*6TZ&~0G2-_B>(^b diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 4bab3b8525fbdebe2598f51ff26730149b350ded..592fda027655a43894797afd86ce6cff52bd6c10 100644 GIT binary patch delta 5702 zcmbtYe`u6-80VS3x9Q#9-ENHS$h;{xr>?r4+pU{UHrs|1mpe8*#Odwljb(GDwlU|< z8KqH}TYiggSmOThpTKJIpx-|<66&uYxFCrNDkvz#wI~MB59#~fE3v;nUwGmE`uupF z=kvVx@Gji&Ea+!9MW-5$Opf%|k4B@WL*?B!sYnE@g-=h|u*UdEl?1E6`WUdB5M z59Gn><@}hx7gsOmje#SeI(tjSD#-Y8ZVoaAo#4xl9>waN;P*rASgjL$W#b`Kbv}F; zRlQc#2(*cdtKY%$oZ`lsbslJ@DRD7gz)SUhtW6I5S5P?7;Jx(xCegV4L!3ZdPVV9C zj)P#|L~~O<-)Wx22AvX#wt)CNRVf~{e1g@$iMB5+2-+?D`+ef(@CXMx?f_{M#nm|q zekKvXX79qiT`yqWbKpyG>E--(GJ{Rs5w=C-pv52bOyk}Q#o2yae3rTo*Wfbrw(aHl zzVm1behB#Z=J22i{N2$!Gy#tKjSA_cjd*bK8?cMoK#t+9!G+boA zv-!g8b#NAZ`;CqWW}Yv6dMk)Qg=;(sqW$-L@}m~oz+Zj;7n-1l93|pvmBpuiEQDX` zt{0c*iJ$wxISBtfn=9_Wh}{+4!d|vH_Q!rONNg|9U=i*VeHE5`sewj#>fiD;&_G>| zvV6jBn;cxdT0rBrfxO0-NLfbh1{|FmC?vBj^ox2nNIh6G-DYT}usXJmlGs33kc_RT zLk3QicJc_e8}3||!Zd7BgvJ-i=`Px-HdWDGgOIAT5gIXZqVax}iBbkNk*!>-^rkc! z;N{c1XcJg={LA9mdo+_7-2U@r^r@X^5YX!tTM+ajpxNBajuu##h~U+nykPIHZ?m= z&*96kg2}mv)O(XATajZ6$bZ5*hNIIaTj4UP?Pq8+z7;tVk6JuWqxeF&BvO+UN&PR- Tq_(|6VIP#peM*0i{dV<#WCfT9 delta 5702 zcmbtYZD?C%6y|ihX}6@eX-a8>bLmF9PCHG~51VWq?QF|BR@cz7FxD+?k}Y)FwfnH8 z-I{fxn<#Vb_9}O5iv6)a!qm#ay+52d&|ktJfQe-@RY;Y`mWGd8{ZcJy=&6$=%&Dn-jCfgK^g)r>NSL#)~ zy>wp@tX|Dqyo0!UHE;Ai3#zlbQmlfEALn*IW6%k{`sh)t-U)s$(2dnP!EbFmfU3?1 z52C8q>so;}ae4ilSe}#I8eZpuW||Ziqb0obloxB04gVDsj>p`WpWh@}w|;;Vh^vWR zoZq$|?3-wBE9Tqnlh~k>BHrZ_capW@LC2?94IJ>Bt+jRy{{a6aW z)EzGl&yzn7fpZYvdnVW1e-XPY`h~e{a`PX1!631@JcC8JR}9q{)=M!O=2QPxuYm^Y za8wl&cH0!-^3@U=H#OuHzQVGqs9S@hcLN2idf*=n9h2 z^>jePiBwJ=!FI!$%TkcCIz=danKj)<+vTP@x~maVc{W7DI!+YcD{~Rbp(gURYo*$h zHVwS>%nn)x6RPBGc!~Ap)6}oQv9OB*Ql-2PjfHJQkpyLaCmwLSnTli<&G!E$7JG;^ zEAd!=2Whjs5vLY3U=QthO6CFT)BZ`y!I>PU>t$fz4WdL!0rfD3G}1;&~du7s4U26iJz- Wz5;Es;S~ycphWJG>VNFFtN#PHlEsk# diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 220f02746c3157184416881717dc4cbe95d083ca..4a05961c8f0bcd8a19a421512e1d7c27641dac15 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhE2S;ZcE(9 zM1k#JQkW^xzC8UfCEBI3qbTvaO0F!KnG6_t5}Q93oS?+^%;NuK`h8P*5&0I2Y?iBx zp(M#`)h{C>)HX9V?ZaZf&ROMP?g z3^Q^<8*0Sn@L7|{sk}BGD%{+?^fWpC25J4VszaP~e{bG+XahM(W8pNR1WC7X zvf#gh$?tFSOg?$*Kl!>hm)>C#AWM7gWWEnPn+@MOlM~Q_{~+4+K5Zf+k!=?I_neaq zM*|bqbQvB-(e2AP81Ir(f&dNJ4m5zw>OOY5y%3}5#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7da7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEq f_~0)q>Dnd>KIq$g_L-qD8CoGZo`3VYU)78NLaSn( delta 1137 zcmZ4agL&l-<_*4#hNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7dq7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{A%TWpU2 diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 0ea947fd153ba532761442d5031585faf8ec6b65..d70f6e342e4da677b663c9a75670bba4eac701eb 100644 GIT binary patch delta 122 zcmcbsd{=pcKciulWmZK-qFIijlA(p=<_5;O%tj<@)1Ul+U21bCYY7hkR@5bY diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index db71de48f5084e96b8faf4989b174fff7e39bf51..c13139ab1cf65eb9f8660d2b2447f02af691a7a2 100644 GIT binary patch delta 1125 zcmeBu&(!;#X+t=pVU=Z8MMk1oj=o`vMRJN!ib1kzl0mAmsi{S(u|<-hiJ^&^p;@Y_ zNm`0=5{Ne5+`%ZxPP(?q8^sGYJ8`x%k)<_la{`Y7H(6RAlBFwda)A=hWIj3J%?^^r zEaV%pnNLoIjco0Fo6oD<=Ab~kyWSV_0vzOjzR5G)1txdtac%x&$R$d?D}ctNlBwGv zKzs8Jk8pA$z#+h3^EuzgWTbLna*f;U5FpP?w!;lJ%Y|$vGwL@dM9Y$w+T$hzwQkl- fXR{^S;k=tqFVQA5$R;}k@J>FxL}v54W%mUDm%&rz delta 1125 zcmeBu&(!;#X+t=pVQEr9e7-?urM_{JaZ+-UX|j2WX_`@Da+-;SrGa^pfq`*iilL>6 zg^_upNpg~*h2`cBMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}}y&0SFd diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 9d14f2ade56525f5e4485922115b886265738907..08046d7bf24fcefd6990ff56ecabe18ab8a114de 100644 GIT binary patch delta 62 zcmew$^+9TbE0bZBWmZK-qFIijlA(p=<}#*VTmY2m6Wjm* diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index 0cfd87bc1b0dc6fd722f95464d89b0e90d8e3c84..76132123705bc42a440304e9d42f2e3ac511b914 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2hE4|xH+VRMM}Cvt67x9=d=)(MV3$h9@obp^S$escduhOL_w zy?dC+h||WLC6nu;g(rX0;oH2}e+?O_X)?qJiOn{lo#gl#rhQX5S)mQozPUcSjuM++ z#l9jV#Nqxvn5ajI?RSzNQDXb*^rd7(+UCZbb6jL4mzk3r>bN(nRH$&1seOSN+vEvd zT+@ry8AT>r#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7EH81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<07%Y2y8r+H diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index cb72d070e3861fec19260492d2951977872a91fd..39824524da9138b882b55cee62923e6248f35d66 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wpEr{6&Z3{Y#ybWRmU{>eftg=A^(o4i_C zY;y$bK^C&L3r`jZVcGni%Yv0mBLoy#H@_BG%uBX*j>)0&f5_H-h-{t0lO^o!t*+~r zy zS5WARO%{(Sb;K^~Wz3|9=H`j^q2%SEwct2B>6%TR*CE=)J-(CYZ;1Af-bIwy?&f!! z65CmV^vJY*vp~oVN^CwIKAXJ!J8QFHtRNTZ$pl#F_fPgu0vtCOyCwW>YC-m@c4(nrOqd>dH)D&`U|KP>DIdc9~a%~4`-@VL?T-*KA*d~8i z$1~X^HfZ{EaYoh6RvQnImjJRS$Dfy;tmDtKdH#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7MA)c`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OV4{K<5Ae diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 0a9bfba79dc8921e742b7ecf4f7ec49ac7db492a..c4db80f49f448dae615a5ad9221568660e3e4c16 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wpEr{6&Z3{Y#%I#Tf6e++X6mZ*ksI4dkXDU^Ie__-J^7iENKRjF@QJLxC$ce=z?@sS9>mub{vM z;Bc_Cdq$}%zB?{sCNn4>ggb4nahpSKdUz1-zWI-LCb?k%((dW^mR$dXv`Yo0Q(}8+ z$UQP`-~1rFloFdQqpp!@^JI{}KgZ4^H_{sP3^vCl*RYeBWE%8TCSRDxws~Rp6b^EY zC^Fm3QF@qc?LZf7sNvl_v(AP5Fn}1bx><>nTu*cxZJyJc%|?OtYf~)Awp~wU^M!e2 z24UOe1#1L1N3ZB3uh?kYykN}+Uef)&xp9{O8QOr&j)|LtPh8O;-9|`@1sGH>J_?cB jZ~&$Egl`<14}TY=z=+LL|2`wP>IXKtwkvTm-e3d(T4ggE delta 2563 zcmex0mF3q|mJNZ7wxvl0@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7MA)c`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qjlA(p=<}OAFVE}oP5~~0J diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index 81e3b257e4df0a8d836393a691decbb195fceb6b..0601fca1388ae58f6595a59a9653080e359ce36c 100644 GIT binary patch delta 2506 zcmbRCjb++5mJN}NhE7K0T%e6VVm4jUEyC?H+HtQE5PkYy7zi@%gqBDQZ(Wnu9T3=@bzGY~e|K#T zxF||q?bx+h;ifH_wocZ|<=L$ASd!fI4bsl?ViGTTku}|bg^_!6%r{9g^=}92->yfN P-Jq5f|MtbkjK%B#fi?(8 delta 2506 zcmbRCjb++5mJN}NhNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7d47+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NQVI2||u diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index faf20ce0d7519a551cedf01e2a898a4ede336812..27edf92e2def6b625770f3ff6f6625f925f1c852 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhE9zv3*G+Cn5#FrH8plGmcJa-=Ttckm zY2VBzz`{qK*2xFuo{*_?rJeBRbcM;XWNVKmQzs~_kJ+CmKddD-$GA3-mry`4EwOpA z`$8tN9WSw&+q;Jn+v9wXQeyk7fEAS39vQr!65H>Gbx>lvUSusLwim^CGE)$7O$q*F zYTw+D@`XHy&z*eCo^NwN#&Pn}`=ZUSa$U&_@kN`N3LcW@=tY~i6-Se6>yy%R}_7$@{apHy5sIAlKg@?Q1sa%9H8u{YAo?=Uh5PUdaJ;JW#vl z^=oAMee?RevE=%D{awM$XP=65lId^#cY>RjzE34DzSAdfkdd1F{*Tb+b3gLQ3p%h7 zo8SML&P$dDz}lzJSIMgaKpB^Hd!Rex cZ8G&w@An1~5$)(xJFhNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7c<7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>iP=EgAq diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 172a68eba9e2fad5583d3d9752e65ac81017b7a7..fff54e34e044867b6e2c01155a63b8e020ce8963 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#6WWmZK-qFIiczxemE0H delta 62 zcmaDV^HgR-Fr#5jlA(p=<`%|>JOGo16U_hs diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index c337f8e71e44316bfa5131ad5bfd34c044f48f0a..8880f44a550674d022d76917abb4356e398ec458 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahEp>Q>wTo|-OkTY1-Fz!;8W|C@d13YrF0%6QtjX_nxHjvR^K+A_ zeQkr#W~t^JeloRZPv>47Gnu>sf7WE6?#)Is=L?c)`FkC<$+6a4o7b$?C(rvuo9ni3 zB`>OrCf9A(+03+OAum~u2Wgj{y#6}(=A2WlJmed(dHr=JO|rDl+FrxR_=CKL!mRD~ z+>D8Aq}#jwq9CIgJL&p>*>cwOeicT+$*wyDwttpnyvRwOA=`n5)bWv}w`n`DRd|aL E06WM_RR910 delta 2706 zcmbRBnq}5&mJObahNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7c<7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+HKMm!_`WJZ=k(rpE4pS*xec(V%YT^91RZ(hJPiWHo%R)E+6)f1d7Vcov0b;fgA&{8`{fxp0tGI5kan zXcOF=aC$Sj+8p7aBsgW z&$vy4EK{1M|959(+wSAZc$>Vu(=_?Q6t?XT{1_jRsegKY7$e8_+7QM)Tx9tmZ#%F- H{e%$!o1Cp$ delta 3021 zcmdmUn03!#)(zf_hNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7c97_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~s^>#(Dq% diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 64b13ef237bf991f5198c6462300eee7eac9231a..4ff4b8969381c75b79a9ebf7da9bb092c83655b4 100644 GIT binary patch delta 2688 zcmbuA&nts*9LF1b=CRB~av+`>%|+Ye*)yXIQLGdfB>6R)7zbq{lOIVrXqqoM&~QOH z*nA{TQoFb~p@`(nML5Z?Z~g-Bou1RH*Zckbd_UjkYFT@=tc}!aipNWRV}0HBL5u8h z^mvLr)*jVu^(w0B@G1_sY?Ezv+3rZyB6ayf4Zab^q%ZBg9BsXegkz5>>Xil_`ce70yvYM6R1W7*jPAhgmnb71TDF>S7AqV8+ z1m(cymN?SNi4#Yxh_vH55su{R&0pZ!AMopUUC;g8&vUz~x?NSpJPOO0G}1S08k{tW zk|_Blo8LZQ3s`*qfYsqN*(H-n^bMGuR)@vzv-%~o!)auVN-NtjaCEHb;>`c%S*mu3 zt>@&^S+-jN@FWseY7b%h@IO7$#OnNiZXkp%^2WD}QA>w@h9werpbz)Gpw7A4s8#kB|+f47%W zUE?^~bHd$(2A*m5qUch~0}?n9pJJ}|QWD#Gkvsg0ldC;~obsQ!oHjep@!;iD+3m~3 z-q8bXk=%Q$e>oHLrxeem_jJGj4vcLLYN;=Hh&*@l(1ehdF2_zaz*5TiQ%xS(=Zty~ z*RSPLS@aos?Pa@+U#`C+-;|8+Z0jhrJCE9B{CNK)8|uD5C9x22<0uioDu#?xEHSf|wP0xBg(Gh|j?TFMm8YY(A~k4_eeo3jxYzvvVykAo diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index d255cf5f34d1faef451c79f21c54237b4d9a1215..2744dfca14316a0a8f95d9a4cc801ce55516d1d7 100644 GIT binary patch delta 2967 zcmaF)oaNry*ga&2Ab zaE4r4-CR1!wRN^z7rC~6^bBJrGf4>h#gMDjI_NGr4qmvmb#g+Y+~zl->&YmlCPTC< zZ!U>0Cnuy~+KiD!3^L`-`RRIO+6>lSmbsfuKZCV%<+hR= zVFG0Wn?s8{*~v(xpa`4b$TqpafMs)Bl^+M0M);cvY%Xe+<|I>lL$~PWh+cLs^0aRj zo$-XspxeBDt{yp+3@F$H)(C7~ym&jAp}tvQO#&IgwRz#zV)7zs+UDE)M98oaTqI0z z#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7dq7_X6`ZF-|2WBp_nmO|2PoGi#SeX}j=ViwZ1ZWiQv!%Dig$&5;! zo3{%{3X-mMGo#WZGJ*$aW6$IOm0hG;2-V3w`9g@j)mipF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6EMKb2 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 33c8331a73b30e51db4be82a2c7cca9dfad4687c..4d0c7870c14a8aac1bea3289ab25ede224c44b99 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#6WWmZK-qFIiczxemE0H delta 62 zcmaDV^HgR-Fr#5jlA(p=<`%|>JOGo16U_hs diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 4a10111c5acd7183fd76b4757fdd8684a57729ad..e747a670131d365e15dafc2bf163aa7d5db028d4 100644 GIT binary patch delta 3483 zcmbuCUr3Wt7{)oZZ(4H`Tj|6SB#4O0Z|)E4qVQ^-uaDvyLCRbR&4)dAZZ-clrEXe%0sjssWqB;R@JXUaQ?|cUqkRhke9v^UAM{##tG_ zI8!HiyDnP2pd{xFX7VfFbr`*9nB5AH<=|_c>NV1>#$iOb9L&+m&Iu$diSBLrvju88 zM@riR1wfgari&dHOx2^r)K`d4roP~z9s}L)Qktt*)fPkICjn9$Ev0%*NJ?@xaZePn zE78CGMRcrh2WL=K=P4a_0&>)GW&u^ro~@u>s8Tt23_az|SLe`l?}ZCM zv)bk-dH0D1-WM}#SCol-krdMW|1uW(b<>R`zPUu_#P8b7Sg3V!xP~sMFJ?j}vDt)Y z`fv>$XcMu}=-nT+=FmTv0S8KXPIbVQC^N{1^fdG+T@T{t(q{Vnyn^DY+eji4-Ug~m zTzNBV0P#Jyjl8s`(DnCEkY_>0r9>G!R`M5+K(*@ delta 3483 zcmbuC-%C?*7{>Y5&a~zxy3&ayNDvX3XFqh?Md8&zp&TY+N!ZRAYck4QY|syE=mIIV z@Gy2!jnyiIf~{WM7b5ba=t^=o(aoX}bkR+01a(o2&haL1_v{b&ywCeQ@B4lar@E=H zZt8P`%o>p{O-_qbS9g5 zrZ90%>C(k&7u3iVgPHuocO6E*G%W1|$V%{qk{&YB_2vmgxDw3Mn?18gRvLPs{m%}l z={yOYcLe}tVuq%=&zovTiHXkD~?( zfo9dsPbmW@o0Q?WS$(2RBuCRo^Z(0O=+`w5lKA!#y|cgTGh?BSxrsWupy9X)nZ$Mz z-i4!ebf8YeLNm91)SJV|auysY6%=X!o&W3q0y!&sy*%l9h2bisO9m8TO$SNVt?#@h d-jVdiQS)0opSj5*?T~xz*QlAVK44?J{{e#>N?QN` diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 9cd3a44ae188ad33d73818f5bd1e1a441779dab9..df5f9b470c200c2ab3f82b6c948bfe6b9817da01 100644 GIT binary patch delta 3789 zcmbuBTS${(7{__l9a@{&7A9q65zB~hZ#x!h2Qh+?8&ranRy%}-%S`bwjYcFnTGD!< zVL1W?6{)p+h|g|nP@@Q;i5HP{5Tz(&bsr>c)lIj5ufD6_^Lw8E_q^}-O${if1{Coo z#{GNFbv2%`G?#IY&F$IkF}TexgV$&_+q_1bi<`K~!Yy92>8!`-%07+a4qF1KustN& zWm-Cx>qex1@c<-F&}aE}8HBzdrioza1K~8ts7H5iEo9E(%1ONn3oA?OM5SIuvQnP{ zZr}t&CTNI%!9q(?mo0#eoTTr2mvf+oleAD7Lam+yTXR8cZ}m88-EjC2V5P9#ibnLb z<^o_8VSAFc9X*ZC=|5hKT0?dHs8w}x4vlH<)F{v}J#x3^fm>A6^a*K}2dBjl&!-%p zPY#%QaE4mjuOSI%(VrdrftW-VE$`_=tG~Hsc9<`by9JMwMu0gHc(O1Z!?f)D4EcZ{C-*q9lF@9ssdVg z99@Oc)R5Q*q9XosGu?e%5B4n_ZE9MaeYX;P?89}m`LZRgaHeHc`qhfP@|eh!AZL14 z0hYY@7|>D6vJLq!%5F^tmj?6LFD=RE0b;e}t_byX;^{jj+8l@~oR}jJ&O7`I57aJw$Gv|Er|x*?SF; z$G<9i$=}SPNT8VlQf8R)9e_Nukhh1KT$&$YHRwX8DrAy&g4Ke2q+yaNB}bfnEBp=B CCzyW# delta 3789 zcmbuB?MqW(7{+)22ovk{m5* zJf}6H(|qd~5SSi$I*Pz8()&IkVTJGv9}$YF z!0(p>W+6OF9bH$EhV$sp?)^YbJdalQ4WQQN7Z0LV#pO<{?q=w}8vr6dFC2rQ0 z(Bk9x8jPlv)IJd9$(LK{&g*6{H+OcbX=(1=YVh$7*U<2l%UbTr%BbS26?^0fo*O}~ z?4A;=dHyk^qri#{`7g?EO%9iai`XwMsDCrKg)hx*kjC_E27BKpcy5Mtww!G%1v3P$ ztEFBmBlRkHeLd?zmmpIkk1ZTwYsW7+88Rd4=!rcGvdyu#jjUL5HL-`to9F*2nP&E0 z1N8B4ib3iSj`k5Ex0NNEc0mnr>#zP_{}mS~I0Iapfzm zU+S)#YT8Q;BvYe^sGAjpX&L=MX(D0^LMl7+h|p!vx)|r``T5@Syw7*o^e5T$Ct25S z!C1fXK;8a*CWqcwkzHP~p~6s}Wi{9`va+&m8QE52rZLlGG}*E;?G+i;@H2y31qA@3 z?)<%+vf#jie^(4cX+_Kl2GnHb#XCtmL z4@ENYt2u8mcoXY$i-E1??)-ji*e$$vOAThWg?AN<17^hvs^yP`IansEslP-;o4l#~ zwb+cExtjY+UV!Rsu-HIVGFX(nxlE}5f*EwWNOMR|m7|B*ZgV5%B?<+192`UrAi*EP z-nI0uJ};+N@2ai||Ni-^q@eQ@Y0PR;eQ)5Uwe3J=Iq2*~@)~ruabevXKv6X9qMEi? znsJMbmivky9HR(mc*eaGeRq-z9mh4Ej=+I<5FJ~abuusqHEl{>-D*YQ2JaV8*x+5r zPtTU2i=*}_d^;0`^bX%`(16Imr57B?eI|y89oH7c0LmVJ!)#|wBO9k-;~ZBoy+<(0ZgLL>J8Ol}JkjopvgkR(DLwxpFjwj9`x8 z&g2NP^z-@(Iy2P+%Cdn=RD9@NJ~Wpat{75{tueIpWugw-PaW> zq}{a$F3?68uMc#}1gJv9aYzK`q6P4a!yXVF6d-jlC!RoQt=j`rY9SsZ5w}9)yR8*I z!*QC0tLW+3t%3GsLL9zZn)9)O!dH|i4C7wH6jXL$TOcJ_ScP=LpLZBq2B0V&Xbkl{Uwb;5xYnGHI&HSZx zrQUieSN+sL)KrQPds%^4cA*l=l87=0>2|g=gdY3W!ydoO|DW&w&S8_Is>xB+&CNpk z9;;*PF0uB2Im4P^wOLo$r0P}nl~p!-W_FG!Sw%6UsyaOTeRf(WoacE<+z!e6kdSZJozb$I+QpSw=E1*RnTl7*r=!RypQ79C3s6 zESiO1&V7NwkF$AgDR9+%E58?8b`z(rb6{qhcvHbRU{O&P zH`1$vdAZ$YSG^?GVq|eHzFt2c6wWUW3jSF53SbP?Sx($k7r< zzuj`9tsUZ?!xRM#|8^In&rWe+;<*hcqi`S(Vq$BfNd@M>(W2$0%~ljHdf$V>qIU)l zv{s;pqxWfi#R)=Mo38^jATx0JxjN*1CWnaYuFQ-Dls*1K;m){l?HDq;$A5$$-8c?p zjy?Wt07f2v6ODA`<=(@K!sFjd=1${OS^T=)jwD{8F>&c#2`LR3&gRYuM7eL!P3s$# z!szNbk5ia9u^)OzDh^D%@IKPBB*WSAFblYH?i(BjV6x&qx)jvVmf&mPN+M|f^tcwe zk`TP|K`cp@6iRz~7c?L<_=Xn>Mf~#F3Zx}u7tF7k##fRcjNo2E6jX6;eIO}OSb}tnl5u0;Q<5;E1AHid MJ{bbFqA+{fAG57Oa{vGU diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index 577c8961c7894d525145d7cb102cb3adefc31baa..295ad462ca64b3072ee2097b98548f7e3607f9aa 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-SY?@2k&$SYqi>jEk(^?bVvuZ_WRPlXYHE>cY>{MWVrXJ!XqIYf zl9pne1fq>M*D&5^BVF6%jhvyAA9BnmUFYVFoWIC$C)h$mo?6l^ocu8$dh%XD;my9h zPngNmzIm_UUvdHoX!B+_$s_z^+B!|sl8H>M(K-S0VrXe% zVPu|YlAL5{VY#`6@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Jepb?`+vMCrSSQ2QVGnpigimgJZwWZ3G5Uh$a$s}qOA)puniXdI6 z2;y0mLMWwDT1e#}W@9&@(2e3sD1s&~6bdCPcP(_T)E_Xft64qwIUnzxds4KY6zyO8 zY;v~ab!Jiz&peb3HDLq{DG`cGNhK6glZqObgK{t|hm)aT%249st8m74X19)!<{zNr znjA**mBWim-SojZ3y5_!#h>cmBVt{h=F7(F8o;Xghj`A@*$km0)akphPO|3zS!*3L zmztst?eSKi4uHjYbAfYoyxw*<5?@^{R6)f~^KO?DFp|i^NcRiW8tH+pzj_x?>)%Ka z?e*ZvIBNaT{{XdaK8LOA1J95UmSgjj3%GdorLWq0qPQHZ0KKy9)hROFaxBYhqdS0+ z1bQ(xidui`Eda{0(Sj`{%asWQ?ek!&2PpP>M1`5BNDSn3++jUErZGyT4kuCC!|fSD z9vbrq9$fkY6fNw$yfTYTIZDeb^}O`vt_SSC9vG-1*(snD~`ItoP znqT75_A#<=6E)3E?8`$_zrh_l2_!22amp9!sBQlqc^4h*+LOQ;TsM+0{6X&bO(m6Y wwcNHpe47f)Bf#uaL%)mHijZAgT!Alq??VzOaOtQ?Y=JX};D0X4($VMUe_ML30ssI2 delta 3077 zcmbuA-%C?r7{^)Dp%a%*b`v-Vj13BU&)Mvp8J5AwEHX}v;g6x5bJju(Ymm5vM3630 zg6O%7U_>NQu;d}yjopl(8^bF>1l_tY5M)>0DR^GVKj3`(13vHP`SE?1(Eogdie}g>?D7?>IaM@voP9w7quq)VC&wE8Ps}| zjHA7--5f`)zXmR$*4KAn>(bzDB!so}G!@kVzq}u5aGxlyrRzYi>>1uhrdvzT@?vHM zFp@-f$1eo#z*(uqmf#exZfuUYrkseP2rk`O4cd)GqOh@ABAxC#bsI$>%;k zK5{gE-$XcXMXl036!{4ZE~3zK1$WmZK-qFIiE~3zK1KQbByaL1v}CaguRTa*}DXd5US8QDSnMiG`(sd6I#Fabk+0rHO@+ Rd7?>jlA(p==B-S}xB#fa6g&U` diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index eb450dbf877e1a0dcd3934e4409211f23923ff14..581c992ef0f4545c48e7ddcbe72e772006068840 100644 GIT binary patch delta 1253 zcmdlng>A5xFwwsJd0tL4**lrfddUEXs>z9$)MUnmaa;_BF@2mKnh1{_J zARxPWtD2xNCHmd14qB0^fBJfDM#;^srS>8e8Q|FESWlh-LEBlm7^TSY{&ryUX_F++ oQseDb=8VV5uoRqTrvo($Z?EuXJZVFo^+v#gf`9ww4#rkS0PBryod5s; delta 1253 zcmdlng>A#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7Fi7!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$Sps+! diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 9e27b78b5663bf9e5197d2a5d84bb40e9e86cf02..da13a5801e04301797dd112822984945935e72da 100644 GIT binary patch delta 13101 zcmbuGYfzMB6vyYh7hsWPxq4R$MF(#z;1XI23Xx-qqN13hh+v8+Uh;;Qq*T;G#6=%- zwA4&T&5_*dh<8VaY$(z(Fh@nCi;9;l5)&Ql+1+O3EC2n(r~m(V&Uwyrp7(uT_IQ2U z9(Ha};?9x3GdI3}$rCvda3(|%IM5{g6$?1bp>cGtXsC3ozQK)qO%ok{`rrG0Asya6T zrT#Gw&b4wuGD`h!(PT8&bGdU+>BZ&wsPvzeNocOMAH<{7bF0Ur)YAL}l)8QWQy85Hb$bd(c4Q0kE_u_(3hlLnL;ygdV@cKOVNN`Kn543*y5GXu@_;ogNP zl@0`=Qrnj>wd^oVU3>)IIU~NQM=N}j2cl&E)VkA~P-(k!=TT{H8GO=Z zUs#V)t>stIbv0DLJ>2oqHI!O>c{7@8S=BR?I_c_mlq#;@L#aVGXQ0%O+F>Zw`?muq zHTgDt(na3ghElWc$Dp|;JUod~cm6dBr54tgqtqu2@H67?|5l;Yl;?0a4QhG=YZP(Ho$6B3I3z z7+Ab}7O5UBzbUteoytfo~1{90NBV-f_Cp91OzEO$d&_gs5_^#(zMwVW4 z;U2ipbQ4U1hn3Q#06^^MTyq6k;NHo)BFlF$UQOVBl~e+pCC#jLA#W-Ps90Q_u4tmu2-!lN-&S(rHn!WawD}mBhK^w(9Rfs6H~s(f zU{!`vjz+`M>jr!xIx3R5MDga>1mc=JN5a<(fP z$eB}$q1iTZFIA$^eq-s?9TrbNuk1&Q!J959W^b?r9Ct;DLC;B6YZNwvWKrm+dWzf0 zYKX}4Rri1{EL~!Oe}i#8B#i8;wnOKlkYXQh3{ekt1Y@^5xQRY->Rne1_|tgxsEb|nz;(Hzw%8kj;vn;i9lD^@J6#&^aXQk@})LbbHz1}tYj z!Bq%4sTtU7pL!j*k8qy+b_XFH{CL#?wHh4@!eO)gxM~oOOVy^9m*HhFEM2m?x#A#d zLNyPuvQE`_d98XIomS4AUV1g&Q@2@MjVn;p6lgvi7p(aM|2^2ON;0mky(&%#^{$y>x0$&L&Q)&f|@wacZDgbc}P$Prd8I}{9# zWq02}k6U|fy7S?)+V>qmy!f+L7DHZ-OhJpm(xCx;*l;dx&RuPVDEO+)A81YR zTZ(-Ts}%jT0bCGnZPbI{wfNRo-weMTH1(9R%a?;4FkU(o!y|ET zwC>yN0XWN|A4g9fmR@(!o@AdG-4E^pDK>IRte)EoYyfd^mRaVRQobxhAi zizcMl$o^;aa`f?!CtuR@;VB@+o;9w_)gtvvg<={M5klK|v&D${V?=j&Av$E$>$QFH~6m%;bjee^kp} AZ2$lO delta 13101 zcmbuG`*VzE6vyYhmt~XeZm#Z^HiU^=Rw5)?l8B~82|aTjvsxpjWb}^i6BXWXN}qIF z@2KdojNJ4&VRLfxXQyY{3wyn4-%qD{H`zrhM>^^hgN{kXwXOz>eP#1mnB1|zxL3ub z_65cOdtRF6IA*%6Ko&{%ur|%?4+8_l-LYhL#QSx|LUH*x9tIxOurM59ZPqt~q~jfl z!HQ4QrH;a0OR4EH*(($669;)awphdcVEJf3NvZER7s=!p6JOyE>8Cq*Y$B2~rA~Kj zPsv1D%qiV5p$9;9Q0hgLn4dNrAljY5PPPp~sRJ{2qtc~QN1@U=(_WytT4s(zsp_l* zl={bPIM=HDWR&{dyvb;;rwZ~=>A6KksPvyDNocOM9}GsRrd-4gPn6x zD(wkErH(IQYQ=t-`rZL}=ZyHK4z2KY9*CCd&>?s>l^xlFQtupJhe}(YI*m#TD&UiD z`k7TI)qeI8x~|4bxQE-Fzl>5#FRVv%t*Cy6QYT&7j8eswyC}8e^=y4OCtbwtO(-?zUJROR!h@qIb?aZFP-;otS(N(ZG5n19`@hvFHRUqrRKq^-e zjR8x{6)OFWa+8~pKdRNdXeFxcW}=>`_8$w~N41Lss4rUQq#&w9xkp-28ghFiU)s66 zJ*_~w*IuF3XuifyREToBcA<@^c48WDEG!-ibuI8-=xu~_N$?^7S&!KPUtHE zSB)U_d5SNOqC8;#iMY2Zm*pjH2q0!DMm`icq3`nANf6X6o?s&r5V2cq%A(gn@kFl9 zrWjbfeFmw`n|@R73_F>-&!yLZ<46>)QAdiDg%l*77tm#Z?lfR&P-+0hBDaVv!gNi` z;@S_%2PvN`25B?b8;v2$PCtTL{<@U5wFJeY{s5Uo!comvyl+zaa_Bx934GUcEh9^> zS#S^BW4aC|!NbaFQXn99b*{CNBH`Z2xhTuGcd(kk(N$CioF(qcNt-fc>$!GM!wvEh zU)0bqKm}Z#D-9A&pjcQRQS(L()b=5jqCLRUt2^9%SL$gWx_N~Z8#&+worCL85TJN- zu1Q%1Cm4_ z$!dtm@l$tzE-YPQfuF&+9}-4(R$HTUQAn{b*N3S4+JUh<9SovZyn5Rc1O9ZddeGM+ zhpWk|uP0?N2|nhb9(7je^=cU>1kX+qNZ5$<@jJN0QmJ_qbkX`Hum%=n%GpW zrRcCr^%W0`wNzf7qFK?`23M(A8a@m2G$gZ#T`M~>ELaO<8P_(CLJ~40w;_kywdtW? za4fs~7JA$|YtxnYpVYo@3*yC}wXzuUdSnV(43-X$(T5H9;^yAg7JE_xqmT|}UUpw= zfZtM_LxxSHcZUxj*O-zHfn2TV$Bp2Ea0`>(5nhXL{q*(l%RxhT8M}Nr*aG9FLn%BG zcSh-cjUIq=BK5=Q$-~m?HrkWy8>9QfT_D9KE{oL*dVmce_Ri2NK`qzM)Yl9}#omYX z0<>sCicK7FLO+W>{_*7VdJ#MYq}YpRRp}eh0l+J6>7j7rhu_y906U(Op6E}JoTV;> zFFey5;0vvuz6LX=c^QVGE6&oP4e(b3*9QfWm?>}Ms@oZgyqeyv&VQ(|{F}*DzyAQ- CNz7RQ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 8eb6b543a6ec778d019152e2e788f3e3a7605e6d..31de070552ef508ec6da5a3f2f97ce47077a558c 100644 GIT binary patch delta 1676 zcmeDE&D8swX+tohZIxwKMMk1oj=o`vMRJN!ib1kzl0mAmsi{S(u|<-hiJ^&^p;@Y_ zNm`0=5{Nd|PsvX%)-TR4ElN(Ee6Uez@+QWkh9sK;)ETt-7gGltd0HpG-_1W+gsYG& z-NBP52r6yX=6=XZp7zZX1fvnQsg!<-b!W)?=(EdrRicH%#e~>s$iOp#;PGs5) z_II${I!bI`qu5J{?N5}$DY5;Tnj6 zg^_upNpg~*g{6K{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm903J0SM*si- diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index 442e2e34c4c5726f8bd294d6220862004cb96a0a..ff10cab6dc06f0634992d7a3e6665b7833d1716c 100644 GIT binary patch delta 117 zcmeyW`Big6IHO^eWmZK-qFIijlA(p=<_<}mbjoU9yh0?C zORs4ppIzQho8l>My-m{4yfyiL+Ie3-SUF4$?Ei4jd7wCO^8DJz8@h9pO&8!2F7AUN z9~FMt55EaRS5F>32=V|inRyCu+Bu8jmDN_~oL%^lwG{H;OcAn#6RIKjeha#&0{n6Z zE>hu*`rR|I$CV)P5U#osOq5`YE5Vsrc;iY?n}a0bdTVT9%L^zIhP)xT&*87+<|`aU z$PnkQh&RjdiE!!I^@~iv9^74lR>IGbZ7^BnEBM%44gBnJ8B%y+6(YnoCJNUI;p(jy znfL(#eDw{y#FaEr7$)0k`)IP6>+;Nm4ePg#f6z+%fph4#!=}V;T*69C-R#o<) J|E%<@<3F{6^l$(G delta 3290 zcmbuB&1(}u7>9YcP3cG6L_;z4Ga|wEAl+osCMy(L6hZXRqGCa?WRoT+N&?b=0cjeD zAV{<>I%+|Ypaok{JHm@#+WHYJ6qR0z*B%7HlR~0`2WOi@&in2k@I1fY&dfWr`SrH^ zdfSU61Sa(KSV}p6rB~HeJ*M}?!tuUDFd9pQBAOD`6-AB416n8&3`avTJrL3OJ=jXX zjG;<`4>s-Tu%5VyR^>ty4K?O{9;4eY^Pp$AnXK^gfEVZuynJJ4h?vgjeG9bYq><_g z@^1fgBF>eYLtXd8SRT# ziKMplhDP$)2tz$NSa;#f6jS*H>=Ft)pzZ028=) z5Qbe;_|*XXCJbFYdE^MlgT!R!D8O0kEQ(K7Tdi|u;m5|3&w(>V$PjL*hT!{c=%fnp z%U!rkg*WSW&A@(J0?#A3W=oJR!FF4MbF=W)mY_BV8sT|sY+=hwC=-UfA$Y*yuVm*G zUO-3^=dOsi%J7Ns=$Q43Ou!D@SAkZ-&yi`!GUY3{*jx?V>`57PJiP`Au}v0*YnAZy z){CTnfCpcH11E7MvnULc?X-Q&vfLkV;?o)&rN-9{rGIdylhz@_F71$f>`ocnxVBBI z61O3PLUVG9^$z&+fOL_veu69FE>$Xdt%r&SGs%`mBpJs~Nbd>vfGI#Bct$vQf=w7z L*@f;g=~u^pDLW87 diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 977e0b97383bf76aedaee1d47de5134309b31830..4f039da8e9b84ee560b865d6b85084ae839cf61d 100644 GIT binary patch delta 15985 zcmbuGZB$g(6^7TjckaC~2#mvr_(h5zRaz4VVF25xL5u-3DT+i8QGo#kMTFFtj!|?O zF;UAh&eD^jEsIz|Y5km`=V3X!<(40`V2f4Y z+&6YBD*fn3ymiqlP;#PyQ1^j?2$>SP~THg!p2F?v~#MQg$o7 z9F+J657g?c6iB_=*+1*P8Iszadl#o5jUAV7cUEMrL7LhnJ!PAKQXP5g0ID-C|2#@` zE{8U+E6?LA4+6nDTvD~fhDw80_oKPit;t8J&Gwln_1x=luFa*XD7ATGF`Db$H{gID zZ}}BUoxW`jn(NeGzKl|*?SKX&R}aVUOhc(NcRfOL{TH8&Qm<7+qSU&*t5E6}m2oKb zuT^tV>e=6Zg;H%bucFk=wf?Ad+M#k(`r6TaG}rCN-$bc(CxTFE>H9GC_(_;ravI(_ z`DY%W71qurqh*rL!)KFPe*~p2X)HsfZ#P{+rRHY%rZa!O7p11RTtV0M%P-&_Hnp{) z)ZOhhXs)-e{}-i}-#Cm?Z+3P8R35g3t#z)yZAY>D?#>3V`e<6weF~+r9{8%e^VRQB z>WtoLXs*xnHKEi4{TU#Y4m0*8h^1(Sp<^OV(%3DO`xhfaJF4c?Acnloh#8ZXn%F$F z%z0*JK)FG|%#4=m(-5`?)rO2B){b&}$FU{YYmS|ir&$Hc zO|r0ZG~Z2=m;>dWv9j%`_Ul+yiT3mKDJ%iyTAyPdquSbdRt?mdHa^cTpv*@JEDd0~ zE*?Zm4_N%Q#P9W01HDreUQ9<**i!r+{WiVtwc zky`7a3$Z^n?_otgAf7*Uka_W@8rA?BkT7r#0mb~S^URm$rAjlY_6%D9bd7rfgw1An z`M5r5c|^Z+pH4Vd3p=} zv4`CPl7FH#@)Mky`P3~+D!ucN-5-Q{Z7@n+G(?d)&_*EP@I2gtNhawmx{YaPpw#9& z@We?J@c|g|Vj2@Jr6Xd!ZQDvj--J$-tZ>`5Sf!i5Fy!9wGh(GTfR9?;J%9B@$)6U^ zk{-i&;qWz__`+1_9i;C1juB!bZOV{dMjYnYr8LUUlJ+2ts*B5Vr3&DvBO%^|>`S3r zMunx)W#oR-BfhXrI)tXnh1ibl~qeW0RkamV;u|N zUF|}@Ym(kZIz{g_A@-(^KbK-r2inpq)d4xX_jtoqX{sNZc=^AjMEFV*;y_yUP|C4@ zc%C+1z5;6Ly>NN%U_e~FQeHrgpUOj#V@(&wOp%X`0LlDLhU~-FFOWMx0}=+uO_l@Mb@8w_<&;n$U43gVJ0Sb={%WY$`oSO!>XAcDryrec z@TR)c@_l&h)E%aMD7T{9sAEN6aq8UtuA@ykw9E?<6WT;2(`6mlvFQck3;&_Yiq4xT(}2udDFDd3_a+LsP{Y<4x!ZEVrUo+211q|Ln&MlAr7R3 zUc)_fC~#*{+ix(QxTrWhtA%j!p+1As4gW8oA0ul+l<}S&Bf=q=kKAuC^TN*zFH-d| zr5rs8=z}qe63xz9ndd9`jiNgoNmD8&418{#mcaAUB*YZfsCjAd|i>zV$aX z9wxV5RFQ8kyVkput~aZ7FnR7Jbs?PdqAO|=OipW6cf#a~HnkZhkG!TLU(;|`dufM? ze75Zt&%U8I7; t5U*X7cTr0K9ss`!BlCt96X8J^B*OT>qX~qeZGc$F)A$7eWhtpVCY4*y@B1`_Olc!`)$N&FjeX=!*S7ur`NOEy+ct0i}azt_`d5QEF@1ER=fYH8|JS@)VTXy1p3A_4ey< zzz;Y57NySEG8fHt`fpx9sWIE2!N}3WaobZ->Z~0P&|Lq;=b+RpRZ~!E!|s(R^{eVw zl=|12c_{VtAHG4Uxpl9g)Q$DNs5It4B`W>(;e0gLtw-NLsSU>hP-*%5F!kthm|AiY z-Z}ZF?x7Xd&Lp8_lFq_sliGL)r7mf%K&5ZBTtKDfR`{kff4Li_rnOx{*Y)eK;2t)0 zw4>CWoporgH?IB{rB+@$h*Gb2_W)ELvV^U+uf17@V)xvh17P*hw5s<6N@acURd?%~ zKcUo_{V`~+PY$%8)O~~LAe9a>_BDv5sR~2KL<-l~4V3#ABSSl??!*v=yv~Rjla`v; ze6-AYW@bRS0fEenmg@5$whPq;jbb6FwkwzoqT0$aY${skqH(Mf<@QftOR(3RGE$yk zRVX*n!Ya{xH-s}A$~|ReTT$(|QLGy6=NZ#jJj%5`%|1o7^>M5gs57m9hMhy158_!W zz;s-GG?2)U2Pj=T?s>Kc<(4F|g=oI3l9?6dE=XZ1D0e|BdluCuq_aJ!mM><==K>Nl zRUgVcmBUs7dyn_7V+H&`5%Z(VOIf5l4nfqoj3uBBBx3j_Dt06gM2B8xkGbcteihpY zIuuduYBoY~{TZCZ3akdcZg8wz&U>3#CU86PnlaLRp1F+$@CTLbit9n^1|$s5sHk`! zXB?@u9=Z_wQtK{OeKVpaBU3`!G<<-#p8_d0vV%i|S9Yg+SLh7eLr- zgqQ!jbIizp*UZ|%BuE&%;tz-&jm!UBC{{4=DocVJsHd9^2Tn_8?+dXv?YzmVk)5Zv z;D>$e29W$Ct&tz&%*>~6Qc~#c`|R!z)N7ql@}Oag)P*(z35RFk7EClrr_pUp+x?{u zZ`TtiQN(*-#F;cMR7yj{dfRrCh`tG)ELq{UZL><(fnmtG;b%rkuLEDTI(z=|bCNGD znk_wq@xtL-IPpa((%VSg^&KO`M%s`ry?{8(Et66yJ4@PyG^#GHcu}eXjye+J4amL} zx|gW1T)K$dZ+gV%wnzuibh!}w(9mtts{yWWPTsp;%HzbDiLc3$QmCR<`Z*8?2^;Hp z0PkoQ`eTdq7SbttuL-dyefp&og*wotcBui#*}2D?E=$vW(8MeMEhWHLnh^Wb%KK7| z1;q2ziSi{-OYeos^M(TA;uZ2jvi(9HjvQ;cIC7eNWE4o|x6)-VzILJ91saerIBLSg zxfD?-4*~Kfk@pH@de!SyP$7>8pj;P^ctcJO2GZ5H=1cozZ$4NH6 z(FRXyI4R$S$4=cL=3}`N-QZkzIPjV5jV!?bv*5zPlP}AX%#_nANB$ID4-w5!vh>SF zPq!S-%Z79-=s+Td1sW)Jlrxy>V+|=!xZz-=$|6G}a?d|n5F-~3fi&$d|~KAZ$!Q4xo`-k&Nf5SNH7qx^cl+GiU_ek z#rGTTphJN(i~2!>@z{CA=3Xs?ix&+TlwSC=fPRdu4pJt%cZ>*!Kt6h}!ORQ4Fg!=K zBa}+?B%lw*DOPxSgxHTNLY1|^l+ zYSjoiHeJi**Dcx=;OcN_DI;9_4=|C7zYkjZ;an|*-+o#PCH9mC{!i8ELc(P`kpGXu z@Z-%%+HmLB#bwWH?*ohRV?PppGmWlSmPBPefvL|yCsEWj6I^FLiade-zEzt#12;(H u$w3}FDDS)$4?F<=5Jtu|Ei%lFFi3>)fm;zAf6^mwDilE~iN9`tXZ{~~*@cAw diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 3910ac83fb779c442b3019dff337171096e98a66..2d529b234f3a954316ea166cb36267e4e26358cf 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hE^##b&I@vB#f$7u)rVXi#hNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7c*G4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7=rS@L diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 6035b688fafbdc9790901f86351439a6367bda6a..15ff77a512a3b89193fa11fba9afa4fedd77e9b5 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVU=Z8MMk1oj=o`vMRJN!ib1kzl0mAmsi{S(u|<-hiJ^&^p;@Y_ zNm`0=5{NdQT*G*P3|$-54K~kZ>gFI*YbSRBGg(?)Hs|q|u#%^B@;NDq&H18x$qA*6 z>MmgIJH;0;k!Snnb5ea|Y6aW;QdWe_AOmafQv60nux;L`zJQY~{~AxWGZ5c=#&AA) z+6|{)2xk=Be9xLuk}T_?`h!AKwvn%&b#jA*@OA?pMi27RIoJ_kL#6`_Vcq^+gz6 zg^_upNpg~*h2`WL#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3x_x3Z diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 7776fdddbb8622f7fe4229fed983e7e5f3cc678b..065a508afe18b0d4a5cf5f323359d835d4f15a23 100644 GIT binary patch delta 117 zcmdm@yhV9~KciulWmZK-qFIijlA(p=<_5-YW-_$duvYK@0CRF9D*ylh diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 2eec1c815c2acab6403d07175af75748d0b6d7c7..8177dd1663508cf40bd3198dd374e24e0aba4c8f 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^AhEpvA?TYuL(I$kRHxhD~_$ gO77j{X|LGKD|ncVbelIbN}Mw!T^l%%W4y{30jr>j_5c6? delta 480 zcmcaKo$=Ci#to^AhNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7c*F*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?Vdh0HiL zH|!$U)@qYER delta 1690 zcmaDdi}lGY)(z2&hNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7EH7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5rU=wWs diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 9054e360b00c23eb4aa65b3f8ea72cc8ac45276b..f32ece784ff19515aca1cfb4b8c2033bc14739d9 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghEq6Zb zn+pWjGm&NM%*`)FCXr|B%+0Rihsm||lGJB%wf4&$BUh`u(hYL`dQfExxwhJC>>%4# zEpp;@^FrMVca48vDHw&8FWhE;CHf~;E)yYGi*2xR3ST{d#7bMT-oXHo2xHix5 z4I(dcAlfJTALJ&>@$r+_CMiyy<}a{WIEIUjJR>%*P1+|+p4Q26^0J#H%D0kfGgy07 z9hq?+KUqLcYBOVNH+c~U(QekQL9XN1_ls|4outA=X3&AOUzl@(T*r4AiEg%C+(L== Tw3UqHq`HqRxtm$H&SV4teOXQ9 delta 1932 zcmbRDmTBHwrVZ(ghNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7c5FtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$_O575%gKE~!2IV&~M%-P3lW#7a& z(aVseh%Wj7s{YgWvbv})qO9}IQ0i{ax_YmE&-48M=YKwUdqala zkl~t}ENRN~H*R(3Y|FNJb1S@yz19k+$Lg~?ow+`HuE*xEIdW_{KBr@g*Y452_H1u; zMO}7Xb^Xo?9}BuN*?scZ7O{#X%Xmu67lNT`+aqdX7j(54&d>GpF!(3H4y` zFg|K5rI&6zD92TXc?(vx!rM3A17?c{T?PP?*Mq`Wdqz=o z)OQ;hNq69cJgAKPkUs?(OLrj1H`nwb9oEpFJNF^=YG{5#2z3oLs(>qZ2bKXC)57}p zLYI(+b}A3hI+q^YjRp=Jwxg~!N9$16izik9+ni?v4#ZNZ09UmqhBT-{D$NwF zl*9w(LMj}y0&5#|t!M3-lf)Ybd8?0tUz1PHCt;g+yZuBbP8Ja*E=m=>xLih{ zv5~zP&ypm%%gHuVlvy@J!HbS6vKV=cjF%w=rn1jw+16_E2DwfCD5VKw9XS<6lr&We zj72HmMS6f8BHwl4wMi4*%|vI!+iFl<^+d0>4v^_$*KrbuoJ@bRj7fSQm<#x zN|AMrn1HJ@46E%Ah+gzxC8vP{V_YFgq<4^EOXM9LR{(}wWBuygez_8TujFLNx3jqO zklX+!<8LX8Sn!O*0<-?F%)960(tnUy^^zd}T_(~9*`Ewx>rE(V9kz&@uSpduBjiHO z1!pY0$_8lA{WKYL RlMpS$UP5I;{vFPzzX3&23IYHC delta 5860 zcmb`L>r0bS9LG6FXUplGgT@eEC&*8*>%kMpuE`p6|8Wol2F%?JCI4S6n`?qrjb0 zRp)ESX{c-5>Z@iUPd2+l9yp>_kz@r=i~B+_R6Bj2TG)9*J%;l$3GD_9WqsB({w}Ez z3?9LU&E*tx=Y7^8+}Xx!C!GMDWpEomoi;Zf3f|1@WftBt^&r-Dm3L3yj@7O5H!~}+ znpOU3)-u#}Xm%IqdVcjhkmTd-8&EXec?vC6$xDiZrb6YJ?s9A*YPhAS)(W}SFiVkv zr`p;vtU-z~uFy@)h1; z6dkU8{Hic2w@OBMw@Z=@Y*&|w4RwCSXuhj!`UDJRfk#HZ_+9{8UVj8Hd+u0d_&8*5}{1ptW}Y_yxFXy>X;Td#%xI z(Mm}oU@oM>5j(K9AbB67@}lo zQeY%X=5~`i>ytC=xHVfGu~E{=4m8Gt#yD*7Tb=J1mtA;lVwCoObL;lKp^ev zd|D&spCuOH>Wsiz+g)N5{q5u=aA1roq=?K8^2Qc@M@JQaA=g>IcB@~mMBj5c8S?Ec zZr&r;fXVn<$|mMKCh@?m|10zE3Ay+mWR^c8$iK^28X^0W1#G=B1--*Ias4H!MP-Cs zsF~o5MON7)4iAv0bFdlnYZfaV-tiL@jm`WQlv>l3g6M@6B7 zmd*f7dsk6!V)UFQxh8SnL(`{459{Zw*u0mf0@X&?$@Hs}X+u1tVU=Z8MMk1oj=o`vMRJN!ib1kzl0mAmsi{S(u|<-hiJ^&^p;@Y_ zNm`0=5{NdQJc02i8M+F2!Zr&quOr7opw`I+&HR%?SPRLrxN36&+XYtAwQertc}<>s z>o@c8&u1dt#>o?<>NiIVHIrj2NNb;nKe@K{ieDx}>*k44m&nit_NTC%2^oW(jRg}M1={88mvWG)eT^vB=1`9ub_%oy2TbNC gPy6P)gv;bbR`}$+1pdu8(gbD5vN>#XL30-)0PLM*3;+NC delta 1199 zcmey>$@Hs}X+u1tVQEr9e7-?urM_{JaZ+-UX|j2WX_`@Da+-;SrGa^pfq`*iilL>6 zg^_upNpg~*h2`W4j6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmFA8&*J diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index d3f696acc4c8962cf946f38f4afbf14d53f1a625..aeeb3f7a8213dbf719413a7bdfc88a02f62ef47b 100644 GIT binary patch delta 122 zcmX?Va@1slKciulWmZK-qFIijlA(p=<_5;oJVqpI)1Ry$Aia48-&$?}Sn4HT diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 7afebb7dd0abc3330648b25f98791b40c5301289..b36b11c1afece9312162d0b039e8b651905224a0 100644 GIT binary patch delta 1928 zcmbRJif#5Qwhe)dwpEr{6&ZcX41@as7*uCP<-rN9-N6VxwJ>Vo^4%b6*R4P(7Gl)B=K!7~cN0hqWYHpiPpvXbo) z?#=#IU7TcT&)r<^;z@@8H-B`M)Fs`<>5jaNv6Igg$!*?NY(|E)2>mlkjr7Q~KW4I= zqSWNA#p;`9Eb$}L4PY}i_b!WfCeID&lQ+Cz-`xF5iHt}Gg#kpr&xa#2q}#t8sQ)KB v>H0wSF5b>3#;6`gp5~hEk4hLr$qezD?N7=WS!_tR8Cvi0Z*SVnIFk_oq-;wj delta 1928 zcmbRJif#5Qwhe)dwxvl0@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7MA)c`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~#J(TG{{r diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 507b9bbc5fd94a01b2791c584341e6b517f98d9e..9fd2d7ffee7cec11aefc24092f896ddb5a3920db 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVU=Z8MMk1oj=o`vMRJN!ib1kzl0mAmsi{S(u|<-hiJ^&^p;@Y_ zNm`0=5{Ne5T*J7G3~iGyh=fe8n!-PM8*?G)mV$I|Uc>T}g*>g3*RTk0w&kj1qCmSJ zuLLs%+W!eGBt!e=3nJCz`MGxUPsvr}#Z&F(K$$7z1y$|l$?`0$WCc^!W+T<#++=AD zoh)G>y!n{nOCHj-Z+>8>Lym(V*cEPG=VGl)x{Z?`*u_k?&lTR>nW0He+yb?4w$I(B OMuyFxTvRosixB|SUpHX@ delta 1023 zcmZo!!_=~dX@fVTVQEr9e7-?urM_{JaZ+-UX|j2WX_`@Da+-;SrGa^pfq`*iilL>6 zg^_upNpg~*h2`cN#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0Qz4*M*si- diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index 112863e87701124b366439a09221e0afaef6279a..8ac7e923882a9ac1fc2022b706d6c83d2d331aff 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hEt#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7c97&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d0EE?{TmS$7 diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 5387cfcad15ce4d0cd7a96056ec2495de1d07b28..72e1ecc5c3d11ae947e9670b99d15c720c36b080 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhE04ufm$cuDdL~}k)@Cqfi@HwE=a<<0 X)G3^k0_~@K=BkpV-DUHgqB2GRCo0?T delta 731 zcmccgg7MM|#tpuVhNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7Fi81IpxD_+!P^F^jPg=ATrGwpEr{6&Z;F4M{cys55JG81n)~^0ZE$%EQP%c>!x7 zS=zfcpJCHuBTH-F=AFEiffxaP)df4V673#Ipo^fqS{5St>-juGLw}Q$~XJ#hLPvs^3A^b z2SmuSHGA?sXTi<8T#U)H8KQlb+jng;ZTA!7-E38CLayx~?c$|z@?_dRUz&Zh#8f46 zZ3k(;J55)XOxp{#@onC+MS)D)Hy3PsVnCkFn?F1^C)3u+AD#I`PoYmC9-VK L+72w@=P?2RFY5tX delta 1705 zcmdlyhh_5|mJP*>wxvl0@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7MA)c`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5diNv5CQ-I diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 07a8e54a8f7f2e800b3bd7f396bae1b12ace22ba..14431bab3a0650dd8e2fb1b58416329f5ba7167b 100644 GIT binary patch delta 7878 zcmbuE?N6Ik7{+r>*A{7|E${DJaH|PHM`=M=Caud9n`UfCMkWprC=4nT*%s5GWKNW9 z$wCH?c(NDVvWnfn7SKK0Xe{qC1@ z-{<7%_>ysa$#|`Z+1d(xfrje5rj0gleyumhn_Zh*lU--e&CRc~=hxUAHbDjIO&^(7;+JREfx!VD%Eb+{u#BYo305M$M z^E>vU)ElMHT@jkolRJ@96b|^CUE6_NWl8xon&(7C6+jFJJ6=_dQpan$QR=dHH%eXH z(}_~keK`PC9%{OW5+C?o05RN{?^;Vx>aBenQEK;F`%&uoKqE@M{PrM9U2N|{sn$cE z0#s?~7($8O&OHE8Jq|uuf7q>s-hzHv-1Ra_wH>>^2Bco@?Zv2mIW0QT3Tsa;qSU^= z3Y2>M%uSTKaMp)X7yB=w)GY%r)pKb8rS@DYKy&q7`wNx+D_c>ik>E4z8m>gBCFL!$ zaO6Y;G<0RMYVyg5Kueko_Ql%OgyG!6`c@T&YLHBOJuFTKhH>mR zU!$bk&186mE6 zZ1Foo`J{@rIc60_>3f+xNzJ4|J=*{F$iaU2%tWfKrr#~2v0kznxT zDC}4%A(PLFxq-&q`~bMOLMEh|q(s6&7^w7BeiY{$sJxQ*p!$ge(d4h?5#VSjA$`!x zk0gWnXB|ux&-U{;%6OMgqe-YH)b#-`G+;r{=5BrjZD7~?W_s}y_oB-nsh|5mtvD>X zNpwbXGer+_9XL#+x?BXcO5uqF8Xo2kz|9=iJHF)CL4N2JXAzB4Jciot@Mf_8VHaw+ z$J>E0MD;8$qoyhT6;K0G#S;Kj{c5xFf)#%*@ED=eE%f#8{1YIA$5y0THG#1xeS_-d z=;rY>_mE#juNKvWl9u^8^bwkA(IksoCJp$`AXWb{7`s?X(3oIk4E=Log NC00o4|H0qu{{vz*emwvH delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyNE0hT=lh$R5q!}BMk%YgkhD?SlD8mTnzlB|wA3wF zy#cAu_z9y1WXI~wD77xD5~aSnb~`|o)7BwCrc7G{vM75Pm45Ja4=Nq8wV~3V?dMVH z69v0a=~Ejz&@(OFC;+OoIHCYqRl5ZzU zUD(};QZwuG0IEFHa2F-s4>$p0QU-K-vyMqsUN1gF7~6;p36mOt@T&`LZ$!8W>jh<_zpXVY7lC9 zRg)|pJ`n{CU8SrYc~_4~mD&-lY#dFDhvW|BwW(OCo$+JaVp%@_+k_dU+twJQGo*VA zmn+VYmToatorrme(=KMD)5+{t?Ccy71ECsdNt4CCSiO=Mj!i7Mq8O?{D(!Qz1RWUT z*e$+F$+Vlv@G{H8_Ju?IZzA?g@_3r4U}h5($02 zg{4zc8ymzX)}NBB zADzy*znMH%p5b*y*n&u#7YriD^jiW2`eyAeknIn%PcdYvk^`aHW52R>ebGi zV+L&TJHqv(i?&&26+b>;|KK&HQ%#6ft{{c(dNyCXl794N^T);QJ1kzP{m|1NjK_gn zkeZ_Tli*zysy2zz%=|29pj_EyqUREM8Mu5S`sfVaf)4B61A5V9=UQ6I=Y?nyk4&y@ z;KyUIYo&xuJ}ct}8ZG6m;NA+GkZO_^4TmsL#Vh7<9R1@lYpBEdj5VWzIA3+bW>pe5QaEklTWsuUx>p`tJ zEV)T^MsqX84sabfOr*M80JTc-i6j~t;`hPL9MR{0$*+O@@GH(D{F6M6+HUhk@cbh# zwC65w2Vw~K46meyN&Xek15(A~095_eX88px{+#D=LZw^i>)-h&K!itDq*^tAS(M;_ z`f)7fi8T9wUqL@DstKhm@ipipG~1#{6*o;9@SQ=b{v$BESj^C*ERUi)S(5{{kyMwX P$G#bS)SgpfbDWkWE7>W{aWk7iAs;2$?aj!|CLjEK zHeYi+!$F?yn?LxSCEwqsn;k-TFq3C9Fs++Tb_f;T+!r~E5*MtFH{qec1*_wQH<#w* zlkWn(%?U;FEM&VtZ*oGB$Y%cX>*OaNy~zsQa+@34R48!8W`%AQQL;UuyLtbDd5i$4 C_!Q#+ delta 1783 zcmcb6gz4@PrVYW2wxvl0@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7MA)c`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V9B4Pjl delta 117 zcmaE(_C{@kH=|)`QbByaL1v}CaguRTa*}DXd5US8QDSnMiG`(sd6I#Fabk+0rHO@+ Yd7?>jlA(p=<{HMuY-DH);E>@40IS#|ZU6uP diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index c67b1561b1a2bead9cdc8f049705f27270da2d60..9e4cb57cf325011ae51c840fc61fccdd0716807f 100644 GIT binary patch delta 4131 zcmbuCT}YEr7{__a>Ao^^DvL@dH5#V5*L}3bgk5NDpj)trE(&RGw)`NZEo2Q+%nPwX zIKiffbP#GU&$8E*f-UkwRy4b?;iNS92=8#wT9S-3(pVZP9?f{7^Mu5^n{LBlLn?uOk%HCSTJicikJw|v3~?c zb}AJ|UUQ)cBWu5XR+hp!zWy>nESVr_)VQq+u2%2He&>yo92-jB#q^o)mPDXx=skZI`WCM!IaI{caqkRe!Td)xv2QUrHhphyg16>axG7CAs-nN;!j z&9I5f5z&HLs3fh_LT|OeTO>r@V}0f-cb|b3EQqK?M;k++=2LB;$0cfhsp+_I>BWVk zpOz_5P6zuzM>b#G;IlCZVs~`Ti3_J5Tu2sBriVbqMO0GkcFbc4ml0f8=3j`O9=Qh^ c(y(TxD`W5i|4j5;7%l2i1|BZ{wdacd0_so!NB{r; delta 4131 zcmbuC(M!`&6vsKGb8gGbO<7brsgaoGZ%*59F<}o{{y?{25j_;*Z@M%SleQ=uq?iw4 zg>ZvwAu56NlnpL)pQKg^fdy7XK8VnZp*=L{!6JpObM@}If57*9Kj++g&X>D6YuKDM zBs6fv^s6mBO6Scgx9--%dTrR#RvW2q4M%EJuj0`a#ogNG^46%;p4OVM?oz$14{l`d zTt;3L>e=BlG8d4Rs#WJiBD;AU^zgQYg=56IPFq%ZBz zg7ip~K^ZZ{_VJJVVH)=kG%8Fgd2tCial0^Mu;ze4+$PKz*p2`)nKA~;PB@Pw;Gzc+ zWchrw96lk>-R`~VI3Uwd;|>KLOC8?n24o0k+8(WiUMYgRD!3$uu!uJMAcY(tu}q5i z`#M<1<%noODHM_hT1Icx!&@Xo+GBO<68D~hMJ$M@#7wI~VB`}`V8JD7da0SYaJhmD zM~&vYpn&%Gf|;zpy2htFAc)=3TTWa!b>TuXgEBb)*<3^=#cszmhHx3eg=PAMSm>d9 dkV`68oOE#nUf`dJg$tuO3(CO9#b0|S>o4A5BFF#$ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index faf1f1ac98b6fc34fe0acabce65301c18b0a1308..6469d38386038adb2277b93e04f6f3826bdf690d 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVU=Z8MMk1oj=o`vMRJN!ib1kzl0mAmsi{S(u|<-hiJ^&^p;@Y_ zNm`0=5{NdQ+{1W-3|)@O4x6tsxyzHMb^7{dCjQBDluAg~zS&Xv2RrH7CL3B+ZhowN zpPUc^Y0c65z(l64Y(|gBwRMuoEOKqVX0Ans*3E`ip3G$WQ^oE9x&B<|Fr5s?g5&hP z^Br<+Ep=N&uB`_>ACr>^9hDP7NuPDIb7VRiz%{-5Eu+YG zDHX;Wg5(>rz0Zu%DT#Fb+Zksva&wWcZ#qz4!uGj~86!N&(;PiH-j-`S(CZDHlo+t^ zJL6po(hZpGsO&mf!C7QGhar;!2L<{!Su)kClBM5q@@{vT?R(>ywy{#6pD~TeR+cRN L4%>lge;y+MMq&Pb delta 1709 zcmX@x#dWreYeO`nVQEr9e7-?urM_{JaZ+-UX|j2WX_`@Da+-;SrGa^pfq`*iilL>6 zg^_upNpg~*h2`WP#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y;Z_4K)A& diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 407b38af8b2c0fef3e9b2f36844fdf95b87f2e05..60101cd5ebe53fb9b9d617594f30dcce9119734b 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVU=Z8MMk1oj=o`vMRJN!ib1kzl0mAmsi{S(u|<-hiJ^&^p;@Y_ zNm`0=5{Ne5T*oL#hPKIua%r2@n3phLE1-9?_Q(>KRTye8LH0hteE*t*$JE{?n?oxV9-NrjcHAgbT2t?__^ zJgtj&8#6 zg^_upNpg~*h2`ctMnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgS+VabN%d diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 80be39ce80d7c4179a89c5f8dad6c65a254c64f0..c1a9068ca617729a080df9f949b66f33d78b9eca 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVU=Z8MMk1oj=o`vMRJN!ib1kzl0mAmsi{S(u|<-hiJ^&^p;@Y_ zNm`0=5{Ne5T*JsmhPLSjfsE;!m6+!NmJ5yxC0JP>K@${AOM?6 zg^_upNpg~*h2`cNMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuF}y5$Wat^(t?6VE@7m0L!^55dZ)H delta 139 zcmdm@wnc42A){SsQbByaL1v}CaguRTa*}DXd5US8QDSnMiG`(sd6I#Fabk+0rHO@+ ud7?>jlA(pAeoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6I{P%9k( diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index 287f39bc4ddaaed80154a37a39b8ca411376c0d2..37e3da629a8f504f465ec410df4b9ae82084cebb 100644 GIT binary patch delta 760 zcmaF+p6Ts-rVZ|lhE^8|Z$pD>lCuU?R`^Fi(hY-XtQ+LY^l!CrJJy*YOFGGMl+&dc(=H85{%goLrlI dN^;3{0VondM&y=N+LPr9PzvJN+_o*95dex(;*tOW delta 760 zcmaF+p6Ts-rVZ|lhNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7bU7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vWs>OH diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 86ce66342a8e87514f48dea360b9fbf6ede7a7ce..9500f0fc01b5d876332d8a1dd5e6545cfdbeba04 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhEAi9MEubgi2m ZczRe#*EZRKCuMV@Pz*1bT7wkqN&r{CirxSK delta 474 zcmbQRl4-(9rVZYVhNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7E17&nrk%Yi3o@&=|wyg_K&uCa>nN^XIXqKaIm|~HfVw7T#Y?@?{YHVt1k!oy_WN2b&VrFQTYHE^} UVw?n`jW?KE=AM-wL01nL}IsgCw delta 117 zcmeB?>yg_K&uCbhR1lwUkXfm3oMfDooMf78o?@D2l$e}mVqs}uo@8KPoS0&0X<}hy Xo@kPsWN2Zzc>-fEIokY~_i+ONRx=|; diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index aa93f47f59a8ab9f971c1e5f02396755f2f43e4e..598854e3831b741d7b9998e033a8cd76986f5734 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hE;JiXI_dgZnYsW7o9lVyP4c3_D= Gj}ZWV-2Ey5 delta 1704 zcmdlyiF5NL&JFI2hNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7DM7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0QBYy;Q#;t diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 4c83b3ee9a795a8ce0870124773a8b9ec9fc86f1..bf5ebfd4f9d74f102e40b29b33a281c11b02581a 100644 GIT binary patch delta 2429 zcmbW&%_{_990%~8@xF-IgBY8)C^mL>cDG?eST>0RMmcF`XSK0ct>mrjK?!NpC4!krhqyNFJZ$i+DY=x~%&Ki0$%}2Zjsz9HJ^kQ^`_{8qriEonK6JV4SvJUy3nmY`@l${d1=c_Rk8SJXm z|A4_JHeCfya1>+>X3)XP`BXQ%!F~%Ww^DMe!3lcjnP_aK%DJjBy$}oGR!GR6z2y&U zELEAkGc6b9CHrha%N|?LQ#G7j&1RYjdFD{Jwfp{W_5tqxFNs@8ybqg%ivi&aT)S!6 LI({)KO!WK$J09z; delta 2429 zcmbW&%_~Gv7zXgp^*xA~g}5ePQB2(VGIvY}!z8gVuCmhHJ46(lX;Qw*ER>M0y2`?0 zWL8SOI3+tN+1Xl{Ml6+&g_UyUFPP^K_&v{i-qY!99#}RHEN8>a5mgr_7o^#xHkayB zHPxeeBc5qzSetgsKFO;}k}Di>_}sG78+L1|L-y&bi~yDPkLju0GW|~2!!$i*EejYm zi`OB!MkV>*1rXh!tFm2Wy=ngj{aA0YqsA##@s72|Nvt{nTN5!GD9K)XiBhBC89i!i z(>>aH+Ps3crtHUHYeJSlNpH?6l;*YPq4Y+611P2afh_2`#p$v88feth{x}Ww4dpbI~;|mLNm!kF-G;7WIdfGS04F#KvN|JZW2Jn&ligt7g2K&|>`HKg?l~svTgg(cs4S9?g>W+@Y|Y&A zhc%Wg&)gZN(|FN7i>jGp^LZ+|y`#}cF(Jno=rniV`^`SU-Tx(VGl} MOk2Y*hJ{eqFMDnPtN;K2 diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 175ad0effb3aa6caf59fa285d5973cde7475bb48..2a30145696b71cf23b1b51f9feb340505d2aba18 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+SY?@2k&$SYqi>jEk(^?bVvuZ_WRPlXYHE>cY>{MWVrXJ!XqIYf zl9pne1fq>6*D)R@L)Qm2qs>d0R%}X+2oKk_2O# k9(ndpKfuh$ww>9XF_VK51D^Xc#_5t}fYEkfxp;#a08*jK1ONa4 delta 1486 zcmZo@W@~6>+u+M+SejH2pKp*^sc)QQoRpkonrxn8nr4)koMvKSX<(jYU|^h>VrXe% zVPu|YlAL5{VL7>u@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WRV9@dlq diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 5591177b863360da08c738d23d9d7848544a1a71..a58632a7366037d0f7722c59ef3c19898aeece46 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hEPoAb$h3d6f$9m0>~2#JB-d_W*coh2)mlT5{`tBkEM)o}Z2v-| z6pH*m*<>R{?!RQ-LXrJXEca4mzrJk`MfQ8zf1t?z<4%mMdSEYo$O8I`B&moN%!e;3Mlhk{~&WjoNQ8VO3=(qGA_x*h12 ze-t?bXv!*C3Y;6kYKqrol${;+{FSjj(vOIT*gT#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7DM7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D3cYHK diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 11f242a544cf6f761bdd953e9528674f7f1788a0..4f346fc90d1a9b4be44cb8cbecc59981867073e2 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#6WWmZK-qFIijlA(p=<`%|wGPF&ez$m&oklB+P0O!dh2><{9 diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 8147071ea8656b7343008c0d2d487f39819c2523..d072b6bcf337df08167383ae545faac03428c968 100644 GIT binary patch delta 4106 zcmbuCTS!z<6oxtbj80AJI8zaae5fo8ten$0qftJkffiV!j$KGc9WQB)HELKrC}Iz0 zpmn5OOiTq`Ad4i(^BU>nx_W~8-iPdt_DxNtI_T86gIjG>-Bs+->Z8YJ^4*RcYWgP79+|x z05crXVqRXO+KpxFZ6eKbAjiD*KaDTBT@daQ@lC%}5Dn<>emubT@TYldwy^n@ZZESx8QXw&Yz6o`m9VHZ9b7=xayCZD?DjdNZ0jhPtgYMJdqU01y-L0x~$!DG85mWl0VznFhB;e?ijUua*O+s&i&aK92m7P91O zX?Z{iXP7tTil0^TzIG**GCPzLz-IkV!O^3{*O`w&UfwERo~>l^sFkgtNJR137o&36 z&a8BHOzAxYsZ_h+|_KckN^;G*ZM=>`qk}QiP<)HQ-{AY}6gV1WB}Kfaa=M80c-1|GM8T z=1(l~kK9exCe{YjJOS78$!@06>Q3ea25wS;q(Ykwi2Zqnx{I#%v2kF9^90N#Y^V1F ztR@|>|MR@qNFOh-e%B%ta>+Wy2FuJVkj$bV%)W|VI@KUDiT@_fW#V@Fv{ntE=ST8+ SmbJxv;&NOSlYEUwQ+@-hN7K~+ delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tUTkTQOc(@(1L2bbs^^_V~L*zGS323+M8VpRDC zV1^@J#rHLpDll*TPvc8r4}^O}a?39jM18JA28d3$oemJKtvQC3+hbhp za~dNxHgRB&mTBIdpYXB0{ArPzFKnLWTg?l|<4VQQ3XyGs_q&%tXjpU%jWZCXbDbzU zGvdciDlBHshfvqKF+$OGmnKm(8fyno;fVhPFxg09are3nMH_B>08rt-4LjQIyapW8 zdG_8rjCN7v{&Cdx^rJI?t8hKe!lr3hEYLf^F{Axq9n zD}72N$Gj<58d*K>?@%%+w^KO@Y}Wr29H*4z2J7Ze^<|7E?U-rKlXW zGb^1PSNe`XDs_f_)57=LnS&3$_M6jaD)hyHj6zt_wQKr$_Zsr6AZd!q)Lc0x!{dtbMo38e=31Efu6wD=Tr}u-b zIUBJ5^S#(iA1|;0eF+MMWSwS1wdNH_W-$O}-#{;&Y6~)n|0d35;&%G9UiG2%Bl$hc R+h#s-Ij*Wm{>I}OzX6xR_U8Zq diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index d3d70ad39618e5f23244da1b1672c72cf28eeee6..874634be0e6d0f807d3eaf30ff0eaf7c15023f4b 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIhEDn4c-&@HsboX49P70Cw|5RB0NsL=FaQ7m delta 479 zcmaDpi}Cp^#tpHIhNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7Fy7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7E17*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qjdq#FcIHO^eWmZK-qFIijdq#FcIHO@{QbByaL1v}CaguRTa*}DXd5US8QDSnMiG`(sd6I#Fabk+0rHO@+ fd7?>jlA(p=<_^YMMkA87=}(@(BDUF=xt<#UJAx$9 diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index c0b3f48671f9ffc8e0676498fa676fe38fa0f959..a95386644c1731d677e9e81937ab7fe8ec65ecdb 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhEM*!azVrDpPxsZ~v@J(w)5?vv{~#W&m3o#rA>`{w%2Yc^zPm1hmz JeEV2BBLGH{)hYl0 delta 707 zcmX>!f%(t`<_+$QhNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7DM7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AQT5w$ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 252513c5ce472df87f8beabe113f09b5cfc0971b..27cc9912d61e249daec206736aa71cbe29e4e5cf 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hEqFWTngu z@y(q)o5%<>koRHk5Z`={uZ_%L0GqM-gW!A$-5{~qSfqjyHvq#^Vza;aQx#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7Fi7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20i<3$e*gdg diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index d2565afc134852e6302d9c2f4be162df634467ea..c92686abbf44b44e203d264f5d29269a4788a692 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hE#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7E182^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dg|@m+1fi diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 15633fd628177e41c4a99d2e3d7eb79bd63bed0b..f351c1cf59cabc170f2de8555fecbc6e4ae19ce6 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BgWmZK-qFIijlA(p=<{6CZ8I4HRrayTfi`?ev%*VL_XgVel diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 9a31682dcabdc2c884341ba142f87617b70a21d4..a54540bcb055579f98459fb4796e546f25d89bb3 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnVU=Z8MMk1oj=o`vMRJN!ib1kzl0mAmsi{S(u|<-hiJ^&^p;@Y_ zNm`0=5{NdQT*3I03|$x5BRBtMTFOF})@x+wQsi&i9K|_}m2|C}75Qf~k*;mBB7fWF zVxfiPYCSEg!9kX-`I{%poggPB75Vcw|5gyqCEeD|j(sc0vC*+FXLH+xmI%^qoP3cz Kb@PIk>5KrI718+s delta 699 zcmZp_#@v35d4oHnVQEr9e7-?urM_{JaZ+-UX|j2WX_`@Da+-;SrGa^pfq`*iilL>6 zg^_upNpg~*h2`W5#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OR}@*g*gQ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 62faf9f17d8823305ee4295a16667865b02fe5b3..2935863b5826836d713a9c7ebb59b8fc0c4a2bc0 100644 GIT binary patch delta 1014 zcmX@}mgUS_mJPm)hE$;vAKv$+czh)Mi!H4bLS7C%@IEp$+USgNV~-E<(6dG9={!!g=!fA Dhd?ua delta 1014 zcmX@}mgUS_mJPm)hNVdb@%aXsmHNg>#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN z7DncYCdo;L7M7dq7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVc9Pz1#;3dV|J!9h>#EgDNytYa5@ zqQ(|A#$FS9i6xpCy{GLmqW+$n<@?;fuFvDlc~AMg^}OfIncZbi@mR$SVXR{2_Yos& zrw{L&P@{iXL~^a9(66Y#1j1`RG4bI6f&9|YN_>+(m33x&myFEh zl>XU#Mydyxsp_HhNE?uxGQ6ljXYY`lFgPJQWpGh}54hR6rY|`AdV~*OSlORX3iRP; zRq^Kc$9OOt*gvATD-#SFt*;-<6oC$rdG7qJioqbOYDG0aAXU!zg6EG0`1AKFgoC7Y zel^(w53qC)!|`qWD}uUJ^3=RKg=4HBqHlda&}8ekrde@1@VC%ICn+ju00!oG2l9`D z+?XJ6^Gb?8UlOX&x!5I4P3u26We{(TGc*2Revd#L}sY3S?AUf1rQT$e#}j3E><68pw|g;CS!Ka)Z{+A}Mpo0B8aW z@a^v82E}Anq*?jAz!3gLaEQ)j@Q}fogVGZEXNO@tercruCIlpC3oLw8BFAq@FwBm6 zZ02VKSK>DY1c4iyt!l7;)nIqFAb>yPXW~l&jeK}mDB}kjeb=P|-?2hNrUGE9b*;cZ ztQ-Quc|Ro|*VmIb#a4h?)#Y3C_C*f2vIUg^?t!CmG2{y1;mw@M)YOJLZnP* z{wURxU*5ZxBxOi8ulIH1SB7bsTAR0qNkjO^WKYTucBewKLEd~ve;+D1cycnY0(ew8 z&xIkqE+# zUlJOKJOHg)jo*~!kHZq`L&E?RhU8VW842>Y2ageq>bSxL!!%-)moNWkB`aST9KhJa z%%4BD)S#fDLE@H%q!V@%33k3`uTVVY=2dhC!QGv7eD5$7e>E@wO5#cE{-<9Ev@-TZ zUVsIK6qF1_8We_FpGkHDQI+#Jz9hyI`i74TsK}2=a7UAx-;wOWkLs)9`}NiFr~Ul- zh>#!}HpGKy_CvRg9r(m3Nf|yE$0MBFbQVG$Wa7gD30SD`nb#w%`hrga);1+viweqS z1{%^nRf6g4gdrGYpVszSW}EY=F@7$Z()o~@FtCVk^lOlzplnid1J8vXZcsLNaC-j} zcYbN_y8PMrfX{`YcrMvzaYCRknkYD#@YUji7?MxisoM;tGGq=J+&?X4P&SXu^ zpG&JL$$cXI>Z>X8zx&L-deG{Wei~CR-p|3*4otmDUWzFJQ|Dd3$J7x_ZGB6qgP58c zyB@dwfvG7&33U%srfq~;fT_EO33WdglN0U}au23-sT(oO22AY?+k~m#F*U3^p|)eH zYpXrD?J=fiY}<#a7o@H20Zbjm)Y}X~{e!8)FAw6jjnZ7C{Ve7XChy?JIR7JaT5pq6mOgjAtH$KNyk7aK$bqQ0kKmUy>9#fSb5$Y_a?ktyF zLlLwOQ*NCMnA(adO{5W1i!gPpi5XK@5tS>y(1(z7aiifVp^jl{b&LgfJ&vi9J6tif z8dFoUJux*4Q>qv*Ol`u{hCD*e##DshgWGmtikoJ|)Jja{E_3n4MVd z$8Fm%b!JEvOcfDoT^Ob=Vrt>fggS(&I)+Hx_7kS2?yHWeGniWRrUs^dz|@A^F|{!H z9VXYUBGhh7t)E^Sx1GaO*SI>E`W{o8atO5$Q}H9};kM0~db+zIrvAj#)p3n6brVxr z-!;Y5UQCTRluO8ym>dw&3OAm>)WAc8dVs0FhPK9Se`9Le3_>lz6d2M5x1GmSoNGHw zEyvWDS%f-_sTFGpRg9_8OWNn+uD@aO%#d!FdX1^?9}wynOyx#&$8C!-HKjhG=3r{i z<==7J8%#~tT)vJ1aUP~>TER_3-Nn>n_5-Hgk#Simw{lVAGEAC#7d}SR7EFZ=A=FGv z-7N5ag4#}D%022Xre0yHP}c4lYWo&bfgOLs)OAcrlP5e!ZEG;4ORMoGqHbgApV@!@ zc`z4}7clw5I!Hq5M@)q!cYJ}Uzc5wtrRgQ20H!R*cVX%&raIU8`Y+VB4pZ^{2z3Bc z1JVY)L2dgnm36O>Jp`$1n99{|lpM119|pB#p71TR>+sPl{P=IOBP27^cksJ6x8-h^gfxOcQ9oRj0jSJ5#4B)r&dcI_l66B5Upy!ikdGN9!>HM}~?fAIC9{j5jI)2Gq z4X|FTZ{e%V^W-Z|ZpZf@<^drEK5T=9FInZv%NF|bTZhfI4>~`u3Liet-PTtzMe=Kh_f*bIM=K3%F*d0sC6{tdR!( z<%pVmhOtq^_iNu z{q)mHN`6yr9i{;$b=7?IP(d`dGML%hQ_bt9G>4)EK~;|OK4WXh(V9kOVMYDmpfEV7 zBDgW#OUZ8=7sJ0CTNMq2;-i($CjQ+qjYX{ZTjOJ(%l-I>am`>yvc;a^N_%#={i_h1Y9@=F(Y<2Ot)md2Fd|M|l@~pvE<8|0!uO>E>qg5Q?EEy5PZ{sV=(K?Rk=L;KAhoZ%sa^j`yQ7lS9*s`il za2k3*XtbIm=s>=3t|ypjtl`WnW+yArvW}{QaCMZTzJ@>eZL$)r@2I*Gs^%-r(aO;p zZ--y#$EVD4FFV`OEZ=8O94IXu{x+UJ^le){7Bu6NzDZwA3wKLAe4G(Hk>?@yResC@E8k+QR*rTG2qkQu2X9^%4sp?L0o6pU@Q3!%*)xt=g=b`H=@`C}vD1H%bLKw5)JcHQ_=Dm2f zgBqNg-bKN$UlgE3yA6m@5Xui+?8{eP?94aA@}PYO!qyLN0b@tTZ&>1m^V{Rao_zCl z;Y={<4;py(P@?HZ$r;_c%bl`DKz6(Mf0pzS)$*}RdqE4VqjT6$CmQ&r$Ow-`8MvizM{p+pkLe$n=OG+Wgpn>aDHD4_Y0u*nQrp*C10>_6tCPr zX4c-ZytHI22oGGWhs0N+iEbNT5d!%fx0Fs+$2`#Chuunk z=TE~xC;n*3-p3319&W`|#r^2C=&SbL@wRz{$qxq|_Zo1*R zl2@M@%D*~00$k099Wu`i<^Mf1f*huQr6)&|yrVQ21!Iv_Min9Ia&F8Jev^uM#jV|n+-`y3k@ z2c`|YZ3Z{|7;baXlYH25DVRoR{C<6xkO{3LYqVeU8(;-&5uV9?b5ALw%>hzVDf!@8WXsTz~*TrPy; zjhK=Ojv@31d-p$7fy4D&+=MoLmn-{Pw?Qmofo zEMfnmwPTmtI~1*8uU8@+#{bODpIk3EiS})mRN0v<}O;;iF9Xs6}^cxsq z2CnZ}Be42O+=T`fNd_@D*yAS2b4>wE7G&Rgxnk!_N1Ubf;kT zGbJDBWN1H7a*!7NvL#n&(PfC_4_cHDleD3@NuwlvD8l72k_WWIg*?egTHN}Lq=a^u zI8ic|O6Hm`$)_@Gnr^RcS|~X~`&OJSndgXWVVvA^zza8TN%{iook)`~ah`-Hh62IM zB-0$j$`ZOSmprD^rRz#bA4g$gzn3Hvi-2F&ND3W=k^LZ9N2NKq-f?M;Z;+U&G|x9l zfTPj`ZINuGFb@UCrFpSk@{%g`W|w4!qtXQKk?f){FZVet4H$Ds;w&ikOX||N?|eYA zmKJq~BrB=DM~_P8J1VH;CrPj)dt(^eS;EQVlBrb7^plc#j>@p&l%&9se2HZ^d&a(m zM4giqIV!`1^Acx=?GSlUGLPEf>Ltg0;dVu`%3&E2uS*tF84R~1i~hSE1Zd7khuLqr zD;YxB*SY7o8#3=p4mlhO=N?MFr!o{gk<9(?CIC31jy#oYcGwQ?FC@dL49i|QZiioA zOHMd!ho*1sc6j%XwtLWs9l^<8hA0FVnRJ{t+4EiWlhQrkIe+Ocnz)u! zk~+AEVFp_8sEX8C_%2WiXi{t&EImYvzM;}K#1X>iDpEb&rYx>5{fTxMQB%5>?iQ-o zllFke$mn5Vack*K1t}JGvI#20bdw&XwbkRLkrZrrAL&^N)+P6-4wn6%c7CUc}T4`~@7U|ctcy^ogHC5=h?b744cIz%_3h}5A zvQMg~we9vxy(#0IqtZH5vZKePN?N>mN~)y8{y8f>L$$biQR+r(uf(pN8)-J}Q-C)qPv zlqzH!D2qdC*#TM$G_ouzud6}kPdl_V%WTh)oJDq?_I>9nn@#&J^OAkz$W9Z^ozB8) zU)gx-z4}42dd@`Zg6gvFo}~CHTJ|qBjHHWfr_8ZT*8%7T-dBL)#G&p&TrXKaDW0jq z^*GrJ2SqPMlnV*TvVPQBSNq6plTJvJjix4QHbCY?J=Qy0*3e-k;x|jQ;PJQwcL0@0 z7uJuE$*CsCM$63Qf)z5x$p%p+o=vnXacr_(iSE;68mh$5Su!t2W;k?t2Vl*BCf4Gz-@9zV+Zxsv#re?!*U!R3{}&gnGFS(tuXmPF-b@5%D% zY*_F>wt?36ek%K!=EyqlWi8ZX=FCz$<)>vqg8&g~G9+q8b$60Da=r~0xfqbKcUXU6c#_iwM`8{m{QI=Ek8m!{Ny#!h zglqkr#;Y_t;2XFh=>hVuzDj2#bA~#(36qC9b$1}W36O)%fpGwi8zCGY?R1|y?r^Tt zG#a8wdI&PiwH)rENVSc!ksL(GE;Li~!HuB7`0Oa@$f< zy^`E!=&&I9Ulua!Yc`T+QF*sFm#?Ru7}iq$EiGDG%Qw>Etv2%QblbAFqrGo>XM0~` zS9{;{-Q?$J-<`4cz9Zu8ef<*ceeWd6f24i)q}%)E^tbm77+~-FN2YuU?fdOed*5!u zZGE?mw0Au)O8x`wn){8tYyI)IuEHM^?0r{Hk{8py>C^3fgJ#$$+*_wYh{-${$*n<#GUmG-{MRrbD{R@?gyUMnx5eVc8v_myt3_g%Nu-ZxW_U!}`Z z%s#oiJo6)fObzQ{xn6KNEO&NvY6x(y(IYrv)Cu`K8dVj~%6)0E`>*n;4oZqAM15hw zRk^Fd!3iP239*1q*efsWbK$}(`5QVHu4@!ksi^)&g>5d}GAV3xVJfGv&4qTZif+^a zTYVH&9XW|cZ)Akwfr=Wgi~xMM`?UbC8!8+)oj@;$gv*T-ZyZ^t5;khufw1k$U}02K z#Sw-PgvQMkRw=wEwN}(d_l4~h7twuaCq=eHuQd^eK5>ds4)|@qQ56RA((-g*U#@~9 z2gW(^ig_w%F-t#%BWI8wL3#_-`YT)=*>aVEximnrgoQ$l8mRcTyn1>IO9v^^9hoR) zgqk~CF%$`<8>MjMT)hlhNR9%&dil>^Dg|~J0s2rt@(lY%F{eC0C>Xqj`QsEZ{{zoW zoJfrH?_|aF@(blQMR8FERs3^?BDef#A7&~t;nV|}vlR}!I2Kuc#vFxJ0)dL>Dh8Eb ztm1i!DJWCaU7&b^P=l8!R+k?&VW}bvDOvsWtOkc_XsSG++oK3S_+TYl6^ z>lCArj4L+&FYLHtlj0SUZT>dJvhvGzTu_YqAIyhyI~DWLB+cCOznG-_Ud6WvEp)#k zr~E3`I6#~kc0}RG%P@N;A_=7PQAMO9522+n+JaFYpv0x23{3J?YJm2HlST+Xso3KT zHBK1hVghMDD~uqozrtMzyR7)9eBOEAahO(EbxrXUhK%s-EyYn3-tl)7H=%un#(yZ{ z(IUP4p~4rnAAX{Uf_X^bUMhY?{hqv1#H0ESZxzQi@a`d34&vY)etV=J>i4&w(rAEp zZFOa`65g}xE9D4pRAZ&1D^WPOF;L+q#I;nOmD}v`V+$peq)aEh#KC9PgeF)!27wGN{O2T zQTcq8s+Q1jjj}G^@&KOUBl^;5<#yy%{+!YUd2RVsWj4B7{!sRUHW#v=C@(nj=_eTB?LoUWN~3W3 zUu9nxo0i=*s#*?A7y-grkhs5DRP|7>S-e!(Ki9og*gyMyRam`00#sPNl0elS)Nf1` zl@u};#?@0zMQXb=R1HLa9@|=_f>TT==&E{v%rz`dbq)o2+XU5VboWY9?Lqg;$*PU$ zJ}p(X&H=g6`q^CAn4#)|n8=5!c0~U7U=g5;*W2O*yjrcI@qcr(DpL91;Q)kdE=<{@ z%0UK_A5<|~cvqfLwMBv7^``1L^1I)CVvxTcsLmq;{QO9@7u^eBv(ff)gOzTNK0YM)e)!)DJ#tE1ImM$Aqb$BSU4?S64?7wX&TWM^t2#`XO?zcMmm=pcg&W*kC{PR%3%rjwSaN z@#CPYN!mC*N!`(rBxr+E2pguU^$vXKRe%VK z(UdA&pvLP%+9Gux${Y{ASD!(VvU{~!g}iWdgW8G=bWc!Ub;QLsFKlOptNYX|5%l=| z>J;RQ2dC5rkWJT}C%&kCQ9T|7@80X`mgp}3L%jm|ZrwxmCUlQ~MtoHLPvRr>OLa3e zKKiYCzr(@owMOADK*z+m*?gk&aPHxdPf#jHaLCUJ03G85wpDcY74l8$00xBmJ9`1$ zhadwe&SYu`>;0TJB74V&I(I_KZmH`0#E}IA*%!blZvpc3LtH_-K+QnmY%S+)$k6$9 zoUbC^^=ab#OF4blv5hnK-P^X#cpg3M^v*W=FK$gDNb z67wehM$EhR1~G5+UFY6tO02){ycU_Q=TqnF4lX9OK%7Oxfi_#(8inI;o#)$g(Zy%34E$H8`?6Rn?R?vg_B?;K;uFwFXD_ zuWdBPk;Kb8YVgL`rMm`4cK0|9j_mhI8k~(b_SN9Xo|vw|k=?t$rXtdK+(3=DBN2=z z@~O~9ZlL|PhAN<0>8=Ce`gSs*_6W@aC=gjN9^`6N4nIZM(B;D5Z#31AlB*|c@J4Ll z6b;^pb(*HZ8?h0E8oc&)EYjekzmU0_*~squ=W8~jj56dqjUQ6>+tr$H9Z*()hmIu` znIq)TGwq_rfx`{_srdNcH1{3YLq*@wGz2B--cCZvB~5Eb;?jno1^L%B1&)c(2fz=Y zn}q$>HSoikQ5EC$VBBrZ!vBsXKw$M+tX-)00XZXGbV8$U+I{kJL%AH+ z#)4;YS}(_t1Sr%K2?*C}^`Jwtc8+5xbFOK-3S&~Vx1Agtk4#ewJUgaU0Jnx!jKW|2 zwOcgc{#%V%C>g0uXNi1uM{E0+6JINYkJ0+e%8BA5JRYa5C&N++b@R3GOEAcQg6mZ6 zceMC(fp!5cj+|~UR+_2x;7H$2E47!^q}X7SHpz(;H*eP-(3exXd5(`y5UQNe&Xr7a!4}pnYOE=Sz(FXr3-nJnf+S(noMLc@?S>-1wgzQVa)^TU1n2RD(PJuTdDR6qC#@eTfuvTwSI)=3?Qrt4m0^q?qsFvYy(ar?<-@$HX9J{np3joP+s<066=( ztfsOYso=7(JhDhCy1=iY;;8ova>*(WRAjKrX$obm;^JU(AqsvS=5nQ6-r64N(wSPw zt9tolXF$x>#2AADZIZOf8pu7&NY$dpp6}(`AFY z9JT_d-&>qPdusrEz4kK52&z2ynk%UKxO7#ME%uN>E~Cm3p0(}x8u06A7cH3bgU$dt z%-bp3y20DX3VVjRBxvxQ6v8IB9H+Zt^&}V8LTbGixztM`#r_iAO|tzIVimfhZltz` zpDr+f6f;}s4l2rHi@f$axv(`#cU4Q2|2|Ilyj*_5fF6mua4L82R9zU|%`fP$+fCI? z8=!+9BgIb%7qfM9XouX9y6d!9YFc3-u#_aNN5?amIoi3O8ZBS~kA;?b$WWm=%o{PH>|5jH}UX3um9BgP>-AS1A zPG_J~ZVjuq&D3F1eHB`}O{HH?C+!fOewU+%8+eUaa^|)YDBAnDgHmsGcGa`gTm3xr z56cx|2w%ADrB9^-cl5Vw^%w=S=(|Faybm$K9dwZ7I5 zCi^5|Pknt5E&kQeuJr!KdiW(dtbeQK`jB#Is_Cfr5ulP)7@|?PHc(ZpQC>U!47zo+ zM(fM53#}tSCWojRw>sO^_@S#^jcPsh7t67qs}15$J#-SL$LZ%uN#3ZJtS>6pl7j#N z1auO5^wn>r*7oVI-%Ug8QI`G@onZHe>0`>Vkkk?`H!#c}=+%gqFnqDTvIN}NKUxpAEz|e^@2A|h!)Pu4 zDAipkT&{;tI|xoFUa3DPWA1^0UhBNUh_HP+u=xl5mU1uv#U+nig>&olIw|-Nn+Jbd zXrn%rCB^<*^jlP<7_mHp|MDZ=r8^^^3ZHp#^Rzvzd#xfu=ci>yd5mF)WBLHh=El#D+=W-U zhV>jc)pdkk*fPfuDIvwb<{FAg6NV)etlDY2IJsx-;=Dg+AGYs;U7WOw26%FX zb!&Cm0FMH2G5ERxzK+1f6*mpOEVD;AdfPCAR`vPa@RD}y|G+Sv)~X*Hey2tDnE`$c z1rOi<+^~ffC%&+A4S!`=L~F0VHY}vYX>SZo8OZAFTe}4syfaLvtgd}91X6qpYqYyb zYJ}gV#H^agjqqoIa4|q_w3&0B#@L2-c;SoflcSB^Ak4!k z7pA%zZ2@uA-3Y%6j)$!CG@5Mvgd1K)4+W`ru4uHySBD^@Exulc8g21aHOvl|8DSTE zUsa>cx7}+P8zba>^^Cs4?wZE0DMw{(;|5y%sg7|aE#`e~tdFb&d&5kHMXS-!XbZ)A zO^mistlHezlXh6t(rAm|xYkBn{MBz~w8fuCwB2AcI~i?(&vvyBJJ`)=3;d})jkZYp zI@Zo@QoNnppNaNio0E;}sSJbq7;Uc9_cPjD**e2+k$IU$_<{&4q#bJPVY4-G83uha zZJ1rE4h?Rcl=RccSpq;c6THe+L>?S?f4bu*u}pK z>{_pzXSZ?OBD>aWme{p6FSif7@SWYpTfev4c-C6Gjpgg@+(s1Jht=6+=f-Ze+j#SK zJGb{c?cCD#*oOu0v)lOoe!Gn)AGX_g|53Y|`eVjh)W*^?##AXW_o(wm__GYy^7Sto z+tK2JOU9wJga38oD;j=5H|@BIx9xpP?iz>72|}yKMq8#j_|*8;nbiLL&e)0KMtm^- zW+b&9Mw2Zrub52xD2pFB(=l3{ziA()yKTBlhdJFf&7v$;-#2AYaVkAFO{d}<`PV*d@&{8Q?eGt4_Ea#g zAj@^2S*WZw!ykpgvc1)suTi_-)0;O@CTor699mn8GvA`MA+BclWokU^Cr>j&J6!fQ z-=-Z-SO?%&e3_gGX2cQ>yf-VogpM)NcU%efF@#L1}&Z4o1ZwpxI|mbjlt)D04s` z;JepsoD;F!nj30ONE(!xolS7Et(mFT!F^L80RE$dRji%+re#~RlQIXTSYaU}0XD)* zT2ey){v)i(DXD1#Qj)C+*>$WD){L|PL$dMcK`H%VpP?xbJ88(EgrpG=9ZEPfB_n0P zU~Ad{C@%afk4b~m2ITg^1K{6MgnuN_iheUb*_xf%KLvtk4uDONXBh>DCiEYYVhyyj z7@TQM=szrBM0P1C!OY0a9&Am@%*cR1ko6!au{EiG0<=VxqI4GiU_eY!x~>MicmMxw zN!{g;EhiL>EgD@Em~IA5OUyH5-Cba0f`q;1&`Q{I+16ocgZotWZE0>zMx z2hE<~#yxWjW@Tv`cyz#gk}-h&7tJ2vnTpW^pJ#qLe$+di)U!47)ogvRmGMTckznRz zNnO^xHAv{HuY(f~8`v5w-D;>0DjqibDpxV-X7r;N1`u`F+|35rFictxME!13F{>!k zwk8)4dBi-OX$tlqF=sGqMZ!E8Zq8ylA$EyOvAw@e==7txmxM_`1K^LC)-%U5n^0>p zGaUSR!W_knB=SdfNY#VPpUoASv8bXwuwG?Uu<_~7<{(=isG|{N%?;Fn8yj6AFf?MiE3`{H zxYmSkG@F3eNuvr>sBf+euAeqnRR4%NkmLZe3Uyx0F)I2sM#UZ>D05s5D)wM&F!qYc zlQ{_V-jhtiyEEolEOQlgPE;MHQo%mfUrav0{X8__K`{2+)GFZmdx;UaoHOZ|H{jHH za|Pya5rfwv1}`XsAHmpVf=M`V!Tg?KG+^vw=zD87_lnq!s$-ND?48%m>?5@O&HNVw z{|F=OMgu78vbie!v##G=HrIfE=MmOtu$9_~qNaKq5;fJ%&}~*Hemk>eN`p~b*T>;K2(RZJw%+DKEQgz zoDaY3L?Si14Tzg<_On6Sc`9ukJV2wH=I87?He-apC}i%*fJ67p9k2&iw;>+9L_9e7t~p8qE<7+NDX&oE)k64v zGknf^`OuuCx@N0v18!b`PECAho&~BuhdgG=%~8r5wq_9j$UFj`kz9HNqx>N;Pxu*U z1N(KcQ2(wxv#meg;kjewmOgWV=z zi~cbOD(yhv)Ia8yHknQjHR(aqcji^hTQoirEcrIy0+xKeUJmO0Yo5=pZVQ&C8qDD7 zzviD=Wjj!qY;cETe|vAPY=f}dL1kmH;v-WG!0u;ZtfQcv-JUxJ-s?HC@Th*bsfSy= zh2;!)LS}@2849l8@E=~((Hc@0L@T*afTONiI}&v*P@M;`UNCfIo3s;!UNrF4bM--Z zjwwLZ?jGe(7q~0A8Vm+%B~5F`d~Hp9 z&$k2n`0WU`(cYEw1D!1=&6qm2Qg{w+dyEkaDnoAQMF(MHD3KmBssGM+*x*VN4Pv4^TRjY@Fz%0dd}N zp({qncu5uSS9Z3i`<2~<@pcj8Ba|`Psi@mMqBEhmJ=oXEG{A;e%GK5Zacv8e@C#q= zEPJaxTI<5$8+~)E>gh+*)d%41*(=0Yyd!ua>ebfdBaE!T`AS&$3xpU5?bcMUO1s3J zG}Q)Kf!x=uM+e|?!16WY1@sYIcg78jt-?j{@$ca~_Whii>3|nY(6Yugv#=wGYr`<% zs3YBE)bC`nO6qiAz|A>MzRcICh3rt7S_p@P7SkL=gmUpphOX1$!n{yU_AyXaQ?sum z76R!95BFo@ML@kpK*Bx&ZrW4&68EDj%GlFM;l?k^axS8izuN&f)hapF z430p%F#vaCFm2Z4T!o+-+-8Q^iTYEMDQj_6nM0snEf|AGM0y?&>3N#yIiNOIm)%MA zqZm-XuR&BI=fZA-u0>n1MX63Qf~Vp!l&#!9MCh z_F)tcGb*XaxiH(n>3ZCA);kJ?QVOv4Ghya%^VO1>j*#h|YgGd--EL+Xh-kNJFuov#1#f)Sd*}`5!aOg4Vu&CNok_iYzmlmoE0o+!kuK2fWC>%f@nQr zGC*N-t`d`p>S@UJ12@~-ve}3z&?v%`sA|Viuq5Ez92));oI--bi*RO$a29@wbF&3p zZzxV_wAuI&p@q#YxqA$l-IhyIx_+dNP^k?!fC2xuvuW!gZhps{w<}8XP1Y}?^=uSP zH#bFMUKNS?FpA`Vl5@N%hd=xjGl}DH69Hp;VDl17j?ttkD zeSn@_RROkkf*_pl$c<;%Knj7gO{LNIX`q${@yJb6-4LzpD0Y<-~&`0=fvC)b{}#cBjdIL%c7J>M^N zC694MAgUJ^#LN*XGE1b$45~;?65}m))m6;&C)d7Z|l0K$(ISqQRN(^=9Cf%I#o%I*RfIY{B_r z24X<-#g0B)OS^q*qI_Wj)%tR&@X!L=`lr5JbI_ix}s?XK}3ATt6F5>2$X7 zp}K>(MV(}V$6#(3%UmM{z)u{KVccovcT_>2I2x{je`v~oI5(EP){#7MY>3K%U*To7 zDsXK$cNRXaZXCgRNUn9H4{;(i!EGd`Wf%p}PvcsE_%kyVVAv>b$;U|X60J&z&fzo+ z>)HuF#-Mh5!a$))m1y;m1ATzs815O`YfK~l6Ysw2bfW1HZaAjV?9bNfBywf*PU3vn zhC+vTBKeS_mh!fBKn6s6uvKHZZEPY0wC};%myr(d!G<9AqHRD&Q75zoGmhs*uhZ#Hfs?f)saaIbI z2KL6u@O&Y6i(xphe;IuKyu)*$j1}mMxG=^Kjm%)ZJByqh+L<`J?rg3a%XKF4#i5RP zcTcxV1~>$5ms%3gG6}F_XOaLrqha*WDoV^GwzDYrwd_oCUrP}aoB$ycm;if#XLGrH zb|f5c-!Q=zoB$sn6VU`1KcDMuw`medfUr&nKFsIRnI^bG7_)#gG2p>snCKe5-&v1c z)tLlCCNZejBJO8~*@2Yu1bMDGI$&7>y|N!k772=5ud4_fmoMQulRj|SLr+fUJKLU| zenlNK*k8oD-lPV#JvyleQuplW%z)?q`#lL3&%W(U9s~aoS?w<|lB^4P4zvS+3*T{f z;BcFB$f>l-)((|}6VOL!zLJA~q|LVrGGLZ!2xX62(GlGE)!YO&q6^TQj3J=L8qQBz zw+qx~>4VCCY`rev=J$sFOl@#;9~S`{rb)@`KDI>{5+x(na{kI(iWmV_tmQf)tbtRx z1eL8CGQwMyg+Fku+0-te@VTiQ-10SA$9XZ|fHP0vrZsyVH&@OMCK4*gQ@kW$(pFB# zu#>xh=Tegg*s_i5%ua&Bc2v2Rmaf#+Mf zRv@NNGc6qv0%oSdFOJ{e&UKe=Mj991SZxM9cW_?pRtVYGlmU+{%BZ~$?w}?b8-RZO z6e^H;q-rIQCo!v4MO0uU3Ow*d43Gtsw)%+(re=N|F>J}5|R>H;EC&)J>Ngb|p#~sZ0i_?JM z{ahusQdjIvwnA4jjph?~Ufs{FQ?S*$l7L%CMSz{Ad02cvz;W(ZrUgj2%tf)Sx{|ni zb}vN+a!+te8MvkRnd`xJ?usI>9+)|-LL>u$?E8w?u0+MJS9*3u`vTQQ3XhW zF44?=8)ZGYD|9S}4*6EN;*gsFj$Gh2vunG88%^~dAgqN}1Fr0@qmyoeJwd|MOfPl| zRVoluO=FqO5-Vqss*LRYQcc|o4H9$e4Cp1 z+GTDVjF{P1xCHhIwJwSx_JK$O_6;>}+gCm@B)AVzVGs_oFT7*>+Ul>1?VDFd5NzMX z>s(*EeYcQ6vfO}=0|DJg`1o}r;qxOg^79*apiR?D27M}Q<$|_bu75ho>jKezJq4)?2=>+ds zCtLmZM5iTGCn!d#PMcnf{B?==tIuEXIN~wY=>gU058|(wH{35u<{zTieaaa2fr@zx z$5=}}3G33GII5bH0{T-O0*^k4yidOd5f2 zoGpzIO7wT;5b(^|vYpL<3tblrYu7 z6)#IFTeF8Ks;c%VjVh+m93RVim63v>u}Bkm$C}vc1ACNeqC9QmjHH9FnXHxxcK;}W zK5TInFv!=^8f*)&;Nv;?at5gZci&9fdXv!7&oV&5=0FvL%?T=33f2!wh&F1CE5e_{ zgvak#NB7c3oFV=Ww;YBaPcMnEv|$(ZAc0sb(z29Y(L)r7K~*h9s2K<1xvG{U>{iGO zzVbqqSUq^h>Q$on^Tg`iwlSsZRkvi@)#HeI@ii=+flmVq*+DaxiGCqOzlJp}CJFnD zNHnLRr6>D{%JLz}&@V;T}H&hRtA^Ht6bVAM8F~tFSHGy-sA(fqFM*vG-SsLLJaAlZH9^sePmRF2q zD}3YL=&!LxVr*#m=SCw48wx+X4yO-3;R^wC+F8DZ2e|0mM`+UC(m|p-(G%`UenOWO z@Bt-#nXoL{GK$Gv*#;8J(d8NXn8sstS%k>>=+Y<(Uh1QZ5x!qc*P+YQ4)8J=U23C- z8tBrvBfK;~mjZaEmY$C;br4w-T^1sS^U&q1PVn+Cs`Eo7pH8{(`UfiBL6_O6&n$E~ zgaqA>F1~0t<&7>A(B&I+@#zLHp6D_TUGmW74|KVME=#(@%R+RSgf8RJMcM;i72Fl0A$;XDt$3~fq4Kf+qA|Kl!AKM@w>z|Kx z&&PV_W1aJ{zWM1(nn3OHv7(c)lKEJ{e5_nP)@yS5ZY(y^XY!DA52_0eg;lOl$7RCH zE*62w#ZmBQOIU-W;2;VG90e~>2}i+d6cjiLR45d16mTdMa1=~OB^(7!QBdG0sEa}Y zN5KqK!cou+1ptnMzfj2sx!w(j0*-Czc=2|^ct zbZLVw&Cq2Sx(q}Y6fNmIybMV{NX>i|Qt(5O?|qoB64I{|Vx2D{ZW3Z>MMT{0$q0cx zEHxPho&v;My0hMEf8ElQU%!AKT7`X%O4^{bMf0t2)iSRWL?w?NkLxunE{*y`n3A8^n%cuRr zL2i;Io7sTB#RhcAmdWaMy`a(X`*fqVtm}v(1^OGr-y6U|jcbQ3B zqt&NAZU_NuQY|UW8ldZA=_vWW7d#Uv%=HE?GYmsPc%IP-=yHt)_E9eo;RC(6@23b?!XA^ZjT|?E?KIYrr7>p{=XYAUj$WcMWXNI2kGgec#`SMUT8QStQ zLxX#}u2Lt8h7LSx@dKrwN$B4jA4aJMh`KBtU`b}vd*cn1aRdC5VFk)TDXGbs83}0v ziqePoMrR{q45gA&_KD!keM>F$epjTGGZ8J$E*k0s@(xQ>tP$41!&*>W$*6+sIy2BR zhh5hj>@T#q!~5*huKwyxBB`FwwxqBdz9iM|-XJ>281*UVwUCS4*hti%AtJ4!BCQbl zD15MM1@%=i(?nOXkF;dyCGpU`@B=1MLoAim@5JMfuy4L3tWyj~*l36ZrxzLmM1r{x z^p`|pk%4uj;W-#M%EE!DVHS8qH_Q^vR)_%&ryGOR6=Ouv3^~IC-&~T_j9eR9$A*#(Ep3u_!zLiso0*^vD$9+tal?_i z}eCvR{T-2Q!)4*ocfHYwUp)0{};>4G3ZgZhbYqQEb(SkWE2Zgei?$R1*r1& zDa$MaOP5<(f%o-|wODy9nX2&aJIFOa?HpSwHkzx95`N7apT~o{u&QsASH!`Z)$Dt$z)&mNF3vFSD$zGXMUmtydP zwd&0x_NBqJ0n6}d;@A^gHgqYEwXrmGVc|2Odmd^IUmvS~6}6UfgC8t_*8Y^+%~%|@ zqKWb`H#4|CJHbhUd7Bj`fL}7dg(AY2%<6y2veGRY6#fN9vN-(mS>!Q0qq5V(o7i*} zwzoYR_aB2xJ)IiQ+8A3f@FSCj@Hi+U4m8+d2vygJE42z<#i~M%@Syusog2aiv@kTt za}5&7L)nJKm0ikwh&-XN0d6mk5@1&84+7L0?vvs5VzZ~i5UZmXIpBh z^TeakI+pV#ai>smJ473+h{W|JJcfTFt{-U_0vpD=?qXNPfu$Xdk?J*N8Ls>i!!4BI z`VvEkh@n5hUG@pX3U-F*j1a8cZ)gOp#ReTJMYCt)KpV}SU<3R%4%~pHpDQcI=`V?K zjf&xM&=4#VBY@zX_(Y6~ABz#U03O%8iv#(G40Y7+%X0nuOI#K4BsjJlHdGaHtwg|I zf5Mfj1+8700APd^9x+U0!{W)5jEFA{O*|#7{|pZYXV!dfLe`BhJ0U5Dpm;j{VZlEA znH<*^Y^QiK9lMAcN@qU&+{QGiU=u!Oh~9=>4bzYc;d-2 z1@B9b8v@ibMWWzkYT6g1m`BaMucy%}O1YF{KIT|vu?i;AOcY5o4x*qbxl7FU%YU63Q-2ltWkoj!Z9=2&{BV)gysSf?lH5(&&W8^Pgpw zl2CRUe9VllOPIBNT^bD~MC(%SXIYK<0;~LlvJ=71s_aAvCngO=NOU4Vi>LF9rT zys^u*4x*qbaaYXt<0%nIM&0^&6ke%vuNt46u(E1l0}?&< zx*<#?dR4;c-RDHFM%vzj!tIt4HZ&19Pcm0kS1HRf_)9EnQI@~mG=z%gTXh0kF|q7o zUW4*WAo+S`wZ>}rwZTTS3{}9@TZS-Ak5bO?{3GwkFe|8i8)meG(t32v;s>VQHu!jxM>n!AR! z?9@aYK+>s@Gx(tRJs33DYmuvGiUh&?oM~S&%{*$F`M(>)8wbii{}a>HB7#k%f{la2 zaZ(jC{CJ;Jn~d0AIs!*egZ-A1%tfF*V5z6RBp!|SITyYp?j0)bk_U$BB6HOtJkEY1 zZe7xFDiOb$1nm!5;D=+;wgZ+DST+fNeqJq2`Z#!@E%nDfn_QFVuJExTQpEmi!sQ)d zFAC~)DZE{@{s=tJWv-|4LiX+bC^`!md7vcewT)qiY{C z4#j?B+e6v<`mPad?PRj*!F&8a20wLu5r3Sm>L!0-?P!?{8oe`g5UEHx)=Vy&!y6D$ zs=)?y{u=={Ubch*e5{xz=J#>3YDh+-sNo-Ho|Mf-xB%acx4t*L=dYshz8RQ%LOBNpd|Ie#ObTwHtFC_+GJ8Qr{5?f%C@c zAZa-Kg!ktks-Gm6%^Q@})lXz-Mr61|9KlAwkP$uGV`sdV8SAs|DP#e3Pk~80yw+`h z5MFJaTQ&51~6+(w>o3@IR5VT@9@ z7O{gbF~kR8Ey$=AACDp%C?)*8qCP35AD&jHiE+@=1^mefDEOzx6WJ+bA%f5QP9RQg z6mJ4s5{_`6`>77CNLwt(yJOkS7N&q}@H5bAzARh#6{63wT}auU)EGlVR%=aAr`kD+ zV!I9Hm?C=ig=WKRAUr5CgHb(!G@;dN%rZXZXFQu%F+O+o>;s@I(HyC2Y}j7EWsbKgvSFF zfD32zXFH~XfwO!};P?}ZQQi5oT%*3kHI{Jw?Wx7{b6n-mEESzaiuM8nzt^`Dg-H~V z&y)&$lk{fz{gw^SER|~agB!zybd8nystxnW{+W@${j&v~7nPpiQ<&d@%X7mTjv{U`A`{ygEqP^WEHY>`G3Z!gP}Vyc z6hDI>F}A+880xseto@(NO2Ob1(DyQNAh#&@Yi9TVL)&);MpZ2jdv7QqCxjG|?7e$a z={@u&kOWj(La0)OfCZM8(3Bn!DH?hi1c885MF?0THo)Ei>$3uiJ{3ieUoz^R{2vU5BZzeS&nQ&D(LTE4k3V z&0B3M%>O68g_zD-;9%aWeA8GsVPyyjNj?jNayhZiGR|9x2S`jHTQe!&a9H$`7`)9hYjfK9`(bWnW%hW|K zkXOs#qdJ_b=4wg%x{R5T3iah+%#2cXe?U&CD*;Y6iJ7f88mo47n*?Ch8;m7m;Fi(+ z`jG3?yAytU^KB*mHng+L202&Zs56$lRYurohJ2$waID(Ky*UtXe}%X7uwka6nrk4# zG)4jJqcE|GTWw7EmYPh&pPU`v9*)h9AEM76t9El21R|YV7Sj8aj7NmK>M{hkDFic1 zVZPmm+3Qvcd`pKMfnn8M3-!ZeRqXp1BfznU#fpm3uF!L11A|{1(SB%N!{x5N-vQ^1 zdTO+dsUzNV%2l!^y>Ag-K{|lnwa3sWEk0v&KKsuK68fQuG$%AZ2DuEzv3{va~Xgbsh)Wte8PeH5_CVk1`>8M`lYb?q3gJXeb^X zHNBZiqd{_N?n$Ux^fR}Y5l4yA7UaKvN^4Gk07%zY45+od+nahq*>yvwc6L-ypp z`P~dJ8OZ|Ttn_SK4%=NWzHe^hnj_l>h7Duw`9O8b+ng~@8OZ}2p}&zFr+Pi?-wTbT zy>I@;IJR&87KbCP;%j9P{-Gp1_`bPEA$-Zl0u$wURrfr~N$#8fI*#p|{~n0@XTn{2 zo@yQ$vhaoBwvnWI z>|Hbb;foq+*Q~ckMI+g)!Z*wGo@HSgj1~S_B_AeQ-I-`7DL#`tN=uPNM@v`fi##e* zg8$S0^)f~WWl9#8MZ#LF2(o`|qg#mR{EuQyR&>m_>6nAvWnT9&j?h0Kfou|jTOU&gVO8`%E@BK)%~ zgjMmHfD}-`2KH11_t#Pgr}+?)LPkyu6{yjqk4?ubeM}qgsELex787U_^V?-d?G{!#{*b}gD9sAM7JQP{@Un66zFSCS4`HCknFuH)C5N(d%$ze zU2XMy$1AnO|7j<8C8LK7XJHwn+;0m#U?sY&G*Y7`b$I?WGDA7h2oTtXf~^7s=BvPF?>6@+61+e z8#2KeRT9?KGVoTP5V(^&OM$%{4CQPeO2=TLph!VmO;8HjhM{)!rUjh3KA3{0PY6^{ z8%NU#wu0ghe+3;pK`H1^R^cETR0g73Cj=^}4^g0k&QV-8l8|f#MJBm|Qigfe1f`(( zKV_KLGkQqoYsw&H+XPB5GhfWcxPmYS=;mBS4f?@8YL+4|Qa6urjQ+YgPxZp@MDSi@ zJcA^e_0J~IlQZHphbZ;+lQMYt7D@0XnHeMV71|Gdj4*vIP<8L2p2(np^2}8ysyuVG ziOwLC>?%WkcNBi`BdswLm06X!W`=x$LV$YH-NmyM3w?+ktwj-1P;lmx_}U?DCfbR? zHWQT&cVy%^s@3j4(R9N^Qe;MsjkXn$!^-bgd>W*)JXNx_uT=9zE8-IF}5!? zs9(Y~&3ExP=@&5Y_T>iWFbbXA;01WPr|Si=BA}8|QujKA-jq}!RPOD{6I-1cKvB#Buf0ENNl2d2Mo)N=$krpeV zY@P`7XT&rKXIM*R@s_Bj_u^P#7Ek|jtV%lF-^Uf*@pFud{!d9K8`y>0HRyXDQ&)fW zag~UFGq!vwy)T_YCBG2QR}8yr_IFJcNt2w3{fwL%{>NnP_$|J&C*yno0%A3h|oZLn*dSj=RB!^YEms}v7+OS#wwoeSXX z5Z5rVrR+|tRi{mXotmj6-(zL>T%&p(D&3QEd~dLx{y9GV{YmPA#)qs4j_a-3yZ>oO z&!P(XU(&ECcmpmySSnattEhX`k2={7F23oC!rRR#q)ZaKH_sP0SuJ&Olj)v@d$OZ+ zWUXCr>DFMYd!5O2O@pbnjk_lF9pj?QBdl(nqAN<)W$F==)gpHzN9I4O>s5!Yz7Dj$ zc@ui2@_S>D8kyg_jYE`+Ty7cUPeu}?`z|kTFgiCVv?F{xu*m|dZYZJ(by+IIw|uh7 z@U0BQdtVuN@1Gp>%Em?odr2_7_j9~}ubG`1i}v|QAjZeb!1w}T})l_^Li1u_DXn#Px^1r6>fCBwVFtl5IXq|N&wS?Ajx~EYyPbK%_@*Ms2 z8AUxhuZ);IIWO=$p^Ygb&-Ov_htCJ~W#aU9dCFVpz-kFy(dMdYxVscQL(nZR&{6PW zgXZ(poM8I2Rq-tHROpWElA|E-O7H-8cXc%*FOOy?VoaXmsw<{5a^&pPrzlcNr7o^-!0dmH5>MCl*CZ&S34M=Af?#K#Gzx%!JDjtplfBfUs9-{Le^ha8GCV>&`n zX3Q}C**unCI?5qQvY#%C?AH|8zKav@W`Zf^rS7l-T zSz^AK;d@YlJ*)6B8?n>IM`NmP){Mnv-nB$Gal1xdkFfF`o$@IuzJw69IG81^n;#e_ z*%)f(+d7Ird^$>brOx>(PD*DL4kCOOE-0d&`GIkg4^d#8v`g_AB_XLe33pIXhck7r zdZH=5NuQCg)N=-;%*Tsdvl%(Gc-&P6CHEjD-s}>Stc`UVVGW3tb}NeV8AX#IY60r$ zZjRM|71^UY;pr_O8`LQg(iXa2)L+O~X{MJr1i5M)FN5wAHr+DI#OU6u&^#NA?tQB6 zDJWj#dPe^N$6Dr@ehkETz6^|i+8AY;iD7(5LH)N6BU9XmZH)QOi3yFk#^Xz~T!Z!G zDN0LIr#M3`sBIZt;m}%Hu2J`zlLVrtoK=s(?^q?fuYg1H` z=?&gfTFzI>BK3W&@Mf79sRtGO7fO*@tSXM7GWb$VKTlC9re6cGUMdUg)hU!?Vh9f@ zxIdIac-V)~S>jPZlwhhmRjFkCsgC-PmYnH;Dmk?bm23eEptMTbc#@~uDv3Y*RkG() zrINi_g`<+)%fg1wih-X>`Va-GP5Rb`bGpr@7N8S=64SH9QQ*rHqCFS?-?dDDHbf- zG{3Fb$zEchWYEP9R+!#!c*&`ODK}{N1GM3ZAHj(|u4?n;RfOC^{q`2?@MR2nz*qj! zQvMg-9xUf#~0FR_=mvu6zUaylQfJI|9RnIr_y zm$%Qye`SBq8JQuGojo_muvzwW-g=QemSSu9uWY!K8nFjdxKP!E+~}_I4c+WwR*LoV*jwSK@;#K1Jhw#{WPkg8 zRVaRRqrmTNnS)^7!>(R};ez)bcHITr4!FW}MosL=($sj4!&CcRKZl=XRd9BCLjUk@ zc}di-R+fHt8XSK!s-1sZJP_C$!uv(v7|x-q2f42fi5RKt)8#X3H$r6p=#&I)I!b|F z>j+U3&94(#oF9iq>BQq`bn@mGw1)YQx*CRen*fW&LaxBjM2C=-cpk>5|7>tn z`4lo~EGsQdu|X79{~FInd2UkEC423$5pEb#;%Z)HvFy7PR+ad%;Z|(SWNegyM6ogY zNmrjT1s>IZm|3~L=WUez*88Kn#XiE6&_^z$AHj&|_%z#q9-k%+=)XtS_iU2{J|O>T zE&pjD|G7>6Gg|%w@}G71k7LPXhh@}w88uu+jg~o2K@l*L`P&fnjH_{oq%8Mtydr+!yc4z8T*!--kQwT~1wjP+) z8-6T|sw>`?4QRfcfCWWHH!?o&IEC^T8K1G&O165X2aQh@q@Djh6mEFQ%!Q&{{Ni8n zeF;%;@l{u4*nia3B`X-#CD)2o3M&?h1{xip^9!yju>6?ofcV+r3vzcF+15|8fUJt9 zl#$T@+f$4o1Ejw=q*f7EN1EO^lcn%)qZY@d9)*05y3%dR$>o-+d?FJqFRA7lE` zE3Pqm_6+itHgujIr4OG0&AYps!}&=b0jFPeO(>55kfKDr=M0$pm6;@ZGPF@wT&YkT z*0FKSWLe4w?4}uT>Wq%K5cd&%@p{ zy&5R3?Wn5gooZV*oN^r%pR!IBC#R1T4t?tkjORHPRM%?bJLaY zbciNNX?OZGORE9f&$wEmpjNzJenDyfz~T>F^~FDoV@FIWk`As^f7vYjZfn(jAG!)e zYeua!9x0g*icFu&xy)F#MFC7m=U5iZ8lqz}EAww=fqz;d@-aJq)>2IK1QI zNNO5MN-5kqRJfx*x!iE9w^;>_{@^mpDLQR5?ETr*PK;(0IFef&D7le}q2VOCCJ=eP z;SKn#IWdW4flPjipJ7^l3Hf`LK_~u>F#cXC&0ojza`m|4>T!nG;p(G6t_~{>4sx!( z^ObqIB9n<`gG}afvIxp#YRh2MZ?4|4+@^Ug=2AHRo9k)8svxJQc|E-FyK99=o9RrD z<1Nfg(T)|M5p4h`4_0Y}AMe?&8O(KXJa{wMo zEc)BkTOT`9u0I{1_+(^!Tu{6-VRaRAMWwn30GcnJktA3vki)Fkn+f?<&0z_$iKk_C zjQzIAU-Hkz>pZPxLEV{fsF@LC^_CUfI5dz2cHnX72Se>gK9Xp36+2kXg4qT>zB^oVWO0!`5 z^O2VR{Y*GJ1+~2{R0}m4gv8E5kLq_zPTUFEn%;(? zQ6n$#0xgRlXHml8^OxNUTY}$sA^OkTMv97de4-)&=9V+GwQ~D zCXtdtd@g^HLVT_iBHRK0&UDDQE%^=@^2HS&DqF_ZDD*~KwJ=%o|xH?am8?lcz&1#$#0`0kXouM+TF6c z(n9_Na-tS;hCnUk7iOu2TsBb)d8Py}|MV{8h?f@f7+JxU=%OPaIjh-1eiI|ne<9cU zLUxkTK=fxVXdUk}+gZm)%%*i*5Gk~d{{YjIjb_)rf@eZnEhApPX*TTuTayD>>Bh*x z<$Jf7!3t>Q-j-^VBlcAIMF5((lCian?wYvAA6a(dA|HMBo(JpbUG9^g$*2Mg>lhod z{3`9`etQKdYSHL(0$!92U>%m@s!{|%Ef-$Y_%Ny z0P`9c4MSd?twD}u)P$oAj0~&9Cq+BQyTc)vE%v8aDOtVkf&JcQEy(IIKwi!zNwnC1 zBO8;o`d0oTYxV8yz{Q@%jEv!SWI-aUITt=YMA<;KIx8WX4DOdpJPk6sF_g%56KlbGiq9qk~VG?E<0q=S|7^_ymWdZ zQ69L1mG*qs>W~wXR4=Z+1Vd75Ab*k68q6W7F&p0vWh`xcc5~ywplVs4_ ztNw1$HK^RXIHg{G3M&k+T<2qhVDR)MiQ(5GqcV&Ep=6*vEvm!kEik$%YHd^w8SNdN zXIdLsR$oaZAC~JKs@aM^o|TgBcMR+|mbH+&AIkuF*|&+4!`U3_wD()}9YsgbY}IFr zhYt)cb42i3o z3`L!dx#Bz4Pv!#jujjz_zg@lbFXlMOfY_jL@Uut8%1T8DK)DdC5xEfBcBzuXE!jeO z5b<;Im;BS~K@=%d@v>~eb@D-35Hu5DNf368zXPGyovShd^;r}0AZpL`c@SC)$nR>j z7DNd-5JhmPYk3?98oCJGnyVa$ZW1|X#bDG>{7*Xvy;x}lcoB+-aE5C-6z@sy4#%cz zEyO5>j5Y|0)(jFt7ScL{y0l=IyEUx63D=qFfo+R_!~M+sxo~z~id*FKTA7DgWt!FC zM0X<*GjSKX8@0rJtOW^w2^0SM(!#IN(@2gUB0G`LDyxV$A2NCx{^*V`HyZij$AWlx ztf$e|uat6)MK`B4)+fz{L)G0G`iQxZ@+SU26#tfAI9at)!#LR?(~b@bdK-|%i*4}~ zmfvy7lD<+`sFrOE6=xm9&OFWf%qjI*l?uXZ`$|DDcz#5kmA=x4IJz=1QUr5z&{w){ zo(8Ad8?kUS$4Iw+^o@<}D}C(H%6z42^H5&)yrlKwqriSuSPSx%7$7gxk|gq#l4WDE z@hS2b+4z)swCcw?ksS>e>F`I8(ckzZC z&8lSfa3P-SIcHW=_OFjuvPFY1DUvf!g-_ijA>3rNbSP6v5mw+O)zf{RN{Wn@baLyQSxHe<*cfIFR1 zFIN@dF4@Q_EfNHSXBocuB9%TrV3YXvN#uAr7su<3-^wbz* zvbgGCaCS`Mg5dRBLAhQrEO`A^qpqkfkA?+bn*wm2aca`GY~;GcsDZA8bw=52#CpRAd~1$~pxriTFcfz@M;HX@fnAn{%t zpf}R{;JvWFlRJvZfwil4X_>M%KQy_Qqz6w8_ltETH_+Hbs+u8iCs&sOf@cP*Pcr2QZjXhVQ8X80UKs{9)(;;fj7FP3n^IbrARZS zr0HG8yIM%S0zA~w=ay8_fYmpjW!$RQDe!skddmX5rRHuK;im`JLB^wlTk0tVu)SV_ zB~lmwj1cb7dlf+b>ZqDn-M&!nPA|d`dp*CgiUXw1;9>4C!?!{JCS@frE#S>g}o9Lcdx7 z=_`{{g|@)aEE>Fj7<93~-s6?ZZQBUQU6ovhAf$k6El>ik69_kDfunQHg2DaI0={X1 z5^#?|xHmAk{e!?QQ^4aF*aDu&K$3vRF_3p6$e;p7wHk4skr+h0QXf{@%)%-r#$zKia(P7^gqx(C{d_=i~x7yBX7r>(>~A zDt(8|A?ovejm7t@qeRR)hO3U>ERaEDhV~Vl*^1Nj^jf1~C2b-0Pn%nSPm|&=?*bRl zzq;yw)vy1af7YSBOkuqwxzP@}HB_$zI9p`&fI}OMhWI(!Pd6CNM0?gL0F~XT^+F<5 zZ?O>0ZpCQs1Q^}4Y^b@>=pk~-?j5O6_I7%sAJH6&dPkZ}95#+-)C#{Ey4wiT6Bfd$ z{YFM<^34sKj7$+Hanjma1GKDNUA!`UaFg+lC}ac$$RJ7)gfD{?8Ev7z7$bpv$AC&ebzUS6}#0Y&dSnKtk_iCBUuSquuy}~=6C1>IsLRS z?W+>hg$=kyGfDz@h*vy(T7o=`)Wp@YTgIuD_`a7M@n3crb+lM8A2b?@_`Cg;i^(}w zb&7%GJB>^|@@_TYp*xM*`1D+pow%#kwCv6{#)kf#&0R)att({g!mP^;Wp}n2%kXvf zDNAYcs>??0l&)MZC19J3Kcs;5UlzifrrUy|0cRTPmuv;zwJoAY$X$2i@#bw2y~V7u ziE=4%;E`J?4(#qDifM37)#w5r_D@SuW%KuuqzYe$OMA%Zp?`&zFvyg!EyNdCi*3gO9>)v7_(AyiWfrW`^wOS)4T}b)L~2?a(uMh1Qf)>=kaD+zh=Jlq4t^59wpBvaN}df!ScAq zGaolv>tYDw&l!+`i`0M&WVPrT<0-el%*Gp15~{(~q!zc~L*m~*i5b?ZtQE;g9Wp`?zI$f|yInPL8N@%w_0=cgknJiGV zNo2B{E~C!tA#FgNDw+)w^$pEIhOXm$mf7n|82MuMTDu^l;dYQ0*Ha`oA)Pm-&!&Yn z8*h9~FPZe3al0lu+~dq7ITnn*G{r@mk}hwcVu(SkCF&%1dRnQL{qW_@%|;>|3(+D= z>b`A^*2EpWle8Vl7a}S{a$l>Lo_~)Fx9W(gtclXodz`sE_a5lm&uSGI$Q}PPsy(B$ zrNVy)+;s{SpW~!?O4olJ-LzZZdXH2T+b2QNrBA}t$>yogJ!Da}UU23ewCUZEwjf&7 z!WI=mnHJSHaavEW3uC{YvyBf0r0lregl1dP8t6xnhK-30#BnAAn(uTw>{+apx5FwT zVGzzqP}ezl3DPU${KCBzkaw&8kr7_9?E|B-rhk2py2^q7(^ZbVe;F@U3SW$VaK=Ql zo`}F-UOyP~y<_yS#m>;X7R&o#EuwfJjLo-(!l`Zb67j1v=vQCKKUWn$?QDj%uPDL+ z36F!cU-VGD%3`>bYq>-fMx~=q4P_}$0fj7vzN1~4_@yVjPNojt>m7V$bVU6h6ob5t z(cv|`PM!Ce@kGcii*a54Aflca#gLFFhBHxklqdqyTFGy;z_|Au=IDz)!+%~KIz0M+ zA%?-W7zQ&69Wl%a6vM#9>Lyb^l0#D{c+wmyRmQ=f=irX9PN5gA=Vv6TwK-N)S>nta zN$`fZsx;E|C6GTnxi#GTEiK3nBUq8r&a4HKCz~-Mm32MU##~!ZPOrkyyqO)wOvs%& z6(4}WzwNJ1-YE~jQyh#S()O9H!94GS?Zt_pTZ?WCYHmAo>38;D{JkC?hBC zZb=gDg)EZ4XfI^ZlEBkM+vcm?vcw;ayR(95V_`+y`}o`tkaf{`N^E6fBE8+s3TU{~ zuT*KQEm3N_$*J@*S7GGr|H;S_Pdf;l9qPCsXgyCYflHa@Fqr&{zxKSQG**1VAUSG_ zwWPLvp05%kzGY3Kel?c;cM66eqz=UfB??l0GZOT5OS~$y{x|&4R<)&2@*AE~4_m5s zEuNBixe@^*1dsbK6H!aC1>ex#5ZEPxwV(q~42E}TJWmlh>O9-YBW7LL^{3y?9%&b) z;t{^Hvlqv9QGBp4S)V&3v3Fb>iI|kQt^7qw+;(Z85_>oF`u~MHWuQEvSmE+=dlwxc{U2kFnCJj^HuPeHp!7_D^ee^@ka5GrVM;ka&IFFs=(sFL>Xu$SDsQ~0Nd-&i9;{gZ+!DlKzV z(*gaH1RcL&fv6**0~-){>`q&Q%Mi?%sJ>;0byXE}Wu>`@T5Sz7QK~~-H$h%ivvIZc z+I8xaN1!DdX$i7}+9*tyxaFVTjl#M1l$#)%@F~|r7T7b)cS`*9sniT{1E*g`7g_J5 zHVx^sOoMsvq$Z2LtePT=tYwaSIc%BQDkM5+8vu!ct?#C$z=?iY<+$tB5mtqpG5QV5 z)K=j{Nd#vnlTk%mg><=f8Y@K)DGSbIv@6Fhp&~*A;wpJD+?=P0yZw=6CoJ?4Y3~xU zj(nF8SVz>TZjiPZ4@s?)rDU5XELGctdE=tG!qpmPzBnA%gEsjNEK`|`1FRM^8IS6( zFJpUfZ?ak%zgOA#eW1oKoR1$w%r$P(U&K~2g@H&Yg~5?f3L~H(9^Q^In+RU&OYi6p zFH`A+y-1kMm%UOGZGQE89gQS05L4CeRZLZ5wWnfD+!ef6ZS&M(6_Ot<305bVcABio zy=q&E^Ml(w2{k>=;Djk}3=t7y91$@VP+;e+c&U#ut%}5*soQ*&oOPMunz)5g=rA_a zW^5?0mD3GR_0bFORV|Pq9~>v!}tKcX}koIQ&H@{tzGW$MF$= z0R{0e&oYk)Uh437vyVT@lkCEAlzEbMs5bJH-)b6Hb;^%V6S=*lV)N(kRk8Vtj4hIh zjLo%U5_~&2)-^N?PDTtVx4j7Wn{o7d3oo%JSmC}3SV1EjnDx}_EvHk=7)}57UKOO{ z|0+nYof!tR{$(@s%s5?a;fiSuV*Tfz9-4_yD(z)2lIRoB*|nEampM%6%$84Y^Of zEs)gFyjP^NzGQw2Uc9qh=9ehz2%XoL>c2A((Zb9OU%uMY*$lsUJR9g+(ZZ|uL zjjS_8_GjgE;qqSZ>*tjLUDHQxlh^d|r81mI3G}du_JwUQCJuJT1<`)bSu{j4xPK|l zT#^-}LE-%sGd-eUzsGC^Oa&8~c?&>Yywf-}gZOcs3VwDx(u6-E>#3;uC1 zIAK?85WJqhA+0rj#jjZ#$G1H8N7KeyA>|1~LZLHx9Y#bUOBOU@O=PklTIwKA7NE~o z^pIH-L1KEKO&DuV5N&jnBFJKuGDYwoU{O*am$m1>C@Bz>-TPEh-~;@&v^=Fe7iM)Z zQ?=Q!rGuHG&nZ*^-QQAtTs=Qx^7MI^(k4Lh^&~i{)z-fPyA?3<$cy`HnmI?TW~H)U zg454-tXMxhP+ln^BaRW^RTHj z>vDd~>ufFyIzKj5%>2NJFw=~NXS$dr;swTX#$lWv>~BY{UMN)ag_z3<9DSRYkfqhk!&l;&He**OFZw^n8EmT+^vjTs~KfPi7 z4qIJU%O+f1C&_}qu)e_n^A_QfF!=f3#|D_awA2j)&Dx?itD~4Od4aRhEd?uTDyYlcP-wIyA<$`*KqHwMJg3fSiSI zYzcqE$Z{kczA`|@C7^ z_y<0b7#Cz#c*d?!Ueefc=IX2<4GOnb%(Qt++`*Wl#cDDupv5ZfhF*;!cZ%6NYm8In zTd69DkZ4GnX!a0`91Ls;3WC>j_e$Dl#HU$(p#ynEYgVezVJCy+thrcAUJ>mx9%fBs z=ny66JP#dqK=VAarjDKD&Z2mkwU;2h_$YRGk5$Up;XeSQ*x?)2-V01yLvoHQgI~Fy zsEvR#Q_O)?X*I(ec^BrMbBC&BO<9R+0C`f(e=r6ikd< zsisMjVzZ@u%&;!(&=F9)GFy zm|bM`?rJ{1uyhoW3A67u*NVRx;iO`fRwF#G-|0*3{B5h)A5L>GO%)JIq(eI3)H-mF zd8aTKeqT@#7X+`zwHl6R;la;07n_Ymy;9xe-ewuyXm683i%zT?g%<5stI(n~9AAph ztqu&V@5}4s;Tgk>fq!lt5eXNUnKj{rVJ3=+fqllQK6>lb6lIh}72PvzfSpyC!Dv@u z#?MlT2f&I#Gc-XqQ$~4{{3ZYN#u^P)E9>l%63EyFrXmjkS<87=hf7HRK3ui>w@dqzKkycRrK{%tJ(L5uDM3J!BJ~i zgp$qrRzQTpsMC8n_{i;!KmqwjD5LJdSH2!7M&IE3(dH020#($X=?|E0Z8{9c4GwW9 zqmYC?l?i=;61v|^TCl|&R?eA3dXuP4R`Q+9C~)MvHc-A3Y<|bB@rzG(v)*zYjQKHe zUOwn_^a_gN6Vy?PPktfOVaF#I@ediF1erCSA6NV0lNKQCv_AgE3LF>g0uG+s`uNVN^{tQP4`6JnZfRv^3$fO3 z;x>e|-hDg9mPYFdTdU4VCa?}Z56oDr&Pk5n>kDqk`O>k%iC@~Yt}=e9D-8mVU*x(| z>YStj&2S$CF7NY!rZ`4HZY_o}pfZlB_um0s3l!B%X1zH#1RhVte+jlFao@qBzd7I<_QUpyuT9pi@d**wSiF#%@B%WzDC~VmIy{MYlBXl@<$1z zqGa-_L*ZRGdk!4JeZy0Xahg3Ju>xoIoI+KVv*#_R*2{AR1TdU5E7Qyo7aTM!iV1?; z^TS$oX!D`R{dM_oHGM?HIuyUxadMnxdk)c|O^Y?5oss`a-4Ow4bQwgEM!&MwtI;P* zFsiv8{wzVo?gS}Mnl-H-B#&G(UuR5HP}7YOM#}tJV3!Qmf`S?b!#h4wL=@Cqe9AAV zag-0ivY>`Jp*|4k$kS2HaS|V?wMYIUwf3wdwPsHizazcjl#u$Ki!k(QGhK!4Y7Bf3 zzr;y&#Fe3cIoUl)vZ!%l7gOIC}7KyZlA3%Y7&xm7=Gtn#)&4=n1F!`SK?{ z_4ASZMUR=hEzgA05%YEO*e)FuzDb@pr1Oj)$X#FBYd#{k&S&bwlObSvW#J;EYPW39kRMc`Nam5A=s{>UOvK+}FoW zq5MT&|Kw{;1hLP37618t4f(mR53+(`Sbwb;)F-np##+&E=3V^8!y7M~pNPv24{+!e zv!8|+)c$2Q5LMTEhv!3x+UCAZ4_Qxf0_4={5~WA2m(gEKNP5le8~v9A!A;I(SooT` z!VmQE9`5XfQVltKaOiiulDPSGvxg>{GUP~9DqP%$k<44JgeiKv^^jpCG!z|J6QZvT zr?1<3x;dw(u7^=(!Wc$kC3VWKDI~saZt_DEK%(8yk3_mP+4Y3kNDCk3;9m!qjwYwT z=9A_+G1e(2J%OURdYCo}mYp&e3f2cCHp>x6HANP~1_ke!*Xs+{vu_wJ@&}%+7pzyI z?fiGIc}vEt4&4OD-RwQ{)}YF_t74R|O-ZNs%`Te0Z@mg-@qY|u6JYY$>fIpc+(^98 z^`Y4rR(@!%!js{okf#{)IN+_|ST(Jg{uUqgPY?=TnyZwGO(F8w$T-MeWJN(_Rd*ab zumQiBcO|p!wQf9m<{ve>N@wtYM`w~7xFcZL7v`7RLg@0P*+ML0 z969Pzuz?w|6$k*;MN5U;bLOqr7;ckZ_|X~7#*Y@MY4da$4nHp zRF4@OlzKF(Zw(iZv2H%~7!cU?kkgf-?y2~D=6r^)u2z`s$r(zXACcd*yUa(>Xn z5qa9LxS5;xy*XDHj0hZV`?Eknkb7K^{{tRLsmD4T|JZ$NT=2H)G)nFTbE4?Pdf<>W zfKf?$BYaUhk}um0x`Gr9yObO$e>D{Y1N-E4YucE4Xsw}nW%PA&9%!FZ z7Vi8%B8S7MpWW>$c^ZHQou*|Z3r40~LsIphH^^7$n!{0H)vGtQ|JZi;t~I(x*uhQ| zFOs)pVTwv#mX^)!FycOP641@eH$-2q*5SJwm*}ur`0logMzFETCxJ1?>LFxj*o# z1%CJ1CtPU-)FW|UpswN5B;j8;wd)|iR!WL|3S(2HD_E?)6L{T5r#p?!-)wBcHmc)7 zd~6`%DWjJBSYQKu+ysX)LA^|c2sW2!WN+N)xSu?he~X4O(a@+4UD5jAvI9qMy^TRjB6(DQl*0`xjPG9>Jzu#VI$q& z(LR;4BU8ioe{pKA9d!kt4XBE4>8mtpHnfcpYFIATni3Vx)OMY^;Crx&dxL*5tq19A zBO~E~s_wAp^`Z7PH;*RY4f|#z-icY)pqBWKNlMz-_^+J;->UN>TDHWcJ>2@)jna^% zRrAP!8rvUD)`3uWDz4|JLft9)Kgf#w9vU{cjh6k&*_RGXWwiQNbDtEI?srt5^eHl- zhj9D)+INXG){3U+)q*OGU{pxYy28b(qk4R+3%p?Yg4gqIbKnv>*{*zs=~#G zs|yW*zUjtSQX<@ynT%{e(TpC9ursl_BOX+jZcuQ%YFI22B_Ey|?!IvoWd};pOp?DS zMKkGsb$azf*_dw1FG53s4=8VlbngtJFsm-PtHR>Vku_k*cRix?d+vwk@46d_C7c%2 zlBBzx0#1fK>^0V&`a4F$cZs9iEkb>&;*NGVKvlUR+Ff7Ybbp|#*blK4IDnO^ydCYn zS8QjcK~%+l(`+ki6`(4Qvno=R!?J*@%1d5Vp&wFJ=9`P*=h>d38m|U!*HyQyIDf zjScsjAj)#_hI$b&^t&FBl~NJN`lyDXMr-0G$hUrew-J8gm^m2>| z_LYuNVU2FN({g)EojU!tsZGaCx_$CGwVf_CsW8l`TUS_#YM0pGV{E%AP^s+qan*kBpnErw9*&MC;WZo7n0&ZBsB8?a~CcvQT3 zs=J;jX1H-Yvi1GMOFDeIwP(3f0u=gT9OCcqQDnSGE;mYFy^Iw84!7 zv!!b*Ss-Ui#Y_B{)*V(ib3d>5-wgEf@IZ!~On6^7+Xh2B3V}v$4&r9h!?;342cH>PK@3W7VG!M$6-6?~+wzUpqGBUpMzkb^~+wjN$(9p5Nq^Je>r z+%5jVTS4*Yur%}{9Lo0~2Ki1d#{lvnVu^y>SB}ExzG^)sj7|{wnO-^i28o4_-i@*n zUuZ-3Q*VU`yw;+0%jT-3{1A!OME=gy8mgkAiy>ih_+`pN`yL;L!{{P;_VftIs#e2* zGgO95{^zyOOa}y z3cWhGuk~ZrPGIQGXW^3=MZ-dMq>Z%xXGR+eGCMl{fdIK(WUT*y`XTd(N8gEjT{My{ zZOx~JhN9TC1)lOpu@146(5eq9J>8i)V&{TCSbJs!obBxXTk8j(cX6kQ0gND@mCTE=EEh*<@XnM>Y3MV(63*GQ+?J&rhQ32t&kC6?tJ)!yow$OVsLP_X( zfkN-0IKJ@#l6Og?t{9GpMXcNZOyI@)hK2f&b8%lBFg>iK%Z=_3t9vVfa`9g4YaO0sb5wEHgc8SC{w z6Kv6KrY%^+%>-NWb8mMKO|P^CI%m7Ph$>s0S>;GnhwX#CN*oEf!`&&69FiFmF4uWq zcI&wlwNqi#KzC#4yzN{~_;G4tMQgFjFJDozzQUwNvQCwxb6H@EBN-izu!k{Wk1I>qDShgbuvRkIrW@l(27x>Vr|SZ)TK|uxAGfdw}A!?-pgEV}`g3#Qm%nIVT%r z!T-iNX#~#?b!X#eL86Aa^Fkiqg4^Tqp{Zev0!PA+G6^4-5)N4FFWr>XL^~)OsXQQl zgam(6k~MlyAme+fPA%*kwy=f0R7*UUg;3}VW0)+a-v!euhv7AP{GF+z=-9l3;)g3$ zhT$XKKWR0f&nR~@5w$hQ)YPkQWigF=D|xYjYkAS<7N$rIt3D)F|F$Z;k?X$JGpxZD zbgAee)wbfp+XvE2fj@l9vecBACbED}%PL!y9~-h&smh8m?yVw&b(2$)b_L&(J~8jw z+36}prGJku@%ITC(*36$pLfWmw|9Kr#y{k4V326UgOKHJU{`$xLX=Oj-sO)!Tc3s% zav$)8KpGf0wGYS&e9_L43fu>bfugbQzw`&Tst^bNcXs~@#x$-BIY!qikmqrqz~_?F z$Kz~$kul@bdi@yJl(&Ox3VD5~DK6YyJs$?obazL=ysMon#HAuW>_=9gL1yIr%x4&- zq%CJ;0Uz=s_K-heYs(K&{qeIAlib6^&#W(5@iXq3B08}DMW;Wh%%k|XZ>JDtNqTcX ziN@BO_4tR}DGV~Mo^@O0PT^=6oA2HjBzJSu6!%2YaT}Wfn61fb>lFADq?|AM_|3x@ zsG6PRhBK2IRfVFb-Sb302cg{H!411hwHm|OY3?>+6syYJ;2xl7Z&Tlkn#3xo4?PNp zwe%=l&uvmB9iaGRWPDr@emp&}p}lF>9;V&tPJ-~K(qjc{sy6LfU_0-oor`kaC@k8y zTQ3P{DR=O;z)g3#ds#hX0at}qj6~d}ON7&5J-b1XrneFgvnsjLgzuFFlr%!h==+tQ z&vc*AU*4u7*H>A4oFTXAFCv3@89*hf-`S=@*DbP@?cV@}uE(~iZIffHKZUN}ZBwD^ z_pE{df5QR)rT_~Lm||CiOR+15>x*5r2*{Y{P8E?wNRA!x(6pA3s~%qDP_CJfJm1|a zoWoa1GmL7QN^)J&k8D%Pt-VOKd^~Fx{!LQ{BU7=XR2NL7$FU*u zs=8DS`O&)An_!x}7qQ4VV`XbatS!%HR7VbenQmaHH%u<+rEvaBbgt#E1O1YG{e z-2xgdau-&g;z-!L$v?{}Qgi9#L40+0N|D;+pXAhf`Tbu|SZO!j22byM172!b>~11f zI#^XcI0zXYyvn}BJp;0qy2CU&x~DGJZYfeX5f3sLG~bCYtfj;7&&_hjh-dwqbb@1l zL}Icar&k>0ovVsx>Gonsk+|GSsV8#>ey8N|?^37a5jNfVJ>?J9M;0P(El&Ga+BlEJ z-gRUB{}Ksq!F^jL7KS_>nIwMphvq{?FD9=n^hrkD1W?S^hAzh8@$5kgRj-IiAS^t>+qebCs8W^0pE@fju%Eg6-o2x2$qc68)WGIzAv>HOuMjeM*wG z%2@5rjAQt{Q^m6a)lFVf_Q=L$8pg|CWE#eASI7IgZNNIR>7F9F4Clh8HSR4zmf?A8 z-BZOPMu6Nj$trLPyaZI-T*a^{61HtTR|P_UX<)Loc(a3*?8o{uW@AX+fJ^Z{RzpiM zAjk64jU}vtre@@C4Z7mzvS}q=yPd7XL0Iyv!G^w-_|c6Rs?$o$nyQs}Hn#I>mH$fo zxx`N^@z=2Qes>>hjV$20G?!6G=Vd4(cY&4CDnc2##sfAxndc>tq4x${HxxKctm(~I4iY9arKwfR^nsU*bxP53=8(UbNyhF6y$jz{h%#| zt&SLSCnt>&+Ji_qSL7=aiz9(HaO@%XBf9mV`le(eYfegOKFIW={)5Vo<=m@}O2%O` zd@NT)v;M?G!Rc(IK@HIrhc+CdVPYU_Orz6J7C5xEhLcHMDwq6y!2PGL=RF9U&PO&8 zQ&=aWa1y6*j-s$Sr%;1ezK?7W?aUkd%!;REzF6+N+ZoOE_Jmk zd)~$Yg}z_)tQ#vwmKMENBw@7Zz4BmLrv=`A(*1CdrS8}fH$GO$7^9``Q>Va7K;hwv za-3Ya482_o(|Q2MmgaV=c4jXWX;xRTI8^T7P%N!ftuFX zIHOe#_d%|Q)|Vr@!@;g-&hXbj(bJ!gZt88|qXYU?(4yxRbSNC`*1C$giJ_yFZzLkY461@6c@Ai;i0m?Z}`aI*WINIetp)SgjIVN z8-y0Sl)>l1QU*U6n@NLjvHr^7%ShkYr7V6Z_LtTTsUwR&lC@UK6+m69l8vYEaG^E> z(%!`rqIa?OMBOw_-9km3-%t*H&)vWpETu~`&pz6i=fEl1_MUr)CRmB`C1@3$XwyBM z(JigA-z@Q-uZd&x*=rT09g)e2xFZrH8RMtqFEYkY?JCO{zvXHk3Wfi2?+Titc(kG{ z?a5EvwczSU?h^5yBM^%Cvrak%US0|-67O^3yn{j6^~m2xHpY!k`3|N2C624lJ_n)2 z^9Aaw&px;N9PK+rA*`vg&#z;<;PyFcH;x0@X9HqSyGL4INP@V1ev45^_L+85Q)EAT zMoA5)@bt~VzKN_A+0oXlfKghNuAd5eyx1tsKK_kyQe_W_&RlCnfCY?_yW>@aA(I|m4uKnxNZ;rB4cpfp0d*s zs34S%NWb8IBZ!aI???9&!jO<`wIm-c)+zAfFMPhDEJu1}D;b{q5wC{jTyk#{X$~&t zqcz^6CUgBgY%&KS%TsTUZ!+hrdCXd=c^rvNg3seY5;x7`Ti~8w+;gpZvVhOyXht2) zW8A6#THMY`X`)d!;p$|o{En5MbgICQ?P^yEALF32V}|*^yElsIPBCdQS(9n9kT|gK z%CgS##>*VBjCCVxvRD?7H9=vLSGMC%9GI=FonuWl?NMIYCa2c+%Fg}e{#buvkGcu` zq*JYKe>{c*>6`e^?@_+MEwYt&-s5Sb;jn5Uj|QK~fR3Z7fw zrH(y=J<6UfM#R#IxEnD@7w0k~lVtISEbz+W(mD6ukhs0JL38cJDtngr44PIG4ux9w zvBFf`Z>OAxA78X%A1Rxu9eWYZ0Fhv6r@a~h^4$Z`|8Pi^MosvQqt9<(`stmia!Qcj zFihehQ!!lrB2zJZZ&`lBbCs;)K@7ypm92wfI-{5jM7~qtMO*l61saI@`ug2)DxzHq zoT_RSh(ZUQvJnM`5*kZ+_0|{dm3RE&phGpQCN%!Dd6fLsQtS-uLH7cSe0}IMQbD-z z;0K?>tk;w!VfD(AOxRnNC3#)qBTMoQR1LSLT6fC=Zb>FFiqMkq9l|rLinQ=ESwLEN z_g)|^yzJG&e^^^b3;!hLQHNWr?z6S<9of`7yGRRvmCbA|yu<)GT6lo~Ia>JHUYao4 z#|nYGj3hoR)l+V-G5)+N;X&$Ydo6t*QbL-TA%Br3;)mCxtYF(~L!+&IK@_oQZd7IH z6JzCzp%MmPt_C>;Uetw$DoPu1FV2GH`)&{05NqYe1wrK*yU(`-wTJLHtDe#x)>LUv zUu+kA9hxs0AnjQK|BkbUSz~1Z*Pi|ki|RrHolIHDN`324`wC~hDs(ZdDx#2K%Q381 z#a31z(bEF7MHUk2_HGOBh6@lX{w)b3#bMT$bpD_$Ae~2flFq-i&$hfLSX-aY>u>C1 zE6PV+rC%c3a;4W_!FDpde1SpnDZGAcpIR9X;>k?8GVI5{eH+Psr2A|x8w;^x97HLr6BwkQDigW=P6IfwuZ%`|{t_e|lDi zmMIpLz7f9R*^J5%mulTFI!HjydZlh(XSH!ky+oAv6HeX(AN?R~H$K4mdo8P*=;5HD zpfENFUQc&8THBg0MzXdzFzODsKI|do0p9!&^8kZFdB`{Y@J@EGhwMAqtf`uQ&9R+# z`kBt1Z0umqy+Zk`7woTRwY0j+-+ThLWJIcjn|u*q4J-9cKsZys+>YSj@Rbf|+vz*f zz=v?N|Ma)zW?yeweKq{MN)utaK5p)K%!8SRg6uccwAB@*YE^l<7QUf7>DGl>T(@oBIl4}qOg|kKbI=~u$k3D@KWU*&hA|W z5z(&Ci-=HKfa6Gn^bMOmj2zqZheXg=7AO&v9BOXi$HaR+td8vTW=$m{co`+CwPjx| z9rQ3U5`yXleTR;3uXlS`WgWY*UX*p5^svf0=CKL_H-Ukh#lUHg4{k2O(fJ$>&UZd1 zWX;3&-I8_wK<&FFs~pJMR!C`UwIVu?Juso2)(uv-wcLWkMWNZpa?%+%pEbqz&X8~C zGPB+oiM3@)POP7v`3x$XTV9*w>5iju!DzT)cUYacPb4lfj-Se3WE?+zn2e)vw%|X8 z<{hkBct?I<2P->{%GK!kV4g?wDIX#`zs`P$3=8NXvaclAFYq7VLu9gqJwzt!JReIy zf2>mvk^O;(aOfej=Q@>dvg4~y-R2W$AGP?*)z9+P2YOcGth`E1ceLlpOQ3WQ*DViz z(nZS_@~9J?WE(4wNYGJ@*>a1A_S8R=y9BiF@VZPgQHCp0MmQ8BPmq2b`M8mN<=RLN zOLI9V+rXvH)`CzeLrDv0+lF+9=et;qgs~s1iO?80G}*!@&>Dk)(5`6!D=A-vPx~L)e6$ji!?oJzp`q159(3+u>GJd zj!A)4$stj2^+sz*bT`?FjIkZD-vFMQtgOlxpZF{l1V;v*g*{)^V-mk>1vMO%yRANFt*q}sSB8E9gy&cdnK*hbl_p>#IKHJI4i1{p4T7QjxSw_Ve?s?@jqaB~bQd|gEB`IJ z#sjVCe(2;N#5jXsi{XL&$}zn-Fggsf2U%4uJ}maM^T=*EWv4^_AZrOeqV(q=bPj4i z;!Ilq5z?DH0)2->)fLTH6FEd$BRDh^^BU>nD!KLckCZV&_U-iA@cv+Hm>(L+1Cy=Y zFj)d^S8rNRug1rzAr8)odKRX}P^(tRh(|Pdu5DJT7|G})`$L~T9VX%Sy0(i`Wz2i} z-f0lJ3d?tVUSccx*KjLS(-%FW4$b5L&Y^jHHarY|yv2H1f5;x0{fuL@DPy#~Y-FCm zzVfxK2@pBaN{5U0Sk>UI8>1p&?$yrMc!QecffU9;^2ejA!Npw55IY$SG_tSC0`4Af zr;&vs-6ga~)ZK|c)}uW>I0low^F~;Bd+>|?m0{`zRn|m&!a!bn9hGHHAjp6Dfu!pv zn^n;&d}&RJPo9t07RWODYn^lDZ+xl}zt$NaWb8bMgFUnsdBA>XE&6~nKOCisfKz#v zdc9~$AZ;8tl&LD^OPS+9jDVcMQK4{gwj7OfEo#EW)K!&A?ip*nsOfF+du#2JZJ78@zzKB@B^@FH13Sw!q_6s87eul=k!?Y=F^-p*F1F`3KO+KaQ!5-_JbH& zQkGe=fGbOXNk=ALKaHAftrsg;dzAjo6++8>ghJ0bK=+pPEaVoSh%YJ1w-Pk`0u=g+-23!@L>P`nO0j7dC-{~B&2XiS>RP7^B^fvm|RmS>5>fvUp8zC z$BNH2fSfut!rFmj%|GR%KExsl!zc^Hz^Nc3h+kWuBkVIb#lI|v^!vt74n=~Ztx}No(6(;I+P}VX>wkvBY926!@&P%_7|! zLhYujW@rk?B({`;Yn#MoN~fhsjOA7fg+`%lQ#iBG`pe(vrI(~q7FpZHbBs{I*7y;*PZwM7iqBa$6s$VP z{_#QezW%36tuT$^7W+L!tZ=Rr{N>-Z)Tw&kl>%ICkFT(j(V@&;ZnY5+#V7+OB=Vso z$SXZxhr`xdEvgF3znKHR4t#R2mEi|8o~{T$SfP(zdbHo>Lv;2B6^xnQ{!JWgf%hZ) z@V0>_D@viHyAP9s!jpF&`~cX5A6QumioDh!R{28-AbdpKgcz~aze#YypI>FA_~C5> zAFnQjk_O=DYD{4qD+_2H=)J}o(bVhStl;~qw;Bkyh#xo zRDI#nIx9hc9CcJ?CoisTR3BDlSYdEEGof0-Gg2vOXCUkl{*r%sUyQ_=A|GE%cvCjv z2C&3Y>%Xbrt2v^NyIjKU$+n$@=@PO_jv;0bOI9uJ+l9c84J4StGWjc&qhgCB6S4 zxKybo9@lu#Y9$7<&f70q+1fxjyWg_JKvqsxz03QxD?{f?)~resunKaE8a5M?SR;yT zJdk?;b8{4p-*remNgZ|w&irKE%BZpr_6|Hm-#m(T$h9l_N+``iKANay!>K3HL+iW8 zTC8t81ZU4%y~GxVmT2CjXx_xiiRPm38&-zuH%3m=4nf8~D@{DgS`fhp8Ntsgf!4i-0+BHOOOmu3UWKL3IBp#GUH?}tCMGQ}5+0;2u2qWv^0C)!v2 z%UZ7gb_kL_LQmljR!emM!sylylb|a}Er#@8lg8EbI3f*K%5%CD(RRfrrHPI#w(iqY z5Brp)5-xRS@Yb4_R}xju3v>YA!mlN=doi{xHkf+@wg? zQAdg|Tceq0$UR__dw^9Cxlcc3?WyzGuUkVwcdM#+g*76IU*Hs<;tDddP18ACLF}gj z5nTY$cEv-S=s0-)S!=I;$)hvkIbo{!wd<9`-0So|4#Bgg@%2 z6OkPHC{v8MM}5Yl%W*582{}>;8Ic6gYghc}M{mjG=dD(nxSk;+8rwapbhjO=AR1Sl zwPxr!k3#ZQtEuS6YKg{dPUCQg#e*up=X|3}-K$5mB6kK>(#xNr_AASlAQ_gn-OQ33ZY1-Hr-)J)41+`XkjXT)#htXz>3mpd>9^@JsV+Fag zAr^*`Zy?B!#2>2-f*8-CT=v4xi-7Rebu6Agcf;6qAZ z6qLS5(vebA!QX`}F+K4TenD{F%)@5s^e1Ze#@Vh6~lM=5^qP6-dU<&g7crKy9q#EQ>&K8nso{`h$N# zw2#(P$tDfvW`NLCQ?zOR3OwqnWu6mt6B$;>VgpNKiRH9*A#~9TVuE{H+i_{l;y1SU zXAP$Gi40xCQKKWlTK!IALxS7)2}Rid&No&s_aYdp#+aU72PNVcV5P zVeFHPfM_Movsl(*shtc!@D3&5;~u!7C6ImPDebdzr-5R&VS%q*A*C2>h(^jgR(RVi zslscB&5~z1_S0-zfL2F4!Bgq}$S#u=#{Nj+7&!4AY^At6d-#iz&}*ZNd2}j)3i~TI zmNmq8fHHxk;{I>`I$uTMi72?xbKr*`&C*AL?_f|6bl+Uh3OPJFz^q*1Z8eMJrfFIv z(@!}ou(zYNP4c(7;yH%zND*#k;H9G7H8tZfC>Qz`e64(dZ7k{er$gAp+FF#nI9K>7 zEhbgbeCdCu`m*%i4TiuoP>Eq$tg@SwK;SzF@V^Cc2rM`dUi}gt{s0;;NK(+yv&LHs z&@6QAqRmRE4tP8gs!8YsK0A)JC4tCBs6`5v|AZ4*aht?RF7aFMzj4+vJ zxam=Jvm>=s3nr6yjW|THoyK_wYsMsLI_GCQc^t?O_aS>BSNP>^AtWImL#8_ zl&1-MGFrPS9b?^UX*HD-qz*E%z-)nhNifkW{qQ_Tc5M)@e@IQM@XO_Y5yDmR7pri| z<$f_|7*Y_MT3>5ok^X;H3hAe?QThv>wAb?^2%&i(Ti~OJ+%diKHvz@K66pn&7_0SH z+7klY98nT^s^G}HdRjKjHx|}|cUk(A!kiUyUrOyT7qz+dwP@0t#!g&sQu)97T9QH& z+`TEM{32W`6Mu1c9e4lpC&q9oICL!Rt+V(Fj(TiHBh5INfglBN6|b75pwS8tEtb`L zN;qp9ul=QbPAKtE`lUv{EF(p*rQgt&uH-GP$rAUb26MwSB*+w9W0&T0)~k`$+=2<3 z*qw02C`hPX(O657<$ZuCzS=NiN~(&f1t|$$PoIHn+4-hgXXON;luwCBMPs^YshIF( zXh?2eGwmH&{(M-DU9JvsXIVZ8+L*-Sh&Y;*rYIE(M7m1p(ZYJ-)=CKfV1@`Bsh zXceCxX{_jb&7ZYN)OstONnOw*G4YW)v5YQYn&Ln44VT)9Z+suD1eiE?X$p|U+=Y}9 zbC-x!-sUdVc?~gl8PC7?Pdw;hpM7^iX9HRW25OCX2A#;*c!JY zbDy)1UuB%L&*1g2^{#s*t5~zPfpsl7aq{z-^Xa$cb*ot7EIm@mBk0ibuOXPWtrGJd zU^$=nw2)V>5>uX)q!zX#@!FWW@MtZL$R|jqF_@UdUm_sUJsUu7*kKR%BbCtBPkCF4 zl`{b!934ayYaC%Ple%g9<)GE9phMsra@cBdJ|4c>-S-TQTea2Zpd&{^sh$yyW#C@m zsED?1$FRU)6O%DOS6$7nbP61!R3!kpnJZqh%4%Geu?Gu=_-QkQnIUw#l-fB1_{0qk z6;B`*haylqx4}u~7}4OQ@GmqtDXU8|I4|_nR(UZvFZR-M6(^zHG&sY|R2OZfyv2+L z=Wb6ej5T-`T$91z1hW}WYTcEWO;p6{cp<Ne3W)R{P zAS-%G%Puz&pa_dY3Zcc3(pX_%ZB!LrLRgqJ{A(f`&`)cwP2k_us0`)_#HhqE@SthQ z^1BB<&L-Ec`~?3h&$jmn3{WJ4q3@w#(b7tR93ecd5IyhCSL}Yg!6- zD_8IML%`wI&uYz8LS!*FoXdndoH%9sk5yR004?0oHXQZO@v@Xr>q%u;*-cXX*SI++ zeB*Iq>c>-2_Mz+XcJ&nLneyz&Ky9&HXN@pYbxBQB=2~lrGB;i$tQ2&cuu_q0gq4aU z)zC^!S!9oqyRH#tsyoR=pq(kuz5*yPJZ-SnNCuF&Afq7NW=gRUP{1d#-jT!Ch*_Q= zfZ`MM3h>)?b9hlB4`vsfKHLTLCHLUQHFdNHW>j-2A zhG|XawQN*@6|AUNf&Xf!EFxfV6R8-4g$6Y_UxvX#c@5jWG%Tq&p3F5&`Zz2p#6qso zU*}lH2<;zv^BQ4!cdQYXcNam8eEoy+^$?WemUqo+Ps?jkXuK=Eb&asRTM0n4yv0gx zGTMTc_ak9>y;8hdSYE2bMEcy8x7=DtMa%2UztHmft`!$*$UYdGI!dc4HD-%PX`Mnb z-LMNTn6+W2j9;j!z0|l+0}1>>O}zjPR)Ih63pG52T&UrBPV`4>%sxxk>iIMVDdG2N zT9hvOG+1bHi=&y<*$sT+f97s6=z+6?Zvf$@5*!Xb;>0Oh8rNnpovd(CG5rWU&+{aEcbwM6vr2DebP1*3dr2E&DIMr* z>mHoUOQY2@B1ERFMI|Rb{KhVc7gjiv*RqAff~vCo@!G_Pv*|2rg7%od1vXo_WbD(d z&C9SuHG3`FJwprg$ggtaeRw&uW4L+}f2K5&3*h?Jar zor_R)9ZQ-N z)Sl^jp3;q^LO#lJdKt)a)=|wrcg!?xoUBF@6wGlr(7~4elhC4E93-1aE4bpi9lu<(zquHwIT6-_p zvbIe0WpQt5gXCW8*pz$K64WO>kTqh-cY_m5RMJ2;^=)l()#5mSgu+`>bSoCP?A@(6 zJq`{}+=}G4cQk{{$^^H;aHqb`tubLN_FZkvL#j>Qg9}yJXP;^v{4H37?kt$0CBW`l z{tT^#O0$KlU$so_3-x0{o9L0?%JmiD}rG|q7CS563>npqmfZ}8>T%+k(F>P|{A${(H_ zC(hB{DR&U^*nm1G!`Y>+Q7Y3K+5OeOXn7FDMtGr5I$$F_mk*{+DuYUAM;HV&z z8l#_gvT^TgExaI4k80=33f|WS$ajHR2W!+(?^A@x(%U93x#D`9Ta-gwRq_UgvhHt0 z1o9`0L)rX!T2OFt)a!7=+KStQXI`W+7cTjok<>ctfv;%Lz)m2$Oa*GVUMNswTE=8i zJj+-jP8a-8W#u;O`7FO-InF4y{GZfnV9BaCscKSeI4A;6p;s2Xs-U5_PQj$vtC>eg8%02vh-{pKQ>{Zb{wu6^#5F|t1hQ} zfZiJfm$y7RZZ!aai$XrU-yDaW)!3{rv<{`xWrI>196`-o1jEtSlnCtU9Xy39^p~8f zcG4HQ8H=?KB(=~|<4(11K~p_z9Kjm$7trhcMM4Nu&qW1qjsZ*Xn#6RTW?Yk)#=phQ zu@Em^!}6GDMRcLr62f zc-V0k_dyMTTdj3wt6GNzv%Fm?e(b$+l`FC;-@yUTm8CEkb|P3=!t@%0L%q=9?3l-r z?uSLN{oiSg)!wwq)bbG}R)KBQ2=>h~ZJO$&RnlI!^^%9>;XVeugj>MFG$p481h9MG zL$6OOR`fMm6zqJl0`v0l2wMG$<}7~zyoDS%e-33?>Amdg3YvYTbEK1JkE(436`gs!r+Nx)1GTPmGuLjhUuja9W=fk4Z>ol7W67rQi zW4iz*NAd$`Bpl}YBN-S8hc_pCeFZxUXxZl>Z-u%=ELlDa-2{7-FplTJs zBYZq04PSRimssFdt%*W3i=}MUY7#ygD@VY@Pv2Dwri2b)p?Gu}FUhyIY8|b~j_NhK z$y)>urA;hwCp<*pw@rIbwQnTqWHv5*qi9?>%}!}hHIgMRuMjOa+K9V?Y7?4`Gt2~* zly5AoQC?;d@T$htlqf0fvG_XC=%@L>+EXwpaW6gtOf_p5l)vhA

