From 28471cd3f9c7581566e24956523ffb9adb926cf7 Mon Sep 17 00:00:00 2001 From: jwmueller Date: Mon, 22 Apr 2024 21:56:55 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@2e9c4a958aa08fb14a2a81002732d6ad1d620b43 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 25727 -> 25727 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 131825 -> 133460 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90559 -> 90559 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75294 -> 75294 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120431 -> 120431 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4492 -> 4492 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 91933 -> 91933 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79104 -> 79104 bytes master/.doctrees/environment.pickle | Bin 15410736 -> 15451425 bytes master/.doctrees/index.doctree | Bin 42320 -> 42320 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1756 ++++----- .../nbsphinx/tutorials/datalab/audio.ipynb | 1258 +++---- .../tutorials/datalab/data_monitor.ipynb | 592 +-- .../tutorials/datalab/datalab_advanced.ipynb | 374 +- .../datalab/datalab_quickstart.ipynb | 130 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3200 ++++++++++------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 624 ++-- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 644 ++-- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1056 +++--- .../tutorials/token_classification.ipynb | 172 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 232719 -> 232721 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 336271 -> 336273 bytes .../tutorials/datalab/data_monitor.doctree | Bin 145209 -> 145209 bytes .../datalab/datalab_advanced.doctree | Bin 199380 -> 199380 bytes .../datalab/datalab_quickstart.doctree | Bin 149271 -> 149271 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 398354 -> 436292 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3292 -> 3292 bytes .../tutorials/datalab/tabular.doctree | Bin 119368 -> 119368 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 154225 -> 154225 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 210677 -> 210677 bytes .../tutorials/indepth_overview.doctree | Bin 222071 -> 222071 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140179 -> 140179 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104189 -> 104195 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176685 -> 176643 bytes .../datalab/internal/issue_manager/label.html | 2 +- .../datalab/guide/issue_type_description.rst | 4 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/data_monitor.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- master/_sources/tutorials/datalab/image.ipynb | 4 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- .../datalab/guide/issue_type_description.html | 3 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1756 ++++----- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1258 +++---- master/tutorials/datalab/data_monitor.html | 8 +- master/tutorials/datalab/data_monitor.ipynb | 592 +-- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 374 +- .../datalab/datalab_quickstart.ipynb | 130 +- master/tutorials/datalab/image.html | 75 +- master/tutorials/datalab/image.ipynb | 3200 ++++++++++------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 624 ++-- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 644 ++-- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1056 +++--- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 172 +- versioning.js | 2 +- 177 files changed, 11716 insertions(+), 10734 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 4ca512cbc..8786763d5 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: fad435b0dae9841ac0d7e1cee987ff61 +config: 0f219e4141abafb86bfae6680095470f tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 87d627bdb2c426ed943416c28b63e93f0feff359..1061b81f56899709f5428c4aacf876391106ddff 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^)d1_94ROjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= O^ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 6275a1a5c790dbdef742cbb5f49b29cdee520836..87e29bfe58f683e529b593e46de9da221ea1c7ec 100644 GIT binary patch delta 4197 zcmbuC%}Z2K7{)p0-tnuMt|pEtLKI40l3um3$%F)>=tF0;2F)xRy;JC5mIYahM2#W@ zgDadCLc$;|EU<3!wrJxjTDB-Cr$Mk33Wowg5*MADQf=p%Kj3+O@AKaGyyx7>Sk`1L zYpR9my_H7zLT7tLNibAqwCfl5ml?r|4sW?`90=;3a=qOXD)p3kL!pr2@p>u^uQkj* z05Ws?r^8~bN!3iRw#iyjM*WGS|9P;$bx2-kEeGNXCN-A>+2;6y!|H2MQXq@Q7r~et zQU)xeuMO*Zn-#b{=SZ9?W}K>S_78ms&IdEl8fI6yOWgUzqo4svgSK=)ym27& zM9i&Z(_2*;QImBM(#1_{>B=Q%5>_M&I)rS-{}UC{OrBDQd==?ZE1vFBG-0HxnG`8h zMv+INZ9~%L6tXPrBw}v2T0>)%%2*57OxvNBVy2?pz#JM$wqP%io@9XMNd*@&xJHEq Y>RA_7yG}CwiG7KS?Vog#Kl&r?-;yl?=Kufz delta 4197 zcmbuC-%C?r7{__vbLOwMjwa3&Aqu5mlFlu+WkP~c^g}nTp_yURt_j%tl70;Q9 z=S;USM`h2A_OP?kTUOz8byT=K4!6hE;SPD6;fk=w?QHitg9lxqpvzGnbb2m^T`psU zeE?+o&QC|gc$2E>UTur9tc>}SNB{F+foqVw&R7W~6ilkG1akF>MT^njqNG6upBh_Pix|s+hH^4t-!aVyJ`F0Q#?9*M>C^Zww6go=sjW=VT^%mGBp` zkP(^dOUJaG#;t{i9Mw)PmH=~U*4$}?zWHFTZ#f2Q-~6z`HFvKVF!%N91z0NIA7$)D3%2TYD-vAZyN-O3)pw}X9w$-Z5z8zwiGu%j^9yPHkIg(&_yn?gt(}=A>;HJgeca zw&E4o#B>w4(5jD@g4eWJhK;1lapYBE=AfIG`S%Pk11((PecLgyUrgt7O>`~sJX(Li zDK{mX?gY=EQ;+%RG0di33|LqWMV9zgbRsq!dJ=pn3$0;pjoZYXUpxjHkTht^1jL&M zvOvV`N-n)sl~FZS7a?8jw4SM4vZi1~vY^ArX8b=4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL2a!$yz* delta 3571 zcmX@QLh$Gc!3~~_hGzL?$!W%Bmik74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL3V!Tinu diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 03e02940f0f279ad3a7d92b5ae1f98ce81f19cf7..725e877aa4829e4055ae46a3e278305cbb1b58c2 100644 GIT binary patch delta 477 zcmex=g7NaMaM)X;sjwgMKv;W?Mkw%ZuCaFFQW72U$C!#z~}iq-{*bK*_mFj=>^-% zX5vhElq=DAM}3W~x|9y5bkwED^_{*tr{a~J?mB0OTdj4we5$G{ZlBwu_}ESI1Hd#X z*2or2CoRPr4OCk&Ikc3m51{kOcBa{Fn;=wXwGOWtK&4mVJX(m zRu46KAnPO%U>CuNpa+mL-S(0g49g_@Sx?d}Jt^-)hZYMt!!qSpA; zX4HCSAc$HI4-NuWmQVggjq;EmFlxp+xNqGx0qa1rovd|u3Avd__A+}n`V+}&peM$z zBUueJJg%bF@I(@|UP{fP)@S--)Vli6grXzq9uytRG@)60r{1I1`Dx@wSu<9G&Adge z_Svr}+W+DraOfDx4xz@1R}mDoygmgqE2bM_U*3eUbqKM{+o<&QQD)fSf>ta@dcW4PY(oY?tDhBR-%3UE;% zQVp_Id2$|{xGq>L|MQJx!LMx;Fzb%*BL1-@64^i-W-hACm4h=ly++P~a=!Z)$!){D z`rd=o%2i4ykw>gJE$anFH`6wo08a_OiQOVU08Cd} z>)5>Iv~A-?6V>M}PCac;0CYat%yfr+3xuky(kWX3RB3HsE4z;sLFjpwc6~q^R$80c z>XCXMWSs;kF!&{${Gikkei8Qud;W;Kas2^dTQhb zlGQ}RqZ(=rr;@1kN_qyhJ~N)6*40NA6dlTRq3FnXJ(@K>@gB9#O(H+ay15c;>Md$@ z%zQ=Bo)?#aL&r#V05z7rilC_N^%Lx_#f9&|wWlAqP&S}?0$ugMj$ zL!al6#|z2&Sv;?x=6JrCU0VEI0A^lT{%FTgePP+jTr0~Q!;OaL#KDKgNpKrhfQteV z7s!_9$whGDhF}Z%pKl}!er>aW)o^|n@lPy~$R^sba#3Zr1f0RyHF5!z^S!@FZU^Qy z_8+E&T%&XhdBlp-vR+_#E4^EWcd&V RkYsF;m}X+Kxtyh&2LL0@5n2EM diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 317f3f516d1a2fa3d5074a7193fd044079520559..aa50f0bfa007267e68841275bb8ee048be495ecc 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< TX=!PxW|n5=sg|1?8KWx!?e!H* delta 64 zcmccfmGRD3#ti|ChGzL?$!W%Bmik7@q{G^1g$d1_94R@q{G^3$eepzywv6-d5k+DgNk%@(&xrIrJd8&nRno*jCxpA_kagwP?YLbbe RL6WgWVw#D`<{rk?x&U3^5}^P9 diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 33d761e2d2d1d03508ad5dc881676c4a839f6ac7..ef7ae3f703902ad79cd1de421878ca98e0782e6d 100644 GIT binary patch delta 9934 zcmc&)X?T=Hw&oPs$lBfMbkbQn#32C^NRWhOWE((0NB|d*oh%(XP4*2CV?ad`0YfOH zKok^Nl&B#FY`E+=D&QR!9dO{P5D`=sNd}ow5N6J)>h5&Ic%M6e?)W@bcj~M2p7$(u zPJPw1E%N#E3Lnn}o-e-$O`bC$rL2!Re}*-?ch9WcUgqqS%+y}ytll~O9!xR!%}Pmo zFeN)JH#x0Wzueqhb6UT&KIVSStKh;Lp(9y`4ihcra*MgtgoCN5(p;LEpU=l^I<1?N zS8mBGl+!tx<(XyXavr<6i2wISON42RIkU9TR8UlEHdW?jnu;n)Or>#t|7@oAkze(UaJk7ORvW&k; zf!A%0;;ogwywmImS0c{uPtHzuey^KtU=w}C!LyLeznC5Fod0=t*Qoo6udJ|iw@k1^ zSO@s>8FRZkSJ%&t;7jtuoPTf4@9F%0K0ii3%eO-Z617_9jRq;+p##qxn9#g^3j>(X zOSXse6MZAtB457z_fc%IFHhMy6ny!R0cot>mp83Q|^F)Z~k6_uJ+ zE?T*8WfeLSA4rt_4@I)KeR*S_Xx8A%>$QJiTNKO=1+$=UsHcSCp$&y>K292X^W6=` z>IE2w$1wpiFmj_t4KwAHl~tH=G?kh$ALf}dP4*l}$~RY<^G(?nbN1{+Q(;j#J}Nes zCeh>KqP)U#lgk2Af*F$tbIU1?=~9%RS#Bo$ z?O`H5?$Bk~m~q6ZyrQ(woMXyG5jVzVrUG-R8TnfBW?Ay_|8mnDOJ24`vX}JAO!JB= zOa<~$Zc%ncnW+eKyvUSgt}ZV}rWJ)b=F+nA%)%UGi1xdit=y7CE z%Ph@9y=6rOxSR3{XPL^1&DnXmdD+r^b4rVFigpxZi>s25sJi6MPj_4EI&QAYwSdZZcmct z^n^VA#`Z8aTP>fZmRG3d`8yoT7w-7MZatNzWqz_W)hU@JN@k6cq0*#mU2c2CE`vo8 znz(jnG;3BOjY?#%62YQq7rC=@3dM%1*>i`C&0BVz0(Qnv#D+iwU$a{mexco3nCoKf zMFra;Vc|L-yl1%QLUi~U{^Fiz+z`C|oq=;h=;SYB=IJkE7VMAi>TR%gz|~aoKet3# z5-riA6=vwZnQoZfegiX6VJ0ZdwEq?Jh5h3ZlebhF`Cs>c$VU6CX7=5IGMd&*PT=DX z`0=`fJM~lSoE%-~4Elt+5G>?%yTY1ZJyg_@75S@#|Kvy@*Wc~TOFn)Ip5<3Ru4d1x zCti!tI}7~9$=9GWKeyN$s+v!Jk`8RG{qYOU`aAd04u1C7lWYgtYv>I%&3VU91DxT5Po}{IKIdc%yQuuqqWp55{F2H? zeHOva_;YQ6o<5ok$znl&@L{L?dCzs%nO^`OA7|tTKA*`#0{DsVyFn;#x_}3SqE6y` zD0uMJ_2DcyKn5>1Kx{KXv6mOxfO11lMUuE3(L+un>bB|${Q9XYFcqu^d>wBDDOB5i0rCGm$XY&Zi42S2Ugt zzzCqaA*B$0I8*3>K$$|56$GXbl$)+h^mrh!Jzp3yg@p#b@5&QU&r|%Od9SO3*t>zE zWgR4Iw&F@v?q&YG-rRikP)D{qkVF3nzM?f8KH~4T#;{M6K_5ysCzV0fZK0kU&=b4) z+O}8{p*`?L+W`21hx|2$T~P*nCq-^b17dk`aR~q6uRZK?kvCdMj><~dPtyTg(VedR z^`FMUZr=9OVr@i_`-yfpue~|hA#nHRW=N6(=jZtF(|=oxLeu|#Tsz=Cp@BaeNQe@L z=x*h8Kj*>gV#rqz!^3`g1ZE!vC7b+qf&$p=@IXtwt6y@4(X8SvOVjC z79iD&7Ay;L7EtzL5MP)aB~}9ThaVNeRz>g^Mew#$+uxNoPmP0Mm{%jBwc1Id81zqN zQ5xA~V>GfcMQEf^U8M}iCL66p>OhB;!mAmJzKAl4Nk1{h2@CY(+>`78#V6PI9B-hLp+ILW_c0NXpO7G-CL53 zh{_t#<_`zi=NeT@-bX>4KiCj#gFyJy6I$$sgjeJ$RruhG$`2SrwnT{pfQMN@~ z*F&;hO7sr_Jqyx`aUoz}TCF4Ail;+i087FFxI4TW%)B86d)=o1DNcDbf7nBb7>Yy^GyL~VPoaE|>%gB7EU-$rZah-aDs<`64qMLRpnUou^P2YyWlAP`())0mX`Ha^$*pmK{ra zy7GKoA-<{*w-REicrOyPfo}8~#lXQ3CN4(81_$P$-^Bc*!aSfbkF{gkowzm{ZaAD6 zH65n2OIlGi9TM30*Bzuc-r>FVRo?=mF0wj$%>87Ht=_F z5!hrMRedoq9=bt}$cu+0ma71>6kxFe9F+iFX)$#_{BU-^2|C&RmP#0TfLf)a0~A}0 zGw6kt3T1VNp*=zpGcmYN_ocZZ8?pH3c_Cg@xmATq`VD7qy3~)^p_k>i>gNXg5D0vX{VqZ`Ah}}l>ut<9b%OdS9VjqGo zeEE_n)-hOmT^meZrz-9FA&TA>n^Vv!cB!sPs(ZUsypl?FN(D+Oq$GDlA}_Hfiv1(N zk07Xp(c>>|$ma&Yc*2PiCjubM^CKruTXQOy0cNy6^g2urbuw<&KJY%Ul3*FPKK<~p zJYS6OCyS-ilzEEO;$S)>irD_R=}>@Thab+^VgIAU@0$`z#_ruB$M?enf1Wbe!K6sIb zM7j|y`+;#Je86C-IPnOyu$6k%k}iyf3bs^_FJ0Y4#wh3{mW_cux{Z4G=Co9=juf~M zo0{#VbnpcBfgR$b3|OfkdWhPw@T>0Q`=lw@sM*QtFX$3vMH~OlI5+|98@)`R?;nLY zxGMY~gD&hxW$9&Q>Ce(qaq%&9A}%JpZwN1yZ~M%HeXWDpJFv-YeQrf z2}O7lvcuj%^)u!I`m74o*l$wt`p>1U*`cWN!(Q?9bkw(BnZ8>g9Z{xxN))kX27FEG zsRGbUzU}>)(8Soq5HVyQjQ1Y>9ZiPNp;Vm6hNsz0MRisVZt#DIg*kZ41cPLHN8$S! zh`z-zjb%F~57S>62I=ft2=$no}~Yi$(J7U1bdq#S|XUUKRYS{WBOk_bkpd(bK*(!C5Wv9}H4 z;7jl@Yfx&+%i(3%E_^G{(hm#*4#O~b->HWkK-7cSa|0?N-P@ONP>#x8gI%4R+oIHM zQtEu{>R=s&ieD;WwC0}F`bk!;(m61kU9-FLvYRW@18l#{fgL{VwshsA(Ln_1Sc5lk zn{jzpbp`LabgyXI2b0BtXCXrDErV|KElRxi5@;bn9C!&vK#(X|3*lnivsjD5LdErG zVJr&|mBundsN7c%gepUCK8LvzN9uw?rJ+Iifcz@w{KSdZ(64qwV-+ibhK7kt&qIdR z-O%&^kd|gIf>CUIs7jiQP}ihM?_&FL5$yF~GeRk89@Qogreh6SI!b7kz!oSGJC{H_ z%oXRCVC#7*ROW4^qW(O7;4!vgDFk};BJnb@e<`eGWp?Iru1GSEv}Z)Js}{N|BcF;> z%iuD+rChdExvX;?ybI0ZL>=G-k=N#1D$xK(*RmWQ>0h7-d-5Q3XH0BSW%BlW)zECdto?6dGJ2mN~HwoSRwOb<32dXmLY2@_jSq% zr}jfVtQNBlz$5U=s>8U?R!JAYMv;6Fp7WkdD7cpR*Gc|rYKc+4$U7=urBX(fFH}5w z2u9tT5yguB(L?YUJ87qX%$@#x+l&tZFNV%Z{?Szg=~!~_M*c#T_;ZILK@9i=9#1g`HYqL+g&+?BT8lD0CRaJ7X$I1JOh7m?l@%HkW! zVmWo)-QwpJJ!Nt85tw#QQ%j#OOh;iRq>6<{aTE6ncMDaG?a)yu>j*>XX%aX2d3&e7 zNQk{`CC8w1OcK1>_X&07JgfrNav&GRfcp+mBm+2UP7FI((L3QPL)hF7{LJgS3 zQ~v`8bx)(L>u=sDLhag&CS!5(UPJhq;cmecN~bdI;+OaJ>+~8i_$#o&CS}?Nchg?8 zUHu9)9l<8~hy|BnEHw=L5FfQbvi6gE2sI0@Z=jqtOH=q!pGC}i#%T(#?lhBGn?>UV zSfl;nKFLYn!X~?-jM2TzSr?~K>G|XE5rC$3-AlkTGa-H_omWo;+Zy>4K23IZS=Zx z$o9rhaH*q4pon!P4S9Hmw&n`)Gfb_160i5IPtZ_;KR;RvX)xoDBi1Y$w%}#9bt4Uv z@p9BUk%r&V(3yr2Gz_ER48C4lPt&jqub!+Q(9nvnk=AQ8WRkw=G`xpz6V?VAPSEft zeKn4C#AzuF-{HB;`YjEkv29yN(r}4}3p6}}MbJ8ehWBV_pkWqnT5Aps88nQh;Zqt8 z)6f%Bz?w+IdKzA(;RPC=qhT?sjJG~dinD2$i9^NGPKBBHZvo~No6G2*XjsW>wbncl zcnf|nomDFxRU@5LBOO#Lol`3vQzM;HBOOvJolzqlQ7fHLD;-cHjjxe**GijfrM>&Nu0-={rG2&1wi@fFDQHuzG^$n_R4a|Ck%rVt8)_;nvBa9fZ1Kk!-?#-&RKL8{ zTi&;Ku=esnJ7u&Jozb??HyQ1z6ml7D`VmY;n|{tv(T;RRdmw$2(WVQ2742;lav5#9 z{ZY}Tiv)}|#dwnnH-7tszR76QX;(#?-h@=N>5#6XO@~+&Z91N*Xw$hxMVorRiuQ14 zw5fZkXj30h(WXK=RE4{WVlJaiCCGY=hQlh=_ zk$(q{u!Kmu3F+YxVf|es9sr`5^_Zx=3%z6FBGs-$ESE<6I$$M!03V6+=)bmT KgV?~>*na|i{HS*T delta 8776 zcmai3d0bW1_IGW#%;ROeml@3oMUYX-6mcjK35Ohd5~%pDS5nFmEz!*6ntcQ}y7gJ6 zKIe~?%F`PfA!4DXpkIKmOQHfC&Ga_)rq`0^ESX`QDT+O!#A$eU)!do3IXUh?m6c-^MS{MrUXV41;jOj$>R z|H#b06#5Cq@}D*Y^D~?K^Jg{(@hboJ<)zygurV&Yv?QMW(}kBj9l|E!FYi7q&xNP< zOk`7CMAkq^51V5MGLCU+(`NcugZ~oy@F}l_mn|%tU-kytqZ=Gj64*N~qIwX7vUe4N zNg)UqzH3y0lUvG@%#VFFZ%7@($L+P{1Q2YnGlUE_gbtoQ)>y~aew@HGuC4H0D+;XmD=Pdz z$G2AmvLIKA6$J1`a}qqoQ}^|^ATQb1)hc~zpI=Z*C(Klw(o-L#jd>e*07iZ<^8`9+5V4 zapUW*CiwlecKv5rs2%b7cMyhZo%n^BPCTY|D%;`8y+(KBCABX6bZv!qH#cS4Xedkv z>G8V5QT%k3uKdd3DRz*Cx?Op=s}nzV*n_V;_8z>*6OI?bNb9`A0#q92hD#unH_fx> z4T~IEmK&cR6H=aB*A4ivV~GxLp~$4xBBDVHePBVk_lb@6%;d(O-<%Akh#Ctf-uCN} zG=%|ocpG)QxQJJyz`y+X*ZYC(aKk(Y@r|eTVCDx-hd~7@$*8bBWFwK)peC-PW#0yo zu=gvzblK$}LK6>``QZlYHo=nOXqOoWGmJ8$|x&#o!N zU)*?IXrk!W0a6?s5TLp-xu8_--8!?HKk~>H$Qt}s}<^lMqmBp$58O94N8GR$yX?|70TR;o)(m47dzRa zEc+XjGKEqiQD6;Udo|JT9h9}LXXVz>OOpwZvPu)(+dt^y^;%d!)?wxY-UI zc=pW>%*jIr*xo}1SnDAJocv>3lB9ydi)}&Ocb5ef?eVyvl09TWu@syOO=F1?3HtKt zThm#zhbkYGx0Vk>h?1snS&m1``nm7kTtCo_H{H&Mr99R(l+U@-i_P~?wKUhGMJ=r< ze{|=d9b4)l*U8ym^{|Tn`fC_ltvCtAX`|wF_+Ef!Erw$$zkDx(bf_(a-|q>PJo|na zt5V+YSKc2%?<09ZfgkVwTeL+j@3%%$Yn-9uxeu~gg9opEFbkbbdALY_3mu~}u1^&vX{=sp1riNUDL!HMgn!$3M4#c@4mJV0}EBt78j7#ClR~idA-CVlOn`67%f9 zp5eWcW1U5@JtV?7QDqO|EYFiiJeLTQ#j8&EtH4thPrj!tp4pzVcy?q3YPKVCp2&3u z9cf_q@mxkOIWD(rgXa+Zmfpbtx1SKj>n^9HD4Qkw7l#Jl==1 zJ!u~n-#J1G98{hjQl1`Hp4KZR6z{-wQrqQ@yZ4 zW5hKtC_%hg-f-A^fmh2CL&vnxfwYJQ;e-)a#9d%^`}>zuN6T?I&%sUlO+5yGvCcRONvGvU(-%iCTn1KUO`)8HX?b%IP~ z%dF{)#MvHMq;e|OTo471fJJL%8(P#AI=dumt$7xu(V(}_P87cE)Pvct?F_4IEPU&D5x1CA{M5z9Ia|{s98{_VAs=M?QqeJ-pJK9S@^{Rcoy)&!GyJ&`zz~ zz8w?cGggm0@tl7~D_7oG#rm{z^@?OIS6(%$)r(t6(ABE(yVCemX*`q~%-Kh7#~LNx zs|WNZaoQ$mM%gvj^?(LoPx&0m-mF-!20>f{LSkH zI>;3N>V*f*EFW1089r17>?I#+DPm%8+-p&ol7$!BWTpDZWX)7alq{Gpp6vrsYynPT zu8I`WyFQOAm=3lx#h5e*VW`)fvsAGs4Qkj{ADJ^}Iz!XJHdUPL3(>H1ML*mODrKUk z_k*77sEZC8E@t&kTT#z^)=cOj47NOwt|2_9x}zBNcL= zQz(BGQDq18qzCKV6?*U^U2IU`D-H~TFy`+oBc=6~kqY;f%@_NVgHjha(&2rpO0rT( zQ7VZ_rSB6eA7#LJQo$^12&L9McrYAgEXNnSN{~p%!YVWP%C6F72vxo>K4EnhB}2eT zd_4pzwX=L%_7@buZl?5g=F>w#18lJZ@E8td3Lsj1IUF8&|EsmG$Qq5L5rT^D8*;}- z6;J;Wa00}+Vb~5{ZtE&yM?qUSAcl{E_Uxcy_^D!eOfnSFqahOZN;sue(07W#WCm=BQ|-32`wG&ZF1W6Cgp(^fo`7 z0J|7eP*8?CTtPp2`^jBPXN1?;5k+IC5%++v#8D%*&#$E^N#vxm(x8Z}ngqU@TL^GO z?4AUJ;E1&1L^BjU-qkfyWamRF{Gmenuw_W^m>ct9ts`^urxiZL;V$Yu^b=>N!2<{v z-%Q8u_mqIS6y{KS7U?ffVv%D03>X7R%{L%Yc+Z3}be|roO*3H_q>J-2p$lY?kWGx9 z_m^oH;V)xUH4C~r+5;LzRocq%vdcftDMQYMlB_&B&l+hD7}B4&l`~5x=!!N9dZ8~&=0D~Y^>L(q}klLGF;7l=E5E) zRxhKTrOj|BNUIROU7Icbu?YTa-`LFXl47{37&ow+{vz1~nedYhrR)BpdK4sqh0?Q& zAKv9t>;YCuCa}7^W3RCulq!j%QWVWJ|;VKSnz=GKE4m^hik-7}URHG;_H~T=e49 zI#|VS1c)i?Ap?H2Vf2GybdMM%i>d#HOvnC&c~Q~Ai=-vz&Obq`uQIP_XsMAwgl83!bo5)`rhQ*jQ>(jwpxjj^ZiSEVNTk~a zqgWPV&%uSC5lAHhFNxdRV434ELPBXOc)Umwa;^`F$(nGtsOIb}jVbzBWp zPaWR}%EQp*KvCTucLr3$V zm3T)Kdc#^V;2Z1kl7XCinS{gWWwvz{Pg8bPxvxG9&$s3>S#j|> z0z=tG3zzjRxfGhW9D#aZmb{40fC_ok->{3Bj;+KAoHfOtH?a6hcT_m6e=>sCm@wM>s4YL^eqzew%PS0 zOtoVHddnk@qhm%f;X0W2oq{MA_LSa|vc+=NqAghtY=Fa9?midry-W|ith<5>SZTfW z@&ujI2*vp3r=}6AwJ)Ha?fXL%CxUoEf=+m>K#K`_>$J12u5Fm^wtF5Rs^@; zEmmkDIHM)O)#ilD;AO|&!P`wR6MI6{H7N34-O8awBJ+Eg#uh0W=f8)y*$zpA7dhu> zjEhj5H#(0J!>&V5ePwH9`b}^1N=45rP%56efuHs)P?xU4SXOUqJX5@T6Jop@T7!tX zoA6&!lR1B%xX&tK72&ua4_?NPX$ZrvY7C}f9}Q+2LU9u}2GQ^)4Mj9OjVs=m zOhY6MVKjU|!+SK?Vdji&XqZYv0S%*R7(v5JWOyVENjQWU<8hq6#CdY=D|yoj3-YGY z_hTc)%4F=hJeNH!BV>}%DVC8j$*7oQM2clJie)5BG77~q0w&4cB$*dW*2R*sNs={5 zq9#ewBnhG<@-j(cCP}JT5;7U>qR?rRWMYymiX{V+^uBnyA%fhctQy=frGtPCFEVy_ zLUuBzUGPh?%4rNGR_2sGh^d^?=M0t8Ci+k2R7;7KIi;8QDyMHzVr5S0rI5-gy>(DI zEo{!|YWgpy2%V9SLn^2A45V^OM{boQ?N>Gyjy9HQY<8m`iCfd(x(=tcwO-WV+|GWH8>5Z~IdBkWNS zZL}iXf!VX)f<&$(3xoCI7kd^Tau22D%4@MhuL0a_?+1w!jts>$tds=?H$#A*$Z=%h zLF7j65>0;IjJ*7^bXa0frB-It2IH~ITf+j|+h8w0$>b*r+x~20WF?EU!H-e+MDG8> f|Nnho$p+iNrW0(EeY1Z7HvZWh8`cVqGt2xR_maiA diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 0d4cee0fa8ed9d9e0beb50762fcfad5b89df0752..bbcbd38fa6d4f0ad506e9d5d97b7a4cb90f22567 100644 GIT binary patch delta 117 zcmX@AbyRDEFQZ|xd1_94R zlS#+ovBq>=OtPjG9HG3X>;dH5Js?cncDTS=EvIPz<&jW6LIh5XE%xF?H}L-;!1K4 z=XM+d`zBgj3i)>H6gKFTNOT0m=c#IOzwHyO22ON*VL{Md;XmLLH!>p}?79u4O_bK= zDfp>G0GquF_x3!8b!KGL7o5?ITbw}71kwX^0-#3kWFBazpZSh&^9$bUV(BH9_ z=LasJDfl7a;~SY_6Zo~!0yF`R`i`+J2I^vVa*en@{tehgZ6MF^MshFTnrJ{1p=mCk z@$ieMvuGe3BcU1Rb?}(@b0#R(x3`PBv;BBk9GY1K`^t0Yzb*uo=gwRF`zx!^Kxnwg zeP{E<+3Vme_||J(5zIVa{PboJg9_Jp5=8s&`s7D#w1L0+{x38^4>-!iJ2e)c`mq>( zsk>fWp2vS40Ouh5cWth^_dIr2^a^{~=7v8GfI(t=c?OGcw-~6hg6JuunpujzD&vr>NMc!-asLlYolM((?ROPlIb=>GlkXhb(F*gx`JeE zJsmc1qO_BTu-$OyvJ|F_Nf8=fBBy(3r`l9QcML+R&P8a%#EHiHRW?dl)I_d&t~n0c)*=zYLZzr+y9$b>>@I( z#3%m_(`I!&L5*m@9@z1zQ$6%Zk->DTy2zH7B2=RW`>4spPM+yZly<3;N2n7It)*Jh z)NX*68oyQsj?r&$Uo4m7)iJ_uj&6~ww&cersZ?c;QyR~UOX6HF`HMl#jhn2%3N|%6 zLC@gJu!70Ch}64NCR>qb3&?-MI)A1a=+65W4~SfA5ZkeH2?qr delta 5702 zcmbtYZD>Tj3+lQ-{^9J7wpgOxt#R|yyQEu@w22JzTwMVde)BIte1FJR7?`=4Us?G%u zp{m!ant(QOarL`co|D{Ev&IF@G$}5}3V5;Ji?zvu{|XAn8{JnO|&%U^PQGSY|u#&Z}*9>l9l3d>*rVv9B=>HfS^6XyU!zTrbgJ`c?U?FD6Y;? z@bhsWHhUZH?mmZg&w?+)rI+(Ni3~P%OV|{l0|tN8JB52M6lVua@n!N6T!YQf*S?$Q z`Y)m>_`&Dlo2elu@av;_XaX$tZDX4qsEe8OD)IREJ+O<~K#t+<#BRPlQHLf%(_A_2 z;#W>(&_Gy50@K#(;92qKv|p@iYZEnR`tY(iFuefwm1i$}mk%n>UNHFg*H@r{&~TA` zVDhDz8{jPX_M4p{%sgNE;+7wS3fp)BM0+24Eo&qx4O24QV{nU#k({6@l3aarnl)whMjAU#b z9dzJCX(vx%yJ62|F-R#VMQD7Hoa(0SYGW1Mbr4c@Hbf&%oM^mPWx|v}O=K%qE4?Yr z4)Ai%4q5^es^u+sf&At<>T$p^zl#D&r@R}Dg=IvO1XXq?9&oFfnq&se_WvdpI*A-s z;*oy`X_LAUrv@}&PwaTq$!>bOz`=AXI?0rmLsX>(dMW0_PLAnxn0BaRho}P&t)ZHS zsm%diYW!;HJ3_y~eKBl~H^vCNIl4r)(vY7WqhggAr(rxVHi>n;0~Q%Y(DuH+JtXKj>M%FF48Ez5H^X_Bt=qx V1)5dus}%G=iQKF7|JeI0{{yHJQ@8*C diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index ea5212e8fa7704f5aac44fbf8c71cf1a8bf83ca8..3c4d9d66bc11f70b0a6a2325d8c1ce5ec3812eaa 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg|4D7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqd1_94R`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0fja>-< delta 1125 zcmeBu&(!;#X+t=pp;>-ea+jlunuWP>vZZm7sYz;* ziJ?J~u|;B;MoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0bXGOyR diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 3fa30ff551ca2659375367cb7b1462338fce42bf..9e6f90c1394e2c701e51e4b0e655a6af56384063 100644 GIT binary patch delta 62 zcmew$^+9TbE0bZdd1_94Rk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0PK@M4*&oF delta 2628 zcmccdp5?}SmJQL2hGzL?$!W%Bmik7k=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0H%uwb^rhX diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 418522b968afda24d8a5c6d4af234d5228e3042c..5238d102dad214d56054857826f04529b209aa80 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7w#DYDIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sh0XF`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OUX>Ktlik delta 2632 zcmaERn&s_jmJNZ7wr2Td$!W%Bmik7lB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OPF%3qSw> diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 9fab6cf1d448db01b7bbf00144ab6c7ba040f3bf..6d283baae39e26d0bdd4a06d1b436f6d253e151d 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7w#DYDIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sh0XF`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0q)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NQ{*&LVv delta 2506 zcmbRCjb++5mJN}NhGzL?$!W%Bmik7)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NR&gy_)# diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 2c3bdade3944a6c65360aeacc75bfa62b90103c1..db4016509f5f36fa5550c34eb1b89d71913e3f39 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg|3o7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>jFw#97# delta 3034 zcmZ3sg>~5$)(xJFhGzL?$!W%Bmik7h$65c%L(kb#v4xr+eBFp_b+kvg?cZ>knJcbeg diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index d744192848e76353380caf0af8325451e2de73a9..a7f389abb77c022d7be3721835152abf774400af 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#6yd1_94RJOGF96UhJo delta 62 zcmaDV^HgR-Fr%Saepzywv6-d5k+DgNk%@(&xrIrJd8&nRno*jCxpA_kagwP?YLbbe RL6WgWVw#D`<`%|>JOEQa5`F*x diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 265f6972c3414afdc209b9afb03d6999855cb799..e913f44e119711e284d35a7796eb23e0660f8e4f 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg|3o7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+Ay50}1zfY3 z$GF|aNOl5PSq%%7O+A9<-RmjrbIQf4e z>*fr%SOK!Nb8M~;XCg1@fNU3 zUqu6%Uf=woYCjX%4wu+mS=U3R&0vS0Z#Yef?I|rQD6#!o+fhnvPwncU#P;ny&6L>A zGQpp`5(AQCWT%8uqTOc39r7H%V6uEM-{$YLJIP4zn>Q|yAWqlU&>Dm+)*3c%n{$_Q?THST|e0W#=R> z=peyg-^sn1^?MO{&dAs*z_^0E@+4!b0HenCN*2aeUb37I(l5PzlMrJ*4+Z+K$}=9+ zAWMJKc27^nhva1%aLVV{{?w200l5a831Z}&{Aj!I^dEkVPTQ}AFs5;l<&C`U!1nVK FMgYBb-tzze delta 3004 zcmdmgn05bQ)(zf_hGzL?$!W%Bmik7Ay50}1zfY3 z$GF|aNOl5PSq%%7O+A9<-RmjrbIQf4e z>*fr%SOK!Nb8M~;XCg1@fNU3 zUqu6%Uf=woYCjX%4wu+mS=U3R&0vS0Z#Yef?I|rQD6#!o+fhnvPwncU#P;ny&6L>A zGQpp`5(AQCWT%8uqTOc39r7H%V6uEM-{$YLJIP4zn>Q|yAWqlU&>Dm+)*3c%n{$_Q?THST|e0W#=R> z=peyg-^sn1^?MO{&dAs*z_^0E@+4!b0HenCN*2aeUb37I(l5PzlMrJ*4+Z+K$}=9+ zAWMJKc27^nhva1%aLVV{{?w200l5a831Z}&{Aj!I^dEkVPTQ}AFs5;l<&C`U!1nVK FMgRz(pyL1l diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index f1de48789c74940a39c95b3aa7918cf474c0cc5e..9908596354e88bdb216a1149704cecd561c2ef86 100644 GIT binary patch delta 2688 zcmbuA%PT}-7{(jsjAJrJBn#pc8XJu>mottsh+;~yK@!G{bIN6*W<<^8l9Yu;<0A`l z*`O@UcqLX+Ha1o$B3ZMUu#(%!U*MTP;MebYzV~~-?|Mmpy`+yd>TCg*GTb}pcUXO@ zP4SC;PMhL$^viZpsq~4GUGz(8g=CXeRaGQeaw)Qv)ulSvriG&eT_-30n`ci|gKQ-| zn~u{ObTB>zkrBEvX6PZ5(YCn&s~cjq0!M*d4-c6&oTrh(66~}>R4aVr!E>0J*sdDJ@VJVmX%ybDhR_qul>8S|$vo=oov)dCKTtq+)}cW4iJ?zEu^K@**i9vOk9)bK|si(J!IGl-j) zGpH!~g1q*cUBk~;-jQ!g!#6iFDY!L*+BN)O=P(WGK1&6$AaLX8EPjy>8N)0VFtEs# xks2?bk$FcS7U}(V2zb*d`d~1Dp@jrTp656^WA7_Z`)_#$&>s8ZDfDrd`2*O2W(@!U delta 2688 zcmbuA-77<39LF0wbG9}U$pvu=&5dR|XWN-FTNEqB4U)VKr*J`SUTX4^lnYJULoUe6 z4a$YhPvT0-jT=`eBDv;9xRSS%zrc5Yz^Bjm`~05Y^IR=zuNJlO8jamKIMS_%PPf%A zNe^1(6ZDHW;-K%4o}+ht&-;ufS0-+s{L073XOvzX&_6FnNVML1= zMGs|<5La@J9(b&D3aiZM+Pabg1!m+B=TYmd;{>(x?j68NkL7i#V9yuN9ANz2UPcwZ zQMBh+brl+Tveu8H^L2Mf;M2r7^EBp@*wBvL;a{9QjS=LO|ICH7+I)-$FQnquu4L>@ zZO|5}z1KPyk}-b<63O(QP%PlU*jk^7ItF%;=T04(5Hiu(@Sy=%N)>-_W{_*zY6fxh zl939c&&X@9+Ex5)`5pPDRD5GSokE*4s9nYPw-3^w?z5B^4*@rhP7~+3ka3*FgE|(u yG*HdO6Eg4UeT?3327ot>qW3xz7+QGY$p4f;XWaS9)81Q-4z$O=cnW{qrvCs#GA$_p diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index ed41b16a0d122b659e93fc6b981c62e88edad2a6..68a32424ae84ae7308336a74271e6a5f4ae0998d 100644 GIT binary patch delta 3004 zcmbPthGpIvmJPm)hQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg|4T7_X6`ZL*sT&mLr{tx`4YUMpiOm~T z8_4xFNc%tawM^tWeshBM5=v~osC$u2n}JDHVspOX3QBB$Vtkhp+xyIID6xII;$yJ(-T5?690~v+7Dca$Nw@F1}HmOxq!G|KEyh^XFaF-K5{Lahe9LXJif0%mJzMn8+jRD gl9zp3w<`!Uejr2dc1HsT&mLr{tx`4YUMpiOm~T z8_4xFNc%tawM^tWeshBM5=v~osC$u2n}JDHVspOX3QBB$Vtkhp+xyIID6xII;$yJ(-T5?690~v+7Dca$Nw@F1}HmOxq!G|KEyh^XFaF-K5{Lahe9LXJif0%mJzMn8+jRD gl9zp3w<`!Uejr2dc1HJOGF96UhJo delta 62 zcmaDV^HgR-Fr%Saepzywv6-d5k+DgNk%@(&xrIrJd8&nRno*jCxpA_kagwP?YLbbe RL6WgWVw#D`<`%|>JOEQa5`F*x diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index a739c78885eaad9d1dccacfe4da640dd7d522cf2..a49302a114d66818941e1001c6f3c0e0760e1b5c 100644 GIT binary patch delta 3483 zcmbuC-%C?r7{_^QXIgU;Tj|6SB#4m8vuVe6QFt{_D2Ity64vH9t=12mxQhxKxOl_#%dKp!B!9Mg$TVUx{};YbhBs#U33#0L0uH1bG*shefI}^p6~PhKF{+WPI=v2 zUN>iYnRB9By)=5!-__yMT&mxB?yyVsb&a_@o$3*vQ|Wa26-`!LZcWov#jSL!Zo0-w z0LGa-&09^8$^{K_(PF1D>AMM|Us>k20%R%hk|+DDbfbO*5iSL?w6b#w$;v?YHvQQG zHJv4?<(>qfOis~-w)3{iQDX87#3z%V@nElo?z*JL%2oBnFz}NAsgIVDeKsT|V>U5w z1hH$Ne+LTaSlYT9euDR$sN?-nyZ%Jk$RAE3&HpdspkLQLNaCAIbWHuO&WwYar$?&jg8HL2WD=WA zcxMk)(Sbe@2aVtUQEd(b3u$nml;czbJc&jIxuBVbAEatQ{A|ijpP!adT=rN=q(j?4 zbpw}P&s#uz&rK^Yu1PfU{t@z7FyhloP;qS#HK3=@dp=re-zR}Z7@|nw9k%}=9w{6k z`?ri0iqF7XVtHnvxu1)5c!}jaEAEHzgt*_%4x*FG1#3h?#`)E&wc@eDj+>$0XL!0{ zw^%*OzG8>F!N+x85@8Q}-hej|FAcLn92dJzvkyBkKK^BrwTk7-EDVMq^a4+?^_?-q co8#UnYJP(kW(XIgU;Tj|6SB#4O2vz^m6FAA>)3gs{nOQPE5T8t7G?xMnmE|5|S z4`UbASgk@R*y_c75Rn%}SCYF4Zx)T9i*8~gsEcBBK5z1N&;Eel`@GNdzVCN9)pcWa z-I(iVcIQOYA5@&ZJq|?;I8?XYdkJs^dP@F8dVsg`ld^HC6#I zjma}wry*9mpdgn_RtiYp4H*5(w6Gl@E1{QKdcaIKn#T~~N+?fncTXc(33PwkpKVan zd6GKrNdU^^3|;EFXsI0~Cci*@GWnSn?l;k0htyiTs=gQkKLwEbXem8lK~fU4NqA$3 zU4i}`DxqV2H!_c^I!_z03&>N~*=1BUcdm+hP59?fRYUL%ph}g{arDYtuPmbJ-iZ`} zX7$ZaX?-V~w86Mlf1)hpkEW64|Ch1Ruj?Kp@vS9#rhnIG#zyTkV|8>vgK-NoiLEBQ zb4TjvK%a<>CU5_!H;19cEI3dqXw(2ai6VnS*hr%fGL0a9K4YcNPpc>{d(6bMksYAA zz@^saYVu!oQCv{%pQ4f3Gf;W+@jIv=I=X=hukGn8F`DKcA@|DXh3WmV-0#C5@ofYEk bNpBoAzsd8-TWqQgaxZ?3n)&iWHnQ^{bj1M^ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 9272c2b1cb9b175caabad048ae8bb3a285d47dea..3d878eabd5c8152f80084348699ba153c7ad6c22 100644 GIT binary patch delta 3969 zcmbuB?MqW(7{Y@nv&CMuuiA%E&&1HFI-ALwi#)T#5yz(J03g z9W_M{!7x%WZ|WeCGiYDLKp}_(33~lt_|o^R9j!lLSAW27zx%q*{XEYW2lb1C`jKjq z>MX9B@(a$KeGYe)%PCdlX1N?WmDX&@mFJMm*^<-jHkq@mZnxWIwwf(2tLUbAfb!YA zqF!g@(nu#FUBg=-@dSU3-lc=kH%##|h7O4mla4*feMyj6!(&F%4Om$koho;pUr|+ zG=BUtU=%)Ekkd|`M{_ow-ilhiXWCJ#;p{A0(`>mP7?__quS9`cw7L2tGOXgC57SjjT z3CH9HIbf&5T>PRlCj2wcNr5s$_*m%B4vTF^Q@CO>BNoJepWM!E@9eaKxbj!%+eib5*gw}ruS49M6CWik3)KG&Qg%r@&i6wgIGvQRWDZ2IB-pc{@1vfOkiWcDH&F2w@VXq4lL zj+&x}U>NBzZ|WeCGiYDLKp}_(33~lt_|o^RomqdtuKs}Ee)n~q`+1%%4eOVN^`o_9 z&Z}>9x-5D5`*JK&RgPpcTWwO6wc2KJ<+yBCi!<6;c;Ub2COWNP7wte2G;Ga z)58OlL*yj)nZIGB1^K$I4T~J)#r>;M(7-|dRNz6aRfl#)gVq~GL#Q>aq!_TW*KS2C znmB$LFbc0d$mypppgEgQZ$+)1Go7f_aCQ!@Y3{ra7?__quf%{`w7K>pGOXg87JcSK zj;iaA1p)*I9^WJ?6QFecM@n zeIK^!9@L;&>mO#LS(V zCmd57SP7ahCBF939)-SdlP36j|%yC^Ow6-1iQISZBwa42#lmuq=%+b&32-iq0BC1v}Q$V;>urI zSL&^oYUxi7#5+ZZz05#N%jg1SiG&%1bUWJ-p~t@Uu*dK6|L6O^bJ)y##msxf!(D>e zWpy}rA1u!>+Ql?Sxq0t~G>1K7Usk%=k!d$u(#_=-(PT->5=GHr$+B1-SzIru02sC8 z?%|~Q2j~C0VhBnrqE16dC%LtH-l1w%VsLhA%dv5t>|T6l9;Papj^pS0Ay7FCFN?hq ziTb_ewUMa5jrT^Pp1iUcePA)k)&#QS@ zEc{mXD-3>?jhl;rtLB#69&Filymm_^X10!Z=1l-*r3$Lzclp^^CM&3?SVJ4V$^5y< zip^ZXJ;j5dI-6_`P?bzJHE$|atAJnzUDc#Jtfc+pM_6>Y5%V&Iikl7%BLm3rKG?gS zUZ2Rx?le|cREB>4{Hmm&>pbbKTGD*0;iXlLKxR4U>O}GybTx4P@t1(2WV)Iv8=~pA zTWYk;L)>+eBB0^l?gI4L$u11MtoA|#4x~X0Y(HmEfH|maQ1j|~I|?^>KZ3$0??Uds zREi#s)~E6n#0#lSz6YQIiGfS5I+6F86e4!sUK9l=d;B%w&bWT}3^KaMe~O>oKMQ1z zJ^oApMjn41jdtW@cjHCj@gF5)yMC@Lezi6uiI-^%T-0VoN<)IPv3(j*?j3N`wsUe} zbaY+ADGZ$02fZU@2L?`fjPxu?aJD_Q09Vev0}}vDQanaCgDNTuz5%Xe7R{4`2aqcX z!S_6gBC9QhQeU)z1|$aGaDtG}VD8Ct)L zAxA%_ucC`n?ZE#2BGAy!uUl~v{xrP?Irv!*^l4g8g?UO2emDOQn(iOqhll8U7%ikc zvI*6ojS$`#XjTYNg-Gj=2`(=Xz%LFlAUViG>R?tpj#BEk2d1<_EJz|%a~orXw8(;q?x}o zyHRhwlv96lAYC+yh3DvjdkHGf!FR@8 z4n_Uu@`g~<-z9iLQBPh~fdF-xp+InXI9K5;bk~B=hHD z5u3S&2TGoU>TI-Cf~sV+sd!VFN(lrr;H)F<{s`JLaflt2F2uY{q2%^`L&yL!`~mD; zM{kd9&bn);tEmnC7W}HDfb%qIMGdLH*YmQ2=YY&|zUkA% zB|&)kqbL$>DU|lA4>TY#c!v^&0v;V+kF?|zkdkS^y^z5PQst2*CGc$?}0u|>!>IyQb~M+)EN)krYfDif4 MC#}EAC@c;818fi6QUCw| diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index ade97f3fb4dd4e4e44e833e75ea6e73ed75651a5..833e7f0c5157d57865664e5229faab94f87ab0ef 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-SZtn}6Q7lAqMwvzl$vaqXlj(2WRhZOY?x}1WN2n=m~572U}j{Q zmX?-kW@%=gYPq?F@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je}8|VzRl0@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Jeeo8kscnV z!@4|1@^4QNm-^|QcNP#Eaf`PbHxaQBpXT#xwRM114?pJlKvxTdj#5|X%sI(=_(#2S z%wDQRFZFw`l?DJ7vlBI(WE&l-cpvLF` delta 3077 zcmbuA-%C?r7{{5@p%bT0b`vxRj13ApzuGx7Dut0*q?{O|QjD`7M?_Hul|x7b=|UqA zpUVhFL=pu{9>m?)%?P?Nyb?ml%?kxVcGX=$=N0_}&euQS^M0Nm-}ilYE8g9T_iMjL zj!nPF*lH|(O;NS1q8YMoXjwgHsJ3Dox|)fr>FZi9t;teaH7r}xxZv6Iy2r?j4$@9j z5hMAJFN{lr^ua#`h%LkBPp$6}v1Lr~VS8f}U^SzU_*tl@6GDfnCvxDPWHb7!**)eg z)uuP*?G>d3fW>%=%04>YupUI>YZ>JRsMrZ!zu^arB(gAk^8sp2^upGoz8Tc|FQK8m zZryo`T7L{&MXk&CVe9L`dq@atspnKw0=)Pz(&#=>Tuaq~UfJ{bH!|H?YL=Hq)&L_3 z^k8%ZwH{kt0LpT<3tP%8*T+<}&#m!ZpxBcUl_&2aF_80VpZoMU#w1naexiJc^#UOu zjdKJK&3yri7IvOrn8K!|!+mQRBr2ykmC7yDy?L3!FMS-?kiZ$7G*T-6Meg@mCG~I3 w+`akaJQX-cfZ3k_W%F@ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 14260739402100846331e625e1d33049748beb2d..60c4e369327a2e489a417a4598e52a9edbf0dd6b 100644 GIT binary patch delta 62 zcmew@^;>E~3zK27d1_94RE~3zMN)epzywv6-d5k+DgNk%@(&xrIrJd8&nRno*jCxpA_kagwP?YLbbe RL6WgWVw#D`=B-S}xBzH-672v0 diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 5d5d956229c23f194cb6066dbc7fe2e41e510f67..a53bc98e96ba66e1316be888e57edcd6c02749c7 100644 GIT binary patch delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$v*>rl delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$YZYDT diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 1f0266fbf605223c4b2e9e9acd78c01fa874e2be..77429d4cb0799bb95e1ada9c5f3efc7e4129f2b4 100644 GIT binary patch delta 13101 zcmbuG`*VzE6vyYhm#~rD&DH(VhA?ruuu;Ecd zizgNt-g7s6j+}aaV0BDopg*-Ok9b`R*U^{eI3l&w0-CzR$Z`THn63 zzI|~b4VgdCk~1|sV?a=PR;VQ-WLkKrC4E3f{Qj?6k5E}ii(RC0jICaA(=n;2>E&j&u5CRRliQXU4yl;b zy2RjPos*{7P8qK%kVT?3sADVZBVQkJZvvTYv0go}P#iwCN4_UDEDT#v$1SZO=_Ff% zzv9tysV%?%N@}@G_R19NlwoabJA*^LVEH&eNh$Bx7s+TFA6xDX>2qv6ApyymQgUp2 zk}XJ!*`<3Y_XVgnO1X>@7o?2>h*o>BQ`3i`)S;FGsC4D@v8Z(Z%ok{`=GhZbsya6w zrT#Gw&b4Ym5=#AU(Nr|ovb;H{^un?NRQk_~L^RjB58_a2*{Vq>wWJ^(rS4ew6s3l) zAB<8B8^ciQl})KA_2;4(lzMb)G)gV}qyeS+@5n@{-9Iy<(w}xOMWwg*&Omd0xNjj! zrGtK`)b=GzEk6QN-#ZHLoYCLZqZPivL(wuFKMv2P;uAYj>fO_uQE7*=bEq`096srC z&aXqM)`~0Wx*96s9`1bcDoQQ7v<1zzy!shRO}(-MrHX6!P-?duGf-+k-AI&b`t2Y} zO}Yi2bYXY4qtxvCQE0C54^N`hU4M;5sfG0wDD_DL{EYbfztt!;`8nK8F-=cEDpwJW z2TRQ5D*cUelUk8Cs@2?SEvoHpq<*OOA2U5bwaa}d0zYHy4p^p$|C zMicrx#aGAD9AN*6n71jHJ`~uY@A9Tp2^BG=?lI{RnFL>mu6S4it;Vqhu8ECpAy;zEO$bz{4~K_^#(zMwVW4 z;U2ipbOTI+N0v~kFCcbwZg3@q!@ZMzS(fimoEp!ORa6X|CC!4s z)Y30N1st6#4HAr?SOh<&*3BBI(<3TEdw``^AGrIjHPT^p^9m_8u+Iy+0M{YUM`^>k zMr9qGfOHsvi0xf0%xUDo6FMj!Xe;xt-IR-P1Bd%7yMV8(&hcM4P%$@ap+n)y9yk!` zbr&u{WR$W2Spml`8vce7kBY^G>53-0jFv6b^(`e2ZezO*OPi08Y3LXx(!p2M_SFAB z4_0O>6=*apy{^M2qN5@Sixm?`FHqK^F*pj#(q^$AI^Y~N9a*Rdmtqjo!Nd!#%Gn-h zAZJb~hGyHORf#eP?KhTQyk9oS} za6L)&bfpY#LOQtf@`-9~TUP=RAI(vXqJb$uw98c=xMIc9YEoCsA;lSjC{#;YZoqQp z6I_LECp80m>{qV=_YuyM-|ir!gEy}{sMerkK{#xdm8u5uxI}Ggc^O^?!_p9 z6J7VKp5oDZErnMnYr*JigQHX|4W9+M8j?vwZ;~Au0m#Y>1v;kZYZfn%L!E5oYm%aslIcVx5W0x-nJ7K(ZD1t}g zzCpTIvj^bpaJ>{gd02YgL3@%tqjYb$3#8b{#nF0RU$6nhp;>w*sO84l`oDt#+D0C>%9JrHjE&dtNj?k(?D`#)4z{>|jN*MHN( B$q@hm delta 13101 zcmbuG`*VzE6vyYhm&isoo2&b!4PhckWOJh>iKMAfLJ*>ah$JOKTq-Iql@>u85gQ&g zw5T$uk=nLL+zpfJXj4WLH6bFsATHIWs4&rIcRM4$=DUBu_xm~LJm)#j`#$gPvBnO^ z8atFF(cp;Oyy;oyh=IYO=CF*=u&4o%QDGU8nNjAf(5$FP^Ynq{^zg9E^soUT>E@_u zSz%$p8M)IJ1TV;4IDdMkrJ(<-mP2%QK&xG(aqFlY8Wx5%xYMRKkaVIo z(O+?Iz0_LJeQ;Hj*F}ChV(gB9-oNhOsP56 zT`8GJi`k^RC-nuWR!Y5s5*Mb81c(+}uv62AqSPUo`%vl18DmiCf>|%nTupN(pj35U z0!sa3KAdaS!eo^C-J+>zu4nV-qSA}Y3Q_4lE0WM$>pzG`sb^PBM5*P42`F{jx~C{L zv}h1YHEb}W)T<>^Q0mX6u_*QM<`|S({K;dK>c1@mrS|yDgi3$fxfGS&-aQk|^}(Jz zluG;kP^tAxm|AfNroML=-Z`VbX+$f0gNLAHI(ihIO=ZWoqtu2|8&PS;v*%E0eg%Be z<(yxKQY{y*qU&m?gnPKlr5co4dU+F?Yen@llse_=Hk2x^-9@S0Z_Grg0rewLs>g5p zQEKun_@p!6*@{xL??t1zCOkNSQg{3{2Bj7^UO=f&9>dRwzyDi}Qd6G8-4xsW1f+5m z(KxWgT%pq6C^xwcd81m*jn<;tK1S+?YX33OeN?;Lha%8AC;3q&%01qJ(vaID`O?ni zU1<%G#y zK@^=sne~Hc7QnP!B5}iD`W)r{WqFAk0Ek(Nkq-qn=(}7p1%f)nlhVluMC=e7v*>kDJejL! zQZy{yHJen|*58!d!cOL(JbDc{jzqx*b+kxXN`B&bKGgtpn*mFMQWsDxatp~MjI~-8 z*MCUvNcrqBNSnO2Xbf2v`VrLf*QK6+?E#ivL2&n7Yodeb<`q(GV4oLs5w1hNkJ6TN zjmkPW0qHOt5!l9pk?;QZcn?p#$N{E;tbB z)c}`ZV6?IxSpoYl8uo^gfQrS%8Hy&lj*>0Z?JXrAZeyDbOPi08X=ooN(!p2M_0s=8 z4_0O<7tm-}dR>Q4M0-UN7b_kdvrt)!#$YcjOPj@h=zz1=bVRWtoQgq62M^A(C}(=2 zft)_67+P$THswkb+HWkqdc)!w=ahYDF?i#7CBy?P0mofYqS14b)jEYkK(Z+IR^7y{ zWHmr!d#SrY7nUwDz|UYD4+*1tsvXg}D5Thvn*!8>UBK9F4lbg9oO;I@1O7B#J>uz< z!}Vm<)0r~32H;-av7$lMcv-!A3!PSuoL+i0-Bq`SI~$jus4LPuInH160e(H$qDnHZE&ZH|CMH#D zFS_kjJ;lQ!EtOZNXd&opgS}KN4W9)&8epnC;C$)XQ@l! z%g^*?_(H3nr;7)txw(u$SDd9oC*ZFJ_74goF;m{iRd;bIbZdRL+Ww)!@^2>Bz5WA# Cu(^By diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 30df6f5d5550a2c3bbaaa0e3c667262a1959a014..792a26719cb8f4cc7931db253d0a849f5001f9fc 100644 GIT binary patch delta 1676 zcmeDE&D8swX+tohZLxW3PJC9fiGEU=QEIYbqN!18l1YlCv0{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90F#Fu+W-In delta 1676 zcmeDE&D8swX+tohtyz9qa+jlunuWP>vZZm7sYz;* ziJ?J~u|;B{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90Nh)OTTYY&3pNg+|egS*Wk=Y8@A{C>}~GxN@DcD*IL z-tsI-%2cm0K0KC)^~6opNGKx*RU;l7)uW1WD6VKxC83!SP1Q})G&Ei7HFSQ5+5yZO zD4D#!VRxJR#7(p;=Nd57S_}oOuCUD2z+fY+2y!Jzc!MC{*bxKM`C@1ZOHNu7-74=2 zKLv3<(S6MWEt!+NhcET8CJg5rTG$Js_m6zWQZszl39S=K&G1I!^f?Hfv09fegQULl z3M2Xa>S1h(XSnr7$Iz@b{chHMUp`Pejt2IWAy2?ol?Iqf27>01f(3 z_(dQ628OPhJam-gelVGNa&+E3E9_5>HoNDX!Vj&LkVnkrDFxh6HNp3r)PV}bm)kUj z!khIw=V)JDg1`g1QkP(|K-=mPT$rcVbqOj9qyx`eZ3~;8QxO>Qn&2L%zfwJ?a7<7V zoV&cZQKV16qvO=iGaL4Zy(MY}evTYNnnk{nk1bTl&mI*iF3zk`1ZZ z{-A((`Hj5bN~VQvm~O@PG0if6$SWRK=olJbH5C5Q*$%8jie20;h1jhk`Ni5+sSIvI zO4yoHTikaLKle-H$okn_UhIrYg`oRT`@u}I)geh1#!2Zda1S^FVGEuB2hV0rt1SD3 Je^~m}_8)RY4`~1Z delta 3290 zcmbuB&1(}u7>9YcP3cG6L_;z4Ga|wEAWe4HWLGG(D1zvrMa6=kG)*=jN(y2Q0cjeD zAV{<>I%+|Ypaok{JHm@#+WHX`#7Zy4YY&3pNg+|egR{*c=Y97Nc%I*HXXc&R!dgdR zt>bwbqOnYN+*D&mzoKeMMbo2kT}#GOx@sz>9#_W=HE}>oCA4THq3UC%rt!P5nSfbC zRg(|4?CNr!xPjK>Vhatm=0gFiH!O1{Fx*O31bH+F^aeq`zFi}x^ZC#MEjevv`V`(9 zen!N3rti9kv}AVjZobgZ+GsdmkA=NN^ueJOT56u}JQnLArRI5S>f|U1ow7O?uMkON z={1eyv&#o*Q#{43w+0O@Sd;Iko%iKK)uYtFfe-hb2Z{@)z^{G0k#vr-=^|Xl#r-hs zqrxu-;5T9D8p$JvK^`O~GfxrDIA>9OvfA#PvkO16mO>t!DM6NSLp258Z$URzfM4#w zB`Um8zh?&ax)KB)!c|v-i85?;B{(|^Z(IrLb6^mjx8@eMy?_c~$eV)u9R5mfPT_fk zG;!`qc(VeZ36G9lzr+OW!97)IC;S}Qh8&B01s|KMgP%RFKmt##LWI~Rhr;!V@bor{ zO#FZVzWN4U;!5UF7$!Su`vQXgUjD6`j94t1vfma*j13KQ}zv5|N)1nHM`HJU=EUJZegKZj?1F zDk9cuwdO~~Mn&hx+P1O*Kvff%X7`oD449PH=X?0tE^8&2+*a-DXYcY@3etsqn7zmQ zM@Y3Cc~|?MmEgdG?6O~x?7G}u6W9&NY&C)FY^K$Ued@?qEMKQQbo6{IXQw>u2W{A5 z725ZW--=2<{$am|>y;KI%d{s)c3{*@TXN(``{md_BILM&99vj|VxJUWg3z7v+d#@r zrH73YfA5A`ot*-ySK9|?-#0_jGW*`F6r{1^3d-zN*=vxdc1TapFmHk1IHj z679>N&FjeX_=u|2E<*6vObz=#d>)kit zfFE!96-u44Z7!PYv|ql0Qm5~L1|vrg$L~x-sk3%HLUa8mpMz4bRZT&u4SQFj)Gw>! zQ0iZ5=AqQHzxf)a=GDE1Qa9K8qSEPyDpBdrj~1Z0Za@AeN^Lk1fJ)0hfT_n%!qn2! z@XjeX^8l@|b}kt$lXMV0w+OA+Wh-xdxuqd?7#p75f%I%-PmSC?rWu!dA zs!(oH7^_6{-4wxWDEEwoZAZ1=#IS0#pJz;E2`Ja{Jo^OI*2lA2pw6`M1$F^tK1yI| z0Ml{#(LfSI9-wsXxR=>Jlv|q27NYsCNnsY0yC9XNqTB^(>_t?Yn8Eg;TE3Vep9@IL zRDCG(OfFjq>^hAV!_SP7-T=O8b@u$#mn2_W zG+TNM(nrFW3J>pMn>jkGC4dIfQqTPCGZPPViMX;fWYkuOyNM;!_ACS+d< z-K$hoE?q|MH$CDD+oVHix?G5TXy^{<7XhwsPTqS^vU1|g#Mfm@sZ>!b{TK*@gpFl9 zfOoVD{kBDV8|f6i*M!)UKKVk5K^#b?ZNfb|w@ydJX*hTl|D5Kzh5aOZqUb4~& z_htHk8af?!yglTzUn=*upXIm4Me5R}d z3g`%)gv%9Re$x~0xubYGBlvr_vI%GcJp$pf3pfc*98-4y9WRjS)TF2n;hp}XNyR@N zZSz;X(CLXrj#cx3b#}g=2(b^DLscK(t&Zke)D6hf$)|nlB3k^M8WZSxlXG1>HbsR_ zd0pH#U+rBElDQE3@q&-k1k9k!HaOdd3eT!d$dZZh%jqADYBX}g>Eh-lbvZKW>*8B~ zRpViD`$ZM`<+5YF%jtTn+5nU1T~ZgpIWNAVCc)&ic6BFAuIf-*Ve;r}D)KW8XSJ7h zsmOQRPVt-@>IOLH*SpnH;Kp#0-@T(=hYJ>dPep$F;3OY@pxy__Bzk)yobJI#>VDv= z<8x(gIrThNk-?ONcr|cUILef{yH{0qUr-fVY|=gk)Beunw7+%e*+V_`1_!RAI;N3_}%BVP-4$%;Qv&eE+kxb0{MS0 z3_sqStPOX5U0n9E_5rXM-}fWoH`C~PWl2=l6PWrObP`2fH^Fu0lgJb4Z`-w~8Mr|@ uPYLqaMb?X20`LI%T^N}+wCHd*!XOdGhi*l1@>vgS6cj-kiN9`tYyL0dK!JGx delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39ZKN^2so;n7A3Vho^3Q6z$h%EK|Bh>)r+M$u)& zL@moWOHYb6EMf(v^*J>=sa9&VH3TdsB#NOytW>3F6)iDRB0Y1bHY-2Qcm9Cy_p|pt z`<%1q%uHQxNL_Ep(M%Q|UA#Ka8W|loIU+JDKO!nNJSH|OKW0g6q&31C8xxrq7ny5` zT9O+T9+n#!n`4cNvTbDpfT|`i!|p4G889iYU*h3wyR4O9a$B{ppS{atDM%OcVfG&H zA0gFpktO<*@5v(*Hyvzb;Y_9-Lduza2J(9v_ToSpKpAGBeM zRcPNgek&^d_=o)-u2))=EZd$M)qzp7ZK+Ws?U&>Jh>#Nsa&2KrihWXI2|{r6G--P*7&C%2|UnwL^L;e-cWyS=RwndqTl^ zlxSZDZC*#7$5$K#g0(rMYH2VQT4V zc;^(Hd4N_}JC}-u+TPXL>Muv7&-KilAd7Tk6CM`9w zxoDZKW@bRS0fEenmg=)0wg=S)jbb6FwkwzoqT0$aEE=tI@i^9ra{DK+#n@|387a@O zDwLZN#wyW#H$^ZT$~|LY+fnT|v8)>H=V?<|63Vqa&ptu5^@*$&s55PRfn7kEkCIph zz;s-GG?2oO2Pj=T?q#+Q<(8(h`Dngt(wGJ1&P!+MD0f~4dlA(pXR&>#mM>(;=K>Nl zRUgVclgCy9dyn^SV1@ipG4rFVOIeIN4nfqoj3uKEBx3j}Dt06gL`Pm@Pr2u?aShuH zIuujwS~fy){TZCZ3akabZg8wz-uqkGBH(u7HDjc?e9;aTz#mnzYpw^a8;~$Kr=sEm zoN=VqdgwyzORalYu@{KvPaR|)yrqscfd(WD?887Yf9pK+=GJs+2GyTo^MS5$E`YGv z3@`t;7nqU%x|y|uNsusD?GK0@jm!U3Bvvr+I!lEcsHd9^2Tn_8?+dXv?Y_;bk)5Zv z;2-+fEg<uuXnD*7gPvSfkVw#_2l1co8!hMyiQy#ajH>g@TeFG;?% zV5amK#tVmU;KUcCOYb0c*LRE%8);LP^a|oIyG+WU+#G2S(x|$)Vu@4*9Cakbn~;4e zbgxoTxpW!1-}HztY?BV5>2e|Vp`kmZUj(?mIeG6v$;yc{6JM7jrBg+%^kX0p5;m6c z0N&9q^xGEcZKPB5UK3(Z`s52K7ImO4?NS4fvvZF(U6rQ#pov%hOG<{XG$Hn4*RBZiV5C)CNp{CQ1 z#u+@R;k0}o9y@i1_>bgHbc1u<;n1hDH?jc#&w>jFPrfWiGE-iw9P>1~9wM5d6xJ^r zJ>7D+C>ydYpaY2*=4qhVQO;nhPcWoE#eEENfb|wiOPHE*hTkdDWl+i5aOZqUaHaw z_hsgQ8af?!yf@yhSn=*upXIm4Me5Skx z6wnbo370Ft{H7<~b4T%XM)3D;WfRZ@dIZ8{7jP1sIHv9ZI$j_%sYy{E!aMy%lZt;l z+UBo%q0+F0#5n>-QhpIlnTOG}|s2h-{lTZ891+?%vH8#-oCg-|%Y?=z4 z^18TfuG+gCBy%D5;{_k7Nti*IZE&U!6`oa_kR=o0m(xEQ)fnW4)5XnA>T+b#*TuK~ zswTqZ_KPa=%Vo!Um(%rDwE-s2xuhVP~zk5f$4i_x^o{IeT!AU;+K)nx;N%ZzaINgJf)cwF! z$7jpha_V`kB7-Rj@hae|aFi)~cdx4KzMv|!(4>6~rv07CX@Bh!8VQXVqshR6>1mLC ztX7SX6SA~?eltwF23#EuEoDb&{{|*<@%KRsKbo(F@Vn1zp~Rlk!2hW_T}Zg>1oHo0 z7=FAtRU7X7y149R?E_#jzVAoEZ@SU-%95z8CouIn=p>4|Zi4H~Cy^)9-?nSf({O`K uo)+Y>i>w#5B;Wz?yD+kEXffe#gh3*V58aC3#f$7u)rVXi#hQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg|3kG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7yT38r delta 976 zcmX>#f$7u)rVXi#hGzL?$!W%Bmik7LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3On_nQ delta 1139 zcmeBrz}oeIb%Qsfp;>-ea+jlunuWP>vZZm7sYz;* ziJ?J~u|;BLXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3yGu%? diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index ed445b3969eb12abd4c7dfb65aee2cd36a492468..2feb1a9f9f1dc16c75043cd77f8939f761d923f6 100644 GIT binary patch delta 117 zcmeBC?or<0&uCa|o|+S%m29G)lxCEgY?x?jl$vCcVrgucYLR4UW^9;jmS$jPWSN$h XmTG2cW}a%fxq-2pnG9_V XkYsF;m}X+Kxq-2pnG9_%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6m0}}lJ delta 1690 zcmaDdi}lGY)(z2&hGzL?$!W%Bmik7mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi5iweGqA diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 8842a6c1704b9c2d2e2775e5d8d5812b72e151a9..0a8c1d39f5ba8f679eade232ecea254186794f04 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg|2(FtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$r0bS9LG6FXUpl^G7tqqoE@NBIz*(sc?J~POR(2=G zi5^BIMf9Q)tPXe#i?rT!p&}w8N<^t3%IZb+BFZ|?45i-fyZ(UB_xt_*&hK0}FCwNF z5z`e9Ss0wJY;p&Dg?V0ozT$Iu=H)Bi!i}y1hqA!ya27axPQTrm@ACWoiqqwsuekCy z*7|~Z!P#_U8WcoVaiTX^&2gIL#9-ZgbQR=3LEOs~Xh zR{5tH%TU+BnVq2P`PFkkl8?1-K+(*CQ)sE4c_|6dRH!`LRe?=JHMbPkSRvPHW+^uC z%+gG(-YCxItTMB{vUWUxRH%UHCT=f3gzZ9=2dbK}s#V^)?lv%6JnS|Bn7kfTzQQ|% zqC?6JWF$SIWAdOf^8kbg%$*tveh5j(K9VfPx=nmb0kDkN`>aqugP$hkC(*Y<8E$y#@S7{u{Xq9(=5~`i>^(U=x!ngGu~E{=58QHt)-t#6x)uHB;;iJlVw;+ObU~oKp^ev zTv{#Wo+TFG>Wso#>s?|LeQo31cy^2Qc>M@JNZA=lY}cB@aWMDKGs8S?Ec zZr&r;fXVn<$|hz#CW*kT|10zE3Ay+mWR^c8$iK^I8X^0W18luf1--*Ias4H!L1lzo zsOjL0MOWD*4)>F%v#=QpXcj9S+mT9JfW12023_D(Dm93_@w7B6_83Br>l3g6M@5l? zmQ4dpdsb0za_pQYxkho{O*5y&4(sQv*u0mf1Jy>^)MlD9F?L@)^m?|)nJfA=>H^G1 S1s+Cd3HB1I6!Leti2epl^Eti% delta 5860 zcmb`L>r0bS9LG6FXUpl@qf;;H=a{yUZ?+mEDPP zqK6?#A-(7VRtG#rMOtsVP!SOkC8AUiW%Z(Z5oMichEnhLU4Ovm`~CiY=XWlg7a`M& zkm<6AEY7KGuB>+E=JCofZ4;&GzNV1%##C#zbstd56>`UiotSGO&-i#6ITUqQ!RRAS1rj#9wTFANP)@hvsJdWj=Vx{lRrvn!rVwsL=h!T zlLDhrDz=e6V28+eU3hKML~jc*nDMrnGw1OjPS z7SbBA@C>m4S7#X3I_?sq7`Q}E0td#JLXt@DB5!PwcXUhv7;>HUYqtjEO7uUMlOf;E z;^sYa6_|{_rEFr}V-gF@`oA*oo{;nZL1yJMg8aLTrxCJ08Nk*XSI|3b6W3mnT2w~J zg_;e{Sa_99;_x7OIuDyMzh<%0iQS2`4cM!rZO{cyB~pXPnoNt*B99^DxIO_Ja8%?w zXz?t-w6BDE<0I!Z$u*1nZkjqHa#%lS#pb;<8K^eQCbrUysge8Yp*OH4IhkTmqj`Y& SxWK~@EyP|z$@Hs}X+u1tVX=8?PJC9fiGEU=QEIYbqN!18l1YlCv01hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGnToo_S% delta 1199 zcmey>$@Hs}X+u1tp;>-ea+jlunuWP>vZZm7sYz;* ziJ?J~u|;B1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGl+8C6&S diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 76e07cf937fff9e7c43d77429eb32a89be5175e3..ee05df060d9d81b203d1d219ab0ef7543121258c 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg{%L81IpxD_+!P^F^jPg=ATrGg=ATrGw#DYDIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sh0XF`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dc6^50U@? delta 1705 zcmdlyhh_5|mJP*>wr2Td$!W%Bmik7W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dd6b>rVgx diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 9c403766ab495849c0c275e04b8402d0a8c510c5..68587c81758d7b2b98a4694eca50de8762cc3585 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyNqZG@!Oj?&Il4fj3MkWrBmv*BalRKUdeg9wRpmPCl(mbpLR;SYG8&vVYb z=X`J4@g?K{_w`5S6|dEPo(&9iyl+WdN_-R9j`YjfCbbq-&yBhTsc z`MeINqrmG_+SnwZnz0tj5w7EyRD>KFlj7F4K=KCZ(G^)BX_L%N-iCB(#@Zy)Qnz9C z2BbdYCyW}9oolzER9{v(N_}GkXM;e(-cJDjm&jN2Nd8&!f^O z3cRTFsZE{enHFyr099ICQGhIRrZ=AVpwcs2ThTg)Ufh9F&lYz8R9WhoMTy^**a2ds zyXSW7L#fxxpl?NZPEYPcZc!xgH@mh2waU_pX|&FX%4&cZ2|He0gHp$9dr<0f{ce=H zxTg!HX8Q90syx(q7bV^gxB+71V7_Z9MX5JiH=xv>H}|8|b8QVM_0n5|D0Q);8>Lzg zeF{*erE>@+)_3gzi0XClOW)yQE%X))$dc}tP^#_Ny)_{9QePiN4ajNHg?3nbauKBl zgOw=t_{TR;>cSa6N?q)~fKs;%z*Nu00hHQ%*@@Qbzxo#{{a3c2QX|24*gaf@P)jSC zW#Pz)C}`-)W%cO0dQ7TRk7{MpSYkXRcPXz;$4c#N1GX(zR0Az(ve*}ER};gvg#}j?Lp4aHeIAye17jS! z#n&jAb~71XW_j4YaEbp-#NH_$Pm^WLY=Yvr#pg9FfnKj;8Q3@Up+QUodmFo5Z$R#p9WO1bLVdt>~E>aC*lAr@{DPu)ux_FtjVEtdwpOS0< zozD5cnNH0Az+y$rJTue1J1l6#N)cfzQmym}t1wW0DK%2t95bP_5l#^{5xYa`)y|w} z25j-W!u6z!_Bm!1KR#gp;5DUFRfv_ZB8BdHHebJ*e)MJY$HnbCEMBPn(9<7`$AMdr znxpxX;9V7}Hi^>A{48joT=AOdxkO$9F5iegI)k^N!}`X4y=b;`EiLEsjc5^%Os;L> z$78T-rG!mBE8zwjE9M8ly%jbg)g&z%4q>3OSNKt!Z=i}Q-izud4#ZNRjz@u`p@j9J zdVVAotUu>qx_G9aCs5Wqd>So6HKFeJd7%LdL7RK{5%d7N-!sz-r+7WO3{v{JAJmG& zlAA8ihl+4fK>4W09AjrS$V;VKNonMQ0W%>`gi^b5aE#(saB0(79}{S zejJN=BF#PESI|$3YC#4-&9-P##Z8k2d}olV{|L-3mNGOcE2CJGtjPh}NUF=x PWN3*MlKOw}_xk?;?!>;k delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJ*sKXb2W^G2Oj?&YB+b~6j7%ILP`ZIoWLp-7k~vYb zB?}pR#hbm{z`SrTQ|;Q0nXJb^ug4Z5;w+%Cyxl^D~E0>4(qtpwf}-HdOkv{URz| zn^%WQpWV=bo@voW0Z^sI6#>Y?XL{=;4=O#kc^_Km;Fj$u^?Xq~K$Rt)8I<^Ku^k|W zyL(~#UX*&X6#7<#=JeDK)hKnWrW>U$d3T}I zh25PfHNC+GQ03vq`zZ0D-whDM2lHJ^2}-@aZ#_!wKCmC9UTCdHsaM_}K&cDuT`1Lh z_)~x?Eggd>(c8HjAgb4)LHdpqX`#2EUlw=0f>LviKUf7)uk`j}RKJ`OooI)(rxs9Z zAW(r)Pn^AlQs>V#pwxxFODJ_yKTP#p?nkLTSM$+Y8?OI_O8=EDsMJXC9d-{@BGi)d zW?3+NG6EX9GFdh9o*t7bRU=y2G#VcZ$z94DQ_)g8Q;%(nW%>MX6K0T}y~ZHjLETfh zTyY1rbceBuc+5kb@h~HuNo2obXXgqV2-QGKnhf^E>XpQBZDN5H#ZV2BX|IRH>A)Dr z@9 z%z!O^SE!y;(KgGh;>SnqAH1eistmHS6{OJJ%;f7<(vRLu{NTuVz1?nH}tVsc{x zKM{ppDPz=sp9!Q9!DAP@+q_k)r7h}-~|RO1a0i*N6`c9df!YhpXOe486@@b22d-G zNNy6Hk=#tt16&6V6R9qjK&?`6GJ%GM_(O0rhxLvx`3;aCdc|2p{Unc}w!6FuJpZr@ z?YYm}ff%BChL=&}B>xKN0jc6~0IL3Kv;2Y;f6nt5q0%k%_3!)>Ai@(XQmq=nEJ|QN z{Wuo!c$$60uc4n7)r69k_!{&PnrYD_i`ym*_|70z|1p?dET(CamPfHVQIiF>kyMvs PiO>=&Aoc&?@Adxy#i<&G diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index a57996c14e28a50ad0c3b080a68ab921908bdaff..5be8c153078b3be73c16d2345efcfaaa7d1cc2f6 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2w#DYDIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sh0XF`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V06hepzywv6-d5k+DgNk%@(&xrIrJd8&nRno*jCxpA_kagwP?YLbbe YL6WgWVw#D`<{HMuY-DH);Be#y0FnA2K>z>% diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index 285540ff48b0a3702fee351bc6df3f50289669d2..dbe61021263dc193d9a38c2a2980092ebe408210 100644 GIT binary patch delta 4131 zcmbuC-AmI^7{__am$@x7-&j;SsnIaa{Wjf8OxT6i2D$}{=%N@+f4|HZLYxscNHH(O z3gHCDLUaVuRW>-_xstLH0t>8&ypTaRhIY}Q3yTyw&egro`2)V+^Ld_gp6AQip3mE! z&r1eC>2s;wk_keg7o(iiHKU4XB8T5FPtR zU}CO#40+AjB229H&N*2M=TJbFqU!E(S&Fq0Doas0Iw?zWWlWQ$P#?6*Qgn?+Whriu z7Ti$oyv{-z@`8o*&^NddW66m#c{nLaB?^h3TFCO}67qaHiF0A8L=6&vjXq7|A}h## zJ?kmO0TbIo5v}Who2>J-53#>9Yejf4&$|nHB!YSM0FB4tGVA|RgItWvygH1Fksz5` zFCeGZz9Qj;nmznBn~#zQ==loJlk`?DTl%q#YyW=_9Xt8E88>^o9xT1pbVRNW9ertn z2+|{I1uN0_AL1Vm!wl{r1gJ2nO_qfQuez z$nyDkHGD#zyW4yHX+Wl7fSYabMC$PC4nT%rw(YS7=#?V4=LSV$2+L`!7t+W963e8V zzi)(1T#kqqR6!YOrdE2p3EmTuXi!wa~xm-jg#csz8hHx3dg=OZ280oS5 dP(W(eEOccIUf`dJkqe_mBg(+b#b0|i=P%@AA;3(JAR2G#^Y9yxZ$NRdyiwRz6InWs_qKiVBZdoQGZ4x#}F)zdl z;RMG*R08QL8yx6dNm&Vj1y)2}h|rCpT{P&zB886gt$UyI2YkQh^E~G~&zG|`o4Yle zn+}1;*WKF|S9}4NS5e!&s^;-)YP&zCDRFOH^DAuuC0e7#qN>LoRkX`-Rb_o})3AFP znQIKP*1YvfoRqdag8gLPn?T9KBvof)3(CVBwA{}AX#IO7{`q0tsl<|qqLg8h95lyK`nFf@66fO{L%>OMam2+m`tph z$cfdjNO+-U55CRhq2wWYwiL`HvuR)pKNfNA|Lr*V{PgR51fW2EQqMYLR}Fs@`)y};u1Bx)GS=MT*rlD zh!%LDkoNb0g>1aK!KXW*1-qlSow#u7#D%1eGC2SSE~1iRw__GVxD4UKGW$ZT^vFFh ck?K_^T^fNG_-A6}!f4)#G6-_<*PhAw3p*Ol`2YX_ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 7edfad4cd92dec6c0d37ff46301c1d7e06b761fe..d60cdec83b4e767c17ee64feb607a2d6640542ef 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVX=8?PJC9fiGEU=QEIYbqN!18l1YlCv0n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y%~>48;Hd delta 1709 zcmX@x#dWreYeO`np;>-ea+jlunuWP>vZZm7sYz;* ziJ?J~u|;Bn(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y&Tf=z;(M diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index c0ad27d71e0c1244744dfb01e9e41b73275d0707..323a823595f23e4576e01a7bc6edd20f266fee83 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVX=8?PJC9fiGEU=QEIYbqN!18l1YlCv0WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgWTcaS#9i delta 1200 zcmX@z%W}GxWrHuHp;>-ea+jlunuWP>vZZm7sYz;* ziJ?J~u|;BWbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgaNfS2O?s diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index ee206b22e9eafc3a922ae4d37808dbcede3f52d1..f399aebf2b3368997dad70e08c3fdb847a7e2bd8 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVX=8?PJC9fiGEU=QEIYbqN!18l1YlCv0 delta 751 zcmeBL#@e-vb%Qsfp;>-ea+jlunuWP>vZZm7sYz;* ziJ?J~u|;B~Mm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vmc!_( delta 760 zcmaF+p6Ts-rVZ|lhGzL?$!W%Bmik7MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vJwn+g diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 0f5ff9779e3fcc9f2ecbd55102cde89b25df4816..6764d49ffe4e707a7c0ba85340190067dacd6b13 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg{##7&nrk%Yi3o@&=|w7&nrk%Yi3o@&=|wyg_K&uCa|o|+S%m29G)lxCEgY?x?jl$vCcVrgucYLR4UW^9;jmS$jPWSN$h XmTG2cW}a%fc>-fEIokY~_i+ONJ}DzU delta 117 zcmeB?>yg_K&uD0tUzVI^Y-Xu%WNeaRWMW}xZefyQo@!y7W|U@OZk%jsoMdW}nq*>V XkYsF;m}X+Kc>-fEIokY~_i+ONjh!H< diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 3c0c17fb1c5d99db2d062b86982f3205d57cd8cc..ed72a9f70f605763e6b143a002a9ca9de8750665 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg{!~7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^06>fjaR2}S delta 1704 zcmdlyiF5NL&JFI2hGzL?$!W%Bmik7Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0GU7ME&u=k diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 340a009e7b8bc37590541cb753a294f1f9acfa9a..056907b8163b8bb2de99c4b605888e6f83c967ee 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^)&_&vk=$hD~btshC4GRgkh3c;3}(W?zlH$C(XuJ%`B9VuDZ&? zVq{iIy*MR1DcRXtm_{s>kA;57YFNvm#*B zD&BzPI+fbK3n3b(tMXlBy_rCqejK;hQ4Mj2^YE z`5tXOZCOQI)2?H%HRZq>>v$I9Zo=0p}ADD1f#}Ws)5cgCfhMi+pjN07&W$EYsm4r(~5C(Tx22-I$0RI zD&;?5sFBT7f)gBtSiKo?vNAs1!)~x|LE%WCgEaG_yX5% MTDF#7j0uyyzqiK#3;+NC delta 2429 zcmbW&%_~Gv7zXgpWqb@GW-)P1zM_~gbFZ1pgfL7J3tVNTx$}{tte6c(nS~P4Rd>q5 zVq{iIy*MR1DcRXtm_{s>kA;Xx)FIiks~PEAsRQCZg4838Kmo7OW0mHM5qk7;_!TNN;B z7H>c@PUS`4#Sq=3tI9oOy;ne;)MQ67<-A4K(UmUxLPl#w<|l zB1xk$D@X&=hm#OhX+E7Q!>B%=Zlv>zsSb?O&g)AFM)jT7TC#oawqe|u5ShsR4mO8f zmHHnr+{9+>-~>kj)?fr2tb)(%5HCGo%UbT(e4eWA>}fVKOt2Uuz2@!*zu5=4`@bY^Ch-Am5-$3MFL3RK MY3umKxG>fC3nA#tMF0Q* diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 2f2fbaba2e09381375d415b6a21bc8359419e52a..88446f4ba2d4685238ea8ca161765a5fd1d5efa6 100644 GIT binary patch delta 1369 zcmbPxj&<%i)(yUlhQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg{%L7!Q-7YvX^T%}bb8v5=>AdS@yl|KtPgg=A@W*}RN{jXaxOCNJX< z-fY6l%SxWjlO3d3H}4h_U?)%eW(TPVa^h&?f0xM)3xzi;$gFN5&t{+QCCYDk97n>YU7p+}aDuG{bHG3IfQr*}F~FW2_7 S=8TcLWEo(z9auz7VFUoGL%}xy delta 1369 zcmbPxj&<%i)(yUlhGzL?$!W%Bmik7AdS@yl|KtPgg=A@W*}RN{jXaxOCNJX< z-fY6l%SxWjlO3d3H}4h_U?)%eW(TPVa^h&?f0xM)3xzi;$gFN5&t{+QCCYDk97n>YU7p+}aDuG{bHG3IfQr*}F~FW2_7 S=8TcLWEo(z9auz7VFUo<(4@rx diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 6432ff95d5e51b0d52078b975a139792cd7a480e..468b6285d1294b4a8a63d04d2b06eee9f2770ac7 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg{!~7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DmDy?x delta 2066 zcmZ4ggKhl}whiu#hGzL?$!W%Bmik7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY D;!r@W diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index 095ea3a5176d65f1e019625e143a872239fcfff6..497616581107971bbe8bfa80bc4fc1fac4a87f08 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#6yd1_94R?_hj+Zr`bk=EqV-JU|9uInL>&*KgG#IW)W zzzk=slvmbU9LBQsc9CH{kZ0cdpT?K`E(rIF#HL>s5DjYaG!Py4x||?dQGNs~x8Jzb z<1&WI?PA|7fSfq{3qQf{wb*ju48jxjccQ-O)Ax70%dC0F#Xr7I$yhQMBgf2LKffw_!*7o!5Y4 zD$mpR4x(KYx!;Pqo_TZ@a249)3~ZW)#XP+O98)E#esT-V^UCCQ)V1?j1a<9yQG&V# zr$$g$V^27GPRT(Nx2Ofa5yR-EMY4tFNeLw zgHY*eF7vBk5XZ+M(!q?&f0)8Pr?B{+09g1-N{_Qz)dNTRA{pUu|LnU?4oPEY#dnOJPC6NJLr8s ztIq`N|9met(#MOe&%FqRe6mfkfeP~qB(vxPv#+6-E=w~qiT@_fW#SI{wAKqqi? Smb1lt;&NP-lKhRw(tZOe81>r# delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tekO9&Pe%`23lZ^I(8u)Z(}8nHC`xsP{bb0 zK#fg}Tq}_36#t7M~|n81i{NO~szZ?Rrb2?sheLd<`L87bD6y z05cr1QeIi7+Km+(Z6d>RFwea8KaDT>T@daUi7mfW5DmKHX&^e`bvi(_qWmaUZohG< z*J%uw+r<7oTDp06elp1R@}~uAuCV!+Z#6FywAG~Lc^kcaGZfCo$o-= znc)WPq{3q6LI`!88zmH7cX<*;yQ6IYDjcz&045tLEbiX0p=iy`4*)6}Zo`hYJFfx9 zRGz2r9YVV(a{oB$dgjqtz*V>(XJFGbEEeb;;Fu~=^^-9)&nr_qP}k095!7|yMG5K} zoE}A8joCQrYMJXoUDv!SLtTH&!(+QFo{jD1fLM4l>4cU=KxkiE+s&i&@PHCW7P92( zX=PA}WSKYRN`O`KzIG*@vOAO>V6*;n3b)fXjJjrm!fjS z&a8B9TH+_j6P(MSnXu{%{|ND-1E*MW;gvQc*e6C~N5L7J~+5umq8zIDG_ z%vUV=M(!qSh_wM{o`mc9R5#OTZ6|XA12?5WQlZTT#Qr=>-A&i}*aWb`c@pLlw$u9o zR+kCb|M^~QrjHj{ziSB!`DC4DgB9i#NM_LwW?w@uooX{OiT@_fW#V@Fv|bIO^&|N` S%h_f=aXGF^N&d!TX}w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7tvS diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index f6da06fa778e0c76e64df7243bb9c05ea8155b21..28d30a5dcfb73d6c466dbb92235c572f5b758d6f 100644 GIT binary patch delta 525 zcmdmUpK;H9#tq(#hQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg{##7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl q7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qjdq#FcIHO^)d1_94Rjdq#FcIHRFiepzywv6-d5k+DgNk%@(&xrIrJd8&nRno*jCxpA_kagwP?YLbbe fL6WgWVw#D`<_^YMMkA87=}(@(BDUF=xt<#UW!54y diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 2e5d5b8618fcfa804dd064bc8df38c60e74ad8ce..68b16fbac1e040a083ddc02207ca5a5f5fe21ce9 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg{!~7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AiCWu2 delta 707 zcmX>!f%(t`<_+$QhGzL?$!W%Bmik79@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AF-FV2 diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index acf59221e8f88df2c41f6e2830fa7ee99e543bca..fc2771c3badfcd479d3f48ddb19a62c1d4620b73 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg{%L7+;aDYx+fQM*qz(m>ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20dXTdKL7v# delta 1026 zcmbO`n`Q27mJPm)hGzL?$!W%Bmik7ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20m>OCj{pDw diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index c21734aea88bc4ad7be5006fc2a818375582c1e8..cea187a5888b726f8a44f4a33e110060130a46c0 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hQ;QoIq_M^Ci+QfMybh$iKa%WNhT?l#)hdDNrq;|hRJ4W24+T< zX=!PxW|n5=sg{##82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dc!Dm&pJC delta 483 zcmX?gh4IuC#tq(#hGzL?$!W%Bmik782^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5diHNjd1_~ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 65eca6ed01e8f2b90eaa79be8c78576ce580ce0b..a3e2714cef9905aa909d06607a07acc378229f51 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_B+d1_94R-ea+jlunuWP>vZZm7sYz;* ziJ?J~u|;BT`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E0D;OuegFUf delta 1013 zcmZp8#nSMKWrHuHp;>-ea+jlunuWP>vZZm7sYz;* ziJ?J~u|;BT`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E03e|(&Hw-a diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index f8717758ac463d8c6cd816f1ee3cadff180617bb..f9defb555ef92ee92d0a7cc41f099c627dbbc123 100644 GIT binary patch delta 1831901 zcmc${2V4}_7eAVr-DMlQ?C#8hRF^8fi5(T}UF==D0v3>BS2VGqMA1Qx8VlHBS2Q}Y zw`dY8_7ZE1(L@t9nnX>E@7_DJ#lri%|MGk9`T00A=iWQt)9*cVXLs3lYLmQT_Evex zmr;2Q(uXHzrN%_042e!pjY_T;ot_et)~Ie&dc%~c`gNmH>ko;nAKhrkkRj>y8`W=+ z-e~^SG==%59j&NrPen$0-67faGRE)N>otPz6CG`ej%plJuW@8uQ%EHGS6VDjNzO}8 z%gik;ZWNI}A_xCBBm6&R%N2UN{GSWUee0cJ$6ZN29^8>sH_8hRGpSyZ(qa>Lce#nn z4)LN~pxd5-F5J1q0PaqjJLn&H#lWFeJ~A}O8M@W!Rg3c;5I{ABsL>(KIiCOnOu6A{ z;?4~4M0Za8MdHGi7Hd<7rzejbo}3bqnq4q5zqHr`;`91?a7jrlcRSq$er(XO4jef+ z)|)O40B?1dKrSUI2vTyBgSf3Jp$LZxyUs{QrlpVNy7>74eRQlpSC!<;{Zc2ITb1U) zt*jHo^$x1V-SNj7lw^!^g|~+5GOlh~l!Gjj+_xgsA9W?iM0jysLnDx!F_a0Og*5h| zJQhyP^+3w_z+L5aALr6yokiO0g8bo`>Bx)W95p$dTRy-I%J0s0=6VJ(oTk5=+wNN% zO73|zq>J6TZhp=%Wo=^_R~p!qssnegh1PK?EoMh#4$V!@&m1{4Lbys#939P>0$51+ z$-{)WdO^ht){D#WW2s!c`1#f##tGmOJRvnDXW-{oP>O!>e-S z6c=t}a46*qQ~z%2j~x;Ox&wh~ZeF0A3Wa2*M>rP{R12!Y49@z}VvR+e+~kqNNG{7+_-arq1=!C0~sgF&>@+_^ReQdF#lG*CmLzOf#JqY8KmIO`7%@x zR31wVqDmp>=vXhVvR_NCN3ajqK0S`R8S2HA1qMM?Paie+W{@28KYB%Qd&7gM=pFaN zzY2aQfZUPoojIqWa_)x|SIWkSNM-KYU^RR(Zmbp#9~|q$br1F>(Iwi=#va(8Klui8 z&y!G83~*;Z;y*8V=6&56o_JkXAYFub;z|M=W0P?UL%fw1BXM(+gDE%Acew6`MvB%% zwn4#z9fjHiv!e(#;Mg^%2X@NRG(9&V#DIf~+upAQHY+7WPVE7KLY#4XgEidj0nSPx zEU{g25ON8AzV90!Iv-o${t<6co={TjI`#<(803TG+~i=|>M9|SxwF1TZd76&Vt*QW zI=<=ZTGkN$BPB%0D;Jo5U~C;I3}5ZStxWUe{K8|f+qm)pkz7TnZ=H`u@P{c4^N)_L zMGMmg63qysp7eL&a{Ua*n8}&f-H@1f8*~h$k@4}QfQC4uh-SE}p-wR2=vanEnIKL* zu29kFIs;C}7Rc#hA<#Jez&eyLY0#y`;C(+J5&@dRR~yMZfb)NTKm^W5{4&o4a*b(m0ZxAiAf8KHg|K8R4u33YCwK8WM@t0iIHB6zT1p?)EhG(n)gBGls+`$*pxgnIVJenPD$RQu!uggQc~jjILf4x!XL z4iu8kMTCt0zRdtU32h_Ph;1PQF}0ac%V!-Ngei_tjhgQqjHwbr-HBonF|~_Oe8)UO z?Il$I!u2`0uar4!)} z?I+YH+dmnHsTqXo6ffq zKHR0;ddiY4Jkgu)#CP>B2)EohWLY40JU>Ic!yApp3jrQ&8tcpbJtvFH8pCtWYvZ}) zqf^u+S$JVUy~TC8%JC-d`q)OCY@#=}ZLE^JIWCm*ncb4xHr^Yi+zpp=`f>FnC0W06 z<>Ts6SIF@sS253pOBl~`H^xQC@dAJu#Z5@JfUKF2#9@&lSH*K%$NLCCzBA(x&|NNS zVjEQGRF3z9B&~~zW7oEpM%b!^IRf=DsWprbss=o$;hGfQPoUM4CAT_BM5}5v?S}EC?K}xbAIinRd3!8_dX8IAC zv?cM#m3SS));W~d%*GsC-o~z6Ns$LOG?l?6f7*xJkZsY3*j!#ju8C0X?`otsU)83wID!_*HkQA)K_k{p^>+77_o0DwC3*2Qg8vKEWuko z+U$&Z#FEDsw&4~mtc$e73or(1UKYwpCx%jG+{m(AIbLjWD@sSom5U$Gz?}p zXB-L}ydsO}B-wESUR>sj6B^;;6&eF23P3xSxNxP=5dk_=p@^ji=)P&D^57sJN}ySWdE)MLk{RcxAWc`2Hk;GxE-w`ea(sFZZB+ z;=-4Q%ki3TzU#oIXeD0sv1CD9w~e*Hw5Ow+>~->6pdj>ohp=(E?m+^B~+d2#$X1h z@c@dF5QKvZ27mee_pT9r$EgCfXW%TCzMmgDLKYg4(QCpUdV z7}sq>3>UTzr``gRdJaWyoWrI7F~xBTlDUIhxjC8w6j}|5xJjQ1Yf;hWTIkMlWL%d8 z3)I}-o3&Jh*o~6UHes zBknFrk)#qw!oPQcD*`ccPv`q0XX6?OOYXh60g^$-g>QF3cT6Wq6~0{qb7$wOr6`?l zp9fJ|3a@}?hhqz?m(s=0dbp;o>i&f&f z1~<<%H+vv>T;5>#LwhH2$M@tz!uEMeMC8NcDd^(V?tFN2{JN5BzbBuI+w%r$x18s| zb=_USHQ756BELmF=qBzgKM5xPJXeW~u$YV6H;IcqpyVDL8nR>4K356}go_xnKxtg; zK{xKq0gn0(4IK_sZmmaK4aW+(TSupsokXHOJUE6Md|1V09{P*BedJT_$AdGuUk;9j zZJpOEh0fy${OI4@t;18e!AC!HiVDveITTqNmqS>Ugzs{=hTo6n4t+PK?A``+&+!M` z*6;B-o4b8{9GuSFs6dkL=k|X8DK&#@c48dp{ym}OzCQVcb3Zc?npYvU*s9TR>+E$0 z?$C)m81WKydz{VV>YjWFTQ8qfaxteybK6gj=N6rr08_4_@g-GxobTyE(5^b^z&W1t zq_%R0&P7qblH(O}Jc*BTabZHcN-em?=bat!^F!9RT<`PEs8c%@p3kHH&-XWh`oYV2 zN7suZCqycV^+#Y619O2#KsSQFr@R!<92c<$-uIWf!7WneTU8(CruJdDhQ$L9Vh7X|D+ppz(O2cXY zQNoH5lpG@KI5YgEWU7ml=nR?Z6a!B+lpCKugerBg+ms>`9x-VuD)3t#I5SBVK-!OuL8zK2E12L=8fR(Kp3Qw^4MJIN+ZGI!a-m z6$j(O;S$_0FtvlLh4eN%P;fECpPfP*X*+J7|5OqOzb6%FVf{l|UshM{#DDe~{fLH~ zO(s2GID@{Y6)y7@(z_|)vMJECI3Qs$y;5wId_n&$wyKv~26&azx9bSEX}_b(M6jKg zX{B6fJ$sWrE+VYGO`j4kKf6n7CBlG}Khd-7a4Wo{S+RYl=>i3lM>s=OZ!OE;`h~6( zM1u0)=;<{8^x}{FPH(fPgho1bff5&q0upD8U?8XGAQd$Io7O=bbd!Tg8Q}oh`x+IG z+B&$w;)Nz7zf><-BDe+GvXUwGijA0R`JP6}etRAsu-H68=p(xHrJH1~oh}XH?|4Zn z?Gz#i(9H#qmPKv733Xq%^gZiHs$r+sxv)5Zo28aXNw3kel3aytq zOX`c49^EDGVzRXBDH$lX?(8esB&J1fl4PPxxb1Daq^}5;ktumAX2{rKlB42frxB7H z;$@?3$pi5+YLuj-i2HegWT=QB8z=cy7_e)C1UQVAy*5PB|^ zd~TnUbNEk}Nq!S^W=gqasJ$?=DkN!wso>3O$$WcZBGyVai_-kI&VFhBTrV+-(ztJy zfW6Z6*dj4cgU0RlOXImi@gQ@ zS9fTTIZ_LI0;G=o86PQ#^WkVe={MqK#{enX>L3paUj|C`V&(FEg!FrHz^W+eMzMlO zY#{BY5ypPsN_tlzT<+~`7L=daP5Q0an%G|&ErP8~mYx^Erl(3fh}`a^OT)xVuM8=A zFeWlQ&XkU~XG;UcKoEZ@M><=qmIf3^FNh^w^J&r&QGq)}(%s^K4RfW_Mfu{&q|Y1# z_AQoK^!8XG4G?wd@uk#L6m{x)>0|M7@+PTCyxh7)8Y^D@yG{C+sEcHW^rYB&d#5yA za3OENv`G_UxEcDPF2iNR{Gk{->qqL@neOq^@FX)Me>*5$wfP z=|!>i+70PzQHGyxNt-GK-J%~#{}K@z{Vp{xjekCojuCI0^jx}H1$Xki4Se1Iq;~{_ zoqn=cB33vp+bRzIT_!sswjP$tazt@kILds*0i&H{<|oZKz3h@WHh_^W6vv)&k$q}s z-Px1B;4YgcIxoXl*3?l@a94z^uZM71yOZpVXqT|AvOV_fOrVJB3SCFZD)d zUrZMNyqAoU3W<86r%X)L`u%0c?bO7|Kmn${{T=xEgJtG8k*CPaDR?(kHc2#Fc81JB zbmEK=vbdTkriFuU1LUwtJAe_iyP7AHi`uQvHEZWRR`$@I_bF!c5iS~j^(2d8Zc{Ca zz4+9k*rzjP8d0(GVwtC%b3j)(_;Q2{o*1)>_>-J0SVo-1s}{?`YK*9WttYb__!BE+ zi^L$$TV>It^BP%m(M8MF%Th&6^jl@6Vw~>UCA%XI_;Ro84?7*#4XV0j2lK6u$cEJt z;_%@$v#0*JE~{hbGDu)u%Idi}@L%7QrHXQf{wOOFlj!(QvaMq4j9+A@#hEqjrL3)5 zNVt6xhbdwjcGfxkF1B{^aL97Eud3);b~}3_ENLlgT8JGZn+RPSIRpzHo!iJ^ zi@hF2$hC;B*W(<_6ZEc@4(L4-S%Ox!cIYqqPt(!C-R|JeIW1Aa@U}T$K<5MpJNK@- z0!HCeyE%kWg5qnsJ4jUanUrjNctcMAoKU{&AP3q``&nV4`TtTKlr(jMR}68Orb6e> za~vkwITu=C85mi=?G(ONfkRz8c;?@x35;n1D_46L}^e*}MThC@F)L&pjj!hb&p8B~bNKJy$3MQI<*cNi>&Xm4<6 zV`t$>__TtEw07ui+BZ4_-*bh-y-78QErO+mZ|ceMCbW(poYqcBfz~AVgoKHd4nnTw z^yf=!%lC+`Nc5JQz0%KD{m(y@*FYq5g5 z)X6fow2NhI(*(=dx839y#j!v2wTxZW-!it-K+9O|VEK3A*avBrv1^A|#&*rHjMZn! z%f+!rax7z~=32%E=Uc`;E|6~$$F84f8JjWLGFCsuGWNn$`8IKE=`73G9$%3qw?>>oLO^RzC;YGgi~^F@$%Di@;Nn; z)S5mFfBcHPmZ8S!!_WRzK1@t`hu_T!vg@h*rI;T|g`%z~eP@lroF9%(3Uhw!)G5sQ zF~*?iBl_gFtD>$w@3&APXY+E2U+JST)Pm?f<(`muiw%K)8!PPDKOyhC?lw`pv}f-k z`Klruy7W`jhC4E4Fh8}K;y6Ve<=e$6Oj2~tY^7*~&#T%guHy5=&Wb#HUbdRq*t1uM z?rjcEUn-o1J?&5XE0(CJqu`mYuxFdpjON8R9-^pa&!T8WxRaqMr;#XAhbb1>5v*3A zFNZ6#>`5If!irqQXe^3zfx@0`ek)MaXoa6WWrr2v-Z;f#EXt&bin1D6rDBp|P|X}v zJVmgIGZNlQCK4&*&IbSN+c+lr?BVUw$;izN))sN0qx=xxiyk# zSE*t)PWkvU#qSs}a*1MnjR1#!p@_gL!V1OcngGG1l?q4x%W_2zEZ#pAikDct7i$z7 z?L_6#B=QB8Y~#in+HB({#h+N1ifxLOb_#=MG%x;KrD8(OLj3wyiX}MP3iujk+v2Yk zi!f01Ud6;3=@h$9@Kn7+3VYtFSwp=4VMVk(4^{}FEkxc-WT1AepN#kTPI1K%DOTyw z-N-91DeBlUz3~V$7B7IyZz#US;W*@$;x4il-|ns=3AeAmukc0@!JmAnNI(+>@A13h z3Lf|3i6RNN_j;~4sX=FNN}217&ZREOVQAbgPbFhOBpabjQ=;>@hDtexn;NUMYe5(_ zR29j0YN322#|mGUv3#cvh>;!s#7KaUOyIR$>A*KjP_99%F8@=1_JLL4ltSDE+bJ9gixnV#nS;rhJX*J13N1V+SriqjbU^T7N~E zhtHmOl>?BG`Ed`Gm+krV1hQ`%h)hr__%nYiCpeiE94uEgv?u1xa9ZA7t2&AWzO7d^ z#gXXgq9UHUUrR+i^{u;#DEeD%6;brKk7_?2H!V;lMPl$p4ODZm0gR1Rqp-(kwo<83 z`tS=9RKH@wP3ot*h$FlE096$}`wmj=$LG6)Rh9V6C8;*sp#hIH_yXf=a#Xvc?TwhY z5mji5{xgM~ufIx_Z3&w_n^lR*nqwC6s?V^gH2YPQ7M-0=syg9h82E$gB#wo^dxB}+ z{G_^sO>yC8)d757@K6aQv7w>YuRRWo~K{&g=k_n#9XnAN6rNo;3JTEgT=v{LMP* zwb&%ng4EBj2}d_n*TYe_sjZqsUBeFQM>q=ndZP9 zVn(9c)y@Z!2q4k&c9FsxHqTTmVADTphHo`YJr+&SWV!*jscO-#|4mi<+cS-t?WzRK zhev!|?fKBJ1%{6(RS(7K31w=sz+^8{Pr>ui(+c%DY}g~K)GF+*)9ckHY{=g$)i>=3 z2+>{lb_?#By;q%%-SzZ)^$~3L9cKl1H9xPOh9m!*YwC9RthuXRgCl*%ef4&H9`dW; z#wL#iH|l>^x5oGPd9FTOlT2`g1N*M}z}A^+2Ohbtm#caHbT&HntBIeiz>d7q-EkmZ z%Z3Cv_Q1;R33L42p2Y`6{^+tjjz#>{XvbaHNAqGFZ(`q!XzF;uPTzcvt^2l(BT1rX zy&PR}5~@WGw>r;n@w2G`54w7QsQo zcG~ZtU3(mxFY&1h_!2*@;CAananzQ-j`1^I47J_!}P$ ziQ@@=8WP9-!Zh~AFpN+1iOd_jYe+N??x!KqEFG*N za|@rMA<qaE^v7s(t5b$o^Usr&)-j@Y{u&9e9SAuw3JVby~hk zv&bHu(7GXP@9|%4)Z_(FxAC_O+d3i7XU#?p>^s=k$V*>nrfZ3k{1RHbR3==uRcODZ zgv;70ZH!8|Ok=gz#MUm(+8p$CDP$Y|tfzJwEe9aXqEP4uXjtmE9kCkgWx8o zuMJyroOFC%XYE0I^6x#Y$&a*yVPT>ceZHHs|MT5u(6&7KB1XA{+6trkYuDOgb~8{{ ze%k=;J$n`zGeT6^c&!3n{Y5i;P^$JT4U!2zufxMsEdy0QYu)(TqqI$F)I2CpYtQzQ zEh8U$_b;>#hQuItd`Sy zEXqSSr_D8rm3kgdT3pYxs_kUYH#4m|rJ0=2CgxVC=jUYi#6tWu(%T|qvu%MWu}?1U=WZWEk-z!h)UBqxIlI>(hdbxud; zxv!iaqGFOC^PkflS9I=MOV`jJo#!{zU9jh~PZl}&J8g77Y0YX~>!o{Evv5FgT1c7^ z?!fo&tMkPoPaddij*IjIDY{cwwK-|Jk+|4@ovB-k+beQ(Pw;vE7~R+S++nirFuu?6 zGu>Ewb|NgQ?V72(R3l}|X6hXIK}EWGHHvD4B7?0ZIwe1Pe$53EpdiH6*NuO|>0TIX zFvCali5qn1YGfin2r76G>uQ7~KT`nzY?E$@b4^5o6>qgFm^IMJ9S%LxP3J4W(Mj>r zLEbl?_*U1WCewekfc`SZP0LrF&}~P+eA*e^Asm+eRk|}ObbfJNS1Cv5wLj`|Ym`}- zml8}zuc{!_)mO=Hd!)m=1AMn9y3;jQLICDB|Dp53IdkfzkXwsi>*^tT=UM%?IK{w0 zf70%K1Tvo@9b}+n^=kfijed#65zF-YM>UHZ49p|oEG%cftDZ~^@$ULMn9elmzsEkQ z>!U}Xe?(J-uf83g5?Ti8r`i2n@iboF0H!ReGV+7M_4N^~uqU!1OfT+YL@R3psguDgUZKkKVb7a%W7?OKOs_BIe^s`dN5} zDVU}I)1EK75E1cCD35kRw^Cp%9Pi1EeC)t)U8oO~P%Gi;BE3DEd3cYOOY(K#8V9)X zM;Gf+&A*aAzf}K|3=Y@!@PwT%n+$M&rQXh;Ld4i^aOe0{DetgauaiPmg@>N6vra#R z7A}`>(0`>8E>m~vDR<$rpi1v24%l#B?=4>5xTxjdqWL} z>{!=`ZB70jF!}qd4*cUV!%iCRcqHlh?U9DhWx{1beFOeRsaLXrcW-F$RYOT3-5zGP zG}!r4$P1pHxhjV#C$1`>$vRhcnKD(!Z*65*tfH>)?YkQCrRaR1hvB6Oy2s5BKkfcs zzG07@`eAk^XrIzo4YC=Z2lE3*8_KoRZvM?Q!)Pfw=NB1{(CFNt*f0p67tS@z!0jHK zL569cg@%UsJOG6L-HQ#291z{T+`zk_v+8RDTA_FICwCjp;`0}K4cGB`^nL^SjKyxg z-9f`b4LaXCWl&?BU(Xo+#_c~=8BXH!mh%SmMshbl?V{l@KDW7Sh{EH>UNwxzaz6jr zkS{^!j9(2q73l2s+;9+&yY<3w44+s3Wk|>JsNRTj{AZYq$9JHaev||K3H8Y*pTJg{ zafKZ+#+$zLHJ14>4l+cquEU(i@MD4)B37di2ECNr z%~N5_5PW||eP$BA|K~0bZk*E_&TK&SpsY6^XaF1s?!LsH|hP$a#dUEba(}?Wcbkpd}WK(uQt|?`B_Rz+r zB#1xEy2?jpj||JqOoNEH`D%BO_uWh6X zdTsEhKlOo8KN#EyLK@SNm$YQuD5?yS`!ES~xep|N#{{6+7)t}&f}Oh4%Y9(}OI>3I z|5cV^Wp4VAwCoYdnIlWHHu-?}AP*BHJU6sdO%T*5^P!;fcBF>@7z$kv82qVkAfgQu zNFBEUJyIQLl@-(r!v8b`D9p$(r7e?>aFJvw(5D>}2wlf@Q^38JjJ|DdI*O)oresrE zaz6UwX8B>m(?