#Gn)#Aa zfjs=2@-Rp6Fn}5(SY)@k9$K5_mAhIV0#0kSSlh7?LF_$88By=E09YHK4T@CZ!-KUO zJz4vS(b5kM*3Lhpolpms(F$E zSjDp0f*vKJSlPWM*|;`p&2lb)pB0EXJ~$bPR2UCV+TaI&aMFw7IkjI!Xz8Q1hL>kw z21VC(_lnA9UeeO6Gc;T+HMy*PtG3%jILp@+-P({8$iuD2@5@N7KS;M#WtFeR1hWQL zw2#z&1Qo-z!;_oDNo&d`;RBnPRi{6D^{VD4!>$LeVMc8d>yF9A>Ou~GF+`n7bNG@& z8pW>M(7MVlphsrb>BEj(CqO?JK-nudL?Y4xi3o3FF?g`GM&aGQ;@?mGo0dXK|1^Le z{f_{JL^31%{S8~rI^QAiAQ9o!`;GJ?uCpMAud`s*3&ge( zFLHY6TW9hn4A}^4trkqVr$w=I%ThvAS`wDyu-Iw=<;Y^o5rT^>e3G*lM~)YxpJ6BN zX}z>$-a2adTG8g>;tEaQU`jQbzSlNAR%+7+QdUDvrJylzSn|iK%KiMkEm-z{f#kt3 z+GCi`Qu}^dOMQi;8+-AG;q>N(+%Y~jCaJU<=Sep$gIBZ%szo8%a?PpZ9iJfasn_5t7IX8HzTN6**PqwlTFM;w9aBKLR$vdaI&BA8^bpC^|QU=lMnDKPpsTh z-9yPQ9H%*0YsHqT9-_&C*CV<~d)N)d){uSw-7A%>l{|Doa|QJEGF_*X?8|Uhl8zM z*9>0KmF2l|{APUoMr}yTV7KABs|_}jsYvV1`1*~%rN>yto0Xf%bvL6Ufm)Y>K?zCB z^lj|ZdovtwHI0r^`_Oz`7WJeUQUL?saj;^Tx-Py6$H4sxtQeMuIeJ0h^ec8-xN2#o zIl;ChW5B;jZ&!u@nytfZXqWktlc<8>h-sdKeuUcq>4V2d6$+^wAkst?bMt||#1rau1 zN&S-|Ldnp7?W#zIVC<#2*jtqodQ@UPY_2iOdDfY*Q_PSNkIwydj6^Q(yOp)wZ*8f(Om4TS169R0S9PT z0O>4PDYDcvecH=CfmW_w76e?qZ6P(4mK4>zn9Cmeiz<9#Lru9W7{ zx;mADH`z0Z;FuxUVBzhe< zjO(YCTDWyxy^U?3tgfYvz=7kFqcdBoztLnIIM%Z7l5G8~<@q>ZGv(88%%`X%mM2x2 z;d2yt7I^WAF!7;w4wH_ur1rL0^)$tUy?=tR@5)xx7c2YtD=NWG6KfqYl`7=*xC=rc zvGGRUVa#Jy+H|Nm@3SG5Sb9fW1%E4<(kGQW$=6I3;`ei81#B+g%(@MW1iqPd^EbSp zqsISE6a%M0^?8bG8icX^yZjC!2`|a2-DqJD6WB-jofz1sem5Sou!uN55!DgOL0o?| zi9!G!?k2bST@Y6PcQ;}D`iXUZ4!vW<<);e;LMOhVlEs0er`&A*g`RS=e;1x|DnG2p z8>6RkrLMNxQa3NFzx zJ}fpxXc8`1*Zs~4n%Uc``Gg9wXoeg-b6W-7!fWc->AGW=>?LD>pHYn_xhocF0 zxjBUK0`V-qzAa3yvP}$PL9{g5H6G*{!X?h`<1+gZ+l)oheU8;*k@STpX@FiVk}Py^ z;}KD;tdEHteTvwWLlpu;Y2yGPDjIMVAEfxMpRH9jBB^|n84Cbx?z;xTc>qKRJ&AOc z=*Uw0*}8@H;5bnQlKB^^Kr*zDUz#=nS6;_^NoQ4`hANnBaMT42Je$y0R9`22MJ0V+ zf7{uVejH{W_~Ukj<0-@uj^{b?NParkx2gP(&Rcc8_5HmwrN>EL`V~b?(O&hARyFb*mvE=8# zy{BTwm>SXwHfxZrwz86x-7v^DSo%qboqc6`puBM#x0P+!KdBIyEO}H!SXJk@ygcfG z;l8CO@PfOZsNJljS*W0saMXthd~(hsPl=z;C=I!Gl->XK>HGFE-ZLbMFm5 z_@29$ZgTeeL+rUf^RjJ=wP$gEedH^)Jpa3dD8n16+;*a8=#6w2I0_*tyZuKC3r)`4 zT?VqSL$3wyN0V%ysbLg1dLDVf>8!q8cpfFcW=mFU(<*$HQ_Xu77{P`PjbQC2+dfer zrFC#Kyv260vEO97cp@(Kntu=V$zsJ)wu{~U!88XaH;{uH-5E3oH@YDQCpQ9g2%FiV zp2Dgut=pZQe;sB=V9bz$=?3TzDF6fwISBeonuDMr#{zoN(b{d*^|Tm*UM)bgozn$A zgbIlmhQoi&i;?Qzv<`xXYzt_Z({*Gs-zETxwu|YUyo1OK;)5JlU3@#wYlpCf@7R|3 z#B7&X`Q>$Wm6j26xT}AN%dh#7_LgqXDJXBu-r_h~{?p|-6|-GLFwkRXD2#_1^ z5PKK>IVH4J36wP4TR|%`m?q*{I@9MNf7_bf-a&(R&QNM2vJj#^0BgQMeNDzfJRE_XH{A`70bwrAL^jVDx= z;}0vh1v$1-2@DMFHu(^=BQ2u3dWe#Pqvbt!Pa6}&1JHAPwA>3y$4ATLqNtzLDm#J8 zIH?8$iE`Xybs3Q5ztfEi&$IJc;Lo-v7zC&FWm5(@d~;L3v{jL$W?+I~x3vW&0(seF zCsF_QJCT?EgqL8>l84laXQ|hrv-DFZ;0)%|D8I5{X~Isy(gaEsvh+!wLXATMqnWWg z1xw@aH^@^*(0XOZ(xE0U%F^Ub@W#Zp8TDFlUc|BFu$r~lfERlBu~Exxner?+EsN9Z ztFtLh$l;lk!=HHN@babgki&5-werb8HmXytGUD(%28Z9FR3V4I^W^Y!qt&k)98Nz{ zYmJ&m>y;gc*P6HlhjT$_Cra|^oovD}!I7wULY0xQX@!}0lfiC6~g3ODhUOBwU#{6k>2sgZm zn{C%6IQ7ifY8x(ZhK>R+Jhp5%*r3~KwVJS^wKfPC*4VBvy?)IKEWVWveqnqV^~g=$ zW($`u>|*N z#GwGip#iJ7)0U&!cqxk-%|B3@vC|+cJRj9aDiBh37@E)D$vK>FYbp73%$L}P{ZTRM zV-z_ut$jYxp_KgMI`rsX+qBX$4OIBYeYW~)TZ$feHrSJAtwlTJ7Wrau%vtN0u8ybm z&~%px&&C=&Yrz~xK{E}WF>ZR;gkNHs3c>t-xLsxWzr@sLMZL%Qv4BIi>GFbnwxP3L zSIwq`AwTC+etzSfpU*IasUJL9ao$>(fTSNQy#PobviN^&4)sGy5wduVCyPHYSUksI zaemvHPpkQ~UfHpDhr!}GRu&hf!K|QjyP9y-nd^R)0^1Isn_NhbN7YnsQBshp*C|td zb{7}Ydxf@FOD&{V*r?;MgLQ?XM-GPU_E79g1_#d@9IP_aK1Yq=rCf@QH!0S6jt{kV z3ne{|+>qeBE+0Il_+2(Ij_{qp(hpUyA^(bo%oq~Z!wrAXq7k|;%eTiiVEu2{GSucArb|~) zC>xU$$U~w0r_@3@9gaI~ejNLIY8QgR6w1f;2%+ppb8%x8a&~uegs{YfepOlgv${hb zxkt$7bF{1}pTqZ<@+pslD;eNWR9rwgST3NCQ6Q#(&fFsebQaA<0i8j?e+1yU!w6m7 zqJRQ;6i^Fz6i_c5c6Nf+kJfE$$30kQFTF1|5P9o;e%>Roh4XthR<}?>+`9a;!M6Q0 z7j^k(_W1+Y2!i@%5C1Rxs2~jhoJ&EZm=E&pP2{V4SYeS3t~%C^ttwyJBUGakhe}l= zfuh0VU|db#p~>j}6z^H{KU!pARAf>pg=L5!XAr7G&|XMEbqMBPs1Ctc-LX)4}i;)H- zr~|Dj3{wZD?G-xk2F*qtm_ne-@9ix?2LL?kfCW6tpcf`PTS005>|8H@dkSkAV8>m5 z)PZmI8al9s65`f@Zwyv#qq)ecZ&-X~d%Ozu%})Mb_)!OH0yvirD8?WGE3p`su*9a% z>sGgld}gmuiS-B1j{T8iKgfxt43v9v6` z@&9N6IzJxYCv3#YV(<$o{L5b8^KsG#$YybOp9{CLAC=UL1UlpQiJ4q=kP?@YN-<2W zX>TP5?iXq~>J7by9JF7kWjv>gs%1DKGS>A>JLot`G4N)V#nKWs2bZb$32<>Ne|x_; z@mCK3GS?`A2k4N4$MQ934xXJu4xWGC0M_Qf9VKAk%j-&U>}WH4qMAgj;?a5B z0e4l5KH{ad&g%dkoFG|N3;RS^HN=Lfw3IkJKSFvs#68kGhjWDJ{5Xc?x3rJZuJZ=d zjxL}afSYjejMCWWd~;{DvVSD0<0-vU;n4#2gipW#buvv(hz@y_P5D-?6gm}>$2p^U z7{ozQ@CTQ3<5_qc`&=s|ST1&LSyr70A#Iw*mG>V@Xfm!`eMXWP`WnyYDR?>!JjHmc zRg>&l>QA&FjNa`ThJ?sDATC?w&}l=~j;FZzfxg#~e;U5mQM543Lk3AY+wiy@9|iGa=y=uOPxQZ5 zowQL!kHH))f)~{o4`Z!Xr+|RD-J}qn+fFX`r|`i32pY^iuxSsH9R(_&gj)2#9?oH- z-5J5Z(C&=*v!oq`tDWtIUhGbISNpr_R7xeYJX0rJBq>!2YPUDDIdS z~9zP_e4Uf}oG9#0BK*Yrce3Zm2M1pXb34(1D%Zx_$=*=4 zq+om}1;M*tW|D53^aFdLE$vh)e&(DfgzA8s+g!i8hd#v-qowN0ztB?k{i`HPrM+zb z+l!@Y`-=U6e+FrSVWeIrNy12F{3VRkD3W7Pl)0@8jMS9QHN(Lb+}=ffk6=Jc72*Y_ zb0#}F$$m^-L<@5}1wlNaFT2X~{}L0XU0of4ANbd9t*$9n65hw6C5t-N4q!E;+D+Ac z#fs)zi{9@PIZ(aeSxP?lq(P!LyXD^%q zL&^wXmTNu=8)Wq}?FsVMzr_aGkTQ0eGDapxK=Hml={Uci@uf8j>pgLj=SeN$x=-;r&1L9)*S@ zNl}x?ccn0vKF3~14X2gSu2o~pza@4p2;Qs1lfA7Rj>~PG8(p}r4kg7xO$KZ@npm)z zqlqOMqXG;p@93mRJ2&7)==++(zI2*t9l*dDJ!*`mg;X`1~5pHu?Oq;PZT% zi+ujj%I84&%Muy=zR76V%1ivp9#5R75uKqm@iH z(}IM}xxi+-q#pCAWN?^PVmQ1_33{k#iOM6LXQ?7Z_%QZgHk*! z#Ur#n@VA?M4@l*tT>#z~q~ZFeJuQi(CGr#tX+`nz<9wbz3b)(iqH3%CX$_>UFQsjm z7ur~1Lr1jD9Jgb|W=d}Y3Eos`7~fi@NvP^_%27dhBEWSK&UbU^q=>9+=*-OB4#uZ> z{3-T?&`&u|T;43;U%0$kaI~c5P3=wgJzkbKiNDzgs=0)ETu*fSk)#;7GY^z%4U-EO z=ITr8HUik?023>3J}S=g4$@ri%fWN-^dF=7oH@!0KDS4z=V&qPw^Ov=u8Dptb}G+d z@gx7uw7NM4ss%z~0}7zUuF)Bx`xOw0tzIA`wwUi1fX6YgICvZb;|q*2upxzSj)4s* zlGcF4(|-*IK|q3opalsYZhGl5=Wj>xa1-1$Gj`fX!GhrEPJ5g@0A6k8zFl#<>;dw? z0&!yg8)ph#801hc;jt!7F@%C+z+=rZyiq8O>HG_YF}oL)CXE2k`{rO_E}emU*yL^2$J7(SNZVn?E-a z&gZAp9i`4EXiVw-us}%fH#8Te7ji&)pMn=pXYYsQ#~NAyC2J+^^vzx*OKkW69Dd6@ z)Jrp+tU&bf6gIm6`xq8|QQYm*m&MDQ?{E7EwQ?cUcPSfor9x5+yqSke-IZ^$OOxx) zViym)XK}(S+Eys~E}mc&+c}WK`%X@T5`4F=9W8;K*QSt|g|3Cg&4TDW0EC_ArD0C3 zP5okBg1hQLIDxc&wyvS?a4gv2@A5C~@OKM6)w=>*OXtCBmLCT4dVy+=mc_vf1zu@1URs2>co@1wR}4r_v=USO%dE?S;nm( zn${^?(oq4+b7G)3d5D};_StFst7;=1u#5Tw->|F5`vtf%ktyJn(` z*35|ytA}Rv7?!GB3};_nuwPOL29{RC5y^5^Mb?sS$GCT&cwkD=kGc3NC}ViLF5;ND z&mM3(z7%Jdp)5O6@67sLwg;$$ltOVWkER%1mHFqxHs2lG1#!M2g1h`vWUnB}9gm4i z?eO0W?!qtVl z5Jz2>d>JnEC0)0_@bHH}NbEFeD4Tu5-cT7z2*^02!{fDwW#8a;c`CI>gP?EV#yULs zmvPg+TvU`9*#wVhNJPY6qF=74@zXLLQ@x^(>P&C$^p>U@FtBnZ2cS4!9bd>8nR8S=P)L zhS1Xq^iaklz9?UN7Q_}VHgM!xb9+mR*@g;wbLBT{x&R-#7*fX#8tM!Kx2;L<*Kvl! z{|_X#Bk=KP#$8ZEv*7it0a1y{5i5w^K7SpDgX5i%jg<@59Km$yFQi?z17-Yatr9vM zo!e&Ja5Q8EKk7l{oWTHe%&|tgLdvs@KlDhr-Ik;1V>BpWc%p=zfG_^j6%;1;IG<8f z4d*4O1|Kygo-Mqu$1@%hMzQhgIKtgx%YWD5g^#~eeOY?%21DdJCom$6QkN6~(H$z) zVo5dhR`6C27^lV%uZ+7&BN@1{9?S{?^x>s6PpCryvh9Qj1=ER>KpPWo(gYJU2xZN( zZ`!9R-OOY@;&o@UmPD1}hyyL9AVsxcS!$S)x^?v+cbGG z&2 z!SOv85EnumBj*Ee_+v2qCCc1vyIx+B<&$g-bJS7Foir5{8Jp}c#Y-p2JR#tuxWY>q z%eFc6hkaTa7Rq9#Am23@d6)3PJyi(OIboEOw@AZo7@Tx6saBnIr4eaFnQ>B%KPiG; z05S}AF+VrCmYyNW{Z3-A5ak(y)h(0qQvmF1)LcUN;Mtx= zIGZVt>rpKG%8APCv#+BxR{0f(QMmrqdgbAbFS%8!Irlj+}6 zrmq!D_a_1i;~oYRa>1-7Lfw>!J^0q({kMcNw-^WS@?`#32J;s)V15JHxshdm?HH{b zBekIqVCFl?)07-F7`oVGC=X&31vwg)i=DF7gNrGllUZ|r(j+S zZ;UC`Pnp&Ls1Re0T=kR)Px7KCMHI4F2hkJ&g~LYaFMWivDI@futii8QO>*xw)Bly= zF@d5M`f$1RDG{CoqChlbReJ07Sd|ZTGcrjIJb+r*O0TO7A?-4yCiRqQ=A_Xqse|6g zs;REwBaX%WYo6f$OD%x)4ItW^hu?e*12hxerBgS>MfL?2^l6w4|#I*2ZN*E8yw}q zOO%VGZW(j*oWarWtsKQjUKqdxjZ=>ejsRA@MbPgLbWOUhPqmO`N+(ja zjQQN&#D|j~m*^Iq8ES+v$xZ=7QLx34#MALUl#oK z7+}`zii&3dx-J`V%obF}EFXTFjXrK`rVJ<4nX)~@ljlPW9;6vO=P^%|&q!V1ISet4 zJ#}KfSr4Z?y|}CzK~Gx4odUg!+yd3v*ji}{Tee?xozTNh20&!r5h~0 zzur`-c*aya+~K)#+T&s|JffQC)N3m>NJ$hJjDHe(hA3#%8F4;GW+W`-cfEzofx;Q1 za)VF-%jGUGzBvZ!kxCmY?4fc?0#E1 zH!eIkaj4!}3h^SBnS+^>qxWMur_QS^?^;wtR%f`Lp)4b$nUeU8nd+h>b5Gew;(cX< z2^>XFUV8>lmy}&317!~~te4v1sS=dELQ>L{y~9LExbZeH1R2z7Q|Wbgp6PqxBJN^cdU`X#5!fz;br`n&M*5D#LaWDw-sxZ0dwde$Co7J+j-9>j#ebBUL8 z%^4x+Z}ZY9=*5D2&#iS8l)okjN$$AoUKgqrgc&x(u`;X_a; zNpO?)$ytohpe!ea0bU2j12lwqt&uz6Exo!VuLnlC;xl+J$d0_NKM_jkcVh*H;1G9! zV@1vXlYgP+|9P%t%?D~RJVV=e^;2FZTF=kWGnFFJ5>$VjXk9QO*)w z&w~Ok;~WPLZx75iij#;b9Ck+m`!P@0?J4Y(|3}yjSkAcmn$O7dhVnn>34J()K2AXQ zqWnHUGrVdtx`slDM@90|W6t~Mgd&{=y#z(7fQL8`vu@_u6Adehd&TU$P^!;A&^7tP z^FpcabIwquI!joE!&~;wfLQU^5y^5%3df7``W0^`%Inws3+46e^TnoQ45nlw*+8c6 z^CG0Le5lVx+WwsiC?IM*8{8;~7Ib@>YCzHlG8-!c=1g0FPt(m>$ z{m?#mf?Bz5%@9X_JQuIv>^^UXtxy6km|DP(K4rfP`0RrcVa+g(RUy{}1CRK;u)&!R zczFB@*AZVZ`|2~;`+wzFqY#CZ$0I)Z7mzm)k5EHAz)7SXM~wH*J73`Pp|du&=&EdI zw%#%#pEryO$7<425RL>krma3(=}Bk@3;9&3H*#DZQUQZcs69;h#(~`Frg51{nwiXs z*2D24zaXuQB&lewvnR=ZQW~4ONVj`dNmeF$EA0c2+1=)Gv7Y7O1oJ^mb7iKtN`NBi zOPGKbqsm?sSx5QITNT8!p=F%SQpvrdk4WW}kp0Gc(}WQW#w|N57@!SM)_TH@pDy{S zt9U9-3PC_H_{2eI6@U0o`HNJ*$rSp99JoL%>WK@+GQxh)}t7n+r9+IUb^21oUWDZ2Sw& zij8ep3R6Nd|K(O?1bg~B{ZB7eWx_Ijp3;ohHm6{QRcU0Vx-e(%E32Wet#70eiDGJw zK11nl;xbK(-1(xo|J~`Laj|l_K3W;(wdf#GRO-ZLuLRA@m&Zj`H4D1vcXnhcKkEC0 z`jhqv^>1*|Q~fhJ2vq;~FN)!z!E?1kS@_R-tB8&~kE(yXiBC+pcmN7zK1sczfKL|2 zpZMk?94A2h31unC#-aPGi$u^?07Wo#`@hdi8FB_ACxo7m7eP4?G-*C>aFoCJF9v6Y}wkETNx0Ryj$Epypt>i9*_-%NI$w32Uo(xQVL! zI0$5_5pDv|vMR5}+W!~+3YP@_N|&IrDaMT%;`hBo7#e)(A@CPXijB75H|=Q*LFu-q zKAdPCbi%VzveL?1dHK*qrVp^UwiI_8y5M3w*?&=34IX@gy;nW5LI~+Dx2W&qf&mxm z`F0TzO?Q6Biz58QAWjk*k-_{6jmThN6NH~AZbcw4ZUuIGqyDF5{ru0bdM!zrMA`=3 zZ&;C+%~TiaGVzjtoyzA}QEr{e7zb3zGSP^gqRdNT0=WG6>_sm(e+- zD9SHxQ!b_Qv+9!fb+pW(@~xsw0t2^-_FNJR#(g9M6+NHAJpyn&=jgaq1aNVyh{DBb zt{1*KXFy>d`t!~odWv$NAmk1AxqZplHBv8|dV-6M+Xk;{kPKc0q6Qq?p~ovw)2&$l z3pvL9d=Z*L=h%}s>2YjVWTda${Iam281J*iWiiE`!C_M~`Vv8A?jZ3ePn1MLA7~rw zAdT~^{is>Q*g+!jTmr}$h4b>KcxjaVzWfVizwhOe*OB8ciFM?#J^EoUgDI>d!FpUO$RsnDlydVJa43EQhkW}dV?k&oYJykIti?WTNfC;3HWexEipd2HqXyS1K zd6cK(1ajtOGc1d8)3Y$%$-H_Q?_?@hX)d1&U{IFIMItDR5?BN<&GBof>|aENuJ9r; z7udvsxaR^Glcf@r<5x`q58hoQc;Ko;2k<7UvRSIC7Ek6eSu9k+sMB380@Z~3fUtuO zvY9aN^;ZJrf1tO=*as`U35g~%Qh2I`89Xct+&eBjrq@w2NFB6%qiC}xie@RKS**w7 zj*jw3(I{mosSYTOne?C{F_TV#>ip^-5XkQ=DqmSkcVO6Ciz$I=V9oWl?YQ7L? z5j}J6Pc*@06+k`3uq|H!3ea@<@Gmr7K37T@w*Nh+@AhJ^{4VGZ{3CdEA$2a_?I<%z z_-;pB5x(2i%?uYonZK2ZnR2q^3pF2AT9^n-GZpFut+V+RRxrt4sPrH;Oe@vpim+0T zU9pB_QHFaKPY#$+Px2`34$GoU_AH(~xm&T~JT!~KJWHZq^xP}LpZmf!w?DTGX%I-I ziSnao4eoNybNQx*^cc&zu0OAA_bh~9w+gVzU)J2-GGw@ev?yn+xyH^56v15+7i)N+ z7Df8kEd*r!b zM=-M1Rl>-#$}&>RzC zi;_p`KZu0zN|l-|*5oxaDfoR4hm`7mNN%8$ybw#u+hK zNF5;;N>^(oLpW$TA{-cpMR}T3F=c~P5wfv_%0?VUVNoWMs-}R9zb2GyJk8|-5+64H zDWAE(Y95G1`G90&N6w~P{tURxH_E7l7;#u;LOE{0#xuzQ28^IF_*v8u`B zi$V&EW{th(68XeP$M?zsvl_z|#czsM;Qb>Wc1YPnGu;ik)Sc>!MZl zX(n$KhF^K&I_xb#_!XrK$;MVacAd29$?MonR%PJPSLF6kj9bI{*M-;{gZh;LFYZ@vWCpLT&oB^oyTCfk8{FtS@Q({ z!ez}9H%eI6TxjCh>SbATr>SG0GRVpSV>fbund(BFxxMrY818&OjO8RceA%VL(P1p} zvD)t_<4jy)OETkz*phsmWZ;%0WQa3;cqm1ldqWI~ACOYmg|kT)ekQum>WeQef}ma; z7T<`>Ak}e1%)KFm_ZO0ZaDOIne>Fsd`0_B6T>y&%q6b)GK>QozE~R<2t{k=k7Xu<( zxH5(BG++QvBrD~7JcO;VjJ9AlDF)nZ^wMX}^c!MxsUJWSv-}x}jySo}O|ip>fmr-* ziXFyuP7|H;KSPMb9Y*sIpJch@gX6-@!WuVSq8ZM=P&C7DmLQsMw{vXwBATDHcMMe; z^Xle4k0F}zW~vKy=FYMaO{W=gMS09bBc!tZO(B&}k__DZZO`&MIr_>&As@nZD8orU z8oj|ciDl2YDQpTA9KL>#+Oydyj;^6zTIXzcQ*>f1)O9b_qL>~DZ|h;Cm06H+AI{wK zpKw%`vyAR+$LXNmS)UN*(VZmA#Z!(IyEB_tLrb%ee_?knEU7zR>*Cnyr90<#b&OC} z5&XayqdQlasV>x+yUM0Jhlr{>MZJ7XM=+1d9v_Qh(c-`fWJiR`ACigN3J%7%V)`i6Iwi z9Anw(TC7ivV-mc>AU9_VzKAT%rh^%XW3n}*1H>sgdA4!WfC=I zN>zxOvgH}aC52#MdHo%a%dY5CrDFV4KHN`E9(0cQqnpH+~mpetQ!Dv7x;Za zsE0Rs;B|9=g(1`V6ULl7cxm)!o^D(kUCshW!f58DZvehH8{9Y2vEJI9c$w!fr{gQ7 zAE9b_Vq`ldjU=S(1w-ENme^^3(#+s=qu6gP-S7dNo#+mb@`3V_iGd}RkAz{1$3^ji z*EtUEmERAGVDm;hdMa;Ns|_is1`mnC-WlU~UHO>Q0JS!p_vYOaJM?pI89Vgpj=pSd z1`KJa{6?u|5Ca9mn=5&qFmgK9tH<{ir`bbTo6)_Zl%1X>a6=mE#E`d2Qi%6nPuI_)k}qk?Bwco>h(*$BR&1=*bfd z^O@8$QiK^%YxDXd^*@HO8O=B&3AaU@kw#`221-6uj=POhyW$G|=xwopN2+j}7|1CM z(4S@5$qA*ff+&~)Qf*fFmZSOH?3;dC4^9(pUX)2BG=v8pK}GLlCNog)d-de)BLy1voUb-Wq(!7*g^q%8o z$!Go@BPz`T(tMmh#D`Xmm+q8cUcR~`BGk}cW>Y%ADS6&($HO`~@)?CZ4+u<)2=gQ4 z@EJw$DxN^i%v|Uh9&Rm*EuZU%a|NQ=LF%EES^9~i6jtUVd7D5ZXWbE#kC|-wBF7Uf zwPJgS{PA)O%(G@YAPCk!4nNkWNi7ZI(lCfiLo?P)suwO@WuuuRM!8N1L_VX}@|BVp z{Xj5UA&h3TKXklWib`f=@TZ($kmC-ek;?hIkT0fs0inO#x`QjyO@ObwsYd%rQ@v>)#V= zNB9qG$3ZOTSd?FG=5j~4B=@?<)*aSjlqU)OZh4SWSkjN)){X-K(Bt6^RbrBE3EQ83 z@q7XgFH_?o#Q_NZl;!nkS4jrW255sKm2QMGE)zi+Jb?}aojI4=ffvrywcsOwp=919 zl|UdK_972bll*a1CBz^?7j0=XD9W*Nb3GV+@e7`aj~ z(qh|NuXemv3hvFT@=7JPcn#?ImxL7L+%`|neIYoP%{lk8a)gvGEz{z!$rUAdDhfJA z&h}ti@}_ovx&8ATH6+>hKHJb4?iy9NZ>o=*YqHP%60CaQeUv{7+vaa9726o6SbhNg z!DGQZAgn;v)#LHcrJYjJ)CX9uX?iWNuxuIPAGaGWouf z&uQrX-L}YR1wP!fFv%X-H`EJ}&Qtfr$;~d{plkcW7q%~))7kcYj%Gg99!M-NB@(XS zrRgDZ^#@|d;uHr><$X87C3Y-$h!pz+lLF|u?(C}rjH#%shfK+(M z&NGFMrapUIvJ+4{wyM0>ke!hnG?ks+1XtQD5VbrXsfq|R@)ybCs;@bFdDi}u6u}+j zDTgWqh7y>ruH>vj;km+Vpz!?5zfgGo6~Yrrg$MF*H>lSGVGvfFa2yNqVlgtEEa59h zKQ`v1BZ%cst>eqIQ;r`L^%2?4LKLrxW`c{R(!Sn+;)Saez&lB?n;1+(5&j6<9RS{w z^+_gnbvVmD>u9colXPw-LcGukr)J6L9GWaY!V)4QhfCAhpXVH{faQmo)@{jpF&z8h%`X!oqh;xCkii~H5*><2PegW+S3bg)OSN0Foct=) zLcI{}%muEkuZb7<$3rx6+(swm#5Q`ikg!nPHpdP0YaA=y+`Vgv+oQJV5O(*bqg6yM z&!fWjIUx~*&A7NBH8bh2kbIap$Mn#a{ER?;D^>$fcqIOCq9u9xC?RX@d}I0v8CGS03LvU#6$ zkNE#+d++$Fiso_Hb3y`S6G#Y2ApO?#287;1ZwU!a>AiSSAu4tu_}E1S(X0i9*svRH z5gTCd2D^v?DvuQfAG-+e%$=bYU9KA*42>mPD6yE|=XXWQ(YE?ASaY`xEC@~Sg+ zdY`|7A*3OQ4|c>U2qiz-D0d!r-5YVGVXEi(>sWogJiQ!dzh$2O%`YtKpkSLfi@t9k za}@hIcxyq=^)H6#(!HM1qLyKWDZ>iMyAYz9cKgcBQw&*J{oKm@zw(0>_awMqm$bs=CDFA zz{SQ4lqt+*_%c(@pX2EjI|>_ER;M2CL(16d&h9a0r6~^#boY@vhj)mUdprN@kPlmj zsTce)<29Rq$ZDCM*tq4voU@FWt2mtQ149q_BW^HF>6)3IC#0@~7lP^~y|J+cLF=K_ z+1WiEg5rDrgi8?-DcpL`f0ZeZEb(RiKiSwGWaH_uY&5pO#!LSjt@KTjD>B@nfPj+APbz>o zW?Gh3Y4WuHF$T+bGThl>FoWZ=G&u~Pfk6@A7|u^gl~-lDCy7&76I|h%%Oa$4d48EV zj}?TrKu|~wT+Rw~fciWeiT+=kN^3>hD}>23+vC-OFHIe3RQfz`Pq!v}ArMHbGmvK2aaWmqJCM0bEVkFJH0QU2^}0J% z%;yEcC;;O^xvkXg6>C@_&Zp-2?Px96rCD^@6>@$bcUf!?Y!I4HDFoo`cC?H`g4-4p zq{J|SJOrRQm>$40unGZ~(@w4XD%#PyFJfFf@aboo3&it`SJDQ(F5iJrn>z6MyZKo= zS#z5wTkK2$T|$s%=J=nC7fPM4$>IBJpj! zd~1THvh$w_1(qaod4+}({^e0J{?Fn;;;OKyp_HS>r}1*oM2&(3*kTFrh!X`7fYSP3 za|ei>&QjtXN|Av1c%<4_wO}DQ`BT25E z?oN$ir1%7615>ORJ(NE>gUmp!+5SM(qcMUjs}b}(fj^=e zk3@PeGQ@dIIC2K`DxNh_E;vCp%ythmmY}~)l z?J~sQx=fvBk~TSF3?hUJ5!5DJNL1Chi{<7nuBSv=2fJCq#}Ve8?oJck7`$ew`!%yy z2kE-g?-spz0WOSsbZB8=G*liq!(A4`jPg%Pz-<Ym2p`Ow7j%$SeSI#m+D@pK+%jTSj~0g7 z<-mKcucuuqdMH>VU8lmTk_m+yZ0p^8w+?Cv$kfVh#|EYmSdvoGUy2oBN1*j^o;6Y< zaNJ7A2xK+1$-s0Ya+}1fOlUm-Sqru3Oa#VfyUUf$JR!cdx2l8>&XKtsi5}SkRwLAkWk-p#} z70VTFSFISqm;`N9nnOD(?>v+jSc07hhi)X=99Br8&FI*|SXkDAXwy0>(SRIn5g0ix zT5~YHn`dAp+8{s^>aAi)@8&l%CP}ngEYWV^1t=Q5nQ!c9syFl7SuqLscuT^)&|J8= z7rKkgZI*CAkc49dxp2+F^n9Lym2fvI;b1aQ=ack)KDNEu6djFHo1#CXtW8meXl-`n zL}^nLiO|sO{GY;mO;5D)Ha=D##Wh^gxG3Bnqc~daF_@YDiQdLY#|G(g{iB%$(F|E= zO9ZoU^<^-bMMkT0`#+;(TtD|rF^g5!oKEMQ(ry;t(nH3es!QCtVijvc+}5Q3 zG_G|QgBLEn*4;JjbHv1#!LKpYaQrqSkpY4_2z)M^u60)@Wr?8XUHFSM?-DI({+;#i zx5H@us}1fYqCd9h$FIFLAV{^fuZ!{cweC812f2BpJ0Le-ADrP-;Lup1bUsrPrh``# z3Th7dd}1ssAf1O{F)&6botFyId3)==Rvy^k&Xy}~DvUJFMfJPnJ7ZmO#(Am_#vo?i z2R#`n?1Ll*2x< zsV&UEJIudLdoxqy+jWK2@}FDmUGb>Z6)$P>sw<#?y5dn*KwS}r(ZC~CSKQ+0iVfWl zX3K|fbw|O2IO+;~wr#-Iad9|2f|z+%+{#E%S1>?OCrAprLcX)vJ;3gA^jmHAcrDZp z9#qj=Z8Ij=g%S9Rx-cS!#*xsWH!E-vh;Oy8mi@N4$Em|<$Kh)&JQ3aAt=z2r!+NU? z0D7w(gNQrA|3YuI5yIYTV_ATneO~>CdaHdkxbFF_e5(ylQ`Gz4HTD;!@Jzc3U-Qv> z!FMo9j-v3YG4hDwxlFvtrjVO0_=^G}_Tyb9U8ef*)R-R!lVsL~J>uoOxvtJ~W%{9L`S#uJj>ana@!jq>%<334EUnGCN55~dl2Vg)eT_#?s`M_VaV5*c2 z_q!jAxrG(Un#Amibj^fNOz_rn=ik1i#{G>09(4Q7{6=iN9sl<<{_k1*-wyoWF8tpM z_`jF%f3L)tbr%fon-_Qj{+hok;DgQ#48;E_RE@^Nt&1^v%7E)N}K6qP^OxXsDv%N@)nOWv18i2n-*cCtB<+hW$ERMY&o}dRt z1HZGc&#BzFZCTmIp|hf7ZE0;gdD|oIQ5}BArhk%Kv9$vYo)Uz^;5 z6f%DD%oMrkG55rz{$ZJw2P#U+&B~a@-A8;Q4frAFe^C1M+?+sMEU*=e|N9UdzK8$o zfPY59|5gPa1%WQSURAq-s$4~`FQ(nE@{aXyDAYHriU9#aRFwc`><$-JR{9=Y? zfVfgGT&Bt0^F4i4R7A2DSviN=XC|UK4yHhOZ#FVA)r!1(jfh_S`_vykQ z&B=8gJh_c;J?oA%%r&v{NWNzY{#!c6J71P;>K!e&?r{HZ-W3a9qsYq>TbUNh6Fduz zJ5T|oa_GtJqUDyGFNim{#bOjwseE#m`}ThqSRdj{X2p9l%+0YfYEo{t*vv?8_}N|A ztBLHu{s5! z91Eb7U6tN(@Yoh4wnFXC!QWP>eV8r^oDIf<@sOvz;=bQ*U~_xr4wUm>bzd2q)hT4| zv8F6Psq;{gqd{nExw7fusC*+!Zg?LqF;+ewms*jgYoHi39G?HT!vT`H{g4>c`b@aQ z$w-hNzV5zK4AN92^tP3EAq?%nz)o_*jNCM7yy=EdIHnjbS?z=LJsCaVEjukJ-3l84>!5bNXN=5e(N#(g?|Q9A5?UrposK= zSip_6I|7t{tCJ2J$FIt2H$*RJF0A0`T<1C1$aU;6Dzl!Sd^&7*f$!i{3At* z9bb|5FW(*q?QwogGlGqOedz9Ch~FI)F&9JHZy|QAP)^ob)_?3i#cbbMcK!rz3OjZV zbp$bt&AaI4*4imj9{JhbS027YL}xTBWVmtYzR|s)ao!&Ha8u+l+y}maQ?#bN?h?_1 zLBW12jXXKyGk3AAHkcPI3uWi%1WheUt!Mn5W&HbvMbh)R`({yL$2G#iy%oYXPI2FG zclT%$n(z9gu$+l#;q^4`*yo1ZmlbxDmBw;;%K`U9v7Eufu@|k_TdLS=y!Z<@e4+G8 z)(Bm$gTIcd&1H-~Xz$?9LhO+ZU%7`xWOg=X=hyoTl2wx+>Nd@ee^A|N3!~(`$PS6= z&Gg25i43-J_d$1-A)c_KAQqYZ#3&Y7YqX!F#tXi7&oIQRtTFWPEYZXO*troud?q??x$L)-8s%S z2r40^XZ>OKn=RCKHLsoavpZm`?U2yA&VpR;Kf8w||EQS@PFn%!FX?)rPg%Ggv|4i& zs2+Utf3WKpBN;!Wf#bipdx;7LB@K*}SO4n1xOwf8zhJVO>!@vxjDs9-`I*rSPPpld zaWxD|y$meK^5@O&HteVaW=Y+`T2f+T^&jr%jfm?2L;UH}QzWq?9R%QdZs%X_QQ~?A zkN?|UDeh$eF@JJ!ZyeVn>JxVmxv zKkjb~alnBo_A>y$>OBsZeWw_dd#cis_hl?eTKuj=WrPC({&eP0TIvY?1U3{ISj3 zBZd}gYL(PU*38Z+m9^tMko_^%^Dm$52iGZ+)ox`|JbcT{+f8g@+>qhyL;zn$-2}ou z2ro72P-uTqFn!B=tRYzY2(`D|S5nx@b(Fr z7wRKbHZAl-$(1!lQF3URKNSvn+C|C-T{->irJ3fRAZ|@jj`*8#P0IhBD?hReDPJ(< z%aX31(_6PhwIuqVrSbnU7D(gCT^t%eY{`De(zun(B@gSd^M*Focy<@n&p_3tag{&k zssgRk&T{j;VErq%L`2Kl?w-{~l|0_vQzRxa21&Vri1rPRQ zoNU0ZH0<&G*V%*jNoLBwN-%nHNbE=+q|I73_4*yYa z>9w9QMS6Y7sn^>q32*7rxT_#1+7KVJCa6(dawnYWbUPn}nuW}f9`?`~2RL9n<1o*S zm-QR6N1Lm_JB%$IpA=?72%HIX&~GK>5wQud0xFo|6P*(r<7nkvINcTrI8_bJ31r5{NLQIBUp&TmAZ0diWj?2r*~vZx<@z7fKm?qv ziazpY^lLLaL6tsWsq_KH7^$?$snUBbmENsX+VHIFQt=gQ_5XuP4_GR_TdS1j@bw?3 zMatR*uE@rU0iGzMo#+bB+2dc%$q}*eD>%iWevOW@rrdUHo7|NQHmr{03JP=TUVs^- zO;sG(RqmRTlO-YZufxd`A^3(slGJ;RLSsNpNbAXdNal?#_$NX$HL*KOm_VPLN2 zqONlOz#d+)gz-T7T;SB_%JBO9>5Q}@nbkSlBjR5x|%+V#^Y3Un7jc7)NfvhJEaHTYHlq9H$qX4{QOA|*vG{i&k zzs7oAbnHHA)8-A3QR6*J#OI79JVUP7qXEIAgI0cXfM#BBR6mL%8aJJ{Q~r`e(1Vy( z;<%%b4&zNIjeoWT@&=Sn?+%N$Q3a#?zf zC&h*oEMgE{A|!=TY2XJi2@Ey*psPI6_K?j-C55+5;F4^UBMsSRVi+|C z9+mUwdeY5X5<{l>!(2~JR8A6_W?go^+suV%N_dKz{wOlUE%P?bVJrkFloqM>ZP7&a7~~z6?9jVq%873nmQHA+9LR9X_CVr&5cQTtDY#g9LS9qH?THj zmK$W#vY^Y{3~e#CzPZb+NwUlmeuR1vU8dOxYR1O`+gSnG<>L(T3oY0sNJ4hWu?Foj zEm30(DmSnaj1FDqNl9dvF?0_|xzX39$!%`8C+Z-y0_V9cE;HNwuVtbu5feAjnGCfu zQFKyiS{N`&&az!HK*%y9@fTTUWOB=vIRiQiC+zJj zJa5}?LO#99t11a)~eYrd2 zsb|{lvnW~F=TOapvQNBPH=)$-G0m!EW}uT;BQ#L660qq57-$^cLW`0u3xyvcP0;Ob zEqp%9I8z=u%i|Geu|m4tJ)L8(O(yplgMPv~x5ShHsXZfF!d@gBRu!h3Hzvys>0Xz( z*@?c6qrX$3=adL%{kxd?-B6~2v&Y=mP<{%SbhjkQ@V^FH3( z4~B?i_X{WH&pGBFnzM}y9@0ti(dBl&gQGV!DU1OI3X|3FO-v3=D^IWX6h(FFMuT?l z#aTIK=Wc3VDMY6DpzWr)jBSj+Bu5w`3EBm%o(Am7ZYK#M%o`@KTK3gX5-SRhl0b5@ z$^ur%nh|o!0v5hSFbmj#ZYm2{3$;`hFfIu2Pcsr|hWy1OBuf5bGX5feF}YjI{sNdK zfAP-6o+ljZto1KN_Lpy7;(=TiOcHVq%QPS;_PSTvc!h;R+R?rEr28B67KER(x5%Ro8=PVN61WQ(%J&D?f@aX^x-eEOZcK8uCN4KVW~xb=?2eJ;f%4zb)J*NU~JE4 zs{R@fGRD{1$QWS(7shH0?I?7bnzQ?=v zSJkz@vzpYk|KnY2q_otvfJ=967=Z)tT3!3J>RR0Ezq-ZaGcx6mTRdJfD@Bdccac8t z%4ao0R#$RJuqy#Ob!ACPuq#XP7jCM#?yCrw#1IZ_EzW|tUoYP za*_tI<=nUwEqTQ#T_x1jt@~J|UUb4aKBbt9mL(hG;^fMoUA@FoO^<9XDGURFB`GRP z&)k`j0anlU&iy3`is|-LI`X%gSl_l_qAzF=9?j z@tX!qiYhtA0KinG`CEz#wBa>%piNwA$VgEJs*Xu5ZHRS1k=s$-_^s{{PhRuN6x-Fy zQ5jjGjFy}gn3pTlenqB9<5n0XlUCAtbKjiwxnhzXq4mY)i3lZk3}yyIi<;%BY??V2{s?BUj72NZJC^!c@brFZDm`o#3mF#b=h`#j4eq>D^=fxws(K1L zAyuWY~79g35N5Z4#sE{GCcews=NSrWs@8rUP7c6ibK%4|iMfP9NQzv-NI7?x=fw0q$T@ceFKJP%XlTl6S;2U$_IrEC+D>_6&6#Pk zId zHm;4&y9y#-HAqEr>!g*}r$K-jCatVvbzmLdS2jG*uE4yGi?Jn*GF8Ud#F%$>wm;z# zY)neDqI|Cexgb&H|BLdILCQ~srThe^{Nn$KGUleVQ6{Ikhmk=qXj}=OiuYvNDr%qk zgQIo?=ul;*mtdFom6(+>iQ8PTd{3%+ zfu4{K5b_*d@fUfHuIVi-Rx01|yb;cQ%xm)88Ve^d!C@AB)={QGY_U=ZDFT8k@QPer zrOkcJ{_}ma#W+nstxm#F42(@@IRxji7UXSarK`6YC(*xFKI|6Iz)Ip#`S!b>SkdfJ z1#6)k2!uYN1L13mOOZA?kZa%N`I2ccw%pj(}Wa3`x=-_cuXK9jC8 zj6A~%zyVqxBm6kslv{e5Zn1|IlL!1Toq52o010M(LY)O)gzVhwDK_4fhxdBMAQ4Qx zA#6mtdGnosWJx&(d9@9tz~uIHHBsM_uF`AV1#D5y!SoCuXiY6z_7sHLWT%{ieKS-> ztNyGJ%3}1E#sPKu-^IuvNn)8K5G{@yS4cw%wbEtnQ|Mn*SBLDVgMl=7` z82^nYJM7YE&9|PPV-MPRr;XSl4Pw6SUYF6-qp4W`aoU6elSR#Q^MX zDe+)8R+-#d*GzJ2kWOREkDi61#93YtDsTA7GeeAVmX8RPLwhT~ASB8Qain}_rb;b% z8Y=*cReLvcRwhd=c!9GDX3m2oL)(7$OfcgzW$CZQ%VowdwA3Tq8!X&+I2+O$5K47M z!EMeegnI+wRtiW`2?aO(rt!b5@XP+cJC>JFK*%_Y9#OmQToRmp0=1-0DZ;R*H zEUhT54=AN1f~n3@Vi&$(2dV&e;hzEOs|+o4IPGW8{o9inT)eV+YVO&a(QNTL42ja* zGfvJr>KUJIpm==7`J5Rv?qYX|Np?o9;O)=vwQ-Pp*$bQ8k>u=wAVzf`=;XpuZk4RZwbKIz>`Tfo}Mp^@HU;(cc`%8kdW z1^rE6UgP0N?|%&Og}p_tq}+I{1vy~zd|(|?XPM_@HL6sD5iSr@&u}^B4KN+ucT1X_ z_gPlFdE8RyafV$hG}WaPn$B>LLc6<|LbF{hDm2lh6bfWWp*Aw8PzE4{s%(R!8NDz{ zwcc2K=w6hgA>W!+7SDTg43k`Uvdy%wTKQWC)j7*8b0J(eW* zumUZ~i%OE0Ss_XCJeQ=YB}tyMBmo*EiH!zI;s7MWw@P8*$)P04T@FboXJC7e?t79X z!lU{mf)#)y=SO6EtaO1cR)S(cI=uPWUMmzpudXC{b)g zP!tCsSyF;P4y85p35W{b!u$oPq0W)Ja=pXMRavxuF&5#Ua42wv5gjo<%i6=NWGs`n zq+P+O2o24tm?H2hkMa{&v-%_=q<#;HD3ypY%;ezJ*|F?GB_C~G)-nV{5D!C*)xi_IvWv}yEvDj^nm849$9^fJ4bxR8WF3XFjl_~$Lf~8dA{^{ zIGfS@Yvly|K;wy(O+88m2?kL+mvw9{V3cLWOO-~{IqD@bs*SYEGjVnP+$~8s4 z*vmUf#ptQ2KIGL#Lp~2olQTNjN|OTsNR#tTVQ)m-6aE)U%7qY?lncuOlpx=4?evh~Q?lF`=;E2 zCSo)Tg{myXi+H-%FT=||x)^>Mf6+Z+IUeoPozM$-eoIHeUfkf)nNIt?xGp}Bfw_I= z$<8%{^5x3&CQJ~EQ3ZPK1n2m8>c7A%H+YNs$*S`wBpbiUWBtA9;i4Y{zsZsT-q%HK zSR@w`lFG8Ebx~)mSatfs#n!0ZIilWK1J_e302meF=+ociz9HVV;+C+8Z)Dt= zzjcy>{Y7alu-9iWu=hk*ERQPo-)4+~+G5IERNLTkZ(#=me8$^JR+K_<=#==@6A3wdf#mH zX)GDzJ;g9)%Uj2KOT=6z@$P`Pm)zOWC^l#M)S6}J*C)lBC&M3@P3h@zUiq(I%O=Xh zcY4n-PLx>_yoKUKM%7j78!NM}>l8)G=X={JKJ{v~+Nbg;@QG^hl)Ar%vbbb)f-Y53BT!H+%Wi8<7&9dLt4>{efbi3L)!O<-N<%WfTw4uG;&q z_?WSCpc?jp`xzjf_fH0^(KdX$VFR&cgh!m1J*3oHU>vVsr+6H4ir=OTOQaxAb>_ zSu(D|H?&3)>|NVuI9>0nk!Klh@OTFidDRz1)MnY60lr{vv$o0#-ABz>vY7M`^>*wX5M>xcY zS*}aHa{knU$BoP6mVnnUuFwUl8!qA9uu*kGC*BS4rgPVy@qOj`h0&eOwb^Rx3Up}0 z$LPo-S9p_U+{;E+(G2>Q4?fz!p@j7D=mkE;OdfAfe zWnJo(u9%#2%mdjf?EFhzq6FK=1v?bZzP4p}3(QX~iGTu0#3(R{nn7=_@!lyolq7n= zAyM=hFl~5qLZgEgK62%o(}aQ)?5U=HJFvsjNPyx zy2R|C!$!`S9CdhO>oQq$N#{Orv9;|iZ+c8`jl?VK|C?JTcix_vVb04@Ct3@1u~OU| zj{X$j6F1Fv^mL*{=pjGt+U`*iKm*>8bm%JS;~5v{sJ-f?PSh81)aw;$`D5_s2W z+jc-l$1s59{B~Sk8YwF;^iGZV9Mn?!vzaIMI~gAOy(lsFa)!Ty{x}<4XRTp$aSp)w zpR5_2R)H2y4$I1B#wg3&HL#@R0J6t)5QUGhv|1Qp3Ax(j^a$&mE2}%@rbV;DkUhfH z=E{oze<3RjnWK>_H(Uy5EVO>?liQ*-!Yb?%Z<36g7u`O_rx9_JoS3UjvRW6DNkVwC zCNVR&MT;a7X%T>(8RHqb${1HUk=8JzYZTJvwrGM?(C1t1EI*t*3FM{^x7=jMt8CG@ zfg!&mtWwAnkySE9hMt)sbP748&Wr|{V%@eA6M0VoY;+8(WEtYaV|qu*z?I%A<1P90 zm9Q3nhvA_PL^CwrV7z_;UC@#h&V9LOpUi+ZLo3rVrwgC3T`oGxY@vSAf5s7)GN>!Dd=dfeU{{bQY zr90s$FKhehzP6pIV>v(8PR<5uvz=Tc>>l4T&4GC;OBMXfvQ%Maq|>hV{%$VFQ+cQs zF*Q)1;;zn^r_`|j%!mv%GEd7>2^VaR`~>;aXGz6!{co^t+h6DX_bI8YEgyW6<~DD4 zF^jPT-4CA(|ICc+Qj1W&;F_*@Z1^zQXHG*Qbylj43*s^7WwBI_@OP9|re9S)Xy9G16qyHg8Y6 ziq{zVrFH19_x~LqClA+o|9!R_%bcU-`X|AhqZvPRUuVkW zB?ouTYR!I!&Vm*wO)g-pX-!`0)Z|8yNP2Cth~6apL3N zZ_M}tx#jv?uSh5eGvLh51#F9v4u4>BDL!?`eP4m^Tz{`OQm*KAuw&hpqUbg;6!^@> zvoPcY<0>R>LNP-54AP-Mof<~MCtN{ZbBO+13ET)SzRWNe7N}^t#SCqzLrr)AL$|iH zf?c76P2j=;Rm#5>|G)3^(1~}03@q6lAR$ylAv1CFF^g&>QsM zD6}~_k0r{1#RFxL?}zSqj8Ue%^2&xKkm0gEB|0h03MSAiPi0zrvB1i-_A+A(MxK=v z^m(99nbz{0(~J$N%Cu$!Su3UYT7MXtmFSx$ho0$&6Q{3wbZuPtg15{xzk?S|@L2)l zyGG+>?`i`Md}?3u=7}zaVJzK%WajS#cQ0v$Ew7QN+gCp0hj&Jgx#H!}gRMFQ3i6$6 zMi{cN+5aUS*>uB zAzi}b-`L%7YO;_qp;dXAQnqsX-@_g(9X-n#cwuhA~GD43ou9e!Eo)p))DIcU2@mdFDK_!861 zE(+@mw4R6N7RF+ly0-HLiA5?!T_WR8>$x97xi9E~EDtj~7pW_=rXdg}T)~>Qt&Ycq zsL?EA`GCfTFT9-$^UNZZsO~IAo;2I=WlA&6)+)`~odB#S0&U?0B2Fu^($c|?P%o1f z4E5K$1Yzur{6n54QPpBz(*3`G=tKa!o)*a>Ao&dH;!Kx zs2j&HlV9MA0(Ij!?K|&tj-!RRgtP&2*7x4!;zz~}s54KNOsF0(K?6hgiZ8U$RGKyF zV2td1$a{)_o8gf5wwZ9Z`499O=BMk-3h>g?_(#_K2#16JXtreiA>T_3k6+2^@xRAe|U`ZgEv!del0iBEG(7{cleU!ZHJ2z&7xv;4RsXJar6IL z?7W#q6dS*1xse#qO1WnAlQcW#*<;>9MiM%X^4h`dQQY&6x4HK zF$ML+evh>&-~)PEmRI**B0v8Z%f6+nu?@etu0o)dL1jEt86G}%7BFZwX6WUH8~8Ufi=aLBPb5DWI7%27nx3n5;C1co9S5XPHxe7(hRO<0lz zl$OZ)Z(V&vDJ#HEO$@_g0P4p3(#>uqp+0SD=j&n4FHv6M)QhuH%mpPXSwsmUiSD`ba^5%K*}lF_BWLlkP&oWJ`DBFS4b(l`SQOvn8B;F_+q*Xx|=(K{YI$ zJV17i@tq>ysfE+c9ZV!`LQiXGPzmdHw~-0GHU40V{C>!&Xc^lH=7M)MDP>G=D`VQv z;ABj1L*L`KjNfJjWK3b04ZNj{=?QI2SH}4Un8z$*`aI6(F^?-_N_z_ta$|Z@Q>gpK zHzSe#9n^**P@UAdG}tk5_=`FwuC&GZVM`a^vyT3tK%+Yoe03rhF*F;^J`D{LU)TD1 zzY(@isfHM;k*iRbfu$6qBTr4H(T&kFb^lumM-9oofnpY`4JFHsfwE?lPrd0k`pVL7 z@O|o4tPaJn)L0nb=^nzUQi#+jq#IZRLR#ZQnj{b3;~6QhNwp&|?=EHe2A*VSkgjpJ z4Gr;0-(?G<&p@A28H}NU97XAHm^|RqlM)51s$yueO361Rh1M^D&yg%W-}*0X&vErK zD8n~8tq+2^Nx2z&TQYp>#g7bttCoJP?^6kVda~TvyEsaG&#;4M%aH3AMa~fsJ+y%V zO)C$_2?!-;18TsBT=HR;?=z9%tV|IZDLqsGLkcT}3u9Mfk;k{hFnjk<5e$7mqv@Gh~e)k^#)p zr7D2oB#wQFoL}rKi{aR1?Q27J6wLU zD|}BS$eBexmvK~HSOlycV;I097Mp)D*31q)RUnwHzjhAs^)^c6C&j)Z!5Cu~OqFUnOsQZwkD5^!Q13VVP`GZ~Ozv_#h)Djw;JQs1j$cu&VrA?qIkY~o|FA*_^H z|4hhKi}5?NS#ikv;p318`uePZiKRVNzyz09S-&w=#`X54$4u2YnDLuydP>(r**>vW z7pqu_3mNvS!f6w&Um>@GcYp#j{yXHvzF_=!+3{Lo4fPE9!(mw`U&~sO_Ia4-EBk}5s}&7TtOQ-DT1j0FhLFi!w?R^%;@_@~r*w{#Yh zLr)=RAT&6Iz>A=JA~y5_<4W$}5*t|q8VeMCel3^&R`?^7&&fU_D4)|+y(s!nT*goV zZHOfqkWZ0A0l>IVt<6cXeIYi zuNGHw>0^9v*ke`R=}4&U zL|^xEE{F<|8ZC&*%G82rYNc;#+A+k>7ewD`f)b*MOJv-;-iyQ_#w&Djr97UQ)0$go zn{wK#Tq^w;4OknEm0Jw6mzcz$+OQ`glnfh`0fyaMzE$lz%RIGArHER=8qug;UdBfC zxn*ipmtn17bTg%hT3V(odLe7CEqWec$H6xduI*s(nG?!XhBD50$fT2)B7RslCcR%Z@)SQ!fLao8g-!{&v>--BD}(@4bY)U}%kymFLEGkblqgO%n;d zK|9vYi#8ANm5o`x2_|5sxce|t2KGQ#Tce{~M$GZ$sUgCu(hz}S&lWid16@JET2kxV~*{urUm-Wa?|SER*yyyF(qb{=FY1Un#Eko zK(hYfY`Z71wnonIk7WTeOmZMhIK3SHWpGC|tw8@J@R zBz<7?n{bUHK%FYL8Ph8oq!pFdOc@uEJoFM6bDX80qfWMYM}hjt6|S{RLZvy=W*Kw< zI5gINP*R!L2U?K#iNjy&Y@|<%-shuJd@u83^TvBl^>r~s9=2_ED&p7BAlcTZ@uqY0 zcf}x$Tb-8o>!S{>$Fl-Dl7a#{E$_z)=(Icxdx5@vtkZJu>Ao>yDQiNw7WSdja%!#XkNsDKI?R9}z~Pt12>Z8Df$_=^l?mok{J zr<{UxxU-Q9?gQJ=X+l;0BL>?Xg>6O??YYMmWBnfy@Mru;p`mo zyC$H|>=VO~g}2DNF7W+F#P$VUu*u2n*jKIJBI#fFKIb*(cB8STDh1gN{07~Lw{E+2 zpYL7mD>4fq5hR{etzMc*(@xLy-;gIh*}SKj^r|d(y%`tanpzW@8`MRyT95T)nDtrJ zcm~z$u`viGn*rfqJys^)4rHzp^PH7&w+>0HO8*1LNV9aISH{oGyCCA6zE*;}^K_9q zLprN3Tfbf0S51(GSSvU|?%L}qGEeVI>o=fKbBQliFbeGPkOSIH?(FF0IuyZGX%Fg zy`1Kj&jg|6^m3#~{^=C_MgHlOel1RD+t&NGhjB|c{4}(^d~$>Du((7^pj^|{3_z~w zl77rJt<|N$F}`kB>(|;e9O(m>l-}-kO@;ZVFth{pa_9}dFT|6q0qrjz>!YL%@ zGR{P(jZ>qdB=G7Ir5F$ zH1Z`D@^kDhE#y#2+3ha1mo7J5Th}nE0KPLxZ=RpFmn}D; zQ4lNbaKiR43?7_6F6b9pGpzpFmny50e&`TI8<@TF;X7b+UyuFAr;pXFL$mJmJueP2 z`rs)l<$$|m*(!sFVNoZ#)v|y~q%&SZx|q zl)8>JQ4Y2fFph`kVnCxxU0282ks4S2Tqq1ni`TJ2t;L5dEjF-H(&7VLi%+$z#d|C* zUT0~MlhImaQ1!5^F4j9vRy5DpBrzf~u4Lcq!ALN>cY56GrQgHBtJz zHl#mw`LMZ*>nV{u5YX{?b^U2e1svAW8}9^N2x2@|{Hj?zP`#fl)g@{*1Lu*U2zTg$ zUC+SnkKG9IMX#AVP~ErX>h^TyFb*D@9C#Wo1*Yl(g}9m{o=b>hIAV$Kc@Zz&h1u}J z&c50_d!Twmd9EF?b=9_tVK@H+%;DF9IC@iMsYCpjrHFxQ z(|*e&_Ulp*2A{_t9jKniAJZkO=lk^U(&b5xbVL#VuNh&zkf~wZJ z7EmI|7$qiIGbkmn<4}|gVjckDFmQfq@KXM|n;C<;tLl_sqK=h<2kar|bv%1)#3O^O zOm>g4VswEIy>*m z+Jm0q7=QBVQO01!-3fy=cWd{|m>F%aY(+jy;mpx)@^DGXD)Tfzf{E-_vPQ(=DV)Re z!f{BM?DSl0WwKkQ5qVW6I|fk$ezC>)6veptOMg6eEf;)c1ASsetg`i0a3>JJ)yyDw zMbb7TMw^sJ@E2`T9s!-h=gPuGtj_t=*AQltBB$>4ohaVWjN@RlF0x+H&>;17&$NCY z0x_#6%Jutwk@CmSAdu*DO+}r;?E&p$B=QfefX>18$f|w59I=PNDK0Dwp8?24cmRS7 zpC3$1S{8^5A1%!+OhEe4X7mtsKvMipW+zh&QGv*xAbP&YeNoe+C^7bTP%VmFbzyTP{YDugu+|2;OG-5~NPFFLZPFz(@f&id z%A*Hq-9rbGBZjDsn5KzRxTgUx#16qd{0Ii81IaMl1%`uKadS~Hgl{f#%ri;%@GZ%) zuFmEvOZUSOBiDVACV{$7Vt)taM+$hVn0N`+r2%m%{vzdH+M@DL`_}h_{a!cou9<+L)PW1vC58b8fw!&1|aH~7g{M;H3ne~P7=02-W9z^`SPj1u%sZZG7LA@Y7 z>=XIsVc&ol9=NJUU4fpr)CTSfKUxceZ4FkRRqUN-#h zD>PQYs|(+&=7gd0)J_G(v6Y;b3Sn#aCmaM#)o@}=WSvgeB=v;8Iv(=#UJhJkl zc_q=|8btsJ`N>7|JiOHS8(s~K#p*OBBGvWTI641sUtj;3;|vRK?asp}BrsO)_}jP4 z_*5Q>FDR2Md-~(#sYiV==5<5m&@Khz7;@|W@)AUzF1Hld<|l_m2y8xh^S~5Y^^b3C zQkfP7f6`*lb#x@@L2L}QCje{Vk9&6kN{|gNQgoFkG6$OB#ta|FkH60K$Siwgu z>*wo;fUMv}Z3VArApUAID>%H=pD7DW|M3`3L8tySzXdU`$@7cvH3P_1rSUa&kEFZp zsv%SU<%yJB-_CzQET?VdiLrq!fxq~-W-oVr^FyNCpX+}}UKQm(X2zAPJTdSu98tHt)t(^kiu!{850|9MVUL7r?H z2!?kc+JDZ!dzObBf_E4&tRs+!nv|O@Adzv16C5Q8QxU*tjzSROK{%byldf2Qqd1v0 z*ma@5GNFUB!4lQL%qzcPe(5kE1e@hP>MmaE5j9m~~YyfA$c=uoci4;RJx zUvl&xMdh!I_umk^O>+YVPhX+gu0it12LBXuTREPls?Xb2Jg7@UX8vxgd;Jnj{t5Z> z2m0e>|E~UN^87@9wDF=mu+?uR{|rMn@K(7>{<%K@$v~6!`el=s^$p;ALu_UR-;6{?@Xui4%g@WzLjNtS!p-wOCU*T({t{WWzn>S2tbBP%`8U`*X0cIOnj7m3YjvGc% zJR7(C9-V$Va>eBvt=Sx^GGJE4`Y#vfYOvgJn!i%+D=GZ99uk}a8L(m}#zt}e&)MgR zYZx(HHb^=>xC)^(Q-LAV27Tp}f)(NpR=Kn=yVBeYYQ(tg&8%Qs3iL^=$A7)~^e|Z; z@cP8FtdzQAyR$o9QQgsrcLz^|X*`ZC#vna9UE%atlme4iTiY$W(%7U3 zum5y}&%6o-23}2Gu3#m{$NKF0(K*l}hg&(&+7Ac4=;^i6j2N!+SGQRg#qut)rZXF; zO{TL(u#108vtYQI%HUs}@@(ffGo$6V*TNM)jNu#^SLA=(oHSe|Kbykjhn}=jT2~Ec zbJ`sE1G3i$)|Ikyk$;ASx6TPN^H_XGIj_Y3FLOnyNv`AV{{+?n$|21NN;yodb@-1Kze({skbebEVo*Evoe?MVGY|x zZ`hq5X<}S)^3#nSqUEv2Gy0=7_E#Cqs$PUlagflAV3W-gMyOn7<_JAFNvkVYon8VR zLRT^5^}Y6$gjPop0ww%PP@2D_9?xhE_nf`4>|a={N&f{ zCH61Ftt@7xOo%qqt^v>gNBUJ78}k=n4)YdSrYYx~J~3LJ`cOtcnKj;@3wg*o$<6md zO2@$?{5O~2eZd0d?8sET=9f zY9WmYvSbV_%b%B9?sc6eu3&B3PN|n_dgcV+k}LI@sneomN`toumHMjr@CZ5oi#)g3 z#uyXBl zGh{e-j8Iw5KC{DYa&OsKAmq-=a@)x{k9+gUqGZ-h1#bCZZHMT(*z=;~+{fWK8!Zjt z?Pb+%McqvZ52EB~5hEQVm~v|#X9|iP*?e}nd6NJ9)|grCU1cGS{O#08CbGmw>>o_} zUzJA8;*n~Gfxm6qz+{1PMtKfA)5ob44i($W2g-BO<+aoNmza}Bs>rOV;iNXJK~ns- z6^*XBO6*wfxJ-HcKn6T?w=i4z(OT=ic20y1Brt|kYXxJB+*gfL8RL}T#%MWzhW`w6 zt)++2fWR6Jbb&?LT40eu8^qkv}+tN*Z-|y?ir~TRq$_U zQPp^OzQ3Pgo-j(TeFfhBo1+|dPBRtn@R(7}?HpE7wg2AEFOiDdKAsHYFZse^e~I{u zDOF8R$QL*E->v@rMbtX13T_i{_W6{FOs4C=ROzAIXe8|JaJ z(e#%;O4csO8BV_1S+JwVpK3lbN~N88jPa>;-@tYMTo?oX>-5$*YNqCh2S!;*r{G6u zLq>XTa_aeBOV4*JJ;z<0d7b!*wQ4&(AF%X%w_VSTea`X25w936cYXkA5o1SdjzhXL zI!f1SSfEkHUGn(Jqsak;vE8~ev&&SzxwbRg$k8(80)Iad$(TcRcF9EmH(LlgSnVHX z97k$330inad&)df3!-sq(c&?FiFQ#+A_NAugLG# zRMi0`6vRJUk|>9kPVWlyf0oO9VlhBkE{b)Fon3L6Az>m-nfb+2N=AO|i&|@zv083kJeC$O2UzoS?lbLK;A=lpEFGP7L z!i(budl)2FJ|CBw6h^m!jiarYRcL8D1Qc)xs80WS#L5jPAIz334;Mw59mdH0G1+M< z=UB%v>I85ja?Gu5H4{Od03P-}CgR3uiD@~XewF|1m{<*k+mxTPGbr;IgW@S=Fpfjx z4O$0EK#yTc5f5E;_P}3s)!Ac=isN_@Yg6Viuu+wHY{}LBy@FY6W5qT81Vc>F+|VI! z#TX3;l3e#$8yMu!Ly$u5@UpCH#9U25l2y(eqpb2&RzSz*P~fo23&$|4T*K<4Rhs7m zqR^~*1vCz8ku%3w770IW7HQPW`Pai2Y3^WfG)QwZ!)rVUA8z-THMd2SVta9FG;16( z#pEzr4a@*Obau42SUVKncugA85ATVk9=@+xiu%@3*MtH}j`kWW2oX;TPh5?IVPpPZ zE$d`W(tA&zdMLR|3v0BaOeA7la+r_XN z_51w8k{F_(5rVpu-TSdJ*?l(tBD>EXOLm`RvwQ1gcm$XXrn=g?$^VVx)G{M7a}XY> z^pj0%b0TH>e_cg#n{D;_N~b)PVuSqB-AN z{XHT+2eHbp&2owTPUL$z^6v<_V*z8V&Fa}A@8eB#oSM4YjnfJvot!X^DZCTh?uVPU z2yyYz<#xvPcnxE0fr&8YFdV86h-{m;B5B@|hwk_HHA}{+QA(-sO2?^DIuWJklU0AF z4w|eQzIW{veVHgYO4Iu}+m-1Wdg4mrP#{E?G5yA>ba)eW3%UCte`Rv`%E5Gav&X4) zcrDbzbaMk>HUJ(gP?CL1FXR$w84(w8qLWw%=(u5^l zjnXVll8yl&X9pd@*(oRcKB(t6>BSY#Jxa`ORuy*}GwN zqF`0krRpU>$!3=+Y&`|{sz;DGy$Sl$GE&HcmMANq^7l#Ggk{`9FJqj7h2AcV@leCM z&!Ux7<+RLJ+<{yY)O8ePLyI}4>5*lpt8{2djHPOh$_9<6 zHyL6OYkp*9_9S!Zc=dGRWL7{+_QeeE8PFOZO>n%{qX|GvK9wV;>+Ah1iWA^S#FuGa zHD2Xux|)$7)~{eBWH{C-O_^fd%CH7xRFWx7)MP$99wI{^8`3r><_8((rxj)g^OUCy zu~DWb#ytdO=sab+8Di>E4DyP=W|*nTrcDxBCu%x4UL|V!nqeTJzhtZ(2`4nADH|j| zdd**GBLEKHdWr(3Lf6IIROq_c0Z5jVp^QW6y4Z^>lwxj%x~K^-SX69#97shkg^MOI z3k=qq;tY!_#eV+kz9OPQbl?mRz3|(Z$gln3oA|m!QEI zF@#}*!KwFMa^^kxv|`Lrb6JFxm|?f?3i&3G-seHJ{QP zNAmmOP!bYIi@uB-+EGFQX>1fL2)6k130ioo zmYmcA8d`i`U*WI;Yw>;0*ZyASVXNaQYew8R{=RA3ksx2!)G-cdJuHiq zIHNr_Br~<*#t&*tFwp0nm02nnNRoEHusGkXIj8q%%;MP8%?v;232b>H}>|C4Yo>dC+SM`Onz24&bm7geP}A(#II!#8`s!)$9@`U@B5bjW_3{l8x5`o+*m5gHmE6@@^Ddo!;>nueA zCX~|FSE)BqV$uw;z+TnGLgEj+)1jB4=*b_W9Rkg%Qb{yc+uP?#A_b*L$~XhcbX`f~mx<9;!F@!Tqzcw>)%&HM{ zmqyQLmuEGY-gc-^-KP*rvkRC!ORMoQt4-6(`&DXsd7l-)^zwjtxJvorpIHGpx*x09 z#Bvmx!^9H18EaV+i{*>ItD>33cwg3c%}y1Z08T713@{X5hb)z8Nz~PJ9`*zxB%NDt zbZpfr`9o|ss*XopNxU>D`4d%E@{GRK0MZk1uB7A{tch~6yQ|bI|F^5G~PB1}h+Ct*B_!&!<}@;nkd~(0=_Xr!rN8q?L8&V*u&bA{ywzy z_aQ6T;Ld){{JC1?%=m>Bkp2#H{T);K6U^8o9($WVRIB5eA6RqRKqXC58>nuRv;`2} zu9I}X7;b44L*gQimhL+NEgjBqv~=pzf08=&8OYGm4M1Op)*J=z3-H*7;e}Tcn3~)8 zL6+yhnBa)@`2=W*Y=CQtY=8lj4M@zAA@lRX4I3*#hOG?^n?SxEHoR1Ky~>SoDHBfj zJZqtP{ykgIKQ6YiX4L6-Oj3j94pu-5*plvNp9u4st0>zocCkY0pl6vT;oIoVI;b3P zB(_gdqXtNj#yAODygC5Ml2T%DC@rtHKznYzE8MPHVL}XX&})z&$1FjPF@XNJ59fpQ-7+tZBl?el=kSv@E$>IPc!zVCdsmP%u%ij)J zC=14H#udpjeX{D5>8yZcsp@$4^oUiHtppfnvtp9w3?|K5lE!J?nEGM`lLsh~Je(5A z;{YT}%6h?}C=Y}agKkRY`iWn4fh7TjiBL}TH^9?i=8LDQ)P|$6%Gz+e%yLlVmCgP#y9fqC(UWJA_Onk%;&|YKS?+`MDOjG*SmF>-F z$U3}haP}~>u}We2!E-2qA4wIIqn#d-NZvDxH;QXC!zyy(N(~57T=!Ayb`%tWxc~U~?J?y= zce!qK_7(E}G2|`joa@#p>YVFgP1-t#nW9bx@dDS}F-6T~yI3viuV8|^v4UBV3qql>+ZR7t(+joaoSu79xz9E!s0tq2O zAPMQGrqL0QfQU#5L6BZT$3qQWY5*x>=#Ui=2t`m74GKoF5bR)sd%cQ^0xEU{u3pQv zeKWJ~IXmZYa-Zi%^6>|G&z70lnc3MkJDc2CMix0Iiy0b?+Pj_#lES^~B`kw>Vj+X} zuJgOs>}+h1Mt_@KY+{8_hsP}~(*gBcSc63THhz(a->zK5 z0|wjP4-he(OOJ@ksVV0Tv5gR4G7?D6pXmfI_TrDKLC#m6Ppu$ zajpK)Bx_MaB8Ci~h|Pv@3ui})O*CSqNX9Y!Szk`+U#W}%nwD{pW_o_IWc*2>jQw`% z3y0WJDQXGa3Xhrya~uj<(z(Ct#Xn)=xQx%S)@m8ER43h8ar0;%kX-ovTG$wMmG$z^x zs4>yO;L?}~!LhWjSMvdCOl0(W$3%pTVR67DArnInoOKyYvISl5p!&|=sU40 z>4dejJ$Qh;Ixa1-5|pdFC|3tXxq_qI{C_}sdO})yIBO*=mGLo$0}P9rbI+eDP&;Ci z6a0(ow;Y}iR>wrThc|8K*DMezMA8UkK>qqlObgIyUX((?6%wszs%=~9JhVgV6+RWQ<>pD#iUruZV%*eTCLK|kO| zErn@Kxh6>T2XCe zDUh&11>iZj%;pqX10kPy>5xW@U4>zC>qPuQT_~P=y`u{Y!&DJ(kCA0JT?&=Q?y-Ft z&e5nSJkvI}w1?ykgmeBi9c&_BlYzA5!7bUS4bbr^3{S<1>lV!U82ey3VWq9EU=+wD zE8!XjOYpV4{CZn%MdCqh!`8yfJ-L_72J&2K%h2*ut8BtBXAM+0@8B;+=8+@5>>O5J zw%XRhsId*O%TIRMZWh}a6LN}eqm8Y|1Z#0UBBfW9xql$K-{i;!YitLu_r9G)V?xLl zV18Li?RWtnKE)_(ZqKWK6chNsx=~4^^h!vWxo)8BGb=q)&Ru7FSiHlk9%^du744ZE zSocl;x_JB2D8{tT$Q8V0V@$`N@v`ib#x7$De&@)7$pf3j1`!d!$NQHFvg~^^#SDQ5 z6fufZ=pfw!R38&wRy1m)=f-~JR;~wCoj%9dhrn6f_sQi?Y_??^relzjKKxbE zuX9IO`QZ{K>VNF2co4p39!5sx}43UTKw>1xW21It~_qc+asyxB> zQYeAKSc%~mB5nr?z+^I#gC2mMgXvzof$9-G856jAbcJ?d7>ip5Db;{j zF?D3GZMMZ?39F0x(ZG`wSb34IOgD3L2dVLjZsr2VKtp&zuWed_<_|p{h7@n3!0iP^IKpJMpyb07=qE2x|Q1!W&9pn zBz|=lH3w@^`6?Nvj5-WmDtlXK6Re1{^_ZaeWyM3bogp8AN)|oSGf}WI5(J-YRLHV@ zwn>ptz?z6RM|>Yi_kLUF_zy6ZYsE{t1p{T$sMM_Tqx)?;4AGVm2|97zS9LjuYeuQN zPpug24J+){Bgc6x6-PdGJlO+NNp*nn^vLn2kJ>84UA%BzN1i!$Fl|$ZkJT9iWg$Fp zEL%Qf`_xz>6Cbywi)A`j_Icbk)>w>OZzsuauK^Hn=oSL}lE+uoX=lzKtkw|oS*@fe z>^506bfU|AXt0{_?`OH7t=7w{dl=wD00)kD2yn%NliDC)T0{f@PL|r2_rzf3%ljsS zP87e+0RKx-Y&4fAU$A-URSvwcBFuWq*4?}`SWbNr-krT12AhLYUP=7Z(C$1+-&$wTQZP$aNgVB)MNlbQ@wr$u4#3Kc%$ z*=?{oi5baCYx6Yx8p_(fZkun+l}BEOebafY4$(E6({+!c3#5Dc4Vx?OHteBfnuRix z(^>5sPuRK&o`4<5oNCcJT+s?HRK#a|B`Ja#S(uMZ*%X#oe(I6W+G<5-%|5 zYS7mN)KdgJJ5(KZJ`HFJlN*$0zGKTb#e4swqUB0(N>?0tE~7{EHISc#0s}G|l9e=}&B} zM6rKnKXcwN<*)Ss%P3rDp9mFzdp%764L)_Ta?v?hhdsp#`KU0SAkgyL^TYs1?`J+S z4BgsVi+5QCg8GCHD$UYfxnP?lzGj6q)Grj&;h$@$Ul7z-+2M0rlBhA5Z?)l z@M&#=mLpAT9~G}NYGIJ)VLwj~S7AT@$%>GO@Sc|uJ8#1)nw){Y@SfI^?Pr}Q!FuP(^J{xw@4gtUg60c`Ov0SJsXR44 z72X6K0W^6hV!q+HHm1^Wj5Y*b;*#4xw$+wpKf>vIIXxiC2Fj6lx{sJQ zk5J(~b9IiIwY49?*xnuL1KaB|wu5Zt@!z80Il$3j^~^RSlxq(lqUnksBATuQro_tj z6CHg8OIFjBrT_t*d*Vjmc$Xpbe>o6Z{?4zqK89GrXf&`{3$11?)EU-{^znoNFNJI! z0b1RAc(T~0^U)q#FC|IVLgS$=hW(oMb$V)Gb8{0+oLZ&DiA@a1u24r0^Mw)W5aSrj zAdP*F0X9!4)`fG{sTZCAFwIXnVCobQXQXAw1t9)(jge{Ma|T`$e~#fWE+O%}Pi)Dx zw?)DYnbkN1;Hz7NiQN+HA)y7%W~_LH zZIetg?M?g`qbIH)8`1>G{cdwsfx3S`hh?CE!CN_i zQ%e9upjnEFbYy^Q6_o6TD2N#h1rhEH4@`-b`E~3Q1WQIcoKlRJn zAcQDLe63EJ)l)L%h(R4g%kK@d#~R`pMlto2!&Vy)vkYqEDXWeDU>VfLcLLjZwz4*! zRBZ$l)JBHFYGYtZtUOrPUM^U&T8bXhjWXh-5ozyiHUcXEZevDm{0URad*RiAPf@147&63g30*;kvwK2mG8npM}pK162S+WmlyWw0`>B^~ulYhbSx>j%xU ztTjM?24u#_tnJy3kef%sj$&C~yU1nWaSIi0Yv#w;dsJZv@-zIjpWT7w1k=+)D}`JZ+LaO`dwu8818j3*xxxw7m66P0ag7 zs(`|47(>vKnD>rkV~2zv5KGwK0OmAE$&mm(U6w_pM9J(_dld#wYF2`|e58taxSWv# zeJ3ya5lrBN`ch~uhRk0qPp8?ljQaAzrX-Jep49`jslslXMbNW8G$XsB^1cdZ0t-f3 zaq%9l5h@QR*?%!V1F|um@D~g{aq&Fo;tz_8fg|wE|B20#k=gb{S+Lj*yVKRd$Fmk6 z&oY9Dk2j18;Nyo@1K(GCv|({YTbC48zR+$DGt9Q5 zR0QF63_Xo&t+6^k8@hEAX(S&ojD|JT`??B`FgCe zwUVXTFjhaYKdFB8DBpb+3-4n@5euIPWZ^1mqPct&SS|<%Zbb=xiPftXP99U7T<*`w z-rqoc^%q;&KQg}_rJ@3V%McS6zYOH!Pl}8FhVa}Ma7YQ#Xd)9HfRUzJI`C%}4?klh z5f5vQ4(Pz=6c5jiQbB=Z<&s?JXlMP~n*YU!FgfT*YIaG6BT+_fcEroxUqpw>x$W)K z%$r85sK4zIwAJaU`E3vu?{!^A2N?$zeeTQwut_q1o4cBZffl1xCv3qeqSg-#Y<&(j z*UTKPT0g<}lTO#XohHAN{R$kzcIs?T7i$?zYUS#{R^G2#>1SI;-eR9pW!tjCYSs!y z0yXPEV6&E~b`)97I_mpL2g(c3igt#}_wWaX;16$XY>pbK&J2gc*o47+gG@d=!$zuL zzL!SB?wY$FoMkXNXcqJx;%S4c=(xUt11^K8j*?k|Z~N{2DsR6{F28)cJ<&9y$EaBi z{PoRhHVyqTO#XLddQ0qWjb%c+#5kGX%YMLYJ4VIxZ8yeWgU!}s^ehIVDPPF5H}~(m zG>IW-KfD34)+_o~Z4v{tC)4>dY(`JXw>J~b8AT}S=mD6(CojS#oN} z#0_F1s|F@8uWdCjRuXY#&Fa-L6iOpQZs-d`ixaqa$lXoWo0l6VpY3NKF4uHUtS2X( zPG};_uG~mzbBv8L=T5szY-W^U_c7OV7VjVy`}Le@!|Xlf)J+!~$n%CPtok@?7LSpM zFJz{QVnz|MxGa#x_gXAoK`e&IY%e6O5U;Rm)yraf-r=~#;}!lqhW95ZmU3%(N?wF{ z`Lhn2;xWWmw$ieO+MCq)4yaS{l`k_RUg7 zS4IqRvGZ7M8O(h6an1S$$2A0!D2IQRP`~;VH{|BAR?uYl@NtM3J1UT|?NlSpHe=B^ zREXKE1}H6fmgOVKoE9|N8u`^U`(46hsjyW%*e?MHv|{9P zZ~%t(i-AD$#ZN~Nbo^$+FFJm+jZ=Q6`uOb?nbX`cK_<_zSMY6$@=G)9h9NpJGDvdM+Now=}&%~q0c`|*TJw?o8={_oA zf>I%m&$GuHt!30b_OZ3-^aVmMFPUji!H}~d&j696O%XO%jQQ+1rAI$NQW@!+CYyr*qo%@I{C7 zUY${T70dJr4^K!R+m2I)V*MifTYf4wezCogA^y!MAr<>UC-_wC&1z7wQ+7KnL1LQL zlm!{CxgvBt5NHiSK09H+!W!*FG|xn}fQ((=B()X>%g_=ILbB%ud3qN}_-lU&8%5yS zllWMAXh_a@OT?4zNo-;^8?Wx*+<@@8!T3&dqdaoCJsiBo7zs+c-(neFsTC`N)+2@` zczNpiwq&Kfo5*KHX$QWnesoyFpykI|u}b0C@!eJSJ1Q$gp-N*I-9C)O5~tFlS%{ak zXf}S47R??{)+wkKeQRlvTx~xdFx(V%tsVt*m+sREUMh;KW4JjL^1T(W zbi|#mt@7krpSe=riMz+E@GOTlel%wNOvr$v;dbIBmO-b&kU^)yJD>piGv=f|jM zgrT18a@S`233=Z$J!1sRR|m{1#?vs_&@yol4Ydm*qT5S7CsdJkE)UqK+Nk!wPWy)G^T=#(;sTyIo$nG7B#A?}9liUgS5Q2L;CG zA)m#x&Vsi9+NkD8FJiFZ{pMS6R;{pA45LlfN(_Q278 zTdZ&O9?d+ahE*3JgX=C0mo=7pkELwJh$D2 zP9fXn`Tcgc>a?ts>a^K+1$Nrmh><$&qPwh4n=#SWQ2zR`y+!#E+%I!VGg{v9E211IQ~-n%RZbiRem{Z3?? zZ}KL5c$Z9?V{0DHnlMZj%(10MzlfEIdDcC>m!VO3PwyIhSH1Xt42thE$M@&|2_Ie3 zWB5R5cu6nX1Eg6>?K_<}fj+#Y$LZ5nE-hG<5CE+%=`kE+g|2P=F;HLM$!)JAaB{m$ zx7OQ}JTF=TCm%$vZ9p*DB~Ws_q!-&0>7gFp3%{s`_wrQI!=HcJe$sD-x}n@2V~Fvr zP1LtX>jW=F)pB|Ziy#Vv+eju(OS?nN(`bAvA!D{Ye$?Jdtm1h%L7nYU3!&L8!#6=~ z7=&WaERVGi`soFj7>{4+YAg1#%Cs6Pg)=`4GW#UYuvSAxsUoF<=iy?gRDSb<-62X@ zx{s3B;FPE(^)QcjNnQ7ty?Mx|Kp-uGUW{zo*gWS^iy$D|-`EsrJk}y;+NbHyi!XJu zwFnv!So3pM#J32FA*d3{@(>Lj(!Z8#CfS zSq(i)?K)BUs&=No)_7D2EZR`13ozA&%9%Ip*&&{Zmh=~nZ`x3{IRWELb40|)nMjQp zF2jA8b+4GAQ@34_V9WaVa6GEsT!FQ2GlJ1qs$=pw;?8ELxhzhJ6g+cBD~ z5hHi~1D*tII0;BQzxF*%VBc zB`NL>wJ7f~N!^72$|md$JCSJsFJN{zec>|M>aXzpVUdpAiXq+8Kf6=u9vLhm#V=a>3Fi|GzMjrf}r$#I!VQo z{SPaw4bs&~${<~uq@v13Oa?Alny5?Fnd~b?v1QYOmP*p4Xtn-V*W?kRL(rmaCoAXk zwO{CkH>BwZvx8VQT(TQ&<;bt>Jx!pKg3C^4`I^ot7T9mU)L@ybKpMIz5hBVr|_?6Wl zuxET=DX>ZZJ3|^xu||(mm+T$mKShP$1IKe(LuhN^xJaI&wE@gZ zp8R`iT$Kh6(p?M{E1ELUdf;fyQnh7jfvIGfK$%&j*gJS>7�GLH)ZuE<8`CTdvVp zS|+bHJyTS`p-DQM1`lI`-0-KL6Yy+M3m8BmfMLD?L|I%o35K%W%)BXT0P#ab1BhP= z#*7su44>MY%*GUAy%jl@Rf30mVAZ~t)geaU4rB}~<~1pv?D9Up*q0gNNmhe2i=v>i z8p_|ahiWT1(RQ0se!L(f&Jh1(b1r zlvPt4eanxd>M|+CmhH#t6IUS&WQZd!JYT0nKRcZDhB*nMQSOCz2B+v8HLdYXW%Gc! zQ-f*c>G@5Xo8zV`fBkU`0Qu{$pQ`-zH?j;GzSnZd4=TvvT;G+yJ^&_veGXXPR6RUZ z-Bf*=L8rBT*{HB=^GS}P0w}~tvmAx>z!2iV_(L2A4DQx#-~6enr}=S>6vQtD6r@R= zEj7Fj;}@o7y z_dL2yK{Yudl2|ozS&yHl-16gD2D+@n@OQPYBU!X#=_JP1)3kzszs~7;j+TP4SfWF| z*?gLs^#XL7^)l#|w|ZbotcpU*l2rp50|ecGOi58_7cioz6?3gt%w-wWip{DOB`lp< zv5~i;w31e=wORqtsTB;m)r!EBSQUSkC977<3TOqzpZ$OlMXmU!YDM@zbp{zh@NuX! z=k}1x(_m}%?#Lu@Rp+Ztdx^K^cWO5I1%9a5;Q$1qkL1qJ~( zuEsm8=mp~o)oP2W9b6C`4p#y1#8N6|u;{};_*N(|V0TJ!bT&H34NV=L&73J}eX^OA zCF*GTxPgSM1POIU~$Sa~uxmE`;*$9~k*7 zCK|E~-=Cy32b|O zoi-?jr$AxSY(mf{b|4le&JV&b;{2fLm2keu?RdtY^G(lWx0gj3j$vZD#!5@DUQ={} zkMqZ?f%C8pT2nr_DS5J3t}*y_K+PqV3^wsh+yaG+!b|Xg-V&CfWe|i~PZ7xgPE2xh z9Am+g2bK=dhqqs>CG$&?YZ`}87!LDEOAbW{m&;+IMr6r>r+DQ+NczOSgoQ~CFXI=< z;pJ=PP!8@m$p+trmcv^(wu`eGm*V~zo#5ks)z{pU<)y{W6!}g`MjvrmW6<3H&f@-` zJQKMO8N~hXScc|)5NbW&D(?T2xG#JM#KnzeQVT~D`NVb*K@)kkjl*fi%}`z8TLjKU z@Gp(c5&=)~ihwZnk!CwbyKrW0;F@;FtX{GF9<#RwUb^*0?2EZ+1|*Z{+Tj<8uANM} z$&t=%mm3c>FkoMIIjNnai`owM?&?}yvco`mp;vY%v%|ph(^u1OHQ+-zi;Her!~czA02#%o zyHJ4CH~)!WXQr#DeJCX$2Ata`Plq?Ga~)}7F0z0a3Q^KJIr8#m=>+^jqgOopdhJj1 zO{c+mFL7bBD0!;$r5ok^T-32-y{K8;BhmOJuf=`D`o=E@oB`d~~K$9>@s z=pr*@&Qyq~ymsl>aQVlR&IFl1F)m8hzSYq2?uG@!I&TcZMnEJZmo&?ehi`Mtx=t0l(%ms8!VfmY!I?Q&?r;x=yF|+&TG#nh zXARTyfh@e;(Kwu!RB;i@jwYv@mw;-FYj>IPE2=vz+rN_q-5u9^DKiLdIqx+d)r%A1 z)u>mlSEE!UL_pPFo?ig2+!zV5{OO*K+J@O+rnQm+u&N{o*1zvy2up^bUtzwBQ7w zMh(IQZhLcpdc2*GIa39@3+wARASSbF&{e<-IXtkQN7tj9IIfxM$d}^W0ZT9vq8T+) zxgbZ(R4&LtL<5l3=~`}o$1cGN$PKle?ZGq1u`c3>CI`C;#*KMFC&`iTJNlVNX0om9 zLpm2#j*QCTYEXfS=!RffMmuV&5Hg9+4Gxn#205n4?*_vZb2=IU6@xD(2nC+ga{XY( z5OH1;C!=n0j)@IgcBVR;i;GR4DSqZPIyo#4vVQ}|F?ik&z+`kbqYxx@XK9TC`)WOg z7B&lg#9E5Dz}y0i!UwtJ9tMDDhqe-WP9IAdDnCtecC6v~3=}-`yMBp+6-A4cY(55R zfzJ-SJ;Ko@4vJa+CbuJE{OOHH@|jF3a5RWJjU~7`KF*rjr@--8c%CNNGRcV_7lg`b z{W8ax181plB!hJs+39u1ShN2u*3HJuQtLgUfx?k|Hd97kwhfc#>Mpw8-C?o_UUjHz z=FQUKNoFH8yiGkcdDdVp5KAJS`|K^&TK1ufS3(j@lI24q^c#a&UIJ;e5*}P5u6ND(&*)vWSOpN8@*Ui zf$Z68^n$;>>v!_p;SN>+f%Qk=z9$70$erDpr%_OW{t3LTG8p*k&%^}YD|;cS zoz3ppez=-!#TQt~>d_?e)S{|WW!&S#MK^YClZBfcx66vV9Y2`|fnba*@B~9ltb8<( zmCq_xhVz~y=?>GCEsiE7lP^Zd((MocqFVU4-{RwbP8Ra<%|JfxRc+g4@zIJe@F}ZT zeSG}bhl}&^4~=v-|qVNF-Ou-&ON|on3z14F{{DC2K{sG0|)` zN6q+t1-dYLwWW=vo7_THtaSWo4xK|G2Zl53#KXayhZBPFkS^PzHp;Rs7wgN(UEwZd zwWwqNIjURt=QQDbc3vP4`&zBbhrcZ3z#3Mu`dGPIBjc>BxFsh{u3hW+hw+pgxz3Ry zjxg-R%0rx$$AYmECMY?wY`vppmG$qS#k+%?2;|-AK;9j&nzMfnUA8wb=-;Y&6z3UMITNS znwwdHY{=8iHhM^7yJLp2Tql`501(&*^S0T_FPm0&FkPS+_ZeuatQhwW{I+7;2bsQj z?6Xx^f@kJhVF`{h(r6#xX+jI3Zle+s0>>9Wh?UQgPF2J5E`J7|{_J-<%b(o^o!9(y zu9_pkUp+@!eFF7I^|nlCW#5b_sDWAe?3sRBNHb6qtqA+fx_ z{I0da_!Si;Q!f6)xkY zof9)l6nscrAnpLYl#$D8?{1``} znIMkCA2sUD^G0uof-mn%k$4vYL3{Di3oU<|zz^uzflAj+cKj?oTqd5mSi9r}7+|Wc zSDSU_$>YQAiJ}fC3;CIW3A|I+oTs{3$ULQp6w;v+s|NgpjlcH;M~$0xJuh?U5TAwz zu#_}Be2f;u8Xi8t@1C)KcHG)>cz>?i`+KFranx_qg7*GiJ?@w&?qw9=ZdtG8I>EQM zS5XbdzhIUlK_2UwvQ|8(G03RXu(x-FOWugNKp-DkN(~dYh2@=c%_!!{NiLT(tSs-TZW(@^Cn> zbJQlwSq}PJhy#rd<$SuK{G)(k@?Bz(apTSkl@Nrt9trw^p%RLqChqJV?CH!gK9h4! zfTK?Me0e+^T1(*)BIc{x&k{-FnzoeD3VV9lGXF~IVbNf|uWj<`Nyk$niY3sdRp~o* zUGhrG^eDe9pw^0;z~Fi{0jZ_92`v#Ao%XfDFFNgOHD4W=Psh>}wj5?X6Pyzy9GKUX z3*L4->8FEj-*Nmd@)=R2em!-97im>J6=?j+p5tsN%aUA)a^1_0nexHYw4qGuH)6h0 zze0^#?Ri5+fch<&&(v=jD^KdT7y$W9(;BE8T>VDOx6}_l0@UvzU?IMhyIlqHjP^5>L_Z^+&_wN&1sPnx&UtMcD$7msbK?Zf#ODqFx zxZj2Z?~_0^ZBu4Vnq=F&eDjjc3pd-9K41Z#G57U~;AE*@(G?oRdc_}S9BxxAP`%>v z@2N3n_yW}{pdJ3b;&z4$dPRbqw%UNu27hH%i0B2H479=to^FA)BXto7bUQPrQ!In$ zRZL)>>J3gTO})W|U(_313#d25u-@R?3hq{Z;bTX-5fj8_7Y~uAw>i4YD@z^q<*6n1 zP`U6E$HU@QO%EMv^y;J&yyO&DF~$h>lib?hr^;#P9B1UG=XDq9w?K(}oW`oU2xJ6w zk=YAa7n#e-V;3=I%B0W0QH%!frBF9`59zl+^$-CcK7}d$($Pv*>~5N1KCnQ!$3Dn% z@m#{VpF!UTLEg}3o7-qq^(M_jyx_wbc(VT)vTRmHy!qk+74x_v5dQNF{z(Pje+)R3 zkm@#pC*&i`pi3aWU&v?BtWN6^lf)N+fX_3)KLjP*Sd#cZ2=8vzT&OHZ?S-0SbXHSi zAu~$#7gl09h$mTpOl;!Ea^J`m6GYuSedVri!8xlPG}qfj1szE>ivTBsB-yF<_bC*{ z!)&oo^;nAH(Q={cv3-#Vd>p%(afQaQvhR}4iuSBQ*jeK}9Re%1Wkvi)wpf3CcWKa@#Nd zmCcV9vPc}?2ZErZRwzP8t-BVgqt+k{@RUM_u#Q@DWzXLncG>p3elda-RY$G&0y?i= z$NKczQ-2Xii!S*$UZk|TeL`BS9P(dBP8k7?q^bMSnOqiev;~oqmBz=gG|e zgR68h>6J$5NXWyBtT-J9Sb11{jxm5Uz6su8_~8rD(HKiwhuE>Ar;s3t(7gVWWE)WPXW&?SiHE;!wKCeGBz+mBI==|RhnE(tK+=C)|Q%dDMQu_bEb&|jY-=N zqp>s^LF_<$g3yRn-}w)=O^OXdmnQ}SnESf(S>bf3?#zm+?)(>U+S{FDba(E81gJne zvLf6WD=A{f&*9EyaWR<12dEnuvDBL>U`IclIs+g2n`e$%tO9n7(K$4WHwsi+a__1U zrlvqs7OU~NCzka3PF#7^o&m3u0SlC`yxDKD+99UrZQDJRRwY{jGJt^d5WYk7(d3mE zMLCO&@C`a;hTQdpEnU5|y=^i0Tj5LF+jYL&6%Et5t$_{NzgUIv@M{o-@F>Q*#7)bk zZo^^<;ZYgVV_u}k1ChQEi1f|>6H3*0nmK10F8@)vt$99;1^kdCg4zw*9O>3 zLaoK0Z0tPJE7-c@xoX(sf&E$xf$oGTh5a)^WrsNDKOZi+u^`AjeTtN?*oYya9x;K}@Xl+@F-2->(s5{Lx|khU zgr+7?gr+71MR2hUVvJ2rcA`rgO`5Ls12?hN7L45TbfJA&q&O>- z5oGzw2)Y1=*9fvX%}a=ljNr*4HK$or+%!t2q&eMjeK3z(!AwRPSwY+>mT%dpIchnb z5m@J4T}RDG$`7YIZ#2YtosK?QFuB)Nt&yBn#gTl0_=(k_j+)p$ON3z}jo}$G$>ID+ z)LY_HJ2kZ_`x%~15lfVFmC(7C*IU7-BW)omOJIdKy-t!y)A?%uC20v8`Lh5DEG_Gv zM5Nw9A6|l59T6X`>94K!JOCwL=MoI1^0Nv^Xef)_&J4d|FafaqtZD-gyk{4>MBOJ{ zp5dG;3K)^Z2x{U`tBFH(uGPfSOsCD92@o)t)NGxtS~#7zut>Eq!mow$(2=MVr0>xpX$nKuYO)zzS||GP6K8ZtV`V!meP~$L2||bAplG^js^P-#$q9=~W%e|~A@+XERzYJ0%h$@x-%-{bjd_M2r{Cuf@M z{YqkUxvsNwj(DFDP5bWu&jz#r?s;fy{xjG#fzZ0hlVFM3WpDGee3AQ1#d>+ z-g^dvOuLE>2D$aJN;c3;pqIAZ8DJc9)yYpx5cYb$kni5^93uuWeAM#3%V^_Wj_9G3 z5|79rjo36Jps>+b9_s;DKl-wCAJ*8QSfSJ7dDB}!uXic{=S}DE*lB}|>gCKfH!f2< zbYCEk_|X5ZW}1Yd-`Z2BNMc(V0jd|g6Ii=M7qRx#89cAjdAHvp8M3wE2y|Ywx0C&Fgc;FJZy=>9Pxhvu%Bfz@n@DH7&rlKc-`MwxpujyPbeN~N& zo88xWQhcT1s%d8sM4m5~vG8Gk@*3WKHsd#N40rZ4{)2z47fvgIL?S=F%unR9zcbT} zzei2@D1aC&d+X!Td4$Z)NRE#C5|MKGzs#uUG{Cu9q~8N2_)gX_dEM`S0B4rSC%Uw( zDN-0zn)0<{2{ho-1@JbQN<%5IO2-e&4=ha6qMrAtND4h!ZsZW>!jK8~STV#rEQk92 zIC-_eYf)xGbv*Hn$3otPI))H~x8tFdwNM8nG!^1V$frIap`i*Q##4P$A>(!gsNN-~ z_^oa3QJ3{w0--ehImigr+&F-#e%!!_V&)t7s312dStV-SYpiwesn$jC)>-jwUQ*4A ze4?p4jDdhIuBN8&inl+x2Nbzx%X`!`$XKpbL{t0MHPm8oG4sad=|Ia`qRqG|}p`uTUp= z5f(pN4GZ>)wcuTM+2h=9jstTE%b?*2GH75fTHL6axo^2TihG!qB7yDY z0(;UDSdg>0dzM=RGJJSVi8Uaf1g_zL{Fcs9OO-b`?DrLH|8uxq5N^T*Lh&3f+z&GB zYV|RHSgzvKTw##u1pj*u`M=OmIG^-$E?QFPY(aoAKn(+|hx*tcvhpkg?ZQEK5|G3O z-8ZK@)6KXQ$^vJ;+q9k;zd{YY%aAf|dZ%zwap)!QjiL{0Ma8l#uW}$l8bvc!c(pMT zzepQ1S6riwYH#T2na(mljVzqyykFdg75VP)Ejq!AuUa-}V5(Ru25aC-5BslBdN_e) zkRCz?>0y5Nnw`zLE0md=$4ZeN&W7r~E&F>`D8u2ehkd#w-C_bX-?$$eq=lY4K{6=9 zn^*XWaLRnA-P~=7@SWR}qRc&(2=7EvxCnC@Z8Uq*B4k-!mLftD;Zsm#>Hrg(>^3aJCC)o3gW1bOm-T(^m!V3&Mcnkf+u+Pl>$^ zSwTwB4ZlbUx~&ZC#{lg{XOetwg|mY?L-y{wS~G(ca8VpXE3BAdg;s!sk^jp1dT}2F zng{>+LMvbj3$1{89=bjJ0TTER{O>Vbu+t6IBJ@Bb=eDlsNJ9=i?eLVI+y?H&Lr^+i z{R>a1=w!x)TW7RA`4%h_Tpn7f9LHgmCa{yx+L0l>8Tm~8@fG|!u>wOMOpv9+J+0-5 z)z0w{>pAB>XJ>ehdgMBMZfadYV#p^j(w`olkR~tP=j>Y>xeZ=PyQHym&j1*sE-@e|)s{8wZZJJ#F4`?ji z-+yg`Gu$xGu2kOr@E7mzmv7(XOfhPht6-;SWT`Vt)POIqBnm%rwUGG{Mz#SjnxeT* zxVd+fSr>lb1^&Og#yRBq|G4VN=o06|>-3BE(wJcUA@7jRHsTM)^_)-P0!I=O#QQib zuhu!+$kHnzVdl?Z2xg^c${U|{7K@gQ^r)L%;7yINc-3aB$otp$S?<~j+WDh`L~n?l z#U%BHnDHT|TYkL%vNU+|z$URlWaN2orCQ)F-sU_Q;a5P?6ALpQbiNm{P*b+jTH-F( zNvK_5P@aItz80?1CbHMvx`BTn`#b#@UC`&S!NS&dFx(&A*!F6YzYMOK3vPiHYlSE;N0Ps88K zDY0_VIor*0@gCT2A){bxE6!Z+HaUch?=zu!((z7U8Z(HQ|s( z;b}Jng$ucUaMyH!%aDne))4YieVh1}NgKPH`G4QAhGNs3>#Z5^`XbDbFVLP86)9%sB*M8fJoqw0Dh3 zo6yFC&Tt+m>2(@f4PW@v8>!*IDw<)$Z^a_qgv{33wNfUHN_{lEDb`hE7uZw`pW}wIonsO z8*|U!**{G7c-8r{8FHVBG7x&7uZLpyYax-Bh9Nh63L`$b{m{gw-hIT+aK_J75-!N+ zl)MJcIk~T0giu8oYM@$}`X@29Q5a(l@iYl(TCg@%8&8cK^Oy?x)9t-*Mhu)hVUf59E)Rg8MN#kjeGu1~R#iYIoj!Rt$psSdHrAF3enzyLmts zUNQD6EM4(z^qzB){OO<01ICkb=X=f^ahQ>ynO7FbycdHo@8rLn^Q+9f$1LVO#^@mC zoeE^$Bh)NopFID8bEo*6m9IY5omZ^e7r;8a)LFjvBbZQ_VZ{``A-p(9UpH$Pv+*_- zegxXh<7b_7tIV<*#Y*35FdC3$(RNJWo!Tf?hVrlbl%ae{mOhd+MYLlTtBrSN8;#6Q z@8FidkWI=`GoV+;%eO8#HyI;k!Dr4CF`Cig(>-$pXX4}_OkDW6b8?lLIK*P&5Jm$r zad99M2U_jAvseXgSf_vcwKKnyJxmTdlA0|GeuXuDAKpq^h+PvT5!3F)> zj|UKSCroC2@BG#bU84?jYOM*@Q9{nd-x zwEAzW)qe-JIt5AP-RBRhmA_f7ZoWo!C;07cwZ5GTGcF3tw`{cv%eNTj3HUO2keQ!n z5zIAz&IV7KHCE7u35-j6N;(D{L~Eqy#(QQ4&VU%u%IB9KR%sDm4ioA}OtW~6noz=D zJ)zwGUTRqRxnG=(4D-n~DhR`2)&i~9Wn9iLDmnWNz%Y@VdHsEPqr}JTVJ=(vyR(^i zjFCWUd@4|&k0=4c7}Dnta1{80RUkX~Rt;AbmLG~5^MVh_u4orL8~rM5AngGz9ddUo zPx;%~(lEtZ6;mN%ZLq#kXD#a+4dF-NAhO7CU2n)ykf}vw=vw)n>FOXt84biV2PW`d zV6IiWS$`wbvLwY+=)h`KALnlJVY-HMvf}F@Vdd*;x@sFW#sG2|^%^{tHI9*?m2MPg z;I!Zj%!B7qVfEq*5|9|_s=}&I@wDD>AZOO7EjM`Io#@jmF-~Bjcc+sWyc82SgNInn zhOot9u6soZt5AKs-K3D11J^3sWoe`wQRfbr+C;cu&-R72uy4^URUBgkXs$lTxq3oz zHOLT^{n14yy6uI@>R@R|`C3y>{XC(SfDeB*ejLcg!xkG4Ase$~6mv98IY^*Y@K*!UdNtGQ0_?FyWzlGTO{LFWQl_fqO)(OmpFEDnz;^ly2cs@vo!+P*}9VYxmcuA)GpA#IM<}``8pNO`u=T8C>fL3POwx7y~zqz zz+nP9a)bdI=>&Br!lA>nQv9OBv(k0y@N7MDoq`p>jLV+fx*icnHD$PeJ*L;wI>9H#D!w)eVk|^#kuvve(s=Q<#-L<*Ldo)Dmab)a!jk0) zmW#4%7=%#I8|&b_Y<^=1jhq5oVUMS}eEZ;}7eB63fdE3+1FNi~Gt#CX6$Q~O-A4f& zdF)MdrHCH`2#5_%fKsM1rA&ghOX(JIf;{x1vjMUpyu@f4YUZpb{i^Bc5DQhyS_$P`{V^U3( zSKo4`%G{Kuwaf!bqLc4QY-~PiN%U@n&Mn3mjc#Rm)N;Fk_sw(?nvA^o(Seno&?U6_ zh~=qXsf=E)ZiJuEHL%Tj4TBfP#ZN`*{JjX1V7Hg)~<3lSe%%OX_^(gaV#4NBGi zCRM9t84y`|;-agTy4loU{@vcy${YX%aZqZAP`Qek8Vwz{WXXDGoYTZ`ovhT%2&_0n zmrw^AUt5iK0;Wz4Ov;o?z^PYr_mb%K|Gs@@?$ z-70wt-kN#7t81!wQ6o@e;8CSLZ?SYe0v(k}-CRy_lx33s1R>M&tffD@<%MppaWI>S z_|uhuh%N2;7PY6bTzk7K()`X+p=S{=SE0Qc(@J`BD3+%{VHyGe6^Z0`EKMT$1HVWl ze<+a%Hgu?2NrxV;r}=mx|LWn|C}K83Mc%ukbb?O;RlK-Oy*vAzi#6o?yja-Hsy?$Xl-a*Jg)CZQKP=bw*E2ObHs82Wc@#JYPzIftLmHi! zKdH%4Lc#-o12PA=dYWtDFTQb*yWT!jyct-MV851lyzNw?Z>BHikckQO83hr3$DufgVU#hRJ^B$$;y=PcUGh8C@jZ{df#hsV9T*;qJ%7AtyIkK|9`J74+W48^8^pW7+%g14DNd z-JBO4j>Ros2rF{OE1Oj0jtU0p&`x0K3!Bs>fyXwfs2z`NQc*h?)oe-16^2o}*Y0#mJdyK%@w&Cmn1vTezS6_YO`6{lJiqsW5qyL%Ga;WegQ=*Ce@3UQ+hYe71M&2 zpA=9&q0rSytO_ie{pcNTLzg5Uo**3YwBGD97gLp`V5O9$NZd^05VI7IBQ~-WPj4nm zkvY)@!9r%bTE@4=EN&^1HD%URk^+Ui$df5h$XlD$W$br!j`G?$2_*Wo^$ZY$caNUN zQeLke3=(3#1`nv7O}Wi{akCX5B;6i;{afjU(kth>;m>J`R+cY`a^7cz|IU(FaFEa~ za4iXggVfrhwUPQ=?sp>F4B5h3617D|2k~nOMF;sAffEm{8Sd}Uv~g*Pm0@*wvATj{ zwQ;O1|4&#kJcwXzRo1l!M}yWC=%c_OtR%Ot!ve~OKsgl?gjFCL7=2CCe*qmHmfTui zxwC#){2aA8^&De9aEdJ7&z96_lY;AAu(H5NB8>&3c35SF_$NTLNdjDQepb*br;RmXN(U7TL6s*|0>-dVz9( zlXJhuXKi`Wt=xnXC})ijwB;oOD>h*z^p+O~2M|cz4nn)}Vs1;ULE6*`zet-}l~lfz zlv~tN@}V`Zw*!W(KJ}~m z6#GsY>CTudCTZX_p^puM%`>rtUD933YUsgkQHdHC=h5GrWZ9|6hLyph8%AAANFBm_ z)6`2sGBAQ%+iNh_lie#irQkY z+B}t*ltuS-!yne5X`?M(t{)RRTvX^}6reS8djV5Pp@4V#*6zOo3)8LL)4&RR4C}Pc zT?q>Y=Yo(+CDygw%Q{Pqo!^zP5$87mfMe%wEae?L@!qcaRf!rq0R`RJWhkU^78b4n z3D%umo?5sK27-5>OJWd>7fRGM-J?JlUDItQ0j1UVbn~+?)vx(9inqvAf1l{rIRk{K8wQOgT2(yp!d@yU6v$~ z&oHqg`j`3WH;c?i^yazCr(|~v$@sSC;fL~<7F36w*;$5=FK37G6-J<&z zV!!LRi2wRgPERMA_X9{RcZaNqY3@d+$;75TL_>xg zN9fofC_Sttlr6&{> zs2KTI*W?l4l^?KcQFy<)XR(ZdpcMsV&}E2YeIpaa29`_2(uD;mLO%O|0WL#Kl#d#cM2AaRRRsXxOwla;!)4TygH2l5};z!g7h_5|)qemr=iE zbr8R^3{5@cdZ{N2gX`Evi3VE(^ygH|4sM9FM|V+@StcQf+^Tk8vRQ^k0J&ZSv>d8L z8)(?M3LRFR7)SWt4&J^I~}sFDE8!Ex#I?y3`Qg`j>Xd z$a0uYvnph7&1FC>h8!!}T7JAB1I{MJ0{}|fH3*c15!GrvpqN)n=Q8FQDc~CBvWqmG zt9Y060OMU2z^H_G@ee580UF{RL!)@d6YyeXNknRQ(VL+QV4@X1idD0iIE>XHCh{VT zi5EsEC&EFke`$+}tcqe{4Io=FQN?ZBSwHEhDE6=0Mds%&7KX*gRXP*)4i0C%VeWlE zg;?09a}*DEa~_rj2F*a2$%va_yNWM3&!^{>YuJ;@q<6y7P4$qSho2s2mUJ%2SFAB`pwA2O_~vS470$% zPCQpx)H;mm==)GP(JZQ(=5SLX|j6<)aUvGv{{0CYO8;zAg@(OARv8AVNN$yu(X)8@_S1 z3{>`o$!;S_p8mqs%>+c$CWc70DIftJc6Da=5ImJ;$+Zz<8<~FxnC7CbYFDtdU7av< z;a0UwnY2|cQ|{VoEmP()qDgwEUJO-meFNySj7N-3^3d1NqqnfqH1FRK*up``pe%DqNHs~!@j>w{I{}Y(%rHdAiSF*EbnV&zX!Y5v2 zm590vfz(|l>im01X&Yx68)jX~CVZk{t(2#lWp@xPMJ-7_Qly{Iq|gwK{( zBWOL6z8z9%Jz~QzT94Sa2VIX$kgr{FJrl4VDT*s-Ctthj8YptHzBNeG4qbbl;M*d3 zsme=^LRs*mYr5#Gfzx@s*?YU%oEyn9Kzi1lbI9#;F3l!-vs~I73qqtP4+>+vmDbz6 z)6z@-aXHMz+i5o}>)obx%_1m*XTW&~kIzioY6R99Fi(NPq(Xp!Hni4bY2y9{{37me zsEqrc{!*Dk1bL~2%J3~2w~7Or0CgC=Pbc`qP{r_yUjM*Q`QWDH$#V7YG-8np*Rz%w z-qcvt7FzC`S#DUu7hXzB6VI|tl0py~Je&mq{xbaz$0kxEKlp?LN} zfD4RHvv;KxodyyxI!(p`1bjFA=Zj8*DJ(h-=6NV2#vyPc8H`dwmrq>fc zX>NQ{+efNw`BYSu#eVTOFucr6ysb}h05Z|5lw79E@QeIiN1}Tlxk&zvU*y5I8@+zW z7bzS)3&<^IHhz)cLLwgc(7EIm+_Ilm}-r@y2n%U2`Z`;6mqQeAg;#LFDJ+%>sHqC8R8-75SfOGi3y zk%^x|WSp1fpnC4*fwel!OObUW-C5yhE2{`o{W4gdK%2&VWt2xWNyr_4Wk|Kbn; zEqA?D)Ki{~b=yTptV_DkR*szNRsoUP>qPvjHg(7ya4A{7-Z^!oTyLi5$jG`GQBvOM z9u&?I%B172BnpsZ4&R9(f73;QrU!}4Gl%ZPdvV>b^RW9=xqC{J&3?v`6JV-mko}S@ zCcJsQeL@9FLd4~faqesb;!SpncaJxh@5D=WBg;jCyNh8wD)XDVZxRPtbNj5yP+g17kP1)=zhYXC9G&j**UImUwAS_m0r+Y{m$!@23h|#g3 z$PIBAFoBOTyMcU+!?1Iw3XfDf#a%2uWz`O)XXHgM46OFCu141=AKXbjPSPW%z!JJf zxpb$xbhBuux^xpn9-f7u2R~;wk<&J}w1-5O!g=nR4mJ@}>Zj9rW>hI%qipJ#5lD$2 z(8}fhRh8wwTApv7ZUx91Zg(#;%(kWKUM2hm6^NIoJaM;{A9T8V8Z|~h1LVm48EwQ! z))cJ@!%9gN>R+P@6XjL6ySed(Ov`W=UB506u?fZ?xhd0~B?d7XNDUTZ0#}3n&;(Ee zh(;3_)FTjI~)1sQO(@<8OAemdvkXiag?DW9!35T zl5JGRqF0DTVQ-)&;6`npJoavCmdwq8JJt1SeF?k1N9xy+1>4-$>&53I8v-n3w{mBT zCmDUjzxMxUV1P&IKEJ=_-)R06WFhx?IwBY?c(nl${4 z-t0LG8*}v<2v%M~7fUuByHuFg$bO){9WQ0nj>me+gKsQi$DiI9TqAbT5-Khai*UQ< z!UXT+XjevpEbE)OHr%7BhjGj=4wpG|x9sy2L{*xt%bMBFng2jSP16JS8rmnf-cgA2eLF2Z*)J6oR0U5rUjj(5pKcs0HwL-u8zOZN(>H8h;vTi}oTxK) zsi%wb=@?@UWIbTM?$}&l@H-cSuCWws8iddPETtw~npcVp zzToamnd@m6TE1|cd!8Yp_xh`}QBU@n;EoHgr_*;TmoC>{%cUzrXOVJ2aKl}DVKReG zP}i=0TJH^FKj~=(IDXmdR{l_cb%O_3&#)5fOAZZ)31jF;95p7o|KV5i!bJB*F@zU0 zGV=UNP`w`}xjXu$`Z~H1u3Av^U)Zoari`(qbD8I1yg>J{M`2{lgoV_@yXi`Szlo#; zF-0)k1U#Y$hFcglxFUuNd&HxP;#N`rzbth@5676E+MN34bk(*vq9}&FH>Bp7=Fz=s zaRh&Tiz8WD7-vN>JpY_KLso1~wadSU-4T!$A@kQKH8RidmD7$n9pW>_DPpi)*?E} zd=D9-BOXRQq`OyjEVYcf@@kR0Gorzjxp7*a-UxlX-n`tf@?#6!HyUQ^hg7V?whS}z zHM@3fHda<0_1d-RE%L$|cXNLO{pYQ)4OCQ;(X3?h#RwJjaOYZgm8Kc6%uX)`$rdZD~ z6I&^SWbyxE>;pj5YCeAPzxeoX;-ldGzUf-`y;a>tG0$6!JI_cW z#?{ytpp2iWc70?iqZO>LAr`Y%A=SY?v%x;KYX^9gHkLyt?`xPH_Q{c-Ig>?4hS0}5 zv)#T*rjxfr21KX|nBv|1Tv9f6?MzuP^rDb;+d^!-YU$gp_o=?!no)`Dj2;rm&K6cX zbM~pYeG~O>-U|zA-(rRB19F?Iuzk}?L&9Wf)5K6Y{79+`+tFN(=#$>WT(?g}@!P<# zYaXqsj7QrPkNmA)?=i~yLG1f&?#5NtvwJPZ+{;KK#vJ^Aw7qv=RK*rB?!BSrCXhlx zONUUiyZ0hZq$B|al!PMi5Cs#utI|ZD&qC8@BO)j;DoS}4Kza>T0yc_NDI#5pbOH!= z{mwaa@6OrH#_#u${QiL4op$P+nK?6aCXg{N+l+Y8X3Pfln==NZuI4{JBMl-$orJdW zWu{ZCZAJF+;>f-nR5dQwOELuw;bxz@6{gKD1=#^p5$%5m(*B)I>wZZ)%nYqn zFyO&YBwgS0kvug+u4tHjpetI-#{t-m)4v?QJH_%fEObv=r7rtO2KCFFV+ZwXH%Ikc znx&;9u;#Q5pBp&J^A<&MbFCXC_Ma^fG|l>SPTDR_A2LTyv*0gIvsQhY_Bsqjb7Vlj zNep|RtTCYIs$$3Z_r!<=X?OaWP?$RX_x4qL1q9T0FM=jtWyp~6T!0CDB!{<^P>|#2 zNFVC%gw!0PfYR8Aga3+_GYkKTl zIo1FG$u-hG=H$wCKu1Ra4l}QI+GL~N^1MAZ_z4hE;hMi83fq@bEcnu7Exdh6l zx0ow7^{tm=v|y-^8R?4&T-%!2bTyu9t6Q5|y^WE)S_v69OaWkw6TKUyh32m-NONoY zyK~`C2t@0f&Y&v3iQ@S7vE*Bjp@>X!m)J|?#jwvyq<$f9&$Wa0!G}^M9HjFD89B+O z^9^ETfw7&{ply$wz>dB})gY5SW)3siV9Cg24@AATO?IyAhB^4O3b(R=8rkg}Xkbj8 zT(N3P+Bt(2keeT8wx&I8M9))n0FPn20X7PDY!D>9$@Ap7qR@FhH+d_AJmeI1t**GXE-elhykTN^ zp}U;kZJy|o>PnV@{T_hIaN;N~8Nu;B5ys%>g1da$4^^W?m%`dBjNU8+Vh}(E*$HLy3huK}7s~F-#QvRJ)7}>^Dz= zkz)SX7IQw!ATdJ*iTPue;S+P!w^XWwuJ@yP_6_HPUutI>->MRFw{F)w`O@&1L$pOh zN(O0kzxrxGVQrTjvaB=N)S_#oa1RtG^4$OE47PkM_ZNZz|K2Y z3hH(INc~8$dtAL2jNS@@)U2MLO4$x!8KhZ|L1F!RvJ55MAeef4fQ0aPZmUm~0V!`A z5D|VNt&vDtP^YZ+G77b&{)#Qn9@sv&80ie4&tfdOn0&;T$Z|-WZ362~P$iW0h~=pO zjO=@xPi1_+k5vsZ`^U8Gs=*68@%@&6D&zYVQ%c77V-z@IMCOoj+J^8*g|_1tsnB+* zLb1VA2=JtF=*)$*AGsdMaVYvy+HB)ABSDQrCse9~L|)0qAuv@}V6*#o)i`Z8>py=g zFC$i*4@B8L4tIqygF-=7Wf^L(8FFb~_=d1G&pmL{z0utDC*zpUIKhs@mHU`=99FIy7=k3#bgiL{@5b@kl&?D3~3{afe`;VFHU z^&6kc{pTPI^TDQ&`&@fR%UD=@F7Y-;R2;M&+Z8v5$V zs5&A-hr{5!bO5Ldax#*#zz>wD9pW0RWr>eNT-}V$tW`x;PnJrsI*UbRTy6bI2f(T* zVcjob!8?Sc2F6why=sc+gPVyNh6mJoYU&wuP>*+cG!*}7YBe4!nAs)fpzwvTqfn=UMd zsCElw6e>p4Y(Y_|>SII1T-z$R7s@D9#bEHTgF)Y*81ya6>yHscm0J@ zBPc2rQ%6(W7yim7j_A*kHMcJuRef3Medp*Gh-mXCnidSWvQDEf6`y_}3gI3*O88q>R3|i8i zWEsGJxpJ=>1YPe55E%unsy#BbgSeXF!c&0Mma$02SdL!=>~t1F=r@22g5Hp2I5mEK z62hGsEW-yqHaK(!)=_j$b=|Gsw@9wy0A+uhwVhF` zR&f-usw+cuS-#YJPp!g7EPS0s9>6>ncggVm!#gcMf*6%60I|+gsvstgj4HHB&XN7MHO>Kze5^ zVzH`LvTAsSRA0JCj&}>`uRY!s(+sZswEu`rZr3pF5n*{;cWL`k z-~-ij45DwK+Kpb*V=QN~=_)nI@j{q+ubZlKlcMsi;&H z7DKY#m2&YsUYW)6JYE@N!Tkb!!_;$jA(G-wR(>+eV4&dE;-PE}*E z99{t&oit?N=-84xX;>t+%g{ua12g#0neCH?+G2UmsBn?I|9yFpegAtPE3Qsn_QO;^ zeo&aIv5RFal<}+*(Kxy|8uKKL2BT3}16=p$&q@-Fr&Uu^H@UO*Cncg=hwOGQvYON`WT?ngzp`AX-L{%)Rz;?YTIv(9T)|XY zDiKd&83X__C@7ViWjJkT>X7T;tb$Ut_b=LAZ)-Q+gJn?TkU>76{wzZ^4!KU_6p*SI zVUugIHZUzE1#Ss;ceR3HCgWXK9RZtD6=X2@mzK&!(wMx&2(hBOt65w}WECHA>M-8n zh$C|T@_b~x!4Si(h`UNnsVPv^>#BJ^?EFt9EBj^4#8fh~9mR-OfWG06Mz*zsRc+uk zaO_#LRE|AsREF&eqBvFimrC1wP-V;U=i8;lj6Wx#K^T9Gm#~Jtx+B}XYpEQ503r=P z45Au-!dU7|yt6sj(3U9`q{-WKY?(x2-=OuYgTbrB+DE8MpgT5}=Q@m;zSNFe70((c zg`&7stcpC19MMNBtFHpY@m&4#{DK@8?C-Q@b!i-Lu}t!^h05T(?72+xvX{yxUTWRp z8iK311CIT~wf?RqMcAoz!AkNRvJQZWr3^4*DN7}mCSy1&(Pj{_D1f7OBrCrv#L=CD z6-Rk4Vpv8;ar(Jg!1=Mi4yn4X_>4M^2 z0ZkUhyJDbF0Cv19;4LW*<1JGhmMRrTVALz4Gs7)FeeBRzeibR2Tpw14dL=KSbV$a( zdW;oTD#U6q6v$G*(FO6|kf5pNM4RVU^{|DGccLxez5w@4iBue7HdeZH1(c!DQ4G zNu^L(Je5dH>f4|kHiYraz^vi@IC&*w3D`Kik}-2BEtNC~$@Q|!6tgtFu`!=f;ae>k zb1_v7<4r}xxOSuTuU1G)w1w57Rmc~`QNA~rY-jham8KW0pb^Ta{vyjX(UcoUg~Olwq@~t@PJDy~@gBM3b^Ii1JbVEH%>G@v|aSqcdgv zES93If*uY?0Jq_-7oWyEtOzOR|*kw|e zJlFR{mPz7~fp9(e`8QlWjVBfAsH*l^pJ6K1K_Kr)iPu9DL{3(nvZBxnzQdfnln0EL z6&UF|91p@k-{BONLEbyapm18_Sq5mfed;F&y54b616?;>vF9DvFrVXY=o>Ke9NW2W zS$)|`IjN@bTFap{9`hN8?elr{;|w6ot9!??1cx;Ui}t`j$HF9=FYt?G^F{Hp`SNYo zv7)lMFvT_4ILg2(u^dvV4(z;Rr686`^J>e;T1KIQASH6imdIZ$gCqhO6k6*N%TN*t zf~ohSEs=dB5xL5_Q;%CE#eng(U?ySBc2$YHh;4Ey9AH353M|3l1h!97aIJEr;KnbK zf_qi5J>=f$t`mV$_{3z+lOn={pbhej z+m|1@_7x4`aN;A^C1WE)S$3g$6hLDdEb>-g2OPHMx+=!#}y{(&v6Ymb}BH+ zti}cb?%e@Cv#F_ZqQzX7Fix{-FvaYyoe+oQicw+(S9=SH^<+EcXEdp!T z6O&KC(h$#}U~P17!~`Wy%wFi4S9v!eTO^DDE005DioQxIrwn5df%W7z@nFPYw@6;> zY8kf!Q@L`kX1qY($22&KnLlr_tG8x6!7!(@m-C(f8AJ7z`678y-BcrAWy=Ku z%&t+SCq{)N6kUsL%BR^(2ryD?dbQ%+;3J399rSne<@AyPW7Eqbsag51W(H3M$w{xf zHcf(0`l@0oL{Lp$?V4cx!cfEswDyyv>?f7ZDXY9%QWm)y_@r#_KsYYB>2uo?QIxWp zs{<&jC{BJ2l>KB=#(*)(ilpxU)spX&8(|b6RI;lOz)- z9d4JZjX~qlT#S893k`W5)RA5gInCPlEjGeVVye?)Xse30X8v9+T~^u}g%qwfU?KSr zieju$iekOkwWIbcan!h}K;t??yN-=C7sJczq58?y@~Zmt`EqNfIfJOsY=Wr_&Bo%d zt**y!|89mdGlpof-POHRTFUSHjqALoKd?sL>FdELLEh}St?w)-FOv4UPKgEI(wIiFN)nYrS=-UF?e~GaBd%7) zB8ElRFn6}`J|>VtQt-_^&i*D9n4c}1E;eg>wri0kWWSb z4k&u`94J!FfKpmj2>a^HL$OhOcK1$Jh^Dfhb!;k|!E$LL>=Bdyu$$0MiQyMr-C~O) z>}J}W2=754s>ocH)u6d7+@IWY$@O#u7M2s(p$PY&_}69EU2*#`l}}(dGDi6(utzSt zYHP+QhA&NEk5o=6!NEfsSxCO&VIx%2eD3<1N|tliCE@=v3{0dR3lgTO>*Q-Nb^VB! z#eKV3>!gQtmdfBWy!Gqk4DU0QEhj>2r67Yxz1aed!rom7@KDZOS7B+}u?-N(`^zA* z`B0J6_BUPW22WMf7I^OKCV1uETPL@Dx~z7Acab4VF5us70)JN-j6f|`Z2H+%$Eda* z*u`eBdX@FX46Z5b{b|!9Al?JMa|(cnE(S=_RZyXKOsIk`6KVF!iz>2y@h6Msc@HxD zXr9+&y*e%czh3gP^KmjPIFN(AltwMdxG~O$c!d*UPtv?|AzY$pToYb>t5KC&!C^mPv|;iRm(_#(tz(wSZL{4-_Te`xyO>*b_Q+n}UJ z{Q9#vei<7`@5-QE5}T4@Q=`YDPLWj#lcVjg>&5%KTu&OmGS1M%u1Lw7tOQQ%^!gjb zk=?F#Mni@V4e6?CB?+YN2061U{LlzZD3Z$>4xHMxFF!Sv;+>0YlbXkgnudG4(TRam zGd|U7WeKwb(2g^{-mEyzOTs!}0%_y;bs}<~>viKXRs;!%QjOWO-ytF?%AKi0n>Zz5 z`8Ke7M0zE6rjdaS$yqbaNc7el(9BfHZ*#yE4RfgoH=b<`hIFJv`W+kTPZ>sp^g97a zyXEX}9V-`rxjk=QEis3N12DHCP9@AkCU4Ni(J?Jr$%j@Pv>%Li57dlH3`j8C?OE12 z8~5K>al-vv5!`=^aerkPpD8sCP#b%qUEwpDx$4kz0P;4-GlaZ;a)UUzADjVzcJ6W4 z{qahCws^RPu?gUH+e)02RziDGnzTu8YM}-jH{~pl4d2dG%)1XZrQKa(dm$w>3w#j2 zXcqY3XEX~mly|fxP8#sVfZpOl4R@xzaw&%oUxQg9qbBHC)=WDddKQe?5Dz`AAGZ4l z{O5~@jw!x)==CViOHponL$EY=n%;XRz88=vl78q~Lrff3w*=FPp=16bvN%TKua7}R zDPUQ|lK*=ZevylD15U0s;{+o$M^qlss-YPEY^P4fWaOLVF|GP1 zib=KIEku{+I#t!4%XcTcS7~xd`y4K=-V#?+++7-w$mGJsw+glG0Ino}U`J}Auvvw> z#jNq2-ZJt7Agw@1y;E>4@{~6fULWx88Uz2)-7 zy;YNTx-Ryp)*`Z=AGS*EZQG7&9~|3X0wCQ)NSzy2&MWuiu%|}$A2`K}jTJ%sf~tnf z94*>3a3_WUzeJ@S13QU@4cr}!Y8xGvN5QE-w+z1@qZ088nVa{@?XF|kYYgUq%XP(t zhVC`DJ5Kj=KO=Hn?n>c)7>e0*M)el^UG5Hg+D4In%Bmj5^I1Iq%#AXhe>+8>xRwk4 zrF79X)dLeHyhha7 zipaOD!P-U)sgs-k=AG_-TA4S2V)0Pu*(PFahq&^_WX6EVYNoud32$Tp7wpG=BQ6e% z)TeL6YnqlwZ0i2%_GLyWCTOpTADX!v7_V{AbKKcci!gyNyZ$GFSnzw63S6@U(JY2@fssb)t>-jf^OjBr@8&?H8y*3)lhYa;gYYLA~s3iS+?u zH@}b&Ez;86?-_L!1hFUGJs>s+NN=428J>J_hP$uPgw?n<)>CW^awrVSbboH#&uW}( z;OVZnFOUv}wgq_RI9BBR6yDkBA6V)UfC{IY#n5|Tk`;w4>aIf?9o-$n3KQ=NqSM=I z#Jc-+XqJuz?;4)m%Xo*CB;ZqIv&JVZgW84+I@H{H=mWKl75=$)lyfLTXM+I(9Mz5$ zqmS2ZEyi>t{HXD*cH@Wrt9RES0~&8;ocGVL+l5@GUBuj|(*N{Q zwMEkX?sP-n571X_l0nv2vm#4f z=0G^kHKK?6Zb7zlGjI}b*AO0bx)~6lxatr0EXe>fM_;gsX2lrAEp8v8z=@g1aN5%p z`X5=&!z>jn=WSnc>gS$g6oK&NgYFN*E+_~ag*LrjvY6W2eXns{C4*wQ+lg5(=%LyL z(c~d_yC8KAr$<#48y<2e8f7*EVKj4-6BDOm(}&%y4F(JqAv^v&f+049*poH|cO$-1 z93z&T=0<8AnXano4G5Un3`zgf}=hCXhy49q!>;{e(b z{V^u+PBI#(!1rRF6O*5Cdtm%I`F66`Sk3Bzu4aqBo+?R4mD3)5r4QD%xo%4oep4+{ zdq(W}pSz=gfUyx`_kZfU#S-CeE_Mxf7eHk7Nh93#jS~zP#m6I@j~65#qZuF3kj;QM zWklgm?#D&a+0*4^OylEkl>#B(+3fv}qlWDLBaprOZIbs&_S!LxD}V0Sqf3Xq5ZPRN z9oUMoskOZ#kj44m{u^fZdXvv(aN}kS1>&l?q>70R*fu-k^P;MG|FiBXC00$(=TbF2 z908pCK7a{aHPaY9^~JS3H#`m0FzJXfh}A4L<<$BsXnK9X5kqd<$_Xz)g^Ksay5AH} zjdkyUwL#l)?k2{Y3=N-NY7-a_-<3R!38I#HPl-)Wy5W-SI5#|25p%YJ*#DM0y2Q+V z#b)j+95-a{{6OZuq{!9AN#_3jlKT_mGghHYaYJ%$GP^pVuzVbwhC3BJ^ zMX4CcW?$IBp*eDBBp(W7Xk(jB3;tq2eLL9pP*$@F9SN_QJcE&kvgr47%>N2(BC`6<-^3{NlkD5rM!XO0&Ck{lq5N8dU+G8a4%20 zFR7OVok)zh$9z;wx>8y~Yy^1Wy9kXqUTAN629oKKgr$8+q0_ZNzMr-baio7c=dbee zxw%{%`R~{JZk8|2_1-LBnhP>J_CB~-2FZT+OK{bsbx$>>GhAq*E)W(4$xi4TIJNO> zk*44QvvMu}wnwz#^*!&2$_4IZ86kW20{7z~`o=Hi#2fzlCf@mnmbiy#`k60foa`SN z0lw}E2PXo=d`*hkPj_M7{ixWr++F`R71%+!zII$_E8T63;~W=0|OE_tD@u!SKy)%XpW8CZ=`SQPtEq&pr&!vqwclwVTo6 zc*5E8VsVYwiekxrcX)~UI9as%(p}e>%&|f~t_^vhrK#TfY*Q26;RNtAzfCEb-ayk`tnTrSRht$nUw$Jyp~7uf^r z+z;1G?Q5p7mEcF9#wPD@e^_Ep{~>nlbf+1AFx~+5+0jXe64%&YZAxz0oWB2c&m^NU zL%dWp*7{m@a)9E;uMhXSb2a^;uVq~PJ`Akt;tz6$4GzMv2K(J_mzZHa#8(I0O^qHL z1!UNN0vXoLCZ+S&vWrs~{5M#&QeoKZ3JPbKIJ!F_R6Mh$ep500F?TaDDh8`_BEA>TR%gFePI1b3my_mq2Z@x|CT$`5^ zH@0-by=OQ-Fa-HXdL)TeEc z0rsY`T;RBUNj3?qiXwNFB z=GtzRVer@gPCI?5R63;5t?T~5YG`dm+#fIzYs)fy@MD9*-zslj-y!yt^NjMTljjz^ z(gwlr^>JIJHdU(Iu!=Tb?D^AOC9WE_&Xp;Ifz$qSUo~E131}4Jy?S7smst_mXU~jf zjX1*eRs&++Oz9Fk3k#Fx%*HR$oY`ARb7Gn1;MNWu_|dnLfmpfGQ_f$Jc59w?nz4?- zCPm6u2@dSMpG!fJ#+30)GY1odg;Q3eR#g!#4bKaD z-EFk-R!sTiFi*!=MvEg>WEZJaYXnXz)ds&vrP^#OUZntOjK7&bA>0G+A+u2_e{Lnu z!8)+jFeSt&G$4%()3RVS;7-rz7*C?{7R&UZ5gQy0 zIofsJrbasm_B1!v(?Q!UuEl!V>wC7z!3{9>*Wqpq3fLo$AYcA>EL9q%u7MTzvm#`a zSWAu&fkF0ghK1#DhF@|x`v(o`x=m_OcnwdIzXmn0>3If*x9!jh8{WEu+k(Qa$#_*B9)av8~{~w^sUgIYXXb$MZWkR(Lk;im_Hff_FV( za=c0nTrWGEe@#1{msq(* zH&}5UU}(!~)h|*$StJ&w)H6;8s{}AMw(ukwj1GCa=wmERthP@VG17rjt-fODHPu+8NQTv1=nd*;<6S)*Y0KuFC%nT8po`|M3mI>h32pu$cB@jwy~~7EoI! zw@S&5!Pdzj^~WzVNd0#dS<4An%MHo@JKa;!Z^V;FWIJbirW?<5G|?74qY@mTdB2vz zkoR}or7GglcAhtlw-p33O4^&qHv5&H3G%zk`*$VB20_L9I!M6otxpPQGg@4|*Aptc zEGsX&?2|jxuoA1f>>5OXy6mPMa*Vmu-ZLQXbxh_R_bG-bbzE}rZ)K@nJ9=*S$R2qw zh$++W^Mr+crCPN$_n1l%q`8MNfixGGfcO9MXFTeO(DYw-$cv)CvkG+T@n@#FWp~O` zkDIWNbLw&IXJ%9V#tsUZY20AdCs#GQL4c{H*`5?5aVONU=S9#f2Iw_+GA~*Eoic7E zZ`Y1n2@PA%)~@N-Fdf)DG0YP!PSj6L)H8MptwCxnqb-AhsOxPwjI3a|XWX6I*v36Z zB#oiFW3(rtbIg!xKlc)_8t-E<@8-oLz@6VebA)7ZC2_okKPZMfz_MD+L z{3w9#DI;$hR~f^ohhJhn{4fv?JzV<^(=rVvUeUUTXQi=#p|q)&Cp+pOwno}lPR^p{ zisT199`Qy`&-2CxRvPCsRlG%tuiYtcdClD^@B0@i@bOMja6BbOR8DPMLDcW%dBZr& zS`EO#ev;@Q;_#_)i4{EXpr=pBt(_p_DO$A1X%<~ZWcBtmj{OPCkOzsC-YCYU)`=Ah zdwUxBH3Ce`j#e1jj}o1?NjNA;h*t${bUs#iY!pjRr({%Re08i9vPLW{->!Wu>%YEC z=sI9OvtrYB0lH*BUHC-?)U~S^1NwfSpa%3(U(W}|y;z+s8?rK0f&;Y_4Cwn)hgXdd zLx*@Oh)TJh$wnUqMb7LV+$CprJ?O9fPD2n}yxn*CEa)U@H(4oZH(TurYByg*m}EC6 z?2>l#?EzpnyJIr9n{60wWH)I;?`@UJH}s~fWHl9mKsy%)c}#=VLCmtmjEUDDnjWEIG0eG8l&QmchLO?whpgvZP$U@1R? zyK9#;xVu<=G`RY&yJY0x-&qD(+@E>FWp_)9%Nw>WF0@P*m$w{XapQMOi<`I`(6ZH* zkgvI$Azy!Y5ah|?O5|;e3vdD~uAZ@5wCUyniyqj18{U4FY~NrsNRx{#lF8*HD3iOL zaRyDUzGauZp`H(vS3GHco5?JVest_%?8JRxj_SoYa zg1UF4wim9Z=q*x=N_&-#pyAg- z#keWX+OyhTvirt9Y()+zV$++Rrg}NZXqp;llw-BY>W>{$y^(J2l@azEv0PdmxLMmR z_maI2XKlmXE{doxTel59fDj{MDpY~J;fVTrceqCoUpv|88Q63;)^v_+I*d0hFfKXb zO`}y2ybIp;Gz@tLK+U>SPcfbiZ2f80`b)uD$ET7)2-O#c)GW#t!u@?4_Zfk$zsFji z8?1E)cTIR|5R}MIhPDYQaM0Zx*dRnO@X7F-U=7mCPRI-l^3Rz;<6cs$yVF8hn>6hG zy+;mvSD=I7uy+yk35LCJu7tWs-*In?{I}opbkdCS-zv?b5#j=B5p@}R@*VOmjePn4 zdEe7aOQ@#GJH58Z(3kWrANu~>=}gai z21};#B1(~FucTr`*9G8Th-lp|QVS6yKJsKnt1>qEcYG^XNBw7ezA$nW^>RE_#qAO1 zVaY9#`Jrc&I5FE(UbOts^NKNoRm62#v{%)%qX`UU$UIEQ#H%uP>vyPT?D5M_u(lC_ zYI2>!teqn)FIX5Fzuv>9X#ARvUo?JA|F-D(wdcI&Q8DflPmlv0U(E4rGgc^+q|bVZ zN^pSY-6#b=(dZ`{))h&gdR80T6$I%gf^$O)K$$-m*A~HKVdH#H6|s0eEUr%l7Ci1( z@UQWn7;$C1r=9V8V8NgL3hrJA8@SQ?R8OI?v+_O~J0;lBM#I4Ty1snSEK88*DhPAD zo4=KV-ial!fk-Z9R!WX{^S@Q&9rIUpMUXV!J-APeiW$R(Qb$VDue{`Q57I^ElJj&lEmq%+@!?ZkF$s7KB zpIjdChVA7Mwv0BGw=CBdgC9!M_Q{Yo6l&u5XKA+^YJ&WFGoEQ!Bdo8&bEAB**0`XO z1aPcd$WQwqa%6u7fVIRFuTNGZk z{WiQB`=N^R>e=vO_cH~k{r?0HU!x6U^uZ(ucN$tSIA9UwJ!2j4+XK(h`j=Nb4V{8j z3W3JuqqGc)Tp<*p|19)L=TTbG=W|c_SS}2poMvHXY?0H+Db{Zsdxl+>jOdey4;j%> z_(eu^)c&GIl)UZVeBmkMw+P5T{G}&dGbS>kXxHy`mEb_kE8!JkQa(C9W$sD}6J6Rh zs4icgovmQWQwtw}r1ABL#Vo_Oy{khm9i;kz_#- zTK#&z+-p9>a%ry_G6=#V^vf)B~h#K~Gz~yk8z{Xuro3;-`3W^*MR3XK8qA zg@6+YgC!f|clUGmmk-oFq#CCgMQjjg-rfh; z+q5HC4H}xCI3Sm`kJ4Y;=UGfM^uS3Iu@vyH=-Ubs=2B3poqKCl5(PaQl+`EOYCzA` zK2Z0pC3bmSk#W5dFdt-_F-&NENoSegW2vAB*$_f3>2`+^hfnsSwL&#br@QP&YZt3z zxx`$631r-WbGXD5JH3fd8DFq+kr4eI1ELc>)ZqD$BM0nt*D;kPX#D>E z02>_6K?CUCoQ$O$_a?1m4jhm{IROL)<@5&u+W`%Vq{Iq(pqAl+X5D_Eb^~-qe06ET z0b1&W%me%=NM`aufNYOov_F=B34XLw0Q8mzWqi!mtUN7%TZm0RIE(8J2jygklcS5S z9g^E>O|cj}70@g$EtEAuJ3b!Flh@s7UpL{PT#wB=AOmGS#VQbvBa7fj57Xuyl-B|$ zvhsxE>kP+tg5rp8(I(7ADewuv%c>#h?>SE=S_Vr}?1f-`{uGQ<6wtG@O!2Umy)(`9 z-!Tl>RcWx?g`mlN?Zz)MU%L+$87%W*#qmf{bCv(^i=J{?_<2A4GkR4{H?FB9X0Og4 zWcKQeD&nA(x2F{Bm3o@C+;>0{^Wwz@0qHIKoqUxxjuj?*RqZ=zuc~~9Zn%C%F0EY$@ zKR7g~_@&URvl|#NoR=kd|Ai^Uc>CE|ze@B->TeZHJlPB7<$35>Uc_O>zYf`N&mLkR zNO|b(Syn|^T74v-j&BMMJCwgE#}%g~{-!EB*2?E&%bgk`PDb}`Byx@>Me4Vp>Yc7Q zgH>S6jrv|Px61c`pKY6Hz>fG{F;`0vR=8P9OiBug3dZ2D?YuVgctmt%~UPtx{gRTQIH6`RqA{#6d5VAy;X5H#2= zW=18iHJ)SjNn!u}Jt?g5Zq|CGy5{@+M01f>@2`C3VI#tUm20J#|E)G~ftB$rS1P%BLCYSYg6z zHOGtAn1!bKl)e|*_%9sc-N(uka=STl$ATe;FU7{G!MUN_=KqE@w5yTX+TaPaKpdVM zQckl`UoBDBdmTbQZid08I4BT%;lgHG&X|kSby~Q@90h*U!X*~JXyFojwCKXcYGU>* zx^NLYo0@|R57uPsgRF)s!2y_ev1CgUa`F{o5T7eYQy(`n6$EnaX|2VGyUeCW7nV*Y zk?y^=J}MuFZOw9lJ@&oVAlQ0aK@Gh3TIZamb7;(4RL>~r4@S1BYY?M!I z>oF+cFiR9;-%PnXmZds8K`3-DYz)>QA&kW@62jP`LZE}q;+|IK^`gfuMz=O$@xmaJ zw{@yYaDe7rE(Jk=x3z+p`F4s|^vR&9BYHI9-DQ%&S_PD?S?3;=Pm<1Mxk?5>5cSTn zWiZKK2C&p<4kt`O26Y9#39BEn1u+L(=7M;Ofl`8CsSZyN6ba%y)*wM#z%LTSh2jM9 zXFKz!qJn6CuQ|*JIR>?PkN8`m;sDLNQVN2&GNyt3E^N(?K0)YF$E0hyHbX=82FRty zVWU{Cl0*`vEg{%wt$^2>j=JSprko%MzI9r6}cT$l1F1 zpN3&UDR%N`ypT^p2kyXYymV81DSpw7BHdE_qB}}Y!ol%=Ub_3x z3Xe0=Y2Ma&yo1hD&By&<+G&0XcO__#qzSqU$xnU)JrCsEsDo-r_J0z7krnz4zo-|K zgL9U>%t0ahk3n#*z0apZNY4>HKzNW2?_(sDy#pZUirg1kC20r6t{!HMFii2nIq^HZ zOLxn_bxP+^hJC2jy7#%XG@>O2B zVK1|Wfhk@%zIcZh0!H^T2Zz*h>L$s$8cb|@o5^Jx0B0oJI(Pyjugv3*4jnk<{&MWS z2H1AOQeHUfa)(kKIky%jM*uFYp(f{ZfsSki%qM{ z?D#F1z%4w7FP8qx9V3>kO{t?FIxZi%ILsOVhGavJ89UIt-2l{xnRs}RSt*=@)nycF zza*Q@D@)9YY_aG7|pQtMSe%9<2BI)CTG3G_Bk$7jU*~n_SgFh35NONzaa9EpQExC19;|KV{pUzVyhd^gwQ5U}ji*Tj- z7!%|q=eS7jSKA|w?@7rBOT-48WNTR6WRbNu#jV%>LAZ+*AstG&z7`Dj5uL&3dQ_c zZ<%8?BU`25{3lBcj~`aj5l~_h#(=@x8YWKp*;CCbn$gD}WOn?+J~Zu(JinT`*XurO zj9_(e+9}MJwa~Dkm`XlXP*Cz+UJ~Xv#>;_)m)z1q_3^-b+|(Sea*qp=;@ASCl6dr8 zGcn}7AK(gH%kU~<=DTLJ@xCg_1o{pW=qFO31{0`Q@}5~IT9IVmasueI)#3-8T+o3j zvErfW=6?;AjEXJK&uC)^I7MWpBPv6GkS^ZGBvOU7Mn?Mco%U|%$&_P2+tMWu)H6;n zvS`K%zE)Jxg1n}YB5{UUI*J(1g=kM;{gVEFnZTxB)vJg)v&^}A*;692Q@z0upc&t1 z6QAAF%n;k#S}swr$czwC?W}k)ymn@&*w)r^%d~s{XV%mko)Vi1%@o6R%GcLX_Wkwx zr_?A24uy;l%{%?XKITKSPpOQ4dg>_|y*rhmKy%uTn83Sp3J`~L+C+H8;C=T<{XzA6 zY43WOKs&6in^Ej;~DLZ!eM1~1!jQ% zR-lY`*)sj+lw7y0`@|Yzgq~K~Nml###LgwM+CI#*@*+7O9E1RlCPrIN$z{vV{SSqS z>}BQ-%@T3T%{s=N3>AAwvO~7u6XP zxHi_4#H5~b9}WN7O1%)=oNLN#j+de^MOAdt@~qwD7p7j zabmUkTYw>?Sz+>8v#T+mA%gR$tT`&dH|_hhbUI3e82?aG4Y6*W`H1nE0)sA``qOqm z1l6@5F+4&34a>xNskT-`Y%uTBj{wgX)lD^yv3xbjflYXy?9ZL1NsgcF$9!fsLl88> z#ly(4L1^`^0Wsm;)c;Q76s}Ksnz}(a)`YcYY5|j7x+gC zJqVS5F7?4!o&tqwwg7-=SETA0NFkScHT)u%dbKm;QV;(aML-cSK(r#GYl}hR=}qR$ ztRRBUTU2r(Oubl6?>LxFBV#;B)M2 z{y7o7#mtJ!#sn_$h6=g-;W5@^&3I9zkV`MFL13M+tVH1`D>Ifg;;;}2qK)MDurMjf zbo?SEnJ$$i)=x=nQV%H%uR!b(VOnIEVvw-736%U@#X zUi1FAJ($3?Wf8**w8fKu^ebzLW|TV%Uhr*m!H42tN|wXb1w$n|qcV4bxt- z%86Zv;gra5g_3kO1g#||9|32>%d9L8Y|_~<{;YI1jHbV~vmt0JXPL8MB(zn;*}!T^ zXG6=g{>}!hB^7Wve&J8Y*)Z~~9I|pTgR5j~OmMskc&^C-umXV zLTh5xH@;BWYHg|)010^IlO|z1&x&LSd=-i%$=NVc7(bZ3ZhsCoR9lUDf;S{0<4<6- zoQ{rQfZ+~L|X|-|-cvhxPhN%2w zN!GSQ!#QAkMeCPjuWdGz*uLk8&o0}`8u8F%YlWWpqg>U%U$v^~yb^X2mRvB8LHB+0 zqFL8y|D#WnXw3=%%yX|ezNfA~$|*T1rmYT3E}4(szB&+=33{6!<#M$RgHE&Y{+Pfu zq$Q%0so(XZd~E7T-_H@(tW51kxzKPYz>65PC@&1Ls=yQDa58G>J611ISPOj2@G}t} z$SEj?sQ z=UM&O&#UvSn)(OlMEr6%S2L5LNN$no4zs_Gj?yHr!x^u^?hfxzGes2sW~K;ey@L49 ze5(XIL7XOGb6YT+h}-J|xjn_EezMJNTI=s()o@-H9UEBf8&%C=n(CLJpS0Moc}{Kw zRRxa1Vm~%WXYt0Klhgi)3f7WQl>zarkOe(g_`%;7g zWv}ab3KXWvGk~FW{Zm+)=FLyz7tNcWJ|8%51}VyU^U-_@rc9U3O5)eb*5Irl(#F$aO*Eh{n_Swgttt$NNUsYela=c=FR)R#%T5>q#Eqg(Vye$?ck+;Jy5_!7| z)T@Jv{HiT-SBf<^z#@;0%eh;`*RpyUeHaELqX$)jgF)W1Qn1KoEf{te*0!Dz>r%-g z`&_S&Uyycow1O;MHjojy!R)9{ydZtAlUMb^DKdr%bCdI)WnRz0hJxzzyDmVMNeyfOoFN99g=Ws0{6?yRqY8fdH^ zL$tV5dn!C_W6e{bF!e|PNavvsHL&guQ_hl=u%vF|$%^I6Vy6mv2YlzD4$1xADaqoJ zDM`Tqn2~L`3uaFRZt#{gFiA;3%=WR2ARxWr7v-@Gh+5FWh`R_}uzMS7a%?d*y5^aq zjYh1na+SC*N>@n(`fIyNifKlj%SeE>invNxE$OT~hkDh=cPs-d$-(3i{KB7(rzGK` z)T?mJ;Cgj|aa|tEAWz8vEax~-e4Y|*=(HwQ17o<#lzx(=d-O)yMb>4Wy(kZ55FXTL z0D-U{;GE&C*{yGPFWix4C4Im}-+7Gqyg-U_6?V4IHfCd4utV z7DQLM{`?6)aP`UbN3`x@b->0eh*_P^RuD(it=nCFlJtO{SYiI8SI{p)kH?q2FEW&9 zJyiKpKxa7zWaH}d49F19255=mTBenWKWUxw!$r9`ENE*T(c4~`&T|;c#wbPe+WnV zSJt2~xS{fEQ2JN=l5ADqQesu_FO}@#1E|aD5X3fkyP#pMK|1_(RKGL2R!Hj;#DB9b zp%sew&Q@LHI-?79Tf4$U{)ZHKplUyMn@%*)Wrc8pe&Lezq+DPqkccZ?4&WzvKT&s2 zUt*4w6fC4Bmsuk0>cA41NRC+IW!ZHA9_o;GGJjHctEr}Uyeu6g_cPFB587X5<4F(r zfiKPSegde@sBp&}BB#!!4(J_;6tlWmCFm&(TX6Cw^|IoOwhSq<2!jK;m~NBR>M}bG z@f@p09+J(0{p%T3je69{OER<~9hC(QBhTg6C?VT(2@yTXXn^N3Hi+7LH$ww>WVYIxn$Typ;p}YA;I%aY)}tOb{x(5cD_Kir3d(madTmu_)K_!23eUBds{` zTdozQM_!Q=qCMCqw=?S%5INC~;VDp&7Nufh?Lir{EXOoKvm@ zx<^2C(mgW2zqLFoh#>Py#{YaU2Ng7c882mDbgL% zIIzx8R)W^XtPzJXh&vrpcohqiNMFM*66tGFq-zAB>&oJ1v?$_W3;)jW_p!~^tu((?( zkbTs?l0v?Z2yDPf_W3^a8in$dNSw-Mr$nk1vMy7nP<9zYh1?&21GqnK_a!{oF0}<3 zdddvbBMO!Kqd8*3i3(Tf+3t_c6D)ZCxs6IMjUyurpRghzr4OV_q3r|d#z2z~BpX;+ z^1~wxg>a67?FjKpvR8*CKSt6`q_43miMZ+Z>QJ5~`FEjQ9Kv5`ad?k#&XP34Dsar= zZ7X!zMH4Pw*}rP(9~4Sw$V|o{TKr6RvaPfL3&dOa@`%MTza|H?3(V76u+ZiC71RPlmi><>^-o zrE}yOgF=K~b_mC-&c6qv{Ma>z@?P&*iKRpId7J3-3>_jm{8|9fXKf-+NuuEeNbMtV z<}7I(9jQZ_L%4E}fJTseWK^Nt?j8_m(BfwwP5!5M^f@QEPJ!=j6@P0F4 z!M(<+Dms4%=Oo_0CJ&{|U=*W5XzwA#_6>-+*Z!d=R4a``DFLJ<=+mxAf66q57ivb- z+Ca^Cn`y$NYs{&#lT|H+(rPRfec3&Z<%g{gx)xItb7F2VXr1~i+EID1C#P)5c%PUnixZ4&bGg87z~WFr&rR6>!08G)o5&*#}gDkm7yex}5zFx-Mt`G)04}C!h5^ zn=FopTjfI5U)M#_OJD;UuCk)_4NxA}052c}KGF}rn&r1 z{Gz%1&g+45d61{?pvvN`Akr;`<0&MGWyU#$zC4+7S|yaW+~cK7CI|%YE#QxR@4JO) zx8ADntkGFvIk!G01ym8#rBaOQJ{VKsBtrSkH1i&pPJj1~+7X+5K&kd#oaC)V@$obMrb~J(2 zkeYDM4eGi~6GkBcqzTVEn$YDdD>JSSrgKf`peW@|o0nKJIc?epRvgDlkUFrI9G)Q^ zqz==uFsZ})_(kgQ{y(Tg`x{an;QUHssSeY(S%U&hHl1YYxE)TitYo;5{FbT&2bWSf z$zscIPHk(nu|+{3&$!tAh?ORm?y#B~2Uu3*BUTUXhIHnfy&;`B=U6_B?Tv+5*4qdQ zDPPX@8$lMP_Mq|}tFj*XlQiL< zBPLuM7Ae$h6V6khFm+adL2jI~-}t<_EXa_#lLuUQB|l4WM-YmUp9e%cy{HesE2-G%Koh5vj} z>@bBzvBNws9f|o0nuvEd)Zs70VM`QAKXk1jjvTn{Eh?Bd$uL%9_=y{O_~%26twB*c z{)cxp=^ki3ylq970q5fvUG!>+N0{isO(i@vMyE<X_cp1Ow6kB&Z6ha4@&fyoG zJ6VhSBDB|%)d>Bg?iDj@@n$}20Mf0je{6ekC^WLr(l|@Bc@}pHg zKjC{TS2xBg5MpWdMk!*!5$mopuS2RBYYeP9?Wh%R)0eee6Bs+C|MMI>UKpJDgXRWGA2S{kEqaio2DRw0ze{STqBq0 z_3@*TV$zyR72u`~I7YrdX=U8zIzHzIt5diiD0mxtRBy57lSiY(k_qv!Cwv3unNz$c zMVnJrjV!;Sw)#xCUGTVR-1c?QZ)f6>bww4yzC-4HN-1b$(u9bLV#Y1&IivC|)yF^p_GU;B zxZX;)I7ova#>Org3wx8%M^L->2OR;(yo z9N*TsKWNeRs;G6-lO*o>-MZiCA6RtkJ1x`Ta@yn{>NXMU|A4K)!N}n5`Xg{*tyk?B zvAgBqBx6iqt%B(EwonVWf4|mHjQ!Jk!+0mK4B6@j%T zeXM2bP(n3bb!v@9ql_Ja1$R%X=OAtz_Rs9DZ@ncVfAzF7&iiNB&m}=FHm?H{>7A$d z^+u1286k~q;_Zvdf7z(FEaPN!*CCDCP54=<0ttuEhFo8}x9ay6zn4`t@BCRA=HxVdPTU|fN=xeNo!0xPj&x>p28}*IH(sJoF z5<%lnXNxQGmYjE2!Xn&IU1S|f9`7x9u2LK0-wbz}AIc=cMwi!7V0 z)R>=(G0AWIOjatKFru9(Vn3O-}77 zg*Qw|Fsv*Y=1){I&gi&dUIHYOVP3|{5Xp;*BYC|f*Z9&Pc)uw2bd|1XF3Xg$52EtePLusEKC$=3hEnzx6XcsT9i6bE6s^ z42k;1W?7YApe1{PPArS~r5G(q_=U8@k7YSk8uix0ezD(F`dPlIq+r3S4IV-?ZmATJ z6Vu2)AwZVx9K`MoL@cv7#JU7Q3}jg+?*GvC-2qirZ@|6p#Q_KK0s<;q1rZV9zIOmF zxVQ(3qoJudGDR)aY!7K^g{#u1X_5^sOKj1v;b@Ovrj1|ILBp1%X3LR&&w0*!d7pc^ z)c1j3f5i1U=REs7=Q;DW)NAImoRPA4$Ax~JQ5X6)-qBN^^%vAsbWIl(fh^2yiiJxQ z3$e_dWG9wK8>`zu{jsQy|IEy#9UZxW%!~=CM*2|vTBmMexj!dP*xs)oSHD%U(|D?K z7bDc@86>|CHf*_2{l3Syfc zNsg}n%*dQ1hue=4>N2_ZE}3ALpT0t;mR|%q{HOZ#)x2cK3*uYG6LyqRtsbgU9EqZy z!O`_QgZ+4?>@{ggp>R3{Q@6j-*0(u2i_@$c^@9^li4=M)ShQ^SLdW6ypJq>}|4Y4T z$Y`ss5FQALgO#0eOl4p-T}}NZvK6G3CANXST^s}SUdI%ddB*~JYtLg%^w!?QB~B4F zEjl2uBddKH+%Mepdx7Bj<(CqPMPxRp`!?Ot4&Rq${7EC|<;VuU zEh)-b0a+op<7MaQS07Vfn!1*ilJc)?O01M^#+!OL(loJ+F-tPOXv+8^Dx6rj$sNq+~QrDFY$+ZLMC8Cn7i)gG2F4U0~OZgSv}0$1RVd@g;RH zz8}hK%NQO9>%J6r!N8Q&fa;RcAD*{#Mf-8#*~Rs8rZyIPR`{(r{>6c(KLOZ$Mv5|I+CgB!*gGT1tX-*XUt*5#wr?W1L`Z z6lb)^VflD_<>P(v!&(g=OuxqMXcOnhiaDn4#P}lfj-uZpGi!sZz^yUY5L0J zYV#leTATm&T6|IE-rkPawCA9_k0V_?&y<1Aj02LK^gnZ)qEU3CrK?wI@{*)+PwOY^yIxtFP5VzWor=-bv9mKE}9(@)_9dA;RGE52%3;Mp{lRF6KtP(pfkKb zpi9^p)4d*g0+#f1bQ7VB;RfYL_mohs{MJ%}d|dyqh3U2v$^f5Eb1WCdti4=>i(VRN zw|@RjeJZq$0-*cSTFA2FYAxgz)UQ0U6QnCuEIqE)LQ;o1mIQP^drV?)I5gBTRoudO zLXXEa2V6WDd6NZgSnIg=%=OIHaPe@*{bHR(MJ>A2KHv-p^u{1$d?}fi1nV?O>op4pD zqa+C=fZOwWi%ndrmal^cbf^DW6@a=^>cQeO(Va+5$n>c$t;0XGXrR2mb~8UA|C0q) zqlY~rN(c$0X%w7L&tyMS=6GD3brQkWrbVfK@`TD_PBJ7`7SrLR%3?aPW;DRZoopgG z>w1z>$nc#KpE==HSxodv%3?J9GtQ9^&Ip>rdmtnZW{h`?6$~6OGGh{hz09kBk2c0J z*!JxS^TYC!7`rs`)63x#B$TOSgYEK@_;sH6wrS!@)_`JudHeRc$f?|!Y#f1Z#DXnd zQ}N@9Lt?_2oR|%rpOCFDP=bn!7*ccz^_sUn=cGy;CY)4>!?!2oVcBBAj7ws!`L%b? zIPP|gdD>cjS)!-S#I5odZ7pv-sWuZYls%RnGQ9+LOmzG?GDvKwe&Eb>=2)0F$x$Od zWzt$f9s>$2u!;fFVoH)kO|BPz)&buUo1Q`&-3;VXVN40W<$r zF<=%er5G^d?p=30S`}-E&O6Y`QK_LgA^&pXB5pK5C}1Y00RdE0e$e_)S)yt zteWlcY6k3>=g5V1n(h>jGnO0TfY>0RTr2jf0hj1+{H?ys`W9&cavu1La zY<;^DGyWwDm(Tkv(4vs`s%Mb?ACvD5jPLWsX{!k{R{USXc@7C-=Q(6q z1?_^>OKe}t|NS5r)oGc2u^gQ!DcUIm$ww#UX@*&_ZgPbO-nr5-(e~6SoC3pDVMjSpf$?*GJ52rn+dsk0wyb%)PZw1P*!Nb4C}~RAUF{gre21B&-3Hs2IR=Z{7p`@m>>Ori6 z_|-)9%T3 z)U0=m(-Brvp{f_bQES{`Fc!~zpNpW5-Eb#)j0ZyeE<4$^bQ*A$aa~!FBfJ0<=tW3TdlJd zw(N&2Y$GMMICbD*o_~`$`p5>9DE(Ysgm%}@jak#CQxqJoa)dy?4UVvo0#q_gNlH%QDFR(#_frmUY?@Wk7k)8q(Y83|hYXjbcHF9UgcVzGS9G*h zQ|6YXc;+qTDICW}GI#)~){4~7e<76!1DU$4MTCOuEpXWMhF=g05s3x^~?cEnv3Q+u&&nL3ch>J@tnRvha*Kr zWhqTmH?121Y0JCzu|1FN>BDa?_>(NfT@Ex$K5Q?+@2H*$7mV=ZN8Ri61DQkanMk`* zzj3s$`|btDdQHdATGWGUrfnYznzkivDqbl;fy!TYyrH+ULFQIRwrFFsdYqMhpqd zjSMk`k+xJek*REUW0fVp>&SukvknSa^tz+DZ-7hXY3D%d2ab;79L5Fd?kWl3x*NyD zDzhowt&KPOiRG+mOLcdfMMNuul{;~9>5n>8U8tr#3n$)obQg7unx(F%nYwlaRoB>- zWcQnuk~TBiq@)i6m9)v?U*Bjd>C0nd1;oCGPJe*4Z>gs6n}a?t(>9u#l1?@h!wf#Q znDM^j13e-Hj=%5dCEA4q>y-j_eQEYey<-SOZF4xHShti(!dm>2_=+ycP`>Cu7g%<7 zNf_L>&C!B!e3IS4pM8Ooz-PX2EY@BI z*O#ciZH%y`z89JL-fmibl>>|j=ykIp0QR&f&gpfg`sx@vq`of#)%T1k-4;uI@vv|5 z?_n@vsnK8j!VsV$N4Br{M2Hd$QX{up?#K(3|Z8rS*gQKgM&6py`SSA77tTS7wh%_B} zlM(5!A02B&4Qp2OQ%f?3{`dd}9v59}QK8ONUYGl`BT>`df|0*CdWd%zJxh0QaNT{R zbQchgs`}z-#r-pka9DiVfoK>$55ND@f@3n4{$7DA4&#x>R~TcYzXO5#+h$7klBvJ) zYsP#jjQx>&wwvgJzkKsUOP49FEkD$H zLcPr}f{cs1ALy2>)VcpRM=0ER{g@V=I2Q_8>zFu1aNok&|0};EFOH3 z?)Y=m*z?23TFvmw!}8ndr*0f$hg0t**h3~^8RU&GOchhCS`Ewg1^PrT_-rXS-VRK) zMaTMgLUj%qgX1spv1`JbeSoP!Vts7u)is_@g0W6Z{xMetN<7+=b{Y*BS%JVcY$%19J60;w#vO@QbBVhZzTWZ6()ui(ywyr?8-daxqqTs%R?2g&NfXlkwdv&rOEZqqr*m zN2qb1SirbKea;wpkp=Lr%~ZGWh?lP?wF|v-we2kJEc_34U)3oA{ws{(@I<)LusFRv z(a47F?G3lM!(s!pSYw>6stwN4H??+(8dgHf%G796gpnn%PJ@c;BaCz7f(TQw7~Nxu zk*LpV)38+8MJs?;B8{%vHux^m=n}FW@!%H@OJX_&7=BwrvYL+8ZvYjwP#;Y1_6nO`F+Nlb>Uabb-|x5R!F+$WYOyt+MVRf9sx#Gg7rd zkP>gChZ}=c0R4g|Q ze`#C4Zk?5ahJO!+r=a0?BA!NuUoMez(_O)+S%$Y3Nj_%f%KDcFqWFMSA?q`oKAlU3 z$@&LnWwQRy@)ueE=YO#No4j45AAVTEeRGc)p|&3Rdvoz{?z0> z%0`elsO)991Y-+|tBq3ac8SfaRY~8=2m8arg%*m(i(S3cfxkZ(pQMbV65vzDmMcAO zh**P9ymiWtwEN$dvqgp3;Fsq+riqv^Y+{aO=xKNwUhXZn3$rF-dQw<0ap|6%2!pa` z@!AQ>n;mOm^7V=ev`Ol#p22!Z7_6!`iskD^{*p`-!>ndNLJXDwpAclx_guzY+f*ON z(^&(HWBlliwHrE5aV(gDV4}xJO|-ns-0GUhkb%c2791dLpr5N)*9RkkarwpiwWb9Y zj~|sK?qbb}`PGe>-&A0{Bx+eba>t^w3x!53=fSS$S_>#L&dGH=C9Cb(d)8S?EAGV` zrxlEUToX0}{AIF)QlyQjlKIP`lEU$a&xm*qk8XMOHp&D8lRxQ?n6j)^vS`;zb9m!e zSL2r3Kin89ey~u}5jfh!iw)YMZhv3Hsp)@)(av3b&^kCOwwqYdiH>`-sL((bW7>`$ z&Mtbz>uZXP%(&Mjbs9k;1^%KDBvLe;KcK(S2=aN6u`1{Yvi1y&AftCXVj#t9Y>&v4 zOsUS}JE4>X%y)6Rp|gN%&435cLkW-&lwqlCFA|FwfO^yd37~M0DpY{KVu*3AtyXzaMJntYZVVG| zFw70x;Y~Dv5yor!N9gFd1s)d^r-0ESe@HA-d;>i)=jgbfBt7ao2jws7JGg5pr&+PV zrdg?YjLkR{wAb9w;$D*ol^w>~@vC9RM-i>VksbeD6KR21uW235dW~*X@kv^JCi$|% z#xcfl(ZwR8GOr+XEASqD&9>qsSToj`EecqRhNMe(h0|d*J&*nt!s4luJH%QweIiIy za?Xwi$<5BUWW3QCJKtmDjlqeXWdq*NPBR~(eufLVy|GJlvwC0zzIDX11I;F0H9zFX^TuHo$n?gVjBLDvV&xP4tQtO{ ztIrT`Q^XVtx$?sx)G8+96=vy&_SnR-xTY#dZ_1DG^QO(Sjb!Z_*f|>~jguuI?oGWJ zWy_mrjs9jUr)P&sbG_QdgfL=FS%%Tga7f1ff>( z5%-OzDoEdW(%&~8pN}c&QFwd4(KqoUNr?N#7DkzTqi6w6`cE>ba*Nu)hR0YHatnsZ zry$8P4Ph~nKDTHuf00|Xhr*GyRR@h=anPMMw5_Xk`8x@Zj3M`M|Aq;LIzb%krCK%2CG7okgFJgCLxzg z08K(NB54w`=4#_g+wGC&9OO<`zhMrdt%Ry;aovrUjMhd1Eg4ObHT|a`7CYt?q?%#- z^crK7-~d_|xX%2-3`AQb|7qSnWU~0|TY)^&T>ifdal;HGC3p*;ZgKnZbY=|P zxY!r~mn}9X>7PfcSxN9_YF5H5(ZGbVxcWxpuK#q(h&>{?p`iP#{6)R%*QR?H3PCaV zzU%)#_AZ>-hsZ-ucKG}Tqb?%69Wv(M#oAjS*2Tixu`brus^XLWjC3&{bCX1Oi-PK6 zK}h258~YOMVtTtEU2Ny#hA!3@HsFnhyncwXQ5VaUba)qQ#R&Vl7(bykkd>>>77~cU z%c@XkJC6aVvz;vg)Y(GX`8r#YJO-8s1y>uzw#s&9w_Ctk`np{otsR^BU)@f1yS}of zf48$3GrL^{!-m~1T~Vx_TofsI5p}=|VP!RTz_XE-TmrxuMZ*$6923xI{t6U?df;P> zhSdXuxA3Xn>VXa@pYl5%B3f=t*Pm~vx?%9P)D7d9wHi3dL{IJE%!0$i+NHzMl}7LQ zU~2)W9C^&&1&cpx6BWm9typ;QE<+C|UO-!Ebcx#|#iFjfSN@`|ycZe7r3PW4e@|xd zX)s}x(N~S1zMf@Td+#ZAEqL!K^I9+hg?Ux^tzi4muQn}qgn{9u~U$oVcEN8Q{K6X<6qKW@qIK#-Upb1jG zOdTk>eNz6SRHmzpTr|Gvk_GIBQ2$Wp3)Pk5S*wln@NQoH-8cvw9upR&huR@;LEi#c zIXO4pmX2rV<+bCsQbBkHcR$QedLkKW*BA#xH#;ID?R142Fvf{q9B_lPRO<$#?lKDe zDz1uhj)eVp8DV)>7F1k5YpQ#0ue=%g(`PtlK4(}qGrbx<}DrC!|C%Pr)Wc@EVB{^%VLTOX3t^uq3U}h z4h~I-d{CTgVS)M=4ZM|OH8fY>SwltWV{InUNV2Min)hogY<78MBo8)ENDj4Oy}Bc- zi~*W9xNiPhW1(h4oRAuxJp%SUnbZoVymvu2abH8*H4ya}4rE1lREm)nQ2vtfrg}ni z6Evm4^3U+tcWRCCbm`qekk4s0^18GKjrDr?3k)e#z2i!Q1M^+IVeaLcU4P9EtA-c1 zhhJ)qZsHBABFujsgT*U$iit7z20n$q%PtQTrOLBrQINB)QoxskoNeLCM~sot|B+aD z@P7e5d&KAygpEUgwF-yB=ex2X_3`uV`VV%fJdOulehOscyQbLq-C`pepL?v`U<{9G zOx}*c#*-kJ8UTI1G_g@lrhVm)m3O)_^_VEwwXAQZh>h}fF7k#_Jo~WadF-OwtKCts z?Vife|M&g_XrO%Pdz-6mIHQfy=6j|G^@Y2e?F+E`4Pz$I)u6GPjIFv}7^SWT6-Jq- zek<46!eB!E1-KYgYxIZr>MzKJQ9n!!gUVWCmR=sk9Az3)g>)2cvQ$Oy=th1r7cXub zhOHj^)~Xk-jE9wv7;e~ekE61V`)ml>MPbfV>_KU`2;wRR$C2IQKBA`9t zuco}89Yf&a&+)-M=T>7V9DmukPm2cFiUU;pXsfePD6&U45sH$d>1-n^ZTmLk>}DEM z508e^PZ^maoY5tPZQThAT%qE*4f`TG);uXSl#7Fu4|m$I)^yn>WssVT)hyg;_Z0wTPD6_6BI;753h%Qa2xV6{k; zmrcCy^8$$%3kdHXR)BctqM&|g`}f0~x&IfIa(-19;R_Qcks*wbMYp$%Lrh|U4_j2B zYq99TDiD9&+AHf7@B)bv3kc<4R^4GorBN?y!q;qN*t3z1NZx3mIJKY>U^=~vH z65ChUS6t2N6PsAy$L5yT`0}{SA`X(KfP#${sTK&QfM{e`v)UE&87_N(2 z#yN(KQkcBj)tqb$yWwQ<1Vbh#CC`0lgyWmf3@Rg2QpHvYA@0nZ`~eMjiTD1Yjrrs@ zZ?nCvYmUAjbzbR8fc=Y|IpSM}pay4e`d95?cc?2_e8mc?#yigye=>lqX~P;&{CjMo zUsV~1V=TVI)C_5Fd$|Zv9QTEV!xz&~NGOX$c6y!T?4!rWD&Cf!;4Rjw(y24ydwy2d~m$9gyDwDBQZTm*4JSD7D{=(s;j$=3s`{;P|E2 zCDc{@W;|fiY9Q?|V@wkQEd9&)NIcE35~G`A;nNPT0pXji0=t?p`p?v~H{oJTYQ@`D zJ(@3SuS>P&sTYYG%>_P;ZJ0Ag>yP0Jd>f2m%o{r?6>N^BJzT~D=_<+6m06Li0H&_; z&@->u>VV_#j4_(H)61s6N+^x{N2Aq=pzV((JYloP;jQnT2^k_fj=3~AFVJx1I0|2G zp$C>5iIW&dON2IzSde!^*-$){hqcuaPSKj7nm^T5iZ8NYp?dpI{}p?RT>U!~E6-$3 z6hm2Mi`zjG%D8pb?bMu~wH4F+YnS5OOB2q-@W~e34#nRL$%392P0O%diqfs>F}-{0 z<*eMqTuSk4bt}4n0%hr8=V_PxlgQUIk*f-3X0v{kq^vi&?z3=bd#(L7cV?OZi>h3a z>I~VD&U|qfhstHC$*?ujxlb?|0(*!_V1m_BuKdXNSYH0p83Cj0&Vl-~ad0HgnE*Y# zGu`3^t0v^tA&ojHj&cqZbqpR5bkY^iPfHzmtmd^iz5smV;|lley_drX1|I7Ok^k~K4nb&f=dmDl8Z!Qk{dujSMrfQ{`g^e>7reo>;@6#7PzWndZD(@Y(^4bXSVGhBHz(u8VW8CSGFL zi2CzB>iDC9I=TPH>8OXD94fuyd4LS(6{1n?zTKQfVt+tw{rPwbk-T;QuUU%MXMDV_ z%XE%Nv?8eK=d3TO<*wxJ&SykO2a9Ey=_IpECtKlV4ej!Ir#@iEFF@eCBu5%z+@LtM z#drwpJ)B;@qzZW*0E>6D35(_V91>N*4z~Ajj*c@V7qm0rl)q?az}bOz2Ey0Kk(drL z-))DYvcd~tYqs<1M)S8vt9m*$F_MX6&EJMvP~Wg#ePi?IZ@3<0!1kpFI>N2J(7xwe z*sb|nTo9TS6FaB_Fn8oS|9}*S(>K}DF2WQ1IM;g71j*e0q7EweU(T>oo{j~Sr&nMF z-^@)s%4*5%Ut3QY#j_kP(XKbqzRC&+Ef)Bpr8(S}tQO7TK1HL*$Mq^;bb&J-PP(1v z!!I67ki$xl>U;%~6c2Y$6ApVvw4<3q5=AVK6cw&TFtM-!jh^07&4@g#4bjH}nh_0T z1%wO>{Me_N;AB>d=0p=rymNVhWD*Mq@0F~8@M3`Lir6VAe30(L+P6kmW#hxEy8=u#4F^jPSX;k zRaqeCgdJG{;l%j^8 zrJUD^rgO0sR!v`stC(1~qtrP@6ZcqUG)1wk>7??AaQxx(1l)8i%};~pMmrx7n=G)} z38V9tYdWc&71oH-HpY~>3wOI>Dn2MvNLxM)m)J-YrYku>?Gn2f8)_DAwJ~RmybaB$ zzwX3l)Za4%a@^Oy?WAU{-?9RlQ6FajS<{9!)U1_P4KP838kXu!6YRBcSSG;p%9upa zgc|RA(`26})F}xKnpYF*#014!A}gQ?bshr{Ygj|E#;XRfX3j7>Bq;Cr2iE3Bx+d!5 z6V$BwoB&!no-LG5*Dw>eQ$mkYnB#+DRwg#*)XYRoEk`CgABecrBIh@!zSe@PIrXIp zYEI1>kn1rgic)+rYLw;F4V~*Bm68^O@eQ(cCu~AO*<2dIgQV`e2qx%2Xw`bjF zOPo=6PUXe*9v1H~p<3$=}~H?sQ(S zi@yUYkiQ)>{q2}liivs6upzc63|MsYGA5aI92p|pB{$(~Ny(P4r45_WmHFBr`I^C~kgs7?@-o;n%qSe&;$d|6kitpy0e%hWo?Ma5;6KKH$vL#2SW@T($Doo&s<2(h~=_ zTZMKgd!&CBe4043oAwy&sli>JO;)K26C0W`-E+!x+F`B6555v5}uy_zE0H^th3LA#Vc?#y6zX`rh*lpk5@P-7V(>QKL%CS+BW z2|0kQuy>QQx8P7Rq5ZYRA+Wa=lfronHFYgsmoOZA!a2zg!_+68%f)s7+OA@=v!7o( zqWtk@=P&|ZVZb(o*An#v70 zfQ(3EIERukwlCIlM2A$?b!1QG)v$3~-4D+@hiZOcYCYuz=VX!fPp#8lbY?~{biRq@ zr7xoA^`OP=6I zmONo2qeKw_tI`n5sw!9D0Lv9P)N+Ma8CD7gyc#urZ(8V!fcP<=P&BM`ocQ=( zF|-?A8s8WLdSVFdnh}~MzWY}UYu^l;)EL9*3qsEq$NshP>9@j?!kGYOBAI$&Xg?v+ zte&7o=h|yT7(+=aC@(F|@W((0yNhb(iZwe*lVIoKwpnm(W!sLnlr%iwJF2u$q%p)e zP&gsC%mz~Gpd>)?`(u;Ab zEO+DkC9)TiZVn_ys|GhnC|fmf0UaQyK@HOZg7vJGocn7J{F8E@NV9q#9U!~&V*dl`r?3nuNu+;%c+Oh_lf z*ZZ93i-`;#fb>Fz^c;>f4s7+#Mf$a!)menW-{PwM4GaaLUJU)e!u|Qh3?6`bmO_2C zAL_cvU*o2{*vOg@x`*NTH_p`Xhb=hXb@BF31ET(-1y&~^9)=^|I!6drJ#f8kwxV96 zsO!BtLrtc0IP3nVI+>l+7V_-xa2sSFBdE5JEl-%EFtdhy3;BEH>YrGy9@WEH?6=#3 zdQ#iRaeVKGbxgcoHYzT%3qolBxSjk(`^W9NG_`-+>L=%7zJFYY=YKObktv&++hW$< zaaRlKTc54IxrKYjm9t%)pnBuX1laR4u7r9l5^MuG2;mBM7qx-B>lf#KF_JZ-{k@@G z)UN47UV!_C_~QGKznp!%;*#5chQ2oVDRnU0yIve?OujJ#+=T2N*8qm zSk_kiy+2Dv3gAiIRhZ+A_@Z^QjsVk14qtC<3;jDL zwibsOZrX;_(=C@$+mM=s5TE7^Mc#(CA!F0oHe@G;K&H4_JnRZ}rHFV2r(MWw29OnP zSVL{~@v1a*SS*-(t}*E})Wz8?9KLu}p<$VMuD2^x#m!FBN0|K4USyfog!Uq}QpH~> zgVR>zbOs>)u!iD~R}J9LJa;_oU-`RKUy`o2A#VwwgL9hE?Ofg%OK5ZZw@M+64=yxq zG^<_6cxEA{7UaJ4Y25p?yRMJeU=j7r8R>v;tp!(`ksH$0W+ZE%@*0ahb7$C(DBA>l zi=m_gzJ3+Wq!Y1${e`nT)!h)|+G^APm#%Jd2d@f`#k)Qf-!r^&daHc{pLB2y4FAT0 zn{yAl8(&SsyO^`YajQ)2(9vH1H|ey`$r_S~NtTEm)yU4-Y1oG|&*gT=usRN`l9Dd4{N9Q z%#ghRzYiKUE}JO%#&bNCt7l}WIY4X%{i)Q=0T?RykZF^mbU@a9nQ$ zt3*Tg5QTLDhsz;*h>3L;D*cdbgw+X03NiAGD6r&qW-9ZIV|67$9SbNgY6td0 zSCyE@$_dwO!X>WaaLM6p6X7kafDmGVMA+aElo>wAY7yGC3T-WiOSEez(8-*UJ_`yp|wQp2OHkWgcxsRFc^nHmP~IKfjx8=AgRYRC|%)bNK4 zN)4lAZIv3Pb;n<}Zg9}+>X~$w1oPbRCl)TCzH{$fpi8CQWFxbmQ)-w!p!unxFMPCx z%>!JmMOTKKjsd=3Kl5_oW>A?Qrc}5jgn0EmePLC>+=A{g9QhFit- z21a{^!MtuZxI3kHu>-8Cz93oQg0jJ`Ia)cqJlHi(OtWe*n(4bjgN=!9PcU+tiDRFEw;=Ph%8+lPpOSRHDb3V>$NX?8z?PxFLHDe?+3B92;{Pdf@-P zvh+)BuVtY#ofDBJ-e4pt34JB2i6nbhmRjV+Pz-r5Oz$GIY`aDdLC^X35HB!Xa{XGb z%TihPBZyP3w6D)n_ul?y6)jeeb5`+ap0lp^bk`%gi0fgwC#gBQhg!gnwhHK^3BD$C zPDHXTtA{CDwpFfnMKgOeA)C90pKM*DEyX7*#Ye-53thJeMl#SB&5Ds0QD1!TKHGH_ z-jUf}=}Ls<$7W6t=Ua8uEc-lIcZsWK_<0uG^qco9T$hWBEU@J=xPo0X2PeW7r>Tn5 z@ja-I>SKC9&71vWp>(e6GVNAHeb>&!5I8W`l`U2|c*O0htE#26sncPrj^TX0i-_}tO8;(!Ha>f0SixU*vDy#T^<7P=PbdbS!~jxThL z5N)z8f2433k_|PNxU$1Ttb#_}zN1yfn80t3p7hX7WoAe7IPF>4WJhg`WHfKhMbleD zd8@XuEGC!+=N@NW%F+e)61mNF-0FNZ+hZYw&GvW-#UcjH_9jT)X|^{}{-W95#B7@F zMer+G7#HR*OR4+wa#wAHJ|!EpeSLDFbXj{l93RlWcj9AmAfO;>t^@HYVbKy-JYLj1 zcZq9IJmFM%Tf^9ajqlL*6xr~v`Fz)7fX{b*Uz}NSnPln``M>AoQRipze~T)f#@D&z zT~t|k3l%I~RFPl;sWMTo!#-M5nUsa3SKaC=X~x?p4G%dLGjWh@e4y=1`Dy_@eK0^? zR-p?olDmq{@_#9EL6cTRe~{@bCc*M0xa-9H|>VDI_PgJE2?D_1-&g(HPL48^-$ z1J-ni4lCVY0p%|l})y}I1hRugYq zd_&b9S83u~62Q}WCK*iqUw#~%z0!4E#3xp}Z1dc{zRGpG*k{3|a{9_!+pQq=iuSGa z`fQjF#WC6^4c&|pGxPCA#42xh-4gMeh15rE^P1v|#7PStNbHnJ?6+XV%v`rIF?wgL zr}@rUPk%E*yvxZ zSPhj6CPe9Td&&cBd2s1HuKCUAqdv}(@fEQp_qx)=1V*iDk-IeJItk!Dcn*F{R(^hR zTu+$a-?KnpY5m)LeyC`J%c~dmR9~a?^i*G?G!CSt>%*=>5z5#gd-s$8ZtvDP%HB3)Nxts&z#Fb7 zMKN!Np(>_6&=UQuX7no8SvgR=!BwpPVEV-Y(=WdIH@~RI3i5&YFE(Pr$L+f%p?4p+ z=P}n3aSP*S>TCFR;^K{=g{3!HP@j`kuWGsJ+k$74Ymm6h!VZe&Rh%(mnXE@D3AG z1*-~2qTQYK#W}EQk7rzmS@{+8wK=S5t|A?kzwUuAYhB&&8wvp)a6RLx>@&}VI0o=( zwgPh00=V7_TT@D8lfNh>vh`96;1A2%bW43hwz{QW{S-cN*2t(uPrIIpNR-Xh(2fI5 z@wx4aL{|%hZzsC&#oW!UduWMJ^NedmX$Py&$5i#Q7MXh-ta#RS1-$nhu7Eyl8W|lc zJ_x0X{9c&jt;jl?2koclSV7W^@Lv5@CnAvPvXhAN-e_wpA z7|vwbonO!yYQOdjL?QBCLnWTW3NZ{_ppVUE!^qTJn!O9+hu-YQPssn8kIP46MmFcY zQ5^oLQ?xZNRu4z~9~OEOBolnh7{a-dc`6MWS8`}fesf+KZD1f;#Sum*8+LzEe5F{y zh-}$bP#Rt>0hD3n_fq#7D`!WQ!0NYM72+{g8MBL0{gGT+KoO6y0;Thw{WA2ex$08G zc2-JCe~Byo9i{YergS7cu_!rascc7jGP7PJCl3dQGjce$U4h$B_BXWleq3MxH}@*n z=c;9lb=dfSeRII`o@=uBld(jS95p35$_gw=M4pl)BG2+Tk|Z>bxleo^xz9gJVtN9S zBS{!JE(rt6zGF&qI6#v3cDZJY0gNRniB<$Fce@fr5rdN;yX2nnxq0TE_ykr=lAO&Y znV}?!;5NYw^WC8-%qZsaby1!Yg%RYUFfbFPZ=SzVF8RoHwphh@B2ktpQI;_{i86ZK z!b}|{p}Sy@vQm;{J(pxlP)Xzm_?RT-&Gu!cB#a)Hgn^kPw_1|Wq2T+`k>qMgHTt+* zs=S4aroPb^?$`h5-I*UpdkWyxvz~P5_d7oR`od?f_;_B+*BP-dz>a~#oUpmfV~6a| zUD28jhmX24M2N%BC(Wlm&$6Jt;k{xh{P4N!qS)X?bH8vs3h^B##tK%h0{4kLxr>&Y zTp`_I)>w+pDkJJ9snGX#2j#-9@t(p&tIyh1$oZR@2eY9RD8Fe$6!h5R8ZO)xk2HZ# zvKpK5%CKtS(%7fNisKnNOD@!n{In+&rN*`e`z@`r;zr7blvb6>UzAprIw-A*wbCk5 zG{w55uz#=1Ya8dl)G2#hx;Wb+ObaD&_`W2eIn)GtSLAukc^k4J7@N-u5Os6-qRAHn z_++cTzeOoog?g_0<$Bj9yMC2JJ=c8|3YoSgZ7LML?ZCw7sH+xV`Xg6b&!nbF)&mX} z-kxyKB+GAfOuGT6IOw^Zn>WQ;(EVN{iHlTrx#(oeyuACJH{DrvXT#fXveY-i({yW_ z1n{BrE))u<*V<}``Wrt^eCiKer~Qz%ni`W|3aKIPW*TgPzDp6%S3Bgx0mb-XWBqK}O`-^L@wb596t2%gcVDW{XP`L7ht5Y*oX!{Kr zsPS~^F7SuHwmKLA+B#xt>ldl5YecpzH$AY$it28tiSI7~ijwcY&pYjUOCM{%o=9(| z7|*DZp2`g7WmAIaskqFYv)b+sgKhU6XbX$~+dFJcQnM|pjfBy;ow57gE$ z1Ik8wy&7^PXYx6hc@~J9SgRJR?D_@*+_hHD92N$Tv~q9MHo@rD?yllVMw1lw7+2Wy zjTN>g1^ud5Yj-QywiXq3U!1o^3VQ^~+q#p*Ba97F*gJs=TW`9+I#XlkcktdU_OfPM zMz}jeyN=!raezZ_$uHIS8nCjXcc@?WvWb1tA>#28m-s74^}9QHdvs#heKB*jO}$3B z3WWN&l}JX`PLguHu;5=0lq16gXY1n{t#>QtRI3Hgz}y)M;zub9Z1MLq5r zC#EyN7HOo3P8eC}?&4Py^V4QdO%~|qT5NC)uPmDo23L0Vroi?%cPt!h@4i{P6Bft1 zGsGIk5~=rguHJP))JsFu&Nz2-hbVoy6SQvLu3|YOOaiYR&$ICk{F$xUUKM8HvM`VQ721o7AdmUnHr)JUCQf`0@ogW zqC}**U(p7^&NOtgA&e;LYJkh?!*U-r%WX7HgZ6GX&<=89286=8weDsv7c8(9xy;cV ze>6x=3Y!tAu)d}^g)ZvEYoZ1W17|w2b~$TG6Q<2aJ-zhnU9kVCr>D4)mEwd+-Qv_2 znw?xOSGoH>$fU7%cxEV;OucJ)246|8gNsMe*s z`+<;Gu^A+t_N0i{nLuQ&9o$^+H#XP4Ecb|JW?TBpE)`>6W<*Jh`am&WFvX}-=7IO8 z4DAJfX1m9V-&xxhhlF1(GF)4gUAs9hAUj|D?%0_ZP-=d?kp~2T#yDAat&4~ z4MzDbnw(X!wk>EU`gLl+n$}D`Y8Qjn-<>EfW=xP8?~nkl#<`{%XPas~mG8b=Jj$D0 zm!A$-4;j!yY-Uh7!fTJhh(b&`dF_@A@DG`)p6#bPap2M%>_BRpQPA z`I#y0BR@6OuEr@(U$6VckOCwK*G$OI5WN{`sV4kZ4L0wscDDz58uwv2cY;0Vk9pR~7V;~?a@T)@N)+uVDhl$2f%7man+3amjAd%MFr~Z z7ADcnKD~`_-z8q-El0RZ#eX?KX6CPXRA$a=wxHu`JN#MU$}QTI8wTf(a_`XohUC%i z?&36KhO~NuX*D!Is85b+4*X0Lsqylm!IwaOrMnx+H7x6QNehi z7&tSZjnJ0_(d5c=-RCw}lhg85f1bvuQV_gZ0(gI(V)A}Iav=NiO%vSrhYAiC-U$a?A& zcV=@H_F}$ry%!m2QrNygg*|V|^DHT>H_SUVH57i?l8-A`y9acDwX@xc(0{7Ck2uOv zNjE&f0OW>8l^gPkEpfxc7H0vPj)c-ny=hQ;t~(m0xDJNGotJtufySW9N$!xq(t(G( z30gL!Uf|9aIR#c{q5zNu^^0&!TkM&TpyT!_9=US(&6j+pz)wB74u-*9m$ztS!s~}c z7h-yr!PwXl-e**l{5SXGE|M*;mJ0S+?rmZ+t4<+cCIirN$K(RYo96cV)og+CwTVPu zPc85Z0hA4WdW{!vn99U+*Btj1I$)J+y`9C~j3v_SYNpxsK{QJ#JE91IyXU!^dGKk0 zz6u4G3rVXOdFkoV&q@GS>2f8~Z3R$O<$Ybe%^GZ}DNKhBmAEFhn?vPj^>%?8t$6j8 zDE5s8F1S-$3w8G`aBmFJ3o(g$!96fVgy1h<@Tb^uRw0YCk%f&N7H5n(u<{aja&u$H z$pSSAI>}T)8cmhFaE%@#S+qZ-llD?mpzJ;a#|kH7x+U>;#}6293)NushtCu1a8sj1 z(h(0N=z7Y0!f4n#R{;!1Z`a}_kc5bj&<^@#C|v{X>c6@dyGV=_Mq z*^r}A?F#SxVi{|OOCF^<6hc}-L8iEy70_zO_I?Gq`f4uE`a*o0#^b-Dlee%Sy#=cs z3*o)%+(mv|kuc8&3UjL^40qkFqcHU^t8#DFJ_YT1T$1{ni9r_mAD7^pAQr)O&(X~_ z#s`I}|9`-!690b$^8dcc|9?$m;G$h882twx;T(0Bw@iffwt8AioEG;^7ieu@%Nld0 zq$549uN7x!gu$^TZZCXxkGD{cT6Q?S#63PF4;g^{9~88Qxl7%#!eIPRJjGX>*7&AR zeS0_V_&8EIVVC=0TR3!Iiv}sZM{gMQfICn0U@TAs7$pHb0%S5d(~&3XMTMPR-@<6S?zu-yt^YLQYwe&r`;mG6O-eM0UN-EU) z1gP+HCd4OosKVZwh?SMj&>}s4zIp1s=y#v^xnJ&m?mt8NAQ{-*eo(gP#|V;cFoHki z>&8R+H15V_Yu)EHGZ<=aD1E@~5N<}3R5L*WxOW-Ext@#kWtUCT1h&9|(i1*So9r)qNoKdEA5t#sg{a z4yM7HAR44~B*YU9*F4p-?z*Cn+D}`-SRjQy9jMT1CEG2gLZ3@3yhOaoTD4etuQd?h z%BwxxAqN~E~=O6d>bt*}b z_|l>87cCn|zVEZNls}IC%pD4~wKyzHzU(`EI_s(CuelZX zg}dMMxw2*a3 z4Yu7>m?s`&bV+S%nc6l5QQQ3I-IJRc*Ytb(!swk|hq#9kB^7Oz03O&tNpNRh$a~*= zkNAK!Xt8$QZ@|s9GkL+Nu)3Wuxx+N=7<~4!J71h&L`gM&GS##~BjOr^e~%j(g*~pQ z;2it)TLBx07P>6iZJs$qM(H*+xGjDhBg)@R*gxlBGyyh+x;}}<@PyE>N2fiV6 zveKvDn$4Ei-7}i&Y9so=>94$5Vgw^f3akuN;7}&tpnfWF-N;(C*x#!B32+78|54Yl zy2y9jX`1#pYyOAR_KFHy!)iyk z>X5g+n9sN&jm~2ly()-CePe4o*#CL+*92$xhcX=(^JX*hq}*i^z?C~wNi!W;k)C<~ zJG}>q8rBNeXS%}4U%grStZ#HO(8ufaLu7bX*#=|?8cUqQ@N`;~iQGaX+$ z0Gq!?+Z8Z9FZ_)& zpxW=;*--kO`_YhrND-dwI3!;TX0)Z2^pYaB6kAr*I6n0F!F@q9)ui_?qWI9C5tV9+ znJxj`h5MLd6d(iAhnH$4Z;H!UGg{ofPA};uuH#S{94;%OuO0YR$NhzL*jhEDhgcO* z-G*3UCyYw=t4{}IS6n~DDb@$nm*}4eDe2z0dikW*AyE4ZPF0@`XhSrrIuA+oZzR{} zNrX28>LU&67+l~Mgg5;XOPjp^^#2$qsTFNYGUO;?hu*)sAJzXVf=Qtz+2S~3iTvUZ z?iV4&LGnFXS@K~Dhkm!=6r%LE=1(DhEdmfFS>jj53VBOhae%iRGUYpHddu4Il3I}^ zYn_2!MN6OEAnha$5J-S4kS-zI_m}%4tqkTLbLWV$j3&jLQL>#m?V6;N=9kpb(D3H* z<}ce1FNTWfl2kFAQKraqaiEg$IZ7$QK;%O9s0(9CHi{cqD>|sSbIg#o&|}n)?)tJ~ zus_qgmsr87SVO~YOs>0&X=w11%f6@}t3?_A4e-Ee_aHw8b4&9(!{J_ioTAp^X?2;W zRJ&pII!}UMT~fj0fht(spaO2i)TN8W8r}0s$bPI3sh&QW;wy^)kRA6jc@GA2{#D&^ zvO~+N_v)T-=>IdG`yZY-twrblKZp7dPonsoF+*~l3Y6;;CD%vAQ1(=DFX%I6$Pf|j zwcMXfJG!-}k1f$_gTqsX6o_P2OlB?mN#tssAgz-}xvMP`t4?ie517<#PA+k^WXO;9 z!qiXud!r?Emdd0{CRGCMm*Y+)XbsXwh7&ZZb9LXhPX?5+9d(p z)*F>9k9c8zkCF}I8`hx3da7^0&GoeXitb_1I;R9r9@O`VgU{kTYjjb9UtjZNh=>x4 zU#T=bw1j0q@g!^TuXY1%H&R?-DJQX*>31| z(U&!Asjl=wivm{`om^g%LHn#T21*;r3_c(1g%YMNXE zFL_GR#AHU4)O3BInkJe;oQn)dH63czw_L1Y&04IcJ1h!*YWlQe802>GY_h#vf-mC9tDk z$s^(rYeA#LgyBQ8^kXHky?;rDIKfJ-z5748P^|_u-n-wI>FL>A!yhW4%$M^;lEe=P z=pF|xNw`(4GbinOcsA;V17KeX`cWU*+)M_^GWi2oCm%GRaVMt}Cq>5&2#De#7+39qQ??OYok0 z!_!|u?u1t?#D;ra3DE2Q-0rsH1MrjbwPQ2INk$)EPcWbU`fGrC`fGL|GYqkM`ilX4 zHz}(hZqe=Yaj>k!ldK+bTQ;U-zn(gfZlG(ab!ELhy)?XTRn^CnErtyA?;L1|w80+p zO#2wzISP7wFngLO5^C?lx5bv7T@nVTy`E;?@g_Di^rC@~_JN~=C}P}5^GDB+06sF} zHpozP;6kYE?^&o_LjTeW2U6y!dj>+@&yFELcNkwT^1NfaYoHBAO~5(rJq)u90@@lT z=R-l{to3@DdAiq>>2_15+Zkn&>A66eRw$XOl}v9anW_V1+B(qlR>+Uo6y~||GsQuM zmE`%J$@7Pj$A3%4nx%{~4o1L~vhUi!FN2#K-b^9CF@^kwu|q<(9TZ@=dL`su5>oFl zNJYH80aEr4Z5IabOvhv`HN_JHZDz<{4HpWMhkMGjK2SN_(@pe~1b9?09K@pfkU@<- zch!jIrf#ON?m@~+-HbE^sR@C?8m4%;gVe)=71qDyfF&K3!Vh*z8Gi6Hj@apvpmtBE z9$H8FI}gg|otqFBBra5Rz|VWhN9OSLlJSC70D5HZ<}!rVG6r$%&VtID6MK)efDJKb zbqixm-``!K@cS6geDQ{bUA}iVPJd;PdNOVs{l#NpyX^7to2*(s9xApDvYxPVz=)!%z5ldM6?-|8TL|bO_Rf0HI}+j$+|T zRUvl3ek~OBDp=tnb`iYTLEf1&vpZ)C&-VkLf0$+F^qDzx=1lqCt9{!J3~li5>1mbN z@06@~O6u3?X%iXC(j8Sim0CAK6rfL2ua^?MmOL*vJG%7pjI?5t)g_o1pcQl-U6CIg zY>R_0fSev|Ys8un2x#bhvr!fq1Z}e9n@HD$T=Ge+M0mq3Exv{pL4830Sn-58X}bb= zV&4t{t(C>6rnc`C+jWk7WQIx)eDFz^h%BCbE+aLDn4h#aFC1X+9y3hHj?csl7r*eC znBiIYObjE>#PHNe`#64SxNTKvXFoc^Hk!>2w1IqsCufE(^>HrRdWXIJiVJ2v$4KD0 zT2t4r`n?QVy?k7Wf|_wc@QZP}xw21bc`6>tS_HX4F2fbx4Z$oRJB z1us>t6B9-e@A52OZABZaIVB561blX)L%yxP@hZ>Dx5X#F26RFma9b{j(}{E{;f60I zk^-N_1fvt@Y&~N>5Wv`0ABtbtRv+G~t>VYp7UdAfc_CHb1-jjD2XWPfF61ma0 zEr!P|bAHgJ|0KJ+c@?j15pO=hCZ1KqXZy-}xUtmjVlf`wTIleg;zB)VH^U>JGQ9Fw zgAA5HfDpSmVn_2%rHz|2H>pJuP^(CY_cLR{DCNDWn*J+)(+{3(t7{D5b0*u`TW<<8 z&{qCd+lAu`P)Rr71-5+3xV5u~H5hHA29R$*#SlV10}EMjB+nPn*gF=8U)VbqcyJ`g zkdZ82cSG;+4fGr_gVmX8yEk-DUz%zg&q}la@>R;?6q4IlMH_E_Okawl?R< z_o}S3Y0nlxTO2QrvqV+8B-pA+3$lwt>a>KbMgUuvFJ5W1VD$;13-jCO81+P@ofnih zBh1R#`2L&0WLfb#BO*ZC!;jisyx&6GPizVy6CdZ!sjjtEU#Xdp&DY1;>y|Fume$2! zD{c+1UKhL<;S>0gLfc$+KLHoUj0z#YS&De*ky;TZpq_ZrmP&vW&BX$!vtmjyFTAFp;6-) z(kuM{(6P}0To9t51Ng7_g%04q@R8c-Z5oA6%>TUw)jn#`gAG!2e{8=)w_WDY9t7c4j0VNltA~s(kmCfQ!ak>+~$an z3B%tT(M39mpPH$Kz>J1IR;=+K_kHm)6|kh3X0WAfYpn zAVLEqmb@L6VvLiv5LXl}vjFnK&8T`})HA+de_ErcYeEmIn46y}hRrZ4nutxUA%G6T z4PDdyqySyhW>J8y=^9VnV7p;?Qt)>*YRHZdP!UTThqaXEu`cp;+BO16y-vF;&SAIg z2lT5c>2(~0gw>qHA9CMvsZ)r`lR<-HjjJRmSsF5 zBvHO?a~J8`Hi)v$HHpRqO?>=4vkf20ZR=TNS1lO2IBhlMUMh4IE-ryjI+8Y?)g|D8 ziw?6%SAJ%&ts!ehK!l~tMo{rdYskrnXa3uCm8%Y7D!J+)?W!2pt#kE|`n$UF!gcm&IQ`}x&W025f)rNIrVj4P4_|kWW(5RNxMxCG zK~7SP;r1vnCLK=I-$f|I|K+}Qdn|Y^tqUtA(1KsARz!W9E1)@fVR}@J(n&jQ#$DzP zu&Apkn+qv97j>Z5%9!?wm@12yP>7^o#Y zVp|j%s9k%+)}NgsDrpD%mM-dLO|+b-p~@G?<~Es*H+PBzmj5nmhC1fz)}5cSDx40 z-ZB94bJKp*QnQ-K1xs zkbci%{3`mcogYuD5W#mIysb>FuK}v6w_&eoD`3WAfMpO!n^c^h$%YW&a7^_V1!!uO zYZ%Z?B@q5C69|+TfTDBm-;JM6Z4a^DZdbLEc>6Fmi;%@Zt;s59GOe2&)GG*NkN_&= zS=vo{lWF|;li*E4C`|!MFS$}7}&fm_tGe9BGHeFC1xy zfp6H5=+z^(1z|&?;yVn9&L6dHWp5FK=pp*LE^Vn4DEbH3RpNW=I@hxQYU*+|^;tLh zrGP7>0$0RPA>P@?kJ$f3D#cUyCRE}_P(K38U3AMNVoVsxz2~~g=;=f^bON#32{3d5 zGsld{pEh0jfOwK(h_@uIj=h(vBchxEg&GsU=CrhA`F9Lk2+G| zcw6yHaKehx_xqOU?wVvvzlyxx%QlbEMG#NkIO4DJy!dBWfOMB}O9~eAD-EVqt4R!} zvB8mG@N()x+BfVaO`qei*Tz@F{>APhc!}l5CuBA&op3QN(_kO{Ez$>wl)$@QN_&@m zN5Dk`M`<4Fo2Xw)nX7h4uVw-&E~GS&5(GZQ3;Oc7ewo#b)4bA~wrmq*6R_1oV4v$Q zo3$k1=;SmD1>P(Notz11LI%=n z6~J>uZ4tUe($?Vr{x&U_bqnHBS94ME3dJcc{x0o)!yJ?&BNYv+A{7EFBNZ~<{LK#o z8JCn(1#9%5)5I_IpVL4k@SkBH5r3H{pRrvD4N}IvYxAG;-KSaVys<@8$FI${GWg+lHU126%`kF$9{`jy^J>>A z`M}nRy+P3YS!MGTXn4p*^NAm7L0<6*@WeC^?VfFD0+%Z;ht z!`B;Xh+o(nYV^3pYjhxGzkGUD4CyugN@z9ouFZuE=v`Zg zUpSsx^t{D*>h#_JFVSf(zs%Aj`MB>PN0C8nqQ_;bF7;_}haoERT+I`H)cZLDddmGA zuVyAAR;a+(vkzR(6yK)84V@(f3d7fhh^{ttib*YQ=s>NH2JQ}o(a77orwm*SHvD%|Gb&+_ zW(qJwvp;I4Ph^Qi7%eKiXo3$vyGX5W1RE7K<5r^9(6&_`0(kM}wbMNTOoN0~pj24Q z50MV!8&#qYqF?X|DbX)X5WmnbOvpvQ5H>;79(;z_$+Q1un;9B=UHi-CVM_xQSKIT8 zb*WE?qM|!m><;G6nvUwcYP2;sCJc4&hFm$!=H=ortF2dv<;4ndRKZNOI(&!^HtcPz z8-#?k<1f%6%USp%!~O@`M@lj6^DHzC=98Z%H8>YOO&j|)XzZWtaK%hO(X`J~fRAY( z_~Gx|m{9(N6kyutsa%=%p^*Nm&D;kZ-g9>1=N;{D=RtHx`Q%0J)htz>=LU#}d7hiP z3O^uJ{SQ%q22(xnPq-MB+CG)fuVAkbLn#3q#t?tx1|@lF_0lSfnKVk%REw-=zP_S8 zpEW0dxMb6SD#z1==SA2%o6)`GYE9QGLh#Z}gx$`Qm^~sotZcjovuDSUM)&no(UV}X zbV%4-7VnpoDKm7Fw*h=Z2mY)w-~)QSg>X2C`iNgRi2C#jJGp)yI%vjLviD_fzJQ+l5XIH0HSW-0-&QCfFFTwpki-bfNtPI zFX;v-q;>=6fWv#v)VgN{9kidC#fV;NY&Ywz#&!$B0<#MmS#2#h>5XGMHr9|iTuKc1 z;P5`%OAPNsezJ~z7t0_dacFCj>I-nGyg1elUmX#7oVBj>vIZOaw>Sd@&OK~00SuB? z5ueaohSURl%aA&Rd%xZoQX9Q_w>W#YnR+X@4!wD9GskqcgRsP)UsF^cU)ur{#U|51 z0vRNn`WV?hB^+R2swRX~2SP%mY6AM?4=o%$V#r|dxdt)Ba8f@ju+bl#6Ti?OodcF( zQ_){Fw9gB5N_!jGbJrx-*qIGvPllSCPx~Es>yE4*8$AqEoEz?K3j&FLS z>!_<;M}%-4qo>RqIWb>3k7~SLQ@g`jrjM`ltN!|(mRfH2WMrk6H&|@}=UbckAL_49 zO2vqStCAy{+gk-d&u;1p~kBv|xvZm&%oWuf<5d(llx=I89J)*?F>HI&hkMt2q z%I1_7fTE9>+b1Xlcz{sFaW&UZR?Xa-`^a(iF9I3JUxfgV_K{;A5O5hCLTLj~68k*2 z5KQdz#E_2S>)xUR;=p=ONPq+Deenwi*89LT?7+%zYhM{Uu-dk>=dmA%CVF6fqf339 zi?-bUz``#eoh1@px+GzMzKc{{BRwMO0&Y5`Orrp|8mU zsx`yN>HQN>{OQT&;i#I8`^xlWOQ#m3abNf{^$+FRMTEmB2etm}r1 z7+>&Im%U$k}hI{;a%-%Hba14|RfQZMz^sqqUWqs$4zc$2>|& z>FozrZJgvr z7Mu~p11+EQmG1h008;Myg$#Rx>aU6d8dAO1SH3<%Szd^Mtl~BJ1U75mg#8lC=O@Ca zOutY*YqRW)!tz-g*}h(YYPk9jktoGw+vtd6yg;`nyY_-vqT1OJ2B=UXZ)02p_%3)jkVaA9u4H8xXh6uZ;tNjs{ zL!?1rceeF7i~+o;o886+kxCF1kC&PKh@{47UfA6}EJ|BOMX<1!)E(B}lse?2da}8i zBBr7MfM1=I-Zua;NPb0<$}dl!X<8if=bJ?VdKMT_m_OgyHv4tUlfXlsK_dvFADV}W zD(0~;9Yh{N6EflI|^$cE!NjmZAGYvKH@4X?HVEA*H1cU=OBaj}L}5p?bTasmeooWM1JB6Sy#f(g7P zk;LZ^y#S0KCNBBO)he2JA3wl$zIcE=CpuGzflfM0{6Z%Uw;uB0dq3pty1a!lf1o|g zf%VKm_MvP9(FR&hrMZUaQXk(tKCymiuzglc7{cDk{iT!c-yfYcY{VTJVy|Z`;-`n$ zQ>~MQDAXel)UrvBj9&>_NlNedm^p|VrPeshC|%*4zZ+)n1_!iBvFHTW5>Y^XDn-OW z^*BMnLG_p@z(EBTz(G~DFnxyk8uXqP9pl*>1RlrKEB&=2GvDnmo$ew5rJVcKhaIiV zda8tpj|$uwcBsHe4%SJ>G7!wh^MxUKp!olMAtR_obIJSa(tkhn90#Us@o} zD|a6t&)rc-T!c*;pq%Lxf`Sb{VE}3PIRj+Frwb^$2pbFd=uF{<-2?D5D?d3Tc4PAJ8Lko@~FrznzCAc9Rlfa`SpaZlKI#Dq5w^+@~;O5$o%V$ zsgQrAlmHHg%l-jDi?6o{O?2LxrkbMP7$BYZrvwt6w}w=!uaBVnicL(wKGH=Zc=eRe|vX5eM0y|{L zSaqq7^PM>E^-n?q;L0}0YCL@b=+%&uUx0jfeCczUDb?4@v~QS7y-Nq{K95? zU9;vu-^i*v7yNsF-hM9l_XI(cj;vaQ3Fb$AAK+@qZ_c&%Wg|#Eeu8HlDZuVMVxag0 zPc1mUmEJ4>96EUpzs>tcK2y|SLkYh;u|Zh(Df?Tjkd)$eg%JzwZgw9n6~n)9Am4Yy zz9;}3wb&X8iQy-ui{aa10f+`GD|47s9-L{Op`_qmQ{+)mfI}x?pqy#e?M^R(F9!}^ zVsFGgAmGB^81IUvR1d(NA1K{Te*vW24IZyMDS*_arZ))%ywvnMzpxZ`DezL$(Sh;+ z-IJoMbAa_A`T|$K%n`-C%k1Y^%|XCJb!i;NT2*yytNI{vXzrKg_7(<9{9B|JgLvvO zS0X?Ed3qu1M8I`3d1$G~lyxduW%mRC3)@%M0!2#Ow;zPw!f3&-ZnSqM^-AETgV0%+ zjRuwEIXp)7TYyy^B+u3T^?3SHwuA^H%n+ryssM8#Pg(;jjEw|P_90RrMglyK0%F-W z?)o)?h^B}XE72FCOx6%4RSB{6H=vuBth2wuj*-%!HmV^_@*HiWO6y?`Wgq@6(tC)M zz!yG|zJz^Ez|l!-*%XgUO7{1H?WyWdOS4KMeN!6e$5HyDpWR2w2d zrTa;QU+{h0^kc!9TbHNG{j*6myIB zHuDFgW2S1NV_qZRsC`CiL=F>0bm^{Lc8AISMT&9lpb=FBL=n-WzerGU?eLr^K#vY> zhHD4+mf`nW&VeSm_C|5+V}gLDJv1^R$^4L-_7XI*#o4A(fN6Q&qB^b3_Xf)~MAD>6 zEh7jeTtd7Jc(8=n#uV3*|AXsF9Jt|)LOnNO|_OQLN zb)jHFJNtOT6~ngE@7XH_e#EkX9U?$DV?9j@Fm^jMgv4$XT*Pk9J2TP*wx6)mq1zc! zs$+t4v{X!{XZYhs?28$NMjgHj0yNJIK?e~4D6V~;7JxKzqvGH=uQ(JS)Nm2woRt#= zIL;UH+^6lA%!WgG$8ydltTBPapshYneaRQJB@LB9n`k&+&^Gj0d!`X9fK<>{n^3@@ zt){4ipzXe@%or+THn_Jfitr*j6;=mseV?~~!p0I(7!+tt)uHykKu@utk51 zG;b&g+=>afZlwEZsfe$OLG@MkEJneFcaG8`snBf=zxpcpFJK}Z38_~i&lb9OHfIhM zk(&t$puf>%6xfKNGIaa?QTS5pl#A*2vUiD07{6&86?&cINw3(SW)}&d>`9~mN5e(X z1`a_G;S`1QQuvcnD$=u5{Rlz{gSW?Cv!7yBhUxAV)J`fMV#7!~HGjk2$Y4$W7O4Ru zCGc?_$@nVSY^7&)o3vnhW6q4giutfaAnPADVTg(JUPu^lCsL0oy zf<^mQVg@}Oa9!$Se}~gSAKvi;do@1%YWf29gr+VR?FWSMx*7ixe_Z&!RZJKOynBbq z$zTJtuAB^Nzh|!xi^KNs*|V&B1y$<*HxV{I|6j~LCZ*WLFOmZ6;vWwq4xfVm0}da} zP?Mb{Ji+Tf!mg77?4yhS6IqsT|1~{{l^w2!h>*_$u>9&r*|h?YAg$Jj=X_?5XEEX6 zfBX%iTgpUupx8eJSL*(WTrJ_9k;8Y_D1Ger^ydsSVYs-8@B^O|U9u0S0fxi*G_|W_}PnusHBJBu&CWm*rK=j7Ds2D9ZNp_Id#*(9at2@6X#? zuw9|hphF$A!*E`B&=t+s+)OVo={^wziJ}*q83_TD@dFN*&5S1Om2mJ=Eg7`~;Bi@? zn@(Lq4sN>An6eqw4fY8ksa5!blwyAbFn*zY#@+n#MSCRQdC6Wm028}&$8s4%*e^kt z#wWb^OS>ZwT71p{6{;{IsNX9-tpnjjpXyX0V>GKB1aE#a9D|+!Ekw|x)sK<+fgtsx z`L4o(yGkFcm@&X$ttnN(3zKM0T6&+o2OsvGJv#svT}!uMup!^W{q_)&wJT+~*|1>P zu0Pm!hr%NJf?(K#m+i>`utDuyCsa|4?$%O5A}_aE6kv1*&K6g36R+40nR`d5i$ern zTpZ$u|ED56<4DO*_IB)D;ZamlPFxx?9ugobzS~K#F}~X-DpgW$HL!sFA7iB`>m1-A zb!_LnWiP8u5;MH|vpvaRW%G1z3XfDKkLUer|B^)$NU`FJ(&QUU z@=^TCb%?_N0b>DOuh`#^YKark#vi=scZdZ*A`I3-U@wi3!CI$3?5kJ?VI3r7bICe2 zPp(Zz{|RaMegqu*+b~jqQ(3<}8PjOCicW8-0+7QHC8Yimu`xtz|7A-E=^)V(q-YCK zGVy|T#F;y1fhcrpx~$h@SrGl5}9S;pePA1d@+)UP%uQhCgjBs?Pu`|L$sgs!iH$$ z`J;C^W`!=+N0)PSWtB(jUaO*8YvrjG9CgjRMq^V~HPr?uXA{X~3XOjXP zNIgf&!yXh8HzdzG&dNKA%lNVQk_@<^Es z0}LF08bFac0Hnl8(OXD{FM^OBxvj9eAN?C5zL9WfsgjO5O=cAQgBO5-RXch?`X4oe-$N zTab5;(yw?#hY{FYljpXCQCnsdj@sZWTI2m!w1)EiwHIW*?s!LYMgeimi)RzfnZQ8Y2ALtS&~)lH z2vJF$G<* z&F_EFL*4}W{cn+eMxl7MCt(?+k;)>ajFz6LD}f9WP92l-DB%DDXL!w1k@|>QLR}FOz{g{&`jVM)&+HM^aQ_3m--mr$vzvtIdv@2 zahyG@2}>8W8)O!V`0b!SSZKGwTXxV6Ars(AqM?*Lf z@^y-%t96@@fqJ_YL@4lfiKPo|urz?#+NxE6xV9OE5^AiIyn)7Uz zqjIpo_4!hlqiNZ(0L{-d?o*$Q4=Z>+5qx^6;3wUV`ZY!fOlmR^fma)rVGZC3!CW_X zA7O%S)XvYeceDxsL~CxB*4#nmUjSDe6KB_?Y5*kQo@_y>d1`xf&3uD&>%#xcA75?XlS~brRzpz z)HK)+x`N}*^lNF3rtr?(k7~~VBE%URM*0hX~-wmQ2t!hRIbwU& z8lwjuw$~55dM2zrC?JZqI@6JCwi?4n6m@RJ5($=HHnYVTG6g%r2{+TxqPjMZUpUOv zP>#4m5(4;*&>dgGYC5BfA$w%^8fvZ#G_ss4N92pSGNII-?fBhfBZ<&Bzi0+36*O#& zf5yC9o&&nn&G99hduv4X2GlG>OyK!Bj&!z~faC0>`KYa)m1E@831~QVY5+xV`WVa$ zl%6ceSZJ`lgkX^1YA$|Q@jsXA*u|bD;9{tmuZ)o&0DO&9=vI4)w%X}1trj%e6w7CM zQXhDol`<2f&G?#M=;LU?z76KpsYA77L$SJ2e{hsJ<`zSZ3~WEEp8XsN0j#j^MvM*Y zyXLcFFe)QmOi?IR1_wI@8C(HKgV!ic9N=hYvIIgn$l$7{G#@K^N~_WvgB({3){(#` z&vfUoEK-1@sw3Yu)G1^ng+NP|GP53-7a8?3tF@g*6s@wS_Y5M&jVVcd>ZQAwcHqa5=L z_5wjdOFY9zbsDq`W< za*n<^R-9N#HLs85yI=1Z&8vDH*I7$~<|k@tIu7<)7R(2SGr^I>;9q{mL8O(~4aXsA zV&fYU3G#Z;W~k$^Tb#T&n*YXTKL>;6WVj}cDk|Mk73nbNns2oV;VPc z`%HFx%cc>DgStgMX^hF^WZLrV6ac@MfWr`Iw7H-{6SkTbigv%3PoL`O7yyi}Z09)X z%61b3?aH>pgV_G}lOG=!Iy(wiMywSp<-2#BylzHC!#VHRri^6s<#F;OzOM$e#M@ja z2utG>KQkjJ@Pm)|wjdtO$B}oR>1Z0D9_Bm`mSi~DCBjGy8S~z8I6+eJg1UwxyLgd`HzT7tG9?mg346OR|hkZ9Pq`VaxNNNh&mJsvtIu6t^UU%2k6#i!18gt_Ar zF~{+bzr{Lro?|HQ@~#74rtibr2q8i;IElK{r@)=Ob_G0NjtN84n>t>uGMbI|tukJm z@36v4A0N+mxU8u{3K}xE)MDY`L=KP7)#g2aNv*?s+}}Bu4JP#>YOuBlrZ9j&;Qq}N zQh=xMCW->g60{gE_ix~N)DJDI#;a%LiU3I35+){#!qXQq6J1}1E4ILu2NO~V3{cI>{d{Yict z%oD2#s<<}*U%tw|_&~;b)12v*Z=Grk6_*hV`PL~JM*c>Hk%;>)MM3~{Piw?4bWdwQ zNl43teRT^u6TZ4t^^BuD-?-kfB<$PKcW}lJSMF7xg3rZY+u+#59wi2XG18pJ4Q}S@ zt_yt%-N|7aAIs{z%F&E{{M*g&vJSpM)W>|*EAu#SYmV{}BB+2oPBb4;0>RTqq!u$S zP>UItqW~q|?>qgptvCB0fx<-2kBYc4L5~qk7$7Gp@+1fKJ$8yc%|pw4x>w+Br5pCQG-|6?x<|!^Vsc< zEb9@0M&0)=O{cVQJ7kmCWWpL9_Re6O2?PQi_7YNn4ttR(K!?54D;;*H(@I$7v z0ehL$0_C<`oXIwhY4YYf6YxlO0R2-IXNsgB!{Z8Tm4n~w_c%JjYfNYMK==77kZ8Vf zQPVT7hKh@KMEL|6fQ87b-`=h`QNF#+ChGnr%wd+FNMgR|i8Aj`4I*v_!ADf!+eeR1 zt{q?!J=JW~Qu})evP%_9yueqk$u$PjQPFo5HCk?^BSAU#fbny7-xhKlOW zhP=rWj=Ah%LNv$<%H!`wD$>=b^VfAy?N;*_^iZ6?BA#)q4m)-6+dsqan@7sQ%gPy*`6nM|z~{81;d4-P zpM~^9%%p%(sIC!2=~AC=MgNotGh)I}_coj)J$d9LpC|wEc}D}I9k2d^Biq_g$U~iY z6)m8O!5>Je&5y^z|2}!aah7!;_1N^4gDJQO1iJKIqySxd4^e80S(;|m%e_Ibm<#Ot>2}a>nMZmU@Ev~ z!zcsv>BvC(bPI6dQ===?;EVUvYi1sqBwqk14WyoLK1m6m2qU@h?#5W&={5MULWtzJ zemDmt#G}+72h;wL(!Laiwpc-+py<~rb@c03mZZ0g)>yqq=mC7h z%LCmeiL{EmHxx~pStIhR|8_jj;wI~^j~-0-5#^JulV#9;{rij}mQ29Wd4+%{OqK~d zD=&N-oN`Egt;zDtL|B<7@x&vLtFej@rRykmf(+`>mKn7J=Z;;*R4DkG=eYkzAvoj`UisUa=iV!jRma=~KqB@&*43TEU;I$V$LAE;?+7-Mg$f$MeNO@rs&>{aed_} zQtmiXfefI+AB887N{s8FQbgg#F3AT!*0)9r;WN5-=Va->SHO_*N8W%q%Q&fa@s%&OgRvZK$rQsEiB3}5V!_Kcf#3HJP zRL%nd#Fr>B;sR+f;tGKpGessD9{9p>4||Gm4AM%C^h2ms0{_<~$3*rj0T&7p0TuX5 zLcq=@U}3DKxvTmygaT%XG1qaClm>~R9wGW%iGjI}YXn^9IY=K$)McWvcFeNERx6WHI#-#@gN)1=8UTDeyVm;ny9FjD~#Kbw_vW z3?Tz`xWkE1;visY>*;vdEn$Cu738~a^@Ptg5H=5mksRaXe*ExVPAj8=S8L+TH{ReK z$~l{|H-o9ZMyb9ZhN`$?iy~r#OzG;(M=wp)Hzd8#AQ&R|m?}f$4!}r+$gZg*L?$h) z5lizbI^Q!`m1(+bqO;fiLuG>5H2+M>Pci3gb8}gFqPtI|a~X>x_&BR-d=+EYou+2h zn~9lY`HzX2U$fRhNYyoxih&cR@!ba3cbDfz7&3C5BnNbU%W=4vG-`^m<$=?CNz2VIGg%AN}#!KQC&Wx8p#apdMpvU9P z_)2Z(yEjqc>JEKK15;~o5+Sf_s% zAZogt4;xO`V-%+>sPNA%tw|-$El`PbOXcbM=y^;SdA*gU%L(RZ=zlVzuNd#F2hYJb zi+844D+#)Eg85CWEF=1(@y;1+2w{&s=vM(o@dgqIyl#3k!CsC(SKsMnUQ!i=tj=gt zWSpE95)_=A=7|EFoPM1q^YWFmGS6Bbn6Bogtpow*CJsj@{U;9|o-XI6-U5owO&h_) z;v1723A%9c<_pv1D+DP6yduenYW^>r&R7?kg}F3K_h zQ)EHr0UzPwXHVBIz9z9#03v=?@?>-8kF4wr(2zc-q8m!>A(ojT9KAXcRM67d%V5^O zMYbv#b>X7ws9Pc__c$oL_D2>}&#-@Li-{$q+5-gq+x(Smg7 zXf;WNa$~w&Lcxb6C$OPJ0`#^TTs^ulaEAP*WO1L&-fS`f4-!~`Pmlrw7CPGyayN8~ zap7zkX$k&$8)q-JHi$>8rlA}*LGfMYe!i`9vte$VAw8_dP+pl}$h8L@e%ULv+$k@!z`CCq&WC+xN!R8oCDZ zwNB?M_Jt-a-ywiEELuBd!UgUo<8Mq{gpt7eF*Nv!HdgZ$=&91p?RGm`m}O`3lWyk# z>&JpN^;fSEW_Y8fY6I6~R%xalK6sg?)1kq)bD74cRJ3Zz2ufF6#=rd9^m4p%N9X6v zN~$m{J~%Qn$I^JFrDRm5lQku^&;;_uYFHhlW;o^9c1!D->eyyk0jiwa?o?-1jXI(L zbyjW`Sn>6vGY19mJWZJow}o(Pw3zs<&mP2Z2slWl$(D!SdN>2 zj7krem0f)Cv#t->6ND5x4Xw5EF$ZR%Yb=E?wRAPi(=++u^{$TWU4nzkk4 zLKQc$zM}pnSpUqiYPA^r@cU?(6x3*5Z8iD%2JS|@=ed-M{LrD4 za@^X>d3V_O@DAR=!@>J;FXzi_I5DzzfP;0ZPqjO_4utF`+>^PT&C-OW1BA6mUuQRS z@+_J1cx!fM7q&JSXjLH4**Td**dswe=7X~^$m9nHVBm@IC6xK&%a;fO#+Oi8tr|Q6 zGmB&DB8<-7NdO{TZr@oxmwVyguA02bg3L;A$Y91GXIJYaL6*AR0fY~_-N)bP+@IeZ z?yLxhVlX)DAB^%1L4n9Jy7arj&Q&J+gB0Vim{JJ-(!3{dSiptS+o8<^6=_K!B%Nfs)LZSx-U>qn8~#v#~j7HsAiOt3De-YIO&O=ff94 zScjj98#5b+RU~a(UahL9UQ`I*o;-V&vtDL_)co}9U&Q{nF9P;Y6b!YX{PEyGrSaYjeoqznQg)l!$2fNqtE3i7O_i>Frzr9 zWcJ|Ne0aaiMAm*z;P8sov}(z59Dt9z^1NVA=KsvDbL1LLBd9AF1VOIR$PDNABQR59 z;4@P2$G~Tl_=SPbs5!S@qk;dzHCn%=&Idx*XerB_&$9VMC1^RduQOYh`h+OjaYt*k zLHzBd&PaZIqq96eUKd^xZM6c{jTz)0rtAsiGGbjrB8J%`6_ zbl&DNR=0a4RzS((Dt4puezt^^;uLVOd{#5qt@(5l?2)V`mFQTKYNaQctLBpA-2HR$ z1!v|JpenL5N}LU96p8}6eg#gv{WGx9OIczR69O6}YINzZ&tx7k*i%HD+`+JtSa;dk zjy+FG#q41LFnK$d!ea<`G8|}!7c!p+AT8t3N?A$ld^q^MFJ^8FfY)ZbCe8K>LDOdY ziJGm(8+-oZ={2RiK4%nkvh@d>=QU(Ia6`USzmRm*MS6B1ota)PY}3NB%06vB(p{Uiq>Ye)MgFAL~ZUP+VERwLoDsr z#=;j(%W4t8O#8F_gbOxd6W;TAXL0~Eigw_6X9wd1|KWL<2VW*ges2a-wzl>=AYVmS zo51eh@LWpa6#GnJ*G1K0{+dETq922*#a58}jlz@i;+Z>7a|55J{I^ zKsu{O#?O`cMD#P^x|*cL(yReq2Zpvqfi8 z{a=F{ll~1#b76S*?$BTO1uORwO+Um(-S@e4J$P9ry?rJ{M`OWq6U zC5lQcd;|tQdS!ecY*JPK4X6q4$QfVqg!i4<@ZliQ*+{^kz|N5wL+qnPlIf`>Z}uA` zj!8u8Te^s#7}rl;AuX<-CWv3SewqN1!6|~!#IbuuW&~gJfs==>oF;tee3C6CszZyY zmD6Hf>SJH@;2o}<_PyJ=3U9VFs}3K2&bg9p)hy(qiGvDa(X??PSu{OKpm0@jP($IO z=`8|)OPkjh%0<&TQh|%6*ZBx|xru#6$}z_a2zZ9T#}`*jWftjvf@H5tvV6zqdc|~I zQnV6SqzJG+ikLPIV@>adg>r>6Z=r96)8T?M!D!DXU2qP!ZV*D!70v=8HLh?HKIlAy zWm3*!g_FSg-1Z6w+h^rPXJwW~$nL)A+{5~k0)Lcl4qwDS+XMkk9;x+DZ068KdSn|D zc;O{*fb9h&S=>bR5e0N{)0h8z$=Nu7A;zpBfK*1zhd=zK^9zHmAhPJFdmSl7pSgm2 zzHz<~0Ig^D-67DW&wuNz6-XS{4qB>m((4had~1gh-#cfT&n%K_2aTXYZ-RhphtfVj zIGMp-Cn9JyPLWbn<8>bUqw`7tbdX%?Y8YYTlk4;9S%=N9Lgb1LQG^$i+80Jp)*{aT zO%!094?S7O`7w)SoPYOXsMc>F+WFIUo0Ix=?^N-k2|-pDx8MYaegErgmHew z#WK$S4f>ae^M78XkA?*FTpj2CRx9hg$p#WiIA`g`P*YrAAgyjX@|&GqwfUO5S?8IT z;OU5V8ZCt>!vbJDeq2_o0CsGGOhL7go~7n7g${G z0MWD_p9Mi%fG9uycvh1Dc%Ldx^C#3LC4!)#Dp#l~f89cr8evpXK|Iw(OIM>%cTuHF zUU^q?sBFi|yE>aq3;B+(I@jXX3a%!sIYHGPuW_O7;zrw&impJ1*Ri6@T|JDDeCmtN zIDYDevjwl$Dywn;e~kFL5N<+H6WU0`^r6I7Eyk0ip%r5n>*sZOX+qXTwz)zXqm1~k zD4zd#F|#Hgk(d?1Uq}Q2CQyFQHB_>M6i6itgOyZq?dn2#copbjq#D9#bRkAzWnq|=;XTSa+&pPoCWCDV0G~>$njaPN#P^*Z z6YL-Wt=jwwuooG=cuI^+K74mASC1GH%=n^95f5Q-J4{H7!R>JI3xnI?AY0hr)~Mrp zI5@8ToXsXmLtChjc7`tXF)iA2M5&k~E^6 zN_gm_Uq6siarDc1XC|7%zNG{qTV5LH$@-tcu9IT1#T)ylD4>xbLG*fZ~qb$^(N8j@;s<>JhP8Fw#n zW~sFF`m~%FmgP9ga#koyp=FIwmO!+7pR9Jb;JMbvvp6iz zBFb~i|AnWkU)HKy@O;9@^Qo{r4^f^khUa;!)~w0vwR4rTKrfOvYOpCkfPZ0Ao(;?I zeai2@q5MQshPP{{L0RzuI*QN>pQ8JXaKdQiZob{-vIhX;N-3nhg2%;Co;A*_RCTF; zSitZqw8Y2pU1Ks!%-E$efREGl949pEQavQh=1b*-M#cm=yJ+6MR7db;Re*(PrGXYq zU7a9;fk(#oXAie`%`#Xw!do~8(l#oB_8at{8@Unqied!#uB5*DWALw8sK@YTF13_CH!iD=g>55Lsy%LN z%)gtGmB99pQVfK)E#-wrV1Iyu`(tL~X}+$zD}_Bvu&}v~(&lR+~LTV8}*=Z5$6E;4La-Vl5g<88?PglB;!q@k7r7=6f!bt=7bK5S{BLrUMUY{E@ zX`Ie=bs!$xCm@gOZ1%gI`isA~E(J*(zG8yJ>B6!%%iiytV4%sS^!Ct{lnnjT>T4s@9F8uIM&pOQ2 z(ku9t%Ve1Q0s+@y?yIy^gt;$(Bw~dWLg(3KGRy^fL1t2nmVu^_!ZnvHlVL8{0mIx7 zN+U?;7GZ95SkJ>J4RK}1kXXwXdx~%k1Kx7W!2lTWmKVP;;4Q!W76I?;LtXoW170_O zZkX#Jixb#7aqTaFm^h#JMwpg0An%OjU8Tz&X!6Ed8H|%}sKB5%ak&h7!|38oST2L!n#+AbZ{>Vf+lV5d zg`eWx#1EhET%S+QcXhHR2nI9+u0=Rv2t5B}$}F~-l;Z7&DQxa-CRLTKR$X*PvJI51 z2!wN1XGI%q4=Kh#_#sh117U*b3xqEhWfhuFESG_>MkptJI6+W>u-Db!V8;n3^tTww zyt!P3GH;V=^l2Cfzp-5VH1mVy^7OB;t}hbCuvCknV)5fVcarPqEm&UmvAhzN<@c23 zAO8oIC#JYM--2b-3Z-R@6#=6}ekH-Ix`JpKyCS@nHA1xnMKEHcru9c`Z3!!k*pBn{ z(;#A_z!+@cTS=tA&`ncOndPO(%SN8cKcqsp zK>9LtduX|QDu36GtUe}th)~CAOH+@ReShbQpaAYEf}#VN=V_@3-~dbpa1>s&PLyV$ zw%!kyHd*XyZ((OC4RLg#!=qVFcAl1ssp#wq8NN|)9qwFPA;XjT zr1kI^1`$pj#5~IrmqXY=nQ5(KR_e}=!4AlV;adQ>UzMgo;Ko^AZ6)NPDYVway;5q@ zfnW(u3@6Xq;F8z0OwTP8A!Ey@2s8+uz@Xf4#z!*`BV2r{VBAK*QMj?IT^?f^KeXDF z#byvJ^l>6?gXiY8fD1uDaRh@{I+5=_l$Bat_XEF#JieE!M}RpnatnccA3O?N@DC+% z7<#Kea)YjmA&Ev;eR>=8Ab;d`h^P=W1XO->-%1j>87KLn^{!6rG(p2wd7CKxk!+Pf zrQs%;n>33e{>Dlbx4{p8xS``VExUq$Wu=VUekb5MZZq!FM6eZq2T8#9kbbS`{366v zpSuQ{!cd_=CnS(K0?l3&3~?H5#FO_Vb~M2(7|4Z)xQz@w5y;gH?}y-+UhlzKF(hX2 z1ymvk!BDQVPzOV~H1P{VxwQLk5z1Y@-}Pi@DEIXPuDxssF$*-73grgqQXl7{$L}bV z8_1J(yW)B5(9D@^x~48exhWvH$YM^wzfSxBc61mSyk4HW-Bs7@eV;D^du_YRW^Ckt zZFfzzdIeb;bM+;BFy`9!Qr331jg*S+QSw1bC$@(cf-5z)@p`*ljRJt7>%qC+{q1iv zKtl^OVGj^a@cdRHpY>|iN9+|+ibL&rQGm+aC1;!CptHCH^6hI`6WMb;O~Md zMUEZNaHNL-yl@{bK57zqd`;~I;8J+xX^+8vri{c#oOeCqYQb)hQZbe+0LCNV%E}9X z$FaBNt*mrbWfdr+)(d`k=i87HrSuX0^k{gvJ3btI+&i%U69SLl%xDt?Z~hEN@kDks z1ROt_kr4!r;uk)=p>`-dlJ6e`Z@?Fb9(TnBLW|9-ebuHlVdI0Kg)r;8bco@Lc*pXA zIAZ$Sl~TSbn-_!w9MWOIFLUpBNv* zemAkcB44l?XZG3=grI+7kJ62$z$fxf$6TMX-2@sgMiqtLNCkQOw@;yLwe7=ZRJJvdm7spwmDp5t% zUEhBRSoJEzBZLsX3h|JrR9~*&P$Vz+t`lYOQVW5_QN8#?`G{!JOfCKLidN5w`B@;~ zu=qv%!eQ}C(Jh9>r1xAKLu1*j_g#xwl{J7Jl9pt;)W^7J>mA0jBW`9@ z>T+z<=TkrPjg8nfa%?1g2n)gv!H~{CNZf1>BdoXX8ku)2x5hU({yOVwVhrPr&$)7~ zbp=^E9x4z%I37;_(Rm0POG+`*Sn!kOw)-)tUz3fd6vf@N`)_7#W3xyp1^_cf0m`RR zFBA_t^uh>&f&F=fD8T*X8CaMgYF6 z>pKOg>dspU9qi8c^YvGK-Fd|t(VbyaMU)h;Ga>?1g`U2C z`U09vJ^iFEsk<+_>KUxeS`bh5)F4ddAFd;&x};u>fMd9?8L9W5DzBAu8=zshuK^Uj z-`C*6zVyuq&!YxQBm{%_E6H1|mCFrQ$@4u+C*UG}H#+g_-?+N5PNW=zHgOl-7{IrE z>uSITkxF#3nB?uZmV^wW*UG!-!$@n%yXabe^`vem{=;{!mH{07+0VIz6D}`6E*@Xa z)1nd)5b~J%HhK}k@ZUx^JFP95?X1J&qCB+&7=daz=B~B!O8SEYRjajwsLGybRr^A-1hubfFKA!9VetzL75%su^gj$@zVB-=XVW{EMp=uT#sDz_*+3 z^8BM~u3}boogPj)9*WeZK3$6b0q(`Di6$)b7Y)|Q{6#(dEAtmIVc2_P*C|)N&gaS> z_|27UWbwCtbLCrO1zqaOD-uSz=WO-(af?y4bl&eSxHr_3)M46nk(t(n4WOkW8t%DH zepiNq<2}w73q38EHwfGUVEkB|CpM70Sf{RA;%Up~2f+*S`^%;^3k4rBv|L$!=yFPH zwl)X{c@)<7SOby7`WaQ&6%M{<1J8&+cp;N!@rz4*e*3It_@zq_TUHvhG}yNUHrp*U@zFSRA) z3z<72(>n8$tvnU^qE?=K)`dzXuBHszmVTSD4VtJn%c2xTY~ze@uVDj8DNc9SBHW2( zM?op~HuE%N`J`S?4SB_6#+w4hY-(%6gxN-j6O6;JRd%oAwI-y; zvj>QFsQu2i9*6l*F<;Zop28j`wV-=q$=gvW=5C_8#&sbaW{x~OS!3_H(@ z0yH`FRlH@gvu*b4#$P->+TECySr4^(ZIN$YC%Tyt>*b~yZPs0J4!h+yAz?~-9R@%A z`0$#4CW|8kMbKjYR?L&CwQm*x3CpKu{QTSrEh7jzUQM}LEU%`V2QkFeluwJv)fB3% z?`ldEztP@vn)N4aMdTNy+d#c%)SDN^xnZiAklCzsaYs*r!KVBz4&1qlb0>07s;7W0 zCeSc3bz>_@LA=G)!&r|&4}}wL7AnaCo*VD(Y))7&gP0IW;S;a1?#`C{^%nkCnkUQb zEdi^C0QOwZbDKG)vzMqOfy%3Mf-ee1^4WU?Pz)3zn|cK3w3O{d$DndO81w5Hf z+oWTCcaIq2)qMV4cuAaOt_y6OWNwIGILX{te~VCSX9Ms}o+RDB4%czH`SgbFsVruL zF4Z$jlrHsgzLP}J?ndtOtd*uI*TK#Bg~sk~MkDdZg*!SiVfcC*ZjcdCr47D_D59ym zq0yZuHih>u8Vag(DyTx(h{bK`vF;w5!TOP6^iBTku{mOc{C4q30)oyN_hW|%@l?)d z;s%*L?k*s8_P9CU5?3oCd9K4ddt6@1#Kh#$_EDo-k4_rZZe&t^n|AH&`EBeYliMb@ zO-WA4Z`XFr=r$w8-!>fVGFGj=`fcF5Zl*Ni3v)ej0m7nhyOQW`%kI_k3EyV)<3n1x zJpsTz&644RgO&t$5_>@7h`^yON1ZkkogNCKQ(~gKMbtupN-f)uPfT?858$VTdqy)7 z!kPUx;1H%}N4Fb7wYNs(xZBk}**%+`C8g+uG@d$F^gfSk?cT+{A%I$%tGX1W`395} zJGq*Qn$5nHmcTsj`x~Se(LjpT83`nIa-)g3zLDWw$X{sd&W<5H&tCbz>SH8&;<3$JIR9GS@*eIv8K!yRu77Mf*=1Eu{?7T*E!tY$Peg?%T7R z&25>u(Za6`_c+*OQjHxLKPc|qs3RuJY=F(HP_=dBKmn^#I{aX4T04IJ$?V$+^Lz%V zWscm49ml##kfzEECvsu5z)1l{3!6j%Mhjpkf3#qE0;Ij*YSfTDMG!!;rs^7vP7#D`33vJ}JN)%s!r+>Tb>`AchNzR~jwYV+0!Gg@>UP#VhBV zKnxKttlvoD1*)z;V;e(S)YtDsr@$UxX%mQtJ-)K|g+0FVrd#y*%yjoZ{z(CB#4Qs& zRd|JuyCm>VPqr(|_hz_@SW_WS$QWvk_x0PD#SV4 z???rZg%5cGQNt$w$e18HOv89n_|!%2x@PPqbUgL56QM<0SAy%KmD6%^5~k0{n~^_! z^!QOTHhJ4XsW);nAD!#&WK9vw=qQdS+%Xe=CD(nFMQ_#}1Q$VZ!FW*wLVQ`FbjNJZ zOoKHb#s1u53tA{rqYZffzV4O*z+!5wtGTE=IN{Qg=jCQcmsalQ9&fNLLJ^a_8dF6R zX`A`f)b^Qr3AX6R}x5g&BZgoecfQg2~pfT{cMrP$;Q%BA^dQD*I;*Q05ohu z4`OqI0L|f>Wm<{S)oG>GVZiY`1_ehkFsrmZ2pq&XG}K)fAcnAEb!`ci#vHsEy;y?2 zo74IKi%q61^;9?5F~SzLe4P}mpW*Hi3I7HgR)qz5Q6qkMxVtfb)Sg@^05M1|^>*2F zQZ91v)bsx;mpphHInq7bWZx4hL~um3t|wQ?UvCcHRj}u~SHlBJCAwz^Vcsn<%aq8h z{?M`RA6Ya3$D;=G$GO|Fx}+56nP|?&!}k{`w7>T!1_7JVB^Ve|;2;aBJ^d(fFyed? zNQ4P(-Ly*78=K{Z#g1Z6D}(hXjDl2C*R*;o)qb1kUd6@{aO`IXC&3!NfR>6S_c$pn zg$|NdoxjXi(gKqpX%%;$w5K+CrW)*i!bn6tB~#r=#)CY0s=E=}L+UUv*j1vV9rFPE zqh-f-5uy*MB?x@HyGeDgwvXxr_w%*W+|~eAICaPIDiNVwW|Oi``gHeq>>VNkuF(HO z3xpqdho7I}&I|y=oAX}<0h;ef3sQc&>!m#9yGbEAy7e16vg zcP}(-@_|R@NnNNK|l$@(`Vs;Dm7!N)u zeqlWLAlTwoS@AfC6-8Ej>SFiwu-indZ-0SvIIevzukfg+9e=ve-G@C-ECT~hEvlZ@ zr9NGX?v!Wkd)>>qd#OLfGES8&b-URG%}S<5PKnl*Pv^eH`kn!pcUvqg8*rG)j`68HUVpstcTuzeqpJFvMA$c95JPYr^CPvXSya;LCG zq#TVr=>civHKYQK3>9c(Ad5y0FVdN<{~wL4;&(S;gGMF=L{lK!v*s}Yi;nfU_=QG> zU;j5F$8C2HW*-o)em@xft}Z34Z*F&QW8dp4Y2>e!k-wluF1tmy9d_k1ThvA(sX!}> z3elD0NCjFMD$vS67p)v#rnm>)UH+~YtHUCvh~#KsQb4o>iVb=3BC}=9UP2_aa&Peq ztqi~ZZ&ogN(=(Edr^@+eo9KL9O8C!v*!?#D^bvF-Xu5gIbZa!YOe#PHuGJIX@uah@ zq!#T5wP?S4wunI>j~~~TsFSu$p;{J zE_|CWTrM~O*=_CD)TY+EeE$J=Rw%#9|M4_2%J722?uN|V3RJWgQuj6gqWmIx?h`@$ zil1=DhvT>HkbBWB_%)RL8i(U&)Q3w2ZUD0He5pLiY*U?`Rz)(}t{R^W#+Bc675W1EO9B21~P z@zk1*;9-JhfMpLDE~z*@lRXlIOgeyC?>s1!k{`gS`m8%Dh7yBrhB=z2xLo&-dDfk6 zvg3p%E^)O$P327b{8s<^MV=<)JuiALv9kmbSDO!(t;iR?=x%KJFUXr*JG&YCf`GtK z$~Vqyo12%n%49TYWPb9P`~P9>yW^`Ux`y4o)JzBoq)?KOP^3cw2?WU9y$cA05(q_5 zks>|PdsCWAe#v(yIz63Rti`>UZYM-n(b_-n@Rl@cgs6IdkUp zIa79Kwh~dwycXgDFSHw$hbTj9&S{BjVxL8EYw*+GG;7O>%(EI7PMs`t^XOsFJUMkb z%axqehQ+ONlU&Y+azUWg-c*;usuFsbId+YEu`qvQUup%Id#&CF3*&VOhR|89J9hM&D-xy6>zu3dA_r1i*cb*<+QhCnPp+_B{|;V-cOxP=lr|@JFG{6VsD|@g zOKX#!SL?BdQX4DmRYK4aBjsg`j5YapI+FSUn?cYW{LM*WmdPKgIry9Oy!?ZXrA8`j z4IzkDU$1p4%(EXg3+I`~Q%fq@{I%n$wb(X-hNj<4O}|f?K8(bhSm9kzh|fBnT7vKT zsaY8Df*Jd3_%A15*9#ROkQYqsPfRQ9Jem3_yG5jNSizj>UN@}()r1xNx#x(OG(Vqu z5*pR35BkfG^(mh_qt%pPn~YZea!zVjR&2f%{0_HOm2L}}&o}%xwI?e_Fded*m~rq4 zF0pV1HH54r-I)m6NLv>>4}xjx;WvM8){ZrDa3LK^b?>0vCoxRXCN(Y=p1tdjX4Qj~ zjJelSTN0)<{qW^SdB{xCH&hUl(bM(PBLsIGBlHu$aE#Cow90L*0MaC`73{hJJ*wY6 zhu3eW4rG&wLJ)A~9RF1d>XjjD))THPoc=boC=b1zI+49^QO7}=GKW9B4KH|R&6iV< znbjMI@_|8V_1Ol3DaLuq8aw9ct##Y6BMv0>z*^605+zCWSZ_ zghCt(f)se5Ab<@rXU^wC+PGujV{T$iAkKQf5-i@Y3?J0B*MPyp$Cz(d3M}Bu?xvE8c z^%lroTND!#Q)P~?VUr0uzJ{%}0AIr@@!a?o63WDBN{|}6fV_&O+WNL`Wq&BNk!WTLD|lgpJ8D3IYB@>ZKZZP7{E?AK(P3m zdnwlQp1;5Vf%3yF-R6yYEX*gYiM*PJK2Dv&z9zgesNB$05QNjtjgS%p&14(wT3-+DhqE&qCQ9SjI6a z%_8Q-jc7E&2L25j(MUt~rb&?^@IC*lLIBLw6T~mf)f0eaz&-yb|4AL=pP)}g)XP8T zJ$GC7AEJzvq-R@DFZZl>o-j%4mC~}$(> zZ{yHBr%y0LFq}De7hpe9viL^3Vaif?VYtX@D>$4xJ-kd|t`~O4D9Mcw9st5S<({=6@!oB4CcGb!bYyF@Ki)?D$;w@AJ&rVMWexzm+eJb}3@u_Py( z1RtAXN&qhJG)*a0agO5MGHvaa4#fGLU^jd+hH$`Xq8}!;5%x3PNEO`k^P&J?KLft@ z?fHREMJYwWRId!s~vX9-12q?X0Z+;e)7ueYh3 z{h)qYQH9+nmGIT#&lCW!7F~eBH>9Rjw4qu%}MHgE}!WWWJ1b{{= z%EL;4Gbkd;QQ3j07F~>QswpDAx%3kt7`}`P18!Jr0uweY=2!l;G^f}F+iA8cBat|Vm!?fnoTi3;MJ}{hMVh3QcH;?xZk>aUP1Lp%4f=TKG@c_;T zh|jC>n~l=aBS|ju=3tS|um_kgB)}eEf%t_zzyjbIpaK4}y@HRj*g7Tb`e4+bWM;L1%NQ0aUA&OJ+a$(=yR9IX**QIg%&@0la|QbkWENAIGZE7O-p2MI7~1dOwD|Az+?(F zFgI9CO;VEx36UEjb1_UCmeMSO#Jjhx$`+Fz`AE>gB=Mv8g-PN^U>+bz^yS~za*yy& z5@MLh*VcBYGqw~+SnKfSWWJyU^>WY3%6q2RQy`@c|NMot_gGnruuK=ROL3gYPu6k! zE)E44zTVXcG7b-+0EdUAmXhIN09i9jE|tSWb*VSG3`}vCfURy*Q{1(qOA5L)-18Ae zm|RYEO`FX65-1K2(|_rnmz?0$o|*3tdQrOPQzEkG)p!4L9=)`&g)WfN5gFQkf7QUI=fA1VC%GKnBDDl@UM51 zQT96x8s}5kpZ{9vSFALW1uwJAf=$|weBos>k3bE~BYp@!FO`=HKU&IL#icY;L7u>f zSC-0zlS+6xR5HKll(I}FoK^(WA)OgV%}wc`1|}R!I+N5DY6`KDiP)NdU$tKAND}zo zb}rfujzvZa0Wi&s62CCbi~^Pc(@ez{?n(Y>=0OX0CYwnVvBn}<7Szi*>)j{JFuTX4 zh4Fe>1&Z^9!_!LgU0dshiC5w zb{asD%mvG2`kA`Sx#(9!Ec%V@HFQwdK0~|rG*|t;;`uV%dh`OpkEW$*L;y@nGe@Ug zWZx4gj(I|V*9-H7V_;?R*JW_k)0nhc?015L8RM5_BxATfk{RPGfh9A>-1hGJc{p{2 zsSV5?;t;((8`*)ou8ADB^`?_tC^yh~SigK$gYLh>a8@PiFJ-744^ z3x^i-LtQEDBTjyaO<>(&;%4EP27q1EU|lXIZmxHMbnKgHP2tN;fsx@8qh922VsLMw zNawqgQkz7Q=HV?7Ef14d@N$SCOkPFAFHBxVmgkbZUh3hV=%2hQ_jGq)Pm9`q!=thm z)XO<*Zr+pEtY4Db!$mrE3-CF;+Cv}tZCLzs!}Dv<=>wF&aMSho$2&2%>)o79>m@WhG@8*#jX#>!Tz~dW@ie>v|*X0@xMw~mbpSmc2I1e92`@{C4O|D zqNecg2juB`QgC-0es@lC$ONS86BYK9OsoNnUKfwz!Yn1kbd1S@fCL)*TPH~Hgrgc;Maz^3#eWC^Tn^Y_p+ZH=*mOEqBV~j+mb~=6@NaW z=1})o7V@z}IK~rRac3yg`1>Pa#b?|giB{Q(_B5iox(ue`#0-_YHys2eT` z7V`Z|G&^>)&r+uh}i4{c88&i(YZ>W9uE2)ioyH;0eH2knpbw--8rEARwsgSKH(Wf#C|_EIYs>+$2LEP~`xaAH*uAR$jbhg0GrJ^& z@XRUhVkN}2oqpWDfa{9)>?>8?1&NuLsgxbh2ek{S$_u{cuEpYgG)wbId)$@ZyYXk~ zxh0APrN>$Y;+Gf;W@YBRhut%+WjWrakj8k(>+VwlsXxJagp6!=TOK#VU4VZa(kDEd zzu^v5i|AAXzGq~39A7ur7|5Dha8wx%|F}x>xG~}R)wC6S2ser=I$t@>y)+Pov2VHi zvgdQB(Ah^}!!~!ydy9SziqQl%?YXIG`JTqf5q#&{?vL3p2UT!I1!WN5mF4ct29dJv zkKJYY`k)5YqAkki!XKf`XHIu(%5;8eI$W|cgH#t@<};V2S5V(x!Mm@lZSaJfFXm-c z#cTACV8V6<&q=A3We*ybW45J|4GiXobAq zxh}*}gFf*x5aGus9&iQ0d718O-D$k&SWggt=L7fON)n&`p}P*NL%3Vkss-B%0$R)S ziLh2J*RLyJQ7bbhil1K4vIuW8*Uk9ft~+ITivaHxvK&ch0 zN+s1wAW`2sHTd`Wv=3NsQWrz~iEY`#VgsL&FuZo0c_BJKpZHRIe*WBI_s`J6(wDev zvl)cFWz4s8Gv@o!n98qw$WnK=yqaw)pR&xI$fgqBmf2Q0&Gwq9&m=Tk_57KA0fSf1 zuRYIp5eoks<9%*1qsCh_Bsz#+`Pltm^gUO<{=C%8>X(zr6D(8X*J|od()%%TT9)r4|TmeF0XNz!e?!8 zr?M0xhh@3WPRk{m+SFRfyKM+rT<%*92;!t_%g@|zF@nHve&+s}1+TI~8w>{Tsy-=PKfRCz6&)T96`$bB zY3Rsa;y>?jcVwk4!d$W&SE_zw0Ct(BR`IY?wWIm{o$fbTBB=(k)LyC1<4=Mm#0Bn3 zWgfp9NT)e*o^j$t@}eJAVf@7B&n2+#PV5)`vAgVbNAUE$?#6746MKX|c87iLUTl^F zQJua@zKgrRAKt~4=0hI2+Y1=Ji(6wyhB4enN<&d9R>VQA^#|N-qXOFoKCn};)ZbQvvQJ4vm&H4v9*=~*SZ}) z=B~;rQuuXuFSz|=$Z2;2|B+?lYFyt}E_2T{ca7o?1beiSdF~V#P0CIxWn+|a0yt34 z0EprXPQdV;LNPBa>X=YX2@=fVGPggfhp7dD;CYxQzIW0+h`mI_#9WHXbupFeLP}A& zky5$Q6fTq-o{Msmb5qV-w+2S29A$*cIRL0!sZzCOzdn1?>{n)+CkZH$rRxg;be;Ew zdl=h9q_%WjXX?6+l!C5h`RN&jt1E~2jWb}?BeYN`d>|Kv&q#$`5cvG&twL3ZKh2E= zzz zJtl>DQifJhoxX;@n4wi=Gn_o%&W-2$lBark6@R6zMpJ;r)cQ=4gL75B?uPqmb;BB7 zubozfZE|v5mmAj|7S~Sgwdy2LEv`31jZ#Vm&$#9G`U&wo4=ox1tO1kw*-ugPaN=~^w4_JzLw2m0%(Nv$K>tOW?ZS;-K;@XbobT6{eg zTw08xaNRg|g}6+h4tjK^j5EhT1c))-z3*XYI@3ZB9e8^+YpvW+uz(cc z_(>F8uOG=LK7bMbYEp`+1_x1qg4+t-Tr1BqO?v2V%?{X6+pBv_4rfRKa)1IDp+)d3 zk6nt}QaVS9I9e#F~Ws#)RA`U2C z;^GigRAA!;9t4gDas38?gn%3bc3+Ewz-WOj2Z4=+B;wyUW@jdg%j!z4|C2mEYa712(ipPuS3AE_R3W3V*u4XX7nJ%zzhj zsL>YG8}M2G6P|Vca(8EMThvJ-3&1n;t#z`IrTp!l%NCPrB1+*1U528yRNr4G+sXQW z+(qH0Uv~=I=EU4=!<@5A3!k%2Yshk(cqeRl{DOjrVf><^C9-=??5};;80di&2ps6s zftFvO69O3M%Fwy_v@W3nSB81ydiXV+56q_}#k?h;G^$5f;=x?U9@WvJqM1&yrD9YM zcakV+p_x%li2@0XYH$ihb!~x-QJo}yVN@rr&poP#L&S@y?od#h8!)ODKVekEnp>pk zK5FxGg|yFEx}^;X?dBHL7ux?5#?Xnp#9p+hOP+C?pJ@guwXQ7$#O(_EpjBjua#&`Y=0Kxb! zAbw$d7ub+{d^dsE7x4`z@q+k2;aY#^id8D#7@_^h$_Q$7Y=g^Ir7fs8NS@@pboVIj zLsrA0DWkF5nQ{%nEufcCX7%ieB{bM9+t@0@aSVKGDn3?gsieY97TSxfv$MF9x43(Z z7R^6PfW@3ay|nslxD#=(7ZK>dQdTl7Q;zM_FN}vKLt@QxV!!Fd2D07QGH3B3Z?Tsc zyh#En+2>Bgtu{oxbN&#%s*F~LopmCfwjur!2QqGt)4H(x1aVJqt%D8ia=g}+<=bdE zQ*=t|QycNTi!@mzFH;U$R?%{r#-g2=B_yVrxuU8SZlkSmE~)|Jf0+nFzkk>AcI?4 zWX;8~o)$zlTCq45++9Gi9ai5U&iPf~gZqUw;=3zp6W9c24O~hZw^1%Xj3cGE{BWzX zros2ApXO8|C6d8gE@ya~FS6R7A6xt7X6rS63)IoYhf)HGdnu z5$A8p2)?+LR+E2LO>4`J6JfABMm-LjdK@ODsK@&1+SBR{h?b^$JiA3pg(BB-Q{=u> z#05dX6SuN*L=|&w3^<}Hlq0G_0hTHU?5Y?E+5%Q`6PSmNEKrq*P0}S1q!d-zd9r?C z{&zhs6;{C;)YlAFlVS*Us&2}~FZDKg{W7?L)|e<`u6hAaREF|IWgLJgUN2Rv$0*cN zvDhY?w=_3ov~x+2$}@?amdkpZdiExzsAoq_YoNT!R2-k1if{Q;+^K8z ziHhd&24IIOQg)~!1z5`Tuq*Rv3ivCV2xIB7$<$*LDRubknDo~PiXoIalAAJL`jm0_ z%RH_CJW(0S6P0lQOn*_RrQ&+Kir}x2tk9IiUjv64o(BYdiS(MU@rs+hM$XGm2jOH{=H zh~n=x)|xO1wG>RZEBMhf+AX%6NN6dzL@Kz16rzG+tz6yyDZhCJj;w!9ONDYrhLiD?+!%lBvuf++TFqS8 z#<+kZ9}-b0oDXi%voJr=T#HlH&HO=gtvt)O*@|OW1M8(ewHbr4nBUf+5T4UQOIFf& z!IoO3K&&tpsdDH*2Ox@n+EQ!7DAaP`Lazg}p&Ns<<~kA1=RCCm94-*AtQwF~@Lq=6 zZZkh|49?GYpanvwjNEkUiaM!j8@X}KU7h4Y^Nu%Qh0Ej)R@O4PGKzQ30GEw%vK)~c z%PC$nj&G~g49L-1BX_WsYvjs@Jf$5h%+GhSd_OmqAA4DLY!A!wRu-|86bs}o;3lI4 z?}!+D%N?I@7x0ja<$IjmcI3wGn3r3~vs&fw0Nl)_a))wdRGg&GJcZ#L*fSO`&Kv`puIsoQcIfYt5ngZ)Qm`1a^Kc^K@Slkw?1zABF zy+sCTG%3Xt)2)B^!o1WAT3OhW=6*q|$m&oG5v{ehcJ z<%#M!08zZ)i`sNXp_Y0jw|IMr#4cJxbtsG%;j1$65fb>YaLK z&3?i~pTD-a3-j_lv}Wv6i@LR}7!iPH<|h8Ihqjs>B^4k%+N%daRdH9r-Ys&erE4#( zIlJY=y5^5nfY+!8BgOH(VW#ni6aTS=kL!d1CE5~rop1{f^PBh)0&?Ov528=(iV)ax z;#V;ner@5U`e~J7HVG)5_${y`#FfJ5A}IurF(x)`k;@=;1SyP(y5bkcMBQwR2}TyL zg(TwCO)8(7skMy45_8GMOR?q(dFlrK%2PLL%@usltJ>Wf9zod+58tsH0U^h3L|G{K&|cVdQO_7;exGNh5oTAR^(!jZ18fz-=ep#hO39dl)L#NpW$uu~=lgG4a)P7&}uc=B1Z*SY+OG~D{n`KV_dC@PZpST#yllkp#z*o7JrtKRG=)IREU->i{%vCzf#F zg+3lL6c#F!aoXL;r?!IiRPo3s9tFgs&{qD>IITIctT~7J2`wAV7uB3tHOj`@Y{Z}~ z@ACPxrTE$LTC1pmmO;cXZ03N0N8#YFY?R7mzWY_}UhOEsIUF9oHYp&aO^UKiWD06Q ziU3w{APEk!bjhsC$4=DRsHt1U*DVtG!?r1t20l$!Zs1`q>XyIx(ZwhcRvui=3x&%xZ z_q1JV{5E->B%UiDXt8|J$&jkJ-(%*n;z4kE<)YbI3pI9|+(KJwo3({DHXzMy-bmq- zmSn>`b9Qni_1SIw^mLd@2B4^yB0!>8kL!cFI=qUDE?tnIDxVLW3Ap3`PZo(f`=`H{??bhEe{atsv^!Mly#ymEHRLfcKNiRO!X@Q|uHLnG3u7J&5<7ML> zV>a#)q;W?EXm6Rr!IIaKWBK~~YB|@+?Jhpa^>hWcn()U|wqpAewdzw()T;aNmfN&4 zJnmC((|)*COHkmNzWDW8AJ=IRI(|cZG#_-cNMnwtnI5j!e$Dq7bl^&irwaRxXk!Jz z&m;&`^)q>fL^PBkiwZ^Y*iBlCyaj+IZ7dvc)<4y1vWG+fjDqmb98vJS>CSJ>C}^=+ zd&nvYEHk%a6dV?GXz*0{Oa>2B!zj43of|8X4fXVPzIe9QTs;B*i(?W;wp%$qU>F<* z1o7ti&{o*?K;neQpV3nJ(QVpVHke2QRx~H%{Vk~I{%{Pn>j}L*?=!7_zJWlPzfnz^%>7N0&Cx^?bY0T_iv&3c|w~O6?pofX1vrYR#bq!Y6kcG zULq(musHJOo<5)P#Z8hD`NCaVooJz)oMs;vzr?@hzO&4M{1I#}iUuw0uI?uQW-!F> z)}D_b0I%iYW7jixYb_%#30$0TUlzY`!hM-P+O0hu++N_~Ud)bLhm>s-JtE zen87&;iR6=>7jsvcb=4Wl%nTh_uk@z@Tx7rUPv9^{E$}G=XjTw9Dn|>BZfjh=X=6y zNAiT#1U!m=d0dNNtL+$6o-N0~%quoReBA`_^8I zN-^P-R?jDeDtP%?X5g5SE%Q6tGJh1ojo&2>+5x}BzuuPlqimTFYW9}-z11GLXqk}& z;B6ofpnTSDtwm%BK^2>3N%0GtX2~6Lebm2gj{E{vLLKS&3ace*nyJ8QmNhJ>muuFB zCv27{=6zqBr|j2C!ncgl&uIzFu$YiE9DsGEXNR{%LK^0OpZ9qa!!8|4u`zZd1VvMo zagx46rs0A1QtE756HuXo&)E?H#o=N9=rL;L9aa`@nINd6uip{B#J^r&i{IwG6V{bQ zppxD5RRw_NWCHN|Ak!l_SK&1#K3g_&o~VG{pD%u)_vh#8{huyr8=c-y&AxwG>!z?R zgtZj|8!f1pf7Z4qih+qZ1LZTWX}#D1i@NFj56d-(uz+5cnfrI(*2L^N*R^9C_uJj zNCC2i0?M|`2ZQo+Prrh4AznYWB>(}LC|;Fi~O(e zERpv~iu}X-2t#55CQcNr-K11xx1AKBlu{h=z1E8Tmme>2Jc@PkDbU?5`zKb_hq zj+NL&TqgVqrIhUMVm;ciM2ZAtVT+IQlU9efdgP-Dps+{K4YZ=Df?oAqgx*Zno0bbw zFCi&5oWOKVvBq)37&e0vw=du++aCB1BlD&*r9y^{5r&&|EblB-Y=kZzOjz9PUz}l=iZ76%Rc$1wi(`( zih5=)#3hOSH zOMd+&g{>rDvRu27fW^8h+#cW{YrZ$3WG9vML}ou=F%~i!sa!=M6#{C`>eV#d}h!5UD)4*;D)Q7^x!`Q z0N-FhW5Io*o~;8KWfv-{H&FSf7lt-sCHGh{omdstvm*AGyAnwO1bbP2{|~q^RV%9} zKz2r1P=~Fx1hA*N zlnA#4P|UE7o~n!hvO^;DZxq&x)J50SPc~B700KqV^y1l3`n&$vBTMM7vI+j!=_U0P zCw3N_(>?ZFQ=P$7i-NW7XybBW;c^+HT(Jzim-5P~TE%hCEfYy*L!^q=r{F?zZ` z_Q@E%C)?-1RzHzKQQD4}GB@K9q44!ZDi7@&TtL}_+bPtdd&KGA>e;8u=zA6R1L1;E z^Q{>*-;x4*)TruSKDex&#PaR6A`Zjmsl6m@LiXkoHqkO{fDwibWrSf3QEvy1e;Hy{EtJ$DXIg7RV*LsVtuuxk)qa}p-9fzfx zRMu}OYy_c(mL9TKw$CA?04+Un@aU)Ew!nu~^|I`3QiwL5N^Lwx+Sn!fqeq2@mm`hS z{H7x?K`T=xXysLeFj^Tf(aIDPt!x7bYt5~vS7a1w^*;v)RncA9(9qPc*3@6IL9NPP z{%hq^3D7VoXLNG6M7=M&M=GO}DH?Ka>4vsXp;&q1x!?kPZ7sb9`}1EZbkm?Kr4-QJ z1NYh*7Qa6A!~EHOlk^-IXY8|D2>LvFpSc-}6!?6uChg;os=}uCI;0exUTYs|Se|{@ zumU;Vyv6~zpwpuX9d!D$1b|KlOu12u6rj^-RkR*DokFcK%3x9%oleoP^85Amv5Z2k z%9H=K@`DC2I--@)Z{1V%!E83Ej83O$meVQJ;q>MIN&%ftDWKC!?xRkx!3XI2FYFj0 zhVDLOy893*KzHLAhwI>OamL{$DMfc*rSATYxEs$kSRHURnMr{Qx|?!AcPsm?@I!Y4 zCc2wqqPuMX(Z+W*(#J6hMUPeKIyQ-wCREYg6b+3Y`HWu9RvAsU-)^$({7pnx=^@n6 zW~uvS6G(TIw9JRDAQEEoB1;OLgh!X}~BH)n4mR`?n1J5G!%O3Sm?`{D2IPa8dwjr@5*ffH_OYBJr#S zDM5{^93Ziga=<$*S=?TKn&?|c>I?KyUrHbKO($egU%*6tDJJS`0|rXh~+_NtgeB=RZ?wPo>M-wuaNcM{Ev(;7{zfzWH;;;i4 zSxV9Dgy;0;3R_4xqIEwst@|M7#Ye5wd7q zz(ng(Oth{IAgp`oMZG+u(D?J73F@N*{NXfD68nh|Mx#EU^8O`_s+8jEyXpoR-=}!x z^_i3x=?0w`<%22l({6f0R{WrahK-z}VM@f2B88$q{v-Wij>&6ew|Yshsjw764ZV_d zP{w=`DX^M)%Y$Z9PbbCbn&t;d;CDJ`B}GS5*QK(+2AxCMpmPQi!sr~pMCVXUbdC)m zoO7kOt}zNlqc!cLd)S+VDjJQVq0!X7dR70*p>OL|*a!bw`JcY}AX{a$c;Z1{ZWZ^- zsKGGZ5xdI&Cb1KQ2TsC|3ILgeC&QKC?Ps{|f&*sNsZgGM zODdoPzM&5InK)q2n}r*ww@{X7`T5>!q%OQaPvfC4D*4sR;CT>FJqm={!nVAyd}WlLlE=!E_`xyy zyLn?gi3g3-59hV+Yvc6~@>n04r_js{4@46mC+0gC{&s*5QymPu7u? zVw|=+L=r{!Lsp^?XUM{>0cS&*D1bW8xX>q_Q8v)9%k%WNU|nDoAuk%XOW=ofc_!M4 zUzTg_!b5qB-wT#t(;Sr)H!nC`vx2!V)vv~OIgpX=g2CxMZ0MG*IRxLQYxghumBxy=hKl*> zwgV6K@@@f*<l$HGPAdWgTiaeU?VJ_+m>LO>{NBk&x5I9Pv<-_6oPY;vOh1rJ-f z!qorc>H70FM6r-W#zLl_>m8EAg*trEAw80(4~GLoC*RS_Di!&ocl6S(iig3k!Ocs; z|CMLJnm|p$NyL>>jqjPEH;@~8>mBwEyc*Bcs}!?>s;LaB$^ut>fGEtrtOAzdZHtO2 zO!Zm%V)ePheAZIEH2-dv-a_fd>%OZuWiL5}=t6|(?-OF^dwO%CaWg5z3x{PF_yQq< z?FSD_#mxrYU*nBtgRXB74AgZpVKdXmrpp|iHXt7xSg$F!Cz=K3^TQnA1NWoP1wJdC zeBk3XKAV2(<5P|6RRXGGo#CUrW^uhYyvq5FLqB}d$>AvBaKYm6zTSv<#;XaR^uFHE zAKp>WkoRMHJyzob{S);!(_?=e)phls!@R*Uy*^WpSP_c0{EJAyj(Fpy-*H_d$tX>_ z><X0vC=2SKg;w4B1LoQzW2HDkzOVCeT#_q&3rn(8A^vF`3o<)Nl#?EEgW$! zBA$1vTRb0c^?c2w;Ga*b=1#Hqk4RS$g5unPJSaPExn5EI@(66&s>&`BYS;;$qhjCo ziCyM`UXw(GS8OPUg8}{pbB@?@=7tq|7u9uCq^Xu_&{2MUDXcUHAGIPCSr8qy({%V3kfy1_W{3PY9yPI7av1t01}?9Tm}C znm1XkhqGr0Q54^x;=L z^~yFrxRO|9BaARs6580q4&kRa>hZBes$4zvIjL&}b?8`IPy>6|=^4&<-q$NAr}(#< z^f;D7DxyLss6v;03jO`5PTvby3gHZnh$!B)(?NiVIl%6gVq5h2%0GPl7QL}r;23|r z1(x~>9dpEUJ~(;}-?5M#f3aiUcrLP4uSjg$O4=5_?T}MAIhHAe3i|N7yYQa!!>xKF zr3$~kRd2?s5e!th66I6J$EWmmy#-0DK0dJbdP~6=e@6Sa>+O_uUg9&oHEZMK(bD8` zI;3nd5LNjxB?*=bUie&Z8&DNTY@59QvKz7g4t=va_Lv;JXgl>z$|TNr>h0MSC-(_d z!|6Wu*LUe1NiI#7mK@KU?S{GWctQk&bm4ATh+Imb7^LHQ#vZ+TEWyq-NH>$ZR*?R+ z$CgIMACqZ>5R_>I-Z$5S!N#t=@T&PFp@c3xN)^1|Q?T`aZLgZW3PQO(>zW0lkJ)m^ z_5FGq!0Ib8uYysJ>F|d|bwt7-}g!c>QB~1J=vQzB^?<$j9C>)XI?TyMQt{)Pf%YhFVj3 z(-Sb%nnnuI#jjHy@A-H*hFU%zGK&0ISVOH<$H`D@jg#9alv}osn`5ZuB~OS&A+h4s*kiYR?ULv?Y=V3=>63{O<&=KQOhstsj7N{ zhn5&~B`)iYNk(WZJ@yy>@SI*X_Ag75T-$hg!U)@V%Y`-T zk%84;$E9NkE&ISqX~6$E52G75A%qgwqY^juN$eO{c_jw3+MBpp@Vnh?MK0>YlsV6^k!=CNxt=# z-iU>qw8uGoVd2p|@7h6$lio0Ya9eLm*mscZ3!dcj&Oy&tkPyM1Z_!tS_}jpKyUTEZ;}DfeI? zHPtEK6e8a&pRtF3tG6JGo|VR)$aB7ho@^qaVcGg)0!3R-G;K}LbG7w0QW0EQ-WXot;`=l1mC)yq)$tthOv9g_xv2q%1!1u^94)UYBTTvB0ghz(TI( zh*7b+=M>+)7ijOZ)9wvJ5NiT;!bjRMDz->F^1oRy_!Q=Uway{FxKdIJ^2XR);H_mX zD#Py6m9=4~;MlSS;C=yo=@biZ1>mI<45YjN4QZ5YRTWdk#_|K!WS6zKU1#nWr%2jF z7CQ}5jt5AJi(hzvr1UrPq{K%XKp6`lO6P4v=ZE-TZQ&A5~vOuE$H4oxc zJ1utA%j1pdl`IsmTv==Le7Yn%-sOP{gVQXc=Aja}K0Yb{tITGn;TFu^s2PfNAeX?b5$(Ti{(qh&!)2>)(M zN4Q-0;-Gxu->U3&QV}=pPqJ66U&zyo&37QF@1K_EQdW@yJaPdAa5f@x?j%-$Z6k$v z^Z*LQ(FmVVcsAk-iUp?z)RQLd8>9efLxGR>52O%i_X?Zy6y6K&{g5-@+E~>n(4#O< z_)#0eONDsE(O5iQ!;zuwbj;e%;~|MwWj!ramP91S%^NK}Lz=Nv0u}E)m89%G6+E#@F6ilg=)8SJ&(k(+hg9a< z58@IjRsKqzb_(lF2%=PYQe_~4qEx*(tKz9_!P)x%kwOIOt5i`55(~W0ws>G`JCFGP?9e)%>p`&n;GxIUwoERVX3MF~Cp9TKnq?3sxEm*30Ob7b zwC`5;#{A=ko)1}nf{eSn`ks;RF#3`L9DL#?;fZJDCgI7X6w~FaXGj9cI)mxbmOyg8 z@{}oVS*WheeZUPD{%zbkda4Bx`ndV(^fR7TjAG&bsa|K~kn$xUBTkXrZQ`k+vK^!{ z>a@+&X&Wi`;yjvipc7iqCXDRbu|p0wJE|0J zTmwYZo+9GLH5))|TpQcc)0t7|&6b{)tjJk=EZZ<;B%_v%#+}A8hn1&l>$}<&hbl82`$z2VJFPiaOG(ONcuuomtDw?S>Yz?Xq`Vi)*w z!T?8#ONb82dY;h>b~W1uioHAyW2|5|H|7vVax*vqzzz2>BxrHY8>QKa&*^CjyGS^r z!OxinKSv7C;NN=<{(zLA!M`KIs=xpL7~Fh=2fWbWlouMj=y`j5D(9rZDIyx&1`r0v zjo}oE8^f!fmm9;Y6S`>U%I8U})IIM%B9D99Q$Hrtvb4ExfpWk-;uL^mEZigBitxi` zLD8%|;uMN*`oiZX{352>6}ncjB{&^AOR*)m1twd02X+zLaD~s@UbY-R&0XbOub+n& zQmuUjHkC*LgR69P%6WP3z+MejHkAue8Crw_0(l&iMkM<=Dmrhsi&`jr+3w= zRh%>_F_#rf@_fT4PY2#+)9r%%K{X?Yd&cM0Mkse(cnMzd6;F9~oJb{x^~E0w0G*2+ z0jI+|@4G_&XqV?gV zit;vpFwK+9rV}`NZkj_&*mmdVIY>#3pGd1o(rGrKgwsB8D)p*QDVx(0=G6(xUOe4X zP=Vn7+lD8R@S?tNf^5B;|@k8jK4-&c1Z{Ipq z+$UAsE&Y}q{jTR3h5b#cVVmC=n4E_*$Pbs<;U1s4w;KB78nLDca1O>Ihb=>WPwstl&h zjKBO(!!kUf@%>~zc+@@kN^|F!|3RW`#1lS*p?V`ClhCbrAE$1f3o=obs1d z+0*BF5)?L$R0hvYalHDz3u?5`<+K7d- ztV2&YPAn69rxZ`$;+e(vTGZtmqMaAz8=}*s0AIU^g6s9&>>4S+H#txs-nb~+rK{V_ zs}~;`KWGHbynyfgD(0?qM$ zzap1-&V5ffzqH-cC3>3>g}QeckLuA{6%k1C}}XxFX3so!Re_c{=lDQUPMG7wjIhR333jt_={C z;eFGjoe9aXbuwq4Cq|yq>`G|(PH8Hg1x7=q1H^(+?CE@cBoiAz+-*KF3DqkCrBMs@CZ@xOQ|3u3i7a6i~>t(*Dn5Rwb`h|(f4Y1+*fpNC1)UINFF+)m)&J9%*Yvdm*^1(un|V8+ydhgMed_*xZ*3zi28 z@ZEK47Erfb#)M{*5)xYUHNlvwxQWOs?ziI;FM57p_Xt$1Q7J!3?S3I})b0`0?w`Qg z)i0iDu{FOubdQg^;z_mh5ee51k;vzlaO1ClGG>s=Gv@+;2^WF`6Rzi)XE=Ncdc$o` zS*8(m%trNj&ewFDq`=JlEAS!p4!pC9zPX4n;6 z8BoD8BrMDhk@5-t+Ve7_0L*?rL>B?DWt~i zcT4=j?04%*ZrRUu*R#t%`xU(W07ddbDx1O<)0jOsdzA6&a zA(@j1g3L)jUa@jgBpGhST?OSaCspF7?|b@07Zw28RDZTK;ofY-VNIYNuYS%0--vAX zxEc5S;CYiJh?^AnX62V9+;N>{f;^=tqAtTH*^>Ma1+{=o;|=f_tY9!Er<~DjkwfNSLGsjZ=fg^!Fybl?SBWs z#`eG6Psa75T@k#?>R|@|;SbL<{OZu*J=hnd8m5Dj1Yo5D8`L-a`sS(}e%&Q?P~ESn zx<5*F8Bte`zbqe^UtFhLR{!Cd%_sn02^=%E-)?D-*?@SDWCIe&-XOPzH|$htB&wT@0F*bgfo?&)th1irgB#w(*!*)Q7^5Qt z5YNoGCPyhBD@IkB5eSyd2=%X78G%l~`U+VwBMiPKM=6U`BRx7pfN5SxwRH03g=|=M znhoDNBSpC4H2Ipj;`ACR!4xnNczDMt$~!!xfRV%o3nXs_C}1?n>vT(u5y3*?I5ts6 z^LYi0@;2G5MW>I5Tw>8l9eoWxy9CSbR27jbq8ABFYKIY|DsC5RQ`k5T^L_%x$wC@4 z4zdFTihF=|@P5HY^-=`e8z6IfQbd|$B9nSJS~tnRob-xZSDa&z9^B1U_5 z&w;M&;DbYqM*foB2r=GafBIt|E@~wDV?P~gbYn%XgB8p$H}$v?YLpfdO)pgmu zID#uRJk#>1c^7fr>wNSTxS5Tz!fwJ3lZfcoO$;L9U<&Rp0N71H>$JLww?KZpH7Sc! zz`Xe;kzbk1b7G9-B1C*|FY(%S*-K1(Q>n@(5+YVN@yd1CP4owfqMPVmg@H#>St^FI4!qq9wPT|P$unS zjb4lbuv^G6wcTxLi`@e87U>p99`iOmkv_3osCffihTTGf_=Vj3> z08Oe5iA3H(XLhg3#w!Y2ON#JCly6Z_*~(w3YPi{Uf`N%(%MFqU_TP|+V7b7u7WLpw zOZiH9o(y}f?p@hidjpdkl@&9{dBKz_y2_GuE6@4T7|ZTh5IMa3N&ql#fXN|mRN#aA zg*D=qdK1dbxWcU}f8XGE5yanw3R($Q$RcmbrdWbh!=@O1)3Oj8n+mICBr|Ft z(Gw!UhZc@?)xYWDIYSG_vs5R$6w0m%vI`;XVBY~;c2Ojz zcmR%aPZni}n_g@HvFYXSwnht^T-XWY?dd&KX1s5LciS*dp>LM z2Q%_V^LurS57;z95#8|mP3eZ$NrB~t`KB8dl2UZThtw{g1a<>4in%o$nBhh>8#8g8 zybU0X@^pRUMH>|LntT)Wg7Zyr4UC5BFAzdvW6f94YD8yo6V*09E>Gf>A3nej!{vv*14*lh3ZaH+0+t_2vq1`p(J`1^Jg*h0?990KdP%qc4y-%1vCwPE= z1&c5yP5An1PB$YF-o@rGt;XE45~tgVSkE7k<7a9*5KQro1x~{Hk>sTs8$;Ltf{6!t z`rX3UG+f9nF zP59Ocj`Eo;K&#^fLF8}cu(XwL?~Z!@mdxQ>1*UhVAT|@U86KVI_n+YUXz#(8TbRD7 zq?o?%3Vu}09hRup0I&=D-2%%T{#XDohlA~{9KN}=v7Ck9hBA`F;iGBs&l=Gzl)$ar zQR%i!;Z;Z}=8mUtTPa*kx{Zqpj2cMf@Zy#R=DC>A+cJ6BxQXOp1Nbs3g<2W4EfEGY zDn-NbA!bwx#mrOWw#=wOAcV-Mg*zBK*(gFxBvWOWw8t<4x9st@X^-io6zwsM+JpbQ zJv;XxPP= z#wb(-1a8$Y@s$q$V^(7UAL6x4|=xM<6`fwMlw~Ozs5B*9m$JvdFFF?Bq z+-9sZq2ZfiDbGnlGcPx;pf>wT_MB4I7uZ5l1I3)@CuY~)#yR#W!NY0RdIGSfSvII| znsxXqnHY|eI;bMtW^7mStW?o2IYe7g6DH?cl+$bdjF%Y&2#+aih}!d{+VIv!c#A(Q zH#Cfq1WCpVq<8T4+@ezw;|0F2ztO<{{xPv)!$x?>I+C2O^woo-!h5PF!O`cLwaZ18 z{2Kg^gN;(+7Y;T`eeE1ehD}BLncvG`^O{quCH6lXW81@RT!*5nl0*R@!_m&q%*8 z)F{qd3^hD#uoJz%9bHWLA_6ky3x^pWx*C6No}?u>a?DT#c$s5{I-!7O4ix5#UyZqI zgi$%#5Wi^$T8&6!juVRWF(Zr**-}yh&8!ulxPMe$`gWU<3-U6fi~_-nEZW#@k7rvg z2=>@)vjAWwF?iT$6y;p=V_( zxPJQ;80K&O8k3Z=QT&_2XU;d z1^tomP2B>@H)0GF;X>3YYOIXpTnH|Bx!Qxm*r|L4GMoxuO7xU>`R0Zlzh zIlSrQfVZc=Zn8jJWKoC5y^$LWMclvhQf3`-uOi-?dECZgX+Rc>OcscXEDrMZQ*&c6 zK(aU}Sm4Ev2jFr#%T7B3viQtofw;(G7xzrdjm2oVU=Os|CGOe7Yx|Pmq9=>R#egi% zn=B9)S=8XC-!iJZz!!Yhy)wm%!v$hMwT8GP3NH#V)&tDk7bUUS~w+KA8s&@M<%SF6A?Y*}@96hTYgvwaR(v1E?*u>Bolp2WqZmIqJ-G;<*rag?-}|o7I3UMadFL4azR`sr z`gLr0_QCgz6$%?}DI~OP6_YtkKxkJ?bmljQHHzee-%XxYWU^K9j*IUZ86L;i%{2zH zw=B3INKU6KS$r@z!j;K<*7uE4-dpr*P_)I%e7EDzYj$!ab@3g3db+z3TWY7>m=Er% z1Stze2&VAejS2zQ{LupA#XP(n1p!B@ckl2q%Z+$;m++l5w`qE@B6l5u0RshL_(cz0 zLFz4#L7XoL*=O`*@d6W*5jLH4UgM99ytoDBiM@*_7?fKWHhkg%;CB6vJQ9VcYf_gQ ziUOOZv}Hy;)|{{w)>50?mCGM!srGkq=edjBg%#-18Bu)VM@E}G8cJ!%M=v+ZvWA4C zuv78gPCMyR12q-63mc94*ci>ml4_#ig=g*-2B!^glvPjcIalEI6*L?^^H}j9So(tB ziG1+I5~URQV9!_0WBB^3rK-Y5EHOB`4d_%lGC=qO6Mpkrax7neUoGca2WFV$db$GJ zU>8O8TI+KweT9~Pu_W*QHlLU6v8n0orXcddsZ04$B&QV)7Kk% z9>TyTW~}?t-#<-T&fXxkM0+Zp zc|y2>wx=n+YIuYL?14u(Af)gJ#}{|y5ss60ts@)(+t3L>*y!ob+stX4pI7vtOc*;R`$-*dK6&xin=GOxfD zQN~pE6Tyw&_Dp-_f%Ld|k)eDie~UvLQ2}Y(b8#i9-9SFUXkIQ~=5_ct`I;%RcOHSWbA{`oK5PdDsyn)*rj`5u*nCj{{q1 zfp>`h^Jj-3-r}ke4If&GI|}20l>`%oUQUJnR0^%eeam0HW|S))Kx(;sOoiSvp+yuA zJ*b4+go8G3e%&h#EGphOrT{1L#xWUW+g!_h<49cy;g%jr0?6C4GQn+PIU?eL5FVE! z9*SSM9PyBEIAJ^;+(sZrz(78;-5q(Pq4`O8`{HcUyzVJuDJ%RPAe-T6wdwp8)XO<* z^%J(~ho_;Pmaqt8n~n^?DKqLjzId1M2CG4kMWa@$d?&YbJdJ{M2^=`NJ4uT766P;Aq~1OVGK7!J2vVVi!N;Q89LGL>(*2(R3xl0rw5UdSu| zKib|rKFT6_9Ny6(M@zMo`&{(+Nzs_W{i>gwu#`uPf6 zdM$xK?|Alvc4=chkNvu|n>pe{<@==_6Q&7R)RWq41N73PDIM+6dkAjf(P07}&sPM& zqfdVp0B=5gBEYB3qcD&kmZq^E2q?0BgtC1a*)~S-`@Su06CZ+Y>C%)7?b5VWyYzw+ za_8m_zV;C0Cewj4pGVUHM2{x+&bl zeZi$!2yzu;PO95e*Zu$ze;Vm0X8vn-A+z=jz<{$hK`(v0_$2yxKY&m^zEu1Ye|oRH z6u*P6yab;7y}!F?P_Ysx^kzSm-oTcVR&=GRqlGSWH7sgJ6t-b&$y4b@@Iagc#^u}k zlQ=U*B15>nKjS1XJ!`e{v`t}k*#m%t8Fk-S?e8xK0^;J!9f7huPWZwa$lO<9hvjY3 zih*qU*|0hWGRcP8UJIhu>(}V4u+L%0@Q#`<{K=}-+Gi)_MK$&1LETnEcu>_4+5#hs znd|y`+5IeeQOyUZOE<@umru%--DMCHS9Sw_9udI@8uq+8scIY=YN8bCZh^P0UkuUa48fNyMMKNL3S7nnPC56NWr5sIjsd#G|A zM&&gSn5QY#bf&G|~t$tJwEiM?eVxeU7#m{?obx*dZbKA%TzJsqg6+m%4ml(u^P z*{wf&g>_3Dq>g-dhGdNWl zXi!(1+UrtSgE%wK{Nxut$Si2fJ|RR=M`r_d^pRr!eWjzEy9;k;4Nqy+)?G*Q%&=3^ zTmd=N&C>Vgz#CDE3mWh_3HBXkr&I9GML}zpOQ@oTI-JrjXWCB5n;fXmZ7zTsRaJt$ z0e{kBZ&gQ&f-h!{ZDvnlZ3%hQRbSCSy|0ZF2ae*+NVDhik>=x31 zYogJ7Neg=)KfoI1$>dS%9o^VH!O%~&w0HD_24>3n^bC6)XPtTGNHq-Ur~HPY*M__Z z9v)qghK{+h7Zg{%j4FT^E0-5U@Z@Cs2=nDrd`xsf7TZ9$#F2T4j?8OvWUk@xfH#Kk zYzin3KW4Avj5W`E{*_&_PfURvJ`0O_JUi^=Qf)1jnINnTzqDW#vCTn(DJ02=J z{xorcbV!on&Y!?($I3fq*)!^D{Y@*|+A~>GLKyYhMKn;oMxK_w+ypqK=n0Ii8Ky45|zUNmmPm)Ye={H=<8XHoazfFon3kM|CsNc z=KIpYpgtf3QCsg&ZGCnvgKFCQSW})8?`%>TQRlD|w&%2(so{tJO#MTkvUVzY-jvF! zjCJ1u#2QCrtq8273P{@wfyk8!cMF~tws#eb>(?2oOz~EOMIqjEjOAJ`=@G6 z{5X`)I8jt2u-p~fp1v}IRE@-jnFy;LdGOA5ab!*6H+U$kAx6M8$+zEYo^3}pr z=JpqAylJQM46F@~0Y{4L!|Le%W{+BF&^-uM6lPqYFvYbp09b(oVbJ?V_s-?Nbu1Xd z?jn8bW7T(P3RGSAa?R3xog46WxdlnWk(2l%J?)Q}&(`v1j~8dK)r3A8`7=~w>q2NO zue9!IGOy()9=5k;oKQuLy&0&nCzU+QsK%z|JBP4+q;GvRwpUZ28q*2ZI+uM{_ywTG z_uC3G*zbfcYU)?2Df3LQZ7uZJZ>+0r)hgSnB~(#U31d*m%Ma z>U8uO5`S(Dq0`;{>tucNciZRlK_l((sd7RR6*^Zm(8zOx;{Q4zFP!yK&w>f;3DT`T zR<~3mr^;D843fO~A@+UYZvY{F-*9Ud+fGQLa$cv(c{hY|VA*5kJ+8CY>4s2P`xslK zjr`6Rjqt42hA4Mpmit(q z{{0v`H}5~oQwIWf^9XmS>3gZB{}!z2)#K{E1fO-5m)=s4&Snv!sN|KRfhzeCs`PxYO8dpal6_2ty?tGc_oy=7ql7Z*wb8i%y&hH)e53UG(C~s4td)RL zlS)1O+i1>b+-bL)fSYKC_qxj-&3E5s|HibRH9j%_ik40DdMF6!TlJjBUbCZMH`6 zT{X_;eAQ$~z>P_2D_mGc#a zthZV{$cY*GtADHz<+sKU*>{9L2wdCd z(dYRma|?RDHo{+)@#ghZ zjEU!iLj&xcS^4NmP;;8g>uJD4cshp_(h$M}3Uqg%Km(OP<-m`s&$Z+OFO;_81D>)E zVviC8^{``ep(JCJ^YoX%7}TCx(|@;*;E%1apAUZ(=$b-1w1^(g7!X)~i0;;DVf<8W1)xIww z)tJxX^~-LJQM`7&y@ZV-yr9k>5Dir4Bc#r6xKIr`FEUsq=}{lGKH~cl%!)pp2WTy$H`lu65X9(8- zdNK{IhI0s=48y`xUx$tK=Dz`ZY6XXyO5pR~^7HVF--4$YEGu2P{a75o?^Syp50KA; zYcU4B0lQ@}gauStSJ6OK7A1JHn-Rc?P}ytgMKf6$=~W-~xO}*kddBXs4>Q820eZe; zgu64FK?tFSZVlAX9I2ti5HWC(lc(Q(3|{@%X^-S3U)OnC-JJYe<#Br|n@pHNT|Fim zsIG2CdEjpM{d?@svb6-hK3ZBOwKV=W>XX$2-?lRY-e?*54kVBt5>lwAcLVkG?+})R z31rOA_9lGSOm`zb`tD!G52)*60M|1(qJ-aOyAxlX^M@A+@QPTpIP%42qT z(s}I`cO+kY4;(f4wzQ}|yNd?oX`eu0v=!k-Xe_>`XrSiR{CCV;jYOWe&;AS>LORq# zS>`~A)=d1}&%id;*s~3D_V4_w9R-E#UP4S*m^q8;>aS8)ep6$Uf7_?lF`^qYdE3wJ z?b%F16jkz6ph{*a-fsg2M0m>ik9{WFK)TgYF?(LM&xb3#@N;Q^n^+Ma{i8jeN55Ur zUfIEY5Q#rrSHLO{*teLU{m$=yyTHaiCoG`4YN)yng;3YeU)gV~qq@wGf9F@f1ATo= zsG`2k1nTQUCDVJr&K~Cnd5~&lnbb?2cGi4a58YW2hM)K?<1?hbMkdy8CvBThbF~8aG37-mG`TpNMIqWunnZ_Fxf#S@%6k?w4 z_%qDYfV4y9#k!XfZob5;j>4hAn+Xpn+1~;s8;_D1WBA%j_D9(&0$<0tA%d#$jMUed zOJ059DP~Cg;`tkY+Q;(##|qkT{J`bBap?{CsUHiv$~kFua#=k8>R3Um@OOX}zOhA_ zmAyxp62@=56{yG>sYt&`yyB{TT3zj8*CkAwcM-y#!)O^7FqBII#bA*21-hKJnzwC7T*8Y zdM*-f=atOSf!$76LDQ%d4b(KI3EuK~RoD1fb1LvA=H^wAju-hqBeUb!%cOsO9PLGa zDs&RTcLqj|ZqRO3FP#&4t={agv=lHPpZ4Fxgv+5a>? z;*;YX>Fgsy9W{4aG*HdGPh@&WY3`PI$2t~vS$hS}A)gE`Ys@rfxr%&^OR&D8=|B;gRQtmtor#a3=fSC&V(TD!~H zAK-D~A>dr-BEEwFq`LUaWtp9V9{k3(se|zfv#>QD8y|h$$w=PaEL0!18`#1zDSQlI z;%S8?*=!skE{5A2Mb$C&a&X%EZA-`Kx`xi-mu2yFIH8K7-5)60^-8p%z`>*fNEQ<8 z!1AE3W$Em3(isPOV8gZMZZ#lP?)Ui;#`hMi33z4IJ(edWts@F#z`MPV*mKo~#`y%eaS z`D(oH2WG^iSKhSuZnm9ttB;jxAmd7a34Ns$^o3H;=?2}$utWj%KR6Q=$CtUmfWGk4 zPfp6<2;QjJu{*5f3dGQ|7U`@9p(k_$+fvYxF1E_91Ung?AKB#U-GC1(&Wx$Yt~Y$o z?o@Yplca#KA+!}YJWyL*q(FJF8}E3L-A3SXW*FYLcYDYWclCrMdp3CpGRX~m=&=eHN%)82n{v5kN006Tiq zUzqVwe+U?$cR~yh9z&_Uv3EExaMj7#OS?eX=ZZXC|4+gK%JM~^ELBpLSAY}Y>Tm?* z0d|7)s)wr^aE%dIvI)59yoy=vt-T#b%($!kOnzZomT*;j4tjaaRWeniTn)D38GRii z>*(cXN6iu$;yk|7z={GoX_`ut{g!6^vj$4_NbOi;$Rbao0 z&2QSbRQ5F+UPa-}cz8ope0~~Un#Q|}F2Z~8A9nGW=ivr~qa~$$|Js%jmJly&17>mm zS1X?TY+k#td#=K@;8jDi*&Kfk)Enh@UzPWN9S`J&B9`}m(H3AG-wm(F{a-c19P{wj zFaFqInCw=A^y1R5)xa;l8Xi*xyW^Q9g_(TJFh?f8Qe2oUH^xcZPzTfuKrVh}Okq3r z9+41@;w@?vH6e@w_QS{2!6<T4=bGD06MWZ+>8tA}oS4Oc-7{wjtIW^AP z)HuI(Ro>Z!?>ZV@|Yp87^!y7%!a!kGzuYcH}eu zflIAi299<_^V6do3&SS^N`7lMYc`ugsG+F01d4iRu&A(Pv2wr`$wv)>jjdCj!idV7 z9d&ut6$OW?m=JtCVFd+$I8g90Qt+Fo;9LrRQ-I*(9ea&8`C}7cqS`_5qKMl9MSKrM z^q-ApVK83x~+ z<4ok6F5S|G&88iOxu%%VVeIR!zD5sTJIyiJ5<;Ge?nY(TA=AW-Yi;<6>5gPRC*t}< zMj++gEm;OX^QY^^M7+DDa}?ZZwN?Z;j<9lWLm@2}WQT47G= z&+B;anpc~R`Tjc`4cSJ57Vc4bfbAv?V(v?>*dN!{OjGtZm_kkA1igsymfnlj_6CV}5aBLQdUpO|4t~EBJ z9&|j>pTsgR#zm{^es9j6&m2Q}k4c4Yeqe!PDtm!SA;RI`b;JLXTyx&EqHr$Tp|L{& z!aWpLCubJIozOi;HppThk%xG#+8@&_F@$IpTjbEM^bP&azd2erjSUO`%c3SjCf_=J>csvNXY%>C z6(;bnqI)ym^ifAr(iTCC+QMo=9c>}+&u*hwOTgmw9~qoh1$JykLB8)}Pb8SU>X$tB zx8w_0G@Z`k7n)9IxXEo<@62ZU$}%(;yq^w;@iS{%j^RrmbMRmnAJfCl_&tjq6Ifru z1p2v0H+Y#?#OrBtdCMJfl}jD>vvC@^oEAsH?SW!i91bN`F)ePKS=fio4urZ(L!FuC z7-R{-W5tbdoBkq4l4%d~I&$+T9GS)n-s1^JdD4vnB^@;w=-KIpwtXDD6A~U{90V;T;^e4knX@;Z$9R? ztcC{Q{->kVd<(|n2>c(uUNEDDr_@itJ>ARTs@k>1v3%J5g=blta3J8FL(*LRV^%sQ8LT7#GG0Tf>(#8`eDfh^4&OSza5gI^;6i-~6&hY)?i0>uyzGSgKf}4v z$XObUuv<7ka+kBz=*-jCIM%aU{|}VvGhUqm)e)Gct6pdkVWtJ)RfLlz-ezR{ynZCO z(WM)~23Hl(U6_;Bo1v}{PT>L_R=O7aJJGpgK&f}B#yyqN?Le3SB*VA$5 zK2pf|w&xuS*k+<1j1#Zu1~2!E{s-h{v-dS(86(~XRf`z08%!YAImi-%a>cH2>HRN4 z*n=zXaeV$}M=~2nI+rqcChyh2n$G@4 zT2Z?I#`9z0iwzWh*<$BV%P0-%wYUmkbN+Fc2ksfo`zKTe`ZSQi$pd^raIz4IX_uuP z++F!iyl@%YqjB;*5TfF>(p2Et(Le^CTemtUvrh>)SvWLM3kUL4E*z+OehOBPST~Rn zRTO~;U%R5PuOBsBIRr7c4+w}T2TWp=3j%lp9{l7;iuYzGH0*X+=*3FurGfVF!Qs4zAbC zy$xl&_=I#phxiaQ>RU;F*-);epA%3dV3_YV0bMen6yXK~1Y# zKorlffvO^|@IR8~Nw9eh1N!mOWzI#c1Hp)%su8Ln(YBHF)Di+IJeAT`8Hr8O#T9n;V7BS8n0oed<^iGGBSJ zUXF2|%_G`C@4HtwczIq_KO$rKy5yq8jBCU)OL?LZKl7%m8~X=&AQq`6Jb(h8rE)&Y zWd9@&(?$Ib9%B7&iBNw&7avZrgy6YiaU<#2cL5cd-<)~YmB9NQa74p}q$3VMb#Af1 zO}+abLTr%R(?wqK_YG+k29sPdE3o5N6htgN&X5Mo6HbW+%oAocl6gYzk-`Z6?9ReB z&B(@l(?LfTi*5`s$}5EP8xcJH5G=>>^lkIT()a%@5J}%(e#U7t8#d-={_aX*4M}HA zmX_MW8t}XatT|zMjl=oa2du4GX99x+atMKvU;=y(FKf$}j*n;>2I#rbuVD*6I+$db z8mZS{KtVFefDIMl#M2v@5yq*?Bd|4oLbiwx9a@OiXiv;F_8oEj%c^z*%VM>6Je@=Cl2THpVNBRb>Nv8}qS4-MKvJXU7nBgn$RK zs^GsRtU_N*F@lgzCwN4P!N?f!_m4XUGoy(%!a!?Ri3RCXz2t=BX~S&VL}nD4p2{c) zsLUvci}}V}x@x&4OOVEp*jD_)kk}S5Lq=f+FEW5N=Wi6%0t7B=xk)qZ6O{MHK&3mlPHaKX{ed>tsxcf=?47f5Mz zwGk@560n7|ddH%oKT>IjHDJs8q8nPp2jUl6#Rt+Vf)@6-@P5BLo(QxB56`~{mi-;2 zFN(L{>IN_AdM27f`Sw4-4Ay+(nqUcmy`omB?|@Hzm47%|n-J*V{KHX}R4W*wD*IY< zi0P)hLp34-z;yQ1pU?ZOWu0qoz_5iiq8P>el}Z|L{z?)JIDdf*xXy+7>kG3eLQY*J z1RiG=E4;Phlv9`CUcTAcjTr)jOk7QW^}QxNdxCZ_78#! zLwIx1fWxOg9<(+>&Nhu3I{UEK2)GR48eZkR|CD^>J>h1Rjhyy44WJOhE4_lzJZ6nZ zBxB~a-iqdYeIsXY3o#qtBWZf&mP3LKbf?4O7rN8oh->AY4VpOrU*w%b`7g{F#V4IC z%;8vBzdyn`id`Za!Z>|FH+bc!XD*6_7qM6dqAL%=lrxI)rR&OySt@w|8zVV9zCmQJ z2~S1NX*Pl56l!aQ?}&C{l!t^htP6t@W?^a%=JM}8)a;^rVjVt&L=}yhjH$KY5F}F_ z72}LHCh}WjoSvk{0xt~==d@-pFu;AmbJ=Z#I(m}0DmZMGVD4ODM>d;0hKiYb&Fd~c zwuRSG7x4XY&aP~t094CMxGA_@{8>SblE01dGrOEE{U~AuEeLW7A&S-f+IT0AT%%jn zN&Sr%3iH@Yx*5K*( zv8Y3A$Lm$f2FnvuBVnX5I;4qT7#-61+E&i2keg<}6<>Dy$g#X`*=+6HcrYHM7O@n8c((i6KZ-c=(wVXR?_W>GiUTRA-8D z1Aipd*)z!_c%l~GSu-hT-meVnB{r6{9)Y@zF^%s}cV@8}q+QHX=B<&WY%?cPF5PYr zP_%3_IZ~EwCX?>EY_p8CV%Y}3WZ8zoi)qaq8!5{+yW2SHShhhG#o>O+u6R8H9^-=0 zpSAMi!iZq%=b~`Kr!w6-iVY#e17wSlvJHrqk!b>f3}jOkzsD*zp$iscG@A<7Iig8X zjESTJz)y9s^|ufw@ePUevvSL0f&~mpi^VStN{fLeluM%g$|d|rv+Hi**EyVvgQHS= zr}KLDA`u3s=;w5Um+Yb^>N!PED|bfoH7@4_O9<>0Tcc(0SOtffA$YX*9jaUu<2zWC zGhy1DB={p*MuK+*6paKwgNcg`nx9E`9SLHa0=SwLfQtbp z*e&kpQgEE;_ksC|{h7o4>ORrKKqRoegb|D!otw(Y(UtHb4Let~(1|{;DTy54^oPhn zuzBsJBDblW?fVmi=u;Y>n(g~El|D6^Kn9Xlv;D}X()FPWx_%HYPg8XL#E=~EszI@xZ?BR6S1#~i+S5(FiNxgL&bCmISvK66Wwwlw z^~EZIk2?M{gn+Iul2)(wg_uA<)fd~xc!#`$_=Q8>A?8}S-LR3Na=YxCoP(HCbf>vp zFWulJUGLm(-dJZOf2OB(f+Ym@ior25iWbLsH3unJ0$(}W$>4UmmqtS#Hdru4)z)2e zDOWo9rHrYh6@0ONDHt#v$0ieuq7qQO%5HtmU~@<_u9)}FOodAmnsiTxJB~JvhsD*y z1Oh|ugD^V2kh?4fLvG}F0VPB3Nxsu%&4`~ZT2NAzEzODH>G{1|1(O^&(b>^h$M2iy z%x3EYsl7<4Z4E_jiO1R|Aq2H>z9h1HiXS;#q6dKns)kQ5v(9HVgcH!rt;W}U?j&a( z`-Ze*5dmMoKS0@@J@;Q&#&RdC!8fE|G*5mW>9mT!LQS?GVdrZ*>myV=F)$g_MdT&vp@9@@$uAz?wJs6*=1# ztIl>2cwv{u%~~vTW~|Hv=m3bbUFNu0nF)*|y>%w=H`0o00sxb#0EHK+02@U>!9!Ik zdxYR2|A{eIU~dd|UClnRvYZWjAkfZhTi+h*=ZU_WHs-&32u_@z za?2lrA)L7{i(eSVFUMXhj4zwz3^?RH#OdKB_d-$nhT+z}EHO@7HBREOy1`4j-iN%a zMp*B%gg{);8r~xpC$l5tykY#<9A~D{l}Fv{EKh1JSfLR-TJt6&IDW^cJ88uTUZ0cM zz-pXY))W!E7{^bHvi37rKhi7=BDtckXrb|!_C${xL;9e{-6R^&<3I)IaWV6qGsEV@ zL5z5>RT{gGbik?Lo;WfUJRB!|uB(7j+4ttQ?oQ^Naq^h<4AR}_GUjb@@|^Zfaq=kS zaKI_fX;XF~Vd-xndiL6Y8me;3Zh;!jZ;$we=C=nBg+6}#(nD}$iM*;JU%Q+0S8(gE z2#;ua|IrOzs`WlLeE4DK3`+>a6+bD(!Ui+vR$9pYvKE~z~BpA*$4mGFW z2f~O#>*EA6keph2EfM6beD{wI2AB9_G!H^ITf&I_NlQq+U=YN?IASb5o~7xPTiz6` zpeJn?ztEGm$A|W$Tlm1`fr0!jM+wiVbWUcU6PeJHYIK8_YJFn(=GUD!@Y( zpl%TYNW~!ENjmdExUF5hGc=c=z{zOfsJwL) zahi`vsqwRX`pZtc3FxtGqn|52ze$i4+pj>u##o!j1ja){z5@@$`TQ&EoeNlDqBipY z1*jynOQNhTkABR0H!CCHD3vrM(ki4f%MwL|FOAn+DrBxiS$zVeg1O`%fOoWlj=@K7 zV2EZCok;3c^IB<9K+GTIFF!?*SGPmb?*Gg|_m9LmcVDdkG$^cHY9y61g$9pVAFp%8ORky~qY3Y@a0r&WgWSWT5^Tt^iSo zHN*k95tHmq8><8dM_ttI0;wW?Wn7o+=sg>nTpK-9h?bNS`hmFr>p6Vn{DpG5W!<#g=eB z$eNkPmXZ#r;Hq&EdB&mu1&6Hw`1~7L=O{l7^RaVVbv70X;4-#=V8Y0r=Z1-l-u4k}YNh_vK07mjU+6nWzxu4ZNuLHHjs!G5(LRM#Y ze-A;lFL&2M(0Yd?d z4u*nojMHj`1{b=ihdfU=Hh-gVop2U${cAmTN55dgHv%1@g&mpR1uJFHy| z)-?b=E(ku4R~>S0W-bD#hpL>kVm{<*&UdbZGe8tvsGjhl(mYs6h{HHW9v}Oo(@vf% zK07tXRKsY`H-G2s4PVm?4VKtk=6DePBKWkU&Ij4UgeQ?k5s_4G_Mi|cmydqi`Urc9 zKx;2qLt2Gg##4g4^@%mVMG#IEy5&le2a&~OtwHrXQ6s}lFOk3Wu5}-KTQ|!$R&+;| zZS7V=)&6~Jroj#dz!SL?{FhR$pFaS(ej(6D*7nWh`;I#c*?H26a{UrYE`{#6lIzPr z)vM>9s}cH?FFpw)v>U;af}|kg%T$nBE~bJcl6gb2iiPEtf)-%VI2#m-UpN~Swz$@8 zaP-vwH5=fUYMbywr=7#uK!MHcDB^^FKi%MEqTcgD&;M9s`RFsw``9fSyF64izJ+}6 zesl}@-hBx26{BDqQ`B}nExhx=05=6UM&0I9#S7^%=LPS2F&#!@?x$xwboi?j%uae zFCy@m>W$>-aqulyeCM{JmCW)U7EbTY@=DLbfx;UE6r74&Xmnsh2@0L+4H6J~Bi87} z*CxBHeBL8QgwY+J$<0`5z?kwC{c8P^ttB|IY@`jpt(5%PRx;&#=e#w~VB7vH{MJ@- zjkx4D>+9@80xs8x8h@6=|DNPg?B2q)V8FXQPQxf3UX?KT;_IeXu;YIbRP!tX#|Htg zXeE=nUYD$YW0wd60rIt%^e-rWC;VZ3kg+5^s(QMMC#`5^@FGoy%T7ouT#b`tT6zIl zOV+HZ=PNWfDw%unPwQS*NbqCQsXOLKCcE(TbXO|hJ;mLwI_s)6!(apcYoETN&sH{u z0OHIti8P=zV*;g7L~l~k^cBzLq1GVA%93QF?c%#yyLuaNjkf|N6Q4pygvV4al33(1 z?g@ues3iUHrco-7DYvW>Y-29>viOC$+{?gWsEyBCctVyd#L@U4vs{DNTSR^=>Fv@D zUaIvzKDE7(ZMr1{;)7s5Y?drHI=>Uh)g}WT zFlmr1H#!>-6ndkx6KO?W08DOlQg}RcenJ>cDPOgzu+Hz4fVv}9vEV171UzusKUp3) z9Y{Emv8b`j*LxD}8?nLSM(2anRn!6#3@QFyLB-Mu}p>FvU5 zNK!k|3-zc@PEw)Jd1t3c=e?KU7tWMWq5Go6C7Z8YA=3acxs<|t?-o5A5#3FLroC_T%0+GC>Wl4>IN^> z`fS&s6Yk2j?PkL@V!mf>@9W^YK)ecZaH_m6wagqkkhdCwp$e}Vzb#eXLNt$b#8<-M zf$tWg#pEI0LIe--jc_m8Rb6a@*ozcun`@}~oWi}8JV4y=VE(&h-Pv2@0pf)RUcBOc z@x%~%su;veuXiPzMSz^_Kz?$)%VK=bf4JUtebOL-md3#nLI>htZuR|zwlahLLYi^w z@z4xgNAtH-D1f-K*+udcH^g@Lu;rQOVf=lEufx)K=>Sg`_PqdAQEC24xT$c=;JfRb zG{87EQ$?9yc-lypGnmf>#kTD5q%`Bn{s~_t@h+uyH3;%YMtCJs~R^nhdnI@Dtl=RZ94J53M z3a!Jegka86!+CX2Ftng?tGd(G9bUAYH`djG%?hL_j)%jSv3<%2djPIt6`yDG*TyrY zwr-)cae5rw@J=a;m3ZqQ=8kJ?0gt|OT*aN$OUApJ8SL+bAJosg4qJBE2H@e0!`7N@ zB#*U%Ue@fIuZJ4DSeM_}DSP=lA9OQ}9VLll_X#0_WA}HSc8ja8A0YDfsN0qw_MOnr zB6~;nJ?W--J4|>x6>9JXmbH(s&h5~-6%d?Or8bu#m*o4*?wfX*Y2aPnCg%& zC(w!gZBEvUfXh5u(@@(%Q0JKLvYXHiPoC)K3STxnfU`W+pG40-%@jP2HzajKas~& z*eTv$j@FmrMq0~50>D`S|9};qYYXW2#4NgJI>m+)|v=#mQ<;U)~#j4{BjzA zTM0PWbmsEujoY$bq)`kXEC=U3?&|3W>2%Wod zv3Z?H@@4PxM5W#GK9G+EgSasIMEt^q(I>61wJ>V7!u9{=60O>mt|;E;Q(F#y=o!~= z_7hPXuCl(@4PG(oeSa3vydyCL;))BrW-}~HzJ;Mu%aUhZ8D^t4JaLuFopeF4LeuOc znm75<(tykGA=-f#N?Y*(PuT~tm^RwCM0$~2aX1h~6a^8RKW#_@ZvLc;2HgBP+*)q_ zh+FH7o_yI_*mW!=;8*EZGJdz++_tybld4C-xAc{1WZW^g~L_sg|venK4zq-XP zy^TCv1Qid_CazmeBAn*>lMeL;|~3zBy8 z1>iu0-k|5t!2@xCyXivPCU$_}!>Lq*tMbw3f^aUsEyDdiJ5HdX#^q*bNdpGY<2+`A ztH2KsWct4fCb5XkG; z=WTQ?GtKsy^72&8gUZZE54=1zk@$>n1kvsKTS^537?JGa7e*vIAck$2khifP=F?tv zT@87qbUhAEVjU)Ci|cDPk|+dY(G9x6%X@u};&>^=^QN!4Hn2N1c6m;78n1m53}HTL z7nK*duxoR*%gUCJc2RhN_A#%!`k7NQWtnLI>xD!3hHbtwk@395_ZsPk_?{Q|EWFno zcNTk_JVd0=`y7*AY5cFVETK`jxfL@;C0}ilKoW(fC(2UBGvACrGBC)t1Kl2WZ zK+KqkMyww}fB|{;_pZ)icV)qO0<$QC%_5I6Yr-SmGc}R02LM!@?v5l>PV)U>McoXf zlN1Id_>9EH34Gr3sqMm6z+d=g>PmtdS$|4nHD3s3o#TtC{jy~06~wo`yn825z*mlT z2U6HhD0~=#0={yzX3(4%Ba5H;8A=b73eF~F8l~4KVQA%S;u6^P`319UmYh-Yu^rDY zSjec;{&0bJx9ZU!xz-u1L0fG)m?3M+Q8fUgEg!qmk;<#)M8{NTZLq}|%tAWJNk;cl zHIn%1w0*9}4VE1Mnm|lbMfx^v`JlTzrEwaEdJtbdqsA2ppHliia406@+sfr4eh~mT z#+gkcR8UtyMPg?Aqno=aZ~LlkHXBY*2Z*m?{IIrifsj(@Zp3%}8#ef+kUm0sDw66n zsjXbzKxa&FH75$-iXK?p({C1fq{4aLR$CwTXaL0&qC~ZkK>JtMZnX_J%%_0~@f8tG zTph_Gu=37t5>Czzp+N$UDD>W>#jEjpGZya;*wEc|BA2 zQ~%y6r6FJXjVqcT{Mz*_`-rFpr?K~RgIAVC|0|j^Eg`U19B3=!_@1^H$C=&=ZO#ur zXK&F+UWav@Z~xYHUD5%;9}VemYlc;x{d7S~zB>i}Ik?02B|Ar+%RKw7KoqqULS2PlN+WZy`!+;Qp?G^AB#`dX%0CGQx z;5P3H=3WMOU>~oW31S~FxL%ws51=g#M81e3Um=l464l5xf|0~)e})s16#1UQ-q$5) zbYA!)4ihMCY#1~1)1#cIj&x6}-SX zroZZ%#P^6?i(GW&2yKe9b^S?;Kk!Doo1=l}#@o&DI z*}Sox+*+NYsp4l$#REJZau0cc+n?|NkB3~x&s>6>Zdc!u{_JrIBz9F7OSHVxC4Jxo z+5lrBA5&?|U>j)4~MK}OgL$)HqD=bFOd}L z9WEBkHsNi+nKp ztgQzhp5T6twGs@`H;kI;2Co>4{#P_(cx_Mk!tahJZJc%1bmXzSoDTBX-IZo;@3A`r zKIhcZZIMB+KkXobAauYW2oBo{fJB9Z-9mvxY#pz#-qccK9WSt!um>ruKnSoJ;R0Tq zgkA7Z%~KK$dztjXqQ+Aa*XyJm11faDfZ859itiPNP-{iI4l)sr1sGXjo|EG40QHj> zQ`|QuwG$|5FijvdL@=#R`O^j$5`9OSg>@%a#0T~~L_tKpdx11yzI#qIpy$MQkoj)a zRa=H(z%6I3-ECQXM{Olo41ilpGu`TIC~&;9t-BjLAW)EGmvxlME+c()vfHhrN_Gp$ zV_&ih=evFQ!%6`ZOBjTLN_Hg;mFxl`o$MMn@?}}>3^szGN6xR;nBi)oK+a{N3urOX z4Prg*fYT9nAJDn(!u?i!QR$rWlY!Rp$fUXJCccVA1jJ5*yp5^ zoMLn@l_7r$N)i+0)m-;2{B*ASCw45LQ#`RmmA@X^T-?Pylf@J8K&};hOeZ-pUg68S!HgV)?+;{<;~OBK!ayHh zm?rm9;muLegK(@c?&#<%l03p3go6Nv)kM~_ldnFqlno`|feb77L6Tt;`eA8AbF2V% z5Uq>CenJRi=+E=F+Iq8@0pwE10I7+PcIHqQ>Bn~#xkvNaMea@J1Hg)y3pERBE+n1g z8iRx?pFPTGS8jP)FoA1~72+38hARLwtT94Ybo@s0g(Go5)s&s=_n)+O`g=HC_xr%+H5z9I7y-sq0aezF)?nwNnB%r&IwlEBCIa3?fT2hSVl@Hq~5zodT&B6Rk7g;H$* zpOV~`UNnQn=4c0%lh200j?n}J-$T8cV{ORa%qXg0spL^$Z*@?c_Qtypx{y9Nb>)c$ zoVqr2l6ClKkNZore~zrw3?%Sa>*$w5DmBA%WTmFDfFhGuS&p2%%1CdVyl@7%Jx9#| zGs$B_KAj@JUm}kr$WO{U70P&NUw11;vEvlr)cCxXRsm9p?^~OtIkMW3mm_0;Cm;o} z-$FD*``||>KWSfdnr+ia(uZ)PxbLDaO zWw|o8g&w1|KxpP0yv~<;gfp`5pM3rv$&n3*`|2S1%v8 zB)DKO)Gg4>1ccpen1`{?2orzGQy`4;tuLCI_eSv->=uFxLxUDt1)lNMYp1v?4D+Ep zKH#joCwrLmKuI19lw?_GNxCNl;hvip&TDqXwqWqXr${`u7z8?p0~_$#ZI}_mm;UPB z$f`&eI24)5_di+OoxM(4@fcYZ+)D!&`;k#sa=juIgxh;_KxyJKtRSkhB#<~VYTU`s z%y9QM$6pI}jE42o_`%!V11!X&ywN~8Wx3^|;2ERQCGiWR(WN|0_d8EvX1V(?M<7&B4OR1UZwo(gk9!3FaJDW=T%Rwq#mS^6W{dE^mo45+9%8l#4>4N= z;#lepAv&BgU3RZK*^B@X@>9kXE@gei~Ok=x!7K z5%l5Fv*9Sq$D}s~)!ko|<-^CnFs2@!I4ll+i#LBFpAvvFqMqdUk1fhf&}^%aDhQux zy(h_!uH$(+!c@A+%rE)jYl_@J<|9AmJ6k+X!QzeeEoS1>PG zE9uK?7QtLm)LG6Ih2l>+S2QC$lWw>(*rnPsrRbQ!p3#_PwyZVQOjdq*XZ@l{_5DlT zQ3m_xwL7U~U=ti>6b1Y~P0A**w+Xn=Zai@fb>?7?)5`#TsjDRn*mwigwHEyGXaZk#yFAT}K5QA1qja zSNa5#UP&0`xE-QLRzaG8U#ys52m*#)0eFW#b&e?4Eg?)|qN5QiqkWW*UG09vd_hU| z66v6&dY(%4>VK6=p?~nTI9w`mxE9i@{Se^JI-mZ$`<(fgu5wML zsjF8gNC&wAL}ox=aFG+KJY(OiD|irQLe0f5%!HZ)_G@jfLp+Q5X7D)P=0*30;B{HE zm)yHqzCc8GZ#wA)FAt0UUe9&eqn-%9cR^7k-~B{UBfdMiIG%TUxab*HrfFeXV>o&2 z26sQW7--CT_aHWgJjSh(k>s(3e{{t?l#hBvXEQUq%Ke|qvJDd%Xv5cvpCq_M5(964 z9;rf7yEnS;;(Iq~H0u)3a%%0uI3{cMJ?{;^MOcjvc6l>29MHz7gqJ^$n3wiN2cV|D6 zn7#x7QdTjA{C%5yi@_!nW@?ycIGaHl#H?XX?#5$A!7C3G(wDu>%0nEPr7M^y+{?d^}j1j9b1^p&+m2*@gpe|mZBA=0ExoX zm4f_}RYeb*H9%L?o^%J5=aCLDBRXIm@-O#!c8D;K3O+^}P{D^#!6^}>9bb{WNE!s7 zafpw6$KA^hqZkPO!8`68#tO8RE9gP*f^I2&A!xGZTb(E%d>`Xuo-f*9wk`-1Q6*ah z6z;AShrJ0^Ol7-@225qab@9@*7>j2Yq@;sB1SW?PaI6{(RmG1of(U$C6+c`8LcIsmwLoUIurk~0w)=T16hDfq@A=q$M;Kd9@ZdI- z){eRjZCQcd^WzWKxW8vFkUlt28%YDI{so@&nY*1IAPiI%uQiLa*zREH3!k~O{h%=` z(5$Ge;JE^^k(f}u>fi3XFm{mOK{G%X`<}G!S??NP6!4`}J=uQHn7d8yU0h`T4j6Cs zbYquDFC3Q(f#VWhh~vV9O?o3ze#7F<37Sil9{^uG|F6ZJ{YYx@TNY|N6%3jHKI8SG zqCoHr88SKsfJ=E2_`L_+34UF)P`wJJPhBD z+cZj^K^g>&Fo58@-YZJ>1J&|&4F$jC{i4o(@K_SnOsD{5;rS=sU$X%Og-_P&Nh8WS zz#1rPrqo+MtCZDZmFuV=GOvOXyh{!fMnCVDem&&7(-0wX=@ryvF+31&MPP~fF~SP2 zyfk=w$-*N-kko3pQn9aLtmpmD!d&+X>4iSL4*2vgl+9{usL7%`aS(<2AE17$FvAbu zIv_xu3UnXpK_8$VM>&oAfR@CQzg7m4-e5UldHb|ceV3k$wd#bGaqe1`^|9Doy;t#Z;Q@T4m*h7u{Qfmrx5X zxwkQ!=uVeV-E@PO>Y^9^2TQ08pW2)9b_+bM_~-*g3)w(TMizzp*fd5>LN{&}oIoCU@=f0K5N*1aZZHJ%Jzo$liz_{-P+NVV5X4 zaCw%m2=`1$@(5aVb<~*>Z{T^J{XrUVVU*I)Q?G>)j@-hdMbYecf*Nz->Z4FBjVRJ4 zr1SiQBDFBGkjK6`(ST1WHuk7%dDDt;N{l=!(0kJmu`o(#BKp#W5zykl{ZQ1#k0>sU zf$F#TsFKS8gSVF)~=Tg zAMyPbPY(N-fMa_4fwT$Sjwq5Fro<$;-Y|Vf0ID^^9)d-$8FmT?^|s@`M=_&FE*oCP zW_eLFWgpiLzqjxlHd%DBwq{&A=&?{!b3`#&J6yFFx8#o{dk(Wy(oyFCZAmN6EvaDi zlRUW*q#f4jGFg%MzJP{(;OyA190$~Oix!o*0kXB16T_K3FML>v?xymz#9%Y zjOuCUhh2;EB8t+Dts}iqmVZ!L{&_7~;)7)==J((3=|pv-)%*dWf?g$L!Sw)@1-aYR zsMsF%4Ln|b3_hNc)VR1UJ4AZ>0-*UdW%TFb5D~Cflj33$0li8G+^{OR!A~*1)bJ{y zKspk!O}{!JLtj9Car>uk;d=M15=>Tn8|Ch%6XDX z)J9OgXBKl1G(Hjfl13>)iOg;_E|uN(Dv{YO;KWo_11MrGN-!G>PXev*0pT`ycjr4N zGm5VP-UuG}GTZrtjet0yGPwIn5g`^(7(WT6f}H z3j5Q1nbp&ZJx$OBXjB0%2mIBZgX}{BsdL*;Nh@me!ys)cJnt!O0=@ukDuBnOHp7;b zsN5D5ARx(Xr63y-E5zKE#@cU7JOeBwYw>28DkCbl#CHdi!`wDO{KDKeq5HLR+a5hU z+k$i39z8wlSSQh)=C+Z^8r2Edd+mmLX)SDDEzE%QgTb z4=^loc?yiD`MWO9w4`EzlBSSZga)1n`#WjC6mlAyU5^w}D=3<+Ca6UUS)EqqIcKoV zq!}o}4po(Cp{XC~=}k{o_3=Dy?gG;gm0R6Gy@5tLa7+MS>+9)bvX2QV4B4B8dODh4 zbcatwKt=5Ud5XarFG>9zXn1|tILdnsfLQmmfc*bxd+)%gitTZndlwSOgc8yO5|RL+ zmxK=4KpJdI0-;GKp|jLT2Z4ZsB0&OT=7}Pp?^zLoEh-|#f&~TiVMPIZK?DnyC-6IS zW;S#7?gF1L_~Vb8W#-IjbLPyMGjr#vWTr91(L72s5GLnGpv2cd)iOSiWXi0xcEvn9bkK?!D3g8lv<2=*A_D7_59Ns{1{padsSg0n9}@Uq<) z!xOrsh1f)=;(a05himwWq0onGgVI|~>G2@+F4Kp+*KkKuKLKHKl()-0K?n(Vj_hpd zme$n|92Z0Zwh=HM3cIIGGTEyHCEQ;QAAg+Kx7>WMmpt2ejMUE_$L@XN@?t9*ZgJO;Q3VCLR%H6_`svr$>w*h>l3qC$&HxWP`-!3Ahq65vFGURF@0L@HbROJ2BGpy=S zEcMKgx!Z2Q8s=`3B_xR~6l65%ei7fs2KPDD`OJ}Nju;YN`Jzr0q2)9jc072wV}D?*o3q043_C{jfJb_d>H;6t((TtB>$c!C|Lz;f+h;m%Vy86) z8OMGL`pR;6%rBt}9)}m5#Tge?JyZ8DM!VHAWrnssslbpIDlp_tBo&xWg$fLL0WXHU zK}7R@ks(9gLjdESPKA3PPGq(6eat%(UTJj9kNZOKPGjJAh%k7_62D%vv)5~&FtHZ-3nPi-=$&>+UrT|qjFa|T44HbmX zPW@DenA#pg7|$*iH#9<3UC7ji3}?r4--048_Pm88dnB;f^ML zB&#B}?+7KF#OLx}<&N%tz!Wq*JjDn8Wg-L)G;3g zl;X6;ElPI^uSZkk7RG84$iz>U(=(!WLMph2$X`yX@IFC)ySfzU5K z4o-sN*0P*aviw3?p)5a9SuR{o7BaM|WD#lEwtnQarX#cUP!OWngyR=|pOU zeMz>8-r$FS^rrb%pbPn|N{HTe5I`NhJxfY)sO-p=(OUqT$AM81y)DeP>POL;myOXI zn=Me{#F@-f|J|Xt37WtxWdOh)J&v6$B1bC|W4PM7z(=)o=XJ(#qx#n3DcjPLc;iv9+1*l8 zkg3XMeE&g5Do?q$Mk7e-<8S<^TM$;f2{|(6s+nVrx!_icud~|vVlF3tZ@*(nT!NrQ zW3Dhl9AmEg4mdWm0#b^WGUa7QIvYkx(Q6fyzv4*t1BOwT$Ctd~xYiF9!5eF+nik>t zniyWX1zU~V(tcnIb+LRmrdSl9L^b3LG&e`?ZhZfmV;Z}IfQy+h(i;GOo6vBU3C)Cw z)(@z^Nz`}8uUbS?rhNB26<6+j-SLpY9wVf{(>LLpA4+S_o+PEHv&VSYTaIyo(3{?J z%^~B5f02 z@)2$~2s4Z)W~ko#Cv7SrQ~rvb!o(A*!7lF~!=*B)| z8hwDD`Vfr5Df(0`6PDxGlr-DwQh-uE>LchiN*DKEj~s{4=s7|O`?!?bKX!QhptVK3 zX@Rx@QeONBi}QoWjyrAvHA;EA(=UoaIL;{E^pIU&gJb$JDkf~_0^g;yY-cGIaNJG`sq;t*pvIJxg37@&E=5+ zph-YMY&8xckm#cE_3Y84RP>TLq_3RJ1Mmz4JYq5jd>HHm05t9^Q!$Nzx8CWYUAg#d zwF!C%4jv-G{r&dE18Mm&VcMJcW>7V4<;83f{NlX5Rs6zvdn<4jeBOpvv%`4qw+{~0; zml_H)DM5Jj9_%Y;^@_f}&BJrK&L|FVKiA^@&p1N(#W&JI&6*A#b;dCy?w}w+C-o-@ zO`Oy>znRvTML4u=p+BkjR$5zIBL{TvTWPIWJgKg7B}M~&?kC?Fu@(+_Y`Ug^RIVid zS2%rt-`9A z9gmt59P-`YNdyu^9S5Hm(NY#W#Jj&88I=-W{v9KL)QP7N1Oqs9^_Ij?0YUC}cR1vc zCy33UTpoF%Y^R>g%#R_R<+D-M|9R1m2{Jf59v8oGcs$O}op&@3l9}xFOIjEo{!tp^ zTYh(J2pl2{{&1{fuMoy@i0sn^KJuko{(<_poV8!#A|GMOW`xr>630<>?CA75@C?vw^Tl7I>WH-|dOyfo1%Ej&^{sd0=JK8TmtoKDuCw5~F4GY@b- zm7Qfc(WcEFfD!I~@{L6;mCw!?{ZXD1=c6_6Ht|4eHNO6XxQ0Aqk+U`XlVHGD={H_b$C=B1BjxCU@dftUF7*O?U6(dM z^uT!Tfw^?ofjd50*V&oTp2HW|wMgprT_DAO`XQ~gA593XYftJl{B4S0RMAy2IDZ0JV_g~Jcu4tB|R*l#2lv}^;ZY(;^xiFerR2g=6J zMLHY#5foEIWB}mLs^g)*EFG`RPjtNR)eCqrq9EGoGQlK+1D887APOe~^BaER97H(8 zpZI*Ja!GkHj|su03m3nn3kR`-M>zMzI(G-XeCE-Az$KTQPiw#%HE_PgUM0POv%r2` z;FF;AA0k=Cj%(yHQ2Nj%1Ev4E@J6lZAk@9@@uFmByt&)u^XT#M&Thuvd~m$8IPN`x zk$Uu(2#Nh+Zh4PU<>EinTEq8J+CrFUS~LOT+9$II2oGqt_v->5 z57+(akPEf!G5n{N&VRG#HFjyZ&$#8j=|NI~`=(G)b=}c1Qi*$~P>Fk|y8uXBjv0h$ zZ-rY%F!ulj8Np0x>uhD5=XbSr4vwo3D5<^QOK4yObANbt7JsLmvld_0&N+cyBK6>~ z^ZBfwZPyyha8O7b`L>8BL>uEz!A4*TxOJ%lgyqW@FLe? z?9!r{dp$DML3)uVMY+10Pk8vQey%w71ZfTT^e6L-8r_rFF;Xg=unoX?YD9WVKX`F3 zDSMQFLf5Gk*F%B_z2Y+N=Beq@N_SzTa9Yw%4|dUJ@ zL&PP4K=Bet+!qZWp?f16Vi@2bW0(NJYCr`jHpzTp{7?D;XovH2Xj@{M^hyF_!GRh|^T za8`LT_i~}sc&Bq);DnOva?WRO5k7DlIj9SKRIfKr#M9f_V|n$evy>(P4(U|I1Fgl}yeemUYoI$9ecV>BVpc9$!vaR?4)HQWenw(BgwJ%_6b)DSu z(yi4wqt$uR{q*Z-FAl$7gHr`Qq>DK+cYmJD3~Ov^2D}&4BbLj66`hC%P~=wS;X){u zGVR+917Nk4&_^6iNbA3xEK5LY7K}-;h?0?=30-O=fSoIaTI{g08&VslLf;DPR z-)dgvSLD*hI9)6@AHY-=3P)=HkZyJ(iJuwcOk+(+CE7FI%bSp|hp4SxzPgvUj(}BT zbVuXtuKcr2U9LF<1RX@FWJzp3+D%+MbqI?-)6p`jS!dOj8F~R^a8DUU(j4(zK(5eW-91b5Y zcq%*7bmhyuS6^UCUx3%oEoW2kBm{0~wur$_{0uOdE;J66UbW~28(kU!( z#Z=ZAVxMBLzX?jgVU$<5R9@$get2Gy*L%Sp)+|FU2njl$y<$szjm0_C{|I!U3%nTxuMMWU8u@`^HV2bM85VGxK#y;s zQFe5;Xn+OYh~n|LIG6ij#|45`i%MX^&0Xu9-P`L^oH_p&)y%xr8ELRNgsK+xW>P9t z1NR(eu5$MFgSPOZt}vU0ypXqn+*jmAfSE?W}| zI*Q$*BXx}6pwLm42|QtFr6p9%J_!|KC*uAxXFFJ^7HH$OXhgk&RkJ_}_s2B*9W0)J zpL;YrnJ3)kY|4^JsSwVLFOb|)aKUY)=0=^CY*-*8L7-w`SCRLzdw8R>*kE~tk_cVO zi|r}48w=F8wug~goZbfm_No^;$MNOd*@f*Fobt^|G-ud^0+F$gA|~lui$x`oPGTO#gN9Uz3#IBn=6zODO!sXDS@ww2@8TsoU>C=V7xqT;(m^Sk`1)NG*{D@;fJF zKCPN${x6QT5aDK)soej9)5(W>~%xRtMa)M;nsnwHF&-#S1>bR`3L<|bE6`AT~Z z+d+Utd}MoU0Hj8{CG=u1k{S%s9@EV+LJA^_ci8|LAx#>fBBb&sobkqS-v4=LdfYOB zkp@U!LIMM%Ep4(Fv9Cy}jFP5U8-7keFa^GS2ke&rLQ16(>V`IHQ=}nmt8ROE&Olyw zw=;r~a=z>3Y&(ysa86^91GQC)?n|hv3w+(@)ii4Gq{(p7Vd)xsIq&ymRTyd{^Ha|{ zyYe4o5k{fO17(QZM8^Pk`eyP# zZ!xt8qB+?+;e-J09hR(Xk`_%$wbBLFW_;G$neC!QBOLjki(feMKOb0rz?sbS2G{3s z>$dZzz;3R%+diEALCHcl$Ns7dG({K}W##sAR%ehl3LF<$vaAF9>-lhxuh#L3XH?eKHQo5|o zO1Jk&-9B%ve@5z-zx0}Rf6qv@9;2|ZS~LL`)q0OqYjjXfc+wkSS7Yw7H@}Kz)#;8~ z36(0%Mw3!4q(I$2CUme*r8UJbRB6q@|3`D3^`>(yYb@H4i(FzG>H~FHp zx>Bk%1wKE%yH6LEMJjNZLj|t2+rRD1Vf{%h8YR>U?HO(P(f42@WZ&4rCQ%wj)8(7r zx$1CNFVMy6_S!0=NvS{9W@wW!D?}@_$y>xPRNyVBKyniA^8tK+`~1YpEsxpzn(Q`0 z2s3$?-i7bItmmokL1y|cQdyPB178SY%8gOm=D{+N7cQJw)y`<~4#-Sv7pC@!fE3@k z!`>&5W}Rcs7Pe=gI=7@X$)6%a}W$cZ#R z^3nVxD9sND&95#)vwonQyy8RWut18gr|d0_3vjC?xZg`b>HSaBGiwczZ_W}SdCAAl zCc$NV<7s2QC>9oR0m`7!!>LbUh`IK^2@9bXwcDFDhxWcxI z7yRgqsmwcIw;Ajt!HGU&@8VIl_^Oxf$+qu-!5uH#Te8yx1||NMN_-wAX4JO#fA6FM ztNWaR6tDZL-Q`EqBCrBIE(GqtPy7J8+tD{_W4B7JR&Mp-1J^?8C|6a2)WZ$d ziJ-$}tJZciX&4=Dlqrs(Z@^TYL%^-n)rv1uQa7QUSXdH;D}<{mPn~tPHP~2!3w2%5 zYiKQAc@7TRdk@(g7}I$1&(4l)1_48Ldx3y&U>gf~(Jzpj$IR-mJm#4o*Lf0}VZ-YT(LvTjroLpzJa3gIfz5m~ldpvRZ~G);X>x;R+x zs0K68Ci&E(_A%@rVZhQuZDbF$j>S9XO}0Zo3%Tkii^M9wCYPCcG4VrT z2w*JGSp33RpfO;E-JGDGj|OUd+vdSV{D}}(kaPK~LS1uMH-U+SSNWZEfscXGyRR=h zQ2vFzjOA;*ax2C?R366cJ5;Xy%G%}B<1@lsJ=sJ8iffLs7SJQlbsNZ*TA>!fYY-yT zDOlpBdNJk8Su)#1DlyW7N)hSV`VOtmN7ty=ogXphHi_0yJ|%ej43&%h_CQ9S zh}c-i)zsL{pR40?#q|*_=xRSjqma9-d39a;*ej$IOf{dEyw~trH%CFO_4tYJ?ICPG z#VS7H@ewJ&9nkkh0q%f;7*#u<=C4EL8LRUI9(~QvU{*d~V^$j`w?KCbD3v6|EzmQd zSaHbe3~8>nKx2k!)57dFfXOXT3XfZ$-xCC&7J10Z{AQ@!0(~F4{}gP6z6VT+El?^h zoUF1}etp*74AQ`a9y*M71y<}6bs*n0Ok^Uv%6a~!pY30>38anRJa5e89U8jYuwnv$ znwdU~XlAk0OgPcZX^!)}rmYSy03|;0H<;%sN%X@3phd%Y(V)H^c*c4AK(>i6Af20r zR|h9Juq5WaBKS0;D=SjhE7GHf$>jdyzuQv{_8dVNTuo08lQZAEKj9R}8wA`+U#ayq zMgM7}UtiN#^`k|(e3RK2!HbeyE(1&zajBB4WrQYB?K|^OAPHBKJy|R6Cn^9(=QXGQW`QDh)hca-_Ly6w4#xU>?<_3w%^dH(Z}j=Dk|F*0S*$v0N?}4woC; z7h1V|8{9@A-`~n*XC)L?WEcPz*T^GF5# zqJ5qxrh*3zAlrXJPFwSv;e6?YoEGdmE5)y@6n_auah;=kv#3Cd!{HL?@bt!hG;yUD z07`X)Cu^cd0Q)LhzwwQbpw2FXoQ+pC^$|l%?Tu!kBjfSZ)^y-AUs%8e}tS>>Ho!W*fs)>+kKCc0^IJ~#&_CXt^5FS8VEqV8MGk2 zn;IRP?qaVHG*!EUhe#pfeudBIS@quRmgc@q_OXpeI{)YswGhx~?@~=AfEz6*Fz;)AL--{5XXR)t)s^ zjFg`16yXs)*Qb=dAK-(YmD!ycVGli*@e!}+=Za?^k=ELA8KXcL!tsj7}D_=esP)#GK z1Z4uKVz$Y=aENOHTS5S>G?kxTq-ai-G>K{zs;&fwa1xi(&aQ$SXEZVVD$U99Bfoh2 zkU)k$<6-d&ea6GUL2#e3Vwh`npwB4j+K2H`!(I7oA7Kq0$BVkaN4~V|IvvN0BV2c} z4>V%wINlp2SJhvU3S3n~1)h8Sg;d~*8Y*z-=`a9@*Up0Q>V0RF3=As)I|PP_#i!vQ zcSrcvQEBagQ>M?FHX(n)oc0T5&E4q54yTRI$V)P+BM@t`KCl%;Jx{oF(vh27vsfP@3woqXUErfyT7I1#Y2RX31n*HA z63MsBaW&w3pX(MOevM%xH8JU>hQcK&BKPMd73ig)qAK^dfK;NVf=cvMg8)c)svt6W z2ab`R$_^C#U$%(k+g#a^zKibe;eXC|dEy2N8q`JgB1F+el`U|6#2z4}7$MdBvv)1N zWudEsv7H}Y=<3XN5D0W0k3l#2;v?fZzJHOc3%f@EDc@l%cJ;j0_n|=1vBm@Z!^N() zeyriL@J&I4inN8WhRecFNC7SjKNJPHECltzvhWe}{1|yd$R7k0V!v_buS6`JP);T$h=dE$|XP*#dCjI4_kf;Ceqg?v$Yj;LRhh&fAdrDo? z_};ZLFP7sOWPT6Ex-7d3`&$#^Mf*I1jPH5Eovz00dr}T>>ZJ2o2kJG7`9PQYSo3~Y zD1FSkg}#+n`*pCj(2x&U=W1d$D&qT>XGg|;CtA{R_+O1mpD2kTr4|CMcz;_$3qE4K zD~%i;*#LJ5x5&!oCHq6eV$ww%CdWlpr`GHMSLt$l=e=FqwsY=kaCJ(>fHctP!f zp8S5g!pGG0Y)K^zc8}yIa@{rgth-$c`HphzQW%4+dC8--dd3DJ=bc#uLDtsRjrbkq zuxebY8RBB{iwWL@7tbq*al z*%?xcc%jx0@61PBQ(5RZ-96ZEHn>|342*|Ah6E8WlmT9Nos$9!BY+Bl60X1mBbdhQ zv|gB1cZrO-Nd;nr3gpze9U_OJq!u}aT0c(np8#K7OrZqw=?eKWQh~^!0@+yd7+{nRevoa?v#!$yyGRJ(du%LqMSB)99=P;P8RFHUi{s>LZvo&BKkw?wZU_SY zHt&}Zi2c?VTv@EO1>Cq;nYi2aZ+~Vm^1V={Ewx+YC&kCvu%R&5=*XM|A%?$wL;;4s zGr@R%hA+0xni7%Cm%rpHV&e!fs5XaJoHxSEG2?l}Yx#}X7*dPYQ_-$hb94T9zOAV{ zi7h0xXg+ht6Z5$RaEPQNF(1CKnL8m;i=poP1#0Ks$!q9GZT~V)EU)*P5#?73YEUuu z$no5m;>k3I@vVnk9eBe7uEDH=@S|nfu4LIxYPBq{C|O=3wJ6I0D$9|p%c2&YBtZ5Pq~Qe=1r2B(++WhzYV^A}45jMOo@jApH_Q;i~gWuc{7mh=9y^nJtSVQ#{YmZdN7A#AKKsYO|ibTeDpMo*~Dw{|j{utHLe!i=QC zc!LPD>@8PPeQjhhazz67^1cgis#0oN7Fw!h$(}%Ltdw!W35rp;ZwWJ$6nBwIEyd$L zDV`wJD8-{xipr}?p+5R?mz081(^Ak!sFI*$s}#0%ZwgxWWJ zTUPHRUhl)O_Uvgw23bt})Ce;c@t;11p+(wo}c0)_Gw&(k6`;AW_V`xmW+Krg_E+}nZAlzagaQrjZP!>tr zh-9|_M`kFvW`>q(X8!VL=JAuREzC|3qh3$G0lS=&q!D)~mB`DFr(8KKpOhjm-6u(2 zD7fY&p!DMBFnDOG=CI2oG){9E_;T?^?$)$gVdjwWGO5)E3p33um>(gjRhz^h@KWD9 z3nLQwFJHO#@sBQrMu=ZOvNFOc@_%w%E?n79N(KK$8Nd4**K>Z*z*0W3fVR?;mrjx? z|Fhq^>c{$#S5Xf5e(`qUU|x7zN(i6x9c+LTF!_q%r$ZM-@!{XQ>Q#RO7~z>e^lHxD zA}on@bo4=8;9Kc?FYp_FfL-YWpzRBNQfhgH#lpLFC4ANot^_!KS@wggvH95~nIi#C zRD7Evd4EM?6giUH*$<>Z1Z(VDQGmhP1zzyCE8F}Z;QH0o5dXGw<6n%vY?HMC1SO9F&RPzOuJ=@Uzonh1Ti4(M&5DT!;Ky8$=rUp&tt-Tl=xqFRn)MqE}08+4=b!OG75inmKOr z?2Wgn1=#e-*1qj36**8-k$t;}6ky-Z7X_qmjXU_hUtNvNI{>BVTKJ1yyMZ*su3bmF z_P(okZBI2)CR@8!Rop%q2eUDspFHo%B0a0>=MV;T&lZzX>{%i)(d(Jtp=S>ZSnSy& z;urSpk<0b$kAJ}7x_}}2;j69~IYhq!6#UeEu9oaO%7Pf8U+DtE!lu8VYfs9qty?uj z#R9owZC>{9H__@&s@**5f38IH?|?3~O9g(evCA&4H3e{}r66``h$tXkYBrdH!xgTm z-t{+hE&La|G>J46U1~Ju5h3nWu21Q;nG$@&lE^7Ta@9yQ?S9wR-@^jyVntn+88XE> zW>s4o;Y0UqHBu^iHh~DP)mr7u?EKW^bVtl+(F*%`jQE9pJZ4Jp(R=p+_sxM_Jo61# zxa{J2fPr`00(t5Mlo#mYggLq(2rpT89sN7foH@lhjJKHX*al=6o6~Np8p3O!k3R?0rvOZqCod|Jn!&f`VBmxy1SnFi0b)Au;*=$OsURG`b=&bMo?hS zKVj|p7lQP>Wf9X?^7mMz4b$)3MEpyyTn2EvE#`E{fed!DEun6_ol|0r5v&z}*$ zu;q_s99CzbLI{C`Y?ACF$AYnbTv&~8bS+FfQHaa6a+Vf zZeBTKi@)I3ZQZM0uzp&yNMck#=YSgasdGS`Eb)OHiE?YnxvnnwY2 z@yb}Onb+zC6hIPTMB74RQi`@fw4nQ-$_v0f@WKn+ELx#0ED^uZ7M6fqLFe#h_1voh zZQHqzacy+c}K=e|Wd_rt)>wJeJV zNUmPT&Lz>9Dt|@w=~DrHssJhoech)|kW!qpiPS`m-^RELV%St)Plk(M*puN?FVmCX z#JWoYdveDO?#9)dLTjFR-biH00*{(5#i&k5(gm7&l|>CgUmiEr+M9wSM{9#?ZT) z1T2ozd&Mv8-Fq+ByQK;4^1$A`{}DL$g5&f_K*4uD0&gTeO<53KT%ijz3sqe_9J~1O zfG*ygkDlGbRb}DsGk0wVQU;jERrIskqrftWi~bu8i(zfYB*{ceG4g z8{J!^6sHN&Ex~$RP7{Sf8Z^Hm@e9qb2m}f`O*CyCY??UR+MQH=0kr0aGrox9%if+4 z$`%nNVcalJ7iebqi)~<uzMO1vUGJiiNV< zXKOmr7B`Usv_&oos4YScsTJSZ&Rq{ap}4Od%uJ8*42VN%WCv z(oOJbRyUylHWF0WV-+PX7DfuO!wBzMM^!@<4$_Eu{Zr8jJM1&@3p?zy%XL^(syoQq z{6wld(fF;rqdS@XPI(a1`7gRa^S~eN2>o7k3KlNt$AAs~g|nHDJZ&mDJ%5@UF08Yck#1rK&!GAk%}8@+|J%O(4>1 zeOC49MA4_tXn_j5bc*m@WyauW`?ppqaJDjgRR4)Sdxu?U|E?ZSkWGjdaI7*l50@D2cp6(gZ!K;$e+z<1` zVK+uIQjdG)=ECVXtQ!XmYwv#q6+E%MdmMl9zwVAC(4Qu?zgROOhH(NfT$vleKeW3& z>}gU3uG`OYX2{mND2VtN3_(Za`YGL=AM=)gMdcq7zfk#yr1Ht@@~Bs7WRS%?x2<6z z|EZUI3&@5 zoYYI5AD23h57c?h8C5#xo-B77QTZ&Xw9hmjQsosbdqwbfv)qeWtZ00h!FrQy9YsNe z$_Y9mR)ZW+d3yniD(@hEp~^eVKzqNE%8U5_>Uy&H$Ucy~ysVv%w)LG+ofm#?wq{Pk z5^6d}7Z8@-=?j_;URB_5?~;CHoPhX*L?cQx% zJ}rS$f?^n!R$TizO(3;|XH4=&SK9O4|FYTkf^f#Dp%aZ6{8U82SiW_D`&jj_K+y6v zAGe<`U&n#^L-%npIj$DJJkJ&t=CLAjQrT#7A%8MM77yPE0S1+GgZ5WyE|F6 zcH=c1P8Vu2y7LPo+$~vmLKl@Z(yF8`$iC5$pPl0Fz)PN(JDJTQjbPASpL(YI@Rv;h zE%~(5`&hFuK5~rvEgJ_F;p}@4p^7TH+p3}mQAPeIz4+NCT^q|8|MBO(Vf>E8HN&pQ zzTnC?&sd0d*As3~anD#4cc&C=ja1y&aqf578>G>7EABNPem}+azbiG2Z<^@t$qOgC z*BWQ}nTZeu{!9p??#@_s_jjOq)tT%bbgky~J#R3@-HLrr=%SYD%(9HZZ=@7o3N3AB zO+@uSH1N!XS$zFScc$?r_tQ|t*&D+6vT5$`AXPbKI>fmiLR2Wnbj%_v)WPr{a94Fi z;zqs|BF-`LI#2bAN3$v)b-F%3TQ)c1daTNpJ*zse6F;^IgCA8I5E_e|WYt)P6w6G9 zE82y}+Vi8kKU++i;qLUsNg-}_3n|4V+2UFJ#2Ls0QE;G=#|v+Chh1Y|n+r5UejYBd zRiirm#gn#1{Nil)q3TZqGd$%IDEwK%7ApKns_=bM;gS9d_ugN#8l>a;oo>$ez5Y!i zpEcZ5i}#y%&0HHhc)j`VIJSfEg8F_}6wq1XaV6d(O5bH4%%8}+p^m7 zeIrgYfi>w`dp@+7H=F{qNGRa|mDolUP$gC`#<6G`#lmRY@p?bB?qk|@p`YBPCvOhp z_bqc@s9p$oc;k!n+pw{O1PVEt3OP**8PsNuCb(Pkouf|I<0Y%U3*{G2%)dUv8P1Qb zaHp~1gdvo9sa571m3V_t=JtF>Qs^|cfi%N`TGB4GCEG+w#Xz+I7(exANunS8b&u3_ znj=4jzunvjtBkwN9c37A@zmSh-PzlOAyoGpO5G9k$OtXX)gHhqTAeEc)u?rYw)LUb4OHF z46WW3c;%z&Z6c5ThiZg6j5lSu>A_`a;o)%m`=pbuw}DpWhbO10BQNTpK5?3BucDk{tGg>d-n zp&KGZjED!i%HE0$GxtI`J#K*8cu~ai@x0>GhHcxCrkTJ?;EiJ(6qaiq1sL%XZV)EDM{e@H z%+ZX$ai6=PT)GoTxpaRXNW(k2@@)=rn}9cNHuMrM*_**HJYd8#T8@q3Pi=NLjXNS( zp?$cU@P@B+;2Nu~Kte;kPw&6hMIY*`rh3`C6~+5;HpKqpYm8=@q!iPjy+i?KsE+V$ zkGQ+?eH%g!uptBtrgilm!GPKF2;%@!t4|brXUh}C(?~7u#7v&8$Ei6FaESK^gvL}D z$;H-bWKU6m>I#wh3ZRCER|z$`6;n#cAdBMgstJv7D~2?}t(fwsLX&M75U`XERy~V_m%f(Qmfg3g|T(Uotk* z_^F58BiRYUD0bIzQJ}l4lKn~`Pz|%jz^T2nq!bxSJU%kQuN3=jYx~wMY&GXVlIF(R zNi1v*;8vE19Tzf(bX?RN?6}%QEAZaau4fiBZmhdby)R72!zt1;f6VXWM;paX>Cz&^ zP*NY4Qk!YB`L0X-Ga0pA{0to#IzHb5!&bc4nit~{Y-5HhSNy^ZRW5KIWGm{IK!=vL z(>;YvAd;gmE7Ao%de`I2iYnaa_+PuKT$XJC=-fCE62&+7>f4dsp{YqPw_uKZ1#Qk8 z>9vBeb@f|euS`~sCdadX9jHlh1akE7MbyTAXKj^41 z+p&+7VyJ(OjtZ19Q~9Vp1SMXRSNg1boWTy0Vzg7(_N~PmXM}b(Kbpf0Pi}Me2?0S{ z{ear)SJGD5a{@}f>&BNo@9q-yjwnD;)jL-}isw}<$nv9!^Y)7s3kIu$zqsrGO! z=1LD2Ggn@t5D9;a^5GuR|Aw|@%L&7%m8GJM)Ett#737qzJ8%U}4cC-|AbZ2W@ z7uck2_p&>cZ6{4oLyu4mJu5ZjXFnrfakp=*^`owJB1FK`wcEWQm60OxU0mhh*D3Lr zYVpz4Q7b`LM+TqI^}tw{uI@*{HM+Vp;upHQGr)KdS2vma?fBK>%?r9U2$~YVjxWic zdc!@D&v@PaEUP&W_)%t!9<;hH@QHC9->j_!O05i*ppi;P*=U};crJDx-@gMczj)^@ zcMt%ZWXt7Lh}(4>`WL9Ha}p zG4u4SasEAbq>Ob5q?|P_!mx)}m&_Vp3TilOoaVd#>+Td6BMRuOVGw@g-fOq;dX+tn zxqmj&RpaM;(3;Y!qE8sizH&G~IpEDHR5>kP9p#t&VNh%O8RQT|s zX$H}TxAT0TX{Jf5BtX(Cah*j8HOmCTi!{qYZ6kQ1 z*FBxRN~)w)Hnz4tKtY665_GYVr2JHzT@?2Jh_?o@*hwvFc=ukL$0W8YI zNAkK6T)5UxhR;yIy%A>80vQEg1~)7M;>;hVX&5E^f2ZBe!)^pz@`WF6d~A#2y?=z$ zBJ~9UY8pRjjmRTLxP?$i_`paIw-6?iQV|Kl#nqpkfn$9X8fN=E{=)pB*Rq2E>RiF! znGzDhMiELF6sMncH!#?8Qe1S--G{9v1z^2Nys%p&1hd0CB=FzPxg%osR~80WOv|{LU_=?0^M=2;7Y0J_`^BBhb_POE{1vufD5Dq|mk2-_ zbO%V-cxFhV!449HGIb`%944j6)Ir|)clS9fbn@M^YPMjfEWqZ$1@bClid!(%STm*8 ztb{2TO8aX!i{dx`>F&t>Bq%ZDtf(Iu7VQVEBGnQe_ZOU^W()P05Dm%;ZU{3&7xHth z`bE|7)`D8TZO#|5>SzDEy2S95xgqUYoPWD?@iI{jp13foMyzP0x^iqYUspC*D329t zNz{eKg4WFJXyacz`)_yiUUz{2Mc#Xb2@sPoZ18^!umjrr$;LBcZb+BcH<97ub0A`D z<03pmFpsV;Q~W~Lm$~pVk?ExikSGoCZ(m)6BSXW95-^S&q6>UPOP{?iuQi45ToMw; z_a2)+J|+lu@8pF-q&Twx)F|%ctD0>}ZxCB<4b;nK3;9ciXK>tP!5?)h12x0aso*}@ z3Q`J2kw0JiNMRAzM$XX!*nI&jzXj1W&RKm0ht0{|&=u=aJyRo)wf zG_LYq69s65pme<8{p|9P``Bj$4u@RXfSXwuDb$O+k4Y(tdX`PB#S3eBTA4pDupTGKenjE~Nc~t4?CIzG0>YLSFPRAqbA`;o=vLZTLDv zT@U?orFyIPuezQwfkS(1Jx+i@;b?4$5z20bZEB3h24#rt z6Du~T@L|IkIEeV(<%@hVa5LWe22Z>UgbAb!gyAxEOCW46hMvJdIBYS;(}T+eed?H| z5r!}j7GH#oA*H@f04}6cZzPan$H$3Z*zs|TFXPnr{%?LfIba;#$kRW-5Go&R~g8uL?ifscvOC$HTSz)23_Tk7Was&qB>L>eqtqnEeKITy>cLC#{?u?dNu8Eia( z!rm=h%u{nbUD!>eqFCI`2o-oYV+pAccQe`w7h_tth;1M>;K9=QzCY^K;3@q*$viPS zv`GZM{Zw<-!k*)%70sT#5$+q<*3%PhD7+7m)&j42=VG3D062M?R3Il%Avob3lFvLK}()R_$ipt3F_0q!~Z^ zeMkhWLuxf6`=S^0y*v-6JRV1tvRe`ah#qz*7^;cEdyGn$``3+>JZ zkXl@$LNgqnKBG9&#&ZjsN}CaIK6{7?Bb9!PT-F>YBYbH`ZDxuG z_9sD!HmMllk9G0`)}|1>L>r1`;xeY-qYt*=^eMUnL4f*zPQmL4>vWa+fG4hw zqAc^lX#*HWu%H1z3t<384ln8ES<7ys^_ccpBK<)LsX&QmERhCqC#gUKn6X3|z*bVD zMZT&5+@}yfO`4-1P=OBN0I5J$R15eDj8;CB`3xYEeMVaNadKq~@Nx1pX-+xe@AQ(Y z7aqX}TxY57XdkdPgE&&FIk}P<0A6$nK7Ds37!W^Hpi9Uh6*4iU6ghxY_*!U-C?vHq zZ3UVW83>3&D6 z^f3}mDg@V(k*=&MDc3w)!4#n3NpJ|JPtWND0jdKk&?BtLlj;y2!3R7n2(UJSNu(By z0Gj!X0OPhG!HPF~F+X|Gvy`nOjkO@qtKJ~9oN#T%3cjzuCpS7MQl3=ci8tHAJO}Gg zNNsH@@H8_X;(H4`p15o=HPi5}J(;U<(-x1}?Ia9gP6dzIRgzN7sqEy%17STwpBo$X31N(BbSuQYzRok1XS}4to;(z;T^b z@BIaxZKs!2=Rf@nM9z?Qu%zwGQyS!?nBOlW%dJ0_@uT%~IA*%{`;l~Tcv+jgGSXy3!S2t7{Ez%G&TBn{V>`*yoq$dyVnp8rl$7_*UC8#3 zatn6#4Up%rC@cqI8&1_MT^EB&3kil?i&HL4=nPPTWE{13--}*uAI(%QPn)PGbXgF#pymxwNSDp}7GbJ8h zI>VfimQGy?x_wz?u`{=s$p&dG@x)aAb$2$z^K zTPF%odYE$b<-cFe@qEUfAi&@f)S_m!X~4&Z%5sDU|*GryqJ&MlV*@Tm6j0G`&q zrdGV()6fRO@#5&3J&juY}q-R6p z1Ek@28D_f`@-oa0R%&f1wH|@g@Gi_C)cDaMxnul@L8kKtUiSBby4KQIezH}a=rE#3 zOp2xq3vK2HisKotXdFSf6yw#N8tm!YR_PNuq(zt~mHn4wn?ByXCZg8=)`QUQC z?U1WIe}RYo#WoOR+EDLYAr19TQmYO1p%uzdA0gFfsQ)I)HlG9};&>@F9gCr=n@52h z8mg5X8tR*ZnlRKugc=&s>x7!|eqh&H>{Js&I|X9WPR~d?J!?gOnxg+J5WTQdGRykV z^VHiQOtOk1t+f6v(n_Olv5bj&x9BlpHohfr%vsFTM{I>OQ%X&nsijoi`W;Y;c1lap z)Y{zvZzp6BKG9Aon6^_|s_k^ZRT{VOQ^odf>_iR2vR%NGfX7$`!PaK;~ zDyz)YSi_6%gg|;NsYD}PO>}K=p1BUPc~`K}WI2t_zD3%om6otkV<%54^E73<2r0DC zCkQEXcaUxsCQ59`M~lx|?`dQMQfQ&(d$;gYD*^v8EB>Pt|A`>@Exy!;9}uH2wF)Dx z^mk>Ye_F}?M#7wjtVhu@i)>t|K&N)MiN|Tq-9-tG2>S0ONWxmDkHVcx>fno zn@F`VQ}HVMCQq7-fo=vIS8=5+rI`-BRhp@l8oJVrf|zin<%F0pRAU1nwlzq{T3o3n zhOQKdNke_^R%xg&Sn)qg@V^oSzr{|g@GCpDN+a#`_^r~LerBciF`@Qt5NZ}@T18Eo zDJ7=O)KaR z6p~UD4c~X5r4bK%Jm!Lxe0|N_W^54wNB2B$C7B9uT^VTjC69QTkY!G5Y50`DxmvlM z7%f1hWHcHRVyu)WpL18rcRNaj4zm1GBVrFWnq+XQRs--|kHZ{M=h8nN7T`xe9(ABp~QrQCFL zN90am)mLdF#Z9+rt7MYBKB*8nL<3%W-s9=Y5=l8`RI9C08P$%Y1}x+Mu;+#exb}#b z*L_;&G25?_+4VsLBl4hN?a%nZ>g4(?(!h^}E9O!SiI&|;T4NGZ@xez_$|R;xgM!@} z1XickcaU1m#})FaCXf=Tb){v#_jxTL^av)^-zP{#Qr*`hUy^cU8ye_z>d&MW)2UF4 z=~SN?;NB~{&0+?jw@EW-Kq@em3>CQd+JaP|9faPd?4Sp!(ZXLfv))A^&LhnQVz>n? z;{X`m2vUxms0RGUeOgygrmbNQd zj9keapgHce__TePV8A|x3NVVUVWb>4T6_(DAQip_+9>`cwP+O3%x4rL#~vNTD|x@* zCk}d+u^VpJrlN(pLWAubP7@c0gPCSe#SSbPWDMM^Qd24M1KUY%XjErFt-b+daW5!rM^ROq8QD_V$MGoG8ZI;83N+}_YAhuH(_?vInvnpJUf9i;* zGZUJm3HbU&qJSpg$MV9Xo|b|1AphRm6iQke(lX4SUI(7?acnn(khARoNX)zk;=i3^ z=A8-zdd`mvfVApOX5QZ;7HMj!KxHP{!VEh_f}Kl;8W zlbs;t+D3jOrD!7nCKK-zUhp2NSx|}hPj1JxLiC3khi`uO7V+W}p18_7A9Y77{Ed?_3^#3jE4kQf|SnGVjF_drVN3-fl^~2XqLr36gr>OsJxk zG4=i*Qi>f9U^4Yi;RTn(XjST+(!tdGs{|R0O_h4zzgmn91JPUTv`Q9br&eL4o&I}`w9|*I z)E=PJDgvol?6iuSv{On<+o`2g*=ay2+9@qXJH?%%cL|$lrxZ-vDJ|6z!k1TR+=9_| zXs5G2ZyEx|hZ{v;rur*o9btSwm7QrOVPU4(82(mejABc*4JUPR_haJ!#5t>kQCk8g zOd`DkUbLTN-Hcm@m=}rkRWjDSpfs(E>eW zlS`%8QKj*VIJ%|suVMY=~9_!#+TvPe&B#4?Li0Xh*`r0u07 zi*$%UVHW9i&|nU1v3yJ_FoW|tFN(_T%DyG#VtHzNy;Nln{vtJCF8|jo(s{(o+ePP! z*9vgOd%jd=k>b{BJ4GH8?C=;rSe-ZMP8#^JaK*fVAVf(nAY4yjEJkDbi9%Z9)YmkbWW+Xaa}VDibj7)E%bfzG?#Lf<(+eOVmCyfK48|w4_F&PZ_>h#i7Og`sqnIaq&ccnal%_SLxPkEHZusY&K@lxwVIPFnE}wk z?2%G6zq7d(63WmH{zI^0=E&DCPmv1b94fRS>?gHo2vF-Y1U#J?#1nZRFO{b=Pm;!3 zk}IW-j^8O$N0-5hsiTcx+5Ybd#`3M}+_AOPrzfhd$LUZtg0`Niy&3FECg7YGop=P9{C4yMj?b2$r-gK#mF7zj5?Ci)D3<5!8Q+` z+oaG{IU`$N;2O_uI!QB~HOg5>=GFnQVIN%>z)(90enRnIlR9w4EOp0BO~p%p7eXw88%177X1`WsXS0$`f63 zR~hVa(nxf=@i5=pEjN=rOv){GvWHZmodB%N8_`CB^GMBr${Rhn4&$)ctr~}KMi<=5 zLyTv8HczaR$2L!p3JYt$kt)HO32pG~CT(NkOy!S0k(|W@=S&^mY*eO4 z4{9rxU+R^+h{cj}fxf;LT;+};`O&Q0tSiec4{v4?Tqr|&nLNCiPAV)!R0^pF61j{B zmJE{SP<0Kl4U$2cK!~EUF@rRnl%fd$n9Lwic)=twUX?+jbTEUomLRLjAQ`KLEUA3U z2es?Uvzse5n4if6OCV|CR01hvok}3>&{!-9B;&bqPi_nL0s#=gxbduHMBl9cN|_AE zsnfs|lBTNiLO@KWkSJA4*D27)1eNac@MizK+?p{&O+;LoJ}P`Dxl4cbPy*!^oiQzGhV8n1i4#Z^UXxw_4 zIhtU_UnKDtHoUPuTspshm8YYhEVv*Kf?h4it-|1f+_;S|ADr8it+vuyNo2Vz2r*ob z2O%ccP{II^$s^d} z1w&HDIWAQ8AD$awu+s#WHq~#HseVgpwW(IypiI@=pzRz@^&-)D_=c;Rs>*->H8fQ# zH8j;`f|xMX=7bpLj+$&Bp+(AuKx4Als-}jv3e=>nI^pP&$a1=^1o~0}gMtvSSZfsl zWvy0uWcp~@2AMvZVI}9KdN>z);Ah8f?9(k%1qGLlI;L8zgpJ}wG~ zr&g(?UkMyqzPxLdl%jC*u2oWsXOC*$CC?s(-DMd8A^hmV+>X4W_{N52)Lnri08>fY z=crWDS%M!^NwfeJf)}iU<%k5@@eT6m(brNZ_+@u8f5~hTS&vjrXfRWWY!bhJdTv@c z{oW5>ekwN`?}drZEvk~Js@+UpFg-UfW|$CGUL7HR$*UvovL>Mh3i?U5mfm7sb4Km} z`7tMXKR^}2@!#0)GCs|)!QaYr>pSHb=J;>;{-wP>8d++jZXC7IE3QK-n(f_*_g{E- z$!jpY;{@44@#rir`1lt9&GkM-DpzC0?Q^}2R3QQn6m*MW?{?d)_|`V@<5cnB%xk$! z{GQB-%Me?YJafl-U;PfyzbPKoet<^}@kl!jj|}l>ZUCok#G{!Bk5=MwpLjeV9$7Yc zIK<=O>hO3%JQjz*qeMLBg~H=z@#t0y9(M6q_K|pgCLU+Q;Bj6&Qo`ZUMLZhRhDT%Z zxW5iO9u$vz>Wcr0M_N62WQa$2eRxEO$5HWkUpx*)ivNnochT@TBOY7%Cq7TfpO>c-ULPBTGCY+Q1`L zJRWNYj|%Zv*a03(#Um^g9`(edWoLM_6OWW0)vGP@c7dn2SvovgiN~P~cpMdvnmO>O zEgltp;qi=k>~_FopLpzc!DGL8+~bDF{o-*T7aj-26F=ozJPm%~S2fRw zU%!aQ!s+n95Ahurzwq;Ly=TBL{CwH-H^DEw4Sl4z4Hs`1z9_CA#akoe#2spQQ{Ru` z7v9k(Zk)pLh~v$h8!Cogfq3A3OI~pi3EpYaR=l%{uf84N2gv%Y2tuVW=PqUy*4Bk%TcdyO$@?$PjkOI*uFj7RPKoB9%}x(7 zB6;Sb+z$NklJt%2Eo;kqql_BH>w@m^7-$wq5?e23Uk7dYg=naV_G(p~-#ah8k(tt( z&zcX5Sz}``884D1k!=W{=DThAtQENjSX|I{4fxSpfmFTC!=icOqFfdWjRUzAI0Wr( zL2+~zI0}reeA%+xc=N%olHP!zu>A}+{L7XLX3U;4Wo^WqKFaoX*+vb4{4` zhpRNCM>Q-A>2JDYp)N|p;c25%2o$c-;YHKiA43|FD z+|qIJ;k&xUbDn<1UD0%n#i}QbFE`8_o1vacO#doAA50sZln*9nxUWUbMT@|Mcigo_ zCb!K6cYRz~GU}MGWYDy&*t>Y6<;+48hYcS(Zp@%jW9OzVg;a3w%0pU~Tj92@*{J2I z6|HIs{9z9vSE+Sl-`Kgg%Yex2`LCH68h>|~u_S}Ck$`GgU9x#us8 zg62nBs(eoeKP$Mr+}#PX&fyb*3l_Tnas7fdux?GMDK2wWf@b_lnKAa=P&5981^AAU zD;w#rq$QMu!;9UW{~N0s-@}2o?ld zY)~0&u|=!gd3mESjGN^jhN?^&47)~8yGO|10sB+UUI?w(V7q1mGgVjEyT<*6Sj5Pv z*|OfaCm(#e*8MW>Ui4q*_KVdFgPLyn?V9dw-E>RWyZgrum!8Bs<088ixKPqH7v^hP zS9*}@*$j2ogdR}B*d!lNG9Sp0Q|5SjLCG9}?bX!NC5{Eqz*w0!JOjoTyKgX@sWPG( zT*`7k5;m%C_%EYs<;;Eg@CTH8h~-%>P^i0m-jMN5g=3 z@WznRS|BJjo+#5KE{qy!r9j;RJ$~{-kBB;qY}dQ)?q*F;$2zJ49qY(QjqD*hgd(+7 zNJdpKcH*j}Z{fX3CBuutI5r@NVr{h+c31u>J>UIM!w8;kp&$|~JOQH34cQ5fe z!@%YmYA(iB!HZvWN0@aWH(rxqnqd@kp&1|$W;(~FX@&Bsb4{7DLE0qbf;$w|w_5Dy zT3|W~$8+<%Mq zj0RhDz2SvAN8N7WXK-pq&%E1Ir|&%7j>bc9`GC7u@mw-d48HcAR@)(uVrVYZHYjLK zyVfSEX%uMJI=B9{=fSckJG6m=pSn9SkFej9;ighqc&CHz+2UnhpMc}XYvJ}5Fr$X) z-{UgwDU1m6dWo-r4!7nQhvg1MmXn*knYIoaR(i`iUCO;>-#q0l`*pGMmhsOUDdwKr z+4qZ3clltRau*aw?&1(9-9<1+<`?e9PKD;I@+HB}X+{L3m!DEYT<6-zu9A4lh%Ci8 z1j0OZN{H_8_(aZMCQa+jsQHk5)ZIlCna?~>_WsEExAB@%^K*F(YYltHoM{1PkGbnO zE0S{2@|dg9OR#;6uVsL+KL!2@XieJKt6=mg@JHB=!GoP%u4XVixFwW@hx%~n{KJ`OkPAmI5wcg0v)$`%`)Y&6soQGYBag~c{pR?bn8VVy$xyMEg z)r{u?Yosr+k!I>LyJuq~8AIX4)9waNLY!b$gkMg(6UE|C8acs?kW%2tgsIiSknNoR zK%&SBN9IB@IGZ@7B%D4rB~dU{)$BA^ol-TIxzr0Y&$(Ac?c-3I3b)#kSW6t%U_BMa zm94(tx`zlx6Dq5?{f)FHSF)hfckb`R_ZqA+dp%bD3jdtPvFbO5K{4*~?OO34=B>9M ztL%dY-^2EcZp$HGMmpx+HX<{U3O4=ctIZVme6^YKk#b%G!EG=h`Db^>IG%z81eb!0L4I#sPbro* zUwX-3wE5Bt`Qi!SxT`X5(2Ee1+6Ma7_>JucL;5f7`B6OMh1Oqp!=6{~Kdt^q(qbW7RCGh zx3q5ne<>KTL>RHGvjAJ$o<;{*8bx8kUv9S!JC;hPHhUVB#aTGlmHL=A4WLp9v zD?C|23}vO7cRMHV@m0qT6jPj--Oa~rmAC&xLWwuRNaguXWMu^dudnAS&%5PrFE%Y=z;GX*jV(m{d9A2h0Z#ItgsnZv|P)bEGB1dlsKpJcaGV=M^daYnF&)Z6~J{ z_<>52%QK>w#8oqjn^HLb2@h0%vR1-W3FkA4G|j-CQP4VwxllJCW%jfV617mRgA`$< zG?|WENaK3$b&ygE)jEiIa{*+%;l3Zr74ZBA%Tw4xYrxKib@H3$LbW8q6{hf7L+Z$D zdP}!LW`bvmXv!)f*QnK`ps|Efbi!_pXQoz}Jr=6N5WP5laK)s%s(J4D%;1G|+Cx@6 z^-X_0)3=b)G~woKDtRok6Y`f^=8YGsk1rY^NBLv|(^rmkcuDlG0+DgNy|ktjeium2 z6n+=VUle{9A~OuXQ9S%Y>nhzwK*b`St_3nm)3+9ozRKMJik=%;GE5jQRn+sLc$aG( z48z$P8VtjC@m5Oi#i8Pme8F8B4*l3F5)xxP1H?yKB8$pl^ho;)+a7Y(8%h3ew%rT9H?rlhBF!iN&d-Tp0I zE4zc!idh$?GIj9aikW%;A{emF?Grs23ia}Ci*D1)2caS4YNy$L5iDEp?%VWkUd*|Z z7ZiXUbso=ebb-`(Pffw=Kz;r}sWGp7M_mQ#^UvtNRca|00>pF)r9S^*&e;S{wBcHU z70Nc7R1nJ;K~i~K@m+K~8>~f=l-{DQ3tIyw6dK#aoWBUJyxu-u%x65v)U9UbtMB>{ z(dIO)TuJO^#k5-B`=x4KLy5_~191o@RP;0;A-iT2YAS`$!L(dL(uYr}VO)gt3Z9DM zhfonTNjZNz8CSIoxgg;}-e9=%myTjW=EB((-MWbk&RIsYR~D&gHhqzbW>2CJ8O>Nr zuxQ4eGuQ?TDVilOMgT>#6#0vyS;}H{l7~ez$xNQ)DGp1kcm}96(_SD8Ff4$(4H4ef zt^yem>Lic+1=+qL7w>5zSvSIe9<k+1N9CR8mCl}Ic=Asxf6nRJo=Pq;Q>zST zQ#_R+x#O55F_%HHc9t;{-b(RQ3&p-qtjLWxy{>0XC}IUT*sI`Ru_-rp@%o+>xv`J+ zEto3y=f+;vz|$c&_V!mc4;SC$#{ROQr?CTj&LftU@RCI2A&gsCEnpSx6JHTOzT4W! zQ%PKR@@)sSxBJ^-wYU33V^3c8b_1Rl>96M$hw*b8RCD=}DQ#qTTjKO; zRax&6dX}ynDsg+uDdoeu>#VzS*FI|Bxp526hopn z%D|MjM#Vs#l3feK&c_N?hNVL$snX1)E$T%qLjBdI^b%Ijr1KtoQ+mM?8hzn#v9U46 zYDjPEnU#laMQq!_xD=h;4xJB}9O-JrNi#u&sZzz@$^eMAa_${=P|UkZz#x0*T7TU(xf$i!z(QTg>tbL@ zS5GmQ%u`66-_B0?33PSjt$y%Y*$ZO9u;);TN(jbnRo*< z{s^e;Xco6Ju*QLi&<%fMYTlHW;chC1?E~A~k#TqFVG5`$@bHUfcGuMGgLdJzU z`y4GKU@*EFfOc!KN7HWYLp+j=r$`nyBqDe9)b9A+p0QCp)~Us<%6&Ye#V<@(G_}2_ z`lE)*=uYGGl)DO2?VzD+av3x2CwQx`r>^*03jh+E?DjV$UshfkkeYULDGa)bVSC+3 zPd`y)nQo=*!Jh7BTq~N{+hCYzAN7Tc-dG{gOM#8=;VA{6m@}dQ!35Y_D4TPH&AhQ{v)V;SLbt*#&P}3LK zV_5;ZMu@g8o{NeTlNkyM7y;H;PfaFe!eG=Qogqm9MkJ(+^SI-}G@LXceYAUiDP$u~ z!cWrn^lsi7$wmJ8+}yMVh4EbIPfKCf^tQ3_Hzf-9{)?==rp?7ZyYyfYJf(KLKujDf z;;n`vtHV9hdQ^zpB&ARq{l5G~Y4rQc)S|#hNkVI~4=h%T0?!ZgJRHVZ&yVnwhW^7n zJ;i6N>e^!uYG^=VIOVP9A)c3U}B8tf@jAmK6nDMYflA*o9IGIqV|&iyU^*>$h{* zjT1bhb2)62oS_pvBMk8#tF?C4jT#!zVCEBfcUDYb@ByAo>>yd2Ms*XrHFw)f7gTIo zLIVRL(>}sF;rdk0o=Kj5hWJ`zfH4Jw>#^6>0@dfQ>jkQ-p-7h;NIoInK#Os|zKjQ5 z%mQyXSV7j65zmQ=990S|k8gD0a=u961u{qy4=kls@|K~cv{!(ov{zs&3$rJCM#9V~ z%55d{?l$w`q2$CIONseIp{2weOC8L!{uq%aW^q(0;RRd50$w21-&r!E7Tydk7vrIP zj@41D4#glTNbivH+H_A}c zN0s%sYKzJDX1J!rQnFNRXemj+Qip`u&*3t6EsiQBRC`l3bQ4|>XlSDv7&AN#MaR%W zDF6$n&+@pNa@AW*s>zgf)I`7G%9KEbCXCtQWNz(H#!X)~xs1tVh2b!WvHvNY-bbFJDbu z49j{iu{J)3f&zV}1v!oLglMZcIS0O6xNPRaYc2C{4UeuTURZaP$y4_5mb^9DTg7rIVw*lh{l`X;%S``LI@MLo0X>rKDG8|^#^!^6)_cY{in7mP51UzR;(cN()91=0%W|L* zhu#}J+Z@oOEbQqA8C~n7aCARrd1^W7vOR8bhS5piaA2Uk1`a^XM$g0I*E^A9ceScI zNH8F)F9gkQE7VCfAGB&?)yX;aw&#Q?O0Lu%OKuUnQn^JeDum;GTrvZvi6&K|AbRd^U%X?PPc<>^AfF?GXo=+1krB-jw$CtuFJn?17( zF@&)?vc=;Q4={iT>4wC4yA^)0gV3p_S^o)KbjRhLSgWi9Wz zgs5k46-$9}QE63KXtl3ic^``I@w9h{38}A*=&0|Y|Fvrd@_R-zdZojApWN%I;}Ydo z=}MCKmRY5|w+t(wmh~O*Y!%52N`V;B$s0NPl}qR`Z5SqbBVt}Y(W#7ZV9Ifsp2_R6 z%098d$n+4@eHH5An~T2fQ;L9{$oZ+T6VgvWr+{;ntU)j$(f(`@OL2s3%_RWpHZIACG!wif+)%Diq%j*57&o%lP1m+_a9{1<~O$;Uk}ilVEv z>yhNYa!IbCB>xd2`H8PR!_AtjRh`e|f3TlO4&_yQH6*?6D=TWV0uufAH@Jw~hCxX* zqK8zvrV?F!b+FQy)ZvS{)=m(`{I+iFr!O8$<46zJE`k5EzOL?;toXZRH75*a3$5HTsvam-zp zJ!3^(h8f^V#&%%J#A{lMF|k}R3{w?y3jFFRWr&VWChcBbdM%RKs-ChH_|G2*C3Q(eivjDL8x8QwrAH@Dvde9!SS2#jE>=raJmqp@w>obX1nWAUg~-fJ^4WFIYYq|_A(^W; zP&MzpMh$X3Agizy2g!eV=HuOOSn2o-kJUzOVT`E_Hm!l#g{%f*6Dy#Kp1*;i^iu|< zif)4EZ+f~putW4{sPuTpsmJ2KJ#&qpNe}S;h| zD8vlID(}FPeoM8B3&Axntx?k?&NW2eMoQoRIrZIVSpUPD8nTL5@o?C*I*X*SU(%nR3*MGX!*pmj016g3T73u8j7bF92>t994l(wBY;7v@t=an zBXPHqV^f}&KD={2NFLC#m$4RnG3ZR|86}0g)oWS2&RMI&9ZV}`@u9Yfs>oAoRl9Lf zAyu|9pX61(SSZ5`T*N&g`*B>}E`s`=VcJlwPpVp4oMrJkFpmhL9)nB*WAou1 zwJY)IcL!BzltUwnLypX#pJtq8OPGjBBMZl*oaR&+tD4AQ=(3q5It?!zU617)N@?)P zvept)tYut?_v&(1Kk+t$k_)Ycf#t1X4r~he7{cp{-3*%o{#uxlXbsMd9hHP%x*f}n zot}h;Ex0Dc8yBqViyv}hFRx&Y&5hlvBA&~*5rS>5C1b}&GC1)rUkSrQ;q}^orQQ;| zcQicU_3lnF56`@#_G%=Er>DhAs*(v<4f7E|CoVZqQ%U10cn)dhyL0$jf;TldYj*9fOj6--PHCYk>n>+BaTLsyYSa2dkZvSl3E)iG7S0Nho)( z)k7R+P?E3@5*k{yb7Mc!&`K5Oa$~17vMM^TaWSegJk!YXi{El%*J*5h;K0_Jpn4+VN%Q0gF&sVvciEFT=C>kn&o`a$~xr0 z)pL#Hx9onDgL93wrdY=$k&RZ_Hd@6BXfbdnnn$h?f4~aRJi`rcollf?>?LAmo59L9 z$enD%x#LjYRh(m7X%xq)wX88m)P0OYsm9S2MkYCMaS^ZzWM%kjh?|VFw51bGE)ah@ zxX=~{lpHtlCm-%Ibhf&SA{(6E>%b-PMY~uf9nh367@iaVm2UCg$o>vGl6-4ep?;$7 zzY^ct7n$H7rhy@GM4=X<9V5=pu)LAX2BdJRWmR#|;yiek(F@9ZaS-ams3|S#v4M4f zp&N8sWGsjD53CL>MD-7}vo=|_&+6uog?d`zaV8{GMQrGrp%nIN=FB^g(Ly+P4ej>J z18%RT*l%{j+KOz(i+q3m1{ELHvjXzY4;g@ZE@ILUz%jLZawwVmNDs>+I5a7+V0V&n zChz1}M0>d>x}XEP1%vQIz0gFL{*|~)Z`_yQ#JB`d8RqpyVk1j8k*t#gjU>0|V-0aY z$vbI(E0z)GQk&X=3#E2g`sk?q#s-Q$fjA94`(a+tnDL@!sGp^pp*}01X6VcS)C`D8 z&A>5rGjJ$XD64-|F~Om<6gre~rMhqoq8m04=SUo?9V;a(SR?(ylV^oIiQdM*-Iud% zTO0Rg4#M#soMP+^ytxv}Ht-ri^2F{hyEbOoAMU)vsAw?C%3^(SJ6b9*7}1wH>$21b zfU6i8)(OAsdnjL|xjc)$n=$ZCxJRuvq*pSu`l3KB@xM^~=)y5Vgy>d3$2HvA5FsM6 zwdW9X`X1o_vSHcV-uOsXNaIE+gv)WG3@f0dD-Nza5=go#Wm83RZ!L~h@#O!qaZ}=} z5lI4n1XDhWceqLJ6HOSD_BbSdm*XRv7iRdFEBNC!SIk`hL{;Ht1i>n}BvsQBBN{rS zkdF*-;#-7zWJXITs_Y+hIADATx{1bFG#;IRsRLU5rx-fr@rZtWg4H&+_KC3O^oV3J zmk|WjC+xrqM{l@1zGZLterC%e4xv<=6;5(ho7J;g_Hv-ge2nGic1zsUo`N4rb##}2 z+TV__pygkG!~=XgqLi7o6H+H(eEEP0!KhOSHczr@iH|u{uEc!+tscez$Fa3xzGm2D zm=Cg5-pJ8I@;I$`#E&?OyOb^#b$W73v)_w(kyu9&JTX@xb=9h^Mg&{=_fGTuP^EC;{!O>+NZOVH8dc4=2Lfh zeDLt9hDXLs z3oWJ7YFJ9A)%?gqegGe~ejE7_r}p?49dTl)>WEX#jda8*9x?1APXCj?vA%Qe(wb`hzwSrPFTAM{ZMnL0v zowwC^UWXOX(9q#+H8gZ$1vJRDf13?*-H;pyIrD!TVcBS_X7Lz_O@_5E>O#Kq+(|+t zV}sK=b?n4=0Ph^ZY3vwQNHRuo8ILF#E^JZz)JYgAD%aq((76VOQqFK;;Dh%H4yCAe zY5@)c8B7%!)f{Mp(ye3%K<65@-d4Frbu^pYo$Egbr+J$hGqU!3wzc151!V1mwzUtl z0+!808){fP7upe_m{*-fZ{@M;4N_IFf7Z>9>RNLV?Q-tim(Z~)QppwV|Bl8>D z4E{cNQ*{Bb{wEUN(OybsDE*Fdy3(wGoZ|Eeqnw%Y4qS=tTtU=hrIeJ^0snlfsrmw` zIkJ%1m2`@v&O<9PTi9p9PzX(Dxe&@!yD`3$sUjv>jbm!7aVS}>>jG<_;81O~F^n}? zjiV9qwuM$12XWAaj5tVHgzF^eK{{Kl^0xY#xRo5k?|L74e3WrC>V(}i}6B$V}h zJ7L}Oj-9Y>V^n0(_nAfaGK%h735To~zT>#%n6Zje@Q4lMxJ4i+p1Uv02n5g#%JGL6C$x9B`>a|_<# z8Mq|m>rk9y9LFcF^77z$?@Ju11e}hDOn~HDW)$30KqL$C9`k&eRuyWEsn#f>uTk0ttr zASfY79uPvQTX-Au)NRANcIw7ZRqB@UE~ReKh+(I0FG`skVCVamH-4Rj@=OhwePyPW zgP($8@JMHR(r2La7(jMZGyOgA%h~pft(Mn;j-ASaGibAs2m zSv_%KOT*PHlhTg&8B`7&cx`l(oz`pzHZB8phJ;;KTjNt0v2NI3q0^1OU;hs zD|LbURE-zmn~2N7GCS3l*?>_DqW4(wq8NiyNUxEjLV7J$Kq0*vB<&640S$9hNPqD?NP($zY=FfOl<2QrW3tiGdfDA zID3^0T#c##OJ~$C4r|iu7s<`x=YQoe{&Q=!gO0K}I-Ps#Ux_FG?piyLoJd2tg~DxJY>xJh?=qa6%7XEktP z3{`ot?#N|The+I{@?wV&xdqmT@uj>NF=-3Tfr*D~>CL;bn{YNJ-@F^o$S?}oU%iZG zI+>4eQeVBi2#3D5s<1w)RiXr(3(|d*L#feQBu$KS*a$N-Pb5==95ff%;FCB>=TLIc zr3Wzu`23{RR;>9~4s%XfOC21jk;k8_nBUl>rhnMaY5Mo~X`E~yVhpL9A5hJEfWc{t zbK3Yvs~F$n17}tRah?@Y>z-wn#DiVI*1b~bp^D6umnw# zF2|%pVkH?Sjhu){&Evof?r?IbY@W>XR;=Ja>QJrZS&kIOnffzFqo)1&Ji0%J>bX_h zI}y{i2B!;lKXadMn&7<3C`5fyr_a~lQ?r-f@qanLdYB2*!`g!q%7!(2el_QPdw%sQ zqoOeVGEDd%PNB{`s)wCyAr$e!6g7r0ns+jsszZk)xawx)UE$3Xas*B$lHdXOTXccd%Dw_6) z9IpdVl5$bbnkHEsK$ENzo3*b}U*;I3qn>2(qTnQ}>c27wnPhP;LDw<9V)oyw?N1Xd zmJg{37E4S6vmBgf&;+ZGREH*5edRBjVD;Th6D+~*V1PNl<9D1d;9khg?2&Eas6-`7 zL57oYT_3M9GbZQw|FG^eT$2$wTV7-~R5Bif{{$~GlMr^1nJi1AYe=L3`O2XA0xl)W zo6P=$`?`v>;y0YoVb1gN(h9l}<70Un0NpgOUVd0g->24;3!1cyn;{eW*WQIIH9XT? zSZ8Q{{@ElL*9~vDSn!v1Pt-iAIGN#<%@7l9wWYVDG8h!gWv84uD9>}sSC5>J%RKKd z1TWvPiW`&Q%^TJMykcqmP27oJt0lp*n^yOzjT*2SuYa^Wcvj2%H|~>!U{;1A(Y5MC zeH4oBLOe)+IAL%UBiJmTxAerWkjOkiU%6Q>05z)iP-nv~h)}&Ki~-V+8e*o`tpz!^ ztUmw$xAMH2y`Wr1s<(Dw2X9!m@}WK%zj@>FGQk+bTPCD5`j5vZ8YjVthX7gldOZNEYF##_YdOsiSS zp^qJbrKKR{`hBG#F2dWs#4F6o$d-ci3K$>ZZR0{r``SNgAK6>#R+XYF;XlFNA|b4| z$g(sNdr>kzw^_R9NLV@`tr5Ia!0R^LU=;MWF*|LMsTY3EJiSGE*U!lQ$bfPwE>s4} zx7%iW@ukgU^Fz5p-WDQFawS(D3RlW`tG{~YMp^Ra5xPMBB5xjd_uf2Sc#FgHlkOi1 zlYgI546uUSAwO#h3y+g!er$LsyIH3x})6 zR!(?cLiv=QD+2U%*}N_Gjc>1oa!7yEs%&O%QP<*!iJvZe7^|g8-lXP5ih_B+TyC z({_bo#l6G+|3ihNwRJtp8K>87ruTPR8b-PE-M8OnE+wi3{OS7{SU!*`WRI$K-C31qLX z>PpPPuaUcy_AZLzXzISMI%T}uMXFQ1Y7pHbp_$cBL#3kBd+*{hdhVWN+R{)y-aAB$ z(_&YkVN!SHRF-+t-iM<(iW zb#GkG{z~441~ji4XbZfU3L|FxjiBoGH5H+R@KP1;#=?=?bcJww@o@1(NUMsSs+fkW z8l~Pl2P4iJ6JPeK<{jihI*3Vj6^B*TybD|v@UOECMQJl~8?6mSakkW#nLhR|FViOn zD-vxKZlYyk?;>4l*Yv(4+Gx1a1?NVkA@Q-|`AW9KBKwKa!Ic8f2STZn&-bbvHBv$;pTKSv zT+7TESjSt~5YL5@EFBe9*?ejn?QcdsrAsj?FUF@ni>7!R8LvTy6mLDTP?t(mRD)Jm z#8UvTXwsemt(*H^=XYZ za7pEHD3}cF5FGOdHfr=&k@tucr##B-An_zVv?>Yl>)|K|A$bFRtloaR`dGb#lYu>) zx4oUl{_Sc_?IL71^HyQaqSc)+r%M?ZN`(m}3KoaMFBd8Vm704i8Ka<6b8mI=K!`xH z(1_c~o1`p+{x`gZw^mqr%)ZFT{3T2Aw3QV;gU8Q+({?SPhmoD^LKw zZs)C6Vz({|4D)F>pkjOP(}EQN)}@E|M&qh5C#w;~(6#_|h^OxJ_H}}BjB5r?Ch|-%vU|9)eA<$m;x_5`Y?$y*uRgFBU(T>~nwe~x7U!#Mu^>(O(v2~nm zs>8HqPgXW-?NF+g-Jur1l&bau*u+p0(sx`ged}7@9pd>=WI36LdRjy6Mv*5BoZw*W zHW%!GjwzUYFVa*xyv)B{l~<}N+rc|Q$Cfgxy&O7FlyN|$_{^L47lQSEoQCg!{eEwf z*cDELZMW0lKv09zUA>i9PsptSl<(#p;;cVCKh`RvKtplXDOHBKa3);(jfi%#pg=#( zZp(41EsbH|yWiVK6x+(sc!|U4h@a__cp~y5WB5|J|OYT%~tnM4T0q5QRT<0!ZEQ-d^5*PB5t*w^O-bzMVlAlxu)d zjywW8Zd;%yT6ki~s(@EqR*Xn%fYJx8=wB@kf7pwHgXJ$;6da7Tkgv5+*QSeEM^NZW z#0L(Zh0}e!1LCO2&RPS^AH@++K5+2pmcU8}{(>XkwC`I!AbF3J|J0HLW_A2$lKs>{ zwKQ4y0u{`d6nyc3kZJz&EHaS`h4}7s@&Iq!yPPGquD~Z%v_#lb#x2V5rCw+#2X@B9=(yslxbl-bk-{N`9dR%3n0)O3U-CJh=QfZHl)j6dB|_WQ7y( zQl16K>2g=Rnai6WRu&miJO>7Q`S%ZGbq;AGPmti8+N(S@hhl& zP++*Xn>ZGRMvnd%`wtKIjuk)Lrd;yQUhXRepN{a}D{h2f8QXGFM|$xB3oiKx_$ol1 zDfqE+;a$36k{0?b6xJcl+uebEcAnRhkhWDa=2I_bUGP8Ri&OXfSKWn9`{(1;A{k@Z z;*fssF=6adYd&?(_Rr&*4>drM!b~=HMfs#b*v8&`SB*UZmQKS-2|Y=lf2?<=%VlBZ z=t+8O7d;J-Ghm{(tbq@tKK`J$xpc}pMlW{P4T=#EAHPwy+7neENv3WROCq93THL|NQ)IkTsGix|eeu;?jo zBhi$}CX4MXWYjSmeV{$jY>$7)r{L$HM^9Kra78ol5h0XJuO zw?w>xa&aNW*IdkH8ffFCbK@;$#-j(We|oq#8n3c11)9F(Epu1Kn+b6S(FpXHq(K4N6lscCrGF$;&6Pgs%c+2%(dsAFTC=B~T;F55q!Q7ng=gWI>zhvb|Q=$!bj?TOepnDvUc`CXay8oczXx3Rd! zge$X_{V>F=zu9KRJ@L8TouZB`w=);A=;4VzOEh9oGG?6*VZ#Bu7$O9HxabsuY1Dx$ zncjE@A`QnImZ5%q88!{ab>I{5Cg#ST^}4sC7!!hRq84-#kZW<*O_eqCN%@m z`sE%~BB9p;Z&N6|z`Mj)4C@zoYlx*xC*8aYu|??%e;ftPHL7_j_GEvPS`yAI^tQOG z)}05Z7vUf^kI7c8yH!GXr^&D@^9ou@zJ=3dzpp=Bor@{kVMa_1y={rNtN4mRsi6_=)(Wz%Z!W8zsxhD}=? zQp@B0=F?%$8n4@&@{!tC$$G6{Kd~q*=KLV0+9lCQftsN_T$C?R*WM+;iAfQddD9yi zF#&NQHKSU2!L$Tyy9#E{kJQdc>I7e{QW8&Xg6x;SE5O%J#luQ03hp!2^$C9OCGxmIdRE56)xa@|b;=`co|nXX3&2 z`fC~tbF#fw)Nc}?Rt!F(rTU!cjkuvAitX0*^1qGaSCQT71EeCXz<0vyHLL7aXO63} z0`!YvMkUC82gB828HDO0wOoqd4=LMlDfF_GN`b<@G#k0oc{$EK=^JlN!2vNjm@ie^ z(f|G^2Hgp?piEaE`osy7;CLg{WyqZ}K)14>4ld zv<_l_6JJ#a0NYsIXlw{+Bm2N}!QDAW-uF&4#C*n#Y@cDN`ltTslSi;ZDS4@S;1t zFF819!@c4#oL;6i@=<|4ruf@OY60pB{x6qn|We>e$8kM4Hah*zTXVF8ZeUX43 zGVQO+WiTCP^ww<65qs3CujCrD_K9Z39<`lv8>UkOOs9u3ox+&Dl$$9nd!#^}kG-8; zZv>bu4`s59G1(Bp#6&9j+Nofw$pDM%(ehKc+Kd+>FY(mqI$r*ge+IrYPk^&P>?5-o3uQlVW6s}8J2b`&`DbI8_5$v^KZ}-?gJc$yLxbdc31F_? z0HU9H{Cnd7wEodsNqoxC(VA+6G(To0bsgJh50TjU)eyNGZHP~ONA1?ce2Bb+1T;im z(d9Hmnm;qX<_*nj&FW7Oc5_&X-V&uS5D+89P~+A~-u`K58uKfIH~0!AiBw~RAoYRQIj8?QpjHSa|6 zb_jx+SK`H7K^(k;rBJ7);y@@OJ+Ori&k%?HiD^cQzwj&>ZJgO->FJNvr^P2&0bSOD z1$40QRw!$Fj_Ne{Z;+n&UsK3B99^B9&@r{if8qx;t|n{#d|d6Q!D?J>F98&6 z&=rE?YQ{<5S}}y-QluZaU!5Bps0-{Ug6GEKp@ZowYd*4H9zduF&zruY;xUb=!pWrl zEb>2%>}2Gxy&uNa#qGuQE?;bHYe_=pv(N6KP>M0Rh0?*XN)f&UV*#{@@Kq3tLdDJJ z;#MkgMs4Vo&sRCDAR1?wAfR!E11RpB`F(u_hw8ZBZ@-HByX z8S)EdNbv0B+GQPmqZgS8WgDh+Z46&nqXc1+Q9k~p$BL`5T#{p=^ z>Tu>GQB}OeRG|EWqmey^#`=0Xs-P3LMRy{e&=q&ZmlpR$JBVq4P6%!>0&1HZp>0#>6O|BPoK;^UUXvId#Z^Wb9QuvRik!YgJbge- zZBaQo1>=Z>+m?0r!i{*J9CVW6eO5VM8qityCzxLG?O2HEgZ;h3CytImS5U`mO#5UT zV+UvZ_~LS&OYp7DXWst_9_i`O1a=mSu9cvPN~rG2h%ief1rjTwO)0f%auc#oBO zP-Zet{-Vre989Q$`%f$}Q4{aT%D%V4Bqz5j`#umeSbeYw?BwJb4GjpMx&AJblP9iU zECW}o`W_dcx$C^7L>QTAnQ*0=?=`WW5y*^$5)O0qCu+XE{1Y|bwrcnu61&5q?sA~| z#K}-B$}NsNuu4GHwfLQS|JvjwTI`ii)OQE2PaU3Mzd(znl%K@pD!oyst$~_uYTv~~ zjcG+aY?VI=pPS4_l~r!Ss8nt;71;%I6N#sCla^8i`KQWFre3>P4IUb8#KdPx6rP(* zmjIocEEDaS_94OD!-`}uGunf{F1|X%Nic?3Q1oJQ9v24sg7lTr4i(#Iu{@C(t-&gh z86^P}axy>Bi41&M-?v>n&yZ>Gc=}T{cs$JtXz*C@sTw>Mu>uNE^I<|8+yvJ%mX*i? z2M?nqOmF0?6+284@Vo^@(AdF6(AdENGWq84roIb?xXGAZS?lxS)h_gq5CfChq7N#w6+5W?Nt(?p za*!o_@ds~XvM3b?uiGZO&e)U5IDpa?4xqH92@_1#;uvVHxSX$A`C1x+gLU1157u4Y zj*#;I*H6yV~1_y^%dR3};WZ=KyjT z4$uy>h)E|Ca5Qq5><+$B4((aKz=$bd$VGgiBd$PkC=oA-5|zZRepe(gV;B>jiQ3q=5YL9CL6yoX_RbSkpR~7?PR0qAv@WKITYfQg%2^O zEPF^L8W=RyqDG-Z>bQ44MuzsZ??E;XsTAl6s*Q^bwpR9W?~aUwRBJB*Ottzs**+gW zr{13-5^uWdpf`hJf>%v&0D0PkL#m%W$S}#%#_=jmQB|@-Q@jpMc9O!`mfPa1-EY)u|B>&;*wJ-l>lnnmR2#0@yWpi@K8SE zZ^%ydjY!a#_N_7u)6V+XXdFns(lS4x^{BYRs1#*=CFL*5`br+owH^gYgMHtJ$@qLj zd}lsipWK%#>0IZ#r=#7 z+rB!CZ+A~EJZwTcES|$`hhHfoITIq_pCDhart z1c>XQr6lEolw!YMpZ|z%YqBDVLi&IxN<+gpM))+eHOf?JD5FwoXjN1zkcLJ}Je7vl zmpZhDg%f-=;#){4&pfNMD$q{T(z)JlFl-{4sR`4a0t1~(Yr~*2CYVi*sB>u{=)*<# zFqm=)$-$Vy6&*|)&d_DJGMYe(NxsC~*mP9s(GYB@1|3!6YG5$3n%r$CYV-)Mpf%Fs za_}U2ZG7roL*%LaDzM>EUn?=6L8Wz!Ine1b-xdcpYUL@HmM$@=CG49zm*;B5>0hB9ofM4#wMSq6X&QK4S%Bxr5wt-#9H-TwBim zWEJ_soaO!EqnH4D{X2E^phA%TbiWG5Z{VMeCy@RK74<6@^?#qMoD(A?9Db%>HRj+! zS!&fgmnizqZo|rc@vc&zN5H|A{mP3npKFh%YQ=rd9HJ7FmHu463Sni@r?|3y`cvFn z&-JV1YKAf%Tivg!Xb~!-3764P$uR1}=~sNU!dq_ojDBTZTEs);3qjGf{gPa%DB{eF zewD=FP!R*Th|#PXo^}1IGRF>>OgT2Qm|DK)0PWZuN{;;^6HkuKG03qwAmG@&#KJq# zk-V!v`ML{EjAKtn@fM?_ESX~vU5Q_O?L+CRz)Qd2PRGtW5o32Q1*_)!VjaY!ajVBW z){JDdxhhJ6XT63a3Ri~)OS*INJ4T#KYZP1>eD94Y7KV7dQA_-BCt{M^;0mr?=aNhV zZ^19Lm*QH1+=R* z@patQ8V2dFV_T01l{F+()`Xy}6>s<|hm&>k4PQmUs-?c?tNkV(8hoCym+oMq6)0QE zg&wio*HFw4gHC7KszcUtUstgnChzI|ApM99O22!)} zoEafeITEs`REV=DBX9tvLL5M;P)8=1s?IUUZj=gfs7{6Y{5x@$&n-AHg`neEzBXd? zorq~~YxcQ8(GFs5beA-beU5h@=2XG$soh7^+RQryY;9)a|8m7>36n;t>_Q1(sjR(X zwE0VW#b_%dpcdK0T4axE5tkgi>5j~IWTE{KK^CJ#ld44{V?AjcIDILMFV)I~($8Ky zy2>a?$;-KvjM?PdB?=zZ{zVd!hc^(B3`i?S5ez`i7JpPZTRB!h$wHZq$dJn!69W8oulAtS@#!=-l zmvxKKaacAdQpbhp!+ADm4J?)5+6Ar8WJm>QeI`@>qV<_fv@CutpL<*G%ue4^VHRmt z@AADTHn5st``C*#Yc(_=c_!TDBF&SBe37tb6`qRC_z=f|?OFs|t_dSJZ5!50F4v@e zmdQHSJhm#}M2SqL8Sdb~LUWC^z{OZL{ zl&w}T7?oPRSaFoCUPwH(dXXYk*a;tg?5i2SO+xwV#VS@6TD`!JtrmzzOlyjD^qo~p z29+JcXasK^!1aY(*z}o|KLp!sbW9D$99=J73}NWBc+m)+`xHOc%Y{uj)T9t>$($B1 zI6C$Y3kED~m&ZN4et?b@E$TB-@)P=;4TpTQ4KbU6W%PP=>9xp&SrW*XBp5MYl6ajF zQ;1w50Tjp4CuvEd)uu6Rb8dX*`xb8nVAwPezkf^(#P72Lij7B(so3~AE1=kT=opKQ zC$S+cUjy_)T9eR9+lNJvJq^U1Jq^ShKyER9SVR+XjR~VT$9F2%;9QTcL5R=cesxhI0D9eZ`lg>q)cr~isZHQ~%iP-oXBLe59Ck`#| zL`NFqW%b=1#5zpBhdo~&LVo+0eF%9d<3??p`ju+iR8~N3`{-AyZ69X^G^9TabAGUs zEaMrtat4>1QgSt|y|O4bIVs4NaXmlx*Ls?7;leN-Ebf-p+}>;EOZG{}?+m z{zcpP7g+%r|CVih11-=?G`%CS{5*~(_M8|^-cfiM9a)=WkhN)I&!I?XPwWTYk@%7?)uF8J zUK8#_ht{&^+lJT#^{&u)+ydDnh$th=h@;Z+99Dqq{3f%iAejyTjLU#>vQI1Bo|KU$xoP(Is z<>bF`JHGP25`X!Z?*RufxeN^hjTkZcX)eh$3~;C>?sO+&8U}LF(fU!}JJC^fX&B(d zdKfr*T)D;W<1~N5k1Min;bf9!3p!aZ!BVt9%AB?>Bh~MVn=N&qT>WMFi*ogsPlU~`|lH>Saf zO1uQ})Sru2w}Jn40`G;I)x4^>8Onfe1HXPk-3&E;O1r$=42AlQF3g46mqIx}ww?Fq z+0JmbmLGubgDO$jzsFT5BPDRnxbbSGg|4Kp)%8$D5}b+gUxpSFs+5LX{kulO&0_u; z5goq9>D9I_{uZJW{tEcTky!r_JSDg+!EYa&i|*GV#_aaBy6F4e;{N%0xEcc$U4qN7 z<>UNSL~ACjb%Nh2He3RDYqgNl+n7ziR(E1lDCr+B9%oe2b%AbBzE!?jUOFAA^GHyN zyn@1L4B6H3(q7+3Z6b3Pm-a^*#xhu4#@|r9!6cJ$mV_E-{nvCq3|@78sH}ffUd^)r z3MKe!iv>&^nP*3+dFCm_Gi>w3mh*2EpEIie#yp3EQn-1@dxj?Yhrpk``c;8GN&e@I zzu;_=zp1#%R3JND54BVNZ`37EL(wnK{u*Br4i?zd6jCet^KwNIwc&5jrINpb_>GAs zo0a+|#HFsN+WcbMtaD}m_ffSZl8S~WfNrB4SOq&neGLu-$;vLo&HV9XVi=m}%%YXV zePL)KB!6hNzg3E0k^uGdz+rFYyo425XS4b@>i!$7i)xu1blf3^@d%Wt>2D?;W2(qz zFejnaz%y$1X9XG}U7=pZ-HH_S(~Z=jEE{_N*_ zp=kZQ`{;gUto=+Z8S57b;Ktf(SK=dOEU230e-K7B^gk%flR-~agWTN)Kl7HB#SNBq zu2N*q_l^C945K>ydau8}sL4c=wW^+E?$iMPz-!ykoldv$H-dqi{CH`)_#Q7e_Lhx= z0%m6Ui$K8^{*|IH zWAfklTQ4QlOu+xy;BmS8q)6D(%6}{3DHI7WAMvM%XP9s@;52T)+1!95^4cFKL&!-PV+ZAr)W7 zFv`gYn*doS%hWW=sK}o>rdQdLVN#wnl%Otbx~HRmt6&(Aw94NsC#93WC>~>H%Aw)x zMfK|%8q8Gh;#y6NsMF!eF8(P(oYH+viIcZBg%Ot)c}gv%FLe9=5J`*-P1xN`IHeZ6 zOP>NddYBp+(O29Xf+a6U@uGWoaKi1cQW~66U!~m7N{wCq2TUxWqkza;z8wtPeEy!W z#*fJg<@4Q*G{tr@Bcyhv4`$L%!Sp>Hn~N7&DY3-@2ipqW{F9(|cg=PQv4sOckgezv zo8yj9j#%K}xcq+qF!2?`lBP0nrx=X@&3XnT*=)bC>;D@gAVsktz?L=>!naNYwC-BY zzT@glFMl~#;ZqSXU}TF#!SLlcT*170lC}{tE1Qu}=P`e^cto|g5-Oa=U-Hku9UPV5 z%BR;V!o#J9#KuQTG~Tg(*KP?(ef&#BHA&8#w>bk) zgVUAeO(c}oSkPs0rG1sz>$G|opbx{BLCNR=y9QwIrAGxRQ5brfo&qo{oQBjl{q>Bl z5}~887$FIg*Qpy_6g7Rx*W|RC=QmQY3Z86qe_d!W#D79;Vs+O6 z=^YIX)MDm;BDmc!>@#~ccOaQ(t_)~eLIVRL)Apcspnk+L}7aTato0$p-n0I?0AJ)JaOPP7)-`%4s>#U(Cog z-om^G{cFWOE#LOE!w)p|XkdWN%y;gpR}F-Lll-&9G0j*>%UaZ|X>kn!`RSPId7N5O(^P`;Px|wV1SS$km~xOlG+!-PYMAv!Z&pP9Ok+(C38k^-=ovZI zG=Pp%{Xe=M!m807aSt;p3}p5VI1|t6$%Jbf;?gB?Xm51`&e*f+2Ar{)7?*tIC2_va z`P;bWAzsYEvQ@-ux?FlweY`l@NHH@RbMwu!>S$jXsPnYHi;0}+f(i%c=^uCR;@XN# zTlXxSB({fTx|uWGr)kwsm|Q{DB(n8ToF{oO?xV@al?$4Ew;RV(B@ z&eF(fcEkUJ8z+B;l909kkWgmr`Z+H??=S2!%EG)C{dGjbxuEkYdz>jgwXSha+uE#p zE?|x=FZt^h>niz?SKAkOlz>|=`I|?T(2VRQlAZY<$PeRY;yPY)T^4j@qXb-<>7OPT zo%Bj8HkW{yb82_E$T`R^Y?Xl8b6OUHX0!eCT>a1C>QK9wGLSlHU=5sE#=nfhhBINh zg$MI0jSp6-VY+2QEgK(d(?~6XR+pPWbblkCS>T*%{y%i{({U!=1$ENI!VQaaG#(s~{AoP+ zME;`j;1jfvJkG?%gB(nn%7hsOx@P)MiSt@V6_=;2F4V+2tDym*GvB?-VZc2P^NQaz zV_O_fx=Mr*mv$9W=ld^;$Zxf0V-M6!;>G$(>MG$yBG-A9F-w!8HWBe#+xP=PceWF_){g6LeSN7 zYI3pYTQ#{@!tk-L4lx&e%OcO}Z`B)PBVgd0{`w~16ZNi+9mK1QNQcIBWGU}1nTqWp zKir*+oJx0S?a)#84Q8x>o2FeoC;LW;bCNyvjc?^I>Ko`WD=@UMuA$}=X)FEfc#^ad z7bS2xf+>i#3M@xxXh7u5jd$5I2GsSJfu3vpV}$q)b+yxOC6m@9a?4DM{7$9+!`AxW z7DG7oy z)%N(|@|XNmU3HOO@cSg#zri09A1MpC`~S|kO81v*qTh?r5>3xWZ13OEy=xx#f(8Pa zyzEAQ5iyGKChwol0735;PfDnoTEotd{aLPsXo#it@CBR244+1-#LxQFmA2*EX{)}2 zE1$U=m`H>#1J*M#C4zk#`4z?>*c0%zI>{n%8adK@@;f!nenPRnTybKILwDUPm<=*d#8Me3*;Z|#88{F)8A5zW@t2( zMS7YblMZok7#ID-vkXZpYfiU?yy`5lg-n-18j5ACkXR!X&5}zYwVWk~H&U(+9(CUC z;0#}N@L$n~`7AjGQSA&F+8fACKIoAwJeW5P9i{08GorZM?FZF1!C zUK;Hzd-wSZi_aKu>eW9o012bC`l5tVuSR#-^|610E8hjXTNk*1MLHDQQw-MyHnPQB zpq$!;wO76Rmh>3ASKkN~NDF7zB}N?{9dh+I)779Kr< z%Zd+b?m7>Q3nMdaBGyQ*b0v(D*5uy{q4lEP^?87 zi~2)&VY&LlBy`VTp zYLhwoqUs1(ZFM`#KNnPz_gAPun*UzAppv``*dj8?`xcv6CV5<6-2<4p0*;7IK|P?8 z)QoySXZeeIK6;4*_eBX;6M;EWjlQfI`vN!C96 zCwN9oLf9EGS(Zk7S{IRq-a5RPdCs4grw;!gYi}MOWsy7%`#h5XNhcwJWCFPpNVs!x z%9#Li6Owsm9_}L?0s$eQcmN70iY}-il3GyYP!t3ObTzJ^fcGtUvx9wTzI?J?vJPjsD;dkwUe@uEy3Qu=b2%tBF4 z>j$}Fp!LTY89ZH(|D2Wl9VNu3bO*&bF4KJNA3NceDyI}+aQ z^Q7SriQIvTCD+!U)%p%8LJ$ zL}_A!&9Ll6QSvhqz$YT74X2t7ii2&hXJk2ELB(I-$jTIz48x3;?jr4FSXSTYpe|Nl zv$cJ7qEE>nY(7#F70Ibvr^Wn0mWWPvwA^LB)hb>}$!|~QDki8V`G7LLa(q3F<^4{0eT~se!a==IIFEs#bPddW&^M}=Gv4c+x4TYn< zT_D;rhG)24MUZ{5q}pRdjOEK7cbBB(uD^Z;Ny>Kuiwm2E!|}5vpJ^jt=ed$*VicoH zq8b(`s!38*tsSYqp;3K(c08OoUs6ybnVIm-pLhhoWRyu}vjb&jP#?77%54`)GV$9U z*5L0E(qbi~;@|v*wC(BaaCq%f$$9M+*m@b0l$DG!3F+lPA?+a{>8ZcLwxU|YxMQ|Z5 zbp)Gvb%efkrLz(^$LOrYe(5Z&vl3s+-}nLqo|T9TGU3aIZ z719%q$fK%-DIW!L;)hK=O6mu)EJ_X16)4qt%9uP6>bjsix+9ZhOu8RY?~#rUbERn7 zB)BKsb)zU_oXY{%Z$6@;XK6h2+wc!ON+d^nZ(>OnM4u~(gy>C1BK+9c9SuwCxvDwt zi?p%uVT3D3jAiuYkk@}e0=PXHeMB9t8*xP0lJDCZ6=D@@hBKr(PmQ9S7U^IkC(Rg& zM5OiDwmBpehDEz}=qt1pgS1q9p*1_kl_lP0bV*#hxVS!5;tD|vV!cT?vYx9tZxTx0 z@az5&^<8bn4n~qB^i!aOUb8y!iY1|Gv99sr3~N>s37xc&`%4HC!bv z!cmMX3&yn-Nk{FuKq6{zlxb8J{$XhpzQdXYV}5jJ!O{kkYott$SR`Kem$^9tfB5_% z39EwyaCM3~s?;g!s4^jQ+qsi8F@UwJiM0CK*!`rHo#OgJyA`xlS4%OA(INrO-~yVb z1f-=xa++&I_1w=Q$1Nz3yn~|?1^)0C$g)6zlvylKR05Gt!G%Fsnr9#kSeP4Gk>(jE zHZUYLk(8M&J2lG_r~7&T7gCk7qs7 z)RiILW28uBjs{BTZHw*QmV_Q|=6YRRWzD41soybhT3)i7d3$Sn9W=)Do?^Ena-C(p zr`QSS8os9()a7)987*C>1alUU_pGZkY-;8DCbHKt-za0~SU99^fhe*;GPG_6d$-nV zq4zolC6Pw|qV9I7^iZ@?SYM+kb~5DTx)#8rd9HALA939zV|;uNB4uNbp_%y0NP?Zm zT@7K^B_kBd^IUjr*=9&K#sr7Vst3oQk`1}}u2;k&)~vLv$F1LYOywEo9aDLR{{PG$ z2#ebgQ&i!JV=5c?0&6MdQ?adAOYN9CBeNr*4Cu~3Y)Q#Fg}PXL6LsAf=;MSpJGuJ8>drnH;<+=zJwC8CG4HZ)&kQVGdls+nwo%ib z->d8M`-#P@Ch@*V;a|z%#QV0qwk;6@$|er>cAl6fo(rr&{4WY1QfouL34;o4{&y07 zIHo|hSaw>h{}2={mU_h^lT+7G&Wbk1a>uQx<<}yU(*#psD1FhDp?AT7zj9M2NNa0k zCSx@#85MpUf5|_sgN^tb_AKa8KMCiHzyIpSG^X%(cP_k;(y%@p>*>lBbtMujC!p1K zXF&8liJ>s6d&Amrd{cg7ts&fXldF+PWYr1}8xyp6Sm5DnMm_U5<%$GxwYts?$QrEb z<;t#}rJW4j`n#gEx-g@+t9x>LNu4|72%8;@#N`U#UM+UD%K#k@t`>#6nyW>{MMPC< zIjeJ)JPJ zCh&((W2Nt{_qqgd?N}~(>8>w5u7dwH+h;x_K4YzF5RTwGU=p{sR4OJuCH5{REFMNW z82?umn=Ypoat;Z>XV1D?i9Z=hlF^w!8EGe~%4pdT*OcnY=nt=q@Q1&Q>YoUZ(eFw| zM=Ti?yf$--Xd)|FwxA|5Y78@`qHWmLrhbfutD8VU!O7CB@XC=RU2U|GA|weTD_!kH zF(XdW8X&QB0$NiJQ-Z3`jEgjBPobHCLlb{D;Nb@Nt;&%huKLv#U7r({df^YB5J-l~4ox2N3osLC{qoaoxFJHAIg$<};-!nQSV=M;<{T1|1i;L!dE zfzsVZrf~dWj|=I?HCsQlNH}$?tF@o4$+^wd4c=(@TOHVzfdBNrrCPdy?1JMG@|Zoh zP8uATkmVHkm%oCfO3wHIUtj}#&Qg%5X%iyxWi;2XqBZLX`KN2sld9vNBx`!^A8KWa zWN5u`8p-)Gna;!c_2JE#u68hIrt2|n7)0IbY9dB3`cjbkkU#9Twsvz+Nsg_?w37U3 zZWuNT*Gq0jlh#Xj2Fk2Nbwn$Iyt`dFF!XlUJ7NiIRbxp#WJ#(B|Cc#mucUT*%y78x zcz!&5a-yUKl+STRLit^;Cmk=N<_$WL-%Py1*dT#z=K|YB0*eb`nU)knOrzi0uNY*6 zSESZV1@R8M(zz(d7Z@uf$9;iveBP4dbCoDZp^0BviyF)DXG@091<3HHe{~6mg88mr zLn2P1Js%Tg;49$x%j--?YT+ksHPaj5ADGhdo3Z`wbxo+Io;hlr#L(!^{1kydd}K*N z%_V@(PRB_#Wo|gBO!x5^V?;z(yV+sb_a+`pzPixWRP?gJkaxeUNbib`cJ)jUtUe%_ zfpGHnr0S$KX%cs`Ir3A@K}Uv%!&D_P#u15i78mP%LBvXiaC)2( z27?-*lPtKJ9}c^|%&4x((PqG&f4Gvw48{lvdW8gVK~J-~HN_J2)oc0V#U|FQ#`^fI zO~Fra(c3W3xcm`UZmQE2s2rLDh4%#`PQv?)3-1RdyeR*v45^*))O>E)?^!T> zsjE64xRW9LNJ;G@#sNv~M4;5(xBB#sCAEZFt;>ae%GPQbRMh`6FetfZH}i_ZP8^|c zrR|FEq+_z8iLaECqV0+xKECYB%6*T!@FNperjkd^D_jqXevBbs>ZPcc4fSP+YOpJT zg1ZZT1K0hc)JCk58Zv93jf5GiTu$gVA~Z`(XEi7vFcM;(a1GFho`S+veVrBeckU?` zu{yp5ymp_&QXp2aLPBsKA&}41KY?MWeALt#q<>{YPC@AzOvb&Nd0PvJeA1OKUS^nx z3}w-_o`Srd{hg5eaII9BvYHYLvb5q;OtE3%o_RgmiqC^J)waUNt6iPNR#u34fg#sp zXW5b-NqXTal{3gqFj6pzyzrDOPd|PNw7n>>!Zogj`UxZ{lLbR0Rz7WeFfx=Zp!L%^ z2BmrX+FI9`$kR3ybBMdO=vcUMovTEzbsF}Z?VCXVx9XP=QtLF@uVr15lE3G#`nftjG3z@z_u=>6(0%h4ZBh_6~8?gEkvo3q`q&-JUf1)YGtZ zQ=d-a9#$&#T^7hx6>jor&%1`h<>!4W3UanN9y^VnbF@$GDxL{!`Iu^{PdZH}661n& zt85}fZ*k2PZ?U%a+;|g*!aFy_-he7JL9hl*kRJmIDMMZBO@z)G3+b=Syiv&CUfrTu z5|o?Ma(t8YV&qt6*5oXyO_{a)NYEk-OckOS>!`a(FP~P^=CQ4=MEwdfBB#wnNrq1w z7o$tl2A9+(v^Q=WCPL2GEYaMF-|iY4so7BP+*!5VW$1Bd)ZCH(%efPW^co*EyX z+(W6iAGg*Fs&_`sAl7xS8kbEZ30pI$ND`(QG)VrU88qn3^=8oiS6m+i&Y;fl+pDfE zViN1TJ&nfOP%r%@Z&rJWT3PZMYQC6fBW1H^&KWg(9%iL9d$52Ky?31P`5RcXgH54# z%$E8YYX-d>*m|Aan$pBUdQ^5h){%~8?@rfb`1}nUHMy5haV&gO=qHBX=VP!2O`+of zg*1ige2P#!LKY1rb8c%>vC9=HB!o|-xS&kIp?6)$`sg$EJVI}Cb(gD)CMx#2;=$PM z%G4vys!4OZM9C*jDWgG?#+yeO3^(q<4e9!4Z60XmoZsV`8X0Xvy));&w_GE&#&GB@ zoT8198crPiv*FvW;i9Eon@0IO?Xa?(EJD_@Cd;&UTtn)oO8}oNS!b2AsZx-E z_$+4w)82K}j`QQsnk(sW=u@1f^Y_<|iDSL?>TB8UQjjIik&-ISlu_~*&6H7yKe(?s z_?~NB5ev|~*p_Urw)O)#5z3n+^mDg?Ss%FOi#sJRR$|becDLEkzn5_1k6cfRM{Vpt zGi>o$wM)0?to`xJbAgqfwk!FKP=aEc60 zLR9{k3vBA=k6(!jXtvHG`g!C_6 zcZ*EcWZevRQACCW&{^VgoG|jMU^+`&aLzhQ+?_R$`$KwHeAQE4Rz>OC0q1CMDDslz zSWPnA>{{?ebW@J9hWl9~XpD*>{lpvuly~gEb%na16)4 zd++}G;dAPyfS_$rA-&Tw6T+jC;{>awwo_j^XFDsWJuTzT_V8_kpaUQ&%m?kE%V%oSJ4|zwu+bS~=2R?5S znJg>$=B4&wVhe4ItfoGBk)-GjXijR`F%(erds?grfDZ5jl>X%^(t1l=?31^4C|~(~ zKx_P8z7VpR@klb*C;@&l*m2x-IOIJ9vvbTJux8Y?cUafHP+b$OYq0kZ*C-8ddG&V8 zxzonr)$=lx`huf3^~U#b{F&b9$Fy}D@--U)5a*XAz>o8i)2=&0oPQ$c3l13d;iuEC zx}pL8=~Wi8ma%^_Ynkz<+DYfE|9-}m!BoonT0NTKX?_-uKyiQ+y&n0evYnT0?n^v_ zhKhl#rDR<6lK{ndW%PL$e#SL{RUwTVOHAg$-dAf0C}=%6H-Dn6a^S}sZg{Zl3Ay9X zIL7U{S!J2{F+tfKvV@k%qyEI}ARdlM7Wl*0{{c+iu{&7o=qY) zV%+9G#c)fTf88dZ&KjOrIp&gUg{E)8o_S4wTu>4)@`|gklTCde_3zHfrDP+$Y&IOa z;%e%gE$Nf>e_Q?{>;E?5N9!LS%=)99P*Hu@nuPT&??yi#7?{H#mb3F8d4h;%8SX z{L^SXQAA&`)rdSq#0BLc>RccXaXk!j>92hWTBtD$7b_z|jch#^Tguef`cR`!(qEDt zZt}lj{E^8YBloDLnyp`e9d!(Oc1^}r$zKPyYiBd40?I_Oy$1*6AEUQjD-iojV(bnZqeVN zaXC>&U1E+~#P1{BS*3%$Kw@^>*eL{!+= znc4-RS+)YDDL+=6f3bHIeE(&mX!Wc7V()fh3&TQMxY5$WXDlte4nj&mO}}8rBGJBB zWW^11{WB!T7)|s~EY%zlWAsW|A&GI-oXM!8YNkN>KeQO2J*}_pBEF|}zy_;5t*?;> zxu?bI%RQ~4q#1$4zFdBTM%_C;QdXpuS7l|=%4_l$Y2~&5Ln~)ofan9Rv2Y~T zcs8h3F08p$CPB8-crUWyU&xRO*1T$%ZiAQ_HiUKYsD^QNp|_h${swMFi*`0*TLa^Q zkSl8o+tQ6`&Y(s3^^~+|b)h7KEZU$1qq*+>OIoys@OXmJC8@2X!_}r9BW$Y;?a+;6 zMYLRu32Z!!)gU!s*u3&7YfD@WblxT_lN!vDzeo*c{dN7-Pz>z3*%%80l8p^Pwcx%Q zYQf$#BM}}=G2V@Q)b55?3%~|3EqGLE!D746+sh??12-eY78|kBg56g}b&9otUTS5V zl@bJDq-?XL1owNDU`vM4O#g_KzzN4QjIK$WB}T3U585Pvl%QZ{>jmOV2Bq;|6xePr zt3l(>5ZSz{@rR3u$`krgOV2NgtBmVtbl1gA4DF}gj0{-V*(eYL8I*{<@%GSge32rhi;?2j zL5Y)nZ}gb6t#Dnm+N8T%6^?PhAb6ZGvN6jlARu5;d(>?Pd{HvrFngcu_aw zHgOkY0U4Vr7BGO1r$|{%Zhpvb-&;X>HzON9EifYen$u|wo0|2Wd!a>bc%gAXtPX}; zTM3VKH`a=ktS|sqJs;J!>H}#^0qq+dH0m`h268Xe6fcirToL25?~2N zW{)zVd~!?==y{VdPW-?s%LTpm9caCbB=H@CQwC{FeBm_5*-KVx_dF}6G|Op->0?+| z3{!gdhRc+&aG-LlH(5`}8h!NdP&l6rOzPj*py<>ST11Dbf6kw^9B2BU#e zGQXDe<-`V;Q7*P$zoGS_R@H`U4dY*8*Yz8w1ff`ZtfzHbV(w*iZzPWCx=;FM!#y73 zc5#qlqtX1q8qFVA0gYyE!#f7+7cRrPM*Y&oMOI2uKhLEea>Z89Woyhl{q$wpbI=hv z$(SSe$yii@o*QDc^Mg{RYQNnNn!Rf~g@tRME2X7-wBNi$DJ=XnciAvwyy$zyR#=*{ zy(EB5S!-)${1t2d-OL(L=f+;KHB~QXos;h&>!Yqv=bXdrX5Pr8OkAYgrat(J$_n35HfC0aLG2+w#9zuZV_wydHjhp;wun{|6AwU}*#Iy7B`a$f?{1lF6p79@Vis`*Ay?K3`y`Vi zPm~#V3Kwf8qbaQj&lws6^nO=Wz*)x1(Lz~wo!#uKL{BYzJ=GW~?qxM8F1zQd`U-O? zEAXOdsa;iZVb^J>lurfLpuiK`Q(UN6u>#LZR+Xr{tf;`&a&OpWMYUL9N1k7@X2b(g zz$$(eDDoUV(;t!Jx2sm|GY17w&T@eXIo~(|FJR4&Ne32(svm(zX z*YH#EIq%qrC^# zok7VYc9Q^_6R2Bu6m#wlqg}|47>>ZQ7Dlod$(oU~7hFgP^M`wn! zQfaZYnNT{JKMi z_ooUpc|N)?4yFEV3(_C-<>@eOf#DJLZV2_M5OpdF_rapvi6V*>*bcq<4X~%_&~(v~ zl~SLYLdkuG^)XmGyszjPLk*Ag=XlTu3)NmFUR_kO5XH{XQ^^@xDH=UO`uK;jdd1l@PdCpn7IdL)FI7_Xy3&q3F{g=r`ta+Kln z7dgss4YtRanLNV-nBkcOEgv!NtLhxjKVm!_*+{mw7Q@z!1}$umO6Zk4GFw9KQcUWm z+C^T5mONQQ&$(@v5e`dN8Fk?G&iI9O?j+-8QDD=Nj&yu{5W;2Mv{1-f+dL5lJ!a&K zBL61V#RkFK!HhknNpLl7c5P_3+?XcDv$o_^#%Qo-=0H8^y$2Uj`=^w8vA z0{if9n;3#{yIUVGf>D!)yR6K?4Z1ByG67d4bxY>3ZuIbp zm7||B@V)UwR*@`tysj*GJS!jze(>he4Ip=&@wnbvhk1iWH4<%E66d!I_wQ8%@TJr+{F1^9QPvP+)r=jKWp45ai4m6aDpFhTFs-( z_9VL#1eclZY5kzj89ziYfVFeCYNPR#*vgoaU!zq;_wpvJ##+O&=kY|)J}(avE{0QxREAGW`a&VKijb}{g`%)Cg>0OpgvN*G(@2U7E`#`^^{)eBxW zesm0XgsP9JhdbcVU!}<~{ZM32IJv1^IGp*H@k_`8>@$q|z`#f6S?}p9f_bX<1(QS2 zfyry!9(KT;xXe}%eXRLS_*oPUm@Lp{!M=BK@J@cxAO_=k38xThMQB`FI&R-|aer1TAB*bnRVhy9Hj#u{rsG!iR^ zy>-qSabEm1YS9#QXz zE1tknpTEbb=AB|gK{5%*q_ZNcGz`|hg{s$-F+hp%0TRGRJQI8I1jeix_$rXg%!ce; zH-*8EKO5s=SFXDb?EM+jBV!mA3{8vb-w=ppq>V-EUfNy5blO&*rSKQZ45PxZ$vov1Ol>f5wLTLd_Ry zKKxh24jVCrxAI#lMtw~=P`8swa#vGL(|3CD=h&U)%652+e9IDoU zQy5|r&P0xQRuJKw`W@qKInwK%o0i}w9s1}kh{lz@ilSUNBnj$%ZLAS17)458$phey zWub`hNmm>A&o{nB0_l`2Af4JCtev(DI(}>1Be0fF10)-9LD_(H`;BCMO^93(4AIMq zVbga;OH7%6^BsoXdl5yIRluuKcesUE$CXK*dRqHgR15WS4J-1_wX#Hyn$P_n7g-lsN9}2T-iCTfFWFGDXDLXwA0a)Vm; zTNvAvc}#t(S}!8WWf_Vv(RyyRjG?vDkM}YtErsSu04;@35?WJFTe$mIV}Srxk5)p< zYpIpca#rBWH)41aeb~qn+gTw^?H6h>)3l?OvU?L`Eo%uXr?$SS78Evf_tudHtsFQF zd*#5PF-I_K&jA!GFRdlr9zMKOi-KcqE|i=wa@7NXXBlhM@lz7OI{uDcx3)4+F}1P8 zyX=3V z@p#B+1jC^wlbw)s3bQWP{=f`gDQio@9?999QkBi{Q%0+#IkMZNqt?0lp$v_2$`~X# zfW&Gd@6!f%*J`UJ$6VBedq(1OR!pK;&q{qUmG{~OImh-5FC7TCpEWwMugL$6>4_tr zflij@@HOeCfp)+>z`0FwM`moh{6%JLd+qC_%Nn0E9<7ottGsy5h}I%Mvb*U$0QZFr zQUS$7Em~qH^OoZMpYPdaUY?fJ;Qr5&3&v4MxJZ^u=EdTI;4k|h?E1?XF3#Dc)n-)M zzVuFUHqgsY+5c)&KCE)bMWc}>L>-imrL~j`t6c|T>JMov8nOcNe)33=j-|^Mn{jaT zvN1|D39KS_cu*9DA?^XXqmDGZagcG+GXZIC5;Um=#!wc%4y4xd1OGeROv*WINpQFgh{uP#v6mquas94tJP3pxz92 z$A?%9I4c&2OtC2tHTCf!qOUpRf7ZnpL5HTc&r7s-{8`(|{IQzKN$jbuGJjaZ@(kZf zs`5{7=1=~v;`9F}>vPBPwgh-hkaQfB`TK!&L1zB6|3PtWy!Pxj1}97KOC8%_>8I2=cs>k2vMEgpXK;!j zuJq5T4c*=z6eAO=c>3vLf~Yv*N`hPC-S_D4g{k!F2dovXdfwrZ{sIMwtDZnfQ+{&2uG9#P6(xM)5a}`@9-O!A23H6Wv2}L`=&yj+oYhv|Nh{ zSIf2Na9iCa<5~o0nQrz1iJlNn%ttT+wPC@tMh8iOa;%(!%&}_ED-C&`F>Y%JgIXHW zHO2iqj7lei8K4|>)bRSXA?0`_)%~Ryz?i4>>MLpPHp0!IGQFw~2#3Pm!xQ|f%X9}* zLhGPoRXRt~-A{?B45MT)#nxWys3UJ^-M&+=k-L*)Za6M0kN0h;&kcu?&z~@d+ zcwCBBRjPRS?TNa*^ymC0Og2o&az7$=F;;1+>R08TiYiqS|7Y3DGItdDW5KhD$vUqsQW=>h^W1$I)89& z6uuna94#B(5K5tVa+nGl6VN`$JT)`bmTt-$JhfKPt);t($PxBjq10mw*xl0IzZz*+ zpL2-h6s^RxA4s``B|ECWc12o~D_Xn5V17@x^-NJjj(d>qa0@F{=@v3oITqKev#c!T z$$WRBy!5jn{1QJg6Q)hUD`*hbMxQNU%x+vt&1Iq>?Y$FnJ7I`I`RWG*WiBKA6c_St zbG4L68v1Sl#T)h7RO>!y-lY`nHYjV0YIGZ8iISQBlmH&K%)oxiWaczM$;?XicElFe zjvRh*x0*AhZ&I}I%8An6Xig~`J_XhlxcdS=;1XWB;zqYa!!I9Kc62utUo#d+n){eE ze^Sy6bROG;tA!M244j<$dpP{j4lfiGo!!;Bb=O~>}oUEF_(& z2-3>>ep+c=T)g{5x2c{nd8&=OnlYzulBH-_u%;*4i!8>I6k)x762LXG5%o(?i%{A1 zbN_b#LyTgrq_e3vAW-nbeXaI&9#N=GA*tA#EN=OCf4xLV8)qfd2ci=B66!$=OxXaT z66$!54QgvXz7F*J0(UsHc;A(&Chh+FdNe2s(y}JEQTP-O@3;9*JjXgtnY^^&%{mRV zf!>wn-$D^Dwn>D}1KbGbnu4%7B;Xqtiz8XObOM2P)o4`6>_|<_oirlw}6M>cR z0g*xOcH%OF`EC6>cXH9%)Y)Dy8F#SW4$TEGD4a5qA>&aimon(I~J!eL|BO z84B84wc_COCX>5~JXVKRpsA6BPJ0zjy4)`3(>6z5p_aW8;afwtgQEsM>qA#|u&Qbi zxf;cS$zmrh8&#%pup~#B#?kPW+dVkx6^Wng`C6MGWg06dc-$enn8^5)s-Cnau;F-C z!%h>t}TNDllt7FUA<7+chvK6qB}MKd*=!HH1I@$O-w4}(%TcM}{OkKTYp zlLM{^?n`18t3w!PM5&RU!3sz|CvSE?ig&!vpNIzfQC3K+w#7_5`pPI;_(U@KU}j>* z{dL>xi=xz`Z4pBt*H#r%MmN{DW8oEdhIpA3k{WGg*tIuE_z@gA6vmgPK*7B7Xgo(j zD=UtlPOo6MXh?Xsd_xk!pjP<$#1!}K;t*p*PP1ftnhCWM@M~DOtY5;|@cMRZYt3;w3TC`KDjWX1#l1w-u4}8DBv!S0NL}fe+QYVI8-{Cm-Q;w4_o|it zK;g?uxuQdOGOo$SG0u`Yp)Wyg!*eM5Ly;=LzcW$=__HD*eWiPx z=)<^E8EpyhS`OS`ct;;sSIwOXtSSv(Xf>*{d zpy7>$8TH%NuiQS{y+(&$=DCfyp!F+XyW8DT*TbTr@OyVj@H#MHzPqoJIUXNx=;>s> z-6SRs4bNX>T$}7s~oXvxwoI2i;9n#K5Ymh#?Po2#6R~OL`PBY=FTJxrZk8 zkpLbsv}PR9-sF`o?u+6D2Gth3tMhK8pY&>5%KtpWYlj(cF(?^}T@paLfPI%K+R9N6 zW7bL>U=_*x?2lI7XFn^jz4JK~u8cGOWTkTUYG>rgS&L}AI)n_&23d)P8QLGRl9e4n zI^+&G9oro+sO1h;FLQq)(qj;#rKA*f?T{o$_*O2KHH04@b9)?lF)EFvo| z1th&Gx~G>Pl}1VxF#Cf1EwVBc5|7>!O?yp-l6$n=shDlR;&sSt|$gd3SDL?IQ7ysugeC?9L0Um;tcaoh_cM zT03II(FK|iU^>Wq2O{b|rd!JeAsFrn_`3+b@;Xh8^!X?0gNwBP35Cw^q2 zvK{V!Y^b+4Oa3nE4Pnwt?xo_KO+tCyQ&RK;^yBsHtU+Xbd+tcDs^PxPr(Vx&RixAb z{P>E!Tby2>HpXH0tKJO}D`S8Klrbn|Xvvq;R&hFnu)o4S1UT$Tk|sIqa>)9(`@W>#W&gRu{+0=Z95yAh?)2xiDCwKPcC%Ow+x0GC zP%=~xNdOtpZ|boX{&TDz+4QIDE6@8hE3iH9E|jhGyn9$FS+zIR$k=DDKd!IbZ@H|= z-S5AlaF@G}j&#WLaymZGE2=()xD9iZ5yh3l*FruUKV{|G%630mHndUVz5 z(N)H?-J^t9)uSZVjC#}nNo9iG_80u`@`5I>SlWov8w)g+7N;XD(Ig zOg2Qm=iVVkGS;X^Lu1t#4P^zswYfeEODEz%?>ks2?M&XvdbA)`t<71FyleC6v1)BT zowfI^%~xWfT$?|^3Q1hRkZ(}pir~oA+I;D_@VYt@pv5^SK#Ozi7m1Pg%NAo5sQAR) zOK_+ZV}yyE%^F);)(~$%fwlYFg+Td7_~FR>i>+d`)pCw2-$-{Gtdb({u02HHiu-2A z=nvFa>)aEpe>8uNNq~3$PyiAZr!+^z*$O8`q1TRMFb>eg|=X8SN zG>(rNVxwp?0k%KxZpn;~6^_E@y}-D7j8$3Q8XR*1gT4t%HK^-L3|~D`Gg7ccE7=C$q9XnrPPP{Mx_+?oL4$ zt~eY^UmV*`9m-{AcYGNBS8>2S(D|O^nf(0w@)!B}_v5Z}m@TbxT4=?O?$uQfwEgm< zyRjw?G6BdVWko;O059Do&sRSpps)N6X1YS4_{ZZ;85V>=TFk&v;t!h+yDT9H^|BMF zF!F=Vf}hXFAPP@8xMJhWk^`5*j-FY3!c~2#`cbtl|&YQ8CDvtOT#fD#+Mq>>tc-SPVo`U1Y z+#QlmNGOjW_S+*@i4nvAO>AXM($?(s{bQ^B8K$4I)Ph|(vulYhjDQ_{yu+Ymmi9;h znI+U2I+}I&%97e}@efR{{=_Ov@1}hZ+8KAM_@2SZ35Zj;P069;HNTT$w?crgooclj zd)mER)QLx$JPrtnSF6N-qRp zCU%!jkB$pxXbJe$1@|I9Ca4e11NzY9qWd+mgtetUJZSadK~`Xg6VG6&3@4strIhPm z&w8S7i>G*ky0S-JGW8UamdCQ5V$Hl!g!Ta(yn-iOK4N7goc98w6;PXrQ!6umYk) zIS&pcq;(qjw1{#Z_?foD(_P==RF3>jrwTWEF>EwrdPsnG#!$FX+CYUH<5*P^8h)wl zOBrdmz_M^pTPd_d%{-m;;SE%lV=!xEXF1#rRFc0(10OdOR;*&Ri5m#urY$6fc^(Vd zj$oBXf0?x)rnYjX-XNw(H=?^mWhK2Kr#4wG>*~49tho>#yhfh^NRAsVR>5YKvKia} zQ8wckYbgVVI99{!H_P6r92)8QK-d35@yG;t&^qu?wC9B|>;7VlB}-$wwXBtusdf`Ry2A(BBuQgp$?Lek7 zy`iUtCLUyRp>S!T4e;{3r213?m-kXV!#?!#IRrfS_zF) zJ*|=|lTdu;6H&n)ZJY$A>S}Fm) zp1!Nkv$$TsDiYUsbFLTrbA1;I;^!fK;_NnFJuaJ%^Gj}n&a@aRP4F>9_WL!v4ef)9 zSNs@iS6R@~x z#po+GqqOtMG>3PNR)ArNOf%%Ycfl)TCDLf2c0L#6dDiF{x}~@AxSYXTz}6OKVg){Y z{_-YPj)Rw{vx}UgCB>XU1MuR`^GyQ6WZMTt*z&speC*cCs4g>wPvvG zMo%rcvr}FC4!*r-kLb%}L{{%68{q9xO^&|$5ne2Y*w~rX3qrGOaH3io{?O4gMNDJO z$l#SFlEK3V+O;koCoBz#=qDZstaLB0R3e^Y<&?CgPls0VN>0d`B_iS2ywTC}7hdSd z+7RKF{Hr(Y=IJUv3#{~!s-)kXsJ3pe(?8oB4@1Md=GM47p#exirxzmACdcFV)C zz*F2qB-#*qFF~shP5O8y`PZZ;!%y_}G!?C?R`1%^bKmuD%S?gJW?XuoX zQZ8#ZD6a2!;Qm^Y@>z(RQlcEU?Xx(Pd=>{#57q?q;6b-%j?j{A zl_IHJQBt|WSR^7(c|1A74=V5A>Go~^&LW=SkXv^tteV&Kl=%j_2ugp7N%ccT>|G3C z@1KJ`>qTdVngrY-S*^J`uma-m>miBDpN>=FOtgsu}yrVOcIpXCC2i@OyZ?ca!3Iz7s?bLy&ZvuF0 zTe*CU=dk8Dn~Vop?wi>}oM$bFMSL7uio#~`h7@8kM4B>unkcqeJ>Mwzk5$w81bj2j zvqGF;xa4+gQk9BFS&f6^Jx^;XuyBIsF_D&HE2y-2jD%B>z$tgLr(YaHU<(Eg-t6hF z9cFU*#+HkWJK}%Z6#_1V_`d_3+Fz&oC8-DA(Xaz5@FlGN{n8;&4di zsb#HuYVsFsFOE8#JzG+_1OK_T>}A{>x%=@l33=$&vPAl;DV3E`NV6W>tSe7$uCG4~ zd7}p1*l}647ifS%#1Pngq$Fw{q4x2Mrvtj+(`seiOb=a;mM`kk zOTE+NW1I9E=}Yn{LV5=AOZh?-y{k1{zR5!`6V;WkYS6nf_sd`OxJa0MXMo-`nA%ug z4NI5ICdeD&=w`n)^7;+B+vAkH&4Dh4*dtHb(AU4K<#}p4!ks5K|LJJfS8@lI_I$sU z30KP6-XqsGv>NLsoiPRiaOjzgd3EGf9N5ptApNzB-VoJsG$xz7{}urYZ}YSiFUs*C zacqQjr#(F@8q^Cf+H3>mFKI`XOs%%?m+$-4S@CO0EPVb529AqndAPwEZ_-s3|T zTRBqI*J9gFHVB86_jrERn!((8=xAG{+WL_GA5R-7xTj?nUYaB>%vRdaCeM_cNpBEQMe6H+1X^Wl9e$K3A`nsy&deZbRJ+|Q_zfOdyz zId~yJfQTL?5#?*WVAbuM`$A>9pI9`xjjyBSSeNb3THG+VKMhb5#J6K<*l2jBGk zQ@q03|2>j=$w!Jy3P&I>9QrTuyp3P&*L@fxpdT4!TU!4Kl-6%PY0a8m`QBY1r_ z1RMOT_k@Gt>jgA^!c!tx3pD^_fi4C5j0b(pd8NASzheq@G^Fz8I}PtpUx*>sg7Be)3mXI^=BdXAp%Wj+kr}mr8t3aIa z{AOITu!=q_)>Iv1o|#S=YpoQPZ9%g%3SaY(AMt!+qozm==D*uYP+wU8-_cK5-8jRl zQ#bzL-MA9ajbrJQxo{q~TY1&J3?)m6>t8Is(C{N)+9>&72RJx#f`|*=3NylqkXt*w zrD&Cb!^DDS*jBH8csv_pMl2LYf9Fc5toxE@rlxnwpuN89R$cR1pLAF|B{R#(wau#& zIB96j=91)T&1T47v}VIc!YD1gQIe+Dp~>=iWl3q_YghV(LeVQ8i1f2cu=L%~j?nT| z&x>Lz>zJCro5DI4O|qfhjxBk%MkZ=7oT$Vc&>R~vvll_gmCepj_9Fb>ICqw@W@H;4 z&QP}Dp$t0W187D@K&Ks^aBU+{g$)_%o~la!me!eEETuEK?*^9ASG=;VytN&X)1ln! zuxA^dyE81q!)jWFXB;xqr+%2LSA!l6c$z%x$B{jn_!c0?J*to~@9WEyp zyya;uTCg^#P;Fq_*zjDf32cAQ(+SjCqLDhZfii#@VbeP5jT)w}g!b6@6*!J$A zwzzDdv%iB_p)?0te}-~sBW2XiWGJJC80iw7Dj3Jy65ULn(MY|KacdyT=?vxFHp+EB zdvNXIoEwe2&^Zu}Rt7iAqra~M^B>e&h*XA>jQsrDLc_HriI*Ly6pbihhBui>I2}v$ z6TZYrTSZ(Gn9#{4ye>(RP1qrSkxkgqh-^ZnpG{Eb`^!J_EDW#$1@4BOp!3I`<>D*G zwrvIW+EAYrSXDzSfPsDl{P78HNdMQy&P+iNnq@!ZP{EkAlf`q!R61Z(4S+^t~#mp!X(LA+yH%la&@kddd*=WYg|Sy3=~m=F?3 zW(3EV_D)vUF&~5z-{IcPKLZ<3`15#Uwd3(PD<3Si`oU<;e{e*Sjx_0F<1th5rtjU6W`=eaCLZu$dOVQC=|B=U zWGVyLwJ}_aGMfdZLGc~yj}_kqLY$EIljml?j(bUN3rdLOrd33hZI>M4p$$&XQr~hy;y-9D7||o3sj3$mr!bJfA(au9$A-uwL&a1 zVr^w(v3e8;aYDcUVp@QKeTr{Itj#mkjvIE0&dV*9eYCz2oZT3fmEl+4ja3x;s7+2e zVDgDeB-E?SwEOaWrt(``Sbgf`M&8L+?Qx@%bI)X|lXGiXE1w_HS7)lDAWQIn#S)!H z&w*KsoQx~^l{(JHPZ?YrDgF!GoOL|7JLu!i1t9icY# zZ*d*JW2oA|#>pH;5K3k7S>!M(PIw*=*{l^shRw57=$MtImX+5*U>pC0EX(+_nwIgu z0de@EJFI6J|Kaji0-QLB#y?*E=Eh&Q8M2}~N_&(tFwZf;I9@f$H1--#wF|;GCzH7{!Q^!C%Dyq`qnYOB3M|NOL50WRQ9#=EQnO|3myw*A2C&=>sWX{!x~ z%D+50^_R=KGz`|q%1DI_Jg1U=(bF4u@FrjMq>Ceg$baR?&v=pFbIH>*EV_HJ-!Lqb?il_E1t&nsuF@3S3HRk zjErRi10hcM<%;L9A3w~h%a4yYW+~$WS!y@;@hoNV`Y|SHETzE{y(Lr)Cg5PUU9r*J z@0id8KPG)NEnQ4xZRE&k;{rQ2Lv>6ao&^O{hjr9PH&JVV(X1u;_W93c}CzoN3qmXkcZM^I-{Pa)u}CnD2{gfpyDAV=n2E4NZXsYeqK_ z3<7qfRKF=jN*Uoz{nby8X==|OJ+-L{lF*n@kd#tpYhRd3I56~hl0b$_45A3y;Zl2u zi7*?B8v}{93AU6BSLIV^^ch=1Kn- zN$6SEyu+`P{*y?%pvLyFJ+|bbxqNT(}#>^6IktdCLBke;7t!EC2C%CdIUf)}`GbMDncA!AtnNqo+_RyO&2Ljag{6>j( z1ODUNo|h1|Jul13D1G!HwxR9$4{_VH*{~Zs{tX+rwYmk{8kOHtV$K!`Q!00yOiWO2 zrCdp08sx}Lc!8g6P}ZizU?=)tn*aJw_5q1ia(9D*S`-fSH4 zC$CVlWXM?kjHR4oK23u@%Bk@sibAp*r@2G4*p3J)T;}|@aV6G615}e91 zi;}BU@$JX~sruw6Wrwtx|l?Fz#OB z-1W-xO{DdP{_}{z+k*oxniavkWOzkCjNei=2oF6uyuDsa7ERFw$%|xFXHC1-= zXj98>;?y9!*}A@@7LEV-?52b;yD7`ch#YnWZMf9LXEG+j+EHcgVN#Ci(K|Gkdjm-@ zzwg0}L1LZF=XwzzJ z&?3z45Is*^ zoU1vW#BR|MnkSpHx8dF#gl_`wZEyZdf2%p%b-UR_yu*6Ez%<8cyXBDPL)zLp3HoQv z)d89(ZZz-yf1fAB4j?<$+kZQe6Z!VvPDZkD*WjXhha`ZnHvg@JzV@UeTz|E>+Gbxh z+w2dOoy`$2y0f`QoMlL63?DqOe%a%JSWfw4k^AA=%M#XIN1@Pm_)6JXYdd^}{B3QA z2N@T{FJB1kp*L%xj$gHC;jh@FFM5*}be&Xk**^l=VK}cp_%(PQ4hMg>Iz+Xt&~$}3 z2DPv>U{DJ>L{<4&FH_U-$;7?A&1`W8<6e%terpRAMlan^Cq`d@y}>ofHqB)qV}%IxIpRx~14mtgfIwfX*ctCx5_blc0VN6x6$xpx&xPK{eCF4J~bb ztg(=;SVDR$Ku87M8--Uk^_a05?v8aa%^O8CMwWzx4{fV&Y^5T#ZfPr0xocoN%o}W$ zR97_Vuy6>fZaSk#qPa-|xDKVXR63LhV}_bX#8B3t#*#4=ZauN3zxs@+(<2-@j4)5= z^YQBW9z)`x+eov4xR=o;@!Z43vqXtU|EW2g{B<;*Ds&Cbghxi13Dp(RY#1@x%n`F0 zRT9xtfg-xY>c(v?m3e(+*x>KPORQOq1+~?tKu3|Rc~+S@&U{hB?+w2iZ;ln;Gm0dh zZ!Pg`n-p0O?^~BvNc#!0ZZ?-!QzZJA*u!tfrid>YDU!*bfil@^ar~*0N#*28XbgmC z^*7F|I<3^R07$}5D3hj`d773FtEQR-q79=+Ldk8#rc~EfUa5R^i#em3QbE!FG0kiy zS~5~3lwt|sbE%odaaJp(D3_c=`oP|Dvnzal_mD_q&q%FWcvtsmk;rt~`J^LLuz8b#5~=ygt6K(BKi3D&L_7Gp3D zF&84^h5YS}!t?Gjhg^@Lyzh)8{pnWL20{4X+<}{AOS+A%b~gT!e|jJAlE14w;I%{6 z=L+?+OG+W+CX<}V__218&=E4@&q zW##3&&CZ%=`hPUF(guD_>B2(Z1LT>M4+jrl9X=^I3 zSSlEubRrd{#v5SmeDmzz9sS2FG|Qp?(a3C=f3NwK7{JWC>Fpfl++*M)|cBA==Hsy7MY{P zR#uD9Y{pmS^gSH8iblV2aX{tYwqxNl{U=0h`4>t98QTp=E#`jslx>bWG;O3o; zabJ!)w%|rA^5Pi8MhC1oHXMLvbht|PgT6}T{aE(Q;1(hP5D&#G&AEQi1$)gR?OsVa zPuONq|KOP>W#6A6j&CkLIT5s ziCd7!(pT#wYPqm zNsi;SC5Ig%$?*=6Yl$8Uglsps|2ZLT7lBut=q_vK zG(L>}DJvyueQ4v=zx7G0;*}x!cwJxNCVZfD?`5sFsDhQA*!v?_J+XI+VI^*l+gP03>++9rTlhV{tKMy++UngC}<=NUrA!tk<3qe!!=$antcj+@F`4R~YBxlYZ zNE9>;Bo{OdWB?!@j%5vAAvlx<@E7E^3>Uxc{qph4F`N5S?SYM*mbj@nON#?T@?{D|x2Vj(2ZYs%d$7OSZJ3??xe9Y%y<$ERav8x;Fr!7PxXPLle-}A_b@F}lwPo+YjgxG9AE~05 z^Q`&nmF5J&0VLxy7Qa8+{L)P(+*5D?$~PR^<=c8ka+XKdQ!T0Z*U6U8e-#jRqZZoA;Fwo6qUKEbj zSkG?(GcB;?4R#ePD2lfs_GA^Y5=xe28kGFc%!2aCF+D1iKQ{5I&V2tCMS6B?<><3n z0r{<^&JOk9AKT5R^?t1(=Os*)4PaGhj`wNJ%(&TF*`O=1`ZKgaJzJ}LG!Q?TYmT4H zbpRk9UjN+ODL9noeT&x0wl-}o4_mgXEZk?Vb%=)T?-lw>RHKXwE!`3Ri``cC z@z=Om*4BC-sdgLbB-%H*&3h$(|NhEe`y;iKEuS7V(jTx#?36jSyM_XljwZIXax^im zl@lyrWoNQ&yG<0lt| z_?&87iQUR;-O8qccEs$X7g5g&^)79QD}1wL?-6r^c-(HmCe$*2uG+zSN6n3n&24a> za&Byvc!4z{<~DKWDv7xeX%k@GOR-Ip?GcJo!rWlDZw>`L2G0}>0yGQOTkI}V?CK~) z>HQjTli-t_q?8uZv?2WSg!u{{<}3OGlSoHwBCy~OvyV8*03`pk16p{btcH88(ehBp zBapWE!Xxm;N!)DY%_+5K_aa{P;#Z|BaMDvRJjGP7>#&C!+&C7t9UPV|qT1R@NL!G+mUPKew~@cdQ@3e*eNR0t zAIMW*ykKq&>ZxC>p{FkY%S^1i`64E6MG=z;dFg&Oz^lhg{tkNZ(Pca(G1A7aTy+p~ zWh3xr9_gyTy@ESvx3U(}6U+U$Yvurb3XX|Px-4epl-^k6E4OnlPqRvdWDTTigWHMi z3{KvBO zjrpspn45(Ten3RFvsISjkg#?t4oPGMgdYnq4slj25SgMGDr}_@IKEy%h zmn|`G7TsAriNx{$vG(0@Q61gixfif7t26-%C}771Run|UE`nfT_wKF;iW<=cW4#~sbk@j zcJ^M;Zb79E%^(9k-Jw~pB~Gr5-d)@QOF{kfcHoiT-v_F_lDZ_D9s|c_9I9@q?sYZ^BoT`pj*&tt#3IpVxyM;mf+%8>_8)N{d<%258ZqF}6@f zsmi?&IzG{(G=XK2yr|i^zsIu%2GQ#~6%FJEy4uH^xCmU}ZZjxH;&!1u<&s6(Kc3Ap zc#+wuR8XnuoMPbHn=JaHJlUu z3U4Cs)6YJGB@#Zk@TrioLoe*2O1vk(zx@Tpe;SmKLD6DT7Im0Pb(k-8P!{oagX}Gd z0{U^?+xfUb_C4%&!o;G0p0UuY06#R?J}jz&f~^P#Jbx-~XFS!EVAUb?{ z1og=%>LQ+cfH1-i28%V;z;H>7>fV=O-yWd8(+k&V%_`>!+|i9}&QChv>@PlePkl+R zbXa=8=6G|zqV%3T|FJP`Bhp0!!?oL4p%AX!&i1N$?IxT?5oMh?!d`AU+JUct^c!h^ zg8fEp!$sFkgW$Dm?V~kai%&vaBGuBcYBTy%xx+848EQUaG9 z@NxkhX~|H-ljXAK(A1zXK5cljG}g_UHPOh5AU`@v4B;aiMCBJIN}+P z2K?I0DFL4Q-S*BZn`0#ECp~8S6!nt<3sZUAcfN-dGN!v#f{G&&)DiAGugbR{XOEdP zXDJWyy#+AzK1Ap^mY-N(w}W~hnJ2#GhVwln6^DtJAR&2FFS+IX7Bm9!TG6;<9=mgF zyD&p%{f5OuP`Pjm+$02D3@R1pPFyTdDtZGCCQBD%Te4gzq)xEkV80Tb!0asLhP31c zp?fW<%d^v)wNP1#oSN#T05*ElMsw<>5OX3^&>UqPS4!>ei8cC8&<))hDhREy5F+`B z+wBi9N=0j~8P?$I!CR8$Ft-ZoNqjqCIlw5MV#+02V!a0McQ7W1-fBfJX5}}zK4 zWiv<_v}`)HY?05hop;zF7?Oe>Ae%%A^_^zVQVUb0Mk7;v8sXgcB*|#Bv|SZcvK8Au zRS)Yby+I10O0Q9sj`>s)U`H8ENB{iGK~j21seK2d1cdV?UD;iRvLf(Uk9HKe@~{)W z?RC5)tPT52-mVE#V?rk(0@aS6bbN5DuargH@(JYcC z35RpXA~jG6=8I?BhnmXa>}c4iM^|mVv3W<-HQ0E^^P<@>bjH99nyk6@`#q_1?L!sT z)5wN{1U!r(nmmqX`V+|A{%?++iSzBRDlF%JFl#7BoJ`3qvU2tGD@cY4x=|ERj>pRA z5K9^{20Ld8HE_b5C4S+AIjc8Ln2c;odipN5k5lNq63;VB?ClkHFEIn>#x(}Pi{;u+ zYdAN?d~;<0PhD%T#e3gr_pk>H5i%-SiOiyHz2yYC`7V1od!CfQ3G&(Aa)NxSHxCJM zjAQRwGrVnNfY@6EzqK43z6;h|XN_Dqc~+r_F?l}NTc12hPC0ol?`=$;!H`X#JcCo= z*Mt1bD*O28ZGuYY&XtBf`iaMNtL=*w79k258-`i@Ty#t|FBG}B7kry7%wQ{LP*2fX z`&xyyH0T^U=qT2K61?5g53` zbnfUDqBw%1pUgCAi}Upus{~x0It3L6c4#s%Ur*xKf?f*noZTQA{9JR9EOln83<%65 z2@nt{Q_E6iq;Dfhz)|2lmON(f`+Gj!_wEJVn{2nwP*}%4MiWNepP&A0SbL4S0`sQ!qOg%HWlJYxTaQ7WR;8g%v5@CLS*XomPat>g1FNw~h- z-i|-B%Wh}y5UQAaZEpzzo)&%sz5@G&Jw=3En(`AL*@HrkiZl{;3Fg;6g18GvKnth@ zw15&&*C(m2o%qwo?6cWlW(~5`-+-M6O#Ma@u=LO7(#M{%Kg?p&EX^T0O*V&Uk|4}g z-saIy+jp^Ugl;jobDA)?w{n_~{leZZq=(2^!P+{4F$_F!^MlXWyRl3QyLtwGkdZ5| z21kSBqG#=sS)L^;f!bx3oL{MA6-+~%scDEaB_L9b)ATmsfu6HpVH?b%v($AuO6y31 zj#A_c5axQ6&@CuEWY%?8<+_3Z)RhVly4E8ExZ2nAqj_z3w(DFdSNGWmC`b9=ec+(I zN2H5wpaw<8Ag=pU@8}l3=}Ggz$u{;qDT2{GoH~A@RPTJFe9xT+?3+wQ05y2?hX)0Q z8Itrp>TlBUlYV^FL3<&q*VkxnLbEWUneLng@|~|ifE2&z2W9b#eifKrNE7~i57-?` z3WVE5iLcm)sBfn6g8uN4=MAser$B7u?^o;ztOt>YGiWL$_$=zdzj@W3ZOSd?zEDGM zBiX0nJjHAFbRp{SV0(9-A5bTpOprRZw2I{Mj5Xf&Bxe!jF!U!j%dAS4TGAIgZoLvC z!BoYUU$^Hd_wdv=?73{6kq2F73S<+h>uRa%ioOyS#}Rujtc{;N0+EnM{zvI3S$c=L z^!snxHz@mg{#&rka*&iZ+RE#c>P6NM@=D*tQfL(WsIvUZK_2pseWpo-r6!`KejcBG zmDPj}0YwsP0_Jg1f$+cBqp*@?=|*!DgS}Fl$DV-LL2W|UyY-ZJVYG@NbW696PB#sH zaUy4h!B4H7F1s}qfI|=^;1J}WPNpS&s2^z-pQR25c4DX>P7<*6FmvhKkK4zxxg--B zJ5w4vlhAczXP&Spvvq`SF?NmF*!3c3MPp~`#!>-jEG3}2C1!PB{=i2-BTah`?8M--J3R<%3A*0=6zp0|Aask~Tl;3oRQCX#@KH<${~I|GGZA$h=tEOozLct1(N!uw2xo1L>SVPBCv zSon;N*cp3#TueI<+UZ)u^e z`pXvDiX`ZI|9lZp>O<%jy;J!0Zz^k{eMOOqdV?g?n@U2xDFO9{r;fidTIl#o5MwAc ztC6Kn)AgQ45_G*E`_|6cN ztVWi)54edIx{oAa;pa_-f4mHZ&yqaY$iC1Ee?bzk@Mom(I_5vXQpvXskV0=G30UrL zZ#f(bx?HnA%G#1VD757O*+N>91Rd$+*X>hSDxq7DPKF3lWi2F46sgcc>IezAD!BBM zJ(1;F_>xrtWW-g0?QK}zv|YAo(WW*<3O{@UzBBgH4JbOvQj`p6ZKnQipUyrbbW3f1T!r4JD%HD=kbt%M$RFS}U9<2d&_TvZYIEtI_C|cj zp9AXgyZ^MuF=e2sP1Bk3pDOh76GbYtGJyc%NfAIiDFN|(*@Wlwf7|!5u4Xl|)P#Yu zcO;Mm9nXkc&^v|@x&=@8T2pODB{O_RrFz#95{xx-frT%@6Eb?&%&is2Bvxw4N}A&I zDpZ(RsS3hagpL}E&`|_b!y++V-80aq7i_hp2a<3d*wkNcl+&m%RS-AIPxp}<<)=l|1>^oB;67YaZB-oz~2YeVJoI9cAo4mUN|@2ZuSj^B=+-zSGL(gXB5reIze*W&KtYq~fh6 z&=Gejs<6`7rAQs5?^2MQa+jhxnCUwN4B7Nuii_e`DxVhN=o_6Ze$!owR)$jgE(JX8 z(Mn<88+3ioy`{D2B_oS|3iuy`Le5$JDX7>JTMm+Y?q?f0Hn2v6fvh(tfFnx{A1sH$ zaFT!l@WjC~;M;{Hh=8xsi6=IN5fHm<@4+&Bd~py4?-h8Ysj1#$1!o+0C}$jZEQCm2 z9_{GMC>2MeP{Au*3F0};9i8~YO&t%inM4=VzF613m?WU~Yjy4KB?+kg8lwIE7VTFM z?SV6DPdTIZl#mnW7|$pH6~BWhewZC68lcYa>N>wm5>V$$y3XH`1l0L!qVo-l&gY5F zz!`O>oKa^=h;8j~GfF_6-yu48@(gL?=%KLqA(pn%YKXq8&$t8L-kXXdr}?U{dYiC-bed3oZm`yz@Z|- z55d_^&Dkx@Q7-a&X^w88#?Y?cAKc1Er8!<@TL}{pK@F>rkq?y-#!a3>eH|TDIF)*} zpCf^tA_Yig+qOHfLGG#ghp}qeM+rGhSB1%lJL@7<;5WCX7AR-({qU9*;;Dn40-9T z(yTl?+c6}9PQ+f};N9RkkRd`Y`h!EoFZ2h8!bhY+a$81_b0G2Fa?sZF?_QVisX30J zk(f!&wZ2S+@d5a*c455!J}eOAyV@g#kZkzJ_dcwkkoRFlS`j{ER03u2UF{M$bRgc< zzOP13r+guGwCNcyv1oZ%yb1M$_$OPuID?PeOoi)`MR>Ejzqp@-SE8vLNLa#yM2h7!kz&v0~SEi!%0T{dX!oiUl%I~91a zZKk7(AGBm%vZGEUzxBJLFTXXRUv*luSHUhy6u)nlqXmm1qJ4EAmL{mQ78_;CUK)`p zD}UGHj`!IpQWh#dlOLGlsF6}?jufLr@WXSV2Zd$oZw8C+(tkb=2DM%D99xwIyx)9B zSGI_VH^#JiI%+EsHQE1{J*hPl9j7JFpZskdp4Te3Zp{IlB>|j8v@ihNVg;~N2XML$ z;IuCtd)U*Ytmr*qH?4i{Nga^s2#69U{+Gnd-VF;>p*7*-+P{kiuRpH+v-qt)u1y=e zw+G!ECNF#(TIwigB!j15nF9{i{X+D~xz7>L_e4!g&NPVLp18IK?-_bqU^stvnWGl} zR10e0S9CK|PE!F{q$AwtD2({2qVOXBEb*YHlSPosfS!D;Gc*f)tlhP`vKBOTB|K0V z$`3DxzSf!2r#O1c4ctTFb6fGE6^kSRb^z63<%sYQAv?beWq?7TCXUXyGQLe0WbnzF8iJ7@|=#N4c6~3OAtaJR$h!|tK zjjoV;tsxC3lO8e<7LnQ*w=;{96Qfa@wMdh2G!Slw%2fif!RNl|Gm-CNWB2|2uI?kAw|e8 zjHpCx(GA&e_`yxGy?VQhGF)$!VZ*^_ub(bjvq*u%ea(6Bz@QKoOOyXs&rycUo>R3F z(Y)<18slZcaaoEe$vo?RM>K;BJ_9U0rwUy}&r!bM z$`;4i%nJfU>@)KOAMvNR&xqd@`pgZHpElbwg5dR9MW6AU+T!S@+7=sXk?x|b;sx8l zn_Xk1lFqVXxOB}o4VQkbPzifW)6-V5f<3Ib@MW4GcTHXMRg>v}yS!xqXYBfmlL%WCe{D7~E-(r1$_**r}jV z8a?t|Q4V|Ld*T=N$oBwy?aY+uU}YtgnmznR)jt(7fz zS5$bF8NMx zWw3?yfq3$Egh7!@cl;dQa6y%giihllJ)(!7a?E9uNZ#0Ujx2S2Hb%B>DnhG)z8*|2OG6Fx$8!d{DZ9~M+;w+HMFR@AfE@=?|E zBtLk_h3aXkzWM_Qcp$fnA5=SeQT21M1|D>?eQp%Zj}3iAa~Q&d#WyQI&_O(GfQW(MLL$!qu|QC1<8keG?D1a!RGu@ST^w6PN}M4{hZ$xv=_|d6`uD(>&iJcG9JM1%n(F{(Kxg^W(ZF-{h~uWB{*wa(<*3HW zKjm*bIx)WymbR5$4_-=Mc9Mp6>W#oD5n5QYcO0FG7Wx&yzjQ6|q`RS`p86Zq)$@5B z`8V%4?q_X?IA{x5p%t>X6vFj`?od=5bg!7{XTJ0(Y>f>bAx#;~m%i)BV3~xuZ+!}z z;67`3@j!Q|;SgF&~M@T!iA9E~br9_m)4n6yHVh0qp*r8`a zJ0f`3duBJaS*XA^s>0U^wK{31#+jK$2i3Cu@9onI1 z9q+M~Bs01pca4;8$X!MPbweH;Dcz8rMlx|j9vCSn+ozzS#1jbikz#RP$ z6La)Ktdt1(9zG!xKV<1hoR8oY!;;Goj++W~CSC}*NOXe6Ah)L3c|nzid-A^qH$=I` zOTK{+qcRE-41b|e{ae?bjgnpn)GhHseg|8G7xKFyg?b^)q0qzd*jGz4*RCABkl0ZY zm`=6ip4boIkVqld%O8yGV6r++{Uzdmk293%3G>rx><=!o-$c%(JTAtwiuwR+7= z@udCfctug$kCt9GRS=A-$tqmJ;+hqTw#*}5sS z`Gbl!m@Ob8u#xR)65%stxzChORV{-^*Qec?m7Aic7VD;X{IuC@2a#hjMW5&&(3zF_ z^<)A|@VzQZ1WSAqJ!>X-Vw-Qs69+Wy(_maBH7Te0{FCijIGHy{*TW+L#|0~#=1+)U zIL)5`C19FoWSSRkD%P(}(L?-VEv>{(h{8>slf-|`s1=YsJk z@Q?2pfS{0L03xjjeTRpj3?2h`C_^3tSXccRqHmA72XRZl)qoh%Wf6(RnEMwZ%7j6) zFNG_FafH7FTrgqdM!z4J%CDC`5X+~Jtly4bWLmtfUM^%n>ucv4pVbZ|R7e*C+`qBY zkDt}<6Q$MW7j4=}830-Np0=rIIRK$={4c1+-ndsg`Q=&oi0?b$T5sD7 zDu2T}aDVuIL7@&?ajx7>ydzg`Cw>*7Ewt@6m4k1Mhh~>{3fVds+3=C*GtIOi{CJEOsESS;H+H1o06T00yk4sTe;`KdY_nTA zC~#vXS(C3d!*lWYJ9}Ht*s65)E(f{=1puqHwXi*o-&FJ%-??OFI3vLF#P3GOsy{$K z)>i~kJf?|Oi#Kkru@F&Mt_|)MzXI&MdvmRQv?~6fZS4wWh#$s#rn#1&*w%=QUZ79@ zI1a* zEPymzESRL>V!=v@;AeJs4dQ3R?M)k-HwH{OL;h2csXlMVgNy1OyL>$DSUc^%wr~f* z98C>zNK->-3YvOu;@E~fVduzAY6k~~Gi{w{o}JC?+^4vco%=1|^f!;GqU zFOxPXck}g~wLU8F7Ap^%iTAP}93xf05G&AxAy%N362V{TqUG95WVAo6t2WU8DbP)< zGvaJdQ!QZ%>A~|)C$>|ckg7JQFpqc~;GRU+P4p9Z_if7}dDC6P>%yl&;e^ur-L#OV z_lvfQy;A@DBUK@Q=fAd~qgg9#L-nD);MEsz8}j_xUF)jY&QayC5q${&z@1Iomox&tyI&2@M!(DZEAH3uNtIje*RlPBYaubwv}p&@bIeO zdDMVMe0wX@XrubN^*-Kdn6}(@A7v^0ndk~R*V8Px*6ow2b+sL)WB{6$)K6HON-itb z8hHNB)E@P>eNBr(+sstX^S?%D$@R{Y1Zd3Ri{kk42UNzJJrodb`;{aL2V9goH&SbF zqou^G+D|Sv4MX&|eNO`>B0B!qC~b``)JfW=P(RGbuP?KMoYDakt4(+S0UAzH`LP~> zB%{vw6gDnB9{Y(Fz)vsf)te{uf0`+pm>?Q>KFZY|46qHNGSPy5{Fqzgwth6BG7I!~ zUHUkM1=0M<80`)C{>|PztxLVhq%162t_Q^Mkg?ieTQQ*{T$t0lmkz5>yEd9TT=x1l z%7IIt);FRxkb}bnr#z`Yj-SZa#;9YRBIwb;)2~1)R_bjclHeWYmjdJXSL3u4+crX% z6}HJUcf1y?*k}o>M13m*MBvgFm-=8gE|85X(g8`)t4O@UrshNmzY-_=5?lNBW=kv!NO2~#HWYB z@UZv2B2pQ;P2cF%XsHZ6)dVS4#uwAI1lwejbn^hzR5n{$(gT&TPEnQ$q};aUv@qIq zCx5e4v)k^Z2^O1TB-h2dO$%K7WIn77b_@${Ol;C~&2h=VVCqcmuZRe@3mX6T8BK8~y|Dbu={fhFNY^q1* zLv#O|vcX#TgF6>!{cL~G1WPTnl>C3uYvG1V_Je|j+5|P)EqmF8g<7^P&TZ`o&G@=S zuncWR69jiMJ+_kEo4|K@plX-?(IG_jO4zno%U9EN35}L$>9#?X5$fNczqmxpwDqS6 z774AT1b9EpD*>Ka-m_Hu#dZfRh3qDm->LPrO{R1Uw>Fa71cRH%ELcer8#XLno!xK*FiFV-i_0? z=bhDBFU9r=EhSnWsXM*EhZ2k6)czsxb=^JpXz3O6?2&n5atDU6-GU|h@9;tP%t!ku zPl&`}q)>aQ$)i{Zzm{P^PtRb&;QU0m`LR~_I~Snescg}mWY}-8tg6M={g&UWJ)+oR z#*k(!EF=qzPErxNAcr+z)8Gc4w>N02!cT>D2;njBZ3*zaw?T_k>UAc(bmsu)h+c#) zr{>PQ{61}WWd){h(vob$Dk-3B)+X7g1nX4ZMQYn|jNanJ_CsnV7U)ZY`*~uymL5T4 z8i0g%wSa-^8A1&VT+bB0FmOF{3iAM$_6r8H`-FfiRA^z*d9E zwJ-46$P}m(k?S9XWe_A2vFWiqsHAs$h%jnfZM%gc-Y5^W6n(Ap#27JUz|Hpgz3cGc z2ecRkkbOXF;5QZ=q>?*_b>i)k>TI;VU3uvvmeS$8*TUY+%VLfT{PH&%x2Pi^1=YUd z%7fYrcFD)%g=p( zr4Ik^4y{*KWil64TPDxhsr|wN^1LuhL4j+Nj}q7^i2E z79R3KURa)t)gOAeS{L#_yP>>(yt9st2p=Oa|4@n-{2IjSL!Q#+@|cUA;nNCnW&WNm zk7`F0zmz=v@=r>hy!?~eA1?p=_i@d^?|EE%7GC>LenLxOg=X8^@Um5Y$!dO{T-kqR zjoVKHP(<8*!joEc;`X5FQpL?TKBaYJZX$Wvmk|05KCK3XEwfgg2I`AzdbxQrV*kKy z?IPPu%8Dk<5A~}P$YY-FU7awhP)glsh`|8=NI>AYYcLP`C_a!+dsh3^|7DQL6WiJ& z_>w(ZQ}(J^1s%8pRRQ-70@qnx0&>J{x`e;ASbk!!*0>t+2Sjln-}ao=iR~k5Ac_e) zU#Jx-h_wAbuUofA2XW1x+9&KsQdEE_x=vVEYtbK!qF!L|9vw6*aSKT8nI|R?ebb{G zSn1pJsHBw_b5)-ikGzAtjAc>$k2udr$(n_bup;E zaj&K_9Z~a}@Tmth2ODT`7ej3up7v!z?{I_Y6SQhQvQb1I&R^G_sCUeujtSt$`;3g? zO^;}Gc-9+Q4Exwf6pXW!WBi>rw6;|gYQrv7%)jG^)`t-x!dN+KH8(W$lU@$d5b7M} z;)&e#Cah3yL1lh1DysZQvj~3mO|7o-75^c1WMZocfBNg*l));X0xMzcqIx0uKEOTwwB3AAw%zILs*>(!p6uW?>)>6_2)pk3MzVkoyOvhl4s?Awb}|B zVa>hg7kK9@D1UHCg#hJ?%YmNMdvABqV!e^ArU^j6INj+D$SQM z=Kau8#YcDyQ}iGz2o;+XCZT~ zH|6%W7Cz-8?Jh==L~Dfa#Ck#E0wmA=kF`N6i!AUpbQ}zL*|bSaDUfX`j3h4mOdIOg zt{{N#=%U844kX2kkkT0gqzG~NedE!1XUmkIsZB}0IZZibc+udMm z=7_qXKpxY)&zv7Sjk3N9V;_*ls?cZf%L(_0eDdwPh?NE--z)`v8(+4$8x8P%iBg?W z;8Pk;6&^Lp%8J4-e7tQ@x*NavmG&AtYt39dRtXIM!k`-BdB{aAj*%p8j2brzyEfLjItV$dKniyjiCvTl5>^|uj%J}jK5Ukabx9A{~o;-W(pM*Q^+%-Mtw zws?3?M>Glp)3*&w@yQzV3}RHi`08IDt91ONQ>7(5O}^8Ps%qvq`Akivd3fe!ZAb)} zhkZ2wZU8Rr3xz;j+D{O_aA`kboV*`*UgXB5Jvw~eR*Gj^p1z{pThHVNa{RvEoj+>N zv&CjBbO&v|LG`M!w!Hd_L~sfR@I5oWZN#&$X}7a=26t>Ny!g+CDG`;(ELuBGdT82p zZ3BDQTuk@S9vmkZB!fp7@-JNIt0)7O#OKthJQE+|l5+vM{8_wJOqP1YP$D3NJ{x%_GIovsa zn9#<~|NhnMZ|R0bjhCNK?`SQH>>(A{C$ki5YT2Vox(ca+Gbo47Wfjm?=3K4^BP%$U zq`c@iaVlI^mxppz%nsz4hqNZaqMY{l!lR7x>Af}=E!2ZpL3jviVngS&Db5UlJ+>Wwcor9TbvTg3{@IZMn%H1f^CX1%>x#&MR!bl_6p>TgPNJO|9jO6^)wVHOd1uy+Kho z+xT_=x-q<6s1ufPW)1suwC<#C-AS4%tP`i!)GMHn@SU&HRIhbERAt@oKI_QIwM)8< zAP{Y&0?|ebA;L2%+&MvEl#E8c?==#eGrv31`5{Y~P)Tc6+Vi~)ol&ekO~i_e4N2lL zB@1%Z!4u@em_un6u#czR>=De1TQzO34xCU$;~oWjQ{p}@jGXel%=8KJz07pN44tn0 zJA&J)Qzu9$r;${z)1?+wC1madUk@@40fHdB&q4(OG;r#4mC{aa4}!$vjhc-BTL_W- z-e~6orfi6BTQEZ$;3|h~cDRXYQK>egDt1n8cl_H)Q=j<4@Sd4x+AL)lEJ|Nt9oHN-*2-Ma5gXA-YO_EuT z5RWu>CNoM!9F9Z%3cFvOAU*aaFkisOLK&Hm#I&kEVNIq;ukR)NAanscOa%SW1?(t( zp$ph?qP&(sTtLAsHlR(B3gPE-6H5C>VwxPIeLR02Be!>c9-}`{2n4ym(?js?3jg@_ zcLas(?})S_^eBY{+}}|ljNjIoUX4JiFGkCMQDS@K_6V@lv^ve8$|I-G^Dk&tL?#hw^n%ZXjc>7tG)A5R%HTe@G#QJ z%U3$`;sj?pKik2%hpjf$=dnkeS<$NmfqGI@zC3(@+bLTn%I%b`gnK99!v-k#1R zJy8D{9NC=TvuN(^1>L81N-RtoU)Z@YVSKl72@|?>>y|X3OVYT+u8Cc{Cw8CEt?R_X zF5|@iyKt|fLv1Dv@cIL#ctJl@ZP2BtvUKNI+*k25?CiX(`W>36Z>b!bD7REjbaP%* zzTq!+hr!`nVs*$yr+nxTo?!*6UVg$n8Fsflv`WauR4KGsNN(%UW6aVGDO>#WWNRjd)Ajv6sZZqtAm z+$Q*RqP~AJKP`}dk>dQrKMiE^Yu%TG^B;RVBUn07!H1WcIteE##7Y^)52ZT0`1wtO zzL%a8!>`Tzwlm*R;;PH1jjWlvN-rLl=IqRR5hVnAVR?c;+j$voG`xU)pC6%j(CbCfkv!%F=$imuYo0gKS)H9t-*^I7 zd-{xWwq^r}8UnY_$yVIpxhP>!pW9{s%xL7=$QF@O|4PeK=A#s)5ASOSVcvF!?`eK& zcV6~?1SIk(hbx{vMq~@%%BR+@fZHC#O?1v37soZ^@duqPcvGjdZH-#mc3$5F6}O$p zN5ozi1UjT`m5AN1BQ|D?>qqtpDFujSg}!8+^gomc-0wpGcY$Fh#J3<{5tEGm7UX_8 z=jGqwXcAG$v|RMkM7amNeynp_rM}Fbn$O!q__ciJDb{SV(SM*a^oK5*7*t^;I%xlv z%v$`ND_z5Rqw&t}tfL`^=Qv!25tRro>M&Wx8Ly3ZPGtQ_iGo7sC^c=e3^ArmmJeN2 z!2!c*XPU?Bd$r&yHs-e?U4i}yz>se^)VvuZCE*f^GfoW$mg08Xv9WCf`Hml*9fL(? z8AvM;zY_Qd6P@j&I*8x2{WKH=@1S%Q9%Dh5Vh*K33yO-gmYYd(9LjSoWcLsPIEq=e zRf2#EugJ;r35$CsJ4@IOb3T31ziqM}`XZ?z(XKfDV3Bi`-%FGAFFPC{$>(=CC#d@- z8!m==1ki{3X-Wz2Gu4@_J~vt3(|XP*G*N#BT0BJcK4#QtnXG$mg~Fa zljSy2%OazW5ZX9FFhLuswPV%EgsYL{(VMTHQuUpis2qRz--Hk%tepCb% zC$@~#F2GnQ7FXm`47ZBr8D+$ZDa$syf@1Y&ITtHseBCS<|2LBCsMozzuWeEA;k>|arLN{|LrvU$A#IhKrik5_ql7E2Z*cde(h{CF^PFoG z^)mqMi%~g|mF9tl`r!M6WBHCLEn7v9zU7k(BLuF%uL`-i0>37H;R^g(k=%rtAadg- z434Co*b2z2PiFJaKQl_v zv0I%gM>_wh1_a3TwyA_^eRy<6%m*9z;dRa~D)7XyoA8ulH&}r2Nov7)-{4(=df{G( zU7M(4@Oce17JC{m^BwD*Z?YjoGdZq^voiyxN~{KuRK%*z2InVg0i=qLB8{i18=Zyf zSZdWBU^_&4!K#y+V1n5*d_f!4HC4jpGD;#`x$5$%@_odWMhb`iT&Uhfd2XOQ`zS6R zvf0_xX62?|aDGAu|0%)}!QVw$zGwm;Se__%Mpwe}+~N-L>anT(dh1bf?6{TXyOibU zlBH-QG4bv$z;na>5KSj)%K8M9u|6rvMtxSGF5LnV9}`v7XF5PCg3d2Py^5goei$Fb z9QZi&2>8O1@+c44>V%Ia-C?vq>^sc_!P|Gl#amC%HfIaPulF4g6;*r1u|A}Ps0ny> zIOj3C5>toVA>;Va`^B~MUTTj!WcBtiih6s)u2!A>3V?Or^)az*ypfKs3>+i0u)gCC zb3c=u^{-!vKg8Fs@EZGaP~u^DA#0_T=UrBw8zfI}Hv=vw%biiSDwKV~tL#%&#=ESH zU;ICmz5b*-l3zR4vW`vxQhu+CsEe&AqKm=HJJ%J#aENDU z5(L|Hwb>n{EhO-?k7~DPfzvDvqP8HI8pN?(&UT7li)j!E>mSmXXHV!~mp6UF+1$S! zWaSf=Ia{(0gbVhqw$sSK)&sukEeE!|C!Os=RWV57%urXl4XyarC!IZ6E5byq9>XeR zjGHDKd9!JFwaat=Q_dxd|9GLsYoAYwVG{@kRHJ~ZG2N#|r)Qk4h#G-XjWK-EGq7?R zLzu*V1RHrrpK+$L<%Eg@WZC&R#>YJi`^6OsTz}S?#&~4~;QQuq`zJ*nH#f}F70?Xx z4vP;@85wk-nh>6_=1t;DX9fhS4X4SjUVEB!cOQir4)$3h$izuo1p1N32`4$;hlT}K zRU-4evx#T%^Ui<#)YH?@o2)8l%Gb`p5oDtG$pv2s{m7d_F8Yx_i(lwR{yeQ}KT=HS zOLGf&|NYMGmHLr;YrbBGuOYnb4CBunaDLB%rh`@${77a{y%w$gw*=?2rUrNEOjaVU zC>ow4JX{dP55MAE$hwje=qo0`r!qA7rcwLp=uDQs=5(@Q)=Yz^qeIF6bI9vtN?%eL z%(D+UhqBwv1>|WRNDMjb90ps#@V{if=R|O1L>2l~=}pD}W9dzjlG2+D0ENxoq{uA2 z$#U^4hIe?w*&!-g{HESy9YLVpWYAz|G22F|!kesZEw_c_KyPvnA>fSov>@OBSbMtk zCO>-9xtzUg&Zm2mZ^IL_;=IS(Bo#d*Jlk*qzGN&WrLRdUj!WmKli~3yRIP9(%ctX- z{q%Hs#sgTRTR>SGZb1dA^S{n?lNz|jJThI5n1`p!2Wf6U3cGBriVf_r^QWB+W=gTN zB#tDaC1(dLaq?m%q!vH%aBdx*{rZ5q;?LUr!5fRCIDX19wOF6g(@0@7G^LmrI<(kp zsPvkXilv{BWR%kVghLkxboLtuT+sz7G}5Irm`}M*E0*pDG#BZ9NVd9@ApY<<2`eD0 zsE<{IA*y*dWw_C&Ce{aVz~^l$YKe}=lRD4cR-TVjp8HHZ{eYL8#tBpD48|49TBp@u z)VhV*jZp$jRwLLMq6XIOjzwx<1j*(dz>1)CfAx_w%ftfPOf!H?EDa8eE-z1s?ntg1 zsJ;rV8C*)`X{49mH9tgsa=Hxpgp`dN>kH==Wg!px(%F$M zCfQN1`Bbk}QZG0MmU!BkNX8a@dY(;6FFx&bFiJpZXXt8YsH^RbJu?&N_410U|&|%EOG|O@EAh9}3VPBVT;ZSv#_Fws7L6UW*2N&p9yq7~yL8 z0+pBZfG?1ts9!*pKv1bFos|pD`RqHwRwzsG(jN~YBKWln&I{_V|C=p(7i8e~!32{d zdKdLeq1B;x5hQ-0cM()twRa%~_@%ky__lAH8!GiKYH%^qyPedVcgk?q=2tE`&#<;a zs|wylOM~jQXzjlz_>b?LgIJOwLb@20$SmqnDqW1PzIV=JS)>HI7(+{?i!rcN#;clM zcJ^lzt+~b-xiIilg`6r~g0ZK-QaQICA*tS& zQ#ZcncjrjIbEWze`W4B8L(rL0GBjR>Iuc8%`*_Yx*fTg)DreABMj?F$#Upe6GvtxE zS~Cm;kf%Ds;0aem&j0M}1}xA21z{&(iD4(gQqD|Z1o|V?2xDfdK<)V}gwRb?5vDi{ z3X3qstEJK(Y5$vZH_IUE$pJ_Np9am4pba9a7SP7e&_SC(@}PkQ)Ijioq=AUpm>CkY zF-94R*-9O=)kd=1XIV~J0$2nyV2PL!mJ&0t0WqUCAZFRot-}MU1QEaU`^Q8 z%02`O`tV9icy=;ZsGs`gOnEJ*(mcFLkZVW;8999dVV1zT_DdlU=i1Za7tXb(XI4Ge zieXZ$J0o;`dnNCOo)-s|%|&3t-ZxA>5I#L~v2SEI9{XY~Z?sMUfI>4ptiSz2UB5YJ*v1 z3hrvnl;F#RGjJ7Bs+@uA06#eclag`ZJl-TzOXHdv1ECFn+FW z%Vx?iJSNW7g8fE#iy=w5Y2~fXmSb`OFH3VJ3*Ml!TqG-x^9{{i8A@Y*y1A=0i<)gz z3l47$XOpqLm5)z$x+}F3KF#^`_5<1|seDIES1XogWtKvj4VBFNp!M+6>!+mnfvNm@ z_x?>7v6;uVb`50tgb@yK_<5(t`Qg^C=9M6ynm##2naQ)-fI+iKQ8cKO>af&j(BXlu z0f5D`ZCy=G^6|vPMyN$`D}Xc{Zn!@cs5|1pcuGAP@5*A26HU;FL)+`J21ea^2cV*> zd|f-&bQ1$HHNfp!Y>V*xSSYk)ctWy+=k4~c!3sNO<$UhK7^cjYjs3qQ(c(gVJzJmA zFOfV5(gh0AbqSJa^0?u7cD8KtXN^*HO0PRdPU&opxhW~Nc}a>ZSsq6YpX2LB#?=g9 zjPp8SEM2Mp&X)L7TMYawPda>dE zKWw_WdQ@a{t{a@$EBOClGq<}dp(2})ySw_c8UG(_R`zfWGqFLh<1MIC;VZ6%kpXrP zmDSkPj7!3EXGw2l)-35WK4zAf#U2&}ITU+fDE>@Q56_W9>Ki00j!v(UW^l}C2I6A4 zdT@?xS_h3nbTs`MnwA(%FB!>lG`&E0UY}zcNP#5|q!n5E22!=|TpkId2QwZ4;MZ6v=A zz8Fx|m2>&F69MLnKJfx zsN{C0%<;87bl8s&`JjCkJ1hu>8_=ES4RL)A-?&X03jOyq$&K26PPM({)z+Tj>PTD= zJ)-t8DZDeo)tylS%uI27$!FOCyzVd%^f$@t1GOP3KWyOEWvM-T3P;061u# z(F%<*s!~q;o=n#q6C3Q#AIz1Dh{Moq#8MBsEiNL6OGUKdxQOU!m5Qg!DlOr;KHRlW zRR_(Ji-=0|@Su^fh#F_rp;F$4;AmEr$!gq{yea9NkH$-8l!wbF*=1V840ZBzC3b*(Y=F1(8&Ls6@OV>m= zwJ+WdlAcb=eCg?2n1>r0@$=;lA8@r8cm_B4O1#mo89h;W0VTs zSqol#yNGlV@u+(7o<-DZZ;vY~;qcP)P!ks%_@)|wV9bkwU1DqKk9l$+{B@r6Uw$+T z%Ch|+2(mrQlPAD&&#Epw(JD3#*#e_=ATG5RkSY#eV5(xj1#-{omLbGY90oXXO!+Te zu^;C96vN3aod^;Q)z(K4Op0xt?%EGe$d4{|bz&}(9rdzPy(UP#lnZ=riK}z8(M|Md z)JUT=+zy2ANiag;Mzt(3^5Jb$j!rYlYnaFPl)CcFY{WE~JOkX+byhZF6&Fz{n|Z!C zW~c&HAgZv>0v}R1mytehh=;lpC#9daO2WCU(h{C`XSt3lu;00NzH3ByrCIpjb6i{4 zal#X~v4;UX=JownF4S*IuUsf^O5;trAny9s|7oz3KQ_zVg*{6wE{JfCSDq3U z>p{Myo8V}}{)O_gbkr8t^y&dIQ`yB6|KsYwb`fDGe{*Gpz9$H@ejee6x4F{QoeSkf z!sM;4#q1m@RdU5;udWiOeZ0l3OJzGh+}%Bdmp$M*;a__Z;PJ{9cY9VBetEluz(WmK zBquk-B5aYsqO)?8FMZH8qMC}RuzfOb2ZZAkA`9VYDF_sff27KPN;o`=cDhuB^(4h= zfQQaZ z@nf#)TtJ1sGgEQ$gk7*%;3Sd-Mq!HufnsErW+JCg`l!(HXVKgwBrp z+6VG?_QK}M15di%^xqHCxch>;4LeBWB19ev(VISq7VmatRkPtJ&-2o!T`BB&A__72 zR1hd8dvr|Tgwo@#PM&+7ak&-t11VM$WWLprdD@Ij_L1~J4e^ykZB zOO^;lJhuu0#dD^PXNkb`HTEnifKaAwuHBt^2o<4xmXCQ2);JY%pIh3sBl~Z~+-Zkg zO-#9K0{m_r_!2Yl!(W7F9#UR+omBqd_1}Q8=P#lMBK{jiyw(!$T#$Igm0Mk$Z}JXr z!nV~-A_{SCxWt0=7Ic>zq>l`&ERB^$t(i_6srkLcN)y;ggN{>S0Ml8xT^<0aNM=le>X_u z#ZT6adI9C2`1fRTpR<(QZW8C?H zcnX2YN6d~20`0*M>t^lHF?(s{m<+!ALstenL(0|!xGxL|6u9?4cD=6#EalrjfuW%G zQll*koD@I4^SsFs4O!~#aNvBk;lt-&4(6|p$PB4b%euv1_zc3#w}_>PQgfjWMd>fy zhTnCRJfFKBVLgb_H2_HIDr`+xfj7km-$eD9C0bg#Ew{FUpn z;^AX1xDwfZA_&oV(Tc_!J~S3zbd9Pm8hiQNuVE_OOT-}>A6wCQMxybQj>fugTyFLq zDOD3RzL97=MbYpa`qrf={=v&&z$vSj*PVsJFYkPSh}7q?zrrpvu3e&*8U9wYm=Q62 z$5$=}U)#G9&hI^3r$)U<4P3^5`~gC6fkXkssG}gzZd98m{thkOf0=ACe_VD=W$C0; zO)%=?<8A6iU%7&L=2h31>f~iS?}96WzuzdYF`Gh!B36?KRA;IS?z3^v zMOSrRA;S4+|e?T=CT%d|*%gma7{JCt?LQVLb(bcC64lr4JW$r|$VA=WS=1q*x8WQHL7L zDLOH$W-fY-=69jR`n7meOHW4YBk6KCrT1o)&eJQ&9*DE&ul)t-abwQfOrw6#( zv1vp!g0xW(C`eOuJ8suO${U}ziakb()dZx64dxW2wA~4T{9GOP0r=X<*18a4I!@#v zLhn+9J|_ruy3{a|KkbAjl;+B-&8IDae=Y~Qs~uB$o9|{2s(70yfH?hN#p#G{%3&R+ zW{dM?vsp|lU`}x={;W|TuM^~c+P~FZ(3noI%WKWrz%SE;)`I7Rx@mN>^Icx2 z5Moc6)onmA{EZNIa~4Cy0WkeqZN5!EJ6lw{4txe2x1RcoOteu&3!T!{#&^k%cVZ)S zJO|-a1FV$MKHfT1CH>tac}BSVbN?kEf~P%@*O4tF!f?c1WJT#7A4)KvwdS|B<%RL3 zk=1WV^LScAcOsid1dE0g`hXx%Y-UUSXXw~uHF6(idr7I9VDpTRH*H2SZJWR|giYMv z!-K&Wquj~t6cLB$d}2lCq7R**rtZ9IwjuR{yWr6)cNF`8$U{(mv4V13D*m1hO1&8O z_bl*kqovmbl-m4yygP~SxaJqAf&hxlp3U$;<7aU&5GC^an!7u(E<`3G(}^dxaO>`3 z@4LMn3szgLdBWar8}g=|svS^L+ubeUX-9-2Ji`TnwwX4>gqC;9PW4DD_fmETDVnp> zoz=fc5O9O42HPfwTf0xHi^1B??iuRpyXAuv_YhGfgYzaRD+x54@0KTskMd^m?ykyR zB1wM0MOlivi;uX4F0k6QP^6{9Q`9-_p@x>ORswiJ{U!kwGft8Kl)*PpmGSboc;5iN zOXRCtrKRBFTNd4$3srlmz59Lt3m}!xzn+)Kz9uGM?VcwlT$QyeVl{idgt)`GZNuTw z$PVtteE9R<)~QiNpVlk-G?9-Ltt_`x^eMw0^;25W%|uQ;u7wpHB?$jUMJoyXP-pi{ zHF>$L=iWpT)^ksu)5|o$3|elg>~4HnSNCA0v&fc&_1wW~R!2#Pmo<7wF z>svlI4J3a{BqLb16_(cjwFK)c9jrBd-78s)$fP%XjGm{ayAxO&LKV?-HD(2V!Q7O+ zCIRv26>?7mz9nej>H$}yl>&!r?jPXp$XrARfuw3*LDoGJRu~P>yY5M<=0pm?=BEb% zf+LAUfneAiL7)>wwyt(2FB|N>#qJ>mYS75kRg$fmxxzesUTYZ0i!# z9oY*+B%-p1qVlRlMMe=?^H;l#4dc^a`L=eAHfDD7kkR0J?Iw~DofCpU(Ro5Q}VORuCvI>Pp$zZ}DrR-8WcoQlKV?^pb4V zTi#aVDRH=KDM}%qtHGjgA`yc)jH5WfLlb}lZiRZ+eBG;wgkRpu0G`<*Cx*cf-(Z4J z+-ZfvrR(fiDVxa9mO0DSV9UYJs~uyFfHS;LlRvuNc5@I50nwcO36d zt0wUAUw|Yyq7^I-O!>DdoY;2L@=eP&E!xyZp8pZa-mx946JbqE4QBhgS>?YK%b&<-9x#l1zTH`OQ$X9o_? zZV{?hA{jjQWFo$3LS=ef$ zIg2uC&}#XR2IR*>_EkuQL-s3zE`dPfvvm99H;+jHQFn3bG0-t~%*bGoTb`&-6GAWX z^7-x_Q5OZ3wy@*Gip01vojeT}xN}rCkSGfME{msiOseM2HK1H?VSQUagCiWK%X2MY zE`!3w3diOU1dJ~M&^yPvCV8G;;vS>0*(BrnAI4;Z;YogsYaXmZ!7RR?83ejuN>M6aAJCurGTQ`lp3`9M7LxP?wk8<&IOISc-2K#FR`a<}KNN5Qp^iD$WB!DO_B=oZ7 zE(*c|g4iAl9R(ynkTP^Zr1xeJ0fQh&5eZ5!f(5Z6K6WhMIcM%>&Tcl(`~8Cc5tlP_ z%A7f6X6_WnboUv9? zNtNe-3AKkaq4op-U}bxb;|al`x;<%N&3N_JNSQJhm$UHNt>H6h^SjX>VeQR6V8V-g zKO){_;*u-vLV(Ye=$+o2SJd&#k62Y|*@wJk*L2J1{N>44=;(qt#;{gB11@;v6}1b0 z*DJIO9~NmzNSw?I=IR)e>^Hqwr18aX45+lHJ!U3|OMBYO;4j+KUS=lkX%DZ9wdqE2 zNE9+9z2#7uEFJ&xOB*{nINK~-`#=iw>DAESmEd>yRC4{7SmZdC4t0gkp)Qt zptOGW`=c*ulCa(U=zwVX&1(*?kQ%HutuI6X$!b47?}td~V-v$6n_rIrvU$)w*gU*^ zbzBtA`h1mRf+4b5ZHfc?XR0``pA}#ZF+ZNE-g7?B3dm8;LV<7AX5Ii*W%?Qj zlUm*|Wvlz;oHdS$B7izeA;xdA$XeJ|{6`?0UpSjW89p`%>mY;VWdmYh2H|`#gTSKO zsdbJ7Q87bzF*X9?b>v3hsJ3P<@tf-*e*`0r`NITN!C~h1kj9?f0NJ&DAkDUnW;aDM z1Po8!d^Ih&$P=eKV&Ss!A2vFYVQ!eT2@=TAK%#>g(J{G#cHQi#6;x0Pw_FPpZUX>i zn+TZsT>Ye$TO(z6}fk<&dm-dA_Z(BKc zmm@7EWEO}_F}4u?q8M9fR=zQI&Td$<%ri9axW}(M1fKE=@f0Q7272>H~6~xRq`n@8-CT7OAk5f#MVJ5Pd+hB zB1%4`-i1k3X+-gv7S22FG#p#Nlw+IFjKhwwut-hTo_y5O5So05>Ifi@t|M=rci49a zeRag~jOfVfV(x%Ic=I@XS)$xw#>OYpuJ4WaWs&|ahPV$XHrosGF2-w z8Jq^fXPTKcL)OoRLvoGG%3>ocrpB!0joGal69Qc=&%9HwYH6=-j(w;!({2vuL(K^Q zl#yjlIl2lC)yXJliCJ5O8wimU$xCBArD=2w1I1L zq1;ZQYZ)>n(bZVk-h6dVt~hk6`YTqC#JS}!PE#3o#W7v{&8p#1Nbv^)kZ$6yIwJj` z7zfN!nQ91GI#YKq8CwJt4T1Q=9rpByEldwK0Ee#O*;x8H?^v%q7fN=hXV@%)x;j$Rbn~W2%5gOp* zm@&2BV*}Vq+Dz|JLrFE+!)d&m7OV7`-v6@V4 z)1rp>+@Ex+Up1f>lhr!Z+28O3PrB-=EHlR#b;U3K*d3*Hw4?}S!1OR@eLr04`^{m_ z|A=Dqw3$=ia{;mMx&vt~=vJk+KT{e323s<0cf(-A62UTrWZo?5->B9r2sN%S5C$VLMp7T5JkNes(QzHteT5pX0F zy#=Y$NN6kmqLI*6nGoZw9&9ywUyO4};6SLgTw2DtRUBht(nrk08sOuavH0H@4VBnA zC|b^F(71w}RL*IM^O}zu5(Q!GJqOCgA<^XW&gaFq41PP zXIS_5q)3_8)Y(WBny*ch>OU|)w|%P#F_JXKK@1!}eU81}GbW!#(h%n&v@g#Phau1q2Xf|^1ZVG9tgJ>j~=@x4=SZZ0fFeu6j zj|U#8?riK=8{$T4>>F5-lu<}UY{o`rH*k*=CmAUU67M5`f&`c%eWkhu9r|UjYT`Dl zN>SnS`8p~XKgzqcoK4K}^Hor|F<%9Rs|<;P!X+>syejJb`6^nyH(%z=aHR+?8ORPF zsNQ}^MC-ouxh8rDO^xa-06{4r)Wu&E5b7?-cWTtCo^yQAD}H9)r>n!22Bqb|`p)k~ zCzQiC0K$1zdkyf3pYgA-d!+$fK{!9r87(*c;trSJ?}OXg`eO*All!u0-}A&pEk|n3NO_C17!QaJ3+Lp z9L3;76$*5KOJJoG;1CT1+#|@sesL`yT~n0n2eRdfatuLDPj$NHVswz|DcOU{ z`&GyA64y3Rs-7Cvj$)s*a}E~MG+0Hk$CI57F^54(tZ577!RnC4cy$V6noo!dV~mg7 zzTee8hN;8nX=v*dD7GUX3KTo=7X^wP3n@^<_<6heZlI}3A-oZK1Zwvunv=50B zOllfF9Mu3H>x_(o$CUI(oM|%g@Ss9+%7ZXyxTL8ouMWb_dvT%i>i0W2OUWxARf&-F zi}pCdulnK+qe2e#%|hkrUoNE2+%fr3CHuVs$a(CSAt?Jj1TvugVr^x=u@bc{J9Tz8 zj=hLbZoh|_L}{+B8KN@c_(CXtYe@asQ;-y^wfI;!XLwj8P1d%{1>Kylg(oqv zyw9tiW*Ix4QLWO1gbEONHX$3`3d#k~QO7GyR@P~FnBuV{rXj~#9 zQ+w@i<$e;-LPl>!pE7Sc0x0uBe?sPMB3JitP7uRcJ(}AMk!o%?gcZzP<*p-7r#Y*I zjFa|4#spSO>G}n!)3rH6O2gr74Bw=0_Hx#U((>9*odOeD#^6luPIXn4b9*`)nyY}+ zQP{S$I*`X}oX3{`n+Ht=pc4Bvz84=xFsr2Uz=g@&j-s!b6<&IC%N z!08y_+%HmDJqny%7OTM7g%yxDluUwChPR$`mXND^I^)g3i{+x<`qUARvU=na)?)31 z=HrVgf`)*e?9Z$Xu|8?3sB%PLNSjvkFw~n?UtX*>txgZ*HI?&vb+HOU6&K47r^0TV zV4P^r5$8m^RyQtIyH+;`(qGT%zp3fZdD&4VD18dmoIZu>06-b}&{*(j4%MOhp~cGo zn=V%V-)ON~sQQY@M$z#W0$7J0F$*nGvAW0-W?;C+Y%XD460sy#O%$vDUaVsEAB+LT z>R)Y1ZfQyA8)O?so+N3B047NjIr2Zwy`m?pM;{?m8GzOR=_4eECS7*bK^v=U4qc+m zYZ${J^LmuGW$Y3%FB7_)qP*^MJ3}+#FDf%*5J>}q_g`>UgZGbG6K0x=iC-5 z%^4MC*f?js*#E^$_8A8Op7YW@+;xfS;g(BOGHxU%j)ygG=EEw$PdrpKG@8W_U#Rt7 zmWdObX)zz5uoU1=<1Y&Erwmp1N>(i;NzO{a=`;U zt>wU-XeH%ylbyZAFPb`q`sg6+yg$qIDb7hEY^kV5YwMd8w%5sUMWbhlvmnRu81eFY~gEe3>z}hMqq$Bg+ zWZP-Z`msMFlqZ85tkEY*VyPimmrn+!$T72=6~z=rgZ#Djd}lTDAoTov zXDyMj}Oj#P;u~eFl{~rx+Z}fk~oKUxf}u%=i^{2j;{)JjM*;v2?EMN$+qKj|Jp-qj-^#CdwTl-S0oBcs z%aqX~noqT${REl(Zjn&qm>jy;*+Q&jg|OJtG3;nNs7({s<;!Hkm42;da-)6~<(ZHB zl`Qo-R=#%qfd{60m*V|0=}YC^kNd&lv}MYwI44pL2jtq1IeeKqEMeQu=B1#7kC_}~ zJ7<6@)~6$0@a z2dRx$91$5#g_(J!V>Pqea+SS@DjDhg2n)A5g~zbS{~{OlTJI{RcaLb;QT)u62zPY^FI{3z#XOHtQ>!2gwXF}7`+Yt@$vA@rQB*}PvXQb?L zZge@hasxQ$17%$S(nxJc*nks6_q_2!@FqYpX=w5P4pb?Y24-W6vX$ zC-Or~beh$@z12C)5Y3sK_j%?->$iygAV(8T9QF?6q_l~Z6IZp0%<8_wS=bP%x|Cjm zkjbT5iBbq8x$WJ#T~^2^cDd@yZ+AL}3O7T+#}=YG1y*;gz)@;5xqWT9P!n)>%p8!C zx7I^;twhm0w5*?$wof8mne%mr^78%Nu)r`OfNz}UYv&eDL>;%B$8gBwGZ8=@4>m=i7_o(6T{IhlrX$6L+@ ztmXD<4iKkEw~D;cH6b`otE zd(0ZNcSW$;xM!t|9Fgtp?g!Nx_)TfRd;|Uu?=_mM$e>cp%oS?-J8Ojs`(qdO?A?m<@p+o@9ZmgbqM*n>gL5BPKCKiudEOQ0F6a z)N8pysR#TR0ts~}K&U3N@-Y|-USjoVCVY+oNJBIe=1>|L`W7HV<<9q=l?r_aSaQ~k z(Pd?c6V4)KU*Z=O++h@{(ciE}|DJ0IKOJ`_#cH1`tp+!oamop&M{q!HUm0fu)Nx3w zgO(_n>$3F6;-xSDU@o9F%EXn>iInz|@E4`Mq?P%my~Gck5e@gz`iP(S z*x5(yXSHaRbgv>Vdz{xFqX9;A>zoI=7a0c8MGQ{2)&=JvS^lE_zWtpo?>`Ka+12h~N1p3G`9AOA*IFbSugToQ5 zt%f6Okm(>9b_2d~_eUrnj&xv3rga6n$9of#Q;kM$It#R}VB0-BWz8tUrkKt$`)Q-0 z$YxNAfCmsjVHqr+a&z2guS7OdXD z2gXn}Y`?dP(wn(vl{$~~7Gm%f1mHpWjq{-V762$C6K^?d2o9y7XZ>2e2r_MN=B!dD z^Q(O6%oKHB2R?SFp|;d~UA3hqE1>v2am;_Jo5`=Mm-pJUQW|cweVq+Ay1lM)^%|LT z*I6w}x5XY70S{^m=Rs`=0F;q!zJ|4B4$TeVX0_MV=15<2x_slz5aXC!)STz+<~+v= zbaUp~&6&qasX23abC&1V9D4&e@HlkaQz4WQq1JGolo+k=;VUzT>ef6H(3+8VoG*#f zj3Tw>gx#7GtU$NsQ@b^vvr=l!4c?mX^J`5Bl|O+8bq?o2%?SXMkuUrRk&i=lbB+Zx zXU2b>8%3qn0k&3QwX(GetUx!X(Q0LDO;{;4CuudawRWrXu{C>K2t24coCh_B17KWO zUS|K|>?t@@H>d1se_Ol$D=c@8VRBLLjI^6Gk`+*M=u(TRAV|#t3F2i|O3j(fo0F-U zgK>Z^wa~s}4{v}8wTCmI_5=XREW8KC#(}yy!*z3LU-4-S49)4DNb>+NhR2DGeF}D_ z!3Yt`q8AXcZ<1iKnhy|YD0BteNJF8k_=|=@S6Amd6zcuA^TnV$^e?QKWc!l4H^Fm&q3j?a&oHSDlHovOAD8yJ{y!E3csPvpDs5F z!rfcw4K>8-WV+^w3JinB3uWL{I$SS^dP5DdF!75KUc><_}ud)T(g$4a<%iOURwZ1TKqlV`b2{uo&6d)p=-Sfjg>Z1Q_$ zlO-6OY!VUBCV^~HX0LKZ?Sl*Q38PRIx&2H;nV5V;B`ZA&{JE8S#+EEC7=kj>P0%nL zonmcermazoqw>QjSIgML2<3*hl{HFRsd_ksiBDF#B@nqCtD&uwk@WR0s++8I0Ai4p z4#Zz%r32UGZ>3w_P*y5qT>o}7&GM9S!K4}G*)gY=V~RU zXzI#1gRt{XUZVo$jPejL7c&ep&IM~!z?{2=1h_t4}ZNRb1JzS#!klH z+#E+Cz>bXC9Ow~jgp(AJSC>5ZD#IW)yxkQXEUv>Gm6 zV-)FpNfrapEP6KrXci4BrNzy&Yt`cB$E+$1h0m;IBm3*nU|6&^m#tO%Fi)*jdwbqz zShTn2y|ro&%I>vlMRUhmb-;v+M&s7(U+RcxjqS5B>}s;{GV4H6vhlL`i)_5?x_pPN zr~hePM3!pk%5wm}wLIPs>^ljG*j+&OT~7miyfdcV$It;!;lqbzx~Ggw7@rjV3_#BF83M?8 zpy%d(-M4Ah!nUsMW{9yK-h($=Ru&=awZMluxgItDS;u@Re7&5zyl=B0)#{to*2_an+zFyaAmJ+O8Q~;GID6U1=H@-nGv0v~ zoM>m8XxBiZ4{@S>0*HdN5q(`1kTzU>7A> zJ!pM2JSow?no>b55{0`n%gD47<7$S?1$EM80P`3@3Q2P~!R6~IB#}DdHh_kK0w!k^ zZfx#ZucBL4AgNuP)FDO6JPB>XZ#Mx=o!HftY+RCuy1J@~D}jVAa6(^bLiMJ*9<~X= z|B}1A`iJ}l4U0To0p67iByx`vDZW9iqMVeg`nkFSveCm8=hv6CkdfN~MuHsQ!&OyO z*$`lTl{PRVskgz;`u>OhAKYN;{~<<@^xuIKOjlz5Z~YJ7p!7c?kkn(G)YFR8|J461 zxurMge@-BwnVisKO(=-|cR<5P|GNT-Y~w@@_~}0coJg)(_jq}~9)J{9OMTn>l{qeD zz@H#C;1SEu)~O75W1Y%?Jih3a8y4eyX$bQIrNBQ>OiF?G@E4`PdmHjifxirNjm$f` zb3f}UCi_17dujQ?v#z0{^hRwYlm{a;z$ZY)-gUzmKS?IJU6x1>Ebh*VV`SnBt`ai-1z24f9$0Y* zRWy?}s*zwmf>27U2Do`r8beSiO@P>#(y+ElX$$dJHFuh36q%R!ViLv&3X0#M$P^U6$6pi_zlR5KBl}hhb`{0i zXIx{02F1yu=w@vz6beH$z{fV@rTYwp@H%4&d9qE(C|US9S91}gSx_j94#LwLEe}2C znl0+Gx-=uGxmnE!s%};bC_2t{46K^0tJ2s#D4We{S9)1M&J*Yuf(mqhgE3&B!`dp) zJ%PW<%C+NM^sf}AFz_UU0p*BPV~ZN6*iD4g$W?inH#xrMd2(iS!Nd_vZp?&^$`?yl}v z-mjtB<(D(5Xza5Dw1s1z8Jm@>zbwzpfHfZ8N!rVqiTK>j3tdEB?m!{Q%boa(yxh4Z zUoRg&(-q`u-bNX&7sNBXx%i!FtOoel-p|#%V2VBEfmyDH#7mm68s-GyZqrrC!}DQALz!uSoX5i%g7WZDAR2l&)>a;V1Ak4E z173C2iJgkS`A}vw0=S3M6Q{QrlsvqE*VTer`-{&QF>>yE3_#BP8v@9=L9w()yY&+H z6fBAuJNp)9019D%XZqN*rgvlQ>XlZ`liDn3TqIu_}XwkE5SaVqs2>_uY$$$rbR4Y^kn5``q9X6YLdr zXlouk{fgHz)xXvyT&-)tuc~5KAkMZRIQ4eA%BWXq;8$~TG7#sOKaTP^U5QJpJPyk8 zdYnd39yb!&MjnR+jo`qE_c#1CP5$sYEF(|F-+ms)@M%XDJ)HYDgVOhf#{=>1u^Qw? zrM3ZO+jYr}N+N*V=<%)0jp}VvZq$I)rxaOd8%r52K%uy<1+tSLnKic2;&4nAjh3q* zpugkNz=zCuK!QvGw-+YuaoHy^!nTnsm0|KSyuxx)wc(AjdTembF~k^6TJ21amnB1^ zbj$6liAQe3t?6+KKP^*AKDP-n(IkdPSF{Z3S}0A-U{K=|7kozmneZ9U(wd^Z*?s&r zNbo6b>dTlduFu393{h=U1~E!$B>TeWmGaC^m>fO7)wN&jWGE@yT&ZFu0+jCMm|d<0 z^7uB_UU8UJ!(L@=vx#Pt2Gu@#VS08diYMizZd!rX`2)zQ5)#zx1(_T9DXfTWH?v8RuzQ-eeOxzchZcfTKm-CP z3_;^*BsJ!J*BVii)uWAdRd=X;f>l`oEynCU?s6KfWXuWI0MUjO(j2434wf(;+M(tc zzsW~Vx*Vm#urevgjTuD)R z*+4liD{($_Pe75=uDbAkccatrUiM4=EQZ1(B)K=im~(PD^#9P+I4B3&AILe-{y+|Z zfY4bce%_!6kfzB~#11vG4Bw$ns2pS>P*=T;0KcyKAjkE5$fX^yeD|oREUqvF(*6Z5 z^cT58TOYZam>=y>UvfWWNHmu_WsCE+7KhHJl-e0!IVBOm#Az&dopZfgu=g_CNpSVp zEaQS}gJIN@n=ZQQhz5)yHK)!_)(0(i`i$wsC0Bjc2X>mQ0p-}sH5e7><$iEHe8y$y z;9d+))O&F1&RptSuecgBQ}t1oKV5N6_9G70&Gr{hGOCnsSB^77!%+s`TcEIUYP-8i zIsex{xsa47w9(oOt7yXTHuV^IF6!Pj*HgwUIp#Wif}5jD)m3lV*I^ZWA%kMtGv>&& zPh5}q)kbbidG>DVnLE)Wo5>$mi_kbNi(Tp`%gv#EQp|X&pJJBWnQOvyfQQ8&44L+> zRTc<&?50e04rQiHbsm3FraHef-^tN`KXnB;x4QE)*Yn~IYds~XZ#2Ni_I}Q-QoPL^ z_iZWJ@(Wi#@wcX~CN)9WdH({l%FR$wyO=}a$BvTH^Nl^JF~Zbux>_P1N|dP{03vxZ z6+=*&>K5>YOcjZ>Ri;YDUk~h(mv6%t_`gtgo~mxM#?ZE=PeQwNlq(IhvFOI7#%GciRd=FlqXF#;~j%$KA%2<=Vy{iE}t{JoLb3l~1<8~qW_;24u;i#yb zeB`d{VR26LQI;2kvG-%pZ?5Hi%`oUQ+bw2!pE1kJhZ0%d1t5~g@)&}$yaT`&EH4&o zE6Xdh8-C$GefJ2LkwybptaKl7m5%)wt8q(w2LXD}R8eY6tb&C2Y&ISNWQow)V3yc+ zx3a`!hDou%^=_6~y6je_SY|hwqS<`6%9M>67G=t$-D)lyzaYu2F4~UUtrmsKv#Pmf z7{l7)GYIS#ihENKgY0lB{vtb^x;tMxEO9T`H{V0|U_;Sz#+&SLu?G0q-p`j_+I!Y+ z&+Smz?k`t2u~}1B))$1GcN3@-S3m3i?HVZFWf-*jd2qKHnePKdI|s+eF8{b%ipznu z&Z}C+KG1g0n0&a9Wo`x3JeJ82lx5BbnQ-)uwUuQS-2=b2%8w0q?buBS<%YPB$%Bh9 zSzSzbYeR%1j%|bm{DkYLP~WbkP)3*5ZYnbXjRq?rfUF&~tCv9A>``ks?O1(UyJ@wD z*?8wYYV8J^tk!Ot?NLVFh@p{@CqhkJ+OM=nrS{l8%EY;VI<+$``D_h4pGyyKgKWB~OOAyNFGi zg|hP?JiQzDC_8^M+&xJgVi;uS2cT>4Ik-r9?! z-Hk=tytQk@xL@_FP4~nv+gYFo^JrWLonKWXFizxyP6i+!9Ebq&LFjqyga3I``QY=c zKKbA?Z!#a8`lj+hP^9v~v2Q9Le4L??4~~GE=z{~_R6f}6P341JK<$G}_daJp!$cp9 zK7gdj2M^*e^1*}hW~@8tdk)sSV++d(aqcJb`eCz*?zhARCMfygM;hQ`eczjFuXS=n z$UiH&`-)qdx^lrF?7UyRsa){C@$SvyPliD*_}iQ6SXOA3HbgpV00nT=pp_`g3g`?B zV&EB=pWakXOP8-Nujf3>p@DpKh<@gHN-be(EHg8Ovd$GcApa5 zAjsDr*sCoBeO>&8EXmiukgF2i8_f!P)nU>&R+C1P<@Pc!ud!E+CcntS!=zPY<|Cmc z&FH<#(<2!wd3uSx%G3XX+OTKF{3AXLCU zh3>%YD)%Z!B^SsFthEbX8iq%0kGJfMN_%%}&Y3ptnI~}3i_@89>VEhfTK5plJ(2%uz zy2G>1wR5K%q9~&K@@&D*l2E<_^_Q31SEUybg&0M0gjfckq*o3B$9VN&aEygaOmd7@HNeO9 zz8$0fgl|jBnGG73lc`;xxob2Fl>>wD^u7TK#_87S=J3|c+YAF8#mG|qK^LCxdW$*B zM*%g>58qO$?ItTAkAVX6m^-Y1JO(k)V}LGsOg_?4zE}sy++*l`C__;BVivRoT?T6_ zmx{I!o;XaiwxOC(d$rb8}XssKcd7`OMx>$si$txD)FY=1TaQ{F)+ba_Xx`S-5{AwWh z%1$ODdBs)@@Ugw0?UfX-taomgkfR;$p5lD3Z0ra>F;mP(xMfjf&4(KVo6Ys-kK@eKYiJdFT=M zO~2|ibt>TYOuw!vDl3goFA`Q%Go??Eoz*gO2Mt!Qjwd64yd_)Cecatd##HPcDc>FH zJ`v)AX3;q-iy_grE{9AQ=C)Umy>F}O6ewA3P46#n40Fec{tSusR!)9f?X8^33Mf%c zWYlKAt#VYMx7F6l{_t=7oW!ZY&d>Vt%#`$s=31!rSMSPVeIUs<7|ETQWa7R@s;ZG7 z(4~!*oGv)5eaNIYqeqD_9qF;%XvuG@WY|XLjB-1~XRJOAT5ljgX*CP9+RzO73)FM7 zV`O=GV~o2|NTL0O<&sy@>xm-!wS`eQGWY9n1Uux6vF;`zsM-TF(-TXzMzUnQ_NUu_ z9Mf1$`8jPp?a=^p##xrh9Jj|%j zD#hQK=}pCG1|@HUYBF*qA7-9-DB-{p#)-Xvm?5`*n@g6>Rd+--U_&xjcjqvZk;C?yi zJsWchzODwFJCkMni|#V==b`b9Wc6|G$>Kw%R!SEqHQ+_N4H^Fm&;8@wL&bGXU8Rd4 z?7Y|Zt90?n1b3MHaDqEk{KU{GUHq_LrHgOj4Pkf-BswS=nKa2gt>g{B&66!yeU&ZV z1D=>Iu(rw;2?yZU4LNGEyIJftgz{|hJ`)JCg?(E~$svv-q6XsG$%6I{9ScOR%4+C) zFc`@ffdWMh&;%JzTf`vaX@|eac-kEx;|aQf=-7Tq8;B;ohlfwYq*>+)7?0BDE{Vso{j+DAQnGC{4>+tz^J%Q zgME5SCA?JFbMUk5Hp|^WWa&D%ZxX)DHj64GyAN#8Sp0O_w67%JCcmELP7#crq|rbD zUjy@XKv~{~%~}w(k0C30j@vN8FEF_MDA?nf?#tp64G(w^EaoN@<#`Y6g4{mWT~RP{ zsOlc2kPOKYqRy#&bN~m=_6~=$fu(*@(z{`W4r<-g=-xm8`3P7IjqbP1b2~*jR*&{g zMITiArlMH^?3?Og);*~1C9Ka1Xc$sk?pWqGUv7R7$0AK+{3>_dC@rgI2S)oGLmw?g?VWamLO)B|r(JNV&-*JZxN zgJlez#!QQqP}6gTqU}tduxcdK)jUGgTj9PVeq#0Ls@)$L02EP1(p9@0O5I!R9o4;| z?`XrJAxRM^@VzN!mVQTfZJh2}`>`2D^hMRl41$l%q?vW!kvkT;Yl-@SY-)2h%@rH$ z;n@GhMRs28{*T~HX#Dg2YIkdq$~fTo$FCYGV$B=w7Jg7Ni^L{1Y_qtU+XJ*Yh&dS> z!muFci)I*?DGN9j#;APM{qS+fg>}OZevl z{Bsun)R+l>>f)c$v*1rT{4+EY{*1ss2j{_`!}zE50{BDEp&nWYzvyAf!;9b-y-{|3 z3H+i5YTj8s0e;dI_bGTWEZr{qEnfdd7u0RSE4JuPFE8F(MAs?R!rNWw>YSQ*MxJg1 z5qL%3}?kO1`g8<@jCf1gV zH@maMR_t{v+%=ey^ zkz3uRYcqq+H8kyQCiECkc)$y}SSDnq43vK_9t>-m&v)x4&INKlOWvC#GoNo$$qd_( zb$OfHGK$bP!I?67hdZq{SvAE_y+4ob6$EBJlb1g(%W5G0La{T3 z7T7oD<$Mvd@Qd`~GVQPLO3W*E%Oj7Ee6Ez-UUy(|8NbKvt80&2LL~`Fpf~sQOeW~Ip8UK01(plfW<&F;t8IujRJf`9hb4<3p`MYPZ%)A&| zSWXJyg<2=`4b;N#)+7sAsv!Dq};hWnl z*)p_TzuZrR9oMMY(zDirk@FZ&Rgt5?XbGw2anLuc4+W`DuRDJhq&^X=Jt9pp~tW=&pYbcEi?nba3^UfFUdh*6OcTt&m%w0;p zKhRN1p82k9K?OGAW!wqaj1kWy$?e0A2;{yOcS!YN`9rD?E1q<(4ePH_?LMSFu{2oq zVgEyNYiX;uJbem=%?#;Z(tIB+o1f-;d>&O;UOnyp1gx<7B ze{$2bIo(95cLTI`({9dnTWeh}xnBy4#afiAqj`X-s=;KOAy7}w-BmL#2*RxQo~kOE z1|XQR?@D?+WzdoQX=kHRRoV62X)2Vj^g0?#h>d> z13nCRm>9XH{t^PYsk`jP4tiHblrx>J6Jjw#{dY`#p=RT+(^?fm<<-yJUmMx-*yj+D z-({>xc?a`T-YKO#6_Py#Rn|VGtbL4auClHNDl5xw#qM|I-9C;6^7k*@hsBQ!6_rKV zcNiu-uID=%)u({DpIIr!82Q6j?ylx2_$sumSFGHAt$ZDGIE)Vl3`&t_R+SHp;bR`4 zNkigc*=qUm;cwipg!@&HneP>DDa(E9{!Fwyoa=dV()aG#a^i;KEmNCnD2hl!Re4_n zCYS7PSjA+e@7?`GXH6Y>J{l8*o%i9xYWca$9rq65W*9j?xOMTg^Q+u931!lsvKiDZnKa>q~Zree82VlBD7QjfaEVfA@`Q($4{8l$~A z^RW8H4+0Qr>(9oPIO1QmH<&BYKkE;#C4cB`)-kh*LA1Ovtx`>KBd`i_fhx3+{fmT71^ zUQ5g~&&wLDhDGC#sG)7%`ZSDM6r?`gLIZe-N8DY-#()aO_yx7BMuL%JdC9e`V*y8s z4fKu>b6)2Vk)*u%~d~{(SgWO0V z_W0NDZSJsH9riD?=6t6>NzRfU5TtZj#bHjI=G z2Q9Hid$ZP26$z^2KbuQ>0+zLb!a)r00VXyrkY^xuiU+gs7sZ2FNArybUsSMW3pPBG z<72I3Vl5Mq#zpZh#0YeXrqHtk~#6#tddzkBaa8M`l$5E=JKQ3Zz2#y`OUBR zD@&HEY&D77jla38yoLZjSD|V0UmC1Tkd|~352O~*>a`xj!~W2;ZG$g$ELR9-@FfvS z1`qnw24C-(ZSV~k7ELnh9Lr~h*5a5lcF+VFyIJFy+NxNEk;pZ4GafEf!jmi|kE#8N zVSqlvl_Hqn%F4O&n5<;wW05pj`IGpIto+Gi`C9p^TGs4urHg61drY!!gWy zF>-W$tCQ^7Kxe)8j;XA7!5`C3MNmrncfSZMr7VQFn1vMaXxJ}d^_5$aH1R)d;$iQD z`t2bDjjU-{45dW8d|)XNM_ijYrMP_Bu2bA{kTH*gGA!kwQ$P{E#1?@l%0VAS8J5fa zjln^eAe1}kOS<)HT%6UWiPhE!OVxt&fpK3AraTq`_0*C~UIbc_85V$Gq{62dD>exI z7R_O;_xZfl-)n9?6r?&WL1*Nxp4Gyt7o<95;X*RHrBz$3$cwYMC1mcr4ImcV^HzVQ zmDMi4>hA_rCk5qXHY+a}ee5oKY4Cnx9(q$bzuxSsx!bYtriQ54H|D`nLLiVrA9$D! zeSbnsb?26yz4l#HJ{iavUHO1>55|jj}jDj6Hwvx$vx)qVp9bq^&2+8D` z0QA$)+)z00z7l^|xw3;5AvZl}^%Y)CU4_CR?7YK|tDHaUmwMrHbZnolVgf^>c=*C` z6%YS&T|=eeG??z!Bjofss;9&mTJ`(cXbsBe$rUp=r*_^e9pqXEqTYp z_n-^$@$=1cY!53bDjShWX@%7k6&Ta!v%HModBIs+7EQCNnNcTX`g~`UOi8n1MDz)* zWn{mwUA2aAU3qZsl}`A$cTKnI1?7%=ocx=8_fp^5c_1f#`@i>V(>uKAP1h)sETMKmW!(ry6H&KCX7E zKXyV5z#d^#a-)xFogf+E%_PGCQ3yn&-B4=-E0c(;14L{hd-u0yinjwR%?jsvR|}i0?0ap ztQLX;DC~h`LB2PuQ)gp+4>z_qXmsVIx$Iv8?AsD@`54?vQBxZyz^r%aegoH%-@~>6Y2; zq>8$oPpYUJL}(=Ai@HfAfIyz0%aByitpe0?gKit-Nmrzf!(VM=+efVyaV_yT54zP5 zppmPgVtdg`x?fHnu8sH7ikC!zzYyc-riEKddg}lw>)M| z7Fz=AQWV~BQbpkny3~%sndQqDmsf^a6+^O5!kXTk_yqB;uEf0P;K_VK;VI}<48-GP zq}Qq*H5ajYAO_wP3jKIfC=7(e$o*ccvtVEr3fG=gp>P2_W`l<{UzInXv=Y_PpMRLd zx#3X!iBP7X1snQa3@LxgZe{GL-2P>)EPE=SR#rbntu)7-l*uCpwlqthqI=uJN^3H< zMklVT-Y}%Ck4>^JXKY&M$EHhAHqkPEQn@0;6E9)6Mn%*z2cJ@hV;>D zp?1LcgZPFG4GX;w6=h0~&^qFTMq&CrnqT`rR_zC49sR786swKZj`)n9-2bfARB(Wf z_*?A8FFU33@~hxq;nq4b~ zRJMNJ>Q;tI?6~BkSSwrYJ*|~(?>z;8+>ut|%lgqsxfJ|)(%y0EMaYaNbGMpenU@yq zngR}OHEo(rTTSJe5ziHHJc)bT)c&!qY%LJ-0PG=5!cRx^`Kcu?{L;$ua$IDh6|yNf zfu^Z=PaM$E@VN^5F~oFv^Nq?ALZJP!;y;t@4TA0=ZHvg>6RfIXov|ULmkuAul(~I6 z$h61yiS7&vaGRiPGSRAFJT22FTJu5%eo$CGUZQUOFbCtKHg&b1WYrIQ zgoBgb?cd#S$P<&S-a+c0`75)8@>FZF8Mf+w zpxV1f{ZJD|J4(wl&&HLLG1IMrY{PqPy7iD?B<0=d)-xfyK~E{4C6x_lB>;-}<+-t; z7hyM`_aW$dr;Kbkv9ydB;wcjL@_diCE5hb`&&i}$tgcL-b|!wG^cgExHkeo^+K;Xs z%=*c1Ua_2IIxrPz^(vR__krz_pipwjq|dSTP56`Rk_cfgiDh152aS5byG+#i$B689qtD#Ju)V2~l={{+W)u0q%7~ChV>JkPOMRYKj`C0i9eT zK^oy6wQ;tp2I8-O!y{&z-$%&bGOahmIB|I>d_a8G<+;{DQ*_i!<)j!{Rm*?6iG&>Xl2LLE<{A4<^+{S~;1;WZl=S zc4o)Z5_~&a&b;iYC%3(3^$PhOP;WLB<)F2dR$4XuTARMoN{!2-#HyP7X%(KDtg`ya zS@ToECH#6+ey|$Wj1y!|!@(Te4pD*FrDe(4(+X$ReBD}OgqQv>*BN{*`eU^W#J zI*Hw){cl*k42TqKtSupRKeU@sT3%jby&xDRNt&Fz)=Cy_86DDOX&JlDs+PC*#FsZ0 zmQSv;+K9BgD52}Efx$$byB-)1X7#nG;|^^IlfyPxgU!+(svfwx!CDzI)|MKfv}=!x zjoPoGwQt91u0IMUPiHmRWW^N{vl(MlJu|YBD#N@YZ|<~W0Q_ zryA2|X^pe2{^BbQXO?y~%X-NC)b6>Kd#!OHzx#R)pwx4Wpv0bI&5To`T!&^p+B+rs zie`bHL?iA|a>rZNKBJr*xeww=g)_NsfRVVeJiX7VX;hWJ?z8HM>a1`_Q_mwtWjXh4 zI~<#dXJ}#C7$HmTx9V5a>Zqt>K+2GSB5;V6An(2fAL}RVw@UbNBzK{QGCFZq7!fPT zM-N!-{Ay!cS?Ak)%Aib1bc{d$_QuLd2d!BKY*2Xz`f?a!Mk1Wq>ZvP6GbnlNF!}X6 zpoM_iJ;kKF6;EYbE%R2Km$%}9L!fj{F`!YEl=2?^|7+Blcfrhd$$5vZhr{=1WsZv#|H91qNKWc^tfS?|aszkW*(=R5SOSk#OU7YZ-CPEX=eWuLOgu+y8&G z{q!+wiE&#-yl+(v|5^*+6U_6zHA&pna3)y8 z6E8uDcT0;G6V&)m%gn8V(^;mmJ%;eRjwXV10_nA zHAfw+Svjw6sH}a(3X|dcCcwZl$J%K=1!dA|Af92($4Fp~&5;S^2X-|lf(mf|G!BMd z8&p<~{K#rifYF&x!ivV@vctzP&wiXSq!{-q0{8%H1c(NQX^dfV(siprR^M}0S3|62 zXgIJ8*$%Bt`q8W{cCr#2IGJ1R7VOV~Wm;!rh+~yLg-_g>7p>6yX@I#lN1pi2s_rKW zwcvDM3s$QZn8R{tm%A|}EA6t?!Z7dV$OcQT#^S$BWK#MaTjal#(m~{HSFM7)>8jQJ zjeO%8^zS!}6$xANY=F9N+v@%T)qP7;!E$>pp@)xk7!*TjI9Br|fwJ;$%7C&m@fSz} z9G&{9-C4VzQWy#9r#5GmrFA{a`stylPJ!C2a#rb`lcuKRsTqG(oi6yor+1n88GNY# zKe+pqyNlU12dB;UM(~F~)wvtNgSe%)Q;wv2DC&G+J?-bn#$-=x`Q;bZ&*7_dlOO=5 z^e>q#HfRvWzFP9kwjy=RRcB>VX0NWP%XMk4`%f!)jG^8h^Aqe4f9|&B6bChRdGogQ zXqh1Fya%v9R@SZ{pZy93v!@sebP8-_f1!NKnBaK0re9GG{M!0Re9F-7cJuT$ub-vm zeB-jb`8`CVAHK1Mh(7`={o-F~{CBW7d39B8UOub# zM&~2&s{Wp-A>PwxW!fJD5(KM+Nv5*7=&XF=eNWGBr%_P)P|yz<;XmyQ=IOV6QN+M7 zSX`ii7O2oaVl81UUG?bTM4A0UiFU%lq^1#A-4{#LHHUsA(~I`5Du%IAa)(DhB6l#x z${oL2aM@>kNU3m=XL&JT3_{73?-Z@n>V7W8_1Q}a)A5lW3&c%DQFsI%pk=d1$`FM6 z$u2)zKZ%*TjAr;D3qGWNZpurdnz66{>IQ|>VG`Tbw z6XJILUu`L!_5APFT0?M`N=)2PB^RW8|u(B`68>YXKFM}J_xP1 zr^$)(@d{6ulOJF9)Cjo^>Y};wLHXWa)=)n=$Vzfo2FyP{Qt9Gv#)K66hf=Ir>|=_Y z0cLV{V3&&0y7qglOuK!%*n(tFXeq4~d!g{)0*5ETk9UCf?0SBd09)c8mf24m4Mpvb z!D8$rF*nnbDrz7=IY(BG;b~xs2U!)+OsbjkvAWG9g%wOHN?*4Y8D= zk`=)&)JU1OJG`(Q^IeC+%&6@b?KmZLj_&iT74{YoW1MIYGIxnvEQF| zs=3$hhrO(T3~y!q+BJ+bpbJkGah4TQXFweA?~JReGyJ?dxr`@1N;f-74c&nuZqNv4 z3^7~w7#c4lE{4_@KQdm>dN^dUXs9qhE-b$EeD0EI6Ao?k`iu##X z$A0$12S6EFqP(Y_9~8X5nw%TysV6E1Q1z=u$Sq2FYLrGE3wrzZ#q+Te#gN4Rlgi4g zBEpY0I3HYs<1`Ax%q?#}#+LS6m6g8r^b&m-X>zLcbIPgGSwU`Rn#0ejy9GzEQVJlC zol`@vr_Yf`{jW}pQJn~ks1q3@zfPRVSWqX%Uo%2OptkBohNgOPR$0$(v78}MF9H|p zMP8kHF#urqB8O58-xm9HaXFR@>Wn>*sBR_lVQODCzW>@iq%I;s^E+*&v3BTUy)U$w!dDd)t zUZ(#A$*n0929sNLeZ2lm|tTG@ysPg=nSoX^5?*P{(RmBnqwm(&w>A;6%%Q0n{p!e!yP)Q`p9U!DlQ{{Ya!wP^*C7vGC@if{VO69v<4a2n4_;6q zzt;s?*YR_~mCZZ@3#c43<-)>67u0F^@W{bC#d8epzSZ-L z;s7s-?q~&m=kvFfJ-dX;B}2QElA9ZND#^6To}zL>YjC)gpsXK;!h7GZGbu<}D{N(L z4x+4jZ9TmUs4QcNtlbWVx=R>8Qr5vhWl39E^KE6-Pxed|XBpakE9*mBS@ZpsHSv+U zg=Jc~4n^dkl$w!pMft(yps|Jv z+Wk>X{=UCz6S z09W&(T6_F1S1WjvfC=diSCEV-bnrO3NdTT)q}*nW>R%xyNZR$5I4^1a=<&{;nW;f4 zWW0J`d3k_b*~PP7JjI#>Lp!yAlR8F2bB6){0=pt|OkYp59Gy|5lyqej86;oq?!m9L zv}QByqB=ITSo4;~3|Je2g4}bm>sVoq$1?&8=}ga*i)tTe5XrrhFG^U+Sww?`u=#oy z=n-|qouSaWj^UMa2Y9;0(6Ua$a9lh=uC%~&{^G(6m;-D{^E?PhWhLQAj1U4sUkf(dh&xk?W!hXSDv@PtHi?l5) zCIM^H32d?)npuwoHB9X5kuUW6_YEqtug5JNbqCj%&gGscY4wFc*x$Wj-$2AA5X5#F zZC_y;>TA~hm@{y{A~X7tEs@DoxwNps;C7;kW}|GZ$|Yqjl`fIBLTT!m;@7ZeD z#=&Z+MZY4KaM7wp-U7GEe?*7oQ) zatsRKnH_P7VUkfm0UZwfk`+)4K@2<>2qfV|<3RDiWl)%Hvxph;=OtKkYgVbPD8Wi7 zX#J^C@kn8G5M_8bqCveZD-H1^_^gUmQ&u%EuT?chUSw6RFOyaMImFW}b|VVUt!e>l z4Xqv1u(2Z(lu~`-O=kh;A$D(UeasUUmZHhRqF3&6-T)1jxSSW(7XcJ>HiB8X2Mv?q z!#x+pQ>-2>Ka9DomLJBj0$P56(;CI)67S%u=CsQ)+dH_Xn8B*h8pKPN)q3|l`NSws z6VV#W)l#=i-r%Vo)e`}vDf^%gFr(XwIkQz8Jl)Mrm*o$DA+`jv*kH5B%FANMC{NX( zEbfjP9BTrro3H_U;p>GOm>*u2>Cbp-i=05}AK28d5cP1@09dO}i>VO23ADb!n?UOu z0e~`cyECkm;80rMpre()GeL0G#IG7HZTvIF^PC?P#z<;?$s7eO!=(-HWn3eyCr9s% zE1dQ4Sl9w0DqaDF``iXsY|CF!y<46YkiwI$D1|p-1=ObvuBb^y8_)?H74YlS0FB#g zqQHYXmGeLgLe(36WZE;Zgx4>SO)r}bWDR8Vzg5o|;VL9!fsD_-!7@@rG%IZtJ|a>g^2#W99Viokd1{pu2hb1%Z|mebYj zFEI+i*?%<-k|syi23qDyu7Tp(oB7yfb^M_3Wwisp7Z@%c`)8pHL$G?qBAP{0UowOE zO$oK^RWNT#sO9h%CDd|PDWQh@4Y$;VH-D7uT0u^n191Vlgx3B3uq8i*huRYd_2 zML`TwRuME&6af_wC>Tg_1=mX^Ll< z4#Wh5Fl`J5VG|&RHy&ea%_vkw!F5C$jDi#mLuj+Hwgmsmn6miAzgEUGBudg7LbV2> z+2l)4(YxfiMNNeBGj$#cXT;-V_}qM<35z0bNE{7UtCxgC7(V|Izc76Mv+Jhe^K^%9 zQT+SyuzNIZS79Z7V+brL^WTGf7~FolzQkI~C$6R}wXR?hyMeG@T&=F4-ne=jAN7I5 zlb%wDU9VWDutthH23D;euUHL77Wj$7l-)AQB}H~xo7)LrRX8ZHs*&UUgd$D@*kT2i3kxm)7{EXWDuAsfco@J| z?Un&-6)7+Uur0e~0Q;PvU;u+xs)Yr!M+61q{Sy6q(4?4+J|-|}6q_#qbcq3MF^W;P zB8q8;_~{j}aeKtf>wuZpxd6N{k_F<0kqmfxBU$hs8OcKSfMBX8IQ6P~Fnm2MWWn(Di1>x!>ybS-4PQ0i zv(5~-X?q)y2X?vg7iPmYc!zb?C2Rpv4!Etcaa*FGo+jMR7tFjYPrq-S#%rwi?yy;w z?=j|SA1RJz6hTuiw+=C@oRg$0j#Fj*=K&6vZNM>j}w zgW2Id7|fpi5Q5oj0!o9~b3{J1>xSF;r%4g+y3H|HK0z?NyKd2hq({l3MZ!<`f(_Po z0e4^L>=6m(t>m^YN%-?p*a&H?yZUsGj@;|)%lUE4#;(TZ1$%rAG-A2SrRQ{cEpGEIm(3#dxTn z-7CkA8++y0fwJH*2tr^|DNp#1^;UA@!9lG0(Y-R2G~*$6<%9}T0}d%+j7-usy9?c{ zmcTRGh2sU@QA{RKG1zFec=>nWN)#K~`;WlWObjm-odTE zO}*>38e6ME=Au)PV9?4-?DcOgk9244u(sBjm57WB%#w;!#=rQ{+L_%?iVA+Q4q)R5 z02OjS|7xeTgAXDsU5B!n1W^(F`X}okUtDod6;;hi1xb0)FM%Xj;fKd9ze1jjpQsy5 zi2D5%eD9UQ#-Rigf>`;)$YhS0v)_>lATqsR3ROLsvtul~z}6yPRuD`sh3glDpy+H= z^%mo<5Oq4W%YB7##MSgA0l>*RLlbK%_c5+$0#96mQl2<_GXY|F-dj_CT=%FpeyhWk{;ncJ8pnUzJWbM=sYG6nVVlFq?= z{C+EEvk6Vq>eGf+pC$#U)oEiU*VkX&$LGD?JB5{zQdH|wvszb4wT95H&etyMofuiH zv})wd0#D3hBs_gKfy)Uu5E5>ci!4UKmYcw&nt2oWC&0l?;9m#{6!=H8z!g$pMg-<_ zj#yKP6DV=f2`FE50uvyHw>Sz%C={xUd4mXqoLkhg zWhY4{1!zu@R;;(#FEdfwl2X)8E575TXSb=-e(WH=mduH<)+U-Ut|0?AG$i5XW5_{- zkJpg!Js|68Ya%0+NHXe3Qbp)V2Og+>ijLYh0gPl+3PtU!WYnijq{^+C^(u-EwfhOh?rYy7&GA ztHmI8z{o@mg&&>?2IePKJ0K?pF$ZLR6777C>9*E<+6~yD@?@ai%13=bxG8$212Xxv z65%ffshW)hfUawF*g6om9B=UC>(+GmR!RPKYgcv`sfU|1xA?s-6sE0Yq2Jgq6Hu@2 zmkFr(ISm=VGN2ngd!WH(B}hJP%+tqI4PJP~Hq>H2U}T{>i72Q-tD(ZtfmJx<7Lwvn z%=-`U{H8D#-A@>z&Ze7nHptLfe{K!7rRl|A^Jju=_ppVe;%zJK1uu`3%C=nHqci+K z(Icgn>O8%Qtr0&}**3$n0aS$b4RbkcnjT*L0R-Ld%g*6ud+8x{3KWVdtD}i%=yDGj3Vm2A)Ms{47G)cFiyG964)P{9l?31P z{`*LcMH}IBhPU|HK@rg4`$Zv%wz_OH;f@+RVAj}1qdgykSl6v-S~Fff$<~=&A{8-B zb(a{mskfe26+Mc;Jk^8yWu7X`zE67cRAB>D%pfpNHNbdWylcNm9JBF?WZQzg00_79 zJ^`p>DDT%4I&t4r+rupTkct8@`!n`D+bgJdl5iVuA|TJ=e%5%Er^@;(7V?y*H{Vg$ z)`~d^98b-A!#fk6Z@P>lg?RW4g?RYg^N`#b4Ip@N-XXa&`dbFXKryHAO;{}m?+_JC z=z?FQ>a7kLCq1}dgei%O1rF{Uy>^IKl-Lq@ZbMtQgggPJj&LWTrFKU#WpyPf!rjp} z=E}Bu~^pFX<_Mp_lYLj9wC@GHsNX?Bp3)wxd3) z2TWQmY-xLt4JYiCT^$PQVLzwj){|`@X7u5ETG^gvQx#!(9P;R4nP@ZVu*z3u+>A9J zN+D^LFS*m}5jwyyUv(Wp#yBF7MZPMK6iGCEa64}$%U6dh$yC+fNiB4wuT(9}p9!FX z;)#c4^f}+&R^Q`D1W!8Bu)}`g=8hvCN2+>6I?|ta+1e*e6f#gpvJ#n9AOAnRnDX=_LP89%*H=_OCY}IUn2W#Ctz5NlnMbVxV z;1-3-R_%R69xC@GC}N*NFF1npRc#m_dylPUNL5j8?4k3V71nw+lLQ2HWu&VDH#|$G z+%O|%(h->v^RSu61cS#6_ z1;BLGKuy3M5ZVOX0WkrLWJC(Z9S}@c{elRB`%e@NH$O04l|o@uG}2Y?gqDeP)mBIR z(p8TUx@g`*hItQ>0#x`lL*X|_0UGs+REb{gC~iFcH;o(VnZN^$N_hwu!c5_mqf+&C zj;j8Ed}<$+i=AeY&wtlF;Uw}^2`8T&u8xF>cZbUY*mA3qR5Nc?_CIQDRSqO1P|m)F zob~|vz#U5EAxcX05Xufc!~`%rghG{vOeb=nhfp;15KLF4P?fGapHxOYV7e;BMGBa% zN}-DV8-zk&_L#0pD=P=xuN)N9Ra+d9>8hzmOa9okDN@AIa!ZKYon#5DjFeYL+ zj-m&ISU8Fv6u)p3J$MvHQAS2lUNGJ^oI3~FUiKeA?;Qlt>!f*LWten-dRMz13g}@x zXYp;0pWDwJfe*LWuvOtFXINigQO8s-z~rcKe)fJ_cRlo&%vfzk%5etO$Xl)wR(lS^ zp%Dkb9Qb0l7-Nr17|z!L=AExw2|*lZMFla=0!JKYS6bCLJMow?&dwsWkj+F@3&+{Z z{;Dbtfp_dgo@yt%EyFX;5D4j>yWcqh?eJ4cVZ0(oy-K0?Sc(p8(*f z4BAquUY7|ThV2W-0gTix3RPimDv<=k9!0~LiTSA%ij^_7Yu>+B#{5)TS;oxY z`d1d+oMfl&gT5rb^RNfuGCP&{7>SmoS9pS!=!qCDKNkXFwERN+!f5%$@qp3tqJN-# zeuC{Gwwts`21)^)Q{Y;PxYBRUS9V_9#2AsLSQX+2eA#aT5GRtPSpZSjDVr zaH$TjvBjT&CelS_wG%SZK`p$-7C`9Y6TILN+Zs=_A{a7S{RIAJidH#-4MwZ3Cq%SL zzHst$V{WvFQgH;D!`q;0wN@=3T`L-RON#l5P9+xMH+cr3M?a!T>vohoH$M* z&!YqnBhRE0GV)9!1*XU|_k@f*B?Lu89&HZKoMod)ri)K-Ed~x@1)@&`8YUogVE}9~ z0#UXYf!;eIBhdS1W^2sMK9$UZ6*IX)2*e9l2*49V(X-VvG;joQpY2yOmz`!V`y`hT z#l?t75&nF*b*3$z(I#O)G69T$M4>7m-Ek5WWq36PB#Nd25{0UO6!EW>F(A>(7?6?| z_p2=0ovYhV$T(Ce{%ho!5|1Nsi1@oFBou?Ei8vH>kB|f7P-pQA<4|XwvcOi~JZT%j z9nae42HX(4-S`5#*j4$G*|yhMAyJEpX+sp$(}3HKX~=W&k~+cs@$+F}{LEW*!ujk? zllrkqiW%;dS;n0-!q`kwf>Wu0{gu9(@H!=-a`DDBK|xq z{#e8d(07PGKZ`#sl55OfbGs)38{Odj?6(LNc?E#4M~n3#-n;YO^ND&)9Td z&`@&6_gazrX(0k~Z|3DbPW(ddm&GsS{+$p(a4*)ypIm4Wegh{L(h?gDy7P8ldY=~EuL>YD*hCUcOLM$ipt{FH@;0UU;M)Ry|wj}ABe&Wlw9E=ztABQy^A{ecyvd!OOO~+5n!k)Rq_(;2o3Vb^NWD zZJ)EOfMha}Oi(ch&9$#WQ$2(N95fa8;`vK$%`D)OeA?UL#)p5tT?)7I`gm#Q@$gq{ zd3gm2AbyF#evb8)XJz=gpGQNSHTVy&*fs_v{_rgm=VL>h+5GYQ3M%t2FFq2NB8b)zPR1&1Jzu-rmK(iJA&Or(XB&Hp7bN$K=XKwL zqttD@>@C}LwnO2ex(GqzlOXUpt$!i7Xr=8bxX1JKO51F9LY0!IAN6g z;rDE|Al8*IL@%uBw)NC|pXR6ju(e@*NvUu^z2G!{YfpOMu+#GE63hAY4{d#jAwwn0 zuI|Gh+A8UxgomfGu^VhF*aSiy8ha1lA2F{MZ~TdEvfkBb_D7%CzPHTuG`1^Ww$V1$ zM`lxF4bFZ_Fa6YZG<2!r=aFOmCR;IkL&1g8@8M%M+w%0KO7n62^k&-x%Lg7gmP(}) zdS;~?A3Y&*xIyXfYV140%M>kQ0valsk6F;Np}q@(w|iJawujV*@Y#vuE0lknmLECz zAA~l~H9#WzDLyv4pFLnKU3puv^d4UNm#w*cm9pxWwy8mupffO>jY)FqL1)}&|6?1k z>5b3GSlIN8x5sdF#fE2;D{8H{^?O?j%W|;m+2X_)p1;hN&6EGK-O5!62=XXcTT5Lb zO>{wB20x5(H4iOavx@-G7@u-RCLJZ6kx56RH$7O5?~b)!WJ5^Zl;3V?@$8jIAE?-1 zwn#iEVcXy?e9b;cborQPL$*tFud2Lc`Q;csWGA?C<(;$_n3W4Ex1an>|Ljir!kY%&fadj7Ck8x^sv83L7Qt15)p{ z_4b}(;iI=t`t}RvGybsU^Im`07HfapGOqimcE}QlAqtS@%hMt&Vww^|Q)1Z&yzm9fZ_8z^30I*at%ay*?4scOBNa8j9#G0JIl2 zmEt!#D?4G*wL3%j=0h;qDk4>HTS*Qt7at`RR_z$f-#ltN88jET@n0Rz7OaHuMK#Sa zt7)-R6NawrZM9#d3*h6Jm1rNT(#TwFPJlaaRTxtXAwzId2b5S>No7`}AbwwMtFcZVysO&Xi& z+cr3=Tv4rU-gE^O(@|XO-NsoZjy2PoI1>5P`wHTCtLu=#vOuvA^8}fg7#)Cd@%(e* zGbjn}mN#rqYiuQ{x0X5j=x?5r+xM@X6WjMu3k!q$u`On#PZbir-Say^D6eMkqyH=s zwAc7Fi+wITN6L}QsdMs)ygU9<-hvgO0FFbWcw8lWTUMQvo(;D@po?naJQRdWi5L*g z(<|FYu?7T75C=aC53#r6zgMvbYk3^W*7-}4eXEMSIqOI&2(nP2psKyQpo-_VMWK$7 zYzRR@ssoTJD<*IxJ-{Hn_vzXV*<@0RqzCwtPGj~NY#u>E($7iKuM#+tehx`TFPhHk zv3E!zQhv^t@|Xz6G`5u>A>}Pn6{Bk?Rcs+d_Yr&~y2VR$-kg5X{92?Vj^|aeMDh;# zj<)OyK}YfzrQp^6Hd*l^)kzE~MJ5-$OiIe$F=jYu?q2PqI41YmZf5bYTWln;Hw5$;GRc zf_ZYRJvL0#lY73ag*1zJ*I0XY!h8Xx!SQj@-KU1laZay)n zO1NCZy+??P9Uu3lc>6?+eNMo*`1?!%P+()*##AxNeJRm?*1{LpLAN#4F?JYCb)wzl zQ|)HE6C^3!AguVRDdiF6sEX0_T z;D<}sNb`RIm?8c^9@AH^lU;(e;)9-XOt*In7zK#Jb@JP>( z1!NXB(;qm`Gq(UEYN3!APAMpzinx6$o@m1DAZ>>ua$j+4>p>tx>V3GQLl@HtT!a4Y4s`jVVwLER{YVnku)6zy%)-(RNT!u2g=SyLm@@VGt`LoKg8p z4dpK-1t>J$M*rY~yp8TArKtRMCV};GseE*{v(?7eA^o_4lo&W+tnlNM@9b2KU+ZeG zqy5HHx`RocIU9r=VX8{cPr5=ik z9du!Ldo~Nb=v6ZpCfA`A=tC48qY(iZ(deBXFb=Uggn}57l2qSG@F>R119s%_P+>?< z`+V4@JJS?_;0CMiV%)FYIgYz-AJtU~d65zN4gdoDaTY~YzEESW z2z`tc%`eF?-JBGtNYU+*j1=8TsfZMMmrG=-)bEm-QJA7cniLMWhzAZB<$^tTBq5AF z7cgYcrKsqM8(sER>~VsR9RVm~&!yhUT`%boi5HNMzMjlzcCh&CJP9y9y z_2rlN*`D@zzWrKW5I;7;p2prLw1hCBD*)gbZtc8agguKt+vFq0Hx|Q6QxtlpeWtF` zRC0dflI*IlUBa%)*F9h#u77K=Z8OrI#dZ)Hf}{35-#XGhn0-&+Cfdy;?Qaxq(GAJa zV=(v8m-q;uo-V6+hMMCK+CSA;)qhkggac_o{OrT_1QtZ#;6GjUgn#(i27OXl5-C8} ziTj7RPQ!nc>!fsZ)Ft!m=2Gw=zV=ZQee|3Tgf4mxNFXl@m_$kC+sD_g#<#U~q*!_Z z&Y8ubby*)$8>PypQVo?-!9bKU!QP0(RF6#mNT;KmaLPdeICa=I!Jgx*8xhJ%#%E=* zDMSR()qT)JW%r4R_E60SEM@?@_7A#=G5_LUOt$~P$_Ozu%Tj5Ur38*<`M@xXn-rh| z)=>qN-`p%MrCF9rvrzhImR|^6ITU-$LQ&TacHE~Qhju(^uggx7Dk#cPD#}H#EkYl+ zHzc<32x8cRl1E!m0NUc(Tzfr6p*XCBOoeD3by;~e+Jd5C3ex zWDlXD2vcZJ^1V-ja-JeJP?9I8BqdT3=oKbQc;vV&dj+MAmY@J-2?|9^TzU$o8t)Pj z&=M3)S%N~*5-l#%PT_uOmc4_8aF8nCubZ2qy)?x( zX$ndoO;PQN@-H+6U`SI?R1k#*tHditu&PaJqg3%%h=Vk`f)3&ztUNLqW}%$WEEJ&3 zLZN7up3mFcuzQIJXcmeF)M9!5`l1L%p-|bz2L88t$n<&%^gmh;2m8G1_I~UEQdx|4 zK4?%m%LgE5%a3$v%pUufdNI89d>FndQ}m&4eSC;#F0gN9uMt}4La*?Gh0xnxA#ik| z^;cwX{*V-)vEHY~+9HjG3o6riceiw*S9mx#(MK2hmC!{O0tuuGQBg3kp12|d>nTzN zML9-Ax#aa5Q+M_Vaz%D$N*?`&0?>qUi|u`U6oRIBd9gi%MPF5pk0$i1-1%jDoKNNO zkDT@R_9r_xVh#VbGG;+jl4!@5q5W{pQfuUf4GN3KdJsCohI-ela?;zC6o3(%@Z|oX zNxJo_eBH}VN>P2ou99vy>Z+&PrGIR%PsXKOX-D9JQ(npg44KNqJ`2fUGYD;AO|2{6 zQEHE86dRRI0jTWS{q9clLBpuw-Hgy*y~;Od!%Vr1a1gr@`cfjjW!2T2?L_2w#P=G` z*omN$pqe{_o>0wv$1-~xUfQl&uvQ=UhvpYvufor)3T2`sSC2T)Q(o$0XZwgqxbd0s z6nt}bkAQl1KJjMN?uX;IS+0SE6|dD!VK+!EG{Y66A!GgykI=5E(Xn9A19$2dL8#%w z64*sj3pxe7I%5fMpr>4u>zO*&yshI%v-UM&+Gdg{Y&k9ZU_f(05-mwdqSC`2kI&HW zxyH*E4@+V95|W^Ac+jkVQd7MnrCR{pm-cG`k$U_=Uy~hTEh$BB7Pe0n;Kq%%oA3S99?NzUIFN*w4tb4W(kFXJ5q`hMcf2<=ikHlEbYTCG zIyuuEc_F_G0IKY>zxmj8LlYP6i;3XfH`~{<;Ooj?#Hx|Bu8SmH<+`!Sv$Wh^q$ggN zYsHi;u-lYMD&wN9Hs7!XB4%v@7kVJ_c9TTouVW9>Yh9NM!XH1gf1&3Zv|ou_Uzu15;(RB zx2V<=sKC}suge`Wif&?Wc*PRMUM!9M%}@mp8uw|<*Sr}Utb-4&ojovzU>Rh7fj;!j zfJk@GZT8AKJ7t#V7!di?UW*+g1t5=~tM-yQIdq-4YNZ>>{m@kp2_nQ*o4I3uw2#nO zG(p74+v=UL*O)}0V)CX%bL&s`PX5>%ezr&QLqEZ0MTV)09(_XwK|c;qr!&hnp#z7( zzt~~3oxo8ZR9plbogtc!`VA(Il!3{*`BITJZ-}sI z7!R~+GM=GskMXwu4jqEMVB)6Fy&;V^mlOmt-Vn+2*&D=oD@YwQ-m?Ngj3?quxO@K| zduxq-OpsAw_g26}cng7|u0G}$E9|Fzutn?1?nz%MiJKSfw|}kgxgq0Ge&|P?*a1Qf zby>lGIsjYG6$Gw2)&&B^j#Y6(b}Wi+QvE>5d>3d>p9J0Ig=sWmX%Q$$> z>ae{Vi@&3?cTY?ZuU-oPo*lHTwtV`svC%x?usw+nJ82JPqVy(PXoDon$UAs}%b{4- zI|@5@?F^P*9<}#k*@T8*8G09C*^_6yZ|}*!KW4Aa1pFq<21{ml`Z9Bu9=Ato%th*< zdTqS=N&8S{BXEa9dzbJ0zjO(nS1^@dw-2>C5Y(AySSq> z`<_6BBkNo5;3uxxTl%1*@8JS)FF{9DZsp&cx9{@7HmP!$6#6rG9X)nL8=mn-jcPiy zAajO;hHRs09!-6E(Oy$$A)3+$YO1PcXbOJ(S4}x3(;!W1>Wj+|-|CP$sHq?Upqk=S zw>v7i=U%awXe^6hD|NLeQ0(_v{P;DP+f!_%tvrH_+REbBufsam4|{v{hl2Q;4kPQc zLjNkeZrE@5R52;oA={d%5d}lTO$s(N0t!Zl&0uYUBXL%TnI2t?eg%^|?d2Ms^%9sE zukM|rPrW8DtwwOo;>cw*a{{C=K8i;YT09AK#q;@Eiz7dJm1qv$8GKv(!aIX+gP_%% z^%z_-F}^`u0MCv(hx64zj<-We)*c8`@8CRJqFh-qu@qe@e)!E`MfCktR!&c^P<7$LsEczpn&qZ8tI598F4!ZI@146(%(bi zNdG&kos*;#nLsIJ0vU0=S!IjKdb))d)O56Dk)!}=Ljme2l@uUZD4=9T_8Y$v=T*Ai z+Mw8#R78qUfVRZMxBjFQ$wH|htM3!B&sh*1*jxG9;NgCWZ$E?A`X#=R`ZDqD6AfM> zaP|ok*fQO1rjX%hel^k2H32$;Z@Sy3sw=o5-L0+0W)qPy%PslW#9PjC!_K-m*%88K zDYEXh$&P4^EmjbI_9@5v>@@$7YV*yF94+;k;9G5-O=|kHu<&^qjyNA4xLZbBg}Y^E>N-35prK*z zBHV>xd@!&cZY)x2xZ|}G`UuP}wH-X=UPs#cW)6qOY=jnScxaH+@K92K+eN5=iG~6u zlTuW`c%^^{pXL({8y`{_%1bgF@r*LS)>8ns0u!DnH049^kt1o&Ojb(xi^+lyHBos{ zbH|%LK$vLcv-ke38qd4i*~+ILwq5N{ZUqIb9oLF|MJVC^#ND4sYu6hl)_?A(e z%EBv|Ts0Iv*W>LC@o;q&dV}!Qf`5wZ5nnYj2Z4U(%Om3%rH>o>nS`#`0@j5j_YQ~s zKwnA7kr3o@o^9)>&+a8v(Rn&jkqV?p&_U1iaWo?C?Z4`qYyLjmYMg*_ZieWbz8 zGnz2R&f`}PI}e4THU9Rs#+43^Gi(8&h1Mv6hYUn`Dj@}EjkgSItRw~4^fzhK-@mCf zBIFzZ=%Y0#eYD0mgf3b`NFuC3G4XU|cO^b`cX3^|m()N>;9J4UFW^BoBT8C3IT{kT zP=a6xqvX*F6rij?p=gDwm6cbb6(|PQLn}}yTH!g^gvCDLh7gvZv1Wu0TA)#7X@N$h z04c4(vpP2MoPsh(} zE1`up*kagV3n@Sw{BGFbPf~zQ|CKcT&`oV%WSIhav;ifLHn>X2q78%~!Uhx*1R){G z5>}eqC67&L-i`8KO|J~^al}?NPkc=p*<)kv7y+c z61r#$A&IaB#l-%wqKfPft4Ix$WI2`O1Fr#09YP6$2B75802H7MK%r=W9|?Cf0L4%S zpip4|ctIuK<;ay&s&sdyLPr&iT_Uv53V$0`_?r}f6^sMhkg8mp=tyPNtC~D8xT^9% zIJ4OCfTN|HQG9H#OI$EXngW=hDJT;#g>hn=Mu?+5038)Z(NSR(fDIq%aAY$IMTK=C z1W{oWLn(|xQDJ9MVfqdW*IE_l=-*p-PIqUHzR|)fwio4CK86`n%6Q$z9wqeEl3}ud zk|je+j;F1Qs#cb#tuK;V=tK*s4qrnZLQu^qcC^z=s={rP;R&pS)bXCRY9GTh1Ynd; zNFfsZkP_UA1V#7Ay!=3OK@m+rDPp|Y`$LmVttu}s9-YGW5{l}i^-n_9atxZ2IS}?M zfN=T!a4Zaj=Vgt8(VW)xp0&;)P&{jWrm9rxTSlEO+lQ zj(tHa%Z!bOtr^v1NXa0jUT4<2ESl)3!@7|&p*5{DpZ>Cg+>6lq@QR7VoyjyWMY?ka z?>Wg~W0Z?nY$mChw1L=E@sg*lX}sTL$7S}Yg5zPUWl}X`KNNm=S8up6hsUjoa9t?@ zT-`1gJI8q3`U0tg`=R3m0G0NVg^%qrGL3&d%`ua`PVlgwtReu>PxRNT@sy3OI3G;W zGNJ-QfKs8fHh6BQjpG?J9J&5DW8B*xgVikig|NZh-yc1#g&+U5wZ`p)ZM3zgNF8kL zHUaQ&?G1v5t*sKQm|<&g7_Ft4rq&t)KvIjhwcE_CHE_moXl=B6@eHv!(1P&7CZ`7* z28JL1waJa8ftv&q19u~Ju*ppXz`x0Z2_81tP5{{C!NJnN6jL;rglt2A0l{P!8l(}s z(8RhQTQ zz#U;)#iU^)Z~T3#VQ9KZ!-h`AxWg7WAmOqGQz}H|GG=%b{P?fR&63Kk!pIRyeNqRN zTSWkfa?^Mf?pVQE6FjBcy9re2R%^{4d(n~UgN^=IU_#VeGwFYnu1PyBq_|n|ScvzS z31l~E$7s|T(HY?^N*sbdXlxTY(UrJFFd- z%qK2!z_y2WY>`I#k-yV+9G9K6=L807NqS1f0I`Y>m67{Y76;>aaE zs+DXJXMA2nQFdgpisnYid~9n@;>ksE76Kya)>Sn+Nj& z36I3{9}8JKEHp%Q0dYQ{R|}Dw`0=Cwx7?v1{P2VA zg9#ir+X0T7?Uh1!*&0_A&n{^=geSbEHt{M>B=JZfux0`t3H$@9^*a(E_2rSk9)?E(wFI_2 z5-1lki2vdT$$9v-BPo3QJC5)Kuz>IRK!pGp8_(i8yj#8?^d)Ho9ugELhuq>J!C?Nt z8b@{ZIiZO6-xseD`z=2cFy3YVNdV~Hzo}xBJNrF{9liy6^NN*ZkMyh9%;if%jaF3Mj&Cf>Mcb*WT2!X!kpxIC{cmHo^!ac?SZ(kl%_& zZF02sK{Row?yoyMa2Y~Kc_;d8pn&24birM=+3}=>O(J->R2>&8XZPbsfmp)eH&teb za%&q`WA+>=#6{6Fp(;jeoL77S#~w}@D4&7*TNtXu7xQ&u7xQ8*R+!+Ijuf|gG(BB`HvH- zV)8)I-1EM1KqfaOhZes^>IjSbU?9WqzjZwC1I0do{#>KF@@F$cj+NVe?`Y#w867<3 zU+X!yIePlk!@Z_4p>pqUl)GTNW3R?K6FTTSxz(lb7M?ayC}=vLEg}R_$rJzF2BL!FBE`={g!a> zlQpHKGsC9}+VpN+YV5PEB(&8?v0OmqNWo#GsK4mRM=n{us8N}()!U}BFG(G>h4mR}yJZL9 z;ue+|2DXfDr*8sfh~2hLq%LZ;^pTvFI$+OhRj)2PPD;^-4ilpKdFex1IWIfmxJ!^k zkMSd!J*QHZB{a;SStHEkmn=;AB|N{IbIQ?@ki?BPN)m=#<5I&0A{}nDeON#p!paN;0ydl3Cqdd^}VA0-~l@j8@_cRypciFMfA6w1K-t({W z=@rLZpDJP=L#76XEVeKVNBXcZ9v(h6${lvi0pF4TmC!?FqH1;;s@X|ORZu!%=;jnD zMco{uy18^S-55DnKwIjDGEusz9R~%)>1|~u?q_oqO|sApz^VATaJtZ4M(SZATq#e9gshPF2wW^7wNjoL;cU+~ z6F9CQOT%#msV(7|HJ#D8%w@k3BqaJ166K>JoSv8cw4Wrs^8{7UtMwBACfJ#BO0uuTyd`W#=_-Ydu#W?$h30%4C9UufK;m#Om#{@8e?@D*F0Fad~S5LtXC4$S8 zxS&?IxY`}bOOqXy*`Y)Q z30%ZNT(xb9kgK-ONudaZ@M-j%Mow}lqkkVE=V$}KL&VZe$!@%!zY<7^rJI?L%#J%0 zA;+U5W=03hjLu0$aC*9?t+Q!BJ~+9fd~k9{0XVtC3^@ul*(t21awA+}QCy^8tM5$n zX^@(CrIN}x@A9ksU;~Jx6p9n^tbeUn*3jA6ryib-E*E;r)t7;G){RVauWRJIM`r^G zF`SL}ttsaOeMx~D_(s)~Mi@;>ao~HPrkeHW55qfLA`4O)AVL}1NV4k7%iBR76J>$= zrvNp%rcjlm$B6`}J&GnOFJF)jFXK@ts6L;q__um8NsrdU=Bp*wM$mzno^K+QaC*Lh z>fq~|I6Vg)+fWAOEu1rbBt<*#A@u!Pi1Ttv0~cJqfGI4vyf#j3<$ObD zL6OQ!(Z+W~N*mun3Y3j&MM@jTky5mAbR@BH-AHO<(#eb*BH)43XUan@xY`ohxZnbG z?2{B7eS!j%Pf)1xi9UoXYK)>myGI%4$Im0YzD#yKb}gjObk0o=o`q6h0G z5psR;T!gV|+eYZCG2>eSC1XZQ9`@uTM=Zx8jdj}zQcJDdj*#|SE&wjB+r$_k)@=ts zA!6NjfYe3J;v%bhl(EPPi&7qpgG&e>+uLcR)x|}5$Cb?IN3<6-(enb+Z0@0%Wu}=y zXm;?Yi7Pis69!;o<+hhdFIH~wC}nnc2({lvD#hZ$Z8YJj6gyHtsbbxq^l&cIv}d@r zr?Z&NHCMs~%IqlFhi8*g)rVh;l6`m?DMiJVl19EO8|fdWjjhz#Ja3@0CG+F3W}tJ7 zz7;rNsxsjq93H+psZ8@j6#9FRn2YhS&BLO3NFV2&Bv^PjMae@&%1X>{$k1V6J}syl zZ)`s4PVVc}b#|4ApjL2~3^j{8@ilEG~->- z!Dl%{eSD&2n!`slqf3p95C_l3 zu`8MOdlrJQJd^9s4MIp3_f^E)Of!3hE*_`XyPrj{f%(u6k z+OCHJdN|LScUw!)d&EZ|BKaE*r;8m>)a7C{zxC91kqYQxS-hV=?{w~GmsJtoD$_4S z<6SoW9DEDTb9l-kVpQM2Rb_R4wg{H0$pnsTzUnb@&6h?BaLoq=c-rY9i}$teC0Izd zqa@pxz>#dn7bKGIUX{R>tI2sn zhC_VzC}-=0{Q`=MF2nD>SNu6XBaYw3;6!X(NWQwd^(`(W4O^cW?F?lL2w7a=y-fgW zP+1|MIH>H0ZX&Kfi4`8-yS9IjyI`#I9gTfS>fyBTvluy~d`1dH#Kh}QfAAgSoK4s+ zQicP{Z@g@_&ob|Dj2w>Vfm4WO-W#F@YO9LurN9Q4d1f|pnRg>b24<}mR3n$5;4vE$ zBUa1H2oG}tF~T_|WrTA|3cxuf9=uT~%nFTzw?;$`oNG}uto-g|=L?KN@$ju3sfSBL zih=d;4g!VZDs8i9W*eU0OAFRF#_)NW!_(aT9(CTSu|h%-m*qqFyqT~pA41@2fEy1f zz2Y+2L{f^g_=jqd0dAVF4kMHfjb+LZUhuSuhnmGNBD8T9KctqN#Z!?`;}n36$MY}> z#d-J|LJ*ZrF)F4xyZSU1s-*HU&Y-qz%YUnf{6d~^_VuZZM%qd0p^+#*Wh4s4+4R6# za-C%ui0|$12;-0T&JN{$7T8~B{}8fhsq@lO=LsAv)m0CTm3i_tVtt)mXR*Xcv9Vr9 z7uTqWk&FX+c-USTiIP`FN+-0@NaqbBQFJsC1z_Xx?J^2QjpN&8T?tjR6h*_z_;wkE zs<+Dq|7&IJ8?-X2{hU%eE@D0weI-|45hJJBZ^jtwm$`(#iiooX)Dsa4o*VJGWksy9 zzF0*nU?*8l_5Xp=KQ1s{kL6_-5k#0UaRtbdj{(S^f3ABd_1R*-h z-FTie+`_Jyv2ntG5x9!mUl&QK>h3k-WOombGkH>I9Py<1IIkz+agFNk#sU(T-#%}~PdC^%%XI%+FWP|J50s=)gUEShTukbzuHBzXQS z&iv?Sg-kd-oGpIg^l*0EO`cE4d)4_up!s2gQfC=kMp~!NC`uL7!+Or5+nONeh;Lmb z@wNwt#`0@r&VFp2VnL290x&LqFU~l!D2%dK=4r1xllZZ^31Qsx-)Zb?LJJQBzKD}E z$a4I*Enl-eEG9ZI?SK=r4}hTG#EjIJ6SJ4&x1vC|;q7Q9!>6Z4gQH6ce1J2Ve73n_K*1q+yIzE1V(hA0mJ_58%J9 zaE@n*L<&rPOAr8@I0eax6RlUi()pC05ig$$Ds(#=vzDYjcADn=$SP+ZYfj*z&qOG? z#s^~3c-h;|+~_6>(c^)|ke(U-QE@zve8<^Q?`yCd|Bf?@4N}3KE583 z9Vry!FuK$=B8M=54;og!I-G_3Kw&esAFGj|%-~lKq%a=DrA%RRkjGN~TRof|e<&1T zY+Ejmm!s^mcw^Y_M5-&h?@u6ONuleJ9(b8*Y=J+{QSWp&VO%2BxF{bPSb!yY9xmVqt*!h2@uyILVFfaYW8RkOBF&mm9B&{XF?^v3i8c2Ud&)zsc)j>FT1dxVACuTn9}S;dZ#3vmzNbOe zTil1hkK0!*ki(JB^H3r#PZ3{J!;iClA|9H-*J}2NlyXc`pD2#p@znlXv0Z|DE-#Cb z5C(Z(u`G3JRiRQKvx94|4(!7BzMB}thkfU4z+6IasOmyK?>lE+o?QXNFVVT@jKAf% z()=9@|aL z$<|ch>Y-EyIKkN&XA7vIuWnyM?Rn`Zu3CK9E=X-jKF~bU-SKDVm%6?okxySb#%0+6 ztxj2+V #uNv&$`t@uSlCle?YYvPgktI6F8*4<2&bc}sInf6=sXK7B8&mw})4xluX# z4aHabLg+4Hpjmg#u_;OwA^+f*6AH$pTjDK7W_?qL+`2UgT%{8<)mk5H|d(W)B*;0G6 z+@QUV@E#?p@W0mFXHs*sd^Lw3q<4RM#u=prodoW@Z2j<9e&#I9j879`P>sjUYWxS) zs9on*&pAi`k92p~(A{Ce9d*ZQn|kd5sk;gue%|>3t1XIEcg>4fC%Qe2-!T8W0G+Nv zDFDx-O8!$bScEnBPX-_JTdg?#!$dxI@9=x|_n})Z8+BilPtY}{u|yL>y3_apljhph7wvFF*WW#OmZ{PQ>x&8yCg$z_h_%JyrE|X`xTq$0EvbOhJsuoY*VhtC0kG1&s znyWJ3d!z&7r7f~5^JlKZ`N%Re9Z00~q0?@3GG9DGtHJ9ZgikPiVn+Ya7d`yQg9!_V zxvcC*GvYR1L^wBV&Pz2{e|FrAdDs^d&#VF~L~f0|eLNdKf*Z$^PdKaa8t=P;Et5f6 z$q&RPGg6UfHg%=yLu-pYkxc&TCNi!?gh2&ki=WjXX#WP|%WoV0u zEN>-aet}*q8B(c73`ta?7@I$YVItr0pW-whX5e6XT3asR$2N4GCu;v1sVSSe@x2?Y;rKr}z0|V1Qf|c`Ez}rL_(XIxpMv8KMY)A5LSc}sNNG9pt zM;ty-VHmwm3b)p9<+FN(h}SZDN(z~erl;J@G{!4_gr#8`0ug<`CpC;446{mO0|;Yf zg+3|L3Vleau)?CT?W^%$6I>0nk&6;tP1%E_+-nKFn2J3)Med8#;>k&_^ay1M;|QS- z9D%zM80B<#Pf##^+GQ@GFLk>Md<3LJXs@d!j1?;{_wXt$S_Wes9)`H=;ag^t!j&lgbgHYm4;|52^a8M| zxbr4Eio39m>u!zhG1JAa@rPlQKS(Kd4ZP9#SBgB*IZsNJNzPJ}+>j>m^bTSZBN_7# zX%osw*(55}?C-)RARO9+)G=&AAf!W4C>kc&F+7W<`_UGCiQ-~k+U6MkkPj65QpZ%; zm+m1%ynPAw+jgWI5m)QU3!1pH0t7kZRERKywNKHA`aaCiZof*q>AjNiN*j zmql5k{NxQMwPB9lm51H0Rf44lU=S&1q$(+K7xH&fO-cESNy;qu#^$c=LF_LxHl945 zPL;vqG%3a4@mf&2UZsxQc&t`Od6BnudZjuf;MJ_-ZJyY)CT?mZq@CuQ?sU~=l#iH$ zC#e`?ARbqeh;5LZyApUt&9UL`C)&DZ2C-H|6d7d12X7P++qCUhj-x{?sg5- zy7TZ{R|3ZZMAMYzU z;F7Q&%ppC)ppwqBd%1EW(C=|Z9Pd$W?bpC<*Yt92XT6D}5Fzr&T+g@!O}mYe6$y9v zv?Hb<@{0^2dOMi9iMxDs+6}SN*ixqp2NLtd6E@LL2vKlLeTMjjTk13F;+A?yp;&_A zoAY*9{l-05#7FjXeQsLO7QUU=&ON!mtCGf+kY+((F_yG1DyVl!yXAkeq@DK6iMo7S z4|ve^KLcG8*eb<`tY!mnFJ4*KSj|=pa(&9mNj6a7v{E+f^eG)3-H3+E>bZ4 zZPx?ZM!sg4tGoVDUGLI&2wytX6|5Co0ZLY8;9R_w}61Q+sMoG(;9VJyyZr}G+- zANT9dOiZ}F#kt4pLqaYq+H!I3{&1uVlI%n3D=)+7!UTY>&i!igrAD(aQ&Z_JeGagO`e+0H74edu#YD@+*;0u@dg3n1( zrW$jUHs+$YF*p@eIyF)ne{@%w>DmKdDJGuv23DR;w~S#8)7h{1R9xi$c#ZWnyZ~>X%ZcQSJeYT&*;?P6S+gv9C#OFGFpsyWNYfrf`5kN=>wl zTQOTG?P%U)G3=Ebl@02YoYk3~A{4yzLyrU0)1WClXR+%sp0LCf$^`r-Z86@{IqbvF zeR7Fwmc}9*s%l;)@Xp4zS6q`=7%7AWw2jp#0ErE2XFaT;3`-Q<)MUe_LmJ8?r_#!h&{D zHSg5FHDc5TpBM%4Dwola>YZ{%(cus@X~a_N8?OB5*+K}Man2FHaK<^O;mu~8!`^g# zYMOE48H!`M>mYlBv`0-i%M{c*;oNll6HYt-=44h)zI+7)=Jyo~GS>{ixOiPdW3Jhu z#pcR<frl$jB}_{<_?q`>apQD<$Q7LyQ}2nO?=*}bBai!-}4_s9=iGc9ZhX%SBCk`jwPUv{`!!RRTt-vCw#z-4k)rb#0;u_9Yky4xLnH{Z5#J>DD{}FuDy%`#6~CVn-+ZO%GEO(V~h3Q8p%aIHIp~uMpHK>O~*z4 zt3q51xuxP4hTPJ|Hw(ElzjnPBAmq9q|Hc)ev5$P4ZY=UYP*88o{pj{%ZhM|y<7gcJ z{##cu`%1AOF*g9?;xEBW_+D+#yvmjNp6^`WvE8IHM#$eAW8mexx2XsTFpQ9w2{Ohi zD8QKeGq3p7h`D^_4sR5P1L~ANA^4><0p*hAJ-{n|fz7^j0!Ml^n)uMej}~?zNEkUg zHNhpmW-uMo;K5<6kRV~$9fF+s>Yu!=(1u8+QwSwo0Y^O5iw}Y?bs55jfJ@O6f&&ynuRxAR*B!l4xjClcui- zqA`o6vwAF^lp*0OlCb_WbV>1TzrZeY^O5Eoa3>sTNJTl)tZ5u@q=5>?NYhowBL3?c zX&_1eJ69~PdO0jI5!}>wqq#0U2AXzr{&zhqsZq-+e08Uml|#BK zF2>-qt->{#4OL*7^?1Jk(9Hy&ikU4(rt=f~T=!YVHm%HaI=6(UOidJODhkGnzoVPt z^f!8>!t?}@;`^K8wFbBAfY?ZWR$-ttgqE>6@sy+$6POlW8^}-elfb79n7N4~?^}eO zcjVQU@%xXsMzCe15C`6mDM0K?ENdzk02C8PUd7+o`XKz}$ongydYb2mjHaE!jxz6q}6=yh0q3%EzU;8&^q&C9O!>;noFv$|3q9#qt3e(A+v(sJW&z>;QiJ^2!d zBo4OhS6wUh9fnAaufb;B&x9QMm&lw5{qZIu3Am3)U9P)6VMi!bi1cG1kqqr@^A%|! zD|%TEN<$?r{H&-StCpr%D1j;iG?0!2oCx#{i>Cn5_bR91^3|jtBk@5`lUqG634t>g zJqS1F3M*BOju5>7Lz|(;Ma|T*TYFL<=MrTbEt}p9SKX25L`H4dJHVIlyU=X`11_7w zrxAq7_?RuVndo@pz=n2wHJ76U0f;1f6--#ffz5-Wr8t)xEq>u#ZgiTw13?aK!~m62 zsbTSS5Mt2NEjvYHnMW>z=6D!p%7^D@9LpH(zYEBvNoNW_J0hH?$MmYo55yF`s5eMoSTQo4HA+{WGJQ%>7EgXBCWDtH7qzST zb`Us7wTGN8$LLYk5f3gXZjml8DlCaDntSVNGup5%u_#GP;b-ECTCx-(gf@S8UPNaB zpvFxSB4zS5SvAA;_;h(K!I4nZm*?*u9?IdDjSV71z(xB1ZzSxm7;Eu7GpPtZ_L7d* z6Zo)0xxwx)lZu*XLDPXZFFRS(p3NXqpgza6OuLyrpG)WEPZl@VJEhCK`!%(T8t^G8 zMYoW5Z*mZ!T+5^22xXo6)MN0&8x26cJ;TNSsdnM=saLxb4DDL$6rE%1NKMi0Y8L-v z?sjWbU2Os?2tL{edTPT(Cb_1G-Rfd{6zNQd7Um zzG7?Z-rAsOfyS;7xj@Utvizcg3Mnzbt-kdDXT+h_JiBaVBoCYOXe=N4e)nt^oT1by znTtg70L+W4Wyqzu`|(pn{WO+LD(0Lk>Z2!Q$VD$GtX)y`!ouKwtc@8b%Lj+AIa~A; z%QqoGmQY!G5q!a!z;|2)2Hl~u_=3zxQc!We=mAlHYkbL>_sA@Av6%!(h^I}LROb^o zQk|YbJ}zHIN|7{_QqpTK6czIgSw+F{!U0lUFR6Y->LJzjNcDd9GbuoVP(TSTp59|H zJ57*~>T#sXceh4HNbqGdQy?^z&?jiu95*3BCDzPcatQ#gTRsKCP{P;fg{mP zzC@Si7WHA52oe(gTN16@Tv-5#{wzwD z6i0~M8(m%H{f1=tl_o7nS(T@Nz2O6W z8d0jslLv}mdv?HHDfaGnc6RS}KA*dj-%s8@^afiyV zWoTuhWnu{c*7f@?MKvrxHQBuf?&Kh~qkZ*v6KhG4FtSm~QwrVlZ6wg1{n+gUQ8XnW z_MYk<5Q_LnC}P`b?)PknVCCE-t(c0^5c$hjPIotQu@i(B3XV4oogq+^`2;WUxYygT zv5Oqdt1!^`h!=X@ZP_P;2wI@+ju+!Q86RK+)C^h7U+w_g$3NrS@!2s})0$dPm4gSd zc-+5-_O;b0bczo_eO}Zc&w5`T6(7xepN*@;h@w3IpPqs6;Jm=%rN6X}3;Nq4zx#y2 z(mLu+p#3eSqx82FQYstv)X;;hGl2^Gn1GI#>r!+WGxJyu!4$)#z{DrHDJGb5urZ1E zEODo?DTE;C$L0j!5AQLCjxyek=*UKUzM`e4DRE_WHX5o!SEkkBAmacea@Sn#j=?cP-1)~BoE!QxJ50pTP4+b0EIYV3DVh}KFLdXauXL1Q&euqR zw(OZmmVIAZR*c^m^3)orH;|z|Z1blH-?+u@;p{sCz%~a=Yy^sljo<(z@-rU}EnyUj zjgYy=&vsnOOy=i1dHR~wGkB{+Z+8}-p&b|WnQm6ih~Oki8Td&Rwnn?Vr)AgIx~Mbf zq)HL6DC=C;CWRie%XNE*F&maRJEO{u>M3IY?bt39%f{y2s9}a{iwX*N;f?I zI);F;BlQ6tcKYkFKBNFUl9vF`sDOzbiDF_8ZT_sAo?hPlD;ZKlK)Zt8LvzhCBhDxq~K#Fyzct4UVUu6V_8#qRgR@2gs z)Ld!;)nfb6YO(#yPTE_s{e*x6Jarkx3Bilg;i5a{>R{$RM&dYBCbblQ?`*5 zqk%7{b!%@#QiV(V!jy9+&(o4j$m;p$xjbcuyB?!;qJbTNM80i@d#epC*vDMuAR5j% z2kfFvH=l?k)^m|9+*0}`5kOg(K%|9tAD>ha6u0%VcDK8y80;$|h&J$N%D|tI(zt)P z2b$M)=4ZXdDa`Dw-Cq0dACZ)Z=`4M>_zrg(natZs1)w(UT(maqT#ZOA*tvvUqH|G9 zkgFx%J8z)9r#yHw&atq3euUkc|z$&S)F3S+D_Aqf?3W#P+dnb=-`2?s1=k zbH_vwZ1sYp%NXBtzdMO-B}KRsc^H~pTrIqp6zC>@Fp^ozm02BIk*-qwtw1K`Ls}ay zGF~FJV3PwT4r~+?TfhNOUwTt0PMi2)>ZgROm^N+o0=Go|Sy0mf&zPz|{ z9oMKXkUklf+l`GOJi&{mnDJ{6+O^KtV0p&2yr<3tLqJkFkBMP>)4U)yb5t5$GeXyvF^KNooypFultny z0y|1LV%N>QJc$`yOJg#fTS9qb~z6UD^ttM>%1}%+ivy6z_f3k4XB3KVRyH=e1sg`VqMK1P?5Q)R)W4XU-L z%dED%$+PY+**wBgt5vMjDki0{C2Yyhy=~Mt*LIb+jNeR3^?1FyYlQB$t!rQjEN&eq zlXO4XJWwf)*tAldq#q*npe==XVv?qqFiEGvB|ffH*Ws?PI-9q!5j#rgP`;y8jJD>% zNb;S8o5`lkXm2dwD_*cIfVF(sg0xm_K?fj_w>;raunDJI@G~M4wqOWxjsHMMi$bwi zl)af$fv@|Id#&*sk3Z=i&;B5cuw(oZNw3P?aF_$VCZBQ-ApwP~fZc&*lk-5g`y8>ozUVS4RX z+$@ScV8@0ta!{%GNbMd{fJ>Ky-Q?2cFe%VFJsnA>6H+IPqLLNi0NEh-@L_L4>Wfx} z27VoiIH@Zm`v4Y{WM8NM+7(}R_mM)6iG#|skp%FAv) z>*OqNPs<@s4o3_4i{AuO%;umTGQB#H5Mp{23h-EgMG7#p3I&){#~KsxSOM?#z2>+= zaoj=(F&DgoSN{o8;nm))(1`6Kg~%1CC|7Z!fIUT!P}zS;)_m4aSRHcxm*6^?y+&}6 zA>dMmc%tBIf`kk|SF-*}3Q&6}(B}%O^wh0|yrGox#&ZRY2omzH-&0yPofM$N^?5_n z(}VRQaKY86&$m?a41stYv}6L`w0h_=KI~6z*Aa@}3_^#pLIEbi@r=P-Qi@zh*tm)# z25bYtK~dLA)_kJr5l1*s%C%C;2M8|mTWjMdju`NyC?rExhm@2r6FTH~Nb-A+z>(h} z8$WTnfG@46`F*2At6M23nh7wS`H$~qZye(r8$&!)(30Q?DUGIle`QZ6)|J4~ludgP z&I3rP5Y>cI(d=eI4|%2_e1DZ^3ZlWILe3Nr0x{|}GB0-zbEcrSpp|C|<_i(TfAMPz zURLw-ro5og8v(QuHxejLi%a+?)jXqY z*f??FX@u-kG@ z16%R)8%8oF3UL)#sfRw5z)R0ek1B6m({r!EUbd5~toNy2a=~_rl;S!Xk0yKwP%~2S1CYp9)b`xPC{(v( zY;WMIW)jhoHZ=*9Tr-Vs`LZEtKm3&q8D!CN3HRJ+Afgc#j|q9O6ash(6uq1wKMz2)ZrIJmGlGO{zx zbJ}3<5tiD(Zz%)6MM|Y2B87j6K!pw_pyR%sqT{~Z$kcv}`*y)t?As|O^vc0ztxVpl z1QJ$>ghIDmjm!uwmy(Gs2j^FpxAZh44Hqw$j!+*q9IX!<&H;cOdn?Znn^>rC=Hh`Z zSZ^W|wpj>qPHWG^2*mkUC0@|R)5}JzgJ3f@G{p#oK``yi z>O&ABy$XU62nm9{AsxmzUJf0yxxsEHGH6%XktzG)4pNF|2OiCoX9xC?0^OpIM3Vn$ z*`heY;^6@;zq&~TYD90NHDbi=45gEDe&xoR;8wNPf}&z>;M6gw%7`+L_jjodGGA%IcBhwKDvA97D?{I zkEO$54pJz5SsfebK)~2}0UgbmObW2`_9p=ByntDFx;TkZOzb6iY+wvQ4=~2QN72#z z4nQJ5-P?1gjjQefbK%-F3Ow-O7hCTh!WdiceFDJc-93Ew01pJP2s|L5Iy3MMj~fWn$9Dun%Xm4GjDKhu^ESDg zkTF<`h<-q8Mn7->)Ug2y)qYSvOZh>=Eba5?2T55G{GdfvL_bis$dIa(9}o!fgFSXX z;6puw3^sxY67&PO zH`wj}*cCxK>{7H&Y;p%6kuRU%DYGe|o4i+F)ul4+!c8|IegblZI^rO{Ws*m3ejEd9 znw-x_^{T-Mgf#fEK!eM*e(fo6%#_U~Vg#GroZVLrtg}g}SnC^Wc)LPRbGDAavEBFe z@WSEfuy)<5?dn+Pt79%u8MZpD43`!Ul3K9U0TWw*Vqyz80BT1-p*UsYk%8w3S6o<9 zG~kxV@fvFi)tiCW2{CR4C>j#~vs;xUMxnvYfZ-PwQWx;c4VTRP{z91QHuyoc!4ISq z%@Wg3yEU2xFwra&6V2iPsMIfoYR7EWPdR1_!d{H^a2wzjU$_p_v0ucYUY)EWH7U;| z5apR~je)d@(=3?!okRrDW*OH{y5=}iie{Nj0B9D#M6*y#G>ZeEQoj_6-h!#$b%ZN= z3q`{Q$J8%{>INUp`>gV)N5EkbiTS)|d&zv>{$4Vl_b6-`FrRmj)P(9{uIzw-l1NNO zdCXkTWyAGfXs*&>lN+(O2pKdNd_mr%ek>mPIyK$_&7=u%uot?mkJw7(g zILq^{_aw8kgcUkQ^_NFxm_V_mQ(7wfos?pqFY`};FG9k)My39N9b&s>o}T8}ezJ#$ zRB-g8{_R~2`oo9iX17KxrN4IUpekl^e_U#W>e3SEh%VhlHD|fMp7?ugS#d31dViDl zX5aq2WQxBL>u+Z+Cj+yOWFC4>eVEih*eNc`>K4K~b3=uWE;mSkw(&Zd0h^3p{##4lKAJYB0gIG$AI;J4$J)eNX%W?PUmd%o6l~3=)%o; z=~|;Ddx>~G=DSNj9S3{-Rh}&KKtJ7sG27iSTl+8e;Jn!r7!yF!fjgETTa z8FKxQ!wWZiHZxi;j(^Ezo{{WEQkNM2j2wQd%riO^8%N9S4(wRLG?2({!b>)In((fl z6jgPSXS4eqlu*y1TRdHDh|nsz$sywR*OYDKMFuOkdbY768Z3`(&6?r4Et&wu^lcu= zmML0_Evl)nt5F9VX*KZ0LGZ1DZ?}7zMzK!_V_YrZp@EA8DylO+;a6^lg(<~GQ)9&I zx&hjK(A1ys=XZK68#eNOzd^-n-1-MZlH&;p>hlRWfmlJ)8jvRQ4oK3ZI?zF$Gk19E zxd5B@xhc9Puj!fFi*<5fnZOj^(WXqnNd0*FkA4;xjK%ko?({)*v~Mx(<9JWc={m=%Hf_Ivt2fhy5^&hY7)mENP0`G zDAn-?n!_XGFJ6)}MyQI%AI6Gbc>H1PKzT_HIsYKIiHCw;;5YC0^h>}JnH>t8X|SGd zgIDC3Pq!)GQppVu1wRb|MZ6=YP;j0M{{-*I5fE}mjwrM6Mu!)G2Jgsu0WKbbJ94^R z`&}^o8{6-SfZp(p_-GnG#J()jn~*-0kM#<*p!go1@>HV%{IeHl#_%4;Jk@x^6H8LmuDXxj^OqwmkiNINX(2174%54r!&v?5Kp3k(Y*#y$B30zoe^@l9+C6XujWqz;W74)}xf|dv)OTkz-g>lE zC4TwErBVFw5zma+?}Uawh<|<>SaHYFUO6?idMbVM=|H}Jyfq-vR)Jc>05YF^aCBWB zb{K8ev-MsV|EROCTsJeup5M81}r5r$sf`5WtLO@8D5M>rt3OZhAod!a9 zPuk6QPqsSq=b!gXa<$3<-CtRnX*SOhYaMvac4e;yuD1a3?Bx3GDhqMImk;ulMRSVS zAi)m(wjW=4$|Emz8lZvV7y53=wfiowKEhjpcYne2UT(M=Zu|Q+Y`HI0Fz>-nzP_|h z`MDDwZZeNnLTHwo>=pp*7V2^*Dg?RQX(8ATADdom=b&y4zCK4jHl2Pb_itR%1veom zQP;iXsTxZ~fPI>HYuW}<#{c_|y#(rmyZBv;Ta^EJ+Vint?#hw3I_&~Y@qy_nRfb3N zr+H>HKa()L4nJMV3$Jn39h%H{-8UqeA00TfKJWc{YBcnasquW@*33A9QvDFzPciIL zW}JCEho9X)w-bAT*sbs*xW+f#7uD5#4!yBkjf2h`pw8yV8=$^^)wAXA3=h(vqj=jl zJ@w5aIsC#cbJAmuXc=;Ne*c+6YkcHv{)0L4Md|}UB3`84_nqf7`$^LYuNlh!-fJV; z>?qauvMS>M-|{AO`zLcazD1qG~i?2_Vi&XgLF^SR!bfv_bVY*YdHw-d4f;z z*S_PKf30?N)fpu3b&7!>fdN4ouBU*|ev>dr8m`75G+g<~_r!UKd`*b`tp;}*JXh0+ zC%KI$`Gs?yEO=@Gj3RGyf~P)<&%+_kTfso^DsV!WzF_ejd70DF3!aCA_mJ5dfAXL{}q4G?PL5cxlj!?*kV>IV=zBE!8?jICWY-LdVMBP;n_wh z-i}G$Ijjf4LC#$i=Ru@Eiv*?mc-~log8ZSB@aNVg&)uwqAYlbXs)7}yKvw{zSV5gD zo}1Z5f`S!5DW1|RhaM>|M-Jaa@^a+NP3iKncE zhOZQ}Y>>Pt`Fu&cX#UGvp8CAnmSrqnP|Krx&j`8Tzx>jdBReI5PuM%{R??cK-+BJv z%YMR^11)otZ*gKD)=ENmdlzm!Dt;IMm|zYuZI5KJDx!-P|+cqfr&sv;Nmq&}E?;XPx! zU}sOv8fyLst}QZ{-<4N4y@Mf_MWoPXo(;FXiH}HTlTy?GpJ!b&L>^vSM@qGoSN)X= zTcwrFXP}pe18myJ>V{aT8I4S8Rz|i%8o;&j)f>V0%>>Nb?EqKMN7(ig`Bql+=GG>- zfnnMb67cE+7SFMB5>AE9bzC*q3xt_a7Mtt2ztZ(=q~?m1%|)e=&1Hu`b3ytG{2|Ny zZm>KG_iD6vr^$XHqUbjJLABWrq!bOZafx>yiy5kWgs_DP=os~)=vR`xd8|Ig6dkXj zc=id<@kk9tNAC4^EbYhADUITe%}CH?GsaSgx?X8`ocBR9dAq5e)Lyo&nKV!~;ktVT zG)S5FiZqu%tFW2&J;n(-yTifLs3Y(^WadqJm zM!bThz?jWjCVG3Y5>iv3$<3mn5td*}hRW2Q7(nn4m9Ac0cw_;;K#;8&-);QXjQ?0^ zXw?`2SEH4bJU)bUCNHSt%}F2%5C_)p3K`!9{RJ-%nOoP}(_s5Fe=$O4s`D`Tp&kU7k0ibK+N0V9ybsG>=h#p5PM34J~RD|-O#|inw z2~3K9tiE@M>lbLR%eTj-vfl_D3RvbH(!+=(U&Y*@d{;(JZ$^e5EnlDY^Xf6pRgFAE z0)U8-=Z%Km+iim3;27{9vq`Qzf!8cI*s!>06Jv&%nj67^+UMFGhz#)R&N7=I;y$Gq z8w3aV2f+=+0X!HoFn4-ou#5qoA1q^l@8JZ{nU`%gqHEEa8AMeR@QO6=W|Pe&!pl|> z&&TOjRfnc#gIQ~p)Z&|)d7oq}oiushOpA`0EufP3AYL-i-@5$2&AlT{b_>DAv1Dv3 zZ+mt-fr^pJ1!#QX#r2Is@iSU`$FoNq_~tFSys+8yyKIhJ7DBuMsabjCfpMYwy3j5dG}c(E z!Th-xG>*{rKezWbFj&km?YKDd!j<_=WDKD6ZBI16rK8u&Y7!(d5SuZ>_~;C8^B6)c zMJ1lB4qQ>k6ZbtXW9UxmV{0CQI}D@Jf^evF2gl+80>L6ElrCiMA#7f zo@?9#j<$*OmhmB*ZJ;dj^kR9366JBJkUJzZ04IqrLFJrQ|1P;lGWba&3 zDhC>u+0C3Csh(xLu)DXTs7IuFp`Nqdy-A@}oS)sc20!0Ct$}MhsMD}pS|i4t6_vue z)!Z7XqCKb(y3~t@nu?l0qa^sVvbVP}kLfd^nd<5f*aYk$WGRND|E`n&qGgarbU^_|G(2B!q>i=ss_(y}hAI1=luzeA$-^oJ4EEB%* zyKu(c$80qW(^rXf@Ccd_wz?MvcNoZy>k8CjC%#5>g9s#QQ{0S~)X1n&K69tHzv+4v zJn8J(W_jTUNM4!;>oBr?4r=khAo-re7eW9`m3=9GVXExQJWQ1(^b^?lsW8T}0&^l> zM}9uvdpK+a>)ru{i`2V?ML;Ww@%86d(%`=Q3vTGZVa{*(Oqm(H@|}Xpay8 zcw@Zkeu9Lo?^djzAO%6zCY0)U)pG;|D}d5K1tOeOD@?OlHTc;n-dn2)`-X&$D839G z{hAjpbW|N%r$a0x!>*tVyltU3D+$`i9yt1gbT0@TwJkqbC>D!961ic)@I3pI0C1P~ zBcC_J`&=ku+;Huf3bDZLZ5l&3szt=_qG}p>{!Z5c5#r#b(QOGwG1$hm5&-OLze7KK zW=0w>_Qv%s@9*{2HP|46jiW7oxR*U#ZjQ1^DXt4HvzhIqCIeJ{lvzN^^=vbdUzz3Y z9=ZUrc#7Yf;Q|B85R=wOT^9}2;0H5lns#O)k{Hc#~E`eJ}}i zqQyy_%HnoNFy2JK&Un-BL^82rsZDT$Bc6~z#+yiK#I`fzM&KJNHAd)OB9z9qtHujg zMqJb+kBHQO>Yiv)y=p)^L^R-2_6EeyF>5dKzGAR!B9LyutP!%?WRX%GgBnYq!agRT zV?=gRm4s zQ*DA_Z_hhYJ?&#?sa(JG77dhTD%UTU(U@llS8cg+Ww~-v3cjCXzC1!kW6qKS?e;JI zl?%KxLPk8m`7t7+onO7A4wa()X{BiYE2J`%5hF4}MiG&r=opcyFj7TiDvh+eDaQ?g zYh;9oN8HGufEbbqCm^;VsZq6|9TJSm5U}i1!I(_DkuoOJ!672XWZFiOu;)k_lMzF< z2P<z%xJUKaJgM*J{Hs2n(Id54ONM&G#BdF za#wT1NV%&i8L7p@UCjwi#c`rNuEoTOwqyC`E#B?$?KVL~cfuXbTN+9$RXZ9|DqAvm zq}RMMlK;BV(}sPk8R%_|c`1_aziV%+zuD6+Nqd|6+LBhedb@WwqW~Cb7P1Ed`Z2T= zM0nZzukK@uJEx zR7Q?x^$y(UZRvUwd`2A8%cbQ39oGMS9YpQrQ2RoIeXXs7Cc_hwUkM=HSdjX82@DQ= z_O^`XuHS`AZ|vEW{YjX_Wm>uBucOo8j?!7jHh~`M= z)lXXZ)?bVA{*OT9&`cdI&w{0n#^@o~ zSs;l5@6QRFL8LuhK0uc;T0TIRJX)Sv3e$2{(r9^R>EsjMO^(*yw_;3pzWYh#XJX2-QxHa|wqZ$K`2gK(x*pL_n(^XaYxhVDQ@iylcnTgj zy61rR2>ZfL*PItLfKx)BjFw@X5BS+55OLr2(X4UI9Aonyh53ga6Hgx1bzTx5bll9^2IP{MteUwtXp!F zywPjx^WN``m~ySsD4scNW{P|=?1%>QEA6aYqr5!h1+QT+f-mIy8*gShz4XuF3u4*7 zNPRFwCzMb8kM}Kuy-C0qVytX-o&dm+#gnY(PeB&Jfe0a?@_wa<@?I z8_z)QglY%!=CUE7h~v+C8#)n{Vv|F$r@Z1#M*Z47Kc%Luyf_pq@m22*8&5F^*SG#F z%!-4s`ig+G-Y62e+hpemA4{z^qS<-@#m&#Fd`oAm3D110sBgLNb#HzYd(cUN(Yt%c zVi+R!UR??^=}K2hLq6qg?`iYcSowYHbGjTyxg9Hvp2iX0=bX2Djga~4rLnkKHTLuB zQC4?2gthWrZ*t5tngwXG!I#00-qoPK>*KMoY!gq&f2zxM6(2^Z;)<-o+&_k2IA(Q& zI`ZH5CYjFw7{ATEr$KX975J3$!VC2pGB(cUea(dMW~FfvX5U)l5_cwC{cFI#6v?#Ih6K%O@FGjGq(D%O1FeVXmG6Xd#p zC$F}#S_2zC$PQ!9&Hfa&*MSd@gt@=)4h>lhx2X?G5M&KwyV_y0ZBNIYQLj_i8}xzKw@zY2A2=!F-( zV_Bu~HqXs9CynF#{!=vDhABplWHNH7Lvy4{i=}x&dDY9_od#<_SfWVdub-XHni44b zMgv~(4ZNxqf<0sbV0U$3n+?YEOD`2IjUnix_?{Ks6kfV;_I+%y9Uqp-%OIEoMA)%H zh|2%7Xm)LbO^QU-W6A7#Hp!e8s39|l4hz&OpY)@*su4S1^M$eQ*!49V@>_rM-pQ6} zIPdeb_XTtQc=7#JO|f*MApI|0ss`!pXNtF(XU5Ah`W0Oq96-&}U}SNn zR>;`%?sz&#n0e>u2;aw2fah;m$yZUhP{%2=zO4H5cr z8b343*MUuSV4J|V-A6^KHgq{kyl(Yk^TMFl`?x6Et~!pqtL><&e*t^;Nl_0QdmK!6 zSGQ8wt#%qAd%ZZTjSX7}v!m>pe(WI!vJm~NPm3DZu(hTK9q7ROO1u@KXc|xYyr?-l z?Z6hycYj`#l1A(u*uv%F;wX3i)a`~k1G}RZ^w8PEd@1aF7(VB2o}FtGQXAkK2RaD3 zxt5h_!^YP5t(KL?q9z9YO?Z?r*FO`i6!>#C!5YpILW`FrTH`~Rof%UlidU{}rL$%Z z5}|hC#Uihb#yPSnk0jlq9LDyRCd(w;^sqjVK!wz1=0sljjkjAUI*#k(!=U51PPo%? z-EYT-RcPmd%$O*L^$;30tS=8o#2;#C?XXGZ)LcEyNHmuLr;{nxcdD`d@5d0AZR>d^W)&XcO-I1h^AI8PM~j`J)8`d}-|V}pV} zs9S|!0d16daq4`pwFU9YiFWB>$(PZK!7?so;G86;%aq<_b?Y`YilyFjbZKy2gJUdz zq4!d%cN&>6)SYQ#C&?}_R&!Pnfa-5Xw_&$vFh&4Oz!&Ml7#luLYQ=-6H#hH_#8`@d6;iXFeHnq4LtB{!g@{FuY!PFWkf94N zt@;_;(FtzT_y;a+i(IJ$9CWY9TXt z!%oX8l%MTxWkj*bgaX6e<0oV9jv22DATe{gB-flXS)S3Dr%SZ+6-Ur)xztQ_IB`ZJ zUawTtcOc_=`z)(~k?Q2O<4Be@i*2)4m1~UWYx-J)ZP>W1xzB-UN;PV#kEeh;*RhSK z9LT`6Lw{?SjVn$_|Lkx1*~w7s`PtTOHf-m}uXGztNJXll{MG?hdn4up4G#2e@v72q z1Ff~jSA12DHI!Y{C~`FjTk{^q7ZHs7(_~C!M~R>xU-{6u1peM2E0c7cR&wzF0M1;B zD@=$0A^QM@N<=5~1f0?U&y;U1w-qf$n`lSwT@T1j$gc|(Fnfl(*{e~G$91Z=gE#-zzc_4 zIj)i^kgOb=-JkECm|h{KK%ioO1+_5yP_Vh63a@_0xLW*789W&D3J5XZN`q>wmsh|) z(nLbC5VOEga(U4pesXbpcqnF!Rh<`%DXzq0Mp`MZjZmq$JOYl8m5j9VUGKv>L|hx; z0t55h5mkrq{-dm3F%Jg?zjq2>dFRZ&J8H*A=RQE7O4<$Hzn`?iOys8O7pw5e_s*-w z=a05_#5_%^;Q3>Uh9(^l5DYb{+fIlSymX9J_BRqvea2c7VhEopGH2OqQF1(gcVtoZ z3fruggrUR@BNR>EFk;-#e_xcGxOH)h1b%6pH7@p|5b?73=bI^bok+YETAj_hAk3Z2 zcegEVS;JU{8 zKAD#8qk-a=aNP}_YjlR8885Kfh`U7U zmLHl5QCT)s>%y-*?}O#SduD~CLIJg98VTCbuY3u-cw0s@*Br1TW|8NSVqqpO4#mLg z4Xt~0L#H^NUcd0~q?5JG;)DSs7U6L-t?6M+wC~zYG^sq(ZS9RRZ!3@~MvC%#v29lZjoLOTlcbW2>FE)NLBqp0rh>k@RZQXIaWIxBG%LJz??LmzS6oD z=a^w!vdM*4aO^A3pJ(+pjFx=Me5kl}AyF`B<>tKI^;Y-z5CeDSM{lw^xZVZxG-xcG;d6hSlR2q-mkBOz8hzOQ4AII}^ayo#hjEgziloj%F*SnTdYb3+_T5Ff=_NC^=ngZjAY84 z)Rf9A6L`;CtUCOW=|%Byv-F^A8{60Mq1z!CyN-$#wCP@_O;;;5Z&WrNzr$){uw#T6 zZ7NndHMTgXx5JuP*vQ;hAag=^Gz!)N!J|D~hdS8r%m(9i(84ZE*>Wivor0Hy9>s;#Tw zvSPT0saBYZA(MUO4(ol^h7iCquQ@OK+S3Zo2c;PBlwXr+Jnk9qESBv=!edie8f#DY z*?DX-!P+v{Khhje5X6^lkLUB$GVX{Ot3WX`z7xKq!4-EKaCe2gLLZ)qyTwCfsOak_-P~9d4i>R zzbkoPB!$TPUB&x1Qh>anAix{%UkckafD`SR$gADp?@$#O=)+WZ$iq~Gh{KYrk$K%T zd6=s7A*)4vT~Q}~D%WB<{DS|=Tb2?9oDNnd5ib8me>%s7U%DU)?2p94uL}i;g@f(P zFVkpx=S8@xZ_^fCo$GUtTVJqkS7E0@gJploZuS$_aAF*#7&Q)>_S+|{B!fK~u0}$w zu9~9MXxg3K77a3v@juHU2Kih#9>fUhq{I;=^+AnpH|>|~ZCw=Boa!67H~x~7&_7u> ztg4-8P(V(2{X%MlPA)^_F+U0@4*rSIt%DzE&O2z;Fj%b_y1VRO2fZVXUpQnXu{Z)h zcD=8WJlfTIhCDXVmXsE@^v^I`&WNzC={f@g>t>7T^3{T-Gcc{hni3BA|Ar4LOIOrs z@5-M6K@oAVYXm9A3Wi0hV3MrBXu;1Pv$~tWA75O6zxq_ye8ERRArJ2w*Bm0E5* z(FOeQW3CXn@j%yYfNjBnuAPKG%wN+@F8S9CS?}EoB8hw($en*2UULw3Sy5ciW)~Qh zMw)RmWDblrNJ*-%rLBbk0B`(c6xFdoao_tA5ea-E*M@;~1usC(kg^B5MqD50I(JnL z75?5V|dYhO0U6*V)-NI`jnisLW?pn2D$0E6vpIdA7QLy6Ku3!O`Mo zVhA4WS#Zi4Njkl{or)@W<`kUwpa2~IOM5I&Gpj;7h(sX+v%?3q<)>b>;LXEsL=4eO z%uX|93bqp|5Zwe1*9@O2d&x*rh)$drN%+Y#?Y(3OC<7;J*bu_uLi?i8uIp#2?AAh3 zg1qNN;(deWEiPs;fj4GbDR1FvMkjvu6*!1ORYFH|0F;z1t5El+0!k* zb?r?G&~>`Iu}_5to#2zpb5;g)sl1=9CS(p&7iK|CI407X;!gPU*c4I&&O>FrbD05h ziSJt}_JtGv!Ny#^{Cz8p%_l@CR!JnWR-jleSRP`AI$lqY0m1m$bKuFeCiG+nAd&Y< znUi2c6CSx^YPVMG4k8VDa|msl3$Tc!P~A{)MR=g0@U%h853J!X_AFtEEp=G6)L~M9 zb8W*)YSP1s_zCL9Xh zAvNGofZw_c!NgcV(ZyI`Uh>FeD^~~^3ifpb!G4v31qTB%N@>yXxC*TcM*{~Sk$-#A z|AkGYV2?KL6xFM{HehLhcmGwMA-~-I5jq=Opk#cCcIMj9a8co|!u};a6)h=2OB0lBk_w61J6kODt_S^iC?{VMk1z{z{UdreV~iho#o~m zqJ0~}#nz@U-+orp0(2FhkRh%It8~k)uAza-H{5>hv9-4RVzjRYFZjpeiL9}%g2dLs zR1Ay%YE^x&u&#svY%f3hGctIeYQ7<6J4@aPl~0gF=m;(d4VH_**2~2yW0{vAA*alT zrnfRI`SoCnc%K+Tk$48b9OvuCRuOy=c7o5r_r&{#812NL?tI^w>WK+q1-F8cr}ov- zfQd8oR5M7my|y|FY{9dGA_m1Q9fPVaXk`rQaq%mS@2Tl)pVUbFrV*%E0Z?rzB2eWr zC3b*-acswwSm~?%t|jcOo3fG&FFi?W!36k>MBhbrfu*T`E@}!A`^<7x^Ql2E&ZkX>1AHt$ zmgZB}hleZ>>iOir_qZi5m#iX?lkq(~6Dq{%8_DqEduBBicT-Yop z#b}(xe`TDt+Bjl$V_Z*+0~MliXoYAT2OyCjPW3&=C{*h=NifVZz81Yt9zEOLy-GA3 zh7)QBPiz`*Vfl_57st8Yu+*W=mxw0XqfQEFz@u<7{4C%XUl0OR{gb~^{X4BXUOM`L zR-L_1IEhKoct;e%Qr*!+U zCcjv(Pc7Ds(BjP4$sb_?@8_4x=g0X=t$l5iUJ!i*`=vUW)Shsv-3Ax`Q^rQ;uz`LWO5@TRbYOxpf}^>wnS8lliO193n#awa5Z|B8EIiAx9oPl zyTVOwZQJ{PVcUuPdUD&Mp@GUb-21cY`}9r2Hz=2T3mw{b@Yv8_vp&xG?%`h zVfO?L3`k(z?T3$6hvX-5cZTl(ds<`QRAfHsmr10@;IGS*!1Ge33}delEbtQb9sFr{ zM!ClH40fKBVj2YsF#U6p6kr+!3NVcV%;P?rmB2H*`X;kVMPU6v<|4@4RV10$BBjV2 z3XpkYQh>~%Aiz9-EL;ds+DEKz`3U&=t3>-DZ*|8+8 zgUTW~blA_vP=-Q$lxGTsg7_{#<69nYmK=(YpB$Gs@Xax^_@@_ri*4vZv68h|>Y7R- z7G0cewzE~qoecttGZgryP_L0j@vJedGJp^(^Rx5vS)# zF-Dw@&cX>TG~#p`NHC3YnV&E9^)?T}H!vdLbdYe60VnbD^(V7rVEi*uiWBBXl7DDq z=$lz`;di-6q>sA8CpH*wf@);ENhFP;XR9z)%xvwt$hPwA2=j2l>>yil6@U=i&R5(8 z&_?hTS)+6(-&T?McGG+@kOh1(ED~Z4%o+^`Y>_n@N%*6=^CbUJb5915l(~;i@}b=L zQZ(fco;A{hhQ@UtZD?HgIRGk{PodCnv)O7Q5)A9PjAG!vyFg@(C=?gdI%{<6RXJeR zh;qQl{6mBeBl8pkYsSbtg`$ID*68qT%o-gfJTNkUFj9k^oQ;ur6a1_2lr@5k5h~M4 z>%q`G1?Uyo-Qf2kG`}0{F49ItE`JAueM{uP{%?0=U?K}rSxhb~sEx?XIt_F?pe zD#a1HULugtu2%sLH;b-UfpE}WuPuBZBp#h_M@q4ew3hrsyI%L=U?0Kv=7B%<5%`OJ zueidf3=?F)7}h8!+x$pur)ahq!xCbPSS%GAT^MYIE=+BOF6;m(7p72j;Wb1gbYY5t zj)eIr3Pl&jeAI1MCB}RdCB}Tz!&j#h`6x< zvJFD>I`8rPxxS8JoW8mYWYKES=_x=v{a4U=q|=u}nq!&4Dwb&HMSnL-q`#Y_0Op&= zT=h$ozc(Z$=eDGY@IwC9DZ#*NWX+O#z?YBzW zkLrZ>a{vfn7=>#4-2lQX`(cJ{!Ybe3C>Arv;eVCqNdK!$3UIxXbF=SbSLz() zgiS~>8nMxw2u_#|B-9D(&yh}8pK#EF?m##fCNecpz%>TK3GZ6B`IfRcLW646 zApoHkoXYy@USDe)A~qPj0usgd_3}4iEeVNeH8XCm{MM8*4{AaLQhCa%bM^B^#&7(> zPG1&5Qd0js2VXZbzUK@7;ma|m^gG#R; z091N`RGK0>l-@!}Q0WCqX-X4L=_D!8JfgHYb*?y0-G^wc#GW!2wKgZriMV>O84@6d>hz%ga&p0m;g}s_oVI=5p_RWYDDot_xW0| z9|;NS{+`mE(uC7p-HP!x)g7dB=&r;*u5>>(m#=J8qIKW&fG@{j?dScqv#Tt2n|Y$$ zA7yV^oyWhv7k2OzQ@8m~55urGiO`_lK!YDuQ<`vks|z?X=MhJ5!~5*D zIl7X#0{_EkPSbOCm3acdh zFG^w8lfF%?+I;O5sBj_y2!*2r2Jcm)D8+^wP6zcKQp|kWXk|M)M>{o8BK#;dFu$G0 zC$%A->N?;%V6fpt1TbQV9x5@NJ711aqo478#ikLOU?_|X4~nKh$(DX^wJIhsaC9Vv zHF!RHlxx8JihR@0U3&7%13zN?>>=L}5&=@fESXj4sgDY<*iefeJb-Y=ESUz_FiR#g z)dH z^X2O2IN^ZD6fc32xG%gyN|5*0k$C^AdE>qic;hie${QSHBs)e}ioA|_7%V$vMjvzU zd~F8I>9o3D`(e-yG0g>(M9eby!GHTcgV$8q)rvt`7HBQ2_MtY&L^nh|X=pz>Qz*N#76~6zEiBa=}%J(@yz% z+laA0t|N4!KiV*`(l#&p>e!&zH^m8Aqnj{DmeCw;V)nHY**0x|6C`j+Qcon_ zO>!?X^>k1Of~luN;uof#4qYE9_4N8_-|gX2Pfxz=`<}f)bb>X!`ex}B4GmPjVbA{} z_0(XgRe49d&*S;fkA0P7`svHFzC8A^u8^Fv2qT8|5kK;Z?+x}VArL7N<45Um={qab zGrzrFC!ct)*X=10174_k*Vl=^E#XL9jhCGB^zHNRYtw z)cFoLLkCRRXi|ur`$^8z2^=~13vv!7o7ggfq&Y8=;@ONKdyF7yrjJT-kCH+Z_fg6DG=U@MM}wS2nu&c%$~DsurKEe$X-Pkn{9FqihW!xv z!OOtV8-^!@ZRhJrp6OF)?T|bZp^|x~m#)`&rrLr;=9$`w%Ef;%&%~>yf8LP4-_IA9 z^pQZJ2UA`a0Fq-WfA9m}0|x6%r4J^V+WeA#ZAm8D7h+>N>PlpyseH-DzS~Vc_$#z# za3W3WFA!-?iBOW9(n!ru91K%ArHK?Oc8DW+gD-qtSO_+zaArBM&5;ZF*&)7SCwew3 zbzlPD`d`7$i}DSwQ-}&GrQ}dyKf9Ik3l7}7DHNo40h&xHh2UdK=`jbsaV!7iqHl?f zdr+!mZCI62B2v+e(iuBfl~H<0KyiNj2u9-I=Rz{0^d%v|2-T+xWrXEZQlK+Ru0<-s zQelyHNQ|%;iy}l=ssV|Ju$b)@$}`NrFO-Xn-$@O@5R1{2@BiM{m^CN-ah;JS`G>Ay zIxLb?c00cEC-`V)pE)|!gepXo#rU14{OB9#8Vn-fx#*!zt~rsoj-gz;+ZiVCQjt!Y zEx3wwQi+pmQ6#QQf?U&o@pTYfF`E=(3Ct#K1!R#;+D_P`skcNj^)6y+yiEFc-ugFR zGNb&(lFNif#)uAWWDMCk04fwup}5F-frtd7Y%Zf1xZWrb*(3@DI{FRLTUX_P*(AyV zS2|x3I$Y^c46GTmNfe5{C9+AzpWDy-)0weYyDo;+e~;8$Y_Uuxf#+f}N%upQOrq6b zT%7^}E3764IJ{WqUjVD?TvA6O2KK!4#j@w6lLE{o4Oy%@T`nzwuhEP_e1E)Op0Nwf zEsg~;TgS@=bwolbo3IIXJhOPQ+&#=8rMO_8r7H>TeM{jan^-W@-Uszyj1&H1j5BjX zg^sRmAPw#yb~yRp@>l$KOa5Z;z+HsUL1dSx4(QTgJ#=YmJ#=XYK)E!9qD!A3Vxdb@ z40J5aE>S4DG-j9HzA7oyaaxI_w315IXDy6hrp{3JvxGGkytXmufDt zcLSq3-%{Tn=3|cfOCt3Gm0hCMU@xG6Krcu$T8nnhf?gn!OFay8yNh3ms?w0Z+}+oV z4It8BZ|J*3_J+Qs05c_1mZ;uPNJ_-G2={yn1wuQ54=8LMVH{{AI>I=@0qujCrW*kr zGfk^VG4_O&5iGQMNuU#4Xz0%{fj#bYDSPx$&V!V(0H{n8g=#Zq^0<0vMmd<= zSkK?rU?+*FXuf|d^ZlC?p!q%snC~M}g62CP!F(5;=6hF}?_I({o3G+hWxmQwwS(al z9)-VNXdkznr-9+eR=mgVEdI6!*O++P?Zt6p70PCr^rY2Mo z#h%MZx@kC}L9NCUfY8buzD$PUDJHg<&Nul9jc7JOgHdTpgWX7|QbS9m@=e2*=`g$r z;$hTOV=1}2Et9F2PRsbBfA|I(9m+3v^RGA9{r1{J)K;0ByOr9QaC(Z+pxQ?X0M&j< zsZB8*YQI8gP;H<=wJA+FwN=LH392@T=TKY8y<4gcmm-&C!k4=ppbnjIie0XKFxcer z+H@*&Q-v1~^ta`hZ>mp7Q1vDRfU4JDE?b;pqUt)~)P>NX>Oh04Q<`w9tAta%<)p={ zEO)A|#ICqpwz#=mCY%Dg%Y@Thy9~13iS8$gws&?$h?lX3p~kL zt%}i|@1N%Hvg4)B(PSJ`f^=CSGld=b+0mq{%B<5?B1f>R5*{iyv{@;GS*LplO)yv% zO0$OwxH+7Fiund9plj_4m3Yb$4*G3fy6U;)Tm#RHvds2ez+eBjD1K9_+kH8w2mXtL(%}8bvj+lh{ z6RZqLDC44Ni7d1P=AeoQqPB!3paDzZcST=J_rGi0#9x@MV~WILI6@EpGb_8B%eqiynvV-zkB*!h=IwcKg2Ig zKK)S|Df#rJ-@hYF@~Qkpkw4yGi7SDF3b@0~F6|C_7_p%V!cv&%~P;%7&mzrdfs8=k6=$3_w)@Q&vE za+Rj7jFs|(q^YD3Q!aVX4gEb>F@cMei6P4=H>*=Lp+ixhmi*o(aO4O0nqLCP zFPy$5NSgB{CFSxZT1vR{R~Vq$4cZrwE8tSDc-LPuf~2{o-XOn;j$N*~!fQdxfNMWO zfLsAraXq`-e-r<5h1R{aYIsK? z39V*eosfhUp^^!$s?ZLJGvE_hxZtn4Adv~J`$hH5_#Zd;J12pA+H+XdwcX3%5QJq{x3hQIRRiv;!b#nbM0@o{=tN0)aWKG}c4`T_;U{$$EX0X^z z+T$=vR_Ue)$--JUX;X^~mM{W-5JgQb7HlRoGDeALBV#Pk0Z{RN3dMy|Pa+eH*SU;h z;F_gCq_8LycU1a=s9{&-fGI4>0ar_fgbr6r6a#C<6c&Y|bKwV3^KZi7{Q|-Rb69hw zMMIry2%*9TP831NOKdrtHx%K`C@hsuVh=1E5k>6sk@4BnU6U z3xV-MeiW6tT6ZHfV2{<(fIUb78gT4tWx(;I1PwTPb%Y6II*`~5IDEA<;BdksXh7Fe zK$kbPkYY69Vp&7zfV$RULZ|>uNGm`Sf?8-osur5i0Z`vXQK&XyR}de)kAwHMEtmJg zJx7E^3m$>0N@piU6FBIYWBzxwycX^)Qh?gM9!a|owRZ5FV_FS8U8t)Vp(;GHa)hwN zi{XAI02qoO&i5XKr2ri-hNI|sF=y z#KzR%BTl{#MB@9T=8LI8kXNP#so*%{U~2G1!dOgK%>`N@eHNM;q)f0&f!VQ3QL~E{ zjwJwlYVa#sqX>|FM*(7=_SG7h8l;#wT~%DGJyT3q0uw()BbYQdSlfXgEARr!(cB=R zC%HlG%_^ZrbW*v&UZe)u#l)v*noy;rx~(O-!C{03)fz(psMfHxGE+n`vB`99&`W3v zcln1IYh?m~l3*9Y)SwnfrGSR4)vd;BT=ylo~!|AS)Qx(_Aw#O`CJwk)JHzokoz1}+6_7oF! z*IB|0LW8;k4eCy5!s)K^LbcbC#s~2nx+}R|>txpDPrmdL(Oo79i|rz)6q0rzm8bHf z?vJvS1Rd30M*yhyN~Jc%)J=|A!kvT$)dm_=o6>|+TcwefE47dQJ1*J?(OOCDm0G)I ztgFb=mo6S4TwQ*b_J+Os5S3L{>lM}9m?!*{(4gLz2mtl|ROwAIWpj%>p>ea##d1wR zN0ljhIF;3l#~&$`_thL2Mr9@O%Ti@_O2~%2JT2JE|%tduF_y#;E_%7!7U~X zhY}i8eG~x*)uRN4Oc+w!aN0DLpZW~CS^KTgg`bTnk_kiYc1nbBA9FXdtAAxx*^!<*J6Q z*KUZbno8?&MHsqhs>MsH6lDY#HLmq?(c~fwFmKp;z1qRIB_+tZWhB;JgRF4_53F&K zPg#TSjAVZjW!FZ?YtX1fu%05%iizaoQ3 zLd+zCNYW6293G_7)V07uAbBmY_$99eULPrg_;szKu%EA;PAIyb7oYKUXEirySBCY! z$|6?R(0~O0n{U|gNwmGSi+rrHu7YF{!&GcF+Mu$C2kI1+v95#;+(6xjn6W`#o!D-J zx+9oiVXkqgM!?U}SW?ks{%2B=$oC-|ydQXj%!TbtMmQ4A077x$-zvfp^HxwGl3^xP zi5LEb7oFs-(ttxq-ilDkycOG^^HxcML|qCjeu@7EF8r&Nl{X$%<%GI1>U=9(apwZ{AAOjT=s=i=1(HY z{GF89^*DG`;PJ@JTGj=@0B0R#KClx%&4<;uRlcWr(OxrVBhPD5G?-Q0s0}RaWJL3J znMINA60W@wZ6)iaFD+KD8Lo1%04>lEH$N7W@PNlmxs;P7jDG_s%amQcre^~Pu^QkePmvtQ)3G6(+l8KFR{OO0#rDhqTwv|DiI22F^Yi`%Ct^JGi=;&BKnxn;Y1WdhZ7Nn z1}7q8qENgGZPxxY86QV#yJ~pQt_fxQiAcKhMOY9 zIokjU#yO$IFf)?0Nw!!LVWH!k*?^95&Vi&DmlXYE4WV();hWGUjK_IdPgrCDe_R1k z{-ViD&EnYS~3f~4%d=9 ziTJwj+$x}fzJu3KKMDHc*G5kf0@U|kk@S65>MMp^T=MOM)=Hl_fIUJu;0o`-O>*IJ z>n1H6F7YlAOfB43R5)DXJ=4GFVOPb?6?yN?i<`5`o3)#ugi)I#ObYRvWdKwRu#@45 z1u|Tz>!zZfhi z3D&FOpSjlKm9D#P*)~f+*3Gr*;s2Upnbk*dngTR?ij!NIP*eV0|Hs;w2j+M@kAI%$ zjVmiiB0(f1ai0-4K@;LENvP7QB5vV5L+fZAJ+-Bx$krWoQ^ZI0Rdt@4ez_=5ezNZTtfBq0AY z44C0JI$0L{!cQj58VA4dJ>;X}YB}CmFDDM@;87nYmOXHu_=Q#R(@F~k0GVxETmE=A zc)B;P0ox;5i9FnV?g!S?+{$6WX*(5A{1O9l*4W~oj?*5o9xKMTlC{3pp=GHkJa6sz zC-^6Qtqm=OFz8Y)B~~s{)Y%UpYG3OB_j`|8XKCy^r3Bu4kgYq%=aw%ED0PB}fPBVx zc6ii#ev7)6-$1^?+3oAFKL{0P6Gxi<%N#y8Y*Y$AUheVYID$ecA%rLJN&F&eXpwr@ zUVJ^oO|`B4WI!0Pzav%y`&~q%eB-#4%r-oYB>YZ|UVT!E< z>zt!3NvmjU&i9wm67-ZD8S-xn0vjsh8ZmOX-I_VZHa{z!R~T+}7sD(-v{$wEJb#>c zw1x02IAKi-A1VN}d)nsUcfqw*{QP)p0M0r@R{@O1bw~tsxpaM(X}MiaKH_YOY6792C`^1 zZN>f|oR!9Y31m_5`sYk*Gf>#~F6)TmD(se2*e${u6;^Ssk73;~6n4!GhV_WX>Iwv7 zBK=p?q}77+zTi4tGik{kJJA}US<>g0Bzm?3MYwnbxS{>g|p+zdJ+&sJH4uGP)Z4A@%mF)SLUSs`hFcYewY% zR}`l=c|$HbznV06Zcbb<|82JQ3>?Ax{B>(xHjps(Do%gwjQ}g=NK{%77~g+*;aB02 zJot4Owhwi=TADY`v4$5{d42ia9BT*Gmk5J1-b7#J^)_0S#%C? zQQj+(jh^;~v5d;qVQ`r~!R}fMto1brWHWNDo!NH6TB&bqAocA-^}+J+BDZE2Q(2Zx zZ@@<;b4$lC_~D)IQC)?;>e^taYpom96{EAuq{hFasf&iD)|xdn>-;mp?gdM&<+Y%) z^T1Xz+B#aXa`4NuJSk-b&yx|V-vUv2p2zz*w%j_pnA*}y&f{Oc0ux$E!W@-VUjXR9 zw9La1qyJ}~yKsfDs}7_JYD;+E;Spk4ruCA%_0U-K=HMJWKfD#sIUF7=oL2aw33r^X z9HmF)z(Zi8yK0d7cYph4vOGF@0ps@q+oPv5I zr3d(c68Mqh_@~>grTHf}nuqgI>#RN50>y$$##5r&Rw{yV*8F+K4nW`a*0=bq4UnC8 zb8UmQFKj0jybb#{?-5cd<86KQwew`w{zFo*qPA_UD8Q`!%6a5jy7L4J$)1s9ZxT3? zJ!6pln-m~fDDaS7kz~(c5%ZN*V$IO`a)Sc+;>U*U`QAq8_2$cM2euVqhz~H_cIZwB zAtxyCaKdeeqV)w|1G3F6&p}MJt>%Pcep|?6JmuJALKb7vyW6cFu~`J_ z9a1r`2`COJi%fQt%5Zsg&&ck4{{*cm%OkZj*W1#{E)@XG)yO% z{@IqMyWwTqUu@Nwn-mnDvBtXx@3EfO*--*sQNq!Moge^6Nu=pV=ktfZ8FOp^f zg1r3f^3_fFAg{4=8smd6gdTluOivR!3X(uDJ%S9nKBkTd6Pj0xZ@&(WP9f+XZKV7# zrh^GRbhdpEd&CD*JIXJ9Xl-Lc1iB6R=xlp^Ho^y6G%z={M3e~~^-=v}m^z;JK?mYn zKDIhc*kWprR`yg<+7s<|FvbXX$gMF;G&YA2L^cDSvNvIzK(V!R7VylU#l+@Psd{6ZFdq z_>BHp6?wJ4;Pb?H7eG3%C95K!c&dj`6;l=MgK|amL5?Gl-|7<_s=oshsyLFo)xGsg z>yi?zZmzO<9Jw`f<;bn63fwSq&skVo1>w$zZSj16Mu~2EYA(-US&dm2QVL5}Lhg~U zmU_or^ffB_`5GCy(4Ko?iQHZ`t4^4*ALDd?TR!a~_z;vMP7@;u6Eu~!x$=ZE#YD@( zI}#Ip(BZY*Cf{0Xndl<+pc7dg*sK27QJ1Yl@Q$RNOJIMA>A#j$+tB@7P zHWO@*%+aA)jZEl5irk!CscgRwHqgF)#Tx5}%&~!=`CwZ>1a6OH@&5S7H)jO#n5z(i zeCtyQSS-J4HCI9L@vh@gx z5a$QjZ*N#c`P52TU3l_oYYEP8Sj(Ac;_R96x;>F~@Tmv{hupMgnXr9^jA3@f=0#pN z!aXg=9;vf_gdmy=PFsTrRJ0Vfz2bhdCi!FItmW{**86e(<5BA~CUiAzJx9=S+5&W( zwx}#*+L~Vk{>Ip>1t#)7jW+HC_%u3_ACAlVIpl3c&@*dYkI%|x?T*lF9lR(~yD=ycVxHwE)jooekw!#+= zek9W1>~)>XUE1rUAf=0~57XXMcA5DPI2eG5JD(JD>o|J@MgR*^Y?XM8d)8hQ$g!7} z-h(Z*s)VTMC5i@h+ta`0l$pP>aft=_wmDh?Pu6VRSR$bi+R-*#Z}et>=q%|?c~An} zPJZF1=t>K&+1m1>x-E>XzQ)-<(gJ=*w{bxVtbK*&pouCxEfi=c71Rh&!cqvttK z0Ep+=f=@1GJ8RkcChXklZR6QCQsMRhP~;Y=NdKj04^+X;_opF_IABlGH-cuxafywD zMBD^N9iBfewvm3~O?e>WBq@dUZG`@Lpq{$$rr7Ciq0N`4F@QXd+@i_Tdb=BV6VrX85l}|(&&%RDN}}j8EUHuCq(Xq+Ul`PRZWDqBlIU12C(|Eva!5! zxUC@xTZ|LfggtD#FCJI52;QyqGCXLwt-AjFLSAdQtpNw6no;8Z@npj2=qiC8^Z4M;A?z4vQE0Ni`OE`H(O`}Ku# z@7*o1BVe~UYp1(Olnq{A@yn&WQq}eo3t9wtMsOul8tconP5Y06dbrMd`+>GFALX-S zZ1Y&SB1|$UMX<{XTV!NV3aZ)mvwF0iNTbx^7pmJ@vQ`9+S%_MTWEP?`DZnfQ6krx2 zZV^eN3?f*VMj3!)d9@lgk+4CE0}P6j2`*BE0uM#Zpv)r(SaS~4)ZpQjIDWpS?FIf< zEhK7Wfl&PSe5h^TbU8TL_`<{@%o*GzR4a@O(uH=3+560WFuRLXfPOavgfWEpKeI@ zq-tygkyYh*(qHRaob7+e@jS|(Y+`H3h7z)v0VB(20;1VDqg58Dgyw*1O0`o1x9L4{^ z5dQ~KkkZ!nDx&}tzcfFd0^$cR0p%F87>ZwVNdWOHE(s)l897~27AQUip!ip%`1-=d z^2G+$0fq)^Pei~*v{@p3-ZrEFecp5eK%W;d(dVU@=<^Z)u0v&WY!es(a@4_CsRJt^ zi#iw+NC!^`)Pa#Qp)61b6o5Kt2_(eXLeK%e_?wk#>!-0iA_D4QiJ^lfqyTmBUjjfK z04C~yVxkTR0Cg~=tIfp-kYC8P&1XjlJzT;G23Gr_o6TmbhRs;0nlTq1-{7@-*gj#m z2`y~J4Wkt|NC9M8y6YvD%B$d|mMZfTj+18Lh5c9=PoYbFjQWl$TT{SkHw4B`(msh;Z>eBFl4&4WB-P z2#+&OF9Gn*G}Rp~-D5Ls(=^N2rG`^)B{hUouZ_Xx`k!rhn)mK!YYy(E_K2;WK4K}? za>vC4liKLdPoG@1k!21L$G3Rql48{5>;Sr4taOQ=CkOIy{W==X_~7kpd@N@h{2@N~ zu$>S^iMIxj7V$nbNt%ni3pr0+8jUd%k2y$|%3_(tlQk3{a0EsUtiSbRM5j^KH zTZ}(-RLC8VLhcgs7X~^;1|VK)nb))es-rsK2zA6QQ}&8cSpq*WlLcoj2vcb5~D`Fk?SEGjDU$ij9|?ZFhRDz=5Sk0cFdRi z;XvF^d%3q8VXIRt?nB09mf;oiZSnf;WxRF1tv37Fm;H}{*x&WCFF(pwzgX-Y4-YTH z*N(EqY7zXSQMOvF(sE_MXk_8b1FZLP%W+tM>MxA8)g|7Fzv_9dF}4$oY98m**O$q7 z?b&5$WbkC5m|OX+8m>^2=ci&e;&^(ZCkSU`%=Va&9Amb}#V?H69$)SkvvG*oM)R5D zY|Cie=7v4+XpOndtvB|+Z3^n)I%~}X#%%fRuU6q5!t7D}4ZAIk%}^{z^i~Aptm(^* z=xv6>_6|SnQ~||2I4~7HyaiiLXkm;31-O5_jTB&v0tFbO%vnw%w<82ggg*L52Hmen z0n&v6r29Q7K)O)ip^NdGmZyvgYu<&L5Wnfb7mTGW$~)|-O4_|tQnFN!CQxm$%Vu4)gDhTb-ZUSkEo@W;hIySw}Z zYfX(UBP~$zSGAH|iyeP?473!lUd>*TEhY>w5-T&^c8hHyP!);2Eub_KBb8|+RzPaw zYO+@Va5b3@1K0EIFByrQA;`ja)K2lx7i`tpDFVkpi~@ugum6%K&u;%lFwu?wDKEg( z_Ma6P%D`vNZoOuEB3iY_2*fB0^x`Q1r?wMda>9%MEYH27wU}Aztx)}ju5YasGLWoA z3NR9*0F*yvg_OS&!9@8VS`k40UV-E{A~DJW<);9YKOQJZ`DrBf6p;WM;aVXhF&8Po zC}bu9U=#wF=zdd7biWAz9RrNS2oNJNeU+huHH0qe;H^M9$Pc6gBNC%5PzMx%I`7%DhH3Qz^t2>?|9n5Y7Zi7FrfRKb(Ewn>ZtWgu4KEoDI%h!G5| zhC2`hC%@KkJhOaLCc zv+M(Oyu(;P7@*jD0*HNBiH)z_0sXm;L5xJ{E45tmsO7RR{R;u;|ETB(R!gasQY~dx zDr>_)ro_qsflT;H)tw%_6fPYdCAt;VovbzBz1M(S-H1>`&$6DR=-+>>KnC&5CG?+1 z5g5KuMPT^SoirW8moB2|Bz$S{mfZOfwv9VKqlpk`+am;k*miUGkLzt4HTEn)!~kZJ z0;m9n05O2k=dR>khCBIM4<>SLw5cQ-Fe^C4y%dhUWwT*@rm|gZq1c12g@ZgX}bcDyRLFfKsQORHjb*4N@Ct&}#yKGw5ir zOS98ndbMggdP_m8rPmuo3ean(0Q7oeS4*!qo?xQKS8a6wueaf9xdCx-mE1p3Ei&A8 z$^%_K3c#_e0SV#u{rk}2J|Kc=(bY;Ho$5$z)mo+0b>I-U{b&a7=AnD zfeoMlY(Sc~0rF*nJ7Orn^}1DZ9lQdg3)jJXA{6%GCIKM5*xWtvIGoyHhX^9Bg9Qqp z)tF-E=`&kh{q$-+>q}S+zgAV`Vt7(&z(1{hnHPL+YoQ(FZ=Zy0p6WouXD4io zrI0{KHm}DiIR0>VH6MEljz8S<<$foS{>!Y9lm9_}^aP~y{y*7!+YP(YuYCzw%o=Ny z@uS02eN6z%ZRBPA;O*8r^Q=?gZgutL-YF3G-d^sa+0p;2+47hNRXU#67)5wtXhJa1 zNbr~k0m@?@lkQgyk9p8)Xybcf2#PaQn^vPy>sMCEV;*F}B8w}TeLYJYEHZL&eOm~C zi|Z!w3m4Z-YXU5;bQUZTM}uOASJalPKZynVT1+*b1# zP!unB%T|)TPspNk(BhWu7j}X`m2>cgfKumxRG!0c|Kyy^u9AwlqI@R+xT1UkL(1$I z1g(QI!zIFH^*`&RU+^DNfPMi5;IbOMPWlDa2&Pz8wJ4tXTTwg1b=OI^VEUvN!s+qlN=xp!>?A#Y5iz=kYZCo_7BNCBp^@(Dnsv$RG0 zLJ7DgLJ={WMF2SWV>XKbWj5;*LJpSY_frH|qnBTAY|RWijhR=%FUk*2@u=rV3CdHe*UFMt~d- z{3kCc6~wb=OlitSD|~VOJ&oeZj(ToNJqna*$A{N@hKxM;{5vcNhn*ealBW1nqkaiT z6kK7QqXnC0BDL2?CPUBi3G10$xYr7yaN%Aje&NEsZhe4-dt7<@690uey@LG^DCi`0QX&C-u;{%S2T?^du^+vNCosT$~v~*Sh72Z+vl_I6b4>$)i16WK4g_r z3v@ig%P$-> z0^Ax4v&RV>Pf>RDR>q~a2t`BtJk{WJb_ReP&w(5iW<-APo1`)Kl+gjqyl6_pqBt}1l=c)5G_3L%SY zZI^2HYiu!rsK zt-82DuC?D1OblVqZwL^{+yr|PXBc1FAQxNJ7-O-eJaDn109e4}hYI4QuzmIAN=2^(bt5(y?QwvBjV6MLYCW0LsodiLf;w82<#DI0791>m$? zL6GkVO^^>P;?B`_#ZP=GLV=0mgcSQ^c8Or2py#BZw+S4{ zo-@eaBLyfZ6qv}~>12O|Ro+CpTm;b-H_0`&HYq^5P>@+LCW$pC1-QmmU}$mbh5{c0c=N%Y@A(`SkQb@$6}Zz;TZ_8|LSp!`u3A`OknVaR=Kp zJ&2rPEA&xKF{KlQno6k`&VOCJ8a#;Z5W>}?&M_@2F) zppU!re)N-Pm1wT*;c-vcYqNd6)OQ7<{;{O4*8v205?YYQO>X!f&lC)?v~HnY;1>o0 z)l0rq&jq4-Ls7*KQh~7YgH%*%49H#>WN*kUTa-bGm0Yv);KBB2MzO`lxDH*2M@>i< ziW{yC7y;li`{!U-y9iJQZ~dTezy;GD;f1^Hjoqo4_MJLwOPHgbwA>=?q@^nG*vYi< zHNUX**jVD7Ul43NH@sfeR zkvz9W9xZ@w#4`}U0FQ>i|MI}KFup~CuK3RE5?{J+2BN!0($x&(19E75RBkkGaduwY z%lBv5f9f!~EKx+9!sRd712(^e0behPEeupl>ekWZb`<(*tS(-9dkuSMPL_jl} zZG)imHv&a7yUC~6;iwG7#s?7a)5@ju%|>YfG@g@NKAQKi-L1r*aoEe5YQlZ&R2D@l z;dTF;TR6TCLwVo}2d_Edg@c9!-H<5K1p|U&<j2Dv#XXrlZmfD za%PMVevqKe^Liy$GgVLzqfGIs0Pho@ebt`skBzUu%=X7V^_snd2|I3e2BD~?f?o*~r-B<>21~axO5n+A|kupNL`FQ92F@?qLhYz0V-j#E1nD=7`)>fhVKP*q6Ts;I$_ZdJp`eatz5&>HG;=;F#t9%tGVu2s zmi^Z|0pO8DV1N^Vi2+Oi(6+?okg6eVljENN(D7Qe+}_EAg`HS24+ioFL@L}y@U2^r zXYX#Ri+QtjXtQ@3PH=y@!k(zH>x35S{tD`zT_JE#On3d>f8~WsZJRPURLR{yDq#@0 ziBp>3N{JhnVQPsqE&yGTs-UdU2PFVh#r)OwD<*-kIp3O_({-)Atj5|A>2OtPy-ltv ztyO`?mb!*J&RF_xGi<4!LXfu9XIlVU8Uj_QEv0Rfwv)=p-%*B=lK75cFU=H!bU+e#=0^b?koHiG+DwCYq|G!S zR8aRA+&&7}7+>@!#lmJ_-t;o@x0}p&aKL$D4B&xNkco%TKeQ3`PueK;PXMUMM|Rrt z7y-(y%-CHp2fach!#RkcVcny=YF$@38@ZVaYo?dP{FC62DV->b5tHW+B%eQ`NFXGaA)OJsg9)BNF7C;O~ zER`FrW{9BP)S%wnmwJ-`)H|4{L(;t95P10};=){@Q_x&Ur$}=l0POPo4DMW0s&{-Q@7h&|so(w3fBRS`s*JFuX{?sei8R)DeJJ~aP{#yY zp#YEsTMNEl>y~Z#aXU;Wl}g94+oS@Rg#2!Zb|XN~-Pz7(3?9+c0!c@nxvF)lD(Z6QBX)b|q(}wyu*@3xuCeh^H_5?Sw!)Bm?Dlu%uKCz^<+l23z6dWX zggDFSN<6QRrk#Oyy5V0!%*Qh+3(z(Z1G$s>yBfvkaCJ8OTV{9vf-mn0|nGD+U~U7sX* zw5TVO9e64||y#wbaRlhUL%-58iaYU8}+5&)dH2ErisYz(-2 z-LyB*SPsF)$#|AqdQY=dfoJ_5{MDFG^>uFfQpE;UE(YQVeT_RnV&xsTTmj>`_7mI$ ze9JBUrnd+If{acdN z;{oBXu}y{CxN=jum9JfKhxFwmcPPt7ha-&7DC>}?5d0mE*d4~bI$(khJupFs+r&hy z;Lt6&f|G8MD>wn*nm4tDwF)CZ4#}M^tQ!#v7jJ@r)rNeSRmW5fk}Un$fcsS|ac^u> zQ#A;2Q`tCD4LwU=ZW(v%T};(h+_A6Lr|;nD!H%x%IZ_=@a!ge^^mmzO?T{C_Ni4-_8w(gK4W2-7KMh1T5 z^ym&bFpjBW92nZ+|0Vrtup5Z5HDhpm2#pcXc78~Rppju#^EQ|ZenawSQjFf`kN=Cu zT`!N`L5}u1@W7zL#6#E^G;qcz-eTivg2e#p2e|GJpf>we$5<;Jx))kPb9f>c8rC6b}IXrlzkg^j{)Tw1WB8*`G{ zcv{N(UVzze%6kFK)7ajn9MC)|0A1+KqHjBTtdsv-)-j*0BK(DMYH$rY#1S2mr{JDh zyGfO&`|G>klVQtVRW4`koq^>3=sh${G5r<3Z*Qu<`yPILRL^@)PDF&0oQNpES-~-o zQ2>s!rJxEr&K8C`n8xlAk+3OnpGh?3j)Hrdg6W=0J7xGDQDvvs;5=U6g6(`zC3_v7 z{7b6}+)=w)Lp@?=fD}*-AcHs5p@I0h+R&YH=!Gh>T&+tI zWg=Fy!>XQg?U7-@gpzQ1*d+mwE{}Uib;o?oqU|#J&$7#FHF5;p3)FuhaI05N&Dei; z4Ewl4n1OxtwbTOAcvhkgA&s3_V^;v6)%M;E95vb3z64JOB6wL5#2o`5 zgd>G20v|E>o!E>B==EQAN=v@9Q&}=z+Kk+-%oDx$Z~-9Rdkgoi#*U{nmOv22rA@uT zZgfvr16uGf+|!KhA5slIA()uxsKGjuLbRfk-2v9E^xbIv7KrzF;?7|;!&LlXJZay6 zPjBjY)Wi?Bk^B(r5TvkvU0DUs8(o;bsJVz*3* z6z-NOk=woqHxz<5CBk3r;PBowD6vPLf~>Sh88N0Vpg^TWYLQaRUqC75F9c(6O6136 zMYpY_%U?@D7?K1SWet0aR9D9w>7DLUwv5TXr z#+DMWcdW%M5m1`@Ahl^mVJoSP%j;$Vz&Ysv4|O?ebH|v_PDVoE2tmfM>7zX|Z2CwQ zc>Fm`D15s|#!cU;a=9>H+!J7Gy0u3x%rkkx6h|eVulK8|p9K>Ufzw$+MXf=l_Zq8z z@LrHyr7TD2CHDqkQgJU~k|gNk8U+8VtU^OUR;-;IO!{R}PCC zs(@w_%IuS)g6;D$*i!of7;MBoVz9=ju)vGFVpLcN6_rkCw9iNhC3K|4r(nc~t z^A$&AfdS?cObmp1LG#eONb{t55r8r;0+i;JNhCt^A{bZ=lL-V!k_p-OtBc75zq*)A zc=5hEW8rmnpQ1(fH(mprtllHlZR7d+5zqco#d6O6Es)^^!PcZW zNdl5%I^ic^&}3v+9T=gV5Ju8YC;-z56o4%`4aQAda%G(37E9W%#tUW>TJc1iqdIG) z;MgG;k`kZ{NqZ|Sj%G(OkZJS%UZxn5?%N|B(an3LBfoKvv3)q5kitdtSpkrXrW+Pb zh)EakH&&&k1Q*BO!uPuu$q9A};!VA3Cg{vwsz=)JGP~JcT!QidxajcOqgL;7&w2};n-l0ta zkWQ_a+Tl5TM#1P5{qP+3+)|@DYw&{~PtUqKt%D$%B>pLt3;zU(e?H~#&tdpyLe@6; z=#h9+PoTYmC^NBm=7g-OMiExV?;#Zmc1OfN&(4E?@Jqu;@Sg<+K?sfD*PVs%4}QvK zOsD1W6W>nmE#4Hv7ufcQCsFW)l^x=~CSCxqDz01M?XAvY3mLblH;QlyqBDMBRs0aX z{7Us_*ig|BwUL}=8GHb;!&@s?iP5JDZWbGAxd#YR zg@dXkTA(xd^rb_4@;S5WH)I>U^1;h;D;=r1mBWJ5)+(S!npp#ipA^s@u~y<+<~iOi zlJMB#6W*HdXzIQ^-;t*A9t$Dz#wMi2d?Lx)?N@`OCc zz+${Z1R4-hRnyXW^%am)O(zURXN8Ry0BS@%1@n$tclYfTjuIN1Nh*M8q=nV-t?(jN z(7V6SGiO^k04k#OH@M;f~XlqqK&iAcp6E6V*VgD}E<}8}nGz2vgS> zb3z>+yV`Nor`K{0m1xVGuW`%?Ij)2f!~e1J$?TK@2@|fzk8dg2Ks(MIYaKn)j;KQK zK!5guy1FN?lH53)pR3a%m}jqZwB)a@$AJl*C^L?gir|^`16V_1Uj3@P$9hLHyQ8Gy zGfq2)2dq+1GrB6z*x;zhAKKu^WT6L5!=)Y{QeAJLha8kSzv`qkWuv37D8K|=BT}&S z4d+-k zc(GY9PflT*6nDkz0140 z9gW!zRVwr=r!V~-sbp9m5_dS7F`{E`-{EKzrg$5;e`uHv>zf7lHdBt zIfZ>o1OUCI@+L27!DTN9s9{LrpjC7Cb2}Z+1{F`AsqXRn94~0at!yoD1O>A{iJZ5C zU1|ES2hk}n`>QH2^qbeXejPpJko3ySAA**k{{xST3Ik?`qybksRFna4-9E8exYAlX z=@tMl5#^bAC8v*!;}uQ?H)aWhN9d>EWcbn#XiMHg#k zHKk!A+hcBOVM_Z(ZtDrh++g+&p^3upCID>ZJAC_jM}i3vm3@43W<&NV!A51j1Klsa zMC(I0o}a(qXvoeJbc6WFi;mVNY-m6#kLBfqiJcfPcjrTUmyho1?tRHIq%14*figWD zT0WJkO5-Z=fv6Odd$Cfe`{7%TBnyio6`?7^Sv&!VR>13l>AyH;m=Mtp?*0PZ(41gn zBck~1UmaN{Y}8O*{czf4{`kp$ z>~BXZ`>#K?^{%6rKlYWoFdz>4W54{5qlXC_y+vjD|1UUZ#XI#6&@~k&KHfvW;OM%2Xrp zcUne0>@VN1LcZ2Ke@&HO9a;#he~LfSc|Ny{vm-krT8kb*WuD0`E%>dKjE==hhF(A5 zx6i=GX{&cnDdFxB?5wSYJgyoA^J&3T6=V5Q=6sc9D!2^ZlE(y<;IWe`mWUiCnk{4M zp*6wD!I=7SKBufRwkUFE$~wPg;{%g>Dj>Nkr98B|m2-a2UJgj3(kn&M_|WSz5%n9# z8!COkw~lnC=rGgxXx5m5bkwZnpF<^iT5Rj~Jfjapk9XV^LY-xU`19r4h4DoP%2nXA z63f9g0JCIrDkPm1C)=@$?~icyV@C;gT%@ER7&tmC8?(8+NXkcmJf~wLVnmdX*Tx9ZWH62WWrW0O(xhz zOP{FbY-PemNsx9Qf{oMnS)Nke`H%@)(H>5)4chf$L0?77{S?9WXc57xjLeFKY-EKqc`}WKF5aqaP7P zZu$rZFj1tTg$*A`MXuok8#}w}cMgepwk6N$Q6hpM8!rI-0p6asZ@^^{a{|HgDE1I9 ze0F$6cYcEN<&v!9$7+P2XV`-PM2qx}AM`iYaKq8j@avMoc%0}6KY;lA}wwtE6w{DC#2kWo-e^aPb*uQ zpKIf+&G)x={=?Q03Pz(c8nS!>#j&@JJ0EgxHeq9%dM3jdJ3z3}2G;SL$aKGtC9Cg)=`Fg8mt!o{~C z*LtmfNPp#H9vTYnK;Fd-LGG7Qovke_?h|DzMX9@~WE}Ged>9^TKGe+9Vh{2c2RL6dVf&b13#p?5 zP)mz(34G%d&OZ7bc$CAEU6n@-1Wx}stV~JJwA=*+W&Ro+#o&iGu16Ve4|I-WVLtf! zUDPJdCnvzq#`=ouQgO!Vu%rq0YK2%a`mZo-xchBxIC= z8Yzya{U^ToE$~I75XPc^^=X zwzzy3{ilO+WAnm6xv_Z`^1UO6%STs3NMa1|A=graALo`Dmg~^rDGmG9VmHhxO~ox1 z{VFIfY*Y&0zw+^7Zm;z5VXd|4HLMrOX&K}7L7rR{TNwQO_s$@`Fa2sses+R0lE;4A zv?4!#`I{hju+>>h*TatR8A}}_En!D+yCoC8>^&ibFLXFt@(vE?2CX%}>Hte@dqkN% z<}33SmukXiOm`ZaEvZL%!3$YUO({#}a`rA}^3N=FHLWTC%LO4|QzC^JPGS87fM$sk zgiIavhDZ2?@z%zC-vWrsvPdnM>U(j=v#G^Q5&NjKnl{SIPi*1n^^WkZbF;c}N1mlJ zw?6Hx&Mi+n-?GdFGXL@d#c%nAY0ehxTOt%{vGh?N>x6G! z3hO*;Xz^Zx>s=Ntkc>n%_%wZ3O#(n4IQpoJVJRlA(=B~4wP@bvd1r4ENg+r$s*4Vj zDo6Q>%Ww?|B=OiSOtCN}ioHje65tPG@3FiP+1PtzQomyFG14?|8m>j~5q|sk5t%&l zCFeAs*$sCf&%ESZ#by$r#ok@o3ku-fVto05wixLseQl<56I-rWaNOBjd{kZ(;GhTb zHJ-Dx>-J-Af(7<0cL%j?eCw;umh2EIL=xM8gg!cneNGB+a}Ww}bI?N@-i02>(`P%4 z(+39G?~yFOF5yV=dxK)>PnAU=MJVu4gj)-dJR@#!I^Q_QOi_>dRBmG?km^Vm3Q*Ga zqyXtcfrlY%H@9Ow4>(zP!@^%ptvKtP;kQ?(G|cy!BvSjS>WsxlPkJ`n)nRWFUH0vE(Ys~ zusCTYRLlGq7K2t*qRW+CqiD-5O7}JnODNl+;2ekeegeQDz5|*fHex6y4)M=?Ftr{0 z#v*5D6QUU6F>Zl~?Kie1{e9+R)MoGttDVto27wRx)S0d?JjM$@7+#kxCIz@{$&blx%hku^ zw&e=ZUEY27g8nHr!&TQCiJloyM{HXXE(f^WwtT;A6Sj-+5ZjhI;NwOl!RKNl(j?~X z$}rUKu5;ElK_LXH$Cq|=)nO+HRnajfG_3sRdgpW#6z%T{sVDl$gn{)2y#xJAWyAjc z^S<@+{>iRlst3K@omY5LE1^$4CZnz??u<>&Q5vguT-i4EQxp%~0{s+4;Mh-1kIQ~) zP71J}njDw?)ZzI5p`VP?o>5Ro^b_Gi`>8MCf&B#d*iQss_LB)9`l&+vXxQH(^`W0K zn2iEN7f}pUb$c9CB_>>>)qE_&m>^{|U*J=H~(j>{l@3K*xjgfi=0 z2#=YYki?GKCOc{yfkQ_%;Qu^awx;FqameJh3#r47l49(xkB#m+DZ7i2Va3mub=4+= zDnf>&+m7?lFX21qiW2Rs8w$*^uK*qUiVB8f$^;O76~4>alTj#6cE`)P>a$XX$}DkA zQ8etZ#NEznrph?6Vp^;Usf@kmR~dVaLb2Bx+_xU~8m*^#E#KU0{F$mQ&N2u^Jj2nm zkY^@mMKc9Aj&S5eMb*^`*|6s-`-sd!aD{^4=f94s2dh znP7e5F-(*|Pz$h*mf^=BB_Q6B`RI@D&mMEo684#K8>`}H%5G6T6+V+) zSM9T+x^BkaCN1=`pW$^HR+`i;`~)@_N_-~MH@_6hbNxarJlFp)!Bk>(6Ht#>upYN? zFFE3Dq_H8s*y5-x8%UrypkmJq3^hS<+8_U!oc5n0=-4oq(Xi=7HcTwf#4|H?T?x+v zJmb`;coRQd6mtn59J{0rM>(r~?yT-xFP;x6glK-Qp2 zowduZ5@9PI5O@;Ki$&Q+@%pEn*+m7w-=1>5!5WDAM!=5&a2*Bk2Ea2OJOD1sueBT+ z&ezNYo*fkn831?qTn4~xKPLh30D=Vrsvf`9=#hqe#Tf{HN0TB9{`vs{5&k|!3NZMC z0u25#S9RLH0<@0#l8Ky z6HepLCKPdsT|fXr7;QFp-f%WFA!6LSmLOupIh&8X39?X%DD-;-(V&?2qqDsU5$8ON zdk_0y>$AU*aWAE-;@)ovx*GPAbo(Ws%FIwrZgq*^N z{^UX7kQ2)C)hZh-pt#Dmfq~$SdRzbEJPdDRk}Bx$)jT0D($ypdxURN4A=lLoqyX2| zwkM>+(CvhD7*a)p%wew*-3WVu3;KG5i^ta!VecTq16_2$NB4{1OZUqJ@P@q0rh zgev-96b)DE34b|X4Ixn2X6hZeGnO~J<7~oSCDl>8=#>y`x!Rw+<2=GB6j!+>-zJpQ zPDnqlnmhTf^GA(sAp}wP8x7rWBn7DZ_YK`2A_b`X0z>!5{x7;Wq9fpfx+h$y?k^J_ zsC&Ri-4lGNdlSGL%2FtXviArTCcZhMnH;OF7{BkpdMK+rBiyVh1S}U9XMfz010i`0+DCL-omD;?QGc=*iGn4Lsw4 zBjARePq@*}&mml}^8p__pWw^RHvvTF4=m^E$|w{&5o6;GgerC-MUw-sysN6IGR)F7 z`M&aC7rRMi>_orH<0`nSn<}fR_)}83XwE~vNe}n0+~Mt{`t1CDD=)8@5n7hWW2kag zn5zr>iPRRVG%>+O_X>BtY=XjYsl_u~?=@gSCw< zh}6;fNtqE@sETDqWWhG@e+^6jh#WmB6C%e*JzPW%8={?-qLm}Fh&LhPFWX5uF%V{QVlV-`2@wkQ+R5)k66`XH zg$WS~z~0Ij)TE?#Ql=ZBqwrOXswZUDA^3zmG*SwuT;of<)JXygM)*jbZsHw@@G-LG zDS%-3*h>7u@Uhh?yb@nT{5ZCj>*=E6$9lD0&$0|bfX0tK6~G%mKL3F6V}4^-DZaUm zYc3n5sLRlC*eMx04nCzqM}D)O%e%jsH?3Dg?G$cC@>lC497ColP*H@8iwQ*$GHFw| z*1*+M_Yf2jBYTG+VJwPQHS;A|c7T*3Z74w6$4LRw&PUqXVDVp)yr@}(zOn|L@?O-e z$(J>D)sVp%L6yN-*Hb>hS%lh|{9W+I;OrhBlHhtIW{?2Tu&le1&Irr!2tcXRsz+hY z>ch$tfS9iIQm190L@_buh${lK?elOj+JxEE)xWq$9Xy6m%6RNINHH|_INxgK>Zh@` z3NG)w;ql*&1S$rj)|PK<;c9Neh5?io(?%fDIL^dJT=mOfe75e5_O2w26_P5rsvJEnoxr1{06qW9r@6D%$a=v9 zj&t^<({eeveOfLj_k_8cgD%xi#uNU)1bsikg!+D^zEY-*>j~ha??>?E6mJ4}gDwhH zL0251igP?g12?ELPwwP;o>3^;N;6Uq-2jS#?$hE_a9$`Bw?sPMw;rY;X+2z6reAry zqP1 z8@5w{WuEZ>0pOCblOG-eM-+SzjqQ>z{ITl}a;-68`^Xb1N0Prhj}Laa*$;#uTJkRh zfb#qx<)MfetKd#b$ur8N4D3Uh;P+8%A9;-XekOU~2wy8ceSC>vJ=-voq0&q=`0T7O zIn8QB z_7bf^2RKdqLI*hQjC>PHZJ?|bLd03>!lO%PN4UB~Vu|#1J+5um4se~syHGn081F&> zK)eg}cz;2-ulVN=f&8oZXS}#B;DmqFyHEn{6-1ed#pGQmtcx!{dg3H&==Xw^f6~5TZ z6n1G|Vd>)$HKJyf%(hQ(4I42(OWauYdsa%&DtJGtrUiP2-yBvco;w~XSD*jz_oUja zz)OA?&-~maUy9nRfZ~^!6=(G?c5pJU@Ny*IXmf2&D~j%jV$c5^5A4f~% zQR7`5!_Ep+8VH=@w(&3_`7t;!-ql_!mpcK-SNO)$wY&HXLB8xaqH7KEQQzRV*Mdp{ z7B5&jJ(3Sz@2VS~RRpIAPr3f|=Omf}$LbG14cV~fzO0&1RvjcOz2rCi=0sQXq8ihD zk}J)`!g<#f&$mo+4Pku=?b~Iu)3kGZ%w*Sa6L#-@*=f;!l9L|hz59)ibU!x5)ktUK z2tj0XTqJ776DYD7$0tsO!w(c2yYQ28BWv*{-}S7_D_k1R_@|}Dz|QkCt|)$fUUC(E z<~KaE{K)zOp*DM!(1adn&YM(8ZKA(KbfeAZbEmtS3)KuMGp4DiR)yzO9upd_T2orC z7302KJ7Lz{o4KY3|GF!@~Je!7?T&5uC49l=bm@fW4mdgFqR!eO8oZDF4K0aD7P^lK?{_Tq7j`=O>T1uaV^Z&Ek*I~hD)#wm&jl7jp@~pg- zlktkHIJa^a>rXU-^Ti`) z$$XJ{7Vqa+V7}mqD~EOF_m;VebL?4L;2H)mqMd&OW~g++QFLN>wgAv+uIE{K&7k{P zc^&8GJlAygGN}e#*NZRyZ?Q$uUr-$IB14z6@&e9~(w%~Nhg{e1L7RacpWHgTJ_E2S8#z0i7ffQHqay-9b+p=O!CQuo z9$)0z!OoLv53Hka6bF-zZmkECdVHy?2@hTBnyZ&O$Gf>5jaZp;N@P@1iF3q|!q1^0 zi7D^EGFR7PDoBTAVEJ-aGo}${sGnK_K=t#Flpda?n4agVsIfMr2F~aOD_qs#;~*DS zxZ+u7S}5kh6e@fAIb1Y_?7zI_YE(?wwKn|Sm9AR;f^2y|JBrV-K3gGZG>E|qcVyRR zS-t{|qymjs0`*?)N(jpo*tGF&_#3NT&zM-Dmi!P~o|7Z(&RKb($1@J>UyTUnC)T=J z@@F@XDZ}Tkb~!C#nstcy!HlH8}=4qi4FO{x5dki zhAcTJr;Hmx|q}l@yhm(qfX*e`l0>feICf6NZJI|+Vb|o{*d7qJRk18nSJdOmZ zpbGm3NAl_``?P+LiPduFoH1>{5A(E9U5G+0;}6*icyi3K)%7`RMnrvJ4K+D0jp^5O z#>15E{o5eNs}DHOGZL~pvVnvd&Jd5CCo{xIsTVQI;Dz_f{MBJs6S-rLE4-MtW9fU| z&5A9juGqO$2;lRM7_%Joeb*0=(`qqIYD`+LN1X zAJ-cnSH1&~Q6Db4z%yOtD>70`xJ&VR%?onB&02qal`v67Zm?Ck2*2P@{^Rw&Eu*1V z%#&knDq^4UO*lH9)kP&tmSBDYPCq`F;lNv?36o2*XhK#*D(+i_u8|sROu%9sMK=-v zoWhM8dcGC;h0k3XJnsbdwNDk}y-&X?yT5RK%X;{*iczeLn3B{x!__X+Aah0IM%xnt zis|bl=oatUzCkBl3pF;$w@UtR@MhQq-upBh9hpE1XT*$8*JodpdEz;wpkQ(K2sr;6 zcMkIG@Zego%$F>@$P-_%w}9`&Z*4oGLAYvx@eSMw7v(MlWl`{ZHe7Z3K&xnCjL^FK zo_y2ERO1 z?Wo%?@`7#S8oTG6bA6$+n*vgMmTXy#-F`iWr13J#-3h1P55yIA|oQ6^BPI; z3nzHEjLT^rsKP{_3b02VdL8y7XiJ2zN(QiTe~&0ZW~kDCa81|Pd_oZWRh;S6a(KO) zE*Hxog(!5+_~y;o8UhtU>p7Qrs~26fOz0TxU_xf+C7F=fO{&4dB@;3`h&@<70A;C! zj2czO^(c^rhknqjlZlULESW+KRMJ?;b9y!xv@2%Ij{DhF5X62Za(OLVzkNyWCfz2b zXd<(xjLB!EzEyTDtV5uqsZw+t#rXDa6@rfTDyWNV!xSBqGgU{VoH^vt=p5xO>V|?%- z^Adi~HPnQSDzQiJjAv5_wor+dzMxuma}%;p*BVE{h~Ut*@FLTK-?RH_Z}MA~>}Y=P zM6YgaDItx5F9N~wJtp|!T~rhG?5S)E0idQAeT(KIUiBu^dc4$G?zi&z@;shr$xeq4 zjRQ}3OwWgg<*0`p{P40X49f1wE)oE;J6a^W8j{_|lAS*9TYUM+U9)6%WsL=0Rz$IN z|G8|m4t{vqp)pmcRjLI4wp8|`ERqx<*;`t;pml%p5eISe{(!H)s z_I?fWsM*5v^D(&EMH*Zr|Cwb!!%~T0DD#rC**#cK0u|zFsXRF(yT1wBXO^oUfJ=P2 z?2~Lbp@;KW?eY*Ajw4VpkA(;{&-1ZXUOxGsR6ey_c0Ha{A-kN321@#J#q64FDxrar z4(GpA$nI>y_K~!qzofWha4~UDv*oCrmBhDSJof;vN{achf24JCAeG z`_HUeWH1{~fL#S-;apJi=v>qwWO1?vOq_iwrg!!=)t5e1boOo&H1u~E`t1o-(I+Mh ztamdeyJHC90dqON{;Qq=OeZuzP2?FsbG=+`dMwZQh^5H~0SA949|ZJgiRXa{OD_CB z{kzNF-V&!v;ha7AgRQxvW(x)$FMbL9v5Ur$k~hpErSewTFD~9@`JF(qTkwu8g`$I7{)%*PL$8=^Pz&K&lk6lJCRDxRF+mX~ zkZII-v7b_%HDUZrMgiCrzZea@Bpa$fc2R!jiiAkK-B$1>6B}l)wLE+UIyyBpivQX$ zyOZAMicAdlB_fIhkCs719CQV<%rFqM8fT}HQSy)+(7m7uVwCivM8t+(nS|`l+EY9| zA-fZsNDBpr@r1*3l0yha!Qy;g8oUq2V>kDKSl>t?m8qDeoIS-DKNb!G;0IvKCT6GW zi>~nVyWsxr62dTZoohH@x5nF`g-x?Fif$12gJOXX^JCgw5K80~I;57)T|T@_%n+#r zqHRwa2Lv|!%7RkCktBroB0x9_2TIZ-j|y4wEXk+h7oH{g^ol%8y-Q%@M7$TKOK}-j zZ;?IIH?frDKHefbQ)5?1t1-QFNdY`;XFb4URItnUQ0^Q5gz^rpvnR3N6mgPgDuQL! zuV8lK+coaT+GO|8SlRE@kiaBR>F?zk?4a-E8EiN*&A1~edjPBHiyBK%lk6F+9YMh4 zPHTc7-okozz?dib)DGx(AhV3`WyWc!Z%rt`jFW>DsEiPlVn)c25mQdDm@)h6FB-Ht zDL|>9K&6~klTu_5`)h0`%}k%a-ZA?Pw%3f=SKs+P*T&mg^1-RuWx$a_+5kh^4O6q5 zvaifFjC2{GP~my&&e@~c&t}xV`j3Y6+Evv*$N>uQIC^*flvgIo&X{S1j4O!umA!IsAMfDAod2a5JjqrzNbi0v4IHcPX$4O zpn$ah?CiOB=iGaP{}0~#zK1unvoo`^vopK1dv=v(pwvYC)!x>(Su->05UmN{)d%)< z+Y>m_ZgN~oe|KN&eXJ)bMF!I^gJzDK>5F^4*l0865N)`mKbgRh{_x}S%jTJ+07+N3 zFQTL|&F9~ENt*8h*t}1gkJOTBz9YY?G+%_MBGY^?2oWyu=ZdZQ2{0tgNxq|GG*yZu zAMTvKMx=&t)t}$s{a$qB2FXO<%Y-x@NmvlKIh4=Ou-(t+WX}rcc|&b$*j9oB{EHLb z69Ag_^C7csFwAZ~skxq!`}3|>6)?owPh;PZia5KSJJdRa9VJjqD138Vo6_NY!J~-;#QA70EvuW`$eVPw<%Afk5~P(1Xgp7Dp=r#`n7+ zkotm?(s4lw)9r)H-UFk5w=A9)47VO+O%wvIj0h>?agF5blbZf^*&xyYgTJW(DoNVY z%*{xW<_joJ$o_)JBa)=zC_Y~~%38(7de^|j-blWFv^9Z^B!xKdv7V6g9y=+(d0hDk zGLM^o0?!BQFTmIq2~wp!PoX#lVTZFz*HHP`JPfHelhUdUDl==>p-Y^l&QD*U9RZbkWyTA zVot3ufr=H9K*zZ!MOQhskpvx=X@a`QsZn&Kjybiv3A&p)uIebdQn?TGm#Nkq6KOQT z#e^!V+^1f~bTC~CMXhE3E|*wfg7~Fn>vHR_>{UWcDeXl=X)lseTn6v_T`q&)Ck1GE z+d*%hCDoqaJwp-K!D=WPk6-|O)H0=y>);;=T~sh&qQ)pDYHVeT;jy6v8?EZq7+V3m zK%l4}pSpOhmkBCNIrOBLDVs1nLz_ZTug^)nYD25?T-Lf4mPP0&m9{)7?XV>&MN9c} zwsk4XCs4E$Kt~NxbY+LP5_D9Ppf2o?q9gUwb76*b2SImJN3BwHj~#{+sL1WY>uUVU zJeWGpCS;&tG{Pmz2uEwmo9o*yu=ds-;&T>2fLrNRKT6q!k>gv=OP5#+^aoDLYv)%k zw2srB<7XFIC$kr7u56?(H<&A@-fO*}ZLNyG&uY=w_L^%O`Nu8h+CScJeMtL)moKt% zcChBkX|mmLTbm)b$X$}aX|&6%7thuJJXI>H83VHFizSeuV%jNXhRS@d80K?@$b!K! z_LK~c^++`wkqxox=K)dU(vEFOf+fb_&w~7MR2G(q{)Xj)6H0G#zJxN-VTf%Ex1;ChiDLT>*0o ziYvya_K!!)7FAGM|v6VH^Uav!hc)>yv(vKGuJ8>Q{-ggk0nNF}sQ(NWv`JLn;N>1u0| z_BnrfHDrdrBvnze{ZukIV**A1lD%JHZCZn5@!EZS{S($Wp1~n(pCj~yK_=!Kw&Shv8Iy=l)EcW$=F2uMOmj0bm&vo^QJz;=&|sW zIV#s*YhBIO61kLhKKX~V&L>GJM&&pEkWu+;|$ zsK;p~5ay+yAebmn@-NAZQF&BedZRZk=A~aDP*gAGr709c&`Nj1HOZlP^%VSPvp@+Wt3bwEgmz;wdD}_+!sKlyUip?aJqS0x1wp|4+cJV6^08aDz~<)*1WS<7U^@7owLQ<;ig{YBxS?7m2E(^n zQ`raR3PxHJP%!fd%rSlEza=DnHy+6Nr0+;AnZD~=t+9@10mBNY54%PHV)3J&ujW-7W;F4}gpbcY zuy$pUXB1h1uAS$vybqh#UUUuY#=h9Md}w{rFLnrz+ih*b+WA)5u-n?-R0XnZaMbYT zEU_ow**+_Xog>Z14CEglS-)b%LcX2)g%x0eRb=X2nN-{60mp|3=!Wkoi zyrd8~Mv&*u5O4P885u#&fQu75o9lsW_Qc+TJWi?!d5+$F`sTpcP)bs)d5`Y3CNhc& zhf31;rmbO3+1CVD%=}DfNOAu@Yq<%EZhXlZ8B*^DLBy3$;Rmc!*kwXYO?fUDs<@y^ z-KxlL;2fsM{K*g81uqrH{i*C2H4*iv(u9`G7k&e)A5g@B52m%&>-;Gd0mM-egt$}$ zo|yE3Zrqqumw&dde{H_kdNq_k`6V3Cph(!Zzf{|Bx^T}K8J)||$ml#3`VOy*zJo}t zjAfjFx{U>=3k&`5aH8IN5Ktqw*3 zsL78FSvN~r^{HSAPu-Dk8sf)NY{hZJHM+wZ1RJ>#8hsY@iLo?B{K8lobGD|9&|XKa zWxm1m{88%;mLaMe{#PEeR{%HH<*pkKrm&lm0Z&E3yNg{FVG>cBE2x`YS(md$MBVh0 z^)MT(FyuM-;Ugv{OS-Vt>4vf^@P3WI<=S23a8GDHS zlR^5ylZrIJa0j#Q;lNa8Ij1@gH|oTJe+|wD8T7@O|5Mh%asHJ|f_*Nq_6hc+mT@Hi zED83aiVXHSLJIMx4ED>$9B;tq9Se+1fPORw`*Zlv_n3=#gMb8Q5qmqK)`}2#|D1L22aR{&ThZe#6{cO!+c5m{VM8qsV zCs)Shq!gDX51f-rlVzj;ebwS~Dn96|&&f!cb53p@skVm5`8?3aNI~gifWt`P1O4=G zYZpeLcpB?XA_Im?iUHJmnyPpfuDk!GT0Q>l1?z3*y5dCD)N?Y*P6pXUl*Ns=6NDK0 zc~svohWdUXrKrBEhWcv#r3@0)cbTd$^sk!KXMCy-^ih43zEYnL6nEZC&@kJoP$B|m z^-Tz#>^y~H82QOd4fkKO{>1tdVoD8t;VN@+nNMF*ig~uWIRiRaO8*MteRBrnu<@iA zl`-}&VoP^RWms~~1@Y;v2ege=#$<#(V1sEEA2ypZazl9SHUk=2?gw7Y+6+i$i@kZ> zOL?s#ymH$PXzZ64YM$~^n)iWz`e<>Xsrk6!w2=sbs`sgfd!7`Es_*re*#ese+kRtT z5@JgA`wi9aC#9(R1=C&Wmft`f$3BivW+zB7s{R+Mj&sTmbN-nO`DCSf<9;MygQ}-& zAj377h5oG!9FtpsiHf6`N^w3=xL;!gqtFA)R?M0Zs;D@Mfz(d@UokwGLt7B7>!HFwGbwx)KUc^0IvYudDTNRFTiW_CQVI%h$&-hLC+gGw=9*(dDk~?YLf_im zT#K|BCkZVLk-Kz*)R5xIvx+$how-5A*0|6bF2`bd~ z3ZaVXHem=CF(Ag4ZK|hs4Yzq!juDkt*D?+-yQ4A6gvzJ1h4Qr_LN&%^w%~Jd_CM*I zoNo_1C+FKkz$xJDznXBvPQhg1DFJmyNu2$&^TzBy{Jb(ywEU3s#Oc&K@A1I600=xU zlZ6_oB^ChMRTT1(lB@6;ZLl7ypZZ$~h6{n7q=phKUqIc0;X>eKyzMF*?v0FD!=VI< z`ogRsg^Jh$rgWf@tvQ=Uu|?8wGHuvQ)i6vNsu6A6=tar4PqID6C;)r+Qj#r`tsq>` zG$@+tR0_orHTXPspq9@ErPvDeArL6V8idS!IIcm+jEzjs2;X#?c9mbt@mIx2V0l-mO3Su=r!gmy z1)2zthj@4y6Jb)3PWqRbE6PbfTOy$7HQ*u4JX<h$l5Vs>AI2hJ% zpc9Ojk6)1Sa>)f5mhQh`#LHQPi6<;Er+_L0+ih8W(Fm8E;G=RL@m9`ysT{2r&o8ib zgBQj@nnrxV60Id$Mk-^}Tp|h!bmv7S6$Z<_1W`%#sadM_^2?8(ym2vB{y?BAR#GVT z`T2{y{K$mnp%hz8$NutemE|8(mnWzp5F=Nzlr(O#Q2_SKVcFPEWn=aGVN8mUM@GI3 zdBjV)gAW7(8S*;+1091QuZ#GFA+HOZ!w9(}&CedznL^t`z9H|UBHM#(h^S7}ZUYs- z&2{=>bm z$KUoROlrc86DXcgImRCvZX4u_9X7%?iCyx=-a7(jUp}-KjkL{R;g^)QB<-rfqilC- zCUiVTuEaNjFcDvV(Asm1ZHmUy2t^FSs-lrVAQfp4?qsfLWZv2fDEi28FaSN7H_QeN z@vebUc;F=&c?ObF^g@#^$;eYi3NQ*!yhNg~?UHms+yB8R9HqoJT+l#1Xo4-CQSvJ2 z_&_lTo1h}-JWNEupku=D1RV;+Al(0w48nz%yn=8QA&9OVRq>{wiZ@9qs^U{a6`zp; zRK{pyZV*e4rSAO;DkVzlaE^3KND$6%>l9*d$c}x$lKjAh`9u zBv(4^#h=C{-fb=!;kVgkW#y=yfpw=cCV+0s!qsYz%SQOUh2UfO&F8yp?!3W(%N_#} zi&d?gC^JHDCsGkZZ+lUg<5{q3X}r>5E3gR3Fa*yb6;QI|@4J{K!{sV|e7VXS7enxa z1gb(Xg<_9CcUc<$3lv?%;0>f{m8xmDTvfJjELSO648IhB;diN5gJ)ucwKlR_@Jebj z{$(g8F8eU;6Y(kFZ$e%S#mB`j48_MU*A$AAtEL9>7hJZdeB<%5nKsV!D?o$BVuH~}O#$KFdyn;ci3?pw!(@lLx2Phc}d z1+`RwHE7G(Hynyf?y+@b(+I^Hqwv~ADhe;~$ZSMmZwgg&?z1)4*$P4!!h~waYx7pic!o26|Va-sf@1MgyC`B6pF693QSqNnDG_} zVOmP2Ts7H;v6O6dmG8<1RggkdMZ2p~6&*+cdh0fP7dNdW^MOM132k*>br@3;V1epr zL`jJTlzbNuOBthw#Xx3471|g}>Y_GG7#?jLRw=X2^v{AeR_d*MXn>)UE$>q zOfLYhCDX1C6BZaP#LWRHo-(c7me;NtVQeEoN5#D2t(bSEV&J-hV->K9d_j~q;(6 z?!&JUyN|zS>gWVz_r^zbl&-u!fUw8zfW1`F&YxsEp(k+pNCvx%S;W=30|$6=xqKWf zWW<(*-+vlux7Dg10oK(n&Lhk5qeySm3=k@SuplKbEsig*iQ-(lk|1OSM) z5W0^Nl!uFd?h>~zOoV^b3kag{0W2VIA0RT`zjzqVAmNJ#hxvkMY&Y`a0qnu!ZTfY_ zk_#O{Xt)WciMW~%ulW-)m6eEpj)*UL@tfej;(!|-FKi+X3Ejs6JXW1h2Bg{>tV_@H5T_iyyHfM7y1K;|f@5PadVvJC#t^R`hp za5-vZusxQKc)`}05t4lE3$|I7H?9To{GW2_hm#TjMf^Q;hPIu*^`dQX?JtB}2d@QH z%*pK=t%NiJz(?13<%qK0^-T4R5CzCQtA2b#9vj`NZ`@MSVne58PlL{dSw4MDnx#cl zsT^46*ET;3>|^kcwd_sM{@h2)1mpp0Sv>yL49m)pE3~0j*=tY{`uI-1ZcJGR{(al1 zXuh|4W&~fc$rj3ooJdO1Lu&Ez)$_A?_2AG*4K6p|39h|lMM<*d9jJO>Okz%LAt9K@ zUTGdDUbp44rnQ0%^GJb1b2j-@MH2-Szy4>|QN7XjF(brzN_~4O|9O*b59_H|a_t*u zG2gji_>J6L52nzQpZpOL?u1X(x;JbII=hwdNI3+YclO8$M56 zOK{GlI_`k?wo#FoZ7ms}7^&Y?i&92#Bj2;-TV4ZkBE@O>*Z8~d!IzY85P`r5 zinWcR(H-#~6Gbyrj@nm5SwZZJs*d=DadmLTHd~?PGlRPR8C*A?XwPJyD^y`)#o9i9 zwiu2ZcHd#^$Z1vf@Ae2WT#$N3e!7C-jf>_G`WjU@`? zU_^0MVY_T2G!~_)QB(fDtru%Z0NBJR9{GW7f;VCsU%A_s!dm%aCx2+OdSmxuxxR?G zyKSl7hz8k#zS!&|Td6m8Du4VVTOT&g7rV>Huu)6fCaj7m#n@i)QOaqkr-#o{1l{I- z$4mMuc8`K{F!%TLS(>!;FJ9I+>kq>pVCmW{zG#o_Ek=lN&}=Hd^D|p}_ADWR>Yc^U ze`bT1vItyYSNs&#mTe|LfouUReqd#Xh9-2;v_#e4#KfKThBgRcY;F{o+?`|H7v0;U^Rax8hD6gkvRtD!5SG zEquzpm+SDyzp~}%Ckz#C+M!!@U6(36!OOq4b@WH>tFLXhu^3$$Es~q_jqMf>rEk8m z&DNWEC{6zs@>N7I?qv$b2d|`Ao4>QYsfBk{Ox$fbddT(?>#5+fE#DrtEz-L3lJ9Ll z>q88-U3uvdU`uFtvrU&ih_J0XbHsL0)2HY{*}eGmGjYkpVq5y)SA1uSvKS!Lv!+PItGOkIYApaUp5?9Yyugv^~oEad2xt$gL&9-Xj9&4 zJ*KM7&$bSl{v0Ud>a2;D=b(k~m`Vblb}YOn$Cp65|6)62`4r$ef9fsRXSC&`?c??T z>U@1KduNW3?rWV7TINdT3p6cCpH++RPn_ACCvUXeNG8H9XCk~F*7CTmE89(23)_l5 zE&v!sHQ8zJ>-@~?_I!N@$aKFwlXs7|{KBq~YA{deA5->}cfEg9z5LZse=GdG%?1w^ ze;OT%s@ZHW)Sp2hoI?G+VN3mKombACS>$(619^UCeZvyI`IOC0Cl!3)JNB-8#vity z!f&y7Miz8){_S=1SbqiLIq|L``Yje-zI=U6}7%S!nVXKX{+be{^d8+MNKTfxHfpPH4x z5B_QUlr19FN-x@mX!lf{1NM&+aQ->l5d9ttKk&-DSf2bzU^;t-l&<>FF+Lgm@3=K0nVly1 z$Qw#cyhAS9`ty?)u{shA;Dathli~tAT`kE51jr^K*(RhE$wH}#?5In&)vO!ALfV}q z?IHq4kvkc*^Je!-XTwP;(uPtK?WYRv9KvQ0ETlbE(q2H|NPDV58*j3Ih?F92D5bPl zkF^)_?wVaF6RB=Ms{D`yA;Ap>LG0TPya__7n_y*E*PxnADl%lwD4zVOy;Vfn4Co@2 zecdas#V3|1LPIJv_+Ekk+m>EIcB zeUQETjV*6W^uNIX(--6?Bnqxn^0P$7{lWIjERD#8OR4N*qi=92Rl+EBoB$sUu|Kb~ zwuHy3FnclUN&q-RYg^SR+`e2hVd9*tji&)dVwtc2?^*dma&NxVuC-<(2+1>6M{(FN z0Wi9cm%iyp<9YAg-Gko~Vb8iTt+wRT4mwkKR&{V={zMZ?@2bZl?R7O~CybBHb{1>p zT#L3RuyO(~eZrZ_3#08X=nn?+g~hYe*$PscU)M1~UlvHr;qgFz=95`%!ihOpf_eG< zbvx8u3>EF;R_n$QRKEUP?fOgr-S(&~uTomxo1_peZzE;3&A;Wf<9YL^M`(e(a?tFC zCi+@{bBJCJBs$s~ni{!khO?y!0PFSdc>kq(9Uj%d-Y)!@lEXdOg9UCqzM#H+7@xB{ ztTj8XFyyokm%7J5Lb24n($M}U90sh6x5sP8_-FCs2 zz&Y*fDfTbIXDjmV9(g_0{t3HR!DT=Er?GvFJ{vA%5&bZ`iT$+x2>byHF##<9*4B^_ zQrpI%a zj8GqxGqfwN>R@Yof@Ts38`ea!O#Ub&O*Sm6YFk@-e~m37!eN{4G1_zwDZn-j3~>(E zp5{5-?2XwvQix4j|j*GSsJCFjf z4+{I(?=~p{O?tsW$cFt$1j7#WshssySemIacEMyJzxy+nKn^SE4t!mgkWhV6Add`~ znXeB6Q@h8RuMdHl4KA<6E9zt}CzJbm=jxH4`o7kFgKA zfpr3^b`Sq#EKDl*5YDLDY5}0C{jbrQk5IK){HqfCOcoHT%pO-{d7DPw$chX_(O@UZ zUZ4X5s;+e>TQL60czZj(c#EYoUpL-9+|n`>^4Tay$jEiv&<`{uCGsupa6y*jrs-}jWxc+xY0 zvFr|2hWnL#<*`)8=T5R``l*%_7s&W&QO)VEnieW&x`dyY>E4t%!#p3m2O31XXZg`N zp;ZGX+ciypF_a(JHam;GOhm#?dEV10Q6QNo^J?-Dm4h8aZpueI!xv1ocVN#D=GZYG z2>|VwwXz*+jE*_{)nm1J-F=QX!@g5hjowje{!x|5-VyO$|1OkI+3&cWk(xKJ=dV5T zQ9Td%IXaMMSnWr(XkNz#%eGjih8}7;k`G!;R}oqgUwE&*jakcIJ8r!hEnC7FB#mFs zZph$=XBm%r&Jh5rXXxq0_5#?UT6e!ai??yw9bvbqO2%aBE2lk|^;ck}T zNS&M4Z2`)p2Q!lmj|~|dTD5GJJx&Xl2cqzo#yQ)u1w<&+?;LOaF7?&#j(hFx`O2Bc z8}Xty+Jy3*0i$l%8@l+>xzNonA_nStjQ~(R!^4b1&oiW+PtLQy#o(zmPv_jUTYgRI zY=&89>&g>CdF(y*G5m*x_Sdwp`Gfb^JF;&HV^rEfZ>9a@S7{S()Eyt-pWbJ0$_@~| zsHMNWwX|1i=~JPlmsm*H|4>12G;bvgyiIMRBlSLydv zlWQNy_EvJQu^PG5KI{h7Vrda(3{&{wu>@31u>er>X-cGT5+;My{I4vV*f>)4rj2N< z;sUQ;{@^Bz|P2J(7PqrEoC$v;WGZ%QvmEH(~b@zNpF!h!5PQnmbJ z=M?q<0pJW2F!<3w3R6s|z~$yb_B%=-ZLUe{$<5>I@U2HJ@jUTuTOwcZqa~IvKWa(k z``eB1DcEQ$j1M>mBJ=EPh1u+HB0P4$pQ;1&TH!SW_|x28dV@V+`NM6_@WX7*QQ=5v-5HLYL+f=j2)1hHsr=!dmfDUHlx4=_*X0oN@oLzAgH(^L5wE;hS#J$a0adU&R;B{eDrg|P*yua0+RPjM@D9=7;X(cW9pWDH5J@C%ITH>`xKK5k@VbOI|>qSrKb?cDz zf1^4z41F-(HhdlbDe~s+memR7gIblQGWcQch%5o19Z{QCzYfdEKoC)+0v5am$$Pi1RJtlR z=nGxxx8oXLo?L;eNv3axV-Ik36r|gXgDagw04E zC};23JJUQ}6`W%U*4W=fYS6#@4y*W21@#1uiBzOomeR+rQ(=`Hi)O}CZg`Y$8iUrvrCa(WRQJ~RK&v) zP@u>@PfC&OA~V@P-?uN~bv{&N-;-qd%MykZ0j4M(@}>yyy-`8Ce&QI%=X|6nRvUuq zaMIZAxRERrD6$cx6a|F~nkm^oKepTW<^L$MY48!3P-_QL5y?Vt&MHim;-!AoIeT}g!pe}cx87b8E^2iP|V?!01SPG|FPJuUE|IhHweENP@ zOdK8+X&nwHL8b`4ZNx8I1V1*(5zYHG322iLAe2X4&W2?1egF4;VAV@|>{S|@ zLuD5SA?_mpoU;N3f3jIX7GL>-r7>rp*_-l*_QC0GT2qC)3V+qNw+QHD!pHpVi(aVO z9Ny`G{e54=Exw4ae-23?Dgj2&?wK8LFpZ0&x=#2^#R*dJDVxG(v2PWK<0+1>1OQKQ zK;Pjh4)I=CRrW!9md4HzY}_!bj*z>e)uaG-c{cyx*ll5v!F<7hF|cD6N$ge}z6gmV zA-7&6?(Q&~AYz=wDgWEvUJs0vdpm)oI_~Y{Ee~v~XGQWzyCaR|kW#U?qi0a!T_WXv zDu5rXOFY*)gTO)bpU$dLCq281SQOaW_Ws}$?|L3?x(8V1iN*8yG zKwG%gO|^wPMihWMMn}K5k7pE`Z*>k~i-|nKcug2suh9>%!$9kyDL(!$^*VT0fk)yF zhc#!fT(2Go-hdC>d}oxYG7gpf!$Jc1=w1QYY}@rHpu`D3!m5-?EVj4wQ{b7zNre;q zXrd#Fhy7$f%6=rY(D;r-O5;013WV`ht@zmk$D=>zX*UK&)nI*R4eL8g zs-yL-oH)0I-UvP+c+!!|lA@GpqxHo{5z}rSC3k~~_3@lFj!YehqwV<+N7K#+;=;6h zcoXkViT9Vp!wGS>X#@FP%Ulfwo1ArySiYcWOrGVAs9?Tv$e70LPH(c~DcN#AGVfpO z=pl#^qQkTY__34rW^9=^wZ)X$YCqI)lmImxB~$}AN}yYDl+bR)Q9=P|I}xdqQW%9w z>#H-P1=~i18Z^Q&Ae45ZI82gRZJ%nYi*|P?675bu0Rgbv?98f3XY6G<`;icnmKSAM z9w|V#_uYaq?JC-*Ch*#JCD*X zmbCrYprjtltA_*!>Cl2fy0e>QVl-^RiZ`hy5vsVJm_Vt{h!%^m)+X0l{e(-NC=tZa za;V(WazLBnklYcXCuunZ0EgsKsv2Iguh3Zq5duvouSZa4_B4Uw6amn9_g4aXn()yR zRKL_dkcSU)%+TM6<_ibGdD6E?Q@db^G&JUO5&CdaW4!Sx zc?4d9|Fx*+De-+KO0YL2=Z=PRLozJ~Pl! z$0P!(>HC2(34DJbc)tsTH7=$qqUEL?RjpV|CHQb7orDME{tR*)Vi7UQkdf88pYCqY z>JzBo0=G~vt?lUTjh)7```n$vTKHnm32_Yc#!lsUrl_kg_S{fM9}~7ZZ&U1rtw+Sj z_ENz`dmE|t8u#sx_8Q0W4n@%*SG6t75u>r0gai5-dyMooc2a=8X501-uq~zQkLau5 zkfb={`UpWm_p%~}xPhl)A!7L*L)I{s;80iVBNGXQ8H!1mDF*Q!K zfIJRZN*)I+v<(L=Z5s|)3P4xiE*b_Gg(_EnoQQ?9B8rBUyTmx|F;zxiKO+X!U-txz zJviWNaUbxFyhCrnABc4vWOd+ucK31%`yw<}_C+Wuz`lS(O)Io?zN((1DQiXwu@{=e zl3r*XTVpRI$I4zvCImz;R7@V*!crIuhjfO8r?7sc6nmi$C4XD2udm;9!8nVj0|)E~ z$^klJs0Jj2C zVFlk$i-WHO!m%HNW63Z&!rmsFvC}GzPOBsZs?$D`owkn@VyAsd<^8tiPW#yCw2uh^ zPp6%6ciLG}ik)_vlD~4@P6H0uX_Nzw9%vZ$8f_T%8UzVo^1s>(=_nm|g0_O%ke zs+GeyQ8_iP#t}0rPL7ySq`pV_i{gwCvxJli<-_xdiu%KG*Bdav0Ci6ppzfhvsC(Kj z)I9}A=acCe#3)qhehU!{bx+Z-a!HmWr-sUV{Sq%X$-Dm@4Th z0Pz1>BFzPYiY zH}RZ&$0SC1dQBA##8(wdoGQN7B5*#dRzUeFddcXZ_UrMJYL?%-zx z5}ESxN|^hTzA&En9l$FFI&Sf0=ZWmF^}b+`qaB;?&2Kj4_kbUMu)guful}vz+I*U) z_^p@xHhA+}OZmO_|IcsHP*^Hae!>i*l~Eds=vQB!m)`VzgHXL;eX*U}q2jX+p#;g>s>Td+gzK!D$SzF5a?))&@WX66xX#fVC@7lFNxp7` zqkvItf2NZqP3JeDUfQNtCZ9XfVP%a7F>oF5DYj~Bwqa`xNLzpN+g5}0|B<#@jsc&B zzxR#j>xLX{C7PU*VlN_7x8{BZ6n=m7lHs==lYR>x_C{BWw<(g`wAdEt$rp$RI!SKd zy}^afcC4d+T$yMfUQaby{KD(0CO6>g=R)EvMPTEwhPSQeIwtYcxv(9KyKIk_!0L|d z$jJ}Io0U4Iv-^n3)F#^k1$E1?{E-{qWLrNOHh21s42`j6tc4#ac8wB%JFZJonc99a?pM%R`?r`+e-PNmKYLi1<$zzG;6%y*NJ#D0{epXJaRWzce;51$K8zXVi^h1X*tH%m!AT z?VVV)y%XLLx(K&-V)@ZYjsXb|3sGQP)G9J=7??|B!;gMv-{q)ejYK_|d(8U_+7bRZ+AQaUS zio&Tui@P1qvf%^|r^iDZ%D6j}6rh{mzak{VGNmCznq^v3HkA}(%q?q3oV<&dlsnpm z#|k95eFACVUBmL5#B>uNRH<>;=nY^O2El|Ij|Xf*qiG^ zlh>HW+s5Lj(+imbrchPw2s1fWgYtM z@iH$%I?6DQ1l3i>yAqW19(*Nyga$q3<-m{odTh=Er?Zzx)0M}5PC?x~m#?~Uj|~T@ zZsp0=<3YT^~&yS9+ypa z5eBLB` zhM$`1qlVG`YFdC7FWC^-jgMUFXw3*`88i0pO$exXHn0_&X0Ba~6_-34*w|DDW5&}P zJKRXj@K{enlaBHfV|NsJNP#eluw?>(4x@^fyy-ArZrS{x<8k&9!No}OT!M@w&yfO5 zwBSzsPEZH##J^99G0(L5g@mmsPqGb!Ij-Cj&ihfRz3F2Q!DLSGb zDe>wA>4*q%_jVM7lsF4y|gT(feurwirIc_lmShKg{ZhCgtk`U zt2nVc4e7U%HI4-4Lm7Mf^+vL{H+hqOm6G0qq{B&{xH}u<7Td_cBzv7BPHs(q4!Xdt z=`X#B?x#eL_{xhr(wg)vo=%dBHSlCl&ri)5MrsG!iEXTKLXOHWGTk-O$LW+@b1%y1heDMzWd zO!77Pl`lH8^ae?Cf*VV!%L(qJupsyb55WT#59*&o76 z^dVA+WTBRcY{_oNWcC8V!bWc}XunMgkTyI~@{yxG`+&faEL3ol#rAjqCU6uxOt6sb zHwM`gqyWi&BSprW;x3Rvqz$#)wDHnDakQ94rg-&Jc#2$gB#{C^TZaO*>c}9aNE}Mt z#BtT($0W;6!oc#ZIz}E1Z0TNg5M;UPIGE&r)iFe{#Z||s6uIiiI~F(~;iRxjy6X6v z7%HZV)JM@1l;l1iMNd&>YUKgn98BKt7|uvVA!L8PvrYROTm;C`RdK5`jFl3W;?_34 zso}(csy_}m-qqOsq|BJj6$bKezi`}cS&?FF!K@-U=ocSMAx{2DxCBt#fGzF?tusoX zx|2e+c;0We?$KrU2_UM@xZ~}9UU|@w;mccXHoVCfegzu|ZxhbA+fYe4?|}Xh$D0UK z+-`{WWtbwrxuC5D{T3(qU=m%4y`QQNzj5dqJ4EC-@U3Hs_J4fDcd*d=mB3NHpQwCi z{KyB_di0J`T!UrS_z*vK2qtfojSw%<2a$*e%Q$sAUUVv`*u7v8iKz$yz_1M?LY%9v zTKB!fscO?w%?qZrw?B z&%{l?D^*VICzDb%usbPn*oDH2y$Esl+#bl|Le7i)1pUEOxsY4oO?erm{J5lSG9X;Z z0bQI8Qo3R`sI}lJzrYc0sw|ugQUK29@I*C*;)&{AL>!#OQ4FkyC#oqFCh^7Wi+`cbSIH;z@)%5vuFIaYoCdK6G>JXTF9;4G(Us$4@fN#)1H8UoK% zCp1>3iWXSEv9!SYq(H4(;SH=oe>j@3cBB;74>`QD+I?oDd*d4HFQc)vzYJ2_aC2~| zdRSw5sCqal#g)TQLVJ8;If*6ahi9s_44(2AoORxRSqo-9^l|Ar8|aI3)pNb+!}DGq z*%wRt;e@_n-jYMS4vkQ!s@FC)magl)i9SV$zT!t{v2-<)9HxKJSdNq3-o$nhV*C6M z!(jq~;V_}C$3+u#DXv^;m*O~~05lvtQ%#|2(R7~3gmz2OureO1rchk+!1<+W5M|fz^VAEeE<&+b9QCN>GMMVO&wV)v;0%)6_DVRPqO&<3iMkwJN z=T_RR(lq~bFfy}>lXDy@z{tAJEE8|+5V#V-yF;pOi*WYV*is?`_Q;|%IdB(|0_>5z zDCm)A(xhL1mXuO&&PnuDHN@9T|`+5`<%!C z9g(50w(yj|@Or#@x+T(72PwTC3#LjbVIaL1`U1XB^0>3Kdd{&LJ5NZXR?Zq)IZFyq zD|nS^-E?_rXk@yVorb3qJB?5G=XJz2s(MJeG*V!LdZBDkFBE{Sc{tvA3!_k_m+nLg zG*F6$l{X|fcbO`qDypR_;6fBF(OICUz!Va4S#U%j{_Mz;kL589CZom`ge;Uy(D8Yp zPD##f%uaY~$<7IEE&+(lk!I&RlASpwM40#I@h&OOKKiP3KJq&_P4ozkbjNsbJAx;!>O#qyf|8<^(lKYUTyM`rDI5J_3=)E^X2&0wC{Ln z8f@?$rsyJT_YD>N7ij^e$bjMgOWFTyKdFvcyXtDVk~3Xq?Y5@NLxS%D$u}G$S#(ok zZMZTK0Jms(NbvV&&OHIF6+y&4XvQNmoe8WNfeRN^@k~ILB@gb$UDa}Yb5=k~afs(O zCC1#ZsXt>L7#E)&qn1{UWiJ39zAi3kOc-HkoI-6`FQ_dWM>v7O%G0A3QR}^WK?S^D zjd=S;SVl#8QYiDZRuoNgo}9M$K?**QG3b@ zAE@u`>?}25i*^$Y87IhgHI-g=dsBJy_sYgWld48`b;4c7(an?U<(TIz4r`|h zeNsz>s*I$T+VOe$aEmahh}}+_ZyYep@e*x9f%8^NnG~%dzq3_PE}Q1f0lRMspVGrw zz^0Hwuf}J}AvQ^Iz%zVm3>rOPG8;U@m(oS<2%bn9C7(xlDmfg@>{!UVy6{Ikyd8wJqX@=wl^-nk~z%-}%v0^FS zy~yG}R1OQQ%I)Wzt%X^d1F}pp(R&D)0xP4_EzSA-VrM=hmE=hX{N%BbxlVDoKyzOk zw3NU8=hfSJZqJ}RQ+1r4c0br8kPjQ^oTcZ$CxdU!@5b5?TIe3LpujWh?$%to$4jDN z#t8$wHM3-}^9B>E*gN(4&h}YBqM7)S5N)O~{lo!6DyrF9N=!)HsmNWT;PNQnXaT_R zc(|E7%J=pV=RtjTbGeN=m*8U_ZYFK+Vz|mxyemPP>)t|zuPgE5YC9nSDxILOZ7x#) z>q!Ad(x)ipSDMS^3!#j=*DzB$c01ftPsxg<9V;i~)Y-ME&E;?&4bq6~qDKG^F-tg1 zuyF$OtpJ$RkTcTxF*`%>aEtF00pJ!N1$d?lfh~;bLU0Qp>&}yknUAFfv6jdda=Jho z3F;Hmg#^{1M#`4*DIVi2V-$ch)e}Zrzg2BT*F{W$xGpmE+-{^ySb*5$>m#H_*VR}2 zLf6$71oykg*R$05lCS@2I}X;*<4Eh(&fXXWb#q?++)X;LqkAj?d}paMj_=^kU|x5E zb3U7?_{g0-xK;??ZYpo#y|cH<8}&hjihEXhohFZAFL`4<*Fx?qRgnVRSAqhyue6(# z;=U4;;=U5df%{5+6jC<51=&|xeV4P1+XoY5>4S%Zt$BPfIe>gputgtyj!!RhS`(%V z0QC_giC}n+Eo-uKg2pZrFpQ*Pp7eC~4c?G?D>rpac=$y{Te_uLEV3nt2$axDMzBPJf)T7?D`El7TFD4@&SV1O5Rewf%jY>8u{cs6=L90vuI2Id z_d!CefE3E*ASK?fRZZp<*Ggt6DRInDLc`GBXv0wH6o7i`ywGW76pDJgBK4-VBsD|s%>)$piG@GUriezM&H8%Kt^9Xjwj4F$@acM(M3Faowj#tjqQE8l{|p+ zJgKju^oCYaz=vBA0Y|dq1Q~<$FFvxxFLA!lt`a;9(*FSQ-AR^6=O8$#=5sbtWUddtc4}}mIUiW11@-k653Y8$*4UQ>{J#mZZq0^;A5gU2LH4);$!Y&D0)WFDl;Ra+12Un^ zh{)30W*Xj>6kw={&y-QN5h=g{)F6`#pr)B}n!88vG=*8Xm|^FOkm0Na=pxG2B6OtJ zBLMVz7-cCMM%f~QhEaxM$Pgu>EQLyMnIW?y|G*Fz8^&GMIzM642{CN`6r=f5NC7r~ ziP8L}qyU@0h&KPxnwx)*Y(6l+=2HgPdOX;Z@qC%|J7I>t`8NR|1_g0L z9NY}bl6!--vy@Gtir`8@wQP>clB+#pAsjacYh}r}ahb4FapNNBUj(+_GUe({N;r~r zr_4l9>nZ?5xc2;qmz^K7Ap{Qt$3OzWz(D~raEJq(lZ-}{5p-Q zmpmPDeh8O+399uR;rrk%XA^fUAjmQnY|Zi?3w{^kVk|hDCDUEW!-Mh@z7${@3wEex zZQkshW?`2UfP-20Z&bG3yUqoIlC#qWH#dk6hY2OOfkOLkK)T!W>2O`1z17LXTM2STMh@;C5f4qbRUmw5T7wzjPG^C9 zXS$gxbPKusr5m>#c*Gl@Ol`~W-VWFE_f^#8>(bMkBy@>YKsU>>KH2iEX!uk(k}uog zyp4@jSon;xHj?M>bmpJu!Dvx$LN;A3E( zb1FDaJZuofGv9Xx=?`X0`{?_=b3j5L!H(KT8sRVI3LGCMs31^$nBZvw5Yf&881i8P ziVAtb{(QlQH{0d ziT`z`FtYyMfLgVTw~&{Ng>Q%P19qUo6aOr1X(ETs{K8DG*dkC9&K5e&sAA)0=h?!3 z?En1XPdZmvY{FmvoP9vNz(mCx2SmLam^dvcSz}iSL0r)yo4_2;C=dzgV(khaw8weI z7dvlOpBAj17q)&STc&U+aUoM9k4&|tVu(yIi`y06B!zS~P zfxTI%_MgIeEZ?h2#i073dbb=1=eC%@vhGmI*V}%oXZ#%aNV_-nqtvf%u-x;G1$PwG#`O(0|P^R$&Ef9v?mRRtjB?p}8x&MXo(y}K-hZ6(PEbuqF zAD{ZBrtrMD`rV|@Bcp?kZS;8#At{D6r}%|F4^{#`VGS=!xOSy5Ra}-Z*VozYa|PYc zR?=pBE+b#AplnKt;b|cj zbs`TaImMnz1$&18AjsUvdo^x8buTL-!3n-e&K2~KMr%dbS z1?5@}Ktqnr3u?-~AjJ^yvnuvPwb%DSS9$hOzK7;DoY|V!`J$+C%tr#94pkt}^ZyR+ zYT|=?AU>#6O5^Zy-j~6x*fk;o&Rs7H02-svySVA7dSTES7SkHQ?sbs(ay^0oaC%4q z*w$(`F$7-!ENTvk$;u4(eiJiWAfD)^cKcIY-XH zFQQw3R|CX@oTLZT^fZoGsCy(C2H!t!g%BPG@=Eaw2l7gg-_QK?EnwHFAajP>4{?0T=O{vbxX7SftwuH8&5hj`2J0W(R|wSpeR0OdC*Ay z&~K1sfNvMXheKOi%P)Rf97h=L82}9T4Dx38N@s_aP+aU8Xj}RE<1iC>r!|?0_>sJ< z3c6R!MAo%7JB~dsyXy04AN?K{jPukht)&ame|P35R0(F(g*-#J<2(c(lnH7BXvT2B zl*O3U?QUdW0G$bFs7<&e>cfLES_IN|vyR2#_4tKng}D?$VA{o871a&(NSi8?X{ zB=8eQV#5eOSd0&xIe<+hOmH184lU?_zw6NahK%5&d#rdfIL$Jv4S2_jpcFQT)CChA zuerPhT*S4rkjkI}PQTzvj`9_dm!E}=Qpyi=3KW1jg@>Lmw3^VwxQ0hMK{Ew<{Wfw~ z$F`9hr|%L0(RXeZ08{^D{Ow%G_7Xf?T7NEaiXv8L@~6;E@;P!NrC7CsDL4-Iw80t8$}9nn;L52HnqFo*Mz$kFgwA* zC2~2BjB(YIeSa@06bjJF`I$&pd$x+evHj)kjLzRcO57b#L+8UCwSra^sUc`-YlQ%C zIFG=Q_gci~+oRn28Dd!rY*ptUBQ@N-uh;p80DqBcL;(JMjHly4CX_X@y;r{r0YtyY zBtgmQR+?5z{LeGa#S*J#1BlhyiG`Kyf46Eod9l#T+estnO$vk&xGM}La3Q{^pp0NV zEzNdK0hT5knAE`aFq=b=&g`@g)!LKszmygV8*uSz82;=r0!O~C_B^7EYkVkyyL+Jq z3y9I4M_PPZBTt{|&m;48Y!9J>{cqr|N%Y`ao^Mb4|2I;@&G~x$?`F>~lZx0BLk9j{ zvN8e5p4IQ*WdcG59Qx^`1liZz^D&~8*!7z_xmrmbBsKQ5O9xeI;-RBrLK6Gj(ETU^ zck5pDc^N6ife++No!%`C2L8PS3+J%&JCI&qMM}~2K`D6sc5E#v5Uefp;Z}F_`<0}` zt^S%iUVqIXx0_VLmOw$JaQzImrtdr9cbFASM550l>mD_;t5-dlL$%4k$oN7)lC+C3tF#Ck5^r$`r~; zDVhS%GnvBvmPPlnr34F2VNpkA3VdU0r2{BHD|nvNKr2|((XfJdNQt`>YP5p4403x& zC2Rx~p#C3fr+B-OfAd1Nyal|K75q(#-2zsrD%sq5BXbH4vSMew?6uB%H;bD2jviAiMv-XVB#JCeB>E?@D1&z(e2%;qi-4}AWIKt(oJ z-`Poix=+zXD!t+h*Nq(Db!W~}cvf|A4%?>KVJ3ZkX1@@P9aB(wYB?e;cmz96ph7eY zpz-p3MTsVSTslR3a1Am8J$T|&zB3d43m0P z6C$aX;DhR=L04iD- zV(`NwlNXaZvf-axk4Y6Ye6YqY5GvRW=YW3Fv7)&Qe$+%iLej66^yB<07W~XJ3kDH8 zGJ1p913&tk>t~kGMe)Jz{{E+;8LSC`mj3D(pmz!8(}Qa-G@*N0s*xn897;#H-eNro zEzCa-2&tV7Ckf9y?aJY6zYed@Wi~}ww7toh@A4GG*(V<8e;cjX7SGqD!BA#TM$Efst^@`x>6Lz5O6_aPH~nc9sHIc}hm ziX$EC1ORmak;rp^sp{2nu5^uUC)k)B+|os62e*&{^qdQ(yVCW~yYR|_c`58mQi|%> z@2!p_QXMA8dEfz85*h8rr<1@@-uXyq3XYiX`x`Wc`MwLJ6!U%OygBM!<(KZH1Gq@| z`Q?c3*NL`@NAZ&G4o=q_cIA}qNPU}n=Kk$40zdw6gY z6B>@|L&skp%%%|WgugMNMc(gfYXT_uKks_=@O%}O0+WkX($)tKhAi+~UF1Qt#7V(_ zvkin6TIt%Z(n{Bo0%fIDU8R-2OG<^6>Tgrce$Z8JDN%dzvd~mHT!9-}s1LWJ&sfuS z=ts2B?+G_FoNp<&U;Xr>mvt&`Xq}>s9_zejSf|#_%Q~+RCK}_F4p$pL#!38&n+q?o zyONl1lZ0(H?q=9#nm4b#D!`4W0vA{m6({JVN&jBm=u61cQi~2MFSgq z>jpR$`_;W|*&reyS|`Ot>!bi>o#U@p53Q5d!~MH8UF8u-!!oPBo8_vbu_c5Mn&y4o zq-owq3Y2NC=_XC{X;O-&`2-@!=#gCLlbxp=e9JHGWv|o5m?-p_NoV9Ze z>kQ5H8Vo_X#5!a6z-2JYr^DOJaeBBJj+3%O`=kK0PYO`>Nug+B8;pxW_uRg}ic! zE0x_#3eh;{Q@uXOS3LlEB&t_0x7kd(&AW1?+w|ro>{5GWNhjvNppT9{$;IFOh60tbzS6E{!?A# zR{kx7JZ|L|2!OGqTD^Ye(`*F6z)k$y2mm+nDF7{ddXX57wfiMorsjdgO=-}WO(&Hi zHRnX}?VRVZ*Q`8$>&taJf|Cy2T^^&Z6k_96{u|;KZsorLqWd|Cbk=(pzbk*`dDk@dDQP*3wHAEA?1r6- zKUUCM2Gjq=funf7^1s1R^3+lC?%+sXcX#k@>_^26ck?Yrpj))8ak;FTlwcPBNS@5~ zf0swj82J&l>|5wFamMI@jEU%J5BJ=rTtC-=+Y&*vkbNReOG>MRamMd>IN|7S;%a`~F?gCAf{ z#X_D)vcj>wZT2F4T7f)~gu9X}2o|19S;ja0$9*#8DN-o*<=_p6$`9aF!Yc%h8#|7pg^wfcui2NXftMOTJs6_9fkFy_FEa?Z#yVa$mZX6o|b^ zcZF#L?yjKrC+Ct<+@Az;xGfC^Aa2lz^<#u(Q~7|st_Ro}QrE4?|BwC2$9jaMSVLKI@@oc_qInQaB_}yPjh`|(=`s6Pg>SyY3}{S$?Vvh6S*gDsL_IYSm(r8} zmP}ZBGT|c$;PdOp{h(kV#)6}mQhu@p5~BQME5;OuE_Lak8RKbo?9cL(<*>2ylbjD_ zeWFlZN>usDT*hDJCw0AQDy+cj+4;%&Z>`3}*j!eX6g?9gMfpkm5t)g|U3?5c?lQAK zJe0k9qTrZPYNkhfR-V?M_6#Bmu>G2?TS~y z7%kZp;}^*IWObqVg~44s?BwK+f6arEliC?G?ks? z_)@M$nuVR60M?g%>e^s$IO5Ouf^3+>B&ACkGV+s=}FDiPER6NJ3Z;u zWZcW}<=6^JPp)J*wANZm(qzK)nT_Mkq5*0h&PIuFYEtvH^Nq+&r6xIBm%(h*IRl{J z-~OzWoTu%)B-50m!L;nYm5V6Xoi|AUtveUv3?Y}@Yid zQbzLh02Ld0iItKDPI3*rqck9x27rQ=y8U(*4Y^Tl$jyynLqDQ&D46~;I5a&j@p7OX+Y)G~-92+w04^)B6h6A-L6O+0F_1JGVS4`p<6ErGiBFke#kxO@@ zRCK76>k1HS#@0fs;uru!Ix zHcT8q9;{*CG{wp8);u=t&M$oq9wPEv1A#DybO@;tH%t}IJBU6j;# z5F*fytBL$YJFX^!+_58k`2NA=sh(EezVJg8-}ppgq_&n3vRxprDmJA{rP9-Z!U2Y- z3pV=5@EWfd78@B?O}WY|?_B3C^WKfYlh9S(BlJ%zZ!5{Qx%_jDqy+NMwFdsVTK=(2 z{8L^2Nt1ut%0E-(pGor1zAE_V8u`a7ZzaBf3|4sWWrQ!6L>E=sOcXa0war9nGf~-0 z6gE@s%`3bO?V2P_vxqc1Z^l+8@?^iYO&v)_+grI&^91&K;tdRJmLz7mSf!FZDonaDqQ6ta?+&SGNZt&*2QbGZGe4|YJf zq*Jwqko96*&C-oEe20vCv(@8 zLpN~2bO8@}CYDZ5@Lg_*8#HCvjNIhwC4le!IBy(-mnXtoYnRS~P^Uj%@?5pcg#3C1 ziSS^O&nu2FT5AXSn!>o8dM!Q22I2XuoO-RqaaR0ox~~u|EMZ%BexmVNiL+F)qg#5ciW0z}DfqdH_CvBcNQ>^T@x4Sy@qo5@5DpFa%`2xSh2 zytjgV;P({Y1>UVq1oXsCu>JXY)#5mJTvNZ?U`DyFf8*bCeaWyr6t(l!FWukNH^4Aw z4u*n1{Bt}r@lAl#BdLvG$=SI6x7^*#XW%zd4>$L96I)s1wLvyjWRP8CkQDmno9A_O z#3m^t@rxEMeEl-~7kgLF%j>$ZL&mJ`GiP<2l|Hk}jP%)^x^(G2yHocW8J#macg^TJ zyG!RevpUU?|8}C@szrtlug`02tcQ17`Z`+cwOGoa3AacH@4iKY;oH0L(-X6;qmj!plhT@=KYu{LLOp~EOAYqc5%Ke%O=IQ#Fe*8auL*m(lSW@4=R$OXM zCtxEu{7!?m=H$U}B;*@f*I`n7rH16y3qH-;`HIW6@Kyhig&V-h&$BAS^!C0tM9dJ~ z{m6#3dMEeHt)!uHoS-55ALSkkDe*Z|MS|u7#6ADFdOefM;qI+HM7{qrDc!eKw02e- zZ8jgGV#%pPR4jS_hl?kOK5ndDE-d=e=L9EKYdAL=FJ_K$p+4HlHwy0P?29!DrJ$qD zMMKmTjodC_m|YVKDCXI;i?5y7<|bZplhIe!rNAdjOHT(^&|Z4asz$^31o(aKN+F#+ zrv6pMm2ozhKkF)QB9bnyLQ})ctGv&_iR<$cg=RMhljA3Cy9oJ8BgA49EX z#-%X4kFT}JW`(ko?JhKW;U}Im2KdyQ3DK*Jv6s?T&Vyb8r-#pL!xU>T2az#7cE}l@ z?(1tST!6aJxSy||1A1^6E`rLcENCZ|Gr>p|DeoGwiHw4_6}0N_yW8SLV0^JM2akDT zGy0nCE>&M_yJ3KDiXpCc(2 z$&O7TPf`=-NosNd>cajZzEr`Xq$YZO`86h3L{0S=u2vKFKX^A)G=%wUYu11iD_8~2 zv|Upj$}aWY>7Y(4Em{$NajCr`{ED%mu~@DMjnDo{0Y6_V*_;3t)))7Lsp_Gu=mo3%oAblc%S{9^&L@y+&f&vN}wJ(y3$k6<{d-Tqpo+cDq*iS zZy!o)=ICYq{cv`yuM7426Pv5|FmFcX+`4K|-Rm_K?rf0yXt#mpeq<$IwY*{|lX$ZD zNY{}=D((g4K=;0uwiE}tM~s+C+32)KYAi?>CjJT!jS*S@P_jl3QdTw%QpPc8JK5Kj z4N-NJ5B@q7_LcbCi(i=>dhBV+cttu@oWu=(Qltk?(*9W+%^4V&+6t-i0cY9?MvAA3)7OetZ*<9;I)8X~4U z`Pi?@m0zPOJUDMmL#Q!)QhWF&{}8S(+WBHii}HL^OmlHI6znQ&1hq<=cWF{Vb$h{( z0;k90`vUZyC0{j!eG=DgGNQIS$83>wnG}x#Y8&M*3aD+&rhr;fq4cXn3=Mc`ZLIux zFyOS>0Ap(hAaAyBtU^+AXT%M64uU@aLGRl+$PTXU#GM5O*FH(xE}0bLpJjIB%PS$5 zFN;L8WSL@j0P7sgPj2IpKV)^pceJjoe=)q9@2eK)kPr^uvV0;uz0lXvcn!W?=xb1J1J+-71CVzq@?KzwFSTY! zT{{o_9NXv%3FNC;CLIi4;_Gdm&sMwlKUnqDk9@i2uQ;a2jr%tpmtKJNok|g$?YH^9 zS>>wX!oQgk=GF;Ljq%qm{j)ZS3iXa;F8Wbrtv{(h&-t#_tuKYMszLVV;C?(`MzUjeIW@3petmPp+1W z*Wc=Zvh$PS5};;rpaD!hnw=$n)@*>7({{cb=H8!j z)ONnbI^SUtm#b}!)kd4ubJcdfa<1IYFA&Y$2&oPP43LRH7!r=B+uy;g8K> zDx=MfHsxzB55sKASfDB2?4~RO1;$1v?Xuc4N5Pb>VLGGDV~VzT-d&qw7+6XS=qppfpC0OUR7orF0vC)82 zr_mtgfu+r%=%ogKV=l4#*q`v21`2m`-+Vku{_dtv}4`>NP2r` ze@AogFettu&{gdFYtnY~D^nn`#YsAsNCTV|*4L^qS-xNVXohS`*GhlqAOHu;d zbB%AIaSEF3_01D6a_(~Sd0}F1NAU)S%E{-&Vd@waM~_S)%xu+_*}Fh?bMJY3&nh4u%x3tZ}pNWl`j$+8^i(ra|a=i*L0Evcd@I#+tMp3gV<~ujzfO z?*ro+XnGsIH+n6jLT$S4Hs4Bd1BXhlxpw&O$$?fD!_I~sC;h3=>iIxVai0?%<$TO9 zVB#TMsjwPA^walOkAbS2UPu>DI&0+`*Fx4EzDrz8N`n`{;q%qnh&P<*iiv!3^^N5X z9Bd-WVBTz>r`sbvpgWwq(-$A-RE)8==0GD}7WXx43|CRTC-3q-YKYho<+*2-5z0NQ z@X`am9mWXdoy{0L?44%H2)2k#8{u?Mv(X6k)i@+gzR5|GZ%)6#m&m124l6&O#!*Sj zf86WqDn>FHa8sA-K%>fcAN6&2K$Tn1j>#0W{%hr@@AEZ@uAKNUUo)}tzg9l_FJEzV z?`+ zXTHMx0zb}j_PDRJ*e-Mn9G_jCzNl7f^Eagac_3B%u8V02 zEJs807fu(~QBV20VC4GD!@f?E?2!?H27-~53m;tD+1|%nq#O-LMiB)yPx#)q7}PdJ zn`!>eqQgj6&!KM$F=QaZWsmr>9fY+h?$@S}!P?T-AN92{#Ar8NGR5$bsz(mzrA|{U z9H~sPn4vgLVR&&^!#U#2a!+HRz2@qX^o_rWJ?4y5_L!q-Fnbs!c<{y7R9vY`Bjzx! zaM8vAkDCN3lSvq5WfE)|4G6qt+9XlXi=Xi=v>4PjN%lN{SMeB=OU8MCOu~?rNq(Q_ zUn)2>ViF@qH6rDS>doaqslI&W^=}fNxk(qz87Bg05r_3^e9J{+qsRwqUW#ndI3(apPgChV%)YR}gBx&97?4n!gTH2P%IaCJ&ExfCGlv zS-jwuR0ivIza(suu8D+l=}Oz4_2K1)ZVX#S^+YEIAQwt`dvd(Rp!UE) z-;*3V+Wwwo4yzSzoiPMbKMSvG$BowgK&Jm1Y3p62tjAcuwhw(B;}{?t({4!*UbOqp zKufWRu_|BU9Uu8JoD$Qj@0*W&X`+zT)?*1{CC8HX4lU5~f`Vc@oR!N_R?#QEPVUON z;)efP@7dxQ0f#b!b>PjjxOER*ofGFEqq}XoRBB(d$>@mH>7*~)-^lT|H59FF&^(E4 z>LYtrxtR$k8D5owQIg>``HPYauZ>oxc8|*%lw>HA6jR}w9B-c_f~tK_gyQLJl~p*M zZD$ouqrGHSq30P%^&R{Z$tp+)%PPn+FGc5GljL5Me=v$s$@?J=*+2O6VE-pgf+A)N zLilEjI)E_-b|kLFc-A+#G^jmBW??en+z1oDCw??8)-q%z@_3XFgN7MU;_p=rYVDhV z&+L@si#8}__~T3`3o)0X+A1Y*w-1(_^W9*k5sP#$(gjC^INs1vF7?!el_JxNSm`Y{kG%v z5_v!ViTJIAFu#>$USf)^s^p!IuK0t09vqnJ?FRm$-WNg14;UsN{dtpA^GWVDk8!tI zj_k;7q(ta82Vm`@rHjNzk|Ig^p7xmcHBkPN;up{Q+aB{uZh3SIFPJXmwfwqKX^lU9 zQw`x6>u3f#pD7_c=E#`uI_vLkBtVMcZ!Hp?HE|_?=R|RzyS9cu1ImiK#=}=haTgFK zB@X`z1dSLAJFLK9xU;BQ?Cv=K8RJ1X8|Tju|8_FA6?Q*U*b}zGiVUN+85#>I zshG_gUekXe&l_tQk3#iY{tnhr&E8hr>u$vzVXe8#R@|*O`A5KfF5mz)4?lJ7c& zkHl%kmD>$6nuqSJwIgZY6dqU__@r@_fg=?$%dn9-}x+VD%vg-JA z%VC+dvTtQ5tK(m3HW&vl-0JTq8jW-GU)uWjH0zC1D^}@u?TO3#A2gf$>e=LG-6;OU~wT4E9;yr(F z$dqG5KX~EuETNA2Zq+Q5xhXeT4rA|@aVj_HnHj7HcYQpsI+Qf<_kyxy|15FPNu{;= zjLN=olrJ={hSQC)+dfb((tR8$Nu>-=bIjKM(dP3`q(4&pW5j11N%(D^AB|HP!|hG| zu?Eg+vNpmf<2J3SKV4KF?{K!(Kxcmug&t)mQIkMsBVkfAMIubwXaH+lV3434ry%J! z7|&9MnY>h1rHoz!INjEttu&ED*+?9#n!F|!N2T-A#xlrj?;l@VqNtSPe%Xx&K7sV z(f4AFCr5xBPSVcFb@?AiQuZ)+g32Ba{|lP-n+)0i15HXB&ixBob{1~tU(=#|p;oc2 zC#GUtlhK9qO^nsr^*DQNkbt`K_#2LX`XTHWy8C+>;(CUSinD`P*G-@}t96|&9Ro+6 zU4sGXx_uU#4^B`)nt$tJ8h0rmeg6bKgPu+4IrHcQmH$8nGTiB8V4U)` zaY9aXUYP{jjs<24CJDx#{7pgU88k{wz8GAVWP4_2VKhTFm$4_Lyj)ib{H~I+rb<+QN@!Yh8QqW83H+wAsigY z5Do}wv6f6jF|aZOrJ({$02PgFM8!6?v@4O1sQ&26j^p1l>@ zz|Q?~^0o~)h|cw!?IxEcxmMV~VfU7ifL z7&>lp<<}lRWvJA{=x8|N)6sB-uheg#T92+*Ln;4b+LMKBmnl<2JMC*Y@#d z<4JJhN`qYjp=zlt+7StHq!J9I|j?c-s`kew5Q*QZ;?ls+`hKLTI7cFJnI z$c9O(cW%(7cJGX228{#IXQIEQxL%{E#zqo@#&x>Q<{gt%A_@l?N(^3ux>_1&WL=}H zk70?y$0n)7;1jwy(*KP|7~NBosQa5p_w2*IjwaHTX(%UMywo+y#5R$SIod=%=77+6 zFmS5BR4_1L5Ul+PfV0M|TGJ@SSj>`sSr^#%r>@(SEgbtIH5jyDl+z1npyv)u{ z(#48=esErIluzCuR)L7wlbu#T!ej*pVX{JftR|;NN3+NZ4hUJHXs&<1U|?kh$^>p> zB9Rpsnr#J{1$42I^HkDgdyG``RHoOzS=_^@>7~M5wgv9erM3kq{rAjdmHvB97e`#w ze2Q!5RizzTE6CKJ`PgJNMIi@LhJ%AthF}mlya?}OaDW`FchAUdCw^tDX>MXzwiaaG z&vJliwm!tQ(4q9MCI0se(PWCt4=LT(aEeOzHPof0@k{+)kGMobWXsWSp=N9yJsjEj zoE}p!nELC?I&gl4zlF$gR~r7^%-A@@u~%|f9ZpZYxP9q;EB#L!Vk$$YN$SvQBr=CX zaRR}pSX-Zeu>+gBEF~0Ib8PIg=F};W_J;2&ixF258#WT#!cUr_4jmWO&J@NJN)GOR zzFTZGVs{%cU38DdkBg=S{X@)*DKu@|az)T@h$6Sj`)kwaz{Z#Fsv;k-%0c-=%1!`^Zf9e@L6+O<(Y$`5g6;S8=)XKoAZ2THM zl?F!Yp#{|!XPSMds*$m;CSZ?@S;dt*8w=s!W^}{Fx>R?4FDJZus$+H96CITnQx(uH zQFN~?kM0$m?zPc$X~1>Rl>@Hm?W8pXQl_@4f?|-C+h8-bmM4kl88RvO83_n0*!U&T zrF2NK|9jK;26}Dxw-w(qe5qgBCVj;P{Y?pK{0AnN_|w>ernPeS&)`~wi_aJ#@?5&= z8b3|jTaIsduQIg5zsq9SQT^7Y`_WW2%)gJ{O!r^w$(V)*i2BDj*nNFWEUe$@ZywVf zX~Un_VgJZvTq2F=I*qwU|7m1JY{XMn`O{dxu^&(GG)-Na>%=HwD@KZm93UIe3BKCp zA7wGbs0P?HJ4{o(c$RmB3$2DsLe~m!8=)%9ybUx zIGLY1UbJCnHQF+D<>B75aFej4b=-ZQ8I z71`sc>Sct(*pKjKgmn1fMt_T15>o~ER!GjzK%1NV9h0AwP#)g9N9$CD_ewG6(Zmn| zCN9m^Wsl=xY(0a@rJWg=4u9?p+fWLw6m$0qLh|08xCn@W~0%4QaG-c)mmB#Kkhw*=|54Xp=!a~ z_-v@7c#1)#R*W(jeK&Ss!nOYyZi$^IGS!b;@>L1;G}o? zo5SLLq4wfC4wXaK7x3IY{#F*lwykjPwyu?7-zWa1W|cgM{}k_3RLjGbhI@cL?e;Wc zVC@^Yp{5V)QP!w-p0b4py$6oGJ-seW`OM!XK{vpTAAVu0)WMpPMNz1qNK@OJ_7A7a z^L=$n#lQTQ8Zli_CNMrYQwJ86`m;rMCL;MBY55WcCEx3w2ip&Z>O=AU{$>`d<90xE zRGvzfjbRkD2jVeTXVa(IO*fSr4y&zOV!wlm-}`;gzs$+g)n*&Bvm~zWrkL1f853aS zY#p8<#q6B^M^!jCrgm(@L2C4N_=cM4bK&g7>OQfPHH4M|B@#eOfhTb~ymw{u(o@GV z@-6OSh}dE~f^a)Nx+b@;x9d_K-+KZ*WyQ+o;wfDmSwR_(xwK`zmtsG>R)#~f(z}Rm>{&FWN7wQYSg2ci^|-&0yEeWBBFD;h|GjorLSDSkjl-~- zd;#PZ?K8%WrTI_#@tnp8Mob$rXNEFljxMzgdHf;#ruYHV+-c6Aq2dq=G>)2WBe5WJ z?hL)2GFHI3XZ)R|?^7&j<_xvio~f&c`xh>@&22N3uWZ-F5nnO4GP>r~GaP$+VNjHL#-!o%%fA!rQ2S_b2cJ&rgmO!^C~ly z&8z5A+vdZLRi0!voeA+LLKlfy?|Wu`W?nKmag4hG%9(8~VKOLD?z#nk9K^Q?w07mdMug zGRA7easMzO|IbE4`;hMeRE-?hu4m|S8la8QbzC)fXw}de-)od=#BOIz`)$gdNLOx) z*UjXzO%iV~Y#OCs<#Ndl8=Se>j47@8p8t7|=ZBei>fx%^7m1%(wTO7%aq%k6BFlMj z6#yqvlA5y_rLLMfzJ~M<{TXpzYf`wnh#byMn&on=l*(0viTr!KIk&4|l~itkPSv(z zbto}_B9M_7!kS|%pz1xK>7ClkjG(0pP$-K*N^Xe-GV z4QeaNSNObN*vE?#pO#|LR`MD7i?))_K*l+L3ybe0;dB+eMo zKlFaDPHKK1KB@UVI-NYJnf8(-diLr?OMqT2*IbF}2p14d1p~ zpOYKIAXp|xo8q|_yg!b-U~*-9d@Z8&*Hs|-$IvwR_1R!;XlMrNz^6a?FDaMjWf#sf z?`SFvzid%mC|QJ0r<`l`b#>VHQ>b3)TR;1=468Y7Amnw$bIHvlgzu5K4uBpJ?J}F5 zA+fsg%BSC1m4m?*BO#CsbbtKoHB&F(lnA~K5+!f$ghf^y7sEaw>Hyi+x$xISU7Ux% zkH=B6&igx%rbX@cqq_KmAvl>t;jF zpP_cv2CkihYgW%Nij;Qb-LTrPxL?S<0^+L$Izn$Fu>AjihO`{n0cB5u^dHP>Mi8c$ zfzDQt3q%{4gKk^z^&7{4@DT6$1h{u^q ztiTX_;&MeSq*n=i7xOmC1HFp_9jte`WTfUd|4PlDN;P-#>_=PDGpZ12A;QS%wdDj|5r_$Vvc%*=G1H%{zomBqLwp_ zm@X&+)OzOKwpKSTj8v}KX%0=%2~qyrXO21vO$U4T&z1*!o6D|I4GzQwYC_|iKC1?4 zH3JF%v~zcWFKY&RS{=BgQrQWkB!nxwo!#8l*aZ1_Zsqtu(3;EZ$pJ87wA)CtR6V0L zoM;)yfOF5)i#L~%%DMp^f1NyA9e>61Hwl5kco&8S!TiH>n!~As4Pxt-GfsJti+VLT zu1;W`#WB>O*H`NV&RBPI;nx1R0t$Xq@5)u9%u{pJdDrJ4qkdp`ocBwP z(P!4mQRb%{BMDNTtvuX{nag_w(lIK*=_c60YV!iBUTLn5^I9pqc*md1y(SjZAy(p_ z1X(4mCd0MKfmjpgdnq73phAQP@tQ=q3nx5=7ZYJD=7jTGE}mvB=2%4CtEdNg0a5pI z>RWg*QO9CVJ(L<4W!=EBi28m-{Rl50>iaqMhj}qk$6`+X?TZ3~tk*dfQGZ!c|CkpL z^_MyIA9yiQ$6`)h9*VW%<}rgxBA)8=)GIw!LtaFTtHX{>*z3~wR&I!2RL34TvLesJ z`1!V)W$04+dEr+eZ)wds7I#&OqMJ9*fpgV^6XPYiik}aboXh5bxAmI#$;Ty_j~%yi zPo;;2XO!Aq_hoOKrlPH4>q%ga@zE!$46}g&sbA9m{x3)C4_{v&&E1xX7w%% z3P+uj7|CBOA+&kMF3TQNNeg5fRxw8(ksru0H_ubyh|Ro2pV_=|9__iUn|bkxA6L&Z zub)@Jba8l|O3R|!)#=Ua=BdC0vZBC*gB1lP91uE)_Iby^zvE6Zrh5Bpz0SZO7pERX zq`j}jYrxsw!J*dY96A0IUk=X3SzQ9Xov5c{SLRsf%R$ZP8pw8{${8qG8^%6S>u3Re zOW=iu!6d_~Gas!H-gwZp6MYAy@q7wvTPYj|M`4_MT8Vb};96e4K#w|6({Y>mc9vx@ znhwvD*4DzD2#(AVl;K3n{#Yq@N58CzTd8|+{F|~l> zpk8MhJE?8aE1ZM#>4*Y8L0z&maEZBnzKWS{=LD4TWX$w|`KnJG8Fqbz}@;u)O;Dg95vp_35-`0#1ndVxyJlW$qtwZ8P3WV@I@aH}N`sn{_n% z9cM>_r#*~391se?uat&Ri7G?+6P$VCp~|JLh6Wm#)?h9ZIaPnJa;pBk#OYL+=q<_( zw6tb$6zNmuRMnPfvoG{IoN6MfL>|hV$SG*2+Tc}AwUHOoK)bFY1|?pnU*RRg!y^I> zogB!muz}=Ojs}ujIUqRlroekg##Ju8b7WwxVI6hIa;mTy0Qv5Y^#aG2eqhrEjRn==*p&DSo!VS|(XUBaVYAa8NB zNe)hp^*Cmua-CFFuc`g~OyCGixxGd$z+c~4H5M?priLax7norsaWFNs2K+fG(7GIa z`8bx<%8hT9>H=dHs4g&umrxf-Ssj=H`9^$I*#G^S5oW;xHMlP0h}035;5&Zuvo}!_RtP11 z#@{JCx-M9tI>G`@fjUCbEiF2lyHJu#)-<(%7gI;rSrLPS3)B&!!Ej)9pogg#BtpvC z`c>qA3i__;Z9cGozI} z>R%3s>|dq9d4V1t>oYEfYpvH%8PidfR*8=;3@nHGzQj1dUu&(O|AL17RXYcb9r7KA zlZyhYt;!3T|E9KF)f0wad$E9$Mzz|q5w}@6a?o5oasl(H4zPPk;BKoGCrK{VY@u?g zX1s)4Dss-<%vz|tsV~PNZ|aT50L%5J?1kK$@WQ~UrGaEClM^6kqBpQ+A$>e$ZO!4u z^1OA3 zi%Ckn#a7}iyd>N&?=v5@_4hb0CjFhLsC_4$`a7=lcbpT@o$(W7FFWIByqNU&QAPB> zSNg-=E;}Q>T#NR>?Y``b#}~@Jh#!kv(LUJ}iw(?!vQ9-hAs+w3~rvgt8=}DxJknVrmC-XOay?|RJZ8GBW(#b6RG5rcP+>A_u?mw(bQLCBFWI(O3|}2y(=quX3Fcw4 z8eFLqCYu%;xX!wq%PMmk(BXLQ-w%`NjzZ5&Z{%EPDO7oX;GDIGgJ}^362b#!j+**` z>O)KDfokhcH-!XE!G1#eHZ+?2VAstI6`9cB30Q`oum^gX`jI8{GPU&>L!`tjqiIKr z%KitM@>03+25h|nr;)e*f~0*<{k8vrq`XsZefJl%?EC3oD_V)=HW|*`6d2h!N=;nR z>Pop)J0JBF9${(PsVO0(xr-J@#U|TxbeddS=c^TDYhFT&AG%LIAYW~n2k~OLf-w5w zg1x**%!quoV@6k3haE4Gh{=#1Kf0Zfua*oBX0&8*Ky-AnfU#xKNgo4KbkZn*wRZ-( zTO41-Cbx1_xePE1^65~H6PJRM``oxlcGBG#oOF<-Xq&c;{b@8u16XkKK2B4GA|i*r zABJy_1o~SiI10{^-QdiL-1em2=;+O}`F8YX{St~yGRLo}X6F0yVR|Mm*P}Vh&?G)^ zn|n0S&-y5eDFsB&R>1Zf#+D+JS^=6Zof~(sb?M4Rb?8d&c8nI1t$pnIqI`A0uXSml zw_!CdU=A)l7N1EuaX-d*8t?+`uw4t3!*=JzV!^87&b{<&{~%WKmm_F%I? zf$~@fH}Y5qgjS>SH3X+vu3+IDE)y+DqlrB8??8c*hz!~oemHeJkZuJz1#%U#+G^dj zXph-g;PjYeZ8|#`95TgbtUEaZU5F{L!^@j!LM`rg4f5_0>EgQaz1BqIFT zblyT|6^f$OT&kk4@k^P1Ml52+Ev+E>+Hk4U8m#}?cjvz^P*F68m=s0RhO<$53(Jq9 z_2A;^C|W-bmQggb$5MJ?J{q5*Xk*;?Mh|%C`M_w)flom+Eu9$k{(cs}10#)Oj zV$<92w??}coOxrqAkELC=R7F1ya747zO!Hc0 zqG(UM9RZ4BMfY7kk z;dM-3IKbpb@2y?a(`vAcc|WBu9EenZ(i?$3uKJPmN4x)_e*T*n4|I^lYYP`a+0_eD ztlocJA6rxxsvM3r;@Ra4D@>O?$e6Yu*W*wpMU@ zw7x1>rq)*lyd>{@R1xj7ini=r6#7GY6kl>kPdvE zU1AGKmyQ;aE*%ik<^5jCCP z-rn#|JV*$zK#GeQQN|fl_(DeAi9E4duj1^Nrx0)(^Zz zIH=fh(sK-K3-I^8-^b5}>%*m8J;8C7XC-n72NIMB@|a>dB6!V}>X>3$OmMGNpVy-Z zT;fUk3;#YIOsM80vcg%mJk|Y&}@+>24PQ) z;5O?qj!mO?*-AANmhloAz0>Qj8fU(}QqA}8@?sjj-&|S2B={+E#kGWa1$u*g-|E$s zYVbx*GQZZ0O!)2K zMCk$31btJGn=dpQn{MfPF6yU7620gmI?WcheAe&Hv*Q*d~Kmc_n1e#=YD=~c~&c9hkt9gfmiJBs~KDCcB9QprK; zk;>|;Bf}1TeyQZxl*;r{sCAIHhz6T|wrTe95;Dz!M*>R>+cL*^DV>+8$S{w)4Rfz; z7-V$hu|PwIM#wG>&SV$)R;c9!M`B=~aY@J~PDJ_WE4>!#0FzCAC!2Jz{^TUIQGTn) zDAn<6gB{P_2#@vl?NX`5p0RoE)ldL1WB1wH`1yUbV zQp-7duyHpAR@H%|5sJ z)a>KHrP=34H?DCTtjY?`aFTTmsJ6g2@w$}EoYg0|DK5^hEl&+dfqH#|t*k@_rxuuT ze%RYLIMU)Z=wlMeS~>PLXa_GEysvkeb%!#mc>}Ij*XM zW0?F!Ta96U+G<$*Oa@&*Hk!h&0l|SuRFI@rp<$wlc=PH%cn?2uw*94;L_Ehq_m9U* z!ej7HaQu=~fdOdk8FD<%LHCdU*&DX<#%eo$sf+F!-z+bY&|MTu=E*7D z{)JqCpIafnSyLphAsv4bzlTxQHm8j!meNw=H^Ny6s;?DYu7UEG?D55mFZ|$%{8~}m z(|C*`Jz;KDs1Y}J7JNB0xGc9kHajnv4eXc@oCx^|bE}lbp7RFs{D*eukAUrO1gpc(uLZN??&msy6D#YaK>q8&@uEz_CFx!;{d7q+ zxOh)~Tllm22Mx^o{gC(0@4xg&9LK>KLwJ;Bb9UM(rz2&hHb4el$> z{Q~NWD19vF?eW14|M$C~QY%|L87Nj-uv%9Oe}wyppRATJRzkQtr3KU_*S08?y!Dwe zDR{f^>U!jb3Dw=z=IUzlZmih~|9^bBec@B82fue>)*xUb`rwHf8-ODr-_W|{n8u6b z)ostYQ-iz9?OiwhE#ocR{Z!>DkbX~g8hkM=_`SH7wGZvmM%^2|TSKM8(%|v;`3gwi zS*sRIJ(`^*9?={?@s%N%a`<{r1R@_xc|^Rbl0U%r63BO!$P_7^jp&I0dptAP_L$w-#@J##_^0FmUj^|-4saB5jK-Eo0_x| z1yLyHGy2Impgabrbdw15v5_rNnAmF1#-O@eDfYOFsihk=B?>`RU@QzlO@@^1V-ujT z)tbbeW$mg#&fvM#YCeWW(NU=z)O|}%gThjt+pq&1oG>mE-d!AQQCn70(W%F!O!!}D zGGuOtMkgekciuag$@7*3--Ig)!g|bYbjXeU6l>t&{NTIr^@<2~vc|TDbB66#^GyAv z!Smu1MkHlfu+;M{>TlW|*~7&5tV9iV_4}ur-vnv2s}nWa{f_nMi%gFPVeL1;$+fiv z_Mx#)V9N?z%`=W_5NjNT$z@f6GSMXDaPj^izbz^nNhs|D4ngYO!4{A|KfYh-9jk)P z43Wue>0(7F}7v2wyN@jtoKk-jz+oXjXtNo{e8i&-3H1A*!uYLn=mwP2KTq zsFRT`@sgor=)iVHNNucRk5eMD(0FH)atUPg~d21g)`@{;~5UwXc1DUFjyuIJL%@KiuNfgM@3po z@ zeaMAEAdHJ`5eEb<@{~wiqrD7`fsfv831*691|^GRO=%*~B0ZXfnpv!hA1Go{R)jB4 zmNW^q5gptWQ{KhT2_{0j&B3M)UfPs>+*NE|XHr7loxErxrMr%O70}TpvgEPLgRhGT zjI3^09)m_)&780XdR-LCaMVEo`-^4ep&JvRLoqgobI{GXtb!`P7UK%mRi(dx3b23M z793zP>?k+3T>{@E*n2gKcstZsZMgGL%}+zstYFn7VKL@~1uVL6zQ>pv6i`f#|x zoS4!lb_B09#QU6~^#6C)s5s!ey1;g!ZGriR#Sa=RXLWq-9=%6aq6fVlmFVjzRSLE9 zD*Sg8zWh3h<-jLDZM++8S}&@S&4l`lqY{l`4hW56nGn1dlCLgr>ajQXjymL%d3%EY zwt8yTe)T1ek`WUt!?3G^vttHg859I=tP3Zv4z>`3HL6@_;lf+aMg0pan2Sahs=3I6 z^DXpgE&8y@DEz?_=(#sI%_)PcN77|{`x7MhDA`Wj9=Y9OzV7wvLG8xaJd2uF4 zzb@Fs3Te1seL|_=y5Pl5FvZo=?~TdxT#cfiy)UMV*sH6tCPPI{zRBHWwq9tUfOSA&kat_Kr_IGa(1R@Hfu7w@jA@KdY|-~pW;?0RHuEYXyhO=w zJPz@Pf}JE`8cd?ar<;PCZ2FhG>0ee6{hd+t>9CN4zC7SkH(ry}u7nHY)JMAwG;0*8 zIPmX<%)XPwW4ewS5XrPBBvhHU6xVcM-jg;E8V(>1c$ZF+^H$Z>i1``NdOUW_!& zmRS#{v=ajuR1OHc-?oIgwkk~dAUn@uRn%&64C5 zm2(D*`MQ`5f3xwEMtA`>diSvm>rqnTad_`oa4fT*{aF=c2W6jRXFK`2^kU;OS^etE zAurkvc>=pT4mf805Cw*l92=Fe7X~0N6dEFKVJ)B`^lXQ@ zz@&|`2IagdilaJF0Py>W4JxY^`|_8EQ`QHiV29f|CaU(_f4p;S#O=~VzP!zeRP~IQKsOZ zNa{mESn5NTd5I}DqmsAfI%(f|aA2yp8+?2^INrPr1>04a4(CS3#+&Qb$x#JQ>8H>i>bs-p0eEv9;%fzxn zT~T7?U)80RiRTzo4gC6!XT8IcxyGL`{jK283++S^&B5i*&#Mu~cw>_@UT!d>TzlRB z5810DZ1?!v!0_sQVoI-hC)mQoQ=%u{3(oblT2HBrywc(`!8(SK3kS~zyNThf?MGe; zb%wI)Mh7!{y;|)ac4sgqu4fsHYl_Ci!mrQ44>s4Z-FA6IY8_BVu>)?Tpg4c<)tgalVp{!rESUCLgg{Gl&Z?J`2 zqghjOuAru`|IF%<3r_LAL~NU&3?b4W}l;Gcf>ajioOX>Nl0-^@aB5xQ^%hZ%@fkE#Sg$N zITze$R@(qax~&;1VmIhcO{`^rz^DRi&*PyidHT9elyleFpq7m00_5|=nsMa{KqC%o zG>tgXn6GJNg*}8etMp!KD?DW_(`U^Q>G*OxeU^$>iDdfBF<#j79%=##Y7fkVfj$y}k`9ch>CJ;D@3_Bgm;k<<5*^Y3OWo^9GeVyR}@T8#$7lIV*Ex%7m2hZztya zzXykl*WH+uPI`HRN^E`XE~Ug4mPTGk5I?w4D0_w|l-W|EC+_MUS}Wo%)6N`eqgnkj zm7^18DAu4wh@GRu0-d94?XFw&$>M&fl~7naiSUsbS|j?p@u)ey6%R4oT{^sML_54j zKzx?Ogj$KIZVcHPqqmb&LFG_Dta4)#r)73)8dP<)1`Ci&5|nkE+cef)m6$AxFrf@y z1ujDwylKbB*crUTZK}YjYN2X1gJ=ew!8=SDJi%zl9^TZGCkKbqV>0E0*8pnm2*uWx z6;&4RgcJ+^3*US(x@)pe!uiNKOB))OF7l8$&Q-k)$g;vs?JrmNjb^$lKE|6Xms1~$ z&_wYHhvM|+s%x)#+;vNzwL0GmJ=ti-bQI<;? z+66|447DE$Wp&r7_=MP~f~3_p@`T%Mj2ao_Cfgu4=>l$$6ShGf)y2vn4_9Q6=UoOl zW*Y<uOPEYsJR0>wI5ne=h~`n(%wg_K+2YU zwGrBH4yHOPBAfoAK0~)Tyq6NX*nucb$a<;0r{zr`%TaL--?6d+?Y1uCFP)>--g*APT1Aj8eR$vMYWbP zYMU5A-P-L8N4k?X5#y4DldiK`#BTO=^t! zmoBhf`rMq+n1-GjTMbUlz%l$(^Tu7w7dO$RQ1PO zz0Kz~si^;Rnv7ZvL&=;_8}p}4YGC`1E>`{Mhl&`Oo1Ft2GLRQT1!DjOrJ>O#HkUdU zYp&{896%#o^YqX@(PFdi6lAAw($V|U7?ixS1q3oeBiz{iMV1TEY_XY+6gV(lev_aK z%H_dc@`f1CXptyO9u0LD(;1XR84tI04&^$qT^^Gd#lZHMdp9`;!PKsy)u!0WIFQF| z+N_R&Y+?m8mh`+hG*IkgP(6%b9m4BoSHzb|SHbXsc$|4XHU@sl z#0AuesERW2iWSMeyduqH96Yre1#JhQs%fZluZ_Xt7K@#$uz_m4KqbZ8w|^2hC!ON%cFc|0QV za_xUaG#)*GaCJ-AsC6c$%T#$ZhvWLlmpvkRXbZ8 zcX`CB@&li2$hOVy@G8oSZ?GK!S0OZH56un@HN@LY1nPjVU#>df>#TqjL#H0TX3&UE zOsqp4kkzp}V5KeE#T35mfQU~Wkm0KiNQWM3N7a#i59?6h<8`R-aRBwb)gwYHMJpE( z*Sfrk>Kwc-trmPEL)TedbzOVn7(zst;*}p2kq}O;()ftFhH= zMW-KnZ=u;LIY6}xn~njv?nMkPc=YxZxU8PbD$ zFUWXs=0#AFKBtzkMXmpl9a)aCQ?numkmXV*h4zSt8CRN$KAsf1R6NO`)Y~71Et5mN z9oVk9&VCG-b0Hg#ni9HGyvOJfm-bUbyTvCAN?hK9noVeE0MRF!C^Y^6h2%Jp+-l)zw#I0^LfM(D0`2;FF=QP_J>$8=f9p?XwHL zSS^aJ$;Fa!F&vp0>Je?IL0f69M20G;zBtqDvQ;gXx@a=C&u7UG2Ta>aceX^HE+$tn zrc}US!B*`F^dU=RKx0ER16qx(M+WkA=VfjNYb#)|T`@4jyG*1{i!nx@7GrfYG{s1; z3OgH}VKCApb#_%O8PyP#w6u`@DEIiMLkX_4ZcSSK@Ck-ew$VP%f*o zpq+>*b~z3mWPBSwUJ@GXsN$MSY~rtPRVR**=Z9_;ja;x=^&D!0>npqf84(upm% z)0_P0WcM)aNPEpa#VY;AIk*JspfrjCoh}IVk+#E?Lsuxdv~nWbM%zAdnmJllFx1z0 z!PQ}os}5s)D+jXfAm98*bOfrx9R;R`aQOb(EwwyuQGSKedTT;IdCc?JqVPeBCgoC& z1nBy~>GAl;OVNp{u}M6<7w)VWqP7oQv`pNFKss+xNB*Mo7In7Kd5gOH5?x{ICB9BK|V^-T=}!;R&JYhexNun9D*>iZm&u9ks)rWZ#`> zqoLuUt@s}mVTtIaS;zt3P5_j{*xPfPN&sYS4jmPvST*!ce0k;hrtOSvbk)Te3I{L8 zjqCz94n^bVa-<}WEtsN|6;UUt`_bOF|)biq(;OV8CKk}6PF zMZxb&kZ4r!o6%6g?`GTF!S8rkQ3b!vEAZDP+o0`D{*2_F63k=YEw$7t_6?XfoB+Sv z$lMyU{qATYsJf*4M$FaG?3@%CP;ac>=^;p^k9ij_ewu7DK1)PPHrG z&z<;KJELQ-CUjD;*%c}&*n(9?4^yXx@v`lSU7;S)%jWbe)Uw$$uTc5G7VgF&Z^{QU z-n4LT6opxtaaJor2;B+?ZVa1R1@Uz?`*@G5T4L#CdqQ13Vj`nPI-@Ty&tOognmCCT z{xbAo`1X*0AUttxXtkp{O>GPI;jFftRoA2Z#4F(Wd;Bde#xfk)dMmWavl(?n$Md$Z z+FG?3{Vi9uS25L|ITjpKTesYPePkl6JP?}Z5LLJIcE*fm(TQ-y!BFpVgw#IpknICy ztgaUH-xUb@3=>r5gv%4O{f(hz4ngHC*f^?1%$DJt%9l(QQaLTZKa)_J3R-MqIhCn5 zhx!?!>UP~-XlLcwu69-)U10C5=rx=s+tq41RTrz(bTXWHC}clG7PYx*yIn1*v2Uv< zpzBL)d;;fC^LEB|wYOpn)!vE&Xm9o6?V(*_C}T_(yz3Ev8!?JO$$~?n-W{P{ZtP}o z>X{e;!-8g_m>pf^k2^vG995*|S?9BFfpEd7^Sy9q=z0-i^hmIMcj4ylG6t1`#Yi+* z^0>cQbcMejslY|a3~g7V1!pV;PS&ns2fvxXYG;RE{6zitHGVJMaU`_J5RWk0N5$J zNkJB``2bqHD}$0Nrok-_ga*5@`-{OYL^G{KEy+1umj~LxZ!Qmc;HAex`^9udkmR8V z_&f$B50q%i1EVVZwFmlLl+5WR$^$tamj~LxbSALvfyZnQ1oXfT(COjOyW%EBpSH^yfhaIat3BPhv>qMxTcvzRxP-Gq}sbH)2v~mQG9EMIk+`f}pTB71R$cPNj z7%9WM0Cl0kqqsTbP_5{%m>g2ki3}~g#`U&<#K%Izqbbmg`{(~gq2uGBEC&VD`4Ffz z#i(pvS3(gR<99q-i+h^ke|UwQiFBC2_)L}1=W0H_g2iq+?$CWIGI@v&5~?PT(gRP1 zY8gfj9C-@0K8&G9I=eY^M+K^%utP;{r0OwhlL*7^9pBs>v_p0GL7Euv?gcwkcVDK9 zm4%m7#3r=E+0~H&g>Ir5P;6)yGFY*)xxfP-kwv2%Pt2VaF*v9gkPA_82szMT!Z@hl zO+QUjTOSv`bO9v`8DkL5?0^c8K^tX>N#aFai3M#=N@#cnr=ZO@Cqp|tn6zH|5+<#` zVUtjNO7gB8>* z6kZcMM>C*XD571V6xNbxaIXwu^7s! zzJUpwQ5+zH7DM6bH$sCPh%N^9y_P5j52viF3|+w?!R#gm zrCDqrj6Q=2-zaPvxJsk3Z$BHF;J|iG4E9wRCX*d>K4W){ld5YNAIkx&Z<1rVt9t|8 zg!zQACy%7iOu02mhkqEdO!LPpS!kwQ#K_*P9Tc?pB*58^F%s$7>2!S=T4XEpG-VP8 zJ&146tPVW#NvPC}->I1G1f1kq{YYg8UnLwoH^_P@rjm{6&GL0Xx;jp7H`sxVx|~_B|PHcQ>05Gdq0(bByYOcBY)7n zo`3A>0v*6_>O4@3`(ZrFSIJ8U{4lOj$=hZd-Sw#^+m5AgfU$qVU^tbX+E%QSjU#p7 zb0r(ss3)ijHBkPN!+i0Q3l7GGFZ|$rjvqs3bIT*X>w<~HkveN8L#?rM9R|* zV)r&oF_L#}U-SQ1d+xv}im%;GXxRh^Aqgd<&^t*;qX(oz0-=f^kcJSDq7+Pnk&B|9$F{b(nBKVn+*8VJa#`qy6>7R+u%BSENy_Cncs@|e+;rp|G+0QZM< zE~4CJK8Xu}XNo)h0So4BLpH%CTJy@q$<}~LLAJXI$N#6YrwUHk-2%6^ zN3Zk?BmqIT_T*TgZMFY)V1e9AQtK%@F*6>GZ^atlk2LNN8W%TCLW#C#a!JxE$W~_I zzFQ?p{q|1>{Qu}aXd}>Z=O@F7{UtS=d{D+#TA}4`Pi4mVgce|9yrrvP4ah+6{`|G6 zZ3)t%g*r?50>M(n(-A-9lsULv7w}Yt(jDrzu%&b&BtZI{{vAg~U#w6`J_misb3^0w zJa$7P)FKk)og$+`Y(H6s?=}BANV%ZnPnVQ>3xqnPDK>pWrj{tB(y?La-;<&v#Rz$U zAGs6KKZb0%-?gdIR1hFHm)UZ{EGXtRS-^K`OR~fKQHnoaAQLH;T z6=4g2=fNmhX+DvnY)NEz6;{Mx<}cuv7ERDf4TJ9TdDXK+h~ z`6Gr|xopJHOa4el&vt}v8EbX?&;;QRBU__w-4%JEFft?X7iYbGRl)jS40o~;iQ0lp zI$Ee@J53$Qy{fix zTl~0dThg_rATU%XFwuyjmkbs3^2UPOX)($)W2KINs1ZNg#PZ>3Y!hqnkCoXCj+$kf zgLcK<)kS`B1A)S`w6>~#F$-Y$SXDNb98@CsC``K5u?3W+(0l`HH|4828CJ*Euu2nJ ziX%;RVM3VPz}*dUP_}(RBI+~YS!jfwM^YZ5W-(vc(&e8Q@`H6hqY8T?+ax)d@I*}r0UTj4 zgUy2p?i5=teDowg*4B*AVX6?Go7ugPKWYY9msl8q*&AAbnI+&b=FFM4dV#0_!X|P!J8KdoQz4Z={btNM!6I)er2T^*BY)`gz zRc4_Upj>^oak|j3A0c|S094Fw917z4tq?n558s=qZIZVUq8+n!R(4nt*@B4d(~0;~ zKlfZDZ5d)ki|uA&$xJHIxxy-81E)5&Sb+Qhf&hF2R=&HCo%SSU`>O9Nw-JBLC%+-w zC%-`z;FDE}*3!03mKX5{c>EWc9PDsxTHp_b6(ZhKn;128xPPg}z$NFfyHA2$GVvu{cMuLF%i?;zaN-qH?orjso~ z*@4QLxvg$voLt0jW1K>bSJ`{~j^a94QMcfCDAxPFM*@?gVi+H&E z5!JGAcUPc<#hu%$*rpR;WO-tYF^1Z1$0BY!ED_kQz9NwG$mcqcZi5?lF^h#OgYl}9 z8|7iQy$&jcksw`;SnAHy z5k?jw9E*8~aG(mGKJ&(6?lUVWp>1RuzafA8HqQ%^279mLCGe;J4 zpLq|}QlF6zA(Zkbiw$F>3^)Yq4mP|3B)bQPAnC~3R*5t=PnV%3eQVOdlF9J;1Bgfz zo-$$=;gS$SAxcYB%0x+8!XKG5HP5FZo-+Gw^gz%TC$sPrj|P5u@=qQO*q`# zB(DC7p_jPqCfrPfP>4Gpl`?T>F5x%faB~wG{j!c1nJzU2b8{Vn;|Lt5ndL)-(AYX_q(Wq zxj^)blkkUq&n@MV`#fsLBKP3P5phUMH<dz^{KiKDcBbKqx_bQRg4E~iXS6U{VRj$oZi8&vDGb0+4ged4C%UzQxq@Qp&$HmvoW&F|1i>Q`GrO&XT zzZ57CGr7&FZVN7E~5(4IZSYiQ3Nklgng zyd9t{M}9|vM(=8+NWc<}1PF$(NMI@mCtGKN%5kaa$NQJ@Lnn7>>ZOhR{X%|0=ra9h z3SlQrF2LH#{nb;Yy_pmC%;uA{G@RxRs=eB6WiE%DOL)l`B^yI} zGS7pSqYm`ka=KFz&pJ@%nv8h4|8jQ5C$z7CMd2wk-_}v?1+SgZ(-==K=g)y&;GEMN z0bwY4BES~#7Z{fdlswbGUSRYA!CqkOKhL(zPu{c~Z3J63CxeKsQy5Mbxs?MMQqR+i zM<{)^Lwl6|#dc_qf->Og#qi0L+fb@bmS5(Ih1``?vtuSXw8*y9GP%6rUniGo#`hV% zo$|QHgkt>T8EH#we=1k8mOT09i=x!6*O~t>)XU7AG*J0oVCTtZ3vzkiE$7MR3CnFC zD)JkkFFkd|Qp|rX=PBk#%PmvPmCWtK-te>+Ddu?8ilvJinp#1MIU@iyV!7J(K$+Dc2tXukp$W?a1HHc1hYceK_P)?oxrLfC0$+2TY}+7o z@-@R9MoRC0Ax0^-LfB8}1e&;UgHH6^cqD4dOkHUO&u7<16_k4kUUk@HOHrB{%XPj1 z3gHeVhstI5Bqz3b^euPO(PkRKdr93W+AxwjseMgll(ACB4WMq^EQ9UCeN7qcJK*(R z8Egc~GuWTfXljwcrqDcty`1uNhkU=?*0{=dw3H1?5)UWmMc2|Z*n>QKl|J_`-$YWv zSk12|d}cPwIZBxWBhK~hQP zKA5?-F=ESwH?%y6;KL$r&e#$JIAco?%$Zn%uo{FjM3J`4|j=3PZviSqpj8s+=98sXCYX)~VhHvzO&4w>4* zR$%54$oJ!hY_chwTF>_*fpEV60z$}CEUuP(v65de`U*8+3mNw2Al%4x`+?t`l|11O z&$Xp~V0$V=5Z5#77gq9ozlqu=x%euc?=QK^^ zTGku;B7x-GReZJP?v6cI@$T3YL5T(66dk9EY8lQ+80U0Locan72(T64s#Sai_@)`v z3XEzCN99NRw)D;A-KG%-$teb9Hg}gc>V^{NhKllL4-A1nFJ`jmOS+8XI{*J48?zS_k zWj@dzDYc$I zZAPZlFCF0x@Z5K{8OrM>0Qtq${PqUMZ|bjl;vX@_SLMU6+g2(Y5kkS&PE<wq*LjH$g&h}1}b2t=tN?^vqc#j(j6P-AKBimGrkA^ z#b`~2)328yhNyd7RVE=+!ZVzxl(7R}eY^wg7+TZR^8)XNUGCZz8ycE8(NpM{6X8PV z4K5UP-}aiM96~gh3+;z*K~J7gS=o;&mi|3?`2FQI0_dCp@)e`Ru>vv2Yk za~6S$apn)8PsgsmP%U$wM;K?xH6G_-Q%R0fA7|hnY@CT+!^fGbYfOF^xd!=ReU8dA z&PZp;;oo4MYhaHKGoTsfh*&es5m5n7GizTZI#KUhI02cJfPv0CO^?Xxr8`JX~y{oA>-!|O*1Y-rIdSl{u+`o)t0Z|<|Z-~ z_)-az5$?F>O%c(yD8~?b=7>kva7R3fDwre2R-DjRz7CHJ-<}ks+(fm^O|D|weka_7 z&Fe3&;rHACH!~&1O--qo3c`u%ueLUnf`pwGHVr5)tr6Tea?LEJ7MGN&YlWjR86wwm z86r^ylY#Eq$W5V^x_Wa|%VbDdi~O_wTBEBctmWM&0YTAKli$F#`a42{QH|)612EFO zwVr@pcIw3D62qx?A0PnTCx&bv*Px2*Sj+YNvJq#ltYLJs1&>V6fP$@`Fpr+~le|vH zx!#O(4aT|C8z-CoVVrD$03|bHVkI+UnhL_n^JUaw3NB^dU9zm&P`QM8p_4$=3{3*p zlvQhZV_@UP_a+P#EHS`Rp9J?W5otg|eTv^(th^R^6}enaU8e-EGdWezI&!A`(mLi+Eab)19S|>9TSsn&!RIKT4PA@| zAz-FSQ$aYH8m9I$G-H|!3|Ffw{SYw3i3EAUbTTU}FPzZtEmc66gjzjHLA5kTqbns~ z9aD;YegzTFZ+*Ig=c#1Pm#L;!FDDkJRe2cxnY62> z)>3{(NW^ecu{G6|N>5{R*wcY01A#)_T55rTf@!GHWxS7sW2v(jYOCKW!x2*9sV|^XHXaWr z#po4zk3+BU6i`DI`jX9=6gwMU*&?EQ&lnjj7p&)lB#6)R zPn*~C$s-_Vqa;SoMoCjaIFX-JlN4Mk#TU0>Civ5+B(m^D5M}vzOjLBlJGdkMq_ji~urAniBM&7_Q3dOQEYscxYUvX0 zDOAfsNiW2*oVC%|1-rwE+2>Vz&CT9KVS>Ljne(XXIjueWm-V zOT7@vtWCyX3^?KyU`0H^DK;!M&a<<0ts>i{fXZi6d`)Mr#uNB0oLP|>aScDuzWRj`qc@FLJP5t zT%Dg&D@pzjpq#`s{W6418mWdUKVevEt9yv~zdX#pGD>X}Ap)DeAMiZ_K0Qip7>EkI z28Z&SO|C>2HlY~8!!REmP!$>-Y8ug``@q0P2NQ<2O3L2@-u*lbPA1^0gngd4^WVd8 z_ysk~8$-dS)mjI9&V7r7h~xU zoWyw|kDbqf)yNZh*WcnVhfv|5-7jQJl`WB^l%~#9Zcz@IykC-xM=F0ge`G?w)taPa9@^72TnFDG)xRls9nACTwedNF`{Hv)@LrPIa{sxkYfks)Cj-{YLCxsc>3qW5Wg!zfvH!tSZ4%HAo~^>sQp7 za!`tZ2fXYPua90;dn&1-obx%_?q7l|pQg5yQ-HOrV?)Vl|Tm6S?k+H2}dkzZm> z=&@J`O78br(U6=vK098SDCl{N8a_c38t}(-J(x(g+{vQ@OZBYNdHnr)K>a(0|N>q!~0Z-_dCfU!-=a;g%B=B zELpTrodtJ1OgL(B*J-*H36r)}^b3H3|%L`_zZy{Ws$knfkMPlZ}K8R@rF-9TopPy^sTCJizq_U%PVdBLY}7}w}! zYJ^|lJXA+drpJ&yD^#1ZR1|YO^mw`iXV+J%aTYLlS5kNL0Yg@)4;4g*+&VE97aO6 zs;~HPkS$x)&y*x1N;VXQHWr1*OYUt`{r!}-qK;c{+a~{dWb|QJ8LV8CT2V?TE8kXI zD&0{tuwnv9{Z5IMyKY0Ke0m!>d`E3Xg5Fa*BNeyflC&ks@2Fi2)x;J0Kv(n z3@(5%d@7k-pgyS}JY4VJ6{y`|m%sTzHC8!?kTGpDmQQ1ruVI!C?$iRv$$ptZ#P3W0 zV5EEx?`t8t7-*W5uQx<$gc%<=sw?BLI$M&T*bXxcc+N@QE<9Ga!C#oM!0nc9(4A}X z5gGQL`kwL#325R(Z|Kd*yYH*FB&9au0HRGSxpGX6Qesgl%!@jZv=7x$MA--rtj;)7 zJOD#2_)Duw{`ye;48E0q?jyA+uA`QSC7q6|kUKGA><9;Q4<3gw-iEBqdb?I3sGmKd zo&nTNKDI)=^M$E@h89 zt)?p55&1)>)u$8}DqtfE+uYhto`;j3L8!Gpb6hz2)#l1a2!>4@x09T+>Wc>CY%nPK zsoKK-Dzqj+hc`qk*AW~zP@{z(mrIf_Z%1L|7F<@S^in@Gedx^v+P09{rdxBlWT3H#MlJ3mzPdNAk-aw)@N!>Sy6Tf2WR|8eUdrAFLZ|Nss2YB!`y{gWahY5V&Uxh?2!pDP@+Q2{BZwhFm z`(-&=Q4w0uMz%Z&D`NT%KC~bDty~a!^|~5{Oe*xS{kr7{?xH@>&&%F)_&nxgI+cUMIbMepvLO9_ou8H5Mk+SlMsN*5yO6r$o zh_r~#P ztQg95_6hmJuY4dIZF$l=FU7XGB@9 zIjG;W@HvExITzf34Es%;sO&>R($Ru-mUl&==qx1Tq58A(k*K2U4LqkF&pE=t`~#)m zJyMrRSID&Af!;L)4;t^Je2oft4R%;ok3+Wm)*j2g&IiEu%wWG?bh$m27ELrKg zt(2?H3C%&3x^b%qXbrrLi?A@`?hDZ7NUxGEiq<#?)w#8?Nzpne?--G{By3o16R0(j zU)8k%!>U4-2Wpw}`&=b{fQ)3i_Ej|SZJKgT;mjj}dDl7|q|GX#YmFswCl)s(OG|5s zB&w|DUfr`^^|jzvxFTs;M!QL#4t6)i9m>J^z;HZvZ7i#85AxsT@mRN7UJce>R{}*j za*|=?wCCY&+>Xjx77a4RA)&d9}i=imgyzIpX*N45l*0l(IXgt(h z`FwsXX;Hx~B#Sap%>|=EAM`I4q~I&vGXp|g=R&mxG8tK6OgJf1L2DS4hJkqM^K|Cs z`buw6PS^}KjohoCy=c{bK}D^$@~n6J@Jd>5Q+t*I9W=DuaOEY`9z40_!qo7m>E{_L zYwP6cT$O&n8~Nee=OP0!lQdUTjU0{8>MKhT4mLB_`sXO5Qx&b2i7deR#q?(x z{aHZ{H`F?)6X@R)>CY7UqtPEH{h3OCrqiF9^k)wJd7b_&pg)V~&rtlwjyKeYHbS_q+6_3QznbzwWR30PbkIH^ye)7IY)oa z)1M3U=Mp&)uXU)uhW>pOehT4X6X#)5(TXGi3ECRzN3tzJYn%LlqW&3va`PCKhlNu) z%Bg%^G!@q`iCVPWzw~avA54GB)1PqqQ;Ggmp+C{|ryBjK2|qdub>YuK1U=4Kkam+X zb+ry*mM*iI?dXyJrDz>|Zh2gv;HpeAn}F9@ZmE!hCR!WmSC`aOgWW!GSoRqKbu8T_ z7{j&-=uZg!d7A$8r9Z8xD9!1QO7pCf=}#<86*Ztgd+E~3MSnh||9qeRbfZiBuJmUd z{du1LETun-=uZZ1oKAmUpg*H`sPOv^o#5@HKR?pKd-UfEI?`T;pP2!*$Br92>iJ=r zBkIgg&)ZDPH_)F`^yg#x(}YH-B>Gd6{#2ts$&}{=`ZJIIb1wafpsrDo{&b{2?Wkv{ zd4S=GDf4URQAJG83xnTjOaarF@Y9*#)0xoInZVPTu+x~J)0mLcn1IumaMPGz)0j-t znLN{&EYtIP05j7V|I--n(-`0CbjI{F#_)8;>@>#cG{z+QdIPf&+fHLP3i8+}gZ{;A z#MTVVMrd1`*|IDL*F&nYv3bWB| zT1IV@$L3j&sRbX>pA=daPk%R^Qg<6RjjdcQM zv>CLF87;(Zw7gdD(4F7jWP6>G#YxLn+AbxBS~`q|W40Hg-w4RuO^?>bNhw54)vCku zXHjjmDt;j_e;hNRYXdUAl{Q&X&5+#(#ukUZ$N)zg0J{L-;iHwRm!$m*cAP&YG4EFG zKz?kaC6I60Xz9ud53a>zOompQ9BQ?{X8JNwO8;W}&IAAbzVqcLwViU%R*aPI^X_f0 zO;vV_a?ZlaMbqISkntDTojj&;#CD*i6F>2;-V@4Tg^{Dg}o;FKp&?ftIWc_j=LFdN<5 z)|548cSc}$yI7;4(4o5M``3R8HiZQAFQ$|-z)&(#hr-0Ft_knL1EnJ9X8AusSC*k` z+fDmcX>LMCm{cjcR4KT29Hh@<-}cY+>+XUbzIXf+l^(b{L(7rVT`UDu{!@QA^HA#f z+#xxmp358t^MC;W0;e+L2+Ijhjvbm1B21v)SLH-Qh;4*c9JQ|CC&>N?d|rM*}b&Sl$nSem=ZRJa!Yhp=A%-NJ*Al>p^w(l z8|01hyQ`39&z7pDtn&f)WM3^k5Rux=IzoidivCSO#3(8Ll$O)5fFca1AxN~sS_7GqYaX(kjQ~rk`je0sS8(rm$`5`FBh&u zf(L0YAh*>IH*hlCZT)~2iFE)OQNz2h%x}`5y;nP$v5FC(y%heVr%ZyUg=AmnmZuLc|mi6LB z&uTN2t*BHuG{AT)VsPjMqPc}bM+t{MA{rLr(1oLmX6TZJX$8tT6FM&1XVce9f8fzb9E?(kv)1?<&id(SZHdy`#2B||#vUG` zGEgmZ)-um)^Oa{&sc=?+@hI5ftm&e;g|pTY&N@jn6iV`%LKKd!HbWOZ7G_wpOz601 z({<6N!QuawNx}styqjq znF^aLo5&{kpRxtF@QAj-muN0swDP+G%95A6rw1eX61Y8pwn;v{Vs26LO_M*@MJt%4 z1(J)?v~pzZbeO4KF*2!l;ETGD7jZ2Wa`2-{#YmqST06Kxu?+sFJiskHLf-Ku6l5}aFP4W(&!bH_7&!s+gEEns(3jw>Xo~BV*Ryz z?Vd8k$Z&0QpHA`7r=#a-8E~s2l|Uz$Jx@zjY-U8%@8LaFX_*$SOv05^aea2ccHis! z;LGM(V`VLOvS5i^ZmuVqn;36#!K4Uj`k=9DNh+BBX`OKF%U+O-vbyqMPAKaK&nsi^< zq7?aVu~rU=*o=#K$V)`MVt>&ho?ik}Prv;<49|UA>#mgCZ{h56vHd&@7sIu>q;2Jh z{Um>pR*`I3ronS3xQSa-coMeta;=&7s;xHB)@iK>6BNKJkh{w@9Iu*l8G%0S#AuD9 zS4b2ue|RA*hZ&bXF}HfW{R)ISSK$*F^x;bi2*0i`RvGT%O* zCW%Ao`aTCkcqAR{L(-94(&MYNI>?4CI4WSmB%fZXhJ@Wh3&G?`V&|mM6{0*>9xhH@S!{7U0_z^elyBoD=#7kSw z^(}IHqt->ag)p*N9-H)(Jz&w>;9AFDo3u9q5r~(dI`XgomY}YQTeOCDqV4H)=CPs78k(jD8S z0c7qD$dC@im2PK{pXMaJBg9am?bMz{dUX>c4|i&L3MR$$%A%OfNP~BEDV{XlrDX&n z5Uy9$A9dsn5Ae~{+IdV}PIph#Ie3>l^N!Zp$Fw_kxAuav#mpqjm2VWKsE-A^w1xif zK@~UP5tkOGd>~qiF-bmhfS$2!jb!S=9kGDR6uwV@2?D#>-Py#2BeRQ>!Np33qKKk{ zBfhwJnR~Pz;XWb?+40q)MDlo#HkvHkXIxx_{$NF)T-~c3RQ?iGTq4tIB7;kUFwoV+ zQaQMQk6<6|*QzUF1<3j6?hBi3hZOJ;ECkguf4QM0G*oJ%QqNLe3Ly~%THinf;^i+r zIY(s*xW5DnJVLiL*hGvL?B+=>Zh&S7sYMFTf>fMlJbfb9oeq)W=FM*x3cePDGEWQ9^QgzTldbzF+5Aof8FUr0P#F{_Ggk(A@v62U z`dM1Q=DDcKO*n7JL6Tp}kr(EpE;zuEM83SHEmRx`@0kDD)5BCzfU!j?a7NOyjy!uq z%O|70gkdCu01EanRFxqVm|3m@=W;2+%Wp_IZ^BVIWwR)UM@#Kh$+9oCdCD$Sdib8b z9Z|p1#z>pV{japo4IuWuUIZ&y5X^tYUPbzXNPjG;5xSV-W|~9tkk&WtqkReAqMReb zmGZ5Y?-zJYFa|27=k;DYu_!_LMiet0ux}UnL1S0tj~7*!$j0wsr^g%i;K@a?%5PS% zaP4*151L&;FvLPuJ#mW!ImnfJ=#ExQR>~goc+CPk=yq;XXLF^3DAaj{rz_;Lhe$z1 z$7Kv+MX`cqoD=5`>$(_T+jWa zt&o*;6B_oNdf{5J9J({C^Wib=unwX%RVj<_&=Kefbl2@)wYrirM6_V~DBIrIRv9S@ zg+8Pq^VqcXK92_f$nL{2EsXf;mVPk|Hm-L}H2sg)fY;SN0)B zdIh@;ZutW02y&}}y|Yr|2XOqn?BxSn2?R%I&x#g2w%v@RKyXs-qjvQWE9jmeHgds}5AC5zNwPN@GasDfUSO6+52)h16? zw_lY$;IQ3Dh6<)TieQ-mwwVp^))DsHiZmF$DCVf^Lwst2YK4n&3iyC;++TOb8$|iV zAj*%39g`>BBO$fzouuBbXKLGb1xV$|nU?luBsJI`9$^(QE^uWB6Roj5OD=tsw2qzH zH2gQJ4}Mo6@Tl8I?{OCknptvW)~In~M~@pjKQEKSy#*uR50oF>F<^Gwiga&pFGfC3 zu$OMYl+3Gyi+GH7M%da~?k<#nj|n?cW~@!v4yu?5nd*AGrY6}p`bp1{xTf|&)h#4X zYansjIUKOJYg^#r2!FT%3IuyvLZp}>I<~UU^^>M?6_>qX50A7W)Yb#W2ftdx?r_wX zGr6wiw4>xq4SNXc%k7S`hQ*Vpw7Q1d(7#33Ytbw(6-s6n8<9CS_r>|TtqRq3T1}mg z@#IijdyWqeZPLzOn>${bbi|&(4f0uU(eJ@R{A zGVj-A9!x!n%j|-!rI+E&n1tqd?jqw;F`cvXGwbgWiFzOe4W- zU1@UEdvu-?;f^Q~l#;bdDnb=k$q{F5S46tKv7elxL+ddm5kWJp#Jp$rgo^KRPxyOU zscxwicVA0;Ndkt@Y`JW;#ZN0)g)7UUD{GKwrq7upd)a?dMvG!kB(EV<{jvo#Qwu)( zx1qQFUBxaCvC*E*j;D)4G1^OZ64uu~7(>vpzEdndd1(`n-a#jADpf=>dDPc_U0Ees z3c?#iAtJnr%*h>ivEGUM2SZ;YoGG;byFTkH>lJI+bKB zkSfc0UfBfX4m_KH3Xobz+S%8tkUj(KBYfmjJ|AFzsN6M52oFPw0)dRQ90+JEt6T>M z+Gk5j@%IbuovU@1!6?}1Z;g~R&t$zb=Hh`gsT#STCB}+qO31o%R)H!Jua;)ndrQqZ ztll-7AXwHlYrJpnnpNKS?wXisL7W9F%PQBZ9DAM|m@QPIr*M|UFHTT~i(=gi;e9VZ zXiVxhUQB{86n_bjz2`E;3`G+itT9N;&XNrz((>VvWNX6WbOj;t%$UVgEY0O@4OiJb z`#nEpfgr>BO@omz!&)v1QNLM0PK>lCU6qfgRlhVVorRvC?QSO1N?!qxkt4Z$} zjDMJNVr~2asPY)!l{UuSL4sp)%yV?>UqZml`X6{%zu+HPKgv=BPX|6tJ8%d&k-GSz zj~>{4oc#@@%m;>^lO7r<3Q!LmFy1~Q%CgEs@Cpfze6_sm_wn`wf2F3t!i+{|wPnNX{IOfy8ib0jfzlc1;eoC&c!|MJOgMe9|4?1R!_{EMHR(P0yL6~}2b;~MG z@2e^UE5;=rlctwP8n#@`KpfFEUWiz(rgL$Ej*^&frpLls@2^?*&86hg$3zm(awSqv zSN(Ix$d1LZR<1?P6wGfb=N;p#zCIMKdDWMG%zH7?g|a3r+@dvKjQ9^7``n1Xw-%|6 zoWNQeYmC}hWzq)fly7itr1C{`Z&%r+_IN+}&@p0P)MSL_|9nOGg2xJlM08i*_4aj=68fRR=H_0#%7e<& zOdq~2I|KQCqkV~w!EWg$`%Wd(MP2s#x?HBk!!^%HD3TDakME(0cf>BWMq{$9mPkE;?SeZ(Ll&(bN$vS+b@@Z1 zlHNyR(wK&N@e#L@R#o3t$F+91{dq~gX;jiR1kIFm+)GJE{vVV?KHOv9rIh^0;1e#pKN zR_nlTA(Nvg{P?`a#({ggt{t|Qlcd)vm~|GexCw#`J!+pT!H1@g!2HQ)5-!LCWeB;G zK4P;WlzhvD5}33al5a?9Y%*kRW7qBX?Nw#v6t#&M9L<5Ug3buSsRv42B7EZa51Ia1 zmx@hyR+ql#9-t?+Zy^sb^{8*$_Mk~^*MQ^Ta&ocbJZS0uBOe!pnE%}I@}F;Xec%+7 zHK)Fv$W`~GJ>5^KPpSFVOv8VunP<}z-(WL>`0KEVUhM>(e_K!a zp7lWB_#^#6=H9TUq44vK?pb&(hPoSHi=hHB7xE0l&klLlCFK8j^00caKn>H&RcJ8YK!WI9Dm>A+Ap<mO*FL{fbBZx z7$ZMvbo#cvxU9@Z;Bbsh-B3$a+h>P_yR zEa)y@U_Qpr_0_go_rGF+fE|dcT6J>vkl36dDValtG#QeRkdU016&IhKm=&9xoiikX z*0}C}Qm{snAD)26;+*AC9&nD1^nXY!h#vHtNx_Ku=@ztg<{O?VNRXwE#RApp_(9rh z-U!HvpY6%fMR5-AkT{R}-2r39ly)_(@+%piBy1_ z**u%vy#5NLAOEn|^?Tt+3363CT-EQ^dvFT%?2<^i)CZ)+pZ4A*;$ZSUGiDr-I=>bp z=Zzry|Fp+TDdg^-_9T_!nVtu*@C$(OTMBYO)AK0I^t=&Zf$4cEw2gk07)}!Rfq&+) z69;|iU+jFvQ}i#kN70Y|#ge8^)4$jfvOoQcMZN*_FRI#cd9bng#1yjRr->6vQmw(j z{u}$859CDJJhp#aQXY+5uC1rP%pCR~&%wem;#%dNqkORW4E+me52Z)ZCP#^ru*MdA zny-<$r5wXUt*gogI94c21YUBuo`XNkOGF|4i>(+mQblnLuVz_A8?iHT^sOPZ>$mlW z)|sp*?Ff*bW5{W`H$wBY)(^+-5Y)(hhclEMTvNW7YfGTxfutNkb<+Ees^sI+jv2~v zRGL}Fu^o1g%awI}9*A0h%$~%lB8ce+V-c~B`RM4im4!qk-4{DXhoS;Xn5)Cpyqu$f zzw#4eg)unm>m{RM%dZZdMEX>sSS*n`4A)5Imyqa3U%p6T@f~L zZhAI#Q-ou@taLD;VP{hXw0^Sn$&>tSYN}{06bNyFo=trm<(MWZgG37g3K*z7iwc+q z29eHH9UB8tL#}}kK~+E4+5c})JzLG;fcY>Y!l>q>0!me$ev-dBhFW@&)sMlxQaD+9 z2o+gN*AUV#Ig{$hDWZR+82cALgIeEL|7y*by9G!n<`JiAJHAy;q0+;39O=sExPZ!j z>LmYUqN$~R0QHtd^T+hKs#kNizy7lkHd2)e6ElsHF2CBwV*yf{aq zck4kt-z-kboOdQD+1?=2;~jMZ5hq-RYQoF))3wN|(5JvJ_~}}>!G5N(qX(Mt2uS^0 zEr#UZ${Cp8xGhVsQAqYJZiUQ^C|eH&Pxmc7VMIgl3=_8skVAh=c2t=X z+Oa^1I%Vi&eAJH+g(6Cmv^Fq-u&z4U#<4_65>SNOiyoeBiAy1v_(3z+KfKX55VhwP zLvA*MOM$oe)eNK^#aQjdcMQ3^eaM3Xa&xlR_*TGQ>_VfZ!&(?wU%+_lNdPi4BGkL-(a}sCN zDX%0>m?e|YuOjWkd?@@*nj=5T=+8RW)L?7|rt;I#C(@xS9Wok$Tls(}L{?tj4XkWk zRi!)A8k}@ZldpQT#`YmDA;C>*`y8sc+UP0QNg0k)@-H5(#r(Rv3syN(+I26beSQjO zb;2y!}1gUn~Xn(Z-84XncF7`ji_ja5sCAT>(dL`Nu z7rk14F}c-g!}e$M(|r50HpOb*{)|4&odoA&s!-1Oyq~~KvPEj4+n;Qr&;8ir5l49+ zp&Ig1!+4__UNETvZJCVbYVd4)Zq0K1Qc8aPv^nwRQ9xP={V2j54%ypP`#Fa#Kz7xh{Do*R%ZMX>(5;ZK34nOiC`|z^jFp)1J`z zfR_R;IC7#2^~bc9B){)edc1%g^!&kSgxkK2@U7bjEX%(06~|&pE`G+4W%oNHJehT? zyIvajR@VT^vKQ93e1wHRra9>0U3wT!Zmjd5XT)O>52mot0IED;!PS3;qmCqZHA>J4 zK{E*w&zNo4;LP6*3_h4|G>b7$58&X9CTTo5Gs_VDUvTrQr+YWHTiTBF?6|ZVshjVJ zBK7AuLdk*-ORJMVIxMYBhRt9RC}oPQl|9^ae?9G;)=2quosOKZbZL5>on6Z~`G zd`A`X=6pwG^7ZSE3M4=H?ds%G=cP~od-w`u8j5%d4 z!pLwBdpL|p)2TnilkKBtRYrO97tVOcY1H9a(jXiah;jDg5+q0stxO&)cBsl#>galC zhZ!*2yc3h5v{;KAyTAqLx`qlg;s2Gq)N(9q6JHX`Q3AK1%DX1dSwepQT$U>O1Zj6qP9A^2cp(q zTy565`o3_k;A8d4@SWa}dOk*!joTa}tgBr0wmaYxq>V9eRFAE9I+`lYa4F@uG5Kt# zBQ_AVHm{OA2c?l~u)t8nqyt{V;FAt|TvpEd)I9+X?z*I10A<5^{WAcn#E9MV9Y;?| zo}>fo>z@}9G#jyVU~O$Y88YBg?(2VZ&QTr7hI|8G%i6IQoN)*4l54yWgIJFiB~ zST=0j9>*OrsKAg!Lt*&54>;G|y^bVFIgHS;hh&|v)Q7)Ts1R@+xa-+8$9>lLRHI$6o=V(DrJY_HKgO?vncu4d?M-A_` z>}ttlQ(Ng%_Vin%=)@Pi)nP~lp$8_A4GW89&m4B#Cf7djrT=erf*2d!C2*ZR;;1ew zvFAjWhy43GB?T3*)cbGmJ94C0^2`SgyP-8t+#Pc~rKBMcmWqlc2aY+$2O`{Fo$!_g zTQq@NL?^uK?u6{(C_9Qf_ME#XvZd%4%8Yea90^sTE834c#z^uk9a`^-GY~ZEisR3* zu859ck0ggbcDT>37dG)Pq7(j3JE3P)ZJtWYd(W|P8?B^WoPEzqnjCg)v_37|If|lQNSsbBVMne_GM4@}GIVg8b<@u_#A}VTJel=_lz< zpL4Iucih?0KsrZ<=4NF36-Nn0+(Cs88&E|hk(fi%>MFaaX3;{t@N>vkOT<5s%M_|Q zzt7B5o+mytOnFGhPaOqv#Am)22&HvFD{{czt{LYXRVBH>XTB#oRhH) zezd~UQ)}x2&ic&lsqEPH45nHyR~>86?-*eJzqx8vw|Y%UBdk07JNxTNUY>e@tInM# zBC)p}VdU~P$7=avA@15(r+1!1_jXA)91)UyyAXG6VgexxZaNmpj|y?uR5yglT|f15 z*8>K1?lr0NU$|?1w?0{Rs0ep$SGc<-oHqy7xbrMJ7~EBjOo~lOX_A|inUI+ap)|Qk zlOf5;*+~h>30c{(O_CO_%AXNcc#~wpTs7@{5kWOg7p^mWH<91;V6NKXyojoSBC5un z=eZj_tTqJR|C_INaO<`ZUuCC=r*Orgq~=7fIP9$N$_vl?4y#Y;wB~WZ-UR%#IcfC0 zBaIv?JuQfk8;%C_pZ(;w&ijtE15H>K{s5lqVrsTda^`vf+$&0^;kiu1cu6_YsN4xA z<^BuL&2Ve??|5!r;huZn%X9B=JsLdM79E?Lm6@D&ZOXfJ}DUC z)^8EsD>bG3#FNn#?PZV$Cx3377%ctS@uA%FbKf33MW@%D1NJ5}C*(IL)qZt6kaIrw z?XpfY*sR|i>*cXbxz;{A!vleR7QST*V&Frl$)6kIK?3lFe>I zTZPuq{9qGTp2=NSD+{G-k7~HjHFA>jZ#^% z%FpR_heOQZSL<>IU0{yin;)mXQrcOHboFy~p*R6?JUsWv<#(cq7Pi-n(Cy z&wc?-CK^agvwYf%qVdoRhS-q{+~e5s&)s^rTf0TLwY-a~4!QIWt~!rP?+bK(BAqP4 zn~&-Aj=R12t_+!J@Z5gfk++q0z7CIJ`gGruX81j2oLk|Y_`==yoCnI_zQ?@WcZX5G zTTS}?7w&t=t>C{Cn=cmXzVO^xeuR^ch$uGKxad6@wne8T#^vPZBqwJk%R0KZ7d5 zddKB^o&KvFQE%6piq1-swA7=zWOTh*#MK8TFp^Z+Ih)M=!BG;vHYBuO*7*9BfPd(L z$Bqp#2b7NI93zeT9&Xb2zwqm?-3n)ZZM_jd8bmtjmN{NT(}f8<&FgVwWQ6NRBe-sl zTe?t^e)p~PV)})K-`q+c72}j;Iq;J2X`NyQu}xeG4@O2@Vo4v%0A0=l;@0ti{RbLL zKT{dnk>_eUOQJ2V>laxg!v#m2$YsZ?QGv+yy9U;B!ja6*mqb@!30p{w`;%q0;p}7& zTt$zVL0gjlcI_(OK+#)D_>+lsobgJI70_OFY1cqR$t&4gMVA?ITG&?Xll7d7e4M_! zSI_ygGS|oiJC_wTOB4z%(7!6s9S`_`=!H31MKo%}FJrBDF5T>>ye05?&fcSKjRajJ zM3#$$3IrcyRy=cEb{YM>ONNB?VM-_*n9S3NX=k|rsvy&;KXrJgvGY0kst&B@t1ls7 zmaqQcl6mW>;1c&Cv2|20RLCZH)KAV?^Bn)sLfFO#jw&aQ@* z%NPIwZzsR<{fn`<_6-VIC=EvcZ%CDN$=v_J=BuDP6fOoiUO;QHSnEZdRPyB>(|4 zQ)a`ve8yeC{+IuWDU0y-XWZh@d+zdEMoHEnW=u}G3QIy3wQ+8e4|xP(4{#npz)X@2 zUXrZ(|CHoeb`_BXw{xCVzNNIoXm5fmGjyAndEQ-IO1Fu>C0pA&w*{isUS2Z7!b`yM zLS6ss;C$q#l(=Fdbo$Tqc%=+3r9Gm=6|$_WGb0c+_o6h?f)e$|P)mO#SJGH4VP42? znI{o@H+UgNKRwo%vS96mu~6l4LUMQS$l_#6>Y)}=H;zD$DP0i)X1uk`Oqp)Bhib?(MQ?Ik)@4WoNenBh3$8 ziTUDX6D;XIch?Bl%ApY4TuDRWttvSXUTZU6vlh_bdZ3wJ^_O*|ubBztGhR;jk%j(0 zFzLUDhjpyB6+iMAfWIbV>9DSbBb-YlCH1N>x5bgOUp=Tqv%fL0{OOLw;Q!s^XRaE? zl&2|4>+akasyyA&#v|9jJeBF2=G@BwV6 zXNY8P8oX%~XC-3DG_Wi;h%;fV^HoXSZxm+_f@b2Z^%7?}6(>T@D>^j!2(KF^SgtbU zZ?2kmmA`Z|tRJL1^P&?T!g+kvclNlF{w10}IAm|vv5C%0l3ezh?X(Gv->BLXEKY#6?%*?`(BG3f91Zl8tS525;O0(y6 zlM9Rz>_a@5I?lUp2@W?{T!(ae%{f&5+$g{~1k40DWESAvYyVFp`qTb+6r+;Bll`sf zzNS7u@xN{~1scpHr~+s)nBSP~92@{|#R5EjIZ=!u*}8{BlkJNk@aT`^Rk_Y@iIk%F z%)_{J-Fq1Si|Xe;4dVllt9mJ*uR#I5ObS3lcm`L1X9!=v%$ZkQdVzu$GK8zlU*RzU8_0cjvO%Y}R^GkKIYUxD zL`2zQ;ogj8DavVFN*4`nHv}g%v@WbrE+DjoC=_vr4BGD;VO{0AvEK>rK*tC$ zt6a$MI_C&G&xN1@MDCe`&Oelt!ci74#&e_yLt!X89u`X??dYNE5}Z*#EJ98XO3XU? zcY`V#{atW9(J4!CxR1i=aep|1W7CbkH_X1=?S>(4B7TL$dS=D4j%@qDa=IZcA{ob= z_#)*3om2hkO!E0L=X`jI7WgeBG(_uq+{%IBj`Q=cHz)Nzavp*=AE>BwiB!l8zm^$3 z`?zyF9L0BoM)?j4jXa<@EI=X}cq_~oQ|cMqEEpWK9p)^lu=~!Y3EmgQKH-nWeaPRp{~kj zokt|4nE>U_Hav+67~9Rr%5%;fLqis+*p2z#rq+IdkHk23$9T6Fcjlip0l}Wi^7GEM z1`wvgm%JMmyWpG?cf_ec7dMKmHChZ>zx;#K071_ec^k>FwhKE@(brgxyl#5SK_%I2;5cW zUv8TB<8MHT`N|ElEbFFGs6cd6`WMUi3@2lhJt40AubfT%mCj!ndZ~Fx9R1I{Y0oX^ zRv$y+t-hZo$IicNKI8Y6AH2q1lv&@V5xm&9@GSZyh2-q_^@S<7# zkmSUi+{W=KSy_n*iA|E5B*HnhtgM{m+}yZ?_&EJVGkEEt)vwM_r0`if$}f;uV}5nE zL2SS3P1Vgdd(7;2#CAigx$tyf2+EOdHS$BFieQ~TY4$(RFn!W2@;-2?KWX+OWg0(e z_Tv}uU>iJ!uY4(D+n*1e4Wf%u520_G)e>)-38T3cgguf5-2_x19Gw2edgANFs9g_= zSwCdWpIS$ve|L6@%4wVlC$!@d6H{U{6OwY{GP9E6;O)7j1h{CBm@tHlDLJFOtL%uE z`};@6$K^Ij%7$}>aml#}agDQ@BqhhDBqrvo*XBUAie zRw5JQ;hIE3R+CJSAU-)hr3swl%>uzPQ4sTZ~4()8V#yz(x2hJ|A3~;)VTlD`8ympSlSA zlckR`^I^i`&5N%+^moJPTP78b8a!mgqy#!?R@XNB;>yd_enJoQTbmVGd5H#u>Mx>h z*+!>_cbHwg&kIUtvO8UNqs!`rOS?9!8I^2VktLd#!DZ+DexHqpM?Ns0Hj~@u^V^(G zi^XMxJCi0d`L-s`kE>~^ow;`g|L12=79;753$ z%WiYH?M{osX>yri9WdLCR;StR2Av}o*6dK}(+rH;=mZbJ!*ynt#c#7X-8Qq?W-|Ny z7PHG~5$dypJDJ@0eWP6~N==4Doq~l8H<;~yBX4(GJU)}lVsU!h9*@K2^?MyYv(w{o z3gDkW2|=btm)l`A`Q2b*UYG`+hYL|wNXltKFyJ$|(1x?q;DU`geAn2-29!^zqIz)i&M*aXudR65Wvj?zvA7Nd=_F7RGn zlacq>+1u=vk&(9FWhOu=}pw1SzRU|x)Bqe-BW z9(C>bLNoK&#Gaf8CYESaXm^+8U2{EV&_O3?o7V+K;kLWnpgBfJQEGMiyhc*`00+ zXoA({M++{j03nejEPl^MBic2zbfh6cuV`SeI(U0|LusnP?{tGUx@-=U3oeq{tWGQ3 zy>s!r4a&_{lfXEGFo`BFSezHs-3JQ**q;Lw6O6}Zc3B)Q6FA^y5!VkxbGSXAj1F+^ zu+UrGc8AMnbXsjjv(G8I{sniJKE>oE=-GwFT&(1C<92Mr0|B=(wlq7}56i#JVYFIo zUf#mvfBC!)qs<0FwE4a0P)aaU7@b~sTe87sb-2I*SnaSXn4y9jn~>4u^qGwCU$?O3 zf#rCK^_p!yuh(mX+v66G6a1;oZ8n>{ASt)kZxujsUuO()JN0_en0cjqZu}1M80_fQ zTT46k;2o5G8T~fD!)S!n)eixK)9!$^+2S(6!sP{~%|c!N@)_Va;=U(Bu67V7iRNXF zKQ%73!T959q|2tRoj_O)Y+j!>ugo$e7!;O8C$!mJ+Q8s;gBn8Q=kvgl191tcs1+{n zgWlQPKJfkE&@+U*jmvLK&VfbU?sJ%I9$1RZcAMK{2Yt1;zj&SFdh;r=D96a zv)^hr`|Kv(Vucq0peQD@*}_{bPLtKj3;B1H{>0=Z=-P{VOf9|9V2|6a8HGPuVMHHJ zEp3_$s%EqLEwIEmVD$uhbAX$~!K{Zj`aP)GUEnQ3?^fQHoa^+O%vP9faPbzG*X@9X z9M(SG%3J(yJBcV;i>rXaXtsNJ-e~ihjdlxutLrklold*o523QvV#n&algW$Uv&V=I zEm^@Q>UE5NIgkD`tF%47i3{tl)#$gw-pavyoUlAQT`sJlZis({{BKu)N*W<1aPm&8 z*XXwR%&-cB+S*NK7nqaP;=(FPV%_yjw#92UK>%rm=WwuB0~NPJoWYy?E>L`wzq~T@ zrAJFQK!hK^Tf}dNWz3kM+e58Z+R^9pO0!UTue#<1W@CY)Pze=HFf(?ZhxpV8m+75$ zx7+4*`aO1=-41N?)Xv0^;Dr-b%!tV)m?VeVh!Sb1y0!`YKy2x`jgrZ=%1tn`F&&?f zEY9O~fgN~EejmJyf&H@!tjgzi*~!kv?-vdofb~4j1~0y>ZmZpI#(OwWXP46nL5<1m z23KST8#ca9A#z8>(PS_Bs3}-s#}!U0H&D9cW{9=@V%pQkmX}R%xMaG>g z%!c?~`f=cEM1xSNAsf+sOLnfXqtR!#6wiDUQbMdZ+9>-N&l2EW(p1tbIqgoyx!VDv+0Ubn>o0Vf3FHoxGy2X9{> zqKZ;0P334876oi|`l<}9!osi4toH+mdShysjuye)LN+<3NN2Mnid zE}s>-UVuG)-P5JFC1=NbK8Bi>pjJ}cXi6|W>SZZ`ergOek<237GDD(q<@c=YgpA3- zhOl9<*c~1)2$Rv`u{)fwfWx5%gpCff$72)2M%bD`*yw%0Zx6$hNofp3K^ znjK<&RDWW*e8On=np|GqY%;;Ym&fIT;{_W;DPVyfr_E>=O13YD(+^ktp1o-G$9Nfw z-|POf%R3|EC#9_ouxElW78Y-a6fJf?_yRaQfQZ;=_nP4(P>e{(Oy3+#U^ z7Bj$mfD*$d2u#Td#~b*RBoa0HU=?-3c_joo(2~*YFvISQ_ruoR?sJ+M3zkSYAcb5qPNN%q1;mBWf&(=xfi23~;mao^=lEd` z>=5-rVD2(G9d?)%yAuC;k@q2~%h+px?vWBSl_oWtt8}{;WsAluQMj6zHhs~fH-d&p9Rv$pB*aUKz zlkmkF%t$0eOfVzbbH(_YsHvSmN3T+l3|;71MkWrKonp6FS_vSP!E z!;9N7Ls9nO#XXW<0h~(=YR*)myAChDx=}Jb?5isDq9$FAWuv;~s~eylhZpx`{okS; zmr8hcz+rUaQi;_+6#A?v24eVcB_uJZD8_^p#eR5xQBgbqe^v0zZ^K*?K}^7Z5gf^h z_%D*5Y!d#9JkXzv|01uMT==g$AkWKn} z0C^zXYK^M9NMrDTf8+~oQLoJY4TNd+i{D_y)>EcN2Pwlj@y##I17Z%$$`m2EKRzr$aDS@qLwpp) z>_e`?0Katd<>onyQL~XIs7rjBKe4yt&v?kM9UnlzuA+TFKsaPuVRDH5Yd+9d8lj(I?-rqlQfDN#t2i|LLN~|k&nS5A6dGiIgALl zx5B(621*am{){qj2dY4kh1^veVw3xC3AS4CZL1cDV0%BBQijzV3y0E*_99dBl;Ir~ z_3ZHmWuI|1N--j`xNF1fJ-8KADV7COgSs~=yDqvmfm?nix^_WI*^D%*ZBbI~W%fHp zGbKH|t4}L=oZa=E;`gssUa%=b>l{rlV*d_LEqjb%_kD-+pUqUfea1ur}y zrzUf8Ri`crFtv{GM-sCg334w&7^Io~fnt(^T2`2JirrCdk(te+3aFVy{7VaLs85r! zX&n2#%C5wekAEmqrl=y`A7tVOU?k>zsuWLr z5>ykBn5p{WWM<2gIaVAe-8VrBN3Yv+8VLVsUbdKJo!^US%!+hwilQRY$)uZ+eE=Gk zS+<)SOL2#_JX>ka_m^7xJ*!N{cAoydDtFE_+=u9Ruw$Zg65IiwVEUz3*f+N>o64}| z61DUUd$F3@giefI*qEL9JxQcM!7AN>!fngwG*sPUjJtkiptzN;NWh2ps$ba-h1!)Z z%+ysWbai&wz1%C5&|pf%l}}I#X=OtDPOiM8RjiMrPpxbxJe^b4i{bVw^w@2T;J%~^ zh{xEE0*11MX;ei~ZQ99dQ!7px)f-U&164rtCM}zgv+f>vGv5&ri0P|-P)*(?%!U5s zorh1#JhUwsb9fK8~81 zQH%N^wXkSAc>q3%qQ*I-BL!qQJtzX`l$c%hx}UG*Ik&Q9|5J>Z#HyQ%Z^Q`6UHnmB7dueQ={SI2 z$O>#6P}YwfPh=!+4}0nf>SR<8&>*27c(kS;TTIdGh8bs~>BZRT)q!OXa`#h1Rs^w- zD#e0e@Bb0){@?tz=~Q*_-6ZY7&Mm>g+%h!*iSRkd**d24f`J{B74CdAFVa}}O-l!` z&mECAct3 z#fX>dNEIkLhyNleBF4nTsKn@XiUg?~emg`#C^`JLOf2iZjs230MRZJ5(n@7Ow@3r} z47VyGK9G#OpWuH-AwKLl5}k?T5c}Z~|>sYaZ?Qk@<;!KhH$`c8T(Dd4hldR=vY$dr%OHtA$FoPX@lqiX= zOz(|QAXnRfye#G%)g}UMM82z*!(?EK7G{Ece0tJ!%hD7R>*}f+8kHTm+n^h)N2X`WUpfrKhe1F&x?`YQ8r6^1Suc{L zM-5P1C8z>r#ORJr0qm^_HubTiDo_0*W_QNatgewj;V+x zNB#3r?GE5OQH7K&!rk4vLb*BF%aR3b+AODOolhXl2hpaT--yI}_`o`-wLb^#x=mWPoDkc2S^G z`cto3p!B-wf=|k9j5Y?gFw6qgY|K*=i?hMpfwq_e8Ps0dh4|qCWsjgMZ88xZbw9}y z@q)_zDFQF#6*{OV@%DlcN$@{%y5eO^1 z5U~F_Mxyzwt+-KbQr8W5#JMUD_B7_}A1w#lsEMbS14R&5p+o-yTal*rl136#V%PJc zB;>@d%lZe{Bqke^M`dqRB=M`nK%1Y4ViXB&uMMnCVtSHZbu%|Av=OvqnbvfD;0ViH zBhyBuZd7Q~Bs88jKhePjoAr~ppJIQ~TL1ZI@t@U*|8FcHM`Zbn3y7|=q6bD0d&AHw z%pBEx%mT5+aC|dGiNe7Z-jIJ)7?_mAghXN~LakO4OO9`@ICLsPohizQ%AX$3^TlwA zKaVA2kby;*9r8eaS~((TDCB{;7fT=&VWy{M@5Tn z3p~%7C1PosjcQ^^JlQ{MH9P|`6T#BOtnx8tksNO64g`HYkxXz@AUWY@Z6G;5!m@O} z(qM9+Dw&=AbL>d+W=W>^h?GS_rZ3RD0TV!@ivu)jqhjC1T8ejy19vC0=;zp> zEC&UUjh*qcHkcewYNT{2R`SYs<0z?+eMbxlcApv8rGIj};_g5l_Ys~f#iffmjrS^r zisqn^_XMV8>V6VFx+icT3Dw?D0!d9w5rM~~Dbc#EvoZzieSz_8+G(mY6dpad1KN3i zpa*wRDaH}yV3hYYlbQsT(eBFC)#)^qc+Ron!9ZWG$uH{RknE1kX#^kdQTK#@RLhaA z;R$IjqM2MiFK};z^v+7Vk)Ji~ivmw`1xh&;_ZE}}s+i8`)zZLZj-nLfUh-?!wQ9PN zNl*>d*REccM%C9wO;1HLDMn2+*NWjz2q+#9gW9mgzeJ3D;NnF?QZWnqF{~Fpi8hX1 z`Ofmdq9k^aL@XKk0yVW1HcdnIRRKDQzxNk$Q%MK0`rMN9RozeWB)yIX{wu4c(6lD- z4a04qBuHXWBG;`{DTzflpbepbGrD%OaNs)bt?1gD!-1J;RNL^Y|LD2-XylSWZ|*a7 zbx|eLab*w|`31KI{ZSLBMe~*h($$Tqew8nL>#t4Z++~r89K~Le=WvU)WH5Igv!p+X zXGOlGACe9%5B$WiS;s{UkS4L^aTT>RiGOG(@$4_E6C>S85`Tu!|1{%aeNR2$xYko& z0}K(xleYW>g!j2sfeq{}$76fzuO)H*OQbFmzFG|(vc<<^Z~PByNYI0i1fF8=KOXyZ z=$K5Q3gB)$u1)BB4U}jT`ciTcPr|7J#ly;qegg3WvNDiqZD42oeS9H8u6&jdb4wza-8DVi3Ma7-NTNjrMOOTLMEFW-%tykB#y*6lmxRf!6>R3<#nSt(AzXn@puLxVwJU8r(Q2p$snnsfFEB zDTN`wJjIupNkqGA`BLC1?hQO$k`)ns{oy4z_h4n!Z1>b3{0Z0ZS>i*Iy7MJ#FGsVMFH=}&53rmiH> zu2=P4yyb*e=XhX*p?h)N*lBh@2tB&Yy zs26dUthib25na!El`8U2mvrO0Vb+u=;BWk7^AR=aFcSGE8zP8BYC$Z}2!cAFn|*f9YTVd)I-iyU#zVos2do|D4_H`(;$YkwHWS zOzxA~#cNW8XDMLXl2(3%ec)tl?VT)%^FEQVNXThYKAK^xPR7>W+chNU`=;d|vTIJp zUb?2s6e{Jt_oQ~|ngk^YmaaTqjgwvDY!RLiz1gDtMeaR3J(8=z3W#ICmgQ|Zs)=~I zGd)Am9gI}N{-D;K!|K_m&uHr+^8kw11?|f$zlHrntvVOg#FFY9iBg@qKdCwimW)aj zL?1B+GNfLoROZm*l-eAqANjk&C)K(!u1)z0jvam~!Md?jn*5=sRO`l&Q{uY8<7Tz% zM%Pm+Js|5wXUy6^S~sdBPVn^8>xLqY`D$rAsF4P>c+3^05m`Khe|0Hu-;iB>Dz>E^ zka}M!QWgmp3(CJ}$Zk9p+tN;GNk-VpQyQ|b5s~Y!6OE*&Kr2NFMy|yz7p2XXoYK0c zxjLertr7L#SSLP_Wlh$J1bg`$3=ouoKIvEfF?WLM92+h5OG0~Ta9aCK(0UiK^{oTS z%hDU2mbEBy{fygI-jQpnl#8diGbS;qY@^fYyMg6B^{Dy{0;>F2R5QPv)i#apOa1Jn zuxE^sw4#QFeVVv39d5K@=^A{aiRZR-NBiDi+L0Z4T4lFGFeCcQ*dX|%EMr#>DK|5$ zOQIfyTxl;1PgN63u4ve4qAJu+%!APGjpdP_nBzpR38v#3v}M9;_=laS^(=T=yPlOt zn3vWwxSM4`{T{9u%|3BDwy6!4q`OX}CKt4RX1AS=ZE3@_6mS`<0KGH3yf6FqX|k~C zUbYz%A;Xf9FWWqNnyhP--q9*w7KX-0~*l0q?K-<89@?j@|((CbHCv+^+B7zTG)t7dlR%R z6TbrdjSO7%8~jPEP5;PGM=;Q^RN{_&&~I9O>HnLg?2^9VD_P8~c-)gZ>RgR2yi=OM zaUz{~Ba4|P3(Brbb&r+`-^yYhl&K7;SzQeA-Y=7?LZKoe-VxMq%>AK+3We77d#rmZ zFiA`HZ@A^#rS9W~?l_D3q^%ML(2pe@3gyhBInaR$O17GqGLY8cE6yky>(nBhJKjeUED? zWY@>shED7(AFJyo*2`2XJ+_|FhV+IrqP+f|>w7M~>#G%|M!CK!aomdQYxhR^jgy)m zy`Q-X|KGf2qThN3kE}1+mtI2S8!KnKFG<6D@{Gz0K2C-wdcics3sylfWve7ytpG-7 zV;xvL0K8^Z@|0P3PFp4gydB<<>*%=s%@Pj@-Qbr|y7QSvcgW4ulX2AMZKJ}tVGwQ6?(_DY{A9)&M0U1bC zxDYz4^)%HHzN3Py^=D&ynxm39pAxAhPxDF~mHAamA$uBjPaM5DBa^B0=HF+vuBKWN z*xz$C7vj5`OQP5)S94w*xZ-NYTPqF}v03L5Y>1N@iax02IhAi|c20?~DBp4(hN<-} zXR!ul;rNR@xV-+HR$B(2Q?EYkhq7~;rV2l>$-|#JIQvdPes;8GKzU9~DaG><+ zIhAjD88gxf&+B6CtJ`f6spA7BA!T_*FNXb8qL%#1el@k^S9YA!`ju_x{+wTlwHHN~ z3peULuVF7o>B@x&*ILiQv_gkgSH$@d*Cq)x<9DKMqIY4sV5&Z7z$1ayx`BCLEtTwH z7zZZRk7cfvsZ`3-{CBN`xgbgI?>U&E4dZTRrv6SWjdCzk#IY+5Chf6`lY^O3Jd!xE z%V=phCBLiu%R^*1QL)PuDApQ;4?3m|;;+Xp!z3OO#xC2$QBx;tTg6dFPSz0F!hM)P zT_#EWy&q8*9KXOuA-=l!v{Ymt_iJoTnI;pcH09kWP1&lJD*4G@BhCx|hO0JV<~j1)LnG!v#pB0MKNH(b;S~1=o@bNQ8j;>GuPa2|zfRVaxz@ z~6pm0yJKm&khJ&Hi3Eg;OhVk7r$c(Ob4K) z;&w_fKHhn*GT-30H~?V^BY!%L7Qnr60yvJ%VFqdPUcVc#!wAli5kN};wG4nhZDxzZ z;dKI^79YSf`rLqU;=^E|5rhvwA9i`{Zj%WRt1!@+6HsVO9*4tYwOJf~hYVTu6wFNg zz7gYJ4)AaZx?Xp#!ie?>mB#L73QouD#bC%zfI$ObNfRJII&CmM9sn5uTh-%{hGnsM z{C1BQ;K87l#{r--X0sJ=wVWP6)wDS=a7m`HVEw^LfDw*2H(m{XM*{7%s*!gRNDRYP z<)JfeR%99yj0)}cAMBRv2Z&NL4`8JpK&>@n2ve`w46tE709f(?cFO60M?ecLMjkL^ zv4H{pw#Df7yKI0pauf7S=5*w{mCbT6cn%=IVQ?6W%LY(X04Hv9x&Xo2<+TcV z7`D&=)@6nNhY}0~>~pz!uoyu2;d#5=VRMNH!gZH70!SKwMZx^?CXW#?xI6&pjqx^91ECxhMN^8+ppV6FlfoC#FZ1AfD3 z0$*qatUjmc0ww%(z;U(l0MzIJ1XK?IApsB`54e(m5CqnSW}XC;uFWZR8<||*37(Yq zfa*FefNJ9e1a*LEGkeWmzr`N`l1$LE5regwa^rRB;xWFR4UIogd3AxqS-?}ka2Pt+ z$9s4WKo446et^aWust47X+7ZJ?N%D=2oQnH003&TIRL`jW(0rf2CQ^Ii3X4)3vq)H zWF2SxSu&}uCxL4E)wMnGg{I)0CK{QHz6fCQMsVa7D-YOsfc)kHWHm3~6#~KtxIu?7 zrbQ({Yg#=H3jljLEp|K1BiJEeahd_h)^9fgEG63izPz#lexuz8Qw_*f*ehFIX0Oj? zvw2)Tmmk(Uab*)Bh2!_^@StADU}=lrwF@yvS9C(Vt^tf!fG@TB>{dX9hw*^-0AMUY zaRs0{Ks9!FjTlD~hGKGq?O2>%mm7eT0Gtf4=RH<{xdL=yAQbTz!P)>N6aY9)utfM^ zNdq`2Kfgy`1Kw@5CiwlTP5sWz|8_USpWiqh1Ozp0Ia1Quz~?O)C)+H9^wWBfL{a~GXaLV z1$>U(&RYQZ)xo=A0pS7EmIpcc1pu1_u+{{f0-hrVxU(ndmCQrv#PSyC^NW>Tx|^)j za^`}-fd{Z-Ks$DTqXt9gLBC8eJR=W*QMf%IaS``na9aTx-em%8EYL=ig9r3oCje;z z&bH*2(A0t@3{a$HSZlaOBbFi}rD-2M<5Iz9d z8#qS@iyYuUy?|ANVzW7f z_S_KeSV3X{F$@sA5OQL?Kr`U7+dK$Bw8^@L(LUn$??oHaf;Sp$3HpY>%ZNs%2b<+W zKRz%9z&!R@uz>(#u-okiRrCPNxMb$Lnqrh>lMSL|jL-@waS$6jtS(^D3~QSa7B4jB zW{6Qnw{h4UNT5WCwzkbsWtGeW%Q2J}q31VnDLfrEsBLLdQ{$KVN#5Ql+> z^camUyC2Q000$_J0@!tev$FwyoFC={P?sTYh9P(W^V^Cc;s`);f?i!{%l}IGocNuN z2?1swvA7~b@amob&POe6UWeOe^8;Wt29AS>$^j9G(P{?hS>6LMqY_{ofbZGBjpIEE z03pL3$7lvG2XNy~-UaiBy>(<+OE5c{5Hf*gYCyje$c!v&H+2pIrf}RrVZ69*27nfH z!Z(u1Iy7B?WT1CTsG5?U+(RtW&m9xp6_exu9h zMlf5c$yE*H!#1S~LvV2yxn3mC5+_#Xf(gpCfR zow-&(4hD4qphYte3JJS9zYnlsUCHBN1eReo@`W$dssCqMvp1m#3j!j$nI( z-(xZX(lG#-!p0D9X-u#%1CXo(pjjbY6b;SbFoEBLXx-rfd?G-;bQ=Lyn78==s2Bcg z6=1jhIxM+>Vhfugm;wmg0N>dKVX4<>17vg?7^g$nowgDdwgf%8#FaTgk7P1z=%Zzo zoeFFP7BgjIc>Qr;xN#!@zQax)T(Qw^cSAr3psps6W{P++00@(?p2H#y>IbgF?ghMb z*!Ba~I>0&`T@DOQ9@(hHogbHGQA?nfn&2^k&}?L*_TT1}nTA9IBhjPr<|phdc%aE^ zDl^zChb0)>_R3+&mBSLvQJyBSymDBgJ*K&GSaRjCB<7LUmBW(A{_VDD<*?++ zVMzu)FoK9H!GXniyCM_0V z#>w>Hzkur~+$(hr@v7uf0HVOSS24a3+^Y_^2Jh!KDb1sj1woQYE^C8Qi2ov&FQLU; z4qA-yt@fq`0044Z@OFlKOQA*sf2fi$l=f1kxFeMJ4U@{eh2EYRd@KgZH!(=sP1ca` zXM-bimg3s2F??2rc$Jvu6z4W-Bi!H$X0Y6O-Db}q!4vePol!o52yqgz$>SdB%%xqB zXMu=`c&R4R0Pvjr0;iufMI3zQEK8*N2ZzCF{>Rqc}MUD zu+{zQwfObb?Xf!Iyu zh)peu-xS8&qGT+|NTobv!m95IZs68Yy(zlAo+?#zdmTDHJ=i^+A~_Ff5HUjBbu)r) z?o~CBlob2ijNlMv9qKnTXi;^hQ7eNuG!>V-2bXv{&?U;8Ml7Qf_>Wac1r5f1tLB3? zqyn**gG!C_1mi-u>7HOZ!<|sdMMEda{LWFOiZD)~+t`)nZ+Y;}%(k1dNqdy)9KFN7CvRu)+1(&OoQHCB-iZLQSm@96j zo6*dkNiEUy^MYHs`ASX68NzfWJ#Z1w5kIe)#latu6-(<4ZxaVZcO`K6rN)UUTLs@@;$#$1WM5e-}) zq!U`~gil~mQnJQTi-U6+_G^h+dVg?$qGk>U`>_AHsC{~{^P+g!oXWPDrOPEONVz3< z#2CTc^5D8meZA;a5nRkQy`; z&0w`SA#`IzmpjlUvZOILWG!C`@-0FH(&w5>iaAq|K8iW7jP62m2L#fmkfNtR`4sv! zQS@kXO|T|?f-)-b;0ijAPbnAefGpb+E{X6wO1o>L+J)hfaS?c)xfEZzZtC%9dJ&%I z=TLA`k{p{GW4JamaXS!lvDK?xzJkbU`* z%6hh88R=WkR`?`a4|;8V@B?wkujc4nnXyegkQZgRhZ$j^l!O<*t zPCcI^a}|lSk}|N<3thf_LfuhR*wzy_)T-FfS* z(}3t-Gq(gEOz(9W7>sNsC_T0-<%%9Nz0kn-gE?ql*Or|+Dm-@6>4H|~;fZ+cq0@k< z&4#A6ZCkRpUMAX1b!pV0pw)S5qAsWDG!Rdnr@c$mIseNYg>2N3$}Djh~Ck++msJxgD$$N~`Sn``w#yoN=+ZT;Y~_6^k@ zkyUs@wXRF;0CeLA!E@<{6%N74F)7PBMAGEcT~^*;QdutcV1BdJ>CMw@WBir*Oo_!G#9h)i7e3!xxHRI&D7*F5`^qp2b~o zPo)qOMYc!%Czedjit%mN#FA{`n`>*IX1MDWYHAleiYk?Z<0Pny`dwH1n~Dg>x|9SS zmn1;?&!HjBXfKJD8hJeNuV`0(5j(?WQz}lHT{0 zL{ULLcK~uRd>vdB-5ZJjmqwA`=n!`VnbH@a?2)w@DoV{bpU@j8iQMRs%kzOQ9E_|z z-B!$8-GP1O50$|Rm>YeAeGxv%>yI%0P!MteeIijyX1kA~CT9EEAKC@z#Xq7KAYD$S z1xWWB>i1pn-B?E}W9}`nqoPIt`#$~qpp9#ARZ7H*6K_odIaVp8bQOkkq+fhRask)0*OY(ge}1iHpqmBf;}rftqqKTJY@+9D43(@I|g0^-0-0 z51>kkVqya3Dm3P++O{eZjiS7-#|J?u*!5HJ4~82@wX5_tnJSgdfEkBo9}jj+r${1O z^>>a3=WutciKMN1&9A{**l|~({ckME)g!f>2nM)-E-6uq_6H4c0 zSjZl}3Y8qK$&SDW)nR7zZT4&UB-<>S^?OiYFG|Fc$^K3e6O;WOu!&|@ zx1_QNeSHry{6D0SaG&qn!fk zBZySojdfQFb&U8&(TL+$`b9(x`}lHj33sE?oVWrR`rO?BHTk02%-u?TQl|UH?AepTbD?QFe7ENT65ikN8q0Y?%?vm? zED{d1s@j~&4q+jNTryUd#Hb}UHTg`ZZ%d;ELc-cixwZuhgs3LhOgn1Vhx?_RfpM&5^-b= zpoqmafYn;V*X*CQ21EQ&EQ^dnYZq*10FX?p8bD=n=#Zo~jQ{nn`cG@NKhy)m=%sfg zuu76`Uy+hdG$0(BT=h&EPRITIVkCj(F5n}}%S5fs2w+03su_L0y_4(O%0kSDntxI2HpH*=2nLtP5OxQvAZPaur9IK0_hnD%$h}RKDh9m+ zO{uNg6-`1`(a&R$91K<67ftf$kDEqtNA*b99WdEAKBhU-nC0Wr1k&RqrydDLzCHp) zLNWjkxG~U?X@>a2RWiC`dU8zDOodOxG{>BJwJTb&tm-YMt4J$ZW@n0)SZ0f4t!1Vr zt1OddU-2R2ASA&+UWg1N$}(?E)>`K12;qgjwCYa0wvVos zA$Ru6s3HJ|F4v9H>$5#q?^yTM+2?$b#0(t7SevHTA0TS!Mw*&zIP;<4ic%0 zgcePz+vYR>!enujubY(QOeTAxSM_aqfR_$r`pQ=$Q>c`$e*>-Zb#3q`lrMqN0#F4c zy%w5{tOc&V(=kY9j<0@BMWV6Ybm?Xp&9i8`bctfSO>V1}!6h(&A?y#B zDPV+>0k>`#(||MKlM>iXpHMxYfoutwR$4uHik28~PD8SKP{Dg98t4H65uP+lmqT%r z(^3Ch#0loa&r9ZNNQ{`uOEyttUd~H~b}!uUP@dW1^~0NPKV*vV;$$W8)}DvVCp%M;fMPgv5LxgW~{EL)wVT3IAINfR}vA(~n8SWaY-nAH$9AGdT6b#gyZ zl#!IM?N%&Q$-{#xCCHmdE|iJ>R}SPOc?PjWVg6$0P23<#jf#k$j!e0f3vc4aa26Wx ztNxUE6OT5I`!htr3sPWK$r=ym4Ru2Tz+dnJb1PqlJ&=+@B zpNCZosB&~6xs^#6sU;mYz4|_;NG6R! zwvj3p*B6&~D@FGk`rjOV#XKFQnDr5Er3gG}Zgs!bOgiGe~1}VivM!_uDHAP|kmqKIfOpj8i z#4Kq2JJr+lKMCF5t-gWbY85i^+CW|E;~e_nz3SVzAoWQ(lv+oX5(Wvu&wHxZs0cK+ za<3$LnoIHgD`Ri$0CfNv+YLjL{LL9S_IWnN*tbfi2tnh@@+ z<6Fb%WAM7|QL|5~9b8AM0V2kGKdH8H-Ko-u7&+A7)9SG*0?ev%&A9LZsmDAt`uplZ zSvg80ih99C(jBwf3fBKtKh1K5N)0i_Req@`qCOE02DJR1L#w~2&Qnog4l@ z)i-f3QsgiSs5*<~ex;fvx-<2Wc}DImRjTm!tH@sz3E{7Cs!EH+-#po0CH`m{4SyvPe?Jla z*gG4eErXUBSKQ@kh$c5k$)q$RGF_k`all``mmi)^J{LiJg_Gf?u`>X*0`l$407 zka>TUDpgcv1$y9I^}uKn#W`$_MfZDkw`e-zvfqe7a@+apjw%wYVbt`$syBz^T|nA} z>KC~KRI_AUq_c0SQe|8R(433aD^w(!&UWZ^7Dr(&ULp#EQHa^boJv<3axrx!2|g*? z?FoNWKg_n5h$U4qP{c%4I8Li7Nt`M|)Yk+tLe%|+)-g3Ww2j)jjNr6emm4DdN)h6F zY|Ypl)(7=s{jB(jBuBSM2^)<2YFi3V^{P4C1pjXGc(0mMP1xC7?B7jnDPq(YX+TKt zU(+LpE#naWk&(iHQI?)nGD##*Y`%3-PlnURiEt@~Ttc8vYH10P4N6D4M0ODJ2IW!; z%wG}eJ+bB%17y?mLqb5e#cPK|#V$y;%tKx;NXTY!`W;rAl=s(RH$t9f-e&beo@sc& z2~Uoqy}`GEs!qR>4t1$yxVDYTj5>0%fky}X0M!{ zoNG6GAz!q^4B3q>E*GR+Hbc5zJ7ib0cuaN^8nf_VMkGm~)n@b?A$Oz$a^QMAeh1{< zf|Rk4zS?Gj6p?g(<^+AC{XHsqNY@s>>yquIJX$rQW-#PzgXEQv2pe*90)IxxOz4F) zageFZ?txs3kZSq>nx1ShLsCb`6zGJEWJU{Qvvk-YWv>^qd0L&2{L4=bCC})v`D|85 zG;M=aXOL13CdTH66k(86%;$v^yMn8tatD)_pkI<-6jBAo>lQ88xx#@ym|N5F8nek} zFR=5s-D@&J*0uXwcg~pRyQkMZ6WWu!;C>rqW`h)fkev~7c)N@akDqrt+>lDn=kb~R zV)oY2>2)}FUc56gwC>`vEWvoJw1Sy$j6Y+VRDcN-)~L?vnMi~W)rCEkV0}Foy zS!8iWGxXZg#p!5HNzJe;#(2dTuNY&z)#LxQF<#5QKth=@y6+^C8jH(1y}F8z<;_pl z)W-N-=<_FQo@=H5p1P6vSe^s{k;n4nAFJW^?a1Oa7`$fW-bRQ#mfwdm*VkB*8ef9v za`U(MY}gI%7+1AMCF72_PFhy{2U@khW)NVye7(LVpIL(bSYOkNc^>uJP-BB1HT)ZD zEX=!T^@f_h^Y=keQ&9}fz<+TY6~%v$|8{|^U=_tn;Mzb%@$+!LSW!F~&KxR=-^KNn zC-jHmpT*>c{CD^-^5E=y{1>^x{{#MuTvh%N|3z*<9>IT+%P>dbuhzxnr?+FckevPf zg#QAGqC-!#pPzyS1;GhCh7+IIXKbuFkiz~UP73uX;w=4dE9zEtL+yo{x4Euqa_gw%+nSMCos|OIG1-nm zWBG@mu^8Xh9a@#WV$Und!kL$Ay0P2rtSmcGPrK5v&_tJCvJ7)g5?WXe2xupR=>(psJ$l^_r2{O>sr~H9a*Zbm*(vOmzI@ zf?;e~8rt12Je(`1+9h1$vqu2s*}to1P>#}8E79(#wm9*CX43AOSF%1j+~bOaV$wuAZtO+Iy@Ev`y{lR>0yHb-9`7WxI zFi%nwY)4Dps(DaN0+OLPk)DcgOTdW$oOENjZ#BJWh9$kE|3+ynQz1}>m4^18Ts4N8 z9!VUONXhgF{ok#b%5WEzHn7?b#+_2c(hGT-xTHg^w*yr`bsf=&4q#lGSLEomy)~)K zMZG?Hi1XDlT`?f6KSJ>R8lK@gQpLmw$Ti*`RB2>JI5hWzn(11CPH6MJ!CqWHU4nHV z)+|&Lzyx+sR7rZ@PO%1~C0i=;e*9nQcq=`IdXuS;N>9&eQndftWf{Up`)Zajte=n? z(dac!4&~h+>`57cB}yRTRxtVzxz031JtBWlWRiN&sxUb)%G?m1-dO%=^LHz4sIFL; z#jR9}bEILpQlO&{qr_Vc@hcTkFUVg|njiC}43@wEa-c4(?jahq&C51<^1-DWIhx zts)CV6^UP|OnggTa=7Lhh8wT6hhXjMh{k;nE1H`s#S0iaz6qLnd_%kF>iIuF^;w$g zNzf{q`3#q>t=}FU`=O=_SEi|tnK%185EV08X8fL4pf1TK*Ge&;D_zZ(|Cf% zQcv0y3tkb`HZ(;j@soB&Ae6eczbcASG!?_gV^h)mn&5Qq9crxMV>N#6BdUOS-F;U# zfWxt$Y6ek0^U>>p25>%!3LNq{1OU2mf1LhLVOChz$>1U>idb9 zedBlSOcDw=sU52;jmuG#WR5avW)!>nDXCU^s!<5Pk3pmI?IlA~rIw!kX2W;ce#x75 zrjOWwbfoG~H_(Ue*i>u2*-fL(SD#N}zPg`;cN^8hi*`5eO)*lk{3|Z8FjIQMLN!6e z(vd2NR^7sO%AE|EF)oL$!4!o29#BdS7_w}O!BsY+qTXi`yoGqwchaSv0YB8t0? zDj&$7~tgN{8YQ2kEc#gw&qPXPs zdU`YQM+8Y}Q=7?s;8m*+dnQV0kAtw4*F`bxDz?6&XRjtE7xgoMy_xo+oduWyPSf8M z;PHBICaq9mE)5NQ^o5R*i*Li4k&AB>Y_O$S)R{X+NfOm{tDO;l9V;xQAFSVpyN+#M z6*{v=wobPk30~kTHN+$aV#}JL=Z^+o;L514%I0tlRT_zlQ!x!$qf|5y=~9*+c|T8& z7KeffMjMVi)2!!Ki_fdylr%%S&AAIR6eph90pAsWxXx62C;OFJx4u-j(1(4ynbslh zkfx3LIr1+nnDDx#HizYsnkzG=h?S#C6|p8YM{|w`JE&;*L$FULZ-R3unlW{?LlAim z3^e#Ta5N2h3~bWUkaxg9L*4=F^L9N&qvEabWbjv2KR7I*rhKiw_GJm;JK#xFyNV=k zr%ILHCN)RH&IG^WR5a?|BIybKqJlkx#w=%AqEQ2DABhocGJ|UOb4%51jm!)w1JB zB_qSf)F-9eJ?O__wa;@j9XYxAj;f6V-z2Dk^1lwQR8=KikS+8Xs=nMhyQeuiQM>-4QM%VHTYm=IgmLIda zi9W2Mh1Ny1Y7reXQPV={2w8*lKTW=|_Ctg2mIt4rkhd|M`=Z~3>-n_YXaSW1&W03qYu6Bl+M6Jhl z(qvOi5b~#>Zbaz4O?o}`f>|ZRHe&1*~A-kKgq*76&Y4ke06HDw;qcrpL zmVZ(+V@PiO9Q}AdFGH)3IT>nwggZQEa#$zSQ(ya0X1<>!N1I4lBn(Hjt8&?48QP0J z3duSx$%L0`zszCBXJ{|_C?pM}$DcN+1KC6(`en}0>Q|0ffqo**Q8OA(zq))@yCFtg z^y6o>Te&4L!iegDrj5+3RSGCgY4imwLAsxW@-J$gEVo`ELnOpKexP072Wx}er&K9)_B^u}F^6h9 zX=}gE9aUExf(CpGu5~Zk{cY`VRc*3XkvG(rDH6pX_o9P`Yb(_xYJ+?rdJN*3HpX5cV zItloZACD;mgO?C=cA%h|Bk?4IdWcsp4orTCCsh4X`(R^s18If6v!|Hy3Q6=&XGUJm z?cceqH~T~;+I_I5cdHO?vA7fd6+i7wxP_OA|0>UnUNshD)})o-P=2W2fB{gwDtXGR zJEuiI_9DMHixVV^pqA1BePMi~7RLYdghBnD@P#Oh0Z3ZRXPmF?oy4BcjO{$XmsmI} zQWgmXmusI(g8PfRTZZ)Cbt!T@si8&3PCZhMni@ha(Y)l)Pr|{Z&~gUegGQQ)vwB}8 zy>31$iaFw4PiG>gdTSphN(sNvnU4QzrlSv;j#!WH^ycFmc|OpVCqtgR_zIk!jOwdW zTMDNdg_begs4PVpuyxV@l;oHD zQK&x`az}N8)*iky8GX!!Oxyz$iKeqr@TB&+w9sI#nyMo;J0d+aLEWs{QMHh!h7tzx zipbI=^fdP*)gbN^|Kd!YN@VB|$MJG|nuhR6JV^xb2GN_y!?)LQKXLrqYw%t1Z{3@R zZeji>HZTeebiFb>RZZWAeJe}r*j~%}zj16Gl4)DUV_~^g5uX-DYlft@(isco(i*^b zXhLymFJy#PCbL(QM)X};4@u4)Td7=HekS|@70 zqoi=FEQKxBlEK_KJuy(utVk4t=*-k_R}DF#apK$6uip(fLfvvgx3F_s#rASHOKi;& zn=C?oE_~A$9mow$Kx=bD|7Ocu#f}vxYH43JgkEA-wj!Y-^?X?Ii~a}&5pcwp%@pT? zozRLX9`%U5D0(8sY9`{Z`?AsUO#B&N20mo}bq}`^PPY%iQ@_1b?r1A6$$ZT#ht+2{6LWqce59zbPnAYU3*h!=-^y*?SWT^0;<}Yu=8$tl#1e# zeLv-`lqgDGc<+m(>mXqVPFuhl;7%TulrX!sj*U{v*#^EV{s!Wy;jBYyK?K6L2 z`K`4cr%mhs8;?_>@;J(vrl`l{Q*#s*O1Z@`DSl^3&(L)lY$<6)-|tjP@-Jzv@;eW; z7DK6G+@jX+xLZeuQj;)i|HSbuq7;F4Jc=-0RtsaBo-n8h-YN=14y6VR37tu2KW!b` z$uyM`r|cIgi-cEh3^i-Ye&0H_Z?S1f26;kXrL(_*gwzjC6z4KgCQU-hc?X#wO0`+%@-+}!rOrPp>Eu>6ba@n9k&cN(G2!6Rq$N(QjaVZrH0LF9X9`jOI?b#On41vKmv;! z#eUpISGLy)KOC#ea^ogPs)(TDxCjnDSFbOJgZNXj_g@KToUS> z!~}2~aZa31OAM5X)J165*}x!VOy8Y>W{j)qA-ujaG=#y={6?${y~QvqadUJ|7)7Fg zXj|HMA&@0Jx+-*rWu6gdLz5Xsq2;7Z5^yg7L>vk2O4^d;j=i(3Hnj6aPla1E6@T6N z{vyu>alVH5u}+ql)}-ay&>8M4s&DK~G`qES(&(rL#d}j!ff7xjbL&EtXyg+i=_c^V z%u`D9N;TocK6L2)^=J4 z)w7+-LFuwee&6Y+`$-O8ovLhA%9tLM$HcrB9FnSLC@S2WEe=Tu_e!4)m8G&PNhA8< z-XKXqmbX(mqa|?0gHO&L!YyjO(d>57;od!%wSVG{`bdmmIceOH^oV}1EDN&Pd{0jp zlvDbTC=A&t-Mu|@E}1>jE_S%LRAS+Kk+MiQzBBYt1NL{&T}Wa~rFT`l$GC%eoXZ!sK^ClUQNoJE3_j+c-OR{P&{VhARI1R-6L%!ziWukBl7NS7C)7dqXo>?wV|6wu$NQ`4Dz{L#R^O^qFhW#E(L6s7T0<28H`V?{ha(B;*&0 zDf>f9lc0HY==TMADk4o#^PbGE!V1J*ZH4DP4tZGaZmMCz;iwx{rJ(En3kPxcQ=b$z z??xZ~H*_+Z?w8LX0IP~YGV}A$k7^R|X}OAeydTXZhh}DM%0%CN5t^bOVp#|LY z>K;dCZd3{sFDQ&U5CTBV9m+TH0z&Ak&`|Des#G3lI<5=$MM6i|SsVzpMo;B2O;l}= z$g^4F*Sc|^Q*Dr_cn8Y-CbU{rn~3-8Z@~8-rE1GPGCNSo!BA%v3F+X|gAjIKph%<+ zymg_ms@j^F-!BQ3k_cHS3{-(4BH6`$j>oo_DG;u~fcm0+=_OfIUIay#k4j=M%~7osB{||saVKt7yHfaaqE`wxX78V@ z6yH+wPp=e26tAj8@v@#Ms5N4nC<=LvXm%4a}JZyDa#a!5i*5pVc0K9oZS(nV%v1Yy;URbzrHYZl-Ssq zEiMeY>M8Ka;dTtyBUhPR;^pTy2;aw9s8aE&rLgLDwnwfQ6VfyqQ+LT-E6w5ydcx>N z;o&SdifR|`k+(qy@_Y9K z6bbpg8*s4G!n~?BagF5aREVmrxW-XvdwTeN6$!Y;q1@wCZQ>P2A--vNuBxI&RGwI( zvNa2b815CS#r@60Z*Xr=1!PVRw+NRpub|?V;hR*o$%uby8J@;{t|fUoBYXpp)MtdJ zsz@}f`E*z#KN;z25*nTrelW(;_*GW;xfs_e9%~hTf@@+>^aP|lGLusZlqEsf(mFhY zK?S*C`o$yl8`nJ&!xXi6pKjl=l7=kTO=(oTY*CjD(lJq`M4)il;wE$=C)`g(K=ibB z&rUv-sxPZ)60|K$YAEz(R77MBM&^ZwaJNuYq?cW%7FjVB8uh`>j&z%N5~xQEkt}@F zm_Q=nKa0?>AM6~%81Uvv_o<|uxsDYX6|w!@GPuZ}b`6HppXQcRC%s$7qHO zA|{v1YO)CRAMSjTVS&GaXBV}kLZe8=uTo_|@SLw`1O411lCq2HIKp$m{+(8dXSag8 zp!m*t(Nidrw%DtL==k{T!-9gmgrh*a&MkT~sS-w!-$dx0vlMu)O1k&%JC+qM$L#lR z&0GbqpZdc86fa+KbvTpTgo~xkXWrG}o_UGngmypNyw%msfjNmxUhgAGuTavp)3R<(iWgdfD!BeI^LVSIk6}XUFO^v4AArJ&;%ngfTSaj-+?%c_ zhNj@ZxSfjP6!LXFM4A=Fn7pDG2(O}2DIAA?7L$9!zv92hQ_Btr=7un!TgX^3hYG=P0iWVktq_wy~4Xv*wj2?Yg7^i z&p%9}u(tNsboBe2C(>Fp%7dOsbcO!{^NvcQpspcmTiZM_iGuz&NTOgv6HY8{jn?!I zPeDIj6Ha9t<)JPASy`CHtNN2$8!+;Pc0x^`@B}t(5LE+`Nh~SMX^TrpY64EYFhMth zT>ZimnXzbBzwn5(n`l~oZIXsv2IKi@c&g#cNxk;QH_;Htln|CxzF8bTQ_Y{Tzk}&t=pEgxPv+T?ngZ3=bEn zt3umj(vtEOokc_hpQ8sygg;eR)r_m9IId6r#JC{e0;Md{`ieUCseB&wUpqNF+=y6LC2Fb>N z^0gs`LfSc+RLsUO^XBjYhJBilO4%4f+0D9B^Vv;@l-%e27BLrBb?WjkoXLq*bS5|| z8^ew`OxmNH5s&M28ZK7G)?dV_#d#UhzNF=f9cbofREey0=%L%fQ)7I(d|P-`+6jtE zawZuiUDD3c#aMlkpd!j&Tz9jY0#6(z!qMWuXja6hvE3(yzhv2F?eWCXxiFN$jnyH= z)?}a?lgEX90&)D4Q2srOa^NtA=VC$xl>AJ!vFhn@C$LUdB-f+t# zcBn)>3N>%JYj~=f*o01uUD%lA+iQ4vR&%HlxwE_!lzK}>JG5+S*pFUc`#=h+of^I`t(>Z> zT|yU#6F@g7DkWV)bs$YZS!4q6!%#HcTGD}iQauZgs|88V!ej7BoCQd0k8Zpx{4l#y zo`f;;ONMc;s)?mpcsgnp9&4{U6w~Dy;Th7F znU&&{F&!cYX*d%-1F-2c!zQ$OMs+IM{MEun)U)R!l9WWikF@Wxa3jhzFe!XZ|9IDw zNlYijBS1&YZ;7Hb@dU?OI%pqr@ExS77w;pZ{AK;)2X zP9>m#2P!I%fI_%4Go+FkP*J>45kzSb`}u4fy8BhVdRM*o>Qz-rN&oWb|MP8GW7(ZJ$a;`8}PrJMte?6ZL*AQ7>9F#W+ogoF&z1{(ORH zo}~nfCv(w1Dr;Whn{^@UeY%o%h<4Sa3+bvHZC_gxK))^nN3FoPZ!B8()bns4!}^*m zv~FEZ4tY`gUR55t@4YG`e`%NG5`09{ZrS=87Y4tcFM^{T)R&toV*FkliWOtLd2uzh z3YRjMqnuS!{cA1NFJ6=n#>xIiMERpsqRa&_%B;2ZQUWWIe7^C%#U{7k;tE3I$mQ_b zoM!lKcfnD*aFngj2AL#*7~6bz%C8W2;dpy~5flMH>Z*gD`T3L%>voKia_tXyt4!4d zTkD0RtnoP*l9iYNxT~zhMGN#NamuC^Xl@%J8?!j^7$qAk&jV2P`Who@z82*1K)a>Q z(cr3@KJv2y{?!!H{w>AhB}v*vkoKM&|6vL_{$34%K#m{czf2**|BVBvMEIagY*vIH zQ`7koEuAl3gg=iH`j3e4g_I)P3C*uliLj|F;hsi>;RtBARWN%4W{=Hd6WjqWoat;6 ze9j=8U@iElzW}#~rT&W8;(lF|`U|B^q^-FwB-~#UFHz#`7)O17!PHeH!yN#5l?koj1XT-2`3Bj&viAQ@XNYti!fv}SlU|Zs*(bhixZrJRaLT3V)FPtzl&K_(^<)GjGK zTR2H6CBaW>CG`_ZH$_tEHFko<=k{AY7Q5YUgOiQDc86fGI-S9QCEzj#>{L{(>AoVO z`kxe{+DjVSk1A39w@ldtbNh*!y#LUW_o79$n@ru*qRRK^ruA*Rb|WCNtRC4?^ATSH zpQ-mLD`Mo7`Wiq1%f(&~)ePYHaov*3>SY=b^y$Mj&+*=F$z^r048h21FTP(l;@>ix zPT<6aN1>!anz%XvPAa9pctJJGq$Glxr!S~zKwv8_#8U#vjoq*DJVW!1A^{&vSvH~j}#R5$q*`vKh=%agx=Fl zn@gyL#$X3IyYb4%5(}N~xo&PQ`$VBg;ZrrsjG5gTX5nmNz9MAvWiBw^kQ9qRp7dA`biw{H!RX0CdGlIXXdvbMNAyK-D0+yq>yKA1}Yr7L| zW=}-Wz*J7l=I6J-JeEkO5U9wzxYHF>bb&mOg0f&q~<7y)}3XX7+<( zDgO^O_1;fTy?5f&Bbm02`)a=C`G2eB;G7y-k^|VJsg{Fx{-_+JnF+V0o(WBGlO9y< z+*eoKwN2+2;yK?AJ%}`GrbEBr_Sgf0&+W4ZZDt|pb;I&CT%h9jyW!Fcr)Fr1Qkp1ei0_9)S9d|o8~JrP8C+Wii9qi^EBr7V$5{I|zy z-r|gi`y8AH$--y-T?H$pZ-4Beo%p_$sL3Aer)$hf4mXW{e}VOzSz>F|xqgb#fia2a zIyJ=lP9m0-{RWng;b`*rK-7$b+2wFVvg ztR_EG5}3-ZM~ZTo;VIqYoPQVHF~|;1ZypdTN8|+N4=^g@m{V*O8)4BQ5gAK4D#1rE ze?dT*Gh-D{hYl#NPsl}MzNopw_%nk!I$shA7%#9-NWH?(c)T4@!Nm66x+o3z)oED5 z37=!jx9Lgd6kVkH>%h|0y2D@9w7i7xOkkO{Ql{U5Iow?lCTA0Z6^a;%1@SAYJ)Ov(Q`WUhw)Tqh))gp|e=hp|ejE;T4S`>~Z0Pz4%87 zNoA}25Jo~@#U6lHii)*s5xT7j|AGW9+2#FeXvyPx43*@CSkL=`p45wA&9XkGWN}mX zm8@nTBVk}(4w~6ERF{OE&D(`OGycF*m#l1`XP(G|7H3=%%4}rhixhrqZQ4I2YP0a@ z*cIFS`Fah?cz%Tr8bi`{)gm--{Bk$}phy+;bikeJ)BX~8rO^HvQ>eLtcS+C^?d@u4 zX-+IG(ptDnP)$*&BR+5MpWBLZ^iU>~VJzqls^Q1(h$7M6*`H|WAXk=ZH> z=@qIYvJ$xb7UeP%zZ|Ay*2FIms5k;nrw#ITW}8KDx$O|jxXeC>#qSSztR5P_r2UG- zFJBTdXLkoG^VA55EdMHEm#XP2oZNtGqNXm@w0ju+swWD;F2^;Jv(%hCB8Lcj4>^hz#~S8E|2SrNL4AJ;2+ zyziAE*g%CZ>ZM(z&h4d2-M0puRFu5<&}6hsN@7IyEz zXgz;_3hG`jb$_o!U2*%G5YO>DQ;_#24G8MFF0_DuF$Hi( z%KAstcS&mX{fUx`QQz@8rpc6%rYZX#P0Hrg2&L-}(zj->b>z!PU?~@@|IfH8DI7Qi&qyD{Bs_X{5 z{-P?cmZ_OSmES5$P-SlV-8~^%(@^*c4TTj4qF{WeZ-&d_MAOD&_rW1(-G}5KI%jaYQeZzBlLP|Bh;~&%!rH;YF|uLNo|A*yf&NL;eqNQ9~8QI zymk-V)a>#4y>6$^6R?@B)Q3p>6*fb#=2SK-lyKyU;zztKk;huB@*~W}+H#`y#VVa? z3z(~P=AsSIVX5b|jzo}>jmdcWDB0wUCw3&@{B{^=!roA2q{pTH?x4Wb3UTW(6nl1w z0`N~Q05(E!lOiE#t5cP2na#Kg)EOCyl{fyjVy!>nQxkNimY^5!PrNTv^bZ7O=g|CP zl{hF%aCJXOp!d5PdSlmu`z{T=f0D5IR-(7$UT}SqoBiK3Ak@9c?vvc?XGlkpeOs)e z_L&4~zpJM9#cFm_)v0d@BpcjEtJx)e^fcS&@&^UK)8VyvEO47T+*Iy|oq1%jUl2St zsV*h$SH!`X)`vJ4xdRTHQ?QIjvT&p(JCpdL<>9 zN~`&Y;Im}m!KG4P4^TkKuMkrRSfLhz_!Y0F5U?IHgi65f>!VfYl`Q9O}DEL|d(<+_?^a{yKhsXOy=NCch3sz^Lkettk z<;!nFqnJgnUuCH&Jg}mt@nX%=xYTB8wpnYIuBFu1Ivf_S4d*Ky)_~1sfsMier&q8B z0zSLoaGAZ*qN_LESH$61MkzBeJIVYwMWRflnK4bhIkPrzaV@4?2fji|=L7)pzh;>x zNFArOOixp)F_viurJBkzac?G<^?=mX>v37fc?<4Da#5YF1t6}**)&2HKallxm5{wk zg^XF**`X%oHZ3VH-ZsV0>6L6#>h$j|@dIGB(EY49JOT{Fyd@*GcXi;=!XKZN(Nx30x$(I2okijA!a8*HL+f- zVy{oB*l>A0CL9w;tfOOB>Gfih!|Jk_&CY<}^4OdnpT}u&z}^{;-D|daJiY*qBdXJW zM6~)bOcr_sjjp|`lW6k@Moh`lau3SHNvJP`D;?Q#?$t1Yzoy_J35RqF4u_R%#O_0l z*pYbRhcsgMK)gFi>}Ybbu_d{C`=}Ozcptfz9AyYPEO^1`$s*1t{?bcsH68qdA+QS)l!Wd*p zCwqGLsGi{6+dD0E_qOU=WykQFS^#b*TKr(BgQo40NFh4(U}&rHB>O#C{oaWVKNK3E z{$6SSJo`Of!Nmx{?RFc~0Gh?vcVuy428fpj^)uU}9wokO;gJ(#QQ2d#FelYI^90*lqK(o$f1tF}C*wUsDTyxKu{xU#1{&r+=ja!-U# znRK_7%BxDJk>_Y$F)H2`nu6wRXO`7xVnh>`)qmO+TEH3SGw-xZu-`~DX5kUu!Y=-2 zduR%8T+G4(L(7cI*(YQ*elf~=I&_)Nr}a9Y{_p9~9Gy=e)A_VuS7>m;r-kUiiRq0{ ztHwDN{h>XI=@l)#)})220+CU;f7Z4gas=3ARy8kPPUaoRz6= zKqG>Ur1OPYzR&^|_K6})9~~k_lN|j0u3F}fVGQ)`<`H2y<;vz_+z)y@edR%3BaOy%~Cn=gsh4 zGIyc9MAhCDvRr)UXlP*uUt&-0oORcNy!;E1-*hB);9e% zx6ABtI_z$*)$jCJEOKdey01v`ag#lH@^QFCmMH9ltGrjfy${*7A%3NbDvJPV+1mW6 z(u6@$$C#QR?a50M-b@g&*VQ71emD`jhyOfRx;_P%4v`7${R} zp$#Tg@Bt33g7!nxmV(hT!5>$_3s0`eL~mRa{n9`)#O{$?o-oCbWA)SgO&Q zW%fy;@~=SWue!GwU4It*p+{h}vWk#Oz6Y5nGAwF!F7&x^7xPN%MXs0dXTd2`*(Y*? zvL&jGGgUbU{T+wO@i~fn)t`jkgjdQWgs(>Bzmb3?pXVzzurvw1=g|5*Z#q>^h$fa4}6zQMjw)h+>1h%i*>ESGcV-_I+IUA z@#_*~ka@kr_q6B7I+LdeCQE1T_JVJi0-L`(wW;PdPF22zr3{h7T=t2=#QzQpwzbabJ|x|y|==Q7dLBf?jpj?*ID4Ylw^TsXL^B3 zF)4fnv)ks*KZoq*QToWfl)%n|8g{-`8orz3kEdYgL5a{G#o77JnDAMSKbwM`@k7RC z5cjxn1;_uMf}QWny{OpvK>|Au{y7S*E7zqESB!+K!fZyd$VKEmft$l80ypn{2e>&H zzR=+&oJR&t=~pooxe^T`D|V>_vH#@owMqQV-IK%D8y8}9;?W8=j;33fCo-zC@}I?b zb+i$mni972==tekQu40Zi}Ibs4Ynn+%|N_yT6hF!tYvzj1@Lf~y~B79`$sFOEuwENJG@NhYRt?ACRvN_Tk1^J#DZB!3 z+2<992E(o_z9(rwzlPQzokZK+9d}g8-LzfY^xX7TxJB)`=}p~<65JSL6_>m}<+(PJ zFv0Xmpuu!C4X)PEfLW)SL}?ITrxL%oA$(N^ztEk0j+zkfm_ouE<7j}qlC6MP zzNIE*xf1VL65hud-(q=6aucmyT9SoKC%5-8e!#vX>irhFbZPjA4$$$jIUUf^#tS+b zztREPwk&*?8c1Uk;>RqrdPBE4?Y}GhiIMB841k)S8RH+wL@nQ6YBOfB?=X@)*B4D& z9-gcNr3~#-J*WjM!X7o02F>`9&MGwjfazL_PJg)u*C26g!(+HBP}$nBoCUrdW1?@l z`ok;5a*Y|CnT?)Y6`qVb?u;}?_pAyp;I5`kNp@_Kx+%$y4eqOzy8eCtZ|v9_l^r8v zTcsM?3N=Ek8M}*)O)+DG)`h2MaSs!C)T(HcT{jg`D~a|NlwBXj^#<6IahvhKV2c~x z&TM|FvT55jxOJ^byQ^=aNvpybvf6gh<$dd9WmB6pLXMABF@7jO1HlsQ4n zUKdtNWgU|zVXi5t7TLRbIozazkMGjmyO}8+rJ!z%fa1NI{8S37yHB#24lK25uE)ZM zjC1-ivPU*=-o!q^%UArIerU%PkrHMDWec4~iR6_dvT<`o3WQqez|xJI+_rFb6TXhX z>Tlf4(SeovB^x&%Nzrc~9oQ686FRml{J8NYmKY=naFBT-GZcL-hMzUQ&Ag&B#L;KN z-HacxkI4-7HX6G-T%z;+zTNQsH#*-BcrH9x{k>*ZxLg_?iyj>v`$R!_{vHyVkkrC= z-F9{1+w@mCf35l}-)at@Z4R%L8R6}{;V|Dz0+!~0zpH_zIUu*cRt1~)SIq(Xm||Zx zSN~P3{rd6MRjB451V!^MscgwOt>Y=)2|?ED2O!8=Fd2fZISk%R$jr^c?G0ig=JEX# ztvHJ!4XxNG3N@d9A^b?LT9e~b@4^>hsJa;{^vjFk8;n~qe({NdNaMrI6S)iVA1{Sp z=g_`Gx?$D~Nm5u)x~SRb)$lsb_zKe`mEx}tg$Edqu#brpzalPuE!<24pb<-tUT4G~ zWV@F!M|ZqII4T%+zz&Ev!d>_u)nfT?jD^0Vat>a}VksU!9QJWs3siChyc|g^4VS5a zC9(WDK`hUy#Zn(r5@PATlCAp<*t*M!ad}MK0E(5g0^d)K73-h4;1x8X_$PCZg?lvN zrV#k#{>kkU(I>(kYGGO*L_CxU_}~574#cf${Swz@Dv3UJ&9)*!uDG=QsYvT4hWq-Y zSgRt%Dh(+Z-(&?PMcg+LFMJ$s$8%dTcnY`V**F3ex?GH%2(RY3Ju(6F(ZEg1+v(QO zzNm%0_jLGoj(bCfHKBsKD)y2vCG-833>$Y!g#OR>CgkVWU#2yKE7Y{d^%2IqFezB# zU%V@_BaQ@!GmgM?g%$n&ukZ>ZKY-~C8McJ-y~A`QTv_E%y3<1N0`X`U#Lbi9R=fa-ck=XF4- zhh+L1;>@A!pooVwhJ8Xjq@e?}9@39GjY{}n4~g?7$LD7qQ0gF^{Wg4OYwku2Dxk3& z-3Ej&0bu;HUv)sGUa^0~Elu9*Wm)vxP?j51ZrCR>e^5_8f>YJRsx9IpUEq8oKueA& z@5MCIH`E*9m29Zds*Fes6q3M7cKTU0tYoLR4AAP$MxZ*A3e(4vxDWcTjx{DjNXWMT z3yNTks|PZ!!>1Hwt?Lk8v?mK?84kFS@nE>S;a3K4$$dEe@rmAG?==bcPY0-sEm3$D zMe07VPZVM<%8D#YqRMTXMXpccK17>EmKfcaLo;!kLfi)j^F;1KTw#b@&l`s_@3c!= zGbCYQ;i(T%)gtmDXDnx7%UVUQGfrcl5ci=Rwabn?tNxVae()Wd#<@D*Z*Cp=O#Qvq z+t5RcoP?B}6Dj75%h^UX_Q|IQOY9~)NSR2eI8TxPa~pPb;kF>pB@tQvH{-7K<^LXd zCCk6Ku5IKP2bY5qU`YX+D^N*op4SF$-@kd-hylOcVp8qygx zR;;7)1s#&&sI2P{*^a})9NNs7EAQbL?!(rjFXaq|J|?cIozVwN%`XPM7{Y8 zV-*+bKjo#|%5Ywn4*X?g9Ma)6Lz)dt%33G9BCMr{E{L(eM;12bCl5@X6Fww$eiel* z7wh{(ax!^1cM>nF>pCVMX+gR=A~PHF3kN1ol6)(J#QhO+*TQ&0YyR?qTETKcTiUgB z8y+@G=!^GA4$73KGmEZNqR%gjM2$Px-iWQ*#yn9NaCSgsP8Z!*1@IBR<)PHj3|K-B z$l?!CiPX)qv}#6YKy_;bmSkBzq_Da^M2-$D^&t!;k&ldDGPon+Lwv_RAw|MpqU~2i zu3#qfb~EhE~2Ua{bC{opo&mmy?`IUSfFsVzDU+I#f%RxG@gv};3 zK_#mwvu7mo9NdNT(w_Z0#_)qk5Ar!t14|TEYtj&x!7HL`ki+PKZY+yD!%vlfB{Mo% z4J?__AthRAzpO-MMs?Ap6%M+u@^-m7Fu5(xg5RO1d;HGtfFXB@(Ls+g5H>JOnZn%O<$VF24 z&~$yI$7zusqld{sHb(nyaK@WPAg&@g(z{-gUSZU%~tV ztcHEEuDy{3BbOaAhu__u%)I5Ys40?l&#XvouKol!ydrW(5V$FG)vrJ18z4K2+aHxJUz9M=s} z%^WOomF|fHuKP-6;ltQPQD+LtnD)wJDw%X&!kCxI54Wgwz;_Kw)XbfjR;*um(W{q_GMv|^gK==2w>#{WgAG}O73yld zf=qZtm@6H7cA(dDd1(AykvGxhcSXMCdkjwQihnDi(Umpc_PE2YZFH=VJKjFsI8R<`vJl_s_v zqA*;eiAH!uG?Dn{zio=FgD;EbOz?b0>LPalsAFn-29CXUG`XyFr) z+tlAf{;><{ye%@^_*3Hd;w#%CP+O|%K;xJ!)WeWu23eft;i3!M6`e8c0-fo2rAlYo zU#Wbn(V4dJO4b>1=2MX{$2%lwNolNVXh~^IR}!URc0sj8*@q)=q=!@|s*fshO>|$$ zlD7uiXtirX1{G8f%BMz)jmT!wK`FjTCoxjcgs&nE==&zM63G`|sq#(kxROkgdDr3= zwZ6$rJm7rQG&v0;71xtLl^a~g@Lrz|yVP{psi6b2gt?v4L0-b#dN6W==ik0ExkvJj z)cac$vRpL292uLz{S!?)6q%}<8$6+fIDRPd63>5sC2>e}6R~IFAcTJLT>^(GsrhFU z1Z#UDouAOs`QqJ?!!n_1&M37|{usC9Ft_wXtGK7S^1X+ul&t5_q)OHuUdc*^d~ZcI z@K;K}l8y~h14}yAXQ*~!>ONF8G3nw=6GytQWF7lGKAeQa(Y&GBiRn6uy=G#{ME6#n z%c5cTOEV!~a5pmqc6wSmR69LgH#Bj2V$r41Hv2@O?AZ4rZyR^uuHssznT?D_np0)L zslUNKQ5wwtAhIaUUbh9*7yaaeh#74>LFW`Q`5a~NkXsZNei*54)ciF24jo*OQ-Dr& zsF`E@ig}I`0*E_}2A+saO$zXPB7pdhlaWU`J%}eyM`jw^3}eVcHbBq#G;$?>8e|8G z>X-~edx=);I0&t}uutTX$(sLlry(&jEFIo8^SCG1QyA@6QCNicVkg{t* zK%4Je)(8FiO~g>(^;iNyyWQ-v1mRX+v)?P&%>lnp@CGb)!S45p+52nfHp+K-@#$GM zhhR0^tWJyD<#byFo81T38=1`>%Wg&B8|aewK}|Bd(i8L z4aR1{WB1u@0^E7*wE66IuXt+w$^Be@>OPU+MS>}HmlinEewk2vA!07FmR`~4#%Z1I zyt7w9Cy&!ExV$c};0*X}J~;Hq?zcHSg2f%QSc4Xqc={tWw~;B$?cfLqohzEpEUV@g zLu09U;_n2V4j(&tM(LQrLq^R=BaI&Q*RIsG5;{%mg&v$(~GSE3wA$KbFipCH&gE>J96(CK&k0#1kDZ1Z}9cB=!nqnT>sI+mt? zH~OT-hVdp_n!an^sx_lUEjP3@34SmaL3_YrvwJ|tgRo8A67=~Uc8?kK-Xel}13#S} zyWL|kgOLb=VqxPFaM*oTo73+0I4o{-?8vel@xFCyALsIe*e-Z{7LO}v3j}~HzCgg` zba~xDhc_sQ2aR>0VrhEypt3ucnbY>leO22PnSZUdnBa&lyBB!kH+w+CJT|w*=knQX zUNR`NSuFe%?1ahZ_4>dX!mXe172FTt3U~!e(B(9H{Q__ac`ilm#8#)5J|t(;WbP7DV`TAD6CMBx@;lpmYMGdod|lp7ONFZoM3hP;gWZo-R!|8)bAEg&p3&t z(`9!C%pSkr0>>>_96qnj8nn7R00$=47Z5#<)ZWV#Sc49a-xu`S;i_Vr&2M%&eGZ4s z>_UJ?&VZ*p|J)&&1%#04@pcW>xH)wGN%@%9G4tCvX_E_Ck zGn`2a$|JzZ_mX7#-3~CMZl}`%xPgj;ID=ln3}xP$0Y4 zCU`w!;f9s-8kt~RcCZOx!2(X3!v&MD$7X{|%>_Hq)^5Sl8dok`K=50@9|6PY2Xp6! z!*~Tab=xTrtK!9D02`6IS2!pWY=n@XrdN<8JcnhX7K1l*?`?M%yBP&@fi19sioqel z4qMP=aeKk;+RYXZ2!_**gl;Fn32M0kOnJ)t*WKdw`jz*mU;im%zU@U0<5w-E#OB8;AU7Heis~I=nxzMxD^tcj2yAxaTt9E zr_bl`xO`5S>0nB7f{yu|zF+{v&?lhp#w^Rj)7WY*-x;uiwE6>9hYv1sfN9b1aJ#HQ zZ@>*+O#qcuos7?7*3_N*(N+fMVvBp$ zO|s7j*NH-~;qZFEO4*!(-3>mFKj?MAsH{Fqka|Mf??TfWbp$qAUEobRoHnl~2GbDT?0-e!WEiJq0W8^97&) zp&v~8Br?kfN_rhWmlu7t zGg`l{&S(PqfZ6Z}9tX@~UhuhWK^T%9BAB26c0rnz!OMcnnA}3ZZ*|y&pa<-$$LSU< z;FW=e@n8efPAmwlgs=?me1RFoD!@TWHn-pB2H#ik;*kZs4zHWe2kCl6TyTS6O4lil zX;A51FhT!s@rD8uXq-=gW17G#587Noxc>oWW&u26n5qTvFDic}@ukllw0YsCDT~w8E8Beh(boJ!aV@)NSkt<`ISoZjc2okMP*cu0X&qm|;eDgA0R}EMM7P zTyn#*hrr87-7ymO)d~f!l>Jis=Rk`#*X5$sy|=U;U~%Ixqu6eqdNVnS_Eyhz^X3F@ zl=TqiSBujQ4j|Zb8%Pe=4>PufaPoA}?87l;e7^GpV6F#03A`#8h5*s4!wy6DIfEXv zQ>BOazMd4k(@c7)Mb@kd_EJ*QYBtN0Uh097NLJEA0XXfn+rcAq3lP1){1kLJ%yx&@ zCHOp6@z`1fu8aeCEkMBIwwoO`FjF4C%jfZWJZ6{KX>s`xNJTtygGkV2cRL;KpwD9q zI4xeUAb4RKg-OWeH+$))R0&ge?X{uZx1+HIY5Im^ns9bx(jBOIzTFK|fy3bzJU)ml zy)M7S3wGTD#PERIj*VrGcFl|1T#4Z7x;^S zoz077=#^W6S%6yY_od>Frxy@lmUoMajZt2Oq%NP1l-`+ zKv3>7+u#x(4|vrMu#7gp+vN#3X#iJ{rfVB2`wdb(X*$I|Cc5vj4aJQCXNMJCn2p*) zLh8b1y#U4T4~ZI>0xwf(IdjGc>PJN4U8T2bQ3=cAF)DBU8a*C0A4gTyV6w z59NwuPp(|aEl$H2jpC${N==Lh^hiZ28nt2HGR>HfP<^te$q&Zf9-;Kh|>_MItBaSq;uQIBO6*@2GO&n*z8O)vjIIJ zD}}FBfCQS|0!Ogh9N;&Bi{*3#Y!bKfQ{QBdN*>*iCk`BqK;2UE%AYW)r4&xh*S^#w zbi<@pfZpqk^72!UiE0}b$bi%8v)XM=aIHc9T#!`8&V>U)AD_fvn;X(5mLTXa#0+o? zjt4?sV6qj$`JmZhN5X@UzN6`WNc}-p0Wy4$tg}H}?grTb)df!grv89U1pgB>ElsyU zbou})HKpse(u>TfC0CneviXBHj|D7;)eC-@8!{tcvfVB}a7=Lf?2<<*2#`#$S;6{4 zcmP>r`0W8l3JfPWzCjP8Z6=S;42lTBlMD10W-%9}CctplidPNRS;HR!06gQ-&~Nz z2el6f4shMQaL782lE=1Q_82G|cqZlm%q7gP?w}WMy%oCBH(bM|BPCs1GI< z5M@Y6LUtU>HiYb+0IbEiYyp~8mzLI2cMnGggTfU!Q+DlfpqlNFmu$t=HZ1_R16CHm zVFcd^)CgiVSSAz#4lto0#9l$HM9Z#kWOCyV%yuvoU=3gy5!Rg`;&b>RbLO`D{nU3{ zGQRdvt|Ls|FsIom&9>2wX8FAu)>vn zR-eZKDIIVZ{ccDKTfvVAm;*sKD(SZ+Ps)zl9k5sfUatj`g*I4}00+_>1g|6jE+j0? zVctO`T7c&_U@LGFrVbyxw7^=Z)d^RS;w(7WOq-PUair?l1_y1`g8!SYQ&=E$qIrGm zIu$#L-8M$sz;;035rA~46=Gtzj}U?rF9?Lo0|wm<>qgguUq80_DaaM1zCabPXUORi zu&gQAqnV@92&P4&ZK;Xo!(rNlZmZhmryQ3V9qa)~FuM(WK(8|h3p23VVYYhV0yn=8 zCL>slGTWVaJ!)Q~e8}Q~I|woh65t3x-WHN3PS6{(*9S9$SoYC|dpVO2GZ7MvUNcTQ zK-$UY1g8;r57{M%eW=+Y>Xoinbm{;aT>y7Ors~zKXcuJt9bOQ9!4BBlEO5WA$Bz?| zHi*{1hTEi7Qk%tV2X_nGR2!sFAZr8m9xNyoh*9Yt5ewQ6gSHKp8 z6@EwvfRACrxnr-zPFJrBfITn^Lsr)Zl>$~k6Bei;AoE)xG6pwV5O>_Z0p?rKOHUx^ zv;qgfQ}e;m*kD${Pj*5WYxCOa;$XTiNmey&kErH_Wlr>K>)OIT;5V8X{eoWYAO#MK z6>zjb=>upgENH-*EX0M7ITjE01lK;_mhxUuX__XnS!&)0nl{O5o?o)hL!s@$a1#RTiw5TL*^gddv&a9OOdLgmKG zabOYLP(&is!jc&z|6u*lWez}&&*21*66SZXz&^hpCP%m-23ELfvOHbSB~$Ax`KkNF z+>rDOl7rx!Llp-szCb+%M8Dw4dBCXo?68m-kI({saJjrtXPT1rdt}KrR$Z1Xp+O|U{%a+w)-Jl z3KRry!fAy_5tb&*utW)=htnO5FUP08pp$0%X*`yiIhy$>jX-La2GY>WM&q&UmAR%g zqe8G?+A}{0c3$uYERaGAK<>~2R5VG7hGvpWH z8bFKF3Yr-JH^u4|Pv^m+qRA~d;fhjN-v)OJVsluihE-#y9WD;ELeeBa{Z5#~{=u12 z_G~8_Hab6buUIf81%vb*)GN7Qb^(zKK#h+TlAHd304uyu$s|QH`EE00?LZDKE^N_Z z)dDheVEG~7@mT{F98ycEaT8=E15WU)tUw7HNUzHZ=^L}fW%0p$XO5>9)AWi18H*`p zpK!Orv8>v@`LHGq#X?{c0#F$R%PejW)aSq|6gYBLhad{`Ya!F?68zx9n;l>Xz`(&g z9fax|uLozFAYT&{A+mw2jMWx|#d%ne!s}?b3IVtY^D*`*ECF0|<*8ozJXnyFJ)(hN z7t(czYNpmrF1D+e&!Dyn)*gf43xYv*faeWjH3(pbP z?|2;4DRsvdI$;6*Q+5p|lIl}Flx%?K1gn5SJm2~u)Q3eCAppf!UPsV^YC3_hzP|Y? z@ahG~aoTNA_6QYb7AOUTIwYv4azL={4p=SXjyrLIA0+U6*cdoriI~)t*kDHYL#>Gm z7F7kY)gdgnsr!T?KwM^3;7{G5hv<_D%#PUybw>g$nAxCG#fwvluzu@zxGWagrS*I5 zR$mZ1<4`wcg|s)|2&BuDz$tT_vWCeDs|~0RWEt() z@rbJy)E40U156ig@WTY~Iv}k8=`hG_fy_&Zt${1nf@-Di+Dh{DX}cz>Mb@JsApxmv zh=%a819+pbs_FCLv<%d=Kq`i=gwdKzFdg6x+QB`6gejN;FF3dXD1d=N7?+JKHMJ8@ z{r)&)0$@!o=ypPV2v`dNqGw3L+3`vS-AQcBodf?f)U|q={@PoSr=E&n> zB1c%XfdRN-HPQuHJXp7e1|g6ITM~qdC%m{`3Mu=7G+je!3@*s@r|Fi2jpid8E*)ey zcbjulKeM^7+1!if>;*{07dxzs-oX{eL0D7v1pPs95$#YN0f|kw7e^UT`eCKAMTXlk zaZjs>!6v0*nhTs?gMPG}P>?cL_Aq>^IcxL!v2YcR8T`)(z{}4qHRb zK3;=vsM$~0DbP@}PxpDID{Ut=9}PA84K@1>HT%+LfrgrWyg|F6W}z)lG}P=j)a*CZ>^Icx$9D=e)a)y}92#o&8*26&YWDxXs@cze zv@Vag4#T%iliNr5@%AN751X$SP! zh*j;-*IVlrwQZ8*vziY32WGa%FGq++bDtQ>wITnA!6mq(D>lO4iqVIgpwnY2KFpj1 zmlCWNP~p5yx#-M{v-ue}b!v)A7VqxeIQVyXg9OhZqgVAtW1k4M<15CZ%b%?4)cYnEyf7@76}YAM4S{)cZ@4K^v86veGR}dM zis$s6b>odU2X2g1Y{bus(0u>d-n{j4RP#xj z`DfemO$VXu?R7nJo`aivRvY}D8)o;Ob)DxL+|W~~bbDR*%s1gehShnN_JnD)4x#D`1fD7mu*I0uQdb;w<@#$5dT0mVN`ns3w?K z6I`n+tbkp01;(+O;8tDH6fmr=z&KS`JVpLuEUFh*U<9gfuDDd{bvFF7f-rRs{`Gz# z{J9SQx&;uaxE}wS1;|v)#lI#1Di!nauk-lVeEe%BAXae${`H^({@jRv-2w<52t#=jm0qE;*@!9U5Z@web#5XN5~Td(yv=JbJ6-{CAlKb+hO=LuTvaB>wK6(PXMGWgIKyA2Mt z_2U0p(ZREKnZg&QH%8yhIh%=0kG0D}+X_W5_q3S*be)0kvK@D_6aU$T|Ln$p_ToSL z@t+s)pO;bTt~&R~C-Lv6@SkV!pJ(x(J^0T){O2J4^Ah|CNY@GV$67+Jjogf1;rpXU zHlkOU+>eg!svDN4Gt!F9!_cvRN86*}V%@~HYcL?C4gM8xEX*Arm;sH7=WDEkIs6Ol z7~A5DZtvocj=`TBC1I_=PpWT}gowPVSdT_O2aLf@17p^s`5m9g=gP&Oo~wJQDgR$; ziv~~F-$bH(;LlUO?4`QCt$)Tiks;t;(Brk}*yL4r6kLOQ$i*a5e?bS?Y&cqSGFp+R z|E~5_)Pc^uT(`^6Ww_ir5uUt4+k}S1R>$hTwPlRxt71kFg z;z;zh9Gy2--p^Y{5HF>>Y#AyPP;(+EzJM}EG@Pzm!SRC#sB{5k!NOI&8OqpnK*?RE zpCazJXxAR~vYF7~#b}~2qk#?Os9<1~i=Rx9?52lg3GIn#hVVF+UeFW}2gS5f03$>|ux~j}^vez{jZYu2T~Y z43yS*Ore8h(WIQ1{$6bXTn7J{1Ws>EGoEI_51w4xmw$7F z_O`T_N6?GLX1)Nk2prZpZ+TI!LNtao=-3PQS0s5=e7?Yj@So=_UkC^8E8U#6Z3%S3h*H_#RgP(=o559VILMZOwR8Bka~p!Fs2HwCDCFZK(frDLJHma1$M!|~@{f+B*H&-94Qj83Tr)D^iaWzfj1~29P)%n2 zfXfHI*yL}k8(n+Tb#owY=!%^jf~M>S#d#9vmvg^}cH$j*9}@qe`U-zZ?Y_@uGELnFS`DD7RavG3fmshUO;0s1+@2XZn za%2!fzxdsdzffB9|4NXo<2r=?NJHqpgwT!Wcy0>Z`o}2!Q=HQDrfQ|VMExo?p_++z z<2!yq9838rqg1Ljaa3~EngH(<)e5z%Kgr)HK})JNkA=pn#Z5(p?dx-lm&@Wj0f-5g zdS^-|PI$PoXDandZ7WK9qRRWl9C6^K^)Aj3#l1`Nik&uPJ}&Jev58UEKVXVV;XDaS zs_X~FQeKovRd{Ic5Cc0_&2+FsrWBqIUdgZb@cdDkRM~Ir9jSsQl-jMO)Q*dzR2OD! zI$R&Z0qYpIu2tvyDd>)_^@(m>>1c^qKQr_^)wzC;v1zGHV9BAIInUF@&`No%%!Yf$54k1Nn-|jZH*v7*#&%T;(dx6+;rV`StpF z$t3O3?)B9s#)V3x-^gX?^wi38h6xPX*mcS)Qywr-=*hp=&rb4AH218Z%^7AZfMnie zq;bpHxfO`(UEeY8v)qL{NitJb!8@YP2Yc7oaGNQd zq{#QMaAb~LS*pE0xe68bsn1s_auWRTJZaK@2k7BRzw~yLoxeOs-0!a(#TySPq!~uz z)u^T3W;m)mmgEe_tA|hzYkj>M=6p${u=bAS{SBXLL2yvn9Jdc6Zv`E%o{qRpv-8n5 zTm5JQ)2~+OmL#$SgsxRhuDHTpKR3hpU!@~9*5OCX8l$L2bNq3<{}?*9cV~Mvv#O;R zjd9kS(A9nGTj(^``})ekh8(@-GN3v1=Jl1GQS&2{S{fKkG;VZhRpKCsT(wQY8#KG? za_kLbzomA5tTW$lv}&?&VRVv6mmS^_>B4v0i>31`hjRP`30xAgG8UW&*=3`(j+lLP z;&h>pEy7ZkMCH(v1M7cG>JyjLKVZ0ua4&w|oB+`sFzzLEIlmG$ME@iC@P8aKWE?ffeYJC(lLVf> ztHX1Bj0w+8`tRbSIe^MGaBWc8nEIv3B;d@L`b~zeV*o<(9!OB!NqN9XK)l&kP|3@6 zUQ_Ci4pa9eQdZxeL;WY}3C1yrM{GmXuuL6aKbkX+V6dPmq;bjUPkH?dI-mQK zeE!i@^k7JNkj~BBcp*_r9Fl$sMjPi2ayn`;JYU}bE{CcPnn2TV5lTwa~Hf* z#AfB>dN;>yq0o}0*vvu`saZ2dYbov;qYBwrdNN%TBa!6Y+^J*;2{()%8AEOuXM&M8 z;ux2lTxx+VbM3VHPCWMo#<>Gp@>A6y=H_|Dars)J=w}qVT64>BDP)IqKRJK_e0FvMR+AfRW;Lfnb=9IwOj3t3+ADz&( zbd?4KvW0)IjNnx|PQ0+Y{_ictpLW*|XvsgDLJ)qG+fWHY%~-7<+zyT4i0m&2!gQ3~ z=iXv8{f&ADy7UM!bHs%H3v)49dZ5&gxLMoUh^E8!zj4N&m`~~4H)eR$VfbBntQflt z_!yo3Wl4d7fzsNqUbN4c>Fq_I$!kh$2Y`(hazXSY;C%qs8aFJ6^%5bia z4~HZ(XR|12GEUdh@hBOm7Vp*H)0A6D8bGazHrey_gm$q+@a1Kyw9~ROns%CpTh*qW zt}RQHy#Pi{nuu}QY2Zbsol0+IIImBOeJWb)(b9sk^v_aS$Z4mX)AcPfxQ{S=3QK=T z!r%i6T`oTKS^bg>?rWKX`Doy#Aikh*7e=>Lp{{{1dC8&!HxW&qmp;Cg?)qQi{B#pU%3wF0fq*0`3EAtnQGZJfj-QQ!FwX6Y?Y-ief^x|EGRxGwv8^Ah`)?Ar%rF z8K*KKZ;YcRM8vIXO~{ku5>3eC7`4A*LYhd3U`A`nz&9SRa&-9d$ys`V(jjg>P^(y_ zUF_F1I)g)#XD)4yraiQ)xwt+vdMk&bSy3ZjI6k=_;gfL6hyDPka$4t0ECdkgWSmeFM#f5rIZ{^UZr36)8?bUa}R-( zxOkH?Rb~h=DY?2PMLf_Z`ghK_05e4LI;bo0-O7zF!y@G|wI545eqlh50Uv@9?%y=pDcN*Q?uF>HavjcubNIKw0AE?5(^IuVqZ zpn}vUDAWkK)@+=S#_#o0w{3O%XkWwY3=Y_LD|l6TpkuY`8lm&6o3#ft;BmM`tqC46A<+a6 z#c2H%6TFR)0oDX7gt$*lh)r5TFm7Cw5+ZJg#XUmwhYWu2gyh!tcd7f`6tY~jI-)Zh z@o!E@Zf&y~(}+U`G4zWb&ft#&bq?3)Q#)4%QCZhrl-m6L3DOnSAvMyF`r@tY&oZsC zb@k=x3#RBUi9W#_vdb0DYL?l$O2c8`|A^iep~B~ewL#Ckx3MgbNkK3gjwTO@E=H?H zMDcPJ2`$YE7R+~X-GKw`4ZGWjzAK~qd1DFlDPx_6D~}cH#Fe0v!=sNI7#OW_vPy$w zFd&1>V;(Rlq1#7B@#+l7?HGPudE6WcO}7p)U<{HtgB9>jwnpgVQPB&0wFE2~qq|vX zVvKGm*BT?JAlmV0O$Tl!n!mcLXEF>)RH=`BoS=gmYjki7zgr#)i70om=xFTFPC6LH z4rP@^TV?U@krwndW0XYYx64&_=&f>UhxXtWwRUJ{d7>TKj?wxnc4!F0?gScST@~ji zp+V+V$r+jf?+8Ps#8Kt6=zzw2*Q=77pbb*bohW3vILH_MurcqrD!B=ISPK%K746cP zzw#<#g7k_-N}r2^pzP{se!PIebQPg9XFw%)L~{(v`h5oZOqDG98y+=7;)}OGYh@Z! z`=c+5;wAH=^_+2`(w!6|p1dJC(@>>6X4H8hs=qP%pn-wWI%mh^zU5KSDn|7BP0=3= zQFXJdZ}v_iWJ*J@Z9&`+6d_Ze$GY&MEIp*40QZ!{8ti~~)EeM|f)=+%muB!sCFn7T z6cn(~BsAQuW!(d4|dkQVeU z!oMYQUouf;5%MMyNzLOY>R5#TCQ9qi7%N6vFFL*SHN$p|L6GP$R!xUez$_VKM_{aR z;h`pfPP0c_I02-YNPY z*%)ovh;K28YMbN^7$z~`#2xrKfl22k{vWvmOEX!?ufd}kAfY2w%l2c@(I~$Q-T}O# z{BJ)HJJALVEo$8X*Cdrl9=m2+Q8SDcBas)a z{C6>oPawfsH3?Q}Nx%doD<}!5-W$uA1s=5SiRi5;YuE$L(eqpOHbK!RqPOu|CnYxs z2PBjprcIWkIYoQ>qj?(+n9$ZIqchNf7Au;g=}$&Qe$S-jHsX-Bl{MR=Kk;t>36sSx z$7G1Oi4gif-nT8I^Dc8~?fyEOc`cnh&xW=JXvfn5Bi4kGt-w2n7iVEUZ@ zLbMaQt#Qq*h9;90$tZgzIs~m1qu1~kfMTDlYp;S)Z)_<&AtRtPkixWx-0o;6-cZDJ zr?FLEC225?Z8?X|kJ+7r%zLBL)1-Z1QzH(y4(yHInY!q$^c7V3+p1zT=EANyhH?gD z5`m3V9x&k!5P_JwA5jUvDMx&(UClVo;8Q-uzS(FdJO8sZTDCP>|8Vq7WhQT!&wv8A z)*5bO9uP(yeQn=(e*R>1zGKa0M&|Qj2$zAOb+7L;8`d&FfWTmc>%cPLV{t~N*q77x z(h07zt{GyukAZ@&7GeN2=FNSbRo`QI=%TFh|DrP>V(!Y(xi|NX<@Zd+W}Dp?tHA!M z150+)bn0}6%K`VS!S$9dxDyrM!-;nV+N}YH6>jtn!WHb|`6K(ba2cNfiX}fUZNrok zHf};ahBuhu%)h)|2+#aIn?d}7PUjNh#mDy9_|GWfUcI$HPU?c?B7tpvSXsKp<#tDk ziwn{Y1s(X$(ibz1!AJ^Qh<)=v0=!pe+o*S2N9;zpw<-;Ne=OVH7`qgQ2`pi*UZ7t~_j z*=|k7U@jEijJOf23iB#ng4C{d-*RuX{+(!U=1}}0-JG0p$&{w({QoL#i*dKGHy8@j zt1CuB`D1m(5~u{LuE0H1SKzj*Nt@Lby&+()uE32{R{%J>S=f#TPRev0_!rs2I>An*0I~_fc z(LBt8p@R!@3ecK=Mdun~%5&VuWoYKH^-a;J&!c0xu(;{-=qsFo0Y%wMVxv2HF$|t4 zMoJq)*^cSP&}XO6jiJw}o2Ry$+l6Z8$A}4I+LHE$s@lpvR@X@-kZwT_!p(p6hwB3KKV_wnlpT(e1QkfwkPcp{qhgCmv=52;|z_i zmW2S-#A4$NM&<$L9x8y{qI{#P(X8{3)L=iyL~WxCN7^p>x2ws9*IeD9prikej_aVn zNF-p0hdkXj`a3fZ7&^q+r?*>l-;a=|h4L~W3Bw#|x2Rhg(-gW}^syhJZ8*aSXaQl`M>CN!#)i~i4obOJXFBY?Z1N&(SP;p@6o8?Jq1eQGTs?_oOvp9 zIRn0>J40C@jrF*i4vOuOQocJE%jEeVwUlS%eOdx2p+^$zdo_yTEI!#7nlqI~-Za!T zWKWgN16KDECd_LAufUi~`$AVXj?Lit-V!v8+YLP#=#nQl_T%%WY9pr>u!~BwXDSJn z=kJSEBzYChiq+_wcQmkBEM}O2@t`x1GE+=d9x_ZGZivm!)qnMxfsl!8ExSV|6ZhJx zA6UIx-#A zuu(l3#>?_BaE{;bf@U0Tl&zZk={S_U#)9&yceD7@qycuTrlOQlDugGd#?u;PtLDd3 zXW zKkd|o`bqD~l`%zja+peic?4xmFlbl5oVg2>;SP!r`c8NK7{F=4CswZkzQ*{Y?e_hq6Kl(9uCo1e( zox^>J$uff}!j#3Nv`{L%{};un91R;DyB3}PK6WX(H&WHO`L&+wuL(?@F>luO-Fp?F zQ{k!tbVa19U2UYQBU&{w)(5>kGS&{=H6qpxZHZL1MK#$wyP%Io#HReUHrk>4-m5Zl zzsQpA)WyDs7W?-{#rh%7x~jG<0Nw6Bf;~najUF8dpNSGY!fR&l5B~x{x(Az9ytkTO*K`+(277iyWq>&Xt zbh_udxk(hNM_DXla7uCB+<{YxD$O7 zSqiV@xlU|0A=aCN5>ZSdzCzN^SqwDM&+_S7yHq;;|3*Jclj>*fbgh1dK5({NEXcJ& zWiw-A4Y@N^4bXUxYmI)L8Jlcq&Ah~3aE{XYJgM~-Gw1Xui~uHFZbX6Cd=ZnHlDh{c~M(RV(g{mENMWY27fJK@W$R z43*=%bgxxDp)n@9d3V)W!)?lA5}Y!S@vX5cNG1-;Q#O^eC=+v&W~8ghCP2i`iXB1w z=EmZYG1GaCo^asJ#i&)ip^-SVB38gR-=ZK7Ni~vvd16j%nc;EeIUbahefjz2sz3&S zpc$`JEjBQ)H0m6)F*h=FKF$2eOsPY!ZR{qXF6I*#^hSpYoI^+MwRz8r_Ru;|F+R7d?)sFC) zn`5;cHyGot?{I9DXj(!6%f-2cOL?Ay0x1|R@q~3}`t4eFOCf~#F(dY zB7h5{XBWptt3Wg&`9czrOoPxNx;J=c(bC&ZNzx!vSXhaVe-O~|%Gf@`s~RLpI^-qg zp<;4T*3#IVT-{gV%B8W_GtlT&dIsSi(r{Qvx+r#Pd8{XI{D$d_9+0qi;qqd`56WXy zGilRk?i;j!Wo(`LbNOt9Opn3=LTkJx1|Zq1W49TY9yAHt(vK67+qEWU;SKprgGvUk z8}n3QX+Ao)E>^1o(XjM*VmHLfm{_97rbC`G{u$R&ym_4~Md!n@_~skK2#kupsTm5d z6jSp~2!OaC1(v)r9|KG*%@~i?(hT)b9bwM4(Pus)c^ch;pv@a%KPAc2JYE}n%221F zCy~Al%0ou_4kM60-B)61UF=y7eYa6h`u-;E9AzO%rWVyiV?P?6SNft^>X(@Z3WuLZ zmu-ygRDG@CFrU~Dok!S?6^@@fdE#oVtj7W&Nn9A3%HMFZ}QRq~C!bP|%7 z%X<}I!rZe7%>7)4x%!9_=IXu@=WUJ+;0?WSZ<3!#6y@UwV*L#^<|)<3;U^5@{4KFA zoEBo7;Yz)a(Wr-FNcF9T;%$>qysa*_;AXt#eGVT0LiTrGCy`8waVi*+Y0^N~z$=B` z)<fc-ZdMPS#Jv(UlSp zZwA+0Kr^0>nb3FJmxBlO&SoRJaLu~&^0OTNHE2Y=-&=9UdrL%qg*IC*_IYLJD2@W3 z{4&&8oVO#kh~q!{f9$;nbQQ(_2kLI9*#rm>IwbTO$W0G5ph&M0r9&!kX$f6g2t5!W zfsmo(_8SPj%2iN`s6XtWVnvDt6_H}^ylJ~LJ9qCzjiAZL zC^8(MB*<|IjB)UBixRZxi;mmMJ<@eb+zqi{ti+vR7E|I*tx5{zQIwb}@oJ$865ePAe|M_A4%H~WLs^mT<^PnWh%2^w)1~`^zC#(H9{Wf5 z!0ym4VZa!CqQ~Gv0R!%(;YEUhwkNzpV#%=p`ImIxMqY=W-};eICVM7zDd|y8u9V^1 z$eW5JO?#A-1juzVd>eTOjf6LH=`O}u{?tpME(##Gv$PEqFz)=o?@k7UP%iF3p9{By zhZ-uQC%kvbpR&?FL)WGJVsAIC8dd~tckof4(!XR2+{fs){t8K_199o6fxq^mP z>^S2RIBWlAy?WiSvIwS1V62^OM@0jF6k}Fmol(E8?GE@P%u9tl)9DUZo^B?k(J{| zhnJj}zw@KxQ-x|gYe$r{m*l_v==dCsM5p8LBblPW!K`)lxiyi~up)63#dkM(8NsKp zF5NS_#HqB&WXcCa5xrEHN zmuU0lp{NaG6&wV!kP3PVQ%WvK@EQtCN0o0fM~9W~sZ6YV+%d92z?2RfB1e&YDA+%U zH9$NgJxH?ZMA*);B7~YPL^lqJ6MTo8O7xsnMOcO#QD1Ro zD1RxS{4XNTB@JeO5vM_3$xcZb2O&{A6;JK))e{rAR5s*oamJ5eW2t%-VZxDjy;m<7dQZYpC-$;}FKEUv(K zMEp3#ItrYzm7pWNXj2iqDGB~+0KzLtwL#?J+)B0UqnbrmRb!%8OjD{M?jFihb>n(p z@Km&aC+Pvn6aeA;RT=?A^;bKebC$^Riiy76)iT=nQbL&Q=~7xUOO}f#`gT|9fn<%O zby>-EN!kIb?JgN*xPxJv)(G#dq#OZsc{1EaGG|>4ZWNJbfcSU;@qgj97HW_auVtvG z;OV{C&hQDotNJeZ)OQzrtabs6G_AnL`$~S0f1||I#D3<8v59@=CHKb@|8Gp}pw7gw zB&{dutgFQ&pVrkBX6dZ!&qF11@f4^74*Jz747pJzS)b{QhdmkLBcJlW_bu+Nw98zDk0zQ{1dRWM8Qs=E_G3n#K^IC!1}Hc5&GFOCC@KtRh5o|dmWw6Re8lnk@0TnAH$KwG z@ycdRnOG3@RQ{mknyl1gd0ZTC!lkk}UJva2xa5$IM2O=_R1mI3EJzraz*x}Y;N$Aa zXKDSWL2@6n&ORSUych@bM`0EV=4GFj{2`}OV(Mweam3iu^fQYd_EEFW(-?A!UnMj% z%+iDytUL9LCE2J+l9K#f&p?hBVYZP^1Yu$PoogkTmF4}I-q_KMpiu8I>l{s)nQRV* zXS%!{O}^PXeCHvq9?H|Gw*eq{`0$M(_)LQU?|r+1S~Kp6pcSfCCLEZhGO@8^-D=Fxu_r*#Aj|RM8BSp<*Ji?`=O&^E%1Vr zv51FP%E@7qeNRUIr_rh5{n{s&BP7xl@)uqzcgdh1K0?TF{qQfm(RRv4WvJ0;@yk$O zJ@K+-lB7H_nKg%}BKVq=QCups`zOGva+cXT5@h$>9wqgdGv6Y4DZIM8C107TuaM`&N*^;xTo5=-}b#7xFYSUQL*1#<6HnNZGYYj3gSss^nQDW*g zc5uYlZETz@x{WoH|8LyJZJpa-;(VkR=Y5VN!Fjw(#9_|kW5x1ydHE+?fwA-Wm7@Or zWS#T4J()OpLZS_5K?PkYGlz?omx!s*{w}s z7VcKMlGrBHvQn0Mf2w}1(rjDgffb=A4u#7wUF*d6)6kmC&&aCc{ey;s3s!=qn&kefzD&mUk>IXNg zC$*l&HldCFwN8~2u^ie9g}A9c?J62(@pd(`z2!AYPM+#J8n30T4<(ezp0Y?wXIaji z>O1sq5=ll!TMkO{oTVIKX%QdY1h25#~ zmQ!-@Zq^)p%Y*mn;tNI&vvh8sF1}@CH$)BHGQyFHo9=dL957-2K@dFvu9dE*mxB1; z&CwN{d3j5FFuIFnm~u_eDtXa1HTc|OMcoUg% zmc6&Y{Tve$6F_$CJFA<5RRw_jDL&8CzbtihyK}gCEm=MS0=K{pg!# z;V_FQAm|rXAH0kMeTIAda7zp29!n;>c7Fj^hg-TSTyfDG{O~}{gDN8}t9`5{>=|j< z?_;;=v{4qf5N6zWV1y z!gY!f*NQJ%!>fPpBL`^wbM8w42O!Y+=AUOF+w|t2<46Mj=AYx!@y$QVJ1B!X>)U2a zMA-eB2su)x4tLiNLqP?LQ&O_D#U(I(M^E^stD2y3U{Ou5{>bsAJ}jwhisfK!!%JG= z2mxRGgPBk-{=q*CF8+zTjzmTBvWtK2BW!w+`Fe4drM`3zG{~~V1&kO??)eEgGahcj z{Cq`o==kkfmM1Glz*_U$;@f>{fY2H+36KO@H08t z*_QBtUtpi%n||)Wn)1xBA@~=z0{?D=+ppohJ~$oKnrE&6S3>g4sFpl)bDR#zAIY0- zu8;3CYGtmG1trBNGHRkHe7!>`dLoCf&=cN0UmHE)flVFs1mBXjdc<58J>rGddguwS zSky;P*jqP1Pq0VvO+Nv!S3p6nc8%e-v1Cu^Ov|}Sa%2`ZQSO?b3IG0@pEI{sz#}*X zw?oJ^KM|;L98%B|97vFBe!|%`Kl&0xv6HgEk}KQHwT$zMuWpM2H5Xel!6(b1?~MS3 zD=hUKa@=xD0;Jrs-14Z7x$FYV zzy?W(1YhN#keI_E0ScX#^iVDVmBqdz3B0<(@&dTLRztA%o2+eC49c~qc5FRQwN;jv zCFL?JLLj`(C140IgZwk%mw+2+4!UfxwDK<4&AVWO z0@!nWjRGh1ZX_>G?iN_yQl8@Lb6WZSq?a1;bhtmc1lCbt-$u)3C7Y`anMLR{mcYt- z4sNo*8;EjP9+31+w*yp~v&C6(aW@)t`- z8ci*skpmjRPhg_Ma#Z0cMct;i0C8*(OXm_ep#xpGfACd4EobPurr8XiUDFt5v96iu zwydlwCsAtJHC;Gr+%>Idh+WfohHmZ4m_ght##vjRVZ2Y(^KRx^7u0Hk$~#>*l|69X zPR^Tw*LS!pR+#VHO%#45Ax!qX{;XxAByXF6mv`E;aUi2Oq^IC-v>kuKG7mg;!m>`@ zJwtro%PM$Itw6Wdvup;L-%a;|assSNTFd^`(8){ zu$;842iDV?s)t@dC~Fa%nz3i=DNA`txx?~A2Xc-G$5CSqt<5Dc{$Pm6>VBfR>O-c- z<~EgsXX+F+aHda1tq8N2qTYDX5+TbiC^c2orW`d^)T%Q@MXfl~+lLr33$V5tXPtY+ za>j=bvHs6uQ-&ix2$*=(5}M2s7#yBG=PVT@C6ncmU^|UVKru?roJrQv_>w~G`I7Vl z*ADR%TmowtWWTO@@&WQ@eFtnrjT<}h4KRy!z}s(FehZNI>pNf%M~yoGcy+*rnL1Bl z%pk%(%rHw;mJAXeO{Eq^#uJYIBB<(&G7?eALPiF+L`4e-``mLJrF zYLhn9knh4u^k+w*y)@$znA&L2N2BX2w1s&u{Cm#A_}5?;i1nC-HHW>Bm~h4NmRvJ7 zv2%x6>0JZE@jsp6V{{xS+@j@-*P;I@QNARN z~9zNtr05c-O6D4e~Sd(0wwOCjq9MN&;X`&Wzq zuX#oofEY{r3PJ4`&J6@kZn-m`z^Uyw$ohT5rsAJ1(N$s-36$_}bX*kZ{U6yO=f?w6#$3hSLwNNPlT+6YVK-T4@)i^7C zWVT?X&fhIJo5~Gl<8=dWFB{W~cHqk9G6=@KjiM7IIA-?py-u)QFAyq9`# zy|YoSlVQX_J97*p18BV1I!!srHHIgpCs+b=fZ(si)+eO5z>pkkoN}I(0NoF}21;)r z(Rwsw5GmT=zPC#H6~MY`d2Sb2 z`;}9=aCC@ej&3cbOPoV4dp)t)3eR=*n}ZCHUb9=!pjumwVjZJ6)T1aKvo8NS8^9lt z#naL%fbr!kg>vOpNw4D~qiM1s-ZnaiXP^PNwaJ8oi!1pE};ZpIEj|Jq~tfO_Mh5jq19Bn0X$;ETfh{h05 zwJ2m>>i`2lM>?z}$~B%7ea~;9Eq+Q`tYwH~7P#>JwjrExs4C7I2U`5{bah#4O3EKX zdmQC9+8$4d7oE5S&StxpTFpL8|8%Lf#K&AHdx!NoAFGnxcEaVI-Mg&nx^8Hjxmw?` zc0G;CkQQ`ed1Qw4D3^e{w38=gx3#jqB8b{v>-(*hWMvsEg6G>DGtW|H zxLU|Wk4s?Hf=>@w)w@<@`&`{j+kzS~p6G3ZS!|-$`G_^GoctW6rZeqh95tTkIp>Nq z?QL__iC*E0&bBp~OdNk`p4ZHfbq&XNbjR+|t+DbqdP%Nxyr2alZbw{43U_0dn#@-y6&%F(vKA-@#hIH0ryis@at#RDY}9}Kc&%r z;+iG>#3dN;F-h$w?V8E?6m5E4)m+4iabL}XS*))Pe`#$QAaBz8D!cvGet{e@?y7}P ziv~CAY1NCPFYSgJa*LNr!wj=DKo_fmcr6#b@U*yGcU)zhZs*$jt@Wn-J}l;IK~B9H z;9WwP>}l|wb-W~h^)&WX+*J&0h`x^Yhf2b)>!;kdjsWA2POSnmZ(GO9zdY^RffZ}j z=p5Mjr^N+<;}l1_e8ho8R@}G*12wSd?gQW<40+-Cw$glY!L8+d-1RK(egD0+o+3Xw z-*?0-rIIAgS0mn`HTyfks)cp1mh-)%Tr=35YFz&+%Go&U;G-NbsWf(F8+jHHm7BX~ z6H&FfdxT^gU0z-X%lXolN9fVFHH0$R6I{`Dv%GAb?>n;95J|FwZ9U4%`ym#-=I$*u z5}jtOnlEZbwgI5i1VA4=r2VcTN%By&UH$9xfOtY+53_n1(%c22&zMCxhd#s6YC{sJ z_LY4#h-_u+0eTK{wN%z|Oy|DrY_6VLU9&)R5VIC|I|zcq z4U@pFZZR3#*0xbO&Cq+fw^WbL}^3L2hE$tNbS zM%Xso$83^FNk@Cz5FbWe8Q~8&rwyife-j0~~R- zBJg$sb0vLQ)vTC?`4+4Uo-^^bDv~ma6&0O{dQ$;c8<`q&39Nc>G7(!h-pzupU6to8 zR81V8_neJdGPdyuw;MFa$v?Y)`p(0oordMTuAGo*1n#r2V496g`&03SV$~} z9}XKcjZ8k&IBQ%tTS1s1;2e^7pR~0H=X=@LD`z<%vErR(2@EAqLU-F(Nx8uCMAVPd zzURovxRy&`^=Yh}Rvi<*g7uaj`foYNgdHDW!z>1U&W#D>J>NcNdrX!qF49dx$}M8O zhf%-dh5FZe)bFM|)3zp)lkrS80vL(|uJ*RQ7-|SQ@bs~51vmO@S{@pQSW+FCs#>0t zeQoVzr5DQ+0sepj%#jnd<`Ot&KN^758lRTJSB9ojV4^{HtEXomhl>F1SeT_j>*+Yi zHln<|NRR4#jvAwyxk%LIvG5}_X!i=Q%f_7I@MV~#X~}QIiKaYh%l3itS5MlGDhD|9 zurBXq2^=()huc0;USL_ohrY}u;JMrjVEYK$W?ezS-%0f3C)W(=5-x#jH*6H{5`0_Y zO|3VullcZUZtP^P!z|VvOGeuQf~4|5%C$9wpCBBPliOF37c*kq8@IfA{N`i+M6-!;^+b1xl`!0MS-lkxmCHLcss}tW|_|0o}6s^RqBm+_Bw&XCSoQEW=}$# z48|Dd%ZrvF$4-hv)d7=RHEtEd5DH#poy4qVnuF3Hi2;Q-{**vv`bK<#Z9IhgV>#gatRE4&zhsQrc!YD5=}?cY1zlm*tROI zSh{{%RtJ1?%r-#|UqY0DqZj99!>C1Z&0}RS<_8RT*0#lmHvj&t&FN$Ib?7Vu=>F8Q??>y70V)fM3=J!R@O7}w9P6h zn^~UNb{1`$BPXWAC9wL?6Mj88hclf)^5G>qt2uz0Gq#$&FpF7D@0V-Me_4k zBd{UGXB6Nnx$43w{+6kdE85ggOT2CBdxXWqgi`f%Fv7uKD3yEUVp+K`+AWuM6@BNo z?^oOK3i2pe&ezK5RC?xdIH64TKL6ajD z{p4Ov5{3!(I));FaiMnYa+I(Rdz!($$%PSi?RuJfh!@r;pk3x+Y+j9q) z#q4>0fBP@8JdjdjgYFl|5hHtspU`YP*j|&H3U^pWRG(kxG3F7k^B87nFdrc>Ck?ST zkYg5slwS7wK5$+?#Ga?*aQLBNTi8ODz`)UJe-7MTY^ed3KVg3#6ga|z!HOsBpMeuk z;?5FY5uKp;b2XA(Vm}PCpH;TAcEFir`*6j@CE&%Q?O^7U_TIXJ!c^x4gBGyY=9*+e zfZb2w9>zBkzNYWt|Dnc>d-x@oMS2)r=c0_TFOWayJGifMl_SPI{D#=WFB$Z(F^_lw z$v7*1lzp*}u6%8j{U|s!hM7$D!fCBCI^=yIKX4MH3kqu(E9G5Z>oV*gx`CsS$~Feh@9+)oxx~;LXMHmb3*a><-n?8KC~j2wrR#PfS@xgh{jiv?abmeZ5;67= z!er0dY`a;KPc8R7P7D%Az|@)cOY+;x@i5VF9V=9&Ksadk;*>4Nae~8XBgKg>%5h+j zML8~kb+6_e8U*@{vGNLWIB}22%!U)Q=i0xhB-dZzdj`>rN>XQqZafjX0*@yYcE;!) z7FD;o?N6jA4>O!-L>osi_!YH35tSQG^jSgmm`)((FSB1RCuhKNz7%5$Z7h{g!W)!V z+h>%Q=dAFp7>h-cSJvBKDkra8;d=s6sFA2ch>*j}BBT}K2%-E7DGRDLC z-~)(E4No$EFjOz_^=5lVd1Q{iP&TaCe!<7$L`MK82XAn!;>C$qSprjJPtq3qW?A`| zO2VlPrEtYmm1Cc^_*0xPRon0TQo=!s)o&|HV7P#?-S#P=##ycR-~goE zMkha~2kICns_-uI2+U$Yt=VfYljV2xK)uaTW1voW0d)icrG1RYm`NN!jk7*IXdFQQ zTqy?7-&A&K0Da3{SPRrYY=21#1sC4*H}`skUglDL6&5(zlXk=oj}o^)WKS5L7_KBx zfY#60PfKx#fLtm1=C)DNVB36Lc;HuF^(Yqz7r(N@>i`ktNOmsN!Vj_%g{Psm$1C>! z0dOwuUwdZLMqgF6r}}I5lL6AFzO`qCNYVQ(dsKk*-F?)jSR+%_r}53L@J1$`@^G`m zg9Z@q6Ci%@&^ukjn1o(K9Rwe~Yq$DvY-``MmniL4v#!P=t2Ik7Q02V}*$IB+qWyx> zkrgFjwg;Dh0*~BrHCeagOA3)^KNW*(m+Zj$>;ro}35@;NXkvQM2N78Pk^OyTBF6>} zh*?|$4u}&$=qL7JV!qs9SY&uVcE(zRN*25HPCjtItC zAAe~a5pJ#)X9?dBexWZ@H&ea_j+}!vL2x-{*Mh}MZ&v{QzqOB79{0iVqj@675qaK@mE#h#U5iWL z*am^}p@yDe-`Qg%B^xzJr#!;)%q;_j!v`K~-nN&Mfb|C>)45|z6bkOlnq1yfcE{dF zQr2;8VguUDC13+u2g<&;|Ew!0Si|=Q?f9{Vbw4s|SS%Mclb_F1t)csHd(S`)c42gM z3}z8yK&v~qezLEUFH%}+3-55m*cMLaiMDVo@8N7A{8wXJxJT5Bi*0|Z?9$Ou@894e zXdQ6(cYgz;ia}(FA#@FvH5s(|-Tn%^Q6EwnkBfpuf{A~?IYuHP@G~x|sZptc4c~8H zeT_Jm{PQ2^cBr9l!^<`7zXfMPIjB;ruYg|q+rCzr#?r<2<(_-?5mM&n5J!E5qZZ!+ zg;5E(w#lrGOJIfu>PwC-KBD6}$x-BELYgf*HiBst9NO}>ld;Vz_hbh+Mo7vLmPdl* z2`&NK(h-nb-tnETpkPZ8R4T3=GXML%g5z1`U9LiGt)FlSxP^DYq)LtwT|uFR4hAjY z`5)IL6AeA#Hv+N1F|vAl&@RyNm~xM66;F}=WC@Jab2-rQtE2?4)f7OS>~^87aOAiP z!?^@jpT^3gL7?%>Wewr>7d*wfy%|Q-HfvQMg7+7;M2#9p)MhY?Mbs8m9iX!OD5a)e zB#EQOUZmYxaW2{nIL12IBBde2xMgd_WjOeKfUyq!SIx`_iicT-o6hyIUr~<}Q91wVQG1Hc4Ze$a zJRT&!3(NUhhHDp0oacE$ne6dA=6F9y{$j1~Ww>D?N%^6Uc0uxwYke=!E>cM_TyW#t zp<9O{q_yJutj8P8qXL=_J{4#|+x~M6nF<(c7uYb~F)!56oTk$JSpe65F> zt$D&y9bZdIcb11d8ogMe50{FaPIquR-ON(KmtYfOKpx{wzS0(+%HA_a7Tms_*Y<w7{LN8gZ*XIs=nX!jJ<6|!8*_f#38D_CQn)sIE6ue+p z-$yGsYTQRN){A{)Ua$AqOkj>l)IDK_{A)P&0wHfY3|BRdtjErp8#WzOIj7Uk-`{b( zC%*xU`5HA1q?o=+2$MZS-*dq0gg;&H+gCj)kbr9MJC4iWt@rJ!#%UC)t3oTOQ0t}d zHumRNP$^<`^@oFntiN*!3_=a3%&LAJdpOAc$id%}({KasWj31r`6I`N!E)jT9KsBj z-KSAO;!s`OF_UQY8@t^=eAa|}z1%oS3*ZaWh?h`2+2oJw9!;g(ZnK}KK zKxEc7%iX@=c)XmvY=dtFxklSsLMW3x&)s$$EhiUk@U0-fh$LVB=xA3?c5m=Ktgcdx zxL&xa8lt71Ct0MyTAzDK1Hb<+BAPBB`ryIr6Ae-t%nYq{`X7#k#$)T^KONgZm3vz3 z3cbo$V!G<7^p~T#q}*kBXiHUdFy?PZwDKF5iacTfEC#IWD>c!Thr{LOpzA$HtfCY! zHNqbBE_m~vqq(lM;6d9_m^tR~n0fPJ=QgD&U!Q)++}?l=ukvvfF)2Ys*@+?}_PnEH zXEQmeKsQ+Kf?6_my&Yi|alPo${D}e1F0wp=Qq%DGBu9;1Z;t}e^>!>E10Fs+8ncSS zqjA=g6`jS#oeiW)&JtxU;)9M!@k+>QmXM_h=us*=TT9ATmPg{BgG)fYCvPnvFH!iC zLiY`%-M}?OraT)J=V9eJzD9lj4K^Ue>pomfjAitM*L|J@A+i%i9uh-KU<`d<-;?j6 zHjR7oJj`M}SyaV&v7&ri-;*~vYTT0_diCV_0$mU_6NQ49Z(YIZb8(tbE*8lrl*4I4xj2JzI4wsg7;jJzrwQc}49ej& zpG5RlY+LN@{|sPdK~M-v^&?_NI?1jhy||QjMGg=%a0za~ORb9p)TGAD<6% zK1CnvggYOnkN1+DL+Ru3aOYh57}r=UklWbVg{F>sN_%v`$3W&7z}2Yw2vrahClwYzb$KZs}}9Tgqvv)j4jA*3ZGMoIPlP zJ7aiwqrinUwfbYNob_m-?6J;nJP%SASm^v%jq|GGoV{q#Q>``8q&6C~SI0TKajf21 z2w6Qp9?DSG#@U=wP8;v+!5V?{0Mv7^5Z9g2ggs2TpslkWUwlYYQoKAk-qsmL>%81n z!!enV(80Jvi{*L0UA`V$aEpTt5vn9>n5UpW$Em~_oJVq6=*sMWzGKRN@cw!Hy&CXV| zsv)tO)heFSz^%2^ud_BF}IFF#%j?VxlvGp`1Xv6XzUH(L(sPR0vqt>5ev-ti@B>fpV1G3+yljhb2b>i89@4}Jm#f6S_(s;fq6vAeU z3-#*E^PEU{hB=(NBocOU@eey|>hfo2jprx3Xd$TEOij_h>!Nkq`I*kgD8`GrI(sRa zt2RXv=X<&fl~KPQi9sx>KxeKvq_o~TutIpG=WpiU<84M)DD{3UB@*I8Mu~Dx@%lp=Q;=J+QN?d z${fh{ydHYC4~;@0YM$1>r#&=|6Cc%ajH3zkI6Wc9WshncpMO+S+e1%l=#G8N*-M98 zE95N}KnC7;Ok;Dyd>xxKp5RiGdOGWI5=4=%hgoU>c&n$zXPd{JeYmpG1lcQ(Lq4}X zuJJi`p|gjs6!bl{0WQ_Hm)2o}dTEY-doN9zC5v>7(#UdWkuzLZBeJIA-cZKvy|oHY z_15^T-$%!14B_*9AIRt0J{q5cax`uIy^pgy)z+lG8ejQ+HNLW!=(Y2F8Wid6K9GZc z{dD-n5d3gfem{-5gZ(t-g8DoA(6&bQ*GwmAsWXWaF&4$R+MvP!Ob7-6RvQN*T-nhl2IXok4PJq3_L(tLYops6yRl#}0+!X2-gP z-h1MtPrxhVHz!2 zr9pB*q3?|*bHsXc);JSbC8yRn6YHuCM0PD&QIuP>sEDv)hp_wlip3(WT6Mb;J|FXR zp}1cu&7kkb3w`(CTT#rk`PJ~%H`-Te_+lGOUFWqp4iKUANZ02up zJ}JEiE^KhtS2%LXDpA;PDt69NI&szE-5UukftB@~1kTlx z(ud`VZM$jP96341!X>c!&=cNTu{(s@P2LtL$BLRsnIL74Q@fik4Yg^!wPHNXVp}VU zw>w|1B*AMp5b+=o^2XABfgCN~STS*;RUa~Z3EUyhnvIisq%Qe&dDsC9XtoK2wrHP=(8U(-3AOf?DTV~-PcqXTap@*LD+LIkZZ*~w+=Y#Nm3_NfuHN`?uZpEIpjPq z^+Qy~w+8;E5%8`O?ihkHd2K_lvdKHtaaiF!o}pXt7``Hf?iJJBuutaUuu2+Q3-an+#rIW|e}a|x`Q zivQ=_A8Oe7;OzgLRv*D-&N=5XCB8_n2ca=6fi>XS_NueJtn_4gqL+WPIvF-_U(xz==6l*t9Zo%{0o`XJ?PXES(2ZROj}*2+3o4$H_@*_&3G_YbOEf8H4> zIl-y(&RE6myUISaO8fn*^t^k)IY$aU!75WnG;`i{7Aa?0Iya&j`JOXJK2e0eLfoB` zq%UpObDw7Q9~M?275mtuyzdN`lgv3J!Dt+o~ zqeO72c!O&5&EUd|8yk5S|L{|1E2W!ITxt$RUUoLul@@FuDb-1~l zxmmZXI1O=N?0v_>ENuV)-oEPmPR^mkbil;Xk^$3Z?0mUx=i|YdADryeuQ8r@JF#)r zgwG9~ue@usc!*<%$}JrLZ1}?2ta3tlRAk4<#E#LP+t;1DrG`;60|TQXqhcZ=6C$Ft z%-HZ&(TVL7K)YMcj^NJM&Wd2f_+`Q1!gXipzpSB#{32w~*UWAq?ZQ)p507I%=`xo4=O4M232o5JN--gQS!T+ea{v1MNaSCayDWuAyo4uaNv%!(S4u| z`oWn9n%;Fb_?N^z<j7R)%+x5f7umskU=5Q}!hYQ}h=RB!QV!Ktd)A!O5 zjvDup&8wF{v2N7K3BX{(qt5$?a$6NeoC3*Li$xdssmeJ$bemtv)mxH(gXMgAqMs?g zKNHGi&+tIkTap|Ie7l6dL=tO|tGy)G1HPAr%GV&{z@Lfcsvm^>p;%lR`jmo3kFs%~ zk)v!}0z*+#KBWfiHs3cx3;^P3g}wmyw04#aoLRbiad=F0R8(qAWO^d}Hzp-DAtfU- zF2fX^85?30~YP=O%)ew#u0n>e?nBfW>^NS0mciUP71* za%;K%mQVZ9u4W>|FST8BisektDIbt8XQ_`xf7ZyjUaAEnL(?{Ch22l-oi)pbujXHG~UHPjI1Aa9$W?V~lFB z+4eLdDL>l=5glDUz@V4mBybhXRsB0Z)n2Z#>NVA#_OJM@*V&lgXT&}|tnX9MZ4O+Z z8s5cqRDR1(zaFHBzpnOcL04ClBwz89gVu3OJ(Sk>o_8z1%$ z(|xSqW#3j11{(Kr@kfmtY*pQ}dNbZ?5WWn4#%lXxu0$}Sm93=`3yTV-X(rn^SU@+4T!msTvMjb#$bWY6_%*N3t^f4gt3 zSSymm&2}Zp@|x|w)ncngqEm~s?V?%?&|}$G!1BQdt8+Cl$@_6by#jANZESXDybwOA zM;QD(-!)7A*bl&aDFYu+fWfT=u1oT_e(*gaQuJ8l8ZQ6g2i_AJg$~~Lyx={lhnEB6 zpIF@)zg8!;2i=$G1~P3+1fzRpiEFY11}=5g1g8@VDueY4ih6)*H&%s!hO1rGL7N5p z+ZT6QRSirH_ z!nEFN)pGgAi|TuVSGw~5|1AQ5A~Y@j+ZrVID#6~*aC-SFRjJ2Nr*fCqbVt99N0@C( zyhj|Zpb9*cGdxTAxSunW=3(vQeBo@OeZ&{m<8Pv?_{bx}w@8mX(m88JM%O^FIIk$I zUt~D`C$fE1bi64sj{L%Zhs~Is5ol7gO^NYQQHf%9l$sqC8v{?bttqO}MN5fFG{w`} zaT=~KM$3*&NQ{gpzgRXf9WHCsG|-e7i_#+7$0tT7#Bh~7o-$=7WGXQZL>6xdO$%3l ziq{51paZ2d?iJ8MSK z#gf0dI?$JuA8!+zLVDV}etvc|hd^0F3 zzaR`vV9D&Fl{2Bp&LGb~r|YDo#BmMbFFr?sOt&jsiQ>`=-H@Z+Tmt4O3iK*< z<>?9{j<~HjnUtgU7P3#t2R9*4m8KfQ?@@Nb1q!fzH(sC;pr7asJ=vDkdbewaGM{Hx zzhlR2KnS;AZHM<4@7v?bQZ@*roJ3P7=~^OD=xSD!;R~+rbzM<*uq<)2)l^!Glj34n z3+yHR7A3W9PEkGZQy^_6<+RXL7*mSr-m=22RpFJ}*YuPfbgh?^_c>bJ|L=f;!>(fG z9WEWO_I=GIp#GQNf!w1HcJn0#1<0nYzl8;j2X|abU_-{7n$1Z>woh{j3|91nSBvI` zs;{8%!r<0t;KE?2Rb3b?Ty?Z(pcR%iUKgwiv)H=e&SS2W3UYf&OxFe5a@2TTu(nlP z7p!XihwFmj{zUs}SDM=uiQpN20IJ~|9vBuwL2r|*lpfBAfb zWEB^=lC9p8JC0Snd~hG$?V;dqeqasH(idG{%F0&Mvbw_p-5B5eoU4uE;8L;E*b3^r z;>z$Yz55kcJLQOX>B#>vpAAmvDLO;5Ec%SV+9GeyN_#Al>OC1$3@#6)Mt z!GbZS#K_F}R8wj^EGi|gt?4=a)84gGSZZ8!N@ik8Mq*lYWDF!rjf#y<%#2KnPB+EJ zM@EB?X=`eFBA2ZBPzt{f12N#hMc2Ua`?Q?`9E+BB02}JN1H%$c8R_XM2?>!I2^lew zk*Ns@X;7m0jM$Wn_{4++Q20ZUDp6!~dVE|)N?dH3DK#b`HZwIkIwLhMH99IjDkeHQ z9;DOe+hDOMV#CPK)gV@&C$w3xKi%!Jg0$b^iH_>`#B%;@w;UFSe% zqSIp{qodNJVjxQiQJJx6QJERBF_Ebm(WxN2(i&A1Q(SaZVq8pWOiWCC4D6=Vlmt^u zW?F1aLL5XW#bc`EJ_WnbZ`1JNuost`8r`SSA zp>TiT@;oW$KK+#01UB4f@Q85(20hlZ|G4|;X{5gNeSk}EGNv7PFJw)vu=`0iBy)3f za4>aw`LM+J$b^JMh(TOxW=vv6W+F5f*oz5q2?=r0aVAgW&x)s)3yX`1k55lG!IH34 zMp}GoW=dvkd{k^^Tv`U~Wze`2M2c8mOlF2DB|0t=u12NAq(?`lrl!VcK#fg}PD@Bh zjP~R{xA`X2Q~%9IVWYcmvyNZ$qQJoSU6sP3(&9~-sgR$Tn8cVwq^EJQnWo6ps1(R- zY=S3cCO~3DK}J$CQ_`U=#YAQx%Z!hUOizf5-9fk!fkMv8MEx zjF{-em=se=LR3OjdKz>(CQtT|EhnY>wFs`g15Ed85SZQtCJN=Si*8J(C4c~3OOzzg$& zw$vrwBHWabk`kAgnjRgOm=Kc?9i5U2J0vbW1sWb~CMMOBlDFmsDJ;%^v%qw+*c9%+ z)hKwOoM%luSQz1M+95IlE(mfKmJyX6nPy6ek57wDgBET|G^IpBUNckTplgrKAZ|E( z?`CLWY0zP(BIS#Uk3s$=5ptfHmKc+no(O#cI1{ub)U#yQl{He1|L)1qo6LRGQ7C;s z*r0)hgNsi>3-d2nB)I!>@knsun-x`nsk*!Ge^KtgDED8K^EDd#FUt81uKz{3|Dv2Y z2od7e|Ep2%YK?v6L5I|JmE;CC{MxqFuu~P)MGI}Ig$+(6Rlut=eLd$x_w|y<;^KDres!R^1pYM-e4`?` zHpu*;)E!J6?QRQqz;7Mx?j&6U7e~9Bg5=@9wCPi`X3xrqm^^J-#Dp0sSrd!Q zLubN_SkN{1R=gAj29I&Ku3397Oj0uDWlc$$mNIM7^l3%ryI|cIcS42ur(sTQ@aE!M zb>TVfFUPpsNZ){JW8EF35g-Zu?*))G);&(z1+Q~w1yfeuY90*Wmn!oECZ)#}nS(ci%Htv1rJ(0{cX)*e__dGx z>cFx3R!#UJ@g?Kkb)^+x+jw`2pz`owIHHL!GMm5~z{xm;@ zG%XoDy@{Tlv{j0I#5@g3ZGH+Reu18bqo*qn1M>*k0=W}zp1n0_{T!UwD8peKApYB)Of zgO6IxMQOo!*XTU-2p6D0fv%66^?isNjq{7Mf?o(jBxOaWl>j@8+`Zj#Kr-w%*mda z)7&psl55*>_;^eUANlDWW=+jP|IJS{&zqPMH>HCqJs~X}O}=7NBQv67V-qr>6H-kv zrWiPLhHFik>2O5{{y!R=xwWD`2;X+A8u(?dyGr$%cBB+Y1JDy(ew+v{j99xcd;$tp zp=vrSLDt+`+QE`5+sw7})M{Sw)opQL($nr)py2{{pi~otEOtLuT&H?qt**M()bb!{ z;E@Jk;(Yfr${P z(^*0EgkM8INbqU=FBZG+Noze{zVVYT}@v0`X834l1qXd2hM%0 z;7)JKC7`M)glb3ChKjfiDPry7&uUi(k%J1OlpA^$26DoL6HWb!D}jUoYx3MzlwY}2 ztWrsvE5<30IAB{u@3DFk9r_itSnJ*x#E}qznlepj;?)+cA1~YA4a#-GZ@@QR?>2$+ z>8l#I(CpRB$eVeQgOE+ohh(gCpO9K1;t35|=~iB)?c``RiZCW6Z%`VsL{=U>VI%B8?qYe$ zZ=v4g+n-4vu0O71vy#||xQ-t{IOgi|Ks3LV;B`q5$xh(T5V;~4d^ET`$olTl@*Lq1 zFG3?-}ulrF-^Af6^Yp|1~< zcmHO6SGkH4$38<_TI59vu-T8axMu`4a%uwE!QJjf8A=P5LQFnuoD?WGa^mYnI1A79 zsus$HIWq0rlq7fb!_hJ?Qe@qsp4V*dhNW^}Oc@CVmn15nph2~^T%)VJDAh(UTzxJ{ z9_gpilU}4mm-UdUTIznh)aFAGhW9G{P+4k(lC&7C>0SC*&|;Q}9pj@|O%`ye%p5xR zDSb!T#Q7jy3MEh0JJJ_xz6r31LwuXJ?qDO9Zt~9aw|;-Sed47o22Q%W+nc*#V9B*#k=NC?B!{*hO(wT_9Dx zcb}^C(V4c-3Fd*C9VjV3>l>m&pYOp>gGPK%#$PC?1X{+{i~{DNrES2;OQ)+#p7@sos|-?eV^3Vh13^nSRbhNRB2i$ha_vt zv-+vhc2e*t)_|Q#eQkK@C?$=hb5iGzDD5GQ0&kBf9U8<_iet?Wy#U8n+0>8|#1jsV zm!Y5G20o9EDjf!Hj)6Uo2hseP=POeGDvn9){F;w0y{2s8QbWd+j#TV?f;wcDx46KW zbVn!%w}po2XnYR65BsVI?Gp;(n)On^Z@l=`4P|Pvp$v}@xYlOF^e{d}b1)iaKd5_! z?kd{{$X8tIHlahYxsNHA5W~g+`XiVH;ih-Cxl&3K%gMh|Y8s+{(o>TVEnjnqn}t4d z@tcKe8S{(7v#-3H0UOW|!)uRF6SsJbFw9Narbq4%Oe`%b2e1Asw3Uu)W)NWq1WN?^ z1VWhX`QOyipUX-85k&)VF!^Y_Az5RQEOusTW;toJMivIDUCpiC$f(IUjh5g0DaX3S z(_>+7{v=)y4;=3LW_*g)lWNxw=p(@n^nH=W1_E9Ub{0RMV4z*3;rZYE(srRz87EXy zh!3HLQlU!Sy5ogTx482vUni832isJKR^2}-?dtb?(0E3zpA8M@M;k_1_?7n~FJ*aO zP?jp2N|y#n-}_dU8?>$4sFi{rCv8nY5{XVpiFd3Bl~z?>BJxyS0EXG zwIrixt5N7w;IGNoOlQl3#vG%B+leMYGM#(UJx3Z*5V7n!lzrpQ~_! z#?P0g*Y=@dpm4A=unQnc+0r@O{lt+97Jl--3qRy;Pd1 zNcBMDpZsZv6hMrs_71FH$(~QXF6|j4wMAr482fCIV#`mZ{S_D-AVnwN?z)FYrmD!H zwM7w74C%X#{kf^=-+Dy<5De8=79-jg66qVWcitPVqn%Bbg|Y zjOw*xMxdOw6Q7phPVX|36)Fk1HgpGfIaKGJ*a*3cDqElu+AUj6Ay+(>4{n1!Y0C?+ z4f-Ez4}eQ4dCSlzO_d2N|^c#WCkfQo8UysMVd zHDLL}YXkL|_7gCDaFfiXToaQtUc3PJs_itqf9ypO=u>*2!J)498lH~TcLr3DKk1ZL z+CBoyz@bS-WwhG@LZn zp|VWftusOMZqWpX?bey#5ZKg1nP3QQ*q;eXV^_A39Yjpd2CYO))dm3!kZGQ-zwP{? zI_S7}$0Yh#d}>Ec`M4ilxfn>g(L;3wz^J)}5weTIo^GK~EAzm3 z`b-P?6F+LSO(W5%(b3(anOgPGZx^6{a5H_2O71s|-fCPXhEd1C(`}_aqD!p0M?Z6@ z)wHZt1vnWW5?SVFl}8RD=(i%&$(|Qmm#wcLbw*^ybNB`##kt6`AIrn#T1Y|W@P=c- zc$EyCnOnw9Ae!$HClFOp33USTz}7lA$gj2L5ZpLxT}UKn*7|i~S&NzyycZP7<1=WE zpz>_qqqEqJd$7eSL2%WNAiIzkM|m2y_D}{pl(y^7V9%J&7%0dqf`YUjQue(feRdxO zxl7x-qAG}OOxejG=?C8m5<>UxXcQOCWgjYX09<~6cQF_$N0dq;D90r)<#WAcKw+kj+uA8l;W146gRe% z-3*lAj?EMPoOC6+8L#3#GMw^^beFxMNc9n!pO+r3L^A8avUdVuNPuL-6tB~ID(WqHu2m!SyrWjw1DBfz615MeWK02p_5X16*BQqMth1j?9XVg^?kmrv|rSvTKn~m zJm-(HJ+R=y({8_LthM&@3ZvA3T=7soxUn9j%=$If_K)ro2d-Gb)_4KDN&uKdN|zsi2U5}P z6ksyHJn9GErvwTbDPQt~Z;D2u!`I@4?4;(2cRr70*zYx4QgZz<5%|d0tfL*m} z%GD0|4wW;gEWrnKW*2xsG`k;lvM6^2U3uX3*U7YDe`bf(qWb~S?z$e(+ufP;UDbo- zk+7UEyZf6q_7tH^_B=IX*L%V88spt|Cdk=?Cfs8i@|-m%X4q04ovhruVi(9}8jGTX((YW5?;>ZM$4bvxBVP z(DqNfr?fFkWD^BX%JyAZ61Z&NrEZ90n?VPxr?POAXghGI=jto}4}0GkSVhtO?QTK{ zOacTFI!Wjq(hD5~qy>l&Izp-tkS-Q#1f@feGJ=30ShDxtw42M)J5mKAU64=}kg7-* z-YI)`X3I_Vd7cmNhrb{2X6F26&YU^t%$d47ii_TD_yXzK#>-U~j|81qI(N$N#GxI% z#5URRVYS6Ay?7`-N?aW-I=mwY4AvssLwugt4H3&jJmhAAS&iKT7k2=owK(N8<*q+x zgkv!5@#Bt~+A8ramRf9YBHh?fBqHSF;^6%sck~qJW)nYE*DM12+=wM-rfbxg9Gn=D zloAmhj$Q={3k#16fUF^U^Q*LwD(Sch6E=BhTV?;>M0owIFFuSvtSSmM%>_i-a_0b!CqS2sghW3|@J! zv3O-2Z0##IKyN(v&dO*c_`|fUjCO7}k<1_dofg&?lcFoJ=z77N)DO{;z?@Wnl7a}{ z;O>>W=OA{-?UQ2o7rEKsfq#*s?ZxpgvY_CJeyGpy(W zb`CKK?gm}||LO)^1$cR9MhQ4zOGc@(m2lR$d$O-*V!@V)uzn(x!Pdxy^N#)E&&%!jF6$qDIbO2n=uM}%T_#f?9MzlVh8Rz?@n13F3@(MM$R-l}^KB88bnNTvbhpHu-t51Wr2Djw9)qXRSV- zF$2_MDA@LXMt3nV7cRb^Q5ghs89GI3LEFWb3aghviWHci(M1F;IAr`OjZ(BSAYrhZ zHApUfDr2Mo;y57Y1)VWCeL5o*#B%AFm2ym9+Ry@Ha>)$@zb=fD$v_s)W@Nj8Ni2`F z)a`>@;gW)kUK+xO1sOkq-#9{| z-Q})iq$9pIT*(O5Q0wH`j>>a9m1lWVdFIe(P7R%)(TDsum-@+7u4P1filyw>S##H< zIG@zspb$CKC*Au!06&<1RAL?PY-JX))}eOpJv1wsY^Y}2my8@ z^~z@%4UN<%N{wp(_UovfoL7YD&oey8U%~r^_(I$BjG^GHju^51?hCV`3EQ`f)Nj4a zc&cFpnNDqZV#mNx@WM#_^6!iY4YkhMy=%~b9O~@0zsk5MfC_m`Ly1n6TlS~40F>jB zkxQuoZGtos)aO!(UnvL2i%1U))N2Q!3-S*{sU2u;gv@u77Hc8eaX!_AV=~Tv?=ArW z^yN#$POBI6_K>~?y|{Fp6^t~LSeUJ?E-pE5*NRi~uOP1 z_my6Y4HdA`Q}uW-?kQh~zNfs<74NTLAV#?{e~9WrAdz@-vv zdmFZ@BsI}c>qMCGuS7VYvQvaHVwzTZQ+WYs6@3!QQl%$vsv=bv#Fbj{K^~38H^U&l zN&gG+!MXm@3b31#lWvgR`LE>R6G-IY^Nk!MUee0r0^cI7JkIg*fTOERE5s*SaXjL| zSR9uP;yCv|5y$45(hK0fktvf-9H-315n!sD*w)Cr>u2XCc=hw!WAMekhLZZ;KoqXb z+#!aeELBgI*OhE&ibtS|jm7d%ER~iU^)?p1@qb`r@SXb7aWKiXRBo9|#oY73Dh-`R z(_s17FKeQ6BfLD8@r}~z$>+R0;75(5WkQZdAelTC3uL81AfNv)1S0QjB25v&IZh&E zzC1iwS_v+5sq2PX2f@@3DOETJPlrfDG!UKVd1Wrd!c{BA9mXz0m-1SNN!wkFS3cp= zez+w{axOXqc*&}Iv(dn*t1%^^kN+%RIUz#oCxU8>6kAZfzyC2JuGf-mRtHT51$Qaom40IBZ!nEDpcm&34i{ zFo)x2aarrzU@@0K8Z!sBX)iU_5Mo{7s;FjG1!fOEZ7-#Y8HI2cUK<*;h zH4xm~T1-M@}rheov{1h%o(oN?{s|t{dyRX}Qo9e%@Oe3}Uzfh`?LNN$Emocp^?}$Jug2V_`IK$zmb!rD zTq@DUg|Pi#DM3S>Gg#^ezBdvkz9Xe-2uZQe-$B${jMUa4NVWzh$ZYhej#^x}368xd zRnd^M2=$VVTv!NUy!5$-ny}I*0mZEkjMSGBq>qf$YZkR?1;ov&hC@XjRg%Co6yaUB)7wB839r1b znU)TBva5XL`SNHf8$C9PTFc*?V2&qMk>Mv47bp9Ul`0Cta?(Qm;|vToMhAl%#vwcY zRz(@EO)%&ODwG6!%CUa*Visx%xiiLJZ5pl!PWk9FCmgtLf;6TUm%w^jwbjXmKF=VW zC&J?nUYwyqP!C?f-JeKP10&EkF~Xz6qvDf-(6j$R=;8kGprFu%6!ck;2=p0)U?{9x zJiBPB#e+Yuh+jTHdWYpo@9S`&vtb?_8 zky2R{MaId4Crcv*vD+5?u?_}Vrh~w?Q>B~Ype_1S9SpHbMeu4ThHufI>Im4PIn_}W zF~y6r@Xx@R$#S+TOY#}GB6N0Lp*kxrr}E~Mb_tc5PHDqaLL;M+gV1Mb;-kWnLn9L6 zqmzP@BGJcd!jqGdBNU}Ak_s!Wn6(9mkFnfwVIfJ4)z zJHp3B2>mBLbl+m>TVbwiDW6vX8Yw4k)jNimt%SfM0$=@zhr!>aH2|Do$bjU>C9nZW z9<)?yCjc3>#_38(nB*Vby#%Z{pkz6i{re>!_;i_6AME6aNE{@?Nz0`U2JrGT5yjw* zrBZ2l?qTs#ur!qXLB0_?3re8|EF_`gH6!(kFQiy4wKn3quIdGA$W2&sHd-I%4%tgSldv~Z%RGYw-r^7{CbTvTX5@wY6w2ltqbU;uc6jD zX{*@DP{U27hW50E@}@1xf%rp|Ma&(3{U;NQdvt=ae!bKg?G$r7lGTV0hpF2X2l{SQJdd;dO{;e22Mi4~q zxT*Z&lypl31ssx$H)PKL8<$F$D}XD`A-8X!CQD||jMSUYOJ8cKQBydl-c{l1!glIx z&#@wyVi2b;hg^_;7C@C9OqB?qqd(ag25NGtgwHBybxZPtCpPr-EXm~&v6s7qhPiMq zRY9!1gjQt@<=?#|bq8-5sh1U?6)*$!g-p`@!+|kzWch5-APqWL#~y6oKkg5M2b|dys663D8`@jRLrbZe-DEXP4&S(#I8L2;dDMcBniBJ2)K z5ly9C;x~yE!NiWeX;pd5E9tTb9x(#$aKTG1m6+lq=q*}$x}Yw#i>bCkUD?g@jtlBQ zBXzjDrKJn%5F>TdVwPSSYSP(R#Vpf7dmXj-NYP@xnK}a+sEF)=qQ#~nqgw38X&xue zg5s8uF0zJtS~i%+Mc-8_VG+P&j$v}v<|CHC)iA3hs=+i%_5_xSB3Qy;bk`up+tLMm z$)%ExSppw=TLO&KElXJj0GkPQDT}|6y3FEP9l=f`^~KVbiAL&aWh{L_zLC1Ak7coz z8mTfD!%EwqeA)B5}`Y8SPb`6XVh-vVhJZJ zx>&*`Fu}rEwJk5rElmERj-{CZY`6!xsfVA$61Z~O)I%m_nkDb9XDKd%eGEoTj2O*P zE|r+rKA6$aGS*1_RwLv;FBz#HHnRM#rPi9kAw`57YjoR+OW>Muq>0l48p434mRdqF zxVQr|191}^v4tu;7~4YeJ$hSsy<1}oraV$x z2r$n>?2#KpPn~mOy;X>v(35f6=f652zBr4Jo3*y=5`}oodm$$AN)hZk6dfl|ZD%R# zCXB-{{;eCP&7R6bo+`q#qvbOZjra&*c(0bh%Be8k2*iPV^h<^v_86^zlM=N8E`fEs zJiUu0LNGT2c%-Xk7ubUPj<*7tC9rbfvu?-=Ota*VV=Q?h$Y(HmN?>45iw&ITQpwD@ zU##U*Az!`}YgsO6FnI9g4tq3FWW!fUj>vE9ZRsR{M_jqOU@+K-q_-{Z#aS*0pu}F* zUJ@TX?rUiRe7IC>tzwD2a9TghBrUl%qzY9kDz=wStVC7@Cpfa|c&@+YAqZvp)K5Gf zU>OFQbE(8ngu+b&EuFN~+KR)KiklWyaaFlskmZ^P26J_gHt$L+<_?qIvG~H`LoGod znad|U42Fw`TIyx)GxvEtuPpFOR&tj`q{4RpqS>yUWU-52 z6;}~ryEgQE*U}nn;8F>*t0=QPHDh)oN6naB1&w-^kCFTLmBb3EF z`Seki&F*5keH5*@@-q84Ga*Eua!m_aDcu{iHnn zEx=Iv=PKz`^cs__q{4MYzr-r=*?CJ}*zA^Nx_Dxr{tYjNF6BfM!8%`K%%FWBF55@6je940fw2ST z>N?=xZ%jT_nlA658(UMqY}W3RN{$RG8Q3_K&rpD2q7_+aHz}qBu+eD^4SsM`NcEyI%C7FlX>K)2F*X->;AV7CBj0W<*W0XSIQCo?8Oo^f7CF;k~DpMA3p!u1=J+P{jK^ zEhi4n&Y3j=7x0U?ZNKYNCGGXFPWD;NFw7sWwa<#CzXI!3E)I9yU*jPj-S663Vw^=` z@%cNg<(vH^LgcJu5y{uMDNc+eKn&m#*hqqZQD+RRZ|PJH4t-_$s_^T$F*Tu2)32Jq zZm%s@f%^{#&qt2}OJJ2OTV);TXPP5d6Rc~{(mg}zk6foH65!xCoXZrNz{_sdO(2wm zk^%mvyY&Mx=m)w;8N}u4!jWN0!Hp0pUKg*=NEzpJf1$sJwXO&TF#c{2kY8tN8)SK2+-n1tD_0kw8f0~BltK?h)V^rlLFs|W5MQfa*nt4sJrhsPSRz)1>p_+Uuq@1t@bvsIdf0~@m}A+mgTI~fr>!s zST3CR`aqEjS3mV$TmoYV#`s#5HJpZU`rciW>wT^QLA&Bq*=`>hY%Zy9B!T*yq1w4xBd1_vb}{@P~NDA0gQ#hoJ7IDkKuR>w&GS##8fEp+7GxKt!J zvc=g9#txADVVP)aHMn3;sJFHZZO{I0ygc0Uvi7C)??!31Fp|Y z)>RRjHIB^(^lKdJQ6ajgnE)qYy2imJaE{?+3~>y>Ag3Wbab!s?u^c*=!Ck*CbI_&I zc%v-p7|@+gd2kQwBtdMXpcSR5&!e%@_#MXoLKlXXRDEWNB( z#nFh&m0Gk>x?&^+#>qZ$)-HlL{h;gqeoF^|C;M0ris=Vk_jeB!q3Q482lf5k3l;Jo z_Vkadk4C}1$U!bKk5 z`i)CP_h7yd3ShH%>u@iQI)`4hIT3Gd1YUCF-SC@7a3y|)& zTiTWz*56fBfRm+sV3>8QAdWah-k~bb<**K*gQklfXf(p=>1r9X^GItZNaL8p`(=Ss zSprvw(>s6QK|kMJIMo!`R$T21-A7r63oGHMQP!ql6)Tnofp0WO%L#+ZJu88@s1`QeAwZv{~1 zFjI1}a<}he>l{##OC{>IdXjaxSmrRjS!BTUoNRp`G&aGMgaK2mU4=4m#1v}{V_jRO zSOug*N{uHc+T-PZ}6=Cr$qm%sDY1UW)4CcxttvWv4Ite6msiaja)2#7m z@$_Yyb)XSKnERN65atFe%<(nom|O0OIap<;^$}Rc6-jt&@u{^JSk0vp-U>dowicGb zfX}R98VFg8B}$gdK}dkP?6BS)d|_mTC{-9QIHUkHs>8}b=A&yo(74P$B8-mN^}7It zW7aPIVbNh>iDA(RDZ$}kNeMww@hPG4(V^k-;Spg;iJ@}*csSZUFeofJA}BaGDl95K zIV>S1A|WI^Dmf%PJUl)mJ~%WfSiVwz?iwL5I6f&fIyfmjEIBbLEFw7~K0H1#J|ZbP zB0f1hIXpU8u0DL`9U-9bDpTO@GuD_QtAy*O%xnrrFSeElh>nVg3{FUj3Qvp=3JZ-u z|3*b8CM1R>#)n2GB!$UWh7^o;4+ss7jt>rwOpcEajtmQp42?>NiVTTQOiD?KN(c{5 zl5?gM>=Xhb!V}ROhmq0Y$q7gv5upi*5fQBYq0#Ne=$q_BjLl=!6NWJqXOP*`|aNH}6BJRu?_JUBEmC^<1c5ib4{U4||*a^@iSYK7kB zg2LMc<>jE;Gv^4?is+sA8mQjRJ^K%d>CwJJw;@HTqmH^zxkV(@7~BYYcq}U)P*lTm zn$E0^UWHok;UAom5*eBh6_FeignBMGDn20@2_+&VDLyhjGJ)Ebe?nM%N>q44NOV#t zdSx>?Iw1-vX(BSLD14<2rvHgv!P@ngbsjda5Tp`GQDF(8L1BqVlcN(+_apH}#>a=J zAO#Q}uSe!pc&*gD0t&A+1foU+5$o~~4oOIfOiBq(i4H-nK>Zk=5{_;$MJ7b2B!>mV zoR0JSa5oNg4@d}(4vvTp4G9WLKr#x(c9fDB8Ilqfo)U!aJK-L$D3`f1^E)9RDJVEB z2-|2Vaz5DcBqW8P7e$jpqtG3xs0f&UY^JZAJ+Z(d_!nAzD9mp(H@L`}QEP%>kIU9( zu;+Gb^#FA3DmpA7F$sBrh_IBP=!Bq9)B~vgu+WgG&}bNMU+ydS^u9dE-9I5bDIqE) zF$~!d@+a|85lPA6@j;2GAEJVyBcRVgSWym4o|_?5jgATqMn)MN9~_p9oDBLaAv6(* z3&|o1j{Re~-^MjFB_Xhgy2D`Xl$oeOg;tw_onHhsz39-$;GoDR!NHvAAx9E~UTIB; zjzF#;1u+^K9Tc1#9fmX}IXXI7H9gd4MO-(NvsWO;KCOuE3ej0o5qhen4nfYtwdCT1 zvE6<1&hqjBMYW39T~OZ*k#O6sPrZfz8{htKd~-3N{@?g!hztI2eEYxg?f=F%7vaeN zU*lVIc%z)nM?8KQFU-brZ@ROC0UJ!_iDP_i%U!H6RPnR*t6=`@wDMLsDcbo~IQc{O zR```3spq`!pc(9Zx0Lv?OH6MvZ5_oEFr@WE802>W8t2Pww6Nd@=CUj z!bJF1C0iqp@6egZ`Muz%ukVFIYb9F^ArBs}WSc0wf*mW{ntLopn@RKI;e`$N>ci~H zwr0W}_Eva{H;$lRu>9{~}ixi{W47 zfV&6&MNZom$G^ylLr?sRY%Q0-zsTlfN&Jhf)dT#CEcbcgUt}H08~?(S|MyeT73eqM z%?&j^^u#@hCj98Tmep+jLY$ml&3499tbT;(3-{ppsQ>c8b8Dc@A3phDL#eX)DDqq6pV z?r$VN8)_R0w(7`H;fup;Q#I6S7qh!p3&w+6;czqNu;fXApUv;UU9QlfwQ7)UxMGcV&Yq5c7WreZL`ovte!{P_Jf;TCT6ZI zV@~-H%XRoL-xds~KX2^gcZE^oUu4xQ7^XG1-4sf})E2gVpv+NKF{uuaUai2T5*;W5 z3tHL&HPpEFa;$dcV-sFS=>Z4Rn&sWCY<~(uBy_Z~C4p$J5~6+`+uBxwHe4#HI$Cbl z&eluNkn8F$OV5af7gje!byt-~w71n1grRUz2iq4Qfvbw?|8OpqFpvN*ceJh2Q0wY1 zN9%v5(E5?otI7j9*{lMX$5nwU9toCk38c<>@N5@bhK5jAr!TE@7Ok_qsl1PnyZaS* zty8t&i0AUGGL_{s-E5zUK<4U?53$#P^9nNSft_3`;tHAIFUSOC2zuIT8zF;x+QLA- zIYj=wr!5rSxa4wib2!T?Pn*NDN-ZnnZQGCFE(av?xdl)3vV8<@ap{Ebq5W3Z0k64K z#`i7wxVJ4r1Hn90Whz|Jzyn+tXPXbF_S1M)zY0I9Hp5xfmwjyaKqHogJ#lxT9=z5U z*>pWFUDxtzv{t@Q`ifqO{*xG{uTqnuO=9DMc03`w`&zHrF4+`V#`00q< zj@2>Z@1$7u0q>ibd&O1fJh1T(c;7%-^aKIE9n_4)Z^r!>r)P6S-D@McUve5hx( zSyLoUQ@-Qa!A&VwbC2^&&l_k{*va*mlWpCB@B_i)D|g}Cb8gHPPN6d2drWh9eb+H^ zc)fxZ7pgzJzTuehjKw<47*m6mZBpByD15&AunF&tT&k2ncvVAVXPoNn#)+)+%_Z?% zBZ((ENpL6FA5lp-Pq53G^K9MS#q!6=8J3#t16oW7Khe6&9Vgm=ZY!qSF1w3$kCP)T zrikl0#F=HbFn2NXI61;n)vS&u3IZ<9L{pKvki0}z<~Wfvn!4$<>XC_zAL?Y>oXWV^ z$oL7#AO15TA8`tq9#A*cNO|}wo12^W2qX-3B11n3x8f@_z>R0=kOZwW*P@_x1oT>G z+YUGo4Kg3Evo!*X={oHZl*tv7rCx{X`U;9t{d`?4OrW?#f61P*h_l#)_)4rB{ z<;7XHEdnTiLhWXrUX0DN^ao!H87CPw0oc#wY%vC$7acf=SCcpv1J*JaR~yFxlAz;n2JeB{^1f zPIw}10dvCMvaOFNI>>`1K%6l5PNC|5V!9~8U3Nm_g+D(*z3^0As@@AvJYn?0<1uHP z7jFA+y>QH%TsQM>m`LHMQwro@^dX%XI1l^-6@%)55ACt-6VSvKNx^VKmPuiWQuhst zMkfjP+oD9_nJPTPrE!K`qsQ((V3P!~M85t^A%jRNgb32l*&@!L(uXf!b#`&Bhr`j}5=MtE%!~Q=K`@|nn5C`OIyjNdb ziMfIHMp?{zZ8~P#FN)(8v|^`YI5e@-LHT++?TtEx`&dcg?#qRLX>!tb39NK2j?=18 znZ(Gn#atXOP7!h7unT`jL6lXIR6n?_LrJbpx&SgqBas1TY^UAC6RJdfj%@47gNZ;k z8w8T`KM=^}3%02N{M1tIM5kZtI*@+wPP%AIhs~~NXS%PMD4CYX-~VF!+|8@ZPpS-+ zCA*3&g-*N3l3f}3;T79PbnuSL#iOl1v$-cqxA4``IdJH8v^MS)#GuMFZ^f@Dij88) zTzx^X?QgaqEhe_i(ps>^wMCsl7Z;fJH*GJpn1_#7_5y><$i<+alnXyxt}cLhZfp__ zAow;KIwR%{=Ys?I#cy%OPZ|@Pj;k{_!6_(t0^8*Td}UIqeDrK4V~5O)ik2fL)&XXysB+P z0f#1yIAUnT-k&t%y*ZP3Y8zmh<+O{K^3JX>y#3&HQhz+Y#7RZ`^mx4d>Mz?EKe0BV z)1HrKDvxd_`k@u&)EX2SC;tI5YnB%yPU_FcGf1KyvY8&z1jK4a+JQ%Kc7hqSCUbXjJ+Nm#B|Q9~;#R{E4~xucA_* zaDwH-N2R1YyOAcSi)x)ux$Mr4D2sHba+Y@%{ zvf4`=cFMJF4^;R{rUl2rHxpNWC4c))W+!oJx;KnWS(%Ri>Ww~fbIP^3zo#!{$?%nf zF&_uq#W|;3+x&DDr?L42+CO6VQ+h@0hzir$K6n$0i|d^KAb{K|IaS#53G8bjYu#{x_b%s__i0 zJ>d#R%G5iA<4ETonxZV!9_Ai8P0akcoES?AFn13QMeN;AYurQE)6_jg;u7`lq3LO( z1~$T6aT@sVC#{*B0`TsE3F1?&AU@Fvf}6Tdqk>SUu5%Y;hWLokdB6b=p({WpUaB|2ms_P-uwJ zg)E>wQ>0sug5%`2=QD!@p#`bb^wmWc>^Yz9abn@EpEEPj8Z71)Lk+JkGN|+Ao_c4A z<~SG9YM-Sl=5toBVkIac|E|bCRWUgKm&~)^BP=*Y!^nJZMx}E!)+mN5H^dr$8?_8P$0GZ$ zVvQPH&l_aYODmI}I+<``MhxaS0ezrbSx1mxWiBi(jy~slv^cI*Jdz^g!k{^P%cYylb@E&+UX{ypMyTqs&0)kD=3ez)W!=I zW+gsVOVpV9aM}-I+&R6e$DAXCys3jOSS(y8{0C9ULA4hOi$bbb%2JoE6j%}^FL0C`=ltS<$0B9q`0(e~kRM6~VD*YGATD91hF+w8o?vzc>- z7yoLRW~qxR!T3V3dhUX>VUDH^pK-kCCQUPF8&t;z?|bAnl;0YfH9JD~ADXp2LimOh z<$B|dviK9^egl41)rZ-&{KB4dXoj_qW=^y8rfKPE9=6>Q6ltl(g5(T}Mv(kih6s!1(H5``sin%}Q zeZ?o}qw(B^BiZdRXOSF)GtUa%l64py;e>%h%;go!mh?Nw5?O2I;ajr?iQqiT(@U?F zB0UaHq!-8~u=4OP@`6EobhvT+jB3txEBs`c@K__wKRJo$rWFrR7L_Jmw({GRwO$lU zU(igky)Ll6Ao6@_kmrM+HNMxBU$SvjL{oaIO)>1eL|@SFyhI?r2_iBR!v zMCWSfrH>-u9uyfT7d*?l8zv@Ra6P{+UV?fA71F+GwiGIkzuGtmD z-MA4e0u`d4So5NzJ1=~S+7a^Qr0fU*t{Rq&%@)t8xlNSOB`ME5lJ2Q~os#`r@XEv; zO2-Ce$@S8d^k!fqOXgNvGvVOj*@-5YGW({NfB^;BO~FAIz-g)334p6izf3#U$S3s{ zJmYGU;fWF1YVbzhY`d@Msj?Jv2eV=BGj5?QrsYYavg-(P-%;7E1<~`OM%Rm7WMvRt ze|SOfJ8oV0hq`X=24LH6=%Q-{FVI7l&p-n}?% zdNw;6*v*i_3VF|2q$hx@PQP2ZND+jlQRF-E6V7K}14p=W$&ve+KWB%4lUyo3`zRcN zWiDiQHB!&MklhH}FjAMgm_1BGtvgb&*o-T(hbsP({hQ$RH!D&xe`dRNVXLF}NQ(U;Ck=X5Q}fw3{8r(DP0&i3VwP1b?cZ)E#Bk4=&=z?5TpZqhVM zZOnR2W7@on9+e!YZOmwnAKfrK(%Bd?yG;5md$1_ZQyUXIEv*Zf&7nzaCg@u;^53+^ zg?AeFd-e}5qQ96s*`g3=8bzu?sO3qI6s@|OeH84+9J4tHiH!pGutbcaeXHUfaPh*W z34W$TuVk0}P&oC4!ucscHf|mW6^F7Gr3MH$@yKZd+zATZcuUtaR=_Y_(EKeWW|E^S&#gUL5 zX)b}4r<%hR(&$vKy2YD7{F`fUWSk3`Ke5{~*!0Jynb}h+)NwiaN zNgwT;Rk}=Bu&Vy;Ck;(SK#zr)wgy%!k@FH%D^R;mFPsuyG+yPEhG_%;N7QwsFv|FM%upF~n$f8LNMT|=*8r^MwD<>pE_>Q!) zh|QjpdTg_)IZwmTg-MA~ZF{ ziN(@WuUw73Ot&Qm8l>Ed&^hNXrrH|7sS5K^seJt^S8L{E+wTCn#Y>PZpJ_}JKt($ME8tbxkp+v|!;g)f1! zh{7x0Y|OEowQgwZ8sUd<-}__R$7xD8)uX^TdFf9%Pu&x#jk4# z)3l{^r`IYmiy;>0gG>nY76J!0;YoDgwSAv*9vMQC(j@m1;trWhpoJ}Qix(EJ-O zkn@b`0N99R_q$ehH(kr_hEsOL3zU74^H4xf0ptj|>?we2Oo50J+%>R%Lt*{D3GDM; zpe$@U@>nsqhaim9NNhNVBNB_drZ=0IYn<6MaKRqgU^Z=&8WYqkjkr)Z zm{A`p4OyjW$O?`j+>mnY_{?(J5OtSXM!U=(y(erUcpL(Sn~rgfO4B&qaZR(eoO_LK zEw90)>bI7cU(+Z!ULgZZFlVeATekhzcS>t3oM1Vb%i@kk7PoMX=JUE=X%V{pWly;7 z)7(M=&;sSbq+-_z1J3>BN*Km}dX>c__w@+6t6U!==%-gr=SFWRZzC0h!E1BXh*P{y z9m+j}j{RyP?`t}FxA^xrO3x|Whawe5`^kZYD`*)XxcjSSzHr~d+&jV$n6oJN9*9Sh z;yS&%IQTlukCWPR7sCCNwsM8j$rG2rOdRGf&RuK1hW6cOpXUlLwyVEflItmebS*b@ z*L49)!)+yVfAoM=NkB#vP)N3%(K2+Nt~i#Y2m?j{nEl+C%ekHi&hq! z!gp5XwuT?iaCpO3t8zz(C2qJLhMOs!>~TY}9JJ8bQxGfPa6JyU(Lo?uT0AN?xZye$ zdrL)V#$mS``UQo%#H^eXG~}Hc0xWFmoRsARQ;Dg4ALB!p6Y|&PmT?1pQLCI0ByV<(LhBv*s@I=BUvD_T3YG10h){{hFg!U&Rn-qwd3>q2N&Zy{_R(`*{}Wrt;9N z-0ALMJ6|wiwE|&Y1q7~CG^D9FW(|>tG zA5}a;c7Q`j{zRZTt2neMZ<=)kj#}__HTdz?TnRM8RVt&i?p(lZqiE1Gars{~g@?E0 zE_RFg6}`Q6wrVvvX?t#K@HSTt?K$)aqjwLKirP#*)RqX-cIH-uQ9E+`1Dx)x6?dgC z8#(7HwRZiLJ`dQ5k#g#fpU8t_cIGa18%Now46E)-7#ibJ4TLEqRb5Coib!^R7 z*jh%}DsL(bv@83^%2@6|hf{=n=hIKX96peX?$@8>7}53lLbE<6hU9fP*A8xQNYaEW zu+ov-Dc}m1t~1SaS0&0dj-sIe{LMjiw)wdcT9|FdA7i$ecMREP<=-^6S>ZQkUAkD` z7iG~=887#j%g=2u$R7E*g9R~EDMPW)Ag&Bzp;dp=Tc|IZ=>BsH4dgpXMpMTjeIJo7IR74Ot?{65^P)2M$9jyB|A*8 z_@O{QdHBWL`qjiM1gkt0m|nF^L$2OECRnB3{L7o$h!1JK+_Tk;XD{WYQ?4%yvz^!% z%y!O*>uZZ;Zfb1D`=+X!P-iRf+a9BM=#Z6kVdZ0H)%Q`3mA-0bT;#nIYEjO5Uy5&aB}=m~wi z?aGE<1M}#NhUMn`-}NT^8^ZDxH}zrpawogW!l++qdpAMMMRcxq{JSaokVTPk@W`gs zE#NgD`)s(Y)NF6KYV+#G_|K){-kYvt^S5=S$oI?IML|4ylLY6cQ`-Jc2*aHM1fPxhzuF8Q)|9jrjyZ$$BX_kCUxh+fqN>w&jfX=t{3eeHX zt}-u+sA7L5Bw&6ES;iQnbj1(~j*~Z4wWGbT@fc>lj4@G%fM59AuM0CUfUaVgt{hEK zQJVSKpj-L_9vyGdp|a3UH@72sRCRlK!Nt^fMGgBHxU;TZb4Gm=?muPpRMkNKpr*Y* z1cz82jIU!q1@gHB66hR)i|X2gG=wCwyHnRb0bDas%UkN%(bML9xw^P$o+2ckEjmFO z(ZG%#?R~+ONopbw@Vebr8-a(o?!pVWwvm0ehFVwALYEcYZET<9=2e9ic?7O=*lWR_ zCDWooO_t0CQ=tlM7-DY-I1EJhC;NeL12uX8+8dK0qaxvd1sH#0dIi|$)qqkOIBDD1 zP-xn@+-0SZVgq9fRw}V*- z0Dpg#)5J6N6P#OX0<8S&?OI~$D!8MyeW>7o0d4Fl)0QI1&o7xcdQ{@b_s0((Jqo=v zYDf12@ioE?C~Hn?U&O_n)FAW%CHhVTdZA@bD&}-fD&}rZD&}ZTs!aaHOdv{B{Tx!| zoYYmM1P3yfIjOiJ?&}gV`ZKlDk!k4PP539d0=F6eA}s$auatO{zdM4 zZO6aJMUEZ#7dgwh6aOM-zjonYWV?1Z{zXh62x>8B)4V?Kz-!@rOr8a^eV zrJxHJH*eEVNtox6Pf65|v40P{_CWp>J>Bv1#_oQvH8m;a$gR8Ey#%i^zcVi2=H!`+GY4zS{mjJMF|P>1)lw*?#q?)H?sSG|cV;6JRu)d=IiaQMTX1230_ zJ!0+igeZ6+)}9WUaTP2McXThu%1}-qMf^^e7(y8(u7)h%p!lR88cRF(viA~tz}3Bw zkBenwP*(Z}@On&AzGxvoLk0!b>mhIgJ$ zF9`?tu@4ufzyp2kAA)JFOI6nSClywzj0Ew$0G7KhMVY32PD?3oD$d(vk)oQR54e83 zO^3hx1MIPG-r20W+scCEd+*rCfK4o&s!ih|_C7*3oH@k4!3-2P)IJsbs0Y=Ix5tXv zzmsqF>QGloqPVZk9*@%SXuQ2XxT=M=f?vIyRsz12VDBfigKHD)b;WD$FfHGsoUWMa z(A^KdO0fIs(#g_ln?(CW@IqViGRzNIRppval%Ert^7#mj(8%h{-%0kPpzS+s=Wd{Hq2h!JA_d< z`$-&b{|Izt>9n7Y47bNpWHt1^=Bf4tV5pv^;s|>mF$8VqwOiVjGkN7}3mlU$f4dz$ z&t&FxR7c@YkCsmvX-@$&xSEK=n$8k9laGDRKElsDEB`(FS+J6!hzH;V*_3XU@?iQs zfYG~m-Vwy_?_f6{1cSaT<^y}?c^89Y?!H-!Yh$PZPughC&GK>fy6BJ?`6R%8QnLDb z*&fWI(}QK%`A-7uL|JU2{?2&&9Z|fbpp`k!1rGf%DX+PB;EsNdv-6H|d5do~tKO%% zBejBQ7Sfc!gVU?PuU2fBY(93tj1TSKfHHTPLX&RuW(i!kZTrYRqNZtnylzy#-d42#zC_DlvoH?sYWPWed;pRzPo}rod_BncMUpno7zj>diz1|eymjIu#&OC{vH_0(qZ*)?CFFMsR5Z{wucYb z+uK)K`sq^oNC|m1l`Dx_UdwOM?D2iB9AbI>;OTGCT$88P1)lc}3>T)<_rJ5RD`J3( zqXX2%@6k~BjgB9;b@x2su|IFOfIBO%EDq3L&PX0sU*_l@u!bctN2qG!3;3{LdVJwT zF#>(K-`8TVEP@|cdAgA;#zT3Zn5&XDoJ(Llz-pOf4GX{bE?&E*Swy~!D>1j`Ur-jc zX1oD2ImEORp@}u$xThbRez|8Ho6NbyChcdMCC|^Zmq4$Z+-DMBw*~D_ zUs(TT3($~DjdkDHU95SZ#%w$})*FA-d&kr?%1?=OUvIQSH}ED`CaURe(3MNTl?ZRb zn637$dcqp8&9dSVV6cu_eDgkhu;|O$@b_&fT;>bchJG=%jeHf>uU&SKe#H;I3p3&F z9c)!K4Rc`Lty57J?p8T%r(F<))fA_6=t>SpI`p&qdiOjP#_nbd>Zbh#U3VpHyvKY! z^}v1odg?xfQRO)$_+!eV*U);{9snO?&+>#rPOkHUuisttP)+j{&^3S^#?@BV?=2Mh z{z8k6lbilv_i_^+5*e7@T3}e`_Z*y9*zmnY&t$~Un@EaK_{na5b%7Po-&r{pAa}{; z=ll9~_kDzdU9ur7@4TexXu_wk?!NM)eLraOfSF3pF|?2u!6je?c0&|!j65q)L#k89 zk^fE|N1h;E>wIuu7)+$%T<9NwIWSkrz9>tL8{p;5v%=BGQ?W$RG@o3Y9nWEjS`K-j z_cMJTXx917WrOvyylK{LXsx>l2k?eqVeJFGVynwepa!D2XPp-xALg=#s`{}fBOUd%KvIg zpb24kSrMhHz^AAkisFHoTAQlEUSWA_T}&Q4!}E@U@(-C>k|Dk{dkHNEcbDk$HHZ5kI^yw1ih8^OOyy4kd9(=4uy-ve*E3C@OEBo6v`16}{`l zfr;L=eyG>G$cGxeGiMy@T`kirXM7NIK}4*mM~X>1KI7Wa9?al)5zs7>i(aSGhOpDb zX|3~4ln}lqcygMU+XiHsab3}jui);^dH7^&{*I;1gjM)2G~e+QD!`!JG|vjNaq0R~ z#nT@ewu!(L%pqOd#On)1oGK=3nY3e6A^f6nghgc#2YSg<+GD6Qq#q)|4Pz-jNKae13uj5?jh=N)q~-Zh+%cL^kN9OCiL zZOET!=kWRMZm^)|#^M0|rP?l;LJndHi~-d@x)^ccKM)UvFo6*caHD+YWA(<4^GR;z3n4@{~ zo;2m8wkan#W^|+AkF+Ul6zn%S?^{ptJ}H2If|eQC7DW^8{HeK5bL&rfpXM|!Q9tti z_@}`Hz+uc4=Y$KtPh;kT?FuJYKK#gsWgygqV^=bt82HF#Z&pKDq&Jl#C_CSoF-{&c z7x}1-bMrO`LTg-5A!DGM^4N3>T235HOPH}57f@Y*jTf%BJw)FbQ*z;aIOLS1;Q`C~>gJ0$O z3b4gDd3fI(?;vxlM4c5C<-6m$g2a!aS$?z>InbXkk>^6(M{yL8e2j~JickF zP+-GvNzajwC9L>MGn6dHm76Qw5|qW1ZvJ;Dz7ca3w4!xc9GYm|m*^Q;ZA7-@uYag@ zwM=s?(@OkBw5Uj~mWO`9ByKJQX&UA~%U2_%&5W7~jD0$j@}lfT;}~ms|vo zgBv+cfh`=5#LhRud5s;t!A35fESA_=0ynP2G;w?-oP~FrI7Wi=jDk2hUnb2KN;6JB zrU!3+Vx(MQi9SecW@%b8lVeEdKGSGxnEUi?>39x=^%&nAw(-%t;KEdKkRtcB zPc$xc^%Lqs=ipNHE;Q|l(YU8#&N$=#_bxP!(*WLuGFhC}$l{bv7ToLU`BWC_V${TL zj!quJpBP?&$r}}#UOnS$35O~*PZ3X$O0gehDqVH4vO7SVX70B4N+Bg_0nN zRW0ut=|~sAewIRyu(Hq6- zhP*V!u?yVcDkKxCTP%Tf%%%B&5`wbufFcVYI8J*Cu@t9_CEYn38B3Zy zBV!5o&R+;=uX+f_lsCG~Yo3*s=D_jGS`$jrs{P^#yV^oZ_|1&$^ncz}DBpOUWqLz)1da;aFG z#Rt#m5ec4LH)V`9)O znm~MQBe-p;V*qHxrQ@(Sus%!R?M3;d!r0#TGD;=H0l;>3N9Ez+?b3P?isVV_3wmO30 z^yiIz{D!c?SX1GZPdC2J@#q9{JklQH5*S+Tu`%$<%>`=MN1sGeYe*I35*)=i~Fdze7Jg#O+Esird-3l|$Ulx6kzUPYt?psXV zj_?~6CV%kux|4BbdRxKfxGjorywKm)WN{Ky`sHtmjFUgjb_{S6eO|Z@$=2#2ee)bA zM6vn{*U^}yLilJ*c#ioGf!SjgRN=lpas9a=`1RuDLcI*1!aB0jX2*!<{#Ic{3?o` zw%>v7m%ahVo-S;7J>^tGijI@tJK*?95YWp9r;8k3FX*xIAx9TMsIFoQ8D6hBu~yQ6%~@X8B{D1IQHqV}ii_iiiN-S9^=H;8@7w3~#M-B|*sGT@lwB^bi8 z^uxp-3i}+Ix?nDW6{oWD)aioBXOt!rL7`()!l8K`O5)1QHE|-!V!pR;zN3=6u#94R zz{Q8>b>*={52wD=``d{xHU8F=P3mvWv#Ojm*TbDJ^?JC?$*rP?Z=Q4P69x3?$3pec zSNYt}X^M`M=Us4wxCysZT`J_zl)oMuUf_^K;hBmpWcR7Qisjv~_|r@MhWNIZMi6bPQSnDl3^SpWrdTwdUCPb zjyDA`o)OUV-tYhJXaXj2sU*-F5C8t%(NIIJn^d<@Y99SJj7PI`xbKc53B8_M|E^;= zSjiQqUqw`4%PGUc64>^h<9Cqb8qr!o*eF6=@;9C$2f-7?8aEPA?QFixH69-WZ>dhS zxyZ~ZFs>JfTL|P5nB-Kq&`JH27Fl<~Uj-9?{aZ6oUBgWh45QF~V2{LaTL?xO;D2K3$3fwkiYZX7%iY3f-5C9HUn+AdWpnayw-C)NvS{T zHOKX{k{c(9U;u~KaXm#r^-;L)<(g|JDXPFF*YIJfjd##7yGx}vwgaDV)e@$s8knA@ zRR1y0^s6!(69lk|L+hAMQ&3+hOfPfIw38H7;F{@Q%5A*ow&yiEdi8dABe0LFn6SOe z!1fGzwf`S$&mCCP^?&b;nR|nffrJb}2$6^# zBe7~FVg#i|Y>%2%)C_G&?RijIv?!%T>)pJGR<|0hs@86Gn(0ET?eDDj?&qF&Z_@Ag z`}4cw6efy6KAiffO_a~4OmG5CpH>4m_HI$p34=(BX- zH~5M`W-Ys0u^B1Pj?sIRrJOj3Sq_Ds3r*HuPOt|{%4~p3M+`Id1l{YRs5e%_!SV@RJhPd$&bmo}df6#J0DbT!cUxTys(EqQx_K(ZR2RSzH+g}IRv~S=12+E9e zz~`3NJc2?;rsXs(oT<`PWBK+*Icf z@F;{X3Og4?5yQ;YmN&OwE-m9HZ>Pk2dV@#Ob(B*A3VbAeWrlsDtUZ@u-!IGI_`u!i zLh}tBKl;l+XQtZ86Nz;D(d|djvGXqY2IzUrcnn||j6#Odo;?Pp_T6bDEE+E=LyRWbc-zM+yq#U3X$nXA}iI7<&7r*yR! zNb*dM%~fnVz@{peCy6Td7{(yHfmfrNlS(H$OtZAtdf3}a;RZ|eQLX)*g%#K$EN#@& z{*Ph@%%mfwLsEIPz4DD*wgnge<#(zic#3&LPtY0ZmlJ-B8OsSx>17|HoYWy%?DVjg zeWY>@q!KS3gu&36Bcas{@IrhO%io&?mFw{hn%&3#8eTE3+t=PPZ?H|64v8Xz%BD_!1O3aS0Rk~Rh zmB5SY%!-OIr7&RIh_78h3cR=YZJ>R+G7{8B!&x-QK1`VaQV9d4k*L?>_H+ZZAniIP z(k7Q@gu{ycJ_5}itQ#?XlX9(WFyd8&0&^o?j#ic3bM|M3nXA1w-rhS1-#C~z)s8owY+YQ{w1*iWqOF=_KP}^{S}%bcyG3nB|YqhP)sg1#{V_{e4}P1)ynJWrHobMeccw12B~4$_U5#vUE? z1Ym(zr{mbeJS*=hT`J@qPH6;btAAhMFjAhmN)5(YdcW}Y412gF&0)w~qhqh53E`t-LsjWqHw&GK_)VR_3t9(DzhXfgwwl6#p^j&~*DUB<`Pu6(CF zYMJ;_OEhney{_U0M8n<2jv#dAwgX=D@G_y@IQ0yPWaD_4;O6 zCVgV~J-sqry|h(}>?`j9}KEW!Z^0Q-wx&GM`A z+47hc|M^cEvC;PIG`434ph(zt_Y!N5zU!_GvS$a&$4a5pPdw%^?jX z(Dv=K%RzGE($-^)4t_kt7(*#dxi8-f(6&1!tiLI+zIE}B%b1-$s?F)R7lcx6+6W7S zuXxCg@5(fvqD*|#-bPZUW0v`}fKE|PK}X)QPg16UbQ(GhI*dc7#UPb>t0^elZm(~E zrv7K54yc>Hw%=}lOIBXe^TgG-e!Nuxow*W_pqGbooIY35Q*xuz$7pw$Ibd6-U{Zy- z53%Dc-G>}>+5Zf}=SV0ncOjnwWEx+2(X~(PVPF;CUfSS6%!#8BmU&kHV}812xs1X4 z{R1i&f~$u<%1Ll#cnVa@JZ`s1rW-84+`chl(d zN&9!oB-|dKDw7y1c7mRuD~;cMZx3eMjf#ibjq;A+a4`Xq_h#i~Mqw3@3e45)ImX-! zgcpJmwXjd^sgk^tV{<**0kCOTwIYBg&y_JKnklJlvDZB7?pdm6;sTCzib$a`np`cv zA_%umFq(bgRz)0cZOC2M65Tw9!>w-twIJNWucP9kI)JlXCvYo;zD9-AF*(8%U5;DN z+rN%66|pWh6!(uk8J+mjzFCPXD@eSmo?s&JBf)IZRJ~vyC?%sY7wkio6dglcG(E;O zxItMK4As*?^}^YpdFMs@>ryAw_mX{)@~95RhVDm(moAOUU$!?_vOyMgpO2!=m+@Kx zL=i^rZ*w9#lt_g3<`sK;S(yy#&>ioWYPeF3st|vtDeBBjxcS%cq3_+ zk83~_%!Pvlz`h;V?I*)cC9XaDt$m?I=Y^ubw;#1wZ7=%X{+V(dw3l{kM^Vim?R}J^ zAf0wp9z6k2b>&Aq4l~ah_LI+dCn55*uzaJe!GZrk3N-f#-{LI2>lt2TUsqboEwb+~ zEte|C%HWJ|mIYVQ&fK@} zl9VJ;IUJ|F@`t^zk_J+#>L#Jyf8r^Y0O();v=2}^1w!w7XkTl97N%IrC~S8;AeHG2 zNB|N_{M-JOg#twWV}C`N0w|yZ?umMWUd-Wo+GGhOmC{VkCWLWA}@qnnRzHX<#pX_JwSM-3m@v`N$EEt`x;9oe|)@Rp;sqLbcNq@eql1DW?0RRMG3 z@x0XUL5pzEle%`;-=To;Xp_o0;mK#bO=P^>M#f9v{T!X}npU`#(a=}-gvXRXJ34xQ z(L4C+$e0RR>zLm$nahHvPaU_;h8y#UtyNVC-@k5ajsGJFxOMqeluG4w+uc|}YZzM+ zd(g2>p^#8^Gnxdw56hEb(K@EO4`LpI*ee3tz+RS>DAFk zGRjbn`R>K1e+c*DAIquWYMwwEM_M?|_8Pr>ep!jlTW3osk5*~U>iCkUqAFSsIrtW8 z7pBz@dI8_fIAy-0evnNqLYu<0bm=kld6?D_pM0nuuC>6oQTGYgdPuLLZQ)vf316QX zu637cqK*+-Hhz9~E%`4EeI20RKgfFIrU{Q#T%cUR~=ZHAS&eTC@3WFfR&h!T8G20vm1+{#EhqJ_WYN@TCw1 zwqEr206utGV0)GR*1=nm3v4y%Zy&ryck~q4lIX7!*Ir=Thbb?x5&8>kzhZ(5 zY=rCr+jt!R7uXI_7(!=(ZSQ>g-*~JJ1-7Pyl0+c$QQj(r9b(iM_>n#FM3Y)G4e&v2Mi=%^i08^`Q(%CR(_m((e0aq z$rs%|H-voA!RJu&MVEtykuSPvlt;ek6zXvDMd#l}kS{vxGLn4JxL_3dqT%9b@Dqyc205~`cj^f~5|%yoKR#ZtIZk^@ zI;VxkYfB~6e#ecf@wSts@YCeyQ}T0`{G1~{=gH4k<;$a<_Ki(Za#Fw0Dt3}Yp9$dS z(zWtrvMCyEYqTIK!h~R(y*$c$>}qwiD?xiSatA@Dtfya;skq3s(xr?b{J&PTI<2E5 zV-#r)e$IW{wO(ZteDgtj@*PpUyykr)!NvASUiY39*A)Yi-q45P=dq z1O3)o+i9$d&{|oim0!d^4TX*@N|9zC>#}Xbsg1uqsNy%??@@^=p_+DY$@E zbkvR-;ROQtW&ilhbIFW|)*5uiJ)l}j(e<2h!2YNXrSy|gzSrMlE36L*mDwMC5+E4pTR^NeDQGGvxhCHVI ztR8_G)IR18#E#-~n9Sg{@Il&K$%sH00JI{W5e@4{MMS@94Azc^+yZ5Cr&M8xmaP5; z(wPUng*FVqMhX#_?I=UFRccukm=vK+zNOH47bAi|TWu5C$RvL)NUdM>hl48(-}*_8F!nDe

PpAY}#w;e#k=-9mMPfDS=ARmrZIH4>S;kwtp%N<$Sks zj(Qvvhp?EtswZFyk+6JRMX}Fb9bkkNly)d<9ITizf8s=KpCn&5XMUau7G2MR<@j5P zs!h?}QU8MU2|7LXKP&H}sha-@nCc;hdA!IFy;|If!d)(5I15Xh&+R8Zsg;uDG>*+@ z@KTJ}jnUoS3(L#VA>yJ(7)B$LRp;3ew8j!2l z4-*|44pRKh^gEK}OoxgGT1(F)Xg#0Sk|lKxC=cb0zM6pc&(`A9XJ9hXq#z84@^6=_ zZh}$p#jH4WgDJ-9Hxp}^V6>f!>v&bfkmrOj7i%C&(AJGiPhb^75YqJR!^_WjD(0-HElaQ2yhmRznmlkPF)pIbJdd!n3`57(U2rm%0#jGmQ2SAbo zMYn@`BKoTIy%6dt!3#aQr`#P_I(M@4g`Tn%texy@fvBwGBro)+krjZd(LS0y(WAz| zw^mM!xea<#Af6s zWgdN(rw^+T%!T@ym-Pt0+8yFjKOPBFfNbzget3x+4 z0cYuMMtMndN%B&T&E3orBQ|$4PgW3D3nmbLN0&>qK|fXp$e|SYB`|9ayC#Q7&2IRer&JK4l#{Q_zsIShAsmH#NBLcDRAP^uXXyk-zDbzojSSJvnOTzhm%4KZB{4 zDZca0iba|IBEmNOs4Y{!gmsgy447zb-YlroEEt6;ercoGKT#7U57)@Q8-@A{sm9!e z-DRSoky1T$;f7X6u2_lL1ovQSB?B_^U=qIG%E;NfgtPkgQ*#=Lkw%zi1*6b@*GQyC z>2J+RNJB+CU7doB6hIf#3};af%(pW~+|gc<-$rg%1AXnq=;rwak0k zO-bELxa9K_G>F-S7C+D&>ModZt+6WsP5whmQr$3_hJF|j^5?WfW&>v<3`X-y9kvQ}4!@?!9ngC0qqKMTl z2NkxL)L59K%c2=frn10*Xv(Wfv=QUXDlENPWeV%5T|^8i7VRoi_<|9h3S(l~!dKOS zCh(KX6-F811u;xDYbNDRWck9*k~$R@DhU2*m`8aq6*W-`pD`i{6;3y+5DfJr^r8O0 zG!CSO6uxRc^wK^IDU6cTeUMN(_Syqd{JziMn?8$H2fsEvrg)&G#K%|B?p7?!#q(vL zJUU&US`M(>HdDQxKsOYu6!f4{)*pzM>w1%5zX+K63jxMFfR<^d%ou*786JZyk3V)K- zxizKPZPyxdzuO?5iGz$#gn+KPs$OINAs=c!rZ)jIeq(AF#K6;Xq0K1Qsed z`O{{&WDcu@#+>u1fd3^O`6r_ud{1gM*MsXg%dZEhcXHw9GQJ>!o<-(r@JJN{GFO9} z0cvpFL=7Mt^it>ylzGX3k{25O#+(i`sAb^!++3&|jtK9RDT%PI{WY?|LuSwU(u7xYq`r3<=Edf^~>uTjvu zjmTWkYw?>_#u#vE6~kU)Q$A8hnqZpc@1g!NJbOl)^OdnVUl=KZ@1C7y&C$oX@3$>< zmXm+4Vm;0+$Di}~g^0)h<{2Ik5Mk+Wo?Rp*i{st1m@qN!JwvGTsp)?;;*~f>gilyD z{xLu0Mg1^?FRvSBDcS^_MMcX;7e96@Y+p+59A-Vb=*27Uz%X;QH+mL+T1xI8W<9zX zA)-9!TbNi%9usCg;(f}8f>u998J@pzVFNiMj14Xt;Qx(B1F=qHINwo8I_ixht%f}Q z&quw!H`mryrU6TA@k+TQ2%S2+H;UfbtT_f14v^GckOt~^cA)Wt3&*NE3>nxLgy|!z z<-F}LhSA09$QJ;tUy#5LM4=ys6h>KCeAS_r&S29}>I~>DQRJN%`75K^d_n3p_XuZk zmhKV$7*_a%{0m3suK%tPnR|qb0fIYA1g8(GO*#B;Ji->k8&G26`e$iko~xm`GQ3*b!&T~a%_q*{jy2jNye{F5jfJjA7<#`CAHK zsV;8|w{{B4M3k*s;n!91PM8I!3*ieMI=7GeF)06hS8Eh7Udz+*|Hj_t2@^)!L`MJT zULl*)!M%dH;b~VtE!-}vcVKnY0o*_rJ}>-7yxW&r#^r@bR)&1qFaUj!`v|u{;I@9foPniTmRo*7LJh887?>e z7DilV{A6jj8eXfV3^+4Q&}~qz48AqgY#Xt6z1g@MZ|U{+{rH zK7wj$`Bk}yo{11FKR<$5{u88J(eg({1X})ZLfijj`JtQ^(ef!HTn0uI3XA|of0!}C zZ}iu17q%*gUxLAW2)IyPx5;OC-DeqguD0V|;fZq64}SIq+_b6VZWC}1f9JrV)O|l{ zz(t!ns>hFNa0O==^Cgd{X@^Z1e@JBff9?t9`Z>?0t<8I{F^Z#5Z4e2>Oa~^HFOA4h zo4{o19~z+VR7V>V_?!?&N42vF{Ou4&dn3Fskh$z96VN~>x!e^TuS)6=Sg0_vylRH~ zFGiN%p`w2Hz1O9oj*;q2SUwqlhffD7x|vCnshw4gzMYf5=p_~*)YZbv{ z%EOh&7UoDb!V5gP$J+%dp+by+DSq05(crCaGI>wCQ}V8j?2R-;7A``Cd9+lBvvhxX zBf_D{UvOmZFwYv1d9-viQVeqo(UhtV|S^XRG zP*4GtKXU?$WBLwL^wxh6?cg_*^^~GeW(|kGPpMi}hY}W=!*LejktWr2tdylD43D!X z)riOYlNu-^&H?+A@T!LX#GE=hgJ7PO9#07uPpZm8suCv;uOl18sr9`+F`|~Ej)Zp; z+I2J&*Lb6U_KSdnToYLzdOqkn4gvO*F%$ z`}Rx;K@VF|>!ug?Z!|J05{hVZt6o_ zb1I2@iZRXdE61}wb#G9Hot?WY+D$C-t6GGFaKK2dN{X~v$lv~=W2~Q zIi8ZF(x_+vb2i09b!!A%RO3;{uTr=lHQ*Y5-A`@yp;EQ;jqh$(qizb^19hIMWiz}< z#FmHXWDn#R^-?A9a69Y#V!JuM3{u-y2evI}*{=Uk%YMjq{AA&!zVGQcZ+Ud4;gfGQ zLuxO_Jaq!3hDJ-{K#Fel_j_SSW}2nV>g^aVsfz%bxG3l0&4T!>PlqXbWgqpW#zS8k z*hXcE4?fa)INcdJ@Xv+xIjbzR`dwR1NlL9 zwxhsMm(bT-;v$8lBf2xxGt%*c9Fhu(=I04M9ph-LwglXTqW> z>yJ%xj8+%GWLo2l$&T(J1RAR&Ju-ynA|^T#P>rfnD;P_mI~K_OJMT5}r^}1o`jcJa-7U~-Jq+68tmSea4T@*d$1eW@LGAoV_7GVW` z0{!-c7g9)sclv3^f*8|vTt6fpRuafXvmIxxPBpHIK9X66b}GK38=wr4`sl zV@FY7BZU;$hS2YC>F;sO-U3?%f~6mwu804$QC`$1Uv$%b68WOLLK=`Sy4Ro~`J(d< z$>a;i)^#4SH6ow1OH3hO)E}mjFREsZ$=Cb#g^qYh?MS|TUP`KcBumP~j}JQ=qm2Bv zF;Wbg{H!C)qC2~{$nl9fBmjTVzs2A5tRuM`Kh27tZmqGurj)DQe%5imocwe&opT2# zX(#=UCut{qFuxkQ`pfMy=-!N1Dpa1~C!2g>rx0+Q)(F8mxaXtUaaxN!dYrcOYR3u` z{h}inj|TH!c68iOwQ_Lyc0+Z%Fil$H_%28}r01cydyaS%w!x9CI6*2Y2E|^Ig7F0b zTS#UA%DoMazRC#;l%2?NDG=q2jgAE6vN?*@a1$O|8gU+X)<)wtJDMtYjX2psm>PPV z!T`VhA#O?L3y#)`T*IeflpzfM;4@{bQN+~aL&H${Espw1Sjlilwm2FqbxMYtyA_w$ zLV&}}lU{U08K{hF<;;$Lo-~LaUgOtv0BPZH+A*>gNFcB@*wL{nWAyb7S0@HDoDV3kR3uGe4W@BG-a`~1{%7} z(G6)WFIO<2V+jmUo)OUTcHz@6J8l{P2@`7R&Ebb40fD&9xW-&|_H9cIYMS8en~us4 zbV5{i3S!(Y$2+pTuZDgKqK1xDi!F8-u*mvY;Mq45IRu=2dz;Y*9&XWVYRqZ^#ZdX0 znn&U7EdEGBaV#yH~bcO;|Kt+>|M4_Qaj?7bT>HvruK}J}9qVg+9C1R9s)}W`^ z4B$i%fG_PCwXjBdm<>JXxUeF6@eRi%G%+GS1g(0*aZgrj>bwQo)-j+A+Ts{kXrM;t z_^!u2c6e)+oK({=@sL>4kH9=VxxfvqBh<$ESY7aTYZCNdKjb(f%N=g`^ZE^Njrs>Hj zuatACJiaDcxz$-K5MH~o)fp!#ONe*G=)I?;U^1a(`X~AAt8Y7LhJz#E7=oBE~SQ zZcb&%W|)O1(fdC~_VWfzTjj@K1{f~gp2sN1tFqe@S7xBOw;aEzNGCNKWnOS6@ChRP z==15@4tV?HJlsZMgM|XfMn#>Rlfyv*;P%5ijzck^gV3|c7mX4!*p=%0{&LPlTmCR~ z58)pX8o77z%SO9eJ5rQyK&sz{f-o#vz4P&C0}_r7J1W14@H8;I zfR5aAoG?Js{=aOjpB|!$+4zq6E)N{pM!*M-$x1aNU`Iqu8AFf%1Fxe2%DK<{@DInU zN)o`qKC=@#_NQYh#>sl<=xVHigd!OLnvfDgO2yhqhvRe68TXsj(XfRThocLBIVy_i z@hI|dM;E2HP=<6tbNr1ZU;sCEqgnO1xdG7-#}muxP&l+(tu_c97^a1~e>C zTeH%9R!0v5z7uP3AV&!?#W)ZT&et8tZ{?jw%E%Xa5!``%X)GdLeitA9GH%21U<|P{ zHzk^N=B8Ob>&xoSJnf>&&OWkIHqNNta!?#f4R>}>f_e zO17MfpXVhvxI$8d7WOf3VFYRz>pY_D1|?Gadjlj8`wPMlh@8DQfYPziF#%NCjpoKX zryBq%?KvsSQk2gGXnA)W8m76b8^8tHbFFC4NpOCp+%T5dQRwIUn;;W|HSZ))wK`6+ zYEBLZO87p+WG7xJ;#2IU>bEBEc@rHih z)C{SGS~Or|5^X?0@7_J0_U>Sa(8WhD-*kMmf%CM4U%4+R(H`@`C-DV&vg3^7*= zYvjz3@x5Q9jp#t`Tg^?;=7?w~Qk`~5!pEC9S`4amH9rz;@Y1VX;>V@V%eNRcBwk!I z?-CyvYyjTTV50;dy%zOaFI7R$6}nayAA4ls1=)v7@vUc%UK@>mYT-0YGC7He#n=O7 zHg|rme5_|7YC4~R1Zrg%f>{{^r3U$}04jZqcDHm+GL~r=xn{k8iH- zx+>p+FG)rDnZORp*DBr)%HVuv2jsr(`KTwwUOuY@+8FzQii%s3D|eU){B?8JC9oc%6$>#n|{uTlKdpzp@*Ml z1h**YC=x$om4l8AaQa{0%1RKo7c{5&@GOY}n8O@8NPrs5xrLWk$=TRp195kwY$sCk zY4YRFfyy3`K$Unq`uuU{3L~IV@hWiALAC$JqlN_@?>o&^h-={|gqC8o@FOM>u7wAO zVwWoaXw<^*j76l&pJIhKp3cF$)AOAE+f6_tblw%`Qa>4P>QZr+*=w>BZsx93n`)kK z+8}78^LMo#PU9^!P8-xA*p1PF$;*S$fr|^vg6AVD)h^kIm0&P+P~Pc?WaJv{?5y-B zBybJD0%vPNef3103)-YH&iX;hC_T??1}T|q11N%OLj*|B%Z&EjJ3)?yNehuQ0gHl* zf4ex|nAna-(g=uA!NW0E(|dSjBg@!{O;2 z+H})RntFLXxL|zcX&*o7OqQg7{I~&I+I8H%eq7kYO6UDr8U-HzdD}!m0SDO(7f8^x z0o|D4d^+6R1fQPiJda+RXACQw)bT5?UW#^fmUEM=bkg(KVh0^*Wr0-c-#Vd6bDi4_ z&~aovG3)r6rpnMj=*jb(=>}*zihJ?<{XLW^fzb2jJ8Op#O4i>mEj>d1`D{%e{4EMZ z8?nIIPX!I&vpU}`aL!TI18_RC)pOXf{`hT`;DyfB2Ev5#;s`E7z%y!?;UGb0B6@z2 z^K1!jB#*g~*Pe0iP>utt{BGo!o~W0sxt?{Nkd;sMJTo`qyZZtZL8*-d33{1$mDgGM zH4@F}C(7>BF-#}jB=r^3nf!?J{qZ^a;(6z9a=E&Oh^BO1Lka0}Q615x{D|umXOm0` zW`4yyYwmLAISV5gyTZ9mX+`J|Ja$ZTJrS~n_xS~^&tJRJ`M0ce(LtGEc-J^bD>)#Q z8b%j1Z>=*)1<+gz|9N5W0d(};HKkF5a^o_U;Q*29oaj zu^XI0k}^XqY8rCBEqAF)*KBI)?r14jW!Pxq%fry#jn4TNylcD3`JA!|)ZkOom<@WO z3GY@i-u2wc6zvjsYg6uHg$k^<@w=UG?t zh69ROs09*Cnt)JhMno8TXS;Kx1#?>OaBj9(YQC|<`3ibsr@`??-q#xd>qBRzEsoMo zR$bjkLjUacqX?5vFY#7@Lg=iwcJ)1PSy_!t^y@d*xU12tCnzy`GU0J2M4yep!0g!= zfW=lYR(|A7QJMfGB5$^I5UHi^b+(oQY8tI{2Jo~J@^p+GnTWDK@g^v+4&q%Cbd}s5 z*e1*vYytf3n7l;GtqEB#2jUWbRE=%kJa2f*#!Xr_NohQ)N#l{JEt@pXOHCU&Ds9B5 zmLpp<9>pJyS%`T+ACA$<+0Tod0^3vH$sUf;!FC7M?4z1K9P>P*dU#)Q#V>Q7MBHSl zDQk}vZe{#ZOFcGbl`!D4lgY`kb4qFoBJaq^GZIm31uZ>h0VbP2B!e4gd`O117C$7j zndESfKH-qFVN3~ipuBDIRlz$lIvaf4f(l7zLqUSB=4kSp&TS>kg>7XP*WoSaD-jku zvglSoN`r4JApJww3P@g+Y4$p4DQT|$s!R!O9ktH(I$EhYqonuIYnroN>G$!1)-sgZ z`gTneQs}HKX(+bP*$BU;o>S;dER%{mzhz-)SevWivdxRu7dqROZGugFS-Y`l>vCsZ zBs-kdq_rs8ftQJHp{@>RjC>>!#YJgN=f98XDzK6A3v3#mk1MeKhA|6lq|5@Fm;REn z3T$iX?=AX!gkb4A3NMfr(xuIdIhqG90`@s(h_zR%Pi zZ1EfYKW_0GcHEgz`8Prd?YPMo_6-3W`-~7wxy#jK8~ZHs=*GSu-gPce?O0d@E180(i+D)9LBDF;@{kw&Px}9HS7|=Rea=-MIbkXU>JnvwAXX2s-N=Ak9U0&pLN107q;?W%J5V>^Wz5X$P8c&Y7*g zqL-bB=r#D;>ak}UbYAdhMgT7o*)t>Czi=MMue**ukEdz8dO_IOUGb>=v-m2&hF?0L zQQy_G5)s`p?xlRGtXIL`lyGjij2*a^;j{t;r-#A;SgG2_m1%Rsxe$GFi;0n(uZcJW7^|b9OX{L&JsL`FdQL%i1XNBnCz2W{J1u8Lkx6h&&1N&r6AW-N&ObqL%V0XN%oeW%(~|V zPDf{a2F6y#Roeu|UBN=!!(vunGmqJ`?q(*3R1y>g% z4tZmM%4eXC!eR^zKD(l8qynlCW0!@2loQ7q0ptT5D>_-p<-5jT%0~yQxO{W@>O4}p zg|nHB^O%W}mGPv?u4g4_GsEV-20?6UqKg`czGilVKohkflbC3Xd7jUn)}daVH%Dp< z!(9V|)MJoym?dn>*P z+kG45$>uugZ-Y4ggbWot=6#%}izB0^>z*V>HiR>wYFI-cO)8H^8jA9`-vF+zSZU0^ z5XC-UJH*vpavChb74S%VTTC3L-?z@zb?ckc*2caUie9MY%0yqLd+MtF4djE(x_wE3 zaI#1B1FdXy60SMF=ZxIpj zT3NMvu3jntPh_JmR1e$q>pDF158dm#dIs@IB2Y}z^fI^vXMNW^vX#qv24P4)^;bQ?54kASl`cZYBifCX zN%k|;4?eB2Yj_~IoaRbatD1m6pXM4H2p-b}yUzM1;K!P{8U%t*nmVbq+S&yCKvP%O zK=6T2O-fO-&A^+vvI4<-%)sEoOu*l2?rN+89&({qY2lixOx59u(6`|w#?+RsXcO?K zTe|iri;du&(6m;rbwRjnbY@la>IRww(YsAWAA#OTcg;|CfMThD_v#5;Vmr{a)~-$l zNTG%!fi=*G9vC0!czj;_U7xF@AJ^qcCKFXPaKheBI7G2)Q$^X{nS@;YzDU)`fl>Ep>2J*uiS(6`%^Cf00@#U^2f#9brOf7{DysOkv_n6@9S>cKc#HqBQVuI>20iV9oH6#Fh z!zx!t^%E257gxFJ20)|JujiCPHGX^|QN1GK$oY-XKR;eFp(tnRgaoxngvX&;r!}rT zlRBcuCa6Ivfh_H{)|DFoP8$$z0zG9N4vzx_@G#t#qt-P8U+;P<5S;qYmLfQ5>cM8N z9)a-Gfp#~8Kiu4vsseJj2bDHr4?0*!pdK^`!?EYs0uiVWooYm2J`^+b_syQg(bv005GXX!f)zvT%yxxnh0jfs? zCmf}_=0St$s6d~&$ePJ-a|Ou4CjDIl@VC7q4E_R-q_u-s`SPLFC3#jux$vh3;blOG?$%S8!UkbD7NQ3r&=CEkh#tci#qRY&7IuKg+i z=RE7+btS5uAw1<-b@Z;+GUv66y6?xV1zg8@e&4S}pKx80 z1f4#B6`CHIPXFkmHa20fi#Wi0?CeD1w4e`lIUv5=M@@w(RE#ZzZh1P6*26WT*Kuris4iRKL+HKd?1Z=e_QbX#xrs2aD&Ck zDZr=V7^hXZ>Uv2EDb)n4nr}@3W%e8$iz=0O*H=}LPH$b4OEp15zjn=300#5>l|C6a zM6C(o$7~loJT#dIEl1$b}wKCtj5+t=1ER*_)X6Tvk@JviIJp+)?Lr>-L zWizz?dskv0_@pj-yQo7Xwz^L1}JKZZ5D6K+UZ@XG4fCAAM*W+9OZK2(%HsX%!14(@w7D@V3 z5YH!>pb`c~g0cVu%Ofv(i?1itN3nPJ*OIQF)j#Wt3KvOT7QXyToJaj(uU}lZ@V)I6 zk4NyoK|Jcjui-15jmGt56N3{srw|b*Zb^NOEtL8I=N;cvblx#d&7607Q)}nlp0lzA z!}K}t9!;&CcNYOj}!4Yms}<^tgL&H6!L)Z z%*44%&GdBUMF^zNi(Et3zH(MaOB+8dkB*dedr|fqb1NvIEar2m6RiSEqHg~|Q@Z&E z*!(ok2S7PnyaEX(O_}9W3HoGIGaMBhvq$rTL24SQ*TU{oa2~aLd=MZ}Lm}?hB)KO? z=jPu7qEqv4(Tqw1+~SMJ@0HxXLt$2an^?b9-t9{CMt(~E96$Nehf6ytuzDdddCEsU zpU8czvb&=sZ)|4m2%hKsUC%IcwYV_%K1trw%-RvG5m7otxa&)@qnUU*QI8d0@Sza4 zu&1=?RPGwgI5IY$7r?-$C?tMR9WI>#ng1Joez_Fd(ERF*2#fypVKw(AtHJGS)!lp0 z{1~@?|3vKXgzY|a@T(6_W1E?|>0FJ%rlXW??uTXSzN&`1g<4ThWg$igf%6$oE7UI9 z-3pDZ>8=onpEh`B3pGx}m&-Os&0^eL1L3dET!p8bW84kYG&7{;vFEBN z%#02sm>AtbpV8@uXa+VnSYCfZjfLg)Wz67rtDTK^H!LMj$$@u+1}jR+CJipeUoA4Y7>&& z^CbEG=GNABT0lX=8@m6Hzi4jV>we+KFmxRU@X_D%t{z~_w3+h?y9d(i0)DXAA0z;2 zqpm6D3@Y1#G6=jnR;mTnZ@iQqy7jF$@hW#8+yre7Dpl~;207U;}v z{OXHJu0RjRCje}vaEjQs0pgf1011FvpMieM3=~~G*uRt(*~D#^QC2Hv-a?f5lZo=v zh3Ns!-T2H$KSDP518mpuu@>$`bqGu*!;KIE=riuS_QyGQoV(Xx{UK!a6q;-uIS`W4U+%j=-fs90nusS z_FW4xRJ+{5;G-;Pq|t#z-uQ0jCRn$n=%W%^a*~;kLe;0b8=@oK-9O?fl(-ysz=JM& zpIw`@Gk-52~Y6 zeX#esSj$yc-HkK-YQnu&YHLqJsio+=R^SxTc>&srCDxhiKBj(3s`7ap!FC&SZovZS zoB~LItsmc?w%-5H6F&NlCE?#@cN4Zsh%J9)>|p&f!pdJuyFI{NAxJLQiWv~MfYPlX zXGnBc)Kav7AGz#?p()E2*0=C2te3WE$g6|R#n`x&XaS8dJ=ADC}H*1dGDfPx+y?!GTiXk{G|Kkmao$40oxg&hZ9T-;D;YQ7i8a!v<*^@D-!KL%`RaYRi#}u!CEMtBX54Z@ zCh4ISy@%dJTVdFF@o!1JG1h%Sy+mrV(D6wYIvxXR06LBfq9OTobZ{_cEIrcQQ~rZ1 zDWBcF2U{j6`mc;5P|;gXz>1Eq=m|T7%!kVXX;> zOWUN28s7>N1~nf0{0K?vN2rJQF6lmZ8Ru{xhM0@6tM7|Gp6c$6j^??;*-a61o^%&V zV<-!(*KgN|C1LOX5U=_Y#u2PymTx!tQGJd-w28AJetc7iT3e+T>-S6G5fPvsSLMsF>4pEH096?si6qWl9j12=`9F3`JT@(3Ef@h@*Z?TRyh zS=>n>6j+3zlW?9MhJN+DyLphbf+2I)v=m~~f$|J=Y=vQDLc9dT!cA^gl5;Mf5*_xMHcjQrS^Mi+sV|Pf|ya z8ZF$8@4-=6Y;n5J-y5aR)h)o}f$`T|*f61IewuNFPZ4=ubZ?dAO&pzT{sxFn$6pKE zh|%ZMZT_w5$AAU_A!0_*5Tm^1V|DK^X@X0fj{0clVJNnNN|JoBjdd7Wi9a~>CBw|s zu-ZQ@$+y~AhoKPy3c}i67iGVSE$!+$cWv@DNdBvh_1sYne*p&VKi5Xo{-d0S7TR9| zI^(t!ObHbN*UbOoTa8(F<<#{-Q-Y(NLPUGZ;$jN7d0_FYYh8 zY{G_;jWbORrF%PZEQeQTKX%tNjO74r#da56j=JYt&8uHJ>fUL!+_LeQd$GEVkm$20 z8X*>d6rFr+#oO*Q8NKkH=|rgS)m4DY;=QbQ-Pw}*Dkzd}iUVtnzDHLfD(%HU0x(Sv+1rrkg3TVmc`Sw_>x?%(aF>?FEQVjrRR^;`s6i zlNEnDlDrlgVL>d3WLu^oKbnSw^aB5C3n;5dlyYi{Iy<}&I6nFPg%zeI{q>7!ZVeyuc*msOzjr2?L|g2yDHL(Ca_CtDwKXcMp``DMqrs$7GLk$r8iuM{pC_ zOxLn2?nlX=P2{u12;29%slOB~?0N*PGFtzW`%(FNF=F?U}YRu=ep6w;fnM>8?v~Zb9hU56j8CaH?`J37!6UZGt=%Qw{p< zNwCdAzdeC53;Sr&Z-4fyJ4%+9a&+F!ErIB?n|rdo7;I0#m$Q$?JCgXkFlYh{FzD=y zMc(H7<}yC4%NSV8As^X%^m*)o+bhW@+grQ8@Um>}{bPois|7uD*OBEb?XBHkoQSgh zZ}%&be5bv2^qlNRfzh+{0cix>-hJp_=#_;vXf0&VjUY9;gS95L<5U1vv+){80CK?v z(RitoL6b7Z;CQKJ2ZJUxBb8dr;-%p{Jz$zv&U2@{+?%6wP3j5JsV1d&5Cf((lv>48 zv&{cb1ZYD=5v{_|p)k*rsDH%e5b~9;&MJm=lm0u_O*gP^p1dwW-e6?iTG)2M2v-?c zwxr;z`9k0b-1%C*$7K;DJy)f35b`z>>x&+=X|vDek&x_$LN| z+OMNH9hA|Ld0-2QEu0C8s^=kNz5qclW`qKl`wS!0AE01CH$;=_dzQ=FI$BFx;|$-* zuyZvm?F30aSd64S0t&*Cu1jjFMI>E^eNjmtW0D4M0_j7G%3GY!(^JD@^ zH^wwkPp+GEGWxTLr#?E>#4}vZ?qn_QFFDt{vm&^0|Ix&gfU@H~eC0Lea(+W}cbdBz zDYO>Jh?9qQvNruIVxd?ew#kz^S)2KHJ`9xC!sB~AMC#&aX%rY)HYPCEA-+j)F9?wCwZ3u!sp zmg#9GmuZaR3Z2RFFU?S|LT6p+21;q~iIJW|Iqf~kQe`y1y{D}-4|&^TnSF~cwfEGU ze+x6Hz_uJ;W>#P;gHOQ~*nYtqmkVq+=iw_}$kUvwF`4E~C=(M=g;Ng|yzEJwZy+JW11`Q5d5 ze7EOz=;*PRlcPJ+nHNi%y>nuT#b-G#}MQT8!EdtH)agEl$!1@ zHA1isqyd_o?HM0#o^?0da|-q7?Fq)0kmTL+WJh)|)WJ*W%x=ony5@L-WTmeTf`*;& z#-reYo*~NPAT@QErxPk1h~LQTi>CMS+%cf!P4HybXh5Jz?CHBp7uJi4uDim~ou3zU zm1lKEjRs!ruFM9dUmNY=*O$*gXRdqbRo@ppQJY(Vx}59h40) zb+jiNuR`bd_p}G4R%8q|mRjz5vQ}Y$=ai%z1O@0kae!2vCkIiPL7wIYlxrX1XeM@l z*-|L>ny0aH65!$1W=jXrAA>yY0#UAx@-|Vf3eX{h7_1%iFdTl??=kFZm5WV64Cq7( zm31kEvgYll3`Gn6Xc!u?S1*=)(cr&9XL{|eR$+)|xunRC`t^}1!s&@v5rRP~ZuELt zeiVH$%+uKbE>vHIRsXkMeYk1$+UY#cC`oAqst{P$9A**LH9|j+z$}F*r1C0y+rwGq zNsqFl>82I)cFUtY)9_QDunrtpGqdz8i_DITcPzALks!}IFDp4uvI65`S^PB-%U~LUn z&r!}4k6uE6GN(=Pbd!}L9Rdjqj$vipD!wej;Aow}oB+^J6t~1PvKB}Hl=!@1ZOl&L zW@RO^i*9CwGQiDbMp>8+(V02V>Q8wJ)!HzbUOe#6Q`in0>dA=u(p6v2QqW5?u-pL# zA`Gpiw#A2+~n{13~WWKobj za@U^ntN<^KNBtIfmKaJG_|=usZlH@83+ESp7r}~O-2*Whzm_iaYzmV03;Y5y>KTa1 zW%R~#o=nL@>ujiBgQm-9h$Uuh#=;iTClnK0Ijv(355S~)9&T*7FBI9l#IqH(d)^;! z#C)f7*2EkpqtNzGg`u49HqKG*>5z!|Bz)nt@()bKl9catL9x$X9bf<#e9%-zGOU_i zIDKZRr;;p1;%omrHBhB*E8=m_0Y^Mg$R`6ZSz}>Q{=O1jUEx`-q;xe}FDUJ~|ERP< ztLV6c++ZzbQ4)Rc!*wH7u>P5Jpm0R@D9*x4m!Yj*?HNVxJ|az%*sPo~0^n_L>P?q> zb`__0AMMJf!NIItxOrpG?D5(xvUYFqY>F|}2O@GB1x`jqZPq2D<;atVuDs}1kMQ+6 z_jL8p9^dGhFDtwBJQjYGd%-hNc^#zYzu?&{?LyI8aJU7bsroF~;(1+p2SC$EYnQfU ztEayd2(G^58LNCQfXlnOvP;5X=|tOrl=m_zgO*U8i2wkMp>reWx4t{75^8-@3 zxtM>)SwzezpPc7uy2EoXSPDn0-_m7WxtoqmW&L-6tbgwcr}E8NkBFG9NPpqLRnuKF z?YfC`hpjO+lwLm3FlF1q2o!d}b6*-jsAhX*z=dJ1dDB+ zG{w4X#6nx%^!$n+;>Ae4!6T%4E#La!4O2+HyNOdst-BfK-hfEa>MNef7CfA7H=RL{ z_XO~1m%yhTnx}7MYMlvBrl+K|N=a!D+cLFTYD!x3wB*zjgs)+$j_MYAI$1&-oxQi3 z^mYjx{+YG?28jrM5Py@ZiQZiRhfeGr>H&=<1rf(q|<|=DtwduTD?4d2#(* zIKD8WW89OCrVZxrsz{BmL6~ur9;OV&Q&#J>-OMm=5JXV^A z8^&ii=yXK*Y&}6oMP1(aOh_=zB0zLWtFc65t(1)C+DhwLYcoRgBa=;npRDG*wZ;-D ze&&xW+Dbch{6sVSbQ63QhL8HtvsO8*w}AyNwLkK-P&_b|grFFVgrGHpVa7+e(>Vnb ze2_(7b*-j?k~^~_yxxOLJ1W8%CJLItEW%X`i_RPgt!6+nMvht2Eog`|r2$Wy?XSC%bcysH}ii&L%nqsJ0P`JXK!ua+S{ABMaI+dTXBlGu^Es}yVMwv zpnC+r*)K==JG3y=cGZ6Z-uRTcy zXhBidSSX4GuWx-rdF{L8RF201zP^t`iOI55m1vx$t4fb=Jx|E#9GR<13xG^jB_T^x zmFTR0sVXIKf4k-T^P{pvr5Vl$Hz-ZSkDhVLY(Ov6mzlU(MtvEMQ%ceo3x=1!;W=ax zot?hn*R#kYG(gkIux&-2_R2K?jVHr;p|(F`<#}Hl^Rs7`WWW)0@-Wv)KreHkAVF^c zI`u2nNpg3jq@XjZmmIDpn`eWwEw!;U&SKg~#v#eSd-eoj??-XDHpT&Ds*NGpqBfS! zW@3e7PID6JnA1FK$)A3UVmGGs@-^XL)BKJ~HXuV7GIuw$;roZ4m@<;h(1tMpdCFmL zYaC7qcUX1LHW-vSiG=zD(=5L``<6s832bMeNnDAtMXOrJh{skH_gz5>o?AP%aPPd> z;mt>-j>ONV=Cx?vvPqMXdBdBJNNYZ-*{CMNM~%wMYuOA*+gC3s8EW<5HC3epgcW$G zg@XdH{H}M?x44$=r?f@kxjKH^{a!3qqy4VqT;e+yRui^z!@`Q)CexOIFHTujYV4Cw zOjtMFR-0U)QtNHJ)a73S3wa(PY)z7iFwm-HLn-lY&uRWn2h8Gu+%XsQ+6mq)Ui*7ry@2hZS(r zSg*e{e^=mlW--2=^_OfhOuuC0^j89>TQg3Vo{;zCsG0wc)kS_*qg0zVBGN*S(SnPs zP3Hu9^%RFh**&@M;1ZY^>iroT9%chP>#aAw5^ww%hL@{duk0NtNwfWoGiP_CfQIa0 z-t*E@KUOj9j`5>X2jye;$etp*vwH@1On^abZU7|cURPTX>3v*Q3UQl!ra_>cXj+4vjEN4G(Qc1);30Y+ej(^=c5L>27V#>x)Gi)u@<6bHN3AIst~%B zWX=`Pp5nTddNE!yMyB_{DLK9{hxRKu*8K|3()*R?W4-lcIe{blIu?Mv_+Q<8j?Us4;bEO=ZL!8-A6Ci<>zX9Uzf+^h}&m$W$wzEIFcdeYK3*Yv64J9 zN8B8vqx2L|P)?$EoxCJR+@q>v^z&mF^fxa@)Zgx$QO(e?Dp!(%LBK(0wamG5y1qGg z3K@66#+bvbks$P&i-s+^Qw}X{;BARUUG~&fP6BDdAn;=>bYmxS7^jFqARv$p8bE?B zPk*;Dl00mWH)y6`&z04!%n^7Ke2uN#ER> zwYjal3uR>=sRxRidfK;ODiQZS^idnH#{eye`*{m-moPk7g^sCf$R>Vrg_m@}AoKHp z2SSkgInJUoU!Aw5o_0RN`>G`U>XUh|`T57MQ~pbVpMKPvA}K>jRZ!q`h(89V z5`hmzuCCq>4A6qW_x^VRKR}%gTGicqQ&|FQ^=~9u1yczvOHlJHZwmu7p{1to*$V?{ z!Q0UKY2n(RS>9Y(c@-8(Dw><)?W-JssidM;QBp7OAp^8fk<+Xqx?O8rZ|_&i2cSgb zR)s8gASMkHEOpDFt|7YRzu`;%7K;zco?v4yn78NSv+3rX)IT1ai2Qj&#O zGCi-_nkZC|=Y2&PM=FGNGH|%Jw=xB$5|tT;%8bD25L!@~?*awSb@TcNFWx#=0E_e+ z!D^UFDk{(>j>bKk0bH=i9|CKlDi&eh{i6dk!V;l`F>P z9W2XdI5tKfO6eul>2<};7MLDI?)0vS7=|owNSY# z^c9us{=ZNzi~jb+6z@D)X-%r)Y9)9GmA{Yyq=k+?>D?;zKtrZ`M=99=70(ZJLRFsf z=F8psB5BsKOyCSF1eU`UE_jA_g`|uG<`w^7Zpt)1sRZ!zDwV7_;+at4y%-$C^yOeO3(gT7zjZEk?Z zbamWNwQ_LyNgY@ZzqMug-j4sr-h0PKRdkKx-kX5H4JAN=Qc~$9>}ESPAfO-#MMG~} zfk+3Xmr#TtEeIJs6CA%v&ECEy$5jMNT1}f$8)yE3IGc$Mh&Mli*KHtB7 zzV9bI>$&I5oH=va%$+%xN4Hm&;={*S7nnIr5y!w%(ttK=Oc+s%)5)89t~WL+|e_UCy<|RBYKWiC|=u zfXr-UlPhkBa+BbDaq8Ju|BQ_2!kYm|mLC1u$GF#kC34Lhf25bNke1rVHHIw zWa@cMrJm=9sMBC(O8<;{t|#j0{o!zF15W5URMJmH;<71*3RU4Uo`|>%vcw^Ecg7Bt zx$jZ9Pi=)74v&aJ>07LCgND9X`Yb<3Bo-CwVTPC}lzk{sDCP#-a8!7#RCeV$hUQe_ zybrxBg&LlIY;IGO*l}kT8gTpNNkY?M6367t^xYCb!~6QFdY9c*`~WAkl~9$r*y|$G zY-=-7e`&0{pXEOx8Qtam$Y*$z{-OXo3qZ5`lcW9kci+n4Sok&7k z|NT4fXj8ap;ilFF9K2;+Q#nz)B&Ox#oegS(@k z(_P#h3pW*Xf&ak(7;RyLd&G%z?nE?M{#KxYtpKc9SUqsY}6_dcvZJSPjxZ_ zBUy8E2B2X8=i`EJO{x zX$LlsicfJ^v#r@~v)!I;H<~PNtJ$G5**)+ddb`DH_71wRc_){ua~bs>kJI4v7)(aH zTkmk_-7Zfypg7!4w;9=wmNfK^o3;5fK&`ZA)8-uCgK3t^JJq3G3zv697cQ07OK~~P zI-A|)(mTv{qs?isnv52m&EavFEDnNM%BW~;$yw4y;-D9Jmp{__1?ipy-WWV=A0txlIwXU(=bEmo7=>~NSJFg6rExjO0P z9n1G|sg?JwL;BJZeX6%yF*8a-~4%>@{Cozdm7SuGy7OYbpRO>T?M?9zLW%->uJ?0FncyS2zd7WXOO{`wkpFHg`a;-u=f`p_WEDb`|pSWQ=Z)-aNHDIkk#Wp+X00fpkNkv7pzk ztf-9^|F5*)zZUne#r=Kt3gcMtzL%?PxvX6Amb&L$Ao#J45Je&C@dzV~Ak5?J5V z*Rwj=MTnG!ApfB#4G|bv=T*yToCV-iU}nL7$Tk*ksyg&nY*MJ_Vb#lOfY<(XR`AOVK;&zCl8B{7BmR?u&F^bgYh+jQ1sZS7rEMFDDxn zXZrdJ=@?I3^}%&lJsP)uTurp|#o9H{qBg$Tb^gPxsXlY+!!w-jO$BfvfBK4J4Yar1 z(d6d7RYI<^+j^t9YFt0kF>njhwYs9LnjrB(sKC0puW>-t1rsn%mJ=oOdJ2 z4*7*OXw8IwR(k|Z)%mUo{D_F+-av!QKC-9Z=(f7If?LCDqBDmQn|Qy``^Lm0T^C<1 zFhd~8YYLCVtDa)9Lxvu4BYer;vu58Dd_s!U*KlNizcd|fvH2DVEhR8+uPYjNc0&!+ z%GB^Kw4jskem-Rcx;f65gzDb6L_qh~dnygp?Cg7lGovM)eNDI&w5_vmlf3O+=Z@#5 zNL`bHy9;wL({x4Z|t`quJ-Q+h_kh431d8|&Sa zmmpv<>o`*6n@~nG{iTF)1rE0 zn9nFQ)22f4!+om~SXn5Qs41N=MwDK#uZeNBO;U@X+u>SV8bYIenOt}D>S$j}p@;Ms z%ds`uuqv)I-*qH@1)PmGwC8FxJQxoyrREH`$2E1bed3f&1^17HJ8Qosc10J*_!`%j zlqQApU_v#<`m70T$JC}LkM%t(*ySCHHl4M62+2WP z7m&sXeOugYEBsFmw)d|1pMChBz4)IpEXDWmKlAZFbMQag@jp-Ce=;yxD*h)P|HHvQ z4;LI|x>!}P7`I z`b)T*5#??Z{#B2#M`j7LSMVFUvCwyt8;k;Le0p?aaIHjsz$j7>10^hmAUc*l&^=i# z5eg>e~b#2Z{2`?Lvc=`3B+1MrX&Q=;J_# zP>*j@)8Ph6zW0x1zLPaL_{hK--(aRR+qi$29!**6OR4`_Q~>xFY$?*RY-v(iHaP|z z_~}t-dfthGigey|>D7;0?zP^%x_!kl7X)wT4Vd=z1u^w)Ca7knD zgblvF)r31nM<(qx+-P1?AQr8wAvJKO5tQCIknHVJ0{NLxCpMv2&59)~e#M`R(mpw! zjC5zVG)6a0Z)w7(jHV^s(wLT}y8?N9)6wK455tOB*@|h=d*lg-Sg^r=?n&RzLMNsP zJcmDkrS>kU^3-X z_W9ZiH(4l_)fM!A`+Pbjc8ih=W7CDWF_JYA!Cpb9_xr3$b`76HDJa>%9 zhnWhoR+vUtxcU}U<@PWsC{C;2d1%t04;odxV8Ft@9;AhZ$tlZYCWd z%O6$KsR7va;@Ts9nUAgWC5h%?6(to7+Z1p~!!8=}h7X@3CY8DFCyhobbKQrz7O}$B z{A^{e-tY*lP5l1CD{uNf|i@kLlt^R@R_ z^$|R6K6_mC7bIyv>Uqjn9Ao0YIR!~x2_ydK#6K8Fi_!_4>jnc9WPOo=K< zMGw>2Pa22MZqaMjXG=GA;_Ht?_$vX8ZsBI>rD^Hw)<225!k*dt0kcN(_t(&_Jb$hgp@mvumW6wrP z6m6pvvcqQ%Dsny#{x|(t1I9M{j8h*%y9Wz_k#{E|?^t)QwFG`EB5-o`I!RMAy*F<7 z#&N<4rZW-^Q#;S7hL--5!pIS=nUKl!0lr?kw=H;Hzn znii1-Q__*g79{kL1}n;d)OPACff12G4?8XEB(*zM-EM>@T-J#nO?hI@Hc7O04O*JI zB>v%RSDl}1$6Hx_NL|e45}8|rOcVpD>$I>EF)UZpR-z&3k9a@6KTawtZL`acOK!!o z(T=ty@QAn}i{~Z(!%#~RV+R^k!_S7>68oQw7|GfihOSj;SN|)w zD=&jxq)bQd>nyG1|2pAEiOW%l{V>RXVKnla(H8-tya>kdgaVepv{VM5VFtTsIi-(k z`(HwD)%Kqj(j1Zr;`J$GY0t)($11uw5UCjyEq>J1!OUv!TDV8;NwvTuX;Lfd`Rnrh z5Rq7%)CU;q=%n)99mCWCXYAs0G-xx|0OgM=oSdq;T#5ve`%BRDj}tqfCaM0Hg*2xmmPitv)Jy_O z28g<+`6p>V^7_;KA8>+2B12?7+?@fC^{@pE%=CNIh=bIKbDM)8*%o1X`Up-n;;a__ zrE)}hwEs?&I5Q}^dAPKtKg0?1nHCAt%NPJ*dOm8=#y?MnNYa*ieU|kSHmk7<+WMbY zW9PK<_Z0Rju;ZY2H2pcDsT#jkdw+l7m;xUv$$Ze>KSPc!AMQ1c;o_Yu?U_SaStN8} zM@MQ>@gXPU>3Rv5FbCSM?gBiDx;nJBqkkv=i%2Ybx}O+g$u(SdDpS%6K&HI0#Y`8Y zgJij={pgaOjD!?%Y3Y&;BGVOf5NYs88bmjPe;r5g3s?YlU!D@1 zKU0n;*O@xvC1r*uY9cS#{1bR#6Wbu}VH*p;J#0d+ck%C2BOX#CHtOcjkt51^iIh-c zdBOTyg}{;{caF)$m7E7wHs{aDmEc3ni?$}8hDVYTTt7agIy#u+@5*13Yr?lo3z8;$ zs?vnhE?GLpj6|Wy%{3oIl^~S|rlKo&X<#XCnRYjE%Lm4+%YAx!5#jRMx8{KpfpN891F5>S3mXvv266T9pRObA}MSN~Lqn6r|m?D?N zLkdYSwbUk1N#sPnXzLrZY=(E|U~n1Uj)VR1A+Ok}ZPl68;;HnFv`>*ejsG~*? z@0k@s{z()vd+Auyx@oqq`6z1m&qszsY+jeQtU2FPdtVbNZGrX7did~PizA`sU)d6)jxvceV*7>_kNT_W_4RU$~(wQLDouF$V@j) z2+r}7iz193CN(m)2O2GV!@pEQvwV*UTrv7QWROLR!2y=m#HKovEB>&_9gLr{DjypBwrK+H-Tt)zIV??f6Hoo(uCM9WW18( zo-O_b@qCL3v0cc#D2dF4+@iwfud0;mvWBF~6_Wnzkvmegp_!BJ)oc19Z`w}(z3^E% z5J+TR$)fkh>TOoR&O&kiKOD8(<$p+yEl=x<#j!J;k&R_+K<{ECj6^Xh&1@n&JJ%5WB<)2iad+&?RGXVN=65c_;sk}eNWd$0~@Wp z6aQxy-Zn9|ONiX4Hq*u+=TCmR3raic?}q$!Rzbes=;;plKl}0hCdT#>k?YOTRxTg) zFW^T^jO`>o5@*#sQRXBJ6P0;JGm0Sl^e!Vgl4m3_07exCzU=={SP27*m^Rt?TF(IR z4nrJZpmAl(j51VwxQbE2pjrvNu)TU8C+t@?w-=f_bY|IQ0e(b#Rx}qv5oh4QLu%S5Q?C$-AIhL0UG$Gzdp)&&) z3Jpab*!C(>w96m)55+vOJGT8xW_0Oe{|4dzd{PzlTSvYv@hSC<2PHg?* zhv-q{84{{AX`|?OmEQ^b-{6GZ5(Xlj>_A^t_+J!uuyA=Nda;uyD({4R1X#@)D>kgE zsSJSO5wwPUTg!rO7A?ayi^*z`6#Y5(kjy)Nh&k2vj;G;~=8o%YdCQ^$F+iw|a z$vuAhkkUP#1~TQsR+DqG52S4p$bXeMdcAO@9Xj*gaYMi>`;eEBcIWK^1Sye)d+|NN=w#^IGUP~9HKyG8%AAwPRk>i7O+r!l{ z7;`o{JZ)_g#_x}Wc~Sa(MwWEHhyiFQ|05CQCmNG8{^b^&Tw&f}CR?!;@@7QtU^uPO zUR&T4|Akyr!VIybDIcgb<;_2-Da|V%Okq6eZ}hE4WJJyRhLdGBkT_Xx1I$iH9e4z7 zNIM~me)o5($?GP^-U(SP&RB=Zik*l_ar~0WvCZZqvGawL63iwqu-x0XZXlmShj%^R z6ZwDL0GFr-2D)INo#Trq6YJ?H)pn9xc~H?9d>A`Y(Fuhg2;AqLTQks|^S)R=u!G}w zO^$6(SECKF_QcPlbHjV!f93CD$7oE}_15%;^A4SL*7bA;aYX@R}G&}>SSXVfDz@SxCw0T2$Gq3fA}6d5AP zrYtH%?;Fhn)i^mO9&}$7CR)=nFjt01mUr2$0{00c)z}}m3T#nh2N%Nii^*#2c5MRf zeH`Ig4CQ6d z6epuq*?~9s8&hJto_3;ezo*ps-ZO?ke~#nO^iBb|5z%gY3d-5O@-F6kRg$MMC}`0p zQ^3z9MoCjq+Loosn(w>2L`h}7kULDAq-UYVW1uPdejC16z&(xsyK|%U zxK(9vUO81gU&}FP|0FmM5*fkstdhbdnG`N4q`<`GPpK3laT!5e9`4=NFL0BGZ}`B> zstVdln!Zb9;3wKdz83=YYjJ$7X|cob0R;&YhP@DmS8?9+4+OSzeB)`cBk(KHHdrg+ zejxJa%T=oOsfO@BRtW#E2jC~7(x+z*Dz~DUb`)Z`cF7dEo@pHa@@)w*mdGz(nB~ z11H>`W&lKJ$56-}Xd^=;xj(7vzZeqHwk866<2u7bYrr zRE+vPjZy!Jt%MIz`tkc3paBmB_9kl|q(zBWU$v0>wrK5?NM1)v%4A7wN&&#zY;s^4 zhf=3UaM>O73nG^cCEfC-m27jR1`$c`NG02R1}bU8nNy_?!~p>3yP+X9A^ zOm?n!(9A#=PGIn9PkCv@y@dq~y3`XcY0KwMM|mH>xBgf{JO#`pjEm~QfmpzE=F^(C zXgXPwY2HN%s%h~C+Ffa8yTfC2+00NB)NRy3?Ml7HXmZ$XPMgVTGMdd|LEBeA5Tu~3 z1wuX$9Mt zflsl5EsRE9!IloMuz_#}KM}LXHS+@Th+KvHY8VL{-jDqgal zr^e)17+4Xjti*<8nZ^HWhp^otEi?Ixb5B9k~tY z^Cf}iT;r0$KpM9hr56SU#$79@iAw({)N$?5p29#^{>SMky@}Vf_z&o+s9*!!A}lIs z42PME3O2*r&Y}Xqhkx6Vr$6Fn6Ofz^{$_hcVT|HTk-u;w^#hC}n$~j+{I*I7|pCDEX&mAnv8IUNTHFf*Tr`j9UiUA%?Ox(rCN@MuxgIs&7JFzdgPbl|2_#PV&X0d`Xsgny7`L_In}e^+=BpXjngC z3Io8Z$a`ke(grN1!mjS2tg_t@X`*4z2kzq@#RKin$njncbo|-oRJMUApO|A}y}8Wo z{I+P(%1|b(0-@>Xh3=;?>*C-By%1pQ8*GP1AbNV-7lrl*EW$aw#X>0iNng^c(2 zUkH53^RwtClF0mRhL|w_t&;hQzruVK^WbFWA(!tcvLYT&Za*vL9JGN)bPn(fD*w^I zM4rDdI*`N${`+e&#CROMewK14qYV(?y_kP83m3eBmr`R`k*I4u=ta5DUkSL-cAwmu zW@9d+F)|Xb4jv1vj1yK#&k*s88yEmKr#Qes#YbB=lcAo)&UUu~6~46jW@+HO43V_? zq8f3qKaej&BrU$BMsx)NTV;q4RWnfA*8{H$=NW7%w01ce*bAI|aWXJRMn^jMo*^M| zYZbct%|JIfB92=f-wIVntKSSX7jCObYP=P=Urn;)t$04^K_r^B3l*;{Ya&BbDAwa@(SQPvDQ_w8x}@dF!#V?lMdw>U$NKr2CGO z;xkqJrk5;O*+m%6;A3`cV=g24=pb}+RoP&a^ZL5lvYr&$w^=13SP(%D5yON!uP=K{ zSfuEen}^ail(iA&F>pmUPsQjaHHJBg;p5pzh)mq$&E@wz5_#oAHpzG6?zGdCom3Fw zt)$Hx%kJj*QjuDW^{+D2Bu4Iigv3bZLt5|=s;y;B`2wg%vSw-97!n~_ismTL@Xcj7 zOHm!q`{ohl`<^c&{EF{;mXwrD;knu5RZph$Vpz(%y;PpJC|y2m0+oHj*Pl(cur&!z zCLnOd5NQrze@V7_EI~_(wUy|ptBeaY#P-1p)S`~BrE}GsU zt^rDWvg{3E!0f19(y%|20T81ffVOTcn&l*!LoiFzZ}L8Jq%gIv_(t~)}1euT@oH; z;L;w-lMEDN#{nAMLs8+AJ(PnAd|1`y|EJ6-YaQ!;Ly3Dq}BufJtcnk^vCr0Rz=tTQ^mPN(Ni6q;7NJe+v9~+#QOUuhRCi?&sV_zrOuU2cpldT)i_qxTxi0;#w zgWgw;l_fyw5rz_{ZFo11QK5QjYMLli?tyZXBV}`KH*1V zZY7lsZD>Ned&3@Kr$W4BKWUo;lr-79vkz7CgW?6gTZ3Z9DDoMuU02__kKcTI<6aQPFM4vH4Vkh0+E_+CZtx&E=4LxQ= zR9j8&l)W$9WEza5OC4m0BxP@{M*Obg(iAyjTzP@eNrA}MnMd;swr_<{^=i4$1^AgSFRkK*!Az6D zbqjPNxVD`zf`Jm&2cz0oE_IS&6Md3$ph;?yTURb+s7W>qtJPLmq{cpb_0nP)HXaD$ zJPhiA%s{)Qd0h=9#gL{3b^q=XJ|~3>ZNc_o;J=rmJCnO{-`dV%Cp@Cg!gsU{+WGyZ z^IR#VjU@aGElv36DV@a5d9q|hQ*jVZ_?v4!!b2cO>3ibhTG0czs{H@kc_epX&f9)N znU5aoL4l?F7Nt3CCU`{)Uph3n;q|P`V0GZnCc5+{r&X72vw0A=t9Vsv6XVR{T6FHBg6hR6Mr9)7jF`7bx<5&z-M4KPQFUe36@ewAp+#dcnR`xPdnGrqhPWJ3FAY@xgRdzGz=#bmo7T zI-#e|EluFZ%qK}BbFfZoG*S;T+GvkO`$pnM8=w~!?HfUVjl1jV+WeIH%F{zqD~>2@ zY%0m!i^Y=59EI1MGi?Wq73Bg1Bwn}8aGfE+o`NJxi zk6l1BWVR>;6XwWPP7(u<0=9Qr-QYw{_y9)6IGen>r|3}0>+w6&I-nyvpKc&vU=%Ae z*a9t23>t)T21>G)Qz)^1@MAUhC!_Zngqv#Y-3@{!88%Kqpe!UY|1S-`sqpKel)XLuqQfGzr0n#28qcTvhufUVK7ks zR*)RRnFo5qU-SSo%Em$tuqE&C43x< z&9f>tA$l|pHm%XRfVC!uJ7P_Z7=UC=pq9Fi4mL%tGJ`vX+sp{bg5%Cb(vY#C!~q5> zycXYBhDsJOcWa@Rp#do})by^w5kfl!Dt8+hS_bcxAu4kEbFs8M=BWPo_+U%Wb5dS% z@FJOt55WCvt9XBSB&qnjt%INQ4~fL0icesOiHbkCNSWC8UnEQHHRVnc`xqKDu${IB zZC<3*@r{(-h>l;v8dSFfXi#!vQ1ty0t8ztu4u&MJ^Sn`HSzFUnHHQ%OcHc*KT~t>2 znTq32aEK6M03`08M?HE3H^~rTx1t5A z)-%{b_^$%HHf|4`1IaL+M}^&k`_Q^q7SxuJD>$sK!6DgK?bR#jLY7{^MMAA5%-pKC zLTjj75Vt~^QA-LFHOe|jpOf4Wz1}-GK|7B^-TMR&3+)xXlXRqw1e99#j=nc|KPPmO zp3$AcbN2=N3q2VqmMq_C3EgmF(G@;DSsWSL8@(sOLL?i5UnIF|%9O)vhe+wziA!V- z-h;W(cJNMkL>)ZdxcU12;CX(jNGv+|#SAfV@DD9fI(X+2nSB9Wv7eRDzV7o^_?YT z>xQ{{CuOxA#0h(o@I}8DL-uZ72MNmK$pKM9;?BVHSf&yG^|$tJS~1E3^A~gF%KuD- z#;jU@j7+)sst&5rB%^i@2G{V3g|Qc`Rh|eyJy{7FQrC`@r@bTs1-N8<1+QpUZ zmt%gEPr`o{lkhjzwfg8R&?SbZdZYEjHS-s4BGQitvgbQJRJM_2t=Bsun32dYtz=dP zi3}_jXT>{uQm|HC{_#qL94UMoB`KdDTvdmEx)LcbkM<&yGAzqAr0gk_ZGtf(A#uGq z1CX3))CFvlxd2iOg?O~j3S}Pc6BsY+(U=XbkEkf3KEeCx+Te`_{EvmP_h9#k5}nr6lS8O7N8$yk}`_o1Gmc zVYP|xzLZp|;M>9f%1<$5!jP4sPQ&A7MEy66x3kDc8*uUX%$25MdWW41&f$b78q$n$Pq;vvUh@{m&e?Yt^u8a*g8m5=QW{G%8J9C+Yr8sS#29Ic3gSTdepAKH< zx>H&)tLehflB}lnGNsz3Eu(73mc-U(k?hZCKlwC-xD~P?EM;iP5T>Yx;8`Y1%(Pjog!^mfG$R-P!ZKARM!Aiw3ZMBDR)sG$gH_?1 z5|{E-;p-q?MUo_PD<(+{w{%6w03_Q$#h+>O_=Aea8!{drA9JoI8u&SE4t(_~@L6+t zRGDOaa@En1^58wpTZkK#vze;NW;DRP6{~I_XTcrOw`@!}GXh_r$q~U`4T4~2Cd1x9 zZY+lTDH%2{mqlcTKO)yE7(UG~+!Qqp2Tj!t_(PfN5jW=1w(vz4Ew1Otxh}a3T(>U= zF&D?;dYzK%Im^{vU&(qB17K95=!@XG7*4nSm%&F-w{PT5_YKSx4JJ}6-n6fRDLfkY zT@)7|%3%&pL~4C9)b!NFyWa$_313TXlGDsw1*(5FXsTTy!C|kFo(r$}T3g{42~M`P z>A~#^^z+r=BLYK&&f)_N!ip%z^o&&n>iS(UQ--KmdPj`P znM|{hqaw^nf-gkZ%`_pdy;+E4NAQcRP_IT*2;ATRK4*n2gXxO<)Lxu+f=7}U|M+I` z1%9|lEV}U_3^DP6Jy$5*c&8OIAE?PGU7Tt@iW=?@allG6AyX|*A6=nziOVSW(L|IU zE6^KlCYMF$blS{%qfTeD>kMu;tWNcAi_NWbn&{%RN-VNC-MJ$6;`CQ>uC@`rn8oQ< zkf7Y}E(3@%zgmI?%j8#o{oU%1jIvZJxzki~Oy>H2WZuOUD%8?D&wsNbcH$Z@7J&Ma z66Sk5{}$}R@xMU8%s4Sv^JG9R1qr(Td+-&$=A*Im*2E|U5m)3?_T?4I_owe`$n%s! zo_`}>y%iNGNte3UPa35 zZ+KMZRn}r2w7tq|cog+2C3lwl_~%7h(WyMk&=RMz@lmBySq&7*1C82@lI%+R(X^Um z48@r*4B$VJv;Pspf+8 zABOwA){a}Lbce|+nMCF!x>l#WJG!p}qy!z|fjCvN%!_ZoQt7FZSIROOhBulaG5{%% zqx1EMoLLre>cWp!@i;=x;IJ6H_L*pEe5xT^?=kCbHlxntFk0;nIO?UdIv7q$Ms~dX# zKOT6DOL6G3vrSGo4`w&&0NrG@n%#O!w#nl%W*fmL+}NDt9XD(9XIyIKJ$umM{^fZo zRdl@T=OP`Nva!5oipOkpy7c;NW46a?^cdV$t4C+dc0#sf_qd#B*YBH>y!9q69~qzK zFggq#gT>^r*~~_>%L+UHZkNMjb~>|7E{99+Ju-iDDVJ*XIP`9-*{au>O-5U`&X#R< zT5WEJ(P+@w+6@p;r=rAigx%(WoYrkKf?hb?9%LWCT%4Gc z$`8zA_8mBUZ0>+wz59=?TqWIZId&CdGiQu$k3LRZot#$r z!1VC-tk#>`q+0bZt3KOp&|6#{qrqje84U&x%!baH?a(`1ko|z^5XDS!ShDp_yVKyX z>6}Kuu^R0bkIiDz>75q46D5v>@q>}A;hK5e7L&znGg}-^V>V2y#o_RHY!1-SY@>}L zZa8uPY^?Imo!G{5tLitWV@OYJ%gkCtqM)ojokoqANba> zsd~4;Y%=H^E*Ge-!QymSbUMA+3aSSq^4QSy+|_q^>xGx^<n(1l&1kn~ zTg@hi%V~65JZ?9%ulL%ER-XVpt+a0)XyEJ1^(j?!OWeh{Ck}K*15X@if)<6#Yo!^T z9*Y6q1;TpEW3)PK4ztw^^J8;?$MV>mdhgls>!!vx1uy9Vvjn*tjM;XJ-DS|h|5=<$=d@Yu4u=&aZ!j1Q;Ezo_!AWqM>(S?a-+Bl*$kEV$39OP96fgt759;hGeKzOFa%bcIAR|nZWGQ(2%D~l2a=m zn2wlTn$=?g@9xx_olr&1Znj%3W-vXyG23APnk_DS zw$1|o@3iR5HbXXisPeaxNL;f(fN@5_u3X1r4d52!)_(W4!ucdvBG!*510736tl7(`|EtCK+uykIQYKUWP=s)NG5*qc=d} z0yk!iPPY}rWwIG;W)s+zRcDRnkPzO$tn84Bd9oo*u|k+}+3ld(MyQEsG8qxnK?7+m zS$&>MtD<`yiEmZ*98DrqtvU#9dc6U1L0}W&0NA$GVsq$SI>@mM-t@~QkPSPXI#6JP z1+ox}(P}i=+z{k(nh1t!&bFh(caRv|Qe0M(-EBA6Y$niXgHaDI*aL%xjKpKmLHVw- zBjWUGg^KU3bYgVDwqo-Nx1f!Ya4hXs!E=wJ|5 zD`dGgyVdQoIURa$AzD5qKDCOCQUpg@B34)VG#Rqxp~_IHe!5L^?5ZRewYn;Xg>JlA zG7`OdWkns-@<93h|1RAAUAR@YQv7$}rdaR(yKwt=;r8#sO?!!RqzzxP!X`|KGw*v|?G|DsoDvwML!4 z+?iT0_sGHF=PV(2j5BN**3c74nw5XiS!?K({qM@ak_!Mg)P5Ag{_$TBFjOGcCUOE|9?v`NqQ-7kKP zfbEzRw?hjChjdUm=HTFvQ83H9$ZH_c*P%v|T|~;uC3TcAr2(MugQ2F#_duuvcR%|6 zfl#)PE1@CanQgExZLn`u4G!R7n<_tK68uELV#^0R7Aj^k5omNEwhf22~A_ePn1J_YS%^GSo|Wmual{;ZO$39Ti$9oMoU# zJfS@P-6GhAgtDJ3I@U8rPm*bOZ;9hQDK(+c6K~d-&?HXyK|(;J=eNg(wg|s5P}1`c zV$UqPqUT1m=j)aBj3wPv(rS@gMmVU)z_2Tm0Z42|ZK)YJ2<0a_YP&+UxU)pb8R562 zJhfgOwdGalCZ5UZ&d@f&CV`cNt+fd8tQ~QM&h!0O<5HA;g+WXMSWH|Vn*LCzm5|54 zL8yHMCj+2}CF4U6sqr3G;i2RSp)N|q477McXp*o}jcuP2>d9zBTRMz>tEtzxS0a$a zO1(xxLCDWPO~xgDZ~Qq484;fM(829t;AC*e8Gwj*&!o^)L529f8gcaGkY0(HfnJ>q z1{PFfD@NCjj&4^~qif=AH8u2koN&iuQ8l0=`kjvGccv#YqWWsYtXZM%f&wuEO$$C; z4egv2>L4^%knq2+M%}F8u}Ydgf?0vd{f_jHfICz*e!>=RE!?NT#_i^G3hR~VEzmUY z+;m}t0v#H!HV1^MYCLE2on~Q@8oSQikXw!Y)Le+7i`3YP329F!oABExJ5Rv|a6N8u!!bqe#H7TxUpY-yg&}N>0?J-=; z-ov;NqXs@c%clMojE3VQ$lr96wkjr^lKT2C(Ek)*SD|cV44B*KAlLI~T0Yr~R=|L6Y{P&|_o>%A>X% zl*n2WVy`;Sjqr<)_;<`_zUc{ThGALN?zp4Nv>EPhwK{Zwa{e zp@Dls1tpt8b>od$Rtxg23pK76Y2BntYmK2LPlbN3B>~a(^`TuY3|Xcuy*W#7GPh4N zWoN+&sVu!NOK-?-pN1b9bQpvZOG3kHNvJ66xzGs|Dh}0c-=RZRhx>bWoS6pyH*rcD zkj|`COEo}~KCQJLE`p&@4>WpXsCMeV;-KQl`q#l1#iC(z6dl)*rH8lILDNt|p)RQ5{pVXp`+d`vREjoO4H+*z* zTd44_Y0>uWq0w-0^#8YmA4rRYKD&lo1-f5Lal~)9#88~Z;EVpBd7(%Cngaa;4|M9U zsSP+ED;o8DsLtL0KOX99j9ZU`T{b#AZEX{#IP6@A z#>#5~Ob~@jpO>e_h^kKWf^u+6At&5YrB>mcG zvL-d|{q&VkLVWF>>@()uO8q1_UibDwC)gBSRu`^h_Z1le}^J`=#mL zw_guc=Y(e%eBemjyleJG=r!o)!W*HkG5R^i(24zg{AMUijSb&CYb(5`#y$wPb13 zLCeYisA?QqAf!F6tn0?tSr>a%^^2NR+-!L_v_ME%7gbcMSwvzj87Pr&3fl2rC@q1( zCQ6cyN{>9&ORzHNM6t-GTgp0g^X%~+%-Zk|H7nvM^amf$;rmxIirZ>Z`lYkiJ_!BF z@uSv}#bNWPbIXkrYfQ?;PegV$bS#IT6uYzB$X7QQS~8cZ3_v}XxeX(A2+0?x9$P0{ z{;a|>in07z0neh#AN28uuy_58NG&?KT`VqQ) zgwxD~lKFoRP5LBsQh1MnWA#sw29iin99LIpBJvNM#VMr`?csHF@M^V?A3w}r^>)pc|e?rW)Y zX==$PoVVS@(6gM-S=omLwF`#w1q%ZQW-`#hU?@k(WuSz03%a*F)LV(&M;NO>jDz-2 zqG?eJ8LEQ$mLl^8C}VNyc#kA)=H**Dxseew6Yt#+4xQzMWeg8w2f(`aFL% zG=vjsZjkFTUu^>#@f~dHS7RP1I%y}40lu0}rdhiaJk5+DMmS@pS=?RkbS?Cv(1Ga= zd^PhjEVqMNWW?a1`?r|sF9=54;!MERKjCV4O+5) z>8j; z(`#5hF{0Bkct)cW&cRRL4&58ipBKr+@N|wPC*diuK^dNo0m(lOPj6QX$8o}KW;Thx z3N0~a33nFDEi4YusJ~L-lWq3975GrNdSs2TP1ZU#NNLA8cTEhTSCJTOj3fs5vow58 zu}t(`F&i;N-wB>cqW@6{SLeLn2;o$YA1*c`PQVbh5i$Wii%I z$w?*27wKVR4gN&2vKop+ayd#ulrmBcrKDI{4P^<)S-I|IBuCf13_x=J-dgR$jd|fJ zo*8;3^7dg;UkoM6=^JN^OYPFLeyxFT+-ZziMJBMwT`D*}grx@c3#% zD`k_J$YTz-6EYb%Nv&)Q0Qb#jZbThtg}Nm%m@w$g~?S2I{mx;Ps z!{gN5j8-GwXA9q_M9e_s_1jc6cK1%46nCFE{5(0gR z`Wc0CL1prvHeT9c(mc%!nT54K~fvH3_hIH8E=BZM>aM=ZC5w1qimxE`Z+h8 zF3ePr!)Kai=7rlUvHJ)s)QJ5CgbQVeis*HhI6aJ5sH7QyBqwxyU^tR8ptKtYGr0pu zKPVijUzzYcW*|n~dX|nk2i+VL-o?F1>BLa=I!i}F)uG2psA9eh{4BCR5KgJiZr5q^ zNWzuoqv$lZ!PDFj*&hu1h3^=lDU#o;zb2e|Lx^z52PtZ9k_GhYn_>$l4xZ6~4wXH< z(}#u+a(sqJF3KmBB`5L`HYr1S+$LEl*AxI<L+%O4?oBYNAc{4;hZagnDHtDATHu4+EoCNoJAy| z;QNAbTj2vW_VkCsudA`gO#(MluExGPDQs3_OYY~Un&jMMNNQE=bezbuQPNbDwqC|G_eFZ{a`bay+6M5d)Cs7*5PL`)+?zR5IrBGr});TG;jH_n&NND{x4H67By5 z#);1`v*-%#Z(NPOgJJrl+Rp%3Cd4#54W%EyuK}uWzg(Ea7>qS)pzSxItW+2vPi@#j$NEbhrD zi7a{?Ldxi|1!SvC;~1IHG>!pC(~N(S<=#6~4`*(;yeoztwkf{64vpO!)x*?UTcTE? z(O?;xE*xv%?YZ%C+v-9S36-uNr{1>@b}twx2}w;*=dG8UtFhN?y*xxPsj$6Wp17RI z$c}A2V!z$Hz1|ac{x@?Q+`~Yqgy15gaG5s7t!f@Pq3~e6*QJ9pLTTFF(L@ z4^wJU*=MlS#QBfeqRgv?Y>{cZHiJalwI4mXOQr3k5bDk?N_F2B;rCDERj=T2RFYR+ z5e57bZ8MTrog%}pBCncLoqEg&EzPSwi;`B7SJk*PLMpS2|7=lO#TV4!Ow~O59Bnfh+0P_rp(dFXkDy!4E26GFd8>v= zq1%}iw-Z`1j}Sg2g4(sH7%p^_z}Vr7XGCmUrnN)2TU0dWTWzJ0iy=n}BiShmlj)pB zE(V|>mpxQ2JzG_*sbaL-DJIvt;@RXF*WSqeMUpp1?k|%6(7L}k4o1AjLhmo0NxGhd zJnbs#@>y%iB}TB@C~-2L9ZNd1v}Tjx2x#D-?;^~YhTfY7q+5_?JF|4VQ5YJ ziq4C1Q$+%0vU$?mF_Oig#RocQ#=d*B8R0O z#=pom-6QxH3Ffo$FOmSv!M}(Lo{N7GmAi8u{+Ya0y1NKlb7dVW+HgOipF32Xu9TSX?i*0G`~cZ33-9|nNQx{3x|DFxi>2Y{|t zz<3V>9OzqPMG|*je3%aprx`2m;=ZJSMMDAb^2LfQ?!Odpzy*Lq=K3k3hTNuLuO7fR zW?Zd?hUeB7&_Y8+0+)a|6R@{yFg&`psD2ZX;%*8q8UUV7<^#@s9lcx4~}2qT3QaIp&jh=kyz10KP#900s#t!TtONdbS10l?_nUo?V` ztP>1<4*(ptRW#vVq5vKXk^o+(fGzg{Ajk7%1MV~hjLrqXsh?WZ7umZ=!83xQ(U<*kTQ$GRYpidx?-yP7Dd9)Tu!o>>v?d)Cu4p zG;NlE22T8{IzL7Px9tUBEKdF*5%OSHfLzQ0&gO`aTYUjCX^kmSY;uJN|F0e3Wj%m) zqX>D&2#`OfcWWqO?iAq-Yyi(m{5pd_AVN~GfV&p=ND?uRiSVNifSA=I^wC1K#K+=O1 z&C$Vr6^U?3gJ66;5-{crJQz{LA_^XYWwP!5iiTVX1w4u;E#=d18gNfjKz23&iu!{m zIZOdLcwBg*xf2x70XK~$&Am$jJ3Ro{(CA7l?o$d_i{~+Q=#~217ZmWDJ3?}k0=i?* zlGox&3U`YF92kR;2FA2woVm(wh+o1k?h{< zSVx~0B7V>FI_J*&yzjkzfB)2R=Y1dNbzkS4*Lj`S*+O4#L{Ax8A}f9!VPv!ZD(b`{ zm++l!og?1Ab-6u@SAUHZH6d%T^I=wBJ&71De;>!sw9Tu|Q$D;L#9FGqjS}W`&124L zth0J@tPh?v9^!nIWvM6igps>4#MyxjS;F%=I7jfgL!C|881?6&;)SGP&NghCdeT+& za|PdAj%Kf_Cn-W{DZ`z8S)O{bOjx3sy*Koh-?l_O4ijc^(FkWH_PKiUfoPx~H2Y?d zYW|zl^Y6u1^~(D;jnCVF589(1_Z6C)^@Ot%`&m7yCCaD5uqzL-^XkcQVcidpboOIc z)sqiJfpmKDau7fN?3EODTRpxa?0sg=m2_M@6+PA2nir-zgZW$i@$_yFYzPuLJIa^* zDTsF;<&2qiz4QYQjN!snI3iM?h}5?twO*vY5vgq=^@B+LBvQLX>Q|BSij-TVd?NL` zNG%qr`yy2&QsE1c+A30&MQWW$)e$L=NHtq1ZU){Yl4;`MHIeEqQvVaFM@4F{NR1My zJ0dkjq}GenY>{$_)I5>8EmDg_>Qj;WOr$;+sjo%qsz`k=QaeQIut=RoYSx%DB6(6g zEE1_ak@`!dHj7lLMMy0ZsVI>u7O4c0IwMlaB6UTiT8Y#_k?JB+e~47JNPQtvLq+O> zNR1V#MI!aQNZp(zlCO#6ZzA=sNWCXgOGWBuky;~C+ePYIk@{Mseh{f8B6Uop&Wh9p zk@`@iu8Gu-BK40*{UlPsi;-F-QWZq%U6HE3xa_P4#(XJ~jm5+FMXH@hZ4s&NBDF%K z28h%pk$PODJ`<^lBDGPZW{A`Rk$O|4eif;Fk=iX%%SCFxNEM3IQIXmzQfowN){i3j ziAbIlsqaL}B~r&l>ZVAo6sdb6^^r)0eT38ok%|+k-$kmnNL>`ErXsaXq&kVzA(84O zQU^rp5s|tqQcsE0Kc#0O`K(A5h=(~M^@~WoBT~ynYN1H&5vi3TRVY$liPR~P+9^_h ziPRyHIwn%5MQW)?`9vyTr2Z7CTO!4lAhl4WB9WRk#x0WZ;^AG9sxML>i&RUI`bwla zi&U;iWr@^bks2aWe~Q!?k@`TSris*fk$P36R*O`gNI6AniAbFgsn11fpGa*QD3X7R zv2~_zRCx0u;Eg%uA)_VvUoifn>NSPUCOIpa3%7BjLW?-EO}zQ za|7!tf5i*hl?`S1!On%wbXH3}OgjV1c4mUJwW9%F?{>E06Ph>^9MiO%7EN_V^Bvzh z%d;t#>?SW2t8v7;%YO7_@#T|nEX{}F-3*q$l#hsYJ;?ETO#WPN7@s)V*_FMw6!$bZ z`)Cs95;PqfI3`bVRx?Q7KLgSalC;Z)l*o5{=!oFkc3vsVFF4@km7C%UWjieNt!8@O z6z43*|0KBB4<661S>C;DemA|ymBlMgbGCIP@$6~N3`YXL`GQd(r>8lecT|xN3cL6c z!~BI(Nj%N)e_`}==NycY2+>nR2vy+>BX=0@^n&wYteGIX3D$*R>>aFMyXa15C;=+Z z39@WBmFJ($Jfci4Hoe@6-)MpX5cWtU&y|Ex1)1EUZEc>*64=mcCvT z$#)ztRW_<#{ROWrm<=-~ZIegxojU*Q+s-cRf(3onf;PUp2`m3G-#Ht>l_+v0)QlWgvs~ByKvdvd$3N+dG^=N2l*Lqk+OsB`NdBH>|mSahS{2Y1nu|Lk1$Re zv0PTWq5S4DR6D#K!_$^Hn>hxH2bRh)X5yuF8I`$ z$YMW{N{rz<3k@Y^u5dPWMDm@VIWx7!8qR00)%8bJXx>VAE*Xl^Nn?!r%-J6cY)p(c zc8r6ooNd`e#TchCqNd{0)~!aSqs^eF>_GQEM<1|Qfj-ng1;4;%lKK-?ht%ZfS36@6 zt})5>o(VbP5`2s1UtoN_{}Wz4+?}BTBTu87D7Vhp&aumk*0d$!33p`ku7M87o`Cus0yy z{)Xvwcv>QiZ-V%{UX)eD17&vyESGKzT9|NK94$pvX)V1Lw#QfEwRCI^6Z1IF`Wm%l z(q5lxsKbc#-tc?DT1|P3U)NBob;&D#AHxy`UDEoF>+mk@ZY1BHStOk!@8Vjhln zSB03_o1G(>8;4%)M)UIPlYb3gyVtOya6V)UrWekOKk2GGBOq-A!P@As zoK4zA>0@JLC#t`HJ|S9Wjm{xmT$?&pqf2Ww{piI~Fz>*PN$ZrTK-9tIPA^ z`|kv?T`GeedIpAW<9H4xH2B)mk-tW`NzI&ODE_WJDfogB=VOX;z7T_Wa5ba?i=K6?rNM{|M0UhQZbtbc) zESP;345@GL&(2hY%ZYVIXC>u1!+F6mXJ>ZH!ur#~T6P=**ap1%FEB{;c=lOiSVyfr ztqn{Eed2{*Fn*~m|85#V)(}ry^Q^u&Qqte_1L|XGo^%qklY?Y7SbQ3o4GO%iqpvL- zD=Gf}@M@<3$5qne8(y}7*W$mQa#nQAvdv*eU=HK}o{HUJ+Sv9OhP*QNL9doRhaT%z;Hxow z`Z;HHg!P3^v@Yv+|0g(Z@apHCNrnK=pGW1b%9ou-zlXeI_&?_{xQ^q|MF9?K?5cpg z&s>0y*-m?Fz(r?mM{9aZ%eIAhkbzOH;}ZF#)h{_8a}3p9J9)|35dN&lOnYsR={5S? z3r;lP+1k60xghyV=67GDcUjX_vfGE;)a~Ekd2SK`A*cSBsq%mCFb@JhYt5L|5_97- ziGk_~b42PfW!#kxY>X;GZ5rGsx$jT7qWlN9nR|)2=x4m7s63lr$9{AwCLIEr}otL~Z@g|5FDpsfhL{!eG?QuQFu&9{qM@w6+>c-FM! zrBAOon-?B?p|SZ5}$p$F28)L$(N zCPLvtMHZd-rnmh~ODr}}Q#qFz)Y zdS>$dfQC^DAu6p=zICvCZIx+#{pA&Z!4}t{m$iysQ#{CENuL|;5M}+8qe5jldDcru zG`fW**29c=ummxpzehwf36XN!S(#1L-(G$j)qfnlt(lb3CDOwhr}2>N3ibH>M(}Um z{hX(kclE}pMvzdMCep&gchC%RtQNGOeF)Ce6(2IEgqo+u7a@u;h{BJ74k7xbw_tQepg-`;!=Kg8ef!G zA(=OBhH{vogdFP^k{6VA)p9&-M|sjOC3}30QK_gbJ}={H#1<+V*J!hYAkzXnTArVV zkx_IsK2}8Z9bHA5YOVgwK_RYM?6Cf|ZNgpAym0dMGJIi(E5>oaE|2{I-+kavg;e?7 zzbi>^Xp;5}bv3|QC^n^29r0>3-)c!kDl$wVU03v=~BXE!`nl{bfo^;q0m^Q1;B zJxMpSx<|O0!5<|`H;q!OoU1PDVxgqlQ_7sJ&{9eCoMb(#u_{HmQrIL5YrJGRJX$&I zw=IXyqg_=Up9`?wY?ESK)!Anj?5ArD>qV91evC`3C7=)dNfQb+t_(k0-c^n5vmo|J z$=LU61M1t>hhpohulz>>|JHyICzS7sbyZ@2Sb#Sr(D6MVQ4!7TQ}I9hX4bKit0rrL zsR9vQBkQ!KlB>R>A-`DFrOz_d|03WkKaO*?W_`bqtv^%zSl84mm0b<7{6io#1J^@5 z$Y2kC5%7^^Uyp5~to=)h_oA5xkz)9qs#qoVycs&x7J7SbY;8X5o->H8R!lhQfimuR z{c>skSc0oOh8-qB5!qIP(rgVron~uHUCiGf#3t|?i7+tdb@gRdgZeP!5B&C15^1t= zn?H-~$qSNzVC(!PkYC+35Yrxlpmj5M0}6nR*~cr^aMfY8*U2)d!BguQEz(`X74N7f z9+*vVJUx`r^vdh>a$sX_@x#BwCa9vwR@gooc4IA9Wn3d*gYE9eIbaU?ot1&o>SKXlYW7ipGD?kkFO#p|U8$*(@)yPZS>r<3CRl-J!#&{VIzIAi z!;vG>7MowCp)1Z2$|pAoXhCl`bS1LjLbFjVT^RWFY1zDBcllc6Z#WtWNFSD5D8mNS zm^(Ix&8lnR)S@Tpta@Q!9aw541o}cYjgEAl|sCE1J!<)%I+==0YrR;A*{LS0h87rMY_o4FdW z&n>Xel)#^w6o9_6IqJ(`3SC~} zdVj;`!&G|L7SQtJ)*FRRerZ}8I0+r~*S58BC1WHhUel^~Yw;k1wODTyF-DF! zH*9CcYJ5_An4A$hqH8-??4f4FU^9XQ=+hpGcvXMA5n zMnC!Nf-wW8Iv#jCeDs7T#!bZ)>Z8YrXM^~>KCV%9AHkodj;Sq{^t2cMp)E~2r#R#; zu!q#eGu1?H84kvGK4$o2CNXbkx~j77x|kEPFu>?)7Bl1j5c4$~G2fD6&i%i|tSTq| zhe%LX$U4~$0j`4>LO12uXkJMLWO*f(jSg#wXY`#I1bSnzJq>sab zq~Upp;vd`_hq;OYuv6PN$SI-k#EZ(y1TKbW?RS>vNk^_E@=u1kqOlT!{x0ICn!m7- z=rlzo);at-5H`0+5j|!irn19$@jI?qp0qzMiZ3lwIg~FP4z|wDZ&-y#A0(U+Fr#4FbU7sE^5w8D?H*4#mQw=O`;p=g(rXwT$ObY=7Y}*tivngDJ#7T@25I$irJ>c~fDX z%GIR03y7#``Xli`DP-YShNe@;xE|&^Mxe1AQ}iQddfHf5Jzns*E6H)t%>2=oNu_u2 z3B)!Y_*$0Uzb0mWt}BTTZ(g}N|7|3y#y@86-+^3eG0+ILm<<*+C$KguAIz#g1rMGo zh@spBe&kqOS$^=BxDfvNP**5+VBtq{-GZj@6f6|b6#n?rQ1}xHJ6yy1bv^vpl}h~4 z(QxR8_=%dr9~Dof!W|Fu=rJx47K6T@VY!O?j>d(SyF1>p1-)(uGL#&`KN^SjxK$xH z`;k(~V=?TT|5)Wnsp)TQGx#bXgX{^Y*C`zTYs~}eHRXABWaV(xjr^rD{hvQm-f=A2 zW$~RV(fnY}4gUrXB8fCs&Y7X z;kaU0m5t^ZyhePg5@j?9WnXW|at0PPY4TCjZb@-9d zRbu$P$uJge{Xng;wGvO2b!+~OQTVhtw`>mLl;b6LjK-xUey3-^5}kj%N(7(!0)m61 zY~dpV;iM6Kft^N{+$_-u=Cp-ImTOr;BUmiLtCZpAe}_5BeFf&Iz@MdNjy?)h&`Yo4 z8(^6Q@Sp~SZhBxlQ;CW-jqDXql}2_4Y9xOSXt2qG_K!w0G*VT_7{nJBLM^$kL+5|n z=I}>g4x|>yE!2X(kh({l1Rz|W+y>RdL`UDAABys}GiC=$_D!t~^#qj74F?9Cp0n0Kd zgGAQ-TUlTT;0Jw#mQx*7`{|2YEMNJUvDllVc zl6agMOeMGLLsvugu>vnOgR^eI^J-t$4bSV;l_cJHN7WF1WFZX6Vly4P0|NCy3t5X7 zfqq!g518pG=U}0)4~Ab?{A<-@et$9afoOZ6qOn;Z5KLkxEOE7GcNO@y89eMCS3Dm+ zplUde|s4^ z(30yjJ)ZI*qrze>=8^EDqM@-k3T`{~rQH{9_&s&afio)}RS&9W@O-hLq29<*XI z$wN!p9<4%u>{C|_OdyijZ|fNt^%$$XheVcYur>TuV=u{1gwwaK?AsjB7tVV)-q?y;EQP+Nga#xABRj*_Kk|Hh zMPB?`Jbc>+ql5X()d=uhwutXl;=48*28k@^-(BO4{muzn_|0~n3|JsqJ!h9o*7*1+ zes_pBlvUbdF4hWLWU=})pb^XRwQ!(&Zjqi`H=RASz+Io`JQH7ocbXC(l79lL)4Euw z=@u%j&px&ezV5UweD*&kfm411j)jrY~FhGc>Bcv)R1$JEDb6_#J$9p zBXk1ky~NI=yL}>+pSy93?4IV0!``C}MAHkfaEm|GQCsXa)IuHWw^~CT-*4sf`?#K} zw+nx>#5%I@kWRdLNZloTK;}nto(x%06<@0!(z2fDdlVeHIRv|2&VB8w%lv8q{xeJMm1g!&2=d(AXfI9M&zPDy=oOg57z5SexSPPSo)N^Q7;cr2%r85BaQ{Zm(M#a?Q~RLXX@ zSV&I`W5gO=_S1K=P895f*%Q0OP_G0`^D6dyXY4AX)yeIjNlfCop*Wr3no`YW`8~P2 z+;w@MWA0>rVMbzoK5Hk;yqCT}gSkqyODm?Qe(!3^Ds7d`s{+=0iG{C_C5AVg4bbr8 ziOu=&mF^f8jrF&IcDUSD*;ntzeS6rZpDKe^fSUAfq9E$9{ehQJjQ;Ks!=a6KRjwROPH$F=&!zVU(muJT;*drD!iMRhW z<|%{t(F<^VN^RGQXkw^QM29|Y9LcjHi$d80+s#Gvub)aD1e!8gA4K{~tPgAjJ^Nlh zBfB2+D(z<6xgV?PwzkH)&}=^WJO3q!hj`KjTDwEmrpc*zX>D*I z1PMM#368g;`Pr^+6x5w+wRqaP_+UQ#Q+FsEZxMXVcEh5>=DduFSOP87L0P}K8uFBd zNjNFR=}KVS!dO6ZraN$FK#||5-*RDw@JGqptMlqV55aP}C)MIfHIicZp|>H}ZVPm$ zEwrN-k<`B>^bZ}{U^bvp&n30s7w*7Q8a@%wn-=JGGZfoi-(t0P$d0i(A8}RcKAIO@ z1uyBHq}Ke$%dpjn;!l>1P*ug#RGvHGa!kOd`>w!*WGiYPjcTZ}2^kNp60oCow^GsG zv-siPT~+w3jHGZL74D8?FDd?u8o%Iwu1wykObuyDunfeGKh=gWeE(U+uSr2t z_!y(W3T|S81+HXjI5L9(!W#Sck1FG*axb{SyJ_GCO5yF@EvB z;d@hskIIIa1=&f-eCVab5He3#A7aP9Ys=5%kNyoC)l~7DnEAbr8EROUR=o^A;!FzIZBqP=CuH6ZZaXn6P0g8*K5h`3$3ZNHd1rId(Y=w9A34*?YaJ z<8+zR2(-S9Y!)~(%$Zb+Grpz7s$sFAT_&&iGhun#rEdkJL4MRIX`rOv`jC3qT|FfG z_SM?U!v7@uHuOFwN>1*SKGm5Gmz7U-oHEedprbntpGu4e-v7c~m)%y%`b+x`5MqRP zn9K`@Rj~6zm zD$ENy1`fhxHqC;WV#bhx_^7PA1zW8!D|HOMY#jT~z42s=;|=5EPOD$H>mliLg0 z-jP?mw%^9EqZaBRGnKxvWjS|iRvMf9gsQOF&#!iJtB6{#vU(+6+z6)oo`rhHOeIhB z%_zv4s;G^1D#@B#r$*EKUDeS}MYr8xm$^Xe?J^Z8iFzW&oyvwP=wKb16o(p8m|Y{7 z54)78Hbf1wPzRW)6bGst>u$*AD(V|LHENEb*21@HXoiKoWGIQ^u-FpGW)OcTslvUi7*?9}}jD)gE-%BfjW=HJx^pEULvWTBJWGq%Yahxjio) z`^v=NIB1XT!b|bI`fe4@2O^rM)OA1XctAYW!@>WSl(pDiN;Q6LJ$D_JqA-ojm>YXU z@7A+sU0xVbGnhy1Mkk$Yrq<3A7mZHCIrjr8$v56kV3varj9j}_fv&~?Nu!b}N_!|ZO z$_z$t4-dX_%_@A@q?*xw4;f1VO=5pxrqg6emsEEmb1C{oGkxN4Ln#Rh8{=?B;S!xQ zgHM~mv&Eq)Pd9TXvFIOUZ79btwhpKbLkbKqw5>d$F!3Y3a)j{7?E;FC6g|I%y9Vp1 z!0pW7sO|5nTRy!Z?h-P#OpVFpula&s$~n6V1{v>9wvysEs(`DnQ<*YTto{J0rR z!PM(*-1XQ8Kj2Jx?3y+yBI>9i?@P1YiH>*8L~NZ2)PX^a;1iD2jNl#HyUVdXN@(<~ zfodjtRKrF%oL@FvFk)8Qh*_nTI zV{}eEJgpm_Cx_D(`eo_v9;^f6xMC%K$_QUA)^;y-4w}Q)YOmozQuY0!N3A$vc!I?t zt-}3y49g#d*N4}!nD#U_XD{mIZpo9nAVl)WUbB-haIfJ$Qd6t8ba@#b-_>24y{T|> zbR34=!`UkqNDc{^?wHAsW|Hej)wE|fG~0~|vq8t8iVkCi7R*{34Cd&2p#OI&%mp1I z#w_`)c756A3t~KB(19sf_?rzglW%?qK55iGsj!HBn!@Jya!+8P`^=c&ebSdI`9kt~ z!ur7L>7X!ebqo~MnNRwzjtZo;vH+W#f$-j65i9zs3`glKSk6&wq=hiTOrYV{?STlP z<~&hbjib2&F3^E}`ngB2JPUB18Azr0U4N*5x5DhyG1RouzN}R_e?sj@GU#lZ1-iuy zHKc6BZYtkyb-z}ecVd0v`H#9YS=@ee zk;d*f6)Al#R#pe`!Dnj6@cZAm!x6+FW_O+0B;Aw1i@&Z_mk)o;9m~2}$Qicemxs9P zAZS6nsX9-{$g_q*$Y(65iDneV#?}r4>QjmOSVy6^dWxHo4HpyuW0l%#O)`I z3+{ivESe5IYp$M=Pqa14?-OaKD;JBb)y!a@ShzM>8(kGJvuirj?(%+ZUP+uZsd=J# zX;x2kK^nhM%{{vA`}mv1743nC(iK&^2ZC^&g_}0FNN*Im(Fb^?9CA{#&R6sS!mgqd zTtCW?`t6OzTGSRL7|q5u{n4LaG zQudFAaRnxezdzdD1U?TDW}69^q)6sR+SjSalOA*@U_-WGY0=Ra#RIh(?|FXnIlrAf zI~LgW68nW2yK0i=R{%F0$vUYdfH6HEJ!j>n&|F{1K~_E{_>yL zX_MSdS=dj~7YgA=r@6avQXGBuq{;5CSb>eFmMA3SBc?#%C0|TIj$O}SJkk0mo|l6| zZTzguS22i7dZ9jSDIJ^4wLml$+|YMLJDLYB^P3LJwK_fb7*O9*~xq z3LX<0s=lWTsVm)7R{nt5NJkxzM!KZ@jiPGG9#quMIu#`}iKSUE9VCW5|D!a3XqYro z??V+<9QY$`2--b8$3B0iI#|j_A;Wt@LJ=}V zHF|-yQq<-;m13DuDfK`##+5A90&HvslIGm+AY?UCQAg-htOH8spjP2KX4TWier%`( zJ=lyUN2G2pVikD`Jx@oQ)UYkooxtW=sBf65B=E3z;WKSh)GYzjJup!u@Wl5p?A&Al zer*HH;)@mlctrtyIuLayl^3MctHIaZ#PT1v1$fB@n8_hw1#S2gcSu_1SU&qhSY}xd zN8*7s*pG(s|1NfE?xMnGFP<-BaV!>9s%VQf8l-#-hvC|RaM4@9 z=hCQo;Zls64=B)n4TOb4LvR+Z9cUMU*u4YN9-(oP@3K<;8>WN){f0Cu(wE7Kq%k4| z1N}EvR5~mzQBrNSRt6U(RR3H$Mw&+xec145XvO-lPf(rP9G0ctQoPWOgAl`w-6PRF z=R$nV_vd5DshC{FrUU%OvJ5%}2fS(~uFnc|AWtajaE%I0G~j6~-A%F8poF72H;;;^ zYUSy}kW}uXp~{r=87fn*V!op>QA`c^q*d-z$6L0{*KL{9KEGIv=CoBYv97G->v4uJ zW?XXXSL8cZyES{__{KI1>_V{-o3bcc1N(YeW#QGbAXV(RS--lRC3V??FWQ3PMP%`W zb?%0kqq+Dsnq39%_!?@XbET>D3J(bLQs{2(h?ajcP1}_dPcxWb#ncjN)lRO$Cv}9+ z*F|#E&D@l9Y>FuOvc5k1*wHqJcIF(&%)Yq6-3W`CNazV>xM67rI>y=}pEe^6Jw)?P zm+Hs>kYkC2FEYbPBUGaJtz0PL_`o)s_s!W*6sRBr8_}+P0|WSz%mG8sK%E;)Xsd~e zQ$spkdu(&SBu}9B$*P5KcGtrBQ>2?e&2UnD@$~xjX~hSw4Wi6VrFz56r5af4Rg@}C zlh!^e+j$Lsb6-Gp*^(vpx=gQMixIl3z!us)`ALnap8EYK zSQ&a=&i|bJr|2tw|A}tZnRHZIt+%cj3+Bg*9Q4&^V~!dYi=wF$3-CDsFPTp&(*T2h ztV+YSIXf+3pP|rFAtcxK0oL6EaFGIIzhNL4Cg*Xnx6nrE*js3W8@3l_6qm;zLQdte z#6ZOQNJM!5PqV0>%}!dx&*Y?OQqdS{MJs&EPy5m6J4;rY&Vt9Eoc}{|Jil-(Ifftj z5wXJ#7IIq)nfk*eXWbR@54g)aCQ0yk9gOxkl#Q{VMp;nQHsTMVZG0p#3w6w-;Yz-g zL+;YN?qMue;}+-w3zQm0*CQA&|0tn*b*Ly~`skEf$zeP#4t3DboiTz8RKQ7bsDn8#H)tqlPjC*;nSc;M zRq;Ueq5*Xu^Wbh4#Y6(5y?6^QZpywCml)w`gHpaSrF(vb-LUbRM2cnd8#dGG5&WpNh)uTvwFa@TQAPNisSO*_ z)Q1DUn$POMt|z8g#Y3jyhaxO8aVZ#_uoBq$y;vA}VN1hCGCFt857WHZ)8eTL(f!ID zcWFpW#?_9FlCcW(vm1t9-)TQCB=6qbVgN z4%c}m>!qkYbSh@4um&K%QDZp;@t}p(*~~)WWbuvnFz%VIfY0ebxe7ABQFDIbKKjyU zEx<`Oz|8mWc~aR5#apiPesXvwvjPj{BS~Su9+%@@G(R#7Ul^^0>d@g*o`&rF37)qD zn<;c^WO5Z{>qmv$Iewhacm-p_(6F-KHd}USZc;D{x582_Otp%1ZzqJ1nxC) zlw{yH?ze^fTg}s(-B*yi8pNCAneVu5hWup-6*H|-J;;`0 zOPgt?QP;Y;zNe+wKQ6u$CnN{T_D-^AI*v)U`_k2B8qIZ7Xy|F`xFBg~%`|62&oswx zwzQLG8d-)>jXf<`#Bb67hW;iEAQb@w8^H@YrUc6#Aow@40WAHSG=TnAMC)>Qq=48~ z5nJiRcT+ttu;vy{s-Hu#1lTTNNZAN!6{W`rgGdiE)I&0@cYpWqP{pOX#?i2^{l>Gq zh*Mz1Rc9{~UEfwRi$}Ne$a9@9Zp2Q525+XusC|(umDrz<*n>FE zm3|aDUDV2xz>can52-heU9IWtC(8%#Qy;wNw*ce%MH}pbxu-aHB!})>YnSdx%Ksvz zDqqvt6UuH`cz;@W6sbDc&QnA9u^mzE>hb6+xqpN z4otL7HnfgBEh@Dv|MwAS;A>m%mu4yf9OBz#gqoTVfvL&9I{-JnO1mR&jb|S{Dr&ig3&aw8ht z3&C2Gh#PEiBqADM5br(2lf;S?)1xtsR*32>w9tJhip*)IUkIdAQ-p@8KU<_s>MUte z*$mlT$qBx9`dkr_2nyzCSHw3zCkGIV`l{;?Sn4^^73%|t#)wF$3n0bOa~0o?GHzcV zcuscq{m#kG9u!>vI0Jjw3;vfH#fQBU6)aCi$U0~4@q1&5yR^}?()8CSJc%qv;b!VM z_CLrJw%y2q3toZGwG5kVw zvv59OBH&|f;ZNJbr%VDIH;fDTqW^|hiwAt@WWYbLg}-kLpZN^nKS?+iiUw+T(upcjagxyrGkv)&owTv*C1~T6qMtC+jU(Zrc~YaR zar}>(W1=0$%=9DwP5(IucYomO_&3m!N?qhPdmt$2XHMz@iJQ!67RJAN0tfm$aFGnA z)&~FelM#!Z{4&}_wD_OeC|gd{9u>@oEg{o%LpM$HPJ6X8b5CFL8>%yD&R8rygTyEX*s{$Ei5a$xqR2 z-Lr&FXOj>Gm&Tf$nWEP{bseiDaD@)Uy;@Pc@sJict@2JYj3M8^&}F%WT4144mHGQk z_|+#Q^_WhjOU3rTA2yA-Z)--yG2F5uemRVwYT8f1maN7 z`twtZP(BkCZk&!ow+dB%<*E99RLfAleX%EojkX}43Pe(5;`~RRIJQ_JKMX+T0J(ID zrzy*~klqU+GO5ojT8=)mrc3TqcWDyRHQfaqHSI`7tJ?gn=docr z!DTMsDtOae!2f)TkIup$#FEzDI+MOS>U670{6>7sU|u*5V)nE!y9F}WuS8>*sc$i2*(i2Wk&f#m z+>%;{pI(E~I%d72+X}ZF+96-ILsH|7-H67!Ng;9X zR*4$3RNJk}i#K{IIli>zuCwEkovFMDqPpGk!dZ=K7#W^4tYvAQ@?7iS{BJ$cxDn4z z>@#+F8husUjL}z&ho?@)T${(X9TpC1SzE>;!#(D9Sk@EJ4ykFES>L(>FE_*+&N|_* zqA|AD!7$!kSsM$fr46a`HW-O<3Nl)Q<2~KrIU;noWgckAX@_=r1ajqq4fVLQn60*TfdY)Ta@E> zUT9f~uXXxD*)-<`4-=BkR?-{QPB<@k-o8Nt%#ce60N1Tx9oOx@h3A`e~R31=@T@H8DvW8HNh!t&F%Pg>kE zh!6Y8Q-w{j&?g7dN#fTJK;o4O{D}@Gi3vC9AR5y$3vNjuj)cuWgz)@vg*)oUCGdj{ zG!dit{3R_zc+|7#QVv6Qc=)0xf_sj8VsV8ii8V+E`Kx5%FPh z#9RyR9Sbgt|LaCA+NE$ibll=Oz!iF1Ci89gGZ0=DMY`3(+-zZH@?;+jYO!Ko)0uvw z0y(32yWin5bes!wf7t@|27*bc9WG;1ErCzIiV9l=mjaaxLHs%;W3~4mD3<2yDqS{L zfC`rbDuCmvXCiJtBxE-o316uT>tcC5J@9q1Ax~U~4VfkxQ*?&mzf|R&Zor02w$LU7 z(x`x+E=Cyp6G>a9({lRaevdofA^Q07d)^9ciG{YvhW7aH2yh*hv_m>gdf^w_SK?dV zN9Fs;LfaQeBe!bwAD%dDFCuN-(P@6SD)-3_Wq6N2;a=aeApZ9uoRPf z;vXpSHHm#$!&YmKCPFnXty!yRzIrmkXR~bCGwj$@+~oC7ybGzmlo_nkGN3|As@AGJ z@AWT!vBs9Y%Fkx&F3HKpH!ye?)A)nbzuT*Sw~?_B8A0ii?4RK{lZ?!HD5#NR@fi{ti|6 zZ3hM&mBrunU~5J3Km}XNUp3-ev=t_diw_O+ zR>EmWj!G!Of6Z{CaRa`nLn!}uV}~d?nfs49hra`Jpy1u#SEwpF{wS$Nvi4Q%iSsoZ za5`uD-sFzu)#`;#LI_m{tMziJ>7Vx3%(2xr*Zgayd8cewWTpGxl(HPB6}qVuzgW%v zbiJ@mrL0S(U&b5q6oY7apwzcg79maIk zs}^}@Ukiu@FOKmxMCev1oUOPfyE43v$-p;6x4W`qEbsMg$0WXdvNM`3zh>^m3W%SM z-54V(ctwbBb_MSk1Z|0TOy^NEDTwtVXltPyG*hTG5BsHKoC;o+x-LDd2d?`i#Htu2 z;I*GS#_%(h(0lxALH}b$8!JA`VNCWd7mA!*l@^$mK*1ayuUVW<;WG$DF zX52tGMByIQafWjnk)NMdllR%sF@!(1AuNvb6ROoZ`s6Ybr|haG(J6&=cJ`q;3+p|13t&`<=Nm>DE?`mfHHw<^kOE=cbUAQ6VE9Unz<}1z; zOxNNB zskFMJdXpVEU;#j}9<-IW8y7qrs~^Tszu`rg>_~c5-m5A4llpu_^MIbaj(DJYZeT~K zQwPPI%J_BZ#@0)+!?OtPRZS-aS`Z9;b*&et7Ao@9TL|(*{Ig|@GxHSK{#61CHIQPr3$kB zR_C&O)i|^@pDi45XB#-_p+VykTi_w&8&rwxI{ERKio;?~V}XFl2`f=|yvME$VJ=0IRJF&yE(ILan#SZA!Z$woWbZ_efi+iVOCC9t~+e%lQ9 zE9dEcP|jaw@c(SVe)-$afc)`aA@E!Of3k?{@bt$FpPOn7S&@zdGGh3=0kDNN<=;&! zdXmJ`46Q->4M^cY1Ske7dOtJWZ$@Sf&WPYk9!3^fwpsKxXW{>f9fQ1;*()lG9CH@* z0T+g6gz~~ip!}J(^cT!@@==dG>aE8L6?m-~OznU8m<$Nv~ zD9lLYIorC1_-BP2ZgW1DZ1bUoMeW~$i7p)LO<-|Yl_x3^ZsZ$h_=a=6Dfy?nM#`QF z%i<>o)SyW5OG^z35I=|?$wbuq{CIC9>#8!q&3r}%Vt)iIwD<=6E`;x&fU1MIKwv)Y zZSx@m;hpGBX3r=vZss$vi>84%jvpm;=rPGIE%Sp~4Gh z-2avb=4bB<9&q)!xh8=iH&TM)nS8>UX@w?}8}5I@q(>7E%&T0Hg| z;v3CzMb1jx`eDLi_NYH*LQNcm`{r0}15Lu+d)?cDjrdzyo1tbLqGCfaA8Nu4vc(w| ztS+0UaC1#Kgs`$OA8Mk#W=r$;881Y3#-&V`(QvjX?j{pgoY$4Y&vow}#V3t{Yb>Uq zFkNcO=S$msNTa)lcCW%0&4X*{`xJfk-hrmAqh4nkv;A`GPrGmW{ ze>Z{K*n(+5eQ1HV5}T;#xK1^YP6MX2l+IDS=RVwf3}bCWf67cZT+~FiSb=eqY9QF~ zPTM_H(l6acbKu{1l?K)4gaM?#XYKlqLw&8 z#gFtT&E1R8O~O*!$b8KL--j86(jR$iu$s4N)gQmOBA_nN#l(j`@}^ z*8Jfns)*Wp+c#C7bIf_t9N@%{y(x}Y{5fgiryOjZ*7iVR(Pj{TbGf%7+n|VrW}+<8 zZQg49Y*CLe{^^&{KY9S6NRzf!i>DcEV`fAk-xH0^Z+dU%qYo7rg%<&`L>X+ux z8v>*zT`yln!6D+d60fMqKI%=3Rf;5Z41Z}ge%sv4O||7>BD4zPLc|?u=8`QTd2`m_ zXCur=Y-*| z8VIMa-@O5`?5cNUNNDHAfO7JG{PM3*O=3Czt`~ibc%YnkQ>{JpHEM15JF;bW6~EIf zKtQdH;h$|p31pb*oowkegCF`mR)b7c^k>X;WAR*bgoI2IkF#ZB<$Hhr^S5ZlA1mfk zGt*E-Yea%f%nxmuRC2fWBi?pcF%OuT6pi087*W`Q89mGKb+2M!zlKAVU?&jw;cjnvakE9BbT8QA zDBQn!4_ux?g+n-}1XnUWDC}!Y{tz7YQJgz9m~Z<5&dO?Y4l8YQAXoFmUTK5sH&I3{_I+tU0MEA(GkOu;<*a6t1Sm45ppbO7UgIG}_a;(?`vjCE5X z{7Uvi<#_Q==$2b4dUG?~Z*hue_pHhny^m@OV;z`JW7~Y>UhRVz5R6oGoIemKJC4E* z<6{fG)%m^GdsgE24q-$HyB$a$Y)hx;LE;f_9hRr)^UQRL8AL_&s>7=tg(ZjK4g}-G z0z*9*e?|Z7m0Q0s3Pd`C!J!}r15<6}V4RebaB}Kye|!Hznf;xe)!7-Wkr0={HlgIh* z34~`F+@p%Z>fMtww?v{T|4BD{)y!YoE12gV#Fgl^@0n+BYuuBw>Lt*fzj~*!L5erP z&#S=aEp(OT7fyK}Vtp-`Oo?H?|10%}Po`RRo!EGV z9iwB@Jl=k6l!Y@=a^Tmddf}wxiT|nF?&rz!lI45xPby#YUH5D5%TjK5%P8el1k_7; z1<$?;FRUQra_>540}nq8-cs7Kq^HW3(sD^pRs3=4nA*V)JTRuc_)jJApB0-+2i}qQ zz06N8=~;m<7t7+7tB16t=hLD7)}3?3Tb=!(gkCbn*y4ZFBJ_13bjeADr>k z8^8UAw<;U(03WfZ=s}+KDvoCDORsD8C-VV*Gn&eU4l=87)7!`~jij6+#ULqD-g3ua zwRIRDe9N1}vsPqQ;z_^5gie;fF^M`sJk4NZAK*JH_!6=5h|YcJ^gncSpAdSP89f(M z*Q9`yomp53I5V>{Ph5sz`Vw3IA~T|87DLN z$u@(1<_xG|y!{x zXAQ<3RNeB!z3N6?%)CQPt;*#gb||YHsrB@Itl#-o$-0qb#mh0AVyt0he2KiUdv;Bp z^U34E@BfQBvB6f{LQUMY4x{3cQ}FlRVG+DsDPJgW$b6B^qq1_AWJNK5$|`xamqL75DHNN>zpfUhA*fb@-VGP;iuLI7Sz*AZNT7#%YB+*j{8=PO>*NF91m`n{rC4Z-r4-2jU5sRJ;mSz-i zY(zz<=s~`tf{*rfi(^D_m2ML@OCe`yNNiqtRIGBg0pY+1GbockQOVbqtx=#=8VHAG zW8;C4ZFrooqgdN)gTyHj0Z17)uZl%&TPyo2u~UkBLgPl(^tIvJEBk_YVHIDDSlevF z#rY7n+M<=e+86KCa;zRHZI^0>>*}09bzQd`C%wCFPx6b+e6a|T)E>2}ANFI{>L1LL z53CAxV1097kzy-KiSA4I2u@`2_Vs-gG4Gh(2=XWJ)W!idg}US7f3suwn$i72cuq{; zV7_`6W)rH2U+Q(Hl6as7*YTzJvi(J({n66-4h?*j5aFgAdYW^{+KCRIawy#1FO(;x zjt-%It{Y{bnTalCjDC~KHLj7b9<~$_bczW|z8a~eV1K`OUac{z%w*zerecD4padRU z#^^FB8ql$cuLd?45qp`5%_#(M^>O$RLhAgp{VMSN&5^+pa|Vn28Q_?r)V6R|#I@Tv zI|=CwrYT9R`8u2GOK_Z(dH!b3(=eg1eNFpE@qeq&+Up z9jyWi7PY*NfK`^31x`V$fa1L87oOcI(GGQ?-WI-O)?9&8O<-~+NcDi@e64X;L-~!C zP)}oX4mdchm7#xA4iT+=o!AJK!%$NW9M=k{N>5oNweh83;?pGmAV1x4M^pZBQa<+J zs3t~Z`h_YhblL%0GMaByexY{X(md*J|?{9elB(2M^?Kv*S`xM0Y|(`a^MVTDYBjBM>_`(XIs0$nc;q zC&Tlv@Df_f;c8JX4U5*hovnEHZq5XTQ*z`$>b)Z6+NSVj-F zUGIyX;Y|z(mX)xt_`T|fvfe9-5$BiUl+WU9c>GHTRO0t@@XJL#;dEw-U+UJS7iGn1 zeQS?kqp^|>=63bfVK1vJW|^~~QIC;D5WoHn@)`0i>f;P^7SsPbi_g0Gs<3q`i#6sf zhIPlFV3irS;=gfgdjNMv;ZE7$YV*c_4hZAh@}Z9zpCH6|!c0FFNGGSRQLrq=NFBw^JQS9;eP!xmPkWTav2$E z2u?0zjWk@YS4Kq|V&rOUoWVHxgs&Yhe$^3#8I@&yP({PKxLqd$6fjYD|pBrc#b@W;Y)jalc2v2S9dys>Iee0sfNqcT!0>9U0 zAa-JBeF^MKgQx@t83zeEi?T2Bh!^_In zSC+4T1TMKy0rih)6lL=V`8vT%#2+l9GC2H?80Oip1B&4Fe#Do=+9+&GKbB+Cn%Z+& zzN7EMwfVfEP;c_tNO2pRT^1>}S&-x-2K)N4r&JbCXjx=G=9>Xe(GEA{zj40}@ujl& z6fRf8VFXY?2wRP(gbk|5Ykjae+VPGp{VhKoLk3h`)te8I)%a0WjemK?zlUXL*9PTO zIQHkVvfbsp3wJ-Ov9|)zOu_I2WsQ1FUPyy~2gUP_kNbkyA4>9@QgT3IO5Bh%Sa>^a zT=C1x;H#)m6vf5cjzk@<9xAIvBELBf)qCgK%lwNfi|4g0 z48II_jZPmF%ZHDKk2KYm{!Ad9j3;zYUEuzbf|1?emZ$s|*4z$zq#RG{;S6G%L;239 zFUupm;q(iwXr|+O@pKTjiY8Y3Nf##fh(QRq=-bh*>GP<-jLsCI~}*ic9KsknQFiVLFChsVf271nZh zg1TwX>6)qVdsnFsuU1#>H^rFT^!3Y2zMd>j#5A~QKPeISNjWI^3k0sbor;qM=3cv2 zi>F+>7Qw5&01sl1{E+l))id-fQ?OAgR zCe?zW0{QGspIA~v!j051#jAa|zK}mwhM)iHv0y%F#b7Mf{J<3kF-!suwUWj0g&)uL z#bby>;)NKo)fTg*<+RSHRxh*U*AxHDjHB~Jq4QL!6@evGU z?*Aj~x&xyqzCX8tgqDzm8UiU0AheLsdlGstiWHGfC`(5`sR^LKQ9~U?Iu@iOQl+DS zAWc9(sZ#Iu=%NA&zt4NScQ?Ctet-GnbD8o!^JeBvpWR*Jh^Iphj7q(_go(t%owJGq zm;_+@%i)&ZBbp35*^Np3yaocT%ls$ zTP=h11E?i_i9fXxQ&lZme7~4-+Tg_p#66{p8+CPYcgUZHN329#PdS%>=^umXg~Y_K zad@-pKK9eEbPg2P$KVEW$Z}NHpMKe&`DM?$43$+nk8TAe#l&TpU2%Kg{25N9J0Enj z|N94a6PUd?Me><|$B?hFKjm%woPlyHkb(9_5^qaMw9dGdTW|(e6zrN;6kG}2+xTT~ z`QPkSR)Kx8!JgrVy&|p``O|oeUrxSIoc#IyC}p$3xk2Jge+!K_c^3+$&Fjtu`SqE& zTI7%YE5Gbq9;shqSh;Gj|0=Qn_2vDl*eLTycit}@kEpfQU_{M{vnx8B3=&BjP&vGL z&ehm?)NPdUn)~H(!3aU}E`^Oee5;I(Bx|BSRjL`Bm93oUZL8rPk%cb7KOOb1mDi(= zdK+{-taM&8c(Vj%kWmmlc$uC!N$qM)qVs8_RX@1$cm*~71y~I9){W~i=2C>2-aSOWUomS3memQw*(ES_qznZ~$-^v-Y727m- ztaQKorDLla{4J`i5I#&zW`Iv}ZFe_hSXE(BcN_Xzd}MyF$pZ3FG+zs#D(kx)`&11L zI((eVL)Wzl<^h>?-is8Sc3=g756qi6Yy0KoW;J>zn$>WF6CdjGaJrjS1^U9gnXbQI zI?nOf-LR_V1|2@o<)QN$)V?a+@`@pQQQP?9yqS2>e-nSS2gE-a#Q12JAL6?0-Yd*w zH=ftB5FhqS%uRLnJ~Y)A1~ES5zHZW=JH&A2nPAK!PG`#!h|3hCnEls@Hm#iL<=1lY{vH> z{yjJCoYfW0ig}l#AGX=x{xH-$%p2&EOGNO{V0@^rT#as0^r zNab5YwJo|Pyxajrm`ItAab(s}?Bj0qtK>RX5?{KVc$^n`d?IuH7#3bP4N81^g38TH zd0;vydBvOfW4Cf5WCRY8@D(JAWGTx_7IL)h5lRSd6i|KS62s1zczN-NJqzqCobDDQ z?w&vs!d?tTvhZdjU-~?+p)`0qh~Sf0Hqgkuan}wH4dd}#8Y@+np`^A-o2KhWIxwp8HLVhu{ zd-qWO3IMFbU)jubCv)~^6wyq9A7im;r`j;i1d40kmC%yrxT1I-cex%qjC~NiL+^~q z?oQ>^HZ9s6-ThhxP>`X0rK^kO6MhCeN>jp)Xf>bF!^PW zxON*w+SDL#VDQeN~GVz z&h8{5!E`CXn18WAE`R@i6`WCdawA#C==?&yKsHdjUr1!UfmQsy7f*|?HyFQ`7_oPk zTSPnWr(hS%!zkJ7YVtK^Ei3S(i@wjms)9X9xomL$;)gR%v?$jT%S5Fomfrg?$2{jZ zi8KG5#JmSsFa;LS8(IKrkWOm2UU?XTwL~o3j3lN#yq{mmQo!2S{`JeupRr!|=zb-o zlEIuPGsn!uXhh87OsAe$o8LrRDX&vYC0(X~zW3rS6F#iD_ymVF-3{6}hsz^W=}g8~iT1v_-%N=uXx(dyDyUb8 zg)HB{u%LDZSzDP58zi~KXFGc)>Mwn3<-^$Ahmjw!ukhx6MP;JFI6-FQ-9+b9SEYru z@y@rgK7=3o5b~t5v&~Ub*=P{1lL>JYP+wW&!}Em?54Xp`0giIYZwAjLnTL017w<$x z?F)KXRD?dG1{vwhsa){k{@KgTc7!TtJ33uJx0~8;d+!7CmwXC~)G$Y5aiFvN)VN?F z>kx`dJYfzx_va1&6+wHHY$je7?L*z&KXta;jtY2^*-JfN zrtY5KQ9>lX=u=8;*3z~qSd&3m+a|Hjm>&W{cMqGqGoW_dS zq7Gx50~E#=SW%=UMPi{o!6LM9U;RNDTNK5VcReD-&Ag6!N}&j;!rF)h`5YCLwg!7E zD?3WHtF5_}sfmY)^ZbvI=NCqvFU|5khLBm%QA)`)^899j`yr!Q#2}x=O^?v$pr4!P zpwF5F`dnss*(8uJGn9ITK%Y72YIvIFpg2%MQu-Vesqh?hs_w^g&~J)(KZh0F!4a-p zGPM0E%6%qv!K&@g5$?X1?36RYBXUYao*n|Ms&mPJLzul;g~4f!2mwpcxqWeF8UzQ&zu?Gs*=@n&g{%HRkWyzw2G z?_rqO{QiI#euB$3$*;=kUX?MQ0*!HW+P$z|WnIWGS=`#mLnU8#YF)xn6ql`8HCoDy(I0}g9 zaccHONsi*mH$Kdptjsr)9HW#wks`Ge*2pp)-+Ose(UGiN_hGqWW#NILMP*045?(~_ zd-I4b)!Yq|YlY`iP%qVn14|0BG(%kFsfK1abm{(F(1TkcDw~J!z({?3NZR2YA1YLH zhl%bV4k{*|Cp*H?rTeRHT>GKwwv-(=nf$3}GNp$_H@$C%Kwi2m+4FZ*3 zPif^t*4&4T-?6Z%=pJ13Z0HD7CK`+rWJc_S<`P94IVvk-eHcIVVdVE9b!+UXqHHwC z*2!f2(&*Yv9Bq{~K4f3`knz##XH8L0zZqngWHP*|2rrav=4hl`@FDwIC&S5k+vbjX zn8@JA*e`3MR~AnJp8o0HhN>#~K2G5%y%DZ>b>Fx{TTl#ZZyE{niJKi9QQ~xwJCW}F zsD#4%-1||rqx3GL28kJCILN}qoK}viwyL_XrMIX=j5IUn46kjC4EHf;dRb}s0l9H) z993|~j#IF3bs=BF6yJ?KoM+jzHLkvoM^ zZhWnX23zbtZ|Q0jyX~fE`_Y}^O7>{$xSK87(~aVRaa(zksi%~Q=Ee!JA#XW~h?<=+ zJuZds>Y7(Sam<#g#74WzmV1*??>dt3&MLxej> zZwc|9qX-^uVWN*bM9E#C;6xve2|gUG%Qop-}T#XtYtv^n`(T8o_ zf3S7O^z^3AcFn`qWB$D&;@1WET2f{YbX~vsuwC+D;~k$(Jsp*7AtEdd8OjyoE~u3U zz&5>?qn46A##-Xp@ZJu(Ut=lppL;v%+G^=U)jdS9CGHmyFFqVmSy!uy4_ieq8(SJ| zfrn)U-~Pb)%|g3(R6gC;Q3$WjgQ`Y5j>dHuedYE6v&bvA5n}Ej^a{)CIa`(7XP$5V z{Kj{_dGU=t-;BS6K%e>MGI*Nio0&1BoqjJ{8G(xjw5c?VJ?n~A`@AiIr^gReOpgzF z6}O$zTf%-Ht@r3!8+{or9JLiOGnBld>z~d*+iksYZyJSrO4!;t^NKT>cXNn!ZPwxC zoX?c({N5|&nqJJ(a^W{3rY?<_3z35{&kKpw2fr?-+di^W0?iNSA*`h1hQ9ku`Kz6Zt;;lSNErYzehn(9U$fHH*Fh_(^#fP_| z53hdT=wm!2+|Qs(^U#G3lUZa#F}787RQ$|L4%Dv(#q3U>r63k~9V z9^zrs9ks-n?=jW)tl*V7KI}7n*m-6)U=(I%hYZgBZq7wj(0`?T;7C>W_z>;#AqpFf z$3W(M=%}hZGKgGmBGGoVqmP36v2=oW|C1zKyf8hM>~Q&1M;>wDd_ayc%X5NFjdU7$(&6r8@H9sZ z#Sas&#v>iP!_SgVicdQ38mpj;GC1G&aB@9e%N!ZOZ`V_{k{pGe$Zm zJ?XfMB3c}{8<10U`3Uq3`mpolb^OPey#8x&zVvXO>8ZEdXfbq(BUbs#hwcv_ zI=8Z=lrqKj2~sJsWtMxSJ|*00*23lo`&*_pvEt?&j2M=(<;Jz_K~O%SeR3Mb+xti%i7Ar%45NAM#p+d?rrxNp1X|RwrnY0-#?k@cw1RjT%RqzD5b^OmQxb) z_QR6m?px-(y#LD$405*z}?xCa{JW0HgBJF3~D^&m?P zVfBg>#O8mB;AXc#T_FWl^rfWe;BCBb%^ytK^Y*O>+$U#6legcF!yEC4K^jE5ij+l; zfpIU*!|CjIf_!!c7m72B9BL^%j^#U;z6(#&U^+(EuPe6MXpY&LoVCSzjIXAt6BAdPtfz7bch32iD!s=E=e7_qtf!Mm`oh?(wp|dh2Ql-!z5;8O_T(>bP2+Cl zYS>B}Y+>nVnmh)-ZgLF+*s0rrHoHVR#YCDk26JoIDlA$iTS;*x(oBk(bq7)Fb1Xr& zOMF{ReAhmAyk*;LrNT`}P~nPZ*q25F#JeEze?43Vq%zT;LD{v|d+mbTAD$qf!kf1a zPjx)yh?3bnLgDF8pLm*{Qm~}nE8?8+8%JZ?YB6jf&4{~=OYlw$Y+)4Wb9NpgwtNkJ za*352P>=lN-XmQ_m!#sJ$#>1mrSiwd6%iB0;aQpX_y`W}CgE`jS})txAu_+o znA(>3!Q2*GO!94uZ%-0u7diTuYKJhNnQb9>ni}IkN$obG$5s?6Kbe8IU~j-=p?hC% z$?|UMGF@3wp&yF&Gpnkfkg7E8ocpQcL%hFq}v`nEl_!2&^aYKzAdq~{KNA4X6mCQcnHNG?QOk|@Q#74sH#u&e8#-5ait}T z>@B?85WE*yu9QBoTxfyTS6Za*FtxstrF>eS(yEl6+2+Ewi)^F?o*rNEHqKU$J0_GB z8ICd8^*#6|6fU>GhQwY^saMLKV{;2s#u~&QO2jEOa3^@*PGn`Im2S9|j@w@T-Iz14 zF_^xPn79C)%U$KgsgMcAn+sN1IhT7lx#vRmx#z+sJy0%s3smAAMMcV!c-oTT-GGn| zw-S|mMllX4gQ}+^H>_z$MjB&o>fF~#xnGFD(p~pq>6b%v{{f8{!uX`!K1Y-i7*8`i z`6xah-dz*0lSC0xP{YS$W~JxNp&t{Jj?XEQzVDVdo4RmAP!@4kRKg>zbJGKr#CWQ$ z+TwbS+hI!Sc-kSx!x24i7tm8%eE>T(C4EvW&OWJ13_dcd_m-^ekDsMi6wBXW#nwsE zxauLSrrY~)yzQT()nP{~oW6K7{O4h8(v9{JALU;>?gvLLOn|)NyMA!gQI`0Kf9hZS z%fHjH|K>mr4oMvSk7B=mzYoVA9}b>QOgZL=z-3IY3NMaf(fPZN_;pwFTm=Jko6 zME`c@^@X17OP^$4{O@EB|G&uwZ}+Xl(%Y#Liv*};wu_}F9j$7XrAVeSE(4$cQMJe2 z>FUQoup;Wbs10*xh8~37=z!p^B{ChiJk!v^KjYYMi(#34oVVg|+1Fx}>)0rbtCUs6 zm~+?0z(tA2R-y<0 zO_ccy+9R&3Tt^oQ-NS@(5zQ^Hn0v*fN+^3+Rl(}2+M-L?3B@+LhhXF-4Ea^91eN>} zaK~6}cSe%&N!Iryp1@zRbJ)qs)85R(m4njdk!B5LGg*AT&wK0U&2NqpczTYtOa9fk zbz_^$B+^`Ob{Rf`j$3Z-FADGXHMLmL`>LaFsbUE7F{fa7>eHsIx;d@YwdL2<;Emr- z48=2aFJ2H{=;wXwUBdN@1|qc6tw7rqUEO8<@5b3KTQ&WqjC&~Kvdg^TNWh|l^VfCk z-EcAJ0W9fnmXa*#xt{3bCV0(Jk2`z_&En0D?~fCMU*J$F3db7Mvogts-yMl`AbQJW z1BJ+=9wy2LLuym!A|+Lp8*$sw$5z)WSIZ(d@s6XP(p#3Re;3oo9#*-o7CF|q<2^@h zWvVRv@E(-<$SOS1BAnVn8=$O}yP-xvU;xx|Er zILC;SgtI?F3C4<4{7BUv#U6UAwJ;QYjO~`j62tk&jx@Yd$->32*05 zC^Ds>-j;&!#x`n8NH|QKe1RS)tC;x4R5N&Q;2TWmy%Z}uLWwgk9SxK+vh<)=juyCd zWRb?6fLWUJJahQemSV^tXQ0wjrl|L?<6V66!a~v5N`Y2cO%!eEOj3r*(qFZ7*1%N+ zi?r&I=Gs76a&7FeEIlr(v%Kw|Rrhu*@x3NXdEJ2Q$ILv*4{^h=Pl0v%?WiOTpT z;^j)pGiSI`*(PFhIio~K4rhqc9v`!N>1>HTfPp!jmGHA7hqJMmOltm}!&w*mAQtwP z|C=4}T#L!&EU!#4cqfacxtz3PH0SBHi1s^o)Ye7RoGHI8XCDyGJ-{Dw}2LXA#a++Xk!jT935x!a~;ky^C|OU@U=Vd`_nLDiXDg2N}!-chX#N z%ZfPTm1nY8bWt>%$JUe|=qWqRWw!TnW>H>jD+Tb5P3nwMTXH~ebuHl>q3o9g zyOne{Q1e>rDa zrMX1WpuDppUaDl#qG6J$?8_uLBa{J>)Y1f$YCmhjX?nsdj)vvJezeg*up81wnJvkN zBsycTIJQCS&Y5_Wv+sYW>vc0ogZtc@~fgh}OdvYIndX(35Y~z&b{_kr(o^J3xvOQ<_AI#Z z-7YW1`rjQ%%1$4OZB`0eaoes*f{D$XeU;yQ1TXmr(h?`W-lqvhgT?6>4~m=tr3I$v zuYE{f$s~GL>0Kkl$ppMcz|nt8Q_GC1?CvYMt7{-j1SdLUZK*6F8AM%ivkh#jR%N%j za>vxyB-q_qoZfDRq$EMS*vu@*WgXnZSzMVeOVjX=TYDDik37P~T{(Zyrh8m_fsJwT1s&%a`%Gm7*76&_-iUaS-dk^IpRK;D6EX;cbl_cRDk8n#M(JEZtDh#8mDe6x8 ztUa$S>1^1Oe231?K3IKNl5gW-kmrJ*z2~fr*5(zyF-FTKs&>JOZWJ>}*?zx@Y&v*D zhF6M5$wk&A=j%ykdU8ybW7{Lk(U7*wD!1J#=P?}Y-*^+{q34QK__AN&%$^vg6mfQd zyN>eq!n75iSTWbpKOSM-SgPp#l()`!b0kUPq5Uc)p{jN6T9$oMskWI3Cd1}?pKVE> zaQ=OVduMLGGrQhO!UKS;-_SSi-nowtZ?CFU2l{sjxKzgX!-zS}BN#3s`a7E_ANvSS zVnNSdH*7Ymh)~h+)=08TRZJAW@R40*WM+9)lj&|8fXX`|iI*9O#lbNj@gID|+n&JW zE^!dnu6Q>YRSB{jE=~`^nn?2zzwZ^7E%(J>tg*vH>S(w4lp)RdRQrVO%s!WHO+Kc`il%K zYNlGHKe9@5u20Tz)=@Ud(#3n07R9!Ro3pVkY~11S7Vt$$lD{8$We!T_ zyjA?HuF&Rx3+KYgp}e>`y~>$OgsxptoOeU8jPz!(%W7wC(PyqR0S|y#)cNB-`JSI& zQPwb=qBW%k{LegRHKj0K`)R%>QjmR8l~XnJ{&q_ZYbl{&^;BBOR7Dp$D=JNWs2bHY zbp|PGoUzJ4S#H82XDOw>k6a%^gBD08&yx33%!t2{ zLgLryb^PF;Z^r?C%RgIewyrDJc= zX{ECWj=#KGoL-5->FXob+t8v%EmMWU(ktWa%PS81uBlA-5ufT`T-}DL5??057t1^a zk@E`-BpZA<)_OU(AdnMFLCh_IY0|@EtE!3FTQLc^E^#*b3LAn~d^j(AN`reevTsas zy{d5Y-@nG0SNX?B_JyI(pXMUj^fgXwiq)2yX~J4(S=?hz-E8Wli?D~@NqZ^y&_`># zI@)L^4P~P3>zw7#Z(E3x%|u)_$d|ip*o|p0ySw9=K-%bNS=hUQ5Yz2e4aIJxv%3iP z0{HUU6sDC1q{$cx^vM>_z{hXG*to_k7A~?QgE$kjsJBX2FC*lBF1!N7=qCBFGHMHE z&nIMt^;?{^aAn!T@Pj`F&zTYq&Ch;=2KfZ<7opQ6d}wm3v%d1Mwpf|N*+?Km;o{*| zjIf%O_r5<~Ua&;rBb;cKEXxP%c&WuMQ|;mH>APU1%WLb65@kc>i=!pdU0<#&&F;Mx zv0{fa%+_9K%}Bay6!F_u);6NYPVb1+`|#I^Mn5sqBN{Gx?83BdxK(rrD}?tuh8_0q z(+oQGbuEM86Nw@Jch1JPg;s`n{unxktZiX1d?zv7+2ibp2L&vJvdzMPDPS!Ty$>fX z*Cg59`!M4l3K2b}G2$-t8QD}NOGeq5VmP{hd; zEe~PpfhUW;H&tsCdDQckV$xyfr%Gd4F7A70e;j#PAZSMdjnpQ8@6jB#qB@oAQeq8>gI; z=&?tn(r0F)7clWg37cC&SF7NdZT{9 zII>k1d;SZ?k_ zgNLl?$?jbO&eNV>`ehdhTQ_wSt#YjmRGQ1YZLc{8;>q-;rX*D(*GQ|@38y(&xRyNf~eSF7|zkMyuGj`txh+d=Jhjpr@1{%?bZZBnidp^~+rec;%1dXffcSbjMPk)&8}M`6 zN_;(ip2h5Y|HPdPe4qI*lbsZ+=iX7|`rY^5x3$E>poxLXJNP&Ob@wdWCgBE?;NnFdP1u9!)b(Mc{Xt2?$?m9``HIlmE{4aI){Ha%6Xyuxw50c)}OZx^& zdsg{v%|%K*sBlA8|MeT^ySNx{DeYg)>gTd)y_MklQb8ZHY5j2p>|hQ}E@*s34<33! zXQlt^DPZy{?SAj9VGxgdE=R`XCUtp%=f zTGTuQHQkd1cWcI54{~c2mA{RmeU74ye7&uwk;ZeGG=GRT1~-{4q>s#bk1w%(f;f-| z)>Ev3WCqcp+6=5plfq19P=r172Wt^jPXQTaUvVK_{Ufe!J;Sj8hz!>%EA4RKmb#m^ zVtKgMMQPhWs{D8IYD4g9DN04Eo#qYPwUe4pTdhox^{SI!8(|x3)$2oDFMe8YB>i7c z0f}2PV^ztT;jyT?0UH{)pM}brHAfbay2g>9pvUq&2E`F#Cv7imJUiu%uc&wjSRt*H z@`E+ z%bpF|Py9EcpqL%06;}c=mvKMIg?hIYK@)r`Ycsisw!!v@6PJqHh2oZuNd}$X-bU}y z67lsIPX|0dO6!6foll}n27!zE@Zf$yDb>(D_27>DWVF^od0VC!9;3aD$+U%{rI~_< zWT@n>Ja(fYcw3pduL(F3ltUlfE)+vwFc;4d!rB66H^k?G9ow6UjN&lu*$pM5yIx%D zggZzUHKuvhkcMGe?<@P{Oz^SzcUI}0UTNiPW1fNe04qIRA3k|r(Ypc9H4pxX&9x;x zZWU1e)VUY6Gw#A+J!DbrvFH)64UGH6e1qh0jvPKWNUn${@mk;bs|fPBL9!j5rW+)= z8%bwyj~nW$KH$U`EyTTYW8eFeN;^6lLuFlIOVk>ROAB#}q!un0VOv=migB`2R`YC^ zdv1i{3*Bxh{X(ent}ZGWV24J+RspllMkf2YQ66*|lJxKdEkzmcBR$5i^qdOXFg&{K zO}kT~_Mx)EM|!D8T0RZkl%%!ArzIrmidskIuurBBm@>ULY*$%vV8xC=+g(ZYQ6&s6 zw|o-5!9JFtMYG)&rm2JXp)r@B+xA9!YZpInYRNFzq~S zyxTdhnpQ`tF0+MK*Bauh1Qxc6I-6ITTX5wXS}~=wEWN3QR@&ClD*cXM>DeQ8xo_f3 zkU8qr!XqhTtsEbEI5$$E3GREKje19r-m)(?n>q@TxEM>G0dhJUliENl#*F( zZtU*YxGa{}MOj>6iH@RbveuI3(dI(MJQ{^+`$@#M(CFeQmqPaxTuJ!bklXNT83Qq23owW zI?G9|tqObS{cgo3rgjtDP;0GpHKeyU)ZW2cB`8%%y5oOK|MSuAX2w7^(cqZZSZi;a zVCBFV3{t-u{Ln_w zagdclHB%TJ8!t-PBwkY)yZIH+{@~ zD1Z762}r3>6=X~9Y$GH0RMgimzsuZrI%suqNMkA0E1put!$e~hrJ1K5!o{dgT63Jw zSPJwXuQtjHbAc{ICm&gNI%xpkPabBJRw{b+qn1Ob^@1 zl;yf;^e2o`y$@#O>!vkVW*Xcro4DTvV`nO<@}@L% zTOQYWMt5{W>%3y&B3BReMQf}oeIco|s+p;Z_KLk_^k*DS$vo?NYE^M%iLxdoe+Zx(u2*?Y%!>5 zwwTF!NwLMm7WD2)pYDC@ZDqZ|{iYzES^kg^pX)M3tW4LE#mGH)tBUb*NVe408JLQ- z)~WaHb04_0U?!;+n__(_&9G<~whi`38Kdw3t3v%Gh0nTe}H(dNZ zS*vE7ZDqhC@W`W{B`{bAVca+JGVmC@g#{$dH<~s7GT*ggJWS%QkykWms+M3oYfT)l z|MDb$!mR$*M%Uc82mg|IzM6*8{KLxg#4itDygOpYNQu|Y&u|w*^XXbeRQ18>rkc%1 z9`zKj5}x^lv8t>iQSfvEcY@3mxPfU5j(^ zF6(%DmD@xnZ~{_6k8R~^A}c&nhKVe-sD2LTL;#O<~;572>TeuT}hY? z;}#1``ra_>J9zFPF2WX~vknkp!c-Mm*h9C-f6ZFQFVY$)rDcjEi?n8V zX_bYd_C0QsMnJKsmks+>9OIfxreyg%Ea~LZVf3g^D_(Lo4 zNQoFkOpKak+ra7)NfhxsxG6SK=ms9*wjzyM^TT{Pmp?oezL1y(@#Nl9{prfzo8$Sx=;`MPWSvWYnF5p z{GFTu>Kgh9Qn%AjjJiN~(N_Q=_&xpPQGe7u&(cpebv^wAsPvH*MA@Ue&eM;g(&shc zxs-l_)UEWBQ+-N5+0>i#lU=1ZBBvwHDRPFYKhck(I`toVzazp{&`*GRfqt^8tMxE? z-yFg=>tUDmFnUK(^Bn3q`UzC&)hdXxh<<|9zje>W`p+Hu$)Wy3Kj}HtRrDLK(t}}; z$fTc~>S_JwIsKGTKcSy&>UH|bqpqc&5cL-Q6jEtB5OT-pC#U+C{v+rohx&+qg47N4 zlT|&WyAIM%cJ&(nh|0^gy4(o5EKr*UWy#WmO}fj1cs017EsNS5kj4g0UhPN1YYM?M zKpGn}`G2z)Uf&XIC)i1_n_v&YK7s>)G&X4x*pXYwqV6L24v?c07F8k0N)Skp9gxP>N-?s-{M4KTxd}qP zLnBl}>ECdId;|pu3IWpCbeXseJ}0RVWCf(DWSL0)0=_cYgKdx^{XyUR`IF#pKpLAN z`9GwOwLB(x3P@wyBmZ;sQtdhyfN3h39Qn<82k+IHOE4dhrjogle@l8zVQYf6fHajX z4*nvhLPq%l>U_LuN?k6C|wV9qg+)A*WU>Ct2g8c-C2z~&hu|bl+_q5S`1R$EP((=Tpr^tPV;AevK z1iuhmBKTEwSf$0WC1$ee%>f0q3AV>fHbnBG4mXnxkz7;+Y@L~GmgGg9ZzkKP*G2Y8 zF6w+U*-*VMvRIERoo(0SWFz*v$eO(_GHb7k?Az-i`z9B4;hAjcUKd%s*F~1^b){1q z@H(k6cwN*gye?`UUKh0!uZtRt*F`PI>!PMZuHRTSYCGhjrj)5>Nk>B=CpD%_Zbe=f zH7Bo&+LhNu4NP*O-H?lhhfHp1UKcevuPeml3Z<6l4W!oSby2hQx~P46UDQy$t}JMt z3YMc?UIX{awfIibav8!lF6-@0(BQPXRnKzGr4G#$>etJbx{NNx~PGZ ziw2ual^VL&MGc)?)bKO8#ix6n)b_nDYWw7(z95r30k4aC1F!2tG-Ps7)5uiEN-l1h znd$_|D^r~)xzt}!{t)`e3n%JlW3p31GEp%e96eMV=%YD6eN?w`jZj)<|$+geqIC4oRF07MxtA%lk z=W_+r9X0U(&Kg1D_19XA5#GC@H+)Zh{J*z8hewxAQ~yB|#dxk0y@ErZ*XC94VP>fg z1GJj5VCE$eR;~4A5wu>b9akAyRBhRi!z%c1{({mI7mP;%=EpRum0AN{t<;*L?|Q9r zOl@|2){O!Rac~{@*wwl~q?sbVTaVTIL*ZPnRYCzqZNT~X4l#U#)*v4(LTET`e+lWt zU(SLN_OLjT9Dv}#zg#_9$~{&WhXo0)h9HMiysYm zK+t#$U@E~Qf)!%{F9~Xn1FRyrG#*fK0$?~GUHz5*Jv{}ma4Mk5G{D6ffZa0zgJuD` z&H>0e=4kkp3y4$YMaH<$(Sx0OM8yF0BTf_yQ32 z6=2Ysbl_WG11hd1zGntsmG$u2z6o$@JD})pK+o^IvsLwTjMP1N0Y=Gxx)0&82LLs{ z2dw&$Vs6pP>$X9ebOIrN5cEF_sPHo&?i{5baURh30^mBq=!<}TmjL~L1#G$wn0Nya zbdzXlc}HnR{tmBe1lR8YzPJxq>;T+%0(NVF3J(Ay9s>G50_1xFc=u00xxWD40MgRc zFAToff5Wfs3&5GzfVbWN0QO91Y9IWILy!FPfY zQYZxQOFoK&4=Agh3IGZe1oSQhs2Y(D+!Fz)R~YbpB%nl5z||;Xq~$761($%=8G^eB zfPNJK5s82u1hGi~d?Ot4RmfQl@H4^q8i2!f0p*hc0^pha)7lr*>FQlfWz?@z0plA3 z>Nf#YZwi>w46vdFU|~x@N^A0K2k7_?;2J^i_QXi*XVS8HM|d6V1Sr}Cussb>y$`@a zFtslrsXw5r3dl16uzMioKg)1{N^l;K#tU)cbG{F+4I=;(#{e3S1=Jn~m_8oxW&)sG z2H@l*z@f>2K_3H>rvQEcq^Y!)C#G+v!fWI-K!rJgEd)I?0a?=L0#_3R&jWlw5W4`d zXd$5SBEVAtsJ;}iiXitgVm4MySBwNYFGon3m4IAd17;D_T?@EEuw*^p#|?ln8v!LY z0|smZT-ZkWPu>pLL9lN(anoi4X`Q?uUdjPL`Z0j*N5D4(ZH|-k1UU&toCMT84M;u< zSbq-i@dZHDUjR2R0!m#4%q4gQNaKwRO5$kxb@+XL6R`R=p!6NUdV)H40eKvNsRR!R z-f;pP1m8UXRC)+lOkjHiSV++KDd0Lmqi28(fHdAOq168P176POfQhdFr~kpKHI27X zD74}m_+`z4m1h4Sz+-|BvIAZdMCSthOYmuKK#gF)CV~XGV8m#^xCwxvlK_RL0NU9B|I7dc%_5is zxI+*!4^VMFAbJ5{s{o8y3dmdz*p$8!7_b^J?Q=lXmsC8z8pTs*4ZO0h1N7Vocz+Y1 z;buU=Er6xlDXzX_pg!FZfbrmGLvR#UGHSo?04{;?4k8Uj{Vz4e;y=m4B^k zfYcj+z~2F7?+`CdZm5ce--Fi?2f(HQYP$fXY?w=wPykB_>IVSUWCe^11bh$#sGbAx zE5VbTfTY}j!oh&$A%Mks0JTE_>A~T^p9xOp1vv8qiWUSki2!_81hBm*pjI^CdU3$p zB>;y?0qT?ngqH=ZD-Re`0gx*RP`WZ8sRp1#9l*&HK#m50EsX$s8WS`HEN(_~x5F&} z_gVtZw*vHg3s9jWpy9iK-tPf+b^+As1~}Ip(7XrWa9_Y%{Qx%!hV}=%A()L;q!t|j zSWhr~Am9fj#%89xEy&j7x{3MY*>N=f|wukiZgDqz!f zz=0cptG|;Uw)oU%n1!hCVFs7RTdE|m`X0RMrlYe}>!CkT+dc(!#{@_n@&{n+bHMq( z07L%VnbAQH1y>}>*`W&<1w0xZi7s2B>k5DvJMACMjaNQtEFu6ahz zjz_`kQA{?JfA3=W_ow0jTS?;F6r zt$>B!0v2oooZb!?z7sHe7hvsfz>z(GHhW3a1%{^84p8}5JdA)^KLC~;0eo~6@b-^@ zxDynab~R8PM^939z!bT3>z_jSr#}M*Tml4L1}q>ba|Mv|8eqnCK*<|`YIgzW2)f?` z{OJJvq5(QQK>BIC9Z!Wn^dbDlKLzZyVL$UmF2Dz2fRhCPOA6EO=2=65Nk!q+EgG;O z4zM&Hu%!&eSZ~BQmH@A36#!3ak^kpUluXMp1-AHh$5#GH!!fm|(xmCcdfq+w^0C^^o-%JwRYQ()g2VN8A1OE9Gpe_fz z^*LbQmw_n%U0>thBI^N-wgcAhAz8FVF6bkN;C1XUAmb#U_&Gq6OBCa#5##C=c$K&b zxPA}N>@hi?0nYygXz>#8@*fhwT9hjChc}cDTHR6s)KAZX^=q8~z{3#0xCp??NWd@A zfFtpMcgq0!mIv&u0EkNjOiKc+tO%%98E`lS(6Juv^rCxW=9P`%^{NSZISnso3wYgV zNnYqfNSTT6qz6G8^pq@PYmW#cIsmqGqgWRV|Ke%z`l=5gcrd^9?&v@N=s)P`VV?%a;?>W+M;(RC;D>wIi~-h z+a(u<7y5am|7_5I4(UG!^`C3}GjiliMSY+54eE)@d$nSCaQ~mZS_JQe+xcA5&c~9| z_*Bx)hmv+aleF`Zq@6ba?7aTB^Y*x%SO0ci{M&i$Z|6n7o!8uUUMbsoFWk<{U^}mO z?R*Gn=S8Yr{UROO*?Irk&dWkOujuT&ZEWY`M?0^c?7Zf&^LoY3YYRJ{Jlc6JVCU(& zou|=uo-W&Ys%z(&uAOJIcAm7^c{*n2d6*qjC>%`MdC0c&*lg#`WIGSJb{=KzJbv1F zP@Kl2lbr`3JC8he9!~5$WY~F-n8rhbojZFwccgaiA?@5X+PN>Yb1!A5o+us3Q^#ZH z9>>nzi=BHEJ9i~^?j-Eo-0j???c7f7+(7NznC#qs?A&DR+*It`Fznm{>}>RQwst$) zww-O*&L*60=N&vdA0bZT6U1q3ztdDQ-)Ve&IE@bvr?KtY`RH&OTkbTK40jsa?KD0% zoW@o=jSmf{vB}!mVyE$m;WW0_X>6|3__)v>!pDWvR5I3S>NTTxXkUTf)bIKS6gcpPDFh z(|?enUHd_6;|Zy9M2a@)h}JyZ&<$BugL(nVj20880qa0XO3!hJ&ydxv`QXF>tkANk7M33t+K~)@|f1% z<0$i^*4pF9_)%-?aa{UQYvOT~IxexP$F(}1kd4Q+LWbjrIC)&FYvcn{R4h%fx2O)d z?#{>J8=ia|7D*?xs)pcUG5Cas^04^kgr`aliOi}Kv7ABKTp?GIN7F!Nvn@dLI&u`*+Na1tG z*+knb8i&Wo8ZM`;TZedbR!fn+Uyyfck@BV-PZ4bvz5RcDl6~uv#5jhL_Y z*neJ2luM;C?OeaN=z>;T_WflBe7_bgFKBh-(%40t+pT8VL|AFmOX$0W^O(~ZNc-Nm z#LWv@s?nja4RxWN@Wf0JeNihf9%tOnYf?UicE>Md8l-2Q777iQv;K^NRq@j=TB@w! zZQ4%XA)+p7^$cs~q>f^PU40Mx>Uxh{`+Gj8;m- zWZo{6&ttM2ev@|Q2aBXjS~DX{>^*_@>T@j?vo2{VvVY`a_^(+kZk*BziyJK?W5kVN zkva0pI#gVaC>>XbS(mk%V#sAJw~;O8?MIvb1H{bBT4ST&*?TM<0~}p#6MIThgSf24 zh=c=?**&d-BVD9pg56)(#P~QwI&(R)tW0s7&JVJDWfSF|qRn)FC$gN__b4)?kW@OM zbh_}~8p8-ua5Yto`%P;pXS^*PN90|rXZ-OiR~e&LSSAU_6zY|A z?phg0=M;LnSh;6WD~o1Vw5Eo#?6ZvyG4^ifW{3NugNo#En+yk^q~nd;yKN#h$W=jP z3@=j5qa%kG*^ThFqT5xiU8Iyw51fUl*>DEJ#xWD`0Q{h6;p&DaM@f^p2$VX*gZtpr z30_g~6mq-!N|E|3G@l6FP_%%^v-5UtcO7%Y7&=vHbDSD`aq)Q9?GkSFIkW~Hx6J*~ zCN?RqcyS=>vq16qcF~fR-R+elt;BJRTJN~K%$A*iQ&$DMBG~gIH&hW7{?Zb~jd4+B zjPm2qXB0a9rfuO(SEA^CKB}^(d^orto#jM{q#IgaSt@}}ck-UIi3#B(_B^VBc)TM% zmti6-S^ONLWXI7D_ftvvqSK1VS{0&0q4qcr(o49fnEN!Ut$1@&%PXhThYpNRUC_0A zyf><}$fz70Y%~K-<{HK5CzkxK^*4-+y+5QwrVW?G(%-dr#iqW|xy{+yOUF+gMdmH7 zmr?C{ZhwXMG8{l8^}#F|beQ$$4Vy@L zfC6W&H@1k)VVF5b3B*yCIu5`Isnh6~ORq9)L18CTjJ~72XQatKS1Cpne8lUPR#7A_ zjwvn%YjMFwQE`lGbV|11zD;xsMwMhViHQ@N?`pZ_D4)|An%$w7X6UGxs&e3`bhdWU ziGkxaw2qk-Q$tSw9v!-Ut$EThgZON=&0-e?MdT0|j3%J!= z@#J=>DbD+Jl-Kc*%oBYs#>~@?PWl3#aOadLRT#(LBUaCip6A$^wc5~m8CPpl>oNiCv}VATdY*5QdM%iEflX54j1*Rd_~8M zdR2ZwRXIxx(zGr{QL;}PI)e8a@?H|OWvT<&-?)kZ@3KZ zjE7p7%u#|4MUMpN9GNAHRdi2DSo{|X9hOb;6jcXP@I-{DJ8~MqH|@pVF$Et*h#HF% zR(C)VM^1=n)95IL4V? z#k1x2SSClRLg&frBE;EXcchpbBgzM~jPh4suaO@-@Wo^gjsQt3Q;YouuV!mZ1M zL1jba+#aUG>U<*Xxz<_cjw=f9pQ0ocL&ryFFDDiD6`XCW(Q$ftEKtXkfKv~~em_Rz z65{o9t+m0)UZ*L_>tqr3x7Jj|G`izal|%0&AhbgTJ-;d6#6^hAF{N|lbN9I%r*8$s z$(|?@{?a-dnPC4ybb$V)Sp1ikCVOuu?@$r?x7I<{BZf}eFIE<1pQ2E1G%Ha~4!loQk&31b4 z64Sh7IkUnaw?lB_cXR>-mlg*`mI*Qnn3L%64q}{KIKb6Q_Pt8JZ!f&=>Q_-J)?V%5 zd%J_X)OXUA3O#r(m3lLB(_HPntS)?j(B_IW1}+XgKzA>4cTvQI-!L(cd0MKpkq-_n z(gmTl-WLa-z<7raj4x$q!-3n<5LilVP+T2lnQC-%<5C~p;6oGR3yTBk@!@ie`xIkT zU!9d>O!!@M&%l^^3SIn&5sv~~@5(7A_J?;%@orX^d-UVjT~v6#R;g=hE>8ViJVef5 z$N&U>Jx~!nu43uirgeOzNYCb}EtcOk5K$ftqn45+piiXORHk$`ndHqd#OO3!CdpWO zC&+C{%+h~2;v5#;16}VJZGyeek#~7qOVQgzhY@hUQ=c2d~=xSw@4*RU97)_>9 zXNZTgzq%9ap3iV-23>2ZI@Ybp)zSq;%(&9I+!oJq8quwnvg4>cDvItqOXn8{*52_9 z8yuw;-H91JUQgt}lhUy!0{eJ`KAfQUj-i|H6n77tWP2eJLoWy_foS%_e@>LO;~ zM1}^H^)85*rqLoqxhdL)y4o9UiM^i)c$ZpgSn!R*cd*WXR@Oab;V9LXBFfyQWEw5S zf#|Z*Y=y&DQuwQ-G`1&+?yfS$E4v474$idxgYxv^|W zNh(*)Q+pg!>gl6JHMO(_fBQl@g33b;aM>~cXYX6NEx|;4@i{p$&FlJ;=^1J%VnT^{F z?{~N9lXGM?L7o|~pt=n)z8BXEm<7+1cfxj__OtGZT}tIJ%$nuuZbyVq#F>Jw9&&=) z$$P_Yebhjmgo!*scMH2)DNF9fO*ggEJ|oxa`u%X~rH>04xGf@16mktQIN8T`05N)A z6QM<1{Y0Jv3AqZp&4hy|97FJ90GIZoKN1GHONN89{D|O{qGMs#SflLOdkc9dA9t7i zNOAD}gsviVVnV^9Cid2dqCWP-8>h#MDN@0`TdXH?f)mM8#5Ky42zmE9=}u&rEL7}mfSZ2YB4*;SyOf*JzX%P2FXc z*3lKg5f|JPgAIx!6~c|$<@|hv2x#NM^r`A4d|XJWGZ6#UU6ngtaX8Sf;;iIn7| z?4EIh*8@1z_iRVzM36uanH($!Yh=~ME4EOwW4wUSFK%OiM?dSsMV z=-i}Ob0IIFaD4o)l&g)Ll|E15eG0%$7sZ8sd{QXGe)6Wzb#Leg7!p$ypf5fj)O5-8~%#pTaFyb(F!eK;8JpljufD zG+G3gaaA@FWuE}L0(&h_fLXbw+(aio7KQi#YX>q?dNi^>IW7l7-F z3*|=dO1VYG2X}M1t%v3Rp@`E&bU9ZoS-nr_{%(A*oOXrR6?5h@s)9wU)6L#xh_mm6 zTfY`rD|xo=InG9klP?537ihIp-W4II5*LEdr|!_94JrkT3R5cOPSWd}2^5sEdd4W| z1?tUEIQ8JqsAhJMJ26;9pVSJ7Q{`R74SEi|Lf48b7s6WsO1tul*1IYdb!VM}8_Q%yEPU!D!a;yay_f%kpqX&CFhHc#la*5 zX7sJ*DP(56N1@}J1PEJaSCojES}l)Q_NIz=bA=<#qASvP+tjcWSB%JfQzb+s23F1L zX`USCDczvnj+fd{GG~ITdOITyKGGb)TUv;r6%c%?K-KK-;^feSbm@Ay7@FjAA0V^$ zq*n0GCk`Z;ODC>1yvw%Hxt3|w%v`nFAasCeThUcXE{3smhr8WdVn`)d`GUPh_V)A~ zoKkPP+u{?23K-bHf)Byr_hz~#vP2ZOsrcq zkGR&UdQNx8&2c)=jq%(a^`boRtV&44z#%Hjd zr0eE!oy9OJ?U-&=vx@BB-OX(()5>%iy@R-3*;Pj_hrV<@eNtDll_b%viYu2KIFGKa zKkvbXB+d+|n$^=`ux8nCp&jGGfhy*r%|bWaN8$@)q|B=^RYOgxeoR;2Bl_#L)p~N( z?55DtbSHk6s+;cPxiv!E-2^ANlrGEvGcZ6*d=J){_#BoubV=1f(e1=t&q*mq%smJZ zKNzgjaFn3}CMdVEse=)v#n1q;yqUxm>gns5=e?nbbZ5A`3Ms)^XYb}R5k05d`rnQS z5RZvyX!V*UOgZ|V?(sJqrI$vV%T;rT&6}$Rnv;2luKD*G9U#t7zEWzqqQ!yjjRIxU zd!HTx7$9P5xSGn|W9hMgZemOgS94=E!+H;)2L*!gpa9Pq#n7LsHgc~nIJ_W&)cSaa zfcx~6Pir+Z>HIcARBeVw=R9V0U(G=9pECnQ*CtT+%sP(j}chi6syG@b)ovWvO^kvmhQ&9)g!ws?X1H|>ZR7B6J1dGpOMc`XsyLY_dNyJe_WxWJWqbdIo|fp3ch!*P?k`l$Y*eG^F^cr%dRuK% zv|6~i$D2bBSS(v z?M5*q6$!RkR412s9dNHuQC(=^h%B}&^v8D$)gBuWx96q+v4v`zBWJFxlh0G=OgMZK zB30gOm;^^k%zp3x=z8yfuB-2VJWAjtdns;I+ylYA1s86>y$}#Vd5H{HIl;;-CnkBa zoK4G-T4uwUWm(RamAlOOyjQI3-BN$&Jnn1Z=lA{Ra5?LqyT|kSe7q_5O1|{oLs^u9ax*$6f0<@`lPp`Do=V9UT_z zTf(lo?=k9>iB5a;T4XfPqDZffA)gW zx8vRT;m*Mc@hkGZOe_9g2I7?C@dKO(E{J=u#QyU+XO#?~gyr!AToW@?eq*V<35E2u zhI>ZaQ9ithrN?_(8J^L`%cnSZFY~}0%;k)2e6786(7~Cve54cbt7D?%3XF2@cOh=V z<*+AQb%bO0zs~=f>OUaWUr76VS-ltQUX;Uib zZ8@JegWXBK1L~MTJNocFcu7VN_hA6y244JqM#Q6(Fp$N?Lwf|eh9<=I9%b>;N2$(m z7OzdT{2YTG!nGo7`4|-qW8v*Y%lU{L!tRf;kSbK5m94E>t1ES{S>ExR6<9pk$2i^| zf6aBAg7F+5mS)pCeJtk-NMO(OWp+dI>TC7&jH6veW*@C+d>#0!himeI(T^g%B-OshQgBu&b+=_t|Hwy z*pA`{T8W-TNvz83w;7P%Srj@o&^2Sj@S_^6@p?`2>c`z8YLMmaX}-HA3!6mIiUBM< zu&lf5#WR?8jAH2tS}~}6yI+WAc6Yiw$V&9=@q_C#dna{Bvif*tai}4)n>9w4UVXNg z51mS~oDX%8OXtR{z%a|VlFC;{XjA6D)ZA3!xGufRH^JM@S(?+L0@doygFR$lVjWts zzxzYuWtM!|_D`%SUdWB^73skA-oDj5$F*M^t5j)S!OXg{!>D4smA%(HpnADJ(TKI| zwL3UfL%;3buUr$wvWU0!RR>$cJnN-i7iRCJqQRE)p*xCwES}ka(T%~D^Mx3&Z9SRI z0Oe>Agq*AseaiQr9lcp+3+)(U4e-q9<3z9nhq^B7;ql|X%zmyPbxh(mj$Lvs*twWN zx~3mXcMUN4UFg%twaJC_lL0LKo_~HwI#1d#%lTLs!m9&W$gkiIvwC_q_&0-?Jz_A; zA0?xeM^~lk`Q_?y;$T+bL)mbvyXSlwGm_b@M>_}AhHDSaQ9Vbqe8^ajuKrH1zTV{u zlR1`E-ejzK3Ab!i-wNg0XHP0in^F1*tA}U2ozs~8NxIBe?P>qgz7;)#`Z`@~GAfXY z;cixPr*CNaiL+k@%SW%0pyFuWNXz+j$<*FN7A8zuJ%(j@Z(MU7bs$WUj~`D>qV@f_ znreIX^QO^%_YH8aSWvknDrq?t=v+&ad03^~spYCNKZi9m%^T%9$ieWwu;Ok{RWdCU7VSS8?bxTg3?{ai;XIH>VB zOV2+pD@SuWIL7j)jdT0C9)Ci`KATneY1CM&t7i*;IF;E0rkh4eThz~+-%ZY#GOb+H zW2du@rW0eWUY@2(GEJBzgNHNy;#$>m{Vin{OGnQ()m65jUqre7)@%+-_tNQ9%lV!t zf;_g6*-!J2j}K&*8&~v;Y+f#q(xogOz&k?h6zw}-;D60NWVh@?B52b%*RTiY5n_#z zbbp-H)3M_Od(unHUc1)eXDR>S&+P$CDE8`rsxhAawz7sjjz4@g*?qLZl^yeV-dJCO zf}8No^wv=Wt2;{v$*&t(^FsPPqTzsA`b5ig{<8P-6@Jv}%hL}NU^M`CJYtf`T~2(QD)~K zbJo}8nWG}8cBa+RF$qDZh{g8EQ#@{qtZH!Ysw>DF%4fx^X-lTn-f@}&`wjj$&A#F% zXJICs<$q1-ze43u&;-}BVQ_xuO0%!0SraVh_W@vUzsT%&E>)nP3OM_+39bf*^uQ&S z9{br@fQ>1Gt5R(9ln@&5Vv6(04iwL^j{TQk=-)|vY=XwPmMPU-)2WGoKdZC4Vy4Y`{VNFi?xsa~$c75`zCi2IJt zR(3BXjJDPZqpX($IrE2n(`A%PN`Zq&*jVNtAI;5tf zUqfYse1m@3+ndUyaz$nJ`5~1&3wcLAP=D2zme1sI#R{&MKwy8!m!+Tcr|L3V>EQXn z4XLc<(5mGtd!2mQUWaz(TKzn0HBP>D|C9ozSZSUieH+H?4=Z_7sGSdWm+B9$K*<+W zWzU$-aEA80s`Ows$CO-sSRKc#i;(75Wnl~cW*!sB(t#9OfAGK-&IukW-B@Zb zm=3dg@nF+caKeUx!Wx6o?!{@q0kKv_8#5PHSQs=BybC5c8nk%)U&QPb*}#qKQfuc zck>+Hm-6q`e>|FZR(nSWJ4Pq8yalNtn3m0So#(-hn#%0+bYZ4zs{^(YG>5cVPM@8O z&sw8L2RCEvc*&IteG$NL<#&Cv`z<{R(3Bw|2C+OBJE6&s51wplVXPqhNsTZ%i-ouB{fpsj6qr%zcqeu_{ zjB~G2kVH{-ZVdml!fe+;5r&qaW4uiFXS=R-z}_Nw8KYk}h8rWtMRnEbdds?qu0V_kvsYi2d!-$`zte5J%=wV3F0vGuve!GJDNOG+H`# z`hn}NM_BOqmVlG&-s{){>?pEodDhEkf?CpzE*4qs9NRM(CGBJOlLwq5@LdKnag4xH z8G&snq1bi54^EtboHY4NX8i_q>AN&viv2vz{k#G?9R&kr*%8M?d@`-JYw$w6?g)#g zeeRg+j;4i?I(|Lax#fY%Q=hX+_oI$>De0B&yvc=huz;$B)A0pXcSrSr9sL!v1CCRj zC#`CZGX5Zic<(s#-Pib&Pw>BHmfHohMy~RJxCv(;atlh^!bs6Ptm}qtagsI9PCxXuF6<0m}!=_p*v6U*MTRVa?MB3YAj$c zf1h_~QE|_VCY1bShOg_k3tANg4Q4i@!I)W#wOTsI803ptWcR&9#ZS8)+Jj$TuwyPO zs=1Kgc`1I7;lBHXxb0OIe?m1DT0J}~;cH#px>pf;Q}?B6)m>~CuR*R)QJgS}UvZ%)#)i>$7W5fAo70mI1-^`Z5P`3!w~k=4RcXh>%Y zO3q$t@vPO!lYLBZbC%GYXRUZg$Ab3DjHF|4%m6xQ5c_?B(lMc)mQWYa)n~1t4nN?G zi(-wZsQ+`;D93UH_9{W%S<1*ereS02Osr3_e`mX2ABNUif#%srH5OaRjv&C^!C*c1 ze8%W8LG%=$9uve?3F332#nu2vZs7bT8kZQ#$CcYa=iUtRG8Xae#h4{lj3b}d#L+j5 z_v0~&e(vkahfnCdccJ%|SSgNtz$p-|Jm!1vorI@n6O&JUG+d+PS7d?k|W$a~Y9HN>$LLD-%?z$&8j|y_x4Kro^R+std?3(E{#$9vN~^77S^&SgpfR<1-(kA65AB>b zr7m4sX*oAj(CWnsyc?{mgIy$mPhnJTmDSQyyRJY$wWHKkR%=JD&`xAfD0@6(L77~A&hx(}*UOUY zIoi9*YUeoWfKyK(qfRhnlo(Kan`y0_Ed%id0h8)L$)#3fNA6(v6?mx#T3l*1E9XoA zrw%jV6r3%Hp5EHISBKR%0!7t{p{Nkt(w4L!^G2)cp7He;oT?j)Q)M(L^p^?Y6f$Re zGtbQbX1RR`?R~+Dauj{Plx-IyTDd!!eYPN4nWCQ%ad+}r?W$RDIt$!Y6eX>8y_^QN z5&*2pM60b%j^PIO9D&3tVMr{5MzynM#5!vV@{NL)^%*rM*M$(+-wA%!ZpP0tX5D7Y z=;R!wkbfr7T74N>OXRdN<+ zlv<4NaXvVJ%3cBN3g@r>h}ZrLB{N(%iI7GMlGo$ZVU5+t)9)g|_9|g)FQ?zO<;yFm zUk&K;8mot=Ra?OU+r>CwPOGK@c;j5@k>4kR5|-E<(Xg-r)!sED$ocFX8Y37&%pS_f zVdA9J{)1qMnWp5MOIb$#c*$~tRDkmj1B}_9VO%j|kj>y?4uhLwaE3BocI~LaxhNWE zXy?mT9mmm^uc`PNW*DHW1<7e^g}^M*j2{WrxJP|9J`=@e zf|us5ipfv8{Ol0%eory2xI4F-vv)w8AwX*pbYQ)e;J6P5yWTQp_hQ5~6I``Ym(w4` z>AF?EbSRs5HecSD-_&)MfvAoEwDB)sZE!tL0s9+)Y&-fU9b9iUq~Z_f+NfLL{NSd} z#R)n;GNPM(>sCjmGwj*`Puc(EzxMx8!bYo7RV~@KVKDVc?I*Q2!L7A1Yaiurv})Gh zHxf8gqExS*rxE~~jC2p}+-ODmntzVaN&ctE{Bv0B4l@{%+xe;#&f7@&ikW9%#td>x z0U2bZz+fqx;VA_Ki;*g^{fog_+_r!MG1A|QMBJLOLEPfV!LE!y7pdTLxTS#SFvkCi zRNy(>QXpm+=@pR*Vuo7^a0Vm&Tcp)~_A2raOHGOD({%NrFg~6*nTb28S)D-ZZTegGGaWqEWG9^#e+#B-7UruFI4cb z#dAa>#dAA;j_4unKin18d9jt}bdqn88OeA~XN=c~cp=}5y2HXlIU~hmE`BKIA;nWJ zBgGS;Yg{XCTRadl(znF(EBvU)E$v+t#fLj1eqO|U7w;iH<&JunNab4GZH!xSW6L$c zx8i(D?v~$b%$ zr;*|cW+2~sx}~^*F;cnID6+TZD;c+V=?GUlx$ZXHQe15qW1OYC^HqmiilelV;`o}+ zM{Bnfr&lAzxpD!YX1V>Hb2-kHMvPP9=X~OH8~^GK%XL_EOL0~-w&twJXGgab=RG4e z=RH0Nx}-(+yKdL6Q=Us~$05%c;~163hd#Fyrzj)Ei9$|MZYd5FMv9&PXMEIfOR@3a zSA=B?d+&36CUA=fvB1$WU3+J@6kBKG8r!k%yp?uKu^Tf|vm4{xnOlmjmyzBS+)eu# z-j%t1I<(6XOWTfATZC&0-xuw|X7^&Il@D^xxokS&>;LRD?4cPD8EPe2VU$p`MsC1wCF9Xj*sJM%=WjenqE0{ z>@8~?<6$;^+v;MI&B>(p_9;~GwpGb6tI@`{tsP!7_M~jFDm})(@-lI|)yejuQCviC zZ@2n0^Uv+pDE^cDj+M%Pw!dR#@}ICB))@Yix5Jvqf4<*gW%HjdJFRs7vwkO-KD#VC z|5vyR%&&J@S^Qu7ck$nvccJ3-o>hmL(eGJ(_{U{(-?JLq_L$ta(7N}m&dmJjJu4|p zn0EUL2U%3QG>%Ru*utsoeXAE@@KP~n!ZUy+u_E>$Hab}M-s2cn~_?rC-VgKHl`7`pSmok!Fw-2louOqbb1FKW; z5fj@{u6NeyMJZPTt5U5Bil2FYd8;OCMSsXmfL%=q_508o;dPi^`Os=(lf4_){WrAo zpjCDC$5yk)N_iXF@FQy^YZQOP0UoCFA94L2rcNK@&zg^|kwMtBxSe4nh zdBvP*(`IB%6BqsWT4`*wWv?}y|2(=6p3?SNnSrqFQGs!cm{9sG6)C3l&OXcACoh}d zeLGCG_FI$LYVm$0U=6PWdnCm<}Gc8v5FogmDnpssCZC9%~gG<~BpFUHQ-7hpqMxWijGY zE0QIgMHDUn)T+*D&ZhyLGJMXgF8O_Cg)^UXw0o^3zav&X+V&YY(ppo3=5+HjE6PYl zc-^22pIbF(K5O~kFbZu(`#nNCyQ|8plAHTd`us2(eSO3VW7WVfxDbzi&i(cVb^F}P z^c4$xw<@&a3r1-;_PG^m{KXjEc1Eo}*}t%A`Ro(j4{7-q))bRIN?u2;6hGl}-$@$n zM~CLANGdpG)uGa(Rz0Kj3hh5?&G*_zUB0xY@}C`F@&MaMpG= z7*7ZLsQ4m>`Pwn72dB4Rr zp0a{ju}p;CUt2wG=+XQeQ8eYWRmhTy=1(%~V^ugvzz3IPitOQdrih6u&4KV4K>4k5tG^5%z*^A;DT#2IU-&rFJ>)9kP zD!vg`m)3q~4K=K`thN8s$S8{Z-s)kTbffg|t>Gs99PM?b+fkJ>R;oWjdugcGBTM-w z#H&O`Q0W;f#W=e%gi+S~!mE?*2Wy~VJwMco9<;tvg=YL<4K}PpqgiWR<(g#uU?rJs zYEicoVC)7?K)b2)|%~$(7i@c)H!Ra(ajpgb4HcOXxe+u8OwJRdfv)2cIc+{ z=&kcsWy3&UtwFoiR<7p@tZ#mki2G$zYInh^%`M2Cvnf4w!HVEC_s}TXbHNJYGs%gmpem7Xqrf_raO>T;2X7`j3W{=;3kIsf6_+mioq$CW?a zXRA|-OIB4*bI0w@f4IBG^B?Y{o%s*<&pOofvK7r~?xY?05BEU#vcc|wsrdz2 zQ>V`=<;k>Sdb+!GGU{KZGrw5Pj0acuY;whFWLU25IroZH->_WW^NTB1h-rdubm5BC z(4?Ou|6iTycGUh?tI7ZEo(q1p>KbRR?s?=_tCnH8x@U!}R+M46x@Ylqs{#$UYE?0L zp^rwYl7q+pt{SbM-Z=nQ@Ko*@FIe&8p(rM{826 z>(1C+9hIYU3CO$Sk%wX(r%vyiR+NWMWeVG8g;V?=Rv5i;(`p#ux^`Jw0iVxv z+ecHJvZDR?Lcv7yBn92F#soqW5Y9~K_+6fLlNCQCS!-DVbmErf7X%HUISZkvyWACB zDxn6}7&-uR?oER%%N_s*P@A8bO)JY7Gv*0p1q7Ph?SO06)I?cX{?G(M^9FiJSsBI@ z*vx;=p@X-rWSXNaKiX_rAw~v(<_>d>+rTm_Ajshs*vy;eQd7l7A!TgT^)`PLgd70K zEQG6Kq*O&eqp|(AgMUZC0kfP-w|=w68}|TM7Q*gF8}}i9Sl;yJ?^c9y36NzWE|;C0 z)d+y)-%H5)%^E~A|FFW1PXH_nDd*FVuK!^L*FqfwYgq_un0{wUUq+SgS`&TDZ67^( z*GjNSnuo+k^wnK!LI5NHUjBWxGs_YFVl`ct*M3qq~-b4{C`%CVE|&e zI&J!&H6;ut08|#jab#1%pVnBK`xk$U03iUCg}8+Ue_IuUcvlNKkd^09;NR9v;~pr= zXK4A~*5if&;N&kUJ?KF%!BxjXUzj*)@G>*?lXi4urr!7Q&JEW@lth&v$ulP516w z@jkd{Jw`nqSnZ=E%~4o9m9f6f{hIlC3AG-*^niChxO*K=)&r|Yu%y}G4`VQH)z0~K z=+g3zk3DC$w zSSbJ%nU*alR{lD~5z7fLHQsqXYWt`f79?jSj_c8}D9Ean_4vEW)=|N7s2a)x0Y@o- zCjb5wt@lx@Xl{QM<^!DMNp$fswUKHMP~JX3NRFY!71Zm2umK)26Ura1Vq7kV(Ft!A zW;6ha%!F>YDyLE8qr&~+18~UMw9ZFuGA2MjWF%#3((*4zNA9I^dd;L{^o20qc>riljS`r2cAdiJ`0L$re zNv$SyFi4G}7J(|zXaMq92x}}e8nNMO9L?{kd;{R)H9un*`$Go6<2AG* zNNq6gfN?D3p$xlLQGvz;K*t}_*6`ijIZ` z@Q8)5(~1*j6y)Y)X5cpnWE@tb!4c|dAM>Ds&P8y|OPXuG2eqiAmIgoqgyQ7Cr4Wok zvZ}7%>dIhU2Ja4OJQq4Im2(k^0P;GM?`o@-q21 z9Uxpr-_}sWe78v51_n}WP1P@0{^1JEG!w{xRSC~Ep@N#qMjzKyHGH7@4V|i`>e7Rn zPFwFl8dFQP^L0EU5=WJ2d#!T%Jxw;OT0Kf_DzExOlBL4G0LCBFoqFo|0GI== zIH8&}ZS1OoB@FgcUnP=Eb4CuZ;=}xcc{w=-Anbu!T(2e_idIikQbV5Pzy?&Y5H8O| z^2)5=f@;U83beMNYU}HGBu76sRNaH+AFkX|)2dTlx;^+UN+<%uSO~kC?-KV!eFs7V zIL1sUsy3H6q!CYzJ7QFKD(k~J%A94?0A2V%#SSXS9|}M` zK1_$2sU^k&SjV;7mA6PT5dq{_2uC!_RYL=U;0YkdLa1AmYVN9?L}LnQVl7Q!apjyn z!!QKQ@d(<~UadEJKsY`>jPAE#J?Rr+&;!J=5U%(f^7^r1EVbyUI{BD~)Kt(>^|DEt ztL!}O>!_B8K>~1NA#66on04!-dhy8$VxSw>po^W<;s7v!XuLa%R`%psJ*2Z5KpPXd zDr6iPhrl)#!VaHtIUH%M0c(6cn=W-yb1AAT4+%I0mN64Eg`K+H(3d!f-k50op#fOq zSUTQSEjK0rG-mR!3C}%&RMt)TnG6AK9K>G?CpyEGeSnbx)A++&Drvz@>&_G{f=mHv z{Giaon9FK2`2)(BiJ4X0*0J4H#oDk2s<9BR2%o(Cyqp~Vm>H6OG^)Gm77q`74tP+52NL>MFhITph9b0~B`;~3i3hvzL>Ndlk&pyT4%rU143s6OsF%^wOt zIqpp*J=Jr@CoqkLJmgbmC*u>i#?LY8aiW@OdKWwa&{zl?&h!WdwFwQN883-LA0^2n&V^MwxBxwRH9ANT-8xj&`&K0fCN~@)1Q@PidUi(-q=Yc2SNs* zVkTx?fROh>KG=U54PX{CF{?c^WOX*Kfn1zXLbYl*UH2Kt^E_MwzW70jR9R8Pl&tAf zb23ZuV}*7g7{9VoTEPSqnxD_T2Ufr?4tU-pSlQT_PykxY#H=j{MHXv+7y`4nHhr9= zRvK*p6f^PAmZjTh1Dd!ul_jfZjW$4unV23A-xwrfP0-kygT*gzrPv`%IV zN5x8$)qxBU#6q~qeDh~a&&`qZp?UaBDMQp4pE4OB;k0WAuN9K!R_m3D^P%6=tcg>z zrcKMq&nv}G8#2mdgQ04bk7KDhFjNillQf$QO!YI9Ztc-3hZhK_0KmBMCep1Wu+hqH zh81K$G4^{)ru^6a!2xRVQmQpVZ4Cee5XD{I_Ati?f(!`7XWynfqtqIVAmamo#4l6F zQEH1}0DAZf#(_|qjZ@$Z&)P1FmLsP4cD&BQDZqyLDsYV2Xq161Y~O8^i^r(RGWLCq z3;@I5?v@q8;Yeyd5RQN?%*1T(x#WWcML3j--)tTbVCn`q!|&6*RJF!r4piZN{AIt& zu-%e2nRMY%s=Yt5Dn+NMKEcA`dd@RVvxySs$8@8EIchvtHq-$!>~)ZWC#cP+=P=e#UIyph@Gb+Fdo_3s0Ns#f`D#GXi7Pt$gWvkB(0|>xfDQ=?LW8wqquMm!J zr$>BpVlo;){1w6)+dVX}PeyzI|84U<-LZ4#IH`gS&|e{J_=bn!MLVDUpaH<&22^HO zI}HN}za_MFvf32_4Pg5USyW1O_D5E!XxhZpgqw3!hR<aP&in&i@=n0!^yxB>335KjfhpeW#*8ix;H0C%SS`D%6moC5VX=ms6gSNRWT2I6qS$;QR{V0H!(vXht#9RAu^V8Xvmg4Y0pFQ%vK99}EEg3MpR? z2WPnJ0hqs~bYZ%)9)R|n{Tp4J{(tKMFuy{|*8}@|xE=uZ%LMhXdWIU*+@l%*^DBhi z1Ww7Hkd>Rpvv$FZ>3ma*xY2(Y^8H$zZy4{;qo-ySIYJmYrUm;vW6&O-yvcvugb(*ib_`EE$ z#~zwLUp2Bxn(Oxu+CEH1I;&z zwil_cb-)0QuMoD!>nDKpIW3tkpul1^&gYJ#k5FN;>fk474xqv~KMGu<`1eZ}@p&tD zYa3e_w1Dv|gq`)Fgi_UqS1Cw<@*CcQ5*Df?+P^?m3B4-Mc8P0r%L(|lbA zPeAj1lFmM@MjHljd>OfXp&Dfj0o~gvnF7`*2A*7`;vzE(W;pT!eyPcfw%Gby`MD$e%GjmuGy4f#Z8)2nDR-h^j2&-U>Ewe6LX4A~oCu00iG>hM{t* zWIZu`YDO9lW8Mrx9oW4iMwmK6O*jNV?5#1<)ajOIoplP3-pEm?hZ+;Jrl%Q?)23r7 zf=ht(wx*cpoJ|LK-ic$W#dB&1Sj{Jek>pk9GZ=pG^dILD` zBblZ#!k4H}Q&OPvE}USRu4sv~=>W&uIER9tR7o}RGNxorNE<&RJ3DJCPpt?9h`daw zWUs2hz~ZWX<;+Prxf7;l@%|SYfZ`390vGhbQWb1U0Qg-YT!K+(KdPH-g_(u`?Cx0V zwoHu;gcD%wGNGMsayB~_DgM#Jm3+tbV3`Uw1pv(Mr_-feBO^?VjsO6zJ8UKezs7^k zZJNA-uV4jb*Te&ST_GILcoPqDU^PcjfZClyQ&y-cCQE?q=08bgFPC%NwM11h#Q@4~ zB!9rCrW*!ub%)TU5|v@f1teW2R7a}M9i0E!PX0y%V7g4`NajVd2Bhe?*CgjLQ1PuVd+*)*Y zl^SZ)0hPOpFc0weamvq>5E!|$XhW$QVHiNgT|r(iIL8!_aJO%Ach1NsT%8j*xI(xQ z2BQ%oXJ<{#Pn$S3gAbVq1UR^hUNiaLE>+%*a`GlRWPrgH!sZn-bFwq0re)?i`{5CK zeKkMY`$=Zx&J;+hlTFe*BR@gO#N!PT0OLNk#dMZrTUURYMZDq)I&P2$94=$xnkI9r z2qrE+r-T=v;WD9aTe#8OIs%CsU{nBx+mrm)sA2xF0RV1gn!HAhtOo|5Z-sDa{4)7> zqceD9Nm(K7OxM<^9zLt2I1&5{psKx1(p(${(S1o(@{m-bjW4MQwy#B%(QxU~g05Al z-pi^DSZq*lh5^jm#&l~f-;TfpXtzQ*&>YIx z#1B-OZc;(KV}KZFxBLrG>-a$)7{Ip`!un6R^n+>SH}QwLIB-*|4ex+cs$2$ zP<)--^qOC&i3l*aLin_DnJe(2>I{B`uaM2x9+dZrO7N33SM7Ve+K0TR2GfrH3E_cI z0RAl#I=F-Rf`1zTK9Fx8xg`^2O^V;Fx^XEW0QPMs3VKaV^alfIw+*QHHJ*vU0KRQK z{UKoPN3H^k@&|} za!vcN288WQMwQsbPXFj}EhNx{3JlwJ6%hypZswyI)B#@01g@xfGcPaT1GcuzkN(@H zQbVz}gB=^dI9ag)RC_NkdSzRcAEm#==Ss+cSX-3}-%{De2e4|_2hrX=97_D#`~V1g zz^Yvn?Di36uxcR$N^PeQ)JeH@9a5mw287Y&*HvnmV_k;;@U*9C+ZJUvnE;UXSh%T% z;;lTnLJxqnH!9JB*El3*SD^b_mA{bzkG4jnTNXKO#&|xo%#h6qtN~4%Sk**+X`2c$ z1qUAONA&MDm1#TygLXIfRB40Hx2sT7*8rboVw%l(=G7Xmfk1m98ktvnXgP-huxJO< z@pn|7$pk30hZ=fXly?afT0Z#hPzA;U@Ux*!QMZu=0vMUa2!qZD06+USZQrS8nqmQJ zb{4hRrSeVuesKbl7FU6$tmV0r$3Z-8c%PU0kazik0)hmdtPmc=e0<)m(y8QKUZo)f zm~1RFD?0}l;AD@{zW3CVCVl|P+ImX0W>+iMFo2I0!k+jx zLGoStS7Jq{C&0*lObPGv;Txd4zQ)4aTe~Tn$WIeiC?>0m(U$Ffj{EwL{83B8^|-9nU{y0(rMQmUqjO<{d$& z4yy{QKjG_dh=A<+;Z!4<{E4%N0nAkh7pR#uZsW+D39$}$K$#WdDU5Sg#p9fpAkDIH zytGXUjXtcxO>O{#RgcR+7(&Mmt7@i!fdZRCcMhvIh5;B_JH>sfa!iW@304SuwbRc1 zZ2sU=Rn>R}9_+D&GBpjM`}_IH2h02@CUAhQk*NT_6X2gfXTs)zQ}S}AO;0PB#jmYp zPI5$DC~I|PI{uj&@4p*6DgFd;X*gY`0pT?82=9=D%ggvkT6{!J3xE!AV;> z^bc4w>K!YH;-BW{dj)p})C+^wq?b5vA)I$1tvtdnDhY;cxE)fU#|mMo$&QBsB=R|^ zGlK44sFptFGfg^9k(_I{UQ@VImrPc-m=&?fB)+akBmnZa6`>Rr6Z_?N= zRXZQYOMPp;RIxTmbC6Ha=`U5f{~FPf4^g>Lg+WOXl>C*7^%E}Z%uDm5+vijjD)47X zqto0LJJhwN;dWR7R8|NoiH$4$UvFKHsUbe*b5^2bs+&#H?0FGgIL5cYkN{*>2>TgN zahsFsQt@%s-5)~0%ig2o$JHdm0I=*7ia((WgP;KvSs}FXB7fXcJTEC&>|1d4K@Jqz zhE(UI8q)|2;KvH#{DN}%aGy6lEhBeg*7&JBGNJJiy>?Pf^Z82Z<{H&J#jjmSn&W<% zKb}$Z!yo~ytPu8NC$F!$o5we2=+X4kJYJ!({USG%5Z1^y8fi09YWYJ5fY}4|&uKNw zFaRWbj^=-@W(JrHeqr<9f1!jEih+0gr&OX1r&LoC=-5CzGyod=+m(kjR{xk183H+Q zV}1)hTrkd35TQ%I~{9c&6u5bo#f2(4^;qK3C;M#@>0A+=+Mvg1P-lhP6mF2bN2j0g(8%VND=+ZIn z;ALmjzzD|;C&WOMWg`85FwkTJ?GOM*w&Fh&|C1VP@&#b;n@mG{MowchCGr-*q)c+C$O<~ zx?hi=@Jp(Bu&}si{%R)JF|>2}uzGaxGG7cQ7Yz&HCjqblqO1_kE5k!aU}gQG0YKSI zYIa$T3jhNkvR_40^UJ(4#@rniVAueWeWU?BxU8x?6i=(4RcoJJ5@HBV`B`;{k~GJ5 z*TiPa%gUKJX?#8x&7t(!&nm}PkDVs9MGrII}|7Hiu6C$}c1A_-}ai09XQMwr3k! zah9hNHcavd8vwJn>C0c$%Z33+*@aYaRn3Zq2Eb&6u-A%{^YY}br-0XI2n#9TnwsFl ztB2q|&%CDE2TPg@6`qbIa2%Z;Ju;duT~l4cpapbUA?$9HOW1&(xX$lAKm+KqX9t-` zPhC@O1xl75k;%OFs_B8?0E3o^ zOc~sXI6ErVs-y7*Bw8Wt%WiyK3Lg^?WQQpLX_+|spNTY%1d%q>XaI{=h%7k$eyQne z*w07_(jr_)4NEJ`;5YW%vs$mDTS|M!J zL&WWA-m}*O0*w@KwGEfhu|Ihca>3R5!xBKX5w!G<>SGuHrOl>`clZJU8UUgd!oGV` z!r%P9VAH*0LIR9$;L&!bO~0w+0H_0f_RwnDaF0h*{GalzLuP7C;~NmPhiTmJs-N)< z@L3_wxLZ@wY%A1g1AF!W`Te1ijBB9ICTygYe{(rpsIx{Hc(WGm`-AUl5eJZFx4dSQ z1!>l>fiY`;-LM5?)=>_i%QmJ{cU6C*2t3(FZ_={AIJ5LWc_D>c0LcpBh~rH|Fxadw zHJ@6u!#YHv8#5|>APGSfr@n$8z8YKsN`=o z$S49Bw(tWJY)p~m2o}JwLfpj`c-U~$2>=W$gr$z&dFmhDydxIi!U|zwBFeeC*s9zJ zGJwMhVVUXn#-SjVI2cstF7I5E@2OzweT}fwK&!wTWT_&MIwz`InCBG_8grZ_z$IGXQf1bD*!gB0U3eR5wl zt0`$N#wIh!eI8Qrf1vvM@Hs$0@L59^|xr*1Jyqa5}?Wo;Q$8Gf=6|i7aHm? zBLlRo5V!1ErwqulLRi+@*xk_n{_qKS*;Ow*(4&kW0Lcnr-G0!eH@$SQ5duF}h+F9W zs17!s03N%Tq8`=B0dNh}*!q{~@}qhX{qtvrybA*X@M7E2rAPG`;}=M=LfCJA$+VC8 z9T{i?FIET(he1fG6*S-P29Ng*Fb;todzXSL=#eHCAjN)1h0KV86JWv$VJF^`v!-Tn z<3P}zu2;|le2z-Z=Tk>--8NX#T=U0GLk*+CfGj?Ocx!&u-dlI{hbkar=h9_wJuwUn zfW->o43f&5@KRbot1?gJPy~Fe5LV>hR`v946sb#K7XQ8?lz}EIgp~(8tlat08xamY zz{?6@y_E8LRcODjuGI+c05>ay)q=1Q&B)8k=V!dKRf9%8Rj}zfKBuKR7SKYQ?rxJb zSI1>KY14DVAOQ-k5cV^V3LndEN>%-IEEPXz)iW9Zq!q#%vt1e~MhF~QAuOEk67s9p z!8fV}*pUM;X?M^)KRwB3s|52oP4?IE!II`+v}qgrs+DgvrEX0%-);ox1{5-IVvs-7 z0a5!K#Rcdm4Fj08Wwbv)Cs%w;99CcmA!>1GQVnVqs9V{D$BzF;d4am_!y3B-b%u=( z`wUXs*M}Aa>&mNMeuL4zhvaw%;Izdc z^7wragL6Yg!Md~0x8lAt9SYX%DoUE&`Dc(&eQ~Bm$IyDR&pxO#y%XG2ib4Zx(YJ|YF6~aRPVK0ZU;p(^>42} z=nj68<}x+S@S|ptJQZDfeM*&ZqXE!cA?#wJxadpEYUb4rgE^pYg|INg2zPY3!PjJv z0s&VDOEZnMWKUl803!tuZVK(Ftn>Y$4hY!(zYc9axAw?bI#>#Bqwr4rT=BP+)H{3hwoXiQbz$R=s7kY2Q; zs!s5S1i-hS)0wKezhMCKwuqWn)4dD>V7GN?UNxO)7=XD=q?6Tjtj}ffevZ7W>$)~c zv-iQ&qPp(x4+#Kn>(Simx_=lLfV36D@y7B8Y`PAmr{3UA3#34{?Mszw=*|v%!L+SM zsWtQfV-FNtA#C5v*ssXEQQu(?1l#@;Sd*6nI0Rbl-~45pZt1gMLcL6zYwFg)lIBpe z%-HEh8MSp3`PJe=oDeO>+@gfRzeG@reBhJRWI; z0Hqb;778e>aRoTqY}!^wj}Cw+q;r_O9h`oB&()6RK0sSu#M$j-X}rbk&C{ z_LF+LhmEfG+Vz!$qjg00|~HZg>X5VugZ8Yl4>^873pjP9qjXum~No52D-gX(rmhkVjJp8 z9+FCw-ca}S<@;+O&~9m{V{Gyd>%K*o8|txP5CMr+2xl{pG8*dIl;23VFhXF^3SnU) z#}Gv)8|fxK--%EDz_O8UW0N$y+(n%mbGab_5bYbZp)t?CU;uhn2)jv!n-(p20nBf# z`DKd0Il&lFI*AHLaN*;p15K z_BPY)Y?5ZPWAtw`of`&8hQQVe;Q&$*02W#*3F1-?Xv(F$)U!xV#?S_utq|58L3jR` z*Mxd)w?b*(-FbWfcg%o&V{{jrq&chaXnBmDfnn1PX%7r5EY=0!xLbvt#Q!1p8(p%|f5iNi*7lTcK@HxXvloP9K8LiH=ELO*v z^jtdKO4p!EvAT_6@J~jz)~#qzobGQJduT(PF1Eq{u3f%#;@6@$8rf2JHmr;9`qJqm zH(Jt(mb#{~XiIlm>SiY0nxb3jb|#JJ+M9G|THi`HH)+Js*QAmCOp`{=ed*WMI`*OL z2er|yAIg4j8y#lMkbNb((MAXOydt&Ii~eoH-R~Poe?w_)^$44!xmI{v+E#Zrl4xqw zK{uk9cAOhjOZWOx@OL*NX-HWQ zbz0p)*Y$AU^&!s-JLpiS=d~Sl1E=RNI_RDcc~0o46Kor#2u%<8Qt0vG>hyX?-54w` zNmu&5qptmsLe);%Zd)xjU5@$E_$U*v89BK#|0pa> zuF~<&`V}MgIpRwt`Fa$c>Y|hUA&&Wi$6h_!S^tA@I#s~qVQ^PH%2?*m&aV17lWs%t z-E`qYLHylKxA6Hy;#x*A@w$%<>B!8Abh5LKrcLpBm`{m_=h5Z~<=JXiWE53>KGvDz)gL2N{JuCmj{AwFh^6 z*es%ZJ@jk-NPAu4(k9b_hBx`9DV0BsPfFA+R`=4wjcO*1?WLdbg=!amT+~g+P-Jgz zo${F%GRxo#yt@ z_56j;g?WBFzn6buw2oZeM>E_|AI=FDJLz5@J>H~eQ`Z5yD$Vb!M;UiVEMD(wF6u