_QdH>GBzrw$7>jm*wRT{-EwVYoXdJ9A{d$!35lFdYRSip*rVF%bL; zP1(7o%zRT?c6#2(I{882rk*Hb-@Q986-8p6DK|a8Aa`VXnrR5Sr3(td_U&7lGV}5Z zP~V93+;k*TM&{6r;pl(9X-r0DY6cOINRVe5mt9~&e|HOY4arU|$TMZ5@Xt1-6sG5+ zziwqJKz|tw{m^~#$TXA`nR)MNMwpnwa5ABkK;2l!k?E=Ex3H6QGZEjs>=7v4(4Y1) z<>jQOW)8_rB^DZ!n~j=qvf*3v(k;DK!Pva;(yW^(CI^*fJwm6xpP~eU+btR6|9fWs zamwQVuMJ&jO8NiQ(4c(2*+4xOb3)ppY1wvz3Xb(-0{OyrOfw1f8mFWOl>aBw!LJ>e zNSgMA!&42NA#$Zgg?jTlF-7J%oFId}^@r8szj2vN|>&k?F$hX6Ld=r?_X1@KpF<#VQ z7~75Urjtar1FK`3Wy`j-J5$@tc5ip4t{Kt22SWT58uvhm(?rB6)gjKcMeN^;9pZLdL_9~CWz?ZLR6tCiPaqUDmC~m~wC}1zyKF^kX$GSD zG06ysOm*1o@K*+-FB@;r@xS$BZc)@9P?gBEm;CEX!MWUCUi5z=lh@TTQTSQB=?Rg8 z7!y3nK;HZV`VL~Inc-^tiE!S2LU4HcRTCT`)xl*ZGDFO8EzEGOM7X%>;JQ=?H!zv$ zL;v9ml@kmha3`5LMW^~fGI=!<3~f7)ab)-=DtZ zXOqaM;Xy7l7>}x$Zb+tPk=yx0dCX0Ueuh{zWJ2IX0pm~o15XQ>K>Cen%vaSJQ|@nZ zwHGjBm@w)Y#E)Uzsb^&qm_(&i5c@X--GKRz_VvdsO6f3vc=np9OGo%aWtkx!5*8am z=@9>F{ND(Ty3fqRci$Y3W)*a%CNSwVLQVcb&%(qB%ptm$Kg93Tr^CE5#tHXCUC=cE zue5v>)c(yN=l`9^C@FfhKek05I?o^OGK>c`AI?odpGYs6%oJ1fG$LFGOu0k*Nap%e zT+&-#y2M`y&f@BXTViW~;;CrnDk(y-J`MP(%vOwfE|Cd?glWhm+oAGP#zcQ5LT;-L z@_;Smsn1YAU`Wk0f9jKh6tYU9KPs41$QX6+R(0<%yDTufDl)rR9kU;;%sgdTXAuvm zEJgt&YO!THlaIB);X>N5?VgP@c=4NNFo_iX#zsL}9sp;nnA)^5fEbOEf%gigiQ$7< zj)AGmm}WNI6bpqoc>{}zm@Ev6`6{3z;fvo z7~8$@A>$8Dz)VDeJO4>pIP3wYEqyFN2I@4E103QFM`E$?|}-YC+;D0Z_rAnn66t# zm~k(_`IStP<*vk4DB)U*cMV?6aF)9UWe=zghgOc2m2KCyhNnBU!{}ZXj8|(I4>A%( zoLQbD=FJZ!FCWu~-x=^&1RVV`J?MUzohCuqOIzsMjgZY(A z6x@lCs6LFR19fa>-JCs4IEE_U!+4n?p>UtUkG_nsa8+);6o&K<1fjBzUtG8xnw4AFvKi3XcjDv)evTG0-HFmW>~XB1Gm4;7N83od#{pcsEz zA4n8Kzw+Mg1T%ti0`Hw4n-e@CY7a9+u~o330#@u{YMa3#gBb%PoOEI!PQmKvdV#od zszWsp5bIWh7>^N~lgB!h88(oDZquSX1Yq=gUhSB+W|mS669px7H~l;6@t1d@HHRAd zzFwn5z48Ppva69|lAzZ%L9d~LULx3?KlBFpZ4WZi!a#8PoDHHt0OP6ws}NK&{lEk& zEQlHVn0A7A7bza!9}QK5wdilXg{vIk(tc(sJv30ro>>Q&)AYB2LiP-W+=FPjCZdRz z5Ft}PutYWq2-+OiKOJIDQjY{yIxQ7I9wu}b8M!#3HsAONb5TaUA~xf4p6i5olmrP6 z{4$6?%b-tk1(5~+!}Y-lMGW#>l8p6Nd?gs}6>R;Usc(zuRI1cK?GucSt`h`NCs4Em z39$av!PXUEJDy~`tgxd_GDmG;r#uai!H`qTc&a1ZJ;k)4I%Cvku&s+Ml5Q_RvmdNz zeUR(CFU3X)^V>3q!72zp!?d)r8Fz*mXv>B^%Xm`RU^>f~s8NF4BdU{of*^O3DqFde zs~8_!z-?6skb^T-2ymeQIKMi;6&UcH_19u$-FfsVCHM{Qd?_&?g%Iv82)~5beJ$XA zRUPgTjGJgxy4FSJ`wzjc3t%?{u&dR9{rnzS-eu;Mt-`wb&N6sg88@jbmJ? z|A4xR9!oz7wysF@zXF2~Cs9=}JiE%wvWh$P8d@XGx?57yCzzxr?H4Rmf~MeVqBb1v zUT20{;Szp8ds`x0f-l=Z+9nv)BPB&&)}h;pSgoqV>JF7RY_NFKO%(hBn3$`g#|rqv zw-^_i&J7j{AK6{>;5rc+-DT?2lSMA$tK%{YOWYi?eq@?Ra)T+DA5XbrB-^@YBm%~D z&uYS;l-`1@hD-Ntwl>~W9fv)z?LJdNt%mrY8DES+${vJC%AUJFGdJkV!8TUp>9 zK`Z9uhs+kV+>)iZ|1ZeBe+LUo@rz(#DLx1lzUbrIF26FpDOwgnmSRZ!9Zg4Q1X+mx ze#D%mQCUc8L$Wk_h6qbzZFI&v6Ye3^JbVO&SeDwB%A>+$gpe|RM}oYA7%w8W6cL+O zhuHb!h_O$Z))`RJ$mHitHbsvSv{!y-=_JMR z*gu(XD7r{AK<3{lmpLf@8!tSfwDYTzc7;`1FWB^w36>Ovh>?QuY$Ihlg2$1vm#`_N zj=|H{Obq>Ph)psc71(?@<)4GQ|1c%^UQ!^VGqOV<{4EPJz*}Y{`g4)@7(FCTKu$$` zNc0%qFnj3VLTsW3^}HKBH~>h|yyHK#Q*cm-p|)>P1*;7eVn`h-#L#*0ex1VZbY<62 zv`45ALOCi{PNM-RglhBcX?8w(^VEEck`6}w_#uM?QcS22NcGVf2U2usHPb^Jc+1!{ zM$2xG2{4YXj9t?RzfO@Z3_i%`9*gG$3tLS(exB6}<@&xL#kaWvAjEQm=0{uq6YGa|7sUVM1`<6`oc4o7htny$~_S zJ49rww}%fKO)m?>xzHKnE^Si7Z6CHL9z!BL$(OAotqe0STRTMKZLLPH{kFz?dV>j6 z-4h(M5dCmv@|(>b7T}L9-j|@nA4zk?YQIqGLN%Q3B4gvV+l&voI_ysv9fyOtbsC=- z$R4HXH(@Y!tszJGKoAC5g)9ntL)aOV2BvmlLt$hn>mzjuM~YVLZRkU};#TpElrg-T zmBBaMCR8fJSYPEcfq^C*Zicbl5O!2IHd)nCY({*;ry3f;g>be5)q-$9(cYA9jtU3- zMEL^r>sW?g7r`!;(+S~3X2o9uWOIIR16D^#(!!A;m#W?1VMDejl_`i>-c{0+9uiJc ziW-93JcOTG{IL<+iJD*?ggR$6W>bYRp=EOnGVpA|_NC^*=q7AEw5cFyJ=?7Z{dsj- ze-Vx?-yG(&=%9ihri~4RJF{7p+JO=T9fAbJWd!1Zlutol=oi{k!lB!KeFG*5**NPt zdePHaD)yi{zXj_GSDUhT&9S|5R3n62*YBm$vf*~{44 z(6=*th4zhrs4i?*3hkc_L%MG6!mg#lp=VdN9~FsF(N@V`byGStqMGPy9ATqo*v=s; z7^rgXL^M?TiVXc>Y7*;?SRg!icshn{t1@?aM-U}d-d5R?Td+Z(@6M)SRk1!Ofai~# z84gFfv)$2iB2hI>R26NKk!UUN!S0mO1%j&XodZRnv~HZ!y+&Y zU@NF18&%C+(<4aevDVOwv`7g^=~_7U^iVpGeL(LQy>d|S%Bw-_F6ukjHkeIDF=+M5 z@#+M;XzLYS5}To{FY-Dl_yV0QzA$&~6@3x&j#xo3DVfbM`vP1JZHR#A6t)XR!Kfk> z9%P39Pjp9P(H)MdtV~Wjp$H<87b_y7VI=Z4Ww94%??@r?e1R%Jkyl%V_G$0WU;`ks zzrP!l=v@al;+Ob z7&D5ix-W;grz(}Ija5<-hyAi`;;^w0hpHSDhv`=BsT4?Fz@i_-Jj*)JokR;f%wb#7 zbe`D)T}0fJNWlWf^VnbL>7oT@Vhj9)Lht7SHicRsXgjwWZI{|=8~eCcqM&VWk-<#Kq_;(hYPyH<@`n(!NsVEz_X3u6PfMx-!kUTQG zlOPHzk{}+d?(kEKwAm z2ZLboVs@}azZ^loR!i7{)X#!`_eA|B2>S7%U$Ea&^b50slSH_CJW^0k(GJl>Ia(1d zRFiL(vxjK(4&dMlHl0Shl<3u8Q%LHhkEWuli3d+K$g-9z*SV#@o&5%tW9R82Ck6WB z?qt&fu|SnylG@TEjTY9oX=a&36&J2#b1f=P5LE2BitRvmh=#*WnZEG!Yt|FJ7p0EP zV4$BmfgN$E9j|+z>iDnoop$3Z&bdMy+O}MOwi+zWV~4|bcdkUVi9(wCv5_&yL55F~UMTpnr|Lk|`KmSq@v;2!c|I-Vcf z0GeeQhR`D|H$z1l(?Qj_!Xm&|r`SI!$^5!##eK1gK{h;ehFxSa^D>|u#Dui&(I!X*6;XmE)X5g;DaI*9c1`04)Yt0563Zi6dxYq z!~M`gbS%d*EyIU5xD0=d56QSv8;lSC;KNINNQ^{>f%tF~9}eNeL^S_qjl+jjd`QBF zJNR%DA6iADLp(lwg%6eZ@C80BA_v6Ml(i5u9*YkJ=unU~SN_Q-_!EiPTt!(^VZlW< zo>-}fSZEfp&Mab?B4U*yVv$+I8ncKciij0v5epO%?Td)!vxwHSh{8og*&?E75mB;; zC|E?4DYwRrb4d_}yQk6lc>n}-8{c=rf)Ht}wZ#k;-n74dEXz9QcJ4!f9m_XT!4@vhq9 z-Ti`hQO9lKV&dItI0A@wn`0Lf?|x$OE~(9lcmKm}#Jefj#l*YE@fGoIe~Whu@fGpz zJ$yyH+t%XU1^5a(w|*9nFYn>QO?;4{#;mvast&&L#)lsG&>0_a6l7(i2kDE?bC$9rYr0WnvSsneoMx~&YNt@j}G><9qb0(9y-82U2NS=clz~NhLmoAO14fyI06iUTO_Wz&?`pmou zYG1ypgr@6Ul~7gIu{RuOlW73220n85?=~Cl_7RR<$P;)MVLNop9X3`y$SM|*)7anI zV3sqhBY59spKFHMb^&!E*B1`n^omgDS=%v2D@X{Gs_0=cu%)e`q1xsy(BES@M_UfU zwpV0=Hi<5df%tFqLp|qUG`vyJQ6lUhyfYrxn^5(Qex-Wp`&=U@)>eC1ZkB)KX0pe& zxdZy7{e};iDL*pa`-I*I?H;h*jUTZkvdY#6Y_j^;yK;0f94k-+Vhim zuFu%^VebYB`otCym4q)5mG~5knuTnLC%-(P|6rRcurbi+rEr%X)(#@a>iyM;codmF z`awl)=cZ*nm+QL>v^EkDJcVS`XbPzVrYq+;Y$`M>MNM?njK1iRS%*D zxun1oX@m-T{lk7wU5DELvf=6*HhM<|82iF+vQU*{Uj>?5$QL`V))StjmcIY>iJ$A? zC+jGf=bfsCc}K$akP~Z^!N50cZ#%xqM685l_o6OB!hftuebGj)ikZ$nkQ1X0WnR7S z({uIUuCpq`EvhcY*8 zm|Ryv0=hhWJ86*co}6QvSEaJo(+3qzB$#IZ}Erb^90=}qY9d-jBYiG#F_Ay z${47gX(Nj@5;wkY!D*syQ;7w`;UBeeiu$1Ky@DC_%%=B)c%SuFvsvPoI>+Ory_@RX zfv&6vRIx`}dNZ1dqKxs7^pBUy#b!3acx3HG$k1)9AF3;TJbWcDPz>C42w)-UiI-me z*N38r6Wky5@dOv|vGRSnY*;|G6V{hCny`96j)&1(_{AwoZ(L2$ZVh1SYjy}elNrm@ zv8M_qFveYUTmvXdspX??(ZCwgI5?%e6sPw{OSaHqnKa1{ykk_u+do0zOW#& z22qV6-q{$VZfqlkB`gesajR`&p^p^$8C%dX4IqAkMbmc1}>D zT-g>*B#5Gr9r671_DO&WTDTd*;CEN!66s>Z8}39qd#k^&k%E{JeN?b|Gp-?KL_599 z+>KppWIqm;co>_iIUDv?`|-Hd)_x^|R-ZS(^HMnMZ0CeQbVNms%Pixw{p|HH6#`o2~LA8cA z{z&t-7)UH0$*kP6VKv1;w}!Ylh$gF=&Z2f)9b<5fLZ>;@3N$uUH@A_)q9&92zM8S3 zN{t%g*b(*2w>FyfBy%mAZtz@7xnSF%?-(8T4Z$BU#tCugg}=MA&0J`iZVf284|pU4 z7h>%9PIXtg&=?DKLydDC_gF1*Q&lMjNWgRyoFwU3OVJ%p8hqRt=Kq zP=jMbqXI^T8?)6{tSkUIFc<}*V`Jk-7-wCEk2x+r5Oltbv$1WFuKF3un2iz4cj%RtB;n97u$b}@oyfl=kO z4M7$=knirMmZIkw{ChNNo7(|L0bSV;y)4loe@!#`KuLF_!V}+@rPZKXwoW5-g~=JE zSvuT+G<#NHWIQh8A+{6F4%{FHx&E$mBqWSBwsZ`|_Y1A4?%QMVhC`!`kyL%~j6sRf z(Atab8dEkqDVl0jO>VSkwD7Jz#*s)g7T4KGl$$+`{t!2#UrnX~;%F^;)2gp;Y~j%p zi)5=;kd2Jw>4((H18iFH^I#3@JZr>hH8u=USwhur(;ucbG%oD&PP+E% z#&OmLvwDIQ!4UVEgP-$3+`rQa#o8f!wM)2yic+J$b3c3sdDJ70A$8=~M#99lw7GGv z+Qwf%Cbm&=#-8eHR+d0ae978imZ5lQ&E2YjUa9D*u!TKfuD+n(Vw)I??7o`b2|?Gpbo@k6G@l2iSw%oZsRuVzy5jo6Yt~V`4T( zTeHF8UCu)xu9dOkqrttl=2mco#I`7Q+=ikEuWD_~Q@de-#94}%-`Uz=R-^cT#dy5) zN6@nZ8$+c^??LMtTc%xKi-S(LHu?z;YJ@&XLIQtXJ7Y(WKrE)MV;HO4f@2Q3Y4y;o zy>Yj?g-w?@H|aeL?*lZq8HJO<*#^;U2~pP0&i(LU;?e&2iX=jR!J{8d1Vdvux6`?; zv(2Jl!MxlMx=B5P;g^oa0Oz3=;0z0Jh5)R#hRQ%Vw97dI_IEN4_^@6`>};IlI2GS* zUS~+XP-JZp>V>I|g?eFN zj4A56Hd2x)Gs49Wj}A@2k9wHZaq1{*}P0Ynj@WVZx;j_!ag*qDp& zB2#7_z9Lg*9#o7#lb&^ABkm)mLr4>$bWkUw0JQO{P&!l8w#O#WunaZ_Khb zn1v}`R>KGwdGm@K`llLQ>CbFTE+?}Esv^!kuX2+M(?$h0zd!onpr-{!)?*2l#dfZk zZWYd^e28nQQyFc#%yMTfA$}H(xY#4ixEy^su}&N{Dttjrr=+HcAl}d~aN^@5uP*xdr`E&zYDUQmGhbTpfF9%*d% zVda1-LK!T4#k#>iBaLGnV=&@7HAJknh13w}RfQ?X*r`jTwcRXc4NHjLc<+6Rx|6$ zHz9H$Dj)4WB-E$$)Np*=-MJd{kJKi?2=as4#O8LPHVKKf%D#ZL-$dYEzq_C(LJ~(I&)pYp+n6JoRXSJ};Rs?u>s}oa~E*_%iQ$ zYJ49lPLMcgBO=_s>V$Y+54Xn}9q6?vl5w4K21DEGwaP|DQm2r&B$sSj{|9x7jUcYJ_b$ts4Tvcg$k4_;3|tJvH32bVi{(9{3K!l>?U z?vDRhdqt-tU80mwf0EHl!ZfAOR}$)atBp;q{=^$ZLfNQqT20wlyXl9X88g{fo4JRX z5rfKvXLck-x0UX0Y8xrghZ~F`?>D%Bdm-8&wjD-xPOI8DgihY|lTU!7(kefBgfUlc;phhxj7sq9kD`oR{WlH0dVAZ@=+ed3^rBshYgS(M zwy+TEx{OazT{q0ewqzL_YHhI0YX3XNxVUrv2#c(7O@-&-L(-OL>?2K0t}hDDog|gJ`ycC}d~n4R|mq zNH*dtvaoGz`u@U3Tu2fkwW+173lqE$H_O;xZR2C1z&k%1E!VG;(fgfmY{VgMIb>}x zi&Mh_PmG5isYVmM_dTnhn2pN0YuM`k^mWvS_j=D`32be?-zw63Wu3E4ms#4Z^T-HN zj|Asm@omI-kMI>S-Xp+pBr_sthKQ&w4IBp zJ6SU%nz)1z`%~5ivqm+n?ra&4Y-=3m{1Fye=$9_YHqk%tIp{`-F@pAM2G3@r53HE0 zy#I@}?+%Qrcpmq?5K1;Z+}V&dkotmRFNMbLDszla9ey{@HOLQlupjPVgj?RrYroAkE7-R?7CBS&3vlKZ=o0D7&Ez?| zUAg=~b5}&(G+pVVsHCJyQPg1W+~&HLZPb8?M;8K}cSC34(IxS$9j*q9lWyqERnP;y zxl21-OW7l&hu?EEALuNOKJ+v1>CBHdNVa%vW=1#mN^sM&Z%u6mrvZE|FE;R4{GDmh zquA--mKT1nC0b@JPswKA1XmV&%%Y!Vc#~0Ce*%7CSY+d>yxjX zE|JYdf1gOu~DSd??3+aX+|aUT#^VDjH|TGJ+65M z^Oi>zmpt81s7iK`&eZQ*8Pr+&oy$ZiF0-IJ7Y`;+EuD0~t5RP>5Jv(^KYkFbCfgB= z3cc2CU8L8#P1nMqA~QX;blbzO_l>ZFUEr&yKMhT1kLw09nur|{k!e0!ksLhVg%=!l zwTcc9gsb?GMun}6hxptl!N%uLjH(g&kOr%~<--lKqxhK~Ry*SZo__#L#z(q|#GK!D zUQ44Q#OF`|BPm{fbuX)z`A`?0)jv5g1jfCuCgz&IbrBEFHDrGTW5a~*uN9#S?}q}W~H?X0|DTh1`ZB2FK45twuJlE1D|o# zWj6+6!!fO|U`*S}kE!U8D?5N^z0F6|bUYdo_CpoGe&+vULdxWXydM(5yA>cfU7q;A zpOByBg!~$e1t;Xk3b25%2n8)aBTa=$`d$I8HfBt-)WA1D%WJHVJ=4kIN1t=0vBaDp z*+%`bb1GOb>gV8w2$2iF^c_u%^Du%9^C>*F^v#-ld|^aW5NM2aiRHpbHF@hS$-WzDU+ca}Z@3KhP*Bfcx?^P5`;hJwUfjrR%aP2r7%n8LK9YeJk9gPh9KX~44m5zPiwF;b%Ad-T|Wy^6*(c@}dy6FR#ZLp31qo*Z%UQc@R zksrAl7<>5Yk6caIzM%d=%y7x>yA(5a=JKr9T`oT7gsUFB^|$o|rPo_fA$kkL_U*S|JQr4)cSeeVa41{EJaeKR& zxlE1BIpykOn%(%MQ?3E5TDL%P3u2C2GUuvpQq$r6oIt{A%lgHNFnDmM0vS;woG1wk z8<%VFj7yDsf#?fOB12WSWhN-Oct_!yGq8WcI)yd4klzAs=U0gteCMaG+u7_OIyic!-fq$}_3Bz*lKW0p zi=X?%>5;n(UW(nG{Gr?^`MYtGHx%B?v~zi`zj>`Ims03@KxSdN74OCY2B z#1|mT_wtipfGpo1l7hP{qTsP|6m0*})gUARxW*9zWHvXbz~(n!v7`9d{#Fx4tNbZl zbE=dz#rWp@k@K#~e9#EviL+n1vQ73G88VtwoV7D**3Rf!j3?6gu4^)OhW*hEuAxk8 zk;X3TdNO6dRm89w-NlpzM-zE2xGIo2BBK@`GrdKs`Exg3V5Rmlfd=Fnp+R~Eq(FKG zeB<}74_U+R<+U|QuR?XCFp$pjw%FGfK=iUh^d(M3dbz&hs6%*eLg^hBU6W0CjK%!P zHIU_nfI_69o`ll3yHuWD-9xS{s#Uk{Qpe~2>>6vZsecc-zJv^YvRcL`Oe+swiGD3lLpz+?EmTuMh zLU;5>Oc;mpi7ST)pBmu5yG!TlBR;x@)yMo-=m~GB`3Mu9azu;|mw~;qB4B!WR`@vh z&c&*{#%8}BJoa|GF&ogsKYhMbuDp~4&+eSFE#dve@_#gwgZG#M$Wo_`?yp*wv^0iU zafUIEr$t&*&3QfK<)yz)!}nD847cFAX1E zs2R4U2fTprdbG{phfnpiq{TlaN@>dO7D@A_>(b-Qk{2+ZY>rfbRpB zmZJX3h~VGGSx;5_8sPDP4Xp<3TY?X{asKbP@r&d}P-Zgjj|><_loi1b*RvSB18Y_C zir`?uQpJ(aeH?)wAvjXAXAnouk%51L9LeA>xU7*ZQM6QfB45Os;0>~GDDZh z!>AK`%EPGRbcKK4p=yUwk;9R2-OL)uiZygRZ0-ty&btb(5?a&Q7Sa}&2q!;IRBvkD z+>_7!GclX(CAE0_1}gSF7F&;}wvUNt`$;YI9nRk!6w@(YBr8g47A@&8ac1HC`CB3N z&gVX6B?y>lPsYM+>$|Nw?8U&Y5-ptbA7966!;S}5Zup-dJD&lNp9l8RBN5kytdK0| zDfik&_Vn)_)HQbSLupnTykveV%}O=@f-13Buu1@@dODh5leZGY33+kE%_3F4$@Q-4 z$+Moc23j$_01ob)#fo3Ja~9jH+!^^UaxZjeUF*8M5YkxXi%u`pvtEg8A}H`}Y~bPP zmbygBYm;75UK{8N-;n+Z8sd0HL#r3-rJ0YDvw>>E4@MygRUq)6_A8`wW+-VaQ?WNg%c*voWFIwx=^(p`Ut`5DX5`>RhN*5f`vP|Xz+HCDxh54K8j09 z4+gN4w8EWS0?{{lf}1FhPl(1Sk57tUD34D{c_immQ3P?vCB2v2$|YN6eweTuvwB); zf9pj*%$NKyUy?A(Z{xn3Va*BN#_hzfZ(;3=JSBPu$mi#}M9SwWC7&mBg^!$)o2ulY z4CMLq;rj-chgdcF8(Bc(ZyJSgM&)HdD+FTirCxGJ_hd_}5v$SLKL{z?74*Oz-8)-Z zt5`DWfwGPJt4?pZPwVO}cXZ)-k|^G3r>hOi4sI_l5Sm%Kz24Uy5ZrWcw@%HB-f~}e zRB$EY?E`SczV7tk+Oq{_F1VdJUBJUi9TuKw0%eG4NIPp3TNB(IiCU>pZ3?bE&=ctZ zOcuYezIuJOJGcd+TdC0*F8RA?R$^L3vk+o88Qwn)*iFW(kz`8bsl@lSLaS4WqMy1k zA%2N}`nHp6!MKGcUlIaBHTeS~F}R&v{7SQ&$THF2C)K!}{M{?fGT^vw;nh|;JFRO; z$aAtchCJo>jo{{0XDd7EZP5$&*MKnI<+WyMeE)_%mAoCPB|q9I6HLxc`c1&6Lpw&u z#EoUVXns{6|ImElNi08nZR<*IEE7T)L0Ae1x56!o^2p+nqeUSS>bpgu38fp$b%Q#~ zjpbBPie?T}7&ext@p;{?xvX<=V@&0A=pz$w9dxZq<*e&rZ8nGY;ROd=_1SP;O(t|m zp9*5w34L(GluoGJpUnq&B6|a9F?&PM%A8kFfeptut>%oD>U39Ic%@b38C$~`M4quj zA8RAqK`0fgi_9}_Q^VY*YgMS8`M%x2e58-u*LqY}lVLto(J-G0G0bz%yOL{r^$bSH zm>39<8(9>CII>A75*(mOK3b(my(Mter9%c-kp}ykz}3V4j~e!WbgddT99L~ zh(FUKK35%5M_GMjS}3)TObaFV!L(2$(Jqzw!?Z(QUzv8uC!6@!Ti$9J!Ar(kN6a7l^5e%Lk@GVl3Auf-0&f2$xgAT*C5(Fs-+Nnf9l>zM508Z$ z(j((5o5~5z`u|GS|Ci9ISs&Lgi1lBS!GGD87ZxOCn8`hP(FCg#t0x)<=P+gkPhJ{) z3Jsp^GDUCkm=>^3FZcxUyMd5m_Gt@U{!8kFq# zhtw;Qr|z-fvEM1yhRB(Elqxf_K$l2QekMF_DW3J1rYroO{69)kIA8X$)rW1=c%)w* z0K11I)SsPI*PjIb z*TbMXV-{E&BM0hnE7cjMOQh-y>@QWPpRVu?wd5b6=9WcPKAWkbON9x6&O4(&Nz$w& zJ+#&=g(gC4N=Pkg4OHkP%}!DaeN~dCA_<4CD83btgyP!+Bvc&{t}DcM`BE$0IK=nB zAM;ryy)y(>D!si489~XI7fF>*Ad`9p12{}tVKRn5^i7iB8YW{-ipH3X`B?lyf&BPy z1hQ9unT#QUrXMCmFqn+_(hu{zALe-pGdLMDoA+30%`cyf`D>-MBhnZE6#2qdOcvJC zB~lLIOPy%KFAGGfDf|+;Q?jM@y_L)61^0=)6ah~YQ7m!SrxaKf5F8@YkpU3txp~ZVknS?maY<{1 z%5;c+GSjg~{1X54WjZoos3OymEGnp){H|wQTnx(OcWki6M&2!&`9uaY9kDN3{i^MU zV)>-r0o_0cjmE=b*dbi&Ljy20MyfE^0pzTD$?9DRpE^LKqRqPp$n*1W2ajtXArR9X z7#4jnK!!yhky>Q|)NbtiICHog`*Dd?8BaQpLPiO}Em>0FQ~8qpRoAiV{P-5j7a09H zKn6ze7XzbBZ&)3LBFaW$V|F z4G5Xw;lDOjm|jJwKV%9^%2S)M@WW4?-*ZpsDoUwbJ9*OYw&1CD@th(COoM4(U%)i; zSe2$ZfYM)D)G{<;bodkUWUTaE{`3f*$gMZcrFk+|T281zJ}<6_&+8LMv66^s}_B7$$|#CGSrIq_6kyUDoEj5DiLp|3k`#VbYPvAN2^8oA-w< zk<06kFn=OK`d(M~RsSEQMny=m1NEHYVi^LlH)f!WkkUzGxlW30>pP28j-4 z1uQ@Z^Q%1VVAjA@6y8k9-(w|J$CuY`=4JO;4a{2x$~81b;GwqWTRp8}4L!uR2T~$; z`@RvaXt!HQD-4wGCIxC$ic8krRG>t<$w0|P@cYEd8^bdpPO_dAAki;N+Y!} z+cHk7NYJ4tN^u1Qp%lLj^63kc;QNCkAGaF8U6|`0w;Gzc`BHR$5Cfz#_%0c7P?Xds zkUlBI$ASU$B&|f0y7UW6S{RS<<4;<>E#jj3 zAwq0`G16>5$T@zHb0o;%80lQd@TfZfuGG3Ua)apYb9gaE+N4XQ2yT#5khfM>_{gbZ zj5LBD&9bg#_h`Vvr&in4A<%j6h7Z<>i^mWdRp(uvwVJWVNnf=16?D_#(Ho=(h+ku# zy0V9mT)a|z6yzl^GCCLB9Cw9J2esEx(QhH!|E$|%OjH4tA!4E@0baS7h;)}R(JG)j z@G`OJCu5=p1w#7ZpT3yrNu?BbizZYlR*M3q)H)_=D*F3GM8`zgP%LAjwz>g{iCXcC zFNTVVatcID#E>eCiJs&uU$XjC&W9VphrMb=n@tO3G&ERHLPykykfx)d(FHOZ8cS-` zx}&0@k%D-6HnsB6kR*;#8ZZzd1%5@US|Bu%Z?el6FS!*qT8WvtNi^<;sJb;yL}t5~PlF00GOj)b$8|J`C$X6qh8 zMooH3*j)uG)`1^Bks}9BUlXNtcK6~e$qk}i1ti}2nD(!FyhCU-J_^JsLLFmg>A`oc zWW$6f{%|uWY>*}&dHYudyp0-!yp0Xutv|j2_Qvv53@P{{WXz|mJ!ucN`S|js9G_7KwgR>pUXHNl7u+s_arpTpwn95CCqf6u(xfCW+ zxM_=YgL%U}X ziEdsYwa``V{|F(a(G4skxc>uPb$D|!u&atiph=+!Z@vty-4Or3U}AjpM_?}v6FtKU zcz~W^5xlwS^9*a?iU{$|UaKszrd%3bgZZ;(t@@@lSh|VZ1tu!}^9gE1C}}x z0+V;iV6x{^LVEZW#oPc*L>^!#sYOkJ3LVSbPimpB+ViPMs-Y{2Yy~8t$PNZk^ocA} zA`6=lHqSb4*)_LHxqY3_{1&2{HUzJW|=T393R zQvS~OR#$oaSGlS{35xwJ5XBpkbB%2IX~3{qa9?lV6CJ*6_Ll(sC;V@|`mC&1lx&>u z|5mH0^Ws-Qmhz)NSk1zgLRb9M-|W(i%D6lD@h%Js@;VZ07#WRBVbY-D<6boOo zdsh6yH`-SHA%5apUK7OwLin`NNO3&??;NCxQ=oWy{C)8Y&zepU+ugX=-b3u1;I`!@ z@eB87z7jbe%rw0%0%eTWSBYo>Bb6dyAJI+^7Aytv$8Q*p<9V}FoAMSdYi?y3L!d&1 z9zrbn_{}xqjHW#9vek0?g4E5N-&(E;g z-X|o0o*F>?asaw@H~7W(7uPdKWb=ay;$ds1S4L|#-4AFYkGt9KzWtrJh`cGfQ2fIE z!8w)B1HmU)8}d!BuaD$U{$`yF34L4Tq31-y=T+MMVVz^^HQBuIF}oqZrC&zVu+2jZ zejqoaA-k1S!%#iuwlHxa)5ZU4TkC4$7QwrYJTodG&fGNwg0@!t__jri@49UDj9(|Z zQj@cu|9siHIRN9uXge>tTtmuAzWQYco)CE63@=Ui%j#~hLxiH$4efOP?wOY1yz2mG zp84_+-u1q?ChS$xWNxN=vhgCJ^Y{?FPigKS!V9K46A78s zJQ<&iQC>SeB;}|l`bC21rZ!P|{1w0K{5M#^xkSK}9RK7aO zZY3u8_?u2XANN|bN)CUiaSeYi+HS(GA$Y|E#V-*BRJOr!im`Lef!D|ovwai$ZFUps zRq!(OY98F{27fOId*D5X7`q+MY~qR#9KgV*B`-^|dqc(&hbZ=SY%&=_rf>lRz~YmC zaIbdzyhdR!ihuQP)R4VQ2tc6|pE5O$2&u?TsvArU0bKDcAE^8+Uz}^Nz**+$F8h>u zUQP0O4wF2AzwkPIq3(Ul{<2#1P{pDPk9Ln{T}d}F@d;;xd409+hUtO7$lL>CaPGg5bAL|Hy+x+TKlf*^kv{wB zWP5#prmpVg?!+HTv2SD>2t7G<>|C~q6o6nf<_DgKeXR|^Q4yi8)wMn>Rrxm4zG3zp z{%xwgg59G5i~00radoK=o%imcGK(9LZntEQ>jtvhrXk@STp_6R-p!As+c&T`NCzAq z=5OJsig-No=unxzZBfsT=XL7Yo!PnI<}!b)+lzc`1^DLHx3|YU2>^5g_MH4O8KIAZ z?4+BkfV~Osk@csw^+t)0kBMH=SC1YBzr;WN=~tjp97(xbG@;_QS`?rU1a`icoyo;p zjx0g+SEaBd=9$UEm~5?;f40Fv=133ZgTXWdmqyW`wpC~}J$_MUQaf!S|A3M{0VmL4CV|(EHc`6$f&CgD9HMD*curRmr zyZD8t~5 zSTVYkQuNRDu5A>~1}>WBmc$pamxkOvoGmF7O*+uts*whI6# z1YG<=A>bn_5`sMg>@DSmV0^vQXcU65{em$s)lXvw2xI(G;Cfh>5;{5$w3E&Iq!8dz zBMgJ^7a*a%x^7u*eqf+oUC6`J1ML*^rE>D1UdDSs1D8gkZN7b+e?Q2#OjG-yo}zn= zbU}IegcP7W{9697m7&hks(AxJYUL>uWH`F>;PLkmplzvC(*&@_KEBP26F9q+zh+j z_G&Q^d~DN71v}+DCyef6^%CwIPe~QyzS8^=_O)SVA$gX2M8RuL*NEpeA9pgdU)B#E@dl2KB2zcgdsWTm7V z##>!(>RFk13u$>mW1vinIW#w#51DWOX?(&97TB5WEI}%CTcqsFQ;K6>hve9~-(ob! zs`0}M?Yfmza`S}Z*a<=fa_rAwj(woU^Pc2b>F#Uobc4l?)@o5@mPL)0lL9Cx%ksaT z1s_W~Q@h;Q@373RkDS~4am3~ z2rZm_eBYF`01{!9mVJN6C1>*w8< zig!Ot-Ua1{POqw$E|}MvKYC-OjhOKnFD?N&`;6ch?BZ{4w&TpRibbati`Ly_7qj|f zv=ZW)n=T6exivTY7CWz68-U3VzBhc9nKOpZU7QAAR3K=59D?`fb2i(_w;uQ-MeceH z7$cN0mGAwtUqYntoBY|d&0FELb4Ss|f}5p}yjc^X`lFE=}c7-G|;fx$!(z;efh6!<;wXDYwr zlJq)c`1VeF0$WA8386?x4eqvFcSC{b0$hp%!2m7^fiUZjVO6R)Rz46`r3b@gp%+feL~$3Elw?qWIo%GJpyo83QN)D*`AVSP?t1-UMDwHFur?FUCFzUKPemt$~jB z;X|KUqAZtXkhW;Q@Z;8G4#-@`Jp~!k&qN1Idwni`VNT=oaUpUVnEQ+>wRh!((4Ufr zs$}D)@$paFZ?Y?dc--ZzJ|0NYqM~*=ufUKSSp5g+*1kdg6J*5lIkE0={@o$qW+K6l zDlgLd*6-yJdp+ajVZ*X#?Gdaw?RFUUGa5s!IA_?ARG?Dht}WEUVZ%18PhjoUyy)Ms zQ*vZbOk@7`^X{~G;Rgqt&4nFn@qjJ#*JpFb5FqCi?m}@acLu2d+zR@E2dj7aAAqyj zD$>;l6UTECsR$SkV64Z-?E2=L<7E=vBOp>U^{WOYlcu-=l@Y{Z1xo%!G^72F=@x2J zwCrVjHanw>#m*@0=z9TBw}9Oz@gxi(!6(o{uJHKfFQPT7>967!s_CyFH{z-z-J*ax zw4}d)g?S;VkY}1X;XM8|`?m6n+QrxG`7E{&dIWD$|Tg%p6gl z@u@=THojbltL!{c?^|WX(}*tb22q6kQD3tL4E*4k%p^upmHo@^Wu5{WL}c~}!2*U= z=9E5Gn9jqLh=}Y!bt68C;sY1=g{~zPh-Xe@i0XeKi+F-V}7BiMSM~((QNA{S6#KiyQn63Uz9hv6ohr2 z0A~u5n^x)K2}>xSyXp1Bv_xNlO&HdnZWIdtyR)(ZjDb-Z=qJ zU9jDxr|^)>+Z9DO1W+`Jog)oVgFd0efCfQk2TLC-Aq=#WrVGNG~Mp zcSTsuiGr{o8U5|k*v2VZM%51dF91V*o^N;!-u1KC+xa73*hSpiaYhsql|BI!fpc=X z?my@jYMEL1MeK*H-bCFIml@qrZL29H0w* zB$PZ>C0BDUZ}F=g%OCkB_BM8%hOSp6V->%6!EVDg2Up^PvpyAiBP_}O6HOfE_jCk8J{uZkwPC>`VDf3n9UEfocH zQJPGE;GzWi?@oN`#n|3_;ApsB*kZB#=QZp@(h?V{;_i8sT&R$n7JHvS#FgqBQXuq< zofieD^h--KFWGercGV;(p+*-^HT^kJE>eFI0C-?4deppj{A{1NG=5=PT6UOw5-c&7 z^XoGY0V9Gf)0!lWM!iWGV?`Ykko-Bl*om=i&G%`^`LoEN!O6v!Ey$c33UADaZPZo{{B zpCC=q93D{Ycp(Hk&`v)La{-S;v-?R;wA1&%OaMv7RvyRPxu&FO6#Is>LoVVas8gpr4 zE%yk6krK&8Me=z+$!I;P3ZV5Q`bc#jtmgo$hoBUVW>4`8jb_iu6&TI!QSL`V#@vrr z-Vo;0cNg(Z%j^j5eHzk(4@A2+vhjp{{$Mw6v@Z1xqvRh!JU!OEk6o*wYYS}7pDYjh z&cVORxeq~zclKmyOP`2$H}-k>q#YVlV<=BeaE~Sq{w{$OZRtIHbAo$Z(ri&cZRrR~ zmN=w~J7kZLQnA=34G-@3AZdYi@F*!jL4H9LpjHis`L^P+c^AulJNq!OU3d6o^H^q1 zR?ggeq!!hCq3s^XNGS^DyOX6Zy}%3Ipi9qACfaRG0kqoK=0#qibj)q-zTZrmB3<(o z(p0$SeEeNCGL0!xlNwDSuK7IzhTpP^-4fH9f{N~n*Fbzy;~mZqC%Su^F;gU&SCCBO zS@EYG9^bPG`*bg0LfOxAd$Zvhq!5+vd~c6t5w4J3N_Qo@4;pL==^^GTMbDSg_JH2} z=()7or6=pS;gbJ?DLm)7xTNhX7qzLanXifBW7FJyEFvcUDiBFj@f!tlRPhq=3st;i zO2q*?hyw=f&!xNHD(@j3tLuJ>-9yHs6?C62^$}6>Vx=uZDOiRk2768eC3^Yv6sea_ z;9sSeA@F-2pCa|r)yUn>r? zr^H&3l`G480VJ484?~0-N8| z(%q4fQelaVx`%Pdk2n+-9}(x9(^03bFHQm*K<03xSkWy^XZw8bD`|6F9l>&_VeNw zD*Ji9ubsO=i1Wi8+PjaI*YMb>iQ&9g2ls=_mn1Sd?0+-)*y^Rymr^%b4iY5eF4_zKR*$uYJ09q%-Z<>NCvtyyMp$Jjsn zHw)}0--j(vzBgu?v=X;=akuhW2{KG!CF;Uez#tYkqzBMPXI_+8_Y zJ5DnLiOgfuMFEOi3_mvz#BKdFDQ+7{OI-Z$93yh!Z0oQHd1Bz!X++${iXMJVLUCIy z#-Gf`yThBZ6$Bv4+)`1g_HL$6L*0PI70PniMA8;lIQ(iG8I5n^1?O;)d0X^AxqCA(UMjD+cYR6qB~q@TnfsAQbcqvB=# z+{aj==%dZ}fR6vnAiG?h6&2~$u+_?Oa)A3W)!)|vD` zYuQm0p!ohI#dpMXDZZmfOTV>*+b$zPi?#eto=)U9L39a}-@&4TlHY*@BFZnkt1qCX zwjCB{cAPHd7mhJQnZAZW2EfsF62AMSNz5|J@NR(tWq6PHg)+QndI%XdrY8@u$n`lt zB)A8L&q+M&hxCXa(j(;{O;LA!>O>6==l5RY=H;(kp84VGaK3SsTaUQ!9& zUikG9uQS@+D(PRMlq%w3N}}-N@YZdL=t8uSSMqZ&0St|dOw?eNA~qZAewH=Y#T=92 zwa2+LST-pYMtJ)T(Tv|Q&RsX4y-3m~H4{y#;u1vCE)-8acJSc^t5cD~iWS2Y=$u_?=&z=1ymS zl1hYjNkTKL&k(*ZLOZx_aF&3E=ie!`LUE2G1scLRj?@`i9Ko7SGLzstyyDz$lNp#= zL`Y>%3~MJKVY-h(!lN5+6Iw9g^@ifx)0%JSZc@=flSwqhXJdqx!)9<3o`14keQT9kOncfkGU_06tkLRrAug`Yp$-QE!Vt%mK4iS&%p9Km3dpnJfBx5VLU8VXeUQ@v`xKR)qm`d5evU2Jq|!?xy_85_g2L zho@a~%SUAH6dXYY?-9R*(3i}pyyJwA$Q(F-g7NkX-Csvi=v>?~D$QTy&M?@E8mlBl zTq&A$X1xgEOj?#r*$n{ zfq}Ee7j`FPnkQ%AGy6QX+O=`!moxaq)^RQQ=r}&aQXo8*pi6gS!D69gJZ(#V|!OA?(r&*gNSw!{#Y# zGivf9dlJ$@p&PK?J*6UaDrw4fN zo7|%qK@&Ux)$rk&yx{q`whfPT_sP2TcSDiyEL=OQPu;MuW*U6gtUl@N8$zhCJ9wAS z{Bou^qujN!K2rr+KlfE@VqOR?msH_Uvp`kaZ?iksFk@%QQ_b*KpK6Bhc|`EX*PZUp z@4eN%#%wc-m#uLcuy(VwhJ#(1Xu!Gq+eKh=VNs%)J4?hgEkS*{ZgWqp#0450KM*B9 zVi=Y=OC4Q?A3l4IGa5fc6i{EbInTKZ^6gD#$&<@7-gM{j`?&jlHkEXh^YqO^78l$d zHq}&jyi(Lq3`)Hr1YE&m?NOpk9c!;82aU(tL(Ge}CJ?S461qeDOFSgByBsazA)%cD zSZ?waAy9Nk6fmz)1gel_25!$V%@@_|!(W*F34G4{nh|`<9`{M}Jk&f9*MNOZ$i_MU zj~qVE`A>AtyYjuA;U(Q0&%h%@2Of1-a^bs0e!}uo{^*@xuskrWXtH_QgCJ&r3QxM91P+O>R30BcA)++- zUUz~4&*5j?2ls-y5!A@DE~2N>lL50)PpZKha24O&cYwu5C#Rn%&~TI7}>L>w){6UZZVrrdZD6JnOQ}CECI~=?$J&Wr7@4VV+;`eI{V#i z*&PHmGV3`uhgaTyQ)4?p; zjDs<5F3msajy59S)*aMRc4UzY-p@;kX&Uz7Z1CJK$24IlbR+GA8UG@K`*gPO!CIN% z5*^&+G_CDD6l|H^p3M(zcG?CaEW2W-@s&@w+ptRn1T`Ht$(&^DJtbU{)}wJTy!0ojqCVzAeyc-M8P#0k{9HX~hh4V!)xl6Xc?XJm}Z0?g__MRgbt`QoEn2RPHPmzZ}?HxWx zo+2OktowcDCEb9(>P6%!&_o<1UmRR3j*>$rdG*Wg`uyDkN%3r5U<-ZnS{^5drE=3@ zcPex_c-U?8<9Azi*v`N%5~T#%fY+JXB97f3*g^r#JnSA90Iv;uF0f$`^=}5(mZSbe zV2l3?_1^||q14yobAIa;&wdYVp@51r@Ill^7inoJ&-lgK+-W3HMUo_mrFQhP9kVJnA&&8Zf;5rAWt)Mm3)H znLFFq&i8)oo}8d5QfE)k72%6+7sK1g;L$Oxa?dWy|Q87JEE*`^&wC{=MEVBI$TvhQfl52d-51e;D7xp9YxGcJF zGB5ecox?5>gh=ntir$}fg`&6UYjA*4z5`MtzJV7)qvvV)LcxxJuZCZW?I06H?s=HE z0m*Lut$Q{hHd?AGpa~*YRa^|@?a2SSUxqu}7k_Xk@s8gCgRdrN1;IuKUUUf*v4bvG z^w!zgB%HVU-hF3S!90U^9oFP(Hdr^3nSz0o<}rSnYh82~6Pnd?T^;5j&E+fFKn2yt z-aokSH&zIu$Fem9CDOY}(z{BRD|&zU(Y?joK9BFY*VC4lT=H8CZvWwKDTC!Z{S+Sj z**%XC5-Yj7svL!?Vp$-Cr312@)&_fB(;&=hp7FAz?PXoAXp6L*MaC(f`5R39C%RTL z@ng!w^L`RvXzh$6B&r9@UM@$XsyL!agykxWU*ORm(p_1^4~sAhv;9w3MES~>i+G{q zfJG^0R zMv!GfC4$`Z)iQDNFZY13uvYL-ZFSoP!pJkT=S!=btt%8yt!mCKJa&v(i$74qVf@~l zMwu*6x01Z=J6|i6F`OR=ce1OArJ4Vg+h|^GuePe{2{Aw?^osCCRb)X0$f$VFm^l_t ztl`{jE}lE+P^r$0hDeq$ASlXbEniMDIeP%P(;%dj?p7 z2v!w~D8bK!J?~>PE)6egnox4h!;09$xL(*tw%ok2t9!uyW%uF3Y1 zL4>jZiIStc7Wf>+WT$;t*wgS&Z2_JSgpp?+QVcw#D-;9suXw_Fewwqo;-DNm1?Be$!gWQ))R`%uPBA1Hcb7^O2pt&?lTh9&U;x8PEigtSbHpA{qU|+=YtM zXasr@v}m!qFO=%kT~{cY{YIeLD5&E{=aprkf5=B?__d1vnCYW>s-Nm0?XM%L21J5t z;?$~&uKZv#C)f1x8MS}?LaF^FnkuPT8x^@5b%i2VYyaMbsQv6t-9}2rnrt7j5BrG? z(*IORET9P@R#jXdK&;aL_Xr|n>M=#-FdIj@;`=%~c-)HYA`Osrfhc`Gi@aY> zB5Yr>OJtlNa&OFUuF)~w>Mii&k%B(r7al3-vq&Dr!rg3q2lvhy@*Ui$4$jUH*|zUG zIM1^QWF#`>wS92M0lLtKzbcpcAlWuoB>ijgR;vei_@AAe3^rGzAgQ*oy3~i*TeOH9 zpTUW#x36{JA=mU z@OH8@ggqNvdA7jJg-T;M$am_n@I<(Ih`)2=KcDf&LUPPxG~-uOuQD4 zN<}8>+8I2~OouFeFXt_@?X|qHwVlq|>uPCSviZ3|j!Z_F-LA#`_pkWsK2Aq7>stAA z%pHB52y>6JR7Y}>ro*e6bNf0?*_dEh@U*QT)>I#?P5t1bHUJCXbP=$?w>?_y41w3b z&JA`F0}0M5OKeiE#NrqGJIR5?c;v!=1j5)XDY`Y7qFV?>yRMZB=vO>{sxv9&vR?|+ zNejw3gKy3;97c+ST=n6Z*Mx<`Q)MvBEWXJsh%;Tlc6g<}w0*wgG1#jFzYrez0{@F@ zYF^Z}YHE(0ONUL3!nj=X6X4Qwt~7R5Hj1!_x9#w@; z1R+ZU5Fty0ODsNQh;vP3KryoPuhY@t{NF>IF=p&y-r*W&42xf^WfSa}I?EEhnE1^} zi*X;t_zF&pI^&WwXVpPFf`(Tc=8R{wK=bu*AYbv_`gmD}XKjsZmkK{c2LgM$Nik<)Y^q6_Ah z#q#jYR$YyAW^SS&cl$u1HULOGD@Q=0O0Y=;2o6R(?`jqT1>(|b{$e`*QS9B|);RRH zMQOm$9~kd=tNjOx`Kg{x9d@2{!@++}DgD7mX_E;~eKM6QVRx2vo-x76VYI+MmF8(h z^4pSRD2LJdQ_7GIU}$>6U}b=on42aiD{mupCA<%R!_ zbCqtK28PrezeHT6n?gF&maa-bhq-MNTzu>dr!OlaAuAts3*-^YcEcLD1SRMW-6npaJ9OKUirk@XMb2{}+@ag%I#08MWK4SV z@ey6>!(Z}J<&O%YKa@Jx@$fMjaS=Q^KPHxc(=0BZ9npA*QxpQb_wW*NjC>{gko15# zfOoe(9M;TOB5(g4!@uhGUjqWl)TBm)| zVNpu`lm`h-xIctP2Wp8f#CbrE<@Dmpdn}THE#smht836R@EBI<@g+`*!GB*#T>}5s zd-_tf^QbU~8B68fd)QL7_il?mI9lHwkfr>=?ET5@7Ml+2$Tz+p7_)MR@O0{_Y-U4%>_xKflIFN>CZAR)wTH!$hVaO`Bn6ym#h`srNO-`H29kiOu!8GBdB=WJn z6~SRC|pLx>6|bak96+Iz~p+qD40L}G=Lf080cQkcIXljCBqX@ zB2e2dN>L*~0N|aFHoX5<=Rxy{WztMNMLG#HWjsdsa%36a$bgBHR%$=+Nm!}Zw{uXi}BS)Jv6S&{6Cy%-abp!upyQQ~qwH@;2=55L`6$1;Qa2xq5!pXSSX z**ow$F7!1%apjb6;9f4QR!*G&+SIfV3i!oEo&>bH@Ve^JUC#C92!JdO*N!5D;A%2# zIa#kJFGnZQ?7a*PY=T$ARG&8;!jJ87ir5eW2JLIPhWSWoTV-E&Nc$R^Y-wMKp8Cw2 zFg4n~ZW1`rzHS!3(7tY7E-%6m`zpj-T!cBo-FG@YEv!+R?Gxa~LD0oTn8#@OQ<8-T>uFLxuZ3EA`!I}0PaYhCY z;EWIfJZ66G7k&{sSN|0j4eTUdQ>iHi2wiUEn^&2=c$@p2jL2hxNF4L)%XwV$_yKuu zkrL5a+*X-hc^4FJt2E+gzo}h~FVE^1V;tqZ?swh}JG0#2hcX*wM4hA9xbgnHx_p1j zek~%;lX5{Yqb9AiNe!T z3`qi2B|<`Q#Cr-<_64UoAN{a1p%N1cUj$FQHE%b&b=PT|Z~C=%EbsJ)6CD+RiN`&i zF_Q0Q6XSVG+w|D*t={AnusgJ}zB{O0YTJJEj2laf_B(|}{mv_3SY5^ca>f6;i~sc$ z|LZOO*H`?n{|bKTo7%nNH3!r&ge<pw?h3xSalD)Ft&`-bDM$l3KOyD3>`A8$ z+by7?oWp6}K^}QA>vmlzexaxrRY}yF^W)#1h$#KyDai4$gBmBF^Pb3P53k$2 z@Ql-zJx?kxI-Yj?c*c^Z@D&>z5?;)Xj);ykUgHN3Io|k(MQapRC6fnv^JkrI!6-JG zXMhj&YiF@@1bo>aj?7ZQhXew_o8Q1$k`oCl6UxH}I3L8N1t7>d>ExBCYJG>`SA~(#;hf20-T#{W~`LU9?nN6KKDguQ&omx zHdx8`zU0gZphd7YX`sMN{ZTRq9+&O0O1Ho4d}FYYghCty?)KJx#VO)lPsBOKB!2a4 zAYoHTGrtI!6Xt)38U41@j z&4>R`(+S%E%*QW!-w=p-vbl~T-6~jEmv8z#I^Gz--+j{=RJ%M{0EHQ6I#$7?9ibqgbzU6_HctI^mr3@*-%IbIr@&m`6PGR2x#&gvh)aK*APl;oY>18gE9IrG;y1fg<{2ZuIx#{AFMQ9Llt&7L^+0o2g?HTmlecum`_2x-bghziy5O(A z({nGq-oC%np^HnFG!8%9oM7{Uod%*@P}J!|@|T z0aetNg3w&E#VWkPQkw9wGsR%DNH?+M;GwVhsNlX{e_y=p)lB?TUG@TY;l+n|QKl|? zMT_6^8zxqW3G+s+k{2JsKXGmhw1Rl?;iFHS+ajOTl&#>#-sBwiye{DfKX=rt`cDG8 z#ka!`>RP{G+*SE?5}BNO&RNgi(||eXqWX4t2z1`ERr1^6y+3tYv$Mh7@Y~@byKVo> z*~5Mz?O}973`pt=CW;+a^Sf32XoF;n$7W`9W6{N01Vu|TqF81)MXMDlsr>F)(fwG1 z;8y9ya=*D zX&>wT6o#Xp;W#0`OisG-oRdzv`7k_M`!u{2o%xm1GFfzyr|*jde(_J=>HANi9ehJJ zxlA;nLcL!UNSA2^Pg~?_A-_w$kPHAqTb(dp#781P#P@ z)d2VaNAIkoy17qhy^j@dpOKKr(|>e^f-AV>M`si}qnn{$jHD5$DwhBE|AzY5PfkDM zCw}E8=jzB`G}ILw6HpIl)M>*m>tcxv6Hw5Y7mX-_Z^M#m5aB#RhB~AB!~Z7Zw_luh zS)J8>(bc1h*Su0oIDBu*^yF5+Dm=hLCQ0!(V3OdDNpJa0`Yyp3F%i~DlwxEA_6tue zbp74g!bS!*&V$6@!7xt}8%oMiwTc^zuEkgW;iN$}e(xWUlPMxCgnAh>#SrKcxpZ|1 z6^k60kw&Oj;9S`U*C8N+#2%PM=;<1EctGU_k{o|1R8f4Wp%c zU_ax)jC_8!x+fRhagZkU5?!a&GS}H&mWhw4M^WK7wim^vmbzspQ+{P z$-KH)>pOhIU{!=?2qS&OfCCo z%W;}oAH(s&HVCVTTg?4yc#$Drw&$eoKAN6YL8OSVlzX%AdOq!vXM~E;R7WW0wOP4KaTME{l)x zv9)@pF`mNSP>WxRa7Zo208k-f014LOsUw>XWi3e~3`H{5O4wZkD^!pHwFo1&$Z&Rc^GYTf7V*OwDbeg(4Yd^F zljdgB6p@T~e#sr>lmaSd4Y>$Om!vF!Ri?B7D`(%rLTwi%4{LmQlYSpdR;sUsu= zm&}#%7dm+MZjXaB9{jk((g_A(U(9CL%XD%Esqh;ZqY2;F6CP8*)J(hUrG5EQ;FPf) zNBg3QP)>Y0z!dg{A`|u{zFf-`0be~L3hCwKzUtT(<&Sa&F0aMhAOBZp&(g5b*Bd-% zZcK-$v6^h)x$VhwSAR$TJcpVu)Qk+FO3Ij)9 zA85f-%o_<7oG*+C)`?PVcM9b5VDi+`7jiw(5ReA8&NKI3FHbP<)fFq`3FbLHJUhdl zgF)iwPF~RUB8k$P$Bu}|G!BuudHs6%-4il55O?EuPoBCSx7T@OZ%+h#loI{b@vDv2 zVP^sSzIEaC*r$QuC&M@3^{jt;J-VxbfG_@>o^1kPJmIVW!vr_R=a0p(@F8(BEH2#E zNK&vuK4kak%9sb?bM5PZVPxwDL)0WKEb3Gu=`NDxuF^UEJ@B366x|y{VD*}qNvwe` z!r3=d*70R|o*RPNqPXO(kLk+V1$77mpfWv8prgPLvecbUN>=_b@UeHH1j*CVJ7J39 zv^1Zy9g+`;1)e|HM1l%rCeIkhiv~exIF6L#B<*S3sTO~6kS7C90bd;CX~mY178qA7 zTt|GG>(+^hiVK*itGr8U@+*Tp4zKpdjJO2NQRRP+TPJ6V;>MXG1#+hNySK$W#dZ-2 zP~OGK1;P<^{gU*?iQ=A^=x5kN|D&_ISx7qzcABHt$s5v&m8IdsJ@pOtb|ADo<8@?X zC!tRJP(C^4)ck+^dDWXb;Yv0jU^m?NV)e34pNPwtrq;4US-g1W8kN14XdXmm4f

D)6D$!a)lT~YH?_JWN4$s(Bzg6 zBYX>9Ak@XGp6g{QPYa}~pmgEnzY;L{%}Ym2^1NrV^@J3mL*{ksr6s*iSE$)PHr4a5 zus!S5?C;a{{@Ksc!!RFOU*Xj6SdUZBb`TKKn4U;)X}+{xzH0jlsYNCo)zFQ1asDF- ze_%V|N@8mhVCRfZOEh-yi!(f3j4yfCOiw!dDj3!m1lErTD}dLK9%(K>;rq7b$n5%p zE7N2f@R8f74FOUL3rdSQS$yA;fIO4E0eKNfE`F~VaLhfBni#+eEwV5dX#UAuNRcH4 z%KVSM7<0&A9SJp|WLDjeB;AF~TBSG6^Zd(<>Z5!6Jb=BgZRo%Xbh-2Z`ta06o)L_+ z4>suP&^Sf(-6GFT=8O%zu#fE#e+#+XZ#v3|Be z1l8&bo>azRC56uf!98Udf_h>89Rdxpi)$aoo00?giR))J$mG;@asVPZMIC7|b@0KY zZm|&-_2mim_|AONMkv8!V#(qc9urI6D39UZCc;U)+&HgTUT!>9>^YoAgHr{rD&O3I zyu}RoC~}#H&tBtshqV=CC|3vUgNkum=~91;TZQj@Xq+q7dRDVM4V?tKeK$fT*3*TJ z4y+wwLIuWUJvWL-SRMHfL7}(DM*p7G3}1*w+KDMjH=6^r5Fy$cffYlv8+eNio;k@q zL;(%aGBsT*__?iccoI@2pR+BxSopGCd6$izOx|@#f@9tR^oWx&yGaw^@&9A(yW^uQ zn#X;fK!9w31jqromIM+?0wh!g5ke6V37~nc2tmPeNVkCK3$dXPAP8g;lqS6f5l@g3 zR6u${N2OVL^;JQ!@Cx#qnSJhd?sDhv^G*0C_hie=?9A+Jo1L}xO6EW=hM3vrtX4zz zoea;IOu}+}A=3;KI1O(=9bCw8q|mA?N2!w27*6n(>15;N161l$z%bIv16Y`}@*sYZ zRvuJZY2#YytJmyxS+ddA&Bo8`e0gx}K<^-Y?uYq>ALbVdrqD3wqEHg$#HsPU6ejER z&j)QaoED=qiI_eKr?ER_W3d^O_G=1i0@<80q+Z+zn3}t1$nk{QaxjbckYb% zzJ_Qt34jpoNpgLPJxjLVmr<5QI`}TOn(_JlwdKB9@iolkNhO|FOgOErEEvLnsW$x^FdmuTh?aJ4n zW~tK91bC6S4Rdicl#NT$6yg`@V;dr}dBMV4DjRLQ3*U^t-G~5)Byic}ShGo$u@?B* zeT9B@-Q|eGRd12w7r@jvU+(x5{2g+}trETbfb)HT^Cpyie-0%gi{6g^qzrqp1M4{& z%i`tn*|O+p)kt}|d$r0{XK?bAOWE@I@tF}Tp`GYy8O;kQKeBXt)0BuJ$k&cKA89Dq z@+@=PBz4*lzc9Wmrwt(}4J3r(?{d;CndO}?J8KDP;h}ix9q>+kbHn@&l=pwN9>rh3 z&yKg>lK4!+tU8%ONr~!{ef=z7l3ojNEe0!E^Q&OJt~(j^IzxW4EPj1CM3-k)nk@UT zh|ds}80rka!lz*>H_;U)t0Mtpvf597a%KE+(UH|X-`bv4^DN4bS8K1T84!eS6HK2v zo(A8ezkwgIwKI_)w7LEDB(=GH4rJ}$+zufV&)G?8bNk?$_}zjPkPFtvUyXiE69WLz z7bjn*$c%yZY1()l@%QNrBw-Osz-H`+AgKS}{?MSNakne4Xe@pCPHK6Y_k_rFrng-$m zp7u0%Oja+9&5NzyTbvIri4hsh)05S%_|L()wBruBw7q;SD7WCAo}H1acOr^QDRAp- zxEE&swmhxSL=2&*k*84956#jOI^HxJ~p7E=pLs zSy=85&ZUMxZr}T2DC_;mmVv4rJcN9~DGl`Jr z6&!HY2L@Ts0)-JHIVD95v-gPcYy=K#r=+jcmOQH_p_e9^vNbyPX%{T;VR1!AIC?UMS1FO zimip!BEPQJ$9Qce!Fi|@i)UrLpwdR z%F6m|k>{G%yDNTqMKgMeb;aA?CTqgNE2;TZ&iJfGrfZ6fnOnP&NSLBUOGBw+iW*9r zwn{6{P|DgE9Y_McX24SbKTdzjJCu51C_Q7EU8kr~6n-h5ef7;FqvW@rCbR*J7mvR`!tBM!!%vdd*;_D`>uimwN@uH2RXW@3#gr}LPFDBE zFuI3ELk{2l6sJ30X&xo3j7)+ZmH)vksIVtQ!YNwX&?%qG>mMaYj0ni+eImhbj4t>g zzL|KM5lA{dG916hhvfIw)4*>Z%2=82O^z+Ujt}**9zH^_etIzLJr++Mvsi!bKKB=5 zF{^uHSiexC;j9Orswi*XrT8?%*e5sr5}z&(Fx14i&oLNPTiz;NKf8jK(h%h=QL zedUP$_8PL!<#KBCP9IC*BLqwT6U@?&thR0^mcqTXmy)`gS9GGq0I-|tvVqYRJ3d@2 z*pmet7gN;Q<~A67eQTTAAqGiLdoX73v`j}MO-}nWzJX{uO%sR1H@FDoRsh360b5!G zn>G$ny(z;}01^$vKbCWO)2FsQUwPF1^uPGu4D+sOYDk7(9Fo23uEjSqj4|@;-|>wT zp3@ER&1tg8O3aG93B&rzzDdTt#xvL|<#k(nt^4w{aKmu^-|;PE@hR9IT3g*-=GhFi zXSO+Nnmjwokt{}OdU1wrT{0=aRBqdbBf+=Ia~mQe%_pZR`!>$B7mAgvK6SE(YS_y> zCL?9w;Oj>P-pRS~ApN2rBchBayfGE+FBug|0HeJ04Ghmm7;fxka02!ZY&{){t*J*L zzCT&71rNgrolx0cmIqj9B22{Zlg+Bwn}~gkGR@VWF_m-mQ{7Z^=QNo)&hegz$k#pK zhA`B;2^KlFxJ+ZGW~TWB=rBI@L#FGeXnT@Tp)nwq9s9c)iZn(7S+9oqVTRz=`5{!5 zcv@7|-byCC3fHM}uEI5~b=AwK6=wZ>S(NKY5cL^te$LkHj;WlpiK@+}D_`kqjI-VY zq93b!V_18?Mnm@S3Gca@_OV99OZl+h-uCAfDf{ND( z!b8B18X%0`sQK27w4SQh;`3v+5cb=1$27J7<#5=~1*|V&|La!S*=c`DTw^rhwo%p< zo!~RWd8f-i4m>BfN4o4Xp<>EYB4)bosA{k0WMrxt4UrS^Egcuj#Z5TOnBL2NM?}-< zwDX%R(pd>m4a@B+O~y8}w<|p;w4F}J<$}!<v zD=cB;Q+9a1<;$d715$zJEE|L7Qw}7zZv{sm+X@6hhi5DCiw@6LPFImX=mdg}bhmoX zH?-ew1nva%`P0!sp1ZfCg)B@-ttdz2!J*>G#`clo6HXRtXOT|u5s>#q`LxrUo@TFX zh!Ywzo+PLjddwr1Qhvj7Nhu+Nl=3&9QvSh8Xr%;ikdR7gyb(qz5iTm_5eANwvhEv7 zDeZ6Q&ZCqPH_~dq5oVl8ej|)t0wU5&j!5fe2tIob11}slhwRqe-cxjCWDr9#-;nFG z!T&y=o~_QoQUr~7+H7%HfDYzB?D_A}cV8|9s??5)i4Z>TQO z%;u_PPIyCgiNnZA-X*p&*1{g98zP&h7K@3D0yNIfEy49()+OL5bet{I#vu8$5xGR& zVIG#I?l2#}s5{JmgSvx_bqCy}qcguPP;Z-Kpj>jZ{X*3MV=k*7PHK-U{@diw&!jY! zo!izM4?wOS8vgxh%*TsH~f_0HkEzy3)a!Df~gSyD~ zZ&-HwzpRA6iLMJE?jj)=?%55zz%H^Y)81FKWmFJDTF+2jq&v&dT?BHei`>I7mob@o zOa74TSegD}%7@~4MiF(H^}&_L>JnC$Vc>jfid>^EGXqOgmzjxQ)MaMQ2;XJaLp|&= zt-IU5=hGW+Y7cueL#)-vRTo*Q6MVSyzAWG1Az|$@9Jh?V7dtd`);qRZQa!|SNvd0A zelL5^h_f@S&T*a<(4FISIHmnzMwkHv5K`yZ%HYv)Ob)t3M$A<1kQHYJ^$L8B&{!;E@3jwwv2Xmn_IBpmGgWW?{9b#!Id7)w&0A0jcyC_Dv_hZX z!KPmiIsZQU46%ea3r0c5(qIUSSPB13u{KNfbuAB6m6=H?w~H;T3fQ|YlFqO~R`KqC zz+T5N_s+yKEQg%XJE2uv$b$0De)b+V)*L@tU=LZ7^N5wK$(Q&=*5u2X;jPJ1sE5{M z%|rJ8a%+Ol0-9L1K4}acQH^QRO&gH=z`+cI?EZtLS6p5OpMiB?g z(4z?C(kRlHHhYNNLq_@ zmobAt2Ybv?YF7o}bG5sy`Gl*G2W%|C$2i1=f{VK!Ym?v}z%LTq1G4X6dx~HaCkg9_ zC*%)zD<(rr`Af8>8~xSBhQVr z-!6pClNqDz-D+2bgr_|>RRa9&>%$*fWkwXpX`}3K2nI>*(T*5xFUuuo-!`R^wY+#S zDO%jbC;>zGyhvpUxj);pL_nr!L5;QyLSmB}O@cvq8pRb$(nXx&p6-i8aPsr+H>?t+tBNUQ?75C)U z0(B*T6OdkFPYs|55^BrMW9)4MQo(L?k@P6QEd}@}KqsIEJRCF4}rBnjmAg#MO*OU9!AHlux_492#az=q463 zfUwcgL!QfN8VQurD+c+RVk0UxGeDxyyeu12QlG`Zo&grIm+e=COjhbLevy^BTu^Ge z1I^Uq^3n13^QFzy)Cu-UqN;@2)>?(kR27}zLz;KyMvN)6PrqQYy|V1nq)|;d>qYxB zqP|APELMWdec67e>5$6eTs&UCrtI*IqocSrWO49>wTe?1r4SA9*rnf|+#$bs#oio@ z3SAv$g_WOD1wiT>X>8iIJdBvhws@qP=nTtDvB@eE?d=?P%;Ux-l9A~%E;VHSMEjxW zQ928}2hAjKh??D?N5ljP^VPu-i30A;`^7;W4JXFNzp;hkPMz{3tsgyD)6znjTaefU z0-!@Jb+N)61(!bt)$AyXCY9^>X}I)Bv0C(SO)8j448M11vi%uDtkdaIIb!*vWN(6I zQk3iuSs7~P#d$T;4eviSb0-J}o~VxwXlLKj((VF|E{z-s#{=R8GV;-+$7}``+!c7Gy%N};<#dLx-6aHBPXx8 zoQ4VkTz1u>d^9+M~)9BASVtrzDnX^9eUhxX6re?+Hs+v1nd9}Vk zzt+{6FaT-3+hex2La@SmbFRG&Jb+L#*FMrQ3^8zP)03ejYm?u6Moqb3QPTZlEz6>F zvtIvAF7p{L@upAJgjQk|14~nnk68i^v(ZJEK*KDsXk@j7mEt5Tf^!e^C}i9fZ;w8z zGsq$)%A#p04@O*^4gLkk9!V0v=zMfaZVAWeqng8o_0Us~tFzGPOwTz=KtA{oQPFHQ>DUU2;J-rG>PnqbGR>U?_?@k9~7^%!bIk)oJ@KuYQ*f6LB;|(Yz3@+7O~>~ zk;$AFj@H#7XdUTrCONjCXt=eW!vL48w6_pEL9<+1t-y=FsueV8;<`waCe|H%W&!&t zS*foO6~$@2<69kG`f!wyadeIRMX+Iqk1qLo(q40i3dB zU17zc7-~Y^-Wy@5avp2+sDLnBe$+UFvxPwCsXIqms^UF~J4HIHK}IU(>YZtDOO!nC z8_tpIlbsKX?!kq~MZAkH1#a#4i=2?9`sq@%W-KgjFhGn6F1jFZC}O3sIj;t1(t`4- zIVyf;&edqQm>FDzeBYr6`Mv|$5TCv5;I0&ZV|MF8J}c7k>xm7QHc)V_A4K@mW!Ou9m4DMrzJg z%t{WrF~tEK_&c@m?4WKShJ*tcC&c=$qIXPJBu2`kJ`TAV7>}6mF2l znYrvObKYHX3*WlW!?tdZ)jGgStz&qpbs{LC zw)}gIDFwU_b*c5SUGg- z7g6hjYy_N&!gR&oc#+3I(weF$F&lP5ur2g5*qC{oZg`89l_!$-bCPohJ6A@0I}h%s zJeJl#TwrB2xnGAN_ZK2Jz&cO;&7Q&xPpaC)Imf^j|7O2U@B}Rp*aP#oV!v($Evxt( zi<@^}2!d}& zchCtw%z4Mlxq1T6q7m}Y6?;WFVSS^z^7^=XuZw#$9_>H@zON&$!s*!{mZ^53=A(B} zoFun~r{=5S_8C@6E$7i(gpx*%v!ho8*95`zKNNjAGb9D(|0~9oWpE8UoTMno<)UM?Dge{It?qD-_KWTm1c2C z)r=n?Hn*deqc2j;S1Y&jX26+n982)&nWwMpQ^C>K_7|2V1;2`4q~KS>DfoRA9mh*6 z_|uV&!6I%!kZ#B71Ru`4ljYa#r)2d{T@HC}taGSns8MLOHtR1?=k%>vF6lL7kX|p? z1)D6lFHp1e?yMB4SJ9Hko5RLXXuZB`0Zq~a1Wwyj02_C1Z6R9iskcChHhO^;ty+85 zm-&&7%F!oKJ?oQs7?wlCrr z$@awsVT{*f)f^{F%l6gkj>pAZhLjG{q)zZ5%{x_2*^;|gLUmwAu_rlR33#o>!vwt2 z67Uw5O9F-rE#Uo@fDf`#+J5W}C*hOfBn-ew!Xeu3Sz$@|jX(*Hi*qzLf4Ah?VWKnE z{KJy#3M7ilbtb10<;oI#EJidW*Gdb0a;=PCB-hFdNv_e%k0VbSPdIzoSYQD^BnWar zA(Z0$kZgWPHU)`!gn)n8YI~w=QU~k>!B=CLh6X!@5JJgVYz5R=Yz5RA??#{w_~VbD zgefe766Sd*d?nBZcB9B z70r>ca6&5=lK-Xk?$>Hf5s@lK^oUG0moHR-5Pp8rDC5<^7X#5#5Ft*GC6K%mWp91o z9uBV@G1D38eJI&s8fM8tb=MMpbr7M(4IFKZ3V%Q=<&IG$P36TWYgH0gSfh8$aI~B; z;g4qKZwuAnk{29LC}I&hUS!DE8abAg;gUFzxmZqc8kNmU3spR!OAP(_{*J7gwne}W zZgzfJsIG_quuxq|bEG+56pgVIDZO8-l56fkSiEY3MgFRIp~}1fT)|L6z!eH5ba0`% zZo3ym?7MDj3n3ZLo`uRguyHfTR>2C$_4^&S%BJa#52HtEiU2Cc6M9akpgLunqkwsM zbUI9DAjQ}j^LCd@_EY8j+hJ77>7GlV=ohOtU!w01ly_66tfUZl3qPq7R%2}jf;4{(|Ztpr+5yAqw9Lv1P z2^~Z$R)`Q}yrWvsnPq4MkgFpF^<_l}0pxN7z1xF7jfWK?IEBx8(hS(x-U5z(;~(#x zAjYr~M8cyAjJXP01JU_yAqBKZdE5N3!r5Hr9CTEX{Vq7F#CYZdYjvccJmrDI07&S6 zN#+y42|RsR5a()y1~fYP@ircc-;ec`6V4JO3;*>+44My>a4t9%i|`&e1QUGyw3;(r z1q)iqnq};EB*9Zojwd4Cdk3Nq_DO0S#d1M+2b=G{6UG`9y+c!7B8T?*=P$xIK?SE0 z%5u&D#)*4eOW5{lmea!L#s{fc~>|!-i!7l~s zNw{!-lsBfABg&}IW-*LZ6pQB;`0}ZdZ;&!t$;<&T6yYnCHA)Rsou$#+(LylQkR5tE zo-fas6_K&n3Ty%&esXZos_`#O;EK`|Y3pRBE|vrPI+_~uqdzk2*Z*$!%{m zETf*NvD6r>k>M!UaItsC-H!VVb1JYF!|~)Zw0`d8{S)`*l;&RhdmQ7+#l6>j+=Gum z?yU~y9*pV8y%#O+{VoSyP8lJ#vwAm>ds{Rz#XWVyzxRem;Vx=MRz(#Yrq6?pugz~3 zOXG+5rs6wBiJzfg{S!kkm1b!Fha9=(V(3{PL*XNkp%F`h)bR_|##4*c6pF&U*sze# zG~+mYLzL01xkSym02j@<8iEo+#02lWhaL5e3he=@idWQuq4)97Y_}wgrSGwX0wz>t z{dtiUC#pCb!;2O+w99q(l-1y>jug>miPgd3!_OO2juxn`AM{T`w!8yRxsWQPjV0likz8%|&c>FwESC^GA&f0R-!yy;&%gc0@t z0*VG>E?T1AVp|+UhFZxiSb{@Crt|tg4{PB}eL1eS(5T`ra74=qGm;v6M?C5H#V|iz zqAWlBQal)lsgZ1$KP^%3sa<4E@axBa!|BKWlzs%;`+MZUk&cwI^|Gmw2#%>@cNrJt znNf}uae>i9Y7xCONG-mx)Z$B^XPmoPK@-<>k${Ctb+i#Ll~q|eVNRL(f}@l1B~zrc zz*g*VQ=f6%W>n|~$W_#r9*hhhLoxW!3)UD~v(y-R_fi$5gm*gG@d7NYi+efh%L!jP zs>;Hehbzf#A~8ztpKv1@lqv6j&T)&#WW>@4I~Wsq2fR(Syq)Yg&aqL9W##qQaASD< z3}G_cEma21$KRNLJ0SYY0zj;yzbs-T`1uRRg5mkQIxK%LzET3O17HA{8^hH(a(gZu z;?H3u5?8lj0_Un!ZJoK4g?~BBYTanw9`fU(!NSMe=C3$XjEE~st!OZRF$(;w{o|il zTX9(k)lILE2oC?hok*4WZ5zbi7}lD%%seq}TgZ)-0L;_XG%)*nIY7!M{D^O;$o zp`r*a3>QelWokHuS`-uJEcWzH@T?B}STSLC7UVg)n>)a``}Z(H4H895)E-9k6gVJZ z1=Jo!qp6Ok#Arqm@Y#9>VYp89Z&w^C=XOQ2*^XK=!EK)?Ue(a8O*ae&^WrjfKr%Bh zHyblx|NM@K#mi{tE?F#PB~Ul$6)tlT6vI=$QZ}t{nK}>SHm#ty{bmA;$9^v|c(68Y zDhoHpIn7U(;n`oJ*voPO+hB87I7CO6m0FvskTB2!I(OrUKw+$qFd>-j$%VIj@!ZX` zEO2RF70x!V&T_Oie+Q5sKqw0e2J;7$!nJrVlFC)-Nk)4nuEi-h=-)imKMg!C9iyZF z(pj+c+r2i#g_#J(pC0{SdAM%?m%&D+i8xjPkkc+R5KjjJ?&Xj|2R#Y+MF#>2%hiFv zE2vj=b#EE$e!OpcOxou-j&ddS{%?+>h9TNwRjbcv1#PWU{R(=xoC?};u%nVp-K>N%a|l6p=FhiC5cFzN{nAob*kw0eeMwWs@X3VTuTj-#jekP!f5MYic(uI?-E z3CvIdcHqhpaq&c8W;UdsSnOylye$3yO9OS0^yQ_xNWoG^EAuyK74{H{4f8t`!XDBc z!Sf!{g5k@Z=(J+PTw|%eIlZ%aaNYmuQgAYY@nIM=pIRcXs5jJF0jQ}r#Nik9hPV~f z8{&9xfIR9&&1Ii$j)&#_D;(znH)i_vcHJiPA9A#kBbK;Z$RAcZUJ}g^WT{?~s#AUB zl;^OUrt~o@9W~^Fqe-VkCk@K9 zbT=WuXvS}2@Mw#1ff&@nSfLz6US*loOU}ggOq9vM!hih%f9b9>WPEFi1vmlR|NI!O0*vhLD6!?mNb(c zDm98UT`RGd-(tE~st(>BDdru#A!`B+fjag@%1Yg7{Jp$EFo1fxRPc~ko9FrZEdWqa zFxu;i)IabTlptW?oq*0EC5>sLXkkk)0>%F=@)brgh)9c3~D zMb?E7l~{<5uv|iPC>)~G|3^eUBYs6Ux3I|M0~?-W=TWy%e*+lMm9!{5k+T(~c>#b7bZromn)2zQrb<0UeI`5WGv$nvv z`+$ul_>>7zlQy?p<YE`(2WXV3qv0y#kBeJk&sS)xHo$AAySKftA{&3jz z8WGdTF8_Pb@tPQ{QAj$_8wkgx&%0Vjv2>Rm{7!S+Db76NB zN36zenFN{t7t*0paV^!-Z$_E&1rOXeCWaC~e0nZ@}hIcb>UrnChMrTax zBv^CQg0!ewH&IJV%h#hl{bb2GN0w~`BA`KWC4P|^S-Cod8M#!!@whyAKGdek4_`V8 z#K(+MJsfV=sXokkN6R@JPPpKxRxmrUl8WGQ`D@2y@tH!OZ`TrLp2K?%1 z5I_VO-Hi;R--?=p*O1W-E^b-g-J$A4K>Jjj4&G3-k2OniWZ)V(@HRLt8=!Wkk~KVE zhxX)v0*{Q%v@tF9=RuF5+ZjJ$J+d=D;}_YPpFyc+#wADd$+z0~dh`#+89rU{_Wl!g z!bO#}P_@*2rJ_#tp)IEm;Z#}lKgWFG(16)&yUtoQ+io0~n{7e{F6NE4a^Y1F->od4 zl$35L+zf?6PPT7f8)hkwU~#fthr!cZUj5g?yask;b676*^?rot7U!(aH{rt(5EQJ` zCa`C1>G?ffzyOrA`NdJ{32_L1dujtyAm;0=Va~o{5+eoFG~0Z2t=jyW9hhN7mxf#l z*0(e;Hyc96^)#L7;#HRZ|0M!V?Rn`4ulrdRb~`+wa2mk?_UKa9#uo$W(@W$N&ECJl($pQk#xLp)U#|_n7B$v- zb0eL%gb=L()u1RNAae599yJSW??}V#^@MAp&7=mtuL>r%%LB0Va zE@;8?Rh@0jK7b0fpntVAoBY12vz?yQWaWAUjFi&xj#=i>@JU%gZ7RUK4$f z1`R&7f7Bi)hUpY#Y-rXw1XF3&2`!`$HZKL0qaBp|MrM>b9!g*=oAJ5?O$)48Hgnfm zv25Pf`7|wnNH4%#E3j87Be8598i{Isu##_{s$$s~v#_2O+6$25?aV;r8720{rBZAv zqz$7|_PyPi1&=}!6?C0($T~HteO#`Oa}E;c7{w$A;>~GH_3?%R+WfUn-4wdU%A+wf zuKZIAD-~i31#6+~2vHJ@-*ofDB?gfwn1J)}pBTxf{Ul$i>+C0576NhBP^C%Ez*HZ} z{@^xd&q6tTg*{pHVwK2<_b3cATHITj<`E8OJ?CRcC!f%C)gWP~ZiK73U@63Svs0l8 zBa~67?vOqXQM@n`Ak$H`l%NOgSugQhHP!oi*`^{gvTD=ti>%tT!VrTzEhdJ$oyB~R zS9@!(COEH0FXvQ~6)V&!*gdk%<%Py=A(2Fp-t3eT-#E`*k`fhPq7u<5{x;3kUUmOGj{?=%4cg|4}ez> zO;Kt-V)+Din+3L*WoWRFOPfh&ST2Fx<_Am5zmS41q)`UO6r(v!FfP8}go}Z%I3neM z&l^-Sudi2w427rJ-`v^C@d?VD4>Ajx63|Mn_c-?(a&22DZmkfN85Qm5JG612B?}j-*`}A;`wd1~WVV?s^rCC{~qt&1xuK z17}L{n!?w#WmWyWrm0iw4N9q7>k<~TDUi)w8`Obmw$3JIn|(Hf8K3)aD5ceOV0z~U zieV$}WRUb??wJj0F*kmS%Lt$)ceW~Rj?8u&NmE4|1`0VZ zaUEs0+^AL{^)_;n9~938mqu#Evzl5tVX$*m#Pp3;B%2wmJP|rA9HDQAAavSq_GG7? zDOh1_CTo}rWyx>$_JXA-3-Ovo{*&8{!-we$rHb(7BUn`OC(}64YO8)pYlcL@a z(ytNV#%f%XiNl<&MfJeUZ1Wn3#~;4N{k|Gx6Im$|qVxT5hVgwGWSJumED6CY3Blry z={4P4JW8xsx5cF!kICtyoJrz| zz~)$^?BH<7M!#Qr8(4*m18g+Pa%_4(G=yk9S2wCnv2Q>>gEz(ge#+U*ob|q1uV9E8 zv*3NTHF_1f#+NMLF*cH00!#3z5#pka&865}(%@zIMH;;9{csvQPr4&zt%1p@vdA@B#U8lM59m(DAaB9 z(EDop`g~w+HfE4=Qw*C+@2h3eudEbl-Ou3^;aX|s#$71{OTkS-G}v?SeI;-&h%#8< zuvE=3?Or8tj9g^`Xu?R8Fxb9ezkV z6eOX~{a(ZIF)^Z{XQ^EHy7La@`>T|}5An@{NzP8@n+v@IJJ#rGM7#+xOBTM@_Peyb z2zNL9@kg$~6c)J#^E?!-VyT>;=S+)O3RO!IE8pC9P1!XGc3NH>&q81TnGo^i3B2b| zu>?GL2Y_xdq@zbPIgBTx8znh+jz&)}axCkLt{LP!v>DI%$%WuLo{-Wh+hshGp!1IT zxNk&zQs1CCCUYO-#hyxrpgp#+6NGee=0*TpWl2%WoicG69H0G-ImF68<@t5aE);a; zFP(^AIQ1)M(3#e=I-ZJ_ZS$Q!2?kvDnd*Wyr@d)Pg!2P(akgU2xIYM_N~SNW8fDr) zC|8V`zI&Wc$?Ydy)uI^*(2wyZCr|OUxEwLg0M!y%d{4Dn-jOq%l?=1X2Xu+k=;A#; z%Q?p|Js-do={h%yCs{iahqzQ&na4k%35}dkzd@|=j2t=J`B_=+X6|vWi5LW2J+v>S zseli^m~(eKvueJM3ETh-{6Jly>i>bd)YfLM^JVcis|MQ9tCr{1;Cgd(J-m8lJ_t>X zgNluf8);e|Am`3n4gHy=(Mb0c?ZqjT8`KbUhwh$zE zj7{=f3ve*1@{aQ^5ffZ(!uv_>;z|>awdn1RtM52p5-F_Kj`q;xq)l{yV7fM`&HuMr zkG@ab7F??BCbjv0C(9W5yek_V5%QNh+lmKRI>;C%SAES+keRs*w*7seDH6+QRuUnY z!+|`16qa0;i{u%@354OoAM0#33}>eAuiZ~VAeOEbY5)*9ZbAdMU_~WpY?ASX%w6dm z?!*$xF={P-;lIB4Dm8!)aAU=3U^&nt5`*MO5yh_GUA z-6T6Mi)}2n>ud?a9c+HMNq0zlqO}_n)m5hHDd$vD+3k;|5*RLwtb*MX-Uoy80kYrsmd#R-idPd1yo_D%94G$J_+;WBS61|8OrWg* zW0M!o1K?5c8k_xGq!C2YMo_iQYM-l`&h?@bTB4kAZ_-S&@n*U3ue!-1O=lC2;UqtH zi*?vc2GDH18Tnj|^BGj6B&NpAGNDUkb%+5B6|92*K#ChCf+3X|D_p682_HIZ%YN@W z?+#2|;>v>XzW}R~Ss7@@9r$rxXOS4nD8vC$HSY#u%@fR_Gp-W>_s__*BaR5DAsV{*4GGe8Guc&2DNpKn&tbWXGO5I1mOHck=Df(q56WV1qNxzs7X?>^At<_ z%5^0R$L2ow*RJKQa)%?sG|dlHfCc!a&^j@fT~XfRkDbv*g@zwuSb(|p8;Hj6<(nq? z2kI1fEfSoyl%BTyP~D~Gii%+X?vdN4fOGrB=O6;WggFhP+Lmuxu_hwvLo56SeE4ai zG5vN-;C9dbp&HX29|i>2xt~=mIpi#(%~)gJqrk&T@%%~XHg$oK5K^HaKRZgEtJok? z=3j)D*b7fNQ{}na-HEbePOm6A>0(Mtm6p@Z?FJP;zt7o7>r`Pn!?`Vs?Rs^0xR6U$;Bm*69iOP7PWbim@$ z-Va$=ol0ADwQ}&ts30>w$Ai z9UDFZcv|C5OyC_mSvT8E+7b|3X8@~=Q}&vk|Dnz1wfhCthH1M|7nygnOm7?)WtjMF zg-y6FjdRZK#$RaRAqivags{hmL&esau|>t!nH5Mz7h1s?(+M-pZ7v2=#lfmY8Bc*G z&@%Mv@=fKv)xL7tO>@&0W%J>eZ2pMD-J`tMzj4|P^XwKCS?4@!fL|j{GmZEmghqh9 zFH`U|Tx2wT&e1sH6zG7x!LTF&AAve>4HLK&k25JA*`fpK#BS9!K>@PbmXl>fm{Cox zzXUcO5YZ~H7#N7*bME=k*}|xBGoV!AbJ{ZGey+8~y2^o2b*3(Io9?H?KRb)SGKa4 zHy^WFH;#2heoO(ZbI)lUCFjhjpDy$N2f=BoJ?ri)um7A9CFfmrJ`?f%Rx1k5e;G}F zW?l$p=I!()g{x{L-OqYQPN?E)Z7znwxcM*&5pZEYq%p!q{6zOxVwFz86?2xXFI-QF z;D4t9qY@AeZ43#6Qx{9j?D1tmB9qrW=dqHFS&GN@;u2JGUMyVF}S31=%?(*CV zMsarpN@Zb6>XYJs8oHA7@0O%1Z--V`U4kSH86@f7Sq+r5Ed+s{-vElk=9I^4z?(qz zgFz*1S2t6dvkX!*$e>Fp9a#n;hm5tgT#ZEn%OEuiiCn4KX{Kf->|vdZbG0)2ZJWaoswn+vt_&XS#n9k21udTfLl~v%!@fVMX8=3b&d-Sx}=mIKV_2 z^&1hXHOlq^Rws@6H-3>u{d+qd>BVuC@&P#OEw1D0VsQK6b;rBXz%P;!qV;H|PW9_i zIi94TjkTOVPt=q#HBu_b;?<5gxxIDbBVv`tqcm!nCDctU1BDu~Y&%SD?{Cmrz=vPg zNTov1>RGy7?r3Ru8Xz<4khQh&8;`tHSyI=PMu9kt6EffJYGZN9)Rwm0&s+`Vg=x+P{aaogf6K9 zaPTJi6a*MXr;7F>NFl{?;1?;DqbR&$<$Dv8UAF`%mZX7cVTxoHR_mR)huxwzwZottH2#x!O59 zV;!a7(Ni>JYdaew2}IB5$t8c+PL%Wz{W6`b zHk#=n`uRobA^OslD73()P?Zeu(9du+2}ERk=D1(%3sd~Z3|Hg8;y_nD*>qxq6mdFK zod}>uVt4_;2t!e2Ip$$`;=2`NfUyC$-FwLNoT@FwUkohmz5j^`WRpQ3Mq-Eo+YS|C zpw14+(YmgV5o_&W+h<8TR7iosNTWv8*AS3(W}$)#m@zw)170+P1brV!!N<9)>`)GP ze-)M! zv~}f)rx~Htz5Bd%U%Os9(cim|m2bm9_P%nWx-8CbP*Uv4!X%vz=@oPKOA>7Nr zBfNogu1l3W#Nyym3v?;EJ~C1l@KNe{2?T}*VbIIF$|pOxTBxqhimI;uBwz~B)%PMu z>gtDgsJR0~47khr5+?IrK8&H311H-5j{c0N=s*D%c36P|zSsHcAnaSNT9{!X-z-KVt6c!`v+-=FS{*-~S8doL?O&ftaS}sIRWFyc-8nwg#+Mv=*xpHKxSeA(m`foA%2mWSol#m zGch8|b&i_}?}NQv4Gr-jYmA-&cy+3;=aus`X_`#G*Hr_qB{do%4r=IXQn~jdwNm(k zWzb3iGH98ymu1jOAq0V*J@WkBuHoWORu+N40bXIYtF?&y7?@<)e_Eehwy@S>8CHca z{sj-aUS@!3A{!FvN3w66%V~V1%?&P3s^05rYc~H_nHah?-{NDnJlTU#xv6m z2Nz$x4Nz~JW1t-Rfa@&RA2rO(c+j;<4AFFu+sSDCzj8Yn^09I|c}!>c)v6ppdWL>tr>FEH85=Y)ot^K4DN{=H!yw zy;1$e7c7-#PNy(|R0ViM*W@p;B4i!OY2io6#VhhZ>Rf)RU*!{62OfJQNr+DXo}OT^XVr16Q3x@)FHemy0|>X8}c+YB$_uw z(i@qNsAh-(th$~p_WMK;*Yguj+=F5fD@|gV&*{?F-8X%ruDgH8%Oi1KPTbBA#Eo<~ zlN`s8?|g{fz~FQo;c6jxLI$$4(4u(0rkHMMaP^}3ZDGAk5yzB+@fEsDRvcm?19T0) z$N*jYB;2rdeU$4+DYLVz?o%#9*mgp7rC?-sT>5`yc5FM9*{Pv3{AQ;d*W1bL^!Y5Y zq0Fi0Y%f}9=*;$n!0BlY;z+9Pki~lvcZwdY8kwE0JC)hV+$q;5J0BJUg9|*Q3+za7 z-Y>=m7kFA1(D&S@2bD6W$aIJjDCV?M7jeJLvlys(_S7VT2Q!6Kb&4F`0WecLW&M2mE` zS{`lLrAGsE?=D&%4aGvf?*h z_34s!hZw@J1+&z;p3W*-EFBwI$zmxl7tGQTvt1PoF)^?n+-^jcvU-Z83A+PXN|)1@ z2i66Dii&N8VR3Y^&a^m6_tJ}Yt1ELK>1@T)ZJee1L$Gw@-}aW~=G}A|UCy27iZcJS z*3%2F#56L$-VHmN5LN8kV8CB;z!yURri*a^7%#>J0>(>mX5~-m>Uq?sTK8y$PO;G< zKV^zg>r-_RE}&nX$Lr<*9WTNWbTloy!Nk)|^Tn2GFm5T;;0dG}Qx>_}ikle`!Kz{1 zGG`Sn)wn&dlBF8FT%c+ci|oJ}mQt`9N+}iwDFt0Ke>$+P)z3!4vnM!<9jSADvsk=h zKIK#Eiup91uhe2PXYiXK3brB<6g7)?AGkxv(UgxUze9PN&Ic$5rwA!=Z zY7fJr+7pm~?fH8Rtf2!^u|0bN+Vh=A-J`XbnnG)g276Rn8t7bV%X1K-b$y|$p6IGG zs2N74Eb+Ry`%G`x9d)$|5)IxQH`+_%T~~J#aFApe4%L!?1Z>IHcj4SKAQf5yKGlHn zX1SpK9m3cp(QVj#6XpfD;&=^a6-Qz+%~y7@6~|0YGOjqLV}fs-_1_pb*2(i5T}fg+ zFAfuXV@+@iKcp5$bLCTUE8uAYXrNfaAOLICHZ|OB1F}1r)Aw)^9~2i@VVVVe!>P+1 z>|7afeUEiT+}NvS29{?q+)WN-zA5&W9)aj;xE_nGtKnBPUaz_u&QhpX8^0@xztI%a zx`WSV)ViZ_tcYVXD8^mfFN^DhWYfZe^ds-61P&cjbtF zfz59$7kp@I*Gnh**BA%NxvTEG7XG9duA!?Pvmtxcj@b(=gZ8e5NXJJoK^Vf)Y47Sj zo#3O-_Fcex%FyEIm`1(svYM>^Hl;Bwu1 z#SQlKeNMW}JXD<0(3L=rSpxZvWzZHTWRw)UlEpEWK@tf;py#M1k*!Q3)~cbtEbi;7 zD5pg`Dw`GeDQVypWHWM~lEzU)z@@QWV+7-g(%>mRX#h%+hHalu8ny9@q)}TAJQA{Z z%-QcME-j7q2V75xbgZqneJp9D=~TZoip$wO{{8z2x`XTyoi%isvBUK*W1s3BeOWs7 zjt;W8*p(tWuym3|2=Y9)?Nhy@0r1zif~#a58q2i@Tn#JHInr=T7I<;k9AU}gHblT> z(MV&oWWiIQFpUF%l4LOfOH&0&6T%LfRq#N|GoaA(|9KcH!TK+_12 z(0jdq;q))DLPJm859FGot{!R|Sc%XlEKfAtP@Lqc!!C@vs5(CIo+R8L{sM2Z(bc#I(XEG^*G}UX z`4>$^&kgcPNy8&vauRqFkILu_aXoIG(?!h3l5+Z&^B0(^>XuSRu+h3#2to zdO4_?ab#3Ix&5@OS@fSFt3?17IekUjq-c&#=FX|ntLA4|gY>_ma-RDfG<$1on?^-l zd>PhSJOn#DSX+)9F}8^ueAd+`y6%3>G2&ru8%wcxh?V4-d)CIw4(D9cqZ_ai@>0+E zUQSJtP$Y36@_bf}#~?oN+VidyGqp2T?uvi9;h!G(rzigDg@1bEpT79#?)`?m82!l2 zjXa&;-+@niZmI+!qHE(H>dqQvRfV#Z%=y~YJ&t1rFsiKF`nBsNcQ|$^W>!&L$@|9D zFZyw$z|te)ifu4U@q^tb8~;#in6Xyw`qnkQ@=I9c6-9QB8k#<9srC%f=MD`BYLY~q z^3toX*OVQw>Y3>V6;h4 zE;`K)s2vUWsGhNA`vd5rlOa=ocP%QzMF<~Vu87nFhAirslp^56FZYq7-B~sJU;-bz z8y-;3;>ib;SO2O%T`R>PRt?l8t7b%SwSl@C`Isj``|-{{w4d($S3aQb{8u=D`~I0S z=Py^3Erc9A5eL)>?D@Z3tD<=Uxo~ZKJ9*@)YjX5zP0oHv!G7P$|Cc3h2gV)~8s6E94U0(*4Tib;8cHOwpCmeSWn&N&d7m zt!YH>gNAhPN=p!ZSvCk`u-WS%>sSvSq@64xf_C7s2_1H)CCb8eb;@#Cne^iC%I<1r z*MsQVl<6Fb1n_or(iH7i7xk%YJ*AV;_VtqPNdwDh?p~KjfnbQdIl|rD5HAJd$a1~t zC(iOWWOcwY8x=d%k}ayb?=fb`NmbnsidjJbYH9%1lxO-un(`D}jf--Y%H+^xM)Mj@ zxo&lFjQ5Lb?#^cP`x^FsNzO`B;@s(Cn@(0^0y--h@5|${?q-73K}E}|p;1Pv&iJk@ zvALVc`8C{g#Hm0~S&VwiW$XAsS#lsQ(|q@!G|t3j)+z;V9q84-oh@s5`_^(lX^6i9 zA$E~O+#j;G&D~r4!7_u0i&Dh>>ILHNH{?*eI|`h_(W0^zR8fU$O5+yy&9jOcN14AW zvKZYKpmhgvU#pEQ{wy`hSS5$ob@vd<8G3-+Ugo?l?Mx;Xg92oNaU;CF;@t^`=yVA5 zR?iH$u0$)scul1%-aqZ`2aM=!UDcB0c&EFq=%|1}mLY!t^S|?LHeJZ%c7UncImF%PaTwP=pw{^1XWQ%^`}<4O85i?A~9xxLnuB zCrnEna^>t4w}(oCkb_!gog}?LLY5=88d0|AG(O)@<$3X-EV9>W9V|nuc0l_{hTR*w zBMo^l)!+0)Ilm;vyZn4bxG%n8jYli!< zA%+G+P55?@knWc5Tce-QSzJlS>tsbd)re~4&L~wQQIe#lhph2uEB7rSY7m3o301?e z_!CSQL}@tXXeu^_s$&+D8)%$7)W)46Sj}K2Ih4EyYbL?$EJI$D)#6LDGOjq(SYq+H zl+H_vMsmJbMI-qtn9P{>M+#_K?3MVAH*{!~w36V|fTq%t>4vN%FdB)3Xe2vim6G@) zvg7^kDsuIw17@0)OVq-ma)~#ygL{xsp=k*kQjAEF4qrag?O#x&m9TkF+Y*XMBG|-7 z4t>PkOU69s7IHyvc$7N2hr7%ZAXo#rA{v(XViquRXsvN4Ch#dyatW<9j3l|fue+Hs zPhRR>-y;UFdNd$4v2Uzm zpA~E5eOB+ruy2FKzOjMq^F?*J#ozKs6;gwuy5!~5=Nb8D66#m@0!UNAHO??1{fz#M zGx~yJbTntQOs|j#M#JKBq%1CMXfMCQ9`|t^J_0%ZKTO~Xd&J^+vEq1^Jm1$nOjJFr z>)jBJ8&PuL3vQ?EGpI$fS?uS!H#Xbd-!NMohDd?&O+_n)7I`RRMrNl|#TkWvxg_l% zbU0kP!@qftdrY}hw8>$shr>qz!)o-!1kSL=tRW2!vuH1aSXJOzR*jp2c|9<&D(xyj z$EBO=U<7Gbp<;>JRWM5Qu0rh)HrWHvRWOn_5367#a|7{P!AK{i_Hxlp>s1FfGf|&RP6Y41- zW1PELK@-<>Q5y^DRYxybG|65@o4>)RB}+!TJDC8Vl;$`v60LpH;f^Tp_{ZI~j0(2_ zIu)IyBSY+G*sXHlNOwEcgYGy&Jt)u)ojIFe*`eac-O)0kvb~19b8J}$&J7VaAF((H zAAUa2ilHASa5ZeD8rS@Y3RNxvz!)A=T%Ud)Y78MmFU{b+J-efq*@FYw| z!{cY!JO9M8hB78PHAeOv>n^K&&FM!}gp%ou4r10uOyJC#sv0!;2#Zj%ht(=K$9DM< zFphPX9hNqX@@{4d{3NrFNBZU}O?Pw6=zN2;-U(1AX?j0ftvvu#xs_Dg!&Kd1Ks&MJrZVh2^CYG5-(`zxX0Y6;7Vkgaa5hXPY%q>Hpd>Nr(GlF z9;JhhWbrmDL7j#i7~h0q7|@Oe>t#ok10z>}g5LI<2^c<4FqXl9Jx}#K0W7XdUUnym z9V`aD8$|GL@&tF(87x3u@z+<>>*t#3^Ds7N)KHPTrD9?#4z{u5E@~ zv#@@9HQUU|b1xDZSl{XeTIZVRR3GlVa=1c)&P|elE=I0Pv%fC7Xy~MKl3oz#cuZ;C zU4gmTCS>4)!VwQ2v$SpyE1|V62a5T%ZrHKVT4!{WxzpWt(UF1hE1mi3F*rj2f8WaG$-D)&c0u89|`6(uLrtr^7MJJ>?i4C=3Cu8!*$|F!DXX4qBIJb0wJ@ zk14I|fE019Ys^SIH`D#I*uoNU?&)k4TxF9kv0q*qXUnuPAU-i8QKVu=ur#UIQT!qm zJ1SAdY)r*)Tb2&L8$mU^V+c=K?2il3IBNr8fXqGVYAuUycPGem&!n`MHQscO7C&j4 z)bSD?6lHy{Q+;&hm2U%L60Tt*5pi|d^j6S8<2X?6v;KI9L^^oQ(!uJ1x$s1brGxI{ zmJTMe5?TkH$C(bM9uK2~*OU%k)2)5mZ1vzA`f+4u- zxoWB4*GdH|(OFj2s5OC zbu4QGspPl8^`6lsER|%Ce4mcdc?x|WGey zKAYl_#2vxVZ|BgnLy^5X4(^16Cfj;D>B$pnoER1i+{1y7A>gIPi3lKA#DV_N z?*!ML&q@SNSZcE@UpMeTeHB(|6RQW1)zy%=kX5_`-*?wB%-tt+RHe`b<$15WhmE%f zno8piaE5Hd8N^Dq;VgcUZ8&>^Y(rcq+whL}+y{U=#8kY)X7^p+*3ZKEVzE6vYh`~y;sF)4V;Zjrz~~+Auu=FgbY&0qU3s= zW#V3ULvf82A$7UJ#aZc8Xoz+>*3lKkmY zPAR#aMC4p15PP}GBPkX+k^~~AU)TX zdrIB>eTkJKA&!SqeuFY4oDcyPz2}_F$mYg$SMkg-L(_oCbw0Sehib6~9P=TSH6m37LGt{ZR-BHa+QH5Ph7ZCEvU= zItAI9Z5~&R%{r_ze2p#VcFiO?|1o;Dwu%frwmu4!16loUs0$^goWb%F)ZXD z;mF1E#CyvRk8wi6O!5VBCKzI$-=7o$6RG=x{*J`3e^)+JVgLSO#lie2pW;70Va{co386_*ND!olpeTZ(bRh^N2x3EmU5E-Vn8orcSgTAjvD1Oo<(%ISJDqEU1BIMVduyUOc;uJ?1l!nEFz@TqfJh_wRHb~a% zjVfPY=R>OE zRnIhUXD01pB4zH9)g7Zc2qqJx8ca@W9))d5mDb%;`z}fs_-}-JdkJ3=lyEOjxZwXn z7_tQ>COvKj-ehMw;P>h#GU~Kk#api?@K5*ZYBr+4dt0zZAy8T64`i*>ov|AFiQWYt z33K$bbAy2jDf~t4Qi%h(J9=Tz1t{7)iwsb-S%$wT+AP~uOSGv7aeNgd+H7y=m?cXF z4N14H*5c69gI-~}K+SGe?@})h-qV2pMHs5IIbg&1hNS-D2aVX8-8`SzJw_LLsTF~1S!{{k4XUTu5(mE^wiHBUdgL9#k(Ky8^2B4y+nPyh{z2*DT!_LuJEQqW zJ%T!D^97O2Fv4JKrHZ?Rl`1d4&j=G8v6Ou7ds!6WcufontVXFE`t7Dv4x%4}VljI>v;w z@FNbTefE6@5(E&S<8fSKFgH$)csH z7Tl5~LYR4WLdHi_8lyQme5GxPU5gO0eGOsA9ync#jR`c7sah>_tX-%P9-=t1c_T`6CEdP#hi0m zk=?FKRLm;gqhi)n4e&;h(t2)?$Vg*H6WPv_dAWF0V`s~I4XSK7wZB z152T{qcyNl!ntRR#(8$6mct@5PUI@>4U2;$N%qzr|j3}_0pZGgcAjMnH-dVe^RSLS%{%x$JSiGKB zEx+&ODd?v0cJ!bT^QEzNDiULgdZRIl1s?)5henwVL2y+F09G<3&#JD*xvJEhhwyKW5)qEyO87g-6Y_4LeAs;yEvtc^iwK1A8*(ks;| zOlt-u)uzg!S2+^(HRg_$HC>m^OkI^KAzkbK)Q9yM%%Dnj29qC%dO!f`YYDYry+YE( zD8Nh^=`?2R1f~cYzzNI@f5hqp#+Vj>{jN%N2*c3BgJ{f22ly!`orNFf1XfNuP#N_= zt}^W=yp*~iC8k@(m)8xzXZgyT{%tH@;r0A|Ws6wHTll<$wP2mEDJephTycGh zuk%rYy4@U!uk-z6`N>ZVs^-m@pYBwpbpU>vfyq%$`s>?(de=KTg>!X7CImPGH;!Y? zekKqi?Q%k--O(op#)L8SR7hFscvYI`QFMXBRB%y$0V!QwmtO)pLdg|wVf>={K}QDE z@)i7I$#*3KlYIHIdKAR4eH}x>=#HRqeXRlxkXwg?fE|BP0&+^)eQK0a-a1~YCCowE zy)5hfDi$-|^oaDBCD>yON`h^f6gdLUC~~iJxWyX`NMgMbC>A7u1-tq6!ZFu7vJ8l^ zC=^g3t8pq?s2Zh|!j6|}p-O#1(WkG$IdF_{Trxb$tb*wcE`{vGHXD5P2hapLVVeH-;tEYPLJnS8oMzX59|+}ioZ;- z5*-B08!W~L@AolIiy=Ni(u*NJJ!2x!CeEu!krqR*;V)VYy|$kgLpFYAL1L1q7@jh~ zi|GqlGRZO6{(%qCY9FH23K2VDhHoXyh5O_slO0#8YkX>O^R9~ux5NGq(oXSmPd9Jl&C)9ON!!;XQb5Qq3jh&=2};6t)8an3^6?n5O?_j|mSg4ZUUhtQq4b zEPrFEo;Lni&ux=Ez$zfc`S6uSO`#;3;MN=4|XN4@E-Z<49AzES0IL-j3Jpg z(;>|Nf2@oOL^P7I0y>&I%aK?MBdcaP+BU&{0J(l3?QECy>0*u#+iW>B!KpI*+@TBc z7eK!HQRB&jgyc=ABE40wTsV64SD(i-3GN1{yd}kAm&uU zpC=EfXSyYsMRi$(ZT;ABv)p~VBf_7D;?L~k@;O&t!Rv7y2}s>7O9rI3mIZe@j+!4I zP*1hsuP@n;{Ps{t*h|gkz&F{C$jG}L?Zj_P=;AQvIP=#7YE;H~3)B!w~%aK`g z9kLD&v5=#(N=Fhr_F7!xXe;(JVmWs@;eFe0vqbbkZ)Y;pz4v_w)U%D<2h;6^u`xBTlednweu3g$9ST!w>}k&|Xjk0}yfm_#vOR(DATHW3@DL z_aVi8Ck7?t03hU-GXNn6fFE+ofOI{pMa{20q|Rq4`B5Q*66wfWM5dwf(1uklrlJk2 z0gpTKLKYn~$`0i?1gj{a&$-O&KwM0w8Bylwnh3S5ohpe`@t@w@M~k2yrV7_pO1)H}I z(G-*zq5MaSSm&0nEg3DkTw>++n z!M@byhd!@gY(LOJTzj!kQXb zK_g94H! z3Mhz`;Va-Mj+gr6!Yc}(Q?CRp$#* z#Fq@b^?K)c$Y<_vy6=GZ4KW=8q>CIEd5QVaue9G}`$*%kdLLdZHhu>?zQiq30Ds=~&UmCVZ(U3eBT^QxakxbE;Q()okV99)zAk#2ksybzg|#z7 zCKs)Bv_%}agB65V`mjRB!?cgpnV}|awAZN3+{2^^KivDKIy=I*Z;Dnr5(HBNMm%c= z3+zC)=XN052NcB08&^5n*;uKi%XO<9BSQ)g8*-kjQEPFtKZjjp!4uJ$#w5n(t%qgK z=2jj2*zEa^BQN16?86k0tfX3umVEjhN1EUT+VNh|j%QStkABx74Dl>uL;KuQhgE-i zib1u{m4giAbE_GcwEP}p|6`@)VE(r1u=2N6x;^tZbLU~Tfx26RmBYcUPM?2(HNZcD zI2#~GXERpGoHdS~#zp08#*qMDJFjt>;z*5wgM1B8k+0R{lYGq$&0xZD0ZNHf{m(wtxc5+gPck$+@3KG?KeNbQBmPWYz|lJ74F| zrgAuQIOlc35%Rde@cz|(w{=Ocn(dv{|8H}jPjBfQihoDosXz595oOgdGoY( zUNTW~Uf%8PU>YYly({>r|E z(II7*gR(~$=F>-2ex7F-LDJrnmiAWm>J$xA0$A?14^UoGW?DPBGTPZvR&{hn$%W-9 zQT5ecnOA%8!(V$v`?`tfK;HM{xly^fjn>E_40x`QA7x{K_SC8B?WLcZGh z&64V{<#<+ls1&UCzwG6%-&8M0I!t@dt|<*M`eA0bj}wMu>yYhq}H8va-hz7S+ex}4gIaH+;Xq0k9oT)gzvx2JLc%+ z^^P94G$Fq^;@I8rzko$ndJ(F#3ldAl6;Y$Koq^>)g%Ijt3|Bf@Cyu|l$xaPcZ zl(N?8Og-MMFK_Hzrm}kdaN5zyG;jS~Z56{`n$KXSAUX0vTqkAPmEWX?%PLn|sLVU- zSY`kZq0Sma8uflXsu5(4uz_M^5cP}}&f>bNr=NVy2Dcmg zF``;MH)AR9qkSyyd;OtOo|Uj>G#japYUXIPcDX>sWjK!cxy(ejF_E#xxDyI zN+6)DYg&9rgJV__HS?J67Nq10mXZs)b&NKS1)EdjaIfg(F4z_!=RWSKmzIq)^4U0N z7jcFuN-H@D`Qu7HZK>c-u>YOO8%2920O&VAdK$(E-XdGBN^tfvp@COtlt~Q+3>q14 z`CW~S(_u*Sj*KyU7z1>))jh4eD9PzC{C5iISnbDT=gr~{#t3NAO51R&F7-z1(vRzY zf(FrNK4wsxDjv~@Wo5K$nECKA^{o0S27n`&VaCIC&*D}(tC++ ztQq0!d|a*?mIR{)0}uxQC_We8NnFDK*dnC!aYME}m!2%(hmYz1Ckt@jD8V>Mz9i_( z4!>MdnjnofaQ@bAMM5KUCUAnTm2FRIVa$^A+BsV!2qeKh>n|;!1kXAy?qW<}&rdvs zHF%TTbq%=rfmz2G60bo~OXNk1u{L?p68uG8wB$H>k)3-Hz$hM^0`J4LW79i0zX%pE zN=L~t-$Itjl6`RC9T}b4UheMbyi>fXnNp5MZ){)HrC!ELzo=K7n2TE;(MY(V-12%t zjNH)KIZjk)Ix1|ew~W1+0m#_v!PrAbq;(eXBZ#qsFkH9}?1*2jf8n_Am^Q~OTqFl} zh5NaGSVrDCJU$Kv7BccWM9nSs5~HQhXLahJQw&ZvUlEAmgsu@7RAM>IYehhyatGO} zw3vX}y1pB{N%=P;<6{jou1Y5lvInmz2VWoG&(6g1S{Ic?ZkK~}$?e+XFLJx~Rkgd_ z3TTIJH@TgA$zYdwAJ*q*I%^2=Gh!emJ=aIYIQ3FTfR zt5htxnE@#J03h+Bq%<*-0dyz{!fN4&D&<|hs{Fm{TyN*4=6nER2pQVP={6TY4LtrI zfw;MQ^=8Dty(kf8cRMTf>II3Bb)Lc&WSyt+7g^_NWgQz23TkL+-q*Q4h)rVqflc0H zw6#rE=~6H4dd?5#;zBjNY;t@n*=&IGS@E@|fR}r$doN#9soNkwGbml>007+vIm`fb z8w3D!8{`xCi!bdRBimdfjA~GdHF^>9m3_Kp8W!$m3`n@oTeuS$fN%rA4>u+K=*((i zbECbi7~;$oy;-?WAOMaja1JtoJGx^MM6ZP(SE(nraK|K9zC9GCXyQ;#j9^u9s^KzU z2X3reCONTmuS9)ps}Kp()2JEM%G*|6>Fk^EF=~o?*_%vtI*1irbc~j5COCZ;H8#4; zIxaw!iDgxl%VwLcwE=g(PRHIU9@8c2wnixy(2xZhpxYX*Yn;2qtE?UcJbJaWqFSB5 zu3%6&e|45`xXC%u2>GbmI)MFz!RhF6V>Mggep{_h{AXY-bs^@UA?d__UA1~)5_X+4 z%$)5#e4S@>3^@e2m)|`tC5)k_t2PG|>at_)qm61jFAev{TYbva$yg_IuXiSxfF2I| zVfiY3>cq_90m(U~K%gi%Ya) zn2FU)j=39|?OEj0?j&(YXhh)`Qm~PHz zO-aNDI5SI#8No!9Eyg=90n~%WLq1Dn1uiB*x3aD>fP2y5GIuXJTn;FRmCatA-bfC) z=(W2`{ba3M;xoDcxBd%t+iQl0Nw|OJ+8_d0H zFiieE8`MDleS09>mf;u&pQ@;EM4A7EFbek=j8at=dHK~*=EK$Op^f>c_BFb+ zcM+xY4g09SFT*R!t221&Og<4p&eiuxGp3Zv&wUszP#RpRwB>saSBM1 z=k~;3K%M zEA2t#ESz|X^@Lgfakf!CfmKyKVFu7dty7Ohg#( z6hj%8x>GECFn+W6o`GO)(OyO_P3s@B|CHsK2N{?=vl95md|h;0c3ipUH&}_g=I&Dz zS`A1Izlh>yq=U9<>|6T|K)QnYwn^GbtU`-6PWYOT8kuI32rAl zt($yte=%9o|Dr@)HYNp(0+I`2EZ2Z1b)iPaI$ioVfueE zKpUj5gQI$b5pIw^@(Rqk+scivICIRb(`xhT6U54c&s&TP1Rv`|2b~yG;HmkEZw9t& zuWMMl;0%-3f~XtX@EU}*$!`YZFY=qgr)%Gid=uK?cI2+tou397wGO}Ge9ktJb3iZ7 zrs)zKPKKEiPpcPaV>Q6bT7A--Z+*+TSKO;{>K%7`5K4vjoDNLz_5^DSjH=x;<8fKJ z2IgFj;f>Jl{v`wj~z41u42?l`iN8tfOQR zBN+nFWq(PzF@|G}Ugi~lbLOrS|7Delu_rlWI(6H-f2*r)@3Z>E-P@YGjX}7h#BEzp z`+U@XQ)7V>7EIj6O4P_kx9?w5Oh2iard$Qg#njB1Ik>mWV@IT!^J%0-(dcjdMbYT* zziXR0dp>op4ibYrpE*z4qW*#Q%FnDp! zAr9Tc61Qb(>?|S$p;_4WAC|bSH*4k#MrQ6mY7&0wKPr3M^?|kM4W_O{8Qf+DR-)Ii zMY@(w<5n89>O=pi1B53Tly>PKl8&u#5HtFmEm^$GfVj~Qdy1gqK_;+DN!%(JTnn_` zLcN(m3H5qJ-C68r<%D&;53A1M_7|(9QJ=6-H$3C>21!Q~0H7pp(F{PiVe1e$HZGOR zzH{Ct+Ay%jns!F%qAPGDzrC0%wo%XE3g*;;hj@hs`mOoG49 z#m5Owgp|n&NSRJq&^vR0n8?TlXw=Hc=GTxkI@7<6rBPllP@^g%+dZtE)+lSoG#Y=_ z(x?QDW=l%P_B?B^UG!N?t!g`W(DMQ08kS-ot%Z7qr-(p=d>Tv;ev6F zIYhH_>g0?ghtq{l;B53g9EKaUYaIcB&d5u+&d5txf#oHXi>(9WA;3$lTx@;~$xHJ5 z+gM)0>-l@h7BPgi(Eh<%F#mYk-#;h~TM=uo{p03ys@vVnplT9~ufrcY2fIV7ghR|{ zU~-TLxSE%ME#Sl@XK?R}bUTG_A(5Vpv-vx%2?5rGqWT-n52b^)|bE1Mqpi&i#0 zWL`5@u>HB8o4Hm7S=elibPX57vAH!>(3^Bu=~6H0(sgxTztAS#zB}E?a$zs$RiaR1 zSDSPbFQ_fD+ZX_%DD3N8P}jUBG63kt+N2A@W#NPisGtNh|APON_jn6enpp-wx+xmt ziZCVAz-wL;5I3Lj7BFHk;kB-Lu~M%}kQnZI#k_FR}*sd2nm&vb)|5VvQeT zU86(=Bdx8mUYB}Fmws4JYZSF|%@E&d#L5s`EJOUl0AvUNY~7NSBDOGqHbf8x3pZPa z_#nU#u=dC>8(dU|pl_Z*rUNp>X2i`6v4#=ThG3;$Z6Gn)evG>4HAFQ2B11&O>G6`7 zlpy=oM-yG|2eHJjNv_eN4Yse*FVb|Wmv-rfdRiiK(Y7XXOJT|s(L-ZLb6kxnAn+#j zAXZM+=yp+AqZ^Ly3X{;c zDDS|i>1>o(^rkbJ*R>gQP zogP}8#9wq%{{_6JOn0bz;cY>>@A^9aqT7hK{0YD4Fn$tB^ry8ShM~=3y zo8Zcx_6-v9v8z!${Q!SahjyX7;7ph|a&8k;H1M@SE}Cohm6>f^?ZxLLj-ea|xLh4~Y%)GhM={kjJyrUGlC>*NTuGz~7p7=~>}F zbGqv8+P!UE9Ym!rM<(;(%W#oduKNS(8{22N<%Zo!+2UkC{SZJb7roNWW#bg&yeFdv zH~${%QYUGori?#altb4?U6Qu3w-;co?Sp8g@cWChGC%qzV}tD4F};&4`NI_@kG6A( zMoA6K24m!yUz7SqYYNt(C*-xtgUMe}j;l>fP^5BYj%$LwLQ8?a$n}99x&HSTE!PL+ z08MQ3#3Ud~`EB)M^DrRfK#0_P#G;Tqqb)groA9krzPc>e4-y_$* z?~br>;xeay`nY^v;uZFndU*WH?k7|-%O>4j=gp@fOWBH)iTKwj1Iy19vAxT;T zl+kjX{4m#*F4i%!)w!D@&GM<$6e*Vy(bi1~)HU64(rG zyjjhvA4K-BwS7=U(lCC#U^f&x?^7y99fxyq2*+Xcj_p6It0IAzr@F-!(u?3T#J- zErYj{Im1#Dn4py9%E7KzniWFZ(opisaZ4bOtopf83&HA3a447A5pHMh zbxlo~bcuC=9x2jYo2~c@k$5vU76R=XQ{c%40=N%$#sVuk8I`Vfl&n$wz)ROcEZ#atv6xANqovBU z{Fo_MZO_d69~+AXCqIs?k@$ZwIC;~7eISR9aouEo0E#VhjgF# zl@DwmlNkpnb60H^JPLrrDeVQbpsZNx8Yzq3bJ=9o9gsYu zth}hmm1>x!A+qXpYLVKlNH9jIrY31N+vkdb9*eW!wtvJN!k*a>FO;zw%FVMrL-{HEiKC0Sd zscH{nf>dQT4Dhg>N{Stphgk`}Vz8QCk>tzzdRVkv^e9YZfeiPsi^o%i6bB;ga$%Oc zr-bdzhH}GP*VAVAhO+A86qmS+@qtP-x*{GmF|Rq5=-ZHDUj*x`FvQE_jap^PWleWv zNXLL}@D%%yBdWgP&*&tJA9A%4ofv2w{!Q>Fl;D0rD*Qp$o%L`b<3T0igNzZ9@U=h*?^7bpvm{*W z`zM!>^59XvuSmN)T|&Mu4<^G4lePt}J45z1G-c5%@g7mhsFB$4)y>-N{hJayVCtAR zB%z%oDzq)Q@r$jERU(>t4tWNAm>g~X6XTIIaz0QaKPVM!w=@ziw>}BJ5C60@LNlLz z)n=6O0S;CJ&G%@COrX`6xyqC|cV`W>Z)ej}=#4ZbTnV$B*zCNJ+(ssx0>`C@UXA=Z zs+tTLJ&a`eqQaYMA;f}$G*cRolE_VH4m=hb(8r+!p zewpiOBcv1rsJsxDE*@n9kj3XC@3r;trHz8lZc6Ir=)`4)@qq07q^q5HfN?^0eH9D% zXnZdj(kPKd&$+VYgt!d59C_Szz4(x|q@g9^>AFs3ESA?*BK%Rx8B@bfwXwR9EUGBW-OW z<(`*Zb$R&!>oH5Ly>j_-ms9LztdXWeLIX6tOKJKi)bzt57QuWps<(by$edNsC4chQ z@4}J!R<0%rA3BNChV~N!0hq+e>=9aaIK?A!8GoeeOA&o-K0F|_rVmejsjk6VX*Q%w zs417n!PPwY;nNlA_WD5Gc2csp50%B2rfn2Otik`rd8hgaP`sN{4$k`+e8)~!zu{^l zo?!GyS&#plvYuDU3g(xiZ95>vU~^c|d??_%-FsiEXP;XnOINzOiA9V*P~ecLK>akwEpg-7-y8+#s$BoZ?El?rmoJKP0y7W8@iL@0r4xQcFin~#DQre2! z9%KNxp^@5(d+%M>9>FT8t+=1xa}|rI#@Yiw!B!fqa9!%#aNASQ7*9*ejiE_#($Oe& zrtoMIYR9i=2kiJc8q3PuHl0NKKq&180yGM)`^uGXCUi1;HI_pK>_GQsRV!b0!$9_C zOs1I&h=Oif3+O+VVB7u1GrPEbLV{7(QbyjJFdT!x4tdu(L!VRw3wkLEc?0P#>M+jDen}WS%?&XnTc81gI z56E8ibDn~j^@xLx9Y4fhbnN({%&l;xiUO=m$-K6g7gxA?8{7%YH-6-5ZipS41-1K1 z`IWxYrCx%iyX)zI-b`K(i{CVM=6kV5gEo5*{DD~l4fl$<=akX6bHH_+4GvL2*K|SDGUk~{F8*u%_O=R_Y zxKNGx$IK-lFZP2&s5;&cwsKuox{_qoO+6vM*5k<=#8aF&MB&83ErG3LHG%we-TQroqk-Dpw_RFoThT zewZb5XH7~puKTBt@ghK|VIhT0P52B(j8ohk zNM%xORBlyN0(UazC5&ian?wW6N1Lk1vM`WLX>DYlRAg$5Y9SzljJjluzcAFPgSczq zP6%l*tQjB6s=co1FshB-=jvjvYpVJ*rJGwXx9)SbNZ5%6=Uw_U?E&R*xMVZLCyaZX zPbC$88rY~pS5aeJ3@`Ea#!qGSFRp%Kr>?AyvzPVB42uogpov-j?Z|jLe%^570oRqa zRg(GF$M>}}&b|E>6+wZcK^QPWfdf8eWd#l+toFe1DFhWfV14M2Yc~%ZYF799udWA0 z93ry1o(>*%UFv0`w7#=CU-Gh*M_l)d98E#e871UxcgCa)G&91aaZTz-(VtbI{ViQM&hraky zA>v~=8O<6BxOtL4wNWc(q(~^y4FUi zucBn*lw`>@oh~8NtBRfRHYODu?)}=)DR+*6b^9nr1AMNx#Qb2?YAU1x^V0qie34c5aEa5g&pWzHt) z@He1<=MLi_Issl8hNrz5O&>Q6^;$qy%x&7zd^SwZn~>QH!em9GoN;0e6NdCbU85XJ zS=V^k{9Z`sKDhDqBdd?w3g-6Ogs&9RNXTd(AUq{f+AQdhTYSZk0rCEF^tX^n2@t}` zwOKB_jBXv1ktbN!X3MMQx+{1CGlsT#V>1TZ<7^-VjSlhni>8(FHX0rH`bxt3YLYZU z-G}@y5Ue|u-UE*_y2>p>lG@9s8@uO-PKc<+=#ZmJy-bwW@8J4L33(!(5&bk`Hlgfo zQ>%n)0-+@*Lo?xc);FItCdvZgP7{+@MIA531Dc@g{28F5pzC}fOw-BU3?Hqv=G)Ya zsFVY6o&Qj6G|FtXthIm!t+hA}oDjtXQF7tsWzF0Z#QTh@UTM8;Q!A}c0-?0h0w}Gt zwgp0IrS-O~js(5E&49J@AQwit6U{cjx7un*igsUOR>41Up|!qmMk})#gvEu{<%o}u zjaiHUjEzZhV_Za(%)Tdeo%ox9pliTFt8HNGQ>=1vv6;Zh{Rvi zBO=3VpD(oqPr&)o>=^gKn)9XS?e3Rs@G#fgBdiN)Il4qSEv<7h!qtVe6b<#VSDy=M zi(0ymiYqiuy%Ay$LaDG1aPdn{qFlJj86iinat;^Qv$i;SGOm?d-EJ%6#W3}oGG5ez zj#k-@a5BE|&67&q(rI^lS+)-l_C&h{PSTHUVQrAt^a`wlqA+qGLX)XP)p*LB}hf`0l4%biiJv9qui zgl1t?gt{fWWs~z$(YP6?z?!4baxkQsT1j4vkgEo|AfNR@cT`zn#-$=Tux7ljSy|ZH zUN$A;a&bvur4G7M^^}a6Vn|?xfz9N+A3dGKCDDGpGNR$!_^?w+EP?sR;&SDuWC#)qttR#B7ZIIexHLFBe-?OlO z&H#wj1i+X}vMv+fGXSA|kI=%Sr;V4nZxhEDm=GSd5T0WILI{A$F*)5uSfsWQA%yP{ zTGG>sy%rf@qx8z zh#4KJhM3U|N<$20$uRDcTZg#Q#oY`@(d>@MS|ad6@P%wxg~Ne6FyS3tC<5OasqWwc zK^j>&K^$4aSph^hx;wk4d*&75Wkwt)ZApc_u!PKDy{_R+Wn`bsJn_DNBkKh}ujf@# zuSmJEPo_6>#wV;DI9GyFlv3jzS2@~ zC4*`OpH~XL$bh8av$ZL>DWn++uHe&_f`K3@m=h!gvjVSzDUU`*6zIZ=ZGj555^3uCj-gMuA~=);<5-LfW1w|o3_dss|l&9qv_Mk&7?%b=uIN}X|cl-h+a zVNlZRT~W0-?tG=!aPGKp%LjMiZ;PT0B)N73b!%FjJr|`GXDHx&WF2uM1F zMf9*^#L%m)DdRIa<~p}ae8EWQh2|%UPR)&}ZIH+ww!t_V+L!_|xCZo+(fcBxN%9x2 zN%9v~;Pn^EsPPwLD9~T5lp4IL@|T9ueokij3$LgBg*v3n{wM8S5zU%upJC0&XN()= zve7Wz^ma!|snLNo)qay5t^6jNLDiHRQfin3qt%hhUd)4T0s*aER`>-nb%Ctv4=*F#?xIS2DgyX4*F#f~9Og zhYM|0@iUF7(kO=TFrBp_b54=fGhnTatG}A!-cI8BMF$K*kRllxSxE%PF^s^4m2qP< z*63vpY0g=;mPjl7Tl9u4=x`xwu)T0f>MV18b7{Pol`b~0HpKVZf8%=-@$EmYSoB&( zN}`?%SgAP5HQolYXlm+Zf|aOf@vai(c`XVpk=QJYEs@w1&$}GKr2#FG8ngh*sG~Cc zMN1^3MUW*DZid=#cW((?A}tkh*s#Xtr(KtNiI)CY_cah*VuTCoFN?MsG28rvT-~&B z*F6xbc9~kJ-OtfG;IhNO7HVW2%&MaK%>IA_c0Oym+;CY`0zJ&{Ub`Atfh=u(W^i0^ z#mSg17tRIOF6QM(V`^6L*9x39ZJrUM26^tr5*Id*t!&={_n?>{LKi}gK{WAx zpNU~{nPv8kQ6{G3C;b2~ZeyQ8skn&`GBLG@3qI;8T4;z@y%r^H;h1YtIH4S{j@wTDzkH_3MiWy8(+RD>(sh5q?pX+I5Z!VNLW$ODi z31;efF)CUu4uq1a0jf>?yfXERtR|Uy`M;U^t=dd&B4ya3vIh~pup~xZkDLtFRsDI_ z~T;*Fbc8hpqhueAz=MRr8s5@8Pm?B~{#H(baL^mDxAdF1B7k`n7_tr3R zd9if&^}Fe)E@oU@>RuxL*68(aSpJ{7)JwE<8J4@ zo5AX-yBWuo@z~vr!AOtpW?XGo-IhM^Q2s2OID{gM+p$_JPU3b@dG}@R7KRwbc-Cvw zDRwoIPGwMX&dExm;M@1J?G%T?uf|rs7w5E2onTiN9VT#ucw_i6yIQO+;s9LLJo0ap zo>G(qqofwBNC&St1kiz3^q&pSG40lv`W_?Z8&i!{|3-0xU5%@pB8{s+k;YX{Q7>Re zK{I$LkLf+S)z3}e6(cp*TZ zwK75CA(z5NIwOUh6B3LB>gE^Ja(_FsnKxV&R@xN*AY#4`{^v{7gC)L1J?R81 zq%0@JuxGQpG_kb_go-!jbnUjbUJ+bnznRMtr~tQ+1*jw5Vx!a@P4Lb#JskKJf6+DW zkMZ^+-MWmzJ0)}%t__~B)5QY^9&phS@K?BxPW$swIJu$e@_zh9v#QA$R%y%)J&r&B zlm+GPc}>tpz`=_U+|0hx@qxRwSd020WxgjX|8c8~R3GR<{Dmv&(%b5+jPmLa+-XL* zA5tsRL)naU^XFK(YHxPB*rkaQCvxRuw+QTx1M6@hZ{8K2X>#XUcZ6VMW%2Ev@%gO4 zCtP`*g_A^S%SUdz+;UAsi}D`p-I0cAv{WgG;IA(Qk(?UQGfaNI!980(xxu}@VOmSL zlvePAyNAetUtSyJbn$dtTyi?wNRjhCw<3`oy?ttw*`XyqB+HQxR=8iSt44s&B-7ba zR>5E4WMt=c^T7AF-ZC3SUxB53h)zOAy2z3UxZE1wQa!Q%?PFLOk7VtgOFj9~|DZm3 z)8YP2>3vvBRYuu~Kt1#%3KAZ!fxQ&UP6Vk`F#^+*s34{){0H16Hakh?x)R*RV`ZPi z1(`*R5%ghM_3KQywe`8XSHkf?mKe&~-Ju?na&U*~?{9KnX_)U>J^+8U5A>W~5LTY{ zmAjb{va=;FpDZy(YdTD5K0YP4MQjk_+dGm*ct zO=!cwx}oy7Ny1M-B0AB)f^EacYQ#;m#7as)_G)l_cW?4B#aTWKdIZ+IiH zJ=}=?%j-zcp1k2}<_(}I@`ksu%<_gel^$yKhBsQOt3h9FbARpE)hkYWV8y*1E(~4G z7z6dH>`?hbb*V23)Z^oWmReo%_#Sr?dFF?q&1L2fu-qT7$w(qjDW-xDFC5oO9iC_Z z=zd4s!J2_bTVKJs6%}Yr`)9OL)Bd%;xgB!hkM2kbzXpi^1a0`JZfMMqt1bW%x=d6H zA6s{N{@bWU8KV!&UN8ps`J()AyQcy#84itFeW)iGRdW z+9n3& zLW0F7m?Dn0`KTKkKL?>egtarX8D8_UI9dpVfd1vycZYW&)Uf2Jf!Ybr#o^mmSIeA3ZjTu5k9mT56+>!_ zA!Z3@#g?nOTI^bvr-5g@Je?*toNzmh+vOj>!bZuRf%s-~eD^cq?K1I*I}K6JyDvRn zFb$xKsSC)E{JG+YJ6$yer<{0gWVCan9Xc4I`QHv>4VlRcu-|-R5W0 z-m>xp*z}4(e7zXH0)Vt9Z_lTR7(Nzg z--5kHNIrCjnQE6vl@`oP@fR(amjWHQ5omi4G1A-W4`OA7qvK6-QkdtJnv^IU@Mr?w)U(THqC7)H zSR&|DuV$@z6C{<0_jDF58L;9<&oCoYR=4ul<+9sEsz_zP;uy~q01j>G8Ds)_xPv%M z^ki@!6Y#Zn!aSG(33GRaIeBfIOI*i*gt@y9GhGJEwR>(BGg&2#zDS|JhXDzFkwX7L ztj8r5G9aNZ@<;#Rt43e(3ag~izo^icGa#XV5z%)RpR#ho{GvZ*Bi>UY_OMDC^Un(N z?+i$oe^!j={?MnP>@^AQ9h_k`h{n&H#?_*Ek~Sz}2x*pNWm9!Bh>x(@EQ#J68b@Vh zvgb;BExx5DxO>2_)C8ARQxn{m!Kq+^>r14HRn-JHAIaiBy@^!!K;XsWC~$TE+3u@Y zz-GIYNY!?gW}D^&aB~tfsg44%D3j`q8m^`o*CnwiKN-Y>yKLda1?^=6E0jI8tYTnY zZcW1M`7!gVBo+C#d})Ry+=&eES$hHFC@RJCjNIJDW6js|A(2O&$=Vp=SgG@*N=6S1 zYYmP|u#^VxZxYyCeZ<>|%f#EP1esSF_V+k(j-}9vHTUkg$1{}7Ue+j8K|L3e|;Hx zSY#BphYQ$TeXH7g+9GZ`oM5=wED^_vc!DK=ILD?Z#`-#lwzx|qW_ zBQJ8iI7Ni9!s?Em*9B{g9ORp!$v%tFdSP;B&oc2GYexR{jAe{xG{9?&jd&?;HE03z z46M~~rJi!Go=-_VHl`kkI+$AEon+-+K!!BI$S6(l0@6f8H_s%&OG%ig{Dmp+)!h?s zh;xi7lICwqn!h!`Pns4EC5_#oeUer`(E#xIlEXovDTp``4kZrIA#oTTB@QnjamM!a zlnY);;+)dr(4DXsp|9eduq70}^2|j^EUz#RE@oL#l%xDuo@c%(Ze~KztaKrU0E%}} zYBn~>VWGi!V6H0j!)C>yg)*;?r>Aj`oY%+GTHMF*lE1ZkEMQa-?aMh4G=d=?c$JlV!GvU-T8P&9BdZ?E&#l*Q3` zABn9)J-y(21CE=3orqS=!ldY%+)?gZ;qk}~S9+c_Q=KYfaXKe&Dbn!BeUm)aO1{05 z^ccbP2onyOH@ihPqDzrOmO>`XjVn{a>aS3TQz_KJm?DK1%xWJRjfGsFiB9Z5d1f5^ z#SG9^8sp)taozX&EQJo!G-w~$(&)n6i9%KlOYSOjXL#ad{!8i6a_W02@$$yO$zgK+ z2+v$|4h)l++juT#$E)BwnSviy3Jw??a~e9^Ddc;0I9&Bt?QBc6vl%<2+RE(L>s8=(roc+2K);^8cC6>t zx*c9whTm-IYcr#+`}RpJ<-Yi}CC(=Ji@umID~Bde6QQpEVdoBUDSrnVN@eBHyW1LO zrb}ft&f>&CQL-qsMLWaA#?CJAkHDBXWwK{Vy)>2TQk^!Hk=L3UfTdhhZc7SqYD`^h zj@19=jxb;*WQ19Jv*#D{ZorSZi%S@OU&z0Ui#I=rcJW8}4XPX~%O z%MxdXCEn}$-(0+9tsy69vl*U4AzNJ5!_;kzfF+;5^>!)on)^rM!rPlPfIA3@j@B41 zoN~h#Tj6sh=d%9?;rL5S^e-7_TJ&RqqJM6Q`iUj_1^sVJbQqMn(D!1DS0wy~)7MS; zapnpdw5&A6&pA|@;vkcc!sRf_!8FA=ZYxc32e08~97}n`Jv8UB}1^ah+tYds~V;=1RL%&2Mzs zLU&qx$Q%%n5*g2BB6_{vxDzF`#^;CKHTyKob7s`R>4EvzjM=jFJWqQuo6#kk<2Vt8 zg}gJ*Bvs3W_qw9YVmD@f%`R)3v`DuVh4*16_LOJ^Gwc!nDdvw?