BFRxAq-+R$U zNlAPH|8kIS;tMmMd$e;19{`&s>0ZWB!w0^!h-;Bl=AD6TJ(N0_hqQBpoYVAOG-@9sfMwY-cHe_CY?%t!*x5FGgyx{ zjL+!oU_J4nLd+eaV>|=w|4?kThw6m?S8SVy@}Nc_uGsWY-O3}j9FMR%(8*yuk3%1^ zO?HMgXSm+(^Pkl18U9TGU0hMpT&ZQ_>E3Ma5+}znxjBO81}Jq5;s!|Na;J>cnZ|B0 z_j}!i{x?!jF^n{_kJ7K0^m9})PPd`N(K^*Q@Q$)kNcEd7rAH1hI&VD}r^BEmFGkxJexAv_Po*QukQyWM4?^V<{?CPxgpszDFpDG-e!6D{zK* zvL6a1Hci*|2ql_krSUEfD@0%qM?AaIcu0dajDphj7>K!^>QiAlk3mQZ>pCjue!3oP zlrt%HlI}n&GI%k8&LBE4NjF|SUJo_@-=fju^=l?QnzrZYWEz^uD+!bb(o306MP4KA zI)ZEycsB{*Ch9yvk2g85>1^Y-qE@w_?8)?pq=i|!qhYxU zb}36I`ohAy2gPLb1_=M`p(WYQ62C)Hxw^jIWQ1oasKQ5-{?7S&Q7_L%3Hd#mb zV)}f{PQh8aGPRzpYdlo;8IyG*&w@6g6O)}e?4h40^JWBIQCdf9p`cOpOfIh_?@32H zO|_=*Bzq=TN7;nIJzz22&(+mD#EZ?mRf~2`)x+qqJU%eUn#HQmQ%s)j=Zh6Aus;>$ z@%0h@=}#(8zwEKJy#W(@jU*f0PFT~FCKmAg2vtmn&FR+yKG%YAh^iNI6C&MYm??fy zq3&Qj^c=;b=liu)>BmA|(V$d$v|~V}PSt~q55!vZP@b97bafkQ^@k}ACmW{eA*LPv zqwP=V_7po^*A5mPF5SnOn1}g0%IUlvojaY&4eQ}!ZDtE`V!H0>vC1{0o-_0`!&pHH zvv@t{T|@wNp02}a;#KbKA^n!{f;v-IF-lEn%1k}Mq!-hfnSA0Y*XZpZ*KHpPc*Wzo zn=z&8)YcMS)R{b=@MP( z+A`goPR`c#ZNlK1xJLiY*6BuEk5ZQN^tfS;?hUd1LZOX9SFNi@p>uiL4;Md9wNd=~ zbyX;DuFePmD`}eTk)`ch(SilK6Wz$?$~d(^hfv3PyevYY27S4LC&d@$aqwV7(D8Y? zuSsjFF<*~0>8<<`m!4!YYCX$Fr)S)(MFB-R$%wB|Mv;EfWO{WDXWG0qU0$Lisn)EU zm8nLtPBD7J>GDb)N3Rv@UWV}z-7eP87{9UeY_uSLLudMMflf56H<(qY--f!>fpGfw_c`6<2J_&ZG9N_8)~{*-QP)E|9{istjqv)j|WUxI_jpK@fg z^=aMBumYa8QCZ5yY81GTPZrSHOWhXgA|qbA*hU4ku|C~mv2nZV8RNFsGkSngihkBc zC*IoFgbp*y_$Z}~FX(2}I?q}0S&MXSWAFDoEnTG3j9wGEvxxWl$oG|HHYz6G2R{C+ z?rK;~_?dF(nwwSWdl&1c6*f9~bW>Go^BfOp7(PkeNH?XO&*{F7l0Q#gi}mA18bfzT zx1eo{c>#y|X1czZhXK;Fspv%(E?C0L1Q-qI>=M1qq}x*7QeGjzAGz8_UaN0L((R?Z zx`4$maj)SUfMLt{$`*_my1j<4x;|Rw>|^NKj-1es(~UD%7e2pSS2HYE7mi%vbeBY9 zR_Gk#8ojlPNk>p%37=??rKS!gxTrcG@NOJV(BTGp_OJ$2ZMCj!3|y_3w3=`KVBqR) zYgY3#4VJ67edl7idK;sdH!?Y)x21S?w5Ie4IpaWYOE8+7sr`%Ekw!;zOljz2?Wo2Y zUgnW8I$8%>zJ}L9FwnI+nKXJ;zR!y?S1PK#PPe8PU($7hg~4;>_Y<&c^rX<2xHH~( zNjLC?>V-{|{0R@i?l1Em0h}3hVI6PcKY5u49~jlC;aa`IhV-vH9J9H#mRlbzWH!c^ z-_+w@ja0_l_H}#+bbFiTbTnc;&)57m;3M`Mv~RtR4wf`W_q&O%3+;TJPqGy@@QDIi zkL;rK%^XbD1|G!V9He8Lb!Yl*gC1)G!)K3;Mg_gyht_Z84I)^1AJ}MFo3}etn@zlf z1Z&Vf8(ltdvnQR~#3y^OrX94=-lK0fr(v(?0>gUk5T9u(ZW%=lUgg0Jt(}yzRnMW; zujzqC=ikqGgb&!#fj)VS54X@+euSaY9&F*O*4KI62I~N&ZPy8u_y(`MU_3zw-_V;) z`ftj6Q%?&3|MHi-7BuKV2P3vM2bivRB0x`ko6iXXYfSxK(qf3rnDVX{K;-!&GllK0xi3myErN?v_C zPe)*(5bs@)ZeK%}Ia6y*Xl+?qL{zQ|d0g&=gCZ)}qu)2uH8*+5U$rZhmVBU}H{xA1>!6-Y%Rkf|4Pzyp_>hmWutj0>jjgL> zUwy<^co3sx9ZdRfYW}ev<5{SgMu75kqTYMC0b%7Tl=nUzZ&?Am@l=z)Wh#ZtcmJj%du70>@5Z>GUQ@#dH`N>-Ud4)HApCW4Msd`M5VNt&DS zb^7O!PV$^0W*M~?Y16klZuMa<9?UAXGnfAN0G8 z4*l+WP0Wc zeaxg|Y2;D8&7>QV|Cf4&N$;VJU+OPS`Yk$rR%g@qU+Gs3V-pn})As`q>Yc|bKC*N) zzyErk=dc6kbsxHVTt98}ZcxDqebuBVQNl$%p7x*A`wZiqJqu3hATRSz7tJ5z*(I?nT~-=~ZK zRXgvYS{?JfPBvoHs-u{w&^HVpbvcNJ{=i#XWKf;n`a!>A(#bULN4>)z{MdUuwT-0I zqrAC{|B3Iwz(v)zqO(8ogaHQXH=feY>RiJ>C0{dX)Nc`WInNt*Xg^%ZZyP<-?<6{N zfp=`so3w{3+1pX4?+{n;CQ_Gp6@e6${Jcq{eiNzY&raba;!4i*`CjIvtMv2Fx^Znu zb3cyD#v)pA`V4+oA}2%M?Qv)|{Y5Xd;f^G{Mn&4$Trd(j_ym8 z*7W%mJ{5xTDy_W9t98<^`WeGmMsc@vE+t;o*~VvPwTi17e2_^0UF97;Y%WlS#jEz? z*L1#Nj3Mh9uP+e(Oa+Q>L%zArXKgSJQOFIQ?TfU34VrgDFL)@}(Kq?%4LPED$)pj; zuJSRow0Q1@CSsUl(#U=owNt!Tfe4boNxvvQa(KiLLkU`E`|#`PkJvw@ZCd9A zOPZ@|x~b**$alm5T5&O0!Q;(gsQ3P|4MgoNVp68vJ*WfRI+{}FD-Dx{ByL-2JpVOCd*ZxU*>R?m+ zj>cx`-Ijw-`AhH|qR%0d36 zoYcDhKiT-*My#G|7UOT4bN&`TE(aYFWLkK$e=!HMOvpvQ`xR`V693EJd?j_7i9hAn zxsKnchF!(wK{Cs9g{OmCcXaVDU&RxnphvsM_-&rtQQg1q8g6a{o$*&+!Br%s7@%0FEwX#Fk@dP7CE4wK#wRXPB z>iWa-QtywB@UYBbG5+*>KkeaPg-sbE49{sZJh%FJd8t*G_lz_uDz=N3PmN46(JjkQ zM;NIR33nmYLvibU=-K&o44;!@Kce#fGbNyXk}&l-*Jw?;>Tes|BK?0I)c!ydVXs0 zNUwZ9J~i>jl!$cs&o5Aae~vGxhPRlFfAlCGDdzuCBGT6!@`8W9bY!r|-TW?A>Y7~`LeKhxQ7S2c3Cv5H2u zaZAp``fpUl`jK7?_M@srrkiYSRZ6u;^Z%4vv3jJdL0az8>XEwtDfdM6NZWknw)cD2 zh?ENth3J^akBJ@UE%Qb*74K5xnKJ(q0f|OrClc^Oj3+Ub%IQLFT4YakK(eR1l*>*c z_>T64p{Qt}^FaK4Oy#}(w36A)I=xQ2i^3hKuScuIk-bRNNW zwxWK0h(Mwl&pINlc;2PFLrtWF1q$*y30S0{YhM9N6b$btV5x%F1_)TLAak$)-vadi z(g-0d)nw)<0WT}KV8E*ihK&}BRSKrZ3s|F|*jNE?DCqpKfHxI<`v^hUTc?EMf#KLd zkir3aZMJ}S9gy+a>{4F)XC!;80xIdDfcF&)S}x#21v_36kfI=5bghu>O8UPo;1dOh zw+Q%DL6MII>{4*)GXZ-P%-t{GGX<32L(9HUV7sW(hpHV{2s|oe}Q0hMlh7=VLQLrRh zz$FFm#|TJQaJ0C9Oa+wuL!p-m&azs{N^|{PA^D5smkMH%>wpYlo=bVp-z3=uA(UtA zApyuDizrBjtRFzMf=|l}D4}4WIi$1&SbsknateVdHM5KyV3W5t0}Net*O8^HCBOXYS^o%#J07e0^8Om3T#uG6THHfb+05%ZRLOrSR0pe+3g9= z(f+O~V&B1miDB;gom|qZT3PbDDi~@&cLm)|2|X3qB6}&YW!$a6mJuNMl&#o)ztqwf zAZ*B2hV*wP(vN{I<-I;g4j7_fO?v_NDX0daQ}kqng8iKY#3}foqku6AekZ{COHfk5 z95YeDUIQLbkkVBOnW7-dfawZ08<3=6`fYN^g9=XHD&P?Tvi@p!7xK88+-tyW1&OAR zrxdK}C5OyYkbH-LXBGIyV!nb-cZ+c06b3rhQ%N4XW$GoTj+H|ydSpk&k z2wqb_T{?g@3SKrAYZX9>juz_(!ZIPCL`SkgO`t7{ieXKnzIV*syU~i+AU$J=7JKt zY$6KmvPn}Q%VwFEsld*WYz21JTvcFK&2F{h!PLyKD+WNXh`aY>Fwc%ci&j zyJ|`)u&bu50=sI;E3m7kl7i&0SvFOb*kw~gfn7GW6>!<$)YMgAS4{&2c9AqzU>8X< z1$L3N93FQ4wX39!n%Gs+UV&XC9TeC_(piCBB;6F)MRJ=0yGU+V5Vou2P9=7g^j3gX z!v6MAU>C`~3hW{opujGY!3yjm8K%H4lHp+`c9o1$U{^`J0=r1YDX@!Vf&#lpJOaJN zK-(ufAlH?tF6FfinfX6M$(WFIHl$#g0S_r?Yrvxl>>*Dmu!qbc*v9MKMRUkp2c#AA zBqjSl1sc)HXI#EVDMoy1F9Ix7K+#2j#R@382=IaeiY@{yQ$VFf-hZu7 zLWxCy7Zp%a5#S{Slu-nDMFC|L0bWx;^+bTx3aFk4@VWxZB?7D^2+IIbDiP!@HK9f# zzFw5nz)7${zx3Q9$KGfcF$Y?ojss50p^e5GEffu%~W2!9P5g z*~`RYhXZmhce<2EnL`w?TLA?Q0ro1Oz#+ir22g~a3Wp$HstLsn0rn}NpdrA11(Y!a z_*wyF3;_-*po}5FcM2$D2=KiE${6zg=SL;fF@(us1(YxZ_*sGN{c(bH4oCZqVsX*| z8IDsfCF+GJ;EV#Q7Xtk5K-i;vA;?)rJgOA}{H4Iwah~9Rtn}+o#Uj-Ksq`XKCzxFy zE*(%nI>A+fA^XKX%K@>^mXxeNDiq>?D=y!oA|b#v1ymmdxURq!83nnZ8y*J>J0Nuw zbt#WxgD41q7&}fVzMHwG>bX5FnNyha+4K3V#6g9FX2Oa4C-hfXHs7fO>xb zO-AtgCnZqi52TrzP}vWlg#wED0kl#;AwPgN3Mk|U&`tq``~YrNKnXv94hq6l?gQzh zglc^NT@*m5kD!|Z>hb|}S73YJli*Db$AWCJ=;eS6$6YSvQJN10^aco<11QD^5>OMW z@BsuBP=ycRUIkR$1L&`SQhNXc6;N6aV6Xy8>j4Z^FsDdZ$bCvEr3aJY3Mi!qFj4_k z^Z?=%*v^h2c!#|&RZ1)p9FX2ma4GMHl9KHSko8x@959*W0!tWVz_kA!GgE;*WY&KV zdDsD|^ih}csG)~eKdykfc>v+C5^Cmw%uzszJbgDvxVHGCKNb>NqGenI0LAtfZApN zl@(CW44|q4N|*suS77^Ei(n0_4R1BQuj7dHzMe~Y)G|W}4HQto44{z$>XiXBQ9z9{ zfMyCPOa{T@+AO z44|8WHLsfMUw0)`5Q9k%0^=EAZ&89f2rhEO%A3vRE(c`5dNZ|?*{Acwz7IkE&FNkT z#J;~vg*|GAp@M;qcoYl+7_5MLVE{uFP%jMNJ_QsB0~oG=@?ZcX6;K`wAWi}0!2rVX zN+=2jGFAaa!2l8zPzelRf&$8a0VFD**cZS93MlpkFqz;y#|KJL1k)@Co84!I=2P7Z z`AG^W=>;%L0mZuj9#TNTE`UcAP_PT&F$EOt0(e5fRs&|s`jd81unQ(nstKjK0Ol&7 zR2RTJ1ytz*ct!z5xd5J1Kp`%G`3k7M1+Y*-n37u{iRNDerroaxNPw)-L z^vhqx;w1-UioN1e9u>Awz-tO9t_83fAZ$vYkQT`6YC_>GfVB#!l?CvY0%~OetXDv7 zEPxFPsDlNtQ30i|05&Q3>u*g2BlKgtkNs|sYdnoybwV6Or@$X^g-aMYi>E*AS7kWt_7QXWO8P{7v; zs5Av|Pyt1z`2EXwN^Fro5Nu){ze6Pn7Ka^>I(~L3k1|upKBj=uQUJdwpo|p2Nd=US z0yt#>`cLgBkTYsRwJ3n!6;Le-;H&~FL;?JzfZ|X9e=DFC6u<=qRDl9WRX_nK{{DPX ziS2AU!OQG@N?AE3%K_wfkKg26j1yL;Fw)1qfVJ6khW?+Y4NNh(bpa>BT9<6}#LjYqGP<;qsoB|3C0gP8b!6AT& z3Me%M;5iWXs5JyK$q|oQLjY40P+JIKngYrR0nAW9`5=HK1z(y){2;+GuIjGq#o`eM zWK};V^H1_AA%qg1aQPm@f(T|Spga)3lL{yX1Ta?t#ee|jDWDDzz%vSLE1oA<%4Ssv zZxfS+j!3%}yOdYKWG^N7o(Dh*h()e&K^?Lv|Dxh!=_y0{wDAWU!EedRB z-zV6`-cSEiEIx8TdcV!3Jc{(7fR7bWod;lt0;=)=>{Jk@EDy+TC6wg>*sFkAJOH07 zpb8JbmkOxD1F%m4Rd@jQE1>iaz}E^o#0WSj>reVdxgD5%rzX_d0r*})>yiR~R6toB zSR7VBSsj3%6;MzI;Fto6=m7lUK-eo;PRL0|JPPK(>0Dmj^u%>|U1trwLfk~gKw%qzECm#{0mxQB zEgOI<7GVBU%m(C|no!IJ;JO0J)&LZUbMugTH2?(_P^t!?umUR702Ea~g&Kfp1=OVB z{4cJAS~M^z`7h`#ptJ(2(7>Xs0;bXsBTC1OR;h)mRB-Vqnr#0d-*j znk%3f3_wc-6oUb1t$^Y$0Bsde>II;^0&2Vf+#(<>+sY&%9o2+-E->k=fO;+fT@_Hq z1>jZ%)NKK{O##(f0D3B*L<_(j3Mk9M`~N$YP>TiNZUq!!0k}s2 z`U81aiEY;wg16aFs6Wu+eFvnSAG(xB2@+(dD4_ZXz;*=`8v*!40R=_?J{2JApRyt# zyVQh=A^>|7P(TFWGX+!*0r)}zl|umjr+``^0ADGfMhL(G1yl#&`u|1=B|!kbRX_z0 zfI|u>{sHiV0&0B#{G@=Q9soxaP|pM4r~)c?030U>%OF#!1LTC7P^kmpR|OR50649{ zo|oSVUf_v>CI>D4bU;qjIhXRNyn*cV3aGZh_5Y6&%5A_TqJTmh0GAZlIx+~b*6~kc zO~vA}15#;@OS$Z81lWIY18MB@95C;{M!{*a$*0N&YAmFH;u-)&6i`b8pqK)RXaK}0 zpnL{E2?dnT04Sw^${7G<0Kzx4s~kFfee7^3MhpE zP*VYQF92#QkScKftxNJ2D{XB4%cFqQ~@^P6{Yo0nkMObt?e6DWFURKz9X{rvT`o zfI<`iw+oQUPy*mS1yqp$7_NW<5&$C=P&oo1P63r80OA!;E&^bz1-SpEUIa*j znoubMV1fclL;xfzphN_~0}7}M0WetswIBedDxekwz;p!^fZ+O{sf4NzFbOH3+ylUa z3Mlsg@UQ~PJpeqafN~E2k1L?g13*{-bshlb7{L2qsyl!@r6v?~0C-vfMH~Q<6;QbW z;8_KB#>^*J#wm2mZn0S8fJ~t!F6B|D0R=3TcF6(MW&l~PCX{0U@D)&p0br#9>M#Jj ztbiH}0Iw>rtyoR)Gn;k#8?ku9fv~jeO_y}}>j`jY0$0xm<$!k_5c_vs%A@E4YTT@V zN(%s66;NIQ;C%%YRsi@=fUG~NDuAS@36&H8wkx270>CE#^;brd6Yvy0Y509 z5(2_8AJOGysrAu$Bct zX+Yk;%yC3Yxav}(M1TXX6W~T$LMNi^04y3Rpd0`|V+AGP`yZew!TW4Q7xOE23kReXt&j@; z>+T;1v~l?!z54^SQ$UCQ05>b3BY%Jn3h2lmppybR@(1XmfIj>Ix+&=OQCLWKC3Mvf zlO6;|+45JH${D+Z0C)0m)o;3Tmjlw3-Y(_QUq1>6D4@T7fS>~U>j$`3fb2hX*bma5 z}d+jTVJV8>?>0Un{nwZ7~>FE}D2w#=nGde%n?D-^&NKfy|ZzgfbG zK>}WJKni%xr9Ar8hy7{-JpI9${$K%bIAESX-gHTqzn%c!f6%4A9Po|Lv*IzyT@XBbV~R^rDXgwke?leSnV@&|N;j4ubq&qU>@&irnK; z9$ny#KQK2T1bo(gz)o1HN-9aem0KXDsu@lqZ6>!D@De`xh^16N`*?%f{Y?FY$ z6|~qa;2#AkTLJL=bx{di*|XAg1#o0fkfq?34+P{WXm9Ghrogr{Pl0V&LAa_mJ+Un- zB0%;(+q7skk*47hR)K921@?r65XGQkf7KkSsYS93r{FkHhW zy?P%@er*MCcFz*(Dp>oefCdWwG@!8pIKAf~%@o*5TPm=%w6Os9U$&a|YGSMDpukqs zS%Iyl8^J2}4gT+0?`;l9-+H=~%kD+6g7)xzPy4&a@cxTL4!B42;rpKXK?P?&7tl`u z+~3n;paMF-2Nd0kE5!KlUu7kb<{r2q>xmuIy81<({fB51qGiHP+tMOnX}YJ3gC*Ips9i#ri>N};F+8jt;g~DBLlE>o{)BG0#D^M zxkbS;b4(`%#a|GMt_qsY7tmb+Je9MIo(kZnoS>J2Fx-@r+^yuv#R38f3Yu#ADrmV( zEcz>0Z!88Wcx0(q3{}w39CE*cTg=298CC*E>uktq1!Z3nFjhfJbIf=Jc6KK!sBdQ8 zBn5UlPgP*2^9%>Vo}JGjM?5>9A5viF^P>vve11ZKJ$Z8!*y%i1ft}9D3hZ{R?fftiY7FGY!+iXSVmQ}I&;b}H^xV5j0|3hY$;Qh}X{Un#It@oNM4 z{9)(fw`yW%-uDXZ%=?MpMeeKrY>~P7vjeiP9&;)0&78lgQmKsrDOHCvAm4}?$FNb70Anm;DQeJ`g%=ULh$?gy2 zfLsM|CeLOSNN`2Ml{`Tq1#l!!P*efj$P>gUfD?Iwk_xu&6;LLD`@b|4j^t@lPEFuO zo}i+FUHb%7QSi`L0;(&>F`$+LI?_iObrjg)sIQA~$hM{J0K76%2~ry%E$fDsBx9u*L$ppPkIi~_izXQ2rS;DDZBB0$)* zEBSXJ52y(|>(gY4g0Qiet^n@mX_2Jhy>kK{RItQYJfgt%{&59^j+yyCTZ!%OQwnT< z=P9uLeO7_(?|cQezl#*u{=T5Vc6YhVe>pL>zb~qZ?eEJ9Y=2)oq!g3Rey8B=C;>kxSYyCp1#lcM z-+vudat{9bQOz$3CKeI!tAfp@nllQ@8SsaKbq4&UU}ChCab7`Nb6!#b!Z)0$OKM`z zM1}%;CN3+mXX1(idnR%f*fUW8{;W+c_DmE~Q16PF|3#J9GZCY}o{5qQ?3pN|z@CY6 z3hbGvsKB0yDhlkGs6L+izsvyo@W;T{QWJY7>L{>hqP_xqCK@TQXQHVBdnQ^auxFw* z!C~%)XT#=Hv~xt3$jvV0oi*7V3FK=cxbkN^yEq{B-CW9ji*%cUH*OO9+Z8M*C*V#C z(0_RHXOX?t`DQv+#zAlw)J&KJlobc71*|}S74j^jsn}%O$1W!-@T-otq#aEecz=# zc>3pXd?f2He?zyc$;Dg5WQT&k4A`aMsqSL2R{@;xv(zsXzy&|SJ_Tn?vkoZuJ8Z~7 z5*eUo3*?wX1baAQOP>+&qaI`HJ)*$YdrX0?_k;pl?zZ7f<3OKJ|y#c8T_6-t?OA5-HIx-aeW58tvXoXyVt|+nf<|?rD7Jz$s({fvH zAqBSHq6%!iF$C|jvyI@nADu1ffb_MrNpbzHyI=Bea{1nY;Q}fssBKEfCjoGuSX5OD zTSpBAw$R!NY@u}t$fPdzr=NNAnZvq@UJb7c(&B;3Tz=g31mvXVWwm+2c+S5xs*3ONh-ZZ0UZCc6+s0r zn*#bx;Pp?6tT$Us2CB)1Cj|^quyd|}`xMxPF+zcDRvdw>C8z+f-Z5%nYe`VBA#AFd zsKi$DfEEJB`z&ON1Jc=PF6G(vI#YqIbe00UnK z3^w3t1-4nwD6pkIufP_%P=PIUi2@Yrzx-&VT{soXWF-Fg&;;8}kYWP-I|}nYGXee^ zgQ>qvfPeB~>YNEaHNj>RoHfBV6Z~TW{Obh|_@4=`nqX_#g!u0eX5#-Q7`$nMcT8}> z1o&qf<{dY|5fdyi!N(?8V}gq&_{9YHFA*O1jR`VLu*n3cco9bC%O;8cA7Sd436`4R zdlT$3!G|Vz%>?{EA{?;N1p7_Ef2jfFe^(&jKS&_pzbqhFZUVmNj}+d#4>LStl6)^7 zsgF#+H-nM-*#vwc7b(7Xih%EVBH*i-2>3!J0=_1RfbTXU;2Vnw_#z?#z6pqcZ_yz* zZGxQ$!btKxEChTn3IShkLcn*H5b#YT1V5SJ4HNLy9>6Uo;A=NXWto8Qdmy#S1bn{% zscaMQS9GNKgEIpDYB~}>Li0x`B>8&|0{$q2fWK%U;P=A__$?6vep`TmPmKt8^NfHu zvj}*Lir}&dcwtA1mp25w6d>T%i-4OB06Uho!f=Xn_KY zmNk|JE}q}QFZ)8Inm?h*q6#IEi8mc3^L2>iMru`T*E+6E%V|?4EJN0t|1YbZ%X;TO zSsmkAyR3CLWG#K-lNeTm_b2mJ<4>L)DH*fjMz)#^uT|!^J3eBW9RB(Zc$m9qhFER65yw7-vfsObRqWU{u7exM4{pfv7s9;EcFQPyS+jph(YHQ6>hl}% z^?8vJF$Zp7=-bWi1mN}Ce+#MOw`gQe_7^weRmo`Y?i<;+OCvJ)KUy5|zk4Q9)i3l6 zW{!zhY;*I!OXl1BX4U-B&!Aa{Ze$C|e!7vJ?6p(+{(XMjAm+RL$!dO;XCvjK_WI4A zjWmimZnO6IyPu8J^dEi}P5O&tnkIDC_rpB-X$6`AAI6iTtcd%(48* z*m7Fj$s4)uW_SnMHb9D;vMf>*U#5k)XC9o4JDY5Nr17J{6ny-~*dcyo@}o9cXMQ}) zk0WGvGS-0~Gx;%?A7%LwVeVCa)MfHEetf~?0e(a=S&1Lv>rB^RbO&Qq8SBH3ADKMC zk7-Pn=SNF^wBg4EW)x=Z6l22~E5?rr{Ak9H;{2G!k8%9y&5y?X=*EwDejJ-T1fQiC z-Nj;tF*cbWdzswF50A;SjE!RKUVgOa$2qdw85@9)#bf3d8#ifu;-mz~DW;^1UJ$uE zswgj`^Bek?4$hACFLp_dF3Jn){CfVJo~iYs;q!y3n*N--q4vg0+5EsB z^P4hN&A)B)!m>cT+`@QCd}_@?xZL`i7DXD0zWn?e{+#Kl<^6vaMM{W>^87mfoX1|R zCu+s>Yx!HwhHK$?UWDhD_fM}$Esqqh#i(xawp3QfZFYXF|J|O{x}tT6qi*^=H8$$9 ze|j;rx40=H`}(IJ$HJHw=lNBZMXHJJ*!*gK{}!_=;9s61MUlyiG#a#K{+?P$SMmqhxMW7b3-*T3ga##%Ayfo6ZqNN-jEwcL3$iW&FTxqsFVKV%OW-FGt<2C!@)Dp)a-`&6`m8v%TC$3EON3})KUM{W04jJ4jhYgLQv#* zD%E;KeFE^+3}5SQ9f|JR+D8p5*Zu1oC@bl!ETCW2wRE;TWodLt@$AS!v;it91e z*!;JR*@<13YQgNL|76QeD`! z-gAjVFl^7Ic3~N%-9>`G6iHqd;wkJ4i7lhWH5b}iCN>44S|)ZFYFZ{1yVk`XfP9u= z7onSFVznWdWnv{hcd^$Xk!4ubA8ag?Qhe{FHr3IXt|ug&VfPl_MYGA?dr(u}w`j3vi;abO9@*=52YfeNul z{YbwwPM$LT(_#^{HbMXXX*H0V(m#!(KEHn&C)U>fX>8Ir{nP3oi1bfujG)Q@IlSY5 zwAM%^4oGW-VC8_c>T-I60}BQdF!$z{)QYFZk7Kom2Bb9}{~4#&m5cb0*xaiwc27YF zJPCUX0$3)t9m-cGwkz7jPDAU;ut6nU>|Ll^2@83h&lD(-go$6QTAh^H1JlZPMBA1< zpLSbu8Im4>yD%5}*Qi?Fzw~@s1LRenpLR2X;QX{2?ZxEvz$VvtjOV0;DLS580$Y(& zg55$+!gR^-U!9*;4FznQpH{QG6tFX}8)kA&T273g8K>jUbFw$^1v1NQ%XrH~b{S^3zXg%~4>%!!k9S9hTIv!)aXrmmN;ymUiHo}EXDEMMj@EvR< zvdEkG=mEbV@s>mQ!Ng8N;K9T?uXVAT-g2=a&~h-j`yt|BVqu6km{LIF9nnWWb`bf7ABgD~rYDq3N7+b%&+5M9_a&I@d_@Flq9R zVd;$;41sEc(RUd5g^OiDr$JcA`yJU>h5cvN>Xg#szVsH{M5ZRW2F(n-f$AFir-QY* zpBzp~=R~O%N^e`g$=4`@-$i*74!hXlBQ_TDT7APw*1yGtn*QjPv6WNShSF!(GfVsC zKo2bKCGoK}{IV~`mgE!}wlclD8QckhWDM^6u}z7;UMcmJeJTBBbLfu1S2(oaTpaqq zOX)4!$@%y?kZz|)`QK1~4%^i8f{V?E+JUf;SM_&oQ`xjil|OnpeMu=ZtnCB0NI$o} zTBo{yF{_R=>dW;qidWaCw~L(zEdrxKkWrwZjon(%#zJ1*l)i7L`)x2bXOE?KLs0*C zID=F=e@SoDDOeh%@_Rh*2z=n1 zShpH3Hm|0O^^CQ#koN%&;Z8cLLF<$ke@QRitdxvPufQNw*{+X&Tdj<0e%bOFRZ3z` zac>(ENW?JC8Tm(r7+l+DCM0pL6_3tnYRUmy2r)#46(70*DIxY?Tl@=o2gMg z&hpd#Zg4*u^C+v1jb6s9~_&}AE~d#W^fnELY^6=tY8dQ@BI3H)VPca z{=jh=e+~ciyMNT=fKQnx^{kpF4gGpv z2G{rHc^SOQ*GSH2()0{mts8IX<=`LP#O{EHU=!O559tyMdA(DnCTDEpXg1!K(cIKF zE%3SYcI(cj75t=a8Rd|hye)%U{qb!Xyp4_7o^dOJySHa_l0$;cqJp^U z@)BO>eEY6ho0@*>ajoj7lsT1gUk8+*SUIzknc<@X%aZ-Lv90R+c{MInFl$(VNbzXwuyZWFWDy6|3@1OdF%GD-Ag)`sou<4s<|c zFnPXhT@iI9G|%jAG6I1i$f)i|Rc%w=-(CL#C;q|anY@BmX_48~tc}Eghx2#n;nr3B zaV;{rlP^GE@}3IJMP8k`Z7PLvZYMJ(<9-zGu#MB_nQ(G#Vp$rS0YBG30nPa9SW-lI({39)F2a@LG!nYn};Vrt*aMh#^`^bOpHZk8F4 zFm39Lq=XqQXGp|uXTt+yll|%OZ7Xy647xXyE9K#PGr7U8zBjW@Z0#&m!(TJJFX3F; z#46_6Sjd}^a{AuPQ)OyMMQs8dQBkQu@iQN2Iex~}$-GbJ?sy_DvmVNe8lA}-@;WBy zF*>tm^-l0EZQM|gjbR<(FNV8_HCd-qi}!MkOV0@7ovm#feiAlgyp*nr}0!pgA9Zn^~j5 zOYq!meC_sbaavrtq!xQfhsdS-7s5MU4Z)IE()2CJ%gfr)Baf#7oPp zYo3p$1ZJY%B1tpi6Q{6GtJ5+o_Lmm@63DVWstMn+#tZFZa4KtJ3*b%G#Nyya*2G%F zf2@gp1jn%w3wg(JaFTzz?S-oTsilP~q_j)Vto=NiFz|^i&W4Ac$l^t8^AlOz{C{~O zi<@Gpa2D^Gx`wklm5}kh92KlkFxj7TR}XmrT_2W%ehp`}g;}}TS-hg(JUgp}c>w*k zVDP*=J;jZQPZ~QhZtTQ_u@9IT8B8r0yzb7_|KK>*c%{7$9%D_c$T1gt3qE2Ei#_3D z6X6xsu-D)Y*2K2J53GsZ@kbdO#ZuWVXQTh#9t~3}&B?lryWG%iS>4QR>mBHWQE%s; z-j>zW-@h%Z1ac2=%j#-!2g}aUh`EjYUfZ+ycs+T07N_@u?OELIHg3=21>xBCteTzV zWSt45a*lHPOh`zIn-)JKelnj^c~6lMxbE_BL-B8(-}>XMN@m2Oqk?@o$xE<+Y4}nh zaV+mVIRE=a1qU(frhHj((`HN^!>27842cTPp+O-SEW<|iv?OII{0e`z#_?@6II^`a zaN)t$#MVR=hM?~*uKwBah)V3u$u1T>#l;@bSdE#EZAr4RkQe(mXV|IHw^sERukBMl zrQ;`AfAF@T)`2YEGj~3a#fQ|<2eRt4lJQ93o-6IEjxVi@zsM)?Ws-?~`HGE&yrh&Z z2eSIUjf3-&F7qC%S?DsKEeD4#bH{l&beU&nP3UqvId8#D1%qEsGyJ%SkV;h>15I5%GxUrMs zXWDZZ3=|4Z{%`iw&=k2nd}G$-W^LqDyjm#uC9I@x|HD_L#!+Q2{A_Dtn?JO%katf? z-mJ^ZDw_#cEzl2DSMs;UU#L<|#t5fT%JHV}z#%Jfj%Ip)rW{&$`B^^o4BvOzUZXnl zNWXUGz5L!|!@kQctIFX|2X>;s;$x>yo)*Hh`84VCrG1yH4wQCQhzj<`l#zB$$B)9s z(`04*s%~P*_=VWSR^st+qW@iV|B5NeUtR9k9WD7e zI-8qIZge)!SEHEhrm~L&t_Dk@UVr+A{#-?m#)#GGm~2jvFOeE0&5Mr;PIJvGg_CqXI!il9=J?yNqh%sVj;XjATd0K;9zXdb9xMJm@=h!cF7T}etb4t z@sbI)kI&}NrjO5VZSHy|VrTY8{yso%Jp&W6dv=haT^=}wp)EFZ>iDF|vSo9Lp9o|F zmhUlP!i+;9>3d_p$wR3j#+HZhyqWj7Oyo|w&Bq*W8MdGoPvq6}D?fo&4A zIhfNEv+t-S0~1{^*pVA+smY;9Ns02Mj6JtMBxZ9-Tu#jHXm%8@VDM$P&(6f#3&t5{ zIR)lOTd%uVKlqU}b|Z_r*yUm_HnfzBy$aWm#%^MH7prp#&L9n3S=Ghv zhx-*dnH(xvv$psL+@n%x?|a$OUwCqAu4zdIrxdA z|C2-O$hQvVk7qaPCz%}z279_Q@IXs6XgQmk+}6e7;P=t6m@Y213Z5PfyY(&`3weWD z`Ag1c*I9A@uwp6i9nWsXkvsEuc7w(;Ry6~)(1Ox&W2eqc#J)8-A!$b9SbOEE6R3;4 z%6`+0!v|2Y;ydx zX^D7M0(pnp0HS&J=B%Q+p6CgTA8bqO^twNaHKA`U5T&3!jgMb)Mm3 z(IFRm?qM4XdDC$)Cr_P`Ra0JQo3m{?stK&kscF7t?HL$>29+2)DREjHz6Lcv0C1Yd z1;WTEDGcWYmkIgG`jxdgysJ8}Hivic7uM$RPO$WwIgM|X{@KUv(g`z@5-0N;)oG!) z@onryzGPG|mNTvF*r`*-hh`>Doe~F|8Ho>Z9FpG5;f~_JDJ5=yGpC7}o=-#tlX*}% ze|6ta-|skRt~QxkH3|}d+`^|Q6ImR z!)x%_w{mzRRCHYqclc)Oa;hTewJwKS_yg;5xT8L|PO8~xf`jX%u=DG38k)=Wv4X+V zSQ!4rOp}8xE(ICKfIR=anYv5@yr%Cv(yXZidvG%ttO{W&IhCr@fW zn3uyxjH`Ke9t2(uti#l+>Q8?^zAE?5<-M=mZSIG@knhd0tHz9xU3K}MD_A+pFJ9sO zUX`dT{F>>Ws4LCoLXBIBU`4-w)Rh|k#f-nA&36>R%2C0ZnA!fC-SJiZucEG$4j+W4 zN#m08AY4qE*l@U#G_m%_T-Ng5V{7fBQQ749SL5%3#nVlSO_u||KoSb@J>Y}4N^ z*5iW2D&S1N186-8K&0>NepjA5}sVu5tudO}N_D ztmShBg9~{BTG{Xa%mpsFoC#OC92-o$$_syQ6HK0Xl}~ePCrTl|OuWhsr$pk_RtUNz zUgZx-Nr`gY>cp#UOvxV<4gRkvO0ML$x$|lzxrk*aUbS0D_hP}gV#uuH?=Ez;l7C^; z)e`;fmNceVa4E86mt6rbmByXr;i#fEmIJqxhAoCaN)tN^N0cV^Av{n@EaYuYS>s(T zXTPvj>iTQ$8*jfIOA71xNcd?J)iPEtBO>HdXRY`eu!__0Vn+aDl@HXm*^_P@Pt=mG@#KvHES7gc7IEZga zdd0iiSjc;@ZBd**erb1fVxyF-)T@}Y4=yBILOWKdS7AxQ41eZqz-!vWb4#PF2yy!X8 z+nO?M+_gfx%{LZ3c|YW@4tW)0%meJgz(#-9lIxsjyXxn%0l(JIMU^WW-bw|POg)(ut{#yWYo8POKvlBYG!es`b(xx;pMr+*4##B`kn|}#pu*r zQ8|?-XVli*26E#T><|?k&Vh-Ul{hnmA8H?wTdG&L=C-dVr{+{tFsdN(%f-#amxma+ zu}OSTo|HIK9&9tV=JGq}rtjtQ@n!IPxxCAG=)GKCGEj8pt6x<0V!DFz>Z}9wzJda zx7e(v*Lg!zz1elnm%Ex>XV)J$!TZgwb55LUcAbxi)tXF@S;VG{)zg|571#Me$y{S2Y&jvPPcyPhHd1l>Mv*ME=Nu5R`?n|Q5f|WG)WklAS5Xr? z4|k#x3wf7P7PQK{l|A`7n8%CewP0TJ+IG9fS1LHuUd7%p=WFgWy-yIu^TCo?57$l^ z-#2dn+r2%M*W5fd{TBG!9FYSrp7KWgOs`c+UMR00ms7vhd0ed1R_8S_Ph?-~_q_|? zl+$?c+z)S@5)1LAs?~Wl`5VhG$MU$}=N`-B?pytMULEu8(_K-)B#gDp#@+DBY5aFK zggZ_XD>BQ*Lf+jelaJ>WtWZaKRyz7<-26@TIiJ>!rLO$@>SR z@$#D5QE2nadum73H$OgHmM3GW@v*r$m@o5t-Qi7BVj*wOCnaK|ws$a_SIxkS+`L|S zqVh1Q_vK(0JHzFv58t>YO?@DN--7e9acfjC(eg2ot!tyZcZm60{Uc zkWz|Ei@UT?3h&zP4(a#3_qu%ie$3u8_ul`Jd(OFMWH-~LJk`D}d8!$!BZsACB@K+| zGb%hfH99pdwQ5@R^r}6hQqp=>sZlecdTK;ObV_<;%_=pbs;5**OO32iv*4F>m2J}Y z#>^TYRm6ytj8PH2s&0SnJAl0~kb_fg;Z-;q_<^+q_ zsC#*)DkxbTSXEJ&Um27P45=(e2Ks=wsZmOJCQyuD6ey;J1aO9-!-ftV+$W{qknlbO z(lbUD=GO&-!YkJmBSWfyTM3zg;=S^bi~s_HUEzBdVlK z;X}dm-a$sOO_0B63M|Xi2e;CF>x-Y#%7Y=_&oP4~J<5B-X%>)D^Qi?ke8H^={rs7- zAaC;6vf|nF@}jAtr`SHBg2kcuz+prC^~r#~5Cn>Tj1K{ds9b+=&|0y!F<)=jFm2$l z0Yk;O@LJ-FlrrFUmE1Do<=`+Rj8@!N-i?VAO-TY6vE1az6oP`{F~Q>LM0asx51#P> zDV3i3Kw}Fo*!*HZvKJCITwGqs2OL<`)m6NZP|jqqv+CKW-%uzHh^X8tSiD*xOf*hV zLsiOyqV3~?#rTvUacL?CZhCdni%+4^qQWX;-NhLR9&W@B{6Naws(x@zChb$Ef-*0JtJK4I>{AnUPsoA2^I_1 z1bYN0zuOC=S_J7RrWQ6OJ^C z(=&Jw5hQuC`CcGz!c#BUNrD76NJt>BGJWoMh51BX;J93QP40Xez52$80mtV(F!Qh z3Wztue88aHbIOr5+?wEnqDM{Ezc4=%97ZbzMm7x=F>=Mn-U^E3DJOB-B~{|Ixv8V1S#(Wq8V?HQWhFB zd7K#~5gue&p7AKenKEF>z1%YJ9Puycu24-+F}#n9-OXU92UuE?;~_3dtciSDH23hN zehvFb)-e|5f9}F!N{F{;%yxkz{6OBy zg){5{?1(GT(7OT&{^x<=U}o`{AhAJt?D`%vgFH~0g1#Fw`Y8{m6L%L46}@Tx13M#g zy>U>pG$#OKkObum3^Y4Df~3HqXcb_9J@m0cD3TOl1`OPOu}?Kc&T-{eUw!M=zWO@z z9Dmo$VoZH~W<91}VXDj6U6`7Msgvb?z|>((H7>UgQ>!sGa{pmWJ-}3*UkP;rQ#-9k zaNko*S;`aYd=4hRZb`_~n3{X?7#@0y^vynwDG^g6_YQjZ4O8bZwZHleO#OhV z?(u|LgQ=A*ZsER7m^$*yT}=IksUIH^>LI4WxqGYSVCtvgf8f3wn7Xy?J*K|LRK~Rrm;#t8KK3`JW@9RQ=~oN2JlT_e;1Onv234fh?y)V$|}`hcmNUPG(n&Lfz7sHlOd7nr)$y(XsiVyfkcdYC$f zsr)_lF?A7B?Jp5(38pG#w7`8YF?HP>i>XJLs?og-rmkSBf6k4znB0iTWlS8V=3r{_ zT|&*kRQl$4+;g`WmF|`g;=?}YOY73^uyXW-4 zJOl4h5#Urm{s`r$1Og+XFRzU24(_~!$=T<6VX6pIQB8Vd>OQ6hPbJhMX?MgK>|_B5E_Hjw~e9&zP!QG%gVJJ;#*l zRnKyWT7{{u6<(G{)JjZUa2+0msO^}Fe^4P9QOht@?a&iU{eh{A6IX@I$$_1xF!}pZ zNJ8pYOdYK59*U@)m>Tx#7fijz)U`Hq!%*K`Oa(XWUkOnQFcmk7Pzy1YA0t&peHSpb z_CRVAM6JNo>-965&hZyN4Q|dH7n={MB?>!@V$u*D*kWclvB{P|^^8ok0ZcCp5ers& zig!19ibsdXid(ko#SO!BV$XSH#j2BI#qcd^v3L{5^b!XxY%T5rKBCKxCSvkTm6#0F zqIq&46D=0Z^#)sp*B8VcqFGE{;3ZZW8Uo?bj)LHy&Gr=Yg~GD~WkSJ!aSJWED@1>>)n>CQvaWbG7J`T}8Z;-B9GmhKkm)WxRdU{O6#rCdNQLLd9+?8mZ9+gk-8L7UlSZWDjq>SZ+;Yaq8H5P))QSAvI@=t0P9` z648d_))9LaG+-LQ36)W8$%#$JwPLD5G8{bb5$Y=D@DR~%EB3$e~Ny2)x^l{9!NJ-;kt>h7MLL+faIk^ob3r`e;8yAaIr0{NCb=rJco3lQ^V3^p1SEs3FjV4cO0h zdI)iwi~Fafh-u$eVe^TZkn+&3ji3|2trLOfcNU8ZT8ZIP^&*$=kRI8LXo~h!#60D@ zIPp$?GjVx-1G$kQ7&HgkYSAFHK!wxGiROHVy31hY8nmXNIBQxWRQHXzcX~x802Ifs z_f+Dm#FT=j@i z)1ulftzXKJAsIu&=M$T#0U41W3}O7qBJU8x)o4eD6J@7i(H*`p25N=&bA*YaYjL3u z;sgzc_H{G?1~m-Itanx2Mb)fyH?+Z{!HZ|5h&!RTESakV5qsmnhE3pC^P`#H z#s0GdoQ*Q(m4$2j7aUzle6t`D&)>Kp0NN0h8febIg#*M{bBtovNGH)D(M~62Rrz|cjHeOOzoUu&$PSm65ml5}F16-}6nFv=@3OT?2aLfuelgG67qGEjWIAWDQDAaiF_>R`pb zi(~Vn#RF49LDs&W8ZmZN1d3;|{F;W4;T5rHXA3cQbu~4revo`s&``0?PIs|rbyYR0 zg3#HDV#-P%V)pcT<-~8-q|l_%$PJZ7lo8DKCh_!o6UbeX=_aPHt0bnctt$F%Xh*r- z#_IzIh(D~;t5MyAu!F_@>;1_Tl&~|_MnexoWfba+Ly;)HU+WDQzzDHX3^hb!;M$?$ z3US6+tt;O9>TERN^s#S4lxSHJA(mSdWM55`M&R}ZwO;qRVXrLo5?(9z+&;Z~JSne4;LLU%(m*?f7zGAyYoB59~k zL3L4qht!qr)6qlC;+X9M>_qh*F;xHU-r&ifqqNAOP~C^l28!sc!ELmgNT)#IuZzi> zTZ=7sn2@=cAUtHCAzOp81}X}X*^=f)!Z415qnC@uowb;IF!+Y4FHu;BpNcQ%o5ifT zR-6Y&>PMv<;ynRGmQ0-pMMTvcIxz{I7z%cN{mcRv2o-gRQ{E3F#Js&@MSk~auz&nB zwK!?-P;tiYaf*l}c-8*>XmQjJV?b^jQN7)`XAmQP+?%b9NQ$nUHJ}$1ca_NO`y{dl z^1z1*i`Am;;7GP=gs3XYnYn+wIPt(ZkTd}z8j41O#OBM@;^vDzWl+JrSrt76S<&x!4GP&_D>_gjLxvJ_vi?qoq{Hx7zs8_ zd8QI;9~%LD51}zXjsSbVMP0{6h*3v#L0d?`RhTR8J2?zIxwTI%Za;ḾglTKv; zeLkGM{PaCgJ0DKkekw~_Gbw@^XQ8M+`!#bxEI2!ci4d<}%m#_mp1F!#@o@3)k}=?8 znH#R+^x`4nfb(O(&2rb(;-d>gz#^X;YBA^B5U>wGz*py=f#L|*_1C%KV#>uaqON$9 zI1Wy(8vsux{p`c67H|C=$(+E)^XTYynl7v%$qx!H;+`F1|4WI?De=^$dd%_d+Fyn+ zPTa&U`7ID^-uPI%{o3V@41|fk@}1kihuQw(_GZ?JX(hi^bV6u&XOv0Yo`3I?^53(> zb4AZ52b`Ol1a1tyV+A+MGW_xVU4vCFnFY{|EY94P_!UUtnEc z+E#@b;{HVlCmS#a%Q=V84;YU=(tx?T!658W_TSG# zt2s#;_5)Kt!HLO(LfDz$a#sTsHy(Ixe{2?2zo&qY%Tmpt zRfx(UU7pD1IkT^nJYkbS@ha9Ry`RiJWI^%?Z@) zWI3>9xx!PbFDUvGBZGZq6uHg`)4?E4*kl_;yqDpl7EhDmGBRZ{AZe#)V9~*jLeog4G+S z_(VgX%^<~L+AKRnag{a=!xZ;u(`|&J6~#@SH>wG(g8o`D$da6&aV{*>41q7 z6?s%Lk12{NREBNS>}MMnC`#zqpjnD}&MYnTllxAr!mZni-r!(V2a7auo+Ei){+v ztTdrJ6k93GBguJbUhP)Arb_*}S25jLX+riX_EMPF2b`7$j60%mmsCZH+SKnm98#>O zP2&;8Dyr}C9qnPKc3@gtn@}0?-ScY>Y_AMmt zf}+q_875p*xI1l!s9zNGs2#5T>ik-ixvE&>v<#^?6pN`0=G%%z|K1J~G-s64?05X8 z7)IIGy6^ll41AzC;iNODMnBkmc4P_4wv34 zPC0Fd#_#NQ`0$tW?pWh*MQdluJ!r&slADWisxRo-1D1QglvUDl??Rw*FU?s?f|XA0 zU+tuCLzG)-7Hl1+JVKiR6_u@s<)yKel_px3EUv0NK?jVgu3S&cgQ|6vU3H{dS=>^2 zOGTOm?QP;o37wV4>Dj8u$|wppvX}B41?%2N*^+YG)mK@GHedHw?xO<^4OEVH<`#jy zbd!D^u53yRqR4FJd0Mquzg5nlTI`yx{GJZTEmTgRLh=igFI zRQgbPJ8xD#rp*r9l>W3iVTZB~ZJyhud`lI&yjyvap53`unL*Z3s&GJQqGw}^l)jYl znB&S?RI=kIm1^3&bylgS)BZZAETLLl`$buXo^`vb+(yBEx~{xH&u+f0d{1TAb5~hc zO>|Q|RlcPNhSy5lu6Xi|as-{${+)88hKw~SU2ahXg{#YR+El7sHq)_3v@VC}S)g;t zqVjr}T>|NV)>aqWW0(23eC1I0=3om;3#rnG64iyPJC zr?D>9FT$1}_F$^X^NDs%ewu98q|0|MI;zR=nJzxg1UOvrwzI#z;|ki2A3j-HI@cx4 zg)GF)MJ|=T6wpnYx6)-1RiVXNy9$BpUFy@t7_!+VjjC{Ohf5*#yZj$qZqfl`i(Fnh zX~uXEw?SzH#TjEX;Orj(M#<|(m%biEz4Jaais6K1WCF3q$gjAp7`b7^n|@~%(m*|KF_GrgRRDE}HGOrZY3;hx}m zSdDlvxt{BBvg^SX-SrCUyXHB&t^ngNUY4zswlsCM<=^}ku2*OZ8rjOV8(qyiajss@ z+#N>_31;LE(|}xQ1hj2OSNNLpzyAIOs+}A#{lLo3u0>?wv%9z|oVm*lcfth8JH9!8 z+b&c!*v)3%@KCou;Cp1~?r-%5Zdp|5-A&y#QTvZ*?ly-u{ad=(>dM=#+;-DiW_>&R z*vt<0v0Nwn*o&RrF3_=i676G0CELfAO|_4`o96Z-9lI~nK6Xq$``GdW>|^f@bX!8l z&KYhW+j*pI?5@%Fp@*{FHqfCtU)zV)8*dvb-J4(^yLOV>7CJU_ntg2O4Exw~1@^Ip zqTLJ$^Xy~27ud%hU1%RWX|dZjiraFPeXM$oeeAZi_OV0PyB(xsn{2a>Rqn8l-MG^} zcA(^Tjc!s22i)AgBq}&ClQE2=jFTYVuQVpIPr1#b?iF;- zEr2$=TymT0q{uit>PZW(xp|nsJUo)0+r#7PD|>kS{KoB18Xh-vs%R>7Ag8j0$8C$s z79LZ1l`TACJyf0Pn(XvbMLTng8a<$qMuw=Wd4P^pIyDDxV^mJuv_OxIq$>?ne>$^c zrEJy3g7DqyFe$sS3O=>TYTd~swQH&}DoJxlOI0XsZfv9akv1o`SEV`iq!V%Lm88mc zVl9g}O*oh_AlC>E5?$_L*?L(ys$lOIRY; z)IqArUoO|u!KzGWLa3Bnb4RL%Q@Q-JRnBZUr2s38QNhPF|GrSN!$@#3B`VUSuT>Mj z1PeKauQdM~Rl@&Z2`5gpn@TrDHSWvhD)X)C7Z>6a>N>@)wM6C2ElIn#5bTtts&K0K(v_;7UoPyd zRjMQ^tjikJeJbq7^(to`DU=d6c%us50zhdM?A-dluhxK6RVBpIQoDPqIJ(Jif21xR zQgih=H)6LRo2jYYhQz7seGx2xux`L$(YQ)AI;mHZYD0ROtiEp~I@}wiw%Kv>5Vg&Y z1;f>Tu4F*b81*hKX-=N3Zlxm4yED|UJe+XB7i%;%q?mQ;+8V5?G-HR_?92{~Z~(;7 z5#4-us|6}q(}Q+}^oQ&UJwKwhQpey=sDGsH^6aGgAwB!BSiOd>1)IAn-()>#8HYrI1AL?LZ^+?eiq|HicnvJyiC|$FZ zHW&8PEObIo0QGDtZSAk=NO=mwHEW~(y-P~al{OJ?1aH=AXyD!2u8C6rdoTdOno8g9 z)4(@ru=c`X%?p}Y%9Lp8(4gyiOS6~yQq%*xrQ9BAj#8Ukd#r(%Zx~_0Q;jEG&f_mN z3C`T8!NKBh&_+o6-fN~(_e#)cyE$`X34uuv>>Z7kFiv~Horr4i*BWWohzQc!yh$CZ z-Q~=+9o}YgzlrgX7S+%#VWmrzw5zC1riE*7QLoIcr!8+F?03a#Z4TNnPJ4yAMdhwq zn=2~1Yl(r)(yu+VHdmaJsI}R;bFwysF5HX^t=gGu#20h5UBM#8-Ak%BNIQ}zp?q?Z zww*I++yq?KaAD-$ncKwfIFll*Y%I8`>JQDcsY-XLVSY zeUG%uXfx}%eSMp}r0Z*vyk2XoQrwhx+O1AU&Bs%Z%1cWa_wHrLN*cY~yE?U!Xum>W z0D`#!xSXzFSCD&vG{vGV&wz@7?mi$li!p+M_v30vo65RxrR$Sb(Y+DX|46j^b!YZU z`$_;9Na3?hqXa3rhIU~=Qr-Q_^my`-IgFtliY1VTRhp`oc^u7*(Tq;B}G_U z;NIIQ2bim^39`1`@dUfxYdodRbKS?7h!@1HcW>m3psMg<4*4e7oyl-{3sx|F9ovmt}QlPWd8L5Rj+YR2@b9EDF zdMlZ)TTav4gcUk7HNcv+y2(x$K!W$14+epD?e)#Ur@p?m!17;o!=0!S+X?yVoG!sklL=?{~0D}(g8EIwB)R9~OWm>8}9jo^)`sc%VIm+I*g zxPNad0Hww&<_C_n(@z6OyJR*8*BV!>2#&SaJL!JDV9Wl;T4{C%z1o?GjsI2O5UgKl z@&jW=8;nwe&iVsRgcESU7*6UF!Sf`&k2B`^Ri8|pa$B-KU%{*f_0#pMoCE4DjmyyA zab^>Oy0iq(f6}YKJKr*#^hZDa4jmLFWw5~_9UQICWFb*utbUAha$#t_6fsU8=v2^9 z;ryg0-{|YQFsr2sQ}kCE_^Fzz-+?~& zm+#h}Gkt*$PGudm!1!Aj;ivR-l+chr7VDk4xeeE-xAdVzf5WNVfhG^Vpie|AdH!ep zV&|;TThjibw>lAY5|sWV;_Y)y@66*8tbC{I`U6fYzv-sFB@*D>ZRf3D>8}2~(*n%> zUEd!G;Pybj%vtLOa#v^CSpk40^8br z@Oa2u{aYB2AoFjhyupU%E3NwolamwHbRg_t3?qyu#;e0PQDKH+1f-~Ja3-HPfa-)Bt~whzD5>~LyQ2&pka2WXzfhE>)eP&LxH%$0 zW&E8~p)**hOSXb7O7}2HRnO4XnTIoweJkl&Yr{1seXJFLlZ`}>>2J$KN#C_Kq&ia+ zBSFCCP6l_7xY{!soEm3_C1sL9FCFY`_||FRFyP6xo^2%mZiday+}Xx*<)(VLgX@*T zJ;B@8K652aFGD9(9l|Pix|3_y3Si7ljr?@r(pZBYe7nJDmR1fkj50uAzX^sbs4V?! zqQNY{PyHf8YzF-7p)kIHg`m_%WxP}deg>5_)+i4@lbRXNJM%6ZQLc^A4b*5GLlX}r|q5#F(t25V+4}6bx&h`R7B_ZGoC_Pbsbjf=75Lc8j|0UwyxhPZic^T*eHv2VjlWs0FmROz3@U5gu zJB%ex3kN4_z@@GRD~NgPA1oc*Wt_`9AxMf~iUYZq;lkZGZCrtN2<(Y-N{sED2{St! zfN=0`82SQ6&IRK(2rNbYVmyd^@zrJH84dhAbl14m4So)NY#i)NB-wZ=XTOK6@H(|Q z;5A3$-Ws(wMZk&IMh+z3H+V|P?~M6hqLQ7BUYhj5Xhu;pk2T@w>ZLT*L-Z<*X+Mgx z45R6!6Ib>U)aZ>(a;dME>5((u0YSP;w|z`WNRozuL_$M(Q!t{dhnY^GHDD^5j-k&V zE18<3xHmCnj-6;c}H1yGcL}h~%FtWOd13Ar2dNAfs<5*Corl}HjE7FBm zV|h)}OJ}r$iN?Xu4Sa0w1K&5PV;Twz3Tb0KQ%&@FFNP?&wV`Pea=e;NO|_j?PS?)l zCmCCtDnoPO*Z`edLH)22xv{3{XuXW_CMT=2))K@&f`mTTfe5{z6A`*xH`9G5iW^i+ zw*s-fP41v(zAGoKPBP`e1tw8lH{Dd|Y<8C*W)ZTcp`Ym#a+#}HrVq&JFOM+wcQRAA zmJa8b5}{ub!-nSA44XE=^s}?xA?=!E%18O7(M;1DXTD1Wubmr8@Rs9dhIs%Y-5DzM!cUP{3% zo6WW8*`%%J0knC2yM5Z?o#wd|p@n2VLkEQHF`uFcF8j^t^z7(^<{q?p?~r*iZRQ>| z_o2=A$L+X#PuRuz=9GB}1*=kQ7boYOU7U{>?9&eXY!|1`FXpopx5X86F+~WwVa}vy zSKcxQuy9@Q_xY~eF~hfZu=>4zH@~K%`#m&Iqi3~G%)iqn``iql`s1-hFU&h=bK)yI z>xehzMfB{Ax8{Yk`Q4x9#*B^M@9)gbDO~*z=4q7Q^-pH_LIg$@SkAs+N)CQu6Q6D5 z#=+kp!p-tp&SuzoI<6HR@YcY=mrU`1W>#)LWz7p*Tf`cFTXDiw+>g&HX6XuI_YLzt_fAPS`24%)ccJ%o1;cI z<+{-Ui<)yb|4wSj5$`lh^dV=dw`G63ZRQQ+(p-r+`r%wxo9QLEPJ=1Nr%_xo zZDx((5^O^NT1x5hSdOKu^J#*8bsA2wug<-E`|1Qux35lWfn9=aqFr_PL*q7!{RZr+ zZ=7d0bkZWb>g$%+Rktp;Py2ZVHMB|Extg=3ftl;=hIZRz=Qe7KeOj$;c5duWyP>!5 zwsZTq$Ih+KKKrz=1JuxF>0uG~9bMMRN9~3#I&N3f^b>cR8d_Px^;8m@XJ6#tZ$)5l zsP_vOOPdRR<%ZJ%fj77})Eh%@*>O|v*vB6HjT`Ak5L!IpY{~5KGwz)`IeYp8*Ph}= ze&Q~}7jIF<_2MixQ(v`M4p0^wc*{?;ImyEUUy8$HyLwvs>qzrbu;nj$_D-k;{^%JV zaHWD}FKw=_WPvYR;Im`HE%2LmxLH5a0(W%W929LSfxlOaWN6>Qa#=%~bvsyW86dEe zrL2LR?UZ4GKk>HwjkOG*2$6Y~ zs}#X^swI#%+Z9@TssH9Ju=J#3|6FWYZY10`Y_Ws&-)4DBmu0AAfj_l@#cB4vT}|~~ z3w%`rpDp>p5=U{Pj#_f)S{y2|WK-SR+_FzI-m&~fr@8)SnMql!ePHR2#W71EPb}Y2 zagP0MpEmiEC6&ti7i;xaF(V}pt<|>Iywh8+Q)ySco;0Hh4m*o zwpIsgXSzJgx>;>@E|X}5FFE3|i!!Vc6zoPXEBqxCe0F{xEBwtz+?>?kI+j}0I^23! zOU`P(w!Wj&EEB9D)XuR5R@<_lDzxsWYdwFF^%}*Uvc$THj%~it`hqrF?y+hqSkE7< z^%x;Gv_y&-<*YV8BI-R%<)u-)9Igp0!qFD{H{3 zL)MDwp}jN6EYS3@H9n|vVJ7SL)mI6HnMU~0<$neYqKmBar1?jz-!Z^=#G1ye1UZs5 z1nf9wJp)3HS-rt?4PyeEk6Zm2Jt#hI4TLXP-YT(rf#O|m?O6AgAf=P37Pckh2~6j$ z^}*90tpV!QOr{kInyCaHC#;xKUssBbwn7ylh!Pz31J)emZcz@?I7?MHcnZ)E7 zy4E;mD;bmYJ$!8|sMsnpnP5*bJl_w2c>{k-Z!_rss#7^;2toJP{ZJQnN+s4%GNuhP z2}GQ;mS?8Ow4NZ>T0~l>st-_w`++g%tr280yfm??tg-d?ZV9$dGgWu**^>Dx(*v3) z7M5=Qm#w~F^aX2sW)C=X0V@6j;g-xZb=loy#%vF>hTYi`}a{I<4Og zYc=>6`nKM;Mu8cV;m`S%0j8VQ+Sqy6;8tMiPIEo5@TRqj<}`&gwF0K@R!@Q>v!>cM zKnGH8SwAt25T99WY%5T-(iF|K#XM#&vDRTAfSpCxR)Cqvjhk(;YBXmlheoYHgFbv& zf*|8yAE0XmN>-b!!0$Kf6?RxF% z97N7rVv#!Ev%=bF5t6G5JHHiK#LHw6Yd^5Y!^_J1*0!_aESxs>3I&J5ZvAZWlRTbS zCo&-au{BL|?ei`W_RKmHEP4uiZa8{Agjs8X)aTav$}6ql3V-^`8pK>93lTG46~z7y zRi4F#F!yCEaaU%hmyqvUb9ZDW?JWv>trY_Tx>oVA0p$voa;&B`2$8Z?Nsq#9yn2wx3L1^NRL;Z>$}Z zwOUg}*gCDj(jZGb+XUi6CD>+^cOx0^cz6yf0Fqx?&5Am$iR5Tz!C*@q+Xwb`;)2<} zbY?Hv%werTN=vSrV`6NDxNPD@I0Qw;=|9cB0L^CR1Mtb(9C0;S zI4=-W#bTW0&aYt~wFWQ7@oj*T;TOO`OBwzS`xjI@-Ry}-mal~73_4+jzb*ZzRmA|g zLIbq+wW6K}cqRW6;|Fdj`Bcqs4hMr?=_~bh;ZM1MftxLGb5!zlo4{^SJr=tKQxi?3 zkzN%^x*~wxKw|4=vT=^96-GRYnm>l41o_;Y03sVeFT$0L7H-tA7Q&T{sx7!>6@18+m|KZ&&A>mri-+O@v|f9Q zzoKGW2Hctrf0(N>>6x+8qdna0?G-3nqb+gju^lY_n%J-Crd(D^jo@8A$IEJL4N$~E zyy6{hWtnya50|uUZ<%`1v8Hfbu5u9)eMeB zC6@$Cu0I%N0~vkh{<13X*#9iR}Hhr1pA9hTzctUC!w>G$pLQz|D)C zM(s+aikhELEd{T z($`J+P7HY4n5WekM@?NV4p(C!y%~Q7{L=KZ9WN=4?06{%x<8u`Cv(ZZadfw{QlO6D zLJK~+G{iR)VgiB4lS54ZC&b!Td{YA9NHjJER8lFsHGiLB*4xz$!q;9J;d6zgXKnZa z3`lFkr)fMt?*b3v_^Tixj_67gRY@F4ROgAHXXS!kizDHOlavnyI}TFX^8*QtLs(lc z5*8&ZcojH}eTNsCCM*9^!r)}(4vI2h_HaZ(IoT+PBQ5O2k7roVczf2Pc`3*-4(Fw} zUHA%YR6JO6gsT9zBaDi3QbfEXCsm3kt`R|8!>1b`!Z6LqU`JMpkEdCwJ?X(&q;0&+ z2NL4tX(@_|(hOYb!9O8*G=tc>AY+_CIwbOKSZE@A%@+ZR68TQ-#CUM^7%bl>6K)Z0 z`qg7(GUrj5s}Y%v$^1G77JsG8R)fj_N8<$2G?hQXFdOZvaiC^8ENLXrEuAmVd@oaM zr(ChaRI$++d>Feio}@&K(vw{qFH0OZ?8qiiDseoBCyC<`8G;kXJvoy%@s7lyqKV@M zi0Q)zG8i@q-0WjL9W|to0fav!?au;Z6Qa{cKsHF|}v)b|_2u zN`(XY`3z7Gl&1+M8RQM(gV|I#23{_)iR~ON0`C_@4uvI3%ml#;7Zpt@U?)&Am=Bd9 z#q2VdXU9VbbPY3+LVYcVnt`A))DDEjL-`e@5!O(IbrfNh9AQUkg!{w!z68M$!8UxG z%GXEm2U)hbo#UDWoE*&;v%j<>7bTCf`8=i=+|1!4K^zOe;$`ng*a#M!Yw8wKWFL-wVeWGg`P4mwd!4Evl1a~`jm;;9-FLitSuxH=Gdha_BU+r!vn>6VsGg@coEHd{E0zsYrhTNrj>2b|8>c^!y<3?Oyp z?@M|3SDLylh571i6ZjSF8_W49c6$eSHOj&3$RtJs>xjN9_zq+UzVbrXO6>6t!05+^ zvL~o@kIL0PPpxaaQqpG8bz0wn0XZ49ya^iKNgdaSk2(N!jmSQsmV6+G{DW8$r${>* zShR+}ORyXcY3qfG!UDrj(y!y;AF$#&B6DVGhEhpTFTBSFT5sehFoB?C4^0)bH^JSn z5(wA?cfW9Sn%u`=D|D23PtA_Rdm3!!1J&awVj$?hnQv#qa>!%rha7PMlCgzv39nco zbQ^sA)3GC2kUUUul($H=xAJq{*q%gO^*0o}qty0$-pIg9)Z{&U7QA@@r*~0|=}2$R zjUfueoYR=V@V)R7ssImwm$KeJ@M-YFrk@FXcRNxG=Df|}!Q$5$@L9+L_#2PO_g-1R z^B?#!@K%OqA72&Trbn8i`>5=4x#C+pB7cT=`UmD}z=7%ILhyQsRLC(PZ$Iy4tp@^Q>1ndDg)d%J+M2l=_o zP0*)^@5tOHQs%&0<=5p>K89%L_!zM75Z^-$sBo8va1_uXoUQ*n5e{TEsjJbn|4gn> z;CqBmwnt7L$!gQyRB!|DkML$Nb_=fqLcP2Gz<-sC8@#!la*bT*M&kwMJCOyRC&2|S zQnA6Euq&z;P|0|3`V9XETN5UpgM3@2HkpotqhT?uHX4Hm#e7$$DLJ3pqFo0V*^%er zZkjbnMV^u|akJ0yOEp_4V(m_(Aj43pYTId8$(-jKs{2vp_}O>(FtF-8pKe!e9$5MU zChRU3_;`3X>~l3nQ#H0r0T=mON_Hwy!*eHPI=T~FRUSS1S?PiA+l&Cye&x5b3p)X( zqlXs=Z>HA)?{ZN_#R_QDAOHSa~j6Px!_HvFNC^*8vf@cK64CZ7Tw z3+s$+e6^H7%tL7724LSUzPIKuWqgqu8iS^)ZKq3!p>t$X%(UBhJ93{ftk9X{V@qe^ z9q>^L3jgo#@;+`%dGO*jKS+Iovax{p$M7%LRqu>Fgss_`ZbSn+xq#zO_=V6PGM@6C z*~XpGR#z8fO=2S1n9j0{)uuBEi60gO!>v*Q?^#@=*a!^OQt%VkQnvF|p?vTb4T*;W zstFVp#wm=47c!?gj+`c!&87;Cqzb`@97v&!FZo6+e29h>xx`{G;%%wPN*_6F7ED%It8$@GE0r)HiIHSSY>SCJZi(o9#Ou7Y8}Ad`UWO%wQ_ z7OpZ{a9Jbt1rZy))$m3b?2MX?QkA-kY+ZydWL^3n^d5w7GyO@S;SPZxfH9ze6H+y{ z(|>oCQgi}*wA3>vjS4efUtOKIViTvjw=#QsCR*AdhFf+1hfxExM2$3_V)F zIs8548x2|-g$8!`5B*JGw^7&)|IjZ~;1wGU=k+vOLAF`A#t!U4%5iuS%Nk8&wL$&e z8I%mQdC(4Ob!buSL4zzpuHEXtlWVVfR-rjF2Qg{}{PTGeJF5$cjlYpAalphw%~ydq zUKphLMCFA;&Ya<4$j?2lGLu+B>2et5SfJ zg*+#jeT3ui0;emfQZy72j>6gv^%GvO-d#!f`*tPaf5%@q$OMBG0YXnUw5u%g%XgJ| zSaet7Vd_Akzs5{)5d;bp_=y9>cHXnAOs}&JA+TQA<%Gd@z2GCi1K(5zwaN=E*t-doh13!{u*Foj(+=Ij6yQa^hLcpa1&e~c-4*0D5|+XpTBAPa?&Z;UXVRdyqS{~aUrXWfTZ)VbC!914q!cwJ?eu zN)>S*b)Y@!#w(B?D=cKkley^RprIZO@V!TMWt$Mv{5HZH^u2?EIKc|v?L-~}a%Wmx zK+Fq{1L4ErYqhXa#`nF#K*_^A3m69XdqE!9xT(xWMO1nJhYth4;xbN25ap)DeOXRocNr zBsz?Xhlgx*sEEi=beN79=A*+)L_R|YOM7@Qwa9hEp;D5W2vecn$RJB232yoPv!v1siS( zHrf>&=7E`btreGUP!TL|Zx=+D+Pr*7* z!TL_goY@HKGzBX<87nyjD>wx!HwEi8Idc;h8|gE7Sf&@%1-rr;52$0I^g~xcVsfw- zylf87U@zE-TmgH*Z>WX6U_NpR>;)g-O9sRXRLB*u7v!QA_JV52DX$ z7gV=ND_>a#51d1=dD`(u63fb+W)SOei@QgwL_>x`O8^umo{rTzEYmmkPJX z#$;RrJPy8A^ejbaC>zFBQh-4RbQOUi+dL5#ESOObGPv&leeh^9cmx^T=O2T^6~Ne} zoB$tq3Ei1n_!~4J**Mt~q|eL=1Kz!b#@fZ*p}p|s&ulP=^MHS6Y^s?9OL`046$`pE zAWqD&fMxmSI@&G&VW1j}?;~W`2hPqE>S&Apoyu3m*3uocc-;`38`yXw24t zX9Z>*T+^cALJg4hyN8BV^#BcKn!9O(KIhiP?2S&Kx8GW6$fbYaKW0@1#bvoF+PeRJ zs+LTx<(LZZ`5nv>F1dGbOzI9wzV(^RCicL0m9)u@9x!O7PzA(1(nc^nfN8i;8^nYR zF|nCF@Xb2TAtL3|0Xh-f$z-y-69M1@47tWdKbadaF67*nU`~U~A5hOf6@;gIM8j*= zLOyaUnu)C_AqslFXAy0(yXy4d!;* zvoa2FrRBEQlUb)epT$UAI4B+|R0jt~3Z2=!(P&`~%O`-CXc>){`-9jhS|k zVR8f$`rJSHS!Dcp&^AYysmz4vVCm`+R`@bbWnSB_G_&3^X2TOeQ8d>@#>`3p)9uV; zPRUbdJwQR0M+5jOS8*P!T^AKuS%B?-@=s_Wr#vG7gpGMf-{v&Lu;1P%dg-E%EEc8|!H-#Xe zNN53OOcZLc?-D@DFu@aj=B_iB*M5{S#{Th_gE6a01hg-d9n!wE};OBpf&Zcv3#VmJXtN=-1ZA(ziKO$6}?uy8dt;=HuYWe`}- z#%Kn;Plt0%yF`$(i0dj7#*<*jppn>*WhV3@eRUJjQ;5ZERwB5W?NLEHxHOvqrP+*u zY_^&^$=G-ksLcPw#>dVEc@)wwWt({pyF8J&)JhpUyzEO$v)c@p0KRuAlbk{>Oe8+F z&;dbx>NwO1zCx-!;pibg1uxG(H`#fJvD4i3zk&1M?4VRvW+9j{Q>e{8f|9`JquM8> zVIP!+{R5f^zVZ1VVM{rzFR{-&1c8@d?y%2Wan0DkB;v5}v;OzyirSDQhc97AC=Zy$ zG@&t3;MM{m8uZv>4wWqsWfB157k-xD{Rnek5Dy@8FUSZvYkL`kQqJm6Ccrl;=meD3 zXIJ!S0iIXz=)-0ufhFs>s@lOa1T5kJnTTVEh;8G!$}$lH2y$j=5zCVE@O|1P0uQn_ zaI4sPNnmL^E=s$gG?zItE~^liL>YrX0#sO%7_H{BSsSWe@+tQp~$~k=nUnVWb+!Qh(g?Lkd1A->*Rw=|wV;wytaknT9-Wg(ip13~) zCyASdoC;FM0{(sbh5yVEm2&EwlO(gfz=jaFaz+#Ar*=7I zURH(lJ%a0tUi%#QgRqYEO$F|gtkGKkREHHsW@_F zLR6!S&}w0Wz$?Yd;M#3-xVDvyk00j|1nS-~2WZ>N&caLU@*sjq@c_vmH7eluv!GW; z7G};*g3ldq;V;F*Z~nv_6k5n6sZJO+hmyct1uw*qn}FP-3Jrs+&IRmPs19@i4yh_=*O$da*yHfkiHX-~<}u*5&gCH@(d920uWWU56t9QlW^wMj=& zDscz?M*+T?h%TaFD}{ZX3Kqjxnze6Bb9*W0_7%uFA!Nw7)ghoy|G}-Uog2wysp$4W zWw7xlA7&ALd~8 zMjC!jsl8Pi_?jH}5wXR&W*dzui7X@#v%rOAY7Mm^#0a_;A?k?y?TzT;6qEHRq zv_n6bfplzeP-rf5$$G@|eA7rF1A|h&LF_%qMY0vr$p!&Glm9Z8)kerT;1H_>2cR#* z;!C_*>7c;}bK8Hi2u&|t!_+6dgJ1_Lq5>fd+8esd@Jl6x7&4=aV+KwL5nIggw_J{J zl~IVoKWKY|tH+K^$L~06N6XN#w8Q1nj)%lnb5(HQC?~IL8W28%iO8}QXh=E+&b|hp zye&(|ZzOA1lxDF+&SFzKxvfv*EX-v`6No5QTg3|!}c9{kEukMh^IqRG0rGu1mIQtLQO$h5#4$I2@02}zD3;b0Ncd+!f-~~VS z-4-foO&Jbn!^YKTI9vhVqRzVqH^wV>gkYKWl#?c-v^z8zK zTiKc8-2xg4y9sGW^J=Vj_TtSZ$e87QNj|$8$V9-;cp7u|f99y3WjlmW( zr-7a7XTn0Qrl-T1U}qbhtK$TGgs|nA(vQtlflAMXO74QJi)@N@EL;%d4>mm)LbYWb zy<|`H?dfn!wqj4TC&F(|S~+i7XtyP*34nPigniBcUPlH31J4DrjeCMDV}J$hS#0IB zO-r+BC}$G~iI(UqR08MqpV*vzB?NuWX3%O=tZe<`h(NAA(bEnqo0))0Ch|$2HQ5OCtcisL(_av^d@qMfm%7a9N~GjKq?<=W_#M-tzlHAFO8>L^63t?8a+y10QMjn8vbE5S! zX;8vu*2o0e*{k$(BFbz9LM|;x0ucm$MHvaQ2w6NFL@f3wr~O&Rq|`Dcl1b-flYGI9 zAt7ejlcHC>$djTsG8ioD3z@8+pkn{wNl_BPfAXIMP9}X1L4do54=Aq0WwSoL$s;4b z-VVpYth_*qr-%GjduZ?f_}nOkUX#=Io_|0LP!Dlq+K~am+teTW&)gH5wKP^fl zNDclImvk8y`m|^eWFdQ6G~{!R_1Rep@PBCg?!YRFCt&XqS}u@;w09+y5=ww1^d6d0 zL$%RE=h1tI07}sS2_;J>NS6*mL{Px`W-oyGDm_6SqPILXf%=G;FTEJ%#-M}CNhJm{fU3o3-U=BZnUiHK@D zAq)u+{h*R|h^4k=T|Cl{iEba}i(Br{YD|2p1JKKx#5q^=vvHZOCv6E8bTOrdz5KutzzY>!bmz)O7UAYe z+gMG)+B*Qv+`=udye{pMU2H_!Lz6<;WZ@->oyK|(Yov~uSBR!7nr{DM`ebW3aS%`0@bPVNTE(uM*6CgT5%*<*3w2g z^~pvT&vKiCKE+FDTc6sG6#CRr)`&Q$Eyeo?{P0yM58jc^{mGev|Co_ti2?pS%9Oj_ zH67l%MrE2eQe^ZN60*2zJVD9kj&x@9Z0uQp-FH`VmLNN8B)hX6mRG>S73dH_?^xJo z3xNGz0B(<%zkJ@gks_aWfgnR(-=e&J3_twj^X3RLX9UAU2eL%P>r83uTB-g%QY7^L zbkg{h(kL;?nb4anu>4p^9`kJUBSk`QI!Kb|^*sr_Fm;rjsHrkaC{~S8zKW&5A@GMi zcB=j;r(W6kVMTn{mFk$$^95~qxfAMyO#%8`4d74|x;;5(;gB9gU*43B`uPwxZd~|7 z0au5BADdpSi8h+><4xG8SBJ2mThSHR)bZh)v@G8y8D(e60&m)8HhZhHYpj+ds~Dhb z%7#u1ZwT*opX}nQ9lS(V+Bt%_uCAoO?NH2GlpdL+?UW6KwcSdDa|nggjAcv?k0p-z z0wD#!%`$^qM6i{U!(G0V99frz0$?T#2+z7)8pdi(f$YI~@WTH`_P~Y&;Xu~qP3=R% zEhbzp$pWuj-p_m3)l~fkh;eWEJJ~{X@FwZtucMsKvQ6-dQOrF(yixEM655vEtw&sA z;o_nGkGdvkVWSU@Wm0bwRKBc?;-k{3`=oVkl z(_^FG3w}{TiR24hmsl&)m8PAM67XXa>+^R0wr~Y zT^Qq{Vd8p$@vTDr*kF@lIb$J{2cvpnZuDZc9wD_MnLtvA-WMtZT1o#<*wq_k16{x|f=)<|@b z{svR%O#=)VD;y>Gi)nzNgfv$*We_1f4mwo$B(6=SKX2$544yp5?XlMN(u|ha#hjNWCiMxT9cw}0zZ76Z4cUUPG@_Y;67lS z&?MmAN0TrQFbvS~_znJI9$*w9jz-H(h$~ar!G&P7_!(IuC7aF=pyTUyZx;*E6R zsJITTCNvzzb%%ghB_X(RmB(a{j1!4~0)hhBJWSa<&Do^;r8@=M{e?K(B`WreBUyke zFmOBzaLq~MQ%d6-Aqt)bAfk9y;QO!;q1|3Ws7W9S4BX0(7yfm`c!w&5jwh-VJ04Yu z(6P}4Lj`|1AXtLikz2j-B64dWYlJe@p@>_;4_{@Hh#jug9?^j^wj?Y*^7VfY}$n`mSU?U$1$bB_vub?{IraA<$a1Gi>&^t6}pMY2= zAwYv(Q;&}qVgHK+5*a&28GC~>R-29O8%|FK>=!7H6yolHs5k_J=sit(W4s9ZzjPA% zoD#Yt2z6nuieyv|3Vc@z5jx~0gxUjQK<#l&5ZYr*aA;4|1fo3^CpfjoMpqsxxb~En z;I{TOf$P`#sn2GzMrcnXinuNO@YNoP*r7d#MF&DA2ide}Xgcx6zLW^uGG@oS-{K(1pNX+2rc3Z6)X(>T^T@Y^DJA#+twA|MUbA z{l7vmBEu&s!*9WlgN0A?92K;V7vj1=R6IX{DW68KP`{ZV!vF7_L~c?dzrvXLp67X9 zpt(^9|1mFqu1-QKwY<@PD10~|bsJ1(W1>*6xQPz+vL+JssyflBUN(ByMCWL{Am~Oy z1$S*mPVj00p3(qs-y8D7=LH}jvQKHiC4ZT&NcMM3crY8Y)0Gx*9s<=e8|PG0*FZ$c zU%C8tr>nk}M_$duD8AntGlK$PGpwM+=UrPXss(Qn&WrhwUG5QGW)45SnwhN*Nm~i; z&ho=){6}s6gKvrPA9eT-zNeEp$-Uox*LDCvK`8>eLjlSI?7jq09$@#w040GB+Q4J^ zX#$SHeQC%X_@BeO-{H|Q2X@!zK^BLUZ-aA)MbMi6&l@hnM&uQ1e&__gwJ<#pIqZe%NAq z4SVW-1OD`Zm)VgCq>ofMfx+%GSP3V2@%%6z3&c&x2U)GXu2BInh%9D8vySZ3*2&4i z+W@_IeRmTmV?S3besxpEGo%#iqXA=f|5_7AjphF)4H(;ROv>Sxv&I3Tq_L;l^hc$WX|x24$3g4G(kz0b8- zBP7`R{jRCOuMwJFPNH8Xr8Xz-!xI%&EhEchn+~|%EBh{O!A@UTT7lh~+^kmc$D|zb zvG~hMkoqp{s=OK2Aee$NNCkCdCl9$E)CfHmde}8d{b?e2%#R!=zQr3L zW*TV@;^X@q@z1%Q2@ag(E7eW}vXmc4xC0M%NH*0zt(KqUms}Y?K$-2}*w?P3u5OV; zmYhL8T<*gxw7``aT*JW$j&Ec&QYrzi6u8DHD_G~}U3E*eg%+7CV@^!#a1giM>GFb$ z#*?^pvRHanv+DOi6>`F5vB!?N((l3B-eayY!F>o9a>RR*QZH{X;(L!Ij$;3r-K-od zb==jV)KuPV`Xtt2PRv7uMN_aig0korBLf!Q_uy{n30JIgitRn&dN67eQ6tF?o7>E4 z5df00E#KjZ-12?dzluAT^R<-!m&E_8$p3qk|JQ^6x0wI80REFEhyyIf#*4AxVr;Zn z-tvIRaEMP$WbrMm>H()f9GUag25{itRi+5vC!BuD)h^jrY2dzjWEB+}Sw$V;th#$n zVoGN0Fc!KiF_;ZJ?P^+@3k4u9u*}v~+p^o)VU@HucuTwo;56HONNZRsDGqI|hHXUkL&(47^cN{c#dsuhZEqE1)Ph4|w=1$%5Z-mDVT+ac{T= z`4tB%vN#HWT!^Yz?AjUEP}Q0&@`PFa9|>Yd|LZyfSFdHAb=A~bPnN@;@Q!PslFqJu z1UU`7qAx#TNSK;2nYB0`o66R|>6%gmUA^|9Yb5N~AAHLduQegW=6(ck_Gj_}IxG!2 z^_FTqpvm`J_Py=O(V$L{TnlopRZUa!Cv5H(6mR>&Hj4xOZJGiYTCfJU}w8LQ6w~2k$gQ5xw9P z(F!4=99u+lD(N}e+Z3v}B04KXl;bO+&{-)#tpEG2_tc*!vj!i4>ikNGqKJNUiU`sn zpgKfEV?Hdhh?H9_<0DA^+#*y_K;csyI`pj&&`n!F$J^>zS`u$$TQ_bI!rc*0xmIMS zFWVWJu_|t&#?KYT5@SMu}{aDU`n=(O(V%XSE;ed3c==Ayh31$?T(jIdO zbeM7=A(kEZR;>WncBEg1yjWktjn}*=Jvjp{tsp031S`9zq1aIjLvh8Gtg7>-uv{~K z2>**a3ZcX51+g}tyQ;IhpShk^cTQoKQ>{epS;9IF`gYDWwHMEcL5GWMHe7dQ6k$SK zxB`LEfd!+=ur)Vab+l&)MI7+gc>y&Vo8-u;>w!AA9Dj}17ib?*P(Cfrf7H1s>n(DW z@{?K`?sfGl2`7ay`kE=ih#bhM9K_b%bk$%F-gK>ndlj$Ugk6|`sZ#S$VE;G-26rr; z{@PU=?a176y`x#VZ(Q|?DmKof`sWn(<2SA*+Ml%h+}y@-UZ~`LBi;GgmR#_6u8~@8 z!Zpm7;!93VnJQvhAVZ~=w>~|HeSXVTpRK;-S{K+8=(2-djmlbY!U30?`q)$vQ}aa$ zPL_LRcI{D+S+gafVJv>$^$^x6>w0On^o}dMI3iSfu(7|o8fZNT6I}Pgr}6?S!LD|< zGNy99tHH8Hv}&U+mW74-8u&Bx_1I6)*S&UM!}Atg5B9vcxt~zPZtteuhVL49RE2c= zh!Mhe{Ngf;+T+_BdX*9V-9e~hf6qGmyVdU6X4>CRWFhY_Yz24u9adK`C6KOY54S$U zq_NHA459t^G?&w-FeT5-WZ(SZdfdlFQkv;a*wcTymTHO9mR39SNl$b>ucgVs6D5# zu6JS@u>fiPs2i2IHNm>L9sfy*qsGKrbBw&EWdM zvJi|e<4^qOf|c&Nya0Nm%s0ZVW>^97D!kHypU*UTfoGv@qfZE4DGMfv7k)z9bqi)) z0`!W38=;P!y&PIu%a^UVK`8cV1YRwo#F*-%XWai@fR!WsdE2J&3VtdTsV-89h_`igbzVX2x|{;GIDCh32P0`iLk$*xkQOW1C+N zwbaX~h&>b+`$*HPDy7)vFbL9&V7Vz&Un?QWWzwY(@G%Zr1^mH6q8=!ZJO5y+?g@6K9;ZGlnC#KX5s}yybx5kNp z!-bigt1wr%N&CB;z9e$h0}qHV{JF_^GBj@Qgy=oA7Lpr=L(o(fcsR*kU(8{zdGVW4 z?0A~4s|}{}`QD=xPW801>|BU$l*B3j2$y(8_0j2KqIc$OP@y-Hd#vOX*o z7DcK&EW0~TXD#Z)b%`3v!BBX^_!A0m7|;OW1ykX%%y1LV^@r=5{VM+UVoKm-ln$?4 z*3;p;Y?1l|Z64_iN`1C0@N^;jKG2*I_KZc6SM z`T}=I0r~u?hMr)LSjV$bXn zyn^b}XHrsJpC$x1l-w0s!dpR|Si;-LR%8ipF@r4OooC<@t|2eDgkNDzE9$k1=D4E# z;R66O#Il{~>_9Jzlqan1Kb!o6z-+CTXC z%k5aPHo-AdZp@3wVxy_VyV9^ z3p`9@Z@3>relwF}s^6=|c+2+Q2HJ08>Pl_@)E)<-}pHOh-Oy^o(4=eg}BC{JYwE*#WV{ZzTnMiC5OM zxy|*C8LMTvhk;_R@L65;U{<5OUYacP$0QvR{QIHqejdIog~9*wnIdKW1_9-|7wsR) z4*v7cCzfDKTk2t~+Q76hcAzErteaZu4{DzfG%^?P0gMsP1zem-asmDcFzHAvhp!}K zE`YQYj>HO7PvJ;d(9Cuu%FKc%{?p?~EEksJdESER?JB}0`Vr+gq?mby{0JA+2|vP+ zt%x5H1)p`|XV-B{sv?|^3ynxVKEhm-6P%n+uev&1)Ha+WDUzQV-i2Ar(g ztX5m_g`TXcr?Oi8zyS5{0YA@F)uS`0@Szj9@m*X`2!?jI_AU`8u0H2vf!Au?2TCS; zG+7@K=?6PpH+Z2ttUhNz4IuPama{fJ^lIu4Fg88(N33h!L9_j>Hzk8)`9Xi{Pg;e` z&sit*Z?Xwpeh5-euWi0oorh#k=;D&qBFoPP$>TZ{&Yy4{3TMh7y)ub1rP80B<#oGi zh=F}3MXw_U_R6EWCFX~{@MFTIc2AEhmdpuIpP-5?@bFh`R}99#9J~6c9*C}(T4Auxj~^DU9xI2a1CJAXnUc1IzS zKwE?9Y`b6$h3Fpbt!Mh31jTiXKnP{ozWyMIx1;ou+#{>U4)oDSYNJU1aAFLX1)g3N z+b#2$Eb&&EtlBw3oh7@rrO zdplE4V&4z&>#D6Cq>pksXiZqgV12oEQL-+)v` z@X&sb)yHUeBzEGQ`Jw5)J)1jc7F#|{udMw;z|b-C4`DlIj}OH#h007Jt=8nI;~ z^&sUmLpE}@DJ@kF7aG$+Ejx!F|Lq#(zdOVYQ~(vafuyBy1JB|_u=7dK%(ErLpZHIY z8wlHcxFvL(i;~WXw}@=P4@_aFW|V6lyi)ep_C9X?Vk8G_oTKE8>R3U`m(|1zTtA2S z9nV7Fa6^bUMK2IoNdL`9VDbCYint-voq;NqQ&)oc;GInC1V>H#l1tb^FA&ceyh2O) zR?vYD^kOlf5jq7xXOW`4<4Xf}GA?+Tvr|a~sF26_1p!BoF=YX`MW6FhbQxhbfXi5k zWxdy>Rl)01^gBused&V6({)|Zlq|q(D=g5WzrKr(aa_9ppLEF^FwY0L!I5vCil~rS^)KS7&!W=y&I9wvJ z)oasF4a%~qbMyvEQ+99;%=zZB2~n}egpS%SOC&4_8Fnd4Z>xr9iA$6Ulj+jFWJ@(O zi{Cbwqz!bENLfBCO`#M<`Jr%rp5Df$ATG>>PF;H%w!f~o6}Wwc#FUejY6~fWlYKO)q(I(W-Ic{!R18bdc02Lr?|H}4Nt*dmXdD?}bWS1Pr4ml~jyr}f4dnJNh^7ZCm5NnB~j z60$)mjs0S+Pq4N@tUe<7S9z;_=CW%G^aQP+6EzpO(u<&m3!Xr@KB&30t8>MM6T+eV z&4Iu^eUjsS1F*t+KXw^x)6Nw=n(rjb$AGU7UO6qfcaKtAg&7*b&sU+UENhWco!bzM zAE^yt7(e=yjL~Bg3a;fsQd2ufIN|61;)vC>xBV%o!ZufHom}FvYp_Sla;NIy?9G+s zk_+Bjq2E=s*9k5WbhD74aA}2g5u3g|m!+=NV_2U&{gJ>=0EVTXESIcZCeY#pqJ#_< zkRNdYrRE*X3WIZIxlB(F{E>sl&K{Jk{roTBWd-;h2YA$u*H(ii4xcBL*2{KzNjyYA zhp?2j`ULo<-PX0RAyu6KIk~j~l33~ny#edeO$kyevbpQ@o^W>flXZ~7Yxyt0p@JHG zvx)#`?u7_E=jIZ#Fk1<{VN19R1KPAKTpf&f@-~9|Q<`ZT^>#vXQEbFU{T*#KVZ>k8 z!vr(adDrW+^Y1+$#%^!YTfpu5Y59<5%Ol`UA=s}{EGPYd_qsO}?uXqlTl8bPvmZ7K zQ)E9Tu)fcD`%&=HGq5gd?+{M>btGDJ%YNRWSJmSG1>7cTIlw>L z2@!BzR%Vx8U90~u;C4T2OYqZs^bSNVZ1(;U(*DjVZJYepQrcfIV>d|qbFRQqY&tv# zxaY$iI-AOM)JFabC-CkGe@kZ=a?+C1DWt&>qRCak%iB&~?7p1!@)GdIJcXSzYd)mD zKbJZBWm|}g1^N5*_KLRUUpTYP(8ampE7tK*HG@>JN%%?Y^9S@GA}zb=Ni-b%QV~9p z%A-LAZLx$S;+ zIh$05wLGj>P`+kE4(nC4Z)FqWetk7xx_Rm^^9#FQ+0W^fh|!G^LVjny@W%?%J-@6> z85Vg2)UzCGbOh8h^a-im-bGvuenQfP*EUDh<#mu96Wxr%`LGmGs3zAO>CNw`S z5muI&J(t04sN3SpX{3QjVTSfmN~q`Ndt`jAK>wtuE_jP$dRj@!DY7f{aZjl@Z)g0y1)VI$bKIbx`{}!CFj?dx(=m;ZSm7 zwe~6Dt2N8-HnRk~^^$%;TSiE8;}b)SPn;NR0xsU&IX5o61nY7NyuS?&Xu94f7J`P} z-re9j>^;3Dskb}T;z``F zKxd{Y+xec}PHhBSz3Q{TrP*TRI2t4jX%7NMQ*GZZ;~W;Iyc!(MPQ9;JRS!PN{z){d zYKKYxQN&~W!E3eqfjED+Ex&W0BE8$jH`;mXgk~jt%=oFE+h6KW`Y1VWC7t+6U#OiSY~f+V3#5SOz?C!X_Dwjc@R}_5rofAP3=NdL zEIYf)$k4u!*zsIZlpk{L8w=Rn=M9U!@T}2M`;9<^?KXO-KY_GYSar3M3*{`qBtBFq zAI3$nl<)LJcKln+I)f2u%Ff@JP=aOcF}j9v^~o+hc3Pu>BQqyVfU6^z^1U9xQI1<; z*43&Ilpb1$^6J+m6IjRZ9VkQh84vzD$|!c~bZDH`-ho&731xk+&f_8TQwzlDXUuBD z>F53vuSc@J&5V+8Jy?}Hdb~P#p~z|9-~yuR^)itd9yyn%pGlQxaJjTISDBroCUGWl zyJj+f!tI*LK*MqR89Z#h9rwi#`uq$(x>(G2Sh}<3pM&}Qs$)oP*6t^GO)iIs4)u05 zDL}o=VX3!4Z?k2&r)&3zm(^wa8*JGxdYZOZk`T)4ho*baLaw~Mw3DPU*CpjRQ-0Iy zX>XBoRNLbqW3IO8FPBWzJ|?wNcjF_bK6DR71GK#RQTJd4RcXOOv74)~K7WAX{JD_L z`2!r9zib8C!)a0lT1=Qg1;Te0(7FXIg0^<*oO?~N?nO@M2V@hnQ5Z##dd7##3RTbG zAgFpKe?rwW7dcNcqPF3Nz@mj>tB~y8cyZol@qg=`*o43Q?h=}JVIPjZw2Bt;!d-o{ z)>85`ob@G0Qp^AC}QfR(eQhFDaJi(3zdO=_D#jG8pTy4nK>Hmo zKQ!Ha7m1z1N~%#s8%4nQPGO{92zEg=)@$=gTj*U?`1&2Zvo!~#4(GHKI1F8adjx?- zYi*sgW!4{^lNH)+@kQ@WztBqz8Zv|XQe)VAWsT&bxlOjZ z_6ar0sr46&Ey;eI2iluDgelyT43VXtxs$=RPCe2T(mbK8d7sCM=;afZG$-YP z>`-I2qD_*d@%D{a_e3wx_D&^%EVNU(n1Ew^f;*K9cqtktn2oqoId*thEA~dXF;3g+ z3z4DbFBXZ8d|Ba1bbK6P2QRV@`OwyWY;W}H#CEYVh&b-9zK#)Qiu z3lb405XV0H5XV%PPl>-&7imCx`y1_Tt%6;a5v*uk2;11_j!%ihiXCNz-RD!a-AUl5 zWyKm5v>~!qj-fKZ(ObCL6ng73H#f%_@uaWiL|=g@_SJ_d_SL5Z`}$zKaZDq{vWH4L zq|b8B_o$?TaS@O*=~Z zi1T7B#O=xfm0p8n2t6lhvMt*}ICl498b7!q~nPSpL#)sSyP+ zeT{HM{rD*n#=~C><8Q~;4`Mk<#)&}XX;0i908d1(2P*&g4zgPIX%V^;ordp`7!McK z0(&@(RsVcS1g(FPf#5-F`8duKHOaq;LFrP>RZ0E%DRyu@%;q%0xRPu~<}qJd3Ys%vB$Mnl%{;I@F6W!LuI9qZ|jly<@Nt zpTi`Ce4LiZ4$Qh9$3}mtm0>5U8bw|{q&&MnE#%pqFop7*;*@6>(bG;(vxF^1O=Ujo zvc+hsJw@TbPY!p#%SVO|#6mBiM?`p!A}APMOz;68r?$#PFlw5!Cf_KFXR@}u#9 zTg3lM>KF?%{4~g3b3dj;pB+XW_Dfx3k@gPh9R_6|kpc{A-g#OasC!#hc$WJ6!_0qo z8J)FT61xb<{E%~h54Wg$vk6MJoT3=v{|!3Dvk4)j0($@z-fV&vLu$dkk(5GtK9^}q z0X(~FOU-Z<;4!C=NwItdxMZTSfrka|;t8*N^W46Gl7=#z!2(%C#IThL!91 z6NZ)Rphvzh!{dBG@9n=Zm3TL_;jajcVdvX{mleN+Yi-BO0fR@f^T!PrKkf9W z5n)~6Y*EeKNBDFkH>v;*&-yKr8+)D5m1Gk;xp81|H7!!&^o$Xg7gxf_<{Sc*Fr7c4 z5~eeyqe0&kkUF?GTfC1>;y^D-h%OTT);qFqI~e|6MPJ#;nC6??fD33?&kSRQHdL}L zavNhv0gl$tB|_Z>$_fwN?B&H&`>`{OAhx6nLOT$%B=^Bb;VV2qNgfwMbO^!Vq|J2Ntxla|b1s!V~}L z$sMc|nhkyR)$INR;ps<>rNKcQQp8zyTr%@9qeEZ>6tg>1uN&;{O;;%`O16^miCTWC zOdP23OYy8jIb;Ph2b>>v_iI;EX6~C_WXB#AzXt0fIu;|pD|P& z07K9$egLaAwlrLFyxK@%`Tb!rIhSO>MNFq>lwj`u#(=;@AP=#J_!N;0?jbIq1G;jl z2t>$$vOAeZ&!Rg1AT7y$tTHceprLE?2n)D@ww)Ky!JPvG#di>A!e1VT9HS8Yjm7&a z)>!qZq=!EDw51{}>AcBk!Vb(95lIY7c@C}@{CJ4bPr1q(4>hW5pAo)Ln3t(Azx5-` z{=|@jlIxVAgks(U9#MZ7kFtC;dZD zDw7o8()Rc=v9vubD?BV`-#?CUdvmfRAv`HRG~JVyk$_|ofj|fTiDej&u$b|lEOrkS z%496El|V>;if?b0=hK@?#8WTcPAT3>QBp9(i8(S6VPLxAD_f=Qj^h*5Rrk$U$hkBhZuKPC*be2 zi8t^F%JH2Yu>{Z#JP05SJP0EmZQ>(~fky(ziauW=e?p%xF~=Er;0(dQqbu~52OhyQ zj1_(-&Zgo|92XBf;Oi(yz@b_)6N30Ar0Y0wT9X2tI8AcI#AzTaJYCJcUmV#X$m5cP zm^glDx*vmUfBDwx2+|l8ZD@`N;-`@c;njlBJu!&3kkm^3#z5p=`VELtgYUr&YH%8~ z5gNRIo>4{F!9JL0Bq=-d=0o)H7$-^9w=Utq5q<2ZRTu-;aYFBrO*~txV^Xz9QVQfy zqd-)siLdiI)WkRV6Kdic|DuU?azyw+d`ZucbDtc;k4sPZ4L@crC>(xV(!Q6>iOAy@ zQh;Ohy{%3!&0cJb(X?EUf!ufy+p3X%2)l#WxTg&G4&-7q z!uZyu-)6Zq-l#>;L)Ywhqk68m`XVWpZSHQ2&>nKOx;mz7GTbkO_hX1gQ6k{z=WL1F zoV`R-C5fHh3hB|%5_J=z{PRYF4igx~S13tKv154y)z{v!gl2ZsktaQ zsNj5_(N0ls=8ByS`0Ep4ycQU;+!IZN!4sJ{1J$z2$#|K|F`6igI^!8I_T5Fu%f}xv zLfOe(Mljn`6?Ro>Sm{L$7CFldSWaZ8+NPC(t0C~1Vj032`o%SP0Ugki%f*Sr0Cr$K zY=@;&fcp_+NWSp=WK%&-4OlLm=?9j3V~mUH(B)#UV>n>~1B$^^o)d&TgQ+}O<}lbb ziC+V&cghi?EPHCRQN;6(otcBRkloeNty5f1Fo`%dDuby0w=#6UwoD;&N=$gdO++AFw(dz;9&iBqi2Snrp0#b zJu(Vru*5XDPk{R6g_*;??&XOOR?!T6kC?jNr zoWJNXX)A=s6hkVo8&Kg5HQ4&yj;t+48C)%ClmROP?sxzwMj6csP7g6}l)-B3b>PGR z zp>wwjI^?^*fwKdh!Vh4g+hIm+@AL^~4WBbQ`<+9@_3=?{b2fpsn%xSv4k7eds=Y!a zffMO0DL@T;WrdhXCuN1F=f#dXd^jq}cRxDPp}{kAe(1tgs9Db&y|o`COAIypdohjJ zC(p}Z9m-_PQEsK2c#fFkUMdgpsMLP>SRpQeIREhZY+v|ijsPLEI02lw3 z)}=}Ix3rW?OgU}btTC8#H30sb;64oRe9T(u<|T_KxJ~?31?${+PV}=$;=5R%!6_~L zF4nA93f{C6q9uHu^e1kt> z!0{fpl4zxmaqT*}q9E*5BTms)@^P^JY0$oQtjp{vB_S6C7r3Re^ZAd*un%7|G}i?< zwm->TiNDl(ZVvp13UG0*!sbqIT7xy+{P;?3zY`O_G`5GJs#qzz z`Z2YX_PcD#Hs3V{t3RVi8?mdE9tl$eR`HD?xT`L3w#LTP4Jpmye={Rl$XiC$^51eu zYK6XI?cahGfDmU151JWPp@yW-EcH*o*SU9_5(PuwHrgn`@vA%$+A{(TV<7qQ;^$wtMJu1C4!B;U<@J*1`3UeXJ1?})@p==lR>+ogTbf*?Omg~ zqIDzGTU<1bYCTE8>Fs8Q(v5Y!WX$tv=n#SZF-9i^7GJ7zWp&~z*5b0OvNoCE<$B2Y zaXWSVDiMZ;c4=Rf6HuTU1K8-*(@F;u;wxGF8?J$VwQyUJwU7a+-t6Y5o)dPpJ~Sc~ zb=@ivhr(ZoLu1&OYh|HhYD@_hdN;EK(?2%e4m=GVC(8K>k%Lmx9H^e8!~GUW3%>9L z!>xQ;q}><~o3ZecMd{0MMC~}C$Hy)F3NN5K{ydBU>}V-R*wxF%pW2TE00ycZ3;k3r z5x&9+bz4BGM^=fL@eusRw^`xiUR*A?3$q&gW=BaYSBWTz4wY?u+$&b`uX>s6)(icr z1XRg`cbw8YC27_2yb}j)m(ZEYd0b~L8QL=oRx2M!cd2XfNFG`6gYS(S~tZhWd{ z>?7$aBQ#R%cgDDePsV|K*Z8GT-j{o>PGTpQCaQp)zRzdD7 zzchTjYFCXg*5%4K@$ANyQE+GN`1VCv$Wbeh@pEm=Son5&>zhWrHkz=4s{1Ao=t~f#R z$Q@7=-3iveo8BneKbW1-{bxjM30Ct5W0+Qp0{;MSAXaB~vKC0V;ojp|)hy3O{Ae`O z9&$EqC7MFAHtctAvbM08IJfwEN&d@bgHX2#XtGO=A3S8xn1L(ZhgjzLkO+-%%jW)U zB&s*^cn|=7(hQhC|NLx}j^S|Pqev6^6aVQ=-vT2L=*9%`3aXZ05^h-T8mpGL0uR0m zV|!+vbr!F{n-7Y^ufT&BPCeCPp`FXf%v;99-5AJ)NC>j#zZunwup{nK0$rKLMcC5X z?Cb!1!_dnLcneW1LD{D z_yt~oAqXE>es>+d5whnmW3l!DZTy9qptpEYd#}{|2-A{Uqbk0sqhsBw_hZ(vE$();n5SWmtx5qQ_HZNfk7ea*G#-8 z0$lL-3N*sSs;*{r$M5J>8_l*pWp|(l7Z|=AqP`7$@atC&Ddt+O_G&UNyq~pJi+(SMPb?dD_v##1^HOn6yV+FU7;I@a@<$6jI z%en|j=&TZE5}X*^S;9=##>sYq%qU7`h9FbUM~V-yYhzOqyr{~ukWywmCye)k5yGqP zz?8&m!JyM9R?=w{tMBh<7F*hErqMz!*W}gWrJJ|8>NjBdjmre7XPLN3`UO#zwHQ3V z0+heF{UVsCD7fnUUEPffXTb(okh#o9ebLsZuLuog|BWz1)sLVT??hJAKJgVxHHN10 z16k@Z?e3!tJ^?nUsj0pT1DmX;lyP%m4eJheXHKx0SdstA4r-k_F|*x-36lm-SeadN zxOiA-f2r-(YGITBlWmmjd(SQra>6K8ENhv9=a;@0sE6!3XeVw zcEM$ua0k!n5SSW?1TV%$achX8Ca*z7bgYW-q@U!>()&EeW1r*(kG$nhosn0{| zOsF+~^C#4rzYA*(1FadxezMHvPR;45MyzEQ-iS=pqSgWexxm?qQeKu)MKO2l7F=n3 zFxE^f?KME(#G3J-8^LjAoLY6QQ#b6J*g^rD`#PCUMrn3ExE{h5>a4+CR~)vzy3 zdt|NCoY)oJ)(UgdVy$0uVz+8084)_MD!zplBnug81eKobsKP$I(v2FEH5?ArVl96{ zwO9)y0;%A##F)TZa;jF32i5$wY+S?m%Gxu89GH4L#jz1Pmd>sma2GMf0bjWWKhAfN z#1scHV;=3wz8~Rj0fe_p0@OFwiqIDR;x0QzwZ9~rA1L3kb2ZE)?H1`U#-aFu7mV>1bYpb;Sp?5Dp=C0 zyp=syx!Sj`%nP{M-xu+*etpgA?3FZgmD*?>%bXOgv$4@BJJmMp#I?5%5%M@`T0txR z`47zabzSFg((qe`)#lJHKF$bkE)m%7BEKzG9llPyt2{zh3omgf#Xm{l*XXch&NXXr z>~oXDOh4H9ox|#qb>a@(Wxm+!uz1&`R5&T)?Lokrb>cSZU`m4BS*l|X(C;KYkbY+q zIBo-po$&gc0v*H#>x2oYyiS^c!mTO*I3^dsk5J@FeMLb2eQY6jzHaS`MxRSo9iRr zg5zCGI864-dRDTV*hwzev_h1_lv4p43p8ys@` zPRQ+RTW(Rmo2}Se)yzaT<9E;!eER-(vz%6i1O9(90F_umPng9A>V${E-LpOl+ht|V zpn?vMnbj5eYSfg+&Bj_+!Uzhr6Nhe$OC7&B9pveVHV-VRn#ff&qxfQN$1e2(b!s^|C-WwG2X#$V#!XjR9U)_ai>iP}BQ|OXj>k)Ow26inD zzDcl)P)6x(Bhov}rI)~R;seV2sN|fl&6>()-Vi=<2G_hR8?kr%=xF&h&Ypv72ZNdS zZLKhM(FVD?7H$YvLE@-q4+!Je((~u^nsvgI*>*W-0~ejonlQFfl^|Aip!r>(vJp&I z?`SJo3xFq&W@4BA;Ru96sAV@6UJud-n?s7N3ITs^fDM%jEe#DGy!25S;y6RpHvL9= z^s}uDj|??8YPAXLXrORs>?HR=DSXOC;cWn{M;iEQ61dU0DfTKl$@Z4VDTr$L6^VXa zdG|>OIryd+zCJi?qj-JL?aPE6WDEhCd{69%lNpLv?1|A5;2hQXSn>D7B3SY`NM!Tt zN7(X_=6QALMiD*0U%4?B(h4rqs6W~~AMo5pI0{j&emIL6V@7C4Nw2t8sE0O6hf+P| zM=ik7YRukVbG^J+zith(iku~fzyi6CRrhTaCv^7_cDRy+zrzdYAn&#Zc_*;Oy@r<} zyF(^wh1pBHL13kpEN~+DOdwEpvaSKbB7tS0-MpaqrjUtP2AB|_PF_Jwy#oVN|me~0gTn{yU zlel25n{S1<%q<{&6YOR2PcU7XY6ijmp15m=pJ3u}{1Z$~HgOp=Vh7HLMo0PK-Q5@( z@@vmvU#cN%GQ*66OMP%RiZm9xQ583NccZFBVosLdEa6_rIjhZ|ma&kTW`~%@ynv2= zWy$+WHqHe%Cy$P5--_icY8`EZtYdt&(AM$-%&9ak7(2@>p{UPq5`o|gq$vi1M>k2W zS6*cab4|DroHw#Jq+nm1$AO17iEV>J5}w3?$|tNvmYJwsmbD@b{D@-z3bAVxJ4S(k z8>7I&xG@TRAYVj*YCdo!RjCfcPtV*X6as?t?J$ti5Mdw?!7z{z!7%Xl*y+hZgl(8V z8Om;!@&wF~wJ`4dh9|a3%#{4igEdFn*5ZB*Iyzp_Z(^JI$EVwIzA?4ao||!AaBV+1}p(sTrXxV`GJuKI8{!O*)!T`p4rzwl*p*kBquII@C>wupp6dz;T*3=x1Dv*zlp)|1 zEoK(>55Hl0s)Lan)tf`&^zFl+aQgOv9ztd|(kC-(!}re1Gyf^P8a~L(3EE`B1z2B^ zvCkMUOYhsXy1MRqG`qPPR>LI{yI2huZx*ZJI^T+_u&o@JtZud!!`QV_-S7rbxb<$G z*-?FRvseqeZ0qYHdgEc-{RCk5E`>AJn+cw!kn~b4g`+l04I)e7dCnFtg&(jk8_doz zPw)b&Mq?!7wi;mu>Z&Xj8xnYyA@td%MfTEAh{rdXWwlQUZrH|%WjTXN^woYQrMQ>z z11~@=;$q<6Z_d9I`nwkN3>4cdS1RA*FZqnP60xMLuvb%g4P@*yBDESX+lV#QdPc6; zYPDy?KK}=tvb|)(q8c0F{+^eh*z8X?1JTWMTrt5uM05XBJ~8jZ(28oyXGHwhnvg@c zIGvKq0LD8){*jV{;4jWUIo#4GC7^dC=Rr}Jc#SS#7T}@j-u;QrY@B*Jvo4w0C zq3x#a_^9nfNx(^>qa`(V^3QH5=3d_9)5{M$u*kg*?$~!zvEX{Km8I@Be%>Pd)T5NGdQZDq3%XkB3`Up_Y%47P!*9_q_R@_7o|V%Z&uKPbyGgSZ-RX z58HBRy#>ccxrNHf4nS_h$GGr4!zgOth*ZFvtf0D2u~Wy*Dp9BS7~-;YjI)Hx(y=Y~ z@GA38n7a!vNsC@I;gUkqA-N>IElWL?J^N5GJy5Wwk*wKCbEkGwVi!x&jV)qH`qj6> z4$y9FvDc)Tr+n8WmBaA>?HWkc8=(2&-F+1r+N)BgXF($E#Da8Yi{Aw)c`L{l7oNe{05bZCiq?cf+Or9jrGIM2az#xndBhjW#@-lGQfo+X%N40B zDaC1(!3%I&aS`wpY0p2QH?<+O9k*=*wu)0{17wBg)Y;X9u%+tkt!!*!SY<6s*7McK z4#H+`l~y9)sjVUiD_e)R^@fq-o(!q4PTeZP$f*(y2_w~Kwu&`xtE?7lUOpk9?%OKX zJc=I!Nx+UV9>MP2>H|YE_AS%YNC$B_^8Fpn;2U4{X(O^6y+^o0tL%jR`fW3l!lG5~ z2Tbu#FlB5NR=ER6`b%@5_BX+XL-hwQ@C+4NW!E-gm5psukI?u7`(J{rMc^uM00$To6n(VS{bC1Y4t3B^KPAU6n+W?8NVCVxEQXS^&+y%zbt5I%Cn+^l^nu?vg*AxHtfaG+iS>3S`zA0FHnw|OmV!@SSTsvhe~ z+6wD>Vw+#<8n7J%kJeRVpMGZci@C^Iq1N@JXaqlji15)G4Q{&c4PUuk5OxnpL zQi_URkr$w%zXToPcJk>P<~pqjZ3lJ|wo9|V0Ee!DEJug#^cQAlpF-}B)!i;;S;g%_ zLlfZ3L*^iDsD#CAUGShnwDY%jouJO!E zGq>a1kDe-_J$mB?A+du;TRo^wvN;?iI8+n1v&|owEh34~BoIse7M#wPBt9NxwPpv( zhX?rwD7g8pc~D_9zI6oWa*XWBPRJF6+%jt`>PNs(RJ6tV-!|(;lWNHgbm8>dtsjb_ z+Tj^O&`F%$cQ~&&y?@|OIK6+^j?+8JU+4})kNNDpSEOWtqR44LnnnG!|1- z-QjnNw&kR8igsb0elusq=)8bV(Ll+ZJw;)g_zUeZSxh4G^B*P_IU)yBX$!^mC+s;t zObCFFzE2xU3ee-q`X#HR$qSKP`^7{GCT+qD0*f|bDlb5rz(vSyg8OessN~Rg+;_?b zu^rOQve~l2<2&uSYks8e+`+QK;;U)T%6j3|Y~LX#vijT(;nj5Et;9@Tb-)^_KC?r- zc>q)}o+eb#f${wv%|2AD#u_c;rfBgFG)2l(c2Kois*`|Y?t^?sIKnP}%?o_GjHamc zPGO3Ic0#qS{b-6x?j${k*eQ|&qz4Rbk-Ag(A$JKm^h5r%+4>sUQYP^~4e;xfK0}M^ zIMp%2Bu?~BoG+Z{8T<(+dIr4P0y#Q*6kDX&7nHV67oOcq%UJuhp`?E@7#b)`y|eqp z`!u`Zi)D|&Iq=kMIH3QGW@Tx!B{4D2r$ayZN<4X|c#Ue$-!YMFeO#X~w)gLt+FG8o z{c_npVPII-C_mi0C+#FA;j401ZI4MHjfF|*3u9`hd6N=Wm3=@Q^T)RrK+w2%b%Jw% z=HXR#F2tG;Gl>^a^Uz=NSZMF+9a$$Bk)M5iggXjrMh36H4GfzLt-s&fhcgz8-4Sybm>>OnE3snscpz9i|v1aJ1? zy(HZ#Sd9tDoAygrzf`o=7k;-ky&Jq$dbyIdMoZ>o=@iJ?Ri;r!6wT*kYr8J z8cW17_KNmH&fVx)NJ^#QKvn3~Rsx1|OsT+>>efJuHx_ehHh1tOlDf=;QjYm zv0d|DSz%|b@}~_d!(K|YVwKO>r|{0Hc3n0>9}n)vhH zlz3MR=%9;7=%9<|`#YL#s%@odv=Cf8mUc*OyBqlr05xM>2aSwm@uLS-RO{^)IlX!kmge;O z?-n_|0kT?nzkMm{kp%UHF@sV$Ry-6^7%LtMd1ALX6tch=yY*Wc$K% zNewt|%o7sa-aMg}Mlhl=tp%-l0xx#A@DL6^i$StRl?)9joljE0{HmvFdE0|3MZLu_ zqcMG(KcO*wd$-d!fOEq?8~nzmuUSkpD?{ut+q2Yz^;4GB%xW3%=}P;;CiT;mOqmz+ zRr32B@kRL0dt(zXAvZShIyc^B@HLBTVI>EA4WSBN*wky@oFay0;y#o)e*6YcO7-O1{dnkL6yLqXE#oshxsJK| z6Fj$rc_ozx5*WVrb$uN6Ha3zbAcnyT9F*k}2z|I)d1cS4aaLWH z+1si{_|k;kUd}>$SlgW>#;d1*y<7-EUv?sXiS+tS(QBnI%YV#j87sTuK@Pw$nL@cf zc4V1dt&Z%EN33#%sa?0Jec`0`8KHLj|A88umB02wFV^dEt6VSnnaQUDL!9qA>C^%!d?C?%PpN6uAJ*|as^U&#@Fe{_>l3D3HLUDV=2qlmve1z1P zy<&MnC9S^K-x%3%@J6u>y{%rsgox-zxD>eEvix53mMafw@6qt6f9VOIWDNs4?^W3O zdXFS(T?vQWw6M@Ar!@sImI_a28OcTZ(u#L-`sL4JR$rJ_y- z!7oo33LTIKs^QxzL9Aea^}4#=9+r)y(`Y|Zq9RfN2H(%)vxj94vTE~r-J*NUW9<7u zR#9F{_3{Sabg`oH4p%G#B>3&d!FiItJ*Y465*k&mfFa=T1jgg_ON5579DeZ>hzQTvPr&}#r>4h%WcV3-Kf?p)$;DIZJ~&{@ zFP;kAN3@?SPR`^EP1z^T*bj1YMDdC<_Ot{r;qq0C6tom}dYiB^1#u&-9~8C9K5@Pt z{^HxYab~w5_T^~nLnVWq9%ChGT}UTT5l)p+YN;LfkxANfAHHv4D?@WOHX^1B+jBB3 zly#okt$1p|Ic2~pe31JmwY1Wf1&+6pg4;@-Y~>iqOQ>?R0Wq&D-x8#a2kT2uu!d+^ z5=^YjMNC`!3R1GC&hiokoodO#W?Jo7^J&RJtmI^C2>W1?wKre~D97-akb2rK!i<#b zHY(S{Lawlk?3-duEW#m!doc>{^?WnciVxl_d9da9np2J&u}dw~b+#anHwv4oeJJ7n z{|NFuNtH{o03`;$-Jf@DO!js3_lft`8g%`XZl`^339))#YH!7MnYGYMq zT_#&4+11%r&HE|MKZG>@kW#Uw8OzzETKTKpub*sb{#`lbik3z?gKo^#xmF59Z(;Lb z1#Lzuv8UXRQyc9k)35D*?#R^!HK{elJAP6Rzyu6hd5Uzc9ei8$L=f*YFJ`FePX`E8%e1)-wSr?`1vX_lZ5apoP|I zA7}SqdQ1~`bD_0aJ3x2^F^JpGGWN()j~`N;BTbI!a%!<^oBPH6$pO(Op3>>syH07XFR*=Rs+FinGZbVEhi*FiN z9ZyjPld3%!VzZyuS+8okFN#ia?hsyrv`Y%VoL(m7zX#kZpe7GPQ?D1sd}7 zSGt#A-@k872itsZCnWg#lNMk_2CKaf5<~7jD1zm`4zQdLtwG_kSN2I)AT(~Gt3~08 zRtI@}(?UsS39o~%r0=#CC{GE#PwWPkml3+ia<lyjWvzS>1X6#2bi^Lv3* zAiraOx0Wbhv8;oz!hKCDk<~9Kt3Ua$dM(OLSheF?pyFWFu6WCr)n-?$r`3o<>`q{W z$rYoHrXP}8jSNQ}5;_q@Dv;sZ8!MJzy^mN^0%{ym*wS@LwX|BK4f0(bUNz)5xnKy~ z@Q_z4`hR8(AY9uAlYx|jYrCTSAs?+UpSQNFkK0_2y*oaTefGSSuJt9%B;Y zQ0H|uOR)bQvz`hZ4^?dX_=I}eMA8U(A4_?kEqF)u$ooBN1Yy3Mn5aO^!Mt7Zs4w&T zPgt+28*S!uUbMPsTL@+3JKyFzpHyVNWSt2t;M{g?Q?rS7j8q}FM<}ktVVl9t9jU0iQ#VX z{P!(Ot47Mjq*G%it1S<+^EY5ir!}cX_RKX$Pi%z6I7^e)|$py(uN9z5P6 zH~#Ee`&^^o(pl?6Rhvip0*g~8x;ogYq}hk<)uGlot7Cw=<}lm5+v=cgB#?Z7;VL7P z-8xc^vK#TPwL0(+l(KQHlIv^Fk$RNg0V=(h$l%VXm^?m$tXB3_ZtDt3&8}cVYVb{g zuJ2h})ys#y=E`2jJ}0D+<*S0_tE61ad(Sea{t9Eh(@NETCryy+p9$A$z;j-UJlhqYP@bb0UlP;`&k4rM9)NjN}(}cA#@ZL2DQm^a1}C4p=P8O z`EB%^)KRsq;MZQnU}Y#TS6=(hyGktgvelAko?V{soG`H{fPe@4cIQ z#qaNv$RFX}mYLbvnb|fw%LfKRbXB4FPEVqZ^v5kkfA@~oNK(EbsF2QO2A#`DhF~lx zKb%bNIu&1E*-A2zz@I3AzX}3T2FSMWgzhJjn#emHGWdj0CmG1QLOz1N zR}%kv`6iIXB4U#oD9uPApxek8YNZ=Zz-I>CXac?>c#-5K2FXiEhLBWl0@i;gOu$Bxi{!4O*{ z3BmA~73zXsz~n)%k#T|28zZ#8DM5vFHd-kpxDm+^Jmo|G{VT=LpGk6&!mgCUen_DY z?I+B22x0-92eC#*>Pj*6$9{+EPwa*v=Fu!GP@{&~NDuhV)czRXBR?zNto2GXO}(-F zvn(COkycKSHc-l8mx8nhl)0qM+)U6RIZ?D`782d0rg_@bU1V56i*vIuV~Uc^UzQ?E zX7>~Y_LIPGt2UebME8W4r5ro@8!Y2r=x?xWrSLZhK_)zdZ}89vfspG?xR)NWTv{XJNJPeY4^_I^;tGN&Dsg=TqR?iCUs|4noDubmU`0&`9T4S~>RO7p8d?$sK zz&i#3Qa;?5cr&Ondq1pUr2KXwiwJLCnf(@~*%b!?f)((tJj@dtXu|P}<3vAP-((A? zuk9VQcI6KO)vWO3gLah`Wp`IZ!rzRnCE37eEJtm_1T&R;Lc`7ksr|9!ir zNJ`yR0F?OCh_0)(N_1T$7WU61}WpM z)ChMNc^n~0etDHRM(F`ws@mXqldFa&A4SqXNgJY)1e64WsWn!KiPr>fFpQ@Q#)I&H zznL^bq-FD`3myYC;1@Q&C#0bot>g)&8YQuU04bblwY3}ao>k(Zh<&6EGIuv=3HT>k znTvjXs3tpC2{qYC>ibZWzgG!0xkZX0n(G9OT>g91M5~$r22>M*!B7((L{QmAAc94J zS47&@3zDD?_r_bfN_gV|XYlH3y?Mqs>g0vTnd zx)9IYSOyP6!{@IvKd7$8F1FQ1DM=;@GGp?A*jZz>;lJK9D>Rh#9H8}9T9V2*A!-T_ z^zdm@qt)VyVafJdRin*9u0{YXGL5MP1;jLlq7~Da(A7StF}#YH#*E}&wb~3c*NO_VX0eQ{u-!j4`DU)b2_g2G$_~|UK zt5#Q;K{BELjS*zpYGPaFt;P{V9=V#Oz7k(I@+Dpc2WHp35_Y$nmTbX;qvxzP5!2=6 ztJ#X_u?fo8Rz$<)r4+}S)nfVsT;v`9U13 zhx}mnKc`Eo#Ckmp)9l5Q9*C2x{D9U>8p+Zh)CNSE*o+Z5=m&PSW5gIW$OIxx8sWTA zR7SAq$XKwyU$FLuFeeszjiKcw=tZ|-A@WI8!{z@S-Ik+9!_tm_pMQ{5aSyZu`;6ph_EuWsIW2*LRa%U zi`HZ5s=SJ@GE4av|B1)a%<&C8<2tB$L_|DLYc)B2c!FtiQW-emG-rjGFe#o~Gpq~$ z3Sz(XhzM1_B_&a%xIGB?5t=W(ShJ2&K(gHyL0V%9u(XX84%QmUOMl?@Ai3<`aF%`x zLR%((`vV*E3T$yxV$r?lI3W+G9_Zc!#c@SIiVK~IKg`S1^ZOM903OU|*K9smxkpm@ zq)h#XC*Y*a37zx|+_=dbrY(`Htr6xdevQd)v^-VUm?l$7VpE=StplJ7(WHU%@S@?c zM5;_`nij3~8e!4WNiM=|N#S<&fQweG@)}{)2w-B>lyCwO7}kXqzX@|wsKe)`|A4`Q zyQI=h(Y-v#QwU)YSi7w4?VGVSBef~YR4btNOlM)iQ6_&4n=}PLFMy!0IK3a>)TSx9 z){3yV`CpgylRbySzZUy z%iZSJ6GD)=YbkTLbLKYYVhz5({Yk@&Cwy105q5dC2}Q`5chQyDoTjXxH@J+ZXK58; ze3A;6cru?~#B3LBzM$UDP6fN=%{)HC#2DB6IjjO~YBSAV`$w^|P$7&s8 zFiThkH`v%O#UtvmU%Kw(KnlN;Q?J}w0DTAGyYJ-i6mlnr=Q+`TH|b09ih2@=2wuwB zIZi9fmQ3IKtZu>JbN?xKv_Yqyb$nL{x0*uvfRD4a2RXy~!2s;KIa86h6{`Ks(r(r0 z#NK#LOHmu~24VA4)-uQ7s_k;CMh0i5kyOa%NZ_R~8A)UMQ7KsJ#2$D->*k{pyYgJ?`sxsW zwferOJ*HArc-)|-k$+RknPBHtc_Q zFMTU*UK|@dQA-c8AYfw$I-g|OTdReapXYpKElVF`i?x=>4ear>^mqPGFKI)i>L2lD ze8T^H#{Vqgf4<~@mhwN#`Jb;@*U4IE(qO}ffvx3sIi96ww@!|>&|nyiwoJ;_hQy?B zAcm;G7g~O3|CH9?M+jWZ&p6Smy(G2GeOWu#U_CGUBm8me2~Qz=phs3EmSO zYFoq>J?czksjt@zXO~{l9P;V4eBqgjPX)*)kj^yL^U+j$!0RA9js*?VDsrkorf&(E zPMWISrWD~aQ^Xz2F&hp;TT2#JO9+ayRzI;1+=*Xw$IqN~aJgpMA&HWu2!itZlC0CB* z5a>=Hpk(&n(=x2Mi)LukqjO{i<%VW0}H&4 zXmePRz%F9;IWnK`o*9 zk=+;l;J@`Ft`h?QJzM+G@G5N5Ls|rXt2TyRsMa7d%A1%U#U$9m4bDiLS5eAH7^iIE zmGe{H)qa)KYU_w~L5-`vPH0>b&Ebrb6V~CB*IVUM*Kw6=P@Z#+%~{-|3d@$OHYNlc zu9DT(2@SL$j7?2TBMg)M9mwdSD7f!kAt_1jy^duZt(v6vrKIy| z0LvN-Th$K$On%wz*xst8xz1zNQ>*gfjW-|k%`8J8JdQ6P?80G5p0G|_Z-W2L+iqEl z1A zR|X~TFYY+K%ldoOhJhtxvTF<$eXY z?+P!T=6$0LP{(-{$f5<{1)PdC6&7+Yt(!X2tLXFsJk(Yf(41aj+JgbpfeJj;)>mpe zTk@Tt+%YY(77IVr5PXT2X>Hl^g)n{Y&A(fS=TCgMN9@d`PV5!Mvcu{?Q15A4Q0%;! zfiOiG`Pe*XXFzU-Gr5Itqo@>;*tm%-z>S;S8gek3y-KU4@p@v*W*`6JKV3HoIs*&% zBLhu%1{L(mJi#@S!$$@RCWN+857A^C%&uIoRyW{Ofs{M?{zUZ*&E^A$e4@aQ9llzC zyQ&J3gyDEPvn#8$IRHu5Nq3too_$dggGAZch5IeS6dq6Xh8$6}G!lsP2!$WN~nKaQf zpBvXd-71)^j%%RHd)8x61a%)RgBrJcy&sJ$UXL0VLNpF+m!vgtke)VHrfUE^cdoFI zfX)?`6z&g@o7^vu{rroTZY>O*XPnM|zaCHL<&{7fcX`;oLz|^WY#<7ULJ+>Il_G5r zA%a3IxxD4(iw-q5;BKT^la|4jCvNc5^0W=UT0ZC5@fvA)q?pEsY!EHCkbo_>q@X9n zwpQ{m z9)@r8CM2T-3NIy*Zmihvt55_YW|KR+A&G4vQf<0;eVL3zr(WsfJ=dsKdW7VUB4Zgp8M&2 z!OV7Cdt7d{k&RvHsI9iyNVJzv-lY~S@0_n4jxHNP`bRR7LmlR4*y0PN2AY~&yaGhUxMyoBsF37F3T2pmCr2@GPyC6Qf z{ej@NWl~l5yf(H>lPV9M<^WIIbQzkU!iNV>zxCwlo1%3y44$^`XY0$tUyVv-V?zF{ z$cpzp7sd|tvvpFpP*AwC-@Q?+?Dx1;s-|()@GDlpr52ba6<*&G^1xi*G z$MxEsKeR8@MwAYy{|f-mPOF> z5VZOU%|Q6`T=2i8Stk5>9`NIDYyH(7v@F8kD&QZY83=zXz#p18sRdL2(JJxvrwMwi z2k3vE3LC7-Kan0o(02vsaGHUj@4860(JT}GT@yaKIs52!XIm)4Uth7V58vKqt0x(2 zL0U_!1(P>f)`EHruKq;C;SQV>ykOp)eJR-<)Y@{6P?K1XvIrM}Xcha=HgK!h{J#>& z$}DUC3qk4w6alW%K6y5*iX8G7Nr$fbaIy~Xy+4tpK1tGz^Qt3KZ~zp~e{y`-+mcEv z;^C8R7_WkDH5`Q~PFNkmt|JQ$wk>9d--V4$`1)I&PO+eon){P5QuAmIZa?Pynf%-mIfKq8mK6mRy)-8 zV!#IY6*eKPdB`S0KSX)l9jvpEFxwDyJ4q+!fScInFk1uL+ZD@+IMy%Ct0hoUIO2@Y zq|~?|T|g++di)!ue0eoNz2ZdzE~+l_WL#8nt>BBQ?0r4koRzwZJ$;b(lDN3BlsnN-I%OxAzK-t;~&O8Hp?#Z+i-Uaezm zCddCQ!g9;Va@Yv>T`QwB5o{o~GnOJjLyj`W&SPcn7|!oYkl)hOa8Eg|p=RpW@&<)=nHGzsh!Lwl_Q~#Lo#!R~P!L;IP}`umZQsTnPwW#x-FJ zUEnO&Qh3}4{45q?<$$kz`Ppi5STM`dZMW5}UdZsW#7{y_)SoQbd^I-tMw?2kN`ft= z{1M1w2lK*G)nl|2cHkj@9e7T3U?m%^p}cNV0M_ ze?U!J4M}a_K|?!nmmy`d(7+UuZD`=Gs-a)VT{jC2yr1L?4eY$xj|TSL>`w#RZx$NZ zo&rM+EJ^Md!jj`c?+bVeY8SS8sHU1l3t=xlDKL7g;ftHS)v&m(4X$Bq7HVigXsRJJ z9y^jYUZ^2W$-h_626M!Plpc@%FmA@uT4J#}yT0v``lY2NZW?7(3}j1F!H%umEXJ!< zv<$ZPTYs(Huo(~fEC$YFxH7K)eF^OY4^^U~NrUR{kps5~k*TnSNIe?ufGvJRCSr>}k-2Ax%sqlkxD^yn)*HyRx8UpF zYO)0v-{r0;aCr+$<1J$6$)fW37I*+4VUCXmRFeVgoViutR^{y2+H&_TVt1>D7mjZJ zaP${AREmT3oEBS`L&oUO-tEEY&ttb>^k?-M3obt3jq%63mki!nkzJh?+mIu>%Jg`J z^3Ifg=tq=(+K)o|Eh!k(_uV$O)smV=sq#<(;~uc3D$Wy&Gi-b0kY%K*F&vFJ@n&;1 zpQMZVOu^KSio8X7`=9WKR9ee(l4#t8pa{{~`VFaw6?L@51rz~e<}~XXD;I%~z%w=K zL5d4?Y@fdlJh26J%)-;RSHusj>@-IMV}|wX77S%ch6y8M7s$<$SmD(dHB!v0D77qO zMQkVew9q*j#zNeoyYrLSp}Y8#*r7Z36JC%~6SfjwIPMIqPwlToVrzzYTxQ6 zl|Qm&T`S=G33Sy$=*5>9UgmJoRq+-6g|3RPY!$AGFm*95^B#ahtEjjUEUl+)U8awv z{LC`ETVoy&{n!(xG#h)_cBt>u)|yNIcSy3)kpB?#rM6ly8`RVu&I(rz9ie_pkl{{1 z!1ArI#+uQ)wYq_3@pZ1ee5+W=e+ix8e%H!I6>Wn2jdNtbbNd(!gvR`vr^IcaSoKN8+BNGPNS}0~^iAC%H zSBt}s*t!dl28&$Pz^{yZB1)0@QwG^ON;3TB9=kodae_L-AGaqWPa&R&JkN>l4dc1v z(KGx{B%cxEnRYVYe83%zw>VqgSvk}uNpjXU;+HrYyT|ZLoCN+n=$FVT2fxIf+%Hj+ zM&y?~YU?GbvpF)PeEK$qTek@6ec#N4aPaN8T|LW%>Y zn)SOprm~R7LC8Ma#(Ml1k)$r6Wzb4~B7}_PJn?LV{OvZD_g!Rb7SgqLx2X4dS(IzT zLw4ad;YDRZ#AV65C=kXSxQR2Z;iop85CGs&n%+ke8nETrTEzgsDm+SMNaj7sl1ABP zROI!5t&4=a=e<$3=ITFgP}hMCE*IvTB-KDLGrROVmYm;AFSduVF$Y6J+1mOkwb+2s zw#lW~(}wFflh}l#A)z4_8qsl)-FeEE0eiS@#@MP^vvVsXb(E8~3wNzr+g)O0G#TBs zr0Q@H)()d@I|%BXm1QfHT)Bu-DRCk!HBE7`^mrLqy3V$grC*UN=YRJ!7-6~lc5(az z|GQnb@>h%le#p;k$B1a^v$Wk@Y^AZh$!RQWY{lTHMV_9tlYw17*wR?+^R^YG>!_9T z=L;`=pF~D>@T?0@iu0~> z)#cm#@SXyup>q~61-JUU@-$vst3Pd$tw6nOp^Cd^ zU8gDBHA}v{o$<(_ndeE4tLux()b;aOVYcm4Rr!TTGWW=e@qx-23=gTS(BfIumu)@O zSX#wBPpRU&9#~`kuv4X1Z11V{X+@ktB>y6g8EOK2XKXYZ{8va%wUbw|cE1R}t3EUb zchuYcA`Tl^=2Y0V;L6Bdt}t#$J2rHh?S9z>`bq^|VY{Z;GS!I`3X(Biz-QWP0tkX0 zZ-7?k)AA<#@f3axTXQ|6wYq{9MbKXvq_3kn2>&a9zkb~__p!ULdy)>(?FtI8ra$ z8nH*h5;X?y`oU~MT9T1=EG#ijE&_4T^xEpLlp#2q+vQI-kL*BCh!8595*s}!39g&` ze6l4Q^06(dv_s|g9pVX(?UWpx7hZAqurdAH0)53jn12Ft_%PY}n(bRv-bqvuC&z<6 zE3LGyl<%1+@X&n24s>eBZIBeqZY`|dD0j83HtSj09>lVz)D2=|w$_Pb#k=YRv&Bu5 zteJMX_D+^nU9Y7kQwnkZQIi#YVQUfTWdj4}syoS$^!Dbz^loYpk9yirtytnCzxFMdC%KpjBqmX-0+Lsm4D z`QRy^9-ROF3R`t4V9HJye{$;9RbQdlk*SmYF!fDjszR8`&VOT@T3UIXV6biiB>-8s z$dh&BNt>P(tjmqIuTj6IRm;pdc+bJzL4d`=x!HT}3(l|my{(p1{vaS_LqABWs~)20 zk#+n1un8nRn^s!Z{c5o8S4se~?gmexQddYCwZo9Q<pxoNfDQiFH>mnvUj zm#`{;#=^VQ!?xi3;{~?5l9a|mH`r3uh7>Pa%=)|hjOML&p~bXFUDJ)W*GkK})^!e1?|axV`ZajIi+d zMzoLd%lRS8+iYtq&)p^53g=OBaQwzWH3!gDh|193@wDI+q*xx(6le$zl9$T3M(BCK zmcVeNY`4vJO_Epb!jV#1m7n*EZLTCA1?ssgU@@g0`}45B{yZ=G)5i#iBSPV+3o7vi zEZkLE(>$L6@pYsFY)7FjNj*Rb#NPhLv$yvey}g_F_AxcQ&_gwv{|C&hBZaV`hoIYc z8{)HTmvHs_c#o~QBsF2hdu_>TGm09`3cQwg2!;;d%j|ZAs3F$DF8f1A8Y>t8Q6WnD zf@9^Fb&gV07wAa!w&j|H)BDol9{eOK1HXOW*Uy(%k(gTQU8{@Uk;AU`8RtuJ}F0uEK}8 z1VVN$^`XtDI6&P%tNnNEgxhCaKmiqHCyN{UKyd!#6SgF&{5e3(q$&0U z^#UaUxq9Z`xO&YOS9hkvtZexSu&=W_Cq|Z8MgvX&Tjz91yibJ>54Kh)@{rPE(bgk^ zt+^Mf&sF1i8TWdWUw~QeX(*}|iD3?^xmd)90Eng+e%{ti{thjlF#@dECGPL}FwV~9 zFcR_mdrw@j6uvtA5 zUsInWC|KIX*azjOi&(~6@r~72X%22vL5_6L9?f#@*c!|8pxDu>(QulgN2s~9ES|{E zEy97mve%S-aglK%Pv@6oL+#Bt;-R{|n));ahI<8gTD}SpR*!I~t7$fF5v&xrymuxy z6?tzFh|_Ywg>F<9T%eRKS=NT|xELRdcaAM$_=L}ZBG|>UKgsV?{$;yQK3&8jYTE5= zSKq{F`3!J~U$Gm@X{3g7ASD{TD{(D$nI_}Jw%c{vc=ZBJ#+ygxqdk^9JOib$4JqNo zW;C+*j0xKfDR^WQ&cE=;D15g#1HI1o?lGWoBFtv^8R*-8+m2d9G=K6pG2T~ z=s*mpM+MwFY!Jd6w`_HCkJSy7Pwf_pa=E;{vV0oI;fm6fBcO_sNHJc0R==!XqA7e^ zUrX?;beb`bcovu5V}D25Q`Prq#{Y>QRVfT#%4f2vy0fHwqgp!`l#QHQE{Ry;egF1ARS3w=R z#lKL8ZvBf6Re?ONLvK{EpSKP(Q>xliB(?G$fa0w+;Uw80Vdn2;9A;*HZ-b~cfi)mz zW}JPUT9cp<3X`}8`;%RX6P=7b4~cGFfrsnTG9JxpMB95Zjs3ao6hrkJFJ#O7AzSMcS@DJ1|I#v?KkkJd z<)&u87p`CZ;W{pG`LHU`t{qv7g-+LlAn<&6 zO?z{xJj-hcs-3{;q^cc42+yA~T~{Pk*-JDA^;-3;Rgo64&Lv}Lo}pPzbq^amL+_*} z(0aI2g(poutK>WC*sDr%>Rx`*6wii~#5IogS&-!=+q=ZjhPcoIchIJE;%L#Pbmm`Z zQ#$X(aXH%8xUA+cu4~VfEarsa!m4qKeVRIyw!)mbK0=ZW3TB=tqe%%*wU1KA5x@*> zMivmyM~exm=4c^hv9W3P`_vrI(vVT1fn8IxXoe|PKFD^C*~`UBllHpCidqfrE#a+T z5G9>WZD@~^;DHk^Ph&VtDo+C}NUB1p%*6{5T13-igE!7GEWMGvSIjzI13RaHe_`ho zh|W=I=ZMuro5uEIKKf<&efBrigA}*fFMCO{fqQ0I7reVpU4Ura@6`%oCG+E=*i%jI z)727!hv5nS#l6D$;4aO<6a0&N4d;WI%|s8nodaZEDO~F&pXJO4#|AvYudxp(ca35Q z!LiRc!f!~k5UpdM8v@=1^uYk<8NkB*D&Yiwf@B=o({jRzvQP*>j4|&nSI*g=V?)=; zq5H(lVcBg*G~3bI-dsDwn@NRXH*Gg8P*d2LzZM7PKh(zlj--yHbWa%@39*=-`mQR= z2?z~lZ8GdF)v>ey@TV2a{z9%4^9&?E>#PCixXwqb!yjC1j$|h?>~C3Nf{5SGcDA*b z`rO{t$*TG|B?YgQ&7mo1$+&~FGK(kkHLLRsyV?bIP!G4a=cu1}6~=o)AM6vsDn77e zb3cZ{*_A4>svYgs16D&f;{}s7v=ENdtM=iPzNlWq@KlC+lhSQ6 z>N-z08TGkbc|SXDk55oz_CtnC(m{zIl_U52X{WxQUA^DdK&9;zUf`kog%@}*1%_VW z74{13kLl0hqRkq>ztCn4*za!#!Q}|5sgX#xf#TJ^y z(6aa-(>Z0o+p>ViTOWG^mwBOug?VvuZ1yLKdD+5IqIoIYFU-ra=aXaDpuYAN+7zBg z&C8RNKHUFG|EkumkOL&yxapHVtZ{$&^nSK}wVt4!CHV|B>7+ji`(wYD@fPwbE=^+k z!Sb4TV5nHgnS21+Jg#aw>)tA{)Yb;OCpEfGNXTA7ptx?Ezi6%goTNq{05V*H@I0u1DHX>dFPL{SK(e4j< zI~Vc}UdS{2A@A|OAdlFUSi_1O!nt%;hf{QDS9m0s08Xx>eQ7`E^OA_6wPc0y$pIE79-IX{<(2kT{vBO;gM;ay6r$&&dz*iU~MyLD=!{g4m4Rbi6-o;r+B z&M?&ID4K$HYuInXZVe_m21PTsmCQb+gOGwEWR?sD(o%*v^p$()^G&>YnbFg~UvylATZ(^N! zk>=nk@i!op2N%t~o~Wz0XtufF>irnFbIpupXIbo7b{kP z-&;Op#4hc*Lekaxw2m9T6vo!SPFV6@aLw^*XId1&w>QAQH^UA7!GQJv|M*KGE!D?p zc@uPdE9k7d`lISgv?zjp!2qqkNkG2{ ztW{qvpdfMVIY3iP6SkKpqoJJ);sNnd@=N}z^@ybY=~Wzupeu*O5OjrP8$(dZ^;$Dz z<*+c*A%}@ramxpfM-}DTTX-*Gs~kqdr>^D@jS)y#=|Els;%36zgfig8QHbIdqmU&9 zgIg@US*xSkgc1PF?QSdL2+)igVb5tz5I?zgy4t~`7KEeVZvt9M8teja`O>5Hrbz08 zw9@(^36H3>ys*aE9i9zh$JfI3p`H&w9LIBqM2L|rwfbds9IcN%Q?j79A{`c-&LX*# z(=!cD&m#Fa*h@3~aC*L9PERA8&N|FF9j8#Re48M|LP)M$+o`UiWjuIngn+SB5uN=ODu)~q$0lJ%JOo)*j`$hEV~>a-oJz7dHjyhF5g|q@P-x~sX4(;Py3mkj z<9wmMKV+>0GOOC)nI+)DQxk7o7|Ws05fRJbAqy@Z%i%$R%iHT_=n--BWJQLt8~_;} zkXn$z{KJSS1YAb7rCb(jYe_-1T{f;>b9E}E%0r}#a3-{-p|)>%)G|cMQqmMD1|k*5 z20fGTt(r$GqHNJRLbiqsnCwHgmOC7;sT*i@)ZE1*o>8PDLUVs4xk9vZ9n~KS_zk#; zhh&FIzL=&T@Yma?eTx=9B-;bB!yo4T@rYnG#VS~BNx^yg;tBQYtCnPQ%J{<(5e3O* zqISNJkgaM*i56f(hdlnGA{`YCjU~CHp^c9k4Q)d5MME1N^`k=>M}6uLZ)p9aqM@-z zMMEi8(NIeYG_;dyNx?Q2FMKoz=!P@u47Z)=IVs_Lbvz{!n}`G6IHQf@NVZ`odakzj zmvfG?DYj|}>Rgg9+BnN!8{ZRcv})6wdX9SX45NvF6xD_z6-~6HU|$}4wO%*Xl5F9m>&u3=Znhp83{GW1R_~%26ZG* zCD!xJdM#C&B+LiCNPJARqQNm&E3iNKLv_}fnsCV@lSFreeiKWv*&HP<#d7!;F2!<= z`CE!z*=*nKV<}c~t9`KgIU(Ly1)YDsMR$^F;GVg!OpC7hZ26fB6yV z4M8E?B~~31?l0SDj@ZM3rg5iH^kn$$m>7}|(_+|}2mE#BY0;S;7YVp0gA7Q~w`diG zW)8`BfhI2B<%)p~uJsWj`^O)$;9?=))NMjIi~=qklD%=^kepB~hUDrNTo_LfypQ`v zH1{5oQ;Llt*@6s*WI%SchZd*Mc7aJSoKrt0$wmh|^N)%3&0-)^xD0)|+g@MpSuEBw z_rH}GD)%ZDK6m-NKHZ%EfB<9=K}8${$IxVg2aoB8@^+#SKgz#Qh#v*`{24&+li-i` z*!TGm;`Mv&!_^6tW9F&K^Ca0oKJ!2sr5If0f*=THo!8Y_1iBF58O6fiC-{JvrE=Mo zX5=2U_mjUY77L=Kv=YkE64AHbE234t zY(%T^&XiKwl*{%8tiT~v^6t>q$9)(E>`(xV9qOZj&amU6L;v>Z&|OFEHQDly5(DLd z$Ay9}%1ell9|0PHQnfIcRhH%l)qINyxkR9CU`qWmYF=2 z6Y?_ramNVaDI`V^&vRmkjc^`CK;eH*@jn=#U;uZDN5_1fyZfRebTs!nL>JCr?)QXl zSN*sr1A597@-Ot1aKbTNV<(cpNc+57M|}%y;5pXI#&nOjgDeV;yvmLg?7Qn-dybB;w z&jt~xr_U98s&ds$=LMFxRBw-Ojb1hrU8K#NPzL?ufqDu;FNLtDO6-?IEYLBAPWbN_ zLr01H-NiIPj0m9<%F_O@cPqu+&J4Rgj#YZZ5vo#@;$|dGF}Oc-f9abDs6NWi`3oGV zmqU+a%m@m&K{ou9cjE3Y#pmQ)#gUGFVNpAg5b5huhk1`n>IqeTd7cGs6OJBcwL6h?@`LGTBjKqY7% zr_vY%=RkWutd>%~JjVO5Cy!8elKQ3~-Ro1gw3JEPt@!Xh@vM^=6M*4!sf!xc3d&tn zJ%yEYhJmHzwk?q5EO2OScBcU%jtyx3d|o>N4H7ky8&j5{GxOxG;r?9T_7?V?B+yyP39gF zoDH#XRz!RP^{LL*DW|Hk%O65`hO#iW!zm%*9SB{Vu~8#=0+sN#MqAqeU3`k?iUp%g zBvt<#w!R=xNp0AQCVE@hCD#Q@!B!0U+|f)3)$*ftYOxQ!-^HLfbg4U>3jerkN z!4M7+ij`F(?}?-L4;t?ND6y1-y7J0*<9x7=v- zinfnZ_K>>BS3Z4?8slksiVS8kH?uIV3>aOUHIL)^0JG-2w7No%`3qAqmZ88H^T&XW zEq7!{609C1h>M`wv%QOS|aJlurq5$k*+j zeEo8``=wV*Q?Lq@51#?&O_Yk5}G z&#!n!p79n>;Ok3ek%WM9XGF{x1wPzkAo8&~PoVO7hcxb%!ABl9Mrlf_{x^JV%=yq( z1}qj9ez67ywc5`@XhR(6(l1>IVuh!xw`1uWAN0z|{KXMhelU=Rk!6&jgh=G|Bmc(h zQG(YVW9(I1qKO)=!gq#He`S&4p40nOlA!~5bQz^TArL#@C7wV#ps(P{gFqYD2JQ@| z%psNBLqTMcrwYt+*L3j{hXOF0I20uFo;5a5YVvPm1I1#!jlm%4wAeryI#AzdU9jK= z%A`m1amqnL72j;g+-oMdmlMC1euo51zyg*t0(MAvU>W7237zlG^p?*8haj$ua?6@w zY}-Jt`)aiueAWy@pr~g}9RL|=#FjrAoC?FsS?`svI4lH2+@;2XXy`b-U$hUF!|k)N zPw1Ll2>-vPkB|acui^TA^1!o9I-(n4WgdYa{9xb=C!7l3ZnGuEI-iG?Q63{raOr*^ zOCF&=qYNck(hPloB>^P7Jw8JaO#uT=++{#Qd&NxU5b$JS8vnwRg=s(_Kl;1C1qpBY zg`5Kly6Kt zLM)d-w{x*vZ_O~o5^_zkETUrhD=BY^B?OoADV9h6MJxdaisdo_5qD=$EUy`2d4uGl zSpMlpEWuU8Q6r*}Wpcc(fg?paD}<7w;X)bXgZ0j(XGI8%K2Pi26vsK}RoAwWYok@t za-Y%fQ|epuddu25!OvFK48c!HV|B;Dwt+@6|BVI=gOPg{HKPJIqJe4;w?4q;r$v-%Zf7(tHOkv*Y*P@HGAA*2)>xq$1aQqo6LL^t=9mdCO3HFT4%T}%3!A8)S3WZV3k~_m=+Twd3`0X8*VK@op{Of74L~@Uq;y&-u69fCN?KBLWgsKdCR}uNFz~ybauL~XV z7$nfC#1E2Iny@ zhSJCrOR7ICt$kwQVKF!sU(7Rxy}swgu-DHMRd0W&9u=rmvid%O

pTRTnHEX_gf z_93gz56|J*xbz0gdQE=N`J`vm8$eCv!nB~r|YVu z%p}yir(E%GdRBa$6yu{`G)Zu2k@HQKHAC;Ld`QXy$o9gI+-HSzQhv!*M~oz|IB!P4 zsN$z6i)hvn?#CC6QliafxRC=}&>>?B$BxEiEB``cvK9Ej-}>=oP2L1GO!ix8d8_)hyekb^qSsR9 z_^tGM>-siJCBCB&{{SzKTsK}PCwyQqNZG*=y4fIQnI~9$rSVIiimJz@fnQ(cuQbZr zE@FfZVJ8>%gN1>+P~#OK&_5qtI}GRsV6LyyCL36IeMaSaPr>xs%jl8J-! zf=hlx>@$}4gWgz~#w!RBW5<8cQ{>!B;#SBkXa#f-$-!h!w}w3krF| zB}ox~m3WK}OC@gYqP#e=`4S1yF<5LKS-Q=zZ$AT*;f+J_N+uOlAQ}xI zs0%p${5m0G%2IZ z1h+{kgDVEgE^Jo?c|>wmUN-TF>GPz^eENJ}ur=LSi$kWl7GDe{-D~j=NO^NDzVI@t zs`oDHmzVvo#Q_OUq$d%O=62O4z{+<~e9W|d+PF*arIZlt=HlWaum?i%DR-^8y=BPYYZA7k5NBZS8q!6!xJXY`E|LoWMgVSC z4ZrM~WAECnH<#+i-4vyO0CrtP_!^WVkN`os<%+yEWkQqP1vvPe> zOl(xGPK%5t5CIA*2yh7Zsk-nAs32YW7b-|sHfOJ&eX0?_HNLV;*{2_|YKm)R8OMfX z>M9FQPIyHfW>N!_IPRu7%1q%RY>4WxD@KS2GuN$1+e<$-gWJ|9GqjD8Z9->UZ>tP8 z6I|$=ldph|MGn0uQTh`H19n88I(pXtTz{0fB#&RAD9Hi_asc7_ZT3N(XQD`P# zVMCv?FHz2saz#OoO!*Xa;McKn$|;folY^Hei5)wxS62c`0E8jEXaMd3BygSao_dC` z^}mBwuH=A>d4Y67uP@)eBIX5viC?9(U|M`aPgV))2O<8=}1V#wikTyjH2*FSJSUPWB*+qT7p+blwqVeZ;>>ZrJc~V+}agv-i;cK zjZ#UYPKb~Q;1YfUc9$L^!1#1p0>5ky?2pH5$n8qpbn?(O$^vWI_6+-oQ9{kgH7iO$ znjvzH@(rnlp^v5{^E$yZe8PFXt%DF_#4<)U)GC!n5*4a^m}UP zRj4my(=bvoW(qM>uK;u&!$t`s+1#64=JhCa9==AYMM@#`>VF8v+($A@+N=Ko{m8xS z+mmdB&g&V_aYg7`3d9y(AW#B}J@;wYkWLO81E-6MEW1xapgjB!v89I*Y^utR#u|u^ zb=aw3GDQqK=(O+@CCcSJ-Mp+)&Li0MP&#f;+-NjT2jacq>|2@TNDE=->r8WhJ9(X1MwY)EA|Id`;Wqk|oIQ^Ixh5KT(B ztdMgei>U0-@_P(UcwAEM5=1C=JP@}+stM!FI1AcJ^Vk%Jqdw#DYZUvRK#eh2BX{He z6x@v?87}U&tnjvYbb+ln^IT7O&1_7#qn6T)l*IAA@t-)}dr$b={pp9xa@wC_#0Tui zVTzq|ID{k|mv{ghWf(#0gSkcw8&Xd&_hO_6b4dx4x%t3chonp=P{V7f|SCd?1=1PCe+$5M8LPgeySo8It7_mnA zngBBwYKMW>e4%!fizn>|fWk^U5?m|l4BW_-E7@MgRs|7D7pxdOc_ zka@2_)xW@4cAwl(p{j_N*e+f+JoT zNz%FSU{IQ=z%d?_MtP0oqRo2+BGEfqcq`(Zzr<-7=}@=|g@;R%c@@Lnjr>dSlww7m zk_2P^&7;y-sKeRd;~W^qb#mzjk4U3zA#`HvHi_14BI)kd6+`Rt(po!$NhUV#sGr7N z^xwGONaHpcjiX4haU=m7*GVBM!jP`_Y8MYfqaPu3`8Y zr4`9VMQnD>j{)s;4g1Zah&lBfDRSd$!hQlm)B=hS8$}X~9^5ph&l5qP{^&$=cE!g_G5pI z{YErar9vva?D9lwmG=oOARtp-a80cDUcct16xUJ3)`G@5>IkJYVxxUYz>RAn=8STa zR6r`P`J*!6x{ompL(WWe5A;UJnX4vHSU>TQGYUx({J#tm6BXZ9G8=$vCpwYBwNpWr zW=b@f&JmvDUTE{{kb+C57W@mBOf9baTQYsy%(2DCl4)ae$6%#5uW!r{a0j%fncy;Z zGk+=lnh1A5hct(`x>AE_?@`wPv`sl%QemNHbHfi;?s-QWWjQ zD{Mu&Ph%*0(9=za$C&}NxZ^pDz%mEY&w(f|(qE8V#Pq2jOy3!@;^jZX5urbj7a|-< zcU%`E=`MoEJ(9u|Gu|%mf%M>Yv6X9e*TIn#(BVi*(edrgXdiv+e3bR-;Lzl5*R9Ks zg659uA~wlwU_bX*#aJ`{zz^>hY5h4ikZahXRVmBW0*Nx}=b|ZkqZuHSQ=W6K24dLbzL~g`F46^7=WFtj^yUSB73gcL9O` z2pCr;_aR3M#q?x@Lz8~GBcPU3W!L*Tx(XjRV~fsJ_1;y zF(1ACbGc(Nx>&!#-TlxN@*wx9LO-o9xQ7k;>gfE$7hM5{^RpW~;u^sBUh$YAkPq^> zE!2%0P&CjH8t*>T?GO3aXCQe)ZBMZ9&l9Q!0B6~tsjcs4&kb^AmP%;8{)t3WuI*@GRILoCpFI2gFwRy4#>Q<-X_<#ZUA<)<*|Ntj(0w5u4* zino_4Y;w^Pj&arIS%jMsAp*qE6j!6m5K|0re#{_1Ol`SrmztSV*!+-OOWf&divrya_P#YmPIWj#rg{o2KL(|H_dW z^?_&AayP}TYN*EVF-hw=sJ5INc#Y{({?oX|^r2`Z-f8vG8O{&DQ1PS2_eML`DWm{f zam~?^eejgyGqsyZ53re^FFt6daG5ej({4A#)_o^4mlKYHzNOS7LjIgAM_oyI!UW3Z zbW9N8UZQ=Va*kjbPdmo2wPRtF7{tpyR>fzro4Cav$9g^Ectx2>z+e5_(OaH=Q+O1; z%BGBSJf(c(nZNiZ?mM$9;}A_Rs1vXlK=N&PHu#elt1AVh3Nk6@W2vpo>%qRWgm7a- zjFf|^_zX@0ZA=WIY0f0a0;Mxa09EYH3g2{;3Aaj6{LS!f$n2WUlUc#D zQUm1?f(=bI9y$)-sW_V(0sRHr^DJv*L_3ysqvm2|JgG5uKtiTG?v~j17)LT9raKbY zp`3_$at<_nPDBl5F3CmS&+_2?dxG~Nl=l+Lsg=|j;-o`2b>@h0zk?z=K0F~=@kpq` z%8#l2ph{BF9*UPXq_K#XK7Iwjfy7_coA1GdE@p$dC{hGUFMQjNAOUeXle)PwY5OXR0+ zi7lK_f)0MZJm41Yi@-{Q7kjJtb{ykQn^tka^9zi0lW|)_x@mXYtxV?NEw{PNR#b>e z|Br=H-&}QACKXRZ?8P|Dl0&%S9?s>Nw{fv1jK_l8ct>0%U4D}-?V+a`5LIT6 zI9-7iyzPi8)ee8ob^-`L>8;03n3J*u90->qFy{S@x8=L2L{Jw6TW4apl?NQ@2H&n=^zq zlg%e6o3Hv}^Uic+b27_10((n6tHR~*U*2<+#!($xbw?ZG+kQU3Hps0pqv&!dcJ4I$#i7fo|CLJjaak zErApf=cY9w%FSJ=IfqW>q*7;=@u8!k#dJ;n(D8C9g;u(cjs4OQtKMfK7rcxdz*DHq zHWckl{l_Di&1kb~nI%?ox{+9z8Fq1E7#lnJP5RIGuk7wMPpUk?Pg_)5bOM3U`y#83hM z<4}=0Iw_bfZ`mu5?OIwl6}7DRHVhb(KdTLP{5!`ocpW}#rK670>5i%GZn2Qt-65kx zuRH%TI3|PKzG=i z=goRT<6hcY+A#uoT}K{gqT%udR-tI4qf0)76=^8R3-5?vH;V~claKFFJ}wb_^q3~9 z?->0PzSg0##evC@{|O_d`D}E7BSoEW(q*u5jVBx5HrhAWU?WDkDKzW-M{L|-q7iJ& z2R4qDnijJgZ7R98yLgE1p5k>ay1lYsrw%q}t;d%m25xV99f*tu;_)%P{ zbeAahK%eX^sgVdnYM!GyE8gL7l+N%A%?apwSHdVYDtx#&VMyUqJcTNAC!=ZYfhbp; znwQOLX!@h7c*^c%QA=viGK#=<-*<Arnl0j1Qyita3+e?AU*G z98gFBv9Z&7kKeL?pRl=h6*1Rp0{MnZ$B81l51=@Kt8UN58M@7^y}}scR0f4J@Fv! zXgC{$z|LzD%UhTb2TP6+*5=Kmz<^5k0Lg*`Bl=75J>0&JKfp24KHX@Nz+k&0m0|Fg zh26Ykn_`(=%mf$0nPs@ui=CZS>6DuL zVy!2YAtrFMn+M(#cRt1xUdIU7;LPVhVwv6K7@MeHPsSPT_0$U+6{095mB<4I>7 zzgvWD)H%Led)LGygzc7@;6h!Nw=GMO+Cs{)^>?Z_R_q>` zB4#<{wmwt0i5g<&(jN9fuTw3@t}aN3m;W+*I1qc7ExPPzDYq)e^aTkz!#EnP%dz7x zCq~7q96asS8zv)!0f8u?hm{T{6*w$t*Lg8oudP|a)0o82JXZ%@2O?+aos@xQJ( z4WDuaWTRZ|`pdDO$`v2Aeo)>ejlltnnF%h`Gs`+)-MizcEFu#Wt{OT*`PxLm_~yL4 zv>eMTNQ`DVd9aIJKyq<|9&(2cuHH>vQjX0TP~CWn+XtD>&&#ohusRq@pgnu{mZKqC z5SS6I(xSLaFU@5Uw;fN!;NCnRx}2vuPP}P+*$}y9w;es>Kj+C*WabgtaIC^e0@q0@ zZibZd?k}n!@T!{fCxHmN<}nOo2n0$%jxkj%y6ebPLP!EiBERb@2ZF0iP@+xoC~jPJ zwfn0xXJM_n-gPj7K$^cg%Uad1?Og{02(fu;*S0xo{DA^gdlBneGx$*V4@_mu~jNMlu4u(&U3SG2c$|8ix`sF9Je>6=`12J zp`m)2bKW=_5upQ~lbG~KLMP>E0-`7o4hF_ZY|4(BZ2`)ZR}wPdl?**7p{dw|w$P4q z5h6J*wc_#$)(?*Q4pyihvz~)TwcfzLP^~vWObt+LA2X5%DkdECROXiK=}HMRl|zJ1 z)ad7pt;x$~p zUp7Tc9w4(7PbD@AY066(vL!M7V0qZf92OiVca~AYPsX;oGbG90rG2d?u#{(mDkN&ewx^b;pP3Qv|(?_EW=r&p-LNu zAp@eu^UA2rM#zAdWHxj{P2C^PF9go7eB%6^;>`b_aAv$zGf5%sWN0^c5HzOU1QOA1 zdK5S8<}rVDu1u=g(%LNUoZ!uY7eH2m5}L4*K9Rwi5hB3SHHHBjFS8=Zf13VD( zGciJzW#yKLnYLV9%or0%9@)$7#5)hcg%zY1dz{6NiMr1JLK2$fCPh$yGT_|b>+EH& zi%>C%9@XCwp(eM5NS4nyI%+<8$+9*f{duv8<;8Zv8EllzEp+yhtKNx> zH~)-aGtjU^NRKJzYe7?=U*zm=x|=IgXMB{ADEAjRd#8MhB5^zK;WFYb2yG7LGihjM zIs4;Ap~{dhwsmrLapY)a&NRofwom=E!snk1%$W2G8qGWt`XFs!VbDFQ2y_?J0oARfKCzyoP zewt8j$J7u7WS9kyn){o};?G<@agbG_X1!@|)(5It4%V#S)Z6*jb-TnXj1EpJ5gZAH z+#Vuip)7s7MV@FG2{Ku+T1y&&bjC6patz9W*7FN8por2T#IT*bqsdwT{G*uFQ;#3~Cx?$lcV`IK%;IYRp_e(C_`= zb$Xz?02xzMnu5P5Dou%OXrQa==R8y|AU$wNf2ZMC$XcMT-QA#5bU-o}!u{hs=dg+^ zbZ$Vhro5P^UU>3**Hm$bCQK12F$^dFx=2~Oq&P+PHhr&%t*i#ku(v=i%&?6I4^Stn;X~f0ZHk>d>*SzVKz%19|6OEPnJ$Zv!ak_qFhnoOcz5~ zE{(`^{|}02`YS{=D@3HvBhvEBND_;vo<~#@WQN0+C9Yu=G*u{~sU}K#D!-PMB+|Dj z(z8cv(zgXj?}_w^f3pgjG!&r?jR&A7;&EV<*Elft!3RAT_UKB}UEnyP$y(#eDV?Im z6^g6hVJbzdb&+-3&&j{e5RMkwk#JA}RQz2NohhOvOQ$6ly@_|XP!ZV6aw)DkTd=rR z)Pmxg;}Eh7Ea&MBeA?RcoI}i(E!23zdEj{BUswcR2{wNyWY2PCis3q2-RvF0$d6OxLw&vSrVe>T{Tf$t80z>GFXEDxu+WOQ9ok|RzIVc z>~}LsY(8SWVrLaqKTDYxFt+6$tVF1L92Czo^16rd3d%d;&NCvhhh5@S55BElwk8R#MSp56Shr99>=$`n7dOmdJ@OuJ{oI|$+<16JZC)+E?CtaQow zpe}_iAxYu`b_Ywf=D?->d@%CZ+C-1oySB1pQWGV4EshsWw%zOo|-CTd@#4 zu~k^FN5uFct<;7WaG_Z}=Rz&AB_zp=n*3r1OSM{rb}|crN-z|j5VcGyvd?m>Ez4O3 z^pY--H|yfsg%)`WI|+WgFX^B$`)z=j&b*-&F_2}u%Pt2Uxl|B|5D91Bntz!&HCmSS%E=PbSsjva3YT!Ml2EWPD*N8z^rq;s*m|6PKBKev z7H1y^OR$ukaqU@A5S&Qs8K~;vG$$)9j9yy|b0PW_`Y2^wrdZRxoW>I6tJe~WL%79IP)K`AgUCtR|En`Yu;5MBQV7lx;6T861 zJDsi8R{J{28tEJ*9?~4N0q!FM$ij`Gy}-QB(*1q964!kgY5n&q-7gR5e&}XrXX72! z4e)`p@vbt!y-1Q9V5R1v48Rfsx=_?dC4PZr$pByCFEYTF;S4|_jlDDr5`q^|^s;&L zzns0;!DBTwF9V)7FOtT+&Y|k6f$AQ?y7OS^*C(YcV&1QTr_GQ;Pn-WnY5sse!Kclb z!k#u`o}V5|F8Y<8Hb*RiO{VJW&F=D?a~u28;nGD7KcEz)x{6*Wr^Kr#Z%lT(8cI`;OzbozdQbIzKUxStLpJTHrX_Y9Ur&pW$|P7cT?o#x57N1OxJwr>+%QK%E~7ml9G z7Bt@TM-6h9$Xg$Fwlk*7O%FTYF#9{?oIgE_;2-Peh(PY-y8n~M6#M2qj+v0J*3Fenm)M=He&A4s*bYY3Fq{L zu-cIiKjFMx>_h%Gmr8g;C*m(9gWU3@bGGrkOn%B)+wv<+|5}M%&g^6@!aij3H9&1< zopWUag2g@Uyf`5*tPHE3hDmOzqwZke?12XSkVb^}%Sl;&GX~^2gH>L`Kd<1Q-|^3B z_;Z>6aZu$ot5vb3RAeb-FTKp4Y-LepQWRAtt72vU8*=h<&c!WJ9_WsM`5NqwxyY1s z=aC0@Sluy8C*m*aj*FVu9gE!G#>+2GjH;GTz2IEq;4I|g!S2E4&=?tizc)c19qf)5 z!?gq`Rs}q0GG1{O-#+>8IGMg`R%0I1?mp~XD7W@@#|p+<7Vm-!%q$_;-X?s~5I8NB z85yobS^B-%u5RsaCtUoQ8zXCnxu@a3@#}rnlHM@Re#v<{LdKYKaXdUwyn{7*?z;iJ zfi>82*ku`TPP}k=5DGYT5M-=avvV)>gQB%dEZ5TVvY920a=S8+T`1 zspzPaWbJpZDzi_PJ&6ocBlcjWy-RrzU0y zRz~jn%H=d$#mWP-U4G9+-RTm&A4*zxmhQ)2_}>6tK;Kw(M*tNP;)MbetT+{SJ$y&F zg98vHwy@ON6)vaTnBK`DzrVf68Sx~D^R%O5hNxp@zzS2%$Du8BB@TPk?pU>hLz2)Y zI=17zn2wpU@`}-od3_2_Ak8hHdc5X@pO#NOWN*xaTBI0h+)k$KqnpbSk%4vKCFYpSD{QQ(oO`0v+gAFnx;H;eXq9i+7F%M&EI0>;SZe?#UC~b zZ8ZgJhI2ZWW;pWXJtCUXw{k=2?{4{2UR~D5&i`nYqw=*y^6 zB-7=sOI^L;Ham>h?OWsiNjG_5TZd@YVvA@3-1@nyFrn_QPn|OjQO$^=$i{hc%ID6J z;yjifPQqv<;RH*#X0i8vv=h!#~45gV}f?hesLynOD2vs}b7 z%FyM{lB>R2o}8*RU^R{#jJ&n(j<1{9ZE1>Q@K)I|F50r7~)x0l}!D{ zH_o2oMV3l>dsd$Rtuw{JN?U`JmN8awdJ0w0-R^N#W~dnCar3@&9*q!RGKM4u-Rk|G zrIHw5uKf`Jg2NX!;&b-!Ndhg^lq89NlU(w*bC9@+r9+D=#0HjN6(q@R1+80?kJc-_ zW~|HWV10k=|$W!#)6lW8JHGf_)jSI6mbh556UThE^*VWJFY*Efcq!qFP0TE@loU|$J5PWJQqm`WbP4Q~; zl6bYYfPXWKToh>dbr#Oioc9=InhtK(X&hk$eekoes`<2-mb zf@;A}rO=YY*d&j~xjG9rKLQLC*Zd}}K30Id8{F+3E0`>5_3>{^;j52Zm6a-U+I!3; z@iP7%cR};!`w$HyJ$JfzMH5g{rr2-2jhr&kiY*Q9rjb_!_~F9EyfI$xel2H+EPZJV zz}_Xeelov~mzx*oWr=SYf4yS+%BI58q(TQ%VXWM`JR7{c`18yl+)2kKsq}M8rJrkw ztO27{8=Fc$VNE=$R2qOhNx`z#EE|UO5wfZJG&{7B+q<~ROkfnEO9GcctPWH{jsokL zvne84ZtR@ZL#5RW@g|%7+Q?n2^76$1CRtF^W@#Hel{YHn_B5NPexK%A&?L3?ZlgT4 zw`OmJu*r6{_OM#o6=Xs$eFD97R6_d2V!p2Y&v>ahNAn8NDs3ttoQ%xyx^fki%!nS< z3Svg39Vi8@-qA+xzTaISHZaMwRwdW!ef72aoyT=WleBufrPbRtdrPZzcCD_mTDrWA zEbHwmknrxYd~I>o?P8CvOM4J)r`bcte^^zk8_ykHT!zt-_8l(9elP^Kh^faP*j5f# z&(6t+P7D*j{nNmGf60NPY7paJ#a>~w)g1*#6Z5Y&GPBxSmU6CL3P!Er;o;*Z?Kv!! z2fD&?i2$?q<-6e7kEbmS2!^LFqsVoQ(R>()D;NKm>JuZF;M(HlZFN5~$G62zrcU;d zKSH+d?D96&?jT`K#K5-jLZ+a9wgY|y;*1rgW?%{r{QY3_$OSi<+saY?tU~$sGnuvG z8eL6wq!DK|c7;qj%Q3DBa-l7%-gS$+xuzQt_ky6uU&zcB_cM;DuC+5;6aki#-aptD zMp&JE+S~P{cvn~W zhZJ^5DQq3!S>c{uZwU%3U)u>lc6xr8))hbK=aYXQb^B!8mU%2~Z7Be;{nb`hi`*P> zhDk*}SQBw=s8(CGtM7uK)k~Y=edg)5a`q<$8IIGMz2$t#?QG8XlhWcT)FRyVz;FE( zVi`U(Hre;`RBjvV1u9@bz zc5>901#WRR6Dio2jVif)u*=#nzCh_Qbm~#@Fibt*qh?OIYKW`Rvkvr3qf)LccXfAE zYC$ZGUTW9q2-Vo3Ai6(mmsp}}Q1ot-YIo!tgB56m>)lpT@P^2S!P|7Um6>h5gUvLE zbQ9fW6uA>vtPRX<{i$`6N4UJOTfw%iV6*rhae#?{o2(UkbwZ%_vL;~62l}rCW3r;s zb+h8&?%15$z zGctrMY;Bz-34kMvM*SZ{4TMAZPdnTczF5#^Fk!2-m&NC2bR=9AV~l)$oGZ($N>JOu zAEVTKbaxN^JUBB(%q{C;MXIGg3y-T8i3^c}y8MB^)a8!^x_Ki!SekZi9t3;2X2_KjUAsd!Vs{P9>7!=-MT_7{|JK8K zo#c<_xGofuNk-0iyG{rQ(Uj{@*b{$|6ZT9bCrn^Y zhyjo4t*on^<|;5kU9sr;EON!%wM*fF)W*#G0y+I6*L+dM#34_t)CoaPZ1Q%7-?dRp z*Mzm}O-WRD@^<=N(S}Ez)sS@R647vt6miP`Q7$ zYo^gx_MYR)k2(y@mpSD2<6fWnp5<*9pg`Q)Mra9{x6yOiqdJR5)s*4(${(^4L1#|xQz?6!$BH3Tt9jI3UIgqte$qb z(j?|^6-f;^9DMsUZlNn#WH1_ZQh97qMkjMxl6qQk5z8g7yO0x~m!z&OGq;OfyVKL9 z0on!fWOP=lc}tSI!M@B+dkLq#HXLntQ6A7faE&XazTA~XXLpKtED6>}!&5WGHaqc0 zIPqu05SK^4&TdHZVdh()5PS^sww>+)PWNL)w_ZPt04>X%H)VvXJJ=Bu!}yp#JxN9X z7D@K`NUAiV3e#olB^i-X&DvAX{QkSlEV$Nt>^fJwlynr4cg$!la~;e{9ENBKwE|9# zCuAwD>~$hp37nB6u!KN2@V8ofqicvrXGLM|s2+kOhAp2|_x-8NB*V;a&k&iymxSwO zJqDd6>D4@IK#;dmPi5i&GQnb_+#lBWHSF_M@U{-rI=UK!uY0d)~5DXGz<@ifF z8|_tpt!0I%zbAev-q@qm^fCu$lV!v&=ALY=$;kEYW|r}1Lsv^+lS7p zYL~i_q6o4kQuesrm1#zGP!p?}C?D@pUHQ8Rsfv^zH)!?Ux5|dtPb^8Y^5#S15KcU@4gemw9Mb916j=Q z$?6R>E7`Zf<&L@)_`s}W)Lr>$<}%AveULXdRkjw!G8IpO!elDNpfcf3EKSkmF8oEN zx~rb4B$(x7`W_B7F4f8Cq|r)k&c+$3Jt)U~-@ zvCMUtWsRB%%Z*H!wS{Tb*JSAW*#h^0L2_%)dT=-q;=n__xn zP1Usm*YXDFBsJ0R-BDf3>#j3`W^C$COyzs=4q4N)u%#S%W@=m6dTQ$~VuI#F{*xGn zvH$Fj>Ym-nQ{DVxHm`wq=q~Pvcj$VFYgh*E?8rHF!;vu8mLV6T%87w?F3EBfmN|F+s3=b?>foM+&?N!7Ud5>nH$) z-h;C5HrLpcvoV1?MhO#f+cwvW;s{HiJ(WG%8^7lsFhZ>3T}@V9fm85*Cv>u;s~9I) z0$y)0PjplWR<@GXT?{ih=w)=p1B(;rU%ldV>7-ql;)M5CuQ=Tdf|Ij=5336#C*+=e-PPsKkagf zYE~RVi25Lzd0w)fd%#1dP0zSGI}Rd$>pG*XZIP32PDoZS9LF*mV9)Y3aRpIEGG44G zGsP81o0nn%Tu7L0cx!NwKfMkPolu5bf_?HuIG?g~>ZwKL&OFqbg`V_gvg+x7uyR!YG}cd4=%1}pKpoaBBiP;H^PWL6 z#+&$ibYhs+`uBph5dbuHtE*i0dD-Prou3s|o&U*X>iivb=PyLI)cL!?FBs7eF35Gu z%2!+kse4ge9tP^P{BU3W(X786eYMcw<5%WhWsHDNJAhM;)ERiod8#=qh56$IX}ktI zCdkq9M_KlotH2zbqMk?hP0@IO@{iYCjl6~fC=iwvV`F-2fncQ3Sb$=o&X8&ij!=L% zr4SV05|&AQi=Y5+U~MsPOHojOtTC~&#_#dAU4WHIf7Y$hg((CD*Z|9i70XA$vV4%U zeCq$il8^v-D=CETWo#&ff^Y-^Xe()j(2v6uC;UHFTt&J1&AuYVx}k;mf6LTncyCQF z&}ID#QWX9lcQeo+1wL?a9YZ2hA(>)G6#k+Z5|!FO3`soXdLtx;&{{L=ZP#5f=~z2- z_Tke>H2W~pW!Wc)_z%$G70Eg?Aas-COzHaE1o`*$^m5T#Q&;njFzo!jQq{cU*q*G` zYm4*8i_xrBFl?9=Pz+H>htj_ma&QCmLIOvuTu}yrZ~qZjvydRy)c0Xj`mE*xDQ;nh$Sq6<`2KW*7*4Ys4!XF$SA^4nkH9W7&%GY#ZqY~ zU5^RmQJ_f;@Ahw24zvi{D8Crd#$$5#$F3B|V>%ONB`@YLH20(`jJLfyM@6~UQgxIw z-%V93{u(S57jDGgIG~h-FxY&^lT$AxkM%D~Ti$-^v znmlB%>Nt6j1Wu8frbKhd#a{$Pvmg?tuo@)acNIwA!^@XfB$#(^p?NKS528vk-wp%? z?4>$dy?{(9TJ6AJ6s>loH4v@JzH#lWAFT#|>-r()FcaRCm0xuzi`FSBSRF>8tzdOX zX9nb2*3?akZ4&{>bdupaOZ=p%t6&v|o&U!)hT|5U4vn|ZZ_KE46{yT~1($qah%;X9 z8Un9xVWAqPe44Gi#&qi$wtUx+@|TLy;Yt}5a@%QFR{;yGAWM1+RgtcM-ER3=ufhm< z4KipA7Z97E-EL;pgP|BcolLaXuuP(TJ<+!C-R@zzRF$|u5#$0e5v9MmR*2{Ag>XS= zJWcfFzTZehBKE#Q-KbjX@))J>6DSz}m}Vit zUCPSP_;Yf7m5{q*+$oMZI*X>*nUc`pmSw2@z7;xK4MDeLu-LsWL&a`XQDCM`vHPYB zHPfDxLD)T^TxbXi;R|nZGv#ByWepNfGk&18ij>iqK-#umth0(TBh}qcyvnLjVF z8=b(41>%!`v^?Nl{JUGE>s8~GoLMn{FKt; zDV@pn7?Y{=*g6xMVTC6gV+rdpIAjw*oH;L3b-fS;lCOlMkgpI#T$EG0sLfZb*DkCg`HI|<66iw~L>wy- z>Lv$;labe*j#VHBF=kWq)n}IBlbh%ygbvp~w7PNJMK30Hs9 zhh|3WTouG7I9U*z?o{(=uHdzB8f}hsTH6IqrO6N`q)B^9A|b>HmaM$KH&CERq8dcd zaCbAIR6m1gVy?Fuv|i`x2ANMe)$#h%I#)I53ErR=8*0!tt3kj75!D=IJ;x{IgZqUzGgMQYz)SzNH`PuaHhLL@xa1)tw&Kg*iO6^t>k6bP<}65`xo23irt z<1bnf!BdKEZm)x18j`!ea`l(Ho~RZH`kHQ#VnM82Tv;?+=5=%TV%4%>XR>d$(-t>_L} z3%ou;msrN)$v7Rl`|u=>4s##HUvy5`8Mo%?IOs{-$5ng7xI(5ao)-IXl6(l(rO!Dh z%Mq8%TOh_`Ypp2}IWvKSR>^9^Q!HCA8lKVl1chD zRy!eo?c?4f=7l9aTan(sX+oO3xYR9jkpBOY?50xpVzE3d*;};4#tHdmnL9P?o$wR# zOc{vwU|1UWY0*mJmPO5SeL24b-iTDdcVG|&=>Ht#9Z3sqG)(mzJF-;Ex?P=}_c#)Dr zuDZNJz`QW(Ld5H#FNvQX?yi!R&b&DJ+Hm)s5hFdO6pyA9h*7NN)zjV9!Q2R_ zia;YPM|6&dPiKv)aKGM&xB+6_X_U(oBi;F;obf5Hb62#z1QYlIc#ucEx9smx@8!Oo z;l4mz$Eu-&;8(lbX4(6%g6+hc69xFeuSAtFq2n_Yq zF4dISQfu?9jZWVmTv0w3jN{a`9Ff;o zyvRxtogMIDUi`WuK^Yxjxun@0K@zk@72c%kSasut?y}~m(Y}N8I;RU(RK{QKb{e~7 z@l^N4saQg7N&SV)@V@~FqthOB=LVf5q-(x}2{g!lI){z%~!dd zvgnDfk!uIWw~&>meCI_td=@%bEGq}@In|8z>F{E<_tCUGmc*eG2x>&}zvCy$g|)uM z>~;nENUUl4)FEx<=Sfj1CXSBB6gd-v;<`gq=G3Ll!{Q*mP&YZMHjsnzOV;v#f zPL0dEN(`#UXv=&dFp;MJ(C6S23>V4nXXnip)%LP@_+y^uQ$XP7vE1#m+)tTT`sA?* zc^+{!%OKS+;Htk-soud=FIQ%H%gy;dwQ2HYVHMWE#dBJ7wdj(IW);t;7nzt@@zanzUpbT_lI)UHz&qX8YT${Yk2!~OF7N!!qAkbE^*}% zG2F+p32W_Rtp|P3R}StBC2#3t9pho#A4VUvhXr!4e90He0t}}1unc(kUgJ&{+!SPV zTLRpoU+yjnDMmr9^0T5ynYh?JHsS!tTKt2VBi^#hN;fX{FDJ#?hV>~O9J(?9y?m%(z$^-{Af z*Gp$PLDz$uREt-+i{-H&IwhOg*=oCxOE1awlCqWSB{3T0dS#G-uGgPspzFa4Ax(Eg zb_1RVWXbc8e9-fz!hg{7rrSwQVI=2X`$oUM711mDQJTn@77T2)&}a$jK!L8 z+CaxMlH~Da?vxM?LBBJ>5EN~=A;|G;36|sWRC2uh74EUkcY<^>F25v4?6%8^PG`Kp zR*XU=CK=rX=Am)(>toPs6c+@Zq!Te}}^W>xvr zW>$Zn+AAuh|66zN*g%I%Er548+#%a+k)zOzTIJZBcFy^5{sG@4yW8FU|Hnv6>n$cy zU`pGRrx~=~BG8Ikld~#Jvmi&I7{R}YVkGByvZ7_Lb?zS`s&W)~kr>CCO?_@xE2GdD zEf;Ts?MYl_nUiw}IUv+}v-Y~nW$9aa4uCHDqJ^A%Us|-hYpc7FGm$%u3b|^7yMw4; z(%@>W%{)xtbE9EskbVGO8+VVpkl_~H$ZFDXS9+JbF&GiFHoT6Qm_u?D!p^`Pg;sR( zZuhU|mK+6C^eAJf755NRTwOTDZT=<)V%cf8OIEgb#WzW3_bHv-#{?mry>8dpzm(24 zlFkCaL?5zhO;*?urLc`Qg%SJ^f#=Lw=WZ`|m3rIAbhj&6t{gnkLeL3hx{ z#~l)Y@4+F>U!dtBXgZx)JDRLtQh;KD`v?JtJTL)JLME;*=pjoVb-!*-%vH!v=Q7sX zHP2>BoTii*+NWFhgwuT>+@3U7god&2#oxjk1-zO%q79%qcT_O>$Zy%0uwYch&m zGGiksFQeSoT*h4sFf|*$gew_MQR5a%ja!&Vq{jVrH9n}+cwerZ`=WcEaa6VUzL56H z$=3i7%KHE2z-M9~g#)Eao^jV25o@1ydqiZOt<&KsU>bRB(%)Jhe-=LF6*BY6c+Tx_ z}|_LS$GfoUA67BYMWV{NBePbyPF%6A-c@m;r_%No2NcxIzDX6#_*O^ zhiTcIUG9q;+p>{)%K1k!)@Zf1^X)AgZZ)MGuE@IQo7b!Vn&o-Hafc9EVE86@ty~N> z7OXc+Z0?4TNU+{vW)Xfb#3O{)dJ1SEyw=l980tIp)Eb)}PGcw2@Ma{9;T3=v1T*&dp8tUHvyHLxowwayF_wu% z0q#n>B1fynjm%ei+%ej7omkFl{eyahBQMk=vckdE(xbfVkDTbb+3&fNjEE=lEikjE zm;|KGZKK*3F=g%wr_5SkRCRn815@a}=*1Ko}hSFWlxKV6(og(m$xr-T_Xf z-++4t+_GpE%mE4AOwE2@&MTMOUh4-7vo9f(PAgErW*0G$&{5Z(xs2;|UO2tN=w2>Q zo^WS2DOOG{kgLjF-Na-j0cr9EyC%<5?VE_2+%49z@~A{SVQcfYeFR+-s1wi$4VW;1 z(9zlv7)bDF?Hw4A1CVBkVFoh)+j;6}E$ut^4#5gYI$FE%M|Xz2Rk z)g>ZYXUT(Sdnyt+b*M#$5K8FE#35LiuEUh$FS-s>UPuoF93P<}=r+X}uRLCuJzY*Z z?S4Li**9pZ@pA5b&lm;eMHphw{_36~rZ7pgrO(%?!TL@3#7XgSPmP@XyZdr+xh72Z zHRj1(f4RGg8(2D-cV3|~?>v@4<_#m7e{P}NeIz?Y9{C`zpV-7|5UD#0Wm#5kiQMyN z-~h79xKpuxK1|sMKg!Dxce0HCi7k26ghJ+3f=>Aen+{$n9?nZ6G_d#4#q!J#Ebp3& zfRG{8DkcYTT&zYXrc<`uO5#dQRM7ts=s17OBAvlGLIGq}FqSu-jE@0C5OnH|k4nEYJlYMbgry4-{@nvuH>PHKfA&e2I^IhpZRe*v#YLo1%GONGRVl}2*Fn2X2MKy_14sb*-h8WzfYA$j}!=Dp+ptf(X{77f7&Gy?rQr4QNyM^l@T3D@q)u zSR5{68N>lHf*j-@DHL`zamWo2CkT%_?bX*6YYY$ZFv}&bkQ=B@S5Lwy*bivD^g0Tz zo|MWKnVuXuDz9^bU`6TbNkp4s7SR%eW0U^?G9{0D4`jjUw)Kz91eyL`X$!ev5B#@g zo2y-FHkRU!*G|i7&4OsTe@rK!kgbCTVo-!O=;b);d@&Tzkl@`^D>-W<+Fl0?pxdfgF~P3k!(| zx~8`i+d1qa%d$OP9Pc4}>mH3dvvqb-XSPm8gH9Mrmqm6lhj)^hFMBYNX)FvQFCFJ2 zB|Nz0^46Z^sft+L$y|G6h*PW$r9IWWjnOqXDN#ceQ98e{OQ@s?vUFRwl8C24!?kbr zcZ+B3M4#eBUk=;;vN7ddBS1`9-0rO87$z^Aq|!H9i;6v6#rur%++t4!$g!)~;|ggX z*(0u#rwe>beqbk9Qk-O!$Q<8raefciMt^5dSD?MQv!@`0wmy;uZ=)k=?rn4=ZA(a! z8~1s83!X~nz^$M@JV7y|fIZ&ldAJ0oVkMo!Id*Yp<=Dk6mpS%`&X!}3Wck{$hjrGD zZBFQ{ZX{E)vV)$Us2N5ckWPO;RBxN z+#i9&5_Zk%KyUJR+fs zb{ez^eAz9&+@qc{(s6it7j;!6#OUPVgXPZt;NeUl9A&HrYv6X|;oR-W!)*yka@PP) zzTm0k;RR6N@^HH85CPE<0EWyTiq%br?~B#5or{?K6wN90PsP+g=nsM*MO@znoIR;! zrnr&SB4?*t0E=x+U)e=&e#X@))W!&fWL$$Khlnc~8Dd^@X=Jo0Wge8L2VcEbhb zzxwwYp%a5sw#Gx=)xk~w*F9{*ztU ze5U;ePS-Eql3%i@}o%eC_1<0=^N^+v(UyGCb3 z%9YbRjqGBJBv`CtOm{6242}%A>k6HruE-xl;I8Ys5^&cIEEC$%Mbb6W8rB$Ng)H^M zoW3(_jKb}jk13=?3%Bcvt_rs+JjeSL#|Oi5yq9zQ_y2_>!ge_rN4GqFVeSa=8e>D9 zd($;$vbjH55EH&hfm;gGb$*xt=zLNWrRsP8U4F zXs=TPay8{PB5iCRd(;hK+7EZWMrJxki$cvpZ6LwdL}+)i=cU2jNh4PlUFPwLTvnF0 zj>5?2&w={5yZy~&F#njqYS1p!*lx7DEvB;!Iyr$1V!P*Z&33HZwE)-wqTN! zh&J6=aACXKnX8MDdp9-ao~+F2V6N__c1UxO3lBC4nl0PprjHP8&{;Gj z(jIp^JArkq6zy?yiolFq3DgC0S0?@&3zHW;j=#u@9#>uzcAK&trwNzwvha!CL)%bg@q^A-GyweC!w6=@R(kX1p)e}?6X+TvP?QOKZFl`rA zbXTkD3YJR)WQOCNoTqKR<9_ya*<=xf7Djf?2_K6Vj&A1RtrOLQf zgYt~-viP^G^kdUjV!k#619!f7ibNn-;ooF2i{ z5G5e?o4E(X_zb>dv6oe%2EE1_^lrEYm9=mW0B8VeP|Xq}SL|XWf)h@-J|7hHkq|*G z+=GZ7K_fDgHN(^pX%Pv|?ASxyg-cFmAGkQwIR2X*t+j}q+ zxQBVQbkA7S@^JHCU^<*qYxK7lL(5eeJ3>op+_(4bCEw*GFBL!7^3Csn89tV6))TB? zg(ceahYZ;BFA=dUgZBI@TTSV2fTaM7Ehs7>zWG>5+S!M9-AG$5+DKzEk%crMYXQCW zXEpSB0u%`lFZ<24T%5~F5#6&bx_@ofbRkV0Q8;{A;tEzn$s7wZYqF$X0(q-tC5iTO zi}tL0HEl=>9)E~OSq&{S6bZ;ohZqf*o<@~Rdax-59=ldN;K?%g^;F}?$_G4WrQVKa z;^W91Z8x{vz739h3AODo6NX|9E#zml%W2FigWP%Bk6DF|w>4R7MEORiP+WcF?J{^PQg+?N9v?@3%!lib<50DcbS+F zTCXCJ7YXR&^Pcixsyn4_IO@fH?Ul-OZXBw>hfPKlXQ7E*X1J(>TEr*_6lBh{i$+gib^;3dA+8Iqc>_en0bvv$%lPVx`<(o}?UvsUcDlQrqM{3aRY^ zR*A%%#KfFQV%jW$Ky7SHwt(6uYC5o_E^(hFSc+P%j90P`>JyY*FICvwMlDtN)QUAg zFIDbAhO|_<7k|-G<=#FGEmgcnJ=;Q-D#wp{ZWk|Tq4ffx;u)P9T#r28`1J_v&z%wn zG)=W3x3`bFQ~WW@puIH6pc`F#SqANog%QjDMjv%&@QFUQ$!qV=JYMt9K5FuMY)yWw z`BxvcBlZT;<&)T_G$ZRC7f%W3UU8~SjOiOtdo2DUwa4~tNbOl)c%BGRJ6-gCdoo;k z+rP%yU-*zly$w>AP7NAhN0SUtBM+?0Zy~Q)pYInvHFaf*u6@-eWx-c8QjrxP?c)vk z9?_K*CM$%I&0o@2Ss|^j%?hxDNS3QQe$!IjtDDwW*<;SRzBqGwUuBOH)yPUYpZ=7WsP)>68CBj${d^e%I)n7yGFBgG6|%UNj9+zGD#R2{TnTlEa4^zUUe+` z4)zJR-Rp`p4_GGIxY-$R9<)rd5jk*^+@e`pCgCXolPI2*iN~=tndB4vMJD+qoJj~f zl0IO`5tahv0RM-;Bk%sv(@W?J(Z?{DW;W0A|LvA%e)5#5ePq>#0w(gGax3`AQ*H}B z5)ueL@;8*|7x)u|kHi!PABlN>f<^lq_LvDi5*QJD` z)gadAh*Nl_$S;K~(ymW#9`02Tg*iGAe_@AQc3tCp#i&2va@+KwhOBJas-1lP56{1i zK63V-o}!pi&PZJ;+xsV6DI2WQNh%qa;TJ}!ocxIM23w`w2Uob{_m}r66cZY%)Gp5@ z7$<4`=^X$UUuTOpSc5u3r1eRhQaWVInl{w1GOQ(e7>)RQm74IXrp+|tb9wTNXH?`3 zKn>ss3&ss@3t3iu>-cg35l)e%HGOiE8Y1@nef>Mi_J+4S(Wje&zbGR1Dpfw;t5o^C z(Q9pl_bc!1SYQ?W33@!H1U;Uz{5i69bMN8^AS-vyx^lQAbjs(kCYk;zZTe?)BL4aZ zOkXN%O1^C+Pe*$Hba3htP_+k}ACxkj%8xX2d2q6~!aM?MLyXG(sdQ8VqIypH{LMKGKHA}{}M`N(d=>2@^y!I2BK6t7gO|wh9lV_cytNJ*rS=l<6vHcP+j!yC>|6k8oBYz1@n)AYe7pz{ z3+}uexoIl^R6HK*UC@ZfbpesnOwjPYvDvY&6G0rxYn`J*Gd++02pCpymyp1M-xYP8`0MPJ2K%^ z09zu23cU9;I$&Bq)F-{gI|CkpZ}I+s-hglM=Ij|G613X{#0J{3dW7o&ncvR)a;V$w zuFB~xdn9;Qi+i|4UwHe8Ej(ek7p{qIjmkCef%f2$<3^nuV6*J4CVET&>9V)nRt%Q( zy_X*=8f;{jQl=53dP+6wWxJ2AnEg1ghakBHt_(@L28AFmzu zaS(jsX>oi;wiv?8J?fom43I{ax0mXqqx;dGMJ$OyJI5%CB-F>r?Hl!-E$Xh|FR?~% zIV#0lj2$ucLKK2`p&nYQQU&^G>xLKW0&@2^-tmnM94Lt+gd2fA)-duopOCajzXnrj z6x&&*wh{>SaSbb6`#r?_+J3ZQj8_|@j4{S@ruR-G;9qUyIW)jy+D zFPQ4(iY)I?;{hyW0pJ58+B0H|q><^%6}AKm_%S3EXAg8Eb%l)2@%DpTt7s1VIHz$H zrl?OdTS#Gp`s?n61Dx5fzuMTQ!L71Cz08kc z#w#=Bq({<tvd2{pNe z-exIsB`Gq1BDR-RZL$_$x3su2REu|iG}QtN15e758bz$;fzoI>snomN{Gq?xeZRXv z{KUi|?VjY?{ab0*=A+*{u6#5rh#c0jv7wcG;Tub<-!NHFt9WGCHg15;Kfkin`UR@B zKyF=U_u3S*ybX;4$D;Y`V6pR zh+WO9H`P0hD}r1Q7RKu04{WRO8pdY1eWceV?qTdmg&XZEd{n70WQf~W>AkWk4rgpo zy4t|F2X(d6uB&yb6>A14ps@YH|EfmSLEIW;m_Ndl=vlX0{LE-li%!{Fbmo6>icvjt zbKvOa^R9B_YY~7{-L$};W_+s}`YjVG*wFZawvP2*)v_54LNHy(C66AFJKga(8QyMLg93ww~sLX(_( zkxzH^MjrzkA7eQ|1s29rpfGJleAlEE*K=yRa^?c>w}!bFG&amV4gaO-N^&&-+YwM$ z+%A}F08m(zESl!s-TVh=hFtt(s!#mH8br1|X}9g)%C@%Afo3p36_CZY1Ek-k=GVe| z_=_4lgL%pLM&3HZTO__=;sk9SH^`>guat4W0HYvy*d05(^Mo4<>4Bl5XVdihk^x^* zn~8%1FhQ86PX}7CVY9qBhB<7I0%jV)xRUzHu@>(d;|JC68a1=MiyPN9UNQ#`QV2`~ z8Rwv;X4o|as{(99-$6=K1jBR6*GqGhv#NvtNM8^0k+G-G+JZAO*K{KVwbm z`j=f@+myP(4yF`0X|4n4OYNKDZsy&C6#CNLOrW3^U$kp+gKFS9XoWv(mw1;|`bQLa zC`doV)y`b)9b`oOHOK;0JHyzL^8Td3$SXwP7UsgecYrN4S>Yc zGg`_Om9Cq`Et)!R8fLG3Gb-1(NuIjd+f}Ty<*D7en+D5K?|X-u4-UqSWv_Ucl>(`) z>qz%QE`9-s7M)KFR@agEj8qoy$?k3fvG|3qj^ZXpg!Y8!I@R96>N?dvo(tO%<{nP{ zJunmA)e51GpALX_oV?YW96}s6v(8Qoqf-BkgXs*`xI}JV=ACUEknzjCoz33|%gVdF zDGFBWkHK`}nsOtG!yRP~lMlAI0JP`lv?qi)B*eoiPY=5EKS&2J^CqZt%6$bhY4X^blG%y zFyDKwoHNARf&*;b=DkGpVNKDV*;A(mWLox7lRR@hE}H=#@XxeM#VAcZ=$Yn-A?nt{ z`L;~unvhGbIeUn5&AF^p&^3)&^3>YEHsaMo8uCn_MV>i=(a@fG`w-=sYj`ehl+`lg z8;3ODnAi-ug~y4LXNFO!e>k)`2n@E9F~t6=8vfi6^?vG2TQ2ry6Ef)y)tU8b)0o#H zoUrFut^Y|1yyk3n8L~FbJInMRkSTY0JDI-?!46Vn{tnAfK$J=uj3%qImuJ$^A>pJSZP|_hcBNgyBR1Sz$nb;nwQXlAmzv#@o15ADZ9w?Fb0m!3m z(yq`y@S)V~P2LkRA-zGKI+S-7c2nADfX{Po_C6*$Gof_{DAcI|ftG#R#0~)9VDPRk zIen)Xq^au;(63w>bKku-V?qY{K0LySyWi^*(^%!8>zfypv#30$ydmEQTIBov7!mOO zLRoojvd3Ifu5QrY!gDby-^8dJt7YxO-ja}@Oc!VypzV~CXT@b3kI3y0d7a`hJL!ix z>8FWw$l~tc!`^%oNYm}vdScgHpW%r(P!98!;i;M8Ej#gjocM?J<(5ak&hCQL!zsn7 zzH;*u@Wz|Jzu1ZYz=)g8hBgopB0y%j^QMes!G)*J7{ZN5UCGVwqOl%s#wk^r{P~;4SVj*2M*Iv=5 zi`WOTM4lJuce&tni2GKi>!EYQ_1rdXqZ_DUfxnF$%D~^k)3(6hjx8<|3A#mrzGhRQ-V8LvKqy`R8%|y^9VxdIJ&4*w| zux2T=$sDHcqh|~c=ftU)8sfy8?jJQjqStV^m5S&?XR%t~HB-zU!(?HJizxf&dpf9f z&SRQ`p5{F~Tut*P9?{dhP4Ve@vhscJFmo^H9hctwSXJuAyDpwoY;dEz2dc+j9I`g1 zl{avp>CD57hF;&C9ImD_Kk!`a%HMJ7e-3Y8I%5KLTHtW%G@A*dPya*E*dR7U%7_rx zR0|xVy^KE!I}$mzOj_TxAEDNS-EEm_X@t2801vM{%l)4up+!#Za2%pq28JlOG5a}u zb*3HQ0*o7>rc(qGF@A)aPCbNL;$zfmrZ!mg6cRkdBqjm4|A;jI?e==-=puaK!^j1k z5S6xgaq*}GtU<1SIsPKozkCF_enPl)&+T>9pLquxVP-Mkf9`!itkeR?&3I!=@`T{Z zapeegW9wF(8xX9CH@4<6kcdY#b#+CHZd!%m>EANK1`_cit4g<|c0dUPiFlU&wLl^o zAVn^4(}=)2ch1+|F6Jke-2o3GQNH)Jw|mMKWWkNTgz=<_3GHrw%~KnF9f;IY;y9s+ zS<{hb6(B{u>BwJLjv_f|Mq@%Gu);JQiLX%8k$9Z}mzrM8Uufo6C@6?Roug(VxfLwt z_oz?-;1lF$%|s+(L72V@^%xE~&``!WsG-c3U?D+-qy~qw*a|g7{53+o{P`V>cvJoq zF^>sH12^4;nvJO;jVCOKK2LXtynfCDXs8!$eN9>pVJ^tia~nid2J->lh1V}f&uqH(@txy$^f zrK}n2j5KR2)r0~7BI4xRalTF|<4~V`VCl>hj04Nsuidwa^-MenLlyF@HoitKc;`ui zhme}0HMnfmDQc63;_D-rO7V5vNDClh4=YFm%d3@YV0l$%Socg39K!qr6pgq%pXqEh zx*V%yqsw<-EIin$#ZrOMg<|oCm1=YWHZ;00HZ;08SVAejgUD3y5V50}v%wTB)&C&U zCS_X>QCLm6J>S<)=64A68nsE4z)A#SjQ>GdUEoVq$PgkYluNcGcnDTaJ&?gGuI5Y7 z0(iS_?2=_YeDGyVgoqf%>XSAHk5bwktTVVar;JkCoT{^xHmgT5ZO$ImkT%a7rL+lb zNSlm}(k4r=v`GLFD;YnW&~j~B=n$+XX;a)4TE|i;D`rZJrFHP1@i77^)*c#K*ik?!eHA zX3NoPT@^iAJ0cG6Mic;2`>ea|?M8>O6dq`rNF29b>Jg{yoxIW3_D%t#9^BqBau|#5 zqt&`Fq-znrG_atR8)u<+CO~)OB20J6MOcF6B7_ieE|bLWA{IOZtEoC%@BDzRE$?6@ zLcQalxFVFk9sClt1!2*d0NexWejN6c4@!IV*@qze3SP?%l>8MdB ztwx>H8LUx`F{)9qV?uq>j2^?nNBc44l=WI=MvYO?1DH^Y7!%bZTY`lW5t15g(YLl1 zoe(3LRMePZW0Zx4=?rR2v7G#DdU?e3F|dJjWn8A1q4QP$oywatUo|I&842#e&sh@% zI2BW(TbtEZtAHD|ig8n|vL#q35h1C8R+&S92m+Msg3+z8sLXt!QmtnmsZ{Hkhbq;2 z=4mD}^cHJx`AJN*##;>&VICTzLdiR<60H;t@^&6o?F=15DVDscS}0y;^?|9iEBERc zCE}A~xQNz*#!;m`Ma$U=Q$yq=pa@r$0*U~n#^6kzr$=qJ0M#aY&39{l=Zp9ar6+^ZgX;cJSwA;9nR}YSg z?*MT;JUz^FakudhCw@E(aRr+M)M;3(N1cYn->R%(@ef8mI4qi{IgiM(VfIUDTm&98 zE^;2Uj~K>e{uNLdE=w2-@^Yr_T~oH4E*X)nk=+UUhb;cN*1l&II4t z=JjLM-1kOSnf!9`SQcGYj#V?NkZo{UNdSF(dzu)geg4T~l@;O2#f84vE$HoIrx*zf zIG4iXc+@f|;&B*{DT7W%LAXJOG0DiFEFqvui&bUf4lGPTW+(n4gYIn5py`u*?}o8u z@AG|A#e0mcHsjkmHNbn>`%N^X1;=r-_*xU!2K-VPQ2b`gq}_SrOJ&7Y?Rt(cT{}+}O_mdT&FBVVr6~f0>s;Bx2%r4{94*nM?9k<#+CN5cx zB?L5Qk*-V}fMS!?2I4QW+Q4xQb;E+`zN2BRR&|kYwV1>dpshAhrv`X0JK996=`RIL z^ZV9_%QOphcVO-~wP8LBl#Z~aJ1+KJB$nGtE!CxHPb7?_{+VFI(CYz5X8C#qt_QFh z>UzM~ak%lG7}zgq*3ADna;575&!N>)<W^ucXXA?IpNRf!{dTrS$-(@9Y}~!&wXH1QNe-V2qPzuJq-JvsosM z+4PNrD&D*c#>+Cl$JV?WzsK8VFjgk-ur|Yo%gI;!GDUcfS1FDQ!*aZWbG+&Q!m;!k zpU=TKma1rH{cgWXwAir+zrDDu6FzbNv(J3dV0BdDU2R}_l`4F?b; z32)X3spyUxUoWBOEze*;K%}C>r3$HtvXrj}>+Z2oTlNG{TlOGoOTo7&&VS)g5VZwU zf~YN7l;*tb$QX7VF5xA_-Uxej_{!c*DwHc)82xYey_*tzkm=A!e;dHoe81r79j^s7wzOHH@eWM`^@A~ z`10u^Eph9;1}kCE`(!?Oy(Nx+x(j5Ud0lT*ws)(gj;2QrKr_%H%R;tW=4o0MU$euK z&bkgzdJqPncNt(z*^lHk)CSvQ*RX6;&;?4*d6Bko&y@K`l%m zY?vsZCeRk}i-}VdicHvKvG(#vZYx^OEjuLiLORa>@}Fphe1x zVLt^o)0;qrNHo+4O(88umLjqHfEpYE$;!0Pp4Y$w_IbV2yGxunawA+OqB|Q zKyOz4FT`=B<1vp|7O?XQIzKntIx4~kI@cS(-OBXleAz+EQ|t=qk$wfPBR@ml@6ta4 z!HGro?}sdN*{|kSKg(9yM?!k{RD}lD*fG~F*?w;g(6{90#V|q-KliL9PJeO$uc)w& zv8i>Z8g(aLK!J|^|<(5N>=6KWSH6lpLXm&T`-EqTOK|7Y)RPyPi0Z z?|mV;qdswHy)r=r7LB`vN|ZM1SK+%j+y@kg_+J0CM%XK~k%6q(W)6^B}3!Oj3)&7i>Ycr>ryL z>P=|1_aJYrwjCt3+LrWGS{*US(CR2s?a`_>oB*CQ$V;gLu28B8Za=?=21%u^G(*h% z20p&42;C?Nb*mKMp-Kf@FO_OXd7Bq4N$fE*ypV&fD7}i8mp+V2Ti=talnH&*<9^ls6%N zQv_mo|0xRG!y6;o(oXr$)te2LVQS3>D}zv)ZNiVg2lJ3j?I+X=&l^QVfggB0KD_ya zmRcjx!bq1LLSVrB25EuTCf5=5kan*we1GoGL6k=0D&$_$3H?x>DDWawdlRO87hmuu ze8OY`X^wQ3f7>0th3rk`Oi3l^cH3JPNAq@KFrpV`a>q7`0J-v(r3a%0V$i_hsE2F~ zLM1)|7BK!B#Ot{N38GF_=aV)C#FWjrXerRO$N7KCEjjEMK?Cy0ZKw!oAPIR?pvl$_ zmtDPN8LhKdtL|Wg1H5Q-5G1AZqHoqlhE)Q3V6aH5)`-W{o$OyW;eCr;XIH8Q+(=Ra zX)ivq^osCe$xuT(@NzAZvm)r+MN}mAvc)-iQp8^Z32tR?i(j~vy**fNWh2G%0bkL! z=r7OGPkd}S;$ty#;1kOitnm}m-ud8q%;NdCd9YhnDc{s}>R=MFeC$tECh zwd1?DTrcAjlBeGgd9Ii@L@s%T{T!6X3e2r0K&|+G(Lz#zlEYkx zQ0s});%{Gtn}JB4{uKnSK?R0rxq+X$8PtV6LSP^Xdkx@EkqQMIY7uzRzhUxj_HP9o zD!hOOS_)Y=0t10(O5ps$x7bs`g$ktkWG`nD8&10k zxkIfRxXNQWhqO|FW(-w%EZGXu1o108uSP6S~$7QM!|BT|OZsW%kyqnhWNcS z)W}}>3Tfw=k@Ryz$rAEy5cZ__)Raod3GD}x$Ylz zRbZgJJ)?;0?@400l6|d;A*KVC@y{>qQ=LOFSjI~-0=*Dn{>r}y4xBK57X>(BwuDhL zD0v(&xMe9}O@=|SI-bgfsXFU6EJ+%Xa#-O#qo)m%IV&?rg-7683cvcddvVus7|NRo zgoeENdTUZIh>U_pMqo~(VRF4n@!%4N7T^-6_GH_=UgY4^8_Ko%)@(f(a9IafbYQ_D;aZ)Sb7r!|wg8)C}LueR3BA|;UY$fPL zf3;}D*G2b>^?Mh1$ZS0zk-cxi!I6hc1kGj1LlEI%h|Y(-ckdm@#)9}p5VBmi4*o|h zaEs~;xBA@z`1msIH*feOA=jr;yWep6FpYxd8^psjU;(c`C=0mEoopBZRSg;eEkGmq zu#WXXMoW+Hu_o}MgON$hF3|Tp7uyT-8AS*8-D@~%d)H0%| z7i_l5RoKgc^QPYi&e08TCyfS=&1u*`;Y4U-w{(Npj>ywODA(#8T zxD;C&4Zg5b-)d|bejh5g47Y|FhhUJ~C5ZY&onM?28dIi)Lr^qpmahy37u+|6r$WCS zD*2A!8{z=A_(XM7rY!P;W;oKD@C}}AY2h66;ikdYfE`ITmO-F{+`Dl+G)<8ZF)8jp z>+LZqt`F+g)a(R~(|ouO@?ihHG_wVD&+9(@)ND-z<)A{5~X{0>n- zr|0Q{#B6;^zD$%^`=VBh=SMrnvL{H_8lJQ5fpAne7R+unDIXKc@q$F_pZa^?1Qt83 z>;r-jrT30mdRL_M0@S3+i!9bD)w{9SqhB{I)pgGdWiyRb8(Va_-^Oo&Q_A( zb};E#V}TAZ1R6cUTc8CcegS2BT3X?{Wa$W*=XN>4i;`PRCAVHmj#}Nt*4CNTv^vNz zj#64caH5p9`@MS!Ovox(4u*xsblMw4=2J z-@VZWpW7bShL-I*kr1hU!t*;=s6CSpcn(pP<;`oEX|$gDkr@lOZ9 zOD^F*{@w=(OHaR$5XCEg9udHIbhl2_7mk$AKnn>@WOP1dbd_Y(OM|&bjhRcpt;dU& z0PvVwkeRy%UPPa5h+sA$2Su>cEP@#Z%To;zJf{Bd76Il^gc%#}g8Kdv&0JT^ZmE2_JBs-O_%?Jq3>C5r9mnh&af z=5}s}bqUWLZ;h3UlOJ-d-)g%5D0%VgUzV9?U82=?jDp=gCb><9U+%rF(5hzR8zxwz zifwgU$ZLo@;ELQlF?g0FJa}tVbKd7(YjsWt+?3k%#8JHc-}ZEtNQeUf^LNg_-SS%a;q{7Py3MmB`>1eaHx+~*#0;BHNb0Fmg?qvZ6^e3V?0EGTpalwE(o zT3_>9Hp<98`Vc{mGF)PkVUZ6R#)LvZMczPbRyBNqB6T63Gzgr~LP7xwZl76ju+((( z1Zl}Za8I*mNT(Xh>?s9bpKX$v`1Vm*@Gxs_P5*q9Ob&dR;6{;sY7*HuRfr7TRG017 z0(nusHL@nM(?1*~(*=J>XhGrqVHVzdiaG6)v^q?v&|tJ0JT;Y|9ynS~JC{t-EB`7g zfZJvm9=c%HwK}}~KM7rV#mpJz^4zy#BegbM8w)1Ume7Xoy47ehFJ%KV)4UWju3Gbw z#}@Up(K2yx8o?~&8P-n}&{3Q$S%t%{JeTzx8%H{b&1TqNW>-Gikd1w`XEdVg2ET@` z8}c$uu=dn%!`$GB-|*pAU4KD?ZuSv;_eASC?*l=M-#9qQI+2wUYQ*hA?qjOJb1Cv_ z%^Wmr<$~aQa`AQe7ZnMk*-Huo&u?k#r=J-upBkJmu!;)>m{yF78mLI00V!n8kRE-{ zSo=r#Aky{1XnZuF9~v#rpGPq~ddAdzEqMAMShSV=+@h|2eKcQu!`ejVm8}>pkDy-= z@Ttm1@<8WjF=^oD24TzwS0Vy88O3L%Xn~Z@H zya;P5e&Iz}Q{H!`HHoQvuxI#{RNFZI?M&<0a34xvGk~A_1#*B4n+-BQ_MtO_-#y#v zVl4$g<4_mXoT>^uYJR0=YUaad!Po=*J71+ZG5K&sHZeBvG>&C50h z%?m!j5wysfq8}Y2?diwb(T(&+$4Gn15&)?^ITeQf{M=|u3x3uQJ~w@3SJGMbq^g6Y zT9(}A4s-8gq=ksc?6|Q@`Q$~671+^;#))5OMB~Qdy}VB=0;(}t=dg7?r<<|s zt(+|;9HA*KPz4@Ss@Zh2h39RsKE}2xz#MNlH;={ZTmI(;<$~~18!GUIHRim35<5Y= zi5pg^#f#A*=q@4!3*Q?vm|dW)L_Fae5;*&mRG^oM@y~E-1OfkjGor^^bLi!UjcG#l zaUf@E+eL{BMen_5an5uTaT)kdJh2SA<2$P@g-n-^V$r56f511>MG}3&09pD_ z`yhnlo0gbQrzD1thf?%64aG0?Hw__e6TGRdy#Cp8(E5^(HSL~5)_Ke!y3@suMHP6Q z%xg8Aue$Vy#ZJNV@HvNJEG~=}9^5S0=)Om9NBt+{?K?H z`&xV)TS;ocYFcp-0I30eo(SBH<1v^os6e!I$4~H>k82w#916!{VhY%Kr#}amW|_MZ z!m7Jwx?AE$4hqcicLQ=zIZNt^zt03l+1j`()8ykH*b!Yuh=Lz zT)binD;1qllEy2xr@N__KcUQ80AZvQrE+urE}+n`baZn- zp?JsU)g0YiV;?QAFSK;@YKi;TN?acY!*IV{YhEN>l$SOPCsZobogG2U%{|zJd8?;u zodqd4&bx?TIL^Dcsu<_XPFl}|pp?bMX zPXA}FCNYs+2&vl){j(`+~xE&cYdF=P`exo60qTH2QmYa^CGT` z9%x7v;ujiHg)}6e3)H?)Cq6x4dDZ%ckGbQH*R1xe3#p*hrg(7nwqdCQsxm%NwWvW|>O6ricbb%hHKNxp%Co@Tp4>c29u?gIp*U4053b802z$wVx&{kK;%M%VVCPriqqDsQzCBH!cW8CUNa|MeH|T#2T^snS=tQxRWUGq8M|qJ}^OEz6~Jlk>cU! z2WOb+9VzJzBpMjPMJm>)X@W>PZ}(O3`tzVejtoXh#0oW6%SG_T-=~J^ohEqX?TOiE z!~n^XmYP4|$TQc4Zx@)+MePv3&_(UwS3mc4q&N2q>+?R`(!$HuU)c%80Y|rVniQa0 z%IrAXsZEexsZ>>ZywZy`^h%hF^^yWC9g+`BuJQ>a59?Q?2RfrKg`n@&FN5~PcDlT0 zTqr-=Gp-~1+uZUG@0KbLYvYL^O2eQLW*E=E=7Bk#rJCw>$3(gHw|`~Y`a=b5{adrU zXb-XLhYH-8yUD~vtfOcvvFjf$;j*cu0+oU13Q(&e!kd4qw*64y29B9nw~_9+so!G2 zJwz%LT&R`j6@eBj-~PRV3l(m-DBFVDF(cST0t11cH-LXeDim<2^&E!qfa?l4RJehQ zgNAUQn&+1)tWmHXyk21)4JV|NT0@uw+~L4Qcu{m62+%9MVSON~Tqv4OB9AN0*sy?wYG-PnIT`O)5~5m|1n`WSMPeIH^^V96VW>r0$xGtAIdalS44& z4&(%=Z;N962?!O^z6216koIMyRv{>)2-f*PAoK3@2OuJ@y%Gw1$a`?I@#OQc83#V( zJwS0hIa$Qzx1v1AFX#XYj60_&Fzy`WhXz9BhXz6l3#fdmGd z41~1sHjqo~zXZH84bnlJ1~sm`B^2Yc`Hk_J?es3df=Iz@j5y4)8djj}7~tgU4GN^4 zG$0ii^6e;)(d)^iLTS)eKuqM00v{#<@#}gbw3_7XsTD|BQXIJSr3JY3Et!{`%4n%r zis^ySpD==%RVNX$kP(-`h>KJpBM%vjtRxl42p(fmJ~mdxM`3|mNN1+dxKDfJiKD?@CvEGL7R6ndVt^60wbU5m!w*$-S}7Q;5+Gm{Qs3q}#Z23TlgWB`|PnQn4nl4#2=? z&Z$!2vltN)nQ@vNe?^$^Fg4i-c)(Be`AXK$YVf?&8oMXDv!MG-V`6Kx1TDH zyy^*nbnW^R;aJ@44~U>8&=`$gqR5NrExM!R?-IXI@^?+GB>6H3@rcoUNd3-q+fX)& zFojYdt_nO-KUYJkLoA0s?{nKRk}`%DRs7-RNy34ehfZ(3$0C0JgzUh zsxU|ud~T@VI;l`9fLc_+=cE=@;Db`vXNC%1@u*;JN1Hi6)?ekUYk#QvqYZYaGDX@V?-WdsH10`}^apbZ1&b%q z_|p22h&aRWH=Bqu!APY~#4n6=nJup1@m@bp+(O~?VIOfej#m%0#JLzA`aUXl+_;0k zA^aD5#n3@QnK(*c5x>sE;D8KvexMm1`^?t6`QdK1B<2!=K&g)6Q})}s6*p-ZkULft zieJLzt(jSUkzn$=v>rbM1fZ?yAd0bN6(d@}Q{Dv%6Ho7I&*5Y5v<=heOq0*$kUV|i+?QGq;YOp9KA#nW`2_d;kQ+o~Gz;|pyg;j77ud)YdKov00@*Pl9i z%&5r|^T$ux?AkX?T#=_2_qO$Kv|4mRlKkZ@7@*==FX~ObarQlukP}v^Ezl_DZtIxd zngPVPRP-S{7xd<#X?|hw)xq>8eBNEQ>O8RNyUym~!F_DOffNNV{7?EIJ|=BoLtgks zvrt|-(iT?R^@iYNa*HP3P2u}3cj}j?kpys8iQGW_x!ULa_!qXe9G@|kw;WiV^O-8> z#Al3@a<^r@Tm#EmXWJlC#4XIT)zkDk@Ze8m3WUERQy|CpWrOaq{Q~b@`rd0xWhv8@ zxeGhd?a&e~!Ydm}+vy_4IGs=GXWLwj+inoTHZ6%?xX)${Oj1avakQqpLH(W3|5l{JD7C)9&$THO_x`@m?N$Z#OT`Y(*2+e(!*(g zixH6y*`i}3BYddAbsIdlxJ|1!(6*P62E6YpwvN1FplyB7Aw>|_SIEwgOm<8a@#Fu7 z;NL^Q0ptPC-LEPH)#yV`)JW6w_|Ui{BN@x!A-37FjIL1I7t_9wl0L=>GC-GM%ez9kpgC6T_x> zc>L#dm92xnIULrv=x+@`P>YAL00^VLs-Oq5b?gXny$7_cse?Xk7=3KAA zY#G5LreTgB2wN;lal`S_bh*pMj2_#}jZ1IBCyBSrz@wnREvgp0%^XK8|FkG{vwnPr z%3gkIQZ9Vy(S8ViAe#)NeifNmk4FtoZ z{J?BQl`+|k5hZl2bpdk3WY-bs-Jg(BTRqF4qdLpswr)&fHHX_aeWpYMX$fzvvSsV- zX395kdxpcyqq&Jz_(J@9F#L+P$HLR!1!)01XrXPgzGtR5Kh zw(7i+6^jOan<2<;iULEB&zl8VYzT6b6r}sB5A;oWJ%C%SN%9vio>DEomB3c>)3^yk=vBm^o5R4wa*5GB0rJJS(@PV6C z+VQiiZLjFLv*e@wJc1epclWF+#`ZuTf_q}EZEAG|*K?K}$2}DVhTtZc1=rnRDVs0e zVN0QJ_!p_pHMhX|5{;fcOFo}-59Gq(_Z#o^L3EAz+wH9}yg}D&Q<*>Cb0VRs{>Uso zd}m4=J47f$!S1h0u*aofeJn*%g|6W1YrQPBdB{Sz4d3&XJ%HE5dG0ZUzDH4K2>m6q z(03X_-zJ1UO@G%A&Nh>93Pgf~HQe@zerp!jP9`L<-xO@zBJ00Y#kt>X9E)D_{g#;Y zcv!u`$~VpLKlOQ^*Zpe7@ePCH8;UA}^|54e zH3O$7@&O!$XVv@CA-%1lOPmMg>W62`TmT{F$%jIdxd3PhNFKL*<<;NvojYaQCDQ;b ze#G{Urk8{0#O5CUiX~BT2FyT{#w4{CqcMUXIhTql*K9z+JC=uvg=g8T~5T87H5)a>{d6qnD!5wqSe zQabRxH<$#n;UjGD$ME?Vz%L4){|5NU|LOBzpDj=N*1T*x>2)3fCw+(5JVJ{&9Lt@h z3OpxyXKUovSMZ{-@X%^qUi=ESPC*wFj;;6tTsp3rD=&iId<_rE#KEGr3fvMLXFfJp z9A77~CrCf=N5<#6jzTRQ=QgZ#?*A;m@rJFH*A6)Cyse$Ugx}L#MZguE2R!9-Whlct zqyq6^2LFo^Pvrxw&p=P&Q|n}_Jzd5%045Qu6i6^l6DM^YdBKYzkr6(m?0Oiwh_@V5 z=Zd4e5!!pa%LQAqetRw-zQ`USa~}LXSDxKHEa;>bGhGpGoZVs0gF5rn;K5Bzowsdc zm>(&HQ>lT0qyVYxD$^ZMpa2KYrX-bl5f%XhZ)C0F7hVTi=gI59QNnUC?{}veBJcM^ zK689bDjz<<9>@2j!O<=3#bfy8OSZ;d2C2Pc`-5c@+Rz|7s{)Tf)+8$7lx;o_nPd0o z6@RqY%**(otFD6sYxi!LVqaOg2j_g`-IV zTr|nP1Rk0spC?Un8>vtxxuq&Z`{z|Qt~`GBV~AOJiIO0W{m;z9 zM@_uNC!V8i9LZ3A?yrQ_?6RqYc7`AQ)D{zXMwJuP5k64^wPG~1orj~Lt~eQnqiw$7 z9b0ViWv9RX*E~5cFn7c4d2(Fj2?TUpbnwFHox8z*J~UQ4{@mv6&AoNf0&dE(BPclN zj3XisDb0&$E*j&Ah!VeWL`2QU5fMR0gu7pR7%e&RBY5By+e_X@jw$hu&f=uS$uIAP zq;)_4XiMO^wG;1WcMy7TaI{nfp21O*L?B{tq+W#uHl%R~=V_7AXIO8ALXD6f^QEHu zlS;f0f(jfaJ9T zPF0iB?p0MF+d9AUNWoxPiHs3s97bdcuL!V4>80~!sO6JBaXnE5uG7A7iLAjrc-FVJ z<~|t9OY5KE_uhP1kKY{?%Rcal?VT#HU6I(l=D#n#v$ZzFXy)uL{Z|m6hyecGCz_j8 zpsBr}vH)@R^8?ZGGY`d>6sD#>A7<<7K3@*_2r=G_II zbeN|p!lxODJyI4x8#=mE&7B;ig_s5-NP&Aaxl+L-MK+J_q%q#vU^WlmJ&bG~_bwpW zJbbq_vU!xe62rm?3vL%7Ws(=+63EfDJScvlYk6=%)vg7I#@pSxzu2Dhnqu*Gx9&~b zGPaEHgRZ1d6}XvSQ?rHNe17@aq$ED6ZS+dELqSI`!V7=zNB=1ROo1@Q!8FT;b9JrMxwhi;v9ax`@rg4k-+{RwGqY(w$7;&7^=V;_n#sgM_@cHzB(!kUfMS4YDWkkAv*-EMyVzVvHWK+mvw} zfs14uM?L&2(|UyaAkzf_*A48i!dQ=OFfN=CK4i#6#X_8@!qs4JBk;+DJA6ZkJ)-`W z+C~a~{>3auWBx*jJtL~FXhcW-e<|e9$E~*mdnmf$Tw#u5uHJ8vOz&~Os!=N({hmct z>^g=o!Wo)%7TpXZJKoYB4PRfG9HK3f4<&kl96aBvp4iAZ-Wgwn*mwAlyL|jL7}5Pyj+18)14& z7h&#?s_-9|_@DBL|5#P{pZ`DM7l}Z;@uP=*m*7+$7U;z~B#Tb4?jo^XgOL4?>n4N;7D6%l zk09|2{YMbL8f8xkq+1{P5wN)}>`(iQs5n)lbEf&?V6<*=jQyh^iy%S{e0S(tsw$G9 zYnDP8x)!f0JPzugAcSXbP3*?HDd=4I!w4VfTwM!g@L9!;J6voa>48p5tYP50?tK&N z9oaZ@vAx{l{XD z2iJ(j)}6Ff4xn?RqRk!8sTOiwQ#RjjZ=$hxR5|u+u6h~^0n$?}1X}Q-QT{{Oe@H(Z zoVXD9Qk3Eth%S_$Ub-jQK80zEJw_+jN_qe4#Xu702F67O{-q!pJJ*sqqw4e0sr6g< zg)i3Oi$nEeSz`jhbJU~3`}o$zGNSTHXDpx6(%zb#7T^sBe=OA=6Q&rfCx`c6pxfDT z&AbW0h%GPDpd^C#OS30?Hw2~T=)VI9@lDZNz_s|MXimC)HoJ$=j3UDDv|I@55^U$H zTE(_SAG26aXX8}0boggo85#eJ-Kmw?h50O|p<>tg*kdlZ8oLQUa_dDAa(jO(yThAM z!L4?eprb9%y9c7}fMa|y_j93qkoIMve2{hp2AoLhah&j>?Boei>b4VHFy^HuOxNF9 zEH~R1NhhW4^Z$$ekC6R9qHTHH3>n{mSh;A7cu~Q1J2V#RVWgy-HA5VFFpUt}pSZ#q-iGoQ!NG4&I`(eTZNGC9wbg zvP)C^v7ue>rnRA@79W1LQ)7OyvmL(Jr*NwUi3T5_bhB1@KtfihF7{Sl1G1uvy#ujO z;|=;i0j2Gxl3M|l>+a_pGVQ%0e3A|(7?luSJo^DFTS>^1W3ORYfNzG&c4XOCYdks2 zE@F{Q-qZLRC`Bjded>taCIFL_XWox^Tu^}X{uAOC&ihX+!F@wGo%r3IqsxlA*%LIn zc_=&6-QGZBuM=Ky`w0uV&>B;JS6T_1ozM3S=;IrckQFG`2F3h2I6UIqM-gO&wm zh?ja=cYY(+-iD1fwTJQ*ePC7CU6m93;Xd*68~50w^cR-6&jk zzHF&H7yLkokFF%nDR}}K_whgGG+V7GkZXdo=FTfg3vv1%PNBIi`U62---vypEe?eJ z;uj8t{Y$Gpp*stMM7+QF`Cj`uIvV8ri$D9>_XeF-=%*R)FJ4wfauItPq%YoIJgX`^ zgQW(Ecp)@(49R5nv4Soau|CkbK3ZzZWOkkO5@sQH-`_zq@rvRr{A(oDtO6ch06n$T zt@mLA?J0VLWm50oErEr~se!Pe{z%}VN`G1*h8aVoHEXgAn$TmkV88V09HY7A(wc=6 zh-$r_#1+M5SzG4;XI@hozDiMqDbHOCq?)cIMp>7ls{{;j#$6 zk&r$DreVu6xhmR2C{@zfDN4Phf%(o(E|ZCOPLodP=+1r|ouO65-K)O1%c`5uO+O*I zW2FS1=Lk)I+@N?TrPx>l{X}{wvMVZ)jY-b}mdohFz~#!qknAhR@-wvMRVXE5xeuja z_Om2`hMrv1R)D8r_On2*5|lsS5qT1{3gkw!h(E@GAhA<=AV`M@QHPq?a|BxSXSw1R z`m@~SRUHVXPq05$*^4DiwBOIhD*DlPR0&}5vbFv?^m?^|H+sc&5_?+>?=ex8-AUR;$H4;We`cly)u0&yn4F~uIq zW)g5XnV$wc;+pLRQlapitP0QTKJef@n+CD$)4*8}MBwnICinHbvfRkG^Di^1Quqw6 z{zX-&zF&?D6z_nR4T}<5>L5N`IC$X#>yrU3;XbtLn!!V7!o)pvIXZC94SwuIdt@Cv z3JB)I#7V%FEy=-pgNNi4K0^>pz4>s(0Z!oq!fA=ycqJ~(l2P$fY;r{OLvH(x5x>xW zV;-u?eizQRmsYml8FTD|Sv%3)m^yG>+FBKO?6;=pMX)Zd%S$)}NZqZVE7R@ykX(`u zB$c=%g^DQyEDz|ehotkIKpTi9Y5BL^Gqi`Q@Io^m^07)p=LvAdvLf6EudX|J{tD1) z+C!*S<~jXd)0m&*5GX%6C$=tJVt{5X`W8c}cM7_wQZp2xhEiz>G{y-+qEbqIMD#+Z zbWr?4r5>zOsfmm2PgYiHizW79?2JM$ozf{);8E)78agG2Bd^cTEVVzx-cit%QZE`x zy+SHcsZfDRtuU1OU)n$@6=TwVtV*kYR;g70j9T@N8TSp0T?4%(W_B`S zz1a%6?!uH3kt^h2y&y=VdVN;WYUq`gxb-TL3B49??v>JLgkiF~G6>_6|=N|jxj5OeVe{po=9ZKx)1x;2Yfe0~C z!7Nq8voak0^vNsbM)^TiA?QY{e!fQPh5hLB@L(t;+Zo0KS2nlukZ+sU=SlnRIc$wW z#zB!r$^suGxK=|;o<3G<#v2{5cVpX0#~Z&mMn(AUBRAZ02PA~>VI}r1Ja2%b8UMVS zGn8NG=IqEy36%6wdq4fLm2&TW7&Ii(_nx{L)P=onYNfr*Ll42p%?G4Be;|nP<&`oX zr|937IQDN+3$Se*<8hz~#^V42Op$Q%u)P!e%e!em?Kg>lJ*+GV5&VV-BKVcnInjLW z5m=@#;R-g?x?v;n!+s9RV;Ka7U{Ooqu}|3B@SI1nH-b%hn8Xp~dUr7Bh9+LH2Rv>c z$Hsa$?I*sI3b5G>QjQ2lQUps$ts)+p5CjptqHat8fBT^pxooF*`+g8Lf>@4{a>TNg zVBx1rP11o{Hv+r@ykzcv;b9U4b(z!(vFT9j?v6KqRoENc{0-)Bc8^NuF})r2f;X@6 zhr|@)M{RcP1Re7?Iz>k_(vyQviSrw?5?-A2i0UugJ@e$J5FL!Ts8#Sw{MVhIV&_V^ zxDaE)%dw0T1=96^L-gdQ2o(U_#h5b4J3mF_DkDEdlxir3qp^@`x(b)a=v-mztUU|Y zX@R089+vFnSll#g^ypb zuhsS0AaC(<5dLB^g^)+#(RIfc?Z5l&21_X4-@?jD2%k8^?j%N_A6+Hi5fLj`$s4qX zIk)1%wdOqJB|C%9)x%e!hdc&yzotXO!aJPpMKpC*>ysNM`U5EO(Of=;N=@BGI!2|B+*VSVrnEW zEuM$I4X2)fLW+wEah1V`gqvvk-K%A4gj|A9$V}@kI?32TxvcB&OKxxHB|)2z?~{39 zHavK(fvG|0_tj7AO<4~@h!7i3bH+CeHH)pQWGQpCDM!Kr(z~X12Jib&ZUPCK8On|K zdA~(KS>A{C2u(Y{$9@D~+CE5-qU`pWWmhU?7e)sxD0p|hTD5rJ_KpEO`XapB|NUco zb-rYU3+CNYdbVK}5X(nzH8c>kGn*~{KjgP^5UFzjxxI26_#Tevl=LmjBc^wnOL=jAOt;?GY0VoXmx1I3R);zI!8NKq`G5@=m;P z%|2egca2OmaUUTBMcY>ZqvLy+FVSAgf{(ZWT&qYbQC;KIbJoaNB!>{;5#|)LFndcj z?_7g<21NcP;97&Dw(Ia`y&Qx^-`Xp*NBH9J?1}6Ufr_l{H?wwJvgWmFD*4_%xwpjcW+uLspm4=iR}eQ0LEIojcmxr?)-+0fl!Exq5JVzh{4;3u zI~0Vzeig^Bki((~_un&MaU}NNQ(!uE@4v%+EX*K_dge_S75&%Bj1dC`R%68B3h{n{ z2E$mQ#+Vl@6rM~PK}!G-F8w~P;r6?rjw4QHj=1=%-A~sSu9fRQ_$$_bWxM`>NJW@T z&i!e(vx9_w)aO1yKOLy0zVxY9e+@=C0(stXm`_S-FAU&$x2wDQTgHKKySAIR``ezu zb`!chDt^(d;vJ|{ed}71BH{zmQ|=W00fE}JccuAk<>%@?O(^9*%u=qu4o6L}_ms^WywW_?0~!)}+z)b| zdkSWBj_gkm- zw)%+wpUBr`#kZ)rp!3#Yas-w~h;a)#Y`R&{IZ_0A?{#vii3t)`lCJ-pN$bnkiG#>C z{Lk>g0f7tPJX;1B3e+N1shU(<=fQ6~yLyquEjT~*+5rW<$@e5{&A2cMsABc8Y&$6qe z7YI8yY^K@ke4%>a%4mx)S0fG4Lh)Osq=3h7;7Z|>QJ*()XppX{iR11FAO7Ao6W%Y0 z(5Ko>9j`LdK%VG^Hgim3w)JYfiSy6gL{;E9wtb_9^Tydo#~jvC0p^RXaLUg@*aJOPz9!W2wo*$b_|Vkyi8SE zmK^V>t+B@xNgUOASQU8GS%WW4;z)=I`96p*N_0HP&M4?or>CS&`L~G4P@cNdO>1Aa`0E-PkvzhXAEr9ELL2tyQQ(x?Wg0*_H$tf7x6OmQ^iG4o@Z@dn?=j${Q2 zg|w^*MbcX=Bo%00P|^7-=N)VUsX!h3pwjhVk@Ob#77=d&N`AAYqc!{iCAZRd8Tx%t z0Hpf8Utw5bJbgc)iiBgxjk?d=X|HNwb`lY^&aI>SisUQ!Q>q`2{lt-5MPuUu{2N8& z0laUpIuC8v1N_jrx&aZC6E|Whn!JcB0x=rZRq+dr>gxY6Dj*n*>W6lY_kzeI0~dsS zT``@+8Z(u*@8Ecb{Xtkl=X6UIc|ax^U;guCi*kfwFRWLoPp9e3zGH^|xNYNn&P-fM$& zAoT@UYG6MTdB|%QJkiP{=+Vf2676Wm9MwWzZIlhjc08l;i&^M~O`VK~Sd}|%@8&4b zc!O@fIvLM9y*gcLk(?Dli3YOJL4hpJeVNoZT#$vPv`qX$Q(Cs6YX9_;VM-t0={QX% zH@RN_zG#~&@Yqld@hGVJa_>3N)3+_&0Ys z?Cdd8j;7*+KG&m$schch?S(>e91i_6!&L6iafIlf8>aH8082GqtnlDmGa!PNxb+|r ze~=Lpj8+$cwCxByGVUrXUJ#7|40F%AQXC@K$R9 zZPTu+2Qps8|JU62$BpDFzSbs?ydA(Z znhPOVy)Mu;LovD@UHn4VqeJ48&GCsoJb(Tq$7_{c&*aIDEi6)Wr=GvDD)6|T^EKQA zT%YL(=H-2(oAHTL9J5)5Lc!4&q->U9Rrbx&mAu_Jv@Sn3)iIRyCQZ>{^)NLppXRui zjWD+wDqF#On)2z62iRP5{Y(V~qjh{R?Xqn)`-e+29c`q4Anm1pXt>$8e<%@{(LWsC z%wx8~Uh~QtZ;oT0{=#PY`3ZA?r<=K6!840?KqkhxE?Lk40 zE8<|IK=PLSKq^Syl3SZGZ^>_}Rt6Sf-jZJ^Pkviut`f?V%vJKW=#0WN7PCLVK$vHV z39JHV!N7$|D_KcN)qNf<#X9c?Fq1syFAClZsGTN;kG zkB{cp7g{=cHFx{Muu7bN12*DLOTu%PIqF7uDa3GnUvI|8$>G%KKo;m0ZT#Fa*p7CqC?`?>^3gGCa;IA&tdSGu#Jlu032^ z?HJ20lD2qgaULwj>S)bABNez6g$l71<+oRR7P#7Z{_`4#jh!cLac%1p;TE~JU9pAu z8P9QO`U;1QH<**?uhrvy);U`0^^4^KcaMNg{md$bjGSfRbKa0*XlslI+*v+s?i{3A z(4#C06F{ID?Lm4W$*t&uc4QU5(2lIdRc{p^1{)JcSra!nE>xbe7H@PM2+AT<7{SWD zRFOQJ%qo__%AHh&$F6F&jvh~5^$u0gaoHa31D$IKzqG}%luajXag_?6q~_pgir)7R z)h3AF_eA*YUMv;gwwNd$jV3H2tuy7j)_vVi6O=0?e1&l#+dcwrDB=&CsPGj=kRQE*{;pU)%-SrPyO(O>&93&bXe#r3=ztAB2Tri@c@)Z0`IY6`FuBl19oFXsU>KvDD@HuKHu%akk=B%uq~tGLwqP@|K2SNuXJ^)9b!vU~H0<6LFe^zKo|Z$aNH9^CIJepW@&HGR*e zYx-JMcwEyHh8 zCtwmS?->`$&-RS#$nG$=Z0X%H^JYviPrDh@hV?PGyvw`gr~Z~nK<~_c@NQ}VzEBx(!R?q4tj;#2 zK2(Oj4UcH}o6jl8IzM;P(UHY@w}p=l9SZEKLFAUm#0sxTPr;;8h4#VvoBMsqy(bko zsB9rF)9dn>qUbt$*KP7hWBsAT5bpQ9BQ>g?V1>>!*N7F1bB#1ul3O>hy9r@MJamMdRxnm4@zF5vH9kPIMvMFhEoljO=@AE z6~`-XT36|tw@GhYOlp;j+qjKvwn{)h;u8j4MN{`&gYJ0UHo4CNRF|6AA_FKam}UYA zYIu1lKGFEZZ`K~{ENO=ev4NrhrCwX!7JGGsWJX!+BI$$IO0IDJ!0V)_mw1%_N>bX#whMR1zrYGjo1 z>WFgfL;9dxX%n+tOP))tt?>mHahxiVk}h&q5;?^5nsraG6@ zqDaqJLl5c2+hy*Bt)y0&>Sij^eU(Kj(k$O0j~!FJjTsic*luK4xMBv585TYx(DiRY<#Q8SdK&{~ zRRGdORs}{#7ecn-M^<%^9GVD~9GVCzFihmw^yKy|c!x4elZiyiq36|6m(?-*vdFa4`Lj%fNnb8N@HVJu)7EVWgK_zkj8N*sTIai9GmcfK5~c5wLh9v zdTc|>=dstkmd%rQRCZ;>BFX*`(b8Bo145K3MTo0rQ$b^1GA}um(Nd2?(YgtM*&cs# zaZX$zJ4lFB{OvRN+ed0W{JmiCca~Ht{!W|uJ6{!l&l3IsA@WBNB7dd=_@ZH9ayp}> zioZRSzpt3KQ`r@=hM6r5&i*3A17{h0_{r#Aeoc4keD9o)SQbh8dU(?t?^Lc*Puz)m z3nHTr-V7FOsT0MEMg}y{!yp7g9QgfZutqT=Yo>z6{PMEoyBIB1to`m`4Kq4UhA%5# zuw=uk1J>bL`k-xc@8cp=Bgchv#xN!djmcT=1u>uF@|`lP%L>v5IlVG>Oa|^4~q%U?q z#q--GHrfS+xc6x)e&ODyDNom(NtNyq#`B_|E8ie*VHu($*>L2hr~=Q{=EWLqZIITf zJ?&GW54--Ep^BpdGF8PEh00I`Epe+t;>rvEUbIG4{2+dzDt@R+73X#53zg3R-u83C z{%tq(rlUbu1s>to;0r?-O3~-P_WH&7mS((=$Mt1R6$Yt*@ZC5fn1xi}`7~6Z7Q#sd zYQYDQu134%xcJMYg}>`MoqG4(a&L&)YV*sUHkdr0B4T~ ztdV+htHo6etKMf}5-VO|q_Tkm%`fTelu3e~2jL%2DjQKkQrU<)7be%(4<|pdS7c4pafN;$S$=GP%e#5};prKH`-Egr&O3MW z(8uDkM{K#n_@;xazUK+S9?}Zh3$s|Wr212a$d$tjHzqS4b!2)Yzp=eFo>#AaBYygi z#6Z3_)Ok>UYBw+VGclDttq}9$Va_ZgDCNg2CQ=J+08?0Cl&euWd8ijU9tS^q45rWxptD3rHlS(5)OX+KBvr< zl%fj7uYbe>N(TM_I*)Yz8Azea{789wNPeVy6mq197Yu_;qPhIi6=z$1wrf2|H4^2l z&H%o#(7A-KZUKpsyeSZgl4yyW<2S2s^N8wbqBBBfOVVSUbu@j}9(>BD%_^G`>pZB{ z-UW>EDP1A1dJkb)TbkU8mrR=AFx(s^cr zv#c6VG2N84(D@$zXonOV;{i`#M@16y5JMu+3ZbsieKrx{8(&cgb#hVCIgh4_DFvH zEVA2x%r;KODs7>#(?oB&4Te%S1D zY{ZwyyLwA!=i7`}beY!08K(s$?DY(iJ;pt~Qxyp}3!lC@2462u*eh?uVpOddK{x|^ zSffF)n-7050W*v3XITn52VEMe#C+g%WkO4SwNpVPzptzFUe?Flariw=+ei5BC@~KBD!mspj z*4J<@m6uC8)M7R&i3YP}1@f`qTAK4S(__;E%n*^ZCnP@pL{Ddc8yKR33Pg3Xmotf7 zH200!o6%MCLKn_Y_I5tZzB0GW+n3>lmdMmE=1Ro$rGY8tynhn&+vl+#X)Kr^4Vt() z!vtx0InFMuxw$DqYqC#92@mg=62sT$D6WuQsC5Iv5Wp%FiXp;(UQfQeL0=$wO&y#S zM{aigf*(0~FcQ0<6nhS&T z8re~zz*rzUBEXuFPYp{6A_qAMXzhB47?-=X~6NR$2En4H{N;E7F5 zjMS`r?+9lX$nt%41W0PO87!;=fq}|k;d>osu-YhRGLjFMS&Wd+L#8I*u#m(wRHnX<@X$W3pNUfhWEAcwwkvwaI0fF6SbR`5!Qut;j_JX3I2HQT$@^ z0zK-0{K7-DDwp;X$rmqxWq!ewdI6P}x3&ZF*2~LWF<7jz=w@7d0ZtS;!AXW@rP8-1 zIo}B+rF%GjeDKZ5&H|Q0$OC65zX?m3k$|5mfT@ju5EG2?0n^)FqQZNaC-%uZj$M$C zMO?&e$N$S$27$yQ?varOn6+^E0hzUMg_$7S{w@{Vx8c=l4CgH zH8tJ-VE)3@k=9&Yf9!zV{=i?{{&bn+Ow#<`Ibh^2e2;L8RxWlwTKWGnkuShR65}(x zY<<-{=kn@JQ>XQ}fI^YB@GU|LXg9ZEg(#r&(=8T1YkElTbMpUy6QLRU0 z9u>I7U*yczUgB5xI(wBZD1>#qX5%G`oi^qm_&ie6Ess>OvS`h(KJ086M#mJ;iwWgQ zzWvS)Zy}O1L>fc5C0XAQjYP2I3dTdJ4FGNV~pfbj{<@r^`kqF;Xu-{#!`Gh z;lMN>QjENh?VbSs?c4VD@PPtnGC!M{)R0Ff#7FY-ucAy94!!UZneT83Axw#TVO8Q@ zgW~qG&*)XoRn@i6xrSWl5-L!xyUlW)W$--x5mTna z_MtgJu09J-o0t^9Q;M8L+DH6Mku!yTLI_ck{GcjHLRxn)+;AU;yJi&MyD|BGe&z9m zV4mC?v{)0XE0GEP7Wp!*)1W*?k6Vb1tl|dD;%jVQ(X(2-!8v5e0PECrPH_ z56WD9Lp=W_JeC#ibT-uV#Rs`|G9iI2B|sH_@Ez!?`CIFQze}$=hw-9j-`C{@rxHSI zWGeFvcIOewklj6Ic4tfeW*F=q^ZZw`TLx}@mr&Lcl3TFa0k@FZ*CL|A2FG zbrpHR;Oqh+1v$H6=Ip#=pLTfH>;S(pw#piTc_c@)}&-c*Ti(8KM8Y8L_neDP0F z7Pf@2qBIR(r!VuheOq&=@@R#{&M;muE-9-0Kfr(uGS}Wb?rh2C61q_ByF~#Vzq5#* zr-NcT#;5SDaf!p(lcejEr>b>e;FhONJ7&Tnjzy;&!i0Tg8=iKy*8Dy`WF+SMl;BmO z{ICj9UX!8>@|sO};i(qz?GCXPC|`E15g+z!wHDZl{CD|;=U{vLE+Gx2dCM%#a>C~Y zl;#P>4l6USsUY=whvm_|08WM2{CQ_9P0QeYUvN5DD}vD@LOtzp6}Jza0Vb@ytCV5h z0=UzS`By^2f5bF(=V6(B&q=5h(hSQJ1=Kcel36W@r@!HZV6so+2eMJ5SB<5aZ%8xg zuyk-!%FT`Ih6Lh*VUId zd&k*U?{j&z-A%CL;{Mlno%2~QQVQp;(Ijsk ztpfAtCi7Jh;BE;UH0MQ36u>YTXp;Da!9bIa$Y3CcXpMRE2JDl$ZF1gEs>^dea9;L4 zZRqkrQfJ(17Jm`jj$i%IIgPC(L@He`Q>AW7*8Hp5x-Nt95uvdi3aGrn2>GdwQ!4j} zxhn0KI!?{dEhm+zTOZW9ijVw1*4{fX%Hnw(=6MJKvI$8@a+LHy2qky-JVB(FAOZ@6 zpkM)M3W7&(ihvTpPC!s$5kE8)Q91}jngqpy2m}z2B3*hf0v32@XP>*ByWIJEzlr~l zW6SiNoh{F-%&2$ZP!-`#=NRENM9IuamZ!FZeAznQbPO z|3-uOj!1v?3vc_{aU{L2e&4b$Os-dAp|r2*0xY$!aRd+8R{|gWjut6%>y=&zZLL!f z;UVI3d^-n`7I0mlxs5<`t5FCFh|IPnh{kA8iQ*R;RN_MUDKa%EsKb+i956QVDRQk7 z>DQ^t$g6%5A_7*Q;8u22N0qt>$UR$RJL2ePkCjTD%-Slz9#5gSUMTPRb@r)5SE04$ zjnAalW35RgYSIslu2u`Br*JOx*5v53>5cV~3#F&{=W=po{bfs&tpr%A$qa%AJ;n03 zk`A*RQi@76efzyaT6lX68>w1}5KvFE1Yz5}=2bO>h1}l1f)7Ruw=zkF-)fE8+03Ma=6kCVZt zth94H^JaQm{dWK%(nEdSFRcs@Z`|)mma+&WrmlZk&srxelBf*dT0{l4h-z?y#%UqG zE%0C%THtvu;KQU*Px`h(IFBzPnWK99Hp!{kEnSmvASda(JL!+v{K(&RYN5;w1INN` z`0~3D+FGZY*=Fk@Pn_ZP{rwd}9t7=Gf<^hR-~gskbn z+DU|u1IzVS`hw7p6!F%PT|`h^r;=YRf+M>MWs=zhk*DPv5VxgQ`RrptuxRsuDWl zJ)#B$V%?kE2RueT^?-vP)a-9)mv~RzUN`iL>TjL3MC=<3PXVf81k10s7{Pe^lJ?$= z^bp$0ic*NI+mjc-7Q`XyS+LFORipV!LG~el&)$UBS=Np`HJ|3uJaYZ52>pdnTPq57WNnTC(Q00ucN=*9cmxP zrW2NxzkE-Xy3yyJD&_=y^`$gerL&YM-t7H|2!5rUy)#>)@CbohPV9@t@_NsF{M$e# zpYubK>(j*^7xGZqX+hS7X#P)xy|LSwkZ#hMOj_)jn=4RfvPY1D&IG=QC~qGT_o*nL z9^_p@EP9Y;ORDb-J*i63gN)LzEtV;!Zm1eOKh>`Qxp0A`@Y(4*-}Oes};NdQJ3Tq4s;QAT8XsaOFBrD=JEq$QYMDggQ{i9Xve`nG}4cm6-2 z7pbN~3HRs;+Ofd|Cx%4A?dU+RNH|rfeX>mLH$G4&Oglx8NY_zF8gWbT5<9=zseDM> z5a}C;s@#Ln1;PM49Y!xA?QK(uu%L$_plHoE;8E@_h7C2swCO3(s(K_ zA=z$fYztvZ`G$N|>c(B1V`nhU`Fu*UJzQp)+OMFaM-WRbea{jZq5tkvDHroli#ezE zkXj7U{ZQ)K4WL8{^@}4?TQhB`GJSMEgHzk4YhXko`&77Z<&-q6#AL|vzLi$b%`c@^ zWB>gBBm`G|>y~)@5$-A+tZr|lH(V;?nXB0~E9s4v%2nTP0hT(XjRcQp)rVQA9wOx7 zdSQca-)5u*F8T;Cw_1g;aM9OUG)8OcB7UJYby*sC(YFCCO)UBvr`xYkyOMGGFuQ$m z*l>m4eXn(lDw2}{-fJDcRNiYHtZLo#am}yhfg={PqGE1tD3_;fo72WMW2IztvM_JJhX#;OTF#jZic*|i|pRdfk&ZCwStu~gm+I7fK-|6Rk2_3>(qD4N`Vv^6WsB0@%Os^8mr+Ws z@3a?@E=ca@g~-M1RNpL<*{QaW_DF7iAaZy3BX`GVwNm1b2!YbMe}e)#hleewmBB~} zk@;GSlg||=>O*a6kZLoO38A5(56d?V@5#ap+DQ{+feMvXxk74Z=7xSzNo(q!Q1%c ztdvA{!M7{o*yfAFN@o?c!ebWJa%LEVD;@Ct0bl=^LSrP3PUkBgw>M!)z8!EAro;-| zgmJ3?6I#{xZJB-Vfpl$!1YWC?0xmXav^qTb340^f$+r`Nuj2s^w)vPXfSur^WLxf; zl*)P*OMKZ3dlJvrFP7msol;8aFRqZm3MRN3^OU`ATtgu>I!RR|Vic3q^b1wrV`IIk z%i@j8rxkgQ66vkj7y=RJs1Hbi@OEsfC_v}jFmHJm`vi?GBTaC6TC_sm=3b;KtgRuD z(@Oh+_v~h`&bF#rxw!joMSw|a4=71YQZI@g?nw&W_~sRIk^+o4NfC@{k_siI)~!>_ zZ*_wZAVR$ONumISZhimi)e)2I9PHt?6KkWFHgOAP(h8d2DtslBTa)p;e)evRbRnMl zb6`R2@yrKiJ*lk>(icUWzEX-dT~!d#>aADGDe_TOEoIwsCCaw&74wdK1zc43BiiOG z<%&6-o5Ss~j3AVfO-k+@!xS1zu$bU#xGLs8g0&J{5onO1MkEd!Px^o>wWLei`AQeF zT(K#nA4->WA=0g}(p$QiRzZUAVm3F0s@ElMu6au-v~s0 zX?-IQ^`$aQ2u$QR0($tD0Y+i`m-sb>7dQBk0ARw@R}>S36Y?VgSPP>45RsCRNlGmP z!t_^}gfbrkveI99b(9&>NFQZDw4JvB6|kQq#T;0)RK?{l z0VL{qFbUQHLMbx1*J5z5svrzrvlzUgY9)hL0x|ecAOC!Q>MUby9)OC`!-DpQPs#Cgclv&w#QGeQ97aUj^tCT zIz)QXp{MrH|)LGEW!vbVP=W~IjKYJHo#ejV?wO2R!MKPj#VX%~v}`tzy!%vFR~gE#x7bUM36Iw8fE3sH=DvC6ELd9gxPD;49S zD|mGPw-&wHpPn#1mWl_g^jNxr3RxROdMr{RU53%8f3RZZvSdY{jPkdh+MqEOsL#5C zLIOPZ+D0rk)UvCMK#t3{n>iv3`rwHL2H)!vi!R$K@(wr&~qRHbhG zxrd9swt`K`xjgBSv>;w?O3DB>QbAXnlEYWaP02TWD&?jm)K0xqD~$~&wYVwihf>$D z)k0En`ZKFN;Wq9C=1zlc*iZS_)9i*mf3@5N93}wL*t#3RfV+T6jT39h7d1(hTPhZ= zY};zl4HdFR{6dAS38;`s+x2TVbaBMe z#Z{k5d4=N$|Lr4tHFktlqAL8*==#l4#rHm{C_BquTQ9dpu5<=JlNOo?&d<9fFS(_hJu1#y?j*`CE&e=ZFP3s=YOo8HaPq)l-_cliZ>qC+{~5_e*)RbeFNl<9jL#5|xMMP$6yT1@5K(}^ z)h0f5yS*A8{6geIynCK~3VWBd#Yl8wo{U5%stPO0KJ?5$Z2{NTf*bxqRmvcHeqMm! z=F2<`ZnUTQ+^_A8^?8s-K&%}A3kID8iwrskuPGH1LZIV^+gC3>UW!*2I^yQNwxEBO`3N_pPi`u#wxg?;74 z+FurHfCgD3Xh=L=sC3pp_9RA26sK1 zsko6JJSf0gB^eQes00B-G24ZO_E`6mFt)kTq=Mue??C z_jmR|Yz_e^cq#eOS8!)*Qe-@XA090rs^A~&HM~ldm}V%@xa1h0Czl*U@?;c0knj2# zGKb6+Z{h7DaB*nt5d~^!)Zue)R$HoFKoK{u2)E6^Pt4)^PJ729_RXtSU_Ynn z53iM<1hyh1qC_5A8^D-4ti{oR#*}|%RJEu9V%VW`w6@@yuI2ZbV;E~nV1ib&5(>3! zs9L~5^R)>LqxfH;j!b>fTHYkg(Si+8^|;+faFv%na==<4@w)u#CoCjR!MAD&{Ja%= z?Ugn59)UQuq9ZF>^@)-YC$EJpgfEYZ=2yZU)%mu47#a;ZX3q+P8cS=?iErLj$<7x> zIG$lE2u!i3M5v6GFqf|7*G{Bl!Xi2HfW0}Xw{T9BTuh%`DMWvBE#DFAXsy2na)uju zc?-)sqBM4b;P9b4M&dZ)MR(;xif*X!rTcEQ<29zOgL2Cw`p|8YFz;D(AMvHz!g)y1 zt?lQDN9>Py$bR*Ry{X1B2nrvvD@YWMbyVCNk1DdErV!c3>~mQM0@H`=iV|klIuy6= zSSN;IU0$%fQV0>cg}K%`G#w#yEsY;JVSfbPdj5O>-CWP zOy~@~>hYYnwGe$E`X*~RPA6~}0M>Gx#18JDP(*5CIX=CeUd=XJ@P|?D9PtaI+Bxfd z*Bb8VwDf8Fj>0i%+!^~(_7xG7ib+?gQaAeCy+w{md1M*K|9Ho9_I~UK1(?L8e$ctT zUnk?z9_Q_^vEN8H6*nG$CgP-XFQ0k=Zj|2g+vpl?WaINM!l_-@dS%oIuGzTMbZtF> zX5)h=COphieH&sVn!H{`qWr=owJyTT;!ulG=w5g<;_n(AYyp^4QRr5nn?|84hIWVv zA-sT9r0C1mc@|DG2o=3#5ZXf!xs@kgv)7ONUX;=xbOiwfL8y`U={0**jXm$pSXP7L zYWMaHdpY(Tfr`QCXi|Wa+DK7=liK(E>P?7frjr&T3eeu;yZ*Gtg}$fCNu0KHy^PbA zt6CY>EM6aACR(>1XCl1^=aSA1jqjlw8I;{!HY8uzRdj_c62XU zj1f$Pu|lO7fzndN*m)nuFluWVak*JE6ykAU$g?&pjraD@$pjui#chStg5V!WR-YlA#|oI~1+C>K-3bAK;G%JNg$P8UqhH zn@=w7c@-O1~hl&T{xbnk={i1&fmDA`2{tt5uXBP-m zP;*v7p@wHv3mV30vAl7Z<6#!RQCW|eunDGe5>q8UB+^k&25}0yRY{;*L0l68P(&33 zV7LU>fM2WVXu=1EJH-7FjNTfEPH0+yK}B!TU7>th33tA35)KilR$$v%kl9>suu+8- zq>+WXF7kp=MQz@uyyFqw*hnL}$$^Qt*8T5D;x|Sq;@>GuJce*f2rwVfS|RX4N%K4Y zX|^!F>7lvggpII9{J2sp57o&P9KAJmgdp+}xfLEAM5@_E(h%i-urTSVl^sv;h@%C0O$5xc^8PJ_HS z!Xpb8ut&K7b*YU`fiMuPaE{Ev?s!TBIG%9s(XYYoFq~^6eqlJ*=4; zYCDJDznPk8!;9e38a-f}!co3R-rsbNm988LFnNDR0l5SG<4IR8N<8Vxt7DxD6WF$e z5sJzC0g+1HAD-eU%4QX&y%xE@$CBi@KrSTjj}>2nVeZhs#rM^k_^|a=@eh9K>l7b+ z;a8g5#V`D-Y?Ao;0Y3>@CoV+e1@V63cA~tQD{d*_b*N{=7CxTTd@p|CK|!n`Hso*{ z{d4gPH~N-|_-GYG&g)Zp@OA@-zQiU7Iax#8(aPcC zb%0noy$1jAA&*wK^SS%OlB%O((2uC4qvapO3ISNR5Ohd)>||f~VqD&=b+Be3ESURr ze66V5;9-MC41KQm2QC3{gez4%8L)FK{Da?re?%YvNVu=~O5?U{3n^8cY$lxO!`Jg2 znN=Y%{_e2wJhP@_mR1g3c_lI24EV<{Q)-x4vw#>TK1`kWi~J1Xif^?$SdxHMh@Zox zGuS+=`1gk;mISHtIjg>~a_En6I9juiO>Sic@p0oEGKYR?RVaQ5J>@3nvPFPCT!Aq=AeX1jF2o7^FOeOB<6omRU?}+ z3D4#xj(FZ9vw3QRVmzecpSWF19lf#$wH`VCQFJ*1rX_qbcUYPE$JTL#X?hpflx|b? zdGR-LW?D~Pu*DIQ*R!tUDJ^ImAmtq%b~IuW2>X$hjR!cUDjds&0Py<5QQuVklQxNL zDJDNt-|>CXG=`)mXruYUhK`zSG@)P@hiGE1D4+|ikw^{Cu30fvAF)ZM=$YKbF@>!n zT_fY1S>+%1?F#o5g(f{+MQXR9SoZ$0zhZg*=me$#KO$xSQ=+)F)=~B-SpG;VKh`BF z#O6m;uE#gYk2tnBb({>P4fxcKRU7i#%^a7*{#L|+B}V)&q8SUyS3~MrMQ2C-Z{Q|9 zrA^iy+SVFYr;B9{t9e9o7~D4>a?E6v2wLr`!%9r<2dAqdwB*M>gvil&*wK|wZUG@s z5Qjd!V*EDeku4p^SYrbJ+AU{Ctv>J2%F$M@lP?doy59`TW}SQ+b>NZh91pVRNO|TX zjv5^I0XpQ%ud$E4^Ku&hsI{XkkO8&*bf~~B05|N2M;%YGcL)q5;0+0T1}Rst->_hJ z|7=uMe(zCa5n)4x7wq+agf(TG2n>V`Ybrtac2cfjueV@NIhB^e4tY1}r$en5g0)$W zLF^`Jg$S-n1o~!WEDFI@3qgL!D=GZz_KJ9@@Pci0fVD#n0z<&oQ#Z?R;OmkK1srO{ z?Q!1VF$EXO+;CMo^lpB;civ3Wp`U*oVIWqhaKpfT8^5-cFTYp)^?7G@gsTP!MQz+1 zm8sB4Hx8a6MZd9$&&_oXP3>Dxe)KMS$&H&21%cwf?o8-4^5u;LVc}lR<(3+H+>CW5 z@F~Npm&bJIY&PLC@+rr}lAmw3@}DoHHIp{7IdWyQq|0J-$?8kfhI?9yPAOA)M z7VuXj1C;4!*Uf+jvF3j3XwJKaSAq8oMdsP|103&_eEAzIEAnU}2~Vh@zw}Ljk@NaD zGD#pAIoy%wc!3WZ$X)8305=PT!!Q9a;(A zGqF}5wvhA%J1)v|0`8zKL0_QIV4g`A@A=&wMB~0of295)@uM3Pj>ed4kEj}k48JP zG(GKGnd`U)!KlQR`fUKytNksSUJNlkF>Q$4(z%29weimGd{gx4NS@QYTIBSXinMh1 zC?8%S-}R=W5=$l|qBI{C1=JW5fGS~(vETY6LVk*LEw(LoB3MMUENwCG(+Q5}HEk?s zuRH3naRi|f=PQB4IZ=v}5pnVcZ#ZTa#|pKVrPy93q@dVl`HJmDi=knb*m}e|KV!>D zw_=NI3Bf=__R&Pgcn!{F6DGkr>i|KhM7B4O$WBU;MG=v?EfBICTpY^}O?Ff+mi%@} z`RyWfq5N+7%5R6o-8M^p5!Ia^urgczyCJNV;^qw4*A)m*e0kvg-iLJ1TX_DIbUQN% zE|2KoQv9|5IT{uYxEgLLJZ;2Jcf4OLVb$Q;92lcD2qi*T<=cq@Iz}N=r(mVZ7CB$2 zMA|(_*Wwx+JeKapLS0_7j~oe__6G0%KSvez7Qv^4_F4d;z2`@0V`e$tDwfc4q|kB* zB`CB{eTDXlWM|YCnL>M&=f8wI9)5951fP4pW=-C##_2|U;M%GQJb!6=2=DPlaw$IN ze9c<2;?Ws3;`Cp)$P<}^1hSN%?gR8YA;=Vu#kGZ~ z!}D02pD5SW<{Oz^d*XL8yY?hP3XHfG@(IPazr!aK<1&3?6#^0?X|K?_*)m5=5#)0% z&#@CzY3IGL+|j?Jz5=8qcI4nMX3?Iv%F$N~+7E=vEZPSM$x4%Z18MT4A5B7p{9e&0 z-LLK9TfcHNWxEI!sKZ;Lfa-9ErL%3{@eZ!)PJVA~@>Ev#du4{ZPC7alm5N}lZ4t8p zs8QI%kKf5G*{e3dIhbbf%3nK7mO*fN1f@AdPwRz%LJRRm-=o?4ol&nQUL4LhC7v$L z$K>i|`IR3WVMU}~ulYS6)TMe=R+CVO<2_3hP$8yCKC6B&qq%dN9ShmBv{x}?*j>S< zGK3xAKAQG6ulGI3a3aB_WC+hu2bSTqf0toTel+P~6hHcdBff~@(6=Fu4dTdBu_*d%?MjttY*3$D!a=XEytml%gNVf2t4TE4DcduMU8w9pAaG$eM?{ zryh!^%oBDvrfK@k@A>MTjt1-xLW~mn^?wt3i6094>vIK;Pl_ty%Y52yM>@MqC_xdI z|G~#VFGz;YS|Xmk2X@@6iAL7mNihbwUImyEYZ(EYN~_;KM^CL}yC1Av`0WWgkGS+U zKLnWCo|dBWJI3=DItRjAeZQCHgAO=sMHOBvKKUSQNwp$$3E@Tc^A%nTi^0qv#PD9l z#?l@|AKCgC0+$M|*AY0o&_9C=46Ig7_Bp|(wv$=#el-(9z+0C+eoQbk?$h`Nz(r(2N;9dfp3b5p9M_Wz5|AS0?ul=a(TnX?W zDZuiDCKtxdvyR$cAr%CUFYsoL)8)A1bV9KNr{DcSX28EoMIfv$UQkKrls_!yZU7su z>iNv1Y`_6o)EB-}x#LGU5TS>AAY%9hAqs|HOCeMd;nzY4UH&!v`r=PKyp@Tdmn%X{lb`DyA* zQi*4AP=TrP-Xay+4aZY9KSa9T{84^%H~2?!0x=ApFw<^28p9mW^roYczV=6X*zl$R zMfEe3z;+)te9!VpDa=q={M;?a8=)Ij=_Y>diSz`L?4Hz#lMw4F41w;JrbTGB?YMx3 z*I-VFUw94X#E;BKXj*;wdMI;^* zX5CQ*o=(?_rO~B4;$ufCe)X?}B;GzbE| z&&iMNs*-9W(A+8%f&uEXZSRR5Xh!dgUuZ_}Z$&e*Q8R)%JVCh$CI;CK^WF?{2E%g& z>L?~}Mk!|tjV&P*phx&Z6}XY--Y%y7;9hOgn54?EiIDsp%U39rTi9UP&kjfIiTPVkz&9#d{iJAH(OMmMHD5{6g2yC}oD9D^=hoB=?_U8r7VHixqkM80S#dO+okAlh&Ch+nf)w{-jQr6O`xKoDSBR zl%qBIA<^~pPtqHWs^DzK-XcBFFkkygzP+)of>T`5a62OShz2o#>eC*|TUK%=ve!uY zzhOpal=+j}jt5tEw${J-i8s6HsK$>~b|%3KiCU~PI__x!j~a6ef&h$pFZ+oUpdWh3 zx62Qth4MoLkXvg)B03~L!l&a3gtUl?1@ajNNUH4lt8lNOi`sI;8yHP|KN2 z8c%7wm5~v~U#)cdp)&G%#;|SDkls#nrfI|ZiZn2!5CNMS(k;anKc43NmW?LZ<%A|$ z&@LlM3uQ-NYe#r@K+rLa`(vbMDn$Excgt@D0Iajj9gbMUOpQ{2l z0lCEsbC>cal~SwmJ9aqB`c^^bc->~xHvHU5U%yS>znWVw@dN|^c5j@X<77@h<&v-dF^bG~py7{xLfisuQP{kbg#|FpQ)7e~7 ziu+@j(|rc$2y(jn_Q_@|12vyIyL!5B^AsM}*jbNl@z+P2!Iw66)-2qm$HJuQY+ryb zZ#Hozd36z62=QFBMwwfee!L_Ai>KD|GxeLkP>naVkkD(Q6vI`p3Cxi-_p=VeN``N@ z9y*EK4)vCGtIdG0?E!Y7Vz=W%C!ym6SnJ9cpIW-6T`#*GzmQ|42tW|Im77@KF2B;c z_Otx{>GIF=+v+LrY9Wj;L{@ynwA_wG*fn@I>nV(m0u#EoPU083w@%y9y@k>+3zvO) zKeT{x?#HWDXzBcj4J1UPS97TXH}c%O#hf79XE`hLcSZ$A@tiNJzsO!!D5Pr}w_Uon zSMaZuI@}K-t}&pU@S4wXxK22X1Jo#1=sF?kCdYa2?Y`rDk-(4R{LAff##+_J*(+|0 zD5gWa51~^Haoo~hPpWW;H|kgPAr6crg?^~{+6DMt!#wmH=( z8NS2HNEx{UdeR}Z{Misg58DxF2<^a(l%W(MpE|Z`ZNw*%Ulzi5Y-~~(&u^TXTC(;I zefojcDXfk+&fdBi2wl@1$R8u}&v1$4-EY&pSpu&nvuv{CM6l>9mcJPstXZyN`*!Ine!~CD&)&nReZa-@ zV=Wr+=1)6cX0r*Y=;)Jpcu4eC0UvESSndJM1f5}Wg-)HFW7sm%NyJ=Hh1xIPA;0#Y zxkG)HSGX15!ShEsWB7*1x@GvaF3w48JAv#Whjg@_D%!e(M~rlS!H$sTv%5OG>SqDp zGe$J;Q8y}x-``syk!N3RT9!BN<_wKFEgIvF7VVb&scEU~|9X)oU_=O%j zac3Zp-K(d6kG<+y=PXuF0I&ufdh7>Ofg5?TJvJQqMe~AQPR`mZ=+arY*(sfMEBtFY zYdnZLijI@*9*}2o#JC6_u(L2AgQ+nqveZf1o6vfm#n}jgso$<){&?v`1I}9Z1~oef2#%rK^8M^ze4| zn|DfAznKE_xcUn_EmwbuR*Nr+(AA#{gz)xG>FOy$boKB~=)57Y<}8FxdHV1I>FFa2 zfLJxV^wz@)0E-FQ+WgQkXH{0m7l#=LM^isI(9r{Ibo7)X z<>)sOxuK&M-^J_efG+Xr{ueu?r~eH9Z+UuZ9hRrB@DjMzQG`~HYb`%tAi!~9Ju~$p z41?3CUqGB~t(Tn-5Eo1ObLC=bDZ1D~=-(=k6UU1H z+npw+Fp%)B5D5F62v+pi1Q&yWlwO%^ZIW%H?wSo04E!*Eno4Dv#s8Gm)!H%_@;9p>+9R7mv^HnL7|Vb z9N$J`yc$jG5%L6^;oIf|PaE7{@WZaF)h^GZ)`3UmIv;V*Y@{*HY;dV*POft}*sn`(1KkYd^_3GOm>* zRcn{~Uch$GQ}9XkxsclW9k|;(G%b$ZA=JS4TPY%Z&(KqL^IZe&DXgkD(%xDU-}QmB zVd2Al2j4Z_StpcYn!YLZ0f7dm41rEe89fF>)PUsQ*QPmBSZiP4Edl_441qHOoJVq} z9eEJzoI*SlTyfRXUAtut!v4N!`UXJrVqqTeF{qLNpKp7tn>QkJozuauhE$J-jA_Wu z6kj~K0r1THS9YRdZ?SYR@+Jg^tgN(HS>=mjc>ok&2Vg~j#n%d`$kg2b@9TQ2rq9WtOa&zSGr$R1Oili6E! zv}W(DJ(j%Q{>-Us>^ag47oVzwl^vmnq({r*n?H3nk5}~;!0Sp+WYY9ftL2&w^UI&Z zq)A+=TSdZ?tMyr~pb2NqN#YmInv?bfm^FFph0cHcY^dcfa{k0VBi!Ng>|<5n#+`ek zm>X&lX{W<@L5IZ3{Ol6vS8Ss~A=hYY_sBKc>OFGad~=yInm0^tAIaZZ<}}$}-}bwF z+L!C?e41VIZFSD4)r=L+;jGjz9_yF5wO_n(?_BBZ%i?`oRg$eVNMrsfOa~FA>LlCz zNXoTpkDPBmU*&wqJ=KzSauGRekMAP#A%PF)+BUz)x%TKwwQRiM8fWvkRe~=%;m#q9 zdM4bwDTC6Ywa~{E;hT7emun?+@wANI^A|bYJg2HTF2TD05@3xo;1^t@gtieqtf>tr zoGt)L%xhf;C~(zn^w*(6ye;!4sX!bP0^ykI2M514uu8fvkcf$gBEiWMH}t;v#aiVp z@Kl|L8;ZBKpw1&`T|FE%asf2CyL8-v0}F@z$>w_v&mYo#4f3 z4$p>wWIP+9BtxHU)+A7KeCd}q$JwQjEPnk(o_OF(zboY8$V*?Auih`LqPdNXMz_Bd zUO@Tk-hv+V)z6Dx=&PUK8^BlReek0*Nb`H^Z8Y9`B%j|x7To+(YpHvh+kswE9jof9{Rg`<*l=ye#V1*Jluyeyz%xf>41mze&};e z1_0uoz?dD*r`Sf)13|3?LlW=(ZX*@)jQC!ybVv@0H{M)3J-D^CyhnkvE?Z05{~Kyh zRh<6fUi8V#bG({s@W>J3OtowxGKH{!;%u93pWCh~h+k+|751TB`MrHI5^PS~J_+CJ zEa`6z{q#QPiZDZfl4IPRFQ%Ry z+fG5pi=8$<=v;00`Mmf09O;Dz@!g??c;BE4{%tVrYNd)Xs*Rg&0SHYYZ6BHfT&KN! z$k{}nuurNTpZIkhh8el7=uCB9LqQ|yJDQ1iesf6`IIk>zzf+MW5VvINgubmHZsNN- z+efo`s)Q_fXNyu?@B(9app38muJLWW{0}Vz9#0x~%o!KDQdPp4{Wtb8`VR4(Vy!By zK-I{|;pcq;{QkjxGIE$8dRUQzeDn9meR%Q=$TpvF#xjCTt|=nE*P;uT;*-C$Ex2v# zuzJ}(+?Uj53yW;7e+2p!8AYS^dyJUKBSMsV$ph1hI`+%7q6X=NVN3e{01P(R?}tHr zFS7c6d9+@Y!165f^yK}L+6bO`)0xwRJ--uu6&c4|nV4CFGW#{d}OPai|cYp6Fz|w#D!Q{HVpFH_n?pNU5im}jlh5RagSMaZLX;jcUC6ed2PHDud z`8G}QX{w(3ZQ|RsfmhSv>&AdPwE@fk zXP@2seFG6lEkDAM%;#2dzvr8AfM0ECr12>WQp5R5&1e*NTNoOhk$xeT=UF4-qrMFZ zaX29j`XHewD;k`T#G}5U^%O*FLdsSp(g81jQQT*b=hDSsJ>cD#5mvrQi^U21uYsaVa${~ihDUA!6<>jM7 zY^0gn`?wxCK%e;CMo^*2^|%^a$BSC!mU|tL*~)tY)1G&JFA@L}v5@mwOU`FiEs?Vx zbWl!=!3Tjawe0Jy>jwh}I^v)ZbPA7%c``P%u(a=4(mpGtP0$i)lTu6C_~x%ciSU-T zm3NhNRMKWmNIxZV(zcMu<-5OaNk1iW(vQr9zx#+BAO9Ud04R~aa8R1|3#yiG)4YCA zZqvM}s-bA&V*!-drWs2>;Wo_|P$9Ny7Lf`J9u@?`vDyy~xlJRG zh;15*L~YY-KWJ^!?DR%uZPRQEgzvyXxlQ9`L3r;9@ZmNM#RsM@FDdCDTuk{-gi8#I zlv;*`Zvp>9Y4bKL>n&i?kr);`q(+4@EYjA;unJfu(nFaP=|N2Dd0<7nIp7|}_$Y7# z0zjG6gNLL^J*aA>Nr{(%wa56;6eERoRF%@8vJV9q!`%*{vt&g0@+_$BA@r3x;6o`B zd{W9&1`mn}A$af<9^VC~O_isr4S*<*_%84?0zmON)#7ogswF%wkvuL_m6FFrfp}aS zh{pvMkAM$(B>0piu|lQzHZUz!OiuP<@(jC5h*bPtwD`NIYLP$df#5QSbw2Oqh-4OW zSQ#CT+2F$g)EIpj)fh(9m`|Pu*7d_un}8WPC721Pv^3ITJj-YSGMV4+pOVwJclW-Njm#Ei6PcJ`TL)uzVc&d(sJM{w5I3 z1%9=Jj{~b{!g?I|YXucjDT~K}NeOWs>n(m3Dt_={%duuDEJV%pxGl1Q*zsaqm9!-sMde7hFj-gY4r?Glvf)8T#MDdArLmMe| zOU6Q)Z5twbphAXPh|R|=Ua6~fcS6wt`99;jQ7<=8Xs5nVvS(b#ZUZ7OQWv7 z&CPKcaxs-KC(9_yH%+KniRbW?4y?=(AlVv;A{xQ81VKmSW_r7}N)u3qng}8tgeGGA z5a}w(kGC`8;ZtKVC_LZXm3!c{oiF>eO0fRG5ji06CEz+o7G zNU2*W7QSf(T4{duMzY=ZumFWBX(@i8N?IQA5c}}*`j_+@8G-T=n zmD0jzCi4e67~SOtyA+@51*z`E%N!LqSub-`ggw-f)ei8`jz+wGeg{9+(WuG>6FI^x z)R+$%7gUB1e$ptDl3RLc@8<{h900FC41`wJs|n9mb-w~}WCu5&Fk-Z6{AfobmE{D2 zR2EWXcIyOsn8=MM44Za9wx9C(P58sdN8d9rTbrNReK{>aqO))nlx<-7(_X z-osqW;0E(6AGlV?KV3z~&hU@t@e)x&9xoAfE=+O{Pb!pfRTBT)5dUC4?!h9d0H(;e zE`DKFg-^sM>G*woruae=ziqxgR{X^8YCjPl#Nk(Vy~W1|_#KW@Tu#M1--ftEgLmX+ ziPLsG!hca5(ctk_n%FeOvxwbdp9QybDhi{;nPR;7g?{Ry_=V%-j<};=Ft!Ar_LR{> z|KW(Z$eO8dIU-_@82!!;@eE6netid@*V(9260Z33sV_B-35UC{*G12>;-60n_`6RT z&+Esn-bbw7P%e6Fv-sT3M%6TNXEQgb{|f_qf6%5hd3gh1%@Vga-xvR!v0(jW!MbC? zf^vj)yfCZ~Z&=3#nEm3Pls!n77Q>T!7$&5fc_0!l5MAqP*mS5u#^UxMV;aOJU5(12 zaYCl$#XohezE09NUG{}4>}z`UEp3W!X>iwNeM%?3yhfQ|zO9?_4(oIjiY1a?H2lSjVvK?T(lexaw*M?Blp z^&8l3*AJ?@wg}riBL2A}{wXgor5_bSX~3WDX^e#7s3bFnU;7oL)c#q}SXDmwS)+Ct z;bK5LYq|MnYAb&IS)(4CC14;soNv}m`R>U~RVaQ5W^#uVd0NQZ^_)>&%kl^G!=eK< zdmE>8wq8*x$Zr?#S|>`VlP7rju5*TsCzY;NP2YBuyo$2j8;VSxs6lp%Uk&RvMo#sv zMcKOqBA<_Lqe(>*LXPrr8#A8sE0Wbk770)O*yzt^j|LVoefjJCjG?-I{iw{sc>QQz z&w)l=O|N*2FFs||V3m(4&5wK4ly9Nvwqv-^i`ZHlzb6I*TVw8Bi3B zcqq|ZO9Xo8F`06-EKi`6G;v^r6Ri&)19?zV@gQ$A%M1 zl-veWxxI>V%YZxrufAkFUo3g`m-6aQkfOY%_{!@Ai=F3zokmq0d9z+N;7;MEq~Cud zws`~(WE9g-Y>)6`eFvA~O)oqMFRZ^}Ji#xHF=hpA1LS;jZPR4i2^lD}!MTqb8Wq`o zkI0t3YV<9Z$i9;z`;Op5k)0C-)Wp7#tiY2vb90Q}*gvGhe`Hn^+#0SQ8E0 zagW!G3|8&9pAo2~K*AcMp&Wq5amnB@pyN zK;@f@0xFI*R>F z6^Xf_25)vRI9&ra#2Z92Ri&UDr?~mWa=pWOlgY+7wq60|L$(^$^Fw~nxz<5Tu9bg0 zmiK(usLeM`hP4nEeR|paHy6jZud<^A0kS0?3x=&RRF&~jsaQzDj=%BlXaGp~wRp}u zX2YOuf{M+vOC>VWln;5&NGUn(I6MGzyKe(t@Sag4UNn?fM?+7*FY#aZb2HnH%LSI; z$jgAZD6pc7$Z=-E^zQScc;(Q_%~+&>;f_1rH?m8{p3wPMp_P+ZJgEU+(Oa){f=o$i zC**!3(tu}dKnVXetTH_2)~0R|XM|CDs|zb*RnQOhn$d`t36K0&DE~>fBE5HsF#57U{$xIKo}`|BG~v2(LgrL|72teqR%1DY zDvxDoV-Vx}b8m;l|1M02Qc0o85TBN~HNLJ`^GyG|nM({q(?12-2}Q$Se3vMq?}H(H z?lNPK{?kc*|DI8e{Y>arYW`8sPu09nsyW(Q&GP*hKJGG1VN;eEj5n)xvF!9FkTtwp zM>B+99@)N#uC6}^`r*mFn|c|23rMTr3ef7Ut=@}k01^sjOH|d1#cjJWr zfF|v(!lZv~S=9Qx&8v+RO|No_PkGu*WvQq93?M!E6q%@;r*QCuc}bP;Y#f^+#!h9P zSYVXlkA7A3SWZbX{*;trJfTWRF)C9OQ2VS5M2SSy6`%(!5_rNoqX+9mx`7vY z+9AKo4Q(!3V}6lxCuGLlCf^xz{7z;|i>Z^Q)h;rgTDDRK|K)pQQdm_%i;NQ8QGL29 zl2JYCr0VZ7tWQ$4ZWeR@6PgmY8m(BSf-d89Kj>V|ewWuQuhy*B!4{x_JN$0IgSHvT zeB10&F^n{o;dkZViP~)#aLb1udkZq~tZ4v0w9RN2*Gv>p)yES;LG_6|zoZtC*Qb*C ztj0!=Ix*biU2(qMhmt0+2i81>z;lb$)r`;EVPx5IMO!qSN#Yk8&Ln9#HflIfhp}fI z)QQF1yq(4@zb3S#m?o6H#was=mysW~Kyl$Vo@J_t7|#OBcs^0JZZ32GBWi+q_>X2O z{@X8^5&WH@W;)xVa7k10gWUBkHKhOzlqvPtYa|I%vf&7})>gQXn-$2C&I&5flCJUx z_Ze;Cz7+-3lI9XRl_mYW&seUpJETrp(j4FJw@4GTBm&PZW7oIRlEO~|ZnUHb@e3^} z;xxLT3jQn!kijfgsilpqGCeS1i8C(SXv?P`FdBxc-ZPI{4(yOI%g4;R(fklCC<@ALhxs&!rJmNRKRNQV~b`}t_aChPHGe$R!9U#TmrkGC_VWH)rfcfBP zs-5SN=RqVF2@=q_wfH@IS}uN%ZR=1h#zP5O>&SzafEIDzZDY|rK61G14>*flM9=yVzW*L1TR`R`yj^be|g1`IVK%&f}l!!Ng4d6r9h zoioHn9y)_TJtHx_I>thf3le4y67&fc%M%DG$npYTmUAo?U$I!uQ~!6fj8A!h)^XKe?u=aZ zhX4l8s^5?Gxypi>{82MgKM#M!s{bM(g$xM**Rxt?{QZ9!z5in3-xtfoU&+h*)U2iH z5oe`k!(X}Nzh_+19_07#8ELHES%231z*%LzT62EtM4e$5deYRCI4!qI;XrfTCOCE4nu< zrY2aT!=?LX(hWohOZPIq{k|ssEMed{0UN?`5(c&uRjoD1?B9n;nX@u(4_jr{6Gx*X zy`4L*-FJqXy;<3F$`EnwUP=|XV};x`#TpMsS)77N0f7 zoU?$q;MOUu=iz2$?+6(86-g&hL1X;x*ye|LSA}!9F0WJqdh~R~TbDCx!KKV;CFFw* zJ^P#OwO%|Y(zI(&@J$uXSiUvVjMSezC)er~1TH!-bb=g0nl3Tw|8ALCXtQm7L>HInwMFgQ2FlJL_5?sKj;8GNGNWaZ^MARmfcl#_?cvxmd{&$}->;^Nak$Vk(Hzg4d=D2xVq2fC#JeY$53_TGEgajws{%J$#W~Ob zoM&x*V7hKoP2Wl~t4mFjrc%>KQPVc1>2l}Ynzo(i`4!Dd{8F-+8FyRIP4#_3F+%h$ z*SQG-hPB?1`abU4J(e^6!LO{f&bm!Ihy!gG%py;zA0APV<>l;=u>AMCFC zK#|zNh~jnCPVTsQk#s?BUc}*FD=TvVFz&6ihCvYkOYUBf zrgHbTk6(PQNYqE;|1c=SEbMdOcPlv|igdp6x7}^j9 zJ$s!LgC?>X{0Bx=h4~RytUZhmF5n)|>3vTQq}Jj&bGwuUgt%w%8=(dlFxo{QV>t-a zh&_w_7v#hDk$iJE@D{Q0fSPlM_JEV*S-S3tD} z2r_Lfk2Vm{^ctm|dgeuWV}WukJj%+*WNy^FScC6;#4O_FIg4jJwsu~WOgjlRg6Z;) z`!bzQn5=P8GX9)*nP41p0}gI$HWy0AMcFz~zPPfm2EA4$Kh`BF#OBB3T&qEFV)J4; zd3#SPEsNejuniDRH3R6K1UzQs7W7Bh8rky|8vFQ5s(8z&CxwQe` z5j5*$#<9bMEL3!fOFm+R6bBw_-UrI?>~2JhmTs3WoZ){aN=asRkB7=?m*mhAh{YOz z&qX~<_@bxGlUhUm?$cl%jR`Rx@#^(2DW{>e;zK%{wY_GMWt~k|QD+f9Le=YB zlKVw<2sP+4p7xb$hQ*i@dU)29~BA` z+id|!iMQ@{JnIR+F)W92eCzI%zh2rF-no~V#8h!;)fU4x0hs$z4($>jE&(C z#Mno&PFLY`dYi$)`epb?D25;JY{u~X-e$C3^0Ewzz7@ErBU(z3W1LM2+%mNAX4|3w ztc|HmAH3>D+{%Braf z+|>U!=(fAeel|bQU5zf2-H=oLV1mZo5YkjeuvIS;oyB6zD(@9ME=a~*kuLDdt+k{5 z%~o-ZL>1LmnqrTvm*owE=SZCxpz*G1zTJC}Cb(WE@Z91O45{_jd3s1>e9gw-uCp(R?`W6H!I2V6x(oSb^L%`H9p? zE12Zl{Rh$nt$@ID%S#oPoSLAld zkNDTxF7XQmj7_{ah?hM!2r}@p2WcwZ%o|tKWK$zfG?c#OAMs24*S%e`L7I}_$jg-8 z5(U;s@!2iWuc|7~We+{{s@yFpM{03=gj^-#qvBP0+XLyq-I5Jp`o+8Lf$D>gFV7jl z8gM-q4$9`>QJ`PP<6 zv#Z6u_Cb(`66Dsxl9qr-{)4+8h_4)9{~@f`)CG_iuFA#b3wh0^n{Bk9cY#~EXEK%W zt=2!2s9}5rh9Ndhs9{V?G9R420B(`YS_Oy4f6pk=8WT=_6}bue+aT<@>6JnVMYsl9 zA_}Orya5D>4`Cr4;Y@RwzR~kvFtFx&&QAv^KQE;W8LxSdrj{D!C&_sk4$J&iO>1Wd|#h@P41ISA&hto8NST| zM(C#1VFVTOj8MUM11reI^t~AKD2a^eS^mkh$xR+qC8HBLs6Ex?jy=0lD9*aDDiekCDBL)nXpmP!&d{g>vHD^ z`U#o93qiO~0>+2?B)z%zCG3;*lv2P?I{XX)0PDFMvfSJ6yRU@=^N`hMch-|ogi&@^ zRp5!Cig!1}qxrIYP&wEp8Llvp7;f-&c~fM(Pc811KqcN3`6$mj4%Y@l-W}LQ8%#QR zwn<|Au;LoTH-Br!mwf8F3WDGRjtzYATGOsCy*~XX7}q~Wn&tIn*X6FrAOV^Vkn{O-3s1Eqv`zXzR~pkD{^P#pT z%-b769Tj-uM)M&1S8*v!aSBa*tw`ES2SkN%#$D zOa^MaYqxLrP|`#!m177zxA0tNg}G(fs)@E}0%_tGnn2nO->U_vYuqZ?4dy|wl9(Qg z2;ryWOowo74!^chjO!&BFQCs1OEBvT9fb4cOU%;znFO;n%Ovcgtu$5zZgz`v(L`ZC zk_a0qexSSB-yn99yw!c>gfx}bQTGNJ+|)Xr7bK%~3>4PUC9b_Fpf=G!F-2@bZlAnJ z>g4uGec$fGNE5UP0?#cZS9_kk9c*HfXp1&6S^PqqnEWp`Q6K7rO~7@N2c$XFt!6gF zIVx#3e97`gHM4>rR}a@vo@NUOU8uZIRDqkWV%|WJULGl#TVTG-)+r3=<acDk>l=r?gbz}qM#Z_4>#wV;QZ%v?es&IhExEnA7vnh&CGx)mQS zexc%{Z~B=J)b0vda(h57x*~U1_U|5#&ue;xTOzyYykFQ`yCOI>%rvBAYk*h0_ zkDZ`bZcy~>QCuWu8tX4H6DG)l#20{A`~#m}mT=+6r|>mi2^W5&2VYY`jx_NPe8~bM zT>K-hg1Ydo=t%JkZy+8Ozwm|{+(atj!mCPfd!&R5@02XQ)Cqp#*$QmPmvG@WJ#5OB zaN$-hY`~Rp;SL?_ppHMFh4U16pAs(gNnl?<77W| z#d)T)U2C3yJ*fukE~JU7d77_?%8;49o>7J37cR+NMc?J@(6VY8znYa%I`8yvW=}nI zC;`v42C2#Xz+3V4;S>6$$IQCyRaMI~Z-AdU_GOM!A9WMAY0C2;$U0UQ5*79uG@$1T z13z%R#pfM2UF8ReUN|JI{1-!c{0Z|RKe#5HFuMlLh30(Orjs@vbkdAw9}}EfLPkBl zd~r~^K3n39Dui?KO}?UUdIrzGQ$CE3{WU6u=VV2c=1oqSk^TtjdCE*-glWFHd`4DO zA&Ljy6xk~3a`EyPH-0xuSMZ|;7j)y1MoGxLbr7P8#4lbb&yBa!B6*L~FiU>&yVN~oAcYJ{-RCMFi$CJ^Q3GiCuhOJpxB5OXM; z5rx#lQS@B<5I$tXgl%^~MW4Y}*GF4bjbwlNK;nbDL(Y;vK&&EXN7L*PMOn{!WE1K| z0%mHXC2pB~S}d7#$@}U8EUmOeu3a+w=!v&vx{h~Sbq?WsFPZ!Fhi~zni5b;ct6PB3 z8n-w~#FYsBA!sk2v@c|_9d3ywzsU!TY|r?z%H_-OtCt|OI(fx>tZ4Sqg#)41b%>_? z*j2MBYf4B$3-2Wgs1h69;>WKW&9z%{W&igz^UKhYsu$>TsJ$AWyRC99eLN6cDWf`j zO;rnT&|A+5#NuS=0bkPxJqtZ}`1Z;*Vk-FJ7r6M*P3009!74{%p|&F=t$fH`*gKi~ z@Pm>1gSX`P#C@kkS%LdbaZn-lohsfU`%Zpr!&Tvy44-Vb&6mB+30K7XZkw0GPAP_A z=tcZ5q8YoWig?eU4C@1hQ-XrFS;thRXIy?zJR9WC|7nh9+8c13WN<6_$trxzq(iB{qziP*l&2lp7(Ub2)2oUK-lXo*xN}3 z!iEaZn?n3zkPqzj-mt4a6VadDBp?v>RSUL$TPYf0Lxl%6iy*botp-QIT=gKBddc3I z)gX-!MCxrmFTY9*pE570CaX(o5i`_^2Z^+J0i_{dUJy|skdfeV(v^NqqIgbt&B*uj z`Xed)Zt2rjWH;a&UrV+;UTA0rix-{c z8myNfP5jq=;1u}>hS>4KroDXEZ)BYD$O%=PJb!e#rlBt=-fqfR=E@(H(@PG!txq4& zwh9}es-^oHayx*B9(x&hj zm{ZXs&!EN1BYzA83XlA$sunEu3Z16m=S}bd&D=oDE%n3PPmvkU;xHE^=#<`^P>kL@ zK3~unkX6ivwu`U3GM7{`R>VCReMvu zcx>1nDbI6i#8>9cO2&rq*K8SM;K3!WLPiZ1dd>#6L`)qm2Lb&<%~!^<++e>{oZZ)ng-B>uW1mPcxJVX3LIZHEL7UGQbtrL zDJ9b{d_IZ<*YhR#fdB+ImjruRFDN)Q-lbGw1?B`JuN0fn$D0IP4&*!%SBkHU&8V(- zzQd0_ou0~`@g?M`0E9g6hmiYm8CBx`m5wIy8HP6<((dCkY6ZOtsCnc+a88s%h=5f> zFIce%^+gwow%)m;bF*)Qj7o*{2a6ZhtLN~Z{Mw6UEB!l7brLfgd((unnUk2|&_3on z5;M}+r-UF89BFd{NM)%XsoY4)sQT{|)K1QLkWqDkPqi}Z{SKxkUe7rJ16#cFRVO85 z9otXH5s|zcDSPh7k+MhCS|g>>hDtMou0S!5oE(?LuBis-E8+gC|IzW6A8xWzGumnJ zEoaq?c%Ji?R!ax8I2Z_8G8lYHCx(&&%a12rE?0`*tCrCwDEY3N#47NM4q!d;ZUA>~ zzbi&CEDSZRyw|7zLYpL#QBg+bP@?!@#r2I|iIF1V)uiMhKOyjFPG6A|=@x$8k{TJ| zkbRZVrlkMaT`B#?RIQZ0c%Mlhc$XhbF_PI}RV$~d{(<-!g?v2_N-cYORU=*RdsjLk zK!|cD2&LSU7CssiLh%UCwAr4K&uCK*qk4M)L`*ENoiig@V=D**#pM!<%O$E7xwKv| z+IrV|!DySRmwf&Zh|j%}&oIg-eZlBki(SBs>=Mkx%nFshR6Aoy7%7Di|M=CGZP{Hy z7_yagLPK(Ow3j<>%e0r<@c%OHWf-0Gb-v@}$Ru9w z*Z2?f{@EX|X`!|M^cXnoHTJ5N%xfKpZ^;^}V%#O-;tlkY(3o#O5dRn>y>R|5ubgeP zG;b$A-W;}7@KN(BvdD`NYv#@8JsV^+(!2aAzgy_)i#EI75+)(#KLq(GdnAPxaY^5W zi})y%(jd?BX$gn|w>cISc{!B_y9YmO`uIQP={@`vr}xtrKu*RQBdVo{O`Bkz)H5T5 zPiva-p8oltyu%qsRko1u{r}PS-SJTsUBleFp(K+Y5+FT5C;>v)8c0GKy@Z4&3QBLG z1#E~2K~X@WfRv+xG%HvLk0n-$^${C9_JV>UDj-F{M*Gg3xx4r5W~1+K-{O_JLpeFK^@7n9}v-%SdJlp)rR@WmuN3f}+EiTEsKv9+uCf?*=hC(A}|&kNA9 zbLsU7eC^mnULN(o?=N*AX63Pr5O}kv^`ju|Ja+2UV{s|Pg1=a&uAaQtF8`gj!_Jeo zy*l*0tgu6T6(q57q9LGUvd`j~hm5cgo*` zeKMQ}k5)VhJ#M zNR#2AZo^sU%cC?98fz6i-ubhLrPW8QF3|KSR4P<`Qa9>1Nkz?9 zJ!30gWRwxJ?nLJ({fqNzIQ{gz`l8?<#xJR4fGqG*$>vAOuGPxnz({K=F`YH{bn5z) zx@5fJ0&IB!PaJX?VO8UdPWl8Tq!_~xs-E+)tA%z!jr{{Ic$lT{@6nghnOUXt_D~<- zc>J{Uo;M6#4 zBy<~V-5~Zc$*D_u(=70GDgOewN5x?iG4&?;!3%0-@^kvvI125DeEDZ+Sa}rMPk+*F zqBYgspD<9>pX|BduRn=3`;*2OQRCE~L_qK)YyZU0B#*rRc#Sb#G0D11G?O4~laIDo zUiAfQYPK?hzJpn!g1((BAP;}_0t@;A?{>z-FZZIFdgPk5Eb2#GR8fDGS*ud=;TP+O z`Uw|R)JI4NwL+$%e(*&V^+=F%aYm3ueXUZ8dS2>@dcEsK6-DhXswhgos6ze$#w>;W z{j$JIA@u#w=P#=7hrY<#%L%&vTwTJw?ngNF{m}m?>EfO;ak+iG9IX)bdrLfJh#$Su zA2*o3--~JEQ=(@~Xl2TiwK%7*h&H*Tz9JfO$#fZ7T4)4a7Fu!3GffMwoqaaFM5YPj zromb4oh@4@nQqot^%J^@8AmtyB~ex)W1uf&O`hIJGo(3bO5^Fs;<&3a18BFmN`Q*B z$(f?aB%;Pe`K|M2{=sxu@uD@M=CK>BuV{MdCHZZ%M3CP&ue1H$_j~k?V^QX@2L`>_ zZBCXvP`5cn{-SPk$|dSHoAGYb6u@}7lrJ^AD{)PdUI4l2CTor`p+`xDrNI~Ttc7t@ zs-oP((2TR{qkuEc8XpD30(s1$bfIKvKK}6>vydh1n1!q>r%f!}0&YTIwXp5|m1$~G( z;p=a@OcfuSbRg|k>q!0UOR(cm7pFMHDrQ&O)F}kK`0WXT=ykp)5spE{ZPxPW{SuP8 zV`IVdV>oe}wWSxSsFt?8)nhJ2)oy%1Qs{zp_(@66IRHP}C`U5v96-?R)_~rfJ7q0_ zf+f~Qp3jkSQc!uc%Sae=hqb*W>auYRfY-YXvm|iCoIwU^kbz#hXmi=i4@#2KWdR@8 zIBj+Yzw#Lkf+ATM{iH0nE@OkEEm+_t7B62voj;QyNwvtxxW{ zpu#${3%U&jRqLj=Gm*(v>2-ufBsYDxBc_(C zuDGm@18jJ=c_M6{U~35XueA0LOgF@7vUUqBU1jYpZeh%LynL%H|a$h1ITe+qf~v&3UOSn#x`!%Z;h*aQS;coF7Y-54)^p zu@9}a&IsiV)R&}2th4SDml$JP+S-alqXrgFx3zPrZK!?;<&fWy`pazT@r9~-`ofbt zaC(dHCuKtFebz?s$GtcRBrpch?8g4QAL`}t*i!A!_jlOBp~c;a%|&}(=rMy^bc^#3 z4TV?O5@G%Q)@MaN14H|$`+@k5MD=>yCU>Djrgo2mrW>pS#1+0RD>JU?2zxf*mcm3< zr9FUC^dV5a*_tb^W#wbHTc_zm8o(K=qrc{Y>Ma-yV;YUm5ml@a0WT%u?l$F{tfk^1 z*2d&=Gf{^ZH{oXa%RsQ372!RsJrUl_2~QWFvw9QX#|mHKRukXH3g0=_p74Fl@x?*A zhphcXxMn(#2dR#aQ10Deb%;b(D_NBlJ2#`*Ggt-T#tN>a1&<)^V%EsSop0bSW3_}E zD;E9I-2vA;N}>>2EHlwIgAX3F4ij@3po#W61MMBGme68_WEo!EW}?M1iB|fGc4J{# ztY43VMUPuoM07wcnp^zq)cOl+57@u7w4B3{>CBK8{be`SIDJaCI)g7^)g{KV+2{ zh!gb>G#LAlwOj3O_n-!cCuQ3O@kBG24siY{Yi6JwFLn#z`db>Ty2(+PbV{%)+V&#L~=towi6Zg*-mSrXs9D=W{Ovm z93%^fSBshya1=Vs-W`z%yZ&PxqBqx}y40QknNM50izJ4I#`bu4^JzpM&&!R>D#j$y zP?3nkJ=x{Dg`$d4#OTIZJkFV7c{?MuL3Q2rqV+TVezeq`4mDS*quqNiS$kQw>y~w`;@gQQ z7y+qF{V_Zzf7Dt4n+IJTU}B~`P%tJ{LdFW*My~o-5;FM>T__#ZGpOe2UDi#S<$!L1 zMbD&7)DK`fzQK_MyWdUj37so&cdFf9>zjDC3Qq5}b`*ay**!^`ehwAjx2LdJ;J{R; zHJtSn*j>S;Q!&lgM%wTh#V}h0Y^=cVZe8`7HK6z9W%Oc-nT(hFB44+*5N8;J?!+x7 z*5Zy+<7>tE0L1KITM-^yIWXLr360*c_7d%6BO|)8LkZ|^riYt!D0>sPjgI5V{v*~x ze1H1DXSg7c`j&N%HV6*Cg@kq=eE9E_`SkxmnIVvuY!gs@9Xe>659;Tj`W8d2TNtk% zwZ0(>`KY&1sdc?nYZiRC-%DbLPZOT}pY?x1mysAO>SOC9v>-Ds zOx<4mJKc&P3VW{v;rK_^s{&0B$Swag^!F!IgGYZ!l1Z+=-<1CFlGHwHXZZRP>lBg2 z1gW?FI>FelF~EOy>#qg_JXQ<30%<_vd|P{QC8K7lZI}eBE5673QCrxT*5UP1TUn5b z<}${QM{U>3Law$FC02jrM0Si9zOs%HOBrOn^>#ZEz%N^-9#!MBx~H8ca7lEE10a)Q>Dq7rxe^2E^AostB8 zvIKD0nF}%-sk!ijHB`6cAeS-`(Q;~LAG5aCg2p1ZQ2PDg)?z&4+w_dllKGt4lav_^ zsSgVC8Z2RdXmSh6Jf6A%KWfu4JvQ^eFW+U#0Feh1Q;`i8^N$c+{Ce)?2GTnFREwe6(8GZAwE(%`9pN!GBm^v&1yA z!0E+<+lkmlW`wzw+gXolR7aMa(x~=udFD^+(7^irN-Ye2|I3;x!Wb8B1;%udh1@Gc za7XNSYoXp4nUG!nuGk@?L{A1v3kA1az`foe9zwwr@~LgH|s^^jKL zIAeocChO5_v$VQ2dd{y#_l88st~(Y^R~`+6j5YP^W%Tb1<$lLl^C-7*W1lEFWGMHb zq1?-B2Umy$*~(lG8Wio@IW=!gv85gKC=3U2V?@uPzC?}aTDI(Dj1_*n>Tu|=8XJAx z^Z#<(~T-C<% zHjUR-sP7FedaY4b69kucz9V75?C>}^5s?%oWRY9_Xt@z_e#9!D(->wa+7h*^pd#Kj zOzQx5M%!9zJ7Gt(t(E?t#%c|9j>N<}#j6==Ttn@wRtR2Tr80v{9OVo59BUyrK%w&U z#!+z$n_JxmU!`&TB?RrRACSLjcl|(P*g4sj9{aLvO^1@m59oZxD2Ph3jfXz5w%fwI zykp(m;mJ@MVM~CQo7p14^-N?Y42rXj62}=&rVIRFmb!VWf_iQ543&hZi%TYAW%$3` zh7WCG+RJ13zYN3gYEFiyEhsE|wuLQSAf&f}{V-krr(xj3ZUes=Z%f61`XSzyqIboe za=A$Ur^Lh!e1xGU1E1c9E3*aO9F`=0=L?s|T9^iA*xbrA_$rONLPC&%N624f;1Nyg zHt=`Sz(?z{Ev`r0FXk{NOpDGmOWjP=+oDJ=68=a*FS^~tuFSfqi4o7MS&hf6i<+o- zK9=e+tF{OZrQuo)0(x0B)(_+5l~9prOVaV0WnTC2{Tu(-=482>;uUj_?*MrAROL zg?pW~@Hj#&!{)Yu5~VEeYY9Mp@QwUMe(;U*gE)VIUXG%_+;tpmPPZ*C@rra~V}5Nt zqZMaB!SF#F+gsvKCJSu}Yr&?8C?fxCBDcHnQw&D}y){aeg5g#7llViCs} zAP+wjXUmDLO}9KYSncXg&ag$pU#;_^U`mE93XY8$NxwRYjtrCZPWtMv)(-Y|v2}s0 z^$ioW*6Md;Lq}SiAJHU3Gd?c?dEl*h(; zJhptWqarooBficGqNoQ9&NU`q|P|sV3yEH zB*?l$3kkhemeLS%rU`VJ*3AL`>1uw!7%$!UP9;+v+|O<6z%4IpiDc1P_231QrKTY}pD z!VxbRX-Ko#nn7j$EwLet78VZhY9*65Izgx{CX3Qx=W7w&k%B^e+^#a$mIa$N-7bD) zSkNVUDE)jdOPPM0Fu-A}39^J>4omm?8saZ^x*-MCwU9dIa}gmVX&9H(0;TEJ{&*VD zBWmoQCLiuNDnA4JUA8{jZ>9v_D+%<9VCeE!!AOzI*dXpBUv&u~3mNkcSliV$J!puB z`C$x-m@lh~`O%8`-d@bh$v$?zs)N10JRQ%mmEVXZZkkA)eA3v?8_1}Q&ao8=Uf{8l z-Y*2Sc8)^5YX~#aRpL$tZQ5svEcFucx;)#q9Is`>v=Yfj>M}FUz-0@hUJyxz`Y7i4sLxYiz5+!dM=i z?rq02aJs2dOx8k!mi{6#}k15tO1as~=|*nagpC~d6YptP>@i5U2?r){^0 zmz)@LD;kqpvH}{D;sqO%;>=pNq*eb0FA=X!X#`<$vtnRoA6tQNnPg;Vr>0YJeu$Sl z1nl!>M!OC>g;MC7rhg< z4752!e+gim1vxy>mYQgCXPk|g%TOkj*oFvRU`EpQs2bTROh5;eJ@;5B9b_wtu;h_+&liw{I(OA++JMdRP#4x6t{Cp`xc(a%Yf7U zBGTgyN(Lym`&#~@0Qy=5kl)-68K)`y@xivc{D#qOfrnAra9b(-IB;kt^cZSeC;ni% zp*U&~iX0k&MRD{8kE63@bGN8f^w-SwFqf ztaS@m^)K)d0WVC$mBEDQA$GCTBw_Z^v3>}bS4($Gg45AM#)-EWl<9M?DWBWTe9kW- z!{_eAe^qC{ZGtUL`vKmWVC$J!Em3oixr@=FIj3B64?S&`UQ&0~anT)bip30RF8(m< zR2MEUuIs1K`f?GRLCQ%89m!9u@}>GS!{M2+#xY*p1}U#r9v9mp%n!yW}M%uFttRP0ckU6iSkA~wW-a5bu)0XSSl%S=jp^qqVud4b6J7x zXA(R5f?Us9cq|{w5VnPqbu`{Flp;`W>GP>U? z!|0pI=qaA%f~rtj;2J%8`ox)|M;ohK-@~fwZFz}rO2XV19%P(QM?%{YCs`>u#8zLp za=*7gy1s-lRsmIuz=y*yvR04 z@B(v&a5E}L&JfDc0da<)PY#E&LAJs;E}naefV|TbVHZP<%29`c>w*|liuXj$-)7sQ zzl+xKOcea%=Mx2H9k+)`Lz@$Y?<5=4u^y4XD2|T&O&lTnG*Osv$N#4|TCoJ<=n_*7 z^{$N~kU2g_xWwb=FSEH@%6i8U@(}|ACya@O#5*yL5*P#Kl)(?-@_3lN8aE2gdctVH zatx!+P_Z1tC@VsRQM^RQ!{~QY1eWz<7#U}^T#P=&(r*%gW3Zbocr5idi&-r7k);$% zznQU=1lxC8L*UX~wjuhs2o+Tm7&t}Mn20)}YG#Crs?HLEN0rH`5mloYPK>H_MfU3z zwp78Z%=o$zwI<`MPlSrEo)Id(xXAAKLU|~@HZUS)eANNrjxQ_Rbq_Avm)v8!THhYQ zBF#S>i?mo~K(`MnS166!D_Nl!dsY6T7<&~(!5vkh@4N z&)N$1uD0a}bH8RcXlrfPD7-3QJYf4TsXNR2FBx~1u|VEgUii6W>l6Irxw9-w*qvor zS56oB@V;t;@=*B)?*}y~r&~i;$vsKh>OL%g(VplOxhp{XXs6^a+Qx{anXUYDQvRX2 z@|`#b=ul2mm<*W%P&&F<{!%%L^l}=l&dOhZg~O_QZGY&O$TnH(dj5Ix$SzPiE-OWE zcG@DF`X|z?OvC_kf?Ijj$ z23h}U?(%AX__A$aPE|$V*#cgfPKJv2qS}VWnFJ$Y(bjIUaQVvc(R#N?>3CUi`i|vs z5IH0|EwQU?NU?525QBvM9qniDKf}l za`9Iam9yglpJi1wu96Wqk?10YZJysV}EWL??oEpp(L?ZQ>Jv~pr>9O-Okc5 z$^u%!z_y}slsf>GFVKVXngz<8oQ8zb( z#4ab=z=G{~Fq+`+>5q@md8=6kpl-dg@KoB zY2r!7fT_G~OnEg-d0ws@0;BiY0%rDMrM!n3eNx`rzRKImq}rsE2WNNLwu^%dwBEY= z!kdbh?jj$bBVgWM+Yx*gdGxEcuA))28D<`(>3THlZz7|~<$|ySz`gHt3;Wi~(=I7x zU1AcGvRX<;xTl?GV*Ft!>x-Wz3Rv-m?L*;YeAicFI_7h9oEXV?X^UPg%=@qHHSKE9 z-o|T1qZw7Ht#uczSsK?Bei2089n?OA}1>S(CJ zcp3h?)7cp^dpl-`6%0&{@iDD^{jkaebIXhW8fQGQhr<6c&Um($MljBJ;`PAyZ3E(X zkBKIu8A9tQHRWsif$a|OE_IQfodbtIu>C4NWo)7D)SC$QwOsspyy z#8DF`5G8tF!4IYK@1xa8oOA!P9T68eSg~WM{ztTW4FL6ll2*z$?ZDe_r4VeAy6UKkk2DkNG2*n7}6 zKzC!MXBZ~2Mg%<$q1Rjcds?LiO=JnGyMl!KV59)BK>3wYu;_7}zOy5Wqcyg6LN2>Ue4|C-{Nm_HKZ@oUqLOz|m0Am?xTM@=F1 zN_(>Sh*i*ZuV8Isr}&AL8qL=Yb0m4SrjFUzbQR<5ci&m!QH);S2u+-&sp(; z+Ym>tB{`nSOtinKwpyl306V;O&jXyCQ@0c(VY0>t$p|tioeFO|IFX{ zVUCe{k62h0?dT+W`I0J%mG1`>#+agqD%9N->R7*`!=AIY@v+QGrdA;PoNZIsM3W9q zCHC~3p9=4faLg1l%yOCl8WRR33n_Pw0@l9XPseIy?C#Y|ts+7b(!6CFLo7FJ8sK{++Eynxs`RP%)PqMX%|7?Zdd*D)~;zdfO2w5iJ^rS;O9 z?UDATTGHAE#`juoS<}v_VVEhh&qmp^#ht8FMmEj??})a4S5GPy_`^LkP%yC&PgguY97nx} zzBLY_ez3_K`)9adaJrQ}5!&B7sgG#V%%tjJN^1yOsy$IOWR-4~ zDnvXhC2ktRvPAn@uhu@?v{l?_%{)5V3-+cphm-8rYFanN&b8~&4EYSV$xg0fCzn+c zJN;7a6{3ul5<9syP1EeTn&8cS_%Zw}+vJCA*0h!VOKrAfXPmf!p*1-b{6bytxm@8H(daOpYT5G8HjZ@uRcAVPFIE+0$p34=iLzaPQJR!|9IZu~| z^O_TRgW}SgV+n05w2{APTcJ&J+Exf%Du-S=H@rL&qPq5+40mMN=hvRSJ=(X6T@(2d zUge8wPF1-rxLZk%S?V6hs}=`7d&9Ld8${mZXaT!R?2Tb_&gdApCe+dhetOB)6n0N> zG=@DXS2u#>fp~G3)_h7#2G~^34_oB}o2#kbNW1+vF@b~0dD$4)>99M+99B*V{TNi1 zeEF@CRnT+~E97)f8wF|;eKYeWbK7zoejn+OLe zgwt7DLWpfmHph$GSv}!eq;QGVtb#aPLkj~~lGssBUSj`~2#^bM2c(b29J87US<&(y2(~*oxW553Pb-KuxKt|_) zop%X--gs0XtEpb`A0~1cTI^Aq!O0T)4pG8NY4SKw77&}p({CJ(QlO$z`*b{$y`$7V zQ%qvuG|#s=JC#apaj-k@-_ zJzEW3CZHh{R~YRT(ro)x#)^-kjaejzquKVyD4jXm{(>Q(0s2!&xze5@K4s-JoYQ3c z1S^%T^-tqzGRs^0*d$DiUmqGa*>7U-wTYT+hbHjJc2t7L0&21yo}eb%;jDuAqsewF zR!aPZClG(UwGV&B+%qIW`OM$(N0aT|32L(4*Oye!1U1<w{i2p8A0Nkz z#I^GNOZXU1$_U4;VN*udL@u^$wtc%e#7Ze(KC8KF4t8C&o42{nUL=0;X|8`} zXn(XCG=2Wxnm`-rT@MHG?0> zYH3Mj|BB#F`ou&?>)*Ydn9OQv20uQLEkw*tq=g8rD{Nk2?-*^G*QuBv2xBX88P119 z2dJJCoNQT^h|luP2~HEseQ7M=G}bB_793(>cH4oin&N8Q_fb}HXJDFqoY2haWzwJv&U#&xXJZsW%Lb3K)Rk+Gs0PRyANXo z{8IBdR(R)jdw22aKVn#Xhy4mKyo90268muR(?0@#zQjJYHt?*a_A%o8KLYn#hRHqG z2T^`w?m}nv&ked{~kxZe?xBVQOPsJh2sQe*UJ2+88P(26Yo_{t-jx z)%M~rh8H{QRZmZD2`dklriw=xxXhHis1Wz5zlLJl<>#8hm`_T=>qPYYKO*Y4*1j#2 z^Pv(p>LmC5BlHLB>_fenlTM^}NTQ^`?L{ZSeyc7{F=VC}9XGt_IIBf3>Z@Cl)d|do z$)*pJ18K?3fg+OCBCG6oG)H-B=0d%c3n2k=Ax?l?D4iiDeo8k@!YhK(fp}ZeHuX8R zN~^C9jrM9w9u%?BULf)ra`GS_;JBK%H`+&OwV`S7EBgoNW)QK(zM?kpJ6r4v#Q1*z zZtDd{_WIFnuNsW{F`8J)P?)A#oU8(VF{`D3&%7`!7&fO)YHQh$Y=M2LlQP6c)`qNh zKeyUr%xcHdCUs&~>#wYaw5a#zv`kCXD!u7Z`zwN%q9x{wHyIOT1l|I%we3XXaSaenQmLlDoigC0qEro?j=M=V`BIBj-o@-mP zY`{$r#_Yf)V@{63r6;36N}y31l|Xjl%}qPiD!n@s&ob}$szWgBX>JdPcdPBOUX&<+ z4t-l41dlv}N!n;elMGl3;ohD0t7~KE{~!BwG5a5Ztxx07&QTKi2cEX~6Sw^%aQ@S! zF|~nB-q-#EhPGb7$ncoX_gspK#phV9IrzSxq6Xjntd^qiUFHzl z7vy_JTF63hgz`KjK^-S2L7s4$VKqGgo0BK-=B6jqDy7kvmy+)HRBD+bB-M-!uq4iiF7of(zg##yVZ5qE; zDH)%an#O;Yp(o?>W`y#+altQn5nA=OeV%yhAK{X=1~>D9a}y1M{S$&S#OMErVdGmN zSJ%dHd15fW>GqGnm;W1*6v~8gPevyPcNZ5KG`S3GCtao)qz27w<3*axjnAD5xcKbk zF_x$_3ygVgayJo^W(E&h-43OCewH4Q#!R1-24^1XZlgg*Ydf_WRJ>WzImH}#u5x>T z2NSNXK-kpaQa}8!tk60N8zbtU|INcnn)-pJEVJi7K)3Z0oC4;WR08?|N-d4BHQnC1K8^7;O1$gc);MqQw#ics@)R8; zzV~fMJNt*zR1a{N)k>G3o&7)28E9w!JgX%ke&>GBu%#&m?d+Q_FiyF^VL11-{kY&n z^mI!^}~1~s6$JShp9z4 znNr|WU`r3%i$yzD>9fu=NpaV@rRp`)Ao2&?R#@>Z9x3eaq0vp0G7M%Q0Vw&Oxgx! z>xy#u&DaL!do!Mx#XV2C4cwp=me4k^CV$a3FuqA5Zd-vX7?1w}?2a`uYbMOwF{Ib_T zRzW+VSV2cX!_RuQ+VG2NY3J_Fha|dyht3+pUw?o^+fg+MHUA9>DhzSv5Y7lWQ~d9D?SwE>Db>`Bf|KL zAxKbb)3U@0RuI}~RzYZg@t`%2@^)a22yI(@p%66=iI+@9v5YYGW{qjL6f05z0{trI^Voh*PXUys4K_|UHs5HyIW!&H8y$(vVfEm2wfPpzDk%G;&B0_=YBZJVOH{eqIw{-hyGbo$Br75gPa6Biz z@TEkD0zQFFiH@G3pO}@#ge210C=}kG>zE==n02&8rhk&IHX#`hNu6X$-9ioeoI7>A zHl&Ri6O^OSHdtd>N-20dC`)lv>*;ME?W??2qAhDqnQN;yYzEV%jmliHD}gbI(`{M` zl%_fQhy(_OMEb(Y14)h6wR05djoYZ>W2b$Yi71`w9>@2zKv;7 zU=}N-IofHwVkmg2T99$+?eryvSj!j;iFG>{Yc&_E-<0%3Q?H3iuN?dPZ5*F@k&`nc zZ90iN(iE4{DrOIsR`Jf(V+YJNWLmXPa!P5{JMtH$Rqr5H|7n#y!!f0HT2=F1h6CRU zI^r#~aXIRcS?Z3+s(JOys}8-4ueZ$V<7fhxCa1)#>x9<`el^LkEXxn^@?UU%g5RU9 z`LdH_I=C%L?M?<|n$@ta8uY)(q+wGIrFgtHD%+7O(pg)|A{xSJt7Cws;n72fael5l zYeVC6H-%3OU=@V48zF^*T|C3HJXy=|QFe8$512lytvWtu5cN4ex12R6@=FYHp0b9EO_82U$~< z4}RIkCm&3dja5Dv(;k1x|200OTZOmuznj!D=@;38=Y|JmfeOh;DBRl>AB60Uw`W>N zcq3A=(=X}vZ}lSKB95V^{BUC*$6V2ll~R7#Ru&Ma?)NEJ3tA3&sV^R<&4I@K9Hk5|Uj-R?t>!5KL&hofBk-u67#et;pM?DYQj zD%ZZBRhYT<4pu6gVlip_WzX*4qbe{wUf0$ZW2X z?E?mX2UvxfY#(K%#NPqMA8+l$pK&$qz5fG$bPz8jLmk8m%`oGJG}k0U9mF$DXXLO! z8GkD}CD_bNOf443D5*?PNAWtC^t=*mn^|rq*m{Qybrg?5sSMlX&NwFMMVV#T{eAJu z3_HcEwUK+8D5H%7ZzCP6Ec%rhX1*Qk7Y;&4J3bQAdP}ttgV${-(uFO z3>$&y0viKT8Met{g31IrKPtms&yaaC?9h8mA!N)MEF&D2RLtZY{cw zd?f#rcWdK`{}VpU*=sD59gpauNe9z4Nfgp(PzSZ<9mHxe#qI#9SA-?&i5-+M$*h)y ziSNLKY1e@XlOBWpsk`e=R(cJB*QPm^2~I=C8|#;hh7A}U?BgG|^zC5uOUq_Bt`a4z zngY2$CZIv4EA+q-56Z&W5mhHeL={3qQ_w;3sui3)GsiZM2%JZc7K+Hqv4s>{>@Y zV=PTEwxAZrM#VhEvEHMDx=|;tbIiBwm5c{XPJwOLIm*PFj65;^n$p&5X1Sp)d|7CL z_{=O;+Ip=P?UstE-9EH!H#+86&bpQM>Wz*8;!lQ*X#b{Y|7Mog3S80AbWpkBrT@Zrq>xpWzNJeOI4X_gG@WC?&!%%cKVm^o)42hXVVcej zl)q>?H?Sj3=fe19DKyH^^(i&G=R2yy@a@ZrJ00_rHpmX0(i>x4hrf~`_uraY+LdpE z)a8y|afHjr(cC<2h=iRpyBAszkMUR*{(=KfjQ%lys$^!8{Igx2_k9%qTwne)?s&*6 zq_T1uRV=-}Ji#cW#>BujM3PpRm|>AW#@?o9cl$RUO)B8R(FV->@-=}EW%DLd8MuSQy&-WWM(6`lR?-hZSwE+G z1?+yaQ2vs=b=A~>r^2fbd>;p!?ivsV)k}X4gYTbeJ{A_Qa!f7pN2VUnkrXy_mO}M? z_!8J#KXhpd58vZBDPA%qfi9z5C5bP}0-nS(CZKE|&Nh?RI2MMzZNhal&du*z~)T1VMk30 zZptUu;jH4MS?){uv_Hy6{ZTgZ`C63aYhbu|F!o+Yd(pU)w@0YU{}%k5^-*g9q*Tuh zG@Pkq zJm6>}hB8@Kr8vjyr6?vQ8ZnOtq00x)nK)^}tQljc&RkP|4L&AwU!E26H##Z;cxlMZ zR5CvPHE5F~O$=a^%R-$cF|%a>cg((>)H_MNI?0E>Izi>M;-31gW+C=-_)Hg>#r>F2 zC-X5Oy?rOS{GvVqt);`ECmaJ}{b;%zH($0oiY(8fhPLc#nJ#KLW7r`m^FK{=3X|e} zx#TG8Hs_XrI}d5jGALdAbK{y@9&&WkEMK}!`DIP&BaU_&E^76C)PdiA$u!-TOnJF3 zQ-)>Ivr(2=h-uT2=FMQ^*1|AIebf;KcR%I`M6#r!J&2RoQS4^fdNK$OMMRd+&R}!sCvfHBvOK? zrKa!YuPS)x8Asd1W%4)ogX?60F*FxGnR`_nD{w29#FfkAXJuo`r_RY=luw;QVdU~S z$ksF*-QQ7NJ|FrVK3&G`I{SK8E;OleJQEh)*+Uh_pU4f71tQKYl0#2>*uSGu2Mu5I ze$`Q=KKK`6ws3P+byvO2J`^szgUjZlUvSJ89Zc-takb`tXqIPSOXxCLi-*DY_iZh@ zGC*<||1ip7oG&?E5`!3obQnCpQ}(jMDXwPaV`rix_3sRee(4?uoA=$2BBrt0+23`O zr+!d31Ms@R;a5=6i&-@xtt6ySvI`eC0SI4ZXSI&H@<`j3Vlx9Ee3cAe91P#%7$;s} zZ3yYJiqp4PIbnX5Fvr0gdmZUevX@8_(q|dcX7I+VxDD@?Ec_+^*I2H_-|9_o=?q>0 z)mRo70o7%XD+|6kUN}PJNqD1l)mx6qdhaZVdcf6M^yL*PPCHaA(Yk0o;qaF@ZNj`S zB)V3XFa&0Q;K1d42}w_G<8ypJy1K%Gl7RtcO%w;=dR`XIz7r=(%)FE6#+bzP^>s0w z7xZ(MK*7}`0=XWJW16BZIEgc_cI^v$uGg$$kvE+lu>a0rA!H#f?qqa^+0prvVbpt$ zX<~zKTX|m#`{1A($5H)1ywYQXr~b|cFW0ug&JP?ZG4muU zQk{_n-X!&d?9gMu+1N-+o?h-#S_T=mdNU-mf zVBfP!Q?QFlu*kMl@ z!ZSS1E~qj#IVACP{AjiO_NTD2T9R+S+*$6|MQxZ5;I&e~>I1{AaOQJIPHoACE6KuG z+;ql?|IQmzqD`wA%idO~{=$(E%7`1Hu@WX)XGyY)JnErr)){g?a|{=^G47P%A{z?L z5NsiJDMcx0pkJoxEx3&(^9`q|(#o9*6Of=)_`a&fdBX5YtN|zH9%mT>m_PN?jD(2+sLuXpv_-rv zE2&)i#FQb_!I#VLJD0bxB8&93+-#VB$dQw1x=5tTa!#3yVFsI<0(&g@?DsE+aBZ!f z1a=Prm_{d=z|jgg-E7fOPI>V-+up_@%@|Ho*etx`cXN+4C>@pDAueA6QU+Eae^CZj zV5JN!&dk6_)zm}I%YxZCE_|8rYFDp*J#oqzR+dW|FA z4nQw(`>}o11NBPX%3+UnXw#b8zjxp>>@!d>dW(C8mA%EC`WAlIV#@ChC*=L^m>0Af zg;q|smWfZZxK${*-wF99E6w73`i$_2{qQmW^6UuQd_U0`!vA!{2R2)uqumAX{)x{| z-o-egiTX}iz=z;Ft!m=61UbSNx*;;SXn}ZxgY|O;^0X(8z;pChP2_S`hhHv^y5JlF ze~F@0yy55!hszHfZ30(bbgZgm@3hch3xI`q&R_53fr~);7r6JT=q$6%a ze+LHRuvgKcI0PQEICEj?FGZbT#o-q8zr!%SyJT^;7rhyEsY0z-qETsI?eVM3M!x8! z#HZao?X+oSNi*!A!?{azbnBorly zdl^%tx0ikOhL43wueit1TkFK4JH&nlb>?t(OZf81;x^(lR;oSRt;B-O;OeJ}`_yj# zeo|4kIOfw{-*1Dl$weK!njd&B8x!-6(SzOUSV65bE3X> z@Y+FIN>G9wyVz6PaaxmvzubXEy+aFo9bIf&du_L--T|>k!uFQ+>mBr1JEYBVCWu(Z zkhE4zS6RS&*l4@zVIzE=^f7p)fq85o%>E4|1nhOtsZ#)-_#3In3C?X+@xe zmLBd<4v!SLf6=J5#9ovlhkpD9SGseJp6!6qj-qtYjgcnBIURL`bq`0KnG>P?zKt_2 zP$gO&Yc*$vurg*yhr?w7_p{DQLJf25ENAC+$6Ggq{lB?-!i9EDnZ7iUBc{D#`6;9fh<=hWIc6Mz@bcM zOrWOQf&9ttcn9N!B>K=-q9+X7ZIia!DSqGp^>F$lhN8B4E9!KrD+F2;7bPmEue9Mw zks-xJ8L(@X)2AX?4|l@ex!qcdNT(TyQlVNXbg?`AEIq_KYmafAXX6;tsrqOrX!` zl9u~-pnM}NTHZZDO;bAk z=V&-2{2CHmuc#aAR6aVEaYp*QT^4YCUSmqCk2Li8X0G!-aUTPvv|)3n>`bwRl~USp zpHrm`ym@`o25p_mls3{!{doQ<1ez5%9}M~*asp{%d!&kw7*C}B{dK7S>$-fn>vQPC z?+&h?59{w5N`IH}LrOm_3%JtXHs#abG?adEe2)nt$Yq9Oea1!2MdPCOrkC7 zFXu}d9=YpRK9-rNI8-81*wNd(076bEv?hUcXA=)>DuhwT3_;pMTscpv?g1Bl=>jke8h9U<65T zx7MY%m45Vw6S#JRSS*>saPSd}0D_4zGkxyd0kGabEfp!&SjYMWfF=nWz93kQATCJIs zT|4H-Uc#71H3vb&`s`5Hbjca$x}iQaTgCiP#uRmzb7cXK`7$M43GyR{`+?Uu?-x}Z zD)5-smU(dVkdK^#D~7pao!w#ooT4^B9cT7f=ScnOY?yp4E>b+p$de{_{+%Xw`_bgA zLQFt3&Hzu;%+a6B25q<#zct91B26Cf)#P?1?W2Y!yFZ(q4f)fZE_m|U z>@@K`gEu|+XI4rc{Jr79ym`Gn_*)NWK6dytD7hTNaIWD z(l~DH`Dz^J2Ll7tvvwP#&T%G++ZcUP^P{qWtGUt;<`zTEEilOzFEOxHFLi4JgTlME z5wEdQ8t7hvvDe{1$6ME1xzC&Y7|M;h!FfSH+Z7^i#2EdJ@jwdwMJcrQVtIpZwYy)M z!4`Bq5d@WQ9&HRi-&xO;^<-Cg%HeD!PBN}Y&C%U_)O_3!>qkS)H0SC!59eHMWYhX@ zKVNuv8cS;$uZtxJ|ql&$Jq*Il{qXawXIMb~d?{5tAbF5kS)_#)|k^p$R}A>A&+ zX1IKLhq%DO0?#}2KTYIZbt^Xx3W1#E&ck}E99Z;ZQ5&FrpZxOS#ASjy4~T-{b5g7BG6GyLol#ZmH5;D9ai;!&3#tDKKWa6F<$@ z?L;sPS`&E2djme=Bwg>R=V~9Tw3qU6(2BuNaw%$>ik_p1#g==kB8Gso$(N1=@kMIJB!{I zjdRU7tjGEce&@Q&BRF3}Qe4}kR~3Z7zNd@YDQ!od>ly;_&lKeXJ{O6XXEKW#!rhyl zWAU~0)0>^0MHXX5su=eO5NlmWF0tF&;k0@Cc3FSiA|c;KTDU6yKg=mcZw-8Dyd8ck z<8Egc(T;H@l^s1m7Vw@ST`8btuId=(9~&16sjYfhA@XOuUQqFn^CdBcBMIEK@hjP+ zYb3>Vz3x%xer*XHcof$^mN7!4$J_r-kE=`nC<9>j* zJ6YR=z!Oh9e-7%3WZ>jYy*h{-Mv!_yybnKh>qn-<2-Chl?{aaJWEK zqK`b&yM9^t_jz#ov!eFmd&UuIFu1#qcYbSV@EfVY2St*s{}*PP@!eHw`i-~pR(#}) zfiYhdWvu(Jvjgn@s>r&|==*}*#XW+0AP(dQoGEVLF!k`iYZYc>g$)((!1;_2 znESqS5}e+H>zYq~SJWOVH*}=3h57^CVcLzp&nhHe!9CFcTY2(NO4W`eLU`G62v!;J6X^7MKa&&T_CbpDXl8E%ZIk7i&}d%ulHhHdcKPCW8OY`dSmMl$o{3MEu4PR ziQi;7dbAO2|H^r9&{*V3j^526|LvT{(C=5AVvT2}NTd;t-RSEc#VlVjfc#^&SQf*l>Q9Z0cMF}G3+B9<7VAy@kc?nMx z>^knu5nUNg(w(EAj%X+@pf1T?&M3J$(vIGMkmsUcpqDeHu3;cx&3Wx!9^trnt?g zwFR4jwySS)?e;6qIPGGsPkU`DB>jTt0c&9&b9JL2_@GI#RXpkgqE9V=QNhJYUNB`I z{$KFZoL;EnBJ18xjKVopT<8Ct+byDg>=r@u%W?20!_0x3fbJV#- ziB)@7cR79(#bx&zUrRgZcBt2&bA2K7i!bi!#c9NYc&p*%_+q=*${5`Fm#aj_<`hO; zFjB<>zN(m`R3VRIHFSB-4`w|hkEkRTw}$_jc&`}7q-MP?9?oo^c7Csz+I zf`YW-ZX%M^qM0Y?p+)4lO>12Yk1xVkgqlQJy+@6c6Z$ynW#phD^(b3M$q4sXt%!mS z56W>P9r^(0FdM>L-|GE~)Q;RhCIK0yuacnlw(S)-)tZXCBPOLuB1SHeq#|G!r#caAyvNWtIG9;Z1)2R)K2k_aYdSZ~Er8ADykF@5)l&azeghe_PzNK17U>4=+a3lG1)pbsyGQC*8$i4lyHRFpPU!qj!l zZJZxv(OtXWTDnpLRF+l>FSc^E6s3$4sjKMge04QYiPI06kU{!FYu6aDltTsXS=#M{ zTk8jfndSggJ!n)2{L#ksgubH~R^=DB6gwF?QrDAzr>>X$sEaNFoNnhz2~b`7wqmF$ zM9XbstdPFm^VQcQN?#8e`l=}^o+}PBC>nf56&Gg&9mi7G*&m;``I*(r;}qIYe<$GY z#dM^?djy(Y+P77`MxeuZF*Y$T-iud~Ft~?L^n9(X_MqEpczkFGbnT3%1sisD-HiUf zs55$2rUWy>iHwFXO?Iu*$FqCX?hx=S(SShh)ux9!H`Io4LDKZ|l?K1p(-p%t6&aBJ zO~-~_vATwcYdB~iJt@5L-FPyHy z0cs1+)9iP-+KYvZ2~yUBvVdnJ^OY<&8Oj=1R$L)!7?ga_EPA5vz4~W7P*MZ>V!FX? zJavb!31DFsjQ%w|UN5(rPu=O0tZ?`VM}NO>T1W8>lZ*viXHZYw z;nWT-OHVc?jr3)SKbD|gyW=G&H9dItaNy4;XuVx?)VqcI^IV6tXxQ1^HCd1D$=*(= zJkUG@?#Oq&s%1mp0#`@Tt*3X$=+2&$h1Q;D^nfmfJ{RHe49)NW?2mlT)2uMN$kjqv z8GUL0nBlU3+rM*9m9lm0DWk=B%5aidNcL@yl@}a+@OebMMC-h|xGh9Jb~Fjz?%}#a zyAw)#x-vx-qa@v3Us{)>c+SyM2Y(eV~523%U9eFdqNr%72zWa9y4npuxc=Nl>4ztMzPz<3rk$j2W9rc zj;wG64rN*R%d6Y(D8cGVZMyZU-R;XfaP56RM8dAAxCy$azblYeE2Ox3yIv6Wy0y7z z$9STCZGbG`ex0slYl-Z*-C7&vDRaw<{~Em(#xeen(Q8HYWWAQaXT|F3wL+kDsH?{7 z87_Q=u@Hs~bCrs%j7j+_Psv8J!2M87)!KS>NTcB8;jTI2c@r_v+i=e)6J@P$n4s-c zzatwu(&GGZP+r{&-0!`4-uz+h)SEx|p&rkefr%sAxemRK!I zxDD1bw&+nedVb|3E5)w81SFQt31x}%GZK--&j0dTx6wkEK9r~3y4eO ztzQne)0!Puv+t&2iw50xrAEo0^EDCC8$sNOk9-ELG9)t?PHk|d>MeS!2k8=c6Zgwg zdb8ejESBLD&xa>v+e42^X4GqRoni0%;z>E5pZgZYpWLz6ydcRir%p0mD~cz z8|P{g$AogbTKR=u(B-?_!dPY&PhB$ z>}}oIE|&XLuY0di2mK~INc}~32b`bek}o}?CmN4u-UMeRyV?na_81)%j?YQI8krF5 zM~?Ejuxg4cNgvyrLZq<~B6wTrXk23zAvMr`sw+)@zPEb)aIQqn17$p;C7%YlW6qN(iMzT*?A>>=?gs6Y{8yHi)A?7 z`Zt&*|A}1IC?jsB1SS8OC4Z6s%<4n29?N1~J`G2YqJ0UAu5*3w8}JW{r6vpX^l!;x zv%pQfYIWeTj>a#80rOo^@YP4zG4SQ;;%Q=&NrDDEeLXTR9}fl?GZ&XLYJBUTR`ojc zQI7}v;jw&OADEqJOVk(kp+LrOF!i11O3^-rsqcYiGv)Y9M=}lcWo4>SSgKbCuIR2*Ek%$4SI{P^u-qDa+vX5l?Jku42<&Q zM_(S(ll#J=tGc%osjNNaxQTu1n7rVpCn{aGuumlm#%P95%N~!x!4EF2H6U|q&;xVl>^DQx_%L3Irw^fV%wC~`1I5NqwTu`qbjzC zy}L-sP(nx+fenP-351euASKC$77}`g&{N^NHYw2h}z+YtaoZ!!Rsb+xlk>Zm>x+IL0jdiGd!!s`1N zlRApHGnFSfn#9;Z2@`dtU4KbEfwXCGXa%nDwyRP*I!Jd6RY8m9OlsaW;XNS+4)uSE zUpUnN$&J;ib*!`c_SLDgB2E|UZfgjC#I6uq;3V;#E(l6oaC=M!@DHg!Uw*#3adp6JeTL=YzMdq?RIzUmls2%XlaR)!b* zN3Kszb^b2Irw-ww)`z1*IQe*o^Q;MBjJx;vbXhA>D)##A04AR;IFP?! zQ|gp3>UhGY_`wbhV4>4xb7})Nm>@0MoH`QjWP{FfZniOD4M|{<_^a@dm?&m^B;eJ~3y9-lavp)ok zHlFNIi#(RJ2Ysp=LSIhGpWt};^}0tap9%p^0pP7voJxGb^AT)MOLoFKdKZB|-8 zftiobPLAhEzhw?#IYee*gg8x5y)q2j7dumv`LWurR%{r7M#pV|9-`QH?TqY6KUL&_ zeaJDu2VvSrX`#XQr*>hBP3#CY_4zx}yga{(C!wg)u@1I7Z5uj^&%-t4uplqbhd$tm zA(-mZbQE*Zd+zoQ;!Z+61w4{)=#EE(An4HdieKo^_jZo{pe=OHc4^IX`HzpLE(nX@ zFk5l_vDEJDIMEH=^ATMTu-!RG5s0;yz&nXgc$|UaE`oJ*wFXogYj0x=1sJo?$Xbm7^|T)wA4+8Q>7P({b4sVaXm0?Z~H8xHDO1l%Nq z3Wug^Auw(Nbm3cww2E$S2(WNhrI?D*q&)t|qE>w2Mqn z@Z8S+sR_#^*Xb_uBiG*_#znJONgJo(s~V|3c8$P_?^)OY7QZp-dD2NoW4H#a8mn(=02e>aV7@vI7flbSYjbj2A{R zcWe5Mh{__0vH7~n{9ge8SgF}w z>dJq=>C3c%JdpwScjf0=c&hS?-**_s%4F&8g+5HvRe?mQEGg%@cT#(@ss!95rvk5% zg>o9D_=eM|?MZJ{_4|pYA}%RSP0u%8>5#+Pn3xbEDjXp=A{=oPO}N@&iDB!KWe!KQ zHYyyUm>7Si+YaAhdp=%tG6+Ik*fra77fU~LV!om^EAUAzKHNfT( z-O#bk(gi{OxAPc2Y$x^N*IHaE&yReNI*e`5)G-x|DdK`GnIf+CVR(wTcmY698^+t6 zFHwn!-$B0<$`eN@M**DNbpPi;jPlTE;MD@OQq3*=!a8*R$EQ zZc%2lC4A2}Fq^dzSY$S{<#*$YPNX_nJ|!o<*R-RX+#b7^R)kif+oJJ##L5T0)s$%m z`f@I#jKo~VCJ+XgUkr4^3C!rn+kFRn+`YTW^ddDFq!)Lye^ErS={-sdW&arPN0#VZYS?@DXRz9yyON`vuP;cpNmQDCj)FF_@LBUoC= zpQ0&wXU<;~AitdY^WS|fiJ;@;P3q8r8oamuj zayEu;g*Ml;usIqdx5GA9CYw$SfD`p(T@YknP;l$Z;Ny1JQAY%tfu%WeqMne06Ln=h zBun6s%$uf$<5phtPFHj1QXv=Z{FAhxa_auHX4fT;<&uwDEOPj?0@%q5y5FI^pFUaT=vvVrfGrhzO-%CkR~Pxusoe8S4(X zYVyFPl_sW^Y$dvr^pKN)n|Q1AP^Ip22?%JI7P8PQ#*dYCwXYaaCa`KK9poTAA|y3* zGcj@!(uEv2ax%m(961^Md^vbmm~5ZRqcXE&T{Eo1#Z}(bn++lA$| zwH~VI>Sfznj4xu&>io1feHxpt8OTJ=WH8sxl$JcXf-CgRQz$#MJH^X35n#;ZK!wQU z*d}(D`(^_)Kv3Mkgzj=6_U;~xm<@-klJOL;;&8QeP7oM$*!9&UmMdn7%|`C z7c;>M@L5(u?D{2_gAZ+&zOCrwU9Q1KnYVOZ*dYI?yBg%5XaG6Lv$KY$z_-f9R*LmB z@7MfH6<164lt7|G{JrjSh`&du=^_3bDa9cUU~-64cpTzyLD!zuvYqoyfr7?VGZs}6 zQ@d4q$kc9P4}c{3u{e#YwxTQXGd1CH-n{hIF;%OoVN1w`n)l7_@I@7OGB2#=+Rai4 zS=_JDWYwn=n-}d#a&<9Sx4(ph%yw;8GQZrwoymq0XbiM1bO-U=Ibc+`CZ;c3!EeZH_jNH~)1A%G^~l;hkbg)5Le zNi!)zz%$euBD)jTIlI+$b#stW5wbiCES$986xir`-V(pi^}N+1O89@Eo@X9$?=)~tc0?c?xB;K!73Xa}=@E1jZ#8sPG3@+eLzmlm zLx@7%#AjMIx#?4;b6N?5mF}r6iJLz7(TI3bikm*Ad&*580v;!p=LIn*gU4t06YMAfK#==AYX~Wv&^0MFp|1d| zh4y=P5^xh|HKA|oDJOJ5!&I$>-ckU7oNiRH^o&k=QAlv;h&ZfX5rW{bdR6?wVfAXy zD8s6;%eB%vtbTX7a@iL|Askkp=z<{Ag6+3HtT1;8_XqOW4NX|5Ew6x;#L3n#JUE}j zyeUt%7QX_}!L+6L9h?qy+A@Nmfy>aWrnIHA7eNk^x8K!Er7atnsxfVOS1&2m;MOLo z048EqJ|y*k*ytf@uTZc0i@Nj?qF?>?~u%FYGL1dPV6h z?b=0(|Nd;}>dY1qm9ewT(*;4sw-W&3_|F`fR+fqGzlFX@P9_6iy^Ck^7Y z-F#dc#B1w?Jk$}-)&k0S4ZkDvC@H<2P%S8L9DA5j6bB!Z=VTWz8lU01*I>_)I$VM$ zUuX^QMP|B^jF)(BCdA+;C zAaS5Yl`sk5i;u@P$v)+rEm%_(lZARbyMjN9#JfSVZnaVp~@WZm9X?e^Qaw9fXsdfR!&@o7z1Wm1i=COCSd!K|mnY5_|55oJ=s zEH*gH)htd+qMUtMz9-97C5*L6WCch?Zr06pn6)M1$X1?|=C*a}%|EN)YsI>dT5-J1 zmKjah-XLt)(Y6wNZjP&AycSi3z`&57&Pz)PVSYOGhUUNX4z|kVCv#Z&-)WUM)|;^_IcO zeT1A2PF^FW7@Po@3{EIK=G}J?P|UmE(_3yFujnl|j+ge9iFc|$p6lIE+BKNnr0631 zu3JRyL;l*EL<;5l=-!Kwf(BP{b?H7bQUElJ6f}UM_fu~fDG+&rUN!*0;-ley2k~&B zN@x!Z5?n$C^!sk{3;n*kPZYnOHpsQa8YGk*>>9+n6J5~nXX%0<)7v~YpUwBpPn+(D zKsYe854wDDs$r4M*Xc5xakA6Jo5(e}=jqJVm4iibn&UV@^B*mhBhLkx_7Lo7SF)>PxU!cp*D zz2^yv9$(M)iL%Z=!Ox9?@s%&I)U1&-+SS>lhAqUEq3{vk+XKfEb^VL!YXtsmA1xMo@V;lBc|ELO2EVAHLe z3c4W3^fr%WXY=`+)5`Ep<6R>h5vT`h_m!QoEI&Wq)!V7_wxvYgcGUPuxl>inpu)KSED?-$kSpy)S@C?@QrvX?S;Exip*<)B2W|hR`$> zn2+$pJn#KHe=6j8A0*}IaPJcZXnB?A-Q5=#h1Eu>gb|?>>^%WMk_*EZ2{~LCYH}(B zcphvPS{S}Vz)jrM!tm|B(%l0Zx_b+~A^;Ez!)RjZg(2xeA;Fh`25YYBKiD5vt7ekTtC33W38+%2r|8GpP#oQZ9S{63CkP7wfUkIu0+_6?wD*; zm%rOS?rZ6YAVDChpIi@=>K9xOd_B)qtyD*#iHj?K?A|m7uQ}gU)0rgr(2>XpW8BhA zs8)*49|O-~F5H#Yi*+Z}n61Gt*7YZ)I3gi&yuj5V3>qH}yqy^a>=K+|x)FZ3ciD82 z>n%2gl%i}KuDE<`4k<<1rtlXRyB1oZQIoYMXxo&2azm98#|Uw1u6LL|;32gAf`X#DbZ%e$}4<46q z(=tXNDkmk*4I0M;P9{4{2<{o}f`cB=jS6p!s%_f~n!yxiJcLD?&;3?~Z&+`{FsjG- zqb?u6x;O13R;s`5`Z)Bp{_3pSo&Dvxz!z7$8XBznU&1H$m#(7i<7tao3IPwcUF#T9 zD4Nce(w`qY0mqyvv}lY9TA0$ZF_QaB#{x{yv1kA#ZDjxurwA+d=jE%m&a{E_0x;eJ zXzLGI5pliYX4?fNcO0|V`eQWMdg-(1h6GQbWy|> zD_wx75V5KjQ2~I6LAN9(J|XPj&8`#dkS>>JIW=ayG}C_7W@op!DjV#Lzl489>9wlR zwU~WOz|p;1$bXVhEC zf_rW~F^IVn@N>oZpqJ7r@YD5u75KFVt{g`MK7rN)q?fNVAn4_Py4O|9$l}gjuFlTZ zLNe;u>uFJCi1px$Y54~0LyB>U-u_rxGkfj;JD+|GR?NdmwLT3oWI&XVX~Fxl75BP>hT`kH``$BO0QtcGmD`5KSE&c2`p@&PB7YE2C z%YHD3Sh73@fMUr)r57vu!q;3e{Kb6`{FEIC0;_J0{!MGHyl2cn>AO$AomR-I5peVa z8eDB5ItNN`3~1;FG=QR40sz1pJBUod@f279a_{%m;Mw+0bsVG@hXBB;ILb4H95~85 zieEU&I}VI8%4;2Tt+I~tbvrth<+ekR*%(HY!sY#7T@d74Pri*8`| zlTtk|Jw{4#Ub-JxEofhf-*-06$&cNaRwfJ)!n!`U@W>TzgPsjTK5sAI-q-* zlm>$WAA5_GqJS?C8M-p8(Q| zi3_X-pMN{h=DK+NHGG2CMX!@Ck!u z<9&WPZ53-kz)`)?r(7PELP|lsZpL64qgr^^9V|UO&_oY!0f++t(N5(C^PGEJnZ_U5 z22Kkwv4ITtNMBar9&u?wcPyMDP6Shg)Ho4L6~AyIm^wJhL@@u|NE1QUdl2reCEDX0 zuu2yMncnssfWgi9U(@h;lzHqy%|gxwyFqX<8|)k`XM+eb1a=ITq2SWN!BFsD@56L( zg5UW8Ob0szNje=YCp?1Ff&R|)UHtS1uDL6c4nR4BZfmG?*53x+Leh`gG0ZTT7pFZ+e7s#9aC8*UU6)fxPS>wDIeND{7& zi`1Yx04min;bgE*kwBZ-(kq+EXRv`LP@^f|_%ByVIN&h&wnblidVMz01Z@{Gd}dGg zSm7sr4WC_K7zzIEV(E$D@aN&t{Ma%ri}54hxEiock&r<83Ows;S8-%{e*2Voe)`Vz zM(jZoFvx%XYiK!Y6a2Qtv&GZvvS&@u^#s_oVS(5Zcid56Yf^v9vMr0YgdR8#qaj|$ z&}|qe7tZE3Ec(1edIf`>B5be`wQ}#1D(q>ec)M?5$J&BYA|`zx`^E%q2QYp#COtI_ zUhDU(3En{JmHE7q>81HemR>dtZ_)Rz<*f8jQ`bMmb1%U@FBQnt^&J-Fi(tVt*OJH<0Y% zVGWQrnK%9uvRau09J?}h&1_OCy0R@ZS4Kh>V(Cg3AS$G*Y5@T0%mLmc!~Hg!N?4fW zY$D~%%ayHg#pbSIu!6sYUx|7(;g1z_FK71>@bLNNAyR|7-D}ZJ39w!1281!n)4C~u zWdHzC9>n;SO1L}PKwtq!+^2#gHoyQcY>F>i(%sELVw7O0CBhtx?=A>|F}}Mfeqnrf zF*izlH?fpE!qI&=x^*XS7URxfcMJ#(Mz6x+4l zFnNZSfQN0AW)4#urJV?7$W_@ghDBMk_8cbNR5gL7+!P*DX+KPEl(r}Ipzo;%n*yX1 zrw0I&8>JK;H%dWrcxA2C)){wJ;1k|zdCQxn&<>?}Rt0x)R+})#bF^!Q$#b-8Nd4G5B+qpxA>7yp?(iuPEO<&34hJ&yw$CCeu zKU!IN+y*bibei3&2kT3?L*$Uf4}N&-d2uj6dDe?i#OyWPiuuVXGg=pijqz#2)fk_l z0m!YlDZ`_T@kPVs81E*~$QU;!@jbQNiEI)fr-wKvr8vX^Ob&4hk3)R)aGX$`qXY_C zQ{9N63gSpD8ZJlbKL~LgE*e!G+IwcW9I3nOx=T6;onRLXj2bSl!d$NFKEU21^l-Fl zdS&GV{0?*#@$^Zz`tD)|`~ENCFM`p;=*Al{zY}nixQhHQ&~3#dm4Jq$+rs}V0D#eL zKMz*KJ24=TfQ+|5z6}s~C#KN|Jv2;8sjO7J5yS;oPoSD|)~> zG#K$}3^6>%t1)DJgjxcI7)!h9kR$hrAxCBG z?=}_4<4VBwAc+&As%(IK?U3eOyEhS>(=94UC0S3 zLIvIh1R3#~d;}8(){T&^Z^nqA>s#Y-*McJ`2R-i2&UJzpb$zo4b4V>E7j+w$o@uZK zBT1iV=gu-(@TB(c`m7Zx$ItAf@I|fNUh64`wj=QiJFL1uQ10hgAIMJZ@>ja$XaJfo z(P+RwY2!`{lMweo*ZJKgdC$AuNyYjBPu`|@&l+riS=>HR#2pzy+`_i*8Wp+=3e;c? zM)I78JXK=|WmwgBVRJ|Uc+PHoTRV5-Fe%RnJFb^@+(@9&j%%X`wj+XIV8=RfR>AnZ z4lt9`mP5Pz(ZSui*i*odw|fA#H=ZG!#ffwHT!Cmo>w)v5BjKS2_)K3|6Q1tpZWV83 z4WPU0vl?N{#nQZ{1+=ba52G3qI-`p^WwDCmr3L!vImhq2tn<6{`l&e9zVP4Ow-9 zCuFoGj*7A;+>kHo<8BdVSNOzbgZO~9mKGAXzNm48T}kUJNO&x~wHu!atUIccA-inX zc$=IC!;LOe9^H%1baB_Svz|n3oNu%cDtnYYiZ{#mWb*yl?h9;uba3^K)|gRpdTQJq zM(I2Pj?~R7v#-HukQSxJt&yfmjt*4{4)=SpbG7Uh*_;LPoA6TDKmU;kw4E*E({FHFUD<2<5 z<9vZ{>}TpHV*HWD4{^S$zq?5oXY9(q6IR%j9~VY;@oUGYvN$oM(6K2ZkE({?=7v!9 z&=5t}=cZ@cSkh=cLQHL-x{PzQ=mU+5UK#AZX0T=i9!>>kF*hkdxtj4Yx$d!HfT%!c z6QCVP@r_H;hlPP6%|RwmTeHzJ;iG$;3W%DFmH`n6DFPy5P9^K;% z-0xw>NvVLh?HkRL`n8Ave)N#HEql)d4x!4`fV)N*@$;{GvdAo_#C!xBuqr=YShfLw zWt_W@?cbyM!R!`QxO=?Y!+s`&F`t?@#E7x|Fq)ql4xPNC=$7q#9M2*V4$s~6tR+(0Y(^Mim#)N1>kkpKC=nz-g%K3ZM z_@E$$>{>KM=0N}u8L>Tla6V+jpuGfKRSO)ne6WGUdQF_+b53@D$3_rAMHe95tD01P zXi@$YNExwd1QL3C?X7tw>#}*I5QoMz?w#hoI}8{d*~T%_k!>aj=*ZTOiLxTRcTB{P zjD`|brG(RXvl(t@7*F(MvuC)Q*`FDsKI~jXIHMzbN^-V_62}3>5=w|EuL7C!Lc9}Z zx$A}T#{M6e1^w;=!V>%cv@!C~SePxtyN9AXd5j$OL&wNvkZw@bETlo@9yXmd<&i}a zEC-h)BHqSzP|R5954a9u;uo%i*w`rRpm*oG|Mu5vF~xFuo_js3Ed-#a9;@qupxn3h zIG8x&2b{|Ae#P32N{B!`(43cF=uWg%8HCiJnXlebtR?8|L}FIVn*vk0C4jsmlWvDpTVLOH-8ex%FQ2mbvA~tc`*H? zZSGip`fK=B!+e6N)2g$_Mj2o$$I6sTnm`M#dEoI`+w`&WxxVR?o_MZr_gJ~rbU&>S zcW0A2^i46M@p(J~AAGJ4=*#E&C?k=qaZJ_>f;}JrdgIfxlg7&PNQ0rbit|VV#^QM- z2QehY!KY{Mdn|ntyQqoE6E2CO0Gm){UcUrMMLuQkKG-7tnSw*h#hIah7%PV;VBy4U zA$N`+U*mp-IRe0j9CwVhZom(p)gVi{Ge7lUc@syKO11bT|5nV-2B_X0Qd7}-ma_mRs3GdM=L?*cMjeGx- z>6>h}(E;6 zJ}%pHt9w<%C%A9-)aB_P+{O9lMd@CCxX`_YZ6o%=Owm?d5LD{6Px%CSmf?B#xF2T+ zH4B+8dK`L!NCY{zg%UwFD8szX`WMn`u(t_@NZuHai$2rEwl}~R+2C&dsSX+OeD~q> zHtcHxiHV`}k~aG{sldb#ROGaBdwH3ip`4I$K13GNR`1+QpU5hY(*p#*z2e|GyWFi< zJyMPY9pjK7YegzB(*zZmyV@(Ld-=iBu@xN=%p7ejTOUA2UshiwEDu)+dApa= z6O2Cm!fvOCe68N=e>lU{ILw42nyltT3~`tFi?dsAZ!Y+ zr`vuTC$B>N5s}$1QJ9q&Z?&Gd2Zc&(c)4z6M!Df6woEe!j`ILCCVmBGv0x*=0+T;Z zo}-wEMO=IZ#z8s>MTNPnMbV@C-H#cp{dhfQaOtKyn#x490g2&@SA4^idT~Wp4!GkC z)`K8ndP5_ryiE3Zer<_2zG&eg_dJ7*j1I46nB4I^_oBO91x-j*0HHIDV5!vYZ2FIE zmWfWB23NwutC7#aN?&}f0bWjq-|gcqFy8TM;d1U7_bSE-O_KrCY_b^*(1b7iFnt5t zOTbO4EAWTL%gJ&xvL^#q)dTy`G%n`Iijf=1&iCC&@5Ejw&?ZNq_Av;$m?pdON1k^N z;paX{KVW-*ym_kB#!v^uC^kOgN!(MTpz8p4hr#}3Aq-BDSHv%zBCm|cDKg@x{5JBu z!|uxwCr5spR}waSk=~xSei5=KB`0Wm;=EW)7X&pZ_#4>8^P}fdM>!%;4>%^s>EI@G zR`_}?JabTV%w5x{%Rf2h?&x#~dFTvaXaVKvh`i(O(gtfvi-pg>!;ILNK%mc0BL&*$ zw-cr4^Y55|KEDWjes#k(WPzuyGu@cR*Z=Q-Ffp$&9F&iIr(pdA>F^1oki(a}l*0#x(&0ZcK|1_L2_LP|L(v#L6+t8P z_`n4{KGg_3{%G4<6Xc5JWJE@9L}Tf z5Ph5lFlnM(vXq@D(@7Qp1^|#wsu)=^<=Z-#_>c~-ygxyg-<4SS@AR&QEoY+HuW13) zL_jgouaQ9)vJs41^lM{;An4b|ieKp0#!ieL`a^qQ=>OqA|9^)5FZ_~ThJW!>I$T?M zA9jkD5Nn~ITc8Vq8vQ--KQMlhZP(Og=wAp;3ZXySODZs$h6?e9D{u5sC_J}88E)Bb zf;zFSeCi&^f4@U8G2(wqk^GEQAW5juON#GFEk@~38%7+1|6-GL??&QxOp@}(kqRUZ z6}X)E{WC2ulm$uR7IOsK1~x*kgP`AlFW`LP7H`?O&cXS{c6`7&2=g}zA*qv}OQgmy zADnz;er;u|%DkLC<3rYoh=mjT95V&KhA5i!FLytK4bdes^Pq9mIjsScNU)Y&JmXb^ zf&q)pkV^rLJ#-{!!MPHn2wXUbO;n>>M)73dj@Sr|4hcHDS zI`_L_rFl}#j9*!`d{Yn4HX}O;1P05^Nr4WQn~G8lmb3F@usqZ5sbSc&^6mUk=Zrcr z1WSjOUGk&Eu>JF8uQ*tmp zBAKaZ892&lxiDWw%l8mQTBR+~7~LO1C5)DV3r5RSCCrapYnai&_I!Tf5m#My*v#zM zN7Yi`1-QsdfL9~%64#3DLJ16*DKiY1(=>zN2o69~V!+%EG!_AK(|j2)H_n#%XoGf%$ThE7fwvNf2s8JA0TQlFT!~_&rII5nFn4UOUYQq;s`d*QyN=^+T|w8 z1WC8%8QE|ziNHhGY*AvXafflo9e42Rf0T1p(8ww*PMVC_l6Xr+xyg889D5biHlPcQS&LmDS|A_0K;~4vUw`iNNOr2NF1k9;_yQK5p$ui+TtDfgW+nOmd_p_EDY2UwUN)&(0 zr^x9nU7(Ta%vi<`HSi>|Wt5!wuqe9z15?oTAEK48y<7O!h!kk1$e#a&2%OOK0}Hvk zOL?K^U!>^=yIKI0M$bQgiuC*wrby2pfbIdQk_2K!jZ>7{#8V6I3u=0D4WJuP?Qhc|AL<@AJIi^DJXWiEii`U(f|X z{ss5lx)a8eFG(Xas`8WjGb->e?(>%A1#O@S-`9NPTH{?%L>%%zHC4L62!aGof5no0SLZy{g2DZH4n2i2m{KXpIX#u5jqXW+% zQlSGswr>h!q7eNzvb`4!r56F)3Ob>y?BF)1(V0%D_7~ zp3d-g7uX1mRRtD{@q!gw(JB!lT#ABp#R@AIu%(XUqZmb@GzL|%+d0d82ktY zd3g5I0{R?K6^C}pw)Q{4E)#G(hu7qNkn{&qibrTJPs78uaTa3VNn_zx@(;!v`>qG{;7XiaMez~5WZVocyf(}KDV{~Y(rh~%h&{D-ObZDv5(VOkc)O1T!hnt8^ZI%iKhWD##Bziv^oU+pT@cjZwr@KHdG2ImG-I7=%I@ z2BE+h^UD$R4h)$tJ+Oaz&;wT-3}MMx?i=js>>MK4P=G>&@0|pOc|7btq!crnm-x+Lp4Y>m;aqM5{@ZX6wIoj(;i=DJ zX6RPNYb(WhyQRw8TK!Y}40%5HtYD==%=D3-I&oTZc@7s!cx;Yy>SV~wU99La%>(34Y}`;Cl!6(m^W9)bv03^~s)Ud_#VEgQ8jao-ziz z79B@LiI)TpXU0t3XNBnradlGSrj!_6`lT7tQ|tCo)V}3s=6f7PyQg|K8>||k89M1+ zmlR@Wt;WBa?r9hXj1!cmt=>(mGE+`akIwMC%-Rz&81A&b;;mzJ;m2lrYO*X+iHGAm z&5W|@>O0dq_`aCsNh0bi?(KQ`*`7vWd_y`-B>YgP_Wa6hPlGZsE!PL zMhu$vjEr!;ZmFj`OP&=z+{iRlNseWTBHk_IY1~ zFxQGGDWRv31EZu~;ul6qz2Kp7Po0Qoe!-#Ps;}xw&o=9-@8(L+^K2r~3|D;tT@Ykn zu2apfEhy76#?u2S$2(uxAJqX4nqR zlF`k}qyo{QLf_K%uG1k7RA7h$-1mIa+`;dAGGhq)j-Vsm3ySW~qyp(eMTjmdK3jJW zjGv%3jCh%6fOs_mC5RhU`1wtqR;)28N7_|p6WU%6b2n`mP3;j;4jz`YI z*o^4|zwkBFW36DPrRSyMeA06ncNzov!mXY@&bdNC8n2Be8e_cH`NdY_*+?RdSRQ-+ zhOUvw*K<#CHjI)M>*N=n&$x$8C8aoVEPNrOzA>K<+3l&v7LrQbg4$4zHL}f}9cA`d zJ)7t6fw$oVmW4#2dp%Ew1B$5k+%8X3_O1!q4(xgUOBp-E z;I;KGNb7w=(6sfwie|kVQLGoQjiL@{2=+%$z&->ugUNmhl-dv7=8jh~R@lnUF}qF8 zLq(Pp5hK!_4|slH&N+G@YP;7Wr8wU^c{V%_5C)AGSzB2Ft33=0X$#qchdoVLrU}{( zV7$tkV0H>`(pw#%pyH$6t@nDkZRmf|TZMHL5hLoUM2b*ET{>TsVnhwDK&NHagM^rt z*+{T-UVZJHC?jXb9GR3ED7uVV^oXR4ZPgr(&!aCR^h8F+ws;OEv|;Bof4`@_Z6d%y zK09oX!%KPIBHt69DR%ZQMHi_U-QMagyHg-RX#29;*^IB)mjnk}?|V{!&HN?*;wf0) zQ9yXcs|)+X1ZW2ce(ZycI$@v~Z)iDGIB{-{*a)puH15NUhIUqIuBpG_c&tuJg&=kS z;~VSx>xRKsU+EoaYdM!MSm|xaQVEJ~kLGiuv`4$S*dC=xdn9vXx<7>&P6Z~F=JLx~ z-sWMf(F%PC%aD`{8^HbL$Xbn!1mEmjMg*;rn(IL+HGNXqiPr^c8S<|x;uwJ4}P1`Fbouzds>PbG622-jVJPvd9QhvvxbBas@a?rpqdTm znblNu>dljD7N93$bYe>da23QCJMl#aE@d=;FKrOYsP7O`fJy)aFSwGC7zT>^=0^e@ zcr_y>3{>b#LImZIdhm9yd6Id(YZ;HT0zwDX-9idb-2#icwWZlsDRp}QfHHBpUPL;iD?wG3iHkVNzsa(FZIyxiEL89j1>PZCSnBpENWX8qYAn^+qZ-eGXNpW}n7&3yE&*e1##PbxJ zPISj5+hko3WLj|l?JwEN^Xy)iV))Pz-b!0L`B$>FnvGn*tpedidU_fB4K3gvB2c)R z*%Jn(7H~%h6fU&>0nH?iYrjP*5FIK)3oYLNoL;~|1+IgDyI#QEAm~WV1)!F78U=U3PHi?f!Lfmm@Z zxCmKYKPe5Z8EiQV_|V;+x~vDO)iY$b1yTINpat^FMZyf>Ypx7YLf2e=e&kzEoiO$o zJ6iy$*tq7J_?_oVgUuq6>DYe}DHVE@Z_8hT7W8}8k1Z@YRMQ@k)!^>Bcyh*O& z(wkDbFs7ea!9UHmZ-IF&qZLw%0g5QrGDXho9%itA5Mi`J$4MzpZve)dIQ&<_;7t;$ zyLXfkO87`c{~_B)|3$(Ct7^FFxJ;zbtB&tPDXuz}&L^vmk_*+UBW5AgtNpZ4JZKc> z*MIUvc$_YNp`2St-;q1PHi01X`0OST1Q#B^Es!T^zFQzq(p-cdC{`X+cU*ZKOZ1n&2vUGu za3J6PrzbfK5EmPowR(W3-$Jq2NO&gO>#?(igba3vKkE2hY$Ykh?f_tNtwG^&t+8{V zTx;wiD7qE4M`?wMNc;Iw})qv-elf( z%t_EfPE;KJaC)P?Szl*S1V@_H)bEXt&dm5xQE?SV{k2lyLLKzyrYYh2ca54t*66L)u!r*X4 zp*gF8*Kd(rQJgLBoyiswGD3rDD|JCI=*hzQBx~BR+^sA5ftk;w@N0SY^0tMG%&Mu_ zd!8`3ynSs0X1FC_k)pQ%YH#%8P2#;BZQu-WRbl~411spz`$a9BJesHBRn+lojFl}15QlZ;Q{B_RU0@O*!fiooGV$Pb%ruf%&-*&aji z5{orB_I*5EQjU~j7b>w>hTs;y#TLsD9Eh51thl{{HnzVF@?iuH#u0!{3nj2}NN^E> zhk5m}iQaArB$Ntv3l*s8r&F?p13BsSL=6!$#i1rwS zkJ1G}#sv@FW)OZX&A*o|(u8H$Jr6_`VfQTfyC+2j)Z5HZTfyiepnil@VBiZCp}?0v zU(+j2BxB4A6&UjZUEElRpiyAvV%%6Ta`~RxUU8}L=i1(;#{0Z}9q(}GOu>rAwZjQ- zeZ=kyQkqlOd&}Rs1MAe3TL+&~iXwpernCRw2D?Iv@qEH%Q9xr(iiiQxs4V|B+wY*{ z>XuD;(;at~hrLcuj8h}3ONA5>W6=5C{GDtpW(hD*0S=xsS zipDxkvSx%eKbPmN8y|tQy{LaLzs-oE^+2ihU^DCf(O8d(rgfZ^H{aF5n;M1jLdkfs zneqH+j0^r3#s#gs1yLA3C>cL&W_*7%#s~iw#_zbiRqfEsJU^jiJjdpJT{Z8UW{$5$ za>(bBw;OuW(Ktr?~%q}OWmrrR>=(awfpj}YtA!Twg^;Nn=RrRgjq=iVXy(Y7+S zrJ<1{?z!GIH;Esd&xXI1NA^)-Ss>$`EocmD3{a$GBq=vlMqMY&KZFL%>s0 z3#e|n5COrF2tPPO>kD6;#6|Z|hnhPnZ_4M1mOVwGhaH4XJba`>%i@xNd z!K3{hY^)z4j_VLjT!lluKqI;i`IQ9-4#wG&NkPt^@Lj>Bd=IQNVra2=F-_A}&n}K$ ziVKY*KHgu#&ejolobQ{~ZeNVQGs)kC6_P4!d4QG64T^-J`D07va^rD=f-z0(!!1%k zvdH%;o|Wwu?)t>e2I-+m()F$5m$D#`q>RxDZxetTDZ4C zsiRsqlv@8GD4|fzb}gD-H~$yCPIvb<{%_*OFAEJ89%=<#c2IF~8dx>MpJuPO%+62G z@V8?P2x4gAVXLz&N@KKGCKnxK5GC`nv;3_|4+=KMQXad}+bv9LT-55mrXW{?iNrpJ zr2;ykzK{>S9RqC*rG`OwXc--7k0J`0hK-6Xhb<$4Hgvn3{_y1Pa)PECZ*ep`Y*-f2 znLv!K#Z&C&gQ+pg4L?Gm0LIuB(AhvWbb|W;0oO5h5h)c7Z9A|`#@H5Ok1vxkHV_qd zBi2=d%>V$A=AH@yVvr4n!64g03M?Fw9AA8j?7Zy!@g;u0gT#2jxK~7pnDPEuh>wBx zFX9&l+P}b6tcV|oU!UvUZw*m%Z&FLR$sG_ zVR!B2GVHDne?wt+J2O=49h5ssK*K6SDEbhd(&Vv0Gov;US;%n*-j z1F97BQp!L?=3~cs6AV^JiZL?ZDhg<1P7yIOFEzot$oAlJb7Za&i_2MoB4T7-Y9cID z*pq}~C_Xk0^XDgd8?YBiB}V4YFGr6Ux33s{$FkJqk)uXTnvgqo;+DYcd`}+CIr9aA zItL-5<2WsbS|B{hE9HBijl%YvWcx2O+s~u1z4U))yK0KJePp(_Vk_iop!fVvI zf??remlY~p%+dfPT;6dK&98GgIM8l<3SZShLe_Y>tdLW`g)f=daf5ydL&0 zDaAkqz+|{c;YD0!T;TIpdRwt?2!@`SzlzpwH)Ok&ChexO)7lQ|pzWJ0WOkZzM(s#U?9d1l*J$gmf|*@$zfE5w<-%E3qs7A63HS zH07-2%qDDc(7nmetn)StlM`KG@_KKkF@n!r@Ab1$1Su3D8pEQ)`O;q!dT(_bX+h+d>SEcC7Wv96sI$0pcR`BQ{n7J{1BK-_@`m1bL6$9IrkM3&z5L z(Lx@q9?}K_#>id^UPL*3S7m-|ZLymC*weWzUQd6)AWp?NI#t_Z6_CaVvZeTi5oF6% zQ6k7^cY2?)Mvw>Z^*+k71U9|N*GU%ynHTK4%?J{1@|EI~?(-J1k(#;;9&z&K<>tbD$teBRW6fAtJiMk6Lx$kG$&d&(@I| z*s@WIi-a56uG1+6ZU-=qU#_>nBl(Vz;CH|0uNo!} zCIYX#2M1aQnBavt&34?K7zU1Z+})}~JvPAvj^eaA>vvn>QTzpw;M=|*Rh*3`cqNX5 zPs(aj9GT&l?opNpOt8j9e(ouVS*T&e6y?<2Nj-){x)H~-=c_;TZ)YzMdbp<1c28QadRjuNeZv0Bc?%S3Ngs}uSC z7A=Z;rs56W_8;D)AZu)(gNGp?|ABDCuKNbB_Pn=q7$A0(5^KWyxcv#$h@Hm5NXyw?;jcj70prAq6;xAtOdkYG{^Igod`Lc{xzmL%$>1@ zPXA-p$mu^o@NoKX>r6>8)9kALg;+rTi9Av;LOFt^V4 zedo_|__d1+PN-r=!#vQZLR6f^KNG)j7XNHblvx}u_s8($*S$-uQ~58i!%2W2iQbqD zx}gh#od1qX`K9>kEB*pjra-q9-r6b!9l@IjUli$>Y`e2ST+AQBYMX(ohXdh$Y6Lk0 z#R}w{e|b%C&VTfzw-&tQbn2wHv$L2WOXvKnT2=Lu(+z(H%Oc#*cXZX_AD{9zu=OqA z*M4l@fb}P}Atz$=Mga@!m#AvJ;y$84`jK>jsr*Qz)86D}(}v{@nbdUbtmNjynhzU3 ztmW|35iLih<|9pwyXkq zf0c@jj&{0P-OfaGJa)E%6zF4TOGPP8=3q{^?6TK(e}TL|{vd&ep*-B!{a@66qCj3B zAIj@gC@m1x&a1jTzEhxPvU>El8u$L8#Sbzq z*ztG7z32Y$uVZ%+c6j_Yel5nmMl3(~v3C$_YOZf2>us@XW!^J_c!6>}=Tpdg{tV3{ zU#oxhQ*T`(n_v0Vo8v4eDAFPFt5#4Bkxz}xfvg{4jET;?8}{1^aY5hm{KXqDz`)Nuy@ZTD7tsg5~bL?%dM5Yo5N>l#p?*$2)yXswykTS z~0NT=E`1yZ(+uHz3%wO@kUXlBLtxOOUwf@fgh{388f*2xb1SN0cI>~?jCGREHihyHu zl)_J3_I6<@q#VOI@w$Pn(>i{9rl$t$LTW|2)yNb=Mmy-&d!0*QkxTL=y+y5YYmx+{XB_~3z6(RFgdpp3{xXYSd#FQ30&z6K8s(~V`r@Ln zh;-xPmvrNxO++_d{3q`t5nnZW=y`0(B>!E~E)J@%ZL3IlL zKE?xo_0DCL2v3|H64uMCNcr_LD-uD5KV=_*@s{|jFebI`-5RqIZehsCh8R8A zmqa^aWb=wZ!6EUg_=Q8_Rpx12W7W36Kn)7>^ucPy_;7=RiLn07v>;B#}^C0sPX)xM3clNGZj&?wChk7o^ zP3ekA=X6TuTGpAA;_P?0tS{N<#V?ihHDY~8CC&*w`1LBjXp>*=26^zYxxi8(3jeZ2 zX1(}Mq69TBCUbv{9H zH&^6WC#F^4o;Yk=xrs6<&24PupH}dtGEOKj+MGHPo~;TgZQWDe!_UO~2FGdc>S*U0 z-Y&t{BFLoN1Mu9#XisK)Rz#>D`ZYBRQWI?)zCJ-flMNIxstN|1X9*P@Y`!Z>G1!ET zDBlezOnuFM4UE0BUiL~*4XoRhyug`b<(E1ywl~feYb%(jc@H_-w~SN znQHT-CsV7lxQ!r*8d1Ux+X0L(@}|`bgBK6$vI~R&F3G+W^0c?TyFo6;-Vy)0f03KM;&Sx3SP!$92@s^_O~l$oN;4w+31miw3RgEq>rF*ZFjk4+}v;HbN>*`xrc zn8_PugcAk{9=C!;kVzY5E(aK3;9>#j4*-zMf$urKUBlPW27+TGY=LXP(ax)PNSn-_ zCc>DMS0^G5DrJtQ zzZUf1!ZqRyaz&uy402Wc!WrZ$7%*Z`HM*{Et##V)*7N1FlAE*`IBgWu1wp2_ok-f5 zmAQdc(}d-;QDu`1d@62|flma^0mmj8`24vMX9DtuPX(TLuoNo5`DgzjtGPUp3QRH*4!M7 z;HtIuRW~~GcCCHsPLB|U_L|ySHkq%o56|q#dXiG?z_W&D`fP(Y^S0GHc-T-<3q5#* zZQy1cq1Lyd1DowUw`6Qe>COTr7*Smrk=fGoHy9wEZ)oc)ZtJ-jyNq+L;6ZiEA#!5S zv5FMvpkuix#h?Rhr-P0ML3Ru}9wu0!pu={*)Y%$v9Na7e4x%y!9L6qqUE7z)b`f$q z-guRiV!Q!hGTxx@7;kJRpqM4&n`M@4IdoQ$C0nvtX341jFt%0Rm$Z1WH;PV!L*P$A z8i&9gTi_QCfjhQD83JW9eSiC>GB9DE+|hT6RTcu!QRL7CLAh_|QyD={v3z|`_{4K^ zXWu&3Otau(8D($01gwo)B_q%(%wm^x^@1=mtWeV*UV=itt+z9Fm+!A77S zTX1#8=X6CxLDA^J^Rs+DHif|A30!~`i!(`Z1S=r*NNc5}#kP|QB)C!#lpnz2+zG_HB~^sHDvuQ@{(SJMhVp0B0W&- zmY@e>y?oVdH@EOcy?kw*^#m_EOe+xPxQIMlKJ{5vVykX{Tpq=l@rn@$e7E42-o9xD zpV%A44do&e378mJMgp(a&(|mf2a}#t(^koGO8ZcX%Te@xKi^n`xd|U zGeO&OU{mNoiz-%dOc~9K0G`yZMO7;}=8V>xz>OR}GuO8$3|d4E6|^l>y0a^Y0q07a z>ibCT)#~}b83qoo9xc&1foBi*_2viqJ7f7iL?;PQ~ zI}F++p?c14zm$;Nn9BUG65`3%vm<>oZ0vKw6xS_U{c18r@bOmMYj}37Zw0;$bDJoimzc=33J`6h4@2gvZ_ssHD2?q{uH?<#M ztWbtpAQ3L!v}Q`wt6SAJ#xE0njSbe3a1y47(+KKjS~}mD=lciiPXJM?8Tr0CY#1p; zt@?8mltP=DPo3)QqXbPaGz+Tuh6HUe#g}ie)r1p|wnrBHsKzL0{z zS9o~d3Zt2AQ(=^yt=)xkvcD;ulUjqo2kPs3aGXmwr@Dh+9^3-4B~96~Y|El8^S0EJ zjZY;LM>2>B75Z{v!em~0hVOfJln99{`qxMSn(!#!JJXjD28a(Yd}IYgTZd5$?-Yqr z!o$ke%cZT!XjcMWg|Q@F3cJLOIk57F-Y+_jRgn+)eRF&dvkF}Ia8swLDLIzo2j}`; zVGaKhur5D0&-WDb5kQl3RutVFJ2rf3yxjs{d!mA>uLbquAWC&^=huE#2TzT12u54ZuM`FEnLM`0_l|8YT!|0A0j@_>U1=POi0?L& zSu`})z)Xx`-DV*NhIL!SFAVFp@aReJxGnPGX7^Ixl!#kGYi@n@vT?buFHe0swh3Rj z%-54WK}>{MkjHdEP>+J!WA_1jMbngV-EnB(U|h%EBefzbGLDM|Zzk^FS22$8Lo0m) z*!KhmBg2b8A$N7pHoWvI3^x$*Vi+P4iM_LBbw>o90*9fE#T&^Fa*UEH={J&#cgV_W zGIi3HK=U$p+!3h6yRPvya~>7~(5UGVA`wPSlMZFhW;O0H^|*)4c-065o*sOs05TR$ zNvY_mRW+Vnb~u6uX@Er+n)TpG+kE92Dd+jqQhogMr!vR0Y(h^oYsD_QAlR${;K5Hn zoq33j(v>nnHS8W4Ie)qyjVml}gEF|m=4FcsFow=hfidaedwBVzHV(e7D605%`O4p_@saUG7K(f(^(138a7+9{6M@RNWSI3)RFgbPLt^ zx_f+eN^=350K4^pYG74&`p_tioqRO2KWizl$x^LiGhIM6%x&XBE*A$-w8J}=*J_RjJ~2l2bRBeF=m-Kx|Y zeE;LVy8pAiRlMJX2qo<8AO%Es$>`eooW==<1O__eC&e$c`jh{g)xX&dF6ni`Sq!m+ z6S{zKer=C$C;MDiNt=JHZ2rEq`H$xM8_MRzw(F)vn?r@Rd9??%&2JE!zmGPLB2d{! zZncZ6Qx?aGu-L^(0Z|Tw*ZDc0CC>aP9rnKG_LA?Ma{C$~g8JUtRl+ z?e@ZtGHbB^5YA#x*mg~Fwx;rKZkLClDC1^N`>ID`JmP8Jg2;^F^Lgc;^3`H@?EvwW zn?%0xJEClC)Zo>hhmDQ@3)?l%`ubVf-uyJPUNH~w<3pRJ)nGm|XIC`N8CK2%p7Yg+ zr11LZd|6h`G5_#2DK=Pe&V2yRa11qb9vF>tz{+{(^S*kKIB$R6w?B-tSRFbooqJ1@NDMtvwKXaL^icZ+QN4q@pVcd6!btU`tyiy zrj0#Gh+y78^H*!ZCw5@ofHyqu`ZOb~`RSJ-=R_sI+X7l(1^6n^6t@NToq#pZpF|#9 zg=uhgOY-*}YA0uhTp?-zMepUJKVR`xGFakHJz&s(9N3Upif6s%s|_o-sjvAOu=*4t zqq8w zjY)O2WbC$6s$OZQOjuaRy}UzZR+6u0rWq`cP{c*DMyMsjv+;ue8*C8)G_h7I&G|dI z@d~^oXyL2~g*YGmPo~3Q_Ys0<`-IcJR>dBLQr>i*FP>-rm|2DGqd>y^yC3(b0Efud zeBouA? z(AOl!*5O`r3PM{U*@}rN2(ly%xjk6sVhWcnO4P!vL7pxMvM$(oTSK zrSP~nTbF?1-fXR1a&NZ6F1a@wyG!oPQvJn2u%ajaYs7vf283%bWFetmCp z#{XmOy#u2t+Q;#CH`Gi5DUcv3B%!wyLLijey$ihsLQzzt*AtMYNC(SnLji?60@6hh zM2aO8fuJHvQLum_Ehr))QdDdRzh|D=yM1nReBR$T$REq)nP;9p&y<~+jbW|cS0Xb9 zvFZDxif)aX;e$N2(M)M?8t?H^9fJog>-=Q2l9M>0oBKpn|k`HMP| zxhrnbk*rH`O)TDrjHvGFAzoveP#?0|2KboHe)cx|kmu^T1a#}v;c-!DQ&%0yyC}09 z`)^sH_Du(2?=4uN`i13qt^yB?#o7HrIqDZCjTvIS**gvY)N*CT7f3F=TUg21Qnyes zx5M}1JcClA?$fGOy;8p*6gG9jB>fvJr`5$PD{e6gzKIfcYL*#xTGmjxISs~k>rfqL z>K?+WQQ<@A^i^F!iST6r*WC9<}bLVbBKL$A8>782K4 zsd^J8u{y&Mvr>)QV;DU<>lqA6Sr5@v*5mjx>*?n)^6@(6_()lWJL7w1R$2_~yHYI% z_GiRtlxA18#;N$7l{8n!%8Y_9M!k`6GtISHOlCBwA=@;pG2}z2xlCq8hHHX&hM`kK zE{6W(O4X3D8s(5;2;dFhLF8(SH7#0fW9SanRz5GVSYtKHAvSA^9swK2m90B14MeO`L(&vhKtob2z&ArJ;IC%(kQ8Aw zBn^YejxIGMtsF#3uYlbxTnYNGD=G6-wKGpynRy-_^PrV@@}O%=S7yABym_o&vo%+H z!RMwoNrN4Yn)VR)Fga;Zy78+!N|Gwj8ux->xXOsT7)5y-5%l-8Sy*txaP`%~N7!Wn z`D5ZLD}PL~5$x+VwFi}bf{#caU8QnJo~+8}{$p3E95R;Cv~$Qp2BjQ=Xex(re99ps zR;e5^Tvp*jT&^nRkgcm!4%yC#Qx37KTIc2pq)OQ^rj08qhLQ0Frg!)%`uHYXtleyb z_>z&6Z92*(XZ7QU3yRvhI&0$M|HM2Gh*=HNhs}tDpX)ViCvLDR4p}YYe=Aw(iof${ z3pwT~Cc*a-DJSGxv|?VDHtqDo3b9f##7_`|GF9r!cH41iWqnty9vtrE8X`=F=#bD_ zbZQAJI=gc8dM~RKW%INMAASjG@364pQ2!4vY@>JYf{WCug6W5u+y;8kUd;>VNT#wv6?iQ54h zJl&yrWn12IYCG|@JKrTi0!AWz9Y2B!w&lyBUv z@E%ZjVa&)4;Lz+2xiPGb_;P`4W;8UqAq_wY=%)Nd3Fs!eE$9i=dc#~ZizlEf!(6>Y zl~?Q_qy$vS2KboH&M$ca(%Loc1-(bOMvD42VZd;&n}4uOeZBT8Fz=X=C7L-3;n0RM z^~=;o=z{~nQ&jd2A%FW@OIQ;Zp5ly%iwPpFx7I5v6IFbLGEqx=j1=ZywHq;dm^Dzk z3+c`d!Gig-%T16Ada~$=`Q9wKF|&96NLQu!T9P$SUXe@|+7QM7KBHM;bgMjEBCD=K z{!(29%p2Q>=g>P#usG<=NrzKNRw zr_J|D$W!CJar9RmD)TOqq_$w4WKVp(5cy-kqk4Apr%E0fp4cYcVB^B93NwhdUtrun zKQ0xSO_Yz)(iWleaWMlQSLI`2TYM~)j{)uQF;qUjmXA~NF{3>`9+QvnI^g3+`PkA4 zA3NmZ&CdAPDjySa@i9q0X2f*GXPkUA?1qm_`52Xlk8$#GXLo$uD<9wVz{hF%IMP%8 zDIX8_!pAiE=x`T4a^<5!Z+t|{NBO(upYl=bUVPM-kGuQeqpy5C))ya7^__vw-v{91 zx_n$6DF2j?iG%SmRX*ZI;3HW+=6Lb3Kt67a#7C)7_?R>rA2Z}5cMLvy%E!5J__!z^ z?@YkQcKK-c5I(xd$B;?*@XE)i=^_7_;iXRx4|oLsrVp}}|1bWc&qK6%3V+c>!WZSW zfONg!AG7fnU845KbNGuc)HyN-f6-kdH|OCmI%{5Co-?G=s}b|@7o8$|S?*M(oznNq z*K_nrb5^QcE~e%8<#HlU3ogIPX$sAMCdqD-1{@VJEWMR5VZ4~xAEqt4y8(ne=vpi` zNU+t7QZM%UE3#Y6fJ4jgP6!X3U1t0P4~`pz3o<|BrC5)+qV)$lz|6_6$zq?g;$Ev_ z#Ej0>w0SURB2Kirjg-i#kZRVLFU~q^oMEgWeVR+?^Sp|QsyA8u=T(Pv|8OQ#V8CQo zf;I|fOmUIA$g5vDald4^czoq? zwD+ol8IR*imiWbqds*Q|JZ@Bg!R{JS`WtvnG+MIM2iOoGqD_tJ?iApL87v z%HcLnQD|XC_kuQ0yXxuT8C-T4aD7w~{G6XPS~RoaQc>)K$CfJ%Ns}s-PHBNf4|;3L z-Q)vn_+D^GI=_oy z#E?MBts&{87K&e(d}6Mvj~KuT^F|seuzXK^g9MwXwbaLmu7Sf18dru(+xpcBnXv|s znYg>u7PA-`83k~Ia zx*(xE8s1l8Y-}7IsTZQ_?rf3@Yxlcw8zZY<^tY=E%x#cULLYJIt_SkN4~}{8h*91; zR|l9jvw?u~OI_XJwWY3grE0x~S>?oKSEi_gzf>m{4$^jdjn`;yr|i}U=B;;ShMbpv zSlPJ-%zRP4z9@UH8th;0ioSh&Cc)elu7)Cs3E{VAbZZIa_DpyUGJbF5(W}0uY}xW} z*CNrI)&2KusrRyZaXT*G-A_QuYS%BNW*}ck(~NX6i%CExoW@Ovw@v#@IP>lqv2b}| zPPnpT*bP@@nDMHs>h0Tc5_DRF{lO$AiEYOv63XrPkfqyrvSUNtdk@_6n(IEXiB zP5Fk+PMNX*L$a%;9fcLIyBdqH8CNpjm)v~c+UAQKcxNn}T<>as`}R5vU%i2>4>Q)b zy?%4r>k~_X{Z`za-{5*hlwWH%oPW_+W!9<~M_xScE-$SS3R5?`_UP$rp-;0`)kP!5 zpUjrJ)^50Z%e8VLrV+JVt@emmc;GEp_U+rP9^CylF4NUxyluPXN+^%B+LkUgP#Br} zeynSB7Xw+{f6;FJY+l9ewrPuNKVFbDZL6!cc!sejvpvDhwt$(f=&nAoaHC5TyxIF@ z+_iGC)lcPNZpCwDVPxf2|3d0}6c%lFH5HFCd2Ca@>NMp{OTB4i%7!rW{#I@DEjCc< ztnXN(J~BCXe{`tqG7*>#{eG!XRa+%{h6EUMqDp-YUz_iAb&g@Zy6lZ;;cw|0wJ)~P zF4xmx906wO*)8DgF4q=ug9(fVtOqk+E8jf#FB|Hkb~{&Z`-TK~3-xYXD+*s{w>9F~ zzxy4{V}kJXhOGn7U77Ll)_bleMRitfg>LlJtF2S7*yHg36^$yx&G%g%(ZY$<)Pa?_ z2RpqAdtB+FhZD7{1NB6NakseNi8ai|id==)sU+@o4Hl0&v1Y7OZ|&x>0vyiOh08tl z`Z|`%S9fBWvvlriEk~Bpp)OR6uH(OjX*PBA^npwF8;wIMt_y*Pm3c{mVSIN% z=yt|B6cT0N^7Htb?+~Nyu5U~cKQI6dg=uB`tb|g4V|a{>GKWFlC$2FfCG2jmE3G&i z(#ioKt?C9yV=L6<^+1INA90NrtC?J+&-7!J#?j8|qtMhvZI19kHF2k~Rfg zn>|V!{op!SF{g2T<|J!F!3s+q&V|tdg4BYK`PzN zR2rsKD&B^yyLDQvR~tJWY`W_+)s!mY_NGG^)?zZpV&O`9wof$vS-;cA;<{ERxVcwaEENYQhSjw z6x~;)y7<`1Vh>~Sxy|C}-A0{CcBb*O2!Y7s@l}g?15OVtTT{QV9_U*O7a0>dCc>Ro zc5wZ^-hQQr?#MXrsufk75sW>7iIba)!pi}O1*4CV8-V5yFU>8PX5??087cD_j$N9< z@)qSo^=sIt$8qnAV=g?Ka8)js}2S4ME*88L^ zR#)U3RJG`01N~#Fe}(Vb%dVkfq)lB;{ObXYsqVI+KAztD-%w+!O;_;s=p!})$T1au zlzHs$t|rjpD!$C8ev}3*4Itwemm!uiY|IXIfkrFS-%z8K$#1ATH9G$4$`u6+l?cB{ zgvA~PClYcvq`fKW$H2?Kx$xW2zuByb{+l*^8s@FMhTY;%j1JNNLDBz1>;;a<~VdSS^~E%t1@ay}!?FfTCk9VsNjv z(N?T;V!di((Oop@Q%07CXG`HLgMB@!MuP9p2I75Z&0UU~(@Gn?#5Yc?qc#?W^exn| zLwd#rE2J5w3hBWcoFR?4R!EoIh`(k)lX6DmgsBqBLwcAk6c6bNvW}G?DWr!wD+-2T zhcqXL6ey&nCuB(1lr<=%Ysp^}(zQ0;I;4kUJsHvo!pILA(kn_F(goNl^wxx%>0k$N zOB?DB;F7bF{m*FFa2eMg7gjLZi>@|x7QsPydUH3be&CUc#vCz(Rih9dfR>XXd>{TV z=hie8p60}w@eo!kT8X@bcYP%-(?L7<3Hpt3gbV}1oERJ!7_6;){|k3XX+jbvdA;} z4&$nb+~gNu1qChggxgSmAl}9~Xc`Djjl&pBvI(;o48qP^ZIg<@A@RmJ(S%ha&o|nn zVlZ_ROQX3?td2Goe&Fy9NT`O%cBm6;pu*BpAtK2bDW*HiCp)NQdyz`M6YF_SB?%^{ z;5o+rDMpTX!-=`prYGAEUJ6_RrhHm1Lf#H6K6GNg7l;ibYZw#6Nhj8^0IV1|bqdE! zk|>-!<;oVPzS!jM{{{P&@_mhlqQYi7Dx|$}avGU#sJrZRv^ll5TX@ZG zZ7G|q*2XYZYb&?O+1e1-YHckf?-ZC+*Ql9LO+tBV3$+!&6->GGL`%&cCNC{Lb<1p1 z;-x1H)Nn|vZ zY5Kpmp<$GI9HIFaTUE+WHL8mz7z)jpA653Z-*e)}EK-dutp&uU8LsHA5})j3tvrp| ztk!5aFPf)ufNw6mQ$z(uXbG2!oE*e|}rAJ%sL)t3027m4oxSpMKpTd9?SN|o`TKmKB(ky6)` zQr8&V?+>j4+?!)G6%lXQkty}j!``x2l(ni*)P z@UiZJMmDqx&e@RA4nQp2+a7yX4)v>|yWdjl#l93Zs)KPxyvW2Njpkb#&1VIqkz6p= zUWcSkMqTj+D6YPs0Xtk$(&$buFO9W3g@r=5-3+9CM8v(Z3&=4A1S z%_7QYt=L>6jae&zzV)qlWCB+nyCVk1^lMrc7UUX9rG7=yaH%4GIQ5#7$yJ+4r2e0` zeOc<$u11}pe8?+Y5Auow5DQbg8Qlbj+FqIG@Cq#yXS{7kIC-Vv+bYf)vI6N9x`a%= zZPDAjtyYTLF$`+#tzdUA!&>~#QyNLv?D)dfkf~%{n}&SozIq3r?%D{b(F?tDe<1at zjP`?mYqiF8-=L()>kiUtnOJ)^|1MmJo)buZ2!7Gb7Ji|hLABnv4sC~3fb7;9F>+yR z#G8<=S|fhb$zcQIu*1*c$lXTWsNx(T@*d2%#Wau$#M+lI^Bx>`9Ayk}S~^JkoG~bR z+g=~0-rMv1_!>bqp}^vdD6kv=Yl)ac{eh*`lYG?@v9HDVzRx%*qTX@DR)u#|Y*k|PsK+$3Zk$72q#5T$nmGWm z@M(YJS;3*UW`elV;x}sMU;Nev%TWw|-fi4nLc{To`~Y`13p7Uy4H%00h^aO37(OOO z>-YwuG-aG7m8L1jMGsKoH7Pk1Rpclm>OiFm^s8)E`XWOUa@$=hWaOp^Gm!q zqE^gt{{?Qs7;3Z=uh`VtY%vH=@9KBdZ1KxsxMJ}xt46bzEz;(lwYMO0gwbDo;VeGH zisPZV7uP6$a^n0zIQm=fsJYKAWU%KxYu>TuJ`7XMeV)UJ4Sem6xYpd~jspC(2F{E$ z>Ljd|P(JsWYs<6-GDf=Yj^PkQCeKSt$i;#>k`#HquKY!wuUkN#7i_UW$|MhVq(axx zM(4^@Vy$NQC?>4@*3Z{4*aFgbu^Nc)9~Rx*C8S7T!$?4()N;6tV8EIkznE^R-1 zNQoog-h91b$wl$PiLcA!sBQWLV_(R`0_+Q}*GvtY#2DgU*~ZE6%7aGpu$dg3SHE$W z5JZFluctg3q{gLgQH{c$4_>2EgOtD;cv`4S^aP2_XO<5Z(AQXM`@hE0$@?Qyw<{8@7@2MLTv$u!&m-+Bgju+sIwHVD=;M zJC;!e+Ws*q3fzk>hQZpIMg$ags#^zM`eRZ_LJyA<#lrp5jF#bn%=X^Y_F>BbMSSEV|?%EvYN_(MMa!dg31@9e-VZp~lLVyj); zC?4E1jrx@XI9pAA0?eFgjELzk$yjlUzbG4^1LUDBZ9;)(meE!VL9qLjgh zzv)T{Yr3+`OWaVO|9B4+$VRdZI^UdBU72(2V@9%`x<%dZ=uT}Msnv(E3$R1&Ixsyc zOc8y;VEI+Q)Hl-&s;68Qa1Ym#NM%bg+T)7d52`|3Xvhzv5yQIQvGG z0g(BGF(Wq^n`I?t1BZ)@q4}juyaDS;W1uFywi2+SoafPy30rVQj3(`%A#&BI#TATr))=aZC5&}s zl9^I){W+tYCRQ`B=aQMLFWExJ92jBiL_%@GpUpL@YGNy+APK`A&l|nPZU)Wk;qHnb zLoh}c$L%(3tsy>l;@)@xOCv`v>VD10HLG2DE} ztO^U38t-WHq4P2$TjVo!lG~V#p|HG`razB5;YG|K+lsz?D~`mPG{VDk6P6nfl+dk! za>hXVuX;KCxvg+%M`j)I9AhmbFM6}>Pi4Vpw$g@e?MWE3()dSw$SP2SKZH)92LBl= zkqut|gejmMhs!VHzRY$OHK4KkPVozq1ru(r z{vpaDKkCNCN6ZwMJ4S0DN^i5{Nund&Yp>$mmSdB3es)^tePtc}Ns4Qa{y6&SdRBXg zn3f(2LtZn!(6XTUTHLPJl(8Tmr*Ev34u{v`G@l&o*+vc~10@zsi-iU&n}p}DH4-6z zoe_824%gCP*z35ZD~*XEHHzvX0X+LQfE8PC3AQfEBlonsCwX2H!&oiZf4#8$_t2=J zPFoD7n)ngMP1}$FT7sr|)a(`+ zLSV(tl$v5G6NXaVBFQ&f%2d+!|LJYD|6v6WY&IroA@8At@-&zBUP0blMqf?)0XDvk zua$me0{fe{_C0g{ugv*lmzRr$(c?OX!`%7q>M*j}xpI(LV3cG>J~ozNfU;##o7c`j z*)2wzIK#xD5Gb?V5dx=F2pqRUAbP8DSyYusYzQOG9lcGG;=vQUT_ua-6a(7Vl^|#C4c&2zma$L|L*tSi*&YknF@or$BM0@t1-(kEV1~TFDJ~FI5 z`+aSw>>X)5>ii?KVR3ye~F97aY1WzBELXVG0-XEEm@Ue@iwar|Mmig2{(MIRi2MZKO;rjk>KUTHix)b@JX{^j-Q}Z1 z3M;mqo>b}KS`fY8NVc4=>55nrhK+m_u@&dbG=|yxDQ+Chy9dLUaVGk+5}U6x*nE5^ zFzf)n;*r1-ra7GW#3z!HQ`;Gl0w;ccu(DXnDmj=>KV&p@D7~3s2QY{5!#)m-ulOVw zJ~5wurdkzooE1BmxBJ{^=4)p9yR4Z7^}p53PN-%kLr68V>ym-|)7Q+tvzpnj5`{Oj zQ+AwL&5T13nVQ+JyqSgWKrl5kA%9Ub6Zq*pd1FnnW@a2QmIrBOHIL$AXAN213R%0E zCD~AaGuw2V&8*t;i_viXE8`A5We0?>!trqWQKK9*`^X3vnKnOaX|X{B@HW~J0*4>0 z83)q~jSiwUt0Kc)-hhMqt>+%Y#@0QstY?TDtEzZsB@VCiFGK`lg6XKgyvmbp{y*YZhl`Ml9j zbY-X{L8qNcv93SbicxheAkFS)HAn<32oT}9^@GFUrEiV$Fy<%YPVpGSCk`_e2k|^B zARW_}hc(a?7wB`*))6ZNF!=0e<36#K)h4oUTY{%uatMwED0pR9|E5+)e95Yj^jI1| z+;zq1B7SCAMEpmK_|sPciEBT?%&XY0LwDJZB(hk+M;1RAGF((=2t={kE_DDggB6e! z$kDdC%BQpdAP-_%F4~{S48pV^=%6=47EM>L{5Qx?%OeP0*J-K>Rp<18d zqTA~ec@A_f3Qm?bJ;mt`av)lCtrzS_96XPOR#J-|4?1v>=<{XGrQu8jT&$rxYIZes zKPH|C#AkQZ#6E>Z#qOv(Z@n){LC;`;Lzf&+K%6wVZ7ie&$RQV*>m{+Qv z5WDS=-qhEVtCfXKl}+5)$KZzt;EMEyFU;~#rk0tmSKAHQwamsMnW5nF!w@}TH(OY& zzgxZi4}<=-&FpB~rZH-ERu+-v!dU>L+Gcm*VPr9cTf?F5Lj`{Qnf3~B>`0ecKb!$D zsOU47e^fC)(8OJg4Ee>l%hOWyV^H$TT`(igd_D+vyg6NrEshaKUAmD)u64|mYoQ|dY@(U0iN%a0DzQHke_T07H>PS z^~IJ%9Ni(2wKXn4B5ZCgA>ux*v|egA?HkiHnAgipg;X~v5J372YQ zART9LM23drubuedxEjwqX;Pk9ftq1nk|8bcwwPkN6v;3xcc zFKS`dWDVH*#v(GJ1{}ah+Is$?hDT?Ct=>LSL6zTX3k|UljzB&J92#r?t&A zrv*Um${+vF%Fq}a4d+aWqfVANTztbSlg9(lq{l@Q%nSig>G3g5FjHRqKP%^$y#wlz zv-`it8(KmAZ1V_?Ki;<^nw(wXeQUcGD{wfw*89rYbr=dcyT<#>*^S=!H8Sb!C_7tQ z-(ai&p0?PSD=;F5rLWsFfbDA(OYQ7prQ~Z~pWH>h=1>~N3}p3?YHk2usyDzeCkH^O z-h}^IufW7n6X!=BuIo0(i2t(6vl0-u9xg&ck#hoAD4z~`)(ock$v?g`~w8h^?o0?fS)R1V#$+#A3}y7w1G z7ah?WD21X>B?@%hH_v4 z8)>-VjIeDuL?^>>bTXU+5DOdny9WslMZ=|lIl$dSJQ7GcHvkQ(VaGMVJuU!BhO7TU zK)mhiX3i0>GFoJ}RhHdWu>!JNVWzjXzWoE(-8nNw>|mv2wyoT3dzsm^EN=~FwoGL< z0Pu{(sF2j+lFw{DybeU1ohsn+Rd=@DXAdL~cefCI88e!t-otbljyGiZ zW~q4dSz9(r&9Zc`t8Y;wTP}_?wT7=!`o$1$HhlK2*8D%}U8f zEn)WeZ!H)DC={%i87n;7gvxYd% z@W~xtF?W2=+_C$~@-6V=b|_T>E@x=<#UWOc3_f#0=}^45hUAvt8GQFczkC^gx$hOx zd+h)u(IO;(iPpGa*?99~y##wq@}`@!pz1_(T1o46c-VZmgmnuFCYjB(l2%?d#cWo> z%8$UDY398Dcg6*1tqvvT*=44=@c*4BAkRk%7S1y7D=jiv9MGn@w7n{Eq_F}@9CXiE zyS?h3u@0=1BDD<+c+!_RdhDgdAv2}CW~`DuA<0pB18Kt@$A={g&V-t2rRU5hVgw_O z!JMn3OnIxDClp6FdQ^&lWnT>{4c-1M8!e_dD&qd8PoFkZ!x?utGI9++h>@1csR5`&Q)b*~3fv7YgDIDl&AT~MhNe18L+?`-R>{R^f z*!63%uw_DSWB@zc4(~G>%nmVN92rrD1fX?WN^M^{a8dO>bIfdq>ZgBwv^qTa?XZU8 z9K)ymQfbg>t~owH5>ot6hA0(B!Vk>^)W)&Gd%N(+Oq`DQ)F zu$>C4IEgE-|BftP7E5LFsF7v~^Y^^G@^E9m`J&bdmM=Bq;mrkRC#^f&Twt~nJ)LrN zv*c(U7p3{dXbxsaHb8E##OU&o>J_^%8q|X57}gJ9rf3g=coDUIm|>8%6BL(2M>&^T z3(a~#xlA8|Z6Y|AcNQX-Mey}PXOT#Oxap_9wIjLSZo%S&dfpvuU%0?cg|`wo&wKnz`5V!noN`_Nu7V~l~>J%;(4bK&v7AM@(HnbjhW7b=%^g` z%*PPBLf+|f-|7e!_~KO zwDA(7EIVBt(dS(yt7&PC!|f19LU3hTQYCn{z^s9jngK7}mn7b2 zHAx}dlI!=tL7ze&ZZWF|RfyJkn1u3$J|7oYs`rCgTg@C_H+*cXxkSIRPi2ThP4)7y zWSdz{|6?EQ+=fete>p|E#zZOwW8bH!{&Krnn~Bs#+4z@zkaTzBMDYuwK~B8qU9&ST z0loUJ*x5Jrqt_p|unbsXAbRwyakIT0^%uYeMcy?kJS&YlQ^yt?#Ncf8Q; z`?8RF%*2(jJ!bhZJ9?2k^{9-z$}jYyd&doY(Y^JLTbZ^>k#)ZTmutbT6^ZU(IQR6^hwCl+S z>~V~qdcZfp76;7?7KGiD9EphheIwpeSp`)O1oTvYA2iqMxd&tv-lO+A0RJpCn~S@g ztb1_Q1N^MzFpa62r&xD`S%^I0s_`n#L*2}1)T%ERQ{+rQol%EiUYd)Y4i!RrT*&yc>M$p=&w12xXOgk zaP;#HrQXvg&DJbZx+`~GIslPBnDr7b*+g#H{$mc>F-h%z`FXQ6R5)ffW-T5Gl6M$E z=a{S^(qUt=G)9)9q5eTT)N#OV$?q7G+44JVXcb%twBeV>&GGu(2UWiH+Ypa|tUG}_ zu?8{`^7750xFF|0yr+%yN#L+x4`so755l6K&4!8h+B9xy!AEQyHM}JYes{{uVirV# zWI;wS=$LHbK{h5^%qWu)fvbQYKvh8yY*1$F;jpAta2H;yjo0}5#sOQ-n0IP>pyIcf zwe}peveq7G_bo0bA9PBwk4tgXC&jbhnY~yj_Ed)4i@1SF%PM$3P=FO@&4=~hEmt=A z-fXYmI0!SpH(QDSd}0SE8R0r-9}2V1QA;Q|XSQSPdnxvR;&>~|rTFxo#1lqlrJ%Ywd}}HFo8PqBPv!!B%qOaWy!jK3yC&ve#9`MYrx*`1F&_1q zwB^rcCze3(R3;q<3xCGGY#bwDTXZ3V(t6c6n0v`gPGs1(H0U~3*JseukZ~DPvOV^| z6YH08jd`asXCbRX=6sjwvG4zdlwerBRw_nG+eujZZ1vv(;IU-(2Niwlef^|v$yUi+I_TdM@0 z{f675Vm@^=j;K#rl1qXse^cYQdM#k;YqO!Tb1^nEem9$H*--GinJJn(IW*xMTKhPh z{KIS#R1q1XEQl=D=Ze|%^FPfO^}(O2P(_>GrQHvw|1x`sQCxu4n8rE(i9Y^l$V$-S zx|zd-=&h_d6f4M~#ZX3wtVwG#Mc45S-W-Vh2S=;(7zU-9XF0FMK3>gk1T4!0u(7uF zA}{~IqCChUFB;x1BsTaUQshTX{^5hMC!XJQfUa2hnigr>IgBmmz6&mv zb<5MCn8XIh1VuZf?uZ&u-d!mAG3s=Rz+F_P0bbunH(TF@|I2eS6@@z*Zic$uVj@GQ z69eOIRQl3WNSJ%DnB&BH=8!sQv4j;6H#%s6rShN!{1Zlk(~$y%(UAfafzEDxz-kiX zLW|^QtiUFTr9`q%MVlnTd?f8-8-KFuME5s~ZrQ{B0Fd6U3+|^{l40bjjSG=BS*#F1 zmQHP?vf4zp-eGm5=hJAaX-kR)@*qgHj&==S{P>qL2P_b<;o-Lv)yE{TMgT)PEi=fj zjz$jIq_|XH%s!9Jh!Zb%vu8T1}ndU})+LN99B8 z(3`|lXE@eNIpm+dLvNi9sY7qgB?>g=rGM~!$}A^wvm#6=Z~sM&@kRzk}HttAU!tEm~tx1Z$3=j zcljq#;SLXjT3NIUG$mGf1ur<})wiq%rNONb4$BJX` zOmim|$969$+eG9S$6lE3u3rqB1X)uYc~*uSkE?Nbpv$bI4a_(N7`dY~@d2wt@1zSq zQ;V#HtN;ymr#Qj@WUE4m%yK^`I3k7pfh@%Sfnn1`2Ig1-0Q^wvpV27fdgo>)m@Trj@}cmTZP7{1)Dm$8|q>M zla91nXKA&L6_8f6*Y$m@Ecd$ZVWp(hZl_Y8232azf-;FrDQmkM@}!Uq;3>Deon>q= zx>~E9)`(6v;OJxn2Ot)5y1DxZ4#k}pHDTksVYS6gMq0Lu05qf)3uE%!F#*tdd6;A( zzpw*7c)jl3-HQY2QDdadE7kvJ<=s8pn*u5$)0&X9xoNV<`k$4JUhaf|%3~uvHQ||F z?mW@%e^#b_k=#}kG;91pL!X4C{m~;CEsB}pU#ONaoE6wHGZXjI$(VVBm1^zXLm~NY zw{;eD_7}lgfFoF}xehX;UuM}`RCCk;{hOFKku zLm)aCf}@im8~|&ZJ%>_1P223N1(MDc91W>i+w3`%toTteD?(u}bFXO4=#dfKU#d`Y zvjQ@r+;*<@hQh(_>f#<&NG7}!lE?FuiWeQP7~;+f7@HLhaVN3VV{NQJeq_V|e$t4O z84ufth)zc2=ww6(z}kY&p`=CN7IZBil7_omiWeC#+8#aMp^v`u%i@F00l&IEiC(*h zuy*z^p4NVJ1_APhOOmIafZ|zgM&HkbAXn_QT(OrG*seIGTv5ad(G}RJ108YUe>%c? z8;IP<5dqw!BeWyIq8ZW25geTy;Q&}0(>WA%m=Th21aCqeJu_2OW8`U&A9sXJZt5N( zyH{X?e4IhStU+cr8;4uFAvhD-qRs)-hG>hr$v9$UZ8{Vh$y*ec<<+y-_+( zrsr%JQ&tbv-PkS48@*i$HWzR74i6ajKw( z#?nfR_03Q&fVvTqL#%<;?4!52mUDUuuAy9B=&lEaje1rp*fP<*sZ_{PR8(FNr!PGs z@5QvPh+Oh_z0d-4n!BzR@&O{uJ2E^P`cDc^5g#&hU?exjyQ4GHH69Fyj?krn0a<0y z4EMwmY!s#`u21SlxaNInCLW*I$wZKos^~Kkz-PSMkEk2pwiN81<;G9EU1K$h6nV#-x1?i8MeD3a7Ouu$S9f{#`l4glg zDz4ctN;7@S5qS>4qrZ*D#;YCk8`TOec<2eYrr}Pdho5ve6s?#(YZ|EAAeC=N%K584+rCfgQX47c!G)%dRs# za^N4fs(P8Pinl%N)N}r&ws+ZbAD5LBuJVy%H?);j2@@+TTkPpxUn_lYNK;RF5xRE|TIQ7952%oF9 zodq-3xl3!}I;(}|!NsHT4N82qt3UpGb5U*$6Z3>*B5C&yDVJw{N?IuW>zWZ1*Hc%jr@M`i(4CK_Do=iqRek;N5W5uW5jx z$D&x+SPJ^S=}y-~FIG?5@dbGuZN77G(%r7>GYS6RR9!`mgE0Ifoo=Mn7vr!%eroj6c`-pm z_pZar9X)vM@(y<*R> zorG|Q=i35rQ6Ia!Jj>l4=I?SBiL%EK*~;;Oqf0FkB6ho7BAQ{);IiT|7TXEOR0nrc z@=&jafCiUKHq-;=!q1)>@hVy;bO|%5T7Qc;!2icVqQM&o-W)BK#RUE37|z^ zGAlCS1Elvcd~C==^t-v9!;aDNmEd|F9_DGP_c{i7$yx109;;4yNS-3q zbB}>mC(EO|P!F8A>CKPf2Vw9C>3oJw!p(CE2UT7Te_y=D@ZdxQo>x&9-yRK31BAGtKbj-ipu1)=0FCY<j73Az16b24Xp2X? zH4vv5OIku@HG$+#J%~%M97?O8T?h6_7FYgf<%m!4#SyP8XV3ad%h>a5W7AFu9vT=t zY9~YtZxt*s@*c?S5>w+FgwQsKn(`NIgQ)opZG#B2FM!=}7$Tds83ua}xeJ11u2U6j zmW6$X-IIhNiCB${(pPgE;7?yWZZmx?uYN8O&c7IkCp@;{JI`J=3zfd|zESCG5G%0L z7na)T>-8`E=}W`qhcDfo^)BD2>=i_EZ)dD4vsc7XcU_ge7?#RjS>M>%D~4sS7o{+i zy_Un(qwanQoh5*`>!!B2DtQ&)B+G-BtlDt76>|oD>}>Z*Tn~JU!6{vB{D!5go!_X% zp5+qD_a>Vbdz!*!O)K$BT{8ZN7bk`5YtR^SM#bfm87twCWXUyKZA-dEecq`33HQ(9 z8ylGnLUM7ll4 zb$cneZurWtj%{aa`vYTy`M`J7IS;fs6DvWt7*8lHD~FeuCFRU64e87ACZY86?uvrd zqD5c*LCY$G{Z^s;$GvFhKi;sI4=MkBE;Xb4_l5jL`R@z7*G_)!uXz63f5E*gNd7zg zlY6GP$ZSNZ@4OB0r@q~{nflbQy#`)1pOiFNK+-!sBj9qq?7WyD%)Ec29x_{PzT|GG zvK7Np+3LIF!LwD=2{Z;}tE%wgW%sazzojy~O@Gg{qoGy-t}3+AM2f7*hgpurga&xQ zxm-+0Wq8!c>z!cDCHsULY*m$5)?f=)6H53|BHwh|vRk?QPWPA5Q%!B0Yfa_s~Pt9k7r7IobMpcKKS)mfg(v*f6G3BO5mjMX8Pj&S#Vr*sOFNWQ*@23qm9ajoyJb2bxhxaSKFpux@#OV!tvs(LTv zB)5HXx7dxH$EB@0P-Blfi4bb+@$wfn_V|;xYV7kh&-NgVJzw`s7Fn`BALnG)0Doh@ z-4BLfV^0FJ@S&=zi3effZH3ayCjLNaPkq(I8J23|4NeAc;`d02sfiDS9%Vd(5?VEsgkEM9J;QR4XA=!A086l6vy^Nd0GV^ zq9irpttihk;$m^^h0&f2Cw2<_9_{HbZWhNzN#a6KZYWwbz7l*}$fRZ*8wq@~KtQ&v1>u@Z`>j8iP0%u_+* z$rWugw(d}_dkWmAvD4w49NxAtnTTo}IDm;DGpgt-0hCc&!QrZ&Jt0$3TDq8NIzy$L zIGIcPKGbdrzqW;M)wF%sZNrFe!2 z4xp6(zNPeLrL=Z0^sny85!^X;#^-6u@0yb;<0qd+2xa^f`HM1s%IRBW{IHsy!+{z9 z@Z;@TLd{y9*F_6ipJ)80Ho%|p_uc03F6mW#>szgk=XufHrcRSuEf*r|dOGVJPviaO z_$9vOyYqSpuM=sgABlEm2NBWR0kxMs#-#e5CaT9^SgOZpbUJvCF;}vq9^*wA-oP^{ zp@RhQT-n$b$eO}7Z0MP$iRCt2ohG#3?5;(HKo}zP2GiC*NX;#oVXU?nWs7dD zYhA|E4xYr~>~Kd?dDu9vd}2t0BK$ngxbn#&)ycFTXPO<9>87-LiP6QGqGgX|RSn>Z zX{Wvu5DQOddpZR|<^8*cyx09sCJrsMag$LJqn#!kN;^$1!Y0#`4c)qHLOV@+-r&-l z((!Pyx2Fr-XzuAErZCFnl!-;kDHB}#ZK8u6eM=mxp`&hfnkssNI z^CSB>0I~41%X6RLP)e5*iqyHPA5XJu2l42d)SGtG96<-jSpsgVF)@#__?0c*Ixxi> zuRnNUfZLNB^SxA+(&#z)i_+*h6gv1U`96Stnu{J9)YWzb-qgEvC_mXIL6db0XFEBhm4n{_-n5?HH1OF%gf& z`p6OHnRcGBq94Pg6Fv8yQR|VTSOJls6I5sD{E?W#3h7)E*21?bo$=F)GM85lVkd6} z*x1qYvC87CTxId!F^H?GZ%U=|g~*kX5oPhU(5SO#L_!4#;OXs8<`ST9qnzvP`AQR; znTXUJ98>#u�WPKHORe4DfqOXYYsT3$C#W3g5uTA7^o3Uqt8dx>AAkkc3cm>H&T zKBE#jmzPF+$DEpOV3N|eH7+m!jjDc-0LtSP;K~S3Ef_N*vK370;dw=r`4)?;q)cf; z|5l|9ofX(=qw2RRm&dbGnKra4aHS8oj$Z3qmCu=Ztb87AYhWF$L7tR4I8RC)4uF+f z1EBuY+M0<(sWkx2zlo1SDYf1tzsl?K^y_C-YCYWBvr~*<^vE(pEXxdG1-50TS(cf> zO35-)0xc7TH}Dn>&2Ak2e;URb$RkTK3};D(aR6eWQ6C(FawzFGQ1Z_4=~Xc3K2Ix6 zY-19VV((ary~7GfF?qm1`vk`J^HdjySRv_kAW*MJ{a8@NXv?_maclI9ENO3P086>I z^fF^}#ecp4(a8=Ro$TNM#6svm&r>1*Dg%VJ`iFjJhdKpF0GbStVS_x~11ggd-}D=i z-kmRRQ9cy+8^~mkFAwtmfDKi4OJ^ZtgeP6yhU;Ris0B8c0J{Y?p?8_Rzq96C_b_y_ z?VS)gnztt0Jw0!jCo3S=$Y~ee;fRO{5HYuH1Fjxfj_$?nBoT7-=HD?P`-pjrA<6fg zEnfj<2%(8r7z$0dRx$wE9`}{YSD74YH->HB$uv=yi$r>Daq9IU=@q0c#M>bgsU}>U zQ|D2h`vX{$qn0UMpHsT(XV0i5Hl82-1BDpgKlpuv-I#oz_>WYTMhZ9NFB&P_K&r(? z3RiNPw4#IBG5i>(kDNTL6rWiax=n6W9Tq&`Y2o}DuDC6XKPfyX8b*)K?*CIr$Sk-D7US1SfX**|a8DR~@-!XlhIlf7U-HXc8gu)Iea4{M7{ZKkTU+ zpDBOy(LkaESO$%ll9ARH>*sCaTcGIMrc=dQ8=|IG zuSx(V1hgx?h^si&vpr1(F zF@L_%x13cgJ+GpxKfDNdo&QW!A$v! z+F<7Q)CL2Z5ek$XQpY9~9pc^FQ5yPo^$GclKCc_M1AoycSC`3O^aa89@-%Xr_#Y6GBXR_8>R{G>MYV%VICxr@1qb{(_+NpSS2EvPFN3O@GldjDA0a zqx`biOV>db;1zUC{*6KDueazUvPFLrRQ8Y+<}@6f!*6vl0q=;z|UVTN`}H$N7RS&^F7(3yt^R6a_+6us?Nv(6^he!bLX_<fUJURZIPURbuu69eu``W*!?EcK*nA=^+lI!v|g96L-E zF)ck5l481+g2l@{U*lTggDX7g;tW&2s8Opy+DWOtTFi+0v=l~R`Ef&r4t`+NfDxnT zdw+rfD?M+QU`3iNf^sJ6$IgLgttVL=V~kf!Yn2;yQv!Ir9951O^L>?2{fl$zJiv~Z zJ%dH`4~R*Li5gHY)c-xN#BP#8;qIfNoj6(QR`dJGK+S}fCjOfp=iA)Cu9X$amCJ*nqn1`h1%OP#d_w>N;TuxIOSp#;g;>^ z&D&}}cf+AqJ*D91m7ef|Y8yQhwUE6iE481!Kd|<5IjLzVjNI%gD0LB4fQ?PgB}Uaz z6VOXcCkl!S|3^^#X$OVtEzeyg3koJQq`i&J>Kr;vo|rnvM4|W)=N<9!9dmUN$|8^1 zw0j3LE=$kmD4R6y_IGhL^`Ho@p!(owwKK4@3-nFs&3njc1@-Td(D zbUQum@wOLAT8B1vs0pX{onP*O&F(#pd62JvX5|>_6eDsoe>$?eo+Vy&1-UYi)<BAj@d_z{UxfeX6Hkrk zAUde^Xl}O^XHXgr82fpLT)oAQYUgu3NIrz?u(f|w%OTv27=qRr2Nq7ghDePE`EWl>!BA=RI6=JA_&6RTmFJ05hSr%lnCN4s6hal2!6HA2Qm>9H2>OTYNCh4 zW0|1&zh%-2q8lSkiC{PbP$C#20h9>Po^~Rb#_;@!K%aC$z4n{LN*$SC9$YzrncxM6 zL5*n6gU=48j`4vH+{4vOvS1 z99bYi)>B#F5&290>ATo-&`)%+XS|dxASI+pfYtVCY;fv=r?+^5L8*N$`!&0bKJO=p zT++0Lc!8CwwuN)?FB&y3J|tf96SXZt^3d*sLGZxEHq9VuLr6)EMd4U@jP?Y%TYgn8 zeuGn;$Czleu0yklcNi3tNiK}J8dAcc&KOaQh5OeEwLbt4&IIf z8+$Y=smcL7Y3j*@@Q3-jl81S6XwJjx3Y>Yrcs50Z{EXVrtn+7dx&I2BG4)%8LY2}v z2TE1Ch#@|+SJUbu27meDho(nScqv5CSV+1^)1z<}3&g7iq3lW0swvufTxn}kptg>!>>XLoks!;= zIucyxM2jFK(>H+VE~|?d@0_LLWy~xhS9}XgMO2FsVmma-w6V{Z2NV zG{Y$Cs}~)e*%(ra>n#A|<6m-AhQja2vX`*wLGWxOLm2gc*PBFEl^tt8Cg;C(DoPdpde6T;AIorjY63%T~jq>s?pYmdl` zTrJ@Q`{XTAK>K955^SmJlPfyfSFjzV8TLtGCwmdwOG-tbm^+T}EqB^G1b{b1$=fwA zRLK+PkBH-+cCqh>jy(#~Q1;s}4Yhz@bQ*#V>DA3%78;SH!l%9<4IXY5TAB;9P}aX3 zu{_ItD3))kYrMXVqkMc@Ye!}fwou=lL;=NPPSK$Yklsh^k=kMfD_t)1CqLR5@WV?qQK&X6h$@E158jnB8kBD&DtwvnF09D7s_ z)3JmVp|+G;g4H&fNH!Aq5xLFTPq{MqoNtR~um?%|rs!{precib$9voDK10VD>aITa zy~dk-LSK7l_BJ7j+G~iQz4s#zzysqQj1Nq3!q~IgGa9SJSB~Pu{t96Tb@;Df9d6Ll znJ-Em*8beF8Q=9sv5TMSYVFN_COB{zFhAW{5cT`fD84@3naBPl)sv>UO8C;QEYCO* zL2v`^Lzu;Z)6BsPXV<2Ld*;ta<@saEDN37qEXdG))Y2L+2J~g&E78s1>C84U{L6m! zm%(W6FNX-SL?BQLBXrt*jztJ;?Z?oi#M8i*SG&$Fu!x8dLRw`Vo7FO5RDL}1Tk zg@hL&UFyhS>3SZMQ)zeLMcBg9LhG&U3ev0zW?){Xky94}7mK!=OOEla*V}U0GC~X0 zb$=vvt&r*pa33!YglM+VWpCeDMcu;P9@82T2Tf3YpeA_ww1JP zincas3RGJdpUoI#f6suCIN08a{Y2=Y#(s#TvERaItftC7rm@O`qrhTReM=ZXWyKs1 zvYGu#lzmEB|LA9Zlw}AgU$#&rxR;b$d$3$miorm}aTyFy@TLR7)nXpiGxU1Z;BtmA7(+q{-GJYV6}+jjdKf)hUh5TIjrreM6cxMPpxS zCKB0306=o+kEJZ3U>Ys9z(ju9Erg2|=r?mX|hub#-2<={%7a)zm>S zLC|djNP-)cd4nL#np{l1^5` z{0ho1vG!zN69!P7Uqn(T9Bm37tiyi;>waQ}y(LfT-LFZ>IdjjiGQQtK_(8><6a`eV zpDBrUqGI!T^#torzGV>*P%7(nmA#JvN1LWy4S519Atf|s6p1!r z){_HIgiaoF>p)}WSKAZ#8$Vc6_|i4yjY&4+!ae_l9E$mbAEB|75u$)U32!L+F;54QLGN$Ywv^|=)yTY2o zmrk{3@|`!r+Izx{_J^aN1a|ncf0lG(s|aJ*2Tw%kgSC}9B zlNNW;ze#ryO?X1>cNGOx`-WiBZk|($Z*#Skvwox%PIX&)d!qTU#L~{pNvcri{rKiP zVN$0}nxgYkKRZ<2zLX2Buwo|zr8x?|sAy;Xq6Ku_tJXMvlH0c#Rea+k zkTa_$@`!FT2St)+^zV_gwvX78dFEq{_wg>!t~jmgBHReEQm+ga%l^BJVg~>>D&cr1 zn@^fGVYr(&YUEUD16Sn7@lh-7znf40&KJFCxA2v3xYF6Pget1;sYt5ZAXOKzx`hB` zVq=5jmA~`;4_JG#m4pLS*So>$TA?I*M5$}Y66kV7{MIq{cOY!JHBGC7PoVc_-W?f!Db@&PNF7#Y|6!OyR- zma!Vb6ndk1!RoA*(hUZFgw=vJ;g!F;tr@&!lsk^MtheuAcM~K{7?s8yeo{n{4O?EZ zGs9f}2R~kC&1dz57HSc)(UG+RvNwer^)d=yMw!kC;ielfzNr``ZhaAkTgZ3@Q$Gv znm~$Zls`G~8padewto@b{7(o1=GxtzSseWG83XDyhHw4IUKSd(rt!Jkf`V2|8Pr@0 z8LTF2(fm_x{h5Rv)M95*KxfJGQnWKli??*L&0{vwswrwK=Ef(WHo#5Q2A|Z4Yq)u< zJ<2dA{mFa1WbMPI5Q3<+OCxA)W~kQIZ?j+7*lFaFKl#~TtnJw)gg&ZiL9m)GmZFRT zhU=}5v*n~gBQ>;WlzovODb>%yHSm3-*VWV!zZ3|H|NJj9&W}5e)U5ve;~@y*o3p0@E7m5(OSe32ya54 zsl7x2)o0vaGVqH9-ozAAwaGezxk$4nDAcq| z53OyY-v_36PIg%_`+%^AYTXt|t-Hghwf-CXtj4N!GvB=*)~%Zf1E|*jhyptD-cf3O z6aEVC_a|x56pj9-H2S8}Xv4v8?ROhSJMR6?-k)Wk46@eDlM$@7`^hlYdTPT!Wv$R1 z7CwJh6GOe$Cwcj9IIGy2u!ZXCCkm*#(oaf5O#!xqq3$?jzn0aIW=+vqwMI@|9}dGu zKeyV1gR=2wezI>iuRF=Nv$8gP!Ow8~>jpv}huJlew0WD?mcp0t7lS|?t!x~!bllTyr`JD<2dLr;P6dt4FO*<=QN=w?@56lhAK+Wl1fW{PVa{j&0c)O-#gG009-=*|^dGS? z+n$PGj@?e-8Job#v*)g|PECnB%(PRyV%&hXafBBXu`F1`Aa^x7wGfP*e`2r-(7r)Uw;TrzFkZ>K*4Sf7HpIh z3?4GeY33;4`;5wQY$<8g6t{A}Qrd`90ZPMI^ajJ><^6V8;l0?O>}|z2P5HW4;J?j3 zS$oKMsBZM(RDQ=+Yg@D76yN-_)yCc=e4##Hi=@wOQlEjNW!)1#=MAXS`0T}S6teDB zPt!8_^{1pGswcdmruPJE`X#05wL;T>u>X<<^5kiU%I@qqDHT4*{4a>OzE9f#aM)t0 zVNs{GaS6yMK*)_vgW3gvBIYH>VL6l@1TQeR`_;8bu*bKr64wNfSM{q0G zo(?rU$c#;Dq~XCkffHIfda$X40UQl?ivl{IPdY6f$^>9Q%;#qcEA6$(4)|!zDeGnI zanimi7Wk;9LfsbL*@#bd{209r2=PT-`}JV&6OyR2t&w!LGmOq~o1rSz(USK_>IY|4 zn{dx%BkyH#Gvkal z7d_pajU*#G6K1*@UeK?5lct;BPxHYU4p#uLb4OKP#BwQj;&OQ1eE57hfTR6T(NGmx z0-UPiSJlrArvp6gh7aLv&-0m%e}Q{nlm+8*B%y``^&J-)Gv zqny1*Si#=;F<6+bs&_Vt-hl@=l8YPI8PcjLj_agS)Fz*z)Mc|Cj!(=EXStDHoXt9& z)g~>JW#sTx-PNN?p-KCKvtb5weJq@1KGxfj!5{3|XpNa!XYpKm7U4%|ETuveP&3UC z4BE|Bz>4tsv+FBwWTQx{CTI*ST;MiZaiawOsLOd9mR}Xecl2@`FmC4SiyU3pErc5C z?8d*-+1*lSfrG5KS$4_M!XNlp^hJRY(xF4>oUs4MG=3j&^>g=C?r?Z1$bOv|MN_eXkhZ6WE zTjR5OJJ0gBI~3=zorE9M-icuCeIm8@k<#9q9g8Qj*mK%inxegEK4}OHu#W{&%j?DuYRlVs9CsOO`LiBJE_;!Ph`smx z--*~DdoOUYg||ciaV9@k>1gzgpJ&d=Lp#q9hEULtf(3m_3i_n#Nw_6az&92ZU&y{D zO`9_Azw{HJnk=k#{16>|9>&I*Vdb4z4E*wCJWz2auOAt4*e9LGVIOp3Z}A;)Z~VYm zSfLJE1uN8X_YP{>3iTYQq`0^%J4Y0OI?NT!Qfq)<7);yzOX;wBxML2p5{d9pyB~rd zCg?3hginNs2Lz$1(2m&*Z}7@jwTvU;Rf8(?=fmR381;qoL-2gUy1rGGFt`1^Kfv=3 zWyQ{@>F1+rJ7jcaGYJd$mfe+tqCIn8Fee0=e8!Fx_}>y}{Bvs!TSqzO8Bxp5s}}^8 zo!2i2)UJUoYId<>ui0>(4<1Ox-l zo7vo~2QJ?$YR&2iKiK_yL;>yomqD6doM`M;1@LjGxh?0@D68~2Q<>*gj?s~fq^%!A`2=Hwc;DyaDemDv5v+Z zFGkr1W;j}y7ew=l><+D16yZw9p4vqeP}$+k!SMNmE6lS*ZnIby5}7Oc!ilgYICHY& zGx(&~z$vh-8c*Fdh&Vpq}EqSK6_7iZiVHy63!j3ve?3ai(Kw!1E^f1lZ#;?(ETDF z&Ka7e3;d3%2`>PG1$g<=>m1E_%^b&ER-&0r1<0A}7-AN};o_Gn)A{Xl9RpcS z5Rf^<;Kw((`?3k7V%3qsBe7!cg%9>r8?}z% z>0w0k7V!4-9QB5J4v;{|_kUU&d~2$6Ogg^$QD*VgB;MyQ#eexiM-%e#}rnivEyr8X1>XjtyLCYcz;ZLHjvcjScZ%gwFkRb z^<_gz1wP`H&)ePZ=*sd*Ib^}%scm@G%MwNeZ%>FCk2^9=3+M>!0PdOe`qP=ltL|{5 z!MTZvcR0G3Gflo|f-^OWpf#Z~cVp#P3n}pFND=792VT;qi)FrOfxUB!_=UZ5 zOQhcEe3xVS&~RbZlZ}6(X;Mq)NWOVyackagMsYr0bvGE)BSZ}B>W6fJPmIO?2Q)cb zuMu-}Z)>3+*NrG+8%YIv&9%J#KJc1rOyM=hvOT088}7!2>3r#`?C$J8q!wH6#@5Cf z@u!S$*p<}E5=JKPv#ReO@b~?l4>&p)QT&Am9D_2S65CAcd0J$ak7{pc!jITSz?R03a61rwbz?Jv+rZl2*Txu9Tk9BM z3B$R!3O;xu47v~KOB(cnT1O{iF^}Pn>dY#Ely<6>P{Eh$@Rg;9Nh!`{2lljXOn8ju z2D)g?9wZoXF1!8a;+5=aQi|hdwJ4x-SwOqnob%ZmqzOKK`I;!eVF036yzlDE>z*Bc zwfRq2IW4HlWqSxbu8npJHHNu^2p>hxdAh17VXI<7G z(L5){-M(SPZN-%a%a07Nz6IMo8bTmvKA(R_@r`T%1s6|KhoJ8l&4>Tws4$_~s$eZ{V0G_T+5sxX27AjC?rmJ)F~=~$oD zc~|pao`C>>j7fi$9M;vAy9Ed68txIl&^6o>9bta=ta02Qb_RK{iROLnbB-l!HBkmS zk|%Y6kMG4zrR2FE`tvP~Sh|nb`LP!qLtv1>ALZb~5ck$YX9!>LC@4t!f~<9pY~xGb zf1SgTSue0sU+_2~gTCO?b&iAVKcp15`0**RpGhemVEPZg}(Kp6d>h` z9xR?40FRMr`{l)XMl$cU!O@+iHq&MTwp&p9Ns85M*(|~;KdTvE)uJk!FU^i(eBwjJ zozhkavQ$DrcG54o83ANPFq#5y zKawZE4ho~t5ckQicUfvQv~OH`f#=~%-5#?VSX<+)F#9zV0d|F13NJHU=d7?0@oAgQ zHSWHgy#cGuS2R*yFIen^n_3NGKJo|Lzr7R{!_ezlPOs>Jq z7$N*r)`~(3SF8~$$g~*gilK#|oD~AFPOIe*d_l=p(JFlBMDvMH6%S^`K@`c*PLRBj z=6vqCN=rk=7KhQybj9#x`&?CoftDfghj_35^sBHCPvIXO(%Dp7#tHi9q2X+g^3dbq z76}Azt-=LwATOW0b;2aR?;nl_L!-ANXW%)nEgv{Wuxp86=x?vm1wJkoKiovmp1rPk zo+S)o@9l6RK={&`Ad2**oj!(O`C&fjV+fXS7pzcEGh6c}9|`~FV@C^vtt7?rB$jvs z@L5ud=Dd>Eed6dD0DZ8d^L2AmjPx*DNCUK#cVZ$q#gAj8hk01EpdRK8ICzB~27ZL` zFb7DfV99(VhF6Rn)QwSazl$+f#_;5qodbDN&EUp7I*V~4s6L6e+wF*9D+uw0-&T$> z;aGqDaHoew#cEzfyqJ1UK%(ANy5T&q*&P^}|Cyt?h2ZfG5brrKw;~U09mbbTU|AHO zaAF#ta$;>_r5)!}$Uw>}u;~#i?HF312MIxCiN%mAB3FAHl@>B={2a@XSDijuuz-ej zvG|3d&&51>FFfo?>`G=fUfAnc7B=#EsEPJb^A3EC<$>DLe7@uaEUP;F+i?lIis%Ln zbCxdfNwN6s`n<9Cu`ySHOJ|wD#Js9k~$Ycla6-f(r#^YV6YqDGZz@WLjsj zoum{OH{RfOpAd+xVsY~yQh-6m0a1WKhBsC&ZZ_<9ydQNgHk$ALzPJ;+pgGj5g#=;Zc z8yj#SpQ{W|ldQ{q}8J^a=vrRR4gmftiNzQN-K;W1h{4$_He;V$e}ALJ4z;vy0fQL5 zWE=4dy=0pfk;4z5#+SvmpU5}->Ub(N{CM;PY)lskOf(ssuM2$i7dPSIcuWSvUStw~ z=U>HBm`h{lnC`7;!IyO&V&zZ#4l#rs6T~qU0Cde{UU4wC4HLip{E2jL&A$Gb7G3D$ z(L1mO_>F5iwdI@Z;}ZFx!uCaMwg!`#=jkm-=6OD;MOL6zWS)83ztG`g(s?>hKIv%B zrW069Itwn+bfM;g?`F;{vm5k^jHGf-Il3Fq^C71k-OLwS$ZRvP8t7zuXiQvWo6|`_ zAnNWi+5DDhfFt2;@e4=7+j1m?PMB$D9Lqy{AA-;E>~lgGr?*|Yz(=@=apx$$kw)2k4%x?uhbUyl2Gl;<_dDQm|slv?O!d;Ep z_=boLnNDXX2}Yd6lH-6KWi2>~C5i%^#J+9epTy$$eNVeSjmnEtGg&@qg)>?AxCqlr zNt~R?P6)yQGg)UqhBF!b@Uwt3nfUTXR1H+)LURPEMp{E7(HbXdF+xjxdZRK*kitof zlJZYtESFO7WeLspKt@boiSTxsn7&vXPG12kgalz3kN>&&GRRqLA;g@O5+@3{Zn0*cv31FER_nK&7nE{~IwiUv@amd4@q(~5MaZ)ke~m>+wtz>`jfmA?{4 z=1|LS!2;UaXW|#y+GlYQ(sG~1JOBR(PABogW3ZHaI(VWJYW*&lU*kM|~qqz70O z(;bAnGUuUx#dc0IslZQIK?R1Lr{m;)PB#JoEl2THNlpuH=I|rQPO-_2%{noEGqJyI z2_uB}R2;5Ljc@suROeV@3IwWYydce)XpH9l)102nQ$lj;9lqD95Z+-un@G3;Yq7*W zY+hho0LN5jr#s6HFMl!Jna^erAUy0Yo~bskU=fV;T44RFA@D9;c2o)*E!wKZCp=c& zE%m!#o+dJ0zuK7*zzXK&LLkQzK5!%9jaE+19weo3%ORKF+}c^l9wVjT?3{ed$`*{r zv~i9MXn-CM}wbG87T{(yE z>)<@aE+nOx5tQ5ut4p1l(<(?Gi^q?l?oq)G$r0K{Tv4O-y(O#>)Y zZ^p|sP$aHI8i;hhpJO?$sx7Ak3ur8-#V<6L)6!T%!`k)v&ig_Q1P+EVzPP|SoTVk` zzQ%bnNf-DiFK)s&H&wQ1V3Yb*A zX!*tkJlW;6r-am>^@~@#vQ3V=BY3S=}(6IPhM*P4_$o_N{=yrxUZPzx~?f1gN`tF|l<9H56g2LD=Ee&i}70zACXctx2=hM z)hCX;0C4mG2NR_S_z!7;bNv3q2y^@|iP8nUAzDxu@KvI60q`S?3y5l|OOdCq5~T~E z;QmS8*eV843E$#q4%a{@l{ET<5U4+q*A_qq!u%qP>Y$(9^?GH zz`?Ja@y_<_QvwU4Umd3n&xVXT?t{*d4x`ruXBUIcn$O$_Y?eh zkd_qqx&b5i|+CdPjw zdF5r!cs^mWbE+i_cCRx@s;nolFI5JCT6<#@pECu*3#Z_R`q%=^pj;Q>r(PzI(k6yy z$Zra}gkZ!xL%~foF%2`^B~KV^CaJ>}c)<_laeQE9Nw#@i5?|VTP$zZ+0a>+e&@?zH z8-BCwwj`O&93>h^SACcdO)Sq%ogqqSWHmF1&s|>AHk5qL_AV`W{NR!f=87bKY2QIz z*b{_2P8E+vqQ52_{q{-aZTOt35|$Q*2{>nxRNgLt3rt^xfQG2Bdb)EF+eTPJ<(;1H ztO85(%z%u|PEv{K3w%;xdnD$+NaDNORrih$P~N3OOA3kdl;__Up@xWNk?PqiSa(@y(J0kE+G;n}?V5AWW->`1d5f zbB?oj0C7xj70iW{Tn?d$=`Hb+M-(v12U_}#3TPB0sX|XB#WQXMp*-Uz3NUjotQ60< zCCgZ390A4E2%JQi6K*v!Em?*lq>H#b;+CvJk&y(I&NtjlN--1}nJhyQ3hoa@SPcOO zU8rNZ)jat|5fsG23ny@{S|r_#Qdzcii4hlI&h{+RgRQ-y$B+^$O8CWJat9(n)9dJg;{KKYychkcId>f0cBb)#<+o z9xxO*B7Wga0ACQj$r*AgC%n`0=U&QYz;;&jId(ge+Gm?%K=0xjUt^_qf?^URs>&z)5{Y&L;M z8=KA#+!4;kZb*@HNN3T&H;3e0UXo{Cp2CweJsviNq7vq@t6*G=ks`OFhNZ~us39qG zJBl(67Uq<ULP%imK z-|vhu*l(m5eHwlt>VB z@+GD!KMOznxU`?Ol2YU;F;)6m3hwu_CUA@g{R+lqG$yZ$t8M6jRCb)`0@J#qQ)OCr z3}HwZR_aJmfI3%c-BG|{cV|VrE7UTNpz;k8@5ofL%)6SPJpM1&uw*|*HRaE)tp#^} zI{^!#tk!so0INvu&Q6s%8_k+RG$U0ecO$VRlDlNc_}P`CuG;dVU;z#3CGiUl>7~@L zhIA!w^Qbe-b*Dcbh5gSDh$v`C+jN1CXp?>VoE4C|`9>p_dEGBl#nHMdb1(jtN9-(N z$b0udhr@|lV-xT7gxI;{==kfNa3-7QQu!-SIEQ5J5y+{zZ6VY|hPF1neG7ie74|&7 zaHVq;i%kP~pSg&yYT}pUT9Q&6;<0Ibz)7b)033$+P~MblPM{6nj1f%;;@Y8bQOS1J zm6k5_>~#@vI6w`jkP&Qr^;B2&q=RD(lH|nM|aq_Pt1w>#-v8O=Gts7=9U_3zSBkzmN=ijvMFAM!`d*1U0A8p+RWlPW z)&E_ZbRC~T_lg@=8bEQoGYwsb`AHg|Zrbx^0d8j1AV7L5F_#2g2_tci$%9c=YF zIx60n#}nRg4l;oq0hbkmh)Rg}Fc=-33m$h3vk>>>^Rmj#Ra-t5oT6*rE`FhF-<}@U zwO_#}zvWyN8YAJpUET!vz{b)QC8OAPM0RxY2Xujt{Nl$OpS{D$8r)hmAOEg1mGA1- zFO?tbUNYPghK~2wbQ#Bg1tQ6~2~PE;@t-z2EpVgQ*yJ3Y`Kw@$dh@R}zcP4wdXsam z!Qw4?WaCoXzQx(gu<&_XAVbiaRQeA%fV;@q4!eQjzpt0eCvA21VNs%`ij3-@pb-y& z1ZboU{ilX*@y7#*ezPU zq3>EQhGxCSu%ZN_V7NKE?A=a9#*LyOJZ93rXI>mZD%^f;+SnLT3!g0ib}WPL#nt(x zqR7su3}Rtk`vIK#+qAaiHnxqRLAS5vSB`Wu#MI9B+2<5cEY3Bc+7H~#cYg{~&Snc5 zJgHZR-a+aYyQ-?-Hth68V>R?_qn zTlq{M-jHa`&wcJ}!MA)4J77ckho3ty%@~gsN#M*d}?(m8%;{}Om!(K#W-m+ zJY6q>I0}wIT+5=Cjoyg@Wu)^>4X_h6lF-vJ-1W57AHyvqr8tXT&+EQ$E@Tv1OY&e4 zw0S+~PoyR(IQoR^1SE~&0+?#;xh0OGf*3CTMNxp34V{9PJ?x#5^-S%70fGFWfUxH=BGod2y z_JSy~2k2EtbXi+U_OZm)Ku8UDG;J-vvdFlGWe1%%8?5vHgv{jtsh+49xDK3jF=?VB zx&fpVBRT++5gmoch)y%3BDy}U<$ixIuR8`Ildf0Hwr?#1y3E!X(7^|j!^6e4#(jQp zard(u2tPq8P=VMrQm|t`bxh`6KP0=qdMm+WM(>vFsRoT6K*!0KheYGp(F!_H0y+wniaKPFxF%`b4UZ$D{*U3U47 z5*s^2No?| zk8+b|1Pu9RoN^|M7fj}}F`9&&8%FWre>ltd(ml10qw$oM7${o&`yjC^mtn+Qd+|x$f>xK{Oq$I`j#Qi1hGIdLJJB_wPi6-nX`I&uB zI6?dKOY{q=L5aSX5{0xtiOz>Y7nrWhQ2Yp;oS}!f!u^NoDhh=@_H9WX>ktb4Rg|k= zDDNJjs$Ap4j6yquk zK#VFJ`a?-~Ha!TstI*pulf6l?7hJH|%p|0X|BO4{wI7nz>A)EA-eQVHiCc$&MRX{4f>`Le0LX+;+XShmLdiqPIrojVVN@i zE*CI%qE1zB%f$FQsyH*6w~a0J7@ZI>ORGTvQZ-Oii=}-%aPJD5e3UI0| zD+JdV;XN*XVTAX1W@vsP4~MZBUpf`u;NH^RHGsWF^njVYdR^cn-{fOi zNqMe0mN1CD+cIU~whmGFlslpn+`l7gd@YA49)fNBrGSwfx+9(s zO)ZUKUlO)(Yjj|i+#0nL&P47nwOkZn2dLa%|17yRdR%Rd5>&o%<1No3TchJBO5v3> zO0}hVah5y*JCi~N5?8yUUO+5%N1+8~+Cxx{%0i2@MB+;9j*=nd=U5KNYD=wP0S%3d zUubAND}te2U+N0H8#dRhD(7t{42t6y+FV1~1|kpI*g9R{qui7WVwfw=uW&KGvCMTh z`#@ut`=r~l4%c2DYdBfqnqaU@Qin$0y`41rJW_#1-?d!?qqnw`MjtI&P^0hIP8mJ?@Qb94 zeh4W=qwm;G8a)L^qn~&*E)PEOikDy7idLvfb@_!#ho(EDoiyE91V5UtZmJIBd4Zrf z)evRMDVCt}4M%U=cJkKChDz5~b~i;SOjn~!lqha*M=!k8{ZIJE0bb0~c;Tgi)viG%uoE6`5h%%j)8!zg8z`2_NPUfLPG!GR$UqL& z(XFG3Luer=XK4-P541xqdMv<;ufLDE z*fpFzNK3Yn;ahGFAiy~FmCV%(OTvj{#h`(J*1ysI1gnN-5I zWY>CN_v7Ro~{Y6WLi3U(GX`bZV@ZB`U8$iMDiY7gb~0Z(ajK5{^5 zc64Gkd`_W%%*b4p1iyS^4mpm`j=*sSQ~<~EgyX}U4=l||ixoJi>I4ggPuMa8Sdd=! z;<)atkkAA#JIn;|6&0mD0>J&cjdEtgE1`+SU6`A+LtgEXc&(AV25Yx-cvcrUN{5Hi zKIC+?!DLbPfXVc=U%cf18J#*5PvmWx!3(Y80;=>Ww3_`bEr7z>aI~ML2++-N;|MR zQjLmxJd)yGkctcB`-{qePFC4MpeZ|<64#x)h0qjJX_SEfdQj=0P-Z7iclCg%%PR?5*2~2k>8oAn$D&Q5@yL#aTT9J}~&tEUQ16I$wHnfQ&zzTmx!@_y4hYVIj z(ZYO7AXOMKL~?@9y}xuVq%tOvCfZu3=O}BPNvcIR8dnOw!rWB8E+?!jq{gaP0E+z7 z=u&4WX*AX)Kv5d&vOwC>SmA@6;Tc$w!+TA01$nk0Vx~vqoAS($^nAXw;q_V8eTp2J= zyxVn?!KM;;)X>D-XkKSA+A;XypF2^bH-F=?v1>`GA3kSHpR8c`PJF_CPdU3g9Q<)_ zX?6fSEIOP#o41T3;wg5=0lT%%c6?WDVt4-j^wQB$&jE+^HGML8>5Nhvdyx~;MnUEueEh&MWhsa9l&_`HKpYN z@P0Q59~eGZ3jt##X@*YH$(OB&n1vtFA-ty~W1^kpxO)eANsuy&#BaQ=w3q4az}sC| zS-@rlQde&Bioavw+74lSrI>Ql$&~A7BAU0l0n&Sv3sjl+1{jx%33Z_|6PU&mFcds! zSSrk21dDbP`UMwsx~o-((XN)8^!c8X&GPt96Zvp!+R)>7vBOF`z6sCrmObq0-qR7e9;UEC-5=R71JzX zuzP=mUJ_}gU7!$5E8$yXpRRHxnkPH(uUEO;nLi4q=z`#%noD_AYxYyFJDJ&$7#@T& znV$u>J5So-tAZBN1oyjAMFH-2eb#~FeiuBAt6mlC)lt1F*qgKxi6f(cAAcrXC{o^0 z9(Fn@=*m^uVfj3655P6|?b(@e1Qi+-z9~2gYVl3M(WDwFT^NDVBuR-8O7clTK?t7| zgdcuCDpF3hJ38m3>oQ+&dqHmTDz4E{Q0gTQH3aVAj`HNw&!y|x zc8XP`eKfR6kbR(-$iBbyL$;5Aqhsm+OKC^;9Vta$3}AfIFQt6~;L)>a^eTJ(MF7)r zCXhoHqX88k4{IVaXOtdR!+dVNYY0p1r2A6j{m4jHK|5(IU*oTQ*|p3xGds!G_%(SI z4-$Cwv>LH7e+Nrjt+wx(_34BTE$nOjK#o`JES$t2_yfKNQ1`m4HtaLv zO*wRW(lwTU)8N{}h7#SNOB<{Ue1bITFq5K`z~?+tx{h6@vCFL2q)svee>JJVq!v^_ zQY)P=dE1rC7Li(i3JSt|W2BXtAN{WD!pw1kE_L!A%81xN7_!7##`B*lE#l{&vR8^<16X?J zAWLuuqe&qU=<~ag0^##nXHkGY-`z0qeV5CKa&}gp-c4X}i@@GFLOQFavvl?GqD6qK z?+?iE{aE~3t} z2e-rLYF-W|^im{3?}Q_yA9fe=EZx>6gHdw+jZ%wE)A3oi*WF1z>|P8c#ml&zJLCLi zcIb@vztYK&&}|xy?{Mum*q<7ooVN6UQYnrToyAAA3L1{AFHJF6^DeqmaSKMnt4vX| zE__i3Pg=vm`qKFZ%ZLoGrVL9L%op)vt65yC#-?fk+uWzC)A_JHu0L3Q5V8~vu9$7c zH|&MT7I?6q5@A--r~KRdBx-6@^;3%|Om*!&=RnHrtiav@#H@s#4HZ2)LT=h_~^R2hRneX|?4kK^~{O)#4XUcdNTZp6-AguYY6IBwq84Yh~D(ZbcKW zSBUxN&CR8WyyYhNU`ECSc+>3b{g5)*NR)&V-l&50U9dwP{Og)Od9Gv5*3x)`eNT!pxOpwO;kN_=UHVB< zfMNU}q5xg`Yh6SbKe!?5J-{86)>S!nOIHB!Z9$6=K7}tk5^ z=-lClAE9>cB~Xpd-A1bM@{?853w7{LXoe1+67)HEK@uH&B5>t*@Z-8l2S0%j!WF|< zO(^s>#uecNLnjZ&(aDF%g$tC0zymH&ZVe`P%iob(EXgqnb65oa@xtqX)3;v z?1hfSbxN!tXgB}pB7OXcF4D)7F`}FBSw~&(un#mg>EiVOQ!aa3SGh82xwCXJ`!@v_ zE0YlLJ%WW2d0-Ek3Qrpfv;~3i-dA|up8pjh`@e#SWolw-0w9g0r(1Z!Rc)9t-DG61 z;nfU4;MI37h~4>BBh6R81(($ghBLancH$Shyms9pyF4K4kMJK4>++fw++WW3|LJ<4 zl?Z0&mUbUq;FF~Z!F|J|lP>T;!!%ME(^qwqd(<;e>5v=B@Il$>1lS*Pn^23J$)0X9 zl;814=}>k%0mYbmp~TA`Bo!EQLxq2>z{j5r47^RK4M2_o{hI^_B7aRWU4C9O4Q04a z*h7E?)3vSQ9frn=``=+y>veaN$(no^3d+rk4?DO1%azbV?SKE#jhCD55t(j5g1Y-& zgeG3a0C%6kkKJv};4P!v|7Pb&z3}^4g~1rkXoy1%bG|KwW7%ol^?<;g3*AVaG)rp8 zj&c8Cuuc?Gn6ZXbpDW1ai<-M9vEm@WR1K(5_U^7DG=fIeLcX{KeDW_z{E^#ap%@an z%dl%`oclU<2_-1PE=^F`@MvDh+$-1&3Mj&^5Wp*uvkG{n-%q?<2vCAXqY~G(B3E*+ zE|zXlH&pLR-Pv8bMa-3~AmBPzvYM1)t^~kju7twlMyW=xV#Y@l^LJ|I$rw;PQ06fe zn@&fC@7v9Vyeio}gndf5!B9feRGUPkvCNa?9V=}x&9AykZ>r%_Wg?uwOK;j<4C{w4 z2s{Drb4AKtsx7|?M$ny}5Wmo!o`Bo1kv?Atbmd$0k6PTT!@AQanixUuYvWGh8{6CR zd2Va>YL?JL+YttjEp&lTn#KPIG~ZzzHDc*pvwO&dNfD_)CkPeV3FfzT2cBDmT6BV$ zJxH=-48eg;aFjxRIjKP8P=TKC8d9O%H`E3oM-Te|0Y&8ZO5}WId*luALK)(HfdFf~ zQ0v1hd~A9cEqmMY`T_1NGpYx=Sf*e4&!~OXp5Z%Yw4Kk+b&ttxE67kU8$;-#m%aI? z$?-h9gZmWwoK>Gz)ILn?PV-{Ua&BT*>#M00V2d7}Lppu@M!Or$Xvxd3p$8 zO5*Nxln@2uXG+Q+Kc}D6>hu}2w;Au1@2)ie=pl0?-^0ihUk~~g#SB z{XPv75^O6C_Bvr3_c`@&Qc38S^DtAwc}v^%ys(!I9!M*4-@!hh4aGF38>;yGJrGo+ zOosJ#*TB`QAovswuVUgoLSgcV3T910005!*K4-)IecfIg^J;((0U{WRoe0`ojDbtd_ z*vfVz>q}V(|e69BR2w z@PL!+V(|+n*Tp??a!n`SFg@%G4w~^{1KlUX&Z@i#vuaD{Nd97bTYvGbD8{|l9Adn` z-93gqOH_nY>r=YGCrXoFO#{M7d{=U(W_+Uq`hKG(At%{4d&)_6JE_3=3M#~W#rHY& z{JOM&qDi7#TjCdP>RB1Ra-y|4Df6@l?M-|BYz-&-s6xRcFOJ-Nf<9+LU0ph@Sb zCn*ymvwuq`+dLMPA82NoD}&ozKp^l!asN?+V)%hdx0esAMD}r7)9uvx`G9ufnqwz| z2&c7NQGnCh%7(hZ?nEPMV7{8x>;x9)f&Tp9FwjW&=Pich%en28;5}e&vjIZP6v2A9O#cJMhDJ+<0#-klB*yAiB(!{5aX& z%UH`ZrnoQ5yj9?(ZgD0dgrWPT_3**xS4k->B!==`y~j5CvJ}YIk<}B7=tg(hZQrwP zq!dH$>!!Jf!VBvEnC9-sc9KdsSEf#@Z!d_j8Tv&5p6X(2MKkFI`MJy8o|Jb*0m`gg z^EN*E3ir4G;vzYa83Gu95v<E+t=l3p&o7f()v+go3cvBAU=4Ao0R;a#k{`C!e}!BB$$O5E`}GhZi4 zpbQfwR}x^ID1ll`lmK;1Mu!pJo7PLZ*E7&*(!JtktkXN-U8AE5-3i9M{Om&a=*%=h zfjZjrWQd}pty|>2h%G0KU>tc)fYEkK352+1+OY6e_q`@tMT^B7J>JPS8+)FVVkQ*8 zYNy!#5de;kcFUdaJYysOR!>p7iqdLvvo?-d@Cml zl=*_o;Qmwyr+8+6KcVU4l-EqNJsALxtcuHNQ6~T$UZDD&G(={PM`HH8WR?+TIb2Wc zoEnB#d1#liiZen8WKeHd_>e1Y53sgH+H8V)Q7zU3+KHK@fHc9GBu^CJOmePJ&Lnlu z4!_zQT*MbGsLEwS2t0h1V~SZ>6rqnUDuM)4RZ#*F8{V*7^i$hB(^-UbiDjTh=Cf)q zP!(I7W;x&$GfG~O%*}Kw!YQRSk$|*;%PMofD=TXFW|r-c!S2_1Wi+n!*Gi_c?*R^2 zWo5$+b8QI*dnPix3ISIE7sBmlUv0aBy-vYJK&#QKBNnd|N$(EL&}(Y|g>PjM2GtF9 z^K8ov_Bla_+X;9Kejh0nL(}-2*FWm+5df`cDosK?#p&=? z-2oUscB8Fp0)dAenk}xIJMg2&$~v*Wqy^rR5H02$FU#N?R=P6+$Y^sN1QMdTR*}{y zp$7!H!)XgW7BDJ|ghA%2CB!rKgkz4oJ0X4Xn;H+$Cqd&uq4JG~L$}!C47P|civf~G zsK)R7-f}!Ho?X_QPh9OD5%q{q(#J?+l(aUIq)$hXG$n-GgM3jP#7GYk)IowOzLxan zyKCXG@!r95s(O$UGOfk@*eN&TbDo931}rg1B?|OT@E@OeD&ncZ^Ch?2hO_So8$oWa zjWlo423L4|`W?0t=C8fw0#A#luD%d(wZJ2@q~FWPDYx3vq7N7g#!hkK7sgI;eIhUL zfE=InUav`f>7=qaUiFrh@jJJ8%6PxE5H5t=Uf;jgy@hoUi0M{;dtKn;XYo@_T<>jo z(Y>A7G-4V0So_G(r>GCFzqz`GjUWJ+G#jb`FzT7JAJ&Op0wuPGjA{JX2Dg=6Ps*|N zv_5>*7*{#FlT_%)2Wm0$0pf^z<;(7g>`4NOxK|)DNi}#Ic#ceb#J*SG2+nmtU-A+AWYJcwkaxV} z?vU116wnni5U+jARv5qp21Fr{LCmK&Y~JX8&0v=h_Hgpq^t7#nO(CT?`2d)_e;opk zLE<&x;Ek2GmqYO%SPAUj6$Ecw!e_thUKs$bb-BW)%O^-Pt;2l5A=`uxYNS*Mw zgl~Kgj?_~LgH)*isVZ^PV#WLJyUcBU(RpTSyeg!m;5cj^Uv2xH?IyBl#eYFcQSksK z6(0hRH)MYf2cPpSqyi{BKIXRMSz8ZwHVEF>&D(qoil@*)LaXx^R0F6+)- z4uUrx;hX;D?iv6sdX9{16(>C0F#O+cR}|YpFd!djihD_^;KSTuCKV;W1(lxc$dU_L2rXmvHjvpCXRun)N*+lW{Ocdx*`d%lM&1vFe(As9ODJx=9@Jdr%9wZ!XiF?%=X_whlN}(q zv<`kGrKp1g#WH;vg6!*JxxfXa7`=x8JY6goxa$wQyTkWKO7!s7;-`^P6hEHdd&J#7 z6dJ|v911=5sJl-9bU5*q&uU&G#qWB|y^d87Tw44=q;%EJs$oWnd)t2N^5FD3(DdHC{|58dLq|R&3x?c-j;|)3Iev|bO zt?3%Ci!SgHUHoj**LcaiX4K(0K5=SUn}-K`?q+sPMy~k!m&z5NtyHe~#u5Nrvt6VC z^os8)0)+pEcy8SC{MsCMq^fOtY?S`Wc6Ba4QY&6S1YWqkqX2L z6@axrKitgI!mxAys?1pJ!-{LNFiQ27f}mnemJ7WmbLTyqd-@pP@yX3S(=$s2CAtXf zNJ)zm8wcLA&SSrjQe1?sJsR7TMVRiU7=H8tPYnBs5Wu*4!68WTo*||FC4>>fS22ib zn%ne{((`AuEy7%%Vw3adhU;CaaRM)0i=7q)bS(yy`R4!HItH+S!E^{{5bNm;Gk>yu zXRv(29(r9|j9E!3&I0+oI?1y!6dEI+$`I&=kCQ!Z0+9!C6(fBm8WI|P*ma@RCDIVz$fo8b^j!cFLA8$ahu!?rUJ?j)rfb#ZaQV#Z?X%@^w7nr zPWOkJRL|JtqNAVJlffsxWb4iAJY}hT{cg8~XWv>@=r7A*$po34-o+B54JpORCb^9N zINg&U0FG-6O`%1vCI4NC0#t-0-$k;F}zGJF)kzx zaC#ob>+?XEoxv~PjW3hYI8i??FEoRhazp@Qa(NNLA;wNu6M~AvTe^Gt1#qb4xg!WV zN?`x$zOpU>@F>xvN}?5{2};BxNc2p2iBiKzB-a-q0-?&^CiIj*v-3T@f*H)^pXPh) z#!jA80H(Q{H1fMgIOP#u_g|HT_m0(to_=B3?f*Tb^SA|a4Rwf3pA_t*ZW*jFx z;2`WseodQ43T~N~J*kf(24ha}i%=_1MkCelmp9@+g8#)ME%2l?Vf_ zFs;mEg3)7~90GjOM&jhF2@k?~5Mfk!IJ*Ia@fuOfKnZx1WI1Vq19pj^9w|b8qF;D7 z2obX8Op&?|NMM8vKXicSi;zQEyNl=e4q@e9M` znDPi=a*W;cW@wlk zV`wncV1N?mI~KSxyv5)Y%5ay%OMv|mstL8YZvc2PMhzp8w`aMGQ7xb{h*4wYO&Gqc zxu*@U`P!b$?;mK3g)9CK4D!s*>?z35khL|Ti~9z6n(iS|iXm%Km8a1mE2yl4+&5T8 z&|;wUW0mKG!B&%E+@*U;6wrv0HpGBz+ECAl=Y`UmxY-V9LECP_771IgH5M80%Raf$kU| z-AjV$j*dY0vhZ}n_w(+OvP^Sxxx6HW-8&x$V)rfxCU{c>g7+Z7|EJF7F%vu;0wl$$ z77v6xN$81rz}U>coB;7B9fi2G2pKaWrt|ovo-0h&KoG*$0do0<8_H_U_xs}_;R8~M zGvqduE;LBp-Cs_Q0b>`pCpL=~@`FZZLw^hlI%wY1br-@L_;Y-S`N&kywFWyu7!VGG zj0+W(9~Jm9L?RCi->D9M1>%*9p{L5p1H%(8_c%#$aEHrZU`eJ6oq8Xm7DCQs-5N}~8JG?A98ul+50I-1(s5#SLG+w0{hb4j$byRq;StvsiwGM& z_F(IxA7vv*qUB+l6dr)x9!dd4S~Ebdn4TvsP^M=h$n;8hnNqdleKHM@>kCRUh|P}( zQJ-Y6iP4KnhBMAR*Lj@A*L=ry9tYb`8tFyGR}t9#?*P4p5#WLoZt(Oc4$03nTmoHI zHZ(v{K?6&Hf*!6X%ZE?}WDelTw-ob{ojgoPvv{pc~9Zhrq__(ITVl z^ssJ=zi^vpkcC8bzQ|X_iPe@D1^XCoza)NPxc$<=2;p}09iFYB;dcC;p4Zq1L=AZI zdYdlr5na5l>EU)Oo_&$bO5ex6(IhbNHolZYM0_gS+&hp2-+u%_n!gT|N$2PaJp?cU zhYCzO_qaDO=`31c@C|q|_zokVch5i>d~X5;$^`Mu|Btor4veaJ9{1ga1hSNbBo~1s zBy>VaLJ1`oBqWe)388mL2sPADq)CYaB18!YSy8GD8%@!OB7(hARKzaWP(cAdb`gHF zvwOF54Zc6{pO?$-?9A-U?Ck99zJ2AnUExsMBjves;*JX@XtaHhaD~zK;nO{CW>&(I zh_<`_r&3c%;x2>;#@-VrWyBcFNs2M{c8CHRd((y(d)JtfQDz#FC1Y<59x7)53NB)A z-o2!CwW?ZEGvHme@q`$3MI*l9a0!>E?v*e-f_M(CNn1hIcqcuBf zDF7sSgVKz>L1?dc)8@Xk?+!wH+y5W!RWmcX2cf;sP5XIY+EqblzZ#5oRDgc-u#vfq zyh!7uh4JC1graa^W+A3wH)o`K!DEEzhuK%bRWd^SA3>=jM56~rh~^%8(4lL;9HfV} zdPuMCrCE#+{}C-zg!sQKbhu45Zz>Z{cvBIg!{8NLb4&TjTQa_4DTEDS>_luTU*4*R z*sZ2tp?FdSiQcGXkm$%FLE`>J8U0MmK}m>L&^3=qa)9*eL4w3#1RT|afl@Ik#TjN; z51D_a;6ghDyE?fr7zEfjH>RrE(v0S2wwNG7^qF^MbY-`bQbfPFhdk**!7-@1uZIk( zHjx%Wf2IvRf-H@Y+$AG&>c+ka%!$v%1b%xDcFFSGqHND>AZ(eAaM}s6t1N-xXJ z#zhLeG^o3%yMY&UR(_nG&9}dnJCtP;7Qix^@`494GMST<3iB|s`5Uk2HuZvr-In~W z|CKC~c(<{=LRoiBx2n#Ya2A41(k1fkr(#ineXAxXtMNHJjrB_5hab+E#BQPBV*2z0 zpO+);8JYpB1%Z&?y{gOZQ=J#_G{h`mi5Bt>-J@v>!i`vMieUO{r54|-# ztOaZ24{bdT2S@|+-N7Ha+lN6p>E#by=LBS}05?B%@62fU;wW%1*dOZE6Yvoq$^izS z+J4lPN5pWrSjF&_ALZW5rW1U)h|%rTH4{GVVybq2oV&|li%3IUkeumjOEazLDL>S* zlGN&%cX`hsGw-^dIzv;lt5BeO>Xlz=(M+k^C4f2~ybnHUMA<-l+`T`eGkc7XM`IW8 zNzY~2{o&Cf_xr#bi+IGBU0(y)9;D>hvaPUkgR##{f{i5P6suu|WY@`XOZ!{|)1vnmUe9iZ{J&3_zxw#@tn|uy2dF0 z%O(4I$;jaTUhc@i^Dcemiqm1$OWN1E;f9jGd+|$4de!5A5q;e z<}PQ?5H@ifJ*f-aM9a7Q7a{Y>e{=6*?`rIF9K8tw5O?^znk!SQ1($Q{@a~skC-GZf z&{G-|v!wwzEqMiuMI5Ky0iuAwn!Mr|$FnZx#<_3ptj60Lwh?i!2pZIcb`hdDbUrg| z!&z+`fT^K_hZVLyJnZ_+8-x+b4^(vyWsKm)c%#s4gIhpIDaIRdq5wHn*&?rY;`W3z z(gcmYttdca2dQXdciE(|=M#7|c84v{|6lb=yvZttLqD=#=iXdcSW~RRpt5FxYk<$S4h|va$~VNwI#$ zOA?-?;9^;!!PP}&Ps0Z_#K+E|8BTo~K;heJ!`wnu=8qZM4fY{LC~|NbUUB-KqQB^D z##wfTfMc9>+7`lJ`zgc0;D^Vu^j!#-p&IW(FzmWojCT^1mNsKH`^YhWRHnj++URNQsC-9*8h9T=iZZLTFch)t=FN94W zWrUjrNw^)MgBMAhgYX`cT)Vm$!A^0B?)HRU17$HD+<@7=Lmlq@WL4Kob z095B=14^f01MXL8Oq*RvG9a4Ry4#=T^Yag7_p%UQfAGQ)p>R^8dUpG8pC)EOVnmJX_;A9d<~`R3Tu_K@ZYv5- zp&c9I(*{XwGh3T^HNsGBmmo@|`zztXsL1YNA>wwMlG0$FWxgPUgJFUAg@a*%0|!IE zuiODO`PrZ3WZP!{xTj7lTNztNm`7W#&;@P=uInQ`;uhMU!mQ7+$2DSU!P_13kmj&9 zHt`OU*djKz^FD2DR`xo91!vllpM10=+i>76vGD-!lVa;@3BYK{{SImCt3WC;pO}_v zYiWGXho#yE#N98jQt97G$Y7LnG1a!4T_B|x>~G>8N9z>r$rWbOBv% z>ul@9Tm&BkUn!OE)J-?pf^~7A6TZaYOym`bX2uKGbqeFR^y%CxO7o!3f_8WEBhz!* zyQ!8Aur=c2yV`oN$%GuJHivIrXbLxX2Vr-&SO>V_eT1QqdUZ?$nkxx15oog8MF9qy z_w(IW+rOrVoV+L%zCE{{Kw={0fnYt{7v29_^383ts_$qq} zDaBx{IZx|lYv2Vfv_?!panQsi^FDQXlEc=+zrK!3rhIDhHMuss>2I(wNT>V5{o#~* zY85p*k7N@GJ3hTp2Pnsi-lXt@O*^Nv`4n12-Ma7Url~oK$+5^}yslT+{?LM!n@x-= z;FUG<54P?obS>g6h&WvOxR|s#GX6@w#j{V$_ zW=%79%M0P}rdivv?zFMzHX&=Uo;rf|^v`zIy)MBT8MqRhnX_;Jj?5X9~|3n zh+jCi-^dFxwm%zbyU%}Y9~fnu$WD=d;n@CM7r2R*Z@A8NRJ_$X*Af76$+^s(HmWt2rtk z_BE2SyRaBijbnHB6CthPzOSM&wgB&YHq4iIN8cb?sX6(lF}9o1W{;jeYFg^Vc`5Bj zw;x?Rx?^#tF&)RXD=Hq>p>vniPNP#(+ZT;V>(ZffyG}(Nibtn)?!t>iFbqP7<`vzo zp{5%7Xf|Ku#EIzz>fYb*!;~lwz#WFJHzQ6dYrXB`b_ptTzGo1RLPTBPZEPL0OpSx2#&y|t%G>SN?1NDGZS(;N5aeXK*-%>)v0 z&rrDUnxk<;8NT_qmH=zCGdyT9n;t+{C72d^Yd-t?nL@iynMbb zFYa?8Z90_SAmYa*=Kjb|&#?W36I@2U?%Qr3fe?$us=o$WXB+&}1=uYdjk`A$vf@hy+Jbx{=EK{@9ymCFf){>8@6h z6p8ywHlh)}Efg`_deLB^1=^~RDlbSnC`UyPMF)SV;?^q0A(#F2F0BpP6V~1@~zM2ftB*Z!eIcRntk< zb8J5W$NuhIW9!UbA*Hy|+t0hNg_XM>G$!dk^no_*FOXSo3hpBubs%6L3P;}j1bm6` zj3`+#{2(v8M~uCx);0#aM2Pu_L%sXDHC3P9GoRpHm7c!B|p?vuB+?l4A-k zI3@#7oeHhlM+TEX#fMu({=q8X_I88aL}*|@-}d5w8ob-Rw&rGgpODH|J2hrb0)iQd z+&)28E(7|=qa9BP2jO0{#NTXf-o?)v1YH>Y5n(snP;N?`xo+9IvULmBwUD}}Ov#;H zUMHM%Qdv|+A88^r=UC6MS%gb85xk-87E+2s0>JoVbFDf4@OV?`T|V%pSxV#-y^qM_ zCDWx!rNOe6l znQ7fYmYTTpEH*(IBSgFSg%P5?Z}7}H=vjXM=ix_fw+Gx(T7B(Hq0(skK<-**?ZB%& zZX3#qiBvFJ9Hk4~9Vx$Fa$hgEE@SgGVi_ae+*ihkD@X-KQBWabL}Lc;zSB00Z6);> z1a8EJF}z}1VluyPC&nb$5GpXZoB@B~d!m*AeJLsJE2F6)pa2<7-SUbp-Z%{QX3LB# z6|`ssHJlO`SA9*}W1G)TkW#dzVZQA?AP|^tKT>YBv2RJKPdl@;EZQ#ZDcd+k3l1I4 zvGOmTvQ1{y`e|bpYKt*+fm>}Q!}#I7wx?JFU4`i^BbJ|f+Lq2*l5*Vsh~-D0h3$_{ zq+AE8u{>+PErVAauNG;F>c`V=%eU~ms%$P+K){6-V09(X^G~WgF)$P%=E($9V|HoG za6se$bak zMz{)j;s$G^zrIsmgkkz4={V~9J6%Ai);egrhuzR$+XfDci~Vr3*7#Ej_eS6P=>Bpm z?CnEZW6}K3OSW#T1A+Aj*8~l4fc`0j+}9G2m%jYxhq4>-9Zy)BUrn+q#Q$1%i3`bE zNP+I7!h8NypEj}M1a~Ok@!}WC7k>T!$@lxM)?sWR=_kr}o-WX|dBy8+D(G%qCDX&J zL4M-&)T;jc*go4__P8&=b}3-Ck5u4@+b*U2Iw?mf-{KdF7k>T!iFd>!*3m3t0JK*rF%)l2T|h`D z9I?H_n&~Pj-bMqYdH#4rn`a|_@+b_89t757o<<|S=NO~`5}=((*B|^RH(NTtSKCvCy4IyB;>=jcT*cyK$y>Y z(%RFXgNUcC&0&N5(nq!?>``y}V@wYPBmERqh;3m)nkRf>ORDQnnfLj`wm1mgw;`19$k&XRL$#319lm)*|E_P~?SaIgQu_LL0Zje+owYA4%L>+{2%> zCIzOx=2@%DpL+N{Yuk{hfk3_J0c#5u1Haq@NKl7-@u4pR=8FfSz`cnVJ!fqmnE1x$ ztdDyU7b}rCKjnA@A>wt67f->=pFx=NiDuNAkhWX$m2HU0Igsz^latHxe3}w_P>UZp zFZ88NUUoOVXJ$A*^0lqHh2W#Z4L)Wa&*7^2x>YF$tTq!HPqB-Gfx1I#Jy<*tQwO}& zA?vqnF##8&t@8em8vJOyy_xxrfg$jn25U>Uihy8V`}QF6Uq4XhwW+};Hng`O9aPtG zEaor#V9W9%u2-g-VFkTlpj??g{))9P+e^3+f+xt;OPG7K^zgH<&>R<9et74CLf~!9 zs+iZTW`n&)5ToDORS{o<=f7@kYJA3veuCpwUl0fs#3w-n@x2s;w;^tN!`h4(qPmA1 zsPYqUSnXcq1Ia?cA6Bw>?oI1-7B)za3?U1mYqdBG86-0o(9A~$3ZGjBDHm)x25U+Y zdK*s@8KWl+lDbHI*Lp8Yr{Lc7)v~g^q7Th{=qr3~`Y--!vly&DL5MntIciN0840C4 z^>Ns|Dfk_Z9uyKF%%BV(6vX+L43ZfXVvuL~!eiF9L=S3E0A>E-F>4zy76R!(!51hw zEPv0sm)$`)^3j7@G%r_jfMz~&Q20O&?sSHEHrPbj2i9B@jMTu;h0=0);y<=gY#*iW zt+ZBBX-^}wW7u01(pz5&@^!^0v=Efz^_Worg?bFAYy6!%cqz)%Fr9fs zZF?abOzLro(_hw`IuDlHN?YUL!#2}>p(X>AxR87isla6={)V15=ItkJ=!O)2EA`%Pu{oyZ8=@9>cSX;{?(TPk z4ktLEANI?C#kT%t^HX!VF;bG23KcA?ieB`Noa=dRs$&d1w&+@F!LX4n!z5U z2!+4Z@JeP6EBf93g>x^@Q*hyQ{lK49^r4v#eT5I`dnSiGkj1~3U~&M(1cvS`x#f6Z z?hK{w&8%7)pGIcKu!|JZn@_dz_Lt%lTHxfMJEBl^)+prU5KU~)?JD#6g-23)S;*LT z*C=n2XK6YVj1aweGw}<(c(b7aj}=Vdue7w^>E*dgP0mc-V5B{qKagzi%We`VsQb>) z1#ZgaYp=_F58%&N%PeODHDbAX?>kib+%cpAeJ)hs7msI<3eOte1hwdR^P#!t%v}Jk zOY(+F@0$*?k@?(-DfUF;ZoV?bo*kDbkW+WtnNY(W@qJA?6|#+_6y0s=@cP&2ZU^vx z!ZYi#4Fn_Re^V9|gjP-N)p-+aRgyZ4@KU~m1x|Nc=S1UazPi1=8LJ`?=s=zt8pMGd z8Y;uPyG0B423daX%tld)%%TJE5W)*1G84RHfNM@aP%jCJ6VGA8v=QTp=MYhV6IC8h>umqm z)M%KTr~KeM?Pyq;YAh^z)8;*{d&^)v148G;RI;J)VpQi?PHjDOl7 zvxz@E?yDa4fj2!fOm0n6^teyz$IVm2O{ULui4sh6YfmX6fFmGuG4y7H{m? z+d@2-+hr@~muJZl9N=WpQ~bioqUZ1+lSOsAeU;Z_f!j)O4wLb3?e=^&l5|HTYx9Td z0ypLIHP<;=+?AZkc!ATtjLp{A<&04}T&B~f;9qszIsgwPlZQ*!KLC0vU4KDwPIS## z^QMnoCtoXD&u`7MXT?nxB&im zy1n-)ex*-Bg94kt6UNSi%`~n24Zq+h)mYFxoI92(OCp zl+?`GEQR6~5unDa!pl}8q(|$PmN|=cr{H2h`+;YUkOLZ;p)2tNXaPO)xRQ|+pEr3G zH4a7cW7sqb=}lSr_sNPfv_My)DJxVhGz#fTEWu=SJlkd=Bf%p-Ij-_z?h%;Kt85Uz z(5r0Vdxk@RqIWKq@(T-cCUD0H`yF0R#T|hTW>0E{IQo;Fy1-4dyyDvZi8$9>Io8hj z>QVL;>`jeax|3H&$N=;NslWgfD#Te*zN64*(GL|Edme(8p4c-0(N@aM@P6F z&`+c73GnT$n#J~;;tmRe)a)Op9EhcUMQVBqf1zEceyq+&ZTJ{~ZtdRlS^`idi%3?J zAcXic1}jA{d*6KzjJs-#1c*H}~+QQoG$)9t7+*5Ru0veNCx) zcS?PH>`P>F4EvQrdh@3?4KFDEzC^!szCno9)wCC()X&g4^o?H_`IS>vKfBZJ*2?EMFs* zPRKDzI-%jD0-X?4VCHf7JRc_n73hR|K}+1lj*Qi_4k$c6UKU~YUN1TkAlB|3$Tqk=ev z$3{t~uu8O0PT|c(_O90u_TalJAj(LUo?6GZF1EM!ViZ@6`voc5!8L?i%yqs?3h?EX zw?qN18bNgWLYD7=`Nhsg>_-BR7qWa8th>L0>K=5qt3|qdR$a*Q)hKx(%NGQhUiW

@@32;dz^}4eT!-jBE8#RRl{-T0er|=mJ1ZoWo`VJkEMivKgMApQq)@)FM5Mx7t+Z#v zXtt}%T@68*XO&E7;>CkdYh6EBIQY5B-dUcP2KGhdLx7YV;KNm`>^;m~3gHgIF`2n0 zkV{~|CJ5*y?<3{*-WD=Ce8yLv`olhMpEdS$_A@C@>)`Ak`WY0= z9?i2(h1Fx?x7*}kGR}k-JR=%d0x(+gX`zgOUI9tSCD`w4?Tw9^y#C$xMy6UtyliAn zRNSWmA04Hy5dwJBixjwppm4Y32meTD5mV%reuDTVr+^}qJ~>FY^en&711@F7ceYZ_ z!h0cd+;~v-JD%ZPwW{NaLQTd1RNKQQ_^TLr(1aPgZ8E@i!{)j1BjU2-QsBZkbM9fN+1#S zK#6+MLmKtK(fmSbzZ-e?)P^;9<-_(H+0CSt#t(25|BCJQ{%kdYMEt8H{?E2+{HsRG zm(?C8u!uGB*xYQx3u)!|%|rS5N9|ec6#|Ti4z!4n;F6Xv-dZ0V^gb5cepByOdNQZm7T|=*2xgXrV%& zH7x=Y6ern(jMBte*=r+8W`Jpzht3!~Zp^gebtOmO(@b@u8EL`6hc_}=!Cgk>4CWg@ z%BmhOn#dH{4#AW7clo-Kj^b9!8Omu3$KmC)yNLqj6ESIaOZD0P*^{JC7(Z;zxH-$b zzZl+jt}#2A9U#>hJw8_)BzkTdjT9}_!zAu%+Q_ZmtU|adLc(>*8zJE7Uu_D_5A_+gWkMg zpnXoTff7@@NwgEjA^QT>mEsZ?(sU997-$#qlZWhYu>k}E#F@i)|89gEefXN!>~X9Q zsf0WDTJeH^jCf-rH(m$-Jc(4I6^$PgB=b6(pL*Tikr5-}NpIL2*46y0o1**h3vb&S zc#+-qRaPsng3|Zx`KJ6a{6a;~EW^pWziCh5U%d*h`hLofrze|bPd1ZE-IHfzPo5=} z*pt1%dh*g$d!m-tn`KWZS?mcdz@FSkds4~HQC2*iI3qi8hE(cKnEBSXKpoY_Y9qr= z7;xiEz#9VVjFn5mE9gVrGIK`ug3`ra&;snm_p}!&y!N|xC$mz9++8ts9?R3-0v&fI zwdkUbb~3dv;C;Dc5D@hxmDrd3V0{@b`{M1Oc)PAkp9G8--|SMhw_5m z={VNQy!cW32zCeM$syoX_t?tey*_|z<61#I>uG z6NrA)*U<%W(IHA4J46exLr1(j^x6q~Z`ODmv42m88jh3Z){xYChK{MzIKJ&IdlKtH zYDIsHj@69nYpQ9T` zFhg}`GO5(vS*p6ToYZ1>ZoN`>DuQ%}C`g^jojeX_xmtue+@w?Vz~V$6@lkkN_AsR@ zSWf)h2sc5i^Z(@3XQUN3hPZM~&jDeP-Puo?iR_N??3LJkZ5(EJyk?Wqdz^`6HgU5n zrBCUi^l1S~A0{*+{WYf`E%`sflV@5qom1jJM{056&QEi+j<|4Ahdhkx;%La9>EdY0x|1plPm;&W zk(Ep;kO`lHSpM2~FqCL1j<@FH(I1+eWB8g8{jy9pm>)&5tkW2oEb9R7AChIYNc;hY zad=*2B7gn|`$7KL5B5v!Rze)VDpKoKXDhanl%l+D}-e+c}h5e}b)b0>v@;T>EExlaS|uIP9IxZ^m9AY=|Xz%syS< z&JvWI<0pT%$D8(!=Vh1dY1PI23GXJ(;GNIe8yY+K;B)o_(^04t=@rdxs$};WjZnO% z)R0fLI3}{sNhzM6`9u_8fOd|jr8(mH?(_C$rk?<7tfRj8ThT@SMaT6UX^xKgm+?U+ z{mX#imh28*!^S5F>mV6D#|wXf9Sz+9RelCg3#ETDUMStldv|S6jdW8%ogf^+^`+_t zpASeW8nVa+H6$X@GWNu@sXXg!(_Blt2_O*6@wFGfFw4|_f^Uv*7eB-t6L`pP_ND&1 zKJptJK6CK%zroVqC6K5E6Dr!K3p5ja!|(QZ_%_gzOZIkJ&li5THvm1?`omt|G-`sc zp3|lHdTM+`&yz_h>Up9l@YC}xfK})j{-U1YFY0+IX^tMfj7R<*bb`7Iuv|sgUEN~{ z(DWd#Q5nqwaL6?n43y)%}wA zh3bAOn7W_7Xs_^Bclp2eW+5L#YrgYMad1wP#jWm!Cv-soKCE{iyBKA>=cD@PF4>bn z^`Bj`Cz^itQ@vG6^8<~TsQw>PimLxp6!@v0O_ZvKzo>fn3#xAvJ`sSGz2XRum>6V) z#{+^uS|=m9yX3RhL|*iZJEed+3)d~OU1tk2SVu$f71n;xW~)b#OOAim)h5!J)yQE9)`EIwj<6|v&2`~HYveh zG-jggdL_^gH9%3>7E$1{Dj%pB zYKr0=t$O&4eVCqMHkmD?)MGL+L^MQ8yX!mpSpF3a&`>UkUuYq#Sc5K!=~pW0iohY3e$1o!I#%?z*A6pUb#G=kdRM!+xb zJ$^ElfY+*DuDGqlit;ul(IzsW%?^h}#T^VvTSv{&<4383JocEWr%nFtJHnF+c; zv)~yng&4~egS5S}5uc?v;vkm!D+R)h#Zc+(oC>AN$7;;PJj+Qbn&%y&K%3`4)5gi@ zkKhBU52iV~vTd}1_^`|7$-cg1j3jt3=wA4eJ0=J8B?@Xe!Kd|e8!6TLAzjeI;h(n$ z{TvYuP(Me-FVxS`VEXy2gCjuB;Ng4|391 zEpMhf8pI2KqC$z#$!zsJZ17Up1FV zqD`krHAhbgsAdHfN${bX3qI}3!bu@)j_2Tsp%~J8BH~XnK+8i#1Jv>`@e8#)Y>NLV zgcansF(d&<@bt-cr1O9F&#uXLWIF1?<#q=%9gWy5%86K0OxFdvv1c4k=2?S6$HW8# z;y-kAY&X>QKY@_j|C6TR*p2g^W?;Xc3xetu^`!2O_C&jrrJ$#1mgE3FXf`7FmhKK0 zdze)Dn8sAu_yGa|^6$}*U<=s6(id}cEH8*wDDMN}7s~s9lsEa<5DHq_6P!0#6V|Yh zzxcT$lmFVoVGFK>!6C;1Ctt%IjoAsp9lF8ybwL2`rc3b$1mY)h9FM!jPavfD4@>dm zs1%7@cM_oFZ$VIsznG_;c6253pDsmsRP#jSzoD1o7FJ^_v<^HpXUN8(1VYF^hG5e@ zU>U^=y@xS1bPUq9V>>9#9n^UbWzvG>V$dHoG zQ{ny3uT06TD`5)-pRNluTOPZg#nY_TvC)BGcs-|Mk6Z2pi_Lrv z&yKd;%_~8g+X|aCW#xog z<4)rQ?>5NMl6_2sfHC0lsX=1Eucz{D&HA+S+Mp;J>=<+n2i4uICm6^0v?1Woj}b1! zW>VB|qJW+?Iy{y4S?I_zy*-r|?R2%}(|$CMW;Lb(lp4qocjWVmTO8N&0+8k>l$VWh zr19Myq9Wlny`&9}&V0$M=5XT;er&YE&d>ikI-GYM;pomc?3i7P*BRkhYEGRN!Vmsx zZqC{fZg88ltw0vw^Ay%;0VUavw|(VwU4B<6(AYiWIy;igUmfLW!IBA2xJ#EW3aDV4 z>mHk$Oq0SLwQKGKHkvg3Z-fgk3wVUvgzuT==wZB31#(R=Om|GWY!xAjGQ2&A z4A%#cVa>6Qg6p!z+j!JC2%2vrOrX%V`wDG|?uluk5?b{M}zB<>1X`ZWbiYe5ynuaH%#|2#E*4HO&=%z|dBH+3z7MH5 zD>rrz=Y?x$$ML&Zj|P>cj#$2P?d$^gf2l?WPb-B`JCksO4ztVjAPzHky8kdAHp4OU zy2RO$PoL>%!a5QzP@F@2#n}$~XiAw5XY>1}@Exzs>CL8)R(K@g()dsZn@vi^4!;?| zc<)!^lf2*|;{Ol)Yl)P63Xhy4M!z)VCAUne&G(-)H{f6J%v${9JV!Hre#2}h`FHDa zC*yVY&58(l7`WvPKbn)u9wB_ACLRo?i6;YS;@~_-(e-G;ycMKW+PFu320uLZiMn`2 z6i^?#N$TR>>C(MAzcG(vACXr7ji)#+WqU7?Z9m>}k>gAAWndKpNTXD9I ze8w*{FIFhF*`vOn<>jpbRFZzev|nVDW-2DzM+B!2UO#ClzJSFtshk$=~>& z>RMIgZH@vXq%Sn%&p!~_iuL#HS3xNbO8Z>|2VDe4^oPSLa)5!)Iy|Cp*Hg zM*(mx^cU+Ltyv?&Aj-d&D4_ChI70^LaWkZCpRROFXG2Ldlz(BWE0v8Vr9%Fuq3}Vc z6%hSVaHR66?=oPJrlJH2F?tVUj|kP%_^AKYu5aw*yEiy&rpKm=SAgM_vSEqgu>qD| zC4gIIKlb122yp)FuKOJ0*j~b^Sa9d>)&=ebY5CUcTEm@VZ)=>qPfo7^kmV{`o0lF= zit)Xd*JsGPzfO}1m^svIT~LcJzq~wy+`kZj-IAAPaCigeZoX!#qrN)>K;UEs;PDyw zYGRB|xzwHs3dg0tg^$?g$clSOut6smF0tLLtkPx0teDl?^ERPH4i!BSPrSw$Et_V zR6DyPNj2{644oNdm`<1}4+B_43-^0D9CvnGiz1X;sLXog%#^!3gt*u4<?Hv%3SW zaCe8a;@j?a=9<>ddI_J60@)tkMZotpo3n_KTG%(Iy4vY2Qnl(QK$6f~sjB3=PBhO;~OEF zsJF>cpFh6WF^x^tB;@_IC9}l0Zs2CIrycEh{ihw`mRWo?5Gv5ujhjV$T>uVC#?F$y zuB1x)IszwsT|USRUc;8J_lYxRCHD(X(APZ%zi>Z@A01I-;r*X=G>#i9YN_KZpp1(v zYA}EDBq_xJ|Jog&64iZghSg%b2wL&dUDca!h7}v^5Gj_P>nCTX>Frtk@=wlY>|IiO ztbXn|10);p)uR*A;F;*R@>~3;-mZ>y4~hcpw0f285WnjMM~)X=oZ&CO;ONVKBJ?oA zI>aA8;27lvEhhLlKeS%m^Eh`l8>lODME_7-6rg_q6{B+xKN?ob5(ykS_kylBF=MuT z#UzeYdc1Qnm*N77sQYZ`6Nre4Lb&h=QMxzkf~+_oE#8=+r14z8 zPeClN`F>avFEI2N^?(WRm++0wvNuI4@(y@iquOlgGiMTxQ6|$xftO4|kB7}>D+nC= z%%!A2`%GGj(s}VUM@RF<*&%%7p_(adGiikKxi^@69+C2i^pejFC7aANe37=%U7}QJc`cQ z6O9^8dE^HUm%s`i_pxxtE3?P2k)$!w9;&cTCKVXzLIu3xZRMBWbJPHzk7&E^vt@gb z;#Y8Iec1u^^8>v8~P=T+czkl4(nvXc{!|-avZPXBdGWhPJ5wVs4nkcD$ zvz$;4oNz?BgJ%LKCzSJGN-&|2;Q2$r3{EIt@Y_Cu?c(a9fX*TR(`uLdW`&(DNUhJOVxTK^^S3$6ds&1n4rcg}#CXPbCP zz>%=&x>i6VWTyG8FC3fLjdOq_8h1qN0(VEs{}Xa6PCC}I6pdX*7Om!>q4WBu&_2*` zpbW1`a1vmTrJJA@W0B_YcaME68$+PbAPXf*HiJ|kUZ}u(3~GMkZHp$T@Sqg;7zB_( zNwYc95GVC?#JUZUz@Z@;wfUj%97Bm6ZWlbD9q!_(ryUt_%|rpUq)5Ugz6FKH7BCNA zMXJyYBYYe0B@k$a1e;rXf^#&(!vYx1@QC<@W_V;ya5DsI(hSf4;Mn3Dwr27ZKRWKK z^}S{QmQZ-t%z0fT@0$4@rK|3m`9{~e87zP5+O0Y3=d6yrca$rM*ZIk@m{pq#9V6Ck z2|%tSWUjn7=IFCU<5>gJ0*xegu8M)-vyH4JsYTm@TC|j?xg-z{LPT7;Xnctl!92_Q z@)+3Zh;e@r+s=PH@8}&DBFIpqIHjc|PdGjC+MEK`mvDojAMPd$C8Z+tGXt31O`z~1 zz1H)Zb5`*Xrgf6e8k59UROl>7ryKDFtwdS>w>;)6LoS?zgxumM51f2*{5HJ&&x zx|#)GZkS!t6y7Z;8QlaPG2$2OaMW^&Z)HVBX%5uY(?AApkclx?u4m3>HJ3s2qLTZ- z5a6DeJ-^0A$N4oN{aQc8X}6FOo^cABh$aK`e(3qq^&oz%6ICf!@ZGUNg4ioO&j>u8qR^yw~97& zAOj6}?IFzSMGVKhAE+0Tct-Stu-5E(!UZnHZ^=GCPrlY5^zY6fEUN8nm7x2k z@}7h&c#faHo|DK(5l2okzM0e4Tz$S`B78pJRP!k=LPO^VS)@nLmy2}51uW9{e>=x^ zH9nGV56$r6L##dx*xLeUQF%5c()8>+%w57)Cqxn7T|PR}%a(8jx*J}njnN`=k4ZIF z@+?l#6Z8Qt@e6%`Ykm+P&}Lat1K#azM=Kr~?X2e;`dE2sv~vL)OJsvCp-30F$(KKH z?JfZql5ixXmU-QJ6E9qgUKaQ9^y%NWv3d)<_E6>Ja2{MyR#G zZ4I@>FSLf*3xZg~>ICO{KO3l;)X+J=V9iBy5^&}>)&*{=qQB{$RoKXhr zrqRokZPx{uPB7B>vBu7&Y#^z}fVJ-eek#V*k&Pi0c*AC2elppa&d)SK;}DlZ8t}pL zrp{uvlz`&Ae)PgjnAfA{=0@Ua{p!=_buFG;G;`)UxapywwKLjSg1Fc{q#@oixnu#4 zOm}u<50eTcE*tQ-nrq@q_`w#=PV6NDN{BaeIj%zdL(-5E=RdYYB7`pc#RnET0K}W{ z#NDBF*$ua7m1+(mcGm9|gaZ?Fb4|P}7vv{I%IXsY$O-5GlQ}I&g&0q&0iWMSi=i){ z-qxAVatNp%VSq@CFsW=yBdQ(0ZqE0!yd|Rl0}zH>4q@ z&P%e82qByvzQ{){lDJejt4(S(3&FK6SP)8g3zfAX2#^(!HV*c5Qh}4FTMd8bXhA?3 zs6C(ZsI?B2RO>h9I+w6X1S@KN{35CKd87jEeLT-{z#wdELu#kGz-$Gep3%O6!0V0& z*L<|G9ucw~q#<-zU_~GQJSj&8Bs{O>baz*P;$S~PKnd-jdiT&iLmFz@(8)ZfNLv%K zENrot+7<1_ka%!Lg_Al>Ke*DPP3srQp)Q5WQV0SiS=4zZDaYZil<-0URRRw5Ap}&b z9JGlcR600%2%%yFL=z<)7r@e}``l*y$lK0AY_2z+OpcQ^^rb0}@9*pxY|5IoScDBd z_`&z**02Pof@@4u0z^d+i;)CY6puW5I+`yT;0!hH;kOTPI^%#P?_eyEOt5$|1rOeB zBfMhb1P|UlN=ilI#I$X(Je)+qMf!@TKHcY94zjpoC>Kv`=L%(;HNC2|cCLm7dr6nb zJX1u|u%YZNQi=(km-v#Q&O|S0Trw@{;Ob!hVsQvR_e)qBJ4u@1W%Ly-SZmW~i-WA2 zeq79rPa%C-k!Y^V?h$R};T4`X+}XD7AyGhAvM=${;m#KRJZu$8tS&!W0Hm?pj5&4^m6ry^HT*e25CeG&dxo|{w2gvywhy18LV2FHgUn5 z8NlFnuIgo8@PavFbakbC2^}!H#pmWe$(j;$Fk+H&!yj|vp|p{%fuUZj2Wr$Bp@$Q^GFW43W2UDIr2xz*mOdb}wkJQ2i zo;K4{z`}B85__6dpd|JLlf;Yul2~8lYDmVsx`h;Imfl^^fKi%wlP) zMAIHxAw21suz0T?iYrEqhJ49lXJeLhs~$es!T4K)%nq#r5EZwJ29)ZW2c4t5XkyN@ zd%fxrzNM{v3u1Zd5IB)TRif|2%p>fI(e4F?G+X9E!Qv0`@@0XbSR6)Rqp8*-bxP$l#>A2T-HhGy))H4wo|E1m7V zA}k*(_7LT0#gwMDVxQ7h-trgcVbO{y7#d=PG0)1{5pL0nDVVlmTB@x$=c}}GD$C6rf#S3qfu6Qx2Kr>z-#qB>S-2n;`cP$aO=;Ml; z%DEV5qAR8}(G_pIO}gR-2u-x)Ex}a0!(YWdo>6kwy9}D(SQWi|RhZg*UvfwkmL{A4J`kOyd9}D&nl@?5CY76!$ZN+>Flm*jLG{V%v z7ee?~8=R>ucBvk8XvP#)n=vibX58|sjnRy0V>IK@w|SfKz>Ut|Sw2Cg&DgP2nz4h_ zq8X1~D$RHdsSsvt6!OUXodMn(pStvFR@_2bF_1(nrXJvR%|RqlKy^b zEl+&V$4~hfu_lS(go9^ogK*-prOFXM;Y;a}Ae5f*r{rVA9!koHY40$YILxyifXU{l zFUfa;ko?4-q%dJJ)woIWiU*yAj1trq>{Hsx9}Imk1w;FL`yppnc9HOk#!JDp@zPRl zytSA4SUv^A#%R2>R2Z+3E98+@xo1hF34#f{FnlcpdE&*4GKe_Eiy4ccT)dc(MM;Ra zYPyL6cQB1R%_%R0O=JTJ9PTvtB?ZU|zL-HvFGvfl|5CVPJY$%)OpkmbY*7ZN;%&|erO-;&U7XX1zIDKZ>xgxUZfn8uL{0DDMvOEmt*FaPk9y- zp@jGqlD-Pr%|6K7#FvtCLY&|EoIBy%-z4d(T>nj5W0eF z0R*NZw*U@+GleYxIA`|xyUw;oGOu~qIVui#@Xq-kB;E>h{`f+8d%_$}r1(O31}PP@ zu&MnDne(UM|6$HQRnt>B|Ngp!^v;MkWbr~a&cJ8eI=N~yo8|*k~it<0Uf*&bzc4x;( zg*Kzpq|^jK4#s{l}9EpB|{RfAN)xVA@}Erc^{Y5(lz_`GKzhxyE5n_!JB?@qjavb7Kk?`Mp!TA|WBXBS=sf2%< zm2!FBhScKnyyr@}JkKQ+D2D8nLHuZ+m40HtER&Xk%7+6@T%S{#xIUk_Qm)S@5t^7~ z8Xt`2?3FSJPeqR_^gu*0%>=|TS9<44wM1X-OKepzVjBVw!$o=kVrr32yNH>lJwRT3 zRO~5Vs=I`7mr1gkk>Nj}!AQqpx-N$aHqG1s5Z4a3!#6%c}Gye>)5KP@|SRbb<- zt2OJU$qP)b1|}elwmV~$vfWv}w5A86wI~2BAKP`)0_2$IryWGwtpxJIcJJ|}x-J;i z`vXw*v0V>UX}grDwq2jnR$kghFibL0Fuh&%3Sk#*mx5tqv|U=N1Bef=+8Aw@Hb&d6 z18+q@L}O~cQf8Q%!0;AnmMCy>BEu8`lGZr6s20=M_p8KwjRhZ&~&qyRgC z875k)GfeHuWrnE(X@g@SwLFL~?^f>T%Vma1n`RRkJyMF8VWI^nidY~bx*l5Y>AKD^ zk(rHTn8@nIGsnYZh8d>Wq7#^5x>@|f4Aaf!K{8BpBV3#OGE97Ur0YKZ^V`la{`qca zU0$!QD~GKnvcY`QDqY~_;XleZJ*+XyeAE5qGT*ehoaCDh5Gc$xJjYMQxYDEFahIZR{VU_ zjV|#@11|O@Y)2O718jWHx5c@d@PkcVQG8WBY(S`AA>rW0*v$u{Ns(tRQbBp(k2gRv zm=Qqo>1+al)#R^`Y5=|~;$1e6Y;Pq9+_J@U#dQ*p80MSYir5?g81oDn4c!7zc?M{K zc?P!yV7}>9(i|<|5MPtzN@wqra_sP-JEh`JkqTr^RCpBsKT@mvekH}9Q+UJf^47d@ zPA~!i!xNzmSq!N}ZrrUJlM3VpDlp$rLNG0Wg4{z=<0h1)J za!%7o3oVQ*8NxZ9)e;QBE$cf70=KL&`^ZTJT7$dAL!`pp0`HPB$2NK>?n4Xb7PX#=UyX0(fxqPjNl#a7oaMxk-3tvOIB zkM*lDR*PAyF}P>^k_J2}%N1AkY$lu)W5+cB9y*2l+gsn{Dq_b-xn}4zDMkK|t(I?< zQ*a-SRPO2BD{)i>9Ko5>S`|LSrbdN4b6SH`_@GzWr)m{f?XXNfwI`@hrYU?^PuF6W zLdtzesN7SlE0Q?h%hi`ykkSLO1d@6hL};OKG4(WxlnTzw047hIQh32zg4VZ6J`p;CGDd=1-h|9o;aPRPMms)Os!8EfYT5sPQM_m;u7Xl zQGiRBO%OSX1k|Fwt`FH?1P&%Cm4N!KLMEVoBej@-sGuHdQcG5r*XCZ?Z&HZI`@ ztWit&LB6#51))_GfEKRc1JF_{c-lc+!OsH`i52_;U!rg+O+cA03qTYX@BxU*1w5sx z7w|r%t(Z@NNDOy^)Ei1Vho zBVAvyF9Cj1GhMHBu-neeZq0!{dQ5OH6+stK!f36Mk+rX6d(EeSx?$BI2vr4>`6+KPQjTQQ#kWyQ2qr=iLTyJ*D}OsAn}sg5N!U$rq>F>NfY z7(R0Y<653|0z<~LPG?~v5$TvuD`Yz6BPhp9XekM?k8oHNxZSwUM14o#Fcb9^DbSfH zTBW`C%9% zA_oUO$3)ch_*@pQ7X>5_MV2w1=^o}Z%tK|~4dTH(R5$Sp^HAOH#ynI_`r#|MGN*T* zrCX6_JbEw{6$wl&dBOa4jrsKHt_h*%43942u^|K=Tf}2ZC_H9} z$AmC=OcjroHQ>=!JQlw#o=3&wt8jRHFCL9*!lSu(uv+kl5RZ!5@K`S%tLlh<#iLCG zJlcuJrAT;~>%!w@@pwZ#4n&E6#pBZ$c$^fE+OhD65|1wR;L)v~c$e^rIC$(4kL~f| zU-4+&5FTmbakMc!J`|6frtolx$5YMWu}?hOwuDCq@i4c7M-B1V*ajZ=i^rrCcuW_M zi>dH1rNN_q2Y56Tk49ZWZdhE>9G)eXOn5X9j|1J|@v?aQoehu6;&Fd3cx)Gs9l7v$ zQapCp;qjDsta8AkLOk}m;IU6UKFWi~=i>2dK0MwQk0E{GF-klV2g9SOc%&~L3eODj z7%&_jL&f9K5%Ab49&Ja#qrG^%QV5SX#ltFwP?mV?9S@Iv;*mW89yalKPdrYDN6|!h zj1!OZ;(;Gr7oXQI!Ow5ko&>+(`^t-9p)G#mS9Xgh!!P`r=}GYmzneK}3jD%PA|4jM z@aueOQ{fkWFYfUf@C)ya&li{d;;qW(#l4hx9cFEDV;tT`_@(%TSJH`Vv`WOt#F1B$ z`NpNiQO)SxBH49OAk9w{5mVtxSQ`ObLBS*FAtqLZT5`fvFl16Fng{9JF?h) zC0G-fac_0aXZQOei5Ov2Gi^aEUEsFL%vf`;rf?hKoXiHMYRyHPw!H04P1dm&0ycaO z8xDzuHtuW4G)>ulKKm$O)8mAuk;+pSyW&lak|me_^KG#tX^!fuVzOE*$)xcLPrTKY zB6+O6&PPI`bFik^UFI5UffoKOV(SI0rC-A{y+cK_u2Li|I)?E1i$Emn(}_rOd|P$D zeIK^!&F9}ggvCNDe~J>rd^XCrapIy(O7fpBA>364Bx`37lJk9AVGrjBR(m&UqHO?L z`;(TK=Ckzyk*p>Cy+1RACoBcxaW_eY><-vuhi+mxc{*l?SQS` zkgXz?b*s(CbZ=6(UU5zUX6Hd6kLcN?adk00!W065_}@))`Q~!i&^hBl{4L*ew=1Xe z#=7D8-|Is0OGG#2Gq3qVpu3NKYpL3Dr^{pnM0_0=wHCegQ!Adh#npwMT;~d{8nW7D zHCT=HZqt=Lx_j#%;qlc)A-#Huc2V3G7{e3SxOUWx)s5HjZHMxb_}^>bmF$MPn4kLE zm2Zk&FOyURp07FW$|r=>g^d1$&OJA(g{jN>%I%lMgQV8>y*3c70C}vIxAg`O{T*2^23sa>*a?fE88^-=No$F#qq)ou20R& zp%@N+wPh39%Mv7_adR%+)?#)|7n%1rtpRh^eL+^8~z7BCrglm#^ZFIF| zO9)A!sHlfT0kw#Q>*cp;=C7CErg?6Y>k+n(G!w&vAIz>E&hti@t|h8-%WR_Q8BGhn zP&210VymlXNUNPAJYlP*VCNEblc|x6;$B@&{KVesoB)YJA^At}-KzXFTk3umlajp*v$t z^(%?4TU7F633=^J53J{F!t)03llHXh5-%Kf+4zVHjz18psPnF(fa<(XrPMj}M(Tls z9_)P6Kgr=$>@in8!#tuAX2%aFbY!ClGNF;mf7_)Rv=TdB(%}=Tu+9ZpU94?$t!QpSkL~j+bNl6Estnu z{-&V5f$@JJcnM?N*Ms=TEgAh|gGkDZATSx%PvK^Mv;4MR-;Tqc~sKt3X6} zW)U9FlUGzpV1!gSLX!T|T(Kbvdjc7QBKcoNy&}B%%#0FzMp+{=2B@ry5eJH2g30+$ zht!IX6#t{W^A}=mKC%rwP>C^ln7ux&aDe|=;8Nlt3Tw6;;Af1P_!)anfid6lBen+Z z0Af#6Zbns&O;yy;v-WEL;t_i?y0F;_%#R$*=&xl9^EQ$r*#a)ME^BK8dDQnA{fjF_ z3&^8EQ=wJYw@Qx>D6lDkdk8y-92|{OU)3TVTLlz*$gp4}8`EBPT zq=NT2xU9Rb#<}}nW<{ReFS3|+U6jZ3tf^XclqlXeAriTJKg4GO@VvG^<9(e~o(EOI ziJ8pZcmgjLNla#KfhEm@E&ozyatsh!(IStoq61S1J=$! z(M7jgr3coa{5+oc#pCIE*?D~1*vFdk+wZeT;sMsnFvLKX4@ZBMF@sGZ)e&ys=fl?S zsEv45ikYq*#!io)bbiU@di}z?n;f2_UuVGFZm}O%j_$Hxo^+Q5sx-K}Yy<0{yX;Vy z(p_?omwyBnWq2|Y8cM83YX@Z8iMxfjLO>Ak+SMX?oYUNka{O8yiZ8j*)xy zxymuh&!c7R>db3h$QbVEtXNsCaPUG#GJ8RRG1l^gGg@RAAoH{>6KmV4V6IhxH$O2c zfn^gaG1r3S+SE%K)q|j~oi{XrE%rl4{&~|Umg4c3;TQ^04f`tTWL6zICJF3H=XNv3nLy|<@?OfK=^j3yj*B;^7 zw=+7F55e3T=#%()vs|-Snk9HOfJ_PZ401YksZvrXfjbcG#4p@|X!j28K$N;H0s&t1 zk4dN1UEl_}L#cgum!C4;wojxJU+vV0H~4qPPpluQ8FU^iJ?y2R-Uu^&)dS|Gu)NWb z&(Fyy%3rAUd|~eVdq8n+mW8?6C?!m$j6tMlj)aGv*SO=j>u$z2HkD97bI6oYfB7AG ztTqc!i?)sB2Y=0I%W{IEzNb*vO*C9=3&BeJ6F#Eds1V?mZrJF%)YN2$36>K31)z%8 zqRx;~@Q_60w3503hQiukBg);9yYvjXoz+o@c^stsIKg=~wH zQe+DS_&`r0DGRxiu$0dABy)cAFH{Zr0t{b_TD|6lB-WXb zA#*78GDpo5!UvY-*>j$Mj6Fk8QNoCQeNw#IPa=gVWvJAi-_Q)NQFMTLd1J#htoA}H z_5q<(isx8XSx-ulFBG8mZzR8v#2bYx=1?G*!}1AOUcPlzD!7CF(*$A6JJtk&kczmI zq<4iL7-E7D1yt4q;g-;M4DVgYs2M*}Kxu~GU3m@!ZZSQ;#fYC(9dRJ{Ek@{ny~`Uf z0q1_`J>@yjd0`xXmkfH5@8N2Mc8h068oeH1T}5@V1_!}p5p|!fB z)Su1I=X7ktb2PmUt3h;zc5THm^-mU1j9Spqaq~H6iF>r(<~_Oh-;NOB5HHr*w8!|7 zSR;)`{a&T4-swF&)&P|~SJbEj$J3!Go;QEFMoJ{1MS)pk3Pfs+kQSdfNPZ881Fec= zhff?3V$z@-}096Kt0^s?uF;JA6igvGGF#`qM_{N1B6zzY7Lc|w3m-lV3{#vFCQ(S*vr9h zu$P}rG){!gf?7nk?wQ2iB2?h(4S4edWmEK-q~c-o0XOX__J~%WAFg0D4x0x5Uo;@T zEQ23jFF<29pI)GjzG*(6^<9Tb%%ckBR1T*I8wg`PZ$2I;)a%dZBL|s{^=a_0xTeyd z@45Cplf#aKRGcH8^k?ic`#qvjzLynW->L#?9UVKa40T-yGu3dNfxSkU`XZM8GH?~y z>*)D1dmS;K-x=R3oskwGp^Ca3F}g2QB`p9bhN=qU7lx_|3*={2Bvc8G;#f*SJ~-Lv zDbq~Z)x2RR^FOo0-_lMu*Z(uy)BK{lwFWo;MLc#Cem3|EtZkqBZQRurR~#h?5_b(9R*}6*pjfZA*BKvI7dG<(@T2AytH|aB!*5&9SP_VyP~YgwRs_R8 zRo_?=i2uygI=$JBVE98GH69PdKmDjNkR1$$Kfj^Tz=pqWsbR)V5~wt65i|1<9~iN` zcO#=h*tG?4!m(cGBzA+aP9J5O`jrJ-o1Kx~F#k=#p(*O|j6co7j0!*3+~^-m075WE z$UhhG^d`nGt?1mQ#-OmG3t=WYrd&MFc_%52XMbKi5}vy}*Uf0JvxRc!q0mCI^AMb2 zIP6|FZ3!=z{oTx{##%2_ZjE(JU&#CX)V4+0f3lTOH>i)knQtHEvpN`Ear1R^3*%#5 z8-f)c0u?@zmpoMLx_%Wl6aEJquC*eG&h96Se)^jWaZoINE*$z_#HaxS`#i10(3vSATsWzdf=;BCplLD9n2eD_oSlPUH*6D!y6(sAIjlP;SJ% z1jbwqhaP6MHNIeb2$?q6Y|C>yBoyGydvwXq?jWkRTZs|-eR|eH9-WiXMr>F{@@g5z zC0MvFY8ds|_e3;W>}n{B{el*IBzzT6@WU62#B$R#8s^h>VHcsrqK^-*#o&jEp2B2> za{Nqo&Z^64%VY;%H#f7g0?P`z7_y4EjjpT$fr^lY3vpUmp6522*hrvp4Bo6qm;7v8 zqJbaIk?jad*$h15=-^1tmmQ5{P3y#e>tvX$Gtmhx+#v^jGUlAWPxj`TY1EbmUbiPU zmODEe?))0q%n9df=fb_q@WW>*^vO{IKz*{ktc%vhqjfRbY3x-(fwmpG+kA}8AW*dJ z;mpEJ%i)e(vlZ{r)o|MAP*NY!wp7wfmetzi_^c+jNwpy|Rt>abRp0x?Dqt*kNgMPq zhTG!hx*oq%x9jvT9v0(H4CvHl^lL& zz1hE15W$(Zpk)n>gBx3ZxOxmMCzfFjbE9m$Xf^p_-Ft$m`0uN;GwT+C zlaFU|_>`WlipN1C*~cjCs}k!g%zpO8wUC+8}FSL*aB59G&TJ!^J}jp^y`6kWDSxAd|tnf6RjuxI!iDW|MmLy9)5nbQ6dgn%I?-XNqY#lE=d4h2h045XN@s3 zO3n~W(W_^QU+C5F3Go=CvLn!`pBrloqfYI)GuBwFv1O#T=+GZ1fLGr1=O4(S;V?#p z<}v*6fQen1M{!5@Eg3{y=4Q{x3C0ACeMyipmWh)l`u@eZZ2%XMuY1jiozpwAGrJrV z@w^R@_b%A45&M&1re_U|wc@?jQhDbqN@W2X*)f(Mc-4SAt_d0P zhEm1*ZFZfME4G&{w(X`Wwg5v*6!<_j337x2#W9u_Yc^;SD@Tx!ZEDfv6zv1KFOxzF z(GX=mkcLRu9G}1%l2YUkrIdf~R&|E5jsyw$-=03n$G;CLME=eXP<4LdO=V+%QLe6; zu$MKJ5GrH5Y^gn$lp}W|i=JxT zgdHaZ$QlYL>ssp~db6Jhl2ZGYRGSZR(aoX5#Hmvvb8C9$VBV-)X+$4SBVikj91c{8njfH&pFCO}e+brNT7hXg{ z14Q0(JbQH27&#woK{QwM!TE0+`J4}`h**e^m^YyyYeoc!?s0OlPWj=>s_OxjRfZkxqZ`9*wA1kVZff(;1d#gR?~?Ec+{D@5A&gXLQxwJ zF>i=-339ZRbxh4q-;$nF^Nk-g_7V|u{v%koDz;#7MLz6VEh_v?DB?$0dL1^CAmRLL z+J_<51m6Bo?h!TS?nOq!7^Q{v)%#0){vsngP-@r3M!dF;KfBmSU>p3UtqCP|-DEeF0m&2I0 zM1F@rN&G}v2al+z^iR!+EX|)E?lsgDP+UpdyjUD29OQX`$Cls7qwrz$tY)oV&oeB*XF{!&4s(My!2+H9=r74@xl+Si6z94 z(3ayTa;=xhqirqV-$$J_Jxe^s37thORZfpOqJtG!DjloqW?sE-|~tQnCcT2B|MiIa+ifcsp-kImX2!xKDz?lfj; z>e4ebA1a{ z(%USv&WsQ;90ea+7NSRWTIS6Qvc57Zlh~OeeLz%7bPy^}br1ptwXuWL``XZTHk>E` zAuNN9BLH9Zwc-5wQKN-Fww0Sr4MB41Ti6y05b#b2>~D@4du`aF<;y82v946G*F?Mr z%bOlIhJ|^S!A(ZL#g*Zy1xB}FJN$)Yef=iW0VVoWTp6~Nlw!lLKVeK~2MJV01)$O3 zaU}R&fY`g5wD+cE(&5%G<8I9?$y=W?hG;kVno~w^_M<;1Jc|2+S3LZ%XB_KK8*eae zxq|u(um2DrKUvDZ<|n`9Sz};W{Bp|(%OXd2XG#7Xb3YlxbU;BPlqaQVguUlrv7`=x zq85TiTkda!>Qafa%Y8d4fxPwkiSqd8fpDt zamk2d{YW8pAjm zvXc{$zD_PirTIh_7{>$^-M<)RZ7TZuoIiA`4S+StYB+dk*jA{?+OEwSvh9R>pOR*O z-4m)NdzZ_PTpIJk*Nrx$kJR+m!{o=Y_c&qI9#iHL1DnOy!0EEJqeM|o+4<**r`lGfI*WGa4pOn z&MMk5tv$6H()<+LXZ|7t3PMMeE|=gr^o#MZ#u^e{II)d7trs9htSyabr-wjO!!zwy z!_dNv6;>z9i7*TDg|7{IjCCL^(PX!?t}*`Ze~d?pI8~9i?!W)XXwLd8xUiV1Ir;40 z;Xnex=P)=AX5$DVj>~|-pQ~Lk&L1_27yScfE>r#Rf$=+k81LAyMQA1NUsu++{R(sk ztqpf+a5VR~KaID;mdVP-^M}LDX6z%v8|x_oo3?_t`x`zwTcHZQHT~#sqYc}w;IgJG z<~YrcjG&8jmFiPZ>a&FEvm)%Q*Y2fsvnIP_=W2PxdA?9LpJeArA^Oi<0`Msw253C- zsXFmCe2j&w|ANu3@X8=gt)1uV!p*Wa5p&TZU1)U4$0AM6 zoV3W!`%%jiY`hmS^CrCQgPN~&m@YP+GVtzj>tj~(_J137i;PjFUO(7U#7t$cE4cK7 zF}y`lb1)fv@ zQoPv6=2eN8H4z*+98#q=Q(RJTX^KNUwS+m45qxQi-@K;yolu}D?*5Z0!dD4Xq!gc1(>m<>dgi-@ zVPi3rX&On>fZAvps)nCwEX>c*GptwMvcqz1t0@>kg00dV?%X z?ujgKb47`9YAg{YVzmwgI8G4)d1h@%IkPHz&5kZZlc2!_ozke$iaKK3_IMAo|rR5OV(ZLx;M~s%j<# zVxOrB3PyjVT*|8Ezp9xXY}jbb=w!1gt3a@+F_$NsJ!~YRFOc-Msn>gyFg&I=tGf9H zYebm(vJ67}SRk>;jkN~Ci{SW z>X`l60s>VgpUc0iW4>!65hf?OSzE6zK9hsAMP^(H&tG-T$S}5z@I`4?8k?Qj9s*U; zw(-l4nl%DRnl&_gvu{F>{HLK=A&{hPBeN5`5`yH{M&_PC5>)KBU?lpsk7O98l@WFz zW0_0ZVe?1gO5EnWM^iYlNt%F`@f^OOtR)Of=P3jI3G3XMBwxHXK z$O1i09SAV!5&{`?&65)|CY2ZD?rcFZ)Jpw?VO2p4l7O zg*~*!&k@CB!iI|+;ulAhvO#ej_i+D+WES(^aaizaWDgq$)Zy;|5#3qE|Bl1opGC&o zILKwwK@m+^J;Ff@H8!;94rUV@z&q_{{Lf8;dWW@J1IL{=4{FFV2p63Dw^6QayUW4ENu5 z7N$)Sk{9f0_On6Jv2p*hz*?UN$S5CFKJFXQ3aI9JZ;f0GXu)syGPkm1e|{L{DzBC8 zQdyPS+NH6A%XSe2qFo39X_o-#+8&M=8?HJK(Amzq6_1KZV37of7OK(DtZQSSDp+By zFQVfe#LZyaQhd5pbBX+PsrnLe;X^I?LFns*F*c{zzGbfpsNBBg*#peI`Uh*}r(8=2 zItKT}YeRJBwQIdu*N8!86Mey2yqJT%Ll{8zXzCmo2<={7OSS99P7_3*VvZ9^vBey( zqxfQoxjLNPCD`~m#ZR&U*-xYZhpEVQa+q?gQ+|XsDZDO3O=8!1Ya;fP$?nc@8IwQ+ zFMVoIqD>YCA~-PNVktzB2t+!lwrHf;vR!JDD_d3@%3y(*o*K8N#9^ZsFC*)iuSxusfqA;?;m$d@hxM_Xd5F{yD@~3 zuXbb2mVUK6_w!2?_}GhsYOq%cfv8=W(A3CoHqs_QRc{`_w^wiEtY%$oM9>9jN^LdI zE#(1V=JQtu_2oZ3Yu44)^Qsff>P0px{@xy*H35Rub_K^Cu5ILnpMzwW;EQEUJQd?& zUlMFI!^U+o)ure{Kawtvk?yk=91>F9;_cs&|0nv&Z1;Pshn!G7#CLIq?W_^-w?367 zr=PsXJ~QDUhWGo!l8*J@{CL*1i1>wPO^fh5lgwaeP2YIIe2$(qmDAZZE$Jfh)s4aQwOXe`vFDOzkiKMq&&++Dp=Lr@bx*M+$ z@S+AhT=y2iQUYfJD%@PbcfMkZ4-JqUV0gH04WYm@dr*Lf>p(DmPaV9H^l)8$U=eV* zj*y9^=?c&ZeCL~^1cf|XcUt_a&)dCjHi)Yue$$h6S|0WB%nChft%n9D(Bub zx3Nn8$e0);ZjjT-L{f_5%A*_PxYCFe;J8wMLx^#u^#&YQ^wS`8oMoMwAmRmcsN?3)Bu*x(cDv?zp#b~3%jUn8&)<(Gi z0zranbu%jx53-IUf=HaV6OrDb70*DmCbFOvOnM0#3igG^7uH^}5Us`BW%R5KM$ zW(pm=;bhhT^Ar7}jWT&&L$pI1uMB15t?=k*e2? zT_K1{wTo0WyaD3$-O;`Idn?UoKKb&5ihRu~vl@T**U=ID@KVTi?h!5`S7W~t0Ja6b zgG-^<@rrGdu`qg*@<^<3kxe0-s_Z6PER0jJ&^mWYWsFz>$9X6~Ws7MeZITy^eY8p5UGrs7to;fLGqlSD3sbD~ z3IQ{;v*D5PJoRtg!D|*`sq9aJuVnuRh{P>pY_oD`! z4|%_FixMO<2b?J6FXB^on$EZd0!nkh*NK%>4w%}-sLea?GOw{0iSpR1@Ehkh2-Md( zwHG> zdc>(GOGXkg2!v((Bnp(#UmQ?>jG)STtQ^lMD$+-NY0k2VQc)Y~jOWJwf_^E^ls|pY zEU2@g{%kR^8f4jL5Gh6bOt$PZg%qHDCWW%kv{3f3zFH8Xgng(eSrzg5KmZi?H7Haa z5MNGoLJN&3(z;m`tC}!gg9l1N({$DYu^;VshHd^dsczXOx!T?h=swh?} z;olDUT4CBRC3x>|&7vXLoc$*@iO0;`KssF6zw=LYuCx(<_?7+M`d5e{Ir;uWFlB!!mbfS7&WZn&dS?1lU8*f=O}D7M8HEO3Up_adws(-GlL3Osa0c@C-L(Ygc)n+h(fVFBwb(q2u9x$p8VBLn=?aW7eDdU5A<4 zOZ@yzvod>yP+)^j*&3pU&)g~}L68pMtZ&j*IqRE1IN+>r9B>c{4%kW*?9O%&Jf+)K zrJDzIb8GAf!NY0Ymjr<3#%Ude;=p!!s~q^R5_GK5#ZWc6BWnaMDh7U%u_Q_tr6O=v zM**t07upuY{}{zZt<|iK7O7cX>Hm%m&gv)!;VE;=4J@cxX5T8!u3ts}sL!)!!j>6L zzJS15h$o4%cWNajJibX?hENG7b%ywblR9IYyaTsg@wGO7`5iB2!MIHQnwVq2Y(-uQC@KuZ z7v-B{)5gWubi5(dMjO1mji+xiTH>Q)uMsGei%vPcPyQ#fcOu>8dDOw1?5)$sBeX$$ z*x%;o+PiZaI4e8m6G?p5X(MsYH0L9Z4=5D0GT=a8Db3j_5S{<%ih0Db*&ja)`0_5# z#rL&SoNs6t#pelRIyZQGn|L9je&vDfG^-$7_N*Xg$b{DKs{byO|3m!wOZ<6g zJN(hbpK$S~p!ic*{E6HSr=)9kZcA!w%@b~J6H5Sbym?mB>ZOPVf*nR*un!-3wo@5? zrjWCBsh0)Zau9-n_hru8X5E)LZyVm1S-Z3l9SeVay+lArFA-&#C={ytQ06xvO6!}s zfKO!3487@gKI>HLRNlO1ooKz$cJTz{qZ}U8D;0JY@DkstomN!qN*3?u7fwjc~$1_!-wxL6T`DUcq)Sb*#C#(JiDm# zaWk0IIr*1*{@~3jJfoQNj^jB}9UgtuWyDVq5W1W|Wy?o)#N&3_8~jd`vzlW%WpMrp zm!VJHj`uRItx2&((#cy3h}nUjt93zU4F2tv*Z;pG zb8pS1Cj8>V&T`rju9tS!a2!z*L6itKcm12`;C6W{-{;%q?TU^v&T)>&9bh5sWZ=W1 zd5bUirz^C>M~AoheFl6WXyHYg!VdU`*J|iA;tj7A+eII@-tY?25ShSU-cDCE-nrP` zc=)iwukp@Zjt*3-BPkvGnI?gF+w=h*Rj^rdqN5Mt&eKy|{bGa2%j~^FEOo~79}=9i z9OEg;x-g@oK6-~-;e2L?TsUl=Lh2R4o26yxI5|q6c@=jR{Eh= z^$YlpxY*A9a#XRRIP>?vEEM-_cC0-{DqRsim28Pb1tX1^Wb{NTpq1P7%R zj*_Ui-C?aDK3_JH*R1TU5(UWCGU9RZs~;aw*;y~XxA;x_eS4}bUcHYlb(VtNy31(z zziO!RF>-V~MJ0%5J3arZ>a3?ZZc#YKs+$6WI$M{e1d#HM$xe9aO;Pfw>dtwN@SQ;D z?H7;-H0IAt2`|iltM2R*2FN@*HLL_5k>Y$eti(<@mQs(E*8kXnXGR=^m+Xr1N(*ai zI8cj&HJrb*6eUz>k;H$g>D=h3qo6p%qZOf| ztm{j}Cr6G7RK~i)h7kss_~CXC?eI#0`XG05`y}?LqLgD|-Cb%-)LZVt#V7sv4nE~8 zBb0Jwg(;>?Y7Z?tGa`cj(A-&3>&BzgAWvNQX9)2D3BS?8`30Mz$Gbr=-K~KI z;VC0WoN~A*tBsTkc%mM2KBYUhQ*N`Cz&-d2+Bh4O^boMOPu}F;w{gD2ND)Vc4ia2c z-G&1GT#C1A=j`Sngs5L*zVKL)V(@Nn;h0hz2oIk;aJ9rUHR|#5k%bHLKJA^!ah*kW zfdN8Qt+?0yAZ#_k+hMdTq+5t+)_~_Uiip&PN-(^C21l+Cob@^^Wj(o59f@^B?IyiI zMW!MG?2SyguU~yP?&~{hPy*3y^lH16XTn`aAjb%trQO7Nf?R0;Zm2%cn|C?gw!u-%SpkPaIJ1JCf4-6QzeC!BFL*9loV zj6gkR%lFUpYSm`HGJDGGNwckMQa1!>vxaK3)2q$W&d!R&;{&zfS35iV*_9C!ciwzX zp?Z$5sT44=-DuHWoK@_UBK+#3tmf)No2wRI+qibJ<99!XE%}I}RT&dduODHPIl4OY z95K1n>qO8lmMfeHPPJ_=$oTGi9a4*z5ICpLJoM01`PHk4#0lYD;M0Ge+s#>?F~vhR zvew<%-9ezxmO|;mz*+d%uc$P<5R5%REMqxr1NFL}oklE8(un4;gjJzHW)+agN6yiz z#EM^XC99M8g)3Q|a^>*^?6a6zJcZpp0p7G2&zJUe_AG@(R+{AHp1EBvWMyu*=IEKA z_dWA!dezJxf_GQ(r<{mmW#P|Q>wODZ_&OF$9qW7M0+DeZF&-ukxVR;L;Nn)d7bidX z{IP<4k^)owwjvkAG+F4ESrW!K@vuc0)Riy%=-~|hX+LK}HcQk3Yd(!f4|U3iEoLa7 z_$AzAdS?D-o?`XttztEb@}vEohs|Kjr{$k{;#6k`PwRos@j6?h)aHF+T}k}doXQ8v%s{`~ed57YAG%0@HS*!*~=XcB(9u)8Ru zqNj{-_7B?l+a9R#U&Ci3JO@WQr-$jyL2+2l2y31P2U7Er`|xKTuN>(~9p{YJiVPGr z^#*u8WtFoc&zbBj!Uhuyr2oeWY4wL;kLvyNaO^C8#s32TQF-!FiKm}+zLAf$53tS5 zu->3v_PN2882s?{K3@wKe?>rP3--v9OBY@98w+StJ`|9=1F>Dcm3UAln z&f}9dI2+i|Q53#EvGXNoK3jOEK38f5Da?^cB1g!R&rb-Gb1->?XT%FmUDLkeqbEb4 z`GzQ_%zQYMna`k^AJJdR<7b=w=4&?3^) z`xR%nrd8(yUWM3EgNRnftOgf=!@IlBT`Pv)*(zXRi|3%A7BTGH13lCv2^*o#A{spFu!-fuEV_tj1m-ve9Na z6($sn@i*D?R$ZR8Ot!y{Yb4uDNHGGyh}4DcB2bI~oA=0%fGGO^CIW0wTG=eT_N`Ho zy!~wFvG5;38UE-HS7mmGsHJRtGn9?*NgIcQ%fcPMCyK}Nnz0?=K=7Ye6Zz!1&f@vC z`gPusLo~cjv{9Z~bSVSpyD(4zR*$Pay@91y($IOFX?6jN2U zf&aL++gDl9axnXXLA-%{Rjj%AoyL3pyJ#7`NuJygc{Gn~h>)~SB%3&m1OakGWWjRh zGF#&3Ug7+nbs*}Z3uG;iXlR-W>SZ*2#RH{-BYDqnoMrhdtDId~AH|)6%>J=K#AWvW zL>~Ok`p7wfjVBb^F=r=z^e5J4$R~0$B==iqEMNPr^D#ElA9b2SmAe}X!CN;F26Kn~ zO@_;jjbb&T`1~=h!o~UlsyZTlMP5Nql;!D%ok@DzPvizi^L5UYC_y5RNbeB8`tgbD zoK53^zul$V3xE}-)*W}Ia!eif5U5HW4-ly3)Dt&A@1fW#Y82g=-wX_!sIWX3y_?9K zb<#PJU8jH_oTlT70LX=kPvm!TWj8zj&BFJpirsk}g5g7ZJq#$jl%c(!SSDqIt zLkiFXv!e?%(qs3A$eAkcmB*lVfK>5a+y$WrMhojob|Fx#nNxvBR=TR&0MX~gBG;ZC zPZS|&Fo9GTX}2J1fz{!nkJE6DhhTHbW1BO{2F00SCqgWOfDHrbPHl%(e98^myUq@0 zV>XZwi}tpmAu*m-qr}ksrv4{5dUoq{{dedS;@+E`=UuHdHjQw@26@eDkk?27HpoJ& zK^Bn$Y!KI(^v3W6OYj_aWytohzV{OHM0-$q*d7!ht99Ac(1r#!ffv^+z}fBnL?^UK z0P)%@u6TdqB(WCIg`K=F@v)Dc(`>|O(3ki642mcJeg&5k2kWkUB0s0P_=#EwnO(LomOx}f@VEY>_I>$gI&USwm9HqtT*mS$9c2-ns#zU2vX z?A_wwaXk*0iF#rn+=Qd` z-#DLUg+5i@1tR;G3?dC4A9f#gzRKbWE)LM8Ka~S?$xrX$lnw=%8Xg4LU$a z0Iz@nn$XJu`bV(3_=X7wXh9+e=)U4t1n+v>*(k1{_)T-pJIb;g2Izfku)rV-vT{}7 z@QM76wmw4_lq2o{!XHQ6NfaOg%5wsM0i~d4<;T#=7d-RKlUI(Mzrr z_ASu|!#bsdF(KKXt}?HY>q=(V?n76KM_+Kd{E3q|tnxNyzu%V_$5*Nf4hOTqPsR8; z1B|K0*Yck!zrgXe>}N9JDN72l5o&)X8=)>KP>qoGS%^kx_L;2_VpJno18iA%2;5ng zQF+(~6rjde3RUB4526z`1Vuw)9A7CETM@_CXYNak<0~abgFgJ3&!9NIP6Ia+oMp7W`BVho-0i4u?+h3x`AJ{!qhV^j+tBfg|D1cb)6lV1G;CNZ4ONz2c{T z@IWJBH?al_Q%}WMPF90R${e>}PF9co$2pe0NhokEe0{$h3t!pqKNf!IkGe>q;s?q* z2}1N=F!9~05b*Qils{o3>L|fNiAMlSe35*S6d*Yi;EQs1Xu(j(in2e{TIf)U9}$D1 zI1&f1YS58*0x%31i3z^yo zJ76SUSfx=ucTBLMAC{wV65)-ba6<|Z^WORbfN=*J9q)trFx<70Jwfnr7;qnu!+@I< zKH(r7+H;>}&wZo-ht)GcCvux}q(GVSRH$0rP^J{Q4XIY7%*^-6 zYEgMuEecS>Dut?HweaUQS2Y<$Q^P8Ss$sRveTi{crNn5^kL?EKU1D5+@?BX)3-K4a zhsE$(S>OWA2yZlRqtB(gHX;RR-j1J3^FBce(7Yo&tg-evI%?o#vKM!kbk)_tPcd;+ zK4TrA6yn6902PPUrGP|{I8p%ECb7_*SiIbwA5M!*W0Qzhn72@LG;m5O*OUHCtVD3; z{fOu8t`lve#TDUV8Lol($$%_iVI$N~@R>9y8IkvVi{h7vjU3hCDYWDkWZ#m6Sc0k_naJ(ucf4 zk+Ebz@o56FTzqxMdpGD+rKHdwGnGE#7iKDbz6h16d{x!8IxtiDw3=%VdyW_a8v`?y zaSG}cKmDTz%v7A!TxIz7>aOS5>x#QfSAvMkoce`KSH4YgO=1fP1tt&geu3$V#^=^_ zy}>;G#T#U?&cBei+#Mnam}7jd5HLk)pXzGGt`aPiauKk^cM3C8W#fzF24I+-gneoA zAS*k8Qp`?3FlHygYZf#+nFi7WvJ*ltvy+j~$iD1EkjU&LO=vTXH?HGKkDDr>G&>nh z>V*sWxC30DR6qsvW&|pNm0tf#xiv)5AxgC6cn0L$=k9!GH0ThG>${4uIz%XDG(9Om z1e0z8fWZX(0yCQV4P3j}1cHY{#Mm$85HXe%;1KcVmvV@hNeWc(nf7IfWae#nOJrip zI$9b(*TR)j{7FGg(-}@GNdySEIlaBt;K~u%SbSKp{-nkP1T^Qh>^0C=?87ExxA^h0vN54TxhsIjvmH zG@B5#$W>(#TrpYsn5z-IbWGTxMT~>eu?$jx78zh!WDqHk78zG4lto5{vWRuUT?i8v zp~BE26o6hu0q9jTi5h4Jih)L)(B3t~#+f7xgcuWs0OHjdu(Cy=NW9R&DzXjtCH}y0 z4YLu82GH6Gw~?=EfLG!o%P{DUVifQ8rJU7w0l2vDIXh`Y-AEz^^NfoE;0+CUs$DxI z*F3@w`8lcBwbT9%;ig3n$$3lKm$v=TL~i_Kd8p71-ibV6)O0Dm}4_tCmf$>UOUXspxK$4&Ci}SGQ6& zV%&V>gbqC|fUZziIE_M~Ak^9`TTY0B3mw_b)yGDRUA+w$L%3D_Lq4~{jB9O}n?;gH zhZ*A6b|F@VNJc7eVwCwL-`N8)L}w3QhRCCaG-UCDBaRiNWt_9o$_#OLPuJE0`j6nR zz6?>dgmvQ#B_kOk8Pt86z}V=!m!a@s5RVyRg!qLSV#MK48KQfjD=RQVe0Y%S97_`9 zG}L2;SWZE`;-}AjpbW7)|NA*t1TQnh)taR#?lMCRA}%xaFlLBzGhOT16HzFD`;udM>IgXN^f4{XgF%1#kfl<=J;;RY!{2~Z#sR&I>) z`lpqvLV=er=BmMM95h$04MGBPRYEUw)zaW@zFbw1$XvDZ5%G)nAL~kvOBGO>tCl6| zW3CFv=4P=JL1OtJ#sNGrSBF4F9MDpD^YN|(8@4(z_n05Ho^nJkK~d&7oZ*SNE(Bdf zC}3W2f**4{OqJ<}DEQ)GD#{n)kCic(_cX|7#*7`L7^_C)i6i-*TF<*mY3wBehDr}) z(+B{q^AeAqQ?P%vxC zJtDKFTvC9e)^|tbsC9xAs8Q?NBOykuOGo4wT^SI>W}nj9+Gi31Mdm~WV&+5viDJ!$ z0??&!vrqp@IT{Wv6b;6+WPdtqv#-Q`=t}X=Uv>?)5#x}w^N3t(+2%R?iffF<9wmIx zf_1-=7OYDO(1ONS(t=J>;Ikks-JH)3mWx02RVV{msi%-93`pgn0Vx0ncE{VUMm99C zqLqw~Cpw`O1Bh{_jzX~saHsC|`x4`lA|)24)E*I4mU-khu&S8d41Uv9RA;LRL$v7% z%cd(x0ortrWz$bcfwC!lau(F42SeJ_`mh${jrivAa*>29ZqQ{984l+umUmAIyYdy> zinP3YC3cPApybpVJsO9Q`;(L#2Jw`CzoL897}XoRg87KITyc!n69vPUi#B<)SFY-wL^_~XRvId=GSn& z&PUy=u+*RuQ$k2=s3i7W-90&|#HeGB$HTWGD6rO*CK3GD>h6hQ9YEl{)!i$yPC*5_ zLI~`M0=3G#=R8-npyIHD*o-QU?ooj1AQY-P$V8$Mb`Xk&#MnV7)Z0M{aQJMjBb#ww z4%=_LI@y%Mv90kPSb@zU#F%|kK`8$89mv8c6p5Wb0rC2OB8E@_m%z?<6}J(i?!Ct~ zOlF@D;@}m3Vu7o4D53p)LWeJfjkrLe{KKWL3XFNLjTGQ07}vcma?8(mFV&wrv7Ycf4I zxuR_h(DuJb+v|{r;Chw^(p9nWu;hqbcz7S+zW2*!5gC|Q&kz8aS98d#EAzvhMlIA= z9hHk(s|mVll@*~{Ws7PR+&)`!RBoRwCTzg1bIemjFx@kdNFXxXyjhk zX10h_2YnQmjOHt-SNwGTfJ;WrKXtj;TE$qd76p-%x#nBBpZLgUu7zwLp}^%L_y%h~ zEEnzi)_=L^j6dcHA0{pr-Ssd3NtMrS=`Iyqm7t3%>wy(rRLT3fcgaY?9@;QTp9k&X zTT>Afa!sYeG5EEfPy5nUJ#LMF(lwQL2oqdW*}2%+gZDZJ0j`>$qYEqeiCP+g=3RF> z;ZDEw@vibVZ2Uy6WgsGs*OaYVQh9=4ZXWSti#gXIKSaISF}b8d`9cTqZbBY? zINwVu;6Rbw^|h-YtE_~2U|r<{jb$ka-ftl`{^KSKAYCXSbQ~8-W)m`8{GTNN7|_89 zVe@j3XV15;OK@2OLBt_>)wWrMPvzMMx9lF_nhnF$G{?95EogA-hgwV_>9cn25Cf_VJQ7Zb+PccStyIe+o`g z-@7k|pH8`+p&aHUx?8a#-zgu(v_C*F+_&EPN6Qb*ty6_h z{^Zy4d{={UMQvJa6YV0)OhRt!@YL4Ti0Gs0u zHb=Ec0#~i^W2n~nGh}O6cRLArqBW>IYz+!ftwEuxHOd}WT_pWaNR5e-iLsD-Ecg+= zJoBT)-85@Cp~gQjK;gKWKp9|z;A%oMLW>PT(U2Hd6DSmkaW%nxU*g+8x!T%PSKYMV zKM{iwtp$Mq$+#de_MeDRZCntb#5g#;c3(R5KT3!G_pS0jF)7d%%LoCx$NH>em~O*Y z?b*M&y0dLW0%qGD0gwZT$Mu^lLT85vib}FSr%+##O`(`%U*yg2L6Uu$V52AJTs9lS zjcCEYq5ScvB0_a?gz{_gv5E#)(Lt|C0*5G)iGIH7zO zBMGI#c3AhPE7ryf9KSN(z1v7;rS3~S|1Z~2N{mBFHA03i8z2*h6aq!EM)xDbA%#$p zA;q{Kt^bfh*`Nb`22CR-XP)D7ayA3K#`^S+W+9mDlcdj^ZHpY(m+WT=eK6UdB7R}A zKjj1_`;2`0CwB4@;j*(;{6e_9QztH4|T9zGu;pI^R1%G@Z8lYk$gp7FSwMxj=LCd9_u#v z+)YhOYmaiHlsla@I%)HasyusYSR=juNsO*MC%Ig--uk4x4Q%4W?sxKWNeL*v5LSk- zmUdTWwTZMN%iXQSOr>}i0i+F?dQx5mR^uc;GN(f={(TwuGi(?kJ%7?|^206ib)-|M zqYqIM@J^THlk#4#tfkG-T1EKkg}+DgN%8J~Yj5$9<=pky93mh5&ob03YN&;1s7Lh9 zC;5nC9V+vz1h|2`cfo5h{BW%j@c2+_dVZeSL;JnSk0iKjus4YkKKrfnx8EC9?Or=6 zFL^nc=w8qE64D2@-yS8wW0yQrr9z?WBYH)6MlSTx)1lhKVeYPH{_)xtWT zgv(Wq$CctYE4!b_r=JzM0^%U{MTuBen6GOQ8OsF78~c1Vi#+A$a~G`|owID_>fQaC zqnyB!Ve#Ts+bQ*97fOb|(d)iJDuiB5M$WW_opZ9Y*AEp`!IY z^aD6}*;BF$L3L~mG$|`3((^?Pca)|L;iqf58?&Ky#Vo%bbV>yPZ7g@!ch}ZB^N3XU zGx=I-(1$(U-gg(&*t>-Gft`4s6ruIt zd3D?^bZ-pkHLH1~=gGQmxQT8L?_SUSDEov+Rb4-qn&=>!2z|KE1@Peo_1zuwYpESx zOTiDDrTE(Z&$1YQOKr6*wOLw<|G2>oN5LApN3)*^{R3O;j%BUQ)LI=pYa6>GG_5S( z)&%@G{^5NGr)>n?p=4N#yyu_M-wwT`A_Y>p43+E4qEsa5W=54>P}YK%xh^mzAeMRPt zI9ja^=^{J9S4W~C5{Xww94EyWG1jXiL2{%_;4ClMy4&8p!=6`(S4TYm$$&hQ-LflG zmEZm&qOo~HL47Ih16;idL+=zmzZWE0rqex^{i(Q%xL=j$I*T=q4I(r1kJEAyzrV|U zmlZ!_>lM{_^Yyh-v@`NMW_Cud|usf^nkJ-DtUR|#OsNw_UNBv80cao)eY_eEK zccg~dy>)C7$ne;tSHdfu+)uLJ{yb1ZcPW9N>ZEueb0~mQpH0|Ae=_{U8A^Q;-Y{bM z_nqBi*c^XUlrYPZ(CbM*2~dC%*7=jI{jEYvFp^imk*#fF`S7RQ{n-J3%;swbqB(_) zzVk1{YV12BzlFNuUz&YpAQd8xmxgN3)b8%N;eUe%%(+>vJR^-R2C*dl@@cu>k-gac zNVGtc`yD0D!mqzi^XWa@>G6LEFzqu}l|!B2_$tedGVT$qj3BaRYZ#jHdEctneTzCu zDUK)j`J9ezcF-&X2*Y$I! z@wK<&%j%ua%BLYpoaN_>8nv}nqRjd>p}CzJZgTFS70{Xpj0Su}Aw5!0IV+c!stH&N zMwAvdHe;!|h@QTsf|)`BE)`^pU$|6|eOB%ZZV~YSZwcCdLf#V8Yk+%6(CO-$2b!b} zn>)lE{Ygc)Di{t1*r#@Ig)Kvd`Wl;A}w>vSs9*UGTrOgAv+nYn~R|H z`B@osPWzW)hk{c4xbS=bQj7~wirx0pvof|F8s>hEg`a~4P)iUXW;9FD&PgdT{)MUK zpBIG~+0H(#Vg~Ym=$xHDMz%-&S-AeHA)1?rxYVdn{dDii>v-U?ty2w_7E z3ERO07!nAQ3<){ldSVMygoG%8CPTtYLgaQnXtcY2{1ySF5#fDhP>cxie8d}CG{+g- z>vmn?S#p2sR|!VcSa*w9$_^x9&xXeL^_Uz%fIViB_=P=Y(K+lfrD%`w(t<=eHV+x+ zUK=-p1%?S6nl~$`&+9inP*3Z{*OdJ|j-Q=vp;i%i*bw0H6~?+u`sO^^*HW*g&Wk-UT?A5TNHpZLHE*?|)v+Kf*=n>O;_dUS92$8P4uaRwKkXMz3Q$T z2JOgm%TI2r_dbt@0)udl>QX*AY&GDeKUpM^tqsO`73B=i)OtDR=}$a@O5+toL}}3| z)`fiC?F`%U)Hf;>)PSK_m2Y!iuFAJQFV1##W8V{G%mJLatJd@LV zhPxIkcEM*SWe0XanOHA<0e4`~5Zbt2sWGhtNAzavQk6pd)0yrjjzWsn37)tcz8S8Y z?XJpdDX?;0tq}KQyR#UfK{v$Jg8%_x7vvu5Ll?MPGfVP&v)qfqoEP9Yi&zuIqt|=> zw^pxW!`b0VaM!du@a=O71TFW zY|;xML~a#z(T*S2zF!&MFnnMPFW0_bW0n$>sH!5uoFs&< zIQCovHF4}ANTO+z^n=h$-mxc6pvkf4DIrq)_tn{%b&J5-X?YF?i|6+iyGz7h7HD)Z zIxGO*K}Sqmtkt<*L~)$ABxFCG@6katSZSNs?uxxNiOI?yQa4gTDrRlIFCi{SevG5VVqNdSBIqMXG%1wfd^=&xUtXHj3Vlgb&4{vu#OV1?%a)0e|C z;&5oE@vYJs(N^{L1@+3z`~$4H#(jttzXY|UeFK+8E?LVWmw4Js z=1^AMA4#r=NG!NpHg79TJ);WLO^gj8N>1BB4LNOB`pEup84T?057B>%(%RtunO%g~ zzc2F44em$d{}5p6|5p_kYuXNLuGd&kqAR+8>ZbheQ1#+o%NDZUQSGLf(;56|1(x1F zLIBYF!OrOYsoM)Yr_Z>A?@qF8f-k%u$GPd3i1WX5NsiuN0^U1rSZ#gkCF%Vy+et0& zp8~YP`$veTXrVt1EhD_2s4Kmn+Kg!E^Zu^|cl7>m#4q&zZ$RniTUBzqFJS(0ZkM|o`$LIPeV}9z!LTTbATqKY^vSp8ljb8wM1d4TCPY3itM2m=28hM@5B3gF<2%?iK%1 zoODAe$}0A$JAu9BkAkuQ#VZR(xuC|o#IaZZ1?I+HO^{@-z66fr>(v5H_Ub$#@~=zW zv)^4O{+iqu^z}{eb%m_9;;ox^{lv>aaOXQO75WBkj+p6j=7>;{t&F z`Q9bcpMSk9`}2PYzOO(3a+&n!FnFI++zbRyJRNe^)$d%Ez4@k{(CW=MfKp5njzcpn zXqm2m3+*YoGtpLdXKE~>pszbOz5-C}&P~KG?9NTDgzC;cz6#cz`D0(ZSF_H7UUd(v zH+N9b|3z*P!l#eH z0pYiTV$SqoqQ{4jhaNu&7@)@!B=6?q}fZBb+`I{#p&g@gD*TNXspx#B?McUR+@|-9W<+7> z>(ov}N1v}Zx(ZPA^~T~C`g-H5=~|VcER0SF0WbE_j3K>1fEdSzVI}= z=zdJozkn&+J@Z=4)`D*f_~SdECLrX1nkdV}&9vhutOIJ|2OLmK&)*hnPcBY1Jz?LU zgM$^9#f}ATe&mS7M_lt(Is1^9G!RVO;6WwJ{xx_{_NiLc1an&d+}j%Ti0P!m`w^q)Kc# zAqGpB`iEDo6Ki!_p~6~$L9#mN*t;U{++Uh60K%CMgS?k?V`2D_^aFlSwde)>7f zU6ZRt>knO%N7H`$xBJC>I64{wG%Kgw;z_@_>$6)*7*DIz$t+&{nqNzOe^nkPxONo} z6Y!7PcX*Fg5m=VHLJOO``mg!Q{C)c96|bQf?HZrerDFr0wKptMzkF35Qp>)P9LYER z23NnCAeT?6d96I3tamEJTuKczRmL@9s;+3NN5Z17!D4Cm=iy7eCY|9-+L?}VJgR)B zXg=a+cYaQ%`Ba8|zy$Xu!ND~ed0P5_mW!>}^*Q5zgF6eldWf8LfjR_|yF?b-s zXTCKV1^8~>qyW$Q+kH2DDG26?b+1+8uDTrxvE@n+wBd);h8v^}^=N38NaJC?M(gm{ z1G(KIK40(9kS$U|rOoyV0JYfyt1|COn|U^dbtt2;G3=K^`R_7N1F#&m&ohVVX_P~{USR2rt5XC%Rp1-x)o?f9333#Nh{K!gcjEI|7iQ} z_^OH}V9rTGNH&4gn?QO(LPAX;^penPNNx+Agw6#aL3j#?fQrg9LJ-I*orl<|mRLXm zv0?%BSwX=DBE2eze6zFX-kp1M^S<8~{Qe=A+1;7h+1Z)d*>V6@*v#6Vja2;Os1N;3 z%^YnaKOSk$fnB&6jm%T(GTcMW4{27uJjC3FSrs8U(sv609qFRqc<4Rm9vTR6+o0Bb zU8uQ=RghLVIqH~M0NFgGFOdZJ@^EtxeIWd2+-Y9X zDjyaADzxW*lUDg@Lu&1!&EwfGq}gpt?MF#Ldz#A4%uBu+8^$*_F<RYg6+%QT*=|bI-b|*hAVFe!ZzVj*U^| za0Z6mF91|PBNhMJFb)E0BfcmYz^A9!_ApMG-?pSyDoXk=4@u3~(>kzvTe`WMroG9} zWSIN0y^1snYBv$ohe}Y(PE3g6-CCH()KO4AuYxW$-`XIN!4G#`I^rp+msJO}T~bu> zeQd9@^Q0w6X>hosrRS7AqnhfwWZ$)cVsaTD=xi%~8_p@~H|d;O{q}!xPC!MTPgs*_ zUdD*8;fW7gyYTWX^OwOLes}c>Tv^E4kUW;BKzz|R7OURjcaeqyFSsB+u%N9f72XWj z9sjwlaJZb`$}!JjHieikT4fm@?S+!V3YEC_+vphHB-h-PjZ_^ODbXO{gmuP_B|;_w!W1V*=bUM4WR(f0&VS#tRO{z zQHt+w%C@uc)2_kAj%tly%h%kFB@s9xY;;;8Y}8F51QPE?UesJ{d$@n2(e5q|SUqkDzN3e|SAyjcR^T=pL@XY!5x%srWQMnRJf zTatN5e=|Jd$n*P~Q&=!5-1oJ4f*x>2g>HJ(8BBf#BMa*qz|Icv!EbKMPT_eyO6$0O zzDw86@X%eo@?$duaq2q$CQ^lUyh$z(GYOCAGq(QPsjjqH4HA35YMkMdf5x{erAa#L zNl0NJ-u;YB7u*KPAVSi}5Kst+08QdQ60=VzH2b)6LWPdlqvs|F^}w z)psfMj}KXGZow*5PlY$sE9khdK7+Rm7#Vk7VykoX?(^^&Q2f?CGZ_4EX()!GF9-lt zfyHNJD0<%+8Ni=zJ?lxfmo&TGs6pSODB!|&0cfL$;qmg?>%+|>`26AKo!SZBW`sGD z{iaBxoPMElx+LWkPUIw};Ch%T{E*{xfBxJ^bCbHp5yzcEgCFif^E>MywC{~BeP;;m zS^F$IAH92~oi!F!X=>$mmOiGla%_MMm0Wd9sR*<3`0%l?81JDdqQJVHB?e{C*_w*A zbews1U1ikitf5%&!_`kztkIq_YHu*#_N-K_jStK!;d$%R0(h&5=3+LJAP^x}grme$ zHD@Rc&hFzC4VY$lMPmYpMO@J+Jww7QFH>D$7CC@CSPfm6Y;MM$CA4Ld5_lBLf4e6O z6q{WBQwWFvP09YcM_0=in3u`rf9h28PF?@_th^liadr3Uuo&~X1Oh+T&YH@uD4ubc zFVJDW!mwia&BAF-6hSfjdMn(Afth6BKXPbZV9RxIZ;V(jF#7o#i#pMa4~CI||YQxnn+1d*niP8ZVh|p5?RUoG*{Mn4Q6% zRJ|qBCx+Ss?qt468oj5&bJX=Fr-Huv5j=16S z@8N%gn4A{y*mCoCzWad$Kit%k!VV~6D3`rNE}uxbcuwErQ9~N@V`b)49=Fn*SXUwK zb_xl8xC`l+08k;lCOh&9KeWocfn6r`MHmq7ct^Mz+Ten-fwSir1c0N&AmBsr2_gu1 z_w4^A2mrh?*K*@=^A5LV3FcZZK4E^Cb-Cc;9^@yp6$Kp>(3MZQjl~0K`y9Swjd?M% zD8#Uqg=EE$3;g&C=FY5?6yWN32+vw)9;6SvAWmltXLCq7Hk^$OBYEYf#OCZFQi`o- zV{6D(0g}#m6C}z@pBw`&z>dT0)EIv2v;6ve#|8+}wop_e(XQ~ToU}Vf6#+!;_L1A!*Dqk`8D68{>IGhOs%Hnj*BTcP+eub- z<5LEojw@nVv-rYq{6kHo&rVf^Va5AXJa0tfW|3KfaXkBxEq>wIk8Hl_8FO0DouUQa zIQ;vxJhj;AS@TOZCra*f=A~?)n*fZ7(pLeU)GKb|$`ni#2S0ru?DgJw9%jo}g&k*$ zHku!M!Q6$F5jd(lJT$*uIDRXCdFhyA z*hOQuT-k0O!(O5|#6;O~kxZ2Rq|`N0paxEqQ#)J}MccuT?KF2|J4k&sN4#?(=SUCG zIb)7AdeNNYa~8P6IWp`;bF6;uqMReZv-=$BMF`;>frac2c9lSvzhvGKd`SVE(_`$* zW{d8BNlp*=E2anBc{%&CxrjBo1Y~5?kFz7_5}6&1FX8N9z@c+?@Q&5yf^c8aiq4FH zOLAt^DDb70VV8d74iLET zBMV4@&}xU~U9q zPS=qwu8XwfJ6|`q3|uJ_zBhqooGeWanA7yXL8(Qy7dqlTSuBJyOqR>c?=sX-tJ?zp z<~!zT!McJvC(FQh&7*YFWjR^kFHRN{KmM+H1dCVIF=UJ3+99_^Yx-sBPJm12gn^tF zKeKnHHQW&{TGL4rjm=k-{2dxrqYRuHpoTJkzW1x4fpLSRxp!mOm^|T^<>c8BHjqWC zemj*HMw!f=A%Y2!|0KOY1M|$ z_zsNObcGJjjpFCBqr5hNQP}gctx0wM5p%YWe$N%Y{QRJzT5x~&gSo$n42+BH-Iv9* z9c)@5=;DlBDSqLMU3mp(Y!vl&N{o>9J&;w(I~_Ma_5Wo8V+Jn!rH~x{#gFFo!P}Hz zoSWXSD3ILr-Uf1ZZF)baN}avE?HP_dwfqIf>7c^yS{ItUkaT85fblWKAzKMDCAkBRJm z6$TL}a-*xpM2`3kCh~`Z5xUHNns8SB8@RV9(NeiLn8QzbwuvBBHa4~0!&(pkPQ`Qq zz^VAu6?q@z{O{&@ERWPX{F|jf?{ZbX*4>2^?0n3c%oh$D6UukY7|}-`dX?utI53F~ zCsl9~+pm&IJpL+9;vnd)YZCL)hX%&+%5i~>bn{i5$Vd;KhYlk2PVmDA3!2w}z-fbX z=3GW9^87}&0=*+p71KTas+{hrSINgm))5|24yy&gO%9E7%}w~a3+9h~UWI|dv%{~G zR@k#wXwMGFo(0pM`SN=stRwYZvR9^U3W0MLz@SO<^t{3EYBzpIunVdUM^?|)Wc8}~ zF0BDyeid#v1YT2Gfjri~Mx-Bc4W(~#<56zVRn)(eAHHNZQ8hBIit7aD#cMF%C;)|h z%V7Sj8}n`WjxIUPS$EPLd(cGysIaRWUKi(2i%CV)IxF&?#SgtwpYgYDm@{LCi7H3G zuUGG3#~QJ8ryb!%EeD3{h1dAL5kumG3KcTc91}13%lsxIV5ujAfrikNF4tUo;=0Rj zA`^%XSlM^xzN}IaP|hLJYl~`j%e+g|*Iz@g5aqSb6<=Ptbr!s^`lxRTU%1ad&_rgu zi#QlC@DM3}j%h%hXI+R%HHlx+S-dQMp|f}ygaB6^BfU9`r>c{5OQ`oa@8P<~d2n(& zmlsaS3E}mvIo-IAujN0%pDGbK-NaW4B;CZPAa|FWIH*dUU9R}2cnaaKP0fkq5889u zvD1o<%V9)%A@2B{hxl6_V)`E-S;N+1koWgB=@zczU*r82uL!P*0gKh&xmIJ96UP?? zSmKn za^f}qZJ-5DVqr9=8X2ELrH$mZ0il(I5$6y&e#cG@HWdmo7`GIOU#N;jf7Bkg07;qi z9n#RU)oa}H&_AJ&%NkjZ1W#2WaO&cn3M6%L>K{ZGC#h0rM=Smjc4mypX(V+qCd|^7 zJ*?=UE-t)zPv=MlbJBJ^^oKlwcRtKAmaSJ6WSp}452=t<_}5TKFI^C5P$5hIK!t4J zTvYJ05te2?Z#uQGWu&EV>_dVI)xzO@ z2^Ofn`6`}-)id-BH|~azB4PF79X_6|2dOHCst|lm35xEZs!SBMQB@|1U#KdR{;b`2 z0Xb>BB9bgyyc)0jZ(mhH_@HFVq2NWNC&nS;B?=@}Wf4`C`Kr{}(TabBofq!R8N}8r z>`GOdH~^3w7nF)D@Grm}?F+ z>ocgG+yx@XQeAkhzY8VI;DvMHEb05{md<3q=U>22$e>BQtT~t@atPhoxZ;J|(z9Va zq#-PIzG`7P%lxiGZ=7)s93d~z6yTpFccqo(4i=%XD?Rc;(h+`LnjD`tmOEK<)k^xl zwCm{mG&qKoWq~+foE7guDq+&D8?7{s4JYLo(b=I~yfrbI6ktOrz_a2_vN2e~)6D=A zIX)-F${b5ywv04HjE@)?*O3Cm2nG0X1s=t|qpd;<1r+U&!7cOH0ngTZugmOXiM4ei zk86jmkscI?)_OAh6-TbU3ljXBIC5{H}@^^AN=eN7*BgD*eQJ2R-lfBcMb(@XD| zuo5n*@B3g_R&22#fXiUjILK&R)zk9t;HioOCuh|?Ed$t{3Qjni%1879H6)FYvv7sn z_||>S4f#2fl-`!3Y?)VFkMQArEF0M)q!2>00)oqUjsbAtYWch^EHLgFW5YtVa@q{X z%|FFMjPuxws!V1xb_jqW1o4r;$vmjPWgPp2)WcN3hw%NG5BtZk4@m(epei+Zk7R%) zjh!TL%zONNgXBFf-oU(ve(O5E>7XCGA=69(t4K2utVWv26Jp}423gYG$YbW?y&Ljr zzyt8NR*!mR8oNXvtwQFsPxJI3(hblho-Wgsu&DnTfSp# zV5ZicYa=ajRT=*Acudk~Fw_=rPKw@?6j{3YbOwNUbdtdjm-)u44TsJ-TIdu0l8?Jg zBBeq^+BkQ_dih@{B_EjX_*N4l#)ly(Vo(J6Fr+RzC8S3>C8fs*gy+w&CRdNNS{~Hc zD#C%MQHYkxLtCOzxWjHKW1Ig+L*qMKH5yJXw!FlT+R;9G5{s`%3|6>3z@7_H^U6ck zR2@cCe7}(Q8D{wx`;0Jv1Nw5{V!G zb9k2av#8Kd7ubbl33fv-Js~E(XQZVaBVbHxX$MtLv;(|y6j-`_Fe5~!YX{ERe0?ie zCfDbfJKt2QgGss$0^ppO_<)N2rhGtUD5;85&3aQ!HEk^4Io^`%nrVeM<<86?)rcAe z+?nYQ?FC~UZpsv#WNZXmrrJnjQ9*ga*T_o8S?d4oVl&@VbzD|y} zq{S+$XnZGmBWc}y0@!~Fz^T5@V6#H8>Btrd0^A$lR{ zX!W;@5XVio+|7EaRx(1&`&(v5y8O*|-ZQw6jU*K?Bpa$K;L~So%PgbWEK&<2tTL!2 zZZKXilU79>RVw58vmodk^VHm?tdcYkaUv9MnrRuN1KH4q{Y~8OPUzCJq!MD?VqhJ3 zr^32LU~R|VA$1Yq78gQf6C=d$NhQ%4?OT3fHZ(p>;DQjq1vgq3@y9r5=v|aXjF<@s zWQ<6vVT`Dmc;elb(hyNYhKP-C!LLld{BBFL*j55cBfV(C2_`S`LVbd0VyF@rXgKSa zKB|uQ*oJXbnUQlX!7P@b#Z9la1c0V3O8`*gL2EGP*fY=4PCLYpEghA}hLGxL>IdGE zzIz}k5TS=Y@s>1*lSu&@p7FPoLDXm7lCekQTQc@2xg}!{fmYafg4VF{o)8o7w7?R> z2v}}i^t&ZvkKVVWr%GCAd4oMmm_hcp80>E$1sHlHrcE88@4F>~gSSa3_TeqshmU0+ zd|;I2D~@j%oe;=HCkS$*6P^$g|K)zmct*go6aVq(1i0HIzTsh*QiB#-x-;K;el8`! z?m!YL=@dw#9w~4-UZ2={e*AcHW+ICxrP!S&aO?Rqi}B7+I-JM0+1g@v(CwP|p@+cj z0`C0xtxbXmZlgDz5OllYg3lB;PS8=@R9zCEJk@)ED20E^x+VQvYtS2)IDcM& z4!exP0gacg8Iv0%D&etkV1(!Y(Ik;)ewtlpzXZb{t#8xBTx%~Lmyi8Y;HS>?y37D#aD;`Lwbup7a#NANb;0md-Eq9-R}6THuuW zsu}5R^#nlhu{D+@CZj}>lAVF@O%xz1_2V! zbe_ZMn6IDKcu|{?`ED~qWGmqKExdt{=HrKNAf)>!#fQaPf!367+5?a1C2q9T;9nw;I1+J7ruUU zG`fY>NBo9EMcb2NqP$4l(c8xlucP~X0Y5gCq@}Vi32&$ZpGk^^YiF=nPc|t^c_*Dh zoWr{3_QQ%mer)>bP~QJth?Vos=@Hd~_E|DC{kj}xpX~SS3MC@+wH)d zCHuOx8Am(5>NBS;ZV5L7V4NEgLk13k57{=Xv3S@qjR%#(Vdanv?RK1@Vme-H!Y99L zX~~)>mSo1dn*h*}kAm08rVoXqyO2*gI-)fnw5(kKZ~3d`cV;GSMUpSVanW-;hN#9u zGxShjzHgZYz8`-uoN0!7TqEjnNvVg)%g6x%_|%WJlwbJJ@|2tDz)kg%dP*A7KHP~A6t&Gt%`)ObR zs>E!cgYdsa?P8PI$D|(m)en@4d(nelGILU5E0+pBq}PCGZRXg-3rX6Me$mEShlH zwe|wex!R_~V{Knpn!yfG7$9IBy%EYKgn9}>ZQW>Oerd_pWshPsNaAlVg}3@D{Mzax z{NxI6ltRi;M#B_BeG*ivA$&ak4k+`V9UkK*dx$jT<;^HBisyI+MjJ1ae)Y9w1AB;& zMb)_9&yVkG+NLdAMM_*6bw6kdXcQ0n786#YMMG%edTeq0Jf3%Dax8E0oyEpPfiqBd z@nrJO6W@2k9;+{h*FY+)!?Yf}{D`F`yfnZ5h^0l=enG%xgCGf?P=(8vrq2YYxbFO1{K9qT=YF2+&gWqU-QGUiiXi5e4rw}kd&@ys=TG5QTZvh<4~HF4<| zRbMXsGDra~{h$Dse$X73eqOraxDIYoEd9=(fY%b<_!-XE<2@Eq6_sItfX{kpwp; z5oZwqE|$s#02fQpeON5z^4`B$7O^Fyo(NsF#XRwpC6+BFa7-RSDtegj{0 z#x4HZTAv?3Jv28+RCF$p@Y;*EMpTtg)9Z`t%k=~yWUMDVAtrwQw57cpM;MLYC$RO< z%i%$LkrniLofhzCha0y)VK3weF~QwD!P-xXwa_`%5v&uThpe?104HlWD2*;zR{9nJn164xLe}n*C5l-{ zGh}lJzi^)Hun!c?n{zvzINQv3H0vR8-@T{6K;<=89zqqX3j|KS|}{ z#8kb#ze~m!euNbWRX3F=Bf9T28Dg%X#X9tje^b*+K@%<3D)9>~)+&E57OSYm(4M@| z=N=ZJ*8DD%S^UB^%V6H`n%7fDr~d%ULQWlV5$06y|I-qp1@BgUb|%;kD3DCB?e-@L zwpUfDlYGT(ynVT;gLO((u(g4F|MDA!T;|ujP;-0@mE`-ETW(sqvJ`qo^=8o)R>_cX+t5l|5N=E%rZyR4&Eb+L-m)_8yjz-U&l z`14H<7f13_nsqJ9CXLa4x8{56TidZb0!M4zx&b2PzxY`D@UMNWB|O$g;f7Kt?(%k{ z3fUyj=HsA($Obxzht#(gvIV3T5{EpoApR(UBk_3+_`dxkO;w9nDqBMev0qT=q>b*P z7E!89;csF*@aacVRl188{kgWrQZh(Xkxt?RK~DVFnJW~(YXk*ih~0e1%K}g%SNI9x zUF8bDZXk1o-;z>cBlIsDkX+%<4R8Y?7#TvF44lYhVI3cWG*r2v{t1jNnM%2B2_SH zlMx^jgc+m&6NFnYnD=PC`H*mH8`hT;qAl*p%iCCK`k^QQWzC4J`8^TV(QqyXY8u`T zXkj*u(30Md5eObd;m=1}SF>_LR;(N2985q^*2eV*+7R=yhfLNDajSgraC*IZ^H-+J zLnI6S2detA3PpwIOwt7F9eANx3)E8r_@?@!TJvLZulrU%6>Y83*hYd9MY+}xQ!!(FiA5<<13B`vAu7@Q6zk_f-Bd%Fh^;Cc2dng^)=bt%70G05 zW{=?v9(`ZlXJivb+F_<7R?#y~9oC??Gu67DjV4HiwkHs6H%=UqhTzKaiJc!xCqNvO zW^L;;JFKA}%$o{1e!*Gn#?+heHa$%szCnd_IHW>=ODBapF zT(RCzimEJ-C(Rt1U$bCZATMn&3}4!5z(;3T1A-{Cyu4dMU+oF^35BWTR?V$T*-phF z$Emax$cX*pt)u|0QsL_f!}Je;=awUr*+Ei@=Knp~v;RUZ*gy6#|7EM{8@E{BhVq9j zeYLH;sFgJ)h>$Wua!-hfA82Lm>&6rABtI9(v!bo}!bU6?N$f<~%`$&@=B-fx#*pv@ zVVH6~+)OqmvGXoBO!G-#MhY{Dxh9U#s{$R&1&BM3zwm3Px;zT!bQM9wRTx=p3UQ`8 z->Caa7brbk4WIfMr|W&-m1f9b`}Bcc;a7gnc^Y9-=Nfn9@b*Lrsyc12L7 zqJ#W+<*~`B41Tz)R2KoDDisMIn-}TuuppTZ-?PX1Z&pZ}2^$~b=;kTg!K$6J=NM{M z!qyzvW)kzo;BeA|p0bPsA+ju<&Ny5W1G2FM%x`pjf*yU31g&?_l zdL{^$ZmUWH?d*NeN(bC4@wKm7XR%|RwT=YIRpVJwfNLyKuzzG{zRaSQbpXSql|h$( zd)gYyH?rckEHYSW3^or97TLT=e$WPUE`^lh!Y-6&&4LIUvx0yO*J)m4=y)1BXr%Qz z@Ry3M#;X>js$8cn3&OOX3D;?u*6S}wVp^{#m?u68d6!K?t$DFei*8ayevI^69O9^M zHO%U(vtfi|p~`WN<(@6=qzdNe?jQh>3Stfczy->3erS$0jh9Uc?ZwZJw60p{Y@0asx#rxftY!_gmZRtAjBN&;dOz zP6&D<4)BDS`1TU(AV$FQkldnRj03cLdF4cF8=mm=)cXA6QtMOfC&CzZeKhpvSHd^hQ@aAtt_Vg4NClSa#(I?aBwNTSE|O;YV;;5V+J9OQANAoQSh zr_X|he)9IkB2@y`#khSjAMv|xU+9lClnbUJHQKQBFJIiKy*>vhh$Aa=6dt)`3K^Qv zT;JS~AKyJLnQbAZxMteqL1DWbgCI8oiQo7d!6i_^Vi>oe>mX$iq(FP_L71%|0fYDDxu^U8AT z8|+U~ThIw7bc~wtdwDum4=2U zIo$vdGLk7T4rSQLsV86od+76E-Y&D`YYt%$;j4&CU^PAoW`oFjcWR{cQl^##K-v?q zcOvU;Yb1?BF{z3(%F>7!htfvgXVj2JXdEI3s@95ao`1KspWY9e0)Kk@Ml#Z$#6#v- zN3x}=1zw9_k0{oJsXL^>De<}RCjHZ-A~Lp_GPbiOW7{@clVjB|hDs&aK+v4tY@Ny| z0GBCi4MrbvF^U4MT&4w@h^1EjgJCHs?$3T8m{E_!y@*J!EviS}Yu&BuXBzQx`-q}i z>MUGjZK?C21~$=_owMRRH0RJ@X|fKKwabIPY^nROmdc-Z!}dSP^Ei_3{^VAU)QnE z5u_GI3&kP0_s4H7!C(Wo{Q!o+2DHTZzzffgP9ZWr2&u4+k~@B+7KR2|3g1y-9UiG7 zgJps^Mh2WGJZc>l+erXuOpr?0!-Ji;0@y&HU_%Nz-Nv0~5ZEHNmLS9c;w1vW3BOYS zaCo7kcp4HSh@RDH%Rx%)Q&Jn<)n@aFT}3l+W%e zYj>ZNP$SzTeu!+3o)XHh^|p3lEfi8*5T%EbF66=~3s<^__G9Yf)=uGyx{(u24VCGh z8U;zAB;7OU2}t))Mls!^zYmj9!*6 z0+yi(ykzFW3fUHYKPbPjzdJ+F{_5Lc#Ds5Hr|?MwyjlRHs_-4_tncWrLLbD5{ntrN z9Q0SH#14SOybk&C9^>IpB6S@U8PDX5?6Ex@+C;;8UErZ*$id(VU8ARsZ z3BD|$a0u%`aJd|TiPm%8*x4GwyL@Mjtse7~b%?KC7>4d3)q72+zDL7XKqn2*_^s!y z|E<39ytR)OG*%Hbj>1mg3el=Vfz?r1xY8KE&6?@nCh4uhru^P*kORM`mNwdUYnFQ( z?Ez>rcDuC&TUtw-6Wgs#8Q~3+Bw!wUV7sbkMbGaKd=A za}oVRn92m)@~n8HW<{9|hzeKJ5PfcVxXcEmk^*$lq5!f1EQb`}ZYva^mj(vVOM8)q z<9lGvbvQ@c4f7li=a8y$75{FS=PG`WS*OFVGK>KoM1jid9 zq%X#LTPx*>AHxo1slq{)+mA%Z<@Teb6eYEUV&_s)!S2}AV!Jd#F19HRwb+LKVNgc; zXUNeLV&b2F3LyspOF8xf{34JMIw3-i3Yh95o&Bnel|ifcQnGq97Z2)Bb72D zb6Eo5WDcfnE`Q`p>wCTf0nGP342MbvlNQKh|4602T5(Mt|NXVKU92)7MhMcIpgHoj zwTw{!h9Es6CCgcnE|x_IVj`x8b`w{niwRa&FcRstMRn)ztRMO4D&Zc`-a=0p?bFW1P>L}GuAOm@nid2=({R5a@aFi-cRFN)yji3hq<=a1> z*)H~&fK#7-kjN8#I&51O@&&`KnY=8)JX-!b<`~-+R+~g567a62qd+m7SbR;20lNMH%tIzopyS3WS(#rwCO5FxQX~>3|_4Pl$>C z=ws{22w3XFT}~P4PCdKeYkQh$(eCP?-;9z9d{eP*=o#iR2w391?uJ*K9XTL1Ph5a} z5tLS>4|agmM0C-CP{X;ED*(>9h0%p2S_YmrQWZUS5q#3b8F*@Acu}A&SB%EK?9pBH z!O=30(VsNJJVu{r>6UY&U5sEPQ9&vqBTFbF7)ksTWP8kaGk|3>V+(14{A{B9Y)5`z zESEL3rKfKfa}=$d@eB?8Z?=MrIW-%}wh$vm4v1lR|Cp>-z7}GNABUhZjZIwsOn2t+IHB zNZXe_^&7)v*?XL&wwafmO9$#P=YcZ%JOY2 z#;ZN<^MuzZt=E_@FNeFkk44*N@x{@$r7Tm?#*=Xo1Z9HURcO^%r1`|X+uNpR19yPXdBAbt5!0QTHRO%QXKyp4@=jAM#UnJ02&#Kkg75kDFZ!( zSR_PLk+H}@@#_(OI@#7L_F?gxMk03#fZ-T164^a>NC2OnV%x(GlOma7nCaR26H*1k zh+hamSQz%B0HCRx$rq;DuCnW-2F4Co8^dv%v9W;!j%)GICekE^H&Gm-32M}Y%(S>B z($^k@DI{znga3Cdk}dl(~;3bMVq#QnsyWtQvab zLe3kcb!oQk2%`X89KLF>`m|(K`$0+)w=Id{&@SQv@dm-H7KmP3RJY8v!M0^UjI`%o z>+r%3w*Drf=PrUUGhq=o#FQ8V;t>-|B?UHuz{qXTgy%Khc)8R{&>6D*g$29O$*+AybMX`HHT#GB!ZbQTELXaYz3c zxlnwvn{6s9QLUtX8yO?*+t3(!6Q|NQXaKw0v(_wC3-8oak_woktxy$knb>AF3+AWt zVN35BQWf*OPkL0n*#rE-nI5)mw%4=jZdDc6fVFf_+1){aLE2qXRodMw_;j7HyP}G; zyJy6&L3~MXTmRVp;y1OsZ3TeZ-S|GX*V!ck6(%>qk>lC$ys84*iulm(xW2ZZe3)OX z!UzwD^kTsTfb&Rvz8W6gIXBQY*|T;se`T;Ooh8)Lr2b&r{k1g7s-;PX0$V4yCU|~V zb;nP}DO#)yead=w4de+!Yz<6q9W?A}P7L4ItOQQzjQ1POY?Pw-;F(zf(EdU_Fm;&5 z?#UMy+MZ=)q%yjjX|XcWpQZ|oNdJQ(+g*%+r5~6Qiz!5HB2OA>Yr}&qwolmOs;yk6 zu8ftL*p;LJo!E|8>BM%C0<^W;VwDrqcJo6vi0jWlFNF_#E>`+5z=}SMU^RT0Cq()% z0+qZkr@TMME)gbB7Uv9EoKppcEG7=KwFz6n;rxZ=<)#yAHMNl}y zZ86yVP{zMf8NnnuJMH2uYlQ7EYfVrhXU*f}C^c6F250L=+OmV(z_?d|%{qjj|OpQY86m7Uvx8@~PnUH+BvP)W@NU=4+5u5->c+Gz5lEEbZ>16ooF% z5&)+zilv?Q7(ZTOOJgfZP1JzOIHdvl`ZyWJI8~qm{tsb{>0#B%Y3;!z$WUN$oD2nK zfvm)G6L`W<;Gk+FLxJ}xPZ$b}7;ihF`TQCOm)0*tHe)AA3*_x*%G*WBn|6kmOtQ5M zQ&TuXPT^yG{UqBec8nkqb3MLB#UrW)n6C18_|Ej3lWmV`@D+wBw#QglywWRS{KARx zGf7f#bnhM*0%0uTPa2!DZdjG<@qpXHS$=`~H-?m*dYaGGthuRbtdMj&2|7cVS_2!vRC*HD7*#0X@ppobC2IPnW3ka6*~MB!E)w5i#Sh(Dit51!7uY@;zfM?!pdFZ*L?BMjXxK_zw%9f@oFl*yoztq;Y)hU#rqccc*alS zVFY|);YD%16>rZj6UU_Se0GXB?1RU#-W9v9xZC@I$mwEgxJ;}$aAB4uR7QjfvmI|s zNx#F_W!p#ckY|&l8;DO?K)=uNtm~7pW~ zTMg1RX}+HTA%5f#ge!*#NhQUPYLnu(Qi@s!etx-aXkAtBeSYgPTWZkzinbx8(*i=J z^p3&*ej%kcTw7_|%<3honUlZHR=^q%z|ODWqowr{x%Ra!$*pGQdfQmmgwzDHTL5X( zyeeC65J8EY4C2e~8Bmw|oT$(@T})GzE^E;n4vpm>cfBdE9H!WfAu0zyZkN20tf*F90* zmK(L!_6?h_+Ho9;#RMRRLYvQjTW9OyRuM;nlZrSJ^ZDuZwxS?{(ct8arz@GOI1%^n zz+`}!JBWwq0)_3xhYBwW$6-8Fcvk$D4;7l+ynzwhor#xeo)0$JD!uxKjko0+Ch>-w zZC|icq{A@K&H2J-13DG_s-U8q=<@#oa`k!87Mq3rsjzdTSz>P7$>fEmSm zyAF+#)ck^>$>1dkdJ7FM!|nnpitBE0`UQW7_~jfnu{2F+$>DWG7>rl}~CRe%$W^N?%YtPu)#Qq_`R4IQV9W2`q z?A`e+n9&~Y9q5G-$&a3GyQ^C9BEVT6OdQG9cvf9_eMn3Acu;YvEIwr5S*xhFPMmq*=1Tw~U--DMYl9X6YC4YX*@7Ei2Y6gXe%&ge*T<)9b;xSO#a3P#7-&-Xw2?m^->fQIDK!5DyVTVUTDY4-m!hH z$E5I(-lJ1k9H|c~W?b8B%*#ImvszZ(Ah4!^YL+5Tjr;=I{rT|DdSr?`H4;fsl^+EO z;^Um%Q>6XNC#7gCy8bU315>0C1R9t#1seE}Y2vt`27v?<(kZzkB*SN1it+J^38WYa zmHsb6GZdlY0rqTI9%UZ1#RQSQ#0!nEuuy^)2U8@Uw1$Wq4e8BfX-Kap_hLAFKDDi6?-FLw zaAclr)p@W2Iw@DIzD>Jv=;t#*{F85O_4%Gdw%+W&iUctp`xVql*zrY*G#;A|!_%<8 zs|sQPWP~0kglq@tKfw{gcHrU8e`X8hKYV7(WIj!mj;reMff%DYT7p`LDogMc5UpVe zXe((6_M{L?AlgVvkSTchir@8LTl3g21e98Ww@81$613rm?pxC@odX&al%wd;Kxu{o z%Rp(G0HA?^F$Du-Y|pelV%yLDO)BH0!D#8hrgA&wK~f46xxc=?DKGl5G?{HA1!4;8 zYn#@xFnX>j+6f;R4qo1Da7u(@vS^EgVeDiBwS6~jam<5SGT+h2p04fZ_x@mO$_{u^ z+*=#PPb5VxlUE(HH4CqWoQcmU=vH3`+W1Uy<&^0GJm|PB89un!=C}<~@}Bg5u8rPB z7rg;L+M0W%han;99#||_NLUm6=a06DLGEA(3HAGdRdJSnVN-cvv&GN0Q7k1Dgy|MV ziD)+=RgPZ*DMdq^`9j+?pLVH+A?`qm(Ga)g%TLtmReGdKi=Ww)gCTYsNaJ-bAd5XE zWNA-pg2PTgw!s}Ng5OxdMi1<$xHK>y^g~=4nATLax2uKr&=eMa?E_%^LdRF2~zCDxXK1QE^`bTZ3C1=to5?^fNL>f#d5%el=` zg{`&^RST@ zn5Og)$(6lT)H$*yHAg_2bSvjBKyL4c3$__7ku*hT5wfqSrIse+(rEl^9Lw^;y}+kD zMi8K?;W20{=`k**5|1I;NRKgC{0ic)Tn3L3AbwMiaar|+gU86^m}jwwYR2?KUonCJ zFy#f`6*#rd)|t_o=q>IbHHEj(q2`(Oa0-yr{3qN6e7e?%MGF;0>Mtr3So(`40)W#9 zgbV(nEl=$Ds$X@^b=y#lZ6dXm!&nEyB<`lIBc*6?TK{Fs)L!Oe{<5`X)ud2NLjA?G zTAao{pbIyLwZVMBO`lYH zP?Z*y$dy{un&1~S`-vcTu<#wL)1(Pqk|vGQgTRn5pM zoAC?NhbOaPq&^OztywKYIL_6x()#w!dQmgE1Suj2P(cbahi2>Z4D|C!DWacK8~TU5 zp^xO}Uujlf&_bV%tBwuL3}?5=6Zg8>a6j+DeJsG9BhZPj4+Ig`jTOgWg3{#-^a0JJ ztUESy$vRY=5IjO^qpZIX05@4fNcJ#46J+nkE|AKIT5P)ool#I!gJz6CI7VoG=`up| zPgf%=LlwOa`6kD{&K!3(w-JXR+jPn z`23P&?G65AqwKI)Ho)xznFBki8Ki2 zdG?6K8Lsm#3a5K5l`qe>PsS~KALub(dTst7e!7XhHTy&`iT!_{=cn4!`Jv4|vAAV_ zP?d;ZVwP1n>b{iT7i0e;=qSMnA0#hM;=jh)n`$RGi?cUlzo}Be%Q)>9R69PS%e|rc zB~Uf-c*u?$q4B&`ygerDh^US}&3LZlC?6hgU&RO!UYcSrh^tYNc1`Zs&rPr|WQ{Uv z$|5aRwKiNQY0YOO+TVn<-rlD6SUw=h-dfAxbCT>?tc5$OaT+Ljiam>$EV?&F&&?oR z*^+EeC0#LI1#ZfZB-`h*rUZ@XO3jLpnN6|xh>TMeorC2#!Z$Sow%RteKcWp2EcVq( zc!N|J^s%b86!d7q-86%{^BJHGozv{mgs5T7M(_z~z}*Of#)CVfV)6grt{S-OscDb% zU($i4)dUxgeHCHpNySoLyc!Q<&GZ;Fg)=C4Gsnz7ZDu#~jm_;1nSeW0+k-u$<y+$c@ByjKA`h! z)^HxI&kf@XpBxszLpsmS^RS~gYRi= zA3%oBh+=;c-HzjV3%j*2xzRLy=@D>%9c(fDu{QSJQSYlssWdBH8ptE*)nFidYd$b0 zXcV*jngd}S{&5*a0U<_FlsS;-VZq}^yfWK`TP*LwAIx!c^JW1E$K5v6+cJ zUuA&hT%D8U18nehEAt2OA?fj%te?PwR;vd;zOq=JG3u>=;ujjM>9=LD(pT)gJCMKi z>lr`(e6IboU^fc9tZ{rIFM*V!KB+lhG;(MPo1!>Cw&Y2l3D}<%C4YzTz4O}FC2JMh z%|4vB8aA|{2M2iM$BikY+nej&ZJ<>qKNeTs(QelCrOoA$pQX)>kHsxJ-Z+py-r4?= z{t^_;1-tzU>Gt7)V7GV45nNc%D@NPPv%1>1|G!TV4vgHbZ)?tvzhQ}H+X#uGv&H>+ z$Wh%d>~jI7OU&mb;T>(mL$znBi@Mvn#(pJDg|3J#)366UTmGb4>d!Rixck1vIdJ}R z2OdO$JMfPPxUmEOkoY|)%F7@)fQI-=U=w*9ET)BV94xMdyY5OQfqNW<_6|IALqitl z$(tK;dCtoXWDNRkd@62{)jn6A^SZmY-R!I9w~&LL4@~1T+B5p51@esp?ALrJ0sDN$ z!}gYeq#roy6L_h`-kC29?-8os*#Zx9=!ZdM;{I^q2zxkRdg4q7zcI*Omm?j(;eGI& z#|MM$omnZNtdwD~fKp`ur&eh1p^s=GPj!r5Y5$NtL7EC>kVm|Z9W1KLb`|mje#)SN zFD4Id0ZSKKzv{{&h--ZJ0y$ptj=dAxPY9#5-XzlcNJ`7+Flfy3Z(^hPnKbyOMTo;5 zS+yS&?d;rPA$;iwdtFQi^7uOUwb|3y>x2g-x9c^9VD9PjJF=LTYQ6}`=}|3l!7LRmwWT~YbeOjuVRzKQ%%Fh6 z`Jj;ygoG1PE&+wN7f>poke2d%8$1L$-rk1a+oi$Z?PU8{_A#M~V)=k-%~vkDoSkA{QAfG> zywlQ;@2F}J$KZ!698r?_%~LY_4Zhz(y{XQcW{2BxH%Z%nMm*PDWZcA)Im4c%!KaDG zmf7=IS}Vmdnj_fQEf>an?4U5Mm2*lxR&Fn^qj2Db{OXzZ3>HraxkMAzLqO@2is7Zx zLCK?A$xk5cxznDeF*|81M1!8Yqo=vDU{fucFP|-^30|APBXi)!&|!BIw#IPSoy2eB z$eb51>gd=)9+{hQm;C`oDpdb{mmMB(-9UH(!5L@W)+nfO-WYnWt9uLvHfcO>I@cbf zt>bxf?dfcr!q1VaIPDhYg{os~EAZH}Q)BoBmdJSj%!F+A7HM2G&u;a31M1+nJ3n?W zkza#-qm}%2=aG5#K={I@Xi*M{(E9_%KL=8Fp`v@jR@t;=M+r$kQ zQ0f$VtG*bM9Ao%FgmKq2?d93HzpB-ooPjM-U@=Pzf<_4dPMKb<$MGq8z#%;WaeJ}cV54nT5fDqE#02-P%>oGs_epKz{_Hnfo^ z%=&=H#k)k00&4MTfJaHo^0Z>(gjsbPxeNaqDLvl1cmiw;DwJ=xk;e-FB_1dPl=w0c zMG3=T72Oc03>fJKFP~K0!VRFUv#)Rifcq}cW(j)o$)@t^to8O#Ft>y!l+txWO4n6^ zQ%XB#&0FeY$~2@Doe8oxRL~_QJt9-Z_mErFp0&5tol*+Plu`;IEm2Bhr%LO@^Z#Q{ zW?e|35R%@3V(bIYt=e-1MsXNU2aG5riV=kby+9$6UPvKP00=3H&w0{*Kci5T)HNb0 z4w7oa-``@t$QBXiP+Ie$OG2mSs{*IAMm=rc4<9Z|e8%3Ctx?5>M%`+b1t)ayX(h4d zhBy6PqN*O+Szlp@Y6WSCqAFX~I78n9EmMn=*juC&W%UL{`GHGTi~cn{TU)`ip0~#` z4~)h7@l5$?^`8hbHJ(3EjAs;+-+`??_5z$wLbR~+X!WlzxR$4h>X)SZ_+^2jL^Via z{#kB{G7h%l@^?cNCo)WWXqHT;SHcI|#jq~VD9%AV2W?H zk=b(~GdLa~#C0>TcnoCWfem>8-?UOSbUJMZ*hW0AzFgFUb4AcUabFwQ!j0LlR1;}c zzff$URn6sVU$ZaO&t~!O`-9enU>W3`B#rNT!#;sg z01EXN$>kS{OFU3dU4lz$t>uR%(zBI@EgCemAj*4X_}F_?ZjQMSdid{Z_CY5eSaDh$J8_@Y3>Q2R&=jIc0Jz&zc`y8?mpHWsVX@| zA^5@wXbzOg2#9bmBcRdXZR}%XL=71MofE&re~krD1uuFS?pu6v&>kN5FHuG#qEZ2H zTlQdf?ur7drALWpK@?N&Ttar(g=BS%0=jdoU&oLsFCsYL$*XgTh zS2jb3dymf1&Q*P9@2)Qg%p$B?P8zDP?u{H7*6kssD4f?Q#`lzPFs=if7_v~D=-Z$h zC@s^w~YW0 z-Oc4gPT6JJM^D>V{YCr+xK?x#+SJyw-6U z%x3&}L45Z}YHgh&`4_x`YcDjV3Zm$^)5I@y+-bS!xFfx#V@j$^{sM2~)n{+JEuTG- z9~x$FT;1w#xY)z;h%A)X?xLVh^{x0Pi1O5T>@lleC^oYpiUM)nUg$asa;59upcQ|} zCXi<6x=VBAndMP1OzlP$viYQf%5}_9wf1!#W8y7*i$}9nq$=WCo-1=Pn@NGfAxcFq zCc&@R$Z}@z9ePayp8@h0X`fdBvxpB~ zAq`c0aIBq-4}K)2B0kW*ml$!c{d7ASI{``z4*(^G2NWfQ2k8N;>ft%YdhiJNU3yC$ zI)%{!>6DBXC;+oS6o3n?bv&zWaR+{A^3M!9gx^vxS#ST5HERz-H4-`~xRmx%a4D+5 zDL708b#HG7E?-qpg44UUSMC{}l_-xbZtIdXayZXVUdnVVNrm}22m)w-9$hvt{$y6#D%$_=Ll~ouBQxf zJ*5hq;u5(aeLs{xV^3iRR5_8>UeYt|6D2K?4ccu;Yd2}>$_8n_R;3mvvy-F@MfEd5 zs9#i~63HNe5wEKr`b+a?9%zg8zz#Ac6x2a!gh~lD=%B_`H+7&>Lgs`F>`la9l@Ds& z!N>%ux1C=M)$90!(&Tn;P+sC*EG;=pcpAK2=M zmc@-VHk&YrBU|1D3cW_ruOlln>oM0C|>L8O^ACUq~YEb~<`+(pR z2`w(nMGyVKb~0;pKm45oA1U6^C8s&_@2C_66Y{<9H8giPQaji$1}; zMNGqX+Ee_KuEiPb8BzmX%aa7{u8wj=1nyd{hybse^fi#Lf7xEFe+X4X{_!JE#P3VQ ziPinXG>I4V_^-U;5*@JOs-h@G5OuF!72?H)N|7swih^DdQ50;5h`wjeJiBvtv)uRhN%RldoS8Z0J7;Fj z)CZo^c(-YFzPhiqVL-F4=2WZ&-Hf1W%z=Q_`0v(JpANv>%eFlJ-S7~ ztOM3t8wM4(2Z!R*Hfv3z#4kC6J0ldp8QdAZafG!=w7&@)1c|uvnwVqVVxjx#@+lK$ zwLZx!bfeR%DjN=^CRVz(7fGT-tesrWb86I)@e%P$z#MXY8wu+$9CaIV3+ z$@x~*ZgRGBdPd7(tf_CVhB6ntjkIx&H5oqK+5z51QX06e60&gl^A4oRIRVKf=LDC* zZ^fGR|mbmbrCT9e{_6J$Cm_>u^eCq9x2b3S5rqAYgQ`2NV$uZLCS zKxf%V>pY89afHLiFBeAfsXy-wauwuTlXW&;CE_9n9xWLsh^T9TT*mNXp!00Zv^%^TFMDKU%Lt{od0zu$U?AZoLu?FF0*svxc@c2T-`Gv|U+cTc`9PKN)}Pon zL>)BZE7ORtNP^pl>bzFJ`i=Cv-Q-%`UnC2fa)+3rRp*B%SUYIL`8%_$t%xD!9udev zL%ie&LnvX%MCIE*!GI{t3V@~{$J^ZQ7~wI4mJ;y@J`0@FUG}zpyUX5o zPB#%)IfK13XILJgD%~97=*T~uVLhiGF;#kj<`*g*cB|BL0DSXP;apcajQM?>1Egr! zZ0k-&2?*yirjCzD9kn?E!Zb#j2>)yj3ao~Nv^9$|Y( z0US7Y^^kjv+xX6v5dFXEoBom~{m?4wYWAUT`Wcz7Z|fn?Q~8zMLk_1Kp|BiINiI2@ z>PZoYoSV<#4L^gkR!M+*ss?@~#fzzpb@~#jO`v=+Igs2y|D`HDaB0k;bYC4ytQ| zcK~O!im1SOU{4j)_7WSU*vo;|)oz1zjmBaWont#rf7jZU)hAR>6Apm9@=XDsLRl=? zUw$oy4}QqH)k}n@$;U;DA_$Cm)YD5tHI8R`v(Bd`e=*Z072+?BuC`n1N1Nk$z0 z#`Kh{0Ao~wTm@LK-`7(v_1&+MZ~;Io<Ut2I(%lq`B`ZM0yP22&30thJ4+#$(o68he9igBFyT7L=(3w*?nX z3qDs#(t=Nj1>g8saGqEIywL)}TUtN~ICCGe)A}x>R5aih_ZLP*)|mS7SzgP`pX++)F;z&{d_&)tHXG)L^am=_O~!(9(Ez;lwUlTYh;D zj5cjaDGYAJBXOFO=Rav}!tzKWhBbD|a-3wTn-#3L?ImZ%lqD`(fdz;au|Q%)35eB` zd#%4RN)=e?wSloX#w2T-k9)>CiakzLLzs3*nAi@Iu<@$3C7->|YGp4Is%Vjxe+mMg zLw=zb5BuHPooDu`QIBUmZ><^jibx}iGdeGL&RRzY31|kDfF}_t0Tq7CTj7rnSZA~E zi3X_fHIVz0wH~`h60r2w-laD`YkizWr1*G6%@i47*CYwTT7`Vjlehpmr}W@PtA3VsMt{|G=6A=>FfwSyzdvHUPaOa}0ChyiE7e=dE| zy1&~jZj@Okz{Tn}%B)GOd8+bzHNGYhs>ecj&fwtdU_LDZUSh6cDHUqVX5Tm!eMd;e zm7|?QLhF!G)r6c@o*8qBBOeQ>Pf#VU_yvQBV|l}gW-N^5g@={vAz8vnL6N87~bylr)`E&rQAUCH1<%HXNMeNc#R zY`7wU9U#Tgi=HP0h4BHdy=$%So4WzWu;G+xdSbMtr z%}9~4T)(LUf9wY+f9$;|0ei1sz1780qA!t->ZYd2Q6iNjh|(IwCjWso`@^MSa$H=` zib)nMJ0?wuOPzthR}Vmy5f!1w<2fxngs!f6%~M3Q3C4wzPG-szP7Glb^9pCLVauXk#$>( zB$)cXdKKVFCUhTt6Z?31VmpzuyuKg+^`!z(UrIoIqxyK&ZOd=1TUa3xkNW1D`sR}a zQ{TzoSve~qbRT_Zd+R&jzrG*<^`!z(UrIoIbG`Kq{{c>C?I+?<-@PDI_~KrYfTj0% zmww>}ls-c;Vd?kH((jW5EPcYewCzVI{VU0YrGGR_|40(B^bg*p@BC!l!(#jTct%WL z=@~I3!9+U!7wZI;MCbx(GT6cG<~uNzKYepX5HH9+MD<%gg{^T@FmbeMtAMS{$(A;e)7pmpu2Go6@Kxnf)2(abktacjuH^M zgI>_h*K9AcCjERIzX9Bw6B|$sNP-F7XS!_y>qh84(7_p&U>ly*u(*A`hsa&t=LK^$ zMIPqElAs0|-KhN#XdBB4eX}M z_xj1hO)1-JMnJ$SF1x|`LQqC71F{!MVNnaXQ=}acIXd%D9>CyUm0LZrHP6T*Cx^)@ z6c88E>6$RnR_>yog5?$5MUNK08cy5?&7E4r&)doVeA92O4`^)|J8R53wtPd%M+XyNB zDo$uIoj5d zZ6$Pdym)1QalE)e_00k9qoM`p)9VEL<_-O%U2hHKh?COYp@_H=eh=&ML_iWSkXsle zm)ydL>hH6K5h^mvEsS&GR}$}7$Cet`TKuNF7PSO{?pknoHDmza9&78#A1KTT;aM}~ zpM%+_DywH9ATGw2;RTh8o*cfR$nxaybwR-98`Gcc+CLR%+sN1ek5YW&No%GyfL}go zt!q(a_iA~=0dl>+u}YGwiV|=E zI4{AL$|w~(ut32I=ejzu!XvyB8rXKQF@ztEn4<<@w;wV}CAe)^WZF=wlB5j_hz+ZK zY?$k@p`{MI(Fnp@u3}RH8j;k*HiS_s8ZolG5d)gq9%N-iAvEGu(}-79g4>7-rV*d0 zBx%HXG-AtVeZm1Cye;dlhO@*3;EW~^&e8-*5GHJCY3s`<5iNMRoCU71R<=$Wt29gWC>NI~Q6C-`K|1UI%;d5PBl87DuTQ zNlDzez^A2c1LbCjouuNx0A<$-VGenn6%?G974?M<;pUYV=P`dsiUxxE2 z!^t4Nw9)(X#foBaBi-73fi*n>d;+nt}LO!k-{e zoMF4(Uk;Sl03~tK;|x_-JRNaT5J*P=mz+D%Cws8X+#9Sr$jeCuOFXK%Vc4i@ z!G77cH`#XdW!sjpP4Q+6ANQEn!xqb^qM{a}zEC3EV{LKFmY%i&`sV{Bo+kkp5f=fT zcuI2`6)W(ZEC>Y8_PpkqB|)xtdf6V-^)-X!QO&t&wvO6^{Mj^HTegXE5O{1Lif@;S z1HvEnwsigHqv-Cc~ z&~sE%gK5}ch+roV^3)1mlBc5}sSfqkx#+>l3Gtwg{}PZ1N9%AN#ur7nv~=6ERp9lp z!^3Ptqx_cOwT9aUM$=KXpiY2lJ@*#bd6@ZDDkNrV4+-m(=G@|LYgE5@^+qoE8w@I9K3wAm{1 zz_;g#*WvVVDb9s9i-)T4eXTU{$PGTKlPB&f;^p#=;sO-jy}B$;NaBghIpRPE9u|ob zu}W-z_561=fdNdgj=>Fr^Z`8da?|FlMA(6_%;0CH+2m`wvlUVN63ue$gbIi09G?Gf z_Rxmss`5OC?M#RlbM=reJVR0Hv^8Q|m29CAGBpe1P*~( zrSbHqgXLFnFASFNrM_HbyU1chF4HxpUAHyhr7@9>0uta0)|YRDH)aht%e{0FCWQC$H6fCRPKGWGEWkHK&kcrwXT$)WxuZ@n-&Jfo zp^qBEFKw|UvO-_I^QqpGQSY|8K7_~b%&)~KzX0!VAKL^ou9FjO6?wcCYr;81)`XMD zMl(u%%`l`HIYVSc+&9^_pFKoMWxo%`yF`W3`rF_sEA}Ud0-{Z7Z}Rx*wzPT&eD(0+DPJr0BAHF>NX7dS zY|c0ChY54{5?i$E& z8h*Kb8l5&goj7fLx^UXI0XpzeA5%Yl7Y6@4d+!SOK5ljELCoeTfj+JV(E=M}TS1@| z%F<}bv7X*r$wLncN{8zZ&Y`^iLfg06B+eGu+OsJ{ zJYqM2Vpk%ugM+ng7TZQutho>83aYUZsi%x$r!&1m2Aq@}jO`nN-5lldC{g(eg2$Crz*43U>ZR^D&h!bk>J^JO+TX?K+< zlJJ$yd^7aFiYl5A4zQJYl+oQNVtCOCTOA0~OIJXB-BLn0ipI}m`w?CIYdTNb3Tq38 zxUC1PmZ6#mG519F{EyWT@TU>pD7q(z7EhV-#5J~H z4Z|0yY)@0!Jf9L(pajG}T$>RQ&BSkaPXLZ(K4t1(7ZHNi)jtDw7x!0=H8JY)_!3(c zesrCUrC$*+<9ntH1WWO!`#n?fyWD%Gzl!{{tzQ-dInKg0=T@Uy^C{xe$-wmxEwCj- zO*IIw0n>31UPqF#O|Hry{Ta`YgD}31wjhJ2?y@xxzvL@_3GcGecGpXiXlZffGA>fW z#OMm=jlM6jL@MRs7tY|ood7WN@zPgBAq?DK6~8cWe>Fn}?lXk*st&Jkh$7ww32R)pXxiSsGg$RD>>|(+GLC2#Vc%4 z+K2q}Ew(o7iV~t)Sd<^p#b5C@TW$4Z1G_~^c^cSH(r5W~j=qcz{*zbRipT`8RHS~- zwgsF#ZR_5;I9M{_hvHgin(b-zRQ> zOIkpZu_evTBrR!qrfNyr1fH_X)*}3rujHw&1-ooPnuSP$SZn);1b%Qg^v9182~h8S zc+%qPjCX(B=Je7H+g>@|lT=~Z_T*L#H5Saq7W5SYY&O4FMLBGKuZdsS{9en%<`?C! z`JLLb$M&a%HavOBvG0?%?d-f#f;Kfp^)$6gTyn(0thD%QZ631MHilhM+*KQkKC7s1 znZ;ja^0H5D>)9VFjc^ zp>`VRC&4w!yKbl`Azin57W}%(zuRZ)6!(>&dO4`l5BhuYelXfx86%lR9Sz(Znpg!i#KqjyEL`S-9n-MqZH4Sb#etZ9 zL{PmE-8rJ4nD#9 z3ltPju-+o6h|o`jqo(nV|Aej!0K!){fTg;C@59%s*Upx&Zp3CQKk{e_^XRabVP^@~ z78+;E2LpgFYyp^$ZUA$#y0G)$JiP!e(W@S2vcF zO+IQ{!YDzw1nR663Xbw^hGE%q`LieB3cKMUw5bH~$qxm`yWV}>_L9b1{t_JOI`O*g zHQlmLNiqBO7v8XSW=9lR`qZVME{yko)3(`92^#z2*#@&-L1*mz<9$u_@A7=USyk;;l#Y}8JRGKp8jBODsBvO1#F|!v)Q=pVTQ_M^r zQ~vnCb|Bz>w<-7YH_zI7u~kF}nzEdj@{rqCK@O)(P}nWof#H!6r% zKWA&gGtWXG{pW|ap6nnI>SLLCOdLM3B`OJ+cq}7mnIgWHRk&q)?O^RozT~_u%X*?EzMo6Ohhhb#NtQg;-F#j``s9^R0A$DVj)>&#Pa=6zY&WlAtRQ7;#W2P!soUQaY5oY zjaY6F&1J-bi!7NUpNd$l69ilkXprufe$;e$Gs5qto8W^;Me`$M^OR^1v_>wQK_!;`Qu-!(`O52L6Vq1)ikY zc*PcLp?qa{68feV>4*H^D)(C3I^YDhgRs9xq{ z;BpfT6@kl7q>v{Z(0`yN-5n<50We7u?}dE}MMdcHEh(x(m#E<~bcq?RYF~`idIThV zFbtek>|Z1d_rQd)3-DC2iw|R~-etIqUAlSmG^4CelyTqTN?A|v0^Bipp^R1V@-?vo zI<|p)>iUo>(6kWbvkGL~nVwBlP$16`R0^_d`b}GHO#)V@Zv@CS4JBA1Kn?`4sL;A3vDcB*wW%x+o(YH zF5xOV^av%_d@AED0CSEJ#Y67cuJN_MNS`||v127LKy zgc?r?K4zvUFad*}m4U|V0pm=Av~hfFkTHNwB0_N4qL|t9#eQ{1x(Fi{+KN9D zE4R2p{k~Xw!o{_dB8I{RitoiB{S(A@?yr4U6IMd8Kje1*ftp5h%U?oMH2n4mzU%gg z-aP9}DN83*NEiKFW%v8}(d|Z6zCYAB6Y>Y;E;sytczI;AfOV%^}Y%(5xYQE2aTtUt7g~x=E(iX zzF=YY%zF7e^TT=;o*!*og$eDz7^9VCl8?!aJs+A+4$^vwk3q#6Fmst!Ejav-K&XxC z(~HIwPMK6Ne)6W`IdEjnI8cFL3pAX|vwp8%oo}dZ^sp3B9i}Zd(!*B^3Jv^52|d#E zk#KY5q9c(%Q^#0f*-nccj&r1k_wX(DsHd3NT7%aQup)6c8lb_?@}&uy`B^?V$u6ut z{cJ*Pl%Gl|?!mL-jB6H}Bo`%@)H4oPu26ll>*kHl_<~T}?)+$lE0zOnqj-9}G0gG{ zVa&r8=8cZ_BdYl493IvsFOH`r7@I82N_;yZV&pKrs#UH=23Y00Yc(%74dvGcRS)Ch zK#rwhxdQcN0eJU*LqlVvr5nw#q(lBNy^~eG=UmjtXv=?SXawufxKS3Q;5luOh3B;I zp{{$;v$1HkRcdcq8wBn)zHn3VEiia(74*H)o1h~pm|io|LYeUF$8r+%i}0;wb3L?m zm?$IX6tjhE>{ zNQWtgC4r>#uqQ`%;wdL$Tj_DOdzjbKCPR2IPs}&qW4~HEBhFHrve{K+P2jjx+8fxw zQmLgcO-B4u?T%!a%5BKi9I!xQweHk^l8##33!qM~~V zoIxz|OiDnin3Q-6g!VE_2Vk)tDX^p-%afONGIA_lWW*ueRm_zo4o6( z`~+URhjH3+mF9+q+Fgu~L7;AAP{K7xGq(muHG=nlaZ|ZG`{_N6uHNiX<9DUTx@ZsL z6!;G4F2w|Vy;aV%)_|kJ1l&^BAWa0jirRu=b``G6&x=o2!xt=4jW(7pG%vbq2jd>? zp||02SMfnEJ=x%w?+hQnCdW@#Ffjrgl55MZ`Ew0z2yici+F~VG>==;lCHzq#!G>g^R(2N^G15eS)f3) z9V&w71RmDUNQm9EY}1lW3pbe)XOY3(!NRQc$k+z_)Ha>*`n!XoEZ>ksF8FC@`CcnT zinJ65Z|yA?sg-r+o4ltCIrW@uGgeyy?Mf6EHbtoX=4hzd<-;;iPA%rDTqf7|(Ang} zGH)9}Jb!oX{`wmrYRvFR*JE~LN06lpm4%vj;G6ReZs|Z1{Aq5!36pFWn#b`M3XFei z1}_<9vNvOzrT@y_x5!YE^aWfY-Hm>himXk&_n7T}`(iN%q!JFwd2s5jg$0x*cK zZ$`A#v+elKtIJYkOwmG?6ZWRqy)yE$l)3RBR%G?s->-*k;yKnXD&%<8c;D{MSsS z{wo)J4i|&xpP*Lxc)q##;8hYlKhia20z~xMWqx>~G1PK}a=^O(lIKn`x?8@a2|m?f zt}T3SR>!Ayyivh(CmXq16+U$loUZz43wSD-7h`r9^GmIpQ zgUa>6zMk|~uaby;?o6XZ)22&|ewt;ZSmsbRXxB`>Znj~y%%llEcEwBnQ>9({B!_Gd z;>9N7y=JcQ{Kg#Pyya2K4}*^f`h#oUo@?9}xChdB{u?=6El<&0(61+Mc`v-9{E2Y51VGVYfU@6Ffs5@#xl)@g7&fI%B+Md7I`JI*?w)%=(5?j?a6Xe#d7s*KVh0 zsL;0anj4IP`lC+OoC(`jQUfjv_(Eo;dO?O^0lqc8$P76rsgM(Q9_WlZ2v_!8=?@xD zXqNC?;;F(uGL>i}74a@RtsX4dKd{-*HP@oeMr$pk5#eBt#5gFlB6K+tH{yBR*k8Ut z1K#Cfqobv#p91eZY>c%~3BFCTozyWt*Yq#(NxF-V7*(Uav^FFE)i_J&#N%xVEQ%~@ z00izu1YD{v5}M#r^%(IBm#W9)$}R2NVvQ6hEq{#Qmlx(Y(CYBuM`5KJ6UZAu@;@r7w$0LvTPTE-Kz`W5d(Ps&e2u0Tro1h(%(*_SuGIPi`{d$Y#3yg z%WXw6`MFdZ@0l}`{gwrI$`*zN~4BieQeP~`RP3LaibNx;9+`} zXaCcXSK!VmqWFbN;-f3Eh8Ub(pZ{>!sK$ezFv>FgabH+*?q~KIefa6t_A30XuahJB zoIS?F?3OY>Sd|g?t02$?II4t<3UOJ!YMy!Pr+S{d$|NovSLMOe{^?$opYr0=iY&~z z)vXaiRRDKW!P@_W&n!}eCq==o*!8SnOJm?PLPF>2QiNU<%5#yG2kS9KGbYh2y zSOwL70@cd`s&@LcJnp_#*QZiI?d63p8g1BKA{c=Ry{HF;zvqk89%;sI7a$d+u}h>B zpp+5b#J9jjvjBJ7jbkBhV1O&(21ZMf#oWMXDlNqg3@?{9M}Q`L>dVIOeqFl~`w~z| zqj;THj7zNfNYzpSfAfe_V@36JVU-nE`!!<*>#P`a6elhgMfnj|+=+)CHC!x%6ac`R z^ZfdHOMTEt5vUB-`;8PI{EX)H-{=v{YrN4TiH-4_f0W9vEw@MW2R<=k_|7t85L@Io z|2&l+H$VI;I8vUUia#?uf``_yRu`RgRlexoMsQ$P;L4vJR#2ajk{sNufnI;4-0;Zy zcuufr`eAj(4I9_FxNQgwTcViU|JWyfb>%6?jUI8G#BbVq8wdgph-cveDRBxMTkv5; zmfd!OZ^45qN3QI)JHKf>%@4d`1jCxqcW(k7Z>cOi^(`YqJIXh_1+c3;E#M32Mm)Pv zKI6Ezjb84Io+i~$X<>fmhH8OBzKu702c{G^p)zwEb@`=r@zKGBQ$|lNm{hc>_&6_n z$4G8!y%T7*2*oc*hCP&@v?}q0F_s17dr%UlwcsaCfZB{u(Y^rQ=UpS+E4N4Yx=L2H zaIa5F=kRc<1v7{MisRNFwV%=cl`V0}oDf|Evuo&uu*Yy(+RR6;I? ziE@T+%jY+X-~-fll_Hu=k(R^DP8r?!js68;dSSj?1Ku}Mex64uZLV_ye|+hL@aNMk z_Lj_t5W`=y*b}{|yQ`!5lXwLi7AkVPt@LWj5e z$XM#d0HN9G1Z>FK zLys-s$=?(V)|(fghXg>c!t)1>YaF3m#C(DqxFZmRy99y|T&bVI762m@(W7PPI!Fbo{!S`$G`(;LD=(Bd58IHICzE=7XsZZ3zn4L`0gEszH)my!I! z@%1I9Ne@Vqbm8>y#Ff4f{)Txfe&3SeELtHT_EOUsag@=_^s3lkL|spieL~g zoA66iC)fe$!1rGwQHfQlUX?4A$#gXsT@2Ulqu9{k1A5YwSzYyqm;4 z_~aJph|HBm!ju2&8*oKRfL7apuish(pUE6W+z6U(6v?JE<;SlXNnRYVVo#WOy@Ysa z4Q2gqct8t|rhP7{J9zG8AWJ4Pv5pUgM+DdRUjoYF$W|YpdwKD?aX{C5jglW*|KBB= z;K$aZ=~(Diq!akWot(_*9H9u#nyum&&YG>GaMm1sR#=a-W{kSr&W9iCn|0GzZ=u1M zJTfxqN8<>aN{mzS(nLjdqq=rWr6y&4w`lfwUjJvKfGt+cg_E@4cp2M|$l^t#O5QK}Js6MxOecF+^L(m)tTS4mt{P(Bh+T81R7K+)tC-`Ron9dCEwhX#T`+ zMhd&=FQa~8l>D;#x4x-2hC@gPsbQ}d$iu#C_IrOb&ugc z{0@@BM?*ErP)M}h<~-@g{8rj%6vW%yQ4Eqk>w}~e59m|`NqPFoQQr zMWg!@k!Uo{fkwX)VqeB66^;JQ+h`tA)BYWsNSO(n#}&$29;Xtd&2WOr7#YS7O>y+o z?=O_c{+FvvSl`-x#QF`=dfho1Z!Btyr1>BK%_jn+`96dg{(HFnIYz0%3>fPH;AEb( z>A&I7Ent8(H_|>zKw@NUL+LF-78t{3c8GK$=>1a>& zi$It)s$g>YX|5n*0J{7NBkamF#w2R1)c2NQZTrsY=+V(tfG19X3LglTb+oV);20gnz$@j3=!D*Djo zTi$8fN>nDCVPnJ+iJ1=}hUX;Mw|Qkl$YQzH%q}0}gXe5FG_a@X%V4Mw$8~0omM3DS z!M|`Kh8-a~W4CvxnvDeuqU`lJ^mdWUXEw4wsh!}zHi9naJyHzY_uItObJA4k z)uNi%6YEYD-2`^==4StKQg~z&dpAZ2Dx~|4WWxqcvtfgt*wm*mT3;rtPty+-c`Owh zF4)*VK{kbu67vVXu z5O)!7{5&d{Z`e9Lkk{*K@5{gKV&ABJ#20pjPUK@^{In;{-2?sH7(5BVlj1vu>Hi%g zE*mBD$-|p7o>$k=h`-UzUQmH$anN(K_5r`%-JZZcAaXa3b(ml4y5(DUr^d+l#oiku zPxgP?!~P;;W4)bTUcI={*Itokh)PxC2?Jr^KGZ%UOb1bT8{i#RR*F4cgAXQdPlbi5 z_C%-$C@o18>?U#QIac7*HsBY4{Zh~DcpjP!Z6;{__f~lwyYJA z?*S}4OHiq^Hz$@f87o11cC~#wDZ$V2#KF8i*30>Fk!yg}LFRZ9{E#oH#*;}z?L>_`wI$}YUFhQhP-A4>qY+^O} zE&EjVDk=W=UK=q0masvR7m;4_)gs zo|A2F!9FAMlxykZeBkT3}|IT6Gp>5%7 zo%Yu3VIp4vxQPO|TLOsvTIrmm7{2;jdn3NVaMa}0d)q7W)+jpP27WFNYH$NlK!NwX zFL>)rt5%!fT^woup1n=VB6z09W{3~7^-3R}QClvh* z(Z$cesJO>AirYrpAN4ziAFA*e?n*7RXKO5MylP2M8|DUSh@uMHFrKTpC=Q|)@}mw% z6u&&i-jT&C?i^*}ik}~u#r4O_6~D(O*=zEag;hd1{+fTP8vbg=Iuce;ALc4xTRv@u zm=!-76ssl5-=RSr5~A-R0@u8Dj&!61HUM_~%;z2IGm@2qlQht(^7vwVaj3{4*Rw{8 zUk&)yVtcE&`rS;}uzjkJWt(k5Rc`aPvG&wNR1yu6m9P%RE8A z30w8?@_C10lkC&jgCyVOU+fwB`tdkLX6s3Uw%-1X_6)x<+1`-tCv>QfB5kk4EPqtT zSnWlAW{SN-09Y$OVDJPm6Vu`+R3QjoirjaSPL7w0A*WTcsN*8-J;L*2Y+{N%^&~Nk6a+6!v)VM8skbebX0<2zg;{zMB#5USFmCNxESI>XVR|e0 z6BhQOnyEtW)>K@bhs}ZIug1l4f*x5cr>%3w%L)1fRRr~7MCb5ABS2%O20VIKA2I0Ku<3*bsQ&k)aD2n)1s-D63lRq z>W;7ZV%RQJ)k+q?T!wRAoe0g_?E)G2uQ`tx3wXc*o(M_f~sE* z0XDK?-NLnratU+k1o_q;u*4-y!jkmYU_fdMYb@ocx@&3`QujS*kN2__JDkHHL2O7I zoFGqA@Q3VMShtC)QV^<66D3rgNCH6B0N%c}p9>f^(fsbu2$BqdnG3(!{PH92S@g(> za^V*Y#D(8%{Fi5McN~T?^8b20$QIKnpc+*t@*L7_96OF$k@u+fR*`jdzEl|S8_wg(K-}2 zxS2gWJP4mizV{&^TU7nf|^(-!z?t|_?tX6M@ zw+%(DM4YOKoTREA1D`NKAWf=+>--LTBTa8J2@WyCH-?f)0Z*;yttXL|(ruEb z(v#2HyXnm*$x3goikg*PU#5>xrceE!v`k5E+d@AISKq#J}y^0)zRTKu8P$e#7K zAb7dK=6&{-nikE=_S**p#!ZGnBXOC%F{=;1+#Nc0nz56WD}bV9hwUA-rM$^Od&_Xu z&sUdmLoGh~puG#LMRnXk=j=V%97X4sJ3-K!$y*$;kMfuQr6cwf zw#p~Jo;g{--AN2~5y~u6_+Vug-a6XQJG@Su%4I?oqIizsH-}hL_29{}E^n*46x%Y< zbnqmVh{0o-;vyzV8TZQE{gdH!UHx75y8-&C$rwW3E9d1!jsekhuy>1uCkCuE_lP~YQxGjI;HTx?} zn*v&?0on{G?<%0&jcD!PBA6euXR}aWnHWp@ky%`Gii{;;f2az7pv*p-H6dkHK-pl5 zJl0%qihSSY?bq#g*3)m+u2bY;njyZa7+pdt9HxoliO22jncX)FhM15ALrjo`A?7{w zRv~6Mu#q7q$tpw4Taz)w3>8^qh`Cby3g^GPX>T1@Q~aiZ;qRncWK@Yuyz50i->CAo z$V&^aQMqVTxm%HC-?u{$u{B1n2}R2tV# z+COKtrYf}1hRCVXhDef7aLRsFPns%+=C&jOHBX#MH19qYHHVGyf-^AOw*YP;#%rMp znZteQh{5TX=tx!0-QyNR`x9Xc9B6`kY5G5=c{IbQ#j1+PmOH$hW<5T)KcY?M=Rb!{ zzo{fUYBrH*HV-ueSG#@5o?KV;9p>;mj+E_p*=}Q$fI)YW)N#1dQH;j5Xs4rK6aC@U zfwlRtFYR4;i!bf9V7;*Sm-ZaCpU8pUy^jbP!j(4WOWb>ftj_ofcfCv*!rVg+zpOWp zWV#&ed5g<)vl-1 zHs8YV;={v!h>heYzqY@xeS>1|rH_a(qG-qOhOs6u_{N?U{g3HDzyL!Nzc9dn=L+r_ zV1QF$fHC@-{XxG0M#V4w$pB+ELJE~F1CnKRJW(E{aa+de%;=mwNTte zziOWO^&_*m`E(guJoCN1gr$&TDy--}U9MAg=BIyvfWqcC({N9wB>|3Pj@tqEkf&mT zR=`Te1SG4B3BrIMEIWmYEHWloCVsWzPyT3c8rNL>ro(!qAV`qS{Q%s@T%*WpKOn-l z@Jf}7#soVQS@tZC2?F+c5z|RbkoyZj_cF2f^%4@toB z^z?Kxo_+=r;0$X3SS?qY-UEJOM14;cGe=ZBF83?syWAitp8clMNo--#A4H->2k5@=R5ZOtj7#b zb#X+i%M6KD7m|QzjhG?PvXTTuYuF5eR)I82p_K{z1X`J@7)7gOhKbgEl`hemL)k9# zMhloCT7)S<3rs+?s0j+Ka@2P4`grS26aSm47{xz!rip*tOyvm3w)RX?txY9cx3>aQ#Gf!#_(xwS zqKG}Xm7UGEH@BCs9Vbcf$ z)PEAyf4)cmUo4K~x~k(b1B&sabXtg`Gou7-J!57{#YfCU#bJdK>r-5!iK5+>M{9n# zhGP(WnlKhq{20G^q00#QYiJ$UvYL)xb=@^n-kZ5cRlL#P_1e+OOVC{41;QTp?l zI7)|!EOL|{CglD;lW(i*Xc2cykm)e}g)-Y5rt!#(;jL^RekgeotLs}hN9Cf!^dv== z!*sDAU>m*+?GHADT=DfCoi(vT7rRNaXyfqQ z4d87a5!?@Wi;pr4nq)A_$(gwOkM(eQzeV~H}^GOCyYJ-8kG<7u7EwlNbeH=|#joE;!3S^7);Mt_Ft~Fam7Q^_lW{#fs z+_n$64lIU2LJzU&eyyY7-*0QeI>+-H1uZ7VNp;fQ0zbe=lE(T@!!Y{X=V$A6{; z2S7G{DYbEepL)2^($QTXGn-Et2sVu)rLq4mq)JTp*p%Gb(O1}XdXSF}&`X;qDZra> z{HNZe#(zr9PIUALAq4l(|F1+xE4GzrB!>PduZ(WT<|EoTrZAEu+GB>c1l#wP!=+)` zB3D6@W46YQQhsn+Mf(>|ZtJMa{zd2*X`P=fBdrT00U`O2Lh>c4m+ZocUGy`vrNf_5 z#ppLE|JQ5@HMK!OU5=`Ea+HJ+svB<% zwc5;4UX6HrW%S_Pr?aD_KOT>Dc64Q_|3@BO9G(2}*xSX?f(`q>@kr_FNb<*HTUSRP zR`h@4k=e~L#H;=>)c7YrE&}yM@I4vWE!5^qUxHiMdNK4`uo|R|**^*TKM{fQ#0^}5l%g+Efc=tSTLMV1qR?*svRh0%bA z=VaKK(T-9UJkO(mT!E@GPfiA^kOc2NJPl?~;~foHBa#CB|Rmf6~I&>^d5-Am%cfdS3ME_%+TuU1|&asIV5p{4{Q(#(BKoWc` zStu=8Omd(l^Qk4Pye*kyS_16R63Sj#QjYrd1V@7qLUjjUAJ1|mu>(W_?CiWUx+{h{!NKo?z%)|V6<{k5QtltTUU1^CU;48#N;-? zM6Wtu#;NY={Y8QjeN&b4v{!ICTzvX|p6rw_&Xb)oD29tq?dK~OM8%Q?!Ar5xGaN5z zgL&LcM;n$-vJ1uF!=kCv9C1A5uTE`rtJDiV51%s2(Kb#s8FQtnuPO}p?|!n@3!xPA zoC{XTB$X4-xkPzobnD0G&UWN6lEg31c8p<*Nny_@7)`QKa6F5bS{hoi<;O9N;feCp zxsEj04T3uC%<-`p+T001c$Q_4x4?`T|Cw>2E7o7cxY|Osa&3wWbyg02*a2+dk^wR?1Z+UO} zhLCX`{^z+jEhyyPv`8z)v)*%|4Bnd-Kg7N1u9dwiEN<5h^1i17Pg++MR~_)a$dBTT zFrHApCC+u=L6R`B-+|jlpNsenm#7Lv$3GUn+U&k#ty{tC?Y4BDu?#}2MhhSr0jbA# z-EzRi$rBH=bVU@uL^E8QU-6g%uUMbHb-fz@>R_z`{`hi-H6y`~h&dG(k$lS0)3tns zqprr%6lY;kdR%d;pwJPQ2YKCs(uh#_iAykM*t=%wtzO zDsmfFXc@cdUaEk2ygyB}6N(`EJ1PauM0tPuvo(%}HT04N^8R!Q$iw^7aCI)2pWo`Z zs_o#%9)-|;7qMS^%rP3iYXhds523+l9gQ%3-vW7Q`oE7krc~fEE8s8_mhW$GbF^lU z5MjyN9U0-T2?DLHEkb&l{?Gz>u`pnVV-fp+l!8jG$VYEciBrg1dx#gzawhYgeLIF} z8~EWj#F5K!9fSFQcEQ@_wq1@j`t1e0#ctS*xIgw3Ie771QqrK%rt)@q7kW>g+55#kVsuOk=nV-nZ$qH1C83z)Dptq+~Zin zT8c8Ny;m5xX8iJD7@Mw_2M#X$!b7}!9c6(-K^8yrva=~0PNX7gS)w@cC@l|B(_Y~Z zM>?DGDUZW92~MrMT7&m`#!->GOPVI8T4V@5XE(lj@R^(4g9e$EWN<05{z zX>J$3<6n**UPVAq`j)h=6?uV7_`cq5k-TFLIuRtdv~3d1UwzeaHE;@O!ZX|FwqetV zP6*{B3gvtcl-0j*H07lWzKi5rZ!8Yw8y5$0& zJ+G|~dU1L1uBz}zJEJy8QI;u@`p-(*Du!ngvR>cRo!`tp+ZVaK6Ak&L+YUQGIe z?8WkdgjW`D_oL?uwOHQz;j2~o^^+Ast?Z^_7Ju>-^xnOQ3W(WgU(C8ovtZRQ>!PC# zKX}^l3Y$YpRie|>XPS_8S?mSb)Rw)2`QWpTe~WLD{0Bm~q;CaCXIXQR{x`I-CZ)2Ced|WWb@+2f2TjZ3Ute;xWkZP=L?WYi)lrc*L@<7RoTq#P2caG( zLJ_041c45XJ54jTnHY_@=5Vr4NU_Rb^pRptF*+?iKk?vqj$4|}S6_E@VS!7Ob0RkX zSVFv}#uC+jcC{#p;eR%S(JN*5RfsA2i*I39Je<(~DCIBy0IPz35Q`D0c%c#n>b7ai zuO?89YvoO3?TO-*0V;WkY*oOV0_Aq5FEj`L@h3+z%O&yBvg>4}3qR@DCWX4id?` zHjm5<7k^Xl*=HiO*F-2IG4FYHg_f%LN`(HUiO^mzgi`)JEO?XigTRpc0H1=+c`aE@ z_~jl05Fd7*YG&{e=dfzdcHlfWHD`7OT_&U|h;V;CFP87>m>0uYfHRy4x?42*P)k9e z2nF6Jn*cmVi=V1L*eh>4>qUxH#)rBq=Cpk!Jr4^tB~_fy1&#qhJiZ_gjxrIE2vQ*h z2@bphNH~<^_m=bEuL@!XUmxmJ-Pw}m6M+cL{enQD$(7o}2VX;joi6q;DNq?uHk+W> z@AK|-x{iZyGAE`5@x2!3%YjEh8vk@bUUODPjF=xQ~d8SAX@BHjdEtu9EOKqMn}5BOp?&NQUR#4b9{d4fGoid7uDnfgw}+zX|L z;l;kP`p#?cYVrPfc!TCWA`bz2n*wxB0wm|~@TOKYzmeeVTS2eVk1ypr+d1p9<3uJx zbJZ7`GE@84OlUrA=)A`MAjK*J&27b;LUV(ODOMBb%UVNNes;EDjqmqvXj%eKXzT1I zHx%03ufjw3s(B55<7!?Qf8?3c$_?*vd`CNH9E&6J1x(?oftYln3=?%Z3~zFf?GMW0;b*%+m260)Z(GZZS8R4@N_HaG8Pia zH}i9g;MAE1G;IYx+}hbePD#Z(Dm(3SLPfH?Knhp>ggNlV>#*=izNW%0b4c4F4m3LN z7hCb&d1lwxpz;|F%*YR|9Tf&IONc^v#|FN@hrjVnS-^_cJWj5kO>&-u9r#7b&i3p) zF+wy7_&^pEHf#PesrijNGvj&wo$D|ic=2j&zVn&VN=*#3Q?lky5&2m2Kl#G(9wLhWlvZ9h5diG**2}zOj=VwJwlJT#3V7CQs*A;tvx+Q=qs6)^=JV3{ayI>19-ir}K685-D1VUJ{-*REU89irCJwk&L%Vbzavl z@whZ+2lfS#iEw>J;QCI&rNesW&5a`x_=cCSHssFVw92)Vk9kTTko+-`j6nVA3)FdH z$A3(qhW2%?VByPEOTm@+D*c>EtPY`ym3S?jZ|LWY^~w!`Dz(*7bGZzfKphI}vCl?< z8x3%tfa`_?L2WPM0neYP~m$KuL}Z&=uy*( zhfRpO4|BfB&XHo3f#|Ga?hR25K0XKfDuAdrFUoP+^t;RX(H!vYzldZ+=?+Dy`U*vH99?9%pStuD@ZuxYY{T!hku!h9BJ%7Yy$# zJCDFO6jO4Yt(c9-LqvwJAT4Z^2N9TEHsvSpUa!HAy$&sG*lj~_DC2pvxs;^ zX{Ikq>CzBwkSihI83WhgND1h)^4SJL5dBpEHtVqmN7mt&-UMeoFsZ`B zf!<`LoUt__Dj-&a1c74JP}-x#yOO6k-_k63s>A}m>#6(%-guhx12#sH#aXu=e9Dr* zYJ7FyfSr2YN`81vek8v;-T9k7dnI4;N`4(d#Eosjj-vw8#MvUMfWrhdex=*x#0e>w zOjPCK1I#cFfxic9v&D%c^ZU#2sDU^oCceKM?dJ?z@w5fdJ6!)}rMzG86(F?I8pXHGcTQtLtCT-uE)6~dAwI7Rx$uUuAA^LPf=0Q^ z^$RO`;yzmfBY8yaG|-Pi;hoN5p%;V>?ZoGe+X^`sc-|ssr@H3^mDXLEQq^^Mk+W21 zorzlDCmDSI-hv7S)j7P*ea;%J1K~LBXXgTzP6%SAWEms~qQZoIc;le-Tvl(_f~8KU z#>SD{(>CX3=!Jljcp{{bBxoNv;f2))s<+k`tdbx3TtrgEoJgOyinQI8tK@<7ws2Y> zzVsQh^wS9MVd<9&g0)AEkat}K1iCHwClF_q@M@pM3J*xBb2b~GJWi|i(ptCWnu^O;8Lk*m* z2J>m$J;kfFTHX$X@3^hI2U>WIf>wUQdRSKXA;j>>>z!x4s5c*iQ&a_DytuBJw@Tgx z3EANMj143jp^NohEnTcHNkA9F?;z){HZSLnB*|!rgIF?NTB3uC$?qU5AFC;kzJnCB zg-StNdvwKbqC9^|hse&Ip>>TB>IKdUEl<1^~;Ig_o)8lZgsHX^Sd23fze5{z(EH8ym{rP$rw{LS=S+e3T28_aJKjMm$*2rsV$IfL& z^UrUN2<7B+!u}RuJ41gp}MQ7aSSZH8ziu#c+|d zBCI0Ag$KeIDs&Fvj;HUBJnk%Js|Xc_C^)viQc$p<`E`0)5XYQtqzpEJt%86}0BQop zoc8?KJ1oexe~)vq#-1a&u|qhxMs^4XNrD=4-drQcoVQ6THlE|6uE^PC{R5CC-o2Q) zMvgm5af|e05QO7SIYFLrN4v&PJ`D$@zw;G#)mPZBQkXWAfAfs9MT9?DYUC*=P>ehQ zHP%8`_fS@S7P?kdKbmIYOI~osZE0S$o?Mo%vsQN8Gx^i|osI4#td0%_dXGNvU9nyV zoXuH#UkOP*5_)|#0Xcx`?DXSd<4r#>@%(i?Wb5AkYy$xv*li>9Vm3CM@SHrE)1Z9hP~+@GEP zo8VAPL2!&4je?d`7fx1zQBGEYdM*==taKIvJXT79I(v!=)SDP8b;x?ZcI;;Dz+k-= z%O4i2SUrlflb;fGDGx zsn{KWduHNP6}uPgN`Fq&XEi8Tr^pez(>ob8qGIDQv6ET?KLUgMt@#0`8+`m^7t*|e>gP6z=X#z3MCi>()O>`U*jhDw> z?Oa|gVHGsxag6d1v5nyn(M>kdWBWDHO|Te~-b|chxSHN34?PgLsmwkT86TIA4k=e9 zO;x#y;i#ERC@{vEOcHXTWc9!_cuJD}52aU6NJJ=46@|Glke}q0L+SHHC|2=ge(5a8 zJ1iiaSLK&al|F>RD8prXK%pln**SO?DdS`8Or@bXXt*V_LwtRCq>TS{-2=zKU(=er@iAA z%uzUiI^j#Zp_jc4z57XeYoAC*LjV?MJ=qxZAq@fAql`2Jco?5(2=MTXe1-r^KT98; zcL>n)Kj}+_o3)jO01gfCFrD&B!G{2FWV)sN?(=kq7_JFZx{nRODRY=S^F{h%@hZcm z)cDd2wP5$+3^}5qqpMiT5HO>g3pK+2<}P>*=c{z5*v7C_hMl3t0#m;7W>|9*!0Q^#8A_P0uNnUfefgO z8EOUc=@}|-GaQw-djng@+a;bxwv@LU%!DWW*PdifyB#Cf-%XE77=|c3iT7oqF2_kG zyhR90fK8ErXYPrU%-rt_y3tSlUOY;9MI%O+rk5js0C(-kpr9L=UUonTpI-8cl>eQq z4u%5J4*?XIhUIkoF@1<3#xN8L%%f(iz&wf-kl$yG8Bj!KKV77ZIc28o_KCZkn8r}Z z`QMz$oPYjI6`?`Tazy3M<%=_c?d441RcECuQRLxO_Sf{5aQm(6S1`6s{#@2`F1r;M zqk)|ETY8HatrN|HvH)j6S-=kvFT4E?r&>9b0?^YSB3{KiOlE~TYUiB)BR$&?cbG_| zv@dO?eaQ+?Y4hF+E+SL@POoGbve)0R9vC!B+YG7fZ{C=QSt?#Om^<20tGI59Z5TjZ zMqN!PCH&Y_mxT>SS)-z?VmK;@%6=^1_}a!82cPcO@vxDtOh;v=GcO;NIXN5BnI9lt zeq%ab@s$Q&VO$dAXePQaF>oW&2Mwsj%O1gwMm|tFb+IGZ(OS6wXXVi$j;TJCskc7& z^i~e^R&tPdmC>P&dTExj?w42rS$A%|%*y6MPz;`2TFgqZm*Ax^KNYT0Dhz4>T>@Wm zs=$<(pu8A3d6zN589Uhh8s9%zM!p}OB6c%Al!BA4!PU-ClT4OXlB9k=K)lR$ghvYw zB@NE#9ac?TWTZ*`91W<&+N|7m{WSH)@F6tUigBHO>t4;YEFz66uKd zfszCxBOT9)-x!5J62!~LqZ}Uw5+LdEA}vJtZ0#xkAV5-#<3S$*&<>38*k7&9VKdbV z^b<4HaH-!+wUW>qoDNr@TQVLLADbaS#YYM8v64K~kBXbz!wBH}=61NOF&;Tb3pJ;%SH9MaH&P$~n3-bXB7dx1wG{D)a z0UoAP7To^;CtQA43hpdPs_!TzJ0v3IXTfe+&VqSS^~r9R~#565BaP1*DugvRm!+RKevVw`U!wZ3Jup-9B+H zNJ(yA2A|07%goK|_A|~nhREPLj&T9+ESg+!e@?FFY9k}-J7VQ?O^el%J?lDliAE@j zXK4!$K-AX&PYb5}3p}3^?KNQ)Gy-tSY&Ta0jj|0KZwm*jL9PsE!yj~Xf@9&S%^)68 zOc=#*(5>Oc5sowA{GfC(mElnEd1Efll^TXIIMsbarZ$D4&>9BU5dkVuM6kKn{3_ig z4lqojyq739kdHKRcvociDyr8RuBHkVG}Y1KXNE)se^3NP$UNOoB2Ky_ylo2nx>W04s%uLVmK;v)q=_px)M5|NEEtKQ3m{%W?*nd zSFF4@8)ji&b*x`Jp&g>}SXPHM1!7sQXwRBJ!w$MSqYHyl2x~9Pw06|Wi%mCYxbtEg zZ5*Y2uql+J_>0q))r5fcoEXCZBu>M&j&w1RK}no3@|(7f`aalx41!dw;tc3=rwJbw zii%@e@VFBiIR=E-w~!YFgcbNi0bzyg*3MBWj%`VMtEJ3U$CGL=g20kTD|Put^{x&fKk8E~Mh@)YXeW+qKFYZRFwQ(SPwv0kJ5dhn z=!lZejxdn8#j26HUz?{ELq4LvP1M4FKD5YuPtH^3%W#zWZU$zUc~2q>GT)*So=(c5 zogMWPjvsBTStr<+~?AU3D;#h~T8Dw8BS&)rsAH_w9C`OjDr=zQ5S$KI3wa?sD z?dBLHs%x-1b2ofMVR+YaO!1KTnou+#JwV=}p~qoEx7sAIh7$IxhI)=R3HSua-Lp6RGA=k;(@G>1vGGj zLjD~jZ>9T8ZJ(Ezfy>DWh7lbE9i-Olwbb?(T7elYJaA?-4IK8vqeZ0kn4`KmTdEb# zxxO3+8Z-TQF8jacNz*#clcsfkfOy%nH%#L>l;$)&kZ)_V4fRH<*-EN8%sD0>>H9PS zw7w6SccdD-e8(_pR{OPoOMa!6)HjMsBi+&5_yWuAgEXJA%CtdyQ;Bn0ixV}bM?X<% zzBX_Yr#u3*I1Q!4>3G9zK40}`ONLG|HI*ZV`1ELp`MO8VqLNN6C1&a#jZjAVAS0Br z(p5%qz`gFy3Ub2nmWAZ-6L9y=63bE6bkA4)+n-e=30(dXJo*1FLFo*~Bfb*gth7E+ zrY-jJ^VPr)dJ*P(aK=|_jmCW}e0bt4g*zPgy^Ru6m|uxc6y{gX&pYmeqep|~e+M|G zqps7j~1dw}y>S%MP z!Z62f(Td?wcx|>oh1X`Rz&+g2$Lz5{T7UGcE*@hA=m%!^1#D(xEzn*V1bR|&wF1^5 zB^6R$2wdo#5a&X1)q76Jd~Sg{pE}l`-)PS772;Rlj9eh;d}<(0-sLrshaH_yT`aqe zbR>(V{)`rKM(=1wbUrl@BMRG`2Ze1vK)ftA+L7ub3N1-C29@AcugU`D@fCqPu04Is z#G;xinE>x3FP!+8^-Gvt6r1KkAizc04+LBz>l2FL5 zy-=GlNm2s=9!bci>c8OFF4{6Ym>Sp{hOHQsHVip{`hMRB9gE2I;~X{2-V2qj^<{M^ z<~}C7O#o-6yAKCYdsGU?{>NjgWioZY*eRT`c|jQ+gGd@V%oy*eXuKe|jdxTNFZ#0_ z%UHgyR0y}QoS)#Rneb1%Wa2~!?VJ@Q=jKRFot~<((A&|pl*fITVmpf@o-m7XkLL9I zP)v&Lx%fn}J$GR~vHho)9V7F`_KmN=!2KiET#D@%G{D1j%B%Mk+gr-A3vU;b=lT>Y zC9SnZ!sNhL;SRvtnvaU|0T^d~u~0?%hOapWh`(433h=*?F4Y&%ep;yZ5*@EQ`iQti z+E8h9AH7J8?g5MDrTOrpJn+>*l?ND($^&PhG7jv&LOCc8v_U>!$(Lkn4M@mdD#N-nJ zpsn`u7zyygu4eWkS#rLks@TK|i1vC;d$*!}W|pI7K-y{(kCC7l%o{@c5iiYl^zdmO z#o(twHauQGY>_%7^wu25L2-u>Bkg=?Yv)T=fZBn*yQcHt?#-aZ&}2K+Qv?3y4TxAA zNI8X7UIfyl98MaQ1ABHQ=0kL<>_-~*?Dj8l)Ro!WdY3ZmD9V1S(UeIwoHD6~1I{jR zJRvxMwDP&1R*EcgbP*X$64Xi&Cjj6srJp0@tzxwris63cCA{SiJWzGwoN;riWEwbq zye{2~!31CQLpPm^l?h@sk1`=kB+FI@Lc@$5veptuV=;>rVx|$>TLLysM&Ufj5=UnA z9K^VG{ecHw&sLzv%SH{alDesgv2y~SJv1IdIZ>Y0x%QDc_wtP+h`x-3zn zrxr^nsT#deverH^5p!xRi^?x(v5d8jiovTv>vF_gqjDTRspPsG`A~9Qz9e9B&6LKw zj?sCO>)v;vt9CLeDY|}Wz+WS9Ye$oR)ccn z$4gX>yaX!7uLzCY;AkU$_Q(1`V^Jo}hYw}a<4aT~WjHF6ZiLRlOnMxtQzosj6rPUD zLYo{Z2}cmhGwEg~1kI>k-sBi;h-z4e&!`Ii?nbKIx5beVQCU-jJ?`bz+Sbg8-RcN2 zL@Qk&H?DW4#WX?y$!MQYZMIa-9MPke+_DW8&bl#laM8}iGxOl5EtT%VeNs)Rhihi? zOm@kzyi^-6MXP>r-qMm`@jk-Y4h3Xotr?9=!zCgxdmrJ)Hj%Nlvj8I^X^b$5)uA!{ zO9&uu1#^KheMLzpf3NOztPxoZnF7}0r7B1-W(72quk}aIBJ#hvj>_hir8059qq^9} zP{_?UEoE+=yOic8Mg`gIfTK23guQA5j3{DpMijC90P(WsUf2%gP)cD7ma4=)54vd( zbW`trj=SO>6N#F0$8OFYR^Zzl_~t>vei;80TBdD}S`)O4wI*s=KCQ9$Fo6%XhV!A; zZ~)}u64G_!=^o(>Y99)*Hg#?%YBL!y5lB1~A{a6r28oyT4mvvfKuIBAF@==t+ZrxT zrpf0^WR9ukc<3Aq<{69!nTHDj9`m5d=eT8R@;RQNl1iTEDtSYx#H;{}@X*7v@IOvI zpJBBqkPly`Qj1G&JPNCrAPCJpw=p~tWHT3p=AK_2gTdNyhDS;{Q#nM0F(6Gn4>N$z znqO5|HClKAc7bkj3|!^7##{5Xw}W?|bks@E-d$V`J~;g%ryOp<0i^$fb~877n@Mv( z?w>RVWU#fu&=rDWAYc)7O0HaEeDXb(Nw5u*>Y2rBc*8=N*THo7JEc<;YSgs!x`h?4?|E z^cG|Mu|{RlfmHDtE1-iHP!P2j-f5Y8$x&XGxumx)=@k|D+UYe%ClhGTEZ-+i&b|y2 zg!POBNwC(Yy_*#fZ73kx|NRJPkNe1v_F6A(I`De$ild+Sl#w9XHxzBz>0|E}t_d(8 z8!LNXg~80xT{Ix`wXyMvSeC}ql7ur7gNq;MQ`rfAJ|RrTBbfxlUQ|d7G#&VVo_O zs~0=pMPxo}2OgBNI1fr$9B}JPM++Y*DAawhT;<;Pm#f_S^;eD=qRd;szz#mth*EE< zMwDU&)ChQIy@<>mQYg`^`<65+_DUA@849%|1q#kR+C(i2ws=b|b3#)lj_wPmiFI4- zK@hN_ws2O|7C%6|4EYvTYB`h|6#tfQgQCB4OcBGFP}HEIc7ukp0>1{mY&U2UL!kyu ze)!!iHa40n>Y=y72 zt@<675i^)j)I(0YK~7fSX;7u0(JNrGT`na_JjaTuF(Y|nUeb+GcRpy>u?IH5h8n}! zP-8e?<6mHD96;^p$J&9nJ>){D!TpX6kS1I`Q_c65tD|i^OwtgD1!>Q)1jh+91UiZB zp&`&Ie4-)HDPVN7M@9eJ6$VRJDQ6*B-gJ%%c)sn;`&{IPk02D6*7+{MvU!m6khsk> zO{1&NG{Do0DgPGFlJcoUXj`){`bDVEH~g%bsliqN?wLP9XTH`eK^6^l&K41GYZsxk zUPKy&oSn>&w^{D5=!aw`zb!}XfCFs|PPrf8G;X2XpUO&g?gtbaTmS=FNytY+O8&pD zP|2U+sN{cr1ttHeU$MQE{D&bkzy}MglkgLQdBVTN_3|R*;Nfo?QIftQG0Im;cyH#W zf9k19rw zS!^eKB8%;`GJlI*2I`yC!;PW!g@6`&zY&fsHv1R2K=Fmr&ZA-wYZ2LLh6Z>VbKg-_ z^IZF(gFQ%#kZqK#ILXgOp_FX&WvGs4Zu1e0;^?z0m5nkSWuxg(8Ey1gqZlf+HqP9``j>-?L2pkE_(&=COE<@2~$!L0d5*12j8MX=pAhQ(sL}n>g#kB(lUvm} zMRZ^_$Z8&1rPe%BSE)6RV%41^gxep>p|Qva^5H{9&|sA^0*0fEp!6zb1Pzcn8NoDs zY9PvVTyK_<_jzdrKY+RjihlTq}{n_XfJgVL0F z6#{6=3<{-{$%CuZ%H#(Ol?J^BRQsH|z%^Nwph`O4(%F+SYW!90Ajh%DE!wi=abXytK)Y-{sCA&3o zTEg-#PG`k&a{Q@|kBaB~aYp*!Y-r|;mCKqr+lm?fh;RcC@G@JiRs{oh6)|c5CVJXHv)Ej^G z_wUv6-b2oM<{mK45BoMX@2r-|CwnA_JG?sH^3ZC3#S}CC9T~OOnJh}a1I%r+^b$8? z-_h;{2Nv!=O@7-(fY=UI<>Ab+So7%LS2c+GY({3Mtb}3xi>gasfbiE^!-+8RO za0jI0;B{qs ze80V}-Dq2|IN54SNPTnlJ1SPK@h7#CliI9Ep=7j+qSWW5H09e-t%8of10R(Bc2s$B z(x22(PU?~(1syT1kF$fnOkF#Mwl=<#?rzR1;vS=u`i66m!O8s28kbvkd>97>{j>TXT%*+An2|*F!#n<(TAMZh7uxT) zMrq&SPpJ>1^tht*kIEmv##a7Be@f#RrOArYKj=Pa1rQn$nOsS%^d|%hv0hbeV2wlV zV>hO*>08=I{qWXMRXO2xqq_K#IWOik<8yL*I%s}jwK_O)PDKLz42n<4q147=ohQp= zLYSe{_6-V3sqGFvQEI!hCZE){*9o5^%yTpH2$%CE5xQ0z2o3Q~4e&6X@>0Q5Tk2qE zH(6>(*WxnP?W`kWHFY&a3&1Y3_*ykY`@-!UD5|p>l;A4MdqW|3rYs66ZI)lFhG{c` z!#j#L{+KO&G2xs=2{~i7Ggb8S$L!^cNrSq4B%?uH{92XG7>>$jf38v4EFL*fHhUeP z;7))+&T0w8@tJ3{znQsFHftFMcZy77;=!OkP5wSPtsvP9bl*!%X2f(NTfv}|$g&VX zi43%l8@xF?hdAFd%)M(>BFkkJytxLy2RPIdNRF*lf#mhIDu-=ft8&@Ho=mvoz<=HKj8<{{@XE9ElB46mcD)JS67aHWB9N_~q_n!6$9R03W zV2XT7V3l}~3EezNnWx&j82ZYGF_IMdsxWE|-&K(h#iYEW#4P2dM2RQuT^0Je`jhI! zNcB~uOwc6d9e+xcc%FXOj(sEjNeySDUeu(f_kpzRPYN?n&^#bT(Qm##sX2_)TdaW; z{eTulKi&m8`fXtyOVMv5`4~mNEa-e#gf^Bax1;FC?UbS)^9@fR!pK0;?*3iM@8KyjJGwRW$EvHb zD6-|liy~Xtdn&Rq92ME_zN;cz7*eOm)*qk36)+~1Y! z81L!Pw7K#<6*2k)5QeG-TqW`LlMf~*uo6x~uL{H4G~K_q0I9YhMP z1KrrlqRenpX3jMlYL%*Q)_W*m@}T z9|xGB>zP{@Ur%lw1PxXr40F9&mHLbEq8#=+dWCwQ=&N-qhkZdH`jnlI#AMM-OS~t@ zqC2BtWYKB(L>8U4J|BzzX377j6@U7eYN2J$gJLjKl=2J>@CbiDOSH7MLhL@uayrDb zn!1_^4A1}%yUfw+)lA^ha>#yDHG=w5${Xud_M5a`%>r6%c_czk9@;fh!czsY(jR}h zAAZW)u;P~Vw)0`J#~*cvMm>ujrOUZ&lrhJww>?VZD35Zkw>=6A$fLf(r!jK-Dp=qh zjn6(F#p=^sfIc*PmqTfR-}0|`hoNXc3ElwodHORDKz?F@dEz3Qs;yPv21{m8t!w~6;kL(T3uHtzHrTd7UAsOhx zgyNc%eWHB$2FSmkG_EDDXFER?^H^OxfzI<A%F)e)gEL#bxVF&fVf|h7aSKwzBI> zW5dD$M{AtUtIyo*+%C5IBExxgEsafm(*|{3eU=hg-W<_b#CZGNMw$*H>>pdZxO8uI zo)8~0s(vEd+B&U7j+Gm>IV;MV+dMm4wzN>}C+*`o&d>8xOg3fbDasmt%axjR^%+2u?T zHCPc{?NUMZ-R-QKx5|#)fZZZ5cAGuU_Ia_pjGi7U_v~@j5MBMM1c5N}R$6d%pGq(w zN=wikYoE7bEs=O5NY3wjorU4EMT{gWIgy!!eJL-msqdX}Yv1?!5d=+2FyoOZC722L zLHYJ#V=OMslX&dkCe&>w5^QCtVIA0YDn4FX&=4yb4|CBiepD$64_$wJc6Z7VQ z)Kb!Y(D|5nN3&3gA^^|K)!CRRO3P(aT)o8}R)eNVJF-=x*hYWt>t^yHLot1Awu5MHVWiNkXBdN zac6|M!^lD+ctM101bKK4FcCmG02D?!pwS8EN>Pg8(fPKxjq1Q&94nv+$b^$lhfz~r zKk4ivYO_L`GgOyR=Y6&{8gHbD1AK&}`e|o+%wJyh*g+TA(7gnljebGk&S_^=qnnIB zapO?eStMOT9oq)Xbsu5>M?V^|APn~tvFh$Ff&c#%x-CO?xh5Ws}0FQ5O& zd7xk)eQYVg_Y-oCUU9B5U|{mhRcCdP%ox)2IdKyolWg)>*sN>LTC5Z799eP`TPrNd zNa_j4!sFShz2s^ zG)Ta^Tj489zu$B=7pxLSnzY0`)MIt^7v#oneTvHix16KkPSr-Az((UlT`DOdzWxcY ze4Rll7fzHVK6Uo@!A5ROarPnSaqwjhNWb##3K5o|WwA?{Ecm^~I`r*!GkTL6>uvJd zF}-EO!xGJkSXA^R4GiFvv<{=hl(dfE6D6%9n*z>?hREHYJD<&)sm6W*^XOZ=<#BkpRNDm4XQlKI^xmYPB~Yxkk)y&*S#1=IV#HerUcGgCfPC^LP( zNo6L6qcYQF=rGtvkNO^EqRdnmc>(@g-@r!tcL?UG=?a$}557Ga*Rie4GR*p-1rw42 zPg4Ytk3(Z9ZLHtsEGnyi>l|YC*{m*S?#C)o`00f$+WbFD2b88ibd zG%yfJ8Q6^eVa3d90L3Fll~`R`mn^?UtxHC4QSqwS7PT%J&JeY6v8H(X8Ffy^H41Bx zagD|&GOp2E@-eQ9e+Al%edBKkWz!jFGOo!Q;9+_{o3XbFxw^@shU+1*R1;Pv6@XLb zk}YcW<-dljuh_zB(4abdiyBnFw*^0F5htUATusCYf2<=Ki}oJ!;X_uJwMAJS!%M3qqgQ_$w5V3ujCDrr;57f zi)lajqtC7arEJjS_~2CFk}J zik6}6(o;kkRzkzWIQex6R|o$ZaJ70#SACI^7yG-Cu30|VFqrHthlMpS@Ga!jr$bA- z!bJ>Yr#-9-gTmOPi@^WM!4`vKcvdyd%x%iSo?z(O!3J;hI#`rBdK-Bd+%i_DjH`(` zV4LzUi`69ma%?02GCIj_WnHb!4%?J_aWTogSTA@iJriUj_u7C&$-T1iiQFrDTR!g9 zI@uNAKLkOp{|-p_$lxI+9fxO)a1VZyGqA@bAmt_Q_s%|fM&06a4< zZBr@Zug{+0^v^!YaBv~&S@`5bNNM7wMb(Uzwx6A2=VF#K3jONIhDStu*hHIG(?k)5L`O1YB1-SN_wbU14?B$%QyCIbe1j-93}bK- z72&9X7B&4e@CFft^JJum$dCrfartxx<<%?ORD5ALD!$}`iZQ-iLETe)xr8!Yk*O)J z+6k8s%Hzuc)Ea3_roH}q2BjIvcL*T22a6-Ouid=J z$e@Vr_M4Z*wnMoc^Jt(bwlkM6xt#`z=A|6G#;~qg2>!<*Vi2oEKL5aW<@4X6!t2Z% zF*3^hCP(=_7nJ;-X~*M&=nmxf-H|Z){iFCqe*ft9eEhzCV^@IJD1L72nk}AS0+Qbk z)&LLF``M$L_>ij)`h8FFye6!?JpiZ7vD=lm|C;6+CuXu5WY$x+Q(`sVkh#rWqr@8j z@|B=m^!yxFKz5G>X!plk_}aY*1@!XG8-VaBynK_7Ol0)qwkxA&ILhezLuEAjambd8 z{s(*-Cr_oi>L!fEXKwTZnRGCPNy+Kd+Vz$xeq~@X`U1Xq0UCFSpBOQ1^hI}oD10y} z5I{x`iq}S8b%$;A)ma6af>)ONA9k_NE;rbr?EZ)CWcPTT-NUYjMOju4&E7~*_24VN zhLEY4on1qP)P$7>1mKi8ZwK>$b*u(@fB}a=LH}^uREOH; z${muT{~mAZtrBl#8-|m9_XVZEWpa-2*q~7(*jwi2ROn!gmOoisCh_ogbh7hS*D1^I<}SG zk0W>#A7{VFAI<1$pQy&5ln5##fP4blOFq%Rk87myki6W-RZg^L=;RS?WNHSC9pGyH zFm-=Lx1Hn?MltzqUspY&C6?Pu;!Rm)a*IY(nHHrg?^KIY6%;*Ml;RSTKQN8)ULk*Y z6N!^QOvWejhsith@rPd=t^g+(H#)&f-ey9QKV)fuhw1&CV5EuGsXy-&lM5oOlCqoS zY9uym7RoaM@XXw_Q+Wm)&5o4S2ZTmSI;4G+)g>P}gc@urXIu!0Lc`8*b&t!399i?$ zoywXSj`B{Hg&4f+(%&mC|lY^|;F~GIJ5PvW*%#|z=ybCJY z=1r#v{@5vZ4{{~@W0sSV^NLjvaRJcZc-(c%2c0HK{r(zT;7Jno$0I{vlJqN+7rdmS zTEK0V$W9R>?b6GSXz!b3P7}zKfyb$cy)Rh}wu!n-R zcd6UbE--vj_c;VGb=Q|kN1h1DnfU(dC9^%UC+Uk_p4p-nd@G$^7onDmYa=st7g>xym=9MU{<$ev*m7Cx=Y`R zB9-yMW|+-)v$6LhstG~ho%7~&t6W^S!M?1%$?g!@bWS&?fCsPZQ7b-})2*R!GblP_ z5aRcq+pU=oKDHw!59x-x>2epCK|&vPO3>xD`aWlRn@Ml*j|>SjK4ras&fEJ&ZF*D( z|F|1c=x5>O1!fBr`d48KDD}h7i{6D{44BUe#!N?IHRen>=A%n=IPxkdrW>AmYzRnHE3q>$!@h| zcb)#)yJq>2p{#Lkx5^p}hq8u|BhOB9^@u!&94KkT?186qvcapa2NO;slqZdyOc2`6 zp!-ZN4NgBON@6`d41yCpJN#?MF%)H8xM{^`z5paBYC!ABQc|!6SxOyzB1@^Whb$%F z37#Fh)d`*sZ@2<{Ix6x_*NdVf6N1JI?KHr{|2{t*)lyFQ>rR}^nhZ0WKAO7f>;UXC zd+)){wh!+-#cI$10q*>r2N}q^>_|{gwBC^q9qR3VdsJ^T95qHr-6KbQ>gZ7nSx|2; z!l!<+{d8CTgx>hfd%F#jgqAxFPj}Te$}HDlkHXTZUK-rT{e>(((^Xrn(Kr%vX|l8) zj0u*1Ux+U&yWVYCL^gNU4v+l&lxg3djU-29$iLbKH4}_H3f);|b#WAUpy26ILCEGoYi2zPg2Ewh$8!clIo~@ZZ3S|hf%{Oq(vV@ zI;2|rBWj1RCtD}vfiwBkg}Fa52`IJxfB>u3kO`e4;!Nli5eLwXU%`9T{?8A4)c()i zJ?a?IIL4n;I2HjuDx^KB`EcR~-^g3Y@V(D^ZO|WXN`d>RO{rPX3S2;&#_G}n z+GJa(u|OO*r9h}CJVtbuA(Bw1@(A_ga@Tj_bA|`AOZ(#{pD-xhFv|hDn}4&r`45Ip zJ@5-}Oz1w|&CDk4FPd=L^a(2t(EVLzpWWX{`?M({H&{(^Z*$on4XEa2hTZ+o%%WDi zo)erI4T83jEcSVV9ERy` z3;T49Mc$N@M&c7CrIGvc4qw3YlY^>cwv>0*x?084mkyPKdI{EjA!N33t(95#g`E8p z`aNX8*!uK)uCH2-L%L(}XTt07GY)=6Wp0Mg7vN_Mu<#8kczsl6X&Xq$bYP<;9JxwP zO{f-x5AK)EM$)m~Rlu{AEymCBNeJvj2($sBJxZ4OEdK1npM&^Qax(ms!Jp8n@FVc2 z_YC-P;7|5!_}Pj-wdTSPeT{STJb0oH8*ZHsPxM8sGYjGA!g&1MxCDOaQulgze=6O` zdL6GpqwCq0;4M^i306AZ^Fvn+mB!0d=)Rd!_zF5*x$!5yX-uyx-^Dlc==DAqzTQGF z0y*&*F};8>1J7vEvDeF+LI%S34DguH20X?=XF*=YZExD2pM;x@v}2iz+XA$=&>z<^ zX~A_oE*8;>(;}Rq(ri6vH$2e@EER(|W#=96Bu5;Ls3tSAVJMn~ooxzQzBU{tpA(CP7>Pa`sO_8OZG-zM}NlF3}NN6xJKSWlU| zB%_6#Fs^wgaoC^#LFC^p0uR7V34UV8Qv>HbB4kvxTFE)5HoNK@Md;YxIM9(C(XmQR znRO{5sS24o#aDf9&ORZC=jMRB-NFf5U9X8d{w%*DmJgx49+p7`XyFo|J5cW5RW2zA z1d@rDBRa`JIj*`QBG;qiLb6+5tL?lJ(P3#}8i-FQ{ggokpJCh!>sD5_+yh^V9|4e38PHkt!za@C>ig2k$egS_ zuKGb{My^c#(>*9C1DbYre>Jzv+VA=$_;uhSi+vA+(>FC|dGENZzxise8ug?UEgEIc z$(3gx>`_PVc;EGG0Z#Eki(fEalGhKq>WP;aqtvUew3yWh;GHr)S4KV6JJoz4S9ZJB zua^AwkZXk4#j4dg?1I;64Xc89pFz=VWzuyc%-ogBR*C#7b`=-?p-!nFK$o``K2u!M z2a3N4glp`QOO8NGIAv%_XL;sMi2~Zg3+8s+=;fRGq#9#nw=Y~B$3@Hk zoOD$X(TqKITy#SO@Qy2n^0YR?_p5#@6>nLx-Dy`l(UDb!&g&|=Gk~|>A`lG%VI;BI<_RFk#=?P*S6NLI;IRbbe zj8)Bh*6xFK7hT=OR#uB*VQ%-N5P9ZGmx2s|$d@;Hxo{=AX0{5Gw=cWy244k^sKh$r zI^#{MyW+39+yAIK+4Ah|I9V+Rwq{y=TA(o-34Bo&z6y(}7nwAqzuyqR_4lD_*%@1Z zG1pv^M9~A<@pSBoV^FUR2LY~3?o&T8Z>8KSxfMi}K$Xm*2jt9l>7{(?+_#|%cy$q? zLw5a`C=;5)J1S*M!!Q|j%XJ{Q56B}oK0gXRv=D%a#uWL?b=L5Fxav&l%H;hek`fZ5DTNqPPRkl}EQRZHyE8jp2suHs6q;DeS zUtbnnU+;PJ1rNUZI^(aeHM$kXD%95x;xkr>R26y642kZGX^w09mab{8Qtda#K!(E4 zB+WP;6NbZyIxqL`Xu9C<-bdS;{owCy>ybDquw~<9&6ErGt$6%@rqyCj|>RY+*=>7~+p@l{KrI1AWoyVA{lh znB(48r_bhmY=&b5GNi*~OMGh$HK76?e=%%HYHuuJiEX|}RV4|rNs$%@{Y&rm z01=@SK10%6ZurH+cqqa&?b+gM|B6KR3!Ch({-s0~OAn;S&6_AH$|k>S(g4?_<7D<9 zt|vs&L2U%2>B#-vY8VHVLK6P;RIVzCa>79pSTyskHPnOxIuO(WSmS}9e0q3!M6YyN z`f;m{`F@DJ{%b^%V2BbTP&u>w`_fqSXdQX#ajR-PHjmbaGm&9)_*Z?~BB;%G_*%~KyF@S2^t43J(c7#%l0FR?}+pJaH zo(Z}Ll8=ZloGdQ0S`=f?OQW!*&Mwh__mhK|lal1!olRmuRWqyhss|rb1)PV)304<4 zrWr?7T{ypFZa=6FYQT|tAg2#6aj`)YZPjJnyce0gv>8+S5I|_%D*>Nq-7DdcTK6i1 z@q|8v877UI)?j%l%$gS<0B#Z10nq@f+k^Xw;nsk(IvU`KOH-B57o^ zBdko(R#RuOFaXcYHgFaLzfiEEsP(4k%c_xwQUrMHklK0cen_3Wy;}@={ON$GPaRU; z{A8r%4R2k)s!{`9JN1MKG0nH;P!lSVLwo2`uvqPjWyiP`ioV$DUrHeZN-4%YALHRZ z)C8D^I7N$mbl`~=DM9TH+2Mj=s&G*Qb};O4Q6&=4?09hxpW4Z}aaQBRHu%g#L@h0- z9U@@bv`YM}!IEZ7e=`7>bJId|T@M%!Jn+Em-rV>D+nbxRTI9_S%H#x#2A5IhLmwzl&Mh%2 z28@9`xgM6==dNnA%H+;9uu$E)Q~Cqt&Ls$>Hs86-+LgJsnXu%_FCqtW0*v%?<9oc}Bw4hVEMH63u!Drf64M^w%seNJ%^f9GShN*mF`UlJ>0L}J^ zFY#%Oyj9U^khlt;xlhd0!r4AS)7bAcSS{(%GCjU*~7MNCo_DsZ8PyOTRy9PSQ+=3$D(4456HO9k^sZqu~=3U z4cm-9tX`Nttc?0EX4G6vGU^%0%|)!1-D6mpt3FU?1qL8-vgv{NL^eI}a6p^>DS#!n zsAat^UStB2C6Cnr55p<P#tTySi!1!?b%#* zSdG#b$)viLL+lEOlyg|6q;YjUNx>dqVgbItamlyZP!kF$Wh^?Z^4%Ntt;fV&Uo1Nx zePa{9QQwa^79jEPBihhF@S!FYc!*Oz%BSht_ojmllJ7B0<$I&R2EF+R&}`ppf-I-Y zR~muuO+hI4y=QeZl<(z)G`3p6=XaT$dd&JTgOZy>CS?lqh`j`orw%QF^v$QvytW~w z^0G0SS#`w|fvU)<&8+r$E6}>|ivcT)Z*JA}uTV)|Yi?B&GXhp{x3JpzSFl%}-wISA z0)UbYYcEnrgb?(wri z_Bg#cV@z@HLk951z3?*#rML%9r^o5vLPyg${VuCTnf)6%v5hCQ|8_(LzZpqE(Pon) zDz)E61Ut2V#%f~(G;U#`O6_Nks3>@nKq|F!p>=BKhRdXd)ZR7rC;%u5*2gD`g7uFE zjDmw@M0@L{0HJV3wULG7we~Q`>Wnn_NWFswc;n&h`^xN($W~pfcsaI%)kUOh>MS4z z;F;O)s5&uKEvaX3F@ja2fOzKRG#D~HVs$by@sIt!e?D|{ba5WFqYJ}S(WNa+sJzhy z(Cp~46rY?jv9nb>u^&G3=+aJ0WoLF;zUQ;j0Kb+-n>w~ayh_PYi&g}np(;C=%5`g4;xd2Bq=olM`L>=>Ri|J|A49M;5j}G{bsh0?B z!i|F$`6E9tiuO{0U%ZCx{z+DWfPY=b+8@R-kLFc|!xbz3eWZrY{b zT0km7Jv~6*j&U7R$Hd(nA6w+$EgGs?WG+3bj)?bx|8ZQ^lh?v=Rrh1+C{*e(uQ+t- zXudC^EzVpn4jDv3It=UA`6CZ^f$VEEl+;z(7Xqe{X6`?xj+ec!amgageRgYdE5I5% zYs>;y^#pAV_IFbmC;5ZZYAiT_bf4Yo;ZPt$m+Q{eO{Eh(+#x7(X5XnVC^{;G@q{l7 zB{(OF4L%N?LXk5BpD1!da(7#mM4r`+o$i3E8+T(n7m`aetk*>uB*6n`DGl&&zRx8N za{Mq{WRH>^23SKxP0fNu&j5@wYaD0Mvo)(m(K9!^R}HvRi|zzyN`LJG#`%!a0krmU zJAg7w6+mN;vj7Tcb^slQPqk&}U|24wfzLdE#%sas0Gj)?>!28=!76~>JU_Z*JGoY8;qXAi!BGOMv@Z`G z&wN-D_?4%u4uXMIJd1P~A?Ez!%BfyEuHwflAP0uCdt5+oIQtf%KAL!UxOLeKKcQMx z^aK?1C>?e}w+c4=jpwZfL0}28+khvU7$@j$n($Cv$<8-jQ+n4mQ*4@bb+OV^El#sp zAe#1f4MI<->%XlhBdZ4WIAOmz`j|hx?wp=Q^vq$$)!WiQg6{oiGNSJ6muE~)3WM?A zwlcrf%A{aC(-+YW#?uh$qs(Q`!D{3xe`E^AZ)vCj4@w8I)C(27v`7eB;sQednA-*fZ!!l6A!ab-H z0OYNoD&DSn5(o#w&olNJ%gjRX&l}Hp4_9JYChhiBfhu^o(x@WqOtjh*Eb7qFt)d-$ zw+~?|RUUUxXkVrVE<)0h>vUZ3poOMUI9a7>Z(AI&&=55i9k0}JJj6FxMy@GWqA)fb zNL`SrwL3p7TP3#$kqIwb6~dch6G$NqPRixK_Jk|8a!QEK3<~9FbyHjg9?j1_`ybfc znqw83ol+r07J0=gW;`xSzGBS|>U0t&Pk&Ub9j5uody}kkGHjAnE4-(Mf^2j9cQ(@G ztVvc6k){g}y+`=t8lW(P07bfs*C-dxa8Jq+43;QK6X5bM)_dnK^+adAXp7M z8!@uB8ZtYaRA=Pgdd(UgK8Yd7jfrqQttM`th37Qnt(^m6b5^`=%{Rkm`&UiSRqZp8 ztg6hOY`yybZdJ42eLF#3+dsI3Ou1!+$gC+=(FjHrbTskvI(_Apl+Mvbo*Xt{;1kcx zfyL33sa7dpw0R+2o`x&Zj!m^{g&YRK-7>e(8vO(_w{p5x9>J&z4z*Vwjo!=_9 zm&a#YRYb{CK!>~}M&4RtpA3!DKz#a_oa6(+=;lnEYuzwKL(K`c+O2Uxtxko=I^Ubs zL~B-Z)^ravTF6wF+n!p@cw=mo+36Gx4$8@_;VIFw@Iq_A|GO2*sQ2B?4&E>F(!G-0Y*W4}5hNtAl$yV{Xf4ghRXIEH{nm13$iMy>*Sa9pQ zyOIyF5udv|NIc+@m`91s&_L~Y@OQ!6))Dawlq`(~xJ#t@;W zwV!0Iw&sYU3;@lgRuqww-m$uyp{J=8a@p09k#gCkU*l!*HP#6D?Dd4*R%s(tzO}}B z-iIJ5vEy2+l}PcWng-aPt+guV#cuen)mpUn!;U~H!NKW>Wh;4lmDNg?dCw~9Qyru) zC;PkyBJ}XBZg)h7LuRE5X-ax4;Q1()N+VT)Zxhux)@55=*bZ>c zeSXBtGVx0Xpdm->D^^Qh+F{Ky&dJQ3))DW`%UaNtKIHNrULV7tlZ?9Da4m0oDYgHE|SYfyJ?*3+RIM0F8J&Ne%&givd z2trr(S+!UYDx<`Skfn01rao-Qf9L}cjTn6jLJ_jYeygPqcA%!(w2PeipH1y>z?y3G zmX{7d&-P{9NQPp+1=kR61|=E#%1!S>+w)+jJTtkF+|nu-#tO@qhR9NftSIqJ-pX?h zT221%Do@H=dD0>163#hL>&q(5KK8#`KmP;k09-=T?=T#}SN6@Xjz4N$G54NPksW~OSF^Kz4r8X5q$FDLza-jbT#=WL!>a;U8Cw#j>IrM2 z_>@6C!W5Rjov@xVuiC=Ac+y&J{-A_0uFBS@tmZz%0_iJRNq6}lrAs|+b!VB$b|xMz zRAx#lRH;%>$+IDH`QCCBMd`EJdqCp0^6umuVVqTOq(mNjrXX8G-a$?T=MH1S!zD7( zd_eYC?>>%V0xw9)mE9pZEzVitrrGMOdNHLHG>~3Q$)5dmm`u80T?rlpP37Y$)^Z9B z1J1J0@bp;>4RwPYFg`TC85u82{bH4sVN0w?*=bf{0kxtel^|)HO!==_*s!Fy3^RO- ziK6@e6@>Dkn&Yf`lcn!jdLtsI%tzKEhM3PP(~$NpXgUpP-)1E^3Ny2K3)e#naX5>k z#b9XW1G4Nw=>N{M5(~0T;_V04y7}|2S(Sa{(~ZmZZ`@qnI6PZ!_Bsnw$(|3(Gkq$B z$)VS+&x1dODr$K7AJ#DHx?8+q-?6TPljZSp#!ah5!N%&m!zN_GX3P_}tlHulW3O9e zob&6hD|U-6sqT``ePZQ^Sj4jDKYA>i$e}jw~cA!ukKhtzXt2>oP%yl9`tDVh%mlH1#R*4jy}B&K1Zjwo5No? zy=^p>DYvaou>m|ivyq&6+q%RjW-`f*Q=%`eA0uY#Hi6egE{<#^7HJSp7puxM8$zqY zHxaviZFNeUt_wW_g!{RWRGaXGa_++N*D@tzTt;R?_hlP zO+eJ!zNk4j?^+3l2>wtToFe;-s3DD??SomShw#4dtv(_l4>BA#$Ms_mI;h0a$ ze40d?6{n}Us|07}g1I((XKa#Ss1nSqocSi$A8z;7>ftUa(|)uHcLrR0%c28Hf&bEp zXn5fkpY7LE`-a2+G!#T#`-I0S2vDwdN*#~ReZFW*k;dB8?W8-+>}6 z$R1*SFL~ovxE^iVN7fd6sw~E7EVY>N+J|;@c!QNt(^DrYzcIyz zA)->OJX^&bBXe7|p>>#Od1k2i2&Paa38IroN%#gn|U322Iqu^x(^uQK~`h`lNo7dz4Pkh zO!Zg+DPzWvr;5mtg~5X#IWISs?NLc|W+=aJ;U~tXxL~E3^Rx}A?rfh$Lj#WHG4lXCa{a$9ud79{%HP6eL zgL>4G%jPW#l|K}79~bLc3rO{AZPl-31*H0{F#{@_2hOYe=nk?{(t0k}`YEM#zvz|p zQE(Zi_ZT&+0Dj&RA%Zh?mv(m*pD{krc6cTF8tk>MmFr^MiN4slX!vssteO4fTP4i| z4%D-pxbE3J(65TSTjnMGSgbomL|)LAjjr#5MkI|mcV!=_jvM9vXXUJ`BGRWa_+Fa1 z+OO~K#JjJ`dM9Q_%Wq=)M$WtIZX((<($tA3XuJibX zKq<(t6XR4T0zch}oGEqUIL61@i6+!pALC9C9KG8Q?u%l&FM1kcQU`KO-GOybqZsrTcK4^78`%k&Psb;nFYWK6`dA0i)cV69?%_5@2Fd-+* zss`U|ltJZ#Ze4&WuT`m{_|#Vh`xb^9&|`QD!?=W?`&C zcLH%Ifo3O>($&Zv2RHQgC@xbvE)32&SKi&kGz(u;^Wef4?RjwI;D$wI$-iLq3bW-U zLA3zhs#nL#BITlXDVj^wxX5g<$wit5`-E>uXT9!YIz0&w| zl#dW9UZnYlQBE$e=3Xu=Rtv&@nq2pJllvKyDVa=%m&^V}?$&16i)sp*eWZ1mTv!tZ zN7I8ds>vBO-Ti}J1O4UxH>k3BgNZ`=o5b}uJFx!h%Dd)oLMHqa6eU}=cK-{aPrN9* z7RrEcv@vnCK3Dqd^F_O*&!awT%Mx|mnPLa4`Y$SVo0pZ3QunP)43lHCf{MziVHqXS zC`0A!dhVBlZh~es|1X81x;$gSeopQuw+qSP4csyJ zZ>v{ijfP;WSC~Lrw}1KT_LAM;^GdhXA9Oz~qAzJL`xkXv?2>W|h=#Vo);ZCyyR7k09<$~pb?3*J=I%{mD69J~>Ta;+MN1kUZ-+n`CX2Ol9}1oYjO9$(vAmeWL?G?W z;M!XnKzpqoc7v0De!H05P%;B9oA_6pe99#`qEtpDF@=dk+Dtl}7D^_@mHCFv!e%K32Y7c|MJB&YR@=LDCp95>M$Nk&ke`NCx zFz5ddW3TP7$Ynn}{KRg~4O?|BI=Y__iHK!St3Y+Ih4_HK>zBH$mdT(VssX+)3Vzv$ z?l{0t8#IFR1g;;7mNG*ws(TI$_>1=(1Q;6taoH`gPlnvHuw%T;t)OCLh%CCz9VSP2 zc0ZC9pwg6C|Hgpg%ZeHG<>EB=NHK^v8CJ2V5i2;jcy zVv-K8k+EEyVE{C)#7w7uos$d&j;6GZV?;cifo*_8eXvgYQK1TPUtkS7*>@YC=w#pR z%XG3YHU_KEOGIQxv^wCFw;prf`Tt>9^S*>+e7dH)h$Q1$)7$-wFh2qbJpP2n^_Om- zr#<&;(3)?FB^^u8tDEt-D9PBuWXLw7*pH+!D+69kI6b_osO*nICI~2KM@E!1(%s!- z14x@0DcytJucGZ#Q5M6Hl*RnQEGAA{OlRas7Sr=1>FnVyAwP7u+a^RJnA^?oT167< z#vZvjn7qn(enUK7u`feG~>%8JliyMi!WHzJliOgoyNBNu0Z)i3da>lMv zQ8KMFG+m5q940@uU}DT-6fX3y6w{a-%dykn)BukhQzqYk6bqGSGu*F9v&W25I_aaNlYY`0i$G09D}!2M4=XD`R8j%Gf3WWqXmm z6f?F;SD;tP*lJxtV~dvuhqxb1T#UkTn|V!3YcHtNShgWn_xLSNzFKx2bw4wh(8NJQ zM*7}@T2He$CH2DQBN{AeVe?@GQ0Q9xky_XsJ|wD*yzqqkvKYjWX-y{MidvJ&UQXXV6~eU1Q5xoOH1fumkjz-iD zk93dmsSKmGG{c2*HgZ7 zhl&h`*5i^t){`WoHk{mdH~1f2V6PtoSL%I#uJhgst{v1K_)&j!@aOjs=l3Y_`=_qZ z%=F?P=SYixLl_h9;$IM;$$P)IEh#uY>7{GKOd*%O;4TB3ID21kR}|wJ0n*CzT*^1{ zN_lIXyBsqZEhQNYXQ&Ov4_ehnE^RQYnJi>5e)Zzzpz-b}BN!Bx-)3%pyqqi>7b4_$ zZ-vB)9lkW+gXH7PFdu#-){+S@Z)b$0mg2ZCg)|>Ds=RR`EU56xXtrh%u!<5rQqg2* z!YZcGN0~8x^TmAl3aw?!~#XA69yoGq@Z zmpIr^Pu^SR9xQ84a?kWn&CO)UtL}NC0@n5fcg)X88sN>(bN`L}+^UtkkW6~*o5J#` zmqSA38CS++(Nr_j>Dqkos@emucNM<^-Bmp5k43lfbkSJLUxzQqBxGa^6hr+{DX~6& z)xI|9O`UOx1{QcG6R-JKrO5Pgo;cU94V!723Bxuz3> z+47ni4O~U3d`1JoSdWx#fAt3#Q9j^|{IXE5YjzguhVQ7zZiTcZ}^2dag4I}mdo9bis0)&f(POUG{75(r~ey)7*;6@ z%jRn!8qc`d5e_Q6<#vnGnwbv7M!cN3!rjS?xz1u=J%3D!eYLMs>=UW}r4#_6lmZ|S zq5v46X_?X2y#cVQ?7zxgQAI(9s-ocUV7URJ;N!@cqTsOWDhjq;?QWSEjbI)H|J0^q z&v9s(^jRi1Et9_Y&VB9DgyLE-X*nW%q^8Y-*c1&`lbbgXKtT+2p@Z0RhDSkc325`H zM@x$(tbl^p7J2Jk2x8k9oTfFKup9ZCO}RiHUV9E7hL}EqY!X8Fv<8?_AmhyZ0@>y3 zb|Aar&-kK0PJob2AO#X2 zg(UQz0HKQsy(NUEC3$jFUbB}*zuc#pc$fwD3e6?(Z*b2! zgrvob_glkU9G}+{BJor2!NxQ0Ig?5<;7tL(Ap+iRAqED#ANI?DH|YI>Tay+GFb#Oq zh`6|eh-VvR1S)qBAGTNgnV{hIGochvyl9U0oC~4`dd}bC7kbX$(sSa;cqlUEFw8x? zpO-Yftu3GaL*X{Kf9^UNFm%dqCw76CBwS z5)K4=g32KVT-6D_6TifN13ARvcexy5pjW zQ-czYHh7OVmO#Z&Wk!_os9)h*3ltrO_^FNtWh%Y65vhXBuE)#178~j!bGlWTXtBIk z!br3ExNi#j-q=CzaFxmllHsKVDj6;|@m6m4|EUH{E57n=L0gjzCgMYj1QDVMu9GkAf!wvpR{S9K1wRzrX{Vmf(F9Les|Xg` ze+(tdvhs+Z|5Py1PIeeuTORS^-h!qUL`;$X(27V?qz9A*QlvA*XC-U$Wj_}*GIzpr zdT>J;L_F{_q*@X!h)xM9Y2t#kHih~aqs1fjhW<&y9T)D$1ONwv&d_m0rZR5mZ#_`3 zg@ym3-4`dmVZZR*4TdH~5I9anAyKvpUq7)*3VaqX|CfTgEQMg;GQRdNdKoVs8aW85 z-PBb}4i==w=|-r_#lR1zhhc;q&gCZTy}bsN0)g?rLcSwKMQ`d!>I!eNU|_vAhd^Rm zJ>@6E{;~4NxAJ2wm2sVG{37=qua?Q|<5q_uhi)n%hU$Fa7rBmjfE1uUGuE`J!Z#OH zPBs^S-s<0;#ugD2ROmda&=sgqTgY25>HcJ*Qk5smM=&Y857Xn4vHZ6%(uW96WiPJla6 zs1CMgi9l$6iiRZ7f)=RQIlj+oK|kamw=`J%L0gZAJt$2WO9}#AqM_O3piDb%MoKY! zH{u)4TSl$62Sbfon0l<0qpr;ZPi;cV7){up@CusHggTgdOwlp*c%&6Q&xqwS{wPRf z6cN>Q;9x8U_^tXZmLNQ%U(Qm|l{UtHX$(KZr zmB|IxVFbySL`jgdCm*jrsFIK0u*xBmkB!#_pZ0v$`>k#;TXDEb<|iTq@{TPa8C>Vw z#7E#}jByU(8BxwuOgZ+SzgW=6G`{EAR|2`vd3>WyW7X0YA0wByYzD61@ z62Cy1Hm9rdt4u;9fp|$(=ZG7aG6ZC7D6@^T z!<=P~p}(s1;@b&FRNG)ti_S0$LaMDD&u{4rWEkJrm#(y=1NeZ-&U$PBkp*>_@mW@- z7`qDlW3!AtJT2VW5Fx=ULJx;3LwBjCMRdM(ks%a62q4|exFS_`QL5_xTMFJ}?McO(Rh5}_ zNak~1wCO4k-zxG45}Z53MgdQmC|p3egT{u%FA2l%YCuxpRB?$E6YlP!S{xHXi(l4p zw&N>nIn!@Om9V~^P}|v%-9bc>nrzstQmg<{P2Q$jI{1*xyvAMd1*Gat>vFEz5-HFN-=_N88d`sM+>GkXHxBVG zeP9~?24NlSv2owomA6hcZ4D|9MvOX;e#fUSadu~?!8Zq|y@z<0xTHgbxapD+t- z%<)Vg3URYG2mTFi)`nOG7;5kAl+?-wf z8!z)YlXyfkXWyi30j93dln9S$!OICixKDC%6MLPd1O@kH36X#agyec(_DxX(_hmPV zU$`&3@i*MjC;PJKIJgvV@|*Ohc`5xW@?Tmw=l}oWR5)L$li_@geMMS?PW71v1X^^{ zJ{(|Ik*BQaTLUwL4{0`JpTF!kvCpqEgMYW9;CUvXpabor4irM@;=MKpswrn_k#_|$ z%tH`ENbfsEcnwW_KFP%3i=bF z6wtnC2>MfgjimZDLfjv5?j$mx2i&Fs z0U74ZzwyIwjAE-h0{;?CSe*dChYgIwGU2G`Fv$&m!j6fipLtk@9d0khup>%EhVYB_ z()B&==_a^{Ga}%kQ;9yXV}{0)M+<-@ z>>f9=^)1X+K3Vu0WvcfU69`k>TdXbs7|=i)dT$Yvg71gG4g@G9!s#9jTZG*2ZV6Je{ z5p}3O#?IGg=Q~OAtxEX9l1AnVhhmMn!a@X*BJ?!y!Bh2lc0Nzp`7905zMR3%Mj_jW z`)9O$xaYF@j8P+kFals>MzL@M2UCUp1PwQEC>j#ORACEL9Evv;V#C(Tx3@9l2+b7U zO9-OL_b8L^Aq6%ooDNvwEWttRpR{Y|(*GwbsN7g!jSgUEjp@R1N0mux9M#g5>RH8Tb~vly{Dw^>6o!wtLC!BfMj@^QZ|i|`2U*Ev8gx#emXkO#M1%|1u@hg0B+ zT|YtrrR+te99mvV+;i2Asij1pp&Zf7xaVqvHf9u{o#q}Q3px!&Lu!~VOrYh{g=bo6 zsB~dcg(D$M7p71x1-DYjvj~foFJi}9Ja}^`W`qV7RTz%?{Y3HKUh~A z3D7g7c{o^~(174z{me}b)ES(+P z&W<{NO8aKK%;{{)df1DQO6z06Wds{+$H27&VBnw*(&$0`ZaeC(Dq%uyaqWjaXfMQh zMWLpHgL(*^7GFI|2K7jvGeZvQ1XT{|hoJ)o2K5?xP+ut+({O4Q2m)^$1)E1t- zN;LN$CxPvn9T}tKrQ<|=E4zF z8QDGsPJzfqwp&^Y#u(W;osetfC#N~PC;u#@rSWZt7M~{nb|Z4brb`|lof>%~K?*cm z6q&7wsUS6BwAngBLuHH_DgYRxpzS(FjU{*(ql!+*7*#|HFxhuH+yinpW{(g!hNy?( zg}PvfnsY*is7?ZlhNyu8K$j%I2SXI)V+&C)oKPX^B|FdODbMwiXH~*e#i;by5L_`t z3GO09Z3h+@qCT^;_=K|fHbk>9Muln?#wgk>9iz%YF-B3Sj#1}`L>QwenvPKvs$*2x zNl>@$8F`GNVdY&*?vJ5Pf+5O#LWZcJCuE2kbV7zG;$t#I?JAteY7plpzNI5nJ0S!{ zsP^I)MyU2DuNR@3&UMZUx$k!qp$E5NM*js*1Eef)R^kzUc(#YnbBeuNci>U!hP@RTleX0yrmG7Ms#lQM`Ez`wyQ;}Aj?k3MOQWHmXq_wPk;IEyij zRFW~R_sNhkZH15nW7>-+WlY<)*x5a4v;fnX){n@m^Ly74sN6^HYp?h!LBV}LLMfng z(H!kSTSX0Ypl#w8I?y)hKq2>$`<^8Ey)@GjDr4w_oG-bnDDr!MEOmAw*Jk2{cEtCm z+VC#_a&}F?%wO4sg3>koN`C34;aC1G(}(vk%!Xg_U28@iowirV_k;LzOduZ?e;SF; z3)B~X#)&^;#GgOKpL62RcJY$?Hu2|*_;V5dOj6&jYE&%9J%OZVBbnJqVm4Nvja6r3 zwb_&82d?@rZX~(mlgP-uOo)Ko>jb%bg4|DtU&#H#0QcfQ#IH6Yt3!Mps|~-l%y}bU z$AS!G`30J3*7up=GagTh2ej~|-ZGJs{ge1JLOdja@19%`zwkYanc^BMJ~ogjZoc8g z#7p8H4PMTfB67VkYdt}nq+{0ZcOs)|m-y32Y&YY9Nz1L`CvJET6suI+i##k=9Jqk_ zRD>@a@Oulp<((9t9vaFwuW)|B*eQVM{X|GQ6kpT}KPCENrUQiM#`dUmqc89BoHMxw zd4obI9X;(uKH)j%R@NXSp}LX~JkGOarL$gu4B4p;lIhNCu5vbafG_f#(h2?f;#F`_ zvS*NJHqS|ObuXE`9(;&58N6aWC@Wd`oR94muqgPpxTDV5)P zQj&@f+0IiUc6a9U`&O($TtR7ws#viqX>ScAEI*z|+z%*WcAE4jeXh z<>;C`VxzkWpYy&mhWKcdl%kV=-TTgpW+Y*&6jAnp^A+YJ3{eqvvZ_Poa{Ph>{@wU@ z?l(IrZA{8N=@Z^IA6Qi`> z3Xeh0Q(`RN>YQ(`R;Bu-5ECgkzupX9$^36&EYIKLtje?F2Qr?&%el`?IwM1A%9&sn;{%1y z?y4D|!O!jsoJ3(XZFB}RwH!-NRpc|C@1MY*oa)Ko(N|#NJ>X?$6`uT~^9D6F4L-C~ z@(nym7*FI7?ikxq0O)WLC#33XMxVh1qtz>tT?We|wV(s!@~DjiZdj6jK?ayc6Lm)B zQ)Y~95aA#Fy))e~Ch_@3CbEz#XM&FEkncL6sX-A!@Y&#JG{p*BX zS=(e&K2pj$_KP#$U=_}49pALFt^_#*l_kDVgMAb_NgG75A(FP{mCqExK1K zjxRgwJjdQ3Rc~5v>#SUYdJ~=X;vbNa|K%UfXW${Z!arfr{1f4 z0>ubU%i_+FX<6DiJuNds4ssE3r^IA|T8^DllSx8f*tk4q_&J#d{N-7haSlU^&d`K0 z8^3<^JNye@KQd3lzv4~T5L1QXQ>SGnUBOl7Gm#X5rxg@*^ygf2K4!4VL>@4o{M=C9 zJsK*ewzz=2i9=NwiV8T)a>9AufPr!Rs^J>RW@#2;F42UK9#pGijS!5BXZjDAt``ip zoYW|*>>6VJ>l_}&8jE>mMc3VIqrH4REsy7;E4ezcFRV!FLC)<~%#oE{_p@KEm_y71 z=VbQPIctF;0i`h?jHtnX33qkmcZa(ojBK7((=|p^6GsqI%6NYI&n{K?wJI(TtM$8f zMr==w-z9^F)`GyJp}$K86PT+NzZjtzKsCysWsLi7mS-g~#O$kRkFXX<+OX>|p@ypq ze>h50g$k7FD{<~e*`wCVL(FN4>H=$ll30`m@?fh)YtjIxq}#{4C-Z$}t}1MkmCO)x zqoV(bwLsAqr2+cOVl{n$Q~F=lbQiIcRtiJRqmnd#usT)*11Mb_MP0Bee`xEV9ialH zI{)`BgIPL3LKCL^Ax)TJEl>iB(tyAZCTM{HE=X5f44yT~xuk;1;^+Hox|Xrqt)zyS zgC!6CU@e>EgCPgs)t=o$Dxl<0L6A2Wg99HNJTN|FCp#y%jx&;6O~Yn`9B}eeQil;# zK4Y~j-5dvzP#l7#mU!w$3p}|^yh`w#&0~^X*~v2nl*YaZ0uWf4mwYs|rJRqiCUWAK zmGR@y8=Q}0bg3Hof~F{!aQ@A8T=yC5Z4JkrlBBl;07X>$JESJZ75tVo*BJ-fYO9#6 zE2_;1Qc{P+hMYL5INhnnpFl*Ac- z*mnT5Flry-Yd)^AYl4NX7-NXk3eh4pWHBc5`RXRx)6L+4O_NP2EOd|!N?U-HG;ZJqM)`^z(cX^CvXq;IZ*j^^Q35yc73*HS zyf zKn-3d?dE#g0!2fmc6WIlBhSMtrQa21vC)J|&^+b{(i}%I;0pV|E7t3KxO$UFQZvw; zp!(pebv;MawlIYuBhRdOUOor_ddIhOFZFbd3S)~1bJY7hrT2NH0EN~s0;~qn#ESs0 zP!wT;7m3W~o7x03?z^)tb*6?==y|*(*OkJ`amxR^VHLhD*Hzc}oFC0~HDX`d8SS8q zzL$(ZHx&oCXc!5wIZrODQ)UZ_T>0!Ip}i^(A}1&S@2OKvH2Gcmu55OVpbL`=baW(& zj*dhD7^Ef*goy&H@mJ7NI0&ZbK9;1^qFKPQ2G1_)4R$SZH2MqvcOj`Z|8}seGiy%h zU{q+ri-)-GVND1;?OD$-b}Ip(#7+K^9zrp34WuPeAM0-LmvouBfAJYRZm;2g;5OHC zgL!NOjRHP?m}?FzAaGRJEk|8l*kl4lIScsaJ6uT?Y#Vp=VeY#$cbG3_^7-9jYm+Fd zWTa}wC>lQ8)ylz^5w-I{hJi68U^um89y`1RfF%kY*a2^uQy<@ zw?bA)bO0Bg^H@Z6o<7>ulYMH#iV{Ku2AS7*X6nTx{&^qQJpMod3=ric+*si1&wjAc zkirp8bDXXb?6?gJ1*!IQwL0ag&Ud+*u`4!wpc?OXO|xLz;&^&_XVh`roFjvYk?5cA zaeZvCMi;bKV;HG-L5A;oq`($NI$w}sqzgq6VWcAzi1a1gF6(_E7|BH#sZPeE7E(lD zg}Lp~mrKGU2rca1BMAVzH(+D;rh-8~sn2H@yIQje1RXmIpkw#8po=*O1wi*c&t{RT zFl);r9lLQr(4dk69XoQYYo=rA1=X=%AM0wxo+Wg!!z|++$GN7mWdv^PFwG==enEEE z#TT%<@`uK|3LPIP;-wQ@ZP>?z2GZWl=T2}9XPXJ!M!UJB{l2Ch?2Kd>QW6lQkWt@E zQQC%dc#KFM^O#G$ zi-68j8!+KfOBf1rrnwrB8D%Tk3gDpMEjds4qpxHT`odQnfFZ9yP}G69yZam6`Oe9% z2COHkff9AKOOzj!=;-~f#vvs_|Dqgl_^<&IIDf#E!zfgSwbC|i*f=7Fh-elxF%R)? ze9#qTSim?Z_+1+YKT-Ph6xY{m5uqlh1b@rEJdYHhVOA@{yg~|44KLc&@McgAHp65| z!_51e7>4pe!|WjR(J+7^4MR~eyujU*#>PJW{&ZJ;wx3i(v3|0Pbu=i}mM2_|h;_7B za&RY<ZplJ-!PChC&*5hIb8 zEpTN)OtnQYEezU&Qb&8(0LmT|iuOoY1e;|Yhy-X4iU!nb@o_(~SVo~(nJtDndB14E>N+#`)>3OI)|HyGUg*BwEnW6QWC9$rh+w0N&TJ2^;^9m9Le$T39Nh8+~AP zBmOsceZm$KV(3NlFUh_=pA?`My?jab?N>gYsg*j?cf zgb+H>X9R#w1Tsh`qQdB&{qrT+vk#DZDA8Uj(XoI;ww|peLQkSB(35O{1U_nxX9%NE zFv%bmep$OQnv!CmDXTu`s%@{A&Nn-Anz7pdSQ)R7P?BiMr!QF|0^hUJ^)0)V5JOXT zx-3oEi4=e-oAT7#qf*Slm*pdELrE!WZ{TI!56w}RF;>g{xChYNIOI=2B5_}sCM7K}pC`nZ*`;Ii7vSVYJ}1KM!0 z(`3#gt#GUW+|XMYIe|t5t*Ev#C{xsV`^#GA;*GYNa#!g@%NVorpE6B8>`!hq9qMA= z5{dL)>TUrgd#PD`T~^Xg$7zslM%$z`c9zsaL!2Z{FfU0%Kt$Z~nyZs}6m0wDkR*1L zRuV~&6Xw-w43CbKtZ}8Y8drj?!nvy%b48mL?(q&>>&gk65$tI@_JmRJA*Uy<$bRtz zDGl}uQ1F5GU3J;NNg-O}Inq31E$S}VD`NF7Mi1#wPwxSWi#5NjN=K2wM@H6K`? z86R|R;cxq)tEPi}s|(;|IoR~sb%mF`H@GI-MG8QJ-FYgn7ExVGkSitl;tCv>Kk#66 zzWGsi7j~RfTJ?lGFA|EC%HH~eFDMxT#{l;j$j=~ZNbcF%M*6Eo@H$b90$(%GpC2~-*&(xtRE>t zwYI&=x7^`MwA8Ul(oag#$|lLk&s}dDV}vA0Jo5`zZ#Kb3yXsf~1lm5cBj1p7sTtq- zrfV4gsq(8;nJB$Z+xtt7MUtZt;ZOa_^^CzvNeyi8LSB8BYYbaR;MiW=1$&u5v8fBM z%1t;B||U3~%vQQGpEKLPQc z1gb=d+3T8Q!N!A`VFVFfAe?9IgNY_3YqM#-R9(euydeCJ9COdrkk(QPR@Pejvn$uZ z9)*>CuY zBe1#s4T0;w9PCI; zxfarE6)EMlC(pSy8*Dz|jHa1WftM_G*JN`@K`5^+knNmZp^_XqPgiTvh^;1-&}*UC z;sQ^Lf`+ zKCZ|gWvOn{>nJJzTNU`g7suq7v*E4CIqn>yQq{m6eu&78Om@}A)4Zq@b&(W=Qj|wB zIv-Hf(^nyc)iAWvqN1SKswjRsp|GO=wrj5W25X?PQClta|500J1A|Y$;L4(iL|xeg z9c>Kg>leA3mq#D*?3gBOkPY2vz+ZH@uUW8d%5=*%)-|Lu&r4;JK~O1ShaCJ$pM|jx zCv%uv(pwGerO&y0n~z+Pli3nP%`st}aQ2rGIgF%Yhzy(V9B=&7l$k($gzO8rus9%o zg=h!fgnU-~!kduK8hpXr3H2khMYHub<+A@e`HQQ#a}DMvDuD^E z%Km#(Lxb6W|Guev2L&>deRMr{I6vN_b{zkkxhJqsG#{M;7$1Ur@iv36it!}*Bcj~> z47Qil!>p@420Rns>t}vz@ZH~gYb+TZaU1)?j&w#N6}(WK&mv9js+j$C;Lhk~hH0V1 zF`2HO6>|t=0;DCl+wx^GkRqSWb?R6uUl0rP>}-NB60iWjtTya=De*Yw(%nIjL?eu$ zl4!H)HljlX(RjZ8(x?V(5~+lghgvD?RJyqY6Uje`21%`0fk7EZ#iDs(4Y5_A^x5 z95FSW^&!%YH_8No5TZaa7;EIuK-j<~wau6y0! zGY*ZB*>y<*PiEIm7R<$e)%RuQH02Avf=AKMq`8xmw+S?wZns_lXu6%c%Q2NS0akRm zd}r%BZ#dr$Z>B(ht{VBECMz@GR?n;FHrN~u=4mtC8`)w4z@cysf4PBswgpjy-{hwR zB2CV-aM0OmZxDid8(^J);x+&TjgsUsg?!z_`z!I=W?hWo>(V_Fc}6#PyColbEAt8K z2G-Zn#=D;8)pdK+ElMEEOI~K>=npX9-Tr1EPvx+n1?738gAeQq&NczgndRYh zOqk|z#oaV61P`9`uBW!83AnvR+q9~YXSfwZ7^)@VE(~SG5XVNiAxR0rz?Ely;*itM zk3kQA7q{^5$Z*50t09CM?nvf`@qta;i7cNKfN}>Ig|hL*6fO>1z4pf6d)>yXPiO!O zY&>Owjkf_*junOCWGv&kDq%b?+mpc-5@Ey?!y@&DEcbsb0IUqTe=XPx|EnJE2*-Ex zw6#^tw-)}EIm6eB^dI%Q9ciE1*d!1Uc=C)~ zLA0w0ri+>FX~7@q=>CD7B<#_0N0sG{k^(#y0KeVc-<{4J6>WZd%`R&c>~qS#QJPg; zpSZ0`O#~J*X895sWr61cbqQ(QKL*URd2ZNCB*KWZB}Y5>zVq(MaM;&@RKeZ5Eb(=2 z=%C$#Lh!S7iyDQL0{w^5M*pFJn1SwY7Va433J6o|JhTcL9yXz(7>rx!{5AWzPqI3dv@4_T6DvvGCz1l8d-!_uuKw=2EQ`Rg$(fbV+l*WJhFo_R z^iG@R)rDoCi<+l&QS(CyL7{m#4n30xag!nj6>k<*;xWD4_1G9v3&rp$F(w7Xuq$56 zfr_W(QSlUjil+cn{35~=6>q@^DxN}7@ijqau}=|*I>m$C-?2@E7%G0FQv60zfQtV@ zD*h`1#}Vs<|@!d#Z$Vd_)~-+Dt@C>JVnGvV^&s?Cakh{78IdEWf^Iz zRt|(ad!*4qpw=mE)H(&A)+qqB-i$Csty?gHTBlId`UZ>EyYMs5-xJO^4|l)J1`>*> z`rOLW=W|H`#v4y%8Ss6i02}U74KE2c+@}0Q8E=3xDxXqDcO}e6G7UF zx;iLzWqd4FTkZMEPE{hz%?`e5qC3Y}CtzL8H4a|zfyc$h5)OJfP%NN<+Cj=9+N6VdR)J z_Bt&U>w;Gm$xT6$F-<4564X%t<*12cR>!XJO58|FOJ!eM$*FVJuOv-#Z#YkzGN!dL z8IJGV9UVZ68~rQQvWN(ZR41$tQ(ADsYCObOP6QPeL&KOSN2qc^mUlRds-k^Lt1?1B z1F9U@)|=%|y4PJ6#v0hM@qjhGii{oUq*S|a$12KwJCkBz0HZxOW>}UwJ*xy`sBmPm zoJy093>@GxtZOu*ti(z(MR#_EnxeUhMA%!QEb>BUSDM0k=HZvbz8E8SWH=?I4_R=X9HD?>15ps=exF!xl?> z50FaOUMLRH-m?S^+xs^GV0+K1_EJn+dzAq2e3NMJmU8V?<-ztkA9tGus~@2q8rz!| zA?=$+3PQEFiL`HW1hsExQVH7&#Ua|8OVF^rLkR%en;RkROEGQjRRZ+oIo#dVfWxsl z?ykhVs#rAl?35nW{TJuB2bgRIVT8?{s+v2M6ohJShHUNwf#%|#{=Y~iY%Ubj=C<$~ z3*2P}dqv~nZvF=Sf3cfCfUjHRZb7l+R(`}{*i8AD;0lS2SNwAqyWx5kAxhByTMnJy zR_dN^!L}(pdmZZ<@-F_W%ED9YRl9lKgf85=M>+%Wz|m5>#g zYJ(H|SUWu1!1#$Hkxk#^B}3!6t817m`E8fy-dbLypxZkIC=5C5F4_EGkm>6ev&^-k}t>&^z%duLL*c zMGe?2?`Qr6HN~#{^l!Z*SQ~5gA!bIT+?CIJ&9*BK1%f2YCpE-|yr^NJyYudW53(YH zh4OkNT{hWTpyY*8l(+bGEib?Vbc37xHA3o$XRde84m%DilH2Oxd9y9mF?8t)0ag@fza|~1gCk% zul&gm-J=7DV#G++LaMv+L`bEQNt@jR;N}@2hQoUX0f^xpzRb4oBX>IsqK!q>a(Xz$ z^#Mm7A&ArP&0Dh>6F{7WL!X564WEDaR(Fzv6%k}yKYF6%1l&Uk#KKt|Vi;5T=I!pL zY#J>SYn6whWRQI#N=~}pjFe{>S}SVf0;tL}3>*0Y=Bg-O_L{E|`?sC;bBgv_N!xg{ z^a|YV4?$V3izs2eF8!EL#r*+jChnk6bX=I)0I=8pkf(rAXkfcuUDe-5NDEi9-~!16 zKH)3(2`f}AZBLVW!tPcKQLl8Dd!7|4?#CKct=?$G5cM2iyW3l!+Lhz}v2yco+yg9? zVV;s_I>9=din|(M3pk_UXA%m-{QbXmuQgbELQyyn^1TESMVys1NLpfW)rGt zT8f6I#ryIUihE2V$=qBH?G?u{&k`ayEx{b~XJn(zm#gx$mSfw%)j)9wLt>q}_fKg@ z?{hzC(W|!W2ZTvTNlQC;YFX-{Su;UKZB~EDe)oBU9VE2SqWh&q_Y*i;^e<)6ziEN6 z=%1=_j%pYV%9&K%)!na5N(pO|)~crc98C)7Xi|!fCba>SNhwsDv^AlMilS&}(p`t# zn;3;^llH16P1=VL37QmMXpK4LR&S9Eu67->s$1Zc{wqh^^DPWVR!#3Hx$Cu@P}f^EO9eDANZ_tl>d65|9R6ys_uFG+I(vuI z!gh<~eR$qOxBFvgH*74KFaVT{7$46M+%~Shv4QV8cDD)9GJsB`1){r+ijA1s5TjiN_3(-RP-PEH z+bB9_6BktR^k=aI9p`SJ@X8UM<`!(5B9s&#X+`YbP}o+!SzXR%xw?rkiR^!Sj@dU_ z?qYY~yO^h|Df)BkFf}cu) z><4Q>V;mkAN31loka^gxh(A~BzS~3PxN$4 zo+hAlSz4@Hu9l_p0oQyYHiUp&KEF%bn^=~jpCm-)YN~1tb|l%;#9*T|oMUIcwT@>N z^ARX^=25&(s%Mi08y8|D1tML7_(rT83^w!K4Lw=#L}O+HPm5SBvU*2y#Fm6J3|7$<2IfC*$2pp9V0fp*kd8&^dX4d-V~ zns{1RTQbmrOAN|#TEKrJ)$){T}Pov0n^u({ZnO*>1(vIaA=O}rFHPRd$C^H zK#1tc^;)}1-iwpzYkgzo%1L{o+JK>4o@nQpSzcz`+}Taog={d+vnerQdU#L;Ow`p3 zSpHB4&x`JI_E#`0THBWKr!BbA=}g2VC5*FgADuMl@p|Y z(7FNt@bLrPJnh&xLLlfIX0cM*{nfAM6ESiQOev4;;d#^|CdQGugh7brC7?G@GUyHP zNd)B$xawLID_32Q#LCsdv{WJxAh_Z(zpE}&4!)yRgG;UoHRO`ZtYLG$tBPi1jezr|=6Y@s)X>*LQ>&+_HLz1l zuOVGI!$QpgROCvFk^?QOmDbl(WO1E)XLYH}51>sV+W?e_ORWOJPmiu61(Yh&|JXp! z3x?yN8kP8l{5G|DkHMZiHr-zLK)oymZ+T;e@l;ZXopo^y*;z|zf#|FYRSQ=JTPVUa z8EnaLZ8dXM03#b#>_bZ;2b-@Dy2h>X1f zHb6z3`%^x+`p~gaVLkwqL@v>NHF(aNF*W>Ghj~sI>=fay*I~z$T8@!YRErtUjl&Zg zN5tE_s6xE7d)4@W7umE@OLoR%QY$vPL@N#ArB)hQIVi2vQ*2trUq>qeHcBg$k4-BI z^Ea&(y(TNCyNOy4YE3r2hV;;pHPAziX?#L~rz<0~LUDX~mw7KJWTm^d%AmsVbZpFAi$) z=rWv-a(k-86Tt#&v*MA^tL6X+Jh`N^^uWRqCabt`Tq{Jyh2!hu7cLxM2SG!hTz>8G z%nq?|T;=t=%|5j@S}hzu*3f`(a~9m(!jZ4M2X4nc*!bQ!{&*p*+P~8*^rA671moiW z#^VJtes7WI6Lx}B!v)!qczNsV*LZRy8J3{C17cN3kVl=d)`G@7qs~Lkj0AadczO)3 zKJkiB1zs@T)87QDc%!L3=|HTmQcPh9eU1sYunZWaJ~-$;Iv z;tA3!TnXm4?s20lL1Fl`$XS}AIws4n6)`G8L&>An%LEjM4=}wrCgT%sd#Iwn)+7%c zb-Y8W;PmdT1UX{7MGC}(1y^WaCdd`qPFg5Njn5NgeEcB+a#f;=qa0ueP-Sq4ZT zD-X+T^amJcdC3E?aQNL$`m`c_MUpliMZ=QG7KfG4U`(wU(T+gG4xG|CS(XiFQ+o@Ob3+#hz#fJ88$>Jg$TpwPeUWN(!-S8?|NEcGR{x z&^6ftGpaW2+Oaw&s35fl^mAT=NLfIZt|Msk6 zrKF|cXlnAeP(y>0ztWqU{N?ayb}EIhdC@bTy{M^^d0z;g#V^#B^S(1LdFt^4FL_GY zd!#N->-@Flb$!GmFhRpNo!#~>qJCc0} z+{Q!A)O!3Ak0k%kZ+PI-E)xkUY{oc#=SEKn8%N+a7V7qQv1E}DvKeq2u;A5y7u2yR zQH6P;5MFj?l?T{z!b?Ztr2>lM0ysbJLZ$mXC)fspjC0<#i827MB?W;wudxl%Njy#2 zr?gB=uRczc)2rQyG6o+heHRWTv}Ec6_FA6(t|yUE(l{vF015ofcRjr=Xc(!Rt%H;7 z(}cIsumufA<}cs##8{xBGCVgP#SIwWVR(0wNY9NsKqF$W{b6sfl071h)!$329sK1xHbmx%uhTj2j#9L zRJH>m2;W?1S|6jIC`^`Pb}w2}Bs6pvg_)(|P0H3ua@Z~ftBHF(PZC@$+v9fG{0l$! z)Hc|2c5HE)&z2D=THy@qA7gF= z+bo>WT$sr4U%~=yP3vWDhdnzADA^9@y@&r-6>Qna9q@nxttadb18-2jk8Ayw6u_Yr z>9u4WCb2yjub^w-{4msuDGJSXt1Ag#bYepTNR!`BFm3IU1X2L+K>y&$ps1H_777QYHab9vpIq(%<-$qODe z+w=Vm!>iob#~-uB7X+*JqaQNFhZV<(uZ!V#%3c=_pWvG+yG7D8re7C|b80;C{y=O~ z;10;sVrYY5n;R|eoE9#W32$s2=Vccj?9DI#yLD4GOlS-BJBXLf^L8(-85@x|R0G8? z(V6Gmd&5(jMY|8h``Oo?ibhDn&)qO#p1H?!xBs(mJR41RpB5S0A+AIuO%gyl_aF^} ziHjFLQ7FE9Ju4aXBffh*n-DQR^yZn5C5v&m9pBtdyhifU@Efrw2zf7~jMwk+xI=1U z`%P)W%cnKXxxmAX&!TJGB3EN#OZ%_pC{1>`v#iI(>i(E zu>X=q=NR5beEw`lCv$f)A9yRg^K<BgWhh-Sj-H-uCbJ{Oblh8Z@AVOL2S&5}o-^ z>xK+|1buJAE#ADia{@r^^;t4cD=W+~KTYOkk3tS_|6e>`uu3Vqns8Zu=C;hZn-J-yjsWB=Tql zHcinAG&=D4=RK{BGyLhpp8IcFR7b-Ur9t>%)nGpXpc<^FT9uX}HTdIE&(CZWsrG-U z!4Z;|k;c#b4(H4P1-|w^TtO^4=^4vgp7d-sX7Mv8JzdyrB7@f2V^nJkQETQIaK-(F zt@!4{o^YNYeY7E;e%f>M26s#kXc2x`wfKTvi&K>rA5>a=xMXZ)|M;_>D0l{uRQ^BI zv2dfZ3#cs$^JThDvO-@Nzz5YQX^u`?6kc9j>hR3v zDxLF&YG{DkoJ}_$qSN?*Yp_3EsHt=0xp_df&ha657W?Yp!hXp>?;-ZEwbl^xK~R%; z5AeP^!SkG&{Ft+KjJRx8lXo<|^;oIB(n4Jc-Uo!IsgDfFWUt$?Ue#D|d##0}ni}S< z&D~)@b(O)0Yp*NM_p;< z1(DtrCKu0m`=QR}94go| zsqzFqg6FmL-j%H7Qadn~=C6t>YQYFZ_*EYsJ+@UPc<)jqB^cfP>uY%9;0f1^Dec+E zggq+ufX8HjDKa%8Kh%ZEe8X=O^UUwz%}jBN><3+d)}8-160THYjvk z!Bzu7w#t@7??9G7=wa+b`^2RY$4N`Oj(yZaZx-fg9|A%9lrDHUU>>tOJXb1`9q&)^ zPBBe0Mo{UC)8w8} z1V57IZAomR_U(H@IULDZnWd#qOp{*_nNAp>fT{bSXF?_HDi#URkXDE=+KqUb%sJmNVrf8&N;_|nsEf~w8)r8Li%x=?kWLus=69M&b;DhH`m&PuC@ zU}T7wBz31(35s7TvsjpDvs6yEcLQM-sFYdDo5(bKm~n^zW}$+b!0u%Mqg61I^}r)l zGFVzU4#G5+8Z!zDXImlGK4xa6%OKc}(9)f(HIxRUb51(#WOcMY)cFi$48vylq(_ArlONhKJAW>21wCq|nAA zNuJCUgy1oymv^!;Tk?qR?d{B-CS){^C;3agy*~CNDYWrWw|i%W;IX@pcOHB#2Xr-> zy+J5w^6PkFKkrnwjuhI+t4GUTvyvBA&-}ytdy5R?YuSdzgT3w9_k@mS@~!`#Jg?JW z-;z=r7j>y~mz4`PzQa4E1{JSpSJII?F`L`~G6_^;gP@HP@EMBF211h~g z*!v12mC#*@Zz!Mp(<%<6H1;D%%7NMnq^>6TC%*TueO?hsLn8Q!3%Wl}loJC}_7S&v zPp}>~IdQvC6H=FbN$26~R|Cr*Rm|8Cj2Rg4@Z}de1qWTLlWDq!2nM=3a!34LAq4J- zPZGayM|@H}+!2o&B$k}`x;?B}d4bW-%iG-P-CBMH>%Vn41YkCoGzg*~pD!!4vB&F#ek ze52&bC~t%@h;MkqJ4PUjYiH(bP$~GP$`Mi%T0g}6Rg&a83$P|q0~kK15>_8ntJZHw z5()w&@wxnDf`Bz^)t8HG$@5;8MGyo#Ba@%?LD1?(;8-yeDvC#8zVZYc0JvpdZ~vhD zJFm3KWyPc-67))f_Y*i0^h$zk7AX*IfS02!RAI$EhCN4+km@o?buED-)n!V|XN$F% z%Yp>;D*Sq;4X(nU13So7I6)O%J>8he2afd?MhgtN^gb%2c#iKF>+PDnTtMm4`*Ceh zwe-e~%hN=1j7hjLzw3we8(w;&H!nTbx+*(CXyf{O`UI~D9}OX3!4f0I6#=B{Z+m4P zb&vNli);XBWT(JZS1mQm)m?lqj2y7R~lv; zHi8fpv#7{B1OTUb5DVmm5pgO!85)JB!Vi!N;Hx;tGbZt}hrG$9jVq_fbBIS9$Y~z9 zjyxSM5eU86SW+3?LQL?CVp;o~x4wBt12MaudKBm&fYAdSrz-|7Wv%UM_%eRD@ zuy;y1%qfIUe?)^glB1mXh-`@on0(5>h)zI%*t11D_UpjAuW6sWp!t@JAS5H{F}d zS3c>j$^=HBquRJ8NUp_{Ydm*z@5|-_#k%pozz0hSi6CoZ5&!&O-i2%tDYVg76Z(0S zehq)>Gv2m_`LgSsiQk#dOVzpwDVX8xpF5LvHH zPj-Ni&(X**;Qeqpx0l`N2Zp|JF+HY$I&cXFhu3zIpngggD) zo6Tx!unb6Ix5+dc$%sTMVMHPhs9gH06vRw!$i@7TASe&5-B5nxD7+y~APIt^P!TEM zJAet;w=mS#P#%IaDQ;|yOz=Bi^0tSKRGYxIFt3&iq?6)g()d8fr?tWOgvk{&rh>A& z^9hl|SPe2Hl30ql6;p)-IFo!>{KA>!!;P*xlWh2^_k;2?N#5)=IAP$VF(MFioJcOx z(BMS!!<(E)4v0RQ#y_Z;6v0QW_1?{1(k#eqG6dt|7aPgh7uAHZbDUp1!t3I36_{QnI|Plc8wI^#0d&;ei!jZaN;D810-=a z*`TrR0$3@%v7Ai?c;Z~G3&BF39UIF@aeq>P)u8}+PJ2u91XzHlo~>O^b-~%%%g`J- zTO+7ATQlc2vY(jSf` zPBkOU74R7(k%LMq$tlrtfsQ&*nUz!sJtf*rsN%-bR{|iQ0Bm=PZC;TaX9eTNB^=A#WmGgcqjfPQi*)D6{A?6pLSoo9}`pNh^^oABir^AbfCL|vP53u~V-uhPrHX^V`veK8Zc;jF zvQO(|lO(u@;L4#aNHBH3w}_o3ZZW;TqQW5 zybsPG2NZ%T2bAZV*asAWEC-ZM&EVJjyzfD8hvatzlny8_Xa`d}0hmORBkGW)wLFA> z{nwi~gjZcAigh8hVGx@$rBJ&W zR0=(uenzO`8vauOz(EVb7w#~4PJ3sYhnmUHUmPa*&>!Rm!$DMy-e5S}Or|Szf=90c z-@<@IE3ip#_7fox98!%vl7iS|__UcEYqmmVk%FGmT)QYrm?!`N32~QU)bHN8CTm9# z#V$kZ=5m*zwJv}hxYgsE@YLI*QXKu7t1n9A>T*4t_JPX56TaJ<2OET+M$yVu*#W?6 z_ATBNMp&U4h6^ojp1t-xlk7>ry6(F`!-vx!P2QVKU;-CMrJ`=Ne&S} zrPj{{cH*Gf376`>N!hOBXW?*hO`ZW`q2Rj5#zGz3r z$ye&u3|5`Q_h9!Zjqv5ij}~pinOA}Mg)^^$7V^RXIUW)2DlQD%!{3eY^-RDLIWPpH zrZ>3~UKsEu`v(px?qN6p057XlJ>0xlQ1-!}d(@qPVgY&Lp5O%lQC5s;gZDrV^5C&e zjeB@ml&{;3rBUA7j%Fa@u2jBAGQ*s;nPP#D`{r}SA_~`J&kOCqU@G(XMcZH_>nEPm zGPi_1D@4PV!aa>yKAF0|OasL)5pCw&bHkHKk-E>Druou%{(vcN-Z92EH7^v0n|LKL zEzRfVJM*X1@;?&md(LF<>jq$}#8{jBo&eHW0TqI8IREmS7|S2ijfpXdCn zg$M&Goj-e2+Z$PSqPzp%DXbc4kzvCgk1M2VZeo`NSk1vyeme+mOXsWQ>yb&nrgP&96Faebbd?Avk!UJgPpHsbiE6j&U@5uP!}e0g#0 z1%TQyx}{9Ik7_B?(?6@@+sgWrYQnMQ-0lXq34}amAI%1H`y*P)-2QQM8%Fr&rTdy1 z(5>IA>${arBD}SlO0K7-X+lk{9K~$`LFA~P+15XjA4vBl@~btEhV%aQeK(S*jxvvJ z$>$v?Y{146iBO3P>`E+Ft@9}*Hg4!U$6h4Wgc3zRiaT!aN6+i30mXD&)l2weE&v7Y8lg$0xjBG@M=5ggLSsJ*Za4_z>)hFSW##ufOLx-)#nq z&Cq>jMn~Teqbg5rRa7mwdwZ(>JjKvDSpfBI&zt~MOAONLxL=aYh%zkz-i zUeXq}Qc^#w*nmIR+7|&g@HTYvjS&@au_zhyhzmY1n@lPT;mms^RsK*GRz!mL2!id| zB7%zq0hbc|?2+7JwuT@f!Iu@mlkGIYm!*W+kLC7e+erna3Kb~T=qtYAtc)Nb)qSe* zr%3_Ix=)hcHL+Vg9@$AZ9x70((>wbfW$~F-%b2m5Ql<4sfuJf1aO<}fDL`SNfRe3t zt8XgnN03n1UXm=Ib8AoqCcuDV4W9aTaw_wY8b}sODOp_CPbWx7c8Vfs@u2oh4leCno5sBzI#o!!H$jB0M@p` zB`8}6B@^yONhNGAG=u@U^CV?|9^ z+&@t8TPlNx=9#aylIQ2Ex$&~Er9bR0-yxH=x6f z(Rrj4t<)E)ftAWn`iAjU1->k^sFlo*)>cx7)W8p|MEPke5vae!>H8R7jv$;-G5DbB zgA_Uo`o~0m)a{#O!A5&Nx2R1zn`6c9&V@apN@cIF*LA8qdz~tOd42mVRm5~EMYmFI zbdYwyq>n3 z_T1)d52*%LX<7P3Y+LhNX_@Nf`p+*=?dmx-{jbUAi3f^ZR_CF$&Fm(f6q1A&{%=tuS~k)hd^I z_49%23HNv#%)fWQ=)-dwvz#PtGnG_9S(QBHYiQw(;UXGnh#N>~uok?_!Q6{%JrM(A zAV!Nd%3fxsWh>Q=-H++5Vst8dT(M>IL*2qstG zUH*+QLc0Sx+Jd5MTTp1(!@k*!0EsP4>nCI(M zet@c)C9gsh@r)V1-XtifY;3{|fe9yoz~H6F9&^NHY5#FD0YD-K<(HCo+9M6+8_UatbKPtRLAyk?p-T`3L;=Z z1?(jXM(hQ!VnMKXK}B}&vI-h|k0r)fz&2_Uqv?rJF>Mp$iyG5jOwqjbim{|=)RdR1 z`Och~-8pxcO}?MLe`Gy#=CnD}&Y3$C!t7h6*~{wzjb!YYa>5=!0ip-M7bei8$=ePt zi&UM!+r6K&yTM){l4#2xQkFkNO2K;unD2lYMB@EjQUD4}3nBUEDKfGS&OZq<)it&A zw~&G#l1)bWV3Yks=wp)|l1)YtL7-Ori{ku-Miu^7aeiYK*1_h?c?QHUx8!#Xp2Fdd z_LBS*817;>mcYogPqSZ3dOc=-$Au?2fI|Ni?u`1g1cC1hmfP4 zddiq`!nURWY-?{&Td&-f54UN$h$OnL^E$|0mPbnENO6?i>{twHM0Tszj4dU_V#I^D z!pk@A9cWy1*2~G6Es1&6le@qWM=;7zn>PqLerNt>MxkilM}6kqYnMxz_u&xceLA#x zTSQ*i8k-Y%Df+wQZ#SUVrtE287IF$er^@E@@9?17H3dPnR-cfa~k#@mk z>zhMENte?xWbbP0vz|5*Hb3Q!&Hn*uelM*5syo;nL<-&Vt3V3)%#E!grD$HU@qp7+ zWqb2muzN`%TK29`vOlUViyvm{hVLvz2Y%S_l%HNm93hOb^#L6lf}-n&pwMGYoSkf1 z;AE*k$ozd{17ZlWuQpI@}3UTxpYEstygNuxwA&M3(UXM;FF~e99th6hyZ+Z-b$MY!Q;&&M(;$fdp}jupdk*`t^QNs{7eX1d9C((6OIUbkrm# zwr+G7!G`sEZ9esd{6ZUL9Pi3HsqyYhg0CC*^H7a@K{jrAE61*K(4bP`ct-(fn7u%Q z7^Xo^=AA6Mb3m^te!K~T3!Km{k)%-Dr5S;uT_QX4Q~$Q=g%P;yY9g3LX`vD+QJ z#cF0Q02KyJO=OEmsTjnKd4j%t=P7uJx4N@$irkiBH6b%(Z`mZk6UTAN6DRPy2^%ya zVB!Q$F;TkGx$~MjN;_BLC!eaE$etke&}qaY6vqC)lksq8^)iKv_d8)*BWoeit0`;U zd_mBSMGGqOHk%xgj27vJ{FsP{4N1|E?k8{L_qJ6=MGJq6tH^KP>{w%b&p&=Me=NI9 z2>CmRapCWD{k^kq1Z?_t{va~=rTf}LJ3A!&y7S$e3*jp>a3J&Hb{yXYdZ3*=%&{3F z_~I#>VpyHMkT-?h+(lQ#*#(2lEd|sUWEO|8@TTtmUF1#O14td=OlIFMA%^bZU3`ut z@9s|TB6?~ZPhEL)>o7tEIpf*pu3b=00}c~^2jYX6cnE8GAo9tzRT-mF;z6v_@8yS8 zU^@em@zlUJ5K;_^+ej(45Jp+|cac%nQc{Y#JswK8Ls~bn+95l~ezH}z@z_uE8`=2b zOi*JNM9WSRKBzs$L$~qB&menEMa((_(fY-o<+o&C238Sj8QZw=Iiv<@745V?*{fs% z_P3wsj|j%b%i$|^wfRD3H9^$(#Z^b18@nium%jE#J$|*pqUtspB2rmjFZYxIHfipV zZ~4&`?R~2(Kigmp2p?^crUa@j(t!W>%lsj>DqxYJtWzNN$+ycG|MLvYO_aPg#Q=MS zOrrs>e-2{L6dUJ)l5_b@*?5921~R~oJfAh}Sz^<>C76;tT+O0S{*l zs{XQS=wEB*y3%yVsEci-8{RazPxS@jumOSLq`bz$M_PeG| zP8XEJ)B3F|JzWsd4HQ(_CCs>ncaw+KtMH-8;(3*kQ#twbmJ#~&F{dk z{p`;!11R^JI$6NR6MT_jhQi3|&aS-py^4_#a1zYr5rf$TQAlVMAz`+Hz(p1p;7I*w z*y2Q1LJE<3Q80BpZ}1pFMCuPo>dz85Qh!KN$1?}7kV2&XP%w2ockl&4MCzYNqqwhX zqd=1QT7DPy2SG)ep9IsyQwO!W+gr?lSDj5~2bM_SnAMKxj!E~e8=Sr)9DusVa1QdB z7f%~xkZLGmA4zT$fg`y-NKTzN$RnjFZ688;Ia@-Ck>~7BLFi}x&=!0HnmLC>tyL!LKiMG8<#D8Tau2g3bLBard%LKV^MLt{eqT>nXfKcT}1 zoire|WbYJjX#Q;y=6=B&;s zJftDyoWlJAic3fsF7cegrC8@<20LcQ?qF`6!6WzYjOJ}8IKs?-^^l9Se-SKPq>1wi z=6gNlg@qrGQn5&b+eP;zI797bPWQk?sFBZ0>N%66?iH2kp#|WH8wJW!Zxn){;`%~H zp}HaeB69f~(uRw4TQqR?vq5o{($IT3$ z01u4FfW{prbXUf0zFr4KTnATZ=N&trZ0Qv8{6uqfpsobGo!-$wVlja2U}G zDMltc$A_rf>!0fOZ0GD@uPcrai~@sT{&Wnf4+c>&&Jm%kG9^`p{b5>>M+mf8)E666 zMGS*c0Q$*m#82At!kV`Z;&+}I9M4;Jan|G2J2+>tbwnr}pHAMgkQpG8*cY!Mh1etU zJi%^I2+tGTM~bn9cZJgBaoxg^9SWO}7FL&VtN{e^k{#uUQ(MIG@FeykVT9fX=;#m> zT{}b&^mJ$EOdDxb1`ic{4$9!6f-=HGx6Y@bH2PMyju>H*m*@9upc|)_oD_)=zGDRh zBo-2x<|-f}qLesD!h)c?^F@P2rRjcyEh74{QG+k<>5OAFXrVq;(1e0T=D$Xov?s;K zj@*%8qA3A0dATc?GS}w{GDsaU&I#&heo9@NKM1<5mvfh0a?vmH(p105C*-x|r=*1# zEsD}Y_6v0%3KanR1qGnt!-0n1@NK<4`Z>E9Y$uUJc7+a*r9iW9BSqjl1I+zk0db_D zloVhWcs!KYhoD8oaix4dae$MKaq7ChZK}m6D{Qfogax)3VB*kAF+nJKtiU{*wygw0 zOy@~06zt1Tf?f6tc4bfq!LYF@JKfkpP&`;bp_mJZNLP(rGhKVPZtUvmAsRa_J!E66 z%U38XY-|d^#@=ji>`B?q0S4KBLU~3@Jsk;&Fnvgbw03!AVk#W_=@+ zSwBXziosW&C(ve9=S_ek&L@;3_NL2(2lghw#NI?PeX_~(1ZIU^y!5{O1Xih+&3E%m zvsVbWjp*g;>~~Le(&Xe^eMchRgVbcRTwgN@htw5o;37`O6QR>44PZQFhex^-hB*~qy z1fdl4PT*C0WwjHaxJcnZm#T3#3fK@6p)qwYXx-k*L*shedXDnY+Py<`pQdo#^w(2w!C@0m&+7iIj$=_) z=%EyVhB;?9Ov9YawQL9x!|$c=5MAUIm^)7t}6c*av=lii6IR)$-Q?uWpbNaO8>K~bdf_S<>% zmfwo(6;NLcMx^n)@6K^vHXQ$krYcPylgLhxYB-UUP7X^lUk%k%@Ac*hi`=)svS#^W zXYAG`&6}9Vd-GG@PmN>82_@|Hsp~4XH!t><8N*AY6ubR*p;-LZ+c%gVTQSRl2$!qhhv?BwFgbnEs%ISM#j7D^o|QDZosq)h zS2-K8j&{O%<}H$D@Z_Jyjny&;0as3RvC|x2j_D%}F)onas8ICskRF&?*ueq%^AkfS z)(f^XO1oG}yEKsc!cf%j_#0_scLfXPnKpFH31(wbO;qjzUR$>TjeSV1A=)`&}TtuR_uLImot0R>ud}_WAr4 z^0~?*#CLHV!94Zh-ZG!Q7yMs!L`+mS?W;Wzu`!?CNI-oZ5i`}R);gzEVm$+~F;m^O zubfG{l2Ytb8%mtFn8W(=&pA9~GJ=$1pUQ@6<$gRdsjoleV(f4w*VF@Sid+J8P!vB#(3k7VC+@foSkjhm|G4K zxudQL5q5ENKn8biVFxvs>q+-H0>wrV$#(N#Uzt6nbp$iAy;tWJDKmBZ{-GVt<`vk7 zgfOzh+`q{x1GtcdECfcg#P}L9iDw%-2?p~*5!v+RZS%rQ9{)MW12rVokDnas8 z*#mj4n7^r0i(ejIxsn4a^0bvjY?>uVs=cNxh<9PK4oat;ZVIk&QV*r2b0p~t8fWSqI5W3wY-M;ptY%3JDXSJe18Om67NSKK^0n?Q8~t2N3NpiMoA6y+HIYlWiw8kkS_Z?Ote< zEd(x`@IRTA`I^U_&DdkKNOYDhyy`wU?h#aF^*#{wa4>ee{mwqY*cjP=D;PWRfU|Wl zHg>JDVC>%xIByQbUc`O~Ks2}Xll_9q9AGfjy2U<&@skIggMwQrwI5zXW4z0Yo^Ym< za#jCSU(t#k`R?2Lu_)04FfG$f#`>p2kM5s5fE}0jVQD5;)Unh;9WEh!AZO|+vP?tU=bIZG_v36 z0OxnkitnEB6Y4KTUJ_EAcn^&O^y2Zi9D%2|9(J|jnTMQN;kOIfP}SxAc|wh8z3?H~ zl>`dqVj^2N^STdS;B7SHo_GEpzKzi3xo4*hYG7>@Aan!uI6LKy1HHHGu(P)j{=nbW zRad43*FEq83_;;f1lDax_^Rv5XkA!kCOM*b*2l@UdE_x?!T%3ZyE!NAt^hIY~JL0T1DHKsx`@0Uiy-AMeK5771heZ zEO_P8*8a-P0f27a?l*z`U--xG<^n?8T$EYJ?q%`oX#Z`K;hlhWuQ?|;8f1V6PB_zn z;|1^VF#B1^?G2fn6mOpB54Vus+OCR_1w3~<&+Xl!KX3TKq9&|c22erQgzr^;bIN;? zI%}Z#g`Qb-W1jiPNoPZzngq{3$A7qJ61S!%=_ZNZ_Tyg_`Suge{+Z=*-f`WW`IVE- zX?$Gl{3!3kZ#cQh#%jfcwwd+E2mn1}Km{OoCt1R_;uYiqI|aCXS{xU2qOmvUT#MjG z=MM|}zk9Nfbb7drIbNDXA-YbkuRP!$T=V_F#@jE2Ds3MXY3>Ed#jD8mKX$&wzSVU_yAS52 zRU2JrD^bb5vh%}Bf*#3`wTvB_5_VHVA{&=Y^luZe^?$zX!#X>#NDuH1s>G&Eb8`v%Bs(;ppxSGD8qOaCqx^JR^Rw*#LJ#JW5j z=zXTK@ap%r-#aI;-vUv~?&#JUb{FEVW4`WtI5UQGNDH1S;dl|y{z7ClhAz7+cV z@x7oX-edzZAL}*icGe~cNodw`pggSBEwB{jgi?7!&K1qQ_(3CGRPzx>1={`Syq`@8 zq=B}Zq&O4>mX^Jn+8RQesK)7^oNKxJrvNTc)yDAgUHPMe(jY!{m__TwQ}Ft%yM~ zp0jVDe2rHtq;6LSt{BfJTzPh5S1T3(h?Q^g5@?2eE7kuNFMO4s<#1)Qc0@Ml{W7L+ zz&(uR3fOHBhV)Gka7f!}Wb2G9;HO#Cz*TyB;<9qE~BF4ez9hfgQxdTlh_9ss{74+OABa6ECjqI&4Q5 zt3c8X)IGk0A3s*dRbp;6cy7(ihK{j=A(z%WvMz^XOU-%2xkZd${voxKBNyO!fN2V0 z>Th#%(%=xwG|yn{kl@-0ajyO~wQH+8g~s!Rajx|6@tUe!c9Bk?Fh>K62i=|c(c$&0 z)>jE`qK1DSfpPKR!_(4?b2eAO=YhL6aKW`6_i0`nU1b+ghWv5(E?tlzZp-d(J~LQ; z#Q3Z(!JceB6-wV12m3}y{D4vGtM20gUg%*qUg%*T5+3MbfGUm**u}ypG1{K*UX|~g zJ0-z!0h;C1+$oLO_oTKMYs_y$N%*Uj5L)DNBUcMzXDuQ6D3MSO;Q@eHzN@ioXF1Z@ zJ;$icPc?CMV|6oi2hx5MlNrKq8fQ|!X{ha}ZW1HHK+EIH!gf(`D8CE5PY&hsTf{R1 zW$xr1Sk8#|OWx*}o4e9$(`nc?5Eh;7+RnSEg=?(I@`(JWTe&icE32bbaP@v`*BfjW zLByV)b=!h4mMfrg-u4#V?7GbiU#aobz!ab4YRA@TupXEkfXs8dZcHqv*3~4}ShlOY zTE`b8pNW*9Xcunyyq;}^#A-Q7o4)JGoq}(h%**V%RmWW%34{T`lZ2g_LBesE#{P#^SEU4Efq&V?q*r26J}_0_t1q zVG{kX?&Iz=%$`GJN;i$v!am=9NQmAva0re{(C16KySkg5hhXYFyt5{tmS32Eoiaq_ zU-NXi*m|isDC26gK$AL zR)u1)S*n5lv-_E5$U)@K1*ekLkc~+#?O2U3YBsL9V=w6NSMPC6*uFsOkA|Y|^&9D8 zx~qqv8AvmJN-0{1Y7$*cCz+ z9U&t9F=hhOva}`%_Da|xKWa6uo1EvX~sL{;8QltZ=IySW| z5C!8$fFdG0h7_E?mgAbqb_8M~tF4k1?~?2C2fzduV=GUZ?CQau4y=Xrp%zAtYT;jX zjdM9IYE{hs`_NGpARiPuqJ(7V=pu{>=iJHMA3BN<6=mq?jQCZB|1#B;UcaLFO(RE_ zNt27nQ5)~dJl94u{2PHN{X;D!Ql0P#-xUp(`?ha*H<#;pD0IhAKNUo;AjrxUuZ;n& zI4%iMsBGsoGsrlI+no~#Jsh%dvC%+4vFl#Sl7Xda9#>t1btBkfw*;Ha<D#I59Aj21C3eXV8 zXyJy#MXok{|E;b+*+C)(8hD>H@IDP!aiy1s%31DJT_VkTJe16*q*+an8Sh2YGOG_1 z_bIy)X40+!02NsxP!(CaL}c;Lf3+!|b}L_GiI&R9l5QQxFx5I0hiR|Ztz!%e;XpNp zg=!sjDKlXzTZaHt>pbRb9WS(w0e5B-5in5D9=MA@L3>?5V@d-wSZ>`4>qaq<7#G2| zI=JBMXWeCJA6N&pEFFHHv1Yp3>hY2bnjX!lW)A|CyyvfZP)Km}Qj4U<8Zr=0nm0%yuw98L$U$J5;V{8w`~z+ImCfS@CH^Iz97D z5m4XEGIE%0S@Ahy`Y)IOo1l<`fxB+P6WPD|xbC{EfM zXZUB_)s~&pb!Cq@9ZL60Qg`FbwjHi^ak?4Rr;3CP&)nhKZRd--nR+{2BU!}}+I{?^ zc{Hi5Rp4LjbQJ{AY0P(Tdp?21{vYUs-RDv0{POt%C^(jq_0xhL5>G8Ree?%p$YWFkGSo3D z0LasVw+TK=;UE7oDghzKs6?5CJGxPDP6S@Aa|lj&TJXk>8%=LyKhOZjt!@)JRZQky z6bo2bo6CcOpgQ06!gf3;ID$PRBtivCd8F4R4`My3f#R1KNY+``y}86Af?tgEMDnD) zuFCw|M_l(_$JvsSH(Wz`_+zf>)ojvnIBHkGKO1jF@SMG_s^;q>_`w&Qbuw*8N`*VG zTLq5X-9_{3^2a|~6z*NW*Oh3nFSMD2?K10sE&z0=K&2qZx-Nld53W25AG?< z!UzZ3@^?&?2M9`5qY8^ZX$ zS6#LF>*E)N^VFwYnb+q{Q+e^-gBn!p0Fpp&i4Z>CkndS@HHJ@p+7-(L+}ANq53n+8 zjuQadxVH##)6Jxj^3c-gXI%T)3{p$DM9u1fwF>;T#8D-99TkW`lJP`TmSnalp(fg7c(?`n&fH999Nb zE8s)^%8TNKZSqsuE1Eh-p7^j^IXtbGN6IJ73;yLg!agO{z;ZH>17A*{`bl?HtY^ME zl4qwC#_*FrwXVfy+;8<}Kb2eOvb_!-Hwqu6TNA05jg4q+jFP99fG{4`sdCJGcep$f^HYO1DXwQ6j6j|`d4=h3+ zBSvxYAUK;HSc*KL)W-w|FVG6?op~6XM~L4jC;-Xvl0HN)?fsO9YlhB zq3fUq<3z;cKZ6slk9x1Z?lKHUDskwIgL!d}4%c&%5`1+gdx)?)`lBnx+xSh_M+SSH zfcL!P>dW3CfV5Mvn|z%=^0uo{AYv0Z?L0n#oejpGbJCR(h@Hr1yyu$8{u_*4e9F}z z7#lD1tTI}=uaYG9onYF1S>0g7wEwuq1e3+@yIKch4}2GHEefziB1a*51YlPeXuhGd zQVV|YLXD{4s;F&NKvl3LXdBCWyzi=HzCMbV?VMGcm-gx3j7<*4{NjDrHXB_r9M}K1 zFd+Jy`aXcPDlGCuRBjoeRrH}NGkmcC;I;^c9=yh^-AAsW71&(_F|C!AY4Xt+m8iyb z0ZiG)YA=fC%|3U%Wj;BYC#-_+zn<3RVyuI=>gE|8%!5!{e7hGkhaDL$x3Kq*5>J_T zG53v@-`nmZWQxjM!_5yy%LmdwA_bcMd!gu`vC)S&E2mFwESO-@4gMBQboVg-7|jn( zbSJQ@<)J^t57i2vjI*MvmqC z7R=}ph(46HDhKo4g)}3s&&L4BA1s>2$nRp5_!&_u3c;ffhISzhVpS&U9;gc^;1_}A32te zg~fUYR>#aAE59M6Gy=w8b)by!g?$(t88f$x#z>}FG8&H-J{@i?uE-uEY;nAOXsjG> zAJPTB@pjTX))wPMeyoz!h`pqX$#8oVDwjLlz6CZGF-_ladw8rIZVwYOFx)2c-K{62 z7-MB{>}yh}hupKFc>JJwhzOYjXmevwr8IOn*NDx_?Aj-EDM1h$b>-ww6@!$^87co|^;F6M2tl*iPIX zfbIYxcPS?s?A8!Xwr^46XBem!3vW5h|Z>hYY*o=QR^ zSeiw19O0{s*UpFYK@9Ix&l(%du0z<|#QKq~A!K0)-^z*!07mb-9e^P|Zmq@tno^VTOUUcSbzp4v-gLsWk zmUQAdhZ@3x=YF%Z9cMtOqQuB1?3_lG13In_PXnQH2lPwh{j0-M-&sA(&&JCE{WC%a zhsD(7b}h}y6J!#s>ICh#dPJ`{Aq11C2{>yQ_w&EnTTOWJl&~5OU?4|z$_YnxP#V{v zRB0U6!|jkK;G*}UB+JPNSWMm-JYs@T(R^vV-^3-q!RLcHf3B+FeKgs+)nJ)Ke6;fb zkX+o&HGmYz$v`|3Gg)apm6U3&b3$o7ood}QN>2;wVliNfE>D=^?tKVbNf==l5gT_C z@bPjsg3nRNtPWNSbNd7y*>7rNwv*J=LT(Es~ci6hPncu5y)Dmz1j$L(dA0Qk0- z{;b=z336d^)5P-J@Xt`XhE4P@UNH6cD+(o3Z|o<+8f>nd=*k2sXBoJFU(O_+`flac ztRvx$!nPLxpRky6+uGCWT!Cc~L~KsH#b(e%>2rffDK;m*w=#92JVh~$lU)Pj_yEk{Bm29wgHC%QS zd~4|Gfz}LO)NCUkY8ciUmL7AegahE`DLguK6T+r$?y>RpW`sCq*W-C#W6+vul11u;X?%~_RyC`h{OP70d|k6&j(&?$XbF5mMaJAWR9-yf1n3?@jvg zYGbS(;rIB3<&*RUB0C9Gv03N3?(~t)4wglIUzIO;9`3j9KGxb6{y1TS_lY#L_6iWj z{M3CSHc`mE9;FNG*W^7%c_KI;XQln$^Fy2WJl0g)@R7m@2R>uGwah#+2@{OfNWr8^ zc#FrEeC-5lb+s}fWA7xDg%(u~W>x zbBK$)JPBRI0dnyDE0(G|W{QhuHf0@hfCBnl5>Gg6$^7vx8Yq4VM_lLpA9%>_=;+NBhZF8O9P_*s z;%kP|8!|{HU$zRO+<1XUoZH$_!Eq;OhZlI_&JaZqJm7+60x?R8gF=;m2@LcYQkxV!6jBJR!F2kyKM=y zn@8CVUNu``9bu1<3jZ66J*X^Z*)4{LHJaRRjo{~3Tl*@!4Se}q@3~XhDIx(HF6+~} zcEf!_47dEgL2z)qwFhoyxj|Pm|E+BHZz2HN?4kfrUwcK_?6|jdtyN?&W3uij{~M!S zQ${=PGnyB==wJgLF0a1P>cCnOhPr1qolJUW`^mazMou0X%cr;X^tfRo8Hs#QiPf4V z5&_UgeFcEpsNrNe`o&Gg(a$?#leH4w_aXKEH$AKt?}@EeWuwA!;K}#K zc~aO4!d;tfDK*=AVm6;|#qf!nF4X0_I(<`__iQtx>Wy1*A&=exVatU?9<<`U0zj=e zPiZ$>Sut^^)y7~?l6qjp%%~NCb5E(Rr>p|QeY$a{81<9+q#vu-g+SfOyRH7_N|+GZ z<)`toaq(d><;>*PiX3@c(Wm!V+wGG-p8t7%mvxc-K?DNBs`Ed;XsD16muI_ga9wb6 zpjC&%)kZEBHbr+jdHm=7J=QT6Pihr)cMmt>c;tiDAo$e%^urbe zYaYLO4C@q#)82-YQ)x<9mPK$PKLR>%Lk6L9>x0%@<|H_RmpOHcyiDl32dyx;Bn9hD z<)0%|t{oL&qxCtHe;X0CsVY`11Efth@C`t<+(Uf)wO0nCPvnK30iZ7@EzKmX?sr!XUMOa%E9jVcVPk748GDh`j)K@O-Wtna~o2M zEnhxJCcIidD=tVWVinx_cn>{i)i>Dg0B*#b>UJYi(Pz#@&szf=PfmqgL67-^+0y|e zi0UfEe^9EvUn2$?^pl?R-)3)Ugg_&zPq$u^s+UhGNOi@YXuyl(+>6)+!sp7Cf=u>} z0AMtxDlc-loAN?eWG`>GqgIr`D(C4Qk@g4pz9UaYS{X3>FIqpPWwluySyckjP5>V|! z3Xy7BAXT`HKvPxci-0sXZH z2;UsOryAU3PatCE$TV&eMAOZyQ#mFNH=ndx7_9ZQ0Jm>GO}c$^Qh;tR&VQJ_r^)kn zeMzbCP%|B>L2f~Adb6g&XchY=nKM317V+N16!xad(7Ep4W|8KVHGH=6DL zyDGVn1<8R`68VwHf*$PX-`1;HFg%>FQm*$7se`UZP>AbMsCK>cU_NxcuL%|5dgfVb z^dCaHo%)83P*-k8An0~x6QCiIc*^g1o#REE)yofXyV!i`cCn;DiYs!dZQ&%;ps9&0 znUvzdcr#D9Xmyod*A*U65vPpers9{Ax{Ii5m4F3iP6-QG+KUU&vI$vOY`}$SB6AA( zm^mf*97V#+XY#PSL}*^lm*;MOAf;&C z?+L{}{S7YWRyhkAukf;qR-7P@hiq#(z6_^%XfSMNDE9Y#h=y0t*EXwfe zyxu=plPfSM;VqWOWFe@oIF z*VxPxu37aMK_|WUv{UxpGo&g?^aYXVqLe7O_iBl-=_m``dxN0Qzg6(9O&sii#e$){ z^$|u$am>N^U95i9lT_bKmATyWQ{`vItzFuWaZTGo0Q8#nWwW14PNx|J6IJWOlPkdu zApWJPIn0G_uclN3UNNmCZfS*2idlD38BChNORLm_#C0Wiy4k|zmk2*3UPe$+qQ!QJ zI(YY0c2_bgZ~*gD4ctj=2dROQZ4H#{e!pa&RCRYC&fQcdSW5_no5S2~7zN;ZxoNBA|k4^b3MNrqM5oUzkR} z=)yF5wIs1O!fY|blz6T&a2g+8-My}y08+CW?t`q71?XzSt^-J>hWfTz>vrB?0I7P( zh3IYd+?Dw5_uNsu$(@VSS+r)ukvV=zRt|HkmL)?;KSjEqX01py4DU3v2mb#DF%V**JoQWJX!?avv8d!0J$d_xenFXhCB(my}{W21@bUEa0vK zGNF_Z0hw5!5EPIh6=Xo>D)=e{Wa0$249Gkveu@9C-eRRxgOqD6p1W&76tDBEGb*l@ zD5L?Jzlf8H0FBDb>=k%ApF5Z*eLUj2LoU#!wGy@(c(@b}DNy#05I&eIZC%fOi5((P zoL`>vi><;hv>xuZ-y&6T95^8WI5O4p7S?x{80;H@g0sdsOU@eSNP$>aZ2M&VbklIl zfz097mJq{*`4`mk?=`AHz(vg64?^3En-Tu7WJX^MV2fWK?<+VEA4-M_Mtgc#aks9V}$C@H}8ReV$T zICHvNE;tHFDUO>3JhGWvt$r71JBS4bJV^m%ax^!AJeq-$N15Xv8xS2vs3LH6bN8c+ zqT-l1M9`D-6zGD-@jivlE{@}!fc_|M$a@XCwRkr12%#uEA^flaNKb&O@M7Y&4~K3v zKUVGgDM3fIJ|t?L*J_F8g(ngGYO#}~B2H4pyC=Z8TOsC!wvpyxw_hxrsG`yciTAKP1FIC#-w&x zGI$6Dpob(BNGnDZ_{GK9hITNVZSd3<87+Jxz8G|Iy735JINeMazi_&lUJ!D+sh;A# zubk=TmlXH!>~k!nE8WD-;6%kN_7XwDdE_WqTs&RyM;Et0+i;X$>FVyr$|$Y~ z<^!&nJPaf_oBc-1MRMS0NsCqXXeYzuz|TmK|JfaR;6wztnigDRx3FL^YeVV@;f$6% zxsSU8Kho1Lo7vJMrnjza0L2x;K>;OrBF(*yO`%AFARHY6f~<(Z(NvQpRemvDO9(JZ z@W5>a)7f@X5hdIr2|h&NNN|f1^C?n*dP9MrYCeGatBgpwtqNU2Ou*a0%0Uw_sURod zCC~+70*(;aasvKRaNf=r^mliU+bW=R!dpg~4ih4d4EKN8*F;ztO9u1Q?Mc@?-THhw zoSoBTy)e7(G}$j2B2O>G84(5sP-Gw$xJZ6(z4(3;v+^v0>A_p6%1y+faAc60>?7o|2 z5L!5oqAb}2ic)7x=OzD|+8`Jmm7G!z`hg$Z3vB2CQmJe8s8qN>Sx#u-_`gH|aQxp2 zmqCd4CcgT~4at(b2_jC<+o#LvdAly~!t`9j4J%}1b2#o#A4-F%Zei0IZ!y!-4pI#D4pm|WQjAh^Wmh} zV1}L)jn+uU1YI$l0wge;5}@l)NADRbqtKU-6ZSLH2{|)shTnD~o8SOC9G{k@1TmNb z4TTFG(oixKit)4{CAcaw@3 z(A zw#R<+%M96Xej&B|{l-Y(MILt})~GPRI~x{i?=){Nv~?Mvh+PK$LYK)f`xMG;N54QK zy(p1vNksTKZabhh#`maP=#pRsbV+IjTxO$720_s!DO9`Ud?FCKBt^q~1O-67(d^E@ ztAhE6fGR2<5gYFzwB;7fTR79&_q`7^O-1v1M zr8o`19ji97W@?e#1p{5N`*Q$2nI5Br(H}t*^hc_R_QxP-zoqW0Hmz~bas}D}ZRmvo zV1dCF5&?0>oLeOAHJ21AIZ}%DdOCot z2{|Z?8u;u5^te$!scw+DKoK+-RYaSMLYKc%@GheO+&14TIIEGejW?@V!JrE48W9hz z^}Djx@1y{&)w6ZMIY-P)z2 z^i3&vE1aOKq3#et6+@k|o44HIZW4r6%;f`5;?@?+n4dFr!(=m%D zcPnVk2r5Sdjo;;N$?6kyY!(ME+XeS1P;8+_O|6E?Mcu@+9)!#Rh*Pp|Y8ok5a(*XV zB^jPitt?(JF}~udyFtmbaM;itD!EUv{7Sc(_X=D^-g$ zM5^jisuEP9>I#C6s=B1A6gxoGI4Qw2sp{}q@}(AS3MFCoEHQH8OD)D=-tr->=h}zd z;|%r!;arZM>Oq)8JnIqn^Wkr6WToc^8Y1<4Tj@zqrJhHZK}sgIe?d$34XK05zAcrd zRRWY%-^afpl|2-stP<0!l{KH7#WR`~^*7FXp;adttnsaWcNF{JKo3@l$oN~O2Y24@ zUKXCBt0;B5Ylu`g z5R|0#Z`BQ3hwnb^|koskAYhCyyy;#0V-6P(VF&a!n}!90C+jtiK@&oa64pT7eUX z-Om}UH{o550xBDsI$JtvgCp(>Y=pfE9Ss%wP+sypjD}DvU^GpP90@z~A;;Vq z=2@7_4>~*W;sF(-N%%#Lo@A1Miwj|~@e8gw%uNsr5b5NNVzZ{w$x9&YAVT#Er^`_N zeMDM}iQFpyzL;sgx@fMv0q4l35)~c7bY+c%n6ym zxaS@B&TjJw^aDKZj8sQbT#VLF)2VXAwLIV^4CApi3h;dwBT!#FWh&q2S`2Cd$%I^1Svp*yCuO% zWtt%1Qi7Pt_=wa)g6}DUUy%YN_?}exX97n?eHj7&lZ zSD$_PR~KQhrieJMyFbzyN=B@}m2EnY`#3NU1BOltC$}%mpEb zM?rJv%cG!E0x333_7k0;pi}B0$ffj#cwj^5S+vZ;wb`tf2HtwB0ay0d!>Y zf)d2Y95m7Lw$6HC#Gw9Q1|#hz=VA;LQ>b1(JVyk=zDtAFh zs^!CHq#`aK2nvb+QYiWhehP5~jET969|;wV|6ZcTygDD_zeXdzEV^KLecg*y>Vgng z;a>ug;otY6UBz+q|G-~3kfV|pO&4fC#r~4GK=zkJQlOI;Jr<}wlS+!Q?YlueU!O7H zwdOE5`|Im6ofgP0(}`5lU1stE*=44ZQtUE0grqrrfvw8`N$fK47n2vO7sv(mnm{5e zDUnT*h!6~u7f>6M7gR8GNw5M2*r*k>PX6&5Pzt+bGMk@%RxT&TUlj93`Lc~$O$ z5LeDiAkujoF7P`q-cDEe)9wmE$&1cZ3X!}>0VzcCB83#_V0<=6kBPWpq!@j92$g=q zLi_kXa3MN#lYzRHZ*7~2>wwJJleaq5i9??4&F*H-UMSNUb9EKiF~A;b7G<=2q0hr7 z#ucPEfWF-55k?%H6VyWIq-tsB41!`NgFQ%CX-?!&DUGzn7!Nku@?*UU(n-0Jv-M(sIM{5y zn5XS__cxos-^bw#cbU=HL711Puu2$gUCfu?=YBE#F^#TteL_Q|u8&Dw2`16?C4!B* zKBjb~=mEN_oW{dS*R6rNDiJpkT{kS|tsWw}%B;p;gn4)f=Zeh6CD2~bx>=lgId!%0a~jB$45kKkSsuJCGtyB>!VBHH6yLH%5Wqv z^?Rz!Vg-y^D$j89QrXU!;z-wZl-dI{ME2x#o-_t-JtLSh!=al*WjJ~+m1!wpfEf;r zpg6Z&s>h+GOL@UzqJqqEtRl?IYdMvbSgusSB*!*;9XdWL^vy~zs1_iYLRdlsTd+ES0KUkHPIO#bD%TM=Ez=E)>xe%=A^+MWY?*J>h3kl4m&&EduY?IMO)$xkxJ>TJ z8V8Vsvy^-C3e@KtZ6rnCmdpX9lx?F6GXL`kx=`DI+?-#=+x%J|unO9e7@Ep%6q3rA-Jk%yF4<1d zM2BS*4Ocst+y(t@P^^r>w8#Fjvcpr*Gn|lAee5u)h&w!jLb4kaDwe!(@e3G0eo!)g zncudU;Gp3-z*YC^lE7>ZF*PPQE(swp!Essq!UV_VWg!zBPZkzz3r=u&i;D_s8m#Ja zpb+#$U_}k}abI`u4W~G&@);eziSXw+qIlV?fQ#>KQ+&D*(1jW-z&>u+wl7#})|FI=n|I>Dg_{d$|+qA2o>M^%T zi#8_(ND&I~b-NCv05cv?fEf>IS9pj*d=fH*VhKqHO1ixM3avZ9P4r zA#qn;dNLw5rd;P)F24q;3+mG(it%AubQm!SbiqXPrseoCNNs^EvnV?RU-4i38j~+g z`KAHCu(}{JE>@t>l!{4+;g^^hw-{Kl1XPr{6?T}^(hT7iof6Ud6k?4f+8K=(QJGJ!kXe_f0|^}@gpSw)ErCTCRU*}Ea=4%$J!r3*i{8{#sQ6h_0KX)w@2 znno@H@Kk;f6a(87s#h~@S89L7)eJ?0)l3gY0a#BbThjiavP!lP3Tiboj8rtv6$}X@ z7QrPHUOPqV$-6Hw*OI?dg{xhJ2;m^9d^PQGd(JPpnqTRr!8W zNq3bGSIVyPF)77`{`-Wad3L3(ubBH+%7`KS#eB=3E9Kh$S|F9*DU~X#{8TXC0<|&U zLM21D1T&ypQZxADe>USF6y1{IYPU>U72uW>4f8D&0QE+*^uMcu`IdkxD&I2vZ|jMC z3#q64cN(dKt8s!t@+}mKO@|J=V3l&yGlCqUQ(cw1+Rki=*<5n#W;$+Or-zMD%;p^9$O`y z`538$7QtM>cdKM(S$|CUoEXwNJ`OK1)8F{V71)hD{BEIX)Q_;tp(zvwW#=Lt)rKX=rF

kB7v{g4E8(O*3?a~oDkpi8z8h*QS#F3;}IHEZe z>iI)MIk($8ZszUM6*EaKY&uL^%>!()U|T>+g`Lbfl;%opD15FMXky+9{_4Ed-5?+4 zt#$>{+DU0WB5A=WaOLBI9wv~$FL9`NIE!HB>IFgym)(GlnJXK*$XtQ#u&Jo+u&IjA zXGDi)o2t=NaiYu(9{7`U0-EUTCX9Qt2A9lX_BEKGW4CcMrJq&s~NyAAS!XuV~tE*!B^TBAa$k7m7p!w_(R4Jk=^iBL57*QhGwp|5#Hq~ ztdc03*2v7&!x~-bdO$;@t`93+2`bU`7(qu}0UdRv=mEN_l*I!|SNPb|uB(!9BhmFv zKJOyYRc5aKB)rShRpn291wJBkRqYPHe<@v~HAL!K?GD+l1Xb#)zsPAu>Y&0<2NkAu zgu*p-2|{5eN83h8J5C^_ z8>9I5zv_0D>8sZW>+6Vw2zL>uHNY_#Np4Jel??*~sf=b#N(^o%|I;b?%L8WP( z0HxJaknaRc>{Xk!es3k&D{VKGs%g2FWUqSaI!fz)8X~ps zxmJFlLr`VgqozlZ3yR;I6j17?Xdf@0lltsaXS@#h>KJr>FA)op}%c@3vh6HAl| zn7!I;uS17Og`A+}J z3l|hWua%3GpGhrTq+kN8;hl1mn{cOg7hKHM=f|phR06A&CMou~4j?5L%#@~BFtaO^ ziAZ4Oj9pp@4n<@B>NAi;<)5fO2z z6cLs_FGP86CILzHqN0aX#{3lp=&kiuf+l(_qiDG1`LmX%uMLWoF*5n^KUS_D$Gd(=Q_(Ct=c8i z)KH%|H~PH}FK+2ct&`vCEU)h=X01pykxVg~@uCKvL1v?M z>QYNmE^;bHPk%XPr2f;;Gm(uWNJwN9FNufe+Fb;W37JvrWcFk(DZqpb6ktLI*!n*~ z2`N0@W(gE%`XqN|jarOoDTm^`AhS0V{62kkKI6O7Os3MP7WfXSI249k1QSGmzc1UKtf} z7g7bs?~Ve1<2Upw@x=;nc#G!)HiF>cW;}bn+>B?F0^E$_I|QEfa+;e#N^zQVLpA?2 zH-EjH<{n%pGaYcPcLz^>mQO1AXE~!}TSre*wwaV6!HtyQJ(?g+azIH=a+D-Sg+P4V z4^#1RZrEKvH#&?kK_CWlDXN}rUM9FW+fX#D+^UNwFPuQtgz*8Xh!X}uArl6LiV4Ha z1cwrLyA1S3bo1P7us;bMY?)tG%lt|T{P8-Y7BA}IX~tqUXvf7MNzDzUVd6K)APF=K z#_OtYkn4}?q!zY}h;AC4cxtMrG3!DKv1vLGl5o)TN?%Wk2^8@H9H1myhLXgV0r9bA zsQ73{O#K8w7o~gdVHAo+`dJ#u9JpRyh1!3;T)uQ%FQ?h|>*ca-J&_sRf2{!c+~0o{ z>LVNE3hOa~jw(JxReZ{?B4!cp+aMZBJw(2X)P$}Hi>lpIDj6H3RBOS!Vo?QB;iBp^ zK}M-Q50r|p$nfknf8D^72EeN7cY=>%{g;SkR@f*br4RDVfu1&GKv7qq{y=JPALvP9 z6rdfw?ndn~=;#y;8>r2jsWHKoKN#dmWv&0Q^6o!oRpa*#_QZ!1x~i-6Ahofp5ERl? zC=|WmlCtmT+P=8BqN5-ns>KzVD}AdOv9iF$RgsVY7gsaIFI-&Bgb(*O6gFYxrf@Mw zCsb^1WkUoi>!$@hqOnX)w0@esd0IBC_eYlq;IyTa_m7r$8dI_KH(1MP3-!OPY^Oa?aiu-R1?{K6ZxmlVJ+yxQ}K z_^=hfrM*d<$G{UISH&^|)+*d+Gj?eep)`=$#ZUjbU=}+dghmrQ%5#@{U*k^LwU@ zW_-zu)9dgyPEYRj`O8}Ps^HXIFm+qP_Vn+b%&6f4K%1&{F~=vATNKMDlvAGdjNmyR zZLh}R*JS1-1fa1;U8g)|o@OIn%QTx7^JD9+{ygc^24UWCk0;isun}1C{Rz{%uoA)) zjfJmFucy|!3$4}87|OF}c-+@16+AnJR=R`mLo4kQ0BWVx#r)t7c->PP$-AV;Q_En- zNVOZW%?p0w#5BYB+FL!>pv&Ab+tZPKOIT@(oTnD~$#0R;Ii9@hwaAy!B3}}IXpu@K z0T%f}HRz{4lPsU!*kE-9njT88+g)Nyq*nrUVw3)27Z}FZF7k}!gBE!XI?_rYkKb%c z6#w_XrpNM@i#^p?FCu}qRL>I9(*~EwcYB9Im-TH4Gq2ZRUHLuhJ#AT6!WIoSDbQe@ zlu9WjvZLKoe@a!JdVKmXY!<0|BYspUIlx6T$L@gXTXnI`<9`hE4qoA@V;DPm{z^|b zb~oXNCMr#tm1Iy0JtQqu0W5SAOeZlh{P9(u?CUg!Mg`V@wZmP?Jw{@zl)%y zo(;5AiL%rNWvQEgn0_~VgH*c_BmG+$X@kv3eDSi@Vf>r5Fw^c`3+vV&OZezJ;W^`< z30Lh+SE#N2lD0C3!id&)dNMz-&eQHXEoEGk&UBG*MH5AC3g~^`DieJrP2_!agQtPP znh3Q2LGMf4guM^0(W8#U2Y1d5<1dtWK82Tf@7m;P&N2xC+HEzUv7D~Ei>L&ZRRQR5= zI$!nvj6`1g(KyB%?C|_%JjiSB^z>m56V}>D_fsPsltzNdZ17#4S=VVC^Ik|%9-G;K z-Afpvb&dyG=Wb=49UQFF*1PY_jPDKh0jYK)CVE$yXh(pFHon^-%sXL^r-or(+r+2e z=jqID+N}Lmo90hyny}4!tS()W1fK!i?-_Ev7W#D)-?iS;hW$!ZMGM6VLFjz{v$D_+ zXd(XUgPyNh5|I`RG`N;kSU-+#z4J2N{wJG(nGTizH2^@c5v@PQ3*s7LWch=aT}xsDG>Dvf*?>&!s5Uv z9ayU@d|_(+eq=v>=tA#s9{R(`Fn%f58fKX`7Xo?Str8_ngICFSjvg2a2u2=$ zgs6WSPjioM68)-xQqy%1MP2S`OAziq4FqgNc(DFdZom4(LxyOh_=Z}eO9YQn9B0WO z@q^u?KV}mZ7{kk$tO){wvRY)0m{9T+A6mz=w+PLOuJ+X6SptAbGO$L-5f5{B-Z#2Q z0NX?m!y4IA_4V_3W+PjLkoBrymhqj$>bavY>Fl5?;K>)QaU2gAeMF$guZ&I&5NJH? zfvuiDfjX>x#)nEjI4}FB5iLz58Nv3p>?eX4c4BlYAo44|m?%y68zc6x2LxS6V*zP+ z$r&Xpnm8jqZXuSO585&O1c5KuC;U93s|g(ii6xjGLGF*SRX1TuwLEJJ;;-BqQHwPo zG#>87Z;xp0PqU?bR!i2-2OVB9+i(mP2S3Gw9viY=KG>qE*=+;M`=fXHWd!Vo`JjuI zp8I8l&4ezNfEZA{(VFO zTU-G8vT?TYCUj7K9MAZ2^jfxwpkogJcf8y{g%RjGE5k?T*}($PC*KSk%J{a+m1qgUpf~7RS`e4Li%Psid z<;JX>ermqlJEHu2gfPC_PKDrG*9}e9*Upni99GSfM=#&`X7uPlRz6#qFb?F%Y&no4 zRe@(9@4Ym7zlFuC0-hcK1Nl%|U`I>i>>_;f$KC3%rlc5_(|XyTmTIguQ zi`&CS#rdhgy;MWnb$+G7< zI8T1qts}D9vTZ)t7C_@kUw5eBhmXxX;)4#%XWxKI{h05Yw>O@B?Sn1aIHycjtUo$l z_4=^@^kHS;n1vsAZ0NlL&@;mB12wc!(PMMrVyM(fEud!!GGi z;4p(lxVysvPMvimEY&oYMxfZPj$BS-e&{%j4JrT~r!k7Irm-;u9gPpT<22@rE~l|q zebBXzJn7!(Y?J6djW$l9n;R`s&vUD0-C;`!Lzv0tv$X_Zn#4l*#rva+@i(hyrC5MU zPG|o-Q;NaCgRB{rodCi)Z7JuAYGgS~oP9(x&i$H15_6gsF6NaK9i}w#g4}x+Ye$V; zCIaD%cAn$@b?|vrFiU)GJeG$Z4o+Zq6c~3cnYh-UuL!j^(%_R1k=A(PSsJH^Nu{vy{pzqNQ-v#rSv%{`F61|d zK|ek3TaSy@1J~MRJ$uVqt4FILRZ-a6ID1Wy zCef)Uts(LZxbuBZ2!lJ{=fyAF`98l;9xGfgu<;w&kY-B3VICB35c7xp`8 zm&&R9qM)A2r*C|uox>-2>gdrGcwnS0iqDL-_F;jGKu#kf!^BDfb!G)Dl8KdRan?gD zicnz2qs$`tB1275fawP)z>LSm%2ttL!HfsMFyj#pMCMFN8X-r%T@AhiNCEPN0_5Ad zn&JyE4`0lrO!Xz20z~zPbdLPHpDLsglP>lq>- zG}lAOWv*u|p}`sdc>%x~9|njx54dj9t5%K8CwS;j%~^~QBAY`CgeR0%%{I>jmEmD) z>kIm(#d7<83!xD%jrK0jOol!ck)ghOF?uwxHe@DQ`^Kmy7?}i8;Vix)WJFz4Wx|7i zV^+W}MSl}GiEn)W{HFD1_ARLs8*ssBzy(?$8c?aV)x{`OHQ=7nfcu078}KJ-K#{i# zX+Uu~cM{e{0|Xjzb#$b+NyxMw8;ugTv{MPmzEGo zmzDx>v6|4<`YfYRrHB4+%Z?mKszBegFNh?Ld*T_45rrwjNRbfUh9U?A6`|Jv7UD(* zbR|A;TEC<9DUH2FszpuAG&C_&6;MsAR$!tDAVN(LBB==q08LC|6o4V#C8yoV4iK)m z+*35v;Et|VtBDx>+c#C4quo*M;de<&zhe zWCEI^kAZO}eD#zi%6xIAX(IrhnMU~P?)p8glQm2KB@iaI8xY3^5(;$J`!1o@wM4q> z>5GZG-fM|;*Lx9C)Ea(xcghm^iptBR6ty;qGM?epn()`Ay8RY^l-k@TIC#MZ>j{e9CZZ3pxH{mSPW?+g+O9 z?pd^mPy*@^+uR5cMVp%tZlcXv1I0~C=CPU9MmlsiMp3{3-|V0b#)#($(ngGUmY?Za zL|Y<#2J7OrSVUFyNt3G`>+^TZ{AW zhgfT9i+RXUYaO)w!>%wc7t$&DQPKZu)mivv)w^;s@VqE|Y3*d8>(f&sy_;t>&`GPuNCUE5R#5 zvqxI1vf|5>z2T?`Tt=pZ@MZGkb2?u?%332@&3FE)<2OfHPco`GTzKI{#o<=@x}a^T z45!A($qmCP>OQG(ig`xM!>Kg8b!h?NR3nG=5*uu8 zyRk)`p`f11r>}j)aO!{^&Pyh_tizd0ahF@v1yq;iTqYx_PGhV)*fc_c&i&M7(z$;y zMmhHY!{}oTK}P2u-iUe8+Et$dH0D6+0Kr7Idn8--DJj4(1PU+=`TKcq7^3a*vc)*+ zjxWtEpb>GDtk;O6*m7lSSY=W8p3$Gf8nJSuKvW6FnLN?jl2s>gjHQ48qaVq33`-&i z$g!p5$h%DN>PBlRne`*M$P91=Gi?e_o@DJ2Sy)FD5bZp>%!qaf4Msb9-(@^8(K;X$ zFpO~L4N>j0{N7}1(`cuF(r~9g(VGl+@R;IkBB}^?_`A1?KICThliXu_MN3H^WrkvI z1U$!Iw%%sT6xfJ$mI?@sbqJ-5b+!{4oa}Q104IAeVHN9qPVmqdJGxxPI!9@NH`bw0 z(G#p#|P>heEw=faQ1gOlxD-h>&0t5?7EWv{_MD6O4F=@HU!2AhHRi zfd^@V5%3Hr^mz-DF9=HBdSICAaw3>>51jQ)F(W#O)$1Zcu;Gl zGFTj()dj#aI5CwU(u)=4UvIKj=1rcnmvh^eTI*?+b}Nl&p#x!nKKSD+iIt|Wl+gkV zG?mFoV;E)p>`ED90b>;{0Aq|6;IE1nW`Lv^EzBYe zQPMXl!-Yyx@qsEGcwo3dg#`Dj3cqBlSX1A+QofzFo$y2uLC3gdsNk56UnQc4@|sY#`=B(r_bQ@MsdBSBqIC z8(ndgvKef2)GFEKm)572f=wUsNqM8qLX8+N&?aNN(1Hks@xrBkt&3iR;spxDUhu{X`pc_$iJ{hbHkA-!OQ#qu z#YD?2*;Jvqdc&;s$SP7=E~2CcBW55F4qkQ_Z5^+(4IJ$Cz7?&Z6>azGwEcE#jsLYC z5j1GW_&?iW*Y7jmdOo4`obuLF{yl50|Fs^}VZAG@it}ynS!1-M@3hv8R_n082Hg$Z*6JFg8pN4y_$p~Ly;gZ`25%oyKSTu$#Fz5;?ZT19prQV1 zFe(fh8i-#QG&ERUXwdNE9_z{if`;RJts7Za!NBkXz;KM9p`(I&Dxdz&BL)o#<42e0 z>-Sqnv%ZSE3>pfkF00RK88o;LSYKccLV=F)=+)98AF*0KM4tC+d}(f51xI71`Jzsh zsIWhnd>L}cp@EHJBMYmr0Oz>>YQs4uG}1YKe6@6r0mE>PcZy&A;R=Vfd2}D~n>xqs zh+uf+Q(Z~fM~cuv4(-z6p&ew@bF&YuC4zS=wuWmw`~&L|c1(c{*Z8P_P}i7HO4s-z zp%L>MJ0}1*uk~?H`N%p#WA_LOdLh5BmLBErw7}~XQz#C|Lt+P@)Eem(mtF(x4YL%U zlorZYKt&NrE3fM5)~trVY35U-+JB zFl^wv652Tlnmi3&2|EK*L!+U6*-9c3cH%Mtke$e(6RYuzCc&ZZs$W@WYRpZL)dIDh zK-B_8p`HaQ5oYqGUqdeIGeRPkChZfVh*N9iBD|9yJO#-t)su!xOgI}06M=|iR&Cz@ zw6!A4;S)|nMl0X9uA8K;zr1yIK5wo5zt-h#mma>BFZ&wS+=#WxMzLXG@I<4>Mk}uU zKWUiWWG$a~8jdD3^R28AsqArYWuj%#|E5KGG=VA+j~F~n*rVf4F|ecYXaa>I-N=8V z!_x?q1XE}^(r(40SBu^wt?gf+;!4cbYb{-f2#e)Gl2_r-w> ze!$RjeD?ft?ODh=Wz5L2INy2$V*4lp$MjioNI#3~6*Wl#=AWPd^G{ekvM$Ph`^nmm zr4USH-CD9vBXDHh8d*p1+22=>V*^Mj@`qB&-~MKWcI)_nU8$Da|r9WfF z44nm+q|{HY6&&Q(zatCO?ppEX3cpJqpR6@p074^OfGum$1&9U=!v)wTBohC{uUEjq z(~5lS9cv8#EZ`a^+6eS)o|kI*N;%a^-ItE4-yq18jX115V534TxUHhh8ycdWm% zj}+MO2|g4M>Jt!3;S*HgldCtc%?~}R)n{i3HAX$B1ppV857&~!+3y4oU4&oONf+T4 zTHtjNC{!)5CEk%PLg+hC2XPVf;CDzoU;Z8GBWznIeFW7U!$%;@jTM$aq>pfGo%9iI zz+bPA@HnX!+tB76*@iZ>!0RMXsA@xBqYeED4JM49rfnEjXd4VKfiO4PKp?UWErEx~ zoIx9KgZydD)=y)zNxj&J=}@o8oK05+G-I?8Ww2!dH zm4~7o5463)C;$VgY34TZO4FAHxT_Ym^@3x)gc~;OywR}ps(?1^jsla00TDKg5Xpv7 z05&W-$kvfjD4va-69o5BLe?w$lxJf}T}a%X*=G0=X9wF-SjGRO-5+eLY@$WYe4{jj z7Q5u-af?}7%1n5*;5nACRb)vNE)4d>E907&px8@E^NR-X7E{O7XMG3(c9kE8AE%D1 zY2tt@ek-n(wUy_W(%dzK9b%gA+Bz8wpI#?};gjolevJ{yjLtGD7$)jofM4at9o1wtQx;$M#=(HKa_)MvF7G3FIBV|OAlI~Aw7|PAQ>a?gzSj)dsBFMI5 zf2^W#@1jGYK8wzNLV)s6Tx<+3IuwdRE%yoqvr!_Sy#1*#eai-!99b%+n8a+ym@s|u z2D$FgQKZ%#G6#63{wx?dxbEB+g5kRJK>WgW=Yg;wd)1Hv4#MAQW}EE4?zs0fw}omf za-*_dweXZuP*3gC`6Gs(Nl`yDKC_pt2*26V_BgAms*tJJ0_x1FvQegDkGFyusRg0H zrJ~73nTl-y-$q;wH};+&2)JZ)R|vQuESp}w2!AquU`2j0pjr(!lHlV4FpST6+}4=A zNZ`n481NBaj~tk6^Pa2+m?A=&-p3{H?+6@uA2)dClLF)o1s>k97vZayM>^Pgu%J!K z2#_sYed`P&mnCpyTVxY{^pS7us1yM(4@X?l+YlmT)fg_ay}=BNTWz zqKq@Uf{bGb7P7TVwl5Jlvb7s*XOjYC3k4pwXbm?~ZBMiH1Pj@&k!;-rj%?RRw)|{& z)pUTFIHJRG!H3fF%_hU)xIs!pUHUhQ9{3pPfx^Z?0qKG28x4U)%n{!Z8f8-2q^V9N-8sPgU7K)V-*Fuv8ti7ap`2)ht33ehJG-MCT#IVhlUg& zUUWzl0CW^!@Z+n$KliqM$GQ_dT&KEh#&wEyAqBa2;9;JNRofTk_p`OsGdIhv_e??r`;b+*-4a$E4iv}sx5cp;q)=pF z^=X8o#<@1Y)<`e6nTyX9YMDGa!xq8w?rTLE<%;V+zMH>gvwYQct1sJ4lmXY^`;D*?>tGFm=DDb; z*X%!U>bxoQCd{iLH*_fvv5T!kN1<;(I|^^AQUETexzE@poB9)%(~cmV$Ro6acHYgZ z>kb)W+pV+sEy_O89%^in_E3Wqpgl|+5dW2>?H1#cOzlZAnnDWDc}*d0i`?jkp2OFM zTW^uJ(3((Tui-I_;alV}j4V=$#xRuf9J56p!vLP@7zQxLV;JxkKYlrVi~RWIOkY-S zP*w{REByW?P~!m%Dqen1dk;$vG#3waY$N=zxtl4!eX6;5t^xSrNd(Fd`w*0ieMprn z`Y?n5W*N_^9Jh;f$R$!Sn$nX_xP0>?feKU7FKywQXWJ_IqvQJ}_k7T`OT6S5@Es^~ zNPDzp!8ybl;36|1{x!x{!-R-Zq&;hE$SM$QAq8MxcoqzuvPEpX+@Ii&{n>K`VdJ|c zDL&Yuh4_&c${gIh)R;PASm7jGOpY9?OXDGuK7<=egb$GnB2bjS58pV})`IzA;|2aP z{@6>$*(R8iq_ZJj^j?a)#bf4xj|K`dUK&oyrkMvHH zZSPswVOoWF%I9E?9O(y10gm*63!YkJIh$jQ^z)<`P5%tgc}M!y9P>y&nIlK~NkXOO z=YMkK{H$$Nc7`MU0p-cIdPh3G`3}6~-Dk=a#}hOG#}jP=jwb@}jHe;fZ0F#L6{#65 z!TKg->zWWKj;DHC<;RZw(C`1%C5UHCx7BBzd}!ba*&Ea0r5`_%q#3p(*4H2Vn;EuP ze{6h_W3&&p4)WlO9DdC4MUF{6=pf4SS+>^x%-L*6cFys~-ZZ-)QE=F<^2eSt2i$W% zNz@Y@@A;FgdJFQYekAxH%SS%gqOCa6DY}p88z01_y-XkMxJX#4;eM4sv6C-ul@E6K zq2qYJTL3yf*g?_NfM?s3N#lSA?zpJqWiQuOb&QctMSR7eL3C% zKgDjZ=Z;@u(=^tRRv`v_+ih~dwx&3s)|DoKRO>jP?8+_44rLq?H8)XQ+n^11C^OHnQ$@D(l~?1@~?v9*Vr!TH-D zu$WC4p={GBqeV(Kbl89gj#Vm~Z~!4eiQIPha?7FI4w$)tBuP7L(Tp-f^98k{`BJrF zzfl188y?W6P@Ki^PU;mRikQV1MZ@eK1z>+y-|l0%ZqO5BJA8V*=nmQIMM;629%930 zS}N}_dc7(sM$N_oowwKP?J)Ox%nsS>F@(w+1?nAkNO!#xDaCGYXYfp#4aalR=o=LgCY6$~vv1=ALwf++wM9Cg69oKYyw4?iA&`C%N91?LBfhQ#v^+J>2kQOf~4 zOj_n2AF>@`%PBK4wB9z9{5B~-CD(i3_Nir;N6C9gF)Dc{Rq_!ZC2up7yp2%d(3kt>(iNzVdhc1f+lQ<$wf#o)~CR zo@fc6X0!yVX0!wf$UJHr#3(@e3P)`{S#Kf*jxvgdql^Nu{}=l7KPJ&95Iz`QzxbZq zmwAyEc(dpfio&R^+qr}QC8D@!mY7ASP$8D~oKRm=`LR(5{c-CyWwYG6O@#1VoPDpm zS>Dk2kko;@O@{@*lSINB8q3$FyDXQXvyLx*JT8dfg8{%t8ZHh=Al-HIJ-+pMXQCww zV)mrBTvhn&XM##unn(_k2$av_6 zWZY&ESuwv~Z6`o5zh7Pa!u)>qorUK21HZQI@z3w`BByMpSdw61r17Ao#v$vL3hJqR z`i@6T@5ABW0RC>5Yn6H0w$$=G;fyVdbyxMs9De~7XQl3xIsV(N?VJrE6qq8-+$nSX z{df9qFHi7AebIzElFj!;n6p!EEw3U4nA?Q{$nQt+N;_jJ@g?U~f)@%f!3(uR%6JSr zN+?mh4<$=J>LL;$H-G`RmO%s;^UnbHFjLvy!ZcDqwl{sJk?kckGTYl^r_A;OhLP