<6=A6T+d3DwnTk$Ia z-90ru3>0@u9X%{0!vo)!nU|0(;D>MLO6zGbmU2C%Dls6x1bnUPAu)!vs<(=6@Zm-k znbRPV#Z8`ma`%e#u=4Z&@iZ~ahdh*wc|ND=Rn-H5s#+36RWJe#lHWd<(6YYn6><+K zjQ=CO1$=zXR0t$v;Yv*TEiW&F5SuSY9rH&ru4IVh2lr# zhR~#`B8E|eVFGsRA%n0HCAYo=yU*@GARTZ-rO4`+(^5qggF0XHTx-9emFQ)%Ffv75 zF#pGcySd|yJ@W9gu)xccd9Qm~$*klyF=nq6wR;pZ9F! z7A#-$g2yn#{hANlZn9EA&(oz|s->US-F(%5cpfTy$x|$rYP@)-!m{2HWxW-FK(gKv z%X&)~l&lwo$HK)a(rD&RknUGJy~RhY1rZ~BAHpR$Ok=wx5K4~pp<-oEAP}1xAIg)j zdfehe2K+ZpDCNPOz!CUSV>%585108bdfc+ziiAeSIdrME=6TDT79&>fO?NXg;7vT0 zZNpTkYaJ6{?@yQ$*w|n-;BK6i$(Et?niW+>&J>R=$e9xG7dcZxDmjy#ITP-D(U$rg za5PM?H0mwS*TJGj>5Xz#iD!ts5S7|nZe0mSfSnmn+SS_YQZG-XU)9~!V3u(Y(uAv( zuP4OF4V|6iM1M^}d!5-QRXuPS9tb5{_mPqBdb)@{42ZUl3Bqn+Z#ia-C(+DI^*8mm zE8$2tw{b=zb5^R{deYNUVxCj;)>IWfdLwFX@N7nl!UuemsK0#n+W5s{4g;aV6SD#v z-=S-$cw*-zUZZ7!K|jupmnGptGQ|?zL|t&Aw5P$FS!qwr=Tc?G0oTyjT53_=(-xX z>NyJCBOT3lgqKZ@ZzU&v=y^gM)f6n(GDF%Jhvb+IFdY5OfOrsT9s-xc94et{AiMXN z4-SqIKwowI1uBfqDHh4Bf{K%X){IY6*=gD`DB%SF;qA@o8V^daV(9P+^PY`_;R)TNugcH8-&tULqHEw#0V6|`{bD3YNj$yZAV1ovQ z4%5p~G!wsqP4rC5RXqztU$ zafTKSE$#AHR#K_$C0%Nr713Law{)@UJR9LH2HxWN(vuvd4ZXyu2-e1YDNWwcAvH5d zqvKye1lk^~5fGa9wWoEEHp@D~r|S*|YlDQ|dN3_nFp1DUYKuE@1-2ozhp6)lrVcu4 zy-S3oYqtd-QKzh;0hZE`P${>3>v_dYN>}+d9jrR^Nwu$^kk0n7TEi6}%(J-=Y5R_* zDbHrhbUFYMEf^A@nQuk`0zAQK055y-lGOP$eS+g>Lf;%JhB=To3=~#k%!X~2dqX`j zH+y(_xWlp)C0kBGGdUND*TpXb~gPN(P{a0RV~^rC^$CU=(fp zljjPtiPfUu;JCX_ro#Lq0}L1RElnE{(mDe& z;!Ox~icAexC$Z@n%y&CysB0B1u$IqvOFo*GX~M8iA3{yYpgR)ki`ab=>KvlH=8mwn z(k#W6SG??AVAw{mBD@DYG-MnIKo907Xb=j}QC2Z<2yTn_b0ZWuNv zHCnIaMr6<{xgaDT^pboyD9QUd$;JOilJp|ZPfGnF?iEH(MI?L?2bI-}xSFjf4zCT? z$`~Q54|^^Xtc{M2&1>l5>I{A2o48O#%vKt&x2qQp%TQ0`m<#$~3)1O{T+A=nj^fXL z{6+C+zg%^+X8f5X2mI#wlE-kjB1P2dHh z;$h}5Ef22$c~0EBI9Xh=ox-}j@$IaJUa>KhUK65riT?mJ;z2XfhtiheKNwR8G(rw~P zjaY9;*n^NO+yt!nXT;sd+7io-d%B>*(ANld(BE!yVQ5%vZTQgY#tUWVJrjg)vRaxf zomY99%c@e?T7K+2e!{Aa8f;dchrwnO(&UC*!I+?B93{kU+6Jmw{f6eO*(($4G9Zwm z3c?+oZ1CYMFGgDNSOFozycVHWp8h5aU(?AI~y|y+^vCcGxw^4U|8ek=BoK%@``(Q0~ zAKu6=YX~1HXN1%(A6`JWeBQb?qn%$hnC0agnTW}{JRc8C;k>YA8+EULA!81F0=CsE zCk4?5CBuEKjg<`d4b})o&Ix$N<&&sfNhFv=vM3{^kMW`wNGxXV+P z!T*4N3+oPJC6?0c+G{yVfqND>r4+d5Su5i7AI53p%pkg_thce)jF0W7G#;=qWxZuZ zI1=U?CzuG8S_De##JmwJTf3L6FLWsrGqWIAuab+q^!5wgHI%Q_t-qXVI5#}3RY;Aqq zXM~9_v6KSUOqn+{CDqD@dze+Go1+KXs!PcSG(Zh1uZA?pvcj*Kr5yo-nt1`#?YlK< z%c7_z-a-s&M4|X=o&l{v`f(FT(4|pEf`*fDRsb}0^4m;CkG5AoL)4^gEB7sLsZwor zV{O1+tW=x4o>w2AwdJ{Q`}w!Ca^JFc6l=}Ow(9ZPp7P?Xlte>JX3a>C6S9;ZCuo3I zkMq2GyjR0$U^eGwF+Dy~n;!4XB0U-t;Ic7{%8Y_iBP;N#ky6~g!N>)u(Rzi&TPiiK zWo@(?c|EO0E5q$3|0b3OSretfv00V|C1@~PZa$v2MjT~LNsEUpEgsSUrA3FN6t`x! zN*~lP8`$tp-_Ro)WHU`hWUIXZ=8^b_3DVlaDNkg#ltkM(h96hyPKj6I%~ZJGf?pX; z4@B?b=-VswehyEU;?HH#%g!3u)mz{J*``XoH^?8mb*sN0CviRb>;Z4W6IVd_&Z!V0`DLRoF^V5|hVh?Ufqw^T0j5No4dgxAw9!jjsS`8TuN zgf&xcvftlLD5-5ZYf5hNPPXc7?`VM6P3ZFeX3!;G-ruU>s>6N5mAq5g(O=1Qdw)~5 zid;a4A{V2hCc?acCc<~Wl9VlYDbCQ$mDzqi|Ln!I5)s`_yDkY6(M|~yp#grvv~H(_ z$<%NqOgaF3QMhwEHMjKh7!n5d*C-4F9TJAoQNr*766V4iNjZX-k}#s3zc84ucIy8} z+j|E_RV@#|-Wx*6y$J~+3F&n!A%#w82_T&idWX7jlGiy59^9|pGvcPfWqMZ~D_=&ZqHS!W?=x@nT z%_-x1$&Pl8bq8em>Nn6Gsrn#`Q)TQ;oY|%g5os74t=X{DT=LrsNTegRG+LSN{1{)fi66QI% zcLL~|)23t{BBM>odi+J3lJx);KgZ#77cfgGV=XWG9;9>;SI1gLYmb;jqq!N+Dz=%W zZp>x->b?gF8*lkpD>q>p=l=Lf?cE>|{G|3i-&%QylPyjZrQ5XKtd6HVWR zM@g{^84M5ktVNA#Ep_1Vt)&MBQ6hV;#i~WIN>V`sv%pQHE3!4JARY#d?|vacBiTBHb!GN(gu85*3ib7*0qcY+bqkgUfQ5L zdi!k4WNiUMZ;pxiW~m!n{2K1_X{)YF`7hHGaI!)J~aN>6ImxJ87B zNjYy~9VzD^{-U9BP%4LI3n+jvH&1#!7G&%J2LZB_Ua!&v?t};2i5j|o8E4bv0K4my z__N5;OTG`1gUti+y(pPo@4YA^yB-u!cD>UG_+$9TlU)x>Sav5 z9mZeu&S4Q=Ez(uxPk5qFR~nDw2{4^l55`S89Rb{j6B$jfVb|~{4fEN^>HOAWNJVOC zV_aTm}$ zZKQ9JlZ6UI9H@Bk-k2eZp3G1o0fR)wQp-d&9;m6ZMu?y9i`k%O@iw%z+4$jjUCd2} z3y|XSurP6MYfOxiBg${K*z_*EabCBSDQd?y(ksaPp(IT0-3A{7WQ)*`!h-L6W>}Co z-X+W?c62)tD*ig%BB)s=cBerTD6ibIMAmXktTzplpJ_cPyhcl)8B=xG_V-c@5XP;h zA91=e+la|g8LdQ*6_&+ycpAO)UP~(xdcUP>j3HA+Qp-_^(3dmDi9;(b9pD=S*H&6$ zf_W{SPV`pSf;I#+5PNO{hHicbvHRT;(SrK z+Y(ukwZ;;ss86?%;T7<|nfos3zhi>LPp4W85vz`*>SA!$lr&MAG$l|JJQffro?UBk z1yr_C#lvl)Tj?jckjS=hPKpCc}rB^4%>zU1f~PU+@P@V z8Mpcb6&mq2kF}BUHeQBgc<7IU`Qzo^u{$k0b>2XfD_NbzOB*a3^#PowAz_w0eHbq} zG1xXt9ne-Dr}tqs?n&sy`dh?EnKEYYEExNLXC^0#+}A9i?7J=f^;ry~*cp;GHOdbS zu9uClHkRsRS$J7 z1z=?j7fhcqt!U~NSQW}o2R7F^0C9PxHCgS^789Xoi_#2hmM8TH_Lc8qzQkYnr#tn? zQlJP@kHmwVyq&{dSm0i3&c>x?%G@L0@M4JMNccuGJM z`k#OflaEL`Ai52Sq2wcC^}|c*Gii-iziCS|y1*19@p?NSe$H~jXtlckHp|m`IJR@M zNh@0AmRa?pL-)eu$w{KyIi@^|WsqjU6521%6q_HkoYK4UCSgCM4pKUa0}sKCYbRC# z_KXPwDGAAlcJSBw7HRq@))* zU1>+B8ahWP^1ik?Ym`I^%tzu~3_j%`rM*NWGOI3`OWh02cyA@qn&w55;YMAzHI3y( zfG>v`eD`irJF&mnC&@A`Leav;yzJVbxY!0ifJi7of_{+; z2NyO-Rpg`W-`i1KS2$NT7@HYS3b-J&c-hHDqI8=*NbFm0sgKdiMG)ROUw+yWt$)Yq z!!@v3PWOy>rw*6{6UcI z11)yzjj=&uZ=kJ#s2r3SEhas>ps7z~*6Ws7^$GxlWDEMwoK_NdH5d0k{>1(HYHqoJ zP}}-#OxSfY-XEmwf8cbH>>+oQw=;6ykjZ!OznOwThp*FL=cz)0v@dVLvPlyYVB;FN z)F4w6@dqs@;62l&gO*f%07p;ra3Ad5S+2JuI?znuEYlySbRMz#(TuYMd74OtGYtwr%`cF3IG z0a7@aWufm`;?xH_P%;PoVNL;w@)!8B2D%+iP@a=1PV z?>WizIZhZct#$MnN#8IA&q}7%*p6~}gujtt^^10bVuQg$q1fPqxL6yp!Ta#{z(_yN zlIx9jGKE8aN14JwFF@q(m7JWo(oSnMrK8xH-YPHtMf4K*fhUJ4YIVsf>$#~cF0c+3 z)lXP7QF?ERv!c%_%SlCD)KQ)_!2jfvH5Dn{MZtMXqzKKnYM9C)OzbX-ix=dWt^Cwd z60i-p#4HZ_L!3*RR`2h~9D-f&2RH<^dtz=hy4W88?pWoBE%voHG^$7aJ2?(XPG_n^PeyU_+|&=1#(IQ2afAz9vrjw0{5)p`9kDr1W>-vdQ`B4;oZL#Y=a-v9} zVV!(T`hvmVxsH?qLbqT8HX;Uz>nBXuWM%&Z=R$zXElbLGKu2c!Im;DgptyDpPLcCD z5j1`E$DVAjsEig>|FyL7mZy7;h9qNeCpQwCa$rncKcT9|0%#2fEIR=bTC zEejj`3&^5;9QqTSK$7}nzEUsuBX!e?0lclQ%cIwvkf?T&NjmiHoFK`h~u@mTzTcud)BE{+1;<3mpmx3Fk2fvJ^FC`)Ka7$=nTI?@Sc1fTi=9G!{Gt*HJP z&Vjvm>U20c>{rViJu!z3B|OT@k7XqWkh1;PW3@>7#}X_;FWRF;QlNE_-kRYN*>|K4 zQ{YL|?{MCi%PZ(~G$TiT7IE)$aqZNC95Fjls;s}@f+K^&FyD_Y%Av;~`VwAEr*I26^wJzZM?vMKsp$Z|`l>H@I9D7M z;YYZxRw67Ia$ZN~c#a&i8_`iCBwA%D&uU2lGRU$-Q6RWY`fzLzG_jzlW>@U(}f8i9ECfm8QG}*3R81MwM z69e9-b8Qy;i?moT=xDK#eq`$UIY&m5JsV`r(`R~N#LJASohg<~U(9Q8gkuf9pV8Oy z8kCkYRotvwlk};)f<}yA{Bp#6?r+5G%sH7PGIzx_RCbE}!Pb`Qqrfwcm7h^?e5`!Q zC8^wE%@9>t$@}%EI0-m6$Di@-xr;YBa6Bb1g2OT_55Dw<1`9VW+m^FWh?AG>p%hZzat{?rrj1qS0PEn8VC zUQM*NRu6ZPiy38ZIRY4QfSyOi@&WoG*Yw#9nOSg0ZT(C?$r+#l`hjoHDI?xUqs<=!sECS16&`peg>M z*`R6H+Ghi#7H5M~7V9fsvw^&7K4rD8)9nb!Gr(|3Ok*Vm1=q)$gB^Xi*fhRrxcK2% z-0gaIhDYEfEqst;r^DJ_AH*y0T37Adm4bZqal8gR6T7GyqV~XQ3iavG6;maQ)fe$* z2q2)itIV#V-@>ctX1LhwOmRYf*mt#u)BYM)!@=U~R#v-WTnO`S@-yZ9@JtuQ==`Q$Mdcr;W%e#Dq51R^Cl9 zy^8*mZ&QMMDI1cQcoBhlRrJ7a%xaMc^-x#Jsp4sy{ZiZfI0Q-JG%~4p@dp>gEA&(j z2=9jVBrKtQ5NI7Dbe~kab)z&YdahSnd@|Lgo4E`r{Y7#|Yn$M`h?Ih%@PeIEsC4W` z@9_1u9KhttmV?x6008f$;qd!%FKb6p7#$d-#&^R*LHLvr+}C<*#N%Q|a=T#U(#z?! zh=pc}b@+>BiFMs-bET(rw!Y?PZkX1^xX&F^?!m}_;o$1Cq9$Lp4Ee#h%+ zB!kB5SKZ`zg)gG_jeiD<`B2@;$)%x6xlJyxV)=l8a-00#P3AVy|77*_en9<|8I{_g zJ2@Z0Utu$kRZ()2D`ZuD(Q@kYk=+`y57y5yT8yM7w(fw}y*z;HG$bIqJB;?fn>zJ2 zyy^tHW(5y4OII_yvoQhlc3*2-jZrU>`dMw^DcF~!XT1Hhb(a}UYT_H=#y848zF{2S zf&7O*VT8`H4^V#HI?_5$PviCEdL-oMWWiT*F%8sBlLJAqyJnv}ki*T_BKM+$uX`1z~^^_5&v^?X)}{u*yX zZ@DVO&dFAGKCiwFDuZWqA%)n~Js;m7lJkbfhnv!9EXOe5#z-}9-1Mf)iyA126fu*n zt-Kr3o32NYfFA0Dx$+CB;Zv+j^OIvUMPt--xBza;&f|E-K&^*yX4^wzX+t&byp2qDLij~9);)W zZ}JXA>l>Wb_x;gI0eYsrg-CmQl|w3?XYHzcm7vho3WN4tChZuZ*Mbi}#_$b789X6Y zs72Q90aw9{!v5+UO+OCYt;!!snTuP9tefs{ARhQML>E=PLmP^TcT_eJNxdI#q&Min zEzaX4C_PNG3kc~UQ=c_+aeY9)n;VPll86ZL@TVb-5pW|>RcsAowrB*i|C2`-+chix z%##ai($KIb2?K7HQu5C!MmR@^BPFo8Nar-;zCOZlmx{>?tdRCChqv~b+Ki8r^6qj4 z=QFHZ+UL5<6?_N+q!oN9{-PCpXph==`7jH@E`N%6WwG^u&->2ZJJY(E&)?t?kuE9+ zC$tvvH(77e=W@cyyPw5M464fN`w-JS3`gv_Jsiee&T58Bo(wJro4}LayLb(q^ez{Z zmstm>5BHE~g4?|sc+LbLWHtq9f;KM)$CDj;(JhV&Na#p#Ifp?rC7pO3=ppBigS?u? zMzL1kb`FIT*w6P&Rbv)f-#WaOi`-XgKugS^IF9 z215l8yX|!`{sJMa2W5<|HDh@gsP6I zflYZ)uC-STD!Ha3pJ%%OZAb{}PiPjeD-|>dzJADO=;^#)cVl}FK>AxRytNjDE z_IqloenT$+=oxExO?DNfY}~;G^%8j%)^-{KG2B9#TkUsjBy+2&fQo!3j!M4q_brJO zm|sozDkh)lOGC@}b@F3C8M+@wfCKcBdU6U$2)S6|B?QW@HnEpX@1qy;9yHC3hwsLF zo>W7w@ES~&I4r%?(U3?U^84t+d4D?48Up>%HOhsqCT)gmBzSWoa7zsWDXH3XKp-Yn z)A#ZoMBuZWz*qecNLkemqaOJA!jlY;%&MmIA`HqMr2fkwev3&w`bN5!(Lu|eBDZH~ zP$ai{CTH4)Uq*a1YhA%#G;3V}u>S9}e|yOKte?5+!o${)x^^S<_t+gC&^KZw2Hvt) zuE%qW!h@CuVpX{#R$N;SV>p4~kxO*UjdF=j=QT82LJeKs;l-NLMHKF|rt00iTH(D~ z4)k|hm(o|{!7ZBC5>3}?0E(9A7~b7nq6=@7OY{_8O{OuCL!V2~{jAVPX{ zdX#nI^5fPN{Z=pF9v9;lhC$tQqs-L9d<=M=fSGy#1vvp;C}s~)b+4*Vfc>N2Gmwd-hS&4!7dK}*j#%CON>(vapG{ql)rzPp_y+;Q=C4dUD z#2xR%_6P{+ZOn9`y@4ptD8kuW7dxMWcZz11R!na{P905m01}U=BK`2_`rgpqhu+$| zy2ol)JNA}76eWY`1mN+`@_S^3>+lrkjdaLM3|S%`)L}$FWQ26sAAgY!`wQh&aQgUz z0QpYl`*Q2^epL9)^VUiFR4<9(yfTTE7--A>b3Nu2dU<`^1z+;4x;cKHzJ%eC%3RP} z&MWJ94f(SRgz}Pgbifw39=Ce6Kt0~$tH&L+>JibP9{n)tD(Njp;n?2hDD=FkI{Ume zLB6Sa!%%5KDtw%6pP|wcB#NtaJg1UW%1aE{B1%%}acoU0t;AoX(n>!nHCG-UBI<@V z6M|y5cN!S+g$LRh541DB(6lyqT9_pIy=LtyACeej!woI2jZ7L5*TzU10R@;eV)Z!$ z`VIW!Ng9DAENKMRxhSrA9=_X}h5z)x5Ks!4jl_pB^rY=`{6$Z7PT*ZUy$49dyED2; z-GWyUbVqXl&lu^Pa|&!ETDoW-H44{v@|0B^Jv6O;h`(rvjztnC^~P)tvqaK9>m#b( z2e01aMCmxq0;hf_j)JFLZ+s7LRr?B=?U66Lc5_$+hIr<%xm(|RG;3pyr7?5z&yBU29yVu*7x%l(T)utZ_4LJe zxyl`+Fqu671VDivMObD8dd$J!@D)$|2%I1ById8Uj$4~5-pZoqx!+Y6h%?W}1dCQpqEqy4yf-=_GcRUa-Oy@Wv zMR7&UXnk&tX0!TIYFvF8uc0?6P=g=p&~N88<{K2KrZ*@6pWdMC*@|DDH z`W{|I#64_wrY~~%RH%PKw=rOBeI7U*UyKiGn_cM zncAs`ViPx)bVTvmS!?~t(0wsQ2#T;z?q@{Ur~2SEQpms;#>ziP&lCSY5J4eboGf6R z)~&kFImQ6Qc&MP&bM&4d*3mj|c0 z^zFPOS;(fVb+Qm#Y}AJ&4s}XDQSzgu2Q1teCG^C#OIAgBd+TMZLqEjvk$etv`J9mQ z@fkoxQxmg9=s=M6;QLQB68raBf<*P@3`y;4U#b1aklHI!YQKufKU<6S zUwOxROYJ8^YOi>tc3?x=(2A;Gts#mU*I&l7C-i4SnFJTppBa`N{s6-YVTJ{>fw&YH zohiUh->q|H}B+mt0o~2TrK8DzRWE^~G z6~$RF*%p4^d0SnQ1i-X%pI8u>9I4JXL^_|-LL$A#SEO?cerFjXJ*wJ@^?&hx^%m)) z423y(1%>zx47ANM5&;ZK?1^JBMQl2gl%~8d3LDxo^kbY7lICG9%}@MF^TCmFSVLlr zz4q988Rt8OB;Vn5kR&hoO7ft==6?8}h5P@_d)8Z)f0{^)iSTj;m}k&8AyHz}Z`L*< zV^&&2@#!~7a1MDCX0z9I+iW#;fT%ubNzvi?pSfz2Fp~$ELmfVpGCADVM&~0PlYoFz zG|(0=iszoxMB&@@oFU@}$iW`ZNg;XWVF@4XF$3gaj~YP1{^}6(Z?*=A9nO3ssGs;> z{V!XfjP^hNr8@(FS%D${%3@L4%x2MV;v|qX7IJB^SP3V9*`Uxu~XI?8NZ?S0p54p?sSc?p;= zIfkFseG|Aj)3!?{T{@a*yQHZ31Eq@y|C5W@{VqtSGWMUCcA|7GI4uz2|9Ze8;D|!{ zmvD|yr^*7cxuvbM+(DEM^y?tzi=t8+5904^vDL+o2g;vQ=MNMu*Q90Z^EoA`=Vtd{ z2_M{ZP|iKnSp&_O{aw5lO_T}tI@6*&=0QLKz0(Jh$0)woWe=*Ta@Zo321fy(4Aei) zF_YwuFv)%DM{;rLwz{O$L@B`#ENKO)$qsR(B&6@LgbV2{$-{wxG7kS5?@@07UG)I> z5>Ua`;YN74^zI%>2@!=CEf%q_^$ed1TLbGL5Ml1b1iKD5fIdr0+8}djQCq_wzS|R! zVZL~-G%i8Z!{!2#1{q=D@WZ5lCYN4V!sQu1NUkU`gV24vT_4T6)K{SD2ot)OM7tLi z1XVQcXwwyS^`Nc)wWR55I9{54S8`!(@FOf(dh*4w+u~Z(OISC9uy)2Ix7Xo^kFXy0 z71k2TjApwawT6;MC9^+ApjGc%zy4y?V{Wo5a3`3G;M4 zpNWcI5H-%1H!d-}hRz0|=JJ!Uyf)@Fbb0BAJXfQ9d2Lb+@-ohz+QREi{YG1s+A&|O znQ4ob@#mfL1mZrsUHVsAk23TZ%J3BQ75TpFXOe?JaNZK@@E_bS2YeQ2FZqK-UT{y6_@x zDJwAusLv-EVa8oAz$a|D^@+3+eIo-dZ_hRux_p?|kS?Kybh&}okS_g@=(;mszD667 zZ|kMM!n+W#e}g(5@ILPluOVZC8hW|+5wF2M%D;uBz?Q22n^*iV{B#k%0H}7`l1As3 z!NG9Jk|2^B+G4<0j%_HicEts%KN}#JqRnKK8q-}K>ELEG&Yseg+ zChWzu4tf_}L%Q`tsH^i}u`?M`S)H9>o6*S7saP}Sq(gLX2KO%F#q{FP;@h)?H=*EOUgFk<1vKRe?%lw0nxmlmldCunP5^Y3rc2D8N;yof=&r&FWKx#m(w14xDZ~ z==>7tC z=fF@W3WLmQ7y=}-8jiontcDlVJ|!Kj$eM41h#hWGGF*IPk!_?tkJCrCG@F$e$m}tHAF5yFHFQS` zHFQTBGz5roj~(#fj5vL$raRK_pxKn{5puOZM-L!i6!8WS{ByFt_S z>uBDLu3v`_F|J={@G8PO-0Vy#0Q^YR^=*NS!`ojL4LRQJw#K5M)YeWo(sLqo-d2YCPWr&)h@U{S>=o{~w(lSCUSYvA&|1C}@7q{;Mm%?$Ey)8Hch2!oV=I!UG39zONWuS& zhB7my_s9*fgj_SwHwFKv43)wEXRuir-6V9lQmxdM>vq`af={d@S99 zL!igf5dZ-nOE(xQA4@Akac^%#{(F&YZf>|$Fk0!+@l3=(6U{9AMH9^|fDP|EeJ7gP z;?iAyx29L`wyo3Ga8hZaS;3mMot3pKOCR?d~KZ7o4xNiZmW2pb8q4K%L z;VDf=>w9@K8oAF7mGi|LyoLZk4b2zt^BQx$fNGjA06qf1vFwkW-TR|h&WtRaCe@I?xmRxrK50(ru50|N*GqbaZRFd3Z44bWW&V}Yia_pl#L zF^BONO)-bTZv0F!v&4YMZO00>Z|06Ps9# zL0f%1=j<%{SwZOujE#Dso&IfE|4`uyN??FCxA!}<>Kezd|J94;5aee}PP^QIPH zbb7X7xVZ$uu4eg5@Nw94hTH-avWd}uBvj$PqGnFOt>p=)Kk>Wb|HJRxdx(17F$Q@4i^< zHi8yM?Htl47e}$}$1%y^J>L=|c+aaC9JoPBI6{LEO$^>s zfiMh^yEa?~@7=@+BpEEi5-%B0@ZLQmVDT$UuxY#lzP400F^(RQ9O;ZBczy}7drFyP zsjx+0OZ|2Z16@*OJtJ|E7l}p;-x1!0=zO;ZofO0O70^jBeBbaML}(Qw^rAmPDTePK zR0dzkKWBi97(QM^F?`CWjDdGe1}Kit%lu52nwvfoIjwh=kx)X@lofx`G-VxGW4)_@ z`vQl*LzBtx+5XVGV^_C*)4bG&m(aY_eWaY1IX&#^;_iC`#oxS!P<)Rl+UwdVrbrVy^yAR8P9`ta(|A*Yo-|4_(3;oKUIl6< zcgX0f=kgi?ANu&vo)D#NLSL$n;f)CJ2m|m;UPFMPhBiTqd5uXoR3l{7HBxSZYB2~} zR@#sBT2|&JLT3NFTgL~hTLC*d6-9Zep`z{VlL?}_b$nR-IFun@U^;T4(za&s^2B?@ z?kai608|YUUo5TD=QF{`@7EvVJeq6Ei@ccTt8y%%c@>Nu))q@eQit>jihi88#KlE{ z7Zg>txZoqKg4UL&1I~>y;tJ2RI=QZVD^7f6i@$g8UkUQj%1B+nkUT8$} zHg1vZ9wqkQm>yS=^sQ}%qG$3xWH+UQliKOLqnvdi#08iZrM<^nl()r>OSVi={7v#j zy?_It1$*FVxnK`uHHJ`UjfQZ54MjGMRmq*~jL~c-yJ&PR0#&DsmK#~XL2>pRhm)r(Sly-{q-#zrH@37Bs07#CX30_ALX4$qP&eM(F%}glA`bB%}rtQJ|s-F-)OP3 zFf~sK^1Ob6_ahk|HDq{{)fi4s;K<7sVDUy|NDM~BhC5DyU^=LwlKADr_ zVQfM`Vxo}6IH*=>ZQ57$OZkTKW$>7YIW}z8h6Szk^PS?R_A!6hwNJt zDONp|km=nJJ!DmkahrbeHQOHj4^9#B@{7UCFRX_15;j)y5Kv;QFAg-cxAUHwDfPC7jb+vj`utmy^4veD;}(3_)(7lRjJ2MEu^-$j)B`AN}n{o}P+CRghmXDIVo97_I z45lV|ofA!~@T*wDR$(K7+b3h?%yOD{piRRmUoOA#qdc5k6bRpSD^EYh;m{5T7WKyV zj$-e0NVWUwSWc#~!wDP5OowO6ChtYC z+{0bP@zAX>FEONmc<2D^BWz8=KZUES@5E3N2a3-=1!y1wUlE{x-Dm zowpWXyU|k37%#Oz=`=FOOD+73V7V6l%khvFc!?nn#6w!>jx>`Na`6{wA$NQ&Ltt{U z{S7}_n2}5H3cHbJp2lCKnWv>@bp9R+Jt1SR<8jMwxS4$^EknYoyk%#D$803p8t|9Em^UF)!X4tAEsJJmjrQDA>|C$S^lUY83uh?kSO8&-R#3VFsAKK4zkqdI#_qy{DRnFAnI%%rX2$&l;BEeIZ?Rp2kCey7<_DCv$WL-5xjfbZii_ z0>>Rqtl!};8r%iQ?+9_Zm3>WP)EQ89AFS_cAMsYFd9C$du$qK>X}p_@iUI z7%c{LpVu$)QcdY2w*Bqwc}hSV{ z-jN~AD{k#(Z>Xq;!9Fl9AO44+t9Y?mi|SP|D%ajiQL4p5dG;Lb3gh=|o_(rv5m}YH zi12d_V9YgHFnz|fqIr{N&)?#@Iss!}vc+3H>=kv0pmWohpkA0DGRHa{+69LGK$;`J zS<{K`;h@OjaE^w9C=F49)Ndwu(yo+gso2uAoc!=N5f)!@k|xR+8R$kCSKy$nH*8cu z7!<>CNREiCcT!s_2PM}O$iWN*A(F%Y<^+tnixq`i7ueO&6Gb^pAlg`O3VM;Ps3Rv* z7UH;!sN$*q_H~N7YNFIT{ExwQ6@Lu04^$dF4)luM?>RbZyBOuD zb@kDSv{R|6@x4$1(N0Z+u?HSo=0iH>8*UK$Q$86jJ|1kZOK>-s!Hc5u^CU=}Q(({3 z9%00w4TQgm1zeF2P86G$r1elHO7(v~#Quf=uCwhX*HSicp)=DdNS+ z#-iy5&6bD?h8*u0W8bP}Vkt=J!D!>DAlbNuqo}N`xqwW?!jQ`nIg@OD*vYu6Bl1W;b^XSKkLQL7F1%2UbDw z=}TEqOE*4%z?}stNJPh`C5ZV4r)Ft^gC0*f3sew8BUy!spgl)0LMvj8uy??m zLU{GtHLk6;lGRXm#H!5kbf;Hq7?g6iD9&_5hq@jIv6eNYm2v78@MX$R2R7GO zH?g^eBSoD*N$h;VG0&5P346&c)6+->{^?G_^f+h)P7~t5lDy}>Vk|JmrxNPS5|o2! zkI4qCOb^+T1?6CR1=z$KOxkN^y(rmWpRQJb_#g#S%?bYPLOPZTCW`1@3doY_nD&f} ztIJ*lrgs`jA?lt&Jez{g>mF8v;y*@`_^ke{N#g_oVG{{r!j1N|V(&70kV4MjAkp=n zy3UM}0^JJ-JofD?szcM;1eusc@<)z*y&4N>p}%($-37waZndYFKQg6A3z=*xU`=yp zz8W-H9?%Av6|f;V`)zWPC>@ouCBQlv{#xH6O|zQ~q!QrWl7A(%o-EG>xe`Qj%d~!K z(qws;1xWFnR%1v--ZFbj--0NSJ2oZ7s}vT4ej;l`K%m-aG99a{4dDMvwhXaix&3Qx zHlvdGn{Mzo-K=o)cWh?Nhw2)r&rGvwYt4F`9@~o0F+o}C>e_g`YcgHX_!wH~)X)y< z^2zd=X}Jl}uxiR9{4Y_y+McRCVb)4yQALQo>604<06sA!u18n( zy~%XktR3-1ai}&FANkW5-Dx2Pywmb!M&4=t2q^JROS{BSnbP~dHhh0b>FHh;f?0;) z+vuh1>~R`HCqUy4QN3$Xx?)%jQ>C;TpMoecsXQr5XQhVx-(PQ^r>0I3oo}^w(JWKU zkw7F@KN6m$CQl)wZeC-vkU0fdwKmUg?&3rP2y!4xJ}7pI!k(3lw%#`;DB%as>Zcuy?g%V^wG>7GZ!|Cp;uCau#(vW{Rf z*I|D&%tS;{vD`R`N#E|F`MjJ_Vo3BI{8jKbj5|s(?;yh}I^C+W^#Ch3Q zoQDlA4^1^Q-DwS`nS<>52veCR#{r;m3v=_jw4q|pJN&1dywaf+`paK)aFzJgqd+m4BYaXyn zlkR3c36NQ8N-mo`Pz8a@%jjQj3Ma6X&yn-NlE6JBu!}F zghYbb+HVw<2Q7gzd)t}HoFJLj&0Ue8+#*U|0-tUjqmHCoTAOt5meTd{>B=v~XQAc> z)>X&_JDp9ya@HKNw9r;CVo1h2d}VyIA>$<|R>lA4}uBKGtNyAFf;m?4Q{ zj6jma6<l!Q864!(E2B_Tq8P6!f|yA4*vR-*7yQkvNGUA#|O6H#?3DLTM9 zT|O1pV880U0;f%{Wz4mP3K(-fR#7+sQcx1Y(9Lkjw*Os7h+23xvwi~FpVOv^GF@6q z5+ji0(+dmuXpA=m5;I+9{2Olm?Vg<|p%AzsbdGj)3JTE3{`NcMpT(0jKaP*Qr^d-*5ak&(EAaSMKh^yht^ACAzs&mf>wEU& zin@EcJcx$>@gQ2cm$2XvJ4P0L`2QGkjQJJ)uH({V=4Wvcj; z{nk3npeQueIzwFk*q*Fe85JnCX8o~%8(*sADQO1ffYT@Ew zA#=WI@WV6bk@z0N0xrH4QhYbhK%2W=t6&}KExs3}_-^(VAKZO(RMaywFw>h>#qg2r zKL1~`yC7xfJydDoqIo%Y!^se_`o6UK3GWjS9_E14;D@*HuKEh^BPqO-AiOTN{aWZu zvjYe(Km1?5Lp*pUt!VIy&}~sPU&BO3^Yzm-0~qu5uIV&iNBEgcUH_`salzhS@!HkW zrAPJ;_9fbAMh9LM<>R@*Gx6YizVf(uq}tw56*I;0C5~j70q%Z) ziYMJO5GuFtAq)+jbXVV&_@cI*m6Dk+zhYmhKV+7|IZ3j0jK)gvbf}m7HXDQK7AF#k zZ@wb-BMf?3bO3+R%c292!rX4vS7BpH0rza7{DjispY7jq9ag;di#=Y^J~QbMq`!~N z0yo04uj-}0?IO#O94hvt$3}=9J#0g@izW)D$qR-iulm-KCND@$USO3TO-A^k*>zsz z{%N12wU`BhFmDGP0->qRXHg8ZX7#Nln}S-5W7gXG*1G%dd_N^gYtCvtq(u59#W1Q9 z(x^1LMWIx1R&k=j4sTjcp9m6}yW$$ELuW}t!&Gnz1pNPPZyt9ZdFFQZArr#ozwMW_ zv5XX)4B|fU?J|nBz}Gp_xELU}u3hJ)aYdG34>GO=_=}8d!7Lfq%&iOR=-%OjnRG#V z-yX*mZf4?H#j&!USFg<@#OEu+ThGH5xvuv3+#xz1jz?3N;ZoUxZh{VG;y`Gl4;@?BW{hNVCcbW)7d}^*;gq3BKr!R zUAuiD#TYlA6YMzWWni=x%?fes)Eo%N80%zF7PG*OzpQ?1(RQ&T;FI93vty&hhET^g zE!V^#ZK>d6Yq~O9UNq;kO1c8>GFx5&k7pGiaEHJzr2e&D;@E_ z&SF!;pr}Yc!gX~3+KoHr7}2eTqm2TuD7(5ywzePKq2)<~RdagyHTa1A3+a||4Qni1~YP{~7s{RSm z@_VJ+*d>!7eTO|fSIU$G>DSpZMCc+)BKzLTZ$m}V+PJ#B+X3%cT9c@*PSLgRP3kIs ziFbUgXsukPIpeT|mxX~MDajGo+=?|M597(D!=;K)`|=DiGs$r)BuluMdr#d5UcRSbN`{_|wVbdB{vCnUd_iOP6}*-a!{96i*|5UkVA86g5w9mQbp zOHv)J^*JVFLYON4^K40k2(6frs4Xz-7}hyrdYWU1#ya|9Z7jW*nci5JSsbh3qi26w z97FXjCS=a$gJv;9xJ3lm96dGG#}{D}iExt#Aw1T}7K0BoYpFUQT6{xlte9_i3{0>g zeA2;G*@Gz%t?z6^7rDqXTXj!DI8G>VVQ6_Dww&)3%NmL_sUZO6`U@Kqz;pXnuepW^ouF?fzZ<#*cPK_#wmf zn>d@{_yT4IdUL{B(3=ybN+?;5A~rKv5hKkE8FS>!KuM=w&vJB)`wiLTGs9OV--2ca z$~o2EB-)r6DCbnKIWp&z*4wPd3)30!p2q*oP%uY6Hp##ao|%ENPj!Ru-NCn{)%J7f z%?M_n%Bi2kU(wr`bWJc)PAz0bGUe1t-~v-lX{*gD`JREUx0g#^YF=;O0sUn5Db5XL zpK3NAL6KaIVZTu9@90R@YhvH&#{QUJ?AvR@zWe`%eMgSN=8fHxhDtlgFyllisyl~h zD$@08c)XuZn2AdJ$X_Rs-^I~YV@%TQ5MDzXMRRa(4GHcr6IF>E|6ErfJaUTX&yks^ zm{qz*qw6=9oCB^RAv6d4jlXCP_#12pKW5AwZMltmqMM`I-!{FhMC|<0K1CEaNsSPf zmRK{ykX*+tTGU(s$z7swv%pPBS>3Oq1ubHL(Qc5jDG zD`1uXuar8NX70S@SHZD_S-eUcaww09v zQ~7aCef!XWWBuz~`EKQe);x#Z!K&OG99R z`Wo?Yt?y@uX@LrjPaUhJ&Vy#=syayQ7@txXr;_AS5Dd93l1zxS4~!T4DuO0z9nE6- zaH0+-p79G#oh zcwAK?hKzT#(_^r`v5*RUcmz*}p@R%rR{<$KK4M7a<0GGfD6wa>16*5%90sm@G^oJW zsVAXtg4wFt&6B~#t$`be=hmKPJ?J6j6IkFS4oX(__B@#^c#*xT(2<&ujVQQ7(A0zpc2FJ{pRKVXTsMt3n>ygaIPbqCD@tooIoZ)e zWA=%S<#A^O8y)Ux!u7Q%o#M!k9E}KR5*vfRXc8MUzqWO9#Z<@FHKwkLUDF(jqAy^i z%ZK{Q%n~_wRsPs8T>-*z>Y8s>x@jtVzn)W9;Y`O2ZKDZTPF;R5x$d5CCbH80#d?^t z*3S7dnbpIhycoU+>`rE-z3#X5E8eX=39Yn`{5C(~-5irzX+QdFshk(dMUM8`U#yZ2 zCC-DAa#ABHua(xM$TUUbfS&V16G{zbaDZv8v=rZ#G(#s8$+ML#R!dl*0L= zxVuqDd{vsmlt!x(<+N(G!r^(zK5wa`&I?jiyYx)`xXBb>kj|OKazXkA3up!g(>K#v zX=*XE9C*eK(fVO49C5+_m;mI0^mIT>u`yf6u|72MwJ5G-;)Cd8%x&-BO3iIQu5HN|{2#00;CQybQZMb(Ic@7)N+qorE zRm8GeX;WCguv;7xHP%H=#5=}m4aJaEu&iQcEA{sx`FtKzTWM=qZ(8YB7t57?wOQd7 z?1OH>K5W*>7se0NCfFxx6YPD4U;!Pi@eG|5EH5CzVuma25X0;vSR=s|>t_h|Bkw+j zV0k-JurkS&_BHE5GG(pV;@sfOU2+V%yt!7BEt|OO<=||_#JhSi5yVUe8W&m#(WB*C<~UxOHIZs3p|Wb zAQGm+(r#l!lG@f9+^sb$+}vR%EOk3@5ok}*cAE84Z4cMR-ZPTDU_L-pF?nWKy83{@ zA0Q?E7*fffPeBx=!_s)E<2Ly8|KJ=X9wC@h;VeMs;Zuws1MYF(-uT%+Og(i`9G$X2Yi9yxYRFzB z)zH(omJU<1#pG8VRxO)Vnp*HfsVi%dd@>Qei0xb2K%Ccs*Bq_YDT|~6vJf6uKrBOG zDu9)`MS%!N0SmAPje~{wixjZ1Rt4Pix}&P50$zE;;nK<&YWal4EO28j`?8)2pcmkn zD@)sMLYG>ghbx8>cKcS65+0OFc#u_^O1RxDbyMrwW+-8;R6--;f?iZ_I%#htZ{d!h zLQ+IQYD$>;zM++E2#RZEy$M^GT4ALeBWdMx>_J-j0)LTKzVN3NGfx%^E%$(f_~-KN zod!l;@PPZ?1Md48;MPFkc2ZkN6ZVed!AcTYK&0^F04$Vkbi?&>PB7m zN!>LK=eBFNTAdIo*59s)4bxg_V)c7)L=TP#yJ08Ny$pcc-`&71`h0H;RI0@h9DEclBocV6_Y4laCS=fYmnaG%9r5sStA z6OPVt&F~Lyv45kP7<$GdkcwYUIL0dQCf_^*NvMpk;~5B3?w@m8h3I<_yF|thLk^k6 z@-XBrEFjMWl#GWVV#i00545jXJMuKoES7%s8MDIeX=dFTIA8s9vAFz1ON(~ZtS3)X z`5l#5+e`a~OT^__ne7y?uUKank^M}1aa31!j*8B(8;Xu;%+$5iQJ7e>m_$X#m>(i zooj|Y7kV?6kImvma}k0=oAskpbQ1X1!!=cP)&)CK*#<=$(CWa2w?*$rZ z;Nqqkm>_*+nX-QE(I4yf}N_ zF+lBhliXzFu-@h-qXWReO@{R*PMopHSjoB&h0A;>Y%BWz;Fw#7pcU`6;?^G>!|MyA z;^~Wy^NM=^O)|P~8zY_eJ6mfL*5guGpq(L3r!9Ox4t|UFgEuFozw^#*;KA$0JCLdnxzlk1WY`q#0lwiU&Dj8fDS=rAw z$q>)!yBmq7t(;$L-+IIDB|>Mml}j!$5ia4M1sggmnl=}ezc}pLPdAX{Gu++3qAF7*6sF2(mpODd zr+$1By}YZ)%yu?Yw07Qzd|8N)$g-Dm7JB;hAr_zsXCXtZY~x&~4fk%!r5`Cl4`F;{ zFU5f%`DkXU!XP38Zh#y;0-Qig*vbLzX?pZ<6Y#gAo1(4vM(4{-ltj74i<^6W`VcqJ z#D|+}jvdB59dwjl7J+ zkxP9Af00Xl1-SCw@VkBB4Go;fYWl!C0-fze*Ml>o#qEb2n>6ia093;pZe*6aDJlD? z-rjJuShQ|hocOzubFda;VvvroAC#`>o5hL7&K+77YfKJj=+%Mg;zSeYK-GRT^ML#M zwj*D;mv_s2&8drSnzOZ5=(qWJPjhmEm$F9W1~0nVaD#7UHAK~pvU%wWM6BVbYk)5D zf@@)mdBJf2riK^Hx=Alsy%{&rrWcI8q!;`G{))R<>~8Ap7#EFya4)z47D)Y8fEPSm z5kE9{dM*L;dnMGv0gjH@;)Uxa6Bl=akD0~N2|j`aw6>#y(FvyHR^Np?H)-ctV{$&e zy;=H--`gH1 zi9L19GIDrovIcQGCTr@5W%869@DN)Jk7UcI!0>~4sfR7K>oPh<_OMj?jiX3=gi(ep z!PhpvjCUq#+gQ2jE%H(murL9WrwEaps5^S%bL3{}jlBzofUe?43@$lhC$WH;li?~> zFEd=lE35;#KNo8g-Bl7@0E{Sc`KyWj)C*F0+II{BjCA8n`fC7#?&8U1oIt}}bSyW` zQ986(z^H61s?wbGa2My*-ARnC=wfsJsi?h{OaHJpqm_K=<+b_J%SB#=wVfz%I_=F4 z;ee#6Mwe@CH*u%axk&5AppkD_qhStffxaO;%sJfBd81a$%E`$xdxl69bC;X0VU0=# zwx(;i*&8-^BA1&6H8){2l?d)y&K;}mKAq4N(V&T;$V1{?+! zg6pBXPbXpmns_tOyQA|Rt-!k}SBBxJ4_aY5>aAAzRfa)?6Iy~YRO<@S>UT$9buEkw z3?3m@&{VRaI&OXvYV|55NbLZfXj4h@%2Qz)BNvb@mdpiY%eC9_LNCbU0!BQH{E-Xz z2>v1$@DXvgi_@x^FMrpd&yWls3)n8&cXjrVZ-R}}DYww>F>n_ZgwSSrKkg_$hJVD)=7H%V@s;3YCn=1U1an_u%ow<@0M^|)6ICr6cM??# zlD249Yaq^@+fb2sw=PPG7cKiZwG;%n*mXlAI4^yAHT*-N;}^}Ypg96rT9PzSi(2WA zm*y)OFNZ4b=<9q>38Be-E>0h7;UB-em;=LD7jR(s=cTJ(#5o4ytbtB@5<;uNNG9tC zmL4wd&S{+37{v*AzLFnu_+y~6ueeqKzV0Zov%)F!_>c8;9EHD7_GP!#-Dv3(4oTLQ zk)o>ar-7nlzOyb#=ns7AEECTTc82JjJg}jRaU!|E*;g%DxpkE#I+)ke*WY@px2=>P z3An@LiHMIHij;zF$1*Z6wG6_$+aj>Cjw8}lW$PNcJ zckS}+*I<>WALZ70o8WX1SevcwrDZQ@{&J}?ehls~|%MAB*0d{<9pZ@k$_na#t+ z(kaeu+FTQb096{9&HW&D%~=JW0cJLTVXAYYwv6@59@TPMr2j7RKJEEw&V$+})?>}s zmc!MuRWe58_Ekd3&WIF`gryDEp7d??I3$3^yyh>l3J{b-l*XtnRj8$hzHj-~QXu%_ zD9eE=AfV*w54B%7TKj^vBr-lV5PZ)nOaxF1uc0Hhc3haI{o&hUZ*Xo;LZRF)s$9+y zTC>%r%@OdB)sp%oRzbk4XJ@A?s|mJ9d@UwL%kXVM9E6A=MT~>4^PELmAJ&qP^fZu+ zU==0@P>URhy`g%FHr2NYVd?3O<;5b{O{`!o3CmIg%bl!(uQUfZ%Dz_ntPh(D8&tTDS3 zCkk4osJ+45O4Ap3Qn9ZB}r3dumIWie0o}4oqmCCoML;}5<20AGBdd_ti@FB`&lpaRe zhs8&i`Y?0Rq->>t?CTMN=FcQ-M}82^pZVh0I%geMv)uw_oe;eyqOcXt$Fxj_sB)z< zMVwvX?5%ZRrRYXbqGKgftXT3G?kbge{@{Pg^9LDhgT#05CbbjQ zk2_&${oSdFZtsD+{Dq&2YlGrq8@vxvk@=U8G5L_6ak!L?nNQ#k%(BYHjJWeI=f?W@ z9O^rzGOy!13^h3&7qEak9S2Lvc~JI?A;OvIPPY6v>j!2#s$RtWDN(5VOJ(lA*GmN^ zvaNtbw&{wRx<;m0wyXiljDbp0N?v112}aC;EzUMxLb|rad3U|&ieDpz6wfe|kn*sA z3n^xe^su7fe@sbjBv2mCI@ViCLrfgx#etMC3vET>HaHVim#vYxlUFd5B&DTXO1F}f zBA6-R43FvQ%OJ#KpL5dIhn+3!C9_3_%oZ^^NM`r@%B;lTXZ{+NCHWcFt=ldV~8lR zcgtN`z%AxDsJDo2xJ4Q+VDJ)A;?vGslm<>fCI0E(vXhq1kdl<(D{uIqUM}nH;Sb*_ z>XT=kJL@ARB~4_%ON>O?X%>W7n3sM9ESg=7rML(hf z7HkOLnb~*u<}Qcd?=SK9Px5YdcV>2Gc6N8RB^cuDqxQvGA6Bf`QtD|@;8MzN*U7v} zyI}SCCL-r*qRfauolOcbCcSdjr7wt)NX zpBCZ6t4E0Nc|{+wLQo`DO$27}KJY}w42hvV0(e_XkkwYIW}i$RrS>v~P<4v05c;+o z6p}mQz2rDW87~$bgV^yzhMB7Q60hbgSxukbd)NEPbBd!{b*x#bv5YiTYK4ELMw^uy zNtN1aR%)bGDY^(1MtT$|d5uOZW}syCBpE0PGz@+f2Dor>bcE6DP zv=Wp&Rh4&DJEr>CXRWEsKI_2`f5#7F(;=dN&5OFo3p!s)tm#~$jEK|ip+)2M6SewO zG2s)K-c)CtkRID1fE#E0RM{qDr{bNru54%Q0_|~D3S{0%w7ZjBWLA1v1gOzhnJR~1 zPk)XBiYemk7s(E78ly<2KAB5wzLZ$NAsE~Z0z)v-e}p|uH2kexcyYuQIv&`7X!Ugr zLC1;_XOm;aTbGl=G=zJG(I`gI^ICF*`l4C0u^>9^LpK&APuGsHtZVBz(t_Rst0=nJ z<%?BUlP4+pBKE7~&Fbe<#l3O%TH2S42n7s2<>LAl_`ze=%mIoUUnjR!KLWGG+q2G3 zrPdR98qsiLI0I;KUF@x?xLEd(h2irn)9jnI!K_%Z8^co;1s?%@ej|CX57DNi?=aI!~1rSFI|24U$Hk0u{^4f*~F0W~3ZC;rs8$kKrlFw;*tQduC z+V8h_(T+1HxpBG>F;Bd8J2}Ot2v91Xzd2+vWr{fW${)$Ql%PMSfqS0WI#O)UinC(u7f{zI%EB5w^x+GHMm8exU_)#D!-wo)-h?AhYfNZ?8n7#o7wJXS8 z#G&{nN=MPDguR~Dkr4$!buNd$x#_hxYta^F=ND`3)uyrn#crjOE#y8Ta+I;RQ-Zew zDfv*qc1Dy$vzdz~H?U}ih#ixnV~W#F1+AZMJ_i6FUc(@JI)MN#r*&pkR!_$!I#c_S zl_<8HKC_Vf$mvwLy`!QA&!86pO3tu&Bq6CYnEiyqkAE4gXNWbC_Uc7!bwPJQPIU7> zeE7;K0h!`*`rE9^A0Q{Z`oA9I8s${peaC+UTxW)CNKnL6dm8h?ppeGA3U!9&nD?J4 z_aF1#nL>+$*_G^fG&X*fYlE#S+h5WqFm7-~E$u}M;9dRuxmc@z2jl|)3oOLqXcDZg z%oR!uG|1H)4r`I>+!^vl!MQ8})=+xd0mhjBA~UH zm;W=I9#JB{bX@Wp;-HN^-{Kc-?D=*E?d{fRvx3~hk-Ij*K0x8R%MGh;cPN@N6H1wm zoAmY%V+xXJ)%I4=^|tmO``+x0)kkXO86i}g8a`7V8&2Q}s5eNUn;^qk0_iOPYwof$ z@e;^rai*62QLQN}0gHRxltyAw68dTmN7{`{+P!&#EU*nCrCK8f|2NWPGQazo%#rH$ zRFSeFx`g@y)C5h2uJIoyG932u(Pa@ex0t^yfr|wW`weXpBaRI_*8L}D;bq2KSzyuY zY(fhg!{W6OkPX?0z}#dbOYw_rWa&(@5gW4+oQBex(4SyGaPMPoXP3RCug&yNvA0&V z-4=C0HnYP5c!+2IUUZv*Jrp}2VjUsk>e$C??^(#Hy{kt}5B^Y-OaVxm$Pi z|H+c18n^hDzHMcZ4#37C9(8O1Re3Mz51$2KYoH}>p@|AuEH|~G9p18xoh6s_0_G9B z8rj?1SS>vIL-~;LJctCzcBrz?H38Uj_njr( zO~aP<=Gt6V0^N-|YnHrob_GwsE^3w}y_v(2^ej=LwY{n~i@}j}R6x>V!Nc|#wJmS} z9TaTcbG5OzQ{SH@UCin>_Bi$UEZHmdMSR>$+cN^-V_brk9L_SRw9t0`1wXK|NJkUJ zPzlNHEN);= zj6JGoqplrdVtae6c&DR%m{y*VkiF7uvsdB?sN3+_*ejJ6jneGpv~ZRx`v;3NuT;v; zmbP*w&E7<7%1V%}G@31Kr6W(EzRBdEH%~xgX(YCEu}5o-82sO8%f88LE$7nho#C)y z{G;|Xb=+)eCuI>8x0AoDYG7aFl8Y{r7)7%~!hF2ocq@yiL$XkDiO3EKbIT41zhs9r z`~E)V&)ocO_9uKyL=HVi_ptBQc3HG#ceLFCct~d!Z|J!LBcJlUkKCTHSa;l_AZUBh zyR+qPu)NuFvsPShdk?L^FPHL#Xz>Jipr06=_8`$_urEOG8L5r6JN~J-|44;YIw0mD z@XF)%ep=KVke=BeIja>G_NmS9nURHBgTpGp)U)kA?!us!0Ri?%qmonszj>&cRd zc3Z1F9bpTg1@{pUkGaVyT`bP9HxQ5abwz0`tK8+Z37QT#Ih#2Ohn>h1kQ|M}r_Yfd z@5lgqkLV*PEN+NfnDn4Sep{Qz_yprk6CIzj7jYwyv;umkL!V=z1%sbbbFH?@f(VK# z?Q~UjXzLji$jgmDL6Dbjr7v8FE~U>6R7hDRCJ(kd3m3U@s(J(MM4%!>=SFI5t-^)Y z)P?7*KMzz$T{TDSoKdr?PZ^xL$E?KcBy4lzk&h4*TiutnKRHH-E$g=tK%+{~JsjHG zq?XSV@dYUfnk^GjOyi|lcezY9>yFEmZ?8V-teRrSU%a#g)E3(cN2lbUq>7d$; zwm++_^Uw9F%%!{{(qD#248GlA3&5y*GGOtx;}@Q{HwM*Y$N4 zS~z8Ze(#_K5oDOT2q43RYNKK1Ufy62SJaQ77I;U^C#(RO=7qUl?^g~&TIpMp9@H?8 z>HEaZ-xBJnXXnz*uG(2vn)d28KOB`3^yggjy4Al~GPqXry4Bw;3K43FdGd_gx-GXA~sUrQ`1_@f#dBB%xaKw9+d0yTllq8XnWq&Y?BZg>n+)rI=o9x48 zZbwGRAgF^#?WL86Ky`ei=r`Y9RcRq6&bL?BTKVH|#_@L|{2IeA)&fC9K6z>_U%r)m zdpGSAlLj^8{%3lX1QAm=kqa#jyNSJXWjoGl`>3W{1;(o)rCf_f;?0HjaoSAA7a)>{ z5XO+<#ybuV)Y{XR&AMYZivqo%9%Znh|&Sish|+=0nb7?C(jf8->VxX&dz91 zTDX_k=W4mW=p{3eRzdT{tUdGKA`(O7?y|oWdfX~9UR{*>QIs%*y{&qF9tH@?i#5CL z!Jla; z5F2k|zznsdJ#)p)&+P4@SX;N8i@3539B%3PkeQrn8T=xrT4w%zoa&d$131-BwFE55 z{b{TP@X#x^KZSMB@}m8#cA+)2u#-Pk9u$*zLgyRzScxi1s{E#oH~<^&l=)ttI!dms zKHAq+RbyGDW34pb-?8>XvgB9?&zFw%!?oa8QxMD@YZb;GIaXRi9nPTE66#n6r3Qja zsOs?f;?V76m&VJ0)pQbut@EX0-pX)Tj`^ecrepquC3_vS za>18QIRy;%@oIH^$&hbGGU%KA$aD+(6DW{x{+m&tO8oAN96Wy(RU(X6!sDQ2HB1K$ zMEo4I8j~d^&9_(6s%C)zSP!67fon#?ov<39V(u?MUo_pQ=Vt4hJ5^Zy!i&(F%sdhN=! z57ju-YWE*ov?P1j?!z#zXRDGeM2!3m&S_r0ogC_e#7{UOvLbIt;k-`5iLqp7*7FIA z9-LalUK9I_3O)v5wsa^fUUfHk*v9;rM;_=sX((Q10oVrh8X@>ay++7_`}7(GZ`w-* z7>XN*AlOh1i}S9dss->+&HSU7L-Cuig(mxiy`Ee9JNP_(4(+M_Naf>G{39`t;;;3x&3nu^2^n{bXpJX75`iltXvcW3Q&D_DzN08 zJ3joLy{ViFu&lDns=R=@tSBo6vZ}Ieg$-}}85A5s zTBH9+1G>J?!fbXrr!9!=bWS3GIvuDu%}|Y#_78%-TcBpgbxhE{XZgK7f_iO%HK101 z1xtkPAS?&7dO{%&2xWZNI_lL0vfsJN&``fKseYLxRbMEt%@11$C7HWcLm+dhH=G~!O4YDWLc=()M(Z({~te)T)5+JKF2dkqNQcuwHg8ir1 znN|@`gDun(WG(de1i|8q-+kOBE01oo=l>JJ^(Ml+Di4(qhW-%u!+r=W2*<~;Zo#26 z0=Ft<&O)XwwB{D0Kv&+mg_YB+{)mNgZjtkeeW{jj)t~h=RvFU+e;`G6^&(8NulN>$ ziH?=syvyMdW99?KOpKM&L_ESm#$0=pkA}_mbWGg%3>Gh0oA+o8eGEDFkVT+sa_ky@ zkz>~u6>{vkS3ZZ~9*^ARrhkcR-_@}c_vdjIz(Xwamty+!NzWC8iTumBVPWv6mNbZYUEWW?g|@3SIrPclKtdBk2>a+Iwn4{WA^rW};)|%f7OY z)~5Jpn&_J;|7-ix+6w@A~fV;cASF^o0z`?-zRR4cD&=NNeH6OIHyZ|z)OB;VS(!cu9d{H2Ka z(cV}N^{+1?rxA)3dQwFf-~b)<)k2eCX< zM|#M30IOrr2*@iRFZPjSeES+TBD-U8KH~4aSR8Etw>AF@?U^3hvjfte&S@|H|44gn zBX|da)3#QLwlHecQQ-hO2=dBRqC$memFTTNg;c0y=ZBIW@*zY$L?LnXSZsEo_G10_oAXrTb#}dNFHc9^Z%Un;h*|$O}2zukniwn%vh$KlWVflJi~P>9wZ#*6>@&2xtgf_t@|OkhFjI`f;JL6(Em_ebmH_Xj zyQkd%p-bd$fT}zJcLP8I?NJM53A7j=fG@YcWJ!i&wAPsAr7ZyUm&h#u?Rf%j0e}R0 z*yJ&ufLj3SiwxCa#4H(2m&HEt!1%?rq~7YYod3dy+~fG`Vsf^ccVwNJBGUhc>3ipL z)k>;kplY~jjb1H&eu;>G&r!Y#qUR3xcT4()xm<~Rvb1BDzJqg+9+B8W zd&7bVR191pbhM14W7-xA?%^!+lVWxDW94JTr!2&@W5E`HlKUhWf$w9*S6DGza#y|- zyL3lK9am64Ee*}V|c~s6*v17ElJRhyE zKh{`-n&CqMS_)6Z{-18s@0cxTE@>>4dgw>8Sr6SaTlUZj=JLe)@MU7PZMHn4l#(s) zM&(p)m3P>E$WqXpUM1$)t~~8XQ=LE#r!>*P4^C++0oQm_=>o23Zen9V-qxHP_KsL+wIqwFFTz=FD44zu_ft z8TKjyd^n_+hwlJ~BQ{s5uH9t?h{L})howaTQBUljln`4H%keJ!wuK0mX6U(L1_Jeg zTz@g;devf`u1;i@#uopXoqHNNHa+Uqnh79J?x#6^k^5;b3ioO-eHbG2ILB>1g&>!c z+dke=Qqg;1aoKFlo3k=3i1azVM1<2}-kjClO7!rQd9Ij_hn^aK-a;%LPXJ2pF@ilc zoXJYiHlLY7MwX@ubEi{QwTNst3^-o*&$-6RdBvS<%O0B4N_)#c(|#+{t)WSywGaI> zlke1n(+{ZYmFX;l} zl-p1{)^RjYbCzOXQd5j*QLU_atB&KL=rO1a-l06ov;!SVs_61k)dk|E#tyt{@k(7s z5igq=E9hC_H>_&$Zsd#wmfgrH1dyi!Gly;@F*mNh1GX0ak7vYwBr6Gyj()RLb|l~M zRP0C!dMC{eQkIzxIB1z=PUPP1fv~;twa{hc-n1M%#GtLo5$0*-xo*PIAU_+ zzNtA#(b}_O(wI8OJ*cr_(&t`XD(HpJ%kUp>EvF}i-K;FIY07laGAYwRJk=}HS3EME z%92T@la?`=&byyXUtT6<3RFm@oC?X50X#CL2ZeVqdj2vsZ&zhSrA*)QEn~`*WwT_O z3o?yYw3Dm^i8H@;=XxOwNIlq-%eXYZ)2_1&mLR`11^F#c^+q{@mdhwdiRFH_2^Xzf zwpn&L*=8uSO}r=(UJ+LQ5hFV|Vzhr4b}PzJbGeLiB>7`c^jGeQ4XiFOa?g$ zA*UcmhvjCFqZ7k!1v%Pt5|1sHK@J}h6y*44nGAAp8WiLJxshpbxshowfX6iEu8VD? zy~Nn?Hx2W-U{+L`#w_15rfINjmT6FP6RtmN?$rbxgNF(7ZRUU(`v7nnHK|9Y9si~de68=Iek-INi9yqyNwzR#=r8qeW8U}L! z4TC3aj&*4qO2)oxx!2g~ap1@mmcd%aUUr47NLilhsfcP{As0HFEEQ`4n~`?)h3<@Q zcCEjnkRQg1D2bTIe8vIDkZo`>R2dGS%G})^o2qdrRz}egmwfU|_4q=16!=-jnN=&d zSt~bBeZujQIvpy6PXfCo=j z4jPA2od#QVQZC~_1a_lC{{~YRnb`tl(HSeI+Q0{rs| z=|X;G`KgLGSrzZfDi-n}4&?`{hT3-w1qfHpV3cnp-}D;9hb!bXMlxwmW9%!LrQtND z76N=Yr3Zjpu9Ob|w`TdNoity`Txr@$Ig9b}L<_biCB|5tvt34O94mE%&<^x`iY>#&Io8((>S3yg7SA~OvM(nMxDe$hl`I$#bIo)ZIxI({lN zkr85;W01DmVq6}zSYZJ?L^H1!eWn6oxSitcpH)hTNxPDUX}c}#^61|VkP5!|o5vGm z#3p~Zqn5UV!6^(DfIs*4l`;&L4QhoUEDM7rVi+tzxJEic)JrR6bcCM$y$rg=XMeXN zem?h32K z(Y@7UvL`u4LsSZ85_XZF2e%8w=F}*uv=cX9aMV}ZuadH_fC#zlRYt**J%f&i0@Rv; z49UJ1mLS>p#xIh6?^X9{2FG4>{90J{%FB-7+9*a@ZsxZD<4vNOKNVf}w8L%9Bu5#z z;3w9tO}DU11-xP^U@=cX1-t?Pj{@-9M*+hvz<85M_hb<62nQ*^dj$6GOAezXt-S3< z4b&9PX2e9Odm!gXhy)`Nu7zP1R*VFj4_`AVr$t(L2TPC^-o-D{!n;xnIzLe=yf6Gl zu^WrM=!S~PuQ)o{&Uvw&_hLI=NTU zB)N?OANa1try_K^BS!rY_8(7oRM&n&3Rd*9i8#`$Txqdpx+5~^hgGlv?{t&M3b36O zHa#`1{=frClNV!r{tLLO$vsgNOm`$|ckhRwwCesx^qb*`!ADkSI&8{2vOw6Y_n~MN zI6wu|g|O`cd5rzPmZ*fA2LkZ8(Zpc-NysSG=vltRr9FLng=E4q2z!Bu0ktHU~ zaa4m{q4}AP%3(8b^V@j*bI!Lsyg-ILJa3ji=P7^6TmJ4`M`i647Cnl8)`;}^j=>5n zy<@p7v)mfkvO{#2FO+nT3CDaWw;Zg-orQn)$#UCexh-b7eV%eVeae;EiA7+C3p|3- zUF2suva}1n2G(Azsg_YveHG%lUzLaFH5WMgC|3|S96;)*!aazshJ@((ScaTAv`o0X zB$Xa5xfc_y^&ARTROqb__JRQ#nOPFP$akq@24uMRgV8<#4YVbqejNWikAJf8&ldP2 zRrAau#|tnQCK3GwPv+n|EhCc3RSg;obHwz0mEf6NN4YSuqiVEX8od{2c)ol}89kE*8zzF~8D)BRG93QFKt3{s8nWQh}^={EL;Ynq+oJ#axmlmO}gCFmL5HWF|1EvET9oK?y0(qf)dp=T( z-{gqaf9BkP3Lon&9b``{&XDdXAtaIm+L_w~jC|7Ly3G;hXnBQ|Y zNSI-3{2IZxX8pdF!pz;Y)uAeS0%l{b;lGk*)iqLeK+Q**M`{lW5s5n;J;d)j9IJxc z19|bmKxeAnfipsae0UAB#_sUryF?OXUfoKyL|%rox+t~FQMuR#sk9P1_dDYBR-6G6 z;b4StKhoT+RFgH*9zWad*rC6~%l(J;_<}{uM}i)EydJy`D5ELX65$7(rS#W1BP78! zT!K3+33^R2`-U@KT+DS;DZUg}N-3`7Opp}w5W=On%&b_pl;Xy12ONt2AuoqsJo0HY zX3?)1Nr z+}Uv-JW6?|2x<>JWQ4%Omb^clmn!%a>@xdCI6Sw6|&J~VGa%UZP zxE1}d4;(wUjwc<(>)enTy)eD_Q;zbAewx#x!P5r_Ay&;rJfEU)&bS@C$y2$ueubB8 zk(k&?zl0DP<2G0;H^&?~?f5{y%`-;)P_2{t^I8g{>p$}pQrx7PAz|X7vyQ4kA?s9; zQ!}Kzc$2bW(4C`Cw4=66v>v`uSSy>EzuGpQ$$|CDiN7Z7< z3kJ%u>XLPIH@&`uGee!$0fg`dyAZNgso7G2`khREPCeoMNnKIqI%xy+>K({{F1CD* zfM$pE>^j*Y1yG3lnRW6q_d8%Dc$vF?m-AyyNd8(!_ff|@>CYTTD(a3wZ@)~Qlq~x}*ST~OPgyH&eCMd4zs4CQL9gb5-da1#A)#TS{g+qUcr_jg~ zQX+Dk?bVL2(>)$~nokZK<2(Xoaqkb!6)>WP}xVB$nFB^xL5=Dv>o1cNX zDK!mtY()CZvFJ`4|bcB>IBRyU4Hx7{bhp%mwF^P7WbcN?b4Jl<_RZtaj#q#a)`-l3|yo z6o8()#d>B+_sKw}G^P{;2g#IpE@?_t*86!6W=eyQ4Kk%?#UrJi9b#G_fSXb*XOv8- zptLhb(VypVGNl;*qN8{gG9`}8lquGcOldCWCR3V+Ut~)2{>7AH*25OE)Ozq5XerUW zRd|SvPfI<>VH&h+b;FLf6<*{ky~tNem^bB>10I`XBVb0n5 zK1AYUM~66s>}a29N4r>x$yPD#XtemCinFw6pXZpYpJ&)*Y$5tIK5R;gp%NFEU5c#xA#$?Cepr!KCCtFGNMqtoi8;=B(Mxsd*^yKFJ#{ZVXe3 za*Yp!(*vPNCpGO`&!iceco`;Vdf( z8bTZUEY6t~ybr1_x_s-buIF+g;2>Yw!>r`!2AVPJK33BIGiN;upZ@*%(jw=1XNY(! zS}Ec*hN=*&?%W_}&O13zINmRJ0U_Liwvm!V)|7+@bu-ixrq9Y(zAzfnZ`dHGJ~vJ~ zn*h%%)KVK|sG!V7)_`boQ(_|<-A2L>dQAPva;Cz!FcXK`FNj=`jfPYGX2C@A!XAxH_h`}1_j*TMqx}%D|gR?@@)bsvo z-6~b6Y=UDF5W%8&z%^cs;sKq%bQZB8nH+uPC6oS;vw_I_F(^b`zfrb?NuM+g5qB>+ z>xoJAofSn~edhu-bd$LGog+~%yUD*%Xq#B0s02TtQTPh;UV%hq6IB})Q;?-LNkNw4 zY>*)B2;uD`7#=skMO=_1KL17&{${)wP57t#%l{#(7&akgy#N8VROaD7Xe}qwDywry zcIKpi2B>y|(IH?Hn!ZsE{C{ZT%<=7OXwqNyTNrUIZ{@5cjBlN7^%u@F(rk> zXj=ab=B6?BHTBtE1iRE0T8>xHVc?Otr9i^I(+hPWgc;Aaw5g^%Yo`` ze^o`%7&SB$=H!W35t>Lj#igzg9{>6gXRDYngmQKL$!aIq#QZ@n2bxX&fjN26+B^%* zrZ_TFR8*q@Nu6vRF*j+t6Mm7VJ8kx#n3GOvz32}x$FnsCh|{;74Lmvz5i!3z4fK3A z@nC0X#egPIyrqmWBD{-pwLX~Fjm+Rl1~KcF`5%x96+fkeEd;>s9z(VO#~HgiYl_Vu zbhc@X1!(|JZ1!ub%m6YmHyOZUG=M%aV-Ua<*q`HLGwGEaPP*^sUvwGILb~V3O!-g^ zQ1^QQvU@r=1#rzbdOCaQr#S^-}N^E&Fcd)D~briSzcf*N=s9ywMF{yA4(cwY7!7eAO1PkfE&g! zUM2G39AXL=IY1vC)ex&k+HHhiq}@hvb{u*hE0O^&+`DVq#%IMIZ08_)0)dgJhrQU^ zd9k(g$L5KP^v-au4G`%meBa4&j-klj*s|*U6aS5GY~#m$UeVKRw})d8T1Om3$4WHv&95vBDuA zaCSdy&GXJ`MKuo(b86h0+)6VarMs9s z-Z@I0FMq1tx5}Wvqg%~@N3bhItQzM$5AmE4FFLE~`#5T<!BeIsEtd{6b{w$jy zntyXXMXdZ3HUi)Luw4-+rWwMo#@o#rZ|7`LjnDblc#BzMh@N1Lub4I7Xw{g)AfR1Z zwQWG@<^-48*q0x6PThzfEqCNb={4AYAgi)zlmWhh>3g?rY-7YiUXEOzD<`JN_C_qtx9CvF zEPb179bGO$yz-IyFz3ISdND>kav3&3+&i5ZB2wl!ho}d($#BS^{(3@7MaqyuAlG>*3W3!2FZG?blt&`edcdZr_0%Vc znXRV|FoWTb0Cw%Jy-kKcE-rBH_3c$C{BdESbFf}#J8Muh#&$7?r-ke zyBLBVZ5ehM^k}(V20gm*6bgDk3I#m|@DvJqv=jrgp$WC*2^91Qz`VP~b{a)1$zt+G zSi+bmCJUzv52*{Mp-$c|$Hy%Y6}Nu}$4%p74lxCTxGBc50CUs$cp-k#_;}%V{}{)) zEi%S2VVQGJS^$k@7FW*TWZu-ban4Dln;698{J$VoUB);9V0Rw`rQ&Xbo2#73GP1#Q z(U=pq)S*72XpBkWjC05)&1T_JIRSCu9@|$Hawhhg~Mq|`?`P8OFRoq zXfQ4Py8aC{wa0Jwi%EbDVp&*q~SJ$E$f`S0%|w6n5_sLVO3G7 z3v?!ZUUv@CBXGj~X5x}2wwGo2~IbDWQ;TR=@1$=K$T0V5fkps05i_Qnnw z$>5_$to2x2_-2JGty-3h2Y?U;fXQ5-@#3Kj83VJOsmOhlEmGAz|(syKT)(%*Bw zENELtGD9q57y(GRlXjXhjNcA8qr|}oXQcT1fHPWez)Pc@+X9zn8$8l@5sGO%vQx%1 z+R}eBrg0xU6w_z~+)zw|XOey=c&D%5F=HA~!gM(=;TQh7Z1ly(MH^tH2+2=J)L zifK&ZV858g?42^Ek;(JW5r&yNS#!z;l5h@1CtfJ10ZbHklLx5u6&T=v$+V2wC*xhkRuAu#;ftHYinK$aFkuQ> za8^Kr#ofvQR7Q&%`951YzTGKjeDL41mE*hM&>TaV1aE9cl*uy41X9}zzr%eKz;xDkrA#19uCA>7}-G?D~DGEYd@^3YZy`?<0ryvAa3|dsZyc9$yn8U<>9lLk7kv8%&qj=a`en`&jgvoT5Kkj0#;QE27949CvGY4;hW<0d zE+Y{??UIp*2X?atK#>SYp-4m+Pr-qi3MnI7IurGuI5rGLL2Ckf#Q2@w?H4=K0(qa}3VzK+*vNJ7ChWLLx#3)*_wB; z?IAiWDgbu(ATjBdGfz%idAb}vrtS7qQUw}0Qlw%$@=DXzX&#N0{RLtbgAmR&mCh=~ zV-<5boF=Ya{EN=!S!m+Qk(m;5585p^vcHbGNz3c;i?qC6YMISkNwE~H=(5|p^6zt%@!8X@6(;`r~ugAr%~Tah4XLN zYeB~rcqXazegC5LuaRL=`VStZ|K1h$=QY0LOpZB?iCpvhS@n3x;#UqQ&FA_Ty~VST z<~cG`R_@cL=CwTlAhvQwOG7@)fEW0ySO|Ex#@Mn%Rj>h6(lxGhg1Hw-DX9izt{8N}$x zbELO~m1HRDjbRMf6JXMXyD^lyaE++ZLQHzRq-G0HOLv_;GL8`qbo@Q|rjkZd(4;-4 z2ftp@D638eLKwKHgY0nYh~@lI;DSR;nIbhAUB=v`;)VD{Dqbj6tXbPH#*5U_Mw*S! zRXvE3V1$Y%QdWBrt??pSBN4F>2m~#l2a5};<*p|>lrbKa4#czoFG{#f2rsQmT5Voh zm$Vu$t^3Zg88L5wKi+%T5W?xM(E2RGB?r8X2s_W?y*OQPGM!Y2CO z`T>_=MdBGSx|X6Go-m{1j!W^2&c0Q_gBx^oX&ZjgA(08V1CF*%-o`K5kM{&_m7(2R z@8TEj)ai+v0%#vaG6sif-J#Pu{G>p484L+gD0BpVQAjKphy4_$_!#?d8Xu%#Q>VUX zAAXTTibnaw@4-9ECY46@LPd_sTfHvF#U<-sVmfK#lReh0UY{{2q|=PSUG$(L-Rjk) zwNXlR$@sKH?!B_cHf1yZVRO z^d|M_6A@H$FI-$!X8yTx1P!JO<^2H?=+*~#w<_9XI)Lci*G2ydhA6@ie`JjDsCcoW5vFsrB7DEmN8G4r z*wysC*%J~grSVjczULHO-$eGKN=Cjuh>MmwsDTLK-iy-~7(xqRfzilaca9gG1ui1f!XLh|?q!z3Q)>gL`R$ ztmKL-)r_m!ZL5TAv^T38De43J#LkvREnVHm8xltQ@A5k6`>3Z>3PjTyh9h!`Kdsw) z#hTVeyv~T2EvHb{UnE;36`iQL7Mrm<#O(4 z!1{`P0^h?C;VDKd{mnwza%DDUMRuw&OutYl{Va&~&yB7sq|jqH1)myK z^&31HJU}ghFUeq@kwa^BP=N`0s-{b)@UeR7H<$$yufcCfA~v2vL?8v;k+F%JGfF1v z)p@c-1oHS0`RzetjNXLjB_a(?A{}@N5>Xn8{`HNfdM}<}p@(ul=wE06f_jeUCG^jl z=qK?MLjSBpKaVF^=%Jhkz0#vbZ+#=rhUJ4^dqWksey-Y7-^Y`P=xbJCdKC3Oc0!M$ zc9~+-33ks1OG`b~Cr;;CuyYTA99?gdNgRuimLSs5i( zjO=1GmUVIDQeDD)>hgfd`^T0b{%U0u)M!zIq!7CS4V_U*kHmwdbdbSs-?EdozT{JP|@8yJKgg&D3|W}3LV5!V3qD@^V%Zo z)wl?eQZph{OmAmQQ(rN~HI?Ng-NWjYC9Zi=Tsjw*=$z=PCe|cXs35{mRSFkztxJ}L zTil_L`IrVUK{tMJCIsF1-gh8Ur(h?ln1lqY#G>obxI)@4gDH#-wfz7dfHo zos7YSDev!OID;a6`zbqDlO7Dk(cHcU+eR%k%i&696>)t%wXi}I5xWi8u zZ=@RuYTSMZNg6fug#F%@W;%x0{md~q_ETf>A%6E!qx!!SZ`#$Ur!!4J6M;+Klqa!T z@(C5#ry0@B_@CaLlSlhj(nb6eMs#R8O8`}U6CWp5bvKr)&+HfBPrDNI;VfM`w4t2u zaguLet4ZlIhFCVu_-!Dy=6OtzE53z|Sdm5uP29_pVFr%U_!h0F5)zv0bYYQ>8 ziZiv9m`V^?e}$DR#95OVx8*`g%iDN3$#cDpDmnv5nW|~~1wPLu<>|`Z-^VBm_kMCd zNUHf#s`)IzlxiM47o`3GY<6?R>p!t{Db??J1^x&mRi%f+p)CSDn6Y}b9jx4x|#FS5?obLe9^C%4w6cJj># z?$ajLTqqOn3nrP=IzU=h`{#;Xo#EW>6S5`I12`RXv43r$v?mx{o`P@5gz~Oc%^ndE zms_!P<>iXLi?eZVd~&?FT&8kc?SKW&9%`foK{hctr1GP_`Ds#Q*=c!cr`r!$^LEi? zm{H2+L)`4%nnKTo)7kuq&Kg0V0(!cZ?{kZ;47kX9!aq46=d*n)JX5UUht4^X%fB3A zcD`3EXwZ_5h?-Hx)wGJ{{rkQQ^ zgUljp!w)=V&ib5vvO~@qY1l;OD5EIH^=Sx$TngaQCh{89DWe<|y+^}LJC5^13T}-M z9+QYUD3^sR9~4I~)^dq{V~lBfPhJiN*_}j}o=uCaEQ_}hjuSJ47VeT2m_ zUW=%XGvzssb3yW4g%B>!=gsPkIw+Ufw=Om2>AQG2j15Kpfo+4A+hLXSh=mr8!PaPo z{|_}pIm1`}6e$yoj!^;3-TjAHFadgBo+M~$e{`ZTK>w37LTeJgF$l0k@y`|iL6Z^R zACK2W*(Jt8J^W2T>AZ7G9h+ysY=J01)@ZD}j3=geDA7ae6O%#tdVtK7wbYE^^qLvWpzXQh2XF^G(_7 z&t~bei<}NA-Y#O);A}ITY0EzXJ5%s`;=Ags6w)gk%rt53z~*bBwOK514wm zAwUr?0PguF^=4{!;2qwa(@%5WsQM=n!m7VX{SFMIASFTn-X||U8*q)+<5%D^I;nOj zuLpEOi_1FHtFj{cC5|B@-`+|6+~n(|#TPy~tusB*NUW8-v5Z>_W0S5!bG`)-T4*xx zix!%Ux8z=dPcT+bH!yzvhTJP~XMr(4jWZSDvmJj<9-qKSo=i15o-v2WoUw9>ag;!^Hs@ zboY46+x+W_w!)~2J|IfxS)~(b`c_~kFbye_6PPQ?FEu*E^gsZ20xdXi`{^I@Km+VjD;WP3iyQh0m*_$}F%CO>T9CveBnLEe{2# z54=a~z)RmYnqi9y4u;60sEVUiDz=3OMImELwc;V^fF!r_JxP5yD=3}tutF^3gObYh z?Da;HK9grBhNt>7yf6^M^roa`LZzffn8dM-c&0`Z-3LOF9xs_6CYgt8fI;H0BMjyN zHfDk7WISSS@s6v#p2tzg@2}qJez}+ZU_|Hc*<>72lrv)F7UR(hfzhg>e|*J z9n;*jqLPk_IUVs&FXWdZz&CLyK?9hk*z8)rg{#m{i?|~->Wfu5MjtidusHfPY>J)K zM@v+y3T2rqRSZum7Z>yxF6{2Blv)~V0V~$o;)*&HUQxUrm8dm847jKUjYNyxMp{}E z3xHp!@XV)+-f7Tc^`t9C2~lQ`u{AgyaEhPyR~n*sWpo5>(5Dsa#}CUDYpt)9F4i6e zbHoK}rMIjWxuP|9(j$VNhWyr|bs82T*J}p!x{BZT8413`a8O;YP|nVX8H^qlk7LZj z0Yu?WJ1jCPz}z7`*BD%ck$?O{-W627C?i@A!(lq3e^}1FIm9EImBo_H5J3+ne0}R5sOHEE{%TG=BG;sU6X)K8 z?)GPiiMHH-jv#rnn{pB1=KY8;AVB9r_ag?-iTlD~xdOcNed8HlHPSTk$>YXJ{bh@> z!va@;wW$^aT~U(AIaJcFz6`>|Cw*S9Qn3cqE;5Uy`>tZ{SFj9x_M|afTV`QLZ<8$Y z7V3>E1fc0&dISbd_^i+6Q$`JKBP(~bo$D!E;39JUcf$w9KJ5@ILA4yA2HDjEM`*UH z>=POJ5MYTtV|3C!3YhcU5n6%OzVc6^Xvq`wBtqt@~BqCi+BBT6Mi3p@}B6U7C9?>%Wb5d1inpBqirxF!NrK)W5PbDgl z%Bjq{2vm;x=OikJOe$ynQ;7m^fsi^yo2wJMXk4aO|WccGxMrNO`5V0u7UQ#RZ+`vIYo?7hQ3{B+6#7Eip$r~qMQ>x(=`fBfYKZwAAa0p=*{B}W`KT&fFQvt6=~gCe?sY}V7o}6xPDf?jBB%DF z<&>i`vQJFW6bEb7<>j<$V$Qm#B6e)#al+I#N4;y>A<@quE8La0WV}(gOMZMbgMuIL zB<@`;(qc69E0PPX5S_QaGM?6^_|i#>eZ|XPkQ^4UaxnHv-Cf2IC%!hi24_P?p`@i& z5)HpGnrbT;B5QoGRGj<9XrV8)5@nATX^|-*$t*rfixw3Yu&f{{nt(uNp$v_zEN)&i zx(B~$5{?!FzcuP;c~$}JM&!UG^bkN{=zAT9vrcjEnqdgXcSfj=aI-fr#7RlX$$|eD zPAdG*xUF5YkXfYR{?5VQ8|nI0E3ptIbFOwtQnCfEGfrgEV+skXCC3}y#?e9xdD~kj z$;O&Cj*uvx&nrl=^atajTJde1Ii%kw%f%m!wn4StmRDS9$^OVw)`fMEq~YV?~=8j8uoeEsur{w}_gyvIrsEO$>Wm zu5k=`TaNacv~ji7Hdy5Zd5N9B7u8FQR9}-6lp$jBT?lOqdRs1{gx)hkME0M?L!#?F zBN4y42cHJIBCDONhIW>5K;k;Z#r0_+aV@#!GDMTVjl`mg?0r*Y?^}dTkzGd!7uma} z$c~yK`}+>~sk>IW;*0EWQ)EXAi7Zb|d`FzUXVlVaz5{Hr`GZ>R9cECe;%G^ik3oTi zx)xP9Ro{{JRMnzs3a1r9xNxH1k<)-m;!2pyCB9T$P0RQ26k8H(o&a$-D!!1qN=j;_ zcjW4v$FOb$yS`Ayiw{b;QnZO4%0Q6J=p`!e2_G zO(~6(QtJP*>uGI=Rjl~J*=h=Bq@QqhCcu=sf#!N!`AGb&xg6Rjj4DXzDcJc;i!S7r zt`rtfe5k7^4?=)zehyGiK9yKeKWmXR<@1Zbd_FMca{}cvUn}{pW$VTDM@o>m73FHF zo(LqFvnBc1?dXzbl=1cv)8kaqkFRK3MgztC`l<=6U(f_-$Ux-jV#0xp%wW+q8E(U~m7h$f@9J8MNqKxxYeN!Z`2_ zrj!LpwSidkYm^r4&k^sh@85$LW5>j~daf7bd+OnpUAn3scvtq|@Sl3{pSlbQ5!W`t z-tG}Gu0)X>~m7CU2HHMJ|OHe?xJ`dh~J0G5#->q;+zYXLqdDW8f9RbAEfPc6cx zCH#XBZV4YtOqKw^ASYJObk))tF~a12>%GUkOKY*f<$`TVuo2B?Rwbq)fU}rz{b4V7GcxH z^gsv~l*_D#<2|#@WI}h<^VPIeF(T8|M1Eb$bcJbd3zziE#gX1%i>i7bT_=Dep0<3L)h z4j-OjhAGLN{*s(&)@hn4$t@3eeq4Wtm!r7+4dDtGVV{ME2cL#C5k9A0oOagACHv=7 zyq2G0Eqw+t;;hS+R7BfQ-+51@z637>`>;k^W3KyGDbK2skD4a6svRQA)OPJr!;Xo= zwPBzde#|Q$s)3@5a}W9S5|xh??j^t%7~)=iI6oa#*Hx5jQm84GJ|?f!C~fgzx&;S9 zxV4u+u3D<YxYHGh_E+s?F=3a)I`C0S2b-2qf72{ zpufmQNs;-RcEP-I6-9p83kl*t^JbAnHG>ROY8e(Arqre(giEcjtW+OUYS-US8=)<; zipkD&m%j_n_LlO9g0@FN$Aa6VlsC{rn-Oq0i;hDIjDQF1M|X*=rmmlSVl1B#R1E7@!&_8 zne_cJev!UECVkri={p08wS^`&v9oK6zt-UdQN4@0=+?zGPrJ!@ApQSf0sb@n6S;fo zuKrrkap2ur#W$DE?wR_J@J}WELn`UNs(&i!|DL$s74(0Pu}!Vr7N8>TyQcoH`Rf0l zZmu}!Ut+tvs;W(o%l3U25pp&Ek5eEuW9UI^!?>dM{hfcomMjOUnPUPXq-NlZu4#B2 zGn1O1z%Nqs6UXJYkwAL>?tQs}x#cm}v@|}YF%f4jDQ4S^i*c0}pZ0Ve*T-7*Fc(56 zS`gWqo6ih)D97bG=qM}EYe@eIGp+l$+G~p~>;mmJDgZh6A`$U8OzyX^ywr!#%F~A9 za^LMb`fu*L4T$Bq+<3>AkVNCYFtPX}@zE%q7m;g6&m6bBOO&@Wapxl&wEym+DAUi? zEM^e`xQUIh7&VuRXm(X#fytA^4EHbirIiEr2E^Bh5l3=E`f9&gU=cCYm8Rc90NLB{ z<8lw)p$yk#t;`7kTdlIS$VyT})DkD;KD-iEDy*Z>86`MP6D|tcN0bn*jEI(M{0Z8@ zrd6|Y;!sttR>2ORwZmME1qC#mC*%gUi^zz%S_R7muz{@#<}%OS0cF}~%PGq}dHxWa zXf@FFpzZ^vonmmTa~Ow+LH*7Vi9qJT|YszyzJ93 zj-0|WTJ@R8>N8i?M`QI7DMMVHl$WgPR2XZa@w5ats8H_58*MQPC&x0LgE6$^Q|`&r z4qAn!4s$JLO&zWo>KXcsK|mfd3cEMxi004y8NxZsxZ2yeNAS>H1ny;B^=iTH2T!UZ?Hda$+x=ApP|L|WDSdax39bq19gtp$S_#@+ zmfzd()xW3(HImM^^eJ+_+6l}mov#?a2U@Hniv)u!L~G0x|N|r>L3S4{3O=tDTL>-D5kbM`$NW zBBfW^8n!-2mBv+%;}#B#mFlTtX3?1tz(g1E@=R9;ZIOjoHi`h0+zU_1tzl2ka=Eq5tb{e7T7OCo zsMgYdIiQLPh)ZP5hdKAKQ$Fph_Z(LOw6F1VTn|StL;}2B4Yw%f7R+(!igwBX3~niGK*wF87SBh*`sM6-*hgO}-idhR>NA+?a07J5&nFdzbf-nOs_klF9Fe}wl z%gq0Po1U7>LM#m|042Bafi$r2_|{>T4VywvM*Kf$^fzS2pXTCP^qgcBdrgmqL0d7!REsjis zq6qnI3oJd-7XO03upDF?9Fxa3peke=p{G5z5r$u68)2vKZyQ@o+vu~-H6@@onovyJ z81|a$UA-3a;^T-?EQqv?{_m7@D5s?#s%|BEP2)e{LldiebZ()wv9L?i2tdx=`m}UL zt5cdk8f6vmu!HGj8L_8*T*`!vt{9lat=#Bp64M%saSMoNc%)0AX#X$^EG;0;zu*v- zgDik!0wUxcfFrViDVUkO!&Lkt3z+&Z77zz%=pFiRam@;70n3YF0T}zex!n~hUft@- z)nB#hVY-M77KFKoS4}%uZl!tzpZOnf(_eejLM%-n044W9Q^kvYRorf;tD16F4BP2S zQ1egAP~kzu$5kyX0%jZs_Dl5FKC!^0>X>Z*f*)Er_*~$+1(tJx?+`$G&ps{Z0vC3< zUR2dHaxM^j29nJows$U|JRol6dEzi(aJ&s}!qUznB0d$cSTd&qcNp!hdt9A$27t=F znv{m^7U#_0fhl2_<(t#iOdyKa$jh@x-RF8ldx&vKbAFr%*a8+fEr!10iWVi`aIIAz zIU{Gy0W*rSxiD+y^7jx0eOj}D3?xmhWB`6qD;aR+{(cgq>}e&zV$}Zobfm>K&UNI&yX`zo)gL; zS9h2xKXwS($aeA4A!s8zz|d%GJYwQ)WQ>K{Y9oA4(LO7KY%QbxQS7#I@YZs|0?XEN z3<1Es(S?NVnew1ikm22Pj5{`^LL;PRXz&<|H-s1V1YBIv z^H$*@HhxUPOW=rnBCC@ZcbXS>8sXNh&{h*#^NSPC_gzgSNpra2!3L)x>89zl!{%96 z0N`2IiH{-DZt%x@))gV_tShFu>Fn5iY+JMO&nP_BL1#uT;$kkXEBC`?A6j#~hF`S$ z^bAJ1X?L!~2<%2f?of@e+P9BmLtD0~0PYNG!KeIi8Fw&gz31XhQHvsf&6 zBPBt&;$Nt(t!B{lM^e&)Ae-3vaJl+E`BOWjbZVSAqUZwxIAa^T=*GCpBD70bXy{^# zC{Ww=RryisezQu=?d6k2r>Y;CcHF`xc8yEzRMl-2 zG^5$9pd?pb?05tY7Jd9LG|QMrJQ(()=Ut7}+_R<`<(?%o63&lYvr8idIJ&VeFs(Lc3fjks_U}I`yaqlx%INX09{<-TRy&lg(w-nXRmwWTFDp!tB zo5KwZ(MhSI(HE}%kx7`B_YTSVV*3}a#sTP@-jZ5R`xK({7^gFk z=+q8M&sRnG!fq8r|Ce8=9gyIaOE6pasTj`IV+!%cr7GyEum0K3)l#O2oXf5xeHv#6 zZp?vqs_@*&KAKJb2uiOu6e&JnK%|K%AVTo@jE$yZ0fm4fy$ezV5=0TC z{LY-YyZ7A9^1ghM_xlGnGpEm)GiU0ZdbWQQzx2ha8ayQCCqF*#Sf)SkbS<+yXGXy* zby*V>SR20p&9IBgf=BSKiW2H$-xkYrre7E1k+q_O7c)C5Ox*`y7$9Yj?Z88hS1Qjn zI-^|beVv;)v<27pEPrIS;lVLg0v27#Jg(N>$4_3#tk3FF{%FLseR{W19DLu^Oq;=* zE&m(KnNs(uJa6qad?+TT)$i zoC<(uJ50^?8!_9$#!>v}3**xMNB(sHM5zB~HyeW=9%j4cX}0}R9d++Md7LzByk!In z+E4KC<+!&!`*gs5Y3{vf26aa<$CHr|t?=Qv_plRc*9%q`%ctSJ#Lj}Zi{*qbQ8B+{ z2)9M>FhGXFx>HeB1y^rbd7+9okNB$9{)rvCkZO<_2l!bP49D~0%r*GMCm*fK{d~-i zu|b4|e9_$t(}IEfaUp9_CG)Rr0>!|m=bqayA4z|O)`$nfRj3gcuh}A61MaFl!VcAV z^LjLZ4X})2nt3d73Syut=Y4 z^w-fEqz^Snzlhf8^r6~CAMG>mxuAZmn8G6cA2j+WXbsYbn*I$knzG+%jZPn`UG(v8 z{{x&G@AluDXs&J=vR~ze7h;kag_P&9+CxwnXXy|EAld<}YCprTA^c{vxoP}BQA)?Q zj>LCxB_W2y*cmq67uhZk(4v z<-?m=K4VQiF%xu5?WJXk3F&aHi5dKdY)fOc^Uu6^hNTVbPDzNjdrgo23@52R3y){; zLpK4w_M0@INqzRDp%^gKM}Ov>U$A%}U>2c^6CmeR9e?KHRp-cdga~lKrJ9VNx%oxQ zW9rL4^W4|Xt=Mb=14|De+ANo7@WVs2O?j3^Y`LLWh&D?T&4Az`TA&o|MJZa8chR(4 z{W;Aoy_7Hcsv71D_H`L<+kr%SJ!iPCHj}i!`0r}N+DHT5X-8Py2t#wZ?84ipnO6jz zCG6nKLt7dr@p*5UN3hGJ94DOexudiER4sEuMzQdL9^zcVQaH+!cV296#!Lr@dBy8# z-sLLFtz-Veq=p{A1*IrTM{iS=zdyHqEML;WQp8dzUFiAROeygIf4`%pIZLF~c)!Oz z^-~)hz+{;px0(Y~$kRn01F3PT*$fXTirHne1NaE02|7BN_3159O)3k#@WPIPmv9JT z7Y&r^<33`U&dvEjb~c!bDxUfa93V>2j|Xz6&3x80?EtjWk&v2f28G2(^QI8FXCJ_I zd6c{KOy4%j1W_rEMY888s(7|jc~;bFryK_ykjwA=paCjb@bqB4K#GBaeQXrWQMA5+ z`LG|`PXYC|*aNhb8nJ8-t;V)k+4_l0(|J&;H0g=j>;kPvrG6z!T_;MNc&cxDnBETY zvK{sm{U^^HuNe7Ykh$N?oW=ZpAs#6DKD^F1zq$FO5ni+#33(dnT|_ikW%^@iCZFW& z*F~wp^ShW6`0vhsc2S zbs~6tYx54Jt)L#q+c)o*#X3>Ytq^i7dd%#{`#frX zitRO230XcXO6+QGqA&xJhcLCIFdw^x!PZLbZa%79lZJ`v0Y<+;iK9TJQlL^=p$RmS z`5q+xfv#D~cRgla!VKUZqSTh6Trr4Jl=is!gu>D(LBU_Gb&xw>GRLx7v<6#dZ7;A! zwxJlTArPMKZ64IZSi7TykrHZ45=yAIVzu++K) z?R0X9thBHBBQ}O|_Q-A0C4B=XY$rD0B~#!m4cv}!2fB~-K!8zM8D;)QW!by{Eq z$>Q9xc)#4VNSdJ5j9e{*!A*;I#4p^mcn3@khh~|tm{;NnVt-h+O|n19=MOMXGE4;V zA@TRR4Kyok3snmyg9AH$N=h{5vtOvt{O=?71EDD=d|tQ|>^>+@E({rB{)?TVD436* zI4I{UCA0?faj3z3{~oQue0=*G!<#7wWjcNYpu~hP>JX^qN{Eqi_#sKT2CWg4m2jRs z0vt?I|dV*!qy1^SQwG3^Vs(gD4nElCMcJn%1Bs z`9hLxHjP&3LgX8Tz!~Kd3X0ShYSiDOHAsCS(eppFR%fx$%|f44?xCQ_Vwc9^7_C7T zyEGOx2d4$nN}U57Tcwu7X{G6~XJg&hIE2y~IVFXWbIOkn$~h%~XmiRU!4CG9Cz-S2cZ*Uwr~H`qDwtDd^1_dH`xHGs z+5Cpews;8Ip;5(RMOR)$?di)tGmsUZB>8)qxsd%pi$xGl*eyy>TJ0e*imAPv)?tQu zn9oT7lrN|KG6Tl$UnwOpuuR~CPeZZm1+)5%_^3zYqj~Vpr{b$EcyYn>1(O$O1F-;e zhY%cWbUC!?>hZ%k*hCy5pn!yV^=`gut~su#@C9>yg#{cTwA_-YzDMN9=}W8e*ygO4 z%4-AkwRRhvhS9I-;f&HLe^RarT}| zh4E+>ZB9xt>FmAh5jlJBNl9QX(w(1v-JHm}8!E(?dT{PuU?>)ORCm5(jyb^y@1cH> z92dLj>PK`Wbd1fz+r4OMqP)s;UWb%(E&;T4n^DCw%EN{wgWgr}64}@XuN>A);t<9f_#taT?P8~ zXYVKRy%T(9uwYWoLtjpB&gXvg^gz}3sCY)YD({pT@UAK0sLGvnO);Vr6GlqRQ;u*i za^QMGeaZ>f6R50i2P#sQnAe)r=11jmFYhp+%gjA|Sr1APGvfuT&FfiTL$Pq69z~1a zF%MI`AQZOh3RsL26zt!TK)|TFe?_%fAf;}&6OYIWA0m^>?6t!7Xdbl5-p0(_qEjI z)4s`XR@D6i^JSIorO^02hTWi(SOnNjYs4bJqVY;S>fn7$o`hx7*eU*ZsA=v>b3LJZX+E%Z2A3P~e%X56uZ`%b-4f1k$r4qUhQGn8Ot# zB)DUBKCj+;by+h?S%haJAYM!CUF69L-P!y>!AREqA@JvZ0$W1{xe!16Q*#gY9 z`l)%S7yRSh{qouPhrsXtIeg-zEdNhFH!o+eJp?{}7|wu?*D}95iiv=-lb0MdXBK_1 z#T=rtLP`%kb;B{~sT*jG%TrBXAA{AZ7D^iXhE}7meo5V@n7WVAS97GV0w44q10Uf% zeB0M@K@unK0EX9?4PfXwo+WUKsjyNqGZdraO#2G93LZI5+#Maq0Emv0MZ7WsO8y}oQh2V?t|~V#F9|GA@Gj}wCiTXM;BUm%-}+|zc)`;*>Fk^U1;cW=|V$k4X$`X7)n#8AD5q7 zoJp(Eg{DG{_?8qdKfiulk3g$_QL2-0*HXF=@Iehn!Ao(ndzxJHDEmKYsCw~C{ zJ^yJR?gby^4}S=J^e+Q{^sfOY3~{r`1#`5@vM4=tGW$u{>Fl(|J@mFesSUjyX*D`o z+mocf^*pJ^O^-COr}Q!4gK^Wq2U~vxC5^2Qu-N(rSZsaI5^el76hrG(=jPiGBwnGE z(fS5Jpcql~#Z_|~g&E4R`K=}9zU%DZfY#X!FRxQaN@0$2oB?voqQGpoxo6xPGC7{aDtBG+D=m0SxOI`;H2gRCuxn_ z32wTa;1;b$C-{>(f$7u(ouHp|0^oyAVBmvJ5Oa!j6m$ZBMJF)8q7!(QXii`#)}6pc zDWek@0MYt)wg!C848`aJ`I8hMzO9dcH`d}Ih|KBhA614(b$)MqKwb9OL*P%j3vsBd z5E)+v^kzdJ0{`San1vbe(S#BR-Bb=9={?@!};-d>7_g z@|C#@S6P~{`IOwg0Sy{(^B(_n_4QMFNH8ru1s&l)6Dy3tdlgITM13mvgv%N9CWqz8 zJx}I$HnK@&2aaI#@V!J-fv&~FfW8K5B#0FA83|qy2RSo2pDwa6bkJh1w;E{soK`A^^FrLqc0Dd1SaHovkB?aM%=f_uu7jgX1i&H2k|E*ad? zz7yS3Xs&gRR;T5Wn~m`OG4Zurx<)D9$I`x*OE-Vq{RA%miN|ShD|(8M2DhT8ieI=D zJ@w3kwxUlbS*DfUisoyREx)tHR4?3$UO-AT=CfZa|5kLDR5)q)9-%3>qP=h_c=wFl zir!G&a*A!CD7b<5=^42}xSQ7C1|HPl2H{~^1K~qEd<@mNf%hK(6MNCuDHxKzs*!%= zENJWs>PQ-DkaRGu(MdzKi?qHGokn4iO6pm;5e*XP`?xt248>@CR%+OR)*u0>K{0yK z8eI&iHi&^+tYauF(jTeOpFwMoKGY!nd9+5S57h?xxJ$f_!Xo`O8vP<#gY=;W>F=a9 zI(?{i(bu=bn+9#Q>sh7WWZM z*YQ`gEREvd6{U2ucs_CHqSINH$uN?72-%@g1^RGl6A1G828v>L7`Guu(_-9)93@In zJnbSS#U$I1%8Pu5(*k!ZM)k~KuTnB1TQzp-xL)Q_8RtiV^9otD;Y2LX}Ch_|`~gC8D(;Wp$? zhGHSuR!uMif`?$*3FpsHuqf|>kyFH`n;-@5MBegbr~D~sWG!0WA~00cVN+;3!lnOJ zZ}&msC_|IE4WsfCJvLV3wO_T&42nLdE3eHw@jP)7DJL6|(dXnwBt?@OfO^|#JH?c@ zJW!lPY2pSTg>g4rQKL4NBPO-wIk^Go6^2jhVELK#qy(W0%Yz6?H@?23r3LFoYjH9F z2Z_h90$MC418TQ(a#z!UAlfxvS1Lv(2UHl()4;D#!XiCpFNzZMMi>+K?WykI_b+sq zpsqg0oqwmMvNaR|=fkVOyza&1P3Po%7-9xL{ZS{Iy6ha^_eEMOwuIt|%w1gscrclO zt~mb*NK*1+AcLO)_S4P-r?X=e1!X(zDO=I_?v_-Al~PEzP1zM%3=0=&#u7~AOK#@Z zQY)R8%2htEJC@w5Go2^Og`PJkS3RLXw{@JfwSnc4o|c0~mN=`rq$v&`bZ{vS_XOd0 zo-xq5ld=dJWZkX9oxLobBU=lRF&%3oeqlP+2GsF>GBBsN<*BmiSkcwq79WKTpxR?T z)|ZrMd}mK6e?BI!CJtB}%uD)Oy0cM)y3EYH@GBU39y7C|^ZkU3FH;;GIA@-hiOWJ- zBSua*^n0p5Ox#z~3VqB3JTYb}Q~BnnV0gXXr%G@31qDUwpJ>!~(Hf-wiKKprRv`6x zz4|m$jKuL?SSf|Xq5aBvOwFVSQGD+(b8qJV8yMP^2BHX+ev=AD(Hg{u8q7Ru&>ECs zrn(kg5%K-K)1x51DXym8U8YB-j zNPaG@5#$$rQ{N~yoWvA&&DK&tB>s*@{9{^!#GwX>e@$z2*`b=sj@jyQ3X0?pYveD} z8YB-jNd6YBLGpz`xt_w09Bs*GVHZ4FR0-zu$6D&MBwB&QgD=Pi&7d{9>`+Z*$4s&n z1r@R@%_Q~iv;wI&yC6i@GRc9oT4w<;f`vNuy!=e<1A3&MNj`gC%OoizW|HvcLH;;P z#}I(f63O|3=d*n4I7>$SNKr}?$zHU3;OA%Y9xeBf6TZTuq|e(g-3UVubpVZV;-a{|Bxjc}cYb~Uc( z0xk+feMCTk4UWA4EI-DYJK53+-Yl3m+0u>eCxD(bwbPJ$9)f1kms2e13cL7UsA<{r zIY}+TtAxC8n&r{>GFp|jDdy^?i=dh-u6fv0ON=Qd$<@`!i}J`|EG2hOINF2#MX%jB}Ck5jCYb@jLo)43UOOpSlvl}Iej~2?nO*@gFj0TC48NCvh`8{l z>#e20GybdI(B@h4zMrABTwcqAUbU zdCK(sdrA`1a|+{buOj7j%SMxW@S;r5y~6OQ`H-Gpqy!-@Y8U;^U6dF7&e3W;KmUgo zV}1?@cD5@ehDl+*p$rb zQw&^-w(`LPXk^5Pi=}nhvZ_#>G zZLx=H?;2IB9;O>RK^l7o-?Pjz%g9PJOF|jQDTJFA;_ocCOf-E9;`Dzjuo^Eu+24mR zUSa9MejuRowD9*lXSJms`<_;yyS%*;2AC7H7~SQ2G;9N2yh{xrLMKU~cgiN1*0OgE z^~+0g0Y3R{%k!q&E?NHbw#CfuQ?epJDtDw9cW8w$?4n!4EAi#4E#1`c%lyV_iT@AYyPFjOTg!h}KupYEn7*TQZ`D-nCB&4NC zv6^0%tM4w;Wv{c0h8F;V_fzb7N(I@D(b$fmHF{T{MT?Q`7*Dp^`Pz{>TU_)n;lb6& zc&W85bu)Qf7B7)aB)zUc?{&CzZwMGTOPuz3pTG!`K#>rkuiWnvlH*iyxA=uq#od>2 zsu)Bsk*WW(9Ed2|zR~hckh<@(h?sE@JR{Ju*> zhL6NG8N6&G#4AV?|I8Jup}3~{xM+>O=fyjC)BJ??aLeR<`0|X}irc<~z8e2K)T2S7 ze#fzJ(T|}49jlR2s26sgJ+%B2Zg|5kk|%v-`PD1o3Ow>sdc@MX=2v zzL6-QsXf(-<0E8_Z!A-T+7L|bbpPpZEN`$bq+FctZ_2l;a44Z9GoVsbSE$pzoYJ(q z>&q!^ewQ6b1W&?UOV!JA@AREzR?rZ_MdQA0&`5Ze?t9B%HiA@oiZIff2t&M!pk?}H zMG&vBsW1M{H=oR`#a^b|^kH!(RR5IjG;P`_b~Dy5V>E_!|5VkFUk^sew_=Ieszp&pj}(?A&9SsO;y?y_TBnXR1FQ zvnz%@TUb+EbhK%xdIEl5sA1vVi!Gzd(U)DaB`81eA^R-J><7vXGwf1PLLK(|-{os- z-+=79>Wo%koBuEzQJ6O~B~*nn{E+2W2m_};>O=$xW%13Xby%pq*|g?&`DT+BV;8&w zZ5x%Dz;jdLQdP$lu6&zXlQp;ka?qF{-@~vWcX(noH2zIbNhxjlVQ5<7YT8xh4*}L{T%=eyv_YV8UX9r0dYmQjT^SNFS_c{2U)l)|;joC!XS~PUn3Qa zRl$0&`)ONTEFbzqi|XuCiX*%u!Yd9pU$GowdnqtF$L_0gS^GGx!F5WgaW;Zy%p$JA zX`IWnT3@FG7+k0PR&%Z363b)E=Nd63GI`{hWD-VekO|ZPlL(&pd9@UlM5~d>v=j&&=piiJ!V* zY0pMb1mskpahgPHkQ3D4PQa_QMlf0Q?;cbS>|b7+3GCP*r8md^^|`BmQApXpUW88I z>R<5yr}eK-1YhyzOWFr$KZo`aPpN~;82j4Gv^{Z|_kMhKPqu{$j#K|_H61PBDUFcZ zV7u>WEl&J*awXVm;pPuo#i~Dn3B~sTPzZeN{By3v+8go@UTIUFM_OIo!cV&dy#-uF zJnnI-e`H{skc7sL&!}ja+fF-X*~r_f)&LbUduJPak8&g}ZV|#{ATe;k@2+ikRF^Ch7{!dKiT?*BGoR zWZ;Ji8A?#00bUgPkFRwo`2a zH3Di}>3?de7ylah@65z--MzGn^uQ0*Fz`b)3?-<>9itlJc(YPPmf?3;?_sBRD*uQ; zlZ9UjWQJY{1N&3FX%*|F2wLpweYg3ZD%PGpV?Z@t64We}J!eo-jFzKGiH^1}#5y9; zYn8h*h4AEfpROWQTls}oZP9$`#g-9_;>cJ%yi~+$b7Fz$nom87@wq^JD!yQeV2xk* zg(_b7nyq2HZp;uFa-JdL$xi@;p1(UdA+*U^31cq zHlx*`>-~W%H5hZk(3=s0qVs*)@a2v>^k_!s*W|-2+9s;q6NfAD3!_A%ysG=TSvB>qE*;jOWhnabMfRSt3S%Wb6A`3 zdd;)z@sZcYRpQ(C1y>Sf-QhNSLVas(_AM0xjrbKY;yy1%bT+VdEnfySTG__4vaGe( zHp&zYcGlBiUr2R6)eP3Op>;I7Nzp27up4d;#9*!YGjFvF;By*V*ZCy;0o~EO)t1bX z;FqyG#_`R0T6a|H@Z=U&8|{t!WH)fM7n)j=%3-MKpIV<){@`u0t??|HGDbr+5hb)E zMhHpr)UZEfM{L|N`z6+yqT%lO)sERUSx-YT?8uk^kdN$?-P#Mrm0W8UEAYfnI`gSc zYq}901Z&SrUbU7pHy^EZaO+@b3Rqm+qAcav&8=x{8I=V6bO~vK_sTW__Vw3WSX0Z< z1Q-k#{=qGm(_`5}${E|>Q&B?O;0-DNT&)eJ_Q+n!exzvF26gY{SlIzXvDni4k*{iP zt!{*`h($MlV|~^wkHMZ-I}Z)uk3W%}$a7z|2J;WvTPyQJZLKevFVW;umI6JJC(r?y@#QZtBVq9?CQnlFrr_efj}ozB1Hao%N?8pkwyYZT56oo5?{aso_r{ z{N&+^jX&z+H>8U`PGvyrO%^58dOf6WU2pImhiYZ=tDjk8_`It2VQfCdt*{B_xY-aB zKFTlkuzu|@<#UzfERW;e^49`fV$8pF69QrGUksDJsx&4+x) z<1lQ0NTool{US=J)iz0WHr(K&nxxryNiBN|9^T7pW0xo{&VZJ;%gr?10DmrSmz&Q1 zqV?`Ac;z~($&(tl3{(G9`MyC}R>QbaTE||i0-C9pz#%5qsAd!oRSWymL$%-Bs*#pz z%`blh=L4ST2ic^#pLLXv1JHO}*W5(bKoD>*O+ZSj+Wyohbx!yVpVu)c<6I9^e$Tfi zlruW0nSV<6&ZMk`HsM`8wMqX|Zt&FpQx1b07q-acC8M*uvL`8WMg3bHr1LSDZTk%9 z%6@~bADHGqyB=-cJekd-jD?e{v)u*@gL@Ta>~-x~u$S_rHL;xbGQ9$T>!PlLUvDKdi^tlg8jUDVq@A7Nd>Vg!_{ zYrs%no%foOTbCspip2q#n7?@XNNcJQ0T@*%dr~9+lD-cz8BE;ocQt@#jJB@!c@!k! z&N22R){V-9hVA^9yB8~c`Q~RmGFfoS4&}9L`@dxWZBLn^T}O%%8fe>SI<)*t_TR%} zt%KML6tBXbI9+F9Fw@-K)&L$i&ic8}`@oO)o@cMgKA@b@OzVi5iprV^CPf+ii@Ekd z-n12rP?@h)aAaSjnQjdg1Wot7D50i%ThnWWX1Xi0vq!Vz6tBXjJEF5Nn6ApY$1Cw9 z=a5Rg$rS5*s?SZijOlxm^ar$_dQ*3@5N?^{;bb^nGEXblbP03ydz!iKQMJ)rDMA)% zu75OL{{BmRJq$9T=~m9_Q;9KIPg-S9XW52g(Sz&Xls(vhP~jeIyD57x$YikZ@z21G z8oy}W;qweg!Z&XK*BnJ0(lTo@ z8%jk$E59yEsFjCk8V$TD`*Y@un*Ka-mUTK?MUlbOo!B}=K(HO~lJVJk0} zGQl^}Prn9fzRz{BLeiRVJY@>z6K7j@n~vOs*~s#2xTr=Yn%~Yk5HxqKU&BqHGX6W= z4AXryap7!hAV2w&J**<@O6t!yW#Igo%7KRdTa-{k@6!yuM>F)GdDb@>`H+OHG55weXonw~M+>U2lWS)OURx{`}bu*|m7? zxQt-#QE_cUcC4~oG(v)s@ zEtQY@C_9-2-Xh&iSXimdlMA(FlZaboog6d$D$YZd`1sY<@)}q*-I7tlMA-`qhoy-U zYT-wOJo3Doa#vXS8`hX&bvakRIv|8d`k{_284Dp@w~$sPWV- zGWQG|?d;0lr35M(hn3YvURs1Ga&ENdDW)I68FRmcv1>2oiH6#(8|ttZL*d|cq|jQY z9M)QO&-$zioF{#qU7vkRIitBQdz$NOqQVZ%TyuA3FJt#9F0Q8(e^@`=-C1-86 zhRT69TSaWPsjSU7q!F-!m3JtZ@7bRnTA^fY*=?S2z-nR3s1Rtw9ioIf!kbbOhWo^R?Sc1$a}V*QuqkbhBG(3sW! z@h~Q=!V8Bi(Ttg~*IJEFi-CXcN90w3Pd{0|XBh&=weV6Ai(+S~`;VN30Y{fnA+|os zm+S`LY`fdK-lse86CPQWZ>p0Q!5*XRg+bM>U_{qBm;TbAh9yyS%awh8^5va=EdQ=a zr+;AS_;hw720wKDg%!h}6(!Uq+iOa-`3HTn2+RoI`FxooR@iVaNFGWXzT*U$ScTk3 z2;edMtyg?D0y|#VHZPqOQpRYq4a8)hc`=#!XY1qT41da6Uhja_%GOe*Xr>=T2{qFi z%}j4=W-?#O_Ep#^idYdd&7Ti@x|)^VHd<-LXQKjm>XmGGz+7y~4QqBNfcH9Voo%Xo zM_qI^JB|6@A&rbCt8_>AvT*qAIfud-KM;bM=s@VSU$igpjDNIAxub2+!4D5tt079L z4ex0-{72f5FMO>27}k*DRm6nYMeE;@Q_+8nHcYA!5x^5~WM?dDekhtJo&r0b49@ZA z#c?^YeD6u?^FH|?27haQo|O%t0--tk5_1ld=Jbey+dAhYxJa`_Lw@q(8yz_nIy$00 zafinz*%H|kR2=lpDWZhh^)acm+U<@UR#x7%j$m(4yb9ZOuFgUWeMO_rS#uQSQ@;7U zHG_RlxuMaDh|zX>@j=Wgi(4M@=OGuY$>r?8rhkL`jlY|1XYj+r{SJDXsqhZ(@=i(~ zT#+61c1i}nG_QUScA278*h&}N99-iAE+9>q-8Y~p{&%a7;uCfk+-&*h^)0L_{BjRX z!eUAYAN9BE1Xse{vc0zRRcqh!+KJs&x!EVj!r+I_7RObyD537;FXYHmeEF!mu=J5# zDQ6gKPO&O#Cb+dL7^uE?-NPuFDP&4qK+y-+tpSSZX%KgZUrv2CoH9l$4JB53-iwtk z-LMWQr zb*e-Gx3L2jnzYxN`La7OmlK8VPL9F5u_&Rvt?E5FVukY302}N!#N<53I#INWT1;&( zIjEucjQtIqDV*Pn%dzm0SFKUJ)7}O#d}mxvO+NBcbS0jj3cEI+`r3x^ZIx{?rswXd z{P(5}qIt-TW@&636%b83hM0DSG;O$HrtnC?c)v#;;YoWNwBfOdITf37jl3rZ$B|SH zwC@5>`wrLaTOjPai>;*?xRJ9VIVYDD8j4~4)&zjObxKaE5d(NsY%g|=)))mIjj{Do z!vNm1dQO^bjD&w0`0`!Bw#BB?AV<@GvZHz5#O9Ux#D5wDv9nZIwEjtHeO_3*b(rGC zvGu_g34a%2EB6uLqxX2jEI4m>lnQ~Szb{ItYah}~e?YqS^6Jf7vhe$)N8mcn{V-d) zDgHi8C2Qx@W{I@keJ)0gz3=Y1rrH224#s%oU|Dr?s#jV|Pu*NAJsg>5i>=Z#IwORX8%euCs6@ zOpsOf;wR&5_uxhS6Y;jj>{H4SP4ypQs;|77YDET^3WHkC_@81coQo@)d0dh$iEXB$ zpwSL^8f~Md(fgXwMmEU#mR+QHxRM@{0&P%Ai}CT6i+p~HEzSrJF$zBP@kUl%W_rY= z4<-WM1cdqCbITISU?lVH{|WQq`PM8mi||BKF7l?;ZFRgLnGcQd;oBc?Ze?knNXRR{ zXLAqfbZr`XVyG9j{$x-e%vP}gdS17%%V#iq+`6t?0KbxEJFXP)-L-7>*f1&(I?hv% z@cxO}?bPRBr~E=A&;ErgS>QAwJhRoIAf8#L+?`Av^avb+&Z)x&Q4!E#UJ)fUlJtLs zcWG>Ms(s=A9@%F8N?y)J_7=sfa4%aTS-|0)E)8tBtqu1i9_6<(Y%Te&4BH&_t4DZH z%ba>_CuNHk+o4%(ue6w9sS3uFp5;uIlr4O+1&+;cp$ySJr#{Pk^xM`J8G-1hhfCfTcciU2DK1cLSowU(2us@(T@YU-~=> z82tXQtXixa#s+-Lg;bjIfyC(1N zuvX{!t!?q;G?ytsHSzpQHEJ{Xp$mYWFHe-v&KIjk^GbPwnfTh-l+qm4pXTBXt;@*;bx)X3_Tn! zx^yY0rIhFS;7&F(d!F(`J1zCJ(-_T8qokc2Em~}6nWKWipBQ`SUqzOZ9?O;pVHb+@IkV#*Iqbi>m`KWZl0B}_Dz z`I(6GRoFU}Ofr$!L5yJpR1|qk_!Ke(PGb-oN=r_#lz8JWFK1{^=T7d zF*c_r8&0dm0RVNVrq=VI)&z%fsNdSxR#fzDC;%pKk?EicyZ#)09&~)PP}X4ySBiss&^?{RAHB= z3ahoYSgExIT%4G}PEfoGyY5lVN-Nz~!UWa#N!xd7B_Ce=Bt*Q*KBTh<13{9|WrUX4 zz~$#I<2;hN(x+^XmbZoPn|Qw&Iknh*swSEzRfs`d^^RtqTbg;U6xc?x22@ylQRO2rz3_OjUdQu(r&m;2`h=it(NRAwyC zpW3muX_$|Rhc1n(#YRvWpoz4vP80~fdGSX*<)MV-vtqOagvY0c)|C6Idr|*qY(o_F z4Ii$YZ!|=CqsTnUmZ>P8@chxXboLn)7F+jY(z;)lZC%_aFCJwJ;>&lzZriZgu-lgZ zZF+g`l7~*QO;A7d;iKNjiDn;CK}3s({US*f>OD=jEc_Ez6%A@-e(V>(-eE}O)&6OFE!LOP##VfS zsP&W=wP5m*!LujX7=P<5G~AcO3SQiX*2}`D3zawcs26SRl)1uZwYTbClf4b!s`JwC3tshsS2uF{ z^Cnf`IiAUPTgDk*M%k>G8}q?0+q$z9U*g%~iLj0dq{J0Q7M44Va0ny4`A@IdMzbtJ znB!|%c3(dKwfgN;i!XNu=XQzo!n(i=FfAM5vsd&j6$&cfQi<{9rD^u=5%}a4zM;}r zFvK@hhVYHA*&4^2MFH(Ou~Z~{>I$E|7(t80Xt`)|rSe27)cw76Il=5{14Z!}gJ0Ic zHtl3uEXJMqNumTr)ZRulVy;b%DEe`I&ODXPrKmEys{4dLpEKW&w}uoK;4K!llcCzUIq!e3P3S z-)_8opoYq>xl+L-K5Bt2FM?X$Rb}SNTednpccyRk$YLQGzBjW^{KEHU_Q4MKQCp2b z^4<*Jw-ny^`Ff%4RWA;{aFJ~gyJRqeaPae_#O2^iE9BtaIgV`6i-F%=LY<4J0Zq4j zO*~nNx3j>?po!~nn`KsNSM`=J-^?02SPZQZNRVRqy=kk(09QvTom}&=2rtqX{4ER@ zub!4YK>3`;xEcj%cZqB*B*gY; zBYt6fw5ja9Jr*sqP3`C(Ke;n!3QHu^D2A`tm%+IC+nh$MK^a(^4m&&Vy$Fy+!en)NY|6vNcgjke|N8Cr~PGD4KlVak9B z&mT@=Gbs|jd^k;%;Ok&ufaLFN4*tx)TRdx8?gulV-Yt{aN&|*CefyRl@3JGWJ!ISa zme;oiJthF$!`1u+RnpbPK@5eXaYT{I<`EljA-KkE7zkjefjXFLv zxqc(=_{eshou&kE`V~@IB_Lc^RQm+Zaqxkxyu_k@`*T_=?AHHbs-S=%8CFKKBRu3&TV5n>NmutC0k+$hmBNerMbwO>?&ty#4J!J7S0M-X|8C+J z_Wy2hKF!OpJ(Pd=g>9VIabivd`*PoHu+g&kNKOXNDRflgzFTeW*a&JNj3Nc3#1%#U z2b?Fc7YSh*K&Jc405aKMCc0i&7fkY(L1B=;E28(`VXLOB;gfdQ8pKZ$G-*(Hk}{F6 zwC=E-W*ccS9+$y~qCPehiyOHc{rNMUvfFq;z;~j)^M)|#bk1la0w$iZXL8cjWB$C& znVj1Ei*If6S=DSfvS}XLy1shEUnZRw{JG_9PUnarf;3e{$jnOz2F4g^Lyp-o&J*^1 zDi_9?fB+!p>P;ff1XdO$7-!%)x9@Cs)fxd@X_r-lrBP5!h*JZkY?c5_hy&LM^4bHn zo6p*^)Ioh$Y3Y&NGCc z-fe5GMhD1%RT-oe0m}#ehJY1GRd%EJ^XbQ&4&L-f+dMXf(3Br-!qBDLS&JDHKo=2& z+F#BY%H~oeWw3E2>cRAS*E z=oqBFG>4au+}E(eD_7l?)~m+v9)lwrPO2XU)uyDx6;vzm(mkdojsD3Q6XAt$K_|Zb z1k8J~0x@DHx@Z2gS+kBEGX@M9_DugVmii0i8bChpdeYX^rxOUsL(kiy#M{pzZWbLo zY4cauP$D?T4vw$8jWQIA4n8!HpPrJN9z+pfqiRR)N9wFV8E0OjNZ4;)4#YU4Eaaok z+8lxT0)U2@nNTmn%uI@@hne>c#X<@|z%XM(5Mib;aZtJvD7M3MdGVs$@;u?^vU-U2 zUhELceg~{U@aEHHh7!@E$T~ncH8`a3ZGy6wIm0&^jH+LqCOp z`yk=g+gnFAB79tecM6n!Ed@?|$-b5M(YJGk_FD-?2zjlHh z%{b~){+K-BYunHIP$Y~7 zIv4H3sZRvSXaIN^4Rioaj21x{4NQ4KCO#@AvFXC?bplk7%{z3xAk0k`uCzbRUZ>o> zDXJwLvow*{DE4k_IYsgiS%Y7yi41r`2;!U?Ks`#souSn9(lQ;j=nNMid|VeGI(_NL zWm_o;Ax4637%gQnkmH-rR;^l;>0_U%s6PbBltstTQWlCKQx@6*UCshM8&j6ELIg}% zeigqkjQ$$*;FJYA8Kx`~E8FLINm)Ak*$dcRsusq>TcpGl4=eC6I4t#d=dj-w!jJje z2eOc0;_JB7%Yx-nZvw5s^qsv&3qA;zW7VQym$CMS+vAn3{7SgJY5WI53TmXq zL@Z2A`IXP$c04}n`Yo-4n9_kyIcF>9VqZSL7Gd{gUsIAelpUibIF&vuN^mIqpy+g@ zJxEb+LK}%u>=uQ^QS8rPIf|L8$Wd&ofS{vTX)umrtdyeSP$s@4qsCT|v(ES`falI# z#K$ILsz}OdUMRz7WLm30Sqx=H%I@)uU7-wdaqtrK2v{6c4)gwT_B{0$_*1M68cc#~ zgX!`1!E6APNDt@-1X*lA?c*tZK~6EjE@_Ap`cIW#Sk1p=DLd_94tjYbV?Pe`KUx z__b6!w2w~i|QFp<|L$>Bb$bFk*v>G>~p&FCV zZ>o@un;R4iQ`i!ulEc&x;-yFcYFq?x<==~H1v{asVcSOefS07%dyp9`Ca(jZ89s98 zu)$jLni9eX*RnT?-zj9EaiWk4h1qMTiHViOTgDSuT`Cs#E%A)8;^6!0*)v!JTC1P2 zhfxdjPbb`H7H8~J1en%y;Q`~?;hQ`~s2d`W)EU@`P2u=5ptUGZ{QT11Ho2Vjp~ZOa zeo?yJ%m&k9{C002o>UL=BLlpy*m$YfM2e;>_PnOpi~qM`+ID*%O)&#I55+XlvWgwc zgy*+cQBib3-C%3`uOaO7C6uSJCN<_+vtAD>WI9lG1Z?p__@ ze{|2i9h3mYt|3WV>q!rlYdsmHisLv~Csg*PtWY@)MhFPH*i#b##9~iPimEU6bTkx; z#U4Pw#U3MqYr3W;gv!;P`)4xBv)TjJ>!mI9#8TG!LeDests1e=Gm2K@9A%g&!PulZ z+iH@VJurpSdJO3~$N!}#=U`|IpAN=+YCb&}dd>}4>QSmJq$!h3MnmUxzg%1Ird z;D}m=)(g-kVu{DASa2v+Eb&|`>zu-oa6sKDWWet6jrfJ#`jA+HOMX$y}SZ*6XWh5bdS%cYv@AiG$q@d*QM z+&LEER0q|Q)%lp0$Z%tTn&}$HD07IxFWltIOX5U-h=c&KkR{H z2ldywpp9Ew+a2*&gp72wJ4A)X(GH)2$Cu5UP`S$aAwQRmLRmvf4MwV}eB#K4Z}KSx zxv52cyE+0C@zWC2j(};w;PEgS40@3&3B{?ew8yiq z6kCr66Ai^89&`D;X$6f6{3fudT zNV~&i!o9p33^S)Fl85*jljB1CJQdJHcnB*a#CK9Xv9AMHwCeV-w^2bZ3?*e?3&Z4Y z6fReXgp>Z`O-t>QZ7f{IvSbR6u}r5QDkEn?xQu0hA_O3e@Dki z+Jjte1lz zM8}!A!F=k(+(D6Es27X|Q;9=Sy~1(0mtQ{>M?q%?h+s45nXv=h+4W3*uaCW<&u9>m z7Y@<~{G#fUb1N%sHW6NI2WejbSYRj?eQ`E4lh_WT2wGIw5H6#_Mv8bn3SQiOLYsvZ*d7>b1$fPg825y2f2KuX*YN*H7>Pm18OeN{G#a@I41 zYvD44l+tSS>)%BQ%@D3YBSD6cVAe7OO3~$=zlW2ppunm?!8JDNeM={-M< zUvCy%FZ3c=!SJebx$-RvjdT`Q)z&N5(<)@XSY!SPtr1ARfaG4V6u;em@!tf%88>_` z={b9k%GwNohdgbM^u@E`zwjla>`Cgus&eUaxS&e&kDinbetMjixEdbxgof9aE`Jj! z*!ma5FKqn_4{H6M&w6Hwp-o`xHg=4?B~v1ZirD&hi8QX(uRwz6TmT7TKFOh#a{Tf~ZK_E*Gc}j6 zp{ypQCe{>+IyP;%T47nV9OvHCYWDW$PcO+$R`VkGoF%z6SaS-4(Kt6kM&phVG8!id z2rU{9&uy3*)<6`{L@JB#n`n>o!fyN9f&M&eX>O`IB!c%@nw!R+D#LD&#%{D1cG-Ci zYlN3&7r{S!3%=N7P!A{jWkAbVhIg7`pU&n`DbO%?r`X%6iz9fy<++*cO)8Q)4Uu=NmF11&3X-|6;udA}Fz zc#I5Xol?-ep}H#q62#p4><20(i3SLgO{!+Hp=5i|%cPohPV-ikZHl|>0IpNn4fo$ZcVBU0uBX%rT{ zFf~$op(V1c7s{h(0Dwo)D5{{LMEIKWrZ?=)_)|g@I)?2g zvS~X@;+sOZX)!cl2VTw-`U$JjN zP5GD?tgttTUnAt99ygB&D395V*p>?qFmI#f7`*ViOy3%cMey1dCFfNXL7P{dgjNy9 zc~4U$Z1Uq;lV67R>e|#1AOPsJ>M+!c5PFzm>LFB#26&gJ;-@kI0jE_)1Xlqa`!`T;9Abnbu5-q1y)u~{j3k4>M5;V9k@3qdJBbQ_*zXwY)l$OgI6Qjw5 zDw|T%4xrJ3hbVF3^+Cdk2^IAjm*C)b zr7I zh!jLcg%_j4oQ-&!&+UiVEJ{W1jeF2#f>3BJm3cfJN23rcqDvFMfdS#j*=(u<1urTb(qDUr7-&0f|J!`9()DN1*bbg_Xscq z>9K)lp~s$~x?qnzK}s~Xvlmsc$3jvP!8iCgC$n3Gx=h#pjFstHX{=1wyznn50W*qp z?QpECPp>#{Pw|h5Gd(if1iMfCimx+TFaE<>L28(5hl)0Y3HKWCPO3=MczgwREr>Qi&WTQimmr_ zT|2E~9*C1U+pTb?U16mUiFGB8MfK)Zmb@Mer?g&b@3p zW#LU)Egza(1kw&y*pi2YU+C5@gx^ba&SL8+qUc-;r#Kq14-KV4!}Vn})FgOM({Q2G zkeEONcmsBOprPQ!sa)03Mx9*75*nPr5_)Q9@NEvMU8BkiRlH@wcRW)mB9ewX*Qf#E z6Gx3dgc>+%+z`KT)VLAwEx*af#!)~ZK(t}TJ&R%d29qN#?fNlvyFXt zQjo*Uo-@=5p#hrD|93!)7qnsFj_T|cPYh)Q9~lg!3~WRQOBgOd>9|1!ROQvCd6~}7 z6?J8TxZ2c+=O3-Yct)rrAzsJTE|gJRj>=65bzEkJ263Rba$UJk40S>|fR@UYMMLFw zd19!A3B0r28S8})A{_HXPzw3xst&6c_>c%kI=ku#FBsf$I2(IGC~4qKXOAS3E{1ES zfN;6KGocJZb$+axqb>{ch5#y5752R~}?OBRgX z^*!Nh3&61h3NHJ?DIhhY_JS7|OkXg0K`l9jHc-J-LT^^>NNkyAExOmx8LqI722SFD z5Ng-MPz+6~bmaYG9riNt$vmxzvp0Ln6JG6@$WJtJW*HH54JUXaNCwsTvPMqEuQYWA z8!@pz)yj4bVza$qPET;e8sR;x5Gf7iX@#mqujM%VDC`{rP2t^`M{F<@gB8?w68Q$F zvvnDSPHd|;*!6kNx@BOK`LYy86ISdEVM#ORN-qc~%^7b9cbhxSMg$MdW4&mOspKO` z#N%-ec~>yNR1yL>&LKZ-=`2)Zle7y>6hS1EN({GTIW0+YwAO06CzhtgF=KP4oQ+SVIwuYfjblCW0PdzmuV7af2BMX}hD0?)S22)AEh zU-7uJwF+{3*h7Oe*u$Mb8uNtAMsS3cW;(8vQS>#j&@e>Ejw$1l;uofjPbNPgWt`L4 z;c+G(PFuaircwPdQJh3dT!~@@4qD+d+2bwXu5w{h$Dl|r)C=Z-HN^_T^U1E{Z+W&O zMp?l>$#yt==72oBZwrU}W=c`R97iREttE1D941EOI^fw`T8xgnHd$_{QUq;7^*ito zv7x$)B4MEVMl_@rsD4hCfog?-qPwbJCd*ybFDbfoF!4sxB}1|BEkM9sRU?AfRSk*g zmad@Zia7KQhaLEBn&q{#UwpkT-=Ln|o-XKRrU5>9NbjwhyY z2@d{-{inZ>0sGGY@eBLUfRqRHpX+TM-tKvAZ0G38CQ@av6FpB#T%D)__q^m<^P`SH z9@D|`3VVZ4$2pcVhbtW&_1Q{Vfwwm2fW6(fSvJyYXe8}63&7xQmRD2c1kH=^1+$eA;7B- zspR&`2Fli(g4)v9T9kDV+d|9yPg~>J#UnQ#ct9sd$vJ*|tBTb*xh5=@ ztj=j&<7=SG`b@O8(7p{|@=Kk`QzlIAD7Cf-{gk(&D%#FYmRe(s<&p4QBPz`)Q;qnBAns%i0T z-!kz2RzDhch6m461tB#n9={f6pmfLWR+|~6eYZpM&qxV!d@Td?w2i2Pe*xOFuX6M} zYm}mmqP(Cwprh)r9d}q`mC5Yj9oBel3I*Zzq)wD7nG>jzU*=m|gz4mEns8J+OWg?f zqYc!spB|vdF=QVVU-3vz47Ghs$}?s92E?`Lq?EN0TcXEwuirYM)U~^?63uk<2z7 zj^`7pjlK0)&Y#-3|I|o6e)VHK%lX`$%<>mobG2)<5zbIL5xHIUSGN_l31l>w@h<1*DEQnR--dr>iFJ$Co;K1)mz#_0 zOk1JTX_pA!jj%S?+8JtiYWKNwc9)i8DCVnqXb`s%W}d(XoonP}YyHd`)P4kx>>C>3 zX?lFOST`HVabhCdx+iCIjah&R7I>+RS>Yzw@tj8yqj{t}8eA`U4itM6{vFupEpTt? z@V9o2MQ^s&*LbCG8RF;QnusWVW+J?k4rl+TgP!hng~LZ6tk<+nw4IMu(E3C;{S!K; z5gWA?_9Wn6)gqUoROrYdQc7jTAM|cQ#))KMN}?DiAh=)8OEj$#F~|>!1Nt$2WKI-1 zmP1De=~AXumRL?7Z}~z+yxSK#Rvw0)S^|LnwpT>bRZ{HwYC-? z7`FS7lAbV4&{J~QuI+w7%`Y%nl2F4-j4DaP>n3;> z?9~64H)^-+wg$5w$M?kt`ul57P@UoWYbz=7uD@>WS+GI|L}x{sAoje_S}aXAwDu-m zA9>!|OnH~R_PjMid4a{fX!RY({UjP)WGFYMLr-ae8r=`}Xc zhyg^b>43-QeBCKJ1W(S}aw zI%ff$&<*| zHHa5#5bw*hMrXSMF)QFCs;u(+S0*a=B(@bkyFpv8&;I69*cAPeUHcSHN+ojK)EkEq zVwIzhSX(OE2~s3{c!+tStb3Q?)CuM$`)ns6Pz- z_`WNG&8Y4EUAy9skHAY_IXwRq6!6R^7D7-0yv|OZv2NC)+7sKwc@P(9I(_N*!`h39 za7#URxz?IC!pS%Q9FukZ-N1R^?Do?I>jS2<8@t8(4ZA|zZr1-I^Hc^munSJ5>Ylfa3#G0XZ z0OIZv@t{D&e7O(=2!+!&VAh@X=R`T)@dMo`oc5=}M{uXD?rSg3x9!0)?gv?6L$zK6 z?P4DScKC+%4Q(~$R(D;xl}InV0%YLn+62Y6TziZ*La!YFzommn%|JU`NCW^p&_SHW zFy*a1LqGKnr2|jcG+vuqD-G|D#_0H@?>FEPN0PV1yL&526-%jU>lLjxkiMHX5PoWr ziJoBqqM!Pavx0u=C;k`ush{9xX?5@Y!Z<-c^=B>H|HmjizK-o%w+=eYFdGq%aHpFZ40f@F+;T%Gw$Y^ zXx$T%g#H^oQ>=vA2Ex~82Z!2PDEru*p|-BkAsjDt#aBtciN`?dhuJhmJ3txW<1PAc z4oREtry!{p?a_QwD75mea9bNiJ5DS0L9Qc_JF(v;RYGj`o1$H$4RC<#u=36Q^GOvo z;i<3#jbP_gO(quT2QE=xPhz`&v*m>8cx1)-BoSkM3z~u$D-htTB$08L-pPHtmOv?) zNg@Y#i)2=m>0YndDZC$N5;Q$ocq(Xu0hZ381o(<71JlB>JozzzqBdhizQk0NOtK#n zXd^xQG2KwivmXVv-0b?P1vZn zAyNM@Ws7SsMkg*eX$(l@cllb_DpmE#WDy_gEy6?=nzj&rmzuqo5g0h=ci-eJpx@oY z|3bgJCmH>21o^)CFWz>4v(X8*OQw_gDE2WahSHi z?DfZ>3%wv+oYfCfME3f1hfRM05VIb?riiHdvH__tYQ88i2VGAIVmaHV zr3LGleL*uI$BYO3pJzPO$W#$EH%cWIg?xsm3O-vvGKC*_q4Ll63mWY zfUm2$QpIiJP63!55_1<5%=|WS&<7v@Pj>iF>ml>IM0BrffQ}Q1_I)W3AH&Y&t`rQH z)gAC}o@u8YsW%cyjs;n^O^UXNGO7D~-6UjA`0iAZ7U+)OY&oGi9$B%nvM}E^5}psEB>xSguY-QBW)q3N9v=zW(jT%r^kVu1)LrS z@xO3-9MrM;>G3ejDYTjIRo?1jUT@8DH)NI`?j)x6wN2J$Qsv-8IgONfC(8c;(M{S? zf>=zCi$Mi^daR%|IK@B>PBD+u8hwi44f*6%#+2c3?4V>?)3`_zzC8;&inx9vTQv~l z`X2|{n!{80bq3jTq8D=9be8c@VpUQ0j_lzda{4Zk0=OUmd!eyR*S74 zZ1ZSGX`Nqlc?jIl9H*v>v=L5C=XnWEO_Mu{+)nvW+gGY3P0UQeX;AG;z3@Cq-8A9x zqtb-Oe~%-eGgHkpF*7X~VVIe`9zQuvc>L4=%pD}=3=_=wegt5~ja4sZ-Qg<)nRk$Y zHbsu)I*xvE2k?AHkt6w;m$@UUhV*vgYn;y&+b(Ex31X7h)_Y3sF_xx@<3fGL*!n8k zivP0JGLV@2UvT_iX`5*y^uIb4>EAb|q5oBuv3=uh?l8SxaoI!VQ)>g6=}Dn6FcOzVszf51E-DTt@I5Z+ge4fpDvuO-a@)(+Cn&6I#j*( z0D~Q!Z9HcIooxdD3!QC3di6OV7*Ci3x;V|Y!Q|1NPp8}dp=D9A&`oBL60e)weDh0} z(MxSZ+4K^aCI=G4;u;Vfwe8&8(5c>+S(~|*|Vj# zAwylVMdaC!5$p|YG4+<^81t#^vdt>67P`>4`@~-rk6cgT+{*2ekyVCEZ3qQG+m$?lJ zu7pRoLKLl)6;XtlqV~y+sexK+q1Mh+7Ly^W}_E_A##nY1=ear z$RJ9Ws5@EN%;~vJv`!SGenK*U6^E6-?Q>L{M&WrHrlKS_TbpAj{bCEk0nC`>aDyUo;rjNILX z*rQneNk?ke_TU#c2C#nRww}?)xv?p8IHLL+v5r#nGgMw{cA z)%!qgJgKq9CeEx5;1JTS4rjK6aGhi6R)I4%`r3|WMv};4IX|hsozlQV^;6mShizMp z@Lm?%!#9PC*V)==ducOd?G5O%k8*k`CY-@#r-U#Q&cxG<2Hl~<4*>O7djw0_<6fbi zrcC&Cm|RX9TH;jk7j1-7#UH!`r-~1)B7mRqLjJ6v2s>m)hIfh6qU^**VHa(T0$&Z< z<#o4lc2>2?)-jlL1wyh;WFqE zaw-v20AIVxy<2R}RBbT9sfX5~y85C-#<)LQ^|Y-yJ8>-?-dg6n8s(4Kf)%agKQ)&@ z-c;T^nH_85n4~SDZMez_HFFj z?C+;+?TqlgIf~GikA-dE?EcE0d6q1mc5SyM1bqx0`fXlboOY0s;Kr*QARYRZ9mkem zhyInH7ZXV9ZPxl(TYDcZU5X2o1WNHXtGUD07D0m`@y_Dj%!p;fcfjqO+Z@EcFb?4N z3zWCncROr0A8y|eRKp$ONP8r0hhs1lYPfrdbp*Nxzdv~bP^sq)pDy_1cgWscCs*aW7jHm5ToY7L88UI-viF1TQ z_>>V87w-B5kRR$0nK)nrGjRa`lkIprCTIef&5chZ#CtIP15_X>7l|Rv1D0@;Fhq2JU+S9rd^;?Vf6AdDe*=xn{H_#HiR8M?tWXV z=_CUNLX!T9Q#^Th%^|kH_in43p+!?D3_2S7ft82Y`)gJThWjh2P7$@_(i)Bc&O64w zW9zIH(F(9|8MN?rJZSN9abTaVSo2U=L_a~IpGRvD{RDyjK3bup=j|wZ$Gd=jGlfO; z8zlN2vIlK|q)cv-$^^O8Ue0p{b zOFa+I`MGFDY6ALRL2(HU zmi}iA%Ht6r(BUJtzD9CfgE6`WB`DRPNL#TTpV^kED?leTA^z7J$e@rmV3-ts zDgBUZZl<0HkY2`Tv;o7A_%fxBA@L<%f*~=Cd7eE{8)U3a&F!FtWY7`9v)REJqHCLG zh_nM495i#H*3A%47uTd1@abYTLu@Bra*5FQf(t|6V9F@IEa$8o9F#jNNb5^c_#%u@ zy`SZyZv~a9KiI+*Z7hYyE}BA1FgzQ}em@248h_AMtj}q%>bp(g51$5)VSvX#L+3(9 z2E`e$H5pzx?~E-aNLyz>#4o$zaNBAq<_pDjEaw+n1Y2OUhZ`H=kbBE!cPTHii)Z1~ zSS4+XTgorUF4-r##6r4+B{}SA#9zsHV;ywCu-r5wC5&cK{4Xg9RM$FIaKYBe2#-Ss z#requ9>i&5gx4jxCM3B*o1r9sOG)Z>5?dwzl_VoO+1nc_>6|t1MC?~elKiVJ)d-KA zJ@~7wGn{4p_*Zz3#7dj#6GLhzVf$H~aAJrc?1?WPz+0g3hISf!l&InNwi>M6Wm_mQ zQ?K$_pUbwPMh=i;bln3eX~}VjY8RgY2}HJ*?fMNiHgqeLM2a);p`psO-)$CnW|1Pr z5wU=lAep)Bmp^Q=0ibe3l$*fs{nOUL2=7~_5r$fb5VsU`$9Ha)T(RB9&R!LZHC^l% z{PC;Lbi!O>Af~4}iAWwWVkEE2E=kSkgqt;$hhlQuD%zJ6Gs=FPmZ0okvW?el%>zKC z?3Ya7r(UnyA6ZMm@n_dvecdJt!lP{YYe+>U57`hwsb@ zAzjf{u+k+{rm81pid40Sw#FenAybT**_qYM7a4(Q$7G5$^%#oHOuv$ik(nY*{Sbxc zwuNcx4Te&#+J^#ED-o4T)dE64)k=V2AO-9f1`W;(V#VjCi$!7=0ZjrA3Eh)AIDNB@ zPIOGO*b5?QuUUz29rOVa(Gpcc~WKnOHk6Sn75bi?^Dc$>J@Zg5lyV&JPS1Z zrEQ{XPmRuEfps427gE~f?J9T~e?No+7lZ9}SwWP&R^6RIMSSn0+?5;8`b{|!$L`u- z4~ee9${A zp{(5FigtyvgENu7;!?7R+2Ry&g{3sNziHA4BcQNA_{zs)?T!7Ya3-UDOx6-klrjl> zkNLUxtL?JHQbw0tM*kERmok-|TH0ZPcN*yPNkx|>$56+EO(&}rZ@*}4WMoa=YNO=j zVq;JD+}-Ms0RAEZWf6;wX_PuHHaxrp7aL&zxY$^lg^P`46qHXM%6%-PtzF!RT9YN_ z4`Lm3y`kL0LFG>E0*VNCYVYK=;;N?V$r3xY6S2&9>nGSKEPOh}S-HNw{e-H0MA7-y zA7Ogu$SHJx7M@~c-_5f(VaX}>6Rd&Fj%Q8v(E1083k~Zi+nZ`n_JQ(#2=$qWe7NQ7 zEL>B}=xEOf(r(M9w#obY`tV$bR>x4xr@7m*S@Bt(=AbpcC|qrp%`TmVLtinp8t3dL zu)oan%B{0S7*2F978JVZ%|yQgDO^w(Na<2{rX;x3oVPv~Y#B!0a1f#}g=P&dy=kvj zm~m2=3A7;!Ge!zi@_!Kq*Axa}bl&cxB)r0;{Ax=v3WJK?mT7k@>)Fql_8e^^ZKu1x zhb4bcW(T^z#4LL!VrROt3oqMZSx>9I9lJgzx4w}ua*At-Hz-9fr|@Cf9O6e2utrNRAy=*vBYhy_-+bVl?h!EGE~UZiLqZIh~3eL0^L|_#)w4u6>?% zTaLe-qfm7W#b`@8B2w1T$w>KHwuqDgZPkbAZhcrua$kT+Kr~n5YZ#Pl}l1Ow!ihElH4B|@XbOeCVkoME>L__&Hfe11w+_u87$Kh~CEf`6@mq|LPt48TtSN3{+&t2RL_FF89xl7Ws`}eKT4R48 zHNq{z-9%c0;V9H#I0|1hFgszv8}e}UN{%>TVIr94&m0kso&;+VCoCEawx=iqS@vN2 z*yumGDrlhjPof)<;m0Fuqx=}?&EDEF>!!m^P*xLhWNo+sFaHeujk|OIrD)S>Ic~2_ z<0Uj+q)lZQb9Y(pI`uBM2($DC@{%2Gz{9NY%H|{OJymTPrG*ZD%hKHT>KZq@u{^i6 zRza)5!;e)~vrFS;0JFs{HfaZPAbE!4IgdRdRHt4~Os30N+!%Xv6Jq5nayzK6xLL@3 zxox!90*Jk=6MNT$*uJs$#IQhO?#hxSxj~8vIh5_FlczNyv)lq9DsU-wZYr#^>WWS|UL#>*A zYs9X5?6uToFy6kgMlkHMZn>h%dIZqvqSNVbLZ`YeV=?8qEsRp(ER1jFc_UKDPsPQug&W-!YI!b3?yE^PzUvMz=KB=55u}Hk zPQj$R43YaXHgk@Q+#!lDx?koxTk6cos~(g&`ND4bEc;wV+e69YDHXk~jG$lRL>!6w z>#~dGfhi+Wu`Zcbd3cU}ma2VC@#-_Zj$FnOpXd4l|G(Jg1^zMruM`c2VL#`xeW~ya zycZUC5_Gik)xI;i81?Vilv^iAtDi?k1crFi7T7y#k%nSEch}DoQNN*q9`(1)6H$MA z+7JWf)_Ef8x8;ebpY)fA`gI0lg`)ye81)-S>EU26N&@AE1{n1l8tB4|G;2^83ZB)_ zKo_P|3NxEFL}5y#Fbn=K!eG>IAf@xRhLZ3KgHgYsftVDY&dpPvVkP(4;hApQPLKMZ zl>EJzC!&6;?43*Oory2=DZ65+y^m27es&`v>p{2h+in5sP#%yHfYo%oWTlhN(j9E4}bTKFpLMIMw=N=% zHt9go*{BF#&`|N?|9#&8{3$x{%+8Q?L73qT#vSCt}$+e2{D81CaP7{eVT)fmIE z++A?<5_1z@brG(c^b`%@)c3pKVGnf=$PekImO4)|Z%uiUpick%xyz%CiK84-%GEuxF~C_vd~x&2fvqN{Q2F7a}hq?=?Updg17Cj z`Uh`G6b;V%30+0-=7q&cSVt>2;9GXZ;H~M)@I18E!+?aRY)f8+H_!VTih1zXqpJws z3=MqojxvEQ+GDqAlW03kB#mPy-|;4rO1p~qjdYfX-*g`3DN>+@@tc8~9=|Q6WKeWy zfbpB50meuu&wBp`N)LANO?w-o{JJ>L32}DOW+=|HM4Z?DFXCVXR}FWEDH*Rg7{M7D zAbVZ**}Ew}u$BAlUA5D+oiBoeSM+t2U+jueTrg2NjE_a9bF+y}`;?AxoPj1cA>#EU zWEW1s9f+Z2SMdZ8SS|)AdcR7OuHRJzaV@(2han*Iq%qw@5T|6bmHX}4nwz%64(ZHN zKla*JuWr>igABr|#O&%O;y4$@sK;?S=Mvu5O~i3iD7-I@n`J2F<7G-WbT~wJ644~i zuz0`#aB?*T!lZE+cTh^VAhvPGc(IosBY?>aC=u4DR^SWcqRjnJ5PR#_d712RvrJ1k zi445K90nZ)kuP#_FqnIZ|AoQaOQ0~*VD6KHu!a8`f4Aon_gYcs*lr~ygY7?Le_A_8 z^@73N0aD@(=AOC5V6MTJ_BeKJwR?_sieMMl$xaIUz~tpI@i*R#HQ~c^6jaQQ6~704 zZQS)vV24YOB-RnPxoUQ2-yN}+L?7kEXsorLQpZ>;){>UX_WYSURIA^eSUftWXXCQ6 zwMauT7)}rXvXfVGTN+!yIPAqPuIXGab(Ven)KQ+X>B(azbR0i6b+onP_%Z3@oN1}! z9b-~$X{lpv6H;s)of9TZ7;kgh?Bn6c@KW0l20BXAER-6&EtbSezO;X%*=Vu8q)Ot& zC|^x6A$9D|-{MMU2d?H$(Yn$`I7tS;=XK}n6}Qq|c!PlY>n-Ig1pY0&X2|hV89IIW zazS@C=qzZ;OAhtF{{n=^b0`IFvoI=b=j=U=plAR~{6W?3J=mq|nbAgA?5lPDuz)u4 zf_;_|6ghat1a!zR_Ax$CzrK(XQH@rD&wwxR9-x?f{vuRYhCFcme&yCnc8{X|*h6Gs zex~g(19Ms`_;L?1a}x!NFg_zJ0PFYA89W2?J;mmmxdXX?uP|J)H)p%rw+msh&*$#Y z!g^Ap_3kw`rKK~sI|`JZVg?UjpdnjS%Mo31IH)P^%6`|w-@QrkzXhQn8>4*1F8yKe zuD)L#+&co!=$()K344olLh(9An51xTaX9A}=jajqFPx)C^sHu%h702+pMqo!|AyV{ zxm0kRqf1GNcaFZb+ulRirmObl+JgkKn4a%PU9z&Pt>f928=3`_4mZ9Vv&~gW8cW%q z<C$mDfc( zNQ=>h+z3r;uYT2&HEfgBR{Mrl`@Dzph2--Kce45e^b8y!3x1D-3J(GX?r59UiglhB zanp$x&}w~_l9*RZImkkS98Ha!@&TRjJEzEHTwCKdGpvkxo(yR=xB)8}#uOzoJw16wgYHTmzGn0CW>&Qll`E_KqSub$|qY-V4 zH!vc4i5nO-dWjnt3j7-`A8Q6yaja+OHmny(yURO1IG=p)eIiGW<6{#43&+Q#Ue%0` z0d*Y@nZ&Tk^&Dl|BFZI>kGn~UcYJKPwHUS{C2xiHFu^Nwk!yNkE>bD42zHFnb_LWw zE9%v9`2YL1q6ibtJS*AE`i^LIUN7$mI9=b7s2pbX8#s!hS8|ke1k9&2a0FaU%NwqJ zO^Y#KSlrNYvt|pzhR9Um7Y4liyk?m-Z=?1jEykJt3@<@OWuC>*60P?tZG_f)g_of9 zt^||wS#MNtX}yhmL%q-5`GxujrX;{~g_v7v*;`ofVUEQ&X7NIO2nUmA`hqDEJkwW? z*UHydu1HJ%U0Sk%ZFqjg$&$)LYgI;PQ}oho=gEy3Ydp&72|^?HeKN^icRkEk5c%&|?; zwo-)uMu0~o7n@=n=d_n;BMj%ChYrff%j==RA9@Fg*o|MHKLGW3f&OD!51x0d@&W0< zFM4AdH`v&L`~rQrE{A*@n3HVZC9kcKq@MRYM=AN3tlKrOT`*;mUZ=lKo1ilAI{ou( zMN5axNC!p35BY``h&%P+1w?W#nc5I)_}Ryp0+F01QZc+!Zz7YpgiaY`d{Q9YEXCg` zx*7V#ubZXCK{w+U8Yi)D6CB-DFhI;)=p-dvKVka(_IWThb(KZ;%Ih6Ly^Ggj3;)E* zUk$3wviH<%8#$4SE<88?OL*>rYCLyB8^<=&S8$%VHHXZO7v?o)54Lr@r`==d3jQqn z0#f3g0R9K`%C&U_v6unY7Kq)bRRt`kes)o$329Gxfe3Qu6?k3zq9jME_9`HgdqvGy zPV=;A_HB|QGrFA9pf3MTN>sTgA*u3WzdX2~^foQWk@2HQT5FSLDPK*m!S)Wx z>!{tRAOg^WCL!k@*3x`6NJ~$LiAI+Z6itLW_CXviP9F9A+QIv0tWQLIv zuOZ*UcTgbH)R#4IIbPA`62!ugOMz{^U%Hsq;C?C8;1f)%X$|;GxnEk!N;)}usnh$2 z0bs(iXIdXI00#E)4uEx;j+XEt!#6V>-J_>*ytEGnQ$iTy+~>}6vmIme>avkz^Tum$ zPypbhH``U!_$H$rR0zBUFfOl__NoCdk9Lxe&a1`FkIP%4eMIYUJ~*1~NLD^)T8^W= z_9d;w>EH-xjZX(B;b<$IISYP)L-?YUzbE7+h92NWD0mH#!25{Ja66KXq|i(QAOkq9 zyf87ZwW3|4d|+UvH=dIiC8@Uxu!kPY9_WMh zlUialu#Pe10E!7?%D%h=V@j|(h$*isB^5m#30f(I#N@_wDZpKYV%v-K5ZgD>=~STp zOja|^LtCP&DevNJrL8s;b3f|=g$=T{@oR8*LTgsssAfBD0&RfHsj-D(In}pNET{Uw zzhOBQOy$H2?Jjn7R^DOlLyAEU-*nB(my_P(J?HLPIciQ`lA@jbFIyc0dHEUo#M|>q zv|ni>@W(y1zi0{0E58KU;q=q@;A^4{AkRVg+Xll9eG_< zkO4!O0LZu5q5+QCT6z(&N}n#sn38AzQdsdo$9OHDg7bkvc$AM5xr+pkDMd&*TBj^g zy-hXX+sQF{jpl;Hcm;b^72#p;iA^o*|HIH~_%M2T?!U%BbtJiDTOK+DBy!*Hhl_->`VKVBuL{1!!DOa*XL?$@o6Yigb<|A#04Vgzif6@RAaXKrihl3Vct^VS z8)c6BJy;H9jCFJ~!h0o44XWE0_L`RFC25wvz^>N?>r&P3E2N6(8z@!%@s4((7db(y z+7DRI@s2@8dOCmYC>iw2AQgTp+8_`*=K$32QQ>g&s@X)xJgo=C=^LkEdUJVDs0+x# zy-(64uAkq6M#Y3qv5w{e_$ont2)j3(dT& zUo~bPKi^^g=Ka_d|G{=`&r)UkLhZOMY7^0j+W6+aShTT{}5Fv zt||{LalEW8p{(MHX|;dL#T0};16JAae#aa|TT9FJROBPH7;_wJne72sBpTpx64gn` zthtfYQ!OJZ&p+UptZ1)NoR|sLo61b@OKjhRjvmb@2Je{Wuye+E_EjdXa9mZ`u+?Iz zhwi7a+~Lx`rsz4#!BtQKP0qr`)bd1Dw8D|dqE)%$b>MuS-MCi0) zm}`o=A)+=o9)Q=J{!`ONqG{;>5sP(t#PN%^gf>Ex8NA8i z&{i6XK_AKz_VXr(+X%0Zimm?e>XHE>wlom%)0f<;UpzoWa;0q1vk=MYvPy<$3=q2< z4YxWvDB6dVl$nO))vouXm|s5XSf+hL8=;sh9)q;O_l9CVF@Gc3HZ<^KTb{%GQnLM? zKiiT4FWb)@$eXEX^#&4Khlr{rD{N7-HXHIJ47=~H&&)dPvmK75+C!8%GXrWV_*gj*^DL~vPRHHaGyi3yZBmg5 zyBv$PH)tbFOX#vlBCkqep&h190stO|PUq)Xwz6M#!`=@t#o?j@;094s_N6bvOZz3Avg7)carqwwMlVmdc_CoKp9aG4c0 z2y7YS&v5=1#-HJXF#e1*`!MC|e&P+{!j~PhOn06hxcN0yNTuT&Es3+?T`6Dy+Ln}f z1JGNeGPvSZ$3iWi;1w}w&L9$l_M_DpnL#yP*3TRyg3z+6X8GC_3Wj0YM8uM%-9c** z0n~UA;F%p0$vm9~iRi4=An#hS=qpDQJVa?Z?nsU9#BtKNE0GexxNE`atohobv>4;A z1pk(sDM-~Ge!_y5_%)Idl%Y|>SCaa(l0Wl8G(#~SfG*tYn5rG72zg&deoRWdrkF5@ zsY!i3uQO^ide_UN%pX#HZXFdrB$AfUemUUi6Sax+ zhAv_={|j9N{KZcEk=H6%_Yq(NET?muQPo+*%8wjFwU?-zXc4 zb;7vMOEuo0HK<0Y0X0Uj;Gq0GEqEyDQ(c$5HP_`&LvX7g%A7V_jgD&+$1*>3B>pFr z$~%IeQEs?OqiBgPmBd`!Xl{q7EY2b-HJks1N`=47lp3<7N%P7DCmdZ=EsqL@NzY9O za_X>O>g2ZxDuC8a>*gnEg%n87eD)eDV)UW#b`xYiE!+`$WAr{hK(bzUf^yR=k1hYf z(KV20#VI%-SjzgGakSEA`w<(fmPk4afDV7`gwmPuqa)6Y&Yh*o&&q{K>AgBnwQa>PQex#%ZIvAz*N?-fb!eL*jn$OT7rJq`0? z%_(kbnBU8UVpK?elJXrZJPRjaP6QA;DvAAUN^C}Geu9}Acb{|YFp}cym*@aR7=jUe zSN?cdelND-SCNh??v>vo2j+EH@2GwOF zE;|x}`VR|Y4GZ(zXagw_E@b--6N999m{`b?PG&oPbF?O1EZ?jELhN|c{466yeIcv! zDjReG5_}>1O0)dF+Cs{KpVs7^$h(G##U`}F^;ZDG++ia5(Ed-JH-3a-M8W&C8CaJM zYn~skY-0~xakSN*rXVQx6H@FKgxG$z{Y-3rJTW)8`}AaEfIRf?$a_qPth(?jAoY7N?6J{$wr6x{PmhLyn36JYs>4B z4QS`bhD7LP<9I@Tq@p#a7*YH6PiNF+?ONw|2x>Dthz)C=v)Sfa&h9DX%<$qz| z@a^#G(-E+C#7`n^i*znD*#Mpv<(#fvrea}6;UX!K94udTOL>dF?7J@c_1XNnnPJS* z*f~wJj39##W4PKQL@XUNLVVV-WNdZ=*0YJzrM0B67*IFYVR5@_=Y_O>T1EhveT0a+ zyVDw6=GfV)X3kF9AXrXi-qIHQ$$?130( zX0*!j(lo?*qEYeapfx{#ueQjKes8wmRNBpKKSOE=RUED@peS)~xq_D9-tt4d1oxIf z4BT7ZJwog)zd&KpIqe)FoYR{l#GE*fL&&o$xVQWa0Pwx#XJ}KAYUKyjju?u03L6^W z-mqTz4ysiiOmMb>T=qy}T)H<|$uVQE z$mOWlb0tzT8w19 z+c~q1M0JN903S0_IP6}1^ZRRqC==WRhU)P03_^d-m0N{o=z;ZmNx$hx5jwomFF#e$ z=1_$HMrku87bBCM^R)YDBR?*rlJ6B8Ow6j`#iEdPTNo6{kWBTckc>rp#`TOt?Nvp3Zf`{lZBrt-aRzGcO)J1 zUN_E%8$X73kz+wOeu@8uZu}DH!Q}AHWL9YfMF&2iFxTcBq}3ZmEFFD!EmGq3-79X% zcNejkk@?HDID%NL$D>CH_nJ&=(3e9E9@@^NHRxYY6sc~NHv|W(G-kVVVA$Z33nqMf z8jTW8RvCp(wwb;YUzhL1&n_K3dAi($AIbV>IPKAmI6>-ogD3}>|2;e~tyr5#i-ED; zth|%+CLJ&8N0WQ2;|z%TZhb+f^D)@`q~+*X$`XdxWmDE=$Ejtb*ot-8@!CBU2K~wc zt|0M{{PI!4t&HSA(*I7&cD4+g!wXPknS-7?N?f=IB)RudOI_yJklj*!d=wk8Av;lf zGJxcxI>}uoBs;sE@unnS+nC+lC?&2w1GqCN2%j{!a%hY^c@?rUHvus-nAdkJg0})qR()FX@on#kk8?d9WnEfufD1t#Ipe z0xiL<&yg&(m$Qu#RG(D>2n;P2v&!XO&hFYG12%sA03R>E-%!lA+ZVBmy`2e0c;sh; zKd8E>SZu8taO2i$051!QMa({w%`9}fiJeJh3@XOWMzw!2J6>V!rod~prf^xsIJ1da z;&aN8nWkkTuL>10PCHHEac!aVDW5&~r{uE==|}7J5>*yOq0bUVQ`mP0%o5Z;d1nc3 z^n8|RFdFOKdlXK?lo|nCE`hmcb0hY7H5g! zcjuRD*#t4p68t^ALC#)^ga1#Sx-y~ev5ywMK6W(v`lh+w zol~N&z6B+Xu0Ej*Lb}Pc7(H*vh_trqtkG=qoU82;EnMCv1A{!;T(2_- z&$TWZ>9krXf9UcmMhll$L0juCZx1crmkRG$j20fx2+uv{BE>J3!b3Wd?;CT47FH?an3B3eX(A>n4e@$kfQUBhE;%T4m?Km&C>k2+Ful* zK9+T?GN}9=#OJw6DFV;2B10<65qe527In1vKq}5ZBOqONe6~kt1#Tq$BgA{ zp^q8I|3V)#ZcH^k=Hp4uIVL`4>16ORcT@S$$J{|mygp|6&HI=|q3MNe!>as;v^4~= zh(ybQW4;moD6PSTemR>t6&CutXa)3^{1!5A#{<#jT=RV+O*r;E03E?^kIWw9UFi3o z?rfw~u?f?iY0(dGymUa!rG(H4J-0Uh9_<@i4D@?f{4?oh{D)Tw78!1SX~4^0{J*or z`KJ>66DgPe#*m|4Z4=raEj*fEcxF45+?Luot~;Js4} z#!%1zV<=+-Zw#gWG)B0TA2~i6z8XdHxfJJE;ZiavAsk0K26<5rk~?=o^o5?~y7Vj* zt9K0iI7WDuW4AkZX#*%;eLU;P<dxHu94| z61kI0;8vj-cLJdSOiU0G@{9E9*s-kr!1Qh^Fotd`0JvZ*aa+$(;$~vXPiSpNj>l~&R9!sY$Q58@WK98l*9$}x1wiZOvvE%I{7=Gxde&k5dPyNLILO=D> z*lPS#twqj7CVuMRBBw`F#}PwCKXsk(=k-&oZ_!VsY|r1JHKwF6Zy7O8_^Cu%gDYmJ z!4F9AXlp4tX zd7m>Yx*;b@z1ZJGB_drpjT4W<5HVqw7$1k(!J*{i zFi%q)xQ={M^lz+vP>8yAoLEe*#xmS-+4A8ai-k6VH)34u_{;epYroTC-@p#lWtU08 zUn@gaIhQM1{qbZR_~63=;OmVSuB+2)`NOp4v=JJ>TMs#N)HdV!6K;_#`gPb=ZAW4B z0|<$Lhu=uIju!_Ih-z5oT4zSMPPvZQ83AH!)f@ToMyj}Q41jGmUTl*Bx99|Q04a9u z@#2PW4M2MB&HS$FuP{=$Zw-L_MOQcXui?~Kq~&$k#v-J{S`MBzII!{wSfL= zA^!{g)xz=B_^X_C&N35!RcF0(fcCIKop465U=1np`m2hY_gAB5qzzzO`lZ!mvo|;= zYR?etEcO1D{nTyHV_Jq)dzIEy^-1gpJIYlXoiW-rT5;*_gh7!eEP9@VuHk{y%JJSn z>gXe|WAY{Y>k(%&^{er$>Ni(d^phMHbw#Tvay+p_OT20aI8tn8^~ts{5~F;(!t z#8e?vuj$9}Ui*b%QiMMh7O{lyv&!hji*h^Lwb|J_@^>G$KYZB!2*B3l90S2)gIaqW zY~mJY4{rhe|3|6y7b038 zr*Ng@*YiN<5B~EHu9ju|XWAwBDdj(nYXPq@{O2V9In95D)P|o?{O1P$sZj@h#?^%% z5C3sk;3t#+q-pTu5dXQq5&tLud9n%oJi~v!ZVEr&@t+zo@KZNt zA^hGR2S0c5pVAimpZw>Kmhf|x|7>UtKU?`vgSPM!!G9LCho8m#=Sm0oxxs%9Cd1EX z{AXfE_?gCkZ0Ycm!GHE!;pY?nbIJifKl7jSnL)QL^x!9UPv*eC@#|*y=fhw4&4>5+ zi^2F5@ihJzAHHBXuNVA<54p|bZ^ht)KLh)~U-ccxEQ*^0|5*)R&wiK1Fqn4S24Trq;tQP zJON6)AwSMu?b*rg&OU79Q%+0NbTEQBp4-5jJ=+(;4?bG|OC1)stJ{37M?llAys3*7 zm&Qh^A#K^79nNO(3SH4N&SZ9?G$sH=FmY zGg>{LBzW2o0Q@ikKFr?S0l+I$IdGET>E(bHFCb4*hrtK}coI$LYgGZQ4iY;5Vk>t6 zonrW`xsT4dfEGXT7JXRb=Rwi@JMsa{2m#>&b|o5__rzphzTU~wakF_E+p2Re_UpHjj5BTk6+U>HlR6t-sffK zo!a1l)^L9bSPg>L*4d&tu}xKYKpvTWuhRLwHY)(Ugek9rLGTw@18Bf^d0urU)Zy+Q zJluA+YN6VdoqpBX(ejWF&x36D_s+bEPeSSylrf@tmf6ZXUU#$m-*P_YkEaD2ve!Au@^Q7uq7IrOgLME;BJSet=oC-2 z&8psaMX*QqIk#C(8S&?_EinTvY}4D$;g*xMD#+EHl|7eOtClwblca5dK>+E?G3leV^)DNbF;rdrt)ELw5zJ-_Vfz~`$I3y~( za^U;UovNBJi7BUD6ZrpAXQqu|eO{PQla-_v)MVd&=)43ErG9e2nPe#-0-sb|=?|6t zkqqCu2>H~R5w^Vs*m&L2@e{_)n1uAOSl&?&r>T0}1A3DU9mwg`cbJLG)pOky1lI{R4`(&pbg2i+_; zcj@@m>`83q1h~MK$+CZNc4rrMcB;pw9d=$9b%*#pND>aoK1$v2bwgDx*qwynAbAmU>&}4rdgE9`e5^^@me)% zv`pr<*HM|w3cq$1-)t{mVPn2=rdqC0X}Qg%)PJN_2xo_y-0!+9%D=d-l9g{@x#k>U zNhO?v)4W-uQx<|1s8?wOYesEe?@Cj$i&1$cR{c^&YZYd(X_)INq4lkwZE11mhl;^+; z-Bl-@pIh#yt!_bQ_X)IWPtY9>(n=Vljg%U@06%-y=8UsEPbm3x^;~tjdc&Zr)F{^W z3>>H}+ju0HZ7fT#%MS0qsgG#j*xb%a&Nw?+wiAYQg&pLjRAJks!XD=eOJ?`~=?O-lVaqK_2$}d2qHtge#x&LKAr@Ro-oaPn;jFaRnx^ z!}qqx=bOx&e_pO$^9f)63*^#aW&{gLVS7I;Xri>_gFTw1yx+2&(p(Juy_e&gMj9q= znf{BJB#zLwyX0J^Q2>@RJ2Qh_z2tnwvVgD+M%b3^U9Gta=If8}3DX0E7S%7%*Hor5f| z``1=tt-8S@ZnaJG^tG@Np1vuTBmR(wjF6dsIwM$zKb?7&v;L50jF9P9oZ~G)Q*;~T zY^gUqm>;)?R*ahyM4lhButGEQLh+xEszpEt5zAU&OGziJyP7Z- zy)G3F@-I<*OkOdYq(}uJ|irnu#ghq!X75&e!~7J zg#DR7ps=T_6ZUd-!pa2pVJR%7sS6uW3c|KA@Q2cU;wRnWI<8rk_^F^*OuanFP&zoL z6$;YDk#a6w#T`nAAm`K|b}3&;v}BN4l*~T0nr_UWirp9lHqI73+M{i#-jVVcLL6Jw zz}3`1P#2A|fu$7|m(>7^qQy)#b{x}O$1HORlPFrL5UrGyW5-?mqqw!QjAhq%wX!TH zl_=TL>LjZmlAV09PpdGGE}A^tRVqZI1a;8@N^3N9-DjbtDB294Xq8}-^%cv0!Xb+F zju7h|Qf{Pk>sPGfIH zf~@g=WR*A;(%5CPI!zW-LDXYW21nx~%0&%l#rJBpRFE6LYL7>52RCxXDP7t8My>=) zcYkv5t!Gnm{d6HOJm6|=E@V}9ohE@o7B{aSA2el}*fz9GGg1^w@X6Isy?q*PBZ81c zO+#DLW8mL#*}^dA zK*KzS8z*F*(<2X79OEjCe49&(+c59&zi=DoooToO7W^Ow#*8ooRQy$h32bC@*Lu?| z$zwO4cZ0CJAA7yWSB=>Non0N-53#O2mSe^akfGYwdZ|~A<^L1HAGL6ex17_li=eH% ze@$1U2~E%0X(DQ?YUx^LQK#!;5W}PEpguU}WNAn$czDFhnyBrR>#Qi=)!7o`Ux}d+ zZ^}cXzov^`I7nkhcO$3kI&mRP-0EmIg+pS?L zo=QNG3Ix=g%6w9;Q<*fKKN1+pI=6MjS(f^PAQb@dQo%5<8bxB5cL7vS!@S+!)C{+f z1`KSug?eO~f1JnLi8$|N&cg-vO?#KU*;!snBC9~ljT+&;#5Ui8PER8S#BSO{`kp zO?Is@9adXzaac9%`4!}}(_A&!D}8Duv7A)btCkByDws6n*!o#7^@_Fpe?@(i<(iJ2 zj4czIo~zTv*osYeRanAifEHy0g+|$ct#Z41sg@Zmq|i0o($2p=(N~W*4!7A{;cWh2 zbwk)wHptlI`h#Z~!S~t$e3#wjwhZ%!gd3WYFdB0;oTD+{09gZ!nKTf_{KIsAW9IFI zF)!uRZ?J(bS9-Inyp$UA8KO$vm{$;n(U?#Bw|jsaKx=-I z|Ap54sWorCX=|>G>+Bk=SoRVbbklu9FZIf>{N_n9AT^yG zY5^M@uV%ZtSq|ygiRqfq^cGx1>61HQcQS7vwg+C$p`|Wn=L`)?Q&EHBc>ZM*TZsi6x211bKti`fM zxN5U4yFKj@04qnx8jj$Z_uRq|c&+g}H z#@0`O9nkC|m&miWt zc>T$`4H^99u*~&`FZF|OUJk?W!eAJFEBry1>7Y1wRMUAlcRUK(qvJ32u9S#+M57o7 zEiLgMe!Q6&ey?-tkFxS%uJ~q~c_|%!%Lt~bVXk}F!O?oY>n88C8;myCvWG~INv|(R z0VcgtW{t2|cp>JzHkYhbT$9-5k*kV%W;i(n;)#Z8ATQSj$>&LkIS~?SkP!1O)E4UmkQh{=mU(HVl>RSp7@3zER`jcuDr10Mf zGExW<1U=5S9`Dy8+@s4PQ(Hh6WubI+S!gMjMX_^oZXwDimInwoD8&*f#S&71Qp|{i zk1idX;p(JrE@e$iT-lbb1Oz2{W1U^th&4juI|W!mp%+Uy%xsaD;M^-I(ICTYe?wDAt94C)QP;SdYwcxrkWu z`T$Tvu_!eZt6`0)5%mZu6ykFtgq5wE?t0kLW|nUF$bbASVQ2BA!q`Kwf8M0Tm1D^w z5GY9otGe4PgVTMMcewDr3Dr$ZUMq-avG;&wQ;K@m_>~qKz)-3doGfewsYM~)Aq4$1 z*D{~*hoa4uqRk~0yld1Ivnr;-GPRtPqd?265ook-R-!VdEPj^zIxQh{A__{pwyS)X~Xbmd#NcpkX3V*~;v`MMfO&iEwReTS

}?Qq(00C@r1u>SCd#DBs>d`4->l`rguLwx8*R&laW^PAX8oi>vx3sk3En zJBieC+0?ePtI2IUW{cc5_ijA59j;rReCrG-iG*bUNz9X;Uf@cEuXEL3=xT52>rb|z zIxv)LzQu6WB_e^RB@kt*|% zI=#r%+LRQ!2P&T4e*vWr-Qy~>&{E!iYRGKE^tAI{*9psR!Xnz{4%v4*NCoztZ;MHN zZ??#C?8D>re7bbtHfD zksP+vl}s$gOVVpG0Yvo_ckmpM;%+cUH*gfxG6yX+G~fhQW2UTjS=HBPvhSi?9jXyD zLZrAs)5a9HnmUKw*$C_=&7WR!b@Vck9$4u42V8B;g~SwhfRLEt9xz9yxCa>trnBtF z=B6luXyB=W(Q`1zjlo7)9kmrPSD$jlY(~lI<{D6nX>MAI=DOWzt}|A;zO$?*jH0=& zm?K=x3Q{3lO}VQboCj;R%9Ut&id16%JzkwYpZDt1zS`B6$R(fl18O)7DK%ZLfYQ^e zT@PAlDa!Q#s82+R4cEBb>JKwT_WsCBk-a|*|K{0y8azWgk-d*3QM-4QiHkkH*1g8X z#I^2q{ui!wug|GAeZQo_b(hH!w+C}=u|&-^SiDRNhUukV;>*|EbQ*`@Y5~uosOwza zEeSeyvbr^)>4~2!R=4NYL2jiJX@;v?$6T?7OrOhNC2LBSul@Z&3k{&7EK~gfCg}jU zT&so~T&}f-#&o%cd27-@q)Y10^;@rn@OEOowvPYRdM^8GlPj@VJpTt>ur=fba%ltk zlICp7lIV;`QtIs!)DIX$#8bQl8pPB5FEog!S;!XHMk5Jm&Q}~uHS>6?SZq&rZ!gbA#r zeDRBG@A{m-u(|w_L|G8X&K9K(>BY*PfH3kjuR=|nVEdkM6%_naFW`US>7em9Z~xvi z=E1D&NmsbCkF9;ubwK%p6>oE;Sgz=_*vY5hh{v1TAOUmR?FN?eSYhiL^^_~D=qcAf z{G0T*gjNH+@@ZEqjS!g2w*JDG{ZK4Rz<+KEuGD9#OOHW3lbCu ztfI$~wVsHX{CitbKQUR7Ll<_iiZ35J(6KEeQ#| zlR_Y5@9ricbO@k;4J05%qexXcBq&Yk?a)aO8z5aGJxCK3rKu=N^|2rb_+T%*XU^Q+ zdv=q&&*!uG{R5ksGpBs#oHKLh&dd#cxA|l6PuoW;!`nyVE0kH1-E%BXKBv^H=0g|L zy2~iYF&?c5x3;BRtU5{>F-HFLg8XNk{AU8Tyi?)HP7HeUQEKp534J7P2(R6ws+W9o ztpu%yS`Tlo0Xui3bgO#B@)oyeVuzSPi$Bbuy$9=drTmaETgsk+|9FB{maw3eb=f2p zZF?ZQ>sT2cPeII~`mN#Cf>CwwYi}tPVAk%GSbfV_c}pgKG<9LQP<_)_IWNNN!5USr zWqTNn>-kRgcpEAQlLLly1=ryx%fXKYDV5;!0(9|@ByWnZ<1liKJp-;}3=`d~Livkg zY|Q^fjGg`*7xBM+H|2Wf$znvT^It^%A1Om1rj=ct~BGOo?WUIA-Ye!R_D@uJk)$SAz6{QY8j*p?7w~w7>-1{ii z#x`u64b}|nR9g&ZJjui8xX3e*e>EivuAFF64^H>%<s(4hQIScM4i}an3wQ*I@w9VZFOUEC zaW;qD=Tklw?O8Jl_8#NSV1JO+P_Som6Z(#q!JcRf#V))0abPOkIhztx8bk2lj`KoF zJ1>PsF0-iqfxOnp2Mn#37)%uJXjU>{)YMG z)@BF3k~)azbN2ok9RyQ9Pw_j7W#4OCVag@k%eIxNLROvgwQBQt81RQPT{CAr^YteahCy_`e+;DxxP?QR7K`dW{K?n`jtxg3IsF|D;r*KNPO~kdmZA|C4W0;xsLN z*|#Y}_4ElUAx;%lGk{Jao&PrF=YXfs4p?{$yC$1iL|!svf|Unw!EM|3DJq7voS{|W zpYK!rIS+`*fE09S10niGN((WNNhODvAq%*h_n)A0L0|k|=7PpQrrZ%LSu@KcQheKj z)mFQNPDOv>2gv1kfPi@1LU&P3B%OZH?GxnlZ5oXT5yd%13KGbz7q9=6vR^O)NFC!a z;H}#!Tf{Y{;7DO_45`B&ws*4%<(z}2UWZEG+qGcj-ISWz71(_j--zC|gaAq&RP~Zo z;Fg+w2c3Dq`iPoPu7bUj&?j2Xe7AzV5sbJ{wu%1l1iIrwgm~BXk`=jsr__P0R+S<| zG^@oxaKMO*RV%=@jb)=D=Uz$^N-K8`REw6aaEDqNY-<)C6j8iR>N1QkCa4GaI~DD% zBCkm0E8>S{vz=0q{By>V>=0RS1y28xQY8{i@phPtmc7equ3I0~}6>9ET{tJE!d&fBHx z@A=vwi2oDUX`i=PQ!j@XBP)9hT>UfUEir@9THQNsqUzoy-nG57X^`_bzJ6QJ%B_yQ zvcGICX#5YZXUO4{I@Zl-H*0`mdfBE;#Px`iWm}4)-ZiFwx!axft~C{?tK91ftF*Kz z#=YF!?y&~mTIiFoE6t~&qA-Mb*Lt+5sN2IuG^_N{VySL#T@;H1)_`l#Bx>mc=AjLF zhY2}WsyD3(ySk_b}BO_DO? zpYD(wG?8wki5w$IypptqI>lUn>uH+JKJJi~~raC+*>{Y~0OPETy z#YoTIF^MPKqpXR?6}3XxR>9s%ob|5kr58?O`SuE{wfeo7fWTIs&JQnECAeD29;L6E z#QI*EruzPY$@okD>F)dWlT_cMCEk6%#?nakeK`Bu4Sx0xDXVKlMah(Uy^{Pzy*4rJdq#-i2=j+C>4QA|5*@t2KT%RY;`0zxaevk$E4Q zDtyfT+ zT_D(5P0Dgb$^$RaxA4^%*{el*Rm>d)#2Cc|0gtAs_+qLsa!mqOO^$04Q+j!&8TqN!^6gX?cC zf1L3l*A~IQt?g+gFu(3YZ8BF!+R8`?qak09cZy$p2$AiMHukl_ObJ{}jNiK{25=+R zOQKwk<*hWTdM*K~8i-XzE&)QL`xP+7{f&uusv&E3C!#R~(u8 zO#C*P+`T!IRos0M7uP;1YXm~nBlb9bT@G}A#NJZmGm_BT_QBd3xZBa~_nUImR=PPb z_ECFsnAK4cYSxW%@GzveobA)?4~oN#>&QGKQ=173JKMbpdycm^@zQYN>qcxr#V+<^ z8vNbe9)wqk$u3#e4JYcC89(Zg&jHI9dFUR;S?t}SG|jr(lRY$Y#eZ-=d$zFUT7F6| z5i8`#5MAXcM#D{QjD?Qzde zMgH*K|7@IhE-=KaG4@3#=H%VSn&_5C5Zp9AlA!GQ+o^L0F+y;OC5%?`Q6Iv3S};XA~9;3wMLxQoGT7cUS!m`-(dS>uTpp8WgqRHt?X)j!!&D^Sl{8(*DURtiybJ1((XLQhdTRxRzRJNlxiy&tDw&2O|8!6 zrPgfZ8fz?PBZ8A*|&GOMF`DK(~! zuJ%70Q%Cd0o{rXEnWlEWQBXIBF3;P475G-%GZCkbZu6q*=r*i^I-1T$^nB4gAMp^Y zrk?KpBJ1gXFS>`<*m3rHte=~z%!xv%pScj~=h2KU^)pgZKXXdzXI?<4tsQTlD0nIL z*Mx^hwG?wXSJ}^;j2izk!CuF!)IzP*iyXCr>l5v@HL-(nB-pl?ux()#7Hr4eu)WW! z3AUpgwzDO{7N=lCAp{#2La=?$*b;0=Nw9HBf{hoD<;NEpPYPa2ux}wScQZO zw=j&H>z>1Pc*z<%@;}q+GB-<9cp-nni}NSE`Z2zQ7g7>loRaY31!VH+8Fstir5;bw zVx)5Jsfipoo5N=_?eB}1nKZI{hH3WihS*?RtjJ@vWc+Go{6=Lw z&P{S&w%2E-w^F8~2r`|EAkzyOS27(b$#hOhrt<)?xwxos zi7}?DuxDJ<(uXW1-%x;vZsU~N}gqYT2D%OI>fFt&s>QWDmj z60vR?#0UxMJ&Wyi1*aMi;+U#GIUPPZWV95689D7}7{JvXKAo^e*O-`8+oaxZ}gz)Uiq@ga(kR6HZqRXFRz>Z@;a-a&_6g` zg?=Hcpf1_ZZTvuWiA_!$ePZ9GtV99SDO><`$`!_#It3}IQ#d6B052e`_pQc_QoNLM zW&JhwRPiV0Du)dp+^eyL_p1tTJr^Ho z@j4n@rK1NV`XI)z9Q8qrY&g8Z9tUw*!7YW$TbTJ2Zpc#WDLe^!T&u7^dkoUn+v|(I ztO@nSBQscd44Gl&;qB8jyWVRC#IAI75ItBkd<~zecbfs*mpRfkY%Ra}NLuw3iy0YO zp8UWTaDDt>iZR8jIl`|SeED8yXX+lLCpk3Q@p9*wIFnTxXG z#87W)Wnr*X6%P#jDDR1X6k>PVABB{~SrxtXvJ4*2c$fyyIAVXyiyAXxCYuMD-MVRp z8jaor?F)MZOdVAr5Z*qDQ}`8d`l!98ZN*I7r9Drtj(?XwhN}YkOcJ@#+LMlz;cQUIRWjVeg`yg^2g<9mIKGB~EiC zE_sybdD7mQiRq}6IE6~cwaZhCi;Nezvmhl9?w>^Ce}&o~ps~L*3NrQ{lcVVn`WdZ$ zIX<*Eu3`m@M-0BR{^#w;66Bov5MOuHm<4w~!~rC7mgVInsM;(GRjs~TkT_M6Ai52& zh(T+gZ5s%yPGO>T!sn;ZGgE!#7+enC+pY`}pV-?LiAbyVz#e2R_bgNc=cl-#WuLF40xs#8TT-{OMq-I} zgqL@lrH)w^eugX7&wXJRVEY_*Ky|)IYoyW+Xm!b+pcY(zaI=oRU~kPj!ZO0Ahs=tn zX0gZ`rU%Z35ntH5>LIh?;1{?$T6wmGC?QvIw&i|$$E0>v7Kqspd(qw~ zT3B4%`v)@V?M@~pvNLcy)`%Ag7LD8w5DR%bngl=(`y(wYoSui@0-`NF$dCe*F$C%h zI&XWZg3$nex`aTLAKAA8{8Pb*fKyj2w2oaj(b9W+6falNXi==`&;=o0v^9F`L3HAT&}ZP>gS5z+FNOVLc4G63F2>7NjU$` zaW4C^+c%&2&Yr|{>#A@@5z;q>mk9YjDDZonTtvQX`Mn%AbtK;&Ys5q|@)G-{IcsdW za`zwX+?A0bZuYDKH6o3AdfLm77HQNHZCOh)$@MY|w{9MjzP@3vQ@ly?!egeRe0R>r zcGLLF-W_xINBbK56t#8_@9@T}ZUbT0O?xeE9Gt(2&(afob$Ws8^pZ!Xo44!@m`>dk z%%fk1*wsnVVl?AIJvs6xdsl5W9Q?`NQLJT^WcErf;!Tf;KX2Q+u(atBVT0{G%0+p} z$h~8K9yfmdcE{cw`u%2k^`Jl9Uj31WZOYH~2U#Gx*+S@__Vl6_4S(4y1$6l@ZX&oT zu^WTma(LmMy_fjK*POfDockWR2Y<0Y%=l+2#C}4=q+|ZXxX^rV%CGiEMEEN{j)~;? zSL{ur8F`70*?={+9P_K+yc`o5QjTQ|Ro0*v#lwEbr{Ri!*(<)I`N0sTR^v^z6hJ;H@p!(_@}*xp8X1(Icl$A%YMb2b!J0{zc5fo`6@7+ zD=^8ez|6nx-5J!~71YnZVof@k1DLf>!RhiwI)3$>=D))ymkorq|JWPpt4&o_yH#1e z>|cC9+2E^5KG$T6Ta()N?eR>L9!it7#cN{LuH>35t!!+xeT=f@9<&t@n2R;=b6=3b55l6aXE*AijptIC{9nqr|XZX3?m5 zLSap#3^cD`@bL&4QrI(wK2xiJw~-HMBm0KY)Jkk+Yze_lT>U+61bt>$mi|67EVJSn zyz)q1GGT_@FBOf^wl9i8ctt^Y%~yv@T!)**L->$_@ZucU8)Gz!zG(3%5kh^g<%pCy z3BrKNMiQHEAwzlLGy5<0yNmZCKTj+OVng+C4?}vDxRLD9TfE-zdD7H&z#Fr z-UmOk;&X5OE>to4=2K)BQ}~*m)O-iSX*~jrwHpA zWIQaaZKP<&AT`p65hob6>_P1aGvN%G5K4O#SxBn!n683%l!$@pB0{rx3OEFzS-0WhAH)o&f17&&G2T2OZ5z=80D?o z5RI#bAA3_EhcqzyupWL`f&9!ol_8#CJgn!}4;mN^v?cI!1EZ-}#wdE;wR=m+b4#h* z$Y{YP#2zW;gt&;9b&ZVH@Jdrdz|}@ZBlxhnC;s7lf;;mZb#wo>vC)b-ikmy+CK!BP zY?cq5=asns+r(II`-UO;u=XQ@_>j28ETg{tfdlxPTQ~w(1s-qiCFv1`;-!e{w zBCeDKg4V)lp;wv@2`!975jx*;ToM*MpE*)Z&=M#l9*r~jqKTIr^ScfxlrFvU%!2jA z`LOPH+(MM(D|ygtvjd8 z+2a3UliUL1d6?41m@oEOjO8>)oh1w}MqKt@SeRlwEKYhi7!*+~?R<5m(`>s@C@!-W zv`zlve0AL8b94!L&2S5c5eBs!MymLYk39s=S{vd zSq1UM3hQ*jQdUdMWivN(&(Vi1jEb0VG@0*b6~r7XEao4uT4FAnxtYsOp(7^O85J?V zY%;&gDu_8&Vj*J(_9;-0y1C6HZo1 zGn*6$?QPBw^^OZ^buE}wkW(9}2jowFECy~Zity)319zO3H&?$C7Sd!W@-e9fx21)p zR{?I@ciF@MtAw_P1MS#W}4k%dO#|YHC6qL(%k*lO$B|rdla-r!XMi*VY&h)1@lQ|cj z?kKkKQhfiayU&Z9Xcef2W!5pI735Tp3n=)$pV3`|i34b+ zL0ZxE99MkBT!0(>aY|wm($sUr#(-AhXGTcfcmYml8SUMKu>*|9M8G1;k0nj$1#IMg zM;g#Ps96jQ8(>s3PY=MId;MAm`83fkz_x)#6E|B+e#4@K%bzqRxCworFb@X!LQ$}0 zknyl4G8iv|vM0Rr`vYQu>-H%Q)@B=zb zH5Iul2M0j^_lMLMQ(2V^4KG^aF!tr32(MDbVfnziV&VU6{Pau4D(}W}^T@0JzjlYG z8}EBJk#C(Av~N>ayz~ESN6Pk|X+#xmyl$q^OPu(hjcMy4$I9}NhKsq6G>6W!al(9) zaU>V{elZ-LloA=l%B6?s4=hnT5A`LMPmzoK%UndSu%xKl`}m0YSc7uNN4{r*Xa{0# zCV+MzA|*OXO|B9732#Zj(dJ`bYT5oDZ`%vLnJ5o&b!Vc;_%2ISd~{(IR_H&u#0>qx zteP+wu*3=zeRwe#$k4BBg?@V#`duJrp%E##G=g9{<4+KvUKA^wk}%)}gaK_>=cP0p z(}wkRoU7b~$;qfOZCK}}1YnQLoy+2q1$`4$<(KC0`Aqu>ag;G6_zF$<3Rwlhr*>{% zkm$*s+h4L;Lhmz<-Zu(8pE=m+=WWppKXYS4p~8=gBmDkk5(qz3jPT=>gdZ;;2xu2K zFQr}F5lew~aaUVvIX`VJuCkPMeC?$)ee_C@p&uG)(Q;HXM=5iA5R+hTJ@=~kAGM1_pvh!+wwBR8vNI$cP7HsfUHO`sR^#k~) zyhEE!X8_N@cC`J59kuZH8ui2<-Wr%2CVoNC=!8Nyh5d6N?cn*$kHTG#4kh9Hb zE!r<*fhI3jOvh%E6U{3~dn}`i6}9- zLz#Vz>gTw)Tni^AUTq_5#Gdhg%%EUS!W&UwcMd_RzI|Nz2qVi1LoRg1LJPO~Z?y=kGO| zi6h(!*&&Cx6{l2(gt4iiT#b-#LLlDe=mLTJjT-*;&OX&U`jgRcM+TL~|MX| zPz)?|II4Q7xcxI@l&G=X3JO}5xdo8pbTsp#BoM+SB~SV{ED*dp_dgemP8z;bZ}Fv( zBDymE6m%Vzv!LsED*I+y?y)mv1WYhbI$| zZBO~ymbP5QpA-L=7la=F+W1UNV$JA+P?~W#7d7;EK+?xsVmO4*_q7^9FyyK+2&!K- zJ_vXf1;amM94*9aOa+27pToIT!Ra+&K-M=#vRK1}5?qI60e6L!rX8T* zDtP`s1|Hx0l(i$gV$M6uR`wm8&RT8V7|<2FI1$3X>| zH9A=#z4{1l7pY5$5&f%E7Ys4bXGwxT(E-fn(DzS=!J`HAz!#O zT>)toQ+q}fqk49e6(w9Y6$k~ljh1k6#L#fT8mc!gRaU4sE?IYs77_HuC0JgKI#y~x zS2#{x0Xa`Ns=%H*#uHIZWHI-J2ustk@~){CfV07lu<5RGRm`;N%-un9M!0Z=nh`E$ zwUj02uds3jUc?i74^Od9l|<^T3*dyXtAD;t-Qs@TGINC*&$xEd&m*@=S=_dln1*;m z(G*e03NU@DW04gO$WmHR#U6-#KQRfeOzkq?c5wy1CYn*EuK1d@q6f||n4$W2E7V#M zxAab9M{E64WF}8Yo?*@92}$i^*!G8ffI=>KLQ>zm0(v%eJT9uNL^a$O8hVrqm8D+F zMdt?}5siF_*39Nui91KyX$^#nwIS>5E3IzSJFP5g zUF&h{h>mfx8Q^JdN6-Oa3j&538ZyS))GkTMwR}cLQXg+#7Vkup8xFKkxLVE;4Zew!q*jc+*&nSeF{!l(bTn2;jWtwB?VXjyCbep-5Nk?mF{@NkYY^n< z9QBdZiwAyzrKn131^5t^hIfX__GXCDb5a6a4RIuimaLpoS==fX1I|_IIVna`nYj#~ zlkBiRQuA{zVfMoxEo%hp4Ogjr#+9Rd)W(>J7v{^lx`Yd0_kbQ(Q>mAT6Z8OdZj zca=)E-!VdKB>1L?eu32-+r;0##FT7*XQfuM<)yTWLa*CGR+|=9UTt|GSy*v3^R&p- zD%&y(>2+JA)iLIt11{!X4aYNr7f{Nh7izzl=6_?EPn)cGcUcLKhYjy2neZNxic`Yt zC4W)E>xGwB8m}_J#lr3ndwZdqq)jVtf9(GgH{)tnHEVKC^M~GtuoW8+KvaKCdy(S!b6y? zG~FtArj7&G3f5cYKx+k?SF5#xEv$k2za|-_-R;%#8fNbP#6rVzmrjEX%#Trz@cd8|t%2K6VK}a)4OWXzF zOGkm9%1W)k=cS%m)+1}oS=M8$4H?#F4U79h#TX`MS&lqGSFC4v`Naqn28 z>~4xuWZL@_{X}lAjVjdb>n3?Jc3)i0p!GaVAt>^~9yt9S_f?o|thNu+B z3UR}tH@|3xPNcqQ#%d@R{LG!`fwgK~>YAkTY;>b-U$@V9^mCcbLbUv{q#9*ys2t4Q z9#Gp$OIn($x)#M+F_o#^fT>PLb1y>59hD^^2k1Ly7VQyBb~!%M;NP}1f1y1N@oA3Z zqBWBs9~`t6&@gRWZw7t)>_D_jCX)>Sw1?Nlw3y| z46ZUItij-tETw#lacK<(f1~OP2M5;+VvQ(e{>e2jzfO$>%-ey+f?wCFvEXOcoW_FN zYgJCXgluF^ytr0P1(Vi!Ij*@VkRVIFlxx`2u~&5VCBBl^Sp=~{Yd~nvN<9O@6YIY>$JXbw-xG@Tur|SvpJf_od zz&i?w&F5a8us8^EILMc3({Qj}{-WVv{kjr|gE|j8&J-OE?2kC!7W)_gG#nII1)kyH zgHlZcUr@`@F{6Wn(#ckxk7^OphS+BDZm#TDEJ-YAGQ!%wq|mRi2tqR+CiLx?Nj{$*k+=v#!+(<;;hd zm^?MDeTO9hRLh<^r3lb80mvu zC5MrR@Nc;fhPx`|(vWJ=BAkV&$2-@lne`B9C8g4#@)xDjq4_1I(lMhQhkaA&O_9T( zqAWVeD)3~{_ez^Z_nr%bCo1$8F!=??di=C0>mKW}e`k>WC=q8Bh15huA+d5cxZ=GsNbnurTlf3b3U{~{a6_b;d-j_3G*1i7Ad=QS+o?Jj0E*G^Hfo z9PS%q$`t5R9p^QXAeoq%T&@b>ftTUAXr7am%N(xZftR@s^K%~^*Q*rXSQ42j9QO~T z<0mPr`Jci~7jVCXNm#E^IMtNR-7b{mrv3D2$Q_7e+~h z7g&jvmwFQGQKkwdR!&82DY5cWPXfZv)L`GLBh~t(^(wo5|FYwt_fL?@*h^= z!Q~$}F85h2;qn*5CGge%iHkYOM`45u7e=`70h$MQtmXFyGNu6DhA+ zu206bdR29LD^`KVb<#6mRa?4yunHPAy1vRrjmL^HjJ9-J9d1skQ4sA4<$`Ee=m;i& zc7-A(LBJ^q0$xB6#4d5n7QB>hZhV9a)Y6cv81iSF6xgPf=YekrT#xeb-7)<3e z7+!H0v(nK~e9T(YBiM(psykHE9)n+DzPc9Q4f$q>hL*#Gs%J1J1czMr9-f|%7w2dK zhyEE*4MK)F%E0}dR|6q$o};2*4dfVNZj!FGL4i{dl`z4fhcuo*k=lGnD>e9_^?|k*K#?;#pb;4iqu$<#z zIfq#C@1v@3HTHPbv8d<~>qZ+KZ;IDsWA`GF`(SfszE$d(v%Ka1oQ1wHj9;$~g_PWG zVNm^bN1WJYiI69%2SpSkGkfO-bwK*Y>yB*k0c$~Xj^i6>mZQA~+MAB2#WmmhOR8Rf z5C1>js%J?Oil1Tx*>()YxeW@?79dV`u_$gkmsAelL@sPvlbTe!B-(I{%CEaju_ zT1z`~TL*ncJ6yIg@yCelWbVTL{V9JY25y|Iipq>FJ*M6Nu2z51n3Z~>S~QTQ6xBQ7 z&fAW=wsx=KH@5eL$BGV&p2D&1YgRbwJzt}d$%babnd%R<(Os`W{_jbV@Z~nOPAE?W zXXR=wZBHWwy-j$=m*G&8;ey(V?${y`85@( z4UnCT)Vlb$d<5VySdq%R!ecsmn!LJThh$BWx>Nq5NZt7wJp*{f6>^KUHO&4FPVaJL zRiz+Sz37gY>@RWC#o?resW$vkF!HaF8JhkjUeLHJ<@@IQCF?!-&* zGJACPuef1KeuGxlWz$Ejze6thbD|n+-$CfRj<$a6)uW*eWf4F#*NU zXP^5`#9#C^+EtVA7k!$v)@1xe-_lE$_b!IM)21N#?%d+d{!d@_znScj&Sd{4 z+}~Fc`_YR1o02`L#U05^?(tCTP)XcxAX|hcUS5|*7w)|-ug$WM@8Zk7qvDQaCigtpT38bI zXOJ0k&y#mn(Y;=k@xmU)eTXmjClz-jBks2B3UeX#Jx9~x`}K3hzJk03i0-_4&zpU& zFZ(HqJ(8Kq?}ty0l%)Lg$PAU=FS+lK|Jd;c7pDAbU+%cCPj)MkncS10|1n3ism1!_ zPl|hzycLEn9a<{S8PH`4Rpf3l+T{0++{8jVV+P6Bn)D`mvwT%TFQ|6Nl?7T%94nt7 z>9KURO!{*8cs_fr3iLcUupy-roLa;_|Cu8H zS%LoyhV2D)V#>=zgDBuzv#ENAWhWfT;(bX$!T28J|Le$Db}BR|^O#jAf63%NXPE!v zw{|f)0%DHD2Se5?_`&59%ewRjqh@Ahcw3egzVE0A`R_Y2iWR%if3X8%oR1W|a?_qnUVjI1$=yECWE#sH3GW7A3r&0L!v-S!4ewrp)Mxq%?G1JC zsz-Rsihd+^2@gE-2~J8`K9cLiKiX?G(F`FI%cJ%6r`PXbk=NHXyMga z8DVhco};E1$jm%5-1(&b1d_|+Ri7^p4b`80L+)0Ohg)tiw}Jw4D98cb;W+B20`~OhweB* zmw=y_Zhz77bm<}6r6AkIgc4*Id?DLznz6-%tk2huapERxCZjPd!ME8DRx`Ktv?(3k z$J&(MnuyFz>4|Sxo6@T?hn9gxlT(xdJ;&9Jg4EiPb!@S3qTiLRj~8s+jt&)d-t-Bt zINW@z)q>cY4!UbFvZ1enOahb`GCNBZGLJ%D&kJ~!zB3=IEyB z9q@j`Z&QZI|LL@1;WTFueD{qb1rB_JZ;Xb4{XdR|VmLEP`h@n3w8*ZaY5bdX_QN(A zamn31rYb!9t;6M?XZUCutq(=DQ{ z_+2Bb!raq1s*QNCLuL5#ro*4(g_sI_A;m+wTW;Zos6wU*A^MFkq6e5^drd?y+-Uc@ z_?Rjrfy6q^3c;fk%y;Y5xgjfJ6@-WmI`Ti9bF?>KzKsV^`<%p(&EF^ zG7$K)W4_l&v;DzT11|sUSSeE9vceDHRkx#M8dj;Bv+|w79@RRu3d!z?jOLUbHF(IN;ZH8X>Dl3V-NJ(y^SfWB)z(|T1=@}DM__-D zvwVnbp%rboXEX6TzXyt@F z)ZCKhW^n<&<_ zQ_unD)Lgw`8+ggIly z!;F%YeuyhQz@zlwD$crL#VD=vgO|=SKkx#XAM{^0swL3>pjXKy&};a&Tmt3YMOlGf zFEF=p#~}p)riJj;Qe#RBYveCV3v1wNgtLCIS5{C5sU}o)<`zu>>D8Q*f_Gb{rJ!a4*Re^F*k{dD?7xjp;Ew$$*+j*@z8QbXKi#)- zUf)Ewaz>(B-f_QG7O=R7`%%tEL^;{sT`C9JL-mu|>7kop+rq@UB8=6l_}R?kXEVi* zARTCz!gZKmE4>Yz{>tXhUS*sFkI>3N&$dqUI=>cDJkMPLOdndZp$CUntd!<9Ss}@O z&TU4BA|g&tZC2mbVY7K5PA4WyE}p3`2({bHF2wo2l1>kqOdXGdZ}Q*4(+uZ0bqCJ& zdd}@3`g7Qy@~IO4r>Dv*eG-BoxwZ47fF)=s+zD=5M=WC|%SR!75qE;T&Gb+i#+*Pp z8eO=On&(P}-+oHRU7IJI{&)ncn}au=$EP@Ji+M~9`5Y9sLl$uFcx5v!)@ZXpvpe4w z$5{h(i--Mq(v|Y{BObQsndusS5cg4MC#YDxQV^_iIKQ;rlD?6jSx?+%0tu)eIZ%Hn zpuD1G?kWUm+a6aSTyQ!4d2W;n+P*^tvToFCB=CnPmT#OJCEU=K_OZ?p-5_mdK8!?p*V)u2{;T(xMD;aqNO|F#X^F(ot* z9hrEE8a`?wpLn>^(iWuFEgpQET+9o(*xQ&SkXt=Jd)1bT@>7x%>I?kgF<*jKd5|w? z4rN#h^yq__Ioc$Q6608-(qQ&HvDQ=GmXF$LZr|$B*?A&h9g2XsgNd;sp9v#`*7zc{ zsThP7Jd3_Hzq7LpTsnQOJWTBB4D%B!{N`qAH=Nk4V0sWz2V?<{z-0=l#R@5VrgMfk z!y3_S=%-9)eene=rMc4?c&@v%b5ZJBsR_yAM;~e%GKJiI^ReoT z#onFq^xOx{$8RhB)m_}nY+f0-;pi4qsF`MZ@pibwYE>@tHG|a@og2$ZYVCkWR%B2D~ z7s0)QYwNj883Ok;S-`=aV%js2z-|xDHkrwpb7IU5#$Q6w&Ob%C25afln ztShcDkp$Z%4%^L=eDO}N3pnU};rF1Ue`&hmmrOn(^{*`8NPTV^bKXSi*4~5~u%JrI zXGP_$RveWAF0B&8K8qs;Eh(cE4jGLL3uuGFAU`#=j<7SaluujB_G;ZoYX@gu za3+@QXZ>BN^}KP(G4cyY|MW?R*2dH0F6%D|n5E!#oZ z;|Yo48ODU3gV%ORZJ|HE6+Y>b+DwdPwFCC2CqvxFflam1mc@GRRv6hbF)`R{1_x*2 zTh=etwCx#KI1FD1aP7#%#l9v!70sd`NuH z+Ly-f|Klx%Blkp^7C{jAyz{WF(l#4h%*copq1&uzBjAGJZZ4l_X*FTMOFrmT8tebW zIdB_%aKKqd1Tw({S2J0_y}Yc{Bwe>{Qw~l@bs3uakVs=qOM{ftBY=a1^Q<74HPLw} z;3<>?TZiMIm(3&+N<(~68dDUdp_84D`Z>AM2X0eNHINA=lxD~Rj#7VRL|+r7ub)d; zAy%?hG^Rf?CAGO&&q`@bM=~|0b9$6gnh8^`M;(qSzLz{4a1P}|+L)HHK}-=s^NcT= zmy4pg?j`?y?v#nKj`AI-i6a;-2w5%_hGm#P@z43N7mrUMXbS_DcK2fju{pf?=agST%j1={mWC>AN zXIa1@s$-fFga6a+hdKDZ<_XrUG#EW@G3OY~{}7XO*ZIzU`tEl+l@^@3J)F0I$9m9RzPo$0zc_4bDh7vdjqqcTgkPz8T%|XQms0{SycK z?_$6vcRaKVGil*+XH7q|pzQ`i5W6NJM&J*x$MLX=JAAzIJJYUjOr%>(s~-rpW+&u| z+LF{<$soA1wzq698naS@8_6Jac|w{OeW~HDwL`@`s>R{%aiLid{I$k;U3(lZufte$ax1 zm0~VyR+@-^Suw}2cf{_rR)}hCc2>w3#-K};yYw1dM`SPV?@ zTb#JN;B{wRKVaHE(3z{FcyhrlOf405=w~JFP&G;A&Bzz2km!-ehM{7es8c{D75~ zC#$1W!WDmb!c*c}*&z$K`$b4K%m=x!oyr9f+XbR0Yic3-C@UpIkxU`V=}U{KmT76F zg+b4~mhaLgtb(1+0_|lOz6+>vi~vSMJx*>y7Xy@yvRpMJ;hLmb&ScS%NtQ^3J?o29JJW`A$U5fyNaU~vv~Y2HN2{j#%e!E} zidGH999D}97lZU!+>m8x$b=;CC;hCm>Geu8*|VWSu;rZurASo} z``gVEgCOJs=aGO9u?39SmQ+WaVunzUoaBalu6m^81*bKC;x%|roGRtg#j#x~M;v3y zkYzvkTK1l4*&+O&CjEO8W{7`Sv(iif{yS~v~ZbU0zN=);jQ5rpXfLw2&$h=Xh>MXfp47^V99}m6j-phu1`h1fEK6^Z0nrfRKzpQ2-{{-gt@2W=gDsV3(p5Zom!W!@O${2 zc)22$osM+Xgq)D)f}qwt=h%R&s1K}On4Tc6GtCId%M8d{3dmvy+T3mzs(GYTST+RT zmv2dO`Tf59B3%6yclusr>JY~FWdZlX3k-r!O^oyYNqA0#6<7{j3XJuT0<|cC%o)A~ zE&g;04R4&W|AjL~gUOPp>B$9b#@N1~XpG{FF%8xQp05a5GfOuw(OSaTf1IsEOQwT_ zD(n$iz@dsaEoqMb%W27t1+DssXIZn-!1T0Yt~H0N!7k6Q4Xx# z*D78tWfBRjg&eGP3aoIiS7~Z9)SR|(xLHPP$cbxP9^$g`k_K2e`*93=eq!(Q8AR}dK>&-h970Av8-8XJZ6l=TxF>OE!;Irv#os>mvgj4L*y|*1j=d- z%0>lB1s-(}dflicQ+h05aF653wVNmRGFdmfwb1H=C2(?4sPy9WDdjO_yU z&x-1a^#uO#?w`MXt@+gKpR=-mTEO3l8GS{_UaM7U@YHA^wA$+5+wDwH|! zhc|+~WdZl_=BAZR@P9cVjcDyU0Vyf2Alw5)E7&2m6B~$;oR3TzPw%Ch;TUCY=rONz z09>k_*jT*iLvDK-75d~qYofjA3*V_609gsiabjt4^sc&z4ZY~&E<6_ig^y+=h&PI( z&w3;ylF`=#(tM8(snk4wtgD8bvecPwhy@@EsAUU!1;K+(*IoU_UiheCVpDOGDMDWH zJ@<-Vl~;Hr1YBH7h6PSnMQGkQu~hppwQpcb8fK<%m=2U4%J1`WhpVPFm&hIBU{<neQS4*kLZp85Y*i@H{dKXf&0%UHx%cYaO(8a42?_0bozlFuKs=w zNBT$m)H>})Oeh(3$JeNn%&6nk%gxGU&(Kio&=JY8B4EE2M%32}mSz~X;Qg2ymu9pP zl~{GpeeDM6Vm});s_%#G8+~5X%dN$`gw~Pii!-M9{`d^do+W^GxO}oML%_}1Nu_#%&@=YK-gJDR z$zVEALVL>BoHWxMC;l(Tw@+p!?-r9-v(iiv##_ueR&@I7srHFApvQmG2w(;KF1BW#`@wmyuYirpU!JrgWg4Fn(&7whZ9nVWdZN_m8LOZA~j`z zYl8TcH7gBLXD#L&sclc=x8k!0xzb^8*TgoEHOMts|9e05=$2St{L4fWPJc3-^zsLa zrgl6X(gtFNxN7@}mj3I07}7nlh4__;Ca`K8@B!<;ragB|u#(!fD-_KoRq4k`y~zO; zg28X-pXOKgl^ z4_f=YtAV)5D(OZ3_uQIa(Hh?u`G;R{HS^byE08x9M{=$a8B+eBPgj3!8Nz#m&e+@^ zhbt&e4#L6lu2|7bwlt%IdZW=n=Blj^7L8{*a&T>6Vt8pLGJ3s(YWsXWCZ9~{t}7N6Pj#)-Upfe?eQt_#57#mn8Jh-OzVANnrK=w&V=b!cH#)Jn>C}G$%gnIE8b}} zGXbCz>T!+3gS6-5Vb^%|#q4M3Y^`}Y+0f1GaCAyq8S>;UJwaUv{Kp*_yuUG3M%CGFIR@GG4l?vInf$^t!a^~x`=1GNav~C zTNdzf^PF&mjY%ZE0|xtWfSoVlOp3n zo5?I*TGV2CeY-WCc|V09#S{I{kzV!(CZQny7cX{Jl8;x&$N_xqhzkJ3Ot#rboadt zgmrJZLg3;oTz4A3-ql~cYl(pT@D9E4R=tI(LRDR8}LotO;#EEOU5(0Y$ZQXgS_eX_+re<-imed12uT{OKbSx zbypNFzSCt-j96XxvK%$Mk^X1|-SrY2jIVmb4r8a%_h@P!hLvx)+DC4cD)4Sz$#kO2 z-{S1fDWZ;SXwC04!T-zO2;c}2!#L7KET6rFZ;%sMDc!jnFAGRNo4Oi|x67;2E~4Pn zM%MyeWUz*6{@CQPK$y2MF-FfktgfQz!AR&Tny!agh&^^#T}4wKES}R_Yh!r(RzPvygChx%u zAy8v^;y|&(;!f8u*|r?U-TYcqOHs&bC^kl1DBDEeau~K(uqTO+SuI`LgcX4+ac+q1 zJ-&#*J0SJ>(3%m&7?J%pcEF{?NPQW0GzNlp9eOsxEqfbJo~sBW3S4DzAHmoHR|Eal zVRhrt+mbU6hUHAu!hbU!i(mzAsH7C^p+<0JPZX57?k2|`*W%1# zlHr_n{@>7Zb)V~5czLgDrKt9vg%tI46|2ClekmpWC|X!N<&D;6hHC<+58_-eWOjIc z;b0V$9GkqS(p&@liiZ4DSk9TqcA__#Q^>J_8h@-Bq;s8^J zI(?5-;8tf2l*+w&L8T8}mErO+*A#Ky;ttd^r%_`$K7RBbq&<{U9oC&`UIF4x$l=bH z^m~hxIx^HQ zmtt&@@zq3S#*xOaRa+9*in^?nyrqsT;Nur>hgTU+7Rjs$-C~#|3+NU@w4H7-9KN&N zXxl?a@By!H`&iMNHK1qXo=4a?*8d2cS=%Z>RFG6^99#BIyXJbgBkGH|omlGuTRUdz z?T@HS{F0E1yu>d7|He!Ff|;WD`eVf8R&5|@SK`lN8DlVVdTM5vWup1T#YIOTEjhhb zLI1O^j+)p~GQIgF(2Yl6K%eC1u%sYyf;hy;>1nzM`~64YYBVZ}%?_VSOk?s*es3Is z&^>q;(uQT9xi*Q*B{MWXVzvPxE1#aGquxFYO@rnuh7n$nn0-_S;X0FC8%8)9H3+wS z&mC#fe<|?GAI1Klzz>waDDVT1mN-@RQbz6*hY|%W|I+o6s3Y|-V}cSz zEvvw-{+#~ORfrd`+o0B zuC|f!k}nVbNG6Da|Nh~`tKvykN=N_b0;y+MDULUp`jbatcz0)~qU3ag)MOuW?Maw; z)iv6SnkJq#ueq9P3!&pR+$*@4HPW8$I9Q*L#<+L);JiKVx~pe+O-aP9kov;iCq;EH z<~Y^qUW7D@37~9ph!s#a*)Izyo7BV$$lp)=TmKSu=#pGde8os0r|WTRzz;bF_?Nfv8$Iz*_o9k4%F|af@#N8 zVnanK4;A6m^cciux5bZBH*42l%wX#I7%bHD#xyc`kN`$WDb-?ZQZ6wiV+$!cvIs#_ z#sWV`l3r4OJbu^JMHDb%8U!tN!AdjMo3JnrAL6=xny8i0j~#>fGOfBW@s*0wj~tnv z9>D_L;|`cGDARr=#Z#vJTK=L;`}MJsr&t&l3x9XrD>}QX*dkTH+`nA{daY_!1OE9c zv6=Xl*+xn8XRE-i$(*JB=jbzf>LBR+mupZ&F^sbVj#Ez5Zo$>RT#w=NjPbXtjvjs- z2K?>n7!YtA^G0)9YE^lOk-V4rtILUjnux|?cVtldqf6WBvr>xJ=;Ls8N@`Ot^8SZY zck9mMDqp0s78DN#R=AUy-ubwShj2+{Q0@Y|0xOB9+F&?(p(yE0`k@Xa% z=HvfV>;rtNkLvQF@=eD1btI)!I|a4}q|Oy<7;g$uij$X^sT7a+cT zD!+o+v%c^_`P7BQ&QF$<%J+Li;Z6K>&(?Zr0@?@SU#<4D%JR>SY$4}9`sPlv*DS2Eih z%vcLLq0vYP{57y2vFQ2nTIMzuN5FCTYjE|Fe5JK=_(L-s{u)5hzYOYv;U96~hX_8p zTFo}IS2v6@fvND&zk~W9l9;_HYdG@|;uhIdc+hsOlff5Fv{og^&~)zP&oxqFS&px5j^v`%9~alqDTLZX>*lxH-8ml>h;f6oA>c9*XW zcu;p^S3|SGI{si|SADbLI+@X3Ef7+d_%@+{8C_Bk=m#Mk*n!IEwiLXgF|-oD&=^{+ zD{8ek)a^1%26L56Z8e9dl zb=J#i1)AYRp#c=WnDscVR0-lp^$P&QMq{H62{~G>fE`Oq>zdd@uz;hdr}%}Vr|0?- zN6+!L|NF2KjBYURo|e^=W4invmumoffM^EY@qM}=Ai}MLl|XYJo1$@&oso%rjmOoR z%_NnWH=hVv5pm-a@Ge8~rpR&vCA?@s**1+ud-yc!z{rNIkW?d**EJH%sD}|NcO3M! z*cBTh9)Q4IF$g{@^Y-ms6^)(zj`k3NjuUvP+Z;v+VPY-tg77%Dk5-BAf8gW6N7l>7 zgO8Eg;v@X#VIW;ROwR+);`QL20EIiX+&^RldRoCUBtK^w}Gj0P&y4V*R4>J&uN!mEO$ykhu83@R|*gkfU%HB)ejK4X^ng+5~zuvO9?+0gYe{7UZW zdd@oaKF{7JGUHHxLl*={=jGr0sukz7W_?{zytN~1Xkr-bxu0y1BW?*OT8_9*cerX8 z>-l|mxZ2r15&Tdie@!zemwRXKa9w8GNh#)K_5(JN$Nhs;;4HP5_UG{pGB2}UK#{!6 zt_?CTvx~IGyiCMK0911f427;HKw@5oLSkNK`v#epS=h&QGkKYS;$m14;Q^B~wc&t_ zNY2zHyx;_uDhg0n%COQlifoL#MnywrV+g81=jNtvwt{ZXoG+OgD16-c?5KJvL%9Kn=Oo@~X>Fi>L!Cr76j1wH-KzKs@ z!h!I_#u6vb?+3Z2TkXF!e`PSl=`Ryma1i9{f&kgPTlj4Dsv)k!>}`!xZu7hWyoy6m zpO6Y%3y4EdCe%U(C6T)}RH?&$ARr=*0^g|yoyyN*noBpzR7x18bC-Yth}mrV#=zJb zd5^26ahSh&kIQXaBGA&Y^#Y-T6PbP~{4}W&F)p8QF!N@D+>HBN_plQL+2Aqm6?{Uj zt5)HF+wDAa|NhSlVu!yX)dClKUG5DS?2lwObWI6K{NHR!8H$65xhyl3O+C zbG{>FEkeaeq1GUmL)lLR(!yY@gxszegd_9PDHY=iF5m8(03XYs&^W9I1934+-%T2bVQmcLi>HEv(;umNaI+lS zP60{AcHhl%Z1*J?aBNQ@1vs_=62~@$#F^T?S1Tj+_`>5MUth&6^)Ncs_H`b3ks; zbl2Uip2kjcg|)WGT%n!RVuG*M7MUxAe~Y=)xxz54=B90txxyZ#1)|E?qH=`;Ne#va zn6AuGEIdeRMY~97SL%@=+#MZJor&K8W&I-?7$~qU0dLST-&N0;&PV0D>Y905WWq2_ z;Gb$LTiKUfJ=jNtHu})_ zbwPmktwe1&t_N~g1wQT(Sh|G4p8M?<=|kTw*4n+ZA-wvLPn!+l)whBls;w28LAi9n zk7E2rN^d2y3h*1pb`gwXbzj)EO^c-lJ5Gvm@jIz*zw&(etKju7@E2Zn)n%6m1V&fq zK(OLeL`0Ev!9NNp>4N#HIj&mq$3y`Nssf_pTksW-P>QRUu=3nF*Hz0*D&qa;y6Umy zB513|GkX4NeDd-j&tFfHjV5GaC(Y$)Q7bN#F#lwpD`!smp#RMz(qT<&bHZO&shQM=+911g)LmtQ?_~d~sQGj`E7+dl{7QEqr z2eJq#8VWq_7;GqqLhZ8v4rQ4;Ku~eWVh6#1A;MKsfFS}vVu(N?F*jXAAVqE(RvJJY zrcYoFQq#sK;!h`j^*x#h8AwlKoSV5-TRO(M+9=gFT(hlmZS5nF80Tt8700@_%FHyh zz|6D;P^cPjm6_=vW|U?DnD=<3S%*a8j{*);xHO!*9~3;GpB^E8p`RYHwM0KX>OEJO z6WB0!-_52GY0ytk(FFmrw|wOK#hF=;CWb+rI~z14R=^Xs;>5;^ulwXx=CSX)Dwlg% zUin$ZkF9d$*k%jfsL!6HnUy~KxcErV3Q~$bd*v;hmA?OV&2igiAK<;z+HGzDG-BIkBm529HdHv_9(?jv z57BSH7(}0;4L08fG|>h##V@qM%xxvw;MC9HR1vu@!trWcpU+*rSQpWrMvWbHL4fS7 zoaS|Z2fHX6zksDy7{s}Kwn-cGZVLog;;?S?Jr9f={ID{=;e79xF0ZYRV2hfcU-K!K zT_e77!6V8KlVV(U;fIf&B&F!j9^NKTtx<4XcfAap2&Y;=T43MLf{Nn4U$jm3{cr(A z)?72TNryUvv_^;e5h*|h01_Q4g~T-%aE7PWe$7j~nd~U&`(8GhP{ZZc&TVqJ^$V%M z<<<^SfNG88`__u()~Tqd8uzKJD8Uo3h1?z6$g=AU!H1q(<5Ls#NzjNmsaATswliFJ zX-Kv1GWg7&A-u`I#}R8nEA-wPNTE9hiWjHVO5#i`yohBKa}9=u1E+~#0|!o1@e2n| z)9ob=oMs!sIq&F=uKQUBA`m)nuPz9Xy=CXU`me0ge9JaibG>>XYdjmENnoZF4z#1r zQtm2~1n&po?@Te`(n2R?hUZVPz#J46dQyj&WE^zMO= zT{Y&X%G(?AqjTUZqSFWv4mSMk)r+K5*g9M`U%b`j4T1(Ym%}HmZ+9~$j^TVjGnLuX zgdFbJUHvO-1ACK{B5SVmS*_VhQi{XyP0$K+PYeY|NxlvPj=O9WI|g)b2uRdlX_;@M zT;b%ikKn?|XOAer$p^XyC!Y~JU3un}?edh{H3E-O-6he#>Y28(JEZ@aAb`}|Q+&wH zI42;J`Jk$08nM#^4aR3Dl*we@6>IJRTM$9ouUPg{(ZRA9s0FFCX`H(?@AO&LFRbkj zAf~1Y%&};p)#0j^eDEPx$HE^!&uV0_JO2^9rvR_XS2k`G%jbRxtBiX|6WwVeNhx;P zy*v26ud+G>fs0;<(+pLRy)cyT|I6jXGi^P0$b625QA~FeFdnnZ4!*a*-qCC+;o?K! zvUkYTY|7VJPqXEOCyOprAo{u#ZqO+shPVAD>oN8zX`% zW`Qxe=1L*2@S}{$FNbu20=OW%;Oq|WHlYiCmvFWaL_|D}NoqREz8dTAmPp(d^?d02 zZxf87@9!*rq3`efV~M_h>@nBk(4cAXao0m^C=nTb{~%ouAe%Su=2LCx;YOWxRpBXH zAi)v_d+tL&N_XD($ACMBgKU*~%LQ#K@t9MPfS$suo^st~dq{9b9eaPxs*IaHJLMW} zusm8Uj$`1nileq=H82YJ^uJ-1{|bT7hX7s%`o&?<63`|b$%vgIK&4xH8-9%~$0twp zRaVbOmc6Mj&<9kKY~=A7XI)Q46NUpvGTNMjmFB`rF7Xm8j3poM{=lOQa!%;73A|i` z|64FgHS-)5aEv>#aMDj%PLpjV#kkPW4b^5cZHT`9AZdcW{&!J;z8?AweSM1et|<|v zev06e3lmb9`4iMD*NVC=dM}}|d7bDsq5{Bf9TL+#I!L*E=2r>L&C7sPtT@gSy13#v z^P^mG{0^AJieoSQEe?tijsq+4)z@H+;3a%uJf~$<-m=|Ka$oGv>#hRUi-2QLr@_^} zSP#BG)-4?{w8VtEhEXV6BaBF>vqUXGU>xNFJRg)=wF4h_%@tJvFFO}&5-uPlju%Ye zu$~}(;jo_YQ;EYm-E_|n9oBGjppy86V|kwZM^+!kiC{RuU(y8u#`5Oe;sA#brefLI z5qNEcFYaR6c%`!TT=t$OC4;=Tgns0fwy{k9h9ECBF$_<+uY;1sqJG9t0k;587gQCJ zMU|Dy`OSQ9q}$88RdUAIUKgb35XdLAahp5n`;t{f=$9=%H<`+I5=cFp?IopRHj4l- z@m<8K{HwBV8!tMX6&=(P!$4R4O1BaQCb1oas*V6Jl2RQ^l-j9Bn&8m5$X7G>Bo+dV z0bra3+PwIa^d=M>1HcP{8Vvv`Q|J`Z2`+RBO+*2jGW1%;iL3*VH|kBvES%{p7y4Hr}P4D(j2`&+nv%2Gyyci3p9kkMc#q1SO{TWRfEkS zO);#|VyVIUeBr8i_mc)&_K%QDI6%_qu8=g*9r6_^#Q>;qr;P3>xKMGt=0!z!|K2I% ziX}VcYEc6yW*360#IF0ioiet2z9hhDpgM6w5}aTZzpI*i3cEzuvS>oZTIZyE5a7k~ zc9*lB<$1|&^#*tvm)7%hu&tR zIAbgqzi`G_{_}sDG0MOl4fiWyr;Uf$*F+gOS$wGr0<`}ZlSOHs*Vr8^p3jJvGsQ2O zj+`kV{HpJ6#a&-H;>53>iD5X&Edr&ADdLl#$rMrFy!12Q7YVQ2yx73q)>b4i(~03T zLMkvZIK_1EFJ}Ittz6FpQKS@S0synl1hnPuQ(kHtYFV)wFpDVX8xE~ zrFlxUJ)JcoRmdyA@|hn*RSRkadAvG&WIW`B+gRYuTEFno746M}z;RYc6OeRPpuFMr zqZgaGKR3)fei1jATk=7>DplZ3W9>C;x~00wMO&g&6JqU0`R7^M=V*Z*v@jSkObHZ# z*Ro8sfWp&)-Lhb+R){s=%uv8YySsS+5LFtJU~kNph5}x(Lk@wmdMex9n0*)uc*FrS z1_ewX{jbt|Pj!1k_CqK%Fq*(eRIx{*d|RK2s>~7bFQK51I^F36aTj*f0#gZ81g8UX zk4Ba%m1j0>z~9S)2@%#2;*_}Vj5xVmwsuD0^%m}UgFo0t_lD-2{i+8DI?IS(`46q! znL*(7TD$wPxGwRSrRWEa*f4A9y(7IgL7x`#4%7)Y@e3ZS#dmKZ7<96?Mh%xmZF zXYjUOEgR<223xQjz4_a2cc&mgoCe2)0xtKs8wUZ-PqVjX&x8WL;&m?$0z}e06!5AK z=1;|=MXsb!xiBF6kYK@p?0r#y0U7v6T%~=|-o4T+`c+-)A@CTMZT^*nWxIcsVc8|& zeN6i9{t>?3E;-Hb&T)UtS`%>0;%M}BCHfZdaY1pD9GYQnUIQrlwRd5( z6_L72e5-q?yh;j8g@>-NONLx8bay|`9w5{$!ZnoC?^Dcn$*@mh;|aK)a-JcjIL^lJ z!f-2IbE=SyQ=$M;!CZ0(Kn0CTg<3CW+BdT0x>#Q4)eW0UHeXkLP|(Ng2xfoQ4DKzB`}7xxczyKP><4~>(WY6fL? ztwlR~8H4pF#n8d(EBC`lDfVsu-Evowf)5mLX^aQzVpnn^X@M^238*Mezdg5Gx}aVH zO1dCC=JD8Wxhwe?X^p#*3rPVo0FbyVNg;7p5;((M$)bXrKM4woj$?fYN!*%Ty<2Wg zeoZQb17cr@0@Q6Jcirz+Ta%~N)+E6bu!P(%c9X5i-2@-H6pc^qCH@R*5nGeT2_(8c z4XL&!k3hc&*9R@onP~up>POJL*p@7bE3qv}Orw}%ur3@jiF-g+95PkJFB~#e_LMke zUK|b!vylD#fe*NQvvkp(4w=TfAVBt3t}UH@$UTr(%dtPpI%vf5+J+Yx7S}fJAQfO$ z>fsBh)z>!eCLs9wg=i~oF}B+yuWW?jI=Af}ITY*d!J(L<53EGre*c4`9vIej*uzcl zAN7bjIPf&@G1}eE)>e?BL$m>*t*>&hhupWb7f2NzURl(~bu(8vKuN>c^BP$p#8J^E zo2N@S4(qo-5;3gbAr&~R--L?dVg1n_Ijo-+P-IxY1{xKow_YQyaaeC81vsn$5{ET~ z#9=*e56+ObxuOLsNu5(9%yS&3$M(o!dV=7_!J?b0qijc@o8W2{&l~41mq_pgtS@&i zpb{51_B_^NB`f!vwpSdc8lOrbm;Q}h+(`LHaNBP(s=Zo zVt9uFRYM@mPo$g~%8cLe5{C(#p*sjc3ILc+!qaVo2@e(tRraSpvOJVML?A8Ps#_c* z3AfM+=Wk72p)&{?+$AHOAg^+eAyC{aFuKqc%@wWD70naB&=t-5twdL3Jnas%OZL~( zZq7a=d|+N=l`aU7z2#l91;gyC*+z|6CPLu7h-vOF=C{AeJJDsF-Mg~`R-k=6b-LTZ z{wC$xUG0ND5%2Vr+NNk!y%uZ?% zxo9TbARxzk*kLr5`wjHF$ltsJ!pU2qxbye!3+_ZX1M=+)?z?Q?2$87IdymKnKCf9} z{|D{x#^yjmAJ54az3*sj-oICVu4*``g-xlU#=U%TKBSj+z7iX2KC)MSJ>^aTq?S8_ zwt4FC)qjq>>1;l9W)+q07|3tTbo)X%95u^bzw`_s%DdfbPh#>!D3Odw*fO!n$I>IaPTcyD7Ni$R+q!Wr2 zSQK7?b;Gf?xBw=n5Lz$3?QUZp-pkiK59yI3gchE`K167p1zPYaG>amhc+8$vIaCpQ zBMP34P75L@7Sy#uAp2>OFq|QGvZiqGCv~v92vGx?R#y-Afti3i% zAs|9ErfnaY@fz+! zNqdIbYaeg-b=xNFPSOgw>q)sAB)Mb6tT=o;uwmugaLnQ6Gu4PtW~dl3`^48Cvg@z* z8PYIw5>2_J3|6zuPfXh@rqE`ERVUgnn(R5kF3vET50%q-W}lct9sH}M?u%@3$>8dt zrTP1~`$tbR?tj|uW$zPkobfewwGXobzA7%lV`zr+p$1U+=76h(?Ulks&)6pztcW1A zu&bv0jr-&r{_!;XBDSA^YbSLSKwfpgXKP3;cGX|Bt1g7=s%@USME{E9{(U^=dAmQ9 z8ji9``{gK$-LEYhM_Dw4W)ME;+jvR)OB!lnX{P7dn*`C+rkg=%q3HsP;$%=Lp5K)I zL2VZOE8(R6D;HLrVYi#?4uaUCe`PK`_6z+t;WdxlRi^O7D)&)?-9s7yk7+!Ai=#0c zK}wOwd-n55FWK+2g4f~bM<;~=pYyW)ZY#LLJ}V43o{iE5rsATzMK^d%;M<}AB@ifJ z^g~{^$@j^PKo}3<0iRNqy6|JMRkoHeV9}IHDt^0P=G<~$wLf970|Xw`v2QCMpAK zOySK4sp`^a)#WqS!LTSw-X3TC&L>Z4S(%?$Xurm8r!B<^9YHLj+wX9+CGL@`eBff( zje);P!mb4A9E2SLr3^l3ZBF%2Hc})YZmaH=wn2atwqJzp$orfTKkbLlKzCEAOXyo+ zB+1&^REwvy&r#Vy*LUtC>{Y_J#ae1gwaorq`nAH>?MK*K1RO{GsC;id_C6^Uoou|t z2d;Iu3xd{O@OwZgyx>~W3L_18n|56wRNMA@*iel+!5Wgkx1g_PwoVEqwqU(G1HP(P zwBDW0juBeu0}m5g=Yf{^=<0u(8#S>eZ`mAyx~+z)n+k1 zh4>B9>!5Mbhc?}Zsw+qz${l1f&B`5Q5;F%@Do@C>X zz`CSpyF1Mo%g=0gcd*?jIH3Xe?V2@tz#LwUo64Rdr6Sm{^|ZE|NFZ<#hsq9gQ1JXr4xzD|p^&{Z86WwezOm{;` zDZ0ph{N#RE$Wv$xvNdv*$L+0n1tNmiq+(tb@dScdWKOCQW21U6#Rm_)3qGLuHSGD% zAZ;ubtHNV~M7~-+@PK=!Y0TrN54pP#16RQs1;;n9$Ve$>0>&CTq7MXhbVUCazt9o= z`v5wku-}D&5rI#Rt~~6XANC#QTR7A>xsj(2AGaPn(#B(%O?mne_Z+sFXa_ygdR-6@ z=2p(e1ZaN34r;_Q9lamaAkxuiNClXS`q0pRo`2l!WX3@~5-ubHv)ioJ1e~XNd@9vc|EeRq0kN| zm55ffQfM)26h_CnyAQ~$(YGL%%o^c0ty&#%M+Yu?=J63{-M8Cz3w=>f{R2@TCd~7< z+t0GugbTF$@2%}-5eW3u%Si!x>Sdw;J@xnCCEyw9!kC}zl??OSgVIZXPZ|g}YJ5F= zm4~jjiVjLgohJZ;9rc$7(NXjHm+{;J`skE?QOzR`AB-qS>5|5d5abXuK?DeAu8l*% z6e7+Zl*g_s29baOdi?E~27Gn)irZ!asnNgM+nN;)$$O&}4{4)9?;mxDOfFRqAc*HLM(p6I>H*|9t9+_85EzTO z(2F>$7=@q+Cto?NOq99oAWkgCQYi8yl5Qof#G}_)g{$}4-!j-^giqn+YSr~Q-n|t%;@^LyTI&H7Wf4FFC z%3(*9@e|j!$MTACp4(X)!5`gQZJ`SSV&(l0s6U(#261j@ZdCRpo0)$G9Qe4(o(4ug z{#s?v9dL5|?L<#?^#KpwbW8KI>B{od6DzD4iMFDm5LkI-A>#?K& z-SwlQ0Nu6yPZ?N)yG|&~I&ZIFm@h+-h^z}pEA-j3_^Om3r@iP;>9qR^$Y7^E<4@_d zZ&de)qtx1IfBdI(+Mg2a+G&4eArbNIpUP_o(U4x-1R`6nxRb=c=(czNDc$yO1UGUH z=dpr0KP)+C1gmu2fC^nV0#Pv>ka#7tOH>XBXeyZ%E@{U z%gDU0;mBkEBH-w%Lcs4hEL{~e!&F-cfC~f`XC_ME3SHFW7BV)CMLBfR8eLT3!aAO= zhB@`HbWIvwd1eYPTvLK0j3(t!_^y@yoj z2pDShVUME(1mjiFR>Z469F{Tmg2~RVtn^=cgkUUO>Muzlj#Ow0P&@OuJDa7DT7ewi zqg>Mp+>N*rj|4=V-GTriZo9(WfmCSRP>b>V9i$d<+k(RgX$g}Q5J|@f4+V;KB5B0>Wh{8m`U05;R0evu$up`D?@=9yNCpE+} zJY!M#Wo1W0gT1WF<^5mXQXOE*FLXIQ=MDBcffO|2G^BdjeFTJYJ@dDL96H#Fzu_NQ@5*{T>q3(XEaVztF9Y zIa0D)T?wgX@xhdp9X(6Kder$h9r_h6?&N7@uos9v(3?J|3j*xt-8>ZzRC4*2M?499 z-g-M{uW9Vktu6xTgbal&Lh8}q{ix9XNh&m2 zs6~Hwj?^Mr(X1G4B0rh#8Nn(Z)uRA$M;(M?ULC zSU_8U#)_c_fxr;>K2m@o@Gwz;Z{;fC+bw!th=_n(sZ4ge(S3-%1 z3$77>93x>ysbD5!ti~A_rMb|%GL!MB!0$1K9hDLB5b>vqh)IW&b~2YSp`Bxa!5qi5 zxuet9Mx)ZZ&5w!C7B?&0eK)LGSO)@+6R3t)akQ_n$1u+@gY_;MQpL7+@YH)fo_LKx zmHUnr!o&3a;jt@%B0O`Wj>#G6!TUWAvu6mng*PS3Q-Y$rt`9B6EEA`xE0_ln2H(Gp z@EwcbUHc`;s~(^TjPyfVG&@$D4XMQc8txg#J|vu27*})ID#iGsC{J0w_cq6K?0eG2 z!o6zqjpiPj;~c4ZQ83L27Lg&T9L5B?@|dIcPV5i?wfGA)H;up@66^@rYOM+*@S#s?|9v*gV*&rRP6n zMgKcRe@dcf1U(mS-}scLO!g#kg&Y0-M;cSW!g4{EazFHg<8nWA31Aodp$p+}xL21* z)I%D{uQk3m$Z>)-I-w02y^`)8wLw_#ggoxkZHS|%!My(n-|mETzrPLh{LFe0aM6MB z8ohGtJx<67ADW>j)c}fq>l5-pgBBQ#}M{3A#RaP zJ(e&@@jBvpPcJr`fLnM~;IkC3&k{~gmkf*s&dH`9@igaBo_BNjBQ+h{3^(!XWb=!p=aH7qGZnsg9bfoPQGVF z==~e-OwV+7mPmvPh*P>CKtFHkO)pdU;PKx6+{Ix5vGDfncpmeTX9!~_wcTP!UiKuP zIo;9Oj5sO%TNoa4&6Co<9X$~Uu5Y~T$%ttLxbn&u-=}$*XN+`I{f^deu_i<5xz86%VI?r>~EI2tk!`pq98d`#_z3(h9)2QhE{iA}HQo_puwO`H;Tnh*l-v2SaMEH= zu3=s{$@726ZpSW>7Rd2A%5lW0upGCE*Gf}(PoLzYM|i8V(*z%=R~}#t1wVe0pI+tN z&C*VRCRM;8PK*_d^14_4_rTfA*%QTOt_}fgvx38@im~f=zTe4~SpravnH^E+-n_wmJn55ahz$ zK8~;aC%xra95#l#h1cb9Onv$+JU6lUZO@BrDp4GItfzEAfc;y!ri0{ed)G6c&DV%! z`1a~4^i#%czIcTvk*Du)-o`$(0llT8shzBDEL;ie@4P zoDJw9|Bx6)>fD!4Ngw&-seq5ft2Wo(_asI{osQtwYWb@2rXP6P*j^Ussau>#=wSeO zB;Ro-Z}JIxB%JCdSewM0)@F?lFKn3Uc+O<0q!`afb}jU@WDQ6untSSLo;cg_Ll8K6 zM7Yyaj_>{0Q@eBvV6(9~=CnM|`Uq);{EepkO_cmG!XJmbM|I=F za3>FqQXQiI4uPb~$LS^gOV128m+)cfG_@M0?a=S9AWhKkzat9J?@u@-WA2e3_{T)7 z2gSwqYoE$Ck_KBxw!Pb2OJ)7(G~c?w(VWU!@S(q{`R!@+{8d)#)`7vA3&QbLGkSI~ zKu<6U81L|{KSRc2P&GKqu^h@oFiiL+?F!c{awM57`fqKC7%XaaRgr1l@_!d!D2Xe~ zU+Rc9Se=p^sn{&_Zy62msqVawIS4pLn3{$MqTUfZv z@sh!M5qw~Ob>RCfaGbgyDMkD1^*6uzrlVmHI8HgP9z$7N@sL!nS9Mn$uU_u>hCN1b zWz^|dn-5HJ){dC`cLd+%^QE#Wq#A8@;@^5q887hEZJsRJjr^kDmqMgcBp>^mH+aX< zD2SStXDK0q@&I_`yN(7G2y@GL$``FtdB1nzVEBi@@bbXD361u?3oes1l6&oV|8E@# zEe@4$AZ<~gAE-d^`wggP28Re}SPzWRc#>k{{n90$f({ zuD?P+`p_A2(7i-n7J zdny^B3##*bJgeDKA`6Bm3w1$&bl#F%T2Kw(uIApde9~{8NWN&DBT_D{DtzIX%Rbe_ zWXST-8M(B2A8bc_Zh7?^ICI)j0iF{j{&rw?2x=zGMIZp`F)M?81iRtZJX zP-`C19EMtL%d~rd%^`HfTMh-sJU6)jwU|c*#tCYS6*jGNyuy}~QjBQ2Y;!a)KHzJP zd%zEqO7J~Sp1!$!V{_G6;()#ay};wiY^DH}={3Iayr)*&o1%a&N|*EMCq2!B2x3qZ z0!SDwTyxU1-r$YTVgQN(TFSzHrTJdBH;es2xPu;qZ}*+^^=^X!Jy#u~`kgrpFPgW zOUjlu>RRM*3%JpPx4PnSg;IF)il-?X9}1m*6_Vo=w?%4ofPl(@$2tFX&GQN@zARF! z@QXrYWV@UY#>jS=D8R@T#;eF^7~jrL_cmqU6F^K4d`-Ku=$uRsP&>zjhB&7T-!8y} z#-{`YCNv7+xmA(SSO%y>LSrfXEgnmwT*6~%tqT7Y;cXsKes(#0RvAtVk3Q1Q6Lnr& zB*wG4i`C<15$ACe503wO53s5P978X>yqZEvu~Vy_=NAq_oD>4y?GPAs^Dy9BMFj=N zut77UX8DBk1!X*y3m^Z}ksiUi5HXXc*gr;oza@&IXp z{c+!UGPE8&FVp&@KVY?&?##|0gG+@CKx$QAZ)OlF)DViCN9Y7N>vqD?DhM29SYUxP zy7F#u-UdN{D8l=66SF-sr3&F09VGpLO&O zVgvmRI^?Je+Oz{)<1KM*RjTi9gT50--$N=A&dal6ndco0-VG!Owee??QY6#p0zY-Z zQ8N@AEx{iKe9c9;Fix?9@vBUqW+_dEr}Zw#mEyEZj;Z{;RB!RS%0gz|Jp~Jpk3kn? zmM;WFfB2{bK38}_X8A$@YG07c$1OFya6~STaID3CnUo^AybFB(HAjt5a1?u481M(L zJ2Hd7!-=iD(6dVHmNy*lur&mk?(cP^6ggTGqJTP5hhHiM08&hIY6U22pa5|xo+Sti z#`q$Qr=}QoKIk16GtQULs?>R*wqxuDVZ`E78%hSQTquM`C+;`Q`^TkXN}VQ^!>Z&TyJl;PDqZrj9!jaG_L89d{>%sMC%Y(Wpq| zrO@~V!yXf`36+M{$B25hpo_i;-z_*cLY|GdB0GV^77Al2;y%PKShKiwPt~4c4gKHmrWkk%==;JGV6hK?BY z`ZDW%_O(WgODecUg;szkc0avHmQ}wJNaz=JbML1x;JCEykunClwkw)FN^(sYT?XnL>`o-omIk_Yx0+b2Rwy8L;Kh%J^s1y!>jW)Bj&_>x`Ih#K)F%i7 z7Aek?DwN{HC0@2p_Q{|&7T(mIFG>t~n^ZUZeY4_aD{l$X$y0D#C8S-}gAG>+HAMlg z5lEoO?0{}rvhpdxJ*d#MOHGiFUxg8Cc%O0g!IdDolp~S ziFJYv{ub*5$|tT9<}}XUXR=A8y>ZCZElwy74NgsxPhOS_gWn#{uFjjKXYb=(dI!Rh zIvi*HR|yVO_RPzCO$I!0s33)&i6yHiQf6GnAb(`@>{b!%LxKXk@_Ik7lYK!-5%GtY zWu#BRMVM^BXF&&e9c(*kfEwLGHM&P?G@58s1^RJ%^w?y#e#lq$g~R|Q1biuh&k!;J zzA(w2Bv}G7|`2GjI_Ap`)B?rW~ z%rV%fl(c?Z5i$YBFyg1+=+EA0lkG9PUExRDWW%zYG}8_(hp=e&y@C$S!efJW*)7BJ z2=RRi?`+R*#IFzWRt(Y$a*L7vXhJr?Ek^nwowo{XUPSsK6*Dg51G$C0-Px55Hj5zC zojZq=0-0{c6<*Vuof!lT7VYCJe|NEv;WFcj4BU@-vma+45>#4_FG#77!}ySAj21!D zdNYc!tfJWWugDbo3<2aJ^=f=hzk(U@(lfx8_`E*u*7&hM7_}InX$>gwu{;n0$_TzN>QvBWugb8s zHGvkI#IV&z3Q>`*xqF;91D+|34W--Ss?=lI08CkV^G0h(kt_|Oz~P4oA*+QZT3|{Bzf&kULH*YC;eN1c$Ji|WHh~<93`&Z?DzkC;n;0^CP3GB!-bJ_uZ@Vm_h;YAOpq`Pk0?B zyT+G2;T>UnSD>X4<12&?Cd~23R^@Bj!ZBn_-Z|l<2C6hIYqX+2GI;W))qo5e}=b-@gR?x>TSqI zT4@cZw8nloUMj@qg*9D*SqGcBBbi2lrlJu!^3#CVT3J zmChAH$1D%`wa3A`X4EW7=qjF^@2wRi6Hcyp9HHiQJ;u;wx8tYtA=0BZgkgDz1%w#- zzKz~{&FE~65I)VY|6pngpE%D`VEV6%5Su^o3dX8p!r}*C@ir$9Rra_prz|Rwj<4HY z$N1XJ2D#zQ$y%Bpb(Mke10EJ1f6X70{iwln<|9cw(xF?apm*eT>no>I)j6VId~&^z zcC8RzIeo}vGqjZIyBngjXqf)|_2Mx7GFwQ%bzt)bDHXam7hcCOJqR3Qb@yc26|v zoHJSC;&Hf{vloC)9nC7{hf6F1`J7ug~m%gO8q??O_8+Gaat?r99pbppbvC z@VIJPc5CAHin_#n;nAHF(NSy|QPo!Aq z63#Kjsv%YU#c!xE^^+SiO#O^B!M-S@a(*ZKBFKxum~TUPRER$Sjfj)E9}s*PrsC70 zA$+Xhr&f9Qumc2I^c#k$$4DV|+kqQ0WgmiN{|%Y4Uva~#7{%2)z`ux1m*3E_smUd@ zEd<>(GQdP|ni$^4@SIuM9TQ1R6o?o_T!mTICZ$TNK((p(g@J0*Qap8+FKm`IsnEM7 zG*GSeG2~u5i1zfVlvfu7$mYFsOM&X}f=|7(*#M1K#;JWu@zXAUXY)?@_p(pLsgGKr z9)i~sj`{5DX;J}wrs7nnT|5w80Xo&9X?-?}fM8}5YJ0rxlN8c?Jrcu+mU~Aj?(XZe znQZ~nfv&B1_j_D5$jzz-eCE}*@!VBuM@5h#ig&A$T?S52eD$UGG20!29*tsMgaM3V zPgHC7DEpk0iYT__t!pzzis=#{YfaIzY}px#OYF{`RWVj69#H1qEbp3%majL*SwNVHyNyGR=y$^1b|MR!C1 zSiu6gK|{ese~^w=o8Lc!f{iks_`;-*vg=2%8w3*u7^6Oc_qfZN+LE!mVWQdt3q}ep zBAlTIcraJsE#>Y--VgFm3NqKV+QgPFMmB9`iW_l9ZShy$vCxSX;Eu z+u919#!--Nq0sa9hZE%PfFQ$23lwB96=dZ9QILVHvm2Gb+B1X@_Ms3w<8Mc^Ab9j@ z?bl>?jCd6|oVh03&*qYbI*j9lP2+X$I%M%P6AyVk;gxMXo82{trZ600@~U4TBMl~B za5W(+UfZpz``O^JV|>||aReLQ+S~6YK+3qkfe||$Ce8GBy*t@XB7_(Vgr3TGZZF*W zmp9jlI49)(A-gTRK$>9BoFO8c2Hd^~;}6;pnHA!bfN*tWb~Oe+ienHR(rMuoJUkKc zmsfqhJLP@vyDTL_w-aLqgS+~qP;{r60;^DPJE4Ll^F`NS>-?x`)sv!k*yM|^d9(3d z0eI;&^^~`hxm^O2iBSQ6L&mQN?GnN|Af9sC+bNO634stx#UVKf_Y3wh1(_>;VPu!f z_n-FG4Yz$h?r-l8p@H4AXS^%e6ru;rKu**J0jhZ`ZYi+q&nxZBPUY8Tc^+YNGGQIrEi{3u$8&ZXi^_|pqF1CS`qWAiS@4e)$69f&Wn8WvuXmT?j55g;Epq+XZ zR%=SjDny)Zr(8hw}qV!eJQoM|KM<#Waor{W~1|%sKbeu)-@2zYhlw93~;FgAZo6WJ1rUO&pJ5e10f<4m(9K;z~rfQ+M)dJ6up~VZQeazP^&L__@uM zcRS1RsAqf)BFdF1%}@OWmKaq=+ozs-Bg>Fbr*awYJ_H9tKNVv@Eh@w}krHw>59&t$ zbugXYN3&}LsG`OHa029RNa$c}AV8hRvO5KVqQSJbfEw3%dMpfIB?;ohj_Yaxj1V{* zoX8#>1d8Mbg#+z-GJ8+}RP;r1h&)86%H`lxKapU=uva%!$9$hCBV3N7aK&(MrV%k8 zw2c$~LedZ?{JB)o%i#|(;ZsG66b`)hAMid3JqLt1;lqz&M+PGJ_@JfTS)3L8CFG_C zU)i`(EXN6dEomndiW7bjDMVKepW3VL^Tdac|E`Rf&)vpLqFz1o7Xp-zK-v7%7kN}CPW5q-B_?r( zSICay?JsAi@RUXEQu&MtzGgh;O55^$QSEk-JhF_vYG@=7SJO9vH4@lqil?3~2rzZa z*Qpm=&CX*UjaUW&Z6jq6&@z%|xcrHH##@=4SRX6Yof67u$xo&EdM1WpFSkXcj1fCryG5d}EWgFYw!*51y=#b0wLh%>!o8vBL7 ziJYMAjD|2B6EX4H?^fWiefJJ*6KRa+p4LNGJ<#55eiA9xByRJgNItWr&&?>CIQU)O zn5ab3I{}+iot~3uD+_GnKuH$AaG)fYEpebc)Wr8j=ujBc)HjtmM0+|En(Kl9*}R3f z78Dnx`)05ljaQC@PG#jt@Wa0%+c_%3SBVeG@HyEqE9hVXD$Hq`G&#nBnZRv+cUt#fz(*Ou!i#}8&2Bb zJbW*2;q!H2_mcABOX|i%{)^97i%lk#B2{aS2R;Iw6EVG<$_$gYH!?%=2qGvw~<~T1ebckN5$q7rQd+ zv2~<1iu4^7X?r-4#5MJBA{BM=B?XZaj-Pa{l6|P^T<8-^=PKiZ&J}4P%w(9!&~u%A z9ZgmebU8#Pp&7Ajp47$HEs;2lfX7tc2pn~JFmvgs#V_fo%a`b=pUClj7WOHb<+tX6 z`QGlnYW#(U&ZfM6H{X1gEtsKRKT{V3WXSs;(9CCDHDc-ZZ!0g|etY;AvLFdzDChdQ ztFJHFXu=ow^ogs*S9|)hjS)QScHd~5Um&DDJ6%&KTywjxx51O|!le>gdrTS_;6x3= zg|(ZHmFHXgv`-?CX}tT4+e-7_(lQ&enHKPf$I3(S)7)7j2!8d4ai#g7=FW7sG#q@p z+L`r(;M0E|0l|K6Uvu`M1>Sg!5BL`>j6(SSAr!DlZ{H9Cn8r2QUo6nb_8PmhZU7#G zq-Fw&>hEFNY;1c^0#Rtd7G#ffO}s2%(VVY{Uue!(q&bKElvT6xeDe65!Q9o)w=gsS z0aJ|Tws!3*@OJ%u_p!=RfRY+zj4lW;ax0(ifDF`~yi!Z&$E=Y?ERC{Wl-yHoK`Ovd z)SfET!k%g?)`8UGb}Cfhc51CCnb8ZwaBfS^cU@80bz&j;M?8^%VHdJISg#W-&=AVG~(=BtPLBH0LncI!~zQZ|Ve zh^4@8m$RAiJl{GDCYC%>DZIMzEFU!7CqF$NQ4po(srv+!S_53V$Je0pL{WgkmX^sM zAi_s`oK1qLp{a&|QU-B%_r$%v`UZQSaDpL|Zm4oG)`ony&$*JVChc(Anvm;j5wRZl zdGM($JKIRAjr%(eGuCPW&7Z(xT6IX_D|E=V8YPdayMgytZgWMF2D}TI#wZh&hWk6n-ic#(_~x4)1gM(wfI;{9~h8*r*1_P_o`*zESKA(gvp#ylD<^OBOpToKoIk za#c#f7mMH|gs;~?R*`j?C1mx4*1w4LYL_LCzd06CF5^moeGEEjx_=D&i?CzShB^#* zPziSG8CQFDnSf(>teI5r_*_s-!pGZyNt>=$=pG{&#O_Ws=_N4plz%yM5{VlN_;2M7 za}sM+0R7=iQd|7OnWT1w5(6Xe1mEJ&38c|P-(#$eXiuk&7P=rn_EwTP_(9d8zD{_Y zUL%&%M)wLB%NSkwsmYM02}3xya|P-Cvnm9+e@xTNsktLYZR0%5uRH}Qn$Cg(oe3O- zq?ic`7fgXrh>fSk!ZGWN@U#jlBm5kJ(TSR8D(E2&dB4=DFv1@ekUAlpl`$rJ*aHJ| z@6KvAu&Z$4~D*3cH28N-}IG8~y1cRTJ$cQkKt&pr1HbF^?|4{N~#N~*%s zr}-iyfIr@Ph|?EM7!5eTEyG~N@D^bXo!_LR!;?3=GSUEw?nN-vz#eZE%6(u*3|jC7xy}xW#5M!tOqqL5Vh6z!4)2cQ z7Y^@^(IpP=Gx@%`p~L&fnZEnkU?Lsv+VtP!y_@gG)M>8y6->p8|*NHtxOT`e*pY3Z6BXZMh zUn@47RN~XPGo$sejaV36n!BHhLyjw?K+M7s03kyT3W_1e76OVP$42N#99;TxP0nhZP$W8 z;JPd3Ip-q=yNwj<)M8Ik3i5W105I;H?razYFJ?=dCZtl^l+dEe{=~xL)1CJlYy?4x z;i_(^99C{6zPLtvHy`zZubhow2^e~=Xn{9i>dkOoHP}>w5m<-pPrkDyn?Xti>+n26 zkB?x3CItGck6@c(Q5fh#pDh$xXO`Z#G>HJr@{C3Z37ua0He92bFF7X$QNp!`){Dw> zJ_UM#*}SPf4(e0O?*FKy{VzM?4R(kSMkS%xCrBwO=@3u(+}AD$+QN)_t?YNnOnuGF zZU2!O-eZTiS>ZA6e9UC=F?tk<1x}n6wWiD?RN{j-`)cxi*Rrbeua>&w3aiX@PKURW zN^V$HHmoNaHsh`5J5RFK1R6#D*8-=L`A8|6G=TAA3!E-1yvnZMX@NIe$H;h*q8B}io z6@mp+H`rOi0w@Td{;MBF3bFG6im!Rg>9c}E2nR1;v5K+UQc<60l|CtUi$0U3CBmc9 zqVqos(Wl}Q^r?3(Qe*hOB-pj6R1$OrX(~MD%hBcdj(45UvW|o`%o1qL)sh_eVs*}h zS6bm5&j$Ttn||0vrA+FsbUw{SlQtHAt>}!1mCF!lYq4_$&>I0{5+vfz*wS#v-r2zf z_5?VYI23pV(n)y9owzsN<7Zz_w$#EC!J!VU(k6HXWc3HmB6C%&^$LhqT0N;W+7Msf zCG%|Y1SIF{oP@Q44-6L9iC-8juHz}Ye09TS&^uI=8T2o9`KE>48G7*+mp+Gf`|{Zz zL^-&~+N%o!66D<~rHdasr?JZ#F^Lt=$C6mFT$~<27)e1brrH0F9)GlkgUIYTS{ih%Bb!5Xxsc2V2w~LTgM%uyhKlbCMxARdK zeX)#`^Hn`vt$Fv=&Ii~t1fS^9nv-=wpht5xjWT@nY`7HEe~q(%&DD^Y<}x_%am43f z%SpLbJCBo5cp<697?w-5zZ55rcii~KnZt?*5cbVRiTXEEu2FAPsE?6aM7@!sew>ww zw-^jaf>-3?NrgrWwL0`pB_N0!t^!zNmG>#tF9z*3eV*62H(>^y0r=@YSuLpXlxt z$M^ryeozUf@Ztt%AC^l*6sAz+9$labgNq%x5qf`;u9Qj6C*iIb+)6Ya=cg|F#sc)Y?j}S~&!j+$D=;cO9}*2v z&wq+vsOLZbZ+gD5&Dob-BZN`Umvn(940_(T-8qNFR|Z;Yd5&JLQf0X@&fwq6zQMa_`rm)oE6*vjkI0otou&}tqxh7*Wz(h zG%3*X0@m({V+BK~;&I{^s(4&wzW0K!&VOsmv%C3+uzVsIsyI&3W6j;#Dl6n+9dI;XoAW-Cw`$a&q-yH8!<2~@YqGwYZgw}=ZrS_pc!Y zYF#@#wf_dx_>2Qie+b!vgU)&p^#E6oKb>i;0ilTd$nbVpF~v-P5;tL^g9(m4?5r6V zN|2AP;GYKH*&93^!E-S$4AWqrKbPoOesAQXz{IUK*-Tnst*#X zPbjL42+8k@@u!6oabAqSYbebsvHqr|UlQcpSKva)Y%95$gxtb#S1lcgra9h7eQK>`f{fJBS9>JI&x<<|3P+xfa91+ znR-`w-v6w#u30{jSL*I>$XKEtGnmvao2aw(W&->HNo|V-uQ=zdOGHxdQQY8rlKk!< zn#If3c+IDRzJh$Jh1bV6e@~W0IKhRNZlkU`W+bZpp9Hz^(f|tS#RQpPXnfHbVX&SA zAxht^!JXxK-ZGM?vG7sST2^YP4$mt(+DRP;ngbfX(c?g#Z{*kULg$#->sJ4XRy}^LW`x;mX@+u zF@dKAn$+>nVIPq;7ADj(^8>{Mw6!pykOr98Ti2gxupI;;_CUo$t;+L8_5DqZ-+1r( z{^o2SfxsTvO?%*o?15O~Ti%APys_o@D6>UX{ze0TEU`m10(S8A4PY{$w8M3Uf-X{8 zNWWYymMIiE+ibItMjW#bWMNwD0_6fXC-FtW1I7;d;uppa`BiXV zHf;J~SFB7wyxiLVQs@Tlh&KL**>WP5h{?LXt_uS6^Jd>-mST5%e+(b@Xq$M>s3E$~ z=ok@dVKvi=Rj8`%8^c4W!0-@|W0E0^4sr{tV3NUD#8Z8Kajf-8pT8Cya$V%}cd``< zdNjSTgfM{V1-swBnmGtzaq_QVe3_d$_=o$wpwmQ_Nf6?OZf8<}8@e4u0dDAm0L2@+ z<~>#AA+q}jJbIs@RmtS{5d0x_bejk$nX|uA3na_pJA|u1Yvkx z)vYG|DNcj~nzeYGwIXdSOep<2B@;$nUew#~iPt=+df=gW1~4{p*IoWjCiIDgVFmm# zGCYP2CuA+Gs%7iFidA&|PZDqomud%Xtm5)sr4S%K!0%Y@M-J%;#9su-z z(uie-Xj?VuGY^o8VxMVj!_UN6-l*FFR?l zKgEo%&X)}Kdu*EoV(K|RCX~=~7TuXSh}o*^L4jwccjYDCwCe;tM5|S9HG&uS#=Ev@ zu@tr)Niq71Np<^`=fhuhrAFARm*y|N>Z;AM35@Uhb-d9KN_X`VR-QZOx@txA2D$_0y6UpNR=Rgt=?;^0qX}K`RxVGA zT9w04F3mri2XBN?k-=YewS|CEUEyRijc|gK&C{X)CmZN`J=rX&E+?DU2s~bAnr?;id{z3}bT%pqLH_pn4hM70KvS%_uQ*h3qWpVw@7F zA$&C!rUc@m0=`-Kx}3ys1rInSd?$Y4l<-|riBm$&C;Zbxr-ai_KxXPUA`MOnzv_Yj z*}R#zI3?`6v&BqyP9v6?R`??FUiY@!iTS0K-@J5(Jp?wrd`3SDU~6l>eru3eZmlzOrA7NVA5G=S=a}3Sx5L8rMf= z51aIEw-fd-g6u}vGyB6IB9tcFp=aw1pC=QCBRiAU=-I}Q0`zPEAw3%f6`oD7CSHWH zwHHmOnv)0)%+I|9I50mqo77Gt16aBX zWD`h$BoNYRfrK&;0Gw4_Z&;0VkW5-@hz*3V51kt$=ReIp(_jGWT0skrvgplS0Wo076zaB3+p>^ zO7-NiC1Y<&zomNS3VFZQBHnamQPt zGbWjf30=4oXcMpZa8c8m5q;Z*XyRuUTT2iyraTW0Al~tMkpM8JY>ZPOPk#;m5HV$u zz#_}@r{ZKxd5YA=n6jS~U`zoF8B-{#h$-4yVU=#NYeWq?Q>AUeka8YKU`V-0h-0r( zb&Xfv&Vl8`G0zceA*2vOre9XBiIXAa^P6)wvygb@$=InCJ!7N}jK`@~&4oTWa7%3R zHSyyS-&kv}?U&38(BIp)D4JVss2ny9OWGO)ndNx7==QYFve8ayAdqmF9Q)0iBc+FX=(y)TP_f+P6mEk%KP!vy}?7D%8` zF>(EvFIds$MGz@*{n(2X;QG-m3UK`h`o#4k-sdv`gctYuR1$n~^NBXj+RU30{MnJOceG@o3Kb4*!6hiU{N$@e``B}; zT)zLM+G?ceo=zaEz!9&B{iwIES!pL$is$Q_mqqZ-Zxjt-M@SvC{mut-3vFK{;6-MU zJnqe+R_qkP!9D*I7OmL62Ym6yQC)C7kNF`Z&~;^QZha+su-uV2!tdW!)Y6MJuKIis z;ge|FL2n?n2snh0p@VHwkz&QCz0UvI4hcX|i+|iF6mCP}CuaXD;p-|p+M`GZF(F3J z>lM{D5t@bpDo6an0F{$?#QyK3xiCsqVQxA8o!*6~xcML06)aAZN_0hmoeHb+2XGc3$MW74a&VI0kd-?66cs7ib zgP}U}f|(IbqWnl&IW$oQsUC?cNWn%%*dEx(Sj@Bb6eVXZ0b(;NYXw1=Y8MI*?2JPN z2ilYEgrzw45=9D3y%^kD@l#_WTSl!BHRSLie#zlOT8A7V3V5Dx_%**f&$MT-NHMdM zy7!Pg{G9k)Kr3EwA*yNAa~_hcD?$gD?oGt=T8~}QHyDN&{f2b&d z4J0VY0iY%ad=>2O!>}<}O|X!|WP`&z0#Fc!#W5jZ{eB*8)s z8w?Ix2|#fGC~%14g`X5PXS)dsasa5w0rxEnKZPxx;{*#id}44oLjZ~cK(P&H%A17p z7mgM+V!shQWCJKB8&uW0W5A|fvc=piSsEjb06c8qCX9$Lp&j_`iBy7t44|sX0B=6j zPr#iKJqQ-IqrhO$hX9bl!NnufB>9ua(i2%ZfhQd)nye}6D1ONoMU&WUf`rs(8r1J1 z08@N}`ubZ~3$~KLQFy3m3XkOXoGKc?UL;sZexpHt8v&T)Q?-pk{BG=h0z}$S%cPwZ z=@`qtA_z$Kq(Sya0#Ia6O09$+9NRL4ARuX|DM)MZNvHSW5FdV>&TsclU zNBi)~pCBSE4xB!A+?c7OS5&UyTaMRm$VfE~>$_xqn;HY+__mNP!NsDUoS?R83ctjk zi&j*Iiy5o1`om= z{l4faRzXT{VB21>W|RZo54`$Z(K(G(6Bd}jj~O{9o!vr8!DUMH>ZWp^$OnDV1vp!L zuOIYR{_;$3`KVN5oAgAl~2 ze2pl;*~4iVlPilS@bX`ZD%i&aZ{gdH68#Xg=xs+6c8CDrR=rfdAU`xt{|*e*+MdMD z5-57fx7161m0rS#m#j*&Cp1v98<#T!v$9Zoj2E-r4ZEaz6;yNwvGzCR5f3{G^$(iz zg&EFt{>Se{{aJD|<;p00d^0J0JOL=-+c%TKcO+0;o#m`NWS3`h^={4Ny38VaeI>fF zdXMMJHG30AIicjVKuE4N0peMFnO+v*5q{BMMdR62A_WRR$q;@L0Vv^bH-x{FKvDRG zO8EP)DZFvr%p@s1<%Gi10u+9Nukg+PDeB3#5h+mk*9_rbBLG|=UHrW~ML*b#m*v@; zvcm+5!tYnYpOC`WC7Or$#VhLN#S`sE$u-eyvH_GEHh>mj177iMz>B(lIIGj#;ySgP zOV_DQ0IC6T&1C};2oxL8gloa3@3d-;zH^Nh7@udU%}YbUe<(X_0WH85=z@dAfn0(1 z!E6AL1#QsBXhI(Xz$TP`thLlDoAZM%dor6$pxA^7qzSXI32h@+)~cn|68|cRIrv4l zJ(1YL_~LXQ*%HbXTS5!4CB6N$IONbeCH6ZkLD_U3FC0ig&`2SuQDPy|asH2#K$6dz;GRdNnXkip#KHZi>hC!pQ94Dch>*h(!Kb6Zc#d3FE!@QNCq_7syXIoTG|C=$YQq?A)d&2GNslSH{ZP@@lNDI6o8Cr+`~j#ce6 zC=4XR6i%^sr}key)?Si86rr>%%XO~15yCpSaS(m>sks~RMmw)u5RZ% zvuj!GY?S{=?EIa7I~$na(1uL0cVl0X0yH$yg3__a(CyLCk%gi?Xy|U@7aF=7k7y6w z!pF`Zr`wnL+WGkmdy9aAP6V2!?k{NigAh3H$N&4jJ#)*P9d>w2=WL*L}S21@tsmrevH>b9+hRL@O0%-CVsmb5`KbgE(ius&>lN->d4U@0(Z*l|c zK_U*Cd>JV~lM`hqrSq^NF!_0bizdGyexb=P_&50k9%{EQ^0oUhyFDo&ur-+c;4wIu z7Yx759wkg3AD{{pcaO;*-0*cn{U58rFFEY7VDK2Hy-8LRsDBlMmq<-&ii_3YDFlQD zZ!QX`!Kb?HEo~iJ8+}~-z+t>2Kj4D&MFFXg_U_!8ba6NQVHw78#Z3BlA1Pv9Yrp;5 zfVKyy=-D}e-$=wVA_oJfWJ{y|mXN2-2uU|-6o^`-;+bG_}2 z-C`hEY=hvxVsXHXv17-qxXZ|fZv>K8@r!;^>B|&jt6$U*5cll`F=pZTLzy14#0o`Nx#moNv!ob=>L_xoJkrZGMAc{~H z;FJ475C}~*oghs7LMI4Iy@C@=>Th3Vb%M@(bC|u64F1i41m6{APh~9xF=K2+CrDNW zN(4_N7$SpzT&gAb&lzZM2C-nnKzq}yT%d3jn-7r+O;CKSHn$TH+Pu3cP&OZ88;}au zWWB4$@MV7&wa|yBN>h&{^@ORlp?t$IGXpp=)h7g4R%|1rV1xL8#ecuhcYn_9aC{r#f-5x zc_yRbqhO%=2dG`eIm@LFe64s|oij8|br^KcI-)>1XB>wNSFSBK&4@#>X?zC#GYNR0s9U~=(;p-arX8k~ zI4MQ5uMh>)?2uK=usv;op}98^jlc2qDs- z{WDn1zB{t%Tay$Euy;sZh_>p41eHq-8mzJkK}!Ft*4cxJ!a z_4tc3?e(?(eD_RC7W;GT9#UXY^mJKe5y3!36B?v7|D6qrUN3M_(Hq1sRP=^x zE4oh3kS096PeBu2eaRliJKYAP{HmOG^ZP#?;ytcHA!*fSpz!vh_a=dY7Y>EP&wH8FSC zAGYaP={#b5={WKK>8)j>cw*0fA*=qW8^D*`ZGX=;5ZXK?yQ(D{Oxi3af_ndSwNBMW z^JUBIZ7oN5B5v-I#xrNy1NhGIM;T8nI}*e*3adi+#gWn1^U4iKey6Pr1X_|)mB`?S zGJ<$xb*3nw2YpIbEwy*E^@IwA|FyN@_qMAV#qJ@s@b#a9CHCu;MO!2o=snZTrTY+uYO17kt_!g#X#4O5Ce&Pgu3w9>Ry5x7Fhg6FV*-JzYROgFS zo!hRc&gz};RlbzIN5XDclW^GW#BzHI+ejqA-M9T#JwAxT7s67~3mMUOk4?H9s3t+am-P$$D2m>K*sdmgGSC_{On9+|aC?L6co{tEsSm+)*hVA}>T1wZ6i~OTmBF>8_Cnhw)A0%)wjXAlNWB|X znBGyc&@Wk3cCiceuJ<3e)#tkgbZsK~9^;)?+wX^WBR*UWW9=9s1gfu`s;^3_j~;K} zKdiC$yH1tC+4cXfwYOr!2vgM90;|Rb%jReU_ zUdagHOp6OfedT*Y=bJ1#-?6tv2=AI&mB2rL*1pfyA~S%OerC&JDVeH~ zsP|@>q*rHW`s>wG3c4DD%iqu18}h^f2ZL8tI_vOE$LQ;o+m;9dMI6eHVerFS>pesP z)p}f}?Bp>}1+~7benf44d2)3H8$>GKu>1CxeDs)1Z}-LESg_fC5`ea0S{PDh6Isw{ z*I3mz%TV78P~V2|sA>9(MmuL%+F9^Nb_l=i75gRIVL(0btu2imA=I&@2Wd;ckS+BJ zVjF7g!>%`o?c*=MX79xI5vJIri`FLn+i23eAZJ-c*L42j>-I@3AWL~t)(Yr?p`<`` zK@Ak}798E6h&S8;wJh{b{auSTKYuDEq~@<}_J*3)nTPMNcVu0OIH=4{S)}W^vast# z`f;1Zg}kubp2Eu~9*yBkcfyH?|Nl?YiD031;3Ic||8^jPpn`{r0@~$rWTR|ZS+dKm z-0z&lrjlwH=U%+8ET7#>N>RyErIIQ34J&!Fq2#PA@2*+;{ge>?&~`{Ge7MLS#P5B@ zp3XBXjs)}j_rTn3@OFDUzU;wfS42tHp5ZU;v1hZ5q!DPEr>JROmZq`Hb&?iCRD?NV zxL_86rE5H=mf1QoM66s6UFhxB({TY7%QN3?nyR;kWz9Z&&nQ2u zr^;68GG%e^t<{Zq`G4$Xa)C1U@4?a5&4+x>zRIb~@4Ga35X;F{eOauaOEOh~x!hd5 z{)Sd&<9Wsb``xUkA}rtGa%9VwdIl2!XwbNJ0if{iP$xE?K=I`g0N{Ho-LvIe&3*)~ z?3V3$v7`fk=CD1+T;daCxx`NeHs*WJk@zNwI6G0fRB*)w{wjXcNA|+lZlZuXM;js+ zyfpFvTT2RXh#Zl6y(>c0Sg`Sa{G)^}q(I~O&YF-BY%3|n6zFDAfNT41e8Cs?_I&Xt z_P5wxf`;cX-^rFoLEj+&b@us0wmkd%1%cu|-SKP^LC?S+Vgq-Tz>??fcSvxS9JmmkA57I(#FiQ5Ms)jpMeYg51Da)+?yFUcW8Z-gP9ihHZh5k*mNc z65f`G7Y|rD&TKF7y5u+$8~76s513MJc)-+B5Y4BYu+Lz$R2(qXcZ2hY9q7&3Vq>6C zdx7uz+&+wz5%JJAC89vtriP6p7}$7`Y+<8FDToox!&e1Hc$K21st<>@wB6b^fG3T$ zC9yfA5}N83s*6SN2be01mtw<^iu4dOl8BB8moD{++AgHVG~o{M3-eVw+FoIo!}%ZkeZDa)=4<;z z_9>F0IILQ402&#f0ckyFE0_j?2>v3BYH8qdIKfCaX%IC!@x)R zVc@eAMDrJawKrq56i?PaEchBb+;`{5U~p#+-~G9LDEpZRiAuOA3cQq%c_3&e3vLI+ zmV`44A%!Xg29Q!z%ZP(P?QF5_;M~D8EQ7@pFowXGc4Rn6fj`8FLNC44;>)&$rp7D9 z7}sMFPB2i_I~-XQ=|S0XOpDV}sj1wp`Jb z^T8$U!5Jp_hxMyP~y zMoBt~FIic84Eus$VR$}nkUmEMf;7+EI>STzPXa{RP>axxO8Z@hLGs7OA|u9T_&hsN-m0&Ugv395$-K zef(qUr;X*z7wrq?7g$Im(&N94slt?AZ^qX~xC(~2UL zOrH`hz)mq&AY-SPCw^h4mYAPg$g+j;hC2m9?BYi?-uGMp!@wFmRF z;f~epA<_=)8!J?S*^b5k6L!zmcPwX{6m{7{o->?iI{|o{NPCWFHgx2(4+sz)6lw|g z(Vpg+k&bcfKLn1hdCH*r69FiyrzF){9l#bwv_`5>3!U=m_VVg^KdPvFs=dc4OH6+x zc<7JXQhvITV+dJ$wG^z-6Ek>eV@Idhr-WeC5tkE5@x;L8b@nROfryBHxXfBFhhU%| z5<;f^gwW`RB?1}!u($Yye%QOimHlv8d+CSav5s}Vv(?{X9jn78DE=_I?Ap?@FhrH$ zbuIdY4m{#XSI?3$3SdgMc{z*tq=iEL`Zk6gt)L1Sdh*Bb(LQ*Phq2=<}HjW>y*v99L z`&zK|+>Y{|XG&a16{n;!mbOHyr+Ct&{760~!;#GmyggD9{I{YnV_t?mw z;MG9BvpUcbMS74KZbbjbK=_gn9|Pf5@e2dtR(Qb~24vs2*b>6}*5>EhIv(*2fgk2L zZe#ld3BxgQ2;Hj+OwNm6z41WTfLFD5EQs<$z4CZR(XLqSZJyM@F+}@`&*|W3Rp%_o zfv4vAshNR^e18W=n}Fj`#&_g8qP4f=sYSIR_KOmmi`8=8|4QaqBklJiVSqQfj9l3< zn6Iv?p3Q8zN{6@{S~|hmMGwp6`zJV4SUm#OCOXH8>yZi^#5F>?Y}vr>WwUA_ljkh_qD zkV3WUD<-Ab%&Bt&vu$H?19;Y~>NGZvfN?QAinOyjSLVHhRXuxy{NTL6R`IGqMv{{7 zfl>MXnbnDm6v_1CiJ8@XY_-Ky!G8AJk4p8}ip;EBALMXExxUm2d?E9wIwKlbQ-;urSleYscY(OyUM z!g-3_(b%_d-))D!{WVbw_U+TEz?5O}s35J`b)BOwPw$X-!P1UdARrQ#R*$&jo6ebO1w+inrtoc`&qrb+UCJI7td0Z8kk}Q7d`n?6FVJm7<`oT(=?NF4} zcf0gA@?^f@Rrp`z8!q>ERIyJ8s<1YEN2X#Je24Ae`DTeejwG(R1cbsNj`r*)Qc+yI zs2|Rg9~bYsEwC30=mh#x^Rdpn`m<wK` zehpa$kcw26F{Io_mgxjYWNF715P%Y6^TxogR}e#oRzTN@<(oelm?o9}2%&+*LFw4% zpCJGgNu*g!Q@u)nW-Uy=oVwl7k-bBp*l`cbj%&I}`McG(v(E_rw z5}?w@F=^002oRYc>qPv7<^TWsNf6&X4g4X2R1{>jAbxrVl(!+}N*1G1CjvxSg7S%< zxCm4k=xTmqkR47cQduUEavxb{6CjbL9lMJFlo(g@6KDnc$;Ch6jUDVo8wd@Q=oqX5 zKs%dAIZA|XVpwWB0ir};Ddi>~5Galt0L5{`^plxWU{LxG!9qVdCCp;@$xj5R^l?fW zv{q;33CR6aKJkxzO5Z`y6mP4Q(kvw&~5h$v$ zEFr+fp^d z2+t5IC>a<5-(p56eCQx6Q?jlgLF38l5tt0>?