DSC7L|$)JKj4-b%|oOV zSIB*o=TQ?+<243gj7u*3#f;{+Zs{U@@5|~EW%aXU1>b@Tt!;0h12L|(R60y(7TIMa zG>h$0Mk;&(IP;MkXg8j9D78yEai!hzo))mfWtOrN%d9q$=l*4jVpOHL%2EKXP58Mz z3dPk8pN4KuB*BG^q9O57ZB%tr9Z0O6iSGKJ96r-W)i-efcdsoQKR?=ywJkeDH`O#IQ@}m(^fHEQqRYp{1w=!om zB8rwd#9p0IfS|)?b!+|`na1pieq4A22&i98!u?-$p9%p5171FkfYa!+iA)$S*#u7@E;DUfV70 zfwD(?pa8Uow9@u=CMnPlpM|`VJ&kZ@M%bCg@`*Uuikn6&Zju5VHkjimzQ>4m*&bzB zI8PSk=~az+Qj6f3(e{Qq407D%vh0z=#zJV+nowttTodY%QXDq56-T|<9y$_@B?0)t zl2D$_e}Ioh!WV)qJh6^Fk|&8Liqb(;+@pGeFh)_kE5`7|rbkqf@X##$c(gs5QAu%q zc-F)0d0%EO!fc9(nGW*d@<6%a&;}jH4z@=H5fx)kQk`Q@V!neyab#n@V?7ZBM>a*n z4!^EC9HX0OVby{QRQh1(77^WKx@B~8ns7qb;iLd~TnBufs^oL_0h)ft=&9cb0rphB z(t-X@K|OWTuz;I{Qdq$Jyyxp%%Ir0^(aY`iv8f0iTivtvR^IDfd*K>;3msTudh4d> z@;DiRw*XEUfwv-@P{L-4lh%Q!*R?k?h8TP*345GM=FP)s1Gxj3vrJ!h{Rz8~9(KaR zumB%oI)7RLWW}WsAQh0wQb>v z!jpT2#Ih!&7-!rDK<9N}llOUM+|b7MYNeDzVm!JX!#g&%Kgnnvxc%UVSWZ=AoO7+w z#Qr1eufTr6hw((Ui4r$1BKOIm8o1A^FpTx7+pl7M5^s6JZ4vcitUp~;kFov?@e5=9 z8T$&2_3t;guPz|gzuLn7DO*cg0(vxJ{gn#pseJnSM~wAHx3EX^HPxfb^S@ewUA?EO zkYRoSb!P1Vm4yw7<{0K5BNP}%f3y$7eC;q#OSYHc>QeQ0zL*y&<|y`;Z}}h4CGZpy z-XW_j&8R22FoklaN+&4xa-6wco#7A^o2B5!f%2IGLZf^_ zDx>CAga#*|C_J-{_AS4h z22<(S{W5CK+b=z&JVNAMH1vD>rH6E%lp@PNDNFb^Vh=A%!$ShT7&OCQ44Nw(kU?{$ z1JF#Bwi}{HA0WcjLQdLPo;v}2P@u(_naYMfQOW_s!D>smVg5XcaMM!{$b}o)ihD}H z50?+h54|E#DF!@LrRWw>fC_jhR0TZG5n0eJqG(8rQ8R@iv5J~s|4$AWHB$~4$Sfjs z7|2iz3}h%k_AW%t`sM=|$m9@m3}iM^CGI&O0~t^v#?8vKjmrguw-Lw?h>V-v`(@m` z1OBSG`8!fCTJ}Y#SA;PaNr8%+|AO8W=KX+_qAlJf;=;3ViO+a#vAO=+0cqa95h7Fo z#?2KE%D6f9ppQ|;93)0r+shK;W?&`bX37)I2;@gIqVl5|QGhZd3RPzG1d#>Jh@xTK zOaX!p+Q7Bp$#%_-jT(mBVhPzYM;0uOE(gE~`;oDZ2KSlVq9M%eOqG72H zd)7XfISDUZ!fXQIS;9#4Hsg?7MP?BKp-VV&40Rb9&V`3$oDK7gH~7$ABPG@@wqKfC-AgP!O+@us0kMZ0Wxkfy9oD`$xKcg)?t6CV=*j}}iS}BcV zVs8HTG>B$sB^c28A#PXo(17j_1vUaYMHw!W*d|I0=yG!9;9Zt01G**PkYx@@X4E59 z0UhzHJu#JtZ$v;BQSE(DsocC3zvSjEJkn^d#?}jD`H>QyJJUY63<9K^=jF41R*|{d z`6PY+EO&a3tah3O0Q~sIfj>@45d7+hf9}qQe|{JL9OCfLe)#9vtnF|cR-D2YXwwko zbu51U*{mp|2#N7Kw1-7~2gE%RZj<6b(_k zjq>w9mh|_*O&*v~n(v!yZ)6!H{uh6+b1;AnJKaA^d}23|=PiFahIhGHk<|wMK}$zuY8^l|TtxdA?4J1C)|{>dz! zxNS^*3-k{EY*2+bZhxXgZ9X#_UY~#4D|9xG-Dz)|UA9zE>Ouwdh&jE_Lr2(ikN*(K zo5#RixscUQXY#Z)4NCD}xxHC|)r@@TYIyEadsF_=)x^^7j~3V)YHW{cg=kv0n5^9b zLc>YYP;Osj-^c%2Xb;k}--oY7j*jI|FShq)d1fxgCnGPN8(*7GT5K=IyN*3j%JMPj z9zP!0|84sO%O&_9erWCE_woEJa@DeVE_0;DC>e}T!V($Ymmia@RJ2+(%ROMS;y_$g zcHb;OTfY4DNlbfRcpOdmp~s5_HGednB?X%#*m`=%GX?g{jEC=;{3G^u{FBx82%dBc zvW)S|?NOQ~_HYqCWk>7~E!Lg0!d_hq=y15mV>~4JKpoZze#w!P&67WJG~|bhYxVSY zhvjltV_1bS{fWck>)MID-i8K@pWFGM7%#rs-uYoZuWiT{1CQQcU2U(zl1b&F$HIpS z0JWOdhvm1jTO8(>U(Tw_liss`&BhWkVQrmnKyRNio8R{|*=`6*k(RU>6m4(YG?E zSGIsUvn~K8ckCMx#jB-XE5(~d+Cq5wSp_=a2Qf2Qrg6H>wWnW8e^CtW3%_=AfjJ%Af%5#^oDv#Y`uf~7;b#I7C z1Tn8g`%x0vd03K@zDo5q5iz}|Gd1{x0HB`@gAD!bE(h%610GK8?cJ>p+h5ZDcVaiJ zEFFW`PeeNC{I)#jcX+DtDkxAm_g6_N=)N|u)GMTd<)0&lbFY1%1_fIA1FCrTK|xkt z=}bU{aHYSN(nW&`F*2kTR*G|`u~Z6?;Wesu66IJeWUu*PdmhdcjxHu_(Hdgy<)jS#MMe-lsEQ{D@4|0~IpA7GsH12B zELVp*zGp)VXF0r3mKC)wJhYVKNA_aj)Z+@K-da^UN<;(3IRelCXt4>e6j?V&`-9IJ z`L%8FS08A7CJYYP}6Je0sNbt>it0n^5xlkkam(r5%4*c$;WPasIipSt$SJ z_mE0#D;3skjj^&5Ht{*-U~M=^5ykqP_R`p(;7tOGF2t-Oe8r-{b=)tOcYLT7H@?XG z*khu;S6Ch)#)<28v;#If2^1%;JU%MM(b9yC6W7TYM@M#@V2g>%0!(@4GvP5oq+rD} zj;j2F3XaRCbgGC&o(t*jlXPMH9Aa zX?=n%S{fpldKT6go>|rr!@I^gN|?x1Wo-#L&e?gqcx6W$6Sk`CDS~aNHNP?_u;7La zC)k3wp7)Vlv?;pJR8T=$#%E$GXew=U69*$sA=8CnJ@7o9z`6Z*OU64^b9B-@*0`>k zBiq7O(b~cM$n0sXuFF1#t%4WFmgWa)IhylUwH!v&W*8t8`xxLGwH@g?d!H~y)hwIa zFpeE1P@x+A{g3&a<0E2B=&1KE>N*;-a|9jr{yy(t&yiumM&|WuPKaYa6KvG``+R5u zm;@EYN0C*eA`kM*iH0KeWgrpEn?#d_BHk8ADf)ts`KWy(JHl}+m<-?|*R>f%`0UPs z5oGQ#?sH%N0B2(OG>3QEC_ue1RpgIvSK9qz1IMdHSi?`$AV8O}B>|wu8h*kjeh&c; z#Y7Jvm0+SF0Veue6ce?D{#FJ-_b{$^#oolkSU6myVa=tw65z%3MT0Bw+gI$h+`U>k zp0u!Ogq!fa2vHqLG!=>J@U(+l0^OaH9W6Dsh!D+50he(l0bqYG;>{j+Y&Icc3nt%z z@w9_rV+$62!tecMZ(~A7)qF@W1z!u)ES)1N0@z&-cG?G32c~#`pJECtA}x%UE##lb zl^0s-v+^1$cSfD$vtK%Py)h8sV!`XH%o;4>>p~Db?=9w6)@q|v0&&cWSC>2b|jm7^~ zcgIVtE1}25-!>&+qy>=q)+d4o@uVRQdujdn<#b1sUjL|6B;kbFT%yPX*~ofFr6Nln z^;M*yh2Wz~k;QobCx{~VJ>mE#kZ~%Oc~v!Rc&<=nByZWrF_Z6o+GkRmE69l=V?@YM z$~~a3qmjmT65cpO4-kORp|+E!_J`SvBI2C3r9XJRc?276d?)WV!11ODTi6$wDjG?( zYzM764wkITT>~9G^qWU{?A9R__zwdeiR>3&rnk5~!x7DHQMd?;cV{?8v4CU5%*2v& z>nP6*cTiuknXK|BRCKcb<5B6@#t(AL(JLL}VOxeo@oxr!TVB4}~zPpD*vHdD&r(jNqpg zTw1Mr%`it>jae1k*Jrguk)O}{G*2G^Z6fS^O}B+q*po_BANSnQ=ytSe=}_u({S4e_ z@oZ(_Y`W+}Ox`u(m(TTTBjya?-Pm{4sVyaV!I*_$lJ;504BqfD&ryz)(irh0+Ylq2 zDFXk+CEM%YgC{9I*>OT75L5KLBl1Pc?j!{S*^!Qx^T%L!C8JtZcG0X&7EaY_QaiFr{}N%UTMF-s$l?e~$xZ*aeQFJm@(` z`Tsp}$McEE6+)_jJf4}m26s3dmH7*|hlDc$_av-we03B6nhlQqRPM!8_*Cx2ytWWx zuzrLLX7*J6uuuI_A@!$KRk(c<^(oJtk=2pgms`rhb5)L9%gdl{N6mmrY$_2z>30g% z?<}cbM)b?y81Lxv$hw>Wb$fIfFLVicw+Rp)2)Id?D+GY*a;(w7=M7zEPlO5gJwo<> zr^{`sDw8flCnN;%vy&Z1;G;Xsr#Pyx3#59b$#1A8e=I5KLugTU(Y@MIlC@hEo1y3xscz^8J1QG>r?d+`B$liItzSip3Yb^n;$Uc4~P zF^LfbxxKjh4aaIWmPiSGQ;TQxDAzpoIR*93ZLdAT_92Wxo|b)s@zlkRB78z^XE?V` zcf7^ssCqc=&dq?Piw_G=`%FHTzPxG0r`URe1?F3miyb}*$Mx zyPj=`Q@sq13|{{u;ZU1$2Mb>z|o-J)3IAHYY)r+nkQi zyxW`+5xB!yU+i$cDeA|)&bj>30!QEI*M$NyX+ich{AkN0O;$V?%I!c*n zQ2b(FC{s043jhXIV9sz+V;CQJe`=un?mEX) z8hf5#!$>uDAYEU`9Y_}`#ogb$S;gz>$QVU9mdyqhbn~Ic1Z7TXfS$k(S zMxn7g9W{ByO^)j9Bg!A_#e{||b2m9Ao1kcwX9%6>GZO~V{d5TWnpTQ^{nLNaCCy7M zXQI=Nf*IStkOA3f_$%%tblB=>s~}Ok?W_H`R4(jILWlO0nxEA7XVZ z`}5$uUdxc`>>w$|zS~Rt?i1N}A!O{q5toA>1ymuUFG5ZrP$Bjntx)yeMN*IIJ)ptf zqcp1b{GewKIJz+Hj+^&WT>n1OM|=AWIKsOVl6eHATK- zsSxFBE&xhmb`s7)P?op^ zZ2V8Uf-Ai`*x8jG_)p@yryNa9mExoo+PFwCkN)RDd2X-m4CK>J!%>C2|Kx>p5p965 zYuI-Oi<9?Dnt$oB6}%`xJwn(^GG4hOafT(5z?ATAa5x3 z@WxR3CtoaNdsVWHzpB_?g^aX_q>Fx~dRB=Hr5?8M*NCJG=3z2WG?x+$=Xsh=bOG0#~5L&nq;6=$bmKB!tZ{=v_VIwqbNQ+E}J zG^X|w#y#PdBT!?L2uGZCUn2k^jW&rl%Xh?^5LHmUkYHmZJBio*1q7mOQSx^QqQN%u zj-!yy5c&I#q~4X3{#*oF}IeuWT=A|vlUzd44o%LLnyr2OxWnkH-v zsg(``o8cj2(I1#{NeaiW93f*+?WVqxX8F#i{$ARXEci> zg=*ogdr~gE38WMk-gvH6hkI6V#4AX87|r3Z+|a=dSz}Q-4XssEjLNgFYLjQ9hd=6hmtYRiSkjK&lL-k~(Acl@9jI8!L} zP8!RntVPFA4CHp`l_8b+@?9^MG!?BV>g>lXUlY?VfVhu|1P3IZLy91DVnCYEu+mC* zg5&t?H-CdC-M&sOVJcT_s{bdOxk1i%OvGpri~KCYT{PIaPG?;SL+?=4JAN$#xQ?V0 ztpVfkjIWJ2d=M!X=AaJ%I&T;^>T4Makb&xn!_`nVo;HFCaj4P?l`*_T>hT(b){$=w zb4D>rqHMtrTBVe;g9%rK;crv+qEG#ZTZQ{n1k-&L{#v-RKHE%)v19#+uk{M3XkzJ| z(+?3^4D0-8+iXt@_oL-Mo#;@DefeL+*#{ejnP^d=8QZ$GXWvs=F}sMl&xDJbj40!L z%>>26mbc4f)Mmd^4h8DWSr#UH+8|W;-m=d6{Mginty!^CJ|l_ZV)a|fISXj~t#Zy$ zto(lxe_bAuo|L7ErsMyUI4{Z>Zz9GK2x*tfG4snCj|h6dG}fB1E7$_^qMfgp*r6)M zPJxD`5n?|RNUz|mZlc4WzTMX{s1H4fxloyid6x3=EV;S^USt!OX&j^!#&IWo+9{cc zd6N|22!0JHyd!x2se(o@CSueGt| zKg4$?!q1@S3_wdIs zcC9aF!do@G{CAK-Q=DU(#4+^JSQ)-Ok@Fy%St;e_BR_Ne!GWqSFMJMuaVh_!tr5DTliR3R7DTrkzp! zF6J-`V94-{qGFH}?t`k|J!PT$0q&JreaRM=1-a;+=x(8{^QgosUffgoa2x^mvyS=oe$E62ejZw2xjt(^_n z8$Ki!5RLy+b78EB2qQh!ek0N&?U$RU?+|7pzGG_y0OPwfcYcy{wZ;w;6r9X24bj1P zP7^9dhc&!@AW37s`u=0 zFh*>5J4q?_o)yTvy*K`w|Lna`=_WvJ*n6}#)q8J|T2MmamukKFoK*0?DGBNfuh9BI zG3cXE4Ei=w&ca`%7|89f?#^dSP#nAm2p#sEA074_g<{X;{U;sv9Hqmad-5A^&*6^E z&NK2spfzWtr?B#j+_SNqRhEcj^)UgEW0k{Lt;X|uI+y7c&dNQTN(3FdFZwL$zFKFc zpGO8CL~6KcQ}(Qo$Jn$fO}Ie!7@Ia>XXWYL$N1J>;M0JFxNFmkAftpmeI?9j5*+Hj z-rE^!VRnLy9WT-y`X~@mxUZu~sWQ!1&PvmKm6T%JUZQQAE!)OO+ql@QDWxVB<29yH zyw(8cc2i|O3x|O?Tvce~Jckc-o@W~sSmr!;5P+~9Z6m**0Uo^%qOqCtp+ENROy^n? zwvRlKa!mQl6Z?$Q%`OmzXvsU-4$U^U*XB=XQnT`Ov{xZUQAv533TQ^vNc!|S%GGLOwIkZ!g? zhmULBvpZS2S#TA=?{O_)^%xIrSEX_>(LKmV(|bL15QEQSxtz|;1@ay8(0uvwJ3n;_15)wVRZ%bDdU|D^gqw> zlAD}K;aLS#+G?!xu5YF3mMZ7{npv%&s^KGdE8cLn@NZ>;x8|MWoec|W?fvoK=+f36 z|I!u5pP%5&VC_j&`BPy2KF$*-ItQDuFRyo|M*Fpg*c#VvJ0sndCOPZqYye@1)nE!} zD1l-%19;L)&Wahb|J0=31y$AOO=mk(RX*x5Wb#o@1iuuLUJC{n*OIzbXZMLTmutIHwLgU< ziE}gl4s9|0|6qzK5lreo$MKF6g?MJknU6G^^_5qfcFlCg2Uub+$g53y>;<0batz`* zbDh`q4j1_4$A>g#oh}qGt!V9d@_c6te=~jJ0^W5J(@Nr$VeR?Fwa$l0H^7AZjGlaf zhn^Xpz>-+S$K*k7blRMzAlTO|~ts=$kAZKQmEsRZx5)%k~h=OV9kVR&iYYa8sF{YENP z6HxxY_2fTFSNnPmDa)sCccwg~(djoY%Bkok5d$?AcFD&&uFFSYPsBitW%+9Canh=!OVZHRKQ-nlK472oDK?SNKZ>=DGuI+@=Y|#V zSuJ1<)WN$=8q=ArBef}|ttv!mTcy%)^1jqMy$pYF$eH?(CZ;XpmvWsI*)k#l>g%uo z(D~aoeyXdd zo^)C68@9ZR`-bx~f}Udie35!9q|DV>X>1HZNKXMSc7*_6V2a@NejeVRO($4b*XvM+ zxN?uiL@T~059>m10P}ED$4(1T*_3?OgpvusRlQXUNfPl^Eg|4wym5NuWx3IK`^hoo zLIsK3US!|GuLQp7gtKXM9Ra2GU6#nJedWwyVFFuCpQ+9N53HnEc9)SwSP8-zLh1;& z`=oQ2#wro87(USz1ps924xjLmkX>chU3x$j}503AHMg*XX5 z3?;T@rjSw?KST5hKnB|~{yyEC-(rqmXWw$|!Qk5AN_gXox=Fx(c5C#+Gw87ETV1up^>`VA0hT>C1uxj%t@NI-MezCZ$dF=rPO z!HUXb;y502>`e%A%Z^EfZ`NJD>Fizzc9svel;_PLm`G>?#M(;6wQ=#1=)?^ZLbk?U zCG0R?@)FO_cRJZi1dgIs%5K<@Eg(=Ks{Yb<{GZpI(@p4}3{fW@`zz#!HdC4ym&^}s z;JLpRlposlosl0>L(RCf_7Wfa8{~(mT%wI+LNO3Y8zDclZfLT8#>dpJ{qD>SU{{G; zXzJg6CufiENCDbGxBH;ny96riKnHX*RDzC%+MTiQeQXp^@!%Fg<;dCox3evaA?O~? zXwnoNO_~6}r0wM@RN~YBarR~n2nU}DJw|RX5lWF8@tN_<5 z`WxTN2d)wVT^-ph!WVTo{d@Vq)pSyTZHy}7>c>_PD7JArKVHO@LMHe)skhgm5^)A? z>i6<#t%*fl&Gh|7&BxAlYs=pEVWl55YCcE`pysOlKrvT!_7#C*%?EvJt}JWbYp&US zqqwWA#(wu9*MBi;`-K!>J434$4dfe{>q%DZ2W5^}(4pLeLtUL&YXU`)8}njeu3kK$q)WJu zJ{D4|kP5DaxlXgE2rHb(elF!oVFL&h=iI0G8{yz(Qfw5bds$Z%W+&Jv&Qp9}X;(WF zwvSB4YlA-8igZtpa5d1_>x3Z+btBT%n$0FqAykM!^PHJ_g~zu2yA}Ve4D=`^S5mGd zW!Tn@$ut-xoNt>>p~Im>F7#FP$~P8we+1)ty)7bx7F zqFmK9-r&=@rTC4AKB4?x26*}xNu4O5V2KC{@P3of_M#L30T+qV+e4LI6K6)6;1gPXXVFEzEROLDC zI#y@(2t&~?CN%WWcE-9=f(f^C@~b@fc4IQ3hCNyQD$mFeiVT_6FD6yuX&sNN zBF@iL3nJLqVN2j^)dhCgyH`9N#>Mw1^@Uf+`I-5I4J1g6UGlfCND-%8@rsBCXigJs z6!9bx(G4P2*Vs*hBU~PKjR3GeZi~y#6skO4?WznSELWA4Kh9DEF z@ht^fPxtMv*G&~;|6DN|dr~!490duXp%XmTkU69hzgy3>PHV+iB)A4@ZMl}{N@nfN zlFB`9EroAQbQO>&OS_6`>=IcR!-_+NsqhjW@4n4hoiA_f3M0d*jhqSEKm*0u!ZxHH z)YtL)u6FwHtNhX~X9~+ArJyfEilK!_F-A(EXEENnp{spil^Wmb0}1e3eP1Y^vVNww$ zM)6SjmNliC=hJ=MYb9>Z-;z31qxlox{^p#|-C3 zn}X5!B&Axo7c_HaYU~Wr0cNF6DuAcb>5uSc8Km3Wi0!m6zUbu0a=cAky*fnLZs__bPrc@^i=_+ zS->xeu|pOxf#ZJeGSUiI>>m0RH#IEpbsiba-X?5?&(1IY5g6n?*3(r_W1C4CI_{eU zfF=X|s9$-?wV&U6QtDMC0~Lvp4D=;&AM54nrm>@>E_8d_J?-krz9djgDjdBgkIGPV zbgxxCM)J_N9=@QDE1g{@3`LVFC^{x*PC^HPG(Oinvo8$S2iN$yzOFR(j}M1%#lg5I z{ns`0nIivGn4bAGYtuEJn*&cT2laQIWRcfFokn(72t!yIUp^^y9a%*b$cnER;OY_M zS3PZj%$hbP^`Pg|KmgD=gJ~ABro(yf440dw6FhXkyIq&=cQ;a?{GB1!rN1+bl%hBH z43HJ*%{i`1hiBn6nKV_h8_yp=h3HSy3PpN@`2foB&Cj@+nV@Jile95bHjBywv62Zb zT_2NR0-zh!8R|_Nn!=}ycGY!X9^$fVYzN_j%E&R4kwXel88hb$FU}tfbJfy5<~4@9 z>an8)0~PXNVG8+5DnwhzyNqzvC;e}HzXj?ru2D_GMQBv3 z$`fs_XjYZLF=WN0S_=Xdp^;woCmEX&bR((Oji6#!2B?@+Bd8>)HjtouIHQ&+I%?Sm z09NM&cY;EdmR}@XQAZRFb@ZDHOqN1XM{z%SO|KrmH^z09EhU^#Pm83U77;ia-XReL zZ~I9G!8=GP8ePs$g^a=jph$S}L0@9Xw+%X9( zF^0g=68B7Uy}=p~DB4TR4QYu4-LS-V1Qm4ysA!1wjb`c%(_AyP4|uaT zT%3JWIB`|kaQHT^AvZj>-!)n+#^|~j&7yk2y#Uzh7X(@du?p04FP;twDt3odgO+kj zTFNZ~S1V%Cn{q`gepA^Oj>W*6g^b1Uo1U@gyCNEy%Ug!6kqQl4t4S(BTLVGt16a{0umqzRUm|}C@ld5jY`XHp(d91P?07ucEGNn zf-U+~NG$m5V0jimKfZ`@lbpm)Y5w+1c5d-Pv+j@2be<2Z)E{ zjTNVS%#T7#1=g3-#;p%jydhRG$;fJNKdh|wc2=O{_QQu&+_CFQRfOUqo}VrKs?aH5gbY}xprz%XAykF*E|JBBX>g&M{p>)n_H#m{mj9* zbisEc%mF{CTygGCDp#ESlS*gzWaMeZ)LjBRD<*F`dklVKy2teyVjM%KKEy{0o@>x3 zr@*dfD!OAIQc4@2V?*3zs9I`t5Q7q(VTyY2J1=X&f2RBxD`XghW!1Xf)#w1ouF{f9q%<+iN%q!zxu_1cblt#|ti z6}_0t?V+UqRo14Da@Q|ALS-t`d#^(Gk=e2!%mL_3FH81#lLWXZmzmzUjz`hxDAU_X z{-R88r=#=^N&QrB^h*`f{ZqX!ivhBtm13YIZ=nWw_$_l>)X~FC81c%SNVxR;Rf#b2 zWjrM?MzhdK-q-+)%SS`xD;3X*Ygh%DxihYUv~8GjDLbmtv(>CzCh&|!-g3&$mfD8n z1E||73dLOvlX8G-kE*odqpW~(fLK6j#g*T*YYkJj>qHqKBc;g13(0>>fg zdWk?*ff9j6J{+s77#1m!RSNK+{51}WU#rMU8ZCeG6ks0-u(}OXfLS#=UaLqj#g7b3 zYa+az&{iB{P)d^hcoddAIp7j|_C3zwUB9aB-|9$h5I(N(zW8uf)0RqA`LhmWb1#6dJ{+$lBg zkjN^mn8=JmE@P(VIUKO+ql)f=12Ebai?^8&avtb|QT;J)FYzkmzUNEMJ=LdkUB}d; zTAzMWah*8KXps_rvXtKEHU6ay>El% z%)+osSU+>xF%`2*kEw~p<*X%SFJmRZV=vx`#k}Ln1ndl5nt(Z{p@uKk4X2Ir>sZ6Z z)r^dHT47#wTupw);-Mdbhu~30npbRM*d*g){xZVuuPRfhpas^-MMMqMle+j-!%d zYw)kAcZ#hc@)yO{kY5{!txdnFDEE)8yX0Q>aRA7h}P z))@xbcSJ_Q+V3!p)xF)Xul4}rer0=rvWl7jq@TcF+3>{iimpkS63Qn42~1?# z1El+B9b^^D*yJ8yuYbg_)<3WyLbPS1DT>~GqT*)JlR$6 z4!MsZ5W&T=F}snN8R_d9 z+cTo;bAr02_Le@aB879#WR*`e#+!c}sujMG%OdyuI2tLO11LK8{Ec?2JtlZ0%>IMe z!N`!tUsD=?jlod~ouKxb&}8FF*cfhaE%vZNQu^l&=>d-iqS8$q-BF$9q&F|us<0lH zdQB-kobjWKSep7E*jdJjvbgvHl~f%=S5rhkKss4-2 zuvtLuk0nv{Dc~0N?6AKjK&Lf1S?Yl8o(`x%AJD-N!xIJR(g@W5uNZDOfMyj{fy0z3w$CZ%zg?dTR$8IZ{TFapd~Hk#VB5B;u2^VEC#7 z`~dNA_pYEGfFelUuGl!f|Q|v(})H2{}#)D$yJ_+!|NbfS>+(}vnB%Rmjo;hX7+F|P9WZ3#b z|I~F$j6UX>hB~RqDQ_py+TavPYCS^ttELUKHmFK-g%~H*(qP|7uiUgW$UCJio8-=w z04_H?mty}@3}bkdb{xzA)B$vkmP2(InsQ17`Z89BtZ>q)2CVQ}-9XAYYA;|tp~e~g z+1h@m-~jCUk)oP2lkSdVki^vM97?@D;FOg?KIPREtw`9sh^%N^yeL7p582e4rLziZmi{K%koTmXtfFS=Jtg~nFu9ApU(y~4<+Jp+SOaL5 zPH!IcWfIF-I%NMl>O#J^iYN87rXxf?BkO-sZ#XNH^Yo-*3E=bedbOu@wVxLg8m?!h zy!`9c9LlxtHpDf46_YhXYhKMNS_^|ktPVMk`4T|R1IZN~!=XBY`m#3@S=r&s|gV$1#ZF2)~94^e-hR;@+i zvCeq?;Ex8>(DIK4)L`8RMQ)@9&W+UI2Z#rnMslcD!zD}_3dJ0a)W89xh7(E+=5p*< zxk+~$zSA`iFWSxjom{Npg0lYh>Eb#@nat@L3GkScH-`TE50y&0g`tyq+}w~}?ofI$ zd!nO}cTTGR&^bi0h>_8$wE2H15wH1!iI@$ApM-W6wX6oo`6`ps+NS%I;ZVHX#Q-{9 za;P2vKUy9CGpj=_{JxO(p^J(lg3VWII7lpmd(*YB4C+mm2}eJOuVvLJxXnDRg4?vyIs)G4kF-Q1 z=?K^WFN%PdBLyA-s|Syc4P#U>W!l>8bD9M}SwjWDE%Mjp(Bd-tfTXeVHxGaXj0gol ze7$Cic!5DF0In#Dyx;)n(R+k=mXY-jfN!!g3V?4&01tqEwc~2CuCy;S#mB579WU5& z`1&?tH-pmYmyhAHN%m3ou|Jt)zgqlKAA8+ooQl<>T{6W!Pn@rZU6WX9$G0~)y4-(C z(rvJUv0ocvYs6Ih^@fN)gKf3!pR#niqLq4J6|G?0iPa&m)LsI}d!mKvU_6N7Q4H#L zMg`-3tU&vsE6=DPG?A5(FB*^40tVw5XVl_k%W0LM)3RI62pLis;tVMa`2nnG%%M6A z-NfaQ(U_xA7~%kOaRp~oH11uqs$53n#~BII#KV>*9%cnv6R%pD*v?8x6E8QUiMJcn zgteANhNKD3kTl^3umUoNYE694<&m1;Xru`aAWb}=G-39}Cdq(&$r%;x+MiKto{TeU zRhxKL+o7~65ibGCreMFro=4xk?S57TopMy$XRDuK<>oI=z!e* ztP(N)tXD)@z|LaWB;vJN#2OT_y&-O7C=`pAFo2H59IAUA&MN!Ai`AjVt!=1r59-Fz z+Ev@XwRYuV19_0K}9vDfOxQZQzto&{s(v-fzr2M3?LTll3En}YFf`HO<_ZrHUT z&>FOSq5XmS0eQ?KJBSmk^|S^(ssVc}p3Bx;WI(Ak>7;g`Ouq8MNu$@D~mJ>vc zTTfpFU|epVV-dIot40wx_MD2qQRj37&hbae)JQr4H^7S`a4=Hf5t!bLVinXH^k=jM z&l)sAR#72%viv3g`L8wQ-6J6F>L0tqiZ1r3BvTgfc>IgjGrmKESI6*mv^T_biDs#W z;&Ewe_yxyfkJ`gU86)c-k1JRi#p8KiQLT+5|JpVEm)hHyqS~)wvaV&F54s+sq2|SbpQ28p}IaDUIdVuv)-aw)31?QB8)qYj9zy zMYncBkRLg4&W{|pAHWJ_9I74oVJ?nz;2ez{I0uk}c>ElNGV_shH3xdzO+&=|sV#yu z(d#yhiTNoL)AOVO!=Z5Y zBLnDg#-Y07jq|GGZRfSUU<+p$4K*<0Jn#1;Jp!x?ew>YZ(SS)qJ@lQ`-cMC~%@sI; z@kIk4Z=;WRFo)*}EYiQz%5s1dnu6It`HOKx6rKHV||+f0rYK(z9o|KF!^VKd?{i){?T8gkcGEU0s9sOA=8!o5B8`p zP)OGF1&V*-4e}}Mwm-^`PsGH@M+ND5LMdJOX!&QSykbn3mGkB4Idxi59yy@H3vbG_ zCM8Jw$h8WsEPs}f1p}7+NX3%IQb|a93*?;6xD?tvX3q(~K`Mdtw(vZpHJi~NRvxSp z!x#pk$N1X@oC}>hE%{ zgx5FOTbU1?hpn$&-NLtgUGRu`#uiw(**?1Qn^Ly7&WFIZE|(37)}mX%<3-4M(tc^I z4|&Tct%T)I+OLXV$Q$P=IA7O_a(+g*-~|=UXu({BlbR7)-V2UT}S?+P>i^6U|jcP_#@5H z$+q3YWjkcm*|WqOx`yoE5~D5<7wgvltAEWUEh{t;mb_;FH=bP#ece7leCtmfUmvaC z1Z(8(CE~FGn*bxGP{?&pUcA<;aRIT&)LEl7lB_x;%fYTvZC zfrZ@`HLXu*-bV9MG1iZe5d^k(?Hzou{Y=o>ykVNFLCqDI;n!(e)+mVhz`jb@H5l|L zIQ)U#X~PljJui0fecE<1h$ zjlm`Mx`W}}#A6I7k%?>BFRc@O&}AdpfVZYmtdVjIm>mj5tuMI&uq8SsEY=6nGi+*R zePZ8YnjaWYclY8^2?24?zG3UROIy@D@R|KPBYcmhZt3uqZDxu1MuV9SuiS1H*szAu z;g;=Yg?YkK-yXPRx4mZoa`*4HUnW9KZQj%+we9}h7>eu60h-)~J@y4=oJqZ5?lGXK znKMx^@xae4tn0q4kc(y?04$&4*vx4;toV6Sgk8Z4eZO#HTW^ z(5YT6Y6MiR?%2*Y2ZhXlT7o(0ftLV>wK8*I%^*;PBR>$chaKQ>YS!`QqhYG^7gxG1Re}yjc9Y; zzE)&097zwqLbEH#ktg~vxRlZC6a>f2MRDt@MaJ3@4zFH1LEWEPFPm2lA1kJ_szkC> zk(|fiM6xspHs-oxAvL^RdwAN^L`xabQgIinNA%VzdXF+V(OXL*=8NZ90qJqAm);-t ze5j2Yk`Sxa=rM6LGC0<0!9+;i=-M4V9lU4#r^rt zBJ+3<9LRTe5+_)xTu+!sgP3RhGYGckJGw=XMD&4Z6l-0gtsATlb6nsGXf)s;Zfg7> zl_?)Rj7o|O_G`(vOeh(Kp>Ipu_aa`RQSLx32GvrmVC2OKBK(-e)jSsAc*GQK88@7b zWkBR1X9v-RL22&Rw#JBZEHix2X*QPOZIqSDW_-|nR!1jRieg4>V=rfk7$O0xci}*c zZ)D2f>{Xc-{ic+tPF;^ryWV6 zl9ABn_aO3@=JzlwrRD5KM*HdDz}A-wE2o7ulN{2@<|q1cXo)@s8@KAXBhjaEqw*Y` zIDl68F-eY>nyfX{5!puYUXr7K_{Ulzy&A?>2BIr3hrX}ayNcZ!fzA5ly4d&_o^IuM z+x!^?!v(PoNx`XXTfSg4fhL~XIINW=?+02EyHXvQw#FgWlDIL{r8>HZh!CFcXid&q-e9V*jYD0o#7RwrlX^t+o_8x-x>8;j|ERpF?u%kagD-++=pP&Oj zqx4z2BU_aClNjnx!ukmLAWg!wg}}xoi}Ii}xN&S!J?XhJX!tua9G`?=uNhe#<814A zM>sT?b;rtfj(crbL(RYYw|5*dZ^qACVy~Fj$7A?N5f?&^ug!QTRgSOCtU!)0d1KZ5ZwQP^cBP4TSRonz z4yht5m-7iG;L!E@46He=T$y;G5|NUj@U!C120mpV4V`l#L-zy3Ls6FFoDZ7L3;fQc zkS@&!4XMQgUca9113j?FU1B`W`qQJ0UR@ni43QkF&6K=N3tW9lZM0woUTt&_Rodvm z3MmrhhU!R!&-`!6$B7nqGg2F7Rwxub?;LC*3sMDVL8|Zr#MRuF=SVVqM3K!g<3gcs zth-2dZ1vsFE;Tpzbl`)NZYC5p1rIY*Q|zpO9OuaYq+DTJ8H$Un%E&aaniW%Hmh;Bk zTfZ?!^BrBxTdl?*6KV`+LXGhQ#KZ31j;jTSQopVoAJ$RSG7+d>IU4nAY+vkG4kbm* z^;HB6EO69_Zy7Pt!vRYV2UvmD!#R&0&a-0D!x^Rrvq|InHcpB-Whnx=kRmu2QiLA> zzbtkO`dJR8n7x1cunr=#u{K9i1V};&!u#?fCI9!<1wWDnVvLJ(ffE80m;hWuhg}k|;jza1bgMFyW7>v!M zp5x7mLpv`Y*{uniq8OPT7dbIAlM1EbX#~6R8MK!4AHcSwjoNIgf&q~ zlZ%~xM)*z(DQV&ZQuD!O>o02Ie4Y9naNKCe|AK9~*eFVxlc_M`(^mL}+YPp+ zuyefQ1KSl?KDR?qs+hnUjb=B^yu1msiL3A*GHX(07|}j{dE`FlAXxd}gbR7K0~0)U zV+?Ga;212%F!plR6z!4#oi9h94P+0iU}(D7!3B{zeU0mM zC(~&Ri*<5kcRxO*56A90)D^zE`CuqK-2y+Wd$jAs3zl{pte%E*%56*_((>05z_t9c zYSxREmhYSHm@iJUTBy$fYAtp#%KKGw(aMWll#NNAs=1NS`#DD{w4dp?D=0Y(b-DAN zPH7?qe|Z;#s7s?Iq&e06DG8^>fvt1@)s73y@7ZnfVWH6JRa=(8A70L+w0sHRN^34f z>1RfTDbxI}-0^}K!D>;2Sve@YwYZ!?WrQ(DghA8WotgE}*Hx9Z7S{y8rs*sve$kd( ztfkkTvEq}wFt}^ra6E`o?Cc8r?(?%f4h;$9}3^cTjR-u`H5KGIN! zEJ<^Yy(o9F1}>fF=poiH?$jqQN&xSZRjO6Xtv>niBj?NFJyuKh2`Tv#29#Z5ya%;* z#}z)v7p>#BwKQ7CN1cvuZNVZGW!IfV_o{-agnD zt;lXtDb~l~rA(yF7Zy9NF@okGf0#SN)m_YEl8`EAF;ybg(~iKxMQiKop_x|K#Kcb0=VL8S!-Uk6bH9p zTsp(5{xgchYi3^SlB~RngY4(fA2$Ek7OR3&?I*S-kiE=tb5QGW8KK^FwiRvg7mrY8 zYB-xgb-{lGoI(Av(a{xFF2l1zZ+~KozL+R)OA5D!HU995B9$6bC;?olEy8I(%7}vv zD;)d8SXSX5QKdObF)-u8nHtyKTNnnVs~tZEEkK4)_RG*rv52#llcY+nwtqLIHjE@) zVa2M0QE>mfp%&F$mqE_mjy{k*d05oNgmc?|kHz8-U)2Xi_^E!crTQW6(}n;{Y;QoUV*idD=pp8-q+O)DNhC>R30Xgo^?b(%6$hL z!}_Mfnp~7yybSv@|D3I}z#qP9oG$@fjbp6#jclq$b+f~vv&3>%jq)N>UUYO2>llYO7*d^6oCgb>q=Bg8?KOY{<13`?Dc@WG0O-F1$sVlcy^g9`m& z!&{C#=<^yKZJ>(%v7)&MADUyh@{EFs1qW7D4zmP{g&}V^t`Z9w7EyF7ich_vDY`9+ zcQRa}hy^|r|FgsKFR_(j5ydBoqS(&hB)4yX_MD}Y-(6_aq zUt1K-NUd_Bhy^|r|MRZHE?P1yNzsgtq$4}f3GEuvzWL#)#+qVIi!tQu=^v&Ek4)>WVBl9hiF53u&raz zB|fN{@ZEm+NZ9z)@md4eoBgnf`jIX{-F@(Bvb*`QvJ1>&;zyU;2Q`hjR`bH66&r(^ zE(p^QkS8m`|0@A>vI6^S?o+M|m~%~3|C--Fci<=NzGK*Oa|S;@T>T}UUHF>8X>)7w zLFb$1xky;G+mSBLvr-JK>Tra4CQ{Guj3zL55ANa4keKTD3~brs$TLqxs!f?wj6~TD zuFK4{C`cQ-AVZ`_VGU~*OWQFiQHt!A#KdS!{m`i#Mix&Ql_j+5E(up3a-@ zh0X!AG^*;fFa-L3?dU8jnOM?teQ;^J=dPcfgMFadI&b^C%Im&yr25w_5%>K~wH7dI zw}|$y*BW+S-XsVP|KiLRPyZE#t+U+;aQ9(nx(@}~q}mrrn^eXgFn+_$i={`L2gE0g z7VQ%5j8eOVJ6VCW#G3Q>IKvI&XIQx#r?0=TQf-MpvQ9Pd>7;;`_-&N3#BUi1GMN3t zCU-QNLH5sR=~2;s))*1ZjJzd89m1`7W{oiFkfV$7EmR%CLBuJOjps%y8}IHqxU@4l*| zc$&#WotVEztKDeUd*t}=BiD0IJCenBjD&VikujFSqhoyS4Oc1I=RGIR@Qii< z??(#%E?Rj%PM%DzTZ}TfJb%Jn8R5c!gvqTc!q(TK@gJj(V!Cr>NNIc9cqy~|V%C+6 zv|MHxmod`QW8^X`CmaL4js$h9-6>FYLPQ!kAml+dF1EB2b0=zCdexmwUCK~2;Q2b| z7E>%`+{sW1`-k)rD;bn#_lO1sn}P=T;8O?e9P4zM55>TURA)Ew2(Kq2Tj9?l+jxLA zXiE$fr8#qb20gBN#x;LKHjpMS)^|=N%biaKCHb)2`h^qB|Hi=3FOkMO0lDp9+&&4w z4fi_6#FW=(2jNYe{e75`KK71mj{8>oHUvY&vY2G?6X%Jc#$1XlgwM z2AxiODa^S?n9a4xN`~tWU7shy7?7r7CX5cp2z=;TiqKSG8H1DiT8^~cTtIv!J4AG@#_9@gSQ`f0*?bBAj} zo{ux%$6-$nhC*7+O_9!6LtM+~lb4yCLQIyP4|d zI`Wt+n%8$Tbog{pa~0JVF&g9u9>slGIlp?G70~?ZVNUni=7C%cc><(NW0g~;v5Kvt zvC3OTW7Q9UN0s7mh;gX)?7Nv*kId3IZZ^9G;FBra@Q`j38%kZl8%kZ_2e4iT z=1{LMH0D7`sn3%?5C``j1<*r@2!es3^tT%cXBV5NxZ^Ix!9r=fE zNB*z1bBlPCi6A@Dco6odJCnqN3{L&H-P4bCtV9o;SDDb}yA5^ZOVp7`;w45y_uN5G z&wa~^spk%G>PH&xIXb$HOsMO8n8>bsFjjRPZyR-;A0QsyZtpDeQ2~x3d`k+~Odg}B z0aUNvoP#1Ej0sO_-+`(E#chryN&LRzQj$i-$+aXI;ihwBkp{ zu@O`n*T4uWiBmqSgwfE7cOwfLGV@t6Dc;Gc-xSy2kjZ{-b|miYk=}iHNWEjzXvpxU zk>33P@nGxf93?oE^uC!%MSABLQMnj=IDo2b`>QJC>oU7xkJhWV^RMdFxm*b_vb(dZ zPdz-4&<2)=2RDZicU}<;OP&j9A--m0=wK&jMC>Q$IrII=w1y|cf|C@PpTdGu#EHKp zQ{BTk)Q1eUJ_K_SK89M4{raAG28ct+QoE!1prx97FwKBR8_h2wWoos^{4cI1@m!<% zCZ@OESu{;t!st^1Bu@fZ0;D@+=R2Rq4`%MqcVbeRp-Zd64`${Ja9VdfO5+0<72X2M z#VzpJm^$m@v_4EYlua#(H!U8+@5Ta388Q-GdM}$4{r&HKud$R3@Sx1BH^nN=MW!k zOwJ8}RA?5)6qBi>2uJF5yIORvsU6|G$`nP68qMv8C8)Xma8{th=a2;E5HC-tzm)Kw z+*@A}E`rHpodbQic>}gNJ3%d8<_2VWJ!iQf081INqjkvka@>EJGp7NLcUT9G&I-}2h2|iA23>g8jm@^~tp#iBmw_8=k^hV}_G4rzw(?H%Ty> zd!u27>a5v}tGZ;{|9a6pv)$qN9Opw~7{jC4?%+ffWe2kY zLY5jQ>eAYwqm5fMW+-?R@~+Li)B;7E;L2W#i1=Ep_xahQijxxXfma18E^iy0fe=MR2aU zOEB7S08Ne4TdJvWbW3k%kk@8|g1k0tshunu@E+v0tEI%`wr`NX$Zg-yvH`bk+~BOP z@2B6s0sZtntmWjVK?6K4YuT!c^V92YJs1KbZgMUa&uHSxS3iXvfbU3{Pqb8L6yEVi z*x`dg35s6wIRC8`j(fb zL+W$^qYs19A@%MMal5liJ#4xfFv1VnhBTq{!Qejd-fhk{FnGDMsZT`;24^1(&K6~? zCe50B$Wi& z%t%n;_J7#n(p7%W3doy$!pNFmC#jVxqwCojN6NG_&MA|#qMh;6*o(L`-d3FTr~f;r zACer1KJ7greM+tP(3hzdK&{A49Ii78GaOKTmvgEQ26?nKNh&S13ZM7GJ%*xWZN3zu z`y{In-G>#(?ohkK=J;gQA6K$s-5-}F>;5pOC#$R!Q=B@fFgjUv$Y@4`)F$_b&4ozg zXGd$Xn3Ynm%;&_HDy{kSw%j2$kvR1UCr-V+AzAhI1O9aH=X5s*>Dhc_;P&9WYj~>_TndhlHYNXCjv@Kwu1ta z?QlKNrUG{Gs!tcU3}b}Jba;oO=_JEdTY?7)4n@CHB9dBZgOM)B2ZJsz^D1O=z0eS3 zCX`Gr3m$pQ`GqKAWR%^tvh0o(kQ<;KoGV&c+0Y5BSliv@t+d@4SHZ?jetv*9aK^M! zW;ceBAj??PN?FDdRzMcFfRQzCX%%Rkl4T%e(lw{7blpnnnh{pI_65Yl!Ka+~qv zA5S~;TNzX-oB@zpJQO@TGNyjz(vM3*VSi09-hE*e0#kT%3+59!d)05PJpH!nWoJ*= zkl!TCT%JS|B7CofU{$vmVdnfKHA6kg_|WX{R|#NY0P}+{2hX=frQk*X1F5Y=Op3N8 zQh2iz-H&E+ikj(j{}K7T6VFyb;q#dN4P~{lS!#A_2BoMO+pj3ROkSdJG&LQ{ut~VV z62OGZgDEw*W|_k9Xlgov0cdK<0cvX6!)$M>@HEQ7@TpOAd83vDZd7V=d8LdJG~=)y z@8o<2{Kt8{-~j5N@m5<0r%+ps`La{`2^OK%wX4 zf6?T$CZ&PNY1Y(*anR|qPE820-T?@?=r>N`I2(&1fOnpQs%#iy*LW}_IKh@MxPg|i=Mdgry2@}O-1yDR?+yWCng zj8{trhNYGaZy^dU8DjMr+d+~!Eg4E6^&{uBQNF8(ArNwk2uIUEiJt@}cOa&j42&sqarlx76m#}0w~a-wR;z1HJc7Nvkj5TuxTEa)LPBMl30OW zj`e7*rvI0)Qtvd(=nh-I^W^FJw^p-%-a&LuIj6OnhUG94G!2{3T1~?yu>xsk#ube0 z%+_ia#>jeBV@Q~0{+uxN7OlpXw6<1b)&ArcG4i(sBu^7+Bu|q(AM$cBh8m;A7}prh z@;HFbDRTf#@bo$5XPHzqN8`9O%cFD39EudI7X;t@tIBxjGXZ)H#J5-cDwl}Q{;D1_ zwGJx#)#C@1fBY*7`k*qWAZIQ{3#oJU>RB9i8$ON&w;XZq7fsW(@sc@)r7Lp`V+CwE znvt&Tu^lTWdpz29PL7ez+*3|^1NNAbuIw>|ks!07)#wnUAy=crSSk6w!JPQGbTw6F zR!QfTO(ae>$%&J(U!SgweYQW{YdPIYMK^-c^;o;2Y%Ln`A9^*qDqXEc@9-zRf|I^4 zfXK8O4M6yE+w zcH%%9I2=F&hYl`tD9xQi(H`WX2Q)u=bnn}9&Kg5BZR2l$Z7lm^1=9Z37PwwF+qO~G z*Pa!6y`kBr4Ku&4Z5lAY)HcfeQW*`hkfCjqg%q;_vb;+<-OJiE=ns)H*&e4%hQ0Gh zc_-VfHr66+4x_*IVfPG!lb^51`-EA!1~V0L%lz;k`tqEjUBl8g;CZp$vvD z(Pq^5DD;foxi;!?LS#aE;7mvlet>vb+|1Qha46|vS2I_k$Ymms9yl85VOgYWtWRY+ ziZM7t9mN>J>w6A$n**(O(9NGQ8R{qo?`AnsOJx(aI5qEK%p2hb+fXy4vkz~?jo1*NHz?b< z99t)!ibQtQ8=M{Wh94jv)_>487%CE6Jp?bJE};*=zQF{cF5zg@B}-bMX>us(#gXAP zP3g~IW%h)in$wA{35NKQktF4OtCW-ctu8=?(;TrxKV4hbI&F?&z{q4*Yhi2aXRGJA zdLr7^H&%K{^Ngh)WJu~^41v_+2Z)C&Q(OZDhic8_Fd0ZQ9E~({ZK|uzr!r~gYpof2 zxeu>o$hn7nxzEH&s!S4{Pg6%hR<1C@_}WN5-M22?wJm(6=G_Rk4_ufAD}qA$iP;(q zGFfCpJje_V$r7vr_$(P(z@&6n7EJgiyoGTi6lb`)ikle~3LkVHxVkM1A1m6{A4PKU z5TjQFDQXbSL`-=MmpQTN@v+ z3N&oq;ZlFD?80yQLeqgAC?*aZ@fst5ooXfVw&UBt@&w{jZB_qlLPGL|Q zV(rE)Wo_9SE?sp4@_`L;A(I7Xh-?1K#8}3IwgwYnXE)avf5g^!d zuJ6SI3@UqA9>z-2W@{ZmRux(q6VR!ODvtC?%O{*L+$B` zrb5C!OJDLEbamx@29+WGU+5YDz1xID!hZ@}Pr~>%A;luNy%v*fUN*{Rv=3dE5i(WQ=mYCBLLvl0 zyv^}rX?>REoFB{H{arI~7Ev|Gl?2=SyYfUwM#9U=Xa^$(;Gv6ltk9c|>dk;;p6y`J zK#Tw!Sqj5)I@XCmT&WFq^)o%q?>xvg#+WE&xl)udqFRi}&G7Rc&l9mMW5-+yo!xju3P|bkN98X{ zk3ZVJf%LdB%mww&ZtNT8suZ=Xp_B=KMFTwXciFucl?fjMsXbj$P*CekgrgmMj*1Jw zqWpvQ-lS(HWE6ySRGCkPN|{d_Cr3+MBiZ8u-%5EY@%c-8bylKDVaV|04p>rMio5tCP%xy7bcffa|HwX0=8N9N0)|%FVx%#XQ%0K=h#j*|);A!5m zko95L3w(pt>YDWrEQpZOQjq42lcwLQNQ%Z)d0guS6MPh;M>Fv$2#$~d3WC_Pboy@5 zc-N=4>#@CbgJd?VpqHoD^7dACP|H)^UfMLB*+DH&XEGY3S4yg_k}TvAhdWp?1jY0DOq)+QSANsh?6Vn()av4?6ju%D;8q)aT!rDpbYKoDroECh*a7iQY zN`Q|>{+R4~OB`f)w70j90cdZJ1H99NQ`kzH9{j=3sg=L+R@yoSYNebWB)77sR3T!_3%aduKn-Xf}r%CL-DY3jjILxG}CpRxK{H~ zyLdA@s$INkc&gVG2Xj(`1kAo04@2GPkGX_nI>bHx<B`to?y6^(mH^4YL;udAr5Oe`4p$kevd08;%CjpbLz|1Nt*p2>&y*DmGN6ew5f*XBQ&;@GC?ZNQ=V%IKl zl2If*9JlmvoE1>Uh7JHV?Q8|J$j;j8D43NdrR5l%wOQbo*lMd?-2}4=_4S~}omD7n z%qUQ%wQFZ(ZQWP_DLI>wHT!mM(AtnP1u;&Ua@*J@(mHPwnV%mZ9?Y9v6@o)aeMhwV z=w@D2CpD#Qgm5{fJ%=7l-pu( zekUWKf-_#qGuL)j(%pn>GD|uN&$}5mN%y(Gba3!C*K6V^!=vzghyf@(a{$dkcFKDL zL7D1Qcu1x;4cRPwqhQqoF6-Mjk(tzeK4w9u!p}&Lx&3c8F7K5e86rL}YzbHIkn%O{j{@&eV{A|o?PRaB;1;hx{+g7I?ui*xTQHKlWz3Dk+rU9*tgczSFH3$ zU*?N0Lu+gR*~@1`4!B-bL6w!Oh01uyxzlH%@`7YTF?Cy}im6ZBi7|Dy1oN1Br54AE zspIZ)bv48e4gZH?sz-N?RXBZJGw_7d-5NxPsKw_JKx23|%z4VymR=WA(exz4Rn8MN zEx(3zoE3P3NJJOq-s{7`+!kGwd)p={_ykh}-`ZU7QddIEmioiid;_yOYK)FU{<=TKVrE`JmU#1l*qx$gBr zqvN!^9%*3$Y<)~=fzsJON~QFKIiY5l`FW=Dyq{*OxUiQ|m!4OADFNE1^3;LM-@90Q zfu|WhspTY7OHh{bpv*#m&SM_eN)d+{1#e`)H^oq7OU5s|kc`Hsu;oeDM3IxFjgmy{ zA^}>&Ghz_Kps>)70VphRfC>xpMCO(F9WOd&I+5YaR+;0o^mM_T5x7}+BJ&ez(&R3z zFY0kVo42C(;{b{b1z9QtcFFQ~1Vsim-dSYe?#J8cOrXecpA?!R!~OCXMTYyc0!D^w zVBK@BTT24Gd%A4hMXt!`!T72g7p?-vg{&1XGEGvLc}@eoVdkIWd0lJ(>g7AYc+vHg z3IwcNt*)NR@?Tx;l>$;E_%=&Lg48QQijsFoFpmUVSwm#XDj7BmEsUx;^^&X5CVtU{ zDjZ}-3=}Q>N&LjH=GNMKf;@H`#|a}(GVC2$s*i)R5kh?&EPqiS2WL|s$FjS;L7sYB zYBp|j8AkmjI$q&zCSR$KhMnUaP2f;z$ij$LlBDwX7-Hzt%561>KCNuF%9e{-{D!mq zwsN8__4eiC7j8eJ_PC}%__UDgM7|~r(rV%Ya4PSW4b>;@NwD+9vYBEOt3fOB;n`5M zs#VFmI$sEGx%EFY3BvjV+f%g)I7hUnwCN-|>+5f|V#JkAL@zl6rovRl zEp4PZd_NBGq+B4(!=~qHCWx#rHA=fGN=r1Hbheo^K*PU*Eynd;)Sf$ zJqm6CA6yd>B5r03jEY~XbaU)cAG&6V&-@T=hymHZ4=wRQ zl^M{a$0RCg-8w2-uU*NrL(&X!gpnj3rx<_~ju`Og>7hq_P-zlU>g?4~G|BOf52=6> z^9b6Q+&SfxDJiQ(YOMAnm`JG817?Tja76`f$))*{8~|IQW5Qy6uq_Yp7#JVBszk1T zg`FR}!py83D9dm(4=T^eLF)HC(Za}qrk}V5ivbLMRh+voRBbYw#3NQC>r2j4+u&_+ zdH|p(M}AALFs57!Z+&(Zeb1+^I9qLY=-P;3ZNgthwUw3MGX*QY2wP9YH*Zz1hED_5 z&K@>6j*kS?A~`i2z!bQymO_$KyGH&Zr*=(Fz`%7iyk!h)tsW@o@)@qQSO`-ObARX# zxmn!6noUt>u?BcO)#i)xR14tN`61Ke0uU}=nIqekWLD;o<1nVf>@Qup=EfWqPF`FP zGA?*^rhWQCYK$y)bbbe>t4qh~|552eYSkIsReJ&MztzbNtfU_|OrbTYKJ4;vaJ z^-!63I7skl@?a?ZB($?Q#$=#uz+nj>6GBzf_Qlcakb6Z)R|I=jEAo!G$pAF%;{erE z{JbEH_}bM0b3n_#adi<%tP0Ki61wWPnr*wPCC^4FfOpAL)pS^gB;6Y8F#*o&&_Ub} zUvo|U&eg|XKz0p0<7%S8>?Tv&1xAKXs8Z)lZxMpL(LsdrV0{aRK)(}<_K%EW%$x@wUj zK469N`iY5!G?jP)k-Srh0FswK-c@;o)rg2w3G@id4!b&-N4hGH@XldZQS#%GI`;@` zG&^hZKp#f=U4xZJsO{f43{tnaFK|Xcdg&DLnhYg}} zSGzjoHPM>k(So{Fu3AvHVg+RJwYlZ(YKs2;m0M^y}SVv76JTyAquGsLBuJdi^g&`tW9VP;`Bl_^~m?0!g;GAz3EHW8{r z+<9UagKuo&9xG4R2!tI!b{CfVNWxXjxIRjJ4R9NVsB@^@NP(zn8_;AigsFeC~M-z z59XDpr}7raCYxATE!^E3K${|- zp`M-WUM*&^Dm2u~!AQe_R(e~@6tR#MN<|pukd}_){ZIk^eY_`yPWzTq947^7qsJuIoMA4*OA1+|DwnmmB<&?&))jk=5l1 zJ^nws{LVb9%Tvrw9wl~V1f&uXzO^kjx{$#~HS;vOgh4$j-zbOoqIM)7bvJecO&~oz z9NfWOB^<0KjqkZV)cB?@zLAxZtz&7m9N;ZGdfGkKmAy@8Y`WwUNOd&CgXmfrds;BNwiEI$l zHp-8uutHD68}j3ly&B%w*QTXSaS5Y9vS0zZ^TDiu2DwN7PjuA^mFWtHEh@!ZS zRV0d!kOJ;uJq&L2UhSGo$cXymZ5W=BJ2{~ud>5E6%rWSQ^D)cA-p$9 z>S=a^eT^;i_O(Z$h5nRLq2$WH>_bFlFMDt&2Evt|yqp!#&_*J1Xd8txg6C6~IX1vt zvAh8G6}oQ`x3K!2Ry2d;vBSdP)noP)NI4Xm)WAfaAG@2x1>}JrrrS#(2w}5;o`^MElS@U|R{(6Mcj-gkHd@h0KE{3jat?GDPx{LA4aNK+sV|^=^ z*hZqXJIjU@2>jt)Mv>XfU;yeJiCW#e_zE9XDS5Q!9;Pza#ZWue-7kKKCgE9$l_PFV zT2^RhLoCy!l)SesMFw38il+$t;VaAi3?OAOm-bS5evauUiggm`roR*gP?W@)EnP$L z8HG3enAmDjp7RHWxds04%HzkSscP^m{|7E91B&wu@e`v(YW)tmY#msjA%q)j4$gy= zu*TV~C}|ll-_g}=vu>OsS3FZ6*}SHtxVV`qF4wfwrM=o;hV`+P<%h02JS;;@W2KZf znL@(!0=nmVeZER2`}&I`BZ_mGzi6Qvi+rH2D73o|L#dY-Eun=vCLhvHx{ILcRqn>| zOi4a%rTpGnCLX1aR!ac2y8!b6-p>=-XSmxMVhh8jEZ^pQmF3&a3UaF4mzrvU$ExG%DdbttVPzfLu5qP(m5ka)ct_;WTNgT#t7ZyH1j*o=mh?Q z5_OytCF->9d^lNm)R8USQQzWnx3z`$M$h$JXlv25w>D$R%Ls$CSs37{OA~qrV0GY} zJB{_ImlbANUkFVWey!>NBjX#lvSlMbx)a~kpC6t_^788)h#y{wPYuj(SJkk|KK$^w zPy!sCQQXW2N~uXM7Cy_7?}I_(x5XUyXfc_KhvU}=4GG1=mc+)sjU<0R=dbF~DJCue zWkDa$r^C_4BQ;g?+!=;g%SezxuIjA}auq8egM7TVGRRG=KpLd+DAVQhy;Z)MTZx}N zwpN1?`H($wK4g#YV|Pe<{E+b>8+n)U`65uC`I(~+Bg-6-t2W1D9&`NFpVbk@>RcdJ ze&*<9WtpR2qbzfb?PHl^d>>!)H)Hzf*@&5j|EM?A{Opl2BzxoxwLNku*&_##J#qlq zV@l0~A+YH6+HRsh7g8D}$JIv3p=6Zf{;D1srB4-kz;L-#w|bW55p+}dEKSV=i``8P zF`v;Q>vZ-}*6CygWSz_VDC=Cw3dmh9NRd2)8zJUNuilLN>+Ie^SFYpHvXXy2C&A8DB!O^YTjB;*YHr|)? z{ad4KuY4vlBBSJt$S48nNu#`rF(RW}%NXIu#_IK(pGo@gu}l(~dQH-J84j#)w-K-U z^LdH$d8udST1ODvxa&|x0XXj^*j2)RHXQ$1PL&+RDfXtBt z$Q+xknBD|>ta0avhyp*G zWtMMXG0iG>_%nQsGu#=7p`T$ghGdwWp*BnoCBx(ZGE5F2!;Ca4dyC^-KItbpnzl&} zC7TQ?^s{A-K{m+&G_CAY;I&D*G4)`++H7Bq(@l9NX$7uRWAGKVk*NXxWkXG4(ndWwUytNdvCbr_0ZYkRi+Wza(_t!8d)MN z`v=Yj#lXt9L!;#Zp_p}Dr_L0gXg0LNK%gq*AbNycJrM{I2A~Q?M^+##Rb;%G2(vg(yP2IQ7*Z zOrZ>bf8sz8DI-BNX0$1}`ro%h@dj}s11k%bX^%EVD(%shm68d!E@CE}U8GFdlvv(0 zDWyGHNDxnxA|F`!>d<~Z49QEJe|6|+F^Dmum9&R%7mLBdsCZW`Tcv}LL24Mfo z?oHwV!ywfCqLcWSF&bMF?TWo>KFl2a?ufJPS6W&glAqP}qN-q2gbHJZ9Q zMs!s_b&RO2pZbKF+={GbNVFBXsGr`76f0OM?ZjefwLA)OA1k1pIV_+J$){O?-qZSv z!$jsLi{$I9CXvK~GP(V{ixrR%o*MgDfu{zYFIoPMXJ@d%{bvsiqrdJG4-Mklj1_RM z@YH)m+=J}hj})C)4Nub>+>}KA-c3o29_{V6(%avqTLO6~jXYOnK4KL2PGG+WbH?wH3+n z=|asvvlaOqW5~85KWAXtirmitBp70-tw@flw<1qqF>OVj$Bu}U=#*D@&0 zD#pRC1MUfeW7F1)=4}P$Q3Gfx5nrMyczk&|BCGAcpU#BF8Df=2QQMKXqfoRRi9Z4e z^&o>vq0HL{s69!J?kANMAaD7_q#hfn7E&-!Eu_|< z9m$2%I!21@_zns1v13XVZDM$|oO+Z2XgS3JYN3s(BHQ*sq3f+>^I|g~1ORFe0rr9crPt{oKWuhq79E=cJMcL#p zT1DAlZj;Kk;q1a#5R{E|_lFH{rixe_qN(MQ*KLfk$#e?Z==`qfFtJHxKD%rdCvW$s z+1i(PgIB^T$Hx;@zxwSOh2CN8Ei~ITsyX&v)j$J(KvY517jSz-W#|%l+qtZw{AtXq zELu~(mHyYhJW+}pFaIo)a@->SEI07aZSv2b^3NIhC)LD1$@0%g`DeKNvmyllER%mG z%Ikx8ofa?QKFbK-LPVDm!K;@NwWUO9DN$KU6qZu$rH=BJR!x#7&MVE0@)t>Svsaqm zX%fjd;P{bO{OKRWv@i+eP+V zuKaU682=oSe@F@clA74p6#sl9|6Jb!|ICwrR%6S`={u}%rQk36yi$#P)RLYX9VQ=N zqDS(^%f~k8WuK?yI|}r)!_-)Lr<-02kk^#U>CU>;ba|H4d8PbAS9Vv+TV-@ruf06j zNT(*BE5u)vxEsds}TkJ zcSNif#nLvcbv;fUtkWow&D1Lg51U}q41-KW;G?zm79#FA4}EP zq*kuSKQMP_`%HOiDYd;mj+7x$X!35oFER}QsASDB239n$OtE1Vs9GFd4Ck6-Hr?eF zYA%%Zs~iAxCO#pCYoPokz04|z7^EBApKH7Y7t7>y;Ep185ZMAFstYBZZ{VoWT_rW;Gzx~BM@Idk8; z=UyJ!{ml9Yzvr3L=A1L_%-ort>b^m8q&;{wEL3@#CpL914Kt-0hdl4&Pd9b0jP~D; zuWvPW^N2K_oaxMWyf+Bk^?G_o_P$+OY(;o)^(2v|o*l%md{{K5K~-_UWc>OC{WZdV zkmy3wn^wVHMC5=$A}jyd%&95bbrTFChr!GB(Q(fH3UtJA&Vj7vU@$9&TA^tQxH9cR zCuekdyIL_^SVOHp80Q_1{5J=cUtBb(S-vUU_*_#+@mV^>UVC>Ldou>q9 zMfd;p@E*vod^9tXCtp?@RF<`NHc=cogW){v6LHhjoWXpr>W=2~FN6%>$vZm*^Jlg! zXvyE5zc`p5XzP64;RejIf6VO0bYc~M=qgT|zt*6?VtMI_apC-)_RjH1izgRMnx8n! znb2i&m&sEmcbjtC)Na!|=S`X3wfpUfw@pq=?2GrPOJKvVqb;{(V?zj6}C8{0c zSPU9mT$rDz!4F@=$Vd#^At1DAE|5;jYTvMxIv=XGX>lk1WW4il>@kzp-?GEf?c|Tz z$S*HSQRX0Q%lTiM@Y1)!gVAD_7bWsZKh|xm3=@Tel?+LD^577-#eH0CaFoTh#$*ko z@v>UYa{2cO&XRyV+19`2>PqOz;3V5Gq^jtsg4LsYV^w8q6Ri^a=f5aUbew6tSr_LN zR%3|YGqNoo%dFQc@&{89pUnKAA@Z7?7G0g|SraQ+JDw{(nu!`BlgZ&jxDw-zs{{j@fT#3uuB}%KXiI7?m^OXt z{3%=WpXYfC>NU_P{( z(Lv%jZ4Q@-2jn#%*cc8AJfrIs9UKmGm+XzDDU9D-4EO?3SSg3jnUfE)B*b&Xwo;IcF%WtrZb2;`s$e zkd}P!0B2LJrCDeUi^a!SM@O%rVhjjr!}^%z*qF+Tl-^1YerOcj08{ZsSQB;dP+W>R z!1eq}Qbv1HVPhiKawzWUSw)4eaJRQYE<6YqSbsUt+201fxTGatA3VDqn@&{0kudhG z!Wx)B;*KkWoCmCIV9XuN>rYT>C~-ph?mTN4Jk}gDRK9mMdx&#_!q%I-#T_W2vu3CJhlVTiI-Y75mxG_1`n0FiCRPDeU>Y&N@Qro0zf(ddC&2lRC(cP z1wj|y6fIfZm1<7*)kjm!rhNRaIz83xsd&S2)K-(!Y-BKjICP}{K(#DYrcR1MYjLOu z)Wb~ChbEEmMuzsjUA@Y_6PzVV&<_CTr($L&vY!ZvU&Sj_#XpFOpVpb(mGm|ZWaM2; z<)^m0I%*e9UKk@rC(XO5KyXX$2O8|=R}*^1>>B>yeX`5=q8aTQ}2 zX%t2#o6rv8r|K<9QNJ*3_r7U6k#>r-boZuD^S;uDuwgb?@?N!o6qT2!I*+JoZW=#+ zw>LW?APx_i=^PSC$7Wv;!R#pXRZnK*QXvpCTFb;Q%xEo3!*clUnS%(7b3jyXQ7clLde>M{+y5~ zlfpK`U@kH|ASic^v;SY1+jqnzP$TO+8J2Mu#ViD7L0suHw#We$;g^=?r12B=X0&Hd z3O%q|2YB4m&H?2O!-6v&H-X|8PHd;&{5*QO;%dQ z#rux()DE$z$CrPZG?u^f)TA)pOm&6ug9XmojyKX^8+m?A!+7&&PX&<96RDQs?!O3r`I$*=)k|qyY3XdsuGpCH0$32M7oqfbJ%w-L6K`fQT%C>L zUTZixpe_Ew>mDF$C_jIvGmICE_O!3Oy4ZP_;)qB$*1!?z_BC+EGUr9LXF5OrmOFv< zPB+6YbUoy3PJTJ9my#}f@x=W(q3R&`Pg7?suP8_i<6~XUMK>2RhKi-T(qbIlK)I`h z!(w?tzx3LC(wy3LH30d-KMfNx;bR4a`mu95KQ#$%V@s&a^*DzrY@SKNmwyZ6^%4Sr zCY0d-jPhOS5qwURN8?^E474_y=KR>?lz4WRjZm4#^NL`EA=rjeA$Fx^OQqBVFtb=t z$McF}7+Zzaed}m7EM1IfO?knm4LhiH)5QW1ZiN*qX&RbPTkP&Ygj`AYT;W`8Yhq<9 z6MFF4E1jp<$3$iH+m+wy^vd{$3HA3E+itp*abIN3W#5>LIf@f&;D`X?^1tS%Ryp5c zH>?E4>i1Wye5(4dbUaG6EjM^1i^}kOUa&SW!!zVMSz;RN-UNbrs>BJ4UJF(PU$)jc zo(&>c$ngC9?06+Z9tp}Jg~*~mun^DDdc0cwR&JJ0T3==#idGk#hQ8Q!u>Tnhx5|A(=&LY?sTy>g5DTDu`@^@0PG9^13H6jJEqYEq}b4v zHoOCeE`adGE+CE9&l-9&kCge^Qe*fq!&#HHB=VMTcg|HOW%9lEyHi*mDG>7jF{Xu& z5kRy@kenS&$dt!t#+ul^2A>beczlK*d%)dCU6NV;pt~PiW+M8BO2XDi3oQC?*v3BO z?yPRe?`kk`m+6~$z7i%}AsVFqw zsQ?jps+x)jeaP8CBY-qswiaIUo%N8jl4THSXk2*tsWTf%pu)J&MW24yxj-Y>(ze8v z#yKq_haY>y`7K*ukT-T*>{K`ppFZPg?U;wYs)nND_w)p{PhpI9X@2L~S zy$4{r^0bvsd_!CNptElPF{K4cJbTNEF2$%Dvt-O#bQ7!5Ff(S2Gh^$7lasdO{sFnS zJ(0l;jH5inIxwGCcGerHI1sb^P;saN`>(G#J5_Fc-1)M?ezU7k`oTh`7$JF$6#7H5 zLADIZ$ZRv3eIcoaWs{j`Y_>Hf)wmJW~E59vKDXRXV#{0O-&7H{G|g0YtR$ zrv(idMe(Ii1tKn(7Sw}{{Ex(CPdl4gSfb=lpLVunGyfy8=NV^7RpR>P^;$C5eSNim zV|t8~iYVX*7r8e&-pGbjdh^g$>@89(;(*tGqD?RLH5v#XWaERH4$(Q~We@MIzLbrx zk7+NNw2-4%;vTAgpUtzQm&UQnW(iJUFR!Xn5FW@FZU3QR`wvMe*xv2< z5zM~VSwD{bOiFw`o^q8~=mxQn(k;IQFP#!xPx)S87$Y$VLCa7fXc-$Iif<}(MKTJ- zP6(I3ErwenF~fo;jnZmCl17Me7#+-$`?aZQGfAh)Uq5gb!)3fyo^o#D7%&_nZbN7^ zgCD->dgYA|oy{FA&xFX4HscKRkFy9=^vp^gfBTGco<^{ZHdU&-Iy1Kw-53D#hVy8z zYpazAyqZoXz%jhGB{iG2|! zsv?Q~4b1MvTY|^z3Kq1T%9sF>nV!tEpBXO4#ZL)|FG|$Y!_9F~`HJU#=In;OA*R_s z7%m?YJVhumE{nxOf+vPc)t(2H4b?Ee-e82^CAdP6v(QihrMgxA_)jMs%5P`K7Fjda zia=%Hu(VK(K-1(=8L`==^yXK-gaavkDUC4|ReO#w>!%JGK{^W9>>~5Q7Se4*0?+x{ z+1V=c=p8T-)jx$K>m(uzEfQGkG2b|otSoRUSNV;z6Dzc{NZvAv1rs3FyC6F`(qav0 zZE0*JK@-tz!ASbfIn)9$8|bz_qeFR_7oEvgjeWgVO=X1icjySezr~(_MwcY=^e8^5 zL|59x^_aPTUFdCnO&}ql=%Iy4t9O4WPP9f_XO8>;g3IAFCZjYFUs;UX$FbqTk>BPe@=1z`R@JdjKX--VP9X)~NiUeC1EhQEDvkPhOG8lRI?{RigR%8_sOyU0(3BvrBDZ z6W9!RohMyyHHiQ4v-4KgC&#C7cdlf)2JrJ^B3Zf#6u*RiCDU#`nTN^$`Ry+;Ui|FL zMm+Lg&W%(A$`#3mm^2}cCL4NEMR;hUBb;Y_oYasHyyl$r|4#;Q$$KJ-e}B!{E5ynd zw+~AH?Tm%b`w#uw*;u2+JoKbzq4GLUy$-pa1qL}^+MMrqgltpd9Y{`jL*KuDB| zvV4@9D}Id=vL@&6;b}LVS?bd?FpgkgsMB+J;m^*_wS^uK8Ao{DfOdm-Zvw?HjEt#&DKfsx2*k7K=6M#@a}7M=aCKGK&!)2e7>oW%0BM4ciYJ>i zHAc!!npz{RW{{gS4k#6yG~Y*t+{`A8(6QX%s#$&>_Ohq~kUtaqG!~Fy=D+ZrF^F5t zk98i=pmKRF*E5PEex$KQ6F*XH(M;xgaeOfU^~1@qkyD-=$}?g;VZ5~LMnj%($B26T z;H=uA+#BrL;1~vkcxrJ3vC8p}TwUSPMkPVb8Y#!lie2ME)rs&Qv3nD%xz_&w+bRd0 zbw?V=3q3tEfx!=dFdn+<$_OtM0P4meBXN&L9SBtt#}l9J5vuY1bz$2vddl;)_^!IH zery%tf}I^+!chO_ZnzZ+sw;?8*o0C0LtJtZ*-Q7ZFG+<*fcHkZa>82LH8{&_H*{s##qCx!exspl0INI7j0qHhSN;Z%GGkC_ zSl-yxRh>VQ*B|fB46iC+r2IUSRtSwz1@jCshT&%zt>G;uadcI*BL9|KyODALz%92{ zBgvLqfJU7Ug2a~FB(}|Qi*k$jR|2;mTprPwPx@kJ1V6gl)qt;$cBR=m3EYi~iE(|& z=2?xJaqI@3*_9L(LG=MHPsBQk)be9tI(81=2`o`(F` z8w=|2)Hv5(wuLZ&)@STBZ5k!F+t!aVH|F+L!E84#Ua=q=`*JVYG4VX=QHiRo=LcK5 zX0tPPBs_`w;V5|$wMi>iu!2KeJ1(e|4|!;7*Fg3!J5}ieNJIhAh@q~bfu}l-`oMb!;Xm+NRj;6aC<4*07``v zUew-{jsjBr0?chdmz@O)SYimc%U+5Cpwzb^$j`>xge7j%Q1Stp?Dn-AgS&klOhmtO;U-&S7p={I!&dC}Dam|Ych_yK-=DKJ zt`+F>->}8azA=B!&)7)Ik^CY9*IpiQHtS}X%xZW%;Ow+XlL?L`0vaVe03D`zk@JSu zp56-EY9+}~OUK9)qorm6%;%qTZ&Lp@My6}_n;%GNB_Ff+wfd z4brjdx-s&}`R5Wmzp++hEiEELjT~#VawHD~&V}FgH=a6RwKPLD%<;Q0Q0a-pPNT|4s=O>y5m3N+%$Sx8> zpCEJ^B@r#fDjBz)OKvO}&D3$0aKhshBxJ*ll$9w4tOs9oB=998Tz4xGJT%AkFpCPn zgmkA7l1cbDY1#VY_=Pw)WvGvIJrC!>dX93rSSP~4^#5%@AsXH7q}23(w{awj`;Vjk zC&G=hz@0$oj^dQ61?^3(_7>^4;yVP_PDCHSX+f9%pPbZ8gh9JMGF3P7Y2~OKCOtfVRt*c5#Tt ziaUEH<8Ysel@MAqVD8-d?bIXVfYE{%Tv>Cs8NY_2Pb7Zk#4sF)?_ zGTvtPxbf2LafI45d+K;;_HqArm0XU_(!XAHIof zPWeZ0it}WP`eBt3OJF&`lFTxmx7?KxW_CZu{!K>+KUXAw+39M{`Vwp$E3#I&f)mYD8AC;a=odrEP@VIAIwG*01g>h6Zku4oO3mTi6H~qsbbGCpWus-fx{|I zy{>H*#$c8V(zO~|r%w<`hTC{-WT#-Y;{=g@xQ(AY*eJLvYI})VzNb;Jqczy<%C$Lz zloplA#V*)Odw^(QvrlU|wCol3NoI!$qG_7F0!mHOk#Ak$f+KAN8-t?VN>^L zmaG?{@eex+JY2TL)l+tV11Fl@U)<%)9%|Q#vis{wNU{4%E~(K~oj6g>J99}Xc7JeU z!p}2*qS^D|t}O7x`;Y?jTw(CM)6Nr4O!#?jwDDBB^5Yv|Afqh(oheHstT0-{E|}7h z=j{X=H-##T-QR_x}@&j}S;;2hER zd!lVt>fCtJD%#1gJ~I)&tzu^g8;sPWTV3(YG0F6`h*bDe@Q!WJFe$cZn4~)~_O|xjH+#3@Cjrh{5hhrT(qCo;@q`^vmo!p@b!o+)+~FE-A+dEb2Jg5@aykI@ zur(*6vL{XB!PBC@>%Dks#e|yD%g;$KD+^^y!Z+*5%9tnp=*oyB2^N1=0oKB}<69>5 z#vR|y;ur4tZk~iYz9FXsc7#|tLr#_FDXG)>w%x8f10_jw_qYzReZ&S}V={#z7?j)df*~DxMwmdK@cgGI$-HT+ zy{-q?NfSZzH%7Mf?MX6Q`uZgKu=Iv|U6a|@0a5=sNv0n!-)rXPFmVS3n12k)HKQCQ zV1g4$F~RARP=9Er(Jb1Iiuu7tx$?_~4)#(MBTB^={gWPqp73@%3d#Z$pDfJp1@MS4 zikaVg4q6fB_XwuU@7)V%zWiQOKr`}tGlX36-_=|5yM;h@y#deL;|k}EuFVW@`m{j9 zoSBjEyWccqB_#YZ6>YAmw=vm+y^g!sViU}9f@Kc;o#yyT@ZjVO@1@uH50Eiiy@9{gBXz);-@;(a1JV zIp7LXw8tqNr@II5(L1weOt7@T<2?2dtj`I$a7;#wDaiPMfC_?XYev%smF#iXKnHZP z!=7}lXP*+zqAx2SSQy0X9)YgxpQHpQ5TEAq7xwCHEF^NR@SSU^dM%fq{?3)ct`joT z_`gu&2j!vh9S|T{P_U?k<9%9E3$XUq~@ z1gS@;Oq6CihsU;NgGC?wprR?qLk>`EV#H}zWSbP zyhb<}esldDy#5NI#;_xJGVIXn1WLXB;eVt?uM=vL)a?a6pkB}UhpP{Ki$PeT*RL5~ zzh)K~UXN`(dz_=e6qp@fh;7ayrID^1?K1m z!d$w+28iOjK6aIA1ZtQ8``-aXG#ZiMNh8+$#5ILcs2Th}n`XfGX}09yLQ-7;jY2GT zit^+taw!pF_JE57l=Oh|81CjNGGMn78nj6%waFf|iDGnTCDJ79E<%HH@Eqc*DROzc zi0}OYR$`zOuE5^1BV)Jxx=pFB{M>_Tjmi%{bG_qmdq z#^kQgR5NhZw5b8+7lG_C=X+PGMVc6n$z;ti+$Ypxc(FjgORitFnWiSRdnho$a%M4; z|906`5da+g&DK4mO{tr1k^Cwr|C@eCjS-$4=g>kg<3*XVoFXYk6 zg#1?o>lfjV|7fLvkfW8NOe{Cy8Vy);;(e?jN!-WU<1Zdo^c@6jVLc!OVK{9Rh{K}{ z_llJXEPC+%j@qJXP<)nOxaL}@{aa{;75#B4FZ+CPe>|!A3xPtp=v_)?-2Cbm&+yjk z2xoYI9XXfrEBhOcm?lqhDjAg(svFiAi}-gAcSmgrt#Dc7(k}9V=7MS1DTSX6 zf@r9Nm*maOn>BB1elZmIuiB_p!@cnTe`3?3V+wo$+p4C!t2U1+k|(}=*<$zI>}m4k z=FDmG8sF2V=S>`Xv}&c^Ph^R6eA6Hd#Cgrk4`MX9o6S9tCkMM9 z4LSkR`TPoRf_9SXVH)!7>J0g@VMuXkQ!SguE84^3&2NUeBlwBk-Ud8Vb2t9WrhT0^ z2yx%4y-rm_(_R!1+ALl%s{5j0+K|2OJ=!hPtgAU*%UbeZ_v*2H~GdzF%0SOs6bzBnC|p2`dSLOZy) zG`HrI9+BH_G0w~8pQZT6?{W@TKepn>zEvYj`-Ng5*B`)@uPyGT1D6a`)T>kK?D%6qk!422ZsS5!rPVY<8=HeiJDD;?Y$>pc!pU|tS;mLLBqH-eGK zz{_H`ga1V;`I`_=yZVAc-U!=cCj5Gw_vq;E6n#KIY5#CHVIpsd!BH$((DGXYwceCBt^poPaKEW#Qn2WhVlo5-l{JorQc9Svz(pY16iQY0xF=o96%bsL zLhHn=oVWy}a?(DCQ_V}!mupMYRo6_J)^X7iJf2uS6PK~tc3J|x(NtwCzq;Bj4}(;l zk=#2|?qY)3tDVg2lWLE@f%f z-QC@akGExt<)!us#fO+pS6`fo>q{%ap+Z->b}10(3I~3|bgP!7){Q5&`#yX5ZoNS=Gc%XUUUYJ$SwG z?yPWA2_xxSa~6;5?Tro~xxSuQgZFOXSp@sQ7yG#TYqtiL+_@Ub$$rUk$?#!DAju-p zZk24al%XWG6z=IOOGTgtkzq=5 z%`BOc)Yj5+G_S}>DyyogbEB*0NuDjG4`FLPatCde$fj`7m zM}9Ta#?X8kCQ+NSyU{H;qs=S!tj#0H9R3nV1Tk~Z+ z-AYT$cp3)xii`V3v=Ox2A5Uslb#<8tHh?3FMnEa>!SHZ*w3bG>_~QwVu*8mVx7L=? zQV~w-qUzYM$hXB)TE2`YDgomODv0r9sUXIa1p?h~Y-Pbn_i9CZkg9R@t~D)r!kg|c z+I|Wa{b`6m^d;cp`PBqZJO1@(cc_&Co^}*h$!NzY0})a1ecKab-1l4YF@oMVBIqBK z#EhW#sx!-ZO9X|PeUlh)Wyq24l^uQ>&CJqv+QjC8jRW!~<$e7rEMK^ysBswZTe;L;_v z3m8wN`F)|ke6oA5s-;q)82W=|%g`T0OEC27dA(0Mra&z)^rz8sGxYOjSJRB=&!(ZT zPM9tG(g~Ce#(q}f=+4R-o;}muLR(8qG4@wU{$W+}A6xi^e0Mjs$4q`|fwzajKZ0L5 z(xxUHKs!Fm-50(^Qu5u+wa2P3eWW_3m42od-uHGEOjDM5n`l&NY))V_Y)%%VVRN!T zusIEwFu&QK-9B#(4#O{5bor1w>gMT4EmL z?mWkco36CnjGM$c)x=GoIhMGIpCjWYp0dH)nnupSgT>ltT7oe%qB`D_=a~H^-Xa9t zar~v+g@ctyerlQ9Ryp*qrMh^V`T(bUrqv42WaSW~hC^kjEtk36?`XTJ!f4AKhAnr{ z5?>pfz|YSpY5@-(H0kDe(r495ifLN)aCJ35Znf$G!>R`;8-Ht5PtW03#}_r%&d_2s z?T6I~_(Gc2-yWp|*&bE+Pf~6X+;11$Hd_7N@Y{_l%zv$pd7Zg7zX3yRm{foC+YaeB ziy_f(76|%n!V32y%>p+4R&Mj#?v?JH+JL#XHsDB}3qdYUG{X;b)rj2xey963D;UPm zR=npbcV}%Z#m?@q8creE$-iFZZf7O;D+hPsB&~yGRq4qQtwisR*Yp>P8FW82cc$FD zoG=qNFSQMnF)k9<2?$vvcHg%py@F)0wudrIxdRq#J0-6lrngep&GqYx_sr0BuDoaF$_sfcf-KdE z_PEvbyCE-LwSrLr{XbyE)}@z{0#z{WD$q!+r#&?u;5>7VJ1BN5;<^jNhdt z$QVkH@mt#oV@wJ{3FUl$8(9DRLg|t74+iI;`7|m-w$Wf5v(wHPNGM}*U$fSMk|X0b zaC?GCW8O|nP-Q3ql_SfSvsPT+ZQ~9p$E02EG_~bCOqxYj6Buyxaznj_P#c;x!zYy} z0d$se>K}7S+DwqhwAo^zS3|zB!rdi0LO^NS>=tULlt)|%9Cs+(v@V!7JLVkzSJP%j z>!>(eySBEB3c%diJNLS;XzM5#b7yN&dua5&&#EaUbaLVaCh=LdvYS`j@9wAFW9JZN zaxiW>-pR8carcYbPB6hL*ogwJ`9-zz1i$eBq*jg)L@tyfERAf@0_x9 z<|Q`;LWR6!ngtam2{Fg1w#`eIMf4mF^hrA<7m7`;wB2l>+{KA83ppQWTulqU66< zC;5VutU@a^uG+aZ+%$ntJh)nAD zk*XESNY!YGh*UU3obo)Rb=uPcoJ+SZtY!(+wUC#cbaj(~+PqK(DhR+pwFtmKwLoz4 z2_ODXWmF!99V7(1SfC>6w5rsbkGTu2V9dtMDU|uVd6co~qx|Y>vkV@`HKT(>sF7o_ zD1iAq3&cO~RqKEPVlf4-z|RbuzwEwG(e_ex&=tE4SL~)G=!&PME1snV=!(kflz)Y~ z;;`Wg5P+_*2tZd@AfnHx{N;6b9Yy!$75VGjd@asWxUVtQ!SmE({Q5F03jA z=E4TqDd5wy)u-GeGz-4ai}Wr=+N2%N{@6|KA)g>S9jdO861&?LKqLO{Uax4&sB8?N zMeum4NNp^lCBEhOla5lT45q|3({kyIUZawPIsvwBb}f*3jm13sL<7FR0DtH}b zVJ^U*SRfbRM`*E#R0Spu0ofm0fPDt^!6F?7?DI~$o2u&;h=q3_^`iy6aQm`2?c*x^ z{!tCTfBN}hCJY$if}84#nJ};wwgro=uq{|17tXjRTJ4G9GUpRWglY>(OyeGdl~n98 z3|{R`2|$l~6fyq=efP7F&9SgW`3D!xZmuQ%IXzS+ipQLDhXFom(+6m=2vc=$bpj47q;YBpFw#UI%}f)$wos<` z-l)R+mFjr^UGf&Q0nF|JKMY!`Jq9h<5rfuZM+{mE1U;AfjeD790i)+mCXBBMpGqEw z0SRvY$o>}x*8 ztyp^1eMBpxs-hJ)7*^asOVEmVmBJ%nMRApawvU!$B_FD;l24kI^k1o<-nU53v_KwK z%pwmfW`SVE#7*g%1&lNH(-u|4G|Pg6q*uf}=@zhQlXcQ2qCdco6T)E117EqTFi*yh z6aIh{0$dTUX^Tn7VScZUfRF_ieBQ2hdd$&gF@#$ExYk-b3xya_TJg~9fd;HDi+wHi zXtScB@N_Mp$-^94G-ZN0y~d(6sr+I>s9I;SUq|t+f|g5>QO5~39lP@RKULJIRDXA8 zDsUEH*dOk;n$toh^jutxo-3uEeBKRr2Qs^CE2ja4l+TeH?rxd|A|}S$8hSQrJ18Db zjIDTL5QC9hhd3I`S38>=B8HjwD0vA8k_N1wfCA=)!8_APbG#jF| zsDjnZigjfn8>02Bf_0l8OI)Rh8PDNWkTMYoo~|wxf{*OO-ZkT6-c7$SM=l%E+IRrjVOGM{g9@lb|dSZzj zpH9+J(RC|t3m;T>((L0Uaz6+xh$B5*_6^v^Ni&d$-M2*|cHb5V_Q97TJl!=5*lf`U zPy?Kn{cVXnlLSZU;1-Z3o?5(DAJ0U7W1stPTIf3ca^#IaIQl zy_!J5n7ztbDzaD2Wo?gLUs%^l>dRw=*4cK(IM&Pejt*|5&8M7jNt?q@Kvv62j)Ua# z0H{YHt7Sz6honbu74dm3XD4rY^I`_8&%U|3PblvE6u?jP0hB24lM+&+F_7 zup(}~%o5jd&qHTl8wN2L+!iqy+!lzON5L(ZnicFn{x;O2jF^X65yhx3F1oaWG2JzB znM`-(T3GmFW_&f3%3o%Qml)Gk#*LR$0k|0lZoIS#H#?wTtNMkDYcI7eR3+?kHZ7A~ z&L&!dZrNwJOkc3e2F(071mvK7_VwHmr}N{f4x@ppLE zXg4Sr>M}&Dkc}jlLsnd zN5?T-TNrZ|5{7u7B3bB$>y8xh3)dYfE?jqLblm|n+gL~2{04l&5YNCUEU|H{HBG*X zQfr#=DoU+s_$o?5{!qbr5d86fx+@^$(_K*}4sG0$-vGXw!cTV_z~@%*=`MdE&GVN( z|Lkb}LJLl>ZWl*P@H3P@#4!@wD*sf>z+o~kzu*-$1jLIxB_X|#d4+;l-(@^+v1b5& z!0R@F;+JUMCG&3npvb8&B6-hFm*V*4hiBE1-|q(BIx>vAkNpA(vscn;@(Y=sff<3M zZn7rlU&-r!6TuY7Mm+QBnRP>m8ZL-i@i2@9WCX>N z|4a8YtSlJq>905(ZsUmk)H{2o470BFR;y5(1%(NJgchRnYw zdLCut37H7g@L%nLI!2PgV_Vs|Fcvlj>SAXKtoY%-Nqo|ebsMXTQV zaPa&YyKY62uYjn(P|QbIn8yqrlvdXxzw*4E?+I35k~QmQ5jK$Qw#2Z+vXSLy%B6 zr7sBm6)EA#=04QJHk^%i)7gN}e5 zdEtQ;%^0EN(9)W#JAq8(tadH%B!&q*nX{@CYQTT_h1X^!L?0G#+8pC5)d4zB`fhP^Hqb=mQ2%L4 zKYqb0(^0beSvt?&v8hpH;lDUR(OuFdkLK_){LW6lrHp6Pe0f>5mu6klja~^Jdv=!ss4$=Ua~TSHyWp@ zOflSY)GQ3_mNSN1J~a`gTTa{D@|DdkA4sBD8Sh$N{%H$6&O!)c2Cyy!-H>p! z#B;j^(dIql^FLYz^xo`N`bR94@H6W%oIp`ZDsQ^U)7g&QlIxp1v22-0O)^frw_28+iGhZNUKs?cYD2p?IjG&+CD;{qPFT@uzm-9 zwgufL#yEpT#b9VZ7a+9PZS#~X?0q5y9gSViNiTLe>?A3L2zifvNdRVC06IPaLeO30 z36N`5h(1+<9e^yK03lQy!?56w1p`=ckr~PsN!UdZ8W+d5Kp?VN{R}W)8Y1nb)oGgeq(y(Z}yY$NVDb-Nn}| z@WVIlc5zI`-F`2$O#n`r4rWO z504j700w%a2R!lYF(OL@dIUl9&pdbY!w+~;s&Y8jDx)hq`rmPQ=|MPQOqh$Qk#TqC zoFczr@dKP@vTGI}wba#RW{v6c2EiYQFtj#a)^}Mz$++H)C(kJQSq&-1BQ>mEvEK*S z_p7X!L`$P$9FG-`{P?j}F&+S6wFnV-#OACEDMlaRS)c^UxOXw0 zEWvpW-fk~h8wYgYKX^drWO`8yY)55BFO6fPtW2k=!zsT!si>GZ;E^2QfEU|W(G;I( zaT+|`cAiTq&s9}m#X}!R2lqr^eb1J24=f89*KVo z*d%?HHiy9vU(=Ia8;-CiK1*xQek4Wy{!Mv{Cp_ipW}$d4Nab^V;eaP&0iy0VQ={Q7ikZ(1i}y7Z9&tH@$5DNMRgL&pMyqD zk!?bZZ(OSgx%3>Y4l)Tli1tU+G0XXdbNUcAjue=E(WvF50Zm&jw`nRpJo~dc=0_!j|B_puJw{4M@8NV4!d0&CXJBY@zLkI`q2d+aa$D z{;!BXZwuTv;Lqax!@ynN+BRPluEm187UwrHfQXEu1#(8vS`we(ce@wY1+v{m>x4 zEH`g<{5OF@xiDnO+?&n^Z4rs#ed}N)|3{}wb-4H0nN4`zcRU9*wt@)9kD-DE1Q+PW zRqhr|$n)&ECp{62=Yq`K@VnL#$%(wRX6AGK@dl`tt@g zw&usIfDc9I$28O^o_x0bKECRtXS3E+Z7q;_5*6Lk1)J7ok! z7^*-a-)+Bk$}=JAm#RL<2Mm0-J$Qw&LlL~fc(;9+5S72LW9}_i$cNj7A`ntvk%!y22^JVNoA~h@ zUG64qHi6<72F;wm95ju2a^j^LJoY2ciHtxJHr=!Y4#6;zZ+v@Zqso1!J#dluVY33F zRvFQc3jj?QQ3d23pkl*-fBdm0SlzUOUtPF9j*r<{(3;=#*$u{Led1}u-mo$ydk2o= z;DgXa2kc1gDrh1|>hRo8J!90Gl&Y$9`I$*=)gM>L z?S!AL;*ITut57Po6aMya-py<$_zWi>m!}#)g>w2&NjHUxUl<8b{Utw*;#mjN8uBY2 z&5V?<%ul@FX|FmOuasK|O5@6_pTp;1N-~f80VenTR+{m7YLqVb10V@h__eVm&F^_I zG*nGnDKC7?x-+LKe_^ZMn4kS{rpAwc=^1r%eT%7PjH3tW7AhW=hadjNB77J&NdRbA z-6j<4r*>T__XNHO(f4rpQ^sR!HV9!02|a{mIzLxu`b~VPD#D%U2Pbp=LdCU_Nh|T1 z(#m=lJ*wik8?+}RqqU*bvn5|_m=DJw6{%8D>xp#dM*qc zf4*EiFa(dxEB}yj^pT0j%{Y4BUjNUq{&1nd1TdRF+u9&M%&y${tAg)Q2r5i9tG!P(nnL_^UsR-D8Km6Cb z1-Oo&i>pRu!F93cJK;{Vu^s;vHkihk0DoWfzY+?U&59?O=6^FYgUvDJa1d;~T^~St z{_H#D7SqMwJ^y4YC|QnfyuswX6Ze@^*PZ5z^>^DbkG-=XUa=q=FV;V9$Ha}9{U$0t z`@T=nGufMV)Z_!x1yk|8KfkW%!7%PXpJO~*|0=(t>b=;PcA`?aRTGGCd&kAEICRc# z*m3YVr(Y#!7P5+X$;V!W(yOyQIXt?CDHrcQfC9nWXAb^YP2J17+IgUa#8p!F4z)}k zqWVfAkE^ZsVOe%6Api4ChxhJ-5C< zmK$J)g^u%hUWnd3dbWVlfoG)YC75f7Gutriz~dTETPv0konxmwVq(Cw7G93$`|Igr z*=r_PPN7UfW4=;_uyRX%9X|5@pn6JUtI9%Iv2&>>*h&KXPruA#OaO5@opYyo+PhK@ z*WoeBpw&=l%v(<#(KFOrR?D5ITg-wL0e7C7u9iDbF(x8El&?=y8$-d3#XWFB0iRA6 zM(W)hU~}AdQX^N(FLXeRNa`{ohL=s$J6HhAqx5TRFyWul1|kS|oU#aXxvpn80L{MR zWTR}!3ubuZf^CHA;MH>1iDHYflz7;m9C4Ctdf2!w(?W?ese=h_-sxm3g14 z^~C)rCt+yTb2)*EdMZx-Ne6unqu4evp#j8Th;Lo(4{_YLSkO`Lrm(*e2_mYMhq;oV zH`N|C;TY6ocD%NP4CWz5hzB-P+r(w&#++I#2D|*Tg2dj z*9U}=bKWKQC7q-Idyb&q`argcK(W)fGQ`c4yX4*^Az4B8 zCimKDV#VGhAj`c;Ld8+g`HzBw`0+k^TXxt^X-LBklhWZ(Mgi#b<9+o{*c(yG-R=wlq8fQDtoV;b|PQs9)t1;Pitah7-Qr;lJ~30!z1%;eulI{jn5 zH&gGYeh7vY?<8jS*K0dit+i$>B0C2^G*Iuz90ZQmV1x9btPz3w`)UW^^5gBZV=Y7w zKP}4#!&XKILSsm94Tc$a6$!r#hM?+Au>BI?c;B8OFiD^!z<&VCB-jS;1w-}8cEsk= zba_>=m#6A67Hq6*!L(b0_{mgwWN;xNq3VoC(_2{Ru(_avRuK}Rlj>M2cg}3uH|KNH z^-hf2(4nqBr|ZKl%x(TO_FQlH{po)vl1yF;%yQ zo8OyjW%GNJ6rgR=e_L>nohMMgSyZ6GvjK#Lw!a^$5Q+8&$g=$rD%t+oiQy)8L98l+M0w$dL&ned*DMy>GPG&eEBFC zio2R9VsM(OCayE*!D^p%GBY6t5~aoFo+-E)8wxkOC>z^|WL%m{#2bEYlBYk$P7z5c|K~it zoSi06>|IXrFDC0#EZ8J#<0DO8zRXrWG!%JSAa=bxEl>~YEjD$*z<65V zagzvlZsci!0|H76+_kd#JpB$w(E9-AWhF2M{e#fqy7xV*_<6q_)-BMJ!p-K|P6oz_ z_59R!S4Vb&aKUc%=vH`i`4JB@^Jr{RX4)cF6 z(>swVN4%_VYks>E-i&Tdm|$&Bj;a&H+l~oJWErFgt6V=UmhmPonCVa|Y?Sj{dJmRM z2(VKSXueJ%nI|vRlX-?)uWKhaCd~_M*`hBBe*7<{lZ&G4#-9Ur>UU_>K929OQap(L5K5pWeR>yAb7r^ruc>D8)|Z8jovzHlW6AH z<72MfXs@++cJjbHe$N_xOTY~Ky?-ggKA&H{OaGb03SE2~z9OyO)CBlCpOU{O=~b3s z@+2wr0Fv@MZICJS+9moE><&uiPobx5kSX-u8$=4-$c#_0qaMs$7_V3`Be=d1rqYY; zn3(u2+#s{d=Qf&YT}-Y+fw;SumD$NKe+{LWzm~d0@cKhLjb@M9QBlH!QUZI*UV7zV zd!Z?QqcQ10S4;M)9V7Ss+Wi5;Cka!_)fmr~T22C1RZ`1@6jRG;B-BxSVR8O=PO#W5 zZP`@N$t?3v;+OdE>aF?RLSRk@AII-;h4V(&W`;NIBnoNTxsd?KXsS%!rq58=brS+F zZ9ys|w~gG7D`DzJKQb4ci+X(nzh@t8q7fQnPA#n*F%aobSC) z@9F^M>Hb+mySg9{yCxz~PD`s`{>!X}Z=SUi2Bkhk3+VAOqD?~Mn2VjTL1p?b{Z@2b;NWt-&s0~q7_gD{rs4+_Bb$KCt&ZLBwuf<79502cpu5GY1hZ+`xO-rJ7d zlAnAti1AF18o@?YC3*EAtP-gJVc@2wfsOA4sA9#3^rzT-!U}bo_Bd?YEhSKloB5k~ z;W3!MR6#d8j20LIW`h?Sg9NrD2+`uBO`244ddxCa4cLRs2cIae|=Fu%Q%sM;k2bx zhSL_az(`lbww^uCaiA1Vsb7d~&JLO7(&>+tlJ4T!QtU27mwojWy{q~N=>6o9K`L-Z z?-K6PyEZ@+|Lj#5FDTSB%#2a9`;HS(v-|GG>pnTUHhU-#D%iL;+bRGy?9Ddh(O;y+S~atdI7SsdFm*RNuVJ6)C9F4Li){|SOSpqT zvGeN9%RbcyS+H##k@59IRWa~o!W+SapO^_MGx+&)kcpf{;5gTswwXlx!p-uN1Y;%` zZn`B_u2Ls#=Jny51j^l}m4Rr{3hw-eQ|h1TH`pd3-t2HVfnw!1@uvTT?ZqnC*ttAn z!wwN>zPw3ae(D3ro4oLa9%3Q4X=!{oVbKyh@%N1IKQ6;x{RsLU_;Mn`GHdk3JkR|K zOnRE=gWZqFCqxD$*ueL_=xI{f^=ti#qJFhmW)%Wr@{(_1Hv6-cHJ#0Nk`A#D^U%vp z8t`@B>6PLdiL3gsYSez@qW&oh-C}7!ly{eEc!yWkzoaKSlxE00$|Bom6X-|c*--e* z+cC6tBv}>udm32i<0U`03i+57xlR1StjKL!@T-r=KxvVN8~CADJx$evD|qHluD&vL zB3GP#-uD@Y>F@I$roRsl(|nmKf)eR{2{+^&9#s% z67|5E!;P=k^o)!`6Ci$x4!LChP3MU4+m7$TywUvpHT`rz<~M&sE58ut9nalk<~FX> zuj^?F+idDCDl=e9#lM21%LI_77ibM-?h=p0-@8Q~iNBvPIrJMG%BU#+T~ECU|Dbl! zqvzITL?XZXyFN9b9iF&pBMUn$m*?KQ-_Yx+jyJX#=ic9_Jg9i5DC*@c{G!7h&#uzC zP4pTU;e5YEcH4>bTZgK@!hf1N;n-C{Vi->h@~*tOny*#9;qz*Ed$Dhb$P1b`BfRcb zn?JtXBJaHUe2YBazOSSAGuB*SnQ=LQAM0N`n8(a&cQYR(fPL0NN0Sob?FUKSxSzb; zdGRZbVD&t>+`D)%UMf^Msg74slp#DX818ULCE^bWLtWXGoG2K`D_r4l9hfR-t2C83 z*Y41^!m_QRb`;;myf+ywYeV{jSl{T=n7><|7QtseIV+qAxX&8Gh+#7XfChCk)=urc zRoW09u?peGLcC?nO-MzX`0IvTCJot}AFAi==eJ=&g+t>*>U+O-+zXbdNEsW+-|0~l z$?hle(UQmNC<#i1-In`_EftMtg?V#tHt=@w+2P(Kwu=Zxn;o;;Y=^X2xnZ+El8d&o z_X(A+3kf@J??O&V6O^L~l=CvAO5qs1@&-?dg!5FdZV@xzro7QV(7l z?agIlt>qb^+Z5vlUpey_Dbdv)+eoH=0U-i6x8qsgwvC6I2CtU6Qw1g*fuF|K5hNj5 zfy1$}-dovr0!L!Z@vjDIk>h{RUWz$>D88s-i{VJZ)$f;T)V4&H3Ud$sfSV-pD`@*ZpO z_O`R}76sy3s&(zX&6$gkp@8J42lrPbf8kWz@~9@>aLc3O#U}Djsq%2Rn`3;4C)m+x z8?0rcTgNg&$DuoEu7+>pp~*#)>jQ?d%ki*~--#!6^mdBwAfU8^jx_zTMP4O^W2`T3pczO0v#6h?J4@UyrKbYTmVGeFsEvW zQ778;iLn7f>LYzwdFEB`t#FA6VR>j)QFCr?SLs}CR}~SIxHr606}Q!x3LG`-|>O-(%VI-hL?j-)v_xp&v;wd@}-wB))4((MU>-&0)oVNqlf>Q9LE) zac*yh@&P&n?;TSvR4z~TzM!y&2uF1EecPp@?;{21=z3?on;b{C8=EG_N%5&O-l^*I z#Fpw?+vPDY(Liv+%pn!IsS zIgucnd<8g3JfL)eLntIvwj1Leqq1d$KgPqN9WovkkpeRwO2H=hmBeOJjPbB>huKKg zT{~>?ux^KphjoO^jE5(HR>Z>*S}Nk2e6qbNU@@ zNC(|>*f&LuFh!3N(YTfJX|#%eQ-r}`p6;x4^a06kwL_3h^nN}7*`;;}kT8;2J|NkB zb{Nv6q<(ptx039Gq8v=oqvUklN|nr6#V@oofE$gee+A*qr^?8j`N~>EF}M*V=FO;q zh2dHPO-c2OfswAU04K{xdq~2}!wx=(8}qu!@J_1=PX9aLn`S+wwQ7 z_*D5F>ZS9q{M9NHg}>{q<1gG299x z1=o_aou1Rv0L^CH{w6@V-RfmlSlJ=6EDvUT!|~NP0yL*^{dFLcSx@1wN$PgRfhp4L zMt?R`nT=a%c5|#I6)fr^Be-$ZufO0!e0c8J0=~d=53KrIk`LzOsLBCEpE+FqYU*$` z%cFKSRY&iPYaqX~nn(6I+)Lf#G#=Cs`Jl43oAr=V7j0eiw|c;Yg?c`svuHj<)OV?NrA?r7p;MT=~ZgzIRDuMOw{68xv>FVrmE{6Bk0=3AeJq+`XEaNxrq5 z|E%Km<@|m71=uvvQ~hV5Izm62NL(X4o9+2+v>}}C%K4t(M)EfIonU!#4Mb{q*(l{H zgaDzSzbELs2F1e=_(#o`;ZhU2mhP~4LS1q%u||-zhHc)%y9oj!z0gt$y{hoBHC#;F z8jqOlMma;ZLdeGsS}za;*{dDGUX1#|fES}RUG+##t_9>NSe5fcgl|AFLRBzAk0f@j zTo^9Vxa|X_NcM(tKjqKfFdm?Pu{Vqd*048>;iIXFq12kJxU1V0ls)uRDw(-DC)a05 zciVqm(shknle1n@E+Uh_AnAqNbE4I4`MLi+D*~)0679Zpe6gJ<@q zYiJF(7D-;8b6WWsp|OJAy*0dsdxsQmgx^3clBNWaPk-y#N(o#Gw$$rI46^K61ld=q zhx%EKkChlBF;EzZJXflZ(gr~?N{MS(fl}#?Is^&mrBzCD^fh-)tuYz9w_7K&en(DE zNtcsVZO0*eMtBq_Oy+G7sL}hnHIq0=WgbFc3~AL?8fBmy8IVhSLT>0~a?jr`m^1nt4D^RudX*xxPE1Hvt|2mv{$-v1H>g9N;>?n$K! zf@Df`;7rIrdxeC|HJ}6R6Smy0)K^jwmS-SjfMC__J8O7_*pD~+s}SFWq{%A82#-~W zrMF0j{WXD>$PHxtk;TN2$9Vj`)LEqZ>QIwT5;LKISG>T9)e~Q z^t)hKS}T4Rb%?#ew=gh+)jG-@)XSD#U#~;c%&+VCvTFfJy#$rH&)4xa;pZ5M?hPvD z>3f5qJP^^HKxhFdFb|Qdp2znFFcO6A4LCu4MF{^8dxMxfzJiED1etu%m|(j+zBix* z+1>zXumyujLVa)Wv`)0YnP@*uG|dN5w%Wu*+2#OD%r*zu#B2qD8$^+OI%3O;IqC);b9E%Edz!t`(noqo?~`wlkNqHEW;Pd=hpER;2H2b_?=5~Gdbri zC3d|C0UC%>OValuY%N=&b{2=MM&4sRkHcQ5m-%_O^(b(jfgcs6-!$rR*kwJB!!8)f zvo{-~lN^V8>Ee47COO#`Nj(yQKHHlu0Y0=uzRXN%5vH`xL+R!RP$LIq7A;sf7A-B; z^Ju|_V9{b~&}-zl6*g%7l+#EG>il5{!oAo6Z{js_)W-ti>O&&48aYB{HFCMxde1qKc!sj;dS@<045I*r0_la*%C-aFf(D?mi_K91%PuxOS!YAORA*+&C*eLvr zC6sc|LGMCiho{0fnw$cNGN-^qnNxrQY>vYUFsHx`)G1u`zK6x1(i-t)MbS>Efq6x1 z^37fF3JfT`;wclf+0WX29_)TbA&Sf^UPKMdD*%E-4T!5{ z0A;ezFo9N}#N0>3RC4QHj>a7bGch@kUaLmZF$aQQ8HX6<*ABt_!O{w^?d?NMnGfyW z$bD!x>Hr_QY&i>pv)bNy)Wd3fXYgQuw9%AR-rUHu%9{ucJV>wY-QCEiq?FqEwqil~HX#h)o}W%cc)38*@ak0&_%c z1?GsTL9gv~MEpc;uRCsqYyiJYWqkm(Jq*npWUv?DvS_sdhGSF8XcL&+aT9k{Owg3T z^j}{=BI~ZoN_*2WMNesOK5nIQPbYyEb+KZArj2nlmy38vKV?H|@hr>Ffo14NO+cBA zA*Rg6(9{r4x|UTtD7clC-1coU$nWY`PAx4dA+HJdVhRMk#uW%c9W3dx*CNeck2Cd3-1q9dj-jou1op2>DU4d9|M`nI|O#-qERKCkJ!pC?cc%i}2~it^ysL@2Ty z5GSg~4gABi1Cm}KQZN{LBBIHp9B-ltKb=CQ6vhTBY!76Tlkb7x=cF0gRc5kK#55`o zPGBa>0uz&EfeF@TgNm)q2G!IMPFht_hby?11!qwewS{sX$wQNJC;}6UJ2El^YV4?s zh?(QMi9#3x6BMAzFiDLxkYJ}EDp2)1dIDo(n7Uc9Y&QAT1KqD4U{?C^s{xi8o6C^( zF9$^_wGbYQjcS`kx|17j7E`Ze%dSiIZi@(#HuC@h4$PLA1GA;6A)KUCR|hD#m06;9 zbG4q*1M#P}3`1aEmOy>{JjmZ3OR&%N-h#OaE(DVI!(NA0wez9WL#x_3hzYAsOr{N} zI$ z8hTlK?q)9MT*lK_s~v0uCCTren2QpxbLuVe|Utu z+(4~YStQ*$Jn4Q#Dl}9ZDqkTYY*wkXMR*fib^rulc3@Dp?1(afN?(z}Mry2qrWo#6 zZ|HT6;iL~H3vWT{kl!1tc}f=q&1w$xW4j6z*1fLTM1oqVRdXwKfuAJ&yN>#NwWWp& ztuR^B?511bwoqN4-C8$Ozfzt>oQ3q6xRuUs&yowx)gmLbady)$v_fq7>~>Rkfs4Wg z*qaSQZB6(nd$X|&v1jIBSIGFpaD5xCP7RPZZsEU`;}gbHOliemYT&A(J3OE^&t7UA zp{&_UjidB0_EO{M7XL3bz|;6`G6@Ol5}z+M{)gY@g^x6zB{wQhE>9L#&M8f%C92nz z50Pyk4)j+Xmqe>O3g`a+F`m~7&QW|WSfKYDJ{V`;-onqSPi?Kfr2L7{SXuhlE&NFN zk6Xy1TJWMH*%8rAsk~LhA%m*86+;bCnwS9^2mp47*^eOpO4MI&(M!|_kC&*=k)UKX zJqQ5w67@5b^_Rq%thTImo3`Q#^}9kny+X~tnRph7OFfu=c2)a=8F`?9g3le;FT{=$ zO*}J>rVT8EU)Un*%cM^y^<`x)0%mKhnOpf9YbNSoYb;EE1L@8;?!|{)fx(>&t^hXLpVA6m>O>YV@t(pTlrGa zv6bHmalWgXC@EhdQJ5OHbv16I4zW~x03%PUf%ir7=or>CzG;UAtgqTF>Guab8| z^r(fUE{NWfTs-L+QrJh0rP8tGp-DQuL_R{NILb_MIHLHH7e%%*#1!eu5DwL_A;h+2 zLuhIUC!hC)X&1M$^7uL=gJ-G=MPTmylYN0Kcmd9Zqb_>3Og~nhkI1m4B?3bf7QU!j zF$K2Ad*k77kMvW!VqC)NF`__zc^fZ~Uq$5D5%Ld_Rc~+O^>I4xp89z0Y!S+OfgX#` zE9Iz#a~75Izqav8`9EgPe<03fw(~+cgrNJ^VH(#gjxV`C074V9WifZt7<0TH9=%<} z4hy+v+j-__hB{ct(So@2IJq}it*dlLoh)ZOwq4{5sUNxYtZJhvg9Tj2?L6Q*VkCDx zLmJ5`j>es|oRN(wPVz;OhaA)iqKB&O<%Ph7R>K#Y3C+iZR(lAsYzCsS*ubK(T@zS= zt@N=KSa6sc^lCV6g~d}pnlG$9L$twma%!wXw%Ay?#4P$(9q;lP&y%Cfnr^18Yk=c&Z(Z z$T9J!m+shdsrY2%c&G85Z@PN7P;u)RriN z=ym(+2z$i@*!ANEmhwyQ6wV@2J^~Y}@sy9cP|B~0$gto*V2A=s`KXHpN0W!c&6x-j z4#Fj{$*V^e42@`_w0SrRvtClu3>4U=sOluOiIVbg6!uP1qYM;S7QUvB^;tgF(g+%q z9m5POKrzN_7c>d+6T2Xv7_Nd>)Pu4-eJ8*2!Y2&5K1J;ohS#fZr-Jo5-TQ>Dp$ysH zXD$7U?S0^=OODzg%-4A?SdX$BBNi+n&vkpX3qSM4*JGaHbS&XNzvx(^|NNq33H$lQ zmf2epOI;O!bDVyfCsxke>rihoG* zU1}pzw9!&?dDY70Q?7^}`WFr1xxN4ULv8`n)EbgdY`nB zI}6ngfm09!xpik^6#1b~ZPPZUl9<3G-yQPrR3VnjDU8-ivtC=V@$uHUAHuy2% z=v8VonXydmB467@@~6ysZ21bcb`{|W`n_#ecJYsKC+EW3+7+QfGzYtuWyh_wI@*jdvWx+?k{pkvcUZFl|*$w_O>(B5=E?{j^lr%S(e6&JM zl|y#>l2X46KX^Btc|*uQwWQd>Cv;qH=@Y#ncco^4PQN&2O19ta z9WD)!!1^WH&B)l*>N&ZWPrA)Lbge5?xa@Ch)flOWlv%4blUM4)aA#}P1O>SSfdGgi z``4=dLw))niCU*_Q(p2R99+RLc)JoJdW3hm67$rW7IJo-S{^<@9I_Eglk)@|_tS!E zM;b`e$be1oRz?8UA+Akoin7iR^pMxoKitr_E`Z?ebIUfgyuKR}`~A>{$^j#qez-b+ zH(O&?E)0OQS#Er0R>qi7sl!Jv%|1yMZBYj!8{4@3rjZ9*)Q$!|qqeFo11F9?1+nWwvQcc?XF z`2qI@l3Y4G5@989Weiy0Ztz1ayH&}eRNCXi-w=9xAL!s!q2yY=IxWJduTTeI**unv z`yjYE*||?$t2FY#hs|oC^+gYIokOpy0T$Bzb>=#3jQ8vaXiD-9z?G-9U1~Q=@}4rp zx-+1S(ox`3m&%aa?O_95#cQB@?jaqbCdQD0-z!%j7t;HeC+i9WlF=x1;mXF72Zz)i zZsw*@&|$FDbQD5d9~@SrWqH^hmMF}l(3Mj*V6jnHb4-0tl5)t{6R`BwjH<+uu`?vA z{Hi~FX73@FRBaMcAceD;M7}twu2v=?a%|GvU7+?;@=&X3(j0hFu1JO!stFcA_00M& z%X|0mnR629d`j(Ppv#9QB%w4pd`j&e@Fox^d#`=nfHZ$YEu*|` z54ZXqVm+h2soX(?P4el0Uh=urchqksrTShGi(uDivgw=}q0~XGY`mfyJQq$XoL66x z3j>J#Qt2uN#MFwgI(qxO`k_>vNJVNDvgZQ4sxpy&Lh0_4>XdiYa`0oEGu~C(NpVCC z&>H&Z(ek2tiSuY>CLc{kWV{}uj4h7G-$hWYEs4k4OX?TEW9oZqw1Ee;D_S-_;T2u3 z#_y|DB)A2s?FVXd;07VcPI7qD8Eiqz$CihiXeBI9ti)g^Ug$@2WErm7``v zx;kgeS-@`gkvd61%m|B)qL0+J(nV77GSs{-8PQuVKVLasx*IqeHHx5vU)Vr6!Q0Vb&Q;p&-W;_i|$dp$rs&F z$0$8~l8(?VV_Z7v7e3DBYKbny1g`u z+@D*%ifhQXsw67~0+a?-G`YLGTbObNwTjfJCoxDcHA(9Ru1X~Od$oc&)nI}wWkRZ{ zKnA_IDTJK)UY#oykf-jdz0G{1NYPz2Te?SD|DYx)KN{I*NO%3X{ona$;W6f(+6D#b zFmC1oa{Qj!(wpCqDNmFpwePEA;1Kcr`)XSyY@Z?EGUUqp{494O_aUyMI=@n$)U@7d zKytRn2K(Y)<0m!AoBz;V*3xA9PwGfGDfQD&z`vE5f4o2bopt_^zocJ?h>y|-YLXv+~zfp!F30Qp1zg4X?8T6YvP|79;e}jP;i6Fo)GUQ?YWSod?ba#wa zo}64zuMrBkY(6|g0gnDU4(4qNI2{s+%a`ZmgFn>o<;DAa2H8kX-hjk{Y|vloY(HDE zKmStmm0d;^MO1}u7d;}XNVR{|U&xNX*>akN3d~y#YKzUqL@tN{nXn&&eEnZ_HT)P< zp9ktIN|B(=!|!RXHeQP{#~!A_Vy~j4y(Sm!W7QyJ`$=4;^ZVG_h|qTg z8>H9}Su2!a<7d&PDCJ%kvB9zg6E6t0n#Ci&mLZsoJ2$i<&85^Dmh4~lk>pZZPr2Od zOj_jEFLP;2kz1v-j^RFqg)&l9%QDqn{Yq=&Wu*g>3+B3$N;lNN1ZC44n}=?d(`H!! zfdp?3jU{>Iwbk-~*V*JIckq(r6)s6zCP|oYNl4!}UuZ*ymMR;H<_z87*a?XJ+j(JR zR-krDc^QevtXnbtwz6zjSQ*8Rdb})rr-Ihp>;ae*SU4Yk`L{|XE!M!IZzXNGvc*hU z%>3npv?L1mkDR8HFyFQ=jW(8~W{KR0>%GxO9 zW3zDXN^Qht(IZ@y{>9c`8X4EzQiV*bqCG_>Rnf*MUkh-)8l}OB#>K%U#8i37Xncsa zSNRoTvo%xiP;IgDFKQLe#Ok`%Fm1dAu=Lt!nC6lylE_G{hWzX6^XX#|nH8gTtva0kJ(51g(8qZCco7~X zXVZ7hgEHrqAD{YCdg|C0hL3^b>QZtuUJF6Oui(NDerVytAO~BdA!!S^m5v8(ad%SXS?QM*^>7Xv`x|%%x2WT zGgE(qQ@{MM)Lkc%v`E?ZpMyZxLLa5+qa1w%(nlrws7xQB^idTaI_sJT$*p*;3Nq+f z&ig0CJIr^~(mB66+1p0z>StC9Y^!C4`+RW)0TrC|SUeeW`qlFCH#_<3SGa*ZsJ-^B znnhpCq|--P`Y1&oJ?WzxeORdmE$Cw$tz3_$k29@R(b^(F-rWFlPMl z)RB#srev?B?YZ<(NFOKYqbW@!jp(B)eT33SV=8k4`j|%l>7b8_)Dsl?Xhk0h@OV+p z1`7Y7zXnVVF^d^tCNscHru;0X_$;RMET-@*rtD0n=uD>MOs3#Wrrb=X*i5F=ET+#) zrpv7C&LGT8CjU$(`%EUcI*SQClLBekOs95qopV#^?df=xmHS(Sc%P z#47r1jM&>DHb(5-0UIM$O<-e`PX~&PQKIS@q~|3lG`WG7`w%uW4 z^a*XFW0cJno%iVoen%foXj?t{7)l=l>4S~gGWr)AvqSVR7_)@`WV4kK8?;Jvl-QuL z7+{0;Ds5wfR?0nS*;dHTL>q%{hs2K1qz$Nl;C^Nd&ZoW)jq;UR?`> z9?^CNN0EXp!<&*<9@8AkA`eCQrQ9uA%E0-ef&Rq~0X+9#9|CBZF(!RN%L!v%9G{*^ z?5*xrbDim`&4Vi)5EpWP!kj4L=&nsywu)x5o@i~!7<)ij(!Yl`3`(tqJ+uP(&_O=O z<{e}kW+S20ev^9DUPo!Lb+G>1iw2EI@JGQd$aB54!OHuH8C5;BNHoyD*emsQq*01? zi5%&rm4{!K1)134=(>W5elE#~3w68t#QuU-O=?UQ^wzd3zY5Zf2wOo}emuzQhJo;h z?izC-|I)Ya*ZOGtm9j2RGsQ}ge>})uxW`fTvIjy?_0W$C{D25}M5k@c5S2il#-#5M zSU1%)lI;Abq=Fc!z$dk@lolpZd{x+ljC)#xxBLG{Wt1ieV%%bQZxH=@K&qvq3vSvt z5MWa}qi#^I5s5xHxs9Cc;%D_DPX-6eDK2`fRDY#*d``Q#%EI#cH@l2sbqnw!w^mIE zAse37)+!lB(kXHi7qeW0hqD~{{TZ!&lsJuH99`WrVDM7Ut*B1M_ty>w<_L!R2rkSl z(_NV^n%M}#o4CIRXpj2KKHCvpnNErxznEHruX)= zV*--8YPeC%aN)Gy2tXD+k4ma4BUN^&_KEVBi4<4sH=&mD8-id?yWm!}Qe;l5Hc+ZW zzD(8PmEc1lZ5Wl7Wd!cGQU#JaMr%!&+txUQ+;;bVI3uz>?VE_@FO@5g{8v9u!gyD= z09)?A3(~c@iq*&>MgEN&v5}Ym`Y|F|c&uu5QZO%|ZbS)g?6PKRa9XJc;>gt2S`BMR zR%U8V$%!mTWKWSRSz24=83g8uS?Nindn(d>`DCbg)*Pm_Kx*qpVtSCl!?Y&@5!-`= zIyFkII;5AQ=98wwwG^MeU8^MDE*P#YQ|23$;J$5{eMry7@P~VRb;tfK8@6eAqM66? zY!W<9Yugg%;TZzPhf7BYm)|U$)+wgrq7Mm zo|Qf($3|;5C?!{NoNPdY%l0fk~292VAH0cz1E?ui`q0CtFO&_cEQ~owmPLWPA zLq(NnC^BZ8*1jZvB^SnN?*)b(Mq@N|Bb?DWKVEC5)E3RmtRxaHb%c9Uo|vE|8gWd% zrr#F%D85#|Bwx#YL0hGCHA_T~CR#cj)_o2BF!|c$7qz9z0MX2RP40Bq&&;1JAbogT zL*a3w1fU;}E1py%M(XRAv`dO=BE>y!vaXW?f4Frb%eOb%2ECHB*)@)Bw zmLV9LN0zHnTY1r8G4;c}az(24auqReHRkr7e3%SL*Q!}4JLYqfCu>8M14eqiC2p_i zs^*na@k%x(m-tnBJ zSRwbXZD>J8JGD+q?IU7f*^0S_Xb{c^$BeafrJ3kr?#8|;6e3yqU>XPz_CBcLG_9wl z{Snwc{a&*cX}(8muXHxjN|8GpA@_+Ep>#kUFal3W{mHKBQ0W|q+Sx3%aHb`QT->HL zm7hK$e9V#oY}VH*7tN1s-CLs7LH?%y@FDP`r-;2f+8$x=jlx?AX2J-tIHa#)$akL{ z2_&D+)Vf)wQk4RpuSFi4r9G+45=cD2r|T+BM;*+ml4ol%0c)U@-0%HDIH|qAd}*@1 z)WHhMIs|D_G8Zek&7frN94!jz6352@xSN#JI~)(AcJf$M}_x;P$^OniCe72C_$*5I-%U?DA_$7YRXMehe?YDM}-%{ z%d7k)S}IBb@qAE%$jy~nN2HA29(a^FUYKvkLvP+hxaq!(!;Qb;d2*R{Pw8(Ilz;y# zkQ4pJ>etJ)zLpV3S*%tku!RXA1Buo~8EYh%0(Yg}BU+>~3bnJruYEvElBXUe0}jC3 zx#_6aWG@G{7yR7y60JR%aZqc7jMj=vIm&D_y?r=0T6mUV;vKD9R%t^md)@jJ*h`fn zjdLOK9S}$?TBUtlpM9wPey)}!zjKrf&eN)qPgl0BN@lOtDk$d=h)Jo_SShFpQKi^s zfnmQmR}Mz%wdU&WGpnb!?|vBd)~?kuEWdzyivm+>E$e-#9BH~v>#Y1~6fs5mjcfNC zY6tCXB;|FjEZLjayAnyx)2hQuy+L`9or8`U;-V4pBwP3$z^KidejN_o7{OV)4!hl2 zu3N7)Mhdp!3jStRP;dX~VH7+v@^B#8wLyDdNj3_VBDXolr;IkJgSlYCO4+Qh(3f*xPectgTHpJ2D}H3$+0(p^d5Q*h8u?N7^9x6}=HY1V+708eh+ zI@nnGOkkR2zHXNJ4wZQb5~4E~_Zr!^TkD}*L!@A-R-dn3^E78mDWv}aC@1zooyH-Tdt#0Q-5lB3cvI$fb0mcawd_E|Pv3nY3+2_KLBtrjdPG|;9i(GdoyqJVQ)SgrB32>^Hd4bWFt7IU`Hv{Dgv=J7|34MXFs6eZylszH*5oo2z zrB1NS9#~3r=#CRq!Pc_8Xk{jav%{YkYR?#9MjryHtAv*1oOW z5^i`yYoxR{v6S2B61EW?@XCgs6YncpxO8oZ^p^HSpaIe(oqoJJ@gbz!Vtreal$T6Q zT?%(vZq#+z<&>;Zgz zdhZ>rNZDnSg}D!MYyBv)0hvvOJE1u`Zz^lPtr$Kx@!rgk6Cmom`)!nsqZYOk5B01Dt#1C zwBzs)zdBFJ&0?fxGBUFmiCGMN7DJuI&}O}uT>}K1(iPqYGwv)EG46+{2#h=1=QHkX zb-=i@Ovbpg=%?JX!C?HGVX8P(cRnH3KkIiT2a2?wf%hpu7`4TBC&;4PFLq*I2;W7m z&`;;txx@bJmxHA5;rZd@Vh#gjla_#}J{+t6ie*(kdL{dW*NGGEND zPlahiA8dMmKt-X|ogVsYzWyoP5K7I3y4>8e`@@Tz zpQdGp`RTj=)3kW9<1=l!@&ck;__94Ebew1q)X1LO+6X^gEkD;5DGLP_S>M~9QnNp8 zV8d6HOF0ii{Hlezx__a4F9og@%_sSb;*77fCCX;eOr&4nMREJDwU_0!C&{%cj*pB; zG)EzJ)xFsz2ij{(ACL}1?DfOuP{Pb?SW&Y6O~;rB+yYR{4TT={$gSMW5SR3ww$Kt- zB;-3uSa~{m@X1nS@WmA^l`Eo;%HEmRsEb@Zf6!i*d|=MGv?5yh);AJ)^}c2|;+XW+ ztENbHvYwiE#*bQQIZ!SDMY!9XB+|R{>XE$-3zC%bqM3@A0v~bo`9=H02ySB3%*$+) z(GXatNxx}5l?I5U{YQI>T&I97Z6d%I-LBBWiv*+sS`>8Ie%IE?N;0BBy{L*njpnFr z3iy@@wUq)Lf)BR*Y|+du?^w3QUe^e1;;mQeayaiW->QpQ7sY~ZH0&FF_SrM)q6Ta| zJz!fwa+^!+vVD+p1W9WOYkdXnLJ)l|_V39jvc0_A=_IvyJrZKUfiPz~L+%II z>tV1D@I!1Qy{&-L|~Dwq|e{0HpsQ%P$eY#hMq)^+*|)h7o+k|dqDBMe1|jkR+WT$~XVj0 zV|05qrVMp6M{VE>b*vXxLPN;UTzDeXzDzlV%*m$IlcGU{8z~I4j|lbM)gj!zD)1`8 z;`wXHh+U18TcVlgFMuN*b{0NkM4+QpOL(<@P#d%3CLdkRzD<(WdBOFwua_FsU94sqe1e>)B5$4uNG}C7tB9 zLCDPB;iy3{f?4xshokl3y?5&QIZa69KP&3W>%c;*a%#ebyd4_aJ1eUxD?TkU`&SnB zUkP2{{4pfzT}LC*{LdAi%7=914rEco>D`qB2$`9Gy_fk{o}%xoYeJDUxW~*Uew3yI zP}h$J`T$%6Ny5nbCiWPEHeVaH`2q=K@}|$owWjuNQdd{}zbp2amr9fMkJ;OhewC8|3~CM@^EMVDBRT=M8dcqPrQ+9e4`Qn~JS5D6m;haD z5Si(^x>8!%w_BtE6ul-Xs^{!f&xiKCn(M!0_B6-t>Uy=Ey=DM>_6TUL$=<7usy@*Y z&1gZL>i>@qaCO^q7Ew_Ke9L@=EFu>A{sLHyTBZMSg>&b#W$!EYKeO~p6;T1SB{W}Qndr#Eta z-q#*$k(=n)x_ufVY-XP-&~ME2%A4FZ9?m}Xir4352?S!R+s4bEu@6-GQU1Oy=FlzH z7lZt&g^@3xvHwg4K4UL0!H-XZmFs!t*PE{5hPszy9=j_So7!I(S$={-Hm{*>H8$JJx5DMDs3 z7Y_Z#n5zUojR|?Xv>tOE`mSjjA`}$D5|)yD>fstb%$_X=K1G@76C$gWEFWQyQ=S#A z)Z6qL$x~$h2>VJSis}B8F$j^C8Q|RNw7Wr679Q89xo8E=m>;+WVS_Q8&2TAya3wq(N%dpDG6i%z~3JVLj@)+eKl3Kx$Rszr`WKo*EitE%Xc3Xf_6)`YPfw%O5K`eP3q6Qx_eC-~X z^?i=?l5FJu46#Csq1=2g4O&8%7?Un``vFNx;mCR%_CUyNND|&Q$6?F24a;nwg0dJa z!9>5fbqM~*@p!rVu+o@YDs$9WvS?Y2Y9#uX8Nu?Tw_)vXPe%KM7u^c*B_=7FW?v;O zrWzEp!u(6O@dA$Am9%`fpbZ(4aVvy9R(#;t?(RT91x4qV%f!Nx7 zqQNa<;6I*i-=N&2gXw!AQAHO5Ve`#2Y7l-$M$Bca(Wsb$UeZ6@Vf0PipU7e8HV6&Y zZ|=cb^x>k$_yK>lRK4a+KR^_yin0ea+FK_$pVZE)MPsu$|TSo@R_w4GZBJyLp zFuEq4kT51qlA#OGAHbJf4lC^I-d<$iSx!zn&FXGG2f3+k-yx^zrjBklq}BFT^5D~a zTlY96Xx`Q(pY|GWr7aaoA40mV>%jLL0mEJxHS*!M8}-mgdzoOl(F9BUn_wX~K@8s) zcO}W?SJ}weiF?CbW4GEnNUn@L`({brcbe8)p7R+kujqp8;gq_%=5Mg)S>!iPlSQ?i zPxwTcWUDBy3y4xD-+o9*7WB-E z(nGqUh!{^ws6og;-r2{J(xqWbnv!)rcGr`iJ>y=FvU<}%%E|Xc_zZN3iLl9jdqYW{ zsAKE7X#&Egxk(yAq=WVll%JnD!{Zfi0)0zLSEMDF=mIxUq|5%dvc|uO-g`6?DTkSf zf*0=YEg$h%$Nt6cF6EJWrfj$0V4RUh>=PvUeWP)T5H>T;F|%>@Kaz1mecNr}ar=Jd zPyg2V#*Z~hu=NilKWzprATZZS9x|hz6iy0HizQUZJAOSU7`lY#EG@7HOK`g+L)IOq zIYMT(sYdQ!G&oN1JBAgMZ{680#&=hrH~6T+x~Vi>H)Y$2y@s=iJn$X!dg&RrwEB8! z(wp|}(gZ4QG3%xOSopGLEJyB23g>QULn?jY3?|yU&dTJ$oAw|=-gYmV65h7krKyx= zG3C0_W}4Bb?F*%)6w7zDu7U@_kitj3V_qda^N!c78HmlsR!Jpfu__jJeUYo^9eaSR z6w(3oy=XUKxws$FyT*efPSKK2= zx6ZD5?}C%US!wKVKO*3fJAyf0nZK2;d``gYwN+S0y zzbo&Gy_KX)_HU0)k7kc|K4$iaS`7ABVYJ6Gq>{;97Grz3ntWo9lH`1kLGoh`_9%~# znLSo{*<S`d>{B)UA1+ zBX%Wf(s7ogs*!e|*%SGG?uWk*G^dG+wRM(Do%6rc9BQWb=V$f}a_Bk#i_GUe7={dW z7lbzM+b8rsl^r|)by4;pP)3$r?6IfbA{(P^ z-Fu|22aA@=P|4istpX?yd8RA5wD(9K`RqBrCoXzT^Tws>!_PSW;S8vq5gQ+ql^7or zof#LKl$e;6o)MD~6P=M{O-jm0%5XiX;Myd`eg~3I(6@(;s!HzM=b26x=qx@)8bT;r zmkj+k7-=!fTN1YxLHm!y$v+jN#T;*3vg8kYLS#%<@hXs8AD(z4;3h~$Qb+AfjLiN9 z{+w%has2S5*;KFWR-n+7rP*z$UeLgV*qh(8*=Z~dmL@=I(dAWfDkU{58*t$Xi0}j~cmfJM z0Un+J{2%whUO3nLIQ%o4oki(J|6&Iey3@bdi;W)iFIFk;N&jNo&R+B{w(3cte^KMU zm<_M`{xgM?YccSpvea%6Fjv@#R4AF0w>Zw1mDA3f&!i6je>ju6yxZOKWKE!>V&x%J z7PfSwe*yo2u*ZD;Rdh1d2*JHz{CR#d)lVNgnOdo$W0*2mkSF&mIXcq=%3-raBmIl{ z6;RxJTg$HNyAPn)Ne_BQ4u9`QR#$R#S2hbulzd9f@w9<~>L*q=A_#jkN2qITkmEN= z*^inp{pzekmR5GmR*s=oAgAAKG`fmo1iVcCxQgR)Ai_J(Zo;S~IO>O15y$g_b;!a?&NhnW0t_31yTwP>f{md#7 zoq&PE$o%(LbdzgcAkv@HI@VfNp52tmZ$@KBF(MEz>JjW(0=Wjj!zVNm*}|OqQB_1A z!j+vfoe=4mC@V=uLMc@Qs(wV(c7dNWjS-O8x+H(y_8P7;bsaM#rLO=X!Y%_)E42&U z!dSV1V|yTi=4L^>_2ZhoO5n||0AAJ5;eZt|;v#rEQ7hv;nG{+bH3AW|7jON5>r0$> zm~Xw&AyY4lA!Czq=N%a(gkz#R90w_{BXLcU*nw}3_aX>zlz&KIGe>!-5iynTefVNC zsgctuGkFXdf*V;prQr7@x-M%{{9nF$(`ggA(A6LcS? zlQ-ZXo5N-XtV1GP8%vWZZxqBSPkE#CjdwH-M6|j1b%kH(2WipRK?K35^MkbT#dvUQ zhm{nBu8BeiF9o`Om=>YCf)gDNWN8XTd>$oF_Xl%g7!1i19r;H-dY*_Aw8|2so-k-G zYGnppLLRhrWOzd-FDnzT?DB?=Z0{Hsh-iD6Xb>M^EEYD=TP2w2Sub<~CJJ@6?cf+D z!7pY}JD~wd^#XSf2t5T0ca?eu1RbIk12U?3^j`$J&+#1Rh0fAM3G>&>{D&a+E?*Ns zR4I3$5`0m_5S;_)svx4GXvA4spUzcQH4pa#ME=#@twEj(w@*D8)f4Xmv0&KjykeS7#;X=UiyI^JArEq1h)!nXFUD9b7h+b(-QX$9yQb#e4AmI(F~dX z&5*{;;C}DwnwaJIwVXV)$Xpron4wo0{kVgjV|I1j8|%m^FE1-H7rz8bH8aYWlc}*^ zD`M3zbZA+iG;^ac^XZ3a;i^fGwdHKk5$dccO4GbeJ;Y?{*2NyD^*msgS+Gaa7OwCup>4dVcO;(q|Hx(9$2;9r^LSSiWB>)3jU`4@!Eg6fu+>Q}ky zdU`7SJHNQdDmFj#>h3-_15wpWu7Al8P<1Z(4X6m{V!44SQg^WCn(bkD6qe(9du^S{Hax6BbL z+b{W#wZXdc<#1uUlH^n|R;@x-2ztNwoztVRk(%nOtk zgUyX6FGP5!n-%M^($Si9Sn8-s`sRXmKd*Eo64y#cMe=0d+^QsaxidVVVYA4FBsJF= zLe{K=EyS`Xax0N@eRKZ{w4fj^gK@s7ok2UZ?a~MW3_UThK74ifZB{$?Du-flYs;XT_lD1BzK;CdvOk3 zC9z47ovFNIjNxxk6q@GuFWo^wW0=gybKHVf_A_1@vzUvjjU;b|)9K6vh zgvX6u*Hn7X9Kp>%6qay!1iO+pIVwu>j#v5noQ0bm z2jl_3$e-ITGZQ$z#qqN|{5}8k*cvwmiQ2|i4eXa>mopZ=Cj1-sjo#;TAA;eJ#S=o1k9jOy9c@WI9@GLl*i#ALFG6gq3ASXXoBk zUPG-W#E-lYUF%OcdP=0}2~npz_garu%27mxjoj;GcY&jp0dQzDX8`%Tz!9fh@P?jU z=vZTbW@K-81Acu9s(P3|`)uXD2~d9heRgA8Z4rN0ytOgZlTa}p`w}b0qXrzSdRF?3 zXQfVWInFB~9|*@bne!`M07Q(I$3tDK-geZJNu{@$O<4i|yEBfdN)sa~{nf+CcO02g z9a8_S!|q1OKkIl!X^)`U2-G3d&N(JB7MN%)Y zqQs@!8@iOIY<&mKQ0SsTZd#NR5g(nDmXVZXi;atogSXDnsj;^B)c6E=`<$7XXp1J} zdM=(7SprZ3k(3ivrMH+NmLJ$%oAe2>WV5KGH2=Pdg6+sjwD4;G_Rv@0xiUZM($j7td&|)Eci%x!i+F!^f263F7l zGk9!dLQF=SH6}eX!Dh>fv&Ls8#agX#@rhY!G4ZLfsd4e7;JRaGLi_8GST0F(ES{AuSqmX-r&dQfy*eT0(*?E!}3b#-&;l z^psix6icapm*An}b>;prdg!lS9(vPg)=y1ledPInq{pfycxbcB=CE#jnW1<*^yIbO zVdUjM9Q))hm;IM3rsxbia_p|IJ%2h{Nb=J_-d};jX+j}S{q5K)XI=JRpqTB(Ai@8l zX-aMnf*DH`jVVMeNuQw_fKWK#AKgnQdhGcSUb>)oFU|8Z`5JCCqnBDUtQo1c)U4=q zD?K1-ON!30CRtPC5@RycvNB`bnY1J*nn~rum(8E&iO?syY6mYHvgqrVSr%2q8g-4q zrmIXgePkE)e3)i>GlW-4Z07mK%U)k{d%0b7c`0WBT#;8;%IQ0YZqPM+z|r*c(OPNe z*HRT?FY7F3fx6XYC&JVRX-Cw+m zK6}NS6$W1MG1=xg9j!h+Ts%9(~}b8QlsNyGomxIQq!_xY^3Ow?Xx0E0%CLh zL~7Dv=K5p0b`!1`ymagp^ISjhieavQ2IR(}|Hy87&|}sTGU;Y7n{DJabGs>V207oA zPWt!L(>kkT9Iq=mTpCKg;HTxtuFB3nyzV=w%(3R4w!uH`mgVI^?*ig_il(P-#Alc68ofeSpAeux}Er zY+Q6gR$LP7ucG4;Vq$EGwpegs*m&^;Yl%=S&Bk73Y1Zc!>z1xvG?ff(v6|C=cS314 zoa9G3JyTZ*$oxO~?=_EAi}znC-IvLRa+7fv4(tjCnH$r0QH`=CvZ$uB2kCv+QGqO@ zf9-9*xUBr@RsSo5JGvk*bCO+MFV=Eam!x@QVQr`HRqT%@3{ob-Ils!Xzl)^*(Eqt# ziLJTnf5q^Jn*=o~vid}-Y#VZOmOU7~*cj?Iy}k9ursYkRe{_fb!ee^o(8a&X{@48> zrg{E@8+Ls7@+CYlaHhOgUFUL1{=OLdm(o9D_||RzqRF|kEdA@>{)!nRzoGM0Nv`;@ ze|uMUqX>H+YwV1bzVg_+99dUzyeu;MB?b!Tm5O;A8R@f}>8YYu<=-rl&P|;^C~ZC# z5yRd|K*2gu>5N)wUDX0${0A1i;3IdH2_PMtJ7bimO-NE3@@{iyN+3ewRHZXIFJbRU=>+-TT?y8lm&^f2cvQ@)*9A`>Qtb;rYRj-EU*qr8tyjIK2jYy!ou#Ug(0-q<+ug!35_h z`J#@i7njc?WL8{01pUT$F?&B|vy}THBzpayZxaxD)-AGlZ9402^kb5gGKbt`2RTPfAKN6FJ!5 z+->LlA+V8X_oCLrn;Q2=pSB?9lb!T*5c^90$!qSRWOoSkpWW`p?@^cx4W*R@9(Oh4oNpfgjz^Etb`(x}C9B!}rl!4j+m8Ty!WhrG|I z#2$pql*si`V#)u962~5gM0S-j3!|~4AEjq5bqlq!7erUd#O}^Lfe6~m2S)nv0rtvj zZx8367Ud5_lDYa1eJaN&(kFsF^W8tLk&HghzJUnbi_>Tyoapxz5Qer+u!)`ot@SBH>0Aa6}ebOW9c$RzFy#>8LHNuJWgZ1CU0l-uf+10fm$N8}&%h&x!P8~DKEzQ|qk}F^LA304uC^&ND??5o)@x>4Ip~krj zIVAh=(zlgdO{Y4m%1Zm|!kta0I}&vvFg_T#wLT9^M3wDMxXn}LM{EktHw-GW^VxN~1+pj-lfXB8IkdbSdc%M5Jze*j$~W9)O?Ee4r5pTiyuT4n~&Y_>zkdRi}|LWV8-S-vrEgFH~c4<%{uoqj@i}q+!klO zGV;V5{u9h0Gs>U4oqbBn({K1MPMmY2kko@t`c({jT|9)_TJ8b*L3E(XL?;I4KIh7= zmQSWyBRfC(%)HKH=;CJP9WLhqp?`=*QDYzt3!t3g zv&*%$z&T%1s@xR1n1udI7aF1Sat3M;tUTKgi9}6PL&)R13Tly|Z#WB;CjMEJF2xVz zBZ_=qjT!_C67-fxk_#%XsV8^6X$Yszl#}mN-vPQrsvq~ZbC4_#)v@(d|1830S+X1S z8=biW3BKs8DQD}y2;o~wS|sspbMn$zul2>auG^Zzs|3@%v@_h|>L07DJLg;~Z@lS0 z_#<^o=5fTX%jYa^L$WV8+tL>vPI*6Y@V7p1XhJ1T-*rxu-@NHR2efo!P;+>4z#0(G z_yTzb>o>$cG8wbm`*^OU4C7pUkG1siH* ztN@GzohnE(!}n3Tnn0!I#D3LT*9?e1Y9HW@lKHXoHE$GV%Msqt7p^&93Ph57Dc#)Yw308hmyQQ$JXO`E5c@R zycGJ4OSZYU467ZVqOxLVgwHOIdp_aT!u-BL{_vJLq~CK(u7`Bdq+QeD{|B2=A{O`a4dCM>yO?#v;5Gy_Kw+`~bN63-jkp_@w9y=PObrlK(q>W$f>m zXr>3tu%GxE1U2p_-n+$D!FWN1jK}vAs6hm~tIgNWrvsEWpLrt7Tv#9L$H)9+S^M|S z-Nk=%-|HUf`_HWw`VsDzHGl(;=ap?n zaQzfLyTOd|pf{KWBEfj9*ArzKySGkY5(r0rjhXZ&b*3lK@5TvKr#C9Q52sF@SCdlV zxMPyd24~0N=vY>4S|Xg*jY)ztWLX&rX-P@?C1ziM@ZOi02@dmg4j&*TVQaxJF%w`j zyajRVKrb+97F}5UIT0&}qEi=v*7ayOMl$9Qr z5tjxBxH7V=StS3j6QQoXLCda65yf*(AjAKdni5$8=S*_zm*vrolB_MFr%Y)UStm0N zxTL4Y#izx@#lC&s3w#>Zt^Q`56Ria0K4LH%We18T=)CM9I1+2Y~ASzMegHZ3|G z4w$9c(&OO-PgVxG^wrW3S5SqiJ0v*C1E@*SwgfADJ&~9mmzZXa%}R=f^Ad@PU^~+H zr`c6qk>lrYmLf{xAN<8~YwfIJS(BnpB!>JUPm74KWyEA_OY#HfkNnr2z z=nOcz85f%lgY(6Wu>rNyGh@>-(o$2ca2hGynvi6Rwq?TTB&B9$+A^|SAl*r7Y+GV_ zQe2YNmS}}z%4unFNzf8wO-qlpreE(<=voGfTVvDHqoF@3Aq$2uDLpYgHX$=M zGb=M5PL?HPx~$*MUI)IFkQN)C35Rx~t?+F`dSYs{EiNI^mKK|7O-PHkxul*e?nsfv z^Gmalt2L(eE{P)vuDL9_aZHTW9anHn$d(qL7M~QKkQA30pPm+#7%iiu0N#b;SRpqti+tYVoal2nK~GNS&p>JipN_xWuXMv`_+D61;D=HL?V*StQuH zDS^D$Vp@Y{;3+7$(i7p}VMbP#6_OvMTsY1Z3(f?Sa!hNAFiv6gD zN*wAcS~YE!q?Rx`iN?4o!8PN|(8U@qo<>wn(aI3f*#CmzlUrzfSQ z$3gN-gcKf|84q5RkdzUfGKks z!6M)?*31lRRzgBFOd=3jsTuLGzDZ4ki7pGsll3*Hg}C;XntDZwEP-_@>DF#qN@Ve@ ztu~r4TQ-i5x9O8uI-JJKf_WH3NQg_yu%$viNXguCT-6lnpz?u}+SZ0kZo^vYGCz@RCI<00c$W-xZ@F5q>p0RNmsn*nlbX!tt zyv>>ro0{c1S(S`~w4a$CZ;OFE2D-&rt+q5sjc~jcl15BMQhKH<|IKBEQmr%_3@C(Y zR%~2SLSh=tc!{=5ICPtsl#oOqZbMu{ty8y4k;Sr%jfG35w%o8r6wfn}4oN)uyw9|H z&7%L0z3&c>s_5eO-cVw0D1jt|mIM-d+g<>bAQ(kM6JIO{Y*hmYh++dFV6q9DWOo%9 z1XNHI3sP+N6&1nus;G!v6ai5wQZ0ah@ST~tW$xX(yNciU$M-zE@AKehX3or+GiT16 znLBfSW@f6{t#-Q$`~;WT0`Gi0E>9rfcDVdzryX1gGUZG7t?&ypcvqtR$CU?*ZP6Mc=&F1rg zcLn-`Z|TGG*a-@Fh#SVcUU=-w@Mr=6B<@t*|8u9 z%Pe^1AV8SRepq%~cDS7mhQk^(SxjIBuw%YxAFQ*~!QlNjG$=^%a*18t zQjC~aJCTyBX~3^7okE0Oyt+Mce|>IYimnCd>gF;z&90!y>+@J0@Os%>;MnNZ->o~(`s_VHExH~WHNg!PM;ZNeTTs9>b|3v%eMw$HM2WR0dT-! zvj9Sa4H_(zKCdU>c1!Xki(878ZOAdVaztVBmaQJLxb*0_*7BoW;akCwc z4LnW{I8aW%3s!HZ%^MV#wZoeM_zi~(CI`$)a1X)Qd%ae35EK!6$S~nyGXSxVOTy1` z?aW@c-)k|$<|1G-SzI2k-RZyv!v@Y8;x_DPLpNuIfu!wv-DvBQMdpI!?K*LPOz6W} z*q#L}4!bqr#)ls!8+dPCtIz8XIQ%}p*AGq8y>mVoK`<(Aa2`F-AFwod#}fd@9XvFz z6K%RiS*JlFUKd`R1F$2t!VvnwMK$|jr2+3V=ohCpcy0q%n4(oDssIKHleg+1-Eg37 z3o1MHw)A$GnHgttJG@{feDHMD32v>)?RNqXHn$thJnTFq7dgcnZP&lnPGzr`vQN^W3yU3;Goz{X1iFj?QvM% zeHJ@xTww>{uy}0&ml@`s#}3{k>=JxI?3H2%vGAsPJlnttg~iYAb_KA8z*^#m?V8o^ zfqCZ#cfq;A$A3bAjLLgSRR+uovKSSS>*h%pq`Ro#6C4+!k1a zv3p-&21T`c!G8cR*9Kl0?C!us!kPsG0JMs^0CyOcN=E>83<0MJ3?}Rl9MESMY?|Ob zmn|4Xy^@dZlEX}m&yZ3kM1*2nPoJpJAX9>WQMhm>Xv03eYmjxb_ zIl$d;yWuoPjEw^CI6wI_GI8o=d?u1&baeYKP=aJyshf}~#1&MgSn}>zq$%d}yJ3*P z+Ybi3a4hJ9lPH%Lwl-iiz21OJ1ov=igZ2)m-3h0R4tPx;@cF?In$2)<t+4Nf6(U=V4!IwW8k4sfM4jHN98mzLhRIqb zXCggdhi^B@v&;`iI^f}00~VLX<^Z<}EGF0jixc(-ewVoQ`FZ$M3!eYG;ZPFJOFVGU z=ySP2O#`rbaR$9EvzKmNrc6Mqxb}8(_G7Z(mBM0ix?nl+Ih?RWVrzkxUsc&!Bzjqp zwA~=69QGoUw`-#d*{fUOR3zy4Tj4av>+!8|nZPGT$QDdqmQS3$JL~n1av=so?CLe4nLG(czCJBye^rz;A}jy00*;{MZiU*;9FS+O_bsf*_n* zfDR*^-_#dcttkgG_!raEKw11Rl!Skw7>jK_6thU8jSa)U2rA@o{EI{@8-ah3zy~Ao zFY@B)YWxeHRUoeS^|R8kkl+mk1g}_ApAS*zZnVaV)5Kv1DxYY`-$X}gkTOcOzJG;h zUVxxp0d?6myJ-tQ=7PMR#J_+8ie+AK9X#fs&v3OR=*y2g(UjjRC*&As9r>+N6k=+< zXlh~A&{p+o0{%rFklYEP9&kylt!Vk9@?B1NR4syzb`AlC$MMQaVI`9aHNpF&{*epO zspFMF?os4DQTcu*L${j%jJJb|B`i#Vc7kagE&H=_9QXFZla*Hq?=p2~%?=Ia-b7iw zLgaN&zFJ3kIjUwV=^x`eLhb}o3Ms(U8W2<>DGmBD6|!S4w33)jug%K1jE3IC$fMjaYdwG;ox zRW0I#jz2;&9d|rFgC1OVJfo#rV-~G3|3?DFWL%vH)!o4feVLk;H>?^d3}h0_1FMF@ z1T1S*H7AoPNPEDv*OIp9NY);THLe=T46W2_c4&`|tnwEz32NW*uRJg+SGEQnuSFGn z#SOx345P9P+N(0?NO_v9mIAgr-I0SPURd>|Fk4MV(Cv&`rerd8Q%M!6TouQ2CB3#AetPj^{PRB&i_Sc^Q%O6=lcK3hXXS`FO{*T| z_&0%cX81BRpi!$rMhx8zs7f*cJN9!_GOnUi*RWzK3>4G1VYEpgBx}I-uy|tg6R_-x&$Q5Dv{bswOaHceJRQkRWSZ%c{kK@RK?l$Y2rx zU(u&KAQtRr7eh$4^+wH#2%XDvp43yMV1hnZt@6 zk4L*|bFz`8HArC)!>FvtOap;)YG8tl5R8GAdCyPsW9&`$JU2K4Hz*mEO>06d(DDtC z1;b5)Pl_GdRZZaddn97%E%u!ZHJICeybtoVF%@n=C0(oX<=~SgPdv~g+i+kf3TauJ+|nUgqiJ*FKR1J?NHT+6W&tksYUpx zV^w!yGm}az!dqxW5m-Z}G*uyHz#??O7>4LXU=mag(Wc@m1?iE%AOEV16^Sl+7;|7e zSO*|W9jt=RRabMIfU^2jDKJ#&KdZ!KtbUIhs{@*`B7s7U8O4KDV3?(7_2cMhZAMFR zK)0%85IzmJEv->xRyOHTqc0xq@Qy2m2rphG9!qOKZ($qU?T&+g%H4GgQ{2f2*0~SpBSrf3p zP_hsT2WE(IR*7B5`71K#+^EHaGZ+SRjK3f;4)6CXEa0p@yZ7Nj_3K-CqTP_##Cw#^Tfk<)tsH&@kZ<$o0N}r***Hm4b$&}W6BV}Fx zQS<17|5Pau<`^{?z&}bx!)hQIv$L23Rmq4g zYp_>u%TDk4ceZTA4TSNykSl}t>O-y!1ZFU!lJP=!kEyz!8;jYEL*Y|3;1WrUH&EhI zRB>a~0d6wsB(_})!jwuhSWh(I(Ha2Q9aq&KupY5k3B(~bU<_V_N`93>E?clopRVr3 z?bQca8Mv2JSxSldWwVHYo_py zefprDD#aZNg{&Sp=pMxGDQOe3pz-&<)|LTm{L?_B$8;j?Pes~rqUZL&UGt^jh&gX6 zayL*OuOd?#a?eoJQ0v0bZ3#T_Wrd-)ggZb=%-9aixlK(_8x^;92<_s8xoRFgB-&9F z3J75)6?Q;U5S#hMq2b(I^iy%@Z4DhUsb6*q4HA|ybi}02MYnej-KHrGM>Y6STnv!HK}#_Z^LP8?-52pGzroBH zo8d1Zi&!@j3hROHA%W-rkf^2Y*RKpUvBuv+zBUxrm;2}plz^CtPjARCbuSIG#G$=I z8Jy5=zh-dBL6ds6R`zJTctC{sl;y`hq4$OE3^f_GZKhCf!NR1HQR|Mp=1_SiQ#x)O zmd7_l*I`5E(W{maUI;OsFMr*Bjr9M6TQ`>e)sUr1zl|-lj^l5Ws3qx7W~hnuZ-9KQ z^snBpSqqIB#D0CTVV0spFKA3V>B?i;t~|;xqx12X(yqv6e&q>Qs4>4`zdqoqYL8x% z1pMlL*1Gfm-A@CquE6!_1FkOJA8+X&!aV&eOaBrx)U2f^68Kdsfy0R!0Yu~7GlxRR0$lG+7*70tbYAt6@$=ZN3~5HQyS`;2B5t_+YSw%7AZh$znPO~ z=rzay!*VU+=^>%LJV5u#v<^dWAyb0H5q@Ep13vv1y5IRdPRkA$$bO$r_UEu9>{WzM zmV|=jD%wWI=22iyxLZg^`EtqS41zEd%r+mDGlW~{Q`J>`aztoc8bI-4G4bWnY@5YU zli4=m7yWGWQGv;4O(|?$ivIMJ`-5RVxHa0YtYVna&9w5q^ zu`WXERWh^E!N?Y0sI~!r^MS;k;%G^b0ZLga?zlPBw;_KwRIQEKsG6B_JxT1=&}|L) zngfY_#rqTzjdAb-W7>d?SHWQ(ob79(v$A81HxwzRKn#tDtiW zv*OQa{Or&)EsbZ?U1bcTE2JTcXLM{uXnI2-kExSeaIBD|1@$ zNS>3;qYB?L=AgzBT!$GmcCP*dS;P_$b6;H>nw!SoAyJng&*MK_nZXbfQ!o~?wWi=d z2dRRyo~H(iQupC59^m)>x>$lHsygrb}ivW)tR))$vW$j>A*t*qh zAF!#|Y;nayp$%=*WZ5^hcAIg|4P>qP6p%>4pCs$B%&q z6B+Z}`dThq9(t0Wcqp+g->*<;Z24edRcp)p9E!K)j1cL8Hj}_u-R~a{eV4#^Z&?v~ zL|B1Gk2T)Q)dZ%RZ=V3;ZI~sFc`{VX3$LnVM#h_yKyuhBsPUfmbm)Ja@IFHhGjOD^ zl}R9z?|pRi+0e)Of*sKYM{R#$cYNtN&%rj5sW#5=rNy&E9UqoQRkgoeO}CK`Ks@V= z!x~H1_^?_`H-8#HmNI`(|Fxlge33*fO`k%Bm`tBc$k$rB28T7%$Cy9zb;vmDljn`6 zPuXGp^cfL5ufT!U zi+FUT=|NV8wd>*3;x#6fthrDOefQdu!c3-ooWeQ(nZjN18W}ZMUx)F#wFi4HtyQ=`8DgSvKgB8B_J65x^WHF4xXwrP3RiSQW3R>MH-_H4kh=t# zzkuEKC&hCwHQZQVB}uYBr7jgud=PSFaKkYf3zMsQ+LQGZPkj+udLcI+Q}iQW9u2qR z4=QA`nvs)P_rjf_GUiOS=*YQhndsOR>dOgr&=Fb9us4A3a4{a`tMQrx+J%qSK3X|H z9W~e;`a@X4R6#VgZP{Xn@Hmr7G!=@WnyyQG#+N_!TA-)!lCC_r1ficoz0i~&LK(b2 zPNiRuXN)?JhEqy$9^cYH8Dan-4$$Jh2q|BuzQJr5EBKd?rCQX+J(tF~KPataP=94; ziGF{7L~l^PJn}aUYH{*@d=w94NYIcv9o4K49gimLO#x&?DRtpLhtDuun8AlWD4$`-j)2JF4y_z+ zODu=UR1V4s-Ol5o&S`w?XyTQpK!UHSrHqE`ZO>6tZhzjOfFNZ zQWQWkCXw{&*M#2PoB0mX8vRZt&8KFQ{zz%WZOTGz`cbnM{~*@lez zRllr_kU5w9sC%1N@8u``npm61OJXgjgr(x1tm@$$e;?GG$cMT~M}pS0tp1p<|CK1S z(LI{7$ub3&h=S{L6R-tN6C<$^BwurK#E2%D&onu=`cvUmJSM7TA^OMNiI%jgZX>Yu zkQ<>)0^@tR^Q!ST8v-8lwN_ugU`AZ$Y=0_Cogn2cZe4vHe^je3hZtg_F5BYN<aQE|kNlQ+W*yO!gdeo6k!i{p`i@eMmcxd`^>Z)o-4>Rtxr(=UVaEe*<-G@IT=TV8iA z*6W|~8!aUk=IDr3!}z|xYv!dBH*f5G+8|3=ko@xbKlUmR2ITBV|K9%BqL+ z3x7{MX$DEce2`L;OH$XP>xNc8z_0v0@x&RTCxdHJ<-GWN;w5Q>Oo7GGF0E@h1)Suf zxF7WH3$rlYLxt8AZC(6Sj|}F_hun@b6r!?x{|5uxC_ZYO;P&eUw}*CJ@y!1mS$)qK zE)6YzvAQ2hcri*w;kw`t*5Gn~(eBKCc4d}u2H(TU!LQ=rIwW*Dy=yrOs`Vq*oquI& zWh61Zsb%}jZ4C8*eUt8^m-!D#y(MMAx1+c++~p*j@k!DU4xz-Q2;Y!`Yj{9qyceIQ zC%_k^xLc`Y6W*b_N1@Vq;-!D+k9^F3#IIkyfj3sD=U`cHlG>L%@D$GCYzl1H;J;uM zA5$A=t>QCkG9sUr9z$2ZQr%ZuTxaAe6(-dFBypo=te1^k5A@0U>SAsy7P7L-{upy$ zZ0I&amSX5cFmzUqgS#x4Sh8_@7-DSWxX;kW*Q>LcQ<2So{LNjq@oomax*^WSac{of z1Fnqg)HdswR&5m<$Mss+t;YC<$5Kg>-6<_=;Vy;-5;@(E>B)$N8+t6Ug?n12KvR3x zC{A~mV|u4M3+KZ&<(!P$>ZHbvuZR=beYD$(b^Ga^>Z`}K*n1Cm0si02`P4uyK9<uT$e*Q5uH7_)fv2yp3j%#)k_d@IJbo}R6K-WsGC$n*6Z?-wE>+k8bg&4UX z6DrC(QcJsJMIjeJ|45=EoAngr0%*hIiFM>tnL?u@-^c05d-0-tM<>d2uxxKAvP|YP zzS^q>Z^^)6>H#1OuNU)|9M^bF{f{R!CT_@5j0yId#-V%r)O^lgE7c%blxvt8h}TpC z`C6~pef-~)|xrkD;R%I15k;tkX){_yd z@*33`!-MH#3Wa7hTmZajKY+}VBz8__(+|ej>3MNozz+ zO~Vr!Gs2%BW`wy)e&Bfgvc3;%OfGh%{P?5eIc!V+QgolFXhQ#xcc0K}h~tEI)gf2O zN1jNm94(}-4x@zBQR012aU#9Q(^C*jGVMg-eQ1F~q0x)0fGw?FI8MZi(+Z5S;yedi zk}0*H^qdk+g-;N&Eg9Bxelh>t3C5NT&cJ-M!ozwe1X0kuNnI%mom`6kbWu$oj(=Ao zmdwao3^j2~)}VEZYgor*<%xf1MOG~_wjxL3bmXASZk!dl@Xy4G;*f;c=ue_ytQBeV zXJT#XuO}l`r2C(V*PTmc3Uu_4;+w!8XT)PQaqkWeNG+Y(kNODUn`f^ifXLLKS>q&<-KFMfkl2!hH?vo6W zSV-lQa4YrQT|v7mpK2juN;W3Zka1E|uge-joRY0clp~<0Af{wj66KgEQ)rZ9J(VYZ zl)`MxSH#P6xlW$vU`(!41e(M#5&Ipf`5hqLPilrwf0}itQk7Z^Z=7t&4-IBwy=9MI z!6;q32Mt&@?}`FDAfWi|fI$S{a<-rwK)e7d(gH{!F1H&nRYgu*03ZT3K%sD$tX_cK z#K0X6K*j-R1P?&Km;o=$D~`Bm1)z0eOf|sg^jZOM&}ISnGr*U10zxw2CRl?$&w_M7dY({V21ts4Ctv|IGQjG!23&x#1Rz=%8UuLt zi6swUh)ajv0jO zrxoxTy@229^99U+Dr5uPMwd8y4WM4-n*p86?D6;j;RdjVO+k+xK)NunklO;tY{)Zt zM~=8Nwg7+wQw)tBb|Sep>W~9d$jT>!R1_xf6JY5OfKICyW{=-*2Iy266_3|#G6T9v z(BiiM0-enzW*r5M%n!H$=mnr$On`O;V4i@+3aCk-q7H!4a(d7wd*%ahNS`o(D)~GB zw1*+S0CyFjv;dzDrkB$kusVEz+bZr_cRzqCrD)WL?%X_YRDRMn0m$-FWJ0Y!oYy=b zZ~_B>0R`Bi0Dc1KzcxTN3Hks&8W3*1Ch_Qz`7o&fG{pnZIxepXaBF}yKqCnT{VtEg z;RrY!W(pVB9)k*b{Qy=9Jp`RJ!KAVSh%A5^xdDT0$|pNoiJw%VXSw!Cn?xN3>@XLm zXfcR(eLnA+0su1gVk}Vr?e^GAAX>NGV)h3efK>=e8IbT@+yDmX1PDY7oNcoJ-&Uss zh6Hd7;UANW0@V;i?0lcwWHAF&H~{?upkM&t0s%za2H;SD{Rr?g1gYjozeRwcl)Pm` z0HsqjY(ueS^-k3J`+1#v0lp~%RR&F4957}479YmB0(}8^C@gxf7oe^ILYRySM#Te! zM}Qv%Xef&*=mzBhT$rHC2^e1{4+~Y6bZFde9kz5JxgzQU>L-^Opvp+NfceRLg+BR~ zqH#7XZ~|bTAMm08a2WJ42!CxiW&vuNDF`q}Ccv(=d3|CZEIVL;zDH!7>-7XqH0h z6{Khuc>uf_)g7PLr2ufmU~)mN7%vXQ=&@pOSirgV07#lg0;`<80wXa)r5KkDtiRXh zv)Tc+3`1rERwH0C+RO}GS$@E7hMDNa7SjZl#{@X4;8Orbl+^-IZfN=Al{pys_E|1J zMe8_vccCSD!vw9&xnM=OOAih1EnwDxJOQlR18W1|^aAvo8^GlON#1I)Tf}vzHUQEU zAjeq%`V`ET#ReE`fGZF75qu>J*hH|M7zb5`mrgNAy7efzUfOjNExEuP3W$4Q@=gIR zGg-X=tlk1p-zK*gydH3b02v#wZ($V!Bu)T!SHQ7cegFyt0A`oT2IGniP5>aMZB{7b z_9H+JlxA50Am{=PJd9`n#?Ofz5}(KC0c>9Y5d$bK1ZeLvzI2MV&FHS?;i~~9D|y=h ze{Mo;vck>V14K4J%Xv(&u7VE)UX|VM1RPsW5CGV0;?(JYSC;R$0QkJc2@5s=?g6M4 ztQ>AUj-DXcn;>0>VHH@#<-0t%zYbWr0CyXvuitD6faeV0y#SkNrRxR7WQK(~NyAVU zV^$U9S$(iK|$TY0N`SS z#{||5U@T#P{3ef29Pz&$;NyBg0)S2J2JBF9G+_;~!nguJ9XS8stUC~tl40CaG)tD` zf)uS{;4UZ1pFXckFN@2>EM^!A6}$nk9Ck1X;AjIrp$WWk6Cg`M7bVC>6Cf_SL0N(@ zt!#ka2&NufUV9L5LIF_JLxm0=Vwjtie0X#Lgi|P`MT=sVLS`md%Lue|ZhrDkVNjw@ z7+Sg^V9>#&0Hj|(U>Mu1ezP}d_4?qyfK%=;c}x=Yrr!r@2&;q54p^>MFzP{&5nlBm z&1E);>%Mp#_FmZi^4hE}*fn@S&&}YqVU7Vd7UK5<s1X$7i@NE9YbDAy#ehFz=psFOBrlD16~(kM}q|b zY)vOX7@DwxZshU-I5uGMx?C9462Jsug*2N3038d!bFh)Xu*ULw26iM_tFVIOX_lf@ zte|F8+dtf~zyppV>}u^6fUm`_0IX$ZtJmZQAbQvi!%mk#Zvu9^!{H1B?0_l_6Nn(& zf^qSiz$Ns!z3f^B+q58nwu3yqCIEE?d{ux=cLQvy3t(4G6tkXgCsQ;{p*K^s3~N1h z93L4RF75@`!&YXp*#S=4X$R;|JK)k=VKKFVX9yc+E1*ilqB=FO2s|BvDh*z_-3kz| z(0$nL_^mELowWL`b~hk_1BS2YS+(j>*o`F}BZqeOq)<4?ZZcQqPm* z(h&o!q(&8(8-J^0Hw9Lz+qif}g0L&s4Gq7TYlyeA8xbTWQooF(ME=krDeYP{?rZJ} z^zewVtMQW%1Gl#L7BsG)s<>78WC#da+hpQokH6RLHwSw8J-2)2m%oZyjSTl|{0O|4 zsT~+Z+=|e^2IVCu0YmAl#hqr|QT_s4YMD8|Yxxy$g{Gz)S6D+TswsaJ!e-T!W5OCt zz@j9L!S`(loX3s$*HMh=Fc$wJfn&$vUnJVtc>Ifmrt#okdBZc2XJhPWk%o~0*zVs&vO7HRMOZ&q^ z+g0Myc`!6rX49*=41;LIci~(yD-h1(g#$*lHrWfQAkyYQUwZ{A41}*hL)u-~RKV$y z(9zMG!j}tYm;~Ad9FlFX_~6aqdQMY3rsXQvkgFW@Yoq|nU;m{VUl-ke=Ot|ua zt$L{iaTCgDcIeZ%4cag%d<9J0^jpJ2g)7y9SWnm*+tM0K|3;0r$zdl%F_}0y++Xk} zuCX1haqQoyv1&@VPPjX9Rqbh2caW-bjk}9RynTCrG`?Ya4x>$yoOIfhgRZ?T{H*XG z(;(6CB}@VtL89RgqV?0lJv61K{u=Jco5!Qr=0z>h(%ZuA(LJG1Q#A7Sa7W=eZ6#7H z>9=nW59S_38Fz$jnwoTaRzN$-^6ME_=PzOs*b$c0sS_x_1WNU}wsm%9^`>=iWlF%z z$`K3h3^(P3ADCniMn^;f{q1K`Rf+t7_TLru#*?fa8nXze6Oc5#Cp=M00#mF=RcTWk zd(czpSScdNRN1G=lE?r{sHB#7Qi@EKKO-FDxMH++X84x&YI%o2d1Fi}1G&dxQuU>r zF_=_pOPA7?m}(Fn&m1N}9Z$4*R`?0wKd1F(WI>6LttK+%zn>kRkaM+R*4T>h7GbKI zMVAGv&uNoRH%3jqt-oD>ABuU@>ERg4H&ZvZ!a3-<1uI?^Y8X0fMHtDBjiZAV3}b|S zbbt6L$00Hj%={c5SDwm;X_)En>!C1)Dk6wdFQ1lg?=OFQ{$K&KB(HF~mwIa<5A;Za zlzMbm{oNeDMWUwH_cK3a$+u3g=*#~X3TU4JtvyX2FR-B>joCCGt}QPx%))&k3&0FC zbzb+D$Xgq}KY=cssts2P++XSl;pw+9uSG`A8CCp@Y!20dE*NHsx7LTtI3Z747i$^n z=qNDMWE6^+1hpll4-b;bNdRN|{6!`w0~n)DfkknZLk)zK0LENGNeySu(l}D8h2I>k zzdLi7+Mko?@MTp2VYHe;)g3Ru{II_$0F27fvbbtxjtBtE1j>=2rFkr#lmfsEKT^L8 zmX&A1S^T{~4-jpPX?rrBN)iFVe+egUP{EF2hJwxzCP5t=)NNH5KXUPW819Y;nAbCZ z$T zR@MTX%Zio@Yd>x%c3m6p%?tarL(G_-vQ|>$aHd8gsbVHUm6Xy%dmQDy6cIJ%&JZ>3 zt>PXjN>kP`zIv!b)#EHmYos-0o#Sb#BH!9PGBdNo8D)}7irh_2VHCN;8KTI=Do@?x z>y>#TntT!EiP=V~v^@=IsVd(nhTF8{%YYWNm}$*qK*6f+{IhU1CtPq=Q9rULP*?M^aDq|GWm{l|gBxGb9yz`YC-QIBd>P&> zbkw#-*R%pPQJte`?^of8Ifhx{EnkP<<^;D&M)#;COak#&n-6?O;LkQj8ABp}Xp4jQ z$#nHGsjEzDB6vKLdEq*yO5zxAtZ3K(K$K)B0IusG<0P1IW4X|!;R755s@a^IF0}GfQtD?uhu%lA; ztPCVWmK2QX#jiRmPsrt?b`2IVg9+y2laQy(N3ruyVJpYKBT-9B%9|`XnUSlZfObYc zc{YAYG31&~OXIAJz2WzA4c+dOsP)|yPE@cjJW@EW6E|_VepeG!385YPKsgPw#PR#X z5MQ(D1?h@=t#y;j-j@c0A*TyMrvu?rLZOy$5F*>qcIcji;TO^3U&0yOZB*MWMg{qH z7a-5X`E8VvT0Pio+;py3dpLZS6NWHVl0ETACPC40e#ixAe7{JMrZ{Yh9}@i9;skEn zgNt`)8q3!g@3`>ya7egYPqO9r@EvKu2r~17+h}MANA=qBl6Z!oykp@b+S1ydf0U@_ z^N)u=;DjfcYDqh*nFOWh+>is2JMhdA2ZsF9_>0s)(ZmE^aYkvZ954s zFY{B(L4vup1@e@+g$Dc;7WqRGwKTPUVX4W~`sxD2_>YY9b@Rvs~@O9OJCneC=9cuu6reO-J;`+Yh*eGA30W-NEQ^T5TUa$w*;bg3@0! zsJ%>ETB{4cO1i+XC&n7q0$Tl@OpS!AGvhY7gjr0g%GI4>ZhCDO0~&Hh6EmhkCoilW z9N!E%qj@|5$%%~GLM@55JHN+whb|&a|J0GezsMqTQeH$bgcA1wDr{OS#{7Ry$W)TC09@q;4{e(Pi^Rd+l~%K2s~1Q6x(LQYKYxYd#v~tTo4z44WRY2&)s2 zTXFw0wjR0;@cK!z1%~}!Op;j_8BP-TGScDVS~kW)P8u^u0Q!05#kKF| z@#eI|vth9$)ZUb`R6IJmc1ml0U|QnYa6nJ;&D7dudHl$<#IxZNDXetwGvrLXhLo6iWF<*9Op&oiIPaUGYWU-u=mX3}#-EWZ>OZZzUr7V^q zHIY%eL-nv&8fJ-;BeiYPgf%J|T`kuhnp7-^Oe*1HW94N6vOQS4QBN>Zc;B$>v-4~3 z(wFUshA*fEU}7TzhzNqcSS^WmzC9)l8q*zmsK6wsU0;Z(jsmh8&o|J_w6mCj1T*b4 zjc&fc3$@2zESt_Q#R9o1ZpWGnvRLhV;zbYil zKCT^;$Iog&rWzA8MO}Et$Rw!w-dY@+j=&NFTd?df(LDx|Y|R{FB|=vnHbq@^4(+YY z=7d#vH0T$1Ns%#%#*0jm#*u3VCP4#ESMmNtiZDSt@>?RoA8ie|f{iiq>6F@USBsc$1qDge0|+@obaJaMh_i6XA;N^ zn!QF4(AhC{q4=^t8z>gl@my;Rd8&2q=c${;cb2Fn@2QBTCUdP>BfU{?+(B+=wibx+!wM>YM(q} z)zzrbU&ne=!zuT2#46NhMeM#pm&X)@XO#!y{-71E`FhPJwDJ2n z)u~Hy!iGG4Vk5MxS;Tk)(McMmTN)vA<^1;Y1|rx9jhObpKqiRZa7j86zLV`eFRm}IYXKqP8YMPYax^uCZqUTK5BM(|CAL-bbw(Yg*0BL{ zRo~!piIXBqSBh3ltvks%F@Z7eu}V5rPntWe?k=uWA!T8YRjO+gDvi_&8|$T>0jKo% zpp1!{oyp3H`Xg+L;*X%&chs#AZig<(YEL)8OoHl(+>XATUU$8=wAMO~S4K;%5brWm z3|mkhHjKr{Jx=5zqa>nd zo_Kn{qbK=xbzO%%zA!!U{LX1i4>sZQ4OS%CT>crSX}kZ0rX6~(Zgm3pVcq+6Zwq76 z8J)rRM9CG!Ytfbu>RiILOs4EL6kekys!Oi2V3os-(T)|K6s4xXN6cPnEye5)>w0iP zg<7L}DG4wH9{Q+mj4+eQRL^i8WKz|sG86sxryHgpSU-qyOl+OnsB(RU2XR(@JHOj{OToc+qMZ1}Ufi?wBOz59&H!r3_4 z3u`#mcJ!~HdYWIdwY5vIzsorT?(DrY( z#NcCE2E}iGtjpzvT}-vWS|`-x<$HPw`DZm&BT;xR$jFiM8#7 zHGbTM$h_nc6N>JuYs;vDJV2ldkX<4$x`<#bFCyicivqIh>TQa+V1Hc!C-lhB&NPN{ zuEY;ZNfvGn@H*vm6Cdz-m(k^EKHT~9Jncriigu4n3swWUFmn2~$cVC2Yk*sspiy(E0d z)JoQo&zS_$54=NOaB2NQZBcC-uN$;MJ{}kg`#r8++Vl?NPib}H1a3ZoPW%CRL?^hk z`b}WlOZa*jTq83}VCaZ4z`aDRGW?MtdvO(CJlrE&U8_{RrH7ZsOiyY^nASUS+{I|q z_APwdZa|Q=h8u zht_^GC(rN$nj@WhXA0Rj1M7RX=kCH}{n3DFp#C`FCD_16_Z{k1_nK8Pb_^|(DQ4}=7R@UmXJ z&utMa)>J~cPYZ? z=XN@*RtUiw^mv`F00bt40}O}D>p~S@LJ+}?mGuyq&|!iwz zhzn}>`XD%6+PpmR$mQrMt~~@GgJ8xss~b*2Anc(l;Paa8R=3jyk_e)bmMi2ZjmaA~ zp$^S=nhRaY8xEkY5W5NmZ?7Lz;DwN@HkZ}v_CefBAA|_AT7yoAQfjwAC_TSJj+7RJ z_+cPS2#N`D3L)&Q35Lt$g}`nQJI(19J*VeE^fx<%Y<0LH+MNrcYx#mfi0pZ? zhY2D-vC*|sG;1Nzwen3#n?=prEwBLC#{G@ZLo@4(8(W-qdvAvunLb_63Iaj9gAf`J z2cI_C+)fBy2N9%At^mZN19l*C^R~x9>r$LR;dpg&l*K^OA@bqB%3PE(jPU!6Y_4Vgx-T7H}e%9$$hX2>I&Pkp`b5G!;?1s} zdHKdA~@-}dZsiypX_%dBn zz8nt0YsyE0D^^p!9+$tPye;sA-&TJCf0mQ(e~EvQ7fD~?U*!7s*Z3E?EBg)pMXvU3 z!@tOFm2cr!UOD+{^&L(mr*hlzFOV|gdS5>)9g7Pbl2!8i>78rpx21DO$v833r>Fd@ z=hK5*9Kwx~?*;f5G#K}CT3dp;zFa1nHDg72Zi2kCGgfp*ht}7>Becy_sz+NtsHYbV z^VCG#I&r2s)Zw-I2|0#Y;_}z(ujB=bN`|(2BOQ@xTG%A?WmBOAdY#uIKK@319+!aT zDq|XS+ot+r4axFN^_L4{nbIY5qeI~V@uhFp@6Z&?dOA9^9fu2&2WZkWYo<47MCVv8 zs{d@!6=`>6rlXRAIYWedn2NVHi4EnZBlG5Z*MrNBXS7%AYDK3XQy0Kr<71T`@6_K8 zZr-wY>hBijvsHaiKeUBP-(qj(>@(52$DV16j=x(UZtye|K)pN7=^#9- z7G>o9Je!K;O^)%#zE?j(Lx2UsFd@AZUYV4Mk{e!bC%*E2eG^XjT-yp;mGqSQ6H-+x zF2#gTPfQXqN)|Yd_Azf<>q4YMICH&;8dVdjE5WwC}7ts7^`7Rmcy{@NzU^Yfyc z8JXJR`z>woK1U_vDmrxyzX97ba_iGT%yBP-Z>7vJZyZ(TO5&MaMOHe>H1 z2b%pgyxyIslOcYpkQ-7HnL$Uh_AM$;ly`RDqIT%)H}%g8PpHJi6r$*h4Fx28TR&Y` z&SdE<$@R1YOv}`gtX{BUz3@6i2O2RnU+uW`#F(KI(&?y>x5E79xKWWF7c&$@R5?t7 z+G$j>vtD^DyuS&1Y9{Q#TuDY9Y>pX?e?8QkIePdJ@?m~xUJR!-rB%?AGvR`!x+<3K zU6#QgXrlk_^<$H`gx3e-LOg%ZXD zJ`z`>%nW($`2}Uh&;&|Po;5N-6@yx2i?7TNKbnJ%G>oM4KY_5p4l*sSNZjJ$7Y6Wu zBVs^RRDS%dkqXu6v0}J&OHRbJW^|+~>|$E% zouoz3Y3_fC`(GYU`ge5tHb$q*xSw(TiaPJsYokt`cS63Z&iF+$zR7?qkkt9Kz5=4o zd*jr3XEXWa9^X68)d)?Qg?~qr@0EL_KgH*}HP>JN>D-)f&pvQ|u4m+A<|UA>Y}3q7 z&M%g4L-cR1zdY8tIh}^gy&HjH9xb~)G9|%6X6_S#=gsA~E#rw+V=$g%6V&-Y_@ppH zOGuqr{;uZe-h<&6guB>WWvf@urpgX5rXip2SsJ{EF>_viY0Y*GyMe}CLrv`wCCmeP zllv0LUVSw>3JuVAs7y=DX49=DlC%UGYJDtxSkoijh%YlxzI8W7az*+Ybp%_lB8%(TR7Dme zvQX~H@OJ`Bqiaom-u^fB>&&3YdgGH0^wHo5eCN>dL7qv^Q4`hW31yZ>CgvDsiFKtB zc*DO`C1d2ef=!is3Ku%lheVERNOT>2MG`C1BEn)tJD=nmh>Bc0HZ z@56(Ix0zIO5Oi{kz-OhS*pBdX8WM8k@+DK69J#!PnhlRE))XX1KxAXQmnkjR&1IqJ z#uqxF@pGE7Pxx8pbbWi(pl`%TFr8&2|I0{XB*??!W-T=KA+tqt`*0!TEA~MgGAd%` z_^whFl7Z-?uYwqetQL9$abb&iKgy8bOtShIs|xBlI`VM>g=}_hWVLWT=0>&h^b~Kj zn#hQy$915PhFRjO>moflVX8{TDCFI2s-lonQRIe5Wdf3L0+P*RB2zRZx^dnqjWfff z2s%8U7anJ7+;mU06FR&q5Gm&1W5AJ#5%$ii>iqsGiFX*Sr&L`1!jh{vTEp6JAMPmje`(1@(%+`- z4|m{vX!exI)y&-owXVj}b4j@_H1neu{uGZ)ja&FM-7S*VbwW7Qmhd5FD2d*_Plt{kGNCmS zAF}g%wR-!Lz6PSVTU+W)?E4^b^=@^pG2_&?H_nr#3<#>UQ>+G?J3rL}Z^E?-+$>w8 zz~aL*BFEbEJ+k#rDO7d2SQ2zsN?9tlS`t~D&-c&PU$a(8mg`Bnt&e=up1&$Pu~Iga z-Y|B})+l8sU`+drq8Tl~Ug#GX>HHm~ycuoXUy+SkY>U(u7$4Wlg8hO%>HTF}qZeGSCOxO4PI#+;)u zGKQSe#j)5pPo4{PX~2;BW(#*}wzg9<^(^TQMed=UlApba*B*_`xR76(qkpTW8j^*Q zz#qzy->Pv-A;{;#98}Uh(zn$dTw!@9{3-v;oAQU9dvfAetvfMi^3nsdr=;8hVa013 z+)XCi&m_yaIb z+ShEV7=Dr(-$yA+QS`TmUqxHaM24ePZPsR@?q?(2(f4iEHWEwHqBrsUUpa|w^RK$P z#KK0=!ZfZ4D!DK^l8HE?wtj*1>USR%tn4rROb3DgG*0C{Fc^XV=|&*Mb2sw&pUw|u z2)gdGk^}JQ zUviu9%XscZtTD=g=sMhF5`(rH@>PR&JUe%?e+p)B~aR+=?yNUP*STnhPQh^4*J ztitFg{4K2#o3+sr2SG|$iW;8%zW>T*9itq7PpiZhY^q9*SR?;OdU_*<803`5=uDmlkofq1+ zRtJ~Z2r}!7m{e>dn&4tEas-y84T`q?EeAb*Pqd|m98NLE3U-E4b#>aJyYG#5)Ra~m zD`iNCL28S}%!n3gN|OW6RWqU{;X0-?+kj(c)T$vN4J_LoZG@K21iA?f9c@MId|$MR z)6nQF**ry%s*uPg(lt9em=oqQRT2h?Ne;8AibUxUdr7)4u#$TUkg2w(8vc~6*;JA6XKXDKKRR8&` zt{rjIBhkz>ZZRe^-o6S_%!lc8aAZ3@jSeI~u8m%EM;nadDBUQYgP}gC3}Z4wz3K5N z#6bI4+Z?-rYb$k!@lfcwHgBWLs-+a{m#1(2`UG4!8jqnr7Qr5YqN)=ysp*=}}0TUSN18Mm+i9bM13g~qH> zx6n8b_#_`f+?o(kq))eM`!qq%k3A8>kFOCuqt*}jNAm&d$`H9xGyO|A%oO}=?U>JuZ=w!i zBAcr4=|_vdiT)Z-^2#=FyzWata?!WZJsJ`nf13^XgI5JPXw7%gTa5i})N6Zmwy<2+ zAh~Vxh?=NcJF)He(QF<)x1HEoa<^sN&gfu4R0~r(OTxFF*%`ISWr<&T@uBa#3-2>! ziC?(}?b;PxA{Qh+>%q^m;c?S%4>d%e`~Xh(w+sn!uSxY~yQ7_DD%r1g2nU(6QuU@E zqa)>lI+<;iWXANC82cP1LG3=8`V;Y3;TUchpWR+#>a*H|RwQv*n?k;7>OcKCx`*#2 z)gYPr?)n;t$C}$-zwS3}uklz7IhDSY80P__#MbZB*m}~b8?~LfUeA)w){my0Qf&R+ z{n6TV{_ggPZT&t;;M3b{Z2h$M)Lk8iE7aTi(e2~i)lrzUe`V}{V1}MG_CyZPv2qxk zkwOeBsTdSn|J||Z#0LEPFiwfSl=P6oNW4oaOT`aQMH@Bbx3y1f>-*_RhH$Zw4fy@- z6Q3turI5(yi6rLVTU6NmnmE;3X&~tpI!T{{xi6OZc%&UQ_l9aI{?$0vmdnh~R|b~Y z?uUfVY6|_ld&%I~g{WypEXe2Q(@)9_k^YmiM`>HBmwr-iC&aGgGfULUp}8lY>wxAr z0g%Zn)MRqC9IitbHjNb+6rb2MHbA%`zIdZ%v0`0ue0!99u%5&g#~;bn57s5<;pQ>3 zz_7*K5u2l>lfFBbpvtV+W(^6L!^?&FOle{XOVD2}Vs~o_>dc`pk+AseSd`0LrPe5| zt8e7QmI*Ja$#j4U?AaHhwYjlMZWVI0ijC3|c3AOn5qhOntXz0sPe|l2EiZNj5Wb!l zn;IXJpz$-ayFw`#8s!eQ0f<^GDHnG(SF8@tv8(Se_?ODNxs+llKs#`<$=NvwNOK^!bx$re>~Z%uK`p4P4at|G5pUqqj-kb01oH|lE|(c1vIOlxkJA>k zTfJ_t#RqXpoNliJ;mgu6dli(kkCvaqDO*>d+>Zjo#`Rd$*PGJNR_8>92|bjR+HRa0Bv(F1W#_ z;Z0w4yny?PJ3OuYSrTEOHf3+;m%o6_CRjE;L}jMfFuqSybavgM-rOwoktybAJPNLE zssR!1L#5`JsqsmexV1edE-cvJgD+o#o;Alh@W1Ax4tG4_qx z!!M4_&g@*MR*$BB8!5{vVp1TF%z#Ys;!9$8^O-g#5A9kJEo+~NQ^>PRfxZf4$x+2! zi*sn)fk6;J6~`UOyo{}4YJ+FWxPfSE>j#LrU}|e(P#Xju_%(C9hMv3%85AqcyqQfN zG3kXtsC0150Z``m4UToz5}5}?%37#=H=`|$AzUn6H#;l$I;Ji~0)-?@fjH-~n8;<; zF(pt*{fg0<3p6P=M9Lrn)ew z{7hT%)R5RJKJ$G|LzvaAniOD_f4>m+Q}B33Qx1NA|AN3y=yGC2SmVh11m5}A`P8JI*~b{jZB%qZGvgFH%*$IKF3+H$m{&Yv3dpLc=q! zjaAal2Bh?9|HU`NzTxj#h%UF%*t=;hBZU8nFO`$knynzIqw-}eK0<@IP(W43z5+oH{rRi znfuvftQ-6f9Z*(-CD&>R@EGN*{TNRBp=pjjfj#bxeZzA++8T)6!iaceJOS;vrV81h zqbHAL+BAiTmAr8;{A*DWhcvRC&xl7S+ZbdK*+TrzZm96K z*dlJNMzqf{v_!NI#fdi7kv*TvF=TP!zSxA0OotWTvFRo&c@)@CZ}EOP=ki9K@YUH0 zRMB>BcYb?E{eyvRlymtgiegomJZ6{6~6#uLZUoKG<3Sctwz4RTQKs zg{B_c-kLjx#b8Doa~|%%+_F%oiUdRdTSxg^iyXBa>8O8jyiJl0MXSjCiV*^;_#k%C zCCP655>JXcLyDjtP<11z$T}D4MOIWK4YqU0Pb(-zYfjGTkGh9qnP}O)v7fo&n4EqbH6(vpNB-B0*fZcI0a08mRJF~uGLhyi z%Uz^@cu@o?__c~8;6mV0nS@xteTje@PW0R!xGVlnwULCE$`U4XuEsU_4!;To7G`9TkUp=v68YB##rHAz;YdFsI#xr zj;$@y=|O433Uz&tHuoo` zEk#qBZ6NA;h;LF%4qOej^kW@Wq&oH_-@aJ?X-(D8FJuCZh8~O4(4AUwZr6+RpKItQ zS)PAKL$@W>(9y+uGcl@|jFLt}^Sxe&%kJ}-J+1(p+t@tbpwDJ@1p+pI(CPD|lF#PM zD@w5Xi710^b8gB2imVm#To@IFD42qsBbAoA#((L2WiTW0ERVF{vYe-cd|TF z=;yLHVLeQR#p>t9X!3(#8E3{~Gx%4E$u|K*eLF}SeVNvvYH2r2-(z9(4SlhRC4V{j z50WVEZ@P*=ab38M95gO#Lo@VCb*wA>^T_ErP55n8quUwT`IAyjSiDU5=@-zEniv~? z`eBXy7whH!&lUP-c>w;7LZ3~f(A=A^_W-PG-P6LXPVxF&2)5PbwVFIGzXg7oEG~!H z>hOEqc9YNM3D_i0Aw?7+NgS)DYiSX1CxqtXNZ zp_@>~NiE~mE0Mg2YjtCsz^RrLph$>A;}&>z3Nf7E)W&C}F8s^hj&~$A>!U zziz1{c{&pG?W3{Rc+^S%aZ9BrP$)F!b_(#NeTjL!R+OXlqU`ri9fC4JktI>j;-nry zSuqZrlz5HX8Yl0Msn|3Ix4`KS+Wjskgz9!#Z7z==VtAWPUXR~y4tVVr2-AJl12u&y z3OT98-Je83drDo~qgBu!;}rB`tyDMbrTUK*w6h}A6bjk~0KT-3g9&m3I^hH6T`n51HugF9ObX!-mpEG~3xCnNn2Y0HO)UKDbQI|F7vL0Z za|+@66e^AIS9B(K4tTgl!sSL=GLYoeok>CYy}_ovu^s}uPg{O_WO4#I9(*Zwf945x z)bI(ldZbb|RT&OuWXX+qLo0&Di|W8M|NM<24xTY?A_Fs`!;--nT@sEa;nQ4VRDE zfEvV$yFN~Yqp1j$MG~Gp=AvOA!s0az_dUsUdP8b?3az13tosPQYC&XqNn{SgrS%;h z73#MIZ1sGZD9J?nP@!Ze5_l{3BtoH6m226tDO+){)D6 zk8Mt8>c3(}Od0zmrvCcRDB7 zXGZk>=lA)r?{40qx}K`1o~xecsjHZ5ruWCbrESA#eXzuB(1yGXpws7-*PB1(SjR3$ zHlN^2=zak4(?0T5vPr}S88oUO#;!+h)R%?*++DIs*da!+@Pn>CK}Jf_WNOUtYkTqbZ>a*we`C=IBgqRdx&K>=w~G z%!~N?Y`?|0)1%h_=%1%YU(y0;7dA`wD8%7$X2fa7mvEyXzfapsPx-JL7&eaE-b1YG ztJ(iuLvb-y#|`*I)lpus{7>uXHBH1v6lg^$cXH57DR1wqSIP~2QXQG(8X#yNW1Q|UI zzYw2QMqR%=c|H))rYI&S&{g6Xzb)!-!v3iu#8lCrj&%Hrq6&j@2}UECjAxVRLLYe>E}h2%@LBoKqtvZJT4u8-S z@z{JJztiD#1Z;Q{HEi`ntUkZT6|vJr`&E`~mDrjn-jtx5-wad9w;?11zNU8VF@ECb34J!?REg|5{B$O=7w zKzfDVq(W$VkduTd$PNuleerYJO%$2(KVyHQ78co%)h7Z*ea z<@o3et}~+j$c_u6&2xNSCv`AxH7-^>izhO$Wt)QdKNPmeo<-q|=h?BK92Qu0lp(U{eqWb5m z&4o;Zv?d3cPCT{jaRkDCyxr@w;?PXUYQ=UpJk)IW`s7vX{LHn;!tdYfDE2O77RP88 zM#;+xS+FD+h;rKiu+=RP9bryx!!Q?W6r~wZ)+owJTbzSR&)HlEVY(5?rphE!GoH+g zSOgr?`OWVs-CZgJ%0{Q6Ful?FPzN9zooHctqw|>x!HXCk)B!1nkfW>0TXXABQ?>M* zqNnG{dlIj!1kGf4-k)b^c#yv_5X@(FRA%192N|gRy@JCLh05u@iElEH{#Sh~%$vv= zn4a`G%7tG?3N@sE*O2tjYDs^x8s1cMyP7^bFSyChg;9P_vtyuvcH_ZrN6;S%di{tC z>@KSpFPD4pU%ccU!BgMLo|G)Ls={>88FV)lRdYNWg^{yG1UcEahU2Tv7W%a&qV0!iLssoVK`*B&u z3{7S41O%lLN6RRsCBI|pdJP$`(UbAyH9K)(>W5g#qW7!u5(^$FnW^8dHP-Codg6Ym zBQEnOCS1?b5>}U6PFmb?J(3n)hh0uuWcsSO7R{{bx#Ltw*VxKbfh8?&L%xFVtv&hu zM&v7Kml_Y_#*FpGh#jrznLJeAFC2}Ty7tsjGB0CB`mfBz=xb$0$WTDeP4q^N-OLGy zm;=hd>*TKV`BEbxJUjnPNHZm)0TO3h^&a|6ne1Bs!fgxsu@^27a=C3zuRG|c=X9NR zht=ixyF<Jo#PKDK$-g?}qP-}n;Se)LeD6*xu z1uOKeFsEX&Exl8*T7}@93b8Lx)drDmP{IX~C#%ovGwbt;6bhEhgwW`-B@*;`!#?b5 z^@goZx830l1;e(0!{>{*T;7O}`17``D#%jFCvPIW-IiXVYZRiyZ5o9pHhqesTuYQ2 zf%D(f=%~_jR*ilkguNXC6PiGg>OnwWrtU23<4ci7n9y;*tzBe_n;)X)a8r zBeIjy>-KcwBDBG9M08i4n^RQV*cX$2*&2O9FmJ{9RGCknrhSkvX6H4x;w2w?K3W67 zj_K~x*Udp4_Nbt?GQBQD7(*7`9UVj7yD#cDALaqsG5D>d=KknVEg0+LL%wPPpTzre zK~i7avV|5(x8VAUDo)&RGdQa4A7p~XmRs3{_svP=gP8l34KYm|XvTQ8H5Z@Q!rG5YC ziOv+wi+EUebp9H?r1J5{CXm;p=-CDpSEp3`*FT~Q3@YB9Qt^w&qa$?{yT*Hv(%n&q z`Jt5BU+#`B)YfK7a_bXOr@0}ecKbciI&Ez>tXEPhmOU8_Yb)vm_A4XWF@fc&sWOM` z-J29xdV9F=vqoTlpcohn?6>&D1h(so6}^dNe{?fmS!mb~VOONKl`{#;r1sYosr}YK zY7OyZQfv4{TJ%)3t7slXJ4*;7BlW&#qF(bkd@;LQU=W%7&uG-3KD%1te0_a!kW;o_ znhuz4iRkO%IQNq0qKgdL{(Vk^*Sy4_{=Lsf2WsoHZ6dkCP0np^l1m9wgLH^(vH z<@5;?c7^n_vLq;G?`evPu@vpcr=%1$c`>?9IHHlFcR5%lMbA6+wr{^v_EF`>1@a8> zOfNvB=#Zf^AU1R9-TTHajW;08I~;vj6uY_7`}Z9cYFcE-Vrk>6(Q9)=Z1OE%xNeH! z2Gm}9kjgi)iY$)6g2=QgmD^&Q^=9IIeT0cjwPl zsItbTapzaL^zQr>TBOIrv=C_PhZX52!sFNI=zv?50Ke-OPxd^3ZDov-xu znj&Fx1iA3)Xd80;h050CqSevf1S{Rwh@WN!B3*B~-o!8w)U56C9U7kX>%jDt9GYUES)?$WngmR9&Hu2(FIjyf^b}gHD>bbYL^-& z|0{*byZ#!rX3a3BR)JTq5?#DZB~n=1b{1IsX(?FiMvYX~4iLP0&UW#p8bO|!Oe)i` zx9RMvxmkSOwdBNG^@Zfg*;Q`y0*X^2@L+~=9#^8`EBP;~nj)I7<-X~|-s1`Mit6uf{?fV#?0?a1>E7QimWm z;k_|B4&gM?bzYS^&-}(=qT9IrvpkH1D=VE@R^@FbbY|e{(GWv3YEo`s?chuJp_A9d z2Ma#=>TuBq^60M)|5+=)!fo+>CT?Wx#-)?qm6EIAL5Y__he-)KEb1K})f_mb;pSM1 zE}M1mXn=lKdHX7`s8PLY1K)NtxK8! z8%5ICk`>|;lYN%)nmD0xYjWMXsu|VS##)fFbyZghC2~uOSsTl>#LSv|klw5n4*I_^ zYq#mmT0g=Dc7tYM*K+9SY}?iHz*O7Tva0H$WkE!Day#WLp{je$ z7Y*iwvFoy3VRM8pVFxWQLLbX^6>*0iPd8{;!HONUyjI4_@StTYBUt&M$x(eWiogwNi` z!j#Rsk$Y%F8eU3H2;z`rEuG!`1DGWzggf?ERSEertTF|3;$Z0%AT%Mz8Z?f_AA>bB zfFW`$cWwBEy!(`KbTwv(KDrtORDi24y1JLtnh;oB#No-u%(I5*BdbwEQjIr{njBg2 zB}wY7dbaA`EJ4QEr0ek=ZOFbZ@$p$=u&?A7_jXj)4>H$N^b@lOTZydYN>l_?Lo=H+ zJW`OAT-bppBUKovVm3jeDI*?q8Tuz5e<8WZk+ zNE2VEYM!jC6I8!Z7i__f?^GQF8S@h3_=(BeCJO)6264a4v9vh;OQbWwBl=d+EqSF0xYT(rab#w@#RY65rDH?Eg+A;LS zCslxjVrlSeRlS>t63?N^GpxEL~T)3g-8di{E zuFg~$DMMH12P0V7)!BWb>V`AK@K8fn=NBV5Y7i7x=gJI(IJ=qbF!C&6Oe)|@QkgWW z8ELqpybChZuvPuY@QzRR5Mx6%iLXjZGGn8=7N3BhvNAEPNvuwMPytp9@BJJwix8`^ z0S$M$aoefaG6p18CJfPK?t$SKa(lCwVXFEK;GsR~_^OPo&OL~bHOs$lMoLXFAE}!G zN8w8jW8P8tY$$USxJ}QmQp7tq?OmoUL=|m~_A_xxCOZnoXpe0XTVXL&UsZpODvrXK z_$1>6e-b%8w#?jb7^k|-Gw98gsH{_)olVLg>UJhMdgFzSq^nxS#*1bjS3ku)P~?hl zleq`PIyRmwO*tdBPcRqr4X_l-&^EF0=81eUa} z!+DoONEaZyB@ahUtjsEi-PKI|WmtNjWvN2zABSmtmhXniKFcxMpx$SBYgnq!@;XK8 zZ}}`sIIbJhVc>8LTl)`B%ho>l#Mr82jV~S$yS9-yZg_gf<$0y|F*0Pa6n4bgG!`!$ zp5AeJTMu%=7b|TfE*Q=n7sF#MUnW3E!?0L>Vx@4@a7Jv=He7Fw`>=Y63pUxsZD-L@ z^MpS6{R|B%rR7N}vsC`kj4XP!^#Jl&Q7mBI!uQS`nN3_tk{`Rzi7n`1_^AMu*makt z=HQT$ec3%cy+_ijxjdO_TVt^FrYrG)3~T6-v@w8{J(4#@#@;r+&EYQJaPqY*wu2I3RbJ(jf|HZ}IBI6(nc zEb2H8m|0X$k=~*XEYet1LnN6WV)%t@oMz~U2un!Obj>3}1&k_q68DcVDR>uUwkLqsY9F0=`70qpBFQnIBVcl&-b#+Tev3WT4U0EF9~ zqf&%$q!!OSN1qz{Eeo<)$b4B^GK(Wq@Gb&Y5b6{;nGgcr^WT7o%uIv#v=qFH&XHw1 zop_`n^5BRuk#9*sc4Zo5SFeCj|9&xi>vLuU<2zC@7M|Na0NZqQ_q47&Cw0E(1wnSL z`4W|d(kJs`c&+$fw5!CVg&oJW=EHmm+icvTdF918I$ydV)=67m=ULu#lBTTel32AR z^Ay*JEPD5`HsprkxA!M=E{)mKc=&f;8e3p)I)Wbx%}6)mN|FO#c3G@YG`Hox>Am@w zG7uhKPWBDDJhopT+ZV-HvXA-jy%xv3=Kg$Z%!ltm9$y^0POXYv8a>FrU)bU>4^6Eq zowzdQN;az_Yqb$J)afqZ@l(gATB~|hjhO%4>gHGvAxs)p#MDg=0g8&T`#lGr)VV^s z>YCU9LAX%{R_2Q9IAAtcTs%TQSIilqnJWy@W!|^p7j+=_P=AC^7WN}-FxxeQd4R)5 zH}Tyo4@PyqU%nysRb$}*1vh+GsAPvi^5=+kCG!T^TIMq&WY>EKZBFlc-#a2z6}M89 z63X?L(uMbNyf-Go?;0ZflAZ`Z%0y68hP`iz9TJ3&q+tzpqIxVJVYp%NO9g>;BbhuD zOW5E#QpEjm05g7H;72`#_qNz$f`Ij>s+jybmf_x*T;=7{b|W>J!!{#j5B#)|dg1!f zfZ*Th34Zb}_{S>6WiQN7G|9xuShe|b&_rb~b-4>J<4RQ3Qsp?$MEu>#{XH_*>SO|= zmHTE_QKC&TT>30f=%sCpfwF66v1SiYLzlCM0jRq2`Mmi)ZVr$x?;s#pqa*;I-yB;fc2R&8Yub?m zX4bUvD80b{K2l>%4UweQ)MEHWmBI_jqD`=A277Fafs!^CI1*R^?-b{1FZEZL6aM>F z_$#wH^|twU!tJT zgUVjVrtPs~g84fGnR3It( za147(HNEIOk!y`G?7DYns14VgI$HAYN0JI-c@){dmZLQaV;-HXtDCW#;ghN`Qvb(d zRf5=CfmSr8CkM?mruAsO#xxtvX-q#uB$@lcQ(Q$!RhZkTLDsq-Y&6rgqnXO#qZ`c> zc{Hm3@zw5FK@)ND==90IYK78^Mr)FPmyVV_keReWy$3R7bgBn3ks_5)m%rqJtmAlY zOow~5bl94n4tL6QP+gF#{uz5;6rTZ?(p_lwiqd<73|TC_`Fw0r4km;?2V)l+IxO$& zA?`aEdqxyL8l8U8@-r1g<9h6si7norB3E}BPpMN4r)sSY>4WmNNGRe<%APzQWcb&3ppCALBIDzJ)5xj0~^QeBJnD%GL*PpMR% zp-PdG3oMMfB zH2k`=pNX?u^4w#LcjvcaFPpc}-V(Z`v)yL1oC@W^GcfVJw_`V^nNJqJ6Ps)PC*KuY zta^$oQ8}!dsP^Q9dFPo@@ZH#gT=OejRZ=PLyv_U$U&2EAmqxTZPk4oxKZspuQ2%(E z`qI`9WA_PK0Cr0G?D^YD&5g!z^kKbxIe*(|@s(ocDsrd#J1WHD$HW}39(+maD7%^= zzQtt5e`7Q9Z4sN#?Q-JkNSnjy3%I;)r^6SBL~w7U3+MV8rmoDB_OD!fVQv?j*B7!y z!uDX$>I^zPKA+Fw@q0V~arqp?_9QAUTe@Pg3P_UJ>=_`t0xwCGj{EFk;A5y1IcZ#RGTazd&q7N+FdrM z-{p)11HK6U&l>jOSs**^%ae9Kvf{Gb{Gcmf^?E|#P{0vz`n|S*&27iQS%*Dh^@nU^ z^W7Wrq*g6fJRn%CVVl=ub$CJ;fYa{r_(NVtIOM`(kampHPKw^%(ncz^t+-#v&)hX> z_3*8Z{EYot$)tCyXXFR%Ag~YJd4Q7*+_2egE<9Q7b%Qy6((wAWJZaO=n%TKsJPx-L zEOFbcxD*h#42K*TZ_pib(Ypa9ka?eA35RWXDcBtf1n_vJ-Rbr_eGZ4uYxCQ}4lfvd zZ03sgQo-eG?-neXI}Q>5{%tl((3`PWB1DOY)O=Lkx1X!zoPk%&?smfs{R_IetTvx5 zh?lm*E+5`3q_1mwgOP~a<#GpnR+rS!o?Moj_4)0|-`tuf9g449B`nRtmryr!dhVnd zb4n(T95sGU7KsdMYiA)@pxf;JWb2BxZ7o?wMOt^>(39*aJJQHvwTA81pg(B!;np;V z&*Am^1Fmqu7WBG20jpa&aXbdG^g2Rruh)$;+YX!4?eO~WI=LIKS>dWRuMHU|$7)5z zy7-&{pFQaJxN##Jd(Pa7>*76lxYQ0-ll6|HZ50K}(s6)X`d#&T1(`d>?Xkzcs~&1` zy6kRmIAZfhA`xfM@AZ1{4_s;O^M!4GpI<6Jb0r4hbGvczwJ+p#;__>+%jyp}?YLhm z90+^DF0WMj>#h5Re3$}UKIQb<9G!eE=!g-!lgz3UU7%8G&5toZmp(d6vJS^rmgMCOtT2pt2XD8ww5dd zB8T5OqUe<^=!2cd)Z%f1O^&eF7j}mI5oZMKa(IJM*XA{_EAD_54=cC=ZXcvA+L(Z_%Z6!iz zMV>Ti>5BV=Y~7NEP7u({y;etwoviLk&az;ta$2oEmmAO4I|FuDGB+-yc3VT3ac~p9 zg!z&(ggOslj5ZXoJ0qcp&ts)e^;yGVs~rj{VN$}><@JC;ZoJHv5$VLmEB6WoS$YhS!}lBk{uw)@5@oG6uWUj#^(DOu?XE(8^725caHYQ^0s{u> zp`{@1)ebv7LA*HVcF8`4CCeM<#Fm4}YyD@{w+c%$^Twmqnk*7&)z;2JGcRWFv)&@ZPe7>tmeoncyK*APw(_y<1#M%U?chrKZOJ{M?-=WlSEsMOW5;R~Svq|MZ8 zfb5vIVSIj;UKb8OV(Vouv@-w0?FsnNA#~dYm(&`<$l-8Wafz$nf!8TQ z&@I0w5R_WaK&65#9ePMPaLd*qseA+;VaF2Ewa`&$_03zXI)$*=_7K$F8L)+&Rv0Uo z0f!f?vN>D`gHD(?DwFw6I}8hA z6u;9&ovsL?0FMvD4~Ff5aEKgtsbQC$`uGug9WO$ikUi+N`aJkg&>9TmzacqPIr`I< zw**V(o~^`kCz)i)+%s;U9e%`0_TEX%7P~VTbokvtZy2u-IISUggz&ErB|*mgAvZOB zm|yQ&0pAMWonc$pXT#G*aF=|3>cu+jkX1ZeW-t*}c;*PX0)8iat^k6mpvx6@BS7}KBgz!!4AJQj76zU<+~)|U z4oA>Q!_F`~e7yMeZ%o67ZXyUDGxtg=JFK?lXYQ07dgq9Z&0=?4MtV2$z|=a)#)md^ zw76k05Ocw`w%MFvj0^*UV}sZ>6u^Y7cotqOJXr^g&FuJv+n(Jv2X2Vx^}(IgVUH8y;}3a)PCNW1m(%47;*MKC zZqdhu<=<2*2@V9_9>3M*2;=!+M9MxdtbRBg#B}F^A;nEkXTtSs)%VC6xb$HcgdO<+ z_%^nP4}=5HVLg#O@CI=Q=|h~8n5lP9gzT%|Fv$X-j9nk=u-Zy4x_v{7E$h41E{DsG;0hC+H|V$7!;y#!@ei>+xw4(K zuxR!Dg2fHq2g5EarbI|50#77A+;*oU1QEd$&gTZ8av3`IFekAfW5+f*Ph%xeveu;U zDq^vO0}(i{p@7$qXU}kJ87>ufM?xOh!LS2VPejEYB$I*;>h$@XcE1&b_rM*7Ll_FU zgK|J=2}86&e|IqG#MB%BZvzM>sk4Igh#&XVJa;6K=E%}3=?cdIzGtRRSx9Na>4g=I zi8o4mH$f!p^cKQrdT2v?i^CeRdA%^zFx{}+K0lmpgaI@__kpsCzX(f@5R-nW<;x&S!iZe6)nqvn5)>w;*Qvm&v5&p z1;|Hv@#>6+UMB5>)8P+kTq#8rcNC4r5hs_mFJENBeG&vuEhq`!kb=UyWit=2C3vxm&PBl+B_kv&!!BB zB@=0~0b+^#B;?)hb_5{I@YB4Q-+WF~O(qj9_ACgnNi9p)Y(Q4>Z+y@byW$D%@2WQ!O9fAA8nXX}8%OmeSLe6M{ z$E^0HW*H4@ z6)p?S>4aw1@Ihuug+AkZL4K_qm} znz?H~8J1gJV#(Gub0Xi#t!|d@M-B(?2YH?h;$%W2xiBk) zgL0CN<-Q9t_l|`K#A^2ZO#Rw$@nn6?pnN!1Sn+WA?DVl7w?7yNc|4fp;B|PBG?0+Q zU6^YLAf*v-Q9Bt7z~{$U9TE7M0DxY)9I{_1Ptqn@1nA=PBE{%I;usEp zKy`$Xz|Y(@F6w!N*b1_A%@$MKo`4 ztgQIMb_t;vypN1;nUbCH4Q-Wh&6Sxu`pGJ@Wcsz5mW60Os%du>A8BXFIHGWvxsVpb z$S$m@AR4hE-3zmb^)ZJJOJp`bUPJNAS;l-Us<;tjyZl}|)iVdpHizBJk?`Pw6fRQ3 zwX8_c+9Mt})~OI_AS#H!?F=A_k06IflXFbV-WKvRcI=gPEOW<7pvH78>*lv2TRP?lWYYzoC5%J~+ynT*HeUemz4#D&g@edVx?Ga~*IQ`< zA>;}o0!5D00bdyg7x@K5dl4kdt(YL$655XUu!M&2EJL3m(zVr5Ted!F2H!>=YI3x> z1p$`Bg(WR4I^y9982k|Ox_IKwi;TS&*vTs?5f3J77jocsJ0um^UKavK9~?^r+>yj0 z1fH|8B8yK~GJR}41Fz-<0zN2a&;dvJc(l5MvND#XQ`u$A+^6C)E}T`}dw{jj<>b`L z1xX5qg0N~q7;!9!Au)!uDDnX`u8<=XYuj59JtGXx@UAEUXA%KgX7*T}T6M`Hkh+Xy zX1dw^iD|4L^S}`N&;ZTi2zihv4u@SH@Cp&A7xEPJIS{)bVPy|1Ied7A>Ih?!LS!w+TuPGBj$}B(6&JiJgcUZp-bi55_f33GtoF#$T|w^^NQ7kW zTGp?EEL}%rzmX~!mQcMRKgGxwMrzO*L>820>s=u$)ZA)Q+$>~8v1A7I!yN5&BZ$Q6 ztrgjN#4K3E4NC~LpTX0t+4wvrxS3?Bgn^Gg_ta8M<8maYr4o~MPNjbn!`jJ zmRk3?Yd_MT$Uj-_0c0RCb0Le0)D#Lp3>Q)?VI?M$Go_h3#X~diR@*EY`^3bLOsPC^ z4Rm=6y>?#1Kvy5u{gA(>)-4i1S`?-Y9Dq4+1QY|F`E^Wb(V-(7g{7IfV%IH@A+F9O zin`=|7J?-MGFRsDcxA=%yKGPySQ7+SPAt~qeR13p9&%#|6id+o**V0zC|wP;VnqXs zU5)+@UYVJ&PVO$Wi9!osiHZ$&7M$qcgzULsJYE$r*a z(zWay7G&<)%aU>f2~#Y%fgTT{`w;ZqiIqJcf@`eIg^@b|KV9vj2kZzHoS23ENP|FI!&r!NVS7sDV$xPw8q3lvTYWCb z(y5|XbOjv2t_?mqJaKsJF6@TE!WW);_Xea`)UK)SwNt#0zj+;d2F6SMW448^RNc!FMs6V! zV;hl&E?D?{@c%K1VM7X5*Rj6`DRZRwX25$|ShW_Jd{_&&9j_4}p^khyQsr>T5UXO* z3`2R#=Jf+OWJCa$^lW7y^6b2yA`%5je1PSB2XjL7oQlFf0eMS$NSM`*^UM z#Nm-M9oc$i`Fo^8GIpAby}H3iwDJmu4M51}f+twyLR1Ma)s4UwF)h+-5x6v^NAe_Q zJ+i&Q$Z|~bdYLsdV|2-jjMC_K=n^CT%tT|U4mkkJG_H_Kp2_fVg~u83gs@JDMKBnB ztIg#LS+S@CS6N;*N-QurJ$TX13$M?M+01DLh2Z2v(6Hd)_J?UoJF(RR%Q;xWfjoLc zSc}0#f}KGw8rmXxj*Sx1&h<4|i_X$@Sk^6QK*nzA{sMU-LqY_JYG^%jgK(AL^9QXS zKNUld4>@hcL&Um+A8R#`IBx(uH$s@lunPqO=L#a0L<;$t4e$_=?siz+4tt0``VBW1 z3%W@2+Y#aWusTH$&gIE_6AQBRs(6T5dc_sfNN{us(6p=v&SAugEtbe4MIuNxVKndr z1LRoYU2Ub~Kats($E-HwqhS>gBU5>R5ri+|#)`iKv#bN_wn{3|hqjO>fwPMV5B!8& z+fWxa1>zo%RgukO1sVJH`LW2kX|1hGC}Yoy1|2<%w6fiL21{~KU(v-UIbZ~6Kx{{R z>2qR98tHp)Boq$A8S)^fsHD`gJdH@RGKo+uGnYcTX)KFWI<$eCH#6yyYh_tRrL2{~ z+rTV=#TUq$6P^?vgbdm2NCMli1=c|}Z$S?3cYY{ zOJmx?3N#Htu+{)mjnxAmc2r`~na(~zC6+;^hUWSqaWENlF$%5@R%!u*x3xp0blWxv zbPjny=z=wFS0LiTI#rO_U}QkCD2=@zVeH8ui|z(>uoW1)hBNnztT#4(ca>b@)WIP;LFv9W*P^HuHA}p+9?I-9$8V+eHm_-OK7D?bm!X36@ z11HPeFPu-16b*Z<)ZMqiv&6C$lEA(Yjg9Dlk$6>d{EJr7i7!*X@|28?VVOE6{u|bM z2~FFNaM{mVuz0Z5I>>76f8mvOtm50S^SsbwgcTk&xgEr`p7aGf7+ z@WQGWE}6p>Pq@PxNBiVEh5!HBivQlWnzmxkG3g%~?PYZ9e(O)xv>_D_))c3Cjo|$U zYu4sl`p!zSU8jYqprzmr%foU z$KSHy2b+*%+vdEPGj>clk=LAl*_DeI%nM&WVBQs1Tp7M1R@Q~w zv8$#)6i1M*SKi)9{P`U6-maS79k$__h&85=|MK|*=3U~ynAW_D78Q`zWnXm@_Th$_ znl8d1GUt(+4ofkf(^i#5y3xPW`_R916ss8atI8%i=x>TJ>Hx`AWz|FI-?i*7#cEYq z7xq`gTV|`ue#UEztI8+>t5~0_%J$)LhE-*QXbV@Cbpk1Gi1jX;jenLgJ}te7{(QbG z{>-7j<^hqiQu=EakSX)iU!#FgS%Cifkp2qNUsHfsS&053Zu|+;U-N)qS%m)DH5h*` zroY%@>~rZa_G0@y`is5cSVn(s8csWzPk*w9(-zQQ>^-MT=r8s>#-;QZUV0!x;moB? zsRUgaD0_(5e(qUJE_tkGxM?M=z~pTyDe6@_vby~l%_meO3+XTVYT+9Hz{Qs=r2o4z zuyD?0)_Kuu~e|FM8kI+97L z=%4%Pp9krm9rVvG`sXqH2`f+a454z*o?EPPeV(F>9HP18^zmP4<$kF?nD8vu{ zP2wNA;;R>xEP4n%K z>+f=tC;nCQn5pf#YV)c%wL3FeNPA}#{FM^y!)5c@8h?~Z|6Ow+$2@?8B*Ld_yOQA- z?rTIYe5q!j$(8)Zx*`Sd3C(i=Ax-#tSr37j4%eJ#(7@`$HC9ux5v(wP$g!*^+o$vi6mlb94OXHYG)tim|33*Sg@XogmC1JAbRORh9nU zx=XUHb}4O*A(bO42TJDGYMvBLH*k$WF(;gngzO+gUc*|g-np!G+pCh5ISP}Vci!Jg zy64TB?t*DUvIeCV-&`lTxynD)9C_*GtC~tX-mV!em>%TXET3LG#q=mwU^^QFe~{ey zZp~OtMM_a_EM4Tz?^8Q(XFQgs``P^$qb**VAB zMtbuFre@RW??6QxW#1ijjO%lI2pBG zstqekqE;mL#5coOm&O*5>p!W9nJ(rimzb#9hLVN6+%NsKrYzmJKR&IgHQktmli4_D z{)4?uH*uwmIX8}lnXa3zsZKeRpB&3fc`O=4WHR^rqGq2U+@UA)g{c5+@a;5Ba8`2L zx}!buf@G!X{u1%Yv5EJ`ih7lgH1DPeE9O-HoTP+rV27O?9(Yr4srYz}kR!gXfXh#i znP1_-i~6n`B<>rle}hZ{2|iiVrSX)fFh86}cGj2oO-EVb*~)ooM={KDQzz2rg?)?D zF?rK>HET>w$0gN6WpblrAezj;Df0N%v0aQh7Y;1B>q8YaVGX zZXU->Q5Pe9zgMRA9pg0bE7pyZ-&eeuwx@qzap^eC`*Bq4OxIJSWY>lA^X%be_NSYi zwkCJ(;!769los-+n5yngf+dN;Z%(q^m<+FJ$?$RpGQ1>{L499w!l3f|bHo$i6W&+s zZbXLPD6j9z9rS_qRzEP#IORbn705A&Gc%*c)ebY9-nI7j1`DbaxoM(gpu!fuZAKXjUy>ZHBC#bdB2-q;2ZWib?msAX7w^;3=x%o57 z^o5RqNsC=FK_TF$TovYeKh>*ttLbO1l(}U`h0-1-u_Vb4%;yu$sD%z&A<9|PnH=v` z+nEgNQ+s+UbgLGwLQ@+Zv@o9h-lw*krnc4@D4CRsrnAr!&BML9n)a7wR$Yv5N%eo! zRy$9uQlJ&}U(Z7`alXDpul|cmQq|uWVOjl+ze$H2=-#|LNuDt*SgoF4?le7>ETu#n zDTk@3OV-aXCt9FIcR$#bY-)39E_re3&0f>194Lz;caurp+9f8gBNm`?d{}102mkBq z^Q7~AwU_0XzTlcn#xLJ;rPT2iz97rau6@*?_7lr;$xn;QhnpHt(C8LGs)yA&H4r-G zs4zn9@EdD`7GtWSed@84tl~tZFFCaD#qQ#O2^u-+OL0jfC%y1Zl@lrN%JO1C9Ib#W zf--^!XM!?tf?iO1P58eM6ms3j+V3)}Z%HXR@yY5!^5m%61*Rn&krV1`xiVSEsc(W> zn~1+fMWC&5C8CNY*R9R#BS<@Z=STfL_DaKfPYa0(n!Fw_?DD_;gf1x z3gSmv3HX2qXAF929HmY^9d5Xm9Q9H?fXl_ z8zyRu#kCZLG@^1fz9mKFg4wk`L9AB56=PAwgELWCI#F*duAZm~){K#r#U#zQ!KKVG zZvA@2n8rP6NK;PAJ1y@k?guiV+lHUP!W@>ZeKLXa=Dy{2WRL^?+HRuw7BJ90^PY?l zK3Ayvx(rz?H4W9iDvF;?Odp5*s0TU!;@YO7`18c{aY$oP4gg-CC_6w(9P$bfTU9yU zY@>rx1|VD3-iYOt1cRBU3UiLy@+BPqCeCMc!UOI7$i{Kodmx1?yinUE;Xw4A#MRXi zt{1+kye1DVsC5aWW#GiLzyr(E!X!PXdrkVgoL+yaA*Thbyj@mX#4-Ak1ilKRrORq- z@&!zeFTjmG)MNPw!w9mQ!iJk<=wj)WwY4KGLY#sPCOh7$Xm1F%S`W5%d+p`!Sh>KPKRM9rPuB0#PR%+Nq>UpSxnePr1ie#m?vjfxlM0VR_V-S+c%Ph zoSBqfda1U(X!<1iQBDAMDv7&I$GK8!!g5fJ6wS&n(A3visYs42$b5gY>&urU1rfiP zU$cNzzW4+U?OLzjK2dBpS!1QzOilvmRlYU8B_+4*Yqc9hs{*Zv?f@Q|iEf92%Kpe#VRQ@XBVApI;ms{$N3Z*?9kHS!3;FGU#5YY zN;>+V+S7BygJ4iP8~(h~^S@-sV(IcvYM14R?@dl`!(Y*ZlzmbAttfsuIlT=(qJr=` zEj}w#T6{P~rtUW&^F2B;4>{>vQb~hKXE~WQ`ad;w#uo14|aG>eYjHQ zoOC7keN#J6Q=95FmvQ)7?KRmT%Q)QeZS4wE5!WDGb3WH|A{9_xnz9%po=~J85(a@y zXT#^*+(W!*ipDC;qMfGkU8dukY89l*f2e&&5U*Ci6|=CI2WMuXbP6*IrsQ-yofNf= zcNWX0kk;dF>6^xg{u#5-D3@1>CHn>>Aux@tovf=`xf!La>O3zr8f_k>Oe^8j>p=PJ$ILPkeZm| z(**MVm$j#pLHCvyDF0sg+Kv{Y^St!d<65;vjrC}89^-}hQ;O)F&@h6f{J+w1;x8DF z3sqKRG#+c(#rp`Rxgc1A^UQcGeSEpsw2&*M#zUNY9+~|1j>QJmugGme9=fPaThj8K z9oHw#AFKAtS(y)3~JcZ#M1$&Z|u^)gq=$a&yAGHyftdQEkm zlNDD6$9E??S$s*-I^q{|vNn;TFV;{eiy5HOsmptaKb@zssozs<(%95*@J+R;oxKYuiXO`oy1YDqeJcdIS5Y!iQPsYYgo4^JV92 zByCl1V27Na>U{YqYJbbbZs#N-#l$j3N43;gmw_5N z#2PaBw_}CG@^<|gQ%@}-axSe~vXC=h2{p6H1F?>c?-fmsWL3_X4dzOjW9c9dl*G4b zYU^y7Lm4*Tw>)gV1UM*GDS-`MU^uXx+OnMs_D&Q7Qxj%v@;@p@nJ5}*tk{M4mb7B` zOp5;@UZ(&nwrdFw&1_d_s$Q}#oSLv*hcBt^mzNwiM>o>?(%Q1_hMy9H7}1DVRyL9c z)RC}NpL=;^bXIFCzNuErT#Ow_ead5WPp%;OXT+D}lH>oqy@eE>5nq-oJ~uVJ85^&# z;F+l!GuALwHe(OcZuDks>(o>;c4u;|Gl8DAop7Jy2L35$7#4_p;5H7({! znf5Or;j80YHMMmP-eDCHwLu9EUUO_8;2P8UcCVxY$-Z4%W0OIyy*5sFR&B##C&hJm-Qi!aX+pHjdTTd|J^XSU*j3-q>P3&c+LbN-gC_*7#n z*jWCj9n04|GCEuFg*=voha;`2h`XB!r<2MJ@xf$LoAP#s*`@y}lr~M%Scaz4WXtd^ zZB%a=zPKROGJHxg`&$mq=N!*@%RuQMoI{79=DCMWOV83F_{LbOn(ah3KNt-?+z{)lKg!S%OrcRX(Ti7TMaAsIHRvKcwOd1XXAF`f7q#5!tV zbWy_lYTv2^Wt{S*7xu)viKZ?y)av@h{7+A^MRH_c{JL}*p@sY7wduBUTN>h9OvPG6 z>g5h;7I2?ixtS;2z0!_@4~M#B5bDIlN={B=Nx+%trM#T5bKs0G4zuyS-fj zURd@M|L~K*JX?gjW8CJ_IVC6*j#d=mDDCH-sIS8d!NpI8rTv4CEL9D zWe4$dP0p2<&x@74NO2z2Ucl+hvLX0?WiOJYhvIqWk7;>gj@xu7-amUU4YjS?_0Bnn ztq2MnT3{1&f<8R{awNf*B>PLiH78v=R<2UhikHqH&zB9vbmkqq4AkBLC zQn2{;?!s_#-RtoJ;c`;{di;XMt+8ulO%GCf#aCwuMa1$(ym$Y{kR@GXUVtZ07pRAO zEr{4skNo;($Y*^`GfCyH`&>(DpR3A5>^5IjHXM5pSCw6kEmf<^XeX=6iZGN_WwiBG zWwgCjWjxV`YtGPWhQH~qzq(e$Ce*cRKq^cUM;*pL2V+p_x8U)WL7`?RtF z^e4-Y7t&uW6E%?jV(yxi{sMp5>De5xh@5EIzbjmV;>T`o=$u0~9beg$SXx&!A`dP3 zs*yDO-T3-O!bo!XSbWMzRSDJv{^sFLwF9#LgZSxZ6j7v@OF@6ZB}h5JsjVSP^7%96 z6P#(ju@ju)f8y7hE=@L18glBG-EKEOSxA2|-8g@ya)Q(NBf$yI&eE!n;#+deD>-no zXm`9Txu|2sWv1Jb#k8xl2{WKwI#o;(R!Z|ei$5!vI7s4OUpJvMdX+VDoN^YE>z(+2 zOq|8MAIPz@nA^BMY?0e12=|i1d+X%0n8~)3vzT04kWhLS)B9CCESR3<8lg0)+Vn&7 zGm_BCQN*WM%j`Vnz9azsrO-=0k9pnk_$tBlezFE5v#v?yOy=8vuE`Jn7q1gc-}6nr zSKp0TuUKt0{mz%>)J+h-pGjQbAxFVir=;Zuq#VlppW1sn;{nNsGC7_ol;G${CRf*o zx^o2_JrbPc&SVzOLZK|&Dp|Ppm2;W>lC>o8ypKS>_yHLd9H)A(z9(t*{2YgAWU>lv zXo4_=6#pDA<0^I|J0?`xO&6qAEc+!{ky566lGVzAOb!8z2Rf)6$h>rxe$GyUDhDz( zpzNd|nfiPDIkN7fnilleE8>l_i2vi7xm}W=%F#?7RQ8Kgj%FGVI^}3)Oh)o7)k2je zdpbw<0=Q-v1JfFS>ux&gB0H*Y&m~KRx|yaOT4KsM_6L)N2F#yC{N2j^d4`q9b7EcG z^js32GPoOIhc#c~ODTh&Bdv1lW@u_t=H({`H%lIzrYrfZ=C`?ZjYRRkGT}LSo1Fr| z$dLxyADh(Cq#HY_+4w>}>1N8gP&ETosrZe3r{NPMNI9r^L9@C!qG(Z|<(!+TvliM; zmU-4S6PsSh!XR$*#%ZMTjJnQEdzW#iHPhf~>vemXMMDYIOeNIvI(c1~9@@;~1R}{p zVm`gD&NP`K$Ehs6LBcX2S(vO(e^F;@Tsh-;mP$91hAYaufS&B=6FVMusg|howPfLm zIv1Z9Q7d1o>_bLQt$0zqSxeIuT405y3sY!1m(sM0vSgcQI4(ko+1>DyI^;@Vqi&K* zj!4pu=n*Ya{D^kSBT^F?LuXXH+Dv@qLS}F}8|iXf7T!a|W~s{;SQcZD@B;l;XHwc^ zuchtdv`KvyV`oB!xDC0c?G!JC$CY>04;_~2VFVLW(7`6FEb={VapJrTH{rOkHo741VK$>l?T91BG>~1A7xV%Th!v z(TY(dTvbs(o`_cTAbZBuT}1AWRpgTv^iL>S(VhGpt>{bo#VT5o@5a`R|I?LwY^cZ+ z-lpW3!zIpDX({QdY_5Mp#;BM)xuIe%v3^q5j(kqgZFnL&d%C)!JsF8V)f4M1WYmPZ zvzpKKUwU!)!Z{1)T}sL))Ga+}hz?}`{M*dJ=c+KvdSHlSZ#|CVYAXg4f8Fvnq@flx zn_5@ViCjOWt{>?(xejKowgNn;UfzzZpIq0g8N-wzdSG(hkUtC7K?Un|Lu_S?uJg(g z{fmmRn_I$364a_9tI@w#AzIp_2Ya=8ckJUw`!(m(P6*U3%sfYxc-T1_a>mrUt4zHw zO4`UokdXA@N`@#{aeByni7Y*w!zpHoFp9LEgULuSlIPGKjg90md}2nDUOFJXKCNzm zfHfZmtZ3vcEwG}I#TV&~)3A&Fo&p$;b98KuT&)=X6hksnNw#Lgr_LPV4_>8N`eJcu!L9%&tats zc2F%Zb1)Du{hK)VwS(V zT6ffZHiwUawkFQe&g81G?82pGbzhn0bEOGjjwy+gt{m`8S!U#TEiZWtoI{#Wdy{5> zI~LS^VYa z|EdV*R6}@r9jI8!pyc4X8+qkG#dOmyEzpD(s7lQZJ6S)QRQ|hS94Wh^t{?$P8O~u^ zWq>J76QmjZHH(=AVV(&){`>YEO>FfB#m3kSzAEEoC(I1Kd1akR5Wi8N6+3ub3$56} zcjxHs;Hz`~o*i7f#MlmYDb?G-j-^@$w@dfs)q?28!C>uikffI0uMpHBLl#SiuB#J8 zvA9&fCYJ=+p$FO7Yx(tpIIWZ|${D$}B~k)}99zZ$iamXnJ47q+T2(ocY~253Q!W(k z$SP$rf@!$Due|Pe(@G3PwR$w<|E!{Jxal^&6d`{Os*ytjmXFue*9qHGCnszTE9z>} zM7x)+tozCIxE2RF!|_*}r{ z1*_|5zD-B#chVttY<*o9(bUSX;i{6UYtNU`1Z68fS-*c*Pf}XZGDzxcTei>u>biW- zpi5>;IN~IEg6rCt7P2$s!~7aEGKAt`Y({+el=P-HR>K7orz_Bk8JVhuR?J9|UvEZy ze%U+VGc?Ai(xgJ3@uy2_>%LDTq)Xy;51Ve)l9UN)-p$EEjvzI4bqkC?Nge9z{vnt) zC&7$l@igV!C)c{1hM#>$-FK#kcwjXpE%Bu^b@vcywyAEHrnZjFqCq!|&0N3Ss2mj68XA1$|l0KQ^j4MZlQ!Gw?}OF!IN?x}U@)3TzQ+x4rH> z)0J9and*X{?A%`0hC5k2BcPe34T;Lqb;dGJwmoD#OWz4>v0aFpaoXMZxFHV*NC4z`1i!Ge?yA+b^Yl5e%QC7lfEShjFnjV{HN;fu!u2q zpH9jyR|r`tLl#R{eNcCKfw(o8UdrClgOujfFR_S^2Ga}JDCO*HWl$qvYk`D;(RUvsd_fp!R zegWj_P^#%$Op)T&KZc*=`bSCPz&<4r*rKikCCTuDmJA2dli@j;4C+qKUxw5_mLq-& zHl@@3_R8_Ck7dYW$yHQ;POkWKD824?*ModLs=hu)Xih3GsP9t!==S{diL!wzsKy3- zC=*?LDMiAbGobi0I*JcI+4YZ-)(RRQ1la;eo}qL~UyQ5&RWuC^C;6L5=x_noFtw>< zHRgR9xB14z`WkF!%-rVKlWLP(G^L&{Y%qDDryH>!i*h273cieXW^4%-;1jb1>`ceL z^Xd`khffY-zIIOn>3&MZW5*X8(44%%$z%S0wRIuf3?zYl3GwSVh^CE_xAtfAENc(TOiDGHstoj{-a3mqSZo@T>OY~6FX4e-A z!q*9?3=)5p3d&2o@H`z?3Fn>;&N0RbqAg0R=M2aRY zrLF$@^@6EyX6Tg$&{W7Rh6t%I5aN4A`} z+cE{zd8y@+`a2qlzk)gG=A{pnj(?INizVBQ^)nlbEiO(!FMX#6$yr&yqLJ9;;`Bag zQ{^DlPcrSW6M`Kk_@0qj{2)b~-Zr4|8#)@F{B-oLO5{w_(I;!_?-5LsFHUll?Ra9> zP|V;faFGQGgW_^rjYAF+tB<%uEoM?%qQV*J3u7FLuZ?#*wCZ zdKi9Ejp^B`Cmv06HKS=dH|=N|;S)xqS|D3}{TGeJUUSpC$D{7V}XWo+~zG1-^DUu zvDECo`o*Gn%iQz^C~=Tj1^MoQ`i}*%W-c{A<4EuA^(_rUk+|9w?<0tdWLk@}=jvy* zsRo3eq9gRlo1yDfO3T}VGRx!E#FYc^J12@SYZ>uUdPW>fFoL~#aQDvoZ^X|PU`4S$ z(E=-q^=b+g4uX5hD^vcuX6?{u78_2dc?r#0RC?Q}=JV1jRvtd_iuL@X_4hXwJ@e8l z*5eA5o%0fk)ljv5urQD5RogDKJ-uG#k;AXltJhF1immU*F#0=M^{~oohCd&4P88>> zqi5N%x#@==mWQ9vD(UTp`mv3~o9CrhtM8SLSICgX(!I~s-`z;8na9-1Ww2SXq^WYY zC;`Gy!L7`j@W z60I{LD;|JYF7rdYWS-ufhc(QY{Iit8jFZ>AuT^fy4uGNNNu6G+pP6HNmvTd4y@8`| zSBAqi!6wH7t{^!%s1}^&HwkU`emlyb-lA4y}u+24VoTG&o7@T{qODi zXGD{^jKiMh*xK*~@LXEZ8qg@VUx1MR$KHF#M^XI$Qgg|r932!w z3r$f#+NB9cfP~&d=pms50z-Btefs&#tT*yxpQ7!$woUtrl+#gU6t| z@bGBF>6edmZGh@i$FL<9-?70$#M3{CV%{495JK$OK-TO+yEw4$`iV?#t3)x5fzK^w?(}4di75on#w{}uCexHovmY%=CL(t8{s37ZLPUt&D zRym%&;JZ>%*;F)r=?fkUw$4_RR{6a53^d~$R!mXH zi$zoZZ{o$bzVQOf^p;Yl*OhFs@!}OClN2v@*S3CHjsIebe!TdF;{DkaMZCBYoIRdyL|J0tSYmX|`9j(ciw07p+8d+EId{VZ4 zq-af#IU5OO%CpU^jRN@o+4?aePDLSZjI?I+{HSdGz|d17@dk$815bA3vPoQMo~^d3 z@N5Ojcx(yzV?loKunSR3zr;xASi-5W2O<>%;E{UW|q_uKVF@+C@j_oO0lje z`C)zP5)n)CDdWS|wbl5av-N#y90mD@Y=uwVBdTur5vow_Q04(ZlrE7&Pz{J?WfnZ}lYX{*gnS!hu z-UQF|wN~hq{@u59gB0ug-qNb!g-9i4xFTzeOoGfN_@F2+? z`4Mim4NB)`f@m>rZMe++$KvOW?-$PY7V&SZhxOfy$o0e;@|HwQ<%p zIvzZCy!C+22GcGRtZt#zbR`mKg&@3zoX9{oc%n52-X1=II5)jKff=TA!Q@mILrpd_ z!wWU4^WX)u6`xqZm--BlTOa`rUFyU4o(^(e+tFPrDqZL^o+*wuFZULgW?8#&a!GU* z1-{EChbf9fr+k-B@9E?&A52B}Jjcje>H>WEhtfljr`PxtPRHFl^C4uJwwf<3p5L@+ zvB(f-GG-VIrZ_`-rqPs`X^P8=ON%$AWyNNuB_+fskb8XM_d&jA(jh=wboC7xP$B&B zrkmQdg`JFi-uo{YA!_(C;uQkl>~oX|!QAX43nA#y(wlv%l7!ss?m%6(lPXSiaY%DrrkBkO<%F!`%a4 z&a@_SgFxggYfSYca6f-hR5mbw_f-^cSpl+VS)T}sgmo9S2RCQl2?vK_Zv}zaYa0T= zE<U*JNF@7+FULDXz(Gp-@%KHD0_e+6%fL^u50gH;z;2EkL61s2qH zfn^2UJ`L~l!Re^>0t>3Iz;YIL-36A0IQ=X1SH9t=S`GvNLmq^l@T~>a(GxyB6^x$n zKKUBx32#abK~L}EZ)7MNIjG``_SygA4E zdNAK22fHtGozK(%@H(Fxg?DO$X-loO>PDi*aesoIV94;f$wyg&7<^m~xyeT-58vc- zBj1`O43?`0!O@=fXYpjnb7`nO9I;2?~Dvht45J)e>KmfwJmu5sV38*Z^#7h-MzNPwh zfpwK|hG`kW8GcGmkV(ZC*II9K!g)E5V0eW|z!;tfqt;nhhB5^yG$HG)Glg4BaSV;E zA^iI5&Gps++GRB=M@JM!V=M2YpBFo3BqY`cwBE4`_Rr9*1f z)(x1y)w)GUXKKTGoG2$C2#E=Zi-5Hr2WkO0Zixh{R@)O}VhFJ@g)<3qO zqHcqY^_Wd(YjVl3mpyT$&FF>OHj9o728Xp+2h__B>tf-mj3JISk?+e1G8E_ud*f)3 z+cBV?_^}iAOu`p(Q4r;}E)c$D60q^#aznfS0vOAzM-`=2Mnv!TVVWjB&Ln8?V)ouM zgYNBtuLdhm$+~GULsvKTV3w>KW4U!zZ7z-wQ{8lCh_P;(&QR;7-VDW@PLol9)KUeW zE`H7lxARwUX_TI+D!E<`ngd5bHz{G69SG2fd#gRIe* zeb5~}!*{~RKnyO3r8!jq`yzQ`diu0=Y$Ow8G|UK^H2UoJrq_F{KpbeRC?94?Dgrs3PX~&n=dC{m@OGu1tV|VHPX#`D z%ActSLE5b1o!fZC+2osv3^f} z;uCY9LcWx1Oj007tw9g{-XK+`h>u)@H#=ft@!$v6G+J%vkE|{DA7-lGy~y=6RMi9C z_{jP@swNWDnX#cJxO?6D4f@%h51gf5hmvb)E!D!tCGH~xfX}B-U!!oh1?KSO?F0r> z9FAg`1ld%)7MmK6Zn2OS-+eGo0{OSC>W%cqS=d&jw+`{2TF>$I;}W`co|VxfBnto6 z4L-&vg5IN-$AG0bwugbKKWu0bXi7*nh&i8I2M0b-@ueJiaYbn;KWrABI%$P+={B5H z#4)q?c_8}zNa$bE=Yfs0hdx z7+?BsmhX7zTNNY^>`+G~MEpAx-*dM55No&Dv=^g2!opUzi01sL+4`nmMo*-UB$O#) z^G9qyMevhn>l^DgYLdb)jY=nAn z8!M$8r_3ZT0X4e>a68{NO*q6fhUc>TS1G(f01M@AEI%heE9Z?eIU1=L_N&?t=Ip@3FdZH}tS<0ZDi zfkJ175^*0cb6-d)+s}blTTh6sFRs~c>&Wrl=b#ID`+;6T4WsJGrPp~&gV>$6KKv~x z!A@H&*!b1DrVKY;0U;tVyLZh?G8Q?(;6`GdNYHDSEe&2};M!%&64F)NF*R+b?M)zZ zg)3^3Mv7tYIh%=JT5Xp(VS#>KCA6+NbC8~zgY)kn3lqoKZAF~0nW4hVJR3kSr|ofJ z1CtJy1?lz4WlSn9o$9iURg_lgXDe;HkjTNWnS%lY0gi#!TWk)7R|~gRWj3qu9>ajj z7`M@e-XRS&)C3GF;pS`2hc%b=>a}6U{PD7w7_!G!pA&AY8e}MU&<0sbyd1?OFm74X z1J_%$y}QU`+odzp>0V)bE?jfj5(s;3xkBVz*=2A{XeKAfjf=PTLS=(Rdu?ca3or8~ z$mIZ5Wk<2&0b32J5KxcAcP!!yl3?vC6tP9T;4x#8^D7X zzbmUL23)WWhr0yl=?{FoC-}V;iEqDW>mR^Rnx{YT@t)j&be>}1(|aD>1vO8-$kU1x zR1APxAT${KAAA7hJ-MGT7Y~4{aPBVj`_-GT+Gd1nh7i!?nypya!|;XUqFYX2e7f-m zwwJ)(Yu>Qf0@V1>)=M}cmnE_B8Q}WRmg_C33XOf}Sx=?~97ZCU1i4Ac3;TPIQbS8i zuIZ@tfwa?2hiC19Wx3+Ki*J1N|ixJ*i z170D7DdLxRZ4){E>U{mcw2q?hC4m9W_AdX`eEqnzRig05CG*JZ9XZIBaz3_?;zSpV z7%<4<8j~QaSF%>C;`qN0Sj`rw!D_q!D_83CPX1(TBJc?d^t-q+DoES{MHkn3fqJUm zc!BR!y#Z{F4Xh75RWD`Cp6%FJQ7@!#YR~ydnocD3u6v2U29}Pk#^){2w~L49X}3j$ zGDW-^Qu<9be&YgtyQrro=^j?vry6fxpl=v$BoeP-;BC9}A!AC*NY}t~q6*Ik@2Gy0 z03|bZP5S~LH7d2~M8A!VOAiSjGkoCa_o191n<+TZr1Y3@Th3CCUHech7-}+Y`L1c{ z4Nmx7pYl;X%JC7UufwVKLdNctLwWB3a<)x8lxGrT5hPC=>^)YD@8N8{P!UaAqUN-t zX%x(oqv@;`rIA5=PfAUrX*Y%%N7J?o)r00J5Z19&9yDvRihH+k?W`W{O4Z*OFuY)I z4_}OJr0=_nEZoT)Ig(EGGl}s(r)p(ncUAwsaz2v5>s) zVkq(c5oWsNJxtDWg6F$Tf~6bJlN02!;`FYi9XKIX&Qk{q?`;GO zIT-;l337d4ZFg+)=ss1rubS&oDxLOt8nvPAtr;*2d8>H3N9l7sx17*XKV8buVL#1Y zq#pHTEFyg%I~3Js4-b8`v)VsWx-ncE(DRR!zA8M!V1xjTJS->30H7zl2yqNVugt42 zK0DYBmHv`kRE@9qv-eDG1YagWt{x0e!T91Mt?1@d?uG*7j~K92^X_XfOAd*L`jq;D1@QKK!4%`^fe8jwfV$AYiI2nTzV!_6KDp!bLFK8;7n@i7@_@Q*HmTb+k$q5?pz|G6h!ol}Xm7Wj|$|XtU6qy7(*E$HE9#^_WQBW1- zIC>hBX_a^alOVGJz8)`o0=^#dx}+d{eKTS}TR~S~maL$`6H5a^`JW{P6}MS6Q22qN z#u~ceqoFH{6;my3Cb1i6XZ<$SXK;W&cM`osJvxY3LiwdrtrpWuf8n|S^UPA8tL@~~ zAp=D-i4doVww%&z4({%TWMr!qbGMyLW>S%XWiv{zbMSL_GfOqMTBY{!5`eJXrRd{f zcwB8= zBkd)ng^0ITms)DT4gLO2lMLTgI;;j?HxJLeG&gWO zM9&)CQ5eYAJ_d5h7t(iCkUsdl>x6_UnRjVg8Mwcv^pH;1|8jY$OBkLfs}^-ZQA6Ye z4P%X|PPU7E??G=k@0CJ0govs#x*cYj*WE>lzth=@1fLmK;~wsacta}r|!MhNPU*4URgPp zr&w9RpJzhEbj2F&2@Tg|Uwqnpz#Z(+p6gMW60^F&t529q4Sz>@rlxN!f=LTJOCRaC&)%8K6kQoQ2-cp zQfmN~=H*?cBm*$bswDNpo6^2|hQ7#~&yZp+=Ew;Q7p-3|wQ<5~IZr*_&Y`R@r{fGYcBkD-)$U|l zs&FSwPVqP}Ml(wi;+o=40-s*=7GzB6Q(qAFrCxOH7p3RI_<(%<5Vr{?Rg zTTZ2?83z)|6aa5gtS3$iuwM=0$HP5=@DQ`+2y3Z|PJAxJ-YJNmmao5fSt5~O%)EoF z6v&-&@zRj*3u-6G9}DV(ccM?z=I1QMooJ+gBijQ`Kfk%2m{!j|niF<2jpJQ8P7oe$ z-yk@dbi766Lb$z$aEwVsU1I<&2F`CE8WGBrr;Ae0Hn49K-ed^8ho6>lP7vM5-c-?s zDwgh(Bx0~Zr-3v@1MM5z(K;T!WAX=RI<<p2AOPrE?Il)j$?d4nX9@7ts7FVx{5 zTc+>(XDO<~mMMHcb(z}tla~3KsS!c(PkjG1MyGy7UEw2YJ`q)VX|dR7j}79j%k-Up zR1LC$e+Qw2_YrrsUku_8EYtV;@@{XS13QTRQ8j4Ay-Ujxu3DnK9H z??=$)so(23$Gw5}F1&LdxVzonG+eVk2jd3W&kBDq{NN7!S2;oMaK&wd?c+JnZm?Zr z9cKq+h@r%NcNCK#S0#0O_8Q(pPxv;^Hp>+r9J5^ZLDiC3G|ZAcxZg1Q&ph9YQd1A^ z&QN0yei*J^!ee#J%r_dY`Pd_Z*u_are#uIXcGjK8A;_&4`vZB*NPB^hi`b!Fgh8Gr zC&xkOdMR8D-1NswEUWcWa-5`1~uqbn4S)*JDmt&$!v zOLnw2nf6ZwejKHyjy8s&#yaV@LfuvNSfS`DH5tbGh|12_plPe6!FQ~b_>T>uF&s2LRBQdG}rzie|m*}=MgSZ zu$>3D14+PsYGMUNjV{bF(2#{WCP72*%|iV3wcHO{c-q=_abXw7Gwf%Y^|Kv)2 z+sLMkJx(a$jmSmz8P)hnEA?$-iJD~7Ci}~Q{JfR=#!)Phu*Sg;hm0vl7F}2R0-6k2 zV*!2ekwun-D49|Cw=oyU{qWiPpy#r{ro3e^_;$O!nNFOH+F`#?#miy%*;=%w&|{~4 zqHvNC1oxKD%L%fri=n&hTXtpKQSQ5Vj<(H^la9Q(+y0tRpCQD3MKdM=_u=)y z&N6$ZqM%B;=QUcuFQ=I%WsbqOyYXBKUx@g~Dn$p;3pK9YL3D>%atAT2-2NWVkEPVK zgBZ0ZeHAfgb||LJC0?7<%tE5z7ra-9RjwNv-VD^*Z||a`&2jtf9$`HL zE7E3Ep`0LNBUODp1ejaoo2w}GS%`O7i!Ykns|2&0fkQQ{ErVGym`@zCm-GC~N-$3| z)ELbDK46xuQuMZ(5|JUTc9!QTHUxDS%in>VC}*Nyd-xF0R*ZAtI^<(Hm^bVK6 z)mTvYStrpB_qaA%tsg^!RU}}%>2xDd^Err3+tvDUG)y96<0w3>oO@i+$$m}2qMa;* z2*1Pyy=1V3u3|2_!5orA5Z2PLD3>{2It^96fo2tR8z?qoGz)I?EPa#3~6Nn3ca z-f??3FtMerI&(yD)N0?3VI*vm?HC?-{jLdR0m0!{ zP1}3kYbe*x+D``X?+`=L+;zWFMZ$c3K&*VvUciav@7Zk}|FIvd*(%kcu$p5?D0XP( z)WEn@h4F)TzSAX;N$2a|_I88(g{FG&1GUajaQ3o&woaIP@``cmyl#J7U9bh1R$M;_O#0Z~O_=3N^4G`q!3q+UIEOWu!d)pN zAA_UmCXS#m`nLz?kFSa0cdk+Nr`r$*+WqMkm?d`sJ3g_StMNxEHSJF;8EV`Gz?O((>I)LgdbR*nU{O_ z)~F{6A5hk5KxX(OJ0zI|2Jzvywfn3V1!^`U3oyVcHVeV|mEQ(|f+3qtVEDK8HbOEi z=2cN8!*D`@n&HR--+0R~iMfts5@fC=n7;ysAxrCvQTOadPDn>BduK(;G2>98YQMa^D;w>e1p5&4HNatEv%`sQ!4Se??$0h+VY~y~lL{5+!6uVbPY2dYA18WS3?}fgjbllu=Ac}5^$gR3P=cb>{1j|wa{6k1?;O#ld?eI z#hQ*q!ab%LEc_igK`tv+)N=g7fo`?1@T$(fJ8hPsB#L7ae4ka;s zvqD9PXk4fpA{xLfxnKRRt^?HI6DT!}5pfJP?pGrU)o%Ijy{SBh|G{~5;bDcogmnIFfA{{Y}`Gtl0D|53cwDSrTD|538asR~}OPGLUQXWef zi;(bkL4W6pp6QHU{YtveM^cYhQFLMMxvq|Wq5La_`th+tO%mzYEHrydr2@{-Z%ZHAYU**GB1@pzHshV!TI1bgVwb1J8Q{q zIZf*VPh~jfg=;(Pml=*NLaQQKt=M5($O*ESiCydAcJkR6zNAPIWr|Tt+5?gGFiVay_UVo-LHvG7O`}W& zLye=%)*|)jeSML4C~{%y_V)EO8&HxE1fY~9{ki$t0(ggQn1$mIyA%?&|h?6*wheak1+6r+wf2G`=oBMP5ynaE^c zNMwrPSkgN6a4dSAFRl@gJ2rYhc(~a}n{QEs!%dWbJF8urT#<8gWD%7W4LQbU($i8%ZL~40B{jz;Q)YMVT-T6;V^OB_k@`G|6PU{`~QdQ)c${w zDwSOg*W{V3;%a9ddfTx`M;pD*LT$8KFIx%e4CDkE70~&dsHvb-sVAPQrv+0Nipo(;g3O4d9+Of%bymY+VA^_bfF6EqS>F&; zp|*O)5;n<1Q8d2mIK}Y`DKXX0Jcb(UCu6-@KV#P`;+5BZ z5oJJjdfBB@#aG{VT;xx}*7e?B522VoPY6@Qh%1hM9RCiyu3B%`;}a?p@ZnX*asK1= z`g6qz5``i-9fN!+=Za2>6J5$-&>(B;OoEJ@r0A^LdNJM5y1YHNK@C>z4cG*w-s{Xq zjw?0!_8atjuW3|}wi^_^SE~)`A#!bS?@!ebITW_W2H6K*QJ+K`MarWlqurM?;S@2`BfYA?c!%ON#!q&4uSmE4f;dmT6IXk zg*ReDxV%H;>5wnw5P7sOoKL9WeDFT&0|`$uMAkGe(DlA1e$8iE_^cst4b&nk!V zaT~n>*c|;#-w@QCb^z`GvvB{2ufsQ1cXsFbL6n#V;QkCX3c#EZM29%prMeCq$)Jbr zA2rz}dx|u(kW6?g-meZBz4Q{CdXuNKf^(O!7_mj?#JIm)ASa;8h`i$EQ0K#(P$=h- z4s$b;fJ}fd+(=fn*pe!p4xy@H8X`I!U)yrY4zXaKDaIT2<-w zOJxlIx};5fDCrf{lD0a}z${sv6YDxJRp)Oi)p?zv#_D`it2u>W%HcFsxp<9oI89Z~h{_3!#Nf#Y zXQygdc(69YnX1AjndO_ZourYbDu-EAmBVSOa+pO$IfxBTR29U0D+*4Zi_=u)5|DhV zayU&@E>WW#PRmmjOwuTb(^Tb>HOk>MRXLMJIh;nz<#|ohfNfJH3Q1H|X~2e~E{PM> zCAIWoP$(vwdWOMQHBkLpsxfHkh9s(+S8E6KjCS^=#@BnoviiUp?d(B+--vehr;i<5 zI0wP($UU-^s#e{a|C@{72}*sA8li#0;#Q> z-D&Cu`SF7McPHVdd(y|~cFvLXabY`WKe<6TC>`f)u(cy>@AG!f<~1ZR zfFs4(5U00o&&mcrxB@xE8B^LjBWa}@+B^HQl~(pdaG9NLXns@&iNU|j5`&Ho5`+0^ z5`#TEI#cAj;t7MDA%lB6I-Aq_&UTcnt4=4WlDp}W4caQ~3JR+T{P4d=WCb7;fg#fFpumnjH_bd`q2NPI(OT_8~ zos%FdO%k0gX@l3NID5*HCK9f2q1}lrzlq2T8W8eZiOyD({7^QFW+FiolP^q?(A=LS zar#Y?#A$4@#Oc~(uYZEvY0gJz-OWvsPA8h!W|9amcaxzgubCuX?x_mln1Tz9>f-Du z3z>us5#XGPF03Uc0j%hyInEf$L(Q%dlTUY*m>iPpd_=A<8ALCK(7f0kA=}LvMM-;h zlSGZ2A-TudZjyT(n&C`kYr&BY*Rra+vk9%G_e@ql$pFVU`%DSYk7r6;t?$8dWg=Wn z>;<{{sfRO4ZplQHjB~p7bhe-^{WVKsa$ir0$qln5gS$CfYBg#O%aw_6g)98Bm*lA@ z=SaQJ^xn?Cf)wElv52>ZVB;f@w-0)I5!>3w`KYoGio3Ybls=M{4fC9jQjV|paSo-A z=jJ)P(Z|~JoxK&+K*+ppJt8qzIbUM#ulcgzkII5CP*g*EfjWI5%TM){xQSjUadWP( z#LdZt5;yl3I(y5|8^Gxa&PD*&@>V~I8OI`tnLCRlW_G1Gdr_HgrYN9+%W?>s*a484 z!TsTcSB4h$5-4Qk3~&a4ZT%(Xp6V|#cW{Zs+}$M#8RL*1X|*p5khuG4fO7!l<3^su z-THwNRJlu?y=j4_gPbW0H}QmADcIz+(@EQPRvrP@+<9YZ8WidQ(hDQd)_0M|Hbs8r*k zp%Pao~ znRiO`?~Lr<8ChBu_;*GI9RmD2BSR?sJ0tsdMuz7;|IWzZ;PKxX8H|hn&dBhq6~n(X zGI?feB#SfuJ2SEoV9Xk4DBq@7|G?rJ`T{Zry>ep?EJmZ>abW4*Jz>m&MWNVt4_h#N zH|KrZ`nUE5E@R$-`h6`pO8r`JBzZ09-CY4z!?%XP30WD&G@~&CoG)|^uIc?1+xqEQ zU4h}#W%c>oV*TA0Ibmd9#57WK3OHTl%m|Sx=>g1n%Ugn^SMxi9ymijDY)<92Wi9w+ z#roSc=BVo)wBDI4vs<{{X=*IDRI;)pzhrRdATPyMne-2^ey6x`IiN>jULGoU??EOm(>Jc5;GTR$RN&xrPJH zb~-gKgL2bm8A{SDlOR_GIGeovAo3Zwn{U)6?`9Ib{a_?wKzsYa2$&^rKX}FEd?HXh z=5kICS-qj}q0N+Ey8E%t$0>6qc^V{q@#Y>11ucQqWg4XrQ#W@@?loHILehE^6Tgty$(1gFD}p!31l9uICm z+=|X0_KALD-l}7&W;idvUe1 zn!cuOjhB3^@m<0$*R#uOx@364)JC?gMV)tU6b3MacpraX5OTr!xX_nLNBiKIZyERXtuP0D z^0qSweAn56%K~lQg(u7>F%_WwaLiYCQ)mSlB>;V(INU53mE{ERtGm6p#bCsH&WD9O zxdaxEsjNS(Y++TEH3MTVI%ByKPYKb z0p7OyGQYnB++2F3H^cTo+K7iV(ohov-w)|}p<|RO!V~9-oN$F{Q?>taFl~z=!UKRv zCP4;XGO!WAJkr$(M0^Ne3Vz4bj)x)N$_X;5c>Y6YGhTRTi)_d$R>n|P7;-WeVG`u} zzy}{Y-xeA&)uD~N;B1Rk?Sx1s74P6|xCIVViX(iByKg$%3IZ9vgLAW}0+Qu`clAL274*a>-39*EfHWtM+i3AZWWvD?mpa&sbN^M$H7%=^{}9-L$-cyY=)cv^Og{)Dke&D>kxIV0qj zBn;y@aN?dbqG}+M!JQxAMlT8Czf(h7V3)QxUUi06Ex=^KT$ltB-ANlOfA{m>|zy*ZW&bn>A^}2ur_s zt?|KYCBaKt+dRKAzX2$0?1}?*{<>ZhtZ3}&%R3;udgluxXwx=QPYOtF;`)m}4D`F3 z7&XO9O)3F|TytPj56*igciEI4Y~DkzT7_UvDM z!2U@Iw)kA6D=V0myhI}L z0*nne6f&kn_$MX83?8H-WfEj(23@;p1C+i^?Y$F;nCdC@rjs?mlNlu@5cU|HRnLco zyrG`Gh-=O^wVzFd0-&`3o!Aql$*vT8JoUUM+I)ic9v{x#gmcM{YV~%#$-n4Fvxg|= zC%l>++XqH?{(>LPiYgKi^r-6qf76d*Pe~LC#UA%jtlK|Q;hIPRdp}LZa$(@+P?!3a z%Uau+$jmI4jPLL21InH)Z6maSB{USv#h~hZZndnn-LGjK$*ERE4vDUymI6yz#gzEnIt;{Nza2 zDnZyG_tkhAB3MpfLf)V!Tt~o1BVF`*uNELubafG;<+9|Cug2iildf!ULDdNPcd9U^ z1u{Zr5|}2NjK&(kBjl;0U9I^3I~243zNm5S5po}xB~Motj&ZFH;LVhpPFKb=)OdtE zaEE&O-v?Y6?`qD`*}pcEcz~>(wSR)91@VQD5#^kJjh9_IK)y85wU2l2(09vb^~qq> zK?qaCYH6t5@okI@R|(!u!PstsjZd-Vw1l^l6tRm=D{jKaNeJlGNJi9mjIJ^1JZDPW3Ga zKPm+I4w=Y5xg#u=wu=DpD`cOYYLn=>lUgt_3Gw0#*BG9EYNx(UETN5!B9tlO;n}V$ zJfFQ&-zEyxB>a3=FP>ktQ{O1Idr82B9M&jCLe7*%(G!(u?j5RhgIuv#c8Pnb`a?z4 zvdyzH=atO1v_f||hM%eKEubG=}K=*6y#a808EI~HsE+z}su53vA;rZ9cb);w1` z@J7a_njkRG7018r2lIWDr#C3(;CP|q zoB`;+al_O8-7spG+CrP}Vun9linwWoYYGSQ3SIEf-k-K$&@->3E~q`#)e{UW-q-+4 zU*)O;I=o_U3^qQsER3X`LTOX`9qk2buZB-!ubgTOmfqOj224OdcYWb#N6H;UKSRea zZwz98v!w#l8dqJgan$mLAaxDQSoHmdCZGtV4ZG#&4L-(CGd4E@W7oqG3eMfJo=`Lb z2T@wb7a<$ptasG|!%(>$1u$*u*N&#*)dE-1|F{eQ%Fq%FGuT5p6Ug1*8lm}$_6=%O ziMtdLF@BeN#?gG2??|Kx)I96U4}3AqOSJVWYgT6Cyii>H@PC}O`bU+!#rck zgvm2!&d!XALeC&5O#-=7JU_iT;+cdfS(c(bOx7RcM>s`0-pL@k@ECg(<~gWs8-xmx=>^MfSSvD0RL@hJ$X8Xsz@1GiSWIPGAQx4^4PHOwdP&$O=d1U- zOr=$okg6JLR^_{K#LEFY(8ixCc<-<)oD&YK8jO_hKAo;1d@#7TylXvi=26!MPI#T6 z#TNTA82hYitMD?Djx7VP!dzog@xG0htz_#jTU=!txs-($vCK)}u1g4ME_3M3W@W>7 zrZEXJ%;*Wf-I^QjU13J6Hd~t zRo~VC<&L8!u={KH!HtP5%ku6yZXBx5=gdHg&3EL@@JZfJFbT3c#MoC|0RciGYK|^n zU}Ks1hO3>hnMuWAq!4`ehAY#z^qe39KyUV5GDZ_$$=vsaLwijD zd(XQ@M;eW3rr7w51ao?Z!I+egk(`_mXE0?XWTwYw#hNliN3)gF10$17S;pA(45KMC zA;So#326pHtT8b;4!+MdX2zSu;oaS(Tx7B#BO@azGda#+NHm(wnQ10iOJZ_XVrHx{ zEi+cU_iMp7TvQb;n!w2j_mBwxErQdZeQW?vMY=;GV&e^QafS?ILIQk;9G3xGHz#K# zn&M6AamfjpBDZ2?PGDq4nmIPzWK2s;PEIn$$D7g;;<7T*vy8^91aqv}B%c0k#VIZ_ z-2h)mXPMLE;*-;j3F%46@C|jmAvPl^!yFf%kR{%GdgVzj(tm@=V0h6MLsbm|xEa>~ z4pzS*L>ST&5;K!B(+viL(U=em@ys$LCndp?AtpndSv-AcYffN<0fCtommZ&yWi-bn zm`r9vazc_R(-@a&%t#lDYivEmH8;hY(-O0iV&hGwWTVLhU$rMBn~YiUX=#Rd6FBty z$p+#?!-@(nGSPpVAiB;CL!{Avo1pk8NCGJacTA^*1UNIDJgf7}aV-`v?hw@?EzOt! zk<2i}rKcM+GvXnpCdhFtdf}g75_4VwP$N~msQ)-<5anNh(lZU2vCv%7Am)j2N#@x2taRvD z>2ZmPnepl3y}KpQkJ5~>ap}piaptsGvoSF#EiEA{$qWm`Cd5M%Hi(s%T+ojajTv!C zap?(0XbHxwv^2P9A}c;NGb_WKZpbp40QAZF;-P9Qu5eMA{+mt1&J-!BoROT7 zl^K_w2A3n!lH*N@#2}%kBqwHMB_%^6FeB488)MT<$q*NFW_)r|9LRlZMYy=J@5%}; z!hfrv_fY_S%73H4e0VMPsgOvBT5@6%WDEu)csL9qn4B3OXEw#grX`ybgUX{T>Wg=Wuh_>$#KM>so19@z zOiF|y#GIUv4t*@v5DOhH!I%zuUvt$L>*TK7%SBYtdf0!q8ln>XH*5r92KVULM3bRY z0_$7Q5Rx-v%?WAg30cMr$ZvX9JhXwdxD3cfhDpqQ1t2p^NJvXcj5Ea=xU}Rr z7}%4HadF9}!~}B&k?KbAmbF}76*^M+Ocj=CQhHdtf52UmZ-12(_y3Xp>cZf{r}NxF&o zxz-e}9{#ZtzPuh{*@a$V_j^NoGw2n{DFy~Avu{;Vsp6Kodx0y9FyC1G!V=gQvWX{XUHcvCpnmm14 ziRDu;+U!madU!s}X$T^h-D%8S1(jxZJMIJUq1oM;8w5hr;6DdJw>0+zZYS84=6;NO z1l&z?w+cE2Ki^)|4OFhW(*u4TdQ7^zNl-ETj$KhSxV`31ORf>HrMuhJEI>&ClQR-a zEcc7SrF6(P0AU&KsHTzd`wc~PCr_I^YqB|e@`B8c8Rl8$Y;#(Pyu5iLU!IJduv7Nh-0lga?|6T4w;mF?e_1bL;MeHMYXTw?&~jGct3`Ge|Whmg(?J zVG(ewyVD44Tz{ulP*X(pFt}-U*8|Nn-Ho{RATiUO#8m^+GTlwNmSAnByH#F%Y4Ae@ zmc|gN0?T{3=r01d!1Cx!^fwHrBOD7XpDsjyhv4!EzXHqE1?cYwIDODk^n7p;`ujL8 zvvVm4AdioF|WEp{;K8Gk-9z##vAVx^Bh7!wR_-Gl465E2*r`_>+ zHi((!Nt7@o5B?d2pCERYAC|#CbI{Y|9lP#XSTV4XfIsFm5k27# z2bpmi)QKexJ>icfq@yQ%%|Qlw!Ux(j(Gx!Po`s(9!Q-dV6F#Rp2|eMBbOYh8bPGP5 zG8v`ejd_;RAovKEi$L!9*fHQglib&Zr6||Ce`vdH0H`yLs|L?shGo0s_#c*m;TCsG zBZ?qJf!UL%WtOB)t4?>qypxBv!=QkIu~Ua4vE1UW%?Ud->)(d!=O%+;7IzF62PS8` zBf>H8>T1BQZ1an$mNI z`%Exj!;ZU=N2PA0D5LYNsX6HX*=acwrpHd6-#I=lJ`K*<(~~k1vf|8eVGF(aPm7I> zH)j}3#$>o0VN6dmB*QN#KexUqm@wO22ei4lv{v09yI0ld3AQ~3IEEfs6ge7oSy++E z5~Lez43;c%PYKt~`fHJUuMjWS3vwrv!B^$y974F9h@S9jdSg52*|WGQh+pD7 zHWnJr<7pt;*SODcp@*1Ch$1$ub@vmF$;ns|TR&_dfX;>PzDfd>7U-=CY*U8q?u?d9 z0?R4YT|;P$MIfKge@ggJ+3XNTj3{EHSD6w>4DiG{_s8I^B6kQE1bVG^j}pFPN??OT zHdON#Ooi>>Z==lv!!N9F4D2_zRRi{Q?x(=DJpnaw9ej`-AemaqrqRNuT~bpD+)%T_ z$%ih8pmpdH97Q0{In>c{^^KJb=ub_re&1IUlJ~Vdn68s|QJt4nU z+d|1*H9#GLonZ)+GX*%76ejbrez-G|mY8Y)QdT6BfRLoV>vgnl?7GHmz3>Vgxz;2C%h@= z;aJ1ea)H$HDygNRW-Y!wENz?R8e8hj$I5;XzErmMD8N{J22MX-W(oaF&LkZV6T;r} z#lk+a>^huf<~>n1I<&fr@qpapJEB3gC(G6dwd7P8 zEh?CzN5=73Gs5i8p`)cO`SRk;VlMAB7_4o_V~(&O~u$FTpoKc$N;YS z?i`&M5tdPg`c?DWh3!C{i>F%h7hHcQQFUA@%uP9` zXJZy-mz4za9o_1)F;e_Wt;rGa+Y!nXadU3jPl0?7xB6_1OcJdo;pUcQ1@c4S_R1$W z4`(*j%Or^s2^my22Kc;G8_1aQ)NvS0VUF=KpkaN-FbNEb)MZl#a8PafR|w?$;I)KE zEghJ;{nddfoVfJi-L*NfW`5b>y8I3|9w}%_HG)b7+=`3j{Fuls+SpC6iQI6N z4XMfh=*L7tcw$u&$?nRsNuhkTGJO+iFOeurkAbNt9MeP0|-As9i(Q}*5Z#I?WRGGs4UMN$$-)^NOF4)pPbH8b{I5uIU@5piy)IltI0BcEgLMr>n$M}d-_SH=p#|E z)&Z9|dPnSz1FEZk?<#SKciL@`+41^e|{yB7p;>#G2JnVRf)`0g9k;7(gzu&ok>0_?e(V4HXU z6L)+zz@IyE7u3j|BeF~0xS_+I1-#fRdUsqM?iP{=9;3LptU+^)xp(R*D%KaMQsx5i z&xl;A3&77Q<$4P?{Lh^87;WC4bM~%N)Sla;4%?0PD8jb5&bYfMgg5TdkJy6)iC-EB zWr}F+xx22w_uZo(vL~rY+6>w~BZMEhN55-aDUq;t!gqp+xMQ_jV|m``y*fEgK&WoVYXu|^8@o9%7v4{OghGA{h)kEML|2pSN))T zTq04RT3I?*`M#>G1DXEYUk@!u5`XbyLP|Ynjc%P?|f^5i1UpmlquqG zFYO-OhM!ul?|iq^BqzV#{Y-0qak;+prB?U0BAG?|6CL5Law^~J1ydN`>kgUvhrX9j znf2>?Z`I$U>3c_g0IpO4{C)VI20{E;KL9^NMSs%^@VaJu76tLw{Q&%qnk2vFo=>Xr zcl-c+OCpf~zOtbM|C$fNl}dyk(C-3*{rX+BM{ST19&C`3-@z_$UtPY7N8j&4gNdmm zc@%zU^r-zV!lSU2rm!W}Rvz5%s?nCK^t&lOVooArN@Jua`s{Ir@GBsP%A1emG2(XG zSU#al5f`QIX)EwsJoapJybpa4zN$o+?eu>11M?4*i|;7RxYI);@hN*AW3G0T_422Rfb@B=V}=x6 z)pyd%WYudBtNqTS0Qy@Wpsy-{en9`LUBj>c4X9B2U%v{a|BcVt)4B_nMx+^5KcBr} zUzVm3m1aVP!UxAzsC}?sg~A6Pfvx>B9}J@{SLuVBeMH?zMD_Y0fPG)OIR5mW-|K=} zhjyFMWA%F6J|w!IN#dmtqDT*^Ed{{-aGMzQ)t(yl$Qk_d%exEE@9=uu34Jq4qI(*o zYG5BZ4zcikUGdM_<(c)kvsGBs4ygu(MeT-&D_wV^QU~i)I`|u|dyZn@x6eG@s$8?r z4BV@>L2j>dQ1VIZ^0q;I^S%1Pkq;$GXhJAc#PuD^*9Y;P_UZ@6W@?fWWBCu&_#W_k z2zu+ONfL{A=k!}}C|$99>0_vt&|C<;IyLQWS@pV+7Gdu9~{ohN4P)Azk85{Uxko{%r4?>!7t zm>IzX`rgc%etfSTzugD3twdM?A_bHrj-#)eTZB*v4s|cnW;(n!8A+|0re_P;c0>dBWeil#Ls>v)z z%ij%wYp#&Y=MoWl05U)#Q<%q3KIU;l3F=2GQ2&M#axc=%N zc(+8R0RHLyYQG!~Q~thRo~Whgmtjj>?KvOlP7>iIx9oMb{B8^G8WKi(3I0_o$L0MB zue`Wl?Ug5$ay$QgX&{5{m+x%=Z}T+_fj5Jlk6HeR=8Q$8 zn@gh!b&9y4fv0UlE&-AG@ysvOWKBAG)->SyA~J1E8_^F!MjuevM#KTNZ3M#<#x|-! z##l`MhEpD*%=#UX{?^ZE4`ofGc9Q9 zaSFZI5_p>N{5d}$Pgj$O+dU;5f87tr3ndZ-$f735j)S<6;(~3pXX?BM>TdPCsk0Nf zna$%88XQt6jO+xiCnw6I6tQEeCx-*4Y#y||9_~OJB5xNo-qUpnrF zq_Z9ZOV979FFb=X=%&A2`#l}2gbSSB9@el;z}w!VwX*iS2r;6QZPH8vf|IspKj5+Z z-zJ?}1S(6M^})=8p0y1%4?V%%zxa$TX2N^M7XMJ4u{}Mk*7M14AX$;XGc9}Zamk`8 zr7f{QBH(B!Hs(G7rw@DLs=o*K=oiII1`{Gz#qbsjh&tlwz|{e%M?8Jt_;uqEPvVoG zz$V}+Q&_OTVu5?n3M_SS$~E*?KC1Z>{As~Q1b#+O_>93X=n3!7{}nyq5c3;)f*1m> z)0n(qgah=5Bi^%WFCF#l3+8K8V$WdCs*V0fXVn^l<|jQ3>k5^yX?&&xJ;7#uj;Se2 z5Zy+AngFt0lo4!-@^ z(?%#}%3Q3!i(226GRA=x;qwGvVt|A0r{*>-e{xbDU7;2xFGex){PSzJxdwF>T65fu3-* zoCxwKcB~IdzJsBtJySXMhBim2H^2uyZ^-m*7JCEtgJ*ky@CZYQZR+~2Po5A4F{#K3 z_(zVwa|-aYvZ~@1VVtTY^oh)0p}nXIwgA8X>ggd&SCvNf7XMih%NK_nKG&yb{&I+y&IAH)&A?CO*xLTvaDfDI1RTXCYR*0NVug?)Gyysrw@xSQW z70tb$jGu~{Al)Ds-mZdO*s#DXI4+~7a$XCq7|nA9gqR-6S;Y{Cy;9MYpK(-uD93V? z%x;+@uR1&$=IyoUWL>CJA?kF@*073?gy&hD=$J43n4BnwAMj<}iYeMz;-vq_-gkyq zQM7-%n-BsMdI~iO5TrwTp@$X(5(q^E1W5%$Z#Gm2RU`tDGD;CpL^vhwx ziPN6oV~P_F!yP`REDb~_rg^fMI9ebP6PLgd*V2!OiF`&C_}5ppMR&XAGb+LEQdln# zfkas3`{c!yO)te76ikIxl>-xDdD!*BdSM_eV@ipz46~#z)l8xQ+T+$}fJ4l@E0;j* ztUWAU!_-7mP{+JA#>@*aY*!sva+Pfs_BGmAEgMI1oY3j~aFoT^=o4s~3TGcdZ*`(y zbHywzLuYc;5QdI-V(4(Yv-TTO4>3di471Rf{%25TH8{4G>0@ByxQIefei+_j%q^Fd zo{!y72c1 zhn+a{^FQLuD@1;Pd^rlgt!p|9$~&0i={R)Mm_x?y0FJ1y7-PKH*rBn*2DlAlr&$+e zF$MaifypX%q+n`??Km)DPE&{84(mGpiQ2fJzd>Wu0WjP(H?A3T;}xvFqp_}oTlUu$ zKi4v62G>8G;!M>rr$ex5f%u)4ImxFR747tNVhit{|2xNJfB$uv%MF3r)ePZBcyH)45<^J5w*EAZ9z8+{TwTpbkxO ze59A{OjSj3C|Y$_uU}E;Me!94P7$<8xQ;T#H`M`W=>t=eZZl0v9 z=Q2zkXN;_nlN$SaNb%iG@q*V=Mo&J(8wT*lL{kIs+FE88xcA~y33lyak^om82W~+y zw5RE9P?0N6dUc?kpC62i_w$9Im#H#F*Xd;n*PwMWtm}eU=~6FK9}zU>ThOe##Md`Q zT7;Hx;9I5vpfwN0i;SQz3NxCog-P|YV>uOXXiyKCVsi$~{DBe)#fQLCiLm6HO*93gCu^URyqo4FX-UHBxp)Eedt`e`(RTm@X)#R?}JUD zn$kLrY)kcllLVPo_;LwMYWZ+mPBxzYt?0f!UZ@7MCy?pi=s{m}D80^QAmf9wNFYP* zWEhfR8toy3%UBx7gm7RoR@Ydk4`h7S$s5S@-C9HPNa!12n5AlRiqVY>;!rde5{__zI(( zPOLH1`znfrdFWQVyO zTv@n;Im4eAVoaGznNqY)Ir>4Ea(12m=*J!nQ@}2)g><5c;{8|L?Lan;lvRJa{rV|w z88Z`Uyy0~g`1TK&KgFcK7OcX0Y9;jkkENfQJO#1wdi{}E*3UV#wFWXW4t_IgSqu2i zv){VHL7ArdFnHgTGVtxu%Nna`5n`+L`ZFM`z6JXF%1k!>E+(wk9|2*AB`ShfKcOz} zAOBc+1=I`f^ha4lFwf`~#ozm2#OcpePQybdW~aPDeODB#zQ{HWrmojPVE5UkUq!INwWe-U5gJXsgnPhi z>V7RV_v)DWFErJva+7H4D~6}tE{CVK8}!3d>kS%@v9QDxUs!D(iv3QvpWy{7%|olK z{WrLFAHPt--jb_{lkUzl)f2>F8(e#c!#W6@yTG(c{J0ptpHdM#-^JdDF6{u-dIKrI zpIveurCbDz^}aH-6~G$Q55=pH2nv2}dK2VxsU%=r1LGE%IyjeJx5(56?9i1igDX|S zwJLDySEed3W8+6Qbn_AG&)|vWsn$tB9}l^=v~;xiUh(JBnsEcC!-|Hv6@dGsecLYq#UhfSPe=!xhm?c-;XIc&3z+|yF zQ(lkj$PzhI4c?Em*f2}V-)}l9fPR4pIwVI%4Vz=IC)>97P*hgW$2FCbI@YjA$iS znv&D5W2M|H(OmA8MU231A~vAzq#59P1m-K;l@NNI#x5T@%3}4oVD{ z%<4~Zsf5BqFzr|5!F8oGzzyeu(|$88))d5D;T&@pO3}VevSa?4Rl!LcJ7($SS<@*2 zl-bO51e3VHWDW;DTq35>4V9AD9r)t%@<)*=4AeC$FKm9p->G`I?t&=+#OTVS@2rw8 zq7^N^cEYbJqdw>Xx;U2}aS8c8r_v`cp^R3g%e(!}c~d<8p~p=-1oZFE90jglc$O1_CE_FxTH z6=P05mx^01gNrGF1bR-P-*R6KQb&YxogBJC&1KJJB6{61r3qd~SabPMxHh{cymHr6 z51e7iX9_UD6y8HiPPdFOZm0pGX$Gii_Yvx)OH}^Ul2uTX^&cQ5 zsIY};HL_WBH>pg|jt6K7kLv@}v7;xI$$?k0!~Kz|xd6hrc8E-dJvNO4&AC)86ESRy ztb%-TUCX^`%T3|7C#JT(hAK$o5YA0;Ha+*LX(M=tYgy;3`p^b=G!6orp!ZNs77>i& zprk85KSxJRKIT%1VvmD!|1#BdE}i$nR1#kP%Tx!<)>`;$a@>T(F{ZLBZ49(z#%ebHQhx=AN2@ zM5Yr;nJ0lrU1{+ORZqT4I>z*;j6uh~v3eRZrdahf1G9?&12*z9uM99e!-|yW#_fvP32+6+T#mNwqSQ0*Ws+945Bf>3oezI_q46Df;$y2RngoJEYlSirol}W&Hm1npPoOXBgl6yy}FY5 zJ?GM0yv=Wd9nPhnd7HB}rLiQrjhQi2k{mB^_#X$~@HM~w3J!e$^OI-bTZZ$8ZSE#s z$KB4Vt{ls{ifJ*P4O~K5Y&LM&&pf!4=(bH0Lcg|+p-BjRbE`gtzO+@dGS78@iCkWp zH_TGCVTsZUr;nN&BbrjbXj9QgUGr*y$Rd=}mHB`m^J=l&1>WItV=Sx_P!ZcpF({GF-LGR}k<}U9-Qk7~ckwh1NPi2&10lYnD2A){q7H zSBQMAJk=Oo-+cBJHaeKtsI;Vk8J(qChQ-NEJz)3LZor!*auV}uggnC%qb%u*M&^}#0SBE6ZVEQv&=l0!$WN5N993kB9Ka>89;k|S zKvArkUn28(LKVCYjIEp59z4Wk7@NmEl*P>BX_&dWmsozg#yrYwXJ}#`e{3V>!3p~w z7It+pgKk_Il1j|OnAz}btl9AU;%0~vtx-fFVmPCaJldJJiek_0uC3w)WoUO987Fn_ zXs+lcrfzp_6`u5pP8D+W4fAwS9Jk%|+G`~hqFDosM}%qD0Hd}$uL1J>B8FkiCaG(J zIZ|*j>xSLTTY&|Oic@_uKCNMi28vVLjf_u$#h0q@2JdB+t|X-Zij85g7P~LGQ$Y<$)>0|CBfGd2x+DUMTGm?I)vA(bQ zi~yc-P!fb}?{97b+;%W7kwNs?cG%@@^8`(COd~hB4WlhR*)C6RAF`SmQ{`31?+2Lg zf;wCqa?1nFLqKCL6}Mal7eneycFLQ;Lj%lB;O2MCWi@aeB@vX8nmdZ4gnUe59%Q~K zf^J-+h?F{TbBehG=)?VroE`x&YL{iK8odKAskYd0J<(wqej@MLL^!!)Pu@j!AK znoHnx@5U(NL(y7eH}U2UO?Y$-H)8Dnub?dE|GSPcuX7hm?9}*waVJ9)|9^XjK0Laz zLlYhu6NuMIgAB9OQLMM-8fem$2uchc%0f9}bStJ!Q5NcoyqW2xxhCLlu6cC?92Q$p zR(h0c&W#Wgcj|9dU>ghrDc=)zDqHKqlFVjemz^-S!JKA(QMj3mI{1l4wm;c)r;}F) zjWDUq8UKr|_CA~jpq{B)?SwJYw2YbTnlTe)#wfd$lGinJSwUQ})AgA7lHQa1jf{+g zO;b0bUH83_*s0gQi3aTdSjYZ<2gQFViMig75FA1Mx{A>4F*Mi6>$GW(HP{S>AZCcxOKG)Gz3sYr>B z&9&Wxelm`3SoGm=#GSO;r4J{Y!w|v3!by%VoWCR6F2-2_&kVy!VJh7A%*=nYlSv7M zbc*%VHlq#fo?r=p!CfuhaA@I-5c$uos_akmWfG0c*#xm&(Ldjh*Pb@4kM z>9o5%oP3uH8<(_v>K=%Ya9eW4DsWFp%MwtBuLvI&E%da!FV@;EuZGs*bG4D)5Za9Y zZaKcH#)@(sA=?fyJQJ6|$beNUTkv#|Y^%;GyEI7Ly;~FS z?7-C+yQZxui^V%1Rk75mA)cdX>Y#q*(8xix5YTxQ-?^2%*xJU{-STM9?+qJMN}QBo zmef7kGD!p;KWg=zbJy1ln1au>!(UtWECm;Id{SNtXlbb^NYh(b)(OCytBDK~c^jL1 zz%i{Xp`bdKMI_=4U$nB+b%yk4ZRr7;7?f^p=>-oqv*0fjbfUXqKxHwai;X3sTd{s~ zH=#GoPOzxsNe|qtvCz7qEGD#X+gf^h2qR=LmDx}ZOa_%cKk9|n?MF?FYA6(Wjlwu< zd1peo)56_XKkC;g7AWM>QDsjT%kSu^#{909cML}WUwV;#j*N?w!s9J(3&M8XL;fml zHfH$i5YV%mWk3495&@iU(q^c-DoTl}$eB?yVvKf;V!@A2(X1EG6f#=)@hPh4kh{uR zJQKe|buZD<4L!;j+k=T%+@qG$e?9wB;TirQQ>x$7GC>ghWiSL6&daz##^c7ogtRy=WLX#if!dKKgj2Cwe=` zBhB)z7YCu=$1F*+Gy=Cd3^^fn2-ZrsBp4K5nr^8FUi*o4f))=LY>9C}P(`jZPtbxP zmT-d>9uKiJ19dr!+=BG^yO!yKa}zCxS_Xj_zW6jtM|gXvrGt2A4|(1B!b4Vp@uoq(-9U=;T6mCZ^NQ8lbgW!QI_|> zSdL(23(aQ~OXM3JZ5b9|n1u_G&ACrt((aAk@Zf06yFwOhHpbEv%w~1LnwTT&$5@iZ z&wtW?B{Z3Gglj-X)}kV=b2iu$r$6U-hz5Iy&AmLjWte4Bdb@)u7%(?^}+8 ztsI67&|N>bv;}*(R5CVig`+;Se4#0=Yhk)U3uMUUy27#X=0_Hjv1LN@1j|bBkfT7A z$UT}{nRoOl>V7n1<~_&CtBWh6MvSEQ)tRppJW*i0`%pJ zCRut5B8KHbtz6n`d>yi#1pqWP3XTsPz?b&V;OL;-Z;swCZ5 zJk>G*^x;yG=Bz^NnR}*L`a72a!a zYinp7?5$rrz}V%Vck+);iHu4L3yDsRiVO}9kBLc6i-?R!PEAdXhzN-ZmqzV^quc}1 zLqkI%gCkOt)54;|qawnSqQaAt!jpo-Q&YpjqC(*4=&9b)q>0mJ2>~(DVW@0+L`ZmW zWO#H~bWBJ@Xk=1yOgOrKFC;1*hPZw1E#;M%dQu21zUhc482gtc{?%nEix=7A|xUe=2u_oBi$YSxkd0#iA+mM3XX`13XTa+iAjnH4vtI)b&M@AQu6oQCMijGc8PmYd(Nh8mpj!c`4Iuf0hjI=BwI0d^8lp7wC z7M&IngHo{}DxmJ*(t78Vng9ubj_z5)!62n&l& zk?!3^ej^|(GBheQIy5yjBsDrbI12f~(DdZg^zfwUu#~jOV3=gF_(-E-XCd-p(oikw zNyw#yhJ>f31V^Vugrp}WrAMX)rzE9?OUNiU3$JPx)@*YwAeI3c5*QW(Fo|X2uY7TzO{3*XUH{%nVG*%#6EeBXwrR z6tpQdGXu9ile9K712-`<<2bI9-DG|bPyC4p?&Dtz@Vxy2{)KLro%mYDL;RCmoA(I+ zBKP4u#=pqti%;+`@{Pt*{EHmd{R96Z=M(?LzsL^pGyIEeHa^F{$a?T!_!n7Re1U(F zm8h5a7hX;npRofi6F|=<{XX!-LPtvo-zvAJpXoWPx*NQ?;kLi@v>p-znyy$!xeJwG zNCRsR?iTeC|M3>}vkk0`Dwf}iC?adn_!lBWzC}H-?-u2v0c{C+KdSa#IPv3^8NM#^ zUVgkX5{_tOT?JaQ>fz|OtYjnHw;4;szsL?3si)CC?2u|_#VB0{YVK$M zNraS-79_T?E(X7G6(u&ab$~5eT4$gq2X?l!?gFRzOhjEp)(U;hxvtMiil3u+Jevn_I<jx))0X7Ks$p z)oKyICtN$E^}ph+oxwCNm9&07C<2{|NU*Na0Ca78%WZ#HY})6z?Dd2dj#p>`7x%Tk4ZQX-%aO&hX#?w4N$?&(B^lyZkzUkc*pefSQ{A)KCvI2DDMDLx#Q zbpu*QT9xa=#ozX6P9~kkjmd5vdtd%c!3mT_&J=9hmfc7yH`;nt6dzMGJp%E7L)W~R z-&{PmPk#jB#6EcopFf&pOl8fd){FqdEZh}h3BBcDedl;yt!C|@a5(kJT#7S?=x1M(ws~jL_ z*$okwbcp3&Tf^PO`sglg^awh4JeRfcL_rYVDPKy82MC|V+fE8~Ma$&;C7BJtMciqQ z%gqRvOAJdIm-fNmWAk2x&GOA$#p+^wDVUv{SxM@?+0}ykRwqw7uZUSjs0*QMQ zR-(9f06e}DW%8xTFtqi1Ya{Rx2T?~lalip&swnt(!hE^P+7VtS1HFd60=%J0*$_rB^j^H50A`a0#p_#hb-PD|frGi}LFn)bOVkZqt}Q0Vqp# z%rHf=#)+*cn6jri2PW*Pdr;4wfP;V2F9#LhlUU7timW>$wA~rXQKa+CL*(wLp83Rj z>zkh9=LcPS=J?K(=`-NHeO7uUBKr0SeYk-BZtgbRLk?EWy1#7Y*;I^LG{k_c3XD};%OwNVRHs@2Vzyv89$GlVYtkV6)1_#O+%4Y~j#^J!U8NeD{yo<7?a> zIO6NYHQ=6e)L;uQT{ce_gf4h@ci%C2D9CXuu_qHflj|!y2qFSPPPe z7Fsx$E_>7Z%(--4LUt%f(3KWz9j2cYaTz-L|1_W2;QPnL@rN}= zI0iRjY=k3GmO6M!4ewev2;yvtrsg+`Llgaa|FGWtMjqCfU+ni^HuN?UIV96ZL;BTN z0H}9Tgl>%&H)wmZmZL>yDRxay9zVo$@}t_G9OBTVC!3slVn3{j0}M$ey>KCgN%<{vwh15&bxH|7(7d4*T-G`#6Ab54$>d>Fo1Ae%8ob;l=adGbvz;fj6P)~H z+wa^q=d>I6jH^~R2>xM!Bu<{IidmhiwJ#N|C7+iq>yi^Bet$$`gx}&ejg4>_%3?-1 zu2W7Ww46lI)Cf0lXrj7593e)?eXO|*3ygjLYDh0p-5|p(wJW9cpVK#lq(8T{{kg$W zq%+0e<^HH4tfOm=S1F-1Ov=bXH})T$?8|+0!Xm4R^t<(vN0k)@@&Q8M-Qy^AZ= zhq1pCCFMU*1(z{h|0RkAln%@#K8jT(E40ErQ9nUze$=I4qfr(SEdAmqK50>k^hMvC zGw$f~W>kmMcR!39{V5fFEY9^`G@KLYWOO}n;=BR!|h(0Qh2-G`} z`9%a~6epQ~9`^Q9MMJ_~V;?MS8wd<8op};fY)g z^#TvMdWaV|@5K0%XeNRm6rh(X8Jhav@d6f&7r>V(qsI%9<}$SpI_9!ZHBlDolWPAJ zKgu~>2|Z+r;pl5Mf7snS)6dWc*eS!?9MkxKmdE5}#`?Hoy$`5)%vsg^F>#!#{o|=@ z4kvlu2@poSuVKVE*Nhk~GeVxkYA+YL_jS%pPk4U!{4&y`uXD0Jg?YHrVjMzOdacA< zxz0GL^mjQYD+ntUuJZQ;FvA_CNAezbug zM(70b&uzW~CF9;9d8%uu(dyu}4#wWh!jn_z#Gge1E2ljhBIO($oVv=mTPOs{ddP{{b;W9MmD;TZeK^3!^c>=>uYh zI-#O8dej-6Xh1jPh>^$jder2&#-NQNOFtJ{0IkxLYOwv$oCn|=%qr>vbTQrqRi#*w zzY*j8uFsmT?MLJ~nXvT@0ngUug;+5+V2bL!%PK>c1|C`G7%D|g9 z65J6{IH3tvUvR|e^z50^6B^TOIg_(TtZ~BiwB--V?W!k;g2qYUx13->Y;wZ&v_-i| zNP$4x*_<4))d|_lsgygeq&WE`Hrg(5f7RS_MjM{-PZbYE8;%_}l__o#XRA4>IK#gJOLJ6$Z@#@5bV4@#b5Y*dzR zecV|h^C!}~LAj>|_^fuWaw3CUcMYURy*Z@3jld`kD424$6Ne_;4L_waF-V5!yU%BuUR(tN;0Pg6fvn6*yMPAJa6ful#A{I9>9u{gJ7K7d7Uzwt4)rGxCB-`9I~GH zax&2(_Y{6a1ghK(|2}TW*yD^tS@LMQA$JX$wqrd|W{7h+7;!ZppVqsYap-H--0Gh7 zGWf%G#x#bcp9a+9k~ z<|dcGs)wI$XWYbhs|mkrxOtgli_Ym?Kv{&Fu_bNwrSm&-zZFH{jO_fW|9-)t2~)2- zG4%pwY7J%4%a}&OP2;S_dkFbXyEY9GA=+J=dS?{jH^>atuIR*G%sp8Jzc5%v>Togl zd=;_%8P|^JP0HU`xxP4Q&0o2gUfp{!!q*z6u@#0 zIeJ*$+h8@9K-OuO!@9%sQZxn0&hYsQdC_3KbLlrmi7s;!gqkE@ z6R>d1D^8V1p2({uf?23TiYgO5o49UDG?>Sw60MvCyPwV*Z%}%ydr6o((AyW5JCj!% zeD8#lvd-kaE@*%{EuBMq%9BmLNNV|8-X*Y!tC5_UOgNht3U+a+cr1{=IoJeGpUvyy z4C!$$uMs%m0&?2BupfoS|}lnPa#X>7`gm@ z-Y^$gH6JiWwyC-)NIa@#QSBPGD^aFwDX|B_Z1$IC}YfJTZ21<$h=NuH5^q#+Ab_mK8LGi=O47!_I%?WeUNt z=AU`Sy8-*Dtu>Zwh=Wg-7xc!^1o^e}A667}#DDffp)RVVI_y4nP5{h1HMz3kYS2-A zbz8nIs4r8p_j%rMAyKU)(r_d2jEdJpE)CA=BNy+p&XEhpPubmb2~2^c1~2payMa$p zhZT)OXTxWM>3jk{4E`zH?v~$MTM!*J3t&Uj6-uq99r=5*P44-t!Ah=5MXLi=utY|b zD)nnHBmrHsc&|i$69E*kqWVDn25p+FO%Bw#1XevP>zR)u8ssAz!fuV`2MOpPIg+NB zLBpC~a7)Hv%}*#xwG3%wsr(-W6z0ol>L@RBXkrzI&gvcIPgGvKqckR!I7;KJt6urf zLAi5GaJrDQl$RVTaAW7}6`BKQqpn;Z5Z0vOK>EJySZ_sRKB!^Jh{T+dmim62sP?VQH) zCnLhNbCzLp0ZpLCF-5j~E`bSLy1h1kun3N0anP|w`6RbA%-WFO2At)xSTuE9dVOR5 zR6zsOg)GhKN8wz%#hK&Ro0&P@+MFMRu09ra=QDE@&%4yOmx}yI-16s^`~mpxV;N2L ztr~|W`d0G1Uf*8+U40AWdc-)XnoifUaNF3-8j9_ZzI4&{r4vVuZqV(3vWV?aT^zA9 z|4Ts_jPb^!RZq(1R2hi&u6O4@6od~*i?0}(-qvI9?#Uk_2%o7~;}I!cg=zFM>AbvA z5%0v>4(FXmCXR{4=qHT-g{ejP8OTd-(6Vx^YgXD7RuZ+y*_S^aZ!~Mv;t+=>YO%?Q zcKiAN=7#nk)OA3Bhc4x-N9JB|6zEjpnLHPQH(D6QsD&}y^A{DC92EQV@;asFQv}gZb8)D8AW@cW> z?}iRr@O&JBy6a*%8Y*)l6cRmHRFq#y5I&c|)H}@Jz(ftkIuSjz=)bAKTbCH+l7{j^ zu5q0P~4ZEE` z$xV2upo&q0Ln>6G2K%TQtaIXMe$l^n3Plf?O|^NNA0*bjpovX_F1S>NnkY*R-C)~C z`7gyb6ik(&B?rdJfUfSi_c-61d%mLPh5x1tH=pRpAFd@ogQGyF5rY--sYbl@M}Ajv zCZfkxq;i{zWx5QEgZ2K*FBBJDa2=>T)FXO5%MTSz7hK0F&s2m)^iwVn4m%I?R)TsLSv021k$mc~L>6?wO!tCefreRXJW{2c5|5xAo(8aYiGn&}hl?6} zX^ZPNj^$gUEY)756pwHy2l^-zom= zqO*oi!$kd;t>QYA5X>TDHk?)2K#p4D292e9Qm#U`UHm7Kk}E%Qj$Xd>L`Kr>V)UHN zz087Ft$^IoW95D0YAV(^%zTaBv-Ct}rm|`LP-eV%-bu?&8gTs>W&+3cf4*ycl2Tvi zqI@96P(!7WUlsrXt>sLZS8yBjyu=z+=S*U^OY##6Y_Y_L_K>Smo+5DxoUt!nP_W$C zZ~V}GVSx~6xSFWijvdIG(Mw^$K`>cQ;aqg7j5kZjQ@>*8(8RB-xTNjW>ZgikSf5 zAM2UDcin*Eh?|!+al|#;lCiyCL0Qb+`)w>hdrKv*$Y^Ts;uVG__I~@a-rlcVmbI4; zzl=%6M(=BwwHG$a{uOZVtt#jqKxBvA-T%1*^Yww zLMlA4qu@>OE-NQr>y-{C?kt!J(z$e9Q?qDO$**ooy0EL@O%crDDx+JxU+yUg0<*Yu zv`+XoSivPI7F1f81>gUv;FzYgj-)I~(hQj-KjYq`lVv~F=+2#NQkcdG78{h0G;eQ# zB!FEUH9Ae7?JQ1$gva(36oL~RQ0+#UBPbQ=EO}f!1)kqmkP2hEpu5>R?<+7kP%+m< z3(}1P1?b6~J6sbw+P*YE7Gs4C4>K$L^f0nQud5m>EOnLHkuLi6Kv~2J$$5;dBLyo& zu?|JY!WBQ8x|HU?#0bk?)f=J5)qi4y#;!yz@}`PYK?!2+(Yr1ML;1l)OX!Bsf={F+K|`CmdwO>weDUp{Vndyvav zRL#Y}qDi*cAm(m1I+LPwV^EgVM%*EHqrOo$HXC7KX8VfXQrP)|`ZdHOSMh~^9bp>} zzd)|d?M676b%Pe!+K3m6VVxJf+LRNb97}KsOscTjOJ)-zUZO};gqa>Tb(Qrc=92Ni z^c-cWCSm{BcE(MpCSzk^<{#_3l>VJTi9xvkt~ZG1{|5#EJw0q{EIqvMcXiOCiF^+_ zaAfF=x-H7WJ&@43!M&d7t2Kh7gX%yIN67E&M1I@fH9@p7gUJ@8ah6npQ0}zRHVbWu zYB$%zh{(qGD$r{EoZ;mL@$~+noL+neQE-ehO zy%2j{bG^_oiZVY@#>GjK18qalMM&3NPnX`)L11z%+a+=QHP_RnPgI0P!U>2jt%Rem z{aXo3(RFOTLZIQ)2kQYDgwRZe91vgpx-A-5vDoNfh+R3k2Gqn7nf6Grb#3QFuz}^t zlbU!muK+u^RCPo^+h%V=BWFmf zXj?1L#RcSewC#ijLgt(UxYA_KS?0Pt=j8jUW6)e@29bd?kdqP9Bvlh(MftAUiY;sj zuTa{VwCKDRwkyUb*x>Azw$pyb*ZtGyDM)0ZJWoOXFnFHAV_4RrQB z%O6?`Z~LPsA!@;lSX;H~x6#ccS(QeONgFk0WJ=oDv5m(KNo$Osm6)F)z!kB!mgtPu zxma7cM?N~Gmh~1){2;S294FmwTyhOgh)RJg!~$TX=BY?e@Yr_;x#6!;-TxHGN5ecF^nQbzd>#2Y9WWEnS!nySKMhoruYunSlwN znNbVfJc=HfK=jSb5YVS9Gc#gIIwoXh25x<325u3RL@mwC7)O5NCT3>*fQ(~i#&rCf zJx#F&{h2|Q_)Pd0xlh=Pe~~+gE$G*f402tW6(^F9Uvuy;@|8<2{zXnA=HXxDJZ3)r zMb2pz;9q1z-iCjX)yG2oi+C?P{zXPH2mXch2ntR5P4uKsKs-@iqIlB5w%b$u`8tWE zxtAx>|KrOOjdtCx4C@z7@~ZeFZl8Ea{0ogLPR~zhOUNPL>Fe_I6E5<|^Ai)VHY)+2 zcDH>89<=dpr{7x^swE9ixX|7g&$$!YFjPXeA}A7p!5xu zR9sC3f?X`YY zg&D$I@a9{#o}i!Wy66VRo5j{8^s~)DdxqKlY#)HpuIr+!^23X*3wKny+TWHXfX`f4 zMW-oK<*NJ)d3If1i>U6zX--lwe+XKNSUb?x!wr1PHAl1}D%my)n7CA;6?c+t1BGv4 zLW*srGbA9@_9@t+hm6d0_k_1nZHaEE4VZb`y=ob*F-&J^Apo}7?okddOtaMoNA(qe zU(hA@Es$F`p?LBZyUm>CB;9y&K)RUS+ zY}GV4tlu2h=wlH&u3Z3LH#PQ>fW9ic^{%Zh@Z{2URnf;2bXECE%Q9>o1W=Cy5>^u` z!-t_6M-a>$X7dL@TnQqgUxwK}1TDE#hFdV)mMG)=;EUllj}jO>7Or?b!yDEZVH*#6 z7{V@$u)Qe;-6WH7jtTV51)lQ6@iugwp^=+`a&gxNIWw3^81v0w>whK`fVmj445gf#)aL+SX>23~{Otb(c_r zm!*W>gc9x@HHOSEK+20!kG`-S1=8YJ;+h^|PyuZktxgH! zT{B^y6O!nAfR>+1n4sv%G36YFdiA+5AGe{dQe|Uq87u#6ltq-E%=+&xv9%Kfs|=>P zZ_A-+iHP8mJEw(I}(J-aQpYRz6QlRt+F)$q0YsB zS%tYf3WQVow@qZ05k{m;1bB#)B5*GrC`V!TW6s&{CJIRpcerL~(ZRcUhm~vvD0mgZVQnI$>FJE;&ZmsPG@VUeIFT8KB1vf`#wE#8v)Bs0<=yOM2 zUf_#kh2~gX+knL+?A^28_LUom;H$(9kq7Tu@~NmHAp-hsv2DJ*$BXaXQN+C>ZE}awmt0qK$v%CX)URReQ`_rckpjZYl;`|=+|vo zWy)&}YGt47v$YV#2Y2)fw+zx(ZJ(HmGG_dONY*agI_@}+89Y**UP zi|J|Zu&*P;Arwp%GffMoikWzqC?@v}`5UliRH1qwkgp-f(3pzDWaB(UBk@NQl>Rs= z=9h>vtzynm$ft_A^rUUIzi7VeS}`*zlUK{gIO(S+w$1_K#=EZ7@46l`%dc>pHcb6`(JQf6W2UGd-hYqiLfXeMZ4Sxj_l3N8<`k!VFQW=KzhWBkOrA!RiYZ(G zJnu0z#Sylf`#n!M?2qg1;oL_hN&@tk)4=N|uta_|gtHs0%?NOjNrm{6a=ACTT)*i( zjXpNQ^&0DAeU!yU$$2dbXSs=;D4Hr{2Q8W^WXL_er>uWZ<0*~lB?=j2oTn({84*#W z9wsIo`as*E@miAj+2|O#L+Ux=F6{~rmJ;XR)1M<|x^s!@PWC;`IpW#(@?u~lCQ4oeB`b@u8O1$LLl!+{nW*v3ZpU7yyI2TVDSNH&MwUc=y zHzAlu`^XVT=3IVU0@GZyJUw^y*6J|jy~0JW7;5^%L)Xz$O~LOM=J~l;R)foXt&4<> zKPX%UdUKSMm8L}4_`|~9AdyQ~XPyZxk&y=Peu#|9IBWDr#Hh#>Y2*cnj~{3(>qA_j zv1Pr7vWR8jl^dAyap6=rCw*QS{A;ebfL0R=iz+PcQd(OJwXjbg=q>EM2O0}ABw4nw zAmcp6!tymY+q2&7()Mnf*9R_PnDqQ6$7Cmr146dj8a`u5{7(DYp9tMBJ z73znRH=N^V4#ZWe zB9MvKcNl7H?#oe@YVOk2C51f&aSKJ$fpnu5P0f6@6LXg%^)$y=2sD*KMCa z)UVrKan=qmo>DTZy+RJ{VNtgw-Z1aG!pES&Bc@q+mzo=e-k_SxRZsRMq|omR-2@QL zA<6m|IUCf5PsPhp(eUZ2!Z7F3<^FVU1bR4^KKnyqV=u05x+ELDy08IA<%*L5DH?8E zUD#Puxo)ALi$N#wQkEarD_);r{ufj5MjCNgc}6hp+!?Q{o;|{2TXhPchxk=ML(!r_IG#k!uZt+@u;>}hqQF@qtSl3SL$dq zJ-4vaNb&9?*P~G?W%;c~n$hU`BY8ABjw{rUM*AN*JH5S_D9-8q^U-JkCwyZ*1U=SB zx8`G)()CAKM7nf1imYWnEQ)O&yB?0p(QAlX%E&k=tB$>io0$06^~h6A2SK|xUsjSj z)VEI)#iYls*HG#yI9SxkuCAdpdn}JJuRkXG#jU0IlXCo83aEy=&T;!+3^AURis|TX zgA=n;d<<0+Hf&;l7-%^9u+hX_-u~^;)V|eaoI3jC)=2nHuzd-zXh~1-S}k*&d}IO> zf43R7bYn#u+8z%iTVGrP$C1{}?DSxMLr5M734Wrn!^XHJV=vnP zWicy?Ree z7w=`q%Dqy(?AbQ_ zbFz2xvP8N+Y5B0*H6M1!d{EcF+H|*f@(?d0LAhFVSWjEOAS2@>uRiwu9^&ICuD$Gj zJ*3A#dlL`A17@b$`3LHlonKTDnjrq1%xrP5lWOfS;Ph4kZo zEtx0!80Nt))5r+tv@bXO5B=;gLm`?5mSd;eEdo0Ij>vZUfQxyg5Gsu+GCEHB?lXH; zQGlekx(~P*Dn^frm}N(wef^-IoIc=U(6%a6;{qokMrqewGyZTIWW0DD$?L9siYiZO z-E8|M0UX6bqC=9-b9JLsaB%sAaJ_6hdUJH?TsuB8PNt*79-GF2>s(a=*6Ry@kmDFi zN!@HQ(V%(~#&GR1b%k#)u-^|bv{O}+OTwB}v%O*FLi;OrAmf|CqB4`4z$|EA4r=|$ zIDlP?oByAla74))i52U~M~u+lDvQ)mwi-+1h)np}KFr53OFHni{fYqEF_`Y`YWxt& z4<63kwA62jeXs!D;_$>n-(G5e2Mpp;iH9aLB*N{8TceINj4xIBj3YH_9_#9&}w43;JRF6Uvmo4qg{zQu24;VO;Mix zx+vcN({*?SsUYsi$T+E6p}n7*==RKYc(q&)skzpEP!ubnE%rY15)ID)m=p+Rg*tz| ziRjXv0XRrH_7-3yOO`j0&~>ES?XLr_xPDh?17#A|nmm?r z39Naw!`qax6fJ3W6Bj6KSqjq?zZB#POu^u=jhJ%uRK>AFHc)%7kv+0i$z_YoXLEtHXQQq*4iVL^0z z?poK+=pmW=?41R%(sS1v0vAFtA{yC2dEyF`PIHt6n{pvxY9#!`g+fgGBQr;ea;^0CY~uq5B>F!mly0NQM^%% z9@bYO8a>>J2-E6e&U0ryxa0mE6cJU>i>Ki;u71YB|A;<>qJ3)*zjUu0GdXWzA_ zq6zJTyY_cM7FQjPiaD6_oYrSD#ctF7@`Oo?%X-6__wC2Pcdmi0X?x3Lpg0ZvyZD=6 zIPzYlMj|2tPk;f}e@t&neY~aci(|U%3%CT1ajhOPUw|L;5>Ni6@dd{)xyHWWFv?;> z(z3_)?*;K5MN?mJTZ^W?;PhX5UvT&@jV~}HRrUowhI#PLA5KA6Z27E)F#AtCzpz*N z1tnRwei$3Q$rm<$W?w0Wzi{mV`cb)r$mlpYF=kT>Sp6@1qWoOOo#*z?#SSlAk4uB} z72NyFzFh46!gUBXSV2JHr5b{vE3Q$0LgAnZ8>?~K2bD<~O&G>Ai8zEnK1G$NYW2g> zRbS{CzXcl{`@u}qOJ%-CW;@efc*0fXZzLJs1uR*@(ZRX&hb0`Xz&_{F6+9f(G^G*M3EVo` zc*<9B{xQ$UZ(pDF2x0C)8@-^AhwnK$S~1E(%FEGAK(D`; z%Q%{WP_9YLYNSHA0UgZ~XzLALay0KK>zE*du3QB=nm?haPK@Rbgl3K#N*Po$S-x|o z7p|}9xFw8%t1CI$f^l4Hgxpa^XyjbHWF3b;;A$u1F=qfXDNSWzb{$7sbTcpd zCq%zstQ10olkt+%IK%N$u~*LcW>IQ5ATq%U$160EhSzhH z7Qk>0iyUctIOw+!5Wo_dpH%(uY!oTf%1jE(D7MsmHQ*(W6@LC2tZ>3nU0IQxfw9IT z_EeO`qW2#gI`(>q-%&Ijv6pMnbi~ej4UR5!RN@AmsW2(bp*+IrYfP`aN@AD?TZTLE zo})fu7xu|Q9kgji`HDX3_mMvcOlFtkLM+#?s3|a zfEzK^o-Qbh#e2=;9Ww4v1rL0^Dz z9%2w#ho}rQd$+G7ec9bnQ}EH4qtX>=Pa-l97qR0XJsdB=YL2-$>M65Q?kzdB&>mJO zy4|7jwE3CyKbc=oUh~EIN|>ZZK`U4y$8P`LjtO8Z%aT{bclUOrf<1gH8lT-zF?eW8 zg({lzx_Bj!zVynsM&cFNp^w8XT!#1hINF1&T-9hHI0&Y`LaP$hwY45b>%2iw3W&sws|X<^q9Ql;(>9 z4B4J{1RKZ^CMW9L+VQG3&S$ z^w*umO^iE`YnSm5{~}h=sFboSLS8r{Z%j@THO4*}6Ju=b6Hyi$Dpn;s(mcd(D4H7k zVlA2)`wUS(R7`}i?>pFvx-r#ctawF_;tYDUSKFgKTAKK|-!7#`bnb^%+p9>;hdB<3 z;#JZ0K$1YYe@TYNNpnX!dbo*CMb`t#TRI3tOYW7V;bR?}MA6gD^=Oi!;4s6K(L^i~ zVNtbp&BT39jNL`bX+{*Dx$=m@r?3$v-~%*xgJ?Hq$T&hF_whxrM5a~H^r2&zk8xJR zkCf4*AtVoQ_C|f=hLj$-LSrrKhO*d@k~P8MBZwm?nrhilEn3zxp$|;_#No}2uHE3M zPgp!+NGM%EFwBEpKQ)X;#IM|-aARW|E*4oJ)6AbAp0lGAEH}w9$Sa2tt35hwc0>2? zZ{)9hSl}iPf%SHv!^%A&eudkMCry?fpTeZ~N2a5^;A1RV|0xa+S0i1_R7VlGiD{(! zxx_DRDtWFGc*v*Xfe00Y{?nJ%bSl5VWDW-&?p!5G@$1!YR96-W_*T^6@fvG{sg~4l zhGVt>>ToscJpDXs7d739r}y(`MOig2wjUKN*RO8;Jx*Gg?rkLQaQR^<4 z3S+hIgtD0Pd^pQt1>#_erfQw4MN_rz4imp}@DDL{LT4{OL7__zSfR^j4SbD>CcZPs zI8PZ3j+R0Msh@(XPlAe2+o}0lvUvZQEq6*i6nAiuBcZftLj-PLm&m>A%ErgvsNC}0 zVPb%znp?e$Do|LG*-W&$6PM=qHLg;BEH2yK$uPidOxAxo7I&P|g1KbOiK|*pTyo8c zBAFA)u{hYK^rGrgxXJN>AXPOvzCn9bC0vgujp(E3uazK##7QkI4vU-UUBdNv5~YU> z%5zk96N5^Sp~R5&?NkV1Cb~sn+wdP63o_q@YkD;+((*huacRTSI+i#8=U;}_p+sDR zgY1q}A43I|PT3vq!Yh_1vrCcXNvVP4C?SBsh;y7WBnT;R=32){kiw-C$9D5F3b;Px zQ*pqR0?(~;G|-e*9n>IJm^lUM{q>GQ5oEJG{q*Zi+EETJPrtYXRv)aonGKla;n^G{ zNp8S2W4n(S=Akvj=t^$f!X^Mb_CKd#xs30ohH|=g_Tf$F2 z{x~)>@6EhM__(n8LXhT~cY6shbDF-cvQ>H)S*KDhc6z$t_ni=y-nF@$%n9 z(YuDR+039U_Nqb6rus+aLp{W>8pdX`NR9HviSjQ+F|LNO*{pP~9wbA+AodLP7Sp>JqJ@bbf1A!TB9(F1StvPW+~usHl^9PDiM#j|ciaV@ z`nvoZKVG~nYxu?TPbIIKI@0uHiJUYyUn*ZEgo3!sm+ zM9BHq%7=?m0be}29tk^PGoK186$@&T83P_%RqMO7*5Rbq0Nti*2jwn~acn2Pm`mVT zH|BczNqv#Zy?!j8CxleKaMlk@{JPv1RJ&RJiotTZ?PmFBQaRUtG`l1m1lNBm?<*bT z(%qfVK99)>QN-U!nr_?f*Q?V*Sa|+vS;(c%NcZ2k@&B zn>v8YaBB*j5$5Lf&etS{Md$R6K0MIUPp>7^3FtOOp82r+m>>n!Vs?ak@^O#K`$jW^)S!11b2MTd3gHr% zXwVm)aWR3p)6?pMx}xkbP=>3byj?2f=y8p@Lq@Vhos#Q;xZF9ua_&22eFSMD162ni zzLapTG_oQ0R&}|iD9z?D@!rr8$IHe@i@8)hB{=);+#wzi7EFAtzB3C9sOc1-@8mT};0*PcJ34d+7AeW%x zW`i^Pt$E^yaQzyNLbxYt7;XbCE}o?e51)||my(!LSe#Ut8dsE)O;O&mU>K`GhZ-mq6GukI?Yas_Q(u!6%@Z$0u+`gSZ>63^HrZD<;0fj!Qtm zDzs+AqK=#?n{QxIjeX^>1N84br}ywnk|hS4Mv14imYZ{2Cs)qpKod5VSaQ66gH64g&tr_ z1GzIi0`YAFITcTsSk2Bovp7u|sOFrm7~Xec;*Y4zPO zxuqby0493NaUk~P>OLUvZ7)v~%y-)oS_Y2=r(zBVdu7%ttucB0)JcWKYs_DQ(-E?- z(UMq%+}ZMI0(0sc%j zzlFVp8Ksm=Ha8}Jp)5136pl2T&aQ=ugniYQu4g1VOxhmk0p2__+gENEBd@A13ZA(8 z;$D;}`j3p9nIwnTdxWUKjY40L0`izd*x8H(JXKJlU8mP@2e+k0cSR3=vkJ@5p)6!>M9>G z@tA6Q=t}}0J{CRl{cfyE)dnMaz+nFoOJUWE_dP*QPx%EUyow(U2|s?RvVQ1H zdUNVWg{n}$iS;agVEJe3yLm)PwLxacyzWv{Nnt+pg{5%dGeAyVz4dobuEfSh3ca+K zTr9K)cYDcZDMM8rDuYwCAW}wKRDMVQGzP3vv&JB;x4Z^kPJgnuyg?es;4t@8g$9#C z`&M0OR$uv$I7R}kUpX9W8ple7uK1xP3=Hlk&yl9GWFo52OVEtQfrS3@WEGCmj6w(* z<|@gM7YvZQh!Rj$q-s?tDQS^kVx#sa*SYV$*0eqXN?4VAIjaN1eVMx zVN2kAN{&(DK*b#>Wf_3)dRjiC0*5*q!CZf`mO3)O4e}nAy&?`X;lO}<9fF~z>Y$RK zFzOlDGI6X4JAQcB#?_ktXw?s-ZpD#syLqz z$PK(1fn7*Vd@%rtHiS>niZ++r{X6Hv@+s05C0}#>HnIffu|Vl~`5A*O(*(K9RL)@$ zPc!0~JyDXAB{Lz50g!qoNJ#Dey+ykrIH+yhoEk6- zY64w5_~lu-8hmP*V$-LVmB@7Ju#T5{>ad2FV(Jj>g)k83kt~ZjK*4q{!mQJ7PGeAK z?8+roXc(Ndg@+wL*$jD#G!T(UVr0b8T)%!Sfyn~QmM*K#rv zJUd$slcup`reYot7(Z*JgSEF)ZkY6<9+o)H3uJb<6s&_(Yc8y+%m@i>%~K+&eDHdr zHhl8{>L=vp^W>KV>7c4$mC}{zU?T?$u4D#Rle;dE?~0})tO(lGk6J9JN*}Of#vS1Z zc(7PbSK&bWKz`YbMuG?9&!ZX~M4vH38d7 zl@`_N*GI?=5_)-N##qS5Da`he3!6Fl`=wWL(Ib~E|&J*;~d0rIQ?+5TH zoNz$P-AmCWf9%nqB2>D2`7$4|hzujuE@(K+VlL?OS7e(Y%p}Nk_2LC3GIc?t>Zo1N z@H$!-q)RUxWLeAxt|0Su89oQQT_sXvFRbs#X>7!w5Z(G*%9|7BdR+kX3BBPW998hi zscb6ms%<=KBz3AXKK zlCN3UQ1aDa7A(TO8)@|(`BI?J6r;lnSAs#F@7w_Hb_2I{=Oj@6M}Vsz$!M1)+L8p9 zV&PwbU}Q~aNPr2It=^VYtu9dzZoi%+Ao^J6(XR5_y6}98YdVDV?K!PDWzgpcoU`FL zGSHYK{Rl_gyOOqz+gV?}aYBAi5~iUtG}qTKmRzG$OeRHS%L!k~?Q02(UEECOj#x0P z-_=+@ej^va(-JN$&Gj`5)kN>-pG=raA2|^wFd>LT>#9w(pHc!o2^(5^ssvEQC0=?G z_}VQ2?4%4-diPKAF6m=sZJkwy-GnxZ*L)K2@+oeOb{lp}*NYR-4043)3VDBrs?_&= z-wBtD0yxaGD4!yw{`X=yMbc8)fyV*t?>~iUiKhvx^;pt3wl_9DNBFJKMB%C#3bfW zI)l^C%#lFvzh#SQJ zlhS<^0V*pTN2~djfx(4r6wL;ER0IlAH6JC5Rp=9R&}A6TZW1Mb6(+zFQ}yJXH7hy_ zpiQ+3Pw|mPG*Nm;9`$@6O*^GPCDx7F6|JN;dI&;2Fu}9pWhHp3RIyX)sRu6B^TG09 z@Jdlk(rF~&(N$AL7r|7-3Z)HV@*l(UxR|{NJgQT%K!vERbgEvZ=oFYhW*+?6%!9^e zg7s|1?LcRP-Yc!X;5YAzsz!dx$jI*_pNem#&B})4`n}8&m|=pz`W0jJv*b7}lWT zHSs1zrqS?qB{J<1&iY_S#+|141e|GD5zHUY(`Nw=^+I$T;+76vNoeo%mG1>s1c+c{ zj=xF%EwG}ADAlW1sUg0m$2UB#JSmsely`?zToa|x%FEcPR|Xm<8nk9s1m-<{D5+gN z1>4)8n)KP80<+v~moG+EEEdE86r1wBuM(T^UFZO|B~`|gvVxkfC1ZqkotBY zNQkQVv+`+>oQ2@%aR1ieh2|C8r5BZq%=KHy5;$WhZ2^rzH%s!u6RI_rbgTh^!6+oX(GzbmR&2rn_ z6>w$;^omCkD-N0h>$`1@I`l0`6$_+DmdyF`Krl18Vt@)q>C3+}VryvSG~E=z%AXS& zqibco z>{A74cSL;jz6z$^cZIm@36=TvU5+CE_MR+HM1;PU%!FA?OKNtg7$R<@xYSK-P$Ei_k09nMWC-sxR@0UeGR4S53{gz=^*B<+=`CX#8hA7K}>I2dlJFSmY?ri@o6=& zo3HU8rcjOY?x2dOYT{r>rO_Z}nj1wih>7>b>=xkL1H~2mi8Fs+%@{_ikDASKx{9+v zdc$njYjq1j+_{P(eVvtij;L56Nb8lgbtZB48jzG<@w90T%hWi8Wwfa;!5dzmz1Go} z17%`^{$Oksu3(wR)QI`xPgs|H?r_+Kz@EMwa3pw`588*F3f_BaXWyKPgi&}7UTSk9l&c; zNUi-;4xptU*2sVWRHWJg)b-P9r3sP6Y32Vu`?i_VqPBm`gJL%iu;~{VGhqZ_f@|hY z{&-Qv!v^A9KV#GHPoF}WMKH7F9$PE6HxgEXJJyQ6x|40CYK*6B72h-vUx7p#S^hCM zio)`z6F$QoP??`AEPsR!kB6#w{4Xp&my%JbDiA!Sxe}8psPzU7S zsc_%6pzmlO$1BvW4#`pWh`2?=6fJsENfjR(3?wabyM`yPR{Z28Jde=Zf{e5C{B`Ht z8c<12^H;ft$^Ilh7=emayN7|O(ZT#p2vR>p*?;m5K9m%-cVN=p!|@`^)0h=I2rJwU zV(%{%ZEC>>Z6GTunU!Ba>pxDgv*j^=ReVwlF5E!0bg=)6c@1hen^q2vplXurq1$UfO^7yR{#ksxO=D!*oRkrb=xEd1z8q}(j65KRZ=(6 zw_5lj9*0r&z=7$@TyJlPUJVpH@@!zpqna=a^N2jY5oUQx6q{0P%A^P-Hf2)X25KhN zgelze5Z?k;J)V%z&2q~;#MKn_rEg*$yuws@$x4okd^(znZf0pJh@%@Ahg3}{gGUj} zZ25eYWw{`}(7<>!)k=+Wv4zDXh)W=wjAE)pH;OB!Iy3#%Xn1l5o-$4cS4!ska3>;j z8fb!66VD>F95h~E-{h~NEob4QHb_LQ6H~7^y59Lx6pClJ_!K6j&9RpC1`$DzILj^R z3uSe=e&<*M=Vf-pLocJB6_sFl&vb{w;=IfQmdw12a0l#9w8SZKR8D3fWjbFa@tAxH zYv$=B3w|Jcm9v)^($HlwXFOlb@@&YUQ~_8+n8ln*Tncn5sT7ymOOg_q+DlkNwY@Zi zmu;vnw=>`tb}G7UkT;}R_6yPoRHd=}$LKKzuXTN%ZV^RkY~|?V^w5#|gy_=bHsmQT zLxz!1FL8;R!`N>xR&t4t2p7OC=98LbSjJWpUsdvWs}h^?xKzXA1u%v4NxJmnDA$1V z9lBr@QF|hI{p8gy7M|vhTr^Wh^i;N`jv#*D(AW_zrChy6Ftg=9x>}|Q;_nTO9nmTk z3izSBUXiAJieRPF!xbB!v9y<3vSiu?qQeytAaRUkuo4IFy0DJ1ERou2 zaL{>}2(WpqU| z&C*MSqa3Zc9*$H<&F8~Qe&B^?Ekh05%*|(^@!OSE=K5J!0;j8gJ!knz0Lz}UcnXj7 zoWym?SRNa%W`fDnEqmb5K5T|%sq{4~n`7p~8I~R5g~n)FB$FF~-Owu%$AEk#%!ACB zW!Y@d(wNznUyM$Df}?-W&8UIbaa?EV@gJ(Q^jCL}xFEn|!}BZyJ$if9UUzVPw6Gqe z&9@{A^T34pmZyY4;KF=Mw(uDUU0`V;W}#QX%pno3XSMwuJKKh5|QN+9~e=Lv$)7v6XhjK1*VdI{DoY>ksPg##cvQLlYD;vz(e8GjFIcPQsIn4*^oKJ7=}~2aOng-N z)EdijX&oyc%nh;Pd$#;nvqbcTyVx0lVB1I5K>7Mw%ZDCd*jkIHI69CVkGr(N(puWh zaBxAud#r~9MwMAwD}j%eS^7y%UEuLATP`YrpWkSSluqjb%fD}gLsAS4PahwRw1$J& z&6ZT@8zpcqyyjus7I?Vy^h0>l1ESgmEp4&1m44HOZVZv)wpkj2b6YIUq#8jk-5iY? zMoXkH{-9*5C0=S!8BB)MLY3{Y9m+@OS)-wgqPyEHxq(n<^k5Uc;e-gGziPQ6fOfAkF5#}Ih=ao% z7z&2IZkfvg4w9y6Vaj$`esaN}21c+3(&L~U0kA!g{A_%>PgoAZ_FDKu8w``4WmRC3 zLmO+~wDcF&W$iM_Yu>aJ2=EFJSO_`35ybE#$f5?1PX-E_Q+_(kR-f_{-o}JB?ShU5 zs-zK5D&k7PG7RAobY$3u?8ED}&oWCotz;=S&43dukw*u&&-pY0!vf~ck}fd_Vi)*G z-}hW9lA(Ah2%qLtfFmgdGhTHhO;A)x4)YZpwA>b8PwwV0r@WmtSh(SSieg;s0(pll z&EUciK4BLWtO)NL1-o?|yX|!+=hfw|8xDZkP-WmY@0dkV^4@aGVNpz`CD0H*L0Lk& z7!s_G?*oE0@x8w;rGemRmSwblE979CWsoQhL)GD440;NO<$0-?OW3yFngu4*vUY)Y z%&c@mx2A#)m*3cC4HKjn)Hsb^wH_CT!R-j>B6%K3HYg|ra9JV@i@(UWw zgm)}`xPxCz6DDiQcG)XB_$BPcn7U^0tOgUlfnxOs_IEAoy_~GA&>`YuU&mPz=|=Fe zFJ~}0_Qfcgt|`|=(a2Ic0|tz!E!?p$hB;FQlX#H6$1S!X@kTH^9?ZF{xjJaXW#MyQ ze;Tvkfd;b@gOE>rXUX-D>W6Tu1iNMIzyp!R;|tZQ)3X_zY%3`fc;3L1I(X}>_u0b{ z@DZfBH`wZHG^&iaFFiwR0ke^z$(c7TO+18d1ecmv7bR}G7$2fGu@*3eO-cRl)&+d- z=*~%rlS9@~e8B7yw&q;?7X)dQh128{3OJwECyY5-? ztAV!nES?@Pt^-$on;!wv|FlF)pEGb~G#)2H;9mN(*?|~?25X(9AJnk;GL{pd}5S%Lp(`KpkCl(WeMq`9IEyL`$DxHEhh%1=Cq^L&68vNtrJD*4~}s-n7J1U{%T6^hZ?Upv^MqP!Rf6Xbx+lAAq8oW(5)T!LggcktZ9P8p`i$C zkQAeY&xN2s4zzAkK&oVzrz1n8iopAlZ*}?GAnPhY>Y*xE$OflFtZhx%EFCv90(1zo zhDyU&GI0agw6npXQ0ovQobd)YmN4rLiK~Z%lBdJ1O{KX?lw2`8jA$$mu4-*x{nmai zZQu&SyxhhmVA*a6!>9Yzkl_H2P2N(03mZUoQ)r=lxpU`R`$+Gp07Y1C3!ANx0#ZeF ze|@U`L8B<^m(oRLiRwOjpbj!J(hyzEc6aT=xYNuz;-6s(OZ^>HX>6&#!E9!!9a~zb z!uQPKl}TvMoLZ`PxT1t~@nM+SQh$RfTz{=kE{=w)Xv#CLrl?nw#CGB8p1TdC3zJTl zla|C)H(E zMK=l=Cc;zE)9uj$?0$6CwcCViV+W3X0L2alKDvFHb+@1H*bw}aX5B39LvmAx3AIM0umfxVms@27mUh0UZ%X^$RJTD zm%!0=sy*w5@BywzR5j^A*uPNa#>)KwW@8P3hq#){F&Wkgf*25?P;TD{MG5KR6A^0V zeh{uuZe2=g52Tw1x_82@(5Q4~gj%KBLuxpc24VM(WPp(k_lJVmp1XZP(4$K=!Oxwo z!^9^ejJ4cCc|4F5mMx#mvci|!pNTNm@}nvg@KUzbDNcv1GE(x7+!!t;$G7|UgEs-_ zXnFext(J4VB3jNRFcpw9x?A57rJYDjRF|R84+k+h*4EN~E)~aGJAs^IJz(OX>3rkb zTx)yj9VIwiA3-ZdJ3(|W>rh1vDy2PdptJ$H6vHrk=-HL%5)OR!?MJF_RAawKG#G2_ zHJI(v*eLmYZ|e#{6eATH`;W4Obn&J}W3Ry!&K>KMNhT+B^MFr(eT{7usn*!$kqV8K z(*{^y6vV7Zte!DCvs^iMC^tJ2%xpLj)||WrD1gkt*6ZXQ=&ZrkJK}&yW0ifNDn{P( zq;;Gij)KfG(pmV#q943d)Z8&rp|c$#b#=Bmfl_RQ<+z1))}KpYItz6!?MRp$Gu(PW zkXFNHDl~UwtNGPIy^+=g>18eptM6*CWu$ev0!5{Yb!Zc~dMopvfdyEO_z2!RRE?-2 z9!8ZLE25o92VY3lT%J*gT<2FxMZBOaAzeHcsdk-qnDTgvXlP4Y-+UR_lG=F+)j`;3 zYrJZLPi%sL%0N19Qwi&J?@($*vYFYO%x&FM8*xh z$(wO7oB5!(CRiH_;xbwS4GEVhOGp=|HBpOx98BRvuTL}aLArV1`N_IINRage|F(-} z8VhclV(lu3r<)k}lCC=}P7us&5Hn_1kNPdi-t=b7#t24;R7mP&arND!QgKD(TJm|Qg0QYn9>xi z9C@^j0y1xHX-}z82XagP(MaDEn6dUjb>Rv0&uwprim56TNJaDl>i}2TaOx!->|bD= zAuZ+r@%+n-h1P)(`s_mMN*A=s`xa6mavUKR$t5rrxh>L6WHD*6wcJlv7NFgWaBx`8 z5ro_UdOM4{pMc5bsMc6*)m+t zQmUxU8FV1Pn{%daw9Yb6!djcGi=?Ft11k}J#`Hy&$noIeCTpe$mTw{+04-i^V{pJd zr3t5325p0P!7@PCx>dOv9IabH@T;#{x46Jn7Pyi&jH8GsF_*wd1mj<`&Z|QHD~NG= zw!Jc=@`cu%4dCwerLDo0Nr%TsKXatJY&GBpOJp>_;lRt!E^aL6yi?X!kp5yIdN#U+ zHjgWbOg57@XKF`r`iUGFesji$OT}D2)hVE_2ZY6M&UkT1WCb8kYRX~Yzysf%TwDHY zkF~8JaR_KlG92JXXHq#FTnl<{20pMIv)|f8fr2C!$!0^gX`2L@1N{SiZl-S(KHtjS z0LgG))#Bo%K=|BDd_in-VbZAL!jzPP#FXUJw78_gf|P`U#JI%x*reh#`rOQvDDvD4 zD{~Jmvyf{K+%rU;n_*x(v{k#v#?Q^nAY^mT%`n_IjBx35GgZ+}o|_pB38c@>OoE^E zxtS@5Z2q|!n1G*~@he3+#4981!?EBV;Nxfz249=0vP#u!GpsQ#e(@@a7Y?`trtP4O zY~5-wDRo=6z7t@uyNGOw!?n7$#Nj_wTjJ33GAUb8Ls4tl^DWq#&!r8(C--kP@;Cq`fnR_@b(EM<=_Tej;1pDe z8I}ltQE?^a{rI;jPFaY5Q6VK}h|ce;I|2VR*H2< z5m(0aO ze&feA3^MVKwSym8=a_t(v+}{p;c_R`tNHtIsW2a#&Yw{-+_JV=l)_minDf3ZHxSlF zjH(CSYQ>?0tFbnJ`J)ro`y%LY!s;ph5JmR${tRD=ms0tn&R7q_rSyzXt!LekXu~j9 zyce0I;ENYNwEKfCpIMJdeYvv6owfdA8p0ByP}6e6zRmH*2d+eKgA%vCxV*@bnk1|N$zNJ?P3u@Kq#^JG|Iv;%?3cN=(3ePf?i@L0iv?r8vc3y9mBfAx=TG*t zqQIGLws3IsYwJrUnWaK4egrwSpKz)k6D@scVmGdN-GMni{%>$tOi9q|AsgVn+s2oz zxzgthgjBcgvUQQ^YnDo@`&?5UeIMk^<5bsJZg&+%TGF4aTvFRd!M5j2Vhc{gapV5f z)J9+bxL;*$=plv(4O2Ll6Cdc|a2Y$3x_YkMHKzo2j1u@X38c^sJ*d2Y`>i|mDVo#*rHz+Qxgedxa0apyj|Jhb# z;Nbw=Nm60j!86Y76Ss4zoVq`_ZCx)NVtGXK&@MrfgQXII35P(3yVgM_4x9*pv*NCV zHC$}~a?wvLy#(TpAC8vuezC%v|3Akp?E*UeW)0(zyK9kgYq`>pucrPS{P~*|O(5d! zg1@!k2ePKSh;|p8>eTEln1@HPc(35V`&P+A^lHh^#G5=@a_CnZTiS^Cp^)H9p4{z! zw?N#VR>kdq{swfSy@Db7d9WJ13Af1gx&Ypm75ex32(b+%iOlMnQh1V7ElPxWtVI(a zTKkG(UuBE(cy!#Nwk_2o^Td|gk-0wEWWiTI&()-9y`CJ>Y5?g_L>$V%4mqd zy6|~iDwBmgOtcjW;Fe(X6n-G8ihaw=95m?xR<|Sznmj0WD|^(S!fMdBx((n$Jz&5A z&u+o@t+x7(s|HTaUYu$=%p;(F7$WScVS5H6pm;#lEzTlJ%r$@n5wF&?O%qJ#`O*~ehXav!dVbVAv3}n@}6)9^{5kF5$JaQ=^oOn2w;?mt073PR`Ns5zODIClM zM2vxh84L5UIiedz<$Hd%g@Ra0(aAiSsf0(z<~X&L+8oEi`CHWqX@7mPu{j##$*mgN zUht6KV$4(bb2A<)z-vzODw8F{Ph~`9yW$=qe1~*^| zx7J}mD01)y><4?A;6|udxx|EM^@3|Gqz97BFLBl1_SWRpTR-*z#m#J);M0NjW~OdD z)!c%Y*dPq1p#P=>?2+8(B}tV9~|oCci}ZMo8EmOX$_Wdw{^u z{$g^Bda2iqk@Gg)X5vQqda`YYpV$Rbsa)!1C~N5SZ+HwD?$M_XLSpcxYoZjR=AZ`w ztl{$>cVEIa0q89x2 zN?Qxl%R1nbSJ}d};NI)%Mw<5MfOlAJ8?FU!?`Q68I;;lwfJB2^rQ@4u5$tPhtxRWh z5stR#9jZmhJ^4(e>6#irm<;N!v*l~S_um>DX}YHa-Wb^WYr!%7HDk5BPhW3qt_45Q z(41##s0Y5mHcbnTooP!oxHvfmOmAcBsfEYhw4EOO>~ve4iBkpUPHTg-<+ctWxoCGC z5Vp}4DD`6aoOeYM!QPcC1Yqx4#KF70E9CEy&9>HB5>F4TT@9RWY>qWO&+yzT_{J7n zUo8%n$xGEbw)lOpY`ZPX#DQxnnxRus)kBkw8TShhV%1*l4orExexdSVR?bpQTZFcR8anBb z##5t;@RMO4-$%T(%htjJUYr11qq#1Ux$sq#>-`CKw%mTNZIuVy91YRaHA>uiav3quV^2q=4x`>zmL{Iu57y^y^gr03D)7u;Lw?#l$11S@}L?CD$I} zuFk#-JDxmNBp&s1GWbvj5w5qqEEIyF@7X3u#VXYLOtn9zsQKXP`?ik$!xb!4zN}9poFfm+-pU@JYtFlD7-v_o@aPO^gStn>&D=IAuKS`}^63<4w z^tb&Z+mnLV9#)+~WQVwPyhbPN0ee2N-8AtCYLT7N;XED+a*C5?84GK$;VLdxlt8fJs#dpqjNYSFoEz6_WgeITbOwMkhvE=g_ET1 zqFdrZDW*!G9byS=sFA=IDY*wCFWY9oGZ2Q%6X=!WuTkcK$SbyQ1&fOd`n;>DMw)XK zTKI=9q)J#<$Bn6A-7AoFXn|!pp0z8nAf=;0>sM6MXT1`FXA|6p?{D?n2WoQG{l z8_dy+U9)`px-C*Lwc-oK?mi0S-mtZjqF4q;LwlA=W6UTp;-)Q13+||SxvMEp2YkR! zwzVd%bWKRwScl@uJkwV{+ZLLp@HN49kp6Wdm&#ODK6T4>Lom(bGRdt$-`|0gT}$|6 zBo=rZ*0{U2?mF<_-L*xTHtN7X^^2{I5?&>h=Cq9*fkZ0NzuGK?PD4kixR zxuQ6~4O@+OYQbphr&4q`F+QttCQ;$QPonA!9QemD&+WiLr{8Vwi8m-V_1{16*w~6b zOH^CY$1sKS-}dI6n)@W__;E2hNxf&E`PGh;w=D=J zb>w3EB;)y;u4)wQ#l_qtq| z3ty#|Z zvBPZ;nG~Ixb9){g@mFX8;sWjbyF=m0|4-ID-(}6LG2@htd4{J(W#CV{8bjx2BmC{1 z;g#UY#shfZ!0jdrQQVVfIv$kiwOL_5Y7#@N<~GuL2ZalUEHKX?H2nR9^>v zU4*@x0(@G8J=WAj2NDR8_8biA+7ZE-*_%`H@x%<%g{JyR4G)(zEd zU}0Tg9=0&NuV-^pdvrCin4(h)E8x+w2g^-Sd$2Arh3ha4XvBMZ^z$HvSorU{OpNa^ z!)|YC36CPF?5Wg6I<=?G(RN=!+?ir*Pajd9zD6*!<>VOqEJ3uS7~9in6$)q-Xa7_D z5OT=KoX)#36z23wif(^dN*PB-J3Mo+*AL-Sm>6B``dW`&a~scZA^xG^*L~7zwp2bJ z>^Ix%fvqpzt_2$0-kJu6?1yXRbyHb2{NYg1l&W4Uzn`M@1U$W@-{MnP(ejZL`*~4n zgKDGGZ)jsNX8|{KEC5e0M5No(1+T6QlT0r}faPuNO-y-QI+AD}(>@)_b}XI-SCj4TN3Z<3X7Jt@ zdp7+%mt-W@yEMFK!=~CWP3_wJ)0AU@p}p+>f*7A>?Aq$l*K%SAW;U4hti2!b%Cq+Y z7oW5Hky`|uz3mlZr!-@4=XxT`UCOOK_J?BMG-GcU;;z@_?c%cDh!)axot=N0VsOCo zi#R(zg^Ab2!AL_6&ew2o4&j5w*{vLC&jfXnp`Y6TA>0bY?+IFmiSNjrf}fM7^>aL_ zk3)Pk2wOPY7yLTdo&`3{Z0Ci(`bftR5&G^go^qC}=y41u)x{)iIQaRat5AO2fa((8 za8;lB6=55>5|mg@#ZY89f6_9j<^0Zbcv!x(R17)Ba4XB>`<4~&6t_WT58#F@g6d;?Xc@IB!Sy&V^J zB5@vK^>l(xtw2oY_=Crux8NRF#n|(ED$1&jz=(Xu6cX58&YH+Vd;$Z+gjcBmxd3$fLxwX9(2r9IDf!n?8!R|C)v1_`qU6fKbXOUvFW!R(4 z5yZji#&)qvg#uvr(F|4hxi}hf&M0Eu;6_szN5^zs<7ky$xp5fral{M_A93%yLBq&( zq{S+ms0SL(f_=xhBu6vTK3?#A-?1Ch%p1nK^v5s^1Da*i9D9-|eTiz*w}st0wt&Od z6Z7nK1nIgl=3X64JZ;T;8&17HUSL1$uOG^Ttqbk*O`dJtRC3X3O)iy{2ETB$Y9$uG zZ;}0k)PO;fU=@$ZLs=>fRvUoy7wvDEIB-qOX{T-DDksy`FO=B32~sL6lhkx)i9OMj z!BS~WsbJPp`#BQ_uBpkXQxl%v=Bno6L|40yxjb~(DrX+tzQOyXB1DHlV4Dx~+<~pU zeYriwL!3j=Gr?To>>=^kxMLpOR^2h@!xV0?u1_kN-PX@@HRH6a8JdoHS6j7r+TkLd zdZ$zS%lv`YPI~}2wcef!nybYX{YsBJgJy?e?EmP{tbUikbHHseSjeKN7d>(F4yaxTp=X7wb`aS9KiGlSLHldcNK~P|1;kSRaSH!9766wE$g8b*e1{)(o7rAr1~2f9RGGoE zgiX{8#6$LGqPUKtQ!`l2qhm9e-Ck`5&%%_)GlLMWc{=vo(bXDt4S z?K+@7j}LX5b$ASO39Vcqis-wIF~{r$Rm^=`LGPk(e8I6}_7^MP*_iVN=>7NA)?mYX z_B_)p)E;7yEKK#E&ZV;U%7c#E6GW+$WvVBCUC*R)_%e*Yiv+Or1H87Rn$vc@i^{bT}Z)GF?{BZpAdHY7VT@F%Q z$xiDH)J+T^$l3Cp3-%fUeCQCOrGx!n%xj<<(r!_qfpK5j=fN$c5UY>wMr+rzssl23 zcO>@B(2Zl;We~1Wf5dZ!go1nuCxnY%Yj}l++`BZ)+Ckc@j9?pqEtl+RAgv`FaUbD@ z%SEuF1Cz|Vp&eCF8=_Awq#KV(-!}A~w=`tm)XF#-O!yYQ@cPqL*df%+H133KRAkjM zv6^H9DCvG6 z2ejpA(Bl@AbDf{y)Y_?=_P*kwN`&ot)AgW2*rb4;?VH8pl}Oz6vZxyuOB~`35zkd3 zao6LW2Qw8C-={C}4OK9(3Y)oYByq7uN3~z{=%^EM_<~-)*gJr?u0y#8LI7R4H|&Tb z4vAe)>;dwBwFfIs3i8HXnRAjeezSXtQZ}kgKS2MR+6-4B?yC)g1<>wytW0-%@9rfQ zbyW1u`FxX99ouli4}7(Bl)UMIy|F0Hr0BGFet}2Fz4NG!xOe8(DTgCguysm~XfB>0 zlREl&F8@~-9BAi2TQAiixwu0k%k3`OiCxG`|F$~?@d%9SzmSLP_EdiKIJ$#iX3Ho3 zu{RaPGaZdxUYHu?8PTy_5Uv96YK}fZI_Fw*TDvf?dbnPyvSRf~$F~b}jNASgIuu$t z%i7cgcS}9%%ON!!Cq1M(oeWi~10{?ru2Pk{=;=V)BB4sP1n};(NU>!ng1RAzun`gb30z#+(`d zKXT^hhKw^AjU18Ui%QNcW6ovB9mSjJ-;V$Og019Q_e) z1X$L@v0J>?$=LEewn)?~LONUCVpLg@Lt(TApwTwI?2+Q7&hAA5i}NuTf?D z=DJ)HlRB%rn)uG@t_I|FaQFh}lG`=bwREI`<-frGrU!&_8xbE`cI~Y0Z{XRrWJi!| zU6!{4GM~$*utMP%jx6^Zde-MPq)#KHyCV)L@o2E3HJtl}5{E;;){Yc$RcB+d%Ty36 zNI6*S{SaCt68lr+D<{?wCcfI)SOFaBQlJ7fL%0zjHqJ3Xe5(>wIOf7dJPY)QGSh?q zrI@Q4H$3e>vGzkl)?U-F_KJa4#3VU7fLA-f!Nwm(8gXBv5mzcF+sN`8rReK$vn;g^ zM`lqs&P?AbW@H&l{tL?Yb_6k7h6W!gh`qCn#e7+X0-%_q!1z@7z!4O4Q!p+S3Vd(6 z!%NK1G9F`m?=D3Vakk0Q9b-gh{kxETXFGk)t<-RCIbi@lxPaE*7rfrg*37g6X6hRK zc1$imxLBTr+f#XzSw(>S8whK((icq1bc`~(*X>rOpo!ohw47y ztGh>B5H5qbEJvz1yCn$8xRNA3hyyom@HvL>z?m#ZRE>*pKQz3d_v+ub8VS#VMqM1O zg=(N%7f1V=6W|0(X~1|8cgzm&3_1__Q`!)m`R7)n*;CDL!FOV2u8A^VhN&gy+3*gv z67vIi7`Vjz9W1ZJj7lvrKL<-FF;{~NbR}j~S_v+tWU9F_MgIjc9q;J=6@B5W@P0#I z_}+kf=nHQRzmLA~af09BSGXB3J3l~)cyam<^o6Gp|3qKV>5{8^5%XZgv%z(BuUA(` zc`dO{7kqtXXLq1jI{ZIg(mT}Swl`>gb&jc?)CJa$M-S)=)~&gzR|!EhF1QQ5sn;MA z-_$$#scRiTY+uJO;0 zQiNB*u@R0A3Y6Y?&H>V=T0rMWM_VNzWOhB)1|QOfEtqZS%3Z&WtPu1?Bn_@kaRka2 z@*T?r={E*|1RV~_COL*n54lv_xQrr4o)?0JYU&LQvNRfG6u_Y3qasHgMHxu^97XjB zMRy*HqVi$~++Y!w?KTUb;$3qt3-c}v*bz^86cqt}gn%G$b*!UfW$gImX~$&vaaWBWc*UnJmbx_HB z?IklEojk#}hLNnrATixpkU3&*lYpi0l{x~VU?Z5&FgO%^JlAnd8pbt}X=yQ+ zinLT5)|K1_q5;P*Za%957lwh*1&$XLg{#=qO@}Px@hF>C5H@jlS+hp>(4fj47CH8L zh+7DMIAQeCfD*r&4W3`($Q1XHTB6+{hndwf+z@r!tfi^q;YtWB(4b;f4pGR!)kC;d z*-Wl=dAZavO8SapDAZ*fO88x1iOdqf_+^eV=|`4D967qs3yJ2ps5 zlx)K~60(>jG97WN*iJJ2*=Zx3i;~teP!f)Oy4f*K+RCNke&eMrj{d@W@ckATYw;-9 zS#;m(*ef04P;i&FUhcEaF;LKgpL@mewDi6TTwLFcJgUu?j#wu_fW-}G|=QYRgo?^}JWIC7XK(+3Q64J#x8XdR} zQ@90eT|&DM@$2S+Z3p$o&vD(=GY_pHHJD&Jx&Ogijyi(ay*r+I;O>)TMt*^?Gn*i0 z%YzR&)(PT}?s(=w7vqu=1B{X#zlqO4uE2dX+yo=5;yV|DVveD6cilOL*4_Cz28m+` zI8fxAP=!|CaGAS$epY;0!>jd5UV$+-N56)NO~*`0kBw~;8`~;0AvHcFB{3nfb!yV+ zDIjdq$_C)B&5;#g00V^LRSm_rE8+Dogb@cQufdOY$8_Jsw%Y1|Pv)w|AoT55+JF-d zM+ZZgX5xF52*HOgu{*wQF_#jo)R;8*qViF&=a?$$j>X0_CKy# zUDCEUpPwM^WzwzR#U@bruH#i91YG^tq1o!;*5n*ddX;J*DKT4Ka?Ei=fUn^|G|g5IhE`vV_Reuf z8v$-VfoN?(#^lBR+=dT^7UV{Au@WCZYS=^9a6EdDo`$;wTVp*2ti1K1qg6xvp0g&1{P-4*Qx zfKl~A<(zaKR1(t1oN%m`b};ftJaqenBUReRrQ(ii2bg=(5u$}YaT13AM^(@suuyRK zug(pUo+kJ-7ARKYr;ELNs^h_K zFolZ+booVN0o^>1ensEyt?H?Edn*XJbT0i!jI$K{eAUqrERS_IlXh~X=6~a8;#zQj zttVbT;|>cDKKB>q1-#){Fj0IDS| zlm(=V{yAzbsRL6UPfPrDIo}1GZf`}q5Hw-Xz#O%j^dkiGYI5Z#$7pFRM<%Z!<{Y(# z^vkJQL#nXKT_CP(t1q~F%dy6wk1D(ESXafUc_$e)&$#2*F1?AUr&>px@O#@NUzW(U zR9=49aZ;2lERU#ZuW2i)gXO5?ae(?!|B?aE7i|c6p$|dqtVmfspR?5tuCR&rG@C{!D{eY`ze?0p)19NPJ|e8 zAEcC_Bt|_}ZwIs8tvPhS8B#+Ss%Xq$C4Rb)1$sYn@HbAi%T?H%KB;(=7O9`-YQ}dc z;(^zgwwN2QXMrWTY71OMh$j{(z-QdIubdT{7Mq+}n2?$nmlB(lm{?R?P#B*)D!#BF zKB*unHZe9H9Jw^_#j2qM$=N`71+&84rRxTpKU2lqk_&o=ls9H;{~L4F_P&U6ifjUr z<|EcJQ)`!Lj(@l26Q$Ljo-%gKnyKa{aBkM@hYmrz7u~2@B0a`}|AABbN_qFGhIgl2 zf~QOEP3t(13pY`FD+%Kt(E6?u!PWbdUc&) zRHx49S3DKp(X5EZ3SYJB7)Pp#AKATgL;s?&MRoqNT>dB!^3 zjWTusLClutwQz^|Ma?nG=q8+5AEJ8d9*0qIWh$EaF`3TX0$?VAO`QCw>!SBYA z9*;`7L%j1%LAr@*;>QpHiOvk^S1uJ>-c4{I(YaOut+I;I|IRALyQ~6V)z_%E!XN^A zE7VyXn)t$OtYG*g*SZvEz91&h66lB^R#`&27}#5F5WXhZZcGX$sFap3QXv&4jP{9{jVKwc6;YMQQC~EVmdHN zdYwza;@=F`WI7!RK$ZBH7>M7XXUyn?O@v)%c0wunkGR(BEFirPvzg?#b#}fXh~FzE ze@$6Jx_C+>`S<_7B)`#6^4@*alK1L^N#`YBrxZ$le>W)kg@sV^O(BG<8{j1$(MK(L zuRi};@?|}ov4YeaRYfI_rvnCa30U&I!NMHp2TDNYbil6vN%C^rUQYN>^$T1*xZ-(S z0d1#f=e6JNf)y}<7IZp}FbgoEj0rR;8T*q`d)eO5dC8W~! zu4^m7`sJ_RQ1HU6BWUglUH%0FU12PolAyByJ5cS$siN_B&f$~)NYlbxC1$8ONKdh}z>CIE$p=Tq;(#0U&3lvzdv5?m`|`*f!JIN}9ld zCr|S;Pa$2N$915o2I@?(WQToq;gD^J9oL(+emAFE+tt8^&n$5Td9<0O`5AOu)1uqJixQh9z0f-P|U)2|8vu<$kYG>_g z!X#1vby(w-1*8i@z?scXUvA*n7sRc1D$n`pQb}iD_46Q=coHtv^+p{GcY6t26m8k4 zBt<>M*`R34lrrZY51~TQmP5({(uHm6wroIcVJGwSX(c0m-8}Hg7Jc9QO@DQVe%VDX z9r7RfW|cqi+~#~y_zMwT$;4qURgMRwglyUW6=y9$Gz~Bw`}b3!fOW4r7l?rajK}^% zTo_oouCf2U{>b-hj$px)BS;1KMSqSxWc<%1aGGm+-T9r=Z2+@B=1qEYsn{yJfxSDN z qDNrhU#yE~yf-EP{#!eUb$g zAlZyH)Less%zToIB8!FOXaGg;D7#C4Rctcc5CadJH7Y;MdPMW-x25 zRJ)$D;&!0hdEh=7OahIU*COIvR}P9zE`ubDMOTOT`gdxA)#Kf!6Oi7mMcylI@~AqRQXA^}p%Fk>kz} z48pHX@57N-ok5I56k)DwP|wp(Vu?&-^1ct869g%c<>7#e3yI&Mr19uvYT$NtxrPWr zKEh!Y=ER8OWn-jxt}M)nQ=J0(dbAi+8%%t^tSyH3falZD>Or2A%>mWqYH?a(a(qH+K|xYMazSBoY?1trmke){SPMp; zb^37;>SJ*G|?y~ey2k=>?&0FP~&+rs})0+@TctiH4dDTm_{5^*LOdzqu+DCIgGc1_>YUYcL=~D@tc0$dUH`}4cgHtzECJ`vruj@Ww&^a|bYs*k z$y8IF05&Fs(2Fd~1k)kZK#VD&nPS>fLQQ>i(nOb(4kQNh(h0JRAhaaFOD`nf?Cwdo zS7e9xzVELu`TgV!b2GEEvopK1dwaV^U9*uXDEcuJn@~xm;Lf?#K=>_}9X$-}crWYFuJVVf~`p!n&EmS?p)ty_6`X;$rReb?=`xVEd z$nZOf+;+4r$z`c_3YNu+GiIO#3r}b81=UgGWLMX)E0A%Ne74n8cngYMUa%Oxe_CFE znU@!ACx0>5@`CE*DG)!zoD}gV{Ih_3r1lqv$X9L;4F!mNzrkUMY*ytlL>869Fhu4% z;TXax$czHmJND3gR3mlRU^IW{&_-zO^j1-5aw}Jk5Q~YVwdzOUqeHGrSiPY&=tqeI zTezxmeDYBIVQdHF`zF3_Bs>ddKzRGT4xMlBiZj2$6<3`;dB!xmV*~lhQ{1F>z7X$J z!`s!^CGVgFWNGDECUn(QqLZiuYTw#*o6ll(fJa(7wB`RR9e!>DIy|ANgCn5BowhC) zKaY^uN<#WjoNJL{o>=0UfTTx(1=MEnGDbKsJ6Ss|^sTwP|C*aq#zABAAxG zfw;D=r-kF1x;O*6G}gO*=HF*EfJbT#;?OaJE3(bsR|DNKxKhc4tFt*O5p^@V)@NS{ zszM-~eHTCRKb~D82zMHwj}O2VbA=|?%aK1YMc~Ww$Q5(-?=jdw+4(xdkZlg|zud*OJFL~P8gL_<(2%Qx^1He=pgJ8~5!@AI z8|lhsRH#m4k5yrEhHGnN54MCred971EK^^xI_O^Hk$TSc-CR@o$UzJxy6MU`PnA@*?or?=|}A30TG97;t_bl!i&^#m_Wl%6O>*3lFh>%7~~^(7a% zTw7^WItUHw?<$O842GMNO!)4ioBdrIBloaE1E!1F$zX#F&Tn#DA9LI( z?=6j95k7xyMb8W{@gM=jCX zWnmrp_QUa6*aoyVg{zJxcZjMR)_FLL%fG`NA1~&*8bwK-5l0nhi9X78Sp}v*8le`u z>&3`{Y#}5<+vT~6;Tn-Kb6m0LLZ0hfm>tBE0BwnmI$V#b1*PY^zKooq5@a9iIua1n z_6gTtVM`=Ind4l&WP%joE~>7u-N%vJWu-tb6(?0UL1l07$)cW7(atgBT`jBf`-am~ zF(i&=Y7QDYiPK!uLw1@?M@OY0-!#{R$ah(70ufaIEe0EmAW-Gbr_kAcHr>@V9QB({ z`Z(w)w?%%%kkdXga*k^t_c3mPSHr#$ZN`5*oO~k4bcx-l_Dpfk)pK3XabYz_(3PQB z=8+WqFw{AGjnJ%lu7x3bhg$Pp`P>~eW4>!$4~-$KKr&!>!RjcoBGq&R)btt@GQD6e z#oWOq5)8UHgiA%E-IN4jUazZ|kC6#;DpTWwfrDI0p6{fovAP1ub~8N(8)4@GNw#xsL*kwRDxw?4bCy85)`Y>=rJ+u0z%NBO{cj!HxOvGpfWA zS6bA;piwXcOPi`Q;N%q4Djo>B1@oRCS3krGKeqPe4KU%`}uF23N7L5DNeRB=XZ zg$xcowFUa5gIdhu;aLjiSk!jAt8ZAHk>YW2Q6r%+;!9Kr{j#~%NV3z$xwrLMjp*#6cESuu75*;z0bRr z!plFy3$9{eg1o4nifV~RTRlOg#%NZ{x!^_Do1CzSkwmL9eWgxV$zVxU7NK8XcJ-{u zP=imod(BHg1^;r55w^?e#jnv9jU+G5B3Uk_0mK2iup(6vx6kz`a%z{z8sU+s6b=Y&fPnpo`aCo@t6KZ7L}yM#_3 zbm^4T&C!~7M<)tDs;Rdeg4{|WySGqnlq?vsxl3r?VOM7*VKYROXsD*1aKzO`N!?p$ zt0o-uipvnmluunXNs5*BDyx8z$qSpDKep}xXD@fT9%atYk~sA$PCPEeI!&*+u5lb} zUv;^dQv{fXPE#|&h!h7ojpDE|S<92d#+(hDE_jbWj;UzLW%npyDucl76b2NC>#{Ic zM%pdK(;V$Q=1LP5Dd=HLOFizI9?1w+S*izBTc#9ascoSx)l0>REfwR;I_bK=bNdvQ zVj4$0-AtoMe0Uglf)vRdJ0>;GA7Q)-Daqna3>VcNReuTA(E~X1&$8FCx!8yN6WSub->Eg5gTVN z>^biicm%N~-UYGnjOz=Ie_Z4iw-^nSbHkl=mNhl_uA`OPK`f(H+d)Fu*<*DVgm@JB zp{pcbv!R1keS&@{fAd4v5A|WM9p#!DR?%I#qop<3a+reYD_!s2%+atFC zYrmcFNV4C`3$Do=e_C$86LN0RelMx)w-YeZKCKX{V$&sQ)*@)1mq4H32i#JfzLVGK zwp=T=PB&DW zu|WDMwRDrp4bffL&41UhQeui`TjTE1wW4paNgf->L&Y%o7u5tCNYe_i?;C0n+>zgL zOvu2n!XwhKbep9!+3(sE&JDxtsx6j5OJr3MzgZqkxig(zZn#=i;l^V&)e%b)TYV*) z_gmMzaPBG0MvquxjwX}X+636p)bCxv?<^mqR_8OukO*aV+`_AVpp$L4Ov4snES^p* z9_lk~EtCH#njCfe!Ic-I>6*^tKe)zl!Xc(CG7$Fp2?jzZgCz;hA@s#hu8wkQoC|mR z+0|V*qo%(6v+LbRMmFt+rG!3s-Vmc38BpRGgw#<4;wTGdak)jXb>mmpNUr8BsoX$< z>fSRtS@@5HCo>Z|skjAAF!orZNS2EvsEk(q#KvQkAX+6e2o0?sl}@DM>)FWElG*Ab z`Nm+ic#sAjor&;~RD2TUWe!M^c!#Tb@oX#>O|G+MUQMGd=rUjma%faX3B_2!XrqTl zNrFeK1qYPEheq-JD^SX&<|R4I>tDK4s`8_4(qNh_73fei1q+1ZqWH-b6u4N;OByIv zyMa()q*ok8viQ|D*#Nu}+edoYL9?BD^4bh zduzF?SV|A(kfu_bYFBL}Yh-fONrc`a7Txy4${Qq^Me1J$CE&hK5^`H{JH z>rI1;h6zWp63mhgo^LbFeqL<$*BLU>kA=s%KNj9)urS{iXV9e#mJCPlqDArU&PwXu zf=^92KEa(6$%s{rL>Dy_VkVxk(ka($YgXX?sCF~=iVzc{gU#IE3Q=~sg~*QI+7eP4 zVNi`^_kYQi3B!XB;MIWj_Mg5JU)HDQ<5 z?uC&|(JG^UBN~-aova-?`?hhHbHYSMB++^XgCJT@M0Zl$b7h2N{pC)_MLmV3YHCxe z`(JA6i1zO8!WIQ}7?h5tzAQ9R)8A|F?kDV1&~p;OKtE4#4|?CNfeX)4A6 zaW@vP`3Mt{4Zwc|4%w0pcxjL)t5Zx~$T~&ABdJc+E$*efUSt;QlqzQy>(nSuS*NJH z2dR^G!#Fe2-9?-*0v9QDVcFaeXXB3Ua84M)JRq?#i9ry*9fHnwawkPHgeqUDC4Rij zSe3@c?9T3SyzmSol9aKUL69<@LB$#Fy=uZ;YQpkv?uj6U zp(XDH8@cX_rM)6>;o5%dfk#psR~fjd2k(=&@nt!)*v4m6ZR`OIlT9&7D_k~N^HI=c z<9X00I3LHgfsG{hdb@*@(3*~rwTXa7z)e#t+4oe=sr}q@!_nRA+iN;!^m8u^=TeB! z;4x{M6UJ7eJG4fg0d9Ij8lI?gE%3iP){nx)Dd*`C4pnj{RKqGWv&M`EoTq0cGJdHt z&ls6`Mus-eFlwIQm36w}*QPl$M!6F>w6K;Z2BqdLvWx#-KG+@2&BKB#n7vOGwVFfa zW;zpxxDSVMs{)o~PgaxW81ocdXllWt3Aorq&iUy`H{xK=B5rTeG>Y%gBq_^+Qi!<& zx$;cXGCaJCR3!VuG@50wqFFjT=wv>tAkZ#o>K=E95ye?*b06k}i%enARghOjOzyQg zAc+~_DhT$8c_i3_htcAw;Ar>2gwg!i_sHl=c_noiJOJENp4o>Cj&Z*>tstOxu4|twfV}= zJ0(v)A$rCt$_dv6PH}(5@w@Zk}U{yohNC-EHt+sMx#lUP0ouwX+3 z*2cIMSbf#KpidGSc3muzZCjduvzVYeIpb%#NAZFew~91~D`Vk{2aAOXbBOKn2_pRO za_9L)-u!Gs{1|8mvXJoMT=(xBA3atU2X)5=6{kBG$V&cwmGk^a?eRZ_!JMZ_CGgP# zd^b@IF#@{C)nF^p5gr920DW2Lp3D!E*I}@nnFav7BrMwPX3s4;7^d_}g zA+OC+xk7Ah7Sq}U7t&`ha?gn1Uj)_OJT`zi$5is#hr}KG&y7_qrSBR`m(q)|NaYZ{ zc&vJeF2ZX4FGKXNjMK71G_k>#avOXW+6Es}8wAE^=b#ezrf~kJv7!5iL81-5r<|G2 z$(!6Qs_@mG2;D!7Rj?pfKaX_|+u=^)oxOLsd+>byCzJ=BN=Ba>`0RQFBHFUEF^7fcqSZLZ0=#f0D@yd;$` z4xa%GGo8^?nxr-Hnva6@aR=(dE)MHkyxbNxFeq+4uRTuGUOcHJe%*U;GXg7iD_2i))4Vb?b+S=VFT(+W_>+>TElo35F zptKm#WrMx3DE>otF+Z~)bR7R7ns++o&UCgfb@Lp*6dyPeBH`!5>09Lh3;Nf2_W~Y) zeIVc0%$#ZjIb@MLr9d-shZV>&rU!^zXXB6Dd%}gcaodE>_@hN_nBb?wBZH6z3$*_; z_rVauTy8jSbGxWAK?#^g(QFwLq zpECE$xQu6g?i5)Wq~Flty`xF_@&)DYTzNrwA1pI!r-%)~*ny7rldiaPg~#P0 zNs<#MC5EYLW^pUI0|T#;+NDBD2^BUY2u< zec+k#%0AEoTWny!uFB3?wKXM6H` zITH5v9k-q5TZr6ZEt2HiVl8S+R&BJkte^tFey`n==S)!cRF2^MyN-~o zS&85%P!tZH8GQKwjxE-y>O`4$hfS2~uh<~^5Ih1Ifi;ZRANF*p!8e;2dI@8N*i7*g z6-yXRCXywL*y>oKatY%hRFvdtQoU6HyB+X8w$}f$hOtQ01sh4*5RV59ab)Ooy&^)} zA&1%_u#SOhW_yM@FT{GfawwsWr@9lSGk9!8J50d8Vo>0+D-v^Dr4(3Fr)GO?4R)f8FS zGE7r+eBf6L9|YTiUgx6exX$^FJiqY5drWCC$|)BgehZ3{l!7Tw%o}l@uQ}lphM7zW zE;9%+W`5%QSAwTC7s*hH8OmRYo)f|yhF;20B9c5axlgcdx--M%9~!EJ9wwbblRYo- zLhVVC-Xy;{oLyoN>N8lZW*Cs6LPv)tYI>3nwN}t`wVkV5d8%+Sa$J-l~VYHg?#}rT7NTzzKsaCZrG_hw|pC-l(f=w$@J$NS; z>A3o*Y)IyxnI!AD7GV{%lZyrLNE()>wD>K!&ub2T*?^qy8z&&~C`7|EzC4&{dzAD<_zWyqzWeBP4d zgW>+_sd=6fIiq6n;QgS@BzxdI!@0`gd5#wjF~V_{LiYZ{$8;;6@Qf4oF%Pi~H(gw% zk6>`bg8R_kah}#HT14`Jf2*mB3p{VjsLAktO-)#Dg6B&aq122&tEr!#=ouHuD6AT_ z&uJJUbe4nunB;joR{J9^bm`j@7IHX+kTg}YDmEW^=aV2Ir8K~KeToMTqt#2#v|j9d zDJsc`pnKiEtKzK2M|PFCMGqmT(q>9%L_DPMUeWL{ASS2M)?~TFqiIJl9KmMiyH2G? z(`uAM4yc{Pa7msBr_`naD>+Z5&}WK=)h?e(I(*H~IlO9KvIYic z)#@w;lgVn)<>`!hCbQL&ZnD}fdb`eIw!kr&W(Pg1mft%S**-oU&E&l|M44NdYQfA= zzkbZ0bs4p#k-RbdH<#R-*^iSF%;ZNQvdE3Nbe?8Q1Ki690cIXoJ+z_TmF zf^h93&z?|cIMDO?NU4GI`N%)C&gc6SR}|M)I-jqS+QE5qpH3y`^HseAe8sI$%4ARL z@PdV-YoNp@w>Jxmgw4+LKiwL~Ek(B%dvZ7*>a@gT;F_YzOFW&!u7iom>3o=ZIp%`D zzyg1l!dtWD1wP0EmKQW7Pl1>{oiA(}C`)>ja14=eVXI(>?31sGA@bt68ivRkdvy$v zbi4+Ju$h_D`DTT|r)+5FOXJ9K9d9i4yjPuX3Kv*F&eSt_Wqon(e}7QNfMcucqb4gn zQ7E#XuU1qetOLoEFa%+%IHU7f#-JlVoXi3fS!_4GndZT58L2BBk{J<|v| z*9aA@EX{5Tx{2Rh3Uo%tmPS&HBo-r;A7G0DD~QJ?EM^MD+M|p%ZGon(iX^IO z^q}#Y+dOdT%Q^`U*K&B8(dGE93>IW&bL&vm9UixmdaChdxi)X6omY`Y3SV1(w;I(N!=?N20rK6EBq#x zNR8SIBgqHj@wC-gW^p{hr!Mf-r;}i46%2*~slgL9Sm_~_dtdMfJl|kCJ;zGoXs+g< z$uK=|p_TOAi-yl+6NR(MSci`e;8Uq?%vdLtWDMbqF&csk+M)CR@*ETTOb4UT;0y*& ze5QoNHWPykUC&_k)kH)VL|*B(-}`wPl48lcEoo z`!f02#G)Ng&I(^$Ch{`XTr|0t$q6Wr`W^HHKXX67WqT68ae83peDVDD-Zg^NL^gLR zJI7oD6$10qEw*UyAu>`LMjpA0ktsYcwBk|h<@Xbg`?GmsZeE1aHjJl{d&7TdwXaFco@J*jMm z#!o&-J5&+}kiM;GQx8o)?%Nz9!X};cY!fD6wGE(3>L>1KNmLecJ;=|$Vn%>K|#sQMQh&ld@duD`rsGU)J@*@43be3u}9T}sqc8U zL^A4%W9kp@c-|DwGUPC(egj$@e9tpmEw_vzBpt_G69-cvy`50DlDXd8UqW$QP1*LBb1DOg)-Z7lP60aLLgL)lHPTXUn zf)Y+58nCD|Qzlo@|F2NhAG(Soqjk~Fq{XGRIey6udVHQ@09dVNBe#$^k1Q!o=OWij zicBMioC@0{3>oSWxngiVTEDbZFEHeYROEo1I-6UMik6k8XvlTRDSHOwKEAxPg-q^% zRi({Qmqy213Kx|u_=XoKq1}qo=`t451iGCy!qL-*=I8{!oG+VSKZ9PQ!>X_FNX;&FJ5uC1|Bs#R85S}C>1)ZCrUD1=mQEA~)tI$`@Bp#XuDjlqPqCm!|Fw;g2 zGud8$!yd00EWuQA8=BfKtR8B%zI2i>MXPLhNq=j7X=`Bu^H5Rrt`J3s2w`qxX)u*> zL)i0Zrfd}5fJ+kd5ydE40*`{pjC1s+(uN#=SmYK*(E|)O8AZ3uRF0x0fMH$$Xc`FN zj;0dZ9SNMP~9ZyOb{zb=+3^DIY$I zEN^QvoKi3>d$#m3K6;k&?XuKwza3zZt!;lhQ}eCQXYer_-lHSF;`iJrX)8!$*fhE+ zL)(%c?kFu6y3LZJQVOO=7%UlXx*_|n(g|wnKX$?VZMd3x!|u|~YU;H=jSENZx6Dlu zCMsC?ZnJ2I!|J1O=kpKd&Lz*4&KK6n%Mq88SEDDMFKsETW*#ca`trfbn*Tx|bh7wk z(6sc`8TZ)MUJIH3?C5U=IiF7AQyT?wIBrvlKx~0H&|0U4^js&>2v{ifQ%xewrR4=!taIV1(nvTHgkc49&{ZbMiRx&v zzv*G}LT(oP0=M(RicIVM=@03Qs zx+`_U4&}+hOA;}4*_~+6nbOvT5U=OLg$9Xe-xcb0N1XaGVkLW`_-mJc5gwW= z#ex*r)fp`51|C8me0{l{jGE-+jnss1T)#X?Mo7e-s#f-}kfNaGADT3;fN?O*iJ7tww8}1KsnkTLD)vRzzdbAx=2mfd2{V zCEp7q4VHbx*7<&}v=^x4^ED~_UGUPwC%ZF;w0$X>rxmirENUZshV3aX>FM9~cBydh z4|#t@TP|p(o{VEuWH3m(>i&9}U5-wAN^EQ~ncM#KUK=`p|8fm9=1;iWtj?d_ny7W* z-baJDM84}&%56ZB4F-vdbfRK2(T*uQJ2^-Hep$!yIZr9~0!e&F;Ay6r03`5n=B?BT-<53n{spQ_Vj#f zdb%FDy$hGeS4Kpf`c*IoIJH(boi$mk*>@bG2X1m z5(f?02XKC+xqQ@Ifz4~^mlfbj3YUI*C3Py|=860t6}a?VQITJ%*i1CLc<(|iuO3R6 zwJr(iR_&cm|9QB&w;5j(4#tsxi6=Sf0;Q;&)q4kFFJHL!uv%^MDM|$y4qw1j_o2Trd2h5ZAIIc?vW6{Z)-dFgE z^Fntl>qIRID0e0jE+6cKT(!M}k?zAqHPODy2ixI)+WDs|Xn@U1DO>A!5Av%ku>H;; z2WxwN>^#ls61zTqNCm_Pd0XaztSx#bu?Y$y!Ioe515@1SbhF%&H5k zuT(HuxYT?U9KKHnPU2IA&xHBP@EJ!Hr-K2?N%pQs8HwJm=k07HZU9+pCs7t@QrIR9(^g zGj!gM(9coeRofXQS;yb{w9@exi@H9bS!*Q1#x2+*yupl5jqJ-sSD z-~aFQ9Annjvv#4M1x)yinp?}gN-e+Po(`4txk!K)VAU z1dpT+{BVEo7yOeVv)F-8Wtd3^K5~Jw10Mt!rUTd1ki3CS)_fEkikiz#cvEFFyB8=s zp&e9vc4}J~m+#OS4Gyc$k!CXG=NWSK>3Y4%Xw=*C^Q?9=s{5FCd4jQGBDgI9FV`H0 zdWBl9X(u+2bAhy6b1&)Tb{w>=e6?nWXdQ96U>mmQ|FT-sl5q`ax{y;_{+7yK*8{CB zF4w@JF?;y1qR{gut60`UMZ`@q(cRBac0yBTt&2gIhk5JMDeT&z-lzEJqRWkhc=x$Vt`sl*tg|(PhpF^k>14|3eqEX&vb@?YNu>Sy2m8qiroh_$$BWm+Y zDlm57+}I$?zY4v}YVjK@u=e6WDFJJfH5&L17FQ%8%ByESNgsk~;51V)0b*@KGU`e~ z{8@R3d0{_fF}Ao^Iv(lepFL!43W}D<>YVXDA0l};bH=+)ctIhO zyjt8NA(`ai%vtX}4h=u+4Zd3ZqSV_;I3W?!SBtNraUXiy%Lw23(3>HAs3sg;>dlf7 z5{YGM!r|w=%VmTl*}JDE+b9LU&UQ6Lb= z)H7yLkW0A}J_;U5nM=~Yy?1!M$Sh_qsSGp8TpBG>`e76*|JWNRJE}-iWx9V%^HI>F z_Q`5P&YK=3ug!2qA;ng>A+p*ef9Ac(&yv^XNrsu!W{j#fLvU@RlcqJ*B{hlBesuH; z%^{87y-1aKQFX=H--TYhBU6GMN228BN96AIXdsk<3Vt?w#8q>e~u=7QqHI z$>+okXxds1zpSn0HI zQ5X|dx)vyP{Rnk#1Pc?3La4bwrDnlm^@N{oXOcuz(r5zltfwaUNIF*y-rrRwxeB=F2 z_(Bp&7pTc9{3qzEZ@p=epGXhI-637R^R^LgOK8f2w}aQj#L&srfosrEAVYt(-jXPz$DOzIs5OPV#;u5;LoCVQGK*O6wl!3$WuEThE6tX?8b zP|1FRl}nWUFznjr%4A2h3DdAynRM)dU%>vzct8$dXw-d+TUJ^RZjZm;`JXUs;{~g>bRFYdaz(DL3csuej zu_v9DGAZt9wNXzfjQZd??w>)chK@An`7rQyq5U&b3zAj5wRqc*g~8&rs4yVIw_-Jo zU>*>1cW$>7;SmOl$+`AuVzsg)wQ$n^3|CO|?Vq6wU92vO+_8yhQ#SNM*A0!UQHEa> zlauckJ`?CgNUm6jOV{p3=D{PW8#xK7_@+$%ZMDjd@#S*;y$mza|Ex;?Hvz+}(rN2g zf$D$NA*w5v8LOfvN1;py>m77?)SgxovEca&dcD-EQQ6_sx|+;VOe+d(-lzqUm=u!QB&!)l_*_5 zgt5_>N1r9@&x&D@`%J0q$7*GFGzDd&^q}mwA(XwPsqDvx`xELs__^5kxHiraF_ zlmmE!WhzfTh3-V4zKLa4^tuW3)dPiwC-bSxl=*psW$MJ2RqyY(axN=bEIIq6H&nB0j1#6aAE2Hmqry)uy-E)6*Shn@MlC*kHF< znlaarZ?_n%xybhYrWmKY`Nk39ab|-K_D81Wne;}J5%L*Zz9rXUwArlbx^$xjd9E&w zb}lGfvXYBSH|i}wr8DRq=_ZpU-)c|S*{nKyzBSLTHz8Xz$n^dC+!tJ2g@s$t;iF~Q z@%fb$45v-#P}Z@s8u50!)dcSa^ft1O(`K;h&G?L+Jd53?vs-n}0gYBp4v)`Gx7w^0 zhb_(Iu$T-+U9L%QGDDVTG3xAK0i+LG(ZG4QWXVfhoINcsUuOcN=#B8m0d}&b+3acN zd_DZq(cN{M8aflEt$vZKtZ3wEyiuP}Ny!d$QCOlwUEeHo#OFJ5t$LloYIit{raXIE zZXTFBJ>3e{%r_Yh=*?#)SX7lH#Bs2pvTJ(COHQxXZWHqOy+blY;Xu3Y%WX!c1#P+FV zr!5-rURjLu!qz1#xWWpX$6#v)Wj>NKbaYn#p1t~wuGlM0b~$y$M$1cUHZmmv4K65) ziL1C)$TMei3v{@ktV*2CVRfY0OnK=RJM6^F)7i{<(3=JZ@U?CaDyOb&?Se7iL*7j`h4 z!F|kTXQFZAH(Wx+C7Uhi2n1SXr3T|H&Z^4;UvlK7n;^b()9kiwRSyh8 zBZrkm#GCW;ZB{!>*Bk~NbbNU>n5^jxHfydf&u%gso%il;fH*Vjp-0Izr0aEQdN{(% zY|S^P>8y5x8TN_mEoL_;aqZqEXxFWdq|Y zF4>9_Q#R{S>GZOiaeA}SmY<)N2T^Y~+43FMJY$+Y&1f~G8BDo)Anx&?=k8pGG6_=+&MKGo&R8pP|kGy7dYDrltw68TaO~*u(-jbG| zW(UKX)ALQa#(91{)k$Xoj;3p&6k5Q^K3( z=Ie|)i#0zD(nvE5N#quu>rY;&8@Dy|7m7jMo7WT zCX>VNuo#f%Iz%8z4dW{=)rg0ztT;!-#nw%Os3NIht~EVB*9IxA1-dDS6{{{Eq8SQ> zY%bR*#xo5oXlIMrY{7b(EV=nMGyFf-W`|EDAoYVB?fQmjX9oBDey(Y*JS@kA6 zk4TeQaUY^5*50f-P zB-m{>vneeNMkK4l=$zWdHzhpYV7J;VxuBFT4^Emi8m;y`L!JeOQV9FJ{Ct`g#+ytK znR;`+6)FefAcp`qH|0W-nTJ~k9eE8B`Z0PKcH=89)q!v&;wml`UAR=H$GKtK6rGug zE=WR6ItO&yFz%X6ddMPRG&bcLVDw7Y8Es-tSjn2Iv#8#Rom^ps?UAPl6(eckP@b5p zNCzu1mMIum36)gHhRT0C{RFyusI2clQ?GxfUjIzJU>s1y+CNh-<%I8_snj>ZLjB`)BI)&(sSxg#R=3`e*8;HRth=HI)azoum80uz88Gz1uqZj@Bn9M9_D7()KC%z{hjH zD5EObaUHl&fc!&op+Ncm(Vth{46g-?jmUNHyBKu8t1p4eM{yZGGrw}qruP2iu(iwJ zmVnQ;wy4$szLh9$G!w0U#M`J^!A{tKS=}B0F0?T}JN=*plu0Ivmx?_C@e-!Fy$VqwoHK zzRg0_Yg#u|3GQo6vJ_p?gAkc2iJJerW((96nsGJ<5FC*B*|1 znf18OB(!1#V-45u`Z=PWB%>A$mE`5*^4yq2iCR(}*~)xP(DK2)c3fxV9PBd)T_rM7 zZH3U0F8Qh9zHf!a6-$ev(iT)GZH&YBDAST+E67@sd^@@N-K4DSkFZBk zGPx{?-?1F;6YR!_i>4~b#1Y3x8SR_H9Y-&Y_VpA_GQtL&^)*BF$M{wYZ!uVKmu&vz za=H_YCC7fq_)sh@?xC70MC0={Liq~vR2$t<~|9CYNIFE5EfNNNXTtts>!;!PV(S4g26h$zPREvQb7Br53N;IKc` zajfrIp{;}tMh?T=N`slS+`K1zpM`Z1dK$Gb5;(uP*7(+b+pq)Qx< zv1vc^=|rD9Y-6CNLpWs z{e%k&Y96U-+LqRIePuOm?7TP4cPUKxk3uB(9j)AV3|^{S_)3}cW%J*yKx;abcM%li z&C%G|zVUn`-5g1ROqgD@d`-W#Bc zrt$_T_911q4weGYeMhxjl zV;BSz+jE}r9TR*CJCQFrE=x#;e%Dg4>vz&4I#Q6kVSZw;IKcVuR-%mka9W5wetE>gvKnV4XP7s$)tYP{)1O<}XM?SqwV5V<9$Z85v! zIkHtT&<65C#WBmx;Tc2`y(q@{Sg~&($M+Q3>7M7vZY+Cw<6|B8cE!p~&&>fNZ5oc% z));wu9UB*;`3&t{8%F1$hqpPT{hvqU{@fHQE{UscBi=+fPq`|He&9 z(4|_ZM?@HO22(qowVffTlqsPVP@)z4eO45)$rsE0V-dz8eYW{x_@%|<`w*j6H#3pO z;9}}zO7GgTY3joENVvO4VA~r!Y!F)ctS{p4yIC!nn;DV&1rXueo1Hl7@b>;yb3Hqwu4O6Q;^w9tBR!B#8j`$+^mtp*s ze_JMb&*4D-MANK>h{B;4Pe#9xvp z6`!+Nfg-8+BrrsiYtQ<;?i(J){~%8)?y>A7skp34Dn1d_XTGGWD6^;}Pbz0FKGRMb z6HfTH2`yI1rabg8rz8m}C5_J3Cw-CO=)?(M1gw^2xM7u}lSD`6+w@W;6Y{!!8v=x6 zmXR$d%;rp}{hPj&01Xi~MovQyg6B=E(BS28BNHw*3|0)0yVtw~RQr6rHo`O|1NolV zgf6}18x@dDN?$A|#HIiAw(loG6Idv8HhkAtl@m5Gq-3RV@_W9MVWw5E#(H~P1JwI{ zUy@ApK8Bu5hfS!(8DDCEhRmGcF0`s>=^04bHro z9Qr1W52nHBdJBV)S`b6zYR$Wl0%s!qo5#BFcUO_=Q9G^V;765kkU&^>*Iv_wdkF3$ z_C3nH0Fc7=S2ZVHrg`f_-#nqtYRTsm7HYseBKE9JVeZO*CHfGhMyU(nQMHyA=CnN_A zkQFALIw@}lV!JV0U(Mh~g|uB(;BpOymClP8gt|?$q5}t3k}eEiImOM#g*4@wBm5y~ zxVNGAz=l z1d$b?YHOr85R0Ad^|g>u<7!1qe$`y8)>o_PQr{Pn8j?>q;g!OhoX}1wzBQU(?i(bu zX7Hp|f0g?(gsu#hDAO8kx#H`krY5QnP*8_~P}J2tzqyQFp?nKb`Q~dXP#)p6A!%(P zD^O$BUFfllzg+d5;Di~BCZsmLufc@#87!_1KVuEO3sFVxy$R%N6y)3tlybv&A%yVV z3Tjb!{Tj5tfFe-&*6GoRh<;T;45CNff>vM^QTT4FkiI+gw(se%3m|{$FHIVuA8z}) z2%jkBe}sy^fu*{S7`&n#0@tFHitTVtB9)wotQR|f|JL_7Tt6rgkR@XN=QU{m9eAzq zGxI=ENL#TI-&a_OqOk*-$r_ui?-$?my(Yx3l?4o036xgnvf8QbMtaUC(2&fGZ~Qc>Rcoypb=Tsh3!o!@_Ptb{U$~ZBl+6^^TZ@Gz1$bcN*U{p% zvVyF9HSgaU+2F*zl7;w7buzMDaKXJvN7l+#{0?GUg&5lQ!80tErmGb&LI^J+u zq_bz0@?@SrD@qc_x%XH}Bu{@8DkQ%rdf(ay8t7s)z0cXOMtK+~++$jq^j_qZ%&!cV z^u_nk#fb8F88yjlg%VjnWW#yb2ZZu;86l2KCP<3^yGB?SXasWajiDr9e|%C6(ISNT zQ$Ryv{-W}d*3PtA*yepjZqeos<4OeBiOo$VN}HzuhFNgcG%39ChXvP4@`{~-dZ?CO zXOt+HUZ(|g7f%&TsaKv;onKu-meZ280_p|PxGO1V<{M4QPgm!6mMBkKkp}d)6dX=- z^Kw&l{t%c5=EQMYgGNezPu4He1+SGZu3CI z>#i~gGPr(KLI+otQu5}X6y)4jsG707uS~9D1gs*S3dyQPulD=dSU$Fj&~Tlk5($tP zbTqxZtq{ZDsRH=TTU!PT)Gfj`Uap4f#*S)=?oJ7-3%4w;?oi%U$t%9&>n!KZ=3~~O zd$WC`mE__}zWy5If6Vb^s>#V)KAVCZbSddvZctN`mwMCH)RVfDk5N25Bniq~q(hH#o)^wb1oUPO#=Xfvs6AAm9gmc64)NlzZ=dq*LfiGSXdr7i@vS7J zWJnC*6@aW*G@#4rXy=oC%RdVf(j`**B9PqH){Vgu)1`09Dc7lq-3vIl*7-`mHo`y^ z2fCJ1o~C9YSNS>A)b9)^Pf=5o3CAoo^|Ozb7s;pDemG$``1a&m@} z!JWnLSRWYQ$kcfoE<7+oDHi`W!!t6#C6+F1g~ksmpTj#vZgG5jjpZie+phJ>@on>Z zbxxtFrZ~uHKMS;OYjp9Ys}nXHE@aq)Pk;K6K1oigPmQdW_%YHv5IG zwZdjUvNm(RHLUyq$HBpcBg&g{qRr}VU@T5-c3)+)9|6PU1llH{FJU#Gp~j;~iz_n$ zSQ6SjuH3MxbYX4glJ8R#*({C%DqjJ0lpE+jANp_vf$7R~z@<<4}j$t~A~ zaZixSZhHNoS(7VU$z{neKgh$4wb(?!6^9bCm)6%z4h9EV+2nv5fUA_n+}74{gE}o> ztwhrT787g`=Vt}wQ+eS9+(cqpKswwR6JgXjz+iE&!N0J9<_0SAu9M2!2rdPAO-vRT zYFPYncu(45S-_-I5v}0O%9iiGr$wH(DeF0UUUfxp1tmw1yLWE1_Xx3@BxOM@`dX=;gp|fz=ioof8*oCh^o%Tb;7!lWthJ-410#a!z#t@<8%JHi zLpd3n$objbHpyb63oa}~Y;=TYQf#=mD?f7lFp*u1jlnECiH#nclmmK4z%YZ8rkY}K zXg))utB^XV1}8Xtxat-5T*0D%!eVGFt$M}Xl;6H7bZ9gnb<%ygbhzEaYZKe#D$ zXlzijeBAv?cvJo~7$(#-^^+irY$QThe>lnLsgsSF;izbndN^Y3Lc@c_1X~cDwOx5r zxQ*L{jgDhqu5BZH&tOS(+}=btT(jf~cW+dMF5@zVRp4qUGw;fd5dGV4d7xN4k`xO@ zLK6uod9AZe{uMKaPCBmO7p$085d^J7%@}T~8H13-q5e-uQGm}~=lY<;xmV!CU-5-d zCRQRu6!e5=QWP8>cjY;bvy1Fv6pUfnNfh)$$|&dw7$yod^%SE(^BMYcf@T!(tH6zJ zpUhzLvlRi2#V}|w>B?^c_afGLv}Tf(AzJe}%9!bVe(sek0_P;PL^;#f#G}JsENr03 zJ5kB|=QCH1MsV*1dCi*1*|s1X8xs63q`7jl0;ywywGxd9787hw^z!;Er$czgT?X1)kLeFy^^e^_C9;% zaiOJ(+PQlBmAagaToH{IM3em?=|+8?K}gD?)jNs5kmIzoH_JNxzPR)d?*1@5BkoQX ziSO*XGLYxTitM7h=dtX>-E%f86QYMv-RG|a6CzCwMQ_)9hQ57X)7v>%aZK_nCnT!_ zI?Ga`y_-Y#`!_{fzC<|#Dbb0|q5J*WRcU7!V4*3|IWSGAl&E?&kptU;Nr|4vbzoDX z)r3GwiEK-DwH2gRUPj$p+fdh&{VOV&p_ZZnc~_!QL?_?8c+LGU*lWbK5YMRCR5Y=L zf2JU8k=#7kTUVEmjH?Z3>HjOTA@hiSa5le{f2fcsq45W2EBJ<6=(xksD?T{O+9?{2 zDUEn~JcE#m4{HAcN^DdTjW)FL7gtix?UZt0TmOrpzP+PgQa# zw$QIBpG);8^9id^e1Te!aWefeB5)K5t%UCb66KxUI2{nw;{N~@`7K<-}~UO%M1Eoyz~*J1O8b+S~ed; zWTV$u43Sl}Con`Z)^QjjgLwglnqU_jk0Ih()hA#OOiVtagmE`P?{Cd{P#?Yj6X?%N zdia~6rziUx@yoX$o5kM+J!|lH<2Q-_Sd{KhLK#MX6aG07Go>$JTtx zN1!xX@h_Q*NvM_5z~hQ0$T-ch9eZOJpqVXo&5E=RTS|fR`C#jtv=k{PACo!0K|gM z{>I!(6p@n^K)gl~je7v%P8WYYXh6c^8wrS;e>9I0W2=;+r#~K`yF?Lp9|pvVr7dfT zbT=sa(r7?`)zu%x{YViLIs&5IWBwS9M+16*frOrbI2e@@g${mwttwZWVvpMZOY~?$ z5w~*zF)H%wB(60@G&KSuqq{$uGgHLDd_dGHiVtYegQ9=OX6n)dG{~Wdb3*_@3^|e_ zZex{FdxA;@6j9a*5KY#7U7wpp5tDIqCG-N@FQ$kt*ect4`5VE<XVByRkQJd^Hr` z8_c_dVjJOFr0TCX=JruU_pX3woC$7q6eDuc&P;za_YQp+od*wz4}3%ssTqJ+^Dt1C zQA8svAnJU7y$SaXMLgL75G^AHG(iU+@mJ-3rPyP*l-t(_G(@^SfUS!3eZkN!rA}QD-HxI!bp~{4m4twKJ5Y4tC_rzTbR(LB z_y4$CKJN#JU9E1$ad#=AGwv-2%YBNNmkEf!27?1dpt?gr z-FvuMhz;sf#AthfB^e`f8Hd+XigmbYyG(*ox==)83m_WD%&CvouDw~6>r1gSad$#$ zHH0F1Isj2~FnA&yhlk6)lm#6}?YNtDxoH$}ZyZn%?FuPkByLF}19sSAmd9{Jd^ZF} z6u8y~BWk1pg4FOuiueEK}f~!quYKL%81^eq!|iwBtvxR%43I!E!-NSFROB?8HX>bF@F6 zOQVRhIOZ0N@ehNqUWoV?am;nL`8#v{DZ+-E|FX?*;6_k{1NROyj@(M;#!ruG#i3qKNyQWL`ZVlwtQpESTGhdzTtc#|Ufx6o%_CAi3u@3(z zZZAdrfbkLvLZ|6oy{H&{+)K#L#CLI)kCB82S!F_b~Kt4E>3r4>2Tc1*jZD z4KTDGL(RA1Yk4nX(14MzV5lpG{)M4_82SZ6LoxIlhVn5~ilONk+KHhB7vrF?b6jFJb5`hHhZ!H4OcTp{p3;w*j;bL$xvV zBZit_s0>4`F?0+=W(*+=^}x_34CP?x9Sn`c(61OOz|g)z49>#fISehv&{hnUVCY*6 z?ZD7^4DG{E35Jeh$cLeKFyzP3M;O|Tp)w48jiGNa^gD)r#n5pKRectqI~c0>Y>mQ) z3ckQ#0!F$p)DA;#40XWJ9~jES(AyY#3`6%YWW&%23{Aq&yBK;3L!V%18HRRYXd{OH zgP}bbx{aYj7`lX^!jl+0fWb2u+Ki!3F|-y#ehgi~&|M7ugrWNw+JT{n?EoFYP<;&T z#ZWSa4r54WiUu7#f11_rnVTbYSoejGTrcFNO*+^bLlJG4vdUwqWQw zhF-+bXBc`FLmmvdF?0h%A7bb$41I|qCx)(L=yMGHfT7D6;&#*k|2vJrS^yU8$53Mo zZNN|~3?0Hy8iqc_PNdG{2Q=ipo1*H6xe7AIFaq3;1@nzb?A) z;X`9hGf9}+H6ZuCr$dvqr%I`(z<5K?<_uV@N9q!g$x z@%KlD*?t{=O;q%XOyoq!8MQR~N>k9-x&DrP)Gk`%+K5}|Hz4BxLCO0wq zYBwI5hBWaQthd<2P4|(uN*s90f+j5CW6*^{e^vhJUDT1DI&f8N=ckCc^<)05#(321 zUD%`IP|jOd8$rVmJJv4pH|BSVT5o5x23b+)y&}+cE76sagLVacX28CiIcVb4n+g0` zQN(*n5mSEoT0jRDK@#yck;B;1gAv4*+-X#|1X2^xTfSWk-tx03@du^EgG<0S?p3e|oswjOfVI#~@(S%q6q z6#A4X^zKT3Uw*bq)(j0<{n5!eH&gk2qJ)=42^V@?7f{@4e^>qmm6$zBF}qjX9F5!` zht)ui1vhK+pNq0S5oNVs>+i|`AHL2!FsGyYwM2`dcB*!wXsIH)Xe||5rPQ8hvxI0%QOoap&&=~Y^W1y={&~HYQPlgF(}z&OKF}z7oDH25>`e@YVtXA;e3{j>Ey>l4m$$a69ej@9yRwx zw5nO}T}?$Mfp~Q#ukaMiJ$YVHYgT)ezSa^k8`^U$-BW8Q*C1YH)tdplaQf9?%V2>T zAWo74y=+^GbJjm9;{7`;CtUvJU`Yqh}#zy zg|g`e<}^JMI*zmK7PzlGnkDi}v#v(5?FK-;9zgABS+Q?9-eL)68Fqmxk|@po3pAyU zZ-284ud=i#j9oG?&kH8ow}O+~LGLEFGmknH&)wcTl)-b*vp3z(0{NI8&SvPaVzkk6 zR;jCn7pmRgDZCI%Uaj4K)JW-DNvmD1gUtE+ilSK7bG7K3nXCEe&oCU~{V@K?%A$I# z>uP;1cUmoKxji4ff&4|Nzde)xwyLNm%axc(DrVFJw3vRoZp8B02fO+5V{3~7*aQQ0 zoSr<u2#xS>*KR*FP^R$2Lp!1{J+zO;IXaYhZn@XQj78Yd-h;YkoZOKmSmEb5&6p zc2)vUtH5Pzi<+{N2H*(;a4iPvR3JoX!>X$k9aMym4ZfxDkz$LyW(W&mhWx1u2Y#1c51f`&!D{D=K;4Ok@B zdLMhN((-3HgLrNMBGms3g}o;Wdk1QW0GTYe_W&%HEMTaixbKSEbJ8rW4p;$Qf~)bq znQ3P@{c4@5xfK~h{+w??=hFZ>=$0{tbokHXD6h-BH;-oZh<`Mcmgr|0%C z<02Bu32a@}~H#gn#uAVlLGe zU$qBVw(8-V%;27Sdi`{GSzZ`v^I=z{n2V-jQf`Eo<_DuNOFE~QaK=o6%NTzA`Vk}{ zgL&w2G}xfEqJL85U0QAr;${0<{dnw+@EAV(YFR&?{m>S`{MYI`sn1&Kq|8%^mTfTh zU%wPpvNRXyCMr7iJnHYrv7+*t&TiZLHIskT|~dNw_~R zjDm(Q8mQR@Dh<95P88L|fnO^8rz$o30$MJpwRp}m5x%0_c?Rmo2CAz+`18FVejdtK z+{N0+_kv%b@<-i+aqHx2#(fkX!ADgL4&;McLiN1{A>SB;SW3aTk*AQwEfMHq6@Ba! z(2-|~VtDXr`1ETApu+$ptuy{WpO0B5TtehJr6uHYYdIcUBRGX`-fsab1OXaj7d zfMHb&4!W^$*2jdiKB7ACt>W1x)q&e?z>%)_tSZK4En(5-fm8G6mXfQDxc?G5ljAnHTnG;1U5c=18n9k3*mu2`;AATT&^pR%Ypq2!SS`bA3F}40R$uRO z_|Ur%-(V}Mfps~L)I@txZPwNBdMC5j8}ima-zd*JI1ux{p)j^M5D4cO7_WO66yl>K zbGukGEMy5SM?;ouauxZSRSIp}RZPQ|8)!=;4TdBdDny$cu7<8jB!yH|VdOG@ttAVf$`g(e@p2yup z-a?9gsdrcfKBXa+QL4M&4dZ^d5Q@YZ-mQ!$NV-{mj)#ROL$w{OawZBsRnVALNGr_!r<4RXBcA;O;uf>ts!|e6FB>{|DVz+Z8I~%+@$%ns$*O2QoQQY!aW)mScjNiMD`BO!#4tviKBQ{b=EMeRdXszsS zKtBJWx3$zEru>H<*UW%utRiAvCHS~XeI#6B$_4Ssb+H{`h>msVVNn$}$iV8q(N&(% z^44_jpH(hFmIr%j9~X6FQ#T4PPi0#FxTq?dY=BJM$So6Wm|w^e5vq2da@8d&U!XQC zsQJ^aRoDgtX|0ZAX>85lvn^;O=LF-7!r<8qkW&W8Z#oF6^U5>UWQ!laT-u6DNphYE z;<3TjP*!@AQo5FSK*# zO%23Go4ky^WNx`cX{l_zf&*0r|MIm~XZ;Mg=QoMY(F=j12)U`mkNvE*k;~DQc%}-3 zegXWvzqJCJZlF#RRNRprTh5xnptDJ_`vfAje?TemELfH2mjQ8~fw;%J*n5Ml4J}r^ zewS7K>Ndh+aO>Y-+TuXe)&&Fd&rLk^i7mt8UGlAEt@SJ+{6Lsh+jM!NysJ8(Tum(G zUkW|73A+@-^wgc5L=)SNl3g#LH6M5TvUL32MY4Pp7j_k()$)2nv}LD=!lL zFK&wnk*G{%qR{gz^Q>5FsxH?bwM8jXI=>TTZN%Da;X@LvU2#kfFUTJFdo(&hOE*EO z_Ga{uRyrDQ@hV`zjEH1Eu}GC8k*_OAC>6&4s0>37H{-tYRPKXW5!EGkiR3O)xEo@D zTwsR$)C)-#MEN}y^b8~aE{uqgB2K7=Tv-){#6({jQZd63H(LxzZjbiOx`a#gs zrNz?Yvijxg$)f%wa6hOxC{>poFyQuia8y?4XHwSlZOVstf5Uj#ql{Bk3!wj8DnRBU<{KX))ZPPW_5 zlGj1yK`~!GrXDJxtpS=Lpe#IJ4A9Wlq|n9ntyNiWzT#XeH^ER5!#J^gqw?b79<5Ut`YS8R6SzH`pP>OrGC*K$pp2SBrw)(I_ zi94#|pjl0J$bdU23(93dC*)H>S(uDW5SwZRXMgDf_>^WCvqErpjms-;Yi6y3)|!>( zHB1C-bG2p)`?n0T`S85_@)dc0a|D$5?y>v*kQUZjm>X*EEB2~I4|rw|OMoSTA80`} z4AcNiPvu=?x@v11Hof2NYW6OsuZ{S-=Wj&uSZjG7p~hPZs%jcyx;ONw95WQuXvCA# ztu?R_&Qp%f>Cgo(*IO63TRhOp;m-$USe3%ieEPxd^07jfZxvK}Yv{6DkNV1uQYa@{ zTyMm?wn2-;9q`nxDReEV37yuVU@1txSmIbSig2Y~Ez zOwofHQRkl4DAshlXg?@@DBs@`ezK8xS?SyLd1jV%gwSA|(BK`R!6btQQDTVBQZ&G= zqT6~P$c6$`K`<%#Xbdbcny8=p{*(*Zwiwy6$Gzc^=Lo$P1YiZ^BLP!tW#)EQ8iZ1l z9s8hGwrv-w$t~MyEW(?i+?Atl#5Qi%CneWychxK{MAhnNO<;dY#vcmf)~uo+zUObG zr1HyG3gK1yTO--;2HLON#pqVZhYS-_drC{UAAqsYZwG0n<#&c!+mm7iP3$o|ZLk%o z-QY^4d9#67reNC7&+@$4MKMZIpBTVY%Jx$nU<``bL1B$e7I66m-o%+UH6^=`6bt7Z% zcn!vWPSScPG*~+k%>$t9UX}d$jTb@dZlHD9DI(L3AShO^->*`6K45?~h`lS(Qxvqz z_AS^u2H@KUpv%g>{MIORysZ+rNddZS-JY#C0Kf16$+RfHw`r-96sJZ9$p-9{0&I$a zIU~^tbH>0JBj11>t{9|TbX%4B!%Jh~X2QM_brk%Sv5q2nw+ofZ@q&q11qu2}Uq}95 z39I^mAgoGCj(iK$R+8FWp}L$`ByUwzDV%4I1GR~P+R#HKOF(B6OFSNL4QJz}kT(?} zo8PuJVPgbU>3XAh`UDDp)3ps5M<&3ft&(pqSKdy}gKsQ(1&P)b8Igf}MPej2e`%#( zV$gGu)N_G%=}*67jb()reN;goe;1XLKM8TcAp`56hec%`^_5wf_hm(f@hMXfX#0Kb za=-`P6Vp3#!mdTOXW@FaAM~3lp16!Kb%ymh-f=37@T?@&r5CjAqeRO4z?#61=Rh7U zIM+7CC2CJISUeD-`e|2c|7i%G21_iy;i4*7*c#r3hMt^>krnyRli+RonzDNn8(-g> zI}0M7Jk1_H3#MDc*g`37zPB`&IS_F#iY(2~;!ok2-G)(I`<$;`-UgO=gMBA?`@MNE zN+-*=9)Qxkc56>F*jL`BaL$A&Zb=x@OXj9HJ{`HPyycN)_)n9d;Z;)sb`oIuitJ&T zqy0lceE^0y8ufCT_YV|d$#fa2(5hX(?zC!0@say@A8Wcx1W5^*&g$5yeBxuT5V8I) zuV7@^Y->d}V3%ldeYHOp2?e|y$~_$>_he*wes?iS(3}2-8lPh0p1WK&rY`tS9$MdY zNu8#nQiu}u=tc}*Q70;p-wKHGX&as@?Vrj~p=IBnr+u|YM2(kZ z`OfQPqb0=&vCHOL%VVw0tW>AXLvDshs@nh>EBxF1;9q_-GMg?D__5ssT&B;NEBG0Ix{w zOQzTbZKKNZGsm$dafpFB$Uq(KgRK$emm)ziPg3Wq)bmTN&$HPE&MX6m2CDSs);jEf zPJI}Jda0XS9Ltp4q4tSvD+oul3_KnA3I;*tU9X*{awNa{LQ8ybL`N=LQubjaTT~+8E6; zy<63mb=InusY1eJy#zGSL_XLV8O1LxLRw;?Ud(up7+^^Z9212CsiJ3)gIg6w4i4MQ z8u5=eTFYTU0EQACDy6mD+=^@DHJ!DzyW+IJ;aQs~CZN_Z`^9M23DYY=<%?3~D$WER z`xf>Xev9amuQ(f8hF=PZ!MAOD#)R;~%~1ZFUimW~mX)E(iYZta|j~K@W-?~~I1EFRHWyD#vhcXQ{w4-+)`3@a9 zcFeG$Z_FFMdavbw9|a8?`QnH-UmE)Iuo2p`9eerZEbGf`=U&P{gk|7w#1}N=M|k&X z@aDYaJ&O+mmzp6?$n3JV;(Zs2jgCh!)z?nKvl6LQtwqqPSg+MJ(#n0XkkLJa=u3A8+=u9YOiGiV5fYGoggLnXwlQ>}(I4>fZlb;ZuCRRdPQt9+}=DOkeoA zR~GEb1`aK>QtQ(i_VcXIGYYdz+_SM+cnKIA9qlL$EJJpc<1BB}8V{h|+O{--_7 zV2|8prc)L*9#pQubDWs2Hk90YIxZh;OIq+vF%&0z!Clr+8o9ZJaH@GSE~&KfQqTYZ%UU9L4fxo)qx0PQZ*` ztZ!L9G^NeZ)5y*Ng_!T{-OE$AV9$oPvKI@j<8UHbd#E??4pY{PC(w?sNzEKOnpS6I z+vB$DK|B*3#FTtlPd;%6WiEBf8p*RyR}SJIeQ689xtDF)DS&c3>vy$Tj0)76MZYQy zc}Z^syP@>6UiGrtQ?+fl1T*7n-kF@De!v3TrFB*XUl!) ziT+uKhN8W+-cXvSJYx^nuCOpMz;`BGN|}}7u@|ki*gXlqqk|Wekxe4+QWZa*_b%$} zFH-@x+ycn8oszEYH`TR$Eg$ZX4=K9&_O0t$UZ19K+LbA+^?u>eVkch@6{kegxP{r& zVXwu0ZP;@UFyz~UA4JFUONrQ4J#@cldoO6Oi7*MQFrL!UR*R?Hi^g>c_feR_TIkh- z>2IjHD1*R&{jP}|nV;F==;lZ&K5FVk4JxsAWrFh`!+Eb*=mlXx_xNEe= zMy{^2)0)b@mC)Tf=sOdkYDtH4;Jcje-w=t>9 zk+9bl*cl(_o3=L=yUa9)G~5*XiU}4Y$#k|<5 zi9abs(vfN{yIU-F!dOMAIF0 zJwU;icYEOWhwy$`lG;tBdh|wLN#d7=fZEwW?VzV_+ic6?@lP-{o-C;oRcgr-EYyuR zVBQoMHf_I{s=-N6pw?IGE;4S0W1?qGwP&q(wQ{s(Nxn_H{fQkqK)!833|8)FKl#A} z`aKul4%gvCAlfXR@URtg4vwAO;S zs!5&*jWstwo0vmC3$Qg|qa<{M0?i4ujb_6Pn3oM0iWhDL*&47V60=CbporahNLgD9 zTVP;)YGBQshze*CY^%=>N!CGyRW`)-I{V&$DKKCtE}R)^YsBt;$4_j>xi^KPxn)?Z zfhXK#B?e}(fk~>J54Y8~RO1IiZ5b@~drw7fDF@ABzSmb|d?Jv_CVZFtRZ@za~bYiN7+ znrr_=8X3&CQucflKOX_<~l|G zn?e8Mn*LR|yvKsh$?dO z?T{z+tG!9KcvkgCL96nkLc?VqFR^j=(3#gs9L~+V)k6EL#V`F^9hVYnS+`ZD zVBFzk0wyPRtcxv${Vu`3s$gw`kh8ElOj5cAg5yBUJ_=3gN1sj)>W;{f{Vc4BtpIMd z5vECcmF~7k-ZB&PhoI8 zOn2k8r!?JFj7_olr#&$$4v^fw3fJQ}$uI@oYJ~G{hwI6u+uo*PuyxlchD_h7pDmo1 zj7y*dT`-#|1x{B4YBLF*@=A>wVlq6+$xWY?puAac_bc**A z`P6(<_~xg;yK|_Y%!(xZk^(2C(;i)~;qeug^QQ2#W^i(p(+0p%h8z+uyv!lt!l`b% zRl+?X%{tl|@e*hCvUK8~1su}*U*AK*|9ZL+c3EWdt%GdUSPO}5s$%oo*`s;va#$p` zV}hIyH!@)B8?aQ9C$kX=442qfRIEqayvQ5AVnY0q0XxKir3~7W7l7pwJ5R;Z=y?3` z^;pUPvbhH0Y!8uQVt6N-2V+0+P=tnXfApX6+J83Ze>`)|eN~Tkp|M;nymCmm&|{^p zRc99u=_khL@C0XJoJmmt? zAS+*m!e`_YiV2&|^Mvi>>uVhriu%mQnoGiAy`t6eM47?UPNe3yUCzGCVbRJu9u}<( z5Zw3in(Zal?y$aDwLa`}@>K8k5pbSw$@kw--^Z#*PoDN`?I2zy)E>%m45Zf&iv~Iz zZ@cI3nLK3_I@M}PT%i&ljIxblOAVaQ%sAcoTca`8J}x=Gs2puMh3BWn*Yx;xcG!UZ z$$+IC>ESnQsqB%&K2WhJa1Q&|!1>3(ArBkz7CdaNBVt@g;6rlZo@svp8NXSHwk9z* zKAFchtQji2Q+4f+)J+C)JpCOs3@`h2=Ub-PD)N%+@xi>?XV|9lycE$(F9ItoJ$dG& z8fx+`OD_V$zln&GAqjCj?;e)K-jnpHdiunPw%06^^|*<89EEcKyn|3~no3|;Z z96`E2E51IhP;Ar_anpgff)skxor2Kgf+YT_CqlQL-0h5TPEu#r-}OvNB&H3pm*)2D z1Ps*|QS!i}qR;ppRr(CpJ+Nf?t}UIFKC16H?5Ig|r|PQ58cSFM6^05L&7L)I>Uucj z*U%wpTAwC5y_oBxzth7w`H-B(%D*V}N2dp7%}8*a9+-AixQ@L4Tp7UJqk8`_2@#Ii z7)+gD-UsLeYw#?~o?($XCIz{m7QY9!lnYl}U5U{EuyI z*eVq>8V{dKn?2|L?Z~MF3-ojJ)V!AgK&$=jR8L!8819A1X;1#QxRl&V3go$ zJQpdS-U8NBfw^L={>Xlr5xbfZ$%x}WwIw4{P3q+;L@Fr^SCf}rh+P5N?KMb;nXxCB zu_-xS=QFImw(3(;#A=p&A!V~71#|vdJhNZTWSV$cHkb;)9Wq99kn%S;%yC{|&nj57 zsiDY>nQ42{4Cd0d4huLY`l#Jg?hL244x=q z4Yt?6&XRB-MN4kgEEJWFS8IY@?&9+D(k}e@#S2OWRNKu0&5!(Md~z zjy;(eOS4(_j)D5No{IK9nQfJoY-}FH0*(1NiEY<(Gh;@AU$~|zKR4vP!U~JD%tjbrEPVy68;~Ady ztyh%uKYn{VT9Mm`)XG2KfmYs766-0%t?jh^{wETv^A)=i#oP${aCFEzIwUE1^ee=j zFG^&#g3M2b6)%09SjV;LMn~&sMnjRq`2KehUCn7_3ubwe`?12+3eO8>C6?#G-`FZ! zKGbVDL&v2=QnNisB<(#eHr{v)i7mKP>>8fA8}{Jn6y2c%k{24Z7hdR^RL`NP=dxrX zB?@uNhK_bwMk(e$y63))5b&`;1s@u ztkdcs`oR`S#2qkh>kyGL5+%PN-y8CMEd)EYZDF{6N@txl+5-_ytO7{Po2b`L_!+(S zPYM4+52vv?{~~rRXJ4;X%9BjD{H~YqtC<9f`hKsMRD&NcXAfe2zls_z%~OxLYM9D^ z)v8x<372qnHIXkhEv@G_mF67h4)mA?lE|dED=44jvoOP*rltR*vU{ zBF)gZ5ObdwBzUkMOesS$HT`k-3S+!MkZhQ8=TL#l7#)}-d6RrjNq4&Xct^4w%+K#ILqp75o&V3{f_zh)nCQN z8yyxKAYQ_L8y)A8oC+EcaeNYkEYp=oOgPt(C;|AeY7OleK^G|Cp2+M5(3rl>g*`MM72X#>Z@ljKM- z+*HCVdI_ZO_ZQ&mmP+_%IyhpjS{%lB7JF?pGwDq*Pmgpp-voA8B9Wi+vM=fDvTx}H zSKuA+nHLi_mU+F+OHpfV5u(sfBlP7u+XUY-|?`$GFgOdFM< zV>K=VP==0*#mHuzlC0l6tm1!c&wH|Lmg63lvR?m-C>!0Xfy~td3P#EQj<{v3huzRw z|DZqq?{^BANkwd#d&Ba`6!yRjMm^%&+qR}!u%*H3D6orl?6q)ZdhI$&zOB~p`nWsc zcM&bS6{LO9k^k5lVxKcH`zcJ6dn|k20O_TNoOoax;aOqOf-FtD84BrxU#wEQDFqf5cMVWMzk7n5LQBDG z=Hb!u6)F|3?IK)JV^e5@r$K$0Jq0_NNy%3|P*O5>VV(N4On{G;nQ8ih2^3>gF19Zd zZ@!0DxwJjU@`))0hdE_=*FuQ>D!N%JISzLd-Fbm}|cF zVU{DNVt#guvAD7D5aTV61?4{v#g+EKu8jbDb9{Nrtnhc-Jhnor4c9|zPgOkFv~N5f zO#3b(Yk_l(+J|&5opiY{e4;PZu0NcG&+e45YiBd4>Ibz=Mvh$DzdZP~@L~v(LeX~8 z_FYTh@0YcY!8u|)P-DH`8o_-MhA@8y+nchPk}zE%T#B|2;iE<+hx0N$t_C1+rDNr4 z4@9s#39q{s3A*zZVfH5MD~ZI_7H*}&!|juho6>V%2emm~p7`&d1uT^6uU0hVkW-I5r2WxMpf*gmbrR1K1BSKvVz?jK@1TOcoW~pX$_r@d!EYaUd`SW@d|Nn zDx4nt%HR809q`@5{I0h3{hSyKzzjF*@bDZq}a!?qXx_&Q_SvEdjs}FVjij(XfuR|tV;ILB3pLf zz`LvG(T3Wv`ry?*D{3qeS!3<+9@Ut&zI_6VKdY~?YIq`Qj9h;2)53T5q<$^p*GBSL zefP6K-eC&9b0JTJ;Ipz3a(Q?h&X8+fHE){h^ABUsQjSsyzDDz@jqP+vuy*D!sENHI zTO<`;KnlxGErsCn9$vC0r4kRZr}**5O|akVQ=z{?%hPC$wL5?5E|KD<_89iP#1%-K z=hQ54m3h0)_As{BV2N+w%e1cnea+`Kx6^l}W>~ZMse>uydBql({YdelMeO_7Wt=EH+?uhNRq_!Hm3ygD#uaE=rk-1SNKz3OXdC) znfI^Hijg_*tf(ejpqFmfE*27B)p{$%b(dprA*Cltd7e+su=iz|25i?qT`@Jy5x;G1 zPsH5@q~9c|A2va>I?Gv46V8A_@>_VX(NZJsvj~5Nm^n)rYM$U_Lis zTx*u4c~l2`4O~n>n9~x2Ow;r1qyclnfT50RjZcl_{X5x%EWUhnPYgz-cvg1|Mrfj8 z9G|KQd%+8 z!Iv(Mx51IMmpo{tmki-^d!W$`I_Ih=GR@y3Qmazi#wbQ&=9!8qc_p<9|F<0tWo{!W z@Y$yD);;ZYFqRP)8?4>xm+58ii?PfMv_}u3B*56`>_ul&(%`UPrKtb_#p%B-IYmc+<8}( zQ3oo$Gc|^vX$@!5OCquq1iDh)1#44-`O+PzvO~B>9lHrNpkm9;+TV*fr~?p6IupGr ziA|N*$wq7i-fbY7)(y8Jjqo{-PDpm*u5F1VTw?KG|R zioG%$Bf+CoFg`mMs9grtgpDvjhFuWj!pnG3v=wqljfUB)vgH!CM1`%`2ycX&++11? zc@|%-9F8$(k%7Iy!=`Qng|%+OnhSG@Y!NI)4`bv*N*DQGq0LydYT2qaRxPhdnh$Fhd<{d(&A z^vSO4@7bepy?VW1zAOiZNHO5*TogvG1%xu?I`*dBhkrNPUV*(R+1Va;IbJ-|UWVU# z&t8Eq8Do!T0}a@I{}1-a8^GpC?8oNV7M1G-^8B$-`9lMH##7lbY%hMpDRo?wO2Hu+ zvfv4t#hf3C{N{($3+G$j!f^k!0lLEgr45v)#$h^rP3r1Usq~e@V0m!i#c!k1DqIqd7$?*xz!8(GuI>#mwP zikDztvUYmi1dgj8y|tzf`-J4$qu4UZ#p!i77vB^O7H#cjuDz0WY~6%8U(Y1BR_9@P=@)}f#xS94kY~*F(bzZy7FWC2^r7(y$TmksUXg8#tdBI22`c`q-YxewLgcB?nEQ z75mPB*l$44G-==*Oq1?N#9tCoArDj9TL#1p4}z)&cA~0jEi5Po+fuPM_YDEjpP>2I z$L&ShOt5lQn_MDD<#V~nuPFgk@)eiSvvP6x=k-tROYqa2PnSV|<@IlFwe(z>mNE1vb;U*@}7- z-0D%AsIu3AOJx^9$ITMDL4nejeJ|{Bl;JtU8wc}}XR+*B_I?9=f^H!~)3qJ}O1$^E z_LSm1%SugoZQiL9bykWxt%$n0$X)@rBfC{rh$l>l6k&ufMug#8BpP(7BH{hXxajJE ze9BP_gRyCi%J8oJTKiD~l3_7aYuXC^u?Zc%=`~hgf>Tv6`MZz}06$rZAthPh6#FJ& zwN;yQyURZ0w!IfmT5hkzhDhKb6^Q;7wmMD;;q&q?uf98&J@PCZFF@ee91bVm(;%z z!drE4gyJiN_{q?%g0!c)mWi6~#k1DKWEm3MO2N8J(E#6gF(WoHA$pAQ{6-jKl*Eou zuwJ$Z<}Y+{RJ05;74Wi&0CFp_dti?Ko00ZeA_Xi`1i-gcB5k@(N#z{0(_T^Af2;Aj zsyr%Zldn*FoeZe@WJ?`kH?RoPqt@|4TS&n1b6SAxgWhdRictrl*gSz zHu-!u$XxM<*?)AKz} z@9RS-YnVg0XnYO!u**ezIlZzx?=X5ykoLR5Py1_6b$;4ii+hfs7F$U^J_+mQyV^)o zOA}LSLlY_;d;aMcdmI}fiTE(An~1q|MV>vYA@-X!z2VQh&x1c5(8&>CdD&FJizWix zYM(EJ+KZ$Rd?(f|#HDr|-{15G;_t-}Qt%ptd}=Br&qN5#S+AbJob{j-fDgsG1t32n zOA&IXNg%)UD-vD>rtG~YY;qjWoJ92Uw`Ai>v2M1SqC$VVpD^`qNL-OmoRz4t=ZeO z8}$$+yLCkNG?0IM8H?E1+F(*g*w$bm(o&w|3YPMc1(79PRmKWh0l03nJ8FIm>o0+QR3Iw6J$ueT=%FW2N$We1)crtW-d8clTcbMiPB)9= zDNcCWcMZTProe7j?I~=h1b(RkZ_Wg;WOKs`e9rZT;e6yr7{s<3sGIaua#WM9!%1-#ghO;jF2wKlAwfl^OTf!}!@F)=ChvI@{#&VomnJmhp} z9>9y|p`pBJz-8-kq|}oyG1uMyH~Rkq0sd44FI$VG^u&AE@;&b#-0G8OfPSop(%fP9 z9n4$57rX+M=bAf2@fp#LLipLEMffJS0s4&|O5xxBe-Zwb2xzei&AEpS1J?``hn_;^ z{pLQRl9=lvG>g2h)GDHq=B&bXeO;EjuB%H=K(hBg1SFj#tG&wdL?lO28X*(^5D{q` z13F!gCJlEyLegfOq>fdoBOlw-*=Pf1q#lFmMK6Bfi9LdSE-@=rjJp!%FLFe(Wd`12 zH!sVAOT{N}{3Eab@1*_z3`;USTJYJ+luk(%S0!g#obJ5>v2BYgvRl}KqUDCt{9O0- z+`z(}_a_UlUUwyiD0wlkl%p~-ymNgZ1e^H$9rAE65MdnMq!Q1}fGg}=8uMAm_IId@ zYJS=S8U|VE8?KZb9h({MnLVT(YX>FY?;cJz5;v6;_^rSM{g zpQ9QwyM%pJk408oVuK#Hh~QKFp)xl1d9$&n&xCy$DY9h&_@356!N$%$ZBE)uPTa*=k?enc*^-hEnr zTB+THy`*hXC6-z&+S}y+>+hH8rdq>dTf@c)3bQ zam?3#H$;n{@Trv?8Eg(9$}-o!3cG!H%Fiu>Wh(t=DdR^)2KAKuA6r)A5tUGL-+#gFV^+5c;3=nD`gxrpxg&-Ar3j(@HUnoPy}II5%LJYr1xdF|CEd_VLR|VB@A^s0 z7(OZ*bGfQFg_)}GtQsyeVR1f?$HX|gTB5b52IExHo(dl#3?wd5!>E?YH~FPS@Y$6? z?k>q)6tXMqEyMHXrB&l2s-OZodSocs&~`UnRZ1Jxe%zN{|+!cE|Sr zycpZ+m!^gDwC|xqeo8tzX4;lO4_?XL;vr1LT7t2PTcQ9$MSg9I%5qkf+pg48l#fcxq@4)wQRhIe2VI+s&6G zIZ|0aiF{r`;>>vuyRO^kottuu21BpNbJl6id$)N%YkefY7;B_f6+I6f>u@JPP20VWYq zCHiQtA`WM3-xLr)(YYz0+t<)h9{Y3%*;z&AG=h*022k4)uQKz-j#$fh@%o$U>nLt2 z?_N5?m(OYfjm8*2qohV7koXlvr1Pm8n_~Q5BY>+^AbldIg0PGLp4P8*gjmE` zZXho)kZHy=sG}o*|JK}5!Ghy)ngt70d|_+oyR}S42+ynM3}8nM)I$a;#X{L{f*PQy z^u+<}mwqD94^=e2o)^UT&U4h@g{>UX?7jhg*MO$6qxNS&Ka=h#$78Cp9Xp#t(GD-+qwcsKh)r_E@6er`Ca9gHm59q_beN`+gcBNW zQd&1hJ4<~%DOFFRCGg|Vq46y1?g(eENYYCRi9U6bcMMy23cBL^U(+&C8$AXa z%J4xiw)Twbn zyAJzXxNA@E@_2-9AGY!10sS07tb=5?RoO0=fTP<3Vf8M9VfB)JNY`W-q_i?f@hBfQ z0Ls591&mPzc$8oMaz>c=Le3}ydxU{a+0zxTqFL4+M{|Lx=0RkRM0r#IO z0BQDjF!+tsR*vo(1pI9f;A)NdNa0J4aNIex?PW}*;`!yFh{Lo)*W^n)?K1Y=jA%Y~ zC<32q^f&qw$FbT|)jfOs%d(g8R&ODor%nJ|Oe&xB3MR{$rr54}tgBXQ;y4$noU0>J zmF~~NyxP5pgvC*)5%kIXYow)C{&(5A!sUk*u8$pYvVY z0Dj~M_RVAeu4ZZ+a_};>ySXgbfuLaP3baXWivpHQ&BUG5i=!=3vp+^_KYy`pC?BvM zk^*@8Xw-@C9mN$C;Oqs*v=0}4@5u1sb-zG&Em$kZ9#-m(-ZNP47(7F}tC_f_6_QY} z5MEpeNsWZ0`l=-F0#&}()|aorW%fpkv(Rs7>{?!dA57_5CJTdur(FPbN9)v9@>l z+$Fdf)>}ws1KfnQ_QI*wKlI|XgKl_|fuDZf#!qX8RpSHwG`bP{lJkdzQR zy?t4pITe$P5vK5Artml3bu?kiC47kvjthD`@bZfKi%caf&`Y56lDpn>G-F4lghM(B zbKZ9hwH!31eXpl^HIXo0c?JgN`;vQC$3-(~y5IvO3ja1`m+0AaP$qt+BZ{IM^htWU%g?n%UR|f`I6aO`nm-5Wkj)aeL64(RrE_>|>}r3E)~l^Y zVGE)T{J9=Xp5nK;m`VrYxWbsV;4FquptsVNX63h$FF{CxkA<7fbCCljbwse82K1K(v?~URVNR*6O~q31^Pod(eD-%a z28b&L;za|I&ZG2R;i$?Y?u#B8#!swrP5tN#%dsmRX;@AjveK)E;&Y@cWrocYZU$8-o(f7!?i9ug`(vN|zdPYe zmg|*X;!%1L)KRjw*pcVM9qZ7%f0cUTazM9f@tONdoZtoP;ZTq2xrfZSw1MT?2K3M; z68TU;V!qnZa$gU+YX%}4-r3|RhkN$pcEZypK2Umk$TDHWSRPs$d-3BR=!3Xw4@B?u zl$e$-?`}bOforHVU~d&j-MwI|qc-blU}YLuv}*h~AIjnKDUCHvWsNG0PfeqOtKdK# z_84hXf0k>YPBKub$XGQmZ^6w|8Z}>~<{c~w;@Ap}U6)#gpWBXRvDrY~V4!LtK6dlQ zT5t`O20gDrUEL>Y!RStZP9H!Jg>@WTQBDYfGum3VOThuoYQw>DdVtRS@iX^_I64UCS1!1p! zeKy1Z8)Sfydf2=l#pX%aTovXiaQ5U*zC3tDCqEvt4-Rg&fj!H>mK9Wrcl!n5_yNh^ zr}DMTHq{XDW%$Tk;78_TgTo#JewP97+KXC=-TY5{%UdOT+(^g^ouc{DK0v4a0L`5S zw9O3t9Pj=;oI?~(J%qMZ@uAWRJZNgL$v>cU5fAlEA?%^PDYz>R2R4b?R;3m%!Y+#p z1E!S$Td(ewPC3;k|m>0P_kt1adj@`b|1KP6N(nR-zl6IFGM_7jcb3XpGL)M zPcxXuCsQ4@KH;c?WC;nti5)Ki^!avjr2{|i6erj?#ACw7As%lwWg~KagNdgJHjeLj zv0bzEHb|D35hu8bG|*#Mb`A9O-&mT`{u`I^YU@^FqsqzYHupxAsP;v1*aL`SiR@D5 zOxHOkYymv(wRhm>N3Ibcm6wB^NMws*kG^;}OuOg-Vbe*>9&%p5#35us7u;^KqZDq+ z)GnXCW?BY^D1-HpYuu;Mulrd?42yXzqNzx3xr}IvM9?xk==gYQ>52Htpa!m>{cc#k zET=sc%a$8q~W9(5R7O9~3QV4GiaoQ!N^3QzZfleJ+Yvi6UB zB1XE~Bka{MHfuWSRurc_R&1TgmtI0BxKV1m zjxr|_Kjj6t?Jo+vNN?B`Le#KFp{UPzcyYRPP z2flmGRl=uWvCPcEg=SD{AEo&TJGv2jLe3WIHre2e=6jA7SK=vW5CJ|hy)uU+mH~oWI_!s~=zPfPbs~MDN2Bp9mlBDLi%Tubhrn`1UR- zJHX9NzX-kWp(n^K0oIYE0$iI0ku*;C56H)kQ<@cKmF4k1fy&RNJW7o%S0%V)GZ zXXbaFV~ukNJ^d*>J85g9{0$RZYj;rVj{_`zJm+&~fF;kA{jmv~ zI>GA=v;6qJdyXpXdnu(rk%BEaXEhSPw zu_Az+_pBS(^@ z!hDNUO<$GcLzq);y>uIyYRvD6BMRqW3D{l%VsB@frHu}gu43k22606*{{Txm{%;1h zMQZIs^xD0RGtN}YMxot0 zp&ech}^cR(YNr>I~K9%-+C!FJO8LXF4Lm*f2EATwzsm z(0B1A1@s@iN_ zB6(`KGnJR*JQIrG>2?(AJ7<$Efz!o|Sp_hdqM%mgjo-@!=KV`*67^1Sl@Gnf8EcAG?q<6P)f-;!`U+Q!Jwu z{z!$7V