&efa;#PK+fZrWiJA%pY*fZns6 z08lL41Td?8K%izdA%;(GR7j%IqJu6*5H4tMM;VvBSfHD7ns@-9oM}JzRe-4hA55$6_?$1Q$FPlrt;oyAt9nLyj?{w{c-BjG(rY?D z09S&tw@FpB`%ZAADb516lK{{|J|+bw=8iDu5HCz2b$!L%_`1uRJp5rtx9Hat1#|gP z3AkLF)SyXCy;Y6~js2xi#5$tH_B+7iW=$K(;D={^kMe{Sr~;JdcQC!HM~oMyMV?SI zv3oUnYPNh+?bcXZEB%ZDe)1;gY?eU*-t9HM3C8al03`5RbTAeW_%^1zaw1;k1|7lY|(YDr?O*UaZd4Hi&j)@r2jI z>hXdOLG`28C^RoW+3>Gvcjt5{AOXKcT;KY;en%2&XrNvwZ>RW<~yp52Lc-9dd<)t7a zlUE2aX=3qhETB+XACrBWD8OdJD1(Y-d6P)pFyqQo#rg9x}=Z!!VvB99SsN5e_EY@El=( z%55}YiF1UM8=fQd$8B1UGe!rl756wh*={R@V~qFOlG$7M~KK%i}x7UP&Uu`vf+63sBb&?p&gELFFu%#{l^{@ zZY@o<7C??}gC8=|**;R;5pUJi=$D#TEF@>FA4%^r8v}P3Zg<3cDGghL4tWQV6xXaQvhw;D<+aR*7dj=G+<2IY z?_&my@ZzT2k{S+5Q+?6UEh!qh*vr1j7vFIhZt z@mr4X*>{8(dgRyABflo)=#iJCNB%>~(IfvNYSrs>zothvmm}cU(jzGwk4NfB-DQMq z+Ff-Q^vMLEZ+^N|Zv$BVA|!E2%FJ-euR&hnlttYQr*v4Ebf-+pe3@9h(&S-yrB92{ zD<=X?;gyrD%*In@Gkuv^-O|I&a7)TgxuvBvm01dmXh}=aElUS%4B&r!;K*d02#UT* zaXr3C3&A&ghFq(bbWK_fUGqy&p7?Hn87!ylcl^fo6Jj`izu#Ss-|rIuj^AH)m*e+; z2mqb)6xHr|_`_egBoQV>I;UVH#&607BtnEZ!N=gLr3s!1Cvve!1cJ4P4PP zTlX+LGtJ5%g)(UG%fRB9sx=rdeOiN_Spqc003Lf(4dBI;&k$ceR;TnZGMtifQch_p zP4!YQqG7D0Xy}ylyWEz?<`7+=KTsl}oQxO*$m4hYtB(caKBjTTys>cl|soCR8^VN zCkPa(UV9TyUvJQTjnqWC08m-VcL@|l!q4ZKb&n9JSyyFFza&s4)73JkCf(miO_Q#Y zDZs9b>MK)y0yXPm<}{H2lsH$*oPszia|-H4JLC~ENFM;0Idu{MiiMd|v)TXxHLI!2 z=@w`l-w~*i=qiq5N_2@-G|4KzVGcij zV^(cUfM!*6o0bHigt?mAfEv(k4)XDa0SXBXBn}2ZpXp5is3hF0nJx7@oB+*Q%4H@I zD7p;L^tcQh#gFt8>MHy59hV&Q*}bH$SDUV$XJ6zXd3L|#i}3iG-UUL4d5)i)n2lRm z=8TIl4$N)@8RS*4JYk1DcBRvq7u#R-dzynUAb~*S;PD;wtweg91K>O8Z<11IQ;ELS zA@lGQ9fqI(K^}fHVMX%rM@TWsg?acBq*Tad12mb3r}#LEi#)t`ksqw>Y|DNk)l?e( zyn{?4|8~eUywId24gZlSqG@M|Kg`8|X_s%W=UCgpcifOn&fr2O`) zGmwpzS^2Y+m~i%Qq1Bj`haaAqn57*?R{kr=Cd$8VNm|~=D#R~HTE3o3aYQ|1T0WYT zVs`{I{=xa`g^c103F8$XBQa0-n2Grggd8LxWMW=#>k{1*4o1EnR##@`GZdbe!&ox& zilvd6-|R3l^Me!tl9?anl9~B21d5aWa+DxXcG)WUL#%B{ppaR4#m-2z0~eWO8@=5IkJb zzW}e+iq9CnKmfR+-{X=i`u7L`Tm3d|^&vm4#*DmbwUNUXjKqqbGEyu0?_6?4f0l5= zeABm-+pmBnR`gWIn34C#4OjHQ6<73OZevAX&#fF588Eks_FCgrIWQ~`^0=P&M;+Jm zK5fDEd=^j?nWnZ@RvDC4XDchYr1!(iSkhBwYDsS?P4&{RTGCTASe7^EKP+)JXCsM( zqM!Oy#)Lert77T2Yt@zOdRiIR^&8F7iK%#Q44a5I~rN#2i(#fDI1SFYOv?l*4dODB)rgB_EBEP zeJm(^vA(jP$%M32ZQBRB4 zHw1tujho!lw_Aw~qK3Xr0ogGZPuVGFw3McL8BsYSMMH;DTSPsGpx}|cLx_$90dz>8 z`ZzZoaE+?cA8B3m$NNEnBJue&_~ncq9XRHho`AS3F7|j33k&sSE}3V#hw#8KyGRt6 zVOHgt))G8uhLLA_gp{H-FwaCwEqSJwdK!7Amq|@@`pwjSJKztIXCiUS%rhwqHj{ZK z!p+Pxks_IA;yq>S7xk1`HfTM*;7$f0l4Byv2hXSrV-Dt+eid?Kj_Eh?3v*1r^}Irk z>7j1UH9k2eKBv3$zpP%d@?ShF&QyWP^u|+6Efi6eV$zd~reHFGLf!vEl4*iLcLAx1bOE3i=1U1w$z;}D zO`v97l`Ggtph~8z z40Y+fh);%V}e^0G=0z{#N;YSulay&bpMxdB404U}QOy|KAQxU;J z=PB$(oTo2=dXxeQ?;ra++p`J+MD|cs`OXXiRf@S{8`eqxgXGdJgcC_FttQ1dF~Q{06Qop#Wdk&sT%!1%FnY~S}aIoeGsjRlUb#J-l|JrR!P+}vPz_$nN>PJ$vHq{ zaipqHuHLw}%qle|0OcYXq|`*mW1bXUh)&vQq?IE1>FLgH(e)JtbLLP9;>rZefvL_I z$aE|B7Dq@(m#ZpC!?hOC0as{dj77^ynIC@lw#FUPsPzl zDBV)id!Dno&Js(N@-RN&Nzc}$GM|)2pg5^dDJ8L?J^Uf^NhCJNe3Ig3B#D5F%qLNH zLKO{sP-9DFJ}KjN$R~N}#aP8W3K2=5!xj7{ z%56JfiF^{(G3Jx}aTEC@Z6+_j$C+>Y7*vi2JU_M4|A^8*?Mok5@&3qTLdmBwVim9b z!OQQ1Y{XwyUcXabwaa|lf{S=R%#1}m<)#+#meN!&4XZ^wMN=82mSxK0ML+eaj0<>L zSB25sYt@x2cv=}(@Y73q#7FLKTB$tdIbxafOE!YgLcbhRCjD{<0ia(_FOz71z z-`~=Q`28aIL!_2Sgfvr2%7jL0iO684mPnCIEsg9WTVK-0(|SxTk+F!RmdN74GycNx zgQ=zMLT*eg?GV2(wX~xTrj|nK7ms+-9j@-YpnG^os-3wX$#=9!N>;YJJ(wS69H z`y@4T$ITvb`9hK{rSdEO?c>fq^2&{2Io_4{tQ5~KIM)~3~ zeIq<>7LOO6gU3ta@z5@KtPzh@yW#Puc+`Ch9u39gW$}1jJQ}|Pj|B1fVGlfh5|1pC-8VsJYGKvj~z$n!!zv!JhH^2<>%s0 z@p%3Vcx(}m(y!n#Ks?_04?Nx%kG9{!BUe0LJOhuH#pCwx;c<_6#Qp$}WbrtA9v&CP zW6ni*{7XC@`57MT#N)C5+G@?Od>WpWtNw<^qvFw}7C1$B@wn9nkNM(}90-q=;?X7u z9@*m2rVc#XiU$jUN4R+8gu)|NJO+iqW4L$})rCh-@i-O%kCWoDJ{lfRipQ(-8^iNW z@%Xq2JdTS;t2lV1i^q%c@YpIIJw$(UiN`ka*exD8E#Z+X9&d}sUh(LY0*`^>aaug^ zQ})%Z;MYv?_(weOlh;dI!!P*m@%&nqajEbVzkd6b_=TSxEl-1A`02{C;un5`u%r$A z!tdj45x?*YZmHSu3om-#FYYSEeEGGDI5dODa{`Oum&l*YtXwO5^*7Lwhp#|_6*Ktm z6%na6pvV&*o7SFhf6n|g&aepVQ&b|z+Zu`RzD@o&47TM3+C-nOL_?9=ErHRRxY_%2#OrBUZ zc16!bAFZsuEG>{}t=>jfx4mBrCRQ^Oo7j$mmo0oIw+-J@llvv>X~Bo1FbB6gheUk^ zvBihUAG~0Pvqi8NR$(xBf-j%1JNPR*oIThi51FxicYv$Mst+SVN+zg6@k`8M7SFi; zi+r@t;-h%t+gV|}VAHW^etf6%3%@LG;NsP+{mwCb#H|^DHPySF`5L=NwLmnhB=&Am zK=YcUjXddX=i8xNRe_JQzfqFJBi@16kJqVUu0^>@bly+qh6q02(%6fIaecXkMHDYz zH9f`ldO!FSk29qudy`NWs>ieJdJTMh`cn4}Jh67$>-j7kD&l{$%eQ>w z91RY=;SeNj@YUFZEg~cI`u)YXeX{tp51sd4$G3YxrWLkYz;5{N;4}t5j3^E4z(Nh0 zivsEdm-@*MX8j2^si^6a&RZOG+WE<6>j(41gU-P$mrwu`_2NHF8hKr}6M$SAToHZ9 z*-ihmpZqe<@4y?r%ve)>*cq(Z%0cL*D`%v#QG_MxXoOWqlTk<6dei+E3oueCx51 z@FGY?UKro?p|b%$|BZ8?-*~s_hT`2Up1IEz$m^YPo?>&n)z+HtdLT5femGe&As zuO{Lr@wQU%K#&G!_+vSAoIQH|fjsFK=Rnqw0I<7kE~%ZVh4aEcot-$2Vex<&=4z{b z!!zStV;U$SYs(Wn!2|i}U!8?mwT1aTFC`I?bX#l43Ywr5p z*-B#rt=P+2=^=XGfiiL0mq4@raNed*9mvbxb|OcDXCfem-BI*Jw-TSbHabD7eW+d>?=Js zkY{!75zosnf?hwn?7YNkNJR`|^$us(=F6CCk+yr~a#t~Xn;?CdY&|{SYnrl!) zrF?@au;A0aAJ@i<7mgf0s4ok$S$x^J_7OVBdT4M_VSOK@b%-Qxc;yF=r-o>c@)v9_ zSFFM_zT`r*B<7(}JSD)jlxc&M`w5pN&SGpll6o-V`qi1wGyB_WLk?Zark6!%y=u19 zb`@wW*_&7oUT$Z=LApge0is*v4U%q=PXHdb&^rzi)6*t=ZLljvy1RXlw{z$@K-pgE z(BpxS@C?F1dWLt&mTz5A{NU!=NtWUtUCsH$muI$Sl|&Hqn$nbjkZ4L(bqDxVYRae? zi~vRNO@aL9 z?P~gkyPnnqPCz+7-7GGdeL?Cen;j=@($5fcRm`5zf_ScRarGy>cSBcI=qHL6tVD%1 zGWX7E%`U5ATrl$Lwj-DhN}WGxR$K2%xQIGAX;v}|AFSM2ETXhecxjX?)erjS2gfF} zWDB|tWZ_v;W_4ghD7olTMlqy6OytA$*)D32CgGg-2K(6qpz6 zyZHK;FJ1gn$Omuc_}nwj z>Fg`gB(OwlUOGLjQ!iC$O0xL*8=5hWUA6gGIREhZS$)}0ia1W*qE4y;lUwDFgXJeX zs#9EVu;3xkKw}O9YB#2E0Yl^zuGSEqRZtYg3(nqLkC$wkmB$kO;>RldidWsGtRulH z%W(D6a})yHmmLi~vr`ExC0L4g@ep}ZZUliM4FKS!*^>!iOO9)j2In^0xQcZU7U!G) z46iqg-ARxX?S%&I2MH8u0|04nAONJj(3^Hu*PF}O8w5$we$}A8mq3v=0Pqms2L(4L zvrh;V8NBLYaOhC4Xg*@^_~GmVK|%%#-szYI3u!z-c!>a!{#iqIHdL7sNuTwQMk5}6 zV^$B=j36o56NgIL*#wHT0f4e6Z-WS1K%jzw4p4Cb5w1r919ak>M>rcr`gb@rga2i) zF@qzB%7D^7@h=vS%P|qB=^I5UMkVOgxc@tKYtamSFSJFxUGzSw1T7t{ze^ga z9~p|LLA0t>g{~a^t)V!jVmnA3@DLYYa7S6727VwS`o^I$qCY*9FVE{y$cV7Qh{lZ) z#40rEV6+Vz1`=bmtt)Z#ZpqSU%TIr0AJ172*NeU}c2$w0GOuR%`NLRL&_c={XU(KRfV15H^P(VF$fsm^j+qmEB7K$ftBx?KEweJRmIih~@Paq*a}><1nLh z5=_}SlzF7w_B$#l`b35utK zYI}q#NFvwv5lAbudNsp1op z>}OGm{k2`quD-5tO^+DP|4Arr${Gv@h;ru~9zHlEQ?EB%1tmRhIA7SOw5<)4&Zn&z zo~N_n{LsWJz%(uJUhM`hNz!JAmVyv7!dsuBhX`l4@RKJ#V?FNj}Mpc z8<7YksEK17i}?Iut`Tx3DDC5+I2#P!p;w_kyI;+;yq-lG{NM}Q^gNUHydeB6JZ2aN zG%7{OJu^HfGX$&>=Z=f`@{z7I+ag%q;kk?@<14N+F+GNhJ()B*BgNImbTJvmeA#g^ zTH?4HFZ{46goQ>W3vAG6UN32J5}&_gWPf%_h=vV4&LbumyLF$dLh(y@@Z!POKWoL^ zx_fV4AHtW7a&0W}M}6Y;Q$M)Cm09!JXjf|+yR78qN$uRpy!xS0%~;?FuO^mgm-&+M zt`uMFCAZgW#v1uzmrrnQ^u_Kl(KU*-_Qn2rqU$MN?9clLm$Q6d>;;ot4qxm6Yo8v+ zN_??jp6u%Ag}wVHcdxk0OQPL0784coiYcyKZ32IEimMr`^d@O+5RQWlA=n^X6;LmP z53O=tk3$M0@H2x()eR-Ahx3T{oTH;@iQ!F^b4LX5%X{;->q|$-JwEs!_W0uX`Y)5S zIcDym1T**dp>#&({w_d=%zdO^n*882SCQ>)AdS1Bd;B(bw`?pgUwkWz6&P30n-t!! zvo5(IXB{H9IHPZJy{+rt8O?|Paf|cBSv`brzS(uyR&S)S#ThYDxo^@@*JwR#B#sgd zo`+8WF0M0u?6@&gr&LU=T2a|#q}=M9alu`mZ=LOOUB^5Y3^_`#1B7mMbzpS}YvE}P zE7L^@)mY$2x!-96ad98-{`Xz`ST|BpL>0bkj_Z2%o>7{vl7(jD)0Vip>9ycb*yZGP z2liro?>sokcgH-}dfP-0;M5Np4SA>et|T^z2!Ki(er>#-N2Gjbb_Cjqh>KE3}pk}z=zjb7Y=>HhxzM(M4jJ>uqMGpX2VBG00#XlDYrGmgr(C`oy_7&T4#_0|;LD`@H^(+$s|gh98m~t0 z>Qk>3-?zO{5_;Ul?Tz9^Eqqt>;1f{^Y_oSQ#SsWM>xp0J^Yunu$>*0p?V9Z4^LaJhpK*=XSc)KEtl^ZuH&dk^f4}Ye z{T-%aS^VIZV-0xunW=&D^hgKALi+vsjDk*)s?g+H*?trz$!eZ_&NWP9y%dI6bGG8^ zyXU9ziWgkPaOrBmZ@C@WNu)&Yt;S7FdDEq>3_GN>G5wWROqr(2F31h^)4suqMI_X0?~S;ci+l7dpt|KwK7& zUQzix-*UWmLq=-x({H$w^@LGsG^j7C$kAY%;0}M{0kXLEqMWWBl2qrzSxyGWIXy)*t@ul^5vKx)Z%KfWte8NYryaq}N zKvHX>fT=)B7JMD-oPRru=A8{qJwpM-_SK`;%!*AWkuBLwZef+TtK95c)S`}o7 zW>HWSU-OCUZ#I}zOpNZ?l)v|>t9ig^DCHHs+%4Ex0!P(UTuIca9#I32xzg$@)i618 z9?W|jbItZ*XqD8!^pVtg-1Qc_k4hr)sxK^aXR`-Msqi-azOnK>28u5D#1oe>4muG& z!{x!mEri7exWiouGTe^#bE-9{t>PLSy>~qUdZ~oJoYW^`Vol*wDQS2swW6 zxmB~ZHnvk^Aw5u}wPar^FfWUCkJZ1pl1k43K>h7whCAKKe>?~7bf*FmcUm*faHn+&EbaQ}mF)Vg zw5uO?GG2DSbDX>*fNB=D{~`qZvzbkVg$ zsTz zl9@JMdA)EGNw({|nSO8^Sa7wEd9PnxTTPBq8tSqj@>3kdz8}ZGgr%#7w#`l;BG@;KhHsoB{oz0P8ctN&}9x2F%kwE4gi7$T-^B!oT`fa%Z)1;krB&z*p;84!?a%EhMGLb+QlF){^T43)j&R?s2v?W|Lj3CkcgQeZGS;alE&JS*d+y*gU}xnt`K&DCaTHBmXAW45kqFlRtcV> zdlQ~=6pEXu)CG!>JzI!~y^NxJMjO z=>Iufya%Iq0HNXdyzg#j(L{Nyc^kjj#O+K_x=%OT;t?6TB>!N z6XeIaI|Z^TA_=w@rdK8)~`0WPuTLQ8iejlJPbrUyUxz8(^5{A5!Y^A*k|lntPO2 z6&R8yu-^zaj>bTgckWy}){2_U5B7Hl^Y-cP)-1TvV{t2)@t^bDn{6MO#CLUagEtZ)qNQN`arth}4v=yy@m$0B-o$rz zcK-n1so&HEhJ@cqZM6C?hSh%|0I+&9zO%@k&gx839_X>U_6r|X;GPgls+ggCXZ~oCJW8wK(;1 z@8&ejIiwEW1RaPGp0E@nJgn@+1pZgT$zv}Y;PPpcZixvYP+TJPI(a#Qmk;CN&y?UT~urK;=1Kl}ns0BSt$ZXEu;pM2F?tc6h zZERiN>IsA4_|6ndbs-#@#jEMKk{%2%*v$8X{_GHUf-m)7hrp?!<$lmN4t1A#ql-LV z$}o2q_BcT|6}x*FXq*Zo!Uj$Kb}`*a*?of$3OdkH1vEO)f|em|Y!|^jH@6IF$$nCB*@Mo*cdh--D*pz6 znSeX+>9p1)iVToaADt{coA8uN%kY57k)eu_Iq}*(#@$_GQB#zn(5JJ;f$PSTQdE7^ z6n=3WOjszoRrM}Y4iCkef5y8LZ7h#aLmro^+yhuQQYv_8dHnB5?l!*I117_At)DM; z_!M_jU+nTJ?tW~XFLvE3_glW$D9J4rY&~y^49HY)(b@)NiCZdL+nz_<jc`B#pHbd5Dsiv1)o6%m*+RT20k zVFuPR)&+no*9Ei^n)t%x>CM=W-jzyp;DOPXqI;sR7iTQpI?H{)yA;+&+GC=b-8`dM z$t~_VI*YIJcpaV>$LzZvQzh4`F$yaCA*SE6tBibUjsnYWm|1m&ZrB9?{?qTHq!tB7 zp+&+`u2lOG9v%e>0Z}0oT`9z;RJ=UyMH+RzDO}ie0QLd=pIsqv70op%%)691+?PW7TOq^P6W6SK@^WUJcV#gW zmHrakg}q8Di&51J4O@S*qD~91QdsFP(ciD)g}=Kyv3;bzn$zvQk{f(dMb`L@`Db&2 z)9D~I-1G(Ilgk#l`+Bj*{4Q==oFlyb%f9(=orb=ZF*$tsnw1l8niLU2urR+6UF8Wz zxaV;DJ?Qr2_@*hjx-Xt;3-E==xp5a|t#yKxW z$UbhFd$d<6%8uKQcY0IsW`vb-8;Ht|CW)QuF^L!-_#4&b_p*)N#EcZ&Q-(#JB2Zxw zwv7}hvj94pg`%S%xHIQdTE4Lhl`cfYN&lMQZ4fl_nrnK&lV{!C*nLf+Ap}h}aeQ zSnw5<-^}bi&&@q~^1gl(fB(Rf*_oZ$*_oZ$xxGCn6w6uL?6KL`3%@)>zEiayo`2!{ z`Fr7BzOOnB(u$6@t&pC$7D9mciEG-;wAa+iqvcCwRT(NhH?26D7VZ-J{NF)<<3Q_D z8q#wve6_6nX!)9HS=Iq5j6!v((NeNPqixAPf2^0*hhdXsJ-K9bPsPm*Df@%9i42jt z#gDhEV}U7rz)&A+w^~_Y|Iog5)zMZo%CwthG+LO~pt9^i!Lwkt&3;lYKx4(JXCX&o z`~)pKTlPWnzK^lNWhV&G#O)>hn>+B8?NGru%}{;AA^dBZ{Tn&(ZCg3-Br=t;V#SV> z#<{WS$j2ACv8U}!8REpo<(_2!g<+%Y(0BH(l(r6Rki4QWSM^WS3XQQ1$|rspYQ?)V zf_oN@HSHmqtnOdT(T6>n(#}4lwidqHw7UZzlSKX;#F~dEZE+#{Uin9blH%l^l(|Yh z(Q+@;%o?!1X(bYSVI^wHpd@w1Q^A_3un*QfPGC={!3a<(YJ)K{jpgY6X{?pACW?sc z6zhFPOl8+g1LA_SRCa{rA3bgVpsTUj=?MXA8Z4f8%$grgVvbC2L1v=NblP+&{-V>S zOULAO+H~u|l&QH+n>G~#52b9-cCyh!1h-x;c-Dq`4}E6NDd1t#xLYA1;?Cie>Dp1d zcl&&GQ~;joFNixwQub(XGXj`XI3o;Kl__ta^4;pIW7vDxHv?i`BTVI0(f=51oA3MM z(5b$A&fe(oTjW@W2S~nZ@v-sx^#h#*d;I&I${T{bo>p4#^Y}R2R()z zf6E48a~*$URPy-SrZM*Mw{Rqp$KU!O`)o1bWJ=@M7ZA!1ziqbFU>$y=H8kN@=cfZ154Y$-iYK<*ZM;^tTyXCyN%_5JAyo0Rkw_y#OwNAHu!& za>@y92g9Rf!V`VVeYPYhj&GE5TFga;A%V3f{HjfDTx=4BrB4i&h3Orae7YRwt z)@5$MkPa5*VrU;MQa%@{uR_4N=FjxgyqJDVOoL#4tz$)j*i!Ps*xFCbwOr7c_$MB5 zKxus}ALAOV6&?p8vW}xup6ySZ^-f9|2QB4g&y1CM*@m(5qaDrOfK6#_)|Wje)yK&> zscyHjIY}O8%}Hy!ndU@kAzEEZX_|Y_?j9$1o4M!2`c@S%B;_!MOgXuruJt2RG!C_u zlg?x!<#062>_|BdAnwJhpyY5toSGJ)dKGl*os=K6<*YwjK}#$JEwNj@8PG>cHFeuK zalXT26}269vsBR5JQQ?5Dv0c7>m{W!vs&xmAacb0IO8bykV?bKR@`_g zTJiC=XqYZP&ag?eL0mMvCnh`YM{iTFHoL zj7#$x;|4ZHSny)(mB%^@$~cLuRb6g}Kz3$$h;anrO$Qpu{bw~-9S4+%DeZmre-i&y z-PP4WOpDTZOXY)Xl~V@Bq72Kxc!Xreff-oTZzus}VE6DBWnlNj-Rmh;_1v$xExwVm zJ3s<9<%^W_TKEJY&-J#CZbN+u*t&uzVD#>9oT%NcYZ)>7OGw2k*nI3%EII)9^zswr z#W>I0O4+M5WMnXTR$`O{D9Mky)H?9L?`9ms9~IvYg0F0OG3m;&A^u2|N)52FsJ|_6 z=2@HJk9uAV#s27ettI}A)X$U&n36Ts*0EN~#-M?+F|WY%M$Tb|`?SU;P9RYrekb;eqP5&VV>iq6c70w$-VF^H(qPD#-fQ8z692d{y^WKY9$DkzZ-Wt2UdDMy&f!Kyk*v5%io|Eqi}`mGFAf!P)z;ZeS!cP&{5Lvc|9PmZvxAu8{g+O&$V!_WEao%_t(aX&cfm=`EY_{phcso9 zbfHytBTu&XOp?j=KD$}E&~7k;fX|?hN&5(bm03`>ZTnC;=|ii4C1%@##tZ;+Wt9i-!15m)XGD*%^DO%;oKyuQ)iLqps zoC})TCq3FRCNf52F0nh-;sPd; zc*oLT@%17Oy-?Ow(*d9WONVc^v0lmhIUV(OZs;>HxrwQMaP)r?(}NvHm$;-ine3Y= zdpkF6qTDm3gJZ*X4vt>WuINgHH&((LXx}hK6gh7pz#BPfOBXanZs|g%*ycwQr%cIX z;)+9qH~!(4?k|`qxVv2Y4`W92LQg<`n=Hk<1+x3Z>#a3o>`1al5a5-J?dZ}NBK1l; zI)gz;+q9!&P!_+2OtC`zP)0;U9F*4($FL#dj?Q-bcxjxBlibm9fbG)@7)P`{jiZs= zw4>utBBmYPy8lT`J33BG?wm43YW$HYauYptBHdQ)NFV{xs;Tqzm(2jx)Zak~Xh-)h z{-Pb-yHn)Nf^18N$#;B6_4NDjNMcO)39X~4%}S}gef|W=9NsPXQy+P^pz@Q*sN?#! z&L!;mL-@ycwID*+)q>cTPWJ%a?;}>0GHV4PAG%xc&$_OBzJM&Ra!cmd3(+&2Zg|NH z-6_))ufL$nHY(sN(e!%tCae!rrMWOB<2vNLc;6rlSIk&E&Mg}4DpOZ{S07d;xS(yY zOMV!v@Kiu0Wd!3dH1W&<`QNwFRfA6^xnh+wA~VVLwpwng=ur=@#f-K2h*pbS6~*3q zkoZ()P!vg=?^I4xri#Y(U7d21B*agyr!~rhW)6B1Ji)D0eAv65GzI}RjgHtivUEl!r_Q3blX=}ym7G1qtRp* zP6Gj*NN*`U)w+oj0C*E;l0eRD;2)p6AcVOKwxttO80tgm@NuAKt{>Ewriw!qJH&{L zURo99IEt4R)DNUcJ6a|w2m}y6emFN?^t)QJmWcg$T4C{73rICS!462Ui?%smwt@JI z%z0G7&AF%;-OUv#l8<~GEPiY0x?~38vo`;HE*$x|nwYi5)l^JxYF zx}z&j>&7&ZG|tsPByXFT2w#h&)c>6S@reP`gBC>pgp?vt~LR!t39iOYT;_nXg;x)3#C_^CU3p_!*o6C zoO${P!%dItw052e)~ch+dNBQt4fQ!>0Y1QBYc%YMD`iBLw6rqfhcs7;cFpD^fcxO+ z0F2YGf-;Vz#E8osU8}TT83n{1t0a0CP_QKWBm9pg(b}C|PikS)9o}T27M(6@nC1Li zsl*7abTdp1|JLhiYHJl*slkJc{li#?RfPKm|`qChIe-*g(HnDI(9>;Ziuw*u12v}5y}nkoUNIuc$Zv) z_}%52sP%D&N75vqzR!|vr z>U1g?>bytFH<&EeU0-T%IQzF=4X`z6eZ$H@-DdWSo}h&#QJ` zyqfrU-5Cz0fIz%($F4J8Q|WtYP6&M!Ykj(FhZC&aPc_ur)8*Frhw1Wa3~i+AJ4GA8 zM5OGP4nz!{Ayqk)wSp=u3VdftnI+CV>8h;FW{srD8F`Ivi5#8UZMu-JEZO5LB`paV zf-ZH&aH_a4KE6{H=osC^V1d@m}ljCEC3J{EtCb=A;5b+Q|xUY4vPbFsPw z4bryCj(62&^KI*c=9>*q&UYAx(7hjV;?j86JNg5g_f-54aV0VG&+w{R;hDC%llpRo zE1}8*kv7qll#3=_UXoEJ51QtaTq#Z(-2Rle)fDcXOdn5Jcj9J`DJg=dxNeA-rP|v%)w2Rq!vn zH1+LtS&6tpz*g!<5YO?X!7`g2%5CaP5a3rKCq`$us%m=~CVAPenR%>NN1*|$ zQeeMy&|uq4S(Vz%dLR>^s?^4rB$={AoLTH@O@iS$gD;%OrgqI1OdOo+`c=E<#E|#P z>p$C2*l6L$`LG_PF)+Gk4^^AR*5a^PK0^^SwxYB07+Wc5u-9T1iOR}}V0>WRz*U(+ zXko}o>{wI`Sm26L62!~}u6QlUpLw0Um^bw?U%k*(ImWj4+|0#?3tfX8yrB@$T}xxU zXbSLSgaLGhMNcP~mhL;&TwUXHl^|Ny^3>EOJG(aZ2?+375`94E_a&|~+6pJ0Rn1;X zV}{G<+I595;f_uy5wQyK)?9t)p@r!ai$Dg@O{`q%DjT$DR)P5_J|3&k9bq55u#G&~$`e910JuQ7lA69lJXr3k8NCB}Q#I}b z{6*Ec55S<{yKXvpDcvD_c`Bx*aqwpUuVVEISKnxAk|E#c%HLS!g>S6#g7S@6vC8#b zi%+rREBMbwboO=d&jjm>AJx;baS=5voZ$QL2O-mj=2uvFu{!rFta?I@3)RJ%ye|NhxqiYqFvAN#n3csW)ryy;0>)1adLyJlin^66-M_Upn^*nLQ4ul-nj4Gf=4 zS(*_bIhJPhb-dd{^IV3yHp5qz5gE_v`Kim`Oq5-dw+K|A;X-*0>_mZPe}Vj##))mN z%pmo2hOEuN|MV@5@R>28*)h9a5egJ9>ptgdu7Aac9x=cesD6<_K}C%2Su8@mlOc;Q zKMouSUpm<3E-j|-aShE!-37FtCvDtudk9}r#|l*uUFt;GVD^bMTPyY#!doQ>mf4-I)9EDnPHc6&l z$)Gxp^3kz_uD%L<6u93ZR};M>mx2^(&SnbjJsTBTUzsfqm}b0)E99=V+Wb8nUSf3R z=j-(-5PanJ&=FT{J%w{7r9O!e?gQlCS0w853F;R7ur>vsnm zEaWaDu4Y~=B1XLF%FpL}$YFn(`m zn>jUUd){uhsqf-o()Q*#qWmRSg#ZLoo^!X=j|U>4>Vks<1>ydC+>Q0OIRORX%_8Gn zSDcdp;kO*9wbwuQ$5%ljJly9bDDeDmwB~<+xbwbm=}EX67b?Cx2p`i~ao%-4xY%5{ z_pIxG+|~4O_~i>CH2eBo=2T_pl2hUAU&!npCnx^c2d8c>E zx9eO?N4QT8GJ@I&;YJWLSB64$u4M#2J#hCCnO}WYN+j-fR}&j9yFyh+ThR#C9y2=X z?HzqWil-!t*h{WB2c|fn7+v+A{-|p5T*?N0xc0=4a3zW4&mjx>2-28wZ6B6TN+6e^CnYB-MYEoiWCI31DG88I zr60?XPf8Yl>e{Vy1o?fSDWACx=;yh#7oySzneQ+N%m=0ZdkU19jS+vJ=vq#Ux$5ev zUt_(CR&RO+MF-%Qes!*VIMVXWphBy={#9HUf4Iwv>urms=)dv~R-Wz9Nxcim^q6F> z7*oXELG+&!TwM>F$E*v{paj?IHt033TSz(ON7Ql0yja7NjupW-fR9M+8Bsy!0$L9; z=E?^d51Q8v71!&zD~2Pse45b&8Q&1YZn|2;UPUN3=yP0ndYWM;cgb90JGpDm!L+O; z&y&fWgMb#1QLB69GhwGGDk72_x(n&eIY+Fw>q9vtqC+P`AB+%LJeVub6&L=-^|L;Q zBW}G9+mx9i?XD|EpUE41cX4OUljn`}r+IV4xs<`m8aZ3=#358BBNRjVd&W*Fa< z>yIR)TkB%=ne*tdnv+%11b0m*glbL?Mvv&?1Varup02~zbGR(9AvT%;0wmZ0vk31#6`wNST{O<2om^%3GuXy>sjC}Md z1^VXi+fUKyMEzafBhA`5-s5F9Yj7k{*(&b-=?c`}ZL7b#x%&H&_jf-~e^H|UT)mJA z!s6o(LGne;m-0o;XXZ$*9wAo7x~;D})84zneA}`>#-OcWk@(?Y->8$Cb?l^X;)20$ zq`jc82CsigmJ=7j)Zr=00dne6;fuk}l?_%*SyGJRtFmvp;QdN>YIJXumMV#T@E27Q z`^=Y>#G)9%sgkHel>xt5zAVW7Y=A&JDcHSRpUB5efp#o|SZp(QL(f7IqKUH*gXPoI=hI1tQo$b%P!*9Fjn46huE!Ygc3ZiKq~h9ioMsn_w>0^!lzO=IWbZyr-eA;7!7QB1|% zy-102Q*KE6)Wp(J`6)7ZRa!y6$(c}0yw4%z>%Sv}d>s@@@7lay%za9aUcls|^|!MJM%VLgZ=x67VjN(m-O$WiWqeZBJkt?fV@yicdG8} z6=UMY4(?|9D<}dRniK~cniL1b4vJ2&FDQP><)8_1BKm@&6O0C9x9KB zt+gG|q1{3m6Jb%Hn5Z-qY4H&K8*)-RF7{g}V)4z~p8u!@ zWusnH`;>dg&uc=Z=U2u;MzsJ;(|=hgquM*Q+!J(d5y;{V60~b9yh!dEgBGz}W2IbZ z6>Kzo*;sGNF%E5YcTyj=G3b*ikvKgcjyk13;*N|wge0UW>!=-a#Dhvsj-}uz>WxR-v8uK>tBE^a4_nOCNt}u< zwmGS#;14{_ut`KUbyo?iQ;tP+x7h5??U*1du>d6N*Ob!TjM=u21Y73Q_bX#$#ox7aw;6ej(KM<=2$Iy%9===k(Mpr`2QpeKd4TI^J)(bnBq(NFOXNukF{p)ne7@agk{SDzp9 zX42>TT%VuksZZ>Q&x2mOn;7Awr<%(B8ITrK;PhC4bs~~IB)Z&-oM4)dWA=R5$F0sTlIhA(uztMQ z@XtYsWW*BNf8o8rl^(fL&_S!A zOX#4LK8REKg1p*)2?+(K^2ZE@j3>NJmk1P$g1loPoR;SH=+E&^@Z5&j@@VbQXpZQW z{LmsO>350|XP3Ks>e-wQm>cD7C$vthIr@ORaf+ABZqmuUH$;7XiF`LExmL-PSeqa-^6075#TUBFaI2 zVGxUN=JN&2LAD(GxE$PQ?w+C-&V)X_F_22w0r;gC%9QEHD}CKF^jJzmmkwLJ- zn#~(1`52HXlMj>-ck_7+l9G?2KrNFGjwO?i+hEps>fcu^k3ejhd>p`EMKeW>$KA=X zh42raY}{qjD9`?%f5kOMKZ{mXqSmibO`Fs?D`(Mw53*T4O_~_ zEt7?%_F|)!fI3RMSxoby$gq`t>yMf8X!`G?-CrsCNZujE)?rI!vNDXf z_!OGqRp=bvObVUJ6`GlsLUp;`0T)uJg9|Ct0kM-6C)k&)?BQaNLY;_TcZkZ)oak<; z=ngn(WXMvVM(BcjG1=Wz(ckAil1ARPH1alY@oD6yS0lH0Gil@o*U0U>G-4g-1}>x# z2N%+a17e$)6YMjwuw~5BNh3}~G_fHwpjhbuvvh&eQ@Y?lq#0R16Y?4dnCSboEK*F& z>aRuXN&lde6|>wUot@CEylKyhopXGbDRYjG!H6;ExCBcw<{X1LA6hd8AjDcT1YJEa zYnjY9W;<{(--ve|^Rl4j{x;7Cs_M2RAZ^#Wyo6|LGt+71*O6V13FOQ~)mN`x2eZsjy{BGsq&5_cAI;?-jicd=UuJNhw&Eb99pObHj%eb z&(K0Ouv0KTNJFCnsyS$sw+-~|WKR_c4WoaE$m2JJ8hqm!$9R>(7Gxe4eD+G~LbsBq*Upk;{8pk3kwxC|i& z{Qi?uBqE^WNZy-;IuFu<(1Nx^(#h;`}mF3u3&mlbC7M+#-fKktrEbY&$s zORTr_+YkGdq8v_do4Q)Jzg;b2Hc=~6*ooQu_b&T5U1)%COP$^lu?ySbo5-@CcX8+550v=0~*?bfB5zCRa(J)FUd zl0guJ4NPh`-{E#=5@R z-}s$$*xkX3MrWr{QLx(eF6gB^r>7)4H+}o}+>ZvJKk**WC;oSOP*5q+`+Zmo9o;59 zmr_}bUeTtS-kQ_rp^jGP-N{aRk{@3));n|h-0}ne(xTr5cZmS>_*p9b@&8Uw)A{HJ zP!M;>ZwLFy|D9ebXCydDY2B%^%D0Tuy3^vKd$6K!;(gJ&vu?Fqch>P1TE^q%cPlE) zOHkc9Bqm&P*V2!06kK~?0~c}G-Bh0CJhfVusMNVL7;uBczm#pFZAZed>E$5G?tP|m%xtprB)(GP>cbr~_ zBha#4V+~ujABI1$%(q<(_}sC+d55)H#zBXev@$p#WJ;k|-3iX|jCmuivT%PC+Fb9# z#UNM6O&@;^s`3sn+LMxnvtWIoz)B6ohU@MJ`c&R0nbgEJ(xfKx7GEe^w#Eu&D|j>M zB$Ml8z0^s7gey)O6tJP?(!qw5;(&ls=qOaI?gTp%t{1s5q!}l+FX3{6eF@iF|A4;a zS8jIzA(npSZmoaz59m|Ac1Jkr$ zgm|-PDooW}D+^P#9k^JSs=k&PZ6o-@n`>ZUs`6S{n2O_Mc3~=ZtvJ-CU2A2nEfChF z261c>s6Q8o4imlpqx+0LnIlqdYP=yG;J$6p{rHDhCz9UsMh%l$BRGXw7f# zIRVN+eeSuB=@pRPTL__YP&o#%_-2X%m4o_-I{$&gi*;GYR1=B{z$(3tQ2ubgq{Ed} zwp>&lNzRgw1e;~C6G^>up>?;>>?eogbD@o9X!!UppeR}Rv8WZni9jtYCmc&wPNK8? zD<_C8D<@m=SE88o0F1v5{^pgF(g^S>o+>Bs_SOb{7YCyU(2H9KIF!Qet}IzN$%QXp z-#QbBfa0@*fKnqWoP5X$Ff~(li6%it1*brEDs{^rUj>Qi^uIYAYqYU{A%xdJ9HdkODIu8pX|XJh5L&(KfG4H9hi30D zV*ChK4scA0$~AA)#r5F%xSV^8CWTLWFT&Q5wjaaD_|k zhb0ujPkUYD9g_i^w+!GsZ}AzxH(mqyjyID5e8mjlm%I$XdUOL!$N(Hn$N(G=%2et7 zASc+jhb{3mvvjfxCnC-ZRcxGKYY*F9ulx__Unyfu&>i&l%F>9_lU+CvY18F|V3Pc< zV>W2t^=CQbYenzHyQA6Y_Ox`zZoI`e8>61K+;I$VrflVjr&$g*4gSE5LoR=`ZYKgR zG#w5uG#w6zJsnQ4Z#vd-F=#rRh?rxqjyGa;C)k>fTqT9Q|Fb)*q~Pd|W`{}&r#L;$ zjsuZ~LnQ?VnCPjb@cuubzg5}j;2aLolh@w(@ARNxt0a({Ka~W2{_pf8Ka~V>(^LIF zWF7O4+~X(fbdXXe*ZFC=QK%#^1%Ft+`4%TlmQJA;r-oLlF2otk%^Pzz6mA+K#2aqt zJH69t8XqdU!7(X0@8E!-yHaxQ0Q<~+z&gv^2XQJg_kQb`xjzAa*yhe6rnOIY^uD1k zBmxcyg&oL;i?4kLo?wJ`RKi5*1S3+P%ej(uJIPS`oe4&CuHHQQ+J8X0D$y9>Bqd9t z__K@C(@f@OP4UM8w&{=m1A2--x#`K0-~I>mcKmU4LN@i-I=MS&xK3{Cz;tML;K*IP zyMxeZo9NW_Ay?W@MZuF{&S3<=XX)Jy!RX0BwA)JBl z*gfy7ljtIaH}D;DdMEt}eB+B=pZgq-<(+ll`)H6GKN;W$VujYOJZ$jkU2v4Qvt9XWG!{&z|C4PbYUe_UF`HaD)A zfmjq^BbHR!9E^9C!-t+*7%Q}%_5j3yX@(io0|9)8!uX4vmPU)9^!3)20jc$NKD{*`?w!erHmx_7<2o_sg_eGpzJelWTs+@RtydWgLqE8fuXnd_oISRN~;6L}i1m zC?!^$8DP{`FRm9uTA5X|W*f2MePL*#|JsX%MPlR0@bGL@<@~%NW6P{<5T`pDwRO!F z#?oK{LbwKtY>*lZ*Sg4-?q zph+pwZ-H4%+=xL<;N10$Li~ z8*yo@2lhHB9XJuSfWKfV_O7`u=q1l_ITca9n;54pcT)ZiaU?gt*#~b zqYwi?Ve&_do=c3uT6>O)^0&3vbma{`Hqc7nNEz(kN*tio#{r+F1h5yJMtGXiTfF?C z(Ij{VXhKY`Rlb7GQRO3*L2#)iz7f^`zELk65#`gARmgdUn6%tz9Xl1Fd{r7^Yj(YS z7m5<$r=8N8`Muv240e&YHnVRbeXZT&dI3)oV#R~6EA-Qzx52pn!B?E;!3Fwz5K1*3 z7(6|H9d+cUg#fZG?mwFZ&;ZvuA0_VkN=(C~fD)_%uhx+O(&&a#zPcuqj z*Fj{=ODm*+C5(KmmAdB{SwPtJj9A&EZ7Zk9b^(E_jEPAFgs{y3p#nlN{6z(XVw|;+G@THRKD2BC6+RIX98|qyxGXD*x z;@*1WaqVHdcey}qNl0#5(gu22rZ*BdHW=?|hTSBWrVg8>jVA zN*?v-X1T0||1va0(mr!m=}pWAHq_f&<_iUK#C~G5xEL!E_d;c%o!z_SxuSDOljs0E(;wR+qxR_6 zL&8Ndt$T6Nf1lyf`mhcty7d4&jNe`0|Jh(1dGuw6jt2*D>5?R?L#8J5qTuRVW-Mcv5mh4iJiOccX9 z$Z!0fv%xHeokb|wGR!E&us>fgzEi*4LO1kjUoj$#VIsUoXrlVX78b@u>Tjv*lU`71;{k@cIP4w-dV6Hz{amL)1cBS&t>*4|sS% zJ>LDIZwD27gu{oz+hbb&G*?h<>}*I-yjIu0vzolK#;mhLAL^AvT-!p$gRX+Gbg7=V zOT2$b`-F{_;x65(cNwe>1Mk@_GVs2-g&z87!x>*YDR>;AUWL+wpO&W#JqW%a zw55!QM!tv(E2OZ>VlnEBQLn@+C=VI4b+5`(;>a1Jx%L$61Zp!CMgOYf3W-Xu7*)0B zS(DF-!;rvhkdKS&lfG;tPMtC;iEuLDimDlOx2=mgIWf@RP%9ft?nDH&gin2}HfY5FWcD1tP@Ulc)_J)1{L7WTGr zI6&Aa^p0^=>w@IDQmHf>>I)l3^B*?0zH8jp2HSnIU=e^*`k-fJut<8}cuSkg$S6ci zgjNg@W8r_?;^mY`3>M#?heAkMLk;)+*;rfUPq|D|Dr3d@3&u=skAM44)-z@%dB|o5 zpU0sG8GJaZ3_k8>S@1zb8GJ6|ugAsdi$?R4^Q4mvq8k4jeKR5Q}@{(qv#8u-}Z6p&EhUl$>*ibL)%)A zSM51}tQ`!CHt#k9=VLp;3_!3p?+lfkKp7-%d}$00M-*xPm+;pN(dCxWBz7wP=H@?y z)6*fyPj4CDXrI|&Y5k+y=I;dIyN0dbF#Th@TkZmPZ7_3zpAbqe06HcYc<_xeRn@nP zv?h;L(u!?|W_uMKqJ)Z8zc`BCrQsC>Jk)(@8-A^^fl>$&VnzSbA+QQL0tz;c71 zwn;bmew%ayhun6w;L2mNk{_fY1M-88_>26YYYM}=G4{c=z5X@i-kcS9(7I+&F0 z=@WKHPoKnyC}SPBg9WZlzu(2ZbJwucYfAp>2v9n!-)?~oquke59C zV5L@C6w@ISksSO4_D>Fe5`U3{pWKnl!Ly-47aE}2FY1Mu`?ZTqNZYs1+t7c_x9NEc zRMpCg+J(*b+D)4U^YQ?U)4$ju1KgHsLqbH^BIb1MKa7^r!(RafqugEiAAP+?QM0WU zu@kgnt=m5{FWWh80UPNY9925U+c1sZ8dPaSl+MutdE%es9HPQz z@Q&vvrA5SkfhgQN-bDcSj%=Zu4HT^{mm1T)g7^dKyo`fwE4zE{7Cme*bBnGBCAWY% zptqUE@1(bxw22I#JYwul<`Eh22YN({oq}%Jd2*-ph;&9}d&JP4(j&U=lpfJ(r}PMi zsCLZbieuuDOB_cA>zyPK~GQ0V}X(?r3qLMpt6`7lVsYX48lZa82&R5*ArUm-$wg8FYc5!XBWZoLwBHe zJn@!O#!S}k;V4KYcg4ySQ=WMH#RlRpw2aIr@}K+KC*HzyK8_NfmNh>x1F=|{e-<~E zncYRd-D!ogd&HPU6fJ6(V^~IPdP#(E$7B+SL+3rwBC%ZEszFtD!B<-gRfSJk-Yy@Z zRdaSDProUZ#DyAW-bW=0}B0#EHxs$}-j zI5SOE-Mi!gIQSnAz=@v@Gz%49-%Nm~--Rz=OsP5|vj*ic;0ghqaN6+1<$=v&2gOsTz(7ZyoeF%nhA7mQ8CTNKcm5iBRca{5tD%i`&EK@Y8QH(1q5D!p zIZh3EjyxVBMkkr~)hfG%Sv#$+R&BTKeyAq3(ry_x$bgb|(-|Rk`7SZ0PFm*zt4Xb} zTdZziKB84%Y*9~&6H{Q%1@3w*DIKEGgA8yXkBO z?0&&Y8q@d46gU1(5;^CfuMVgpc!YAcQZ40C{0;D5s+23m9NoL7A`_7|xpG<2KWl9D zpiGbnzeTGpb4p{Kxm~=Q&fJRgZ>ga%P5i}U-HSZekpk2&z$RzOC8T>(^LJG_EYez- zL)F8(JVt#8_ ztv+C^Xxe{60H5~vt!aP9ns%{#geOZ2ea^O0nDzXeoddNjPzsB!E?6+$k(QyJ17>(? zwpbYm5HXLL?*%6TBN2XWLM5#}V@c~r0@7Ls=*T&mKPL~+Ef-3Avui#zqt<#(M07A4 zXtfwWP>m-7|K^&hPO>Xi#G!6xg1EECGguqMXbPg1{!%Sfo|A`}EVX2hcAL>k(BkKU z#el_q8fux08)*b?=yz%)%cqh3rkS4)57Q*g6YqJnlWe&}Sr8GI8M2_r47hIWgwB)#15*UN36UM_So zd*{QeUj8PF$EU6)Z^ziLs~Y^Rg? zbt$#P9(fY(vQtypD|(vkm7r#Oz<3t)iWEQfGV5zC7*AShn(Sf0ru`nTKSlI0C+Aa3 zL5+Z8;;tfb8vO7Lkk*=>{tBrtMGr~@63SLWC#Rjzo@8_~!tC*1q()d{PTb>j82j`e zEVOj`?*K&s>-68=-SU%{Z1MNSmOZ=Wv4RBy&E-7H%#I&qmQccu+4AfR78#?WlC{$| z2)6=osN__kTI#VqB4S4emwDK3_43Gkwm^C5a51TF>TK;pyJG>s4tleP5W8N_bM+c^pg@v8()IF-*V-$Cv^>kK$26aPCLAfmsje|6~ z{Cjl`t@vIx%YdY4V$686krvC~5rYYSXsp>xtHt2)+dU&xZ7-dJ@phWCt7ucLEkiXt^Mng^Q?=d<3B^;oOU~&GPMo_7;yjtbiF0=!XJw*U3huWsyJ#yJ5_P&%cDk9t zsneyh)8`qSI$i4Plyp@8Qr#5oEJK1$yT~ptGAMQVitO?W28S+3D!j-3+I`kc65f;D z72Rh~1a)^0yNedrKCT<5m12z~<~?7hF!qsJB5TJ^)!O@HeYXW`z+SO|4rsYq1NNxY z76aBnc;3=yL=4;(Nw>e}VPRBG3QzYu9CQ=Rv~RD{aT>!E1Il_Ts?YDiVp4Z;r)g>t zH=tR?q^Zai|FjM?(eDZA4;6msq4b72{6nP~uzqLgKENzFzDru7NSzoJDK<|v6ZKj4 zIG`$mXD)IkM(HBwTHVUZB2j0WSxH-BqlhsddxpSwtIkaGZt>Rcqr#3xl1(lGBHR?_ zbhB>$me1j$$Dq_=$}H4nW04$ESu2Okc^WdENkf})+T!hJP*{=7tRGtEbB8BI&~mZq zKg+BU^zy!75wW3Eb?uCkpS9gTg^Ed9eg0Osc<_Ded~WCh2ta8%lgPKM{wryE+8pzD zMg3}@-08#rw9`M|e_&{Kg{RD5C0KtRQjMnXn6~Q(BOxUErrsW2;f!`^gLw&%0ptdfb4YCN9J~|1*0lJDyBA-eX9>W zFQe^W`|Nk!vWsP!x}ppb<(8U>+EB)k)H8^yXN*)&6mu2y%PHVAnU9IBpPTJO)-p3c z?+Ibr8r09LE%@Qo)?9yW^|rLtLu$)7J*KF5`<7{l2gZo5nqc$=(c2nJZ$13TQ3Se1N*P0XZx5_LCdeN&Z_~F#mX9(byb@X{L z=E>C7sHxl99fl67f!+UA|MlrdiLb~(D}Uiq)>?r(J}^4azW*k!64t)|8m$;|-ygui zv3uP2CkIv8A1qe>Ubc!>ZNDush+u8`EA3}n{)_%Hv7Y6Yp8ewkcT;<-IZzoR zmTxtyY2(;n$tp(eXY0+3{khkhgU^}+^Jf*qg?9w8>Imq0D#XHsM?1hBjXQ(Fv=K}a zT7s4%fE&uN{c;H!l6_{o8Lw#D7zIoeR2>%&$ahS#McX3Ts6+P4>e4{5^{ClFKQT}RO`a%{zV0Ml+4sp2P^~4 z1_N!ZDAUC!$IP1AOvaV0aw=EgLa9JU3h{TgIi$cYtxOcPkDGDYM8=+!wccM@<1A&3 z24&H%d`~-1Z*4!Li)imj(T*_yt;0FPl~8s60lM$Zfevg8QDO0beCLC<^Y68EJKC#T z>HOEb)(aIy>m@{rCk~i(MO><auoisFq$RE2;#&VXfYxClZG}A* z7EulUHJiNw@A9%U(}!9khy z4un9Cmm1LvrV!1k#MGX$4y(k}7BJui)93)X1#~Y@Z=^V`R$<&_OJ%&JpKO-UBXV3CM>2Ja;4R|)XoXEOh z_R%V_E?}0dDqDp^V(S-XLoJE5-uS}otU^Ql&+Qs&Em?zuEaOA7saAotg2^-&$rB>V zMF$o}wCdG125zTLyJ+@QZi;;u%_OzYA#wLt804=P%`!=Sp|f1o2N;CY29Gd3QT2g# zXG54EAf_osUNZY@0~s{_ci{8mB{MB(;vq2j`%TNxk2A~EGQj|ONTe++Q%cl*FS5GW z|DhSC&1AIXo6`<4-&}Zz4j*fM5X&l5e0RJ`*G>*^@!Tf3b!v~VW0*IJ=R z`TZ-V0bkqYL(GXzBWrS^m+==l(aSKMft_gS_vV|qooM3^=05ETl5;1zXal^gGfx+A zllt-7&e2`aKyxT$zWy^A~F+4}ezkfUgge?}#7&4^D61m6Q=jq}xKk=}1n^vqJp984PkI0zgVXfph&_FS#4{Pv|6=@Dod|)UJ zg+I|i+8BboO16C{uyEu<>ib|xUz$BMDuRcFL9MK|i1@**Q&=9aoF?x4YBo!nj;#Fa z;4nU?J6&L^C3iX~%>LrX-^{_-CbXZ0%Ld_5&pAw>8V-G!J(wFHJuk*(GX(nXuI24VvZ?8=O_PD<;_j8zDwM_bonS-Y9GPYeq6#H$BEvl*@`+F?dS52&En2otpW;QjLQ z9O6qa&_k-Q5s2t@Ku}7>hWKGO&C@=5r`?6uxIkvnYC)%V$~HOO*K;1PqON*@P9(!= zBr<{23Q1L>`B0dgD-WcW6B%Ki+S(6x=X7$GzB(QikSx1wF^?If{_z5SB{D5AjyNCT z=@8AP%qKBe3uKo@bi`4RgB-jB{vro2ag-c9nkSY_+SxOV0q`QYXV?EPzFnuRCscgW zJ)yohSJLxLSZ$O_`nLB-K?57ajug~BDvuOYw_Ck~EwJyCOpo?TXs>m!dlz&xAOO4c z_DAK>fCnFW!bREAo}OAiMn>yGFA-nH(^RB3QX-UY_`73t9z8jHIuc8+k;156I!a^s z(y=QZ^>^&2kS#g(QVAoYJ=3()4Ee%SX{LJOC|$*^onQ?&%6q1$myU{7ueFQUuCNC3 z-;1a`e$?%YqvXK)QpB_zSPXc*U2Im9D&dG6E3Q|pSz9?u*Ks>I4LIQ`CE^AImCOwt z67Ol~gbI(TWJ~6BWAje1KYT@d+fn+wi&pL!@V9~zXwO=nN+Z;v2sn1~wc6;IxKP=w zt2JgsI6Sq%F_s*(hCkrV2#pO*EUn_{t0n^ZW2x<;Yun^r+fN6D6K z2_<4KBg&eq4?VOneIlMuV2XxgR6W{72EBI-P7B4>jMduMloba(L6zin zGtB9I#sVuBM1@Mh>EFRP2YeG=H5z_c@u5CSMDd|M*gYhG0pkPuH^zs_4Lk<|#)pLk z$o(FM13_;!^qdbfZ0&fXLKhpvqJohvqe2I})jQbCf=RMPOSk)!u^<4G^x@eu77SaI zkgjDg3d-xILo2>|HW~h}+_7Vn-R_kVJHXnS+9sP;cPOrvY3iw~ZUG8h(EBy@w2v8% zbbLX7%9*;f1Y_ z%~sJ&2*1&oG*HSq-p8KFs^0%ER`qDMw5qnrp63Hv)q(<9)uZBvHXdt75q!%mA(Gp9 zbaAbfXLi`P_Q<`KcGm_mOZ(Qcv|Dzochs5xf^^-rLN9`**e)kJ0H^ej7p1v{$G0se zYL%@NF7Q`YeA`A^45KIGD-F14d?n$3yg4b4{>b{SN$X=<>liWn6jb@nCwoGR$Q+{? z^n)f@rk&@pm=NT~P4Wv{FJfz|CqdA&vPYRv^sLNa09yCXztdk+UX+i@I5s}Sh`oWG zaxSfHa(FQi_r}R>!b77ObMK^}swe|~5=qDwN8vBB#ZfQjy~5qFY;j{s9vSeweA{C7 zN|&dU61Ip9!a7E~(gsPJyK}8fZBPrHqJ7G4^o}kw|3U~5B26Tlo;KP}yJNY+1>lsv z!!o(eO{3DH^FSaQn)RZ8d8Q27P?@4@r2V{R+0Ub?kfZKE)_i8?Fj>HUR%`DvfLxPi z`_sH-qj;^Me;qA~L4gTnV=xFZhA**=jNumkB4fDqUyNb)i?lFhb@J>8xGv4jw=IYp z4|^UJBex|yB3?KKF9I*^?3ot!fQv2@<1T__*L2mM7aLlJvG!OK!?l8*6yAbG3AgGH;3Qtfyw2B zo>sPD0!f>=hj^SY*+%i&1g;RQKd%p=*M)R zn~P#tW&~wP>%N*#_9jDiB$ zc4);ww&l1Oa4aQN%V7vqS9{4upf~)rnnMij3d5pqE*_T$xxZo!L=Fvfkoym6C(K|dl!qQ1 z>1n0tD{U|&nd4L9MfoQ^4YYMOSngqyZ$qhdrP%kRXO+fi1SJhNGpoSJnC;9OmJ*eH zZj`6BsvTv$&Ys|@C>oFTB#UJeJ@`n4auZ`r$IzOH=6%;GIBxj3CeD|gcrVDlgv~xw zKGQms-D{kukfL5bf%~@@s6|GJnd3T!Dm%sI@t&mEk5CSZQZ}h>k%DQpG@^t$!82a_ z)+z5u?JfiO}t`IqTOWAX00e| z^&6yhqY6CKodTsuu4;Q!Sk;}TC9zIOTq+&aMW{7;{H)?I@%vQIAkEE?X*b{gq%0k^ zXAQIWdse7}Ps-Bo+QQtl(@5=E@SIMCCnujL~n|)ZT0arb|9~c?0oUtH)lF)lC!-tD9k`92R9&VM7t> z6_9RhGS+&YP%EDjFRcZ=RAof8QdB%;uM}z``~g*1Wrp}L%Tq1JUN$R9dnwPTqlG6~ z;{YmZmOCZ28G6bmEENUwSRA1!*g@;ddL>O`J+MMx3K$#(;i}@$sbZ1vVq@o+tjcCY z_VRU}3`HGzN|p)ppcPMC+-Q{v<8Cz2qU;Fn(>Y{gbYae1l!@}48~3Od^N%qGu1Z4(=&orbQnp}*A+1J?Z4S$YWwVtW%3z-Q~KUh zas%Vp;+d?y!YC-aI}NRve4YTaz~u82hCn&mB^!YQQwu|tUUJJkTp=>&_D@j8`eMx zC|pK!64sx%ZXxAxV0H%Dn_*HH-A}U&G@Z3l2HM@PA51~>P_dnY?muOvpbS%{pld)E zz7!PDtP~W!#_~}5elcSYxZ_@g@)R_SX<9z7hU*B#dk4K)oGHRT56R~l`yL{BpC?LR zZx7pg3U=6rP^OqQrIr?oF!F=FBKdjGX2lfOpNF*lU4~0B(d?h1MklgFzcAgT!rp1m4R+4Lhx?w2$2g~^^m8W=78e!jI*a@F7xVX z`oggYJM1~BReKpmX4x!`0Pix&_QYtF7@U%roaI$}sV!fY_u{o;tu%_}FSAj&;1677 zg}C+tBpi% zS-$`@9AZ#RnI^}iz@0rOA%sKJ)|Ar}W)yhO;3R~`eP9n?bsD67&-$`s_BRNX)(LCM z&9v9lLU17uT3eAEdv<9|!8vT6O28l7+8)ZGiPHXLTp~V5HP!#TEQ8)RASga3MR71f zw`ASh;xt33R~(AarO$YpXsHaDdNp!nug!9(S7o0ZermWHsxi03)U>TE1+(?Q8%uD7 zr+_vEyQhFQ6@O7co0>xbEkIS~`m3I~xx?6=*E~zZR@-uVpBikiL9&8N7a^<$x$z=| z<#wxAs?3cAh;Z+FMu>0EdZuUx?T+O|2wNI-ZyId_z1-3dByQ>Cgm>0E%KfsH05{V8iud-atqc1y4$HU^5=1}hAmJwR9JLHY`$d2#Dn+p^?}_Rz*c8HTj#Z2 z{w1W3Hri$=t0%O*e*&T8=wMB-y&sw#dC?QCYD*Y4Ma2bYWK>+h8Yrlozc-<@2%q|7 ztVsT@Rs|7v+0#8}8>l_;m#!7H9UL2X%3HbG51gT$axt!UIH;UceL#I>lQ@6H6RU5s zJFw<;%YVXasBfH+=TXkt&2m~_=ly>eXj<_s3VkC&-2_8|uTBKuaVI#nq4K?m_|#KP z`;oD@fkXI~v$!XR;Iy2aj;W1CJM1pvPX`(jXN}TJI)KEz@(tKswejx& zU#@fD68CF2JY}6w%mn6vDi?Qbt$-475C8fXo@cdTtV4?YgTrUTbyc85x3~ke=ATOh~Ajeui!+4dZSit000dj@bSR{Dl`s>|_inGA2G7 z7OFn`3O(1Piy{l)r5a-|U-V`GZ%`;etv`F^H&C!u-+o2D)D8c`OWmJ#&{kf1huHf5>HacV>2Wc4l_AJop$w3!ZuU_c-3?I-EKF=SG)^eB77= zM#u3Z5$=KUVi9ymrm*~gz5L-wt;lu9$ZN;qEFunnDIKlwpG8*Zx>AHj>n}B ziUkQTIAp3A`IBIqa!K&|9^(!94>LAD?lP4hN)0HH)$o3os*3u?Ryo@6uQA%cer5M} z-Q$md7reVLKH_1QPt;{w`K-*8N^Aw`ml%Ecu|kdd~qqu06z0A zOL2a7bM0b0=g%$~>=3~R!`3-8eWWMC{RTpH&Q^IBdZvWk8Pu<$kgK>vsf-b@_VD5X z>KYy@@B6H*e>fRu=hOuv^2p5Dzq)+xHrX-RvgdEuFetUnP$;|$R>A-{@f74$evs;D zKH_M^1qd<_6hmAAn$ws*^wHp36++@WrK*f#0LM;OJ@jSr#N$02ri7i)NN z;1<1jUJ}BKtFyQ9rB+KNHkXhjJ zTK_3*iDg-ygubVQHY1@JKI>^fh?~43i&|={(3gz5?aPRN(>`bqBQRO1tDXd)SO}gb zh;ayx6U55pyhCs|%F+ObAUMsx3?uRpMzt;<=5MJP?nUL&D{bSe{Vl&RzwNF;lS`(c z`tZHL?ecXhEbmx>~I z?${Gih4EZ<3qCi%QavFN(B@e=R1)%{<~W!L5RR~v<13~_H3=tB=cE%70OI=HPmACg zSEW|*3saF$LwkMn(y0dSI@{#k+C!2n^}i}FJu zmRW4Ffn8pf8NXdF2FGoei@}AY0xkyUZ%$_ukfJYIF>;N#y)2XH%a!q9-1(<0p zw?j_(7*Zgnyb{G@VlDcU-PL#CqLm#L)MQ-7#gtdz)0wdreP0Sl;4*`fz~~vz+2?^? zE^BGP+@KIs!&6;=5Yo{Nx(2Jax6Ay|jqNg>HGr@P0@rtV(gf5g0ZeC2)Vnm9)W

rD-nW4@ zoUg5DDao=)OJsCEVf3^YMt4@S)Qr3?1_M=BKV!d}pb4sM>B1;Lqz;uGg#8~3_QjSI zBN|6?Xk+}ARCbIN&DpRXcxK|7rK}{ z=$r?oa;sU~-X+DIrL3&#mLR2gW6@sE(CDWsTN)tgU{-|2)=+lJlw5tI(8*N+-zJ6a zg4!uTd`6O`D4!T-8OORBB*-hJUI?eB?$on$XVqGa$8CdncV#V04K|Qqz!P}h8)Kd> z>y3Czd4;`2nxJugeW%3w+ehGt6&e^=t?V)>N9T~c6TOF%s$WBkh5bz`A=N*1s%)2Q zu;r5je~P|@^N}iirM)yMMAFa--ODH-A-1S|2+_zj4u;{tTqCI|y-UJQl52!&x?^c4 zNQyt5xkm9jPs9MD?Cy8!2!L*}ja*~0!9UG4rtZ>njoplL8O_>vkyyDOPiPCVGIE4g zdoYi04l&HA1_OuoN$+2`R=+{D2lh`$t5(~dK%TO05Vtu61X zTcL`$ytSQF!T5MH75l-wV$W!6>8)(whuT`&t3U_+B&Fl>lf?;CKQY63JIf+=n~;RA z!GW0%1O$bz-^(CP<$;;??JZxjzdah3B@GM9a}1;*J@@kIF1dM@xeHG-WzFblS){PC zyA4Ifq*)oR^s+>|)v=e=h8Vu6}v$ksdZh6!x-aw*Hk%`*_{CIK~i$&?d zmv*sKWj&25I7{GBWOq91pxqeYcoO<9$WfZ-SS(GEnn>X0rG^RI34DpwQkhL6gv81Z zo;PzR1YhG79detJ8#PNK6X2C8Tta}PaLeqLIzxqQ=nR26b>^PUa)W(G*zwevqH^d- zQ>inrIxL6H>y3t=^EG$j&BIqyf$MDsScae?gR8EGf#}e>3?q#&l@@6zsDAu053%R7 z_ZQ=(JAk!b(a93a&vmu*VrSfmxGB1R7Lww@_e^$lvotZ?01@JQK;nmZ&qTekn>S5N zX~-TBl$dt9>oF|qKfC2SKt$2_upXBBAx0kpq`+>8rgEnxZ{amr7_9~Shn7|HN_a)G zwK*4``&CMcnk`kBT9}S5-P1CI)!O4ev()N)q(!Pu3gkw}D?#1Wc6<1t4sByu2U3dB zV;i0}-a?XUwmovoiF6LUU&pp(ac@FN!s>kFS0idDd!(9Cf-W^ehN0&vBJzvO?>Y&g-?AHbU#tH*%e<5!h74X|`k;a$w2!Ir`5 zwmtGuRLiwtG?|Ld7u%g*krKft?&(v}^)hOlbj?`0;T21SdTo!)x85LvL&d-9p&F0& zV7}GtrW$KLPO0g_=+A?8>M7U8FSPGvl}o(r5C~5$5hgJUTXe6}vFTGNSB|vExGU$f zl%bYR3X2q#j1+ka|FvOkepcUk2c@i9dar!{@7x}l-9Nnt-*(P|uhbM*lvcd+Ncfaf z8^QqYWF+k+p;s54kYTCgX6Hv_So#+z^m1xVS*01D_nIY7DO@a2ubtZ&C!>MH7zy*y^Or72rR*gy#`q7wWv zuLMhvv*hy&9QrhONzk+a1hOe^NJR!eTzZ5u{Ml26b9EWca?0?l+m@;90BI+DYl-yr zLXT-MyjK^+EJGA%4Dq!@nC6)1hi%F6mi7=E3Y#rokHJL07uy3AWTGD)-^onzQlWsa zUl>C2=LaWRjT#*|R zM-?mWBVX%n>shmJMFthYxSwZ}fWHXcd}a5V}AcqiyhQh;ko zD8RL(lb3^Kt&#lp&kgIcxuhztglF>1DV9{0N#MAMok>uL<){|{r&ruZvYpF5u;{P- zkg9S$T6`a7J4@nHRHU!dcM5Wt?L4@z5Rch*qy(Qn)shrhQNXFD1`)o*;xnuCG)p0s z9VcL+<7LwWJzE|zs_1#j>js46DX$7BF2Vx$$wk=d8I}dC@P0$Xa1o}$2HDnj5lkfo zB2TH5|xBHTVM#*A$2D8tVnPTNqnUEd_|-Y^0*{>=hPw{6>UB zsUmdo980nrFPKJqF4U`~`qw@gyzPEu`G%zt#;_;7^q%x01=thVV-h`ii@>obuhX8q z=esAP^q%yRJ)!uGp5%cpe+v5N1{FsbdhC}=JZD!{egsR+^@KCg71O%?`coM2!(}Xy zR?b3r^3)9~u>RnIweVugGj^G@MFHjN0?H)?7~Pip+cH!A8*qpVFwbeJI1}@XimBKE z+)VQr@Sy%d4dD5$*~=_Z>@jI?sbftx#T2-+0hUTqb{`_!x! z%wPQ&miU9*o44jccLV)Hjk&5XUHTp13C&uU<$docL44&Wmg($u_lDra@-!NKKpa9z zQlW8n_clp+vG&0V4R}z^RxDBo8x2cK#)dS(=%+-A| zw|*InvN*}Q&Ye-2TNf~=Nx{Vb;RA9n<0z?(Bb!Y}_Pp1TMI*5vIw@Y)*=-PIQe9QY{c9zz{Ag((PP~$9 z6u=pZy@#+_f-l^Am@R(c-otFZ`A177@>UIoNG|D%`zXD$ET6co^YDm7`*oIS>}%3f z40b*@08a7+I3-0=sOPgRj2HUZa-MBANXUKD4F_fB`zJo@7t71+Bq_&O)Rhj&&xr(MxqWBmD2`U2SLvVlcpTgWMA&Gv@m7D z$YGjH{19m}C6h<*wlrg35sbJT`IGV?AziuhdS1fKC9BOc&Czd}s zWV~9Mw{-a-@!)S_iOxOsbv|X-l`2!)9+ELit3xu}DzeY=KD$Ji#TX?AdV|k(!4Ibf z@ZkNBP^18~g=Zx~Sjf*l0JadXJthLDVAYjc0@hNkaY*`|h-?EHnm;_rTuMNl%7dP# zezsJGhNM0!L)~nm3@zagAIcD)EiY5lAPDf!H?uG(T#N&0Yhf1!cpv6@Uv)crH z%bMJUZ6eqV7enhgrCt3HPbhAU%<6Q)(xs4kARGNmdG9r$4bFv9aAALQR?t~Xlxof~ zDCueK9_Jw{zG{Gtw6>DN{c|kwUfK-Kf!)}rKHA*Ou_WYaQ-P=CTBqsn`lFG(=)*9zg z%Om$N-?RSg-(>FL6H?z>X-?yXuK>~qej_fLd3LjNAy{%`% z%SIJFfAE(9G5j_AQ$W$=w&h7ht?(_TDrzf^IfRmjp-9gJqstCGEM0aeDL|K9>#(%a z38Vn+V9mqCN;iQ&gq4Oad%EnZfLXX~pnxu$QgFF!mIsPi1UINyB?ldrey#Xnl16xq zu!fx(u6JfQDZtK5)jKnt6kuomOFOf`cW2(!I|CH3Gn9hSnLJQTB)CCEXNGumX7e*R z)w!RrhMn21cV;&!FqZt60f$)fU!kR9$$ydd=q`v$v()hz9VG>V$H9dpPy}wa6^m>{=TLBs;kf|6d>)DAwUX+c%&5H zq*&W93Pq2(!w{frNv!%GmQl%{Vus6AoAQWHE&>xQzHjlmtT*Y7D+*vQ3#c(y>hqk5 zoo1@zj!5Nyi?l%zyiP^%o>vjz;&{{%xi}tSAaELBnAdV~JoJc+R$e}Wi(|=bPqx-* zf^!-#NxO6Tx3ZhJC}wTM_L92D-%iTkQOO@8lar72x3-8hEQ=nbY$bTI{jDPz1)#_` z>CCQjF$+>|8BR@-OORkfE7>~wA2rm+6{>`JZIBgT+`7-C1|OAAFnFy4Hg)5rvicJY zn*!RgFvIq_L<`m%9d#8!8y$63@e3Vw)uZUB!;I&__rI$;v>q4y`=eY!%m07}CL17lrUbn%pcF^AxOE#cR+S9)-V4!eo`^hrg zQo&jn-nZ?a#`+i}@b+q$7nuOyfObcXV{O4uO%DJ{AA?_MNBO4C9U4UT7GUcC zI}nC&y&pf+V&M~Ft@~Ix(U5M`j+py$zBg)}qi;4x8ff*vp{@Zj0ta(~fTA(%4Vo=Z zf32=)9nZRu%D8^)bWC4A!Ved}Ybsgoi~`VZv_B>tcbj9LEslU|HsMt1M4?h@utFd}evoOKFwt19}i$fFOJ zYFXE@zero`!xOy^Pe_3g1(Y~0qk!<^hS=~dRR~Y0Yt;{=M<2%^zyw+;AHE7WE?s{B zX@#!8;c?ydHzp-QC`x^Tuk~@13F2FG*eqXNG66D~=%-i>zYqODzfb#N`29T4X1x?4gIqey?x+f=wj6qB6Y&oM3hXez=qgvl|p3v{QLQbSr_+Qmw&C8$P=c#0{9? zXn9P=5(xsgsu?6{JnrWXANdJvX9H~;V`L>VuaI1<{b{FX2TH9J>;&{TT(Id`k(W`Zh(86Ee(+ zlXAuchnr!-1jow+rz>hGN9#GeWv~;gD|EEbAes^q{(5(J# ztz0p^dqO`0_wEUvQo|a@J|Ikp>>fPu?;)JICosb&2CqQ}YeI;@jQ%{@+p_1lxs<1H z!UwtT+=)Qmtc!IkdqTuy#7++ksIv>xUkJ^LR;!g2ISF0Yoibh~@Io%V@JVr* zAcEHl?B0zKilab_UG4?Rdt8G770K|&9xriUIK#IIr} z`ANIAMr2{}2Ms;$8iEoJ;6Gwr2&Y2rKzl_M+9uhkq6ZKC4G0My`U)r-oI5Av?W&Kv zS~sybNM-bBqfbh&Jem~XB7NpbX*Fk)0yIq@3W@2?Z1G9ykUN}|R`UZ<2A_g21~*hr zN*6;B8!m=IGhVhXW)y(NDnlP6ahSRzjfvg8< zR+D0CajMYV%=_h75@{vaRGXb5!A~dn1A-s8Yg~MQwL+w!8TuWnMx=G;0oF5&0xhb_#URz|98f;y!s#8wMO;oRSz)}Xo=c$P1yW|RU z7OmVeK@qLoa`6kT-11Xs<;Vu9@nE0OZ?QqTWQcW}S9@2`v!CULTC4FNKk8hE4;W_M z%zh#gF^t|12GrT3=`V!v<3*jz@QEWJ3$V)|A)h<)LNk5mDf!&dtdZ6s>>O!3Tkw0w4(yRT zk5pql>hB+IZO)o|)@n>@iG`q#-Wk?-&nev+lbX^RuL4DPzNHid)pTn-M3CIW$GmRs z5V=!8sbO79#DMES|2M2Zvkbzew8(2b8xA+B$cLG`jI&-e@jVl*_*F~s0?owbonqNE zqn@+(CAQRS-Fp+P@8qq!%4^*UldO%Mb@6bh!MC3bU?!gC znPuB1l|8C&#n66$Y|u`vIVE?Z4|~!On~Cg@fXaG2c!4vso$#={lO3KSYKyuP_ekUa$2rbFP)Yv)hF*-53ukvMqBh=A!nrb3LypPz2eSD?-fr9 zvb$IYDQ66esx;}DI%FV~k72OF4 z$)mzGbHi%S5w)*L8;qyWxC0~Vv3FE;H->4d5%;yqvKKJHR7h31D z-UN@B_+|4{>|xY^a~ZRrmMg)(US$1HnZX+_w$5R*jAFqzoUAi2giBJ>p~u2>T-8m7 z8%AgMPLX%0yXqopdsaps`%laBTRvupOuk^*E*-< z$t+^#T>}X|6C;ltK@lU5T=5GdkKD7qBM(pj_=HB8LRHd3zTn+IwRV^BiFB1N?0#SH zqz0XnRKG8>G8%VkqreY7xn`%UHLnRGSKxo6(q|NT>80`W(goy$QR$Bgi@&O1Svm$f zfPZ$$lFMi=SnkKG;U-+e+hvFB0Q)S#w z@C(1$Fl62a_=#`lP8ClT;&X_B;^`55<|Iu#5P*+jB#6t!c!9aNI2nyc$1}wdEj;tp zTI@RDZg4x1#>I^AEwN<61==d%s(*lJrc}zLqGF=~x_OAto~X9tBf414y!O{%%gUaE zN+^g@=Xgx*j;$8#5B5)qAW$e56L$L0{I8pp(`Cc?@Ptmq_@SLAOYr6^t%tmln3;bP znY&I_;FG?wJ~B5Yyz`iPwvoojR)>&lzvI zl^akuKWgXXtzn5yy2WtgAb4l{{$9ngy5QodowZ`M^|-2zI)|@*DWkG-zK5?JC<}S~ z58!AQ)9wbRb?&F~bLb61;9$y2(~G?}aL|Ae!_r<<$ZJ_^^IC6=Vf?#O)-wFH zAFVIv<5rYY7`1u)uhv@1T>fsBwYqsOWhCRMtt-s? zXv4JrosxNr58L_|m@jp=q^5p&PTq!^3V*Ne)Sh?wevls@nULa_RrVLFqA2%y^m=PO z^Fzu83i7TmK|U9PtYi8Sx}i)OT$1lm(Pw$MdL+p?Q?C z+j+eGh(etFR+se`F#qG>DsZgI^jIOSxk#@Z;-Lmnr8lp*3DR-+*z5xYwQ9wbHfdf zvvlT(AGR%sNs_ZreM=vu#PjlDyQx3!v6fL_V?ScAwW@h9Wd{dlr>}uI>SbVB6nsp! z@>ctSk*$;w9Fr>oLdRs2J|-KSW76S(^`!Y3ZD@>%DTgRMj>)t0{JSbz6ZZx=@IJ@^DDIL*e4^l3(@qkIWph#yjP$+qK!O<_p|sl zj$b%sjgJ~Dep9VY69A|6-TXCtc@v%6CJF|l+&QYRXUh$=iugp6`3Qvscd&IfXA1~w zPTw4v4FBM)b(Q%KS~2q(SftB2m`^BvnUp}@;&MzhkAL59xT@sh8q#daCF}<8?l?es zE(F;muc0muH^9Y$^5-0xA%7<7>CcVwGAO%@+b6YniK@O~yfJixT%SG#UHBIkNf48d8AGHtg4UgOA?a(my z4yiBa$`x`~g2F{5N3M|VxpIZvD%ZuKNIZwpv2(TIcYn9GH!mgVFf7OAU%1y6IXohu zOGMVzE7sQ(b!Dzt1Zv@Q1f8AEDa8B6lxi1FwarNvCK4_Jw+OZS{#GrFhLp)*^hDPGX zE$c$FasgOzPElb<)W36O9{5lASDZltqtnw|I#0E*3wT7>T$z@v$xODXP$JFk@a1>Vl#DQ+G_k%Lu>;?J*?>tmik!D!mv5)f3xYq`?2 z^?YnSp)S0@pO;H6Z(d9rD2@*ORer(8#QyApJeUHq;2BGMHCE?dz=J8g=2NS`Di+5P z@R|-jwz}bhG=m!{c3}q9UwmQT4FzKNsy~l;W^IPJ;ZY)Y+>;sFo)5M0_tBB7~fGtZ=0VbI#k@1#w?APv-8fI%GQc;f=T z@8UiT##?|?BZ&CXepI^%5VRlF#V@oU)i26TdTKxLR>J%W+Pitp!u;FXJacQ&+Bx0O zDkKt!PIdaC7hx3wwm~xF{xMiUtXH+#W*ea+0}n5h)3u8-@R(`RhMQldP0%(BgkrJN zly*^kaVne#q^OO}lk-#?Z&bs1?t_vMgE#<1o_S7N$$8%7BAMr+jhyG-iC+%hzlc^X zN)x~7JZ~ldPKm=jkIOnyL`zf5|D$jtc3w}xB6e2($8QwVV%_VD&^hdYv+8{1CFLdY zUpmYuT-W@MpYzvlySKr0O%Mw#*t$lHs{0MYHBL4JbqtkmQV80UYXXAy1O^xn9rkFh z{TGgTz7Ah$f4^BZbJ0sgN*FX1x`aWKxezUp#^R__jBi>SUsjF0#I0L9#+u90I%qM< zT=HR$sz3o)3=@nQpPW3le2Mhm1#dWF`j&U0OACUvC@+NXJnmbJf0v|{Qxh-ogGpL> zbIUx0oBJZ1ED0;$@o6Di#yJ6aNb0%dD zM{ub=f=g*hOvz5w_@t)hDD{7rq)Gmf7USTp_0_9QvRCSN7llc#K)R(rs0Ji4_H`qP z-ExCqw~Cb3Dw^HE*sVpfTk1bRV^r$~@~q%9nD}C|=o$i()GHTdF#Oz&cd;n=OF*2O zj>kpH!1LhnhPXNMGEs5tXQ|6Rl(Z5Qi0~fziQh3RaT%jwa}Y&g_?hCDC3k-T>%z|f zcOnoryUk3)&rpj*m_z2etYzOoYdjVa1YN|$N7mw2GK~N&>$dr+Hag zxA>T_#M4N9-0f{wTentUMU_@kKOZ7bNHav-$kuSf>xn~ z7i#d4m7hbS%--k~<2w?xNaZblF#(8<&qH*a5290CM4!|KE9!-)w4!b_(Tci3(28c( z(XO~NhZ%%Yg0y_LTq(k1nrSW7LcdF!`Li3JB7u-4AacaB;_GVxis|U@uyOQLSd96& zTV*kBhkbM^S9VI>dzl|9ZELI^1mzH4em+PspmO8{46beZ(@EhOEl16G?1O^e6={{- zDTMLWHPQ+Ta_F^jwGnkiy0&sxsB(*yOa$QYngFS4AU9SUz&jTokZ|t=E;;s6w$T;z zJ-B8P7GCM-~z&S_(avkZ4(3CIufh4Vh`Kvq} zeCCUT?~M_d9->u>$`^fS%%<$+D_Uul&HMAv-|dV3af5zh39ahC)8}d%ZLIqcVD$3J z6&VV2y@H{D0(U){X$?6Z#CJ2kMmRtn4bcb;2Li4F1jB(q@e9L&z^h)u0YDdRs*>J_ zZ)vA>3&$0y?z@~QYrx__99XDvPCu{!06efzN?;Cy|G5q<2nac_Aj)KFtkF4nV4)H0 zvEhM*8&k#>WI5BYxwoBT+|lnXGJTkZJ}eS7nDc2ORtmT(94Y+R7>E+Y8355+I0Nu2 zpPj6YV#$JA?0Z|Do1wMFjsFe?Q2Y|JZhHUxFS3n|{}#ivBD{OsR|oQCtbYif)vR+d z9^VaM-BPqBDc;DA&p+AR6zvg9H@brT!*47`y(*wIe4(V}VSqQU%EJKcKb{!y<8E(U zH4X$=tXh7C75MAuIt$>&0GXGy8ZteQ4$lcHu`m0tjZf8h&Y z{dn*8gZz2-RIMA2NYz%srxo_5YE9X0_s&=0chXHw)a~#Nt@!AhWv@M0J$zN{!Y1%L zorbXm-L#SU+2`w~O@c4`#dg=?*k(d8c&gTcuU@74h5qh2V833K=Ky|zVZw6&HG626 z*i+J2XfyBovKE?8hSbNBg!;=>x%s~i{uZ16fj?*X^M873kJXqz_~Tw$eOCStw@IW+ zsoWn#N;Ut$y=qv6M)lEp<(H+1KX}c)AfyOFPzq^xMBxwtq)J`t4=JOtKXe(D`AR#+ zY@{v9NPKlPbfKq!EwZs1_J^zY#%3ib4Q^I0!&#tjRxSdK5}TD?6gPe0Rk>NYXn^*S z*Ll7;|MMI)yC2WGY^lq`2Wj81CGP#J!Vg^=+%)AQ11froCas_}zwFXKg8wyG>&8|Z z*oBp;!Y%!jrr};_rhg6M{Jvu(fB1^Fh;4RnRuw*aVXCfffGQ$u_!H=l$Qlk$*Zg^} zbS<8p^jiO@Q6G08EJL(@?5@|UH%V2oqu_%>%rw@jIx>`x{5-iB2df=y`WBRE^8Zq! z8EL~o_hOYfJad@VH3%x`3&pb6;Mcdj=y0uBOo&#J2WtKVOf2hhJKrE4Z=u{`K;e4Ki%5Wm|-sm%71Qk)|} zzp!TN?rX$I9)~|fBB|^(zWJ@>>Y)bv#ihJ~5+=+DrK@tY*bRb9y$x?_ab|b0_!7dj z)mjzy(4CjoT$~{fqm^C#=ij}hEnuWbD1C~$`kG89ew&s1A1zK%D-Y$t6SQ)y%ykcC zMhS&qml6smr68g9YR&8NbM&=HflD|_b$<7Kt%-EAjjp?7gULigHhQuGXrOEe4P7>F z5R}c&lOPl32FBdXjMHOcSyy*f;Mx{^rZ??OQahj zDlOFqh@glF5nV)X5D-yVR=NLbR}@CzvTtLIzNz1W4!ClzU&9Wu$hj^=V3N83bXZ)| zJMGT5ehcn|fI24_=3O6M$Gj_h;$FWB7t=&}K>DfPaA^YG(!L|gz#jxOo?Gy0HYLR;tT#CDTwQhK*Ek2Z2LqMHe;+lK(ENvre?O9nw#9@gB)F90> zXKS&H6mek~7K~GBn!4T44MPv3p>&>T7*e5^t{8Iw=`t9GNMmI6$JHo>cjjuX%>)2L z{8h&aJn_F^gx++g)tVpLw49YNfQ0ku^T6X0G;-cIyCH|U#toMM@%kV&tVC#di2qXq zzg&ZeM_9wWw#Zt!K-;6LYj5Boe(!bo*@aq%aN)_pjAg+V=h+nu4-g849 z-)Jjpfwh8BbGqnz^q1UQ)jjD)s=*L?n3ZP|qqkR<)(5f`>w&2brI0sq8(^S{Or4*2&EEEJZRI5-d%PiKc|5kXK_j~5RLHXiT=Uuq2_?+Pf57tfI4 zhj=lbi$x5dwFZJJJ!4TQ(7*AE(795S>~Dr>^g!vF0gwd!Vfuq!m`?9PG=jXWxgq-xw6SY;3#(mehHm&(O1>oXqw zs}`5_@>s%Hp&xi_^69dx)Sn6T9MGz> z7Vd5I2)GHi9(1mSI^03!Ru1wb2er7!i^2w@@eY%bO#_0V>>)VFPXN$aS2Wm%)PpsJ zKE2&4qa3PdYfTsdqa4K74i7rx>GF4EI0*d~;UFXKLsV|f@gZO0%bd}Y2wE^^n1SLRdw|0dTNgd9>RT58z^#iV0`Wrl zpKI$vK*-jGC`-rqZ!jcv#a+w6kX{vA7mW*+hwoU;xpP6IOU#(e5qTcWDV-9Y{yfBR zVwXa640b6N$(xEZPG}lCB)G%A?%^?K^sS2h22lJGN;Q3K{sT~Bt77%OlV$m%7M;@g z&hZuXt%}4`+AAsED1MS}igSZUg>s-3!7VjyO?ltb+K=p((I?T-l&G5mK%*1NgWRt8 z=Z?Nz@zPy)DRKPR-e0Jza}Qk(;;U|#&c^}WynGgR?OnKWgL@Yg;vAJtFGfbq_=>;5 z=;DX>mY>&dsA|Q#awh}+#hr{v$D8}}lNVv@;OmRpY^4)#dI_vbXCjx(7Ph)P{(eBb zau;1q=pxU1j$QA{O%2CoZPx#LvffQt$Z$1y%k7)rwHVfhu#qv%rf+Yg3n(4nmUm_9 zzQtX52dqbnIKJ|V_5+(h8mHaXy1o$3)VCxpwZ&a|?W-xb{sY3hwW_HrTkKRMc_L$8_&6g(y@M-qb`DjpWPc*^2O)H{t7<`@Zh(&o|u9&n~YwQ()y`&$MdH zN?0_+JH}JIDYDC^PWQmV*9?r~QGdZ=;{($8#fkTQNegUd60@~bnr49|h*y-={O#w! z@LEFCCDZSG$#lI_G3PI_<>SMd-URnG-=Wwlv#$vshTsl(3hoPCaG!$UvP(t8@x7{T zHoHI?zc|62*9G^fE;wmIYn_Ys=e_-GH`HSHd2(S}4aV-f&uz4vMeh4h%dq=6w}o0x zy4b!HPgd=9_}_*a}C_JIKteU|OE#K8H0 z!8kv>2=Bf!(u#xj#Hw%Jm#MxkM@ZkEk6!T31z!m3z?#mlu5hZOI%eH2QtCaij*Sy7QWDTmgv=E_qj;)m;kSQ^q3M* zK84|izKNATBYoo;lWiq=begF|UT9XNt%^Hz8VKkg7+kThkv4O!k?b2az@inTC9!M^yJTSNv z>4ttkJ-DpTm&e-1D-U^8d2lq3Np)oMzAq-Bg+9m)E7+<<8Y-$^(z#7AO{ie& z#3%q}O^SL$XZf_jGHxtU^-@lk;p~l~= zZoAG#5Q!KTdWZpac4+zwqWcM(U?3;f*bB+@@eidno)>4E!sd}?XpLtC1;ayMLGZ{sayKUzOvw4iw_H&MwbV+}43o+}4>61jN}N9~>IieiER` zW9>;RY3&C-^tAS(owW9k#IH&GuR69`k>ka0YVBVU0BY@V>Gc_7oQYRKLNXn&P7YhwIzMu{$@ZzBzJo?w)rc2xMArBKa!UIRZr9deW4yDQNu@BtW9inOwE8fO!4Zd z(Z)lM(8iM<5gVTeI;yEHnz=!RDXQ=YbK+{uBX|?swvBy9SVXyft;_9eqrfS*kDA+# zsXG9H_!7`Aqg+gl0qQniefteQivwQ;g1)7-1do)sORJ)8(nU8S$q?P0LY8{!wMTrZ z6+Xdy!xQ~gU+5oE^evQ4JhP>(ET@Rk`vyFgV-ob(P$*&d6*JGZ+2l*~d2>Z&9!uLV z#|4o0ZEcHkL!Nj&(#%I5vzJwCKjw!zw2ftTJt@Th8-?bQf(hmm&pf8c&l>=tn6|b^ zCm|eu7#JLWGB9NL^FV{z*{U-)s2Kh)jNvzqx0HP(J!)|%6bDEAA4$JIg>(ex-n#t>@o8mYXG_=Xf7~$zvHlEg@)dQsFh39gp=1 zyNeX#2yXi~D!)njx+bk8qFn8E$#R9pE% zv!E(}6lbf*<`66xvCZ(+r6saUU~z7BwN(!>+>CyGXBw~G&DMxbqX;2iyI^?p!XYk~ zq}QGDL>kO@pYV)29mBG!bhk}Z3hfeHDQ}L7W_u_Su~^vQi>o6pt~S1Gt3zB9oiw(JV?u0w2N*+Qch$4GZRR1tZH+3>G8gf(lZtp{7cHq`(#H!hU1v z4h15`@rnxXDPve(MWVp|Jv%#r!wT(O-eBg-tG(kVdx};!6r~98SY2|dL#mW7?H?z zeUxqz+CGL_mR|1SSxP3=XJl zFi3^5LbV`cMbyFrT8~ix_&SZXA}p-|Hy1`~xXjQ{p7FM=i(6w%v%G7llM&pOe=40+ z2owq@75G#Jw_^z>{a-ES~qp;!PKeo2S|m zA`RQ5`}@-bQ@}J^H%0*{>k~T5I}MhF?=MBInjudJmS#U>rTI_OZB{kvFK+(O=3wRi zGSp9)$WVg~{X3x%e~D+<6M69&wxT6{VCL43;#;!X?zm*OEZln&@uBjFtS2*U@rs)G zmpqK^wI-i6%k~yaaYvm(q@_PhPa5+{vuzjEp8tw(de+)WYKi2U z4?0G`u^ceu2{=eA8F0J{$}LV!8(S%&oeVghh+oV3@Flj&kxRsH8gNVz03+b|k^Mse z7;C)m+2ol~Lyt8={x*=H`3n>PG=J}ds)<;m;&PB#O;QiNan-+NtWnh{aC&3dMXARV zzp&X%ZT{BXZ#$!wbib|sMi&#Z$n#W=m1lfns|Uvuax-Bkr3FwC&bI|=kIq*-YN5Q! zXMb#qWkX0|QlNbhY(9#^rFn6WapKPS8j@>(Q|_Wr9-=y~%dH=OAe?kqn zR(5|1+X!w|MNCuaZyD2+|69g1>p!!7!&Z~FD8+AdDSl%V+n$00Nv^<|M&=##zKJzlXN8>@Q+mD0R(|d ziPahZ$aB)ONGYP9?hE}Q7kV58Kr8i_;>Q$CUjro-7;c~S`bUZ-`5!|pBG%Yzw2`sK zE&*^8OUw_paquAT;vZm;E|KcUb&fBtZ@IYM@FT<;hHcVgjWYz3f0nHwqX3LGPU|SIjd+J~xyIY@)t>=Cwsu!cVpklUnV$3T)EuZ^#+MvMbwArt=MP8lusuz`D7`fRN%tvgron$?UPzScRdU+Ebu_(GCGHd~`hDquS=M zeFTb*+V0tIw^2iP)Hw!3&daj`fb-H0>Lna?>~7mb_KegME=GCGGxpdbi$6Btx`)Yn z_D5QZVhVl9k7vH`SAm7S6%!9eddWa(-+!RF0@HUY|Tx@1%`|mrwkU{gP39{ZQmtExV9J93%m}fqKZ7v-% zdiTfArFSRlB)vNxFv$b0d;%DtP;~Eao`7R=#T7%{aEVWT+{a(?U=q$oVCch53>5s1aa&OnAc)Al1kSm@dE$A}QjC;pGdq#_WIpM+_Hj z4f0|be9=~o?fAc8cz)3qpBF>VOR!Em@qfb*aM_mZh5_}cI*dk1dy;w=^vQM2|JHLE z8l6R8l5&b~`rS5wG1X953>b?FfYSowHt4TcY#%G8N~&&AtB@8r^D3yQSb0|_wR!GM zTRoRSjaJd1vS@+;B1TQ^s7kAvObXDdwwIXm+Uiu*&8h-sVO2db>!x)$aE_*RB*BlI z5B0_Qo5;D-vI2Uvtnja}tnhBk`dhF%n&*jbmM?V6oaoT5x}($W>W{!A+SPTQSpVk> z>lPE{ zQc2_+AH#HRNvb2y%}qW`Ua|>I9x#3Gi7hVDh*b34Tw{W%%AdCSW&*gw*NAJjBR}-> zc4t*%i+4s!!oqA}Nv(tmVVZ7A4p^FwrU?v z!a^6*5R2jhVyhsC3y5vv7cL;SnRxIWhxZ*yi2iT^@kp_+@VbCl`@$9wsy&eRHrX$+ zb3`b{0^*bbb@podizPnJ&u(Wo4Kha7FU$+^^c&n-*uH?73K??)^L@`vJU7SDNquJG z3A-I({Ocn2)-1xaR!KM%tk;_TeX2FwD+Lo@)4|b`P}qA2%E>+=iov}LI=j2ks&C^Z-E5qMogWWw$j ztRYO$d%osiCzR3eE6Kt=`+@O$sQ^xYdlJ=JBD7aboQED77 z6JnpoP7vO(dq?!{9We@gbPvGTy?aJY*}Yr7y7!l7_uz>v>>d!s?h&G-dwHO%!tAk( zLLvC7uprzH=`lYTKIhU>Y>|;#&gqwaj4uhdcXUG_ETNL^l27j2j+XEyD>{`v@HVS( zDm{V6GQIjU8zF%ak3|5a%77`o)3rXo^JC&Db-14t&qz{VMh$*GM*mGekI{bxYQpH3 z9AKa@I$`qTnEuNU}SA%_Fw3G|vPbssxrqp`8dX)XALcao- zueoz1ls}8Imu8ztGvIj;1n%Ayc8_FPY0rz6v)3+b%s4%Nwa!2!v?!`t6eA$v!sNK+ z81*=MFjC9tGEa=Q_cqfa=}Y%UgQ>blPzX0#lGbxNFkp~p*Dqa<;~AYFbkTikh%UHB zYEnsRC)`>-%xKR_6*g4NNS=9ZlJ#0VG@X&X< zIE#WuV%`-yMYva`iC72IU`K?L0e{A``*xUER0s{wz@bQWNPAwgmc1h5q9-Vq*?jUa zyL@PPo&glUg!P!-H{T%%H*W7IW}hs|{p0QHQoNCPJ^v)`X4;!)r6kxR750O{JWuG| zH6`kQ0ze%!rOlO|{hFD!7luU?d}5gGB#nhQ&p2;V#bO227qAMyXL@El|^S~VAeH@@vPn3+&c z``n%qk{|$du!;#*S}KKkro&!~?`?0Nz}k>T%3^yy?%N|1V4ehOwQv!xjP91CnxJ3* zvA5^Zo$QB{q5N(qdo4DckV46%|C?mqK*`irYVn}Xb}gT>Q3mm%DfTLC5Fw4Cnd&K; z{!%o3Q8Zb_yTDyCwv4nYh-?;1+4S|04c_R!W3_K7v>gcXg##QgX9!7@(bj*HQMOA) zeSfuA=Fx2&etbkfN09|~dp_>Z%7NU-H`(oV*haz#O6;NlP-R*#CH9k$*mCxm)Gvsv z-~yk}qn|uvwffbf@Pa@eyP4PQX5U_@Y*7%{jaiN=EE;|}ZLScQ8d+2ZFnOk0wW4CG z355#iVNc1YLaC*Sa?{K9Cae^pE94W}Q~;=a!isY1xAr6@gl7z~*UF0MY452p3u#sW zF{zy;ay6u=`+R#oGL~g^?_)2n6nY&<@#;Gr&Dc0X6lFBVmyF(#GBVXF;x~Vp4L*k2 z!ye4P+vW)8IcfP!}AZ(z><_iE7*>GKCLr`S=>OqHtKkILIu&+qd3~RSo z*vD|BvNZ$>4kktYswf|s?Pw(0#PgHcj^b_&v(1kDnm6@xUEV`HRk{rP)??N?z# zc=#*!+UyeH31yw*OV+ns`j|ZpCU1*Z?4kU8nmr<)nyH-O)6(s*ZA=(IDZfhT%f;#i!Q>e<8WW!$P4WB`J} zcfo8@k9iD0b8}^XzHfv*Tj|4>jReD$MmRwW+KVS<*qempu?Iu=rU~{sU=B8C*i-W> z^zMAaYxWAPJ0UuGqrFRr_?v2Ws?NTx7|$){h~vMGvVX&7lU4;W1~Uxg?#}lryy?+t zto@;~jwiitZ_Ius1W`6W`jE{wl#MV0yj&kGng(a`CP$f(;1^fH)#L-1d@s9DS zp)Azjm=++b0X$)*&nPa+A6<)Ds|de6wR+^X ziVBums($`brP|j^g?FGP+dHvVq-j1S6@1V>#)aNZsd~R-KcJ-Zn(snHHAaNk(*4czn^LCHbMRI~7c)2JqJJ+bgjFgcFq3e?6s@CcD#HmsYze_D|Uo(kh>V zLd9O_!tEw1eD-MH2lflfR=#Q~IEU?o9?EO;zsc*MOJ3k09Qo8IWdq+g9a4lF2x$~h zuBU*0mYvAb1r$FcHJLpmtqLNbdoJ8mKnrHsZ>W)s-jC%7Ro2jhiMkXE}alJ zED@8I01183lx109R}^Io*SNhAd!3L%of+jrE|aBP&}gq-I;teUHqBmwH(r+-HaF!7 zeALx$&&Ts)a!oLTk6#EwG=i{#vYP8DtD#a>uj;azy2w71eL-3kL{^_lS-t8eD^Q^z zes+odjCug|D4eJ7OfAC>5t=BpeLjSCiYil09`yE!;(Yhloq`MG=XUX<%OMimMVLTw z-S8CGb}6ncy11^bu#aXhnT>f+5OKk|TTolLA4yeLwb{+FMJ`SZ09b{;0Ypu`?~O6-vA)qY)KMgC|1FJr}D%ycZub2oz80&X{n zo&6ae@*Mf2{b%@mPxUNF;?*Ve&~m}62^)O|p3RHnghU-%9uZcO_g!bNpI^frw{&3PF%_fLQhDPba^?_IAApFM|arwuy9dH&rK9SXliJH%pL%8 zH>v%)3#2w_xBVJC%spfer1e@5f@rXs1o-fU9RhIb6@oSLOZ@iI*TVU#z4kWwRjmd* z;jlf5H6Y}LltN$jlu}*2CkX*kO!M~JudxxNSwX}!)IjbgrkQ(d`}01Bz)CIPWwK%6 z_Yon8Vw&emOdm@z$wgmf-uE|q_58|cmXy&fLR-j)4>|##X#7xTeX1^(>PPI8*l(n2 zZi*wN^+5r^Ex3Yh3Jv2+FH|eRcOSJ|3S9)8JnaX+QvA>>LEY6`0ete0j* zI#9hKMU*!Y^^}i1Zm%aiU+|5d6?k;(!hz~ls4Px{Tn^xCzUYxyB0Wc-qeeJ4KpqA- z7$6P8$Cvh3f)^i3e1|8N^~WszthKXRpT z@w;Wn9D$XN`dr!f)dT(f)yaXz$mgv&LDm%C8HShR6u3Q^Op^Y3`ve5i0jwV8It>#y7bW=voAMZ$DuMyfPxZ%D8_aB$w zmMM;WCneK$Nu?9ID5)8qk{T>~qYen>86hC5)q@5V=HHqe8`#IBZ9(L`6EcM2NiR~vaN&} z6x176f%`&P*YO&Izk$f?E9Bo}HufROcVQ69`uaJ?a+{ zSm&2(mf%*uAZGH3lWq6Wz}?R;0vyNTLva%W9ramz!ig9Sr8Qp@?(nkvsqu^;M;+m* zCtOU6;g*vpqj*j{%=FF*Y_;Yyl_z$MssaaaF7CQG=T@l7fI(H~y*F?2yz%p@$kUC9 zgh4SvAp-<}8i8hlWB9b{JF&q^V?Hv(ai6_G8WljNA*Jp@tu_vEci+AJYWeflVU9h@ zavm7&sKYV|Q55A;AEI1|q6Fs+8_AXV`7lQbKCGl8zx(*=!Vnq!E+q6(QX4!awSaVI zZiw*ZHM1(0b}Up_Hfeje8Jw56S;p}jJ4v9R*3J0F?r?r2Fw(I?$1e}b>*`7 z4e$pQBf{Jc@#&|lFY$8Gj;o9m@!T1(#z~2BWU?lqWODu|bwEl310a~gczzu>Gdt2nGGKi9zF z4{y)GOibbB2Gq^xd4SZ?^V}$YNhro=IR3*n5rA0EnKuZ47+#R~{55@F$!cBG0cWaC zlX^+BQ&ZIAp?GhD9VZ1bwH#gGt9u!>997v}0>`EK%}^il(6dlnr`~+~%mn!b(76eFcJagG>0JTdoAsg^v;S zuI;E6>V>Mj#z=d(xwfO7+MopQ<#0r^MxLbV`6AWIMXGFFM+L8>Ha|@*qa5cW>pEJg zFPGp&yTZAzeisbo4-LcbRM8!1LjIN+;qXJp?{12fOtVoRhO$`B}B zD$vBV5`aSUW@oo7+#BDvqf!u>wg}fy)yL`eyFwMjl522W*f(QY(C*~vT#bX4S z9nVWAJ6iKIog6dRO;QOxP4c+^kGAg&tg2W7=A4iK*#y!9Nk|9~2tA=gAcW9MAc5R+ zZYW8pMmh*m6oQHfs32v*2G~#$1yrJlG_gN4s3`K(2lj#jKJ4wAnLYQOxy|=|iJw2> zWp;LEc6QqC*|Vp9O)?E=&JnGq@oPr1@LM?4y0pMnA%162e8(Z>Hw2Kpq5l0SGesp> z10WBGL;!gJs2@C_t2~-5LaP>xwk_902E(Qxk)EJ}L^^B0{G|6vkjLgjaLr*2=rvjo zxzk|_a25u>*^O@zYG26nV<5I#l1C`XfrH9UKCD=F(#FdzW8viaL|>jIL3m!};kmCE za#H}FDmQVKn47dpInHKF7dQAaS{{VatsX{m?U0!QF~ZEGgF5GSg}3+~l=U2t-FNxY zzds25eIEKPoxzkxi3u1`VtQ2`b3$Tz-Iu}3K^UC&F!;A&YZGt)6u7yjC~*4#66Gx} z+pmH{J%L+GMdsPESr13F9+{wC3=B_Dk-C1OkDZ1hfZ6GZkQRw%q|RWt6sgk_gGB01 zi7HZm5w9Y3Q$WN>-Go!XNS%4z{n404u=6cp2Y)qtgN_SrkB|Y6Q(0g ziqBW!FN)7sB?gJlY2~(A{_**pa@!WMlF3H#`FacB=DF^MTE*vq^y-DITiB?nynQn4 z9&NB#sBj&CXT|zN6|T#sKyKN^dQhakKT$>M?TKpTaQ9T(U~$A3>p9S`v~?3FSwoqG zg$FcfpTP^>-%Yc%6#r(e8#ddn#@4czOGfB!;uogdhKVZ-i$u6&64x7BwnW6Cfry`b zW>`xR#af9tw0aTmceQP-Xv46Gct&F-c@Ne=#GwI*=ZHb9f#^bmn=ZYT9!#gWF4_oV z@k?H;gGyeD6IJp;Y?Zv`Bh!tt-E3RCl=TSZ$!jT7kd?gdn{C@FXIx{gi|#$zu!h;n zw4=sz;q`@uZ1|LUZeswZ$fMWGxi{Kc$rYLU0J(UcZJ~IC;bPu_06BM&Ek!)Y z;Iu3{B#+LAz zwrFAt(WnW?$5vjNkl8mw)I8TUB;5aTOp_)mz|99+%PnoiMrXe3{DV0<&Xh*y14xv+ z7TZP$4yDnZ`)x*;<~_K>OKfYza3&@VZm>MH9A<1VgIj}}U=9u{VDG_=`@6wa1Rb1N zGYoE`rj9eE!EwN`>ui&}#PZCVHUPQzlyjcf!qvIZ{@EB zL23-?+eOHlu=v4qQyjp ziV;O$l%xvT#jJrs$~D0Tc7qz2C#0lUAtgqI6wah_t)S=re)zll$*+q=kOPm9nU2NDLba#W}D+%cAOROu%T1MQEdU-{MOxA z^NIrwSM`%eCczt#k@wi@%h%UK^8UnPp(>65JS#qigY~#q`Sb?ca`6l6K^ggnB&s;z ztKsMGuoa2uWXm!!F>7!-YbTbQj?iRD^6w&b;hWF@YfwRhObVgTaZaD_K@PTiRDFVGTqT8mMTvoFu7e2&NV+ z8a@M!_!SMTgDM(cPf|q#VymLzVPyK5EV9yRUvoT+H2x* zCNi#ed;e3G(NOGWq-oXL=N|Cx=NXh%y@wFMSG~L+)gGr<7h3hcfdGmdU{l$V#nX4K z+-}pv1%`*wUjH&#t#`j<4HWK6Ps6eCqx-W`L;gyJ7x?#Qr3)H^L|@zk>SHpPfrOFd^;(Y+QZWR zfGsyRAU`a6I6ulTK7d5o|_(Y-^=0kZF&=KIcM)L2-CquraRij4}67TgNzSjOHE+@RFzU z>L&?5rciJ-fcLpo5&Qjdv`%CsXdVeXomO7)6@QAI!=8fi<|Dq_rN|R2?&G)YRKObkQ`3u{LR{ir9yf z@mOI7v(^-qPk|v`g&4sYhRJ>3jxUneJxl8tO8R*hp^SsinxXy~rX>CQ0O0ufrr|MO zXr#hsXSKFs7?Ygz@6$P<>R(lG@WNZ1^FNJCm+L1rXfH~_npWz!Q)Jz`PW#IpdEO)QnU%NQ&vsBDT!1(B(2ip5`4HpQj}DVzGAu-)lf zHuaIsU$i|g+GB6`1~KlYXIcO^({Anf0n|wz$f-eTr(=ho#C>JzRyNk|9tPbDf2teQvu(Y-0$- zVRNe5G}*-(s3$Z~{qrIUl_hW5`ls~9-@N?EVEwJ~2d;N`RD8vnC|JCQ0mIpaxnQvJ7W6GeEMWr~)3F${|G>EUVevG3r}2uBA^jY?^N zn52ukD(rGLD`Fhii7ZBo9KQns$nn9_$ni&{nT}t;aLMt9r3DH9jx^=?pQI|s9|VZ# z`29Hrbo|^ja(t}=e53(Zvuyz{(L6Bjr4n*}Hj!>WM0X(PUyqc@`8VJ%a{dizL7e~i zS=;piFKb#`ORuJDG|v6oc2VqRBc%n{E(_ome%(LCE=(T&wkTfy@*$k(IB4;qAQB&d zamBOp*hjWwqMG5-+U8&K+&SAw{gpHo9lm7k=;QEWkGq|&?)+r1BsWtRjez7vTMZ!1|Wfc_|`T~Twzd(vKQp; z?`&PYuzeVWs367}z!9&WGH*ascmmUi+rcWHO;gb!J{{CY(IEkUQFKU1r|6K#9<+P< z!If<^kn=l)X?Mol{&_e)o&5p8Tp$ zlUUjEzwiVm*W#nfgaC{y`lhQgVe}PSjBI)Zs*7UQjSRmqT|M3znXVqh2P6ZZjDrX9 zdC=F-gc-gv;a2I&gb`bra3%iAlP7<)bxrAuzqtu#BEYRc^N?3eRl!fTgPORRwc(D$ zmQOm?^U3SyLgsypgqq62%sbj#6#@eW!pbsJM0aHMys;d z($y0CHP%3@ve9keN*~*wwv3RE)6K1mPZnlJj>k-}{ZOdL{fHA23+*o1Y^F zwzPBM$M(B-avE$-v$xa3nyVew`pvB=1g2B9=0SMIH22~e)Zk`(&XN{+K7d3S zr`ub4p+Ss*Y8Outy_~LA5eL%MD&k2P2QF>~F)2y?`3SJo|6)jKbF;)LXQ-sb3Bg7* zqdAp0aIWBJsJ*Z50z9m6?3@5pIPf~ojxc+^p5L6yWZs&)jUkg@Tf7D9E>r5;Zwc88 z($V(ReuhudJswQDLrUKv;D8bjZlzXO8jn;_^ihjgn3`_}kz{7GuM2A+3l`eL<+yNr zn*NSC>+f1UC5SOX{uXX;p}!SOmUBL`H2qsy6Vz zk;NT}F(6W*nAig5o>D<${6(ptaf={@;-QB2+x)}-hDP>{A{%?VqZh6cJ6HfW({&qb z75-lpc@|9->H{#T=+{Dp`lB&fO=MC-c;Th`8@NYm&jaBjg`E+gpg*RC3i_j3P|!~Z zMi2{^eCX^K^;riM^)p+jsE^nx>feCB@@1QNdrnF}{LQ0&TLifE=85`ycnODQGUvBOgu3{u97T?PNwBWf50Tc{Ck+9(DCNDI$9}-V8JPO87v{1qL3D!Vf zvb_zwKC-a2z2WAz_GTe3w+NN?j$_)2R~a5T>x(Ud1jn~wE-)b90RM-894E0S>8ze| zRbZ(OQu*<=j`@DmLLKw{)|c&9!Px%PLM_sO?ZnP-LMQ-Rb(V^ArE|WGTB>ut(JigH zq#;JO3^K&zmL6VdU2QD_^TOS0&WjR&4PV*PzhiZ zlauCr1OnKcp9r}Mo+8nQxUOcnG^T06#&nG}CfePa1c;adCUOe6$c5Lc)kDFSTr4vO z+{dsb)T_#l0j)Nk)DWhD4FPl>Uw0N?L%INaguqSWIbt| zuLc|Edo9U4L%^*mm!wr#mSR>6j3L}jOefMANF@`fSvtZQ`0Lx)+ltG+%)brB{5Pd! z?FM;wTYHC;zvC=FYYUl!^Hr8{uy2@V&cJpx1MrL>s=Ym5@Zf-nBc25(cMPxSCy%zb z7bbMh0F$A-(FK1|-sqAMBySweWv>)-87?J@nHefsT$Lfy$4qK03p(3lWbe-Qf#Mcl z)SE0++T;t!CPOWV$3thoyuv!DyfPp|S+z+*?#s+?Js#xFM9`}wX%jxF8oJEknk&7sbckjJlxx!74sUB zra_o1mM^#D*i*%qz8q01dxuzmh8gOZ z4`)f?-UpBOVFOQEL5*VsiKnH}txBVJG7Mt5B?!w0JS=@Q%2;9o z(ptZUc3ANUznP(M)ptXlO`_v;OnQ%xxs#J=LJ2b%X6=Vh07lX1MhmRttQNS z5upgUgk<&BXztmvdWgMebOQu$`lwEw)fEftL*oHCvjC1~0|z<^$T^T&IKX34+8Y5> zP&5q0$YElj3PO6chD8~EX9RwDWcLu#yMk=oHa{C~zd@8TRArm3P1|G*p7HBpt!2VU z`$};QYxPmVJf(syZ-hnEO#w7nmZQbVp#}E1=tbDeUm@dKD}{_>M3tQ|fX5;2`8LC+(Dfz_B*5(y zAGUUfuIeItH~n?M!y@ZtP5_In6RnkGPqy|*MvFrppJ{Q(5=9u35f+Cn>Q;abrM7-V zW&$eH+%e3AUuwrNGf2Aspx7SZ)ttL*Fy)=Fw>vFix^HIz-0W-lYEB+rW*a5jIqXi6 zYf(4%1}%V_T}9tawP0-Nv|lBPEd;5y1vAZU!A!LgUuZzSpW%x&U14b>Wq+4_OhSNB z5gS}a=0RV-bk91Nn}?Z{?o$w3rTcC83;(%lQ$-X+lyxz(@|n}I^23Y6qf`1~BhSN` z2yiRfo&T#!$JwWAVmoWA<=Z@_vUg9gM@HUlk%g)^{pGw4Ro_prhr)+TtOoiNi;TM5 zC_Hu#LP=!vnDV|%d2HUergBB8eUW&H^}!=i{^&1c(!;UMN85&L`%vxK8>>I7C!?CA z1)%-7LYCEM+l9w_32M6K9$8p!-z`4(VVhz}X(krdSyF-XE9-*3E`CA)`FdZuVS(K| z1^(=0`y(R0jWsJ2@uJ(Ph!@QoC^Ig9FROuUIMv=-Ya@TDfMnc`VNi%@-6lwN)2)pP z5!+;w8TL+0apq1J@T45Tc~Z#p0VK-s>Gp|&L#=?`5V&JN7j0Cr(d{bxB{7xBNW&{P zhgZ%Te1^9~4R0C4py6E`Y2F&Xb1c14xvA&AHkZ!Ju^FCS8u6X&)>e zVDixV63^ZUhKz@9;Kc1Ldx00!($GXpLzFA(x1op(-@ry&l~Dt1(b^SxYQ8;7W|c;E z74I>QWJm8Hz_O$6^4#(fw`geodgXt=s6gEwX1bw~bT95$F5)B72#aAf8FndLfT| zJ+rM_1)jJ;0F=cP_PmAoeju z(6jSB7QoH4*3ZsYtSOF_tzU+3obR{}65LUXg-V> zwmA+n=vUjY4yv|!xUJgCKx|dpM6`!r$K}3T?OjriAe5Ifk215cp6%n6`0~1qo~;bI z;*p4&Y>v|g5m|rFZX+8;G(t&K-4rIvzIQDVtu2V8TD~O$DE@&1;7MzFd_C-M65b{Rr_V(&=p_4UGge#Ui?+CPgP~M(`TL`F0z2emjd-5F%;6+J~^P;5Z z14xvoH-hDGs1^KjkiA;)YCYxAt@cjxl}+~bVk482Ms~Y7vfEh$1@o-86Ic zKEhgQcn<~{-jjTIjYqVIwT5RFUBHlr#~IS_d;p2^V+q^g9BK`3o$v6T6Q42>X=LZj zk)2}=*2sP~NA@dgrIGy@WMp+au!-{?nRzT87}Cf%LmHV6AW??iZO;=NYK`ne-;s5a z(f7dSYPSv^W0o|$><-E#vsr^@c-k;odau2?7{MB8bVFqHgFzFoE%*={s?-ZiX^5OD z4bcaXD4XqofXSiO5Idp_`EIl9xYPcqSjFU|(XBK`w~{qjqq|d$?rzpdqucs-qkAa$ z=*)5xn9}GtQyQHQAW@b-0QreSt0!WF)JtFdn~;yIh@g@@o_l-kSHH~7z~s{X?#0cl);xx zVea&v?Ij(&?xw7jUXpLwUKLufaSEY_7I0K(HDVq{g%(Q!?wSYd4=S|sJA%kmXbr$$ zRA>zVgMqJ<``#P!X~1)iYijv?0n$g9TvmCe;g;v@b!E~XD2K+QB<}S$ZgdzHz&(I< z|0Lfgvi=j`Ju@ses&EUyx8mxKs&M<}33zh9lJ&p>LBGDE+VNP@Q58Q_M%?L(wWXsf z+8$;NR7XGq)e#3+1J)5bG+@037vQdc681=f35IpVEa>Z3N3ag6ju_if)e(rT>WEMA z*DTrPX?y3CtMNClBkTxpPs!8vwc=|Apx3T!zFodx7?lU?`SFZ~dloCMmf0`B6EUq5 zkS8nD@fTU44uKe~Fh0tG<>i$o9urW ziu`E|jem2%4TDoj3%WmI&yj`QwP;xK!S6Bg0Y#J9|FYlQr~`EOvqpxmtTCn& zSz}|wR@Qhw{=$FKj-8wxc{*L*bIcx{(iR)IX~rYKJugo~-9;bkd4xg9KI44*J;X53 zJ`)%r_k5y)DNG(kWHQiW_=^nmm@?3Sr#^w3I`!G*gnd~+6a7cx7kuWYp)7pS{;K#l z9}QaPdltYwntvu{x_Q=>9bSeN>DLw?Wv2lcSA1pKX~ruMH0xwp6GnFWyJ@FCb31M9 zixropf@Uk$KtU54C}?(N4P>cso!Gl>OZ{0{YCz$XrCxx6_*p8$SC)E8S!xtwD@!d$ zwio2glMpw*LMS)RcbIly{nbg*r;(;JNy#|h_U$)?VUTe$Lhk8At&(vrM`SY275Iyc zb43~*)ueLAq-#EEgZQmxgaRJbtHd_F<0JX6vxXmh0F0Y0|0P-#P4%x#N zb!9~X*j4PxQqgYH+xB(hFzZ29bPzr;bIvwGKai!OUDRoN(=DgriSN6erV{XwAB_MmKBv~|<6X}?tKf@tbX0HPD8fyY_fW21TDQ!>0*0S^J;E)j%TwJevK zYFVZ(w;7^ckRM!+9LNur<1g}q<=Fvi+3E7(|JWD$+y0buVEbE{q_kJ=mr?Zv)U;3_SM7S^F zsQ`$FW)6v!C7;0ph zGk*by0-0#N5%N>m!owavl$1AX@ z{H`y}w}R0;M>N6wvi`L9Q3^>xl5o*oqAbjsof-0TXY0G5tqH)c@k7x?R-X z6IdMH$Pxgd7|}V3C}_3lcl(GCFfF-$ z^w?y7JHR>9S9g(}uGm|MHHgr=; z30;F2SxZIMoHulX>}w}^Ph0=)j$$!^djdYcEa|Ksunvd+Ir8-(;255lXL)?19Lz$k zI~`(vq8wa?vQiE%$6u6#%ew~2!FSYm%<#{_gBmziiluDKl!F&p05{WhD{G#E`?q!G z$!5>P-V=P5F;u=84q91bu~3OP0MCkBx~fEcLO7;~9jpfxp?7yxX>e;-m4wd?Y%p9r zcJab)3;cx^z<+wHrgFP?X&*h|Bcrrb5vlvM|BXNAJ*0UOrHsBHJc9@Sv|Jk?M|a zpz6u#!tkYR3r2a8qOAYXRbnbd(s)ma7io&0OS`G~d7Urm#lcA5Y?03X)1HH*k1d## z4DY^Irop4)9e>)}hHUR<2GE_1ECtYef|1?bO{G0B3rc%L7w=3r>6TV%T|-^~x|Oc* zjBsDF$AXc4Q<2sFkVQ=$eSL{i=KBJOsTlf|FWJw6k^QfSY;u}om^WExi0E!c&&ckU zt5yPi@!YFdK;o@QBYz15LVfOxdd^cLb=rJI!Cvsq_$2|YgSvLbh=PWj03Y`@ez|C~sP5(sb z+}_erPp)s}7$dH;Sg6n$fM>ubBKWkxVIxXf4%o&AC$>!5<-lcAHR2=IM9YjFG0vJSGpy9))-QaQIu{M7~NGwS34t5b%US-D{f#J^{s<8UChbpY7 zWJ>bIO6cjqqFsn!d@wwG2SWLU2i8G_hj)6Y@PODVJPbjm-^oAwIohRsgHRqG-en`T zb|L7y$puVU3J*2BS=p`D81o_ea7LG+LOBCaRG5eWiVC3PotGTl<*b(+EA{Jos)}Yg z!>6FIv}cf@a7#}L3i^ue&NA(O2$ zow>~pje%_aI3km+zkt8U)?eu9Z|h}49RGhFPt&)fKOO2gAwFbsD|fK~ZnZZ?F05`jeZ+a@9SwE+!u6$;MW17%=ftuVK$G9=~r`siZD#!V2q$5&Z z9O>vPl6+9L1i4`XeC3L+MEzA(7eG$y?2FUU!qI;PbAW|O!uvraBQJwCe=oB-ke6w1 z%j`l&apUh0-Vn~`S4>2{_)oQezCIcD&kqzjqEo&>6fcisv@DOKk8V$4!qa1x)4rX{ z83y^zVg?}JS%?7gozq~`9^cv2OZmuCIte#az?2Z$fc+aBB-X5^jVBVDd zb}xK;pp#5B9Qoo))`zaxnK0WZ6qgtj&MA)uNj%q<#90K**AYJJ1y7jbx_6Y%xg4Je z(HnH=u9@(CV|s_d>SSIAv^`qaqHw7Vl=|Klx=~?6Z`y=I)s#q3h8ED7K35X_RQoRb|bHL;D!MYa%C`AA*4XNn_B>|{-#n^D>}*<-4s zvwxS_L+WOUC;hRTO@qwg$KZ+EPKL^D(;OYdivhY!2RQEnr=&)uSYt8|&9QMvyql-$ z%ydV6O?=1*qLNuh^JZ?|k#2)J8roFETLH%7Ul4aOJ;h%^l9Zl)z+aS}evr{uJ6Z*N z@CuTu2d|G`?O5->db??cW0h!_!<+>lyoOr?QVIoFWq0325o-XfH6}wS7;8^ zT+xVarUU$ymLor$>&Qt-!GG`+P!9p__~LnAYw|qDCQVFXZB%tlNSs-dMVXh{>dEcT zPYe^~j5fW_w1fdDdn`f#1uW12y}B5`(D9(So#D~>#I-r)vH%jbY>S(WhEzdw#alx18m%(`c=;8UtGDp|I zJn>Ct&XW#casVB*to~qOmk}%g*F?a>8`gm)Dz{INi5l5QZMaQ@3EA;q(NZ?6ml>r2HdfW$IT@^~yYx|2b@M)| zs#XG;mwzl~*s5~zk+Q3F-rzW1vv0EZlh>!7PN{n6M#m$Xwn-MQa`guVD|@uQU?7|{;22-@k{U!*XiN z@A2U&mMmr?lLfz8o3Gz&n$1FGHgJ_Xn0HS}XN7qPqs17Dr967mVysVJuzSjOeeoA% zyS{z>7i08|!L92Z0bXQwY;Y_QcI@qr*O=nQSO7QE+Puh2vAXoF;%NEN9S*0MVo_Jw zEdaZU$$eFJTf&ejyDjXivfF$>fNu;Y1nEraZ5nj;OK+@$N^b>y)s_NctMs-De@&Cu zZ*gR$Ovc|lyNyPGTU$@t(`4SB#6{vs1|@gjivS8rFceBPX*O+<{su5xSlV1vGko&a zfAtL#lg{>4yWqQEW-q{fLr2F?hYz7+Ksv!`U_d(7R|TZKeN{l(12jE*T8}bp@+P`k zla0nb)u?;2uh?7|0@+s_{v!K|%MD^*o9>3KZvJ8A^m`o7i4NG&tt>RHHWt9mZ{4l6 zte(KM>dGBw!M?t|7yPx4#X{Lv0G<^&xyrtZ7&6&cL9Vi|;edel6{IuSS1xq+voF>` z*;mV4WnYM`?CW~`l`FU2=jfJ_gTJ|bwL*YfWgh!l!=Pwi;${SpeL-4$684bLytD`9 zh6f zN``G27#ogz!cqBTU|(YoGO%y(7a7<$!3^xlhXXyFp8AMmk*M2`sSK^GjsK3dAbL!n%S&mS>CJ6`Xc1)f zUm@aB05hQe93c;N|DKWkioaiQwHBGPi=c{KjauI@_e!S_+UN#JWPet7pvI9 zBDV-84Z1}fbmneRbTKME+|rZsieLL-gf5OkMzq~|6aI?JlLbd1LPz62xKsSj`g^uG ztKK*YTZm#UBAZS@rR9qki?hT=2Bp$+tvqtvG0Y$P-1htH%3d$Pe$IpbU0!&>aferz zQxUdNa($m(HC{l&?53KJEmkvrq%fL!hv0?6fHsy!|T-yXUAlB2me&(O)^KFkZ^ zao^;rrxrKm(NhcUeVO-)W2iXI2$09U1zgbMj^!zjI}8Lp9>>Kck7JYKHhwfo^0=1$ zL2~lA4E#kNm(f3n$0fY(2yhVj?bjX8id^jNPR*ESdRqWD(^?-yek>Di{ORyxQ9XI| z+oD)`^dubqs5tm7?BjA6pkMp|tSQM+v}QjBI~DGW?w015+>5kO%8Yz@M|BOxpE&G&V0WVlpz zuE-A(18&P#8!a$=ym&NQUj~?%cdz9nu;jcZUqyk*`EtX{&U_8;K{*i~H2N2lK=!Un*|%=m-`ufrF6=`Dai^HtWhd?VEtHEDo) zovS@-KCPkKm*-b0>mi|2a^oF<9ir}pLehhDi5E@S1TpNR_-w!nSL+t z`^M2Zh|2yrgZ4$8+uoXy1{hD|>6%)lT%^U^@& zGdIfPb)8-GrvMLqW-ljzKC@?_@|n9~I?-pg0iwrexU}RmOlxlQtq=p1&-{g?$!F>e zf?wn_bp{3Wnd$Oh^_&6Dhu&1*xlA;{-n^=ew*YRYwK*S3aqLLP(+#Bvca9O67Il?T z0~35U+1CSeErD@1}!X``(Udp|&r9J{|&vbK*pw&VN3~1%@~P zkFiK0baTtDK`ItJ0D>irHy_{)XF`z5haiBd98RULof29#C&l@*7BYEoD6E6^B)RUF zs~gDMQk`u>t_IMkqXiwrOh$=@b5*e6EV70(_gFzz%>5`eS-knAc&cpH%$XymGK#dz zFz3!Gb>+lYrnVBdvL@PUm?|UEor}D>&{Hfw+T|b>T!RUV#O&tIs*pYI5v^!7u7P~~ zL_xatl+0@3Y$Xmb7Brsy!Nzmc8qb9n3tGonJl&ta04A+pDwrUiU^Hn&D>^i z&{@38ns7vshznOye*;C*j2SswmcCMulwt{G zD!GI)+}WkLulfX$bFfMrLk4?{g>E6{4of+MMWrxiF;r(I4*>|}j1>GuIU@z`qzZ7o z&vZGnjdNANyDDz4@uprCoK}s{M0aHF4xG4=(b)pHWnNcvE)uwmll8atj+aZ@J4cE^ z7Il?!0!oLY5p zdVlY3Ul->=afI_mOL)!#xOvy+Q+Jfz{u6JDlS{if%fuTNb+Ux`0PHGG%F^!61>zHi zOOyT|Ht8RzNe|c^3<)Q_8v6T9I_sb&{eU^?h^;0)YAF1|f4V0VaO)PFiXLQc`VhU5=v8qab{pl9zisJBd^a2aklN%N_gM)s=-g z&aM&Fx9R3}_z6Sh`W$DTU<4)B95wuQo;4{4`ZybkSWASeH~TmfHIZvUBz!mTcQKd& zKuZ4IyrD9$pEIs4c5w&gy1AtjJ8rsZllo4;C0q=1iWHlBAw^Q8`RT{rL#Ys_Lll0E zOhk24_0>!u%FfdfK-u}^5LFP3>F*pbRxms|+O=$`I@-02HNerX(fY=r>L$z0tbwxI z1`rHhY4Lw6efvy*zI>k! z#`guqH=GRhTKFQuD7mvo-IlR|*zfBwIXRqBrqfnj9GDFA8+(g~ssuNEs7i2CKzRHB z!1t^>srn)U+^Y6G2+$*ksb_DEhIy=B(vtu&EQkV|3{!Py)KK;QLOnplMOz4?K#v0I z3{#?A^b*Z1)CMzbl5YS4-11Rv{MHEPMNz`=z=j9PORr^%a0aBC|L7}A4hALTm_1Ax z$6VGx#xXP4*p?3SHjbv&?3iCxVoc1h^f8F%!%7V#naRdsrkQN^m0&|K3AQTT9e^ty4BLEuQvZ+#!$Pa( z{x)}@hQH*7M{T?Y_#6SOyfj^hv&ovdd)vHtIx=ooC*mw&ytiGn=M+j*MBxKqr z-XA769Gcip+rP!>98j}EeYtW}c5&G95t_Pclx;tQHXyX3JQZK#pU$!Hrw9I77Y~0n z;Ge~b@aKB`^Li5esm4DoQsGY~{@IxZf9S)+tfYb0FPV7=!m>(QR?3@E6_2wH_}_qAQqg$17jx-k5p#sye;zJ_X-^ zq?bJ3!B?^9eXh6h1UJ2;5{f5F>AZ0Po=(D}SraQ-;+X?FMe`f}qB9J?;v-jj&f5*2 ziO_SEGr0Xrd&pOCZ;Lj|qHw`P`wHzbFH?zk0Dn>5?+AfQMnB!Ft?cJ=9uV=vp}|bu z7-qB>d0sjb^o|htoX)hm6`2s5=N|0aOg>uT6#dX|uBoU4_E7QYa`;1ejTy1WW-SNP zVcLL5oeIeE@>J=tVp+YueVDvdeQi&Ytiq3vbbvytg-$+{`dS%(hIGnIJg5O}*yU!H4Mzn9`z?#pqa5650| zeW|l)%l|#FnBg!aXN&qM2Jkv1H!RnO$N^>Rk|WOVqbZ5fnyWP1FB_L?bYItg+^jr)rM)#W+D1}!{zyRjHw~-!BDeDv@Da2Wb<$t zKC~cK-g&k2-*x|hk;@BrLD~Bk)4_%pos+cR+-8_6FWs0Ctu>HE*E>7QEi;{qY7kD{ z>X-dpIVvV)gwKRsQIk+Oxl4wA8OG7T)={SIcFv8+LQL|cWy9s= zmdjgQi^M$opFH~xm*Q(D3rc2_$wJODnv0v!VM<*Ak7ak3eH%zaz{ zv^V#FPcbnhjG#bfHI5Ijm1;W3qHE!a>g6p9oca29!{xDM#Y5$P(mK+NMaqsDpG3$f z7C8T{-742!{=T!8{G_S zA->RdPk82Hc`PYCK_Jka6x7D3nB55A4tOJtPOluHrt-U^&QjT8v2$?55v%KPY0b~e z7MSK!J0eq;IF}2C{txN>kVi6YfwR9y^UIbwKh=JgW!E{oieH&9r0O4iRIS$?DUV%W z+&Lr(tS4>am}YXtd}oZj^t!W=eC2v)Qf)L2-(^|9+}Tuo&x9ZyCyeyb@kKR~3#N|O ztbpeWZ4pVi3&zG#a>6Y&x^}_i!g}kGvS<%{p9k1@DJ<$rYPfuHrSnqVBH$^r{^g99 zZ`|Na5o4JMs6Bl&e9H=!aAc(V_&}Q5vieLT+4QDbDsF`Q>?UVNF@o_&#l_A>05{H| zYDgOFh_7-!6>)>rfrps27Fe0&4YJv4XIcRChMzfGihF#}^&3XYQ!|T`1S9{?n6SRW zoRUE!y{F`2$1dUWyEV?^+8c7;T2MtblZmF{UwkUgs;R($QN7M-uZ_{Rc?CGR!$e5t z;x^v<57_FqN}7@j2;fulqB$kUaY{PLH*RyjCh8Pez5W?n{=-z4*V*Pl5 zIOe!?QP!kFA=5^#NYdNs&`PHo zVpywo*m*T12biIeI!FND{JBQ7;_ZheXNzpLIaZ34$I3A!}EtAlNo*9xvuVh(7n_;wn`HW3qx^peQSZd+@Kh4dHC3w z8HIRi6Z${MZNJ>{sIyDcClJb=YpCz$C~O z^>y>H@*u#&-O2upK=ytp{BuXE4XzHO)dp8vK=d3bVG^S{2197!Hhzgw!~R1?>+8pD_AGxyqDH= zu8s4WhLIWTjEK0(;%xfvMhhazch@6;d>3rP^4-S^P2b(iI*{)^R>*w!U?KBeP#N>x zhXD_L_W?$Le0OJ|^4;|?=Xf0KRzURlE|Zw~F4s2`mwflXNS}Q73jQMBy;2y|cl*BQ ztS@hQ)wwEw1KVG7t`(6*K*h9Oa^MCQz~jK%YVW|^aOF5xq*&CI+Xi4)kzAx+oy=y) z=&^7s<-WI}cBA`>;B$)jd(O<{^!R{8WYl?Zg;b!ST!A4eSEyTLxk5DJDOZ?)zfz0j zfj6C9n1iOY|-D@_iX`8JLZh@0r6iZF`4#7 z3-FJb_WJjo4+(t?i0a;vz`8pCrwaHaE1aQEk?);#&Jm4S4@yRHV^lJV8l#d?_y^7* zBFhI0zM!!011NoS8QiKP+mBHN^+?uAnFAUqa{z7nu;_%3oHj9qW1(}EDcbWH+@f7( z(ynB!L>n61wCM=Pj^GQcsVO>8qWo0q|+(D$9e{(wr!r4-M)m4#~_1E z^ha;?m9t+k^fvzJQD4KR7o(1oRv^z+J8PV}!EZ*G;cdS)cr&~WWfD-@9)ti2Z{S5% zc$+lV3~y6d2TI#zV_DjsJ(k5cFe#R{#{(XwZG#b@v~3@&()OUSDsATjq9<)LiCI|V zCdkC4u=X(0r?B=2{-Ut<$k?D^?ffO@$^c=lI(lY3x$m;`dU2e|OR?>+1@OeSjkQnP z9p&f`-j9|;{|gc0l*NK_cYFYz71c8R3LLHaoZ(V@`*^I1Z~qyqZaoOt7Ziev*|(vy ziW3Y=#ffLfS~)uk@l>3MErwrj%gaAHJ2kCFC=U(KS+bbrD{Z|s!9MPw{j;+sU)*tL zYo(>eoN0nZeYnh?Yg;NhS`d}9+aZ9Ax*C)N9|@6Tes!J@0~lWVZ?O97S4;aG>+OFyQv&d!14Z}$;mpvN6wCAd?XmL1Kb#3-nJ>q@t<5?!eycqE zzWmeKKGvUKF?|u#n_=Y)ds{z9g535O+(yQvgm`@SobRkirPGU$G#krzWyrL%37(K8u-J{RH4%vD1dDpA?zZ$Z&`%)`Q~c zlQtDc_W~B)9utHD#nA_#vx=h(OU2POHY<)cMm!ZqKgD18PgQR%&pX{riWnoh=}v6m z@ogOf+;tVLgYMZ3!Ru=atkyw0uIgNyb&!u9!_1Q53yX~zUH`HmD!TrT0P-YIsEV%f z#!3-q_sA_Nx<=Vmbd9nahReCH7;WW>1S1tTo6C}o7NU*S$^vVKyqp112k(AWkEgrH zV`)aW5KyDMtIdp-u|J~_JiG!o`~Y%<7dHxbzK{f2*4P*(7?_2-NMxL^|8Bb2FE$nF zrZOohoJ>N1ml9Sd8E3RgHK-dHx)tn}`wr?>8kGJiM3TJ8z4fJ_F!*3b#8RubnU2mi zoYomG2qJ~;vRawK?)Rm=&yO~J)?%sLnQHXYUX|xljppKYUs^|P-8%bHI&Gyte{E!GmahNUQBZxcZVK1)@fU^b`3?%#f`x0O zh6gC`k>^_*BUKI38~><3;fljj%Qf;t4m;e+hhL=p%oB)x4E}hOj}VXYsi^{F zmDQ6MFRzcZVPq%Np}pL@dWXrkvyGPW_pU~`{)IWRuaP8;^$Yw(Bb!+Jk%h_eAHLr} z<~-a)XvbuAXJcc?pCH%4tjvxPb(|JUbvWll7o%N7Jr16G+)<#{amwLcjj`SxXa}KF z`n8=Sn)r4I0m^X9w|8@&9*-3l#QcV%<9XnBa=ne!pVe!9bf9Lo)m0^U0Hsv?