uJ4L-&uRe{nGt$`R9!_{Atx8Lk)gM$b1v zQ>yxLw6mt=h=TrELDL0U$6}oAu>DvE{OwEka}U#O|j zj(7I3ysd}5Wdg$p+Jk>kwPz*%X970oZ7RiYM|x>UGuk;dooy{&=y|JEUV0mJ&rptk zDU;FM6$wwx^^Iy~pIp-1LA!_$U%&zUk`AGy* zTI~e$sdZev)iZu(hV%&IU0&9iKk42HAPabfVaiY;i;S+{{Rh80RVM-@3PzX;C|)GHL9XM>zWdN~KZ%uv1&%y3__ z?kX&oD~Q5fdA%Zq&VTD!CE5dFi(zOtpOucCeR#2O$T7-qsT zd|Nt-?IBUGAKc8@iuIJFOobF%4{LzvtF`(5FMCztX>Eu4E{MlkLswHc?jr#lCq2ou z2UXK*F5ENW{z!_NsfcoQI^4?9%2^8|u9^DSQ=&<5_X^Vf`83oOcJ0%M>#;&eI(+PQ zQw+9`7%}tOK39k5Wx%~)oq>8-k)j?gGIwnaCwR#eiCrTCsW}CP@s^s^EgFnPQ2Ec0 z>+Ya(QKzEHtcI@`wo6`@lR-G#6YULScNP4ZGDkVu&Kb+v`w9))XfMbOpuk|FvJYX} z#*WTNe*BZ?LioP+@Gt4wAE`c|C5h3dEUcNYt9y|t&v$Ufv#}CBS`Wv(qN`=3p7xp< zjlMYkUngfJwo=kC`}J0J%lqiD-*$F3v@F&m7d{QSpeu;SB=N}8h$wu?bAjC66@Bw( zJ^M#5wiakHSeR-nntl?s_2$=CskU}n8}aCv-oY|lD#I^zM>o5$+jX;BfFHNCb2d`u z0KR^FThnWmc|lcM*BWQMC-JuvOB*Kf_Y!$*mUCFbef(xPUvsWzX*q`v6X$EH@%$__ zFbL69W=N==2*28r?@ys``-yWkwL?Osy3Yx9L$GWw?twxGp;NcJpR0LMDtl1#-mZK9 z#z6)K8aCFCr?$sj8Whal-D5#!|K8y|_&H}38|}x_L!I3e8;tbh2PQ(j*Zf?~i`Io3 z_jXohpG)jY73*@V{+zJ09mOHM*7MF#w#>j@Y+zHo(o1pC788Hjg`MC~xZ@&V|!N&cEeGx*9OXhXuBtueG7 zaUxpF8Hk=xL;K0#w5xKQ2s2Rq-f^e`oL*OO?TUuTFj zg}pCH?j z5B|dW9q;Z+G#}77>LIm#_!HsyXz2gwg+9?dZ>ZCU*`=!R&zd2D2;;8tKTY$`CN?}T zv^?wYYLGO{PkOCS1=&@?`GH|DatO9+YmJ?tbYWs}p%zrk>l4S1jp*achxNY}sO{YI zZtwvCqQQIkl+piem@^)?jdYt9(U z>w-F5rMiqziC=nzzZ*QMPg%ZjxHF8sV&K2z;ZwE2*yIEEP%ZG>h-2(MBby)p`#9ut}#k(y@5;#z#Vc#ztCevY#)``Mu1 zk5a$y0L+3X0hpTAYTTu-IXuf*O54$wzRCoOwv>Ctb-*?tP_LLT{ze%^pS*#2PTfG^ z;A-RFbIv~QHiR7dSAA>nkGJ&o)1n=g7)aHv%uwTb!9>I%)p%+y%}yz_srr^Pfenz% zzLM!_LSXtWu=K0MqsGCn^)@hj5|dTK589vvg@uO?6b0Tq*RDfDzR*zW`R-EF$-V3e@YZ{!hTjB=_K5d!Y*I@ZhGg|i;5{dzy?kxZZiguGHdl$s zpJ(sA>dPm*otlQFYBPxW@b%BI9DM^R86@c zg@>y@a5#C2vo#A1(s#hJLDT^)ZUr%#z0BH3OuCBkj5RBY`&Hw!rlLAp8i398KvHh~ zyV`gssUuY?-MT(vnl|VeSg-0?ve7SD3uceY^*4XpWs#kR?If-0tV z@`-FGU%yBlgKndJ(iO|F=YvG==seujJI)5_d&g<~jp!ZZwyu1DFz|`g>>>Ugf!^U7 z`5UqO2Bq#wrTz|bxmU8*KOZ_{k=zTNgT8`A*?H1|Koh#+5aHh}By{5G7ya@p?(&)k zf2p+$3hPB|y#)!TQLFox=7k?SE8>Kb_Ol+FsmD^sxHB8r=>m%dSTC%& zJn>#}S$@ktpbQ_o;F@+)$&8IVzPweY(eEBsW-wg#<*hR9T&zCdS&fw`E4p9+ z{?+Q=m1C&Se9P*4U#YTU`191(q)Hx3Np$2wmPWwQ;$ zSq386zQn$C$$NYYqzM&;RBOwTv?5j?i;4c#Xsk8A2{skaY1wGp(yvP9GG)-&_ae z5>w8P!Bd_#z)l)qSpFQw0z%1TSdKmLtt)LqeGd(!63^R(wYpN;PinHpqCF7#KaY2% zvhLoEQM!>t*4HCl=@sbsjkAs=RnJW}<5E<2WDjQPFG=nYJ=fDmvg-}TL8x!hM+WKP z{mtOibdK#s)0r#bv-NOS8!F2S+78AISXl!w+t~+)F-tGugQrS3y&n?xNeO#QC9EiL zK5N;fNA5I3lBF*mz^H>H9c2ZbdZedQ9(x4WQScosV$;K~n87L7y7)b+v0|9$OcD53 z4Ytbi;GqL5@G&XN!&q3DzIz7a0Fahu@iYt?zI)CYT!H%^#M(w%`0L&136km>!prj9 z$Hfu+(m@Qptqj!W9xBa55FAp3c```MM9S|faxX%@(G3?Iy$31UW{a!4imJ1zVfx^5 zGJaO(@vTy_eR=d@_@FOjp;w2AARq6C^5i@$4_!Qr5q*V0v!znA&%#_`Cap8XA4P)w zHwing!mvd?NTyfHX9w_-!-FGv^e=<`$Z4`)3<3@t1dtPGeGE?Ef8nBv9;pIo+bA*w z&DaA2>|b+OpW}elk+53fO3_`gDBkJ>+*m@mzP_s?NukxZr~K4mU;h;ywx1+EuM%k+ z_T;ZHrsrtoZ`D0Jl-Dg9?8^uJhM1(6K|q#402%mVgBN}Iq?71ZGo+OFR4FcR(G8%?fQMV zzLgb(D{0r?z0NbT+UTf(UXMM{SQ`SZk7Tk6wzgUFzWnA#DnG_#UaGMlYl41LeX3`aDLn`qV?+@|i zqjEdpbT+oBTmCc^@`s6#Z8qn4RyIPog}?~Wlc~~>-U{L$`Q8i?5|T59$SwAM5&Aw| zI)eJN_H86#YfxX{bJ{_t6sI$oHIw|t=KSmqL*nRz&8&d|jgQ@syXaOHi;J*Bw~X`TpG# z5($Y6LK0a7F%pRpn~1&l9zn%8R?ON#i`-gK<82j*s!}zgHOkkBRw*??TUAw}2=|_A zSF4NP=XuV#_nv!h`pX}mn|C~)_c`x)-hEEub4-~k1?%buuVgW6Lgiq zJrP^rK^_)t{M{a*E-@#&F*Y+Y@&hlBEOkv&nKE5Z+1MB*R8zVm28RlzAlm=ElM*(~Xw9to~&z@lvKnyI4=lZ+(mRxAc-0xsheKk@2u?Re&W{ zI-rq#rYGaq|D^_6x=4H7$abk@IE?T##G)OM^`!q(@TK_tAWIA3Im*7J*Ff-9hTpWZ z`C-((80o27u{?4V3*QJpc}G~ZBZomEAjEZw?68u!Xu5=^ah+{rp_zRZr?3&nxH&ZR{`rO{#HRRv2RKDBH}03Th} zB|tS4uVs5mPp_y?Z=S>-+T$VLt`}*zBOhuBGcBTo+ll*=?PobMn8$Dqb8d)pkXm)O z>mc=Bdr!Bs0XDpkKf1?*G1VR-&~22u4xTQf)b}_|vao@s5Y_0;a(I;z9{cz*0=5R) z!``yK@rSg%Jkyz?^gR{g(xB+J42-O^_$(x(oj(B;UUv{>>5W?hhCIE)+(urBvfsp!8nmh8?a1guk@k9zu(wc@j)dt(V$Rc6ZH>On<%(di=sU{ zzA25OR6Cr{+wrqIuix|!6${&2WvLIY6uBPYz_~na50k2^G+R^bO--@?^}=(q32)K{ z9aY}PZQku=RsvB{cZ6TwKc2Qag#>xQ%MG{;Gq!h1Dbm2zS&5z^sM)yVlx#T@aV zn`WQ0X6n(Bs=vBcpIfQ!)u%93tv<2$5$INZK82@ReM+lmOD<_@A{kaQS5x!M2}`)h zzxsv0NdD(eDQrSg4U({i%(H&~FYVp+D>sGz#`EY5GT*kU9L5EW18S>lqs2g6+r7UT zXGsS6>Liy251s0uCoUgmZ|uB`ljdo>xKrog#a<@vg9SgTC;qI0TPt|czboA|BOP1dk#%8#cWQL_ zB$k7YM9UdYqLGvJ+}r?q7O$ul4DK*AwKr-m9lNsprhiuzasO9Sky{?hn`_QXt>zTm zmc}WT>XMDQn~0ngOBsBU!C82mMO<+?frPmeLPfh)cno~A#WjoYnJtt=5m_{< zHQGZ64ua51e=tsUkZA^QxBz8)DF}C+To1zdhpPi&M^2*@XGm=|hE`4nXW^wt$!;{w zj5Pe}*S+m66{M*eSGt~y*9azcu+)<#xN+fQ=`;%dn{CXYB%^&HkE_g zV{JNlH(F@7M(LOf&T_ZxheE>3-*C!-?u<&_5yrmDGlKfAB>pBKFDr$$JYGRG?_u%8 zOTZzXBGruGLIg#A4@)~KHo{nfRU#Y>@b~-O#XmhQHB9|g***^0ee-cI@?tMbeW|A# zLAMAszdMU9y}7ZS>}{E5TC7qma!{P?1EY}PCOy|E&1N99AEqpysT6x16nyJbzBU=_ zO^a{{u}psqwRgEOexfo;oe@G44m=Xnga?DmMz*7UCOn}2zj^e-i;PD?Lc zvmbl<%PrggaO9cukaJ|D+G;9Bs;vg{fr58WmJhbnmO>(p86O;}=39`MJe>25S3S-S zu_Q>HHLebNEhY;+|@~K-I!Y$nYn6ADm%V}u%%i;q*)sM3_bnE zZ8)F1dl<~`R5!wOBOyBF${(@5b_nk%fl=F=H&vu?ovnHKKIo$JW$mtfh@q zEy`GaF;QH8QVTr1uaSSwKMDZJ;2*PtO4wT5MXZXZdFjWRau zQBk^?L$2%4@6>Deq2Jlp+R*PD0^NpwS@3ij`Yi%IwFM-@I=>O6wuO~_o$u>!KG70^ z^;u0_ykD9=EW6K5(><)IYJxa3%PhqD&Q&!tztb{v!9-kx)n@gto{7yrm?Fi6d!;cVm;yuammA$5S^@nQWgkmo$+^3D z_%^n!;#68JtzVvuQ7P-k4UAdSN6jcHZZ5`hb~OrjI~EZ`zUr*hNshB2Jw&MaPP8;o zBk!jp=lxkCU;oaX@>q&5ind2lw8+z;qRjr_Ad%;H6o)@n;0EAQErGXn2_(E_sUa44 z&InQ8jIglC6z2a&3f;ufSr{Dc*Le5oczHC)xf0dz%?c{{o+8OVEsA{g9Lo~vw#Iu? z$IHuWC+1o@VgG=G61_nU* zM9O^kQY=Bf#!`eqPZfFJdw7eq1r{vFYboIKD2^1^zT_>lL{Yo|(Pbgta*wa26p=!m zqEbMC&X>k$y!bSVgBK;(#e`3z6hV|)6cH~>EqfaaQ|mM~d=bULrVa$DjTD^sC@zN0 z^iMF)sHz&?|nkXqn+QZ)bb z>AoUz)15%6l^Zj@k-?iZVCG%}HjgdvIn5%&oU;2<%_4XG-MRZ7R&G{#k(Fifl-A;{ zzx=)fue;h|;MJ9lUC7GH_H_;CAmyNz5ua;%7kD8fcn-b!T}xvr*G=8snz}ndMjZx7 zS-oYI)egh64KHap*I8a@nq_ygA3uHOrrBeMX0Y>=W9;54Zzj5t#7xeLRTd!N%2Um%(UMFSt5x0{T1O;|RB$tkMyiP-6&$XneK2b{_ z(209qTG^~=_GIaU7~GCBDD@sfjf*OITAm$K^DOHW@{A8s9VtJ%4qw?jQe?gzBJvbz ze~i6Hw6CsILMbF3fO1?0%*Q=e=N%Sb@g#6|B$MK^k3|&5T?Z-GXy{7?fzR-8;qXQF z8mqZ5urSaW8)U23EB$ylfm6aKKXNI7s#WX{%jZA&Wk6l4s1>9WMNZ_mVPD&%;O(Tp z<7UXYz&YhadhI!7bZ-S}&k>DBf!mO8ij-2t{_K31^PA2$E2^F994(od&SWyz;Eo+P zkLDj+8sk(VDPZKCV&vt~HqOf9UEbR*Wu+Y&FTQGFSD$(9`J05JiAC{dJ9s%;ku#jF zXpqP<^;=Nhv4)j-yhobtLUz3Un$2B~uB+p>tJuu~FL!!ZRWsL9nD(Qc@wX))jV4Gd zOMf4>loQV7c@K)DUu!8w9_m8Ezp7sJiVX>Au&y_Cy59T5IUIh}|4t>TJ>G6kHY|6i zCC1c-i44oyBd*&P_8*Rnl}{eQVQ-qSSl`af}W0Gc8;9l7O16;JAJ5enoNgb4zR7uQBB0C(O)i z<{#r@9_mJiy>&)Qw=}*RE_@3z?^aaHXjqH+Y7_m*NPN|Wn5z;L<|kjuLF)2D)L4Ey z7%$yLR8vdl;aKeNgjF+kEEN!}KCiQlCRbB?*k;w#9(Khzx}VAn*VxZ*Zxn9xpTaq(EnTIFnsECwmL7O> zhau%LMF~gGwKf(TEg6aH>smdf)fz#mvzBJ~iim+=Sy2S6`ow=SlC%Ra`!$OHowKyS znwWuNPf-*YL3EdX)Z{vyM{a*_l)G${Q%~D);l=Ucj#4L@ki zFNDy5FvwXd=d@(1tK)u@IopxISk;YI&2E?k*qJ6`{jEEW*9VOM0Xt<|#qbL>JhtG_ zEHB06R5u#tP1Ws&nQPwptCl!?txk`2{WQ{U0zd>fPP?K}8x zeeDIM#NI)7O4D63dcx8r?1xp}a${dm!#S9Vx#8N#OP_FW>X1USofF20!FM|1J}&FFV2i!teCwv$H#O`P$MnQ95^wad zO9YA&Pq3bAb(6TS<<(uBP1V(zIrl6zB>$S~@Bt|Xir4pWOarGltS;S*4|$|W2Iu*##kDXA37zh_sD{=t2G>#x4ao(F zfzOa}IKutAOQGS~3p{9SPzv9A)ffAu=a!*TBRxaa-z;gSBqKxJ|76%WPiZO*)-(M3 z!qN(Rcm^H%7RA6tkf9fTXtOjm%{2l}moIp%m`W>T`F;KNtu8sb`4%*HQ&{zzliw{687OqnEb8$6laF#W=N?p?-ik z@ygO!3W+n?;@~*d7GH2x33$dEQ9;A2)(OjRbfnz)-1DJQpN%4oJQmBx;tj){-LQjYU}z z*S=^k+@Uy68T=1g191(zWoc_12Jtz5)~=X;A1`gKi=Qn))^;FW{nniz(Z$!=L`rcZ zZSkL^#j`x{3fR0A%VV^jf2PVlT|D-)()x+UKBbJck2J-Nc+!6o<8Jgme`vcy<=ck0 zDq_=io1JgN{SW`@c zo$}&~5Nmr_R!UVz(Dy$HehIa9rkBBJY6pt9!mK@ET@3`Y{*&OdiYR>CzjY9_4Ywxa zTObC4jYb09#5nfnRY_W%!dtc-MChYSh}RL;W*Fxha`A*C7x^6;RX@&()(GzD2&P0? z<4wOBHMyl~LbG7$hHGx7jcvQFb-enxM~q9pO6HW)$Gvf?{bW^Vn2Jg3fCB^ znVxBVg0&7#0TGj~G#Vg^t~BN*T0^8Eda=ie=!FIv73k+wfbM!FTh&zvtY0(`5mhz@ z@fykkJxgxMEeRc=im=V*2IZn^{l0(9KG!6dN4zqj5=)4=^)hqc|{nU zRO9t};W9{1>5`su*c;YL_>_-9owKg$)Ud9J*2b)l^}_WVqJOX%^|9#mDb(o$Qlmcn zu&&Kpim0P2c52^JSRL+Tb%wKo$ZhQWc6ekHYl75VFZM|jYm(GN71I@R!#e6Ht9~7I z9#^4G(Hgy+xHd@SHpeh!f}ZtYGi#(IyD2l;t_(LKb8~B)v_dcD-@;l?ddE$frJ6Et zYs!q)E29l~lEn68Ym9VMPgkX-wT5)qjqadIrBTptSgT4m+{Ay@ z-H?DL6sBOYr91jx8ZFgz6HUNt7HIg4F?lZ@ z_mj=S&`BrwhPASU7v>r66!bC*+Ko$PjGLU&KaWK7ndK%uLzR}|>Z$b|Pr&uxS(ZFp z_*BP46JBYD8`Cz836k7$P?xwSj-ZTfDryuuKMB)p_?>1Zykd{C^PfU&{1mvc{o=?; zUUrb`tHu$r)tV^1b`$wW%ZNYiIcQvWsG=v~b%#o##|W2N5J?^>_%xeV2%MLXhggS6 z?e)SthFV8s0%H)ycDqAZw<`ZI)!I}Vrx#x|%-RZ#kHmFWIt@|O#^+Lbq-A^8al4u^ui-Y zSrbec^SEmKh=rv^^|i`UU#%>TjHg;BRZh~CIiO}$uN6=YSkCjhO6&& ze7l}jD636$j!%CXj-{?a8s$6b_5o^trqq=~A4E~#XwTVkX&m@xJH-OUxbc|OylE7h zhA3+BB~Gx8ls4!k9#6nfQW$k#tLnZwNpCjSPqJ2$j_HNxPO`?DaK^&*!4DNBEEc9) z+e!s`>FCLrQT<|+zOI+n3>_^8cAkQj6ORUJwj+-M#kDDz5*8Da=eg9?f0OLvHm<8* zPsOmYvR$qLfnG64++OU`y!^$M z43xjN-@L7HcC?V+$M8H!FZ$jBWFvZ5S5Zv!;GvET;u`9!xY)4}wRC`~4~XT!r*H$-M5^lqwl;FJ9eB-}QmbM6&_j_;BxG`9*fYW8yg3M-i_6n9yH+0z+<>u z0ct;1VXY}O*E3Ff52n9~8)HMn(HYTDzb$y}AX$&0dg1){VIBv$3HR63>C@PyVtu~> zW6_0r`Tif^0q48P&na5|-&0${ReSo8p5)h!7<+7SBiURu$)*ci?5`#{qi0Fm43<-F zEGLU*8J7*kad5<0GB2_*2fyzof7eZ(OV)b}Mn}G)(j(ouwG5n=|LaS z<3n_ku%{o|jjP_mbA7A574@yDj`QeNYh$UA8)s4zm!f^O;luKx`E11#E4WU5qPJnz zF~Ci>ud0vKtBJj2?N!}J+`vu+!RFy68sxt!vgeYCQ(BPFdew7>7J^ zlT|d8aI!+bwf0cL<)x_ISja6aOrP6}d%OgBj!l+U_JXBY7lO^ZLgX#Ow_s>z&^7pnM z^PI`lI$JrtsY^Y&_!)ZN4GyV5G4OM&SqYL&lToBY137^E*hVeKL9*2_1@v-X#E zy2)>MljroupTzJmUoT(!OKWH8f}8xgqUGyTB1dfC0b$bt^|!GUeEIEd-Q2F-B@CsENpnuKDkqB(M(;H z*jPoq27J|;DUE6&dNi@BcNC;I+^B{jIo)E!z-ySpE@qMbIO1)sD=l&p$$*H?8hrB; zjt*?oMA}`)u z>nN$2#<%shbv*XMNL<&CHAuEEYH$Ufdwg$-_6S2Xxsi8peqo?dkA6-)Ftt&2`e|?} zyo91?Rn9-nP1T5(Ys5d?!=9|!sL&F;#zI$;zZF`0NxL+OE%&VhOrIE4`BJqjiDSVmc=}SzF z!c)W+KWi5(;>mx)l82_~X#M}fo&{dZW>WO+sw}R0sb6m4c9l77e-qLDZ;ZFv;p2^D zky)kOzi}FAS9vl4i;=s=G;5H-8MRW|Fe$ z|BteJe%H!QNjTswx=Md(>1Yl2Tf_qSw2JhcW=K zgg0dNc~`xM6jw${uXTEhuoB7`ya1lWbou}SP(X3!fn?~SR1Ik zO<&v%*FXQ1Amtq?ptaE$`?XewL8V%&2L?dJmh)yS8Xu^=szXie=uRl7)HAgu?yh)G z-qUi*5UEvbon6=wtW1=W-I8erdYxgoIP>6Wkx&7}lx|QntAa9Bn&2icw-&>@;ykUY zC0@99J4Q*7R3+(?)~q5fEqRI2p-KZO8!CNeDOdb=5AR}P*y4k+d>IpKf6%+3h`NbM zA+9e4cx1Qs5fMu^g=&4YCWiA@lf#s1C^^^YI9&E1Oo?H3nmls78dXu5AZ>J0_n$mMhKIIFyYyuZzB|~RvtO#zMrW4`qm{u@BrZ+5_SY401FI|y9Ckr3@pO}vFeoVsSbL)l(*+*6}5I2)Ra^})OKeXA(Cui*4tTm84S5B6y1s#AxE0@OqfJ93=h5@gX?KQ732oJK?^4SC9yOdSt>t1_ zYaohlNJ^*oq;5_z_4r_FSEL@UsC8pqbR1GM zC06R_#?j8mfpuXS2HlzXy5>q_X@Z-e>=5LqsiAus+<&d5G!`)=ZQUBq>>(9}#Acwb>^M}wqmC~jIy0DCR?u)`>3~^Y!eE$u8VKi5ru03Ir zqC}5=D7xR%w99uGWL)m;Qgopm^hLLRjgoA_QiLWHC^jxey=}@ux{_-|9{6N<2lv`G zLMKeM&6H{s9;_EO)-{|Aa-_|5Z4ry>Ojt$--5{)i*u4@3uuUgbYZVIMLt~=ZoG5n4 z>G9QtY;=dIn*Gt9M5oNQfvD%->u4JcLQA}CROX^f?uqJyl{R#M+VKeA493{`sZp6n ztc;{MvQKU6LzF5~`HpIrh7t=DlZGlarLrB3W-p+lYW5U*fD{~bGCl{5C7JTyRHd5K zR!=#9m=Y(oa-&SvD3er5yt|aLCeQC4KBY(*#^*@ic;xJVoAo-@M(cLwYy3B!*v;A; zm0wq3W{Tl&piOCNU0i;wmU_KtlT$WO3>m33ls35OCRE*|wH=*7*7Wat1FA8H*0Nv{*RN#RhtlM~e1rjyb?98AHZ8op|_<)1xiM zq3deY$??X508<@tXdE7rqR^>k_R$9S4qaTx_~a zsr<`w(*91WnT6^+ykE!s+D($0&Vh5yH>%G}`c5czHxaBV&CLFq0bq9}gYqjH?|~ z?q?L}Ef&r~#pu!5Zelr~`Hb>By)>Uuo^6zVvqlOOIgo7<1mLn zfcRiB9%zW0)Ie1YQ$KNXIagRdHj%ePNie;olkTt-wr+u&^gO+^Zj{gCFiiX@6QFK@ zux2Waq^)l9IS!q-n3bV8@Z*%||Bg~y`pQirPfPKbU0)tJ&hL1$o;HTI=r~?3LzOIa zB%0b6%_wO!qfE0nq>Z*hB#OEdFi4|SU5NFSN4_3F5#<{+rKN{PeWUjqSN z>HtP2kdAdx%N<$3W1@bV8^y@(hFw&{H8s>(3*HAm28^6ck1({`bSBhUtqEP-D#5!P z-}I4Kwpi(hR|Xn%TCUT{+|}NCoweYAT|BXY5+ph=RqA6VWZ>BA#-SUUa9y}&XSv-* z>3~@q5$M#u;!vB7?Nx#7e`y!N>xP3w+Itw_yf7yGOqcLuhw^NCX1}kr#>;e8Z$g%R zB)m2#gYb%++hEak^X14RMKVaX_&}+F#c)mXvkx#R#Bmi@$%ZUxdMx&B#*pR;{b=Rt z%tKaVN7Xy_nmNHviB~WO3EL(N&}1X;XqDHj@=kE_QdFut7}Dfy8j5Aos=wy=f z>Bm!kPCsSjb@WqO{)&Dic{}|C$QJr3CZDArFZmJunB?#1r?`B9eiG!{^ixb;qk3MZ zpAh*o`tg%Lp`Q}+OZqX%f6-5I`CdB5tqOF#bd2lQi-U(in(`4;^I%7^KvtSsoKxV)ZzeC4l;XW+M({3kg} z$e+?r1NmF}@sc;tk4b(=KfdxM`spUGrk~<+0sVN&cj(6?Z=oMaE~FnX`EU9uDIcMq z^73Q)DIxzvKPLHv8kVPe{!_eI1__=br-%HMe!S%W(NC0oT6NKv>>!v!KV{@+s;5Ff zCFGy!$3v#?h#<;)sw<0rB$>Vr0ngv*$4lN!KR)t4`Y9prq@R*9y+t?!alRm@zkG~- zB>7$ShhBDwu!HpDA>X8*;<8N*qc^W1?7kZIqZ&r9DeB}cKcF8^ncioDD2M3BOTMOh z{-XXIryp;57yV>-%WLU3P^QaPkhn@eKJpXw=VSV*A#bCf67uKtQ%3%fe*EM==%<2A zD{+v!PCq{K0rlrM`tg?ErynnQBmESYH>s}g>8GUp5&wuKA1ckc5e!)?cfdx@aIVrr z*2c=d^D^Wi? zN0V4d=v3E zg5LpYGSy6^eg>aP9L{x+A{EjnX&w+*0cl(f$-jWUHS#OLT|gSwJ@WsWUPPU72AC#O zl_S4}eeheN-%?97QtMC41z@j ziwQCbmJzHZh*?dzlVBIY9)etg&j|Jt9K@Rol_nYY@P8WDZc5n?uj!Ek0BKx($?HS9 z^0$p(2f?QVdkFRs>?b$`NaK1-0taa!_zQv~1V;&u6XX$mNpOnbG=Z42P4N@EwkgqE zXS2AHt^y0$Vb&pwtE}BCi>oZT$R=}+WpM?zdu4G=cDkr0lZ(uB7FTJfi|V$+mBF># z;pFP>bWy!`x~Ks-UDOhsE@}znB4eM$O~UD-w&8S98*#casI@qq)NGtCYCldFH6*8t zT9ng8P0Q(`Hs*9uBO@2Jxh!sF6Lc338Fu$YOKhbdlX~y2x&ji|j}i8xV3)f1-JjIdMiHyW)(1{D%;k z8K)n6kq{5cDY&@&)#OjR1b*Y< zI_Kg#@8TlsO={CvC5z3t(?w>STr?`lVtej%kzrre)DcJ~-Wf=?-svKv?{tyjXV;2nN(eI0{yOl~IYUmZS zGqgq~{;!!Sy6sk?wcrgH2ik?7t;GM&S8{NuD&3usOZz~Ruj82muVE~7YUnP17hdKZbl7E5`m)|%vbB_{kim8gHl1(M>P}T6? znzhyGoKGwt^ywjusTUQ`jt^3c!K(s>U|r?f@G;8?K%`Sg_~t6{*bi!& zi}~Dhk)Esc!n>qTOJpFre31I0`K;uln*=2xT%K@n?0Nqys>Sh5734VMRaAXaQ6KT#wYA9=*qM+UIqOEE91`IW6vR{jB*0!%Fc{0T_oxgVwJ`zyTi2`=9UhzEe>7Ql5YV3z`j zeh3)#2r%d|!1F1f^Y4I&KL8&A(lTV4L=xYEm+))#C*aFhfYz@8F9_BY!>IZ@6QF_z z;4Hzk5`ZHqyoo#&xM*v=OrK7N32%2J$ifKI`HlH~z?D*$3cGJtzR0QEuv z2g3m6!vU8fh>_;9MD-e9m6yM)0=O0r7+4!nDgp2bK~N&#dOg6w`s8c?I7Kk25#T^` zKx7Mm8Q_>1(8L(j8S*uZUgQs20w%Qs)Nc={(E%{CBjDZ6fTdjkb-IyXZ$QUBfP8|! zeTk7K*Q8~${_y&I0HDkez>YLPjZuJ~31*E3R2~cHE(1*C0K3N1^FNym7(4}V8j!}b zbmF@)6<*oX08?iJ8qER3&jrk#2Y5Ok5U~JoVi92fTY%KXfW#$$Lx41yCi=wm(NcJg z&IClS0&FGdodtN7LAY);;5EV6cL70b0h#Lnjn)J13P6obfVBj#0BQCq)e9|wF4+jF zxCQX<4nW2yfP|fZiv%lo0sgleFn$l9d@f+f0l=99^!$kj0iO`$9wF{q8foGQc>P8& z`5VAjvE&&oR12%sLc=HE9>{Y;bKLSF20lY=<5Rk^J9F#GK zGj73e{cXUyyMVBJfXxK83jrnzU=~3EK|3qpXM)`i0aYFWmJ>WDSo#<+;2GdDLBr>O zY(N?>rci2yzrpLq3&7OB0Vn^#ls1jmSSU2+HT-@j803Yy=&uB0O9Gw{1e5|iCRkP) zP}3K%g`m72-~}KJ%QRHnyh=laJN*%IDG<=00wAz5;6_!7NDDap__Z?NH#HvMSsU;u z5wM{xU_?8>b%F)$0rxrp4tE0V?+lpU6;Qq#Aig_bVh=#So`4&@06+Ey%<2Q^*bh*q zKfq@IpxPk7z`=mULjf;`d%*rbAAx^ojs#R33&@fIug3#sPXu&J2RxVpI5Z8=eg?&45SC0DmqgSPA%X6`Q~~U-2B=*fP`oB!QygG?ZNR??fUtUi%8dZ! zn*mNF1O9FW*xDAbryW5D!19hXTszPi@KYDS>8^l*Jps}E0SyKM`VI!{90I7F3ix^$ zpxJQ1fzg20V*uX~j2H`eO0Yl%loK2ZZJW-p3MP8n2>K-0RojRrm{F3+$)-8FY~^VKONfB02dUdIGs?AqgN=u2}2t z!z&>}0oHp8X!Q)x^EqHRRt4p4F94^pb|{a)8iy?X37ARn4?+1?0AGw+u?z~hTLQ4( z3y@VB5aSOx69_n04lp?cP$!Jm!X9ghAB}+5?WhvS|Gt&*@A1lj=T#`mPipSm#k6`j zuLE-{sDbeHae!9wfYdsG2K52IHU`XW1_*9P(#SFO={mvdRu{m3+bH1AvnU0VBTvEI16Uv>pBJbT85(8Kj3)otNV*ISdI1&%9d$j>~nvnl)^*OF#(PcPq z0Z@|tJ7gfjTO9$9x>GDn2AThtKJePxm%Px1;3Z#4CBfgd@SejE{(J=B)mT8rctG9^ zfN3H5Eh9k~0p_~83SQ}J0FT}W49*6${s@r!u_yBX(@*fP-!4GIgMiIPNp_zm`^A^= zI`S1@$^}5V?*NUjQH-5hj7vA*RsJ^M@_j(lC**t%IQ<8p`CkCrKO~UL0`j5P^c*y! zr3|Q_Q4Dj|+8%%cKfuHgz?v|?H<5rZVga3N00zVX_SOajCje$A0@l<4RIdj(kPPUU zLhHN7H0Cw!;PtRQdA+N7-RKOjD_zKo)~ArEQ~P9iL7RhGgy($_VN^fB)>MjhQ}ZvE z2Cw%=0bWl4+?-Bd(jO&o=ev zbM*&(0!8To3roMS>huF6PCw`-=m&O~e%@Dq(8Z8zllt?$`tuS0OrO47lBe>zK|N9P zB+ggX6J1X#A-wo)=1og8?^$N@mZh0@EX}-OY3BV(GcN#`dH!$a>A#t0|7PB*H1n#s znJ4{bo^zXdrflZrZ!=GW%{<>V^A4q%C#h!n3VL^}PoPf&?qH-DotamP&Ac~h=Gl{( z=R9Vfub6pmVdiZ~GtULgJX|;PFxt$+WitCihNe?tskP^O(6iF>{w;=1wA$y96^EdovqSGh0YA zn?^I+GBaB#Gg+bxBu|FN%ofMY=Eckw#muI}%tpe@&E3pR+RW|L%nj7cjmgaI$IMN} z%uU724a3YWz|582%(dOjb=%B!*vuP@8D?IzGxPppCT}lh%2aC$yZ9ScRegu&08D0yxf}TJHevLDQy3r5#3KI6-5vk9No_-9UP9FGfGQ`O?uvFaP8t;2ES8(p-7vr2bI$kMaAXy2bzIypkBp3{X)J*RZ3s%eePkT1;! zn5lkF!^J-N#sWCi;B}(#oKjz7Stlxet2B2wMt`f+bvU+st2A{u?tZJ(b2uW;D}5b~ zx#yK`4#$=AN)Lyl#s#Il!!hfEj_v3LrI|fs{Y9mM_WxHR@}kmQdyKE>F{)uHQ66{8 z{umny9FMVGyme7Y(ge4Qyo(OT?V|W4M+s~foi8aVj%e%jj+>WsGL`amj#2qaYlqCf ze5FZ{ns?htr~bvTX!WDXB>XQa)kS{(ol+&Wtlch}Ty{M2cJa<-M}65Y@-I6Ib-So` z#gS**#k?zyI<{S$&^t`uDOD5IlxcBP&co8EoZxHEjno-%s==2j_*YshP4E?y^Kl6- zp=3yS*|qxM5L!UZpDhx8R;r1pXBGTK#Gt!AW%W^RQk2-)CXrgjR!JnM-Yq9;f3J8} z&?VB4)?LQ{sA7p81FMHqyqG{e%}k2(rO5f-k#VeF0eQbQ*Ch55yZ;YLRDh0nH7(=* zEL#4cBnRre74i<7D+;bEwM9b1kWhVKO=OY>;udB#$cNRG!t5BohNSWmfxmZZZ(z%?ZyMEB5*Xpy=rmZrJ&;+k2VD3Mz~ zw5(qA8(PEuKxAK2n(4hirB&@@@$i~bU$5j)TIc>DOGI8*;zWLWXplaz8?Ap=$`X?) zFn4}vS$$v~S`t5#B_3TvVAT7eC4yXP)jbLxEF!KeE%j<#r8V?VMEZ3lrKaw|4r5ha z?ux~9)hv}=2d5g0=_}4Eh+mvM>~oLS+=E2zpOsdcQtbU5t-=p`pK3)lG3>k0Ao18I ztc1vU_pW!4o-myj>i>OT-1^y3!YuE*0sb3A!VRU3o;D^M-W_wqts6>X5&uqDY3-3% zW?&8ihlrauly+J*WA6#H?tgfzN%+-30WbJIw4zvWI?PWW!WwJMjzcBdPUyNrYj(FvR_tMKaU47pA#z=D z@ut#6|2(Z|=b^+-k$3~`qeWcBa#~riOl9my$QM7gm&H)pl2FUy6Do_UV&g5PgZ3Eg zvz_)U_8!z4RL=DPUs2!_?k&>GhWqH_ouDm^SBFjFKbrqc2dG5H<;kT`obVVwZ>0~;ec8~FKgI8}zfD0rqAb=y%@*e5U# zF;dP^RjDkZl<*iwwsUYz+E97xtVx(WZLwm(v+y8sqI*PWT|Ma`#h!&t#6OK{tJH+@4z}7jpR$NVy z`@e|BA$oOvXgjDqc7iz0h(u= zh&8Hf;_*FYpqN-c&R+XjW-o0ub-Zp8CpnVe>K{kTO4-s6~gMi z)+$kSrJCHl^wOO-xqbpSrW#&c&YFWw@zfpumBI}7VQZM%|ZD4+h2l-2r z^FJ2t%utrRLfe~O9+HT*qH;!8O47@hryb8PJe=|wr=m+cObE+=Ls8x+A#5*TAkw!) z$B2Rp(O&j;%TcD5K$K5>#BMJeXAreW4819*Vs?2E+T0V0tJQf3NcJ zZ&N{Jzfux~f8xE0;#TA65?W!hWFOifE{`|CD1G#V)o8PLQ-~PmYfBW}*N2CRS4(Sn z>jigHjLKs9AIdz1RfWcUMhWR z>GJa;_Ne6mY)z}#J-!N@YA~&G$gg5V_dk_x8WDS)q$p2B?w?9OO*QuZF&^F>YOBvw z@JCE#yJ{Rdpf*DPsx21$r3})O`Ox0?d&2gYlBOryLEaKR{qZMm5I%|i&EAnQS70In z&(;(3ULf1k-;1dr^14>B4<|XsPxTOETmAK($fbnQRjTT#57Z~>23jWVj;ZEo1S&c0 zxqse(MU($kTtvU3u%V4a(^t?cPqLNN^G>9F`j4863Dxio`l##}On*95D{ik|%)Os> z@%==TS4vNP9z?W&_e`<*mC{S=NjP>UdH)JfOQsF&?yDtZrIPtkRD7)r(|Fit1I4&2 zR=ie5YvUdEo=7JGV%lpw%Lj^pu~oZ^+@ETd*3{=%^$*r<;x9<|_JZF_ceXoo%sJt2;H*xt~q zdWpQ-h{WQyF?DqL*{3hOulBQN_f9$op$4C$>~2bKvO9acYz@SuRn;mvdNU6HjE+pa z8Z3$Yn;2O?X%Sn^VR<;*ZwSKUa2SG16PBmO`lQ&<^;2VgHQhMY_B6x_5wAs#ko;j<4H^uycHX$&E+`4b&417+JPqormc()L{ zylnQ4j!C=8@O~nTA*F0}#DZF}A)>{Gd(J+C;}jc*I3J7`UA=9cMEa(Cj_!g(KOK+I z+mormpm>|cM%v4VL!VAYXeZId+tyqEu!C@ZL_RP@VMpNi@%LL8%aT0LlKPnLr>Q}o7SwU5nili7O;9Z!j!Lr+piM15a9TFW60 zY)Hpe!o}cHHoG}y?>IWhGHxELD)N?94;Ht+sA{)W9AnNr#3-0gRn;c035KQ*d5EC7d(qWEc>$sBjVW#Ag6T!W)lA^6=@ z)SsgU-MSYphAB0Q>xaP1@*zcQg_knf>=u!|d(pw5+hVW3ZG@ID?ERFy-(HP5CDKd} zaM*DUTuVoY9<5e8^(Pn5spoX7>9FG*E%kAUf+e5KsOf9Z zZk7yOizsidqmhLEak6e#wHsrOwsak$#je*e(R@drR>Sp(@tsf~AwQ_5qusIm9f8o0 zO;ndTnP_`$;n3=v5c-ywRMt^j*n16mKioupuBLwXXEjRJ)feW!6s6y0ds!dJhEpwT zY_wyOjof4-lWDG!8&fOJo-PN6Z9(vR;$k`5c&%-*_dh$}JyCQDwvE%CkiF-B0`JJ3 zqHzqKAxG50=Ng;wO;5?k!qG~BHN$oG5yjjgp>liu8 z3OdoXbGP<1%SVbW@5c2N1-oPXLhXY_j&}r6e-8&gM)Js-1z_xyy-a-9ZOprJoo^D4~oQ4n|%hw-lxes>Y&zf^5f@yRI8+YLd$Uy z4kFGw0Di=$+v5hfB)o%yvyZ65r0zb2HEZe1YA;Ty$(@dC4=-;%0jFA&x2Py1M0iEp zB(0d(=Q+jbEjCrO&CoKDz0<#e_pbnM{>#UTr;BQ*3jYt|OXwRZM}0<7*NC0rwmEu+ zt!Lq#c+So+U1i9QuvO3}-x3kzU&S{OwoJYEGxA;|hDX|FXr<3dZT%MBeJ*HOb9;F0 z5u#hy+GX`o(hw>~UUEj6Za2HkP#Ym~)MZU8@iaevzCCw2JOM%Sitj{jCEFO`U#-yB zUNjuK={tmu`avTvbGG&rdrRQp83@6&U~eVcn_87;?`l`!{pF8T<;RGe%C?eveXsn8 zz>>dcl$RSNjCP@{fDn0#XcS|ctk0iCew-GTy?5<*K9jc4JmX00z+|%fmi-nI8YKW}e38h4GRhxa; zjtN2$NnUYJ5(PJCn6xb+R7B<{l(aV}j?1WeM^22_Q^q_(;2g2Dx~+%adl`BEDoWR|b=3yW zoYFJ$9`jhsgMu^0JXrD=;gx=)JV;unqrR{tj&-( zN*>Oh%46)Da?Wdq66;Bc0FfGJtEc5E`@EnS`DHxBgxlcE`>Rd`N3L-AKsv5^*-NyD zx5bI0#dR=V#_5ZWSxKAAhBmgp|`z4v*crnQmmAR zh`O#+THmH_MZ2ZpP=7iPdlSGGRLz-$mvu^ujHh*c9GwM6eMC|5CXCuP`(`0~zf&6C zp}r0k!W>f*4z58bY_kxIy+qQmoOrUJ(9=c39E#%U2Zn2`p|8kDu$9(7X0RV(+|^=; zyaZcFqFUaZ#BUV(Wf|=mZW0^h)T3o)|ff)A|39nTERm+zNVBD z7Zd7*+g0P>Bs%tMs?6G#6URr_j|jKd6Allc6T#o&M6lWcMT+k2>ql#~gd_ZnFu6-D zyKa->;8b<{lx>}8SjW~-v$X6pB_1(e0JvXm`S$N2B5HemUq?}Jq!P6e=}mF6j;(=a zA=vxz}GR9;NanO82K!KsiVg=NU+;34*rRPCyAW8w#ItW3_891 zJzk~Mz!q0wczXKyS@s-Ysk?Npd51`>XKSeCD|>&@3Eo>fdx*_LZ4n|TD#@?ni0Pw7 zrA=|H$Z@pKJ0sf2t{!4oCq(n#Q5a$G$vAjgR|I=@b81{oB-eM?bdC~?P&vH2GodnJ zlP08(9iQf+Wn6c}8q&igk~Oh>g(_x2EpDK>n{0qWea_3gSLq=47<{J8R!^U&GwEn|qkdvb zT@+NaFA7W94Im43pflgE`caO%Ncqt*@IU*jQhB|Sob8jvyy<{=u(;j8)|K?P zjCT-;4Q=*aRQ4V~hsdXi40!7`dz+4x-yhByAu>)CmME*Qu7BXXx%}%0EgKX5s9#(p zH?rB6#F_UQ9Y!BLQY%p^crhojk-rPgn{-ya)L3Vk`H6&ijY_&?LKq!o&ydx+oV+&4 zQ{S>(UXNB=ml#v{tui8_`OjcwlgLYy@bF`B1) zh^JlbB>pcNxfV#*bj0~_ikk7azAr50@-+A9Z2ia6Jj9&-V0f}S$+`c=Y96Fx_YG!f zIfC#CqV~|nUV1g#(V_f4vqXLyRHWoz3M0jn-ZuNj7?Y&YiTxq-Jw!Amf+(>rZFd5l zg$B}68P5_naylH^?A{Tt^oY9%&BR4QKqoa%jIbw zE<>CL%RNLcwb-m5n>eO-tmn(+6f9OYw{_Mtzg!9L)2p(vMjTB9|#ylPGT#4WD|rCsVwWxAwLY^_>OliD|REk%F2y|7k@ z1+8pRB6&=bujrm^E3UV_AJNr@LAcsrH;~mTPMegPHX(hQtIZonw;v{Fvq=n@Hf8wO ziEH((WFg&)$l9W|p(n8oT-#6%-Iuugp{@-D&rF~0Lhu{irWh;cwX`+Tt2c}8SG?Y) zQ?CIhK6c`07x6M5lQ@7oCD}rEFw{QhTk3P-cX)_f*Og$g2_+!9r`W=@D#M{K=(0wu zJ>q0*RK*4FH7g~$d)==Pt`e-9R?Jk4{`jn*+-ncw_TK9u{5qm8aOCqJJPg(fp6N#J zMU<+!T6Ia-_^^^bv7}stzRaZ}N!0t7q}w6$4^jq43IC6p`G|+DZ1!_4%)1g-N95|F zWNTY=9rf8Z(6e2}B@)N#+gf=w-6BzgA5!pWa?={Y@P4+4_1O=Tv_`>!1L&g31(Da< z)>?Z4_Wp&uOC9qND|+G~bFMb8W^Z{M97dN?R*8vi93y`A&L(esRH%)ujW*q6?{fL@ zE{*FcTr|sjiXNMr*AxYtl7mF@SINQpsB7ttOBLL4QKPn3qvlk;AK{XIeZ-Kz7k{?3 z_19~C_XfNx-t^!n6(Dit`=UvE+WOHuXF$2hf~e?OO)|%2>%YYwi+M%9HI+3zgj&+^Io=E zB7b|!P)Co<;m_!7{}tc+Z!_-cFF(>zm?jHy$jsl0suV#O3}7z0~4vn#Isgj?R_6 z-!BgDA!1J_TZ)#4>^;E~-u;ECv#q6GfiYh24#8`>x*>_$?eF`$C{W!Sq5tz%)f*C@ zQquLIzNO$R>$})m>a+1zANU5AE-n@}MD2{~Vhag&8WYx~Qfb8ayR_KS#W4V2|5Cp2 zUmzZLvDr_Cv3HgqyyuAIuC}&%)t8llcQ`)(NjaX^Go^%!>T&)EeH5VPT|_sVeLayG zUj-oW^FWbG*`7ZnrG#rie-((}Jwd8$_NWxsd_PWCs=gHk-5hga=KQ%Fyk7;2)Q;e6 zHZ{f9mD8_0f~$w9!QEyXgByh)cwhtNT_ zi;MI&s6BbMlxQ3*vX`ke^^A?X6w6!0UV3vOp5W}ZlaZ#h0on_do zwk3HCqtBSodWaV&y!zOB>Afp8g10B$rEKe?_YQ6b?>*vjAKL)E_wi(STSb$;w!!*5 z`l}VZ-=+6t<2eiZ+5+^AxKi5jOtRsRyqBkxgxKmK8GOoeVtSaqP<&i)->vyU)2 zFlitH+YHvKe2Z4a9iuA_?lTy{?+?-He9n*#6?A>Y%yuTbHp4jEieR|(-M}&OQW2mjMUY!E+9wasnbxie{?#Xm`znZ~x zV%YqSh91!GO$1*O38}6&Xz*-!`_19p7P+Z5yxjKx=z8zKny>$Vyp)@pJtRTM5_@FW zo7gkMjFlmRTqHrFc0x;AGa>S%3mC#|y6kz~wtLSlE>=rWsvb*$Mf~uAqo?!~P&Cw6CZfTFp^|qXp$H z9bl%eRR{V%)yI3zVU_w6E-WA5Jmi4harMsV zELxOd^lj-9=F%0+?#fS#!`$-vI{vH0C2FT(QvcN!FJ0|P^Tr#2K*OsdlQQ+QT$e#&U)8o{;RXDP+8C0RE;uP z@WJ(z>%X~E#K6JMTp|B%3+ul_nVCi_TdrV#px$s@z0IDh|Fhld+Ydn?-^?P5_q$q7 zCl@9(x7RYnp)BFEpr#Xyfv#R(JjCq5N9|sV4ip92&rq+cV1Hnd%TD5p*Ed0EbbTV zYR!~dGe?6%r8Y|~FVUlkMtj@o9N4dX%j`uz+RHS8UpTTketC7Z!fNg;Rdkfz|v23lVM$PlNj2C7lx3mWc@qTV7%kgXW0DIBB$$Sd6d3|!IeU^pV zIo7azbDaiHH6kcBHrbz!wMz~ObdBf+x1HtdUvy=bbxUscl=K(Am1^not3w*ZuOKAX zv=tax4CZ26I{#)bu>Vc|t9vka2X%GqZ*epMI5BsW1|MbW!OGu^nLVTpr7s)e>sUab z*XkbYwY*=A$_tE;vhhQr$XGng*~rl8ai4YKso4}`tZilmJNb8JC;g$bpnIPWiMMxu zh|^hODgDzaX593vLmanVptGIDyqXT0Y7DkbU0{FmH?xyz=Tu{mYla#8n6>2|6ICXa zVMp4$a)_IKRKc_g7uhn2GNw7UVqia~*q8pLFD7vl?Q1r)iEUzo@PQJV9^31x8J)Z& zTG+Y?6oOf1dH76qDxS&Rr2O*Gx=&Z4mwFxib+_s?I7`d3h09oGO?t9Q?9 z_*JK~llZFZ?u*0h5Anf!lzJ)sFs0@hX|9=m8o=y#f+$vHn&dYmfFioxto>Bbr#V+k zdTmNx$SSd+!y{d*El<7N9?37a>n=8!{I3mbOyQk|H?mDX$UKe}ESdb$JG3nA!}+i7 zxmMM4KM1R?ZyLV#!tiGHmV~5&-;w7ht`cTA)-SM!tC!|?N0D`gy8Qe_*f$*z9#b#V zUn4og=wRzlVBhE0>n$bJex}jTHmH73d0%Y8Y+iC~p~O<>{iL`s~& z!V8a590!?@o>MRbm#M>ZMo(K6gDrymaD`wna=b19i_K+KMu*sTAyAma=mwUEiFW^g za>^DEPlWtHrTVXSAxSfMB>N?gZsb^xAa~1V`8A4}WAwAN2H5u%Ho|Z8(j23YEBo&p zW>=vra~zlI(Dt9fY~JL}HG0{`IoMYeqCzqwDqx&1N*U9wg==UTEV2AH&mQ@Q3T#1F zp%59|ms8OKBa-s|5dO9<4Pou&Ec|N)i9)u`eSHic zeXYFdm{Or)TFEN?=<|7oz1xDFqL3Z7tfjcQ+#fjC>SX3wtUA|6r{vfDqLW+axLTjjm(bPLh19ljIr0o1ll`2j9Mx5iF2=0`eIdke+&DoY!F^n zs1z$HX`$n83)mYKPQ{=%v`uWq7!&RLN7x^=g2q?{V&VCw*4WoL^(n7)-ejQ%H7zt+ zy2cr@gW2M3N?gQ|6irUGPi=7c=xr8O&^v`jtZR|)zQgQ9G761oS66AfnVqmlXMdvh z*Z@a2hO^W?EH0wyMUGQ3u!|L}#%FZ0$Y^Doy}IYNq;LdaJajI%fG{77l$+ zm!Q0N+EW#nsSrMLDQ&S~f0Ymp3*Tq<@}sm%IXw4B__~&2gTeyY@u6)I-!ebdM1EOg zgP*RLBMK`dj^ds-+Sz6$IF3KY?EDkTQ_#T{4 zpZ0}jdD>bZDw7qI%^q5`-00-WKCZxR7SP${Mt9qm0op4W?#5DwQEt#6mb(h?Mu*Lp zGz{5B?N=DXY<|E=3TKT1+PK0PWvfE4mne9gg$$3Q{7{t<*$t`uw=6U7bZ{WV9@^@BRyUmHd~OZq&nRdj zv7A<<(5b9(1}vV77KiD1+CQRus!R3l<{lsQzdD~GTz-x zS!eXO)d=i1G7yuc5#ulE8kwL#m~@ToS2c2kuBhGWuYY)TdxB`%Rij5MX^&wagKb* zXlIK8oL~h7RnAaQI*J(Dy5L#fN0H%gTScICL19HTW2`7$quoBtbIb;icVZFW)%ckl z&#-Fe3Rvn8)qch3?CR|k1vS-zp{BIA_#;Ew*dNn_Sr>&u_0vPU{O+eiy4mL*$nUU- zFLHg>8{xLH?^A`_&QMh@BW|jKs?sg+o)WjFl=Y4U7My5>W93g<*Bk9@RSWhNg={sB zZml;u*=h>xX$tFVF=JinnrcCjFU*Q@wOgZbu#QmSt442IX<>ItA!F@eWGr3UML*5z zWG@ZmM-*sQCu+LE7;IaC!5*k!wEDH6W*dw)RJ^1h$nlaB#3>43YZC)(X|GpT7PPT< zZ^-v3?5*mtRP?G^z)P+>Pp2RbQm94m}WH*+*{G=)!>lZ^vzR z`039GVU}kZ7z}&5mQW!hTX0S#XoTdYt zjBd6z1?QsDI6cf}up)>uX3q(Vwr>bNQ%30uWX!p3%N^nHd02_>52vKfMo-%U16Gzo zBwNFXWGV`}xN&ZreSv{^8%r!7POt}AqQJ^@sV*yrfn?rdbg=~q&MOMZOir^08Am4r z=7rI@jSGWpxkBqPD_G7l)R{e3e&^MHUQI`hLg^CAE%A(irYooq!=TynHdNm0$-LF* zYwOeCY)~2}D1EEZ#8%O-E5$GclIEqfk7 zpAPmJ25Yly+GR5s$s%qd;VIB=&_0BsmHeRBKB z?R9vsnVGehPQGr0_S~BSL@A|IzrL#ypqaFEosw=Ua+Q9m0M)hhBZ}N^)GXA0b|}@4 z7#PW!+md9CO-mhUK~5>ag0%FavQ=O~PAPy`wDesiz0D9UPAQ;4wDj#lC2q)AAx^RT z5J$%UD5-+za7uyDp^g7j(%FpI;gkYPLrXU+slw85N&(TJrTuWMBbUBmzc(BdzZ zxR3z?oW^)PT}$6mQuTVeQ;N5#wG^-PKIZqVol?BftEIPivU_mO8OPQBH*;e6Z%?OrlkJ-Jib$kr^X>I1SlRJ8+VHF z;I=k?2N^ei*2Nf)*lFn*CFMu#T%lv-M$qau- zYw11ZS{(p8ZE?t|rCf{ZkkwU+V<0V6M<|8r9LU9Z;Yde2IZjQSu5oChjd4lenh#N& zQe3QS>3x+kU#z=GaZRkHxKy3V*T~%d_Q@TWs#=W8&G-2t*6I2?XIPG_PNx(Xo!a&l zmGQ{_uC};@)KYy3$rqOn+d|84PS=hLM~B#g>qc$-mvWuV*O5*suDi69dpoZnd`0Gz z;u=ItadB{juTGp&TpR2y#5#s;^*O#+aEiOLz}7JxyKAQun``YFTea4_*>*~?Q`1tt zQ{$bRQ;Kbwmab8do0ikOV{?k6v+F~=MrP%KT^5)8Ei|vk< z>g^71gho2Wm}jCi?V zx6y^pRuyhF)7aw0(iL9gvvM*gPs^Aw1&>5SBZThnHugO`X_N;=?ln^AO8)iWBQ^FK zZ&c+Eyu82P=w#;G&m6X84n5p&3}j}%ca2f}v+Z4DT$SI;4j7sIXTkwv4F8lLFedR& zP&*;TJC*Ly$^N;WQMsNNZ{yzI#N5|f0 z@9QY+s4<>@79Hid*U?W$q1ogEBOyfjv^@FJM!1HmXXX~<@W~-EPOkD1UH`!7$r&@#_#haEz&j}BI9KluTB(2T95+(8TN@0!ra_Xj2!;C{0Vo8)0Fp_5$bKJ2;}^gTg#um zRP>S2$j!1mK(T1!r$&8bXn7%^3WW;)x^&}Hqaj;zJYD%`;3=a$|8SO#Y1b(ukkg!R zNB-fA8dAN_c)TFDdNlSkqXwrrOG_0=V^16P>B(o@B2t$poI0O2!nI^%m9HrF4EMVW ztY!X6D>R~qr`hvYly=4lrD30Qzx#?xJ~uMml!B!je}DE2BQJ!VG5oc8wAO8>)f&); zXN)k@S*809Rh%)Vc_RJ6=qk^ws6ml8R@a~@Ul<+Cip%vIPrJS_Qnh|5-@z~z^0(Jl zpEYLi&+V&RwUOtHcur@YeVFsw z1tWuh9$(-Aca}C>=SsN!BR_I^;-V4EjLX-J2K3;fF@V$IzZmss@|Q+`PLKVC?_z%S zr7?ulTYoW{QqosOPfq{*3%lO?6;JN|YkLw9=As6(TFG6rkb3&W~Va{FIu z(W#$|A==^qh5u~iXtCdjDpcJ0mk`?fvyrS>`OLcead2I#f5{lCEqti^ZLXOumy86h zGh<{Gx^!LZw4?r)jk;R#Tbgp&DAeiIboa6`*A4yX_Y|6b#h9T5BWd>?9uXLQch7O# z^{y~#X}_mNRiSYWYKBl@g*{qy$NKc3!U+C<`((^jqltEkUf7IYzG_5pdvaH7M&DfJ zA&36hf`4jVGoty2yJB6+yk-P&n)_pIT8%U}cWwIM8u}S`%uupkGyKpyTe2c|%rHv6 z4tLx;>(Ezs18Y^~H%z#X_Fy^p%muSUQBpI#?_H3FKTey9>t)^z$tvMDrcJG~~7sp>5GiyK1qcgKl$((Kn;$&TV^_K?jYY{&$R8uDvvrmfSJw zX_x4#@!F-MZ~7TV2a`UvphUxn_Ec$}6vvJ6;HN~M6}4!KVbs$!nZSb9VWZE{!qXkN_^335Ea5 zljeoLnD|+Z5FZEul&lC%|A)JsUFuK8R-?KnQ~;FRp0-#Gix(I`MV>vE&fhbV=sMwT`O6mkg}ca02f3J~Nw^JwM2JYCx}t45#SHN0u!xY~Z&3~0#B z=-fSHtTqDz^4j^d;4bGFe&2AX)%OigEd%uN=>;SlvM2WqH|+@c$5G_}yD>#81Nk^} zAw`_zim&Kjn_uPq!)WAViyr{UXBMi04W`&X3?E%bKt5K45+VgZFL#e0C8IwKZ=DB_ zkC)QkKa6C}0OoNA^8C{nryBqO$4qF?7e-A-u2FRCPa{y90PFZ2`uR^|gk}KcIF-8m z#h^l{b08Zl!oznoT|8AQg0}q46Xm~u8G*WJfH!VgOqc#-l!wfz88i7NJWK&>e507U z{$(W4XMYqyL8r9V9%I5GIP5Q@}WYXtrRPuzMy}tR6 z(ZZ}4-1l}-=)cAUPl$nfe1lf}YfMp(HuG7{E4)2oLK~-x2rB-^@T0_k`Lz@IuVJD= zfpy%y@Yw_l@Q(AS@INEl3x)tX_I|bOi7}G8JT(0Lawg`MYF&UG*QY5Dj9je?faB3y zXzBxFJoS5McBVz!ir_^!dVE`Rq7^hOrRNt0r(HZVnx_- z-rBg*I_q*oXHuZWUXTN>*ykvf_=re|B1VOVL_!3}Vnx{0ZDK}delDK}2AJX*6_gqxVq8i$ z-$%G>1)voFQ=$6Wb0&T2O+LP2pjoB4%4<-DuUPH{2>^=EU!xTP;$>8F0N4N~R)pJg zB}Mv*wzMi(@Ox8zg_}1tfJ@8-B`FIOqv=ti2=Igq;Ka-6s=wH*8Gs`GftCjd(hL9( zze6o*h*vZNSi=!?p@!I?0|Ux%mZaz!;^nd+u0MDNtS}QQOcc?`Rn?r18F<2qaLg|{ zVouQW6|4a#Jdl!u#TuO}5QG_0HCU{Tf(Gz{6=5Il6AJRCW@l#PGt>oyUbMZYc)|1~ z*CHbaN7v#SRcWr#HngagSm6Z;5QKaDs{&`}@|wbje8a_H-GQM17~zxjL2a%KFn}7| zlg5RJjoJlJg8z6@*+p?3;jI;b7rch|H5pIkF~7g?(Jp}&{3Q*l%bf;!03o>Mvz0AW z&(sRQ2mb6?y4qO8(w1;;PgS#824LWs{1{SwyR1A+n6wO-!0&sw*qv+1eHobo4>*c) z!$oNn7=Zs(L{)G0wDEjwkdw*P3t=HOj1a@!K2+8F#ETY3hykAJ57+PTvAl`ntB>Hd z#p7zx{78PX(I-;WF+ukeiis4@nUVh6t14YNSTBk$Mv59Heba^(MTp?CdZMn2dOhk@ zPt>bqQ&LYXaJ8YPQKE}kIpGkpDK|3xoh1W#yt_74sV`n2(T}H3umLjMiYgk5wOS9j!iVap27H0g zAD{1FWzjT)atC@=pC2y4_TCbhF(Cqh`%S4-fT+>uu>+29%z~YfASP zVkFP4&;iQuNqW#syyy)E@P(PE^*@^S#fSk^(MeRteB%iXU<{9DI#IYMLyji;eesCCFZ7H6w4?Q3UE5hZjj`O}!e2EG-`c_mYzi;_k zI$~tQdh}^45p24lhEp+JYbAz8sx&vrP99Bc>@lriYJRrOgH3HjYq8d(?^lwwwMg() zX*PLRo2=v~w;Fb&qIO~^uhP&1F7d1Jl#s^Nb9Zt>eCPJpKqzKH_uRQ@of^*e zg&H7=TT{1oVuvRfKqPKL_u7eVUSI%)__+a8KI*BQ;77HFHUlVe2_<$AuWJTSh?ml% z4q{^f`~Y-V5w3$Zjsgv{wS~@V7&qy2!{~7bQHr+EmcSfVge})OEeT663;{oUo*&Rq zhH5(2p#y$+_y~G!y5Kj!w>Ju+@_12=-aNv)@Yt6dG2ZLvs+rVH;1#Bv+??#}3FOO{ zt5n=egnN`i%B^soe7lNO0nh~`u_7Ex0VQ`4t!ZB`5ziwGVjvRxP+T{$OzQ)DSP|AQ za_BQ`EwAWW131Kru*On{Mh~p(S_44Dim(QMxyP1g56muJ$QBsHvnT1nQc=>#O%-&Q zCu9I3u1DcL#44=}2;xM`)5?9+5b_RQSJjS$0$U&vKQn~}Cv)4|{r15Ur9%T4u_7GW zTt{d<{V~4a0)WK#rdM`>*%S(ZCT61NAZI43bt9kwXktY;6I(Ocs=G72(_8d2;bwhz z`nR`;_f=_bvwM2vll* zLyOe(#tV?cPOWEJ0ralvoix zO*(T_?a&-5KqXd$9ahUJn95f_;CJT-A#4nmOreWsn#R$xx-w7=GDh2J+RW^RFZeMC z#LU5>udjN1g4@V{9417*v{43OiJ~tLBRpCG0ON_2kRVoifdRZ)?TnlF#g>m$S%(*~8UPSr;85~tGKqV05xdd$e0G$U)~%d#BxXxDU-i|x}meIn3aq0yb zpp75CrPiZ2Ji!5~@j}WQEp}-YfEdT@bTL=sF#yWIFjj=iwOM7lR<{p?KrdcNE5?d< zv^HRh6>(~#ZJ-U1;wgL78oVAOSK9!bSP`}%Kqdb4kXpNJ zWyQJ%8PJGh57XefT9!aXZJYC1Wpr~-9x6})BJo?4m?74Cg8>j?CM56jYd#UVf}dC) zFKU{usJb6bS8_!d%^oj$`zi)EK)P;#t+XgpY~==k9)O8|KS3Fj#9R6r3Tyxq=TWB# z;*b{@fFHj989kgJj(UOvd&9QaHkja1|a@fo-F<)oKQCnIQ&_a18Cw7N@j6fP)obeSVWd>8o9U76La|5f<*( zLN$wOAy9)AaayVd)^PzlxDkCZRqWT=zzbG{wcms*+x7)v0WP@KB|1BmD-D-pU;{3A zF+I)^?`pRI3O48iZV8uGnQzjMeo;oA=+&Ig|dGL37xE(L#iN5|&09>#l90O(S ztjG60*&rZVA6P;K(7~m&VY-+R00t0(6=9pn6qzqZP~mjpNkub+yVd|cup)Mi$z0j6 z1u}3n`OOq_y}$q%@H4l_f2PO{nw2p%n{(!iNyvZ*JexxD#T;)ifCbEiG9Gd%%JX?w z0zSZi`%rj+n5h|n0sfIT7Kr&e8vy_A611s6Os9ua;`pQ#mcab2Pw&hU^Ry+`ZCewtC(XiAFzBkQMb8#Eda&$RJ*pMy9q7b0%pw2kFull;)%Zb z^yXaA&Qqni(cj|{Nf*B4_l44vTk;{=JU&S*#Yb)}K>TGw-V6BJPB|l=d3;r~X&yHu zTmj-&5ia~_I@!5pJ*{D$FT5k50fb*gSi@8)j5hN{M-v_+{FVyli&kcp=8!(6ee*?< zHzWZ3Wujsj=Lr@ten-0Eu??3Irydu%Cc4lr)K0_4FOiL@pr++N~@?}C7?zt+`nL^>IGX|#b zGP+tQM)@E#p!h1HtNU(IOMl8O645$m0QfS|_c0(mzmTWX|BCpk2lfE)4JQ9ZA~g&Q zVD>7)bz6LNZx ze&j7ZXyIZ}&l4KJ?QKi%Eao#BFaXr+U-rD{8j1hFm)nY7nLC{?`3mx`-4wc!sRKn#Vs(V5R0N?eLzC@&XfdR0idibg zYCVAT7WSh-%SB=h8%Qr40G{`k{%{aHe&W>JjQqH^w%CBt``$o0`2suN{i1N!&Vk8$ zfKI+BGBg7yy!q7PB{5p(2F%^yL>LBT+TnJQAAojSBvI;Xyn1pqwFDd;M8McpgiAhH zmArp|M%slG7`r2e&~ck#T;PP26T`b`1`lLXeF02sM0ySi@O&|EW?xSdG z35TG>Gnh@mcXGzmiMAX7ulsj~ zqw?bX0X&BsfUA3dyv{vqmGIXY14{QfTC_@x(uDwSZk=q(Si(_mUM)=2X|=s&0hqg* zKg1`}wKCvwA5V2r_ABQ35g7s)R}l_%6rEhn?&cQrc!m&&xCvBJEXHbWfZ!^^+G%K9 z@?Fc*)0vY!yzOHFK)8o#N{PtO*#q{r?<~sL!DA|^RCJ=)HTIST;H@I;aJ<8z2Msj$ zwG|zhx6|mv8Zk}B0JK|0*krQ9q$Wj-V4yUF4cuErSc5OWxC`niy-N8^4jO>K?ftT< z=9C)z$}+zIVQU-!-|{M3DkgYC6;QWKDDr@)tHU3&;aj$LSD&VjHzq_u85Hyk|(8kge8H z&AC}Ka?>Ww$YA6%r~sLE&UPKc=j(+>6xaZwRfH|wGqWdV%t*`3;VT^o-=n|Ri}9v2 zYRZkKv{ywZUzO%*){=_L-4Rs9t7|Uq1m1aW7C7|^qAY20gKxF;CEoHf(2*F;KvFaR;D2uJUcnVX-L zkvSR9l|mX#9X5)drdL(?CR)5vw2xA04u7Ez-z#f2KUb4IEsIxQo{(&cmo|zyW}%E2 ziKISfTOKLUABk?0nh*tts-2CY!|l+whM)42pyo(D#AL8pVslE>^??_b_GOQMOcl` zA{-I2D_`orP55awAkr$rYV#|r4OskFpjHDyts<=ET3&c-R5hMqj}RPSY87FMw4E;wLoTT-3vVyPGG09gC?RVrV@lS}$mK6$@9Gu{&wZ2?-XA}`X_#qqV=bxw{J z$#_GIGU>N1sQe8P@1fG%I&Y?Wkk1D0O?P+j4M)bTtwwTNypNX!xwZSytEiqZU1W4_ws%3k{ zII8nDpYTHs;IyrurQ$uzE`D3MX*R%V*H@!~Z;5ebJB5eN3)r+wbVQ+q z*7Kq(`@}fg1^|5E(RzB*pmJU@@4hEI92)?LflFKLLp~pfaUl~5rsbvOW#ng0R*yzN z4uIO_zS^zc1Aq@`+7^DOvDtg6n;SD zXrDluWm4JXp~ED)2}79iMead+CkMdnv&~Syw+{0D0G=pz{D!T)59!^ zJSs*}`XS*)#t~6Vn*cHPIQhOO7V8QHR_uR0RfXngCjf|5gq>u&I9c#MZ`_a#AYv6^ zjhQYQdd1f&{ke?0`%}aL9yqg)3O}72U}BdKK=ak*tBn7n9|0=%AbEcvrfM6Y!+t+l zRce^)4gmQ8BUTX(WfW~aE>e8?fhUN74?AiIZ8$DcgB-~95CI)FA_a3q4I5@X1VDyu z%jaEcJmzCd06rjLhmXbZ)w=<(0R^iF=blcKJ}EM^D?qt2p|mo)tEB%45A6!@t%{(0aCPi|d@BL20OGoF z3YDA`BZJgA60RB{0(@)cRJwXXjHHbp@$FHt0pD6d`#$2`9T-!lsgW=ZE-3F~;jUvk zr`Sv!qq!|{@feu-W8oH<#?R=E=ZEazATEbB<8oAc4b?gcpV+6hcV@8cof%rjWiru; zPwWK)j;kVEu;!}an$*mm5NmS^I9Wwpg>g0^z+@F+A#cT1?e6+i)X?Pt4(yfZRIj&% zQ}2`r)^!O0SVdgDwzhc%7Of&IOxIq2I%S{SfDy}tE}wR3A`_keOnA^rhKl8L9@GXv zVwpH*thR)5vto@#&;VYnBAk!+w4Cgj`DuA`_!+j$$u<|6YK;%3@Y7fK zuxG6levvm>U;uVD?KGYHR@7eW+ro!7e94WgU}wFw1psHKlh2o8v^OjOFUy3Io^VlY zCaoGn28>xnI0T=md^MMopO!IoQr7qxJffkoi~jmj%rrgV@GU=3?pI=qK4K0#;hW&F~^aEKY9HqLcQPvaI?w3)7~G&1ZrBr zs|479nN6oXKZ;zf2Ta-Rf6}0@U4jYshBAO&kW4q50yx6TZ$p$iHC*%GR_EV6Z#0W?+-_J>9p$CE2^0%9x^ z+V>+zxTW3@587D4dn;$H0Wfwob*m70+B+~}qv&XbSfT?0IxG{~{4@K|$gpq@Ojt!Y zTRwlU;AOL@?(k|}I%|N!=26@=QHXwH0sgBZFH*^j;X&?N&C$W`UlSuuR@LV|pv3E< zr&*=BvwcUeUKbMrAORArBAjCeZM`lAQsMi6hz#2+!_;4h_P!5wEJ5kElcjq#Mn%y9A=-E;i3Mn}mqyT)Kh%=7 zf0S82l~Md`qM5qy8Rg-|D~JM(r5;kmn$;gJSY4VcMVdE6z>8%X)EGZMXaGo75ncq!ts>O51Zk!ZRB5`=_TNP_UzO&9 zbkMawfa1=NsYOYD3WjNWZfq@Y3v>Z5d*UT({y=n~+&@Hs7uW!nt-YMW{!?r_u&kH1 z0i>*nF8?9=c|sdtvMChzCvUgG0BY>MwKVQ;HZPjbU#H50F6Y<%YAX_|u zj6G1c?w;gVg8$~5h%ED`EtAH1>8yYqdx-Y^B?joMfEs(@Rb7BB3yc7*2h`a8H1=RJ1jocU$cP&8?uA0s2XJ)Sht$9)A-E|e?#)z2k!M_3T?asf-Ak7r@JueY3_YfIvhAz*j|B$F)NhJr==X z&;a(UBCJuZfFEqNS$3m?kHv7)r)s=3Cf_Hbomr)MycANx6EVgc5+J}bp>x0Ti0yVP z&66q~^Zaq?iD>T$4FJG4Ul$?AdEq~xURQs*E>aExzN?o7Y#_T9th*~mYR7D6VDW&jYjCVf#|j`2dafPiiME1j(_6X>V7@m|_BAYc_? z*8?4y$JGP~EDQnvst9WgcWTgHH|a*vspCyN$3PK)u)k5dn@rJJ0s{8b9m;T%35^*x zo6$3Pj({$JUln1e)u&|5$l#Mj2wGD|vm9jNT{a`i&070SK!I3zLu*S$1u&|1-&<9VLXXNDM@?AEyJA+0BjqsH7Om|f2X3}?_ zvWHovxpZGqq?eo@0141y6=6RMsLGdFe5b}+Hm8`piS@MxfMXS5jkyjDMl@880T!zW z3-cYq=9GA2VjWLtY*Vj~dI(u4GICNgnpZ=5Q@T4t z@usgk8bn*p4dM?lzzS%xif~4A{!e8GxGeV(m;hGx8u|IjB=c^S^I!c;R1tEE-*NVn zt-#^{Zc(|PtXE0F&0l7iG~f^A_{+||D$UCGbhOj>Q}&aakTsU0%?pt2xGz8%0JMs5 zkk37>(=!Yjz@SxxHLA_X$l>Qjep8|Cql*Euvl%Et(P@mIewL@l7Byt3uVQh|k95u{ zRPsf3JylQbJ)sPY+C6leY8lum`sI$d@H0$l6SDI82XmcG zIXh5hnf_9S$@Fy~SBpxsp%?iE$q8PN0Kb;+*%t=!qzn$QY9H~ZJws$9Z3&W%$=YaI zC|5kBfTvwZV}fOtCl~;xJwa!JWu~?V0_`)4Xl$_T4+Po(?N(vWK4QYP6HWIvOpBuK zwPiJ5$9M)5QVaUErtILM(i~`L20t(p!t+c-bS~dSg$5vLb7?~@nHK;Cz-Sd=#~BXC z-8~@$B<&blURzGp+5n$bgtaF+v>PgsKWE#K20z;tD?xp!5GFy8B^6XB!8zRSO zPk@|NggxbIPepZPf))a9RuL9XaAebnaysSJsi$)Q^sFMR;^wG@?^JWGrb%^Wchi2A zK0>?e%Eo4u<{D{7m+H!RPe=eo`#v=Zl>;>cptIAdFjV%|48Y9>()m!?S2F-K+kqm( zWUOhY@_vp+hVckdY4+ZW7KO29IZ`tKC_9ajuH|se0D$Zo>K-LCGy~AF zr)XD{O!tBhV8tG3Oe^ZkWI8(OxtdxJSg`|Xd429;&;vSb3O%VWM{7gC!S0En_$WD; z-k)fyq4fX*8$=fx$O)PO0N6Ryt)Uzp08hYrRfOwqgf3-lBNbRfWmI$ckpDA>9TSaNXgA* z8?#EYr|q<=IadQDfP;O7?lqU=0>A+Bt0G*MBrZ!h6}FJAv@!r+`H_hhGSy@|&yI|i zojg>U{qE&y@oY<3pJILay^KxKGA008fPGbjU3Q_Z%NB&w<7jS`*HvhVi{0qLnfbM- zYmAKcRxI{(7-i+x1?JbPq_sarjx^bpFP~W1&aBdGahwLn@>~iD;9(Wv{Kl#L>Z@h5 zlNJIbRuLBRX?wuJMwA&RTbgVW+=e*W#jMio^AuIY$;knb04i1yHk+W$xL&+zRZH2@ z6B+=E{e;f6JAd@P^;L||{XmMj|*g-~`N>zQdqrn}xC*4%(PiTJ!Inu1sToWGT*HQM+ zk|3JfnHT$_jxrWv%hC_sDC7HEHR*gu*-Yz{m388E366fCKAmK$);xCHjUF8mc=|n?1^E3>7xbIrY^LL%4zteLdRqev@+uVnAk-aLpU)x2-n|@Zs2&IIsGJ^i= zA{&|&gUb?2jhW>le$n%YQjPh-?HRuJbaCwUKq|jh)PzF2$rip!#76DMV-MAjBD={( zRMbsInPD{ke{Qtz<}3C2E6Z|#39Roayt~|{#s7TbMoGQoD6-6vUKAZKduo2fXKu7; z&Z5S&HC~SOg4vieoPBf~ia+suG_~s?hilD7U$AC@Y(Xb`@QMq~|0mFaJ!On(qbfro z74?+;%t*Uux>IC#8AZSMl*3KmDse7V%#dT~?Ow9c({YsbmaYGfFmifxpM$esXlrk| z!2G@P((bw&#rrJguNU@_O~K*{nm~*C$ONtM_IX>SJYbdyHghPkuiUQ1zh7}95%c^o zO6(^`Y4LD=K~65!;uv<%C5|Rbf8NhLo#RLSWfSvV6~w-DGbQ(xO(|@E99qfm*#WY( zu7gV!ciPvFFPgdzWUWieu+M*PwB_GhZRp%US>IE!IQkd3c_}tk)?_@RC7u*MNH#S= z`*lhjB**LYR4PtX2WW#hY6#z>n89*~cDq5kmCbswKQ&5_{WYg6XB0MUePh~^zytf~ zyaN-tVx1Yp(sPNjhD$C(T{7rSO_I1xp>5CQe@R^PXwt5Hz>8e!CiBoeu1a`?qle&JLHOHRA}i7$GO=G=ghK z7f0}s2z=XPiXAD#D#bKoq>Qf=(|;p*=sIH>s?!K3Tc;5TZ(T>pHkyHOrs(t$Iy*}4 zG3`>-bea~8mPPI=&DC^mJS8sV*3El=RW0f?Mn-F;=9D`|l1|Sjud#Bc8OF&0X72v0 zdz6jixec6ofo3X7SshEvN_PY6?=VUn&x=5-RPGbtyi(UpGW>QJZA+DXwO1=yQ)Rw3 zILR+g7RVS{pT$qVVc+!LJrpi!q%alX)!qAt}GvydhCFQEBnaP7?%Ovg)w=!i5ZIfA# z^2W$klr%vO(Kf?r?-bdAu1?@}18%#M|5Vw8zFNh5k(^099nQ#-t+nV9?aGqdb$U?Q zG?_$iPUQ6iX5Gk`D2M5ECiR(Qcej>SO_Jly&{^KuOmVGm$55lmvXxe?N9mL05G@Yr zW-hzEma*6-%Z^VMu}!w@r8$4|w+ga(D+7OT)1_?g>PT;;>A4*CcnhysV0=hhEIcrf zZbx@5vX4%qk~-3?DfSRh17o!ig-_LKl(rM?n`-x>iacG*P})YcX`1xWj7)lWnv61G z&YMp^P2&{=IXj9xJVyq)LHs8_DLWil9A%x2bimY^O6r zS#8aQVusWAxxDMyt9sr?l$R$%s7am-H!BABg!z=jEEn-Iz0UZRO_#GVKe5saR5V=< zaKmi%WB^^9&WAww(}lXtkQ-c9rZ@GJ=EHZY?)6^ZjNYFq2UeQpTIX}^!ukMB%a?t% z+q%Pb$*V2rzI9=y^r7GLWlgQe4<8lCY@Ie!VF7Q}V6S2vPARkO6R9KDL$i1wph7>N zM*amn5dN6O`*v_-*?ifa7C*%a^V~Uu~I}&glt5n%+Ia9k> zM80$6PMxkxC+5fr_Qq{8mpdcO>@B%$u59~sD8I~=owa@-f4q>l_5s7pP02%+%>Kl(>fL?W00ok|2zy-D_k#b(+cTQ?Xq7 z(TXD8fZ{nAzxbr}#A$46WbG3_a=bCBX z+}lm*%3>b15Pwf!l=93w{dwM#fYGmrZ-2Jh+?;-YUiQ;EyD0tzxzr8fdJFg^A=#aL zmT=R7^U4AZytL*8iba4YOcf2GF z(?UM)T+Lk;ijAp!HBazJ4=A&R8DGrn0$5ecHuA=PN3lJ|2#VjxM@?QO_KxM~#F-_s zqjuxywwFp|L+u9Lwh6Ud!}A6FqVJ~YG`elJwsrK=zH9l~1F9xUTWj}&e#*~-t(En3 z!`mC_{#w4=gF3ow6tyqqJuDcGe!I4mXEm_UZ!@&m(PcB%*}EFLY-2jOPIl7z=t=R^ zwoFE9BS*JgRAwJe=uYkFk1~6#=&;Rc5Xo-Z3wmv;cHrob{;$YJT8ut8REr%w?W0%h z#c=erI_qV9t>x%x+3RI(&2lv1*7balh{8I0+MV^Xj?SvC>S~TG-HFkpYQ$JaI zcx&i%I@9j&?X5E1bU>;8M84bjdR3)4${W;io9u&smizn76#3!p=5%lyU#LO(T?*SJ zJ5#UM~VHy3)=C9 z%+oq$6#AyTsnf5M=MMRqRu!M{DwFh12MTjsPpW^jOnEosQmOf&rHwu ziBB$lk0fiJ zE;=Cd&D&HLSbLiaWD_uP-%XMaZE^!M~+#XBS-;);2dXrgk$M<%n zL+{BKwZ$Cjep05>w)f=>dyeuXA2Lrq%8LPfPN%8=<3V!&s9dTU%W2^U@}Bm%{g#>H zcfLE3E`2DwXz}wDaZHZWVn>0`9^;7v?oh-YI*rnG(CIr=cwCNgE!ZqAK$$wxD<}B! z86F%38(A*9S1Q=0a=sLX77F&3Js&R9Y@J4NR_OF{di+0ms!~Z>eavS7aDkEp)A*0M z{xI5`ySvl9qyzma^b?*{6pP!BXwWAzvC?#K<`W*KuvtctpUM?(NI$qslfRc;>Hep@ zMFXcF-TPklrERBVie_{#`%Lc8$<4I;Gx>>56Ycs@j;1e9ON(X%QOZx;OvRteIhx^3 zzGvh|I^Bc5KO?`;>3X#D3%OgTLulMtxmu^+rsC z`pBLyWq1|+XDe;GF1J$t*K(R>RHNcw_!dk1Z|t?Pp0<7?_t{LT{084f+5Ro>q~NPQ zS3VA;8h*#eCSW<*RzDJs-`>Bz8`oofF-Isk%s)p z9UlzT`I|b8>fWf+-t^!nxmTxq(7vDLK3ymE9`W3kLVLg9eWuytPD}du5}*FU6)L_J zwYbca2^gsTUH^B*+ZqnlT}Z1d_(m0MD%E*E8g-S=#2`Y&+w4XY*ZFw*^O}5J3sLWe zPNT}#=rn4(FXi5l12to`s`4Du7iy~do?8DZn?$HI_wlHSSX15e3;3ai>0*ec@@wVKc#e-SADDM3vD!#*)8xVg@#vNYnkUl`Q z?(xM>p}~hfU_7eB2eGr?Z%Y3ea)f3%Lf$20oMt&<3Y2`g3PZ#+m8_E2YcL#vyTd1i`vSC69P2M*2sp@>u3+)q-yB zv@`6(Xxi~urfF7{&hF&f^TSTm{|RsOVKI$XJ>dgOq`&U%&aYH`7`o2i+Ri1+j_Y2s zwlSk>LRTW7bq}mzrmt09Euru#)`UtKzFx)JrBa4bRjr{e8S*xws`ZmtTo(MvAB}H(v{SelApEKrqXAvjZ9EpL?@rMPSu9n2D4$-orW}~ znl(v_U#0!ktm}39C?!?5ZrADR^j~%BOWN!T=ZE?HJ(IP2r4ZuXtWE71O?R^nsg%(@ zH)~s$j5^Rnv$c;)ZiDEt+1kS;%U-n1ox^=im9zF(ce>d6M1Sh*VQu28SX|DBx}5#X zJgxQVbq_8kbl1}b4{L$8J2u9h!jew#mlQm$Nt)%)uGC#2A4}+1_h&3Hv5vC2AM9lv zSSiO_Ue@L=j$>$mw>7Gg_x0Y^0s5|qG2NZ4Yfdz$nm*P@usF~l>h5Fh?Q)x`2_5vY zcB*u*Da6-0MeDpkT>`AbslwMfxYE5Ci=Q<`vqCtd#KJpW$j#r{-{nSAEG_l7Hq$ze zU~c$Zhq$;dspO(Y4eLnVOV?3e4eMB6)nhsCHj}V|B+SYZEWx!43A3LT6m9l%)R zV02CZ<9P>TOcEGN9E?pvzYoX$;14G1jMOd!j{UewHk^lqh9a z6dnoLT0~hYp=>2ZGR$TMGxPs^zUQ28{JmbD^F8nTz2}^J?m6e)=RSA7pVJ;3cf3n5mmNe2UVw!TNdLU=a$eilWb|T-qt%GX*byCt$q-s@vg6q6+MxZIY9_ zlLy-y3d3;OLKgx#*e_kqYj{L9Zzott|0$;e^xs9Wlz=M40N*$u1?+Y?FZHBs-lKrJ zcdteup`_%o3*xd*L9PJ@6r4;Ij~^A>az((;3O3{k_(eg#d;v!kJcgLWXy>m2B5e6z z0U^iK<-S4!PAGV^h=5ZHW)&0ghl0At3YbJjrg7 z-ynzwmsAI&3op5xH?6E}&QQ?L_+M5q74mr~;EIAR->*T=ko}tXH+NY;U2Uj{&U|++#{;tH2i7 zUV$y+b_KSKy9mB#D^^1K57l-6h!{dKK#=>KiyTKMm-FWIlFeNdyx&$pP(d|lg`$9N z3ckBdKo14$ZWYi=!D#}_zdlMTn0@*x*kM3_1<^aDkO2w;1`Ja0i2*|tjO`%13|DaK zZUG|&$o#8)kC4&o@~{Ep6bv_ogcU68B)d#hF!g=`&nobZ#|sK>>mnYL74+(C=HJUo zUIsxgPF2v_?DK{KXvfjxe+sBq2ryFt_2K|#EBK%Bn5Up61PS5sHbF!N1T^AE-c=WB z76L3((CQHZA1HXXhk%b1G&UZ~6r`9zvr++M;#la%3Lp{}Az7>BGcyj?DS$>CJ)#OA z4o9#_LFqmMwkQ~9z%~Vk4A`k)#$&R}*8q0>ryH_cUHUvOE_)R~B98U$Q(!02K?QaW z{j9*wn!^h0toc<0y{}=Q4q1S?8?Al-OC) zU4fk?Jr&qV@~8qkNgh{VC&?28dW(U!CpaM2l|+~G>V?htAFQNTSPpimf>#aj6x1_d zlmffU7zK8h@dO8Wz5Ctl@{|M8iiwhw^`8=pXyr3*yGKPufaerYL=oTx1r$*Pcu@hx z69J|upm-v{%L*u-2=J-`>Ll{}&udC3lnC&K0;(edq$r>yBEWP7ltcuWsemeo0Bw5V@v=3VV5!)6j0p{pojwK_z@ISK|=pWyXRN}v)SNKJL2{2oAU1(e?dh*LoM zJ%G9jD8C0#UjgO!02(Tw@*Y5A1rbW^fizV@c|CyU3Mj7!5U+sBdH}5y*rRVtaFE>* z$rg|H4oG+0=5ijz^-#ba01>kT)$~B_QWvV}0oeW%Xwd! z%})rB`3Jo_7MVb@j3qo!O2EMXzfY0^yUVcuzsm>*q|#9?=TYnqRg6|ZwL5^wSS3`t z0~xP?5_bS$1(dY|cv=Bv?Eoezpq3rLvkItR2k^WCD%Sx-EWrGubREcKb)je-z)K1! zQU~w~fvBhD)f4cV19Gr$xSU5}I{2q3pfDZ4bOqF*1DGlEPl}`l9mt#NLftulISQya z2QW_oMdkqBQb3V8fcXk2DhKec0?Nq&yr&>SDLIfuN~j+cRF6nTToE(O$g1Nd6O(~xun_*MaR+yK5)K2Ji#HckCSMvjH3s!1*T!`=f5B92>U(tbi(P0KX`p02{y&1=L#u_*DVr)c}qu zprjhW2?f+q1BjebLLoJfKNL_d4d71&R7L~%O99o;0M06)`We7K3aE1i@UH@U^cM-% z6}k!Yk9u2hNw>swN2bep6gb1?%L*uJ29TqGLS_J06;QkkAXfoZ%K-8fP^AnY(4W^o zGy{K5_o9%35Gyf&f@E+htbp2M07Vs0bPS-l0_u$clvF@>;>lf*GdT`y5Q1=K>ox(x}yj| zJA!xEV};FPbDIOwVRtaMhMRxP7yr8nu3wxwIw1b{xm?7fI2S7Dyu$OLtvDi**~3MhyLFi`K;bKZ=M+%!3g86= z6uSa=Q9*<%S0GcAP~QsRWd+o?0(ez{?ZVdyK4+h9JRu$_4#*Ij?s6X0tx&*B1r)Rb zcoQIEN}!k($Q*T{b``)p1=OtqcuN6ws{rOJpjZ{ay9y{)1@N8%s#F0iQgHN~nSUQB zp-dHAK2$(`Du5*ls80p3OaY~-09GiVA{D?Y1yrO0_*emDr~uaV=krJDLJCiTe5x)~ zoB~*~f+lg#xxJpo$d0HU$)o;`5gsN^Fr|5zJ#9hi)#& zeZF-->iEv(JZeW_^Iip1jso~W0o9@a_A8)T6u?0XaQu{u0{KZ@C=ms4NCBmw01hjl z@)N*O1r&V(_)P)Do&b(3ptcjhNd=U3;_uJDE3pUrCqWL6et8+$=Whq(=+C*FM{Oq* zd0qkaoB%E;pq>-JMFrGy0!Sl}_(_rRHD$fdBv~nwshPNBJ0O)_aXF9rO(@}-0%|t_ zB}8YrMv5Io4GExy0_q?Ev{X<% zGF(V&B~(9xOIrn0KLTi{fNDnow<@5_5y0&VsBi>urvhpk0o<*CnnnN}p5*kG5egNhupqdZBJO$M40eDLR z6?y>XE1(n)z`F{lyaVu_0xIut{a>VnQaf<@K!H8jj|leh=m-5J9?Kk%qhH~29<_B) zz$yjQ)&clf0X201)+mTjR0rf!B~;S^Sf_w$Ish9KP)G-0qXJ6k0Blk)s)&Hi3MiKY zkF5$QlmoC$=ARrJm2yCKs0)>G0Cp*;6C>bj1r)=9$F~Y7e*^HHf@wDk*sFj-H}Lqu zfrv+u8<72uc+|K7IH-UcHvm5=prQ@HAqAx?3plKRdNuGks$f+O0lz7rUJX1V$CXg3 z2IQmyO49)Ru7FB30H+mDi3Z?|0t(Ln{H=h(GXUolP;&<0yagElBjSZzP#3Dsz~!O> z>dOG6DWJX#K!yTJ%K&64pqvaqwgSq@09;W(AsLSUYf2~_1DCx2Kvw}bCAjfVl^A#w zP(V!>fI0VQAniYcJ_3qT12`1=z@UqE8ig<>xNr4>-+1)z)qO1l7*Q$RHr zfC>tz<^oVj0o7apswkkE3!i^gQ$jfxxYSTUITwIh3aH)!5UYT)EdX^CP__l2o&u`0 z05niQc@}_10wS`kj1m!(OLmjRsh;6psET$I|Woy z;r;)uN=iR1F1IV7ZVEi^R6v~+fV&k?8wH?)0*ayl+^c}%Cjj>=cr``90|b%l*VV2h zv*fxoS6m))Ko;6=F6U9%1VwgNKnW9oM-))B1fZ7!ik1NMAvnn@o_&uX;`Mbz>UhHC zJW7^ehbI+KrUYPs0?LyB3{*gQ5`e)9s7wMdgy1|YefycB1j7mBx59}1v2dg#(u!o} zP~A=5)8@Ctu@1=Q@h<0e#Sb1RFRZ}&Pb4_Q0#*t}c;bw2=BDxk~9`IPNfEpeEQ3Vw4 z0Qg)1g*yPgP(Y~;fGrBB&cXTrr4s6L0Bl!484iG*3aG#V@Rb6pZvcFwfMOc}yA@Du z17ME=ifsUVPY{t#roaZsK6Rn62EYLY)YJg@QGq=#hX_)6qQ0ml9!DII6ZNahc~sOu z0ml?jNrUtMgc3?=z~z(zif91*p}^L0hTsS*Ezm?f&N?8K{^N3P^96!0=|9N$Uvj{_ z|C;Wy9@R8ZW2OSiX8>GQK=}-S90iom0Jy4vav1=*3MiKWkgtI97ytnT9gf`4u0kM2 z$YM@VT#7m%2UgtWJZfX0gpvxVjR8vA6DF5q8B0p%?K>Jea?-sDXj5)snS5h%-Ju-@af>gNR9;ea&j zE|>EtLV*(QQ9$_#fQ||%IRS8=0!mH*bW%Xc34lmvB@~(f>8gO*5&%I36q5i5DWI4H z0OIf4hEqlYpoap=NC5OyK=}xO-WK5gm--PPebj~e5de=XpmGF2KLyl`0O+rP8W8{q z3aAJHkf?x)5CDS|Py~YWKS>G2AK)@n0d*e$hAW`V1HcFclz9LcrGPRI0HYO9<^f== z0t!3;j5mPyzm#R`0DP~2 z$^-!W6xdcAB)}aJBnix8?VlZxX8q!F9wiA-z>xtFx5F!tAOQJQT_`&Ma7+QE1^`YF z{K`5$Zz14!2c(YEF6U8B0RCqb{Cs2?;oI&0>=9X zsG@-J{sF2fV32=+8U*;7b(7cJ{EA)M0ck}XauKtgA^ovKUANt1G=G5l3K+&8prL~M z5Wydyu>!{H2WYB*@%jOpD`2R8fOrM%H$;TAQo?BbaA`yE3tK*8ww$qc1ZxTG5AwG; zAct~?%XtjRj{@#ez>xd^_b6aUet?bwWc^`Gevtb}RPZJ=^8lCg7+4?04OGCu`dt48D`8}PfFTMPSs!4S0!G#c@DwnzKEOx?jHwTh ztbj4~0mdj`OnrcH1QBUD!|8)eP#1>N2Y5;WBk2Q7RKV!@0M963;Cz7R6fk5yzzYg& z|4b&>!VY`0b5U7;UUo!!>{XZZ7&sp#yruv<5KJR@lO^oyC1AP(Qou}?^B5=}{%;a| zOaEED1}*Juc@lxIO&82Z)#*7||YN zpSm!jJ-`8i?K}uXv?ut<0V(p3%Xuv}$mSyol0O#kn}XV(2soi&`C0&c|N33Yho6ee zp9&D!o|XQspwT)3|0rl+>b;=Aw)2t#+p-J=wq=(E$oglSc12yJY4{4Oz_#or1oJlC zVOv&Efo)k4f;sH4_Famx?ZpZHCirTrv^~ZF>A^^8m-Q-clI>*`Ao@K^sGwlp76FwN z95JAp0))ZmE;SX{N@Eq+TIyPW`!8Ef19h?0G*)1%X{Nwd6Ho9PkFDmHQg3SqCs660^bvKQNXbG06_%^ zcn=V6pcOc9?3wep)823StdxBRTkcPkJa^B)UW%D!zBhLz$u3+PN z0kaI?`iIc-EOL&zAih0;ufSG1UxBS=fdX62A_caZ#R_aKO9Kg&tB^4PvC zDQ9+-19EI1yBuTOvsr5uAjCbvIt2)DPY_j5IUpr&QZTuofGrN-{5(JuO7p5ve^m~Fd1($0H$W(yP_w>kCkZL@xD%ftC zm8ZbAGcbtj4}J>3n;@lRpcg^}dUGhxnU)n*U|Uu~fo)kS1-4~n6xf!PCydaSA##5l~OTF#{SZc&LqdG*NJmsk1pi#I$SB zt>V&BU1r}Ypp61Vg=Z(XQ&8s~0k+eLi`@%<|~F}9ETtBdWU0Sasv4I+@$^SPnY zvLWhWyJ)z2WDXaPk?LW)XtaXM5z{5(lq@$L5LRG&WTFDwBhM0i!lAp1i|nPAb_yR(AM9!Jcsf&M4?OUcgxe z2w%=R&MPQlK&pb1&x%Kyg7+p0$dvgf4Q((0nANqhS3jvQK#h8B+vQQZW1_0aXypKXUD2SaS;64TO-xTnGf|0WYbX8Er?DCL;MrL3> z98rQO?yTk!1qJ2{=&c~u?DLocJG%QRKoowK@uUJfoD&t;;XK%Zh-b(1P)9sFo;?M2 zJdaXf$MYBk_T-IMV2ATl3hZ#6q`(g6$a6~Uc>b?P?0BA{9(JI;qQH*l*A&=+Hcf#Y z&eIjx;XKO%T>tE7oue*xaQX`DP@J#84#fou>`+{!z@E*;3hYo^qQDHrh__sc9g3?I z*rE7|0y`8xRbYqWdIfeUZd720;ui|+P~2(&zkk@VxLsZB$lImBj=XOOKH|EHDE%C0 z-#H-b>Ry-g5SO2u_bC|qfq;VwN|^$Fma{EI{$j{sb+L8)N^qH#A}~KoJ+2<0UHHmD(J99K(+z|>Sv`_ z70lZ%AWy;K9RdPLy#JDhB4R)HDU{?|j(Gh9MHQ_5RzL{_h}KV!QVRYtpo{{9tEWeK z1-3gXDM*W~6_=_?YzNd(U^}3;0^0#~6xa@^ufTRdBL%htnkujz&?1TJ|MeZvN?mLR zv{hg`puGay0kt~PL=YV9mmk>Qeg;0Rt3_H6DW$OgkqYLlhux zKT931;3eZRQUOBu(_^%P2acNYKTe4~-mn6Dyb~4J<9$|vJ>C}-*yEk7z#i|*3hd!d zmGLhp#vbn*>SB-ge+umJ&QxHJceVn1yz>ZT!9Xl|9`D-@$n1Z|vLQSvJ^0I<&w3i=ina6rNPrkbA= z6f)o!1#cU0R6*ZjQpPa_2>Z`kP69-3I8%S9i#-!(6xcIyR)IYe=M~s9k*dI+i8KZF zOk^skc*TtWY$f(gTvcGtM4keBCIW~qZQ5?nL?H$COcYgM&qN6Y_Dqx-!u4N90EGb1 zC1upbo{91b?3t*fz@CY!3hbGvp}?Mr+6wHMs6&94NbxW>VopVUM`VgLbUE*^+1!Lc z9upzFKHJ&c0r8J_IrkK)wF1Q6r~fSqBIN|!Y5|TPq4()>hq~;qBH(TX2)s{^jtYJ< z;C=<4RTq!W3J`mryF94CHaw)jv@GIvS7MviQ-N*SqY7-x9#>#n_Jji4vIGUTWdjx1 zmL(CaFU0$=4UMF&!wj*HBRrS$Hq@5QqZB|4fX6mQ!Rdwq#w&psv~F zxrh=(+h?i&f!_?6q8`u%pvNl;Y{Oss516J-BfvYgq6)xWrW1TfP~dGTW0u<`;@P&& zam2H2^%dB*&R1ZYxLLQE_qR?`&0+^+n11AP9`pd%tYtF)u5ai{b@{!WxO}YO zr~zvgKo@|8tWyA00D`E3QO0AF0tf@pV~c{{B8F@ukq&|~09|$x{KOu6pr&L z-3n~IdllGv_bIUT9wd01g+dsBwfsDU_g^H^LBHts$z5gpQ3VhL;10(W%s1eqf=#`| z;|~ReO&wg=v6hIV!;08qif|BY11pVquvv{1*k9tBIuP-s8F-4~h-XV} zrN9=_mOzH&Tr(uwJ0K0e&E-7A|7WFlDnR&uf_oJF&lGU)P+tF}$citDODA=K4gmM* zqF~L-0)h(c#OS8LHme7L%q2(xu#8^nVQcB5;N6I+rmqrPO@A%qVY6Zla6k@rpv!r7 zz9uQKl@3#2m%I@QD*4i^WP*q^6mkG;=vZ}u7y!Wp1&{(Dcv^vN)-wuhsn090g}$i3 z7W$F`>I?k)LTa1HH<%{<@i%}b!QV$PhdO>)*G_>&ZFyI_(ZP4c}-PMKu3 zNe-9@SX;EaU7n)b&_Fmp_n zzvqDRM;RpiMFR<+4%xdXr?BgqJr!UJ8(K=|#dt z2MK3i|2clODXDiBW{YO}1Lmf-@L!*jT2d6fXQnjw`%g)&=C7ZUTDkbLA~)SMV@@M) zj{p8kP&|3D+w9^on3Q;{@j6_wP0NHfEyg4dor6tFZ`kBN{!(g8al93Iox7hx_QCb6 zN%57}XX9q)eNlw<;Qh+~c8n|6+Eudn2JZKJIkkB46*sc!FQ=9bNV9AEU%s4LviL{W zZ?83b=0-V^HI^>%yT6)R$G_Heq2P5l;)GYw;*+0l%Vy)vJBvd-IJIP8y}x&A>Rp97jAr`V=cUH8 zmhE;Qjw;r&_Lj}neeX5&CEl%-^OE7mzK&j7ME1=MtU}v_R_@rpy|wH9H?oJ)% z?|%d0Nn77Q=Wn~7H7~yR`fR;&x46UGXZhQH_Y}xW{d;OlasSC_=u`_%o;Rc8!1aFB z{7}oSa=!N8h)-hA;sJ6LP~1G;%6-V$v>Hr8tZq6J1&#y z`1QDP@!zk{*7WzcJT6^+>;^nL`A4CD+(@7NS?G})sGt0+DdO}ExMJ(}{|$vdZ`d^Z zg#%K~(Hp2g;EX8;?;OkN`^g_OJ+*Q1U$4)`meb*dH<$l&i}mxWo{+;maRV-=3)IOQ zxWCO$E#f~pBeiHGJ{fl>rTLM>kDmO<8HJCUv^w*nF+Wa|o#RI}X1CF5O)H(&{j_f3 zM;5bR^P?oQ`Lqu5<56bs;K#qrCeZqI6u*}gqq&K29X|>%dyQ5zTBm4TxY2VSbe5M~EMPaqB=@ducVGwGYpZvgul0|rBOsVNle&|BYV&(#w(#Y@8Z(1Ydc%4jX;+O3Qm11+Xgy;4UM&*}t@`laTi))(2ml*azrbZFor;(>99{dQBGLcFf}F9u$$Ucg)6 zubPt@7x>BlVNPn@LcFN@+xJBp`8DUJ)~Li|ejd@IOu~aiZma+B+|-9k^RS-B74;+Z z+I5%O3KhJiAl<@pU*H`4u`j1qx9vWx%xywoO@tt)RMu#xM(*|>FHYMU~4BfG%RfS=l=yrt|6t-Hgt)QZ(w z-)66OuCcuHFguR&Q|r0ncq3xy`#vPhY;hm@`~1|J^>{?)`w?$W%nv23$-J|}uJjH^ z%e<9(yi;J0pL#5{Ig*;kQ*T4k=Xh$nz@F&zO;IWTpO-)c~)3O9Qs zp{jvUzXA|*uIO)HUa(?8{K=8uXU)YXrDfx!0-@R5Sl*9(RJdY{u(<_78^HYc+ZL`9 zW6IcAAoOj)ss7|{PdoBm!O(9Y9Ud!EqX0^5vi2g|GkEPqw8wvE?ZpIJCGFKb*VLyTX#vh3A--Uk)96ST{twg@Kk@% z)(+AGD|TIK6OsPgRyg!q;i+@NJmKA-o@HdVUWROzv67*eWvoLG$}(2$ht3)SWh}!k zLK4eZwV{P&tdhH&^&Zr(46FL1wZhRSzPi+^IvP9uX#<+ThCl47- z&)U7y;!sP+-f4}Hc)g|0H+rYFMDB~;Y4J$@>77>Hl+v?6D2bz1OBp#jaWG4%`)FFD ze*6;aUAc%4v0lFFtOpA~+DX_FNM9N2b7)=}>&s%!It7(0!+Mo;)@tZlc}t^99!3CHY=?jJS)GM#)%PpQ;H71nZ}|1iOC&#Gp*r6 zRUk`Y6fI6bZNgY@LNdZwfrzt4L(ajlIZ$aZR`prd3VSn9%mjb`!G9|FvDwutM#Hny zcHD=mZv91$V(>3%U6K3vm$aTTF@vuLXQOv2`(u`-RfY<5T62Tn4z3X#e;9be;j~zT zcLxswm-lD2E?a@~c*EheIw=iA`KX#UZ((rj<(qUk)(w--%si)3`s^ajOc{G17< zPW3N^%GPLSrd=AAcH7b;5L_@)4UHhQV60J4SP(1hJsf3ie#ZtiYWNpFsu>flQY^je zBc><&1YbZ;*7v(NNUtv!hq-;zx!!%-H~qG{QtxNMeekHzl}qdc!;=Rmjl=LAo;-Yl z8Nl`WrE^?$?U&ABIiX*A3nYvCrE?A(=_kif`ib<0^}9fS!6-F!`pQ{R01Uq7?2F{$W;qPA(TM9+2csKnXBf9ittGT8dog7ls(r9<`x(`~;O{sT4bVC`+sJL?7L69@}?B~SZbPE2nx z?}fPH(MR4(pH<3~-Zt0{r8n^3f3HsUd3kYcNR?I6QK41oZDJ=vIKT)7oI&(|W3?<` zt*}=ix@c9p-wHe3dOZCuBu^br=h%PyczRQFob!Y4<2c`+R}(jFST>KRH!$_C41R`s ztNMwzNblZuBAts&-xKK#Z@Z^7%ID)ZZ#P2M8!NtsvnJMbR@+!>g}o)%1t+ZRKlNKi z&z(pw(bQDZDcB2@wDCKZ%qZ_a8JEGPwJVvyh4G1!85|;0OJ=b3pO?(w47^w}gQLAh zOa@1LkC=?+@t5nP5`c4V4Upn);W9W>oc$49(yj%h{n)bG2b| z%nuFAXc4~`q1R22_WS!gtKBeX4I6H)uvfpYIlSK*$43tj%hzH` z6t?sWY3h+LGI|0w-<-kw&3>CR?nW|ybH;6QnnO(kp>|k({F#|GDzzEbGgx1;vTVNl z8VctFTCc%uXDvctZ((6C<_$Tj9v?QpBRXhH#%wnE@+mp{&3@0g#SGy$g72d6?Q@&g z@?ZZwqmda}3xhwK@mu0dwXS9jJRAzRHLwRlY@1-*(^fj`M?}arYzJai8*4X$Rf`q& z`h0+<_&xeIZtCw}A73e&_(#U$?a`bss%740)}1GVbEf()J{aG=gsE>{aE0XS`6pt} zS1>-Sf;*@BWmDoimNGtH1=G;X=Kl6WEt<=Unp-_Hh*G=O$n1<{R*g({<^CF(ci!80 z8`{Fh*50JO&RU5W)rN%;oZ47h5tZ6l_x)t8u=n2)t-**GZP-!-f;LuZM1VF{nSY$s6Y-l3+oaZJgm5-2 zAEBC!H3Siv#lk@OodYHMS*y$xj{FXfWHv-H?2*hGrs4g9gV6Bueq3VfirBE^kxUMy zJ&$BI=q$_hx4{G0UhEOM8%-KF2ctBWNCs)yEY#z(=Qko^v$2ZiS}W`gzAS_E{c3IE zqL25?+;npdDY8}YRuoyPSK{~)EryI6Jt|@RgmJuyiyxF}uQ5*qM`GY^o7AR~8OX`J zy!!j5wyD%sN_a6i6D1U432abRW~D(*Zz^cRK|fO5T48TT^y@*H3!gMa#Ri{4Q3F=C zk!3w)M`j~)%hDncdJ2;urS!0*#E}z*C5#V`8kIP1657SDf0F{CY;G-^Ff?gGLUMRi zLej*qf`?m|3WfIq{8xkD&&=ePhs~Lpb)-vz$-(jP zC_G_Y;_zhC55cE{hk=SEJ(V~zoH!xL(%*tv_Rw!$iE8LC8Bv6dn5t5{+0d+dzcxh8`~`d=4%u!28eYln)_SFMDO%6Mgpc(!^ei#K9}U&`V&bm~i4&CU7VS0MC{ zeEUflm^fk3u!KRwk_L^iXZu2dP@X%PpCja}i6b2EC^%UL71RxbY{i#H*EeUa4xNu$kKyjUh}&Uzflmz%Tr z)$zpUEPlJr+nmKqNwY0k{O0-KmaOWJ%aq6n=Hbkg=J*(oAvz{;T;eEx^W^BgDG(~c z(OXnT&v1UJBrX;Rbt9HRH3rWBh7WR^x(7nN0#p5q)q@qe`2D;ktM-Tk2pMZ)%f|fU ztU(A8YuM~SA#06Gbe2ELSy$BRpX^xa@y_~Sg0;e4IfS9bVBKG*eHFjMjE5>jr)|wT z&0BymKVZmwA8NaMIYQgSU&+=e8TFel8Jd$N1oXz_gv<6?9iUeyr;aj=W+`(=U)kK zMXO5;8a--EctTRb7<)Xy?V++VRQ}sA(T<`Dflya$l7g}8#WC; zJsPXcerJ7(=aRz0MZC?}dxGC8a=xNJvr3PO(Ia~=cjq;?NlZ4U{=+fZJSmf6vU&ge zVN5m;;Cr(zEhd}CQKeLNz5ddjiGk1<*Q$Ix{WGB)zrbCBvG(8>X=DBUyR-7~^R!`k zxbZU9&@BjuvoN@d49!6ppP<{3S2l9FCF`?r&q&6VjXFPqQN z7I@kBB01@0^X59!%jTuH(g-<_jwTs7BAW};43m61BAd52mqy4zRvVe!*gP&<7zpjg zyv+ZiR~ydDmqupaBdd8RClD%(CCk6GxmS7r)JUnd*r;qiJE=b^o1?hvsBHV~+$#`z z$1QJ3_-WikkNgu)YmHSj%UPAKIICrzv+hOUMdSBy5oet(>a4D%oHYZn6pdfs^3IC; z1JM%=oQAN8#(D_x62%I8*Um@dlCzs~zK5RA<^nh3d1?HN=d&yKmhs&s*oOmjbaK+L z(Gyw^Pqr&ouy1g<9fVh7Q666-@J1tUqOpEKyhLNgG_V%tQCwl1(D$EtvSPH%3)$IE zqPpV8vh6ppuEA-jre(so@v!%zf`TZs5SoZCv``-+N&SJRvW6M6q zahP;GyWzt!4%-(9-Rt_ge+yLoB^x%WwX=F4B%)zg5ev~+v+iViy;cP?btX&@c+U~q)(h`$ln(1b`V*3(*HuW@((x8vDyer);2 zi$+VPX5UfTJXebe2B*#$&*%J)!uOi28&5?CQYK!{T`Gwe*6tf_(*x4RdiJ1m@&ignt)ulg7eHHz)?x#hGK=nsxMDi@4O|4{qfi> zIkkI9*B1?h>bfPM4x%HPIEtl4IIG-fXEht=tSg9sX#Ac-=tHr>-XQFZW4g5HiK@}l zx8!Ubi)t1u&8cZ_+3pQKf!3ECG;;Wu1l|_O19aZ8B?Keb5F;#M(CBdT1Zn4mr8&G= zsktnNi@@E>a(L4fC3!lrd>}POV$z$nkjodpM+&7#|+Un}Np?++}HhAoLTrl(Jj?dqBN!c@CeTo-<{| ztjOVY@YWU5kjGZ!Z~=aPMNU;D{)!xq@hvNIxa|G5LMqQQN$g5FfV)=aaM>HYGN-P& z+d5q!l;x(u5rl*^u_N0|b5`vCoHY*7AI;Y95cbhnT@milSl=Vgqp|iOz@xFwA+n>f z_8_FAu|kWS70E#qM*}w^dZV$PM%YGU-Lk}4ZI?Q$@(O2_SmmrqtJOjk&-RSO*bB(OCTuK2fZ& z*E+g?RZd1-bKS2Q9EKsVw$uQwlIQo!NV)kyPMumZ-)08C#96-CoL=6ZxO)@-;R87h z9uc2Y`T*`OL|8PT7#~1nMPn`h+F3Kcan_RvqG-0pBYL7(Vb9wovt!NBfmNa>4&?0S zWp8P4E}**uI9HYIIwb& zA##`Ndxfs>yTH4Jq`KXOuJGRZa-l1&Bijz*2>6zmw+&GjjTJ(;MPoHM>a3p-aM7@# z$DMTmAr|c(h^=U>lrzq%`j@lP)LL}Tu{P($s(^|Y{A*#@>-wW~;>@_g)utXQd?k9Q z@YRij(bO5mbylYBYiD!(6Pjgb9X zjJ(RVrvJ#R@kstR@+yCI`Ff=6mp1Y$yQbc#tDMabj*=QCjJn#=teyjlhGrMFEB$L} zXeeK$^S%ufvDQBb#c0?R#9%bmVFX_^)>1@W6f5k#pCN~KvFMQI(fY|(Px8K|$ZBa& zyVX+ZfYnzy82-2VYQsBZ{VEa&J&ILIZYjOmD2eayc?%JC(OAn6Z_!wr5ol4Yuva3Q zy87xbeB}7erK`=G%II4ay2q81hY*V<7UMOyBi@F= zRv1ZD{R1VhRh6OmYn5y4q(Iec@#ZQxEx5zBZvg@+nuv?VdRQy$tqw}LW!DX_8-2d& zwY?8v=Ld&ekw1dP;rkNdX49-@6c;J z*RKw}78@sBG&d0X$Q+vYE#fXp1jg~+;yzOE+CN9cMgJap?bw%Qt+GJeNJ&r~v# za(Zx;Uv_RDhfUc=xolOdM!B)(`@`8#VU(M4GcMBn4vFsovWQ^L`C}U8a{9d2D3^ok z`$oAe;F3uyHqNbWepb9Q5bD4ZV&t3I=%(ePV=U@99(^yis$sExxCIso91%tpKY4UiBzVUz}uST+Oc1}P-sXYdwydE zp?7gZjQ3bPXT60mlZG8Zd`V+fo9wL0Db@<(&-&$jB(_Sf7d_Q1xA9ceR&t#jLHl*N z98&$)?_;BLL;m`24$xmIE%P0Ny z*5~r};eqwJ{GsT%^|}0Nv~+zg*VymY=kfx5cDtdyi2q@_63g zZjr|W-Di@*@p(MAt>g3fm1|^tUT3p@q+$KQp~?D@iue0WG|Xu~II9I-i8Jgh!dZ$H z_CnDM@p;vgP*91vdG@L9>%moMOq{=c{u~L2vsa#-c~V>?L(Cdgc|x|Tjf{w2fTB>GRhp@DxVjd zMXmBV;l6E^&uf29tNg|?qC#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN U7DncYCdo;L7M7d0GA1ko0MafM6aWAK diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index a278c7b85ca53a303da2058dcf9370122fd849cf..7e9d16cce944f9f0db5b490033dafd394cf05ae0 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4XZ4(Dl!tya`X*TERs`>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll TER4((O_GxgEi4ybVax#l=L{7( diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 25a686165..d045f2500 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:53.786288Z", - "iopub.status.busy": "2024-08-26T15:49:53.786078Z", - "iopub.status.idle": "2024-08-26T15:49:55.058310Z", - "shell.execute_reply": "2024-08-26T15:49:55.057679Z" + "iopub.execute_input": "2024-08-28T20:04:42.119805Z", + "iopub.status.busy": "2024-08-28T20:04:42.119627Z", + "iopub.status.idle": "2024-08-28T20:04:43.356727Z", + "shell.execute_reply": "2024-08-28T20:04:43.356102Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.061371Z", - "iopub.status.busy": "2024-08-26T15:49:55.060806Z", - "iopub.status.idle": "2024-08-26T15:49:55.079140Z", - "shell.execute_reply": "2024-08-26T15:49:55.078680Z" + "iopub.execute_input": "2024-08-28T20:04:43.359225Z", + "iopub.status.busy": "2024-08-28T20:04:43.358943Z", + "iopub.status.idle": "2024-08-28T20:04:43.377369Z", + "shell.execute_reply": "2024-08-28T20:04:43.376770Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.081404Z", - "iopub.status.busy": "2024-08-26T15:49:55.080983Z", - "iopub.status.idle": "2024-08-26T15:49:55.275955Z", - "shell.execute_reply": "2024-08-26T15:49:55.275375Z" + "iopub.execute_input": "2024-08-28T20:04:43.379836Z", + "iopub.status.busy": "2024-08-28T20:04:43.379355Z", + "iopub.status.idle": "2024-08-28T20:04:43.522623Z", + "shell.execute_reply": "2024-08-28T20:04:43.522044Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.313930Z", - "iopub.status.busy": "2024-08-26T15:49:55.313329Z", - "iopub.status.idle": "2024-08-26T15:49:55.317364Z", - "shell.execute_reply": "2024-08-26T15:49:55.316909Z" + "iopub.execute_input": "2024-08-28T20:04:43.553029Z", + "iopub.status.busy": "2024-08-28T20:04:43.552834Z", + "iopub.status.idle": "2024-08-28T20:04:43.556519Z", + "shell.execute_reply": "2024-08-28T20:04:43.556047Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.319414Z", - "iopub.status.busy": "2024-08-26T15:49:55.319068Z", - "iopub.status.idle": "2024-08-26T15:49:55.327715Z", - "shell.execute_reply": "2024-08-26T15:49:55.327122Z" + "iopub.execute_input": "2024-08-28T20:04:43.558453Z", + "iopub.status.busy": "2024-08-28T20:04:43.558283Z", + "iopub.status.idle": "2024-08-28T20:04:43.566371Z", + "shell.execute_reply": "2024-08-28T20:04:43.565935Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.329976Z", - "iopub.status.busy": "2024-08-26T15:49:55.329562Z", - "iopub.status.idle": "2024-08-26T15:49:55.332413Z", - "shell.execute_reply": "2024-08-26T15:49:55.331825Z" + "iopub.execute_input": "2024-08-28T20:04:43.568470Z", + "iopub.status.busy": "2024-08-28T20:04:43.568293Z", + "iopub.status.idle": "2024-08-28T20:04:43.570807Z", + "shell.execute_reply": "2024-08-28T20:04:43.570342Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.334498Z", - "iopub.status.busy": "2024-08-26T15:49:55.334155Z", - "iopub.status.idle": "2024-08-26T15:49:55.859656Z", - "shell.execute_reply": "2024-08-26T15:49:55.859123Z" + "iopub.execute_input": "2024-08-28T20:04:43.572686Z", + "iopub.status.busy": "2024-08-28T20:04:43.572515Z", + "iopub.status.idle": "2024-08-28T20:04:44.093962Z", + "shell.execute_reply": "2024-08-28T20:04:44.093422Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.862132Z", - "iopub.status.busy": "2024-08-26T15:49:55.861942Z", - "iopub.status.idle": "2024-08-26T15:49:57.828703Z", - "shell.execute_reply": "2024-08-26T15:49:57.828113Z" + "iopub.execute_input": "2024-08-28T20:04:44.096377Z", + "iopub.status.busy": "2024-08-28T20:04:44.096155Z", + "iopub.status.idle": "2024-08-28T20:04:46.009078Z", + "shell.execute_reply": "2024-08-28T20:04:46.008425Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.831725Z", - "iopub.status.busy": "2024-08-26T15:49:57.830860Z", - "iopub.status.idle": "2024-08-26T15:49:57.841628Z", - "shell.execute_reply": "2024-08-26T15:49:57.841073Z" + "iopub.execute_input": "2024-08-28T20:04:46.011848Z", + "iopub.status.busy": "2024-08-28T20:04:46.011198Z", + "iopub.status.idle": "2024-08-28T20:04:46.021914Z", + "shell.execute_reply": "2024-08-28T20:04:46.021384Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.843831Z", - "iopub.status.busy": "2024-08-26T15:49:57.843444Z", - "iopub.status.idle": "2024-08-26T15:49:57.847541Z", - "shell.execute_reply": "2024-08-26T15:49:57.846968Z" + "iopub.execute_input": "2024-08-28T20:04:46.024105Z", + "iopub.status.busy": "2024-08-28T20:04:46.023682Z", + "iopub.status.idle": "2024-08-28T20:04:46.027945Z", + "shell.execute_reply": "2024-08-28T20:04:46.027378Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.849507Z", - "iopub.status.busy": "2024-08-26T15:49:57.849202Z", - "iopub.status.idle": "2024-08-26T15:49:57.858293Z", - "shell.execute_reply": "2024-08-26T15:49:57.857744Z" + "iopub.execute_input": "2024-08-28T20:04:46.030083Z", + "iopub.status.busy": "2024-08-28T20:04:46.029775Z", + "iopub.status.idle": "2024-08-28T20:04:46.038705Z", + "shell.execute_reply": "2024-08-28T20:04:46.038223Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.860454Z", - "iopub.status.busy": "2024-08-26T15:49:57.860152Z", - "iopub.status.idle": "2024-08-26T15:49:57.972126Z", - "shell.execute_reply": "2024-08-26T15:49:57.971546Z" + "iopub.execute_input": "2024-08-28T20:04:46.040729Z", + "iopub.status.busy": "2024-08-28T20:04:46.040398Z", + "iopub.status.idle": "2024-08-28T20:04:46.151924Z", + "shell.execute_reply": "2024-08-28T20:04:46.151398Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.974328Z", - "iopub.status.busy": "2024-08-26T15:49:57.973926Z", - "iopub.status.idle": "2024-08-26T15:49:57.976598Z", - "shell.execute_reply": "2024-08-26T15:49:57.976151Z" + "iopub.execute_input": "2024-08-28T20:04:46.154071Z", + "iopub.status.busy": "2024-08-28T20:04:46.153792Z", + "iopub.status.idle": "2024-08-28T20:04:46.156683Z", + "shell.execute_reply": "2024-08-28T20:04:46.156129Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.978573Z", - "iopub.status.busy": "2024-08-26T15:49:57.978261Z", - "iopub.status.idle": "2024-08-26T15:50:00.065786Z", - "shell.execute_reply": "2024-08-26T15:50:00.064976Z" + "iopub.execute_input": "2024-08-28T20:04:46.158754Z", + "iopub.status.busy": "2024-08-28T20:04:46.158318Z", + "iopub.status.idle": "2024-08-28T20:04:48.235464Z", + "shell.execute_reply": "2024-08-28T20:04:48.234799Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:00.069072Z", - "iopub.status.busy": "2024-08-26T15:50:00.068250Z", - "iopub.status.idle": "2024-08-26T15:50:00.079734Z", - "shell.execute_reply": "2024-08-26T15:50:00.079177Z" + "iopub.execute_input": "2024-08-28T20:04:48.238628Z", + "iopub.status.busy": "2024-08-28T20:04:48.237802Z", + "iopub.status.idle": "2024-08-28T20:04:48.248832Z", + "shell.execute_reply": "2024-08-28T20:04:48.248357Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:00.081968Z", - "iopub.status.busy": "2024-08-26T15:50:00.081512Z", - "iopub.status.idle": "2024-08-26T15:50:00.307993Z", - "shell.execute_reply": "2024-08-26T15:50:00.307364Z" + "iopub.execute_input": "2024-08-28T20:04:48.250827Z", + "iopub.status.busy": "2024-08-28T20:04:48.250644Z", + "iopub.status.idle": "2024-08-28T20:04:48.292922Z", + "shell.execute_reply": "2024-08-28T20:04:48.292468Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 8c5c26b42..3d9566c81 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:03.569360Z", - "iopub.status.busy": "2024-08-26T15:50:03.569180Z", - "iopub.status.idle": "2024-08-26T15:50:06.407526Z", - "shell.execute_reply": "2024-08-26T15:50:06.406949Z" + "iopub.execute_input": "2024-08-28T20:04:51.549919Z", + "iopub.status.busy": "2024-08-28T20:04:51.549750Z", + "iopub.status.idle": "2024-08-28T20:04:54.603829Z", + "shell.execute_reply": "2024-08-28T20:04:54.603164Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.410122Z", - "iopub.status.busy": "2024-08-26T15:50:06.409772Z", - "iopub.status.idle": "2024-08-26T15:50:06.413458Z", - "shell.execute_reply": "2024-08-26T15:50:06.412873Z" + "iopub.execute_input": "2024-08-28T20:04:54.606360Z", + "iopub.status.busy": "2024-08-28T20:04:54.606051Z", + "iopub.status.idle": "2024-08-28T20:04:54.609561Z", + "shell.execute_reply": "2024-08-28T20:04:54.609105Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.415650Z", - "iopub.status.busy": "2024-08-26T15:50:06.415319Z", - "iopub.status.idle": "2024-08-26T15:50:06.418479Z", - "shell.execute_reply": "2024-08-26T15:50:06.417934Z" + "iopub.execute_input": "2024-08-28T20:04:54.611731Z", + "iopub.status.busy": "2024-08-28T20:04:54.611374Z", + "iopub.status.idle": "2024-08-28T20:04:54.614331Z", + "shell.execute_reply": "2024-08-28T20:04:54.613882Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.420642Z", - "iopub.status.busy": "2024-08-26T15:50:06.420319Z", - "iopub.status.idle": "2024-08-26T15:50:06.442102Z", - "shell.execute_reply": "2024-08-26T15:50:06.441562Z" + "iopub.execute_input": "2024-08-28T20:04:54.616415Z", + "iopub.status.busy": "2024-08-28T20:04:54.616051Z", + "iopub.status.idle": "2024-08-28T20:04:54.676026Z", + "shell.execute_reply": "2024-08-28T20:04:54.675570Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.444312Z", - "iopub.status.busy": "2024-08-26T15:50:06.443871Z", - "iopub.status.idle": "2024-08-26T15:50:06.447563Z", - "shell.execute_reply": "2024-08-26T15:50:06.447001Z" + "iopub.execute_input": "2024-08-28T20:04:54.678072Z", + "iopub.status.busy": "2024-08-28T20:04:54.677723Z", + "iopub.status.idle": "2024-08-28T20:04:54.681072Z", + "shell.execute_reply": "2024-08-28T20:04:54.680622Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.449710Z", - "iopub.status.busy": "2024-08-26T15:50:06.449373Z", - "iopub.status.idle": "2024-08-26T15:50:06.452548Z", - "shell.execute_reply": "2024-08-26T15:50:06.452027Z" + "iopub.execute_input": "2024-08-28T20:04:54.683050Z", + "iopub.status.busy": "2024-08-28T20:04:54.682715Z", + "iopub.status.idle": "2024-08-28T20:04:54.685961Z", + "shell.execute_reply": "2024-08-28T20:04:54.685473Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'visa_or_mastercard', 'cancel_transfer'}\n" + "Classes: {'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'lost_or_stolen_phone'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.454394Z", - "iopub.status.busy": "2024-08-26T15:50:06.454216Z", - "iopub.status.idle": "2024-08-26T15:50:06.457498Z", - "shell.execute_reply": "2024-08-26T15:50:06.456945Z" + "iopub.execute_input": "2024-08-28T20:04:54.688046Z", + "iopub.status.busy": "2024-08-28T20:04:54.687595Z", + "iopub.status.idle": "2024-08-28T20:04:54.690699Z", + "shell.execute_reply": "2024-08-28T20:04:54.690249Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.459596Z", - "iopub.status.busy": "2024-08-26T15:50:06.459255Z", - "iopub.status.idle": "2024-08-26T15:50:06.463265Z", - "shell.execute_reply": "2024-08-26T15:50:06.462673Z" + "iopub.execute_input": "2024-08-28T20:04:54.692643Z", + "iopub.status.busy": "2024-08-28T20:04:54.692464Z", + "iopub.status.idle": "2024-08-28T20:04:54.695826Z", + "shell.execute_reply": "2024-08-28T20:04:54.695341Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.465474Z", - "iopub.status.busy": "2024-08-26T15:50:06.465140Z", - "iopub.status.idle": "2024-08-26T15:50:11.593668Z", - "shell.execute_reply": "2024-08-26T15:50:11.593086Z" + "iopub.execute_input": "2024-08-28T20:04:54.697810Z", + "iopub.status.busy": "2024-08-28T20:04:54.697514Z", + "iopub.status.idle": "2024-08-28T20:05:00.844324Z", + "shell.execute_reply": "2024-08-28T20:05:00.843759Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "609bd99534344390a356a6788fee8507", + "model_id": "df0c4acd84aa43d7aca5c30c44c6a6ae", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72d412ce755f416e9311468fb26a3a46", + "model_id": "e74ddbaf22bb425b8bfd41dca45d9308", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1bd2574eb75a42f3837995119980a91e", + "model_id": "760889e6a4ae4c6799f77c6474bc0967", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a87e77b0e9324a9384b775bc5514a176", + "model_id": "0eba5f7fd1574c49853b2127c0c236ad", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1d1da5af0c1e439590d191a482ebfe2e", + "model_id": "26b0e23d838040bbacbd41e6543d4be1", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "66ba0cd1d985486c984a043d0efabf25", + "model_id": "ce1d0dd784844e8a8cf246b18c6861a5", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "828118e3407f496e9047225853abf12c", + "model_id": "851ded77a6d946818f4fe75f11ccccf9", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:11.596799Z", - "iopub.status.busy": "2024-08-26T15:50:11.596379Z", - "iopub.status.idle": "2024-08-26T15:50:11.599483Z", - "shell.execute_reply": "2024-08-26T15:50:11.598893Z" + "iopub.execute_input": "2024-08-28T20:05:00.847393Z", + "iopub.status.busy": "2024-08-28T20:05:00.846819Z", + "iopub.status.idle": "2024-08-28T20:05:00.849916Z", + "shell.execute_reply": "2024-08-28T20:05:00.849336Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:11.601637Z", - "iopub.status.busy": "2024-08-26T15:50:11.601225Z", - "iopub.status.idle": "2024-08-26T15:50:11.603915Z", - "shell.execute_reply": "2024-08-26T15:50:11.603463Z" + "iopub.execute_input": "2024-08-28T20:05:00.851872Z", + "iopub.status.busy": "2024-08-28T20:05:00.851596Z", + "iopub.status.idle": "2024-08-28T20:05:00.854372Z", + "shell.execute_reply": "2024-08-28T20:05:00.853816Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:11.605986Z", - "iopub.status.busy": "2024-08-26T15:50:11.605617Z", - "iopub.status.idle": "2024-08-26T15:50:14.423933Z", - "shell.execute_reply": "2024-08-26T15:50:14.423128Z" + "iopub.execute_input": "2024-08-28T20:05:00.856428Z", + "iopub.status.busy": "2024-08-28T20:05:00.856093Z", + "iopub.status.idle": "2024-08-28T20:05:03.649572Z", + "shell.execute_reply": "2024-08-28T20:05:03.648774Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.427102Z", - "iopub.status.busy": "2024-08-26T15:50:14.426449Z", - "iopub.status.idle": "2024-08-26T15:50:14.434884Z", - "shell.execute_reply": "2024-08-26T15:50:14.434404Z" + "iopub.execute_input": "2024-08-28T20:05:03.653025Z", + "iopub.status.busy": "2024-08-28T20:05:03.652147Z", + "iopub.status.idle": "2024-08-28T20:05:03.660190Z", + "shell.execute_reply": "2024-08-28T20:05:03.659672Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.437037Z", - "iopub.status.busy": "2024-08-26T15:50:14.436709Z", - "iopub.status.idle": "2024-08-26T15:50:14.440467Z", - "shell.execute_reply": "2024-08-26T15:50:14.440009Z" + "iopub.execute_input": "2024-08-28T20:05:03.662249Z", + "iopub.status.busy": "2024-08-28T20:05:03.661919Z", + "iopub.status.idle": "2024-08-28T20:05:03.665895Z", + "shell.execute_reply": "2024-08-28T20:05:03.665334Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.442521Z", - "iopub.status.busy": "2024-08-26T15:50:14.442187Z", - "iopub.status.idle": "2024-08-26T15:50:14.445362Z", - "shell.execute_reply": "2024-08-26T15:50:14.444833Z" + "iopub.execute_input": "2024-08-28T20:05:03.667854Z", + "iopub.status.busy": "2024-08-28T20:05:03.667679Z", + "iopub.status.idle": "2024-08-28T20:05:03.670666Z", + "shell.execute_reply": "2024-08-28T20:05:03.670117Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.447481Z", - "iopub.status.busy": "2024-08-26T15:50:14.447144Z", - "iopub.status.idle": "2024-08-26T15:50:14.450022Z", - "shell.execute_reply": "2024-08-26T15:50:14.449578Z" + "iopub.execute_input": "2024-08-28T20:05:03.672691Z", + "iopub.status.busy": "2024-08-28T20:05:03.672519Z", + "iopub.status.idle": "2024-08-28T20:05:03.675625Z", + "shell.execute_reply": "2024-08-28T20:05:03.675103Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.452041Z", - "iopub.status.busy": "2024-08-26T15:50:14.451628Z", - "iopub.status.idle": "2024-08-26T15:50:14.458672Z", - "shell.execute_reply": "2024-08-26T15:50:14.458190Z" + "iopub.execute_input": "2024-08-28T20:05:03.677594Z", + "iopub.status.busy": "2024-08-28T20:05:03.677297Z", + "iopub.status.idle": "2024-08-28T20:05:03.684067Z", + "shell.execute_reply": "2024-08-28T20:05:03.683487Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.460712Z", - "iopub.status.busy": "2024-08-26T15:50:14.460403Z", - "iopub.status.idle": "2024-08-26T15:50:14.686735Z", - "shell.execute_reply": "2024-08-26T15:50:14.686142Z" + "iopub.execute_input": "2024-08-28T20:05:03.686088Z", + "iopub.status.busy": "2024-08-28T20:05:03.685790Z", + "iopub.status.idle": "2024-08-28T20:05:03.913268Z", + "shell.execute_reply": "2024-08-28T20:05:03.912724Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.689386Z", - "iopub.status.busy": "2024-08-26T15:50:14.688990Z", - "iopub.status.idle": "2024-08-26T15:50:14.901649Z", - "shell.execute_reply": "2024-08-26T15:50:14.901083Z" + "iopub.execute_input": "2024-08-28T20:05:03.915928Z", + "iopub.status.busy": "2024-08-28T20:05:03.915520Z", + "iopub.status.idle": "2024-08-28T20:05:04.091487Z", + "shell.execute_reply": "2024-08-28T20:05:04.090952Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.905278Z", - "iopub.status.busy": "2024-08-26T15:50:14.904296Z", - "iopub.status.idle": "2024-08-26T15:50:14.909408Z", - "shell.execute_reply": "2024-08-26T15:50:14.908880Z" + "iopub.execute_input": "2024-08-28T20:05:04.094193Z", + "iopub.status.busy": "2024-08-28T20:05:04.093817Z", + "iopub.status.idle": "2024-08-28T20:05:04.097627Z", + "shell.execute_reply": "2024-08-28T20:05:04.097115Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04e6f8947ca14034a8b86e7853b8b767": { + "00b519195d0b4e3eb344a723a6ed54a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1138,7 +1138,46 @@ "text_color": null } }, - "096bce4c998746909d71d249939501d4": { + "037c1106d30740c4aa0b997ff3b95478": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_95765f46238d45b8a8bea855ec10fcc0", + "placeholder": "​", + "style": "IPY_MODEL_e9d23534bf1c4adb8c18ffe1514fb739", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "047d92a7baba49a38cd397ee7fb243db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0de9ada189b3400f98b5c597e4ee4841": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1191,23 +1230,31 @@ "width": null } }, - "13cc007397f54c9c8c37e3efe684a7e2": { + "0eba5f7fd1574c49853b2127c0c236ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_037c1106d30740c4aa0b997ff3b95478", + "IPY_MODEL_b453f573e7214583841f233415492551", + "IPY_MODEL_284d32e5f56a414297870fe12faf80b0" + ], + "layout": "IPY_MODEL_28d47113a3044e97bb6d9fc76776ed1c", + "tabbable": null, + "tooltip": null } }, - "181817c2729a4dccb97af10abf5129d4": { + "0f6f800c15f34b978e844a2484d66b3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1260,7 +1307,7 @@ "width": null } }, - "19093b42b50b4aeea4d79b8ff3d741d7": { + "1071ea768b794892a35eb370593bbbed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1278,55 +1325,78 @@ "text_color": null } }, - "1bd2574eb75a42f3837995119980a91e": { + "10e7fc45fef548368a055e5fc15a4170": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_59d1c1e50bda4e9da25d3a6f59453df1", - "IPY_MODEL_20ded1f770b247b6ad682dab3b1f5059", - "IPY_MODEL_76b513dbf5f34978b7b6585e3d089794" - ], - "layout": "IPY_MODEL_53558ebf812a42a8aee968d175d9f598", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1d1da5af0c1e439590d191a482ebfe2e": { - "model_module": "@jupyter-widgets/controls", + "146dbef610e8439581e5a9986e6ad377": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b1b9db21390e4028ab5768e0946debd1", - "IPY_MODEL_b3f682560e214179a87fc479dcbae99e", - "IPY_MODEL_d36b8a25de144393ad4dc1d2a45edfd2" - ], - "layout": "IPY_MODEL_096bce4c998746909d71d249939501d4", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1d46b41290534da1a7c59a65173af332": { + "14d7da0620c24eeaa5a138e23cf6d286": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1379,7 +1449,7 @@ "width": null } }, - "20ded1f770b247b6ad682dab3b1f5059": { + "20fe4ed42d2d456293c0870626b5124c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1395,82 +1465,80 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcc06e43c9bc45058c6f3e613d79d09a", - "max": 665.0, + "layout": "IPY_MODEL_309c183a1eda4d279a70a5d574653d71", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_af382a9199134755b710d6c867dfbf15", + "style": "IPY_MODEL_a71ffe61d8454862beef69944a06b026", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 2211.0 } }, - "2358c94915814ebbb4935821bc31ade8": { + "21e96c4c417e413b9670855e22bf941b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5d2fec7b198645dcb93b760d38443c91", - "placeholder": "​", - "style": "IPY_MODEL_8ce3bdbaa1854c179505e5c09afe5dff", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 68.7kB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2595b7a75e45466f9fc4d4ba48df1f15": { + "26b0e23d838040bbacbd41e6543d4be1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_723fe7d9fee84e509e391f0086b38797", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3f743687904c4482ad75c0a123b73b1e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf1fc7a67bb74721b14bc9d6749e3c88", + "IPY_MODEL_c0bc32cb12484a6b9cbec2de8f219813", + "IPY_MODEL_9e5ca3e516ce43b78b9398b4c0286eca" + ], + "layout": "IPY_MODEL_ff735b03eb3d4c8385ba7ab965db9e17", "tabbable": null, - "tooltip": null, - "value": 391.0 + "tooltip": null } }, - "2a816d84d5cc473093ab67001a27c13a": { + "284d32e5f56a414297870fe12faf80b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_85193c50f7e1481c988f9aa15f3b7282", + "placeholder": "​", + "style": "IPY_MODEL_00b519195d0b4e3eb344a723a6ed54a7", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:01<00:00, 30.8MB/s]" } }, - "2bf0c73a7f8f4c649a4be7df92654e10": { + "28d47113a3044e97bb6d9fc76776ed1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1523,25 +1591,30 @@ "width": null } }, - "35fb15ce4edc4a58b13eb112b5302098": { + "2ab4beb3ab2b49768895b0b76aab05db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ed7df9468594951b7afc0ba1e460124", + "placeholder": "​", + "style": "IPY_MODEL_8895626e4b1a4b41a2ac2ee10996a2dd", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "364432b0a294482c9c6b1ed27f2c2f49": { + "2dcb9d107efc404f88505a463a48a26b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1559,23 +1632,30 @@ "text_color": null } }, - "3f743687904c4482ad75c0a123b73b1e": { + "2e964a962ec6402da3abb4041ae1319e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e52df04b9ac6427289647ba460061b39", + "placeholder": "​", + "style": "IPY_MODEL_ffa4d1ac015a4234b2e990611468fefd", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "4075b6b696794e6cb67d0b5f7de37f4c": { + "309c183a1eda4d279a70a5d574653d71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1628,86 +1708,64 @@ "width": null } }, - "41bb2f83903748a5bd214604318b8671": { - "model_module": "@jupyter-widgets/base", + "3658a9b957b34366bb3864029e20029b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "42238d77794d4138942bf704d74a8ced": { + "36d934dea9dd49c29bf65541950da0be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "37ee8bc24d8c4f5585b78ae095603e9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8e09f321b74944cc83b3df4395c00632", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b5c1ccb187604ede9dcccd86862a971f", + "layout": "IPY_MODEL_f9b8ada682a84865951cca1169b8352a", + "placeholder": "​", + "style": "IPY_MODEL_2dcb9d107efc404f88505a463a48a26b", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": "config.json: 100%" } }, - "43e5fbda50ff4a34af172f936f8f7a78": { + "37f017b4ce2a449cbcc8adfd8e39cc93": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1760,7 +1818,25 @@ "width": null } }, - "4596e06ee7084dd096fe08963d984fff": { + "387ba9cdd9ba4defa83af82e2c946bb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3e54b3958b294c4ba7517105e03a3bea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1775,15 +1851,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d3c28141d394432fa0341c17c066928a", + "layout": "IPY_MODEL_ac4f88f580e84ec3befd1bbd4ca22a7e", "placeholder": "​", - "style": "IPY_MODEL_19093b42b50b4aeea4d79b8ff3d741d7", + "style": "IPY_MODEL_10e7fc45fef548368a055e5fc15a4170", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.00kB/s]" + "value": " 391/391 [00:00<00:00, 64.4kB/s]" } }, - "45c2ee2e2047435d8298563ac99aa124": { + "438b0dae4d5340519bd3474a6b1404eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1836,7 +1912,7 @@ "width": null } }, - "45c9c8c02ca142278cbdc6742aa87d9b": { + "4f1cb6434e9a49a3864315524d05cf31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1851,33 +1927,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d73435f3e28246c4a87481a27f81d8f7", + "layout": "IPY_MODEL_37f017b4ce2a449cbcc8adfd8e39cc93", "placeholder": "​", - "style": "IPY_MODEL_691e9f1cd0ba445c89b42e5857fb81b4", + "style": "IPY_MODEL_6290ab852fbc45d9941181850df79c26", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "4745140672f040658bb31f48154c9327": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 2.21k/2.21k [00:00<00:00, 406kB/s]" } }, - "4e0e803a6c1b4910adfa432ac654015d": { + "611d201c6bfb40a092115bea364e53d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1930,60 +1988,146 @@ "width": null } }, - "53558ebf812a42a8aee968d175d9f598": { - "model_module": "@jupyter-widgets/base", + "627c5b57f30a4645ba999cb23b608351": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6290ab852fbc45d9941181850df79c26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6846f85fd9fc49198c0104ea387a16ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "696a72c5b5cd46cf91555684c9b67621": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd5d8af8ed84440fab0db48dcbc856ff", + "placeholder": "​", + "style": "IPY_MODEL_c44ebf0f0c994d84ac03526d5a81766b", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.60kB/s]" + } + }, + "741ac529d6194f2e9b56c9e088f76268": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_146dbef610e8439581e5a9986e6ad377", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_36d934dea9dd49c29bf65541950da0be", + "tabbable": null, + "tooltip": null, + "value": 48.0 } }, - "5387148ba04d496e889d88d663312492": { + "75c57e826c124376bc72dc6b655b4d35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "760889e6a4ae4c6799f77c6474bc0967": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37ee8bc24d8c4f5585b78ae095603e9a", + "IPY_MODEL_f7bc4c8538674731845a79b445d5afa6", + "IPY_MODEL_ed36eddd60e24c93a16b332d682bdf58" + ], + "layout": "IPY_MODEL_0f6f800c15f34b978e844a2484d66b3b", + "tabbable": null, + "tooltip": null + } + }, + "7ed7df9468594951b7afc0ba1e460124": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2036,53 +2180,7 @@ "width": null } }, - "59d1c1e50bda4e9da25d3a6f59453df1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce90fe39f77749d5a8c3adc66c07b19a", - "placeholder": "​", - "style": "IPY_MODEL_c1f01941455c4007a0a122423857cca5", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "5a0b58ec5dee4d76abb1db03047e20d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fdd30b5bab0342bfa3cebd7fb4a76641", - "placeholder": "​", - "style": "IPY_MODEL_364432b0a294482c9c6b1ed27f2c2f49", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 33.5MB/s]" - } - }, - "5d2fec7b198645dcb93b760d38443c91": { + "85193c50f7e1481c988f9aa15f3b7282": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2135,7 +2233,7 @@ "width": null } }, - "609bd99534344390a356a6788fee8507": { + "851ded77a6d946818f4fe75f11ccccf9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2150,16 +2248,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6bd44905713448c48b13f9072288e7df", - "IPY_MODEL_2595b7a75e45466f9fc4d4ba48df1f15", - "IPY_MODEL_2358c94915814ebbb4935821bc31ade8" + "IPY_MODEL_e62799ac13a140038378a1f9217e922e", + "IPY_MODEL_87d2ad1322f54caa892612f619c9607e", + "IPY_MODEL_f7452e26b95e4efbb82e0805e90b087e" ], - "layout": "IPY_MODEL_41bb2f83903748a5bd214604318b8671", + "layout": "IPY_MODEL_b92a4d26e59546f182bbcf22b5ef9f63", "tabbable": null, "tooltip": null } }, - "633d7cd8598e4b29a3ad3e13daa87d91": { + "87d2ad1322f54caa892612f619c9607e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2175,123 +2273,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e0e803a6c1b4910adfa432ac654015d", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c2543129a62b4e81a81a510df25cf7f9", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "63efa3acc7744d418570c07d19f67b8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "66ba0cd1d985486c984a043d0efabf25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac9411cca7b345f9beebadd74debfc94", - "IPY_MODEL_633d7cd8598e4b29a3ad3e13daa87d91", - "IPY_MODEL_4596e06ee7084dd096fe08963d984fff" - ], - "layout": "IPY_MODEL_45c2ee2e2047435d8298563ac99aa124", - "tabbable": null, - "tooltip": null - } - }, - "691e9f1cd0ba445c89b42e5857fb81b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6bd44905713448c48b13f9072288e7df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e4df1cc46b24449083ba64e1acf4d44e", - "placeholder": "​", - "style": "IPY_MODEL_f2e97eb561d14453b0cebfb5c6f25fd3", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "6d3fd7a47d114edba48caa94e481cecb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_43e5fbda50ff4a34af172f936f8f7a78", - "placeholder": "​", - "style": "IPY_MODEL_63efa3acc7744d418570c07d19f67b8f", + "layout": "IPY_MODEL_adc478ce08204c78977669950583cc6d", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6846f85fd9fc49198c0104ea387a16ee", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 231508.0 } }, - "6ec6525b3b194115b0ff0cd6e22d9ce8": { + "8895626e4b1a4b41a2ac2ee10996a2dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2309,25 +2301,33 @@ "text_color": null } }, - "70f31e6770a84a21a434fe09d78ba8d3": { + "8b12b1fdc5bf4d6b88bb973cd4a3a0e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3a25b15580a46e1ab6107c64cd854fc", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_21e96c4c417e413b9670855e22bf941b", + "tabbable": null, + "tooltip": null, + "value": 391.0 } }, - "723fe7d9fee84e509e391f0086b38797": { + "95765f46238d45b8a8bea855ec10fcc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2380,31 +2380,48 @@ "width": null } }, - "72d412ce755f416e9311468fb26a3a46": { + "98fd1b6e464b4957829a32be2b6a98ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9e5ca3e516ce43b78b9398b4c0286eca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9e8cef97db604008bec76e9f8413d2f8", - "IPY_MODEL_e7b36e18e01d41c8a054785b3e17b654", - "IPY_MODEL_e758cdde2331469d8842311b6ef5dbb6" - ], - "layout": "IPY_MODEL_c8efadff14df4664963073b82267a07f", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_438b0dae4d5340519bd3474a6b1404eb", + "placeholder": "​", + "style": "IPY_MODEL_387ba9cdd9ba4defa83af82e2c946bb3", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 9.80MB/s]" } }, - "76b513dbf5f34978b7b6585e3d089794": { + "a709b971ba5a4f649b633623ef43a940": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2419,15 +2436,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1d46b41290534da1a7c59a65173af332", + "layout": "IPY_MODEL_f888f082ffe44bcd96877d04fcb93cb9", "placeholder": "​", - "style": "IPY_MODEL_6ec6525b3b194115b0ff0cd6e22d9ce8", + "style": "IPY_MODEL_1071ea768b794892a35eb370593bbbed", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 101kB/s]" + "value": "README.md: 100%" + } + }, + "a71ffe61d8454862beef69944a06b026": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "80718f0bca364346b9e76ae79ba0cdd4": { + "ac4f88f580e84ec3befd1bbd4ca22a7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2480,49 +2513,7 @@ "width": null } }, - "828118e3407f496e9047225853abf12c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_45c9c8c02ca142278cbdc6742aa87d9b", - "IPY_MODEL_f6b2fc64c1104a6094c50384dd6d3a07", - "IPY_MODEL_5a0b58ec5dee4d76abb1db03047e20d1" - ], - "layout": "IPY_MODEL_2bf0c73a7f8f4c649a4be7df92654e10", - "tabbable": null, - "tooltip": null - } - }, - "8ce3bdbaa1854c179505e5c09afe5dff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8e09f321b74944cc83b3df4395c00632": { + "adc478ce08204c78977669950583cc6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2575,53 +2566,33 @@ "width": null } }, - "8e64033a92a84b60983a905481c8ffcb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f4ef790794594d5db8566bf773f020ce", - "placeholder": "​", - "style": "IPY_MODEL_35fb15ce4edc4a58b13eb112b5302098", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 269MB/s]" - } - }, - "9e8cef97db604008bec76e9f8413d2f8": { + "b453f573e7214583841f233415492551": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4075b6b696794e6cb67d0b5f7de37f4c", - "placeholder": "​", - "style": "IPY_MODEL_f24c56f154ef4a9cb75f96e2bbf56e8d", + "layout": "IPY_MODEL_bbca1413ec2d40e8a685bac5056becbd", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_75c57e826c124376bc72dc6b655b4d35", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": 54245363.0 } }, - "a1a6a4cf16a8479c98351da8ba7d247e": { + "b92a4d26e59546f182bbcf22b5ef9f63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2674,54 +2645,7 @@ "width": null } }, - "a87e77b0e9324a9384b775bc5514a176": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6d3fd7a47d114edba48caa94e481cecb", - "IPY_MODEL_42238d77794d4138942bf704d74a8ced", - "IPY_MODEL_8e64033a92a84b60983a905481c8ffcb" - ], - "layout": "IPY_MODEL_a1a6a4cf16a8479c98351da8ba7d247e", - "tabbable": null, - "tooltip": null - } - }, - "ac9411cca7b345f9beebadd74debfc94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5387148ba04d496e889d88d663312492", - "placeholder": "​", - "style": "IPY_MODEL_70f31e6770a84a21a434fe09d78ba8d3", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "adef0f10f073472498f3394a0ff314b5": { + "bbca1413ec2d40e8a685bac5056becbd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2774,64 +2698,7 @@ "width": null } }, - "af382a9199134755b710d6c867dfbf15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b1b9db21390e4028ab5768e0946debd1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eaf4f1d3615d42a7a3317d8bc474bfb9", - "placeholder": "​", - "style": "IPY_MODEL_4745140672f040658bb31f48154c9327", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "b29efd0253184afc9f25ed847cc6de4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b3f682560e214179a87fc479dcbae99e": { + "c0bc32cb12484a6b9cbec2de8f219813": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2847,33 +2714,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_80718f0bca364346b9e76ae79ba0cdd4", + "layout": "IPY_MODEL_cda549c2fe3d4d7ea57eefa772896ff8", "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2a816d84d5cc473093ab67001a27c13a", + "style": "IPY_MODEL_627c5b57f30a4645ba999cb23b608351", "tabbable": null, "tooltip": null, "value": 466062.0 } }, - "b5c1ccb187604ede9dcccd86862a971f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bcc06e43c9bc45058c6f3e613d79d09a": { + "c34fc9768dad42b7ab3a90cf059ed000": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2926,7 +2777,7 @@ "width": null } }, - "c1f01941455c4007a0a122423857cca5": { + "c44ebf0f0c994d84ac03526d5a81766b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2944,39 +2795,43 @@ "text_color": null } }, - "c2543129a62b4e81a81a510df25cf7f9": { + "c973eb044f68443f8a8dcd149769f649": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c467572ad65a4ecdad411374c0d9af32": { + "cbf8c07b8c384a298791979d7a92260c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c8efadff14df4664963073b82267a07f": { + "cda549c2fe3d4d7ea57eefa772896ff8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3029,7 +2884,54 @@ "width": null } }, - "cd92b55b3feb4bacbb48b66ccdbbbe8f": { + "ce1d0dd784844e8a8cf246b18c6861a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2ab4beb3ab2b49768895b0b76aab05db", + "IPY_MODEL_741ac529d6194f2e9b56c9e088f76268", + "IPY_MODEL_696a72c5b5cd46cf91555684c9b67621" + ], + "layout": "IPY_MODEL_d70c89ff30764318abed7dbbb7c6ae54", + "tabbable": null, + "tooltip": null + } + }, + "cf1fc7a67bb74721b14bc9d6749e3c88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_14d7da0620c24eeaa5a138e23cf6d286", + "placeholder": "​", + "style": "IPY_MODEL_98fd1b6e464b4957829a32be2b6a98ff", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "d3a25b15580a46e1ab6107c64cd854fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3082,7 +2984,7 @@ "width": null } }, - "ce90fe39f77749d5a8c3adc66c07b19a": { + "d70c89ff30764318abed7dbbb7c6ae54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3135,30 +3037,31 @@ "width": null } }, - "d36b8a25de144393ad4dc1d2a45edfd2": { + "df0c4acd84aa43d7aca5c30c44c6a6ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e2653e982d404b29b3cbde6dcdbd6de7", - "placeholder": "​", - "style": "IPY_MODEL_04e6f8947ca14034a8b86e7853b8b767", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2e964a962ec6402da3abb4041ae1319e", + "IPY_MODEL_8b12b1fdc5bf4d6b88bb973cd4a3a0e3", + "IPY_MODEL_3e54b3958b294c4ba7517105e03a3bea" + ], + "layout": "IPY_MODEL_0de9ada189b3400f98b5c597e4ee4841", "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 2.61MB/s]" + "tooltip": null } }, - "d3c28141d394432fa0341c17c066928a": { + "e0972d8d4a8547f195449a1407d3131c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3211,7 +3114,7 @@ "width": null } }, - "d73435f3e28246c4a87481a27f81d8f7": { + "e1606ccc14d647d7a90be46b3473e8a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3264,7 +3167,7 @@ "width": null } }, - "e2653e982d404b29b3cbde6dcdbd6de7": { + "e52df04b9ac6427289647ba460061b39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3317,7 +3220,95 @@ "width": null } }, - "e4df1cc46b24449083ba64e1acf4d44e": { + "e62799ac13a140038378a1f9217e922e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0972d8d4a8547f195449a1407d3131c", + "placeholder": "​", + "style": "IPY_MODEL_c973eb044f68443f8a8dcd149769f649", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "e74ddbaf22bb425b8bfd41dca45d9308": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a709b971ba5a4f649b633623ef43a940", + "IPY_MODEL_20fe4ed42d2d456293c0870626b5124c", + "IPY_MODEL_4f1cb6434e9a49a3864315524d05cf31" + ], + "layout": "IPY_MODEL_611d201c6bfb40a092115bea364e53d1", + "tabbable": null, + "tooltip": null + } + }, + "e9d23534bf1c4adb8c18ffe1514fb739": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed36eddd60e24c93a16b332d682bdf58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f5bf680546d141f5bfed8066b446fddd", + "placeholder": "​", + "style": "IPY_MODEL_3658a9b957b34366bb3864029e20029b", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 118kB/s]" + } + }, + "f5bf680546d141f5bfed8066b446fddd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3370,7 +3361,7 @@ "width": null } }, - "e758cdde2331469d8842311b6ef5dbb6": { + "f7452e26b95e4efbb82e0805e90b087e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3385,15 +3376,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_181817c2729a4dccb97af10abf5129d4", + "layout": "IPY_MODEL_e1606ccc14d647d7a90be46b3473e8a5", "placeholder": "​", - "style": "IPY_MODEL_b29efd0253184afc9f25ed847cc6de4f", + "style": "IPY_MODEL_cbf8c07b8c384a298791979d7a92260c", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 397kB/s]" + "value": " 232k/232k [00:00<00:00, 33.5MB/s]" } }, - "e7b36e18e01d41c8a054785b3e17b654": { + "f7bc4c8538674731845a79b445d5afa6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3409,17 +3400,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_adef0f10f073472498f3394a0ff314b5", - "max": 2211.0, + "layout": "IPY_MODEL_c34fc9768dad42b7ab3a90cf059ed000", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_13cc007397f54c9c8c37e3efe684a7e2", + "style": "IPY_MODEL_047d92a7baba49a38cd397ee7fb243db", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": 665.0 } }, - "eaf4f1d3615d42a7a3317d8bc474bfb9": { + "f888f082ffe44bcd96877d04fcb93cb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3472,43 +3463,60 @@ "width": null } }, - "f24c56f154ef4a9cb75f96e2bbf56e8d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f2e97eb561d14453b0cebfb5c6f25fd3": { - "model_module": "@jupyter-widgets/controls", + "f9b8ada682a84865951cca1169b8352a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f4ef790794594d5db8566bf773f020ce": { + "fd5d8af8ed84440fab0db48dcbc856ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3561,33 +3569,7 @@ "width": null } }, - "f6b2fc64c1104a6094c50384dd6d3a07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cd92b55b3feb4bacbb48b66ccdbbbe8f", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c467572ad65a4ecdad411374c0d9af32", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "fdd30b5bab0342bfa3cebd7fb4a76641": { + "ff735b03eb3d4c8385ba7ab965db9e17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3639,6 +3621,24 @@ "visibility": null, "width": null } + }, + "ffa4d1ac015a4234b2e990611468fefd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index db407c8a3..6911d1cef 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:18.375949Z", - "iopub.status.busy": "2024-08-26T15:50:18.375420Z", - "iopub.status.idle": "2024-08-26T15:50:23.859019Z", - "shell.execute_reply": "2024-08-26T15:50:23.858417Z" + "iopub.execute_input": "2024-08-28T20:05:07.495227Z", + "iopub.status.busy": "2024-08-28T20:05:07.494741Z", + "iopub.status.idle": "2024-08-28T20:05:12.965294Z", + "shell.execute_reply": "2024-08-28T20:05:12.964724Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:23.861683Z", - "iopub.status.busy": "2024-08-26T15:50:23.861156Z", - "iopub.status.idle": "2024-08-26T15:50:23.864463Z", - "shell.execute_reply": "2024-08-26T15:50:23.863948Z" + "iopub.execute_input": "2024-08-28T20:05:12.967811Z", + "iopub.status.busy": "2024-08-28T20:05:12.967421Z", + "iopub.status.idle": "2024-08-28T20:05:12.970704Z", + "shell.execute_reply": "2024-08-28T20:05:12.970254Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:23.866465Z", - "iopub.status.busy": "2024-08-26T15:50:23.866121Z", - "iopub.status.idle": "2024-08-26T15:50:23.870902Z", - "shell.execute_reply": "2024-08-26T15:50:23.870358Z" + "iopub.execute_input": "2024-08-28T20:05:12.972551Z", + "iopub.status.busy": "2024-08-28T20:05:12.972376Z", + "iopub.status.idle": "2024-08-28T20:05:12.977055Z", + "shell.execute_reply": "2024-08-28T20:05:12.976599Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:23.873109Z", - "iopub.status.busy": "2024-08-26T15:50:23.872679Z", - "iopub.status.idle": "2024-08-26T15:50:25.664909Z", - "shell.execute_reply": "2024-08-26T15:50:25.664194Z" + "iopub.execute_input": "2024-08-28T20:05:12.979087Z", + "iopub.status.busy": "2024-08-28T20:05:12.978759Z", + "iopub.status.idle": "2024-08-28T20:05:14.689169Z", + "shell.execute_reply": "2024-08-28T20:05:14.688459Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:25.667739Z", - "iopub.status.busy": "2024-08-26T15:50:25.667316Z", - "iopub.status.idle": "2024-08-26T15:50:25.678565Z", - "shell.execute_reply": "2024-08-26T15:50:25.678115Z" + "iopub.execute_input": "2024-08-28T20:05:14.691661Z", + "iopub.status.busy": "2024-08-28T20:05:14.691446Z", + "iopub.status.idle": "2024-08-28T20:05:14.704507Z", + "shell.execute_reply": "2024-08-28T20:05:14.704037Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:25.680602Z", - "iopub.status.busy": "2024-08-26T15:50:25.680410Z", - "iopub.status.idle": "2024-08-26T15:50:25.687890Z", - "shell.execute_reply": "2024-08-26T15:50:25.687425Z" + "iopub.execute_input": "2024-08-28T20:05:14.706543Z", + "iopub.status.busy": "2024-08-28T20:05:14.706349Z", + "iopub.status.idle": "2024-08-28T20:05:14.711713Z", + "shell.execute_reply": "2024-08-28T20:05:14.711239Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:25.689698Z", - "iopub.status.busy": "2024-08-26T15:50:25.689520Z", - "iopub.status.idle": "2024-08-26T15:50:26.129419Z", - "shell.execute_reply": "2024-08-26T15:50:26.128884Z" + "iopub.execute_input": "2024-08-28T20:05:14.713576Z", + "iopub.status.busy": "2024-08-28T20:05:14.713400Z", + "iopub.status.idle": "2024-08-28T20:05:15.172086Z", + "shell.execute_reply": "2024-08-28T20:05:15.171574Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:26.131626Z", - "iopub.status.busy": "2024-08-26T15:50:26.131431Z", - "iopub.status.idle": "2024-08-26T15:50:27.173661Z", - "shell.execute_reply": "2024-08-26T15:50:27.173138Z" + "iopub.execute_input": "2024-08-28T20:05:15.174369Z", + "iopub.status.busy": "2024-08-28T20:05:15.173931Z", + "iopub.status.idle": "2024-08-28T20:05:16.706579Z", + "shell.execute_reply": "2024-08-28T20:05:16.705958Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:27.176421Z", - "iopub.status.busy": "2024-08-26T15:50:27.176064Z", - "iopub.status.idle": "2024-08-26T15:50:27.195243Z", - "shell.execute_reply": "2024-08-26T15:50:27.194686Z" + "iopub.execute_input": "2024-08-28T20:05:16.709023Z", + "iopub.status.busy": "2024-08-28T20:05:16.708689Z", + "iopub.status.idle": "2024-08-28T20:05:16.727119Z", + "shell.execute_reply": "2024-08-28T20:05:16.726572Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:27.197583Z", - "iopub.status.busy": "2024-08-26T15:50:27.197164Z", - "iopub.status.idle": "2024-08-26T15:50:27.200332Z", - "shell.execute_reply": "2024-08-26T15:50:27.199873Z" + "iopub.execute_input": "2024-08-28T20:05:16.729067Z", + "iopub.status.busy": "2024-08-28T20:05:16.728888Z", + "iopub.status.idle": "2024-08-28T20:05:16.732054Z", + "shell.execute_reply": "2024-08-28T20:05:16.731610Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:27.202307Z", - "iopub.status.busy": "2024-08-26T15:50:27.202000Z", - "iopub.status.idle": "2024-08-26T15:50:41.583107Z", - "shell.execute_reply": "2024-08-26T15:50:41.582452Z" + "iopub.execute_input": "2024-08-28T20:05:16.733878Z", + "iopub.status.busy": "2024-08-28T20:05:16.733705Z", + "iopub.status.idle": "2024-08-28T20:05:30.827795Z", + "shell.execute_reply": "2024-08-28T20:05:30.827136Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:41.585857Z", - "iopub.status.busy": "2024-08-26T15:50:41.585461Z", - "iopub.status.idle": "2024-08-26T15:50:41.589464Z", - "shell.execute_reply": "2024-08-26T15:50:41.588990Z" + "iopub.execute_input": "2024-08-28T20:05:30.830643Z", + "iopub.status.busy": "2024-08-28T20:05:30.830195Z", + "iopub.status.idle": "2024-08-28T20:05:30.834048Z", + "shell.execute_reply": "2024-08-28T20:05:30.833572Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:41.591711Z", - "iopub.status.busy": "2024-08-26T15:50:41.591300Z", - "iopub.status.idle": "2024-08-26T15:50:42.284996Z", - "shell.execute_reply": "2024-08-26T15:50:42.284408Z" + "iopub.execute_input": "2024-08-28T20:05:30.836117Z", + "iopub.status.busy": "2024-08-28T20:05:30.835778Z", + "iopub.status.idle": "2024-08-28T20:05:31.558613Z", + "shell.execute_reply": "2024-08-28T20:05:31.558015Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.287828Z", - "iopub.status.busy": "2024-08-26T15:50:42.287405Z", - "iopub.status.idle": "2024-08-26T15:50:42.292567Z", - "shell.execute_reply": "2024-08-26T15:50:42.292041Z" + "iopub.execute_input": "2024-08-28T20:05:31.562360Z", + "iopub.status.busy": "2024-08-28T20:05:31.561376Z", + "iopub.status.idle": "2024-08-28T20:05:31.568267Z", + "shell.execute_reply": "2024-08-28T20:05:31.567749Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.295019Z", - "iopub.status.busy": "2024-08-26T15:50:42.294593Z", - "iopub.status.idle": "2024-08-26T15:50:42.406915Z", - "shell.execute_reply": "2024-08-26T15:50:42.406291Z" + "iopub.execute_input": "2024-08-28T20:05:31.571935Z", + "iopub.status.busy": "2024-08-28T20:05:31.570971Z", + "iopub.status.idle": "2024-08-28T20:05:31.683477Z", + "shell.execute_reply": "2024-08-28T20:05:31.682846Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.409511Z", - "iopub.status.busy": "2024-08-26T15:50:42.409028Z", - "iopub.status.idle": "2024-08-26T15:50:42.421338Z", - "shell.execute_reply": "2024-08-26T15:50:42.420887Z" + "iopub.execute_input": "2024-08-28T20:05:31.685715Z", + "iopub.status.busy": "2024-08-28T20:05:31.685521Z", + "iopub.status.idle": "2024-08-28T20:05:31.698279Z", + "shell.execute_reply": "2024-08-28T20:05:31.697818Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.423468Z", - "iopub.status.busy": "2024-08-26T15:50:42.423121Z", - "iopub.status.idle": "2024-08-26T15:50:42.430725Z", - "shell.execute_reply": "2024-08-26T15:50:42.430159Z" + "iopub.execute_input": "2024-08-28T20:05:31.700427Z", + "iopub.status.busy": "2024-08-28T20:05:31.700083Z", + "iopub.status.idle": "2024-08-28T20:05:31.707771Z", + "shell.execute_reply": "2024-08-28T20:05:31.707263Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.432808Z", - "iopub.status.busy": "2024-08-26T15:50:42.432481Z", - "iopub.status.idle": "2024-08-26T15:50:42.436459Z", - "shell.execute_reply": "2024-08-26T15:50:42.435927Z" + "iopub.execute_input": "2024-08-28T20:05:31.709796Z", + "iopub.status.busy": "2024-08-28T20:05:31.709458Z", + "iopub.status.idle": "2024-08-28T20:05:31.713392Z", + "shell.execute_reply": "2024-08-28T20:05:31.712827Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.438685Z", - "iopub.status.busy": "2024-08-26T15:50:42.438333Z", - "iopub.status.idle": "2024-08-26T15:50:42.443991Z", - "shell.execute_reply": "2024-08-26T15:50:42.443346Z" + "iopub.execute_input": "2024-08-28T20:05:31.715576Z", + "iopub.status.busy": "2024-08-28T20:05:31.715213Z", + "iopub.status.idle": "2024-08-28T20:05:31.720697Z", + "shell.execute_reply": "2024-08-28T20:05:31.720239Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.446522Z", - "iopub.status.busy": "2024-08-26T15:50:42.446019Z", - "iopub.status.idle": "2024-08-26T15:50:42.560125Z", - "shell.execute_reply": "2024-08-26T15:50:42.559532Z" + "iopub.execute_input": "2024-08-28T20:05:31.722672Z", + "iopub.status.busy": "2024-08-28T20:05:31.722490Z", + "iopub.status.idle": "2024-08-28T20:05:31.832330Z", + "shell.execute_reply": "2024-08-28T20:05:31.831799Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.562347Z", - "iopub.status.busy": "2024-08-26T15:50:42.561993Z", - "iopub.status.idle": "2024-08-26T15:50:42.666666Z", - "shell.execute_reply": "2024-08-26T15:50:42.666079Z" + "iopub.execute_input": "2024-08-28T20:05:31.834543Z", + "iopub.status.busy": "2024-08-28T20:05:31.834175Z", + "iopub.status.idle": "2024-08-28T20:05:31.939450Z", + "shell.execute_reply": "2024-08-28T20:05:31.938953Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.668699Z", - "iopub.status.busy": "2024-08-26T15:50:42.668513Z", - "iopub.status.idle": "2024-08-26T15:50:42.772175Z", - "shell.execute_reply": "2024-08-26T15:50:42.771562Z" + "iopub.execute_input": "2024-08-28T20:05:31.941460Z", + "iopub.status.busy": "2024-08-28T20:05:31.941267Z", + "iopub.status.idle": "2024-08-28T20:05:32.049469Z", + "shell.execute_reply": "2024-08-28T20:05:32.048864Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.774239Z", - "iopub.status.busy": "2024-08-26T15:50:42.774052Z", - "iopub.status.idle": "2024-08-26T15:50:42.877983Z", - "shell.execute_reply": "2024-08-26T15:50:42.877478Z" + "iopub.execute_input": "2024-08-28T20:05:32.051624Z", + "iopub.status.busy": "2024-08-28T20:05:32.051415Z", + "iopub.status.idle": "2024-08-28T20:05:32.153050Z", + "shell.execute_reply": "2024-08-28T20:05:32.152550Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.880086Z", - "iopub.status.busy": "2024-08-26T15:50:42.879904Z", - "iopub.status.idle": "2024-08-26T15:50:42.883328Z", - "shell.execute_reply": "2024-08-26T15:50:42.882869Z" + "iopub.execute_input": "2024-08-28T20:05:32.155233Z", + "iopub.status.busy": "2024-08-28T20:05:32.154873Z", + "iopub.status.idle": "2024-08-28T20:05:32.158117Z", + "shell.execute_reply": "2024-08-28T20:05:32.157641Z" }, "nbsphinx": "hidden" }, @@ -1392,57 +1392,89 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05a4b438a1aa46718c6a77b932a841ba": { + "033e0bed8622486ab93b78611978ffae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fd724a4cddb843d1bf3bc3d1a6f60a0d", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dcaf791445af43d68f0078287914810a", + "layout": "IPY_MODEL_69a9e3f6bc7e42549c18bbf981c39725", + "placeholder": "​", + "style": "IPY_MODEL_92694183516845f585aa99377803a411", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": "classifier.ckpt: 100%" } }, - "074d9a20f9624f31bef1345fc1d53ba4": { + "034e4d3a7063488d91824e6fdeb7f1e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1199aea69d7f453b8a043197c4365878": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_28aa2246369c45f2ad10eb6574adfa34", - "IPY_MODEL_f327247b2e124784abcaca20d824f2c2", - "IPY_MODEL_a77b34d9e40b4059839e055baa762c60" - ], - "layout": "IPY_MODEL_d42aa306545b4c048e7007f1010dae12", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bd76c46bf0bd4562b4c10e0c56b6107a", + "placeholder": "​", + "style": "IPY_MODEL_66513425cb8c4a64907fcdc7c00a7f4a", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 131MB/s]" + } + }, + "251c61f7e86b4cc78eaa1bf1844deba1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0b2b777475ca40c299521df6edb4d9e1": { + "2f35bca59c674a7ba0421a810b889410": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1495,7 +1527,7 @@ "width": null } }, - "1435eae27d1c443e8d421a650383bec6": { + "378931b4c67a48e99f98003a357982ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1548,31 +1580,7 @@ "width": null } }, - "1f681aac41c3440fa5417df2592e64e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7a8c9807b5d243ef9048199d164259a7", - "IPY_MODEL_5355547b3991428680ce71762c93fc29", - "IPY_MODEL_cd4a37f84abf46799e7fa3c03402e98c" - ], - "layout": "IPY_MODEL_24d971d5873c40bc8acce10154a128ff", - "tabbable": null, - "tooltip": null - } - }, - "24d971d5873c40bc8acce10154a128ff": { + "3dc3be9eef054216b969041f3437fcc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1625,100 +1633,133 @@ "width": null } }, - "25f9496e154b4c35b50154e7c1179417": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "28aa2246369c45f2ad10eb6574adfa34": { + "41dea17f2ed141e09e1ea54ca902e515": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c9b9aaa085c4670a15577b8af66c4a3", - "placeholder": "​", - "style": "IPY_MODEL_d237e27edd394f0cb779b56daf7e9f53", + "layout": "IPY_MODEL_2f35bca59c674a7ba0421a810b889410", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4a4d45f56884d5799af6bca8fef356e", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": 2041.0 } }, - "2b3ed58cf59a4deb8dbaf2cbee76d300": { + "44cf7cdb74054c87893356ec9c82a69c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5203182542b14d67bdd4b396e7bec6de", + "IPY_MODEL_41dea17f2ed141e09e1ea54ca902e515", + "IPY_MODEL_bbdac7b22ce44d329ab42c88c5648f8a" + ], + "layout": "IPY_MODEL_3dc3be9eef054216b969041f3437fcc7", + "tabbable": null, + "tooltip": null } }, - "2fc8223259fe4237a80e3939046d0ac0": { - "model_module": "@jupyter-widgets/controls", + "4bf5e7515a3e4ca4adc3ec9b58458d08": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "368d32a2248046e1a344ef38430f19dd": { + "5203182542b14d67bdd4b396e7bec6de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_99c2fa97ebbe4b198a3363b73ba06614", + "placeholder": "​", + "style": "IPY_MODEL_cdd6b64ff95043b3889956f53bae3ee9", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" } }, - "3b95edd1de4741ab901227f2d2eb148c": { + "520e3e4513d4419a951d6d23cdc7b88c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1771,7 +1812,7 @@ "width": null } }, - "3c28bd9bc9d54a309045e236929b999f": { + "53c847f09731436f95fe81ea1aa14aa1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1786,15 +1827,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_750fe5408c694441b476afcb56cb7b0b", + "layout": "IPY_MODEL_89b87cac74e74a20bdcb62eb6d1aa89f", "placeholder": "​", - "style": "IPY_MODEL_ebda3d78b05a4486a7fffd8a666e661f", + "style": "IPY_MODEL_aa4058752a5e42a7aad3ca7a4528244a", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": "label_encoder.txt: 100%" } }, - "40d9603be1704746993364aa51163eb8": { + "5c84764947744d5ea50f357bf700eba2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1810,30 +1851,51 @@ "description_width": "" } }, - "489f5e3cafb04cf0add9f925c8e800a5": { + "5cb8da02171f40d39bb02626493b71ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9955115289447288de13b0d6c05e5ba", - "placeholder": "​", - "style": "IPY_MODEL_525667ee5a584057853b670d0e74a9b7", + "layout": "IPY_MODEL_fe7f31d39ca44392a7d33939e895ea1a", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4012906bcaf4d40bfa66ae83932a548", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.03MB/s]" + "value": 16887676.0 + } + }, + "66513425cb8c4a64907fcdc7c00a7f4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4ee261f6d2c04d45982fa5a44bb949fb": { + "69a9e3f6bc7e42549c18bbf981c39725": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1886,7 +1948,23 @@ "width": null } }, - "51a4d54bfb654f9caa7c226ee8995e55": { + "6bdaf42fca4d4e84a0155187178ceeb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6ed285d0b05b4ed1b68077b474fab2ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1939,58 +2017,14 @@ "width": null } }, - "525667ee5a584057853b670d0e74a9b7": { - "model_module": "@jupyter-widgets/controls", + "79544e230b084a61a296769a8a0ad552": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5355547b3991428680ce71762c93fc29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_51a4d54bfb654f9caa7c226ee8995e55", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_40d9603be1704746993364aa51163eb8", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "56a875190553432ca4420d1c37d224b0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2036,92 +2070,7 @@ "width": null } }, - "5f20e36061c4462194728c5738285d58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e99d63a6efb47f2988287ad5bef0840", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bdb53847f2b34586832fe6fb354d7a43", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "5f9123a1dc6f4bf594ce8a4b4f185a49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "65695c75a14e47ff8e3bf72157f16c8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "67cae2b88eea4691bf411e8b7f6bc406": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cacc260410024c2eac52649d535238dd", - "placeholder": "​", - "style": "IPY_MODEL_2b3ed58cf59a4deb8dbaf2cbee76d300", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "6c9b9aaa085c4670a15577b8af66c4a3": { + "7cef29848a4742c3bcbbe027ba557e90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2174,7 +2123,43 @@ "width": null } }, - "750fe5408c694441b476afcb56cb7b0b": { + "7f923f52f6b144089817e24b6ddf6dc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "82ca4b8d8cc34322b0e2c16eb9e16e50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "89b87cac74e74a20bdcb62eb6d1aa89f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2227,7 +2212,7 @@ "width": null } }, - "7a8c9807b5d243ef9048199d164259a7": { + "90fa56e12c094fc5a9f3a4174a977d02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2242,15 +2227,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1435eae27d1c443e8d421a650383bec6", + "layout": "IPY_MODEL_79544e230b084a61a296769a8a0ad552", "placeholder": "​", - "style": "IPY_MODEL_65695c75a14e47ff8e3bf72157f16c8a", + "style": "IPY_MODEL_b645b640adef43eab1e7b9c9117786ad", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": "embedding_model.ckpt: 100%" } }, - "7e99d63a6efb47f2988287ad5bef0840": { + "9211e1c1cfe34affb27bb1da6c1a875c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2303,31 +2288,7 @@ "width": null } }, - "84d5a344da0b420f9117f92f87b490ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3c28bd9bc9d54a309045e236929b999f", - "IPY_MODEL_ecad11768e31486e90586871e36c9ef8", - "IPY_MODEL_c90219e36f1e4eea92fe74ca75c1f79b" - ], - "layout": "IPY_MODEL_4ee261f6d2c04d45982fa5a44bb949fb", - "tabbable": null, - "tooltip": null - } - }, - "912b7f93444942fd8376cda94eda9084": { + "92694183516845f585aa99377803a411": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2345,31 +2306,30 @@ "text_color": null } }, - "929531a872824dd386b23d35970c8531": { + "9282f4967771485581b4371e8a1751ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_67cae2b88eea4691bf411e8b7f6bc406", - "IPY_MODEL_05a4b438a1aa46718c6a77b932a841ba", - "IPY_MODEL_489f5e3cafb04cf0add9f925c8e800a5" - ], - "layout": "IPY_MODEL_56a875190553432ca4420d1c37d224b0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7644d8d3b544e9996a105c3ccc8715b", + "placeholder": "​", + "style": "IPY_MODEL_7f923f52f6b144089817e24b6ddf6dc2", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 825kB/s]" } }, - "a265f58d489845b6b1340a829a74168d": { + "92b94f49dab546c6a80ec5f1904f5a3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2387,60 +2347,7 @@ "text_color": null } }, - "a392464012b34ae1b5f7e0a97721360b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a5b2e7509b164b5d9e844cab9b9e0f11": { + "99c2fa97ebbe4b198a3363b73ba06614": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2493,7 +2400,7 @@ "width": null } }, - "a77b34d9e40b4059839e055baa762c60": { + "9d6ed2fdee25497985f03c3f686ae471": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2508,15 +2415,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a392464012b34ae1b5f7e0a97721360b", + "layout": "IPY_MODEL_4bf5e7515a3e4ca4adc3ec9b58458d08", "placeholder": "​", - "style": "IPY_MODEL_2fc8223259fe4237a80e3939046d0ac0", + "style": "IPY_MODEL_92b94f49dab546c6a80ec5f1904f5a3f", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 280MB/s]" + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "a9955115289447288de13b0d6c05e5ba": { + "a3b31864402840bb8713cd299601351b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2569,99 +2476,67 @@ "width": null } }, - "bdb53847f2b34586832fe6fb354d7a43": { + "aa4058752a5e42a7aad3ca7a4528244a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c90219e36f1e4eea92fe74ca75c1f79b": { + "b5fe6a2bf8d44281a689a5a619ad0f58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0b2b777475ca40c299521df6edb4d9e1", - "placeholder": "​", - "style": "IPY_MODEL_912b7f93444942fd8376cda94eda9084", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 242MB/s]" - } + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9d6ed2fdee25497985f03c3f686ae471", + "IPY_MODEL_d7e704ded2a64e55a3de666caeaf7f25", + "IPY_MODEL_9282f4967771485581b4371e8a1751ff" + ], + "layout": "IPY_MODEL_a3b31864402840bb8713cd299601351b", + "tabbable": null, + "tooltip": null + } }, - "cacc260410024c2eac52649d535238dd": { - "model_module": "@jupyter-widgets/base", + "b645b640adef43eab1e7b9c9117786ad": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cd4a37f84abf46799e7fa3c03402e98c": { + "b6adf34a89e34ec2a742d065c56a6486": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2676,15 +2551,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d93a56d4a52b40a1a432a218701e6d7d", + "layout": "IPY_MODEL_fc2232b5a8dd416b925842e98e107e8a", "placeholder": "​", - "style": "IPY_MODEL_a265f58d489845b6b1340a829a74168d", + "style": "IPY_MODEL_82ca4b8d8cc34322b0e2c16eb9e16e50", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 452kB/s]" + "value": " 129k/129k [00:00<00:00, 6.43MB/s]" } }, - "d19574be1727424f9b4155d6890c6379": { + "bbdac7b22ce44d329ab42c88c5648f8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2699,33 +2574,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f7f0f2aa06bf4ac191490912101855c7", + "layout": "IPY_MODEL_f48ca364e590455591766831ea1dfbf7", "placeholder": "​", - "style": "IPY_MODEL_5f9123a1dc6f4bf594ce8a4b4f185a49", + "style": "IPY_MODEL_034e4d3a7063488d91824e6fdeb7f1e8", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "d237e27edd394f0cb779b56daf7e9f53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 2.04k/2.04k [00:00<00:00, 453kB/s]" } }, - "d42aa306545b4c048e7007f1010dae12": { + "bd76c46bf0bd4562b4c10e0c56b6107a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2778,7 +2635,54 @@ "width": null } }, - "d93a56d4a52b40a1a432a218701e6d7d": { + "c19736be268e4860a33b62e8f05474e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_90fa56e12c094fc5a9f3a4174a977d02", + "IPY_MODEL_5cb8da02171f40d39bb02626493b71ff", + "IPY_MODEL_c19a041c0549459596b87353d3df4f78" + ], + "layout": "IPY_MODEL_9211e1c1cfe34affb27bb1da6c1a875c", + "tabbable": null, + "tooltip": null + } + }, + "c19a041c0549459596b87353d3df4f78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7cef29848a4742c3bcbbe027ba557e90", + "placeholder": "​", + "style": "IPY_MODEL_251c61f7e86b4cc78eaa1bf1844deba1", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 89.1MB/s]" + } + }, + "c578f898c61f4b38bbed699e3ee4574d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2831,7 +2735,51 @@ "width": null } }, - "dcaf791445af43d68f0078287914810a": { + "cdd6b64ff95043b3889956f53bae3ee9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cf30b6835a2b4533b999a994d35526ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c578f898c61f4b38bbed699e3ee4574d", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6bdaf42fca4d4e84a0155187178ceeb9", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "d4b0028a240044bbbfafcd951f0aef00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2847,31 +2795,33 @@ "description_width": "" } }, - "e09248c0fe244ae1adb56d9623d7540b": { + "d7e704ded2a64e55a3de666caeaf7f25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d19574be1727424f9b4155d6890c6379", - "IPY_MODEL_5f20e36061c4462194728c5738285d58", - "IPY_MODEL_e51837b227f044108623992ca3212468" - ], - "layout": "IPY_MODEL_e1317297dacd4b19add95df4eb325215", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_520e3e4513d4419a951d6d23cdc7b88c", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c84764947744d5ea50f357bf700eba2", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 3201.0 } }, - "e1317297dacd4b19add95df4eb325215": { + "d8b66fecb92a47f380840531b61c5ca3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2924,30 +2874,33 @@ "width": null } }, - "e51837b227f044108623992ca3212468": { + "e03a514f0ab74a24920aa89a2c8236ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fe0c29f7fc654606a3968de8caebfa7e", - "placeholder": "​", - "style": "IPY_MODEL_25f9496e154b4c35b50154e7c1179417", + "layout": "IPY_MODEL_378931b4c67a48e99f98003a357982ed", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d4b0028a240044bbbfafcd951f0aef00", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 801kB/s]" + "value": 128619.0 } }, - "e9cda110045e43c29d5985c766de7a53": { + "e4012906bcaf4d40bfa66ae83932a548": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2963,77 +2916,124 @@ "description_width": "" } }, - "ebda3d78b05a4486a7fffd8a666e661f": { + "e4a4d45f56884d5799af6bca8fef356e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "e7644d8d3b544e9996a105c3ccc8715b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ecad11768e31486e90586871e36c9ef8": { + "e92657bbca8142a5903f0333291a3975": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3b95edd1de4741ab901227f2d2eb148c", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e9cda110045e43c29d5985c766de7a53", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_033e0bed8622486ab93b78611978ffae", + "IPY_MODEL_cf30b6835a2b4533b999a994d35526ca", + "IPY_MODEL_1199aea69d7f453b8a043197c4365878" + ], + "layout": "IPY_MODEL_d8b66fecb92a47f380840531b61c5ca3", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "f327247b2e124784abcaca20d824f2c2": { + "ebb5417e82e6497d97f1411c47210a87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a5b2e7509b164b5d9e844cab9b9e0f11", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_368d32a2248046e1a344ef38430f19dd", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_53c847f09731436f95fe81ea1aa14aa1", + "IPY_MODEL_e03a514f0ab74a24920aa89a2c8236ff", + "IPY_MODEL_b6adf34a89e34ec2a742d065c56a6486" + ], + "layout": "IPY_MODEL_6ed285d0b05b4ed1b68077b474fab2ac", "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "tooltip": null } }, - "f7f0f2aa06bf4ac191490912101855c7": { + "f48ca364e590455591766831ea1dfbf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3086,7 +3086,7 @@ "width": null } }, - "fd724a4cddb843d1bf3bc3d1a6f60a0d": { + "fc2232b5a8dd416b925842e98e107e8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3139,7 +3139,7 @@ "width": null } }, - "fe0c29f7fc654606a3968de8caebfa7e": { + "fe7f31d39ca44392a7d33939e895ea1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index 273aaa0cb..241f4fc04 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:46.765510Z", - "iopub.status.busy": "2024-08-26T15:50:46.765317Z", - "iopub.status.idle": "2024-08-26T15:50:48.029649Z", - "shell.execute_reply": "2024-08-26T15:50:48.029139Z" + "iopub.execute_input": "2024-08-28T20:05:36.458031Z", + "iopub.status.busy": "2024-08-28T20:05:36.457846Z", + "iopub.status.idle": "2024-08-28T20:05:37.654965Z", + "shell.execute_reply": "2024-08-28T20:05:37.654325Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.032203Z", - "iopub.status.busy": "2024-08-26T15:50:48.031901Z", - "iopub.status.idle": "2024-08-26T15:50:48.035128Z", - "shell.execute_reply": "2024-08-26T15:50:48.034646Z" + "iopub.execute_input": "2024-08-28T20:05:37.657657Z", + "iopub.status.busy": "2024-08-28T20:05:37.657343Z", + "iopub.status.idle": "2024-08-28T20:05:37.660539Z", + "shell.execute_reply": "2024-08-28T20:05:37.659974Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.037151Z", - "iopub.status.busy": "2024-08-26T15:50:48.036973Z", - "iopub.status.idle": "2024-08-26T15:50:48.045810Z", - "shell.execute_reply": "2024-08-26T15:50:48.045353Z" + "iopub.execute_input": "2024-08-28T20:05:37.662661Z", + "iopub.status.busy": "2024-08-28T20:05:37.662340Z", + "iopub.status.idle": "2024-08-28T20:05:37.671085Z", + "shell.execute_reply": "2024-08-28T20:05:37.670605Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.047758Z", - "iopub.status.busy": "2024-08-26T15:50:48.047575Z", - "iopub.status.idle": "2024-08-26T15:50:48.052278Z", - "shell.execute_reply": "2024-08-26T15:50:48.051846Z" + "iopub.execute_input": "2024-08-28T20:05:37.672976Z", + "iopub.status.busy": "2024-08-28T20:05:37.672802Z", + "iopub.status.idle": "2024-08-28T20:05:37.677762Z", + "shell.execute_reply": "2024-08-28T20:05:37.677207Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.054354Z", - "iopub.status.busy": "2024-08-26T15:50:48.054175Z", - "iopub.status.idle": "2024-08-26T15:50:48.243838Z", - "shell.execute_reply": "2024-08-26T15:50:48.243254Z" + "iopub.execute_input": "2024-08-28T20:05:37.680115Z", + "iopub.status.busy": "2024-08-28T20:05:37.679708Z", + "iopub.status.idle": "2024-08-28T20:05:37.862442Z", + "shell.execute_reply": "2024-08-28T20:05:37.861841Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.246370Z", - "iopub.status.busy": "2024-08-26T15:50:48.246155Z", - "iopub.status.idle": "2024-08-26T15:50:48.628139Z", - "shell.execute_reply": "2024-08-26T15:50:48.627575Z" + "iopub.execute_input": "2024-08-28T20:05:37.864821Z", + "iopub.status.busy": "2024-08-28T20:05:37.864635Z", + "iopub.status.idle": "2024-08-28T20:05:38.184572Z", + "shell.execute_reply": "2024-08-28T20:05:38.183947Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.630308Z", - "iopub.status.busy": "2024-08-26T15:50:48.630124Z", - "iopub.status.idle": "2024-08-26T15:50:48.653555Z", - "shell.execute_reply": "2024-08-26T15:50:48.653088Z" + "iopub.execute_input": "2024-08-28T20:05:38.186878Z", + "iopub.status.busy": "2024-08-28T20:05:38.186520Z", + "iopub.status.idle": "2024-08-28T20:05:38.209952Z", + "shell.execute_reply": "2024-08-28T20:05:38.209533Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.655882Z", - "iopub.status.busy": "2024-08-26T15:50:48.655545Z", - "iopub.status.idle": "2024-08-26T15:50:48.667061Z", - "shell.execute_reply": "2024-08-26T15:50:48.666493Z" + "iopub.execute_input": "2024-08-28T20:05:38.211811Z", + "iopub.status.busy": "2024-08-28T20:05:38.211645Z", + "iopub.status.idle": "2024-08-28T20:05:38.222471Z", + "shell.execute_reply": "2024-08-28T20:05:38.222037Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.669119Z", - "iopub.status.busy": "2024-08-26T15:50:48.668937Z", - "iopub.status.idle": "2024-08-26T15:50:50.829319Z", - "shell.execute_reply": "2024-08-26T15:50:50.828752Z" + "iopub.execute_input": "2024-08-28T20:05:38.224409Z", + "iopub.status.busy": "2024-08-28T20:05:38.224229Z", + "iopub.status.idle": "2024-08-28T20:05:40.269112Z", + "shell.execute_reply": "2024-08-28T20:05:40.268439Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.832149Z", - "iopub.status.busy": "2024-08-26T15:50:50.831554Z", - "iopub.status.idle": "2024-08-26T15:50:50.853263Z", - "shell.execute_reply": "2024-08-26T15:50:50.852788Z" + "iopub.execute_input": "2024-08-28T20:05:40.271824Z", + "iopub.status.busy": "2024-08-28T20:05:40.271308Z", + "iopub.status.idle": "2024-08-28T20:05:40.292590Z", + "shell.execute_reply": "2024-08-28T20:05:40.292006Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.855499Z", - "iopub.status.busy": "2024-08-26T15:50:50.855206Z", - "iopub.status.idle": "2024-08-26T15:50:50.874255Z", - "shell.execute_reply": "2024-08-26T15:50:50.873572Z" + "iopub.execute_input": "2024-08-28T20:05:40.294578Z", + "iopub.status.busy": "2024-08-28T20:05:40.294399Z", + "iopub.status.idle": "2024-08-28T20:05:40.312266Z", + "shell.execute_reply": "2024-08-28T20:05:40.311790Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.876984Z", - "iopub.status.busy": "2024-08-26T15:50:50.876416Z", - "iopub.status.idle": "2024-08-26T15:50:50.892786Z", - "shell.execute_reply": "2024-08-26T15:50:50.892171Z" + "iopub.execute_input": "2024-08-28T20:05:40.314197Z", + "iopub.status.busy": "2024-08-28T20:05:40.314023Z", + "iopub.status.idle": "2024-08-28T20:05:40.329503Z", + "shell.execute_reply": "2024-08-28T20:05:40.329045Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.895217Z", - "iopub.status.busy": "2024-08-26T15:50:50.894904Z", - "iopub.status.idle": "2024-08-26T15:50:50.915961Z", - "shell.execute_reply": "2024-08-26T15:50:50.915358Z" + "iopub.execute_input": "2024-08-28T20:05:40.331431Z", + "iopub.status.busy": "2024-08-28T20:05:40.331259Z", + "iopub.status.idle": "2024-08-28T20:05:40.350854Z", + "shell.execute_reply": "2024-08-28T20:05:40.350291Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a0fcac2588a422fba3081ddf39aab10", + "model_id": "34df9aef0ecd4945b451a551af41de6b", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.918422Z", - "iopub.status.busy": "2024-08-26T15:50:50.917938Z", - "iopub.status.idle": "2024-08-26T15:50:50.934851Z", - "shell.execute_reply": "2024-08-26T15:50:50.934287Z" + "iopub.execute_input": "2024-08-28T20:05:40.352880Z", + "iopub.status.busy": "2024-08-28T20:05:40.352543Z", + "iopub.status.idle": "2024-08-28T20:05:40.367195Z", + "shell.execute_reply": "2024-08-28T20:05:40.366735Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.937203Z", - "iopub.status.busy": "2024-08-26T15:50:50.936812Z", - "iopub.status.idle": "2024-08-26T15:50:50.943127Z", - "shell.execute_reply": "2024-08-26T15:50:50.942615Z" + "iopub.execute_input": "2024-08-28T20:05:40.369258Z", + "iopub.status.busy": "2024-08-28T20:05:40.368937Z", + "iopub.status.idle": "2024-08-28T20:05:40.374642Z", + "shell.execute_reply": "2024-08-28T20:05:40.374211Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.945161Z", - "iopub.status.busy": "2024-08-26T15:50:50.944876Z", - "iopub.status.idle": "2024-08-26T15:50:50.964913Z", - "shell.execute_reply": "2024-08-26T15:50:50.964314Z" + "iopub.execute_input": "2024-08-28T20:05:40.376757Z", + "iopub.status.busy": "2024-08-28T20:05:40.376346Z", + "iopub.status.idle": "2024-08-28T20:05:40.393605Z", + "shell.execute_reply": "2024-08-28T20:05:40.393044Z" } }, "outputs": [ @@ -1447,25 +1447,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0fbc3274882f4e1ab00900b5baf96792": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a9f272b6540497c8255408e9e0c16cd": { + "00efee4b4d7348a889158733349f8567": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1518,49 +1500,53 @@ "width": null } }, - "2090faef703f453ea12b54844ac2487c": { + "0560f0d298094ccf805bd3d33662ad0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2213b28bbb3448c9be811b95b59e3ac1", + "placeholder": "​", + "style": "IPY_MODEL_373d7bd8337f4aaab43da072c84c2723", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "25cb42634454435c857825e30407de4b": { + "086e652ce6c34492b7a6f82eed2edbcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2749ee847c1b433a9a8a55b6b1b5c92f", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2090faef703f453ea12b54844ac2487c", + "layout": "IPY_MODEL_4b2844ff3b5b430786d0ae8d87c26cf8", + "placeholder": "​", + "style": "IPY_MODEL_36991349a7404b5f87a56d544592e6f3", "tabbable": null, "tooltip": null, - "value": 132.0 + "value": " 132/132 [00:00<00:00, 13267.71 examples/s]" } }, - "2749ee847c1b433a9a8a55b6b1b5c92f": { + "2213b28bbb3448c9be811b95b59e3ac1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1613,30 +1599,31 @@ "width": null } }, - "5bda697ed8ea4cff9e89cecec1602956": { + "34df9aef0ecd4945b451a551af41de6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb7b48339cfb4cd1a33f74ed52abcd62", - "placeholder": "​", - "style": "IPY_MODEL_0fbc3274882f4e1ab00900b5baf96792", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0560f0d298094ccf805bd3d33662ad0a", + "IPY_MODEL_6c1242db8adf4951bacb7a18fa585f30", + "IPY_MODEL_086e652ce6c34492b7a6f82eed2edbcb" + ], + "layout": "IPY_MODEL_f64163f077814da08cf1b8ba7aece2f5", "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12755.69 examples/s]" + "tooltip": null } }, - "860f72d263bc4dabaff33056f935bcce": { + "36991349a7404b5f87a56d544592e6f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1654,31 +1641,25 @@ "text_color": null } }, - "8a0fcac2588a422fba3081ddf39aab10": { + "373d7bd8337f4aaab43da072c84c2723": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6242c94398a4c298ecb1539783eafa6", - "IPY_MODEL_25cb42634454435c857825e30407de4b", - "IPY_MODEL_5bda697ed8ea4cff9e89cecec1602956" - ], - "layout": "IPY_MODEL_1a9f272b6540497c8255408e9e0c16cd", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b342e197633741fab78ede822f68b80c": { + "4b2844ff3b5b430786d0ae8d87c26cf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1731,7 +1712,49 @@ "width": null } }, - "bb7b48339cfb4cd1a33f74ed52abcd62": { + "6c1242db8adf4951bacb7a18fa585f30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_00efee4b4d7348a889158733349f8567", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_870ba0165d88489aa61d4ac94139f8c9", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "870ba0165d88489aa61d4ac94139f8c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f64163f077814da08cf1b8ba7aece2f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,29 +1806,6 @@ "visibility": null, "width": null } - }, - "e6242c94398a4c298ecb1539783eafa6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b342e197633741fab78ede822f68b80c", - "placeholder": "​", - "style": "IPY_MODEL_860f72d263bc4dabaff33056f935bcce", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 62eda8c4b..99a008a84 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:53.944782Z", - "iopub.status.busy": "2024-08-26T15:50:53.944606Z", - "iopub.status.idle": "2024-08-26T15:50:55.174967Z", - "shell.execute_reply": "2024-08-26T15:50:55.174365Z" + "iopub.execute_input": "2024-08-28T20:05:43.219554Z", + "iopub.status.busy": "2024-08-28T20:05:43.219357Z", + "iopub.status.idle": "2024-08-28T20:05:44.416847Z", + "shell.execute_reply": "2024-08-28T20:05:44.416232Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.177365Z", - "iopub.status.busy": "2024-08-26T15:50:55.177084Z", - "iopub.status.idle": "2024-08-26T15:50:55.180269Z", - "shell.execute_reply": "2024-08-26T15:50:55.179800Z" + "iopub.execute_input": "2024-08-28T20:05:44.419477Z", + "iopub.status.busy": "2024-08-28T20:05:44.419041Z", + "iopub.status.idle": "2024-08-28T20:05:44.421927Z", + "shell.execute_reply": "2024-08-28T20:05:44.421481Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.182571Z", - "iopub.status.busy": "2024-08-26T15:50:55.182224Z", - "iopub.status.idle": "2024-08-26T15:50:55.191419Z", - "shell.execute_reply": "2024-08-26T15:50:55.190958Z" + "iopub.execute_input": "2024-08-28T20:05:44.424025Z", + "iopub.status.busy": "2024-08-28T20:05:44.423849Z", + "iopub.status.idle": "2024-08-28T20:05:44.432868Z", + "shell.execute_reply": "2024-08-28T20:05:44.432414Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.193302Z", - "iopub.status.busy": "2024-08-26T15:50:55.193122Z", - "iopub.status.idle": "2024-08-26T15:50:55.197961Z", - "shell.execute_reply": "2024-08-26T15:50:55.197543Z" + "iopub.execute_input": "2024-08-28T20:05:44.434733Z", + "iopub.status.busy": "2024-08-28T20:05:44.434560Z", + "iopub.status.idle": "2024-08-28T20:05:44.439727Z", + "shell.execute_reply": "2024-08-28T20:05:44.439254Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.200199Z", - "iopub.status.busy": "2024-08-26T15:50:55.199891Z", - "iopub.status.idle": "2024-08-26T15:50:55.384777Z", - "shell.execute_reply": "2024-08-26T15:50:55.384123Z" + "iopub.execute_input": "2024-08-28T20:05:44.441650Z", + "iopub.status.busy": "2024-08-28T20:05:44.441479Z", + "iopub.status.idle": "2024-08-28T20:05:44.625325Z", + "shell.execute_reply": "2024-08-28T20:05:44.624836Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.387364Z", - "iopub.status.busy": "2024-08-26T15:50:55.387029Z", - "iopub.status.idle": "2024-08-26T15:50:55.715156Z", - "shell.execute_reply": "2024-08-26T15:50:55.714550Z" + "iopub.execute_input": "2024-08-28T20:05:44.627855Z", + "iopub.status.busy": "2024-08-28T20:05:44.627427Z", + "iopub.status.idle": "2024-08-28T20:05:44.999672Z", + "shell.execute_reply": "2024-08-28T20:05:44.999070Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.717463Z", - "iopub.status.busy": "2024-08-26T15:50:55.717038Z", - "iopub.status.idle": "2024-08-26T15:50:55.719902Z", - "shell.execute_reply": "2024-08-26T15:50:55.719448Z" + "iopub.execute_input": "2024-08-28T20:05:45.001992Z", + "iopub.status.busy": "2024-08-28T20:05:45.001631Z", + "iopub.status.idle": "2024-08-28T20:05:45.004779Z", + "shell.execute_reply": "2024-08-28T20:05:45.004349Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.722134Z", - "iopub.status.busy": "2024-08-26T15:50:55.721733Z", - "iopub.status.idle": "2024-08-26T15:50:55.756057Z", - "shell.execute_reply": "2024-08-26T15:50:55.755459Z" + "iopub.execute_input": "2024-08-28T20:05:45.006834Z", + "iopub.status.busy": "2024-08-28T20:05:45.006496Z", + "iopub.status.idle": "2024-08-28T20:05:45.040757Z", + "shell.execute_reply": "2024-08-28T20:05:45.040314Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.758161Z", - "iopub.status.busy": "2024-08-26T15:50:55.757979Z", - "iopub.status.idle": "2024-08-26T15:50:57.877733Z", - "shell.execute_reply": "2024-08-26T15:50:57.877147Z" + "iopub.execute_input": "2024-08-28T20:05:45.042781Z", + "iopub.status.busy": "2024-08-28T20:05:45.042501Z", + "iopub.status.idle": "2024-08-28T20:05:47.113967Z", + "shell.execute_reply": "2024-08-28T20:05:47.113282Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.880170Z", - "iopub.status.busy": "2024-08-26T15:50:57.879797Z", - "iopub.status.idle": "2024-08-26T15:50:57.899274Z", - "shell.execute_reply": "2024-08-26T15:50:57.898677Z" + "iopub.execute_input": "2024-08-28T20:05:47.116833Z", + "iopub.status.busy": "2024-08-28T20:05:47.116460Z", + "iopub.status.idle": "2024-08-28T20:05:47.135940Z", + "shell.execute_reply": "2024-08-28T20:05:47.135322Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.901387Z", - "iopub.status.busy": "2024-08-26T15:50:57.901205Z", - "iopub.status.idle": "2024-08-26T15:50:57.908053Z", - "shell.execute_reply": "2024-08-26T15:50:57.907487Z" + "iopub.execute_input": "2024-08-28T20:05:47.138349Z", + "iopub.status.busy": "2024-08-28T20:05:47.137886Z", + "iopub.status.idle": "2024-08-28T20:05:47.145532Z", + "shell.execute_reply": "2024-08-28T20:05:47.145018Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.910026Z", - "iopub.status.busy": "2024-08-26T15:50:57.909848Z", - "iopub.status.idle": "2024-08-26T15:50:57.915624Z", - "shell.execute_reply": "2024-08-26T15:50:57.915128Z" + "iopub.execute_input": "2024-08-28T20:05:47.147884Z", + "iopub.status.busy": "2024-08-28T20:05:47.147515Z", + "iopub.status.idle": "2024-08-28T20:05:47.154128Z", + "shell.execute_reply": "2024-08-28T20:05:47.153590Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.917481Z", - "iopub.status.busy": "2024-08-26T15:50:57.917305Z", - "iopub.status.idle": "2024-08-26T15:50:57.927610Z", - "shell.execute_reply": "2024-08-26T15:50:57.927139Z" + "iopub.execute_input": "2024-08-28T20:05:47.156508Z", + "iopub.status.busy": "2024-08-28T20:05:47.156154Z", + "iopub.status.idle": "2024-08-28T20:05:47.168343Z", + "shell.execute_reply": "2024-08-28T20:05:47.167805Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.929617Z", - "iopub.status.busy": "2024-08-26T15:50:57.929267Z", - "iopub.status.idle": "2024-08-26T15:50:57.937885Z", - "shell.execute_reply": "2024-08-26T15:50:57.937431Z" + "iopub.execute_input": "2024-08-28T20:05:47.170664Z", + "iopub.status.busy": "2024-08-28T20:05:47.170264Z", + "iopub.status.idle": "2024-08-28T20:05:47.179413Z", + "shell.execute_reply": "2024-08-28T20:05:47.178834Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.939923Z", - "iopub.status.busy": "2024-08-26T15:50:57.939645Z", - "iopub.status.idle": "2024-08-26T15:50:57.946549Z", - "shell.execute_reply": "2024-08-26T15:50:57.945987Z" + "iopub.execute_input": "2024-08-28T20:05:47.181698Z", + "iopub.status.busy": "2024-08-28T20:05:47.181523Z", + "iopub.status.idle": "2024-08-28T20:05:47.188708Z", + "shell.execute_reply": "2024-08-28T20:05:47.188252Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.948699Z", - "iopub.status.busy": "2024-08-26T15:50:57.948267Z", - "iopub.status.idle": "2024-08-26T15:50:57.957635Z", - "shell.execute_reply": "2024-08-26T15:50:57.957073Z" + "iopub.execute_input": "2024-08-28T20:05:47.190540Z", + "iopub.status.busy": "2024-08-28T20:05:47.190369Z", + "iopub.status.idle": "2024-08-28T20:05:47.199875Z", + "shell.execute_reply": "2024-08-28T20:05:47.199394Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.959729Z", - "iopub.status.busy": "2024-08-26T15:50:57.959409Z", - "iopub.status.idle": "2024-08-26T15:50:57.976522Z", - "shell.execute_reply": "2024-08-26T15:50:57.975936Z" + "iopub.execute_input": "2024-08-28T20:05:47.201860Z", + "iopub.status.busy": "2024-08-28T20:05:47.201534Z", + "iopub.status.idle": "2024-08-28T20:05:47.217622Z", + "shell.execute_reply": "2024-08-28T20:05:47.217018Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index f0bfcffa1..d0e0da8b4 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:00.744803Z", - "iopub.status.busy": "2024-08-26T15:51:00.744624Z", - "iopub.status.idle": "2024-08-26T15:51:03.845244Z", - "shell.execute_reply": "2024-08-26T15:51:03.844700Z" + "iopub.execute_input": "2024-08-28T20:05:49.952557Z", + "iopub.status.busy": "2024-08-28T20:05:49.952376Z", + "iopub.status.idle": "2024-08-28T20:05:52.913551Z", + "shell.execute_reply": "2024-08-28T20:05:52.912996Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:03.848152Z", - "iopub.status.busy": "2024-08-26T15:51:03.847533Z", - "iopub.status.idle": "2024-08-26T15:51:03.851305Z", - "shell.execute_reply": "2024-08-26T15:51:03.850759Z" + "iopub.execute_input": "2024-08-28T20:05:52.916168Z", + "iopub.status.busy": "2024-08-28T20:05:52.915701Z", + "iopub.status.idle": "2024-08-28T20:05:52.919157Z", + "shell.execute_reply": "2024-08-28T20:05:52.918704Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:03.853335Z", - "iopub.status.busy": "2024-08-26T15:51:03.852994Z", - "iopub.status.idle": "2024-08-26T15:51:08.474960Z", - "shell.execute_reply": "2024-08-26T15:51:08.474414Z" + "iopub.execute_input": "2024-08-28T20:05:52.921163Z", + "iopub.status.busy": "2024-08-28T20:05:52.920824Z", + "iopub.status.idle": "2024-08-28T20:05:56.015707Z", + "shell.execute_reply": "2024-08-28T20:05:56.015125Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0a1880c6c97d4a3aaf7b2288cedea42f", + "model_id": "f546543a4b994e7c947e3ddab9ef35fd", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "715deece975742d5bc13cc8043611355", + "model_id": "f90499b00cc0489c9b7f21169ba0b4bd", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb685ca1a8e74f4abfc418ee4df7cdae", + "model_id": "99d28f10e86b47028f586cf991c46491", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8048b30a8d20480286136da950c4ae4f", + "model_id": "9ae89310be0a4a419eb65241c7fa071c", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7df5d87a698348adaf910bad51eb5257", + "model_id": "312c9d3a255542eeb5612377fe2e80e5", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:08.477550Z", - "iopub.status.busy": "2024-08-26T15:51:08.477034Z", - "iopub.status.idle": "2024-08-26T15:51:08.481367Z", - "shell.execute_reply": "2024-08-26T15:51:08.480829Z" + "iopub.execute_input": "2024-08-28T20:05:56.017899Z", + "iopub.status.busy": "2024-08-28T20:05:56.017550Z", + "iopub.status.idle": "2024-08-28T20:05:56.021621Z", + "shell.execute_reply": "2024-08-28T20:05:56.021033Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:08.483413Z", - "iopub.status.busy": "2024-08-26T15:51:08.483096Z", - "iopub.status.idle": "2024-08-26T15:51:20.137696Z", - "shell.execute_reply": "2024-08-26T15:51:20.137155Z" + "iopub.execute_input": "2024-08-28T20:05:56.025632Z", + "iopub.status.busy": "2024-08-28T20:05:56.025453Z", + "iopub.status.idle": "2024-08-28T20:06:07.494091Z", + "shell.execute_reply": "2024-08-28T20:06:07.493435Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa732b0a4d7a4e5a9c11bdac5ddcd235", + "model_id": "d19a5e1c9c5f401fb90b639fdd9f1b70", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:20.140400Z", - "iopub.status.busy": "2024-08-26T15:51:20.140038Z", - "iopub.status.idle": "2024-08-26T15:51:38.738674Z", - "shell.execute_reply": "2024-08-26T15:51:38.738041Z" + "iopub.execute_input": "2024-08-28T20:06:07.496801Z", + "iopub.status.busy": "2024-08-28T20:06:07.496550Z", + "iopub.status.idle": "2024-08-28T20:06:26.292236Z", + "shell.execute_reply": "2024-08-28T20:06:26.291676Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:38.741444Z", - "iopub.status.busy": "2024-08-26T15:51:38.741090Z", - "iopub.status.idle": "2024-08-26T15:51:38.746146Z", - "shell.execute_reply": "2024-08-26T15:51:38.745664Z" + "iopub.execute_input": "2024-08-28T20:06:26.294942Z", + "iopub.status.busy": "2024-08-28T20:06:26.294610Z", + "iopub.status.idle": "2024-08-28T20:06:26.299510Z", + "shell.execute_reply": "2024-08-28T20:06:26.298928Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:38.748037Z", - "iopub.status.busy": "2024-08-26T15:51:38.747855Z", - "iopub.status.idle": "2024-08-26T15:51:38.752327Z", - "shell.execute_reply": "2024-08-26T15:51:38.751914Z" + "iopub.execute_input": "2024-08-28T20:06:26.301409Z", + "iopub.status.busy": "2024-08-28T20:06:26.301217Z", + "iopub.status.idle": "2024-08-28T20:06:26.305122Z", + "shell.execute_reply": "2024-08-28T20:06:26.304711Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:38.754457Z", - "iopub.status.busy": "2024-08-26T15:51:38.754044Z", - "iopub.status.idle": "2024-08-26T15:51:38.763027Z", - "shell.execute_reply": "2024-08-26T15:51:38.762462Z" + "iopub.execute_input": "2024-08-28T20:06:26.307165Z", + "iopub.status.busy": "2024-08-28T20:06:26.306830Z", + "iopub.status.idle": "2024-08-28T20:06:26.315659Z", + "shell.execute_reply": "2024-08-28T20:06:26.315197Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:38.765123Z", - "iopub.status.busy": "2024-08-26T15:51:38.764781Z", - "iopub.status.idle": "2024-08-26T15:51:38.792778Z", - "shell.execute_reply": "2024-08-26T15:51:38.792296Z" + "iopub.execute_input": "2024-08-28T20:06:26.317785Z", + "iopub.status.busy": "2024-08-28T20:06:26.317464Z", + "iopub.status.idle": "2024-08-28T20:06:26.343892Z", + "shell.execute_reply": "2024-08-28T20:06:26.343385Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:38.795125Z", - "iopub.status.busy": "2024-08-26T15:51:38.794779Z", - "iopub.status.idle": "2024-08-26T15:52:13.480656Z", - "shell.execute_reply": "2024-08-26T15:52:13.480000Z" + "iopub.execute_input": "2024-08-28T20:06:26.346604Z", + "iopub.status.busy": "2024-08-28T20:06:26.346136Z", + "iopub.status.idle": "2024-08-28T20:06:59.760174Z", + "shell.execute_reply": "2024-08-28T20:06:59.759497Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.144\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.860\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.930\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.838\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9912ba2f2c141a4892444b6f34c10b6", + "model_id": "fdd6e77412c0421895c9c80c62ddea3a", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb3ac7f719da4343b1f45e07f09a75f2", + "model_id": "3d9428483348434099ee2254355991f7", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.995\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.827\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.984\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.861\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5dd4ac73beaa4c909b6d006c9b6b289f", + "model_id": "b4496a7f2cc94ab5a8bbabdb97cae403", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ab03cadc8a244250837477471abfd52f", + "model_id": "c8df1d76b2a243d0aed92777fe211a4c", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.056\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.896\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.832\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.601\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "61ca028bd561486caf5fa42305aa6d4d", + "model_id": "b2b42c0463e442998e7b13eec51680b0", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc98e96da8e046238dce1b399f558f99", + "model_id": "76382007e18a47aca7267c9a5b04aace", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:52:13.483198Z", - "iopub.status.busy": "2024-08-26T15:52:13.482845Z", - "iopub.status.idle": "2024-08-26T15:52:13.500620Z", - "shell.execute_reply": "2024-08-26T15:52:13.500140Z" + "iopub.execute_input": "2024-08-28T20:06:59.762672Z", + "iopub.status.busy": "2024-08-28T20:06:59.762428Z", + "iopub.status.idle": "2024-08-28T20:06:59.778917Z", + "shell.execute_reply": "2024-08-28T20:06:59.778380Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:52:13.503031Z", - "iopub.status.busy": "2024-08-26T15:52:13.502645Z", - "iopub.status.idle": "2024-08-26T15:52:14.010871Z", - "shell.execute_reply": "2024-08-26T15:52:14.010336Z" + "iopub.execute_input": "2024-08-28T20:06:59.781644Z", + "iopub.status.busy": "2024-08-28T20:06:59.781238Z", + "iopub.status.idle": "2024-08-28T20:07:00.232620Z", + "shell.execute_reply": "2024-08-28T20:07:00.231966Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:52:14.013522Z", - "iopub.status.busy": "2024-08-26T15:52:14.013146Z", - "iopub.status.idle": "2024-08-26T15:54:07.250429Z", - "shell.execute_reply": "2024-08-26T15:54:07.249850Z" + "iopub.execute_input": "2024-08-28T20:07:00.235053Z", + "iopub.status.busy": "2024-08-28T20:07:00.234870Z", + "iopub.status.idle": "2024-08-28T20:08:50.130089Z", + "shell.execute_reply": "2024-08-28T20:08:50.129424Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a0e6ab9c19e34b8e9bbe62ee43bd8c35", + "model_id": "dccb84fb19484d4980a7659b3d7a2270", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:07.253184Z", - "iopub.status.busy": "2024-08-26T15:54:07.252602Z", - "iopub.status.idle": "2024-08-26T15:54:07.719555Z", - "shell.execute_reply": "2024-08-26T15:54:07.718967Z" + "iopub.execute_input": "2024-08-28T20:08:50.132488Z", + "iopub.status.busy": "2024-08-28T20:08:50.132077Z", + "iopub.status.idle": "2024-08-28T20:08:50.588895Z", + "shell.execute_reply": "2024-08-28T20:08:50.588329Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:07.722577Z", - "iopub.status.busy": "2024-08-26T15:54:07.722057Z", - "iopub.status.idle": "2024-08-26T15:54:07.785260Z", - "shell.execute_reply": "2024-08-26T15:54:07.784657Z" + "iopub.execute_input": "2024-08-28T20:08:50.591803Z", + "iopub.status.busy": "2024-08-28T20:08:50.591296Z", + "iopub.status.idle": "2024-08-28T20:08:50.653079Z", + "shell.execute_reply": "2024-08-28T20:08:50.652532Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:07.787526Z", - "iopub.status.busy": "2024-08-26T15:54:07.787195Z", - "iopub.status.idle": "2024-08-26T15:54:07.796216Z", - "shell.execute_reply": "2024-08-26T15:54:07.795642Z" + "iopub.execute_input": "2024-08-28T20:08:50.655358Z", + "iopub.status.busy": "2024-08-28T20:08:50.654879Z", + "iopub.status.idle": "2024-08-28T20:08:50.663334Z", + "shell.execute_reply": "2024-08-28T20:08:50.662785Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:07.798529Z", - "iopub.status.busy": "2024-08-26T15:54:07.798045Z", - "iopub.status.idle": "2024-08-26T15:54:07.803020Z", - "shell.execute_reply": "2024-08-26T15:54:07.802450Z" + "iopub.execute_input": "2024-08-28T20:08:50.665441Z", + "iopub.status.busy": "2024-08-28T20:08:50.665110Z", + "iopub.status.idle": "2024-08-28T20:08:50.669671Z", + "shell.execute_reply": "2024-08-28T20:08:50.669241Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:07.805248Z", - "iopub.status.busy": "2024-08-26T15:54:07.804838Z", - "iopub.status.idle": "2024-08-26T15:54:08.312703Z", - "shell.execute_reply": "2024-08-26T15:54:08.312105Z" + "iopub.execute_input": "2024-08-28T20:08:50.671831Z", + "iopub.status.busy": "2024-08-28T20:08:50.671393Z", + "iopub.status.idle": "2024-08-28T20:08:51.188589Z", + "shell.execute_reply": "2024-08-28T20:08:51.187994Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.314908Z", - "iopub.status.busy": "2024-08-26T15:54:08.314592Z", - "iopub.status.idle": "2024-08-26T15:54:08.323272Z", - "shell.execute_reply": "2024-08-26T15:54:08.322796Z" + "iopub.execute_input": "2024-08-28T20:08:51.191039Z", + "iopub.status.busy": "2024-08-28T20:08:51.190697Z", + "iopub.status.idle": "2024-08-28T20:08:51.199671Z", + "shell.execute_reply": "2024-08-28T20:08:51.199225Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.325488Z", - "iopub.status.busy": "2024-08-26T15:54:08.325205Z", - "iopub.status.idle": "2024-08-26T15:54:08.332689Z", - "shell.execute_reply": "2024-08-26T15:54:08.332246Z" + "iopub.execute_input": "2024-08-28T20:08:51.201761Z", + "iopub.status.busy": "2024-08-28T20:08:51.201422Z", + "iopub.status.idle": "2024-08-28T20:08:51.208678Z", + "shell.execute_reply": "2024-08-28T20:08:51.208209Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.334682Z", - "iopub.status.busy": "2024-08-26T15:54:08.334394Z", - "iopub.status.idle": "2024-08-26T15:54:08.782788Z", - "shell.execute_reply": "2024-08-26T15:54:08.782140Z" + "iopub.execute_input": "2024-08-28T20:08:51.210704Z", + "iopub.status.busy": "2024-08-28T20:08:51.210270Z", + "iopub.status.idle": "2024-08-28T20:08:51.675293Z", + "shell.execute_reply": "2024-08-28T20:08:51.674673Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.785283Z", - "iopub.status.busy": "2024-08-26T15:54:08.784891Z", - "iopub.status.idle": "2024-08-26T15:54:08.801932Z", - "shell.execute_reply": "2024-08-26T15:54:08.801440Z" + "iopub.execute_input": "2024-08-28T20:08:51.677742Z", + "iopub.status.busy": "2024-08-28T20:08:51.677384Z", + "iopub.status.idle": "2024-08-28T20:08:51.692423Z", + "shell.execute_reply": "2024-08-28T20:08:51.691931Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.804200Z", - "iopub.status.busy": "2024-08-26T15:54:08.803833Z", - "iopub.status.idle": "2024-08-26T15:54:08.809515Z", - "shell.execute_reply": "2024-08-26T15:54:08.809060Z" + "iopub.execute_input": "2024-08-28T20:08:51.694612Z", + "iopub.status.busy": "2024-08-28T20:08:51.694248Z", + "iopub.status.idle": "2024-08-28T20:08:51.699790Z", + "shell.execute_reply": "2024-08-28T20:08:51.699316Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.811613Z", - "iopub.status.busy": "2024-08-26T15:54:08.811269Z", - "iopub.status.idle": "2024-08-26T15:54:09.613371Z", - "shell.execute_reply": "2024-08-26T15:54:09.612813Z" + "iopub.execute_input": "2024-08-28T20:08:51.701702Z", + "iopub.status.busy": "2024-08-28T20:08:51.701368Z", + "iopub.status.idle": "2024-08-28T20:08:52.457783Z", + "shell.execute_reply": "2024-08-28T20:08:52.456648Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:09.616020Z", - "iopub.status.busy": "2024-08-26T15:54:09.615813Z", - "iopub.status.idle": "2024-08-26T15:54:09.626482Z", - "shell.execute_reply": "2024-08-26T15:54:09.625935Z" + "iopub.execute_input": "2024-08-28T20:08:52.460388Z", + "iopub.status.busy": "2024-08-28T20:08:52.460188Z", + "iopub.status.idle": "2024-08-28T20:08:52.469503Z", + "shell.execute_reply": "2024-08-28T20:08:52.468963Z" } }, "outputs": [ @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:09.629113Z", - "iopub.status.busy": "2024-08-26T15:54:09.628913Z", - "iopub.status.idle": "2024-08-26T15:54:09.635120Z", - "shell.execute_reply": "2024-08-26T15:54:09.634478Z" + "iopub.execute_input": "2024-08-28T20:08:52.472001Z", + "iopub.status.busy": "2024-08-28T20:08:52.471804Z", + "iopub.status.idle": "2024-08-28T20:08:52.478834Z", + "shell.execute_reply": "2024-08-28T20:08:52.478259Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:09.637662Z", - "iopub.status.busy": "2024-08-26T15:54:09.637461Z", - "iopub.status.idle": "2024-08-26T15:54:09.843225Z", - "shell.execute_reply": "2024-08-26T15:54:09.842531Z" + "iopub.execute_input": "2024-08-28T20:08:52.481125Z", + "iopub.status.busy": "2024-08-28T20:08:52.480932Z", + "iopub.status.idle": "2024-08-28T20:08:52.682208Z", + "shell.execute_reply": "2024-08-28T20:08:52.681649Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:09.845518Z", - "iopub.status.busy": "2024-08-26T15:54:09.845321Z", - "iopub.status.idle": "2024-08-26T15:54:09.853898Z", - "shell.execute_reply": "2024-08-26T15:54:09.853405Z" + "iopub.execute_input": "2024-08-28T20:08:52.684555Z", + "iopub.status.busy": "2024-08-28T20:08:52.684214Z", + "iopub.status.idle": "2024-08-28T20:08:52.692117Z", + "shell.execute_reply": "2024-08-28T20:08:52.691667Z" } }, "outputs": [ @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:09.856128Z", - "iopub.status.busy": "2024-08-26T15:54:09.855760Z", - "iopub.status.idle": "2024-08-26T15:54:10.056021Z", - "shell.execute_reply": "2024-08-26T15:54:10.055436Z" + "iopub.execute_input": "2024-08-28T20:08:52.694160Z", + "iopub.status.busy": "2024-08-28T20:08:52.693822Z", + "iopub.status.idle": "2024-08-28T20:08:52.887977Z", + "shell.execute_reply": "2024-08-28T20:08:52.887412Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:10.058407Z", - "iopub.status.busy": "2024-08-26T15:54:10.057978Z", - "iopub.status.idle": "2024-08-26T15:54:10.062876Z", - "shell.execute_reply": "2024-08-26T15:54:10.062286Z" + "iopub.execute_input": "2024-08-28T20:08:52.890283Z", + "iopub.status.busy": "2024-08-28T20:08:52.889945Z", + "iopub.status.idle": "2024-08-28T20:08:52.894412Z", + "shell.execute_reply": "2024-08-28T20:08:52.893975Z" }, "nbsphinx": "hidden" }, @@ -2555,7 +2555,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00e20cac09fa43938aab5eb1c857b06b": { + "0479111a5d804c6880145a46ec56cb0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2608,83 +2608,25 @@ "width": null } }, - "010dc830be824dceafc6f722bb3b1486": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "04a4622eebaa4c72abf4e42992b7bc3e": { + "09c8a33d5a37436aaf80890e2dbdbd2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_010dc830be824dceafc6f722bb3b1486", - "placeholder": "​", - "style": "IPY_MODEL_63397a47d992477aa92ce4d5947bafe4", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "06c30632deaa41b0b7d2ef2bd39e00dc": { + "0a5c08c87fd74370a40f9df2784c31cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2699,39 +2641,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c1c1d785f09148e88cc07abc9a79d399", + "layout": "IPY_MODEL_9454a9f21f3c4cdbb2eb61e8efb6f21b", "placeholder": "​", - "style": "IPY_MODEL_eecae1184b8b4bcd9ec5d73df5c74db8", + "style": "IPY_MODEL_d1f9454550954236a684ac26e799e32a", "tabbable": null, "tooltip": null, "value": "100%" } }, - "0a1880c6c97d4a3aaf7b2288cedea42f": { + "0acfb7df45a94895b660e99678f38ab9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0e187037d3fd4277ad83ed550c26d42d", - "IPY_MODEL_86d4ac36f45b4dc4aafe3fddfa21728c", - "IPY_MODEL_ee16116dbbae4246a4933981a1e3806b" - ], - "layout": "IPY_MODEL_50191cea4e5948a0a8d8cff6556b9052", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0cb7926f64ca4262a1d8e8a49dd0d6d3": { + "0b6b0041576b42348ad60c246694ed48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2784,7 +2718,7 @@ "width": null } }, - "0dff836f9df24429807dadf54be9a70a": { + "0bf27f023e574370a39306b2c3418332": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2837,7 +2771,7 @@ "width": null } }, - "0e0ea832bcf44e08af9f72ccaf14856d": { + "0e64e21c42624612ab3f8a532e796075": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2890,7 +2824,25 @@ "width": null } }, - "0e187037d3fd4277ad83ed550c26d42d": { + "1115843994674897843ad092eeab2fa8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1125671cbbb1426b9fc96cd2b0ed9c4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2905,15 +2857,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d2d22c2514a54fcb9f9f90e9a4e24714", + "layout": "IPY_MODEL_7596686691ac4d5b8d2b9a5a14eaa72c", "placeholder": "​", - "style": "IPY_MODEL_c5b087dedb3b4a81b16234b32f0ad104", + "style": "IPY_MODEL_ef8e379e77eb41a1b387d30a2523a889", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": "Generating test split: 100%" } }, - "0e674f7d5aaf4ceb80159d02d496e19e": { + "14e275ef5cc646cc84b0bbbf516f0c2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2966,25 +2918,7 @@ "width": null } }, - "112e5f2e2a784cba837314af017d0914": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1160fc45ea02442ebc3edd8f098d88ad": { + "1d337557f091475698f66056b81ca3b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3037,7 +2971,7 @@ "width": null } }, - "1749f9df3cef4d239a6382150390e397": { + "1d88ef5e245a4f9fa762fcd65a016d2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3090,7 +3024,7 @@ "width": null } }, - "1c9a54ddf74b443e89e4eaf4f51c38c8": { + "20e290f5112c43a8b482d6463f47f3b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3143,7 +3077,7 @@ "width": null } }, - "1ce743abad7c4285b5459c8f9a83727f": { + "219c7da2fbf24297bb4de9f2d771db03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3196,23 +3130,48 @@ "width": null } }, - "1ebda1f8d81d496d83330d03e329452f": { + "254364431d4949dc96d01bcc0deb6b9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef3572a1a6c34bd0a4f31259c8f1cfe7", + "placeholder": "​", + "style": "IPY_MODEL_56ac8091ed3641fa829a79124b46eaad", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "26681fd30ba84b94b17d47d8bcbad73f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1f19654c731349b586439bffb6b50667": { + "29f85ef43a4f46ceb22293713c3f0ac8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3265,7 +3224,7 @@ "width": null } }, - "20586be37d7340fab39d12a261037368": { + "2b4f41cafdf3495dacbdd9b5dfbaf939": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3318,7 +3277,95 @@ "width": null } }, - "2154009565de4b2d836aa460d81a343d": { + "2e7759f994a045b1abb1319ea20498ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "312c9d3a255542eeb5612377fe2e80e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1125671cbbb1426b9fc96cd2b0ed9c4d", + "IPY_MODEL_85f859769fca4e72bb11b80054d8d0b6", + "IPY_MODEL_8ae92d8f86804827a70d65e54d98ae77" + ], + "layout": "IPY_MODEL_f91049c8fe9848ccb88784d036c3aab3", + "tabbable": null, + "tooltip": null + } + }, + "34f5d94baac84b1398d48e84b152e55b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f36d712d6ed74e5b9a86a346ca936135", + "placeholder": "​", + "style": "IPY_MODEL_81db87069c784a348ff7dba107c76ff5", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.29it/s]" + } + }, + "36050e8d2e9e44a3a4ed1600bdd36831": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d14567421ad4ef5b7e8164ca757b5e6", + "placeholder": "​", + "style": "IPY_MODEL_52e0af193e924794884f753e1600bb23", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.41it/s]" + } + }, + "371aac79893049bfaf6444a35b41bab0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3371,30 +3418,134 @@ "width": null } }, - "2478e088e18843408c6b0eb7b8546aeb": { + "37e39b6de36c4357b0d6983fbe95a3e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39a2fe7572d8412db26d8007616ea5ed", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_77cc6a8c7e7b4bb7942c7cfef39c1df1", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "24cc3a6c8edd440da9947ad5599bad6e": { - "model_module": "@jupyter-widgets/base", + "38c3a08721ce45238e373d9a72ca9d4c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63c943ca68c8450d990c31b1e0ef9499", + "placeholder": "​", + "style": "IPY_MODEL_56095b38293544ee9f90fd6ee45b8a94", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.94it/s]" + } + }, + "393565c9efe7468987a446b4158c152c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "39a2fe7572d8412db26d8007616ea5ed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d14567421ad4ef5b7e8164ca757b5e6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3440,30 +3591,31 @@ "width": null } }, - "28b0e5e799994ca8809bbb96b5c3df2a": { + "3d9428483348434099ee2254355991f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6e351618590464cad5b6b2888b5855b", - "placeholder": "​", - "style": "IPY_MODEL_f70935fc022f4ec9952399ffa883f8c2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c13bcf0a616e4cc9be2abb900464ebfe", + "IPY_MODEL_a2ecd98489b446bf8439f3bae62184e2", + "IPY_MODEL_38c3a08721ce45238e373d9a72ca9d4c" + ], + "layout": "IPY_MODEL_d4e950ea713443a8b6b8b2188ad2c990", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.54it/s]" + "tooltip": null } }, - "2918809b0c4a48c9a96a0722b9044737": { + "3f6adcfb510b44d087c66406feb108c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3479,17 +3631,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a51da1996471487ea2f6abd6bb0cacba", - "max": 40.0, + "layout": "IPY_MODEL_8da89fbb23314b139d116450a90c0d97", + "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_db4f470c9b9843f5b80bdf4dacc8d78e", + "style": "IPY_MODEL_7857e0add219426cb43f38afbbd5ece7", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 5175617.0 + } + }, + "42b5c22246144f3593050fddee5e8cfe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2d444e1e91f34b079a2ca7323b81419e": { + "45b7fce55d75478eab9caed84e758404": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3507,7 +3677,7 @@ "text_color": null } }, - "2d593f06e2744a139b86109333ac680e": { + "48458f9623b5421e9560f6410eae765b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3560,33 +3730,23 @@ "width": null } }, - "2dbbafaa6de24d2c8097777c0ce0cedd": { + "491162ff91a84d92a9d7ab33304f065e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9f6288367f9d417aaffa47df9969c4f0", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_42bb64a8a45f4caf86579067ce2bed00", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "30f188af82bb4a89acd46b04b749efb4": { + "4aa5bfc0d0a040a492c8c44b45a4f002": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3639,7 +3799,46 @@ "width": null } }, - "31f776ccde32438c982b8c5eb8aa8f51": { + "4b1f7637d5b642559b4d50d332910e95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4bb82979c2ae4a408eed104709b23300": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d09c14fbd33f48fab5b2c188e4371d96", + "placeholder": "​", + "style": "IPY_MODEL_8c9f4be772024182a41b2af3218da1f1", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 292559.50 examples/s]" + } + }, + "4df4a26413bf48918382798dd1919c57": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3692,7 +3891,69 @@ "width": null } }, - "38eb0ac1298f486f95a21f978928b66e": { + "4e1d2eae5b6d4f79a4c1bba714e65cbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_371aac79893049bfaf6444a35b41bab0", + "placeholder": "​", + "style": "IPY_MODEL_393565c9efe7468987a446b4158c152c", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 59.9MB/s]" + } + }, + "4eae78723d464e59830f20282cdee04d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8e0c482350e4e46a32bbde1c9e980e6", + "placeholder": "​", + "style": "IPY_MODEL_90ab45d128604edba94a54957bc3e270", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "4f8f4f49ca8c46bb84a15dfb7bcd172d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "505d77230204473499ad7008892a79f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3745,7 +4006,7 @@ "width": null } }, - "3d101be52ce14aadb4856964662938b1": { + "52e0af193e924794884f753e1600bb23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3763,7 +4024,7 @@ "text_color": null } }, - "3d72d8ee572f448b8249c932e48082e8": { + "54bcdb7f12f24503b76bdcbf116d057a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3816,7 +4077,7 @@ "width": null } }, - "3e6508b5d88f4973b44bf251c0313298": { + "56095b38293544ee9f90fd6ee45b8a94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3834,7 +4095,7 @@ "text_color": null } }, - "418b3e15cee0433aa8bb16c916fbbcf8": { + "56ac8091ed3641fa829a79124b46eaad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3852,23 +4113,7 @@ "text_color": null } }, - "42bb64a8a45f4caf86579067ce2bed00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "42bf693cc44f43e2abd5c517e5163435": { + "5723bf69e46942f498e32da9a3dd3fc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3921,51 +4166,39 @@ "width": null } }, - "43a93f0156884db8a84e2f918cfd5d71": { + "5a8ccc0accc946e9bc1637ae60bc7480": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "43b90f2f7651473f93cf3eab0e3fd917": { + "601636fdba5843d7bd721fe76a1cce68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d3355770450248a08bff39fb61a614a8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9816a805a82c4843aedfe687ac374d00", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "45268ef1afff4ca887ef109a99e1a9a1": { + "619df88e51a944258d9a3ceaf51eae53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4018,25 +4251,60 @@ "width": null } }, - "458816ed52744769b2b84df8905f7715": { - "model_module": "@jupyter-widgets/controls", + "63c943ca68c8450d990c31b1e0ef9499": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "463fd38839db4af2a6590fc0d2b58f1b": { + "64d3b379a19c41828c302b87c1afa084": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4089,53 +4357,49 @@ "width": null } }, - "4d5400c178b2452f93c3c4db3be14645": { + "6be7155a95064b8ead8cabaa080728d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7801173fbaa34c7ba674853135b717e5", - "placeholder": "​", - "style": "IPY_MODEL_ee00a95d3bba4f2ab806c55e6e2c96fb", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 277374.03 examples/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4e7070c9105a4817bb9d9016918c3463": { + "6e17a3a50e964613a33a6674e161f323": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8d096aa2eff947edb5b63ada7f584e86", - "placeholder": "​", - "style": "IPY_MODEL_9dbbec5ae2704d49a9756704ffa719f3", + "layout": "IPY_MODEL_219c7da2fbf24297bb4de9f2d771db03", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_84fb447a02074a4e9de4c26bd02f0959", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:52<00:00, 1196.71it/s]" + "value": 60000.0 } }, - "50191cea4e5948a0a8d8cff6556b9052": { + "70dca85fc0954abfbde7b05f5af86a99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4188,30 +4452,59 @@ "width": null } }, - "5106186137a048c680b7b513857f6ecf": { + "7107cc07adf949efbcfb280f2a83658e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_af741f4b24634691a96060831f6ec867", - "placeholder": "​", - "style": "IPY_MODEL_458816ed52744769b2b84df8905f7715", + "layout": "IPY_MODEL_d641867a427a424d80d6ef33aa2793b5", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9ef207487dd241b1bd3bcd880a671c36", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 60000.0 + } + }, + "715b6cc0d7294815bdab200b5e59390d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_daf21dacf9564312abb8c11ae5b51e24", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_601636fdba5843d7bd721fe76a1cce68", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "5484aa5928a246acbd7729d54589be9f": { + "718c89c212e149f5be245aed4a5d0fcc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4264,25 +4557,60 @@ "width": null } }, - "54a8ecc1e2ec4219b4869405eca3a552": { - "model_module": "@jupyter-widgets/controls", + "753b186d3514428d988c96c858139cd3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "58b19016e5454a8fb31a421f7b83f3b8": { + "7596686691ac4d5b8d2b9a5a14eaa72c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4335,98 +4663,70 @@ "width": null } }, - "5a6dba14c90846e1a998f66757bdbbb9": { + "76382007e18a47aca7267c9a5b04aace": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5484aa5928a246acbd7729d54589be9f", - "placeholder": "​", - "style": "IPY_MODEL_bd36b5a042cb47da963fa6724698d535", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0a5c08c87fd74370a40f9df2784c31cf", + "IPY_MODEL_9c8ea3748d024c26b83404fcd96fec89", + "IPY_MODEL_c0a758a11fa6476c8c95244187655195" + ], + "layout": "IPY_MODEL_5723bf69e46942f498e32da9a3dd3fc1", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 56.78it/s]" + "tooltip": null } }, - "5b700a72a8d146b8ab01511afa0019c3": { + "76f051bff001477da4e9f17f8b2dc2de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0e674f7d5aaf4ceb80159d02d496e19e", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2478e088e18843408c6b0eb7b8546aeb", + "layout": "IPY_MODEL_753b186d3514428d988c96c858139cd3", + "placeholder": "​", + "style": "IPY_MODEL_8d136d04879b45188891e3a38ce54d28", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Map (num_proc=4): 100%" } }, - "5cc9e1f7b9a7467aa2530eb23b8b1def": { + "77cc6a8c7e7b4bb7942c7cfef39c1df1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5dd4ac73beaa4c909b6d006c9b6b289f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bc10d0329fcb483b9d433b104377cb26", - "IPY_MODEL_d242e7b75b9448e1b0422ace1b943120", - "IPY_MODEL_797702b1a2084c91aa677095d5780e70" - ], - "layout": "IPY_MODEL_58b19016e5454a8fb31a421f7b83f3b8", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "5fb6cdc588c2446b996e24faff04c97f": { + "77d51a2c04ef4528a4467218c176e4d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4479,43 +4779,23 @@ "width": null } }, - "6110fa747dd54d5f89ec29500fd72aaf": { + "7857e0add219426cb43f38afbbd5ece7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6123d04fa3694205a1454dbace9e784e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6154ce50b4d24586bad16243defb53fb": { + "79c168498edd463b99d3a6ec79e84817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4530,39 +4810,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_797b7cb9a56b45fd8ee145c617f0767a", + "layout": "IPY_MODEL_4aa5bfc0d0a040a492c8c44b45a4f002", "placeholder": "​", - "style": "IPY_MODEL_a34a00b5352e45e9b8ca12eff5edf1a5", + "style": "IPY_MODEL_cbbc3ceb56a04a3a8eb12f870bd1d5b7", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "61ca028bd561486caf5fa42305aa6d4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_04a4622eebaa4c72abf4e42992b7bc3e", - "IPY_MODEL_74343f0f79f541caa4643df7b5d0963d", - "IPY_MODEL_adb4a6af384b4827babeb1fa43dfb372" - ], - "layout": "IPY_MODEL_a8153583075f46ab9668618c698af2d5", - "tabbable": null, - "tooltip": null + "value": " 30.9M/30.9M [00:00<00:00, 56.7MB/s]" } }, - "62c50c83daaa40ce8b1620c454b036b7": { + "7a3ae1e0c30046488167ff62f51528a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4578,7 +4834,7 @@ "description_width": "" } }, - "63397a47d992477aa92ce4d5947bafe4": { + "7a55a20962f1451a94e65c34759a6292": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4596,7 +4852,7 @@ "text_color": null } }, - "6499b7dd8d33405aaa3f09d7b7a7bce4": { + "7fabd2180e02467eab302134cdda6a22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4611,15 +4867,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1749f9df3cef4d239a6382150390e397", + "layout": "IPY_MODEL_20e290f5112c43a8b482d6463f47f3b5", "placeholder": "​", - "style": "IPY_MODEL_79afd08413b84f31a29d1c321a808aa9", + "style": "IPY_MODEL_e2fced5fbede49a7963e74957439c79b", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 593.09it/s]" + "value": "100%" + } + }, + "81db87069c784a348ff7dba107c76ff5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "67ba749bcc1b4d0db5e9bb466f9bc170": { + "8330cd0f1c144977bc9c4c3cd6822d48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4672,25 +4946,7 @@ "width": null } }, - "69993e265db24fdf9705ddc0ee02731b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a35e6318f964dc4ab7a20d799947b69": { + "8488a9eb980c40409790c04ced5e8fbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4743,7 +4999,7 @@ "width": null } }, - "6b02c15b697e4d74a7c99110f6fcf1c5": { + "84fb447a02074a4e9de4c26bd02f0959": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4759,60 +5015,33 @@ "description_width": "" } }, - "6cef0a862e114efba48548ce18db154a": { - "model_module": "@jupyter-widgets/base", + "85f859769fca4e72bb11b80054d8d0b6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1d337557f091475698f66056b81ca3b4", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6be7155a95064b8ead8cabaa080728d6", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "6d5c2be4c432491d81a89baf44b08004": { + "86336bb5fbd84f01a5c5414bd74c55b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4827,15 +5056,62 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e4cfe24ac1a447f7b502021e027a0cdc", + "layout": "IPY_MODEL_8488a9eb980c40409790c04ced5e8fbe", "placeholder": "​", - "style": "IPY_MODEL_54a8ecc1e2ec4219b4869405eca3a552", + "style": "IPY_MODEL_09c8a33d5a37436aaf80890e2dbdbd2d", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 9.02k/9.02k [00:00<00:00, 1.13MB/s]" + } + }, + "8778a38129674baf9d199b4cd86f6d1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0c5e4436871490f98585ecec5faab2c", + "IPY_MODEL_37e39b6de36c4357b0d6983fbe95a3e3", + "IPY_MODEL_ef3bc3adfac84850b36e1ad9d29a549f" + ], + "layout": "IPY_MODEL_d9f9346ba60847159332dfb8e4c3c2f5", + "tabbable": null, + "tooltip": null + } + }, + "8910f3945abe42a0a06a1f3608877e2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0bf27f023e574370a39306b2c3418332", + "placeholder": "​", + "style": "IPY_MODEL_d9685d97720b470daa5a625db279b692", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "6f11c86a70a04282897f55898aaabe83": { + "8981f4f16c9c417d9fdecd16f0a56a0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4888,49 +5164,30 @@ "width": null } }, - "6f18d47cd6304ba08a2605208e81ff33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "715deece975742d5bc13cc8043611355": { + "8ae92d8f86804827a70d65e54d98ae77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fa296d48137e455ba1b6e16835562e86", - "IPY_MODEL_94b92ca768bd4a3aa044b748b216dcb1", - "IPY_MODEL_7fe5e48df24848bcbc6fcb0751af666f" - ], - "layout": "IPY_MODEL_463fd38839db4af2a6590fc0d2b58f1b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_df152487ab414b7d8b41845040925a04", + "placeholder": "​", + "style": "IPY_MODEL_2e7759f994a045b1abb1319ea20498ec", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 250463.03 examples/s]" } }, - "73a65bf59afc46ab9dff2402b2ef3c24": { + "8b8972ed53704697ab98ffe40923d63d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4945,41 +5202,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc699b02b18c4b3785d9ed69a22992c9", + "layout": "IPY_MODEL_ba2ef55082fb4b0db150edc1be2515db", "placeholder": "​", - "style": "IPY_MODEL_43a93f0156884db8a84e2f918cfd5d71", + "style": "IPY_MODEL_a8bec5146130437298792145c19a00a4", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading readme: 100%" } }, - "74343f0f79f541caa4643df7b5d0963d": { + "8c9f4be772024182a41b2af3218da1f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e0ea832bcf44e08af9f72ccaf14856d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86b19062b8ed4e9f85f4fec80c21a6c0", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "74b2d7314b1e40b2a9703867b135b73b": { + "8ceb4c89d7664f829bce7502ac66797c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5032,30 +5281,25 @@ "width": null } }, - "75f54b54d89e4b44983d92b27c1c23fb": { + "8d136d04879b45188891e3a38ce54d28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67ba749bcc1b4d0db5e9bb466f9bc170", - "placeholder": "​", - "style": "IPY_MODEL_418b3e15cee0433aa8bb16c916fbbcf8", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7801173fbaa34c7ba674853135b717e5": { + "8da89fbb23314b139d116450a90c0d97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5108,7 +5352,7 @@ "width": null } }, - "789eeb33f7e54e4993cc9be47c0a4654": { + "8def36300cc844edaafc5b7adbc3ad82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5161,30 +5405,51 @@ "width": null } }, - "797702b1a2084c91aa677095d5780e70": { + "90ab45d128604edba94a54957bc3e270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a35e6318f964dc4ab7a20d799947b69", - "placeholder": "​", - "style": "IPY_MODEL_a67c3cc29a524e599f6f027576048e77", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "917c8d57e95d4c208c833752993241e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f60c1de2cbbe4b82a37fa768d46b9f53", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cf172221f0de40cab7b1273920e9353b", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.82it/s]" + "value": 40.0 } }, - "797b7cb9a56b45fd8ee145c617f0767a": { + "9454a9f21f3c4cdbb2eb61e8efb6f21b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5237,25 +5502,7 @@ "width": null } }, - "79afd08413b84f31a29d1c321a808aa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7a9d8dacb06d469da61f18473ae6c811": { + "978a7bfcc2d54d65b60c2cf37d27a0be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5308,77 +5555,49 @@ "width": null } }, - "7df5d87a698348adaf910bad51eb5257": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6154ce50b4d24586bad16243defb53fb", - "IPY_MODEL_bbe5c8e427aa41f9804c969d70ad8c2f", - "IPY_MODEL_e2e1d706cc454dba83b835ddf7f61a70" - ], - "layout": "IPY_MODEL_30f188af82bb4a89acd46b04b749efb4", - "tabbable": null, - "tooltip": null - } - }, - "7ec27b0b226242f7a154b44efdf5281c": { + "99aea05304144af5b5f4bd6dceb95dd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31f776ccde32438c982b8c5eb8aa8f51", - "placeholder": "​", - "style": "IPY_MODEL_6110fa747dd54d5f89ec29500fd72aaf", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7fe5e48df24848bcbc6fcb0751af666f": { + "99d28f10e86b47028f586cf991c46491": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_db9aedfbb0164f47a695f5f7312785a6", - "placeholder": "​", - "style": "IPY_MODEL_3e6508b5d88f4973b44bf251c0313298", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8910f3945abe42a0a06a1f3608877e2e", + "IPY_MODEL_3f6adcfb510b44d087c66406feb108c1", + "IPY_MODEL_4e1d2eae5b6d4f79a4c1bba714e65cbe" + ], + "layout": "IPY_MODEL_8ceb4c89d7664f829bce7502ac66797c", "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 43.9MB/s]" + "tooltip": null } }, - "8048b30a8d20480286136da950c4ae4f": { + "9ae89310be0a4a419eb65241c7fa071c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5393,48 +5612,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b9f9a045bcb549b3ab2405b239007979", - "IPY_MODEL_2dbbafaa6de24d2c8097777c0ce0cedd", - "IPY_MODEL_4d5400c178b2452f93c3c4db3be14645" + "IPY_MODEL_254364431d4949dc96d01bcc0deb6b9e", + "IPY_MODEL_715b6cc0d7294815bdab200b5e59390d", + "IPY_MODEL_4bb82979c2ae4a408eed104709b23300" ], - "layout": "IPY_MODEL_6cef0a862e114efba48548ce18db154a", + "layout": "IPY_MODEL_14e275ef5cc646cc84b0bbbf516f0c2d", "tabbable": null, "tooltip": null } }, - "8189d1fe2cc04c4799937a77b58593a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "83d6886bd83146389ced65a95fa81e9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "848dbf466ca84edf8a6c9a3db7b6dca2": { + "9c4df97cda374113b2e95d6efc39384e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5449,31 +5636,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e19ec970fdd44afd898de49a0af29399", + "layout": "IPY_MODEL_bd67d99ce67a4eb9b0bccafa0b26ae1c", "placeholder": "​", - "style": "IPY_MODEL_6f18d47cd6304ba08a2605208e81ff33", + "style": "IPY_MODEL_45b7fce55d75478eab9caed84e758404", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 4643.60 examples/s]" - } - }, - "86b19062b8ed4e9f85f4fec80c21a6c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "100%" } }, - "86d4ac36f45b4dc4aafe3fddfa21728c": { + "9c8ea3748d024c26b83404fcd96fec89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5489,97 +5660,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f19654c731349b586439bffb6b50667", - "max": 9015.0, + "layout": "IPY_MODEL_8def36300cc844edaafc5b7adbc3ad82", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8189d1fe2cc04c4799937a77b58593a5", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "87ac3c376bc942a08e4722d392db6cc2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "87f6f6d23d364392a6637137b76bcdf8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2154009565de4b2d836aa460d81a343d", - "placeholder": "​", - "style": "IPY_MODEL_69993e265db24fdf9705ddc0ee02731b", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 25.5MB/s]" - } - }, - "894dfcbdd03942e1918c15697aa075b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc0cb764df054f67bffe9a91424eb9ad", - "placeholder": "​", - "style": "IPY_MODEL_3d101be52ce14aadb4856964662938b1", + "style": "IPY_MODEL_0acfb7df45a94895b660e99678f38ab9", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.58it/s]" - } - }, - "8c27a013ea9c424986fbeecf77584f51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 40.0 } }, - "8d096aa2eff947edb5b63ada7f584e86": { + "9d3367b9aea243a6accea1e6c04456b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5632,30 +5723,7 @@ "width": null } }, - "8df2eb2ad9b8450794bc2a19cd4e4607": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4265a3a4bfa4ae7b72143c7882d22da", - "placeholder": "​", - "style": "IPY_MODEL_9d69f92933354985bb292e842e6d91ec", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "94b92ca768bd4a3aa044b748b216dcb1": { + "9eb9da71209b4d15a3325f9f6eeed1cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5671,35 +5739,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_00e20cac09fa43938aab5eb1c857b06b", - "max": 30931277.0, + "layout": "IPY_MODEL_f65f920f9b6041d4b3c4c0564004f163", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_83d6886bd83146389ced65a95fa81e9f", + "style": "IPY_MODEL_4f8f4f49ca8c46bb84a15dfb7bcd172d", "tabbable": null, "tooltip": null, - "value": 30931277.0 - } - }, - "9667199d84da4850ab42238ebe7e58c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 40.0 } }, - "9816a805a82c4843aedfe687ac374d00": { + "9ef207487dd241b1bd3bcd880a671c36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5715,43 +5765,59 @@ "description_width": "" } }, - "9d69f92933354985bb292e842e6d91ec": { + "a2ecd98489b446bf8439f3bae62184e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_64d3b379a19c41828c302b87c1afa084", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7a3ae1e0c30046488167ff62f51528a6", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "9dbbec5ae2704d49a9756704ffa719f3": { + "a72c114a89ef4f7d9ce76d04bbf5367f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70dca85fc0954abfbde7b05f5af86a99", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4b1f7637d5b642559b4d50d332910e95", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 } }, - "9f6288367f9d417aaffa47df9969c4f0": { + "a7518b8b17ed4c6385d46a129f23f288": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5804,7 +5870,48 @@ "width": null } }, - "a0e6ab9c19e34b8e9bbe62ee43bd8c35": { + "a8bec5146130437298792145c19a00a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ac01e37df85149fc865cadfec9d2e474": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4df4a26413bf48918382798dd1919c57", + "placeholder": "​", + "style": "IPY_MODEL_1115843994674897843ad092eeab2fa8", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "b2b42c0463e442998e7b13eec51680b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5819,60 +5926,86 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_73a65bf59afc46ab9dff2402b2ef3c24", - "IPY_MODEL_dcb5d9d40e7d44a9b855e55c3ed7dfec", - "IPY_MODEL_4e7070c9105a4817bb9d9016918c3463" + "IPY_MODEL_4eae78723d464e59830f20282cdee04d", + "IPY_MODEL_917c8d57e95d4c208c833752993241e4", + "IPY_MODEL_34f5d94baac84b1398d48e84b152e55b" ], - "layout": "IPY_MODEL_7a9d8dacb06d469da61f18473ae6c811", + "layout": "IPY_MODEL_29f85ef43a4f46ceb22293713c3f0ac8", "tabbable": null, "tooltip": null } }, - "a34a00b5352e45e9b8ca12eff5edf1a5": { + "b4496a7f2cc94ab5a8bbabdb97cae403": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b8e8fa8bae29473281fb99cedc42351a", + "IPY_MODEL_c1ce49a2b0124b159c7b28f909672525", + "IPY_MODEL_ef9aef7309604ec48464d4d278664b56" + ], + "layout": "IPY_MODEL_48458f9623b5421e9560f6410eae765b", + "tabbable": null, + "tooltip": null } }, - "a3bccde2847d4c49848c5d7d70ffb860": { + "b52a1cb8ace341e1903a322bf99420e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0479111a5d804c6880145a46ec56cb0f", + "placeholder": "​", + "style": "IPY_MODEL_edb3fbc51a0e4a1996e59e5d1b80e3b9", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.60it/s]" + } + }, + "b8e8fa8bae29473281fb99cedc42351a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c9a54ddf74b443e89e4eaf4f51c38c8", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6b02c15b697e4d74a7c99110f6fcf1c5", + "layout": "IPY_MODEL_0b6b0041576b42348ad60c246694ed48", + "placeholder": "​", + "style": "IPY_MODEL_42b5c22246144f3593050fddee5e8cfe", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "100%" } }, - "a4265a3a4bfa4ae7b72143c7882d22da": { + "ba2ef55082fb4b0db150edc1be2515db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5925,7 +6058,7 @@ "width": null } }, - "a51da1996471487ea2f6abd6bb0cacba": { + "bc697d85528e4f619a4a98e42fe7b25e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5978,25 +6111,7 @@ "width": null } }, - "a67c3cc29a524e599f6f027576048e77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a8153583075f46ab9668618c698af2d5": { + "bd67d99ce67a4eb9b0bccafa0b26ae1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6049,108 +6164,102 @@ "width": null } }, - "a8d79e5a11af4eee941f00df247ae2ee": { - "model_module": "@jupyter-widgets/base", + "c0a758a11fa6476c8c95244187655195": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8330cd0f1c144977bc9c4c3cd6822d48", + "placeholder": "​", + "style": "IPY_MODEL_db53cf637add43ccb08c3d7fdaa1c7d8", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.89it/s]" } }, - "aa732b0a4d7a4e5a9c11bdac5ddcd235": { + "c0c5e4436871490f98585ecec5faab2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f731b832c2c14263ba08413849b9491d", - "IPY_MODEL_b5c0cbca89fa4834a72585d4fb95679e", - "IPY_MODEL_848dbf466ca84edf8a6c9a3db7b6dca2" - ], - "layout": "IPY_MODEL_0cb7926f64ca4262a1d8e8a49dd0d6d3", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_978a7bfcc2d54d65b60c2cf37d27a0be", + "placeholder": "​", + "style": "IPY_MODEL_c43a8c8bbbf845a7becdaddfd3f6a2d3", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "ab03cadc8a244250837477471abfd52f": { + "c13bcf0a616e4cc9be2abb900464ebfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7ec27b0b226242f7a154b44efdf5281c", - "IPY_MODEL_2918809b0c4a48c9a96a0722b9044737", - "IPY_MODEL_c18a50eaa6154b71885754ca3b1e79e1" - ], - "layout": "IPY_MODEL_1160fc45ea02442ebc3edd8f098d88ad", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d3367b9aea243a6accea1e6c04456b1", + "placeholder": "​", + "style": "IPY_MODEL_99aea05304144af5b5f4bd6dceb95dd9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" + } + }, + "c1ce49a2b0124b159c7b28f909672525": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_54bcdb7f12f24503b76bdcbf116d057a", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a8ccc0accc946e9bc1637ae60bc7480", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "adb4a6af384b4827babeb1fa43dfb372": { + "c3960fa2e10d49999248fafed551b709": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6165,31 +6274,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42bf693cc44f43e2abd5c517e5163435", + "layout": "IPY_MODEL_8981f4f16c9c417d9fdecd16f0a56a0f", "placeholder": "​", - "style": "IPY_MODEL_e1dc295bc9aa4b078179cd66d9cd0625", + "style": "IPY_MODEL_f567c109f5794c22ab3d5735d59fb599", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.05it/s]" + "value": " 60000/60000 [00:11<00:00, 5742.07 examples/s]" } }, - "ae43f833e78c43e0acade5c471716764": { + "c43a8c8bbbf845a7becdaddfd3f6a2d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "af741f4b24634691a96060831f6ec867": { + "c858e73c35474718898e8f09c167d2cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6242,56 +6353,7 @@ "width": null } }, - "b5c0cbca89fa4834a72585d4fb95679e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f11c86a70a04282897f55898aaabe83", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ae43f833e78c43e0acade5c471716764", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "b9f9a045bcb549b3ab2405b239007979": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24cc3a6c8edd440da9947ad5599bad6e", - "placeholder": "​", - "style": "IPY_MODEL_2d444e1e91f34b079a2ca7323b81419e", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "bb685ca1a8e74f4abfc418ee4df7cdae": { + "c8df1d76b2a243d0aed92777fe211a4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6306,42 +6368,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8df2eb2ad9b8450794bc2a19cd4e4607", - "IPY_MODEL_a3bccde2847d4c49848c5d7d70ffb860", - "IPY_MODEL_87f6f6d23d364392a6637137b76bcdf8" + "IPY_MODEL_7fabd2180e02467eab302134cdda6a22", + "IPY_MODEL_9eb9da71209b4d15a3325f9f6eeed1cc", + "IPY_MODEL_b52a1cb8ace341e1903a322bf99420e4" ], - "layout": "IPY_MODEL_789eeb33f7e54e4993cc9be47c0a4654", + "layout": "IPY_MODEL_505d77230204473499ad7008892a79f2", "tabbable": null, "tooltip": null } }, - "bbe5c8e427aa41f9804c969d70ad8c2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1ce743abad7c4285b5459c8f9a83727f", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8c27a013ea9c424986fbeecf77584f51", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "bc0cb764df054f67bffe9a91424eb9ad": { + "c9a1042258b54075911ab84ac618a35d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6394,30 +6430,7 @@ "width": null } }, - "bc10d0329fcb483b9d433b104377cb26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c28da32949eb444c8b169f95d073f019", - "placeholder": "​", - "style": "IPY_MODEL_5cc9e1f7b9a7467aa2530eb23b8b1def", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "bd36b5a042cb47da963fa6724698d535": { + "cbbc3ceb56a04a3a8eb12f870bd1d5b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6435,30 +6448,49 @@ "text_color": null } }, - "c18a50eaa6154b71885754ca3b1e79e1": { + "cd62a01a9bf144c1916caa2be0fa0e48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38eb0ac1298f486f95a21f978928b66e", - "placeholder": "​", - "style": "IPY_MODEL_6123d04fa3694205a1454dbace9e784e", + "layout": "IPY_MODEL_c858e73c35474718898e8f09c167d2cf", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_491162ff91a84d92a9d7ab33304f065e", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.75it/s]" + "value": 40.0 + } + }, + "cf172221f0de40cab7b1273920e9353b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c1c1d785f09148e88cc07abc9a79d399": { + "d09c14fbd33f48fab5b2c188e4371d96": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6511,23 +6543,49 @@ "width": null } }, - "c1c5ff485c484df9b2328967bbd2b370": { + "d19a5e1c9c5f401fb90b639fdd9f1b70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76f051bff001477da4e9f17f8b2dc2de", + "IPY_MODEL_7107cc07adf949efbcfb280f2a83658e", + "IPY_MODEL_c3960fa2e10d49999248fafed551b709" + ], + "layout": "IPY_MODEL_77d51a2c04ef4528a4467218c176e4d3", + "tabbable": null, + "tooltip": null + } + }, + "d1f9454550954236a684ac26e799e32a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c28da32949eb444c8b169f95d073f019": { + "d4e950ea713443a8b6b8b2188ad2c990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6580,7 +6638,7 @@ "width": null } }, - "c2c049fd4723414391215a3a86586ad1": { + "d641867a427a424d80d6ef33aa2793b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6633,7 +6691,33 @@ "width": null } }, - "c5b087dedb3b4a81b16234b32f0ad104": { + "d716dfc4f9c0495cbd9e9ef255677f6a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_619df88e51a944258d9a3ceaf51eae53", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e919342583274f1e9962132ec538ec11", + "tabbable": null, + "tooltip": null, + "value": 9015.0 + } + }, + "d7c83ca12aeb4f998036ded204cfba8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6651,7 +6735,7 @@ "text_color": null } }, - "c87364d1f6104253b1d3b9fc6d57747c": { + "d9685d97720b470daa5a625db279b692": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6669,23 +6753,60 @@ "text_color": null } }, - "cb654bfede0d4df6953f8b10f45ccf30": { - "model_module": "@jupyter-widgets/controls", + "d9f9346ba60847159332dfb8e4c3c2f5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cd61e02259094a979ac8fdee8d778a4a": { + "daf21dacf9564312abb8c11ae5b51e24": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6738,33 +6859,49 @@ "width": null } }, - "d242e7b75b9448e1b0422ace1b943120": { + "db53cf637add43ccb08c3d7fdaa1c7d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dccb84fb19484d4980a7659b3d7a2270": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3d72d8ee572f448b8249c932e48082e8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1ebda1f8d81d496d83330d03e329452f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9c4df97cda374113b2e95d6efc39384e", + "IPY_MODEL_6e17a3a50e964613a33a6674e161f323", + "IPY_MODEL_f93749d8d8e641b2b845a8799ff82b98" + ], + "layout": "IPY_MODEL_2b4f41cafdf3495dacbdd9b5dfbaf939", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "d2d22c2514a54fcb9f9f90e9a4e24714": { + "df152487ab414b7d8b41845040925a04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6817,7 +6954,59 @@ "width": null } }, - "d3355770450248a08bff39fb61a614a8": { + "e2fced5fbede49a7963e74957439c79b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e919342583274f1e9962132ec538ec11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "edb3fbc51a0e4a1996e59e5d1b80e3b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ef3572a1a6c34bd0a4f31259c8f1cfe7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6870,49 +7059,112 @@ "width": null } }, - "d4737bea4127496e856295be41444231": { + "ef3bc3adfac84850b36e1ad9d29a549f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd09424d8894431994cfd7df013e4c02", + "placeholder": "​", + "style": "IPY_MODEL_26681fd30ba84b94b17d47d8bcbad73f", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 598.29it/s]" + } + }, + "ef5677ac2a8f4ee5afcee878b9f6bf16": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1d88ef5e245a4f9fa762fcd65a016d2a", + "placeholder": "​", + "style": "IPY_MODEL_7a55a20962f1451a94e65c34759a6292", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "ef8e379e77eb41a1b387d30a2523a889": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ef9aef7309604ec48464d4d278664b56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e47e28322ab8479c91ddf77409dbfd8b", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cb654bfede0d4df6953f8b10f45ccf30", + "layout": "IPY_MODEL_bc697d85528e4f619a4a98e42fe7b25e", + "placeholder": "​", + "style": "IPY_MODEL_f112ee39acfc438babb5498d3769b181", "tabbable": null, "tooltip": null, - "value": 2.0 + "value": " 40/40 [00:00<00:00, 62.00it/s]" } }, - "db4f470c9b9843f5b80bdf4dacc8d78e": { + "f112ee39acfc438babb5498d3769b181": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "db9aedfbb0164f47a695f5f7312785a6": { + "f36d712d6ed74e5b9a86a346ca936135": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6965,86 +7217,31 @@ "width": null } }, - "dcb5d9d40e7d44a9b855e55c3ed7dfec": { + "f546543a4b994e7c947e3ddab9ef35fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_20586be37d7340fab39d12a261037368", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_62c50c83daaa40ce8b1620c454b036b7", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b8972ed53704697ab98ffe40923d63d", + "IPY_MODEL_d716dfc4f9c0495cbd9e9ef255677f6a", + "IPY_MODEL_86336bb5fbd84f01a5c5414bd74c55b1" + ], + "layout": "IPY_MODEL_a7518b8b17ed4c6385d46a129f23f288", "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "e19ec970fdd44afd898de49a0af29399": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null } }, - "e1dc295bc9aa4b078179cd66d9cd0625": { + "f567c109f5794c22ab3d5735d59fb599": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7062,30 +7259,7 @@ "text_color": null } }, - "e2e1d706cc454dba83b835ddf7f61a70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ebfb29db8ac148e9af56fd7ffae3775b", - "placeholder": "​", - "style": "IPY_MODEL_87ac3c376bc942a08e4722d392db6cc2", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 248148.43 examples/s]" - } - }, - "e47e28322ab8479c91ddf77409dbfd8b": { + "f60c1de2cbbe4b82a37fa768d46b9f53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7138,7 +7312,7 @@ "width": null } }, - "e4cfe24ac1a447f7b502021e027a0cdc": { + "f65f920f9b6041d4b3c4c0564004f163": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7191,7 +7365,7 @@ "width": null } }, - "e6e351618590464cad5b6b2888b5855b": { + "f8e0c482350e4e46a32bbde1c9e980e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7244,31 +7418,7 @@ "width": null } }, - "e8b71b72c1fe42969576f0679a3429ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_75f54b54d89e4b44983d92b27c1c23fb", - "IPY_MODEL_d4737bea4127496e856295be41444231", - "IPY_MODEL_6499b7dd8d33405aaa3f09d7b7a7bce4" - ], - "layout": "IPY_MODEL_74b2d7314b1e40b2a9703867b135b73b", - "tabbable": null, - "tooltip": null - } - }, - "eb3ac7f719da4343b1f45e07f09a75f2": { + "f90499b00cc0489c9b7f21169ba0b4bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7283,16 +7433,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6d5c2be4c432491d81a89baf44b08004", - "IPY_MODEL_43b90f2f7651473f93cf3eab0e3fd917", - "IPY_MODEL_28b0e5e799994ca8809bbb96b5c3df2a" + "IPY_MODEL_ef5677ac2a8f4ee5afcee878b9f6bf16", + "IPY_MODEL_a72c114a89ef4f7d9ce76d04bbf5367f", + "IPY_MODEL_79c168498edd463b99d3a6ec79e84817" ], - "layout": "IPY_MODEL_5fb6cdc588c2446b996e24faff04c97f", + "layout": "IPY_MODEL_718c89c212e149f5be245aed4a5d0fcc", "tabbable": null, "tooltip": null } }, - "ebfb29db8ac148e9af56fd7ffae3775b": { + "f91049c8fe9848ccb88784d036c3aab3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7345,157 +7495,7 @@ "width": null } }, - "ee00a95d3bba4f2ab806c55e6e2c96fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ee16116dbbae4246a4933981a1e3806b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c2c049fd4723414391215a3a86586ad1", - "placeholder": "​", - "style": "IPY_MODEL_c87364d1f6104253b1d3b9fc6d57747c", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.15MB/s]" - } - }, - "eecae1184b8b4bcd9ec5d73df5c74db8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eeef9fa40c3042329541b46e63c7150a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0dff836f9df24429807dadf54be9a70a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c1c5ff485c484df9b2328967bbd2b370", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "f70935fc022f4ec9952399ffa883f8c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f731b832c2c14263ba08413849b9491d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2d593f06e2744a139b86109333ac680e", - "placeholder": "​", - "style": "IPY_MODEL_112e5f2e2a784cba837314af017d0914", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "f9912ba2f2c141a4892444b6f34c10b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5106186137a048c680b7b513857f6ecf", - "IPY_MODEL_eeef9fa40c3042329541b46e63c7150a", - "IPY_MODEL_5a6dba14c90846e1a998f66757bdbbb9" - ], - "layout": "IPY_MODEL_a8d79e5a11af4eee941f00df247ae2ee", - "tabbable": null, - "tooltip": null - } - }, - "fa296d48137e455ba1b6e16835562e86": { + "f93749d8d8e641b2b845a8799ff82b98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7510,15 +7510,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_45268ef1afff4ca887ef109a99e1a9a1", + "layout": "IPY_MODEL_c9a1042258b54075911ab84ac618a35d", "placeholder": "​", - "style": "IPY_MODEL_9667199d84da4850ab42238ebe7e58c2", + "style": "IPY_MODEL_d7c83ca12aeb4f998036ded204cfba8e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 60000/60000 [00:50<00:00, 1176.63it/s]" } }, - "fc699b02b18c4b3785d9ed69a22992c9": { + "fd09424d8894431994cfd7df013e4c02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7571,7 +7571,7 @@ "width": null } }, - "fc98e96da8e046238dce1b399f558f99": { + "fdd6e77412c0421895c9c80c62ddea3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7586,11 +7586,11 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_06c30632deaa41b0b7d2ef2bd39e00dc", - "IPY_MODEL_5b700a72a8d146b8ab01511afa0019c3", - "IPY_MODEL_894dfcbdd03942e1918c15697aa075b5" + "IPY_MODEL_ac01e37df85149fc865cadfec9d2e474", + "IPY_MODEL_cd62a01a9bf144c1916caa2be0fa0e48", + "IPY_MODEL_36050e8d2e9e44a3a4ed1600bdd36831" ], - "layout": "IPY_MODEL_cd61e02259094a979ac8fdee8d778a4a", + "layout": "IPY_MODEL_0e64e21c42624612ab3f8a532e796075", "tabbable": null, "tooltip": null } diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index dc624f661..e1622782b 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:14.109304Z", - "iopub.status.busy": "2024-08-26T15:54:14.108881Z", - "iopub.status.idle": "2024-08-26T15:54:15.281952Z", - "shell.execute_reply": "2024-08-26T15:54:15.281381Z" + "iopub.execute_input": "2024-08-28T20:08:57.484968Z", + "iopub.status.busy": "2024-08-28T20:08:57.484796Z", + "iopub.status.idle": "2024-08-28T20:08:58.631433Z", + "shell.execute_reply": "2024-08-28T20:08:58.630894Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.284532Z", - "iopub.status.busy": "2024-08-26T15:54:15.284089Z", - "iopub.status.idle": "2024-08-26T15:54:15.302497Z", - "shell.execute_reply": "2024-08-26T15:54:15.301896Z" + "iopub.execute_input": "2024-08-28T20:08:58.633842Z", + "iopub.status.busy": "2024-08-28T20:08:58.633571Z", + "iopub.status.idle": "2024-08-28T20:08:58.651793Z", + "shell.execute_reply": "2024-08-28T20:08:58.651341Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.304895Z", - "iopub.status.busy": "2024-08-26T15:54:15.304508Z", - "iopub.status.idle": "2024-08-26T15:54:15.325953Z", - "shell.execute_reply": "2024-08-26T15:54:15.325390Z" + "iopub.execute_input": "2024-08-28T20:08:58.654138Z", + "iopub.status.busy": "2024-08-28T20:08:58.653629Z", + "iopub.status.idle": "2024-08-28T20:08:58.690305Z", + "shell.execute_reply": "2024-08-28T20:08:58.689852Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.328080Z", - "iopub.status.busy": "2024-08-26T15:54:15.327751Z", - "iopub.status.idle": "2024-08-26T15:54:15.331370Z", - "shell.execute_reply": "2024-08-26T15:54:15.330867Z" + "iopub.execute_input": "2024-08-28T20:08:58.692190Z", + "iopub.status.busy": "2024-08-28T20:08:58.692019Z", + "iopub.status.idle": "2024-08-28T20:08:58.695887Z", + "shell.execute_reply": "2024-08-28T20:08:58.695430Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.333595Z", - "iopub.status.busy": "2024-08-26T15:54:15.333139Z", - "iopub.status.idle": "2024-08-26T15:54:15.341092Z", - "shell.execute_reply": "2024-08-26T15:54:15.340517Z" + "iopub.execute_input": "2024-08-28T20:08:58.698037Z", + "iopub.status.busy": "2024-08-28T20:08:58.697703Z", + "iopub.status.idle": "2024-08-28T20:08:58.704998Z", + "shell.execute_reply": "2024-08-28T20:08:58.704569Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.343311Z", - "iopub.status.busy": "2024-08-26T15:54:15.343000Z", - "iopub.status.idle": "2024-08-26T15:54:15.346105Z", - "shell.execute_reply": "2024-08-26T15:54:15.345645Z" + "iopub.execute_input": "2024-08-28T20:08:58.707067Z", + "iopub.status.busy": "2024-08-28T20:08:58.706731Z", + "iopub.status.idle": "2024-08-28T20:08:58.709330Z", + "shell.execute_reply": "2024-08-28T20:08:58.708870Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.348163Z", - "iopub.status.busy": "2024-08-26T15:54:15.347822Z", - "iopub.status.idle": "2024-08-26T15:54:18.449602Z", - "shell.execute_reply": "2024-08-26T15:54:18.449016Z" + "iopub.execute_input": "2024-08-28T20:08:58.711286Z", + "iopub.status.busy": "2024-08-28T20:08:58.710953Z", + "iopub.status.idle": "2024-08-28T20:09:01.878117Z", + "shell.execute_reply": "2024-08-28T20:09:01.877469Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:18.452379Z", - "iopub.status.busy": "2024-08-26T15:54:18.452168Z", - "iopub.status.idle": "2024-08-26T15:54:18.461665Z", - "shell.execute_reply": "2024-08-26T15:54:18.461066Z" + "iopub.execute_input": "2024-08-28T20:09:01.881086Z", + "iopub.status.busy": "2024-08-28T20:09:01.880632Z", + "iopub.status.idle": "2024-08-28T20:09:01.890402Z", + "shell.execute_reply": "2024-08-28T20:09:01.889852Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:18.463964Z", - "iopub.status.busy": "2024-08-26T15:54:18.463672Z", - "iopub.status.idle": "2024-08-26T15:54:20.596861Z", - "shell.execute_reply": "2024-08-26T15:54:20.596179Z" + "iopub.execute_input": "2024-08-28T20:09:01.892748Z", + "iopub.status.busy": "2024-08-28T20:09:01.892545Z", + "iopub.status.idle": "2024-08-28T20:09:03.897249Z", + "shell.execute_reply": "2024-08-28T20:09:03.896593Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.599365Z", - "iopub.status.busy": "2024-08-26T15:54:20.598980Z", - "iopub.status.idle": "2024-08-26T15:54:20.619735Z", - "shell.execute_reply": "2024-08-26T15:54:20.619219Z" + "iopub.execute_input": "2024-08-28T20:09:03.899722Z", + "iopub.status.busy": "2024-08-28T20:09:03.899310Z", + "iopub.status.idle": "2024-08-28T20:09:03.918088Z", + "shell.execute_reply": "2024-08-28T20:09:03.917623Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.621986Z", - "iopub.status.busy": "2024-08-26T15:54:20.621626Z", - "iopub.status.idle": "2024-08-26T15:54:20.629738Z", - "shell.execute_reply": "2024-08-26T15:54:20.629246Z" + "iopub.execute_input": "2024-08-28T20:09:03.920225Z", + "iopub.status.busy": "2024-08-28T20:09:03.919882Z", + "iopub.status.idle": "2024-08-28T20:09:03.927652Z", + "shell.execute_reply": "2024-08-28T20:09:03.927063Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.631922Z", - "iopub.status.busy": "2024-08-26T15:54:20.631599Z", - "iopub.status.idle": "2024-08-26T15:54:20.640869Z", - "shell.execute_reply": "2024-08-26T15:54:20.640300Z" + "iopub.execute_input": "2024-08-28T20:09:03.929691Z", + "iopub.status.busy": "2024-08-28T20:09:03.929386Z", + "iopub.status.idle": "2024-08-28T20:09:03.938398Z", + "shell.execute_reply": "2024-08-28T20:09:03.937878Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.642988Z", - "iopub.status.busy": "2024-08-26T15:54:20.642648Z", - "iopub.status.idle": "2024-08-26T15:54:20.650592Z", - "shell.execute_reply": "2024-08-26T15:54:20.650087Z" + "iopub.execute_input": "2024-08-28T20:09:03.940404Z", + "iopub.status.busy": "2024-08-28T20:09:03.940098Z", + "iopub.status.idle": "2024-08-28T20:09:03.947710Z", + "shell.execute_reply": "2024-08-28T20:09:03.947261Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.652766Z", - "iopub.status.busy": "2024-08-26T15:54:20.652433Z", - "iopub.status.idle": "2024-08-26T15:54:20.661662Z", - "shell.execute_reply": "2024-08-26T15:54:20.661085Z" + "iopub.execute_input": "2024-08-28T20:09:03.949811Z", + "iopub.status.busy": "2024-08-28T20:09:03.949417Z", + "iopub.status.idle": "2024-08-28T20:09:03.958627Z", + "shell.execute_reply": "2024-08-28T20:09:03.958084Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.663894Z", - "iopub.status.busy": "2024-08-26T15:54:20.663442Z", - "iopub.status.idle": "2024-08-26T15:54:20.671133Z", - "shell.execute_reply": "2024-08-26T15:54:20.670552Z" + "iopub.execute_input": "2024-08-28T20:09:03.960754Z", + "iopub.status.busy": "2024-08-28T20:09:03.960427Z", + "iopub.status.idle": "2024-08-28T20:09:03.967656Z", + "shell.execute_reply": "2024-08-28T20:09:03.967111Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.673323Z", - "iopub.status.busy": "2024-08-26T15:54:20.672984Z", - "iopub.status.idle": "2024-08-26T15:54:20.680708Z", - "shell.execute_reply": "2024-08-26T15:54:20.680120Z" + "iopub.execute_input": "2024-08-28T20:09:03.969647Z", + "iopub.status.busy": "2024-08-28T20:09:03.969334Z", + "iopub.status.idle": "2024-08-28T20:09:03.976478Z", + "shell.execute_reply": "2024-08-28T20:09:03.976037Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.682929Z", - "iopub.status.busy": "2024-08-26T15:54:20.682566Z", - "iopub.status.idle": "2024-08-26T15:54:20.690842Z", - "shell.execute_reply": "2024-08-26T15:54:20.690326Z" + "iopub.execute_input": "2024-08-28T20:09:03.978405Z", + "iopub.status.busy": "2024-08-28T20:09:03.978234Z", + "iopub.status.idle": "2024-08-28T20:09:03.986709Z", + "shell.execute_reply": "2024-08-28T20:09:03.986282Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 5d4d24b3a..a79eb7b3d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:23.767329Z", - "iopub.status.busy": "2024-08-26T15:54:23.766904Z", - "iopub.status.idle": "2024-08-26T15:54:26.717164Z", - "shell.execute_reply": "2024-08-26T15:54:26.716517Z" + "iopub.execute_input": "2024-08-28T20:09:06.667772Z", + "iopub.status.busy": "2024-08-28T20:09:06.667589Z", + "iopub.status.idle": "2024-08-28T20:09:09.446715Z", + "shell.execute_reply": "2024-08-28T20:09:09.446202Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.720039Z", - "iopub.status.busy": "2024-08-26T15:54:26.719548Z", - "iopub.status.idle": "2024-08-26T15:54:26.722953Z", - "shell.execute_reply": "2024-08-26T15:54:26.722453Z" + "iopub.execute_input": "2024-08-28T20:09:09.449561Z", + "iopub.status.busy": "2024-08-28T20:09:09.449015Z", + "iopub.status.idle": "2024-08-28T20:09:09.452229Z", + "shell.execute_reply": "2024-08-28T20:09:09.451779Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.725073Z", - "iopub.status.busy": "2024-08-26T15:54:26.724682Z", - "iopub.status.idle": "2024-08-26T15:54:26.727880Z", - "shell.execute_reply": "2024-08-26T15:54:26.727424Z" + "iopub.execute_input": "2024-08-28T20:09:09.454188Z", + "iopub.status.busy": "2024-08-28T20:09:09.453882Z", + "iopub.status.idle": "2024-08-28T20:09:09.457040Z", + "shell.execute_reply": "2024-08-28T20:09:09.456484Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.729884Z", - "iopub.status.busy": "2024-08-26T15:54:26.729547Z", - "iopub.status.idle": "2024-08-26T15:54:26.751412Z", - "shell.execute_reply": "2024-08-26T15:54:26.750890Z" + "iopub.execute_input": "2024-08-28T20:09:09.458927Z", + "iopub.status.busy": "2024-08-28T20:09:09.458746Z", + "iopub.status.idle": "2024-08-28T20:09:09.500755Z", + "shell.execute_reply": "2024-08-28T20:09:09.500292Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.753620Z", - "iopub.status.busy": "2024-08-26T15:54:26.753261Z", - "iopub.status.idle": "2024-08-26T15:54:26.756908Z", - "shell.execute_reply": "2024-08-26T15:54:26.756385Z" + "iopub.execute_input": "2024-08-28T20:09:09.502650Z", + "iopub.status.busy": "2024-08-28T20:09:09.502470Z", + "iopub.status.idle": "2024-08-28T20:09:09.506380Z", + "shell.execute_reply": "2024-08-28T20:09:09.505920Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin'}\n" + "Classes: {'apple_pay_or_google_pay', 'change_pin', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'cancel_transfer', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.758907Z", - "iopub.status.busy": "2024-08-26T15:54:26.758575Z", - "iopub.status.idle": "2024-08-26T15:54:26.761810Z", - "shell.execute_reply": "2024-08-26T15:54:26.761254Z" + "iopub.execute_input": "2024-08-28T20:09:09.508323Z", + "iopub.status.busy": "2024-08-28T20:09:09.508145Z", + "iopub.status.idle": "2024-08-28T20:09:09.511367Z", + "shell.execute_reply": "2024-08-28T20:09:09.510908Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.763957Z", - "iopub.status.busy": "2024-08-26T15:54:26.763625Z", - "iopub.status.idle": "2024-08-26T15:54:31.044703Z", - "shell.execute_reply": "2024-08-26T15:54:31.044116Z" + "iopub.execute_input": "2024-08-28T20:09:09.513290Z", + "iopub.status.busy": "2024-08-28T20:09:09.513119Z", + "iopub.status.idle": "2024-08-28T20:09:13.327602Z", + "shell.execute_reply": "2024-08-28T20:09:13.327019Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:31.047500Z", - "iopub.status.busy": "2024-08-26T15:54:31.047102Z", - "iopub.status.idle": "2024-08-26T15:54:31.975680Z", - "shell.execute_reply": "2024-08-26T15:54:31.975010Z" + "iopub.execute_input": "2024-08-28T20:09:13.330344Z", + "iopub.status.busy": "2024-08-28T20:09:13.330103Z", + "iopub.status.idle": "2024-08-28T20:09:14.248319Z", + "shell.execute_reply": "2024-08-28T20:09:14.247698Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:31.979040Z", - "iopub.status.busy": "2024-08-26T15:54:31.978560Z", - "iopub.status.idle": "2024-08-26T15:54:31.981693Z", - "shell.execute_reply": "2024-08-26T15:54:31.981174Z" + "iopub.execute_input": "2024-08-28T20:09:14.251336Z", + "iopub.status.busy": "2024-08-28T20:09:14.250917Z", + "iopub.status.idle": "2024-08-28T20:09:14.254017Z", + "shell.execute_reply": "2024-08-28T20:09:14.253514Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:31.985036Z", - "iopub.status.busy": "2024-08-26T15:54:31.984064Z", - "iopub.status.idle": "2024-08-26T15:54:34.095091Z", - "shell.execute_reply": "2024-08-26T15:54:34.094037Z" + "iopub.execute_input": "2024-08-28T20:09:14.256490Z", + "iopub.status.busy": "2024-08-28T20:09:14.256096Z", + "iopub.status.idle": "2024-08-28T20:09:16.217332Z", + "shell.execute_reply": "2024-08-28T20:09:16.216596Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.099316Z", - "iopub.status.busy": "2024-08-26T15:54:34.098088Z", - "iopub.status.idle": "2024-08-26T15:54:34.124948Z", - "shell.execute_reply": "2024-08-26T15:54:34.124391Z" + "iopub.execute_input": "2024-08-28T20:09:16.220230Z", + "iopub.status.busy": "2024-08-28T20:09:16.219803Z", + "iopub.status.idle": "2024-08-28T20:09:16.243903Z", + "shell.execute_reply": "2024-08-28T20:09:16.243330Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.128745Z", - "iopub.status.busy": "2024-08-26T15:54:34.127878Z", - "iopub.status.idle": "2024-08-26T15:54:34.137226Z", - "shell.execute_reply": "2024-08-26T15:54:34.136493Z" + "iopub.execute_input": "2024-08-28T20:09:16.246452Z", + "iopub.status.busy": "2024-08-28T20:09:16.246037Z", + "iopub.status.idle": "2024-08-28T20:09:16.255941Z", + "shell.execute_reply": "2024-08-28T20:09:16.255493Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.139822Z", - "iopub.status.busy": "2024-08-26T15:54:34.139392Z", - "iopub.status.idle": "2024-08-26T15:54:34.143990Z", - "shell.execute_reply": "2024-08-26T15:54:34.143494Z" + "iopub.execute_input": "2024-08-28T20:09:16.258230Z", + "iopub.status.busy": "2024-08-28T20:09:16.257870Z", + "iopub.status.idle": "2024-08-28T20:09:16.262445Z", + "shell.execute_reply": "2024-08-28T20:09:16.262017Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.146004Z", - "iopub.status.busy": "2024-08-26T15:54:34.145827Z", - "iopub.status.idle": "2024-08-26T15:54:34.152551Z", - "shell.execute_reply": "2024-08-26T15:54:34.152042Z" + "iopub.execute_input": "2024-08-28T20:09:16.264669Z", + "iopub.status.busy": "2024-08-28T20:09:16.264314Z", + "iopub.status.idle": "2024-08-28T20:09:16.270741Z", + "shell.execute_reply": "2024-08-28T20:09:16.270305Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.154784Z", - "iopub.status.busy": "2024-08-26T15:54:34.154411Z", - "iopub.status.idle": "2024-08-26T15:54:34.162610Z", - "shell.execute_reply": "2024-08-26T15:54:34.162016Z" + "iopub.execute_input": "2024-08-28T20:09:16.273002Z", + "iopub.status.busy": "2024-08-28T20:09:16.272647Z", + "iopub.status.idle": "2024-08-28T20:09:16.279067Z", + "shell.execute_reply": "2024-08-28T20:09:16.278632Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.165047Z", - "iopub.status.busy": "2024-08-26T15:54:34.164702Z", - "iopub.status.idle": "2024-08-26T15:54:34.170937Z", - "shell.execute_reply": "2024-08-26T15:54:34.170346Z" + "iopub.execute_input": "2024-08-28T20:09:16.281168Z", + "iopub.status.busy": "2024-08-28T20:09:16.280836Z", + "iopub.status.idle": "2024-08-28T20:09:16.286515Z", + "shell.execute_reply": "2024-08-28T20:09:16.285987Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.173239Z", - "iopub.status.busy": "2024-08-26T15:54:34.172892Z", - "iopub.status.idle": "2024-08-26T15:54:34.181824Z", - "shell.execute_reply": "2024-08-26T15:54:34.181227Z" + "iopub.execute_input": "2024-08-28T20:09:16.288678Z", + "iopub.status.busy": "2024-08-28T20:09:16.288295Z", + "iopub.status.idle": "2024-08-28T20:09:16.296683Z", + "shell.execute_reply": "2024-08-28T20:09:16.296125Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.184176Z", - "iopub.status.busy": "2024-08-26T15:54:34.183819Z", - "iopub.status.idle": "2024-08-26T15:54:34.189592Z", - "shell.execute_reply": "2024-08-26T15:54:34.189013Z" + "iopub.execute_input": "2024-08-28T20:09:16.298685Z", + "iopub.status.busy": "2024-08-28T20:09:16.298350Z", + "iopub.status.idle": "2024-08-28T20:09:16.303747Z", + "shell.execute_reply": "2024-08-28T20:09:16.303176Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.191826Z", - "iopub.status.busy": "2024-08-26T15:54:34.191485Z", - "iopub.status.idle": "2024-08-26T15:54:34.197135Z", - "shell.execute_reply": "2024-08-26T15:54:34.196593Z" + "iopub.execute_input": "2024-08-28T20:09:16.305874Z", + "iopub.status.busy": "2024-08-28T20:09:16.305529Z", + "iopub.status.idle": "2024-08-28T20:09:16.311138Z", + "shell.execute_reply": "2024-08-28T20:09:16.310579Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.199323Z", - "iopub.status.busy": "2024-08-26T15:54:34.198999Z", - "iopub.status.idle": "2024-08-26T15:54:34.202390Z", - "shell.execute_reply": "2024-08-26T15:54:34.201850Z" + "iopub.execute_input": "2024-08-28T20:09:16.313281Z", + "iopub.status.busy": "2024-08-28T20:09:16.312953Z", + "iopub.status.idle": "2024-08-28T20:09:16.316148Z", + "shell.execute_reply": "2024-08-28T20:09:16.315629Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.204586Z", - "iopub.status.busy": "2024-08-26T15:54:34.204241Z", - "iopub.status.idle": "2024-08-26T15:54:34.209327Z", - "shell.execute_reply": "2024-08-26T15:54:34.208871Z" + "iopub.execute_input": "2024-08-28T20:09:16.318258Z", + "iopub.status.busy": "2024-08-28T20:09:16.317859Z", + "iopub.status.idle": "2024-08-28T20:09:16.322985Z", + "shell.execute_reply": "2024-08-28T20:09:16.322533Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 31cb3f500..871dee6a0 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:38.759112Z", - "iopub.status.busy": "2024-08-26T15:54:38.758919Z", - "iopub.status.idle": "2024-08-26T15:54:39.215433Z", - "shell.execute_reply": "2024-08-26T15:54:39.214907Z" + "iopub.execute_input": "2024-08-28T20:09:19.771331Z", + "iopub.status.busy": "2024-08-28T20:09:19.771170Z", + "iopub.status.idle": "2024-08-28T20:09:20.203947Z", + "shell.execute_reply": "2024-08-28T20:09:20.203422Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:39.218396Z", - "iopub.status.busy": "2024-08-26T15:54:39.217877Z", - "iopub.status.idle": "2024-08-26T15:54:39.353724Z", - "shell.execute_reply": "2024-08-26T15:54:39.353143Z" + "iopub.execute_input": "2024-08-28T20:09:20.206510Z", + "iopub.status.busy": "2024-08-28T20:09:20.206092Z", + "iopub.status.idle": "2024-08-28T20:09:20.338932Z", + "shell.execute_reply": "2024-08-28T20:09:20.338305Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:39.356009Z", - "iopub.status.busy": "2024-08-26T15:54:39.355760Z", - "iopub.status.idle": "2024-08-26T15:54:39.380390Z", - "shell.execute_reply": "2024-08-26T15:54:39.379777Z" + "iopub.execute_input": "2024-08-28T20:09:20.341381Z", + "iopub.status.busy": "2024-08-28T20:09:20.340976Z", + "iopub.status.idle": "2024-08-28T20:09:20.363703Z", + "shell.execute_reply": "2024-08-28T20:09:20.363138Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:39.383260Z", - "iopub.status.busy": "2024-08-26T15:54:39.382742Z", - "iopub.status.idle": "2024-08-26T15:54:42.387338Z", - "shell.execute_reply": "2024-08-26T15:54:42.386595Z" + "iopub.execute_input": "2024-08-28T20:09:20.366713Z", + "iopub.status.busy": "2024-08-28T20:09:20.366163Z", + "iopub.status.idle": "2024-08-28T20:09:23.163182Z", + "shell.execute_reply": "2024-08-28T20:09:23.162494Z" } }, "outputs": [ @@ -235,7 +235,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 524 issues found in the dataset.\n" + "Audit complete. 523 issues found in the dataset.\n" ] }, { @@ -280,13 +280,13 @@ " \n", " 2\n", " outlier\n", - " 0.356925\n", - " 363\n", + " 0.356959\n", + " 362\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619581\n", + " 0.619565\n", " 108\n", " \n", " \n", @@ -315,8 +315,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356925 363\n", - "3 near_duplicate 0.619581 108\n", + "2 outlier 0.356959 362\n", + "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651838 0" @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:42.390104Z", - "iopub.status.busy": "2024-08-26T15:54:42.389566Z", - "iopub.status.idle": "2024-08-26T15:54:52.329674Z", - "shell.execute_reply": "2024-08-26T15:54:52.329133Z" + "iopub.execute_input": "2024-08-28T20:09:23.166128Z", + "iopub.status.busy": "2024-08-28T20:09:23.165571Z", + "iopub.status.idle": "2024-08-28T20:09:32.198950Z", + "shell.execute_reply": "2024-08-28T20:09:32.198342Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:52.332096Z", - "iopub.status.busy": "2024-08-26T15:54:52.331674Z", - "iopub.status.idle": "2024-08-26T15:54:52.493633Z", - "shell.execute_reply": "2024-08-26T15:54:52.492929Z" + "iopub.execute_input": "2024-08-28T20:09:32.201273Z", + "iopub.status.busy": "2024-08-28T20:09:32.200874Z", + "iopub.status.idle": "2024-08-28T20:09:32.359974Z", + "shell.execute_reply": "2024-08-28T20:09:32.359321Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:52.496177Z", - "iopub.status.busy": "2024-08-26T15:54:52.495969Z", - "iopub.status.idle": "2024-08-26T15:54:53.925137Z", - "shell.execute_reply": "2024-08-26T15:54:53.924517Z" + "iopub.execute_input": "2024-08-28T20:09:32.362593Z", + "iopub.status.busy": "2024-08-28T20:09:32.362241Z", + "iopub.status.idle": "2024-08-28T20:09:33.706259Z", + "shell.execute_reply": "2024-08-28T20:09:33.705764Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:53.927691Z", - "iopub.status.busy": "2024-08-26T15:54:53.927274Z", - "iopub.status.idle": "2024-08-26T15:54:54.361405Z", - "shell.execute_reply": "2024-08-26T15:54:54.360761Z" + "iopub.execute_input": "2024-08-28T20:09:33.708514Z", + "iopub.status.busy": "2024-08-28T20:09:33.708155Z", + "iopub.status.idle": "2024-08-28T20:09:34.142519Z", + "shell.execute_reply": "2024-08-28T20:09:34.141938Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.364105Z", - "iopub.status.busy": "2024-08-26T15:54:54.363404Z", - "iopub.status.idle": "2024-08-26T15:54:54.377500Z", - "shell.execute_reply": "2024-08-26T15:54:54.377021Z" + "iopub.execute_input": "2024-08-28T20:09:34.144941Z", + "iopub.status.busy": "2024-08-28T20:09:34.144511Z", + "iopub.status.idle": "2024-08-28T20:09:34.157689Z", + "shell.execute_reply": "2024-08-28T20:09:34.157230Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.379842Z", - "iopub.status.busy": "2024-08-26T15:54:54.379476Z", - "iopub.status.idle": "2024-08-26T15:54:54.398245Z", - "shell.execute_reply": "2024-08-26T15:54:54.397742Z" + "iopub.execute_input": "2024-08-28T20:09:34.159753Z", + "iopub.status.busy": "2024-08-28T20:09:34.159414Z", + "iopub.status.idle": "2024-08-28T20:09:34.180259Z", + "shell.execute_reply": "2024-08-28T20:09:34.179666Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.400658Z", - "iopub.status.busy": "2024-08-26T15:54:54.400452Z", - "iopub.status.idle": "2024-08-26T15:54:54.629761Z", - "shell.execute_reply": "2024-08-26T15:54:54.629093Z" + "iopub.execute_input": "2024-08-28T20:09:34.182439Z", + "iopub.status.busy": "2024-08-28T20:09:34.182121Z", + "iopub.status.idle": "2024-08-28T20:09:34.410667Z", + "shell.execute_reply": "2024-08-28T20:09:34.410121Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.632497Z", - "iopub.status.busy": "2024-08-26T15:54:54.632295Z", - "iopub.status.idle": "2024-08-26T15:54:54.651943Z", - "shell.execute_reply": "2024-08-26T15:54:54.651403Z" + "iopub.execute_input": "2024-08-28T20:09:34.413358Z", + "iopub.status.busy": "2024-08-28T20:09:34.412952Z", + "iopub.status.idle": "2024-08-28T20:09:34.432227Z", + "shell.execute_reply": "2024-08-28T20:09:34.431652Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.654296Z", - "iopub.status.busy": "2024-08-26T15:54:54.653851Z", - "iopub.status.idle": "2024-08-26T15:54:54.833100Z", - "shell.execute_reply": "2024-08-26T15:54:54.832491Z" + "iopub.execute_input": "2024-08-28T20:09:34.434365Z", + "iopub.status.busy": "2024-08-28T20:09:34.434181Z", + "iopub.status.idle": "2024-08-28T20:09:34.602467Z", + "shell.execute_reply": "2024-08-28T20:09:34.601833Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.835717Z", - "iopub.status.busy": "2024-08-26T15:54:54.835357Z", - "iopub.status.idle": "2024-08-26T15:54:54.846192Z", - "shell.execute_reply": "2024-08-26T15:54:54.845635Z" + "iopub.execute_input": "2024-08-28T20:09:34.604828Z", + "iopub.status.busy": "2024-08-28T20:09:34.604472Z", + "iopub.status.idle": "2024-08-28T20:09:34.615166Z", + "shell.execute_reply": "2024-08-28T20:09:34.614723Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.848487Z", - "iopub.status.busy": "2024-08-26T15:54:54.848109Z", - "iopub.status.idle": "2024-08-26T15:54:54.858309Z", - "shell.execute_reply": "2024-08-26T15:54:54.857736Z" + "iopub.execute_input": "2024-08-28T20:09:34.617275Z", + "iopub.status.busy": "2024-08-28T20:09:34.616929Z", + "iopub.status.idle": "2024-08-28T20:09:34.626310Z", + "shell.execute_reply": "2024-08-28T20:09:34.625742Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.860474Z", - "iopub.status.busy": "2024-08-26T15:54:54.860145Z", - "iopub.status.idle": "2024-08-26T15:54:54.891303Z", - "shell.execute_reply": "2024-08-26T15:54:54.890732Z" + "iopub.execute_input": "2024-08-28T20:09:34.628402Z", + "iopub.status.busy": "2024-08-28T20:09:34.628075Z", + "iopub.status.idle": "2024-08-28T20:09:34.656362Z", + "shell.execute_reply": "2024-08-28T20:09:34.655916Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.893833Z", - "iopub.status.busy": "2024-08-26T15:54:54.893622Z", - "iopub.status.idle": "2024-08-26T15:54:54.896886Z", - "shell.execute_reply": "2024-08-26T15:54:54.896321Z" + "iopub.execute_input": "2024-08-28T20:09:34.658402Z", + "iopub.status.busy": "2024-08-28T20:09:34.658088Z", + "iopub.status.idle": "2024-08-28T20:09:34.661602Z", + "shell.execute_reply": "2024-08-28T20:09:34.661038Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.899294Z", - "iopub.status.busy": "2024-08-26T15:54:54.899092Z", - "iopub.status.idle": "2024-08-26T15:54:54.921704Z", - "shell.execute_reply": "2024-08-26T15:54:54.921193Z" + "iopub.execute_input": "2024-08-28T20:09:34.663991Z", + "iopub.status.busy": "2024-08-28T20:09:34.663488Z", + "iopub.status.idle": "2024-08-28T20:09:34.683082Z", + "shell.execute_reply": "2024-08-28T20:09:34.682507Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.924185Z", - "iopub.status.busy": "2024-08-26T15:54:54.923777Z", - "iopub.status.idle": "2024-08-26T15:54:54.928341Z", - "shell.execute_reply": "2024-08-26T15:54:54.927835Z" + "iopub.execute_input": "2024-08-28T20:09:34.685882Z", + "iopub.status.busy": "2024-08-28T20:09:34.685523Z", + "iopub.status.idle": "2024-08-28T20:09:34.689889Z", + "shell.execute_reply": "2024-08-28T20:09:34.689329Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.930649Z", - "iopub.status.busy": "2024-08-26T15:54:54.930228Z", - "iopub.status.idle": "2024-08-26T15:54:54.960760Z", - "shell.execute_reply": "2024-08-26T15:54:54.960179Z" + "iopub.execute_input": "2024-08-28T20:09:34.692045Z", + "iopub.status.busy": "2024-08-28T20:09:34.691734Z", + "iopub.status.idle": "2024-08-28T20:09:34.719349Z", + "shell.execute_reply": "2024-08-28T20:09:34.718791Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.962902Z", - "iopub.status.busy": "2024-08-26T15:54:54.962733Z", - "iopub.status.idle": "2024-08-26T15:54:55.346958Z", - "shell.execute_reply": "2024-08-26T15:54:55.346287Z" + "iopub.execute_input": "2024-08-28T20:09:34.721368Z", + "iopub.status.busy": "2024-08-28T20:09:34.721192Z", + "iopub.status.idle": "2024-08-28T20:09:35.096535Z", + "shell.execute_reply": "2024-08-28T20:09:35.095967Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.349542Z", - "iopub.status.busy": "2024-08-26T15:54:55.349079Z", - "iopub.status.idle": "2024-08-26T15:54:55.352764Z", - "shell.execute_reply": "2024-08-26T15:54:55.352277Z" + "iopub.execute_input": "2024-08-28T20:09:35.098846Z", + "iopub.status.busy": "2024-08-28T20:09:35.098502Z", + "iopub.status.idle": "2024-08-28T20:09:35.101520Z", + "shell.execute_reply": "2024-08-28T20:09:35.100965Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.354939Z", - "iopub.status.busy": "2024-08-26T15:54:55.354758Z", - "iopub.status.idle": "2024-08-26T15:54:55.368773Z", - "shell.execute_reply": "2024-08-26T15:54:55.368258Z" + "iopub.execute_input": "2024-08-28T20:09:35.103783Z", + "iopub.status.busy": "2024-08-28T20:09:35.103361Z", + "iopub.status.idle": "2024-08-28T20:09:35.116412Z", + "shell.execute_reply": "2024-08-28T20:09:35.115852Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.370932Z", - "iopub.status.busy": "2024-08-26T15:54:55.370737Z", - "iopub.status.idle": "2024-08-26T15:54:55.384935Z", - "shell.execute_reply": "2024-08-26T15:54:55.384436Z" + "iopub.execute_input": "2024-08-28T20:09:35.118590Z", + "iopub.status.busy": "2024-08-28T20:09:35.118284Z", + "iopub.status.idle": "2024-08-28T20:09:35.132156Z", + "shell.execute_reply": "2024-08-28T20:09:35.131576Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.386984Z", - "iopub.status.busy": "2024-08-26T15:54:55.386797Z", - "iopub.status.idle": "2024-08-26T15:54:55.397034Z", - "shell.execute_reply": "2024-08-26T15:54:55.396567Z" + "iopub.execute_input": "2024-08-28T20:09:35.134170Z", + "iopub.status.busy": "2024-08-28T20:09:35.133995Z", + "iopub.status.idle": "2024-08-28T20:09:35.144075Z", + "shell.execute_reply": "2024-08-28T20:09:35.143637Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.399330Z", - "iopub.status.busy": "2024-08-26T15:54:55.398981Z", - "iopub.status.idle": "2024-08-26T15:54:55.411666Z", - "shell.execute_reply": "2024-08-26T15:54:55.411018Z" + "iopub.execute_input": "2024-08-28T20:09:35.146067Z", + "iopub.status.busy": "2024-08-28T20:09:35.145755Z", + "iopub.status.idle": "2024-08-28T20:09:35.155082Z", + "shell.execute_reply": "2024-08-28T20:09:35.154534Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.413957Z", - "iopub.status.busy": "2024-08-26T15:54:55.413597Z", - "iopub.status.idle": "2024-08-26T15:54:55.417808Z", - "shell.execute_reply": "2024-08-26T15:54:55.417214Z" + "iopub.execute_input": "2024-08-28T20:09:35.157246Z", + "iopub.status.busy": "2024-08-28T20:09:35.156929Z", + "iopub.status.idle": "2024-08-28T20:09:35.160669Z", + "shell.execute_reply": "2024-08-28T20:09:35.160100Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.419969Z", - "iopub.status.busy": "2024-08-26T15:54:55.419603Z", - "iopub.status.idle": "2024-08-26T15:54:55.473799Z", - "shell.execute_reply": "2024-08-26T15:54:55.473155Z" + "iopub.execute_input": "2024-08-28T20:09:35.162741Z", + "iopub.status.busy": "2024-08-28T20:09:35.162428Z", + "iopub.status.idle": "2024-08-28T20:09:35.215815Z", + "shell.execute_reply": "2024-08-28T20:09:35.215313Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.476497Z", - "iopub.status.busy": "2024-08-26T15:54:55.476108Z", - "iopub.status.idle": "2024-08-26T15:54:55.482513Z", - "shell.execute_reply": "2024-08-26T15:54:55.482004Z" + "iopub.execute_input": "2024-08-28T20:09:35.218083Z", + "iopub.status.busy": "2024-08-28T20:09:35.217770Z", + "iopub.status.idle": "2024-08-28T20:09:35.223588Z", + "shell.execute_reply": "2024-08-28T20:09:35.223033Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.484790Z", - "iopub.status.busy": "2024-08-26T15:54:55.484410Z", - "iopub.status.idle": "2024-08-26T15:54:55.496714Z", - "shell.execute_reply": "2024-08-26T15:54:55.496092Z" + "iopub.execute_input": "2024-08-28T20:09:35.225688Z", + "iopub.status.busy": "2024-08-28T20:09:35.225385Z", + "iopub.status.idle": "2024-08-28T20:09:35.236584Z", + "shell.execute_reply": "2024-08-28T20:09:35.236071Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.499254Z", - "iopub.status.busy": "2024-08-26T15:54:55.498866Z", - "iopub.status.idle": "2024-08-26T15:54:55.724139Z", - "shell.execute_reply": "2024-08-26T15:54:55.723536Z" + "iopub.execute_input": "2024-08-28T20:09:35.238858Z", + "iopub.status.busy": "2024-08-28T20:09:35.238517Z", + "iopub.status.idle": "2024-08-28T20:09:35.456565Z", + "shell.execute_reply": "2024-08-28T20:09:35.455950Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.726595Z", - "iopub.status.busy": "2024-08-26T15:54:55.726210Z", - "iopub.status.idle": "2024-08-26T15:54:55.734094Z", - "shell.execute_reply": "2024-08-26T15:54:55.733584Z" + "iopub.execute_input": "2024-08-28T20:09:35.458606Z", + "iopub.status.busy": "2024-08-28T20:09:35.458425Z", + "iopub.status.idle": "2024-08-28T20:09:35.466361Z", + "shell.execute_reply": "2024-08-28T20:09:35.465896Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.736292Z", - "iopub.status.busy": "2024-08-26T15:54:55.736100Z", - "iopub.status.idle": "2024-08-26T15:54:56.057866Z", - "shell.execute_reply": "2024-08-26T15:54:56.057124Z" + "iopub.execute_input": "2024-08-28T20:09:35.468333Z", + "iopub.status.busy": "2024-08-28T20:09:35.468162Z", + "iopub.status.idle": "2024-08-28T20:09:35.863532Z", + "shell.execute_reply": "2024-08-28T20:09:35.862713Z" } }, "outputs": [ @@ -3767,18 +3767,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-26 15:54:55-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "--2024-08-28 20:09:35-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.006s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.02s \r\n", "\r\n", - "2024-08-26 15:54:55 (154 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-28 20:09:35 (39.8 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3794,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:56.060997Z", - "iopub.status.busy": "2024-08-26T15:54:56.060557Z", - "iopub.status.idle": "2024-08-26T15:54:58.138446Z", - "shell.execute_reply": "2024-08-26T15:54:58.137906Z" + "iopub.execute_input": "2024-08-28T20:09:35.866285Z", + "iopub.status.busy": "2024-08-28T20:09:35.865904Z", + "iopub.status.idle": "2024-08-28T20:09:37.764093Z", + "shell.execute_reply": "2024-08-28T20:09:37.763557Z" } }, "outputs": [], @@ -3843,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:58.141238Z", - "iopub.status.busy": "2024-08-26T15:54:58.140850Z", - "iopub.status.idle": "2024-08-26T15:54:58.752163Z", - "shell.execute_reply": "2024-08-26T15:54:58.751466Z" + "iopub.execute_input": "2024-08-28T20:09:37.766603Z", + "iopub.status.busy": "2024-08-28T20:09:37.766166Z", + "iopub.status.idle": "2024-08-28T20:09:38.351459Z", + "shell.execute_reply": "2024-08-28T20:09:38.350870Z" } }, "outputs": [ @@ -3861,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "63dbd4115b6c44af98b9c5935a224c07", + "model_id": "4322b40d9d9d4ab8aef6e13f56617119", "version_major": 2, "version_minor": 0 }, @@ -3982,10 +3989,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:58.755525Z", - "iopub.status.busy": "2024-08-26T15:54:58.754971Z", - "iopub.status.idle": "2024-08-26T15:54:58.770115Z", - "shell.execute_reply": "2024-08-26T15:54:58.769480Z" + "iopub.execute_input": "2024-08-28T20:09:38.353974Z", + "iopub.status.busy": "2024-08-28T20:09:38.353623Z", + "iopub.status.idle": "2024-08-28T20:09:38.366606Z", + "shell.execute_reply": "2024-08-28T20:09:38.366114Z" } }, "outputs": [ @@ -4104,35 +4111,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " True\n", " 0.237196\n", + " True\n", " \n", " \n", " 1\n", - " True\n", " 0.197229\n", + " True\n", " \n", " \n", " 2\n", - " True\n", " 0.254188\n", + " True\n", " \n", " \n", " 3\n", - " True\n", " 0.229170\n", + " True\n", " \n", " \n", " 4\n", - " True\n", " 0.208907\n", + " True\n", " \n", " \n", " ...\n", @@ -4141,28 +4148,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4170,18 +4177,18 @@ "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 True 0.237196\n", - "1 True 0.197229\n", - "2 True 0.254188\n", - "3 True 0.229170\n", - "4 True 0.208907\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.237196 True\n", + "1 0.197229 True\n", + "2 0.254188 True\n", + "3 0.229170 True\n", + "4 0.208907 True\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4231,10 +4238,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:58.772597Z", - "iopub.status.busy": "2024-08-26T15:54:58.772400Z", - "iopub.status.idle": "2024-08-26T15:54:58.895082Z", - "shell.execute_reply": "2024-08-26T15:54:58.894419Z" + "iopub.execute_input": "2024-08-28T20:09:38.369011Z", + "iopub.status.busy": "2024-08-28T20:09:38.368695Z", + "iopub.status.idle": "2024-08-28T20:09:38.515686Z", + "shell.execute_reply": "2024-08-28T20:09:38.515165Z" } }, "outputs": [ @@ -4299,10 +4306,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:58.897672Z", - "iopub.status.busy": "2024-08-26T15:54:58.897456Z", - "iopub.status.idle": "2024-08-26T15:54:59.422521Z", - "shell.execute_reply": "2024-08-26T15:54:59.421729Z" + "iopub.execute_input": "2024-08-28T20:09:38.517747Z", + "iopub.status.busy": "2024-08-28T20:09:38.517559Z", + "iopub.status.idle": "2024-08-28T20:09:39.025045Z", + "shell.execute_reply": "2024-08-28T20:09:39.024482Z" }, "nbsphinx": "hidden" }, @@ -4318,7 +4325,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b55b762924964f2b825d874228965ad4", + "model_id": "7c3afb042d2747a2b9698fc94fd979a6", "version_major": 2, "version_minor": 0 }, @@ -4447,35 +4454,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " False\n", " 0.797509\n", + " False\n", " \n", " \n", " 1\n", - " False\n", " 0.663760\n", + " False\n", " \n", " \n", " 2\n", - " False\n", " 0.849826\n", + " False\n", " \n", " \n", " 3\n", - " False\n", " 0.773951\n", + " False\n", " \n", " \n", " 4\n", - " False\n", " 0.699518\n", + " False\n", " \n", " \n", " ...\n", @@ -4484,28 +4491,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4513,18 +4520,18 @@ "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 False 0.797509\n", - "1 False 0.663760\n", - "2 False 0.849826\n", - "3 False 0.773951\n", - "4 False 0.699518\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.797509 False\n", + "1 0.663760 False\n", + "2 0.849826 False\n", + "3 0.773951 False\n", + "4 0.699518 False\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4572,10 +4579,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:59.425974Z", - "iopub.status.busy": "2024-08-26T15:54:59.425433Z", - "iopub.status.idle": "2024-08-26T15:54:59.582023Z", - "shell.execute_reply": "2024-08-26T15:54:59.581243Z" + "iopub.execute_input": "2024-08-28T20:09:39.027424Z", + "iopub.status.busy": "2024-08-28T20:09:39.027037Z", + "iopub.status.idle": "2024-08-28T20:09:39.175320Z", + "shell.execute_reply": "2024-08-28T20:09:39.174739Z" }, "nbsphinx": "hidden" }, @@ -4627,7 +4634,105 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "031221d4552242de82a8d6939c285e86": { + "03d76ea65c1b485fb33eb6b327243377": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "125e7ed29fc443f68644190f7b1b7f5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1632964b44474af9ba814fc5486e79ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8b95e7341d1c4cbf8b808ee7a2bf3d04", + "placeholder": "​", + "style": "IPY_MODEL_1b8c3d4032d2468d82f5c2fe540be3bc", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 740.52it/s]" + } + }, + "1b8c3d4032d2468d82f5c2fe540be3bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1eaa69bd36984833ab0976da32934c4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_693334c36160456eaf6763f26404db56", + "placeholder": "​", + "style": "IPY_MODEL_feb48a234da14a18a41d39b0ff914426", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 708.79it/s]" + } + }, + "2c71fb5f644949f8b865f10b2ac7b58f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4680,30 +4785,57 @@ "width": null } }, - "0386df784eda450ba40b983fcae38725": { + "4322b40d9d9d4ab8aef6e13f56617119": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f1fecad7f41140458947b8cf6168d28f", + "IPY_MODEL_b63af9ae9c30425eb2539f0c3d177030", + "IPY_MODEL_1632964b44474af9ba814fc5486e79ad" + ], + "layout": "IPY_MODEL_ab63b666d0f44bbab1e2f6f1fd721709", + "tabbable": null, + "tooltip": null + } + }, + "4fe1a360972a4d30bbb7e140b3c8a93e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fefe95cb553540c3994456b477c2fb5f", - "placeholder": "​", - "style": "IPY_MODEL_d42e5e4fe59048ad8dfe2cb418b83969", + "layout": "IPY_MODEL_97088966d6bf49ef9042d40868863612", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6477dd1889bf4ec7bfaf5725f6ce5c28", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 200.0 } }, - "3064a08da676433a85c99d01070354cd": { + "5d0060cc551d4e4394a1a8282dc3f61e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4718,15 +4850,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_84f86748a7e84b4bbb8e32a900b8a63e", + "layout": "IPY_MODEL_2c71fb5f644949f8b865f10b2ac7b58f", "placeholder": "​", - "style": "IPY_MODEL_54472803299340ed90898ae4a015b484", + "style": "IPY_MODEL_62140afad1fe40eb88c760d87f80ff55", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 691.59it/s]" + "value": "100%" } }, - "41aeb9b2c3df4a2599a18579e42e4dc9": { + "62140afad1fe40eb88c760d87f80ff55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4744,7 +4876,23 @@ "text_color": null } }, - "44b903d5acd1475d885219d5ec3f09d9": { + "6477dd1889bf4ec7bfaf5725f6ce5c28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "68fb2c6a17d845c78c86453241f16f54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4797,7 +4945,7 @@ "width": null } }, - "4f38e0a5bc5f4ded9cf3eceb2d703d97": { + "693334c36160456eaf6763f26404db56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4850,25 +4998,31 @@ "width": null } }, - "54472803299340ed90898ae4a015b484": { + "7c3afb042d2747a2b9698fc94fd979a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d0060cc551d4e4394a1a8282dc3f61e", + "IPY_MODEL_4fe1a360972a4d30bbb7e140b3c8a93e", + "IPY_MODEL_1eaa69bd36984833ab0976da32934c4b" + ], + "layout": "IPY_MODEL_e2d0c1877c5c4fc191a0f91fa66f55e0", + "tabbable": null, + "tooltip": null } }, - "61c56e7ec1114450b4ef18775fd912ac": { + "8b95e7341d1c4cbf8b808ee7a2bf3d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4921,83 +5075,7 @@ "width": null } }, - "63dbd4115b6c44af98b9c5935a224c07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c198bfac238c45c78af9310d7da235f8", - "IPY_MODEL_81ddd7e821164aaeb9ec368f6e04be05", - "IPY_MODEL_90ab6f703998499dbd5894f3bb139415" - ], - "layout": "IPY_MODEL_bb45198d12cc4ed38bf999a04af95957", - "tabbable": null, - "tooltip": null - } - }, - "64d272c54f184fbbbd4f30efdac1f499": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ece1e0931b894627a03fc03dc266e3cb", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b402c802ab0a467bb5f7a66e0531d41a", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "81ddd7e821164aaeb9ec368f6e04be05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44b903d5acd1475d885219d5ec3f09d9", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_89f40cd49e5d4715b11046823db4e398", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "84f86748a7e84b4bbb8e32a900b8a63e": { + "91edda880e8e400b88c6457e5ae7988d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5050,86 +5128,7 @@ "width": null } }, - "89f40cd49e5d4715b11046823db4e398": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "90ab6f703998499dbd5894f3bb139415": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_61c56e7ec1114450b4ef18775fd912ac", - "placeholder": "​", - "style": "IPY_MODEL_41aeb9b2c3df4a2599a18579e42e4dc9", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 755.19it/s]" - } - }, - "b402c802ab0a467bb5f7a66e0531d41a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b55b762924964f2b825d874228965ad4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0386df784eda450ba40b983fcae38725", - "IPY_MODEL_64d272c54f184fbbbd4f30efdac1f499", - "IPY_MODEL_3064a08da676433a85c99d01070354cd" - ], - "layout": "IPY_MODEL_4f38e0a5bc5f4ded9cf3eceb2d703d97", - "tabbable": null, - "tooltip": null - } - }, - "bb45198d12cc4ed38bf999a04af95957": { + "97088966d6bf49ef9042d40868863612": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5182,66 +5181,7 @@ "width": null } }, - "c198bfac238c45c78af9310d7da235f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_031221d4552242de82a8d6939c285e86", - "placeholder": "​", - "style": "IPY_MODEL_dba0c94b68874339b52fdcf44f5a0a9c", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "d42e5e4fe59048ad8dfe2cb418b83969": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dba0c94b68874339b52fdcf44f5a0a9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ece1e0931b894627a03fc03dc266e3cb": { + "ab63b666d0f44bbab1e2f6f1fd721709": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5294,7 +5234,33 @@ "width": null } }, - "fefe95cb553540c3994456b477c2fb5f": { + "b63af9ae9c30425eb2539f0c3d177030": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_68fb2c6a17d845c78c86453241f16f54", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_125e7ed29fc443f68644190f7b1b7f5a", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "e2d0c1877c5c4fc191a0f91fa66f55e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5346,6 +5312,47 @@ "visibility": null, "width": null } + }, + "f1fecad7f41140458947b8cf6168d28f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_91edda880e8e400b88c6457e5ae7988d", + "placeholder": "​", + "style": "IPY_MODEL_03d76ea65c1b485fb33eb6b327243377", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "feb48a234da14a18a41d39b0ff914426": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index e035bdf3d..07d4a084d 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:04.729366Z", - "iopub.status.busy": "2024-08-26T15:55:04.729194Z", - "iopub.status.idle": "2024-08-26T15:55:05.972664Z", - "shell.execute_reply": "2024-08-26T15:55:05.972009Z" + "iopub.execute_input": "2024-08-28T20:09:43.402499Z", + "iopub.status.busy": "2024-08-28T20:09:43.402325Z", + "iopub.status.idle": "2024-08-28T20:09:44.551413Z", + "shell.execute_reply": "2024-08-28T20:09:44.550780Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:05.975289Z", - "iopub.status.busy": "2024-08-26T15:55:05.974977Z", - "iopub.status.idle": "2024-08-26T15:55:05.977882Z", - "shell.execute_reply": "2024-08-26T15:55:05.977411Z" + "iopub.execute_input": "2024-08-28T20:09:44.553976Z", + "iopub.status.busy": "2024-08-28T20:09:44.553697Z", + "iopub.status.idle": "2024-08-28T20:09:44.556600Z", + "shell.execute_reply": "2024-08-28T20:09:44.556061Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:05.980109Z", - "iopub.status.busy": "2024-08-26T15:55:05.979765Z", - "iopub.status.idle": "2024-08-26T15:55:05.991753Z", - "shell.execute_reply": "2024-08-26T15:55:05.991284Z" + "iopub.execute_input": "2024-08-28T20:09:44.558717Z", + "iopub.status.busy": "2024-08-28T20:09:44.558400Z", + "iopub.status.idle": "2024-08-28T20:09:44.570053Z", + "shell.execute_reply": "2024-08-28T20:09:44.569520Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:05.993825Z", - "iopub.status.busy": "2024-08-26T15:55:05.993487Z", - "iopub.status.idle": "2024-08-26T15:55:11.009786Z", - "shell.execute_reply": "2024-08-26T15:55:11.009261Z" + "iopub.execute_input": "2024-08-28T20:09:44.572055Z", + "iopub.status.busy": "2024-08-28T20:09:44.571734Z", + "iopub.status.idle": "2024-08-28T20:09:49.182461Z", + "shell.execute_reply": "2024-08-28T20:09:49.181873Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index cd7e6f125..4a4e30da4 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:13.442030Z", - "iopub.status.busy": "2024-08-26T15:55:13.441851Z", - "iopub.status.idle": "2024-08-26T15:55:14.631486Z", - "shell.execute_reply": "2024-08-26T15:55:14.630850Z" + "iopub.execute_input": "2024-08-28T20:09:51.382916Z", + "iopub.status.busy": "2024-08-28T20:09:51.382731Z", + "iopub.status.idle": "2024-08-28T20:09:52.551665Z", + "shell.execute_reply": "2024-08-28T20:09:52.551077Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:14.634321Z", - "iopub.status.busy": "2024-08-26T15:55:14.633972Z", - "iopub.status.idle": "2024-08-26T15:55:14.637564Z", - "shell.execute_reply": "2024-08-26T15:55:14.637000Z" + "iopub.execute_input": "2024-08-28T20:09:52.554643Z", + "iopub.status.busy": "2024-08-28T20:09:52.554129Z", + "iopub.status.idle": "2024-08-28T20:09:52.557520Z", + "shell.execute_reply": "2024-08-28T20:09:52.557076Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:14.639738Z", - "iopub.status.busy": "2024-08-26T15:55:14.639415Z", - "iopub.status.idle": "2024-08-26T15:55:18.097283Z", - "shell.execute_reply": "2024-08-26T15:55:18.096607Z" + "iopub.execute_input": "2024-08-28T20:09:52.559786Z", + "iopub.status.busy": "2024-08-28T20:09:52.559360Z", + "iopub.status.idle": "2024-08-28T20:09:55.934061Z", + "shell.execute_reply": "2024-08-28T20:09:55.933289Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.100613Z", - "iopub.status.busy": "2024-08-26T15:55:18.099778Z", - "iopub.status.idle": "2024-08-26T15:55:18.147131Z", - "shell.execute_reply": "2024-08-26T15:55:18.146332Z" + "iopub.execute_input": "2024-08-28T20:09:55.937317Z", + "iopub.status.busy": "2024-08-28T20:09:55.936540Z", + "iopub.status.idle": "2024-08-28T20:09:55.979052Z", + "shell.execute_reply": "2024-08-28T20:09:55.978315Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.149918Z", - "iopub.status.busy": "2024-08-26T15:55:18.149659Z", - "iopub.status.idle": "2024-08-26T15:55:18.194613Z", - "shell.execute_reply": "2024-08-26T15:55:18.193960Z" + "iopub.execute_input": "2024-08-28T20:09:55.981902Z", + "iopub.status.busy": "2024-08-28T20:09:55.981449Z", + "iopub.status.idle": "2024-08-28T20:09:56.016522Z", + "shell.execute_reply": "2024-08-28T20:09:56.015788Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.197370Z", - "iopub.status.busy": "2024-08-26T15:55:18.196976Z", - "iopub.status.idle": "2024-08-26T15:55:18.200210Z", - "shell.execute_reply": "2024-08-26T15:55:18.199730Z" + "iopub.execute_input": "2024-08-28T20:09:56.019213Z", + "iopub.status.busy": "2024-08-28T20:09:56.018851Z", + "iopub.status.idle": "2024-08-28T20:09:56.021994Z", + "shell.execute_reply": "2024-08-28T20:09:56.021523Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.202169Z", - "iopub.status.busy": "2024-08-26T15:55:18.201853Z", - "iopub.status.idle": "2024-08-26T15:55:18.204443Z", - "shell.execute_reply": "2024-08-26T15:55:18.204003Z" + "iopub.execute_input": "2024-08-28T20:09:56.024029Z", + "iopub.status.busy": "2024-08-28T20:09:56.023722Z", + "iopub.status.idle": "2024-08-28T20:09:56.026901Z", + "shell.execute_reply": "2024-08-28T20:09:56.026457Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.206634Z", - "iopub.status.busy": "2024-08-26T15:55:18.206299Z", - "iopub.status.idle": "2024-08-26T15:55:18.234060Z", - "shell.execute_reply": "2024-08-26T15:55:18.233470Z" + "iopub.execute_input": "2024-08-28T20:09:56.029169Z", + "iopub.status.busy": "2024-08-28T20:09:56.028762Z", + "iopub.status.idle": "2024-08-28T20:09:56.058769Z", + "shell.execute_reply": "2024-08-28T20:09:56.058238Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2a2af44ac76147299114dc626eee43c4", + "model_id": "69645958ad064009845003bf5fb6ac71", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7ca424fc2c6645d28c417390b61079d0", + "model_id": "5f378e07f4a84e36ba9d1d73375ede61", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.239779Z", - "iopub.status.busy": "2024-08-26T15:55:18.239275Z", - "iopub.status.idle": "2024-08-26T15:55:18.246226Z", - "shell.execute_reply": "2024-08-26T15:55:18.245812Z" + "iopub.execute_input": "2024-08-28T20:09:56.061062Z", + "iopub.status.busy": "2024-08-28T20:09:56.060647Z", + "iopub.status.idle": "2024-08-28T20:09:56.067141Z", + "shell.execute_reply": "2024-08-28T20:09:56.066724Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.248479Z", - "iopub.status.busy": "2024-08-26T15:55:18.248030Z", - "iopub.status.idle": "2024-08-26T15:55:18.251730Z", - "shell.execute_reply": "2024-08-26T15:55:18.251287Z" + "iopub.execute_input": "2024-08-28T20:09:56.069248Z", + "iopub.status.busy": "2024-08-28T20:09:56.068862Z", + "iopub.status.idle": "2024-08-28T20:09:56.072372Z", + "shell.execute_reply": "2024-08-28T20:09:56.071923Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.253884Z", - "iopub.status.busy": "2024-08-26T15:55:18.253487Z", - "iopub.status.idle": "2024-08-26T15:55:18.260069Z", - "shell.execute_reply": "2024-08-26T15:55:18.259540Z" + "iopub.execute_input": "2024-08-28T20:09:56.074437Z", + "iopub.status.busy": "2024-08-28T20:09:56.074111Z", + "iopub.status.idle": "2024-08-28T20:09:56.080323Z", + "shell.execute_reply": "2024-08-28T20:09:56.079886Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.262054Z", - "iopub.status.busy": "2024-08-26T15:55:18.261730Z", - "iopub.status.idle": "2024-08-26T15:55:18.307972Z", - "shell.execute_reply": "2024-08-26T15:55:18.307332Z" + "iopub.execute_input": "2024-08-28T20:09:56.082350Z", + "iopub.status.busy": "2024-08-28T20:09:56.081947Z", + "iopub.status.idle": "2024-08-28T20:09:56.124532Z", + "shell.execute_reply": "2024-08-28T20:09:56.123915Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.310629Z", - "iopub.status.busy": "2024-08-26T15:55:18.310268Z", - "iopub.status.idle": "2024-08-26T15:55:18.357760Z", - "shell.execute_reply": "2024-08-26T15:55:18.357031Z" + "iopub.execute_input": "2024-08-28T20:09:56.127266Z", + "iopub.status.busy": "2024-08-28T20:09:56.126777Z", + "iopub.status.idle": "2024-08-28T20:09:56.169603Z", + "shell.execute_reply": "2024-08-28T20:09:56.168997Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.360787Z", - "iopub.status.busy": "2024-08-26T15:55:18.360523Z", - "iopub.status.idle": "2024-08-26T15:55:18.502295Z", - "shell.execute_reply": "2024-08-26T15:55:18.501633Z" + "iopub.execute_input": "2024-08-28T20:09:56.172428Z", + "iopub.status.busy": "2024-08-28T20:09:56.172011Z", + "iopub.status.idle": "2024-08-28T20:09:56.301098Z", + "shell.execute_reply": "2024-08-28T20:09:56.300426Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.505049Z", - "iopub.status.busy": "2024-08-26T15:55:18.504411Z", - "iopub.status.idle": "2024-08-26T15:55:21.592362Z", - "shell.execute_reply": "2024-08-26T15:55:21.591759Z" + "iopub.execute_input": "2024-08-28T20:09:56.304077Z", + "iopub.status.busy": "2024-08-28T20:09:56.303425Z", + "iopub.status.idle": "2024-08-28T20:09:59.330707Z", + "shell.execute_reply": "2024-08-28T20:09:59.330034Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:21.594962Z", - "iopub.status.busy": "2024-08-26T15:55:21.594522Z", - "iopub.status.idle": "2024-08-26T15:55:21.655071Z", - "shell.execute_reply": "2024-08-26T15:55:21.654503Z" + "iopub.execute_input": "2024-08-28T20:09:59.333292Z", + "iopub.status.busy": "2024-08-28T20:09:59.332912Z", + "iopub.status.idle": "2024-08-28T20:09:59.393841Z", + "shell.execute_reply": "2024-08-28T20:09:59.393220Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:21.657359Z", - "iopub.status.busy": "2024-08-26T15:55:21.656975Z", - "iopub.status.idle": "2024-08-26T15:55:21.701256Z", - "shell.execute_reply": "2024-08-26T15:55:21.700663Z" + "iopub.execute_input": "2024-08-28T20:09:59.396299Z", + "iopub.status.busy": "2024-08-28T20:09:59.395878Z", + "iopub.status.idle": "2024-08-28T20:09:59.437014Z", + "shell.execute_reply": "2024-08-28T20:09:59.436555Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "bbc89480", + "id": "b7f9d1d0", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "5d407ba9", + "id": "2302d7fe", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "a03d9969", + "id": "212341c9", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "13c020d7", + "id": "3d234115", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:21.703794Z", - "iopub.status.busy": "2024-08-26T15:55:21.703579Z", - "iopub.status.idle": "2024-08-26T15:55:21.712036Z", - "shell.execute_reply": "2024-08-26T15:55:21.711478Z" + "iopub.execute_input": "2024-08-28T20:09:59.439175Z", + "iopub.status.busy": "2024-08-28T20:09:59.438836Z", + "iopub.status.idle": "2024-08-28T20:09:59.446343Z", + "shell.execute_reply": "2024-08-28T20:09:59.445899Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "72e010be", + "id": "e156ed72", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "1114ac9d", + "id": "12a8168e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:21.714247Z", - "iopub.status.busy": "2024-08-26T15:55:21.714055Z", - "iopub.status.idle": "2024-08-26T15:55:21.734317Z", - "shell.execute_reply": "2024-08-26T15:55:21.733774Z" + "iopub.execute_input": "2024-08-28T20:09:59.448433Z", + "iopub.status.busy": "2024-08-28T20:09:59.448022Z", + "iopub.status.idle": "2024-08-28T20:09:59.466539Z", + "shell.execute_reply": "2024-08-28T20:09:59.465999Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "3c29551d", + "id": "29dc954c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:21.736466Z", - "iopub.status.busy": "2024-08-26T15:55:21.736265Z", - "iopub.status.idle": "2024-08-26T15:55:21.739835Z", - "shell.execute_reply": "2024-08-26T15:55:21.739353Z" + "iopub.execute_input": "2024-08-28T20:09:59.468584Z", + "iopub.status.busy": "2024-08-28T20:09:59.468183Z", + "iopub.status.idle": "2024-08-28T20:09:59.471489Z", + "shell.execute_reply": "2024-08-28T20:09:59.470953Z" } }, "outputs": [ @@ -1622,7 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05a2244cf3ec4de397f55f99105338cb": { + "04300abb96824f8097901e94ea9e99ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,7 +1675,23 @@ "width": null } }, - "1438b903a790497086e14479b9616dc7": { + "04e6011848ae4bf6b258e2555a2a13d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "12bf7df1f9204a5095f5e077b9fe4131": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1728,7 +1744,7 @@ "width": null } }, - "1c6eaa0577094c9a9006e09c722e5ff6": { + "14824c09ec074987a007b3fce67e9d6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1743,39 +1759,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_50d2ce3a7ac34f579038361d07764343", + "layout": "IPY_MODEL_a98607043a4b43e8889e3b70a3e2baee", "placeholder": "​", - "style": "IPY_MODEL_bbfc6ad0bb8345c58d4b74e639515d30", + "style": "IPY_MODEL_ce34ab94c1c14fd4b2fadee641a8ce4b", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "value": " 10000/? [00:00<00:00, 898272.55it/s]" } }, - "2a2af44ac76147299114dc626eee43c4": { + "1a270ad84b304c7ea9cee60457aa5f4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1c6eaa0577094c9a9006e09c722e5ff6", - "IPY_MODEL_983216f51406483891526ab9457a17fe", - "IPY_MODEL_bbfb0b9ec3bf49f1aa6f762e6404248b" - ], - "layout": "IPY_MODEL_1438b903a790497086e14479b9616dc7", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e1ff73b86e004ab18abe4ae62da7a7bf", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b4af85b29d3e44e9b817eca2a8003b2d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 50.0 } }, - "35b5b5e73d824538b702d11aa4afe705": { + "1ad391d54ecd46e6a5aca6d96ae5e591": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1791,35 +1809,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8a0ce1dd3c544ef18d0d8f90a54ae31c", + "layout": "IPY_MODEL_84944c49bf154db08af3a935a564dc3f", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fe3712896c7544e98d34ebbe6caa7cab", + "style": "IPY_MODEL_04e6011848ae4bf6b258e2555a2a13d1", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "3627282d21d8407dbe2fbdf4a83ce601": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "425eed607e0b435d951647eabb8299f6": { + "24ae5723404542509e5b6f51370ecacd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1872,60 +1872,66 @@ "width": null } }, - "50d2ce3a7ac34f579038361d07764343": { - "model_module": "@jupyter-widgets/base", + "289811d4b1a14eeaa811b3c509b248a1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1d94bcd37364f09b0385b9834328394", + "placeholder": "​", + "style": "IPY_MODEL_3b5db8fc407b4caa86de5a0c70a8096f", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 937107.11it/s]" + } + }, + "339a117eaa1743738b872acdff8b51da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3b5db8fc407b4caa86de5a0c70a8096f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7ca424fc2c6645d28c417390b61079d0": { + "5f378e07f4a84e36ba9d1d73375ede61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1940,34 +1946,63 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9d7157b027c94034baf26f45124303c3", - "IPY_MODEL_35b5b5e73d824538b702d11aa4afe705", - "IPY_MODEL_9ede3fa639214ec08e51faaf6d0cae4e" + "IPY_MODEL_d0140cbc434c454dbbd2983e38378862", + "IPY_MODEL_1a270ad84b304c7ea9cee60457aa5f4b", + "IPY_MODEL_289811d4b1a14eeaa811b3c509b248a1" ], - "layout": "IPY_MODEL_f628b90d6c5643aaa470e10d15f810a3", + "layout": "IPY_MODEL_04300abb96824f8097901e94ea9e99ed", "tabbable": null, "tooltip": null } }, - "88eb40450c3847efb49e8e1740619fab": { + "65ce80795eb54d63bc661c8c5c91f8ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_98671bd85ca0436ca089cbc4ca37bd47", + "placeholder": "​", + "style": "IPY_MODEL_339a117eaa1743738b872acdff8b51da", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "69645958ad064009845003bf5fb6ac71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_65ce80795eb54d63bc661c8c5c91f8ea", + "IPY_MODEL_1ad391d54ecd46e6a5aca6d96ae5e591", + "IPY_MODEL_14824c09ec074987a007b3fce67e9d6b" + ], + "layout": "IPY_MODEL_24ae5723404542509e5b6f51370ecacd", + "tabbable": null, + "tooltip": null } }, - "8a0ce1dd3c544ef18d0d8f90a54ae31c": { + "84944c49bf154db08af3a935a564dc3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2020,7 +2055,7 @@ "width": null } }, - "8c67a318d7604499be565bddd5519457": { + "98671bd85ca0436ca089cbc4ca37bd47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2073,79 +2108,7 @@ "width": null } }, - "983216f51406483891526ab9457a17fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c67a318d7604499be565bddd5519457", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f221605dbe384754a74ba4a04dd33716", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "9d7157b027c94034baf26f45124303c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_afc69967643547ac9a1e98a88efb89e6", - "placeholder": "​", - "style": "IPY_MODEL_88eb40450c3847efb49e8e1740619fab", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "9ede3fa639214ec08e51faaf6d0cae4e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_05a2244cf3ec4de397f55f99105338cb", - "placeholder": "​", - "style": "IPY_MODEL_3627282d21d8407dbe2fbdf4a83ce601", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1264868.52it/s]" - } - }, - "afc69967643547ac9a1e98a88efb89e6": { + "a98607043a4b43e8889e3b70a3e2baee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2198,48 +2161,41 @@ "width": null } }, - "bbfb0b9ec3bf49f1aa6f762e6404248b": { + "b191693200b24a1e807fc72f45f0e36d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_425eed607e0b435d951647eabb8299f6", - "placeholder": "​", - "style": "IPY_MODEL_e967ae1bd66a4661884711a6b8868e6e", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 899621.22it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bbfc6ad0bb8345c58d4b74e639515d30": { + "b4af85b29d3e44e9b817eca2a8003b2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "e967ae1bd66a4661884711a6b8868e6e": { + "ce34ab94c1c14fd4b2fadee641a8ce4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2257,23 +2213,30 @@ "text_color": null } }, - "f221605dbe384754a74ba4a04dd33716": { + "d0140cbc434c454dbbd2983e38378862": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_12bf7df1f9204a5095f5e077b9fe4131", + "placeholder": "​", + "style": "IPY_MODEL_b191693200b24a1e807fc72f45f0e36d", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "f628b90d6c5643aaa470e10d15f810a3": { + "d1d94bcd37364f09b0385b9834328394": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2326,20 +2289,57 @@ "width": null } }, - "fe3712896c7544e98d34ebbe6caa7cab": { - "model_module": "@jupyter-widgets/controls", + "e1ff73b86e004ab18abe4ae62da7a7bf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index facf398f8..19ee6dad6 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:25.362605Z", - "iopub.status.busy": "2024-08-26T15:55:25.362435Z", - "iopub.status.idle": "2024-08-26T15:55:26.562131Z", - "shell.execute_reply": "2024-08-26T15:55:26.561615Z" + "iopub.execute_input": "2024-08-28T20:10:03.698181Z", + "iopub.status.busy": "2024-08-28T20:10:03.697693Z", + "iopub.status.idle": "2024-08-28T20:10:04.848214Z", + "shell.execute_reply": "2024-08-28T20:10:04.847653Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:26.564541Z", - "iopub.status.busy": "2024-08-26T15:55:26.564234Z", - "iopub.status.idle": "2024-08-26T15:55:26.568038Z", - "shell.execute_reply": "2024-08-26T15:55:26.567585Z" + "iopub.execute_input": "2024-08-28T20:10:04.850654Z", + "iopub.status.busy": "2024-08-28T20:10:04.850372Z", + "iopub.status.idle": "2024-08-28T20:10:04.854045Z", + "shell.execute_reply": "2024-08-28T20:10:04.853602Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:26.569923Z", - "iopub.status.busy": "2024-08-26T15:55:26.569743Z", - "iopub.status.idle": "2024-08-26T15:55:27.245464Z", - "shell.execute_reply": "2024-08-26T15:55:27.244976Z" + "iopub.execute_input": "2024-08-28T20:10:04.856196Z", + "iopub.status.busy": "2024-08-28T20:10:04.855804Z", + "iopub.status.idle": "2024-08-28T20:10:05.126761Z", + "shell.execute_reply": "2024-08-28T20:10:05.126232Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.247644Z", - "iopub.status.busy": "2024-08-26T15:55:27.247303Z", - "iopub.status.idle": "2024-08-26T15:55:27.253437Z", - "shell.execute_reply": "2024-08-26T15:55:27.252957Z" + "iopub.execute_input": "2024-08-28T20:10:05.129122Z", + "iopub.status.busy": "2024-08-28T20:10:05.128606Z", + "iopub.status.idle": "2024-08-28T20:10:05.134645Z", + "shell.execute_reply": "2024-08-28T20:10:05.134110Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.255430Z", - "iopub.status.busy": "2024-08-26T15:55:27.255252Z", - "iopub.status.idle": "2024-08-26T15:55:27.262372Z", - "shell.execute_reply": "2024-08-26T15:55:27.261906Z" + "iopub.execute_input": "2024-08-28T20:10:05.136709Z", + "iopub.status.busy": "2024-08-28T20:10:05.136401Z", + "iopub.status.idle": "2024-08-28T20:10:05.143010Z", + "shell.execute_reply": "2024-08-28T20:10:05.142581Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.264244Z", - "iopub.status.busy": "2024-08-26T15:55:27.264075Z", - "iopub.status.idle": "2024-08-26T15:55:27.268926Z", - "shell.execute_reply": "2024-08-26T15:55:27.268460Z" + "iopub.execute_input": "2024-08-28T20:10:05.145178Z", + "iopub.status.busy": "2024-08-28T20:10:05.144753Z", + "iopub.status.idle": "2024-08-28T20:10:05.149456Z", + "shell.execute_reply": "2024-08-28T20:10:05.149003Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.271052Z", - "iopub.status.busy": "2024-08-26T15:55:27.270697Z", - "iopub.status.idle": "2024-08-26T15:55:27.276370Z", - "shell.execute_reply": "2024-08-26T15:55:27.275886Z" + "iopub.execute_input": "2024-08-28T20:10:05.151440Z", + "iopub.status.busy": "2024-08-28T20:10:05.151111Z", + "iopub.status.idle": "2024-08-28T20:10:05.156514Z", + "shell.execute_reply": "2024-08-28T20:10:05.156008Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.278393Z", - "iopub.status.busy": "2024-08-26T15:55:27.278052Z", - "iopub.status.idle": "2024-08-26T15:55:27.281895Z", - "shell.execute_reply": "2024-08-26T15:55:27.281433Z" + "iopub.execute_input": "2024-08-28T20:10:05.158600Z", + "iopub.status.busy": "2024-08-28T20:10:05.158274Z", + "iopub.status.idle": "2024-08-28T20:10:05.161976Z", + "shell.execute_reply": "2024-08-28T20:10:05.161509Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.283963Z", - "iopub.status.busy": "2024-08-26T15:55:27.283628Z", - "iopub.status.idle": "2024-08-26T15:55:27.349424Z", - "shell.execute_reply": "2024-08-26T15:55:27.348889Z" + "iopub.execute_input": "2024-08-28T20:10:05.163985Z", + "iopub.status.busy": "2024-08-28T20:10:05.163658Z", + "iopub.status.idle": "2024-08-28T20:10:05.228822Z", + "shell.execute_reply": "2024-08-28T20:10:05.228185Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.352059Z", - "iopub.status.busy": "2024-08-26T15:55:27.351755Z", - "iopub.status.idle": "2024-08-26T15:55:27.362726Z", - "shell.execute_reply": "2024-08-26T15:55:27.362212Z" + "iopub.execute_input": "2024-08-28T20:10:05.231583Z", + "iopub.status.busy": "2024-08-28T20:10:05.230979Z", + "iopub.status.idle": "2024-08-28T20:10:05.242319Z", + "shell.execute_reply": "2024-08-28T20:10:05.241793Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.365338Z", - "iopub.status.busy": "2024-08-26T15:55:27.364980Z", - "iopub.status.idle": "2024-08-26T15:55:27.385773Z", - "shell.execute_reply": "2024-08-26T15:55:27.385252Z" + "iopub.execute_input": "2024-08-28T20:10:05.245685Z", + "iopub.status.busy": "2024-08-28T20:10:05.244618Z", + "iopub.status.idle": "2024-08-28T20:10:05.268191Z", + "shell.execute_reply": "2024-08-28T20:10:05.267673Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.388960Z", - "iopub.status.busy": "2024-08-26T15:55:27.388027Z", - "iopub.status.idle": "2024-08-26T15:55:27.394001Z", - "shell.execute_reply": "2024-08-26T15:55:27.393500Z" + "iopub.execute_input": "2024-08-28T20:10:05.271822Z", + "iopub.status.busy": "2024-08-28T20:10:05.270872Z", + "iopub.status.idle": "2024-08-28T20:10:05.276832Z", + "shell.execute_reply": "2024-08-28T20:10:05.276344Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.397538Z", - "iopub.status.busy": "2024-08-26T15:55:27.396613Z", - "iopub.status.idle": "2024-08-26T15:55:27.402791Z", - "shell.execute_reply": "2024-08-26T15:55:27.402265Z" + "iopub.execute_input": "2024-08-28T20:10:05.280526Z", + "iopub.status.busy": "2024-08-28T20:10:05.279610Z", + "iopub.status.idle": "2024-08-28T20:10:05.285674Z", + "shell.execute_reply": "2024-08-28T20:10:05.285181Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.406271Z", - "iopub.status.busy": "2024-08-26T15:55:27.405351Z", - "iopub.status.idle": "2024-08-26T15:55:27.416136Z", - "shell.execute_reply": "2024-08-26T15:55:27.415710Z" + "iopub.execute_input": "2024-08-28T20:10:05.288952Z", + "iopub.status.busy": "2024-08-28T20:10:05.288227Z", + "iopub.status.idle": "2024-08-28T20:10:05.297407Z", + "shell.execute_reply": "2024-08-28T20:10:05.296965Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.418270Z", - "iopub.status.busy": "2024-08-26T15:55:27.417932Z", - "iopub.status.idle": "2024-08-26T15:55:27.422255Z", - "shell.execute_reply": "2024-08-26T15:55:27.421825Z" + "iopub.execute_input": "2024-08-28T20:10:05.299405Z", + "iopub.status.busy": "2024-08-28T20:10:05.298965Z", + "iopub.status.idle": "2024-08-28T20:10:05.303414Z", + "shell.execute_reply": "2024-08-28T20:10:05.302993Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.424266Z", - "iopub.status.busy": "2024-08-26T15:55:27.423929Z", - "iopub.status.idle": "2024-08-26T15:55:27.536867Z", - "shell.execute_reply": "2024-08-26T15:55:27.536318Z" + "iopub.execute_input": "2024-08-28T20:10:05.305332Z", + "iopub.status.busy": "2024-08-28T20:10:05.305161Z", + "iopub.status.idle": "2024-08-28T20:10:05.417597Z", + "shell.execute_reply": "2024-08-28T20:10:05.417016Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.539165Z", - "iopub.status.busy": "2024-08-26T15:55:27.538730Z", - "iopub.status.idle": "2024-08-26T15:55:27.545308Z", - "shell.execute_reply": "2024-08-26T15:55:27.544696Z" + "iopub.execute_input": "2024-08-28T20:10:05.419707Z", + "iopub.status.busy": "2024-08-28T20:10:05.419494Z", + "iopub.status.idle": "2024-08-28T20:10:05.425998Z", + "shell.execute_reply": "2024-08-28T20:10:05.425515Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.547840Z", - "iopub.status.busy": "2024-08-26T15:55:27.547449Z", - "iopub.status.idle": "2024-08-26T15:55:29.681557Z", - "shell.execute_reply": "2024-08-26T15:55:29.680908Z" + "iopub.execute_input": "2024-08-28T20:10:05.428210Z", + "iopub.status.busy": "2024-08-28T20:10:05.427862Z", + "iopub.status.idle": "2024-08-28T20:10:07.405978Z", + "shell.execute_reply": "2024-08-28T20:10:07.405351Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:29.684527Z", - "iopub.status.busy": "2024-08-26T15:55:29.684058Z", - "iopub.status.idle": "2024-08-26T15:55:29.697584Z", - "shell.execute_reply": "2024-08-26T15:55:29.697064Z" + "iopub.execute_input": "2024-08-28T20:10:07.408894Z", + "iopub.status.busy": "2024-08-28T20:10:07.408353Z", + "iopub.status.idle": "2024-08-28T20:10:07.421259Z", + "shell.execute_reply": "2024-08-28T20:10:07.420757Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:29.700253Z", - "iopub.status.busy": "2024-08-26T15:55:29.699924Z", - "iopub.status.idle": "2024-08-26T15:55:29.702768Z", - "shell.execute_reply": "2024-08-26T15:55:29.702242Z" + "iopub.execute_input": "2024-08-28T20:10:07.423726Z", + "iopub.status.busy": "2024-08-28T20:10:07.423320Z", + "iopub.status.idle": "2024-08-28T20:10:07.426221Z", + "shell.execute_reply": "2024-08-28T20:10:07.425716Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:29.705381Z", - "iopub.status.busy": "2024-08-26T15:55:29.704977Z", - "iopub.status.idle": "2024-08-26T15:55:29.709647Z", - "shell.execute_reply": "2024-08-26T15:55:29.709138Z" + "iopub.execute_input": "2024-08-28T20:10:07.428557Z", + "iopub.status.busy": "2024-08-28T20:10:07.428178Z", + "iopub.status.idle": "2024-08-28T20:10:07.432586Z", + "shell.execute_reply": "2024-08-28T20:10:07.432088Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:29.712190Z", - "iopub.status.busy": "2024-08-26T15:55:29.711867Z", - "iopub.status.idle": "2024-08-26T15:55:29.728908Z", - "shell.execute_reply": "2024-08-26T15:55:29.728350Z" + "iopub.execute_input": "2024-08-28T20:10:07.434935Z", + "iopub.status.busy": "2024-08-28T20:10:07.434559Z", + "iopub.status.idle": "2024-08-28T20:10:07.470601Z", + "shell.execute_reply": "2024-08-28T20:10:07.470123Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:29.731883Z", - "iopub.status.busy": "2024-08-26T15:55:29.731381Z", - "iopub.status.idle": "2024-08-26T15:55:30.247384Z", - "shell.execute_reply": "2024-08-26T15:55:30.246765Z" + "iopub.execute_input": "2024-08-28T20:10:07.473410Z", + "iopub.status.busy": "2024-08-28T20:10:07.472550Z", + "iopub.status.idle": "2024-08-28T20:10:08.009378Z", + "shell.execute_reply": "2024-08-28T20:10:08.008805Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.250443Z", - "iopub.status.busy": "2024-08-26T15:55:30.250031Z", - "iopub.status.idle": "2024-08-26T15:55:30.393213Z", - "shell.execute_reply": "2024-08-26T15:55:30.392572Z" + "iopub.execute_input": "2024-08-28T20:10:08.013336Z", + "iopub.status.busy": "2024-08-28T20:10:08.012259Z", + "iopub.status.idle": "2024-08-28T20:10:08.144611Z", + "shell.execute_reply": "2024-08-28T20:10:08.144010Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.397049Z", - "iopub.status.busy": "2024-08-26T15:55:30.395902Z", - "iopub.status.idle": "2024-08-26T15:55:30.405345Z", - "shell.execute_reply": "2024-08-26T15:55:30.404822Z" + "iopub.execute_input": "2024-08-28T20:10:08.147463Z", + "iopub.status.busy": "2024-08-28T20:10:08.147059Z", + "iopub.status.idle": "2024-08-28T20:10:08.153727Z", + "shell.execute_reply": "2024-08-28T20:10:08.153247Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.409099Z", - "iopub.status.busy": "2024-08-26T15:55:30.408156Z", - "iopub.status.idle": "2024-08-26T15:55:30.416284Z", - "shell.execute_reply": "2024-08-26T15:55:30.415770Z" + "iopub.execute_input": "2024-08-28T20:10:08.156078Z", + "iopub.status.busy": "2024-08-28T20:10:08.155700Z", + "iopub.status.idle": "2024-08-28T20:10:08.161574Z", + "shell.execute_reply": "2024-08-28T20:10:08.161091Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.419835Z", - "iopub.status.busy": "2024-08-26T15:55:30.418896Z", - "iopub.status.idle": "2024-08-26T15:55:30.426289Z", - "shell.execute_reply": "2024-08-26T15:55:30.425777Z" + "iopub.execute_input": "2024-08-28T20:10:08.163878Z", + "iopub.status.busy": "2024-08-28T20:10:08.163480Z", + "iopub.status.idle": "2024-08-28T20:10:08.168816Z", + "shell.execute_reply": "2024-08-28T20:10:08.168310Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.429821Z", - "iopub.status.busy": "2024-08-26T15:55:30.428890Z", - "iopub.status.idle": "2024-08-26T15:55:30.435057Z", - "shell.execute_reply": "2024-08-26T15:55:30.434526Z" + "iopub.execute_input": "2024-08-28T20:10:08.171154Z", + "iopub.status.busy": "2024-08-28T20:10:08.170779Z", + "iopub.status.idle": "2024-08-28T20:10:08.174890Z", + "shell.execute_reply": "2024-08-28T20:10:08.174410Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.436950Z", - "iopub.status.busy": "2024-08-26T15:55:30.436774Z", - "iopub.status.idle": "2024-08-26T15:55:30.441301Z", - "shell.execute_reply": "2024-08-26T15:55:30.440839Z" + "iopub.execute_input": "2024-08-28T20:10:08.177190Z", + "iopub.status.busy": "2024-08-28T20:10:08.176822Z", + "iopub.status.idle": "2024-08-28T20:10:08.181479Z", + "shell.execute_reply": "2024-08-28T20:10:08.180988Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.443236Z", - "iopub.status.busy": "2024-08-26T15:55:30.443059Z", - "iopub.status.idle": "2024-08-26T15:55:30.518439Z", - "shell.execute_reply": "2024-08-26T15:55:30.517913Z" + "iopub.execute_input": "2024-08-28T20:10:08.183838Z", + "iopub.status.busy": "2024-08-28T20:10:08.183447Z", + "iopub.status.idle": "2024-08-28T20:10:08.264116Z", + "shell.execute_reply": "2024-08-28T20:10:08.263573Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.521052Z", - "iopub.status.busy": "2024-08-26T15:55:30.520744Z", - "iopub.status.idle": "2024-08-26T15:55:30.530084Z", - "shell.execute_reply": "2024-08-26T15:55:30.529563Z" + "iopub.execute_input": "2024-08-28T20:10:08.266321Z", + "iopub.status.busy": "2024-08-28T20:10:08.266005Z", + "iopub.status.idle": "2024-08-28T20:10:08.277633Z", + "shell.execute_reply": "2024-08-28T20:10:08.277148Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.532628Z", - "iopub.status.busy": "2024-08-26T15:55:30.532282Z", - "iopub.status.idle": "2024-08-26T15:55:30.535145Z", - "shell.execute_reply": "2024-08-26T15:55:30.534554Z" + "iopub.execute_input": "2024-08-28T20:10:08.280446Z", + "iopub.status.busy": "2024-08-28T20:10:08.280089Z", + "iopub.status.idle": "2024-08-28T20:10:08.283457Z", + "shell.execute_reply": "2024-08-28T20:10:08.283055Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.537206Z", - "iopub.status.busy": "2024-08-26T15:55:30.536802Z", - "iopub.status.idle": "2024-08-26T15:55:30.547035Z", - "shell.execute_reply": "2024-08-26T15:55:30.546403Z" + "iopub.execute_input": "2024-08-28T20:10:08.285641Z", + "iopub.status.busy": "2024-08-28T20:10:08.285369Z", + "iopub.status.idle": "2024-08-28T20:10:08.296591Z", + "shell.execute_reply": "2024-08-28T20:10:08.296036Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.549375Z", - "iopub.status.busy": "2024-08-26T15:55:30.549191Z", - "iopub.status.idle": "2024-08-26T15:55:30.556029Z", - "shell.execute_reply": "2024-08-26T15:55:30.555553Z" + "iopub.execute_input": "2024-08-28T20:10:08.298817Z", + "iopub.status.busy": "2024-08-28T20:10:08.298509Z", + "iopub.status.idle": "2024-08-28T20:10:08.305024Z", + "shell.execute_reply": "2024-08-28T20:10:08.304495Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.558185Z", - "iopub.status.busy": "2024-08-26T15:55:30.557856Z", - "iopub.status.idle": "2024-08-26T15:55:30.561412Z", - "shell.execute_reply": "2024-08-26T15:55:30.560822Z" + "iopub.execute_input": "2024-08-28T20:10:08.307009Z", + "iopub.status.busy": "2024-08-28T20:10:08.306698Z", + "iopub.status.idle": "2024-08-28T20:10:08.309906Z", + "shell.execute_reply": "2024-08-28T20:10:08.309410Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.563623Z", - "iopub.status.busy": "2024-08-26T15:55:30.563290Z", - "iopub.status.idle": "2024-08-26T15:55:34.647728Z", - "shell.execute_reply": "2024-08-26T15:55:34.647124Z" + "iopub.execute_input": "2024-08-28T20:10:08.311873Z", + "iopub.status.busy": "2024-08-28T20:10:08.311702Z", + "iopub.status.idle": "2024-08-28T20:10:12.337048Z", + "shell.execute_reply": "2024-08-28T20:10:12.336527Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:34.650677Z", - "iopub.status.busy": "2024-08-26T15:55:34.650453Z", - "iopub.status.idle": "2024-08-26T15:55:34.653991Z", - "shell.execute_reply": "2024-08-26T15:55:34.653587Z" + "iopub.execute_input": "2024-08-28T20:10:12.339575Z", + "iopub.status.busy": "2024-08-28T20:10:12.339168Z", + "iopub.status.idle": "2024-08-28T20:10:12.342173Z", + "shell.execute_reply": "2024-08-28T20:10:12.341777Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:34.656080Z", - "iopub.status.busy": "2024-08-26T15:55:34.655702Z", - "iopub.status.idle": "2024-08-26T15:55:34.658385Z", - "shell.execute_reply": "2024-08-26T15:55:34.657946Z" + "iopub.execute_input": "2024-08-28T20:10:12.344378Z", + "iopub.status.busy": "2024-08-28T20:10:12.344083Z", + "iopub.status.idle": "2024-08-28T20:10:12.346559Z", + "shell.execute_reply": "2024-08-28T20:10:12.346169Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index ecc184176..94545a8e2 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:38.086130Z", - "iopub.status.busy": "2024-08-26T15:55:38.085966Z", - "iopub.status.idle": "2024-08-26T15:55:39.311143Z", - "shell.execute_reply": "2024-08-26T15:55:39.310564Z" + "iopub.execute_input": "2024-08-28T20:10:15.415169Z", + "iopub.status.busy": "2024-08-28T20:10:15.414998Z", + "iopub.status.idle": "2024-08-28T20:10:16.612302Z", + "shell.execute_reply": "2024-08-28T20:10:16.611666Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:39.313573Z", - "iopub.status.busy": "2024-08-26T15:55:39.313197Z", - "iopub.status.idle": "2024-08-26T15:55:39.493648Z", - "shell.execute_reply": "2024-08-26T15:55:39.493028Z" + "iopub.execute_input": "2024-08-28T20:10:16.614807Z", + "iopub.status.busy": "2024-08-28T20:10:16.614546Z", + "iopub.status.idle": "2024-08-28T20:10:16.795267Z", + "shell.execute_reply": "2024-08-28T20:10:16.794632Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:39.496374Z", - "iopub.status.busy": "2024-08-26T15:55:39.496034Z", - "iopub.status.idle": "2024-08-26T15:55:39.508251Z", - "shell.execute_reply": "2024-08-26T15:55:39.507813Z" + "iopub.execute_input": "2024-08-28T20:10:16.797857Z", + "iopub.status.busy": "2024-08-28T20:10:16.797433Z", + "iopub.status.idle": "2024-08-28T20:10:16.809711Z", + "shell.execute_reply": "2024-08-28T20:10:16.809292Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:39.510455Z", - "iopub.status.busy": "2024-08-26T15:55:39.509993Z", - "iopub.status.idle": "2024-08-26T15:55:39.748733Z", - "shell.execute_reply": "2024-08-26T15:55:39.748087Z" + "iopub.execute_input": "2024-08-28T20:10:16.811782Z", + "iopub.status.busy": "2024-08-28T20:10:16.811369Z", + "iopub.status.idle": "2024-08-28T20:10:17.046442Z", + "shell.execute_reply": "2024-08-28T20:10:17.045868Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:39.751243Z", - "iopub.status.busy": "2024-08-26T15:55:39.750850Z", - "iopub.status.idle": "2024-08-26T15:55:39.777570Z", - "shell.execute_reply": "2024-08-26T15:55:39.777078Z" + "iopub.execute_input": "2024-08-28T20:10:17.048796Z", + "iopub.status.busy": "2024-08-28T20:10:17.048434Z", + "iopub.status.idle": "2024-08-28T20:10:17.074409Z", + "shell.execute_reply": "2024-08-28T20:10:17.073959Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:39.779657Z", - "iopub.status.busy": "2024-08-26T15:55:39.779303Z", - "iopub.status.idle": "2024-08-26T15:55:41.935090Z", - "shell.execute_reply": "2024-08-26T15:55:41.934417Z" + "iopub.execute_input": "2024-08-28T20:10:17.076615Z", + "iopub.status.busy": "2024-08-28T20:10:17.076248Z", + "iopub.status.idle": "2024-08-28T20:10:19.168372Z", + "shell.execute_reply": "2024-08-28T20:10:19.167790Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:41.937632Z", - "iopub.status.busy": "2024-08-26T15:55:41.937283Z", - "iopub.status.idle": "2024-08-26T15:55:41.956016Z", - "shell.execute_reply": "2024-08-26T15:55:41.955557Z" + "iopub.execute_input": "2024-08-28T20:10:19.170900Z", + "iopub.status.busy": "2024-08-28T20:10:19.170380Z", + "iopub.status.idle": "2024-08-28T20:10:19.188323Z", + "shell.execute_reply": "2024-08-28T20:10:19.187864Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:41.958182Z", - "iopub.status.busy": "2024-08-26T15:55:41.957880Z", - "iopub.status.idle": "2024-08-26T15:55:43.590550Z", - "shell.execute_reply": "2024-08-26T15:55:43.589949Z" + "iopub.execute_input": "2024-08-28T20:10:19.190470Z", + "iopub.status.busy": "2024-08-28T20:10:19.190023Z", + "iopub.status.idle": "2024-08-28T20:10:20.776002Z", + "shell.execute_reply": "2024-08-28T20:10:20.775327Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.593513Z", - "iopub.status.busy": "2024-08-26T15:55:43.592646Z", - "iopub.status.idle": "2024-08-26T15:55:43.606730Z", - "shell.execute_reply": "2024-08-26T15:55:43.606174Z" + "iopub.execute_input": "2024-08-28T20:10:20.778994Z", + "iopub.status.busy": "2024-08-28T20:10:20.778210Z", + "iopub.status.idle": "2024-08-28T20:10:20.792248Z", + "shell.execute_reply": "2024-08-28T20:10:20.791702Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.609011Z", - "iopub.status.busy": "2024-08-26T15:55:43.608577Z", - "iopub.status.idle": "2024-08-26T15:55:43.695090Z", - "shell.execute_reply": "2024-08-26T15:55:43.694416Z" + "iopub.execute_input": "2024-08-28T20:10:20.794340Z", + "iopub.status.busy": "2024-08-28T20:10:20.794062Z", + "iopub.status.idle": "2024-08-28T20:10:20.876663Z", + "shell.execute_reply": "2024-08-28T20:10:20.876071Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.697856Z", - "iopub.status.busy": "2024-08-26T15:55:43.697324Z", - "iopub.status.idle": "2024-08-26T15:55:43.914049Z", - "shell.execute_reply": "2024-08-26T15:55:43.913315Z" + "iopub.execute_input": "2024-08-28T20:10:20.879051Z", + "iopub.status.busy": "2024-08-28T20:10:20.878654Z", + "iopub.status.idle": "2024-08-28T20:10:21.086504Z", + "shell.execute_reply": "2024-08-28T20:10:21.085941Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.916733Z", - "iopub.status.busy": "2024-08-26T15:55:43.916502Z", - "iopub.status.idle": "2024-08-26T15:55:43.934524Z", - "shell.execute_reply": "2024-08-26T15:55:43.933947Z" + "iopub.execute_input": "2024-08-28T20:10:21.088578Z", + "iopub.status.busy": "2024-08-28T20:10:21.088390Z", + "iopub.status.idle": "2024-08-28T20:10:21.105966Z", + "shell.execute_reply": "2024-08-28T20:10:21.105491Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.936771Z", - "iopub.status.busy": "2024-08-26T15:55:43.936316Z", - "iopub.status.idle": "2024-08-26T15:55:43.946229Z", - "shell.execute_reply": "2024-08-26T15:55:43.945703Z" + "iopub.execute_input": "2024-08-28T20:10:21.107979Z", + "iopub.status.busy": "2024-08-28T20:10:21.107705Z", + "iopub.status.idle": "2024-08-28T20:10:21.117028Z", + "shell.execute_reply": "2024-08-28T20:10:21.116582Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.948319Z", - "iopub.status.busy": "2024-08-26T15:55:43.947995Z", - "iopub.status.idle": "2024-08-26T15:55:44.045452Z", - "shell.execute_reply": "2024-08-26T15:55:44.044785Z" + "iopub.execute_input": "2024-08-28T20:10:21.118973Z", + "iopub.status.busy": "2024-08-28T20:10:21.118665Z", + "iopub.status.idle": "2024-08-28T20:10:21.208796Z", + "shell.execute_reply": "2024-08-28T20:10:21.208233Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.048317Z", - "iopub.status.busy": "2024-08-26T15:55:44.047949Z", - "iopub.status.idle": "2024-08-26T15:55:44.199135Z", - "shell.execute_reply": "2024-08-26T15:55:44.198458Z" + "iopub.execute_input": "2024-08-28T20:10:21.211242Z", + "iopub.status.busy": "2024-08-28T20:10:21.210857Z", + "iopub.status.idle": "2024-08-28T20:10:21.355767Z", + "shell.execute_reply": "2024-08-28T20:10:21.355116Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.201720Z", - "iopub.status.busy": "2024-08-26T15:55:44.201228Z", - "iopub.status.idle": "2024-08-26T15:55:44.205095Z", - "shell.execute_reply": "2024-08-26T15:55:44.204563Z" + "iopub.execute_input": "2024-08-28T20:10:21.358196Z", + "iopub.status.busy": "2024-08-28T20:10:21.357805Z", + "iopub.status.idle": "2024-08-28T20:10:21.361740Z", + "shell.execute_reply": "2024-08-28T20:10:21.361169Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.207245Z", - "iopub.status.busy": "2024-08-26T15:55:44.206899Z", - "iopub.status.idle": "2024-08-26T15:55:44.210784Z", - "shell.execute_reply": "2024-08-26T15:55:44.210214Z" + "iopub.execute_input": "2024-08-28T20:10:21.363811Z", + "iopub.status.busy": "2024-08-28T20:10:21.363465Z", + "iopub.status.idle": "2024-08-28T20:10:21.367385Z", + "shell.execute_reply": "2024-08-28T20:10:21.366815Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.212876Z", - "iopub.status.busy": "2024-08-26T15:55:44.212534Z", - "iopub.status.idle": "2024-08-26T15:55:44.250428Z", - "shell.execute_reply": "2024-08-26T15:55:44.249930Z" + "iopub.execute_input": "2024-08-28T20:10:21.369320Z", + "iopub.status.busy": "2024-08-28T20:10:21.369143Z", + "iopub.status.idle": "2024-08-28T20:10:21.406093Z", + "shell.execute_reply": "2024-08-28T20:10:21.405592Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.252634Z", - "iopub.status.busy": "2024-08-26T15:55:44.252293Z", - "iopub.status.idle": "2024-08-26T15:55:44.295407Z", - "shell.execute_reply": "2024-08-26T15:55:44.294796Z" + "iopub.execute_input": "2024-08-28T20:10:21.408110Z", + "iopub.status.busy": "2024-08-28T20:10:21.407927Z", + "iopub.status.idle": "2024-08-28T20:10:21.449003Z", + "shell.execute_reply": "2024-08-28T20:10:21.448423Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.297833Z", - "iopub.status.busy": "2024-08-26T15:55:44.297324Z", - "iopub.status.idle": "2024-08-26T15:55:44.403721Z", - "shell.execute_reply": "2024-08-26T15:55:44.403058Z" + "iopub.execute_input": "2024-08-28T20:10:21.451001Z", + "iopub.status.busy": "2024-08-28T20:10:21.450821Z", + "iopub.status.idle": "2024-08-28T20:10:21.557195Z", + "shell.execute_reply": "2024-08-28T20:10:21.556593Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.406534Z", - "iopub.status.busy": "2024-08-26T15:55:44.406130Z", - "iopub.status.idle": "2024-08-26T15:55:44.519957Z", - "shell.execute_reply": "2024-08-26T15:55:44.519299Z" + "iopub.execute_input": "2024-08-28T20:10:21.559918Z", + "iopub.status.busy": "2024-08-28T20:10:21.559498Z", + "iopub.status.idle": "2024-08-28T20:10:21.664012Z", + "shell.execute_reply": "2024-08-28T20:10:21.663415Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.522219Z", - "iopub.status.busy": "2024-08-26T15:55:44.521957Z", - "iopub.status.idle": "2024-08-26T15:55:44.735309Z", - "shell.execute_reply": "2024-08-26T15:55:44.734712Z" + "iopub.execute_input": "2024-08-28T20:10:21.666332Z", + "iopub.status.busy": "2024-08-28T20:10:21.666086Z", + "iopub.status.idle": "2024-08-28T20:10:21.883555Z", + "shell.execute_reply": "2024-08-28T20:10:21.882993Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.737523Z", - "iopub.status.busy": "2024-08-26T15:55:44.737321Z", - "iopub.status.idle": "2024-08-26T15:55:44.980688Z", - "shell.execute_reply": "2024-08-26T15:55:44.980009Z" + "iopub.execute_input": "2024-08-28T20:10:21.885941Z", + "iopub.status.busy": "2024-08-28T20:10:21.885493Z", + "iopub.status.idle": "2024-08-28T20:10:22.093141Z", + "shell.execute_reply": "2024-08-28T20:10:22.092561Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.983243Z", - "iopub.status.busy": "2024-08-26T15:55:44.982856Z", - "iopub.status.idle": "2024-08-26T15:55:44.989124Z", - "shell.execute_reply": "2024-08-26T15:55:44.988663Z" + "iopub.execute_input": "2024-08-28T20:10:22.095719Z", + "iopub.status.busy": "2024-08-28T20:10:22.095201Z", + "iopub.status.idle": "2024-08-28T20:10:22.101800Z", + "shell.execute_reply": "2024-08-28T20:10:22.101231Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.991199Z", - "iopub.status.busy": "2024-08-26T15:55:44.990866Z", - "iopub.status.idle": "2024-08-26T15:55:45.206648Z", - "shell.execute_reply": "2024-08-26T15:55:45.206056Z" + "iopub.execute_input": "2024-08-28T20:10:22.104004Z", + "iopub.status.busy": "2024-08-28T20:10:22.103656Z", + "iopub.status.idle": "2024-08-28T20:10:22.317385Z", + "shell.execute_reply": "2024-08-28T20:10:22.316794Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:45.208912Z", - "iopub.status.busy": "2024-08-26T15:55:45.208710Z", - "iopub.status.idle": "2024-08-26T15:55:46.311061Z", - "shell.execute_reply": "2024-08-26T15:55:46.310458Z" + "iopub.execute_input": "2024-08-28T20:10:22.319795Z", + "iopub.status.busy": "2024-08-28T20:10:22.319339Z", + "iopub.status.idle": "2024-08-28T20:10:23.373257Z", + "shell.execute_reply": "2024-08-28T20:10:23.372707Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index b1f7815f0..182ef924d 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:50.101189Z", - "iopub.status.busy": "2024-08-26T15:55:50.100749Z", - "iopub.status.idle": "2024-08-26T15:55:51.329967Z", - "shell.execute_reply": "2024-08-26T15:55:51.329400Z" + "iopub.execute_input": "2024-08-28T20:10:27.766693Z", + "iopub.status.busy": "2024-08-28T20:10:27.766517Z", + "iopub.status.idle": "2024-08-28T20:10:28.915327Z", + "shell.execute_reply": "2024-08-28T20:10:28.914713Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.332983Z", - "iopub.status.busy": "2024-08-26T15:55:51.332429Z", - "iopub.status.idle": "2024-08-26T15:55:51.335909Z", - "shell.execute_reply": "2024-08-26T15:55:51.335324Z" + "iopub.execute_input": "2024-08-28T20:10:28.917979Z", + "iopub.status.busy": "2024-08-28T20:10:28.917699Z", + "iopub.status.idle": "2024-08-28T20:10:28.920819Z", + "shell.execute_reply": "2024-08-28T20:10:28.920356Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.338118Z", - "iopub.status.busy": "2024-08-26T15:55:51.337791Z", - "iopub.status.idle": "2024-08-26T15:55:51.346087Z", - "shell.execute_reply": "2024-08-26T15:55:51.345575Z" + "iopub.execute_input": "2024-08-28T20:10:28.922962Z", + "iopub.status.busy": "2024-08-28T20:10:28.922646Z", + "iopub.status.idle": "2024-08-28T20:10:28.930551Z", + "shell.execute_reply": "2024-08-28T20:10:28.930005Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.348269Z", - "iopub.status.busy": "2024-08-26T15:55:51.347912Z", - "iopub.status.idle": "2024-08-26T15:55:51.397438Z", - "shell.execute_reply": "2024-08-26T15:55:51.396901Z" + "iopub.execute_input": "2024-08-28T20:10:28.932525Z", + "iopub.status.busy": "2024-08-28T20:10:28.932211Z", + "iopub.status.idle": "2024-08-28T20:10:28.979093Z", + "shell.execute_reply": "2024-08-28T20:10:28.978502Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.400009Z", - "iopub.status.busy": "2024-08-26T15:55:51.399623Z", - "iopub.status.idle": "2024-08-26T15:55:51.418118Z", - "shell.execute_reply": "2024-08-26T15:55:51.417489Z" + "iopub.execute_input": "2024-08-28T20:10:28.985872Z", + "iopub.status.busy": "2024-08-28T20:10:28.985450Z", + "iopub.status.idle": "2024-08-28T20:10:29.002587Z", + "shell.execute_reply": "2024-08-28T20:10:29.002005Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.420616Z", - "iopub.status.busy": "2024-08-26T15:55:51.420228Z", - "iopub.status.idle": "2024-08-26T15:55:51.424652Z", - "shell.execute_reply": "2024-08-26T15:55:51.424134Z" + "iopub.execute_input": "2024-08-28T20:10:29.004731Z", + "iopub.status.busy": "2024-08-28T20:10:29.004300Z", + "iopub.status.idle": "2024-08-28T20:10:29.008197Z", + "shell.execute_reply": "2024-08-28T20:10:29.007752Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.427131Z", - "iopub.status.busy": "2024-08-26T15:55:51.426753Z", - "iopub.status.idle": "2024-08-26T15:55:51.441388Z", - "shell.execute_reply": "2024-08-26T15:55:51.440867Z" + "iopub.execute_input": "2024-08-28T20:10:29.010364Z", + "iopub.status.busy": "2024-08-28T20:10:29.009943Z", + "iopub.status.idle": "2024-08-28T20:10:29.026608Z", + "shell.execute_reply": "2024-08-28T20:10:29.026045Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.443816Z", - "iopub.status.busy": "2024-08-26T15:55:51.443412Z", - "iopub.status.idle": "2024-08-26T15:55:51.470951Z", - "shell.execute_reply": "2024-08-26T15:55:51.470409Z" + "iopub.execute_input": "2024-08-28T20:10:29.028736Z", + "iopub.status.busy": "2024-08-28T20:10:29.028426Z", + "iopub.status.idle": "2024-08-28T20:10:29.055143Z", + "shell.execute_reply": "2024-08-28T20:10:29.054600Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.473560Z", - "iopub.status.busy": "2024-08-26T15:55:51.473170Z", - "iopub.status.idle": "2024-08-26T15:55:53.572478Z", - "shell.execute_reply": "2024-08-26T15:55:53.571934Z" + "iopub.execute_input": "2024-08-28T20:10:29.057327Z", + "iopub.status.busy": "2024-08-28T20:10:29.057014Z", + "iopub.status.idle": "2024-08-28T20:10:31.002405Z", + "shell.execute_reply": "2024-08-28T20:10:31.001830Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.575148Z", - "iopub.status.busy": "2024-08-26T15:55:53.574805Z", - "iopub.status.idle": "2024-08-26T15:55:53.581965Z", - "shell.execute_reply": "2024-08-26T15:55:53.581495Z" + "iopub.execute_input": "2024-08-28T20:10:31.005159Z", + "iopub.status.busy": "2024-08-28T20:10:31.004615Z", + "iopub.status.idle": "2024-08-28T20:10:31.012724Z", + "shell.execute_reply": "2024-08-28T20:10:31.012195Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.583931Z", - "iopub.status.busy": "2024-08-26T15:55:53.583750Z", - "iopub.status.idle": "2024-08-26T15:55:53.597950Z", - "shell.execute_reply": "2024-08-26T15:55:53.597508Z" + "iopub.execute_input": "2024-08-28T20:10:31.014935Z", + "iopub.status.busy": "2024-08-28T20:10:31.014554Z", + "iopub.status.idle": "2024-08-28T20:10:31.028506Z", + "shell.execute_reply": "2024-08-28T20:10:31.028046Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.600192Z", - "iopub.status.busy": "2024-08-26T15:55:53.599844Z", - "iopub.status.idle": "2024-08-26T15:55:53.606325Z", - "shell.execute_reply": "2024-08-26T15:55:53.605753Z" + "iopub.execute_input": "2024-08-28T20:10:31.030456Z", + "iopub.status.busy": "2024-08-28T20:10:31.030187Z", + "iopub.status.idle": "2024-08-28T20:10:31.036558Z", + "shell.execute_reply": "2024-08-28T20:10:31.036100Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.608524Z", - "iopub.status.busy": "2024-08-26T15:55:53.608203Z", - "iopub.status.idle": "2024-08-26T15:55:53.611057Z", - "shell.execute_reply": "2024-08-26T15:55:53.610487Z" + "iopub.execute_input": "2024-08-28T20:10:31.038612Z", + "iopub.status.busy": "2024-08-28T20:10:31.038278Z", + "iopub.status.idle": "2024-08-28T20:10:31.040841Z", + "shell.execute_reply": "2024-08-28T20:10:31.040408Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.613133Z", - "iopub.status.busy": "2024-08-26T15:55:53.612727Z", - "iopub.status.idle": "2024-08-26T15:55:53.616493Z", - "shell.execute_reply": "2024-08-26T15:55:53.615926Z" + "iopub.execute_input": "2024-08-28T20:10:31.042840Z", + "iopub.status.busy": "2024-08-28T20:10:31.042526Z", + "iopub.status.idle": "2024-08-28T20:10:31.045765Z", + "shell.execute_reply": "2024-08-28T20:10:31.045253Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.618748Z", - "iopub.status.busy": "2024-08-26T15:55:53.618292Z", - "iopub.status.idle": "2024-08-26T15:55:53.620917Z", - "shell.execute_reply": "2024-08-26T15:55:53.620475Z" + "iopub.execute_input": "2024-08-28T20:10:31.047816Z", + "iopub.status.busy": "2024-08-28T20:10:31.047469Z", + "iopub.status.idle": "2024-08-28T20:10:31.049975Z", + "shell.execute_reply": "2024-08-28T20:10:31.049552Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.622763Z", - "iopub.status.busy": "2024-08-26T15:55:53.622591Z", - "iopub.status.idle": "2024-08-26T15:55:53.626806Z", - "shell.execute_reply": "2024-08-26T15:55:53.626334Z" + "iopub.execute_input": "2024-08-28T20:10:31.051779Z", + "iopub.status.busy": "2024-08-28T20:10:31.051611Z", + "iopub.status.idle": "2024-08-28T20:10:31.055321Z", + "shell.execute_reply": "2024-08-28T20:10:31.054835Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.628797Z", - "iopub.status.busy": "2024-08-26T15:55:53.628623Z", - "iopub.status.idle": "2024-08-26T15:55:53.657166Z", - "shell.execute_reply": "2024-08-26T15:55:53.656656Z" + "iopub.execute_input": "2024-08-28T20:10:31.057500Z", + "iopub.status.busy": "2024-08-28T20:10:31.057113Z", + "iopub.status.idle": "2024-08-28T20:10:31.085687Z", + "shell.execute_reply": "2024-08-28T20:10:31.085122Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.659591Z", - "iopub.status.busy": "2024-08-26T15:55:53.659398Z", - "iopub.status.idle": "2024-08-26T15:55:53.664302Z", - "shell.execute_reply": "2024-08-26T15:55:53.663840Z" + "iopub.execute_input": "2024-08-28T20:10:31.087938Z", + "iopub.status.busy": "2024-08-28T20:10:31.087519Z", + "iopub.status.idle": "2024-08-28T20:10:31.092195Z", + "shell.execute_reply": "2024-08-28T20:10:31.091636Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 5c10fb5e6..4d9dceb0f 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:56.766882Z", - "iopub.status.busy": "2024-08-26T15:55:56.766428Z", - "iopub.status.idle": "2024-08-26T15:55:58.038153Z", - "shell.execute_reply": "2024-08-26T15:55:58.037589Z" + "iopub.execute_input": "2024-08-28T20:10:33.930965Z", + "iopub.status.busy": "2024-08-28T20:10:33.930785Z", + "iopub.status.idle": "2024-08-28T20:10:35.153533Z", + "shell.execute_reply": "2024-08-28T20:10:35.152975Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:58.040800Z", - "iopub.status.busy": "2024-08-26T15:55:58.040343Z", - "iopub.status.idle": "2024-08-26T15:55:58.241293Z", - "shell.execute_reply": "2024-08-26T15:55:58.240703Z" + "iopub.execute_input": "2024-08-28T20:10:35.156153Z", + "iopub.status.busy": "2024-08-28T20:10:35.155689Z", + "iopub.status.idle": "2024-08-28T20:10:35.354611Z", + "shell.execute_reply": "2024-08-28T20:10:35.354050Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:58.243890Z", - "iopub.status.busy": "2024-08-26T15:55:58.243560Z", - "iopub.status.idle": "2024-08-26T15:55:58.257402Z", - "shell.execute_reply": "2024-08-26T15:55:58.256901Z" + "iopub.execute_input": "2024-08-28T20:10:35.357320Z", + "iopub.status.busy": "2024-08-28T20:10:35.356844Z", + "iopub.status.idle": "2024-08-28T20:10:35.370491Z", + "shell.execute_reply": "2024-08-28T20:10:35.370031Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:58.259462Z", - "iopub.status.busy": "2024-08-26T15:55:58.259112Z", - "iopub.status.idle": "2024-08-26T15:56:00.987646Z", - "shell.execute_reply": "2024-08-26T15:56:00.987007Z" + "iopub.execute_input": "2024-08-28T20:10:35.372636Z", + "iopub.status.busy": "2024-08-28T20:10:35.372216Z", + "iopub.status.idle": "2024-08-28T20:10:38.005651Z", + "shell.execute_reply": "2024-08-28T20:10:38.005141Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:00.990103Z", - "iopub.status.busy": "2024-08-26T15:56:00.989893Z", - "iopub.status.idle": "2024-08-26T15:56:02.372407Z", - "shell.execute_reply": "2024-08-26T15:56:02.371693Z" + "iopub.execute_input": "2024-08-28T20:10:38.007913Z", + "iopub.status.busy": "2024-08-28T20:10:38.007631Z", + "iopub.status.idle": "2024-08-28T20:10:39.351557Z", + "shell.execute_reply": "2024-08-28T20:10:39.350978Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:02.375314Z", - "iopub.status.busy": "2024-08-26T15:56:02.374897Z", - "iopub.status.idle": "2024-08-26T15:56:02.378930Z", - "shell.execute_reply": "2024-08-26T15:56:02.378306Z" + "iopub.execute_input": "2024-08-28T20:10:39.354056Z", + "iopub.status.busy": "2024-08-28T20:10:39.353851Z", + "iopub.status.idle": "2024-08-28T20:10:39.358053Z", + "shell.execute_reply": "2024-08-28T20:10:39.357549Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:02.381153Z", - "iopub.status.busy": "2024-08-26T15:56:02.380797Z", - "iopub.status.idle": "2024-08-26T15:56:04.546007Z", - "shell.execute_reply": "2024-08-26T15:56:04.545338Z" + "iopub.execute_input": "2024-08-28T20:10:39.360196Z", + "iopub.status.busy": "2024-08-28T20:10:39.359778Z", + "iopub.status.idle": "2024-08-28T20:10:41.461777Z", + "shell.execute_reply": "2024-08-28T20:10:41.461112Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:04.549003Z", - "iopub.status.busy": "2024-08-26T15:56:04.548276Z", - "iopub.status.idle": "2024-08-26T15:56:04.556518Z", - "shell.execute_reply": "2024-08-26T15:56:04.556052Z" + "iopub.execute_input": "2024-08-28T20:10:41.464117Z", + "iopub.status.busy": "2024-08-28T20:10:41.463808Z", + "iopub.status.idle": "2024-08-28T20:10:41.472128Z", + "shell.execute_reply": "2024-08-28T20:10:41.471653Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:04.558584Z", - "iopub.status.busy": "2024-08-26T15:56:04.558246Z", - "iopub.status.idle": "2024-08-26T15:56:07.362260Z", - "shell.execute_reply": "2024-08-26T15:56:07.361630Z" + "iopub.execute_input": "2024-08-28T20:10:41.474128Z", + "iopub.status.busy": "2024-08-28T20:10:41.473948Z", + "iopub.status.idle": "2024-08-28T20:10:44.212444Z", + "shell.execute_reply": "2024-08-28T20:10:44.211902Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:07.364609Z", - "iopub.status.busy": "2024-08-26T15:56:07.364404Z", - "iopub.status.idle": "2024-08-26T15:56:07.368177Z", - "shell.execute_reply": "2024-08-26T15:56:07.367638Z" + "iopub.execute_input": "2024-08-28T20:10:44.214662Z", + "iopub.status.busy": "2024-08-28T20:10:44.214321Z", + "iopub.status.idle": "2024-08-28T20:10:44.218007Z", + "shell.execute_reply": "2024-08-28T20:10:44.217522Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:07.370130Z", - "iopub.status.busy": "2024-08-26T15:56:07.369942Z", - "iopub.status.idle": "2024-08-26T15:56:07.373364Z", - "shell.execute_reply": "2024-08-26T15:56:07.372878Z" + "iopub.execute_input": "2024-08-28T20:10:44.219925Z", + "iopub.status.busy": "2024-08-28T20:10:44.219752Z", + "iopub.status.idle": "2024-08-28T20:10:44.223252Z", + "shell.execute_reply": "2024-08-28T20:10:44.222701Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:07.375274Z", - "iopub.status.busy": "2024-08-26T15:56:07.375092Z", - "iopub.status.idle": "2024-08-26T15:56:07.378537Z", - "shell.execute_reply": "2024-08-26T15:56:07.378053Z" + "iopub.execute_input": "2024-08-28T20:10:44.225306Z", + "iopub.status.busy": "2024-08-28T20:10:44.225013Z", + "iopub.status.idle": "2024-08-28T20:10:44.228262Z", + "shell.execute_reply": "2024-08-28T20:10:44.227703Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 5911b8286..0ae33f70b 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:10.340207Z", - "iopub.status.busy": "2024-08-26T15:56:10.340030Z", - "iopub.status.idle": "2024-08-26T15:56:11.624749Z", - "shell.execute_reply": "2024-08-26T15:56:11.624166Z" + "iopub.execute_input": "2024-08-28T20:10:46.815104Z", + "iopub.status.busy": "2024-08-28T20:10:46.814934Z", + "iopub.status.idle": "2024-08-28T20:10:48.021695Z", + "shell.execute_reply": "2024-08-28T20:10:48.021151Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:11.627256Z", - "iopub.status.busy": "2024-08-26T15:56:11.626951Z", - "iopub.status.idle": "2024-08-26T15:56:14.401848Z", - "shell.execute_reply": "2024-08-26T15:56:14.401149Z" + "iopub.execute_input": "2024-08-28T20:10:48.024013Z", + "iopub.status.busy": "2024-08-28T20:10:48.023761Z", + "iopub.status.idle": "2024-08-28T20:10:49.277515Z", + "shell.execute_reply": "2024-08-28T20:10:49.276826Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.404488Z", - "iopub.status.busy": "2024-08-26T15:56:14.404277Z", - "iopub.status.idle": "2024-08-26T15:56:14.407583Z", - "shell.execute_reply": "2024-08-26T15:56:14.407130Z" + "iopub.execute_input": "2024-08-28T20:10:49.280063Z", + "iopub.status.busy": "2024-08-28T20:10:49.279861Z", + "iopub.status.idle": "2024-08-28T20:10:49.283240Z", + "shell.execute_reply": "2024-08-28T20:10:49.282780Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.409784Z", - "iopub.status.busy": "2024-08-26T15:56:14.409456Z", - "iopub.status.idle": "2024-08-26T15:56:14.416283Z", - "shell.execute_reply": "2024-08-26T15:56:14.415707Z" + "iopub.execute_input": "2024-08-28T20:10:49.285108Z", + "iopub.status.busy": "2024-08-28T20:10:49.284938Z", + "iopub.status.idle": "2024-08-28T20:10:49.291323Z", + "shell.execute_reply": "2024-08-28T20:10:49.290907Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.418739Z", - "iopub.status.busy": "2024-08-26T15:56:14.418202Z", - "iopub.status.idle": "2024-08-26T15:56:14.927903Z", - "shell.execute_reply": "2024-08-26T15:56:14.927290Z" + "iopub.execute_input": "2024-08-28T20:10:49.293431Z", + "iopub.status.busy": "2024-08-28T20:10:49.293110Z", + "iopub.status.idle": "2024-08-28T20:10:49.783591Z", + "shell.execute_reply": "2024-08-28T20:10:49.782027Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.930602Z", - "iopub.status.busy": "2024-08-26T15:56:14.930405Z", - "iopub.status.idle": "2024-08-26T15:56:14.935854Z", - "shell.execute_reply": "2024-08-26T15:56:14.935409Z" + "iopub.execute_input": "2024-08-28T20:10:49.786202Z", + "iopub.status.busy": "2024-08-28T20:10:49.785747Z", + "iopub.status.idle": "2024-08-28T20:10:49.791315Z", + "shell.execute_reply": "2024-08-28T20:10:49.790873Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.937858Z", - "iopub.status.busy": "2024-08-26T15:56:14.937674Z", - "iopub.status.idle": "2024-08-26T15:56:14.941832Z", - "shell.execute_reply": "2024-08-26T15:56:14.941270Z" + "iopub.execute_input": "2024-08-28T20:10:49.793221Z", + "iopub.status.busy": "2024-08-28T20:10:49.792959Z", + "iopub.status.idle": "2024-08-28T20:10:49.796741Z", + "shell.execute_reply": "2024-08-28T20:10:49.796193Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.944226Z", - "iopub.status.busy": "2024-08-26T15:56:14.943744Z", - "iopub.status.idle": "2024-08-26T15:56:15.859004Z", - "shell.execute_reply": "2024-08-26T15:56:15.858309Z" + "iopub.execute_input": "2024-08-28T20:10:49.798650Z", + "iopub.status.busy": "2024-08-28T20:10:49.798471Z", + "iopub.status.idle": "2024-08-28T20:10:50.700257Z", + "shell.execute_reply": "2024-08-28T20:10:50.699669Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:15.861666Z", - "iopub.status.busy": "2024-08-26T15:56:15.861235Z", - "iopub.status.idle": "2024-08-26T15:56:16.069556Z", - "shell.execute_reply": "2024-08-26T15:56:16.069040Z" + "iopub.execute_input": "2024-08-28T20:10:50.702769Z", + "iopub.status.busy": "2024-08-28T20:10:50.702385Z", + "iopub.status.idle": "2024-08-28T20:10:50.906003Z", + "shell.execute_reply": "2024-08-28T20:10:50.905441Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:16.071703Z", - "iopub.status.busy": "2024-08-26T15:56:16.071511Z", - "iopub.status.idle": "2024-08-26T15:56:16.076159Z", - "shell.execute_reply": "2024-08-26T15:56:16.075690Z" + "iopub.execute_input": "2024-08-28T20:10:50.908257Z", + "iopub.status.busy": "2024-08-28T20:10:50.907925Z", + "iopub.status.idle": "2024-08-28T20:10:50.912230Z", + "shell.execute_reply": "2024-08-28T20:10:50.911705Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:16.078253Z", - "iopub.status.busy": "2024-08-26T15:56:16.077918Z", - "iopub.status.idle": "2024-08-26T15:56:16.556663Z", - "shell.execute_reply": "2024-08-26T15:56:16.556007Z" + "iopub.execute_input": "2024-08-28T20:10:50.914229Z", + "iopub.status.busy": "2024-08-28T20:10:50.913934Z", + "iopub.status.idle": "2024-08-28T20:10:51.372403Z", + "shell.execute_reply": "2024-08-28T20:10:51.371788Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:16.559624Z", - "iopub.status.busy": "2024-08-26T15:56:16.559248Z", - "iopub.status.idle": "2024-08-26T15:56:16.898201Z", - "shell.execute_reply": "2024-08-26T15:56:16.897622Z" + "iopub.execute_input": "2024-08-28T20:10:51.375629Z", + "iopub.status.busy": "2024-08-28T20:10:51.375236Z", + "iopub.status.idle": "2024-08-28T20:10:51.682387Z", + "shell.execute_reply": "2024-08-28T20:10:51.681777Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:16.900962Z", - "iopub.status.busy": "2024-08-26T15:56:16.900766Z", - "iopub.status.idle": "2024-08-26T15:56:17.272375Z", - "shell.execute_reply": "2024-08-26T15:56:17.271736Z" + "iopub.execute_input": "2024-08-28T20:10:51.685393Z", + "iopub.status.busy": "2024-08-28T20:10:51.685043Z", + "iopub.status.idle": "2024-08-28T20:10:52.047573Z", + "shell.execute_reply": "2024-08-28T20:10:52.046954Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:17.275685Z", - "iopub.status.busy": "2024-08-26T15:56:17.275315Z", - "iopub.status.idle": "2024-08-26T15:56:17.708365Z", - "shell.execute_reply": "2024-08-26T15:56:17.707796Z" + "iopub.execute_input": "2024-08-28T20:10:52.050958Z", + "iopub.status.busy": "2024-08-28T20:10:52.050427Z", + "iopub.status.idle": "2024-08-28T20:10:52.490967Z", + "shell.execute_reply": "2024-08-28T20:10:52.490360Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:17.713051Z", - "iopub.status.busy": "2024-08-26T15:56:17.712669Z", - "iopub.status.idle": "2024-08-26T15:56:18.145788Z", - "shell.execute_reply": "2024-08-26T15:56:18.145119Z" + "iopub.execute_input": "2024-08-28T20:10:52.495742Z", + "iopub.status.busy": "2024-08-28T20:10:52.495348Z", + "iopub.status.idle": "2024-08-28T20:10:52.944831Z", + "shell.execute_reply": "2024-08-28T20:10:52.944216Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:18.149293Z", - "iopub.status.busy": "2024-08-26T15:56:18.148772Z", - "iopub.status.idle": "2024-08-26T15:56:18.346020Z", - "shell.execute_reply": "2024-08-26T15:56:18.345257Z" + "iopub.execute_input": "2024-08-28T20:10:52.947220Z", + "iopub.status.busy": "2024-08-28T20:10:52.946860Z", + "iopub.status.idle": "2024-08-28T20:10:53.160258Z", + "shell.execute_reply": "2024-08-28T20:10:53.159728Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:18.348953Z", - "iopub.status.busy": "2024-08-26T15:56:18.348730Z", - "iopub.status.idle": "2024-08-26T15:56:18.534029Z", - "shell.execute_reply": "2024-08-26T15:56:18.533465Z" + "iopub.execute_input": "2024-08-28T20:10:53.162365Z", + "iopub.status.busy": "2024-08-28T20:10:53.162188Z", + "iopub.status.idle": "2024-08-28T20:10:53.362551Z", + "shell.execute_reply": "2024-08-28T20:10:53.362026Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:18.536855Z", - "iopub.status.busy": "2024-08-26T15:56:18.536371Z", - "iopub.status.idle": "2024-08-26T15:56:18.539344Z", - "shell.execute_reply": "2024-08-26T15:56:18.538884Z" + "iopub.execute_input": "2024-08-28T20:10:53.365064Z", + "iopub.status.busy": "2024-08-28T20:10:53.364728Z", + "iopub.status.idle": "2024-08-28T20:10:53.367802Z", + "shell.execute_reply": "2024-08-28T20:10:53.367227Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:18.541453Z", - "iopub.status.busy": "2024-08-26T15:56:18.541012Z", - "iopub.status.idle": "2024-08-26T15:56:19.477586Z", - "shell.execute_reply": "2024-08-26T15:56:19.476978Z" + "iopub.execute_input": "2024-08-28T20:10:53.369654Z", + "iopub.status.busy": "2024-08-28T20:10:53.369479Z", + "iopub.status.idle": "2024-08-28T20:10:54.313411Z", + "shell.execute_reply": "2024-08-28T20:10:54.312816Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:19.480700Z", - "iopub.status.busy": "2024-08-26T15:56:19.480256Z", - "iopub.status.idle": "2024-08-26T15:56:19.636020Z", - "shell.execute_reply": "2024-08-26T15:56:19.635531Z" + "iopub.execute_input": "2024-08-28T20:10:54.315772Z", + "iopub.status.busy": "2024-08-28T20:10:54.315581Z", + "iopub.status.idle": "2024-08-28T20:10:54.507421Z", + "shell.execute_reply": "2024-08-28T20:10:54.506821Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:19.638250Z", - "iopub.status.busy": "2024-08-26T15:56:19.637899Z", - "iopub.status.idle": "2024-08-26T15:56:19.786441Z", - "shell.execute_reply": "2024-08-26T15:56:19.785787Z" + "iopub.execute_input": "2024-08-28T20:10:54.509938Z", + "iopub.status.busy": "2024-08-28T20:10:54.509492Z", + "iopub.status.idle": "2024-08-28T20:10:54.733427Z", + "shell.execute_reply": "2024-08-28T20:10:54.732826Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:19.789092Z", - "iopub.status.busy": "2024-08-26T15:56:19.788762Z", - "iopub.status.idle": "2024-08-26T15:56:20.472378Z", - "shell.execute_reply": "2024-08-26T15:56:20.471795Z" + "iopub.execute_input": "2024-08-28T20:10:54.735763Z", + "iopub.status.busy": "2024-08-28T20:10:54.735588Z", + "iopub.status.idle": "2024-08-28T20:10:55.347180Z", + "shell.execute_reply": "2024-08-28T20:10:55.346567Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:20.474731Z", - "iopub.status.busy": "2024-08-26T15:56:20.474528Z", - "iopub.status.idle": "2024-08-26T15:56:20.478228Z", - "shell.execute_reply": "2024-08-26T15:56:20.477783Z" + "iopub.execute_input": "2024-08-28T20:10:55.349252Z", + "iopub.status.busy": "2024-08-28T20:10:55.349063Z", + "iopub.status.idle": "2024-08-28T20:10:55.352859Z", + "shell.execute_reply": "2024-08-28T20:10:55.352398Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 62016d498..eee3d8de7 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:22.809306Z", - "iopub.status.busy": "2024-08-26T15:56:22.809121Z", - "iopub.status.idle": "2024-08-26T15:56:25.923468Z", - "shell.execute_reply": "2024-08-26T15:56:25.922782Z" + "iopub.execute_input": "2024-08-28T20:10:57.723058Z", + "iopub.status.busy": "2024-08-28T20:10:57.722897Z", + "iopub.status.idle": "2024-08-28T20:11:00.537065Z", + "shell.execute_reply": "2024-08-28T20:11:00.536472Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:25.926138Z", - "iopub.status.busy": "2024-08-26T15:56:25.925803Z", - "iopub.status.idle": "2024-08-26T15:56:26.295753Z", - "shell.execute_reply": "2024-08-26T15:56:26.295060Z" + "iopub.execute_input": "2024-08-28T20:11:00.539639Z", + "iopub.status.busy": "2024-08-28T20:11:00.539146Z", + "iopub.status.idle": "2024-08-28T20:11:00.857144Z", + "shell.execute_reply": "2024-08-28T20:11:00.856533Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:26.298531Z", - "iopub.status.busy": "2024-08-26T15:56:26.298163Z", - "iopub.status.idle": "2024-08-26T15:56:26.302951Z", - "shell.execute_reply": "2024-08-26T15:56:26.302336Z" + "iopub.execute_input": "2024-08-28T20:11:00.859716Z", + "iopub.status.busy": "2024-08-28T20:11:00.859420Z", + "iopub.status.idle": "2024-08-28T20:11:00.863863Z", + "shell.execute_reply": "2024-08-28T20:11:00.863279Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:26.305208Z", - "iopub.status.busy": "2024-08-26T15:56:26.304770Z", - "iopub.status.idle": "2024-08-26T15:56:34.247942Z", - "shell.execute_reply": "2024-08-26T15:56:34.247391Z" + "iopub.execute_input": "2024-08-28T20:11:00.866137Z", + "iopub.status.busy": "2024-08-28T20:11:00.865724Z", + "iopub.status.idle": "2024-08-28T20:11:05.612330Z", + "shell.execute_reply": "2024-08-28T20:11:05.611754Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<09:51, 288072.79it/s]" + " 1%| | 917504/170498071 [00:00<00:21, 7809760.44it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<02:31, 1123326.69it/s]" + " 3%|▎ | 5079040/170498071 [00:00<00:06, 26343456.81it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:50, 3367551.37it/s]" + " 6%|▌ | 10158080/170498071 [00:00<00:04, 37052814.35it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3080192/170498071 [00:00<00:18, 8860851.19it/s]" + " 10%|▉ | 16384000/170498071 [00:00<00:03, 46686975.20it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 7471104/170498071 [00:00<00:08, 19515662.29it/s]" + " 14%|█▍ | 24543232/170498071 [00:00<00:02, 59011646.68it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11763712/170498071 [00:00<00:05, 26595950.29it/s]" + " 19%|█▉ | 33193984/170498071 [00:00<00:02, 68241152.96it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 16121856/170498071 [00:00<00:05, 30335840.06it/s]" + " 26%|██▌ | 44007424/170498071 [00:00<00:01, 81159379.81it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20545536/170498071 [00:00<00:04, 32917156.30it/s]" + " 33%|███▎ | 55738368/170498071 [00:00<00:01, 92555163.57it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 25034752/170498071 [00:01<00:04, 34791429.08it/s]" + " 39%|███▉ | 66748416/170498071 [00:00<00:01, 98007788.92it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29523968/170498071 [00:01<00:03, 37589731.77it/s]" + " 45%|████▌ | 77332480/170498071 [00:01<00:00, 100399566.26it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 33357824/170498071 [00:01<00:03, 36851696.99it/s]" + " 52%|█████▏ | 89063424/170498071 [00:01<00:00, 105555763.92it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37093376/170498071 [00:01<00:03, 36416220.00it/s]" + " 59%|█████▊ | 99876864/170498071 [00:01<00:00, 106302515.94it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41189376/170498071 [00:01<00:03, 37261067.87it/s]" + " 65%|██████▍ | 110526464/170498071 [00:01<00:00, 106271168.54it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 45776896/170498071 [00:01<00:03, 39651326.45it/s]" + " 72%|███████▏ | 122257408/170498071 [00:01<00:00, 109442190.50it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 50069504/170498071 [00:01<00:02, 40582417.66it/s]" + " 78%|███████▊ | 133234688/170498071 [00:01<00:00, 108906518.56it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 54165504/170498071 [00:01<00:02, 39822791.56it/s]" + " 85%|████████▍ | 144146432/170498071 [00:01<00:00, 108789558.22it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 58163200/170498071 [00:01<00:02, 39191771.97it/s]" + " 91%|█████████▏| 155844608/170498071 [00:01<00:00, 111191857.55it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 62717952/170498071 [00:01<00:02, 40349731.02it/s]" + " 98%|█████████▊| 166985728/170498071 [00:01<00:00, 109550227.96it/s]" ] }, { @@ -396,191 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 67436544/170498071 [00:02<00:02, 42324557.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 42%|████▏ | 71696384/170498071 [00:02<00:02, 41933061.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 45%|████▍ | 75923456/170498071 [00:02<00:02, 41259879.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 47%|████▋ | 80084992/170498071 [00:02<00:02, 41074211.69it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|████▉ | 84934656/170498071 [00:02<00:01, 42954273.39it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 89489408/170498071 [00:02<00:01, 43669192.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 93880320/170498071 [00:02<00:01, 43233991.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 98238464/170498071 [00:02<00:01, 42582306.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|██████ | 102957056/170498071 [00:02<00:01, 43182345.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 107970560/170498071 [00:03<00:01, 45181673.00it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 112525312/170498071 [00:03<00:01, 44689709.52it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▊ | 117014528/170498071 [00:03<00:01, 43897496.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████▏ | 121536512/170498071 [00:03<00:01, 44079438.69it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 126648320/170498071 [00:03<00:00, 45168506.43it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 131792896/170498071 [00:03<00:00, 46942882.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 136511488/170498071 [00:03<00:00, 46011048.74it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 141131776/170498071 [00:03<00:00, 44969350.49it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 145784832/170498071 [00:03<00:00, 45345121.03it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 150667264/170498071 [00:03<00:00, 46353164.37it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 155320320/170498071 [00:04<00:00, 45890625.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 159940608/170498071 [00:04<00:00, 44701148.89it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▋| 164429824/170498071 [00:04<00:00, 41442057.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 168624128/170498071 [00:04<00:00, 39704429.04it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 38277434.85it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 91610373.10it/s] " ] }, { @@ -698,10 +514,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:34.250134Z", - "iopub.status.busy": "2024-08-26T15:56:34.249930Z", - "iopub.status.idle": "2024-08-26T15:56:34.255211Z", - "shell.execute_reply": "2024-08-26T15:56:34.254696Z" + "iopub.execute_input": "2024-08-28T20:11:05.614671Z", + "iopub.status.busy": "2024-08-28T20:11:05.614221Z", + "iopub.status.idle": "2024-08-28T20:11:05.618983Z", + "shell.execute_reply": "2024-08-28T20:11:05.618484Z" }, "nbsphinx": "hidden" }, @@ -752,10 +568,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:34.257332Z", - "iopub.status.busy": "2024-08-26T15:56:34.257140Z", - "iopub.status.idle": "2024-08-26T15:56:34.848225Z", - "shell.execute_reply": "2024-08-26T15:56:34.847605Z" + "iopub.execute_input": "2024-08-28T20:11:05.620912Z", + "iopub.status.busy": "2024-08-28T20:11:05.620740Z", + "iopub.status.idle": "2024-08-28T20:11:06.141610Z", + "shell.execute_reply": "2024-08-28T20:11:06.141056Z" } }, "outputs": [ @@ -788,10 +604,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:34.851549Z", - "iopub.status.busy": "2024-08-26T15:56:34.851001Z", - "iopub.status.idle": "2024-08-26T15:56:35.378547Z", - "shell.execute_reply": "2024-08-26T15:56:35.377869Z" + "iopub.execute_input": "2024-08-28T20:11:06.143912Z", + "iopub.status.busy": "2024-08-28T20:11:06.143554Z", + "iopub.status.idle": "2024-08-28T20:11:06.660543Z", + "shell.execute_reply": "2024-08-28T20:11:06.659962Z" } }, "outputs": [ @@ -829,10 +645,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:35.380935Z", - "iopub.status.busy": "2024-08-26T15:56:35.380512Z", - "iopub.status.idle": "2024-08-26T15:56:35.384410Z", - "shell.execute_reply": "2024-08-26T15:56:35.383897Z" + "iopub.execute_input": "2024-08-28T20:11:06.663047Z", + "iopub.status.busy": "2024-08-28T20:11:06.662487Z", + "iopub.status.idle": "2024-08-28T20:11:06.666385Z", + "shell.execute_reply": "2024-08-28T20:11:06.665922Z" } }, "outputs": [], @@ -855,17 +671,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:35.386668Z", - "iopub.status.busy": "2024-08-26T15:56:35.386265Z", - "iopub.status.idle": "2024-08-26T15:56:48.158582Z", - "shell.execute_reply": "2024-08-26T15:56:48.157871Z" + "iopub.execute_input": "2024-08-28T20:11:06.668524Z", + "iopub.status.busy": "2024-08-28T20:11:06.668195Z", + "iopub.status.idle": "2024-08-28T20:11:19.150493Z", + "shell.execute_reply": "2024-08-28T20:11:19.149869Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9068c384170544debc26f2cb25b50402", + "model_id": "b7e1d2d1a87944dab7c37e6e4beeaa96", "version_major": 2, "version_minor": 0 }, @@ -924,10 +740,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:48.161816Z", - "iopub.status.busy": "2024-08-26T15:56:48.161244Z", - "iopub.status.idle": "2024-08-26T15:56:50.454621Z", - "shell.execute_reply": "2024-08-26T15:56:50.453973Z" + "iopub.execute_input": "2024-08-28T20:11:19.153022Z", + "iopub.status.busy": "2024-08-28T20:11:19.152682Z", + "iopub.status.idle": "2024-08-28T20:11:21.200160Z", + "shell.execute_reply": "2024-08-28T20:11:21.199520Z" } }, "outputs": [ @@ -971,10 +787,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:50.457480Z", - "iopub.status.busy": "2024-08-26T15:56:50.456964Z", - "iopub.status.idle": "2024-08-26T15:56:50.704657Z", - "shell.execute_reply": "2024-08-26T15:56:50.703892Z" + "iopub.execute_input": "2024-08-28T20:11:21.202943Z", + "iopub.status.busy": "2024-08-28T20:11:21.202382Z", + "iopub.status.idle": "2024-08-28T20:11:21.434408Z", + "shell.execute_reply": "2024-08-28T20:11:21.433801Z" } }, "outputs": [ @@ -1010,10 +826,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:50.707630Z", - "iopub.status.busy": "2024-08-26T15:56:50.707165Z", - "iopub.status.idle": "2024-08-26T15:56:51.375377Z", - "shell.execute_reply": "2024-08-26T15:56:51.374703Z" + "iopub.execute_input": "2024-08-28T20:11:21.437063Z", + "iopub.status.busy": "2024-08-28T20:11:21.436552Z", + "iopub.status.idle": "2024-08-28T20:11:22.085548Z", + "shell.execute_reply": "2024-08-28T20:11:22.084965Z" } }, "outputs": [ @@ -1063,10 +879,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:51.378257Z", - "iopub.status.busy": "2024-08-26T15:56:51.377877Z", - "iopub.status.idle": "2024-08-26T15:56:51.734722Z", - "shell.execute_reply": "2024-08-26T15:56:51.734019Z" + "iopub.execute_input": "2024-08-28T20:11:22.088905Z", + "iopub.status.busy": "2024-08-28T20:11:22.088518Z", + "iopub.status.idle": "2024-08-28T20:11:22.430208Z", + "shell.execute_reply": "2024-08-28T20:11:22.429627Z" } }, "outputs": [ @@ -1114,10 +930,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:51.737103Z", - "iopub.status.busy": "2024-08-26T15:56:51.736880Z", - "iopub.status.idle": "2024-08-26T15:56:51.981261Z", - "shell.execute_reply": "2024-08-26T15:56:51.980528Z" + "iopub.execute_input": "2024-08-28T20:11:22.432495Z", + "iopub.status.busy": "2024-08-28T20:11:22.432123Z", + "iopub.status.idle": "2024-08-28T20:11:22.678812Z", + "shell.execute_reply": "2024-08-28T20:11:22.678224Z" } }, "outputs": [ @@ -1173,10 +989,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:51.984034Z", - "iopub.status.busy": "2024-08-26T15:56:51.983823Z", - "iopub.status.idle": "2024-08-26T15:56:52.067085Z", - "shell.execute_reply": "2024-08-26T15:56:52.066419Z" + "iopub.execute_input": "2024-08-28T20:11:22.681904Z", + "iopub.status.busy": "2024-08-28T20:11:22.681437Z", + "iopub.status.idle": "2024-08-28T20:11:22.770026Z", + "shell.execute_reply": "2024-08-28T20:11:22.769527Z" } }, "outputs": [], @@ -1197,10 +1013,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:52.069665Z", - "iopub.status.busy": "2024-08-26T15:56:52.069478Z", - "iopub.status.idle": "2024-08-26T15:57:03.031171Z", - "shell.execute_reply": "2024-08-26T15:57:03.030491Z" + "iopub.execute_input": "2024-08-28T20:11:22.772556Z", + "iopub.status.busy": "2024-08-28T20:11:22.772206Z", + "iopub.status.idle": "2024-08-28T20:11:32.879784Z", + "shell.execute_reply": "2024-08-28T20:11:32.879087Z" } }, "outputs": [ @@ -1237,10 +1053,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:03.033840Z", - "iopub.status.busy": "2024-08-26T15:57:03.033405Z", - "iopub.status.idle": "2024-08-26T15:57:05.657482Z", - "shell.execute_reply": "2024-08-26T15:57:05.656881Z" + "iopub.execute_input": "2024-08-28T20:11:32.882218Z", + "iopub.status.busy": "2024-08-28T20:11:32.881892Z", + "iopub.status.idle": "2024-08-28T20:11:35.127634Z", + "shell.execute_reply": "2024-08-28T20:11:35.127046Z" } }, "outputs": [ @@ -1271,10 +1087,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:05.660434Z", - "iopub.status.busy": "2024-08-26T15:57:05.659780Z", - "iopub.status.idle": "2024-08-26T15:57:05.862055Z", - "shell.execute_reply": "2024-08-26T15:57:05.861526Z" + "iopub.execute_input": "2024-08-28T20:11:35.130269Z", + "iopub.status.busy": "2024-08-28T20:11:35.129720Z", + "iopub.status.idle": "2024-08-28T20:11:35.334566Z", + "shell.execute_reply": "2024-08-28T20:11:35.334053Z" } }, "outputs": [], @@ -1288,10 +1104,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:05.864637Z", - "iopub.status.busy": "2024-08-26T15:57:05.864393Z", - "iopub.status.idle": "2024-08-26T15:57:05.867857Z", - "shell.execute_reply": "2024-08-26T15:57:05.867382Z" + "iopub.execute_input": "2024-08-28T20:11:35.337027Z", + "iopub.status.busy": "2024-08-28T20:11:35.336666Z", + "iopub.status.idle": "2024-08-28T20:11:35.339940Z", + "shell.execute_reply": "2024-08-28T20:11:35.339466Z" } }, "outputs": [], @@ -1329,10 +1145,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:05.870136Z", - "iopub.status.busy": "2024-08-26T15:57:05.869790Z", - "iopub.status.idle": "2024-08-26T15:57:05.878741Z", - "shell.execute_reply": "2024-08-26T15:57:05.878234Z" + "iopub.execute_input": "2024-08-28T20:11:35.342180Z", + "iopub.status.busy": "2024-08-28T20:11:35.341839Z", + "iopub.status.idle": "2024-08-28T20:11:35.350335Z", + "shell.execute_reply": "2024-08-28T20:11:35.349908Z" }, "nbsphinx": "hidden" }, @@ -1377,83 +1193,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01d5c5a706aa4790ae5138084d58b585": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "22107b48eecc4358a6e6dca3680a6730": { + "0d41ffc3cf354ae1bb1edf21a7bece64": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_227183a26c464a3c9d11a17da25fa3f8", - "placeholder": "​", - "style": "IPY_MODEL_352d2ee6d0844dbcb8d4a04b1cbfff01", + "layout": "IPY_MODEL_90ff9c8ef752474caa35ebcc94267415", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7b8282e6aa2a457e86b05af2a41a7860", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 261MB/s]" + "value": 102469840.0 } }, - "227183a26c464a3c9d11a17da25fa3f8": { + "23a0da17f44343e0bb8f1fd8cd1d66f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1506,7 +1272,7 @@ "width": null } }, - "352d2ee6d0844dbcb8d4a04b1cbfff01": { + "624e3f799e5b493f83b8c5086834488b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1524,7 +1290,7 @@ "text_color": null } }, - "357a5524d66d4af8a055aa22caf37325": { + "7b8282e6aa2a457e86b05af2a41a7860": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1540,7 +1306,7 @@ "description_width": "" } }, - "53e6817aa0fd4e2ba3bf306e9c8be420": { + "8d148214b92f40818ed7496d20dcb3ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1593,7 +1359,7 @@ "width": null } }, - "6bc1f79c1ece4659b91e860cec343da2": { + "90ff9c8ef752474caa35ebcc94267415": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1646,33 +1412,25 @@ "width": null } }, - "819d1184552d47729426e656e5e6842e": { + "94fe59d0bba04df987fed1f585e706d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6bc1f79c1ece4659b91e860cec343da2", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_357a5524d66d4af8a055aa22caf37325", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9068c384170544debc26f2cb25b50402": { + "b7e1d2d1a87944dab7c37e6e4beeaa96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1687,16 +1445,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9b95df66ce354f3eac3359c2aac81dc7", - "IPY_MODEL_819d1184552d47729426e656e5e6842e", - "IPY_MODEL_22107b48eecc4358a6e6dca3680a6730" + "IPY_MODEL_d6572d46d8cd40829c785a6bb6b4ae53", + "IPY_MODEL_0d41ffc3cf354ae1bb1edf21a7bece64", + "IPY_MODEL_dfbc1a118152489cb9e883a736d67caf" ], - "layout": "IPY_MODEL_01d5c5a706aa4790ae5138084d58b585", + "layout": "IPY_MODEL_8d148214b92f40818ed7496d20dcb3ae", "tabbable": null, "tooltip": null } }, - "9b95df66ce354f3eac3359c2aac81dc7": { + "d6572d46d8cd40829c785a6bb6b4ae53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1711,30 +1469,88 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_53e6817aa0fd4e2ba3bf306e9c8be420", + "layout": "IPY_MODEL_dc609add1b6a49c3854709bfb57b5b06", "placeholder": "​", - "style": "IPY_MODEL_ef321007c100411a8bdbc60ad35aea85", + "style": "IPY_MODEL_624e3f799e5b493f83b8c5086834488b", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "ef321007c100411a8bdbc60ad35aea85": { + "dc609add1b6a49c3854709bfb57b5b06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dfbc1a118152489cb9e883a736d67caf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23a0da17f44343e0bb8f1fd8cd1d66f4", + "placeholder": "​", + "style": "IPY_MODEL_94fe59d0bba04df987fed1f585e706d1", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 263MB/s]" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index cb48944b8..01a953e2d 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:10.353933Z", - "iopub.status.busy": "2024-08-26T15:57:10.353544Z", - "iopub.status.idle": "2024-08-26T15:57:11.706462Z", - "shell.execute_reply": "2024-08-26T15:57:11.705786Z" + "iopub.execute_input": "2024-08-28T20:11:39.599355Z", + "iopub.status.busy": "2024-08-28T20:11:39.599170Z", + "iopub.status.idle": "2024-08-28T20:11:40.799564Z", + "shell.execute_reply": "2024-08-28T20:11:40.798993Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:11.709553Z", - "iopub.status.busy": "2024-08-26T15:57:11.709034Z", - "iopub.status.idle": "2024-08-26T15:57:11.728637Z", - "shell.execute_reply": "2024-08-26T15:57:11.728052Z" + "iopub.execute_input": "2024-08-28T20:11:40.802223Z", + "iopub.status.busy": "2024-08-28T20:11:40.801792Z", + "iopub.status.idle": "2024-08-28T20:11:40.819536Z", + "shell.execute_reply": "2024-08-28T20:11:40.819063Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:11.731676Z", - "iopub.status.busy": "2024-08-26T15:57:11.731232Z", - "iopub.status.idle": "2024-08-26T15:57:11.734952Z", - "shell.execute_reply": "2024-08-26T15:57:11.734419Z" + "iopub.execute_input": "2024-08-28T20:11:40.821690Z", + "iopub.status.busy": "2024-08-28T20:11:40.821305Z", + "iopub.status.idle": "2024-08-28T20:11:40.824363Z", + "shell.execute_reply": "2024-08-28T20:11:40.823776Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:11.737208Z", - "iopub.status.busy": "2024-08-26T15:57:11.736848Z", - "iopub.status.idle": "2024-08-26T15:57:11.873269Z", - "shell.execute_reply": "2024-08-26T15:57:11.872516Z" + "iopub.execute_input": "2024-08-28T20:11:40.826351Z", + "iopub.status.busy": "2024-08-28T20:11:40.826039Z", + "iopub.status.idle": "2024-08-28T20:11:40.916158Z", + "shell.execute_reply": "2024-08-28T20:11:40.915614Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:11.876290Z", - "iopub.status.busy": "2024-08-26T15:57:11.875719Z", - "iopub.status.idle": "2024-08-26T15:57:12.074479Z", - "shell.execute_reply": "2024-08-26T15:57:12.073882Z" + "iopub.execute_input": "2024-08-28T20:11:40.918419Z", + "iopub.status.busy": "2024-08-28T20:11:40.917993Z", + "iopub.status.idle": "2024-08-28T20:11:41.100340Z", + "shell.execute_reply": "2024-08-28T20:11:41.099717Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:12.076924Z", - "iopub.status.busy": "2024-08-26T15:57:12.076625Z", - "iopub.status.idle": "2024-08-26T15:57:12.336980Z", - "shell.execute_reply": "2024-08-26T15:57:12.336363Z" + "iopub.execute_input": "2024-08-28T20:11:41.103082Z", + "iopub.status.busy": "2024-08-28T20:11:41.102735Z", + "iopub.status.idle": "2024-08-28T20:11:41.316183Z", + "shell.execute_reply": "2024-08-28T20:11:41.315570Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:12.339363Z", - "iopub.status.busy": "2024-08-26T15:57:12.338933Z", - "iopub.status.idle": "2024-08-26T15:57:12.343568Z", - "shell.execute_reply": "2024-08-26T15:57:12.343036Z" + "iopub.execute_input": "2024-08-28T20:11:41.318444Z", + "iopub.status.busy": "2024-08-28T20:11:41.318149Z", + "iopub.status.idle": "2024-08-28T20:11:41.322715Z", + "shell.execute_reply": "2024-08-28T20:11:41.322231Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:12.345634Z", - "iopub.status.busy": "2024-08-26T15:57:12.345270Z", - "iopub.status.idle": "2024-08-26T15:57:12.352146Z", - "shell.execute_reply": "2024-08-26T15:57:12.351523Z" + "iopub.execute_input": "2024-08-28T20:11:41.324707Z", + "iopub.status.busy": "2024-08-28T20:11:41.324370Z", + "iopub.status.idle": "2024-08-28T20:11:41.330461Z", + "shell.execute_reply": "2024-08-28T20:11:41.330018Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:12.357092Z", - "iopub.status.busy": "2024-08-26T15:57:12.356872Z", - "iopub.status.idle": "2024-08-26T15:57:12.359965Z", - "shell.execute_reply": "2024-08-26T15:57:12.359374Z" + "iopub.execute_input": "2024-08-28T20:11:41.332672Z", + "iopub.status.busy": "2024-08-28T20:11:41.332335Z", + "iopub.status.idle": "2024-08-28T20:11:41.335464Z", + "shell.execute_reply": "2024-08-28T20:11:41.335030Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:12.362474Z", - "iopub.status.busy": "2024-08-26T15:57:12.362043Z", - "iopub.status.idle": "2024-08-26T15:57:21.815400Z", - "shell.execute_reply": "2024-08-26T15:57:21.814683Z" + "iopub.execute_input": "2024-08-28T20:11:41.337553Z", + "iopub.status.busy": "2024-08-28T20:11:41.337227Z", + "iopub.status.idle": "2024-08-28T20:11:50.266507Z", + "shell.execute_reply": "2024-08-28T20:11:50.265931Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.818598Z", - "iopub.status.busy": "2024-08-26T15:57:21.817970Z", - "iopub.status.idle": "2024-08-26T15:57:21.825776Z", - "shell.execute_reply": "2024-08-26T15:57:21.825153Z" + "iopub.execute_input": "2024-08-28T20:11:50.269479Z", + "iopub.status.busy": "2024-08-28T20:11:50.268821Z", + "iopub.status.idle": "2024-08-28T20:11:50.276465Z", + "shell.execute_reply": "2024-08-28T20:11:50.275976Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.828092Z", - "iopub.status.busy": "2024-08-26T15:57:21.827857Z", - "iopub.status.idle": "2024-08-26T15:57:21.832040Z", - "shell.execute_reply": "2024-08-26T15:57:21.831555Z" + "iopub.execute_input": "2024-08-28T20:11:50.278693Z", + "iopub.status.busy": "2024-08-28T20:11:50.278360Z", + "iopub.status.idle": "2024-08-28T20:11:50.282210Z", + "shell.execute_reply": "2024-08-28T20:11:50.281653Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.834133Z", - "iopub.status.busy": "2024-08-26T15:57:21.833919Z", - "iopub.status.idle": "2024-08-26T15:57:21.837359Z", - "shell.execute_reply": "2024-08-26T15:57:21.836818Z" + "iopub.execute_input": "2024-08-28T20:11:50.284408Z", + "iopub.status.busy": "2024-08-28T20:11:50.284067Z", + "iopub.status.idle": "2024-08-28T20:11:50.287209Z", + "shell.execute_reply": "2024-08-28T20:11:50.286693Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.839415Z", - "iopub.status.busy": "2024-08-26T15:57:21.839229Z", - "iopub.status.idle": "2024-08-26T15:57:21.842672Z", - "shell.execute_reply": "2024-08-26T15:57:21.842180Z" + "iopub.execute_input": "2024-08-28T20:11:50.289322Z", + "iopub.status.busy": "2024-08-28T20:11:50.288992Z", + "iopub.status.idle": "2024-08-28T20:11:50.292086Z", + "shell.execute_reply": "2024-08-28T20:11:50.291625Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.844741Z", - "iopub.status.busy": "2024-08-26T15:57:21.844401Z", - "iopub.status.idle": "2024-08-26T15:57:21.853740Z", - "shell.execute_reply": "2024-08-26T15:57:21.853255Z" + "iopub.execute_input": "2024-08-28T20:11:50.294072Z", + "iopub.status.busy": "2024-08-28T20:11:50.293723Z", + "iopub.status.idle": "2024-08-28T20:11:50.301914Z", + "shell.execute_reply": "2024-08-28T20:11:50.301458Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.855835Z", - "iopub.status.busy": "2024-08-26T15:57:21.855641Z", - "iopub.status.idle": "2024-08-26T15:57:21.858610Z", - "shell.execute_reply": "2024-08-26T15:57:21.858126Z" + "iopub.execute_input": "2024-08-28T20:11:50.303941Z", + "iopub.status.busy": "2024-08-28T20:11:50.303621Z", + "iopub.status.idle": "2024-08-28T20:11:50.306345Z", + "shell.execute_reply": "2024-08-28T20:11:50.305796Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.860585Z", - "iopub.status.busy": "2024-08-26T15:57:21.860408Z", - "iopub.status.idle": "2024-08-26T15:57:21.989651Z", - "shell.execute_reply": "2024-08-26T15:57:21.988984Z" + "iopub.execute_input": "2024-08-28T20:11:50.308527Z", + "iopub.status.busy": "2024-08-28T20:11:50.308215Z", + "iopub.status.idle": "2024-08-28T20:11:50.433687Z", + "shell.execute_reply": "2024-08-28T20:11:50.433093Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.992169Z", - "iopub.status.busy": "2024-08-26T15:57:21.991956Z", - "iopub.status.idle": "2024-08-26T15:57:22.104866Z", - "shell.execute_reply": "2024-08-26T15:57:22.104231Z" + "iopub.execute_input": "2024-08-28T20:11:50.436032Z", + "iopub.status.busy": "2024-08-28T20:11:50.435840Z", + "iopub.status.idle": "2024-08-28T20:11:50.543233Z", + "shell.execute_reply": "2024-08-28T20:11:50.542551Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:22.107310Z", - "iopub.status.busy": "2024-08-26T15:57:22.107103Z", - "iopub.status.idle": "2024-08-26T15:57:22.629095Z", - "shell.execute_reply": "2024-08-26T15:57:22.628465Z" + "iopub.execute_input": "2024-08-28T20:11:50.545618Z", + "iopub.status.busy": "2024-08-28T20:11:50.545432Z", + "iopub.status.idle": "2024-08-28T20:11:51.045293Z", + "shell.execute_reply": "2024-08-28T20:11:51.044744Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:22.632056Z", - "iopub.status.busy": "2024-08-26T15:57:22.631690Z", - "iopub.status.idle": "2024-08-26T15:57:22.739123Z", - "shell.execute_reply": "2024-08-26T15:57:22.738532Z" + "iopub.execute_input": "2024-08-28T20:11:51.047801Z", + "iopub.status.busy": "2024-08-28T20:11:51.047374Z", + "iopub.status.idle": "2024-08-28T20:11:51.157120Z", + "shell.execute_reply": "2024-08-28T20:11:51.156505Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:22.741307Z", - "iopub.status.busy": "2024-08-26T15:57:22.741112Z", - "iopub.status.idle": "2024-08-26T15:57:22.750617Z", - "shell.execute_reply": "2024-08-26T15:57:22.750103Z" + "iopub.execute_input": "2024-08-28T20:11:51.159361Z", + "iopub.status.busy": "2024-08-28T20:11:51.159175Z", + "iopub.status.idle": "2024-08-28T20:11:51.168059Z", + "shell.execute_reply": "2024-08-28T20:11:51.167471Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:22.752784Z", - "iopub.status.busy": "2024-08-26T15:57:22.752589Z", - "iopub.status.idle": "2024-08-26T15:57:22.755529Z", - "shell.execute_reply": "2024-08-26T15:57:22.755048Z" + "iopub.execute_input": "2024-08-28T20:11:51.170240Z", + "iopub.status.busy": "2024-08-28T20:11:51.169918Z", + "iopub.status.idle": "2024-08-28T20:11:51.172945Z", + "shell.execute_reply": "2024-08-28T20:11:51.172370Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:22.757511Z", - "iopub.status.busy": "2024-08-26T15:57:22.757332Z", - "iopub.status.idle": "2024-08-26T15:57:28.480539Z", - "shell.execute_reply": "2024-08-26T15:57:28.479930Z" + "iopub.execute_input": "2024-08-28T20:11:51.175229Z", + "iopub.status.busy": "2024-08-28T20:11:51.174839Z", + "iopub.status.idle": "2024-08-28T20:11:56.778115Z", + "shell.execute_reply": "2024-08-28T20:11:56.777509Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:28.482886Z", - "iopub.status.busy": "2024-08-26T15:57:28.482488Z", - "iopub.status.idle": "2024-08-26T15:57:28.490974Z", - "shell.execute_reply": "2024-08-26T15:57:28.490509Z" + "iopub.execute_input": "2024-08-28T20:11:56.780373Z", + "iopub.status.busy": "2024-08-28T20:11:56.780188Z", + "iopub.status.idle": "2024-08-28T20:11:56.789198Z", + "shell.execute_reply": "2024-08-28T20:11:56.788632Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:28.493156Z", - "iopub.status.busy": "2024-08-26T15:57:28.492824Z", - "iopub.status.idle": "2024-08-26T15:57:28.557679Z", - "shell.execute_reply": "2024-08-26T15:57:28.557043Z" + "iopub.execute_input": "2024-08-28T20:11:56.791387Z", + "iopub.status.busy": "2024-08-28T20:11:56.790943Z", + "iopub.status.idle": "2024-08-28T20:11:56.855314Z", + "shell.execute_reply": "2024-08-28T20:11:56.854833Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index e74549c5b..61af56b03 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:31.883178Z", - "iopub.status.busy": "2024-08-26T15:57:31.882996Z", - "iopub.status.idle": "2024-08-26T15:57:36.244356Z", - "shell.execute_reply": "2024-08-26T15:57:36.243657Z" + "iopub.execute_input": "2024-08-28T20:12:00.156043Z", + "iopub.status.busy": "2024-08-28T20:12:00.155883Z", + "iopub.status.idle": "2024-08-28T20:12:01.984007Z", + "shell.execute_reply": "2024-08-28T20:12:01.983231Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:36.247073Z", - "iopub.status.busy": "2024-08-26T15:57:36.246855Z", - "iopub.status.idle": "2024-08-26T16:02:06.838118Z", - "shell.execute_reply": "2024-08-26T16:02:06.837430Z" + "iopub.execute_input": "2024-08-28T20:12:01.986694Z", + "iopub.status.busy": "2024-08-28T20:12:01.986493Z", + "iopub.status.idle": "2024-08-28T20:13:05.108865Z", + "shell.execute_reply": "2024-08-28T20:13:05.108185Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:06.840804Z", - "iopub.status.busy": "2024-08-26T16:02:06.840410Z", - "iopub.status.idle": "2024-08-26T16:02:08.076017Z", - "shell.execute_reply": "2024-08-26T16:02:08.075446Z" + "iopub.execute_input": "2024-08-28T20:13:05.111638Z", + "iopub.status.busy": "2024-08-28T20:13:05.111123Z", + "iopub.status.idle": "2024-08-28T20:13:06.298624Z", + "shell.execute_reply": "2024-08-28T20:13:06.297985Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:08.078632Z", - "iopub.status.busy": "2024-08-26T16:02:08.078238Z", - "iopub.status.idle": "2024-08-26T16:02:08.082099Z", - "shell.execute_reply": "2024-08-26T16:02:08.081663Z" + "iopub.execute_input": "2024-08-28T20:13:06.301338Z", + "iopub.status.busy": "2024-08-28T20:13:06.300817Z", + "iopub.status.idle": "2024-08-28T20:13:06.304288Z", + "shell.execute_reply": "2024-08-28T20:13:06.303744Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:08.084359Z", - "iopub.status.busy": "2024-08-26T16:02:08.084021Z", - "iopub.status.idle": "2024-08-26T16:02:08.087900Z", - "shell.execute_reply": "2024-08-26T16:02:08.087448Z" + "iopub.execute_input": "2024-08-28T20:13:06.306541Z", + "iopub.status.busy": "2024-08-28T20:13:06.306380Z", + "iopub.status.idle": "2024-08-28T20:13:06.310561Z", + "shell.execute_reply": "2024-08-28T20:13:06.310012Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:08.090083Z", - "iopub.status.busy": "2024-08-26T16:02:08.089689Z", - "iopub.status.idle": "2024-08-26T16:02:08.093849Z", - "shell.execute_reply": "2024-08-26T16:02:08.093395Z" + "iopub.execute_input": "2024-08-28T20:13:06.312654Z", + "iopub.status.busy": "2024-08-28T20:13:06.312480Z", + "iopub.status.idle": "2024-08-28T20:13:06.316767Z", + "shell.execute_reply": "2024-08-28T20:13:06.316274Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:08.095840Z", - "iopub.status.busy": "2024-08-26T16:02:08.095561Z", - "iopub.status.idle": "2024-08-26T16:02:08.098400Z", - "shell.execute_reply": "2024-08-26T16:02:08.097941Z" + "iopub.execute_input": "2024-08-28T20:13:06.318926Z", + "iopub.status.busy": "2024-08-28T20:13:06.318660Z", + "iopub.status.idle": "2024-08-28T20:13:06.321452Z", + "shell.execute_reply": "2024-08-28T20:13:06.321004Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:08.100404Z", - "iopub.status.busy": "2024-08-26T16:02:08.100066Z", - "iopub.status.idle": "2024-08-26T16:02:45.804800Z", - "shell.execute_reply": "2024-08-26T16:02:45.804164Z" + "iopub.execute_input": "2024-08-28T20:13:06.323316Z", + "iopub.status.busy": "2024-08-28T20:13:06.323136Z", + "iopub.status.idle": "2024-08-28T20:13:44.198826Z", + "shell.execute_reply": "2024-08-28T20:13:44.198093Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "53f883482ebd4087bd4db93f6838de70", + "model_id": "b9596606d3e745d38ba17fd15c80299f", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "efb3d0029fdf4740a048c4bbcc9f8991", + "model_id": "373846e73e53496ba68f46688af28560", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:45.807470Z", - "iopub.status.busy": "2024-08-26T16:02:45.807072Z", - "iopub.status.idle": "2024-08-26T16:02:46.481736Z", - "shell.execute_reply": "2024-08-26T16:02:46.481206Z" + "iopub.execute_input": "2024-08-28T20:13:44.201531Z", + "iopub.status.busy": "2024-08-28T20:13:44.201311Z", + "iopub.status.idle": "2024-08-28T20:13:44.875188Z", + "shell.execute_reply": "2024-08-28T20:13:44.874579Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:46.484246Z", - "iopub.status.busy": "2024-08-26T16:02:46.483772Z", - "iopub.status.idle": "2024-08-26T16:02:49.477184Z", - "shell.execute_reply": "2024-08-26T16:02:49.476583Z" + "iopub.execute_input": "2024-08-28T20:13:44.877635Z", + "iopub.status.busy": "2024-08-28T20:13:44.877169Z", + "iopub.status.idle": "2024-08-28T20:13:47.834747Z", + "shell.execute_reply": "2024-08-28T20:13:47.834184Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:49.479481Z", - "iopub.status.busy": "2024-08-26T16:02:49.479122Z", - "iopub.status.idle": "2024-08-26T16:03:21.677043Z", - "shell.execute_reply": "2024-08-26T16:03:21.676462Z" + "iopub.execute_input": "2024-08-28T20:13:47.837150Z", + "iopub.status.busy": "2024-08-28T20:13:47.836795Z", + "iopub.status.idle": "2024-08-28T20:14:19.860846Z", + "shell.execute_reply": "2024-08-28T20:14:19.860261Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3fe032e80e544fd2b19114331afd8c6a", + "model_id": "ce29504bbd87446f8007205327b6c1da", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:21.679298Z", - "iopub.status.busy": "2024-08-26T16:03:21.678963Z", - "iopub.status.idle": "2024-08-26T16:03:38.187765Z", - "shell.execute_reply": "2024-08-26T16:03:38.187143Z" + "iopub.execute_input": "2024-08-28T20:14:19.863120Z", + "iopub.status.busy": "2024-08-28T20:14:19.862785Z", + "iopub.status.idle": "2024-08-28T20:14:36.068417Z", + "shell.execute_reply": "2024-08-28T20:14:36.067828Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:38.190702Z", - "iopub.status.busy": "2024-08-26T16:03:38.190096Z", - "iopub.status.idle": "2024-08-26T16:03:42.090509Z", - "shell.execute_reply": "2024-08-26T16:03:42.089900Z" + "iopub.execute_input": "2024-08-28T20:14:36.070796Z", + "iopub.status.busy": "2024-08-28T20:14:36.070502Z", + "iopub.status.idle": "2024-08-28T20:14:39.869245Z", + "shell.execute_reply": "2024-08-28T20:14:39.868652Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:42.092785Z", - "iopub.status.busy": "2024-08-26T16:03:42.092449Z", - "iopub.status.idle": "2024-08-26T16:03:43.601612Z", - "shell.execute_reply": "2024-08-26T16:03:43.601014Z" + "iopub.execute_input": "2024-08-28T20:14:39.871434Z", + "iopub.status.busy": "2024-08-28T20:14:39.871103Z", + "iopub.status.idle": "2024-08-28T20:14:41.346447Z", + "shell.execute_reply": "2024-08-28T20:14:41.345878Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "872758bc0ea34c5abe53a40a109b61fc", + "model_id": "1495d70cc9614009a03ee2051e79e0c5", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:43.603725Z", - "iopub.status.busy": "2024-08-26T16:03:43.603502Z", - "iopub.status.idle": "2024-08-26T16:03:43.635426Z", - "shell.execute_reply": "2024-08-26T16:03:43.634736Z" + "iopub.execute_input": "2024-08-28T20:14:41.348866Z", + "iopub.status.busy": "2024-08-28T20:14:41.348539Z", + "iopub.status.idle": "2024-08-28T20:14:41.378017Z", + "shell.execute_reply": "2024-08-28T20:14:41.377363Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:43.638045Z", - "iopub.status.busy": "2024-08-26T16:03:43.637828Z", - "iopub.status.idle": "2024-08-26T16:03:49.737531Z", - "shell.execute_reply": "2024-08-26T16:03:49.736900Z" + "iopub.execute_input": "2024-08-28T20:14:41.380740Z", + "iopub.status.busy": "2024-08-28T20:14:41.380343Z", + "iopub.status.idle": "2024-08-28T20:14:47.431459Z", + "shell.execute_reply": "2024-08-28T20:14:47.430859Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:49.740016Z", - "iopub.status.busy": "2024-08-26T16:03:49.739614Z", - "iopub.status.idle": "2024-08-26T16:03:49.796126Z", - "shell.execute_reply": "2024-08-26T16:03:49.795559Z" + "iopub.execute_input": "2024-08-28T20:14:47.433683Z", + "iopub.status.busy": "2024-08-28T20:14:47.433495Z", + "iopub.status.idle": "2024-08-28T20:14:47.489112Z", + "shell.execute_reply": "2024-08-28T20:14:47.488466Z" }, "nbsphinx": "hidden" }, @@ -1038,129 +1038,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0d68f2ae99004bf3884c9b86e60c998d": { + "117986be224e41b8b7e3bdb648ee0bd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "163aff5db84c4afe8d35c5382524b1d1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "175f5c6a369f4b35b3031461d3e42f83": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4cf7344609af48b9b6869529dfd4f9c1", + "placeholder": "​", + "style": "IPY_MODEL_87a8f90a757342a7ad300007cd9b37e5", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.16it/s]" } }, - "1d8ab8f793df4884ae905c9ecaeef271": { + "12e7d4bb759448c2ba84c9fbb150783b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1178,60 +1079,31 @@ "text_color": null } }, - "1f3d174b832d4a7589ccb00970a2716b": { - "model_module": "@jupyter-widgets/base", + "1495d70cc9614009a03ee2051e79e0c5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d85aea3995a3434187df939b02f30132", + "IPY_MODEL_3e02a25df2fc4857bdaa4bb483e554e5", + "IPY_MODEL_466f1124b1e64c0ca0c60d3aef6f1f7b" + ], + "layout": "IPY_MODEL_92548bc314704b01a188c889a8ed9cb1", + "tabbable": null, + "tooltip": null } }, - "1fb933eec9094fe0a4be2752104b871b": { + "1c051b2994a349d3867d0c9320216c41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1249,30 +1121,7 @@ "text_color": null } }, - "25e8a49745da4392a2ff93613eb12ed5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_feb81028cee34dc5bdaf799847ff4275", - "placeholder": "​", - "style": "IPY_MODEL_1fb933eec9094fe0a4be2752104b871b", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 816.12it/s]" - } - }, - "2c8a7bcf40dd46338cd2d79ac2eddffb": { + "1e36530bdd67437cb7001687387f9f98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1290,86 +1139,23 @@ "text_color": null } }, - "378909055f144216ac3230644ece72bc": { + "279f13bc645d4ce8a875939656cd8088": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_943cd7c991114a2699932a06e6c07fc3", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ebf03078f56a4669b6bd1412a6959c9b", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "3eb40e8325304410a5c584b2734903aa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3f170980bd834e7b844c2b63430b2c7c": { + "321f619940fb48abaf208c22e8ecc778": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1385,7 +1171,7 @@ "description_width": "" } }, - "3fe032e80e544fd2b19114331afd8c6a": { + "373846e73e53496ba68f46688af28560": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1400,63 +1186,68 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c1b66a0eb2be45b29331fc2ede002192", - "IPY_MODEL_93585693a2534d489286659fd05750ce", - "IPY_MODEL_ce5bd738dc4041faac10515469d7fc4c" + "IPY_MODEL_7b8ffd617ec94a82865bdc4e7fee0e91", + "IPY_MODEL_3fe7576967bc425787bbff9b26c249fb", + "IPY_MODEL_117986be224e41b8b7e3bdb648ee0bd5" ], - "layout": "IPY_MODEL_175f5c6a369f4b35b3031461d3e42f83", + "layout": "IPY_MODEL_c97abb8cb733436685987d3d11d43a40", "tabbable": null, "tooltip": null } }, - "44a0516f8bac472cbbf5c4b998d5f144": { + "3e02a25df2fc4857bdaa4bb483e554e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5c7e7dde472443469caa64558f68e3ee", - "placeholder": "​", - "style": "IPY_MODEL_2c8a7bcf40dd46338cd2d79ac2eddffb", + "layout": "IPY_MODEL_d7505972ba5e4394ace9cc8d490fde30", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_279f13bc645d4ce8a875939656cd8088", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.06it/s]" + "value": 30.0 } }, - "53f883482ebd4087bd4db93f6838de70": { + "3fe7576967bc425787bbff9b26c249fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c5df04c7a13c41e1aca5ac56f156f92a", - "IPY_MODEL_9317413021e9447f8c90a80cf8dc144c", - "IPY_MODEL_25e8a49745da4392a2ff93613eb12ed5" - ], - "layout": "IPY_MODEL_a1371138f24348659a70ca591f43b82a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_81d812e317df43d59433f9520c2b1bdc", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b721cac3b90c4f9584a7f97501c7acfb", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 } }, - "559a8d1236864900adf3c0c7e6429ac1": { + "466f1124b1e64c0ca0c60d3aef6f1f7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1471,38 +1262,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_80d45ded94e94b5cafadc0a592a93900", + "layout": "IPY_MODEL_be9b5c27fcbf4fcb917e622463674bee", "placeholder": "​", - "style": "IPY_MODEL_1d8ab8f793df4884ae905c9ecaeef271", + "style": "IPY_MODEL_61a1caed54d34a6d99267d0946c573bc", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:01<00:00, 20.49it/s]" } }, - "5bc57a4814cf4211be4a34a78e6f31de": { + "47657ef518f1467da207070c706932e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b89fba7287d54c2980f59fecec56b3ce", - "placeholder": "​", - "style": "IPY_MODEL_e3697667890947bfa6094bacfb3ac5e3", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5c7e7dde472443469caa64558f68e3ee": { + "4cf7344609af48b9b6869529dfd4f9c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1555,25 +1339,7 @@ "width": null } }, - "61ebdb29105148768f6508c264db1765": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a152bc636d148bea9a05ee6c2c18620": { + "5063ea5b860a4c9fbf5d602e7e04a1c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1626,7 +1392,48 @@ "width": null } }, - "6ffa8c58be20475dae5302a8b0dc463b": { + "61a1caed54d34a6d99267d0946c573bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6ac74d1c88054952b5788e067383fc46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a6528190a5e849e2a06cf067410e112b", + "placeholder": "​", + "style": "IPY_MODEL_75bc69accfe04c99811fd5b7541c4430", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 828.96it/s]" + } + }, + "6defdb8d29454de58039cfb1e3ad28ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1679,7 +1486,25 @@ "width": null } }, - "704ee78ec98a41438df4cccc1297d6ea": { + "75bc69accfe04c99811fd5b7541c4430": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7b8ffd617ec94a82865bdc4e7fee0e91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1694,15 +1519,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ffa8c58be20475dae5302a8b0dc463b", + "layout": "IPY_MODEL_ab6a6d60b2174b57b0e972386314c100", "placeholder": "​", - "style": "IPY_MODEL_61ebdb29105148768f6508c264db1765", + "style": "IPY_MODEL_1e36530bdd67437cb7001687387f9f98", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.17it/s]" + "value": "number of examples processed for checking labels: 100%" + } + }, + "7f6cdae4ae8844b1b9885e0242640e1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f7964c16c014a6a876594142b36fb3b", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_47657ef518f1467da207070c706932e6", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 } }, - "80d45ded94e94b5cafadc0a592a93900": { + "8060b1136cc645869640879b1d081132": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1755,31 +1606,60 @@ "width": null } }, - "872758bc0ea34c5abe53a40a109b61fc": { - "model_module": "@jupyter-widgets/controls", + "81d812e317df43d59433f9520c2b1bdc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5bc57a4814cf4211be4a34a78e6f31de", - "IPY_MODEL_378909055f144216ac3230644ece72bc", - "IPY_MODEL_44a0516f8bac472cbbf5c4b998d5f144" - ], - "layout": "IPY_MODEL_3eb40e8325304410a5c584b2734903aa", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8e1d56f7cd6b49478b0b0f2e7083cd1a": { + "87a8f90a757342a7ad300007cd9b37e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1794,62 +1674,10 @@ "background": null, "description_width": "", "font_size": null, - "text_color": null - } - }, - "9317413021e9447f8c90a80cf8dc144c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_958a1ac99e6a41c7af4753befc728b7f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f620ebd5d4134340aaf7b73aa890937c", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "93585693a2534d489286659fd05750ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f3d174b832d4a7589ccb00970a2716b", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d68f2ae99004bf3884c9b86e60c998d", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "text_color": null } }, - "943cd7c991114a2699932a06e6c07fc3": { + "8d37a53b88944033a87a406d7dadb4e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1902,7 +1730,7 @@ "width": null } }, - "958a1ac99e6a41c7af4753befc728b7f": { + "8f7964c16c014a6a876594142b36fb3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1955,7 +1783,30 @@ "width": null } }, - "a1371138f24348659a70ca591f43b82a": { + "8fb1e86810654920926c89eb44309e1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f64cd11242f84f3e88f042c149afdc6b", + "placeholder": "​", + "style": "IPY_MODEL_b4b3f375f99646d8b6cedbf6cc25dbd1", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "92548bc314704b01a188c889a8ed9cb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2008,7 +1859,7 @@ "width": null } }, - "ae8e5a4d97cc4bd0a6d7ffcb07be1367": { + "92f7a85dffaf4fe5aa38a0a56ae3b73f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2061,7 +1912,7 @@ "width": null } }, - "b89fba7287d54c2980f59fecec56b3ce": { + "a6528190a5e849e2a06cf067410e112b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2114,25 +1965,7 @@ "width": null } }, - "b98a87ea54e74230b4146abe730c41ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c1b66a0eb2be45b29331fc2ede002192": { + "a6fcf9dfa28b49f49c0d4dfc8fd6c8dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2147,38 +1980,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_163aff5db84c4afe8d35c5382524b1d1", + "layout": "IPY_MODEL_5063ea5b860a4c9fbf5d602e7e04a1c8", "placeholder": "​", - "style": "IPY_MODEL_e014d201e94f4fc29e2e46a3c7153cff", + "style": "IPY_MODEL_12e7d4bb759448c2ba84c9fbb150783b", "tabbable": null, "tooltip": null, "value": "100%" } }, - "c5df04c7a13c41e1aca5ac56f156f92a": { - "model_module": "@jupyter-widgets/controls", + "ab6a6d60b2174b57b0e972386314c100": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cc84e801aebd40a281648c7d7ca0c80a", - "placeholder": "​", - "style": "IPY_MODEL_b98a87ea54e74230b4146abe730c41ce", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cc84e801aebd40a281648c7d7ca0c80a": { + "ad5b4768aa78404a9fe20e9486ecef1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2231,7 +2094,7 @@ "width": null } }, - "ce5bd738dc4041faac10515469d7fc4c": { + "af87a19fe6414dbc915f0fa932ca900b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2246,15 +2109,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6a152bc636d148bea9a05ee6c2c18620", + "layout": "IPY_MODEL_6defdb8d29454de58039cfb1e3ad28ec", "placeholder": "​", - "style": "IPY_MODEL_8e1d56f7cd6b49478b0b0f2e7083cd1a", + "style": "IPY_MODEL_1c051b2994a349d3867d0c9320216c41", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:31<00:00, 157578.50it/s]" + "value": " 4997683/4997683 [00:31<00:00, 157035.82it/s]" } }, - "d5469bcbbc0e4eac9fc85b7bd6810661": { + "b0225c668a4040f5886e1725fd4245ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2270,17 +2133,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae8e5a4d97cc4bd0a6d7ffcb07be1367", + "layout": "IPY_MODEL_92f7a85dffaf4fe5aa38a0a56ae3b73f", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3f170980bd834e7b844c2b63430b2c7c", + "style": "IPY_MODEL_321f619940fb48abaf208c22e8ecc778", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "e014d201e94f4fc29e2e46a3c7153cff": { + "b4b3f375f99646d8b6cedbf6cc25dbd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2298,41 +2161,171 @@ "text_color": null } }, - "e3697667890947bfa6094bacfb3ac5e3": { + "b721cac3b90c4f9584a7f97501c7acfb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "ebf03078f56a4669b6bd1412a6959c9b": { + "b9596606d3e745d38ba17fd15c80299f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8fb1e86810654920926c89eb44309e1c", + "IPY_MODEL_b0225c668a4040f5886e1725fd4245ee", + "IPY_MODEL_6ac74d1c88054952b5788e067383fc46" + ], + "layout": "IPY_MODEL_ad5b4768aa78404a9fe20e9486ecef1f", + "tabbable": null, + "tooltip": null + } + }, + "be9b5c27fcbf4fcb917e622463674bee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c97abb8cb733436685987d3d11d43a40": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc0cfb378fb748459e81d106563e62af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "efb3d0029fdf4740a048c4bbcc9f8991": { + "ce29504bbd87446f8007205327b6c1da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2347,16 +2340,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_559a8d1236864900adf3c0c7e6429ac1", - "IPY_MODEL_d5469bcbbc0e4eac9fc85b7bd6810661", - "IPY_MODEL_704ee78ec98a41438df4cccc1297d6ea" + "IPY_MODEL_a6fcf9dfa28b49f49c0d4dfc8fd6c8dc", + "IPY_MODEL_7f6cdae4ae8844b1b9885e0242640e1b", + "IPY_MODEL_af87a19fe6414dbc915f0fa932ca900b" ], - "layout": "IPY_MODEL_f0fa56d81d734d58b54e2abfcfe95a17", + "layout": "IPY_MODEL_8d37a53b88944033a87a406d7dadb4e9", "tabbable": null, "tooltip": null } }, - "f0fa56d81d734d58b54e2abfcfe95a17": { + "d7505972ba5e4394ace9cc8d490fde30": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2409,23 +2402,30 @@ "width": null } }, - "f620ebd5d4134340aaf7b73aa890937c": { + "d85aea3995a3434187df939b02f30132": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8060b1136cc645869640879b1d081132", + "placeholder": "​", + "style": "IPY_MODEL_cc0cfb378fb748459e81d106563e62af", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "feb81028cee34dc5bdaf799847ff4275": { + "f64cd11242f84f3e88f042c149afdc6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 704630cc8..3cd5ab8f7 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:52.199830Z", - "iopub.status.busy": "2024-08-26T16:03:52.199328Z", - "iopub.status.idle": "2024-08-26T16:03:54.228374Z", - "shell.execute_reply": "2024-08-26T16:03:54.227662Z" + "iopub.execute_input": "2024-08-28T20:14:49.935375Z", + "iopub.status.busy": "2024-08-28T20:14:49.935021Z", + "iopub.status.idle": "2024-08-28T20:14:51.191268Z", + "shell.execute_reply": "2024-08-28T20:14:51.190654Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-26 16:03:52-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-08-28 20:14:49-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.163, 2400:52e0:1a01::1115:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.163|:443... connected.\r\n" + "185.93.1.243, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.243|:443... connected.\r\n" ] }, { @@ -122,44 +122,44 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 6.11MB/s in 0.2s \r\n", - "\r\n", - "2024-08-26 16:03:52 (6.11 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", - "\r\n", - "mkdir: cannot create directory ‘data’: File exists\r\n" + "conll2003.zip 100%[===================>] 959.94K 4.87MB/s in 0.2s \r\n", + "\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Archive: conll2003.zip\r\n", - " inflating: data/metadata \r\n", - " inflating: data/test.txt \r\n", - " inflating: data/train.txt \r\n", - " inflating: data/valid.txt \r\n" + "2024-08-28 20:14:50 (4.87 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "\r\n", + "mkdir: cannot create directory ‘data’: File exists\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-26 16:03:52-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.216.209, 52.217.230.177, 52.217.116.41, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.216.209|:443... " + "Archive: conll2003.zip\r\n", + " inflating: data/metadata \r\n", + " inflating: data/test.txt \r\n", + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n" + "\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ + "--2024-08-28 20:14:50-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.16.156, 52.217.10.132, 3.5.30.217, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.16.156|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -180,33 +180,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 143.53K 712KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 7%[> ] 1.25M 3.11MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 49%[========> ] 7.97M 13.2MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 21.5MB/s in 0.8s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-08-26 16:03:54 (21.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-28 20:14:51 (125 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -223,10 +199,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:54.231159Z", - "iopub.status.busy": "2024-08-26T16:03:54.230797Z", - "iopub.status.idle": "2024-08-26T16:03:55.559490Z", - "shell.execute_reply": "2024-08-26T16:03:55.558978Z" + "iopub.execute_input": "2024-08-28T20:14:51.193605Z", + "iopub.status.busy": "2024-08-28T20:14:51.193408Z", + "iopub.status.idle": "2024-08-28T20:14:52.471714Z", + "shell.execute_reply": "2024-08-28T20:14:52.471143Z" }, "nbsphinx": "hidden" }, @@ -237,7 +213,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -263,10 +239,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:55.562075Z", - "iopub.status.busy": "2024-08-26T16:03:55.561623Z", - "iopub.status.idle": "2024-08-26T16:03:55.564854Z", - "shell.execute_reply": "2024-08-26T16:03:55.564374Z" + "iopub.execute_input": "2024-08-28T20:14:52.474110Z", + "iopub.status.busy": "2024-08-28T20:14:52.473822Z", + "iopub.status.idle": "2024-08-28T20:14:52.477401Z", + "shell.execute_reply": "2024-08-28T20:14:52.476829Z" } }, "outputs": [], @@ -316,10 +292,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:55.567011Z", - "iopub.status.busy": "2024-08-26T16:03:55.566646Z", - "iopub.status.idle": "2024-08-26T16:03:55.569740Z", - "shell.execute_reply": "2024-08-26T16:03:55.569184Z" + "iopub.execute_input": "2024-08-28T20:14:52.479601Z", + "iopub.status.busy": "2024-08-28T20:14:52.479161Z", + "iopub.status.idle": "2024-08-28T20:14:52.482135Z", + "shell.execute_reply": "2024-08-28T20:14:52.481690Z" }, "nbsphinx": "hidden" }, @@ -337,10 +313,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:55.571809Z", - "iopub.status.busy": "2024-08-26T16:03:55.571484Z", - "iopub.status.idle": "2024-08-26T16:04:04.593614Z", - "shell.execute_reply": "2024-08-26T16:04:04.593000Z" + "iopub.execute_input": "2024-08-28T20:14:52.484091Z", + "iopub.status.busy": "2024-08-28T20:14:52.483910Z", + "iopub.status.idle": "2024-08-28T20:15:01.459104Z", + "shell.execute_reply": "2024-08-28T20:15:01.458495Z" } }, "outputs": [], @@ -414,10 +390,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:04.596217Z", - "iopub.status.busy": "2024-08-26T16:04:04.596011Z", - "iopub.status.idle": "2024-08-26T16:04:04.601781Z", - "shell.execute_reply": "2024-08-26T16:04:04.601301Z" + "iopub.execute_input": "2024-08-28T20:15:01.461836Z", + "iopub.status.busy": "2024-08-28T20:15:01.461325Z", + "iopub.status.idle": "2024-08-28T20:15:01.467064Z", + "shell.execute_reply": "2024-08-28T20:15:01.466528Z" }, "nbsphinx": "hidden" }, @@ -457,10 +433,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:04.603874Z", - "iopub.status.busy": "2024-08-26T16:04:04.603537Z", - "iopub.status.idle": "2024-08-26T16:04:04.965244Z", - "shell.execute_reply": "2024-08-26T16:04:04.964692Z" + "iopub.execute_input": "2024-08-28T20:15:01.469080Z", + "iopub.status.busy": "2024-08-28T20:15:01.468761Z", + "iopub.status.idle": "2024-08-28T20:15:01.830066Z", + "shell.execute_reply": "2024-08-28T20:15:01.829505Z" } }, "outputs": [], @@ -497,10 +473,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:04.967937Z", - "iopub.status.busy": "2024-08-26T16:04:04.967492Z", - "iopub.status.idle": "2024-08-26T16:04:04.972633Z", - "shell.execute_reply": "2024-08-26T16:04:04.972006Z" + "iopub.execute_input": "2024-08-28T20:15:01.832550Z", + "iopub.status.busy": "2024-08-28T20:15:01.832175Z", + "iopub.status.idle": "2024-08-28T20:15:01.836735Z", + "shell.execute_reply": "2024-08-28T20:15:01.836255Z" } }, "outputs": [ @@ -572,10 +548,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:04.975197Z", - "iopub.status.busy": "2024-08-26T16:04:04.974808Z", - "iopub.status.idle": "2024-08-26T16:04:07.698648Z", - "shell.execute_reply": "2024-08-26T16:04:07.697909Z" + "iopub.execute_input": "2024-08-28T20:15:01.838927Z", + "iopub.status.busy": "2024-08-28T20:15:01.838595Z", + "iopub.status.idle": "2024-08-28T20:15:04.486155Z", + "shell.execute_reply": "2024-08-28T20:15:04.485339Z" } }, "outputs": [], @@ -597,10 +573,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:07.701619Z", - "iopub.status.busy": "2024-08-26T16:04:07.701017Z", - "iopub.status.idle": "2024-08-26T16:04:07.704967Z", - "shell.execute_reply": "2024-08-26T16:04:07.704464Z" + "iopub.execute_input": "2024-08-28T20:15:04.489549Z", + "iopub.status.busy": "2024-08-28T20:15:04.488660Z", + "iopub.status.idle": "2024-08-28T20:15:04.492922Z", + "shell.execute_reply": "2024-08-28T20:15:04.492365Z" } }, "outputs": [ @@ -636,10 +612,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:07.707094Z", - "iopub.status.busy": "2024-08-26T16:04:07.706758Z", - "iopub.status.idle": "2024-08-26T16:04:07.711843Z", - "shell.execute_reply": "2024-08-26T16:04:07.711300Z" + "iopub.execute_input": "2024-08-28T20:15:04.495072Z", + "iopub.status.busy": "2024-08-28T20:15:04.494615Z", + "iopub.status.idle": "2024-08-28T20:15:04.500167Z", + "shell.execute_reply": "2024-08-28T20:15:04.499692Z" } }, "outputs": [ @@ -817,10 +793,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:07.714045Z", - "iopub.status.busy": "2024-08-26T16:04:07.713708Z", - "iopub.status.idle": "2024-08-26T16:04:07.740657Z", - "shell.execute_reply": "2024-08-26T16:04:07.740074Z" + "iopub.execute_input": "2024-08-28T20:15:04.502053Z", + "iopub.status.busy": "2024-08-28T20:15:04.501871Z", + "iopub.status.idle": "2024-08-28T20:15:04.528763Z", + "shell.execute_reply": "2024-08-28T20:15:04.528326Z" } }, "outputs": [ @@ -922,10 +898,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:07.743029Z", - "iopub.status.busy": "2024-08-26T16:04:07.742589Z", - "iopub.status.idle": "2024-08-26T16:04:07.747982Z", - "shell.execute_reply": "2024-08-26T16:04:07.747370Z" + "iopub.execute_input": "2024-08-28T20:15:04.530900Z", + "iopub.status.busy": "2024-08-28T20:15:04.530584Z", + "iopub.status.idle": "2024-08-28T20:15:04.535158Z", + "shell.execute_reply": "2024-08-28T20:15:04.534669Z" } }, "outputs": [ @@ -999,10 +975,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:07.750138Z", - "iopub.status.busy": "2024-08-26T16:04:07.749956Z", - "iopub.status.idle": "2024-08-26T16:04:09.204508Z", - "shell.execute_reply": "2024-08-26T16:04:09.203868Z" + "iopub.execute_input": "2024-08-28T20:15:04.537227Z", + "iopub.status.busy": "2024-08-28T20:15:04.536914Z", + "iopub.status.idle": "2024-08-28T20:15:05.945438Z", + "shell.execute_reply": "2024-08-28T20:15:05.944845Z" } }, "outputs": [ @@ -1174,10 +1150,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:09.206914Z", - "iopub.status.busy": "2024-08-26T16:04:09.206702Z", - "iopub.status.idle": "2024-08-26T16:04:09.211093Z", - "shell.execute_reply": "2024-08-26T16:04:09.210480Z" + "iopub.execute_input": "2024-08-28T20:15:05.947574Z", + "iopub.status.busy": "2024-08-28T20:15:05.947384Z", + "iopub.status.idle": "2024-08-28T20:15:05.951417Z", + "shell.execute_reply": "2024-08-28T20:15:05.950877Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index e733fd4ea922cffb5c8970c3096fcbd5e51c30bc..78f74f96c0d07ad3b764159752ed075c35121580 100644 GIT binary patch delta 62 zcmX>tep-A(E~8tep-A(E~8;-QbByaL1v}CaguRTa*}DXd5US8QDSnMiG`(sd6I#Fabk+0rHO@+ Rd7?>jlA(p==6Q^|TmXrZ6Ab_W diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 8d154bcdb912a1a618ac8e4eba930dd8fe896b02..425801e109aeda609381e04ea598aff035178660 100644 GIT binary patch delta 221 zcmaFyo%zLg<_%{!4XZ4(Dl!tya`X*TERs`>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll zER4((O_GxgEi5w72viJULZsNhF+PBXL=&T6BnBlKz=Vj;wtqAdLtJNOZhLQubNs8f=buHWP~UYFCR!Gl}R z9^AEcMg8~n#c_Dgg2A4x%gS}P4DNYz`QR(JUGlCxYtf(jgCp+P_Vr7O<4(m!PQCGp z>)eK`H*NU5yYBk5DY#9seKibsJGKzwhpO@abyxzOESUlLW zO}+b1-Syy|yH4-NOoDJB8sVJaQM=$|;CM|0<&+!jd2UUtQSOiWp;)a>6BSM_Ze<4oYa@1F>pw z?GxLojx~DFKJC%nuP&@e@=j)*Bb8bNVU6UTQKkb4j4Kz1o9kTEK5qTb79CPC1=KSh z4L3v(?_Kc7H7Ni-3ZLlkab1gck(Z7*qzZ{f5~DW42$764Av2*oH9;9gog6-@b5Xmq zV}Ez@A$>_>ids7rtx$%VEOOE^QyTCm+u_qp*P`}mN4|053B|9TI-}VBK*h3_F>z+R zmqJ=?C63eks8gbXQPceXf#ROBd)f9Kg(y0g)qnU_adYuVed)u+c~#^NSfVH}#0izC z^NNxd2S6>#OlWTZTDfsSpV4Ghz|B&f1m)f;O^lQYV9Zv~`pJ{Z#r2+VluMgiA1iJs zD%2|GX^tpgSw!UxQnQ+eC>(bvXw9N?dw(f9qt`Q!7oVy+g8O>!%f%V>4<9cM?@I>G z32z-TV44{VKzk%ch@zg`X3_5Q>IMDmM5HbdDxF|lc$Tci0u)!1Q;yBP&An%eK3-MA zS;Z0_Mp(qo!8{_UOO#Vv)3?ec&23A1-zlop5x0Km<$}&k4qNZRn)75%;oA{&!& zC&`EuxW}d_@F0R?%;`4r;-{Z3KD(fzB8>RHLA%dm5QTPAbn{( zv$#a>w4|C6nFx1yx@#`nRs6W9I^w1_4bmC2K5J)r$ttm0eD0%XT(^GZEw`+yR+5;k zi;f!WxgaE4<7EKSlSoOJ#@*PvW@T?#nz5%Nh=ZVytSX%aKW07ef*Ofx_~%; zb=NtqT)(Qm_powlH8~#;0+2kpe(3Dpdn-Iz+Nf1y}Yxyhl`h+eB+EDo=LN|T9U*s4IEh*lY`BSD?;*n+pszNY0D(KI=&jMr8e z%N$2N{9h^3FDY*Q(D%%wyb=#01HwwJ^-EueFmLh zdTm@HRw}{);aT2w1RlYaO^!Rvgw)&LDwbCnT0j{hg^Czt+W)0!h*CI5m1B%;CMbkT z8i%?dH97^yZ+*)r!fav$f6qyzpCVTYZ&c8V0`zrMdCpnHS^1b{3*=?ZH9smIDLP}1 zlHrqM`w{o<>y;<3qGk^DNLJYpf~K3HCagAS+rlv@&WHr~5Kp6i-KD6T9j^DyVr$nG z&1X^vJk|Ww9j9jY^R6SS;nj|NocDkvbYTkUM-VN5tAuC=1eH(F?#=7x_s|#6@^vyy z1@tJcl@A*5QC>;uMdY$Mk(Cb?GeYt#HBXvRAu#~}D~xkNrLauO=9qJPe=Vx6i1n4n zmY=S4N5oNUJ7RHpbOpdEnFacfK}!Ya3~Fa9aRVhegxS)OY-C*GmQnMCi{7BOqZ?95 zMfRFEdpGxmoa79HC<*Fw`n5VKLes0e{lu++*(yht4V8Hm-4J1|P(r?GHkfG}qeloEp? zW)Wapqsmj39T4wldvsUOQ4$?7>qTewbp7ISy`^W-_g{7W2MIZokX7q$0Pi&?tIY)m z|T8J~3i>aGLa&$h0V4k*f* z5FNM>SWcLRF(f*$DrKjK^G>dJ|GF4;`buE{mtN}3+u;tVcGg1mFnC7<&4V^Oj)tPH z0`Y;ffRPOq%PEf~Es>MSj9NoyhqcLJv#I|q%L_YWjwttKRUX-=*nEV(WiSaa2RP_J z$_?iJkX2-6*j7i9#hP{iQVB_T0mc}Ht__XMymI(mv*U#ltP7a}15N=BXw!_sFZ01h z^lY1WFmqYg5n7Gkkq8$hqAn1y%0~_x1qVsdiPN0w&kZDp4KZ5i zj)*J6Sda}%EWk`aqZ^aXCK((?5voEGV6B0;#=s;3VMe9k8g~SW%*@27ew0C1#8F4v zer|cnYP;HyITXuTb9j$!Wx(8tG7R)UPgy0Sw~02lwavQIs2MY?<7N(GSQj4WGpy^h zW*OG+$fzwprwm6n08>TG+;BqB$lI}*CJE}`@L^?f-R6D`gbHjo+@iBFwrsReH&P0e zRDgl_;gCMZ66tFg2SGC6ky?>4#d@iNO>p6|#^BbXbMaV2cEs29^7DHaRDALV(uiqq zUtAu#Lc_C)Flx}2E%-yBj5AIdGbyZ*=9u-pYZp{-12IX0W1c#&j5_85g8@aXRgOWP zja?Dv;lM#xdj={(YU6F5c&(iCM8*a}^O>TW7!Y-)-upyJ`yCPM=UjPFKSvo2Xacb) zgdiDVq8A3b6N+5r=JrkHwF_2=o$>*@T9G-5F=`Twg&rWf9TttlSga$a zV_0u4)wlnAT*7B2JCpT=|0tG@XEiqYV*Gs8bfEDdMyife+t0DddC7YBn)39@#UQi^ zfIcH4Xk*c};dMYQ8Xkfg4g&BTaVwD3GPj*wK&luRcBrQq*EE!VdI!Obj?6{M8G{!V zoP+bAAXGrNU=?UM z1ToQ(!zvuhkr_;;D5p>?7=wi185%PN%tBz1&8pe6x%XVrPiWc}{w2f>9zeL^7|v+M zG_R9otj&7tI`%ul)(^I(@=oGp<5I`a+vKW{t+>XxqMnF-5|-P-HD6S{vkqgjbclN24Pc{}P@HvuaKv)#T7l zj@i}`cht*ny1NvW$8-;`4WE$VDpaNz2t9m%=4Hw_>ao!?Guf!GFFdEWq*R> zj$1j{bexRDgI0GORGKAMXI3ML_{)1sbIe!&{hr~U%NMS{_wq#-PtE?R**`V=`TQ0* zHT&QBIm6WKpPK#u?em!V?3tSVQ?vh|4;iLr|J3ZCn*CF=zx|d-e`@x>^V5?3libwo zpPKzsvw!#nt*O~R`NM{(**`V=N8eSRn*9g9VBDXY{qsL#n410nuV%k)cHh;ze_`j> M{+lh^dnyp3pp!M-#qZZ&CTlm z*YJPC|NrHoN0uFWWZ9EHJ%!%tcWm8GZoF+H_uL0BgN`yY7qT#xXio@tky>Gxb|QFc z?BTzi^2*M>+O@v_%&znLx9+;EU+-FVaQ9hDHq;lK$L+hmbZxbI>F}rVFPbBlS1bB| zz2lwz>vo;dKWp~~|MNfmz@5+czqzN^U%Pj0|K&aJIW64awtXU9zjeor+xl1SUDMrA zU)Vgir8?)}zM1APTdLIu_pN=q+ZNKNuHX9Uo87isa=Q7#>v#9>ePvDmp1s%pFFrN< zr(S>QUHkjT_OI#7{pa-SyUnuEuG&pqhz%Xwy`qc%_P>o4x7>YZ|GE9EmksxHd`taZ z`_+H-fx{2pefS+cMXZn3N-nq%+!Dv7a!MPMQ!6!BeQ8OL`pBdf$!qBZ%iM5{jZ$i@AV^0EUDSE4E|YyR-n>W=Db&Bq?8E=NxBoOHBpK8hrX zP2AENd zWt)SD!sFdyrkTp-s>9V8%@;4|t{S}ivFayPF?=)kc=h38^yaEdI~$wtKVF^I69^Q7 zP@V}PEHT_WB@%79GYXN$$H^>NoxD`YGa)4RBp|Oqv3cYj#*l*ga3L~083 znjnm)JcEH5GX|H|9J{)^Vz75*_pz!@g}_a9X@}IMxa~nm^R1_NZ(?A+A(O0}o(HhCT5U4G?9w{F_} z{ttX;Ybh~LSUvfg%(^Wbn)^=etg0s;NYnN`*EicQ?wnNPdNawCWTH7ZLs*kJx8S0j zITc=xGn4WV2$oo#@t`)Cz;)s&Ck5WpiH(7lwC5^;i3o)z1mlPl+DOk6)m};Q2B4L~ zHwT`tHrJ)-BcN^gMRnR77*KlUl~vk`q=HvE5-+okiR;|#`+2qU>8GpfW{~qDNCohV zl%Wg(dXvGN%=;`=GI5MGn~=-d>gbUW;2)3V2ft<`CIuTvBGE7(GkRGn;ZGOd?gm(7}QyQZzz`pkfk3CRhNp8X9dv zjEQkPuCmb>!JyV&r7WZOY5*d9rYc4s9j6d{2sPDQ^!w_b2F6K-@PM~85 z7DsA9U6|62=mGd^`%KYRi~(18AhQ@kr35{3_2lcC2VAdkqUOp=JLiw^=7A#x?+~mH z0<37j?K~+YleQ83IDS~DE!51y^?>7Hth}Zqs$h`K8Hzr5XnE&B@Fs~V(yTRst^i;z zDoC`0JEs}nZf1{kRxFgYQt;-VM*1mkKI<*dP8X3}zEofn*bl?RSgHi$Y z0G&V0T!3_=FrY%p01)AkA<+z}XCyMUdDwMVHCKM8njJj!z3PFgCvBuKSd#eYM6%H_ z8M#wgT4-X-&AF^IuWzLdj52j{d^bE1X%4(rt%1XXNW;!TUb%>lIvu2SN>a^nFZ}7{ zNX?!~K}iN$!x;so(t|Bw=D;2-+K?LP)tMt{tF`hHj|<#pF03}bPRoviVM9 z%oQGpE=ExyOYP#-r3;(KTwOSnd0pgs&?B2U`~;Fzh!9}EkVmb7hp4IXqrzsvqM>Ys zoe?P_??MRCD5C&GXy(vW9X+pmPgM(s)Q!k_3-?C3v4Z)miHKSN0V%#g<_a5N%_q<3 zT-__}04ze9r7Jqi=LAnO1052HCmaX$Q_ZsFDx0ib^YNwKk;?THG#W)%2*78%R{)Lx zo2Xi{(%!s5AXMb=_D*00oERJ&{H1eHQekLF!H?5*a(r!u=~@hq^U&r;%ew383=xKj z$9)3h5mIC%Y9Fu)&xFAQk6Dr9&{T$modw}!>wA-@lzGXqY?#OMxHCx!!nw0ZcLD9T z20z1%;20)n9EAS8f|V}B9l@>;b_}~;t_F*JquZIigekk}b$1C4QRs(cs<0DnQR#7s zD$;nTBUpRh`G4x38?opl7=aS1J)5sN-D1@DMuu(c1D7h9s58ig9EfnxG%4MPe zNH|82z4x4=MFyuC(1k$hIxONm^)`A&QFSCim~mce)$)XZbMtYb$W0FG?I=r2aoclj zt`k#|C)-x?M8Ls$9(+tHhUg;#4-4z5PEbBaPNfBN{=+|itM}HQD7eU63Ni;Bt$`*BnVqPRefjlSSE>Sv!j1s9e zjf0`ifxux)p@Gtx)Fum*B%+k#(E)kU4s&!N;7U7a=C0^&stX&iBf$OZn$9UbiDnN) ze*>+t*!H!IX=|3KurZ349lEhv6O^h+!3Be09YZ^giwqz|xGiVqyC$_mhk-)j9com8 zTF5Hb-3NBfv#K&rN_aU^_U=4p4%#)hGd!1>{FBQd8tA z_wW#KyaL_~6(9H!GKJg6A09Kt9JEm-6c0%g5G9HQg;N?7Pv{|vJZ!3ryFR73&9NuY zDJeu90qw0fbo8`$h6x*Z>`y$jKY9Be>o6g^uXq5G0`9#8YH}96<}n zqpzDS1Qbo)?T5V-|V{|JpRP9)#s``lV8XB#V9MK=Hk_bi=xL-RyY+Iq3rXY z>FU}05B%dT!+&mAvgN)TX0MqJ1*SuR=}=&PTD2H|h1tn;C@>ugOosv|Ol_t^fd#Yf z=}_R!h7!}Ez;q}8lU-`bPlp22p}?EYBBn!u6XzVqyC^43hXT`~z;q~piPdx{fU(4M rC@>ugjQ`T}bSN+#3cTqsVmcJ~e;x`9FckRplH&hBFu3zTcU|}2ZJo;y diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index 8d81264a0d60eedb9a69ec6583bd198c3c931e6e..22c736a5d1132d18a3f262c19f56f0606aaaeba1 100644 GIT binary patch delta 8803 zcmeHL%d4GN758|)P;U*GkSNl@JzuV^4~)rPd$0X+WW@?C)>`5qMMBt5f|eTNq$nkV zgMbliYxSc82M(lSAt(q3ENUE!I11>XB|6cPNoJ0${=R#@`zqz^f8boWTsZ7=*Is+A z-(#)6+&cZ&Tc>~hyDj>T|N8S+f_e5lWtXzdBIziK(%Kc}A~CTcQ#9AC;`mp6|K8S( zds{R7zJGadYyR4qS-1T0r{~)@X8#^;UG5%V$f|TqLHlGZ2OEQ6Nx_kb&UvO~xY&KO z>k9|YtgAN8an{!RPz}E3YQgtS8GiHU`Kjgk8{N%W&y-6bTV=_(P!YaR37S*zLKaPW z8Qz)SoAr&rVtDRK_f$LZKi-&scHw=JHF#TMEF8(Zpp;S3Dx_l!4Nt$?onHR${`_lQ zpK>j8k|($~9KIeDqrPT-OW5g|iA)7{$(I zkE?PqHJ4~B6*najV-CqiDN|t_mp(+6$+@HryXwO7=MNy)MI+`ahgQfj2Q!@bZuhCP z>KmUw|LsdVFT8NJ-%&ZKSbQl};4R5SZ;%;P#md%{ri2#EsoIpIWgJV+IxY3e3vOV6#$Q`Qp4rS;JJ)!h)n1Bd98%CSnc7gyL{i0zK{!!WKG3 zmxGXGsj|Soj!{S>4SV!F)#1#`X!onHcYm8TqYrPtIsfYR`q;zWH|Aov`PTfz!fWOt zm59P|FchRW*7)Fp2w7{nJoyW-#lo-##PCt6tV)Ok)cE9ytaT>jsXM)>0W~I>gy))c z@KpsSu#mSl3pqi|He#;Y6Y?*ry1hi! z#}%tY8gXe%9CG%X|ZZ~d$L+3b3&E=M8L=*4>UbnB`10oKSU9RO?_gaGDdO)4{^6kby{S*n!5 zeQx>Uo%z+S*U7O3K-gLo5Wv#{!ev3JLZF=T5WM76H@=28`OVc3HR;Q7pWSfD8K^qGpp! zaH1q#3A9@A)e-z3UEaMte{Ht#*&qq1LV=KZ>z%GbB~=YjSlF(5`1bSNuOQlu;A3;r zVtwek0@*uT-6#5j$L8!{Lq^8%-kU%|CzTS|ophX7&sHy0)e>fcn1%C>Y>^yI&eh~3 zS5$$VokYsUT1)KUb|^wWAaw8OMS?zfh_OyoNJUf>c8sHP{&f*ScE6 zo>7EIu8lk4Yh6^@<$f_-|9jW>F3R zkDhM5*FMBrDIJ2C8ci>F4Rcsv2g*cK3UnJ($~#$B5ZlHSB0xYvvJlJ>ts78KNM048 z)Zz9MXiSV@Kb&pjtC|=e!&KwAmm&mk5&XYY=CDUxG$If6vF^h5+PGqP^m6ye@V&R@ z$A=Gmu{*x)JoqtT_~0@|N0X+}YJk@Xw;1}Dan02{76NJvkAgx1kimwKRl*#9pzaaUUQ-!FGNeN9p-8Fg?N0>=?X zLXu_it^jG!ph=jW1nS~R@V3CyF6p-#rDD0NNDnm^>XJ< z{Brre-JdHDTzcio$%~s^$YvL^*@Ya{xXmu)z4kDhUC3q^a%e|&6f&D#$b0W#HoK6` zE@ZO{+3Z55HNs{WvcG@X>_QIKJDXidYbP;n!yCi);kEu|7cy;MHoK4`%bkN=h+V#V J{Mc_F{6BH5+W`Oo delta 8805 zcmeHLO{iU074~{hsjsc_LSIB2ymR}SYNa9BKWqO91^+4(tZk@+iiXG9e~pMHDh?ck z793is^V112jQX+nzIb#m19a#`taR5 zJJ;^)%<%8MeRd$Ko@DI1D4T0=D?W|x$*rT7p`F$2Ff z-}}v*^DlJ^5;<6*W06jfBO8L&mY9u{R+s3akAiF=zddEHmj|Vkb;ZrpT@-l=hEh!Ut_~bXc zz3~&byPwaRVTV(1%*Dc<9F~W_extk4=b+ixOl(vn!FU|4SV`}MEH=Aw_i<#fU}a4; zNY4jPCfX=94to{Yk+eRKul}mLIonV8j&{`($4b_PP+Vo51P-ebhEqT5POnpFgw3lI zT44u%V{V7NKhHn*nEL9c&VTFT!PTp07YB-Ra55Y3bRrRx=ah;R(hy7K>nQ&_9ePUp##3>CZgzxx-c`Zk|5*y?i>j zcy`$PaQDGQBcnRCk)q*AV`tV)zLq6SyGMF}ahltPdxq=ArZ zf=7>9n~P(k*SIPP&<2jsv68$kK^TC`$)arvrTQaW-J10$hV^Oq_dn)e=o?|DG|mq% zy*}UVji|+t@W}=ul98O{3ih!nf^*_{>hbRDU0-5mot=-uFyV#_c-8FLT3f7@!z;Vp zhsN7~oZp!B$kN9gVnVLyQUQFKqO=Vv#1O)Wqc>*@*ND67%SPBb^`#hIyxu+1i>RV= zj+{wM0xunmlDXQFBf7K)6y5G+hjkt1{-RflD2s!0(@th*{)H~opOl5(ctdgKi=o-oixdQxHM$yAshfCd_2cI0)=M3stCi9cU5_l$+bKXs{%64!h)+gNhoI!=t1zLHztkH8<3(|*df=}6~{Sza*m4KaouzU2ZkjE6PNR6iq zE;A$|%D_1XlPi^|75L+rLn4b1=>VTt1mZCx1Q?= zXN|1P5@%7)0md7hHBP_9Ii5zkT-7->hG zVYX;$PVhej`ox$ktmQ_`;li!%nFU~lfCM7}Hbaj^gDVLR4ki}tb(iv0OQ8jHVh~MR=YSM;Kzj&85ycIj|+#3qDv|OMO90%Je;qo3GPxyrZu`+HQB^V zs}(m-x1Q?=U9FUkp{r(K0n=K}5je>*R!nyI%eGpq-6pg2hf>ITegusBA^|3>Ij_zMeGF{IvUf&edN3N}C5$i}Ax38HGMFr`O;Zmi zZnVTv1x^MFdK;l)+5{&OvYj~p^lcFpC~ux_yq-BiT`RXG z>W1eJJHLBle9!Xd(!Ce2Upn>Nb{Vo=hOG8E+hxeKI@vBmHg_;9mD?^uw#$(9ifX$I zIa=axmm%x@%XS&EU50FzA=_ohb{VqV9UYBj+hxdh8S>6Xf4dB^o9m7L_cFwdKYHMv HU*GpOs|v20 diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 1168c6e139fe81e5c3b33eb92ef47e5df01ba085..a0f75266c8580cbf194131d0953859aa38e74ee0 100644 GIT binary patch delta 1983 zcmeH|J!=+06ouJ&1@SegpqRpD304}+%-lOOcN#&^LQrF=h=jTGfr_PtS}17a#}8O+ z{0(WsRyLLvCfW$TRYJf*8%b#qC&nTHVbj>97`8dXJ9n|JF*GOU}rc93TZEuM9Z=KwrpM*Iif>$NOWO;?{wdoa7*tHHiqx zhhSC05IriW;^?=vXFrP9O>3jls1s921-(%mBD#Vf zB(Ckj!bHq6|$7U!Fk^+dPBQCqi~_*TtEGpshRSRJXh?rrTmsSt!yuQdsv-u_z`EF65YXF}nzd zN>Bqh(XUL6UN%pM!kU?FXD(mAxo~y<;-xDKLx1jWwH#R7%-86Q~G*g`6e82OZkJ(&jHJH*Il@>B zclR-SQWIGMrxb=v5Tfu(WeX{4=_y1b4;sZY1y!7NPG(5LmvutUNf$6Q7I$k8@o0+P zpiR-G!jm&5har_C440_)dAc<0@^p6}Gv2)0Vi%7~tMz4r&Bhj+uZ71ftt6v?1KLpb zrQBS?#EXs)4-$4}pcpXQj%IqVs%Kqh4HoLb&Aa!PZ!cZHacj9_ap`b%*Wd;Z7nj+D;MK-RxTz+1qI_|!^BiWLxWUFA^ddmy|EGj>e delta 234 zcmZ4Tg=5JVjty5h4NH>>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll zER4((O_GxgEi9W^x!PH|7`L->F)=DA7+F{t8XKFZnWiP0o1~c(6XgUB@$>=>=&^kM;sBJTpD1<sWOB_E;fc2#7Hd>6^Jw>1cNWQwCD>G{OsBDJZI*dGW!p3 z&YSi;v!7Xet@XQnf8X!#cRuyx6`y+YijRN#S@O5TTi^AT*xYrUEIt=iM7Bv(ZLP1` zCuyW%)u+8|5_Nr;?<@gaxgS|w!@QWVLg_1BF&wEDVq<5}k|LMY0&QdHk0;{^Y2 zeUsY|WHyZn^5g@z{qFcf{oB3lmHpSn>VuXdRS``zGSt*qWn^}36i(*h>&71HzwY8U zyz0D#mMVv$qq5c-Rco@1RNA?=s_I3xtFIe-=+P^0fBWT&B15!Q=8$b`gltm~snMY= zCA2a*vHGgfhx#|W^EY2~+u7!XZ^X&p`HG!-?N7evyD#p3qj-R~jsmo8^@D+dNN7p?1pI`aQv*x8V)j7j)3ZtYCmUHkTH>#8xbsTJPR`#vi`yLA@Y0MhxjYsd-+d(@V_>{^ziV0`Sc%N^XTJGefX?J zGA1+;2g|r^Og8$IVk#-P9IFv}Wi+D?^+t2k|32^hMfRnY#WhJqWpoj-mZ03qoTZFr z@Q%@k_`0Pzd-CdYXIN0^-g0cxOdGLvc-^(fCjN|%Rrfa+OrAXY@wMG&FPuDk^{bob z_rNnhaC3L;qRB^&K3gq$czl;X!+J~X@(Y}xN~SluMpt802)?=`b*$fT+Gp_hL{=&#U{pFxseCwBhM_49iQCi7A5E8O`BxEii-(e zMAz7mba7Fs!-z2U5U=)o^-YsyebZUrd2HUuP+IS+l`*hi>r03_*VtNFW3`?9huOu; zkAG}-`|Kddp!+AZa;B9vgholNI2i3~mfbDy=E?WpJpIGTqBz-{h8&De=z;`$$a|NZ81%hDzr+s%KIfIa`$W;i*Q31FYkSD`UjH-MsDdiX7P&G zzwynldEHGnzxvH%Cc6Ff?vqRM_#M|Sx({4Ey<{=Aul`J~>Ry+pXCF9Ga`d*%B3NQI zw?e29wzXVe?;~HGU9x=m6VuyfbCYCC9C5{_1`ovLO|hbAtpY$OEGKW7K0G;aDobgi z$J0#fO32kUMVORYs~fkx_WxGx-WUInBVy5Wb_pVkITDX!EJcl)3;4uc)~U(+=kOR=`#piNmZo@ttA?=MI12N zBHFxstH(-_gTn1=9q$cg`a)%4#8sXJE=uKVJh(_0sA_u8uqzOK9LuIYsfky_(wbeJ7$0T7cB>DhbeC87&dCgofA}oKw6a-jAu{akeDoLTU~@Z|;dCtqzz&szyZ| zfoR<7MtJXBRUL`u;}32&isM>s3gEX)9F3a9nVM3(iN1+`+Eyc@V7i z!0vmi+b%U?uX6k8k+Z9(vfjw9Hau{lLsVR#bqWw7K`5#z9(>$W5!Ab7ec8_C+(e%p zIgu3R@WkwL3j;w^DD4K?oNMR_Ou1CuWGXsxXla7iZK?r4RF^j;x9`tW zdn0cQcAFt@Bo59#pk*<3Y^m+V5M=;4Y8r>+=Re99>nr@M#VIDPJr3WqImcO=kQ z+L%dxRwUh284G+4)sP8Go(F7?Exz)?(X}7BV}mw1IG0+T_`t&Z_OeQx`A4``DDC$8p8lgG(D{Qf$c=a9Ji7-?UAUtC+LI z5rLm0HIK=`_7`KDIM}+t04h=b}VdxDsK`Y{Mn1m=a-B_K}j( zPnqT8KL+#6L2T6 zQqImB%uobbi*Af;BcV9DAQh;OKor+C)4V5%$VOUHZ<|nZ08-1;?-HUgg&}`@?wiw( zP3F6oc0>9AJnme!cf%XIU;FfQvA_$nq}&JRx5l@yIV5)p+$P&g((CfZulJ}lht?#x zG9{oby@JDpt!Xu+Ss{b30_Ew^WkEz`zW^)+D-@0JwH7IW2cbtsLJT;2^bLkB`Q2}@ zikYj7c;dX!7cVEQ=wAM<>17LYuyPg%NvJni4pBt(Q4*%5C6FGbf)R>#(+5Xx>$Ge* zX0Y2nICf@hIC>e7W9P1p(C9gHZq``~hzpWRh@{mvjj&DfGDn>bU69L_R8PT*#t@?- zWPVIB3NM`UrP*{rs!4ByYeJhN)V)ec%0zZ0JNW{AeB^=AT54o{8ZW z5)W?R;;{`0Ag36_4G}aDGpKS+Sz9Z$8~!JJy8Kbn7pM)eNw}> zs1th5htk$8SMw+ZTN+(>&ez=04T{_@T)62qGW_P&WPnl{oH5XU0|_yrS`0~ZNQGk;w(VGBMtj=RyHD>_RXDP>72p||n0X-s_=a+V z%UA&)E`&_N2~Z^IG;D2k3X7h`6b{RvJS5UeqH_WbK*jbJsyDrH?xX<43J2sNchojf zDJm~o*bUuSKje;eKHU8VcF2dLi=UAXoz;o06%EUY0)mARt(y#(r1s4N_8gGTyhz>C zMNpvd9;6v6!m7bOxwlN^2Zmo%C0k&8Pc zHSRRs)1J<|4=|i!YIg5!(qQcvC0@MYV8Ztoeg{zb(y+iOHZdXc}4Wmge)E+1h{C@-!qAG){ z0jz7zG-iRLQl5EyoYd&yNQgKU9a>e+Zk-)R7GA^Cu{8(Fz2d#IXA>_BW{x-;3zlk= zs~##1eTxd*)@Gd{t%6ExQI5!Y250mr4+MrPLG93R&sh8(KszDVfFMwfdLoD*gPZdU z1+ebB8{aoQq)qk6TMYg<@)GOXcg5M<^|!O*C-ey;H_Am(8!#RH1*%bKMSV1BeY9v_ zj==-0i1#AE55_iWPM_AKTigda*HNI-py`O#3>+XDw8M z@RSkP@oPi`>#k#!Rq!b|gX_j!+ZOLcb|aQ;=EnsQHx_`)M!gp5ZR0i}Z1@GUAcgil!;LNBJ>>tTliOz58xmViRkKpRCv zqq=MgWL~hPJR@wKXM8-9n|fx;pvS|ugAc>%Txx1JQ|0bANpdjbk+)cxX`{h1r#t_e*;OwMX2TzeHxxrP zI;pA55pk)Q5+>s#iGiK2L(fRl#}I1Q+|BN*IxXFe+3jh*xclhxkuQ#HtCOEN(lZhs`7+eOxgCI>xOz%pWmi*i~491-7;%?aXQ z;ZME_!5#%=_ws|On%&E<61?cX_)oL*UqEj_@s>DOO-o}14P}59)6?Ba+2u;BpL0oM zaMUo=%aQ2m+t8k{!P)@g17SeR-5ARL3r9R;^RknB4UK07(sx&E35 z9$EhsTXRmg%7p+^vEh3xZ83{RX?tNpQL<4hFHm+UR4Aw@=LmWrdmnarmu}(_}2K3}1vJQ?n@&bAdNXORR z2BeBM5kkJjELRdif|8&fZr~gp$#`)5p#cbCpPC3=rSzc!?4uFlLa#m&EkZ|6&8Gf_ z{{10HQM%6v&7#6iHV)(pY9MT9`biN#)Ebyu`Xzth-;}RINDp<4g64X44<7um$dyQw6j*P5FxUB2aB9gZewU z^$5d^wCN3oHuxmHuRCvT+spd)q#YJ~n(&cE4)4$>7rS@XB1s>1(%_i_QLri)!U{#I zXoKn-Q9L~tkcI0ewpCGekRdC`C9;LUHv%G+?mp!-eqBL8-OC@Lv>+qCk0ukxiO~rF zz=J|S%|}#smX1IT@l%03eGl8AWA0pkaLoDcrFD1X{ZsMcBX9~)O3RlgTVYX^-Y5;5 zTl#)rs5)T#a>YO{f`FpLTov8D%}x`u&m*s#q!CgW}llJ5S#&TngcP|x7UzR zv`(u`5*0@T>e!Nl7mlph!xYiI^`_ag4`?5t&5CGJ=`cfA3X#4hbT=TQZe;h+1=!}G zvdKavAsWI6krEux(!Z2qPoF_s40_ylhDX`grlqd|QLdL0`&JIFn_SX^7gcFz>%-BS zwb}h5Tzij6=YHfZsD_ zWdn1*^V&{x!x4ksetP8e(vcgE?dy~q(&7SX+EDoQQVzyQA0iV6(4Q;W*RMNL=9~tZ z5FP|ggW3<#u)+DjnZ9qc8A9&hg9jP8gO*0L3xy8?^Xc6-w3h`sZ1SKMtX*(y?IAag zEWHZ08)OabFhDqT(zZ|a1-=5&PgWYZ(cD2IjYw3a>HLi!28oI$~S9b{z zNfECA1%xv(fYKqzA|(S6B1plZ`PM)J?0pK~f>yNy%RLl>^kwu^3YjN>1SRMOb_A{u z)(%%t%T-6sd~E3-K0UpKPU4-b4j#89;lryy?Nh7uf(+0CO*rSCW1>?CYH2w%DMC*; z;HU-tKoD~a39wyhDWbK=6C?(wdqFP`whTX%K8#4Jd?-cRi#t%(y8F@}%`RVeJddop z77xc(-S9hF{E^leGVv5j0+kRr+SdWOVGsZ%V(`0p0cF6`Kq?}L0w6uoTd4&!N05wz zMs#}WqeGM31SDM#Gl|^K_fl>XZdy9Z=oKGO^?c+Ny6@dbo9xI7tjk-t(JOw@imUH> z$IFDcUWjXNe`i0`AkidFGT`r?P~8NCEg(_%U{$*`FP zcU~d)z3pQorh8gn&DcR6dF05pR%U$F2Ol{5q5VL`exPDMQ1J{iKih7)AE?-x;MfmT z><20sV%iT>j5MeZZQldwvLC3}9^@FXC!>Q`FUBSr*4T4olwrjPo{l~D0~K3igd_I4 zAE?+5RO|;T_5&6Bfr|Y=1%u1`fr`x${QW@1Gfi{!>imA7Vn0w(2Q6h#CH4aq{l6=- zAE?+l%&{M+K&03YRBR55><23L0~P!$82f>Weh_9`f!GgJ>>TIV4^$vqpOW+U0~P#( zANzrd{XoTjpyFttV?R)F#vICFzs!6;P_ZAV*bh`N6S*I#*bh|v#2JqLK*fHb;*3F& tzUUa5yY~YX`+<23L0~Py$ivKqQ70VmGdCqTL@PE0GI4%GH delta 26850 zcmeI4TdZwWdB?L@n~Ms_v4D!Y*Wv_^R&X=M9Cv7|w9>?S0kJVrAY_a=#;ghz8a1s+ z5h)M7SLunJsj(^W(6pK~8d8@rsY;3Q!88q_sWsJ9(uCUB2UN6uFtNY6=GyzLwK=Zw z*q4Pq=s9!mar-X+@BjZkKL6CqKL6CqKJ$g=$q%M`?zmgL=R?=3q*9wq>$2&Z*ml|n z;gS$4W*M|^T-0rnK0Nx}=Y8t6a}lNYqP1;sSw|IP=Tg&n-VJ~#X?(ReGB%`q6!>R9x6*6K&Y zue&YA=v0$L)S1UA zCWcnZlw)ghZgZnffB4o1s^1KkcIR)t`qp#Jfzx1D(pZNaI_22%zbI$8u_`=Bzr}IDm!nRLu zJbl%_JaY8Ga_#=%6O)stU;OM9r(gGV|J=X2`q6*?`d^$g3qdw1HeJ(7EhEO-Xswg& zly13AyL{rV_R;VrxBS~B7tTvkv2~r3AxEvWO0v_Y2-k@a9saQVb=8lCUl+df*7K(! znA7ijmeY8>c9U0}{>TrmTmQR9?|PMe=_LJw#F%HdHRVopW4k9F*g}{-MO^pwuHCI0xj{1iGed&esn1pI$Zhhnd8Y8@N z+VNkB*JZN`1l5oDbqjs&rnFC?^cb}NpsaMVV<@MK`nE2=Xb<_XtMU$tF{`i{y zOBYXGu>8^W`@8S#AKciVxMcFk(cdkXJiNXu&a&PD%lzs&b1U0O6iC@vsl9DuXF6h@ z5++8QbzT}v^`qg)ue)r5@pWzRB@j`35!yD&=eEeCLg(za!<{Ojo}`)@xqeZkd1NUZDL zd#{uW|HtOmrQEZ(aR)x9i3Fu36i4F zi_d;?`o+my6zQE%E^`FkI2W^5B^%O1!#SJ0n7nE4?~tZlgMz`~BLNuEYF(vXn7<)va?Jbe8g2Wh=iR&!03Z8wJamKBF?Z8n3m z_FVX-{oGCWdhz4w#fyjT-2232zetj=%_))O8f~KvN(C>YEXoVpPrkBu>4Km6)MQ@S zgj^o2x``V;Jazp&Vfvb@&0Bu)+V|gna`{w7$RJxlMKQpTIHY0UcAYiGra-KC!n2Ks zK0Cd2Z&m>%{bxQoy=-yM1JmE1+*fE-jv(VF3{uj+4Vr{~UuD2-@iD*~ZL1?6K*rX<;V14y$A9^>x4xmVeGZ*g@c zwN*X<$1J#j_~c~?UH`C{{>_B3LmX`Op1pl*Nyj03 zO-lAg#H1TyV@bsoHN`u=TC5Q9dW zt!!en*?HK$i{%q7-SN~crw~i-QWDaFItPGf$PC2I#(5LRwU>rESH+Sk6EM(sI*^OG z`i^MS3W97C{3@`xu9%{I?i%fRm^QVRSS6g{=B%~dVPM(5upPaxvSu$oOI*48@#*>f z4{x2m>a|)Ogf%b3n!2pKS0NJ$DG;m)qH9HN2=CqJzQTjeDjlid8ec58?3H`{(D*}v_Py;m;1Z!X(Fo*+Lt%~Pr3L(wI6y5q@|Z~X$ldf(p6 zCIK8Z$p)-1I~`pM0+piU**e)CWxzk0%&4{6TpF(_pIQx0^q_W^oglG#D@I2h-LJNI z|Ft`(w^Y|YN`w7fcTF#zgI5R)Dq?q$BE}`xkUU!F{g4?mKDazl$d<&|5crj0mnNkq z;77VCHV0Xb=Z(<`2ZJrCi8&;%jc`0)+e8`Ktc$i{0b(F))^;#jZEXYO3^`=OQ*+Xu z79to+C8<+G2($oPD>4}iL{BChPPA_aSW-BAPL1wz7n~T%B~glKocgn`>|J&|sLZ|N z0WAepCWoqk?OWxDFv;1}=FYF&u(pBmK-3TCRUjyBJY=;1?g1{B4w(>F-2PZ@)3;*9Za2TKT^yb`|M;nMFPqnnwU!7u zD{iBjCSqJJv_TGT>9im)b(yzVCc-vx8L5Me5CHOyNUS=a@I-Cewo@zr8o?;giMIq` z5T|vp#gi(6;ZmuGLG?Y^=+adttSp}TxBkiW&9lnl{lmBKiBruAiCUK;%MuPGP*`NL zI+$G(-T5=wKX?&ocuX2l7)cdrT1-_dC>Ngqq+Ea{=d_sN5{=F%S2;S-Y6wz9D_Djc zn$);fwvFo6VB2i_+OGfJy;C`>EIa0nZ}ijG%p~XNLhe*sI*q%82n4|^gaTTtFjfj9 zQgb18S$HiKuh=O`+RlX12FgYNZF>0+8+ddXSLPObPcCPlmC{486&3Y)#t)-QZP6<~ ztZc)LepuVVm%mA1x##iedHwevnqGOJ4n%m*2aZ4~d7#N;cAaF=f>=iwQJ(vRtV&L; ztg!gxB$2hHD$)RxV4UrQWogC#E#=4!0i=~@OPiimvDsr8v37BX8F7F6vHF`I**i5R z#L!vDK4l&6t)-)WBaJ{>1rFKjPOO5hZeZD{oT4@Z(Ca8lT;KxQ(xj666OVz%mrgiu zhBBiY>SqeD+(7*W$3LxT3;)fzUn18rA=Vb}|L2F(n`hhCCIaAv*I2$|xvrp;Ym1 z70EWjB%DI7(xo}vZX z8_*@@DP38-?IQ!kE<#WoPzt7~!E}kTt~I7uYWQHsP;opP&U7B~Y%3j=0vNg@1*ujK zC32zW&?CqhA$DaGW;mIwZ2}awOo-Q>>xk33|M{nIPtDv#RF`PE0upk&H48 z)g5`#L-IGJ>kM_592utP*sH}J+F}IR6?>&PhPts0fDp3*6|CjMIgYt?8>1)Ic5#Tb zFYMp(1z4JMzBQfAO6ow)Ir#`(4J!v_XuIr)nnm#zW4@Rn3gAm>fR#ZvQScfLFb?F* z$+piad6z8BD{ukch`-k4{KWGos@(w-!S%!eKU}`J(x1Nm=>$YI^&l!+etVX8}S;5HV>ih1{OB}YGNvW@z{^ZA#(^d@TgM7 z`Id50L>P3u59ZNH>jNpt@UET4mgv<6H!V^6P-sX9O4l8D0V`+ zECQ73Q_t>wX)@yvF;KWy9HFr)VdbDePmT;4EPq%_ZC|pCwpv?qco)(C;ZLTgW`)#@ zRw*EvIRgA9(>hitFT=57aJ=~gExBFb*kqH*SXSF%?nMF zI$%2wrHMu!AOXzF$sw<_abzjStXSDf7|&MO1=|?Th9ADH|GNwJUUWXGR~#Bfb9$*%}B)q+;kbuq)^ce+9%RSS>Y{ zUSn=7r63SQEm};1uY%E3YqnSz6Y86|j!tW9_usm1?=AZjW82og;nREa)%p;bBCeB> zDLG)Qv<+~iR#=oa==?&kSud=}a9&!}hrw5!^>~V$8!4p(Yzu_~-;J2;ab?|j4F^XI@e6Mww-(#0j8 zpZ?XPx{ERM*EVr@v={XkUcGmvF!sRtwW1N_!Ube{34N1H((-u!y|&82YYl(Wj2hO%VEp;ELP#3pJY0i8`)MMG2p z8Bs=L)VShM_Ys&ZB!G#&8QfA0lzOpCRO0k{$+(ZC2?gDB&LZPc>QIPu0Nn)F(B;s7 zYyc5I`N5DED=RNOa<+ZpWxW_?MYjl?XqU7cX!-?^KpWA>fjf+%%}YLXNF%rH?Q^68 zsl&s9yk$rz#eovAw6Lx;v<$MJ~*S`QwFgQofZL_oIwN5&Dve%;cj7)}CwAr?%UxJjS%rU$FJ&4n1&QJJuO+I#=1j zi?FNmPzF|sx&iYZt(X#KHhoYRMtqwLUGWrh%iNmoi_p$ds_sQA~=DWW!709BI# zzERjnz&_OM(7zBg!q7w8leOvvG7fjSI6g>)Ux+8~bOvV@on*9vp2sngojtSg9>rB^@> z!g<@W-3a9H!x!vF1^1#PRXkcfT@etQjUZrkq9l()Ea5>$OPp2OkT&?6?eBI>QLLHmrsr!A55L;1_1sV?$q3R3_UCNN_k><$k{8;>r zbz&2Sj?BQ%YwARbk6@#KJ|Ibws(`aYpUz0%)D|BTVr^|wdzgVior8SH1P6^28Yumd zG7C%x&uUifC-jks4zGi}homsT(Sq$7K{@7{7+0?6_(Pf*=p%)nA+JZ68+^K;(wWA~ zF}aR4RAt$fcwbrejO#srHZ&GchD&M%Dgr78Ln{*EAbo{CS-YxntwaPA7xS4@iTcaE*sii+Dd&CoBJRPVjZ>x0at$SPLsg5B9Bq1wRrlpjb1CE}$3ci{bL*S#n1^ZemZHjCt!H(WQx*{RZYTcsiN@4B6j^(b3nQnevxw|7WhPrR- zv3f4$H8e(|I&};bpbx^qlf0w}Ss-Nry$7vqsi^I1N8_spJbH4R7TgWc7vn?Hv9XK< z{g~qruTZS8QJ>M8$T9R$0Op|6U;GJPl+r40G-TjjwQBT?Zw`xqy)X29y!8yjG2I(9As!5`Ii0djn(7pj`d#U*^Xts zim|Fq&#TH(IfM6zG@}?nW!lI@U2zqPx+GVFqY7TCp3g*o{_HhC4F-7>rWf|R(Td$@#cs4>tpj>q>($?lR&1H=*o{`4 zbz_#gplO4O! zirr|%)_+^~ZnR?gujHjlA(p==1GiGxdC^_6C3~l diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index c1307315ff4014546c2fc0f295fe422f9869c70c..ec9b621eb05ae69f083fcbf825f1a010d0d04a48 100644 GIT binary patch delta 223 zcmbQWjeXWO_6_?u4XZ4(Dl!tya`X*TERs`QO&98j<@OGz|NG)c2CG&eFyG&TXLHZ@K)Gd43wN;5V$-p+lR faUv68WqZytnlKVnwp`#mBL_iM+YPQWzG4OdvB*Ih delta 223 zcmbQWjeXWO_6_?u4NH>>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll zER4((O_GxgEi9Ygb8dgn$@u4hf`O5_MOt!lDv&laF-o?uNJ&agG&eCxNwP3EO|(qj i&V8D3A`@X{d(JYNFcMU@T;Mz-2SHWa4X!i3Vg>*P3`FPv diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index abc0af4d47b0fea139c67fcc9b31c57e0c22c3a0..6be3d0ebbb4e5bd768241ddb269c2451b153c650 100644 GIT binary patch delta 602 zcmex8i}Uv^&J8;_4XZ4(Dl!tya`X*TERs`N!h}a52tvOrolPw^5p)P(){W=3hK!jiFxU%G4TbNd6RY1l_$?hmzW+{$|yNG zGu?Rd79hud2csejNaf^*FT|PEV``^gRAZ8vY?Tp3p&4S+3o02oC-2T|2Dx4c;TVux zz!n01Eec|!rW|D5gq zIgDNx6^v7i%u>wKEG$xzl1&mVlPnF=OpPs#5-rV*%~MTGQ?~E4WtzxDSXq_>lL;eX SW&0eNj>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll zER4((O_GxgEi5;`M3JFSY~d)k?A-)VP#7_nXWMd09aVLsQ>@~ diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index 30b56cbf052027811d00b386cf69afa2a571407b..260b42a416422c2ede24db79068ea8df83dac68f 100644 GIT binary patch delta 13524 zcmeHNdvI078TW=ggoG+a!>aWIeTJwg!e-r;f;bf=V?MB2?-ET;DS%& zQN_!+b;e4lomLChq|A87u>$tLTBY<4r%q=o*mhbvBFNN#s*ZNg zl0Dyk`~803_wBcj-1F(d(Vre1-T%9asrTy}wzV2+M;)@MWy?0S6cajFQK*Bdi3lPp zQXPf3Ha5NAxX$jhdg^*Qw{%-ha?_v*C&pJw3nDmqX!SS-FATaixor7=GLPl#>u(=aexiBRbpCwe(CUQut7>hP*ITuA92@t+po-@g-X#rJ^oF|4_O!~V z|7qY&tjcTvMo4nLeM_0DoY-jZj<7SYl$D>DVVo-aS_8Vkb&4KXbR z@yJ(n9ocX(a%1kOO3X(mo6ihS?%X(p4^Iwj8-L=xj^3}Mmwd0|5Zk?y$7E*bkgvex z_MS;rZ+f*bBd?cTe5HQwFX3*%O22ds_Wyds_} zLj`1V0U0hJBL!qiwk*-viwXeyvK+GTB^ksQ^w1A#3%hS^f==rixFOi;_$e){et^~q7lgOVq`I^2kU$anNP)=ex z!pcBjP7P0gq12#4xe0{%@cG$cE%$&q!Q@Leo7L>(Jz!cm7b9^nKWr|EgGFKUxj0xH zHb07k6=8Eh3%EOMzSsg*ht1B(U~brKGQhI1Syc;q!{)(Sp|H^eQ$uNgrnzp4kUp1b zp6AWV%xb|JmxB>35d#u?*8*d+d-{8Wo|<%0T9`ne0Hht1lCs0q*JiyuLn~zrk-BIEuFiAqrK22vhY@yuyOsS?1U&mLb!f9AxAffqFUb| zNIcsh44iKeB+hn&xfxGYHn4$v+BX&47JBjaR57Y*T6R#>AShkaz@$+1$TX3p9h(J% zGn)m2Yqtnn&07S6V_U>LZJ7aPg~q0B70KAM70k>~)B;>MlZWTRR*{Syjk!vG5&KHp zd%={@=&@cYn59bQ-w=>dR z^91;Xc{A_SN06)ExgIDYl;4jS=>-Lkoz?`9Cu|UuZ!bsM&n-BPG7l?*r#wWn+ z94%fvq1J(fh*xwWm>mxIA_10$&DR%#hOqhhLeQ9FhKD8%wp+04TO`4+=6bEf!=hEzY&lkJ45yJ|wt2xkPaJ>k`4` z^@l~8I+hBUMURNuk2DGC`9}o!b4>#LToY&vgYw#=VmI8=3>JjaKQ;@rmmd?Jw=5IG z8uo&DS+T^yigDd?QRRQyD}bL^E`ZN27Z#2`E`W#Z6Tqie2;jbb0=Rjl7&c{p4loIT zzgQ`NYgY;2-Kzxf8>@tcpB@mv|2-gp2UZK^O3G%j?CEp&*@Im3oW*e{=8 zOP7oE>ArNi2n)M(xlmc@a&f$Lxey18(&fVY6AUX|E=re+(&fT0h0^6B`1|<(>vECe zmy0*bhG@EtR0Sfo>M1Zc^Yrtlz?sT)ADqUFUzd$#&m_UhY+=>E%4*oi!(ex2+>yfo zi>K6I4ui+%SJ0>o>!DtcS@Yk(s?_CkU`1rC+*4U8Lzzs0bc!rAl;~|(k5Sh0K4@f{ z&w(*lIru_mT#AGK_G{qPvp@e64EMhwW4r$W?zl<|4`;>+cX5PW{yP{~+-L6izro0F zWFfWV1JFJyO0X=O1ll_PM+}o1j;lHdyNaqJ4I!PC1L?t{TB#R-R3CrZma3C|TPxW7 zHmRBoy>rlX_WL&JhU9Des@Y^zHi?bi5I%i6IWmd0rJr7d{OQ&3DY@UC#46fD#hcot zZR`c_sWv&B9do6d*gNe~RdVM&qmrlh4D%$l?4q09|3HUSRSsiRm1UfaZjT0|&TuLF zxPvQx_VjQz^y5J{rB2-|JsSCbab}$J&Fr)lsYorpPnuPhu#N8ac#qZD?L?z(J#qiB zt*2*;Qwf7_P+?5Q8q!tqeQGqiqMLW4bT`s9SDb*KeTnQnHzxolLjW}uwKwn^m)7}Io2NtTtlMn@0l7|=#B=zlU+ z(%rsc7}GVRs0Bv*w8NQ@6@c_;-)TO&TEhwsJ@PR8eipx98pU9HWC$C#Ng7cKG|%?8 z8|W(bhi>U7exTQ7rt~_0POpo9SCje<&(Eux)UjCd>|3`c_^egDS@eIJ)ML`K`l}~( z*T%?LcHkqe9t=S*B<{GaAqu=rF zIG02E+h2Nnyt;+td$2pE`0m(!dsL;aDO;+6G@BB|(x^pMqF|XI7pbm7QdgdrHi9UU z6-RSyS$8c$u&Z(U-LFX~ZS zrmpV@Ay8#WoDnRD(D@Y!irOTPB<&m0iV>UH&>DG#zZR$ScA*q+(fDiAf022+x;k zP()lyAynn@GVCnpYHk_)%ScTT2EK36A_OefR6V$ky?IiaTt{F`k=r)c^{fwEH2AzR zRaLd2ONeP2CURs~w>1W@x@DL z&$%;RY}V##7mMD6^|kDV!{P zIhemum1vr6^8>xk)f`JRUBgv0S#ed%;kl-M-oi>Gu7eD$LViCmh>f9XnwrC>vWYEf z=-3H#gGww0?^j}Rbe>;5Dq9+IO-_jro#@_VRTUROQ#LqXg}P~1WX{EK4V%{)fsR+P znhI^IxfHstq6GAUT2yQZRcKj?f^6attP=wnRHm|R@#P2wu4L6>O%V?4%9z0@supA5 zP1ng2GIglx7-M4be5iau;OmI1YASYRm9G!Bsi>i6uEWA$|i&7Ak2qERSx2#HZ zytk7P)ig`7_>zEhWI#^bHB`PMC=Lvr)GWTvo8ByyHR7#AI`_b}bp8sn&R3Ao$)FaC zr7yR-ip|?x?P38;*J8AoU*6($3w!i}w72NK6o#P4##GuCOWUHi<(Ia_@KBL1#nQG| W+7?UOVkGhX+7`9cCsPJTM*k0)Ob!zO delta 12626 zcmeHNdvH|M8Fx45CSg$lAv`LOB}i2a$vO9)b00B40^ubB32zkK+^6Irn+Fi6K!Q(H zD9Tb#olyw3Q)|H*ni+R$E02zUbf_Rsr&EWSing7KQy?-<+o?L*v-jSdeYnm#+L;b^ zoxwTxyWjbKzwdP(oBPS0ai8oN*Y}$t(>EDyktl51S}7TlVH(6#EaHf|>0niZiUFad zTS&vIsOZ=g@|c0+8wbrWrWH8`@r+lmJ0nOA~E{WbdW;8&j&0oRMfv(5f5$x`g% z`bj|*^$%-`1is|e!RCvBk?FHS5}O@sI8zeazM+^+j}2>@)c;Ov*H_Vtz0>*>?ODMh zG%H&CC78_KGqF+azs$}k@s?hEBN%${P{*T(Is)upFn*|`K>bCxE;@!2>4AT8Bk3}fMJ8sENm*n#i;Seox}#kv3$QCoQ;c?rS@c|4hMtr~&y{89;e_7M6p!ha zyFrEEI!_PZ4Hjj@Mos1I(^j&`GW1-E8G5cPL(ip{rpIFA3NsX4-f4=_E?1VJM-u*J z=((~CJvob>E9=fsRI(_#vJ5>ni=HdX(9^Q$xiVj`d$2T-TbmiKc)|>m$Ss^qO;?zy znJq6UEitWrXP_^phNVASYEZV^c*0Eh%~g*)Wt`EokjBFq(E(0D-=3f(fZ_`ntR~rKv)M2i4bDV4@GY%>pa@VNE4x zHOc1qrz=5C(h8zaEdXO^1q74*Sr_fWK+;|aX8F?X4mWVz0ad>AGY8D{her^{efD0C z+aRWTDAK^{1Z9bNxL`e)IE4F7+m|pF?u*^)L8))EZ#|fkq$<*#wchNT{r9y^oYWHp-pqjq+H09OW$fs=)N5si#*nOXqKAXg_V^S$Lz3+Zf)Snh@e8gy|0^ zW8*j3uv1*Z8%4|jp8R7-B_x=NufJkS+eIJI3{IJN1s!R+Kz)oY>N*&M%dEBEdC zI$pPzxAKr2tm7fMQpZCA=cL9|rAJXB{Ii*FQ||}Fr+sD)r}6UrJVN?hP~$69Z{skR z=5p}UN$HMx9Q^D&4nAytD!Ar>pV-d8hwR|sFU{xc_LDonoS}TNKrj)6F|@6RP55*N z2>WCvb%VMzE!I4~*6wZ|ukan9&Y$pkH(25iU%LZT`@_%f0JUjmSZD^pdN{k@g`C}` zg-OqM@_6jH6VxX2hUkYj7)yJ1GRoT?;ADm`;$#LM;ACD}#K~MbyW!3Tu)vqT*}&0W zew2IOxRg(;-Ua5R#8UEBjO&;2E`Mtm2j07k1D{>SEgX4_0~bHefln;wz`c)i;D!}^ z+O#LqfUyVs`3eqPzLEp?tmMEaS8@x_?dHJ$-pzrJuHwK??cwpQS4Lk!cQX#qDMxL7;mBVuyo*=n@i5ELINK>U+aWgX z4C^0Zzj%VpUoHku_xa0(-`M%fg+ud~izE5V1wUZqFBgfQU}*kwk-uEzFBfhrmoLm?50cp6lviCl$*Z$Sjp z#`i!i-FP01|C*C8ByD-xnn^T?=%R>CsL&!HJdjf>{vr^nA~ez@ zjCs18{ajJkB$Ut-|0tMAKm2WAG>tb2!|AkvU~#N(Yndl1YG$IB<`#^jPyVxDgeO~- zkbOFj$%bDF`mz@ivbE0_O!ZX$m3XXf24nYiV_JcO<7iKdFp{3V7#u@?&>{?v-ATvM z-zP-jfr46kbE|Me;^kOc-6{-oUv6z>FKa$37)$pu5k2e(H_|h$!U#{T=Uyf|(gBL; z+2&vgoqV4#iPqc`D2jh@udp`ot#dHW9K0_$vZ*s-=^ZVRrq0eyb~v0E$IiZ9LJyn^ z6o+7iC@DyjL+p3|bAb}}j5I|QwU9XYEE0@VH6-z8Q9}w0VfT3mn-3Fzu@1#fyniFD zsS5&Hu|+6~6`mS)Ev!&9NyRY4>{Gn}Oo+X8xP(bH1ra$RRbvg$jbxCjEQ%7N5Yx|< z6er$GM3QLad%{=>TLQ&&V!JTqoN}A z-kTF+jjt95LulWrMBKl5Hrh4>CeV?a1aj58G1~nAfPTDLXuO&$Yux1ZMeFvjAF=w0 zz%|#nUsYVC-5zJ%-f?Rw#)bwZi|D3>utF?VB_h%+Vw;i!H7l-z!YBx4B5?X;rB@O9OaHAyo?mDs8rXB0Ppux04b z)UY9|s)8j+Gl=L|>?0uT5FP58>9OlODjW`kO}1bfj&6#QYGU@mkjnOR2|-J-bWtLX z=QU-zAU^O1;U|Hd9O%Mh0?bXJepF%QZDk0;DP`NYmxs$_WD?m{Y!e}bF@Y@R4pJ3` zof9?0K4J1)E5#@gY(q39%fY%xG)+e;Q8XKiHnvR4QaLK_d8R?#kR1g|nxvA`~w6J44wno?|c0?j<)nGNoidHtTqL}OkN*upjEmoGq#*R%ih*jNEEyos3gPna0 zRZ5&+lI02|Rkj>OWu>7f>R-pu&{P&5-Ii2EOf6Tp5leGWpjXBhqS9Oh2Fvx@smWGk zaa3i6(Pax9yT7rRsNZety?wG*?yAip9E zwxR^tDhX9fmlc^UNV-Z)){qcE)|~{KmYdMjMJ5*oZ;{Et04FN1lAbyyOhvMWDoAQK zvMNz+s1w5^4z?J3(~($#7^1~ES(@LCr7XdQB8!@cH5ogip^9w#P_QVfnoM-dbJA7$hcH onxt7;7@KbY_Jd_26Jce`f3uh{5?1#656gab!pd&3u-<0^03*do-~a#s delta 236 zcmdnlFS4^=WWyd#!_uUJ_Jv+L diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 6b9aedc9935b4746738f8ba9f7306833abf42cd3..1ae15b2de43c049310a0c6c288e27cfc11cf3195 100644 GIT binary patch delta 3885 zcmeHJJBXZB6lN|4U5NNff`vH0iy&gi-gED{uf|FX#SpaR3&UmXd=r?|<}0v*@Bc|JyB{soMD>T}AR(w2c%pWT&+=B^SH>SIr`M ze*c?SFAP^NOpZT2*>mYRapm~rm;T|G#N$&8hzUciU@%ANscH(^kg=GPuKiP|#9c%8 zmU#B2sl;L>fJaXSW3^H7E|f8b6oJk?{3-Sg@^f)|G6l*yKsH!XMq4ZyN@R1eR7^2p zR@!fEiUY$vC&bs2<`jRwCJuLv{?OmCA=dgMABvSOcGH> zzx-IpX3r7IvHsI<#RDBN7U>uTVMJZL_o3+MB0TU!(Vq#R4aw!&p zd@9&~|Et*7uWyMvhcDh1=lD$M6($)RD}RVjCezjwBdlis z+cyOCn?Hz$lvhq2GUkO>)?Plkdh+DKZdD<3!zqmt4JyM!nP{s4?PN)OjzydefsORq zKV1G%yfZn~I@>C@e(cF-)(;7-A{BEcdyHCQ zVz!6G#Nb^!B2(woxUR^rCha+9l59@!uOz3SVs*Jf4T^#BeN8oNY%Ydc5cIZt%#5as z5Wohlq>Q{d7-d(JQx#2R2ex^x$SeWnsA|m)Ho8~LDtOKI%%173nk%x=82XtaTRlfb zp6=Lt1ICouCM;GNqSSlTnx#?XYexEx{YG0eDDCQ zRUp8^F2uj0PP`xn?`ho2-NOg(ij7IT`?j|<`i@BCsKN&^Xa~|A0$9)?JB^eSW3cQE zl_zyULJ7!>DIt^{I&1{bq7GZfxc$FT)M57?>#&J!ro*kjgzN7e#Ldf$ woJW5%ujYzune8$oml?V9iLuPc{NJ;6nUTwk-0eZLGxgwq%*cT=^7mW+0jpzdLI3~& delta 3863 zcmeH}zpGtE5XZR(AqFBMYP3-9@u3JB@@98uXLlPbEfhnHok)D_k6B0>pZEh)gy4_L zfG8mxEMjAPRu6;_P7|X+8w&%b6GS_)NuNT*x#zxw_bl8$z{~9p%glUd=JTC<`TT+L z{DH5x_N%wk=Em!A;?%lHCgo(aE4J#GEBXK~0hm}+K(AfIoRkmeZr%IXrCa;o`K;Gb z$BG!UBZW?fpcIx&nwS|)#&aKk@qY8sCAj#<-Mz~ZHP);%5!#}CM&(R^L<(FeFokM9 zf{PD+aC3XSxjox_dA9HJYu)dgvtNg2-soPKXL8XfUmO8q2#GD(R7$Z{#922SJJa1i z_8)ey-qlyF6@e{@jYnrOI!qBGU@68pMdQ!Eb)V1r;ElYiRv{32Ft%2l31 z4%e@C2ggU=?Y^HiOZfX#cchtoxNoalAC6w=_V*Tw&TOKK*e|6TYOdKOv=OADXF#r%l$WCjvwbCNwL*pkObz8G` z`fFcyYTn4ZkaKd_{;_+qM{Su4fn!K$Y>~>Ny!L5#VRoi9uQf^g{7bKF z969>zb1!bRHg@mpM)T6z@k7H8zjO!trY>p9<4;U2@DVaA;V4@~uEHY}Ujsy;jE%~> zR(4)lVADQO76y@nF9ta!rW~U_8XU2cfpI13QJ? zjbf{eC5r!DK-z_36uN@!q;O|ZcnncV!O?rJ$p@ae+1cH>d`z-`7V^SgsxV`;*=Hp)h-7FBMwwGRkTW@0h1@VClbG!&0EQ*)orAm)SR7zjann-YB*zI z6I`{ninD_?#^+_zmo{lgJMDGRs(1t^cByMB6{9zq3DlCoKCpzTQJh9Aj~_zdAQOI(GY3hjBXgtHZcDjH|>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll jER4((O_GxgEi9WEx!M`I7=f4xh?#+yWjiAmYxoiX&{7y- diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index f4874c0d55e91c297e85143928f4de4dd930806d..42c0f6038b0d2da68e81d9407a44aa23f5a8a5b5 100644 GIT binary patch delta 238 zcmZ2@jd$TS-VFyh4XZ4(Dl!tya`X*TERs`~m6Qkr?1S+cRQsY!}aYEp`+iK)4zNwQ&z uk!g};+IFoV<|Za3Ldt3srrQTGFP&Z-%G^uXOocG!&+LSi8OJfd;{gEWN=V`W delta 238 zcmZ2@jd$TS-VFyh4NH>>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll zER4((O_GxgEi9Wqa<+fuWCUWS?H@UrB|Q|(4b4r=lT%HTEeumkEK)2JO^gf^&CQb2 wEX-3jlA(p=<|fA1TmY306WIU& diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 8ffabbc80f389a7bbdea6c466aef9af7ed8d74ec..24267972ed6890768c6b8c76359e68b1bcd2fef7 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4XZ4(Dl!tya`X*TERs`li8k delta 72 zcmeyif#cf-jtzS_4NH>>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll cER4((O_GxgEi9Yga<;$aWZeFilc|#r0KsV(umAu6 diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index d0f00e641995f9d9d73adf8ee5c83fc73bfc8126..3f550e20eaa090d63775ea151d20e6ebc8db89ea 100644 GIT binary patch delta 238 zcmexAh2{SgmJOFUZL2J^Dl!tya`X*TERs`KWMXb+VQFZZ zoMdjCWMXJyWMGwYbryy>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll cER4((O_GxgEi9Wqa<+fuWZeFdlWB=00GcKkQUCw| diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 374dc17835980d372d1e5645aae3811a97b12e09..2d3718f7da81f020fabbf666a614194ba8eafbaa 100644 GIT binary patch delta 2287 zcmeHIJ7^U_6lFq)q=|(R8{w@Fv5-eHcjwMe1yLd-V2p_1j~M5Rk%u5LAes-FMl>k+ zibWB`ND6HfQY^NDg+Z{k5d+qOq_EV}y^>Na+De8<_?Hlu6bD zwDriG+qBkZzjec*f15_Hx4z70t=+DtN2=NRcO z8)M`h$tq~@qHCO-&MFwtV)_(0oOvgxHr|632DM{~qomqK%cV`m6J`k4feQm$^?jl$?xI<=RQbjj&eOB$Tt& zt}=DKO4te_#r`Qmt9c|*y~WEZvbV+z^#)`_WXJ-wRz-*_Ou!3~JhCQCV+>sTR5lcS z)Jn$SA#%loq{71{!lHFx02Cx6DDA8cN--mu@IpEh{}h&25Lp#gtKd=G_T*xN4Ib?s z8?H}IHnO_%fGP*HI*)0#pn{jEh0m#XmYJ}wuPStFOkdBEdt|!my6WlJfs^M(28a5N z9UrN(?cZo$F|qn^qxf;2bZ1q%R&2Ys*xn>}x8k@J$Mtun!dzQ%6!^d6D9eF|89Opy~7aI~=g7@h~8sbIo`|c@03Iherh@dRY{`Uof^np4=eo!t^QqVgb zMGzSdwInz^v<3}H(A*LT%|SRc*6ABYWj#xy%Ps%k-Tgl9$8D^&Y^=4cthAD8b9L+r z9>3nr3^UdUtDFcFY~VV_%3#dEk(_I)fLlX!zPjG}=` z`U4pG>#WIq>fk+pZW^Dee_YP$2kb=qPUHGx`)cRGxEtJYu=>_L>&bE~wPl(Ug$3u% z8%t%N)=*&t=9tzOpWZ43t#&OfE>)PK7!;-^cy6`Nxui@RBaAdwVpn|VLkmp@OHeae z{M?6@W3?aMD?2g1??-R4bUFztx5Qh|rN~WAyq4H{%Q$mDi}h)AxjAD(fe@5CDIJHP z0Sf^@sfEB4qar5QzT(_9bQfisfm7IrD*0g0Zq`;e>!T zZqsUTOn?X7&=fDtpyoJy1GN=T7SKbKC5MCyQd-Xh56pvQOyrgVSWTQ&4JXpB7bq(s zgX7^jgv)s(Vcqfh9O|r4MKl8{Eteda-SioVN->E5Ea>g9sH5IXhjn_Csc|}GhPffu zgb*-k1n`@%3QcAx!?pL;awasS(3}M(H3q3z!?}hoTEb&XSB0hg|3M?(bm(G@3?1*D z9IejI*0L%lPFRsjAOX0_F?d0kP9mJpMriRvURmiH3A|iHchG!UTGe#zz^Re3q2az0 zgJWec_g8d@VYoV4i(k&8j;u^qOaXVsy%XqmX%)5;-mT+q9oviDI{qy0|F5Ge2JWMG Nd&)l2f=ATb_8o~bj}!m^ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 7419589a06bcfcd32eba51c68c2e00e245e49d79..eafab3108e38865ac8d0f25ff951c47dfdef93fa 100644 GIT binary patch delta 64 zcmZ3qfN{|R#tl}ChE#!1OZrpe|hrfEir$!R7QmImfY1_s87DTbCN U7DncYCdo;L7M7c{8MpfZ0I#wXHvj+t diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index b66f8a45233737a339cb3832d4128a88f6d57396..35662ec164642525c73e8e4dde96dabb151ce912 100644 GIT binary patch delta 224 zcmX@|fbGZwwhdc24XZ4(Dl!tya`X*TERs`>;`0qMEA@?&jFXa+Oq0!1Ow)`KlhaHrEDg+)3=E7DQw%Ll zER4((O_GxgEi9X#a&CXh$;dHX!NAVI-`Kc`4&gcEZZ;tYOSx1^^&4KAivn diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 2253ad2c30b49b634e3706786755aececd1396f9..14ec088ea9f91486dccec819cd393713c2d9ed2b 100644 GIT binary patch delta 7552 zcmeHM&8uBk73b>JCbspfFNvCW?mc-VisX^EKi1xRZNyeY2ZdH^g^1MB?oV0~o1mZ( zLeUPS9a&p?I?@ajMNvBPN~?Mw7QOSgvF(bEt}q70Vl6m^ThBaN&)I=BX%e1jU%y5!uQ@I3A6N(*s>JX zkXOPho7k5~q=hdsEna@H`_rU9KCO+zt!FyXH}cA5346m!_s>2v>^|LH?1MFmrAH46 zlP@X=o2symq$sE{F7Sxop3a?#$@-8|ErOEwEM?6mIzuwyJBK%?hvnFi9A%l91<06kzLw-#@moxL=9zSXB4Bz^d?uRrzZm%s4EN1kd;=h4%xN85RF zclh^DyVLVVRfGIxcj3aSeg>0DRkU=ulFr7H))oB_NkthksAFfNQ!<65qZf(r_e{Z6 z?~IVig;W<;Zgw{&^IDv7)>{`7DKyl@SgVhiR7JkVb*Q!Sj!F?Cdv_{`k~FEay`;bKgbV({oDIX^=8Vv=T=jEn9TMXV6vk zX-wUJse5ADGdQvWl6Z1WD!7ofz%Q4wkJ=TpR?$pK=h?=h6cv(@qXU!XXo*o#T)b1e zzf79B-}yx++gVq&0BWa)zn`9+y||9GjEPvGY`N2 zyu-Oq%|6>3VRZ>6vK0X&Ut=}Eo+=KUA3*3MWAq>umtis-DkSJ~47@rWr4f#GTpLfw zOHCCs9u!9q1^Fa0<(e2MObiklwXKzT1Y0ZbazHQcNFgqa3Se`oIdWE>4CP{2XrGp1 zt3y`s5(f+@6AVp+d!qmc22Y2^h=hI!g?`eyREG*|N+^j%Z*xpunks6**%Z70-cZh; zC-X+$v6|zv9tbtycF*uRKf5G_HkVkf=^JP5g3*x~Z4g>x=3s6Pdid2#h-_w&gd7z^-cRl%q*2xIv=-82HMBXFG8WQX2|5WS1C<(VnLR8oFz3l8NM1~b4D##A+}gVI+CVM% zRiq%26=1+-8$IAd$@`x4!pnHo2n<Tir?&iJ!1%?-sRR910 delta 7574 zcmeHM&5LAL6{oZ`(gAYVq9AR)B(69>VWMvcs3 z7)%y2*_ct8=Stj&E=02Oi4dIm2gGb-HUlng7lPng{MD=Ko~cCoZd_Kw=}leg+^8O`u@yebIGQ^;wNva4R3t7iZU`+bN9a&*K#lWq5<8b3g zhZ_^b2M`}bOc5VKd>HWn;uKNZ|w_l%CPW5kH*xnlc^X&G! zr@CB%OpFOvQXxakGqRCFh|v}693Q{1dTO|FVf&ZoXR>4_MYb#}qLM`5j&qWd`;u(b z{fjrZ-{>lbe2?#XY&g|#pZQs5jWEiF$g-Cdl@D1-k4tjqg61VIZdW}u|Hj|%Hvc@+ zD(ktA&SmY1N8|BkB||RJ2pi1suRG19X;-vhsIN-IB}t_7#RMb0$0#^y;xPGn^NY#M zNp5h037#F1DK0||L%pxb}?E)iMby~ zzzfSYT4s`oo<+<2aQiYIF>}^ilf9yBNJtillSciFWDzgV{f+C*_8lCnB<^p0t6^QJCB`H6`ZphLzu517v-x~iaP)ftO zv_)WmtX9q&hN?PVNCu0NqDkMGR)KnZ+HMYiIo-ZFxmIh^4zfP;;y3o6d*Q23Kf7O< z&A58{)4+lSOE>CBggHeKToGDJ$Xj`;mHVO@i;YRmwT|dHDXBg#dEZ_*Jf#EG)9`VD4 zGfC$qW6VxYEBk}}hIf^;YTk&w{`|#etN;5}dwSR02eZP8S2|gq49ElT1KkN9N-Wta z&yR+zDst%1W`FCi%|pZ8)9uyCwOX52;ZqyV)zh`w9fPg*xDjkmj$q?OCWuk6QY7+_ zOc#MP<_z-~Ks~2NNYV4nE7OhvGB7sTVfrW(iGhtSSe-S4F50vZx6Vmrm3Gn#h04MN z39CV4B{5|bgMQot9BA_7?7#bT`}Jzx{>*3EFLhi?Uy4fLfk?h&o1}_LTA>65p7@eC zGvky5n+tED5{1hmL*8UGT*+95gXde2eB?oE4=EQRlfq=fiQsTf8HR^Du>@N!=R(&i zDa$yfpWES#on1(P_FRb&wbTi43fVi)RL(kz$gLIwxE)@@W}cw3CMF%okpUzFD*{%| z%9uFZ&^_{q8R}>Nwn&V4@!$(Ub}y8fjn?Be$%NuHoLRua6ePT3miG^?3Q=KivYfC_3C;mW_<0Wj(M9r@FRc#g*k7IjaojWmUkiFwX{d>a;yKxEA8eNn7$8uFtfxm z=pH&w#NkMw?i2)M&|y_w`pf$M^giLMbZQk&^5h|XkISS=@s7b)d)x@VelNDB|KXkH zrS(#`Uh39M9rmVGaITlS_ivMP=CJFfZoSm~uibkUKI^4!z0|Fjy7f}GUh39M-T3d1 X^-?$f<>5Up^Z&cl4Or^__~3s5%!jC5 diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 222b29e2aa28606a9b72051aca536beeeadfc15d..eb9f3dc9e56ab164982d63b6082e778ca8e93b38 100644 GIT binary patch delta 1567 zcmaF-gzNQVE|vz?seBt*j&K@QS!PvaB%0;u8>Uz!rx>LeB%3A~q#B!=TBI6VBpI3* znwS}yrJ9#;I0*c23{+HvXX8W|Xw=o(n)8d)e98CV&bSeaN( zPIQe@urSrLG}bfJGcqyOQ7|$wFt9Q;N(CxN1hT9w%nc_`bTHvUD4ML`cAUjT&%%82 z1s^E^m|3O<3L0R+gor;}2*Jq<;ufkJ>zV2qn&}yun&~K*8tEAsn(G-F=ouOt=_r7t zj153Slk?&uxDYBQGrFA7(bd({^>)%PRse#`JO!YhVlFNWZi1T>~W9#$>%uM=|PX=(qV*nh*p_BW(xrmBpZbUR2Pqz0Doh;`VKG{D= ziRk#AE~S;*+-hM*GozP^E5Sc^Nz^}e0YeCVM=oJ z-pT7ic}R=q3DFKC&BKnx^|8v*_# BfcyXe delta 1725 zcmaF;nCtNqE|vz?sf-(0j&K^5CKbfz8)R1M8z&hjB`29Co2Qtj86_sCnOImFm?s$+ z7$>F}TAElGnJ1bgCmC8;ZvM&n+f?3(m4U&gpeWUjOIO#(z{o_`z(Uu^Ou^91%D~vl z)M&Dxcc`YGo*q!ZQqR!TK+nhoNShh!C>WU-7yuQd8dw=78W>tx85$azPF4&w;YCq6 z**0d!Spm)3qN_-QaFyaHx zlaeTwlb9g%LSoSqL_%Qb` where the image properties are computed. -Each image property is assigned a label uncorrelatedness score for the entire dataset. The lower the score, the more likely the property is to be spuriously correlated with the labels. -Consider reviewing the relationship between the image property and the labels if the corresponding label uncorrelatedness score is low. +Each image property (e.g. darkness/brightness) is assigned a label uncorrelatedness score for the entire dataset. The lower the score, the more strongly the property is correlated with the class labels, across images of the dataset. This score is mathematically defined as: 1 minus the relative accuracy improvement in predicting the labels based solely on this image property value (relative to always predicting the most common overall class). + +Consider reviewing the relationship between images with high and low values of this property and the labels if the corresponding label uncorrelatedness score is low, because ML models trained on this dataset may latch onto the spurious correlation and fail to generalize. This issue type is more about the overall dataset vs. individual data points and will only be highlighted by Datalab in its report, if any such troublesome image properties are found. diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 3ce45e534..4ed4c3ce4 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index 31ac70bc5..8508a3088 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 9718656c6..62fdb0d46 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index 6026e1b4d..c954d6400 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index e69cee73c..9121afc09 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 4268ddcce..fb2403dc9 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 5a0359197..33cca72ef 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 1feb459c2..2215c8453 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb index 94593ec3d..ad40ed93a 100644 --- a/master/_sources/tutorials/improving_ml_performance.ipynb +++ b/master/_sources/tutorials/improving_ml_performance.ipynb @@ -67,7 +67,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index 3dcc3b0b7..5186f103b 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index c081269e9..f618b89f2 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 9def01431..cd9f8e279 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index 5dc5e8485..de38f2058 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 5170e2d93..df9ea0623 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 331dbcb58..5f474f512 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 5da17b46c..210dc3748 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 67990f0eb..7f74c760a 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/datalab/guide/issue_type_description.html b/master/cleanlab/datalab/guide/issue_type_description.html index f6a998a40..3314badda 100644 --- a/master/cleanlab/datalab/guide/issue_type_description.html +++ b/master/cleanlab/datalab/guide/issue_type_description.html @@ -1148,8 +1148,8 @@

Spurious Correlations between image-specific properties and labelsimage_key keyword argument, after checking for Image-specific Issues where the image properties are computed.