=8#3- z+Tx|r-B=jWgR{O|U@K^9(Kp`<;54vjT$Rzo*rrDe`kSui$xg4X$7YvxkehoO&j0sk z{u?XrPuY0Shlw(8w-F{CIYvXlNXt1n#=;OMs7$*)qj4l_fr)C?W5hh|gskjijH37b7MOXL>XXff+J-P)SocC%bvOcrO}efc{P1-q#o(PuAsaXBEFGLkHEF$F$)W z8G4sB$ns|R<1uuEcnm$0+A4@044_WMSQy2=sn^^q2lY3GYfs4a{f&I>F_bJ@&TbRa zEMx*86g}M}8}0tX>173SSH6)cPGVmY>Sa0CFw_~=*DN6Z`sX}i{YT&tcMmWQM0&B1 z(L0jTs;(bs9M;9x7H@fMo2$7zdVff$oHfL->sOpIz0%cA{K!x)yIfP?VLc6#uD^e& zE(E3q^QKIlJbPx@RkJo#)G=h)exr;0WT-La|J{J(hHs5Na_xwchHy{tiD5>2e*vFp z-Y8Ut?lEFzr$I(H`TUJWle$R;RJ|SVHadtD_~lkG3ad9ZXu%WfCul1Yv};JT0gIml z3limw&-+Hoqx+2*d2WP}7!!+>c=`LaY%tOo=q1p;<3@A2WTeqk^kIBqVn>1a5d|>e ze)`>haBiraT3}qQ7aFqDZAMoyhIJ*8M+Fmk91|Ii=OxPRPv?@z9Ro>QHrhvhByH&? zmtD+bEKO-E3XR($nY3WO*#~zwlO5N&O2mx}zyA})jWD{XF~$~slOcEB>PiZMe(=z1roYj2{5kjvMd;d-ZIXZ z<&pWOamEh4v5T~hKst%XMMb5zu#|4bccwg0KcwhmRqu~Cn${Iv88g&7v!g~TGi6nk zl^bU@k?(^UXE8D3a+V81;wN!&^3Y^sEIiVVnqo|1^x{o=66hsV-8IFSp^1q;L}M+Y zO-ytb)~G#L#*9)8-a}HQc`PVo8mN4}580*`*<}CT^0K3(lYDZzafh}_4!+8m61m#y z@3yBiR~b%my9HPFw4%ZoqOW!-d-|xtxK7`0&J6%*ZWt+vbHfzUREct<)UGk|6Duv+ z=pnS!0I{WZb!?KHJHxmajt)o7G`fjn7NUyS^JW^E+H3NznMOPDFV=W!rZGu-1*w}? zH28(UcU{&dxgKrEs#!({CSa-(@R(4Rzd13pE+a&w^ z|HZg7<{G!^5he1exkhWzu*7l<5}=tavb~6BP!vFKSR!wqXSDT4FTLl+dh(mOGyOG+7S2)VrY<4IDYM=`^L#@DhBk(EsnJe8Dxw zam|oD78*k%ODx`Qdwgu6@sudH;L0BNE;2UjB_+xp$6af@ug@!?SfK%IodI8TdQA^! z0yR?tIsR`1YO=(*6YfcWYKhS@a=pdaEl}uEqf$rt*V7;IE7vISG?6T}im^e@J+$dy^bFr>rENB^=YgSfG%UaI%s+whB2}0&lQ{ zwThFa7gM9fn@sMqU9M63>mc_oSAV&7xlxlPq^FAUDZJ>N877e1)7RDFJSgxQC7)jl zF*U2w_)*iZl+f!k+Lfx?Z!m^vb(6+VS<&OvS>J|mEEC?AsrvP1V}vF~vVJ~gs(qX) zQ=JTj%BbRCqbnbWC2Ch3-NiM==vobIKN1B0&zUEU1)cmh<6 zuf~jO*)LoUxz+ewld|J&prUPT95hRtgN@^UYnI@kdt*7{b|beogMlNfL)ROf#0Dk- zjpb?IvD{`((poi1vUr10C0=FStWxt7gHnQcRepJg(b)^zXGT9WXY>o!m1gvlV4Aq> zHKT*#DlVWybF+HYoF^_Mjm;19C3BwE(mZJb{|6uDY8xL8UwVKbnk|pMIx0!OOc4pT z>|bipPX88s?wqZ^IyoM|zfm4_a{NtcTq78UoHN@63!bgU4`Rr8%RTqaapjBA3;?QY zBlkWZ)=nEDcisoPf`!S=qel&}Fg&5;=9=%NP$-$O+o&&_-erszlP&5{%)svW(K{k~ zCkEhIF=;$R(=I8=GWl*OlIO908zM_4Cj{=Ij>i0cw{cpmW<9j;T*carGW%X*q`qRj zIvMl)y+#wc2OwgHFXr7|m{o_i8!4K2#uw`;4_5k^Ns02Fo$#Ec+860xgru!N1&;|P zbasBpjZqZ~ps#fe$V-wgW@W>~G}c_t9j~6a+?r6*L{41lsy`C@smCsV;4l2Ac_9e> zHs1v976ESpQw0c$^|s?Y1ehBL+Q1TZGl=}?t0w(~KEY}tk2=?wxQY9XdphfvW4?ERiCwz17uPzioml2q(*{_8L>Y7?Xmn{fYY~sQrlt7*SI2 zj$jIYoD?jWg5lyBSo2s~Ftysvb6)kjYmFKOZ%hMT?}in=c*s9RdTU=1|pOY3_#kcCx7^N_#5Tkb6?%n;f{ z%b94qg!KcKv}}LiknyRMhm1c(f7Tte+*i&S zsYlE8XS;+qwFsHt7UYD`xBKg#f~N4wxASttOGYR8>S5!QC}$LDE+$M=b1{K6&|J)U zE26c&aH6`i?^@PMv#?-dkeIbn&4Q0}S6>s7%H|V-y~ zKRf}UhV!r@#=HNs^NzP0M0s_FI5kXGm(>e{JNneTRl&SX(8OnSn7 zyU!>csiSvtbecR4uqKZ~iE5+$GaJa%li+>heMozeR1{7ceY~JF30by~Q2mOU1^xU4 zd446lJMa<2Yy4orNl172F2QT$T|MZ_UXd(5s=(1guCOPz2-#c;<>t>x8A38qaAB)$ z#L4KnrEa5eS;M>CJxR}pJFRWK1Tr6G+*hlDbhf$*V&_{%uC5)D=iV`?yNLa;xl?q znf&WXSElI8n3C?`1Ib?mb?qT#0d-eXQT1+Rvi$*93(<{9K?*Z`71o&srFSY*3d@aj zRfw6aS8Wtl;h{~}2Dp{g>0{$y-A%wlMsFRGCblqcq^UdpPE$LSrs7%Qgq84OD81LU zlgCaQnR0pIX(1oGHll$X|C3R}T6Ga@-~II|9Im;INk{ycl!G!fTiVpZMbUan{e-N?l(rZ z_<{*RY7*r>YWh?S<-Dn;kr#~pA`Ovh@0of^x!MQ=;@*0Km?vMmKO{y@c*)g7?p<>x zQYKwAZVee+9xC6wdvHrJlu3Zf(+8FZshY-=lZ(a%Fg!VTw5zjR`id)BPWY*&o1lxd zJo(~fs8;frNT|x#$-b)WYYw+}xpLawcGr#KTGp)=CI>fWDP00_FI`Ru?G!E>ypa(j z`@9ReqxuJb5%EUj?Wmjyo=HMvEFLiIKo z^|R4ZY-1vkDxddN_@`B<*dL6V6@MqapD^ zei)%Wi5Zy3@P9nv8$jNQ%t;dVo^Fz_30Ev>GGde84ixLB zcA%mrd3KbQ|Z@iBdjZ@)^0 z0jEUr6Br@4>TxKSXSfOy?m}cbK6p3&qT_>iPom?4i7zAeCA{U8Y=xHhz)hLd&`$@G zNzMQNU`V6o@-UZ>!|J&n5(n65$dLA10QYEWX}2c3z840=x4F)_mWY!U3yG!^@+yq_ z@{xME;@_+VjZJ^mG@BQd*`#?(w^>ssH8Y;b_vA28A60PQO-+m1l23ZXw`Vu)m3_e}=#`aUgJJjGflmfh#+9S4`&96j2lalD1%R!Bu5SOmtU z7ZP3RZo6WNQ+CyBvK5DzU7baGWLF=PT_wsLja@xb3K7ihD#zk0tzB=dO66ZEu5j&T z3DvN(L;H*L6lDO#!fJ z<+NRrFhy-~C9nqV2iIu5!xVYg1UtO0kow05#6+ocX``0rl#lKoR%-NeVpU2V$C z%2ZdY*q;$V$}(T)0={%VH0Nt=bIuv(Y7PdGmF8+K#`+2{`tJl7PXa_R0mjRT%}QDX zlOVy|q6B$%{_Gm4Uo%CX8tQ5*7Ws0W|94y~18|M{)zv!2f86qNdsnjH!>0Wk4xrta z(oMr-ywN(i28-=XESTz1UKrHx&fi>%y`WHjneU>-;t=xns3}$Zes^uw#0f@>jNzzh z3`bdm&!oJkCgpvGK~{14@6_{20QLAxin-$p5|CN=Nw8z6tCRklIXQp$a{tBR?tg}| z-c}7;Be$T+jJTX+MjT+75r@($c#7!_3IT@GSh2Z z`@%{FikaU12FjyXY2jXI)Ok+5lA&HuV!GVB^C&M2>UV1v?16AmEZcqFZM(GL2-~$_ z%J9JZ+)Vh$SsZ9IYJe?T|79|64y$cPuQ0hYykt}Yi_bhSP`W;hvQfG|g1;zTADOD& z5n)B1+}XwTi+^H1-_^B6oMFSG#Qcs0aPwQYxt57}=GR6;c_gW%o_wrf$y#yIVxcPg zZ_vI*!rnl24_A?>H_ftIO2i@4)Ju9_OjVDpe~v1dBGMQZRcy)AR37iZ8mK!o&^=>0 ztO3l&TpvIytq&RU3Vq1B&mYzUygiqAoC%;WF$b+vQnafYYz z_?uG$=JD0Ykn;HYX;>d7%I9)jBT_y`9r8SWiYwLq^t$Sr#FEaM*vf|jue4(Jy8)@kypCM9KFeZZg#7VV^i%MS8~G%>F_6yR$z?gV|r} zB&&zQ#$L8B#}2_b<^w0X*48WErrB2|A)5kj<2d%9`~FOO7;c_kc5%|0qHFP1nGn( zEg_)^xivH)w9urNNDDm(Wa$u*BGN+f0wTp{*C(K&h^Sx#6$N~jrzrepXZPMS=iGar z-w*ivCtPNBXJ%(+XWN|JE)o3hkc=wA^^5U3zm6#%7=ULKgY5>yS4zw1!;X?BV<r0IRHZP0w>2V|6FwFy~_Z0!j^#@Bf; z?Pw#Q7}{Rrr3YqQX8lMpjBM#6WMoSx2oc%fdD)jTGU~7_0>{WQY($92GI4|qY}G{# z8rWJ00A1JsPYi67rzNm01$~Raw%p2oaVYj{C3_oTuL4^L{=UEl(%`b@zzDglIcR0M zFBHoY!B}Es3(8VNHriy2Y!rZzjRJ5^c!|h^k&TwXIUzh8Tyql) z#mASI@H4M#$3 z>ngxBwl$%`b+T_@YbZeM0yef*d76|EyMWPzhEK6sa4tP6BQ<7^D2tx4SNuZH*eg9F z=+-eXh0tGorXdM^_I^h=r5tABu|OXdd}L`S5aGm7{`dywbyz=^x@)B7_b zc>D1gL)mSEI!Wsd!ZYg@C=JtkyG+RF&hC+V!tY~(SCMJGNfR@!vFMRT+tERzM#_OZ za-vYq4abn337*w3ZrZl)?c&gyb;bLvF7IwF6F8 zNDbLN-Zr|2%Iy{PWY1VEeu@A3a(l(^fZSftuDQ$nn<&`W<;2|H6@sGjA{_ECw|Cu0 zmD{_4pmDV2BSVa~+egZIJc@{;tu|8R_SU_>vvR|)iu0;-Gm7dfMv??yuMmp{g{4GJ z{1yj495_j!I0WH0s;?2K7{BzBBl)*a!?8Rqj=J!FvaDU=RdX`xv&*C^s^elPb$l}t zKLv@T>QFhsr)Or|=Tb62DIht1Btj*J@iH~;ze3Rep`d8*#km>HbyjSYVSYJF6RY5` zQ9NrwMrRgAu&6)xs*Gl=0)e9bp!n#88EwqP#X|d|g&D0`J#%rn|0Gz9$;}vOt|LBr zMiaF$*GY{OlK8%ftIyBO%c##UFM?@ja0z=^stazr7H5nLQ9Lt9amHncXEZ(WvADGVsc@0STF(aoua)QghTg>eR5K)6WTzzo{9SwL|H zeG7(3aY(RrMaCI+f)vJi^wCjr9(|M`(5XEa;I*RD2NNrYode;n9!yMN?~yX-*6)rA z(aSH7!d_m|$y=6<03H(6Gvp2IiQ!N}1!{ z_Y;I4`VQ`WLvh^uro}aC)KFqBlw#VbBXF_rP27M8DV7?PE4l#% zpd~-r0OwE?Y6R`=L^5;(S_~_rB`MUfWL;>5vSjk?!HvAvH)S-`*jt1on({Se%GU@2 zO({~xwa@s~E#PQZ2ohCvIh2aN3u;Ns95)Q9K86R@Xh_Oh7?RI;7EdA3hNau>VQ}(_ zxyQ61Y6)|X%ZxGmyDsPo-P7WzdkR4HVd6N2B2^>zxW0w7iKL_;a*rtm!vOy>41l@E z`$x%@+~!d-_jm(#HI;iz0--7Qc*q!)dpwMYg1N_#Q*|H%bC2)yiDA=3R!%q~&0<`A zz53u3WAyjWo*&>%Iv>+|G7Xp_5SG=f5-t)AP)|_xpVr_6L}(H3@qjgu%>X z_~D;aioveTSplHakzGQ%4*GUzZHayj!n0x^Ba)x}cwiUyC8>-1Q}_8GmruJ*v@3pI zn0@vP&wMAN8{b+tHG==qc8sA{#&0dT7{N1sgr^u>UEpP?Er&8(dWo?zMVXB?+Jp** z%X44PXcf4h9z8a=Zkq}6jE{DlE5;iokAXE)wdniYc*A*M6FqFK%v%m4qM^EL2>@01 zLqgUho;SBzl>V30xt=waH}JwFuNA5N&nWy+GdHSrd~wTuEaP~QOkgWhng$W8g6O#^4LZdBe?cQu4rB zjm+k+-G;jYB8g~1t7Ve}fck1gw#-*9mQ9kOJCkbvh(`4e1{kN ztVs=0;sG!EK*dChOy|Aq8`3b`hW^3;_~$(jcCUzHhndcQ8Pw$=-0#^km4S^jIvS=j z00L7PDi8!rj8!TFVDaqj7x-7CItP(D>*s8_NqzI1H z4;R01e|q>hYmzE@2<{R9H|aSCKK=jaIXHE)@$SXo%Z?hKXG~#FktU%J%`yPKCjApG zs~ESv(WR(Na$aZfk%t;<;8r|La^6WWxM#d(oIKQ62~T`L8fsqAh}f7QVrJ!y^E*v> zoWrqzODbm+JxTpvnY(-^o#g~-t^1=@Fw6Uy{W-9$TlW%NM<|Vxt1}8l^hS0 z=rLA=0q_a1H1C0usxW>qKJ8l&qJ}|T#*c*Y@+=^JygUn-TCqqnYhx|dV!VtpJqQA$ z3?MM^c_2afqm0&qM@7I*oZ{6e-Nyj41jdu%m?bb~ygE&rLomYev@r$^EnfZ>FHgk; z(Nk6&G(uzx5EvTob7!hlSV2s|jZ#+M9DI<3`{rxl|D z`m+VZ6qdjHtC0k~HKYB5tXI%njQ9E}qbNH>IO1OC+XR4n9jC=!=NkfwQB0`8pAh{G zDU2I8UqJgm=~Ib)K@gZT06C_=K+eD&0>?d@-^PcSvV~8Orx^Q04c{rolFIfPWnU2x z)SAkM2Bw%aK$+rh5nlQrvZ3|(2{LJ*$^@vZdIa*XG$924I>Gp3+HDB_G3pk}FZkB~ zW^~q*C&-+Ej#iHCLUBw9#u0M{f^rm_NwmednM47&6@-b<6pD!hBZ*K669)F8evH*H z51LkkNm;l2A1f8rz+U3!hs)jre`e%sERRwWH*hSSAU$9yL0F8jO&Mc5DT2l*2&J0+ z!Bk^0hRW>){^$$={4odmb!C+|t*l=S#rpkVtSwd{tVRAaWsQ5l-x6-vr*ID#B*i^o zT3qY_Yk%>TVfGsA9;t=uxf4pp5)*^;72Eoyb?N$lV3>y0F3o>_(O@ITYwtuk zULTq$UWra)?~?*JBA+!1U{)SxKz~n4;dJiWL^+`UP7qif5V&k8Hpy@z9MJQA8r)Hv zC|3=@+{pN=N=o8b9ydvi z^fwX&CP5#XB$J?z5QK z(0nvWj`|;4xnBsu{mUTSahM6g-Ipi`vS6a%ok?=g|I5nocVrm2MP2Mk8M#gE#nB}w zM-jPcdoglT0EFOFa|w|FUE@j6otpK4UCkvhYGa-tC4^^Am;v4VZ!2R4G_5S-Z{yKL zd0`C*y9b7bN9ehe@PJ91FJK)^z9%AWH0d_JmQXTsYw!z>aV=aGD z#@ba+l5ls3loH_%UL7c?XK&BW5I8Pe_VeWW_MULn5B#GR%t6|a^)wLgVBdr-U*Eva zd@+xdl`(JnlR;zNHNh8S-pwav%p2Cw-YM>B0j4o;CY8^>Zow?)-v~->X~vFzpv4O| z26PICg9Bgz^E083LCiK8gfpDI6Wr^W!k7SJ3Dt&CBOR>mlX7j{(y#fWt05|d@R^NuEV@*M~DK%6v^-r$QSq9@`u&-X$OjAb{( zFN|e3CWnY+#oE|c1l?l(Ct?$Sw*&N{_HFIYu%c5y6uM8O8vtJm{*id-=NX>g9)e=L z!A5QoR+yq@cl8JcXLl8*$k|;q{44g9gGiWFZiZ$F011r&P!q^23^&I|l37W!E%lq?uYcNRl}c+2ZLulN|G zXd^~?ho9^xd>o*{J{jP9We0x2D@l>pXXgpZ%fz3};#G_d;?HIA=VS4wns`f~ium)K z__IU&nISH6o+|znia-0{&m{E@SnVu9ZV{5oMKZZaA{VRYV%1!%mODv47S>~RZOI)k zU`Fn1{M_FczmR(cKliQT7jmEA@&(=Xbof_1HP&*{1I-8Ii#M~$wa}nT z$fIm4ZUMtvh1ZBHOIL_LrN!MDc+blo@e6P8Xd$iuz&jVtiVrODtIhr5+amm6DN&>q zV|xGF;umHzFBa)~^TeOa;+O*uR}!a)y=B}Z4;Q;=xbL$;ELdI5+rHxH9xH z@tj#-elD+mQGV;(lt=lcp7!PJl(4P}7vT8v`*{7t6fvPm3WIj=GZ)KM3lk3d>8Ir? zMU$&IpwZIn2lAe&_E*@Yprk%hq@W3AQq{;lx1W@e!WBMg&`@6JtzNab@LACA7V%73 zS3WMy-hxkm+%B&7KI62@Cz*cpv;JB95`A%L=Kb3ko?rVSH5kpQ_f6BA(;FU1V&$j$ z)Q!@o#>EN%jWdKTFUYjV@QQuyf3TXQ-ua&(33$Z^j?TQ)M~{@&6Q}Y&ciG#r#-zyA ze)hpyL!RV-O?C0^Q<*K+cb{7G+gbL;{KTh`jGygqA6C{7L}kv_oXWdCZf{~@oio)z zMOGz=$lhCz+skO0i-!%gUt=C364)xWjKM@L{2W5Y4zUA`f8QLV? z*$!XVOg0J%>r;wq%NF({|CZvj4*LRaDX-^*5672>rl>B&Sp4@Cy{ldJPc^nZG%c09 zTkyYW8Si2QXo@IV_{CR|rwnG$w=s?S;2`^O_PPNVDr&<|4J=cfXAQQe=%=R2r$$PB zGqDQ)VX%FS{?SzVHW6U({To7*Ta3-rt*%B_6LLg*S@6=63CS9H)lBkaBO->34# zDA%Lx4#A>t{wDOG^5_D5GkluJ@TkfU6xGUvrGOjY<5_J-!XAU6mPjeiP4AMC_HaFt z@b_usrP221Sfy#E4hPy8zpVtkoMT_1-&ERgjXnl`p0NwXpZ2YPNcPf_+@ZQVl zy^V$AuG!otmLH$xOyq4=eNc?w?4A@6aWaLzJ63IH8M zUYEv68`7kP_KG)QuDy}Q^yx-VNLXdRpL<0zI@TLCEvpB_p`l>W}d+_*4h); z3?c^l+E%N|rpi`5sZ{pbN_(2d4wGsRqOw9iag)lh+k(m}^6XR268z{Idpka4jeU>y z36IK$9m!7#dsN=X|4Vt-r1JEXsXY5oW;}Pl<7~)RaQppS{fWA}Aa!?vNP)Wh-Kx9y zWb@8S-SNcl+S+*Kx1Cx1-F5an7CFOk*9TCd9x+3vCjuLj7Ta&M|5l_aFyS*|T}@as z!cHhnZ#+Zpi3NnX_A`v$dA`BOSUxS!UY5_^2!A$hw%^Yk+o-mNe8d)e5^G505Na#i zTL5S;t*07Pdxp%ny!C8qBtKQv^)(wt>OP3d1{)kqD#O0|;Wm3;{@gbE`XbAK9Y56< zW;iPdV^rRfP|8~;m8YffvD@wL`;BP}XQ-G4KTI*L?DGOZwKY$*B}Zwi{y1o^O1YAplmTeCdK!7fZtGWn?k_NlC;L6{@EyuRTrV}h{D zYB3YP-u8Z6XkVzYG*U0~U-rIw&zbUAqU%g~EYZGrYJWD|T55<<3J;3skOJvWXJ37W zQ6TvncMNa!0;p;&DTT~d&y)wnI|u@+0|GL?qWMWL+z)k_V9&qi7^wpm^GiX-1cx(* zm#*EaIRE4*T*mcpQWQD7sW^N>5Xb=#$f4(Pdt>%3!6FC1`Zy$?7!bp4ryV1iKFcsE z62Gg6mnH}#4v3s%o;Iv9K_Fc~_~_yp_xzU~b6ImzO3>As@Z>Z0W~?)TBiSai^xmO)?*eFs6slp{pg6cE^N297xx4!Ne!3szrq`FB` z-A~|1b<-@Vf|m#ascte;Jy4@nANCqY%kRl+^4-S;JRb#aXR*=;J>$4Z;6ol$f-TFCrl{cOBO0@=0GICP4$SZhB zEir|xrdOLOccSwa6^-Cy&N(W?iF$Gqx}T6i{8wEpu(TRK(`I{hzH0@1c-le~qjCCS z0l=-epLv1DnYc4;t{oub?iftzEs(0;AYAlO@ z#r{g%2mwGT)n<>SVzhVFIs5G}HYIdLwbf&(7~?HqHo_x`sZDK73o%n!)L}oaT7}sw)J4pme@HkR!FA4x| z{feWI z^Y61U<3R5>o3EVYYEagYUp>Kd0eVEM{_z0}^QUSJ^r$)f%!Gcm`GzlXGgYwCN^$LH zd#k`jZ9J?#;MFXxA76RPUOzY^aTG{f7M0|v7fArHvd6cwKDlZis5TeR2t3rd6kCY{BHJ>Mfv4#Vb5|tANZZU6A;QIl|21>d(*If;K5ao41+i0zqj`+W5}=G#2Uf>`X0tele}gR zRs~5zr^xrd-UDwES)XTlW`d)kcgYX-@)|o$Wc0hMeqxS1Mn6HYqM_(MA4vCM9}*<` z5XA4GK6E9N4^@=gP{0kps;1n84>1b>p5r%a#s4Iz&39Z4$qVVClHwgvcN@Gi$Pg8!2b2tu3#yb-;ii;&v3^^ja7KckPrz*KgBy1b1Y%e1cChT6mzs?^$65gJnFjvmCVJ> z{MA$CQBV2#!=x*Td)`Q?NTRWllIU7S<4YwRt;1L^!uQH=j%qyZ=i=eKYowzEdz_$T zyc#fp!PXgG_YhF;;gS#yMuezx=8ygr^+mX;aK@0N6QVbg<^qN^6cO3!+3V{9g!vy zmN`we0QXcQLVM{XzOb{QoMW}dE(dUh35FHhPin~>12PK1;;!1R*eCC4e*xFey%pz`RY#-qy4I$iR_gv{Ny9pNE1+Gh~rN2Cv z=RE1D#$F*h4TuDv@`S5y<_t|4svSPBqbDBEh zSVw{~Y-opXtc4Ao1S_W+^FrA038@~jXc0Cf+Id9Uup>`yX5nX;a3iFws$)_?l17d1~rFD54#y6gcm6 zC4mD`sI+4e3>`0$%7z_jS)?$zu|*?>8QX*W#(bW;nmFEMSFBWV^?6wu@-jghhWuF> z@>haI{rnV4KM&0}bw*;yN2MVzOG8qAh9P6-TO1hs;$>w>S_fq`3|V)+G-Q2300pf* zKZM6MlY#~s(kG`fBxQ<*v;bl`8j?cMkQ-aTB&jbE$1o% z>R?o*bx=r*s{fiVqw1@qE(&=jl#pkokhnq-Q8l=fVk%ELq8Tj!Wkw1`GyW&p@hJO& z2xOR%mIabL_UzvOg+eTUrX%!zN*8A+CwDsfv#13|*ASz*sTg|E zjZThu6BH|7X;7>#tNyo@Kk4jfXs+yAgzDo#`y`fp(8cjO>q-csMno*pJ1vkt*oj~b zA9O5`KIkG?G;aoMy#*cFhc7S%6Jp(V(g%Sdj_j17;e)dXBf|%w4*DRiV~HkDFObn> zH6ehK=7o}Uvy?P2nh-&S8&am|h8939KiSjK*HjFx*e=D9$W9P(&;grTSOtN2^M9kE3HV$s7Z(7K2zc46{kF~=_$j=;&z4iCfb@bO4%5~qHR?4r2p!_~H z_JTf1g0!%$iFEsu(TUpkJj&^)#(p4_(FmmnMkH$Ah9LjjLca2L|0Y84bB7;qp>5(G z7i_&Kxk0&gxTk!0J+_We1;05t?a zodNKxVf~wW_j?>2B3Lphh>j^T=kzwYGIX{fSfk_g%atAHae_rF_2E~if>mXN=F~Ig%lTR$?)Zqwzdc5Ns zcEDUJl{BfVq_>wxO>}VWU;OqoSXjS05eDBkNF`hdzslW{Aj-Z<;G)@tSa(V6j8Ja} z?Ih29((#FQUD7Pocw15Kp6qDJejo${;mGd*;M;(i$FJP`>Ipt<3T##jxbGBC#`8`| zMfs$$j#50~y_5#*9>EJj`gge;H`7cN%_8=YB7Q?ejNvV(IbP7KERws5k<%Sr*~5zr z)<`;G5kD~9v6&?hglIi6O;1TWevu6O*!&o8nVAmAd+1K8p)$MhTeINsybFP26LFW& zL7>RJ%Obf;X)12!t{kI-yk3Mo=EbNQK8 z&S>w?IgW6ht+vR-OD}aW-r|jtrMPn`2C-o7+FR;m=_2W_&l4hkcU>xghPzhgrz@5$ z?R{y!V}!;|kP0|2?6c4@fW1PX7!1UU9bRe<&vkSPtm0neD90D)!d}sb!RqNJ7RkXd zfEQHk!mbCa1HA4na=^g}L85rbD|0dM`h%dTj6W=POfuC&v*Y2IZL!(ufJ@X;nA%b< z7N1L#`aOnLm-Yl*TkNTf;IrqXWsa0E_NawfSkuKa1o4xr%;qE=+#%T|@~tZ&67(V@ z{MJkqK*O4iybGUpG}oAiltoQ_zY3=3!wD3Xl-Dbh@eQjTH%%2RjqWFGK!M-up>DxWHmU7JJ)5K9$3nz(N8ydfP?J#*771ec0IVz87qU6+`Aqo7AFbZ(!>nO;JAgsn;RVS^{a}( z$c>KP>>EM@h5wSrZi0-IFA3a2+b(H;Zl>++wAoQkW40w`AB-#x0AFy1eDx<_Na}vl zS&|93KRBDUqr9ZZ62Er*`=KPtC>??o{h=rkew#y)BIR@4Hwzr6HP(r+7H#IEclkom z@*QU1CHyjFvs*6_p(q+&ysuN6*$E}T2e%eL!-G{kYQEj^xW-123h2f+_k)2a5~$JF zNAVR0V3V9yL8rro=>k#(?FP>c>~ef+E^St;TQ*<>s#W%NXpBW+s+B&44c_f2qqBn+ zW_->;r7*USpukT8<{LvL)7?uTp~CqXdy^FRD{Qv_1}Ln-J_kGpdx=yq6!ryy8Vb84 z6-KKV3j3K<5em~UE#XT$I2)KaVDaqrL+i4lOAYr#{a)fZ2Oam!rOo;sBAfaV(JwUH zqF<#C(68`Xe(qAeh;lg1!^EDh#wo|utI=JwW@4J5ZhEMJRdAgVRlk3-DQ#$FnkzMi zBrW-}AVpdte5cwgCS5cKzk=;8e&JWJy_e!wu#xzk-YxN7JS1Jp7kT=49eb=Pn615C zjyh5_Hj-!t=Km@M^9cj$W4?6TeSaguF-0nGA$)=J;&I1fHqD?;@-Tz&%$mAXzM`{l z;Lf7n8!tLK!(CdWGN!>T_Ld`tV=Cq@Ynf+FWlrxb(TbfWWkix246l?9 zJM9?7E|M~Wm;S+0nIZQLL12a)ATXKnXM(_-yAOEbD~5EK${4xKa7LtBVwt2`i6D?F zAn+=nIs}0!cYqKncfLkrE@KB$2+6ipWYY)&$pQk&x(EWv0)mpoWX8#)5R#ps$j&DS zBnt@C!7744vVbtij$nHT9x3ip6ps@GQUnAF`UXKDML-x7WB8NrfLC25g^=v0itJ5- zK(c_qbjB-NZPg-mZnEamOe!e^Mcg*r8h7Ad2k;Axi z(EARJwI@&r-iKLN0>HSPwi5=D=@%Tirm|wf5#LUfrRk1@hsppPM#$mnf3N`HNCI&{ z+^6V0^O2*t#&SqOTteJjBLn!E&DT&7eoL zc??W5rh(t|)1jsn4_((jY|$QWyjk6t_Yus4_vKJu0pUVUOA?&>lVol`#~g9&RbZ zul@)Vb;=I)V*#ivHwwjx!knwlrmPDQM@$r~)MELDuN*r}P)v~<@VE88y$z{wlqskp z7j788`i-MG8$+u5w?g$Ssfxh8&?zg_UMPeOZluT=8d3Kc5_W1Ylt9FWQa66(WSgR3 zD4${R<)D7wIzDCvL?ok=ZBjPfM6lS&Fz?{V3VAx=C0I1-p-@IWBaI534ATyb7N~Sm z;D=k&l%H`p@e$#JGU8Du)WO3ES_fqm2V}7Cx%3A|P4)w+iXwg+O2pp`zr&=1KpCaq zQFiEe7Cci~aI%J8rR-RncA{~+59El8`NgoXvEysfC<~^&JWorD^)b%@RhO;4kuW@3H3QE zWek0aU{N=-Lg{9yUpE#Tszhnvhc=}A3>!W}`1pIF4s|ew(mE(3#?Tk|xT4OQ>?o;< zA|4JU;>%J*F?M5$fe}NAjKY4DAKK3XQ1+uxwBHpX3bta-!Ymd+fQI>KT_c7L1<`32 zoF3sk&BC9y_&3^5ds^C0BUrl!A!Yc`?xxiZdT8rw`LNd1T`i}g?Qaa%ItD0!(Lam0S` zX?aq3m{djG90;YGlTtUrzwwCO@bAjfhQJSPxSo&%8}?=&5CDpYQy5WP=#mykU0MLK zymYLyy{Q=L@<%JxTSq5{&?Tj4=#oQARd>J_@Fp&o$K!*S){R3BQ zl?6bp*t|Id97VLS)~nR%cw15!wb>Fb<_wy$(sh-uLx|IHm=PqzJL6e1QXg%FC*+=0 z@`QX4!QQ^$942o43`%^IB#x#M2jtCG3CqMqkorhn9FptvR`K*wLlW2mg7u%0>raK^ zk++H`TprXEX0_s!T(HP=fi-ChK-KE3yfL8-9-tOmjaEs8R|Zm$kAMnKl&9opNCnjT zNdfS!lkt@Nw`$HWim*$hAo>=bl7F~LhOZ9^*6{rwS4rQ$MX+eC8=)He2T`aJ)PX zz1wPe7)y(b){*t8lB5e?`G~WF4g%pWa)6{UtHlXxIq#xGXBCajB;2sgQ&pQ8{P6Gl z1Z%kZu4s~K_-azz-|$HS7^30ZNd;{9UIH*0zFjq(7PmB9N%D+rI0$5ExWfAy-lmxo zu7CfSaKnaQ@EQAL%aF#dD~)|#wfPpI;cxSK0SwV*ZH=K*Y;y?$z&4A~NLwRqO-oyv ztOU6$n+)<;nym0KtG!_BAv$}6@DZ)$BRV?OLHfyLb90GDCCcVD;ODwJyRx2yhQGB9 z1klu4JV^hvo%5>3oTLUcw;IQTtDywyx3lKtOFB3knyUB?R*LZNI>0<|GN~uppgFy8 zTVt%5jit^aOPxp|lJ8`37;o3cIjq9!`KxnQ&xE@w@i>FZY*D)U_GTAn9gQ8aNDx-IMrGZ=kH8K_wBJ+;v{!2X9a7q_{k;Nc)qWIzzMJzo_9>}g zDF15$MdhDMnZS5L4`-6K!eRDXu(Ceqq~tAnY9a-{B=xj6Ku@Y+peN%v3u7{F+&*kR z&eG4SA?lB;DB!=i|n|6`syb6s^J2xk=&|p3Y6m z4|zIQxsP*s!08Tqtc0rl~Ikb8&W44^YV-Oo9fZ88XxbGabwvNnP$ z|ND3x-~4s=Vtngq=SS=isf(vC`}5_Y))|7p(-%O%=}RkimLTxt1rXxoMSnhD-l}rX zS<1n#lTt|cD@FHLf&u5O|{VJg@3-=COE!M~W4=l(Zf}AVokR#TEpC z6anFr6mPr;r6T|N&=wGuo(~mX3NOb*{S_jjSZ&p9gd(k+G-Wm$wQUT)ELurp3$GYA-BS8CjJ0idTn zmWt8duZB1W7h#J-R}7b(HlX795zaR>ZW|-VMsbyZ^GR1vwv|v4W01ZUteQKZvZ*9~ z^n1`!Qd`Trj&`Q_3odnzVy^_288*i0@t1-59ciPw{K6t?j5mF(vlo2tNoe8J;wu6$ zhS|&f*f?i%Q)v;s;lezhDoX}vL>-*zYoUlb2*d@!Jy8copN;u=b;iC4&Prh{o|Hqz zxSdg9ty~XOAXvG+66a<~Yvs9F6N1I{K%=!GLUfz8@`HmXxI8#B8ld)ifFT~7SsCKF zP`|bET98ep$@)p90l{YPpD{l)R zmRG9l$}|;&8BQ8oNvH}xG?l;|jGi-{H%w4;ifyEx-ziMRu=4oX&J`voPOH$bj}QvM zIe$LK`KYnzmR4MNgzwCl>zt`n?q zG_?Ce>!jWFb%rmapWO{*ciTGjvp~DY%YJfQ+MRMkyH_I|47-DHXm?s1?QQ|6(?bfy z1HjgVDr%pWK-0k;8Os=jLfdn-H11vu-M%-eZX5unuERbScmU{FCl3Ij@d@17mBb=- zR+T8+BcBfFZ`!zxp z)ksUA-S@0^9yO6iyWf#^|BF;N?EZTwyBAv@%I@mI2g-duhuIDV7_lOLz0u2pOO3`i zRrVV{52RCl9`^=Iua#R>_h7^opU(UV(s9{Nb&G87&-r&3*HgbJ< ze$}4U*l1GT*kl{AKEyaPdA=iu{K4{$cD)c>mUdJo;5|@`oh(BUbW-p~#;KB#(Q9lst_8YL76J&;{RBdxWm_ zQt>J4sp8eQG`C0<)cy|wK(yb~yK9@XOHo#OgW(Inu&zmv zsLg5{LKrJ?Lx^BqLk4Rbzk0;kh*56nt&qK0guCAuR+DuhyoAf@AmN=o&eef+a6UM| zQan+Ve_oLd9e-Sb{@e!yyo`f5TA zkw~q(6AY-2_tH%dloX5W?ig{^axQCXP$!G;AUw00Y_u-EyOX-Or0ud%E@=l41TJX- zflJz91c6IhK;V+L!$z|Bo=r+2-RX+%GJ-(5fIzw%2m!bcabAzi@^lLAQcfFk)a zK_E#$AjxwCfg}OpBZ;f;P&)FjzMBDsfYmptC0E~Z8?CEvQBSVE?}}f|^51fHjB6r( z(#3aW0U)*^_MX(}dYQuQW2hJcLJ5SssNA0^C<>J$5 zgL)?f_~GKy$`2PIOE<}JZMl`*;t=fCN_N^^o^!=nzid!$Vs=Tn;q1}^P&u0vYMAW> zB8}f{R+6#&uZyrtPbnDFy*CI2obJ(LI7uyW$(d}fEY=8@{>p&N{nC$Qqt-M|r{>g7wch%5IjHiQa58zK%WmKGC=-P!01r^YB0R}H=Xt{%s9QCbgFk*g2h zEI*weO6nWShD@o8z~$oD%_?6M;+T;y8fUnx+QFjy9N#$Sn*_&I<9xz6XoEQ}94H}( zCEa+{@l}fk@rR?=o!fP`n-DepVaH|}8Fmn?-ycpYe>hE$=np4C`NLbG{6S@q0Xv-E zQ+8tA$j98qtwt0Kw}?bZ(Wz-k^c)L7c@Bjdp7RG092H560ks(K+c%wEH4_tb9orV8 z2L!7aD_w_@L)WRgMY>KkQr~c$%3DJ0G}PbnH?E@wBFeA*&v2MP0Y)V1K)45&9{tBu z*%wjtZD3n55r=3Z7M|K;(xdP`fo7XzoA;3U`tIx$-AcQ-gQ1{&dFi0MZwIq%T=Xe;A7NS7y>Wh%J_#KHA2La{(a< zuCG>{bGOJ9=lCr|+YT1J)$mDFbQuAViawIyx}+6p1OT2qdRrW?q`P{srlbOPEL?LY zZIwMfiD3ObzUx*w0(2)xoCap648 z=IX;wzuCIHK5DD%H)9B2f4|YPka=LlowAj7o44Sd9eBwjfme;|UY^Vne3ERHX$4di zF#`*fxq)D(#?-o7@iSxZ`C=}(Ch!>|o}tmrN~4|<2#vlRN~0Cz zWOTFCsFj&tqZ9Q@N|~1lOGB9#Ln!l`|C2I(LMUZYDJ;rVCD)skX{=fUT&1QVE?Ko| z)g=LpKV`PcJ(wn&vFTj1`D$64#GHV5hzrgd8d_ky~ehZYPgKuSRkJSSql#lz6pMo$o*SI_YOfIT|nR$lqH@qoD1m! z!bevuqN9VhnBT7K$}P1Nhz2a5NqM<^9$#QxK8t#C`P^J^U&4^hpXmUUpKk$RkP3LC2cJYJ*XvYZv!Il9O@+iICd>6z{Atq)m?C= zHJX&e0E^4l5zojWYXrgK*pJKCoM+_nbuPhTgoPVAYXuv#mOUd!{^pP}C*B?CAu6J> zipdZQ{BZed<%i4H?a#;|a;KHuwh-(JB|CT!AR))I(iY{bmS@AV92(pDI#{xY7{&iLgBY`c>oPV9?6i z{tdl7MoxWtLTnP}eoYA@Jb6kI02NWix!)^cy`EKzqI6OgBV!6LOm@Ww ze*o0}tUo&9x~Q8d+m&@DG(h2UsiJj2Lj205mvko|O^9OOV*OL;s_3XJq44EG}obnp$83Cw}`| zTOy+@(YnSN*++z-FfrWE_hUEL=9}DIEqL%d>Q?`P;o+1+2TMA8`89#en*FFU^0Txo9#^ z>kTbWb-0T0<$YZv*g%5?nTrNtoHbxO&PDV4yB_8z`nmGiSW*>dgd?}h`REhddFF_W z^q5do{D&lVpg?DNNuCkW5rirP+?+vQ@J76;i&E>|kM zNZ`<*)UpP7_0ZP`+c5~oo;OPRTrmp@^V{+NuEdYIA=2GJhE;f+$Cbz)+F__08UDq0 zcwEicUj`X5g{KVFZ1eZOVW^EPThV(w(^XAlH7!i^YCCxI!LDppjUWVa@Xr4d#b(o+Ng2Oj7!m~e7;sOttBO3I;Q z;p8E6hYabN1Zzy?r|ytb`RN3UF@3U-KFIdd{2g)n+;tYV1ThTM%ylq^OOm|gJmo^G>?3uOWsxHG9|@2>pT zmCp5Swp~yF^;>io&&eE+l3Id504I9U(uwyymGYjS}KTDI1f+8w!w4ceo8 zvdhv z+{LecFmPB{CbTfA$HST4X-mNp+CrYc%+=hsh&DHUalaZ9X=7YLvce zm)Ofr;x8_Dt-TK&n1rhgkM|wmt~$0H%KG-6zA0sPSnV`R2=XYOQxZPmoeu3N(XSz| zz0&oL?YOCKO23}`K!Gdb!A0|$8RAphQ=suP`gY~Jt7?(_rLP-BdP}Z$)zOMv1sV7z zoBI)dYp$b&?Mo^WYV!0aVF8-_0X5keR;DBJT~i)h;7_D3KcUP~m-hsO`us)Gv~ka>Kp*;t^sASCj;HU19SRVD>ejn@gR8lwwdC(? zbhWj$rp$#VSIzmYk^bm&IE|1F+2uLmkd5_cckz?&yBotrHSSuxea@69UU6B22loTL z>2ti0yK38-Qc;9n%MK6_s@Ejdq=wI-e|kG@b(Pa>qf8b5IR%a|xKRc2?Dx7x@PU0( znRoOy*wliH6{bAvdepXtis4t~N~+2&QkCG5TerK$KCnmX%arPtQP!xsLaXW)tHvyp zs^hLn4I}uEJ6$tuubL`D3@d!A5m3^AHdOjmr#JkKMgS%@k;qUQ0@wMvpv<&e( ziJ$(tMx|I&ELO8aAkJ5gkMZzdce@VQXbC=UY(^{o!}G2`Y>~T3p8#Ff;isRrwM;ER zz)%3k$)gV*$Sd%Y3q}>=iJ!X5^0xb2skS)6ha>yEzTqung0Ro3wA&lC-=%4`#mu2=aciU2xfsC=s0v9R5hoClE zi-SKW=tXwReU|o5xSN$1b>tSyN%2ekS8lNsPPtHpk8N2rD!!6H(9ls-0DP0K%Q%?sLt1U2-fNZT1oH~oix(cWi|x%z6h_bD7FOz#N@N~)ecH&qocf!nUp zN|~<=NU?n-Ah_771db&x0{v`HW-HC6KTleDb)GXtzYB`{q)#Q=T}mT;^uPpus`|jj zJnUr`xZ=Ld%C_>fD){^m{>sa))^Z4__Pks@p4`pdY&?QZ6hGpc`G zGo%?!^^>X)M35uW-e&wdH!I{)1*Ps3h(#TBR7CR6T0f!YL~^qMQqHi05C zA9JPZOF&?F)ZDg=Vua%KMMPkoOWlQmtIB&!4T;sp$Assl@=PpHc~(dazDI4AW##ij zYjDq(&bqcERFH8mKb~SP2oz)Ztjptvn8Ahx-c%NNo6lq$xLoINsrL7@6g&ER`&Na*&(Q31R zr0OiCNYWF7RccFT>#s}P1^BhglWFX<0BVAK&1-++M|zqph5*j~AlXzNC6pb8o(#A*9)HZ%hSmc6bd?`3wcIO{BJ1p>V#$p|+ZUlOZO}2rMsaw{s-6mBDTu}EaL}0Rb?4v@6+4~w!IXK!T(Rq{iy9<6zsPf^o-@Yd$+j~t_BU)P)_%p zAq!@C-r^-I20GAp=s@x*6>w9$xGR9v1z8B6`Y4Ni0VlJS{FCj(aQFAN-z^f;ex$xr zr~QbpEb30ym#a83(}*Kt6Wlzxh6cjWEOIjG6rV&p+zPL~A0W6DUPt`Gt?)YgEYtMC`!VIxHi=@Azv$OT8_Wx$+^ubM zDWV{!f0n2saw9c2FDT=V!BkG$Mp_C9uT_M1Qw$P@@8JdEqZEOJp^8B`-FBW95H6XsDF!J6hEj&L^GI7CS_&!mQj{|(Cg&A+c0~~$OA$yIstCfmd%t+QEW=cQlsYc49aY@AZaYZfz%?blP(bJsJD@86Ho^U;?ezbs zsaBVPHM6U`J+}8OHRVZ0*t-Y9`RSs~E7;(N5i)QZVaTMG&;gWpo_pA>*}kJSum0vp z;D6O{@3Q?w!CEnUivHaJOan1ju&`1KG!rY>Vd%!wjtzT+6%rZ6#EeA>2u>Q)__*5c zFT?5;s_9|_S{A2^bqdLJv3a4KF2cv4b=^Jm8h{hi#ROUlETg82l?&x`F|trj7b6PA zELKeyhtN7GRi;_0N4%HnySEg#&7=i!OvF!UrWVTS;#7(@ri&{J<#chC2`#3JD`uw_ApK3kEcRuER+V+?UYi6Nl`W+1xI8FSs ztGk(|XDJ@Ny2CVatci-B$0+aT-QD%!sKSIcGf^Mm3^$nIqlssGx}VoqC?2u>6T8?} zn~3;%tmMs8-TAhaCajr-x(jKUnT2;{FL$nHJ8r7zBOCbwfPL45IQi)|ZYRH-?k;H) zaQ`d_*VLt*iS2FgP_S4|YcKG^-tJ14@@Bb|e;+jDGG?U#uKF(ek(`x6kHA@}QAm+G zCJV_~DfT#w|IvPlVOCnn`*~mYqp)duh_=K$V5l_+?Xz-jI$i~>Oe1LF+|(3Xjkzfu zHT^+#zf99e68v#)+F1O;xoP7=A?K!H1KlSB=cc@PhWl$<584!CYWf%fEAC5AJ>b-I z#V9xij9AyQEbrlPJ8T(*1(}});hZ%PvVO&PL;Gxdi}F;bd%Z22R>tYks6%q%HH%_! z;sqF-crB$EF+YN*gI2oTJ@w&-{6{Sg+jd$?d(qQZQ-lvu1QIS#gwIe65-#u)hVz#+ z+a+26tA2P$=9cH*e8Cg$cJTuRl+OM-(MH|={_#fM_eZ#oX#CEV zt&!sA%dkA6ZGeHIC;wrj`@Uy=;ARbM?I=kx)#IOza{prMN5TFfUrXop$GAt>(ka%M zIXywaICDye&pSu=t!S=*V|SV;i_KU0pC&0??4Mf=bynzzp+cRkJaBQ5FIrtLcl#@*1;kg8_}!+fe*enY*Mt{>rV60Rn}>j#@Qcf0j&Dn5gBKFtZ_S_=nJ4vpRZw@)nAZ< zM>&c?0)W9dTa97_ZyhkWxCYYNH~nCbqi#~BtrabXq?;?!-6#f03yjy(no$H&2853? z9>?S0kWGsrN3C`H&ID89!@NF0)#<&dQsx@> zG(FbKKV9SQWvd{H`ur5cOet$rR(Cr`dvOgDTZR;cN;r-{VUC{{L~u83I46=Kn0ZO4 zslAH&e?tvEA!x<3;oBzC3MGiC6~=&@YGJApHoJ3e0}Qy`Db^TpJrs-sZg;O7a7`6( zz%?|Yc128r7z6GsN)t!5=>md^8Vx~0T&0=3*_|7<4z!m3SEU5o23iA0Bo69<2XSPE z!*(y%u6Z8eSGTxZ>8k)E#@iLNjxpXY_43;l2XxT9a=4uWRsGu)@6jqK*jbBUO}#Cj zaj(#A-_w%*;a0x}#6`ZwHHseh#=x%nJ{nzz@7}I=0!U>? zC4TPn%p!d4mZbi+Zj=_T7rXG>1McRwE);>@bmg1Onj-r!&t|7Mbg3>!#j>n5_bjbg zG)hQ~!9(Tyci`ubxI1X=`0ah})B0p3!@K)o<8B6}gzTqE_ERYW+21(eK4Du(Z_IZW}_!JVr;1zUOTH6 zoZ+;1DXCKoB7I`1*idm7e#TI7m+vzM_{9qjx4hP%vLIdw{!CCGDr5=Bq6z-55(G{h z5W&{~yWn``zsSOd8^Z1%kb=RnHBifs}qa!Zl~SdgL1t8n?b!-PrKv7Shmp&Y#TrK zmL3s5RzT@gfwmSuIDk2B;VbSs>?vz~+#sHHOk4|-%S5uz0 z;mIO=|Jz-o`RupcYxRF05 zF{`saJ|@3OX!eeK#eHNg`{b@1_Bu#eb!1u-20#3Mn!d)9TK0z3jISJ%>FZ~X@o{A! zU32rh?tig|jvLj4d-DTl-DMv{BK4qgrJS0^daH3fgx;DQ$JBZ4JO0x9?nw_KXIR2g-#MiTcyv+5U_OW}bjg}C(-YvbJOYSuqD@#brOR^NCsr__cMZ=_-*MK}A#EOrVA&960o{<893qIg`eurl| zt49i;V6|S9BwG*!k^}^hjOGVQ+p4k02o~uA7MFV<={N2<%tP=<)}hFbAqXT32qb&= zM)$642Eig(!1~0+rSFf|-FCKyltSVw74dBZfy4oU#IGFf_Ao0XSR@Wu6Yg?O5(Lr(1k$}p5J(pgKDr_`A|_Oq#>*Xk>{^yrdBIhYU-`pb zy3|4FmByyUS^NNjk@_5lr)uydQt}=56JkIMbN_lH3`Ne+j=dDAQ3?M8&Gyg-m|C zw5O7pU2{)8DG&mOG+vcVgH21{vQ^h=UO%${VKw)fg z&j5DBN+GRwkqA@SWI>@r2~Ua%iWJhe4vOIC(udY%um9i3jEwMXHIW&2&yxxtU4aVa zm0p^iN44@a^nS=ZH+6QyN)-)tT^Z^+!3smk$A(T~E;k=p))S%i6l3F1xJNO#iEJm) zL}Aba@Ph_oBXv%GUE0XR32YQe05CC#+FG%ScTAM$8MrIsq|qx-MR~XF4Ov496%JSW zPB8|9>1$;@6HQgnvUg{Xtj5|~tKbbOHBa)d%6YnksM9-Gok$^)@7Via`9q3S<@ch& zp{S%{-dfpkP_<`bZlpH6dpYll@}7>GcUF1Nn;IKKxe0&53xuAeP|;N3Pudt>q>^We zsS0+jo_}=fT4XU);bTUvt?Eabsp$a>WRqR@qaGk!JIPb)K%;*MaUCS4C*xZ6YrAK6KC5Ps%v* zI>ie8G}5}CV4qT`Pd_@;!OO;I9SEvv?54SRswj!iztfVa%Ita>b@;uSo+w`WQ%^Jt zKV>+g=mdO6El=yfC{^l|KT6$s*i);lp&ykNEhH0{o0<5DFl7P6@|`t2Z<(Qwdgf}4 z@@sjTvm_!-&QQ+~y}>E8X}N#}TB}p?>jE9(=GD8N4#X{0&Ie&ECgt#Xfr+b#DEcdC z)npk>8gX}Y_uttNB7R*0U_^ z1yJX>oHi}lQ9>9ka5$6&URD;sHk{XzVtM4-nT_I%hNx6?DpLCQo;VY8w1N{@Kq{7s z>AdRQx5B-SB+siF`<_T+*y7qL*>kQ@Ec6`jrXM|RHTD+;`@0TQLVeOo*mX*sHhO?i zr4A*r>(G*N7`yH1$r8-PRp7cN)laLS`YnK1zP!0-7c)V@`}H=bxmL^5jI|@gQTwe< zhw%Syr$hRGb-5Q!nE3pkfH-RYtN+K^cL!EgEDv+eC6sJ{B#;D10wnZK=v4>;QbQsL zs6cKF5Q{V)A(z?N zX*=6y_Ur~M?}yoRsKG`P{@UInR!Dn~Af>Jw&f2_E$(9w(msem0oV`j)(fMDLvWGhV zTPuQtiAaW%!K9`X9T;L;QHI!7^9c`ZE5O9IqL?6BSAL{DjBv|tILq+F`-3w)pK`ym zwXuc&cE7VCe{NUr>SFZxgqD7CZ7ClKM#uhzVP>WtF zxJA_?>4bHlMF~i@=ujXZ>`V3iu8z*;21{INadEYfEw@rOYdKPiW7@>(;dS}LUBQ6M ztB03kjYzp@*qPnXh;6!o5i>hGtK$H$W!I=$q#@OF+`s~71q%x?EKxvG7w6{|00{8{ zyg5FtH_Ql`gt@RE3=&2+XRFW&VaUn?J49{iRfK22d<2B%GhzjGy2PyS-_hNfX|T75 z9J*(`p-lJ&DMb_J-0E1(@u?7LF{{MplVV{(xDG)m5gjtCErDxdoK4W6^A7e(E|aZC z(-f%$aKx@bIbzpXM|fb@08H!}6cc4@@JC#6K0L#j2*Ds|yZ&tPK%FH+zd!vgfoQrNXqhv&dK_um0>s3UNH_ zDRl@P4+pHW?k|X4TSy&%A+|bY7+4IX@OGKb;;@IoRu`C}1t=ztTQ-2YDVRcWjthP! z%BB+eQFYw$(F#B}jz2Qc`J#oJCQ~ZY*?@iUzmfSN)7dMOOiQP81Y7*SQK+3)Jl;Y9 zH%UWX&KhjBodRxuLsTj0c0L$Nq15!^$!y2}MxmC+IW&|)`lVv`v19)mg@dl*)hrZX zc~*BuyA-G6=BlunFLiCnZWBV-H?9}dH;S&7eIu|!>qHjGjRKBEJ4fn!O)6NJV_TLR z1id~lduj9b_67s2$?{h*yD$h&dI#T7+fS_KX)Fg z%nW6TUx;kl5_<_0E%A%A1jR;6*Z|N#)4N793Iz}A&MsT&$u+eFZLvV3^{{1ESvC1> ztn)N0zsBaM*s`%}WXr~qQk)E(JB;dZZ_UKVot0SwQi#)Z9iI9EtOjx$JHkWf!j`b? zbv6-Affs}8nYx2)3Sfz2Hf4!3bvj`qtY-oy&eRkWh5M>hv1$(Q8rZ!~b|kYbQV+z# z3?}$sP{h!QW#k%>jjO~L6)~d2F@8I~SfN5`eA?im704t*1Qt_=MGP@{+W>JqeL!{? z?>EH}Whug@e1iyy-h|^s2!&Qt9UUx{QQuNLIgHnR#`&t_Lr}W)8;*YLV?qzte{;3M zp^LzUP%UXk>xQCLrVZ&`mM`ztI+^GG-ZHWRSxU7JG*Hk}mf|N4MrlD?-IDSs#1+H~ zQ~hLA2k!-a;3s(is>4rs>i|1Mgu`g^0Rhm_gtJqMr2pA!h}%>!$weCpoPCcgyLlp*hi0-%L#;$QZn zlNDxZ6i;lM@oK`ZJn1#qvv(zh!Ih5t7rD~$l0sbRIDf$bEL5=(QZby6CVkko7758c zAR7f3@t;5Jnq=Xa^ty92dy#NK&Bgp-bmeDWceX7-8Dm**-SgW(r5n^XLAd6 z^xOG%Y>Y>C0&I_!r6s%(D4nPI6SB8rK6d{CNp($yg&f99bw{?FcY zK4|a{-o~LAb>5?KI;zR$r&>1keb- z^FQBmjtp=@{qNWj7gept`1QA)aLh&ugv0;v>CS2_axL*FF%kaG&rEkd96+>1iMz>$ zrRqYTxKXhT|MBy#X}sc0=Q>u0Py{|z_`6?pt-~4npa002^7hsvMPV5I4M!5PtVwwgs6Dh>t*o^PkX(*R-VL% zwp8Eg!$|`9oqmPc&gJ=>D@cCd`LV%1AZp{eg7-8ac&=dizdBct&Ch(`oX!?%!sJ{* zKJ2m=tfl7)){uH4^Jze6=_6-%bJ<#QtYDuV>CYfi>Y>c{*d<%JnYUJ^WzAo~UMkm! z=~F1cL~kT15b0ARkDs6K><;PNt)DudVKqrH=3}e=DhW0t1xOGIFhP%p3ObTfOv*wj zCS^gJ)T5ab*g%4SbRSW4hmiuL3k66QPZc~xN|7#<2I%Tj1#c59B>tu%K93Y2aVS9I zc&gwlQi{Z()IuCj6|5szNPLYVzLOLnaVXgKiL-S$fg@RfTgc+6g4+ZO$zE4v**aUx zL4iJ1P>z%$aVWJA$5RCj2^JEsw@$QT({KVukpYfgkwyxTEEEv3>R7=bf`w!~NVW+Z zM+%TG6d>IfNCDD?0zntttj5x zRIrU8A=OQa>OoR~R5wYgX9yg{gbGSb=p5=3h=RIwKIaM+LAMM!S3v6HxdL#Ll-E$BF<;dz8s);ehded=oGG7CD)74XKy|H1fKSzYK*L335- z6CTkJT&zX(6#!hUEm(_Bk*!|q{LEnED4tlX;Vx&?Z*rG2ij?BQ8jmKt_M1GK@H#2Q zwdgDS&~N!2O_=eUT!zN~CNDwkB`VUR3BV77O%{G)$6y1*@efuE{Lli$min4V5^O08 z8itr|ZFD|hfx?Oa1q4lIyiUONnZl;b!=He&|B~ zgm6+AT!$yGm+SB5a_#oHE}{^{Io zuovtkvDZvkFMG`dS{h8m&!Es?HWBLJ=APEU&HaC@=xHWk;^v-WVxJU=c;m;J`<+$U zPoxqy+|q&??pN7xCUi;6!|QfaLy8bgY~n5KM7!AlaeVCo2&qsgv|Cj^GUxv4>jC?*ba>Eb}Z zZ7aGu5CD-$VSic$?Qa9b@gWzSbF65h3zXX^yFmO#YZox$;8CdVg3+w^vniax1 z&;tla_J9@I@_0vTyH=3uWobkRZS<}iWf$m5O7*D#_eOatz)MPTvEf7oLVLi7jlsnR z9tzNYqiz!fe%M}=AGX(vgoW^Z6EJberI>gq;Je#_Ljh-R>q7wp?qEK9)}6qi02oB@ zP(Z#Sh{2T-##Xff)S&T0m-L=N4smsP`FCZ#yG;kkgcFqb+PP->I*P0_Uca+oWhqhsYZ>7flz323vb zlPbUv=PV0DF<99E@WyOm*C$penAK>(Q%kv;u~tML9IBdaDqy>ytuk^V*vWSh=^@tb3D)pqJJ* zRmWU_AvQT>7+fgu&&#^Rd1q{Lfhnv{F>yGv0n{3wLUH=jX9b23`B8OT=+g>7H;#*2 zr7hfWq5rhKGA{H(D!1HUJi$^K*9y^KDAE)%yF1rT5!d;%RZGk!r9s26B?OAr0d%wu zMMvw{04lv}fr`O?Gt?Jn`nD3n=$sp6+lFSZ_G~V2SW@Sy2$O(w5|DJxcP$pF&wm{0 ze2vde4m7(872H+ExJ#td#)#Qsapg1<(9swa9gSfFs0=TKf~$0A^{oU|hL@sYhL-}c zd2eZDFdH{mZksDL>lVcNxFaESuzd|aIzHd0kr>NT?(}J8KCy+L|IVGjo*-0kymU@7 z8aw7~QLh_+M2fLze;^rz=93rjLv>wE1bvb76ZEkghtRLoKfIyimn~s4D|Jt1zY_AO z!`6i{bFT=awAQ&^R%(uB$RTMJS`-#|jesvKG9Z zx22#ZXu=0CBkQ@kI!bI+mMFDV`xFvnThY{^mMF(ZrD#hyzyds{XRr8BQwwp;l&##T z>q=&g?DXpwM8A!uZxMKALsuvBp{+cllsAd>CFHbadr6w1?%~=RbdRmy^lcFkx{SKj zgBsX;Qc3(YVSyHTq9BQ1DnMds;`ak4{=iP~y@CjSrU`gr`&iNcqY6sh` zbEFV^)|Bf*i}N=+xoeq4xA70!x$3dv+pIoifUmh+^2A1H8ii*PgV&<) z&aUc(*%U$*^RCkgK)TAX#~Gi|1G*>01*57+)2AU7#AiTL_~0~GwxtT5BfFdCYR|q8 zsRBGe6&x)o7p(GkPghg6zJMw#Z}ce-%yQD9dG{57BQDCbNCFmu53|mf3MWgi`=tN8 zx{X}_67isGrFmX{7+3kB z-mcHhq~9gw`454D)ohf_%D?j#eOxcI%A`P$CNj5?q$~c83n)o8#=ondtE0i|tbH|d z<_m+u{QLU3atzj;P(i^v^R3z z^&lHrK$VgMTpcY{boBoD0;=2@;HqP<(uqwk0DH$k_+T?cm-?BmN7$$NRWUpNE;|mb zW3#UEhz`=a=GATF8XDb;Rr6lL=AE&kR=5c+B<^=5E}$sAByieCV^72!OzS|>OMHB0 z9^Z=Nv9XI!a=Y4_uqMKz2qeQKk0Q`48X1%ED8g-_EFML;BYxpgggd|EQ3OVgB8WU* z65Km89G0M?`i*NJi)Atc7dT~*?OclY&N!ED`xT&r9i zcwU{4Sq}{qzr-9kW%NCt!0;z!yCMzNRTGt*@LrfM0*bDo-lA`=(f$x8jAH!DhPpZ! zte=MGTV36z7FzxF;jR@1%gV2Mg66K4Jfu2b@tEt~d$yxM5jyogys;MwAzIe+kT5uUEmT3D4f znaVRJxDxrul;qlRgp8EB5`eJfAz$fNa3+GRDPpcd(ZEg9zNDO&U2ok(N4IEG!QlgmxAsh{&)`SUqqntjcj1e^GQ*-L+uPcW?ZhQ`nVoxt`!~Gqs&5#- z@S9Uysq9xGL(q1siS4$b?HZb|ZkNvu=f3r44L&euM^QfaF-LL!)mLTzjYpz`RB-$Z zCdJ#7;72|tJ#07WGNR&AX;S})92cBVxJn41P3K;UVNv$_m#p;zCc>+gI&PPb=(ZO) z>Ji=hBtAZ(n@?BCZUge;Bf6EQyFSl%h*|RQhnPNm#i~*D{J+d_H8EJb9okUPZnflt zysb4fIGp|;a9+xKYQh}Z<(-Xd6{CRxZrN!&Fw_~cF1FP0U_V`z%`ovMKF>60ZBiPz>)re9r8+?JJtem>-6vt z(j`B1eZ=B+>XsCw&C)yN@y@EG0BJ)3o|OFQBiCfs$XW`MP=?uF)WtJ`AUs~YlaE7S z6Nv+ITRw5MDwP3p>SJ+B_{ukW#Do*sVO&c#o9>XO;&Mv68%2s5@<5zRh>!t?R9(#z z(gc*wa4iUtlrrx6{MxIoEo=~x8oMX14V&95do>!a4a@kyobMWEvT+(t)`q&ey7bpl z-F4xSr`T)uiYs0;!r99LiYut*eAEfJ&2(Z7^M3hsFZ-C(m{!G|X3pIyQzdgr!L}PN zd9x0$y#%sP;^AKY>=FoOpA@~MF>kQ1SPDPA#MK(-A>QI^S1J6m8#+SNB3DXjExEdA z9hhJwn=;Ax-c_5~0P4&dg`zC@bno9g@d-?Jlt>EVc#XgKsBcvK2?cWG?UXTnkms?l zT>}!dJjLbyn=)8g3oa_80Pu}81Kt$+2DWswfG3RKe#g3a6%5vKSXQecw$#UmMphdrC7jXxvz7U0lY(srz<1A19lD4uA<&@SCe#r@s|Zr( z4~}mh=A=35u{G98X~t}xvkIcL1f3&`Wk<$!U^}hYGQ)x_M2e5r5e-&?0AMpAZYJV) zpLU1&Z>)ALG$T%HVt;VFf_KrMEgQ2-8qDV%gN5^H?)lZVj1hDmT&7jf-V-GaZsnQx zc=|fF=*uDeHhA!e^n7*OPvoDx=LT4iMG|U3X+zN?fQPv8r_zH_#d+(Eu41tk`2)im zOat(8qw%iQRj{X)+~jIwus(zxy2^v_IRjjH%^oBL=-T32L^JzOKIw61G8;xpgWc5} zOcXaC|5L`ZT|4C`h}z)l3LM~s4n{ap2b)4zfLErOfRASY2)^ue6RY*F#Xs5(1MuuK z{bSjOq+(Du-g8G_6rR09jl$R@kuytFC*~!x3D2awa44|>;`pAH?pYQzG?sRgjR7~= zY!%CEt|!)V{F$$t5HD4Cc@h55Gw|LZ0uuh6X7)tiNEKr;rX{%;qMP%%FGVo}))xKY zyTKPEC_T~)kEOF^a6a6@SM=%I*x&O{*CQq?w_AHS4iFe%)(xu8K*j9l^QQHW;kEX< zzGKyGb!NKyhDXE*pqy}b$YAt}@+BkvqxZqej5Q}UVC3k{+7Uo-Tr!&T2?rrRYQu(` z`wl`x^uhe9n9X-{qg9{8&^lXkU5%MHzdFEXz#-Rt)+%DQ&+XYGjK5K@Tv7hi-lKha zX6>|c#(3WGFINZl6d@FJJmYbG=u}`1dvP~+EqS;xOt;S-cBMya3##){&H2H@uKrf0 z!Hs1IHe8Q?N=yJ*O`}Y(Jw|3Vl4_J_M8c27#3kVs^KWfv7F@g~@_Cib(*DIqT&5AR zMC+r*S-A53JNAPH%W-xI&pYO-#R$3{XA`wR>hKa3KwNv+g^M?P*q?+dHa4!%b_l3+ z7(cAg{xlpHcdLx;Wl}*~`#iDs-QB?v2$R-lc4JbUw>^U^H0-GDmd7+OkWS)>)qAN+{1r5+p8LL*$GAdIoU6 zKJP-W*Pu41ebD&}@M>BG?roi1xgT0;=~0P59mP@nQbouerPi zV|%rqq(X?UY*7uM0usf1y$sbWY4Ej^!b+jZDVOUx~W_sY!r#XUhwid0S< z?bSiU?SK`}5gWNttc`WVwB-4qukxifUp?I=|M1&OBcoEQBr_hpa3s79%3y}w7Vc}_|!4A zlv{m_Sdck`v6f|EC>m>7yeF&-Bele=nQYG6tAj0NMHLxr;X(}Y-b}mwYv(l6M<*f8HDF{x?a0n|Xtof2On*)4OhGMj^ z>H|Gsf`+3^&~P?@3dLBUA{6rxkwH&X1T8R9W`D#>)o_nvq)2TFh3Wmu^h*gjP|0h+ zlV?HGuP)g1>JDK_98FIF!t`+YGtg797%)G^VwTl*|8B6;gf-g#xU&CoQlMiocL+47 zxCwP|t4!+9t#af6?dDJ^P2l4r-q;cc(L3J!F(VR!D<|Oe77om^l9B@Fo^8iwSeGlUm;||Dp#S^47 z=+owy17xK&>44lVKnKJtleAB(2eW|_HUi;98-WuR*a(1+@d|=Z;uR6CVUWUj#R5_> zC>#I2wHl;&SR1#D8e@OMctyUliN>S6u<>jF6|bOBG?tE6>^h*rTDz@cdCeWfT8_hj zhG8u+1_Z-e6|`XLdpg1?5U(I08LxN*2*W9PSgFH&ox6t|p*oKw}0`{UfQm!TG)i+zrXRqrS|eOloy@ z&t(*V1J~8g?mlcOVH6y=VhFC5pa0m!JuH;W$g{($unqqoWR7-qHxDHMrV;!TJU=8LYD1M32WJ>nEZ~ctD6=M0qzHa|L96CAwu)7~VWX6b4+<4giisQLld890jlmx|n z{hr131It+kdt2K84TC3`65bL}y3HWGXZCmB=lBSO%II99I{U<4AD?xbmn)xjoA_D8 zy|j7I8YKu{;CQHXoI77LEVySgaNzYI&sjD&TE6YJwNJ@1{u2Y;35K~ommk{xaF$~| zaGtcIoRe>Ly6?bkO

<2JC`W?;1QW+tJEAn~O_~(tGW1xZTQ?XOhmi-Ot{eduSmm zK)$(x*WDuGq?RF9Jiyqabg4tOb~^?m%mTQ3;&0HU_(S!0W1o8=t1PfcXTUa(US)6d zN_^5|VwEdSGC_SjHggCR6p5$?wPM1Bfn41@UCmz+sGcQT4V;3{l3AKh&DX$(8#(nM z2R+z5HG*P@XUSUe`-ixXv!PZIYw)cn2enQcq@hAs?6CL#upw#s1{=E+laG`=rCEsn zP=lwtjn=XGFwTDRkc^#l9_Id;lSsU(Z3edp-%HNN<-(`Q=F$G6+JFpVZOdYkCE~?n7j&VrFI4;=>@h}Ng z#ls{ZEpoY4&-Vf=@t4I_q+Vw6za*D%J^m{tk9LXzn|Bm*lG9(UJ?7FA?m zrLPbQ{wrUOdQ!mYIOny{In}qmzxfmHO9mT2bV>Q!tzM4u5vZ6|c)N2(xG})L`$@N9 zM36ctQ+J*>x#7JWpVLDW_-VJRH-Qu!F$d>Oh*mD}rCp`}`j(o>mg}qFm)3(4m z=Q;l3bMDHa*i&C9RfWA{!!99+2JUx^=k=d)$MYvAxJ!msKf7=KK=!$MwvTLM((rTnNR!^MbolC^o8C z_^|E~!k(z&Pb*r*gX~E!x!bW=8v?+8e91jCf-sk(b>g#vF?ydmyU$gAU7&6^D=l9P%Q6WNl2} z;R2?zF^A>msqbHWrTApg1@y(or!GQf)L-C!&OehII$l2v3k7%roJ}Rgn#*eiap9WF zq}d+if_XCFhF^!yy&hT9{OT}w&FPcG7UxTQK|!>Cl(Zc%7VyO{_ev2eh`oNO3Yaha ztpLfO8%jm`rO?SsfkOs=- zlZN%FRf0m)lU)O6xR033@wawD-PIX^3fD9pfAe$ixKl#W^&@DBwmO9cX+CeUx22`l z;%(5Ni{ADnv-+e0v}0NcQ6VrwROS_Cx-0X%SujF`$XNS5_YW+URLAZEXmDY0sfwZa z?c#k^ST7sC&?(}5cXtcAmd;1eg>()56P1%Bc(7&JOek_7e4;eqyDKhFW za%Sl9Y}Rap{X%G>?vV}VH(;9x6xIF(+-0*HF0vy9h@Mw-a07ObKm+K9wz!|MpkqtS z{nY&_J5SI>OPD|%I~k$w2lSQ(a~#p$jEx2;@E!Ny@(~0#MCZ~nuV>de#y{u9tP)0v zcuf=*oGCwiQHi(y!aavo)^M@FYr}tjIJy|G^kr5F-t0^FI5YkTUz`9>wPwDOwc2cS zgwLD$NO=Ji-(E&gqPXHFW4JomWsyf5$1*#^2qCV8=y+I0ijOaJKO4pdTIEnzAv^-H zP;nmX5mE|+buyn2<(qCk4$r!Y&&$V?QqZ9W7bCVYmZyB@ZWX%sc>aiGz&1wmyzktJ zY$PEf$7^v}z^o%GiZ+`RYaZ_uz~fWGL);iJ@(6bg>|Z{DFp-0u2^xyPa|F>)jdm2G zM!TPvx|cinhM(QxhL@v|`1;;{qY{QD;6MS$Hv@l0>$W|#a-pOheK$U`uVA_2IRk8nhwN0a+rq1uc(rt*ye%h?8 z3RapzC3k+Pk%7F1`oF@<^ViZWe~y_I!95j)V9z8!nPP{{b{X=6ZK&3+)fq z!zjMlh7YvsZg6KKqUjA8oRm*dmzD$awRu^wCOb-~p-pf=K1-n3fJgb+&F)sA*f<^+ zI%e~>qda$u`&kRN9*(04w(ukK=utTw6H(M~T*Zd!02E%~v#jY61XpUDpnH*eVUK9+ zPv7n?Zj@-P$pr@D0bgW|VI4HwIuQ3YTJw23-3!g$$8hw8{|?*b9vwjm*$3ZBaxx&? zbLCmszG4(msX7>dF}GA~H*C+?1S@|v06%?94!}>7QXGIQ-cE1Ma|cHj;V1XFGaURF ztQ~KsS7q-KL>wn^RXF2V0juYajs;hR)8f7NnbUwDte$z@{d$aRcPb%*kKEb2g8Aby znb7*l&IFg}OABK1>oFYhjlMkTfV;8aAqHdQA$%1VolirG5Eh+8PdN;SKw^1^gYLmr z@V0Re^)SZ+dpfU;&vlPCn0Z{gCD@|_pZJP{8Oo}6h#oMUcQIp+O9jhXYsneSEOWd7 zD<&T&3RW$Xt=&-FoOS1z^lr)!_U-Acxs{RJvYUX8$vcW}9C3FuyC3Hx7kH|$G;1{_ zU)O@<>nG(iVeQ}ZZvX0JvI)p1txxzV>)Ro*y!0{msR#=gt$$NmA3m&1Iss=Fb9%v} z0__jWG+K&)wKwa*wnk*oxK((SL7Oh1Y7;3lXiJW(x&Iq$1*Pqxg0x+(wZ)T{UjpK~ zz7MeZRx<>uyq*6+U5e zIE+9SIwAXUAyO(95O~#D*%R{YLwQn&eHXh`?1=)ruF47YI@~wneP`P3)Z-7pb@L^6 zCZk+&e1GJ!djxAq*opDIgg^^yol^LubMEqdz@087c+Tt*;XLySY@$L4VIZWtjgTp| zEu&^SsKkxWK8@pfaYf+vi+qr`Ty>{~((ZZ<5_Kc^>69c!^l*O zzwr%siosqbG;tM&kL&Q8?pKYsc%@tJ9&9?nkS$?!X>I1nmM9alhMNN#ihMMTaGAH= z50};rQAbV$ubz+#cEUMCXoYGK8W-%>m4_ae9ttOSu#1V~^VZ-S#N6-aiz=tG7!o!l zy$W-5dxdJ4quVEbVUBL!3Cz(&ctsc+k0%a7@hZ)j>`9G5sEp4C!ra;8XXJX?JI3b* zzUYTveA;Ivj!!rui2f!1X(JY@EyX_r#W4FQ{4*~5jiQALiML4v+G~jNDi*&wF8d1P zyF?LI#yC8rnhIq?I zX$8^U9Ys#UM0vPO8UEXgqZ^rVCwY|b;g)>vsD%-HZel`M1eB{`XgsD9Qf7{=l*sQU zCPdT(LB?el0#@0dPk?`voq|lXZFo`<&wtEDC-HUyvjN;VFsgS7A6YZHqT@xd6JAds zj0$}Xl9Ch52Y7B#&wVT-C~!BvxVT3q1=BPzAlZ~5_nuw~Bn6}R>0+KAm{U_1EYlJ* z1ps4!>Y@zFpRat(RhRewvRo9;DdLIb+2Nkl|NrdK+vn%U^Q+;Wb`ciZcyq-Z=BeTs z15G3@ttdgu!{C@hx6#ISK5}8XIKIBLCx*Wk;dz8j7Xr@||GdM`MtHiF)*7huQ?G#i z<9a8^3oI-oRYOA!o-wX|dA_EE=b_kc+9cu^&PbUjMFQH$^p7g(>1i05d}S%miAMhs z(w+@z`LTHA-dUvf^rUgPsiK_U8RKbXuwthy zYNaI<6#$z5AOi47gW)m<=giSH9A!^|l|;6;yp@1_m&=SjC9}PWSIgW>wil(GUDi{w z1mOik>;9@07fQVi2*zs2U!R={bdKhMDunMVX^c$z1Q7NuG)S|GkxiIZ(t3j!clJ z-A|($F!&L4N7pfLTIm<?`-*gK@!;&fjpHkSZWpYf)_n=VzW zdQvQiuBx8C|3+$ah86`=#(lsXa2W-Uyi_5a|M2X%L=HxckqW8zd!Syqq`~Quk#s)s5mZuThK)9lH&j|qS73-8r zzewx)pRDaE4`IvGx>aB-@4?$n?Q}2cy1U?qi)q5-<-2YNNPqbmyI?dm$ z?`g&A5awvA8mF}fHa#soP?;(%EspPR;7R*ermDhgwDZ(qRR~u!Rc8U9rb<#OR5&di z@l-=k4(m^<{oh#XVadj*z@s{N+M59%gA*Fz{^3nLrUBnPj%?~_&R!y{(N2?yo!-=T znlYyrtd~29>udJ-%JJN0p7?)duxF*go+a$jVDsz-drBGX3289@k1agy4fZXm_kUxt zCCXw?SS?oShf(4DTx-t_$G+2He9qIw;`pg#Um`m|1VFp(A$B`1?PfgBBinjh|H@7~ zrJZ&Xc4(&?c02u{?6g%m*2PrMw|vAa-HYtmS9MAR? zK1;lFinq5}=qwTt2zcTqy|?EHmO!wOP1&>ZuuUyeuvk=w0(|1FIVm`F$um?G;1Qbu zT|CK?L9mc+4@EbV6d+wF!1Fu9NdeM@0t?+mRa^C9FB2@J`@Et%ofIHlC_uU&k^-a) z1p&HvB&eXK5J!R@>+fk;Y6X~Dp8(p#@zW|&i^C!&+5Gg3JOQ-g#h7qjZ-A##l&B|< z0c{mBtbm63)YUBUCjq9tX1;DpxZ369L-pl)Y9|pK*HZ@wK&+?Coo9Kqs?aehCdiV; z2iA_e$EEROJhFwa2>XMu5({(x6sM<{$*vNx=*fv!1ORnWx8snCC;9olkJjfcJf3tj z{2YJX7+$#0!8JHyBJRy?U51mm@thU=#JS}_&l#?f|+!VC;L2uSY?fZ zJ6u9gecDv-1A^Uh+4!helTc5cFq+mf+a^6P-b!%*^9TWK0p`I;lqAs@^QGIgt%s)~S zY7=)*QdsoBBSv!xuWjSKX%X)W0B*x!{7Wg(d$7OkW1i9m`;j0f{R-ahKPO|Xep0Y) zy9e$_`f%`O^N({fS-pdl8WCO}T#pP6)e5&t2hYjW^wzWTEYT*QD9#dXB6VEjyy`5` zRWLT5CAvuqdNyEVxKksP*6ZXW}u;tyvSB&)}m_S#b8j8=8r-l;qwCf8hX1ToJ zlxf1{MGgN@Iu+Fevp5C&t<)=(H?4q`IZrq@TgU z`bf}A|3siou^|mD1g06j4vf=k{k(AVBVoL9wXZDizslRu0>!2ce2i3tx0~#7nqTC} z?8l#3LCXQMFF_GP~5JN`-xzUjh*+9qoM- znveGxv-rHpFn`ac)WG>5P!ce|<5OrOk$cGB_tb}Qgpcw)0^!2<%-!H0B7M5}ocw-w z(bw6WZ6S=&`8J%F&bNUS$PrOo&~*5`OrIVhr8poS3d(E1(5HM4KXlaHMBOn29PmR& z!r>&j`77*#_C!~XC(Q(W%#{*+juOEml8mP>@Ki9%U65JRcv2VpL>#;?MY%rmPjpMx_8^=ouaAcVC0Nfa~;T_Mfj)@o4If3U14$ckF5nD{T5S$zE zRKQa}Sey!&@*XZpWP^+2v>yXGoB}^3flZGSDNQ>7iI|;wUdhV8(HqDE50lh#rnC#ryjW5rIxKCSum*^l}JTM zAc*sPF3?DIT>SF;_T#=M4AzZMLg#qkqI8Z2NP+ITnHOcxb&*o+xdZs9FVyO2=*3_U zv2|VbSRJsyu1i?Zt~-g)#;yza*mViMt?Rd z2eO|KyKXp7bAM!bEZsm8oiQIiS4e>Q@Ok1F=ELW~70r1MRb_vR-4Nz^kMXEU-od=V zPo63HM2sBEJ&V~7L=_z|`c6XwTdOIv?mc2O>Sxb#_M4_DBSy~J-CMxtj{jXNKhgv zz{m;|h%0htHXl=k)h2})U4cT3t^ikzuH<7Nlsgz**#KgNL{~^H8C_X?$rfFS6!m0u zkPs7A@0!o7`Uu&&pa7Cq4GKt_YhWFs@YLvQ{bPBZC5E(P+Pbi9*$;|bh zvup$b;#PmS0MLjDsdiG{T=P7sgFShI0ANps7RN2}mm57b4E8=j#7W@Y%W@KUmlWU% zp~1^xBOKpeRwI(16l2%_`f{-An=4@$+SR+U`S4}=8rxS;2FI&Rpp7%7g?4bJ41wP=W8qi8Hp*?$21Tw& z8x$c0V1sAPWft5O;EBB>+h7IP8=)x>B!@(LA1%`3kWY?Nk=O`0Zr*a6R8#{m#&MOYMk%5cyV z!*WS2lxrW63;Z06Y&^^d=X&ZV=pLa?bo@!`ew_=RKmlmU9ZKLeT401==0v)suSq*p zB?U+q3XpCiQh;=!K+rY%@k$pxFS72W94U5I6dxf4ND&H<;$TvM6rms>shD45@@;c& zT=BeFsyk>&XI9syK{4S(bCI?%8uCL|JpCgDuAEJ03Xa`*kE@1_`}Mg1pqT1Z z8?BA!iXvP4w$G^R#ejRduPPjQbtkcvgpQbp980f3=CF;gDaD-oO{paIhYizM%7@ku)K+a1LlF05~JT_<}2vH#_(e4VF$2 zaW?LLUCzecb%EdYi8s-348E>H71_FoW2hqQdT>5A$6m)!g)x(-)b_SD-9S!6D%yl& zTjB;6pF*8-UB*S-2fnN|W0T5<&dh7_LtxM@vY9JrGK_jatKf2mvi1Fz|{o(Q~B3>|o-P;?So*x!3YhW)cBIT3kv^Fs+<%oaID z-cXTOF(Rs{zwRq4!9^IU$SZ-!$ZHp999Z@lo&1a9yl#WNOL$@*nQ=q*kr||5T0h@m z$6}BGzxw%_l!yj5z6y$I{v_Kw&_lieVj|f81*xLD$&MSco9rT`qMI0S&7RWRJaog- zOMoEu68Jl+o~w)FItVrI<*+L3rkw_?B?2_UZpuvrI3X@Qp|S|QS)@Ww1l`dSsqWen zZO{gc0?-rd-qfBrYOb$mI1vizVA6nA14rz~+Wu2D%o*6KshmN^Kh_l~16mh7*F&nM z3eTk&+H)y1KhJ&Qru5t=DLIj_8h0}|YC2xH`QKbOQpP+8C*`^Xg02gnOF)aNuvn+- z@_XW6fARJ-*q4O8aAIRVpO)fHVDkxl+G*bs#~Kg?eRwS?!9i=47TDZ+lMeI7az3iI zH<7bCdX&eo@9~>*3wM&x!cqPxp>;|79`50mLnZM&nxckoH~*$|J1VYryAbF@8@;zJ zs^Ko=6JRR#b6^?#(C>78Z#RS0zok7AyLatdvU}Gi1!$TFZYk4rAth*bOqyR$|XIguYIMxSDvyl{|Y1R>Kc3MrdMww<~ zTWuO#9GnG>#E0y8gczFUG$D3FnkKL~0Ae`o!CzP$s0;3+Z$pcT3+~I@){TsmB5&&! zt8hCofKF)dz0a{m=rSrPo-4Ue=xeM-nBor81cdUjRULwe~wKXAhP4D*vZ zDE`j`Acj@bf16M1=dEMGM3ci!^|jbGiVnvWU{#FITvNJ23nGh3>3jn%40n;?Q^g>c zco2giDS^ zgF06w0HL#y$aDI6>sk=C%FQUY*f%8JkvdblHk}isEamTLor~SE>#PJ0lSrtu!?**^ zbJ6=iKldWf6cM#v5guL`Za4JS zV(-%`LiHDv>a>ncb@gTWM4~zfXKQXH^-!WZ8zh+FF0=yQ)~`X^fC(mk=mTf}lZaw7 zflB>trzU85(>sx!Aa&3L=LrB!a6+1ZA_f}1FrPip3m4Jc)eeWd#uLf}w2sXL>ht!a z!~`Im%>+v7ZNvm{$mkiT_V|5H(f0Qd0c?t^M_XFnB_3b#b6*bYN$Q~DeF*@2dC$AD zms3pL_)|^j>O*K9(fCjY`#P;7G>_KfPO|j-?mXi$Z+jC2!*_3VxsteeHB+cj3mg;y&oFei)^;80;G1Y7krcvtV$n0a_DF9R^Bow-zwVR5o$Gp(CqW7|(pn}JOq72immFd_ zhT--5ugj=*!|O7tT^}~RBD~&*NQ=RYUIGvZW0Sf^|M=S)`AW|RW_Fk~+ph2l-FStT$Em&7-sN(j&6Kqs-ivU>EbUx`lZk*s< zp7J(erwBSKd5j2mIjH3Dr@f6x7^|l2FNaCxWlwu+G77+z2s5;ch+)Wrfvd~K&v?6A zpioamz7qej@^8<2+gd7P52{b=i7giuYg>Y^fdzo;)?8)ME!w1*Ss*bnl6a=!P#9(d z#ucfB7`I@KsRfVtg{cJ(&z%TkGRZspA@2;YVTFFB@W}Jt%j_AVfKDik*U(@>Vcx$= zDD;IJy}jl5qMn}8{LL4=>FjmQg5($SVVphL;86?4B=CtZd6%+zq#A~?-#7T7nS;8S z?;3pCz^s^=lQPrUQi3Fc;P76;$SK~Y>{kNE%HKkz0a>ls4pJau;84N&y0^O`I+mR! zE*1Fx=G6hy+gt3A*-W#qx++zV56tLBd#lMU#)3;%&lGNCA?C0+h2Y zDZp4g6u4gZ2DRr2Z+Ks0{RkG)?XBo$kpiR(1xR-+DL}eVV4+*eoi&0@C0I!JHAVM5 zQh;=!0O@{43Xm=o1n4Fm9hMPWKzk=0%u-)QOa%+m3FqN;H?ro7cSwLyFVVrJ2mAmgT!#m$#`-$L~Zphiy<{r}x==l}d9zs#1 z8~hdD@y;^YX#&Pf!zlrvnFd-hm}y`)XuV**!E``n8o<9{@|-rlW})a9?=NFRcK}sB z{4RX^V*RkNX*K>5wKzB(36u~taX3aAW3hys{_xQ`Ij<8UVe6@$2OA73%oTakre zV*;X|4ch@|Jj3CA(t|#o)SgbN2FRX#Ol}tT1K^aFd6Qm2)4GEP~rREAkp0pTr`-wOrG@Z;FgkVg87ky zr<58TgIAfF=N`_2 z)3-TDwQZp{(LxcU8=`fF3@cAtN2Vh31}4T(8^R)?fdvcK6~l=PxUL|rEa_k-fWXq%hCu?W@oJL&=GF?nlI!i{V98Z{xyZ zuvCc%-D6ZDg78t%Tmq5N+{wamR5bS$_;6)mRz3g0IBz3^?IFyu&+LRx2t=RRNeV@aYbq}dYga1hJv)^r9Jg>yCdVZOaI71ifpUmIEU`2Sp>Xy2YicFn^42;Q*}bENfEh6+{IHiz$gpUqK=J;=l8Am z7KbkY(c$2RDRek0EqY43SXWFqQ2~LNkD#bx?*dO8L5H#R?+Tl}_Zw^^kq-O!up+X5 z4I;17V4xRyQ(=^Q2rgY{eC|cu`nUIS_`CDtaKSUsMf*DWn(|4s|ufRzBj@`BAkw)eNS4#dyUBuy!`4>>6Qg4@c`S8bL?-3l-CTgAvVZ zaFMVHOLmHhZGd@;Xo@bD-q+yeVVIyPHU>g3y>yQJH`)aH*hoH5*6}QP(U2KwSsI^Cv=Aim7!S zPtk?019|Fg(3N7_bXEC^M|s8tZ+oK)cV6?h50$TzC{|(H_Pq8*t)Wa)d`%eJG*kiq zuXx5~?~iN^K|~EV5&&wrMrlYfQA3@aI6&(NHP=WrX%(BADmSrGs`-^&O(o=)T1_@z zFri6_-F|4&OoNpxuKmyEzbdjHQ(XElrXp$)bkw*Z0bu{D#p|2Cx{M+QnpCACI?yUY z;aWV(;fuFa5ek>q?x`{n)r-sUF^DAmmmnxvql@#E^M|B5N)|7|pL0U`NqMeJK};Zw zZMv#}{?nlAXTIeuhhU0@R#4%Y}uTBViN0Gz;#-B~oMLV!8kXA{R;5d@A3tBwQ^3z9AKG zrL-tquS}PNW{__PgbvIv!{yR6qKr?RZiV$kA9E+*i=EJ)c0$_;p}!;{xfK#*#EOe6 zGGaDo^GS8gH+%xt75Rqg;WFO<8oI9f9%ZGOZb8&AQUEL(z7gl!XVzkTSXp0fR)^r@ z3a17?RK=IVa~nIt@nhYlEU;jHy_~N;30kRqLlr^*^9>Y$3yJOo1Giul16Pb2%KJJq z3Wa*=VDP|ytb8!u*Va-QyU<8lPi&@nl;vG|1U%e+J80beBltf!|uUzQ9(_l=qb$vfo3IC}$=d56y``~GBqk!m8u zZ5$A0?QZU2I_+?S;9z|G3X}2tViDSVF+L6j7$1)%1sETP0*sGKvSV3&f`BAzM@W)w zNCA?B0wmdu6bO<=ZEn<&g6hnJmmncoC)BPqx@kCpBUJ$x36hDV0I52IR7KW>&&l&l zVeb+oq&h zD^bj4I7;XyL85mR(I`@YM4

tw;(`*1JKnn93-?g>))oGq^`cDudLLsf=%!EtQcV z>d90_4(C<~F_)0GSL>xs9q#eJ2gpiztG* zjYW+++;eUNd)LP6o)Rowll4P_!)r3PhTx??2`&MkxeZcB-p(q%qF^Iwz2J~JoBFlOl>m2@zjqHquE=OwC|s;~N6S z5g!FwMxeOG{iXz8IoDf(g`i_{rQ`?;x5M&C< zm6Y*`a->c$K4IL?le+jSvyP+?=k8QZuxCj*ZTH~kyMg0JE^1Rn5XA@u{MEUQK_z8w zV~CxYPZJwMiM671Fs<=A&=qNosdf^tX%ak0Vr~y#BS8YQ8X@{&R^zLZnANDn788mh z^kpp26n~T^b3k9mw1xv{@u+65ct(k0EJU=8h=q{0A>UZopbac&xPm!M#K0Adt%|x? zi9&HBqB9$p|B(V_HYf#L#uP23-AwEREVAi{Fs+AfV*AD-zLbmzCsJ}EB3zCqWzp4M z^-?k{ECx`O-q5{9r8fvO6&5BC85S-C9wEZQw@c8}Mmph+eWp8b6RC~vqySSJgGBZF6Q&xASW`pTv}y12qWdv1R^tbT|}d{7amO#9Uj6MJvtMZ36IVs z1sKeK8YB|Qx@SoN2J@dJqP`Mo_2zM)pGen@BbCq&7|#CyUL?YV$2?Muo7DFS%`YMY z?wmf>*Te*p7|y38h5x}#`^Gp308zoQ0rU37$Al9G2*jiZMa5u#|43`EmmgsqC6&=e ze<>UNMGDYHca)6^MQN`>8{H!MghyFzbWPfb_aCEsJensN5=UsBDuf)Gr&5&mj(SlR z^8hv6dn;;anZKlEsJPO##jSiHQ2YjiLeVq_wQ10OZsW~CLx^N(8ef!jA0H{e26u`( zzn+ca=lf+Rvk9aW6?&Q|^qN!%r^R_YjVh(}_^qz}0w!YajUY_u-9aA^>f-Jo2jIc! z&+u}LRIpzj^fll1Gz^8`lDa6_Vj|hkM6&d|{j23G8IFOJkv4S*6z>nBP&BnWD(Ho1 zYMD~XBa)%1Pb*WOCIvdBR4iI{*YIeYD;9x*zbYeU*73GFnnce-mmLsnxwj(W$i56F+l#l%S)Y9s)o;A1y8Q zq?lUIaTHx_K_7+FX)wD`Y@3=Yd(e+Z&Gt3NFMB{Dp(-(j67_z8)1I{zOfJGxM%^mn zM;<|yCtvjTH`pQ~gH2_X%J@>LjNiDdBj-tpNUxF*Rm#ZZ00?DsXC-YZASJR$tV|JpesS|Q zeB@8?f}C>d@9v5Qeul6YDicRhxsdTZ?=#=eY$`!SWoHloDmzsvOEGoRVk+rBw2n{~ z>Y%c;j!jwhjh1wxT`cA_byHE{!?hS~^K&k}}F~NUTLg{D;nNXTeq{VpAGy%8(h7eJ4olyEJMy&uA zlM1*3SP-KZ6hDGS;sX{MwD~MXE-LE$6j)UBG5>%%V&}QTPHY^e;#giBjR zNKEYP6G8yfN*{u4g|5^1+_j)OsEJvn$XMNesAdTPu&B9kg>REtJ(fSa(pQt!B>1Rh z)mW`%qu79!vsU@)l3<~FmM@7^#*7jL;F_Wf!N9#P#enVO07d~&MJ1CS{crVfp?PwR zuc@UncA??4p4hHZ@|aAb09=Juh?V)d60tIobW}Qzcu9~3fXN3eGzuNaCV>yFoG`j) z>|7y$yg5<)k~b%UN%Ki34dHLC^W}Ff*681SaC0KjL}!z})6ifx>0f-s0?!)tLPVSu6fy8*j((ac zs&w`%qAs;mCXd?Zs}#z$)b9<$cn<4Qgui#>*dV^Oji;QkgrD38xy^6v{1*}a%Y*#+ zHls@%|KX^o0*CZXQt43EadHh{(O6_aLNNOij+g;ye$aP|?IBPx*(K_Fg{2#idMZV6 zmej$q_>=(PSPZ>Lq$v1>L%vEmKoz@e> zzNMb{W|0DL*f-0{;KSWG41DwGQ@%TF5ut;zhc8u2d`Sv00=5o}Bcg=xu2rz@Faoxg zSZ#Y*8Fqj+z+BNP)ds6bB^@O^E!tHai#|(=u_aCtn%8toWQ_GSHde`&pd_&+gyf z00Bo&{eI{gqd(8RO>k#gE)2bT-FtZ*{3PdPqn)!+x%gQOC!eR`IYa@1m51H{@1g*7<_vZ|0Bq}z%JFSq4Qmg1Cj2TInl|dvh*U;KHMs)9%R$ME z7gzwnh=vQGs^y{SaRF3K{K5rLweq10AUK?pRJcZV*eSl^uCHw@9<`BUU~s8%O};RD zjl&DG5Aqd{mAwQ9c*QHTb?Xb#b>N@iE3*PZUYQkT+4y}hFqpP1v$hF;51Co*@9jyq zG%nsg?M6R1#;0gM6^~HiqgIQ>jmdZcb3<|4BVI5$Mtq5hA9j8t&Mn}%h{eKmu;Ad^ zoLwdq6I#QIw!8VX?hkh6c|&SO@|;CUVSMZ6>aoltbU>2~;29IL?rUwi#dXOqbIC#z>5Co*9wl&DSR1{wte2&++Np&Ly(u7co}z^QE%}IaY&q z_;M~h>>ke7mdUzlo+!_^9nWgQP7!_2PaNzqk3olp*m>#Qg~7dwkM?DG9~&?LHV-oxzWwgCDAvl~%e~yseFL%k!1>vQi!Up-SpC zM_v9^R@NGpAkb*XC|oL>H>jC)FDqkk-N`WKrB=^sZ|*NI!W7WJXB^?i9-iAgtBe0Y zd{&ZS+&?ohs}1W&_zE)_siK}dff;J5p7H!phoKG4BJsRlg{^o()`idh(#g zY!2a%R-5(TtOn1Z2dp-=YL@q2tu`}YHTYq*+7ALi$APz{)p7z>d!)gjDhAt3>iwTs zZG*I0PCizHePOtNbFD09I4*+}DNzGU^K-Scs<5j>2sGWr|7JQP0Zr#90yF|U#wb2A z9me&D+F9j!&$?On@?Ng!A?CSw{#5I%dh8sL2%WHWg3X-p1TFL>#|dRlp8mrBW9_>G zt16aohO94zXG8ouMCHpTFr(aGt# zMnhEk^L3p;Z~X~x)LXd#P&4dH@jv7Q>ysQ-JNNyipYR^dc&@#jZ#k!3O%KH z@9N=frm#;)t$##YA4zRJXweof2z+IZ^FKANi-Xzi%hRq_Ood-Qqei8{dt{-FDk9E5 zyRFP~j=WZ*`X8_A?d-|^N1BbwY9@rCMs-0d>%3IfOZm=dg>@hj|0Bvu;~67h7@iMQ zmUmx2XD0>1sPp}ueb{)y7*#b|R17u#%1l+Y8wj8On$@MOe6m*BDXqlWp{z8cxO0cH zl1@{zI%br0Ey>92m{FSPOwa6)<#amBGP5$flx1--aXE&^!LHP+E#nyc@OKm{>n6Lh z3b7rIAy5OC&&8|VKPhYpsrQel>t3m@A#rphO54i0)FIrPRp_jzK>BMyku#e;OSq%X zcKwykUXeP(6`;CP;~2hlm~-egYEIo2C#U>vL9-4#D6Rq_N;iTbJGjHS1W3Rho)|16oB&Z`d=G*PS3IW<0P{Sr9k zaoV65;!_Lin0o*|@|)H%W1J6BubWqDuI~JQW1R1>lxC(`B)kXCcv}z@pFkf`9duntLPFi*|nO(m)-uVbCqBVYYk5Gp+lbP|!qyW^K#1}SElVLAv zOzsIF|7ebP6+R%Ci-ZvG8A6;S1%49Bds2v>Ng)aWweW7qfM%Ha52aGL zu&}CL52$RW{y*VWs}rKa2|=*!7HZ38;;O==`T|*|{^Od%uO2+b>Fg4hEueIMZDrPn zkAF^`o+bm7mZFZ`(;0jyOOPe&+s?^gw*`aP~4=r5b`Z zui8B|+fu9k{my*0iQp>J+y!vWuy_tcaRK5aKUlJd?IzfMadPjd*E|qEr)gOtdo37# zorg;XS@2PiV+7R@q-w6StpySFl9K2S=TkP8v}50rDt>AHv$4b~{nTtl7d3+THtyXD>rAL& zW9z4HNoPF>RJ2p+%r`H9yIBF)XOi6MY^V)e?HteNwR7KUK?jw$;G3T)d4d%abfI^F zj=Nrzx!U>nL@Wm=s0wWzW;`y!+E7 z8`&BY&KKS7eA5AlJfRGZ*i631`I`D@Jl{XGqKUc${)!`KgbcUwH@-AZ`Oipo=c(hG z%iWF9@K?O{a_3@aMHqXR@WnxU2s9!F?IBVCgSLgY`o)rmRd1)&&UpCPGAXS55wtt_ ze*^m0_yM4NTKWAc?7yTu@_T0*PxtiCRKJT4kwW?{p6BkW9NWk=8slg;@ZkmfN>VHg z%?TqS!DhMwA5Xhd0TW(yk73P%p37ecvd9O3IYX#P;n+ucNLxEN5KkOVDh&@9zcSj(0_(mse zXAt{9nKr*wQpl!^+Y^hlu{nW3pbT?XYU6h{k+LJE|BD=Lom60W5Y(Zq#Z7C zTkvfo$S^)S0$|39_Fk%TMyc#FA&Ii%v{j>p)fCms3A}0nxa$GvIB!J82A>;v67Ck*v5jdfI}kl~t8={t-PUH~csXq|x)ME}a-OR*%%ta=v?f07oW;hO za4~5Oc*ZZzVeCl)fPn`eJpCDtB(7>9cSI?A z)$`8AJf~1;U?Bp~82;vN=MW1Ndnor`VA1;tebGY}G_3qpaqZR?C{CO?pSKO;Bc5@t zP>%6$o^keP#|a^rI;W~1va{snB ztWNL*vy#K(Uj)~+J0XwVh8}2^fciX8Jg3)ekMm2%=$19t#}977#*#{_;@ne}k$lx& zXScw7d}&L$84nuFNb*GUg%iVDDMh^SC1)HfB1Dv$u1uc(VpKE7yq3m6i}|EDx1Os^ zxj6)nds@mJY~X=UR2K30SHM7nli%bcUu7r%a0v2GTgj_ME#(y99e@ek4#F z1@+h0jI=<-C|G|py!Lg=>&`?qERk=19US3WiKbZz^{S4<5ThV6(XZc^-*6_Au*Nuy zOhjlRojn5KI0(;Nm{OZ>iFP$tlM?yCXje;?Z0Fx56#vd9|C2GU)?^e0^5;k2bWXIi z{^(NIU^a*_6Hb8zW6?6#DhmLsO#G`VsOZ6moMSEZ#IRF-ApQM`+26RYPvSo@9UI?- zrtvK4dED4vDWt%S{Z--@ZtSlDMZw9&Iuk{z_wA>%)SKSslAXWvo8~lI;+`x zw1!Ag98Q$kmoG>G^q|bXh*CV9c$$=AjsglWNAV^gOoE(PjaHy5BRL>aAIfz+;R{H= zHz076>~*aq*?3ZlWTAkNjgkqNEP`dy=-f)aCoUz3k{OsHf{J1ckz!0HaFfIkLyQVi zief+k5hI#UVd<0D-4shS@pegjErFY~Z#QT^LQ0V~6bRbNn|#XW&SJKgmJ6z0N%bIs zn^e86`0lk8J=k$lid3P%Co!HD4QdEH{wwF|dV8TSY03y+>L&PN@RCMei4NZJ3?kf_71C*;xd z>+`kqB5OjRphzQi)L1}i>WEY}Qb(!wiem9#$pVUt#|wN>16OOlu&vtr$=^>o6*hoW zz(BN5YZ-|4Aq6^36mcY_VHP$QpPG$QgP>wCL zM4$_WP;^wtjN9rp3@264K7POCoM}ZBxzd*sJTuu$f(zsetY{)wx#xHIm;vP@8m9JY zBmM4PhQ;o`>^#IcA%?A5W3*}wDah^ON#;{BOPZ-qw~<$wx6@MLq-_n=A>KCVq&dP` z!;^2~Ub8veqNI@ujzTe%qiHDwx=wLzwqRkiR+`Nc;e^s%^k1Hu+?wOj#kMd4#i`Wa zh{V__I4hkKP;*ww^oBWH3l&FXTNzF?Y-`#bh7TlscN7gB(cM8^>1bK6Q!7sx{-As?w1| z^zx{k^rjG`w_8a6m0sTP>E%sA8}$MQ;(~VR(I9#`+P=Jr&=2YxuZVx|Q^#pS7uE4? z2)e&oWR~i{7u2abFm9_wNTSJN+*U)-HR85&VEf{$MPTH3->Y?!X|JY{w-iumPD`%%257&BUgJ?MCxJ0HY6#;>^wfnZ^ta! zl@@2t1x6BzFf$@H0=utA)yw_~#|A z*6aa0|8=4GKWg&7Q0hwh|K-2vV|OAi?AgB-AJoJZuk7XJP2kMQ%XaoJhGPGw$^P!9 zt~SK+3DiD6*wl55QRU-g+bK!rYFZ}w4G#lI;sufblKQiL6NGbG;%eNVLTn5muZUk5 zKwbgKLj;g1&0QM<1IWmD*9mq*JE(7X#~461G6DVo@`-B?AR{}t=7_MdAN0i=!cJ=q@A8UII<;!)dY1K|HAL)~)lSBagGd1kS0i?WQj8tPl2VLSpa5f)&VV3d z$C(sC(4A(`T}TQ{x=@OAmy=SY3k8I(5j;LguuK|{wv)l56u}4{_YqXwzTa!e@eV04 zX+SB;@fj&aIiP^ZVMLGTDVAvD8H2c*Y<9az97>UReNu|Vp}b>55-@^0dA2m4NDA%9UoTGN zrpDE}mg50ns`FSbA&BAJ_71KyY&d}mHhB0ZZkT}5aE??q!a0|{BIW|83Mj5AVCv%X znhfP`C&=JV4u!`#VN0=jI056zf`Qy^1d8tdhGgmPKST=9-M>FM#DelfvUK-*CPOGU zzNx5(tuZ1w$^pH73cv|%Ub1wG=O&Xd?mfaEo#MmTjAraGDZqAM7)PPlj&F^2d{5A^ z9j8LI<6MY#7;zlsfbF0FY{y&Hb{IiiYzipEm>RJmH>Ajze@cf;PPMhHh4pfV^xC_{-7gpIFw z_&T<%uj?{fKtw=&%ro>cj})LjRuO=y4}mW9LD5Zp*q|}|y%VmRt+@Um?rAIi0xOyb z;&AhXlEkLXHJhf)<++0((wUQtYqBy`{I~1++g(hIIuY}HX=Ren3x6wTOaOf&SL~p8 zuOH%?sW>jB$e8DMQVAX83)oE!0&ai6w}OVbI>86bRt)rp(XPIZ-1bI*)0UFRnnQVZLCTG&abq86SGrG*!RX#qZzc1J`_soQAzJ)WaJEqp*o zqZZx^CGZ!1f&E&L?<7hMV=(hGF)JKU7|i@vnlo-feFhyZf|=rE8O+p8HO&TV;KIWM z)Nj793AO&j%o^VNC%B$aSW9~i3~QPbC{EfK)=(&#fIqBJyQK0T8o5$f7O98|=$snD zZhNQt>=wfsb5(65Qyheu5!Mh0H~sqWrhs2Rp4To0zkZ^f``A$2U6MO*QQ~S#R`mZ9 zZ)yF$m_}K^KPz#yVT8iy4&TV;{s3A`uOB;)oq$MDrgZ zI7T$zieDJfd<(LNh-hB-xE`@bG~co7(x560W-goR@CP$nu05E66UZaw1)#giT@|bz zVTZ?%gRs-;rpaJtO@(VNYej2_eU}8DdyB|Nj1Ft6#--t7@jT~E*I3rWj+te}L^nJH zKXk(*fq=yg|1_)-BNgO^%Y{_whYM`!hil?jWEx*y>B@?$EB-_M@JmFY@|3Q5DQSj4 zwr#ZVxZ^Xf#TWN$y75{I{|dqb-Shm}uGiTD0>#NroQ;pW%`d!hP?uCT-19Z|if6v* z#h3u%Bnf?IdgnU`u5f>pr+7Sg=jC=oE@g zX_zjX5|wUtIC|)j=^>{0=IJ5YVz}s(1-69(ur24UZNX%9l`$mX!zb#>G`apQOOxy0 zC?cD={tXvUU)LsxLm0{(uH_2T?bx{Xxd_x;`zX}6_GQ4_pSBpXd5cIDT=nLMQpu8Z z%;rJ&7T)JdC&p?x>V%E4>Jf-c=B3{QX~ai)-6fF6d)&^rDiq_Le#Vvey4qY5V_5Ao zU@IA0e9+GLjZlm~@H753o4zBiDBb{I!p+F3+iz3 z3m4Sk86g+c!>e3d>F*wxdU>cms z0ZNOD%Db=zq!c-b0`Z}DUmF)5jqSsd36@EtO$WYvY-JRWpIoyY%OWV4e1uXTA@ndp z=p8+b`5-*?Fp9q$6CYXset|>PITSkO?cepQP@)i57*x(c3F7B!xDE1;MAAIUd@$KxDwCz`c6W zlyd}bx)KzMO{v#WHYKtn=;*A_(L|1}M4gTyT#2R~L$t+kB`6DQ3k5)1hFV)9jwtYj zA9bqX&D!M}qp*A;h-i@CXCVfmm2m~>(NX4Pp_lNw${)|U#>07ULJga>3IrABFIJHP(JtO> zFQ%Z(CJ9W@B#LP^i9%1l;F@ef!?V&AFS@eXe!@l`cP0R|j~07e%K|HZzQ>ivJ|MWk zD?hLoGG$a0RK;>r6=<+Mzji&yE)rs>iSr%hd8zZH03~|mWmgwwfzETb;-7uv>d5ML zGR+k`$ATsjkc&^bk}Q=`qO+z%=)pcLjS(|AOQFNW3GT%R!%v}NEKO$_^LQzpD*e+- zhTI(-BBaBmzd-!LrN5w4$fdvjtF9ndde6P;dV{%0J8|hRH39ym|M9=Q^vCeqI=HTv z+k}^2hm*ZGnr!6yAB3+qr;}X&PrL!2c>ehf*K)R$RujwVz0hj$hUT4o_aRrbjI1BC zBW<=KO=jtn*-Lh$7dpwM{}3sFo;U6bzrc4NbaiJRlR{jVp_W)qCI9j4EGfszyK=^- zD4ocHe1%}(g8ZYTpx)U@Uds)k2wafoLS?!j;~7g*L5BR3I$_8kE3oC7oYEP7iT|1( z4vT!%)tGNQ;cO5$N1&a9nR$@$M&}d(kW;m>6(?Vg=pd*VQ@EHta4YWGZ|aJb8ttMk zOCywVkv@6E^#jW#P{9xP5=w&m>C@=pudO(2+Yb1`ezVioGr>b z%h{rw6yR)uQ9p&^`gU(;xxU>;&~d50oA3Vu7F6-Y$-w&+YdgzuIfd{4972DyO~!gn z+29&S0b-(oS5bj{p6cvOmg<*@4A_*%NT&D%PSkx#wG~HOIZBS#K zwm|*sbf%Slft{qW7ey=MQsBsx>$Ih+(rvXG(J$O$yA#$pZB+PL%`~T3o;^ zX#T~CLQ$d-rbM_nl?uIg<-5w@Te8DC%f)G^gyF(ON0zxT(dmHvN9 zoGF)~$NmeG($BPpSb$YBO4 zMGjD4;ZXm)>lU_{VhQ4R8N@j$Fo{Dc5`UbOB5^3dh4fp#@Hdx-y+X?c**yl?w@HCX z7E1BUpP!OaBnt&ZW+UuBN3jI)pAF(l*I?ZSr6_YfQi{Z(z?3kC}z zw7erYe#WOe+(~gC3n=wbUNeWG;iG)xaNno!?hV{xe;pbj-IHBM8(-7zL``>j#1XT} z#%{uQCPY4#iJrwN0Y%ROW(wh1@cp&iUo%G*fDLyEr}`_(+U`?o z(=1+m%-xd3k!pCrpfTTlgFDEf>NfCd(}LL@)pxpzL)G2Xs4RJ&I*Jg0z0*NzuPpf? z%Un_*QrAikq#Sr6U=Tmr#NAmCt{PI-K@i3h&y+Cu3oZDRMM@{NG)q2-U1q0V9D@3E zKXrV#7^vg9Vfc&Rg1RRQKI$|&Cy^~C1QRl0#ujP_6m|`gbAYvQ{3sMii64bxR9w7{ z-aOKs!nP8sU?l}@1sXgndm22$rE1c|wRf#uw08d5wsL2h(h&Rf$`zi_0A9JEU1)k0 zHfRiA+rYihf{X6XWxhY$jj5LUd}l*6DYd6qPu z&q)Cq&%3TBAF3Cj6T}PK|0AVnJimo7o*LO`Jjy#fqqDo0`io&ZzmWQP7C$yyp2csL zZ5lIfdo;-ok-ll0Ee|n+^_b@~fIgm5`Grqu>h1-1m^U|dw_tg8qCG#(emBIg?$7LeQ8%AMlFL2~#y z&TlqEb!|4jz~aLMhp`~`q?qb(-Znm_K-A>L$8PwcWK%o%U_^8`)6|5VYTa)5V1xw| z-->7(1XH{f;lsr26h3d0O)!O$1WhrgQB32Bh`~Wn#mhE6R9m~4oG3`UxOk62`9usn zBcE!FZ*QwK_j3+*6JdZudsa6&v}ch59NN?SG})l8=q88uDpHCTy$lM1zB~M2H#)W< z-Bj7x9mf`v`sVEY3=k0?G&~_y;?q6zY>0xbcr?j}X)|r( z!^pI!$ZIca2r*PE4&Da|6uWCpclp{&06LD~?LpA-wHJzR4&!|U9fvVcN7uxTZj9xl zLGa_YI@d9ZZ)>&jbR2CpKCm(aW+CzMXBf;P*X*q|*sUt;GU0%O`C@lDm@kq79L(E> zxL2x;ddR^X-NUp#T&LlKn1#Wdy!ak;EUR^UNFT2*sgHvhPiS`SVVuy+CdKIKLEs;h ze0~rAU>0W+1%3REE~SrySu{%wX4))sFjHv8F!wkM8g}0c!(ech6R|MOPwN4-7+yBq zJ-|{K^A^8?4N=wKGQypquvLVbP(5q|7matvvSkErUd?>GhrF8kBrO$A@S`DAvsZPro_&eLv+q-#pnJs{$MI9%f!o!%xd6v~g9-2}QfWFSYQ~1UVe}RO(3K0y=%9 z-FDJbLy?|oA?*N?(gmcnaTI)M^f>JZa}?O1MpDrN^(PfK5aEiz$zc{W{{eRj#n|Dq zAVzbG)7@8L`v^sxiT3uCGtpjB09Lb0Jq~&h!NMn`0Cj&Xl!CtYD+r^7qdny;bd(Ul zNb~oeGSd8m6rjai3PrhAFTcg0V-KWp0-~f*^`bRm0-~)kRd0jF@C)Vc%@$mogs<1F+7G>*(d{ITio*Vza{47Fa^i|-#jJ2sraaj3FN_uFcD zFRA%yq!fp$#?Q_PHvP}-MTe^5g>gje&p_{KHG~&9(O0O=Lu0?W17N~y* zpdZ0SsVr#z9RLbN8*Z0_HmqC{$-4}`d4GJQ@|#RYh%IX6l!VvsJu*`HH>9}SQ`s$6 zR{0!rUN;G-FXwf#@$4;*bve)%6Z$4FPAZ6JxYac|A(o4(9KJiHvV$pNkt2>b*Jg_}ooUb+49(;+i|@Bx6So(a~HXks3EFJ{4SW!{RgX z3pXr219?N7NriO5`XcrL?^)!v3xKR-K+ z_dMe+Vgu}`eR5^Kdo(G4{xh~fpcL}mQT(ed~Vy}*`P z>$k+Ouv~s|mAg-zD*i*$);|)Pz|-|!`EdTb0@1#;eq^otnsV2Mp>$%02~~{To?Yj@ ztggMi{3217*T?Y)_o-O2D-XM&A0bO-p* zh)CRbAO*On?|a1kuA?B&c=Dr=7K_kgFt2(t*s4A*51k(6Egt`zyBmD=B-{HPZZQYw^gnRn2wuBO% zpiJx?VqNXf8&8+i5OWc)Us_Tar}*iO>?}~f*&Qarq1jo`gxS4wcWHeK zBYe2}i>ua)FNO!tEz|^4O!fVI^~xn>JuH>cT$Oy&!qHqU8G^lAArdX*`VLoQh*J@)X>Wyw}|xjky0@!t9wH==wQAK zIN#zY--L}ics24ZSem?~J}yls^X1a?H7US>_f;suKT1u>HP2X`y!`AzSe?9JG4tie=wfdNrh%!6+p#21{B#}J#BeIeRdbmhYsd14?^3hJV({2-rc4sSX2hfxe zCnb&(hUf{==d>rV&#V7cE3nV;?E?#{7`pg?-9#cB&KDF7O=F`p4K*c?<2f#PZAi@2 zc*yt$SmMPs@hDiS#Ulqxt<;S0ZLxs*TpxVp;B=yAlA=Bd9(ZHencYfjMS7e{DE&Oc zD?fC1roF0G^^sF{6`>)r6zk8AYOfsTQ;xY4**l~RJNIBH2FI}j#C(m19Dq1(BvlZoDDwL_5*3A&9!H z@(MlRAq@D7LlL(V7W6f?6BgOY&JRI$iAffpIuL5W$J?kH#Asm;lODqu1f%;6ePndM z7<$<-VtlymB_aS~qyPS*fLe@r$w~K(3Oi=U7I!_>qkZMnf0UHM_P_wg_t4CQGDiYC zO-qFT{%we6{wkY^zU%G}A`%;z-j(q@|54ublzSwjyl|T-0P!8d6N9YZPr1Kik^M}o z!}i)DG~*e2S{XN;4+(*diQq-B2}6f?!H`5nBsW3>Qld@FjpPU^FgKDbeqnATw_nKI z$a~+r9}CQl?D@g{HXBFUgSnAWCcvK?*?R4{5qQ{X6#wHQ9HrX(Ur610OzQGfXApLp zyB|r5ETA<+l3^aSQ=IC&sUJy;a68r-8J zIuXIen84cy6&J55MdGuUwk*S>>V@&wUtzsXh&UjTD$khWq*(ksTOELItph9(vkeX)Dpw{-9sM}b z55kY5{eXVlj6d5n3@04XcgJ*t1=Sz-wHx5KV_`@Ic8W&2A)vCEZs`736foUDD`Wgt zK&oK;Mln!gjNd5K8owzeJU!ggpG_r%FnpUbAcUPw8z95CRM3r)Z7@fRai4|q!|;s) z(5Ka**TwFd8&X!{c*V-y?p%d&A_b0;HNZ@ak~O5j%s1>DV2qO8v{;Oi?V+UKJ0M_` zC|h||eNP)`<)OgtoCy|PF=(8_4I zJxDz?T#8{DE`?eRS1lSS6A!})CA_^fl%H(j33U@|;=sSKUgHK6Ws25I0cgD|2Ux6E zW*_b*f}ru<4!nf%-cAb4?8C-^GW)QZmI^oYp}&&#_=gPge9wj zoiHcL&NL?*G=^gufn@3Ka|g+Vt~aTL z@mDXtD$Nt*nEjAJJ_W-v+D(B|V5#syq{7lVwRq3A9^)}T3~tpjKov*$U4*t+m*A0v z;Iu0T$!tq1Pfzl6m$YNmZgBoy?7c4@Bn@H-A%~*g6N212zo^0%1Rb$}`ozSzcKaZ? zEbp|_d^!Zp7bQ*Kstht7O#uTln?6E4YN+%BJI(h((EP$Lr>RnGHhK=f8X{h>lRFoJ z9PG0c@15GoCnD-kyhIM|H-p*6gN0r}bP@6IQXt$8lLo1UuMzq}qNx#9T01Rfk z5J`n=id)ri>lZrR2*z4Mn+%)9fOZrS0&AeJI9x#eHY*-4>eI#h^`N(9@13Ll26sM8SEt2h zG;V1ZiI58dIev7?fGPZoJ7(U>t{(y*vLlT)?FbtJmutRm)QI1o=jp6Q58?aW6|sEb z<+iPO{obDN2q-r!7_0Qy!199gxQ+QsqP#e-r zs}K+x8PoRhj7yL*@A}Q`BEDeRcM*Kw0M7t+E1|Lf2~P{oPR(vD${BYKgssgxNjYe( z2j91DZf(A=s$m#^@zm^A0`q!ae~_nv11QOl?AH6w?4|-QYud84Nb9#Mz;& zG^4n4hq97RQ?oi|lyxo1$n2O=n(0i>?2zSjI?FP%GP{&z!67E8&$m?o^N+`PR@AxC6c4Z$PLIlAx0xWmXp$$1?|QjrvU+2IkRg}vY9AF|Fw;a4 zjS<|I&i{J`z?-&kG5*ImPa#`lQs>ag?RfR-i0r5!Jhj#Q=y=aWR%NfSazt2mbkGU~ zGD}%qH8zUByQ)tlKQh77kY9OsbVL4U?Qu!WOGqiLv=Qnv1v1h21}Q+T%$Qg&MJbS3 zzz?j2x~PR&z?}sm@0pF~qe8TxYO-fhy+?t7nF?IZGyX^cHJg?LR@XwUC=i*z3_huA zMmXO&#nWJjs3voQ%247M9bnBu5Ev?f=EbWaQ?rO-cRYF!8kA!jBBU+hqHAM2n*bFT;1AQrEh zKQ5j(E%jW>2`re3^7#X$p1NvHV6;KcjY}00&~`XXk%q{r90y-#6D$T_0WT~X_O~R6 z2w>#BSmudVS-zDMEH}OVG8!{?Kvn*L+w%h(Mrxw2cX>S7>V%=ZPDi~xUsjH5vTv?a z$5B<-S#wY2XUKYk;R*MZlBogz4ZdxCBvmYd-*z6haN3?M~115&P z_H(2dZEQDf_`aYvc4UsDSwpiCou&T^3^DIX8D=*eSYh32R$S`M=O!CzeHflGJ<`)p%v7>ltXs(%dSs~!ibDJIh0^>KD5mSjT* zy7O-L^tEFr@-w%4I-c^k<+k1Q5>G{1D8%Jnj3rYw8 zn>vpFywsCsL9Cppwc=;Ks*%KI6KtV&WgI`c%oA(D#^yFz?nz;H6KsR_=H;HQ7Hp6| zpVvQIFPzv*g0z=Wh5RflYbL%JndDuv!ZWKD+es**#oKBcZ=XMnHQReR_jGo!YElU; z=Q*^@~gs6=WSC74MbUv8@Fk#VG&Olg?V$@N0-x z@aAQ;V*@MjDo-ZsWUHW5^EQuw;}@XKMUQwsWPJm%cRmWK+5qf79tFQ*Od$4?k9nE} zVxMnWH=k*N*ef3ohW**&o>A=9Kvb8Nh7~<7d*s!<3cqAze=+ zwHhv4z#>O1v#zwvmkar-b&#n8I|Dy4mrU%20dC>dTReG=$DmKzkLuKe&v+S*_*WJ3 zs?R-9-qNj}v>NPymAxDUjm(j3Y`DK#RFj|N^&0VpJHQq`B$aZ1_7p@wu`${A9x6sl zd+(_oo`EW#@C>e2XP@)rvmZ$%9EPX($Gbhwg)uok zJIt_)cKbZp>;S2Rb^*mUyZCLNr$}YT2_ontas5I)o_$4tsFUOT%&RcKC^A|}x7T1< zI!mxo%g6b_*E~}!*n%`)`PrO!<``~TilALb5cSQT@TK1Uo+*6i+4^-X)rEq|sEd;d z{&1KWb$QA#R4yquRI+;*-@nC^t8C{h4|oQM;kN4eicCJEczhH=HZFf}G=?xNGPWUX zP#f-j?@iA`HTnD_((e<_0WRW2wic-ahVwH^J*hrSbB-=0m}p0UiHU1U6IaSP1XE~9 z(5zYx=51gGTO~V6t@IgAR>@b7dPX_eMncVRLPQ0vWz7v(vpwHAutu2o`D2i$=X*cF z#$ppzJXQyyFhUADdnbSVxMznC5!d>KAH&>nkRW0Ub`IxrH^JbeB+-ZXj9?0qj-A8h z%H=~vQ^Q5;M;odNL~$S*L~VA`O15j;a5+0e`$X3UHk<<$FcfvoaQ@)-vi{0S@8-`v z!{7s@BTQTM>x~S(WJy19gfaAHodBOOlT^Z?2gTN*$E!0~n78{$&lQFBBiN|Cm8G>) z*iZt+0oafK^fgTP6dTiC@7+?PAwTkrKAjblD!6*>tF@&zU-_(FqQHTeQ=YwQIZ*CMvD@&DK1GiEPsSlT;d43;*6Fj04brkxDosouTUHZ#YKCQzVrMU#%eqV^8+J!fH}qS$Ct zU#`*f*(rjJ7JZn%_={(W1>2^cRH>e~M(~XFdK&-g92ko_65@zcH^lLx^PUV=Youv8 zXwx;I_-M}cO&I*}2k=z$4L_{B(=Ni=J(xgI0bRKFqGvjz*g^qB7NhGrT4nkE zlIOCcT*?y1!+!U)VwHB<)A*gg!`d*7z|oMOx$IfTpSbMV$?hOUXvlsyOucI)-~Xhi zp*n4(adL&A+9d2GwWawbgsFcJ8Tp1bp$kP~4;Sez0ak7_^KohAN)>8H!s$ z@ak^7s^!%oVZRJpTk?gYVp=+W0j00H*rXLZPc(vA<}*S8UGWInKbv7uM7r4`j~u2; z|HgBbkWQM)3&+MZ@@9u=NvfmqC}`IEO`IzH%@~we%nN_0sKej6Ud!Y&uh*VZdhxj0 zT3ePo$~0?{j^Ue|WT*3tx|%!+fyplgHlV|`j*KK^c&~7+=-M*T zU7h{;u2X5@JiMOvUXA;KC6BznUvsvBF!$xIl=XIPJ%-u}n!eiiz{g3vO{CW3T2;52 ze-)|qWvhuGsJiC`fU0hVRNYdkx=$BqfMEp5w>Mrm#N`sW=Dc+TBpuQA_Q zuAJu0ZqPcj(?lNBV7<{c4SpvzcuHvS6l*Dp&%$J*4TPg1kgZB40QAvXj+WUfifOK^ zJ%XU$a!4z*5EgLa7&N$ZWHdBT28XRi<}+|bxFT5f2(O$u;B1FJ(Ro@@TpTB@s1fIAvM7d{6a z#o;~N3G5ufLgGIg#Fa6o5tziG6p7cfmg*`LP~z(sO)g|@36h|#B=X31S|-aRaFcZ6 z7)d(cTB@s1;3K{0H+a(itJxXD*hGSbw8u)?I)R(C$BvP&;ofX5)m13)(Z)wxgLJj_ zF!aM$&Ix?S0WFcQNYUCTt2w?iPmp290=9SV9!<7)nlI2;G;Z(IsRKi4vtV6U{Ms^x z=PZB(b47ctcih85|8xZ0Yj%jSpMz_`E+RRu1#uS|UE{n^(8T(Ix$P!tx%1*ZlLm_> z+h@Y%H1H+?pufD27j@8@SrE-x;FCb?b{(}o7HlyI#JwUAQ3b{}OMpQ9e;u_;Jf({! z4maS8bjeQqEPtxAmh8hphZ(cAY^-U<=(L{Y8#A@`K15U8ID&|cJIn9x0(-0mS46~s zH7yWvRadR44-r|t4C_n*l>bquwIpIQWQ#xHI-CL`U^x! zVrS=8R!OK}5Gqbkv1tPOi+m(J{U~Ls$=+)oIz#l-|Cw21&Y0~^6dCpd{?_kZP@38zUUGQF4E1+(-vBxVgdY#)Dt~q z#SptiQ$~W*NToEp_quVW2?kU?`GuBlsRzA1fTxdigsFFpl}BiAA1e=lztl(Ts<2js z8g?^wU&1)qeF>x#yDw{;(S6-W33gwXaishDjQhWIpK2@mW(A(rSq zifMLV0QAVNumlUPulrKj96}m^@r0 z?7n8>tlf98K#Nq^D}iLGIYWB^9V$piRd4^n>EgXakg>_H)!=s}8U_Fw?CaJV+uf-9%P4P`a>5sGSio)!pfGI&tSA(UJ%QP-cv2a=k)okc*o_owc4LRXs*K%8>tQ#}7zUrZw)P_5 z^^C^ZXhO^E#Np%R7#vPYabJAOF{O>7^D|?#maKvlVjp_Oo5N7Ki60#c4m;^W9yv~n zCmm?Kv|+2jItn4qD>1Q6TooS9*% zXO6+b@%}N0C*~K7mFbdcFtx(TS?H9bleMYrPr?KH6PM241ynAb9G1@3{K$eqo7Bb= z!LQCAm8$;M{0vRXUzB!6Qp>*gV=uY(s_;+ zmcoXS8m5dx1(eD-<&09_`^i+Ty~13ihRE@-QUXAYD6qk&76O1KeKEcN(-b|Z# zk8Gmd62yw%%v|xC$_a-sfrQk)M+PQXr4ftl!-O3UZ&Hb)yyJDPxuqTs?}t5*CD?h@ z%9AwB$`mVOB6$B*D+h4SxCD;d2Uo2(tz7GBk$88xww|5(t9m#W(WaZ`JjJk&p%di6 zZykc3^V4z}^#zs7T0t}oBK!sdq4oJ`L!xh(2oOB;-B|p>GvAFT%1g|6O8AWM79l?7 zxjmDd+%-d+6&NiiRBEeP2T|Y16M%gf(Q>K@^+(H#{#LZypT95@qU8Z5VG=F(0nx?1 zJ|PA6~-3{SL=OMwq#U^qM9TBxfNC(5`GsG70zdV+Ukq#UH1wH)XJf26$NHZ8#yDHCKFDJMa%_zyyg zNIA-klzR)-7%30py%uOg<8nkhX^fm~Hr$AjG3hs)$PAO}=xfXO^|yt`g(g+wU}E7S zZ5%5x!7?P(2tZ6+_=r}+g?=N>~VG3JI zC}NEK5CNb-Yx$15v=j>>x@Qb=Vw_!U#VCj@l$)&$2!sl-Yz7U8{Uko7@#YIWpTdXY=IF>Cr_5HU@{?zzI+)02rp0t zOmxR6Ca$aEs3Qx2VlYjizG%z{rWX+U=$TPmr2DVc+I@8h6qf#km%GJt&l(7NSCQ)I zo)AR2+&5aQy=@W8TnXDwmX2L3_*=({nL)r6@$)-g-2-X4{5=3ltGPn`bMp; zwcK}xsQXo@?6XueEnug`0#d!VZq}YuSuvqzTEN69(gG%uQm_Ccyq+^fhSxWdQnZ6v zQ^=THGzG_G9m|-M;k7v=jb~_pADRK>C(MASZow2LT7VErSO7&bEg%5;z!O?O3$C0g z{gL%6K$r87sC8 z9@;vr{OvX^Hb~{|+6)$V)yhqGXhGUMeh2JOrd_pi-cCqnQh6{Q&b?~A?z>=-r}eO( zF@rLkR1V(7-FItuS}LQie%uWbmyycByBHt-rku^;I&O-8!WOSt$UMq@gra}6DtGg$ zXF=z8lR_A*@NqRrqo^B;d#hP2=E$2@n5B49$Kx&vtp-{8`?kM*6A7)ZoOqQvNNSKDj9pt*O@~K)bqy7|zqSRL> z{u73xJxTzAp=eL>3q#SKB_Tu6O)qOV*+bD6*=SKUAPOCBLj6(b9e*nd?ZcUXNe1F@?rY=hINIeTt--z-dKB{)h#tU7z3MV0uZy9S{I&^5SM2t zrWvNR4T6rx5hyxX`Vjtbb=~l53mOgM*m78_!TYVUg-mqK~!tsbKo@X6Epkh2K zx%{hlv`!Xm5UU_AM5n6WX|=yc^%uvJ_TKD59o31Ryj8v*hw4nr1;X6*bR> zT}ROK9l5@PpLzMaEWYfO@4~tIK4cRqGqX|42n}phF?W0bd2fmhhy2H}O@WA~0uV*W zX13l4*+}c<&gaX76fPt9cElb5#c-{xM7}e2;F#7;VISMEF-Z8ZRJw>Cl2Q>QIR0B| zWJ7->o6P}2{=da!^mAju`e5u7LtdbD(dkkvDRM~kIq!c^vuBk@n-9t*S z^X`~RI&am~ke%1i?7aHYWdLUA+*4-g+$WzhoqHjX=s1dGc3c1y!#fJ~bzCajPb9}a zqi9Id^^I0)VPuZz4@hO~xPZ#oaTIEH+^N5+j2%boVaJ_#zqF<@)!%XGDIA8$SsYQ_ z105AD0l-2@6K1!oR@yg$|JRu>zNmEWL_~#YoF(vfI|ETqKu)7GJ z$YiLC%A`FmA_ZuV50n}9_#i34#&FV@$7N&clE%Q%Ks-x9=8}fe92fERzi7`e%F4EA z7>M&tmPQ`)!*kjfY`+PXdCY?ZfNREne&wRp#)61Og8MF?1!7P5O?$$EZIdTj3LYrW zvJ0A*og)NIL;jsWQK)lLD2k0+GIgA$RT+qvE@|^EWNq>oSF9}ZRHnjXd$$nN@c2yw zcU@eAGDeol0ABj}C`Kl^3*kZ5|L-$!XRyf1NnS`yFs zIl5)^2tT=zesUuvIcAa*ee6jHYpdyyb<0g^n;(s3(oy!g#M-1G_;iml$-C=Mt*@fO z|Eqd=z8^bDP#!P-*(h)y6#vW<7a-=sKjzat0&Ov(+>6EJ=^m_%FIHgXb%KHrrD|zh zJ5?XTBNxxg;+qux8V|AIOEGnG$&(ns0DP4SaflY*jS!M*GsQo5iz9V-ST9Lz9N=a| zf$%lKixm(2EO3Bo_@sxL42C!I=d@<4MY~Z^OZln|x_nA!g$WeD#1yr3^tA^Ri=M2E z;Sn|T?FGRImt8yI+`)PZZ{A$5$uDoIZ0H>vrtenSE>n1Za+=IDSLQw9lZm4 zi4^h<$UL`zhMi>K59HeoKa=lpCG7img8 z7e2TEY=+d;I|pmb+PZo{1ZfO>|Lql50;Oq1!8|wWTsUtgc+WtxK+EfGm z23~!xKjRx4=|dc2T{ZcM&nG2GczW!Bx@iX7>B_MUi{Y7oq zGE(aA$i-At?(fLrCVC3#NW;fo#5Xn3mj$rlga0?6e~q0$o=+>kKZWhKGD_p=p8lEY zcFJk5i|6jD980v}W8vc4cU9(Fc-XXIU{Y=5PAG>5tJlwL>-Yp(Thza88}=CyLQFUu zpR+se61VEQh&wsi|G63*TmHA^p7HWt&e(W8rH11=H_WdOILh$H zsyoK&e0(eYgxcE8BllKjvbOHP(F$k8D>L*AUbwPpQ?-MepUl@gIF37kj*=0>>l`jl z`Hr2D(!8b(r(DqPqA>1X_&Z-ZW~ozkIx&Y z)K?pM_@FL&0*fXn*!R`$A?b>Tta9-l-zqnutDbs|y|0FQczl+g7%0+hqsyD{1>Vy7 zHL^eyzH)SVJJ!uE)QR{~t5ALXLcN%+r#I{%D$oH3>@H{P^DOLy;sP;idE_mjw}Y9$ z=cmyQ69`QzNw}D`DWpK;cMM%@Y8wv1@(Oo z-|#9-D<2a6Xj;2|8D{B4X?*A_ zm9_ZcQw2l#l_B~lHjz^JM^rXWa#WjZL6)%@Vg^ug?IB9vd5w^L=VG?lrlpdf~C9HtjsqcWA-_@d!@b9NhHin@HnuFH9b zF6V+S(GS?g3#!@kw4Tu5uAORF!;8X?qa6W<#qnLpxi+ zWU_h*+`l+&P)raXO#?>qF5|(``i*rg7`&>1n$7PXqkGw(L`cx6e1);#eOwuPZonRqHmoE3@ZYBj-9SUH_EQ)XZ zV|EU^hm)?^!m8Wxbd(RLN%{lgI=QU+-z_SF483qyQkA$oUi@al9x>I3S2pGAE!4> zB1Hf&j}68y4h!0XTo+5N5`7J&8>ra2Q%; z>V$H0kx{jBOn$3B=)5SQJh`DMukmS9L0;@eQ1X=>%9HJY7=C4jKGFiM+66N;? zo}Z&1QQ1C15jDBj(BxiHfSUY3YVsI?qb841O@0+plg2#;Adj0rlsu?t82gpb^=n5J z(g?*+pSAO@oTv9!B3Omrnhiz5ZeA*DXo5w4 zsGx?x<3}IVvaL1te>E+UFB~|t3u|So;eZ-EeM*hN)(VmLJ6qz@UR?-&1}ir>^g56p zs=@$U1!OSv*8#g3X@i)Q3dl${E))`N$mH0P-v%sHSQ#PdPm4H;L2%c_0W%`thcAS8 z!kZQFLOovQxXA=_A-P&y0S|rXOBunJc{5A}Edg|y3R*@h{#kCMf)-bhk;W@971YQa zVa9zdA=H`Q2lTcu5sf92hk;5O>*QjeL4Cn$-roD})%U|Ye?%NK?N=*sl8AWKEHG^1 zr)Bys_OS^@n@|BCZI$429L{*Q=?5!%{`%QZFcn%Mu89R<@zSX|`RuZ_PJv)i)ViW+ zIDw;i6PD7v<9Yp4Gsmz7)BIh=gH6uHgKeZb$8=f!)%rf(ew`k!E;X8bd9~i1wI$@l zFi_*CL4I;-Gb<{--jp2#b^cnt7*Um_QZa0u-hvIbV&=o93%tPyl zM&(XluixqLOfw!_`j!ps&!$-^7dUh%7LPqezz@@uG2Q$U*C()rCK$UE?yH^Hpy!bZ zzJ=UNb4`;I)R^4&b#}9s({IH$3+UJ?ap}E&R&~OsM2qZh%zf1#uxU8K9I$kU^(8Rrt_yBf#{0h z+vmG>Qf&czmOQE-kLYX?H0HAvk3o>x!vy1ergY}XkL&kX(NULYwnDOIC_xuv0?;Qu zq4!~gx?QT2K&fzxqWzPQ6Nzw{1P!s4ZP9zO=_Xi;<>IZj>Km=-rdW#zI*R4u)1K1v zLZPn-L?8b&j0hqOwt`HrX#uS;rq_KH7Vp7(a+|&YE@Bf7IKA$fE`6{)q~PQZeSrG@ zba~|TLsEdQ!;$G^Y4~zFI$;j*uX)u+N+KDgSyD1!fb%hBAbbbj>sdVV)H9GY7G{GfaCI+O|`Q;RVm=d39(-*m&9VbUZg73XHeX zfKOxi9tyNj`{P;tO*MT6J{f2!0D)sT`g4Sh^yj?O{XK$5M0%9VBO)oV5Q-xrN#JFP z4_TEG5zwoiA^<+G8c&DZHbb5cSx8W^b8dwK{|4rLGyEPhesFH?40#QAHmL>cQGr@H zLrOAbhF=mq3gRV*D9N)#5^rT{MH_{^O>nR;#V!tei$GB&c`!0yt>DB&~t<@Z|nqci=6(ZpxXCgPC>64dbN`}Kp4*h&!TfZBwQ zd{ytQwycyH!d8{0X@Pw5`yC0q_zk_A+$>J3l)2|0_@USId@>ArNeP=(%3;uq5CRpn z;GWm@K5D;8nOYk_O8so$#8MGqA&NUX>q!a7yPd9ngocieSVc zS?ni%lb`sdH}%4x#Ki;84NO1KXdHaw=M6n$&5={Jc>J))+WgF0`t{L7v%ZXr_9w*n z;!UfZ-u1(yNzm;_fUpri(X>&>iibxwiC=hlWK*R)BfV5$pApw}Aq6C_>y{kS?+r`{ zWqH#N>%|It!P;;mBlN5Z^|4?2H{Q2`_`a9iuzKhnNaw$4Qs>Z<@|JLP5T4qBN=yrR zUwBs^sIV_cJ&~nRK0)2`_|aia)nk?ZW6+ErIRZY!uXgmaLC`TtRA;7X!I+4tJyRx} zd_*xx)QVss`vjiwrJl(;5;)dQm`QR(xug_xIZ%qZ93O4W5sjl*qG_WfZ8w1P~dYnH9Qel;Zvt4hHxj9Rk*%{=_D=m?AFM=dHESEL=@&ofBiL>eEHeOGXUStL1Yi2Vrj$lz z&(28X6dUt_|JA#&gM@0Zb}~5=Qwk6Rrt{W6f~cSKSwHGU?8{&@8k$lVS9(94h5k{@ zaTDD)F>8R#6}@2-{>V@IG4`v8VFosYpz+;-vsWQ_G_!GGT!0v)DMp$zYBu!hS+U?O zh3EDl&DlTzeh~neyv4`7`I)n@^N>#PgmbN=aOIpH%Tfp&-Jbl}hTGGZl%U&_H=Fox zg|pFrQ|9u*gz^;9z6Mh1DYK=+OzES;Yy-sb*o2BKix`_Xl&@sdD0j#iSuljxw*Kvb zjV(ZQrIKb#Kejdeg}kKqmJ9lHg{>jPu<H~g+wFbc)?AEn$y`zZ!`t#Nu$7J<7Gp&mkERP z$ntHh0l^f3w+fi3BZ_GzVH2(Bh8+T~v_nz}?J$uKYgpcqWm;?X=N~sLuO~R6dPyZT z#ySMxOU61Im9J)l37KFETDBA*98Uve_uTUQ2 zpEfP$?1`(8FuoD-h)F_ZAjzU>G?l2!$Uj~3o0GiB)V*1GYlXc}_~CGU7tYX$XDZ$$ z1-M53=SE|V{En31c>U%^GG2eVF~l1A|5$tO_^68KeeXyD*(8vJB$SXs4K<;62rWTM zAb`>#bck1__a;3+C}xq~rFT7%B0;)T6;ZH&ish?9K*g@V+1YpZ=HA`m?*sl5j+xnM zJG-;}X^W1)A0v_S*CVm;SUtquP1Xdo^1d@Igt;p#KCFT%c5EOI?~|6u;z()GtPaoG z6jYPwmNZtb35?^n%b6>Z_|SF3*rj5yBQ*eG_=56gr-zHM#lEA}iYpO^RWxr`SWluA zCgSIKc#=7mJxAcsAy(znqI<@fEMQFL;iyDrBWQH<3uB2XbBRdTh(gj zN`7>U;#o7{UBl=2v})#5cA7909Tvbre@YX}yHp3sH~t@lg=+xexBp5Q%@b100sL4E zb2;|M|Cid44Ai0HJfhTxw#Yk)#Xp8neQvB=5`qT>ittZT%yIDQ{+}tpzAh;xybD*% zl!j()U90&xSH(xx@`zzq#gCQ!FRet3VFMtBAFpNp#UltYhP#aQOzP9?m|tdgq7n8I z=5ex@FcXAG>hR@zQhH6<*#mp*Bq)15e76$j?(kL2Txnn~ z&1ezqB62$hRe(Dtwg#ZqQBo4rlBQ!T35=BJ3d#H^=348>Bl*T1%I9&^oP?P7Xnc*t*GPrDAZj@Xsj({Po zShg-YN-kT+jMt+SXGz5cz%@(4W$Rkw<+61hLW=D<1rY9K>t^FI6M4;#vT(+iA%uUP3Yq=?p z(4!$ssUhp7A=>;cR_`>m&#zFvxN1!S*gD2*77o`f#8qoDM-{8qW%=1Ob3^4SSJKU; zO;_3C(er~Uv$Gb9BR$Fr;5{30;19=zpfJ+(t>IF5}8+%#9 zinZUk_N!$Pq9U2aljUEssN*Jp=`=3?7MTE{gUi3c;ukLe22b$2{ClvSd9e5LZzJBX zy?H7tCpc)ccc>$6^*3IJx}@ifeya0;)%ler-xTFZpY$)yA9OG`VYPG-`Vw%I55aH| zcYjCoLDrTOz!Q3{!DR8OMk){QWX@z+1dl6?eJCD2{ayFj0A8gt_mpb z+Cn4|p)HBEAhei;^AY%TSp$bTg>53_sLVR5%xS>Hl1rNhF9-=FZVy3K5tV?}}fT z7VmMk{t3E8wv%ayx$;(gr zNAh~(!0OP+dWfKOd1~HUdUnWUd1}7oc=N}s94Ur*Eq=0gYJRfZ8NJ=QNITZpNL62_ z($Cg+HBxobsr0k;FAyrsxx)-pA5S)Cv6+Ml^_n_a=G!F%fyDu#pRHd zb{(+SDKVwP9%aEybNg^0&@#F@1%4Hs%saeft{EF5z%-@*LdxU*9p3sXEXrsDGhB%i zTX&8At7r>h0faxEr))CY{1S^HP?VbRezU+>0Yr_peLGTC%Xn2uIqXZ41OPiV2vOVw zO8BT<7EdS~7|6ezYu?Y&ND1uvTTYR)*p>u=^NC(lwE09Ig25iB#}v{X4xJ*qLv;$C zc#nt{)Tp)g9s8C%e*vUF${**720#q2lVffiLZI3Ks+Wj(%zT7IX1+fwwGZQ+7MkNd zOXG<*oN4C$D~rF9+E?N6&wd-mtIjir^ZTE+3-!<#yUONMFqbM#;LDwGCKRJY;;fxF}=iv zcnU<@4|&>tZ@Kvk7B^LID`cWCH){_SffRHzl>%!}UHF?D z&7S8Zg+5|OiBh7U41gGZeZ9F?2!U$TfxpJX7Z&&BH4fnYOLU52KU2+x-$)7B>dy~b z8|wi@e+Ny|V-okLyvpG@ND4)VuXQy8V6E7#!w{$ud*PeUrOPYEeH|0Z?*H`4i{ z&Erzu2jDxHr?GcQDICCGnI>lw$NB!(%`Jr@IDn6uu7?;Z5+MLCMQ{M$VZZrrR)x^% zt9ca(6upA0c@!$Lh0=`IJZP@WQVBI$(quXbqju9ha&N5Oezk|RDBHY4<`p3Xpw(jU z*UU9o78N5}8=;e}4O zh~?rJP9T{;|`l=v)$Af_uATa9qQ5`XYNx?B5Lw!t3FKN zAxF#;*-@RlzN{AQLuU4o>2m6DHQX|my-SMW5dAXPEk2=g0czHL;r4$$Lf% z!rJ;OT}BtJjeALHZM5Ep6cil?>nQ-(aU9|K*Uc6Av?R5a99NDdw3v2A&X8$mBthV~ za={F3oW77?u&LF>P#*8lF;dhOn$ z5Fo6l0?>K`KpW>#C|X})rrrcFfl>;$^%RKKzbCDSCqYu)hZK`NL-waV0W5Og^D|`b zYfrdik<#ZEhV~Tl}UuERLuHIqWujnE)`C;BoEbkDhEQYdDSK~%iRpOnI#K`0P2 zNZc%$KTFRd`ExGeh1S2MS^pA2p!KU=)~_WPw0cy}v+5r2tH!@bz1l zmGDLQ@DNK&6}*mVl(b%%MoG^*R5w?q(ZfPdOrvj#UzkSUggWt)M%6IOMqg?4yD$r9 z?|Is+ovyf|Lx*b8bCy448nqX*yv07(8I$DcLtOTq*(7=XN{Wf(sr;n5QrxO5fSPen z0E^85eYH*x(`?8bo*!xHrW6Q=YYEhkJUxMa2_b>kpa`W*pciJ#1PT;d0&OZJe#u{r zvSh^G5m1^yFA~MWqb)zNRzyENf%c2BJaGaAzt+-5=Bb1^$)H^b*quRQGX<1pP_NQ= zOIpgQEX!BvGJ0t(dy&#w{uxCIV#9R^05)8xTs{9RCUn>XFPJ0q&jNzLmbz(<)>5|+ z4EDeq=8*iecaH3On$D5=N7q%`7Z3tO4@?DM4{QKv`G-QW2fjqbiyoL#xO-p<#2$F= z9Jx|G%b8ft0_VRU5;kb~JX<7v$(rld1app)5DHD$ zAzc%vy@n+T?#&YtJ>{GuP(9^PDAwm~SABj?=+TZ(sU6?zc3{rY16jL4Mj6X{^MoJz z{BeuIHbACghP6&p~UMrZ!0$sAeeB(L;*2`*#n81C0L+ zX%>w*8Le)f>!EkJHL8WWeyDT*-`Q;x_<@i2H?J;OR}p_2iN^%$!yo<0eu12a2=Z7z z65}(1LLxrVzZ;fn;fenLQLdB4^N(r(<}hC*_6z(YQ4+C)V1&KXro z^28>VK2PwJW%xKt6o0#krBSFSzf`t0*UsTrfGR-Vq z3U3xlZUwr6kU`Hz>MCnpJcsbi7!u3vHOp3w@(`o-C^nwl+%hD(x9$P)3p*RzJQ@t#<+2&yUb{k7-sD~W!)LR1Ym}a@iqUO8h zW5kGe-g)QDE>ALifjEFC=yZel{{HqTXIxuLkjlyvIW-qq%kuk$k^^}6c9s!J4W8c) z9-vGi6xVXBL)2>XF%?E`C* z7FSL%paUQw6I}nDXkKUdlD3vJe8C(wER^U1^@$J8bgC4(o@EjZl%e)!{6x=)Al^JF zbcP9vh;~vOKF$_m=%ReVC-i`iW9c*% z__R5@64_tgg!6h@MiRm_R&;^hVuasJUw~tey`n;ca*Nd1CHf+@uTrb?O}#C(2z^=p z=PI==t8JhMJvaBURCW=Hup;(rn-^a8ckgSdqK3BDdAWl8{w8$^>#D=K9^_Xyt7A-1 zLz8DNBRAA$McHo=RY2zcFNzm;+DBQwP}HWtOC;3Ps>R!pV6W;`3@zX( zrE64FJHg9|9Y$1SnMC2tID3ZL5#BS?K3?)PNiBqGE5BJnA>cjC+pC^@2p9gjr3)WD z#S+c0J|9-xxq7^%zG4~!PR0+Hh#%9hm(0q`?H0^Oe6PYMb|zZhHmw%mvH?}tT4HyL zA1#B_l{tP==QcpVw@jd!uAgk_@+4zDP0=_dk1wBMX~Ob|Y*E#bZwdfiGg$^TT4QJn zQ!c3cU{*{r-#gXvCA&<@xreHeR%79JWML(jx0nv=YYSzC@{}r3!EkjOU^V%P^BJYo zk!Z2@Xt@oj#G~atDk&Qz$VbcLXIe%ZhDG>j`K_6jFG8ai(k3y@7M054bP&(nVeh6! zFBIo@Tkw6=qk=OcbgV1?<}7%sc<9CZ&$bLQ*l3#rP1HU27p++^8K}n*Z^O z+JLnn<-#l22S@oV!V~9OzG2-7?erL1H?`|Rd0cu3K|m!{=F>{4RRtEm;5(9Fmz=i0 zAP{(>xf2kG&jaH_S2=`A=P`Go+${rAd>^TXDWnJ6Oh{3W^_m_B2twxpSUkJk|Id&F zc7l+gGJy3^=EX&pj_e~sg%Yl7622w~T>@Zr2|p7OlmJ){38!-{FSD>k?#SUNA$XDW zWh_DH5&)aI)Y6z$Ay{M%2*F(G#5*suWV2QTk8GQ3Y%>YM%~om7_bs{j5?oIo7f z4_Xd$r2RJoiZfD-hrewptA;L=Uv<7R#8IZ(@cP-Iq43g=C@Mead{XEk{)_KcX{gcJ z&%lH(yKV^l!AW2(K~KA-q5>diUNAbbrSLKX)P{d2HmTK%hg2XAx zl|_E~*-yX~M+Vnns2hHWw-vYUvef0xS6iOsjv3^KEcGl%gZKVo?+Z1kDW`~DBCqpK zYb;-}M+6GB*BYmG)3%2^(bNv)GlQ5YXWMm_S5+3USa;;~DYgoEFORRxLJ1IO7Xgc% zn>Jb&C?4b@VU#H(Na?(d$eG7mygO_Ht4g?K7O`c7Bng04uVU$W82{fEOUjevvvHQH z{C1pafm3=C{;;L zrHdZ0R5yJMOvO~X5d3(CXKwCQoZAmrV%YaY51gfZ%kLbpw2aUrPn%2K74Qb!eoP5g zKIa2&z`EALgO+4dP_A}`J1Cc5>tdc4&&UCCnA7rJXa`+}tE$4@ zuv}o>bU3M?q{EigCMY5+=+-7Uz~HjM}Z+FeY=z)nHL4?48%XKGurv&;ocM}>7KN}_FD zm&nTQN)Tw<)#1f@DmK34T}wIUAV@R~zKP)1w23}V8!#-qn)pPWFipr5rcs$_ngI~Q zM_#rJ_aMU+jf9&@6}FD(gjMcUc=r{katal0Q97gQd|Fzc3gS-H4NEf5m|_a!-(7`y z_bI{@-E%^7&k2Ii-Se?@&!+^5?z#CG_k82uJs(K-2${k?R3^H|0Epph-iPrkg^ED{ z-}h0G$}D859*yW8N`@_B*L6$15CWYizoBveMB^$fj+7Py7=B^|eCve}^J@+5l{^6G z++)Vqas=b%WEZ>*V=~=!f zuX)o~mLIm%PnLgfDQ0=T_!h2CVuDZoE;fYQKj;>xPF*UW#G6ipVO7F~MxSyPEcMlZ zMU<-`N#uE#Buw$mm&!V&Mq`~C05N>WCl-r`Z!qL@M>Y=RIafkzu!BTHtXMA&b+3k0 z@Zf+|(?l4eJz&#hF>W6#4P|23HzXifOs(9?4yD6E9DkJK)1HqhXZmg_ z%;bM9Re}9Llo885%C{&5-oGx!r*02<((!f(6)abMC`228=B#`2S^k5{R~3qAFg`AK)J0Ram=9^=dh zc3T=R)~(x(_i_>sIBlDteV`BW1IwH;K0Tklz%ESr>b zPZVAxKoLnMpyCTQm}YyBgP4wdU!B%Zs=7K%YNS?MMm`N#8Jr}(aJzWS=wNboLrvr{!)) z4S|0EUd?`pDX1L3QUX?$>giy)pYhcKFWlx2}lg~Qv}D&M2r|WKUGXC zRe55FwWV6%t5#Bfs}=m(KC7ar#-ZsW2-$q=4??$I7`U`XF2-XDl!xNqN6kApT{{XG|xNQ7S*=a z;`U3XVE)g&>xKF8_$SWUraxZRT08u3YlYs67iv=P{VKipv+&+$tTwUYDIKS#h>&k=KoyuER73w9NIXynTI_pE!5Rs?$0Dr+tRNl>Ys1HX% zzN*D-??HF`SC97#^Q?+b>`0{>FImZ2o^>Po2scKK69DSQOlhnsBTq|R9edb2vm8O~ym?jYcc#;zaOYd5 zn(Qpm3Vr^zKc8Ro;qxBVtplF0rJLRY6)-o!507Y#{6YYzn~!R4KJ0SyiHPt3{tck1y(E^))69J$OjS_0LgvpN4*Z<2<|Hix5JT!OZBZ^z;JYb18WU7o(Kl74St-@X8Q2iM-8n{a)uQr4-S5- z5j1rNQ2|}{ve9K$>9QBVWjN!ybU5t=ww)A{D}*1|lh}R&#g@LE^XV2_q6hiYwsd8y zbny$mTwKu1dc*WN56nB%s}lQ?sDnXy`*9Aw=flC6qdMP%9A)lvwJ=X^@x)!L>0|I; z_1AlqW$?qJ)ki$D!Vsh%NsoU3B?f$4y#}9jGH4hpE~w;)R32V^iaBoh3Yn@t@a4kJ zc@U*-e}dtBMjPwRLXAN#zthc8oi!yIV2{~wg`X^y4hZ9d3}z{CWud$@Ybej{2kyK- zC9ufTjPl__o88+&Gpb7z6EPgwQvhhQuO$sOC9lACzlvE%5nP^WXRXXe6Cj4KWrYl1 zN{s@7ml*_PYaUHr;o0u-i*w=tj~W3p*9C)9!*fwK|H(jb4Tkt>?~CoPQGNktpnU=a~41Os@ zO^b`*AFR;cKzyfiWA?~M_0T|tXJx`(@d#+`yiM>co(%WC*FA`L3oF!{RV4J{#}X{^ z280Li-aV|dSuUYM-Z_%@S_0R3=V-il5iIfsga_{*dO_woO{kD}zU2KLfg|sNj~i4| zG}dOq`Tyvy!*?8zz;D2Uu&zUKeplyMYrV zFyR6>_gff#w0tX!zB2RWwIxWRRvWYrj2`C!(Li0M4SI*CuUTgBB4aR!CGDv%Gw zlHqk{O15={!cG%%+_=kMDfcz=2}15NjkcYJ&#~3Cz;NSJf^=^!sW(^pNhIH_lzU5U zL^17XQKr>ePyJw}+*_({Lmgpn>3Q{;Rq}qFx(bN3OeuDh)W7|)4_SpTEy3Z+FiWI_#5N@AoZ6j>JT`Nrn?pg^a zik(R6MBKG90Al!G6K#V$$Tk$VcVj(>S|VyaC~y<9(PUe?2h<&u+5cL0!)R-Qv1|sL z^e^Q~^8VL4M0k|LhO_R%z##s~7;AO5=wCR*@J7>Y zZD6n^2#k73v^8ZfulbU- zG^1gGP0av^;aB$sBzllx_}W(vDa8Aq8(NVqB06HD^WxB9kBef`A+4O|;W^ea>@;B~BUfS@s^fACjTfB31Y)2rocm;KcFy1+Hsdcf+h7olz+M2&?ZNzK@ zDgw;}WPHSyLajaMv1+b-Rx5y8zOufk&II3mWv#;`p< z@RrVZue7%Ekd2-yv&!0xohRaO^frv&Sr3h!`c=&2V!hasDv^f@d#|?M;yLSZoB@}? zda!SeyzlTI*I3hCG@wKUo?L23BKyOe@a|e`XF^z(#S{Egd#)B zGe+^=gu*Nrp}`{U#Ug5vIGw2OTJ7$4@B^R~H(HA;tR3Nvr-ssa;x5Q8X#~EZG2F%) zxKEFL&hX%XXMMvSV{6?^PRs8J7S*CSq%F=o+4=oIM+KZKI0L1VCZ(3V;kU`Iv z!5$Iau#I_@D|I6z#-kh#ucoeZcXMKRl{aZ%A!pyC);|0NHkzn1HJvrvY2xxN2d z?&~ww+95;>?P%@gTZN)|-?P>@mQPr~ikNo3mXv@Q6&zZBbk^F~2cLfDtf}n1{~wEz z=dJC$O}I-6`*vCV3osL=3Soy*TvWPD6wsk4??C!~VAQG(Tq@EFLjVJ+0C4f2&DP!wM&G81Z4bcBbZKV;W+23)gtHL+QgP~3B# z4)VlTd#4iwHlL|CQi|}y?^(n6X9pZ5O|NXwZVay?glHr8XX6%WqhV~nvs^$WGW^s& zOAJqp7HMq~m+_paJK@EY~ zniqReG&oXEk=3Od-)-Oz*pTYZ9(Q2fjU^CfSVj80pvp!$FQ`UHFi$6K^s_`!k7wRB zOiRSXfasuo+Bjh&|K+Z=wYPNloJh&wx4(k5g3dU)Ds|9u*;$dsH1Z>3dXB`X1G%LNM-8eZ^D%wswjgBmi`GDubwom$YyFZQalA z5h!-kaQm|eKlu+FFn&Z(qG_r3HpyuTEd$NJBY$f~>XYmXL1hkS-w`QdUx-C*)xp~F#j#mzEvS0o6L7V^d`)lE$|YtKYBCs<6^jW_!ll03T^ zha_QN2@U1$kXRZY5Eoi5GE8tm?`m&+g776flm13-nMGXj#> zAfpQX{i$G)Dlno#UXZPlPw_b9rs8qPZ2-jZT|u_zJ+u_#K(!pG5925$g6|KpwN#64 zmgBwkL{qGbH3HzO3w(C+2QjQT)^y^`NMxB*Lg%G2(ZL!y&2E{jY_7h(ESZ|M} zBdm~WI^t08Cqj%mKA<{cy!6zYziGF!Chi6>>y z%FL{H@{exoN=j~?wSA5`c&#cVA-bi)c#x5x^5fW|9D#Xk+WxYXs*f-obbY^ubf z^k(JicSR?Y|C6<2be1pzGr|Dz3p2t1umc`RW`>OL&{v>TxQXShO z-xaw+5PAm>SbU`86N1IV2Y|rC2cQBTKJejz?74swACiVgI;!&zRs_VmI(9-VJ9ftw zy<;bb4+?FCD#DIEWUD-UkQHmIA3IklL%a8pL_5*FJHLpvl~qEDi{dis>1CW)9V~Ae z*su3taP$o?<9L_BDC;m$SXXCXh0i zQpRkRDP;^n$b}nm=wJy?tN>OlBS`nUjkyN3E~0mJ5*gU<9Q4ONe=GJoA%wlwy8?eabfELs4jp_1b%?v6w~SJ5_>*#1N?}Bb zJaqsc>zvqKL?z;nj3^dI@BG8mr9-e9|&1f88oEZQyyh8(sGYZ9Z$3KWtqM!1h!29vE zhzL!kq)=O1Kf~}$=IM=WAF+gO#u(kE#VA4Gc2|RKa`m?nLFmz0k6&x%D>_?m^Nvp3 z?y9v-uKv~{?64>419C)9(vKi8ID4T8?|s_g+>vIh>mzhP1g`s15!lXS!A8-}V~Ggq ze@{RRANK9YN*-i}eXm?nK-L5S0LvJD`Lzy_-W+lt^bX>|2Lj-t6Di=E!>$7X?L0VW z6$%d5cFycu<)iEtn8b-i#y-#wiAULcLPvUd=pc5T$iR{3y8_@!D>(A}=bMfbOa=W!Xbg0DTX~b)b5^eg7x=-lI|NPqQT}|KoSkY;DIwC`hpX>y zbE}Gj_!S4__RNYG-8hkkv;@|NGYTF zvgd65S=bIxUz<;fr4BWChxR%jLFg<1i=*f&1dF3+K!{Pa)H0g?-QBjBwIW2wySc_Y zlOS~7fCb)B{FRxNFKx!Xb0$WZ2wz6!Dm{;Pj)Z4knkQ>+a+|1L4#RDI_mP7tF8qBx_PI zm3WRrdy2`cTPl#%A~IofCCb@lnC-a2o+n^jBUlg-z)x@gwmDCjomA44wNu*~8c67{ zAMCf&Pd{khDf+>(Joopoh{)=qn0vt~dwk(%;8yH=_9{H9)zzT9mwN^me@;-K6HRgj z88qT$3IeKnsmAp^k(WS*I4d=qXoY(sGyG|lyHlQBAPR9jE#)nrPqWy{dPo-=1F>F& z29HKNt6OcV!gdjzFrn-%TQq?aHJb7$L$wIFK5ntCdAem2n5y#%B{ULwa zpY)+UyxWoES9uca=climSvb*GvkXDwMuqefN_$*r) zR*bO25n&_XBu0cy2m+(Dfj<#xpc%|pLWl@$Zdq)XJX&cGqD?US?b3$*Sw>NP{E5nz zq8Je+Czv1!N1s#@jy{D`#pshd6-S>2fOfW>Lh)?-QlcA<7%2sgIq_^eg^H7N_(bRC ze=Ymm6u75oD4W4v|Ce&w*>+kEN6Pxy_H+NjK|9+{IpjBhml1c$!z({S8`(3o2FIiA zKM-CRr{C_9ar!MmkcoAn-7-)Ecl!ubMdjfy`Vis970$0Bc={0C+5~9fZTKIzqM#Jhd( zw-&wxf!*xwCAPQKfITvLgZB7{Ue&b6Pd6LB$9MRu|Lm4C?|+Ci>}M+jE78wZC4#V@ zt>jNeT~N(;KMO(}x!JM7o-$zmwYXwcQ^!5p{Hv2uQhR@rdP+$i(IsY@!Ws-;_*cob zHZ?hbcepsoK9capYq~anyeIFGN7+4EpghVBT*JQ}S(=(5LkrBq&?5H9(DDSt@LDTv zJJ`1b3ZbQ)i{3&slu<>_wEB2c6>!e+E?ZPz4+O+k4~+@XyZNEw(WV>rE9AhhDqym37mdAY64*jAs?^9?0K% z)z->1a<7(0MiWA;CWk*$rh@VQ5{U)Gih2^_MLkjRSWgB(3@^IF*2IHM#BJW*qKRx1 z(Fm)FmW8k_!AtCfn5R(mO}D+Co#CQgw*Cq`N4R11p3*#YiXhNK_z3Xrz4Fc5&j}XY z@~J zam+Lx|GKTF2O+i`ee$y6bzA#F1ECzwTi9U20UJ=(K0gh}y3e}-iOEZ(-hkp|14`Q` zPi0Vb4RbGzk{HTiOROC)mejg#Fi{Ct1{Vr|YZilxn5o%uyJ5hX|E4X8?Iz?HAlv;} z;M|Ap#v`@hz+%fjxy!$Su!7}^)*MfCuH7dW@fPlri+J;a%`ZcGvo8rX>UqaQPjRBN z{c+pHLhLU}D4sC=jXU19#j@WB9BXNP+g{10@cpo}pU|r^i`=gV8X8t~zn`ipvmXsJ zM1J`1y(*HKWjR?nzwwTzZCN2iwsv&*=4o3UR-4E~58$JFzwzN`Y+Zen`Q{9){kHK_ zX8u`VNaS#|@w>A&o7!_fw-tehEP9io7=7LSnK)#>cl6d8$~IVi=AfT`KkT6F6fX*a+QAJtrQMC6 z_}cb_OUQy+*gv10B#0+hw+FHdL@FNj{+s}?S$-w}*eqKdawgWW!^h_zOgJ<4HYesoB#di=<17PBYw&ed#%_{d=Ub~b`AM4t=+ zO@&W}5QOfNX_`-F5G?v+ia(#^`1Q#I%_l;l@ClWOJ~05aMPLfW)U7{nvX5wm-l4QO z!*5vB-rGYEdS~Ekns=PwodAVhCw$N;*EFYGBM3Zl^#hnKa^QV}&~xB-{+#mLYcdCt zK;a?>Dqr(!k@hltYH@5nkPD)D(c<=J)$rG4EJnWW8H;dwdqXL^k28m5UiTM@U%w_# zyJ<3Tu~gV6s({*uRbT+b@J-S7ksf5|z{}Es>W_!yF{c9PxrPmEsX)|;Q%)a4UnEXB z4JF!RBON3FS|jCn2VlBp=uAQ?0!*3e$IylT3{@tI5@mQ+3E0aXOW3({yfR8q)Z}=~ zY0&F#T`|wUNlKuuPO2*|X1r9!ev)0GbRxySLjmp-PoW~k<4uw;Uf1pd+$Cku+B<%% zy)Uf|BZ0FJR)oYwlGt0K*TJq?JLW`X<|Wvl^H5FHn{tjgz^OX`^E~ZhfmoZwknY}< zaYd@ZL|@Sf3SgqIBz|F{ujKTT=*O0``%Lu1%G=kmR8gKL`X)NSCHB8b^tQ_IVMa*w z6Ipj%gv{|>L3NSiJ2_>J&#h#S;L|GEn=zY_^aY(16S5C=vooCTgq#IwIDb*cs9?ee zTwGSI@6@v}nI*j}=r9Yfaq?^bz&O8i6??DP3<0LOxFO+(2lpRUvDZ@gTgm@%GIlvl zOU4_CSWL!m5`bts%qala&NJX#t-T_jmZY}g^J>^nuo zMn)+x>tIf%P}ylZB-O-dFba(W8L%O3k!J<351Hz{} zhP>g&9bG|?aEA~m+(8ARJ1Ag!1N-z40?;Pj$qk`(%p8zKU_;PMl{h(*Z8!{~K|GG6T)gKDcLZIV`iqKhN4TU6VFK zCns$Sp)yUwYjXGmGks+CsL&SE#i_$`Q7xpsy+!O60jB99SGP(ms>SgWrNW9iInbKe zMS{aH$943@Mi%FFvU&0YsdyloaCZ4iScH}Rg(!lR{iXPYmHnlx>=<%oa1r3Jp@2;J zY4~EX>G9%1c|1=OH^uwLrU&!nPPTaYMTv#I0{z`8-x~TCQ8SQF6CaKbcoPI@y*7S0 z{;$JgQmuVB{x@1cDw4DP$>S?r`<^j;oTrz)8t>FMuq!J?6c9lc?L%gE$v1iU?vb$^ zE{%uttc3LESqdoz6{9T`RC`n2K*yWo%?Jse>IE#W7bLwYMl_A&-ElwSppIhIpGaWA z7jNzjag;zW7g;Xjs^6P3u8Iu^>=av4h@)}!NOzw6hBtn4V;Ip2=WY1O4I6=qDVs8k zTYK8eF-i@KmmPV^sftgsGV0;^T5K>8Cw7jU@q+_PDxq_AFuZQqzEXNCmaBur@^KYPH^zahmVN&gL=7ajf(rAHL9|b-)TWd zjv)rPdk|pB15?tcun0quknh|z5O#zoRvKPBAiEgQ@D?qv#+cwI-#5gb#>&xRL+$A* zAo5=w5ve8|As=_v71ur!4J@JcM48rs_`deQ^37I)69#0D5i&^>{HDVHvB&b_;9(4Z z%O02>P1=atK4|RNL#7Kov4?Cceqj&U_K2T!7$4d-fPY^*y^MTo1?*DRw!hE$ATJQ>j z!tvRn;cc5K8~Jpby)xTOkZ{f|nWv0sTTfjNHR^MOz6U(9&ryp{`NUo>f{U`WWv}2@ z?J&ru0!4c(<3&ic#RKMTd1^Ksh`LIY!F7#G0)TOAgSI2y#3(f>a5cM2>BPYF4h6Ue zrWA^X+a?Frf^!ndW9&89AEXElOMmfabHGt~5Mr7rq0Q0)`PC_bm1A|owD&Qn$c3Zf z>r51YI($6Z-bF2Ql&6fbS7-4@fu)w{QHjz={W!j|RDuyDc<-_Hc8^yff2_T!hYC10 z{uH_tF?qRkM2?LwfN$Z15F@oB#&B{~C5nW%t2t_Ih36hN1@YA50ac>1gdx~13=qGt zTNuC}jJH=bKD98M&!1pl;A6%hmspgAJb$vi9$QD?`j}?nQJ%RJK4QI_U~&5c5ICHf2Nmfa&iJq)d+t%u zp~k9?qk4a1f`@MS-g$wQ)XPU@kMrHUz!tG{g%H}~j3iRUS_;PxFx?D6LeEm_C8^at0>Wf;IE@{$>1--0NX{@ zb)}LTbxfWvjUmObT|~kcx_x#?iN|E)ye#;+8>i!7a$MwH0YbNFjT2;xyXGN8_B{UJ zuA>vHPvl{q$1^HG$Cn%oF3Cs%dEO|uV^9UP{V{HDU@pr#lEQdY_*s9-c0VSM3VSM> zTBogVWpSy4%EqM*10aT5K296yp&~Z&-;c^h{_RoO$iITX6nn(;iMBZHpCbUW=6Kcu zyOXV>6ry)sMFH;Kl|r!w?eB(EG95ey`{Ck^+t)}Ttit{Nyz-XMD!e+{6c?vgp*Bz> zLSdjb_D)(G5AD$M700CIbB?(!$EiOJVt4lzP1=&Hf6>}z$LL4G2JF>-5x=lk`vuJK zIrrc9Nv{B2eThBSyKiggG%dC7Ramj(z{Ry1C!P%p(E%>uIoqDTb8F3$2e&QEOP(qg z;rw;EeUQQ`>4L2)nD1W?_JtF; zyOLd%6Hkz+7*x)N-S&>GIzeCx0|cfpS5(|S9XO4p5h@WCrj~EPL}@~L9oCItba%Am z#dd&70|^pUZOOy8*axvu1g<;caS>sc4Cj)9f}zO{dTcl!Scl~ijIM`PY%@Wk9(G>v zs=YotK;VxH360GeLhdR3eS-0l{y9PF(#y-3C?H7P6_1Mv`&%R?G)D)Y@Qewy-vp*Jbep z;f@V=HB~2AR1Jz@kI|SQFggI?5glvZv`=H*2o*+0=X@@Pd>I@w2txP8<*@jjP-Nf<;vTfx&TtARZSSE=KPY zdQSyDCm3%93J8`cpasX@1gksbalrxlU~rsh*vakh5+@D80sh9|s7MfcZ~!)3R8t*- zMb!X-!O@Z+FgO6=5gb`(>@!(!LWRN6{iGHgBM3(KNcWRc>{x*1rQh=X9?nQ(cxlri_m*2@GZf3EAR`!5(TvA z2zXnsSKT3xiw@8SqeBceRF}i!2^$mw2n>(v1fhqAt5{=#brr+#c$OeAJfMUtJjC&Y z7#~C8?6~8B{KQ}B75VK!jsa{qVS$#d|2w@TKQ`FW*xw*(@Y`aX+ma`|Z!Z$PPlo>`em24FI_R@R2>i zgBs>}<#~;paB$-?A8->6^Iau{@N8MiEYXf{L1jQmDo>2y1sZ>Af&!ES={c?3u`l2Qdqm)({yQihQex-;<($9 zd@7Kyx3q1};D>wGsE1M;0(H~B7239^2fZ+Wm>Mh>i>sc((+p8bIuFOGlquRn16M``a36plOdYlj^*xg0pwtILWNvIEBY-{?ReJVTcpK&qCIA1c3@##>A z)@$`jc8=9UL8}H53i2aa#cBs#WSGT4&HKm@03tQ9LR$wg&8dr##p$d(>8*Ycwa*>bp8?aEC zbw8~(iS3fo+Z!W>6E58;Mr&?sx2)=mW!1P8~>){cx5Z&9N&M_4DaQAA-_I_t#5 z|IrC?$K^vfA-~$;O8sI&hl`#IPRm8l1q5-ejH9i(=``O^dUzt+LJ@GHRNdgu6?>&C zJi5@DRUPrf5!y9a5GqzX85N3sC@x-}JuMe6&lAbGczN2Nu%P$SB@JBx4ls@K>#G_^MVz5bL5bh(QHCh_6B*4#4|5bF@%3|h43Sz;D`Ra{LEQjEmp*^FWJ*WAg>eI7{TQKGJ*{NErKZ& zBhh{-t1!PfWKk_v_N?CGFpMcJhA{=`VO-~Nm0@h72oc6Fob|K$H2&wU7zL}x@5O-txG1-F`&u+Wk4GMT0m1M#^lwKjx-i@&JfF#3}cxB z^jI$WxN;cFv>e8A7YIfY%e+^t;}L5{_=r$e8u1O49kHwtfnz9lfy)zOT+xjpL@0MY z=O>i=o%`2NPLe%xqjNHpsZc$X$DEU)JdQ}lh#KWj@{Du7dMQH`>#{M5K?gmGSDw?N zc(qaH3V$-UN|}#~VqGFev6rSVWIeus5&g-oRJLLHD za$pfp5F(6~`aHafqbzGk;UbFbp7%3oYsDW_an$vwR>QDDdr1OBVt-6Ux`SBh&97B; zlw*B~T#VtK{^Snh`>J^j77Zb+OU4ie4fGJ6dR`0R=|+*0{fS(FB0WqsjEr@G7{Okq zVgzpj$r!;~jFLC_lf2iLv4#M4%hm#z2*&^>|Ca%50B8YBp%{pLR|Pd;*NCbRz@380 z|1o~Ois9nh7lh1M48xZe!|;tg?+#zQ^)UlxjN;&w1IEkZ?w}PWW8zFj^aVYl@ia`N z0Jvs`8|pgNvZ|Cs9IB{90q#Q;6pHa^uiC2!|F}fq1XJ@1fn4d>q#SEOO5(h^=>O;3o^Co$S1CPXrvtjH==xTc4S=#TOjr2UZ>-1g(i3NmTd4~|8Xh0%G$ z9e9j%hOhxoR?HN?@MOhIFvI7`ind>-mEaj^_AWfRxwQyC0{`_sW6_8gZ{o1A)x~$Xz^Py(; zjtg>Cdf5fTsx%xCi{>?&TZ3I^-tSzHE7bS$gIdJy5CZ9Ov6qPkS5qA;*#8JXELDnQ zsZW1W3>;EHJB|7^5r9Y8U-&)^PNDopz!=@QAY^(cP%a1syaS4p(~ye76Eht(`RzKU zVDC9((RXBU-w{mRC%?p^Q1M>{h%P6CV4i$7sHKMn*rBXF8`OnWAc93kgfpVo(j5Ig zsBv-4i!n7655~13tnheMssLbDu!B$U=%~kcJxp`39)t{YV7GT<4(vt{vI7vOs?6Xb zJXK{SXwmkS?8muioKF{tlU0$rCE8-7P(WO*qYB`fg#i%5_xzkz-h)i^4N9g^q@|kr z4t5PnQ=Z?!(TD9M`l36w34rd7o$Lgq5FO)D3UGIf6pDW7cQvT4>3#6agKaFCeLxDK zU*3J3Uv5jkgn5L{Gd%ZbNYyyqG1|&BkqjMU(RYJtdZ>uT!-Xhe{5EO4+VmZH*^EX9 z&}r9{Npp1dNLo|x7#(vF+=KmM3Goa2#S$0&^ow1)I(&VRf!FTlxW#IU^7O1(bsgXm z``?~5i{xi+1kGb@bvdLof4_c;N9 zo4^+d;&Ge6E=IQry{7{A2*z81KM9s7plt#NU($m>cgSNlftC3@bC9D99yfElyFB57 zGN2xC54aXVplbNVQCBUc60EBj?g3{IgxCXy>I0#TdFOgcxRNSr(C~}ROcS-I6Q));y9r=H=2fU2P!&EHyfSm-4i4gaI-y%>{ z&UuO7{>UEBC^>Y$+9vROe9sGx+UzUwEOWbj5NFv`Cs6?=ZqA1x3 zj(lAJXzB(HuHCX%GHOtk<1Ln7_iMElg`l5^iz_Vxo#dSz#vWA0dB09Cp*Axu4n`Pbb`iFTPvx6?*V`26*=H1eTKFR z9HFbA?d>+^@pByY8I>K2J1~MT7!J z^YgFB(foXZz=he3SLDL%W{MEw`1Oyoe2=u;qqoF$E!}Qy;}rzsx)v3T!)4s`J#$4a z&YmOE#ln_y>T%NFy&@NAJ^hZWTfXGu>K5psuWtPh>KpgWzBkJK=5cZ#Nx2?Y;}VxI zskp@DWi>8wgOWn*sjsy5T3ZgS9U6O)t9ljy5&Qxwz@^+;_4Rpzg*oi0JPOD z3e{J)nq1YJrfBAjlHu|e1-Sd(jK>wjP z8?I=*C;&3%FLGSbnomi@#BDYOxF>EDDkrq=6|J>UF}R|&o|MFXV6~sx*>TlZ7k~>| zdhI021WN?F7PJURtW#wuGld-Ok*yc6x?O;aTBJ)Li&|u)=k6$)UlilUj?s6788~_S zT>Qex+vitt@)km0kKhkJHFu0Iy3k$EZceq}(&10m$~^Ucbh+sJZgvH3b_J3hxm5YH zP%g1hQg-Bg-fy*|do)Ut6F)cKKp58F8r4D#obTNKcXk^Ee((*=M|{LL2 z$C?X&UJ!p8i%YX`J00F5SVS1lL#A_);qbZ0Z7y<}i(KX+hq+jK?&$1C@P5JM$Sf}g_YjcnLx@>AWj>M|AeaQk`m z!0b>_p%LQGwZ-t~9q|W!Fhn@w_zL**w)oRw6a2{(e;ixj4}Kwg>vs5sADhcN0Kf2w z;ws|JG<*!RzIdMo-|bo`p0B{SR)+i}e&RzJ;?93Iz6l{5ogF4z-b4JsYwiwl4H9pl z28olZc>HylSRh*={v?T+iMYpg*r9|S5RUj<{OJIW;2VkuR1-st z#3cO?Ss{VNQ9qN7w7gW$gx*3zlPblC)DU`+7CNDr+y+*_ULp__MxTn{vw)3YAr=(y*((td=}l02v!cj1 zJA3ZkIrm=P&kx@p;?3;r%5b5x1tKry)GL1+rQB z>23+&$z0w>d7VUZ#h&L&$_;Tlt9f8|Nfx~IVoBqOQiMXuf=P|VB33@=Lu7rX$kExn zA8m&xb)o$2X7T1Dm2&LMg$pm0T$`X7Ti15n4uf7UDGlY*|3aVM5$hzMIkO&VAzlr` zr>eSDU@c>2yaV0KOGbxd^J00)wNBQYO4$6;)B#KrmOwU5gtI38ZXJ}-K4Ro@im(Hth}a0xijQE6%%cWujzy$rRT@4 zFS)`Gxr6*I)@hT&a88{R*2$m#A31psC}=b(1-1;2O{!@6MoAsR(H2`>`KV(G{aCoI z)`aJ3yj5Ztqap5XoU@N%s?bIm`89LYsrX0UOft&aC){}B;D(ZGa@|)=nKiy>QrlJ& zr?#FlDYvj)>nRi4PVU$ycS?tex$WEJPHI0jr+w>=Q>RXy(!OK+tEO}WTVEtG>l#Dh z>UT<7JBMl^lrxj_ zLPqK?s=GFql!mqF!~Y|TUI&}rE7>8ov8Ixtwj7(*CBITbW$!vCWAOiq@$=$)O&y45 z!9=4=N*JC+hrU*~Q*GHaDGJsPn3M<^|0#)ugCCSk78mSPhMK>il4W-K9O`!*zOdW< zqiLf=!dBfUk=IZo7Rq+Y+2V-EIswd0&sFa%n%Oa%Lb-6Z2!mYzlae8#ryY5ydG%J6 zO)an&Sl?)4X_p-92CV$ zU8Y7!UE3NP?6sHAYz2RORnpgZ6?$#K>mFVYs-K|iN2>V;eg(0!q-W~O8qx2}MTkqu zBG@u>(pTbhjX|O?QdZRe_`j3Fv`}X#F1$WDJwymwBPbPd!pwE+2zAb4Y z(pf3>xVX1PSF_ePEF3rfhE`=pDSWZLq(!1`hc%g#jO5lLXO#P0N%LSpD%|#6$u%~p zaTsSZ6B@Z&h-;Y~a>54%O(LR`8A)v*xOYd%S|=|8a0==i`*i|yt z5Jka+NjXz3K3+ zmmokYT-sZbX+tBu=*z`dGid_KsmaJ__i#Pb=Z)9G56m#Sl)tk5=ln{2>AY`0L+BkFu{lP=H;5f@TQ@hAE zCoS8YWTmK(Il{3m$j_yZn21g}F^+!ba7lqk4o0V2Ul2{*`oi%^-v^JBmHa%& zl)Mg^G6;|g`+g|7-^rkr$~TYc=F6i-#swKQI^f-Kkk&9`vc$S%c4Dv? z6bZ&lsE!2fVgLMoON?#m9^Uz^igwwXvDCi;Fz_<26D94W#~R5~x|nmf(Y3p&Ze5c* z5^SzhvzJ-CO&tmvzl}*bMy%I$WMH&H)vH>-3Jg{684;BTf#PbjbHr9wL(BISmv0Zr zhk@pSvnB15bf8I6e)ie6C=hQ>Y9a7PAmHf`a-Kn@NXy^$2q(gDp?O?RQ#!+e`tAns z$7#G#GVWl#7$+lR&FMo}exzwy!_>p)OP&?tTP*;x%4dDTN|M_umSj)wVZLuE@>Qis z^T<{@MUc#g0d3x|elF=Na_wyLfbJ&@TLDL{IV%R$fn^tmw1kb`6$0X3E{Ukv|4YeO z)9m&wY@R-QP`%64w1)Hy=w-i34`{lve*5>)HfhohKK$HR-A%9T{Y{a*e0!yVe z`58G((ezchDT;+7U@b?Jq7vAAp=5XpVX3hy;A@j{FHxqiCRbYND+FNr>W5ZE6C{_h z_>bF4FA?NEcOYdX%M`zoN-F_WQmGO^|I<}`Y%Tko9DV9D47Ei#nS#m*edbq_?Ly#l zP&VJZ4xTLR(@Z=pWuvApf&15*sdVaz{~ctq>Ab21U6hhtrG6l}OvJJ+!d4 z%Ssy6+)hJA;&XV-Y-x2|KTN)1cHxXU4;MAs4yy*wXbtCt%X8&^rdw0jk+eMuZaeL1 zFYrg8uWat=%1`Vl0o>y8+tqqJ7OV95&CwDrG;|Gt#f@A}7}dzNK@4CN2F1CufL=%( z#-Oqf(zG&0;`&F0j<7D)l?q22yK;hQ_3_{O#BiS^_)hfH9oD}W53gGg~ALqqrVFf zB&=F>Tw_EdJC@>YWI=9SS9{UcUO3du`c6HK)ze_$;|s*~ z!I*U0*9b*_hP`m8Il`hp*Iv*R3MS@W6QI8EmuV@m&yzb?ED6RV>ZOYM3VY#Dv-CT4 zv*nBS0!#YR0DY1kul~MPd|<~MiZ}Tj$Z~ZTTkUY9@Y%E$f%=rGxQx{)Q*qnIk%_Re zqdNw2N?lcJ1`-vYqIFB7DC$gl7{}9fJ0p_>BLvvfvdr@BDrJ#zaAY(LZ0M>RC+n${ zMU@@+>r=S3p({82BMIeU^b@ zv>cqbtb%)UT+_wB8E0~(mzMNxEuLpka;25otA(*c9iZY>_ah%R5bR-1{LvNi&cXU;VmP`oJd_lViyi@)iPYcnG6$N^-(GqUz zLRw(JEYkF30h|&8N$b(jQbsaQj z!UI>k28!9NKDDE2H@&Rh+T{a$wdyjeW!BJ?Yh+Fpyw?I{aKf*c?mh_ zS;_oz4tgobK~G9#%Rwbu>7b0QcF<7hmh#9<8Y`x$1>dxUHY7fw=DPQAqFaDh;LZ;2kv@h*5u!f_H!`+sV{rd1?7~ zo!W|-jD&O_8z<`b^YdMWHYhq%A1JO@fM3pBgMqR59egZ(AE2kSs(5iAE|0_#Mw9ef zzGSp8b}4Tu)rEd)s_W;0q#Ch>D8 z*S0Z1tu&=)2hCD!sdP}*Qs$r`(3!(s2b~ORS?8t^uC}7eZtbCD9fqf9HXZ5eZ{tMP z*_1gn3KcFt5mu(juIN6>)!Yyb8A08XGj}W7Wa?6zZMyDOw&|wJnQb~_sl1dd#5R3k z;TTujfN8GUt)6-=9qWoV7J;@(AztJmtuiT?Jne{#SL8!YKYO>`Do9^i1uXj7AhLPV zAgp=JAR*AF#=B-Y8Pqb!ix)9uEMp>)K^UH*Irc9c);N?5k~7Q^Y1ZA%Edt~3@Z2lj zVg$88)>{TyuS@*~*)lzDl=<~;b)EY+x?G1=bIav4wpVG)f%9}&^{r7KGV-Eon4cpv z`39V1D%Hf8GBt%j3&s|u*l;m6<_mL=_E;TLLn^PF>dLiM)>?X%YpGSm6VqJt@tW;m zvNQtK-vgQRrq!)oUzhr4&iORM&c_r(y%rU_X1IPZMR$z_6vt1`!YJIEK}p~(o1PRf zd$wzilU1;MpxPYll%rV<=>zy>&GI>}Wj6ZQocu&R_o!=4^!KQJvW|P`U>8jIctCA7 z$(8HmwbdMQpv(@@&e$O=OjcJ#MIl>TOoUJOQ_?^)v~lk}o`ei@=#%F(tv} zqOQFE-L6r_US<9>+Wd3?m@S{=%+z`gh35wX-U^%My9!dClY-FZ$7=bDHa}LQ>EuW4 zi)4?d&5trkEOXiYlX|2OP~{Z-0io!rZ`EGMQ{P&99SD$n9ak5vlSE&}e*$|Q62kU6 zWLXiV16NCO|Caxh%X9{2N8~2N1lV(j>lU$1qUmi1)d?J5qYJJ(l#~RY-05m#9@;B6 zgz#;*Kbtg!xNBxa3oN(#=2I#odC8qo7cQlz2@@q;c+HH&lyI3yEPMW%8U3Ka-L4Vl zB|p{cMMLvXa_U?tZkkZfcp2jFakZ%?6@q!!yVNGhL-*iNmcGv~Z7QsCxYZ^}Z4H#a zWXLF;a>c1i@NbelRAX8s#6|3kfXDB3tr0CW7h+8}de&_&p*$~Q69zxiPDq4;{ARUa z_sgB)A+8Mb&wc96i(7s^r3rMs-*si13R&=Fm)WUMe!r`BjGZ5Cz+Aj$6m7sbBOfm6 zwhwbLw>7L8gqLwuKbLVAoOr->lb9fzFj4+98IK;h`X%T#S{iju!5f;Zo%{J8l(%a0Kt{kUzBTjCVsKLJ0M5a!3StcbW` zTdEXwLSE~pdRM^7C9VSVk$skDq7NC%q?m&o*Gg$#ua)aSL14n?tukT!-lXQRak{sW zST9MCx0h@Gc~t}DFY=$s|J;9|{1I0qY?$Gl3@<WA zT$ot#*26M4`HgOlcGUE(63SDXTpXbDr{7D($@8a2f+@)Jr?|dG_2xdb}%Kz1!mhuClJeaRms_48-Krh=Ifa9jWUdXVvjI|24T z;;IQ-`sa6seanYN!%hA3ah@3{$k@}nj+wh3;@`%rMBD7wE>u?A-S(jczqT@3!RFPj z&Ix;i_rSWs$|qdUU*YZ-%03Pjq#M;7%~9+v1M^!s@rU1k(ev>jbV7lIaJx2&VAuEL`vD58YS%6Tce=84q7y9bC`2 zS~>61a#)I7BOzRox3fmguNe3&PMV$X@M=c%%uE>D#oZm|S4@gCKe8O;6O99bCVp_4 zCT`tNUzkN;6RW`KCtQOPiyXm%yaQ|2xbnmBzQJ8B63V}D`;6nT@_ARDILTPY4|Gp9 zjuP8Yzx)+ey@0FS{QXeY+cPjRl;wVPGRxLp^0yFFdr80 z-)hIws3uX<>F}}5?{fWG*AX$`K%hTJT{nYG zOP!ta`)Ft&pg;1@B5mwX=;0otj2%8ohITwzBVx85~Oyk$qSHY(S{ zfwyrc^|8HhsJZ@tI$FH30+YJm+Dp}bpG1*IiVSq2Emx5k&J`ZjT83Lp(YmK@#xN?yS)IF{q*2#Aa}E?zhCz9 zhMk9qQNd_LeV9dkn!R+Wi3Rk`pVwYsZH5lB(Wkx8MRvrYc%MeuCR}(tZihF8Exm`e zpz3DP0d;EoGESAbZ|WF$v708=p>Iiw6PTvma^$$}{VSZlrULe+0*LE4B}#m*DOcot;2L9y zy&9sYFKK%ulmxZTbhCm5?tn3?|vVe5{F^uI%xHZwc?9|WyU z!nXehLA|9JqCKX4oY~9k&_@RIq#VvL38fVPMnv2~oL-UrrK_tU+zfl&P@AclY{C6>s`o1CJiMsOd2{l zGbrg-(##GqI?qahdpCF{1%cn4mI->R@NFg$_Ko}?WJ%-8t*(+Fu$(%?m8C?&{G+ak z=2wT*39Cv*OOD^>7nf_!OJGUOPD%rpouqFjaJc%`j=-E5p>)<;pNQyQ}4zwXsy@R?R}`cTH&%#w^zErA-Pliw#0&-!J;jQh{c9#}LaHdooFxGKsTH7vNTw^vc|W zt_k8f4VD2k-$ZFP*+=N5!PpX(QT!bm`2yy#g`#YJXu{@tM6AF(9Ma1d{zJ zhC}e)g_X54AnvehBn&u;+bL=ZPGOYA_e3i(#+YDy&w-dDuE+5F+nOV;)#4XcD95AV zP@Jr2ocms-u1|k2Z?aEx!+G)iFAX;)+6*2S{xPBw11Oe=3atoAKs z)RFs^Gf_<&rlvV(Y66xjY2$L)VYNjDx>$z>xN8ED@UnaCY7JClWjrVlZ( zb>w!#H2r-lR@fjEE1o^?s&LxCbm)OLEI-lp)r@1)3_Sf}Lnaz>+cF4@VbmC`E$BDL zpkG`g4RMOmC374@fj^pDC+3(g;Px=1@SBc9?na{8k$`KGLCgp&2pdKdj@T_y<%rs@ z{Pcn=+AQbBXm&&yqlKMzTc9}IMnAKxF57bl40V` z)`(8hvCP_Ea{dqn2cSk0j1lO?b%QD`FB}o=L=IaxJ+cn#cPaZ_uoPF&0xJidy*~CgP$MvwilFVkXIBhkd#Sikdbq~|| zgFJ%WBNU`?j?g8lSm2o^OMN$R2UG8V%rNm@4={qaLU^R%D6BDe-E z*dCKm|AH;^WKp~2gXTq4tj~0xHX}A+8QeD1-9)^{>dF)+Y|1HaeHrmTSK=F=zy}T8 z*=z#TRP}+WG(Yo_K0(r@g5S{qLPuFT+@q>|(aB<4p%|&xvruuEfQ5ezOJ=k6;C}3F(svK2w zTx?;WgR(`GkjaiPc6O{YTpR_;5)<#df4_d0Pu(*|0=%IV&%p?>bA zOaEC;7xyo6U`Z=C?$CC3SA{LP?qT9l%|?#-&45z8VVD;^a#W>wKWy!OMyzGkD5FW4 z#1~Kl@_Ur$j;hZ)vfH{RijTsg{^zJlX>PNZ4mGiWQksYC1y)8DOX;!)RQ2q@`L^EYCUyu5?Efv9OOw3r}9fC)aznsOO!=-lLE zC_qSVlGjofNi007zRDQe$=xVH)=?SCUQ!7B6R!JcQcl_<63#P}cj(qtV1{y_;q0%a z-lxu?;HJ#IVyFhoUZv&&Mt|tm6_Yf!I<)!=Y^IpgkHMrMu67+Q;%IH&*Z^# zE$+5vuVXSBlMglS@Awb4N3~DJnEj8beHfd#G7zNSErsKH>7%9HM^|K2MD%b+7|t>d zrSvoQm2KIHgOVo|9GN2nQ_1c7`I2(fc20Dd&yykWM|Lz&d72baCK89KKIBe?g zp6INOpNw0hhUJ2!cR?RA1&u)%TVf{hpfYH-%^%M3(0$5jSG z`QSj-R_lJ>>c`>w0=LV~HmI!@Y9w;E+A8xAjFzRhb?E5Jrd$ODJ!(fMT&IFNa|mcT z*nPX0%w$*nPkvNVD4{gLzyL}a;ai5dn;Bw0!ZpQ!1ul)GOD4g8Q}w7Y{i{x@mtAMH*HLxTe7 z#lJ~o<<{zPb{dq&oM(BF_c*;HSy64QyOklbP6T=i(5ka8ex53mB6W3v-_SQ)Tl-&T zrxPkE(nXh3QpD&03un61A1eQ&ZfHKP*9kT8m%Tw|s@k4VnX0y$2u39tWN6|)4tYpt znxKo7GcAaz-#Wl1bbkT&Z6~_h$+%C>gj^_9W#d8_64^-UUc8aYy=)M2jcG^SjqQlE z`q$INrA$invHT!px#O^OvU`jjOfFhy3cAMA_UdX}v?G%oW7FbB*E`Oiz(Y&hCS{4AHG&QV z#@YX3y-NY>4f0HBYn+s*y-mqbnu;@2rm{guMO|mPm)H?WMHKt%pVW@7BS9#Q=VrSn z*=dl9zOk!_UYv3rSBvOE>{)UVJ?^+#L=O*PB_r(+3H3)>IzL@mJPE;}<#pcd&-tRW`@BGPK}`5;`ntIGKt7g4S@D?A=|r6b}4 zgu{Ub=~?0`ibA|74prE*y2xdShu0-yq!2@bBBDQJ+4+%6Ucb7 zZ!P$1%CTlpJl7ooAKv1Q4I*Nn4AncOCPSHwBFzobPhCbW%}>$Xz&;xar=6JjIHK4Z zASVcHu4(Dts&L%pZ)GIf5r-95-& zCrH9{Woes)l#zPF^33P7XVOBK&0F@VyO`Mu!@ty&t36ui{!7Y53*E=$FIwn6hI+?^ zu9Gix-LUno|K=gg0~G%t+YsW#bg_ofM5)`ZbiSw9aU6(?I!4hNaSJSG;@=oY983RqkpqUf>P7 zTOy}chb_zd4Tt8X?kV}<7~XZo3`s}Gt6fF22i>C$@r!PbY~z5sML$ajUypGC)cM+| z)7JUgYNzcQlK0IBsQkBEovwW{VdRxAAEk)!PQtucr;R8O&?nu+o5?d(mm@!&b^my3a*D!`a=`wdqF^o01vYMwYtQ_RXkqzz)OZsQWo8wQb zt729!ce}6fuq?KGqA>tI1b168fU#SZ>&b%RwxUIXOG3GY`jX1kN!jaA^0OPUV_rcagn~3 z$szSdXN_NAihC1j;0aly7+!wDJ?5W?`5e5y!rfjx$2e-$eHN^`r*)$ot59`x$he@_ z+!(mE^cbdtuWu9!PX_)h&Yc!3_A$!;RHwT&dvjGdoz{RXC*(inKJ17(69was55~)2 z9`U4zYM6)g$0ol*&4@EJZYozyz(3@f<6>+To;hv+n|fh{S@5*G*+0;(S>+52f5zQe zRAKzJdK*Y6_somBeR%g@w`biihz_i#j5tX}4TFu+?hM^|WL^l;2wf~pcL}$|68~Mo zMl;F8I*r>%F{IPDVd8}3rB37e*0^tvv0sf)Ojir9tbhFUj_3pvK!%z=2_279}DfR6PN|cK&%1c;*ri`V2%5qYR_Z{I1yf!;RXNPN@r&`)_pb7WHH;6tzkbO}X-6Te=IDyT0!2f265X@}2vQJ&@oq$ZPok}59s zZB*C&;BFqn*qrhoTYJgVWch;=s=}FjCL}}Lykp&#_w;lWs~F$-Pu%^*8U{euQ+EkE z5KS#48U87?kbIj}81yM7K3BoYPu*8LZJ2r;`9&yt*=NX?p_7BroF`pd#ya-QTc&mi zve$X=d*#E7Y~f*d7U=De)8|w!`Yc1CNnCk;WR7`~>-i5l__RP0;ME%<^H_ z_?5eED7P)Id2Vzho{xh5uX}okWb`G!I|n!!@%WyIf5KSryjsy>cafv?fW%Nv=hTfd zykUV6H!TF6=>>X3czT+{vDNY>iXm`7c(NKbf9`OYKQCzydAP91OxEs{!Vw1lcAkbCr|Zx=y#c9 z(w}W47S6`+VP4;bF`bcsg=f&==whHPtTOc;d49)+i&EkJqr2V9Y|tL>dhRp7N2SSo zDvvNC+IzSg~ zPuhjaQ<8sDo|4Q80-j>vokEA)jYS()7;qG`)lV#xb^XciDb0UUr&;zMc1IidRD^Vr zVOT*r$p|~SDdrGPsqiP8mmncJR$>tfau6xLbPz5+g-Qlcp|T#FsXs2VBIZZ;Lc@8N zmVg|^I-UKX1_Q;syP)4OcQ3)vl~d4lKTk63fK%Yt%l(hLpSD#YFL)IdBE8^sRx98I z<~pu{jo7I0;mUd`@h+%-3O6meSfm%Zo@6n^!e*+dc=?q3V?*p?GN6;+DSlu8-IRSW z{;a!cFm{%@lI!=&ROxrlJ=9huAQ=mW*4=Nrep35&@;3jyS%teiR-nDOJC+6pd%-nc{4dvOt%xAVov7tTtEALIrH`DolGRRYW(y%^8bZ(Fr40xf7ijw zdP;+d+{=k94-i>3U`lI87i1k@7+u>hR8WtQYLGpGtATn116VzxV)sRNXNP!;aYy50 z(nt?Ob(B$fT{Y#ZZ+blNlCxb^*z`e}+478^Spmg3JZ-+%_(gd~;xF2t zw0G3N(tvlQ|6=zJ@rxP_1*=Mvl!aM7mSVHk@RSU;GZTaGa}+tRqK6 zPB6&4vMtiQye%{$1_4rGceH1^4UH(t;lVt|wf3jDg^5Um!n|KpSDMEPuq(}n;{J2% z!f&P*&e#ed93%mm>J2gIRzxy=l{WnB8!mDfjZaoKt&wvlt^aLdZv5 zW=JT`zj2`i`)hgDIPUos^*E+irnryclV5ayuw#zmCm+sL>z{}4W$YFut>t{@K>b+_ z=n5@kp~O=66N+0I738XJfiZ4UbTY0Q5pT}GPsS}d={_8`#H01bL;H_pLHBFoqEq-9 zH6S&nrsRtNpG!Wpee#9;McXG|{Ho3gel1f(xW27Yg!v^{)#dtWu%@o(fpFQTo9lV@ zi6cyA$~GO;fIznC(SMxsZx8v;ewPdre!L+Ha`uc*gt@tM^Tf}Z7bTxk!Z0uT=~s0` zu((N|>aZZovrdTLu#NtOI%YD=s=ui`l;by*huWW4y|1Vrj8#u#>5Hv92V-5Ou_$*! zIjtcKi}D)-ZCF-bXePs=q}H_GR8s3kRzTIUfRbAGumbcLE2%XNa&tWWO>B+M3$5gs zvdxcMv|nZgL>mi;_6Am?fF$F zj^Yr_N*oQ9ynlsOtvzkhf09sK1O?td*r&bKN*n$6T>WT!L-HYRPvk$yC+RNabdJ!Z zt)$YNww^O$h6YgT#f3F z6B1c}@{Ql7t-Q)}jaa4;NhnU!%BPh59h&lMZ{vCRse|V#@#24>X?;Py`tQ)B5552M zUx-;>jc@!vi0O~KL-b`+IA!q;+4)&ny!{eNgA)ckc~7*J#run6%lY92>_9SGa)A|4 z7BA(3TCmozWX(k#?1&^Z`(kqX%0`khLe<-i4 z{zs5kMuIU;Msm4zo%n~{Aq`n(Ii#d49g?yG^k%%50z)+ z9KyM}h0fY!<(iy-YA>Z+QxXGE{Gx9moqy5=@FED^N;WmRT%G>s+(T@20LpPoGJCpY*_o+XOR`ZPxjnnh!I=@IcN;|Q#s5KRzT^d z8~#)Yg%Vakx~J^=Y$*gEId1+_B^7YwpcMOzKUGp;2CGi7lk!dv{b?IKbjI{pinegEDJ6pDPCvprFx{-bM;V+ z;Q&m#kGEk^#yw_^r;9kwqzZV64Hv25gGZ@zd)S~lXMgeUQP^>Vr%ot^@`t8mi5eHR z>t0rdny|6hlNd_jQZc>+lKFQi;Ei=9o_lN*NSPG83ZyZt;Dv9YxILAk7bhxRvFAnQ zial9DP`YN^Mdg$e7)rn?%`sT&&vM~SRPjDfThs54BQGj{9LZ{Gf4u#o<&Sr=V(E|O z0!GtZbkXjMNR)gL|4%uaXD_N`+3H{_Pjf1-XeyMnL6MXna@m6XQ0hkdA=eH0VGtk{ zPTYifNDd7c!R&_O%G3>og`?smladCHqm}`VvI2jCagiDMm(+dZ=)bf#1ypZ1pzvN> zJc$3x9uF=l{exJbvt@LRMbp2O&YIilPB9t>lWg}_K>Kuc1(J;a!CeQO3vjggT8)&{ zb0^@e)UXuB+ky&f5zX30T`%)?k6Umot*;{iedXTaSucv2gi>F|Ea-8kCr!*^a8egt zb8zop>Y9W5St&)hyY1~tFjTW>o))-)-MAeVmU?=dv;Iw$<>6(X_D%+{Ec0fWXOWo4@W?a_PnqVurJi>M zhXzbz4!ERj(dAO0xs*I)E6bqdA##8d}1t|(84_}nOD0%oIwpo5;Y)>B2N5-+s zJ$Hsn9`0D~c}aZ0nnlUO%^KiO3jEXe?(if{dsy;_XR7!{6Ia>7Fx-l^UQ*dYc+~Tl zIL2yFLhcAQR32D6h$@wj((iB5r>`)pR1K_`3G1(5ESXNM9fW11K;~+Uh4gei($gu$ z*1?$Bc1(Jv?J~0K+|{?(c_??qFjekq!zG=&NWx(v`C|qNw$zOi!KTA?AdCHUSoTycBO5JRClZMDFkd^e9E1}dk z(QfiPMlhcCJSdiNWI1Ojs{(@#dFzNWRzNX$(}6l894}R=3YqIfhFHsrDG0xyG_Nxs zZ{iKQuXx*<P3&6JXu#MrXs6g;wj3Hnon^maU6n0G8L;02kNl zEKV23maIp2S+|8-U&dH05d%4#e1<6_T|`?1z=2y_odb9}i!&hz*=P$R%JGI`i#2JL zayV|O5OQQIW5|W(Ih=WnqCJO$L+!~|JbB_yhCve>O5rSEYFuQ%+0k>`7~^5d$DV>D z&D;8J7kR+uuiR-Ogqcj=7|%lA*D>w6IxL^38J|}IeCDtB3`_{+1N+zGY@c%pXe2EJ zn`wkLoAIgwzb9snpPOx68F_$7MJ~6;P(5o8D#8W{V7~b2GaW+Q|WyU zDZJJ~03HI9*FQ2SPvN}9Bp}T* zJf(Sg`=j7c()^cx&2M1@wB|qO?bvxa&0BXpGUArz8APYe%$X*Xb-b~M47`>1dar^d zL-6LFdu11}CW~{c;GOkzdl()l`_wa8#5=TC>G3F5LjB`Wk2hw%?`Yw$%#qD1P&a4> zg}tR}LuwuS3S4C_{*SO=3W2f7zUwh&Y7weq0&l2-^WU*KY) zN5AqkGaU<1(oK=^Nl?R_mm+Rw)k)mjn7E}%TsaEXcFfCWp(jbrYj1*vTRn}%O^gU- z^Pge>Jr3Li7q@ykI2pE;(0`4g(_kP`XfUuN>k;9@pc=S)zI~f#qD_)O5M=$-lG~@N zTl-?~e~ZbAy&4SIjx3nB9cTVW7*scAFI?E}8DgsvV927b^$jOusG_c$nRTKvtLd?P zvLMck7Hn!1G;8ORGn}{i-H>MO^&-$QY1W=0f6=TxBLY_K^fVM~)((|BJ@p;uaUB0R zc3xgGm8hK{|8%_Q2o&tX3CfXE)*B*6PFY_|HkE`M;Xi?|B_)J?Eh)?7sRA5{k%9bL z(ma0(;_q{J?DRkQCXhb3Yiau^Mt(OrSDw|UbN_qf_A71VZjiHBoEFm;l+|P-5pkz_ z;O5D~KFwh7_c(PK0r7Rc>TR3RQgYJ62>DBDwsg)FpJ|})CgJn_p7Z(P2tRb?gwLMx zjE39Bc%$ImNqrJ4798}nG{ntXcxn+{)0%#hgz~997X{AF^1ki7Pgjh9+(+hTf;j9M zDatfh((4Kvm(8mV8&@Sp!kdRZ-5gj=zPN*NwS|9V&G8_kykNjwpek|NpYXV#<&WeVN6P`aE z)grB#NOWYt5237^w=Kja)yOd-#KLk$rRY3kB1tozc!@GM#y2_=hBi})nQdtwc%hCNw5O<_Jm{*OyF z=w2;2NJ z|AhGsU9HlVN;vQ8w=&Idj_~djkK3hIH-D$y5?t?5hK7NBuXvsT)bc_{3`WTHgAiA%kPro?>RA z=U}+U$F4GKd)t}IqhLXQUmG)>z}E5&iOS`hlM%%x9q~4^vB|B2O6(r*{Z=qi;mAF+}lOhg!$tUirXa$FP2bnsnn3m$*ZHT9W$#q{mRUir}eFZBdrN5<=zJb9> z>2Fv{|In`V*SOMGSW0I^Eu}LEpwd4PM;Lw7Hy#Mz;O!(%F(@hh2)v!ZYL^DQEH>5R#N;YP*YVdA`H#Zc0(JquVFAVylncmD$bZW%#FzA!Bydy%rmO%MJ0WokbqRy){_idtTC)oojWW5*aY<}P->=DhkC8N-9#-`AV&f-xw@Jm*T?_MEZuS_$njp2sD0f3 zJVbSPHpe^8$tZ`I%tB=%StffC^(qrc7+X}nw6!+?7z18Lf#BJ{xZIRAax~gpyTdmkt$8o}4g7Dq5q1X$@DjCfjH^uz7UK#L3!8ouCP2 zhEosf=4&s&iO%LaHG7%+s;d?Q8S_( z3)JOvudq6#gqM}z8%S_6P~na4MoGFmTd$!%AC1F&QlHsE6X4@#&c}FD=-0Z8!Xq9K z-_pn1PGDVs#{}va`(~oIe9xe=PayWoeZ9>?v1y?CB?#MmJ{k(^dTYYCYrP3DFttw& zn`A-buGNTV8Ihd+7&Bu^* zvCZ8BJ_nlBc;`VWc-N zg)r>N$s&AKch%?{dpKrBRIMoaqa@Fezo2YQ%#XdFlPsQ=|GXgOSdIU9ixyR_Qsvf% zn-s~y`>5bvZxMb`NI*g+?h?7^Df!Pld^t3JUUQV8{Ce*dTz98)ZME#_8}wORrB*4z z#j8rs%H|;u??<0+UI*^6-d@gKQhI9fHuS9N-U0dFF$k7PEtSr`^1P0Gd|W1Ili`7J z-fx`87K9h+6a-!7H8^0-oDDC|#+<+$Shy7@v`c<}Q4Ek|$$RF=U*s#Z{ujP7q595huyKZW zOMXch7K^W(MP_Z^a45RDuvSI?nO?lTd8sC^nnly*G705r8zu#me2jVY4&Qs8b*|Kv zojR)zHx&D|6q3-#8Z4pz2Ks|c=&y9Dguaa)jbU04E1wf02qpBtmgbTVoqwYxQq7^m zAzNT&ysxXu=hvIu_DZ@8>8<60!q^xl0dl2$z71r#!5ja`Mk8SV{@yjApwXlhbsgg+ zmlyX{e@Bj(*`I3S|8x5_D1`36w~ns3cv!r!u!Xz6PYmqr<6Kq0%wXGosD$d z>qPIS<40${GvbZruyVe)HME-Nz4r=I{HPBtV_iorWKQpyNfo-)xt_QsCTR1>PkU*e0TjtheQxt|@SGzW2I+tjZWS((})@ z>Of^}Um~1xd#k}1U$t1LEc6E)rCyK_uHIs$-r1IVDzITOmGj06X^o06bOXM=+U@`4xExcUb(eaYMr1My$@`iWh^ z?Ba|*U5xEP?99V4YO*I;RT_PUCx&6AA_r@pQ|ToHbv5b5m`%pV&kWHAtQXDkeDO=z zHE3(-7a9d{YsfjI1-`a~BZ9Rv6sC_CoyF&vm10zcC7Lufaitc7kpUMw~FCX$u=#`OEGu(F`jy(>K(3(1z0QA#Z_L z!*I}v{d-WcYAdFKl@f(#pzL997x4juQ!Uzmc_vowzbHXL>oZHTj*4d0dcLZrKOU$th#wXpY~~e zC7cJoc1+U;8u@Z6aA3jDLm#nAY;6>^4X(Y6q0tOy;41HE@hpR4b3-ayvy$M-6>XpL zwlKtN;cC~_tgTHWRvX84+6wwOxMs%g_QENFG+9OxYCEXzGhV#w?-0W_4q;+;Uk$Y> zv5ysO+JsRbzY~dr2}vWOVB>Q)Tx0wJxzFLo&_#xZt!x5uZ;P(x?=@uj>jX4gsJi?W z%n~iFp>~LVrXp*H2$|6VKhDgk#8d_c#J!5#X@jV79JWHunPJuI2)*ukZ)?$tK~aQ! zvoS{K1aBV^gq|mQgu$d8B8I8PfHbXX>)UxQ5gB>ji{7WjC_BXvBU@J;^2#`1^fY(Z zP#MJ?s13bKbQ7aS#_-`M?Q&br#|pw2!(18%J!)a5?qPO&#UEU0l z76zU6j)KthM0OZV+BOQpvB!%E1V zyRS{_Vy=qU?rg4&r)0JR13Z3tF{P{dM7&CnKf&tKtaasI!<(5O#jB3;2`eSa6t+HK zl#Q*B`M!=@4x|SQ8^qUgGQy-0m60~FHPm@{YpC;Z0EM!sipuA!vE1;P1_?O;ZVh)GO zL6yP<)}hTrR!6R{qv>lXxdaNC+|GIjttvacH(N1r^ zNV8W*8zW0-zYC`YTs-1O(Kp*(K{h6Ow|8PNc9zm*_fYIwd%SgR*d)w^b!{VH`W`&q zFxXzjlIX-9oc{z#Wbv46uaIvZR2~|N9=Xq(Eqp=f*nkK3d51U|@euP`d#QT^=EX%v zE}Vhb+HCG(`2ce=xnAvQ4zp_E^n)Vw3kPt)B3@!*$i8T-fr3N0*SLnkNi(#izmY=& zU2#pK>WZw6zbjS-SD>zl6{st+3aTs8w*H~uI@A@h4s}Idhq@vMP*?o!h}S264<<5s3^P zI~LA|WqJaqxxafm({$KOPg2|eOQGPHw>Rss*1lKOBzWPNx4n}w4vDcADwmk-`YdW+ zc6Mu8N$)k+IN_aWi2h72inG1(Iwd)^?9B?~)N=VFjYl~qC&^r^BU4OerK&kNy*DPZ z<`gHX9cnoMuiNUxZvyk8Y8c}rhV{uFaw2PSPGl_(AZsl=<9$RdVJvAV>U9=(^&VkR z3Rp|v*jew@PKF(#CF}lD&W7yz>N)RAqMQ*VHV>ZnE*EbwD6uJrTYvISax&}?Hr6ZY zoQ*Vwajn#Wb+^e5xytQ8pYxdC;-c8UNoaf^3woOG;X0rro`g7S=dZpmjX5Qufz=xw z9~hA|G7h4K_W9J|OjdjTvB}y|$y791icV&erJBiV=O5Q%wDTX8tmaBltSb4qd@re(SZcj zJd9B$lUOGMOij|C%qo&=UU@PAKZ+-l&?T0qlGOIBQhh7+xl);~O&Me;h;AZK!%Y2j zI^gX~-aLo#>T-uKTfAPNBLHZlflGfG)&MUS#OE2ft;$o zp60X3YT9sbRo_t~LZo2CTRh0uG#Y>SSK`_ws;4k#OHCoeVVldMec4Q?7OKsWDe!f) zuaSu4q~zi-e@H}I(UL>`O^%Vc{)vPWjMTZcZPlqCM>&0+L^pf&d=t4n=JbsUM$Z$2 z!eCNPfXNl2SE~v5@jU7E+E`z)n865$ut|7@bLgX8?e0LDdqsUxz*Er62k%pq~$*r z2_spZmU&ObD|uug*_LDScLdm!;Oi?k2Fpt)7Q$Ajn3w3gDd3 zoNKSZ&8*3WxMbHu6QI2M9~$a!L+O>X!ZW|V8{o@aeAGQQHK_N=lzK`Sc11C%>O+e) z>Au%Q1A8?qO`MS`J8cfEeB=5wBUOE8LElYuVd#|2?GOgDZia877|Jlw$(zEajssi3 z{tRDxF_9G!k%Cm267DRDSpn6d+<8GNeY=om$?f75PJ zfyw4+hSE)Fmx8A%*i3wm_L=U#Yq9KK&Ne@<0< zWxv|1sL7~#p3JC{v!+o~?USL*YM<;^DIFJgN2&@xjEf3CX(6cJGJZ7E+Ry?Aob;MV z(aPGQ;8u=QSGLZs1XWJ1IMveE-XWT^+N2wL60{A2N@bYMYr@`K-zPS7imUX}{Izy; zD{X*v#<%e`w$&+X<6C2nstGX#m_WYXUd__q2vnIrxou8i`U@N?OVo|CE_y&#``h`( z*;wh;+-&EQ@4!aGo&oNfu)CEn1w_6()>e~@ytpPA87_44SqDoj`5xr*J;vmteb8{C zK}Vm<$rP>ZTQ>xinaID}@Qz({Yr^`Lgi`E98fv@Yqt3o-4DlU9r)9`DHPtfY8&*IW zZuzjg;|%J7ZV@=giqYQI9P1Qs>7O;#6jXY$yf(xuI2&4nZ~(1A zI(PRi6KS=y%aWPsJ@*C-DxEGyqWPyI^X45lfQzs47g=B`?5?z$D` z_xH7RJcH86+%J(d=a3StwD00t%CUG0$gwzp9P6b4z7^sUV@+n8myc$vT3fptne7t9 z4fOR6#?BM9LJ^GuUt=dD8)6|V<;&$!tKb6PlOmT9BzY+B+mS&@o?M6@jBXTy9nOvV z1ywe4Yb!TmwL^rolEz#}T0@sgqgXeQSgr(*5B2R8KE{OtiL15>BraA!fn<|>8Gcc1 zJms|wUxr`8ipifS@n2e-h4g>b_8Y%!gs+`>FO{h+GQ$ONBYkxQXF}Ev0;IwnBYjP5 zXj;4P+C|7uW|jT(M7+KIwo$%8XtVCKJ zrtfBTr~~7MOU`&-7qcdwT#{cn)MPbvAMRO4_2E2Ls_odF)6K8rx1;RDk}hQ=Lg-Sm zV=4+vBhB=%geP;tE=AbkA88y&QspEVZ5AX_lQd0jU>q3fYlV1hzCRsgR;k03Zhfur zZ(UpEBsSq?g)u87G@yA(N{pQ1D|1A=iv{YFg-!N~)}Xn8H|0~-6#4l=f*$j&3w+;z zu0_5F#2cJeU<;Q%Uf9oz{7ZH74K!mPZ(CbM>;pI!M$F3)=j?UzCHmUFm}=*I5Is*s zq}lwAFm0bN#5!4>kicTK;x)#PqTl)1zEb$CghmMJn)LlbgJ5Q9Y0%~dUoXP60{;Lu z@3p>;2%%1&Ds*AQa&n~l24la=RGOS zM*K&A79tDpqXPC>2q9ChMfrgoYDn*zcpwC1cn0|utPSyIu=^0JqVM%#rBy9Pzaf%osn?!0D00-`v ztM2nD&_MZ12J_Mzt~eDHxX%Z#d`OsA4aSR|$UJgtb=b1J-*BjPA%(ukNQN`ZeAOW7 z0bj5DZ~`p5asdhx=1qj02i-{(bxVEy4N;=oM~zlj{uE0nPcU#PR6dms<}bv%1n6M? z9l>PiVE%kqwaC}+3eHTUltnR|r*#tF2C}U2+CNgpn2ME4e7#M_YHW$TRL59dG3X)R zB*XC~0v0X97ge{grWGd4ZTrxIUt1ZU!=PojxLGi>TD-Xvdz-vXXUj6*ombY@F@Qoe zgazqFHOI%uck{O1odo^}xZ|o%efbF|gN^cmRBs1$t#Gx^>ckovQyExh@> z@0j?LH5jdCUH9~xhRUYX0P{a#{Mn1XVM5f?fq-}}85-FsB@EA^=z3}w0^h!SOJuTY znQ!B9^z?eN*IG9{)vBjX!NWaM7MEYMA z>9_0!7U_T4NzdsvcaYf1Fp2b6iu3^nC(>UL>16n<``j#X+FokW|BBQ1h-w+ym}HfR z4E6Ou3M(MmSU?*%4eSLL*@z6AMi#W|bFJvgFo||Yi*`R&K(w)dz8A>afSAC3$+;%zQl#!3Y^2>arS&_C)l+Nd-U3OebMoVY;E7% zBl*VEgHPY}wM>haU>?xdd5SrwpZJ_1t{(!wi)t`;ZkJ zc;9!kc`!p|R=#Hi*sZ4+`{C>d{`ttM49cmP_his%eq*;Rv(EV-Wtn4lGRo<6qpF3J1urEl+zzNHqKa%asT-|KqC-UmTnpYpYuMiO&n1VVF_s*48$u73Q0kSWGLh|B|n#@gM0K zR_1n7hTH@=FWzRNkuz3gDrc-<1?Y@;6V+DVT1*Ho`NmgYY-5GeAP4e37ZrhhMN-J^mkW-vJ&)wLR|4hB^r~g_cSJ2@u%b>?Rv(Kw2OP2_2+u8W2#5 zz|QOjX^NnZyNQ#ye=Hy12{0%9vPjK>|i~5P}Q%KAA z7bQ#aDVh_raDnZJvw?8wj3^ykIm%`MuK3q;Fnh~BfT0Rh!J-GLLX93{3%q-Ox+hIS z%>;Zpg|HLkBM>`~h>BtmSYQrN^>5PaqebJ46b4G}D?=Xf@uEx}GPnf1+`~V$p^(h0 z%3yGI#(U^#nuAs%vefMG4tv`tu4r3G~}JDDlCXn+7D?1bRM&r@0pqIcB$`h}>J;ZhmQOLEhfi`wdF7;=O9@^jQV&keA4KZ|k$bCqKk7EKVPaj0vSAx3rN z8DbQ=5!P4cbX0w19)hO6B3|E7OR})wuw8^*y`Znm?8tqk?j}O4S@zlcG6lWl}Us!L6f)({MNv9*L&&O644{5l$cn`sb(#H8t!Jbl9Y7tj#J-R87d;)M zeW<U~CZnJ19QGydXBxvsp(0+=GAVLEH^u(`O3;W4kxXbDJQo zMRZxhUY*7h_G)y4CG4bCoC(Rp~1=+_r(@-nRBJrKbCvl$Pq2O!~ z&oO{UP^#qAoCO_?2m_^j1FQ(7>5*d{q#;46Tc3InXyPB)&a+2yBZ^D}_GQkQsFjK! zxXDxPJ$LA!4f#mjzC_*dDa1-@5Z&^kJ6Ra-St4yjeK3dI(1|xSP4b+SCv zNlgKJ&~4^D50H|?Kni%g6HWmg@k&YE%7k9nBZ#OMs5`Sq5MM`>L2C7VrhvendqM~V zM(z}nn(XN$eQd;G&piPS^CX0$dXljvmc*ravL)0^3m@t?Th>y^G~ETyf520PY|Ta= zj}Z2exg9+N#N9BHrw^vYb=G{6l^UXHgPJv<)X<4cy994Wne*778!h(E5D$|ECrb{5 z1Ulv08&*=|fZmhhqS}jnJJT9{63N>h(OQJ5`_jgu`T$Wk3dIWxap@WvZ3zPv9QH^D z1V1AOJd4qt`6C^`wD!h5R5d}^e9QO-jWRF1ur1>-7_epB!T(aaC(a^PchudwBkk9!9DHTdEc2Jz8r(tTlgE?{I?XG<-3^ zWAhA@p4IvxtanyxHtD_U8Snx6X@N<0&#Thg2u&@Rg0~b1Z;(@2o@vro#@pwqGpV;@ z39Bhv(!l^~k&4zR;Ta+X!-~o65eTbq#-;PxX$HE%aO231Tu*N)N8heiHsjK1>6G&p zOIR(r7y&ZM1uEq!=mw))z$wqxx2u#3bd;w`)~V7h2#`@;rc%BW-C&fLamqXO?JDJE zh;mz!UOan%bQl3L%1@}2Uqv?<5aZQ=MBLZXVS&bS2@f!7ga7SOGZUMk*jrs=K^AU1tkSD9d zGqe>~nIA-M4JGQgqy>miHUiO;EAbB)@#bk@ygI#U?#KwTc!=kMv|PJ|D%2VUwL*<3 z@Cx-Nghz*ss5@x`%VL1cPll%r^T1oi4kAc4Ztu_FO2YC@27h+)A|l0>5?^6bzhv;G#0?pIDZweJ zQ%Cwo;DyPSmR;1@MC&dfrkXVvZ_T?P-r~FP=>!mDpYMEuY$)+`AS!2Ua*{WBeit!7 zEyqYLOQn{#sc|boPt5WH2;9=$v|WH4TSb5}*~|ecQ=K{JT7tEC^7UAzC76*EOV^|B znfsjm*L=wWjfSdx00}01YC(R99_XO^ zfMb3inD+86?&bejFYs2-os&J|TATF2XW_UDHa!l3M9SdH^*sob+XVUwlMPns&kCGTDJ$Z%L#UH~Xr5Kw{>hpSa zX$bG+)C}I8{CTE%1AoUVPo*H8MzopPKTys70lE>kr1}G>j4jxILeMNlevefxbmR4R z8ZfN>eo=LU{WtJD60Ebjd>M~j5!d77l8>@QdOxj zyM4gzhNMvKrfXpt?ZjNq&r&|>kS$5sGPwk`Qo9NH#5>=U7z+K-{hr&TG6S@j-;IYT zCT_@AY6V`;6BjTJ9&{tDqrBWrb(B{TG^^~qhz$D=qn{jw_cg+4 zf09^j@RJLwpL~tTF+ceNk^52aCr5z?<|isOHuQlMZ0JK$sE(p*p^oD3e-m&awae68 zli7q-S5r_cwTaj+lQdfDNeBgJuHrBOXEhZ}-QX(f!&G{{sH=Ru%=3y=fGBFNG8(l~ zwk!Zfb{=jW9}3UJs5HO}1;l!@XNwNn;7V%E8?nV}Fb`5o4B%r-_f0FNH}KySBdtX@w3^^*gQA;sLA$zA8fZHAHN%}hRWoj~;1 z$n^%M_d%v%Fs zg+Sz0!x~#+N%;=WX>g6r}GFUrd~fT%3!jovn@&)?kV=`QU>Tu^_GL3rBakF35Q zj%}b@eEP^ni)RfK+8{8E0xZ}`$@PsAbVQf~9oX;yd|*)TKJQBZLR48IKGTCI;xp(5 z1cIHMozWuS@+&ClR6f*ge@C~OnSR!^DmJugd2{D`u=~wk`1EfIp&kT-URa_-y{PeE zY>6ea_If5rsG0PC&NEo*V$~d&DzpuPFi{7(i^|*|QI>-71XY;<;(f4^4?Jrp+(|1n zaNeYCgQnsJSnty^_hi&Dt5-~<4Z(Va?V03r7TF5<;=>l5BrgJ{Y7!S&(Rg(;($nRC zP01JMv%CC3(zqKmTr3cOByg5hV^f@HlRXZY_n4>F5^)@E zkY0yjp7IvLVeGz+*?ph03sdf|{GQZS+7dH`CtmpG;FF%t(#wd5HVOF_wNiUo0E|yU zLg3jXl&AJHk*8eDpekE&VXJw6K9Y zCi`9xs;D79;ky?L^nCCK-eOEK{Qo)T>1`30+t9v+DPXWBn9aWzgldVw{-4?OvZpw9 z3+%A5Hfw{=z4S*%KsruX-*@k0Wh>d#f812ej4z z|7-q+?qbQ5*Wp0+3mSE_En(7U)$=yKEm8c2$0L1!&}gMuc$f5l3-%pOk!5ds;JZ|5 z-SVZ&Mwo99%rvQqU5g-AtZrbZxko)ke+nMhr!P_u!wIWAzhr}HH$5GVfOzG358N?S zo&i{`JZIC6Um_z;dU|wtp0?u3^M1rMI~;BHa7J&$I)snXhUCY@I!s6gP*Y_mTY{t>DjZGih3?qF61{>lDB%=BSCD%iSw}n8hpRADi~~KDOlNyu%2Zg|w6F2~~CW%h#~D z+u)*0JfaJ<@1^Dr&CgkgNe-SnBy@x24thjg?CjuimVxdvcTRJl@W^rm+?mB$vV+Ij zBi{z%Of8WQSE&^mspVs8vesQ_FJdaxSN)x&i$Ia_**Go&?dUX52zVjq#R`sf`Qr z#xgDtV2f|eo0fLx1Zd7P(!3ti^yz3?fEHhWW1`f<;(pOIfINX8@DYD>AParwz!p*$ zL;DaH%uKs!gU(Ec&dBWq%L~Bw(FQG}Npn$-m0m(-_B zu*)rScL_JJ5#cig!A1n@TW?FzTB9Z^9}qABZ9w=*L!dkFMKK5rQD6fCy2YcWNw(&X zbs!IG2;-3fIfbw{qO`v<3S%0{rJ)o)Z6tS*G7S{kppG;FVD`sL8|bdKmKP6$vj-OL z;%;Zq3AAHgXu61~@`chkJqzkW$rQuCrm6gdC{|=^3#AxSK(Z%F&W}YC-e9jV)n~`L zs%fumfwY+ZVhg0j+2N0M?SsV`ygkE`UUdU`xtTmThOMIboGVD&O_H0-11#?Nz^gOh z7yFQ9x0SS$6>tfD$db084_VTCRqPbm4diG`xtn-HJbyh#!p7nM<-_|`nfiyHVT%eL zt%Q$c(hD45xu%L8Yk>vDHC3?8;Ga^ZVgcZ8Qqu6v1hTEQyhb`qS!0quPHb&t{(20* z)<}QRcwRH&zdqUKKN&5j3euYzQDU1d4CTTB^l3HrboXMUY$8@rlHdg z7+{RBVNO9K}L(E3oAWu)M{##KGRmeYQgjg^Rc_m#sj{JqTCi##>kBT!uc>MTO>3F} zC#t!s;B><^Ra+?s+;Bl=N=ACylGAB&3-U!5d947)as$jD&35KUsV=119OwcWJ4CbU zd)6rq)ofIz`~-Y5z>Iokkh-SNN!?{hRHf{Nr92W=O7NplDVg)U-(Aj&l_?@i1~{UK z&}mT;De57Q4;#a_=UX{RN2{DlVy$vtX`VrD8l;IgXpLHs(qAk;W|31%o459VVwIm4 zqn2P$VoQrkB5!5MH%Yf@?K~6E&xZ(0$O8`9W`-2ul#8S-VUYGYICZQH0~<4r<`WiRbfy0Z3!ul4gy7J5K?(UmLM$#%Q5~vz2qMS z;TP(8(-C+M7XgD?7s#=sXJ2_?VwiLuH0QjzN+$WOuY8XbovV)mma9s#2yk+TPeHz574l@&|3+(zWN?hSfN-8Crc4D7X%ElBZ}R^8w@WdGr+jVvyJ zU)CwQFNq%y--P_nKsgTu?X_IOlw49WNFFAkj*Y5QAraetP~9L=9Gy!JZc!?c+6Hl= z2$YnJkz@TAhsuu&VpT3V6{&QUW*gaOZ=ju_aV{>(rEA3$vfFZ;ve32&xl_Qw8#PX^qy*ClX4b+|L5Qd?In8P+lzFoy#T?LOGdPB=$qVyi3Xow3H5V7P3i~T7?Mf421E=-uf6BEhV*Bdq` zeVd(ZNNUE(ZKX&Jf~vPKDOw{pA-|84=ZL!_h_JU|YXgx#AD@*(_K%m}W$iH7eMKj= z@J@}fauRuDg51miuXXzK1UW@=nDp0FY}b>_nJD)W6MB+|C(51b>N@s1`IH#ZlYDud zoEx^Q$&+NeG%;LP-8aZN#;zo!DzbkAywmH*WO*;`X!aDjhwiRH`NbjO;%_lkZY>D6 zk<@8&UgR2$jcihL*gH1V1>Z$S+ zvbYqKkI=crlgN{$a_@+z0G@2PZUWe7W?)9iMg(|7W#-Uq(chC-dFZ%cd8sEv*Nlkq zDASDMQm*OAE0L%h79XLIt9r8KZl{%$b2dbd3{jMpIeCWZT>-X_IoF`kam+fZyxb&bU(K4Y|BQiHFB1yUqlcTwYe)3)%*GsdgSkViO^uN3(#-cP6 z(8GgM=E#DC^kB?qovK@^wuG7co;LJUq|{Cy?Hbm%3K3*|?oyY-^5 zRdmc2tx@wBf5sv?L5$ji@1YFW;k_QQ(xckVU~*&01~Nc<^2`R(jKnH(vyfbXh|*lp zgWRRaJA^%?w^tq!+G7&AB)68x3toAO@F7X@!SL}h?pT-o#rKg}ET4l3`QU!X=%!>^ zwQNUrspRV0L+-1VdlQQJ)YHpVE$Rjt& z{mr@(mq1oU;s*jSFDJ7BxqgW}TTJOqK3XF8mQuranABVIJfS=9u<6!T&B%ctdh}>r zr7eJh5|%H6i7x8a=y@t2as-+%Vo2}h@;gz(G)@BS&b=r%AOlv&6NS-a+X^tqSPjN7 z*%C)$Zl_Uh=c8;kgBxKOoR6SS6QjP2JgShGM>;trhi{R;6{~w2gQJQQ#^7vnI^b6M zwlEQL?pFDrMD&vI2-&DLY7w$&wfuv0zjlX@HSCSQnh6$gHgp8|H$1oACf_YQNpfzN zy-|lXDqO|tJmTnjm_i)WZtA0K;u_gzj4cBxHkKYC#CD;`-RJ-@p^f2)b|(;Wdz3Sui8yLucmVXM2hACxxpuZ4&}=! za=!R|2)`cA@5TE0_4m3%o-amr?Gubyb;kSQMtPf*r8QF?2a{K8<<%Ad=0ncpIoB;C zmySetAj8(m@s_G<`|vTRYagQmWzJCNK6NYbmyIQ8_OEIkIRp>28#c=?MwMx-1^i&z zFGE_88@9+TrCHidy>8#x0+m|h)J{)|`9alIdA(3Ze%&f(MdI6hIG%VH%;9VFeGDR( z?~-#Z0E~v?g1cq6xRYxI$i05I++ITDjB)D=i2yoE#ge((HS*kf8F_Sqei)^s3Ex5K3V9~yubp2!+YIdg~(x5oG#^1;Zn8nWs?**oPsq%X8) zYKK9j%`SPq1%SDZcJ7k>;?Gj7(3GR_np3c>eeI%gqHHC|!aiXi5B5 zZXum+$Lio*=%=g%=(rV;`40M#0TMnGmu9D|bEcxa^SL*V?&rvvSv?#BoT@2t`UEYYxF4 z(G6>fM!o+|y0aVXDccWxidc&>RPdN?`gmkY>=!*U1l(Y`E4q5xYP zqByCG7S$ zd{!1Ledbf17t)JNFFty?iC&h`%gyw1E4|!CFKg*#1HIfyFPq4~qwsnS1VnnR9M{-3OAK_g*xbgl^(u zm0y`yZytlS;@C$h@q_g87`+^#7eBo`MK4d&%d_-ygkFx(%M0}K61}`aFR#(d8}#xf zy_}$zQzZXIc}T;%=AsC7^1^J@3(ma1^SD9Mq$YyTFW0m zFX!n%@hQD@rGKW=OE#4$i(Y2Y((?>@X+{fV61{Aq%db1>SqL&z&pjy$3NH2fVw(gYsuJkg8w#}xOll1Z?y)22P-qM<0 z2GC1CxM-h|pvqaz6tjvcWffD%YNm|UOcAS@5>_(>tYX3gB*?dl3B8I5yow3CipjZ( z$+()yw+duiLOaL@?p85@Rxx2#F+o-{AyzQ~Rx{>TF~(O_QJz;Ze$m%0m<`$HEVJPm zYDi|o6lzFjLsk%AHe~xY)P_r{SlON#krf=65w``6c!d69MoghrV@4brG~x~PR~Krf zRC-}H987;P8?rSQv*F9MjoPq^&38Yd7JiprqS<7&8ND-%UIx+&GwKrhiy3tn{l$#R zrf1BkztA>jR2DeQsFgvZzCwR7n??m}T9pgK#;Ixfqshq)-5QchC*{Yb>!?$pqXgvA zO+r&~d>&m@TO+EXVJ0{4aG$oM;2&}mcrV?lw_zD@u{Tr_9?H!m>8IpsX^|;~8v_(T zq!0=sEE6uhEvGf6VG5N+c)#2daR|Bp9oa!PzXQwjO+lI)$Yp3Kx>IYQzu4i1DgXW9 zhPCg?kBX7^BcgoBo&CPNQrfRI)6V;lBNJLRCIdc@XIKD(kGmZ@?vu#z59ICQvw3{* zy+4ny+7VGwGFT}}ypNJ&Gfwr(oqAdLw0`JE@+9efeaA&{?`jS77aN*^9BF==tv%`S zF_`aj4TAJfRf;-ly{QMU^fW-(5rpp1ij8xK_q4oQ`VCPy_#4b|f6C*hH-17llFq~F zjhD_qhf)0l{=zH+pIpAxAqjc>h~Sd1l?K*a2sPL;W?Q5G)@aaQ0RdEfGzV^gjl8pR zmXvIydzG|Wa9Tf|l|PrV5G^KBkN#Yw9_U8@XeEWT_^z>A7(&kd3(7Y6=w{1Ha=AFD zKQArqxG=n>I12ul=&|#?rETXLJ6da+R-Z%Wy|gCQ|G>r^bVW`rZyHV3d4}B#cl|DqRL9s=^VF%(uT4W;Nw2#g6o z9t&TIg@+B{rsVMQJ{`zESGQ`_N^?*3{7o?#{39GD!yQvUMj2HF)H4qTe1cpOlp<4i zj<469_x>brlV)X(e%5U;ZjTE4_heF^OJb61{?&xho&(J=yZffJWrxk=|L-Idq$u^E5W+ zSJ<4l4;Yrk79VVARgX8(PNI1NhMu?&7yd^cEeY3Zv8Czk6{NF{*oni)NzTn~)s7q( zVdjnWjpgZO% z$D1hwq-zH1<8afZbrPA;TzMb>N>gsUmYY>_*v0uN$t^9E`7!#LbYSL_)Kc+D9rYa* z#UyDBn$wXct&}p!rrlzbXf$=Panm7Wa;}w9Z5cSQ5pmxwwIlI;K&pI1AZSJSe(90+ zN|H1f-2}alA#LLnkoi}s1-a?sutwygBqd6kih!u<;mdXr+Z_R3J{ZN#c(oReIRljtT3ipUPiu!!@}O5A%F z#gT^(2ni&~0VkNIv{xEQUm|cUBfR-3RIgZcSIFSq=pxi^~8vKdeD(;VSx7$^7UpldMU1r8W7gQ{%`@$8#n4c%RZv zc#9NuSK5(>hxBYi7I#si$j6x`!JK5p!7P5LipZ80>$@s=Y0-$W|k&n7^Z&0Wk-Ptp}44-N9|Yv6;xz+M$ytaWHpr zCQrhH1#QTl9!g7Oyxv@>-$R5_Z~R=ZP#dkvC(@w7hQPga{CWw74CaUZ(M={sJG;_T zm_WwZ6{mC^x~ccSapd4&UA$JP!rYRjvr8W?LVx(cwmx3f8+|C90kNk3#{(9P(5la( zfX(A0^hJjyS_AU;oNVP4;X(3ewo)uSOp0@q9?}5~kmxnA z&!~aJss_9+r6WpA>IvoDa%M2pIzQ;u zfvk;f(!=r@{B+}(PL99HVJ7o z#NbhEygo~w>Z9DFLotY`(*C$U5&h17N_R1$2XsS{uA2!%NPi_(vY}q}w#X#?hhc9N zdXeG*N?Ej)>(#^G8AJHXZ^)8swaF>Xyb+^lU$%8gt$F4h6Sl7sV_#EgU;T(7@di62 zhXyJ$1N|`-&hbo%Bng?yKxrZBg%1&*@>Lnp@qq-n= zdLB1xhA6{gO=q@wBx<3YO)d_=^QqRLF+nyLC`Y6pv|GkmeF+x? zA=6pCmHb|)%(65ds!kYgE>cpZsG%lNB{m((6LnK`m${L3-uUiPB5LIx1VvVg^Zp2! zS7RK5AE^hQ8-6#p#e0!n z;^{299lflhqrmO-au4z$4Ktap~nSnn**Y425_BmNjO6&R{9XNh}? za%bd^^d3{hrJ>~VjD>|o-=h||M^&?C#(%xTM?T448Al#jZ1tf;`aIOO3AyKm zJ4)g6tgdOw&PJ{Cp_ABra(0^H>fVa}5d)Wskh2OA^cLQ|YmiTp%N7oaHQ~1^BA*{t zc+Rbq#$E~)hyv`KsPwl0Rn^$=i#?CtIgNId0+-$xH?zu>rC)`W+EmHm|Aw+WS0mv*`m+iPRbzKS{D)D0HDl)Ie zo0`6XQfCS`5v+(QyC|pzq-zssFb}cb;qBo6URG)>QSWMegHN)Pb@3nF;gC*i?OaRj zWZk>|ev1`F2*pYv=WkNFOBcWU~cAF=L= zYASXfMjtrpO%6OFHb~H{*FBUZX!6k}-Tmn+mF=Q5$ViMHkZ-NwTRDFJVf+wvUk#jU zlZ_T&GkOZ$fB$Nwix4>(L2z|kI^i2ARcOsj9TtEi$zNNNB!s~9fjYPI&L>+NkqpRpqi4+aopCyKHSDqv4m#uD3ZZw%>v z%GX>%;xKa|&8y2DtOrJ;fGnH8XBWKU_UJBUWar>Ogoc43+{Z8`eVjkWKaD6OM0h>g zfi22(ln&K(gAN|2!&vilNZ8xyAKt2D3X%Dmz}QPmv}SIWd~(m-O1U1KJwaI(3VCFk zGEYK;jS8A*k_V`gRR#IND`-+ECVSt3f9kW|8G>*-QxG!6v`~1}6iEy3a|w5`o-)l$ zF}rTez2PzEhQZ{4SMSh!@Lr`>dIc#JLanIdi&_K9b%7wgDLABMXmMRP%FX21^WF`S zXAoU-tYK}w^tsl;EH9oJPJ|b|<0S;j42t}4H5VE8$jvhCL1m91{%1JZIcm)eWS84R z5zLblCaLB4fZUrvZiSuKBGx_1I3aP4&YL?;cTX-Lw~5)XAGR%Rm-4#URHH zC^a$qJgp99Wcop6tu&YNq0TCqGhDAVm^j1ZL1#$ToFNPfIgqxkJ^AxdWsh{LMpT>a zA(I{9y3-R1c7?_hJw#ww4w&qvpvi>xM0jm!I=n`HO`3RL0eeFhyl&z06G|#M@Qybr zawp{|Fsf4%w$e;^58MMvIh@1~hm_Oevnq+fl*BOUu!ha7`ap zGrw<^zNYaFrE?Z8n7eSn#;Wn;;IB*IomTY3FpH*7DYu$?_8~{p*EJ%mUsjrBGPe0G z6GuIzc~qSm8UUPU$Q^XP(U0;N#y5JyJ?0x&U#-@n719U{azfHKB6(iFvIMEUikvcV!QDI_)Xyr%Xj92h_$JKt3j#02NfUeV|06G}N16G|Z&3hnOLkwyI`G&h_@~p92kR8q9VtsF30PQPi?iWK3;XNH;3?vV&Mq7hSmFb@sOL-#HUQG_XOoNjP)Lad(3()IShMWIWPW0 zC80+42@RV@w(zu3PmggujiZjq^>p>ojRw*>^FiT6BD}OR`iYN}rK0o;A`Po>5Eoak>xxiaA3dX_iLphYkaqp95lr; zfv%cNE_|ch7G{dI`dj4}>2oAJonoc_pVnYv143;OGM_ia@z1-YtP`X^GIKlewaP>h;Lc?!%oc#W>x zfIA&hsn*W5zx4KAk}!fiJ>bsG2BhR?d%*|9>3e<_7?D_MYvKqJH}Fo6gt}s@A(VIg zCbr~7y7zxmKD0!x(Fm&vBxLIF;`u{X^w_1z1N)5(3#gf8{##G{tmA}3Bgo!@>2uv zkBO#hE*kDEArVq@!>!#(&qm%#sbO)@v8V$TrCPKGll<_WX?`%p@vm>}9T_3TYxGR> z!#UN|dKzZ=K@SlyRY0gOLQQ@2iN7(@fo?x%ZGDj#6o;38Gj- zXQu95Y)lZ2Vt8L zwRN6}j_VkQO`u^MezT2tm-HER4CA~FrM1>7>v|Gb@9S+vz|pTr=KlInnkbfp`ud-m zv+^Z38Vi39Se>m%o^9_vA+}dZsIK0oBp4~o)gwxbuKxS~$kkJ*%%;T#Ci-v_(T8fx zbJ1IC)rLWE4+uuU8ucDuoK|&sD$%>Ii8vjoLDj+3|GKJ1EC-lcUp)1{%TL|j1BI8n zgjXI4X&=VQ!yuCE@+M$UL=}etlw;L_=u$V2Ep;PiEVzF5m92DBk%!f(ue(h2wb`gI z|%W`z7HE5j6p1rfZW7agbX`+{WD*RU&HZGS3|b^IUx;;zqrF_)HtE z$n}{aFh+q>uz~w-ayheAwBOp(yGoEEM{2$TBX`J>d?)HEICZ2xA2Pi+?UX#&+q<=% ziNt$k-iNo@$)VT}yO9lps+*B1$ka8JcRRQl7$0D<;7`=$$V+{P6?4 zodwaS(ol1)tf8}9TRzfQkeEbv4ujlbUXZ9$4sC9MoUKlb!Z(?-k=BE}ze~I7(e^+7 zCT+hTs_hX&yq(1(Cfa^RQ&-5q_LNTBQ-^wQgoL5j_PZK7)Aq3tZ9nzD)b^)b+dGGQ zH%WiiqwO#MCT(8~(e|d-w{;dfj0$z_wxhzkb}Zb}T>I7{Z%aXRsx(yBwrl82*$JbJ z(}>tn<}>CxeN^-6D~{)1buyzFb3-~~u7X<4Kb9t;v3%+%<5YQ4KwSMuIBTSLk0_4{ zKL}o9;WOQZ9KXQ7Wt6v-Ag%@!7zBHmO?4X@P#|$;EZevkj^}+$=8W;WNaYxBp}1vK z_{nlqkV3f0^88W8$?_y<2|rmjF^F-pe8nlIH90u?p4Q~W@!lWF?$fOz{qV~IpYNmI zQpYs9jVhF$m8;L~2^PT7PopQ=@A?4v zMMGx+@L5OzoL05|my$c$7u72#Ff279yGP#xRnIeP8u%Me^>(#L9Y@!#?CyV)vK^ty zKC$Zd&SKu^&}`F(@)Twu?FsjS*@mnr_f8cjs3g>6GgiZ9x*jmvIF9y&W$OQI9PP`T z+<&0b8!t#p>(TbLf0MTJL$y73^#0D`HWO`c)$|qO+9aUulG>da{)8%Tk{~{zSNCHY zI#c)d5Oou(?hayA$bNJfALX;%|021M)=6D|az8uTnA}eXbj0~pMGO_nv^k7l_XEoV-1PdBf7 zn5f^F%2Bz|1iEUnf7y-RVG+`hF?A=A`E|Q>eZ7#wviIRIyBv!Z@9S}4&LETi4ff>; zll|Mh-s=QmGWpHtJ>PH^@Vcfq>EHUp1k!M^H_1{}(1?68^x+gZAzlD~i`NvB8y0)V zi0LCq&4(L13uWY+#ok`iDcuOFS|k0%1_P}l?Z7uWt5P=#edkmSl`DhHoDZjHPHP0MWBmazU-N3(NjrTht@+jh?$o@sjdlJGVwxPOy)idC@-;x?{g2~RIiKul%t_gJ2ZhwzEyqOV^@nbdHQ$aeC zN50;8y_BXkBSB_=v$0r=AM4*ryrTpOp^}}Cc&A7`^+-hk$`4~>NQ2Dkv2Vm80bNgp zSE{@3@)k&A^&|%pwpBH9EINg)*-bszjcAQgPhr>I?Oh~Fb1^Y6d20<-J-|JCEI)uf zQ-h=yRlScN!2WVOt-h?%Ah_@wPy?90NLWQ2yS#gJfK+zWse0=BX5MLxX{Y`j_j>OU zq(>2Trt8C~fpzyN5gzci*8v*3Q_p!nT#tH`q*LX3z&0# z;PvM#r1J;@oFSGx^^o_x^fPJ&6{HY$tofR8LI0(WS|t7q;=wntL&4c8>sAJE;b)Sx z*P9j!%}yJnhC=_k*V`u)nz51{3VmUpH`@q3MH(6k$ZUrtG=#~u=9=-Ze%K42G@OPA zGVhpy8kl!XBNGmI=NJJ~NV}=k-6d}*^x}hFXDIaCH>Wiw$1B#^r8S`_H$Ljk(4kNf zkSD2!$B}U%w7@O+*=X^;acpcur^huXR8Nm%RDOCq|8eh^qWJhY{@nu&K|MZ>5D3ns z==3;tY;<~DdL0SKRQeCpz*PD=Nj~f?Hv*=Rq|)Bm(x(P!@%3@!=r%Z#i|HB^bRD-b z<_Ih3_c|0bITRJ09v36wtQdTL3mL;5ilFvIkB^HT#xrA}^W&Osudf@mTOFwL!k~tf z!Sy-_*AkJ9tLTRD18Uemju%nns=I_5dZVutn zWbTMH>C$x6%KTyKrWd^vbimZU@tWdp}vn2|`2!w)nk7hdw7CdKnt!rM1q^8O?) z8P89aYv^l2(V59YGBNG|WHwBlHiPu~n#WlSoQSvw%w{->D&0jz1fv-Q>4%!U2 zfKU#({L+$izx6fXSoEtT)MfbN2-`iPx|g_Pys_xFc|5N)nb$n(ltWt`)@#J~-}KhR zn0ges=`HVF(wBNmau@nsYcz48gFzQUBVgSq{t&&>L!<(HA?+t944~8Dl4U|zwO<3b znA+Kf?U3l&6G9>KxvdLhUx;JV~>{57*%A0B!o@CK3L!IGL z*jINhhXpG?#yl}J%eI~vHr!jltzfwO?{47RB8WXy5^9$1hOlYG3vEdM1Ya~d`_cl= zafd&wSf?CX*k7^a!$Kuz$22FINIn7aZWv$2>Lef3)R!TM3-yxEN7zjADMrc1PW(%$ z?uum|tCP9@vg7uN#1L0k=@OGab#-? zUnE)A+}ED8Z|+Ma!wYMp$|c-$vFpA&-r$jVB#P)wU-mi)-7E=o0u9F{(C^+&r?jB{>!C zYeR}3^hJ^1N@^#NH(L7={{pF0@ikyve}qJ1yv)e>^)bG`j^CHIc5wUQrVL3Ovp z0Yiu4e67j#qk+?ySa^_V<(S$Q5sNq03gl?Xz0u_1Sl^H;5-MVwFzd`jbTEb;cx77LZn#B>d$`zGeb^-y8H+$DqDWwOchOQa}zI+})eB zaMv~`Kc)DtCp*ThiXwA&?9L3fDe$^jplLqh*BZ%v(b4yBVFyL%MZymF+k#l(Twb}( z=<;RIVwiuSqnjp9eAO=hRwv)<(wo#%)QKE*d2QWRxI5J4Nwaj{qp)9aEZsLr`V6B& z3Ci-X>-c-kB=`{|x--K!P5KEnutnp)$aP(O<8^>^)flY>++MZ!GuQFb2zOXvNY4@l6s(96e)_rLTs_u17wrDZoVAy zQB`e}glQO9-KVk|GpTM?f7zHrMjUI^HPys=RakQ9pQjbH#xuq7Cs=)73eqGb1Y4;) z?7p5-IcjA}pG01@`>Z->DhbMRfd?J*odwys;+es-x}fLtKzb5p$~*6yNQkSL=#@ZvKV@EY)oHM} zzwd%H9J8gj)OnR1)EC{ViSfTQz?UjUPS7yb9kDlWti4%sYt3jQ>B1mi1-#a@c(8Ao zgb;ao?LUJdBQDb86#?{tA-+XAXhYC`8Ok89Fkj`= zA)p5Bf?>XSaCAZ?p$6?^2%81%_Q}SeC6oU*)05w*(8hXA{j-$+o6Ke@s8(~9i*2mc zkaNw}-jry|vX+-;W!p;2on;PdWrf?8WiKsvIow%JS4D0GyhnTOZHaZmIN)`qYukvw zgC_MS^tFM*qMncZ1z^+@`i2M5f1FH&7Rv`jYA*yh%k`W|F5m6L?*KSWO@s{oxo8%#h`ca7rQHdgB3Ul%h z<#z%uvGT9JjMGSEh9)i0{#9mzBzjo%3WEa42h-qy#ZX{u<0>}|j3k@A(&o&~swgYX zb~q{=HkUKY>a2kOwz5*EwXBSsbF5vRP&W`cFnDcS;VEjF-kV-hV$F)7h3Tq7o}fH- zh)Aze-_n5Ce~jLOSDbCVw-E}EZDDM*)nKEm4v-YRiLPGVUux<`0rELlx1j_|o}A)) zQWU3#FLz|A?EJ~`3&_-2pbYCY-&wIWpoJ?oJvCF>xvjQ_~npbmm%ZuFBGi-0bX1ht=WA zEzQX(b=!07@Z~wT+f5E0Tf4emAi=w)t+)sdIE5QL3RO+q2r%Y@$K0vL!DHf7^ZYdq z#KHONs$*k_-Yi!b8%V_ua22DtxRMDW)W#4w>@_Z=d z9Gy~|h6azgY2gDSsiM?bZY!%O&vNCKIkFvDx#e!BqawS)k(~|k;k1%t^L(r7hhp=p ztZ6JXOvjG-sy?ig#o+sW5brR6Gv0^XpFmFT-rNKYA92&nLnImm`%57*TW_Q*3=zb1 znWk_QCeygWjbXCm)a$Y2zJHJWiv3uBJS26J3}&@9s1<0^w@{eKrU|I}=Vg618r zezVbJNn(Y|S?SEJaFx0tW^%J~D|6jtPHT=U*PZRmai}pygbZ8eYf7G5?t51p1_Z(d&qGE6(#^gd;zW1&;CUp75iWSLR1s+| zGXzh(+dP-G1O9O?yZYd{OJ(c7Tdq9*-v!S`&6p^7YPd1Xg6F0ryR95n@2*mNPDQq( zGOMz*va~eYnp^3H$bmsejh=d;SoG|7haYjCQT4HhvS=1P4CkSp9c;yk>@_m=o$9ntfO%Fg#3zu<{=K8GMQA|T@I%`$6e;OX3>Cgm)flko1IV6>V={qBUDi{ zjWnI3ol{jYogA&zA_lQtUTR#u6qTB%v*92PPG?sgC?Dy~a)p6{c-_iXjDm!46&r(O z@@C%?!edk`b!>rtt+I1~(g)8qiJ+wX#W4YIqmOz&<6+nZv^oJp$Pj^ok;bgK8NH(t#p&h0$^n4;nwjwc(zS7 z_Ay_!wAKJG-dILXY^W{Nfg3heI;yHcyFPeRrHl3wRXv2dDMGiX*{e%3EadXa)vZa! z9kt#V^TW6&5BYwOp3?Kk4&$aip*5mC?*Qo@^r=to(&)+ax^bNJq1miKd=jonIWgEflH6q`X>GqW9JCd7HZp^oo&ciL}TYY!o zThIEg7aNvy0_u*ErCdX1J4zSJj5|u_Ri8CKbX}(y+Ic{z9F=_7h6M%m$>&1WIyB0nR$MDspw~z{`;!@iSZqnjI-5KZ!6>N$d@&W>+ z#?XO9%XU}n?Ke|-jq_aQvrO!VbYjy_0Z8{F-VIMZ?Ba48SK$8jANw9^4AWMs0&+6? zW~b>wV6AGxV?_8ou+c}~Q-|t<&(T}G;`Y#fjE_C+stB3cpvNAzQ?CEYuJ}siV0EhO z=TMdXU{D!a9(>1DW>_Bhw}0X5YZ0R>!_PC{Q~7CG$$YKA@BZ3%z#^srO1OFEIRgqg zwtwer|I+V#$$~%jJ0F3UAXTy{r>S|q31E|BjjMx|4K(9yR>>Yp5q>rL@^^Jw=Aywe zSHD&`p*IbmSk*V)`z zvEW)k*)dNlOSz%d(>Xu?;wu!y?J5a1t=x^U*^siTl8vS4^%_f=^}@W6?e9)5%|az- z?{qnCBKd2Gcf(lvvQF}G|MA@_h@a^t{};k$lD`!q`O8#tvv<1u-BP#HNnQWqv-x!6 z;xlr(I)3Pm%J>h8)$;{0eR}w$kQBjB@uzVDu=tFq{!kEe0VP~gNH?PV(y)5GAm&dG zzxcETQG$z4!)c|I>BdSyB(#KIcbb^McpC7Er!l!ixOHu`-`%wOS3z0?iooHGCf|Kk zDNx_!RAlw*(#-}Ow7AL(#rdyN!eE_?u$0i^+NGVvozp{8!abB7^OSHGH?#Uo>sQUI zyNcprm4uoS{0N)PH0~w+W2^DgR(GkE`QOa0$AwCMsUhhsp4Ush;mn@origVzMmQG` zoT)B7rh2A$%?#bL@(+Z}YND^j27RH4mY3_xIMJ%T^bv_Ri|!hT^j`!spaeL6mSgbrUy=xO|3jeeA8%A|8W9u6}-X zzuqKQIKMjHr}{xbx{P{Oi@2Kn~BO;78f4eQ7+5EB6hW5@2- z`u6YHbZvDSS$e!hBT_t|`d?DZnVJ(CCUqA=$>0oL->i`&53K$!Of@ilQ1zoy7VcVo zHB_oqYYfdKg+J1~5TaC59RF*BtKkbK!!&xv@}JOvCoesEumd!T>LJt-hO)=1pN-&~ zgiE8zx6Aj(lV$nU$0T?7J|pYy6Rkz-?z2?`;8QZo`}LG^W_NK_K)sJIbfv+3f}nZ}@!XQJVun|8RlP7zEO;B{gYCh3H(f3|pRrg66T zTtHskY!RLWt==epI5T`=>!h0PpB%q{EUv2VO>Q4m-Dgv$wLR&NeDN#550~XKjrawl zs~3sC%?zL9oI#9mN$#DQ#);!|&|(;F(9?7#x~*g4XabF%-s;U={vTr@jMJ;M48rQb zR@A^sU+Gn3==f@<4$_da`iI5^FYh*)P;D2a0s~25D5;%T{i!q*wHqj2Yfdr7A2F%= zd4Y7BR^3$C#NX~U8&P33v~sd~N_9DcQQxI>lL63DUe$=4*t|bk2dceDX@db?C?_kY zRo{=Gr%1a(VZL=&djc?q+TEZ~sc=rd;`}jO7fNhun0GhKs$Z)L%^xpQ4$bq&3vi3& z4@$v*sJ!}JLHw6WLd_qaAZ(UD-l#I>j~A-`H~C|{PUtZC1C`Js$>n=*!Y{^YGD{U# zpFS?VxjU8|o>`qma^Kn=O@H+h(`JRwCR0=+rf_mBoBS?j14g*~QEtSzJgeF(4u+Sb zz~>rG4|B{4V(9V*k`CT2b7DzP;V>edkC%Wv8O1nGTVRuzJ9dIPDG$+ehSy67c z*<3cOz1&~(^4>WSiKT99h1+E!+^plb z3-NYmxx?zVI-Qj^m!mY>m7ASoce^X?4woy(?JsGz;aef8o=&sLvg+!hdOMvrv&Kpi z7FRb-bmcfJbIY2z7G){0y>vPEi|u8j6?*uH#HL_(!Kw-SzW zxowoq%4}CoPI+a8E!%3Vw7be(WZ47|B&lS@ULhg7k}4s~;i|B~G5j1WoWrjyho`nG zZDkHuIXU;q@)&l9ns06BEnJ%Ip=+vNET= zyv$K%b+~QWmF`k^ZmA=y++At&FDp9^b}7rLEVJ3lZ4O%wfK*s>E1dSq3cIT!%UxRG zf``byI^M=_-M{=nA+fC7m6hYjvfC?iT#jsb63u4KF1J_0FF37}Wh3W~ZD`}qd!+gS zp}xM!xt@z{^>)pybMo!wjY-n_>Xhz|tnN9p2K2aba?0Yx-I7wu9l18}iV8a%q;pi3 zxpFHUrFN&&Rau!^nwwkU7h0^C8<9}=GjjfAO^)9qEUDX0Hg^himtQ<#YT<~1g9@hB z>7LeXs~)-@rP)&^cO#?!SRR{Hk36}gWK(rUVopU_g`>PIH`i5Rca%9D5K-Co@|=p& ztX!+h=^`br4blFyww2(gWx3^*S*7LH3NWs#6pp-?+Z}GV)oO=NO;)-{|1WP*11`}~ zo&_qabUEQnyu()Jg4ir8&9%AgrSK?;wZebwT=myNQaxS6@$h@9MZ{xm=DMXSu7Q z%EWW__(?Ghb1<>lqsZhILdGDsSwr8zdpYVKS|nH`?qbo+O9*#Hri zTbZ3xQQ^$BJ6%o(L?Aq!Q<~#0uPn;~37mE~Wwt_17>Uj@Cp_Jj4QZt^+ffFOd%7#! zjtZv(g1F4)fFls+ssXfk^ghO_>|D3pMb;gx?%dUi0xQ>9K}}r& z`J>EHZmY<3S5%f&mRlXUrRCW+n_qaO1_G;|N9@24WBe!cR;(75)MFi+K3?ka#Y#PN zJqoJ~L|0-xLJ?cW;xuw}z~TmA{t9^R)&-UT#oM#8T`+8wxvbgt+zL0u5X~!dAg_RK z>}5GFTV;8r!&dIfbvSasi7U#jkd?~Gsrbb)d^Ah6xm{Vgwk#L;c&WqcD$mWbWjnKh zqSXQ6tBx!!s#d=*B-PV(E^!}&L9Ont%Sp{ME3D){$6!#)%7uu|v6nmHsYyqcs{+O$ zdv><7veaGoZ{W#v>t)POd#T&gJ&;Z!x``-)OHWNm||dfcvZNC9-V;D#7#DwLwC$=agpIoiKEi!d#@HqQdTnba+gNudBOUQgchSHL0HNoHVMk$?tDh zr*+9jQRT9`a-A?#mAfi!4(PGe?Q)mG0G3-;YORFFR&6ygerx1$$lLWiy$2~T5LxvY z#i@^#dK}R(%GIMUs~TBx33bYqOZxu^HL?SHRy2&ys?3Imb+hahFvw)*I6)mS!GPGZ zI&xfYvf(PS2F5KoJzPh})*SNY|5cAlgn+1{*Bl;Ib3UzZo@mX5*l?7U zIvg;d<~S-#9hH^kFx@S4a@eTh&$fLZl3zQ)R0Uk)hcL z$DDy8KC9F0^SD4dji6c(%b3kBNw-oAOLQwc#i%ZH8blb~`StvcnGoDL%mIhT4za7% z4i^*r4!hrF40vo_x6O_^JW}3D40tnq&;kq?#Dpf$77!z=1FQi6d5vxxDs8m1b*%5_ z^B)2u0fC6wYD%zYM z=Xc3y2To^2wz>Qk$VBy?WEJq-x5L9@~9v56jafoZJz9kVbHb#6O z(glkX3+R{E>ao}?UW>_kSw=H&h&Y_K5W&l#7Oxawtc8DW`chDCtS zZHK@V$DE=EOEIzs<<~DN$cD9&-l#-Md!VoD7d6g=0M=&ld*FVi*XoD6XEt!O9wP+& z*c$|5{fd@Cgk|%)y+%J^>-Pf+KC8zM@ruRnv)h3CMwb*e;U!s?%i#|geJ-Gj$82?3 zjBdZ*?t%MkZkO3oLqaZ!%V51-QsgN z%uYLmP7txejVHUw4+{yC$z%0Fq!4rG)ZoRY{xv~K<;u&VT!}uP9IR`z>Px7XZJmN} zF3`AabmRF2t+G>KWfs?DE}zHagd8nk9&NBT1KZ>En|xex@9J&-Jm&2M$VCW;+o!|HSRoIYy+=YesVAlmZ# z#U+gtHR=y}vNMzXp#2EbT4y|9J?L*Vk5U9hr&y&4NF zuK7@g`_WX?)8EZI1?!CcfO3rGuby3cAOV_J-`8G{i6rGrf; zb0EG4V)7V07K_6OTR?yWtTG(|aO)Pi#ZS(J#u*xnwFIUD=~~T zu3S(*(_@F#HSC{(iL*k4=(d7qx5Mp9FzCL3PgFJ%NVm6vlL-Ko%zkhQ5G1<1ur*}z zS>QUeB{t={qRm_eglw=HbHTdS28?z>r~)y%%?|qMazLn=1~I9qWU%3&H>?r$9tw`l zrZ=R;>>x^pjt?zLgZvu-yU}YlTVN}|YB5pFF0w~Of*S8ni!2t*mg5RAOpS| zR1Bgs&?5(+3)>22Sj(ZKA1!Vr24ILYMT{+4FeO7g}ojN$RPx{uq3mAL-N2<(F<-B zZ=XsLhYOx~A;|DzU9`fcl@-=)UYiSI_kf??Zv>YPJ5b=cNFEc|xpcT-pUVb2$lx_C zW>GE0{nHfVyHUSa7nm|3YSkNB+;3b2`;EtME6V9^&NbU94+nd>5H#3fbqo`Cz_J9y z&F?XT6ZW|5esRVB#Sm?5n~1GlJh0SfSisIIUqDw}9g3aD6y$T_!1A4A3tDIC zV@5U<;F!bJHTF8oSA0xT{c^Qi|Fv8HwOjw}m#NyV|Jtqp+O2;t-VTVnx7w}$+O2=_ zTSM*Ef9=+P?bd(o)_?8RKXsC%cI#jH!J&5Rzjo`tcI&@(>tExWL+#do#}u37wOjvi zqOo@Czjo`N{`640^>0*tIr$S?|ESlHa2g*SPww|>)gI3;Q(rZ}wZvPY$vbx@D=R$y zmg2SPq!@^JcbC4Vi2Bvr(YHP+Rx&eIGkoK9Tr={=tOl1{GOTbm{0o=%xTlsL35ogBQYBfrm!UJs$mx$dah*y2(AhVkf3(Y&5FZ-r|TkwRz%|L%hXVUfb_ za0M+=xB)+(S@djkI=#g(7LzewJ;r|>UwMf+*|3vNxIqvM8@ z)Bz+=#=yHf)ahE77h8W@@hc7aH$`F%7z)=W$eo{RZ;u%hr{Mpe?(k2zqtI*Z;R%@i za9{vVuE047I2j5bli={P2`(bw1E+yNz;B1!4}KRqIV7BgHncsKhOWG`*wFk49-Pn& z|AM<2kc9u^x#`Q!e%c)^nLO9o{dPR)SwN|fZ7NI zRXq%4`QB-Vj=a4z4Xw|5!-b6RENvkCCeH?)UQseE{TKNG{zWc4!IpMW+sn+0_|cJuWziJpuxz zhcE3Odth?$a$Xopbw&`lb6W9YVI=hw5ZKENMf;`~4^_9mYDTe7xQlH)5S^S+d;>pp z0$Q}T<4bf`N%0`IdClYVZWiiIlr@3S?MpO1SUg3bIwo|ZNRXqNkVt|& zR66aU&3wj0rJ0tgcexrAH5)XiWvpUB@kWmC4(Zrd&kbbA09R@N;H$BGmqIkPW?l|e zT}^}F^0nAJls$8clfPD+Tla)jER=_Gi9@m7BsfdmhGSbuoJIY@#rFw!P}Ib>sMA>a z0i_#p`*&TUd+Lt5K1e=X*qyh;FpKIJ9jw1%h)^s)AuQ)-O+?)D^Pol>^#W@EMco@j zl<5&MJ6gs5h!jV7e&s~8X=L?X6zfN+0VwIGXhe6Ju)(NeVevs>H#MJxF`&lq>yANb znC2Lm%EY&f2imgt>QB`Pb>NkumkUJ;y`yYI1#?ZwygeBa6BwtFWn2la00M5i zYeF1VK>V<$_*ag1PbRnB+iQ(+OoBiio-C&7-ccDBdrl^Kn)u5n6K$f>{ACiLhFuG_ z>#l2XLyix`RmcUa(nn}hC%(o0e-(G*42v+SrPYvV;YRN-?klX6AB&o_2z|G|xLBZ? zD^=suzehE`2JYsesUt&u_!x)=q{PyUcfL(BS{~Z8G2DlLNd&!Ii%UPMK*jaW&yN+) zH@qt&E?E{rkCXCaF+O=082Q_rwgS~2xt}Nw2wBSuvLg>sqIwngjd8ekzi}> zq2eNr3yVESKDCSjCdPR36r~lo6PXs4Xr;W=#Xz>k7mTx$!8u7163TGxnW9W$v@?z` zV~J6Z*MnA+eYAK4_X?VNw3sdtD@)=v66anN`^ZC%!@*n8us4gBa>p>qMpE@;WT=5k zsC$nDb5Z!;#l5*NM9~fQ38qu2aAnZEI4GvCRw~@*rjRs7ltJDpu|ljEOJy+9V1?2Y zUoaaA{#;4qjH!ehRC2+#Q;GDck_(=Br}(OWadvccaY=i$@z>mRbgFM@7L}_-rqO7L zMwY3`vJ4uh!p$hAq;Xq#qR90`r4~$wNyUToa}SjE(XH-6cFyA4T~bc7k?VTc_sH}oMkx+`Pf@ssW(v@5glSx}*?~-OxB!Yv7YO&y34mLp&bbVuKdA6q5 zPEvx7u$4~XHc_BW`FpfkGBW{6$jnQHbSb@@2Mk~g6TVT5B)w&@sm{JGy>FNwsi_njPMO$T}fEP_OFpOA+@1T#oRpEP0L-&d5#iu4sku zBlUo6h&EVVGJ-pUZdqOOyn$*h`S~GhN(KnRG+AQFhSC}I>6(&h%Fa6?vIm(#wI(Cr zJxCZ~;o6cb84$d4K{>86iG(b6AmAb~DeJ+uP^<>?Ba9Iz>9Y=e7VgYlhnj6FVI9{1 zJXLMS)em0Dj;r2=5`pK&i9JY;>oy9QIIbbnl#9WB)ASaDx@gGWi`pd6goqv7T+)aW zDk!oi_F&|Vq5KVM^5O{Zq+x{&C^0?%{*qi_o%~n~JyxK%?=LA7sOHMhW0QIaF@C#9 z4sKO*aLTXSIz#4t6$cMeOi(NYpN3a52N!ND*~@WI01nH5#KB_}FyY{fDh@t9O?w@v z$%%OEB=hcqg?68o%OkQ&Fi%6K7ZkGFXgVvql-p|nuK;tU+uJ&RXGsI@3epuRU!dvm zo|Kq)`SfHCuhVoft!@)Mj54im19+L-_tnLdmNuyVl<)f&C1QZ0()Y;}yG>28TNMku2kjC1mPGHa6IBx)&Y+GTC9eJXpYaK3{AbF;; zE}-1Yc||X=$sxmf9B)*16oG$W=zhk=6M%}E-uu%$zUA$-f zjOExxnu4}W1vJ85T)qjaz^N4CXma)*me?DEJ)w#^+}9$oWCgyU;D{A?M@6H<5{VaVRJspAlEBFCLJ#+tjnVrWE)I#u{AOdf(a_^gDGm=O__niR~toGGa@E8YXY zD5m_!O7rXJBlAiVW;Q*3Mydz4G20xTctIOXpQ<>9L)`)cpkYtN8 z=S=0ItRp;8#0u1o0xM-COutyUM&tjlrt6>fJe~p9V3={|?$;BrY1UQ2gX9Hef z@@HnEqld$#Xm@#&mdp@}HRB8F$t78FPz2Us>>)-yi9x}2!+7&7wae{+C#$_^>;|u7 zm-~D3U|Ai0sMLkzatBk;*d}pSWJ(Xxg-p85(pxm@;vp|QsLvj{5cwY>_qpnpu@P;8 zCpg12nGX_Y=E+aQRp2!AMcbf@ZAlKPjA$1eBvh-LpKTYMnnrgFhn_m8WuryygFS`y zZ2JMI?>Af{(i+J4C7d>^UWCs6Hn%S-xhyywJ(Uqm6R56~>(BrEP15kWS{g{Ds~0q+ z;aQAH@;U%RsJTpss0jkSYSq`WLs4hhQj||SK z9aO{FN(WUBj!+VG83%>l%LyLfJIqe*pMI0LmMOyLp#rq7H@fBW;8(mEz>@hWUMg#r z0DH1a@BzO6?Bp)$(gZ{@7u9aI(nZySC&^uu21%7JimKDA(ON#Ml;1?E(>v|T;M4j? zKJxb?F1#=o6m-UEj4~1WFzv*Wy=S`xC-Fj!+`Xnl z%a({tbtyWu&wB)4;tU&PaOsraR{4o&VK$&U&B4QLOJZRfXH@hS9#c2}*%B-isE(Cp zp`&_ANt^^VX${(SRoB!cW#CTDRy&Ckc$(T~;TXJ1m<9B(J@`5Qi`0YUBYvcSN!ZH#0b=HVd8RD9u9l98I$@sb}yVt~WY5EU5iy!6`A#C4%S0 zUhWkf%yIds+0{Yq4`F>35UBF%;FH{K7@!xz-@r7tyM`p77^6Vt;TEHNmw48EE>Whu*r?&bjt#lXF&G?( zSbR?#&5vvmCD@spgNqu#hfe_OoqRiSTLO&H3F-q|6SyhCeqj6MuWALgpwiHx!jEE; z+`*nuOdKc>_jg(gs@K%gEgob!zhH4g)Y}{U!7x?sVmxwxxAJCTuKYyQqN(VNFPO`= zBtB@5=k{(wmAd&6f3Ukib*xmn*VWVdQ$Fb5j2sfB!&UdVhcQc8rQ3~XsjYN7;Faux z^6m=OaIc9SNSgOD1xqyVk-19E+cEc_(YzBFW6gbjg82Wb5&xN*Jl->+zKr}JBCh;0 z5;IH)ZfVG;&m%{xH2uVXB?h*HHrmw&o6QqHi=4+}C_jt*01BgsBdH?+-{KknmCqt4 zDe=-H7e5rHuRJR~cwSOL83?b4ps+@(&79!nb@)5yB@gO*NcHJ_Vh4HX$m**8$T)gs zHhSucU0EpWmPKu1*~P(J4vpA)Pg-ncQSf<=p94K6i}!mfdpx@^OQ0^5Z)x`T7OJ8ifb4DZ6sc_78^VuvubBa+Ynw;9{i0Lo}@6*h#kPJOxZ_)#oZco}Ty5*s4MX<y4$>1dfop;Ky&TL)eoWy$iHS|;C-cW?^F@FB3m!-5kI$(^k@Cl9@T@7z ze$hwt)>0y-OS0<-n#^h10rQi}NpykzV+v6H;m?+*vx ztIy3y5L)MO!X?sO>;&wv$Ab;)bD;#R&f$dg1Z*-(aoc<}^>nBgH(x2&{eXoEgF$hr z4<;1FrHl8!|6$p5Vg47zo(-NA9;F7?GBRcfYu2g(^Dc7p%_&y%eB}9HSU5tBNj~hP zxk__{cd4gjCgj7;5%kFm!CW;+-xq^9!sl8b{E_+S^!^!b85qU)maFx#qIR2Eyd~R* z?K&yTdo5G#kyyS14=w7#H!V_!r)fn=^`Q~G!uk+{9>#F|6%w>$I4`FFiQ#Nsq!h45 zMgNT9%xCaT5*Sc>P9xF5H-cu=H2a<=)QOG}61s>{e|)$+#7`(n9*mEYxOTS)PY#xU z#TNlYvS9mGB?KHQFXR^%B@eUR2?$2ZDVzcrCwe1ogh+hVQF0B@Q3e7RENB5tc%{cm zP5%Qj{i)UCQzHFT9?SIa;JmT?`yhRAF-P<8$0Uh5@8Eu=!yo4!tLj0K=im4hBn?<| zUjsv(d=Pn(Y~iUQJq!3amT<}fUbLUOOPUuZ`GpgT+6Zb?tc+kA6l?h?@hEvGbkJ6+ z12z2Nax9|7)mFAjVB68K#`;512EJLn%s!She7UZOSSGjWE7Lol{$mdfHbX7 zT|=WBQC*lW&4!D2M6+2wT%aS$be29V%%KLCokEa$Dm#TasLEB^lL1i}_!ZPdB$WQt z;_qI@;1L6#&pp%yQmX)0*nO%kc&gg5@g{hM?K{4z9Y)_g5Uh{p_AWibfqLRzBs>2U z)d8{d4;B+UPqA+kW}ns#A`M$3f0O$Y-%IXi@J?cADE;|Dr9Yp>aaJ37t_~`_Ur&E_ zNZh-mgwRbi^ju2}rK3L&E1|Hl=W;NV&I0hU1QcWNDcsJhwCGcb4gXV<|MZ_T`8T72 z9i^hnrA+=Pk&-HtpE0O(gEpT}K-|5vnJwANEF&9rUKixRme;$gHsKp}pm@&Kbs z^gKWT%#Sub7wrKKNb|Zl4?y{?O)}l6P-VSHH^qT!(F;7DLW>zy~R$_@e|ABgGVck6`@huw}h2L+({DMA>Q5ye`hhQl7L) zsWQqolqQd|yP}$m1=^=7I!ZI?EP_h`whM7t3$zbabX5Wnt2zV&=p3r(k$_?(mBOea z+)`vWhYj!~`CiYZFkzYp7jIVEvrM>1vueZg&3??dZQp%exH3!$Hl7XQscOfwMRBfS zyBuqD*@7M%w^r;yGO4R6U}93sOO+2q;(HEin1sn{yn3rN zuZy##l*=iS=|sh=^F%sn#;Yqam2}+yWNAvv#6BdWx)np|xc`|-C}LS-DTH=@0*Vn@ z3cn>7KRRBWr^}Gp3Wi*~VZEE>$VKjNFF@`()|RoFDGT1=gfFSdXl<%jP(w*lMDI>q zBWE1dUDxL?#445t8BMP!U5-<<9*2|Ww|uq(ai707I14hQnxM*#iPXdNT8&P>8UAxv zEdGEAN?S^$2eXz!v12H$>x4qq&@^E6yPZy`1PsOe91c5_u608N)PqpRSSr72wm?