-

Each image property is assigned a label uncorrelatedness score for the entire dataset. The lower the score, the more likely the property is to be spuriously correlated with the labels. -Consider reviewing the relationship between the image property and the labels if the corresponding label uncorrelatedness score is low.

+

Each image property (e.g. darkness/brightness) is assigned a label uncorrelatedness score for the entire dataset. The lower the score, the more strongly the property is correlated with the class labels, across images of the dataset. This score is mathematically defined as: 1 minus the relative accuracy improvement in predicting the labels based solely on this image property value (relative to always predicting the most common overall class).

+

Consider reviewing the relationship between images with high and low values of this property and the labels if the corresponding label uncorrelatedness score is low, because ML models trained on this dataset may latch onto the spurious correlation and fail to generalize.

This issue type is more about the overall dataset vs. individual data points and will only be highlighted by Datalab in its report, if any such troublesome image properties are found.

Metadata about spurious correlations is stored in the info attribute of the Datalab object. It can be accessed like so:

diff --git a/master/searchindex.js b/master/searchindex.js index 3c74fb4dc..0ca2f8cad 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 10, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 32, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 10, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 32, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 9, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 10, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 32, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 32, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 10, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 10, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 10, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 10, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 95, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 10, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 95, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 95, 108], "relev": [2, 10, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 10, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 10, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 10, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 10, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 95, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 10, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 10, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "spuriou": [9, 91], "correl": [9, 91], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "discuss": [10, 97], "earlier": [10, 87, 108], "unintend": [10, 93, 94, 95], "relationship": [10, 37], "irrelev": 10, "exploit": 10, "fail": [10, 13], "unseen": 10, "hold": [10, 13], "aris": 10, "captur": [10, 37, 88, 103, 104, 107], "environment": 10, "preprocess": [10, 86, 87, 90, 93, 95, 104, 106], "systemat": [10, 78, 82, 101], "photograph": 10, "uncorrelated": [10, 95], "spurious": 10, "review": [10, 86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "troublesom": 10, "spurious_correl": [10, 95], "correlations_df": [10, 95], "blurry_scor": [10, 95], "559": [10, 98], "dark_scor": [10, 91, 95], "808": 10, "light_scor": [10, 95], "723": [10, 93, 98], "odd_size_scor": [10, 95], "957": 10, "odd_aspect_ratio_scor": [10, 95], "835": 10, "grayscale_scor": [10, 95], "003": 10, "low_information_scor": [10, 91, 95], "688": [10, 98, 106], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "characterist": [10, 37, 95], "grayscal": [10, 91, 95], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_underperforming_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "exclud": [32, 34, 43, 78, 82, 89, 108], "worst": [32, 49, 101], "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 95, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 95, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103, 104], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "card_payment_fee_charg": [87, 94], "beneficiary_not_allow": [87, 94], "supported_cards_and_curr": [87, 94], "getting_spare_card": [87, 94], "change_pin": [87, 94], "lost_or_stolen_phon": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_about_to_expir": [87, 94], "visa_or_mastercard": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103, 108], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "926818": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "910232": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "890169": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "144": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "930": 91, "493": 91, "060": 91, "995": 91, "330": [91, 98, 103], "505": 91, "984": [91, 96], "476": [91, 98], "340": [91, 98], "056": 91, "328": [91, 103], "310": 91, "832": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "524": 95, "991400": 95, "356925": 95, "363": [95, 98], "619581": 95, "108": [95, 103], "500000": 95, "651838": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": 95, "006": 95, "154": 95, "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "015": 95, "label_uncorrelatedness_scor": 95, "image_issu": 95, "nimag": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "plot_scores_label": 95, "issues_copi": 95, "boxplot": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "977223": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9772": 98, "402": 98, "401": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99, 108], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "523": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103, 108], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": [103, 108], "202": 103, "230": [103, 108], "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "38277434": 104, "85it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a01": 108, "1115": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "11mb": 108, "inflat": 108, "177": 108, "116": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "5mb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_underperforming_clusters"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "spuriou": [10, 95], "correl": [10, 95], "between": 10, "properti": 10, "score": [10, 95, 99, 101, 102, 103, 107, 108], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "run": [95, 97], "analysi": [95, 103], "interpret": 95, "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 86, 87, 90, 93, 94, 95, 96, 97, 99, 101, 102, 104, 106, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 10, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 95, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 32, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 95, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 105, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 10, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 32, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 95, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 9, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 96, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 10, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 95, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 95, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81, 95], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 10, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 95, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 83, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 32, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 91, 92, 100], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 83, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 32, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 95, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 83, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 10, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 95, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 104, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 86, 87, 90, 93, 94, 96, 99, 102, 103, 104, 106, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 95, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 83, 84, 89, 96, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 95, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 10, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94, 95], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 10, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 100, 101, 102, 104, 105, 106], "accuraci": [2, 10, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 97, 101], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 83, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 98, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 95, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 10, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 83, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 95, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 89, 91, 97, 98, 103, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 106], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 105, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 83, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 10, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 88, 89, 91, 97, 98, 100], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 95, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 95, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 95, 108], "relev": [2, 10, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 83, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 10, 83, 90, 91, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 95, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 86, 87, 90, 91, 93, 94, 95, 96, 99, 101, 102, 104, 106], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 10, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103, 105], "littl": [3, 41, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 10, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 104, 106, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 83, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 95, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 95, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95, 105], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77, 95], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 86, 87, 90, 93, 94, 96, 97, 98, 99, 102, 104, 106], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 95, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 9, 13, 14, 35, 38, 42, 95], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 83, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 95, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 95, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 95, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 93, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 10, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 95, 98], "show_all_issu": [5, 34, 95, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 10, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 95, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 83, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 95, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 10, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 83, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 10, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 83, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 86, 87, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 104, 105, 106, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 83, 98], "group": [8, 9, 27, 32, 83, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 95, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "spuriou": [9, 91], "correl": [9, 91], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 105, 106], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "faster": [9, 10, 41, 70, 73, 75, 77, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 106], "intellig": [9, 10, 98], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 105, 107, 108], "fix": [9, 10, 61, 86, 87, 90, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 96, 99, 108], "automl": [9, 10, 83, 86, 87, 90, 93, 94, 96, 97, 99, 102, 104, 105, 106], "system": [9, 10, 88, 91, 107], "foundat": [9, 10, 83, 86, 87, 90, 93, 94, 95, 96, 99, 102, 104, 105, 106], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88, 95], "expertis": [10, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 86, 87, 90, 93, 94, 96, 98, 99, 102, 104, 106], "violat": [10, 83, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94, 95], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 95, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 95, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 95, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 95, 107], "bright": [10, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "discuss": [10, 97], "earlier": [10, 87, 108], "unintend": [10, 93, 94, 95], "relationship": [10, 37], "irrelev": 10, "exploit": 10, "fail": [10, 13], "unseen": 10, "hold": [10, 13], "aris": 10, "captur": [10, 37, 88, 103, 104, 107], "environment": 10, "preprocess": [10, 86, 87, 90, 93, 95, 104, 106], "systemat": [10, 78, 82, 101], "photograph": 10, "uncorrelated": [10, 95], "strongli": [10, 94, 95], "minu": [10, 71], "sole": [10, 73, 86, 89, 98, 101, 104], "review": [10, 86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "latch": 10, "onto": 10, "troublesom": 10, "spurious_correl": [10, 95], "correlations_df": [10, 95], "blurry_scor": [10, 95], "559": [10, 98], "dark_scor": [10, 91, 95], "808": 10, "light_scor": [10, 95], "723": [10, 93, 98], "odd_size_scor": [10, 95], "957": 10, "odd_aspect_ratio_scor": [10, 95], "835": 10, "grayscale_scor": [10, 95], "003": 10, "spurious": 10, "low_information_scor": [10, 91, 95], "688": [10, 98, 106], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "characterist": [10, 37, 95], "grayscal": [10, 91, 95], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 104, 105, 106], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_underperforming_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 95, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106, 108], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "exclud": [32, 34, 43, 78, 82, 89, 108], "worst": [32, 49, 101], "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 95, 97], "datset": 34, "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 95, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 95, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 95, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 95, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 95, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 83, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 105, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "tool": [83, 96, 99, 101], "catch": [83, 98], "dive": [83, 94, 95, 98], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 86, 87, 90, 91, 93, 94, 96, 97, 99, 102, 104, 106], "edit": [83, 97, 98], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 95, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "Then": [86, 87, 91, 97], "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "iloc": [86, 87, 88, 93, 94, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106, 108], "827": [86, 91], "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "cumbersom": [86, 87, 90, 93, 94, 96, 99, 102, 104, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "apple_pay_or_google_pai": [87, 94], "visa_or_mastercard": [87, 94], "change_pin": [87, 94], "card_payment_fee_charg": [87, 94], "supported_cards_and_curr": [87, 94], "getting_spare_card": [87, 94], "beneficiary_not_allow": [87, 94], "card_about_to_expir": [87, 94], "lost_or_stolen_phon": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 95, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106, 108], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 95, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 104], "gz": [88, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101, 105], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 104], "set_titl": [89, 90, 91, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 95, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103, 108], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106], "51": [89, 90, 93, 95, 96, 99, 103, 108], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": [89, 108], "101107": 89, "183382": 89, "109": [89, 95, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103, 108], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "926818": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "910232": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "890169": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": [90, 105], "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": 91, "60000": 91, "transformed_dataset": 91, "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": 91, "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": 91, "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "860": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 95, 98], "838": [91, 106], "493": 91, "060": 91, "330": [91, 98, 103], "505": 91, "861": 91, "476": [91, 98], "340": [91, 98], "896": 91, "328": [91, 103], "310": 91, "601": [91, 98], "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_issues_df": 91, "is_dark_issu": [91, 95], "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103, 108], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356959": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651838": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "easier": [95, 99], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "directori": [95, 108], "subdirectori": 95, "nc": [95, 103, 107, 108], "unzip": [95, 103, 108], "09": [95, 98, 102, 103, 106], "199": [95, 98, 103], "111": [95, 101, 106], "153": [95, 98, 103], "110": [95, 103], "connect": [95, 108], "443": [95, 108], "await": [95, 108], "ok": [95, 105, 108], "986707": 95, "964k": 95, "963": 95, "58k": 95, "kb": [95, 108], "mb": [95, 108], "imagefold": 95, "load_image_dataset": 95, "data_dir": 95, "root": [95, 104], "image_dataset": 95, "img": [95, 104, 106], "from_dict": [95, 97], "darkened_imag": 95, "job": 95, "015": 95, "label_uncorrelatedness_scor": 95, "image_issu": 95, "nimag": 95, "237196": 95, "197229": 95, "254188": 95, "229170": 95, "208907": 95, "793840": 95, "196": [95, 98, 99, 103], "197": [95, 99, 103], "971560": 95, "198": [95, 99, 103], "862236": 95, "973533": 95, "stronger": 95, "frog": [95, 96, 104], "darken": 95, "concept": 95, "notabl": 95, "preval": 95, "warrant": 95, "programmat": 95, "plot_scores_label": 95, "issues_copi": 95, "boxplot": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": [97, 98], "email": 97, "team": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "977223": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103, 108], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9772": 98, "402": 98, "401": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99, 108], "173": [98, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "outliers_idx": 98, "143": [98, 102, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "295": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "170": 99, "214": 99, "164": [99, 102], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103], "169": 99, "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "toronto": 104, "edu": 104, "kriz": 104, "170498071": 104, "91610373": 104, "10it": 104, "plot_imag": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "unsur": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "871": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "87mb": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_underperforming_clusters"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 83, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91], "mode": [9, 10, 83, 91], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 107], "spuriou": [10, 95], "correl": [10, 95], "between": 10, "properti": 10, "score": [10, 95, 99, 101, 102, 103, 107, 108], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [83, 90, 99], "sort": [83, 95], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "common": [84, 108], "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "spend": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "too": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "much": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "time": [86, 87, 90, 93, 94, 96, 99, 102, 104, 105, 106], "qualiti": [86, 87, 90, 93, 94, 96, 99, 101, 102, 103, 104, 105, 106, 107, 108], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": 91, "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "6": [95, 98, 99], "run": [95, 97], "analysi": [95, 103], "interpret": 95, "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "origin": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Spurious Correlations between image-specific properties and labels": [[10, "spurious-correlations-between-image-specific-properties-and-labels"]], "property": [[10, "property"]], "score": [[10, "score"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Check your data for all sorts of issues": [[83, "check-your-data-for-all-sorts-of-issues"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Spending too much time on data quality?": [[86, "Spending-too-much-time-on-data-quality?"], [87, "Spending-too-much-time-on-data-quality?"], [90, "Spending-too-much-time-on-data-quality?"], [93, "Spending-too-much-time-on-data-quality?"], [94, "Spending-too-much-time-on-data-quality?"], [96, "Spending-too-much-time-on-data-quality?"], [99, "Spending-too-much-time-on-data-quality?"], [102, "Spending-too-much-time-on-data-quality?"], [104, "Spending-too-much-time-on-data-quality?"], [105, "spending-too-much-time-on-data-quality"], [106, "Spending-too-much-time-on-data-quality?"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Run Datalab Analysis": [[95, "2.-Run-Datalab-Analysis"]], "3. Interpret the Results": [[95, "3.-Interpret-the-Results"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_underperforming_clusters() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_underperforming_clusters"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 25a686165..d045f2500 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:53.786288Z", - "iopub.status.busy": "2024-08-26T15:49:53.786078Z", - "iopub.status.idle": "2024-08-26T15:49:55.058310Z", - "shell.execute_reply": "2024-08-26T15:49:55.057679Z" + "iopub.execute_input": "2024-08-28T20:04:42.119805Z", + "iopub.status.busy": "2024-08-28T20:04:42.119627Z", + "iopub.status.idle": "2024-08-28T20:04:43.356727Z", + "shell.execute_reply": "2024-08-28T20:04:43.356102Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.061371Z", - "iopub.status.busy": "2024-08-26T15:49:55.060806Z", - "iopub.status.idle": "2024-08-26T15:49:55.079140Z", - "shell.execute_reply": "2024-08-26T15:49:55.078680Z" + "iopub.execute_input": "2024-08-28T20:04:43.359225Z", + "iopub.status.busy": "2024-08-28T20:04:43.358943Z", + "iopub.status.idle": "2024-08-28T20:04:43.377369Z", + "shell.execute_reply": "2024-08-28T20:04:43.376770Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.081404Z", - "iopub.status.busy": "2024-08-26T15:49:55.080983Z", - "iopub.status.idle": "2024-08-26T15:49:55.275955Z", - "shell.execute_reply": "2024-08-26T15:49:55.275375Z" + "iopub.execute_input": "2024-08-28T20:04:43.379836Z", + "iopub.status.busy": "2024-08-28T20:04:43.379355Z", + "iopub.status.idle": "2024-08-28T20:04:43.522623Z", + "shell.execute_reply": "2024-08-28T20:04:43.522044Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.313930Z", - "iopub.status.busy": "2024-08-26T15:49:55.313329Z", - "iopub.status.idle": "2024-08-26T15:49:55.317364Z", - "shell.execute_reply": "2024-08-26T15:49:55.316909Z" + "iopub.execute_input": "2024-08-28T20:04:43.553029Z", + "iopub.status.busy": "2024-08-28T20:04:43.552834Z", + "iopub.status.idle": "2024-08-28T20:04:43.556519Z", + "shell.execute_reply": "2024-08-28T20:04:43.556047Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.319414Z", - "iopub.status.busy": "2024-08-26T15:49:55.319068Z", - "iopub.status.idle": "2024-08-26T15:49:55.327715Z", - "shell.execute_reply": "2024-08-26T15:49:55.327122Z" + "iopub.execute_input": "2024-08-28T20:04:43.558453Z", + "iopub.status.busy": "2024-08-28T20:04:43.558283Z", + "iopub.status.idle": "2024-08-28T20:04:43.566371Z", + "shell.execute_reply": "2024-08-28T20:04:43.565935Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.329976Z", - "iopub.status.busy": "2024-08-26T15:49:55.329562Z", - "iopub.status.idle": "2024-08-26T15:49:55.332413Z", - "shell.execute_reply": "2024-08-26T15:49:55.331825Z" + "iopub.execute_input": "2024-08-28T20:04:43.568470Z", + "iopub.status.busy": "2024-08-28T20:04:43.568293Z", + "iopub.status.idle": "2024-08-28T20:04:43.570807Z", + "shell.execute_reply": "2024-08-28T20:04:43.570342Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.334498Z", - "iopub.status.busy": "2024-08-26T15:49:55.334155Z", - "iopub.status.idle": "2024-08-26T15:49:55.859656Z", - "shell.execute_reply": "2024-08-26T15:49:55.859123Z" + "iopub.execute_input": "2024-08-28T20:04:43.572686Z", + "iopub.status.busy": "2024-08-28T20:04:43.572515Z", + "iopub.status.idle": "2024-08-28T20:04:44.093962Z", + "shell.execute_reply": "2024-08-28T20:04:44.093422Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:55.862132Z", - "iopub.status.busy": "2024-08-26T15:49:55.861942Z", - "iopub.status.idle": "2024-08-26T15:49:57.828703Z", - "shell.execute_reply": "2024-08-26T15:49:57.828113Z" + "iopub.execute_input": "2024-08-28T20:04:44.096377Z", + "iopub.status.busy": "2024-08-28T20:04:44.096155Z", + "iopub.status.idle": "2024-08-28T20:04:46.009078Z", + "shell.execute_reply": "2024-08-28T20:04:46.008425Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.831725Z", - "iopub.status.busy": "2024-08-26T15:49:57.830860Z", - "iopub.status.idle": "2024-08-26T15:49:57.841628Z", - "shell.execute_reply": "2024-08-26T15:49:57.841073Z" + "iopub.execute_input": "2024-08-28T20:04:46.011848Z", + "iopub.status.busy": "2024-08-28T20:04:46.011198Z", + "iopub.status.idle": "2024-08-28T20:04:46.021914Z", + "shell.execute_reply": "2024-08-28T20:04:46.021384Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.843831Z", - "iopub.status.busy": "2024-08-26T15:49:57.843444Z", - "iopub.status.idle": "2024-08-26T15:49:57.847541Z", - "shell.execute_reply": "2024-08-26T15:49:57.846968Z" + "iopub.execute_input": "2024-08-28T20:04:46.024105Z", + "iopub.status.busy": "2024-08-28T20:04:46.023682Z", + "iopub.status.idle": "2024-08-28T20:04:46.027945Z", + "shell.execute_reply": "2024-08-28T20:04:46.027378Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.849507Z", - "iopub.status.busy": "2024-08-26T15:49:57.849202Z", - "iopub.status.idle": "2024-08-26T15:49:57.858293Z", - "shell.execute_reply": "2024-08-26T15:49:57.857744Z" + "iopub.execute_input": "2024-08-28T20:04:46.030083Z", + "iopub.status.busy": "2024-08-28T20:04:46.029775Z", + "iopub.status.idle": "2024-08-28T20:04:46.038705Z", + "shell.execute_reply": "2024-08-28T20:04:46.038223Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.860454Z", - "iopub.status.busy": "2024-08-26T15:49:57.860152Z", - "iopub.status.idle": "2024-08-26T15:49:57.972126Z", - "shell.execute_reply": "2024-08-26T15:49:57.971546Z" + "iopub.execute_input": "2024-08-28T20:04:46.040729Z", + "iopub.status.busy": "2024-08-28T20:04:46.040398Z", + "iopub.status.idle": "2024-08-28T20:04:46.151924Z", + "shell.execute_reply": "2024-08-28T20:04:46.151398Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.974328Z", - "iopub.status.busy": "2024-08-26T15:49:57.973926Z", - "iopub.status.idle": "2024-08-26T15:49:57.976598Z", - "shell.execute_reply": "2024-08-26T15:49:57.976151Z" + "iopub.execute_input": "2024-08-28T20:04:46.154071Z", + "iopub.status.busy": "2024-08-28T20:04:46.153792Z", + "iopub.status.idle": "2024-08-28T20:04:46.156683Z", + "shell.execute_reply": "2024-08-28T20:04:46.156129Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:49:57.978573Z", - "iopub.status.busy": "2024-08-26T15:49:57.978261Z", - "iopub.status.idle": "2024-08-26T15:50:00.065786Z", - "shell.execute_reply": "2024-08-26T15:50:00.064976Z" + "iopub.execute_input": "2024-08-28T20:04:46.158754Z", + "iopub.status.busy": "2024-08-28T20:04:46.158318Z", + "iopub.status.idle": "2024-08-28T20:04:48.235464Z", + "shell.execute_reply": "2024-08-28T20:04:48.234799Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:00.069072Z", - "iopub.status.busy": "2024-08-26T15:50:00.068250Z", - "iopub.status.idle": "2024-08-26T15:50:00.079734Z", - "shell.execute_reply": "2024-08-26T15:50:00.079177Z" + "iopub.execute_input": "2024-08-28T20:04:48.238628Z", + "iopub.status.busy": "2024-08-28T20:04:48.237802Z", + "iopub.status.idle": "2024-08-28T20:04:48.248832Z", + "shell.execute_reply": "2024-08-28T20:04:48.248357Z" } }, "outputs": [ @@ -786,10 +786,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:00.081968Z", - "iopub.status.busy": "2024-08-26T15:50:00.081512Z", - "iopub.status.idle": "2024-08-26T15:50:00.307993Z", - "shell.execute_reply": "2024-08-26T15:50:00.307364Z" + "iopub.execute_input": "2024-08-28T20:04:48.250827Z", + "iopub.status.busy": "2024-08-28T20:04:48.250644Z", + "iopub.status.idle": "2024-08-28T20:04:48.292922Z", + "shell.execute_reply": "2024-08-28T20:04:48.292468Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 3f03b9159..3d2fae52d 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -817,7 +817,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'visa_or_mastercard', 'cancel_transfer'}
+Classes: {'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'lost_or_stolen_phone'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1219,7 +1219,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 8c5c26b42..3d9566c81 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:03.569360Z", - "iopub.status.busy": "2024-08-26T15:50:03.569180Z", - "iopub.status.idle": "2024-08-26T15:50:06.407526Z", - "shell.execute_reply": "2024-08-26T15:50:06.406949Z" + "iopub.execute_input": "2024-08-28T20:04:51.549919Z", + "iopub.status.busy": "2024-08-28T20:04:51.549750Z", + "iopub.status.idle": "2024-08-28T20:04:54.603829Z", + "shell.execute_reply": "2024-08-28T20:04:54.603164Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.410122Z", - "iopub.status.busy": "2024-08-26T15:50:06.409772Z", - "iopub.status.idle": "2024-08-26T15:50:06.413458Z", - "shell.execute_reply": "2024-08-26T15:50:06.412873Z" + "iopub.execute_input": "2024-08-28T20:04:54.606360Z", + "iopub.status.busy": "2024-08-28T20:04:54.606051Z", + "iopub.status.idle": "2024-08-28T20:04:54.609561Z", + "shell.execute_reply": "2024-08-28T20:04:54.609105Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.415650Z", - "iopub.status.busy": "2024-08-26T15:50:06.415319Z", - "iopub.status.idle": "2024-08-26T15:50:06.418479Z", - "shell.execute_reply": "2024-08-26T15:50:06.417934Z" + "iopub.execute_input": "2024-08-28T20:04:54.611731Z", + "iopub.status.busy": "2024-08-28T20:04:54.611374Z", + "iopub.status.idle": "2024-08-28T20:04:54.614331Z", + "shell.execute_reply": "2024-08-28T20:04:54.613882Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.420642Z", - "iopub.status.busy": "2024-08-26T15:50:06.420319Z", - "iopub.status.idle": "2024-08-26T15:50:06.442102Z", - "shell.execute_reply": "2024-08-26T15:50:06.441562Z" + "iopub.execute_input": "2024-08-28T20:04:54.616415Z", + "iopub.status.busy": "2024-08-28T20:04:54.616051Z", + "iopub.status.idle": "2024-08-28T20:04:54.676026Z", + "shell.execute_reply": "2024-08-28T20:04:54.675570Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.444312Z", - "iopub.status.busy": "2024-08-26T15:50:06.443871Z", - "iopub.status.idle": "2024-08-26T15:50:06.447563Z", - "shell.execute_reply": "2024-08-26T15:50:06.447001Z" + "iopub.execute_input": "2024-08-28T20:04:54.678072Z", + "iopub.status.busy": "2024-08-28T20:04:54.677723Z", + "iopub.status.idle": "2024-08-28T20:04:54.681072Z", + "shell.execute_reply": "2024-08-28T20:04:54.680622Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.449710Z", - "iopub.status.busy": "2024-08-26T15:50:06.449373Z", - "iopub.status.idle": "2024-08-26T15:50:06.452548Z", - "shell.execute_reply": "2024-08-26T15:50:06.452027Z" + "iopub.execute_input": "2024-08-28T20:04:54.683050Z", + "iopub.status.busy": "2024-08-28T20:04:54.682715Z", + "iopub.status.idle": "2024-08-28T20:04:54.685961Z", + "shell.execute_reply": "2024-08-28T20:04:54.685473Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'getting_spare_card', 'change_pin', 'lost_or_stolen_phone', 'apple_pay_or_google_pay', 'card_about_to_expire', 'visa_or_mastercard', 'cancel_transfer'}\n" + "Classes: {'apple_pay_or_google_pay', 'visa_or_mastercard', 'change_pin', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'getting_spare_card', 'beneficiary_not_allowed', 'card_about_to_expire', 'lost_or_stolen_phone'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.454394Z", - "iopub.status.busy": "2024-08-26T15:50:06.454216Z", - "iopub.status.idle": "2024-08-26T15:50:06.457498Z", - "shell.execute_reply": "2024-08-26T15:50:06.456945Z" + "iopub.execute_input": "2024-08-28T20:04:54.688046Z", + "iopub.status.busy": "2024-08-28T20:04:54.687595Z", + "iopub.status.idle": "2024-08-28T20:04:54.690699Z", + "shell.execute_reply": "2024-08-28T20:04:54.690249Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.459596Z", - "iopub.status.busy": "2024-08-26T15:50:06.459255Z", - "iopub.status.idle": "2024-08-26T15:50:06.463265Z", - "shell.execute_reply": "2024-08-26T15:50:06.462673Z" + "iopub.execute_input": "2024-08-28T20:04:54.692643Z", + "iopub.status.busy": "2024-08-28T20:04:54.692464Z", + "iopub.status.idle": "2024-08-28T20:04:54.695826Z", + "shell.execute_reply": "2024-08-28T20:04:54.695341Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:06.465474Z", - "iopub.status.busy": "2024-08-26T15:50:06.465140Z", - "iopub.status.idle": "2024-08-26T15:50:11.593668Z", - "shell.execute_reply": "2024-08-26T15:50:11.593086Z" + "iopub.execute_input": "2024-08-28T20:04:54.697810Z", + "iopub.status.busy": "2024-08-28T20:04:54.697514Z", + "iopub.status.idle": "2024-08-28T20:05:00.844324Z", + "shell.execute_reply": "2024-08-28T20:05:00.843759Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "609bd99534344390a356a6788fee8507", + "model_id": "df0c4acd84aa43d7aca5c30c44c6a6ae", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "72d412ce755f416e9311468fb26a3a46", + "model_id": "e74ddbaf22bb425b8bfd41dca45d9308", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1bd2574eb75a42f3837995119980a91e", + "model_id": "760889e6a4ae4c6799f77c6474bc0967", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a87e77b0e9324a9384b775bc5514a176", + "model_id": "0eba5f7fd1574c49853b2127c0c236ad", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1d1da5af0c1e439590d191a482ebfe2e", + "model_id": "26b0e23d838040bbacbd41e6543d4be1", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "66ba0cd1d985486c984a043d0efabf25", + "model_id": "ce1d0dd784844e8a8cf246b18c6861a5", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "828118e3407f496e9047225853abf12c", + "model_id": "851ded77a6d946818f4fe75f11ccccf9", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:11.596799Z", - "iopub.status.busy": "2024-08-26T15:50:11.596379Z", - "iopub.status.idle": "2024-08-26T15:50:11.599483Z", - "shell.execute_reply": "2024-08-26T15:50:11.598893Z" + "iopub.execute_input": "2024-08-28T20:05:00.847393Z", + "iopub.status.busy": "2024-08-28T20:05:00.846819Z", + "iopub.status.idle": "2024-08-28T20:05:00.849916Z", + "shell.execute_reply": "2024-08-28T20:05:00.849336Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:11.601637Z", - "iopub.status.busy": "2024-08-26T15:50:11.601225Z", - "iopub.status.idle": "2024-08-26T15:50:11.603915Z", - "shell.execute_reply": "2024-08-26T15:50:11.603463Z" + "iopub.execute_input": "2024-08-28T20:05:00.851872Z", + "iopub.status.busy": "2024-08-28T20:05:00.851596Z", + "iopub.status.idle": "2024-08-28T20:05:00.854372Z", + "shell.execute_reply": "2024-08-28T20:05:00.853816Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:11.605986Z", - "iopub.status.busy": "2024-08-26T15:50:11.605617Z", - "iopub.status.idle": "2024-08-26T15:50:14.423933Z", - "shell.execute_reply": "2024-08-26T15:50:14.423128Z" + "iopub.execute_input": "2024-08-28T20:05:00.856428Z", + "iopub.status.busy": "2024-08-28T20:05:00.856093Z", + "iopub.status.idle": "2024-08-28T20:05:03.649572Z", + "shell.execute_reply": "2024-08-28T20:05:03.648774Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.427102Z", - "iopub.status.busy": "2024-08-26T15:50:14.426449Z", - "iopub.status.idle": "2024-08-26T15:50:14.434884Z", - "shell.execute_reply": "2024-08-26T15:50:14.434404Z" + "iopub.execute_input": "2024-08-28T20:05:03.653025Z", + "iopub.status.busy": "2024-08-28T20:05:03.652147Z", + "iopub.status.idle": "2024-08-28T20:05:03.660190Z", + "shell.execute_reply": "2024-08-28T20:05:03.659672Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.437037Z", - "iopub.status.busy": "2024-08-26T15:50:14.436709Z", - "iopub.status.idle": "2024-08-26T15:50:14.440467Z", - "shell.execute_reply": "2024-08-26T15:50:14.440009Z" + "iopub.execute_input": "2024-08-28T20:05:03.662249Z", + "iopub.status.busy": "2024-08-28T20:05:03.661919Z", + "iopub.status.idle": "2024-08-28T20:05:03.665895Z", + "shell.execute_reply": "2024-08-28T20:05:03.665334Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.442521Z", - "iopub.status.busy": "2024-08-26T15:50:14.442187Z", - "iopub.status.idle": "2024-08-26T15:50:14.445362Z", - "shell.execute_reply": "2024-08-26T15:50:14.444833Z" + "iopub.execute_input": "2024-08-28T20:05:03.667854Z", + "iopub.status.busy": "2024-08-28T20:05:03.667679Z", + "iopub.status.idle": "2024-08-28T20:05:03.670666Z", + "shell.execute_reply": "2024-08-28T20:05:03.670117Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.447481Z", - "iopub.status.busy": "2024-08-26T15:50:14.447144Z", - "iopub.status.idle": "2024-08-26T15:50:14.450022Z", - "shell.execute_reply": "2024-08-26T15:50:14.449578Z" + "iopub.execute_input": "2024-08-28T20:05:03.672691Z", + "iopub.status.busy": "2024-08-28T20:05:03.672519Z", + "iopub.status.idle": "2024-08-28T20:05:03.675625Z", + "shell.execute_reply": "2024-08-28T20:05:03.675103Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.452041Z", - "iopub.status.busy": "2024-08-26T15:50:14.451628Z", - "iopub.status.idle": "2024-08-26T15:50:14.458672Z", - "shell.execute_reply": "2024-08-26T15:50:14.458190Z" + "iopub.execute_input": "2024-08-28T20:05:03.677594Z", + "iopub.status.busy": "2024-08-28T20:05:03.677297Z", + "iopub.status.idle": "2024-08-28T20:05:03.684067Z", + "shell.execute_reply": "2024-08-28T20:05:03.683487Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.460712Z", - "iopub.status.busy": "2024-08-26T15:50:14.460403Z", - "iopub.status.idle": "2024-08-26T15:50:14.686735Z", - "shell.execute_reply": "2024-08-26T15:50:14.686142Z" + "iopub.execute_input": "2024-08-28T20:05:03.686088Z", + "iopub.status.busy": "2024-08-28T20:05:03.685790Z", + "iopub.status.idle": "2024-08-28T20:05:03.913268Z", + "shell.execute_reply": "2024-08-28T20:05:03.912724Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.689386Z", - "iopub.status.busy": "2024-08-26T15:50:14.688990Z", - "iopub.status.idle": "2024-08-26T15:50:14.901649Z", - "shell.execute_reply": "2024-08-26T15:50:14.901083Z" + "iopub.execute_input": "2024-08-28T20:05:03.915928Z", + "iopub.status.busy": "2024-08-28T20:05:03.915520Z", + "iopub.status.idle": "2024-08-28T20:05:04.091487Z", + "shell.execute_reply": "2024-08-28T20:05:04.090952Z" }, "scrolled": true }, @@ -1073,10 +1073,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:14.905278Z", - "iopub.status.busy": "2024-08-26T15:50:14.904296Z", - "iopub.status.idle": "2024-08-26T15:50:14.909408Z", - "shell.execute_reply": "2024-08-26T15:50:14.908880Z" + "iopub.execute_input": "2024-08-28T20:05:04.094193Z", + "iopub.status.busy": "2024-08-28T20:05:04.093817Z", + "iopub.status.idle": "2024-08-28T20:05:04.097627Z", + "shell.execute_reply": "2024-08-28T20:05:04.097115Z" }, "nbsphinx": "hidden" }, @@ -1120,7 +1120,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "04e6f8947ca14034a8b86e7853b8b767": { + "00b519195d0b4e3eb344a723a6ed54a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1138,7 +1138,46 @@ "text_color": null } }, - "096bce4c998746909d71d249939501d4": { + "037c1106d30740c4aa0b997ff3b95478": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_95765f46238d45b8a8bea855ec10fcc0", + "placeholder": "​", + "style": "IPY_MODEL_e9d23534bf1c4adb8c18ffe1514fb739", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" + } + }, + "047d92a7baba49a38cd397ee7fb243db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0de9ada189b3400f98b5c597e4ee4841": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1191,23 +1230,31 @@ "width": null } }, - "13cc007397f54c9c8c37e3efe684a7e2": { + "0eba5f7fd1574c49853b2127c0c236ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_037c1106d30740c4aa0b997ff3b95478", + "IPY_MODEL_b453f573e7214583841f233415492551", + "IPY_MODEL_284d32e5f56a414297870fe12faf80b0" + ], + "layout": "IPY_MODEL_28d47113a3044e97bb6d9fc76776ed1c", + "tabbable": null, + "tooltip": null } }, - "181817c2729a4dccb97af10abf5129d4": { + "0f6f800c15f34b978e844a2484d66b3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1260,7 +1307,7 @@ "width": null } }, - "19093b42b50b4aeea4d79b8ff3d741d7": { + "1071ea768b794892a35eb370593bbbed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1278,55 +1325,78 @@ "text_color": null } }, - "1bd2574eb75a42f3837995119980a91e": { + "10e7fc45fef548368a055e5fc15a4170": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_59d1c1e50bda4e9da25d3a6f59453df1", - "IPY_MODEL_20ded1f770b247b6ad682dab3b1f5059", - "IPY_MODEL_76b513dbf5f34978b7b6585e3d089794" - ], - "layout": "IPY_MODEL_53558ebf812a42a8aee968d175d9f598", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1d1da5af0c1e439590d191a482ebfe2e": { - "model_module": "@jupyter-widgets/controls", + "146dbef610e8439581e5a9986e6ad377": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b1b9db21390e4028ab5768e0946debd1", - "IPY_MODEL_b3f682560e214179a87fc479dcbae99e", - "IPY_MODEL_d36b8a25de144393ad4dc1d2a45edfd2" - ], - "layout": "IPY_MODEL_096bce4c998746909d71d249939501d4", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1d46b41290534da1a7c59a65173af332": { + "14d7da0620c24eeaa5a138e23cf6d286": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1379,7 +1449,7 @@ "width": null } }, - "20ded1f770b247b6ad682dab3b1f5059": { + "20fe4ed42d2d456293c0870626b5124c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1395,82 +1465,80 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcc06e43c9bc45058c6f3e613d79d09a", - "max": 665.0, + "layout": "IPY_MODEL_309c183a1eda4d279a70a5d574653d71", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_af382a9199134755b710d6c867dfbf15", + "style": "IPY_MODEL_a71ffe61d8454862beef69944a06b026", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": 2211.0 } }, - "2358c94915814ebbb4935821bc31ade8": { + "21e96c4c417e413b9670855e22bf941b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5d2fec7b198645dcb93b760d38443c91", - "placeholder": "​", - "style": "IPY_MODEL_8ce3bdbaa1854c179505e5c09afe5dff", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 68.7kB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2595b7a75e45466f9fc4d4ba48df1f15": { + "26b0e23d838040bbacbd41e6543d4be1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_723fe7d9fee84e509e391f0086b38797", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3f743687904c4482ad75c0a123b73b1e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf1fc7a67bb74721b14bc9d6749e3c88", + "IPY_MODEL_c0bc32cb12484a6b9cbec2de8f219813", + "IPY_MODEL_9e5ca3e516ce43b78b9398b4c0286eca" + ], + "layout": "IPY_MODEL_ff735b03eb3d4c8385ba7ab965db9e17", "tabbable": null, - "tooltip": null, - "value": 391.0 + "tooltip": null } }, - "2a816d84d5cc473093ab67001a27c13a": { + "284d32e5f56a414297870fe12faf80b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_85193c50f7e1481c988f9aa15f3b7282", + "placeholder": "​", + "style": "IPY_MODEL_00b519195d0b4e3eb344a723a6ed54a7", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:01<00:00, 30.8MB/s]" } }, - "2bf0c73a7f8f4c649a4be7df92654e10": { + "28d47113a3044e97bb6d9fc76776ed1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1523,25 +1591,30 @@ "width": null } }, - "35fb15ce4edc4a58b13eb112b5302098": { + "2ab4beb3ab2b49768895b0b76aab05db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ed7df9468594951b7afc0ba1e460124", + "placeholder": "​", + "style": "IPY_MODEL_8895626e4b1a4b41a2ac2ee10996a2dd", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "364432b0a294482c9c6b1ed27f2c2f49": { + "2dcb9d107efc404f88505a463a48a26b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1559,23 +1632,30 @@ "text_color": null } }, - "3f743687904c4482ad75c0a123b73b1e": { + "2e964a962ec6402da3abb4041ae1319e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e52df04b9ac6427289647ba460061b39", + "placeholder": "​", + "style": "IPY_MODEL_ffa4d1ac015a4234b2e990611468fefd", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "4075b6b696794e6cb67d0b5f7de37f4c": { + "309c183a1eda4d279a70a5d574653d71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1628,86 +1708,64 @@ "width": null } }, - "41bb2f83903748a5bd214604318b8671": { - "model_module": "@jupyter-widgets/base", + "3658a9b957b34366bb3864029e20029b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "42238d77794d4138942bf704d74a8ced": { + "36d934dea9dd49c29bf65541950da0be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "37ee8bc24d8c4f5585b78ae095603e9a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8e09f321b74944cc83b3df4395c00632", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b5c1ccb187604ede9dcccd86862a971f", + "layout": "IPY_MODEL_f9b8ada682a84865951cca1169b8352a", + "placeholder": "​", + "style": "IPY_MODEL_2dcb9d107efc404f88505a463a48a26b", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": "config.json: 100%" } }, - "43e5fbda50ff4a34af172f936f8f7a78": { + "37f017b4ce2a449cbcc8adfd8e39cc93": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1760,7 +1818,25 @@ "width": null } }, - "4596e06ee7084dd096fe08963d984fff": { + "387ba9cdd9ba4defa83af82e2c946bb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3e54b3958b294c4ba7517105e03a3bea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1775,15 +1851,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d3c28141d394432fa0341c17c066928a", + "layout": "IPY_MODEL_ac4f88f580e84ec3befd1bbd4ca22a7e", "placeholder": "​", - "style": "IPY_MODEL_19093b42b50b4aeea4d79b8ff3d741d7", + "style": "IPY_MODEL_10e7fc45fef548368a055e5fc15a4170", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.00kB/s]" + "value": " 391/391 [00:00<00:00, 64.4kB/s]" } }, - "45c2ee2e2047435d8298563ac99aa124": { + "438b0dae4d5340519bd3474a6b1404eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1836,7 +1912,7 @@ "width": null } }, - "45c9c8c02ca142278cbdc6742aa87d9b": { + "4f1cb6434e9a49a3864315524d05cf31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1851,33 +1927,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d73435f3e28246c4a87481a27f81d8f7", + "layout": "IPY_MODEL_37f017b4ce2a449cbcc8adfd8e39cc93", "placeholder": "​", - "style": "IPY_MODEL_691e9f1cd0ba445c89b42e5857fb81b4", + "style": "IPY_MODEL_6290ab852fbc45d9941181850df79c26", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "4745140672f040658bb31f48154c9327": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 2.21k/2.21k [00:00<00:00, 406kB/s]" } }, - "4e0e803a6c1b4910adfa432ac654015d": { + "611d201c6bfb40a092115bea364e53d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1930,60 +1988,146 @@ "width": null } }, - "53558ebf812a42a8aee968d175d9f598": { - "model_module": "@jupyter-widgets/base", + "627c5b57f30a4645ba999cb23b608351": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6290ab852fbc45d9941181850df79c26": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6846f85fd9fc49198c0104ea387a16ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "696a72c5b5cd46cf91555684c9b67621": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd5d8af8ed84440fab0db48dcbc856ff", + "placeholder": "​", + "style": "IPY_MODEL_c44ebf0f0c994d84ac03526d5a81766b", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 9.60kB/s]" + } + }, + "741ac529d6194f2e9b56c9e088f76268": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_146dbef610e8439581e5a9986e6ad377", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_36d934dea9dd49c29bf65541950da0be", + "tabbable": null, + "tooltip": null, + "value": 48.0 } }, - "5387148ba04d496e889d88d663312492": { + "75c57e826c124376bc72dc6b655b4d35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "760889e6a4ae4c6799f77c6474bc0967": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_37ee8bc24d8c4f5585b78ae095603e9a", + "IPY_MODEL_f7bc4c8538674731845a79b445d5afa6", + "IPY_MODEL_ed36eddd60e24c93a16b332d682bdf58" + ], + "layout": "IPY_MODEL_0f6f800c15f34b978e844a2484d66b3b", + "tabbable": null, + "tooltip": null + } + }, + "7ed7df9468594951b7afc0ba1e460124": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2036,53 +2180,7 @@ "width": null } }, - "59d1c1e50bda4e9da25d3a6f59453df1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ce90fe39f77749d5a8c3adc66c07b19a", - "placeholder": "​", - "style": "IPY_MODEL_c1f01941455c4007a0a122423857cca5", - "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" - } - }, - "5a0b58ec5dee4d76abb1db03047e20d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fdd30b5bab0342bfa3cebd7fb4a76641", - "placeholder": "​", - "style": "IPY_MODEL_364432b0a294482c9c6b1ed27f2c2f49", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 33.5MB/s]" - } - }, - "5d2fec7b198645dcb93b760d38443c91": { + "85193c50f7e1481c988f9aa15f3b7282": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2135,7 +2233,7 @@ "width": null } }, - "609bd99534344390a356a6788fee8507": { + "851ded77a6d946818f4fe75f11ccccf9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2150,16 +2248,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6bd44905713448c48b13f9072288e7df", - "IPY_MODEL_2595b7a75e45466f9fc4d4ba48df1f15", - "IPY_MODEL_2358c94915814ebbb4935821bc31ade8" + "IPY_MODEL_e62799ac13a140038378a1f9217e922e", + "IPY_MODEL_87d2ad1322f54caa892612f619c9607e", + "IPY_MODEL_f7452e26b95e4efbb82e0805e90b087e" ], - "layout": "IPY_MODEL_41bb2f83903748a5bd214604318b8671", + "layout": "IPY_MODEL_b92a4d26e59546f182bbcf22b5ef9f63", "tabbable": null, "tooltip": null } }, - "633d7cd8598e4b29a3ad3e13daa87d91": { + "87d2ad1322f54caa892612f619c9607e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2175,123 +2273,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e0e803a6c1b4910adfa432ac654015d", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c2543129a62b4e81a81a510df25cf7f9", - "tabbable": null, - "tooltip": null, - "value": 48.0 - } - }, - "63efa3acc7744d418570c07d19f67b8f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "66ba0cd1d985486c984a043d0efabf25": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ac9411cca7b345f9beebadd74debfc94", - "IPY_MODEL_633d7cd8598e4b29a3ad3e13daa87d91", - "IPY_MODEL_4596e06ee7084dd096fe08963d984fff" - ], - "layout": "IPY_MODEL_45c2ee2e2047435d8298563ac99aa124", - "tabbable": null, - "tooltip": null - } - }, - "691e9f1cd0ba445c89b42e5857fb81b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6bd44905713448c48b13f9072288e7df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e4df1cc46b24449083ba64e1acf4d44e", - "placeholder": "​", - "style": "IPY_MODEL_f2e97eb561d14453b0cebfb5c6f25fd3", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "6d3fd7a47d114edba48caa94e481cecb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_43e5fbda50ff4a34af172f936f8f7a78", - "placeholder": "​", - "style": "IPY_MODEL_63efa3acc7744d418570c07d19f67b8f", + "layout": "IPY_MODEL_adc478ce08204c78977669950583cc6d", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6846f85fd9fc49198c0104ea387a16ee", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 231508.0 } }, - "6ec6525b3b194115b0ff0cd6e22d9ce8": { + "8895626e4b1a4b41a2ac2ee10996a2dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2309,25 +2301,33 @@ "text_color": null } }, - "70f31e6770a84a21a434fe09d78ba8d3": { + "8b12b1fdc5bf4d6b88bb973cd4a3a0e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d3a25b15580a46e1ab6107c64cd854fc", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_21e96c4c417e413b9670855e22bf941b", + "tabbable": null, + "tooltip": null, + "value": 391.0 } }, - "723fe7d9fee84e509e391f0086b38797": { + "95765f46238d45b8a8bea855ec10fcc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2380,31 +2380,48 @@ "width": null } }, - "72d412ce755f416e9311468fb26a3a46": { + "98fd1b6e464b4957829a32be2b6a98ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9e5ca3e516ce43b78b9398b4c0286eca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9e8cef97db604008bec76e9f8413d2f8", - "IPY_MODEL_e7b36e18e01d41c8a054785b3e17b654", - "IPY_MODEL_e758cdde2331469d8842311b6ef5dbb6" - ], - "layout": "IPY_MODEL_c8efadff14df4664963073b82267a07f", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_438b0dae4d5340519bd3474a6b1404eb", + "placeholder": "​", + "style": "IPY_MODEL_387ba9cdd9ba4defa83af82e2c946bb3", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 9.80MB/s]" } }, - "76b513dbf5f34978b7b6585e3d089794": { + "a709b971ba5a4f649b633623ef43a940": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2419,15 +2436,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1d46b41290534da1a7c59a65173af332", + "layout": "IPY_MODEL_f888f082ffe44bcd96877d04fcb93cb9", "placeholder": "​", - "style": "IPY_MODEL_6ec6525b3b194115b0ff0cd6e22d9ce8", + "style": "IPY_MODEL_1071ea768b794892a35eb370593bbbed", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 101kB/s]" + "value": "README.md: 100%" + } + }, + "a71ffe61d8454862beef69944a06b026": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "80718f0bca364346b9e76ae79ba0cdd4": { + "ac4f88f580e84ec3befd1bbd4ca22a7e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2480,49 +2513,7 @@ "width": null } }, - "828118e3407f496e9047225853abf12c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_45c9c8c02ca142278cbdc6742aa87d9b", - "IPY_MODEL_f6b2fc64c1104a6094c50384dd6d3a07", - "IPY_MODEL_5a0b58ec5dee4d76abb1db03047e20d1" - ], - "layout": "IPY_MODEL_2bf0c73a7f8f4c649a4be7df92654e10", - "tabbable": null, - "tooltip": null - } - }, - "8ce3bdbaa1854c179505e5c09afe5dff": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8e09f321b74944cc83b3df4395c00632": { + "adc478ce08204c78977669950583cc6d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2575,53 +2566,33 @@ "width": null } }, - "8e64033a92a84b60983a905481c8ffcb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f4ef790794594d5db8566bf773f020ce", - "placeholder": "​", - "style": "IPY_MODEL_35fb15ce4edc4a58b13eb112b5302098", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 269MB/s]" - } - }, - "9e8cef97db604008bec76e9f8413d2f8": { + "b453f573e7214583841f233415492551": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4075b6b696794e6cb67d0b5f7de37f4c", - "placeholder": "​", - "style": "IPY_MODEL_f24c56f154ef4a9cb75f96e2bbf56e8d", + "layout": "IPY_MODEL_bbca1413ec2d40e8a685bac5056becbd", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_75c57e826c124376bc72dc6b655b4d35", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": 54245363.0 } }, - "a1a6a4cf16a8479c98351da8ba7d247e": { + "b92a4d26e59546f182bbcf22b5ef9f63": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2674,54 +2645,7 @@ "width": null } }, - "a87e77b0e9324a9384b775bc5514a176": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6d3fd7a47d114edba48caa94e481cecb", - "IPY_MODEL_42238d77794d4138942bf704d74a8ced", - "IPY_MODEL_8e64033a92a84b60983a905481c8ffcb" - ], - "layout": "IPY_MODEL_a1a6a4cf16a8479c98351da8ba7d247e", - "tabbable": null, - "tooltip": null - } - }, - "ac9411cca7b345f9beebadd74debfc94": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5387148ba04d496e889d88d663312492", - "placeholder": "​", - "style": "IPY_MODEL_70f31e6770a84a21a434fe09d78ba8d3", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "adef0f10f073472498f3394a0ff314b5": { + "bbca1413ec2d40e8a685bac5056becbd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2774,64 +2698,7 @@ "width": null } }, - "af382a9199134755b710d6c867dfbf15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b1b9db21390e4028ab5768e0946debd1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eaf4f1d3615d42a7a3317d8bc474bfb9", - "placeholder": "​", - "style": "IPY_MODEL_4745140672f040658bb31f48154c9327", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" - } - }, - "b29efd0253184afc9f25ed847cc6de4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b3f682560e214179a87fc479dcbae99e": { + "c0bc32cb12484a6b9cbec2de8f219813": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2847,33 +2714,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_80718f0bca364346b9e76ae79ba0cdd4", + "layout": "IPY_MODEL_cda549c2fe3d4d7ea57eefa772896ff8", "max": 466062.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_2a816d84d5cc473093ab67001a27c13a", + "style": "IPY_MODEL_627c5b57f30a4645ba999cb23b608351", "tabbable": null, "tooltip": null, "value": 466062.0 } }, - "b5c1ccb187604ede9dcccd86862a971f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bcc06e43c9bc45058c6f3e613d79d09a": { + "c34fc9768dad42b7ab3a90cf059ed000": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2926,7 +2777,7 @@ "width": null } }, - "c1f01941455c4007a0a122423857cca5": { + "c44ebf0f0c994d84ac03526d5a81766b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2944,39 +2795,43 @@ "text_color": null } }, - "c2543129a62b4e81a81a510df25cf7f9": { + "c973eb044f68443f8a8dcd149769f649": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c467572ad65a4ecdad411374c0d9af32": { + "cbf8c07b8c384a298791979d7a92260c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c8efadff14df4664963073b82267a07f": { + "cda549c2fe3d4d7ea57eefa772896ff8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3029,7 +2884,54 @@ "width": null } }, - "cd92b55b3feb4bacbb48b66ccdbbbe8f": { + "ce1d0dd784844e8a8cf246b18c6861a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2ab4beb3ab2b49768895b0b76aab05db", + "IPY_MODEL_741ac529d6194f2e9b56c9e088f76268", + "IPY_MODEL_696a72c5b5cd46cf91555684c9b67621" + ], + "layout": "IPY_MODEL_d70c89ff30764318abed7dbbb7c6ae54", + "tabbable": null, + "tooltip": null + } + }, + "cf1fc7a67bb74721b14bc9d6749e3c88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_14d7da0620c24eeaa5a138e23cf6d286", + "placeholder": "​", + "style": "IPY_MODEL_98fd1b6e464b4957829a32be2b6a98ff", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "d3a25b15580a46e1ab6107c64cd854fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3082,7 +2984,7 @@ "width": null } }, - "ce90fe39f77749d5a8c3adc66c07b19a": { + "d70c89ff30764318abed7dbbb7c6ae54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3135,30 +3037,31 @@ "width": null } }, - "d36b8a25de144393ad4dc1d2a45edfd2": { + "df0c4acd84aa43d7aca5c30c44c6a6ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e2653e982d404b29b3cbde6dcdbd6de7", - "placeholder": "​", - "style": "IPY_MODEL_04e6f8947ca14034a8b86e7853b8b767", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2e964a962ec6402da3abb4041ae1319e", + "IPY_MODEL_8b12b1fdc5bf4d6b88bb973cd4a3a0e3", + "IPY_MODEL_3e54b3958b294c4ba7517105e03a3bea" + ], + "layout": "IPY_MODEL_0de9ada189b3400f98b5c597e4ee4841", "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 2.61MB/s]" + "tooltip": null } }, - "d3c28141d394432fa0341c17c066928a": { + "e0972d8d4a8547f195449a1407d3131c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3211,7 +3114,7 @@ "width": null } }, - "d73435f3e28246c4a87481a27f81d8f7": { + "e1606ccc14d647d7a90be46b3473e8a5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3264,7 +3167,7 @@ "width": null } }, - "e2653e982d404b29b3cbde6dcdbd6de7": { + "e52df04b9ac6427289647ba460061b39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3317,7 +3220,95 @@ "width": null } }, - "e4df1cc46b24449083ba64e1acf4d44e": { + "e62799ac13a140038378a1f9217e922e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0972d8d4a8547f195449a1407d3131c", + "placeholder": "​", + "style": "IPY_MODEL_c973eb044f68443f8a8dcd149769f649", + "tabbable": null, + "tooltip": null, + "value": "vocab.txt: 100%" + } + }, + "e74ddbaf22bb425b8bfd41dca45d9308": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a709b971ba5a4f649b633623ef43a940", + "IPY_MODEL_20fe4ed42d2d456293c0870626b5124c", + "IPY_MODEL_4f1cb6434e9a49a3864315524d05cf31" + ], + "layout": "IPY_MODEL_611d201c6bfb40a092115bea364e53d1", + "tabbable": null, + "tooltip": null + } + }, + "e9d23534bf1c4adb8c18ffe1514fb739": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ed36eddd60e24c93a16b332d682bdf58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f5bf680546d141f5bfed8066b446fddd", + "placeholder": "​", + "style": "IPY_MODEL_3658a9b957b34366bb3864029e20029b", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 118kB/s]" + } + }, + "f5bf680546d141f5bfed8066b446fddd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3370,7 +3361,7 @@ "width": null } }, - "e758cdde2331469d8842311b6ef5dbb6": { + "f7452e26b95e4efbb82e0805e90b087e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3385,15 +3376,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_181817c2729a4dccb97af10abf5129d4", + "layout": "IPY_MODEL_e1606ccc14d647d7a90be46b3473e8a5", "placeholder": "​", - "style": "IPY_MODEL_b29efd0253184afc9f25ed847cc6de4f", + "style": "IPY_MODEL_cbf8c07b8c384a298791979d7a92260c", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 397kB/s]" + "value": " 232k/232k [00:00<00:00, 33.5MB/s]" } }, - "e7b36e18e01d41c8a054785b3e17b654": { + "f7bc4c8538674731845a79b445d5afa6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3409,17 +3400,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_adef0f10f073472498f3394a0ff314b5", - "max": 2211.0, + "layout": "IPY_MODEL_c34fc9768dad42b7ab3a90cf059ed000", + "max": 665.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_13cc007397f54c9c8c37e3efe684a7e2", + "style": "IPY_MODEL_047d92a7baba49a38cd397ee7fb243db", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": 665.0 } }, - "eaf4f1d3615d42a7a3317d8bc474bfb9": { + "f888f082ffe44bcd96877d04fcb93cb9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3472,43 +3463,60 @@ "width": null } }, - "f24c56f154ef4a9cb75f96e2bbf56e8d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f2e97eb561d14453b0cebfb5c6f25fd3": { - "model_module": "@jupyter-widgets/controls", + "f9b8ada682a84865951cca1169b8352a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f4ef790794594d5db8566bf773f020ce": { + "fd5d8af8ed84440fab0db48dcbc856ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3561,33 +3569,7 @@ "width": null } }, - "f6b2fc64c1104a6094c50384dd6d3a07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cd92b55b3feb4bacbb48b66ccdbbbe8f", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c467572ad65a4ecdad411374c0d9af32", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "fdd30b5bab0342bfa3cebd7fb4a76641": { + "ff735b03eb3d4c8385ba7ab965db9e17": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3639,6 +3621,24 @@ "visibility": null, "width": null } + }, + "ffa4d1ac015a4234b2e990611468fefd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 8040f453c..2dca069df 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"51a4d54bfb654f9caa7c226ee8995e55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40d9603be1704746993364aa51163eb8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5355547b3991428680ce71762c93fc29": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_51a4d54bfb654f9caa7c226ee8995e55", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_40d9603be1704746993364aa51163eb8", "tabbable": null, "tooltip": null, "value": 2041.0}}, "1435eae27d1c443e8d421a650383bec6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65695c75a14e47ff8e3bf72157f16c8a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7a8c9807b5d243ef9048199d164259a7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1435eae27d1c443e8d421a650383bec6", "placeholder": "\u200b", "style": "IPY_MODEL_65695c75a14e47ff8e3bf72157f16c8a", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "d93a56d4a52b40a1a432a218701e6d7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a265f58d489845b6b1340a829a74168d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cd4a37f84abf46799e7fa3c03402e98c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d93a56d4a52b40a1a432a218701e6d7d", "placeholder": "\u200b", "style": "IPY_MODEL_a265f58d489845b6b1340a829a74168d", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007452kB/s]"}}, "24d971d5873c40bc8acce10154a128ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f681aac41c3440fa5417df2592e64e6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7a8c9807b5d243ef9048199d164259a7", "IPY_MODEL_5355547b3991428680ce71762c93fc29", "IPY_MODEL_cd4a37f84abf46799e7fa3c03402e98c"], "layout": "IPY_MODEL_24d971d5873c40bc8acce10154a128ff", "tabbable": null, "tooltip": null}}, "3b95edd1de4741ab901227f2d2eb148c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9cda110045e43c29d5985c766de7a53": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ecad11768e31486e90586871e36c9ef8": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3b95edd1de4741ab901227f2d2eb148c", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e9cda110045e43c29d5985c766de7a53", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "750fe5408c694441b476afcb56cb7b0b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ebda3d78b05a4486a7fffd8a666e661f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3c28bd9bc9d54a309045e236929b999f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_750fe5408c694441b476afcb56cb7b0b", "placeholder": "\u200b", "style": "IPY_MODEL_ebda3d78b05a4486a7fffd8a666e661f", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "0b2b777475ca40c299521df6edb4d9e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "912b7f93444942fd8376cda94eda9084": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c90219e36f1e4eea92fe74ca75c1f79b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b2b777475ca40c299521df6edb4d9e1", "placeholder": "\u200b", "style": "IPY_MODEL_912b7f93444942fd8376cda94eda9084", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007242MB/s]"}}, "4ee261f6d2c04d45982fa5a44bb949fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84d5a344da0b420f9117f92f87b490ae": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3c28bd9bc9d54a309045e236929b999f", "IPY_MODEL_ecad11768e31486e90586871e36c9ef8", "IPY_MODEL_c90219e36f1e4eea92fe74ca75c1f79b"], "layout": "IPY_MODEL_4ee261f6d2c04d45982fa5a44bb949fb", "tabbable": null, "tooltip": null}}, "7e99d63a6efb47f2988287ad5bef0840": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bdb53847f2b34586832fe6fb354d7a43": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5f20e36061c4462194728c5738285d58": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7e99d63a6efb47f2988287ad5bef0840", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bdb53847f2b34586832fe6fb354d7a43", "tabbable": null, "tooltip": null, "value": 3201.0}}, "f7f0f2aa06bf4ac191490912101855c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f9123a1dc6f4bf594ce8a4b4f185a49": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d19574be1727424f9b4155d6890c6379": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f7f0f2aa06bf4ac191490912101855c7", "placeholder": "\u200b", "style": "IPY_MODEL_5f9123a1dc6f4bf594ce8a4b4f185a49", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "fe0c29f7fc654606a3968de8caebfa7e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25f9496e154b4c35b50154e7c1179417": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e51837b227f044108623992ca3212468": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fe0c29f7fc654606a3968de8caebfa7e", "placeholder": "\u200b", "style": "IPY_MODEL_25f9496e154b4c35b50154e7c1179417", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007801kB/s]"}}, "e1317297dacd4b19add95df4eb325215": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e09248c0fe244ae1adb56d9623d7540b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d19574be1727424f9b4155d6890c6379", "IPY_MODEL_5f20e36061c4462194728c5738285d58", "IPY_MODEL_e51837b227f044108623992ca3212468"], "layout": "IPY_MODEL_e1317297dacd4b19add95df4eb325215", "tabbable": null, "tooltip": null}}, "a5b2e7509b164b5d9e844cab9b9e0f11": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "368d32a2248046e1a344ef38430f19dd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f327247b2e124784abcaca20d824f2c2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a5b2e7509b164b5d9e844cab9b9e0f11", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_368d32a2248046e1a344ef38430f19dd", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "6c9b9aaa085c4670a15577b8af66c4a3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d237e27edd394f0cb779b56daf7e9f53": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "28aa2246369c45f2ad10eb6574adfa34": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6c9b9aaa085c4670a15577b8af66c4a3", "placeholder": "\u200b", "style": "IPY_MODEL_d237e27edd394f0cb779b56daf7e9f53", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "a392464012b34ae1b5f7e0a97721360b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2fc8223259fe4237a80e3939046d0ac0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a77b34d9e40b4059839e055baa762c60": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a392464012b34ae1b5f7e0a97721360b", "placeholder": "\u200b", "style": "IPY_MODEL_2fc8223259fe4237a80e3939046d0ac0", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007280MB/s]"}}, "d42aa306545b4c048e7007f1010dae12": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "074d9a20f9624f31bef1345fc1d53ba4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_28aa2246369c45f2ad10eb6574adfa34", "IPY_MODEL_f327247b2e124784abcaca20d824f2c2", "IPY_MODEL_a77b34d9e40b4059839e055baa762c60"], "layout": "IPY_MODEL_d42aa306545b4c048e7007f1010dae12", "tabbable": null, "tooltip": null}}, "fd724a4cddb843d1bf3bc3d1a6f60a0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dcaf791445af43d68f0078287914810a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "05a4b438a1aa46718c6a77b932a841ba": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fd724a4cddb843d1bf3bc3d1a6f60a0d", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dcaf791445af43d68f0078287914810a", "tabbable": null, "tooltip": null, "value": 128619.0}}, "cacc260410024c2eac52649d535238dd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b3ed58cf59a4deb8dbaf2cbee76d300": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "67cae2b88eea4691bf411e8b7f6bc406": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cacc260410024c2eac52649d535238dd", "placeholder": "\u200b", "style": "IPY_MODEL_2b3ed58cf59a4deb8dbaf2cbee76d300", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "a9955115289447288de13b0d6c05e5ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "525667ee5a584057853b670d0e74a9b7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "489f5e3cafb04cf0add9f925c8e800a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a9955115289447288de13b0d6c05e5ba", "placeholder": "\u200b", "style": "IPY_MODEL_525667ee5a584057853b670d0e74a9b7", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20072.03MB/s]"}}, "56a875190553432ca4420d1c37d224b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "929531a872824dd386b23d35970c8531": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_67cae2b88eea4691bf411e8b7f6bc406", "IPY_MODEL_05a4b438a1aa46718c6a77b932a841ba", "IPY_MODEL_489f5e3cafb04cf0add9f925c8e800a5"], "layout": "IPY_MODEL_56a875190553432ca4420d1c37d224b0", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"2f35bca59c674a7ba0421a810b889410": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4a4d45f56884d5799af6bca8fef356e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "41dea17f2ed141e09e1ea54ca902e515": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2f35bca59c674a7ba0421a810b889410", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e4a4d45f56884d5799af6bca8fef356e", "tabbable": null, "tooltip": null, "value": 2041.0}}, "99c2fa97ebbe4b198a3363b73ba06614": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cdd6b64ff95043b3889956f53bae3ee9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5203182542b14d67bdd4b396e7bec6de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_99c2fa97ebbe4b198a3363b73ba06614", "placeholder": "\u200b", "style": "IPY_MODEL_cdd6b64ff95043b3889956f53bae3ee9", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "f48ca364e590455591766831ea1dfbf7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "034e4d3a7063488d91824e6fdeb7f1e8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bbdac7b22ce44d329ab42c88c5648f8a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f48ca364e590455591766831ea1dfbf7", "placeholder": "\u200b", "style": "IPY_MODEL_034e4d3a7063488d91824e6fdeb7f1e8", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007453kB/s]"}}, "3dc3be9eef054216b969041f3437fcc7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44cf7cdb74054c87893356ec9c82a69c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5203182542b14d67bdd4b396e7bec6de", "IPY_MODEL_41dea17f2ed141e09e1ea54ca902e515", "IPY_MODEL_bbdac7b22ce44d329ab42c88c5648f8a"], "layout": "IPY_MODEL_3dc3be9eef054216b969041f3437fcc7", "tabbable": null, "tooltip": null}}, "fe7f31d39ca44392a7d33939e895ea1a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4012906bcaf4d40bfa66ae83932a548": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5cb8da02171f40d39bb02626493b71ff": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fe7f31d39ca44392a7d33939e895ea1a", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e4012906bcaf4d40bfa66ae83932a548", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "79544e230b084a61a296769a8a0ad552": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b645b640adef43eab1e7b9c9117786ad": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "90fa56e12c094fc5a9f3a4174a977d02": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_79544e230b084a61a296769a8a0ad552", "placeholder": "\u200b", "style": "IPY_MODEL_b645b640adef43eab1e7b9c9117786ad", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "7cef29848a4742c3bcbbe027ba557e90": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "251c61f7e86b4cc78eaa1bf1844deba1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c19a041c0549459596b87353d3df4f78": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7cef29848a4742c3bcbbe027ba557e90", "placeholder": "\u200b", "style": "IPY_MODEL_251c61f7e86b4cc78eaa1bf1844deba1", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200789.1MB/s]"}}, "9211e1c1cfe34affb27bb1da6c1a875c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c19736be268e4860a33b62e8f05474e9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_90fa56e12c094fc5a9f3a4174a977d02", "IPY_MODEL_5cb8da02171f40d39bb02626493b71ff", "IPY_MODEL_c19a041c0549459596b87353d3df4f78"], "layout": "IPY_MODEL_9211e1c1cfe34affb27bb1da6c1a875c", "tabbable": null, "tooltip": null}}, "520e3e4513d4419a951d6d23cdc7b88c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c84764947744d5ea50f357bf700eba2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d7e704ded2a64e55a3de666caeaf7f25": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_520e3e4513d4419a951d6d23cdc7b88c", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5c84764947744d5ea50f357bf700eba2", "tabbable": null, "tooltip": null, "value": 3201.0}}, "4bf5e7515a3e4ca4adc3ec9b58458d08": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "92b94f49dab546c6a80ec5f1904f5a3f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9d6ed2fdee25497985f03c3f686ae471": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4bf5e7515a3e4ca4adc3ec9b58458d08", "placeholder": "\u200b", "style": "IPY_MODEL_92b94f49dab546c6a80ec5f1904f5a3f", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "e7644d8d3b544e9996a105c3ccc8715b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f923f52f6b144089817e24b6ddf6dc2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9282f4967771485581b4371e8a1751ff": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7644d8d3b544e9996a105c3ccc8715b", "placeholder": "\u200b", "style": "IPY_MODEL_7f923f52f6b144089817e24b6ddf6dc2", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007825kB/s]"}}, "a3b31864402840bb8713cd299601351b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b5fe6a2bf8d44281a689a5a619ad0f58": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9d6ed2fdee25497985f03c3f686ae471", "IPY_MODEL_d7e704ded2a64e55a3de666caeaf7f25", "IPY_MODEL_9282f4967771485581b4371e8a1751ff"], "layout": "IPY_MODEL_a3b31864402840bb8713cd299601351b", "tabbable": null, "tooltip": null}}, "c578f898c61f4b38bbed699e3ee4574d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6bdaf42fca4d4e84a0155187178ceeb9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cf30b6835a2b4533b999a994d35526ca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c578f898c61f4b38bbed699e3ee4574d", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6bdaf42fca4d4e84a0155187178ceeb9", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "69a9e3f6bc7e42549c18bbf981c39725": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "92694183516845f585aa99377803a411": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "033e0bed8622486ab93b78611978ffae": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_69a9e3f6bc7e42549c18bbf981c39725", "placeholder": "\u200b", "style": "IPY_MODEL_92694183516845f585aa99377803a411", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "bd76c46bf0bd4562b4c10e0c56b6107a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "66513425cb8c4a64907fcdc7c00a7f4a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1199aea69d7f453b8a043197c4365878": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bd76c46bf0bd4562b4c10e0c56b6107a", "placeholder": "\u200b", "style": "IPY_MODEL_66513425cb8c4a64907fcdc7c00a7f4a", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007131MB/s]"}}, "d8b66fecb92a47f380840531b61c5ca3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e92657bbca8142a5903f0333291a3975": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_033e0bed8622486ab93b78611978ffae", "IPY_MODEL_cf30b6835a2b4533b999a994d35526ca", "IPY_MODEL_1199aea69d7f453b8a043197c4365878"], "layout": "IPY_MODEL_d8b66fecb92a47f380840531b61c5ca3", "tabbable": null, "tooltip": null}}, "378931b4c67a48e99f98003a357982ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4b0028a240044bbbfafcd951f0aef00": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e03a514f0ab74a24920aa89a2c8236ff": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_378931b4c67a48e99f98003a357982ed", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d4b0028a240044bbbfafcd951f0aef00", "tabbable": null, "tooltip": null, "value": 128619.0}}, "89b87cac74e74a20bdcb62eb6d1aa89f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa4058752a5e42a7aad3ca7a4528244a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "53c847f09731436f95fe81ea1aa14aa1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_89b87cac74e74a20bdcb62eb6d1aa89f", "placeholder": "\u200b", "style": "IPY_MODEL_aa4058752a5e42a7aad3ca7a4528244a", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "fc2232b5a8dd416b925842e98e107e8a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "82ca4b8d8cc34322b0e2c16eb9e16e50": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b6adf34a89e34ec2a742d065c56a6486": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fc2232b5a8dd416b925842e98e107e8a", "placeholder": "\u200b", "style": "IPY_MODEL_82ca4b8d8cc34322b0e2c16eb9e16e50", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20076.43MB/s]"}}, "6ed285d0b05b4ed1b68077b474fab2ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ebb5417e82e6497d97f1411c47210a87": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_53c847f09731436f95fe81ea1aa14aa1", "IPY_MODEL_e03a514f0ab74a24920aa89a2c8236ff", "IPY_MODEL_b6adf34a89e34ec2a742d065c56a6486"], "layout": "IPY_MODEL_6ed285d0b05b4ed1b68077b474fab2ac", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index db407c8a3..6911d1cef 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:18.375949Z", - "iopub.status.busy": "2024-08-26T15:50:18.375420Z", - "iopub.status.idle": "2024-08-26T15:50:23.859019Z", - "shell.execute_reply": "2024-08-26T15:50:23.858417Z" + "iopub.execute_input": "2024-08-28T20:05:07.495227Z", + "iopub.status.busy": "2024-08-28T20:05:07.494741Z", + "iopub.status.idle": "2024-08-28T20:05:12.965294Z", + "shell.execute_reply": "2024-08-28T20:05:12.964724Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:23.861683Z", - "iopub.status.busy": "2024-08-26T15:50:23.861156Z", - "iopub.status.idle": "2024-08-26T15:50:23.864463Z", - "shell.execute_reply": "2024-08-26T15:50:23.863948Z" + "iopub.execute_input": "2024-08-28T20:05:12.967811Z", + "iopub.status.busy": "2024-08-28T20:05:12.967421Z", + "iopub.status.idle": "2024-08-28T20:05:12.970704Z", + "shell.execute_reply": "2024-08-28T20:05:12.970254Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:23.866465Z", - "iopub.status.busy": "2024-08-26T15:50:23.866121Z", - "iopub.status.idle": "2024-08-26T15:50:23.870902Z", - "shell.execute_reply": "2024-08-26T15:50:23.870358Z" + "iopub.execute_input": "2024-08-28T20:05:12.972551Z", + "iopub.status.busy": "2024-08-28T20:05:12.972376Z", + "iopub.status.idle": "2024-08-28T20:05:12.977055Z", + "shell.execute_reply": "2024-08-28T20:05:12.976599Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:23.873109Z", - "iopub.status.busy": "2024-08-26T15:50:23.872679Z", - "iopub.status.idle": "2024-08-26T15:50:25.664909Z", - "shell.execute_reply": "2024-08-26T15:50:25.664194Z" + "iopub.execute_input": "2024-08-28T20:05:12.979087Z", + "iopub.status.busy": "2024-08-28T20:05:12.978759Z", + "iopub.status.idle": "2024-08-28T20:05:14.689169Z", + "shell.execute_reply": "2024-08-28T20:05:14.688459Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:25.667739Z", - "iopub.status.busy": "2024-08-26T15:50:25.667316Z", - "iopub.status.idle": "2024-08-26T15:50:25.678565Z", - "shell.execute_reply": "2024-08-26T15:50:25.678115Z" + "iopub.execute_input": "2024-08-28T20:05:14.691661Z", + "iopub.status.busy": "2024-08-28T20:05:14.691446Z", + "iopub.status.idle": "2024-08-28T20:05:14.704507Z", + "shell.execute_reply": "2024-08-28T20:05:14.704037Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:25.680602Z", - "iopub.status.busy": "2024-08-26T15:50:25.680410Z", - "iopub.status.idle": "2024-08-26T15:50:25.687890Z", - "shell.execute_reply": "2024-08-26T15:50:25.687425Z" + "iopub.execute_input": "2024-08-28T20:05:14.706543Z", + "iopub.status.busy": "2024-08-28T20:05:14.706349Z", + "iopub.status.idle": "2024-08-28T20:05:14.711713Z", + "shell.execute_reply": "2024-08-28T20:05:14.711239Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:25.689698Z", - "iopub.status.busy": "2024-08-26T15:50:25.689520Z", - "iopub.status.idle": "2024-08-26T15:50:26.129419Z", - "shell.execute_reply": "2024-08-26T15:50:26.128884Z" + "iopub.execute_input": "2024-08-28T20:05:14.713576Z", + "iopub.status.busy": "2024-08-28T20:05:14.713400Z", + "iopub.status.idle": "2024-08-28T20:05:15.172086Z", + "shell.execute_reply": "2024-08-28T20:05:15.171574Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:26.131626Z", - "iopub.status.busy": "2024-08-26T15:50:26.131431Z", - "iopub.status.idle": "2024-08-26T15:50:27.173661Z", - "shell.execute_reply": "2024-08-26T15:50:27.173138Z" + "iopub.execute_input": "2024-08-28T20:05:15.174369Z", + "iopub.status.busy": "2024-08-28T20:05:15.173931Z", + "iopub.status.idle": "2024-08-28T20:05:16.706579Z", + "shell.execute_reply": "2024-08-28T20:05:16.705958Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:27.176421Z", - "iopub.status.busy": "2024-08-26T15:50:27.176064Z", - "iopub.status.idle": "2024-08-26T15:50:27.195243Z", - "shell.execute_reply": "2024-08-26T15:50:27.194686Z" + "iopub.execute_input": "2024-08-28T20:05:16.709023Z", + "iopub.status.busy": "2024-08-28T20:05:16.708689Z", + "iopub.status.idle": "2024-08-28T20:05:16.727119Z", + "shell.execute_reply": "2024-08-28T20:05:16.726572Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:27.197583Z", - "iopub.status.busy": "2024-08-26T15:50:27.197164Z", - "iopub.status.idle": "2024-08-26T15:50:27.200332Z", - "shell.execute_reply": "2024-08-26T15:50:27.199873Z" + "iopub.execute_input": "2024-08-28T20:05:16.729067Z", + "iopub.status.busy": "2024-08-28T20:05:16.728888Z", + "iopub.status.idle": "2024-08-28T20:05:16.732054Z", + "shell.execute_reply": "2024-08-28T20:05:16.731610Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:27.202307Z", - "iopub.status.busy": "2024-08-26T15:50:27.202000Z", - "iopub.status.idle": "2024-08-26T15:50:41.583107Z", - "shell.execute_reply": "2024-08-26T15:50:41.582452Z" + "iopub.execute_input": "2024-08-28T20:05:16.733878Z", + "iopub.status.busy": "2024-08-28T20:05:16.733705Z", + "iopub.status.idle": "2024-08-28T20:05:30.827795Z", + "shell.execute_reply": "2024-08-28T20:05:30.827136Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:41.585857Z", - "iopub.status.busy": "2024-08-26T15:50:41.585461Z", - "iopub.status.idle": "2024-08-26T15:50:41.589464Z", - "shell.execute_reply": "2024-08-26T15:50:41.588990Z" + "iopub.execute_input": "2024-08-28T20:05:30.830643Z", + "iopub.status.busy": "2024-08-28T20:05:30.830195Z", + "iopub.status.idle": "2024-08-28T20:05:30.834048Z", + "shell.execute_reply": "2024-08-28T20:05:30.833572Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:41.591711Z", - "iopub.status.busy": "2024-08-26T15:50:41.591300Z", - "iopub.status.idle": "2024-08-26T15:50:42.284996Z", - "shell.execute_reply": "2024-08-26T15:50:42.284408Z" + "iopub.execute_input": "2024-08-28T20:05:30.836117Z", + "iopub.status.busy": "2024-08-28T20:05:30.835778Z", + "iopub.status.idle": "2024-08-28T20:05:31.558613Z", + "shell.execute_reply": "2024-08-28T20:05:31.558015Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.287828Z", - "iopub.status.busy": "2024-08-26T15:50:42.287405Z", - "iopub.status.idle": "2024-08-26T15:50:42.292567Z", - "shell.execute_reply": "2024-08-26T15:50:42.292041Z" + "iopub.execute_input": "2024-08-28T20:05:31.562360Z", + "iopub.status.busy": "2024-08-28T20:05:31.561376Z", + "iopub.status.idle": "2024-08-28T20:05:31.568267Z", + "shell.execute_reply": "2024-08-28T20:05:31.567749Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.295019Z", - "iopub.status.busy": "2024-08-26T15:50:42.294593Z", - "iopub.status.idle": "2024-08-26T15:50:42.406915Z", - "shell.execute_reply": "2024-08-26T15:50:42.406291Z" + "iopub.execute_input": "2024-08-28T20:05:31.571935Z", + "iopub.status.busy": "2024-08-28T20:05:31.570971Z", + "iopub.status.idle": "2024-08-28T20:05:31.683477Z", + "shell.execute_reply": "2024-08-28T20:05:31.682846Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.409511Z", - "iopub.status.busy": "2024-08-26T15:50:42.409028Z", - "iopub.status.idle": "2024-08-26T15:50:42.421338Z", - "shell.execute_reply": "2024-08-26T15:50:42.420887Z" + "iopub.execute_input": "2024-08-28T20:05:31.685715Z", + "iopub.status.busy": "2024-08-28T20:05:31.685521Z", + "iopub.status.idle": "2024-08-28T20:05:31.698279Z", + "shell.execute_reply": "2024-08-28T20:05:31.697818Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.423468Z", - "iopub.status.busy": "2024-08-26T15:50:42.423121Z", - "iopub.status.idle": "2024-08-26T15:50:42.430725Z", - "shell.execute_reply": "2024-08-26T15:50:42.430159Z" + "iopub.execute_input": "2024-08-28T20:05:31.700427Z", + "iopub.status.busy": "2024-08-28T20:05:31.700083Z", + "iopub.status.idle": "2024-08-28T20:05:31.707771Z", + "shell.execute_reply": "2024-08-28T20:05:31.707263Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.432808Z", - "iopub.status.busy": "2024-08-26T15:50:42.432481Z", - "iopub.status.idle": "2024-08-26T15:50:42.436459Z", - "shell.execute_reply": "2024-08-26T15:50:42.435927Z" + "iopub.execute_input": "2024-08-28T20:05:31.709796Z", + "iopub.status.busy": "2024-08-28T20:05:31.709458Z", + "iopub.status.idle": "2024-08-28T20:05:31.713392Z", + "shell.execute_reply": "2024-08-28T20:05:31.712827Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.438685Z", - "iopub.status.busy": "2024-08-26T15:50:42.438333Z", - "iopub.status.idle": "2024-08-26T15:50:42.443991Z", - "shell.execute_reply": "2024-08-26T15:50:42.443346Z" + "iopub.execute_input": "2024-08-28T20:05:31.715576Z", + "iopub.status.busy": "2024-08-28T20:05:31.715213Z", + "iopub.status.idle": "2024-08-28T20:05:31.720697Z", + "shell.execute_reply": "2024-08-28T20:05:31.720239Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.446522Z", - "iopub.status.busy": "2024-08-26T15:50:42.446019Z", - "iopub.status.idle": "2024-08-26T15:50:42.560125Z", - "shell.execute_reply": "2024-08-26T15:50:42.559532Z" + "iopub.execute_input": "2024-08-28T20:05:31.722672Z", + "iopub.status.busy": "2024-08-28T20:05:31.722490Z", + "iopub.status.idle": "2024-08-28T20:05:31.832330Z", + "shell.execute_reply": "2024-08-28T20:05:31.831799Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.562347Z", - "iopub.status.busy": "2024-08-26T15:50:42.561993Z", - "iopub.status.idle": "2024-08-26T15:50:42.666666Z", - "shell.execute_reply": "2024-08-26T15:50:42.666079Z" + "iopub.execute_input": "2024-08-28T20:05:31.834543Z", + "iopub.status.busy": "2024-08-28T20:05:31.834175Z", + "iopub.status.idle": "2024-08-28T20:05:31.939450Z", + "shell.execute_reply": "2024-08-28T20:05:31.938953Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.668699Z", - "iopub.status.busy": "2024-08-26T15:50:42.668513Z", - "iopub.status.idle": "2024-08-26T15:50:42.772175Z", - "shell.execute_reply": "2024-08-26T15:50:42.771562Z" + "iopub.execute_input": "2024-08-28T20:05:31.941460Z", + "iopub.status.busy": "2024-08-28T20:05:31.941267Z", + "iopub.status.idle": "2024-08-28T20:05:32.049469Z", + "shell.execute_reply": "2024-08-28T20:05:32.048864Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.774239Z", - "iopub.status.busy": "2024-08-26T15:50:42.774052Z", - "iopub.status.idle": "2024-08-26T15:50:42.877983Z", - "shell.execute_reply": "2024-08-26T15:50:42.877478Z" + "iopub.execute_input": "2024-08-28T20:05:32.051624Z", + "iopub.status.busy": "2024-08-28T20:05:32.051415Z", + "iopub.status.idle": "2024-08-28T20:05:32.153050Z", + "shell.execute_reply": "2024-08-28T20:05:32.152550Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:42.880086Z", - "iopub.status.busy": "2024-08-26T15:50:42.879904Z", - "iopub.status.idle": "2024-08-26T15:50:42.883328Z", - "shell.execute_reply": "2024-08-26T15:50:42.882869Z" + "iopub.execute_input": "2024-08-28T20:05:32.155233Z", + "iopub.status.busy": "2024-08-28T20:05:32.154873Z", + "iopub.status.idle": "2024-08-28T20:05:32.158117Z", + "shell.execute_reply": "2024-08-28T20:05:32.157641Z" }, "nbsphinx": "hidden" }, @@ -1392,57 +1392,89 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05a4b438a1aa46718c6a77b932a841ba": { + "033e0bed8622486ab93b78611978ffae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fd724a4cddb843d1bf3bc3d1a6f60a0d", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dcaf791445af43d68f0078287914810a", + "layout": "IPY_MODEL_69a9e3f6bc7e42549c18bbf981c39725", + "placeholder": "​", + "style": "IPY_MODEL_92694183516845f585aa99377803a411", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": "classifier.ckpt: 100%" } }, - "074d9a20f9624f31bef1345fc1d53ba4": { + "034e4d3a7063488d91824e6fdeb7f1e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1199aea69d7f453b8a043197c4365878": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_28aa2246369c45f2ad10eb6574adfa34", - "IPY_MODEL_f327247b2e124784abcaca20d824f2c2", - "IPY_MODEL_a77b34d9e40b4059839e055baa762c60" - ], - "layout": "IPY_MODEL_d42aa306545b4c048e7007f1010dae12", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bd76c46bf0bd4562b4c10e0c56b6107a", + "placeholder": "​", + "style": "IPY_MODEL_66513425cb8c4a64907fcdc7c00a7f4a", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 131MB/s]" + } + }, + "251c61f7e86b4cc78eaa1bf1844deba1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0b2b777475ca40c299521df6edb4d9e1": { + "2f35bca59c674a7ba0421a810b889410": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1495,7 +1527,7 @@ "width": null } }, - "1435eae27d1c443e8d421a650383bec6": { + "378931b4c67a48e99f98003a357982ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1548,31 +1580,7 @@ "width": null } }, - "1f681aac41c3440fa5417df2592e64e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7a8c9807b5d243ef9048199d164259a7", - "IPY_MODEL_5355547b3991428680ce71762c93fc29", - "IPY_MODEL_cd4a37f84abf46799e7fa3c03402e98c" - ], - "layout": "IPY_MODEL_24d971d5873c40bc8acce10154a128ff", - "tabbable": null, - "tooltip": null - } - }, - "24d971d5873c40bc8acce10154a128ff": { + "3dc3be9eef054216b969041f3437fcc7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1625,100 +1633,133 @@ "width": null } }, - "25f9496e154b4c35b50154e7c1179417": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "28aa2246369c45f2ad10eb6574adfa34": { + "41dea17f2ed141e09e1ea54ca902e515": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6c9b9aaa085c4670a15577b8af66c4a3", - "placeholder": "​", - "style": "IPY_MODEL_d237e27edd394f0cb779b56daf7e9f53", + "layout": "IPY_MODEL_2f35bca59c674a7ba0421a810b889410", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4a4d45f56884d5799af6bca8fef356e", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": 2041.0 } }, - "2b3ed58cf59a4deb8dbaf2cbee76d300": { + "44cf7cdb74054c87893356ec9c82a69c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5203182542b14d67bdd4b396e7bec6de", + "IPY_MODEL_41dea17f2ed141e09e1ea54ca902e515", + "IPY_MODEL_bbdac7b22ce44d329ab42c88c5648f8a" + ], + "layout": "IPY_MODEL_3dc3be9eef054216b969041f3437fcc7", + "tabbable": null, + "tooltip": null } }, - "2fc8223259fe4237a80e3939046d0ac0": { - "model_module": "@jupyter-widgets/controls", + "4bf5e7515a3e4ca4adc3ec9b58458d08": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "368d32a2248046e1a344ef38430f19dd": { + "5203182542b14d67bdd4b396e7bec6de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_99c2fa97ebbe4b198a3363b73ba06614", + "placeholder": "​", + "style": "IPY_MODEL_cdd6b64ff95043b3889956f53bae3ee9", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" } }, - "3b95edd1de4741ab901227f2d2eb148c": { + "520e3e4513d4419a951d6d23cdc7b88c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1771,7 +1812,7 @@ "width": null } }, - "3c28bd9bc9d54a309045e236929b999f": { + "53c847f09731436f95fe81ea1aa14aa1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1786,15 +1827,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_750fe5408c694441b476afcb56cb7b0b", + "layout": "IPY_MODEL_89b87cac74e74a20bdcb62eb6d1aa89f", "placeholder": "​", - "style": "IPY_MODEL_ebda3d78b05a4486a7fffd8a666e661f", + "style": "IPY_MODEL_aa4058752a5e42a7aad3ca7a4528244a", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": "label_encoder.txt: 100%" } }, - "40d9603be1704746993364aa51163eb8": { + "5c84764947744d5ea50f357bf700eba2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1810,30 +1851,51 @@ "description_width": "" } }, - "489f5e3cafb04cf0add9f925c8e800a5": { + "5cb8da02171f40d39bb02626493b71ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a9955115289447288de13b0d6c05e5ba", - "placeholder": "​", - "style": "IPY_MODEL_525667ee5a584057853b670d0e74a9b7", + "layout": "IPY_MODEL_fe7f31d39ca44392a7d33939e895ea1a", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e4012906bcaf4d40bfa66ae83932a548", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.03MB/s]" + "value": 16887676.0 + } + }, + "66513425cb8c4a64907fcdc7c00a7f4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4ee261f6d2c04d45982fa5a44bb949fb": { + "69a9e3f6bc7e42549c18bbf981c39725": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1886,7 +1948,23 @@ "width": null } }, - "51a4d54bfb654f9caa7c226ee8995e55": { + "6bdaf42fca4d4e84a0155187178ceeb9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6ed285d0b05b4ed1b68077b474fab2ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1939,58 +2017,14 @@ "width": null } }, - "525667ee5a584057853b670d0e74a9b7": { - "model_module": "@jupyter-widgets/controls", + "79544e230b084a61a296769a8a0ad552": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5355547b3991428680ce71762c93fc29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_51a4d54bfb654f9caa7c226ee8995e55", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_40d9603be1704746993364aa51163eb8", - "tabbable": null, - "tooltip": null, - "value": 2041.0 - } - }, - "56a875190553432ca4420d1c37d224b0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -2036,92 +2070,7 @@ "width": null } }, - "5f20e36061c4462194728c5738285d58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e99d63a6efb47f2988287ad5bef0840", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bdb53847f2b34586832fe6fb354d7a43", - "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "5f9123a1dc6f4bf594ce8a4b4f185a49": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "65695c75a14e47ff8e3bf72157f16c8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "67cae2b88eea4691bf411e8b7f6bc406": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cacc260410024c2eac52649d535238dd", - "placeholder": "​", - "style": "IPY_MODEL_2b3ed58cf59a4deb8dbaf2cbee76d300", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" - } - }, - "6c9b9aaa085c4670a15577b8af66c4a3": { + "7cef29848a4742c3bcbbe027ba557e90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2174,7 +2123,43 @@ "width": null } }, - "750fe5408c694441b476afcb56cb7b0b": { + "7f923f52f6b144089817e24b6ddf6dc2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "82ca4b8d8cc34322b0e2c16eb9e16e50": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "89b87cac74e74a20bdcb62eb6d1aa89f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2227,7 +2212,7 @@ "width": null } }, - "7a8c9807b5d243ef9048199d164259a7": { + "90fa56e12c094fc5a9f3a4174a977d02": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2242,15 +2227,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1435eae27d1c443e8d421a650383bec6", + "layout": "IPY_MODEL_79544e230b084a61a296769a8a0ad552", "placeholder": "​", - "style": "IPY_MODEL_65695c75a14e47ff8e3bf72157f16c8a", + "style": "IPY_MODEL_b645b640adef43eab1e7b9c9117786ad", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": "embedding_model.ckpt: 100%" } }, - "7e99d63a6efb47f2988287ad5bef0840": { + "9211e1c1cfe34affb27bb1da6c1a875c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2303,31 +2288,7 @@ "width": null } }, - "84d5a344da0b420f9117f92f87b490ae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3c28bd9bc9d54a309045e236929b999f", - "IPY_MODEL_ecad11768e31486e90586871e36c9ef8", - "IPY_MODEL_c90219e36f1e4eea92fe74ca75c1f79b" - ], - "layout": "IPY_MODEL_4ee261f6d2c04d45982fa5a44bb949fb", - "tabbable": null, - "tooltip": null - } - }, - "912b7f93444942fd8376cda94eda9084": { + "92694183516845f585aa99377803a411": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2345,31 +2306,30 @@ "text_color": null } }, - "929531a872824dd386b23d35970c8531": { + "9282f4967771485581b4371e8a1751ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_67cae2b88eea4691bf411e8b7f6bc406", - "IPY_MODEL_05a4b438a1aa46718c6a77b932a841ba", - "IPY_MODEL_489f5e3cafb04cf0add9f925c8e800a5" - ], - "layout": "IPY_MODEL_56a875190553432ca4420d1c37d224b0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7644d8d3b544e9996a105c3ccc8715b", + "placeholder": "​", + "style": "IPY_MODEL_7f923f52f6b144089817e24b6ddf6dc2", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 825kB/s]" } }, - "a265f58d489845b6b1340a829a74168d": { + "92b94f49dab546c6a80ec5f1904f5a3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2387,60 +2347,7 @@ "text_color": null } }, - "a392464012b34ae1b5f7e0a97721360b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a5b2e7509b164b5d9e844cab9b9e0f11": { + "99c2fa97ebbe4b198a3363b73ba06614": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2493,7 +2400,7 @@ "width": null } }, - "a77b34d9e40b4059839e055baa762c60": { + "9d6ed2fdee25497985f03c3f686ae471": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2508,15 +2415,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a392464012b34ae1b5f7e0a97721360b", + "layout": "IPY_MODEL_4bf5e7515a3e4ca4adc3ec9b58458d08", "placeholder": "​", - "style": "IPY_MODEL_2fc8223259fe4237a80e3939046d0ac0", + "style": "IPY_MODEL_92b94f49dab546c6a80ec5f1904f5a3f", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 280MB/s]" + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "a9955115289447288de13b0d6c05e5ba": { + "a3b31864402840bb8713cd299601351b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2569,99 +2476,67 @@ "width": null } }, - "bdb53847f2b34586832fe6fb354d7a43": { + "aa4058752a5e42a7aad3ca7a4528244a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c90219e36f1e4eea92fe74ca75c1f79b": { + "b5fe6a2bf8d44281a689a5a619ad0f58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0b2b777475ca40c299521df6edb4d9e1", - "placeholder": "​", - "style": "IPY_MODEL_912b7f93444942fd8376cda94eda9084", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 242MB/s]" - } + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9d6ed2fdee25497985f03c3f686ae471", + "IPY_MODEL_d7e704ded2a64e55a3de666caeaf7f25", + "IPY_MODEL_9282f4967771485581b4371e8a1751ff" + ], + "layout": "IPY_MODEL_a3b31864402840bb8713cd299601351b", + "tabbable": null, + "tooltip": null + } }, - "cacc260410024c2eac52649d535238dd": { - "model_module": "@jupyter-widgets/base", + "b645b640adef43eab1e7b9c9117786ad": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cd4a37f84abf46799e7fa3c03402e98c": { + "b6adf34a89e34ec2a742d065c56a6486": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2676,15 +2551,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d93a56d4a52b40a1a432a218701e6d7d", + "layout": "IPY_MODEL_fc2232b5a8dd416b925842e98e107e8a", "placeholder": "​", - "style": "IPY_MODEL_a265f58d489845b6b1340a829a74168d", + "style": "IPY_MODEL_82ca4b8d8cc34322b0e2c16eb9e16e50", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 452kB/s]" + "value": " 129k/129k [00:00<00:00, 6.43MB/s]" } }, - "d19574be1727424f9b4155d6890c6379": { + "bbdac7b22ce44d329ab42c88c5648f8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2699,33 +2574,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f7f0f2aa06bf4ac191490912101855c7", + "layout": "IPY_MODEL_f48ca364e590455591766831ea1dfbf7", "placeholder": "​", - "style": "IPY_MODEL_5f9123a1dc6f4bf594ce8a4b4f185a49", + "style": "IPY_MODEL_034e4d3a7063488d91824e6fdeb7f1e8", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "d237e27edd394f0cb779b56daf7e9f53": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 2.04k/2.04k [00:00<00:00, 453kB/s]" } }, - "d42aa306545b4c048e7007f1010dae12": { + "bd76c46bf0bd4562b4c10e0c56b6107a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2778,7 +2635,54 @@ "width": null } }, - "d93a56d4a52b40a1a432a218701e6d7d": { + "c19736be268e4860a33b62e8f05474e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_90fa56e12c094fc5a9f3a4174a977d02", + "IPY_MODEL_5cb8da02171f40d39bb02626493b71ff", + "IPY_MODEL_c19a041c0549459596b87353d3df4f78" + ], + "layout": "IPY_MODEL_9211e1c1cfe34affb27bb1da6c1a875c", + "tabbable": null, + "tooltip": null + } + }, + "c19a041c0549459596b87353d3df4f78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7cef29848a4742c3bcbbe027ba557e90", + "placeholder": "​", + "style": "IPY_MODEL_251c61f7e86b4cc78eaa1bf1844deba1", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 89.1MB/s]" + } + }, + "c578f898c61f4b38bbed699e3ee4574d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2831,7 +2735,51 @@ "width": null } }, - "dcaf791445af43d68f0078287914810a": { + "cdd6b64ff95043b3889956f53bae3ee9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cf30b6835a2b4533b999a994d35526ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c578f898c61f4b38bbed699e3ee4574d", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6bdaf42fca4d4e84a0155187178ceeb9", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "d4b0028a240044bbbfafcd951f0aef00": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2847,31 +2795,33 @@ "description_width": "" } }, - "e09248c0fe244ae1adb56d9623d7540b": { + "d7e704ded2a64e55a3de666caeaf7f25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d19574be1727424f9b4155d6890c6379", - "IPY_MODEL_5f20e36061c4462194728c5738285d58", - "IPY_MODEL_e51837b227f044108623992ca3212468" - ], - "layout": "IPY_MODEL_e1317297dacd4b19add95df4eb325215", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_520e3e4513d4419a951d6d23cdc7b88c", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5c84764947744d5ea50f357bf700eba2", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 3201.0 } }, - "e1317297dacd4b19add95df4eb325215": { + "d8b66fecb92a47f380840531b61c5ca3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2924,30 +2874,33 @@ "width": null } }, - "e51837b227f044108623992ca3212468": { + "e03a514f0ab74a24920aa89a2c8236ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fe0c29f7fc654606a3968de8caebfa7e", - "placeholder": "​", - "style": "IPY_MODEL_25f9496e154b4c35b50154e7c1179417", + "layout": "IPY_MODEL_378931b4c67a48e99f98003a357982ed", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d4b0028a240044bbbfafcd951f0aef00", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 801kB/s]" + "value": 128619.0 } }, - "e9cda110045e43c29d5985c766de7a53": { + "e4012906bcaf4d40bfa66ae83932a548": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2963,77 +2916,124 @@ "description_width": "" } }, - "ebda3d78b05a4486a7fffd8a666e661f": { + "e4a4d45f56884d5799af6bca8fef356e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "e7644d8d3b544e9996a105c3ccc8715b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ecad11768e31486e90586871e36c9ef8": { + "e92657bbca8142a5903f0333291a3975": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3b95edd1de4741ab901227f2d2eb148c", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e9cda110045e43c29d5985c766de7a53", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_033e0bed8622486ab93b78611978ffae", + "IPY_MODEL_cf30b6835a2b4533b999a994d35526ca", + "IPY_MODEL_1199aea69d7f453b8a043197c4365878" + ], + "layout": "IPY_MODEL_d8b66fecb92a47f380840531b61c5ca3", "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "tooltip": null } }, - "f327247b2e124784abcaca20d824f2c2": { + "ebb5417e82e6497d97f1411c47210a87": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a5b2e7509b164b5d9e844cab9b9e0f11", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_368d32a2248046e1a344ef38430f19dd", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_53c847f09731436f95fe81ea1aa14aa1", + "IPY_MODEL_e03a514f0ab74a24920aa89a2c8236ff", + "IPY_MODEL_b6adf34a89e34ec2a742d065c56a6486" + ], + "layout": "IPY_MODEL_6ed285d0b05b4ed1b68077b474fab2ac", "tabbable": null, - "tooltip": null, - "value": 15856877.0 + "tooltip": null } }, - "f7f0f2aa06bf4ac191490912101855c7": { + "f48ca364e590455591766831ea1dfbf7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3086,7 +3086,7 @@ "width": null } }, - "fd724a4cddb843d1bf3bc3d1a6f60a0d": { + "fc2232b5a8dd416b925842e98e107e8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3139,7 +3139,7 @@ "width": null } }, - "fe0c29f7fc654606a3968de8caebfa7e": { + "fe7f31d39ca44392a7d33939e895ea1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index c2a1b9467..b75f9f649 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"2749ee847c1b433a9a8a55b6b1b5c92f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2090faef703f453ea12b54844ac2487c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "25cb42634454435c857825e30407de4b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2749ee847c1b433a9a8a55b6b1b5c92f", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2090faef703f453ea12b54844ac2487c", "tabbable": null, "tooltip": null, "value": 132.0}}, "b342e197633741fab78ede822f68b80c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "860f72d263bc4dabaff33056f935bcce": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e6242c94398a4c298ecb1539783eafa6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b342e197633741fab78ede822f68b80c", "placeholder": "\u200b", "style": "IPY_MODEL_860f72d263bc4dabaff33056f935bcce", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "bb7b48339cfb4cd1a33f74ed52abcd62": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0fbc3274882f4e1ab00900b5baf96792": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5bda697ed8ea4cff9e89cecec1602956": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bb7b48339cfb4cd1a33f74ed52abcd62", "placeholder": "\u200b", "style": "IPY_MODEL_0fbc3274882f4e1ab00900b5baf96792", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712755.69\u2007examples/s]"}}, "1a9f272b6540497c8255408e9e0c16cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a0fcac2588a422fba3081ddf39aab10": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e6242c94398a4c298ecb1539783eafa6", "IPY_MODEL_25cb42634454435c857825e30407de4b", "IPY_MODEL_5bda697ed8ea4cff9e89cecec1602956"], "layout": "IPY_MODEL_1a9f272b6540497c8255408e9e0c16cd", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"00efee4b4d7348a889158733349f8567": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "870ba0165d88489aa61d4ac94139f8c9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6c1242db8adf4951bacb7a18fa585f30": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_00efee4b4d7348a889158733349f8567", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_870ba0165d88489aa61d4ac94139f8c9", "tabbable": null, "tooltip": null, "value": 132.0}}, "2213b28bbb3448c9be811b95b59e3ac1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "373d7bd8337f4aaab43da072c84c2723": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0560f0d298094ccf805bd3d33662ad0a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2213b28bbb3448c9be811b95b59e3ac1", "placeholder": "\u200b", "style": "IPY_MODEL_373d7bd8337f4aaab43da072c84c2723", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "4b2844ff3b5b430786d0ae8d87c26cf8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "36991349a7404b5f87a56d544592e6f3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "086e652ce6c34492b7a6f82eed2edbcb": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4b2844ff3b5b430786d0ae8d87c26cf8", "placeholder": "\u200b", "style": "IPY_MODEL_36991349a7404b5f87a56d544592e6f3", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713267.71\u2007examples/s]"}}, "f64163f077814da08cf1b8ba7aece2f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34df9aef0ecd4945b451a551af41de6b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0560f0d298094ccf805bd3d33662ad0a", "IPY_MODEL_6c1242db8adf4951bacb7a18fa585f30", "IPY_MODEL_086e652ce6c34492b7a6f82eed2edbcb"], "layout": "IPY_MODEL_f64163f077814da08cf1b8ba7aece2f5", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 273aaa0cb..241f4fc04 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:46.765510Z", - "iopub.status.busy": "2024-08-26T15:50:46.765317Z", - "iopub.status.idle": "2024-08-26T15:50:48.029649Z", - "shell.execute_reply": "2024-08-26T15:50:48.029139Z" + "iopub.execute_input": "2024-08-28T20:05:36.458031Z", + "iopub.status.busy": "2024-08-28T20:05:36.457846Z", + "iopub.status.idle": "2024-08-28T20:05:37.654965Z", + "shell.execute_reply": "2024-08-28T20:05:37.654325Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.032203Z", - "iopub.status.busy": "2024-08-26T15:50:48.031901Z", - "iopub.status.idle": "2024-08-26T15:50:48.035128Z", - "shell.execute_reply": "2024-08-26T15:50:48.034646Z" + "iopub.execute_input": "2024-08-28T20:05:37.657657Z", + "iopub.status.busy": "2024-08-28T20:05:37.657343Z", + "iopub.status.idle": "2024-08-28T20:05:37.660539Z", + "shell.execute_reply": "2024-08-28T20:05:37.659974Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.037151Z", - "iopub.status.busy": "2024-08-26T15:50:48.036973Z", - "iopub.status.idle": "2024-08-26T15:50:48.045810Z", - "shell.execute_reply": "2024-08-26T15:50:48.045353Z" + "iopub.execute_input": "2024-08-28T20:05:37.662661Z", + "iopub.status.busy": "2024-08-28T20:05:37.662340Z", + "iopub.status.idle": "2024-08-28T20:05:37.671085Z", + "shell.execute_reply": "2024-08-28T20:05:37.670605Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.047758Z", - "iopub.status.busy": "2024-08-26T15:50:48.047575Z", - "iopub.status.idle": "2024-08-26T15:50:48.052278Z", - "shell.execute_reply": "2024-08-26T15:50:48.051846Z" + "iopub.execute_input": "2024-08-28T20:05:37.672976Z", + "iopub.status.busy": "2024-08-28T20:05:37.672802Z", + "iopub.status.idle": "2024-08-28T20:05:37.677762Z", + "shell.execute_reply": "2024-08-28T20:05:37.677207Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.054354Z", - "iopub.status.busy": "2024-08-26T15:50:48.054175Z", - "iopub.status.idle": "2024-08-26T15:50:48.243838Z", - "shell.execute_reply": "2024-08-26T15:50:48.243254Z" + "iopub.execute_input": "2024-08-28T20:05:37.680115Z", + "iopub.status.busy": "2024-08-28T20:05:37.679708Z", + "iopub.status.idle": "2024-08-28T20:05:37.862442Z", + "shell.execute_reply": "2024-08-28T20:05:37.861841Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.246370Z", - "iopub.status.busy": "2024-08-26T15:50:48.246155Z", - "iopub.status.idle": "2024-08-26T15:50:48.628139Z", - "shell.execute_reply": "2024-08-26T15:50:48.627575Z" + "iopub.execute_input": "2024-08-28T20:05:37.864821Z", + "iopub.status.busy": "2024-08-28T20:05:37.864635Z", + "iopub.status.idle": "2024-08-28T20:05:38.184572Z", + "shell.execute_reply": "2024-08-28T20:05:38.183947Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.630308Z", - "iopub.status.busy": "2024-08-26T15:50:48.630124Z", - "iopub.status.idle": "2024-08-26T15:50:48.653555Z", - "shell.execute_reply": "2024-08-26T15:50:48.653088Z" + "iopub.execute_input": "2024-08-28T20:05:38.186878Z", + "iopub.status.busy": "2024-08-28T20:05:38.186520Z", + "iopub.status.idle": "2024-08-28T20:05:38.209952Z", + "shell.execute_reply": "2024-08-28T20:05:38.209533Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.655882Z", - "iopub.status.busy": "2024-08-26T15:50:48.655545Z", - "iopub.status.idle": "2024-08-26T15:50:48.667061Z", - "shell.execute_reply": "2024-08-26T15:50:48.666493Z" + "iopub.execute_input": "2024-08-28T20:05:38.211811Z", + "iopub.status.busy": "2024-08-28T20:05:38.211645Z", + "iopub.status.idle": "2024-08-28T20:05:38.222471Z", + "shell.execute_reply": "2024-08-28T20:05:38.222037Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:48.669119Z", - "iopub.status.busy": "2024-08-26T15:50:48.668937Z", - "iopub.status.idle": "2024-08-26T15:50:50.829319Z", - "shell.execute_reply": "2024-08-26T15:50:50.828752Z" + "iopub.execute_input": "2024-08-28T20:05:38.224409Z", + "iopub.status.busy": "2024-08-28T20:05:38.224229Z", + "iopub.status.idle": "2024-08-28T20:05:40.269112Z", + "shell.execute_reply": "2024-08-28T20:05:40.268439Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.832149Z", - "iopub.status.busy": "2024-08-26T15:50:50.831554Z", - "iopub.status.idle": "2024-08-26T15:50:50.853263Z", - "shell.execute_reply": "2024-08-26T15:50:50.852788Z" + "iopub.execute_input": "2024-08-28T20:05:40.271824Z", + "iopub.status.busy": "2024-08-28T20:05:40.271308Z", + "iopub.status.idle": "2024-08-28T20:05:40.292590Z", + "shell.execute_reply": "2024-08-28T20:05:40.292006Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.855499Z", - "iopub.status.busy": "2024-08-26T15:50:50.855206Z", - "iopub.status.idle": "2024-08-26T15:50:50.874255Z", - "shell.execute_reply": "2024-08-26T15:50:50.873572Z" + "iopub.execute_input": "2024-08-28T20:05:40.294578Z", + "iopub.status.busy": "2024-08-28T20:05:40.294399Z", + "iopub.status.idle": "2024-08-28T20:05:40.312266Z", + "shell.execute_reply": "2024-08-28T20:05:40.311790Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.876984Z", - "iopub.status.busy": "2024-08-26T15:50:50.876416Z", - "iopub.status.idle": "2024-08-26T15:50:50.892786Z", - "shell.execute_reply": "2024-08-26T15:50:50.892171Z" + "iopub.execute_input": "2024-08-28T20:05:40.314197Z", + "iopub.status.busy": "2024-08-28T20:05:40.314023Z", + "iopub.status.idle": "2024-08-28T20:05:40.329503Z", + "shell.execute_reply": "2024-08-28T20:05:40.329045Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.895217Z", - "iopub.status.busy": "2024-08-26T15:50:50.894904Z", - "iopub.status.idle": "2024-08-26T15:50:50.915961Z", - "shell.execute_reply": "2024-08-26T15:50:50.915358Z" + "iopub.execute_input": "2024-08-28T20:05:40.331431Z", + "iopub.status.busy": "2024-08-28T20:05:40.331259Z", + "iopub.status.idle": "2024-08-28T20:05:40.350854Z", + "shell.execute_reply": "2024-08-28T20:05:40.350291Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a0fcac2588a422fba3081ddf39aab10", + "model_id": "34df9aef0ecd4945b451a551af41de6b", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.918422Z", - "iopub.status.busy": "2024-08-26T15:50:50.917938Z", - "iopub.status.idle": "2024-08-26T15:50:50.934851Z", - "shell.execute_reply": "2024-08-26T15:50:50.934287Z" + "iopub.execute_input": "2024-08-28T20:05:40.352880Z", + "iopub.status.busy": "2024-08-28T20:05:40.352543Z", + "iopub.status.idle": "2024-08-28T20:05:40.367195Z", + "shell.execute_reply": "2024-08-28T20:05:40.366735Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.937203Z", - "iopub.status.busy": "2024-08-26T15:50:50.936812Z", - "iopub.status.idle": "2024-08-26T15:50:50.943127Z", - "shell.execute_reply": "2024-08-26T15:50:50.942615Z" + "iopub.execute_input": "2024-08-28T20:05:40.369258Z", + "iopub.status.busy": "2024-08-28T20:05:40.368937Z", + "iopub.status.idle": "2024-08-28T20:05:40.374642Z", + "shell.execute_reply": "2024-08-28T20:05:40.374211Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:50.945161Z", - "iopub.status.busy": "2024-08-26T15:50:50.944876Z", - "iopub.status.idle": "2024-08-26T15:50:50.964913Z", - "shell.execute_reply": "2024-08-26T15:50:50.964314Z" + "iopub.execute_input": "2024-08-28T20:05:40.376757Z", + "iopub.status.busy": "2024-08-28T20:05:40.376346Z", + "iopub.status.idle": "2024-08-28T20:05:40.393605Z", + "shell.execute_reply": "2024-08-28T20:05:40.393044Z" } }, "outputs": [ @@ -1447,25 +1447,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0fbc3274882f4e1ab00900b5baf96792": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1a9f272b6540497c8255408e9e0c16cd": { + "00efee4b4d7348a889158733349f8567": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1518,49 +1500,53 @@ "width": null } }, - "2090faef703f453ea12b54844ac2487c": { + "0560f0d298094ccf805bd3d33662ad0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2213b28bbb3448c9be811b95b59e3ac1", + "placeholder": "​", + "style": "IPY_MODEL_373d7bd8337f4aaab43da072c84c2723", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "25cb42634454435c857825e30407de4b": { + "086e652ce6c34492b7a6f82eed2edbcb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2749ee847c1b433a9a8a55b6b1b5c92f", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2090faef703f453ea12b54844ac2487c", + "layout": "IPY_MODEL_4b2844ff3b5b430786d0ae8d87c26cf8", + "placeholder": "​", + "style": "IPY_MODEL_36991349a7404b5f87a56d544592e6f3", "tabbable": null, "tooltip": null, - "value": 132.0 + "value": " 132/132 [00:00<00:00, 13267.71 examples/s]" } }, - "2749ee847c1b433a9a8a55b6b1b5c92f": { + "2213b28bbb3448c9be811b95b59e3ac1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1613,30 +1599,31 @@ "width": null } }, - "5bda697ed8ea4cff9e89cecec1602956": { + "34df9aef0ecd4945b451a551af41de6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bb7b48339cfb4cd1a33f74ed52abcd62", - "placeholder": "​", - "style": "IPY_MODEL_0fbc3274882f4e1ab00900b5baf96792", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0560f0d298094ccf805bd3d33662ad0a", + "IPY_MODEL_6c1242db8adf4951bacb7a18fa585f30", + "IPY_MODEL_086e652ce6c34492b7a6f82eed2edbcb" + ], + "layout": "IPY_MODEL_f64163f077814da08cf1b8ba7aece2f5", "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12755.69 examples/s]" + "tooltip": null } }, - "860f72d263bc4dabaff33056f935bcce": { + "36991349a7404b5f87a56d544592e6f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1654,31 +1641,25 @@ "text_color": null } }, - "8a0fcac2588a422fba3081ddf39aab10": { + "373d7bd8337f4aaab43da072c84c2723": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e6242c94398a4c298ecb1539783eafa6", - "IPY_MODEL_25cb42634454435c857825e30407de4b", - "IPY_MODEL_5bda697ed8ea4cff9e89cecec1602956" - ], - "layout": "IPY_MODEL_1a9f272b6540497c8255408e9e0c16cd", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b342e197633741fab78ede822f68b80c": { + "4b2844ff3b5b430786d0ae8d87c26cf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1731,7 +1712,49 @@ "width": null } }, - "bb7b48339cfb4cd1a33f74ed52abcd62": { + "6c1242db8adf4951bacb7a18fa585f30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_00efee4b4d7348a889158733349f8567", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_870ba0165d88489aa61d4ac94139f8c9", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "870ba0165d88489aa61d4ac94139f8c9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f64163f077814da08cf1b8ba7aece2f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,29 +1806,6 @@ "visibility": null, "width": null } - }, - "e6242c94398a4c298ecb1539783eafa6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b342e197633741fab78ede822f68b80c", - "placeholder": "​", - "style": "IPY_MODEL_860f72d263bc4dabaff33056f935bcce", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 62eda8c4b..99a008a84 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:53.944782Z", - "iopub.status.busy": "2024-08-26T15:50:53.944606Z", - "iopub.status.idle": "2024-08-26T15:50:55.174967Z", - "shell.execute_reply": "2024-08-26T15:50:55.174365Z" + "iopub.execute_input": "2024-08-28T20:05:43.219554Z", + "iopub.status.busy": "2024-08-28T20:05:43.219357Z", + "iopub.status.idle": "2024-08-28T20:05:44.416847Z", + "shell.execute_reply": "2024-08-28T20:05:44.416232Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.177365Z", - "iopub.status.busy": "2024-08-26T15:50:55.177084Z", - "iopub.status.idle": "2024-08-26T15:50:55.180269Z", - "shell.execute_reply": "2024-08-26T15:50:55.179800Z" + "iopub.execute_input": "2024-08-28T20:05:44.419477Z", + "iopub.status.busy": "2024-08-28T20:05:44.419041Z", + "iopub.status.idle": "2024-08-28T20:05:44.421927Z", + "shell.execute_reply": "2024-08-28T20:05:44.421481Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.182571Z", - "iopub.status.busy": "2024-08-26T15:50:55.182224Z", - "iopub.status.idle": "2024-08-26T15:50:55.191419Z", - "shell.execute_reply": "2024-08-26T15:50:55.190958Z" + "iopub.execute_input": "2024-08-28T20:05:44.424025Z", + "iopub.status.busy": "2024-08-28T20:05:44.423849Z", + "iopub.status.idle": "2024-08-28T20:05:44.432868Z", + "shell.execute_reply": "2024-08-28T20:05:44.432414Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.193302Z", - "iopub.status.busy": "2024-08-26T15:50:55.193122Z", - "iopub.status.idle": "2024-08-26T15:50:55.197961Z", - "shell.execute_reply": "2024-08-26T15:50:55.197543Z" + "iopub.execute_input": "2024-08-28T20:05:44.434733Z", + "iopub.status.busy": "2024-08-28T20:05:44.434560Z", + "iopub.status.idle": "2024-08-28T20:05:44.439727Z", + "shell.execute_reply": "2024-08-28T20:05:44.439254Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.200199Z", - "iopub.status.busy": "2024-08-26T15:50:55.199891Z", - "iopub.status.idle": "2024-08-26T15:50:55.384777Z", - "shell.execute_reply": "2024-08-26T15:50:55.384123Z" + "iopub.execute_input": "2024-08-28T20:05:44.441650Z", + "iopub.status.busy": "2024-08-28T20:05:44.441479Z", + "iopub.status.idle": "2024-08-28T20:05:44.625325Z", + "shell.execute_reply": "2024-08-28T20:05:44.624836Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.387364Z", - "iopub.status.busy": "2024-08-26T15:50:55.387029Z", - "iopub.status.idle": "2024-08-26T15:50:55.715156Z", - "shell.execute_reply": "2024-08-26T15:50:55.714550Z" + "iopub.execute_input": "2024-08-28T20:05:44.627855Z", + "iopub.status.busy": "2024-08-28T20:05:44.627427Z", + "iopub.status.idle": "2024-08-28T20:05:44.999672Z", + "shell.execute_reply": "2024-08-28T20:05:44.999070Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.717463Z", - "iopub.status.busy": "2024-08-26T15:50:55.717038Z", - "iopub.status.idle": "2024-08-26T15:50:55.719902Z", - "shell.execute_reply": "2024-08-26T15:50:55.719448Z" + "iopub.execute_input": "2024-08-28T20:05:45.001992Z", + "iopub.status.busy": "2024-08-28T20:05:45.001631Z", + "iopub.status.idle": "2024-08-28T20:05:45.004779Z", + "shell.execute_reply": "2024-08-28T20:05:45.004349Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.722134Z", - "iopub.status.busy": "2024-08-26T15:50:55.721733Z", - "iopub.status.idle": "2024-08-26T15:50:55.756057Z", - "shell.execute_reply": "2024-08-26T15:50:55.755459Z" + "iopub.execute_input": "2024-08-28T20:05:45.006834Z", + "iopub.status.busy": "2024-08-28T20:05:45.006496Z", + "iopub.status.idle": "2024-08-28T20:05:45.040757Z", + "shell.execute_reply": "2024-08-28T20:05:45.040314Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:55.758161Z", - "iopub.status.busy": "2024-08-26T15:50:55.757979Z", - "iopub.status.idle": "2024-08-26T15:50:57.877733Z", - "shell.execute_reply": "2024-08-26T15:50:57.877147Z" + "iopub.execute_input": "2024-08-28T20:05:45.042781Z", + "iopub.status.busy": "2024-08-28T20:05:45.042501Z", + "iopub.status.idle": "2024-08-28T20:05:47.113967Z", + "shell.execute_reply": "2024-08-28T20:05:47.113282Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.880170Z", - "iopub.status.busy": "2024-08-26T15:50:57.879797Z", - "iopub.status.idle": "2024-08-26T15:50:57.899274Z", - "shell.execute_reply": "2024-08-26T15:50:57.898677Z" + "iopub.execute_input": "2024-08-28T20:05:47.116833Z", + "iopub.status.busy": "2024-08-28T20:05:47.116460Z", + "iopub.status.idle": "2024-08-28T20:05:47.135940Z", + "shell.execute_reply": "2024-08-28T20:05:47.135322Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.901387Z", - "iopub.status.busy": "2024-08-26T15:50:57.901205Z", - "iopub.status.idle": "2024-08-26T15:50:57.908053Z", - "shell.execute_reply": "2024-08-26T15:50:57.907487Z" + "iopub.execute_input": "2024-08-28T20:05:47.138349Z", + "iopub.status.busy": "2024-08-28T20:05:47.137886Z", + "iopub.status.idle": "2024-08-28T20:05:47.145532Z", + "shell.execute_reply": "2024-08-28T20:05:47.145018Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.910026Z", - "iopub.status.busy": "2024-08-26T15:50:57.909848Z", - "iopub.status.idle": "2024-08-26T15:50:57.915624Z", - "shell.execute_reply": "2024-08-26T15:50:57.915128Z" + "iopub.execute_input": "2024-08-28T20:05:47.147884Z", + "iopub.status.busy": "2024-08-28T20:05:47.147515Z", + "iopub.status.idle": "2024-08-28T20:05:47.154128Z", + "shell.execute_reply": "2024-08-28T20:05:47.153590Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.917481Z", - "iopub.status.busy": "2024-08-26T15:50:57.917305Z", - "iopub.status.idle": "2024-08-26T15:50:57.927610Z", - "shell.execute_reply": "2024-08-26T15:50:57.927139Z" + "iopub.execute_input": "2024-08-28T20:05:47.156508Z", + "iopub.status.busy": "2024-08-28T20:05:47.156154Z", + "iopub.status.idle": "2024-08-28T20:05:47.168343Z", + "shell.execute_reply": "2024-08-28T20:05:47.167805Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.929617Z", - "iopub.status.busy": "2024-08-26T15:50:57.929267Z", - "iopub.status.idle": "2024-08-26T15:50:57.937885Z", - "shell.execute_reply": "2024-08-26T15:50:57.937431Z" + "iopub.execute_input": "2024-08-28T20:05:47.170664Z", + "iopub.status.busy": "2024-08-28T20:05:47.170264Z", + "iopub.status.idle": "2024-08-28T20:05:47.179413Z", + "shell.execute_reply": "2024-08-28T20:05:47.178834Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.939923Z", - "iopub.status.busy": "2024-08-26T15:50:57.939645Z", - "iopub.status.idle": "2024-08-26T15:50:57.946549Z", - "shell.execute_reply": "2024-08-26T15:50:57.945987Z" + "iopub.execute_input": "2024-08-28T20:05:47.181698Z", + "iopub.status.busy": "2024-08-28T20:05:47.181523Z", + "iopub.status.idle": "2024-08-28T20:05:47.188708Z", + "shell.execute_reply": "2024-08-28T20:05:47.188252Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.948699Z", - "iopub.status.busy": "2024-08-26T15:50:57.948267Z", - "iopub.status.idle": "2024-08-26T15:50:57.957635Z", - "shell.execute_reply": "2024-08-26T15:50:57.957073Z" + "iopub.execute_input": "2024-08-28T20:05:47.190540Z", + "iopub.status.busy": "2024-08-28T20:05:47.190369Z", + "iopub.status.idle": "2024-08-28T20:05:47.199875Z", + "shell.execute_reply": "2024-08-28T20:05:47.199394Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:50:57.959729Z", - "iopub.status.busy": "2024-08-26T15:50:57.959409Z", - "iopub.status.idle": "2024-08-26T15:50:57.976522Z", - "shell.execute_reply": "2024-08-26T15:50:57.975936Z" + "iopub.execute_input": "2024-08-28T20:05:47.201860Z", + "iopub.status.busy": "2024-08-28T20:05:47.201534Z", + "iopub.status.idle": "2024-08-28T20:05:47.217622Z", + "shell.execute_reply": "2024-08-28T20:05:47.217018Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 083fe9455..e32eef3e4 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,31 +727,31 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1064,7 +1064,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1096,7 +1096,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1128,7 +1128,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -2098,7 +2098,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index f0bfcffa1..d0e0da8b4 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:00.744803Z", - "iopub.status.busy": "2024-08-26T15:51:00.744624Z", - "iopub.status.idle": "2024-08-26T15:51:03.845244Z", - "shell.execute_reply": "2024-08-26T15:51:03.844700Z" + "iopub.execute_input": "2024-08-28T20:05:49.952557Z", + "iopub.status.busy": "2024-08-28T20:05:49.952376Z", + "iopub.status.idle": "2024-08-28T20:05:52.913551Z", + "shell.execute_reply": "2024-08-28T20:05:52.912996Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:03.848152Z", - "iopub.status.busy": "2024-08-26T15:51:03.847533Z", - "iopub.status.idle": "2024-08-26T15:51:03.851305Z", - "shell.execute_reply": "2024-08-26T15:51:03.850759Z" + "iopub.execute_input": "2024-08-28T20:05:52.916168Z", + "iopub.status.busy": "2024-08-28T20:05:52.915701Z", + "iopub.status.idle": "2024-08-28T20:05:52.919157Z", + "shell.execute_reply": "2024-08-28T20:05:52.918704Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:03.853335Z", - "iopub.status.busy": "2024-08-26T15:51:03.852994Z", - "iopub.status.idle": "2024-08-26T15:51:08.474960Z", - "shell.execute_reply": "2024-08-26T15:51:08.474414Z" + "iopub.execute_input": "2024-08-28T20:05:52.921163Z", + "iopub.status.busy": "2024-08-28T20:05:52.920824Z", + "iopub.status.idle": "2024-08-28T20:05:56.015707Z", + "shell.execute_reply": "2024-08-28T20:05:56.015125Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0a1880c6c97d4a3aaf7b2288cedea42f", + "model_id": "f546543a4b994e7c947e3ddab9ef35fd", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "715deece975742d5bc13cc8043611355", + "model_id": "f90499b00cc0489c9b7f21169ba0b4bd", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bb685ca1a8e74f4abfc418ee4df7cdae", + "model_id": "99d28f10e86b47028f586cf991c46491", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8048b30a8d20480286136da950c4ae4f", + "model_id": "9ae89310be0a4a419eb65241c7fa071c", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7df5d87a698348adaf910bad51eb5257", + "model_id": "312c9d3a255542eeb5612377fe2e80e5", "version_major": 2, "version_minor": 0 }, @@ -260,10 +260,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:08.477550Z", - "iopub.status.busy": "2024-08-26T15:51:08.477034Z", - "iopub.status.idle": "2024-08-26T15:51:08.481367Z", - "shell.execute_reply": "2024-08-26T15:51:08.480829Z" + "iopub.execute_input": "2024-08-28T20:05:56.017899Z", + "iopub.status.busy": "2024-08-28T20:05:56.017550Z", + "iopub.status.idle": "2024-08-28T20:05:56.021621Z", + "shell.execute_reply": "2024-08-28T20:05:56.021033Z" } }, "outputs": [ @@ -288,17 +288,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:08.483413Z", - "iopub.status.busy": "2024-08-26T15:51:08.483096Z", - "iopub.status.idle": "2024-08-26T15:51:20.137696Z", - "shell.execute_reply": "2024-08-26T15:51:20.137155Z" + "iopub.execute_input": "2024-08-28T20:05:56.025632Z", + "iopub.status.busy": "2024-08-28T20:05:56.025453Z", + "iopub.status.idle": "2024-08-28T20:06:07.494091Z", + "shell.execute_reply": "2024-08-28T20:06:07.493435Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "aa732b0a4d7a4e5a9c11bdac5ddcd235", + "model_id": "d19a5e1c9c5f401fb90b639fdd9f1b70", "version_major": 2, "version_minor": 0 }, @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:20.140400Z", - "iopub.status.busy": "2024-08-26T15:51:20.140038Z", - "iopub.status.idle": "2024-08-26T15:51:38.738674Z", - "shell.execute_reply": "2024-08-26T15:51:38.738041Z" + "iopub.execute_input": "2024-08-28T20:06:07.496801Z", + "iopub.status.busy": "2024-08-28T20:06:07.496550Z", + "iopub.status.idle": "2024-08-28T20:06:26.292236Z", + "shell.execute_reply": "2024-08-28T20:06:26.291676Z" } }, "outputs": [], @@ -372,10 +372,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:38.741444Z", - "iopub.status.busy": "2024-08-26T15:51:38.741090Z", - "iopub.status.idle": "2024-08-26T15:51:38.746146Z", - "shell.execute_reply": "2024-08-26T15:51:38.745664Z" + "iopub.execute_input": "2024-08-28T20:06:26.294942Z", + "iopub.status.busy": "2024-08-28T20:06:26.294610Z", + "iopub.status.idle": "2024-08-28T20:06:26.299510Z", + "shell.execute_reply": "2024-08-28T20:06:26.298928Z" } }, "outputs": [], @@ -413,10 +413,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:38.748037Z", - "iopub.status.busy": "2024-08-26T15:51:38.747855Z", - "iopub.status.idle": "2024-08-26T15:51:38.752327Z", - "shell.execute_reply": "2024-08-26T15:51:38.751914Z" + "iopub.execute_input": "2024-08-28T20:06:26.301409Z", + "iopub.status.busy": "2024-08-28T20:06:26.301217Z", + "iopub.status.idle": "2024-08-28T20:06:26.305122Z", + "shell.execute_reply": "2024-08-28T20:06:26.304711Z" }, "nbsphinx": "hidden" }, @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:38.754457Z", - "iopub.status.busy": "2024-08-26T15:51:38.754044Z", - "iopub.status.idle": "2024-08-26T15:51:38.763027Z", - "shell.execute_reply": "2024-08-26T15:51:38.762462Z" + "iopub.execute_input": "2024-08-28T20:06:26.307165Z", + "iopub.status.busy": "2024-08-28T20:06:26.306830Z", + "iopub.status.idle": "2024-08-28T20:06:26.315659Z", + "shell.execute_reply": "2024-08-28T20:06:26.315197Z" }, "nbsphinx": "hidden" }, @@ -681,10 +681,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:38.765123Z", - "iopub.status.busy": "2024-08-26T15:51:38.764781Z", - "iopub.status.idle": "2024-08-26T15:51:38.792778Z", - "shell.execute_reply": "2024-08-26T15:51:38.792296Z" + "iopub.execute_input": "2024-08-28T20:06:26.317785Z", + "iopub.status.busy": "2024-08-28T20:06:26.317464Z", + "iopub.status.idle": "2024-08-28T20:06:26.343892Z", + "shell.execute_reply": "2024-08-28T20:06:26.343385Z" } }, "outputs": [], @@ -721,10 +721,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:51:38.795125Z", - "iopub.status.busy": "2024-08-26T15:51:38.794779Z", - "iopub.status.idle": "2024-08-26T15:52:13.480656Z", - "shell.execute_reply": "2024-08-26T15:52:13.480000Z" + "iopub.execute_input": "2024-08-28T20:06:26.346604Z", + "iopub.status.busy": "2024-08-28T20:06:26.346136Z", + "iopub.status.idle": "2024-08-28T20:06:59.760174Z", + "shell.execute_reply": "2024-08-28T20:06:59.759497Z" } }, "outputs": [ @@ -740,21 +740,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 5.144\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.860\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.930\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.838\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9912ba2f2c141a4892444b6f34c10b6", + "model_id": "fdd6e77412c0421895c9c80c62ddea3a", "version_major": 2, "version_minor": 0 }, @@ -775,7 +775,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "eb3ac7f719da4343b1f45e07f09a75f2", + "model_id": "3d9428483348434099ee2254355991f7", "version_major": 2, "version_minor": 0 }, @@ -798,21 +798,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.995\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.827\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.984\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.861\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5dd4ac73beaa4c909b6d006c9b6b289f", + "model_id": "b4496a7f2cc94ab5a8bbabdb97cae403", "version_major": 2, "version_minor": 0 }, @@ -833,7 +833,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ab03cadc8a244250837477471abfd52f", + "model_id": "c8df1d76b2a243d0aed92777fe211a4c", "version_major": 2, "version_minor": 0 }, @@ -856,21 +856,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 5.056\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.896\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.832\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.601\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "61ca028bd561486caf5fa42305aa6d4d", + "model_id": "b2b42c0463e442998e7b13eec51680b0", "version_major": 2, "version_minor": 0 }, @@ -891,7 +891,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fc98e96da8e046238dce1b399f558f99", + "model_id": "76382007e18a47aca7267c9a5b04aace", "version_major": 2, "version_minor": 0 }, @@ -970,10 +970,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:52:13.483198Z", - "iopub.status.busy": "2024-08-26T15:52:13.482845Z", - "iopub.status.idle": "2024-08-26T15:52:13.500620Z", - "shell.execute_reply": "2024-08-26T15:52:13.500140Z" + "iopub.execute_input": "2024-08-28T20:06:59.762672Z", + "iopub.status.busy": "2024-08-28T20:06:59.762428Z", + "iopub.status.idle": "2024-08-28T20:06:59.778917Z", + "shell.execute_reply": "2024-08-28T20:06:59.778380Z" } }, "outputs": [], @@ -998,10 +998,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:52:13.503031Z", - "iopub.status.busy": "2024-08-26T15:52:13.502645Z", - "iopub.status.idle": "2024-08-26T15:52:14.010871Z", - "shell.execute_reply": "2024-08-26T15:52:14.010336Z" + "iopub.execute_input": "2024-08-28T20:06:59.781644Z", + "iopub.status.busy": "2024-08-28T20:06:59.781238Z", + "iopub.status.idle": "2024-08-28T20:07:00.232620Z", + "shell.execute_reply": "2024-08-28T20:07:00.231966Z" } }, "outputs": [], @@ -1021,10 +1021,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:52:14.013522Z", - "iopub.status.busy": "2024-08-26T15:52:14.013146Z", - "iopub.status.idle": "2024-08-26T15:54:07.250429Z", - "shell.execute_reply": "2024-08-26T15:54:07.249850Z" + "iopub.execute_input": "2024-08-28T20:07:00.235053Z", + "iopub.status.busy": "2024-08-28T20:07:00.234870Z", + "iopub.status.idle": "2024-08-28T20:08:50.130089Z", + "shell.execute_reply": "2024-08-28T20:08:50.129424Z" } }, "outputs": [ @@ -1063,7 +1063,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a0e6ab9c19e34b8e9bbe62ee43bd8c35", + "model_id": "dccb84fb19484d4980a7659b3d7a2270", "version_major": 2, "version_minor": 0 }, @@ -1109,10 +1109,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:07.253184Z", - "iopub.status.busy": "2024-08-26T15:54:07.252602Z", - "iopub.status.idle": "2024-08-26T15:54:07.719555Z", - "shell.execute_reply": "2024-08-26T15:54:07.718967Z" + "iopub.execute_input": "2024-08-28T20:08:50.132488Z", + "iopub.status.busy": "2024-08-28T20:08:50.132077Z", + "iopub.status.idle": "2024-08-28T20:08:50.588895Z", + "shell.execute_reply": "2024-08-28T20:08:50.588329Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:07.722577Z", - "iopub.status.busy": "2024-08-26T15:54:07.722057Z", - "iopub.status.idle": "2024-08-26T15:54:07.785260Z", - "shell.execute_reply": "2024-08-26T15:54:07.784657Z" + "iopub.execute_input": "2024-08-28T20:08:50.591803Z", + "iopub.status.busy": "2024-08-28T20:08:50.591296Z", + "iopub.status.idle": "2024-08-28T20:08:50.653079Z", + "shell.execute_reply": "2024-08-28T20:08:50.652532Z" } }, "outputs": [ @@ -1365,10 +1365,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:07.787526Z", - "iopub.status.busy": "2024-08-26T15:54:07.787195Z", - "iopub.status.idle": "2024-08-26T15:54:07.796216Z", - "shell.execute_reply": "2024-08-26T15:54:07.795642Z" + "iopub.execute_input": "2024-08-28T20:08:50.655358Z", + "iopub.status.busy": "2024-08-28T20:08:50.654879Z", + "iopub.status.idle": "2024-08-28T20:08:50.663334Z", + "shell.execute_reply": "2024-08-28T20:08:50.662785Z" } }, "outputs": [ @@ -1498,10 +1498,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:07.798529Z", - "iopub.status.busy": "2024-08-26T15:54:07.798045Z", - "iopub.status.idle": "2024-08-26T15:54:07.803020Z", - "shell.execute_reply": "2024-08-26T15:54:07.802450Z" + "iopub.execute_input": "2024-08-28T20:08:50.665441Z", + "iopub.status.busy": "2024-08-28T20:08:50.665110Z", + "iopub.status.idle": "2024-08-28T20:08:50.669671Z", + "shell.execute_reply": "2024-08-28T20:08:50.669241Z" }, "nbsphinx": "hidden" }, @@ -1547,10 +1547,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:07.805248Z", - "iopub.status.busy": "2024-08-26T15:54:07.804838Z", - "iopub.status.idle": "2024-08-26T15:54:08.312703Z", - "shell.execute_reply": "2024-08-26T15:54:08.312105Z" + "iopub.execute_input": "2024-08-28T20:08:50.671831Z", + "iopub.status.busy": "2024-08-28T20:08:50.671393Z", + "iopub.status.idle": "2024-08-28T20:08:51.188589Z", + "shell.execute_reply": "2024-08-28T20:08:51.187994Z" } }, "outputs": [ @@ -1585,10 +1585,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.314908Z", - "iopub.status.busy": "2024-08-26T15:54:08.314592Z", - "iopub.status.idle": "2024-08-26T15:54:08.323272Z", - "shell.execute_reply": "2024-08-26T15:54:08.322796Z" + "iopub.execute_input": "2024-08-28T20:08:51.191039Z", + "iopub.status.busy": "2024-08-28T20:08:51.190697Z", + "iopub.status.idle": "2024-08-28T20:08:51.199671Z", + "shell.execute_reply": "2024-08-28T20:08:51.199225Z" } }, "outputs": [ @@ -1755,10 +1755,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.325488Z", - "iopub.status.busy": "2024-08-26T15:54:08.325205Z", - "iopub.status.idle": "2024-08-26T15:54:08.332689Z", - "shell.execute_reply": "2024-08-26T15:54:08.332246Z" + "iopub.execute_input": "2024-08-28T20:08:51.201761Z", + "iopub.status.busy": "2024-08-28T20:08:51.201422Z", + "iopub.status.idle": "2024-08-28T20:08:51.208678Z", + "shell.execute_reply": "2024-08-28T20:08:51.208209Z" }, "nbsphinx": "hidden" }, @@ -1834,10 +1834,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.334682Z", - "iopub.status.busy": "2024-08-26T15:54:08.334394Z", - "iopub.status.idle": "2024-08-26T15:54:08.782788Z", - "shell.execute_reply": "2024-08-26T15:54:08.782140Z" + "iopub.execute_input": "2024-08-28T20:08:51.210704Z", + "iopub.status.busy": "2024-08-28T20:08:51.210270Z", + "iopub.status.idle": "2024-08-28T20:08:51.675293Z", + "shell.execute_reply": "2024-08-28T20:08:51.674673Z" } }, "outputs": [ @@ -1874,10 +1874,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.785283Z", - "iopub.status.busy": "2024-08-26T15:54:08.784891Z", - "iopub.status.idle": "2024-08-26T15:54:08.801932Z", - "shell.execute_reply": "2024-08-26T15:54:08.801440Z" + "iopub.execute_input": "2024-08-28T20:08:51.677742Z", + "iopub.status.busy": "2024-08-28T20:08:51.677384Z", + "iopub.status.idle": "2024-08-28T20:08:51.692423Z", + "shell.execute_reply": "2024-08-28T20:08:51.691931Z" } }, "outputs": [ @@ -2034,10 +2034,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.804200Z", - "iopub.status.busy": "2024-08-26T15:54:08.803833Z", - "iopub.status.idle": "2024-08-26T15:54:08.809515Z", - "shell.execute_reply": "2024-08-26T15:54:08.809060Z" + "iopub.execute_input": "2024-08-28T20:08:51.694612Z", + "iopub.status.busy": "2024-08-28T20:08:51.694248Z", + "iopub.status.idle": "2024-08-28T20:08:51.699790Z", + "shell.execute_reply": "2024-08-28T20:08:51.699316Z" }, "nbsphinx": "hidden" }, @@ -2082,10 +2082,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:08.811613Z", - "iopub.status.busy": "2024-08-26T15:54:08.811269Z", - "iopub.status.idle": "2024-08-26T15:54:09.613371Z", - "shell.execute_reply": "2024-08-26T15:54:09.612813Z" + "iopub.execute_input": "2024-08-28T20:08:51.701702Z", + "iopub.status.busy": "2024-08-28T20:08:51.701368Z", + "iopub.status.idle": "2024-08-28T20:08:52.457783Z", + "shell.execute_reply": "2024-08-28T20:08:52.456648Z" } }, "outputs": [ @@ -2167,10 +2167,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:09.616020Z", - "iopub.status.busy": "2024-08-26T15:54:09.615813Z", - "iopub.status.idle": "2024-08-26T15:54:09.626482Z", - "shell.execute_reply": "2024-08-26T15:54:09.625935Z" + "iopub.execute_input": "2024-08-28T20:08:52.460388Z", + "iopub.status.busy": "2024-08-28T20:08:52.460188Z", + "iopub.status.idle": "2024-08-28T20:08:52.469503Z", + "shell.execute_reply": "2024-08-28T20:08:52.468963Z" } }, "outputs": [ @@ -2298,10 +2298,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:09.629113Z", - "iopub.status.busy": "2024-08-26T15:54:09.628913Z", - "iopub.status.idle": "2024-08-26T15:54:09.635120Z", - "shell.execute_reply": "2024-08-26T15:54:09.634478Z" + "iopub.execute_input": "2024-08-28T20:08:52.472001Z", + "iopub.status.busy": "2024-08-28T20:08:52.471804Z", + "iopub.status.idle": "2024-08-28T20:08:52.478834Z", + "shell.execute_reply": "2024-08-28T20:08:52.478259Z" }, "nbsphinx": "hidden" }, @@ -2338,10 +2338,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:09.637662Z", - "iopub.status.busy": "2024-08-26T15:54:09.637461Z", - "iopub.status.idle": "2024-08-26T15:54:09.843225Z", - "shell.execute_reply": "2024-08-26T15:54:09.842531Z" + "iopub.execute_input": "2024-08-28T20:08:52.481125Z", + "iopub.status.busy": "2024-08-28T20:08:52.480932Z", + "iopub.status.idle": "2024-08-28T20:08:52.682208Z", + "shell.execute_reply": "2024-08-28T20:08:52.681649Z" } }, "outputs": [ @@ -2383,10 +2383,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:09.845518Z", - "iopub.status.busy": "2024-08-26T15:54:09.845321Z", - "iopub.status.idle": "2024-08-26T15:54:09.853898Z", - "shell.execute_reply": "2024-08-26T15:54:09.853405Z" + "iopub.execute_input": "2024-08-28T20:08:52.684555Z", + "iopub.status.busy": "2024-08-28T20:08:52.684214Z", + "iopub.status.idle": "2024-08-28T20:08:52.692117Z", + "shell.execute_reply": "2024-08-28T20:08:52.691667Z" } }, "outputs": [ @@ -2472,10 +2472,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:09.856128Z", - "iopub.status.busy": "2024-08-26T15:54:09.855760Z", - "iopub.status.idle": "2024-08-26T15:54:10.056021Z", - "shell.execute_reply": "2024-08-26T15:54:10.055436Z" + "iopub.execute_input": "2024-08-28T20:08:52.694160Z", + "iopub.status.busy": "2024-08-28T20:08:52.693822Z", + "iopub.status.idle": "2024-08-28T20:08:52.887977Z", + "shell.execute_reply": "2024-08-28T20:08:52.887412Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:10.058407Z", - "iopub.status.busy": "2024-08-26T15:54:10.057978Z", - "iopub.status.idle": "2024-08-26T15:54:10.062876Z", - "shell.execute_reply": "2024-08-26T15:54:10.062286Z" + "iopub.execute_input": "2024-08-28T20:08:52.890283Z", + "iopub.status.busy": "2024-08-28T20:08:52.889945Z", + "iopub.status.idle": "2024-08-28T20:08:52.894412Z", + "shell.execute_reply": "2024-08-28T20:08:52.893975Z" }, "nbsphinx": "hidden" }, @@ -2555,7 +2555,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00e20cac09fa43938aab5eb1c857b06b": { + "0479111a5d804c6880145a46ec56cb0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2608,83 +2608,25 @@ "width": null } }, - "010dc830be824dceafc6f722bb3b1486": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "04a4622eebaa4c72abf4e42992b7bc3e": { + "09c8a33d5a37436aaf80890e2dbdbd2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_010dc830be824dceafc6f722bb3b1486", - "placeholder": "​", - "style": "IPY_MODEL_63397a47d992477aa92ce4d5947bafe4", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "06c30632deaa41b0b7d2ef2bd39e00dc": { + "0a5c08c87fd74370a40f9df2784c31cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2699,39 +2641,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c1c1d785f09148e88cc07abc9a79d399", + "layout": "IPY_MODEL_9454a9f21f3c4cdbb2eb61e8efb6f21b", "placeholder": "​", - "style": "IPY_MODEL_eecae1184b8b4bcd9ec5d73df5c74db8", + "style": "IPY_MODEL_d1f9454550954236a684ac26e799e32a", "tabbable": null, "tooltip": null, "value": "100%" } }, - "0a1880c6c97d4a3aaf7b2288cedea42f": { + "0acfb7df45a94895b660e99678f38ab9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0e187037d3fd4277ad83ed550c26d42d", - "IPY_MODEL_86d4ac36f45b4dc4aafe3fddfa21728c", - "IPY_MODEL_ee16116dbbae4246a4933981a1e3806b" - ], - "layout": "IPY_MODEL_50191cea4e5948a0a8d8cff6556b9052", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0cb7926f64ca4262a1d8e8a49dd0d6d3": { + "0b6b0041576b42348ad60c246694ed48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2784,7 +2718,7 @@ "width": null } }, - "0dff836f9df24429807dadf54be9a70a": { + "0bf27f023e574370a39306b2c3418332": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2837,7 +2771,7 @@ "width": null } }, - "0e0ea832bcf44e08af9f72ccaf14856d": { + "0e64e21c42624612ab3f8a532e796075": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2890,7 +2824,25 @@ "width": null } }, - "0e187037d3fd4277ad83ed550c26d42d": { + "1115843994674897843ad092eeab2fa8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1125671cbbb1426b9fc96cd2b0ed9c4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2905,15 +2857,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d2d22c2514a54fcb9f9f90e9a4e24714", + "layout": "IPY_MODEL_7596686691ac4d5b8d2b9a5a14eaa72c", "placeholder": "​", - "style": "IPY_MODEL_c5b087dedb3b4a81b16234b32f0ad104", + "style": "IPY_MODEL_ef8e379e77eb41a1b387d30a2523a889", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": "Generating test split: 100%" } }, - "0e674f7d5aaf4ceb80159d02d496e19e": { + "14e275ef5cc646cc84b0bbbf516f0c2d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2966,25 +2918,7 @@ "width": null } }, - "112e5f2e2a784cba837314af017d0914": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1160fc45ea02442ebc3edd8f098d88ad": { + "1d337557f091475698f66056b81ca3b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3037,7 +2971,7 @@ "width": null } }, - "1749f9df3cef4d239a6382150390e397": { + "1d88ef5e245a4f9fa762fcd65a016d2a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3090,7 +3024,7 @@ "width": null } }, - "1c9a54ddf74b443e89e4eaf4f51c38c8": { + "20e290f5112c43a8b482d6463f47f3b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3143,7 +3077,7 @@ "width": null } }, - "1ce743abad7c4285b5459c8f9a83727f": { + "219c7da2fbf24297bb4de9f2d771db03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3196,23 +3130,48 @@ "width": null } }, - "1ebda1f8d81d496d83330d03e329452f": { + "254364431d4949dc96d01bcc0deb6b9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ef3572a1a6c34bd0a4f31259c8f1cfe7", + "placeholder": "​", + "style": "IPY_MODEL_56ac8091ed3641fa829a79124b46eaad", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "26681fd30ba84b94b17d47d8bcbad73f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1f19654c731349b586439bffb6b50667": { + "29f85ef43a4f46ceb22293713c3f0ac8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3265,7 +3224,7 @@ "width": null } }, - "20586be37d7340fab39d12a261037368": { + "2b4f41cafdf3495dacbdd9b5dfbaf939": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3318,7 +3277,95 @@ "width": null } }, - "2154009565de4b2d836aa460d81a343d": { + "2e7759f994a045b1abb1319ea20498ec": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "312c9d3a255542eeb5612377fe2e80e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1125671cbbb1426b9fc96cd2b0ed9c4d", + "IPY_MODEL_85f859769fca4e72bb11b80054d8d0b6", + "IPY_MODEL_8ae92d8f86804827a70d65e54d98ae77" + ], + "layout": "IPY_MODEL_f91049c8fe9848ccb88784d036c3aab3", + "tabbable": null, + "tooltip": null + } + }, + "34f5d94baac84b1398d48e84b152e55b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f36d712d6ed74e5b9a86a346ca936135", + "placeholder": "​", + "style": "IPY_MODEL_81db87069c784a348ff7dba107c76ff5", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.29it/s]" + } + }, + "36050e8d2e9e44a3a4ed1600bdd36831": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3d14567421ad4ef5b7e8164ca757b5e6", + "placeholder": "​", + "style": "IPY_MODEL_52e0af193e924794884f753e1600bb23", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.41it/s]" + } + }, + "371aac79893049bfaf6444a35b41bab0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3371,30 +3418,134 @@ "width": null } }, - "2478e088e18843408c6b0eb7b8546aeb": { + "37e39b6de36c4357b0d6983fbe95a3e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_39a2fe7572d8412db26d8007616ea5ed", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_77cc6a8c7e7b4bb7942c7cfef39c1df1", + "tabbable": null, + "tooltip": null, + "value": 2.0 } }, - "24cc3a6c8edd440da9947ad5599bad6e": { - "model_module": "@jupyter-widgets/base", + "38c3a08721ce45238e373d9a72ca9d4c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63c943ca68c8450d990c31b1e0ef9499", + "placeholder": "​", + "style": "IPY_MODEL_56095b38293544ee9f90fd6ee45b8a94", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 56.94it/s]" + } + }, + "393565c9efe7468987a446b4158c152c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "39a2fe7572d8412db26d8007616ea5ed": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3d14567421ad4ef5b7e8164ca757b5e6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", @@ -3440,30 +3591,31 @@ "width": null } }, - "28b0e5e799994ca8809bbb96b5c3df2a": { + "3d9428483348434099ee2254355991f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6e351618590464cad5b6b2888b5855b", - "placeholder": "​", - "style": "IPY_MODEL_f70935fc022f4ec9952399ffa883f8c2", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c13bcf0a616e4cc9be2abb900464ebfe", + "IPY_MODEL_a2ecd98489b446bf8439f3bae62184e2", + "IPY_MODEL_38c3a08721ce45238e373d9a72ca9d4c" + ], + "layout": "IPY_MODEL_d4e950ea713443a8b6b8b2188ad2c990", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.54it/s]" + "tooltip": null } }, - "2918809b0c4a48c9a96a0722b9044737": { + "3f6adcfb510b44d087c66406feb108c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3479,17 +3631,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a51da1996471487ea2f6abd6bb0cacba", - "max": 40.0, + "layout": "IPY_MODEL_8da89fbb23314b139d116450a90c0d97", + "max": 5175617.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_db4f470c9b9843f5b80bdf4dacc8d78e", + "style": "IPY_MODEL_7857e0add219426cb43f38afbbd5ece7", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 5175617.0 + } + }, + "42b5c22246144f3593050fddee5e8cfe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2d444e1e91f34b079a2ca7323b81419e": { + "45b7fce55d75478eab9caed84e758404": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3507,7 +3677,7 @@ "text_color": null } }, - "2d593f06e2744a139b86109333ac680e": { + "48458f9623b5421e9560f6410eae765b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3560,33 +3730,23 @@ "width": null } }, - "2dbbafaa6de24d2c8097777c0ce0cedd": { + "491162ff91a84d92a9d7ab33304f065e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9f6288367f9d417aaffa47df9969c4f0", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_42bb64a8a45f4caf86579067ce2bed00", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "30f188af82bb4a89acd46b04b749efb4": { + "4aa5bfc0d0a040a492c8c44b45a4f002": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3639,7 +3799,46 @@ "width": null } }, - "31f776ccde32438c982b8c5eb8aa8f51": { + "4b1f7637d5b642559b4d50d332910e95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4bb82979c2ae4a408eed104709b23300": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d09c14fbd33f48fab5b2c188e4371d96", + "placeholder": "​", + "style": "IPY_MODEL_8c9f4be772024182a41b2af3218da1f1", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 292559.50 examples/s]" + } + }, + "4df4a26413bf48918382798dd1919c57": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3692,7 +3891,69 @@ "width": null } }, - "38eb0ac1298f486f95a21f978928b66e": { + "4e1d2eae5b6d4f79a4c1bba714e65cbe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_371aac79893049bfaf6444a35b41bab0", + "placeholder": "​", + "style": "IPY_MODEL_393565c9efe7468987a446b4158c152c", + "tabbable": null, + "tooltip": null, + "value": " 5.18M/5.18M [00:00<00:00, 59.9MB/s]" + } + }, + "4eae78723d464e59830f20282cdee04d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f8e0c482350e4e46a32bbde1c9e980e6", + "placeholder": "​", + "style": "IPY_MODEL_90ab45d128604edba94a54957bc3e270", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "4f8f4f49ca8c46bb84a15dfb7bcd172d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "505d77230204473499ad7008892a79f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3745,7 +4006,7 @@ "width": null } }, - "3d101be52ce14aadb4856964662938b1": { + "52e0af193e924794884f753e1600bb23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3763,7 +4024,7 @@ "text_color": null } }, - "3d72d8ee572f448b8249c932e48082e8": { + "54bcdb7f12f24503b76bdcbf116d057a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3816,7 +4077,7 @@ "width": null } }, - "3e6508b5d88f4973b44bf251c0313298": { + "56095b38293544ee9f90fd6ee45b8a94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3834,7 +4095,7 @@ "text_color": null } }, - "418b3e15cee0433aa8bb16c916fbbcf8": { + "56ac8091ed3641fa829a79124b46eaad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3852,23 +4113,7 @@ "text_color": null } }, - "42bb64a8a45f4caf86579067ce2bed00": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "42bf693cc44f43e2abd5c517e5163435": { + "5723bf69e46942f498e32da9a3dd3fc1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3921,51 +4166,39 @@ "width": null } }, - "43a93f0156884db8a84e2f918cfd5d71": { + "5a8ccc0accc946e9bc1637ae60bc7480": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "43b90f2f7651473f93cf3eab0e3fd917": { + "601636fdba5843d7bd721fe76a1cce68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d3355770450248a08bff39fb61a614a8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9816a805a82c4843aedfe687ac374d00", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "45268ef1afff4ca887ef109a99e1a9a1": { + "619df88e51a944258d9a3ceaf51eae53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4018,25 +4251,60 @@ "width": null } }, - "458816ed52744769b2b84df8905f7715": { - "model_module": "@jupyter-widgets/controls", + "63c943ca68c8450d990c31b1e0ef9499": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "463fd38839db4af2a6590fc0d2b58f1b": { + "64d3b379a19c41828c302b87c1afa084": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4089,53 +4357,49 @@ "width": null } }, - "4d5400c178b2452f93c3c4db3be14645": { + "6be7155a95064b8ead8cabaa080728d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7801173fbaa34c7ba674853135b717e5", - "placeholder": "​", - "style": "IPY_MODEL_ee00a95d3bba4f2ab806c55e6e2c96fb", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 277374.03 examples/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4e7070c9105a4817bb9d9016918c3463": { + "6e17a3a50e964613a33a6674e161f323": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8d096aa2eff947edb5b63ada7f584e86", - "placeholder": "​", - "style": "IPY_MODEL_9dbbec5ae2704d49a9756704ffa719f3", + "layout": "IPY_MODEL_219c7da2fbf24297bb4de9f2d771db03", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_84fb447a02074a4e9de4c26bd02f0959", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:52<00:00, 1196.71it/s]" + "value": 60000.0 } }, - "50191cea4e5948a0a8d8cff6556b9052": { + "70dca85fc0954abfbde7b05f5af86a99": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4188,30 +4452,59 @@ "width": null } }, - "5106186137a048c680b7b513857f6ecf": { + "7107cc07adf949efbcfb280f2a83658e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_af741f4b24634691a96060831f6ec867", - "placeholder": "​", - "style": "IPY_MODEL_458816ed52744769b2b84df8905f7715", + "layout": "IPY_MODEL_d641867a427a424d80d6ef33aa2793b5", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9ef207487dd241b1bd3bcd880a671c36", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 60000.0 + } + }, + "715b6cc0d7294815bdab200b5e59390d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_daf21dacf9564312abb8c11ae5b51e24", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_601636fdba5843d7bd721fe76a1cce68", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "5484aa5928a246acbd7729d54589be9f": { + "718c89c212e149f5be245aed4a5d0fcc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4264,25 +4557,60 @@ "width": null } }, - "54a8ecc1e2ec4219b4869405eca3a552": { - "model_module": "@jupyter-widgets/controls", + "753b186d3514428d988c96c858139cd3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "58b19016e5454a8fb31a421f7b83f3b8": { + "7596686691ac4d5b8d2b9a5a14eaa72c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4335,98 +4663,70 @@ "width": null } }, - "5a6dba14c90846e1a998f66757bdbbb9": { + "76382007e18a47aca7267c9a5b04aace": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5484aa5928a246acbd7729d54589be9f", - "placeholder": "​", - "style": "IPY_MODEL_bd36b5a042cb47da963fa6724698d535", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0a5c08c87fd74370a40f9df2784c31cf", + "IPY_MODEL_9c8ea3748d024c26b83404fcd96fec89", + "IPY_MODEL_c0a758a11fa6476c8c95244187655195" + ], + "layout": "IPY_MODEL_5723bf69e46942f498e32da9a3dd3fc1", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 56.78it/s]" + "tooltip": null } }, - "5b700a72a8d146b8ab01511afa0019c3": { + "76f051bff001477da4e9f17f8b2dc2de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0e674f7d5aaf4ceb80159d02d496e19e", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2478e088e18843408c6b0eb7b8546aeb", + "layout": "IPY_MODEL_753b186d3514428d988c96c858139cd3", + "placeholder": "​", + "style": "IPY_MODEL_8d136d04879b45188891e3a38ce54d28", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "Map (num_proc=4): 100%" } }, - "5cc9e1f7b9a7467aa2530eb23b8b1def": { + "77cc6a8c7e7b4bb7942c7cfef39c1df1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5dd4ac73beaa4c909b6d006c9b6b289f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bc10d0329fcb483b9d433b104377cb26", - "IPY_MODEL_d242e7b75b9448e1b0422ace1b943120", - "IPY_MODEL_797702b1a2084c91aa677095d5780e70" - ], - "layout": "IPY_MODEL_58b19016e5454a8fb31a421f7b83f3b8", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "5fb6cdc588c2446b996e24faff04c97f": { + "77d51a2c04ef4528a4467218c176e4d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4479,43 +4779,23 @@ "width": null } }, - "6110fa747dd54d5f89ec29500fd72aaf": { + "7857e0add219426cb43f38afbbd5ece7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6123d04fa3694205a1454dbace9e784e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6154ce50b4d24586bad16243defb53fb": { + "79c168498edd463b99d3a6ec79e84817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4530,39 +4810,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_797b7cb9a56b45fd8ee145c617f0767a", + "layout": "IPY_MODEL_4aa5bfc0d0a040a492c8c44b45a4f002", "placeholder": "​", - "style": "IPY_MODEL_a34a00b5352e45e9b8ca12eff5edf1a5", + "style": "IPY_MODEL_cbbc3ceb56a04a3a8eb12f870bd1d5b7", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "61ca028bd561486caf5fa42305aa6d4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_04a4622eebaa4c72abf4e42992b7bc3e", - "IPY_MODEL_74343f0f79f541caa4643df7b5d0963d", - "IPY_MODEL_adb4a6af384b4827babeb1fa43dfb372" - ], - "layout": "IPY_MODEL_a8153583075f46ab9668618c698af2d5", - "tabbable": null, - "tooltip": null + "value": " 30.9M/30.9M [00:00<00:00, 56.7MB/s]" } }, - "62c50c83daaa40ce8b1620c454b036b7": { + "7a3ae1e0c30046488167ff62f51528a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4578,7 +4834,7 @@ "description_width": "" } }, - "63397a47d992477aa92ce4d5947bafe4": { + "7a55a20962f1451a94e65c34759a6292": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4596,7 +4852,7 @@ "text_color": null } }, - "6499b7dd8d33405aaa3f09d7b7a7bce4": { + "7fabd2180e02467eab302134cdda6a22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4611,15 +4867,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1749f9df3cef4d239a6382150390e397", + "layout": "IPY_MODEL_20e290f5112c43a8b482d6463f47f3b5", "placeholder": "​", - "style": "IPY_MODEL_79afd08413b84f31a29d1c321a808aa9", + "style": "IPY_MODEL_e2fced5fbede49a7963e74957439c79b", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 593.09it/s]" + "value": "100%" + } + }, + "81db87069c784a348ff7dba107c76ff5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "67ba749bcc1b4d0db5e9bb466f9bc170": { + "8330cd0f1c144977bc9c4c3cd6822d48": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4672,25 +4946,7 @@ "width": null } }, - "69993e265db24fdf9705ddc0ee02731b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a35e6318f964dc4ab7a20d799947b69": { + "8488a9eb980c40409790c04ced5e8fbe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4743,7 +4999,7 @@ "width": null } }, - "6b02c15b697e4d74a7c99110f6fcf1c5": { + "84fb447a02074a4e9de4c26bd02f0959": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4759,60 +5015,33 @@ "description_width": "" } }, - "6cef0a862e114efba48548ce18db154a": { - "model_module": "@jupyter-widgets/base", + "85f859769fca4e72bb11b80054d8d0b6": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1d337557f091475698f66056b81ca3b4", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6be7155a95064b8ead8cabaa080728d6", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "6d5c2be4c432491d81a89baf44b08004": { + "86336bb5fbd84f01a5c5414bd74c55b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4827,15 +5056,62 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e4cfe24ac1a447f7b502021e027a0cdc", + "layout": "IPY_MODEL_8488a9eb980c40409790c04ced5e8fbe", "placeholder": "​", - "style": "IPY_MODEL_54a8ecc1e2ec4219b4869405eca3a552", + "style": "IPY_MODEL_09c8a33d5a37436aaf80890e2dbdbd2d", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 9.02k/9.02k [00:00<00:00, 1.13MB/s]" + } + }, + "8778a38129674baf9d199b4cd86f6d1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0c5e4436871490f98585ecec5faab2c", + "IPY_MODEL_37e39b6de36c4357b0d6983fbe95a3e3", + "IPY_MODEL_ef3bc3adfac84850b36e1ad9d29a549f" + ], + "layout": "IPY_MODEL_d9f9346ba60847159332dfb8e4c3c2f5", + "tabbable": null, + "tooltip": null + } + }, + "8910f3945abe42a0a06a1f3608877e2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0bf27f023e574370a39306b2c3418332", + "placeholder": "​", + "style": "IPY_MODEL_d9685d97720b470daa5a625db279b692", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "6f11c86a70a04282897f55898aaabe83": { + "8981f4f16c9c417d9fdecd16f0a56a0f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4888,49 +5164,30 @@ "width": null } }, - "6f18d47cd6304ba08a2605208e81ff33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "715deece975742d5bc13cc8043611355": { + "8ae92d8f86804827a70d65e54d98ae77": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fa296d48137e455ba1b6e16835562e86", - "IPY_MODEL_94b92ca768bd4a3aa044b748b216dcb1", - "IPY_MODEL_7fe5e48df24848bcbc6fcb0751af666f" - ], - "layout": "IPY_MODEL_463fd38839db4af2a6590fc0d2b58f1b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_df152487ab414b7d8b41845040925a04", + "placeholder": "​", + "style": "IPY_MODEL_2e7759f994a045b1abb1319ea20498ec", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 250463.03 examples/s]" } }, - "73a65bf59afc46ab9dff2402b2ef3c24": { + "8b8972ed53704697ab98ffe40923d63d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4945,41 +5202,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc699b02b18c4b3785d9ed69a22992c9", + "layout": "IPY_MODEL_ba2ef55082fb4b0db150edc1be2515db", "placeholder": "​", - "style": "IPY_MODEL_43a93f0156884db8a84e2f918cfd5d71", + "style": "IPY_MODEL_a8bec5146130437298792145c19a00a4", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading readme: 100%" } }, - "74343f0f79f541caa4643df7b5d0963d": { + "8c9f4be772024182a41b2af3218da1f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0e0ea832bcf44e08af9f72ccaf14856d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_86b19062b8ed4e9f85f4fec80c21a6c0", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "74b2d7314b1e40b2a9703867b135b73b": { + "8ceb4c89d7664f829bce7502ac66797c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5032,30 +5281,25 @@ "width": null } }, - "75f54b54d89e4b44983d92b27c1c23fb": { + "8d136d04879b45188891e3a38ce54d28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_67ba749bcc1b4d0db5e9bb466f9bc170", - "placeholder": "​", - "style": "IPY_MODEL_418b3e15cee0433aa8bb16c916fbbcf8", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7801173fbaa34c7ba674853135b717e5": { + "8da89fbb23314b139d116450a90c0d97": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5108,7 +5352,7 @@ "width": null } }, - "789eeb33f7e54e4993cc9be47c0a4654": { + "8def36300cc844edaafc5b7adbc3ad82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5161,30 +5405,51 @@ "width": null } }, - "797702b1a2084c91aa677095d5780e70": { + "90ab45d128604edba94a54957bc3e270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6a35e6318f964dc4ab7a20d799947b69", - "placeholder": "​", - "style": "IPY_MODEL_a67c3cc29a524e599f6f027576048e77", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "917c8d57e95d4c208c833752993241e4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f60c1de2cbbe4b82a37fa768d46b9f53", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cf172221f0de40cab7b1273920e9353b", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.82it/s]" + "value": 40.0 } }, - "797b7cb9a56b45fd8ee145c617f0767a": { + "9454a9f21f3c4cdbb2eb61e8efb6f21b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5237,25 +5502,7 @@ "width": null } }, - "79afd08413b84f31a29d1c321a808aa9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7a9d8dacb06d469da61f18473ae6c811": { + "978a7bfcc2d54d65b60c2cf37d27a0be": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5308,77 +5555,49 @@ "width": null } }, - "7df5d87a698348adaf910bad51eb5257": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_6154ce50b4d24586bad16243defb53fb", - "IPY_MODEL_bbe5c8e427aa41f9804c969d70ad8c2f", - "IPY_MODEL_e2e1d706cc454dba83b835ddf7f61a70" - ], - "layout": "IPY_MODEL_30f188af82bb4a89acd46b04b749efb4", - "tabbable": null, - "tooltip": null - } - }, - "7ec27b0b226242f7a154b44efdf5281c": { + "99aea05304144af5b5f4bd6dceb95dd9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31f776ccde32438c982b8c5eb8aa8f51", - "placeholder": "​", - "style": "IPY_MODEL_6110fa747dd54d5f89ec29500fd72aaf", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7fe5e48df24848bcbc6fcb0751af666f": { + "99d28f10e86b47028f586cf991c46491": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_db9aedfbb0164f47a695f5f7312785a6", - "placeholder": "​", - "style": "IPY_MODEL_3e6508b5d88f4973b44bf251c0313298", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8910f3945abe42a0a06a1f3608877e2e", + "IPY_MODEL_3f6adcfb510b44d087c66406feb108c1", + "IPY_MODEL_4e1d2eae5b6d4f79a4c1bba714e65cbe" + ], + "layout": "IPY_MODEL_8ceb4c89d7664f829bce7502ac66797c", "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 43.9MB/s]" + "tooltip": null } }, - "8048b30a8d20480286136da950c4ae4f": { + "9ae89310be0a4a419eb65241c7fa071c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5393,48 +5612,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b9f9a045bcb549b3ab2405b239007979", - "IPY_MODEL_2dbbafaa6de24d2c8097777c0ce0cedd", - "IPY_MODEL_4d5400c178b2452f93c3c4db3be14645" + "IPY_MODEL_254364431d4949dc96d01bcc0deb6b9e", + "IPY_MODEL_715b6cc0d7294815bdab200b5e59390d", + "IPY_MODEL_4bb82979c2ae4a408eed104709b23300" ], - "layout": "IPY_MODEL_6cef0a862e114efba48548ce18db154a", + "layout": "IPY_MODEL_14e275ef5cc646cc84b0bbbf516f0c2d", "tabbable": null, "tooltip": null } }, - "8189d1fe2cc04c4799937a77b58593a5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "83d6886bd83146389ced65a95fa81e9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "848dbf466ca84edf8a6c9a3db7b6dca2": { + "9c4df97cda374113b2e95d6efc39384e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5449,31 +5636,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e19ec970fdd44afd898de49a0af29399", + "layout": "IPY_MODEL_bd67d99ce67a4eb9b0bccafa0b26ae1c", "placeholder": "​", - "style": "IPY_MODEL_6f18d47cd6304ba08a2605208e81ff33", + "style": "IPY_MODEL_45b7fce55d75478eab9caed84e758404", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 4643.60 examples/s]" - } - }, - "86b19062b8ed4e9f85f4fec80c21a6c0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "100%" } }, - "86d4ac36f45b4dc4aafe3fddfa21728c": { + "9c8ea3748d024c26b83404fcd96fec89": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5489,97 +5660,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f19654c731349b586439bffb6b50667", - "max": 9015.0, + "layout": "IPY_MODEL_8def36300cc844edaafc5b7adbc3ad82", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8189d1fe2cc04c4799937a77b58593a5", - "tabbable": null, - "tooltip": null, - "value": 9015.0 - } - }, - "87ac3c376bc942a08e4722d392db6cc2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "87f6f6d23d364392a6637137b76bcdf8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2154009565de4b2d836aa460d81a343d", - "placeholder": "​", - "style": "IPY_MODEL_69993e265db24fdf9705ddc0ee02731b", - "tabbable": null, - "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 25.5MB/s]" - } - }, - "894dfcbdd03942e1918c15697aa075b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_bc0cb764df054f67bffe9a91424eb9ad", - "placeholder": "​", - "style": "IPY_MODEL_3d101be52ce14aadb4856964662938b1", + "style": "IPY_MODEL_0acfb7df45a94895b660e99678f38ab9", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 58.58it/s]" - } - }, - "8c27a013ea9c424986fbeecf77584f51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 40.0 } }, - "8d096aa2eff947edb5b63ada7f584e86": { + "9d3367b9aea243a6accea1e6c04456b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5632,30 +5723,7 @@ "width": null } }, - "8df2eb2ad9b8450794bc2a19cd4e4607": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a4265a3a4bfa4ae7b72143c7882d22da", - "placeholder": "​", - "style": "IPY_MODEL_9d69f92933354985bb292e842e6d91ec", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "94b92ca768bd4a3aa044b748b216dcb1": { + "9eb9da71209b4d15a3325f9f6eeed1cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5671,35 +5739,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_00e20cac09fa43938aab5eb1c857b06b", - "max": 30931277.0, + "layout": "IPY_MODEL_f65f920f9b6041d4b3c4c0564004f163", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_83d6886bd83146389ced65a95fa81e9f", + "style": "IPY_MODEL_4f8f4f49ca8c46bb84a15dfb7bcd172d", "tabbable": null, "tooltip": null, - "value": 30931277.0 - } - }, - "9667199d84da4850ab42238ebe7e58c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 40.0 } }, - "9816a805a82c4843aedfe687ac374d00": { + "9ef207487dd241b1bd3bcd880a671c36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5715,43 +5765,59 @@ "description_width": "" } }, - "9d69f92933354985bb292e842e6d91ec": { + "a2ecd98489b446bf8439f3bae62184e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_64d3b379a19c41828c302b87c1afa084", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7a3ae1e0c30046488167ff62f51528a6", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "9dbbec5ae2704d49a9756704ffa719f3": { + "a72c114a89ef4f7d9ce76d04bbf5367f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_70dca85fc0954abfbde7b05f5af86a99", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4b1f7637d5b642559b4d50d332910e95", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 } }, - "9f6288367f9d417aaffa47df9969c4f0": { + "a7518b8b17ed4c6385d46a129f23f288": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5804,7 +5870,48 @@ "width": null } }, - "a0e6ab9c19e34b8e9bbe62ee43bd8c35": { + "a8bec5146130437298792145c19a00a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ac01e37df85149fc865cadfec9d2e474": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4df4a26413bf48918382798dd1919c57", + "placeholder": "​", + "style": "IPY_MODEL_1115843994674897843ad092eeab2fa8", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "b2b42c0463e442998e7b13eec51680b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5819,60 +5926,86 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_73a65bf59afc46ab9dff2402b2ef3c24", - "IPY_MODEL_dcb5d9d40e7d44a9b855e55c3ed7dfec", - "IPY_MODEL_4e7070c9105a4817bb9d9016918c3463" + "IPY_MODEL_4eae78723d464e59830f20282cdee04d", + "IPY_MODEL_917c8d57e95d4c208c833752993241e4", + "IPY_MODEL_34f5d94baac84b1398d48e84b152e55b" ], - "layout": "IPY_MODEL_7a9d8dacb06d469da61f18473ae6c811", + "layout": "IPY_MODEL_29f85ef43a4f46ceb22293713c3f0ac8", "tabbable": null, "tooltip": null } }, - "a34a00b5352e45e9b8ca12eff5edf1a5": { + "b4496a7f2cc94ab5a8bbabdb97cae403": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b8e8fa8bae29473281fb99cedc42351a", + "IPY_MODEL_c1ce49a2b0124b159c7b28f909672525", + "IPY_MODEL_ef9aef7309604ec48464d4d278664b56" + ], + "layout": "IPY_MODEL_48458f9623b5421e9560f6410eae765b", + "tabbable": null, + "tooltip": null } }, - "a3bccde2847d4c49848c5d7d70ffb860": { + "b52a1cb8ace341e1903a322bf99420e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0479111a5d804c6880145a46ec56cb0f", + "placeholder": "​", + "style": "IPY_MODEL_edb3fbc51a0e4a1996e59e5d1b80e3b9", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.60it/s]" + } + }, + "b8e8fa8bae29473281fb99cedc42351a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c9a54ddf74b443e89e4eaf4f51c38c8", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6b02c15b697e4d74a7c99110f6fcf1c5", + "layout": "IPY_MODEL_0b6b0041576b42348ad60c246694ed48", + "placeholder": "​", + "style": "IPY_MODEL_42b5c22246144f3593050fddee5e8cfe", "tabbable": null, "tooltip": null, - "value": 5175617.0 + "value": "100%" } }, - "a4265a3a4bfa4ae7b72143c7882d22da": { + "ba2ef55082fb4b0db150edc1be2515db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5925,7 +6058,7 @@ "width": null } }, - "a51da1996471487ea2f6abd6bb0cacba": { + "bc697d85528e4f619a4a98e42fe7b25e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5978,25 +6111,7 @@ "width": null } }, - "a67c3cc29a524e599f6f027576048e77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a8153583075f46ab9668618c698af2d5": { + "bd67d99ce67a4eb9b0bccafa0b26ae1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6049,108 +6164,102 @@ "width": null } }, - "a8d79e5a11af4eee941f00df247ae2ee": { - "model_module": "@jupyter-widgets/base", + "c0a758a11fa6476c8c95244187655195": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8330cd0f1c144977bc9c4c3cd6822d48", + "placeholder": "​", + "style": "IPY_MODEL_db53cf637add43ccb08c3d7fdaa1c7d8", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 55.89it/s]" } }, - "aa732b0a4d7a4e5a9c11bdac5ddcd235": { + "c0c5e4436871490f98585ecec5faab2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f731b832c2c14263ba08413849b9491d", - "IPY_MODEL_b5c0cbca89fa4834a72585d4fb95679e", - "IPY_MODEL_848dbf466ca84edf8a6c9a3db7b6dca2" - ], - "layout": "IPY_MODEL_0cb7926f64ca4262a1d8e8a49dd0d6d3", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_978a7bfcc2d54d65b60c2cf37d27a0be", + "placeholder": "​", + "style": "IPY_MODEL_c43a8c8bbbf845a7becdaddfd3f6a2d3", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "ab03cadc8a244250837477471abfd52f": { + "c13bcf0a616e4cc9be2abb900464ebfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7ec27b0b226242f7a154b44efdf5281c", - "IPY_MODEL_2918809b0c4a48c9a96a0722b9044737", - "IPY_MODEL_c18a50eaa6154b71885754ca3b1e79e1" - ], - "layout": "IPY_MODEL_1160fc45ea02442ebc3edd8f098d88ad", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d3367b9aea243a6accea1e6c04456b1", + "placeholder": "​", + "style": "IPY_MODEL_99aea05304144af5b5f4bd6dceb95dd9", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" + } + }, + "c1ce49a2b0124b159c7b28f909672525": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_54bcdb7f12f24503b76bdcbf116d057a", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5a8ccc0accc946e9bc1637ae60bc7480", + "tabbable": null, + "tooltip": null, + "value": 40.0 } }, - "adb4a6af384b4827babeb1fa43dfb372": { + "c3960fa2e10d49999248fafed551b709": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6165,31 +6274,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_42bf693cc44f43e2abd5c517e5163435", + "layout": "IPY_MODEL_8981f4f16c9c417d9fdecd16f0a56a0f", "placeholder": "​", - "style": "IPY_MODEL_e1dc295bc9aa4b078179cd66d9cd0625", + "style": "IPY_MODEL_f567c109f5794c22ab3d5735d59fb599", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.05it/s]" + "value": " 60000/60000 [00:11<00:00, 5742.07 examples/s]" } }, - "ae43f833e78c43e0acade5c471716764": { + "c43a8c8bbbf845a7becdaddfd3f6a2d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "af741f4b24634691a96060831f6ec867": { + "c858e73c35474718898e8f09c167d2cf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6242,56 +6353,7 @@ "width": null } }, - "b5c0cbca89fa4834a72585d4fb95679e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f11c86a70a04282897f55898aaabe83", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ae43f833e78c43e0acade5c471716764", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "b9f9a045bcb549b3ab2405b239007979": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_24cc3a6c8edd440da9947ad5599bad6e", - "placeholder": "​", - "style": "IPY_MODEL_2d444e1e91f34b079a2ca7323b81419e", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "bb685ca1a8e74f4abfc418ee4df7cdae": { + "c8df1d76b2a243d0aed92777fe211a4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6306,42 +6368,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8df2eb2ad9b8450794bc2a19cd4e4607", - "IPY_MODEL_a3bccde2847d4c49848c5d7d70ffb860", - "IPY_MODEL_87f6f6d23d364392a6637137b76bcdf8" + "IPY_MODEL_7fabd2180e02467eab302134cdda6a22", + "IPY_MODEL_9eb9da71209b4d15a3325f9f6eeed1cc", + "IPY_MODEL_b52a1cb8ace341e1903a322bf99420e4" ], - "layout": "IPY_MODEL_789eeb33f7e54e4993cc9be47c0a4654", + "layout": "IPY_MODEL_505d77230204473499ad7008892a79f2", "tabbable": null, "tooltip": null } }, - "bbe5c8e427aa41f9804c969d70ad8c2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1ce743abad7c4285b5459c8f9a83727f", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8c27a013ea9c424986fbeecf77584f51", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "bc0cb764df054f67bffe9a91424eb9ad": { + "c9a1042258b54075911ab84ac618a35d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6394,30 +6430,7 @@ "width": null } }, - "bc10d0329fcb483b9d433b104377cb26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c28da32949eb444c8b169f95d073f019", - "placeholder": "​", - "style": "IPY_MODEL_5cc9e1f7b9a7467aa2530eb23b8b1def", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "bd36b5a042cb47da963fa6724698d535": { + "cbbc3ceb56a04a3a8eb12f870bd1d5b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6435,30 +6448,49 @@ "text_color": null } }, - "c18a50eaa6154b71885754ca3b1e79e1": { + "cd62a01a9bf144c1916caa2be0fa0e48": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38eb0ac1298f486f95a21f978928b66e", - "placeholder": "​", - "style": "IPY_MODEL_6123d04fa3694205a1454dbace9e784e", + "layout": "IPY_MODEL_c858e73c35474718898e8f09c167d2cf", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_491162ff91a84d92a9d7ab33304f065e", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.75it/s]" + "value": 40.0 + } + }, + "cf172221f0de40cab7b1273920e9353b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c1c1d785f09148e88cc07abc9a79d399": { + "d09c14fbd33f48fab5b2c188e4371d96": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6511,23 +6543,49 @@ "width": null } }, - "c1c5ff485c484df9b2328967bbd2b370": { + "d19a5e1c9c5f401fb90b639fdd9f1b70": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76f051bff001477da4e9f17f8b2dc2de", + "IPY_MODEL_7107cc07adf949efbcfb280f2a83658e", + "IPY_MODEL_c3960fa2e10d49999248fafed551b709" + ], + "layout": "IPY_MODEL_77d51a2c04ef4528a4467218c176e4d3", + "tabbable": null, + "tooltip": null + } + }, + "d1f9454550954236a684ac26e799e32a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c28da32949eb444c8b169f95d073f019": { + "d4e950ea713443a8b6b8b2188ad2c990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6580,7 +6638,7 @@ "width": null } }, - "c2c049fd4723414391215a3a86586ad1": { + "d641867a427a424d80d6ef33aa2793b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6633,7 +6691,33 @@ "width": null } }, - "c5b087dedb3b4a81b16234b32f0ad104": { + "d716dfc4f9c0495cbd9e9ef255677f6a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_619df88e51a944258d9a3ceaf51eae53", + "max": 9015.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e919342583274f1e9962132ec538ec11", + "tabbable": null, + "tooltip": null, + "value": 9015.0 + } + }, + "d7c83ca12aeb4f998036ded204cfba8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6651,7 +6735,7 @@ "text_color": null } }, - "c87364d1f6104253b1d3b9fc6d57747c": { + "d9685d97720b470daa5a625db279b692": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6669,23 +6753,60 @@ "text_color": null } }, - "cb654bfede0d4df6953f8b10f45ccf30": { - "model_module": "@jupyter-widgets/controls", + "d9f9346ba60847159332dfb8e4c3c2f5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cd61e02259094a979ac8fdee8d778a4a": { + "daf21dacf9564312abb8c11ae5b51e24": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6738,33 +6859,49 @@ "width": null } }, - "d242e7b75b9448e1b0422ace1b943120": { + "db53cf637add43ccb08c3d7fdaa1c7d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dccb84fb19484d4980a7659b3d7a2270": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3d72d8ee572f448b8249c932e48082e8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1ebda1f8d81d496d83330d03e329452f", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9c4df97cda374113b2e95d6efc39384e", + "IPY_MODEL_6e17a3a50e964613a33a6674e161f323", + "IPY_MODEL_f93749d8d8e641b2b845a8799ff82b98" + ], + "layout": "IPY_MODEL_2b4f41cafdf3495dacbdd9b5dfbaf939", "tabbable": null, - "tooltip": null, - "value": 40.0 + "tooltip": null } }, - "d2d22c2514a54fcb9f9f90e9a4e24714": { + "df152487ab414b7d8b41845040925a04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6817,7 +6954,59 @@ "width": null } }, - "d3355770450248a08bff39fb61a614a8": { + "e2fced5fbede49a7963e74957439c79b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e919342583274f1e9962132ec538ec11": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "edb3fbc51a0e4a1996e59e5d1b80e3b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ef3572a1a6c34bd0a4f31259c8f1cfe7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6870,49 +7059,112 @@ "width": null } }, - "d4737bea4127496e856295be41444231": { + "ef3bc3adfac84850b36e1ad9d29a549f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fd09424d8894431994cfd7df013e4c02", + "placeholder": "​", + "style": "IPY_MODEL_26681fd30ba84b94b17d47d8bcbad73f", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 598.29it/s]" + } + }, + "ef5677ac2a8f4ee5afcee878b9f6bf16": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1d88ef5e245a4f9fa762fcd65a016d2a", + "placeholder": "​", + "style": "IPY_MODEL_7a55a20962f1451a94e65c34759a6292", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "ef8e379e77eb41a1b387d30a2523a889": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ef9aef7309604ec48464d4d278664b56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e47e28322ab8479c91ddf77409dbfd8b", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cb654bfede0d4df6953f8b10f45ccf30", + "layout": "IPY_MODEL_bc697d85528e4f619a4a98e42fe7b25e", + "placeholder": "​", + "style": "IPY_MODEL_f112ee39acfc438babb5498d3769b181", "tabbable": null, "tooltip": null, - "value": 2.0 + "value": " 40/40 [00:00<00:00, 62.00it/s]" } }, - "db4f470c9b9843f5b80bdf4dacc8d78e": { + "f112ee39acfc438babb5498d3769b181": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "db9aedfbb0164f47a695f5f7312785a6": { + "f36d712d6ed74e5b9a86a346ca936135": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6965,86 +7217,31 @@ "width": null } }, - "dcb5d9d40e7d44a9b855e55c3ed7dfec": { + "f546543a4b994e7c947e3ddab9ef35fd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_20586be37d7340fab39d12a261037368", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_62c50c83daaa40ce8b1620c454b036b7", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8b8972ed53704697ab98ffe40923d63d", + "IPY_MODEL_d716dfc4f9c0495cbd9e9ef255677f6a", + "IPY_MODEL_86336bb5fbd84f01a5c5414bd74c55b1" + ], + "layout": "IPY_MODEL_a7518b8b17ed4c6385d46a129f23f288", "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "e19ec970fdd44afd898de49a0af29399": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null } }, - "e1dc295bc9aa4b078179cd66d9cd0625": { + "f567c109f5794c22ab3d5735d59fb599": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7062,30 +7259,7 @@ "text_color": null } }, - "e2e1d706cc454dba83b835ddf7f61a70": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ebfb29db8ac148e9af56fd7ffae3775b", - "placeholder": "​", - "style": "IPY_MODEL_87ac3c376bc942a08e4722d392db6cc2", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 248148.43 examples/s]" - } - }, - "e47e28322ab8479c91ddf77409dbfd8b": { + "f60c1de2cbbe4b82a37fa768d46b9f53": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7138,7 +7312,7 @@ "width": null } }, - "e4cfe24ac1a447f7b502021e027a0cdc": { + "f65f920f9b6041d4b3c4c0564004f163": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7191,7 +7365,7 @@ "width": null } }, - "e6e351618590464cad5b6b2888b5855b": { + "f8e0c482350e4e46a32bbde1c9e980e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7244,31 +7418,7 @@ "width": null } }, - "e8b71b72c1fe42969576f0679a3429ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_75f54b54d89e4b44983d92b27c1c23fb", - "IPY_MODEL_d4737bea4127496e856295be41444231", - "IPY_MODEL_6499b7dd8d33405aaa3f09d7b7a7bce4" - ], - "layout": "IPY_MODEL_74b2d7314b1e40b2a9703867b135b73b", - "tabbable": null, - "tooltip": null - } - }, - "eb3ac7f719da4343b1f45e07f09a75f2": { + "f90499b00cc0489c9b7f21169ba0b4bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7283,16 +7433,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6d5c2be4c432491d81a89baf44b08004", - "IPY_MODEL_43b90f2f7651473f93cf3eab0e3fd917", - "IPY_MODEL_28b0e5e799994ca8809bbb96b5c3df2a" + "IPY_MODEL_ef5677ac2a8f4ee5afcee878b9f6bf16", + "IPY_MODEL_a72c114a89ef4f7d9ce76d04bbf5367f", + "IPY_MODEL_79c168498edd463b99d3a6ec79e84817" ], - "layout": "IPY_MODEL_5fb6cdc588c2446b996e24faff04c97f", + "layout": "IPY_MODEL_718c89c212e149f5be245aed4a5d0fcc", "tabbable": null, "tooltip": null } }, - "ebfb29db8ac148e9af56fd7ffae3775b": { + "f91049c8fe9848ccb88784d036c3aab3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7345,157 +7495,7 @@ "width": null } }, - "ee00a95d3bba4f2ab806c55e6e2c96fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ee16116dbbae4246a4933981a1e3806b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c2c049fd4723414391215a3a86586ad1", - "placeholder": "​", - "style": "IPY_MODEL_c87364d1f6104253b1d3b9fc6d57747c", - "tabbable": null, - "tooltip": null, - "value": " 9.02k/9.02k [00:00<00:00, 1.15MB/s]" - } - }, - "eecae1184b8b4bcd9ec5d73df5c74db8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "eeef9fa40c3042329541b46e63c7150a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0dff836f9df24429807dadf54be9a70a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c1c5ff485c484df9b2328967bbd2b370", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "f70935fc022f4ec9952399ffa883f8c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f731b832c2c14263ba08413849b9491d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2d593f06e2744a139b86109333ac680e", - "placeholder": "​", - "style": "IPY_MODEL_112e5f2e2a784cba837314af017d0914", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "f9912ba2f2c141a4892444b6f34c10b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5106186137a048c680b7b513857f6ecf", - "IPY_MODEL_eeef9fa40c3042329541b46e63c7150a", - "IPY_MODEL_5a6dba14c90846e1a998f66757bdbbb9" - ], - "layout": "IPY_MODEL_a8d79e5a11af4eee941f00df247ae2ee", - "tabbable": null, - "tooltip": null - } - }, - "fa296d48137e455ba1b6e16835562e86": { + "f93749d8d8e641b2b845a8799ff82b98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7510,15 +7510,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_45268ef1afff4ca887ef109a99e1a9a1", + "layout": "IPY_MODEL_c9a1042258b54075911ab84ac618a35d", "placeholder": "​", - "style": "IPY_MODEL_9667199d84da4850ab42238ebe7e58c2", + "style": "IPY_MODEL_d7c83ca12aeb4f998036ded204cfba8e", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 60000/60000 [00:50<00:00, 1176.63it/s]" } }, - "fc699b02b18c4b3785d9ed69a22992c9": { + "fd09424d8894431994cfd7df013e4c02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7571,7 +7571,7 @@ "width": null } }, - "fc98e96da8e046238dce1b399f558f99": { + "fdd6e77412c0421895c9c80c62ddea3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -7586,11 +7586,11 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_06c30632deaa41b0b7d2ef2bd39e00dc", - "IPY_MODEL_5b700a72a8d146b8ab01511afa0019c3", - "IPY_MODEL_894dfcbdd03942e1918c15697aa075b5" + "IPY_MODEL_ac01e37df85149fc865cadfec9d2e474", + "IPY_MODEL_cd62a01a9bf144c1916caa2be0fa0e48", + "IPY_MODEL_36050e8d2e9e44a3a4ed1600bdd36831" ], - "layout": "IPY_MODEL_cd61e02259094a979ac8fdee8d778a4a", + "layout": "IPY_MODEL_0e64e21c42624612ab3f8a532e796075", "tabbable": null, "tooltip": null } diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index dc624f661..e1622782b 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:14.109304Z", - "iopub.status.busy": "2024-08-26T15:54:14.108881Z", - "iopub.status.idle": "2024-08-26T15:54:15.281952Z", - "shell.execute_reply": "2024-08-26T15:54:15.281381Z" + "iopub.execute_input": "2024-08-28T20:08:57.484968Z", + "iopub.status.busy": "2024-08-28T20:08:57.484796Z", + "iopub.status.idle": "2024-08-28T20:08:58.631433Z", + "shell.execute_reply": "2024-08-28T20:08:58.630894Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.284532Z", - "iopub.status.busy": "2024-08-26T15:54:15.284089Z", - "iopub.status.idle": "2024-08-26T15:54:15.302497Z", - "shell.execute_reply": "2024-08-26T15:54:15.301896Z" + "iopub.execute_input": "2024-08-28T20:08:58.633842Z", + "iopub.status.busy": "2024-08-28T20:08:58.633571Z", + "iopub.status.idle": "2024-08-28T20:08:58.651793Z", + "shell.execute_reply": "2024-08-28T20:08:58.651341Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.304895Z", - "iopub.status.busy": "2024-08-26T15:54:15.304508Z", - "iopub.status.idle": "2024-08-26T15:54:15.325953Z", - "shell.execute_reply": "2024-08-26T15:54:15.325390Z" + "iopub.execute_input": "2024-08-28T20:08:58.654138Z", + "iopub.status.busy": "2024-08-28T20:08:58.653629Z", + "iopub.status.idle": "2024-08-28T20:08:58.690305Z", + "shell.execute_reply": "2024-08-28T20:08:58.689852Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.328080Z", - "iopub.status.busy": "2024-08-26T15:54:15.327751Z", - "iopub.status.idle": "2024-08-26T15:54:15.331370Z", - "shell.execute_reply": "2024-08-26T15:54:15.330867Z" + "iopub.execute_input": "2024-08-28T20:08:58.692190Z", + "iopub.status.busy": "2024-08-28T20:08:58.692019Z", + "iopub.status.idle": "2024-08-28T20:08:58.695887Z", + "shell.execute_reply": "2024-08-28T20:08:58.695430Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.333595Z", - "iopub.status.busy": "2024-08-26T15:54:15.333139Z", - "iopub.status.idle": "2024-08-26T15:54:15.341092Z", - "shell.execute_reply": "2024-08-26T15:54:15.340517Z" + "iopub.execute_input": "2024-08-28T20:08:58.698037Z", + "iopub.status.busy": "2024-08-28T20:08:58.697703Z", + "iopub.status.idle": "2024-08-28T20:08:58.704998Z", + "shell.execute_reply": "2024-08-28T20:08:58.704569Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.343311Z", - "iopub.status.busy": "2024-08-26T15:54:15.343000Z", - "iopub.status.idle": "2024-08-26T15:54:15.346105Z", - "shell.execute_reply": "2024-08-26T15:54:15.345645Z" + "iopub.execute_input": "2024-08-28T20:08:58.707067Z", + "iopub.status.busy": "2024-08-28T20:08:58.706731Z", + "iopub.status.idle": "2024-08-28T20:08:58.709330Z", + "shell.execute_reply": "2024-08-28T20:08:58.708870Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:15.348163Z", - "iopub.status.busy": "2024-08-26T15:54:15.347822Z", - "iopub.status.idle": "2024-08-26T15:54:18.449602Z", - "shell.execute_reply": "2024-08-26T15:54:18.449016Z" + "iopub.execute_input": "2024-08-28T20:08:58.711286Z", + "iopub.status.busy": "2024-08-28T20:08:58.710953Z", + "iopub.status.idle": "2024-08-28T20:09:01.878117Z", + "shell.execute_reply": "2024-08-28T20:09:01.877469Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:18.452379Z", - "iopub.status.busy": "2024-08-26T15:54:18.452168Z", - "iopub.status.idle": "2024-08-26T15:54:18.461665Z", - "shell.execute_reply": "2024-08-26T15:54:18.461066Z" + "iopub.execute_input": "2024-08-28T20:09:01.881086Z", + "iopub.status.busy": "2024-08-28T20:09:01.880632Z", + "iopub.status.idle": "2024-08-28T20:09:01.890402Z", + "shell.execute_reply": "2024-08-28T20:09:01.889852Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:18.463964Z", - "iopub.status.busy": "2024-08-26T15:54:18.463672Z", - "iopub.status.idle": "2024-08-26T15:54:20.596861Z", - "shell.execute_reply": "2024-08-26T15:54:20.596179Z" + "iopub.execute_input": "2024-08-28T20:09:01.892748Z", + "iopub.status.busy": "2024-08-28T20:09:01.892545Z", + "iopub.status.idle": "2024-08-28T20:09:03.897249Z", + "shell.execute_reply": "2024-08-28T20:09:03.896593Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.599365Z", - "iopub.status.busy": "2024-08-26T15:54:20.598980Z", - "iopub.status.idle": "2024-08-26T15:54:20.619735Z", - "shell.execute_reply": "2024-08-26T15:54:20.619219Z" + "iopub.execute_input": "2024-08-28T20:09:03.899722Z", + "iopub.status.busy": "2024-08-28T20:09:03.899310Z", + "iopub.status.idle": "2024-08-28T20:09:03.918088Z", + "shell.execute_reply": "2024-08-28T20:09:03.917623Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.621986Z", - "iopub.status.busy": "2024-08-26T15:54:20.621626Z", - "iopub.status.idle": "2024-08-26T15:54:20.629738Z", - "shell.execute_reply": "2024-08-26T15:54:20.629246Z" + "iopub.execute_input": "2024-08-28T20:09:03.920225Z", + "iopub.status.busy": "2024-08-28T20:09:03.919882Z", + "iopub.status.idle": "2024-08-28T20:09:03.927652Z", + "shell.execute_reply": "2024-08-28T20:09:03.927063Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.631922Z", - "iopub.status.busy": "2024-08-26T15:54:20.631599Z", - "iopub.status.idle": "2024-08-26T15:54:20.640869Z", - "shell.execute_reply": "2024-08-26T15:54:20.640300Z" + "iopub.execute_input": "2024-08-28T20:09:03.929691Z", + "iopub.status.busy": "2024-08-28T20:09:03.929386Z", + "iopub.status.idle": "2024-08-28T20:09:03.938398Z", + "shell.execute_reply": "2024-08-28T20:09:03.937878Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.642988Z", - "iopub.status.busy": "2024-08-26T15:54:20.642648Z", - "iopub.status.idle": "2024-08-26T15:54:20.650592Z", - "shell.execute_reply": "2024-08-26T15:54:20.650087Z" + "iopub.execute_input": "2024-08-28T20:09:03.940404Z", + "iopub.status.busy": "2024-08-28T20:09:03.940098Z", + "iopub.status.idle": "2024-08-28T20:09:03.947710Z", + "shell.execute_reply": "2024-08-28T20:09:03.947261Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.652766Z", - "iopub.status.busy": "2024-08-26T15:54:20.652433Z", - "iopub.status.idle": "2024-08-26T15:54:20.661662Z", - "shell.execute_reply": "2024-08-26T15:54:20.661085Z" + "iopub.execute_input": "2024-08-28T20:09:03.949811Z", + "iopub.status.busy": "2024-08-28T20:09:03.949417Z", + "iopub.status.idle": "2024-08-28T20:09:03.958627Z", + "shell.execute_reply": "2024-08-28T20:09:03.958084Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.663894Z", - "iopub.status.busy": "2024-08-26T15:54:20.663442Z", - "iopub.status.idle": "2024-08-26T15:54:20.671133Z", - "shell.execute_reply": "2024-08-26T15:54:20.670552Z" + "iopub.execute_input": "2024-08-28T20:09:03.960754Z", + "iopub.status.busy": "2024-08-28T20:09:03.960427Z", + "iopub.status.idle": "2024-08-28T20:09:03.967656Z", + "shell.execute_reply": "2024-08-28T20:09:03.967111Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.673323Z", - "iopub.status.busy": "2024-08-26T15:54:20.672984Z", - "iopub.status.idle": "2024-08-26T15:54:20.680708Z", - "shell.execute_reply": "2024-08-26T15:54:20.680120Z" + "iopub.execute_input": "2024-08-28T20:09:03.969647Z", + "iopub.status.busy": "2024-08-28T20:09:03.969334Z", + "iopub.status.idle": "2024-08-28T20:09:03.976478Z", + "shell.execute_reply": "2024-08-28T20:09:03.976037Z" } }, "outputs": [ @@ -1306,10 +1306,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:20.682929Z", - "iopub.status.busy": "2024-08-26T15:54:20.682566Z", - "iopub.status.idle": "2024-08-26T15:54:20.690842Z", - "shell.execute_reply": "2024-08-26T15:54:20.690326Z" + "iopub.execute_input": "2024-08-28T20:09:03.978405Z", + "iopub.status.busy": "2024-08-28T20:09:03.978234Z", + "iopub.status.idle": "2024-08-28T20:09:03.986709Z", + "shell.execute_reply": "2024-08-28T20:09:03.986282Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 76f186898..b39af0981 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin'}
+Classes: {'apple_pay_or_google_pay', 'change_pin', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'cancel_transfer', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 5d4d24b3a..a79eb7b3d 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:23.767329Z", - "iopub.status.busy": "2024-08-26T15:54:23.766904Z", - "iopub.status.idle": "2024-08-26T15:54:26.717164Z", - "shell.execute_reply": "2024-08-26T15:54:26.716517Z" + "iopub.execute_input": "2024-08-28T20:09:06.667772Z", + "iopub.status.busy": "2024-08-28T20:09:06.667589Z", + "iopub.status.idle": "2024-08-28T20:09:09.446715Z", + "shell.execute_reply": "2024-08-28T20:09:09.446202Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.720039Z", - "iopub.status.busy": "2024-08-26T15:54:26.719548Z", - "iopub.status.idle": "2024-08-26T15:54:26.722953Z", - "shell.execute_reply": "2024-08-26T15:54:26.722453Z" + "iopub.execute_input": "2024-08-28T20:09:09.449561Z", + "iopub.status.busy": "2024-08-28T20:09:09.449015Z", + "iopub.status.idle": "2024-08-28T20:09:09.452229Z", + "shell.execute_reply": "2024-08-28T20:09:09.451779Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.725073Z", - "iopub.status.busy": "2024-08-26T15:54:26.724682Z", - "iopub.status.idle": "2024-08-26T15:54:26.727880Z", - "shell.execute_reply": "2024-08-26T15:54:26.727424Z" + "iopub.execute_input": "2024-08-28T20:09:09.454188Z", + "iopub.status.busy": "2024-08-28T20:09:09.453882Z", + "iopub.status.idle": "2024-08-28T20:09:09.457040Z", + "shell.execute_reply": "2024-08-28T20:09:09.456484Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.729884Z", - "iopub.status.busy": "2024-08-26T15:54:26.729547Z", - "iopub.status.idle": "2024-08-26T15:54:26.751412Z", - "shell.execute_reply": "2024-08-26T15:54:26.750890Z" + "iopub.execute_input": "2024-08-28T20:09:09.458927Z", + "iopub.status.busy": "2024-08-28T20:09:09.458746Z", + "iopub.status.idle": "2024-08-28T20:09:09.500755Z", + "shell.execute_reply": "2024-08-28T20:09:09.500292Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.753620Z", - "iopub.status.busy": "2024-08-26T15:54:26.753261Z", - "iopub.status.idle": "2024-08-26T15:54:26.756908Z", - "shell.execute_reply": "2024-08-26T15:54:26.756385Z" + "iopub.execute_input": "2024-08-28T20:09:09.502650Z", + "iopub.status.busy": "2024-08-28T20:09:09.502470Z", + "iopub.status.idle": "2024-08-28T20:09:09.506380Z", + "shell.execute_reply": "2024-08-28T20:09:09.505920Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_about_to_expire', 'card_payment_fee_charged', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'cancel_transfer', 'getting_spare_card', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'change_pin'}\n" + "Classes: {'apple_pay_or_google_pay', 'change_pin', 'card_payment_fee_charged', 'getting_spare_card', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'cancel_transfer', 'visa_or_mastercard', 'supported_cards_and_currencies', 'card_about_to_expire'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.758907Z", - "iopub.status.busy": "2024-08-26T15:54:26.758575Z", - "iopub.status.idle": "2024-08-26T15:54:26.761810Z", - "shell.execute_reply": "2024-08-26T15:54:26.761254Z" + "iopub.execute_input": "2024-08-28T20:09:09.508323Z", + "iopub.status.busy": "2024-08-28T20:09:09.508145Z", + "iopub.status.idle": "2024-08-28T20:09:09.511367Z", + "shell.execute_reply": "2024-08-28T20:09:09.510908Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:26.763957Z", - "iopub.status.busy": "2024-08-26T15:54:26.763625Z", - "iopub.status.idle": "2024-08-26T15:54:31.044703Z", - "shell.execute_reply": "2024-08-26T15:54:31.044116Z" + "iopub.execute_input": "2024-08-28T20:09:09.513290Z", + "iopub.status.busy": "2024-08-28T20:09:09.513119Z", + "iopub.status.idle": "2024-08-28T20:09:13.327602Z", + "shell.execute_reply": "2024-08-28T20:09:13.327019Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:31.047500Z", - "iopub.status.busy": "2024-08-26T15:54:31.047102Z", - "iopub.status.idle": "2024-08-26T15:54:31.975680Z", - "shell.execute_reply": "2024-08-26T15:54:31.975010Z" + "iopub.execute_input": "2024-08-28T20:09:13.330344Z", + "iopub.status.busy": "2024-08-28T20:09:13.330103Z", + "iopub.status.idle": "2024-08-28T20:09:14.248319Z", + "shell.execute_reply": "2024-08-28T20:09:14.247698Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:31.979040Z", - "iopub.status.busy": "2024-08-26T15:54:31.978560Z", - "iopub.status.idle": "2024-08-26T15:54:31.981693Z", - "shell.execute_reply": "2024-08-26T15:54:31.981174Z" + "iopub.execute_input": "2024-08-28T20:09:14.251336Z", + "iopub.status.busy": "2024-08-28T20:09:14.250917Z", + "iopub.status.idle": "2024-08-28T20:09:14.254017Z", + "shell.execute_reply": "2024-08-28T20:09:14.253514Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:31.985036Z", - "iopub.status.busy": "2024-08-26T15:54:31.984064Z", - "iopub.status.idle": "2024-08-26T15:54:34.095091Z", - "shell.execute_reply": "2024-08-26T15:54:34.094037Z" + "iopub.execute_input": "2024-08-28T20:09:14.256490Z", + "iopub.status.busy": "2024-08-28T20:09:14.256096Z", + "iopub.status.idle": "2024-08-28T20:09:16.217332Z", + "shell.execute_reply": "2024-08-28T20:09:16.216596Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.099316Z", - "iopub.status.busy": "2024-08-26T15:54:34.098088Z", - "iopub.status.idle": "2024-08-26T15:54:34.124948Z", - "shell.execute_reply": "2024-08-26T15:54:34.124391Z" + "iopub.execute_input": "2024-08-28T20:09:16.220230Z", + "iopub.status.busy": "2024-08-28T20:09:16.219803Z", + "iopub.status.idle": "2024-08-28T20:09:16.243903Z", + "shell.execute_reply": "2024-08-28T20:09:16.243330Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.128745Z", - "iopub.status.busy": "2024-08-26T15:54:34.127878Z", - "iopub.status.idle": "2024-08-26T15:54:34.137226Z", - "shell.execute_reply": "2024-08-26T15:54:34.136493Z" + "iopub.execute_input": "2024-08-28T20:09:16.246452Z", + "iopub.status.busy": "2024-08-28T20:09:16.246037Z", + "iopub.status.idle": "2024-08-28T20:09:16.255941Z", + "shell.execute_reply": "2024-08-28T20:09:16.255493Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.139822Z", - "iopub.status.busy": "2024-08-26T15:54:34.139392Z", - "iopub.status.idle": "2024-08-26T15:54:34.143990Z", - "shell.execute_reply": "2024-08-26T15:54:34.143494Z" + "iopub.execute_input": "2024-08-28T20:09:16.258230Z", + "iopub.status.busy": "2024-08-28T20:09:16.257870Z", + "iopub.status.idle": "2024-08-28T20:09:16.262445Z", + "shell.execute_reply": "2024-08-28T20:09:16.262017Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.146004Z", - "iopub.status.busy": "2024-08-26T15:54:34.145827Z", - "iopub.status.idle": "2024-08-26T15:54:34.152551Z", - "shell.execute_reply": "2024-08-26T15:54:34.152042Z" + "iopub.execute_input": "2024-08-28T20:09:16.264669Z", + "iopub.status.busy": "2024-08-28T20:09:16.264314Z", + "iopub.status.idle": "2024-08-28T20:09:16.270741Z", + "shell.execute_reply": "2024-08-28T20:09:16.270305Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.154784Z", - "iopub.status.busy": "2024-08-26T15:54:34.154411Z", - "iopub.status.idle": "2024-08-26T15:54:34.162610Z", - "shell.execute_reply": "2024-08-26T15:54:34.162016Z" + "iopub.execute_input": "2024-08-28T20:09:16.273002Z", + "iopub.status.busy": "2024-08-28T20:09:16.272647Z", + "iopub.status.idle": "2024-08-28T20:09:16.279067Z", + "shell.execute_reply": "2024-08-28T20:09:16.278632Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.165047Z", - "iopub.status.busy": "2024-08-26T15:54:34.164702Z", - "iopub.status.idle": "2024-08-26T15:54:34.170937Z", - "shell.execute_reply": "2024-08-26T15:54:34.170346Z" + "iopub.execute_input": "2024-08-28T20:09:16.281168Z", + "iopub.status.busy": "2024-08-28T20:09:16.280836Z", + "iopub.status.idle": "2024-08-28T20:09:16.286515Z", + "shell.execute_reply": "2024-08-28T20:09:16.285987Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.173239Z", - "iopub.status.busy": "2024-08-26T15:54:34.172892Z", - "iopub.status.idle": "2024-08-26T15:54:34.181824Z", - "shell.execute_reply": "2024-08-26T15:54:34.181227Z" + "iopub.execute_input": "2024-08-28T20:09:16.288678Z", + "iopub.status.busy": "2024-08-28T20:09:16.288295Z", + "iopub.status.idle": "2024-08-28T20:09:16.296683Z", + "shell.execute_reply": "2024-08-28T20:09:16.296125Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.184176Z", - "iopub.status.busy": "2024-08-26T15:54:34.183819Z", - "iopub.status.idle": "2024-08-26T15:54:34.189592Z", - "shell.execute_reply": "2024-08-26T15:54:34.189013Z" + "iopub.execute_input": "2024-08-28T20:09:16.298685Z", + "iopub.status.busy": "2024-08-28T20:09:16.298350Z", + "iopub.status.idle": "2024-08-28T20:09:16.303747Z", + "shell.execute_reply": "2024-08-28T20:09:16.303176Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.191826Z", - "iopub.status.busy": "2024-08-26T15:54:34.191485Z", - "iopub.status.idle": "2024-08-26T15:54:34.197135Z", - "shell.execute_reply": "2024-08-26T15:54:34.196593Z" + "iopub.execute_input": "2024-08-28T20:09:16.305874Z", + "iopub.status.busy": "2024-08-28T20:09:16.305529Z", + "iopub.status.idle": "2024-08-28T20:09:16.311138Z", + "shell.execute_reply": "2024-08-28T20:09:16.310579Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.199323Z", - "iopub.status.busy": "2024-08-26T15:54:34.198999Z", - "iopub.status.idle": "2024-08-26T15:54:34.202390Z", - "shell.execute_reply": "2024-08-26T15:54:34.201850Z" + "iopub.execute_input": "2024-08-28T20:09:16.313281Z", + "iopub.status.busy": "2024-08-28T20:09:16.312953Z", + "iopub.status.idle": "2024-08-28T20:09:16.316148Z", + "shell.execute_reply": "2024-08-28T20:09:16.315629Z" } }, "outputs": [ @@ -1449,10 +1449,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:34.204586Z", - "iopub.status.busy": "2024-08-26T15:54:34.204241Z", - "iopub.status.idle": "2024-08-26T15:54:34.209327Z", - "shell.execute_reply": "2024-08-26T15:54:34.208871Z" + "iopub.execute_input": "2024-08-28T20:09:16.318258Z", + "iopub.status.busy": "2024-08-28T20:09:16.317859Z", + "iopub.status.idle": "2024-08-28T20:09:16.322985Z", + "shell.execute_reply": "2024-08-28T20:09:16.322533Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index a48a2ae2a..08878308e 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -833,7 +833,7 @@

4. Identify Data Issues Using Datalab @@ -879,13 +879,13 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3503,16 +3503,16 @@

1. Load the Dataset
---2024-08-26 15:54:55--  https://s.cleanlab.ai/CIFAR-10-subset.zip
+--2024-08-28 20:09:35--  https://s.cleanlab.ai/CIFAR-10-subset.zip
 Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...
 Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 986707 (964K) [application/zip]
 Saving to: ‘CIFAR-10-subset.zip’
 
-CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.006s
+CIFAR-10-subset.zip 100%[===================>] 963.58K  --.-KB/s    in 0.02s
 
-2024-08-26 15:54:55 (154 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
+2024-08-28 20:09:35 (39.8 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]
 
 
@@ -3582,7 +3582,7 @@

2. Run Datalab Analysis
-
+
@@ -3788,35 +3788,35 @@

3. Interpret the Results - is_dark_issue dark_score + is_dark_issue 0 - True 0.237196 + True 1 - True 0.197229 + True 2 - True 0.254188 + True 3 - True 0.229170 + True 4 - True 0.208907 + True ... @@ -3825,28 +3825,28 @@

3. Interpret the ResultsFrog class (Class 0 in the plot) have been darkened, while 100 images from the Truck class (Class 1 in the plot) remain unchanged, as in the CIFAR-10 dataset. This creates a clear spurious correlation between the ‘darkness’ feature and the class labels: Frog images are dark, whereas Truck images are not. We can see that the dark_score values between the two classes are non-overlapping. This characteristic of the dataset is identified by Datalab.

diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 31cb3f500..871dee6a0 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:38.759112Z", - "iopub.status.busy": "2024-08-26T15:54:38.758919Z", - "iopub.status.idle": "2024-08-26T15:54:39.215433Z", - "shell.execute_reply": "2024-08-26T15:54:39.214907Z" + "iopub.execute_input": "2024-08-28T20:09:19.771331Z", + "iopub.status.busy": "2024-08-28T20:09:19.771170Z", + "iopub.status.idle": "2024-08-28T20:09:20.203947Z", + "shell.execute_reply": "2024-08-28T20:09:20.203422Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:39.218396Z", - "iopub.status.busy": "2024-08-26T15:54:39.217877Z", - "iopub.status.idle": "2024-08-26T15:54:39.353724Z", - "shell.execute_reply": "2024-08-26T15:54:39.353143Z" + "iopub.execute_input": "2024-08-28T20:09:20.206510Z", + "iopub.status.busy": "2024-08-28T20:09:20.206092Z", + "iopub.status.idle": "2024-08-28T20:09:20.338932Z", + "shell.execute_reply": "2024-08-28T20:09:20.338305Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:39.356009Z", - "iopub.status.busy": "2024-08-26T15:54:39.355760Z", - "iopub.status.idle": "2024-08-26T15:54:39.380390Z", - "shell.execute_reply": "2024-08-26T15:54:39.379777Z" + "iopub.execute_input": "2024-08-28T20:09:20.341381Z", + "iopub.status.busy": "2024-08-28T20:09:20.340976Z", + "iopub.status.idle": "2024-08-28T20:09:20.363703Z", + "shell.execute_reply": "2024-08-28T20:09:20.363138Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:39.383260Z", - "iopub.status.busy": "2024-08-26T15:54:39.382742Z", - "iopub.status.idle": "2024-08-26T15:54:42.387338Z", - "shell.execute_reply": "2024-08-26T15:54:42.386595Z" + "iopub.execute_input": "2024-08-28T20:09:20.366713Z", + "iopub.status.busy": "2024-08-28T20:09:20.366163Z", + "iopub.status.idle": "2024-08-28T20:09:23.163182Z", + "shell.execute_reply": "2024-08-28T20:09:23.162494Z" } }, "outputs": [ @@ -235,7 +235,7 @@ "Finding class_imbalance issues ...\n", "Finding underperforming_group issues ...\n", "\n", - "Audit complete. 524 issues found in the dataset.\n" + "Audit complete. 523 issues found in the dataset.\n" ] }, { @@ -280,13 +280,13 @@ " \n", " 2\n", " outlier\n", - " 0.356925\n", - " 363\n", + " 0.356959\n", + " 362\n", " \n", " \n", " 3\n", " near_duplicate\n", - " 0.619581\n", + " 0.619565\n", " 108\n", " \n", " \n", @@ -315,8 +315,8 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356925 363\n", - "3 near_duplicate 0.619581 108\n", + "2 outlier 0.356959 362\n", + "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", "6 underperforming_group 0.651838 0" @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:42.390104Z", - "iopub.status.busy": "2024-08-26T15:54:42.389566Z", - "iopub.status.idle": "2024-08-26T15:54:52.329674Z", - "shell.execute_reply": "2024-08-26T15:54:52.329133Z" + "iopub.execute_input": "2024-08-28T20:09:23.166128Z", + "iopub.status.busy": "2024-08-28T20:09:23.165571Z", + "iopub.status.idle": "2024-08-28T20:09:32.198950Z", + "shell.execute_reply": "2024-08-28T20:09:32.198342Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:52.332096Z", - "iopub.status.busy": "2024-08-26T15:54:52.331674Z", - "iopub.status.idle": "2024-08-26T15:54:52.493633Z", - "shell.execute_reply": "2024-08-26T15:54:52.492929Z" + "iopub.execute_input": "2024-08-28T20:09:32.201273Z", + "iopub.status.busy": "2024-08-28T20:09:32.200874Z", + "iopub.status.idle": "2024-08-28T20:09:32.359974Z", + "shell.execute_reply": "2024-08-28T20:09:32.359321Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:52.496177Z", - "iopub.status.busy": "2024-08-26T15:54:52.495969Z", - "iopub.status.idle": "2024-08-26T15:54:53.925137Z", - "shell.execute_reply": "2024-08-26T15:54:53.924517Z" + "iopub.execute_input": "2024-08-28T20:09:32.362593Z", + "iopub.status.busy": "2024-08-28T20:09:32.362241Z", + "iopub.status.idle": "2024-08-28T20:09:33.706259Z", + "shell.execute_reply": "2024-08-28T20:09:33.705764Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:53.927691Z", - "iopub.status.busy": "2024-08-26T15:54:53.927274Z", - "iopub.status.idle": "2024-08-26T15:54:54.361405Z", - "shell.execute_reply": "2024-08-26T15:54:54.360761Z" + "iopub.execute_input": "2024-08-28T20:09:33.708514Z", + "iopub.status.busy": "2024-08-28T20:09:33.708155Z", + "iopub.status.idle": "2024-08-28T20:09:34.142519Z", + "shell.execute_reply": "2024-08-28T20:09:34.141938Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.364105Z", - "iopub.status.busy": "2024-08-26T15:54:54.363404Z", - "iopub.status.idle": "2024-08-26T15:54:54.377500Z", - "shell.execute_reply": "2024-08-26T15:54:54.377021Z" + "iopub.execute_input": "2024-08-28T20:09:34.144941Z", + "iopub.status.busy": "2024-08-28T20:09:34.144511Z", + "iopub.status.idle": "2024-08-28T20:09:34.157689Z", + "shell.execute_reply": "2024-08-28T20:09:34.157230Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.379842Z", - "iopub.status.busy": "2024-08-26T15:54:54.379476Z", - "iopub.status.idle": "2024-08-26T15:54:54.398245Z", - "shell.execute_reply": "2024-08-26T15:54:54.397742Z" + "iopub.execute_input": "2024-08-28T20:09:34.159753Z", + "iopub.status.busy": "2024-08-28T20:09:34.159414Z", + "iopub.status.idle": "2024-08-28T20:09:34.180259Z", + "shell.execute_reply": "2024-08-28T20:09:34.179666Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.400658Z", - "iopub.status.busy": "2024-08-26T15:54:54.400452Z", - "iopub.status.idle": "2024-08-26T15:54:54.629761Z", - "shell.execute_reply": "2024-08-26T15:54:54.629093Z" + "iopub.execute_input": "2024-08-28T20:09:34.182439Z", + "iopub.status.busy": "2024-08-28T20:09:34.182121Z", + "iopub.status.idle": "2024-08-28T20:09:34.410667Z", + "shell.execute_reply": "2024-08-28T20:09:34.410121Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.632497Z", - "iopub.status.busy": "2024-08-26T15:54:54.632295Z", - "iopub.status.idle": "2024-08-26T15:54:54.651943Z", - "shell.execute_reply": "2024-08-26T15:54:54.651403Z" + "iopub.execute_input": "2024-08-28T20:09:34.413358Z", + "iopub.status.busy": "2024-08-28T20:09:34.412952Z", + "iopub.status.idle": "2024-08-28T20:09:34.432227Z", + "shell.execute_reply": "2024-08-28T20:09:34.431652Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.654296Z", - "iopub.status.busy": "2024-08-26T15:54:54.653851Z", - "iopub.status.idle": "2024-08-26T15:54:54.833100Z", - "shell.execute_reply": "2024-08-26T15:54:54.832491Z" + "iopub.execute_input": "2024-08-28T20:09:34.434365Z", + "iopub.status.busy": "2024-08-28T20:09:34.434181Z", + "iopub.status.idle": "2024-08-28T20:09:34.602467Z", + "shell.execute_reply": "2024-08-28T20:09:34.601833Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.835717Z", - "iopub.status.busy": "2024-08-26T15:54:54.835357Z", - "iopub.status.idle": "2024-08-26T15:54:54.846192Z", - "shell.execute_reply": "2024-08-26T15:54:54.845635Z" + "iopub.execute_input": "2024-08-28T20:09:34.604828Z", + "iopub.status.busy": "2024-08-28T20:09:34.604472Z", + "iopub.status.idle": "2024-08-28T20:09:34.615166Z", + "shell.execute_reply": "2024-08-28T20:09:34.614723Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.848487Z", - "iopub.status.busy": "2024-08-26T15:54:54.848109Z", - "iopub.status.idle": "2024-08-26T15:54:54.858309Z", - "shell.execute_reply": "2024-08-26T15:54:54.857736Z" + "iopub.execute_input": "2024-08-28T20:09:34.617275Z", + "iopub.status.busy": "2024-08-28T20:09:34.616929Z", + "iopub.status.idle": "2024-08-28T20:09:34.626310Z", + "shell.execute_reply": "2024-08-28T20:09:34.625742Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.860474Z", - "iopub.status.busy": "2024-08-26T15:54:54.860145Z", - "iopub.status.idle": "2024-08-26T15:54:54.891303Z", - "shell.execute_reply": "2024-08-26T15:54:54.890732Z" + "iopub.execute_input": "2024-08-28T20:09:34.628402Z", + "iopub.status.busy": "2024-08-28T20:09:34.628075Z", + "iopub.status.idle": "2024-08-28T20:09:34.656362Z", + "shell.execute_reply": "2024-08-28T20:09:34.655916Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.893833Z", - "iopub.status.busy": "2024-08-26T15:54:54.893622Z", - "iopub.status.idle": "2024-08-26T15:54:54.896886Z", - "shell.execute_reply": "2024-08-26T15:54:54.896321Z" + "iopub.execute_input": "2024-08-28T20:09:34.658402Z", + "iopub.status.busy": "2024-08-28T20:09:34.658088Z", + "iopub.status.idle": "2024-08-28T20:09:34.661602Z", + "shell.execute_reply": "2024-08-28T20:09:34.661038Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.899294Z", - "iopub.status.busy": "2024-08-26T15:54:54.899092Z", - "iopub.status.idle": "2024-08-26T15:54:54.921704Z", - "shell.execute_reply": "2024-08-26T15:54:54.921193Z" + "iopub.execute_input": "2024-08-28T20:09:34.663991Z", + "iopub.status.busy": "2024-08-28T20:09:34.663488Z", + "iopub.status.idle": "2024-08-28T20:09:34.683082Z", + "shell.execute_reply": "2024-08-28T20:09:34.682507Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.924185Z", - "iopub.status.busy": "2024-08-26T15:54:54.923777Z", - "iopub.status.idle": "2024-08-26T15:54:54.928341Z", - "shell.execute_reply": "2024-08-26T15:54:54.927835Z" + "iopub.execute_input": "2024-08-28T20:09:34.685882Z", + "iopub.status.busy": "2024-08-28T20:09:34.685523Z", + "iopub.status.idle": "2024-08-28T20:09:34.689889Z", + "shell.execute_reply": "2024-08-28T20:09:34.689329Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.930649Z", - "iopub.status.busy": "2024-08-26T15:54:54.930228Z", - "iopub.status.idle": "2024-08-26T15:54:54.960760Z", - "shell.execute_reply": "2024-08-26T15:54:54.960179Z" + "iopub.execute_input": "2024-08-28T20:09:34.692045Z", + "iopub.status.busy": "2024-08-28T20:09:34.691734Z", + "iopub.status.idle": "2024-08-28T20:09:34.719349Z", + "shell.execute_reply": "2024-08-28T20:09:34.718791Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:54.962902Z", - "iopub.status.busy": "2024-08-26T15:54:54.962733Z", - "iopub.status.idle": "2024-08-26T15:54:55.346958Z", - "shell.execute_reply": "2024-08-26T15:54:55.346287Z" + "iopub.execute_input": "2024-08-28T20:09:34.721368Z", + "iopub.status.busy": "2024-08-28T20:09:34.721192Z", + "iopub.status.idle": "2024-08-28T20:09:35.096535Z", + "shell.execute_reply": "2024-08-28T20:09:35.095967Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.349542Z", - "iopub.status.busy": "2024-08-26T15:54:55.349079Z", - "iopub.status.idle": "2024-08-26T15:54:55.352764Z", - "shell.execute_reply": "2024-08-26T15:54:55.352277Z" + "iopub.execute_input": "2024-08-28T20:09:35.098846Z", + "iopub.status.busy": "2024-08-28T20:09:35.098502Z", + "iopub.status.idle": "2024-08-28T20:09:35.101520Z", + "shell.execute_reply": "2024-08-28T20:09:35.100965Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.354939Z", - "iopub.status.busy": "2024-08-26T15:54:55.354758Z", - "iopub.status.idle": "2024-08-26T15:54:55.368773Z", - "shell.execute_reply": "2024-08-26T15:54:55.368258Z" + "iopub.execute_input": "2024-08-28T20:09:35.103783Z", + "iopub.status.busy": "2024-08-28T20:09:35.103361Z", + "iopub.status.idle": "2024-08-28T20:09:35.116412Z", + "shell.execute_reply": "2024-08-28T20:09:35.115852Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.370932Z", - "iopub.status.busy": "2024-08-26T15:54:55.370737Z", - "iopub.status.idle": "2024-08-26T15:54:55.384935Z", - "shell.execute_reply": "2024-08-26T15:54:55.384436Z" + "iopub.execute_input": "2024-08-28T20:09:35.118590Z", + "iopub.status.busy": "2024-08-28T20:09:35.118284Z", + "iopub.status.idle": "2024-08-28T20:09:35.132156Z", + "shell.execute_reply": "2024-08-28T20:09:35.131576Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.386984Z", - "iopub.status.busy": "2024-08-26T15:54:55.386797Z", - "iopub.status.idle": "2024-08-26T15:54:55.397034Z", - "shell.execute_reply": "2024-08-26T15:54:55.396567Z" + "iopub.execute_input": "2024-08-28T20:09:35.134170Z", + "iopub.status.busy": "2024-08-28T20:09:35.133995Z", + "iopub.status.idle": "2024-08-28T20:09:35.144075Z", + "shell.execute_reply": "2024-08-28T20:09:35.143637Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.399330Z", - "iopub.status.busy": "2024-08-26T15:54:55.398981Z", - "iopub.status.idle": "2024-08-26T15:54:55.411666Z", - "shell.execute_reply": "2024-08-26T15:54:55.411018Z" + "iopub.execute_input": "2024-08-28T20:09:35.146067Z", + "iopub.status.busy": "2024-08-28T20:09:35.145755Z", + "iopub.status.idle": "2024-08-28T20:09:35.155082Z", + "shell.execute_reply": "2024-08-28T20:09:35.154534Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.413957Z", - "iopub.status.busy": "2024-08-26T15:54:55.413597Z", - "iopub.status.idle": "2024-08-26T15:54:55.417808Z", - "shell.execute_reply": "2024-08-26T15:54:55.417214Z" + "iopub.execute_input": "2024-08-28T20:09:35.157246Z", + "iopub.status.busy": "2024-08-28T20:09:35.156929Z", + "iopub.status.idle": "2024-08-28T20:09:35.160669Z", + "shell.execute_reply": "2024-08-28T20:09:35.160100Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.419969Z", - "iopub.status.busy": "2024-08-26T15:54:55.419603Z", - "iopub.status.idle": "2024-08-26T15:54:55.473799Z", - "shell.execute_reply": "2024-08-26T15:54:55.473155Z" + "iopub.execute_input": "2024-08-28T20:09:35.162741Z", + "iopub.status.busy": "2024-08-28T20:09:35.162428Z", + "iopub.status.idle": "2024-08-28T20:09:35.215815Z", + "shell.execute_reply": "2024-08-28T20:09:35.215313Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.476497Z", - "iopub.status.busy": "2024-08-26T15:54:55.476108Z", - "iopub.status.idle": "2024-08-26T15:54:55.482513Z", - "shell.execute_reply": "2024-08-26T15:54:55.482004Z" + "iopub.execute_input": "2024-08-28T20:09:35.218083Z", + "iopub.status.busy": "2024-08-28T20:09:35.217770Z", + "iopub.status.idle": "2024-08-28T20:09:35.223588Z", + "shell.execute_reply": "2024-08-28T20:09:35.223033Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.484790Z", - "iopub.status.busy": "2024-08-26T15:54:55.484410Z", - "iopub.status.idle": "2024-08-26T15:54:55.496714Z", - "shell.execute_reply": "2024-08-26T15:54:55.496092Z" + "iopub.execute_input": "2024-08-28T20:09:35.225688Z", + "iopub.status.busy": "2024-08-28T20:09:35.225385Z", + "iopub.status.idle": "2024-08-28T20:09:35.236584Z", + "shell.execute_reply": "2024-08-28T20:09:35.236071Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.499254Z", - "iopub.status.busy": "2024-08-26T15:54:55.498866Z", - "iopub.status.idle": "2024-08-26T15:54:55.724139Z", - "shell.execute_reply": "2024-08-26T15:54:55.723536Z" + "iopub.execute_input": "2024-08-28T20:09:35.238858Z", + "iopub.status.busy": "2024-08-28T20:09:35.238517Z", + "iopub.status.idle": "2024-08-28T20:09:35.456565Z", + "shell.execute_reply": "2024-08-28T20:09:35.455950Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.726595Z", - "iopub.status.busy": "2024-08-26T15:54:55.726210Z", - "iopub.status.idle": "2024-08-26T15:54:55.734094Z", - "shell.execute_reply": "2024-08-26T15:54:55.733584Z" + "iopub.execute_input": "2024-08-28T20:09:35.458606Z", + "iopub.status.busy": "2024-08-28T20:09:35.458425Z", + "iopub.status.idle": "2024-08-28T20:09:35.466361Z", + "shell.execute_reply": "2024-08-28T20:09:35.465896Z" }, "nbsphinx": "hidden" }, @@ -3756,10 +3756,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:55.736292Z", - "iopub.status.busy": "2024-08-26T15:54:55.736100Z", - "iopub.status.idle": "2024-08-26T15:54:56.057866Z", - "shell.execute_reply": "2024-08-26T15:54:56.057124Z" + "iopub.execute_input": "2024-08-28T20:09:35.468333Z", + "iopub.status.busy": "2024-08-28T20:09:35.468162Z", + "iopub.status.idle": "2024-08-28T20:09:35.863532Z", + "shell.execute_reply": "2024-08-28T20:09:35.862713Z" } }, "outputs": [ @@ -3767,18 +3767,25 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-26 15:54:55-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", + "--2024-08-28 20:09:35-- https://s.cleanlab.ai/CIFAR-10-subset.zip\r\n", "Resolving s.cleanlab.ai (s.cleanlab.ai)... 185.199.111.153, 185.199.110.153, 185.199.109.153, ...\r\n", "Connecting to s.cleanlab.ai (s.cleanlab.ai)|185.199.111.153|:443... connected.\r\n", - "HTTP request sent, awaiting response... 200 OK\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 986707 (964K) [application/zip]\r\n", "Saving to: ‘CIFAR-10-subset.zip’\r\n", "\r\n", "\r", "CIFAR-10-subset.zip 0%[ ] 0 --.-KB/s \r", - "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.006s \r\n", + "CIFAR-10-subset.zip 100%[===================>] 963.58K --.-KB/s in 0.02s \r\n", "\r\n", - "2024-08-26 15:54:55 (154 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", + "2024-08-28 20:09:35 (39.8 MB/s) - ‘CIFAR-10-subset.zip’ saved [986707/986707]\r\n", "\r\n" ] } @@ -3794,10 +3801,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:56.060997Z", - "iopub.status.busy": "2024-08-26T15:54:56.060557Z", - "iopub.status.idle": "2024-08-26T15:54:58.138446Z", - "shell.execute_reply": "2024-08-26T15:54:58.137906Z" + "iopub.execute_input": "2024-08-28T20:09:35.866285Z", + "iopub.status.busy": "2024-08-28T20:09:35.865904Z", + "iopub.status.idle": "2024-08-28T20:09:37.764093Z", + "shell.execute_reply": "2024-08-28T20:09:37.763557Z" } }, "outputs": [], @@ -3843,10 +3850,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:58.141238Z", - "iopub.status.busy": "2024-08-26T15:54:58.140850Z", - "iopub.status.idle": "2024-08-26T15:54:58.752163Z", - "shell.execute_reply": "2024-08-26T15:54:58.751466Z" + "iopub.execute_input": "2024-08-28T20:09:37.766603Z", + "iopub.status.busy": "2024-08-28T20:09:37.766166Z", + "iopub.status.idle": "2024-08-28T20:09:38.351459Z", + "shell.execute_reply": "2024-08-28T20:09:38.350870Z" } }, "outputs": [ @@ -3861,7 +3868,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "63dbd4115b6c44af98b9c5935a224c07", + "model_id": "4322b40d9d9d4ab8aef6e13f56617119", "version_major": 2, "version_minor": 0 }, @@ -3982,10 +3989,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:58.755525Z", - "iopub.status.busy": "2024-08-26T15:54:58.754971Z", - "iopub.status.idle": "2024-08-26T15:54:58.770115Z", - "shell.execute_reply": "2024-08-26T15:54:58.769480Z" + "iopub.execute_input": "2024-08-28T20:09:38.353974Z", + "iopub.status.busy": "2024-08-28T20:09:38.353623Z", + "iopub.status.idle": "2024-08-28T20:09:38.366606Z", + "shell.execute_reply": "2024-08-28T20:09:38.366114Z" } }, "outputs": [ @@ -4104,35 +4111,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " True\n", " 0.237196\n", + " True\n", " \n", " \n", " 1\n", - " True\n", " 0.197229\n", + " True\n", " \n", " \n", " 2\n", - " True\n", " 0.254188\n", + " True\n", " \n", " \n", " 3\n", - " True\n", " 0.229170\n", + " True\n", " \n", " \n", " 4\n", - " True\n", " 0.208907\n", + " True\n", " \n", " \n", " ...\n", @@ -4141,28 +4148,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4170,18 +4177,18 @@ "

" ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 True 0.237196\n", - "1 True 0.197229\n", - "2 True 0.254188\n", - "3 True 0.229170\n", - "4 True 0.208907\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.237196 True\n", + "1 0.197229 True\n", + "2 0.254188 True\n", + "3 0.229170 True\n", + "4 0.208907 True\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4231,10 +4238,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:58.772597Z", - "iopub.status.busy": "2024-08-26T15:54:58.772400Z", - "iopub.status.idle": "2024-08-26T15:54:58.895082Z", - "shell.execute_reply": "2024-08-26T15:54:58.894419Z" + "iopub.execute_input": "2024-08-28T20:09:38.369011Z", + "iopub.status.busy": "2024-08-28T20:09:38.368695Z", + "iopub.status.idle": "2024-08-28T20:09:38.515686Z", + "shell.execute_reply": "2024-08-28T20:09:38.515165Z" } }, "outputs": [ @@ -4299,10 +4306,10 @@ "execution_count": 38, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:58.897672Z", - "iopub.status.busy": "2024-08-26T15:54:58.897456Z", - "iopub.status.idle": "2024-08-26T15:54:59.422521Z", - "shell.execute_reply": "2024-08-26T15:54:59.421729Z" + "iopub.execute_input": "2024-08-28T20:09:38.517747Z", + "iopub.status.busy": "2024-08-28T20:09:38.517559Z", + "iopub.status.idle": "2024-08-28T20:09:39.025045Z", + "shell.execute_reply": "2024-08-28T20:09:39.024482Z" }, "nbsphinx": "hidden" }, @@ -4318,7 +4325,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b55b762924964f2b825d874228965ad4", + "model_id": "7c3afb042d2747a2b9698fc94fd979a6", "version_major": 2, "version_minor": 0 }, @@ -4447,35 +4454,35 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 0\n", - " False\n", " 0.797509\n", + " False\n", " \n", " \n", " 1\n", - " False\n", " 0.663760\n", + " False\n", " \n", " \n", " 2\n", - " False\n", " 0.849826\n", + " False\n", " \n", " \n", " 3\n", - " False\n", " 0.773951\n", + " False\n", " \n", " \n", " 4\n", - " False\n", " 0.699518\n", + " False\n", " \n", " \n", " ...\n", @@ -4484,28 +4491,28 @@ " \n", " \n", " 195\n", - " False\n", " 0.793840\n", + " False\n", " \n", " \n", " 196\n", - " False\n", " 1.000000\n", + " False\n", " \n", " \n", " 197\n", - " False\n", " 0.971560\n", + " False\n", " \n", " \n", " 198\n", - " False\n", " 0.862236\n", + " False\n", " \n", " \n", " 199\n", - " False\n", " 0.973533\n", + " False\n", " \n", " \n", "\n", @@ -4513,18 +4520,18 @@ "
" ], "text/plain": [ - " is_dark_issue dark_score\n", - "0 False 0.797509\n", - "1 False 0.663760\n", - "2 False 0.849826\n", - "3 False 0.773951\n", - "4 False 0.699518\n", - ".. ... ...\n", - "195 False 0.793840\n", - "196 False 1.000000\n", - "197 False 0.971560\n", - "198 False 0.862236\n", - "199 False 0.973533\n", + " dark_score is_dark_issue\n", + "0 0.797509 False\n", + "1 0.663760 False\n", + "2 0.849826 False\n", + "3 0.773951 False\n", + "4 0.699518 False\n", + ".. ... ...\n", + "195 0.793840 False\n", + "196 1.000000 False\n", + "197 0.971560 False\n", + "198 0.862236 False\n", + "199 0.973533 False\n", "\n", "[200 rows x 2 columns]" ] @@ -4572,10 +4579,10 @@ "execution_count": 39, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:54:59.425974Z", - "iopub.status.busy": "2024-08-26T15:54:59.425433Z", - "iopub.status.idle": "2024-08-26T15:54:59.582023Z", - "shell.execute_reply": "2024-08-26T15:54:59.581243Z" + "iopub.execute_input": "2024-08-28T20:09:39.027424Z", + "iopub.status.busy": "2024-08-28T20:09:39.027037Z", + "iopub.status.idle": "2024-08-28T20:09:39.175320Z", + "shell.execute_reply": "2024-08-28T20:09:39.174739Z" }, "nbsphinx": "hidden" }, @@ -4627,7 +4634,105 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "031221d4552242de82a8d6939c285e86": { + "03d76ea65c1b485fb33eb6b327243377": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "125e7ed29fc443f68644190f7b1b7f5a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1632964b44474af9ba814fc5486e79ad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8b95e7341d1c4cbf8b808ee7a2bf3d04", + "placeholder": "​", + "style": "IPY_MODEL_1b8c3d4032d2468d82f5c2fe540be3bc", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 740.52it/s]" + } + }, + "1b8c3d4032d2468d82f5c2fe540be3bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1eaa69bd36984833ab0976da32934c4b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_693334c36160456eaf6763f26404db56", + "placeholder": "​", + "style": "IPY_MODEL_feb48a234da14a18a41d39b0ff914426", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 708.79it/s]" + } + }, + "2c71fb5f644949f8b865f10b2ac7b58f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4680,30 +4785,57 @@ "width": null } }, - "0386df784eda450ba40b983fcae38725": { + "4322b40d9d9d4ab8aef6e13f56617119": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f1fecad7f41140458947b8cf6168d28f", + "IPY_MODEL_b63af9ae9c30425eb2539f0c3d177030", + "IPY_MODEL_1632964b44474af9ba814fc5486e79ad" + ], + "layout": "IPY_MODEL_ab63b666d0f44bbab1e2f6f1fd721709", + "tabbable": null, + "tooltip": null + } + }, + "4fe1a360972a4d30bbb7e140b3c8a93e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fefe95cb553540c3994456b477c2fb5f", - "placeholder": "​", - "style": "IPY_MODEL_d42e5e4fe59048ad8dfe2cb418b83969", + "layout": "IPY_MODEL_97088966d6bf49ef9042d40868863612", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6477dd1889bf4ec7bfaf5725f6ce5c28", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 200.0 } }, - "3064a08da676433a85c99d01070354cd": { + "5d0060cc551d4e4394a1a8282dc3f61e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4718,15 +4850,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_84f86748a7e84b4bbb8e32a900b8a63e", + "layout": "IPY_MODEL_2c71fb5f644949f8b865f10b2ac7b58f", "placeholder": "​", - "style": "IPY_MODEL_54472803299340ed90898ae4a015b484", + "style": "IPY_MODEL_62140afad1fe40eb88c760d87f80ff55", "tabbable": null, "tooltip": null, - "value": " 200/200 [00:00<00:00, 691.59it/s]" + "value": "100%" } }, - "41aeb9b2c3df4a2599a18579e42e4dc9": { + "62140afad1fe40eb88c760d87f80ff55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4744,7 +4876,23 @@ "text_color": null } }, - "44b903d5acd1475d885219d5ec3f09d9": { + "6477dd1889bf4ec7bfaf5725f6ce5c28": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "68fb2c6a17d845c78c86453241f16f54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4797,7 +4945,7 @@ "width": null } }, - "4f38e0a5bc5f4ded9cf3eceb2d703d97": { + "693334c36160456eaf6763f26404db56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4850,25 +4998,31 @@ "width": null } }, - "54472803299340ed90898ae4a015b484": { + "7c3afb042d2747a2b9698fc94fd979a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5d0060cc551d4e4394a1a8282dc3f61e", + "IPY_MODEL_4fe1a360972a4d30bbb7e140b3c8a93e", + "IPY_MODEL_1eaa69bd36984833ab0976da32934c4b" + ], + "layout": "IPY_MODEL_e2d0c1877c5c4fc191a0f91fa66f55e0", + "tabbable": null, + "tooltip": null } }, - "61c56e7ec1114450b4ef18775fd912ac": { + "8b95e7341d1c4cbf8b808ee7a2bf3d04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4921,83 +5075,7 @@ "width": null } }, - "63dbd4115b6c44af98b9c5935a224c07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c198bfac238c45c78af9310d7da235f8", - "IPY_MODEL_81ddd7e821164aaeb9ec368f6e04be05", - "IPY_MODEL_90ab6f703998499dbd5894f3bb139415" - ], - "layout": "IPY_MODEL_bb45198d12cc4ed38bf999a04af95957", - "tabbable": null, - "tooltip": null - } - }, - "64d272c54f184fbbbd4f30efdac1f499": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ece1e0931b894627a03fc03dc266e3cb", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b402c802ab0a467bb5f7a66e0531d41a", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "81ddd7e821164aaeb9ec368f6e04be05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44b903d5acd1475d885219d5ec3f09d9", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_89f40cd49e5d4715b11046823db4e398", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "84f86748a7e84b4bbb8e32a900b8a63e": { + "91edda880e8e400b88c6457e5ae7988d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5050,86 +5128,7 @@ "width": null } }, - "89f40cd49e5d4715b11046823db4e398": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "90ab6f703998499dbd5894f3bb139415": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_61c56e7ec1114450b4ef18775fd912ac", - "placeholder": "​", - "style": "IPY_MODEL_41aeb9b2c3df4a2599a18579e42e4dc9", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 755.19it/s]" - } - }, - "b402c802ab0a467bb5f7a66e0531d41a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b55b762924964f2b825d874228965ad4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0386df784eda450ba40b983fcae38725", - "IPY_MODEL_64d272c54f184fbbbd4f30efdac1f499", - "IPY_MODEL_3064a08da676433a85c99d01070354cd" - ], - "layout": "IPY_MODEL_4f38e0a5bc5f4ded9cf3eceb2d703d97", - "tabbable": null, - "tooltip": null - } - }, - "bb45198d12cc4ed38bf999a04af95957": { + "97088966d6bf49ef9042d40868863612": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5182,66 +5181,7 @@ "width": null } }, - "c198bfac238c45c78af9310d7da235f8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_031221d4552242de82a8d6939c285e86", - "placeholder": "​", - "style": "IPY_MODEL_dba0c94b68874339b52fdcf44f5a0a9c", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "d42e5e4fe59048ad8dfe2cb418b83969": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dba0c94b68874339b52fdcf44f5a0a9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ece1e0931b894627a03fc03dc266e3cb": { + "ab63b666d0f44bbab1e2f6f1fd721709": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5294,7 +5234,33 @@ "width": null } }, - "fefe95cb553540c3994456b477c2fb5f": { + "b63af9ae9c30425eb2539f0c3d177030": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_68fb2c6a17d845c78c86453241f16f54", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_125e7ed29fc443f68644190f7b1b7f5a", + "tabbable": null, + "tooltip": null, + "value": 200.0 + } + }, + "e2d0c1877c5c4fc191a0f91fa66f55e0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5346,6 +5312,47 @@ "visibility": null, "width": null } + }, + "f1fecad7f41140458947b8cf6168d28f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_91edda880e8e400b88c6457e5ae7988d", + "placeholder": "​", + "style": "IPY_MODEL_03d76ea65c1b485fb33eb6b327243377", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "feb48a234da14a18a41d39b0ff914426": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index e035bdf3d..07d4a084d 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:04.729366Z", - "iopub.status.busy": "2024-08-26T15:55:04.729194Z", - "iopub.status.idle": "2024-08-26T15:55:05.972664Z", - "shell.execute_reply": "2024-08-26T15:55:05.972009Z" + "iopub.execute_input": "2024-08-28T20:09:43.402499Z", + "iopub.status.busy": "2024-08-28T20:09:43.402325Z", + "iopub.status.idle": "2024-08-28T20:09:44.551413Z", + "shell.execute_reply": "2024-08-28T20:09:44.550780Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:05.975289Z", - "iopub.status.busy": "2024-08-26T15:55:05.974977Z", - "iopub.status.idle": "2024-08-26T15:55:05.977882Z", - "shell.execute_reply": "2024-08-26T15:55:05.977411Z" + "iopub.execute_input": "2024-08-28T20:09:44.553976Z", + "iopub.status.busy": "2024-08-28T20:09:44.553697Z", + "iopub.status.idle": "2024-08-28T20:09:44.556600Z", + "shell.execute_reply": "2024-08-28T20:09:44.556061Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:05.980109Z", - "iopub.status.busy": "2024-08-26T15:55:05.979765Z", - "iopub.status.idle": "2024-08-26T15:55:05.991753Z", - "shell.execute_reply": "2024-08-26T15:55:05.991284Z" + "iopub.execute_input": "2024-08-28T20:09:44.558717Z", + "iopub.status.busy": "2024-08-28T20:09:44.558400Z", + "iopub.status.idle": "2024-08-28T20:09:44.570053Z", + "shell.execute_reply": "2024-08-28T20:09:44.569520Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:05.993825Z", - "iopub.status.busy": "2024-08-26T15:55:05.993487Z", - "iopub.status.idle": "2024-08-26T15:55:11.009786Z", - "shell.execute_reply": "2024-08-26T15:55:11.009261Z" + "iopub.execute_input": "2024-08-28T20:09:44.572055Z", + "iopub.status.busy": "2024-08-28T20:09:44.571734Z", + "iopub.status.idle": "2024-08-28T20:09:49.182461Z", + "shell.execute_reply": "2024-08-28T20:09:49.181873Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index b8751c435..39738b5b5 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1702,7 +1702,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index cd7e6f125..4a4e30da4 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:13.442030Z", - "iopub.status.busy": "2024-08-26T15:55:13.441851Z", - "iopub.status.idle": "2024-08-26T15:55:14.631486Z", - "shell.execute_reply": "2024-08-26T15:55:14.630850Z" + "iopub.execute_input": "2024-08-28T20:09:51.382916Z", + "iopub.status.busy": "2024-08-28T20:09:51.382731Z", + "iopub.status.idle": "2024-08-28T20:09:52.551665Z", + "shell.execute_reply": "2024-08-28T20:09:52.551077Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:14.634321Z", - "iopub.status.busy": "2024-08-26T15:55:14.633972Z", - "iopub.status.idle": "2024-08-26T15:55:14.637564Z", - "shell.execute_reply": "2024-08-26T15:55:14.637000Z" + "iopub.execute_input": "2024-08-28T20:09:52.554643Z", + "iopub.status.busy": "2024-08-28T20:09:52.554129Z", + "iopub.status.idle": "2024-08-28T20:09:52.557520Z", + "shell.execute_reply": "2024-08-28T20:09:52.557076Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:14.639738Z", - "iopub.status.busy": "2024-08-26T15:55:14.639415Z", - "iopub.status.idle": "2024-08-26T15:55:18.097283Z", - "shell.execute_reply": "2024-08-26T15:55:18.096607Z" + "iopub.execute_input": "2024-08-28T20:09:52.559786Z", + "iopub.status.busy": "2024-08-28T20:09:52.559360Z", + "iopub.status.idle": "2024-08-28T20:09:55.934061Z", + "shell.execute_reply": "2024-08-28T20:09:55.933289Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.100613Z", - "iopub.status.busy": "2024-08-26T15:55:18.099778Z", - "iopub.status.idle": "2024-08-26T15:55:18.147131Z", - "shell.execute_reply": "2024-08-26T15:55:18.146332Z" + "iopub.execute_input": "2024-08-28T20:09:55.937317Z", + "iopub.status.busy": "2024-08-28T20:09:55.936540Z", + "iopub.status.idle": "2024-08-28T20:09:55.979052Z", + "shell.execute_reply": "2024-08-28T20:09:55.978315Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.149918Z", - "iopub.status.busy": "2024-08-26T15:55:18.149659Z", - "iopub.status.idle": "2024-08-26T15:55:18.194613Z", - "shell.execute_reply": "2024-08-26T15:55:18.193960Z" + "iopub.execute_input": "2024-08-28T20:09:55.981902Z", + "iopub.status.busy": "2024-08-28T20:09:55.981449Z", + "iopub.status.idle": "2024-08-28T20:09:56.016522Z", + "shell.execute_reply": "2024-08-28T20:09:56.015788Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.197370Z", - "iopub.status.busy": "2024-08-26T15:55:18.196976Z", - "iopub.status.idle": "2024-08-26T15:55:18.200210Z", - "shell.execute_reply": "2024-08-26T15:55:18.199730Z" + "iopub.execute_input": "2024-08-28T20:09:56.019213Z", + "iopub.status.busy": "2024-08-28T20:09:56.018851Z", + "iopub.status.idle": "2024-08-28T20:09:56.021994Z", + "shell.execute_reply": "2024-08-28T20:09:56.021523Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.202169Z", - "iopub.status.busy": "2024-08-26T15:55:18.201853Z", - "iopub.status.idle": "2024-08-26T15:55:18.204443Z", - "shell.execute_reply": "2024-08-26T15:55:18.204003Z" + "iopub.execute_input": "2024-08-28T20:09:56.024029Z", + "iopub.status.busy": "2024-08-28T20:09:56.023722Z", + "iopub.status.idle": "2024-08-28T20:09:56.026901Z", + "shell.execute_reply": "2024-08-28T20:09:56.026457Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.206634Z", - "iopub.status.busy": "2024-08-26T15:55:18.206299Z", - "iopub.status.idle": "2024-08-26T15:55:18.234060Z", - "shell.execute_reply": "2024-08-26T15:55:18.233470Z" + "iopub.execute_input": "2024-08-28T20:09:56.029169Z", + "iopub.status.busy": "2024-08-28T20:09:56.028762Z", + "iopub.status.idle": "2024-08-28T20:09:56.058769Z", + "shell.execute_reply": "2024-08-28T20:09:56.058238Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2a2af44ac76147299114dc626eee43c4", + "model_id": "69645958ad064009845003bf5fb6ac71", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7ca424fc2c6645d28c417390b61079d0", + "model_id": "5f378e07f4a84e36ba9d1d73375ede61", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.239779Z", - "iopub.status.busy": "2024-08-26T15:55:18.239275Z", - "iopub.status.idle": "2024-08-26T15:55:18.246226Z", - "shell.execute_reply": "2024-08-26T15:55:18.245812Z" + "iopub.execute_input": "2024-08-28T20:09:56.061062Z", + "iopub.status.busy": "2024-08-28T20:09:56.060647Z", + "iopub.status.idle": "2024-08-28T20:09:56.067141Z", + "shell.execute_reply": "2024-08-28T20:09:56.066724Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.248479Z", - "iopub.status.busy": "2024-08-26T15:55:18.248030Z", - "iopub.status.idle": "2024-08-26T15:55:18.251730Z", - "shell.execute_reply": "2024-08-26T15:55:18.251287Z" + "iopub.execute_input": "2024-08-28T20:09:56.069248Z", + "iopub.status.busy": "2024-08-28T20:09:56.068862Z", + "iopub.status.idle": "2024-08-28T20:09:56.072372Z", + "shell.execute_reply": "2024-08-28T20:09:56.071923Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.253884Z", - "iopub.status.busy": "2024-08-26T15:55:18.253487Z", - "iopub.status.idle": "2024-08-26T15:55:18.260069Z", - "shell.execute_reply": "2024-08-26T15:55:18.259540Z" + "iopub.execute_input": "2024-08-28T20:09:56.074437Z", + "iopub.status.busy": "2024-08-28T20:09:56.074111Z", + "iopub.status.idle": "2024-08-28T20:09:56.080323Z", + "shell.execute_reply": "2024-08-28T20:09:56.079886Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.262054Z", - "iopub.status.busy": "2024-08-26T15:55:18.261730Z", - "iopub.status.idle": "2024-08-26T15:55:18.307972Z", - "shell.execute_reply": "2024-08-26T15:55:18.307332Z" + "iopub.execute_input": "2024-08-28T20:09:56.082350Z", + "iopub.status.busy": "2024-08-28T20:09:56.081947Z", + "iopub.status.idle": "2024-08-28T20:09:56.124532Z", + "shell.execute_reply": "2024-08-28T20:09:56.123915Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.310629Z", - "iopub.status.busy": "2024-08-26T15:55:18.310268Z", - "iopub.status.idle": "2024-08-26T15:55:18.357760Z", - "shell.execute_reply": "2024-08-26T15:55:18.357031Z" + "iopub.execute_input": "2024-08-28T20:09:56.127266Z", + "iopub.status.busy": "2024-08-28T20:09:56.126777Z", + "iopub.status.idle": "2024-08-28T20:09:56.169603Z", + "shell.execute_reply": "2024-08-28T20:09:56.168997Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.360787Z", - "iopub.status.busy": "2024-08-26T15:55:18.360523Z", - "iopub.status.idle": "2024-08-26T15:55:18.502295Z", - "shell.execute_reply": "2024-08-26T15:55:18.501633Z" + "iopub.execute_input": "2024-08-28T20:09:56.172428Z", + "iopub.status.busy": "2024-08-28T20:09:56.172011Z", + "iopub.status.idle": "2024-08-28T20:09:56.301098Z", + "shell.execute_reply": "2024-08-28T20:09:56.300426Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:18.505049Z", - "iopub.status.busy": "2024-08-26T15:55:18.504411Z", - "iopub.status.idle": "2024-08-26T15:55:21.592362Z", - "shell.execute_reply": "2024-08-26T15:55:21.591759Z" + "iopub.execute_input": "2024-08-28T20:09:56.304077Z", + "iopub.status.busy": "2024-08-28T20:09:56.303425Z", + "iopub.status.idle": "2024-08-28T20:09:59.330707Z", + "shell.execute_reply": "2024-08-28T20:09:59.330034Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:21.594962Z", - "iopub.status.busy": "2024-08-26T15:55:21.594522Z", - "iopub.status.idle": "2024-08-26T15:55:21.655071Z", - "shell.execute_reply": "2024-08-26T15:55:21.654503Z" + "iopub.execute_input": "2024-08-28T20:09:59.333292Z", + "iopub.status.busy": "2024-08-28T20:09:59.332912Z", + "iopub.status.idle": "2024-08-28T20:09:59.393841Z", + "shell.execute_reply": "2024-08-28T20:09:59.393220Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:21.657359Z", - "iopub.status.busy": "2024-08-26T15:55:21.656975Z", - "iopub.status.idle": "2024-08-26T15:55:21.701256Z", - "shell.execute_reply": "2024-08-26T15:55:21.700663Z" + "iopub.execute_input": "2024-08-28T20:09:59.396299Z", + "iopub.status.busy": "2024-08-28T20:09:59.395878Z", + "iopub.status.idle": "2024-08-28T20:09:59.437014Z", + "shell.execute_reply": "2024-08-28T20:09:59.436555Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "bbc89480", + "id": "b7f9d1d0", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "5d407ba9", + "id": "2302d7fe", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "a03d9969", + "id": "212341c9", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "13c020d7", + "id": "3d234115", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:21.703794Z", - "iopub.status.busy": "2024-08-26T15:55:21.703579Z", - "iopub.status.idle": "2024-08-26T15:55:21.712036Z", - "shell.execute_reply": "2024-08-26T15:55:21.711478Z" + "iopub.execute_input": "2024-08-28T20:09:59.439175Z", + "iopub.status.busy": "2024-08-28T20:09:59.438836Z", + "iopub.status.idle": "2024-08-28T20:09:59.446343Z", + "shell.execute_reply": "2024-08-28T20:09:59.445899Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "72e010be", + "id": "e156ed72", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "1114ac9d", + "id": "12a8168e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:21.714247Z", - "iopub.status.busy": "2024-08-26T15:55:21.714055Z", - "iopub.status.idle": "2024-08-26T15:55:21.734317Z", - "shell.execute_reply": "2024-08-26T15:55:21.733774Z" + "iopub.execute_input": "2024-08-28T20:09:59.448433Z", + "iopub.status.busy": "2024-08-28T20:09:59.448022Z", + "iopub.status.idle": "2024-08-28T20:09:59.466539Z", + "shell.execute_reply": "2024-08-28T20:09:59.465999Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "3c29551d", + "id": "29dc954c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:21.736466Z", - "iopub.status.busy": "2024-08-26T15:55:21.736265Z", - "iopub.status.idle": "2024-08-26T15:55:21.739835Z", - "shell.execute_reply": "2024-08-26T15:55:21.739353Z" + "iopub.execute_input": "2024-08-28T20:09:59.468584Z", + "iopub.status.busy": "2024-08-28T20:09:59.468183Z", + "iopub.status.idle": "2024-08-28T20:09:59.471489Z", + "shell.execute_reply": "2024-08-28T20:09:59.470953Z" } }, "outputs": [ @@ -1622,7 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "05a2244cf3ec4de397f55f99105338cb": { + "04300abb96824f8097901e94ea9e99ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1675,7 +1675,23 @@ "width": null } }, - "1438b903a790497086e14479b9616dc7": { + "04e6011848ae4bf6b258e2555a2a13d1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "12bf7df1f9204a5095f5e077b9fe4131": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1728,7 +1744,7 @@ "width": null } }, - "1c6eaa0577094c9a9006e09c722e5ff6": { + "14824c09ec074987a007b3fce67e9d6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1743,39 +1759,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_50d2ce3a7ac34f579038361d07764343", + "layout": "IPY_MODEL_a98607043a4b43e8889e3b70a3e2baee", "placeholder": "​", - "style": "IPY_MODEL_bbfc6ad0bb8345c58d4b74e639515d30", + "style": "IPY_MODEL_ce34ab94c1c14fd4b2fadee641a8ce4b", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "value": " 10000/? [00:00<00:00, 898272.55it/s]" } }, - "2a2af44ac76147299114dc626eee43c4": { + "1a270ad84b304c7ea9cee60457aa5f4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1c6eaa0577094c9a9006e09c722e5ff6", - "IPY_MODEL_983216f51406483891526ab9457a17fe", - "IPY_MODEL_bbfb0b9ec3bf49f1aa6f762e6404248b" - ], - "layout": "IPY_MODEL_1438b903a790497086e14479b9616dc7", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e1ff73b86e004ab18abe4ae62da7a7bf", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b4af85b29d3e44e9b817eca2a8003b2d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 50.0 } }, - "35b5b5e73d824538b702d11aa4afe705": { + "1ad391d54ecd46e6a5aca6d96ae5e591": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1791,35 +1809,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8a0ce1dd3c544ef18d0d8f90a54ae31c", + "layout": "IPY_MODEL_84944c49bf154db08af3a935a564dc3f", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fe3712896c7544e98d34ebbe6caa7cab", + "style": "IPY_MODEL_04e6011848ae4bf6b258e2555a2a13d1", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "3627282d21d8407dbe2fbdf4a83ce601": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "425eed607e0b435d951647eabb8299f6": { + "24ae5723404542509e5b6f51370ecacd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1872,60 +1872,66 @@ "width": null } }, - "50d2ce3a7ac34f579038361d07764343": { - "model_module": "@jupyter-widgets/base", + "289811d4b1a14eeaa811b3c509b248a1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1d94bcd37364f09b0385b9834328394", + "placeholder": "​", + "style": "IPY_MODEL_3b5db8fc407b4caa86de5a0c70a8096f", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 937107.11it/s]" + } + }, + "339a117eaa1743738b872acdff8b51da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3b5db8fc407b4caa86de5a0c70a8096f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7ca424fc2c6645d28c417390b61079d0": { + "5f378e07f4a84e36ba9d1d73375ede61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1940,34 +1946,63 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9d7157b027c94034baf26f45124303c3", - "IPY_MODEL_35b5b5e73d824538b702d11aa4afe705", - "IPY_MODEL_9ede3fa639214ec08e51faaf6d0cae4e" + "IPY_MODEL_d0140cbc434c454dbbd2983e38378862", + "IPY_MODEL_1a270ad84b304c7ea9cee60457aa5f4b", + "IPY_MODEL_289811d4b1a14eeaa811b3c509b248a1" ], - "layout": "IPY_MODEL_f628b90d6c5643aaa470e10d15f810a3", + "layout": "IPY_MODEL_04300abb96824f8097901e94ea9e99ed", "tabbable": null, "tooltip": null } }, - "88eb40450c3847efb49e8e1740619fab": { + "65ce80795eb54d63bc661c8c5c91f8ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_98671bd85ca0436ca089cbc4ca37bd47", + "placeholder": "​", + "style": "IPY_MODEL_339a117eaa1743738b872acdff8b51da", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "69645958ad064009845003bf5fb6ac71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_65ce80795eb54d63bc661c8c5c91f8ea", + "IPY_MODEL_1ad391d54ecd46e6a5aca6d96ae5e591", + "IPY_MODEL_14824c09ec074987a007b3fce67e9d6b" + ], + "layout": "IPY_MODEL_24ae5723404542509e5b6f51370ecacd", + "tabbable": null, + "tooltip": null } }, - "8a0ce1dd3c544ef18d0d8f90a54ae31c": { + "84944c49bf154db08af3a935a564dc3f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2020,7 +2055,7 @@ "width": null } }, - "8c67a318d7604499be565bddd5519457": { + "98671bd85ca0436ca089cbc4ca37bd47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2073,79 +2108,7 @@ "width": null } }, - "983216f51406483891526ab9457a17fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8c67a318d7604499be565bddd5519457", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f221605dbe384754a74ba4a04dd33716", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "9d7157b027c94034baf26f45124303c3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_afc69967643547ac9a1e98a88efb89e6", - "placeholder": "​", - "style": "IPY_MODEL_88eb40450c3847efb49e8e1740619fab", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "9ede3fa639214ec08e51faaf6d0cae4e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_05a2244cf3ec4de397f55f99105338cb", - "placeholder": "​", - "style": "IPY_MODEL_3627282d21d8407dbe2fbdf4a83ce601", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1264868.52it/s]" - } - }, - "afc69967643547ac9a1e98a88efb89e6": { + "a98607043a4b43e8889e3b70a3e2baee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2198,48 +2161,41 @@ "width": null } }, - "bbfb0b9ec3bf49f1aa6f762e6404248b": { + "b191693200b24a1e807fc72f45f0e36d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_425eed607e0b435d951647eabb8299f6", - "placeholder": "​", - "style": "IPY_MODEL_e967ae1bd66a4661884711a6b8868e6e", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 899621.22it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "bbfc6ad0bb8345c58d4b74e639515d30": { + "b4af85b29d3e44e9b817eca2a8003b2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "e967ae1bd66a4661884711a6b8868e6e": { + "ce34ab94c1c14fd4b2fadee641a8ce4b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2257,23 +2213,30 @@ "text_color": null } }, - "f221605dbe384754a74ba4a04dd33716": { + "d0140cbc434c454dbbd2983e38378862": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_12bf7df1f9204a5095f5e077b9fe4131", + "placeholder": "​", + "style": "IPY_MODEL_b191693200b24a1e807fc72f45f0e36d", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } }, - "f628b90d6c5643aaa470e10d15f810a3": { + "d1d94bcd37364f09b0385b9834328394": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2326,20 +2289,57 @@ "width": null } }, - "fe3712896c7544e98d34ebbe6caa7cab": { - "model_module": "@jupyter-widgets/controls", + "e1ff73b86e004ab18abe4ae62da7a7bf": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index facf398f8..19ee6dad6 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -60,10 +60,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:25.362605Z", - "iopub.status.busy": "2024-08-26T15:55:25.362435Z", - "iopub.status.idle": "2024-08-26T15:55:26.562131Z", - "shell.execute_reply": "2024-08-26T15:55:26.561615Z" + "iopub.execute_input": "2024-08-28T20:10:03.698181Z", + "iopub.status.busy": "2024-08-28T20:10:03.697693Z", + "iopub.status.idle": "2024-08-28T20:10:04.848214Z", + "shell.execute_reply": "2024-08-28T20:10:04.847653Z" }, "nbsphinx": "hidden" }, @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -99,10 +99,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:26.564541Z", - "iopub.status.busy": "2024-08-26T15:55:26.564234Z", - "iopub.status.idle": "2024-08-26T15:55:26.568038Z", - "shell.execute_reply": "2024-08-26T15:55:26.567585Z" + "iopub.execute_input": "2024-08-28T20:10:04.850654Z", + "iopub.status.busy": "2024-08-28T20:10:04.850372Z", + "iopub.status.idle": "2024-08-28T20:10:04.854045Z", + "shell.execute_reply": "2024-08-28T20:10:04.853602Z" } }, "outputs": [], @@ -140,10 +140,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:26.569923Z", - "iopub.status.busy": "2024-08-26T15:55:26.569743Z", - "iopub.status.idle": "2024-08-26T15:55:27.245464Z", - "shell.execute_reply": "2024-08-26T15:55:27.244976Z" + "iopub.execute_input": "2024-08-28T20:10:04.856196Z", + "iopub.status.busy": "2024-08-28T20:10:04.855804Z", + "iopub.status.idle": "2024-08-28T20:10:05.126761Z", + "shell.execute_reply": "2024-08-28T20:10:05.126232Z" } }, "outputs": [ @@ -273,10 +273,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.247644Z", - "iopub.status.busy": "2024-08-26T15:55:27.247303Z", - "iopub.status.idle": "2024-08-26T15:55:27.253437Z", - "shell.execute_reply": "2024-08-26T15:55:27.252957Z" + "iopub.execute_input": "2024-08-28T20:10:05.129122Z", + "iopub.status.busy": "2024-08-28T20:10:05.128606Z", + "iopub.status.idle": "2024-08-28T20:10:05.134645Z", + "shell.execute_reply": "2024-08-28T20:10:05.134110Z" } }, "outputs": [], @@ -312,10 +312,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.255430Z", - "iopub.status.busy": "2024-08-26T15:55:27.255252Z", - "iopub.status.idle": "2024-08-26T15:55:27.262372Z", - "shell.execute_reply": "2024-08-26T15:55:27.261906Z" + "iopub.execute_input": "2024-08-28T20:10:05.136709Z", + "iopub.status.busy": "2024-08-28T20:10:05.136401Z", + "iopub.status.idle": "2024-08-28T20:10:05.143010Z", + "shell.execute_reply": "2024-08-28T20:10:05.142581Z" } }, "outputs": [ @@ -418,10 +418,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.264244Z", - "iopub.status.busy": "2024-08-26T15:55:27.264075Z", - "iopub.status.idle": "2024-08-26T15:55:27.268926Z", - "shell.execute_reply": "2024-08-26T15:55:27.268460Z" + "iopub.execute_input": "2024-08-28T20:10:05.145178Z", + "iopub.status.busy": "2024-08-28T20:10:05.144753Z", + "iopub.status.idle": "2024-08-28T20:10:05.149456Z", + "shell.execute_reply": "2024-08-28T20:10:05.149003Z" } }, "outputs": [], @@ -449,10 +449,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.271052Z", - "iopub.status.busy": "2024-08-26T15:55:27.270697Z", - "iopub.status.idle": "2024-08-26T15:55:27.276370Z", - "shell.execute_reply": "2024-08-26T15:55:27.275886Z" + "iopub.execute_input": "2024-08-28T20:10:05.151440Z", + "iopub.status.busy": "2024-08-28T20:10:05.151111Z", + "iopub.status.idle": "2024-08-28T20:10:05.156514Z", + "shell.execute_reply": "2024-08-28T20:10:05.156008Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.278393Z", - "iopub.status.busy": "2024-08-26T15:55:27.278052Z", - "iopub.status.idle": "2024-08-26T15:55:27.281895Z", - "shell.execute_reply": "2024-08-26T15:55:27.281433Z" + "iopub.execute_input": "2024-08-28T20:10:05.158600Z", + "iopub.status.busy": "2024-08-28T20:10:05.158274Z", + "iopub.status.idle": "2024-08-28T20:10:05.161976Z", + "shell.execute_reply": "2024-08-28T20:10:05.161509Z" } }, "outputs": [], @@ -506,10 +506,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.283963Z", - "iopub.status.busy": "2024-08-26T15:55:27.283628Z", - "iopub.status.idle": "2024-08-26T15:55:27.349424Z", - "shell.execute_reply": "2024-08-26T15:55:27.348889Z" + "iopub.execute_input": "2024-08-28T20:10:05.163985Z", + "iopub.status.busy": "2024-08-28T20:10:05.163658Z", + "iopub.status.idle": "2024-08-28T20:10:05.228822Z", + "shell.execute_reply": "2024-08-28T20:10:05.228185Z" } }, "outputs": [ @@ -609,10 +609,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.352059Z", - "iopub.status.busy": "2024-08-26T15:55:27.351755Z", - "iopub.status.idle": "2024-08-26T15:55:27.362726Z", - "shell.execute_reply": "2024-08-26T15:55:27.362212Z" + "iopub.execute_input": "2024-08-28T20:10:05.231583Z", + "iopub.status.busy": "2024-08-28T20:10:05.230979Z", + "iopub.status.idle": "2024-08-28T20:10:05.242319Z", + "shell.execute_reply": "2024-08-28T20:10:05.241793Z" } }, "outputs": [ @@ -724,10 +724,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.365338Z", - "iopub.status.busy": "2024-08-26T15:55:27.364980Z", - "iopub.status.idle": "2024-08-26T15:55:27.385773Z", - "shell.execute_reply": "2024-08-26T15:55:27.385252Z" + "iopub.execute_input": "2024-08-28T20:10:05.245685Z", + "iopub.status.busy": "2024-08-28T20:10:05.244618Z", + "iopub.status.idle": "2024-08-28T20:10:05.268191Z", + "shell.execute_reply": "2024-08-28T20:10:05.267673Z" } }, "outputs": [ @@ -931,10 +931,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.388960Z", - "iopub.status.busy": "2024-08-26T15:55:27.388027Z", - "iopub.status.idle": "2024-08-26T15:55:27.394001Z", - "shell.execute_reply": "2024-08-26T15:55:27.393500Z" + "iopub.execute_input": "2024-08-28T20:10:05.271822Z", + "iopub.status.busy": "2024-08-28T20:10:05.270872Z", + "iopub.status.idle": "2024-08-28T20:10:05.276832Z", + "shell.execute_reply": "2024-08-28T20:10:05.276344Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.397538Z", - "iopub.status.busy": "2024-08-26T15:55:27.396613Z", - "iopub.status.idle": "2024-08-26T15:55:27.402791Z", - "shell.execute_reply": "2024-08-26T15:55:27.402265Z" + "iopub.execute_input": "2024-08-28T20:10:05.280526Z", + "iopub.status.busy": "2024-08-28T20:10:05.279610Z", + "iopub.status.idle": "2024-08-28T20:10:05.285674Z", + "shell.execute_reply": "2024-08-28T20:10:05.285181Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.406271Z", - "iopub.status.busy": "2024-08-26T15:55:27.405351Z", - "iopub.status.idle": "2024-08-26T15:55:27.416136Z", - "shell.execute_reply": "2024-08-26T15:55:27.415710Z" + "iopub.execute_input": "2024-08-28T20:10:05.288952Z", + "iopub.status.busy": "2024-08-28T20:10:05.288227Z", + "iopub.status.idle": "2024-08-28T20:10:05.297407Z", + "shell.execute_reply": "2024-08-28T20:10:05.296965Z" } }, "outputs": [ @@ -1205,10 +1205,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.418270Z", - "iopub.status.busy": "2024-08-26T15:55:27.417932Z", - "iopub.status.idle": "2024-08-26T15:55:27.422255Z", - "shell.execute_reply": "2024-08-26T15:55:27.421825Z" + "iopub.execute_input": "2024-08-28T20:10:05.299405Z", + "iopub.status.busy": "2024-08-28T20:10:05.298965Z", + "iopub.status.idle": "2024-08-28T20:10:05.303414Z", + "shell.execute_reply": "2024-08-28T20:10:05.302993Z" } }, "outputs": [], @@ -1234,10 +1234,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.424266Z", - "iopub.status.busy": "2024-08-26T15:55:27.423929Z", - "iopub.status.idle": "2024-08-26T15:55:27.536867Z", - "shell.execute_reply": "2024-08-26T15:55:27.536318Z" + "iopub.execute_input": "2024-08-28T20:10:05.305332Z", + "iopub.status.busy": "2024-08-28T20:10:05.305161Z", + "iopub.status.idle": "2024-08-28T20:10:05.417597Z", + "shell.execute_reply": "2024-08-28T20:10:05.417016Z" } }, "outputs": [ @@ -1711,10 +1711,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.539165Z", - "iopub.status.busy": "2024-08-26T15:55:27.538730Z", - "iopub.status.idle": "2024-08-26T15:55:27.545308Z", - "shell.execute_reply": "2024-08-26T15:55:27.544696Z" + "iopub.execute_input": "2024-08-28T20:10:05.419707Z", + "iopub.status.busy": "2024-08-28T20:10:05.419494Z", + "iopub.status.idle": "2024-08-28T20:10:05.425998Z", + "shell.execute_reply": "2024-08-28T20:10:05.425515Z" } }, "outputs": [], @@ -1738,10 +1738,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:27.547840Z", - "iopub.status.busy": "2024-08-26T15:55:27.547449Z", - "iopub.status.idle": "2024-08-26T15:55:29.681557Z", - "shell.execute_reply": "2024-08-26T15:55:29.680908Z" + "iopub.execute_input": "2024-08-28T20:10:05.428210Z", + "iopub.status.busy": "2024-08-28T20:10:05.427862Z", + "iopub.status.idle": "2024-08-28T20:10:07.405978Z", + "shell.execute_reply": "2024-08-28T20:10:07.405351Z" } }, "outputs": [ @@ -1953,10 +1953,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:29.684527Z", - "iopub.status.busy": "2024-08-26T15:55:29.684058Z", - "iopub.status.idle": "2024-08-26T15:55:29.697584Z", - "shell.execute_reply": "2024-08-26T15:55:29.697064Z" + "iopub.execute_input": "2024-08-28T20:10:07.408894Z", + "iopub.status.busy": "2024-08-28T20:10:07.408353Z", + "iopub.status.idle": "2024-08-28T20:10:07.421259Z", + "shell.execute_reply": "2024-08-28T20:10:07.420757Z" } }, "outputs": [ @@ -2073,10 +2073,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:29.700253Z", - "iopub.status.busy": "2024-08-26T15:55:29.699924Z", - "iopub.status.idle": "2024-08-26T15:55:29.702768Z", - "shell.execute_reply": "2024-08-26T15:55:29.702242Z" + "iopub.execute_input": "2024-08-28T20:10:07.423726Z", + "iopub.status.busy": "2024-08-28T20:10:07.423320Z", + "iopub.status.idle": "2024-08-28T20:10:07.426221Z", + "shell.execute_reply": "2024-08-28T20:10:07.425716Z" } }, "outputs": [], @@ -2090,10 +2090,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:29.705381Z", - "iopub.status.busy": "2024-08-26T15:55:29.704977Z", - "iopub.status.idle": "2024-08-26T15:55:29.709647Z", - "shell.execute_reply": "2024-08-26T15:55:29.709138Z" + "iopub.execute_input": "2024-08-28T20:10:07.428557Z", + "iopub.status.busy": "2024-08-28T20:10:07.428178Z", + "iopub.status.idle": "2024-08-28T20:10:07.432586Z", + "shell.execute_reply": "2024-08-28T20:10:07.432088Z" } }, "outputs": [], @@ -2117,10 +2117,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:29.712190Z", - "iopub.status.busy": "2024-08-26T15:55:29.711867Z", - "iopub.status.idle": "2024-08-26T15:55:29.728908Z", - "shell.execute_reply": "2024-08-26T15:55:29.728350Z" + "iopub.execute_input": "2024-08-28T20:10:07.434935Z", + "iopub.status.busy": "2024-08-28T20:10:07.434559Z", + "iopub.status.idle": "2024-08-28T20:10:07.470601Z", + "shell.execute_reply": "2024-08-28T20:10:07.470123Z" } }, "outputs": [ @@ -2160,10 +2160,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:29.731883Z", - "iopub.status.busy": "2024-08-26T15:55:29.731381Z", - "iopub.status.idle": "2024-08-26T15:55:30.247384Z", - "shell.execute_reply": "2024-08-26T15:55:30.246765Z" + "iopub.execute_input": "2024-08-28T20:10:07.473410Z", + "iopub.status.busy": "2024-08-28T20:10:07.472550Z", + "iopub.status.idle": "2024-08-28T20:10:08.009378Z", + "shell.execute_reply": "2024-08-28T20:10:08.008805Z" } }, "outputs": [], @@ -2194,10 +2194,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.250443Z", - "iopub.status.busy": "2024-08-26T15:55:30.250031Z", - "iopub.status.idle": "2024-08-26T15:55:30.393213Z", - "shell.execute_reply": "2024-08-26T15:55:30.392572Z" + "iopub.execute_input": "2024-08-28T20:10:08.013336Z", + "iopub.status.busy": "2024-08-28T20:10:08.012259Z", + "iopub.status.idle": "2024-08-28T20:10:08.144611Z", + "shell.execute_reply": "2024-08-28T20:10:08.144010Z" } }, "outputs": [ @@ -2408,10 +2408,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.397049Z", - "iopub.status.busy": "2024-08-26T15:55:30.395902Z", - "iopub.status.idle": "2024-08-26T15:55:30.405345Z", - "shell.execute_reply": "2024-08-26T15:55:30.404822Z" + "iopub.execute_input": "2024-08-28T20:10:08.147463Z", + "iopub.status.busy": "2024-08-28T20:10:08.147059Z", + "iopub.status.idle": "2024-08-28T20:10:08.153727Z", + "shell.execute_reply": "2024-08-28T20:10:08.153247Z" } }, "outputs": [ @@ -2441,10 +2441,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.409099Z", - "iopub.status.busy": "2024-08-26T15:55:30.408156Z", - "iopub.status.idle": "2024-08-26T15:55:30.416284Z", - "shell.execute_reply": "2024-08-26T15:55:30.415770Z" + "iopub.execute_input": "2024-08-28T20:10:08.156078Z", + "iopub.status.busy": "2024-08-28T20:10:08.155700Z", + "iopub.status.idle": "2024-08-28T20:10:08.161574Z", + "shell.execute_reply": "2024-08-28T20:10:08.161091Z" } }, "outputs": [ @@ -2477,10 +2477,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.419835Z", - "iopub.status.busy": "2024-08-26T15:55:30.418896Z", - "iopub.status.idle": "2024-08-26T15:55:30.426289Z", - "shell.execute_reply": "2024-08-26T15:55:30.425777Z" + "iopub.execute_input": "2024-08-28T20:10:08.163878Z", + "iopub.status.busy": "2024-08-28T20:10:08.163480Z", + "iopub.status.idle": "2024-08-28T20:10:08.168816Z", + "shell.execute_reply": "2024-08-28T20:10:08.168310Z" } }, "outputs": [ @@ -2513,10 +2513,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.429821Z", - "iopub.status.busy": "2024-08-26T15:55:30.428890Z", - "iopub.status.idle": "2024-08-26T15:55:30.435057Z", - "shell.execute_reply": "2024-08-26T15:55:30.434526Z" + "iopub.execute_input": "2024-08-28T20:10:08.171154Z", + "iopub.status.busy": "2024-08-28T20:10:08.170779Z", + "iopub.status.idle": "2024-08-28T20:10:08.174890Z", + "shell.execute_reply": "2024-08-28T20:10:08.174410Z" } }, "outputs": [ @@ -2542,10 +2542,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.436950Z", - "iopub.status.busy": "2024-08-26T15:55:30.436774Z", - "iopub.status.idle": "2024-08-26T15:55:30.441301Z", - "shell.execute_reply": "2024-08-26T15:55:30.440839Z" + "iopub.execute_input": "2024-08-28T20:10:08.177190Z", + "iopub.status.busy": "2024-08-28T20:10:08.176822Z", + "iopub.status.idle": "2024-08-28T20:10:08.181479Z", + "shell.execute_reply": "2024-08-28T20:10:08.180988Z" } }, "outputs": [], @@ -2569,10 +2569,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.443236Z", - "iopub.status.busy": "2024-08-26T15:55:30.443059Z", - "iopub.status.idle": "2024-08-26T15:55:30.518439Z", - "shell.execute_reply": "2024-08-26T15:55:30.517913Z" + "iopub.execute_input": "2024-08-28T20:10:08.183838Z", + "iopub.status.busy": "2024-08-28T20:10:08.183447Z", + "iopub.status.idle": "2024-08-28T20:10:08.264116Z", + "shell.execute_reply": "2024-08-28T20:10:08.263573Z" } }, "outputs": [ @@ -3052,10 +3052,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.521052Z", - "iopub.status.busy": "2024-08-26T15:55:30.520744Z", - "iopub.status.idle": "2024-08-26T15:55:30.530084Z", - "shell.execute_reply": "2024-08-26T15:55:30.529563Z" + "iopub.execute_input": "2024-08-28T20:10:08.266321Z", + "iopub.status.busy": "2024-08-28T20:10:08.266005Z", + "iopub.status.idle": "2024-08-28T20:10:08.277633Z", + "shell.execute_reply": "2024-08-28T20:10:08.277148Z" } }, "outputs": [ @@ -3111,10 +3111,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.532628Z", - "iopub.status.busy": "2024-08-26T15:55:30.532282Z", - "iopub.status.idle": "2024-08-26T15:55:30.535145Z", - "shell.execute_reply": "2024-08-26T15:55:30.534554Z" + "iopub.execute_input": "2024-08-28T20:10:08.280446Z", + "iopub.status.busy": "2024-08-28T20:10:08.280089Z", + "iopub.status.idle": "2024-08-28T20:10:08.283457Z", + "shell.execute_reply": "2024-08-28T20:10:08.283055Z" } }, "outputs": [], @@ -3150,10 +3150,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.537206Z", - "iopub.status.busy": "2024-08-26T15:55:30.536802Z", - "iopub.status.idle": "2024-08-26T15:55:30.547035Z", - "shell.execute_reply": "2024-08-26T15:55:30.546403Z" + "iopub.execute_input": "2024-08-28T20:10:08.285641Z", + "iopub.status.busy": "2024-08-28T20:10:08.285369Z", + "iopub.status.idle": "2024-08-28T20:10:08.296591Z", + "shell.execute_reply": "2024-08-28T20:10:08.296036Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.549375Z", - "iopub.status.busy": "2024-08-26T15:55:30.549191Z", - "iopub.status.idle": "2024-08-26T15:55:30.556029Z", - "shell.execute_reply": "2024-08-26T15:55:30.555553Z" + "iopub.execute_input": "2024-08-28T20:10:08.298817Z", + "iopub.status.busy": "2024-08-28T20:10:08.298509Z", + "iopub.status.idle": "2024-08-28T20:10:08.305024Z", + "shell.execute_reply": "2024-08-28T20:10:08.304495Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.558185Z", - "iopub.status.busy": "2024-08-26T15:55:30.557856Z", - "iopub.status.idle": "2024-08-26T15:55:30.561412Z", - "shell.execute_reply": "2024-08-26T15:55:30.560822Z" + "iopub.execute_input": "2024-08-28T20:10:08.307009Z", + "iopub.status.busy": "2024-08-28T20:10:08.306698Z", + "iopub.status.idle": "2024-08-28T20:10:08.309906Z", + "shell.execute_reply": "2024-08-28T20:10:08.309410Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:30.563623Z", - "iopub.status.busy": "2024-08-26T15:55:30.563290Z", - "iopub.status.idle": "2024-08-26T15:55:34.647728Z", - "shell.execute_reply": "2024-08-26T15:55:34.647124Z" + "iopub.execute_input": "2024-08-28T20:10:08.311873Z", + "iopub.status.busy": "2024-08-28T20:10:08.311702Z", + "iopub.status.idle": "2024-08-28T20:10:12.337048Z", + "shell.execute_reply": "2024-08-28T20:10:12.336527Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:34.650677Z", - "iopub.status.busy": "2024-08-26T15:55:34.650453Z", - "iopub.status.idle": "2024-08-26T15:55:34.653991Z", - "shell.execute_reply": "2024-08-26T15:55:34.653587Z" + "iopub.execute_input": "2024-08-28T20:10:12.339575Z", + "iopub.status.busy": "2024-08-28T20:10:12.339168Z", + "iopub.status.idle": "2024-08-28T20:10:12.342173Z", + "shell.execute_reply": "2024-08-28T20:10:12.341777Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:34.656080Z", - "iopub.status.busy": "2024-08-26T15:55:34.655702Z", - "iopub.status.idle": "2024-08-26T15:55:34.658385Z", - "shell.execute_reply": "2024-08-26T15:55:34.657946Z" + "iopub.execute_input": "2024-08-28T20:10:12.344378Z", + "iopub.status.busy": "2024-08-28T20:10:12.344083Z", + "iopub.status.idle": "2024-08-28T20:10:12.346559Z", + "shell.execute_reply": "2024-08-28T20:10:12.346169Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index ecc184176..94545a8e2 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:38.086130Z", - "iopub.status.busy": "2024-08-26T15:55:38.085966Z", - "iopub.status.idle": "2024-08-26T15:55:39.311143Z", - "shell.execute_reply": "2024-08-26T15:55:39.310564Z" + "iopub.execute_input": "2024-08-28T20:10:15.415169Z", + "iopub.status.busy": "2024-08-28T20:10:15.414998Z", + "iopub.status.idle": "2024-08-28T20:10:16.612302Z", + "shell.execute_reply": "2024-08-28T20:10:16.611666Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:39.313573Z", - "iopub.status.busy": "2024-08-26T15:55:39.313197Z", - "iopub.status.idle": "2024-08-26T15:55:39.493648Z", - "shell.execute_reply": "2024-08-26T15:55:39.493028Z" + "iopub.execute_input": "2024-08-28T20:10:16.614807Z", + "iopub.status.busy": "2024-08-28T20:10:16.614546Z", + "iopub.status.idle": "2024-08-28T20:10:16.795267Z", + "shell.execute_reply": "2024-08-28T20:10:16.794632Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:39.496374Z", - "iopub.status.busy": "2024-08-26T15:55:39.496034Z", - "iopub.status.idle": "2024-08-26T15:55:39.508251Z", - "shell.execute_reply": "2024-08-26T15:55:39.507813Z" + "iopub.execute_input": "2024-08-28T20:10:16.797857Z", + "iopub.status.busy": "2024-08-28T20:10:16.797433Z", + "iopub.status.idle": "2024-08-28T20:10:16.809711Z", + "shell.execute_reply": "2024-08-28T20:10:16.809292Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:39.510455Z", - "iopub.status.busy": "2024-08-26T15:55:39.509993Z", - "iopub.status.idle": "2024-08-26T15:55:39.748733Z", - "shell.execute_reply": "2024-08-26T15:55:39.748087Z" + "iopub.execute_input": "2024-08-28T20:10:16.811782Z", + "iopub.status.busy": "2024-08-28T20:10:16.811369Z", + "iopub.status.idle": "2024-08-28T20:10:17.046442Z", + "shell.execute_reply": "2024-08-28T20:10:17.045868Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:39.751243Z", - "iopub.status.busy": "2024-08-26T15:55:39.750850Z", - "iopub.status.idle": "2024-08-26T15:55:39.777570Z", - "shell.execute_reply": "2024-08-26T15:55:39.777078Z" + "iopub.execute_input": "2024-08-28T20:10:17.048796Z", + "iopub.status.busy": "2024-08-28T20:10:17.048434Z", + "iopub.status.idle": "2024-08-28T20:10:17.074409Z", + "shell.execute_reply": "2024-08-28T20:10:17.073959Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:39.779657Z", - "iopub.status.busy": "2024-08-26T15:55:39.779303Z", - "iopub.status.idle": "2024-08-26T15:55:41.935090Z", - "shell.execute_reply": "2024-08-26T15:55:41.934417Z" + "iopub.execute_input": "2024-08-28T20:10:17.076615Z", + "iopub.status.busy": "2024-08-28T20:10:17.076248Z", + "iopub.status.idle": "2024-08-28T20:10:19.168372Z", + "shell.execute_reply": "2024-08-28T20:10:19.167790Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:41.937632Z", - "iopub.status.busy": "2024-08-26T15:55:41.937283Z", - "iopub.status.idle": "2024-08-26T15:55:41.956016Z", - "shell.execute_reply": "2024-08-26T15:55:41.955557Z" + "iopub.execute_input": "2024-08-28T20:10:19.170900Z", + "iopub.status.busy": "2024-08-28T20:10:19.170380Z", + "iopub.status.idle": "2024-08-28T20:10:19.188323Z", + "shell.execute_reply": "2024-08-28T20:10:19.187864Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:41.958182Z", - "iopub.status.busy": "2024-08-26T15:55:41.957880Z", - "iopub.status.idle": "2024-08-26T15:55:43.590550Z", - "shell.execute_reply": "2024-08-26T15:55:43.589949Z" + "iopub.execute_input": "2024-08-28T20:10:19.190470Z", + "iopub.status.busy": "2024-08-28T20:10:19.190023Z", + "iopub.status.idle": "2024-08-28T20:10:20.776002Z", + "shell.execute_reply": "2024-08-28T20:10:20.775327Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.593513Z", - "iopub.status.busy": "2024-08-26T15:55:43.592646Z", - "iopub.status.idle": "2024-08-26T15:55:43.606730Z", - "shell.execute_reply": "2024-08-26T15:55:43.606174Z" + "iopub.execute_input": "2024-08-28T20:10:20.778994Z", + "iopub.status.busy": "2024-08-28T20:10:20.778210Z", + "iopub.status.idle": "2024-08-28T20:10:20.792248Z", + "shell.execute_reply": "2024-08-28T20:10:20.791702Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.609011Z", - "iopub.status.busy": "2024-08-26T15:55:43.608577Z", - "iopub.status.idle": "2024-08-26T15:55:43.695090Z", - "shell.execute_reply": "2024-08-26T15:55:43.694416Z" + "iopub.execute_input": "2024-08-28T20:10:20.794340Z", + "iopub.status.busy": "2024-08-28T20:10:20.794062Z", + "iopub.status.idle": "2024-08-28T20:10:20.876663Z", + "shell.execute_reply": "2024-08-28T20:10:20.876071Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.697856Z", - "iopub.status.busy": "2024-08-26T15:55:43.697324Z", - "iopub.status.idle": "2024-08-26T15:55:43.914049Z", - "shell.execute_reply": "2024-08-26T15:55:43.913315Z" + "iopub.execute_input": "2024-08-28T20:10:20.879051Z", + "iopub.status.busy": "2024-08-28T20:10:20.878654Z", + "iopub.status.idle": "2024-08-28T20:10:21.086504Z", + "shell.execute_reply": "2024-08-28T20:10:21.085941Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.916733Z", - "iopub.status.busy": "2024-08-26T15:55:43.916502Z", - "iopub.status.idle": "2024-08-26T15:55:43.934524Z", - "shell.execute_reply": "2024-08-26T15:55:43.933947Z" + "iopub.execute_input": "2024-08-28T20:10:21.088578Z", + "iopub.status.busy": "2024-08-28T20:10:21.088390Z", + "iopub.status.idle": "2024-08-28T20:10:21.105966Z", + "shell.execute_reply": "2024-08-28T20:10:21.105491Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.936771Z", - "iopub.status.busy": "2024-08-26T15:55:43.936316Z", - "iopub.status.idle": "2024-08-26T15:55:43.946229Z", - "shell.execute_reply": "2024-08-26T15:55:43.945703Z" + "iopub.execute_input": "2024-08-28T20:10:21.107979Z", + "iopub.status.busy": "2024-08-28T20:10:21.107705Z", + "iopub.status.idle": "2024-08-28T20:10:21.117028Z", + "shell.execute_reply": "2024-08-28T20:10:21.116582Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:43.948319Z", - "iopub.status.busy": "2024-08-26T15:55:43.947995Z", - "iopub.status.idle": "2024-08-26T15:55:44.045452Z", - "shell.execute_reply": "2024-08-26T15:55:44.044785Z" + "iopub.execute_input": "2024-08-28T20:10:21.118973Z", + "iopub.status.busy": "2024-08-28T20:10:21.118665Z", + "iopub.status.idle": "2024-08-28T20:10:21.208796Z", + "shell.execute_reply": "2024-08-28T20:10:21.208233Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.048317Z", - "iopub.status.busy": "2024-08-26T15:55:44.047949Z", - "iopub.status.idle": "2024-08-26T15:55:44.199135Z", - "shell.execute_reply": "2024-08-26T15:55:44.198458Z" + "iopub.execute_input": "2024-08-28T20:10:21.211242Z", + "iopub.status.busy": "2024-08-28T20:10:21.210857Z", + "iopub.status.idle": "2024-08-28T20:10:21.355767Z", + "shell.execute_reply": "2024-08-28T20:10:21.355116Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.201720Z", - "iopub.status.busy": "2024-08-26T15:55:44.201228Z", - "iopub.status.idle": "2024-08-26T15:55:44.205095Z", - "shell.execute_reply": "2024-08-26T15:55:44.204563Z" + "iopub.execute_input": "2024-08-28T20:10:21.358196Z", + "iopub.status.busy": "2024-08-28T20:10:21.357805Z", + "iopub.status.idle": "2024-08-28T20:10:21.361740Z", + "shell.execute_reply": "2024-08-28T20:10:21.361169Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.207245Z", - "iopub.status.busy": "2024-08-26T15:55:44.206899Z", - "iopub.status.idle": "2024-08-26T15:55:44.210784Z", - "shell.execute_reply": "2024-08-26T15:55:44.210214Z" + "iopub.execute_input": "2024-08-28T20:10:21.363811Z", + "iopub.status.busy": "2024-08-28T20:10:21.363465Z", + "iopub.status.idle": "2024-08-28T20:10:21.367385Z", + "shell.execute_reply": "2024-08-28T20:10:21.366815Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.212876Z", - "iopub.status.busy": "2024-08-26T15:55:44.212534Z", - "iopub.status.idle": "2024-08-26T15:55:44.250428Z", - "shell.execute_reply": "2024-08-26T15:55:44.249930Z" + "iopub.execute_input": "2024-08-28T20:10:21.369320Z", + "iopub.status.busy": "2024-08-28T20:10:21.369143Z", + "iopub.status.idle": "2024-08-28T20:10:21.406093Z", + "shell.execute_reply": "2024-08-28T20:10:21.405592Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.252634Z", - "iopub.status.busy": "2024-08-26T15:55:44.252293Z", - "iopub.status.idle": "2024-08-26T15:55:44.295407Z", - "shell.execute_reply": "2024-08-26T15:55:44.294796Z" + "iopub.execute_input": "2024-08-28T20:10:21.408110Z", + "iopub.status.busy": "2024-08-28T20:10:21.407927Z", + "iopub.status.idle": "2024-08-28T20:10:21.449003Z", + "shell.execute_reply": "2024-08-28T20:10:21.448423Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.297833Z", - "iopub.status.busy": "2024-08-26T15:55:44.297324Z", - "iopub.status.idle": "2024-08-26T15:55:44.403721Z", - "shell.execute_reply": "2024-08-26T15:55:44.403058Z" + "iopub.execute_input": "2024-08-28T20:10:21.451001Z", + "iopub.status.busy": "2024-08-28T20:10:21.450821Z", + "iopub.status.idle": "2024-08-28T20:10:21.557195Z", + "shell.execute_reply": "2024-08-28T20:10:21.556593Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.406534Z", - "iopub.status.busy": "2024-08-26T15:55:44.406130Z", - "iopub.status.idle": "2024-08-26T15:55:44.519957Z", - "shell.execute_reply": "2024-08-26T15:55:44.519299Z" + "iopub.execute_input": "2024-08-28T20:10:21.559918Z", + "iopub.status.busy": "2024-08-28T20:10:21.559498Z", + "iopub.status.idle": "2024-08-28T20:10:21.664012Z", + "shell.execute_reply": "2024-08-28T20:10:21.663415Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.522219Z", - "iopub.status.busy": "2024-08-26T15:55:44.521957Z", - "iopub.status.idle": "2024-08-26T15:55:44.735309Z", - "shell.execute_reply": "2024-08-26T15:55:44.734712Z" + "iopub.execute_input": "2024-08-28T20:10:21.666332Z", + "iopub.status.busy": "2024-08-28T20:10:21.666086Z", + "iopub.status.idle": "2024-08-28T20:10:21.883555Z", + "shell.execute_reply": "2024-08-28T20:10:21.882993Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.737523Z", - "iopub.status.busy": "2024-08-26T15:55:44.737321Z", - "iopub.status.idle": "2024-08-26T15:55:44.980688Z", - "shell.execute_reply": "2024-08-26T15:55:44.980009Z" + "iopub.execute_input": "2024-08-28T20:10:21.885941Z", + "iopub.status.busy": "2024-08-28T20:10:21.885493Z", + "iopub.status.idle": "2024-08-28T20:10:22.093141Z", + "shell.execute_reply": "2024-08-28T20:10:22.092561Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.983243Z", - "iopub.status.busy": "2024-08-26T15:55:44.982856Z", - "iopub.status.idle": "2024-08-26T15:55:44.989124Z", - "shell.execute_reply": "2024-08-26T15:55:44.988663Z" + "iopub.execute_input": "2024-08-28T20:10:22.095719Z", + "iopub.status.busy": "2024-08-28T20:10:22.095201Z", + "iopub.status.idle": "2024-08-28T20:10:22.101800Z", + "shell.execute_reply": "2024-08-28T20:10:22.101231Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:44.991199Z", - "iopub.status.busy": "2024-08-26T15:55:44.990866Z", - "iopub.status.idle": "2024-08-26T15:55:45.206648Z", - "shell.execute_reply": "2024-08-26T15:55:45.206056Z" + "iopub.execute_input": "2024-08-28T20:10:22.104004Z", + "iopub.status.busy": "2024-08-28T20:10:22.103656Z", + "iopub.status.idle": "2024-08-28T20:10:22.317385Z", + "shell.execute_reply": "2024-08-28T20:10:22.316794Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:45.208912Z", - "iopub.status.busy": "2024-08-26T15:55:45.208710Z", - "iopub.status.idle": "2024-08-26T15:55:46.311061Z", - "shell.execute_reply": "2024-08-26T15:55:46.310458Z" + "iopub.execute_input": "2024-08-28T20:10:22.319795Z", + "iopub.status.busy": "2024-08-28T20:10:22.319339Z", + "iopub.status.idle": "2024-08-28T20:10:23.373257Z", + "shell.execute_reply": "2024-08-28T20:10:23.372707Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index b1f7815f0..182ef924d 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:50.101189Z", - "iopub.status.busy": "2024-08-26T15:55:50.100749Z", - "iopub.status.idle": "2024-08-26T15:55:51.329967Z", - "shell.execute_reply": "2024-08-26T15:55:51.329400Z" + "iopub.execute_input": "2024-08-28T20:10:27.766693Z", + "iopub.status.busy": "2024-08-28T20:10:27.766517Z", + "iopub.status.idle": "2024-08-28T20:10:28.915327Z", + "shell.execute_reply": "2024-08-28T20:10:28.914713Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.332983Z", - "iopub.status.busy": "2024-08-26T15:55:51.332429Z", - "iopub.status.idle": "2024-08-26T15:55:51.335909Z", - "shell.execute_reply": "2024-08-26T15:55:51.335324Z" + "iopub.execute_input": "2024-08-28T20:10:28.917979Z", + "iopub.status.busy": "2024-08-28T20:10:28.917699Z", + "iopub.status.idle": "2024-08-28T20:10:28.920819Z", + "shell.execute_reply": "2024-08-28T20:10:28.920356Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.338118Z", - "iopub.status.busy": "2024-08-26T15:55:51.337791Z", - "iopub.status.idle": "2024-08-26T15:55:51.346087Z", - "shell.execute_reply": "2024-08-26T15:55:51.345575Z" + "iopub.execute_input": "2024-08-28T20:10:28.922962Z", + "iopub.status.busy": "2024-08-28T20:10:28.922646Z", + "iopub.status.idle": "2024-08-28T20:10:28.930551Z", + "shell.execute_reply": "2024-08-28T20:10:28.930005Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.348269Z", - "iopub.status.busy": "2024-08-26T15:55:51.347912Z", - "iopub.status.idle": "2024-08-26T15:55:51.397438Z", - "shell.execute_reply": "2024-08-26T15:55:51.396901Z" + "iopub.execute_input": "2024-08-28T20:10:28.932525Z", + "iopub.status.busy": "2024-08-28T20:10:28.932211Z", + "iopub.status.idle": "2024-08-28T20:10:28.979093Z", + "shell.execute_reply": "2024-08-28T20:10:28.978502Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.400009Z", - "iopub.status.busy": "2024-08-26T15:55:51.399623Z", - "iopub.status.idle": "2024-08-26T15:55:51.418118Z", - "shell.execute_reply": "2024-08-26T15:55:51.417489Z" + "iopub.execute_input": "2024-08-28T20:10:28.985872Z", + "iopub.status.busy": "2024-08-28T20:10:28.985450Z", + "iopub.status.idle": "2024-08-28T20:10:29.002587Z", + "shell.execute_reply": "2024-08-28T20:10:29.002005Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.420616Z", - "iopub.status.busy": "2024-08-26T15:55:51.420228Z", - "iopub.status.idle": "2024-08-26T15:55:51.424652Z", - "shell.execute_reply": "2024-08-26T15:55:51.424134Z" + "iopub.execute_input": "2024-08-28T20:10:29.004731Z", + "iopub.status.busy": "2024-08-28T20:10:29.004300Z", + "iopub.status.idle": "2024-08-28T20:10:29.008197Z", + "shell.execute_reply": "2024-08-28T20:10:29.007752Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.427131Z", - "iopub.status.busy": "2024-08-26T15:55:51.426753Z", - "iopub.status.idle": "2024-08-26T15:55:51.441388Z", - "shell.execute_reply": "2024-08-26T15:55:51.440867Z" + "iopub.execute_input": "2024-08-28T20:10:29.010364Z", + "iopub.status.busy": "2024-08-28T20:10:29.009943Z", + "iopub.status.idle": "2024-08-28T20:10:29.026608Z", + "shell.execute_reply": "2024-08-28T20:10:29.026045Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.443816Z", - "iopub.status.busy": "2024-08-26T15:55:51.443412Z", - "iopub.status.idle": "2024-08-26T15:55:51.470951Z", - "shell.execute_reply": "2024-08-26T15:55:51.470409Z" + "iopub.execute_input": "2024-08-28T20:10:29.028736Z", + "iopub.status.busy": "2024-08-28T20:10:29.028426Z", + "iopub.status.idle": "2024-08-28T20:10:29.055143Z", + "shell.execute_reply": "2024-08-28T20:10:29.054600Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:51.473560Z", - "iopub.status.busy": "2024-08-26T15:55:51.473170Z", - "iopub.status.idle": "2024-08-26T15:55:53.572478Z", - "shell.execute_reply": "2024-08-26T15:55:53.571934Z" + "iopub.execute_input": "2024-08-28T20:10:29.057327Z", + "iopub.status.busy": "2024-08-28T20:10:29.057014Z", + "iopub.status.idle": "2024-08-28T20:10:31.002405Z", + "shell.execute_reply": "2024-08-28T20:10:31.001830Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.575148Z", - "iopub.status.busy": "2024-08-26T15:55:53.574805Z", - "iopub.status.idle": "2024-08-26T15:55:53.581965Z", - "shell.execute_reply": "2024-08-26T15:55:53.581495Z" + "iopub.execute_input": "2024-08-28T20:10:31.005159Z", + "iopub.status.busy": "2024-08-28T20:10:31.004615Z", + "iopub.status.idle": "2024-08-28T20:10:31.012724Z", + "shell.execute_reply": "2024-08-28T20:10:31.012195Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.583931Z", - "iopub.status.busy": "2024-08-26T15:55:53.583750Z", - "iopub.status.idle": "2024-08-26T15:55:53.597950Z", - "shell.execute_reply": "2024-08-26T15:55:53.597508Z" + "iopub.execute_input": "2024-08-28T20:10:31.014935Z", + "iopub.status.busy": "2024-08-28T20:10:31.014554Z", + "iopub.status.idle": "2024-08-28T20:10:31.028506Z", + "shell.execute_reply": "2024-08-28T20:10:31.028046Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.600192Z", - "iopub.status.busy": "2024-08-26T15:55:53.599844Z", - "iopub.status.idle": "2024-08-26T15:55:53.606325Z", - "shell.execute_reply": "2024-08-26T15:55:53.605753Z" + "iopub.execute_input": "2024-08-28T20:10:31.030456Z", + "iopub.status.busy": "2024-08-28T20:10:31.030187Z", + "iopub.status.idle": "2024-08-28T20:10:31.036558Z", + "shell.execute_reply": "2024-08-28T20:10:31.036100Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.608524Z", - "iopub.status.busy": "2024-08-26T15:55:53.608203Z", - "iopub.status.idle": "2024-08-26T15:55:53.611057Z", - "shell.execute_reply": "2024-08-26T15:55:53.610487Z" + "iopub.execute_input": "2024-08-28T20:10:31.038612Z", + "iopub.status.busy": "2024-08-28T20:10:31.038278Z", + "iopub.status.idle": "2024-08-28T20:10:31.040841Z", + "shell.execute_reply": "2024-08-28T20:10:31.040408Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.613133Z", - "iopub.status.busy": "2024-08-26T15:55:53.612727Z", - "iopub.status.idle": "2024-08-26T15:55:53.616493Z", - "shell.execute_reply": "2024-08-26T15:55:53.615926Z" + "iopub.execute_input": "2024-08-28T20:10:31.042840Z", + "iopub.status.busy": "2024-08-28T20:10:31.042526Z", + "iopub.status.idle": "2024-08-28T20:10:31.045765Z", + "shell.execute_reply": "2024-08-28T20:10:31.045253Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.618748Z", - "iopub.status.busy": "2024-08-26T15:55:53.618292Z", - "iopub.status.idle": "2024-08-26T15:55:53.620917Z", - "shell.execute_reply": "2024-08-26T15:55:53.620475Z" + "iopub.execute_input": "2024-08-28T20:10:31.047816Z", + "iopub.status.busy": "2024-08-28T20:10:31.047469Z", + "iopub.status.idle": "2024-08-28T20:10:31.049975Z", + "shell.execute_reply": "2024-08-28T20:10:31.049552Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.622763Z", - "iopub.status.busy": "2024-08-26T15:55:53.622591Z", - "iopub.status.idle": "2024-08-26T15:55:53.626806Z", - "shell.execute_reply": "2024-08-26T15:55:53.626334Z" + "iopub.execute_input": "2024-08-28T20:10:31.051779Z", + "iopub.status.busy": "2024-08-28T20:10:31.051611Z", + "iopub.status.idle": "2024-08-28T20:10:31.055321Z", + "shell.execute_reply": "2024-08-28T20:10:31.054835Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.628797Z", - "iopub.status.busy": "2024-08-26T15:55:53.628623Z", - "iopub.status.idle": "2024-08-26T15:55:53.657166Z", - "shell.execute_reply": "2024-08-26T15:55:53.656656Z" + "iopub.execute_input": "2024-08-28T20:10:31.057500Z", + "iopub.status.busy": "2024-08-28T20:10:31.057113Z", + "iopub.status.idle": "2024-08-28T20:10:31.085687Z", + "shell.execute_reply": "2024-08-28T20:10:31.085122Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:53.659591Z", - "iopub.status.busy": "2024-08-26T15:55:53.659398Z", - "iopub.status.idle": "2024-08-26T15:55:53.664302Z", - "shell.execute_reply": "2024-08-26T15:55:53.663840Z" + "iopub.execute_input": "2024-08-28T20:10:31.087938Z", + "iopub.status.busy": "2024-08-28T20:10:31.087519Z", + "iopub.status.idle": "2024-08-28T20:10:31.092195Z", + "shell.execute_reply": "2024-08-28T20:10:31.091636Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 5c10fb5e6..4d9dceb0f 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:56.766882Z", - "iopub.status.busy": "2024-08-26T15:55:56.766428Z", - "iopub.status.idle": "2024-08-26T15:55:58.038153Z", - "shell.execute_reply": "2024-08-26T15:55:58.037589Z" + "iopub.execute_input": "2024-08-28T20:10:33.930965Z", + "iopub.status.busy": "2024-08-28T20:10:33.930785Z", + "iopub.status.idle": "2024-08-28T20:10:35.153533Z", + "shell.execute_reply": "2024-08-28T20:10:35.152975Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:58.040800Z", - "iopub.status.busy": "2024-08-26T15:55:58.040343Z", - "iopub.status.idle": "2024-08-26T15:55:58.241293Z", - "shell.execute_reply": "2024-08-26T15:55:58.240703Z" + "iopub.execute_input": "2024-08-28T20:10:35.156153Z", + "iopub.status.busy": "2024-08-28T20:10:35.155689Z", + "iopub.status.idle": "2024-08-28T20:10:35.354611Z", + "shell.execute_reply": "2024-08-28T20:10:35.354050Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:58.243890Z", - "iopub.status.busy": "2024-08-26T15:55:58.243560Z", - "iopub.status.idle": "2024-08-26T15:55:58.257402Z", - "shell.execute_reply": "2024-08-26T15:55:58.256901Z" + "iopub.execute_input": "2024-08-28T20:10:35.357320Z", + "iopub.status.busy": "2024-08-28T20:10:35.356844Z", + "iopub.status.idle": "2024-08-28T20:10:35.370491Z", + "shell.execute_reply": "2024-08-28T20:10:35.370031Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:55:58.259462Z", - "iopub.status.busy": "2024-08-26T15:55:58.259112Z", - "iopub.status.idle": "2024-08-26T15:56:00.987646Z", - "shell.execute_reply": "2024-08-26T15:56:00.987007Z" + "iopub.execute_input": "2024-08-28T20:10:35.372636Z", + "iopub.status.busy": "2024-08-28T20:10:35.372216Z", + "iopub.status.idle": "2024-08-28T20:10:38.005651Z", + "shell.execute_reply": "2024-08-28T20:10:38.005141Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:00.990103Z", - "iopub.status.busy": "2024-08-26T15:56:00.989893Z", - "iopub.status.idle": "2024-08-26T15:56:02.372407Z", - "shell.execute_reply": "2024-08-26T15:56:02.371693Z" + "iopub.execute_input": "2024-08-28T20:10:38.007913Z", + "iopub.status.busy": "2024-08-28T20:10:38.007631Z", + "iopub.status.idle": "2024-08-28T20:10:39.351557Z", + "shell.execute_reply": "2024-08-28T20:10:39.350978Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:02.375314Z", - "iopub.status.busy": "2024-08-26T15:56:02.374897Z", - "iopub.status.idle": "2024-08-26T15:56:02.378930Z", - "shell.execute_reply": "2024-08-26T15:56:02.378306Z" + "iopub.execute_input": "2024-08-28T20:10:39.354056Z", + "iopub.status.busy": "2024-08-28T20:10:39.353851Z", + "iopub.status.idle": "2024-08-28T20:10:39.358053Z", + "shell.execute_reply": "2024-08-28T20:10:39.357549Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:02.381153Z", - "iopub.status.busy": "2024-08-26T15:56:02.380797Z", - "iopub.status.idle": "2024-08-26T15:56:04.546007Z", - "shell.execute_reply": "2024-08-26T15:56:04.545338Z" + "iopub.execute_input": "2024-08-28T20:10:39.360196Z", + "iopub.status.busy": "2024-08-28T20:10:39.359778Z", + "iopub.status.idle": "2024-08-28T20:10:41.461777Z", + "shell.execute_reply": "2024-08-28T20:10:41.461112Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:04.549003Z", - "iopub.status.busy": "2024-08-26T15:56:04.548276Z", - "iopub.status.idle": "2024-08-26T15:56:04.556518Z", - "shell.execute_reply": "2024-08-26T15:56:04.556052Z" + "iopub.execute_input": "2024-08-28T20:10:41.464117Z", + "iopub.status.busy": "2024-08-28T20:10:41.463808Z", + "iopub.status.idle": "2024-08-28T20:10:41.472128Z", + "shell.execute_reply": "2024-08-28T20:10:41.471653Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:04.558584Z", - "iopub.status.busy": "2024-08-26T15:56:04.558246Z", - "iopub.status.idle": "2024-08-26T15:56:07.362260Z", - "shell.execute_reply": "2024-08-26T15:56:07.361630Z" + "iopub.execute_input": "2024-08-28T20:10:41.474128Z", + "iopub.status.busy": "2024-08-28T20:10:41.473948Z", + "iopub.status.idle": "2024-08-28T20:10:44.212444Z", + "shell.execute_reply": "2024-08-28T20:10:44.211902Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:07.364609Z", - "iopub.status.busy": "2024-08-26T15:56:07.364404Z", - "iopub.status.idle": "2024-08-26T15:56:07.368177Z", - "shell.execute_reply": "2024-08-26T15:56:07.367638Z" + "iopub.execute_input": "2024-08-28T20:10:44.214662Z", + "iopub.status.busy": "2024-08-28T20:10:44.214321Z", + "iopub.status.idle": "2024-08-28T20:10:44.218007Z", + "shell.execute_reply": "2024-08-28T20:10:44.217522Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:07.370130Z", - "iopub.status.busy": "2024-08-26T15:56:07.369942Z", - "iopub.status.idle": "2024-08-26T15:56:07.373364Z", - "shell.execute_reply": "2024-08-26T15:56:07.372878Z" + "iopub.execute_input": "2024-08-28T20:10:44.219925Z", + "iopub.status.busy": "2024-08-28T20:10:44.219752Z", + "iopub.status.idle": "2024-08-28T20:10:44.223252Z", + "shell.execute_reply": "2024-08-28T20:10:44.222701Z" } }, "outputs": [], @@ -769,10 +769,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:07.375274Z", - "iopub.status.busy": "2024-08-26T15:56:07.375092Z", - "iopub.status.idle": "2024-08-26T15:56:07.378537Z", - "shell.execute_reply": "2024-08-26T15:56:07.378053Z" + "iopub.execute_input": "2024-08-28T20:10:44.225306Z", + "iopub.status.busy": "2024-08-28T20:10:44.225013Z", + "iopub.status.idle": "2024-08-28T20:10:44.228262Z", + "shell.execute_reply": "2024-08-28T20:10:44.227703Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 5911b8286..0ae33f70b 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:10.340207Z", - "iopub.status.busy": "2024-08-26T15:56:10.340030Z", - "iopub.status.idle": "2024-08-26T15:56:11.624749Z", - "shell.execute_reply": "2024-08-26T15:56:11.624166Z" + "iopub.execute_input": "2024-08-28T20:10:46.815104Z", + "iopub.status.busy": "2024-08-28T20:10:46.814934Z", + "iopub.status.idle": "2024-08-28T20:10:48.021695Z", + "shell.execute_reply": "2024-08-28T20:10:48.021151Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:11.627256Z", - "iopub.status.busy": "2024-08-26T15:56:11.626951Z", - "iopub.status.idle": "2024-08-26T15:56:14.401848Z", - "shell.execute_reply": "2024-08-26T15:56:14.401149Z" + "iopub.execute_input": "2024-08-28T20:10:48.024013Z", + "iopub.status.busy": "2024-08-28T20:10:48.023761Z", + "iopub.status.idle": "2024-08-28T20:10:49.277515Z", + "shell.execute_reply": "2024-08-28T20:10:49.276826Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.404488Z", - "iopub.status.busy": "2024-08-26T15:56:14.404277Z", - "iopub.status.idle": "2024-08-26T15:56:14.407583Z", - "shell.execute_reply": "2024-08-26T15:56:14.407130Z" + "iopub.execute_input": "2024-08-28T20:10:49.280063Z", + "iopub.status.busy": "2024-08-28T20:10:49.279861Z", + "iopub.status.idle": "2024-08-28T20:10:49.283240Z", + "shell.execute_reply": "2024-08-28T20:10:49.282780Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.409784Z", - "iopub.status.busy": "2024-08-26T15:56:14.409456Z", - "iopub.status.idle": "2024-08-26T15:56:14.416283Z", - "shell.execute_reply": "2024-08-26T15:56:14.415707Z" + "iopub.execute_input": "2024-08-28T20:10:49.285108Z", + "iopub.status.busy": "2024-08-28T20:10:49.284938Z", + "iopub.status.idle": "2024-08-28T20:10:49.291323Z", + "shell.execute_reply": "2024-08-28T20:10:49.290907Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.418739Z", - "iopub.status.busy": "2024-08-26T15:56:14.418202Z", - "iopub.status.idle": "2024-08-26T15:56:14.927903Z", - "shell.execute_reply": "2024-08-26T15:56:14.927290Z" + "iopub.execute_input": "2024-08-28T20:10:49.293431Z", + "iopub.status.busy": "2024-08-28T20:10:49.293110Z", + "iopub.status.idle": "2024-08-28T20:10:49.783591Z", + "shell.execute_reply": "2024-08-28T20:10:49.782027Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.930602Z", - "iopub.status.busy": "2024-08-26T15:56:14.930405Z", - "iopub.status.idle": "2024-08-26T15:56:14.935854Z", - "shell.execute_reply": "2024-08-26T15:56:14.935409Z" + "iopub.execute_input": "2024-08-28T20:10:49.786202Z", + "iopub.status.busy": "2024-08-28T20:10:49.785747Z", + "iopub.status.idle": "2024-08-28T20:10:49.791315Z", + "shell.execute_reply": "2024-08-28T20:10:49.790873Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.937858Z", - "iopub.status.busy": "2024-08-26T15:56:14.937674Z", - "iopub.status.idle": "2024-08-26T15:56:14.941832Z", - "shell.execute_reply": "2024-08-26T15:56:14.941270Z" + "iopub.execute_input": "2024-08-28T20:10:49.793221Z", + "iopub.status.busy": "2024-08-28T20:10:49.792959Z", + "iopub.status.idle": "2024-08-28T20:10:49.796741Z", + "shell.execute_reply": "2024-08-28T20:10:49.796193Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:14.944226Z", - "iopub.status.busy": "2024-08-26T15:56:14.943744Z", - "iopub.status.idle": "2024-08-26T15:56:15.859004Z", - "shell.execute_reply": "2024-08-26T15:56:15.858309Z" + "iopub.execute_input": "2024-08-28T20:10:49.798650Z", + "iopub.status.busy": "2024-08-28T20:10:49.798471Z", + "iopub.status.idle": "2024-08-28T20:10:50.700257Z", + "shell.execute_reply": "2024-08-28T20:10:50.699669Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:15.861666Z", - "iopub.status.busy": "2024-08-26T15:56:15.861235Z", - "iopub.status.idle": "2024-08-26T15:56:16.069556Z", - "shell.execute_reply": "2024-08-26T15:56:16.069040Z" + "iopub.execute_input": "2024-08-28T20:10:50.702769Z", + "iopub.status.busy": "2024-08-28T20:10:50.702385Z", + "iopub.status.idle": "2024-08-28T20:10:50.906003Z", + "shell.execute_reply": "2024-08-28T20:10:50.905441Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:16.071703Z", - "iopub.status.busy": "2024-08-26T15:56:16.071511Z", - "iopub.status.idle": "2024-08-26T15:56:16.076159Z", - "shell.execute_reply": "2024-08-26T15:56:16.075690Z" + "iopub.execute_input": "2024-08-28T20:10:50.908257Z", + "iopub.status.busy": "2024-08-28T20:10:50.907925Z", + "iopub.status.idle": "2024-08-28T20:10:50.912230Z", + "shell.execute_reply": "2024-08-28T20:10:50.911705Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:16.078253Z", - "iopub.status.busy": "2024-08-26T15:56:16.077918Z", - "iopub.status.idle": "2024-08-26T15:56:16.556663Z", - "shell.execute_reply": "2024-08-26T15:56:16.556007Z" + "iopub.execute_input": "2024-08-28T20:10:50.914229Z", + "iopub.status.busy": "2024-08-28T20:10:50.913934Z", + "iopub.status.idle": "2024-08-28T20:10:51.372403Z", + "shell.execute_reply": "2024-08-28T20:10:51.371788Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:16.559624Z", - "iopub.status.busy": "2024-08-26T15:56:16.559248Z", - "iopub.status.idle": "2024-08-26T15:56:16.898201Z", - "shell.execute_reply": "2024-08-26T15:56:16.897622Z" + "iopub.execute_input": "2024-08-28T20:10:51.375629Z", + "iopub.status.busy": "2024-08-28T20:10:51.375236Z", + "iopub.status.idle": "2024-08-28T20:10:51.682387Z", + "shell.execute_reply": "2024-08-28T20:10:51.681777Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:16.900962Z", - "iopub.status.busy": "2024-08-26T15:56:16.900766Z", - "iopub.status.idle": "2024-08-26T15:56:17.272375Z", - "shell.execute_reply": "2024-08-26T15:56:17.271736Z" + "iopub.execute_input": "2024-08-28T20:10:51.685393Z", + "iopub.status.busy": "2024-08-28T20:10:51.685043Z", + "iopub.status.idle": "2024-08-28T20:10:52.047573Z", + "shell.execute_reply": "2024-08-28T20:10:52.046954Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:17.275685Z", - "iopub.status.busy": "2024-08-26T15:56:17.275315Z", - "iopub.status.idle": "2024-08-26T15:56:17.708365Z", - "shell.execute_reply": "2024-08-26T15:56:17.707796Z" + "iopub.execute_input": "2024-08-28T20:10:52.050958Z", + "iopub.status.busy": "2024-08-28T20:10:52.050427Z", + "iopub.status.idle": "2024-08-28T20:10:52.490967Z", + "shell.execute_reply": "2024-08-28T20:10:52.490360Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:17.713051Z", - "iopub.status.busy": "2024-08-26T15:56:17.712669Z", - "iopub.status.idle": "2024-08-26T15:56:18.145788Z", - "shell.execute_reply": "2024-08-26T15:56:18.145119Z" + "iopub.execute_input": "2024-08-28T20:10:52.495742Z", + "iopub.status.busy": "2024-08-28T20:10:52.495348Z", + "iopub.status.idle": "2024-08-28T20:10:52.944831Z", + "shell.execute_reply": "2024-08-28T20:10:52.944216Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:18.149293Z", - "iopub.status.busy": "2024-08-26T15:56:18.148772Z", - "iopub.status.idle": "2024-08-26T15:56:18.346020Z", - "shell.execute_reply": "2024-08-26T15:56:18.345257Z" + "iopub.execute_input": "2024-08-28T20:10:52.947220Z", + "iopub.status.busy": "2024-08-28T20:10:52.946860Z", + "iopub.status.idle": "2024-08-28T20:10:53.160258Z", + "shell.execute_reply": "2024-08-28T20:10:53.159728Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:18.348953Z", - "iopub.status.busy": "2024-08-26T15:56:18.348730Z", - "iopub.status.idle": "2024-08-26T15:56:18.534029Z", - "shell.execute_reply": "2024-08-26T15:56:18.533465Z" + "iopub.execute_input": "2024-08-28T20:10:53.162365Z", + "iopub.status.busy": "2024-08-28T20:10:53.162188Z", + "iopub.status.idle": "2024-08-28T20:10:53.362551Z", + "shell.execute_reply": "2024-08-28T20:10:53.362026Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:18.536855Z", - "iopub.status.busy": "2024-08-26T15:56:18.536371Z", - "iopub.status.idle": "2024-08-26T15:56:18.539344Z", - "shell.execute_reply": "2024-08-26T15:56:18.538884Z" + "iopub.execute_input": "2024-08-28T20:10:53.365064Z", + "iopub.status.busy": "2024-08-28T20:10:53.364728Z", + "iopub.status.idle": "2024-08-28T20:10:53.367802Z", + "shell.execute_reply": "2024-08-28T20:10:53.367227Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:18.541453Z", - "iopub.status.busy": "2024-08-26T15:56:18.541012Z", - "iopub.status.idle": "2024-08-26T15:56:19.477586Z", - "shell.execute_reply": "2024-08-26T15:56:19.476978Z" + "iopub.execute_input": "2024-08-28T20:10:53.369654Z", + "iopub.status.busy": "2024-08-28T20:10:53.369479Z", + "iopub.status.idle": "2024-08-28T20:10:54.313411Z", + "shell.execute_reply": "2024-08-28T20:10:54.312816Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:19.480700Z", - "iopub.status.busy": "2024-08-26T15:56:19.480256Z", - "iopub.status.idle": "2024-08-26T15:56:19.636020Z", - "shell.execute_reply": "2024-08-26T15:56:19.635531Z" + "iopub.execute_input": "2024-08-28T20:10:54.315772Z", + "iopub.status.busy": "2024-08-28T20:10:54.315581Z", + "iopub.status.idle": "2024-08-28T20:10:54.507421Z", + "shell.execute_reply": "2024-08-28T20:10:54.506821Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:19.638250Z", - "iopub.status.busy": "2024-08-26T15:56:19.637899Z", - "iopub.status.idle": "2024-08-26T15:56:19.786441Z", - "shell.execute_reply": "2024-08-26T15:56:19.785787Z" + "iopub.execute_input": "2024-08-28T20:10:54.509938Z", + "iopub.status.busy": "2024-08-28T20:10:54.509492Z", + "iopub.status.idle": "2024-08-28T20:10:54.733427Z", + "shell.execute_reply": "2024-08-28T20:10:54.732826Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:19.789092Z", - "iopub.status.busy": "2024-08-26T15:56:19.788762Z", - "iopub.status.idle": "2024-08-26T15:56:20.472378Z", - "shell.execute_reply": "2024-08-26T15:56:20.471795Z" + "iopub.execute_input": "2024-08-28T20:10:54.735763Z", + "iopub.status.busy": "2024-08-28T20:10:54.735588Z", + "iopub.status.idle": "2024-08-28T20:10:55.347180Z", + "shell.execute_reply": "2024-08-28T20:10:55.346567Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:20.474731Z", - "iopub.status.busy": "2024-08-26T15:56:20.474528Z", - "iopub.status.idle": "2024-08-26T15:56:20.478228Z", - "shell.execute_reply": "2024-08-26T15:56:20.477783Z" + "iopub.execute_input": "2024-08-28T20:10:55.349252Z", + "iopub.status.busy": "2024-08-28T20:10:55.349063Z", + "iopub.status.idle": "2024-08-28T20:10:55.352859Z", + "shell.execute_reply": "2024-08-28T20:10:55.352398Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index a93d29f9f..f02a0892c 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:04<00:00, 38277434.85it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 91610373.10it/s]
 

-
+
@@ -1130,7 +1130,7 @@

Spending too much time on data quality?Cleanlab Studio – an automated platform to find and fix issues in your dataset, 100x faster and more accurately. Cleanlab Studio automatically runs optimized data quality algorithms from this package on top of cutting-edge AutoML & Foundation models fit to your data, and helps you fix detected issues via a smart data correction interface. Try it for free!

The modern AI pipeline automated with Cleanlab Studio

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 62016d498..eee3d8de7 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:22.809306Z", - "iopub.status.busy": "2024-08-26T15:56:22.809121Z", - "iopub.status.idle": "2024-08-26T15:56:25.923468Z", - "shell.execute_reply": "2024-08-26T15:56:25.922782Z" + "iopub.execute_input": "2024-08-28T20:10:57.723058Z", + "iopub.status.busy": "2024-08-28T20:10:57.722897Z", + "iopub.status.idle": "2024-08-28T20:11:00.537065Z", + "shell.execute_reply": "2024-08-28T20:11:00.536472Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:25.926138Z", - "iopub.status.busy": "2024-08-26T15:56:25.925803Z", - "iopub.status.idle": "2024-08-26T15:56:26.295753Z", - "shell.execute_reply": "2024-08-26T15:56:26.295060Z" + "iopub.execute_input": "2024-08-28T20:11:00.539639Z", + "iopub.status.busy": "2024-08-28T20:11:00.539146Z", + "iopub.status.idle": "2024-08-28T20:11:00.857144Z", + "shell.execute_reply": "2024-08-28T20:11:00.856533Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:26.298531Z", - "iopub.status.busy": "2024-08-26T15:56:26.298163Z", - "iopub.status.idle": "2024-08-26T15:56:26.302951Z", - "shell.execute_reply": "2024-08-26T15:56:26.302336Z" + "iopub.execute_input": "2024-08-28T20:11:00.859716Z", + "iopub.status.busy": "2024-08-28T20:11:00.859420Z", + "iopub.status.idle": "2024-08-28T20:11:00.863863Z", + "shell.execute_reply": "2024-08-28T20:11:00.863279Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:26.305208Z", - "iopub.status.busy": "2024-08-26T15:56:26.304770Z", - "iopub.status.idle": "2024-08-26T15:56:34.247942Z", - "shell.execute_reply": "2024-08-26T15:56:34.247391Z" + "iopub.execute_input": "2024-08-28T20:11:00.866137Z", + "iopub.status.busy": "2024-08-28T20:11:00.865724Z", + "iopub.status.idle": "2024-08-28T20:11:05.612330Z", + "shell.execute_reply": "2024-08-28T20:11:05.611754Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<09:51, 288072.79it/s]" + " 1%| | 917504/170498071 [00:00<00:21, 7809760.44it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<02:31, 1123326.69it/s]" + " 3%|▎ | 5079040/170498071 [00:00<00:06, 26343456.81it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:50, 3367551.37it/s]" + " 6%|▌ | 10158080/170498071 [00:00<00:04, 37052814.35it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3080192/170498071 [00:00<00:18, 8860851.19it/s]" + " 10%|▉ | 16384000/170498071 [00:00<00:03, 46686975.20it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▍ | 7471104/170498071 [00:00<00:08, 19515662.29it/s]" + " 14%|█▍ | 24543232/170498071 [00:00<00:02, 59011646.68it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 7%|▋ | 11763712/170498071 [00:00<00:05, 26595950.29it/s]" + " 19%|█▉ | 33193984/170498071 [00:00<00:02, 68241152.96it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 16121856/170498071 [00:00<00:05, 30335840.06it/s]" + " 26%|██▌ | 44007424/170498071 [00:00<00:01, 81159379.81it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 12%|█▏ | 20545536/170498071 [00:00<00:04, 32917156.30it/s]" + " 33%|███▎ | 55738368/170498071 [00:00<00:01, 92555163.57it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 25034752/170498071 [00:01<00:04, 34791429.08it/s]" + " 39%|███▉ | 66748416/170498071 [00:00<00:01, 98007788.92it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29523968/170498071 [00:01<00:03, 37589731.77it/s]" + " 45%|████▌ | 77332480/170498071 [00:01<00:00, 100399566.26it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 33357824/170498071 [00:01<00:03, 36851696.99it/s]" + " 52%|█████▏ | 89063424/170498071 [00:01<00:00, 105555763.92it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37093376/170498071 [00:01<00:03, 36416220.00it/s]" + " 59%|█████▊ | 99876864/170498071 [00:01<00:00, 106302515.94it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41189376/170498071 [00:01<00:03, 37261067.87it/s]" + " 65%|██████▍ | 110526464/170498071 [00:01<00:00, 106271168.54it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 45776896/170498071 [00:01<00:03, 39651326.45it/s]" + " 72%|███████▏ | 122257408/170498071 [00:01<00:00, 109442190.50it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 29%|██▉ | 50069504/170498071 [00:01<00:02, 40582417.66it/s]" + " 78%|███████▊ | 133234688/170498071 [00:01<00:00, 108906518.56it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 32%|███▏ | 54165504/170498071 [00:01<00:02, 39822791.56it/s]" + " 85%|████████▍ | 144146432/170498071 [00:01<00:00, 108789558.22it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▍ | 58163200/170498071 [00:01<00:02, 39191771.97it/s]" + " 91%|█████████▏| 155844608/170498071 [00:01<00:00, 111191857.55it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 62717952/170498071 [00:01<00:02, 40349731.02it/s]" + " 98%|█████████▊| 166985728/170498071 [00:01<00:00, 109550227.96it/s]" ] }, { @@ -396,191 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 67436544/170498071 [00:02<00:02, 42324557.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 42%|████▏ | 71696384/170498071 [00:02<00:02, 41933061.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 45%|████▍ | 75923456/170498071 [00:02<00:02, 41259879.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 47%|████▋ | 80084992/170498071 [00:02<00:02, 41074211.69it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|████▉ | 84934656/170498071 [00:02<00:01, 42954273.39it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 89489408/170498071 [00:02<00:01, 43669192.51it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 93880320/170498071 [00:02<00:01, 43233991.86it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 98238464/170498071 [00:02<00:01, 42582306.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 60%|██████ | 102957056/170498071 [00:02<00:01, 43182345.58it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 63%|██████▎ | 107970560/170498071 [00:03<00:01, 45181673.00it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 66%|██████▌ | 112525312/170498071 [00:03<00:01, 44689709.52it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▊ | 117014528/170498071 [00:03<00:01, 43897496.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████▏ | 121536512/170498071 [00:03<00:01, 44079438.69it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 126648320/170498071 [00:03<00:00, 45168506.43it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 131792896/170498071 [00:03<00:00, 46942882.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 80%|████████ | 136511488/170498071 [00:03<00:00, 46011048.74it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 83%|████████▎ | 141131776/170498071 [00:03<00:00, 44969350.49it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 86%|████████▌ | 145784832/170498071 [00:03<00:00, 45345121.03it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 88%|████████▊ | 150667264/170498071 [00:03<00:00, 46353164.37it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 155320320/170498071 [00:04<00:00, 45890625.20it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 94%|█████████▍| 159940608/170498071 [00:04<00:00, 44701148.89it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 96%|█████████▋| 164429824/170498071 [00:04<00:00, 41442057.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 99%|█████████▉| 168624128/170498071 [00:04<00:00, 39704429.04it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 38277434.85it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 91610373.10it/s] " ] }, { @@ -698,10 +514,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:34.250134Z", - "iopub.status.busy": "2024-08-26T15:56:34.249930Z", - "iopub.status.idle": "2024-08-26T15:56:34.255211Z", - "shell.execute_reply": "2024-08-26T15:56:34.254696Z" + "iopub.execute_input": "2024-08-28T20:11:05.614671Z", + "iopub.status.busy": "2024-08-28T20:11:05.614221Z", + "iopub.status.idle": "2024-08-28T20:11:05.618983Z", + "shell.execute_reply": "2024-08-28T20:11:05.618484Z" }, "nbsphinx": "hidden" }, @@ -752,10 +568,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:34.257332Z", - "iopub.status.busy": "2024-08-26T15:56:34.257140Z", - "iopub.status.idle": "2024-08-26T15:56:34.848225Z", - "shell.execute_reply": "2024-08-26T15:56:34.847605Z" + "iopub.execute_input": "2024-08-28T20:11:05.620912Z", + "iopub.status.busy": "2024-08-28T20:11:05.620740Z", + "iopub.status.idle": "2024-08-28T20:11:06.141610Z", + "shell.execute_reply": "2024-08-28T20:11:06.141056Z" } }, "outputs": [ @@ -788,10 +604,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:34.851549Z", - "iopub.status.busy": "2024-08-26T15:56:34.851001Z", - "iopub.status.idle": "2024-08-26T15:56:35.378547Z", - "shell.execute_reply": "2024-08-26T15:56:35.377869Z" + "iopub.execute_input": "2024-08-28T20:11:06.143912Z", + "iopub.status.busy": "2024-08-28T20:11:06.143554Z", + "iopub.status.idle": "2024-08-28T20:11:06.660543Z", + "shell.execute_reply": "2024-08-28T20:11:06.659962Z" } }, "outputs": [ @@ -829,10 +645,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:35.380935Z", - "iopub.status.busy": "2024-08-26T15:56:35.380512Z", - "iopub.status.idle": "2024-08-26T15:56:35.384410Z", - "shell.execute_reply": "2024-08-26T15:56:35.383897Z" + "iopub.execute_input": "2024-08-28T20:11:06.663047Z", + "iopub.status.busy": "2024-08-28T20:11:06.662487Z", + "iopub.status.idle": "2024-08-28T20:11:06.666385Z", + "shell.execute_reply": "2024-08-28T20:11:06.665922Z" } }, "outputs": [], @@ -855,17 +671,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:35.386668Z", - "iopub.status.busy": "2024-08-26T15:56:35.386265Z", - "iopub.status.idle": "2024-08-26T15:56:48.158582Z", - "shell.execute_reply": "2024-08-26T15:56:48.157871Z" + "iopub.execute_input": "2024-08-28T20:11:06.668524Z", + "iopub.status.busy": "2024-08-28T20:11:06.668195Z", + "iopub.status.idle": "2024-08-28T20:11:19.150493Z", + "shell.execute_reply": "2024-08-28T20:11:19.149869Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9068c384170544debc26f2cb25b50402", + "model_id": "b7e1d2d1a87944dab7c37e6e4beeaa96", "version_major": 2, "version_minor": 0 }, @@ -924,10 +740,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:48.161816Z", - "iopub.status.busy": "2024-08-26T15:56:48.161244Z", - "iopub.status.idle": "2024-08-26T15:56:50.454621Z", - "shell.execute_reply": "2024-08-26T15:56:50.453973Z" + "iopub.execute_input": "2024-08-28T20:11:19.153022Z", + "iopub.status.busy": "2024-08-28T20:11:19.152682Z", + "iopub.status.idle": "2024-08-28T20:11:21.200160Z", + "shell.execute_reply": "2024-08-28T20:11:21.199520Z" } }, "outputs": [ @@ -971,10 +787,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:50.457480Z", - "iopub.status.busy": "2024-08-26T15:56:50.456964Z", - "iopub.status.idle": "2024-08-26T15:56:50.704657Z", - "shell.execute_reply": "2024-08-26T15:56:50.703892Z" + "iopub.execute_input": "2024-08-28T20:11:21.202943Z", + "iopub.status.busy": "2024-08-28T20:11:21.202382Z", + "iopub.status.idle": "2024-08-28T20:11:21.434408Z", + "shell.execute_reply": "2024-08-28T20:11:21.433801Z" } }, "outputs": [ @@ -1010,10 +826,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:50.707630Z", - "iopub.status.busy": "2024-08-26T15:56:50.707165Z", - "iopub.status.idle": "2024-08-26T15:56:51.375377Z", - "shell.execute_reply": "2024-08-26T15:56:51.374703Z" + "iopub.execute_input": "2024-08-28T20:11:21.437063Z", + "iopub.status.busy": "2024-08-28T20:11:21.436552Z", + "iopub.status.idle": "2024-08-28T20:11:22.085548Z", + "shell.execute_reply": "2024-08-28T20:11:22.084965Z" } }, "outputs": [ @@ -1063,10 +879,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:51.378257Z", - "iopub.status.busy": "2024-08-26T15:56:51.377877Z", - "iopub.status.idle": "2024-08-26T15:56:51.734722Z", - "shell.execute_reply": "2024-08-26T15:56:51.734019Z" + "iopub.execute_input": "2024-08-28T20:11:22.088905Z", + "iopub.status.busy": "2024-08-28T20:11:22.088518Z", + "iopub.status.idle": "2024-08-28T20:11:22.430208Z", + "shell.execute_reply": "2024-08-28T20:11:22.429627Z" } }, "outputs": [ @@ -1114,10 +930,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:51.737103Z", - "iopub.status.busy": "2024-08-26T15:56:51.736880Z", - "iopub.status.idle": "2024-08-26T15:56:51.981261Z", - "shell.execute_reply": "2024-08-26T15:56:51.980528Z" + "iopub.execute_input": "2024-08-28T20:11:22.432495Z", + "iopub.status.busy": "2024-08-28T20:11:22.432123Z", + "iopub.status.idle": "2024-08-28T20:11:22.678812Z", + "shell.execute_reply": "2024-08-28T20:11:22.678224Z" } }, "outputs": [ @@ -1173,10 +989,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:51.984034Z", - "iopub.status.busy": "2024-08-26T15:56:51.983823Z", - "iopub.status.idle": "2024-08-26T15:56:52.067085Z", - "shell.execute_reply": "2024-08-26T15:56:52.066419Z" + "iopub.execute_input": "2024-08-28T20:11:22.681904Z", + "iopub.status.busy": "2024-08-28T20:11:22.681437Z", + "iopub.status.idle": "2024-08-28T20:11:22.770026Z", + "shell.execute_reply": "2024-08-28T20:11:22.769527Z" } }, "outputs": [], @@ -1197,10 +1013,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:56:52.069665Z", - "iopub.status.busy": "2024-08-26T15:56:52.069478Z", - "iopub.status.idle": "2024-08-26T15:57:03.031171Z", - "shell.execute_reply": "2024-08-26T15:57:03.030491Z" + "iopub.execute_input": "2024-08-28T20:11:22.772556Z", + "iopub.status.busy": "2024-08-28T20:11:22.772206Z", + "iopub.status.idle": "2024-08-28T20:11:32.879784Z", + "shell.execute_reply": "2024-08-28T20:11:32.879087Z" } }, "outputs": [ @@ -1237,10 +1053,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:03.033840Z", - "iopub.status.busy": "2024-08-26T15:57:03.033405Z", - "iopub.status.idle": "2024-08-26T15:57:05.657482Z", - "shell.execute_reply": "2024-08-26T15:57:05.656881Z" + "iopub.execute_input": "2024-08-28T20:11:32.882218Z", + "iopub.status.busy": "2024-08-28T20:11:32.881892Z", + "iopub.status.idle": "2024-08-28T20:11:35.127634Z", + "shell.execute_reply": "2024-08-28T20:11:35.127046Z" } }, "outputs": [ @@ -1271,10 +1087,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:05.660434Z", - "iopub.status.busy": "2024-08-26T15:57:05.659780Z", - "iopub.status.idle": "2024-08-26T15:57:05.862055Z", - "shell.execute_reply": "2024-08-26T15:57:05.861526Z" + "iopub.execute_input": "2024-08-28T20:11:35.130269Z", + "iopub.status.busy": "2024-08-28T20:11:35.129720Z", + "iopub.status.idle": "2024-08-28T20:11:35.334566Z", + "shell.execute_reply": "2024-08-28T20:11:35.334053Z" } }, "outputs": [], @@ -1288,10 +1104,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:05.864637Z", - "iopub.status.busy": "2024-08-26T15:57:05.864393Z", - "iopub.status.idle": "2024-08-26T15:57:05.867857Z", - "shell.execute_reply": "2024-08-26T15:57:05.867382Z" + "iopub.execute_input": "2024-08-28T20:11:35.337027Z", + "iopub.status.busy": "2024-08-28T20:11:35.336666Z", + "iopub.status.idle": "2024-08-28T20:11:35.339940Z", + "shell.execute_reply": "2024-08-28T20:11:35.339466Z" } }, "outputs": [], @@ -1329,10 +1145,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:05.870136Z", - "iopub.status.busy": "2024-08-26T15:57:05.869790Z", - "iopub.status.idle": "2024-08-26T15:57:05.878741Z", - "shell.execute_reply": "2024-08-26T15:57:05.878234Z" + "iopub.execute_input": "2024-08-28T20:11:35.342180Z", + "iopub.status.busy": "2024-08-28T20:11:35.341839Z", + "iopub.status.idle": "2024-08-28T20:11:35.350335Z", + "shell.execute_reply": "2024-08-28T20:11:35.349908Z" }, "nbsphinx": "hidden" }, @@ -1377,83 +1193,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01d5c5a706aa4790ae5138084d58b585": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "22107b48eecc4358a6e6dca3680a6730": { + "0d41ffc3cf354ae1bb1edf21a7bece64": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_227183a26c464a3c9d11a17da25fa3f8", - "placeholder": "​", - "style": "IPY_MODEL_352d2ee6d0844dbcb8d4a04b1cbfff01", + "layout": "IPY_MODEL_90ff9c8ef752474caa35ebcc94267415", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7b8282e6aa2a457e86b05af2a41a7860", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 261MB/s]" + "value": 102469840.0 } }, - "227183a26c464a3c9d11a17da25fa3f8": { + "23a0da17f44343e0bb8f1fd8cd1d66f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1506,7 +1272,7 @@ "width": null } }, - "352d2ee6d0844dbcb8d4a04b1cbfff01": { + "624e3f799e5b493f83b8c5086834488b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1524,7 +1290,7 @@ "text_color": null } }, - "357a5524d66d4af8a055aa22caf37325": { + "7b8282e6aa2a457e86b05af2a41a7860": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1540,7 +1306,7 @@ "description_width": "" } }, - "53e6817aa0fd4e2ba3bf306e9c8be420": { + "8d148214b92f40818ed7496d20dcb3ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1593,7 +1359,7 @@ "width": null } }, - "6bc1f79c1ece4659b91e860cec343da2": { + "90ff9c8ef752474caa35ebcc94267415": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1646,33 +1412,25 @@ "width": null } }, - "819d1184552d47729426e656e5e6842e": { + "94fe59d0bba04df987fed1f585e706d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6bc1f79c1ece4659b91e860cec343da2", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_357a5524d66d4af8a055aa22caf37325", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9068c384170544debc26f2cb25b50402": { + "b7e1d2d1a87944dab7c37e6e4beeaa96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1687,16 +1445,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9b95df66ce354f3eac3359c2aac81dc7", - "IPY_MODEL_819d1184552d47729426e656e5e6842e", - "IPY_MODEL_22107b48eecc4358a6e6dca3680a6730" + "IPY_MODEL_d6572d46d8cd40829c785a6bb6b4ae53", + "IPY_MODEL_0d41ffc3cf354ae1bb1edf21a7bece64", + "IPY_MODEL_dfbc1a118152489cb9e883a736d67caf" ], - "layout": "IPY_MODEL_01d5c5a706aa4790ae5138084d58b585", + "layout": "IPY_MODEL_8d148214b92f40818ed7496d20dcb3ae", "tabbable": null, "tooltip": null } }, - "9b95df66ce354f3eac3359c2aac81dc7": { + "d6572d46d8cd40829c785a6bb6b4ae53": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1711,30 +1469,88 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_53e6817aa0fd4e2ba3bf306e9c8be420", + "layout": "IPY_MODEL_dc609add1b6a49c3854709bfb57b5b06", "placeholder": "​", - "style": "IPY_MODEL_ef321007c100411a8bdbc60ad35aea85", + "style": "IPY_MODEL_624e3f799e5b493f83b8c5086834488b", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "ef321007c100411a8bdbc60ad35aea85": { + "dc609add1b6a49c3854709bfb57b5b06": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "dfbc1a118152489cb9e883a736d67caf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23a0da17f44343e0bb8f1fd8cd1d66f4", + "placeholder": "​", + "style": "IPY_MODEL_94fe59d0bba04df987fed1f585e706d1", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 263MB/s]" } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index cb48944b8..01a953e2d 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:10.353933Z", - "iopub.status.busy": "2024-08-26T15:57:10.353544Z", - "iopub.status.idle": "2024-08-26T15:57:11.706462Z", - "shell.execute_reply": "2024-08-26T15:57:11.705786Z" + "iopub.execute_input": "2024-08-28T20:11:39.599355Z", + "iopub.status.busy": "2024-08-28T20:11:39.599170Z", + "iopub.status.idle": "2024-08-28T20:11:40.799564Z", + "shell.execute_reply": "2024-08-28T20:11:40.798993Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:11.709553Z", - "iopub.status.busy": "2024-08-26T15:57:11.709034Z", - "iopub.status.idle": "2024-08-26T15:57:11.728637Z", - "shell.execute_reply": "2024-08-26T15:57:11.728052Z" + "iopub.execute_input": "2024-08-28T20:11:40.802223Z", + "iopub.status.busy": "2024-08-28T20:11:40.801792Z", + "iopub.status.idle": "2024-08-28T20:11:40.819536Z", + "shell.execute_reply": "2024-08-28T20:11:40.819063Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:11.731676Z", - "iopub.status.busy": "2024-08-26T15:57:11.731232Z", - "iopub.status.idle": "2024-08-26T15:57:11.734952Z", - "shell.execute_reply": "2024-08-26T15:57:11.734419Z" + "iopub.execute_input": "2024-08-28T20:11:40.821690Z", + "iopub.status.busy": "2024-08-28T20:11:40.821305Z", + "iopub.status.idle": "2024-08-28T20:11:40.824363Z", + "shell.execute_reply": "2024-08-28T20:11:40.823776Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:11.737208Z", - "iopub.status.busy": "2024-08-26T15:57:11.736848Z", - "iopub.status.idle": "2024-08-26T15:57:11.873269Z", - "shell.execute_reply": "2024-08-26T15:57:11.872516Z" + "iopub.execute_input": "2024-08-28T20:11:40.826351Z", + "iopub.status.busy": "2024-08-28T20:11:40.826039Z", + "iopub.status.idle": "2024-08-28T20:11:40.916158Z", + "shell.execute_reply": "2024-08-28T20:11:40.915614Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:11.876290Z", - "iopub.status.busy": "2024-08-26T15:57:11.875719Z", - "iopub.status.idle": "2024-08-26T15:57:12.074479Z", - "shell.execute_reply": "2024-08-26T15:57:12.073882Z" + "iopub.execute_input": "2024-08-28T20:11:40.918419Z", + "iopub.status.busy": "2024-08-28T20:11:40.917993Z", + "iopub.status.idle": "2024-08-28T20:11:41.100340Z", + "shell.execute_reply": "2024-08-28T20:11:41.099717Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:12.076924Z", - "iopub.status.busy": "2024-08-26T15:57:12.076625Z", - "iopub.status.idle": "2024-08-26T15:57:12.336980Z", - "shell.execute_reply": "2024-08-26T15:57:12.336363Z" + "iopub.execute_input": "2024-08-28T20:11:41.103082Z", + "iopub.status.busy": "2024-08-28T20:11:41.102735Z", + "iopub.status.idle": "2024-08-28T20:11:41.316183Z", + "shell.execute_reply": "2024-08-28T20:11:41.315570Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:12.339363Z", - "iopub.status.busy": "2024-08-26T15:57:12.338933Z", - "iopub.status.idle": "2024-08-26T15:57:12.343568Z", - "shell.execute_reply": "2024-08-26T15:57:12.343036Z" + "iopub.execute_input": "2024-08-28T20:11:41.318444Z", + "iopub.status.busy": "2024-08-28T20:11:41.318149Z", + "iopub.status.idle": "2024-08-28T20:11:41.322715Z", + "shell.execute_reply": "2024-08-28T20:11:41.322231Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:12.345634Z", - "iopub.status.busy": "2024-08-26T15:57:12.345270Z", - "iopub.status.idle": "2024-08-26T15:57:12.352146Z", - "shell.execute_reply": "2024-08-26T15:57:12.351523Z" + "iopub.execute_input": "2024-08-28T20:11:41.324707Z", + "iopub.status.busy": "2024-08-28T20:11:41.324370Z", + "iopub.status.idle": "2024-08-28T20:11:41.330461Z", + "shell.execute_reply": "2024-08-28T20:11:41.330018Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:12.357092Z", - "iopub.status.busy": "2024-08-26T15:57:12.356872Z", - "iopub.status.idle": "2024-08-26T15:57:12.359965Z", - "shell.execute_reply": "2024-08-26T15:57:12.359374Z" + "iopub.execute_input": "2024-08-28T20:11:41.332672Z", + "iopub.status.busy": "2024-08-28T20:11:41.332335Z", + "iopub.status.idle": "2024-08-28T20:11:41.335464Z", + "shell.execute_reply": "2024-08-28T20:11:41.335030Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:12.362474Z", - "iopub.status.busy": "2024-08-26T15:57:12.362043Z", - "iopub.status.idle": "2024-08-26T15:57:21.815400Z", - "shell.execute_reply": "2024-08-26T15:57:21.814683Z" + "iopub.execute_input": "2024-08-28T20:11:41.337553Z", + "iopub.status.busy": "2024-08-28T20:11:41.337227Z", + "iopub.status.idle": "2024-08-28T20:11:50.266507Z", + "shell.execute_reply": "2024-08-28T20:11:50.265931Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.818598Z", - "iopub.status.busy": "2024-08-26T15:57:21.817970Z", - "iopub.status.idle": "2024-08-26T15:57:21.825776Z", - "shell.execute_reply": "2024-08-26T15:57:21.825153Z" + "iopub.execute_input": "2024-08-28T20:11:50.269479Z", + "iopub.status.busy": "2024-08-28T20:11:50.268821Z", + "iopub.status.idle": "2024-08-28T20:11:50.276465Z", + "shell.execute_reply": "2024-08-28T20:11:50.275976Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.828092Z", - "iopub.status.busy": "2024-08-26T15:57:21.827857Z", - "iopub.status.idle": "2024-08-26T15:57:21.832040Z", - "shell.execute_reply": "2024-08-26T15:57:21.831555Z" + "iopub.execute_input": "2024-08-28T20:11:50.278693Z", + "iopub.status.busy": "2024-08-28T20:11:50.278360Z", + "iopub.status.idle": "2024-08-28T20:11:50.282210Z", + "shell.execute_reply": "2024-08-28T20:11:50.281653Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.834133Z", - "iopub.status.busy": "2024-08-26T15:57:21.833919Z", - "iopub.status.idle": "2024-08-26T15:57:21.837359Z", - "shell.execute_reply": "2024-08-26T15:57:21.836818Z" + "iopub.execute_input": "2024-08-28T20:11:50.284408Z", + "iopub.status.busy": "2024-08-28T20:11:50.284067Z", + "iopub.status.idle": "2024-08-28T20:11:50.287209Z", + "shell.execute_reply": "2024-08-28T20:11:50.286693Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.839415Z", - "iopub.status.busy": "2024-08-26T15:57:21.839229Z", - "iopub.status.idle": "2024-08-26T15:57:21.842672Z", - "shell.execute_reply": "2024-08-26T15:57:21.842180Z" + "iopub.execute_input": "2024-08-28T20:11:50.289322Z", + "iopub.status.busy": "2024-08-28T20:11:50.288992Z", + "iopub.status.idle": "2024-08-28T20:11:50.292086Z", + "shell.execute_reply": "2024-08-28T20:11:50.291625Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.844741Z", - "iopub.status.busy": "2024-08-26T15:57:21.844401Z", - "iopub.status.idle": "2024-08-26T15:57:21.853740Z", - "shell.execute_reply": "2024-08-26T15:57:21.853255Z" + "iopub.execute_input": "2024-08-28T20:11:50.294072Z", + "iopub.status.busy": "2024-08-28T20:11:50.293723Z", + "iopub.status.idle": "2024-08-28T20:11:50.301914Z", + "shell.execute_reply": "2024-08-28T20:11:50.301458Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.855835Z", - "iopub.status.busy": "2024-08-26T15:57:21.855641Z", - "iopub.status.idle": "2024-08-26T15:57:21.858610Z", - "shell.execute_reply": "2024-08-26T15:57:21.858126Z" + "iopub.execute_input": "2024-08-28T20:11:50.303941Z", + "iopub.status.busy": "2024-08-28T20:11:50.303621Z", + "iopub.status.idle": "2024-08-28T20:11:50.306345Z", + "shell.execute_reply": "2024-08-28T20:11:50.305796Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.860585Z", - "iopub.status.busy": "2024-08-26T15:57:21.860408Z", - "iopub.status.idle": "2024-08-26T15:57:21.989651Z", - "shell.execute_reply": "2024-08-26T15:57:21.988984Z" + "iopub.execute_input": "2024-08-28T20:11:50.308527Z", + "iopub.status.busy": "2024-08-28T20:11:50.308215Z", + "iopub.status.idle": "2024-08-28T20:11:50.433687Z", + "shell.execute_reply": "2024-08-28T20:11:50.433093Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:21.992169Z", - "iopub.status.busy": "2024-08-26T15:57:21.991956Z", - "iopub.status.idle": "2024-08-26T15:57:22.104866Z", - "shell.execute_reply": "2024-08-26T15:57:22.104231Z" + "iopub.execute_input": "2024-08-28T20:11:50.436032Z", + "iopub.status.busy": "2024-08-28T20:11:50.435840Z", + "iopub.status.idle": "2024-08-28T20:11:50.543233Z", + "shell.execute_reply": "2024-08-28T20:11:50.542551Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:22.107310Z", - "iopub.status.busy": "2024-08-26T15:57:22.107103Z", - "iopub.status.idle": "2024-08-26T15:57:22.629095Z", - "shell.execute_reply": "2024-08-26T15:57:22.628465Z" + "iopub.execute_input": "2024-08-28T20:11:50.545618Z", + "iopub.status.busy": "2024-08-28T20:11:50.545432Z", + "iopub.status.idle": "2024-08-28T20:11:51.045293Z", + "shell.execute_reply": "2024-08-28T20:11:51.044744Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:22.632056Z", - "iopub.status.busy": "2024-08-26T15:57:22.631690Z", - "iopub.status.idle": "2024-08-26T15:57:22.739123Z", - "shell.execute_reply": "2024-08-26T15:57:22.738532Z" + "iopub.execute_input": "2024-08-28T20:11:51.047801Z", + "iopub.status.busy": "2024-08-28T20:11:51.047374Z", + "iopub.status.idle": "2024-08-28T20:11:51.157120Z", + "shell.execute_reply": "2024-08-28T20:11:51.156505Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:22.741307Z", - "iopub.status.busy": "2024-08-26T15:57:22.741112Z", - "iopub.status.idle": "2024-08-26T15:57:22.750617Z", - "shell.execute_reply": "2024-08-26T15:57:22.750103Z" + "iopub.execute_input": "2024-08-28T20:11:51.159361Z", + "iopub.status.busy": "2024-08-28T20:11:51.159175Z", + "iopub.status.idle": "2024-08-28T20:11:51.168059Z", + "shell.execute_reply": "2024-08-28T20:11:51.167471Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:22.752784Z", - "iopub.status.busy": "2024-08-26T15:57:22.752589Z", - "iopub.status.idle": "2024-08-26T15:57:22.755529Z", - "shell.execute_reply": "2024-08-26T15:57:22.755048Z" + "iopub.execute_input": "2024-08-28T20:11:51.170240Z", + "iopub.status.busy": "2024-08-28T20:11:51.169918Z", + "iopub.status.idle": "2024-08-28T20:11:51.172945Z", + "shell.execute_reply": "2024-08-28T20:11:51.172370Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:22.757511Z", - "iopub.status.busy": "2024-08-26T15:57:22.757332Z", - "iopub.status.idle": "2024-08-26T15:57:28.480539Z", - "shell.execute_reply": "2024-08-26T15:57:28.479930Z" + "iopub.execute_input": "2024-08-28T20:11:51.175229Z", + "iopub.status.busy": "2024-08-28T20:11:51.174839Z", + "iopub.status.idle": "2024-08-28T20:11:56.778115Z", + "shell.execute_reply": "2024-08-28T20:11:56.777509Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:28.482886Z", - "iopub.status.busy": "2024-08-26T15:57:28.482488Z", - "iopub.status.idle": "2024-08-26T15:57:28.490974Z", - "shell.execute_reply": "2024-08-26T15:57:28.490509Z" + "iopub.execute_input": "2024-08-28T20:11:56.780373Z", + "iopub.status.busy": "2024-08-28T20:11:56.780188Z", + "iopub.status.idle": "2024-08-28T20:11:56.789198Z", + "shell.execute_reply": "2024-08-28T20:11:56.788632Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:28.493156Z", - "iopub.status.busy": "2024-08-26T15:57:28.492824Z", - "iopub.status.idle": "2024-08-26T15:57:28.557679Z", - "shell.execute_reply": "2024-08-26T15:57:28.557043Z" + "iopub.execute_input": "2024-08-28T20:11:56.791387Z", + "iopub.status.busy": "2024-08-28T20:11:56.790943Z", + "iopub.status.idle": "2024-08-28T20:11:56.855314Z", + "shell.execute_reply": "2024-08-28T20:11:56.854833Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 5e829acd3..cc7caaca5 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"958a1ac99e6a41c7af4753befc728b7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f620ebd5d4134340aaf7b73aa890937c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9317413021e9447f8c90a80cf8dc144c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_958a1ac99e6a41c7af4753befc728b7f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f620ebd5d4134340aaf7b73aa890937c", "tabbable": null, "tooltip": null, "value": 30.0}}, "cc84e801aebd40a281648c7d7ca0c80a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b98a87ea54e74230b4146abe730c41ce": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c5df04c7a13c41e1aca5ac56f156f92a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cc84e801aebd40a281648c7d7ca0c80a", "placeholder": "\u200b", "style": "IPY_MODEL_b98a87ea54e74230b4146abe730c41ce", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "feb81028cee34dc5bdaf799847ff4275": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1fb933eec9094fe0a4be2752104b871b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "25e8a49745da4392a2ff93613eb12ed5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_feb81028cee34dc5bdaf799847ff4275", "placeholder": "\u200b", "style": "IPY_MODEL_1fb933eec9094fe0a4be2752104b871b", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007816.12it/s]"}}, "a1371138f24348659a70ca591f43b82a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53f883482ebd4087bd4db93f6838de70": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c5df04c7a13c41e1aca5ac56f156f92a", "IPY_MODEL_9317413021e9447f8c90a80cf8dc144c", "IPY_MODEL_25e8a49745da4392a2ff93613eb12ed5"], "layout": "IPY_MODEL_a1371138f24348659a70ca591f43b82a", "tabbable": null, "tooltip": null}}, "ae8e5a4d97cc4bd0a6d7ffcb07be1367": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f170980bd834e7b844c2b63430b2c7c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d5469bcbbc0e4eac9fc85b7bd6810661": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ae8e5a4d97cc4bd0a6d7ffcb07be1367", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3f170980bd834e7b844c2b63430b2c7c", "tabbable": null, "tooltip": null, "value": 30.0}}, "80d45ded94e94b5cafadc0a592a93900": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d8ab8f793df4884ae905c9ecaeef271": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "559a8d1236864900adf3c0c7e6429ac1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_80d45ded94e94b5cafadc0a592a93900", "placeholder": "\u200b", "style": "IPY_MODEL_1d8ab8f793df4884ae905c9ecaeef271", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "6ffa8c58be20475dae5302a8b0dc463b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61ebdb29105148768f6508c264db1765": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "704ee78ec98a41438df4cccc1297d6ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6ffa8c58be20475dae5302a8b0dc463b", "placeholder": "\u200b", "style": "IPY_MODEL_61ebdb29105148768f6508c264db1765", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.17it/s]"}}, "f0fa56d81d734d58b54e2abfcfe95a17": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "efb3d0029fdf4740a048c4bbcc9f8991": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_559a8d1236864900adf3c0c7e6429ac1", "IPY_MODEL_d5469bcbbc0e4eac9fc85b7bd6810661", "IPY_MODEL_704ee78ec98a41438df4cccc1297d6ea"], "layout": "IPY_MODEL_f0fa56d81d734d58b54e2abfcfe95a17", "tabbable": null, "tooltip": null}}, "1f3d174b832d4a7589ccb00970a2716b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d68f2ae99004bf3884c9b86e60c998d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "93585693a2534d489286659fd05750ce": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f3d174b832d4a7589ccb00970a2716b", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0d68f2ae99004bf3884c9b86e60c998d", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "163aff5db84c4afe8d35c5382524b1d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e014d201e94f4fc29e2e46a3c7153cff": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c1b66a0eb2be45b29331fc2ede002192": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_163aff5db84c4afe8d35c5382524b1d1", "placeholder": "\u200b", "style": "IPY_MODEL_e014d201e94f4fc29e2e46a3c7153cff", "tabbable": null, "tooltip": null, "value": "100%"}}, "6a152bc636d148bea9a05ee6c2c18620": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e1d56f7cd6b49478b0b0f2e7083cd1a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ce5bd738dc4041faac10515469d7fc4c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6a152bc636d148bea9a05ee6c2c18620", "placeholder": "\u200b", "style": "IPY_MODEL_8e1d56f7cd6b49478b0b0f2e7083cd1a", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007157578.50it/s]"}}, "175f5c6a369f4b35b3031461d3e42f83": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3fe032e80e544fd2b19114331afd8c6a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c1b66a0eb2be45b29331fc2ede002192", "IPY_MODEL_93585693a2534d489286659fd05750ce", "IPY_MODEL_ce5bd738dc4041faac10515469d7fc4c"], "layout": "IPY_MODEL_175f5c6a369f4b35b3031461d3e42f83", "tabbable": null, "tooltip": null}}, "943cd7c991114a2699932a06e6c07fc3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ebf03078f56a4669b6bd1412a6959c9b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "378909055f144216ac3230644ece72bc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_943cd7c991114a2699932a06e6c07fc3", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ebf03078f56a4669b6bd1412a6959c9b", "tabbable": null, "tooltip": null, "value": 30.0}}, "b89fba7287d54c2980f59fecec56b3ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e3697667890947bfa6094bacfb3ac5e3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5bc57a4814cf4211be4a34a78e6f31de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b89fba7287d54c2980f59fecec56b3ce", "placeholder": "\u200b", "style": "IPY_MODEL_e3697667890947bfa6094bacfb3ac5e3", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "5c7e7dde472443469caa64558f68e3ee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2c8a7bcf40dd46338cd2d79ac2eddffb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "44a0516f8bac472cbbf5c4b998d5f144": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5c7e7dde472443469caa64558f68e3ee", "placeholder": "\u200b", "style": "IPY_MODEL_2c8a7bcf40dd46338cd2d79ac2eddffb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.06it/s]"}}, "3eb40e8325304410a5c584b2734903aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "872758bc0ea34c5abe53a40a109b61fc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5bc57a4814cf4211be4a34a78e6f31de", "IPY_MODEL_378909055f144216ac3230644ece72bc", "IPY_MODEL_44a0516f8bac472cbbf5c4b998d5f144"], "layout": "IPY_MODEL_3eb40e8325304410a5c584b2734903aa", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"92f7a85dffaf4fe5aa38a0a56ae3b73f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "321f619940fb48abaf208c22e8ecc778": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b0225c668a4040f5886e1725fd4245ee": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_92f7a85dffaf4fe5aa38a0a56ae3b73f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_321f619940fb48abaf208c22e8ecc778", "tabbable": null, "tooltip": null, "value": 30.0}}, "f64cd11242f84f3e88f042c149afdc6b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b4b3f375f99646d8b6cedbf6cc25dbd1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8fb1e86810654920926c89eb44309e1c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f64cd11242f84f3e88f042c149afdc6b", "placeholder": "\u200b", "style": "IPY_MODEL_b4b3f375f99646d8b6cedbf6cc25dbd1", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "a6528190a5e849e2a06cf067410e112b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "75bc69accfe04c99811fd5b7541c4430": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6ac74d1c88054952b5788e067383fc46": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a6528190a5e849e2a06cf067410e112b", "placeholder": "\u200b", "style": "IPY_MODEL_75bc69accfe04c99811fd5b7541c4430", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007828.96it/s]"}}, "ad5b4768aa78404a9fe20e9486ecef1f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9596606d3e745d38ba17fd15c80299f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8fb1e86810654920926c89eb44309e1c", "IPY_MODEL_b0225c668a4040f5886e1725fd4245ee", "IPY_MODEL_6ac74d1c88054952b5788e067383fc46"], "layout": "IPY_MODEL_ad5b4768aa78404a9fe20e9486ecef1f", "tabbable": null, "tooltip": null}}, "81d812e317df43d59433f9520c2b1bdc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b721cac3b90c4f9584a7f97501c7acfb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3fe7576967bc425787bbff9b26c249fb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_81d812e317df43d59433f9520c2b1bdc", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b721cac3b90c4f9584a7f97501c7acfb", "tabbable": null, "tooltip": null, "value": 30.0}}, "ab6a6d60b2174b57b0e972386314c100": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1e36530bdd67437cb7001687387f9f98": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b8ffd617ec94a82865bdc4e7fee0e91": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab6a6d60b2174b57b0e972386314c100", "placeholder": "\u200b", "style": "IPY_MODEL_1e36530bdd67437cb7001687387f9f98", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "4cf7344609af48b9b6869529dfd4f9c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "87a8f90a757342a7ad300007cd9b37e5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "117986be224e41b8b7e3bdb648ee0bd5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4cf7344609af48b9b6869529dfd4f9c1", "placeholder": "\u200b", "style": "IPY_MODEL_87a8f90a757342a7ad300007cd9b37e5", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:25<00:00,\u2007\u20071.16it/s]"}}, "c97abb8cb733436685987d3d11d43a40": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "373846e73e53496ba68f46688af28560": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7b8ffd617ec94a82865bdc4e7fee0e91", "IPY_MODEL_3fe7576967bc425787bbff9b26c249fb", "IPY_MODEL_117986be224e41b8b7e3bdb648ee0bd5"], "layout": "IPY_MODEL_c97abb8cb733436685987d3d11d43a40", "tabbable": null, "tooltip": null}}, "8f7964c16c014a6a876594142b36fb3b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47657ef518f1467da207070c706932e6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7f6cdae4ae8844b1b9885e0242640e1b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f7964c16c014a6a876594142b36fb3b", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_47657ef518f1467da207070c706932e6", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "5063ea5b860a4c9fbf5d602e7e04a1c8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12e7d4bb759448c2ba84c9fbb150783b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a6fcf9dfa28b49f49c0d4dfc8fd6c8dc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5063ea5b860a4c9fbf5d602e7e04a1c8", "placeholder": "\u200b", "style": "IPY_MODEL_12e7d4bb759448c2ba84c9fbb150783b", "tabbable": null, "tooltip": null, "value": "100%"}}, "6defdb8d29454de58039cfb1e3ad28ec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c051b2994a349d3867d0c9320216c41": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "af87a19fe6414dbc915f0fa932ca900b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6defdb8d29454de58039cfb1e3ad28ec", "placeholder": "\u200b", "style": "IPY_MODEL_1c051b2994a349d3867d0c9320216c41", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007157035.82it/s]"}}, "8d37a53b88944033a87a406d7dadb4e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce29504bbd87446f8007205327b6c1da": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a6fcf9dfa28b49f49c0d4dfc8fd6c8dc", "IPY_MODEL_7f6cdae4ae8844b1b9885e0242640e1b", "IPY_MODEL_af87a19fe6414dbc915f0fa932ca900b"], "layout": "IPY_MODEL_8d37a53b88944033a87a406d7dadb4e9", "tabbable": null, "tooltip": null}}, "d7505972ba5e4394ace9cc8d490fde30": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "279f13bc645d4ce8a875939656cd8088": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3e02a25df2fc4857bdaa4bb483e554e5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d7505972ba5e4394ace9cc8d490fde30", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_279f13bc645d4ce8a875939656cd8088", "tabbable": null, "tooltip": null, "value": 30.0}}, "8060b1136cc645869640879b1d081132": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc0cfb378fb748459e81d106563e62af": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d85aea3995a3434187df939b02f30132": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8060b1136cc645869640879b1d081132", "placeholder": "\u200b", "style": "IPY_MODEL_cc0cfb378fb748459e81d106563e62af", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "be9b5c27fcbf4fcb917e622463674bee": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "61a1caed54d34a6d99267d0946c573bc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "466f1124b1e64c0ca0c60d3aef6f1f7b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_be9b5c27fcbf4fcb917e622463674bee", "placeholder": "\u200b", "style": "IPY_MODEL_61a1caed54d34a6d99267d0946c573bc", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200720.49it/s]"}}, "92548bc314704b01a188c889a8ed9cb1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1495d70cc9614009a03ee2051e79e0c5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d85aea3995a3434187df939b02f30132", "IPY_MODEL_3e02a25df2fc4857bdaa4bb483e554e5", "IPY_MODEL_466f1124b1e64c0ca0c60d3aef6f1f7b"], "layout": "IPY_MODEL_92548bc314704b01a188c889a8ed9cb1", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index e74549c5b..61af56b03 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:31.883178Z", - "iopub.status.busy": "2024-08-26T15:57:31.882996Z", - "iopub.status.idle": "2024-08-26T15:57:36.244356Z", - "shell.execute_reply": "2024-08-26T15:57:36.243657Z" + "iopub.execute_input": "2024-08-28T20:12:00.156043Z", + "iopub.status.busy": "2024-08-28T20:12:00.155883Z", + "iopub.status.idle": "2024-08-28T20:12:01.984007Z", + "shell.execute_reply": "2024-08-28T20:12:01.983231Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T15:57:36.247073Z", - "iopub.status.busy": "2024-08-26T15:57:36.246855Z", - "iopub.status.idle": "2024-08-26T16:02:06.838118Z", - "shell.execute_reply": "2024-08-26T16:02:06.837430Z" + "iopub.execute_input": "2024-08-28T20:12:01.986694Z", + "iopub.status.busy": "2024-08-28T20:12:01.986493Z", + "iopub.status.idle": "2024-08-28T20:13:05.108865Z", + "shell.execute_reply": "2024-08-28T20:13:05.108185Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:06.840804Z", - "iopub.status.busy": "2024-08-26T16:02:06.840410Z", - "iopub.status.idle": "2024-08-26T16:02:08.076017Z", - "shell.execute_reply": "2024-08-26T16:02:08.075446Z" + "iopub.execute_input": "2024-08-28T20:13:05.111638Z", + "iopub.status.busy": "2024-08-28T20:13:05.111123Z", + "iopub.status.idle": "2024-08-28T20:13:06.298624Z", + "shell.execute_reply": "2024-08-28T20:13:06.297985Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:08.078632Z", - "iopub.status.busy": "2024-08-26T16:02:08.078238Z", - "iopub.status.idle": "2024-08-26T16:02:08.082099Z", - "shell.execute_reply": "2024-08-26T16:02:08.081663Z" + "iopub.execute_input": "2024-08-28T20:13:06.301338Z", + "iopub.status.busy": "2024-08-28T20:13:06.300817Z", + "iopub.status.idle": "2024-08-28T20:13:06.304288Z", + "shell.execute_reply": "2024-08-28T20:13:06.303744Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:08.084359Z", - "iopub.status.busy": "2024-08-26T16:02:08.084021Z", - "iopub.status.idle": "2024-08-26T16:02:08.087900Z", - "shell.execute_reply": "2024-08-26T16:02:08.087448Z" + "iopub.execute_input": "2024-08-28T20:13:06.306541Z", + "iopub.status.busy": "2024-08-28T20:13:06.306380Z", + "iopub.status.idle": "2024-08-28T20:13:06.310561Z", + "shell.execute_reply": "2024-08-28T20:13:06.310012Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:08.090083Z", - "iopub.status.busy": "2024-08-26T16:02:08.089689Z", - "iopub.status.idle": "2024-08-26T16:02:08.093849Z", - "shell.execute_reply": "2024-08-26T16:02:08.093395Z" + "iopub.execute_input": "2024-08-28T20:13:06.312654Z", + "iopub.status.busy": "2024-08-28T20:13:06.312480Z", + "iopub.status.idle": "2024-08-28T20:13:06.316767Z", + "shell.execute_reply": "2024-08-28T20:13:06.316274Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:08.095840Z", - "iopub.status.busy": "2024-08-26T16:02:08.095561Z", - "iopub.status.idle": "2024-08-26T16:02:08.098400Z", - "shell.execute_reply": "2024-08-26T16:02:08.097941Z" + "iopub.execute_input": "2024-08-28T20:13:06.318926Z", + "iopub.status.busy": "2024-08-28T20:13:06.318660Z", + "iopub.status.idle": "2024-08-28T20:13:06.321452Z", + "shell.execute_reply": "2024-08-28T20:13:06.321004Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:08.100404Z", - "iopub.status.busy": "2024-08-26T16:02:08.100066Z", - "iopub.status.idle": "2024-08-26T16:02:45.804800Z", - "shell.execute_reply": "2024-08-26T16:02:45.804164Z" + "iopub.execute_input": "2024-08-28T20:13:06.323316Z", + "iopub.status.busy": "2024-08-28T20:13:06.323136Z", + "iopub.status.idle": "2024-08-28T20:13:44.198826Z", + "shell.execute_reply": "2024-08-28T20:13:44.198093Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "53f883482ebd4087bd4db93f6838de70", + "model_id": "b9596606d3e745d38ba17fd15c80299f", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "efb3d0029fdf4740a048c4bbcc9f8991", + "model_id": "373846e73e53496ba68f46688af28560", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:45.807470Z", - "iopub.status.busy": "2024-08-26T16:02:45.807072Z", - "iopub.status.idle": "2024-08-26T16:02:46.481736Z", - "shell.execute_reply": "2024-08-26T16:02:46.481206Z" + "iopub.execute_input": "2024-08-28T20:13:44.201531Z", + "iopub.status.busy": "2024-08-28T20:13:44.201311Z", + "iopub.status.idle": "2024-08-28T20:13:44.875188Z", + "shell.execute_reply": "2024-08-28T20:13:44.874579Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:46.484246Z", - "iopub.status.busy": "2024-08-26T16:02:46.483772Z", - "iopub.status.idle": "2024-08-26T16:02:49.477184Z", - "shell.execute_reply": "2024-08-26T16:02:49.476583Z" + "iopub.execute_input": "2024-08-28T20:13:44.877635Z", + "iopub.status.busy": "2024-08-28T20:13:44.877169Z", + "iopub.status.idle": "2024-08-28T20:13:47.834747Z", + "shell.execute_reply": "2024-08-28T20:13:47.834184Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:02:49.479481Z", - "iopub.status.busy": "2024-08-26T16:02:49.479122Z", - "iopub.status.idle": "2024-08-26T16:03:21.677043Z", - "shell.execute_reply": "2024-08-26T16:03:21.676462Z" + "iopub.execute_input": "2024-08-28T20:13:47.837150Z", + "iopub.status.busy": "2024-08-28T20:13:47.836795Z", + "iopub.status.idle": "2024-08-28T20:14:19.860846Z", + "shell.execute_reply": "2024-08-28T20:14:19.860261Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3fe032e80e544fd2b19114331afd8c6a", + "model_id": "ce29504bbd87446f8007205327b6c1da", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:21.679298Z", - "iopub.status.busy": "2024-08-26T16:03:21.678963Z", - "iopub.status.idle": "2024-08-26T16:03:38.187765Z", - "shell.execute_reply": "2024-08-26T16:03:38.187143Z" + "iopub.execute_input": "2024-08-28T20:14:19.863120Z", + "iopub.status.busy": "2024-08-28T20:14:19.862785Z", + "iopub.status.idle": "2024-08-28T20:14:36.068417Z", + "shell.execute_reply": "2024-08-28T20:14:36.067828Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:38.190702Z", - "iopub.status.busy": "2024-08-26T16:03:38.190096Z", - "iopub.status.idle": "2024-08-26T16:03:42.090509Z", - "shell.execute_reply": "2024-08-26T16:03:42.089900Z" + "iopub.execute_input": "2024-08-28T20:14:36.070796Z", + "iopub.status.busy": "2024-08-28T20:14:36.070502Z", + "iopub.status.idle": "2024-08-28T20:14:39.869245Z", + "shell.execute_reply": "2024-08-28T20:14:39.868652Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:42.092785Z", - "iopub.status.busy": "2024-08-26T16:03:42.092449Z", - "iopub.status.idle": "2024-08-26T16:03:43.601612Z", - "shell.execute_reply": "2024-08-26T16:03:43.601014Z" + "iopub.execute_input": "2024-08-28T20:14:39.871434Z", + "iopub.status.busy": "2024-08-28T20:14:39.871103Z", + "iopub.status.idle": "2024-08-28T20:14:41.346447Z", + "shell.execute_reply": "2024-08-28T20:14:41.345878Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "872758bc0ea34c5abe53a40a109b61fc", + "model_id": "1495d70cc9614009a03ee2051e79e0c5", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:43.603725Z", - "iopub.status.busy": "2024-08-26T16:03:43.603502Z", - "iopub.status.idle": "2024-08-26T16:03:43.635426Z", - "shell.execute_reply": "2024-08-26T16:03:43.634736Z" + "iopub.execute_input": "2024-08-28T20:14:41.348866Z", + "iopub.status.busy": "2024-08-28T20:14:41.348539Z", + "iopub.status.idle": "2024-08-28T20:14:41.378017Z", + "shell.execute_reply": "2024-08-28T20:14:41.377363Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:43.638045Z", - "iopub.status.busy": "2024-08-26T16:03:43.637828Z", - "iopub.status.idle": "2024-08-26T16:03:49.737531Z", - "shell.execute_reply": "2024-08-26T16:03:49.736900Z" + "iopub.execute_input": "2024-08-28T20:14:41.380740Z", + "iopub.status.busy": "2024-08-28T20:14:41.380343Z", + "iopub.status.idle": "2024-08-28T20:14:47.431459Z", + "shell.execute_reply": "2024-08-28T20:14:47.430859Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:49.740016Z", - "iopub.status.busy": "2024-08-26T16:03:49.739614Z", - "iopub.status.idle": "2024-08-26T16:03:49.796126Z", - "shell.execute_reply": "2024-08-26T16:03:49.795559Z" + "iopub.execute_input": "2024-08-28T20:14:47.433683Z", + "iopub.status.busy": "2024-08-28T20:14:47.433495Z", + "iopub.status.idle": "2024-08-28T20:14:47.489112Z", + "shell.execute_reply": "2024-08-28T20:14:47.488466Z" }, "nbsphinx": "hidden" }, @@ -1038,129 +1038,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0d68f2ae99004bf3884c9b86e60c998d": { + "117986be224e41b8b7e3bdb648ee0bd5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "163aff5db84c4afe8d35c5382524b1d1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "175f5c6a369f4b35b3031461d3e42f83": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4cf7344609af48b9b6869529dfd4f9c1", + "placeholder": "​", + "style": "IPY_MODEL_87a8f90a757342a7ad300007cd9b37e5", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:25<00:00,  1.16it/s]" } }, - "1d8ab8f793df4884ae905c9ecaeef271": { + "12e7d4bb759448c2ba84c9fbb150783b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1178,60 +1079,31 @@ "text_color": null } }, - "1f3d174b832d4a7589ccb00970a2716b": { - "model_module": "@jupyter-widgets/base", + "1495d70cc9614009a03ee2051e79e0c5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d85aea3995a3434187df939b02f30132", + "IPY_MODEL_3e02a25df2fc4857bdaa4bb483e554e5", + "IPY_MODEL_466f1124b1e64c0ca0c60d3aef6f1f7b" + ], + "layout": "IPY_MODEL_92548bc314704b01a188c889a8ed9cb1", + "tabbable": null, + "tooltip": null } }, - "1fb933eec9094fe0a4be2752104b871b": { + "1c051b2994a349d3867d0c9320216c41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1249,30 +1121,7 @@ "text_color": null } }, - "25e8a49745da4392a2ff93613eb12ed5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_feb81028cee34dc5bdaf799847ff4275", - "placeholder": "​", - "style": "IPY_MODEL_1fb933eec9094fe0a4be2752104b871b", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 816.12it/s]" - } - }, - "2c8a7bcf40dd46338cd2d79ac2eddffb": { + "1e36530bdd67437cb7001687387f9f98": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1290,86 +1139,23 @@ "text_color": null } }, - "378909055f144216ac3230644ece72bc": { + "279f13bc645d4ce8a875939656cd8088": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_943cd7c991114a2699932a06e6c07fc3", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ebf03078f56a4669b6bd1412a6959c9b", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "3eb40e8325304410a5c584b2734903aa": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3f170980bd834e7b844c2b63430b2c7c": { + "321f619940fb48abaf208c22e8ecc778": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1385,7 +1171,7 @@ "description_width": "" } }, - "3fe032e80e544fd2b19114331afd8c6a": { + "373846e73e53496ba68f46688af28560": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1400,63 +1186,68 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c1b66a0eb2be45b29331fc2ede002192", - "IPY_MODEL_93585693a2534d489286659fd05750ce", - "IPY_MODEL_ce5bd738dc4041faac10515469d7fc4c" + "IPY_MODEL_7b8ffd617ec94a82865bdc4e7fee0e91", + "IPY_MODEL_3fe7576967bc425787bbff9b26c249fb", + "IPY_MODEL_117986be224e41b8b7e3bdb648ee0bd5" ], - "layout": "IPY_MODEL_175f5c6a369f4b35b3031461d3e42f83", + "layout": "IPY_MODEL_c97abb8cb733436685987d3d11d43a40", "tabbable": null, "tooltip": null } }, - "44a0516f8bac472cbbf5c4b998d5f144": { + "3e02a25df2fc4857bdaa4bb483e554e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5c7e7dde472443469caa64558f68e3ee", - "placeholder": "​", - "style": "IPY_MODEL_2c8a7bcf40dd46338cd2d79ac2eddffb", + "layout": "IPY_MODEL_d7505972ba5e4394ace9cc8d490fde30", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_279f13bc645d4ce8a875939656cd8088", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 20.06it/s]" + "value": 30.0 } }, - "53f883482ebd4087bd4db93f6838de70": { + "3fe7576967bc425787bbff9b26c249fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c5df04c7a13c41e1aca5ac56f156f92a", - "IPY_MODEL_9317413021e9447f8c90a80cf8dc144c", - "IPY_MODEL_25e8a49745da4392a2ff93613eb12ed5" - ], - "layout": "IPY_MODEL_a1371138f24348659a70ca591f43b82a", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_81d812e317df43d59433f9520c2b1bdc", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b721cac3b90c4f9584a7f97501c7acfb", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 } }, - "559a8d1236864900adf3c0c7e6429ac1": { + "466f1124b1e64c0ca0c60d3aef6f1f7b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1471,38 +1262,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_80d45ded94e94b5cafadc0a592a93900", + "layout": "IPY_MODEL_be9b5c27fcbf4fcb917e622463674bee", "placeholder": "​", - "style": "IPY_MODEL_1d8ab8f793df4884ae905c9ecaeef271", + "style": "IPY_MODEL_61a1caed54d34a6d99267d0946c573bc", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:01<00:00, 20.49it/s]" } }, - "5bc57a4814cf4211be4a34a78e6f31de": { + "47657ef518f1467da207070c706932e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b89fba7287d54c2980f59fecec56b3ce", - "placeholder": "​", - "style": "IPY_MODEL_e3697667890947bfa6094bacfb3ac5e3", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "5c7e7dde472443469caa64558f68e3ee": { + "4cf7344609af48b9b6869529dfd4f9c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1555,25 +1339,7 @@ "width": null } }, - "61ebdb29105148768f6508c264db1765": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a152bc636d148bea9a05ee6c2c18620": { + "5063ea5b860a4c9fbf5d602e7e04a1c8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1626,7 +1392,48 @@ "width": null } }, - "6ffa8c58be20475dae5302a8b0dc463b": { + "61a1caed54d34a6d99267d0946c573bc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6ac74d1c88054952b5788e067383fc46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a6528190a5e849e2a06cf067410e112b", + "placeholder": "​", + "style": "IPY_MODEL_75bc69accfe04c99811fd5b7541c4430", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 828.96it/s]" + } + }, + "6defdb8d29454de58039cfb1e3ad28ec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1679,7 +1486,25 @@ "width": null } }, - "704ee78ec98a41438df4cccc1297d6ea": { + "75bc69accfe04c99811fd5b7541c4430": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7b8ffd617ec94a82865bdc4e7fee0e91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1694,15 +1519,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ffa8c58be20475dae5302a8b0dc463b", + "layout": "IPY_MODEL_ab6a6d60b2174b57b0e972386314c100", "placeholder": "​", - "style": "IPY_MODEL_61ebdb29105148768f6508c264db1765", + "style": "IPY_MODEL_1e36530bdd67437cb7001687387f9f98", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:25<00:00,  1.17it/s]" + "value": "number of examples processed for checking labels: 100%" + } + }, + "7f6cdae4ae8844b1b9885e0242640e1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f7964c16c014a6a876594142b36fb3b", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_47657ef518f1467da207070c706932e6", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 } }, - "80d45ded94e94b5cafadc0a592a93900": { + "8060b1136cc645869640879b1d081132": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1755,31 +1606,60 @@ "width": null } }, - "872758bc0ea34c5abe53a40a109b61fc": { - "model_module": "@jupyter-widgets/controls", + "81d812e317df43d59433f9520c2b1bdc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5bc57a4814cf4211be4a34a78e6f31de", - "IPY_MODEL_378909055f144216ac3230644ece72bc", - "IPY_MODEL_44a0516f8bac472cbbf5c4b998d5f144" - ], - "layout": "IPY_MODEL_3eb40e8325304410a5c584b2734903aa", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8e1d56f7cd6b49478b0b0f2e7083cd1a": { + "87a8f90a757342a7ad300007cd9b37e5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1794,62 +1674,10 @@ "background": null, "description_width": "", "font_size": null, - "text_color": null - } - }, - "9317413021e9447f8c90a80cf8dc144c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_958a1ac99e6a41c7af4753befc728b7f", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f620ebd5d4134340aaf7b73aa890937c", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "93585693a2534d489286659fd05750ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1f3d174b832d4a7589ccb00970a2716b", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d68f2ae99004bf3884c9b86e60c998d", - "tabbable": null, - "tooltip": null, - "value": 4997683.0 + "text_color": null } }, - "943cd7c991114a2699932a06e6c07fc3": { + "8d37a53b88944033a87a406d7dadb4e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1902,7 +1730,7 @@ "width": null } }, - "958a1ac99e6a41c7af4753befc728b7f": { + "8f7964c16c014a6a876594142b36fb3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1955,7 +1783,30 @@ "width": null } }, - "a1371138f24348659a70ca591f43b82a": { + "8fb1e86810654920926c89eb44309e1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f64cd11242f84f3e88f042c149afdc6b", + "placeholder": "​", + "style": "IPY_MODEL_b4b3f375f99646d8b6cedbf6cc25dbd1", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "92548bc314704b01a188c889a8ed9cb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2008,7 +1859,7 @@ "width": null } }, - "ae8e5a4d97cc4bd0a6d7ffcb07be1367": { + "92f7a85dffaf4fe5aa38a0a56ae3b73f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2061,7 +1912,7 @@ "width": null } }, - "b89fba7287d54c2980f59fecec56b3ce": { + "a6528190a5e849e2a06cf067410e112b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2114,25 +1965,7 @@ "width": null } }, - "b98a87ea54e74230b4146abe730c41ce": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c1b66a0eb2be45b29331fc2ede002192": { + "a6fcf9dfa28b49f49c0d4dfc8fd6c8dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2147,38 +1980,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_163aff5db84c4afe8d35c5382524b1d1", + "layout": "IPY_MODEL_5063ea5b860a4c9fbf5d602e7e04a1c8", "placeholder": "​", - "style": "IPY_MODEL_e014d201e94f4fc29e2e46a3c7153cff", + "style": "IPY_MODEL_12e7d4bb759448c2ba84c9fbb150783b", "tabbable": null, "tooltip": null, "value": "100%" } }, - "c5df04c7a13c41e1aca5ac56f156f92a": { - "model_module": "@jupyter-widgets/controls", + "ab6a6d60b2174b57b0e972386314c100": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cc84e801aebd40a281648c7d7ca0c80a", - "placeholder": "​", - "style": "IPY_MODEL_b98a87ea54e74230b4146abe730c41ce", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cc84e801aebd40a281648c7d7ca0c80a": { + "ad5b4768aa78404a9fe20e9486ecef1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2231,7 +2094,7 @@ "width": null } }, - "ce5bd738dc4041faac10515469d7fc4c": { + "af87a19fe6414dbc915f0fa932ca900b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2246,15 +2109,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6a152bc636d148bea9a05ee6c2c18620", + "layout": "IPY_MODEL_6defdb8d29454de58039cfb1e3ad28ec", "placeholder": "​", - "style": "IPY_MODEL_8e1d56f7cd6b49478b0b0f2e7083cd1a", + "style": "IPY_MODEL_1c051b2994a349d3867d0c9320216c41", "tabbable": null, "tooltip": null, - "value": " 4997683/4997683 [00:31<00:00, 157578.50it/s]" + "value": " 4997683/4997683 [00:31<00:00, 157035.82it/s]" } }, - "d5469bcbbc0e4eac9fc85b7bd6810661": { + "b0225c668a4040f5886e1725fd4245ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2270,17 +2133,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae8e5a4d97cc4bd0a6d7ffcb07be1367", + "layout": "IPY_MODEL_92f7a85dffaf4fe5aa38a0a56ae3b73f", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3f170980bd834e7b844c2b63430b2c7c", + "style": "IPY_MODEL_321f619940fb48abaf208c22e8ecc778", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "e014d201e94f4fc29e2e46a3c7153cff": { + "b4b3f375f99646d8b6cedbf6cc25dbd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2298,41 +2161,171 @@ "text_color": null } }, - "e3697667890947bfa6094bacfb3ac5e3": { + "b721cac3b90c4f9584a7f97501c7acfb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "ebf03078f56a4669b6bd1412a6959c9b": { + "b9596606d3e745d38ba17fd15c80299f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8fb1e86810654920926c89eb44309e1c", + "IPY_MODEL_b0225c668a4040f5886e1725fd4245ee", + "IPY_MODEL_6ac74d1c88054952b5788e067383fc46" + ], + "layout": "IPY_MODEL_ad5b4768aa78404a9fe20e9486ecef1f", + "tabbable": null, + "tooltip": null + } + }, + "be9b5c27fcbf4fcb917e622463674bee": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c97abb8cb733436685987d3d11d43a40": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "cc0cfb378fb748459e81d106563e62af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "efb3d0029fdf4740a048c4bbcc9f8991": { + "ce29504bbd87446f8007205327b6c1da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2347,16 +2340,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_559a8d1236864900adf3c0c7e6429ac1", - "IPY_MODEL_d5469bcbbc0e4eac9fc85b7bd6810661", - "IPY_MODEL_704ee78ec98a41438df4cccc1297d6ea" + "IPY_MODEL_a6fcf9dfa28b49f49c0d4dfc8fd6c8dc", + "IPY_MODEL_7f6cdae4ae8844b1b9885e0242640e1b", + "IPY_MODEL_af87a19fe6414dbc915f0fa932ca900b" ], - "layout": "IPY_MODEL_f0fa56d81d734d58b54e2abfcfe95a17", + "layout": "IPY_MODEL_8d37a53b88944033a87a406d7dadb4e9", "tabbable": null, "tooltip": null } }, - "f0fa56d81d734d58b54e2abfcfe95a17": { + "d7505972ba5e4394ace9cc8d490fde30": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2409,23 +2402,30 @@ "width": null } }, - "f620ebd5d4134340aaf7b73aa890937c": { + "d85aea3995a3434187df939b02f30132": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8060b1136cc645869640879b1d081132", + "placeholder": "​", + "style": "IPY_MODEL_cc0cfb378fb748459e81d106563e62af", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "feb81028cee34dc5bdaf799847ff4275": { + "f64cd11242f84f3e88f042c149afdc6b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 85be2b523..34ebb7d86 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 704630cc8..3cd5ab8f7 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:52.199830Z", - "iopub.status.busy": "2024-08-26T16:03:52.199328Z", - "iopub.status.idle": "2024-08-26T16:03:54.228374Z", - "shell.execute_reply": "2024-08-26T16:03:54.227662Z" + "iopub.execute_input": "2024-08-28T20:14:49.935375Z", + "iopub.status.busy": "2024-08-28T20:14:49.935021Z", + "iopub.status.idle": "2024-08-28T20:14:51.191268Z", + "shell.execute_reply": "2024-08-28T20:14:51.190654Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-26 16:03:52-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-08-28 20:14:49-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.249.163, 2400:52e0:1a01::1115:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|169.150.249.163|:443... connected.\r\n" + "185.93.1.243, 2400:52e0:1a00::871:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.243|:443... connected.\r\n" ] }, { @@ -122,44 +122,44 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 6.11MB/s in 0.2s \r\n", - "\r\n", - "2024-08-26 16:03:52 (6.11 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", - "\r\n", - "mkdir: cannot create directory ‘data’: File exists\r\n" + "conll2003.zip 100%[===================>] 959.94K 4.87MB/s in 0.2s \r\n", + "\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Archive: conll2003.zip\r\n", - " inflating: data/metadata \r\n", - " inflating: data/test.txt \r\n", - " inflating: data/train.txt \r\n", - " inflating: data/valid.txt \r\n" + "2024-08-28 20:14:50 (4.87 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "\r\n", + "mkdir: cannot create directory ‘data’: File exists\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "--2024-08-26 16:03:52-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.216.209, 52.217.230.177, 52.217.116.41, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.216.209|:443... " + "Archive: conll2003.zip\r\n", + " inflating: data/metadata \r\n", + " inflating: data/test.txt \r\n", + " inflating: data/train.txt \r\n", + " inflating: data/valid.txt " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "connected.\r\n" + "\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ + "--2024-08-28 20:14:50-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.16.156, 52.217.10.132, 3.5.30.217, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.16.156|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -180,33 +180,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 0%[ ] 143.53K 712KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 7%[> ] 1.25M 3.11MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 49%[========> ] 7.97M 13.2MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 21.5MB/s in 0.8s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-08-26 16:03:54 (21.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-08-28 20:14:51 (125 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -223,10 +199,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:54.231159Z", - "iopub.status.busy": "2024-08-26T16:03:54.230797Z", - "iopub.status.idle": "2024-08-26T16:03:55.559490Z", - "shell.execute_reply": "2024-08-26T16:03:55.558978Z" + "iopub.execute_input": "2024-08-28T20:14:51.193605Z", + "iopub.status.busy": "2024-08-28T20:14:51.193408Z", + "iopub.status.idle": "2024-08-28T20:14:52.471714Z", + "shell.execute_reply": "2024-08-28T20:14:52.471143Z" }, "nbsphinx": "hidden" }, @@ -237,7 +213,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@894a33971fd8cf99254476de4c8b68d2f685b130\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4cf5c9dccc966516e38d398aa18db514a3e89bef\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -263,10 +239,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:55.562075Z", - "iopub.status.busy": "2024-08-26T16:03:55.561623Z", - "iopub.status.idle": "2024-08-26T16:03:55.564854Z", - "shell.execute_reply": "2024-08-26T16:03:55.564374Z" + "iopub.execute_input": "2024-08-28T20:14:52.474110Z", + "iopub.status.busy": "2024-08-28T20:14:52.473822Z", + "iopub.status.idle": "2024-08-28T20:14:52.477401Z", + "shell.execute_reply": "2024-08-28T20:14:52.476829Z" } }, "outputs": [], @@ -316,10 +292,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:55.567011Z", - "iopub.status.busy": "2024-08-26T16:03:55.566646Z", - "iopub.status.idle": "2024-08-26T16:03:55.569740Z", - "shell.execute_reply": "2024-08-26T16:03:55.569184Z" + "iopub.execute_input": "2024-08-28T20:14:52.479601Z", + "iopub.status.busy": "2024-08-28T20:14:52.479161Z", + "iopub.status.idle": "2024-08-28T20:14:52.482135Z", + "shell.execute_reply": "2024-08-28T20:14:52.481690Z" }, "nbsphinx": "hidden" }, @@ -337,10 +313,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:03:55.571809Z", - "iopub.status.busy": "2024-08-26T16:03:55.571484Z", - "iopub.status.idle": "2024-08-26T16:04:04.593614Z", - "shell.execute_reply": "2024-08-26T16:04:04.593000Z" + "iopub.execute_input": "2024-08-28T20:14:52.484091Z", + "iopub.status.busy": "2024-08-28T20:14:52.483910Z", + "iopub.status.idle": "2024-08-28T20:15:01.459104Z", + "shell.execute_reply": "2024-08-28T20:15:01.458495Z" } }, "outputs": [], @@ -414,10 +390,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:04.596217Z", - "iopub.status.busy": "2024-08-26T16:04:04.596011Z", - "iopub.status.idle": "2024-08-26T16:04:04.601781Z", - "shell.execute_reply": "2024-08-26T16:04:04.601301Z" + "iopub.execute_input": "2024-08-28T20:15:01.461836Z", + "iopub.status.busy": "2024-08-28T20:15:01.461325Z", + "iopub.status.idle": "2024-08-28T20:15:01.467064Z", + "shell.execute_reply": "2024-08-28T20:15:01.466528Z" }, "nbsphinx": "hidden" }, @@ -457,10 +433,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:04.603874Z", - "iopub.status.busy": "2024-08-26T16:04:04.603537Z", - "iopub.status.idle": "2024-08-26T16:04:04.965244Z", - "shell.execute_reply": "2024-08-26T16:04:04.964692Z" + "iopub.execute_input": "2024-08-28T20:15:01.469080Z", + "iopub.status.busy": "2024-08-28T20:15:01.468761Z", + "iopub.status.idle": "2024-08-28T20:15:01.830066Z", + "shell.execute_reply": "2024-08-28T20:15:01.829505Z" } }, "outputs": [], @@ -497,10 +473,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:04.967937Z", - "iopub.status.busy": "2024-08-26T16:04:04.967492Z", - "iopub.status.idle": "2024-08-26T16:04:04.972633Z", - "shell.execute_reply": "2024-08-26T16:04:04.972006Z" + "iopub.execute_input": "2024-08-28T20:15:01.832550Z", + "iopub.status.busy": "2024-08-28T20:15:01.832175Z", + "iopub.status.idle": "2024-08-28T20:15:01.836735Z", + "shell.execute_reply": "2024-08-28T20:15:01.836255Z" } }, "outputs": [ @@ -572,10 +548,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:04.975197Z", - "iopub.status.busy": "2024-08-26T16:04:04.974808Z", - "iopub.status.idle": "2024-08-26T16:04:07.698648Z", - "shell.execute_reply": "2024-08-26T16:04:07.697909Z" + "iopub.execute_input": "2024-08-28T20:15:01.838927Z", + "iopub.status.busy": "2024-08-28T20:15:01.838595Z", + "iopub.status.idle": "2024-08-28T20:15:04.486155Z", + "shell.execute_reply": "2024-08-28T20:15:04.485339Z" } }, "outputs": [], @@ -597,10 +573,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:07.701619Z", - "iopub.status.busy": "2024-08-26T16:04:07.701017Z", - "iopub.status.idle": "2024-08-26T16:04:07.704967Z", - "shell.execute_reply": "2024-08-26T16:04:07.704464Z" + "iopub.execute_input": "2024-08-28T20:15:04.489549Z", + "iopub.status.busy": "2024-08-28T20:15:04.488660Z", + "iopub.status.idle": "2024-08-28T20:15:04.492922Z", + "shell.execute_reply": "2024-08-28T20:15:04.492365Z" } }, "outputs": [ @@ -636,10 +612,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:07.707094Z", - "iopub.status.busy": "2024-08-26T16:04:07.706758Z", - "iopub.status.idle": "2024-08-26T16:04:07.711843Z", - "shell.execute_reply": "2024-08-26T16:04:07.711300Z" + "iopub.execute_input": "2024-08-28T20:15:04.495072Z", + "iopub.status.busy": "2024-08-28T20:15:04.494615Z", + "iopub.status.idle": "2024-08-28T20:15:04.500167Z", + "shell.execute_reply": "2024-08-28T20:15:04.499692Z" } }, "outputs": [ @@ -817,10 +793,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:07.714045Z", - "iopub.status.busy": "2024-08-26T16:04:07.713708Z", - "iopub.status.idle": "2024-08-26T16:04:07.740657Z", - "shell.execute_reply": "2024-08-26T16:04:07.740074Z" + "iopub.execute_input": "2024-08-28T20:15:04.502053Z", + "iopub.status.busy": "2024-08-28T20:15:04.501871Z", + "iopub.status.idle": "2024-08-28T20:15:04.528763Z", + "shell.execute_reply": "2024-08-28T20:15:04.528326Z" } }, "outputs": [ @@ -922,10 +898,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:07.743029Z", - "iopub.status.busy": "2024-08-26T16:04:07.742589Z", - "iopub.status.idle": "2024-08-26T16:04:07.747982Z", - "shell.execute_reply": "2024-08-26T16:04:07.747370Z" + "iopub.execute_input": "2024-08-28T20:15:04.530900Z", + "iopub.status.busy": "2024-08-28T20:15:04.530584Z", + "iopub.status.idle": "2024-08-28T20:15:04.535158Z", + "shell.execute_reply": "2024-08-28T20:15:04.534669Z" } }, "outputs": [ @@ -999,10 +975,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:07.750138Z", - "iopub.status.busy": "2024-08-26T16:04:07.749956Z", - "iopub.status.idle": "2024-08-26T16:04:09.204508Z", - "shell.execute_reply": "2024-08-26T16:04:09.203868Z" + "iopub.execute_input": "2024-08-28T20:15:04.537227Z", + "iopub.status.busy": "2024-08-28T20:15:04.536914Z", + "iopub.status.idle": "2024-08-28T20:15:05.945438Z", + "shell.execute_reply": "2024-08-28T20:15:05.944845Z" } }, "outputs": [ @@ -1174,10 +1150,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-08-26T16:04:09.206914Z", - "iopub.status.busy": "2024-08-26T16:04:09.206702Z", - "iopub.status.idle": "2024-08-26T16:04:09.211093Z", - "shell.execute_reply": "2024-08-26T16:04:09.210480Z" + "iopub.execute_input": "2024-08-28T20:15:05.947574Z", + "iopub.status.busy": "2024-08-28T20:15:05.947384Z", + "iopub.status.idle": "2024-08-28T20:15:05.951417Z", + "shell.execute_reply": "2024-08-28T20:15:05.950877Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 995d849aa..97c7abe78 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "894a33971fd8cf99254476de4c8b68d2f685b130", + commit_hash: "4cf5c9dccc966516e38d398aa18db514a3e89bef", }; \ No newline at end of file