-~ zpT{16!n-cJ1qvzJjTX1hWVSo3UU#h7xtg!I>=Z-0k>iT8;n^-ZIOS%)l((`m6o*>#uO%JITJj8_U~>8_UXQ~9rQo65x*dvr0tD1xhf=iA2x{g& z1GSp<2SojzEHh=N7|(_air?PNX{3s+nxT5A)oXWJjCQ{j3bwkf0dv6YhH{!7sM~3Z zK^1pg*4S*aLcLq4F$=Ywp~fU6^0nEFMkrlrghI|Xv^RZYydsu9Lu^jA;G;!f3_WaX zeM&ie@k-*^DX@Zy-Ye%{k?FO%p(ZEb;1Bq%HlGa&i5p!3K+Wk11Z-ll;=ZrV$9iQq zTY$ALn>PUTfkLbSkKJW8LS<^G0xuQ+6!pq(HJQCoV%%nO1fVdx7pi;Pj8MVV2QZd^ zHP)|g5$Kiv$WW_z*U++&S=JQ8f;bw{h`h2USsoA6wTHs>U?`wOvmc6^yWLQ!)#>#@ z8CAO_#_g_|Qa95Sus~H&4+t(4Z8kyOSSV&{@<4T1yAiT8C(5jD=Q1o%R6O8?Vy9T3 z%|<9JZ*)QValaEFjp+32=XkB(CO3Vrc?uyDyxHUEb9!##=!_c0a6fslhtnn zO9mCdp{B7L>cc`EX{j2z&*HM<7H+G}WQ9tpm<>=K-2r999YAEdny~|lg&VCFs1|Rx zIvh@Halj5aps2goX!g&H6+mxz$IVU(h-`1yU|l<1f216ELw^+yNW-Ehx4P#jyiW7~Ti+ zX9Krnma4+TTQ_Eu4~n#d`?0zmP;cA=3~cX3ZJW(!3b@Qhztb-It}K_^ z?>76bUZ)E@xx;SvFT;Erx4#(nwi zW;@t3rx94&5Gd!c;26C$3oUK|@a{eGhlDlpsJMyuaq!M+tryIb96 zpDkd4A_||E$6c5{UmRXmT~f%SqP%ztg8AbvEX$k%vzjN%IwMjq95e*Xq{Ropg%zq( zgOoaH=e8HG&H>TA@@p)TXvU?BoT)xlFWzfdz8eTwb3E zoIAueJ~tGL_gYNY`$6SvyU0_iXt@5^eza=|_^}jY69pSl18xl5kq>GDcp!XpTK!=E zyr2?p@K<&aRHrFc<6H`;fWm=e10(5xkj3Q%e*s!!40udtsKjWOirFvOwgeZmcliTO zo5^Sk_^j@L!)-L0p{c{>F*+P>a}0R?G&p1ZQ6a!CpKnYxDj;D(gV&UG$OOyo@j)DI z_IN=eJ)k!>3&c%+sLgG(xnk~|8o&Vx+FM-U1)Kq>YHu|AKz9Qsqu1p&n_R$=gfD&w zB0rPK?y#94(UL(8s)<5CQ|@gCKDxH3) z3+~(F^h5OL4448o4|p;VBD)EE0r+f)qRh0d$#7XL*gM%RMvE1y#zR~QivrL%yxMZ1 zzSz`=&dhChIvrqkK`32T_|FAv0Hed_hFHZ6i=7xS7sAC9BYRP|ePsn%e%(=xsOHwC zMs#RjSy~pG%f;Dj7*(P}Q)umE^z3^+hQZEoPTSkM*l92N>rve>aeC3%F<|jR@Mt%JS+Kf|7N^7Ef%wV>@q@|Y_Qy&`W3_XD zT!I}mf%lOJZ_7_E*b7|KVrqx<&`pg zOd+HJR`F604lmLq#Y=@5adE+`YwUHGuSn<7!Gil*@U@#FwVNWfnAk&OFt*F>MD;AR+tMQ7( z?mqVn_j0IE zn*U~5uLd*V!dG?wz{>IO^siHxUWRIpEx#Q7`es?9JG07g4dZ4|TO?A5dx#X)Kr+ur zA%=)RQ}|b|ZES`=3rT)e3;spQ9$N7)QVzz3e~~nK9-$S73NPd_Rf#+Aj!eN@(kZC?6(Xjq0kZ>g{`Jtk^ae`YImre99| zt!+LoII6*{IzAe0tQhEb*Q*cJ)A zB?7kq=1BE)kFeuQS#;$Q+lvR|56R8SM4ayatn5?ag#4JI-6!-@OuG}P!53wN)UC5U zz3swJ>eh|EEGuVPE69+ko)jU2R8zM}h*%P;keQ56wi;9{;@bP`GFu%!D@2O8QcTU! z0KliIHEQZ=5M91qE7jDsiF2cB%*k`Ji$k&90INjqQW-kf77};S!f(sA3k9Ks5+<}D zYnc2H6FaU2k~9n;<@r$7lfk@u|n|>+F;kugr z@B!KFvcahfIC}?Q_}pf<6HfD);eZi*vh|tZ=#mk>lEps#z3eMKw&;AB>EeKX=K1@j zX-X&2H&Zj5IzQBlUldZFL=T6=qrTc@5p-!KU#+Cc4MlQ1=KmcLjA1 z#i>h<;Gd}*dY9wBWHJAYf+m>1rNaEs-+?)m2T~vNGITB+X@O4MS{=>O)GDkm#3>CB ziviz#X(%jYl*3ce(DRQ|mkOdHPI%BAsg4yk~pn5hAT`t_L1yu*eKzmOb+iQW|vlo~DQBGP*Yn9TiIHZWHb{LO;bWqZIwCS*WwRHF28vs#~va9_qlfR=A9X z>PczaA$r;gLz0k!WuPf=3LRGqeX^W*8BI&RD#>VKwNP|LdT6AkcUr546G``ead=MJ zaT#q8iw;lq%0_3OsU9GFEI${GHcnH*A1_CxZRYf&Z1F~Q?{T*YH9+~FMT9gbwpk4- zy3G-#;ktaRq<84KhOv^4q0bxf4Z~s`blI;xpaz!4#brSGHeo_Yssv~PG*Lp7qDfo5J(cddhe*#<9QroHC9*D~NHV=&)R)d)hkQB;uqwwUrvM zqItaM=1_-be4v7uL~67(8W6NioTWp-SCYYAq)j}kR*-AHgR1Z=U~HvLT#Biv9aJxd zSF%lf5+d%V{4S{r$tG^6poxN@3T42%xI!=BWrb5=-2a48tjm;SASMl0VCFy2K>a;x z@(SDVb{uumLt05_Hvc_~`8f)hV17b{`P&uRmrnm~oYNSbQ(rpGtRy$1sT+^&Dha3A z8;|Hz=j~0Ae?jPbgB9M#d4u*o9nR6HmS?I|mh^20PZYP4snnGkRFK!yqQGCUU2Ki^ z_MX=grFV+1O%d!z#9;rAPSG_&A;wA(?C0DmKa_+0c$Apm9+O%%IenOpVzrnh6`@Bt zp;YdkS}#QCrw}C9fo5pa<1I4O?Zq%z(H?^86VcEQOluq_XUayli&Qa$o-5kh|DIN{ z+p9zKd0`*jWg>cif_{pl_kE~lacGjdb+;vZS1t{$Q4c}(l+LjrctWMiLMxfp7<0-ZU!j3H5qFhUrD-DzJp3a0_l%615yL=g zo0>}j6U)*zqO_^aBYHMf7Y*5_ zQrk|N5UAhk&|!Ub%5N`LRT;Y`G)wT}c`MYZ)j0W~tWK!!y`kTPsq!mI73R`ULE_SI zGawi#Y;-v~_u2B6sKvTab`tO^1vobqeX%YykZG-ukAaeWuv1OwITeqyE#d|-E+0eH z@*MjRSc1THbmE~t}^hAqsq*U zvZcF2;-?TLf|D0JzcaL^A)f^xZ0bfCB&Y;w5)1v-fbS7i=5CZhHYY%cDrz{yhEZj@ zj&CKkr844C4pDqZCp^0?-Fz}oLE*wh}q_h0-};tK2>Q_T!B4Khc>+n-fa*%y?NnK z8kCrxFQQ7<^btrs4*InBw{?+_4G<;gnh>!iM?xKWp=%W-=kQ^WtbnPQ=LZeql7(fg z&zqsqoM5Nnv7Qhv_Mx9*p4-t)Z-uU7T4OF!1O1eApex=EHRXhx*e=D1QX$GO8t{Y@ zst`q!90@J>LoEfk3NklcWFnnieF~nEwiHZ+S6B*S?)O6XHsq?~5^!$+-0Ou11xG|+ zW|dL|CRY6oB0%{deVjX}s=MIAxKL4v$SsZXeroE9_1-=SWt=p#Ypn6dp>huDDoK)0 z@IFET6TF{L;k~a)+w1DiUl#fc#<-hSb(hr6_m3*&vhOz$Yj)WO32sVXc(o+c3Abe7 zG7(%s^;*qvd({T_d+;?yqtO#^1<>Au3nN)@g;uu_H?R6KzD+gRGosS7$zIed)nI7_ zZKMh@{haeUP#Kb%S1Xs5zlmfP^9fNIWq-jOlH$)zbIbearpY0P4n*-!Xiu&*8O$$` z{|n53OwDz0wKBXJSS=Y;HoV!@r2KN!S+1Gr?-%s?gFvF7F3csL7cvUFV=6g(Rm!!M{#9^2$4I!G4Vi~+8&smKOa z6X92Jr9Vub=8Ar<94)rQtJ+Cyxk!^(z?g^BTJo5Rhx;{o7#s6_s8L=1O&$K-ERpeu z#J||*KZlmo<^Q9@y1SGh=gx=D)ZxF=Vb;6^NHS&}QZZ{kJW0MYqhYUf0#S|D5QrYF zQ$B|ivKPwC$0v7`ThvRWxwCy-eDt%DVKRw+a4BN$YP7e0IlDCPiKnFP_Z;wwL_bp- zlz+-bB?a_hTS9GR!{(>UTDi?6N z@xtP4o6iNQa{M-YsoQF@L2?ME&0)6t{cf+t<}`ZI!KwFDW~FF__6%Bh8D#9+)S_IO zg;F+k@#=Z2@gx)3#i`k^lxBb3{h8>E2UlH6C87+9bXQrPBFwVC;tw`c(s|+jfSU9n zndH=x_m#MqseHnJxlgdrsnVv&blN9P=_9cZ(Ip^o2~APorseHWNwf0*a6e*NtFoxc zojj)O1pLE`eEmhq9m0VG1Y=_;R8La;8Budj3o4cBD@pkCqJlpc?-_Qm47y0q@B(8r zl6VFR#j8<={Bl)&iJptJJbWxWz5Lo{{7s9Jd-r(J#gSqMd9hEsmVefazY{=`Irj4s zz6p@)dX;B3<7ew|&L~xD8M!DK=SE<(=-hWb#in#(S8A7nHPytDDxCwhE1=Q35Cjn! zKYguTY{szi0i3V}@Q3Mqm|~FBGh42`2pbzc1mRXqSdGJLwWlG4ZpE`fbg^YO8k)d#;bfI zYIQkNnlIf2GUd&@40XDx{ClDPVv2woPBvbvj0Pt%tI`*?h2$j@;c=0=bQh`c-f1zj z#jxkCc^w+zDQP>|40uJHELmyYIlBBMj_)n?Ao*Gs1x1mg~4*%Qi_*5MB=PHsTYNppEc>>v+S zE-LrN)=n$mEY`5}|Gp7F2s%q9{1%C(*Fqa@;qSXdtXS6#kD;ts zmjf>q>l|vspaY)qU(tqc((EJ}D>n>edd<_I*K7s7D3zEY(o30G7gVBWY*KZ3ltY=J zwP~?ytIH2^{K_TCRb;U=!DV8Hc`;CtmUa290Fq1_HY-6u8|KvEV@r|?{{93=GQnRW zG6{;+?Oj{ml8Oyy=rU-kfTMsk#z@qJnlOsp}t)5&p5odlPW&Ooa-r0o8DD*P;PR>i$bbKF5yc=1QO!r6Bh`Qe!kE7ImE4)mu`zAc=zoPr^ zvXZ5#`-Eih0S0rLCRv4oWR&WMM3O00-?+8>4ekNNZ7Zj16v#`uOQmac_le+n=#OV# z>%H~BHrU3F;qmE01u|4qB~-6YRhejaq@ocT_fYvFsHsXg6zmh!=1`jid@{w~ScCRn zTGflIQ3h}!UG9`BxO4G}&r4JLbM7yTEtvyC{Z{hTKkVx4A`4n-QWyqy$frN*U8qf{d4g-*q zBtYjN^E)9aC*)!Dcp!m^-{ymK#gMhp;Z3SaElePKze-eeZpxnLo#EZ&2JI2oCZHxJhpCz&jBfo9XQ9D z6XxZEynt3nR_OKn9CnK-%w1X_Q%WRS6t4bV}Wn-&`PXYdlG43f|b*q-gqrX;b7bOhGd*P7>;SbZL5~ zE>3n#kIv{o|Dt+XAT+=PBP6+VLN0Z;!vz_=y^uuL2r2@skaE5TAQijaYjfJXka68; z3PAQ+lM}Wk17@7O7jpQ?`Qx2t2Xq5T4nZbBG~I5$4f2KB&2C5#=`wi{h-a6z(qNXln+d2EoZ*zK_yA)TugGVsVgoL7YuiN2wiIKNeAl3BZPD>w{Jup!_@i;^>4NQjs3*?|FM5-;0m|q z{!iXv(7fH%nOY=Dn*n8F@|m5k@cJa5c*gY%zmcw;vqVZhLl)Tau-NUBqW-XAw)b{(Jy zTKrXJhsIr*B2lr^1HxnKq64Rvr^P-Q5cbyP2Lk4>-Ag5^ne>+u)m+=WKb{cT%fY{3 z!zp=s8n&tUiRwlSu1HTqeFM}4LBofJ_X?Bcfl=wL=M^e`@rx(*L-P&eGDZdg1*(QxXK@UZss z99xRFx~W;AOC3#tTm>JA4$i9ToPbJt{w6Dy23cmwXP(&k2!G-*31^+@rB8 zZwxQu1PTf%rqNn+8m-Z_H;1QipP@%?4o?-nPdrydaT^`e4t;j0W(Ln!LI zs-y#Ya9r3U6tT^(M$e3H-Vlv(hX-Ljx*OM~(9Cow9O3N?3`q4*au z4xK@BrPNAWsOexCp~#Rc4z@{d5d+=n#0d|}Pf*RQijIg}XM3D_O6c$~D)j@xs@6>d zVY6^Z-Fj^xJb`JgK;EdD4%A(PFlh7=P5t$aALl;gg~kR~+Z z#p2fJjq2i#88W1l?TDhmQgMH{OCg$CGcTv>k|99Uvrs>1QlsU>VNmHf zLy`gsr#cE0~N~M3>9yMuAUH{BwW5+HUJ5u-bsF_AsPi*BkF_PET(4qH5PeT z=qGoME#xpbwwO6NJWIHmdakgIV@15FF|dhlEv9-JO~GODq*!yi3T`Q#<>}7lVulZy zGUL<$M1I6CX_WF%Q_-N%M4%9x<%#4W3Il7E7t+h{>?LCgW?XgPDhThPH|c`hnr9+& zIevrGkMuchE!#yezH+(p`$KTK_;pD8nu;zm@-Y%BO3;Kr$LEAMW$BAv0Xn^9Yc6_q zE_jNg6yu2KJ+e*cC_mGn>jEvwJFE**iOzkysAa6vJ>edl@R{6{cst5$N_lnI&Jx2> zoM&4o10E``&L298EalZ<`-0K((58*yKImXDJo0imf21s*QeGVjPE-VvRwrvkLY2YS z%V~AG$j`-)grwEUS|O&@kvo^t>QJ30j3=bk;d-GC8ETze1_0GgjznsxB(Brc$0j7b3qoonhs1N=~pL&5?QAfVIFML@GK4YbrT1AF1YCurB!FLx&(^QTL z$zWASLRgL}m19Pd)GB!}w$hUgS*fobgW$ca9oY?{TY10KjieqPwufH)FgOQ)?4A~a zJrBAj5!4`5@JzTpUwAV*+H78Sw>ggZ3tc>9&A4DmEn+ZFeFk#zO63{IY7t-d7?_x4 zWam@ipN0D=Z1+4J?yPaAdNb4&Z@QqrP$xf*W;Mn?Gs$6P4I0SdrO0{8hikMhyfN0} zK)8|<-oSGc_ZWzyq?DjaU$m%ozUBZ+(U)J(%|OpT8}_x*3>DDT&xKzTzNID*4@+~t zksqpqgM5TJrovJaCic_w;paKwQY2$Z)@jYC2RJn4FGZ+s*XWN-OB|cZF=qZ|i5}EI z*yOZ|m0uCPl^3p{x+DuBk~+jhJtYHOfzXj9p)GyzvxV6u9Uw`!o*@iSg7o7@M2t!n$)9$+zooyGL zz{8-WMGM=hr*}IGGYq#hWkkPWS}G{;dJ+o6wr56PQ%9dS!27s9cSR*1r`1DST1IowPoIYu z@lQ(~N{ami+gC4s>nf#UZ&;>EOZJP)Kelt ztyZJrv*BE(IT5xV8ZCY2!ULI>3W5Gs5;kgD#1*39ZG!b;u5ZITIMnT@a3ik2xF=W= z+3FOAD+c1Oi*5Nn+=XpP{Fz(T5>@^f9>{b_HV&t&8-{-hXU7{VROEa0tdpn+g_j14 zepRaoPKd;>S*=zPglDLuBFo{utRmn45`K)|Cv_t!#vZnZUi@0PObW3wb=rLSYVAYR zx@gEML50e?5czBp!qlPiiPg%y0mtI#vX^2YEmG@-{Ew@ZC;sI%QX?so$ai7~c?gmp zO+w>ZR7^l8heK+M_6;glHQ*bpQCy31LQ)wItD#FSqF{VP?d&SJrT;qf4^LZ zPhX?F6(IMMpXi5JBaLAG>}ut8m}Brnab}ykdZ$?(}nQS0w!JWU<_-2m@p{oU80 z!jFb8+hITtcc_@gKP`0_cX4cA;NsROHF?9De@2tb84@JXWa^IaXJ~3p1zninlQ`b2 zBL9?Ak(JJK_a;~5Dv61|iyh>}*7UA8oX$4~5ccYhta0xvK~9aT_^mbH@!sT0+Euzy z{QDY4Nhyr}4`XCTd)_K;M_JNO#P&&+-IPki-NMBxDmpx|VoQ>EqGD3TOTz8<$|?-1 zB*qhUZoRhwN(;YZZr)Yg9f7|S%XZL`0Vp`OTIeJ{j89Mg7L-39Ukeu(cT@~?vo6d6 zw0G3{ma(%_Dt_b9AG0bF4t>g*2{}TA3@d)$DM4sP#esN3Vt`hw+cch4F(=*zOvof* zyP^$WaxYm_#2YEhK!wCxcIpY_C~wBLkklBHhUC3m#N3l7D_5LUihuK7wHY{qr>J8F z4#9ib3_L%#;syRosT)c8KVy67#lLm0Quz4 z`VtlC=WCOG#)}nq)#G3(s!RHX5?NNnNk8sT#Uu5&2a}V2l@g-*&5F!=kcBKM>9-^x z5~QE{^un$b>6a4H4?w3*mo%ho?|hM0No?;0aN&Z@+HS;EENqDmzF+a9@F|cYz5yyO zpWa)MD||yeB>~N+Xu<~-HB4)TS$agmo1N&zo2ADY5y55&=Y8W_uTxv47VGq_Qd4*@ zTc!LDD<<+iq;4du)Q#<-7vE-`(keAw_s>|R=NPE7GDMs$wHDY(k;n2MC^yG%9}I!W$TiMB;f=|LN634;U=t8 znxvcHN%D0AD`~_%DGd{~jj7QZ)(w67R$4jX02Tx7uK=G*(`LaFVx4LL$R0H2>+#qmgAj|)-^zRmG2ni@ecf*m>`aKaH+hUlk!82c;^Rv<5%^SKocf5d0-`^ z&1?Y2KI2p%!AleB0k#5sgY_tQU1eC^vV%s;rw3Q=WLhc=#wF4zU3N-|NmD+BZJ~@~ z>f=kD>>(7KB#a-tUTrZ3;(6-CG5z5^^d=rcK~D^=EaBZ!H{}h$q6{$>J0e>qlTa0-| zOGZ|H!Jl29+&XuXrt-B2pBMXmROK)ZC-5Cp*&c2DH8&l-v9vs!N;N4H^$G`nD z#zv&pk-;03&UN4ht&krz9#grLb7Oka7x-lc^pd81y9l0#a>iEv%1xsfkd$}*l%Okb ztDM6vpg@!IZg2uL8SlnyQ1WgdJW1|rHOQ;uYc*OI-nepH^mw#K**_2PD$m z4d;I=Z)F-P9LGpX6l4tsExkyg7|jR;SpefKINXPX#C##0+TjB{O&!Pap2%Oxan$ow z&gOoSx{(~m_iPWn_){B{j^n)z|BU1CGKeS925PUU13I_8QgvW6bEB3<#D?ElnbVr@ zxiPsxyIbO)L+l_g_ES;ildbuo0Fo@;+@}P&YDHzE*8G@_$>Yu66CjKZP-s~(T6BiI z%#HtJ6+m5fR_;m?4Sun+@_7LPN#g23qQNQirVFUy?nh~R z@Tf_MyX%)dQu!S!j8)<-HewjgC_DczdhTD9J>zZ2EH=JW*;BY=6GO9Ma82at{guPx z4M}Is)oq@SRrZOukvq##H01xgQQV7@rlvq=Ofqx|AFHeudQ+X@bB0;6U${*T7{9i% z_Hi)t!{KubFuj24flPAV6P0%17V0UXdjV?nBwQY%TjPngl*hY68ZUp7c**5@xeHlv z@Fkaav7S#=Zsmn}as%-jCi$$ofO<+so`*IbsLW7=i)&{a=B;|%6zWUC{RG;ZV`p1M;dIMh$g>g6Y6ls z?3Sqc^Oe)Nmr?ln%GtuJRNt5@6u4Ice^CK`@P*3x+)32u#mZ5_X$qXMUcge|nR6jD+r7!9kxiw-fB#Vl7^&Oy`C6n`I>ciSLYdT{peE zkV8Giv#JBlQ159?u4LNF(r;I^=i6@<=S6p~n3rFgSDVd5vVi2^#7yWcYTTBhY@9K( zHX&1kS^We`{xA=(h8pgu9c3rt@~X5Gu_K2oGdUqZO;mA$_fBa(6eLJ^!Vpr+O16b^ z1uzjCPj*>Jl7y9QRxc}qcse@KK@q%%-lQ_tSHD?#z7fAx>PHF>R$NH!-JyD zqI=T5+n|e$yt+)~2+)@wR=y=XN6}XnkJqTDM97~*!Bds})UAoFIHA${bmf&yYhs+g zQ8#pdRGGsx#6m}j#|AZ%MK{vyKb4ON4en!<;Rc}z^#D(tZ*U(f`nYlh(-IFs9T424 z9^y~Q(N?t_HN7_21*(s5eIo3!dkdbXju;u?JrN@kt9m}ITn&DL^dbpS9@{}L-g%!= zh>Z7X$Cwu=J{PP$dl|Ho#F*5k_}u%HE3R2_Y?<|P?C=+r&UPH!JnIwD`N$HJxVKpB zBrg`NA34>IyAOk@QfSN0s#QZVJV}6k)G?CT4vNtM*ci=a@{9xo6J}DFRl}g{GIX^jr;O&Du79Ox-M_+vtX*Qvukw zGFu%^i`(M%*{pVp(F3WDylyd#QI^qevpOJikr9&fK&~*i%jy>sO^aH_vJ1+#b6G}6p=PlJAQv2@ zqjP(_ZnxRvH`+}`uLu6~$M&Xgg#2y#BYQ2#G~^KEZ_^!hMZYBuv~El!r-21Bu;rSK z=#7C((z8rfugMB!1>7#HALIlwMLBIQNTKEP+igyqV9$GKGD$6^v%83n{@-iBK2K4U zD@nl^Bb!<&g=kvY)+vbPizhv6uZI&laM_YBD0p>^UChFCoi}oQt_yZbW9qC$Q`B@ z_!qhF(Gve62gF<9U*zOhYxvcskbDSD#}COaZyWpz$cc`Q8&c9xO4PC+71Vz{lgo>J zyfAXCA>VC_GBwPUzmyuL3u;;uX^N^*q;c~r@c8624*mtvPVyu%Y*R7N?v23}Nn)s* zUD_aM#L%!E{k|%)$8ZxhJUVyR%=}IxsVC4k3FqZeH1ou0gNS)z9$OR1(9z>F86Sm*u!h2ceI2rXx92=s=3S>bZ*4lcIewJkt#@= zQG98FUvE+D7BDL zlG4fu_miELr075b7m6(s9cW65wK5w#6e;8kS18BpB#$R0jG;lPofIln0NX+-^PNB| z#SANkYn7u>6YVB4tS{Z9S^b%eqQtVyqgW9=_iCK1*q@t$Yi$Z>5PgT zWOP*bFpSq|f7hPK0=7M7B1Ho!@e4gGLIW|;3SV|VF>O?)6`6cejusk}%Cy2SyPsTy zrYK<5pa5Pd^6CUD8WfioiBf`<2gSKj30CB}_0!NVd6SGfNv1JSq1??7F~Q0``y(?9 zFVN&Artn$niL7t%ix}MDAQr0gDViYYL@aW|aEj^;Rywot`Q!JatjXb-hU4@bg;ly$ zM3nAVv`Sf1!jBt%rXjJmQQVMnv9OSX=Cq6reIoKL$Jc*A%&8(1LrTIz18A!Y+d`=> zRwfxu%3AT%>k&F@g{&cK)NrCQlC&=0Qh${}n?Iuc3bVk9GJ zQtkI7kg8(~^juWpoL^sk{f^{u8IDJ0HMQc?foXwzG2rwZR?KQ&UW&Pb5R zi08Kvv!O}2!ep=)sR7f}8gR{bb35}LU~FZwmdtHQRiGWbl2w4@Y3V8TAbCg!1x%En z(>A4tY`0DOdkRg^#0=stNtXT#md$$@oKt^K@oiI{@^p*nvZp-7G%ed2MSnHSlabwm z_C6iX(YV?9l|CXUa1vyMr1%Dc?3wy`9r9~?_!~J-6wEkzxdKJ--D^ag- zb_YX@1|@;xzHR8zW8r;`1%2=>=_rsD2`(zbsAuVlf#t7UW|f9ZpwYDj`z|3Mj;2==!s!Tv&G>|ZkOROrXj zMrnHQ74vhoJs$ppGZ^vg;=Cqoaner+TZ|8iSuvQlB(o^aieb2(0XPje1W85=Xf0;M zP=n!&7=}9(V0(EO2PeYNn9~fVE#84KB4bAMEZY=I3MHx=wM2Dq|9e`+c4S6hdHLIVk+;VQpLqp9Y?vug7~a+_TLklJrvhbO9SUIxIcgn5Y#G)GMw@0Gfc z?8`U`n%I}Thm_Id0JOJHR4c)mE)JTWQx_utFoSh!&$;j+~O|*)hE>G44LGgS^;FPLMo41|aN7R~h8E5@ctu=qZkW=^=8`HABvoDT90*2f-92 zMb`0!L+YUGMl_;N^d>5DkCK*2ZW?M(Q^#j(v@Yz87GD!RoTa&hmra709ct{F&@96x z+bInq=HxsUAjt(J1Tg`7PSc!d!o-^Nk9Ok>>GTN1u4d6sh)YS|j=sA#8q#QM(rVjd zV01FuR$+U7llVf<3lUp?<)COWZy3V#iVYA>CSfRG9%B31|HhxhsIRRwR%j_1rptmyfJIHtIf}9JX3A+vl3n< z%nuqdJo-NWFR2H~`aDbl6YH~nyE1HFxm`PK*Tq27_~=69H(_v2ZG28{R~nz=ada8u zgMPaq`T+m)_T;vwwUjmD2N6CG6^**5H<~haSwpn(;0g;`H!8ZFyA*X87ge2yl1)p7 zvXcWhMyt8YFcf|9Tn6Zz07!Nm>f7zg<50&%UZ^gfYfx5ch^Xb0Mr(PaI{&H*;R9td zVPktzl-^Grv_q0Qh7GZCqoap8&Vvb}I*le%#UfGV4zUxs@;@fppXa8hpngv!*o51o zk8oUBa`N|2KqSbo@C9QrVkGZJ3*`m$K|6>}{7?BX_#*l6h>{O`wfWG?8@-)}&w~1V z7%q|L)i@tA0?|fw;KGl-7K~MbZMZu+falI6=R;uvBEbiI*_jfsmlAxS^RMjv2Usxc zLRdhZU(DR8G)e7tYU;w?eG9+kdB@J=HmOJ=i&g9(FE(*nw6G387(kN6Lm?%|@LAFK zc>b21%9}s3wpAxU62wJ|YAPMnTBw7%5 zDP8an|8vRT_I~uCBs&Us9*aI~C*_+ zm1lT|0mAEvE$EI{L+geV0e;b~0d{6jvLFLtb^-?;Jb9{gMm`oog-ogd9htw)vh}He*h$zJGem! z@>ad7>^l5+yOXGxTEs@nH`DJkYqx&5i`Sx;dzzNtMMgk^zuM8ioOTG_AVU;AdJ$UB2G5YAoBO z!W2)VXq3H9dr>`|cPc^GrZz!UBR(u_wp#e`(n~D?lsXdQLP=)OaPRzxvLH*LJ z*kcC>&qg~+Tn?{f>$<&V)o8d}MLLk|>K+P~*wwXrly-Ibo`1%!mSKdo>?*R;vX7Ibd z|L6I$@9w-!)jc}?_bii%Q%iRL7`w@uQJTcGFjIf@=h9Kcy4q3H!SBKaLl z*9ha$fssyrMcYB&PNmNZQ`Z|O?6)T%h_7=gOW121^x^9n^#td7#`|36z83@GGxwa0 z>`8IQQ?B+3`AIeDWDo4574j}wAy4gET4WI);Ag`W@>ktT`-qRK9?S0N{O+X#a`^Vj z_S#q7ONWTBr~qg&`UB+F9;Gw&0DASr2zzt@Huo&OMLi>p6Z$r{@B|J|MN58|rX>kG zjqDd4UjLC!R9{b?z^jy=gctfxp~+LSv?z))=cyDhQ8)m`vmCJ~keroVE$1<#506x%}vrFx)vC!iI!nEb&*`@u& zvsG=WQ;D{9=9G5O>$sPyG4(Ie_~@L{j>(R(YuK6enOoXR9H458j&m${0{;6NUy4QA zlKD56wk1cK);Uu%P=|S?E^(v^SRN?;)Vxx-GIYIk2^uH%D-NScabfv{tqV$rTEq#e z9%(*-8H;KB<3&ecj^9{Rx;lq%tzeccF6}8U;hR&;S|*UQmy~u?cdya>$91O0Fj33& z!w>YpO?BZuJx)wm_jJ0KvzAU&U-LhJSLjG7+>b6R?PU?RDqSe5e-j7IRR5z-YenRN zr~e)wSu>yscVozG>6M$1$ZhHlVubbq`tCQ%=XBc4RHSNcV28p+b1F}GZ}rnH4c z+`td7iNEJ?{U)Z!>6c6+kcZHqi52&z5X-F)o4?* zb?_>w8cEH%(l>?9N)L)=?7#t2&1lIXO?Q{J;7(bu^NhY?G+ltMOKb{Jbcdm0WGlZ+ zz4F6d=5}bv&0V7xFOnCYrWZeYymWa(VJiAE@_p}DC^(7ieO?YVHJ)!VebJ6=8uqWe z)>qJBw5suD-*~C? z-`T>ZXN*DfU(Y(5<;=-z}}mLieP@v8;SGn8xAkq2QOFr@Srq@Apct z6~qhqzI{Ke>_MtOEG-Z(;UBY|_zOw9eWl;4+p{(G-4Bm5sMCJq{?aeh?KN{dM{jP@ z^qDP*?Lg^uEp?-F^2CACh2kyzaLf!W<(?!JXZ)UzOIrxy3htd8Q*4Y>Um)J2dQ3Ag zE6BpbrM4Wtz2a6MI*dg=p#p$g&00cOS*);#SdNwDl4woow6qaBlY%3q!^F+14&)Kv zI#SwIZ^VwDAi#J>1)v?#v+_`>mozz&m!lp~W4$B=&1w|sSub@9t@U!NjxuA`s|ikU z6MlO(-Fp2(C$8_<|A<#9>vh@ZrC$im<8lv*^=cAN0W-h;_h+?U(2vjRn=jK9=$bE6 zh@ydX&APgnE&Y6D;(SJDAUAuB{pycb=r7HF6@OJ4sV|H}XGVL9!xb8iK^uL)esrAq z^{s}|F|@|3KWX}7sp=MKE?wG(PWUg`uE89Knc}NT2VdnHd~vobD&tFQyT<-pIx$;# zB5rKEN|gycDtAyAzvw@ub?XS50Aggj?$Urfvomr@wy-B|oW6cE0l|=~^Oe}cGD(CL zamKz}`Z{VxkK45LsJ+!%swPO9)zW49_=0+ovn^uwa~wM`BXri*>Y1X*KW2p*u?CTA zh3w~K_gMv{(es3MCkS$j>m~~68S;ovKLl=aw!jxtUsYp`As5LH598gzfJ`}tvA}%ZyMR5nG^e5 ze$OA{x{9+^5Hw2!h=t7}Gu6FokhawjX-k_&$}M6g-zy{2pq7zU;+_0stY;{RPrkY} z8Qv-~8HYta*D7+E4y3nrWTNR_KbS~4j*4v*CXSmm9g*QcTw8MtWObAT_xW zm+;#kK$Ebooev?6&Cn`IH%m>20_`HF?CpQ~#leW*>$8PJgkpApW4g*jH-*rN7wMB!ALh ztg7*h=kbfVLl*jr`EvCI`V)dIpEyMk0oD6r;>4+YubJODEB<8nh}%Lo9j?xa-_<2D zDqCpvJhL%FlHbon0)OcUsyu=r8j-ahFFCVWb2=erN9Zq1#`p*-byL|<=t{wjkD$^A zA>W-7c~%_Ajm%EMXx*QCf^L~7f&s|ED;__a>{)kzcHG%3g0%E(d!(Vz{CRf5Q2W#j z8p%f#@V&?%(y}w0#y&5f;WVBbL_UyV%=2V*)0_H{C!Y}Np`$Vw@) zRh-TD!$f(xEiz18%s*zTsl7eovdkuz*(1;@{97uJ%~RtwmdCs4dHH~(8@Z+_WU%v| z;-egqxJ6vcwIJ*Ry(jo5EC5(bcDf=Cb<@-*HJf$XKktt8QMcF3v#C7KH5uo5R(y{q z@|Ylg!jHn{`8EH9&NB;b=Wrrb~aslrg}7{{2RZJ zVsUo%j^z`QdtT&SbyLkMo6D;_lwp-PuBuZS33(3WR4R9niMmCS(-l!_i*+eyP7UDa z&d&Hrjn+|~Vn4nKGtjX?ktZ$WtD&-#FpOW$H)5PoM1DU%(k*tXSkJSx&9jPLkWY!x>AO_h*iuB!9u~Pg*_2X&LulvpB{GC62Ux9n zfhk7r0IL*sx~7B52UxWm9@%dZo_>L>zhhRIQy)Eb0BF)y=Kw1m@};Wjl>@Bakmtr7 zrjnYQTOLZ?4TvtAUhW7#b&CX_kfueEb>e3{E@?R3=?M2Er84k~Dd?ek1L%X0br(hM z5P#>oBb)247%pbNsF5V$_ZNue)!C!eZ7C5s#Ey_x%MZm)>Bzns{6wS|9&AkxEMM2W zNzgalcVlS!jpy~Z6-eF!Ykb-zk&YHpa7iTRWSSOOEbYkpYa+p+rPMaG(31@({eqP5u$`8qwH8wZPrB$q7^3_EOgx5sU> z1wwwS2mcJ&{eJm6y^O8cb$U%+(kA{>`tf#|4RX*#|2DmbFKLf*`BBER{QV!7CpkfB zr1-almR=7qE4^m^YQpbSn5i0WNLJdD2#rIrB*s6qlDrVLf6P^xI!Mdkd)VXq#v2}=sJ-M zxHeLkTzdJOHrW`Xi1?Pw=}PkJKGMhNtxYJ#ILODGuQ$%a>T$TLC%UBmL#Et3dEyjb zaKhwk^QpEct9^6Y)S;^@A|tMtliSp^#pFqI+6%K^(&lzjt9&vsx@uQ~WA{tJHtO39 z`oF})GmUNf08=Wqk++77%ER^e=57_=$fo_I#rc_2Vzmu2t8wDIUZ%LdID1@@Eok@S zP=3khaNuNnd(i6(yCg^0AM*M_E+Wmpr=-1UBhqwY^ekbQi7dY?qhW`kEWef}%j*q@ z^0<~LwU*_$iYB$!mw%+m@^3PNRoPBMS)Mtkbyk7oQHwJ7P?ls%E3$b(ME)XMSDIg! zSJC`srbhInxpf^U#xWFU?zPR*jgEGyt~l>j50qJ)XU=Jx%?37-=41mZ%oaBtx-VIH z-on;g@ncG$-%E^dB+yM>)(Z4*2E6l&mUn6|(3@4vQ%ix~e@X&9?PaZfo-7kxU!cQ2 zzsu+I_*^cp-64en9$bFnayW69h~x}gU3OB_Xjw_Fc_SiCjPCc>JzESFYBw?>#-u0s;#wDA5amd_EP>47A{MZYpKE;{1aefLuR4@{;Ap45IN{0?0@-cBP3%+<*WZ zv;?TVXnd}sKrKb%&r=eOf>*Snan37DAL@!mUf624yF6B_Q?dsf9;e@fi(P_nX2Tx4 z*CR>faHD0n<(aqf5azfJdqunBmsD6q^_0_QhM# zV?8RtFfC8faY2eK%5-S3aY{(OSw=D^8PjDXYbB%0yvTl`{1xryUJ5hKl&M5z_`>+& z`H}N1!fJr1H}_H?Z8RXny)g2Eu>KW82e2qF0YOo!_if5;z&;#6Zc}f%5%#BPv2VVi zr-%MVYV^xu!F{r38Uq$}RvrDtV$j2gVui24Tbe3M@hF|FL9*d9eTqG~H1d^DZ=*5A z&QWHcy-{{E;_a75JQkr1K#VBn(14I#w?v*4x^L805~XN-UJ}Ack6AX#pA#K_MY|vS z8KW})IZ^l2C$~DdO{M5$N_2SZYvGKP;!22G3X}CnpSK=uN6K%DgvHB&g+vRMwdkB$ zL?K7#L>q>)T2lOybc)l%k%b#Jrc-^$Ql#i?8uFIb~VPImcCrtKDoH#4rADVu1C^R|Wn(vz&%(pq6qz{QK{>wegAb;E*5rsj@ zG89=jk6!_kg`S(Vve0qU-y;hp6!W!rU?*?V`a;*ssMqy{@@+O>*d_&?Zl@>gaEF4P zfD?BgdJ+A5!&1oak<)k?TQP6w79dky|CG{;3}b{nuz=&n9D=d#8f2 zU2>O&@#j}#^H`_>h>^`r9Lk#jA=j>f%{{Tn*ygTH4q~K)c7O=#JlO_QvaHvVrS`s3 zwK6G%F0$q1zTMTa=c)W=(PN}$eWV3xxi&I`)L$EkiCs2xjKaQYNU`Np+)xQ-Iu&#M zT)LWMC%F&aoUSGZ(D@jc>wb90)FkuqK6^OwmTmmaLa zj;zl5wC>(XGt&peQg?O>a?X>H>OB2@FVK?hGtHN85NfnOGFE(%UkTj>%X^M{lA^u> zTl8@pEc>8Ee1mJHbu14l7*O{FUP*H-)h!a7mKf`^bWUYQvwyC`sh`mK7;x%gyh|GN z_uJUC<3qiL*q*pyXGm!iw6rVvH->6vNDy)a$3Fl)tK@Q_jqIm!WN z>fRXa>Q&3n6I?PZcN0Ylwy6%RTzmB5c|}dgs*RDBWa7ril{x>|0_-Nrtw@KL`{tAH zHb#bs7je(!s-%BxVb{cPVMa@xK^Q$y4S{=N1i#4yTkF8eS7p4qInubTaKjc>4#ACf zwhn|c8oetO#U z3oT0TQJo;jEDk#`@!ue)HmmRxovwi@_+DPQQo_*W^T@1vmZoH6t7vOBe@n@rT&USNp&xJlvKA!Py!=T<5To%Iwk3eahAz46}Yb( z#OrxdXuQ|!@D773gnaCmNKPZmEh<7T<)IlNr*72}^17}10g~wwQY7U34pWGtf2$Uq zxxiulR;{=Gcw)WkG=Vht&er73bE3`2oVw9IS#GaH)?1^^$wl>}ZAfn2Xu~XQqmV(D zMsvy3bEAz&?%JqG#@CHro~dbT6pi@KijM27mr3|j;f2@aNfnYty`mSBKk7#Zs=Doz z7`(*fT|ZJ@xlFWtL}{0HDt5|LHBe5HOAdKg?`X%&iymQ(c0Q?A*`$#a6)j)WY4FEv zr)JP1IRm5ks$phNO|J=Q?T zrq#t75VC1d^d_O%He*^{k%Ta!)z@jXdXJ~o|41cWT?>`OeSJNYG<8MsUHsS;UAS7H z!P|`0QoapUKh~hb>Gw+xY>hfRk}V_!f?l^H=$71WhmsS_)QaT<$8KYKNw1`%D4<~a zYC6T_79BVDQOewh{VSL3dHD7QTm`}4ZTk9Y02cPw^wTxUtZJv9xLKE_FwW_yQW@jA zI%+K#c;KS3x^BT_WjYVY@Vt(C&V=u$Yr&X~dfkNY=OiIie9tXxHAjvS6?2+%r%{v| zkmFV@Icl%0u2s{cmda}3$tWvsjeqJA?{|ITB^<@VEVpE*KB6<|h)Fp`l~tI&=F zXK+lSH*R6@{>JJ*mfbzUyWLp1-klso#bjJvX0z>DL-;$-TmK{F`mb6jS8lQsw`={q z2{N5@{k?oRcLATr>J5jylEWYJc!Lgi&=;_Vg5i+Q?RCkDHDfELSeI=#cK9Asu)G*; z^c}thz_Pj|Yr=MYg&M|!R0?%?EsLg$)+)1+73vB>`E=+MJiljTbaPtuDH+|mT6MRH zSUsoA>CJ>#r98hwCNlDh7K~}tZ%r6}TN1*E;a^W<_@@j=@r0HXwO6L=RkTP?7@2#1 zJ5ENKa^leym&2&Pqv-S+Q)60sG0$(nYsPADuQKm`GJK)p`HcXGkv{uC10s8V<6mRS zN!K4qoZsJ%NdBmDzNY3tTkmU3J8?xrooM6smj7uq`pKzjrz#o!oZD9}qfcKuSzVz} z(C6_=c2Cd|_6Gb`r&qGMoWYRS9tgv(ZJsvg*1Qa@SjnjH=xfHx>1%~952KB~a(WO* zhH~QS;>vj>b9=y1tVgAsYP|>inOY!fAB`SJaqYnO3XgNqXx-P1 z`TTcf1xYZblUluQ%;#CkL9O2#^ZB=Fe7?_s1n+A}P~tI$-o_#QvZ&dN2kOT-q3%nxP3R9uuog0%>|( zDh}lA$oSW_TK7WQG+8M7KXM9t>753hnZaI=8H`iAahZzxYS-z64~SZ1uQeEiQ%JwO z3Aw{gpU>)(Y~C=wi-6kA&)AANh3~v>taqIXmiM5IzTVvhG^_P4&b{H#%qiXtSkYfo zyuFp_)Go~Cm?G;9tsI~6hOQh_#f#5@_f9cLybn}n(pCoNB5YXok<+4=>c-{&&_YqQ zYw1q`2$#vA&c`5#&u)L!#?)kLVJ=Dnnrns<5{#ir>~ zjJkuCs4>MxE7QJBp_uFqTJANb);J9Wa|SJsXP{O%31vjBThgdCji=WCNHJZ1YKo~w z#y_W+4$27BS4>v7GZ+qr{eGL*>#%#VB@uM`9moNC9QHsk=$92!##U4@S$>l-O}`=1 zm5Un{O#kwRk#hPGm{v!u2YF0$y6Gb<>aXdhNy=@b{Og=;rt!Oj==oH zRAhKgISH2m%qaL-ss&?CVQ`0WW~MX=VZ`hGcW5!F*XdxUK!q`F%R@!ieQi-h+~NVO&j zVMMCO(@1qYo@i=mYp0yJFC+|-1my9S54Ve7G&_2aMHJrTIiUS5or%>Q=`A+oAG4!p z1hV(eXr8(~J4>dWwy7YzNfynEo}I(@t(-RZ#=Ph{v4Dpd`OwTF3bA{Bw7*X81NpXe zBDC$^-OCq|CzdsCp$5=Y-#pH7W`fC?Y}b-UH>h}&R^QO;n1pNJOfS9((%Bjm-}vy3 z)okot|40w=#Nz1v!a}7BrTAtZ56x;eCcMdNHn=Q?k5sIQwyWR0SifY{fZ}rXNvd?C zXX+~&Q;4FC+2q9X5`jUv&0I&F{Ywf!>^ysvy0+RPQDTo=@g4jQ3J5^eK*FU4l!2`;G**AooWEKN~>Pm zRTa^ox~)bo-q69OzFhG5PN&?SG`Wy(jk$7Xx?o&JXKElABk_(21}kj)S9Np2eQM(@;0$4D~rm1u5Vec3QwO-eSn$~04mqW$vSQ?IU!W(guuk%C?) z()+%sN4!t>9i79a~f%crcVhG439tF|%i{qeh^Q`NmQ=2}p) z)+4^B2XOH2Xn`7l6+e3Ki9RfTp#q@AkG6ZGm2{Zx_d=LdQ)0ugRsXJn!m8OK*a_My z2n}N%`hUcjpQSSN}kMA z*rQ8@UHVjzue<-!gbLjhtbDFeLAmb!HxmLBXhG!b?i=nl#=R>ElEgi|?w-T_Cv;gu z$>Ev>^*I9U`Wpz)j}oBvn*-U2s0XE=;78)p&N zT*&{~tqynC;SAYbq~_K+B^evBMBtUXjT3=G6g*#sHu{Ock-N2tz`kT!*Ro{3l?%2# zSWm(WW@l>EdI#n_Wja&>P6^4k$VleY%~Bc3+Fiy4+oJaht9Bb}n~RmH+#|ym##e8r z^=0b;Vx(v;*MN|-UysffHp^_TyUREx0YOokta{=Sn|A{H>VpZE8exBt7W=giv@cMj zKP`wcS4_T>QB2(0{+&jvpLA&zZ@Du%#v(L*%a~Z#Dic5REyg#6@t<}@w_Ajc05Kv~ z;zGbAh<#6Vutl)FWxQ85GcgJo>DHxIqqnrw`iT+N;4A_ibZV`_NqdS5$+UN(e$fvE zBt?*gM&r0ADMtjqSZK7IY~Hf41sV5l^mTD6*HZg&!mY~E)xAMP(|APPBH@rH#w%0t z2=m6-Jvh;~w0={*cpIIMfkS@_-pP*BM=P!o9#o(epJ@#b$b6>QTUs|BpE9_q5=(QM zOy{rbG?_va5!H$f%rz$!d*0Hf3wI^fs&<$b?2kU$M)=Z1D(+Q?_PN|aVf=|7q8GLm zelwAZ@3kP)a>~lv2o3ibOT{qdQk~C@q~en_so13;Kh00lL8VqAIB!*_HRmVYsk)yl zGvfQ~(b{MC9v%Bk4tIH^33>U(hjYpJ`^v5*e{S1fpFG*4%uB|eAL}NL08El;*T1s7 zv(8l#MSHaAYxf>5dCKMDbXIuE_*hd*e9V{e!I{!IGCnk>H2%`LWy>uB*<-Ap*C{Mg zEq72D-(FDmjYW6}AV%tWgBIjmsjS!{JSQ`v?!LjsBuLU{)Ku(L0P*U=`Z<3C;$N>N z;*X{=;%6tph*f*y^~tk$tnre{r@)8*JqbSiPZ}S7h9}4jx9L>`E*@1_?~G9KZ}_I{ zn(E@;@&8r`WK-RDTi1?1xjdi_H*@m3x2~KAEb^3Hn5SbJxu(mhu`3|I)Ks}d$6icT z^%i6L_Z!vi;}3ev9D+EQYoSd9?o+sk?oh z_}SAEL@ol`A}?JVfyMg_EhE|TRoq_;FRRYRF?|%JWKWBwPF>yeqe9Y}y~#L=-bu*W z^@Drmt6F!^A+=XJZNW>;jtm!9ZKNwmu=pu`XLX$8I5YeSZQf4z!&<&=%sb8Sj`5D# zH~C~_*%euW<85P;&|kS`Mv^-yjK6$&+3Q)tP=FYjgbTDFe~d2cmnB^Ows9KavLuL+ zNho+*K1S@Ux3wJI3~!8S(wHKJr%COjEmvZ4G84+e&pG_&f-sJpSXtIQ9v@e>+9Hvk9 zc`;aaKzvcvDa~6?-8H^G*%>OciCb0g=nP+cn~V;Zjn;u;OL|Wa;D&3WVGgm%2U)6X`herJD zHOhDZ-T^6T%6P!!vat;WA38HSP-=lf-mz$-WU(~b_v&|K?K_N)q1C4uqH)IK00Bod|-_Zca>n$m>W(jY zsm6sK>J|yL3>+~>I={YrU{jryWz)s^Jc?KfZ4UP&rF;{>UCD`UWi3b@Qg){p;abX< z)9xf?UBznEV`}9h?~&%Y53Tu7N!tIZq=$Y=Zl)Wr_C4TyvNq7Hel*}(L-d@=Vjf*u4tLWnn9MR(|g)1 zQ4XGH>=YM^>#R;^xd^yQ6EF&~R(H?1q{W_f~C zY)OUkRiEU+5=(_8RZ;dwK0@;X_@4|H-oM^@JAh8+(sIg@#ShM&Elp z^L^QS{Ed#G^&Y=Zmr5>n|CUZU!RMzGyI;exm>I%^3ow7JdLH_|F}DoHJH{>Q*!}w# z%GwA*@O@)BVk^Bfke;hgB43ns z(aE2WmB}Go_`a5P2jh)KLvpkjK#{@IqW0e5or!hG+$Kvor&i55eyieV^w?H5LVSsz z4byU$gsL@?0y|s*^O$Y?aAsEF`S2muMl*ncUT8r_GD{zmd$I1&w&8X?i6%!qkgIbrHo3wS$q?e z990*gT^q;;&#TE(djb|T0F2s&n_L5XGKP+?P7RNy2sJP$SKu8wQarf%N6PN9%#eFf z?8yy0FtaCPKVU-1)e~RA=%cgMs$OJb4hj$I8WdBABDZSMnLW7sKG1q_cgyQl8xge! z7bf#RFB?qiuYw!*48M8{}1?rw^YT!WebofT@mI4(t~)0+3<$m-$F=A`Us z*|quRis_An6L)p>h6M z)agPUST=(+mCfTK9krLJn4fu&*F3$Zn=tmnbg$rQIv)d(A0@9}7Ww$%pUd`IgqxK< z6rrEagEOHY|Do0rkNQyGi8Nh=uFRW46pf?H)^#G;>euS5{sDga8ZUCSyn3|)fET&= zKV=Uz5VoQ>qa5UQ3LQ70jlLK8@`th)`7j+r>qV}{OJmRFUOMH3oSl*v>EqbU6l1^W zVC+XN#<(2h2^nLW9Avz#er$Ffq4_>zFLJ#yqbBdN$cx;n1!>bV zHolJF*k_z-d_M_dlxob`C+`6Ln#RK?Olk6smL|3LCfBKnlIBgCv;NTra@MN)$@e>x zeG{=?fL}eynUiAm#Os07B*Rd}-1$20NlN<=AS*-89wUTlBP{rsZ1W3$(B&*e1d{rj|OPD?}C)zX<3OLM+r zGOa8fSlKz;*D*G!p|E?OHqBX22SVn1!qS`vO%Qml5o|39=4c3{tDV9tddIp6e_(8F z;P@NGpn-|_1@F+4;uVIiv1f!<`{gba3(kLJ^$5Alu1;&tBm74#aj`TF7mIXo(X!r(pKdz?{~;sCKWwLEabfbu_Wccr)f4lQ zCjEeuJ5K^9Bn>Bv{tld6TuYq1o`#ccIyh;gty!dK~ ziVP7w# zE9hhsUMc&a@2suWGsQdj#~tVgeX$0SYlVuBNX@g;&r(Ba(&GAo=VoNH4N{c+8e5{8gN;GcSxe#6A22+G=+(<|&Ba`=jx1+xX<7*h?1i7!S+h-zzVUdBh)8k7@jS>?88k#j)9H0QT*0 z^@x~Vtb2eXAuV9cp*_Rc(fD^%8?rkZyNkR&GFGPUKtr|#IqarKM;Y{UaI_oVj$ZPuzA zu`H(cIPC)g(s*Y)jgXiM3#@dXE9%&I|7>h&LS_8}olKa0haDNVRCGq}bEH zZr~1uX=4YB0`|xO78$mhNpY$T*r!tdP-XGBorX!2LJ7@yO7VInCsL;Tu|1tXwrcr< z3)eTv{Gkcg$*4fAecpr{#|3>iTt9BYjW^=%#eDYr#=w*tLJjQ>kHbSM+BR!`rnP|b ziOtrKULTHY3Ghs$&m2yVr=i_zCr!^<*0K?vNOr5&)6i`v6?JZHMVm-&m&er*N8XY} zxyxGC#}m6%!malm_ReofE(pfX{J)xj<bI#X277M5k_Qbdj6u{LJh{|s&Q6toe`b$50q?}uaV|HC98s?~ERcs^?XAFFpVp6WNw8|L1RIzWxd3t1kXn{=R|bd;d@7(mFYpWz`ffa#kV> zH&;!YJyQ3p(c=k>G8Lq=L3%(|T*B*VRt?uR8f&eWwOXt88LhX}YAY?HWo`=p-B8YG z#V5wbihVxjbSO(yKY7h4o)*N7Eb*bC~Q#fKgIdBR@7yVKrzZQ$^hygJmf! zpA4&;!phNsO_uAuo->VK6qmx9#XXl(Skpe%rm&jobj@5J<>t4j$+Vj5z{)AC2{**1 z)D!OcSewFXtplNq#!^_1nIO<%1Y1jj^`it+r?8IBK?-Xp#@42=-k=yXa1poT9ePqy zSpS|Ii;;6y#B!A~8B(?))==pByqp-`{joN6wf$rL)Rme&5@Rb2s_Pn>LKF>Etu}M& zs_{W>BrYCg>r}gg+SJ6cg$O?9pp; z&x;zd@H76$;#ePik40yj@Uk@9YL}Wb9JhyRKH_LH?NV=Za{jW|j10luf0dZ?>t(SE zGX#-{1E)=$)r%}%9=lMS&98z5kvDTsQuI*RsA!ymgHgA{j#2n?@!)D z-BS{)v4|^qSh*CgGtM6x~FZts6J8)#o2dUw!*Sn$>fk!kvY8=uoXG5IE+pq=Dm; z|6G|(`rZ}GrO{(OavQ-f7Cru#uu!ozx$mx6V{+i>N86H*?ou8V-;PIPXWZSE^uC+L zg{{fU^ij_IJKB<8Z&zZ>JMKoP*na%7wxs9|<Z<0X;GtN3GU6fC zvrP}-umlp7}brcanMS&1LX@qfkI{w-*$+`X_P ziT^9+q4DGYPfVv3yQosQ2lzB90C-J{&pm5nXZ`(jKlfn}>F;Lr#?^d$_}C%inum9i zSTd@4SPsq8es&+>hC^EGRcxx0uGQ+K+DC}bsFhMJZT-P?TmO&8VC%n7Yq0Wz>pCY(fo0^Q4o+@5gatppf;tDjQkVv#cq16JNK(X%>y!h|=+AOdFOW598{+{ZI;u`)j+gn@cy{Glc zEiL*9cO53Tzg2y;5#)1bka1~m^+OgNQ0waZ#*4c&phHP+eCAL(;G#A&2XWQUS)!aK zQ7;s(hm7k1sUv~aEfUO@Kt)3lFoo(w;iz*q;e(La1$ln2%jxlX++L^8>Iiyle!s&O zw7UYffYToi_~VO4S4_#ybK1jJA8suQ`@JDY*yi&FB)i{<>x{wyDHsTn4o&8@h)=ce zEVbl?agx2?<@Z=6XV`(`_WY8~=dyYHPM2c8^5w z2=@ED?m*nqWC>Oo@>;`zpvUX=;F>09AnXhHtn}bOf57gu`(0%3kyy+4z%S=MV###} z0zsGCDur>Ounp(-yKFXh$mfupUSCjhBBWo^BA!2@WSu21!_Z{vj=8qn3D*!6?dCV_w|u~N>*!^j%=kNchDOOgsnDQFomNIJzjg*6LdO2 zU{??~;gO1l%Ui?;E+`q3o$GO1ty0k8^VmTpuN92o54asRo6{TgI^FS_&E*>{c>%vI z6!1H|F259V1nhpl&*iZBLw=7G3WdD3_@FPBy<*AFFshFX+Ob&5Gat}KR==~@jf}jv zs5fqC9=B#mUV+C`;4B*4`^IbJ#kp~5mOmhctdhqACUg5jKCIm52fGGCwm`gM`y(Ku z&utHQLXyiC2!zys*dj>8ku`IBf)6q*gaQKMP9D zX=4w0-8Lugw|0<`p7Iv)@=q62+Jdvg){qBxAUY&p$nOnG;8j;R{xt7LaO9RYV(!o7}GuhVL`dqQrz6PKk~u?I$(c+W#~ug=c1`mInae!Dj; zg&nxn#|y^r`MnNn*y-}Stn&1yPAhrTlIySrTy}df81UM_y zW~dV;wC!CEuM;E>23;P9ChsWpg*?f?G zw^wpWK9|#G3x;vcl_L%zfZS#n*iGfumTNYoJ4jZSEp|0@7D%3=-t;f=ty$8(K=MM4 zQ<59DIU&12SdehQ5%9v$cyRAA7HX9spMH6T`e~@k7f{rQ`@f zAG>@33G5dN1|^%{u2>$c&*k<*V|#rL$Sb|S)D9}Sy`Zx_g!=)RWHWiq1x0bqDTKmp zbvYbvr`P5V_#q$=m~bFOYIZGaDVx{)3`2X#h&N+}d6|Z;cxj2Xn@tf+FV^A<+uSw@ z-h$U3_JN#kk0&hopfKzX#ar+~@L(Q%Zg8>#jOq<}fK-?ay3=h9#v#72EFpUcR?Ojd zy6t|4Xu{L5ac}fL@ZUemAb_4*L8yC|ps4*2u&uS^N_Gii=<)`fA!s2l@B(HJJKgSJ5O>a!6VHMu%pJ%#A3X%!2DOnN zG#{GDoSXdgaV*yg(I~LnCrnQo$#5Xx@Y`V*96>Lz8-|_qdSJHwa15*g3_z6$lqVKw zlO!o|vN=4qAUvS#dB-gI8Af%IUv1?h zGLA}xjofZ87xO|68?yyI7rZy0Aoe*8mzUn3rGPw))s>QWOq2g?(P8GX;;8$gWq61cW0aULhF)s zu#u*tl11%zN_nuMCZoc|ysFYltSc&-kqN)V^7ByF;tF^%D+#t43d0ZU4u27TNZ8}@ zLK`rrEo`&-LSe7N2ge-h(dxHBZ`eZ;4I8{ZFWKy@Y!SEq5Q80ucjtpO^E)YKTp_rB zUU>FlYfwTb9+mHHJ~SEh(h?~z)5wc%+}VYc4=wMuB3j;}E_@kRfs+jCRNf{xM7?aQ z&+UUZ=J3M_3rH@%8#lZ<+_1W`Dn2YNhoE7O@T`0;m)Gu)LYTkZ<^s3bV1L6_m%KPx z(98(sfxcIZ4j9&qH-qZdHgn8*6M~j$VT-ox>`EQdI=P;J+i7#!aEF;6J{3sn4!B&_ zfX(UiOHPN30p^glhXBH{359(jCxVTDhu(b~gsS%koTzeIG_a(l;*X*O1R$_-U}2bf z8v;)FD-xnBAUEuYgApKZ<^#iGj%!jr0zzpvs^3OB6hhwqY*OAR&u(>v!w4Gepp7Fe z1rhRuCCL?nDh)cUepzeeg4~`!&=GRktO)jk@UNWVpg$xzoHof7Bu#fBK+GSxga(K% zADGe>aEHRsD{gdSwfjOLm~`9$Y>PMf^^uL>WYa;($i7Q#`Q}50gT%6;VtgK=ys#ta z_xizQG&Jz~?Ynh2Smqi4MF95LUu$@)bzED z5B%nlhb-*_Ug#QEC}0bPAd(>noWtevg#1ApoKI%Yp6#;p5leg1Vaa!Y#_YMKV}=M7 zua%w3`_#v*Tv7qN`#nR;Tj#mp`S@U=osep{!N^M>fOmPV9=Kf&uokmovTz|bfCa}r zpYX6ePQS+i%STzwgM~?w?AMR~_>oe}0#lk;ooZ>xz=#?n<~GF`Gh+GV@;?^0%+Ihg z#fn)G(>QTEV8DkzP;*e7PD(8sI1|Yls{d)mA{3N75<&n!=;RK0{2l}ja8-gquUiTr z?9NW)WpbfO;WoqDM$*FJ57;~b51hB4PYNPJ_RDS$3-j_b3~ghkEI-50K^p(`mTegn zq~8HQ!{&1N9dP*}VL_`0VYw^d24BTTwpxz0IDM`_*yV(nBTn}O;N-&L@`i#=YdGlf zdlkLTgew3Qfy7G?7TylwboyW++^jwPQXkpdeqO8irt?=J`(i$FNcOfej4X$8B-*dM zYaTp61d&dNwm*bqg3s@Sg0kZp35v>)D~?1MmVzu($nHk04X?t1jW;Ym4FAH30M8FA z9wuD7<|n%{(qA0zaz_Y#%@I!(xPJ8Ae1MDfNEM2LwiTO618o z6=%1Vq^=XE_qAI4Sgq&Exg#euc7eyq#4gu~1cSqkN#cfF*fAve!tgHwPM6i@m%?!< zxT)EBFx6q36m+_sP&#e|H32xzn0C+$of%3*(#&r(r&N%o3{oi*a~=()iJU3^90_xl zZ@ws~P!_2Ltx%$VzaJiy!y#E|P~~@mwQL?x*$GxjWzIlNTu_aM0VjTjph;ob14xM> zJK=Z8DNfmU48b!C!XZPB)#0<-Va%v&YDd~82=z>j*>O0S<^vzRx%{F$SB5ct<14z5 zsWZ!4kA_7iSl4)P%#CF8sRyFU3Tgq+Yn&kVq}yeyJ2j> zrex4r<%%WCLtqpJt3n^qghIfF0ycQcEcYwtIx`GSPW%~@^36v^ijpQy z$SVVPHq3R}ZB{smA*gmL?H~#C90UgTE#wZx7mkJxj0~kcgoL!s5kl1HuuGmm2!1Ux z&`$W!0VUxKqYTdxmOKb26U#<^*9L#o3%A-EK#Xb+*sV%V#C%Y@M5N(65pJ3f%E(dv z?#||<@pa{$&au0>04)%HwLbEtwI?GhY}B3|JzwPOd#@ zwIO?Kb5keJ7Dj>zIRfNzkrMC(0%XyUik9)iKO;nKkG!-ajJy~^1Bcxn_Te7ykP|^_ z!0HLv$lf=R%9Zn&NOMYItK>)i66OP!eM{6}!i#hJL-2d#l&5Uq%tuGyd+6r!A|zYQ zhF&qSTq1L3mN&?SR}{j3(b$bVh8KGajxeM}a!Nkr4dVGt=7CB59$Nqg*8>fYHDj7V zFWfLF2Dm8jst8OVHVmk7%YzN@AvK0@EsU@g>3L+!5amF{_+c#J9r~pBr7sANHrsWg@k}J0M27(?eK&OCTnm75vU@sh^-!|8?P^5wNkAE zvZ0!}G9hb-U_%J%;hQ2qZ=(rxUnq#CaKVse4#dbO*5}2e3>mw?d^e&6n$k*$YBZAj68R3}Q8iBEIp#whYX=KaK>|MoT-N4ZaC- zSV&%4k%6>AtGKZ374X9yCJTjmt(CN+`LNWxffmTKn~zD5o|4G;+seBaI0_tAPR5X2 z3t1g@3<}0Xw%3c~h6gby@>TGUg0hF73*!a%0bCODO3>p_E)HyB2CSiAm~KthNENN( zdzLLhy3w384z-A7;6{y)X@)U`LNp1Y1Zo);6;j+r>>l~xAN%Oi;cme~L3blS33#k{ zt|a(vNNK}!p<8fHB+lK)TOoY~Esqbo;FJ;g`iTuW8{N1J`4Ih5ArB)s3Hz|SiG5~x zm>s$6&K}Z7!_fGELVtYAj587&=x?XX+`K5gn(h69EKlhQ)S!uyFleN z+3nr*i!~&&z;MXaA^Jr0f|+55-0ezugUpa2k&NsZJWP0OH022A4Sp8_97v+a=T%gH zhLL?_+784w0n<^jP!ZwrLC>Imz+px7>U6`zg|HuvJqs_A zT${_=#0Nex_d%HM45Od;2^)tFui3zGY8DOO>85UDhXQwj+r~*5wj5n>#eyil2vL)Z zM3M)J&54|K0I_C#&^%Uk@21E$@nQ*Tr>nky*uliW5SGEm24W;-?VYe4Eb-0}i_!*omM! z?4%pJ*j)4=H22eOZiH2+4nQ@7%Po20H8XeKXURhpgB%v}Ne&77aWp4OOB#?6gY$-s zYR+_FtHyL#2XhniGYrd;2fdl`Lfq^H-_y*Xmnv(!FKmZ18$u6~&+c?6s=|&)+igcC z#EG2=nu(-)4+zWL$TPrBDAo%JWhfj(pk4=J11SV$gRSx~*aIe9f(cG~iTN3Z^~y<* z48w9ZEYB`MNzkmQgsn^u>@RSMj0lV{?$oqc!T|<~= zNltn*AF+MFiVROUjLmpNHmFvx`Va45P}~d?hfW z66WFe&fpxvgu!)(yYBGAM4`q9(uOQFrBFatA69WEVlyX97jll!kk~jwxM2^55JLNq zf5J9ynC2%Fu~`OEX&lB3463zerll_edHo5v}hz`qh7k*DaU5=P8u8xE8V-mHVdRV;6pOf>2cbTZGi)( z)XvD;))|JDx2-b{%_6iWZ6~kD>kjl=Tu@)+pkm4iNRw98SdVC>gQ2?UEmn9c-PPvXkX4!{}CJ-x_-gW<#Sy zP1(1G9rGc;haEsk1j0=(GW{qmqxZidqT0mEf4mR-+h(JZJ<>dTeug1!sTeKK z0o~yBdBTtZ?Datt_@L9^N}`0)Y4as&VjZD?T?*NdoI(OPh)swvb~VAX*kZ8<{T?|B zET?p^XYaPbxkiZ>k|l10KYll=b!Y+zrHdZL6V5O!@-Oc!mU1(U$`X$w)>n2PE1*wTKx@m?Pgg+G18YxLK=Vb{rz@cU|EmHT=LbGl*-|);liG11 zhwf!tO>|D6CerkoEy^Sc4~L&mc`7eE;m8#RYruuSPdb2;JQ4hS1b0H%zZC9{V01i4%SP z(8ONsmd6{bi?4W(Oxjo}3CBMmt2S1)sQ1|iXw&v4QgO7bZN1_hxDGagJ3MUrTi4q{ ze|NlztiK@Eu~qSO+=UZqMDITAHDQwP+7P;$c#ue&D!U4|944bTRkjm^8e;jVy3K-S zm{&>h!WZdZx~`JqRa@xa{#)r^x{eYy_YyYe5;n~eOpHE1j_H&X(@B-E$&?h+X_Tgkfaq zmdb%*5pBRuxF1$S=wb2~UC2GbJ9?*4#MgWJq^b0OH@ZU;#}x-0y>Xgk2;XWtZS;!| zoJdZO`M^Q70T&MO!$*JkUJT!e;PVc0X!!Cxa*tzwBhvq&whhR=TPyvR>bT|A%2zG< z#dN4i^v_iK=SKSHCi-U<{WG_Q93DT*Gi(C=$3*&P3jK2f{WF99nMwc5!Jm+F15Rto z_Usa-tLZCx`u#t%<&)#b)Q}E=8N*uXtgiU#8nStN<+N7AD3F2+{8Bn1tFM|hC<`6N zr~PNz5DWc9R&VI@MYmGg{8s$AvA7HaD>B-*xIi&Hsm1j14oKBCehW^6XUq+6)sl4#b6r5qu0$BN+{ruE9`}!bc#6Oq2$fEZupA|pihG&e` z=|k=b`ex`&jnY7G6nzk~`Dk^!_}~vJAJ5A9p6`@MU2^hC`;RIe;&0q@(qX}@BH{a* z_`rFyx>$&~uW~3^H-FZd>A)Sy7xQNoh~kkH>Jq@@z{i!xMSeI!uN`ZjT0sjLnf#pP z>ln}cu6nr8^$5A|P~|_x?tI@PADUStbUs2>H@&GJdGZONPHw8Z*6H2VBhph13gT}c zu6$V#2lE}#yD6HdVB5;D=N%yx-dTfM_2rtTFi%d5n00o1(x;W3EaFvM3wGNZ*V)-} zXIGp=XOlm#Jl`VTz<0JeR5enZ%|D^HfeSYrArp>P4p+CO2;~NDFAqF9!@$2*kL;AT zbe;-~`(+O9mEvG^3oSc#0y|caz5eA_i|hEwQ$%w#KUbdOTE0osx-(kFFaEmHX%U~} zpW|}$E5%Lx6Lv2;ZG*wsJ+Xbs;Ykm)CE??hRy8cUL~qkG%^c#}+75*0j*v^fsk~1O zKvBtIr67HtY*gImdBeKEQHA&ld4}zN@^|V)>1N zPvFqv&}mO^aum81lW7&RJ9jTn>K+|3r0#AhB>6KQ@K~CV^)0F{>7_TbLGnoIUXrSW zyM#sELQC%9^1X>~Wv>`3p8E+W{nR9O>cKrp$q#-p{djS5I8Hz6gOG#ql6EU+J}^%_ zpX-uruDfEm_)q=`lacd3A(mHXk5aeQD4nb1_4C8Yl=<$L%1ssvj^=JrC6N)^=eHtz zBJ(?PEHNe>QeRN`zSCEKEmp6-H}!DV(k_<8bl~=uo;VhN#XEH5CMUKn=pN7cz0#6pxl8Usxgqg(9-7^owDc409aD3GFnV9;m4z5-6j}e< zg8Xx5y7Buvcmlqy;`n3;&{tLC>OZ{7ds^j7*zMHX!>ago@XN3Rff@kC|3w1az+ z!UujaURtWhOZp(BMyT2@e#&*n6gNlVn7nQ^cya(v6{=e#Xq1@KigXH(jdT$#pQhgf z`Cpz$(;Ckm$dULzc*jW0uEzT5nOPqTXDMAMByRm_3L)|}Vp*SRN&KHr^smM;T|$bu zC%x$VFjd_Ep{jKu9YT8%I*W=@ z(u>rx#_AM@nd0kC9efcjzBpc~mhq*z2Quz?eb%}x;n`2wy@;Lk%)uY>gr1h+3*&>@ zRkh0&UIT>s=D#F@i|Si6AiwRIRh}h$@TvA1yc9@_B#6;9cu&ei5$;ao-)d8eRA?zO zkWr-0MBnt#%#$O@&nlA0UQa>F>oJv+qCD#BtF`%vVN1IRO+QPQ^)o-?q*Wv9jqnaV zxe1f?&fTjH2|blA6j|@aLo;>W{4=erH~P#>otv&CCGngKU+HhV7|o*uL)n1-4I`(}vQ;SI~%biMU>i>{Jv~bdiGW$N4rVCeCO@O6*k+h#UFG z%t`*H_f?(6*Hn*bys_~!vd>ZF)B&(g8&x3g(*k6nXY$26#U0cT)cfLQH$rcA29B

^aO^)6Dw6#Y7~rAxo`(0^wk^8PeTZ@1Z=5qi7L zK&IZ`g>?90oPMv76z5OXx6zT}4|DXdD=UkjXpr*#8a>F}7^{)mtku^v5G{+h>1_)9 z51{|$i0(V}RjG_^_d8VM4?0x)^{`%`;ox&zf0_o#o0IwmSG|_RMonMR2oH~ znc+_w8LLwax2U1!bvK-#vnj2o;V3P}_cm;$#aDd{rL?%FpJ9apjU}k@GRn?3)37nF zLV=h$O{bM=t}$fLK-|C8&{tn^#5~C`jat(8kl__wO8n0m>eHDw{I=l$4WrtR95ypO zF`T5&frDE^Zbv7-b$WN*yo8WNOHYY4J7N0T3}3Z#4Dd!i*1T;LfaVtm;OX9&BN>$8gKm#@jS}5;_{~(W>ukv|Iju7o*+sE4w+0 zy?Yo#sYi?Z8ubcKXmqi9w^$blw$3u@z?Q#^oYZWXG20z41HfyFkvie+6k}B-3%}h7 zdVsh{kc+31Pn$Ymr062!U^@Rd6dUcEWzJ$_CRq~qt~MT{#=pGA_$M}!O}e+y=tj-_ zw#;~5K{!$0KHBH-?a~9r&cwHS&l-19ZydkiaBcEs;}|-ruG}=%rbXX}#zl1c9Dib5 zO^f4xaQME>j}G4lJ~!5&xPxCC%PKO}BCvxc=-|$tWQlhdT)S7qqZrXF>AhWh(Uo^x zHP@z8%d?TL_mu3QZ~~1h-tU?x-H3DDOWn9C!Sy`#-Q)(Y#})c+9<{Vv3s?J$WV*QO z>5TLq=;}p9Z$8}B?yCi(UG2WAk?mTIx?=cbSNl9|oa1Vrryf&W?ep~7R7Y{qbVsq% zOxM;FVf$RyAr*0^Udk0+%dBLM{<+YV&e759T-_B|N1nEbu0ayN$(5zX3fboH=)^tB zJ-TmQw}~+&q`s}sqZo1Z;)tjgtw;4?B6r=*gju>{V)wGAoSkJ?Bm2NPBex}hCniMC3 zO!i4JH`rvK6hk9TN+$)}teVv@**B}dYMSg*_Ng(lyU9K^ z_&z54GWJE9$v!of4=~xM#;8FicWR9#!%Su+kq_5}7LxyH(?J)qc)c8NGAKD2BOCy6 zbkc-LrUa_tk*OwoQaWq8$)1!Bon^8or3>bo?3uxk`6m0L(Z-@_294_Li%e_i5;b?F z$wrmkw#GDDiL!9BBadsP-J4CLtAWCUo-IMfWz!A?nIL?4>;;lZ$U`*cfQx^=}=Q%N90gj>oOCxS*}Z&;-jH%+%yAmwLIE6BTRQt}B` zC<4I(5X&9p`Z7A{)IF0*$xdj;;-sX>>$-8e}g%}K#Bu+^G#aY&fT1;CAAlP&C^-hA;8>NPl|iP%uguTmS}Su zTGZ7r_u-T|r7!rkrFlLWy}V6JaKC*}1o*v`SxI2w7`=GNQw>tinsw62)@DT?q)gpn zX#(zwR)4T9)6F7{PBI@+H2WMdpFA`70gL*Y;fJ$D?fs?}en|GVQ&^m1e@Lhj1{DXqun!P0d zEOP^vh&f`kS(83|P`?Z3%?lI?f?C5FzPHR@S4^67cg!QGG_CHN6}@AC z!AztX^T1q1NhamAZpj zd95^fFkrBB=NEIjLIY8RZ+|m?Obs;hPo=>_v6lR0{z+l*P=so4&G7r>XkA^j(QUCZ zZ&9d+j9XmAOtVYvwuqXhyVgzNmPn;ppmUp3F=_T0-G)$U;>>RIDrB3!Zf;*y%u(m9 zZri9d`MjHwPmaJjN^NsiaJy15X&P2`+eoGP-OEi$>g|-KhL4+>CPJP3-7*#0S%UNZ z7Yg%Hu$#h#hZ<;PRku483!WcB-8xYNC0DPYG}#eun-o3Cp$>PE*2cPBsEET|K&_og z-jXH3ZJLsoO32reTT{2Yie-R4T35Hp!T7SwuUOWm@jj zV(G`0Pie8oCzdh_<}=MQM9Jd|sAgLbQ~i>Qq@86^y0}w>Zh01^L5&gAV0(c@556DX zBVO8AXj!e$+;Xf@@`VCHBxu-h1%J99ptu98-kA+x*+q{M zsqBPBts)V4_6ti##mhNHJl!+UER~(L>?AvkH0CSI4jOhfE?N#7$c$0nwv=i~aql;l zG^LXVDWL}?-$RckzV*;bTc26hP)!EDu4pN$sBd zR*4?DH@H|2D15$vU7`Vc-fEPdo2*NzA}g%cX9|MD;be^j5!0!7(><;BMWDU6)q~cK z53uf|K580dg^$Yd(*r}WwKkpk9Yd{S6dx}p)w<*bN+x(3z=FA67EsVmXb(0;S~+k# z%K903h=NJ{5anvL^=HM}+Bv~jB8xp;r1UuJ7?N2?FA}U_v=~;)q3rA0){kkJPONXO zu2{o{Ev*3{f36otl*?-jm0RAyY6e>-LR}NB)(Ft7DZJnZMz|I0y0fWu0nNiYw6H2p z=OFi!R5!kjL$`Zv9l8xlvEERe6+H-YQ%i?CTbHZJ3X##nTBL9jXaf)!fM7cKB|GaL zYWntR)`K+8{03Wpq!Z11q*d8xB+%NHG1{t;{upcRp&>#KnP^ohUJNkUkCUyl>Do18 zw)KgUZx6v$w}}LwvuDusM%9mJC2%1zeY z22$+5$I5t<;@FGUVA^5RWosZU-nnA!ND&fmTE8@rzP?YbGgPFw>j&#=+Ch3@{hcAT zM_*YZD8fIlt+TA8c9F)mjt*<1w>_kN8yIaZG_-@ocF&txNWMpKAi{REA|`J(T~AsLG;j@ zI`FJ!s8L$g%(l_M9FSTi+s3Hj{cuOy?*Yt1qU75#w*3`l79fR;vt5O6y~cW2CDRPs zAT=pY&$I1hNwGz~Er}M_&9{xC9U?^A8-{d%MQXEuu&vXPV$^Hfb~^0&FSb3jxcgUI zXR3wQKTgr#+D1}@9xT_2afz`rlAZuJHgSV!=g%x$6$`2T zF@UohVrvlhE4AwG5bkrzc~%%_SEE&R4!(WGYFHz=E)+MrCO3lO{#u9Yq*hB%2Jo&= zQB9EFklPGOt`-M@;f=W6phxXov!+|}hnw31t_gRVNdre3aX#SpCR}r%3!7sGgPKCJ z-xIEdl-Qi}Vwh~uz8~ieF80@2LC!&2Fgq3gJW(I68Z(_V>}bVxU~_|jwWUWJWFYQu#}Ba*p>D&{LPrr*+Z9^CH0MKae&MZgc$8koKcVk(VIOMeEr=VyR|WG(~T z?Z}z!gDgGa_hu`1;^LU^C}&Nt2C#8$Cob3C2W#8DGZ)1E9R$X9=7O2GGAaLrQa<-+ z3krKfU5mPKRdkbyu3v#8UAPE4h=UR9R|OoKVoL&vFBk*j)Rh}&?}RzE=*IamabQq4 zE|5*A0#YU0a5kn2F=<1>W@>lN-^pfUcP_phg1!et=mJ7}K!k1-p%X<&BM8lU$`OY3 zR8Z!V?WXcQUDN>I{=3t>y>;N^7iCc+;Dg%jaL zUoMp(q=Ao;p<{3N7YQsghZ(`d9*jkOu?kZOl$qQ3vX?3DR}}XS!fgnm z2XO(q9O8gep!oo9dU=$;o>sN093XEf$SVr+?n5A52XTYSgFKt1vZ{jZl2i^RKH`Ik zkAlFffm|P_5Uq!BUD5cmiMHzCt0CN%Y^`8W_Pebe_+coQgIY@a+60iB&b?w=1cR*G zHZN3J=;hhCc&E((cJ+e>VTW_sDz+zV_T*AQ@*qwNS~TaZ;N31R9QbE))0mN9O(r*+ z&7@uKW^h_|crbXl)Yh0C8VmycI6vT5V6#ZNQCt%SOvvE+>!%Y#O)J+8PLK?)vXnc9 zTd!tIp{NsW-XQbd7!C|?*Q_eLF_?sJ%xaT?DFs)@bA3>+(iyf?uywRuu3T^4A|0N< zooCpSP@>vgb@16Ft}1f@+?&LOvX`jM&QqJ+MmB3${0SF@y2r-*d!c*T_uN4C7#v=U zd&gjuMevus?lXKmqXO1>a3L!BwMqy`Sz?P|-w`C%R22k%5fBGTBKa;Lw=SoH15;Ie z5c?a(>jUOJvuP1%>TN3z(x-Aq*|4gh@j>fA(7QfokxHj=9T=uHh8Hj1Z@{*w3LbKt z53>N2{b=Q+PiAoW4AYIU$MZG!0UM-BtICM|-c?}+kOsUC_N$5mf*n~Eq$co<7Ujd= zta@!iVXeH*`7$%Xsyr@$nJt5wPN5c71?^kIFyB9i^K-&Hn8QW? z8)g%M*&>7al)~(VI`!uoGHXD;0y)s~e7L}3-O}__NT~j+@isqc={&A4!(5W-jb*(} znB0{yxk;HkEyo0`n9XV7_?ZPK*>yc&)(g5}_$!|}#gKui>gNWnk_a zE|l3tRKO9rol1WQ8>bQ2z80>+B_tX*fIDkB`1gr1jF|ZvrYP&U=IqsKpsbNE5AxS> z9Q+d!*v?LKd`$r#Rs*jRtZ^VWZoCJ`Jm?!r0^I@qa6R{wKu3T#8@R#DZv-i~ktzXf z`IPGf8<~yVYE~P97eGiJ-N^MLLvFL4A!Na9yO|S7Pj`^HBHJJ2ZsJ;lm%Gfv*f28C zZ$mZbe$NI(70oD`QZ%_J)UG3zA0;$)wTr>Xt=w|BTUlNBNKktl*NJT#f>yY$Y%BPq zc4+3WCua88&ZVf>9*_@Qg7u#gMA!#S5AbRyC$d9Gn{E?r121-QRS$>?@*zi zP@$hvmX9dQS8}1Z5~1(dg@%K%&^Vvahmsu62ucrdBUo)H(OL*aS`RSD##+P}9~O?q zveNn+ACOf#aR_E*Og#jMvr-#KVYsU7N1@oja6(~DO)01Lm{UW5?YoVLS}&B?*A5c! zXD=JLbquDoLjm(S7tRbL7=tOsSc+l(h6~l%F+i8&TuVDb$`^I4;M{TUQ)Vt28V8O( znCAg5Mj2ed@e?rA>cKxf!#!e`g_1~zM3lkP`P(9>`t?X+~qI0bIcLK z!qS|BKkjo1E|{d%UkW|L!G{6oQL{W>zaC2R^_xVit5mB;R4WuW#b@9`eIBg1$kmjO zFTTY2s{aawu^hNa@5}r{0RA8V@DFvzUWEB?oy(jb9pCpdcU(RmB!A82z+aQR@HJdj z0>eOAv8^$P`AQ$b_=3XwTs?fWQB@CPfc0M8SYWwoh0h9j4+HSI$~C2!gRgSE%3;2| z3ir#Vz14B{lDxeEvvz9Tmt(Ry@b)&8WDYoX69y#weOENE;STOlj439P+`GjEPzaaX+?jtv zY$FgmD8v>S#QuLlq~7KJutVTn$nljMJEJ%FU+}ZQ86+e zz_g5N;s}2AuVK*9$JSL3VSlHR{33&4!^uL0CIN+M_zj#ga+u_BzM9%A9KvLk%?n|D z!ih~PgZ4jCXS3BP%)Li;7|Hw?Mx7l8O$G#yf*NN57oKpxF>Ld2vZ%a%%EhZw5Qlzm zD#x=OD2H}34!tOcZr^kD&^VM?!X0|Y_b{bz0%73h&t_w|B6eyx-t*b%;lysaGMxG0 zPP?J3Qj12Rv=SaiAy{9MRYF9ZRbKdsyTfh@m+kei<-NVW6&U`4+XnX*yzjJp2_1GW zoa{TN!^ysL2$WWVA3oH);<_;GO(-SWcaD%{3--bL&Xb?H3+z*B5WF?Kg5tvyIs2NL zQu(Ame&gU@7ivI&9I0K>8_3$;W%!?52E()|-$j4Qp(pnIpuf2j4AYx-LXRK1 zzU6|{gR4XDC;NB?fp7lc;=$35s(S1|D(UFzIPC_@-f>}U@9M<&7-10Gy*f$!7RUgP zPRTan><^||_ZU6_{y7q?zBAha6nS0s_o4wNYW-Av6?lUqXfQw)I2iP5em{Gxx-1xA zOZi|xrWo-8x@41vAH*C&Au*cy26M;x-u>z%ATE-CaMSYZ8RjJwouAVuVwS+8ASiYDyw|^m7h3pqGQ2BzS7tNX zk)d($A!4SLKf&9<27|!`K@U;Jhy%#onTtU!$5orpEu(k56E~B8Ygb^Vo70@i{3#SwZ74K90#EqY5mWQ3`fGjPGRcgLfyqt;~p|+X^^Tji=Lo8r8Efk_0c> zR16PE@D7b+z{-_1ee6h%y^`G+30~ggVwugvSQ{wF9+|Opb`bD3l7DQ6z-I{B(oIT= z=8v=JSR2P@>7Nj$P+h!4Z;az-!l(64SM`dAk0YK%g4}pMnE44cj9|Z~jDLeZN#IlU zF9^oNNN_HJZ*L!tvqRbh;iIP5>VRW4_|~j@6xlksC}QHDLE}5|oK#$sU!rA$qrjB) zwoKhG1QWWaA#Y(+wWAo2y4>gmt~KI2u??a?>{eS>Rb5z%&l`24$djLxN$~V~F_CY} zCX+5qT`;aO-=BpYP;Os57k-atn|G88n3V^=58H=<&nkUR1$Z+3!GI=w4R&A@-cH%n zC=!PmQ6vs=g7-i@-T+FP@^J<=L!^VKcn-lkoJ0MLN%n@CQK0=HYb`z@im8L}QZ6d(1Nr^E?>eitpaD~r!Gm?$vp)q5@P51M!4ud}~Vh5n!lT__FL zfRfI9DO^{Ybm6-*>f%9s23skb*w`FRbXxIqPXqX=QKS_-aPtfU_qy^vhCqrBp|FbZ zPE@ovys@k3@00|dgWW+v4z%yPZu|hGBGP~{f>+Ipqri^tdX_SE124!f65dBzs`ILD@Kzn^XUM7FS8u19LT3KE3uWAQvRP(E59AY4>2TA zI5-TO72b(i?F|c}apV}1;^d4MI&2wCY#A_=Z^vGxw!AF2Wo>H9KZo)fE&GVr(omP8 zU5+NHRIZ(uawkVu2M6*5J=u|&|;h{MrsqiejmqoVCrDLIH#!@Lnc9M zs@1iR`KBz>qBx7sGPI>|un(RByC?A9v)yCxoQAs!lsy7?PvSp=Pg}1{;?tNxGIi2o z$P~z=>O5QJ+Xp?2G8mFNQCNsj$a@nYZ}fJnxzW+qHHOab4o(^D!9UUAtJXxPZn-ce zS>e=aDb=Yf)v4VS{(zp@jCJZx@n9dQlb^I^F5f`K9Fd?hI)*s|eptYdVa~}E`GP8P zl`7J^ke{d@N>Ppw72pl|k*HvAI}n4i13~&^As@ytuTYl=aPt@!qW&ue1^_zL!P7e) zh%@^?C?jpG<4_j@`Yh!2rdP1P{oPpz*uIbtfh&J4Gr{x$I~MV$!Q#a*tHF=)P8aiQ z*;mj6C%NswcQN0Tfvdz~XlN(`vNx852#euaC@9V+5?>k&hQUtz*zL`M@k{tzhtazd zqc>m5w`9A-lKrk@EQz9#42bOjznJBwu0}-PJ@Hd_K*`x;%HthnHGoqJX6TD7)N0t1fCY~PNs#u zVN5KIp)qy=V$rTl7tmQH@cFWR0Ub$nN?s&rz|ygope1v86X;h8^TPd9MTx37o~S5! zt>(XA*wa+UiIjyTK^?6OdyDFKhwAri9e6K%)NKMUS&s6&iY=jX1b8p*$S%inEMa#L5#aujbAq3Ms_|RE>Yvya zu%FWbh8)`nIzRyPb8MZ#y;FQE_A-?oj@jSawuz1{W*`5XPj9fQp2`z6I>A?Ae{l}$ z*3Why17oFEP#x#Sk@Hf!bNoIQ%sS1lVO`^q)p~>BlhgzSoIC?}cULLx0)L4?%~0w{ zaBZ;dV>S*F$lNQ2*gDdI0?-b%tzeqK+01*RI`rxiyllxE^sDSlrPW{aZy43Uco@Zd z=5z4TD73T>@IPkbz}>6-P=~pfflC&a1KHR38Sr?4PZQSb{3F&fDIO*ZL6m z0QD_?NKUh=u-q73+QS#J>Fv-(gs%Y73(%!Ge2Sgk6kV+7Vn!GE8;q6GW67Bux+k9hen>=in+1Ms|*dBS<7PGM(W@8)VVf|-g z-Se>Cd06M!Sl`)L*F3Cd9#%0AtCxpW%fo8rVU_Z*IGVfbYhxfD^C2dn_x(fg_Lk#$<~5vMb??J7|gk zogeT^;V0B^*UxCzn;-7F`4K#^UL#$?x;`gefzKnj_md@(ErDmuml)c;SnXPp;Dy#CooVg_;%Q@x$T;%k-P^e?X3!csdSq-*A}vRkhKGT z3a(KC*w(^U+f_aSOj&Ac3mUexHFuS>B2NorQq29>ehHxQ3F}~=z6cK;b=#=O;aJum zls)4=bIp`D<0Di^v`c}y+I7b$pOb;V^Q|Jv`wE^gu(VM~Ml3CMHj*~| zR00UR$9D!h9{BkK!yoX-1kD1nPPS|dqO+~ljPW&KC%lHhr+)K6J`laIBBu4r=@Z&wi<(?>~IFv48pD%>e%7R$uUHlu#S&xC?(v z*L)&M$)AV95^jCVn_Xr6YXIv2|Nb8|2B?rR29RGoeff?D3_H69xYXZc5HnkP$q4X; z;WiMW5~7SdWU5}$3;mfbNXuA|JHTQ9i9fWoviobm?9@FLv{egAej^L2JRE*THB}=7 z7(bOU3+yfgfupNEBW&m2_su$D=v*^nU{}`wuhQVN+CDBqvGJj7JalUkSYQ&Ae9r*O zbgw)Y#^0+ky9ydQR`~L2LKDeB>`;L3m!%TB<-^Yo67}cxtB8+ zUlW-t&TtONnysr;sU3JAxQBy)RKe9)G}iHs3A{Yx>8apj=ty>!tqH6vJ-m&qOdO{{ ztD#zXu)mY3`ZqP`23MiLSXVZ_!UnB{Oi>$Pw?QuD44UB=VgMF5;hH)XvP1^03fwG$ z*4SSr0XAsg_YFGY!v-y0B)Eb%20_X1|6u?31aGZEsIjL^0H+CaP_5jA-DJvju1R82 z#R<7aQ8peeHMZRM!@0mYl<5p&d7%l4GbUDOj3#C3UjeO|8OTAtAV3hR!>1~E0zSAE z>Fq9GC7?h!g~+V|9%lOZfqsj9t1zd*OF;-Ro-Ho~U9e6e#!Y<3y)Td)^}pAi4T{$u zX^Mvs!LrY5;uQzoUok=&c<`pX0le{ougbT133FM#7APEAImqZ<3u;C;BoqOx4L1C4 zsf$-1_&LR_AR!(;=1cMs+9{YWP?RzFZ*ehZ(8^axFq&oToc@kOwQ_$O!ApPWC|xb$ z>K=Z=Ok;D|P&`|5t14Q4oH8|aaKW=hQ;RG=7teGufYyORB=|KzSjvn5g@Hn_F+;{4 z8)}%`P~)+oRB+h=?T>Ww06Pld>r2u}5oxz-XbC@u-Zm({_(htvuik5v}%P+eH??3HS)U zlfW?utNyL%?g*&p&Gw(s)tVxFNT zj4q5%Q8^a;=fe1HO;9#pNCnH{gziS!8VBCR31?mBJH@O4qQ44kY%F%xpd>L2>^S67 zot*lZ4jywB8~grADY{{cRj&bX%`fYv=#>VfTPDE(~Ms^JAkq|?w#1PFb3+ow_#5~ zRii4m|1aL96NUMz>F^!e;5RJ;j4}ZMax*)lHkdL==;;f4z$Z&4c)0xwl@K|zDBXf8 zpxn%Mcg|-MYLExREL1_){Fv?TF~FyX(9~F|jBy``(BU1+-CUCYIEtjw#tkm^)*)j%gMJ<#V1$H4PVYhf@r*-_|el5OK~t;3UKa3^7|Yi9&N6s5a)Z)XkJ%~LK1 zMZgbU;my3gv(YYE{^ANmQijkMEbam~^HEM<96!Z(s?-ylb#`XyS#|MN&Zf5kWnG16 zW3IE0Gw$3!ASN1#H{v#R=|(K;L^k5K(1d6shCS#;T!Ko7v~R?1>XMB(3pL2&s2!^K z*G9ZfR$G1}X10SvJ%li0nXCuihqu<1?ZXG^;(Zv4f%jp^AMV3ZO43ba>QDO!W_BIq zfOg;W@9VHyCJWwu@uQ6^vRZuZF!xb*ShEXYl<|=upFWK7QF$Ki{JwF>MqfY3#@P4j zqX)I{qecA$(5_q~-K$G06qWtJ%l?8H+)NarKxUqx1LM<#9!70Fr<0vKipp7Q57Yer z0rxTP9{^4l>XE(r9~`T2uWkc=8X$zjuO3z&D0KA|kSy}JtRxdowpT|xtMOjVzN-te z20GU_`7nrx*EhmC$-Oxmi`TansD#(I7WLj=->^^cI0y|l>-ivYh|pi|dvu&=3|2IMyWRJMx-$y_>=6@mJV|&a5_(CdRf-v0JQZ^Q! z-J8`XXZJ*C3wU-HJ}3w%nJ6q!K{3eDUDk(W4DWE*_Vh)9lB4@r#0Qb~jNvU=KzxEx zgFJp2nMBT``vh5S`HX>`UY{J@XUe+Zlwm4V#r~X^EvS!E1}q0o8K3~lQwFC$P3#27 z2IUQ_-`C`0nLs#iz|ZqH%4#c^H^`)Ll`*RU0^>a<7!Q|c)C?S*&KO(|pjy2Dz;G&c zx7GmcH29+C>-Resgs}$pLVa-T$3So61z9V$e!r`X9yFXT_^F=OXFyqYqd?>LvOd`S zPvqu*{Q>jm%nd76=CLP89T@W~vYZqKhC| zu;h{sWTXm}+sO?~O<2Knri+Y4gEXN&NFR2Oa-5qcv@|wq0Qu0|*}41IbJjW*r;4Rj zayjyw2*ce!z#=`V0ZFiGG{EVB3QlJ5(_A4;)u#ai62}Sxh{_ideUp%M^66Y#Cax^e z8tkmb+Ytl*=t92pp@@7GH8zzX$^8>F6mLB_sD!tk94Hk$B(Zb z)oxO^h45UmtpQ23)+3?hrY)37`F^S;Z?hY4eFKte9Y*7@0gs>(HsBFrKv}BwaeYUs zRmU+k`h9R3R4fC+rtx$T7&0rd2zH25#P z@3gjyXga3)-R`sMi-oqnPmzdnUtN~TEX&H6hOi%<;&3x)=X2@(fp47y$@4-v5*&;} zoXD5tUKzn*&w8Q~_N-^a_m3dXsd1@+Gb`KCvAI!juHkmeqO8N2lvQ&u2yrk7Aq-@p zV^7K&FBe99=n2c4<-$VOLvQ4#E6e`kYA zh_okuBN~!NMZHjie2UaT6?87(#II45MO7z;^S-&ztWGE3y9v) z#5C=uZ z46!QMv1LS4X~cFx(O*VKl1tx|!DlGO5%2TEN#@W-ILUM!>TIn6%C33`NGo;;Uo-Ht zD_MKsrxRv5o6!t~Z_&FOV%TXif3t;+z{9a#@#P#|xL2sj<}?DY0<1p992o`~nJLn;6?w7N`wDdvBj+7`$|w)|1HriHFgdt?S@8_EjTrahOMt@%8(d zFXWj2d;s&+aE}CJ3}$zLw;i(N4@(#;B!XjM-hoDsMCWY7VseSj`NRe$qBB%E^QN8_ zBHxp;Ia?oGz;+hx{lJyR5wGmpb{zW6;2dL%jcO*9ToX#<9H7C zW&e*>JwvT}PKM^R>KAgztN&$H==3j734Z^!DUO1lsJt&^9I#QJ$-)2lu)HX)j(J91*62%f`AGOZ z`E7k8rMlbnS$RkiD_tWz$HtqQDHj`kQ?c^T5) zho_u@rS6@){~6f%;ek~t(RQuvHp;C&qPv}SWkFo-&1YSG*%K94kCjOG%j){p3^8M9 z$*=Ng50Q+GbMOun$4D+djm|Ns^^FrI~KYQm3-q z^R5XR8}~no8?yK)4#oTONf%**eLmlC(bbqO46I3ccgaeHnW(^URcZc*u&=n0-~A!% zz71d-rC#rwC4AG>guca2;E6+^O2q*&xMcs%+*F?F+D2ORNGcTc|4wtoeB(B5D9jv zCQ=6z&@$o_)!}orKq+tP*Gr!Y6Qx~o8DW!P?y_&X-i+V-rRy%18HhiNC#uOrf{Wk)YmY*8A&o>#F)wp!=NLn82^bq%FP^Ff8(l`pmaV-${4W7*;Ej^ zf!b1j`5REp<$;){z-?baxNa?vtNORD`lR3camgWxprT8S<&*D;Fr)afZ=qw6Jhk2k z7X|_;nJCrO>2T-IGgn+sRMOcf`{Jsrt`yCzW> zyP!KucGqRUi_Q7YL4Zm5dJ-^{*Xq}5UN--_Yfu==4JuCvX(Y=Jkc1Sazrz$6<%_}1 zmAa8h1Ywg$1SpQwSY7zun+L=B5zt9}Qg>-Nwhn%b^Da1Ma8-*f+h4;N zr6uj$d4ssFpWKi33W0@2C#7*r1fTnev%h{iOE_!^{L~{(Cp$~Zi5V+gY7On!SspOD zkj0PRVnW!aS_kOH(;rId6z^3^*jiHc3jf_<)L|5_KjxUUgkAcdvcb?C13$tXlR`G5 z2SlMv_NX8ct#NC>s7Wb-e{odvw-V7qY;}!xCUovlJ4!P999?`wt9@f^?(a5qmohS zL%5HyWVqhul3`eED#7kollYAyl`aiU>M29h^WfJPn!Zb>X?fh4494f!f5IZQab^2V zqlTuvz#p}Mw_^l4@^+N+_Ii2VPI`nS5& zAFE}o4YXwZa$%d!d`XINtD}7{e;2WX`nszWvgF(zE*}>m`mI&2f62KjQGH?!FZ#aI zQGDfPBZm!D(ADOK5dx=oNH0F!)lX8?Y2xX9$EKR4X^*2>1J7k(7q;2rd8O^gTnrHx^r4dgX z6;t2%SX9PMmQTbNZnAs=LjBNb3R8ujKa_k*@|CK*bZen_I1n6u4rtQ!AL2+XeQ%6rg@i6)2orx4ncs)p!t$*u94b;C4;tTa}L+{{CK2$ke#s3ldY(N|}*=X^ZHL{V~ad`6a7EE zWo*@#@GJKD(iX#o>IECYg4gKd7ZV<#g3AH7b}uEDutzYlJB&&wbP#&m}cIGmKkV6ee9g2^O9A%I*!VDPK!s?}rjf{P%Q!G0{b zsaS#Ba8vO@Z+lab6q1{Y4}t25O+_f-i$530#J|2x#S5}uCY}&QX!m-AGz4xcp6Fp@ zum=dS=vH*fGMeiLfZOO=sq7%h#pUnE`=~jkex#3#Jr{*=QxR~d#?-3K_pIw%nb|d{ z=tTViz<{ym0xG5dUP24*D&m>fw@50qM>fxkn_8J&MS+_IqbTd%$5;um=YcqKl0Nd& z=8HX7CF~8wpHzzI+j2vZ{UB1&6rJGC{>J+(t}i60ktvJkK9|I_zH%EdT4mac8k+|g z+cdb~Als-A-4n{ z<+gnCFC&a+8A&FLmPtnS>V4IEi5}5c#u5I|N5&Ce>m%a`Nzbv@yGp;T-$;W8^+p?w zS>1j?S}rbm(Np>nhrIbc5tTI=jsWC%!3#~XdtC7&RT?{o@~x8%I3_zhI-%^;P9t8^ z`}UJ}F2FC|xiGMM>q!1AH=6R?>4uXRO)yqzb4&7o{X)V%datwlk)FB?{()oS(E;sy z1HW|Is>hE_F>d64<{OO1ltT1nvSCE>f_$Trl0qID>ofZC%Z6dH8H6n5*4`#ksok9l z{K08*xH0?cL{OH!q!t?7i!04a8eE&6-4cO5sUIG`*Ye6TrU(JQ(vM%+1LAv)U_|l# zi;C~86kkyH$ndnN&C_~;xHdlu7s@<8&4{nWasUhpHjT$^nH?vzD4Bg4EVCDEnZb>A zaHCF`_gYV0^IoG1`93WT~4U(aAy^}L(wDPy+4u-PS+!|jrET7{{Aj*FDUd;DQb2L zaR4a`jR84bRHl#Q;=hF=Tu&IMpp*545IDVK`^)u&xugaMihie7NfEKfFE`VIM zpsc1O0#wBXg?mUXA4XhIc${S5g2G=wQVR;lNi6{mUWO8ac7*>Ft0LJl=$}Nj%=<oeM}OB zb|-cSu5yW#z&YH3n~de`8c7xPl2ko=enslR#zvtt!$pw$6v#Uk`Qil+$F?@A4*+V> zHLM}N&^4?vAlNm;j)C*B4scpjoEQIPiLoJMf7w;V{sML=noqa__pv#if=jlhEHgGZ z>Il*TT*4+QMRgjz4s3^rrHWcA*T;16-$hq0OIOfIuL*(E+kJrOHSqRsubA#^FsX)$ zoHIanojj7Ex(?)G*SV*(S{$20iue~RD$;kTiHj8#P=rfl7Bq2?PRH@W=L`$p`+aD& zQCr^vR}R2E8A;s*W~$AJiWFQ3YtC`mqC_Q&2FXdR8C-EYDS^ut6cQjo^#X~hWwXac z4b;si#24!36MvzbH3tMOTM$>yrw77USIZVh{1}eX_iI9cv`3s&66LsHaNDcKc(#}ji>^$Itww)s4PUm^ zsLO64nYj5_Bso#x51X?w`~j&zXGZ6{w;6paF*!qhD7f8-))!~XC4;>JJLO;@AqR&W z;gsl)0K;ON@KKTrT{{cjyuP0adiz&}8V5mY?+nrupimfu;wLKI5z2t^do}%3wsb$> z7u}D%T_(C8FY7-7e_})MXTqPDH)}rxH-?^ru7`uPMmFDk25vJuwg-CsRUY7YTs%`L z#{@qLiN;~pKonBzCE0w_-9}}+ z4@Fen9JwP281U+^&$G+mUdlvG%i-VdF`BSkf)Txs0U$L0S<2C&B>2a>Qi5^3%X>zp zE=}}{tWS;{QulS)2>8DjUc4aop#>;D3f@-_O9 zNa==JP{8$KtYU42?A@nW01SihJ zUJR}>jg(Nn#bS~w>Lsaqwr@e|N#DXC$bFh3nodpNwg{j&f!iv+a00h=V6bz6>W{O( z7ooCnE?zujY!BHh?x|9*7|ow3dN-QqT`|Iib8*zMUomZWjYBGhbdCK3W!HF6<@y*d z{<}yT$X-#yRNcMMwCGgeED9ZEH+LR7ZSuXVjcS^UZ+gyXpc}c;vv^rx zr@DNfB8PewNx4u?4P`lr_Xbz=kP_%wP)JZ2bxRUyZ-}-LHBd3ziZ4{mwz(B6=Dh=h zJPR`C^EV4jhm~iM>BrE+kD-Ue5Zbd?Qh`%(r(>)D5a3TtRw+bF$L2~c9jS7Cv{lic z7|Q>=2oCv#e;fAM$0Z7d-?Qjsgh1?FoGV?6jF-T*SQlIkw?-?drd*5Nq#C*wckEPlA1B)w%;@`m~U-OqlU!nra(3jYdYx@$Ukn|;nKr@TYM<`+Y62FQs z@vqO9*dY5r;$o3O`@k@fU@N=wCH^F-eqTbbF^DhU3Xz9wkg9{u#Erc0U0)=lYY^^l zAqD710O~#4j6Ri{x+_J9*8j|v-b4d|p7QWJp;mblX@jIU(TY+lya~L>9$rLz7o5d{ zdM+oAIgwtOg?pIx5b_*^3fsM)DL`@+-3u|zLVV7$Ehmkxnm%HXbTr^Mz|m+aI**h8 z#$gVEU%L~Gn)(V5hj2bt5pkgNv5Yj{hC%3eFw%Pbwll`)Dm0#x1GR?qGj19rC(Snz z8vK*yxVwVeb%EVRW{guW1SW-_@dT*~qfAx&3@J=S9=zr%bpr6gd$KLh+cA&&91!$w z;}#*zYCP>dh-u1w$GBBLH%M-SyhBJriJm1Ay&OWKzrSmY`I{vArY+Go2@Oi3-v>+d zgyK+t4JArkk!piUw-&C*z~Jg(gXNCXYf3n9DhC9Wsf`dn_Jzem1s2;Q$(0!K!r~D9 z!8>q}n1M~?|Gr>s%?VMUik<+r@fk;sV$Gg+4Ob~-M9Ud0N3?z_*FU0F%|Sv!-2CEP zqc5AOpew(`6#}Q%%X2?6X0R2c0?zA~43=)mCX#`3u9V-ZHHC9V$}72(lu%xY=-<>U z*}(I^1FrFAVH3`aR7Z<0zr;&EmdlHtK}W|sw&z|5{X z4r1c!k&F+GM7jO(e(&|LGIHWFFaA^cTrr%5Fi(4f^PAJGeI{m`q8LQuFJ)afV0S6P}lZQ zTFXh%rLT=KA$v;I90OEPG;dM->Nm!5M@vCoz$~z%N+ErwgT?!4>zB z62eb$QAmIUH7r{YmFqep%A#H#6*MTa+Ma`A zvn93>aL?|9_`)rU=f&a;t`_YTPA@v&L&WqNosKMF5YcQm5Hf8Bs%}5C#rTB2jhpZm zt*Y-}`cTNTT?)|4zHpIXScLxP5V1N7Gww!l)p_i)6c;c4!(gU3-L%kq13X0O-MVw`1q??)P#+Vc1!D49-RFu{>ROUv`Wkr1OJ+#HGq7 z1pa8!yool2uL^TFV$)O+o_g3lMW2Mi?8FO(<-k;XD0pzK`F-K;L2;u+NotG6@M;n6 z&5R)7+a{Xw6|2N@r3sT@6WlJ|B4t=aS)FR`o|D53Wc#Y1!YnxXv4WNTu)SK$wrinN*ETf@DJ5mX_mwMz$4dsW}5^Yr+! z@az?H_h82eEteyJ#m z+$UH*shhvwofEGGR~xUY;Vw?fFnM!8(S1gw5CX=KRYMMC44J0$Jj*@66`~ou8b5Bi zv%*S-X*_l1mbcP&&=cuh(){W4?ZHV(kVdD>IMq$lucUH7`c?z%UuRu}$MJ@-b(SVhuM`M}R) zl_EwrdsTkyaC_xeim}<;Wh4K<4iAGqEPVs9&Y=opOGrn zhuFJ#xLmo7YvhKNTU9_*n`~520~c-Qo{5U!Uo~=1XS+!?WVb*MYogydTpnuKIb5#a zzTeRu$NM)}Deaj|acu-X5CnDP(yS^(DTbxlu{>vx*&*D!VL03ik(ryq z2&p*SXhV2jGxww22H_Sg+t3cwQiL1fKlhQLWsOdV83!oU4g9Sv2Lx+PdfH<44GM{PIX; zoLG&848QojBQV5OfJ7V;@FVdb`UprVIW`S;Mmo5AU@BZni*pOS zOt||9c~edo-o2yyHMWmXgTn%{vRks^*sXGHeje@QJ{tZkB=fy*m?`XtDj;>K%w{I7 z&7e4~JTDu%xZCPaj=*c|98aps_Ux{xuvr71*45owzc7MN>FRF6&v$W00{tkc52&EN zMBqVsdM&vbM2>fLTl|e~?i7Ituks>@q$KbvFJMxLGLT8XJVPYE-`(Af5s?t7?vhf~ zyTBSJ+;_mm{Sy5zk76EFQG1i>UTW7jUqKIC3z>yeTq#csbUaIRQ2qGI{Bo8uVXdgx#_*?v&AF}6%4QM zUMNzrchv>OHk>v2w_7^F@d(Zg-lVrXHf;S!jcbj2S^D~seBVls2Y+*63bvKN6I!9& z#uq={_gujY0j1Hv2MO%fIC+IbR>T=s2Bs!gpTm7uWu?TCwS)3tbg*{ERqvu8Ni z9Z;HM!`;a`2a$;P4wWSByV6!D;8JP2j{y6#holDCAN#hlyGV&3r8z{hP-)U%9>$nR z4A7bDr^8KYd0z6V%S%#S!bC#ql(1ADGg6I3uTWii3w6ao25sn`n^Th$yoy8nQnP=C z))hPVn5`=ZLh6cL=rP5Stt*uMKwTjMRjtKOj0Ih}akNiYs*5kwmFlBI=nCF|Rq&^$ zepvKq=t=9E)nl=uhMJn$m-IMBs}+YTPu3iCJe1BSO|jdrxT?1MZk40=`M_lN`S3BoEoV=->#}i#Z}dJ#jV2~z8vG*;15!PJn%~xPH{-dF zyAyZ^)+Cl+TJEk)(5rAs;aTj%(_q_aK$v zi=)fUey`4g8RO%l`N5-!9>?RVHmpGXl-f^!2Xqe39P^U}s&Ag7AU{TsL4C7v&8A@h z3$N%41nOH1P1AoHEpPw*L*W!_O!kG%zfc@Ej*++j(uU{a_Fq9b&Oiy_WCpt5?l6}Q zwXDWFO^4C?!O?QC*fH8aSn!V1-A;YmXq;c@w_%kGeWPkyTs9amT0V&luRBNc>+{_` zdB;DaTkxy%-Lt|*je)I+m;YADGd6fu7 zK!t@JvK64PLkLb`p!l(St)}reiBzhvxnrclX2Y*g*gfamud_|0E-37XN|K_lSHP*n z%5s*1=7b#r85LBEY0jP^=&*~IQu(|fQo3q~CR|}sENcg}eW>+?qphKBWBr+>NnFT7|>dlF$cqp;z{L<4GJ$&FMcV*sV zM~RJ>5*ttH@JnosNTm`3qbDRba;)sE^>1^3#!5)lsz_|RA2yX3KmTmw$g=BO+)cFb z=K&Kxo?&)iFA|(6wj)Gr5IhO07GTdN-0q%NNh6|_@%7t5r^+Zwzl1&zsZ>HwNiGiB z63Y8@Xmwt)0~G5QQXj-5mz=VG6sdpTAl$XYof8&0&K`t|wl)|R=7RrDdpf`c`QreU zJ%JN4)8ogHQ6P03*Dk;UD;)(&N1Dy`m~prYr8)SqJKbHm*frphJ79RK4mHFRRX>jP zk6Up!3LI1%-wSbc;JLASq;^GqUtJ0Jcz)v-Q$S-6ytR8IKflZUpYXW=iN_2yo3g@S zx@S|mm%%?FCSVsAB&71#2i+!5xyv2HyX~&LeV)N%_qY?;3`&Nt{o`*7W_ap2Ii5{| zUooE5xW~PR?IU$@OQ4yUU{E>jQPq3`!D|FyW{SH3t#IyPUn9^Q65%#MSBS~6w;4aZ z&)rjh8yZKPnR}ODMyzJc7Ueww7M5-@DCq`g z7u<|L{>tea#o!Xj=XB{@=~ZnX-N}05cp0^tNJ;W3MqIi`r7dg;LNj$^ywr=>wk>Yt zP4~N#c^L_$rXdg;#;J{Zc`$nr5mIf(7p*hU`IzjqR0Z7n)0>aUMA~=-)#1aYU<6X@h-I^eWq3RRFFqEN3OpvRxIw^>jFTF=> zq(NH5r^G@7ATTZ4C=)esCGD{I!qt((6GE(x;Jb^i7u>sZLiDcUN2_QVFCBL~`QjJd z&pFO07VK@?_f-nnwmmaJZrh$zxjyFp4r<_1Tm@L}x`x2y{dR&3t9+)4!*KxAB zfkhNgaeURQ?uP#ZzkLbq&4EA^5g0dJL7RYTC+e?4$86>vt;4QR_t)L^wcUK`>+X8` zo;kkSYPjAY4UU^aLBrJpgc31aCB7aE;a*Y#_jliW!##&RNm50_((`un>{?KXTbx{TT?Hl3?`|TTf*l!KGeFAxCWM7BMB6iw!(!D#>82HOc z_k8w=q61Yv=aNeBkx}K&we^(yQTCex>>v4>=s!Wzhzl}nQ#AR8el_kNd0M!n{5xl`q+M~b4&)jt4Opg0CbCEyjt-fjXXj(fd$ z*g5yW#P0+HRC_KEj!=7WQ70#m)*N0srCX(^VIVn}5spc%#`+Vmun(}DO(F??N6V2X zQnC33>tc+(`(5`hY;ka5+zW?Wn8oA4js+^$-mS(<4~rpNTza@!W#eu&yg}3QtZy=U zN4^-B9lb;uJE%eoqDk@Iu_6iOWxpG|fR}#YPA-QHZm%o4v94CiQ_sUH>LG#*UEU`Y zGVN%|1@L$YE)Kq1t%MM$^5q720B33gynOQ9{GoM2$!x)AUxKY)Z6e4@slOelaa~{z zXv}GE#U5o=aN$dJMgs&fS!!8wvKr$@+YC%gtSL(ExOl@2>%EJr!#s{iO%5bsaT7Iu z?QCw613rA%ZC>WQS0j#*WFd*#{GQWJgO|P?o6I_?8lp1;y+S6Wf(@tdJF)!&;P_>t z$4rzHn(G1bn8fnSffkQqj~A%{qDa51{^R=ciTq&qqy}sysf2UKr6>+N@MrzR@;WLW z@6#7eM5mw4Bh_)XHP)I(^_#X(cIzuWU zaVIHp=aIMorQZFmyGfktK6WI+>t*kM>#nP@*9kcPigRMQ;xCh8I5KUx>VBL3Oj2=V zQuXZU0a6d5jl~-!7{LAyTOx;)M6^g}Mu1%s)cB(U3}POABZ;ubFrd{5^ERKz^S+2} zU^Ex>;GouE5`5vH)?iXalhM9ExE~EQly&~Edp%1R0PH>_!bozus01GY#fPdmYXyTG zDc8cgUxx+p$G?ufgN;yl$jCNik{sEl1n1(&2Dv!0%@58+r%vPwrw-oAy3vH^&V*AJ zf*WtnBr?1e|LSfihc{AG4sY!NUeNHiOCZMK?Os0pH}|;29FahWw~mUmG8oWm3QP+WoT29jAjoJ*f_quND@?6J1SDq4hY`G_;&HXv0t*cf(wiBO*^&opqc16 zrSj}ZuiU5w9r&fb&Qy5ob#7bzn@QZ6ms+2Fs|qT2PWwu>fmq$wf1ZTiT-3dyq(6i( z|AE~0`e&1*ANrXBV*8=7lcgVeBHZ-Fduh>pAA^QPpox>wI#HPDh6<4AArg?vL)1@A zl0#eoduoU)pA0t$w`U|-j&50#ffYLP#9obHj52{RqyC7^52)-nr!FkoB*m@ZNS+7Ipct&^o4Ur#CtQ>ooT1a*4|K?yUi6^TOf{VTSdKoF)p zehDNjoS5(Z0k(j5YBz}Ii}>+TVX%R?yDQTs`-w*T{vxSOluo1)qTBG8rEw8usZr+b zn*R1=8HMyNsfwh(MM(b$NoS;u`NbHsQQ~1CXzX-$nA#}?rL0b@IZ9(BMYcZ9DB#*7 zCWNl&M{7)bQJ^&@z1e3Bh55i00c#3SfkxOPzR(DJrc`8vt0$O`hg=bOvWm8~w5eHx zpR!EGSGvrjtc{?B+VeD(;A5fq@5A}caj@*m-LQJqU*S>qTjr`C8>WOE=R$wY1M zlY+yE@a|ZJA$!qKZ1#XnheFa|xIa@6d|KrN+3~{HGJ9zs6MD}mdPQGz6L|(y%uA2%!4V z^7OMc+g6C`^k*Gl$0%BZVq&3?D3hNF&|WkP69g$}7V^XwnuWZn6)!k6g?eJa;h&An zH$u(Q-fnC@!TW*uI9n>$y0 zrLmVuA)IKHzEt^%7MRt>{6KbMHTDkz7F~j{*5)1T97#pX@s>zHn(dQ;v>sZHFG&?; zIX)AqXgSvLt8L74?0Rr9Ty^+$s$6yWRpr|Avgz&2_jO~MJp5=*18BDSN3SVi8rcr0 zJq;&KF9;aEWd{gW8Ou|$s>SHB)8vr?K!tJe0jSg*seJOzj%H^@l9lPwf0`=&)z79% zv-L5+7W14jgigOK93w@llm%#$n5UxMS~ShJTZ>68+@)SXxPu5)t*hCZ5$?o7M{~VE z^2KJ6+UT#&m?nuEIn7TT&If4A1urklq@ zb@zT5<^gt&P>N33X_er^Tl{?0ySu@2w}C&_xre!neWOs2j{gM+xQo$W{{&>%JjE!P z<4NF;XPH?nd^+%`X27uA42Py*SAI}WbATuW6|fZ2!-v^GSov(TT5$6siDED(Ypp zI0jf;A*o_qC>d&2+W!V#ES{6qvKsq_K*eF<@=)^-yG~MZSolLEAdU7O2CWCf0-iZ* z!qf7i+OW78P*(LRTU}#BDyr+N(}}t^n_;VK3sMW!wFzH6%BQX!XGnGZT#!N4wSg#P zdw+EZ1k~9Sk(sH-%#iBp5dXqM!nb-@B;n6*8e=c#Fqg{kDUKKDMTMOw;G@FM7hkBb z^Jj!mSZ924wn0uW`XRxQJAl-P<1=nWesHV(;8sg;Ol|3ODubg`;aXI{u~>PGs(75a zhwTz|m7^rjnC6tIR3Gvx#xacJbJxA+;{Q1ghtPIRFkReXz-!y^RhvDckjb6X5ZJvB z&ye?*A3NS`B72e409CfF?h)DG=wy}2Z*;OM0OvEmaQyU9P$E2jN{Y&9+O`>Dnl>>O zO4z;b8}aohZ!pPho%pc$raf;vAq*#Ic-r|pk}7&0|8QkxyPg!Io8r7epkohgGsQf@ zG_Pt`Tz^lTYBpyzNGe*{y&2;ezkjM(C!hkZ&xly$#2Z8f+HWZ~oX#}}0$Fl+0AnHz z`zkaW4lRSHoAX(hprZ1*^A27)rR$(_?TsXOP^tzmoM9$wxqRykpmDG&B9A`ic-6E{ z8_Ns5CalQK;17Gvdhv?%8|C3JK!g*z07Pm+S3Y_0OtTdu$z(#;){Ao{tu9ZU1tuaD zK#Td@7D6D(7uT(dMQVUJFm`3XSH`Y9Mk?WC^B$`gmAL#!KuhU~Bc^OGfrwMk-L^Q3QJh+;_>mEjj4GVp)Z*lTbT*%n5@rG| zWXe*#zR`Im$Q=!C7x9G#x64d4xYR-l!o&?qBl)R?W{%trmln|vw*OFhgHr#Y_6XMw1JCG z1;S542lj-RS>hDcc~A^=I9u5!>`%!I|9wVHs*BMFD0)WT6x3xI1gI_%VnCtJ=i64A z@}{6gDp7oi9#TBB^0O>;Q_%SJ?=fC4D?6Xx`C9!n9?M~E@Pp-Mu7hIa;s96K$Q7`p z!%7q-g1pKcrZ~ObO5=NbSn0gU<5qMKCTD`H?C>g>2D1kUCg*B%pmu=guQnU8gCzZQ zi8Wb&d?uQ<_-DdFDmCU!nL2sy?ED#Xc6g7>|I2^puY@$cb;#-fK^_hd@3aYj0eA{-j zb6h#$7<|wsvn_Z{>o%EQ4U6Hgg>;KP^5a=dD)6POjFZ8nI(hE#jgl1hxb=bX_36;U1kI3n5{Y}G+CSNML)HG zZg}u{GiiJ2Z^`BDlrbA4&BIR2glik74|Vf5yExPN>@J-vbIdb<=43s5wu~zeCqxO; z6W35A(Alwu6!Mf^5XyIbmW(T(f7;C92lki`v(BVGG--Cc_q=Fi3ZO$E01PbuO}6=^ zYr0d&4BryDEYj?odoS4e@Ro=XqVWI;zg&=5lV5tPYs0XD+4fab^8$&n^=l5|FF6%f zFY!z;Z3K43no@=JaG%sO_|`|jMHh#Hd9%@jtCxk}ZywY1lG##S;1_Sv-uj^Vv3_(m zU;UJ`K6`<1gFMvNp5bMWfHprvs6)kh zUnJ0Wf0DF&DKIDwsvOx5_WD~=6?6t-^eVT$9w6NM+Sh^j@Py0bAmH6bA3k?`KD>kU zxH*+?dfa?G%r!^jcg4rFW9~WS`=lN}r-F$?DrAUz-%jxS1LlHCOhJPvj^TSs;jWt) zLWB@yd~1JXUm?brhvqr>DI;bU>rLwZeX`WEBtq~WS3e2fnNN&)*9J%O zN1ie#^JPz&kA}|ywc#<58U6 ziQoOAxsN5!RbA-#aoFrScDtifjz^{XN8BnzfB8F3$yqa&FFS6=!xrk6<6wuHDMTF5 zPc}ke_BNd>PYsNC$vn%t(HbYrp?ase^1#3Vk^zEm#BVdc_Uj+iU2kQ*q9H0+03wE3A*rDz*bVy z2MkX*>>(ND2!1Ru^M4S0jFk4_z>^FoNrsQi{=pP}L<;$8BZXH*F*3 zGB-C=E?mD|kqW}PN}}$XD{io9$v^DhprQ1uU)*6uCM60n;HHFEKo$S`uIEdfi{~ej znu;RSnz@zeX7ZK?j20Z`Wk0gHge;Ii4u9#4Ih4&Jsi|kp(GHR@6FqtU@LBVpY#k{F zwX>7FD?|$7ttO}Yq-NRWx6IeV+1){v5=bRGZsLvte!O)pS6P$y&5y(3(vFx9&0Kbv z)Vu7qa`dMQcuUi&$(|+|===;k8y~^<$5>1C69v3mGpi*#Ns6Ec^g2JTTP?YGRkHkC z`dvVOi`ga&q|3K{H^$BX)4iFKUy89B@rxr8;^GyPcDyf8BJLE7E0=Llpn*+{=e5YN zCjeSua*YIj;v@6cu%F?-{JWWl7d5cb*dK&G zJoZDg7Js1)G{HJT1QLIXB!1?XiuhAsIWK|(*mf*sU-OE3#|dQmV7C$E?fhP?uGpc-wv3j533`6XC+}@DJ}v^2U?i8!fv$+;$My2zL6vf;pJ@ zgZa-e$2^;Z9{+_-?wqI87&(aM2Y)paSu{yU4%+=_J_L8DUHsAP&Ki(RLB3XpZ~Fr_ zBSZJ@mh*i2@BG;;BD!MV85cb-SpQ@Aqu&MVKhOQee3)POk#vA?ZvAR@W5WqG$ifh0 zfhYZ>6luae4I}uUznZs&d!aO6eeHB}9FS&_y2#1&zv5((pOa^QH|G&fVr4@Nk(>}6 zvoi(?sG0f`1!d_StiBq%o1jIK?~qczgQTO>;qvPUZY5cTVWrS)shjFGV~0o?B>9QI zBKfGF$2o}Ni5M|G!J%lUU3hx)jmUezS9Y&MYU9Ak) zPGw7d(@gIQ{$h%iShhaQD%N?y)tDN5{ChBIY*!8Zl&gd@F}l%#%3cxs2G|h;)z{Um z0byY`&ZjorF+Wh1^&0c#cvXXBpj78x^F;8b%-R^gGaRFyZ@6K_j)vazux{#2;m4TO ziPa``P|C@$(^ugD)^xs4#lLk}i-?r%8}5LTpz+Gih!9XS!*pOo+aB%WU7A?8@fVrJ zxb>mgiwz=F2tCnrBuo5PX8A3=8hxkCm!t1AQVoe0=K(4tzEBeXe;9r36-6K-h#Nbj zpW;Rgykf`-+vaN{9I;9WWysKWyN$M!3~VDcZtaIGIc_~h3L#$){}o@)_!~uxU8GU$ z>jMFG(75a7$799pL5#biNpSXnBiGyW$;kBqAp@Cs*KU>f6I83Hq3a4j!lCOLsfXnM z=dZ~BjWmmY_##}G(&hl}pvJH>AjTe4OV{VyHYasKVE53Hc$#S?vLuooWOLdsux(Cz zQbtg&w_Z@eWG7>RuO|q5Lu`h9jbRes>ajA(T*uK z80<_i3>Dj)GO#&c>ue$6BG|svl+r8&@^K*;=3>8_)7C&Amsxy@9kQ%0i&6qiP$C8>yPG+S7K?si`2 z)7>D0QA<({7)4hj4Pa*^EDUG>VKMl#Eu|4R{X@s1r6o{902h~x2ne8nT7aQg^xHmYUn>ALyzL4+lW({IDEK;f(Y-j37o_=45 zM3LRPY?%=VTZYxF0QXp2gFu%Q00V~Hz~UK3gzVYZx3-Ze5MxA0lK8@ikfcR21aH2W zg5fRFi)PAOq+J=-u22hyKW13Zvv!0BwQ$%{iIf5wo3RsG%aZ?2r-hGoe8UZ`r zA5OG7>k&6$tQm_S^@Ry8X;gQH-r^=1QPPrR%Hg9T;GKQIznyH&6TmS|64=1-A%wk)zC8BkCe@%HT;3Iz5%%RGcvf}y9f=ctx5o&xHF?f z<=PFFGA(6pBwt%!jaP@?+ti@1pB(;nk{M_YY#K!bsf0ccQWu{VXe zgj)C&A5+JUv4$~HSgwoxc_BK2e>}z-r+;!2&m3!wW1p#-9CwsHs)(+upg6Fj1cKc* z&YF;@AzQpRVEaudT>Z;MA_CifKH@VlOW|;*;yFyr(9eLnh}g>p zi~W3Y>`Qe;0_jU|k#(N+Q+OsM%WjcHYM`9c7gx|Nau(BW(Pgph7F|evf47*r7`p{u zJ_SdAggdz+xbu8)MUT+B@cb#TdQ8EJ4#7GQJfKXraM~{Rg`f`df*S*3z*ETgk-{j3 zy&@q%3*0!Mec4BAs~J{3(xmo+=2HaF{28!XOB1lWV3QuS zsou+dRO4AAY923ptsM3P0f!w(oPl(aV!q+kdz$Z_Y5m0XC93(+95~?RUGWfJG|4~? zBbQXr%H|Sk4&sS9uve*cesYf0Apn)w#7t89Z5O0;^862+uCi@&!Jg`EmWWf9Q;GBv z>WJpCRStd}jHQknQr(0Hk^^kIOPr?$=SsGC4Y3Y?2Rf3tGt_WlyvNY7jsr!MNRum0Gf%W%cPlTPBPF;G+tIgZ|$&5&NCDFVQ#gn zS}4{XR(-8DFT2C)5Je~}AK)~QP=_-U3~;Iqw2J^IQk9GDk=RcZry{9E>Vqd(i>I7# zJD$xZsW@%(iUjNnpb&V5YRFyIqj2@WpLbbx*hW$uCpEWLB%&S5(4avxNrScqLdEQkmmPg%d z-O9q3D?J1B5ae5~5=03<1dDsI=UkCG0JvPMRz`Wq-vH$2of)nG0_`^H$G^GHIv-Yl zc}SbwY`L__EeIu|)wCu8Z$;a}9hXbHESk=5mkC++BghSx^Sn*gT-J~P7n&ERxU@^w z71;V3A?b&<6SkQ4SE7H)7Ecyf&=yY-UucV`ESG1h$O@V;9^y>Z4xaLe)yu#fdvf9f zyADoby_1lkubXL~se%MNQ#D5bo(X^aXR1UBIa4L_ycp2817L_(>34vph*#-5JyP|l zqddUVE+Ak~tYNxDyb^}zH501>xE!@yOh<4ccU%~{m%$3#uevv>E_jA&U&vEX-JYI)Q!PIENo(T&zm4Cn zt*p5{XAk4KUHiNFu^U~nHFpFU?5!qH*|$?TGM#?BR4wrK}c>(UeGA6mj2UnzO7N5$qSBJ zp6Y@$(D$c##$%oO@b`~eZP`2lAN73}Klr;PPyNkRiQ)@YzMyI*EjXoQfo zw`c|FP!Imgn*0CXq4>4+p7A{QJu5mY0E6s0)+<)au+Km+qR%i=fTs@f)aJLpV%_KX zRS9H;Y^c29BWv)PuUhrAaK7zTt1+v#GC*}2@~wRnyXyK%oCxx*ATt==_no%t@X~6U zlNSuiW_PB%}vU{&MiUbEU%g)#lt75w4Xt(lBa%7w&}>Ik~%bdGSif)|Q|o_pS~ zzSbPg6$3VpbMLPn!H@jg+MspdJx^NgStnIQDk17cJHn%$wNmIs>+n=4%AMz&v*Q#2 zwh}hySKqWchQK$ld+P{3=9D#FAG?wlg~5AccK3!#(&sb+Qww_R-I?L@VWoOwza&|{M9WlT!6ZJj^{@-Sfcq0#mAmsav?E?0f_&pl$vGhitI7q2(1*SJ%MT$MLcA?gcHn($uBLyvQXc3M zzvBGgu3ce~{QL9P$Kf%nK>x;lX*FO@_#!qPEoWyfiff-(cn}c#re1RutY*Mjqf~zF zqBX8^l0f>B;Sf*tOIABpgWwe{8P`lC(4JTgX^=<#!dBr?qq3Tpt*IKzAa%t!#817h zN5)+iEl2@$3j}~i{b1w(#&}Wb_d`*<&}l$Y8?eQIqA zvXyuO<-<>{I~*GnaVvO>lc^bOn@SOOp%KTo5;m-oFIcQqxx$R%_<3LD$4^v*u|HYW zdD<7&D)yj)E^Si5F|&&i0;l(ZRXlBLN+Qqw5+W0y3a*wrQLC_;a~o8Pshb$V8-Hc3 zV6W4<#h#(s%P4a^+;gfG93FZJlqLoUXC6kPgZ`O!4nhi zeP)%$o86q2!bl}yH*4!fpsHepWzKLtk_=%Ju39V!YT3&yS%M<*ukT#NGr$Nu7M%2e zC_=S(jbeF)JXg`Zxw|{-OIS*~2EkcF_^NAGJvNM_qrJVlFtr=piVKrcm;;Hq$%G=Y zf)Iri;N3}rm(uysDV_cXwTssK0xnqiOez$FP)2$w%H+t(uQnMSUUubst3YRqRi@C> zEM9scF_N>=?v+{B_Vs~iM<7md0({d?u!OKK7@II4Nw@kbwvUzs)Na`-t_6SQXRD94 zi~sqvmCf!B1teYp@f|fO!c9;2PF393&%IEX7w+xt;f;T_hHD4;>R+uf>`7Hnib4=a z;M(5*f&UBK=YF&LYp?QZzgu0SURQ8oI)}&n3VsJmd|IUod^y_dC4az@6e*4q0z!cu z_WbhypdkO`+BUU7!Zv{q9MPc;OJh!vvq%bNT-b>kdwcOcnta9yHU+K0^k$j!*NzpS`lba;6 zR6%KH#Z*j7=Le%bay>})y`0se?=jN%_=zx2oj9d6wj0?P7SlX69Rc|LffFH;7leCy zGE!PJnOvCD8VDlnBSLjoi?t`c8DAUW+00f25}n2KE>C2d&H6Hx>0^C*=lc3~$QD5j zJ5@Gecv~>T_aMU#!tg5lNf5xaN{0A6IdXoSPX6uK4iiH-f$JvodNCLAvg z#qmFDceH`Bc9Df4s{3USwnacKa+=cDbZxGjrLm>S}!MtA$ z!F$G6;yDz>yB*C7cZvw!11Lb=Pd$|!g7+UCo?(m>CcM9L5Yc=QuYHL0s{RRhp8` zGLu(QgG*1QX|xbH2KH~;!{0=(ooAKq4|?WyEI>Zd$edw_4Q>FLBCAmpJB z_L@kbBmKQ=Tuf^a zSq3S!w6O4-wUSzM;9z8mr#7p0vtPGmKZdm;h~>DMh&LAg5ihI;ikG)onb3e2C41s| z-hWP~@&ip0YVfoVCRFAc3z(uP$?DhF@RT~9I_x@;5sJ39pp}aDH(Rtn+oDaW>-mJW zBOECYJpE?rfoGCj5PU<99(Xs(?|_?eSt4LuTAk(T6SpF`Y1{GC1|UO<5eY3X{0xfbSXcP?I4H}}&y`?wHtC<5_xYoSG z&1o)1%8PNUwtgq5ZF%p_+A)1FdTa7IxF-cYcs%|HpWe|kB&k%i811HasV20YHnf5N z2xP?ea&kLY$p)fAMmgYWO5d#4Ubt-0#pBl58I{flb@TLL?~??OW)@Gs0*A+;SlOOA zF*~(@3Zic(ofZ|4J3B}x0F_t?6t8Hposb`)nphd6DA6L7EBPH9d=@K%{p{#DMWfF=cu(KL zk)88BJxjyV*1~C&!kA7`trWd58Nw~LW4%0itfNX7d}Q(5hT)MK+~n8W)0vSlb1d=yGPk8eLYd&LzB`- z54ti7)=F1qfy#y1?K!wu^u_b@cj;T#$_I~bSJ|>r(#H1fqHkVH8s+Y_{B-riHV)M$ zuyBA69&KEUK?shG3Wz;}&Reau34018x$oA9y1Y2Y6A8T?h{FwlZW;xDY%SMb^R#6I zJa(lzb#!U0snI*k2dTj5$6);>qHgz*37mc&HzIwL*5 zvG&0jQEOV?Dz&Dy%C%ecYPSJ3`0JxQ&9(mgmryO> zHy-0jBfZ)75&$hWW&m2%m?T+lKfQTJ%rmSokN~;5Kty97)+Lo?gYud&(TCZp|54jM zT^dkZ2{!H4K*5$pP4Lvy*xq2EDAc=cq28@>?XGw(F8WdJFkhVyF3)o+SIQH6;xkm9 z|Gc%Lo_Oe1*%J>bAa=XO8W~ai&7vml^z%?=Ma_o%w}}D0v8(<*#qot~v%ucoVoj4Q z9dKZOBsfTa1SYWw1DKS4{O`S7k&3RegHt@!H0D?rr13%B(LSge01oeR%$(-=kHe#C z+k772Mg-5F?wO?5g{Mcver;NWhU@agpIYEa(?47%Z@9i3j01bn1&ZTqDWHJC zMm)tHCU7|OBR!1ZAlf}*oz(7tCQ=59B%^^U%el$(oW^3-|Fw?W$7)G!dkV+Dk9kXv zN>bJ3kW+^rIJv$(tEbXMBgw%c3`+CnKgEn-q#BME$x3JK69g2Y9g95SW^)?9e$k8# z>ke?V#=R`KWM}V6Pffl1dU*h&cOX`KD?e*J=}v>zV|Q|p?z9S`0X<_AV2TBzz{zAo zIS@X`Z%1Q`(Q+^*|Y@NvQnStF3@Z8!Dnr4L;vPZrIAfzp4nXeLZ3#L1%3 zn3$oDfSH0gS+tcffU~OGL;{&r*$?zQ3If1~#U3XWaPERD29HpV%ht;mDG0~>@-3d` z`UC6bv$FdFVPx^ED`6{a4^$H*-nL!_O#+GX{EU#2y@U-@9hjqw2fCf<^;IYQUFzWey0qUGzM#oZ2(*< zMyMf2U;IXu>YHp=0hNeY*~rr~ovxDaYCC!9CeLtITVar{c=87B{IphgmPRrTg14zd z2D-bR4Kl_$1Z`exLkOQSmJiwt9ymIVq>|`cwRLU7|G{w_E@(l=aXfFo#WObvf=2=! z$8be0IF2j{oP@fb;c%^`CylQ z`$TEf*L%em>g&B5P+twIufBR=8^r!kJ8|W+>_$cQCXSA5=Nu$586WP%1Gn zg<-B}zEr+trzhKmsZw`+TIwz0*LK39V$lja7!LxjL@-|Nvj`LZ_=E983JJ!0Mijs( z0*Icv!FyT!DH40RxMO^$SRlaF2Thc_5!%C!G_^zZhTQ4N*DnIo{!qOSumSB*y>B4e z%onN`26Xd*o9ETmc9s>ds5eM+{2^c>BR_(;m(|MV*>_iJjR6Btb63^N(tp_?7w3P! z+q22x*hu035eL3x`Zxzaw%gNJH#Xvh!48v_ab9!6bGZ-MdtvcwgD=6ay^#;<7vGIP z{z0Eeaj~?zC^#;j2|%clcEG6v-kgWn{6H#1Y-;(UK(!bT>Z?n_HE9TcBoYGfsG3Yt zcqxBLq|P?V_SRV0)qS4%T6IwY962t+fBW!)Gf^Fx*U#Z(UYK7~hC@zMiQ-EDE-tG4 zs-v#~YVxgH-izb!-|sn8ndlp%=1P9-t*C1JLZ9gBQ2{i{Fu&3VJsDvuH_9+S2Q46P zW5igg9UC!L3S#5IagaRAOVe)`lIve(!UFL+C)b*kLn-lz^K#|IdCjPK2QT^omS!w2Lxm4A2s{p1S#%@O}@@xEAqR7gbutY8fFvc zpnb%C%YuWRw^@QHi8jD)DGVccQb48l-MLBb)j(YgkUC?-yU&Oeg279A4~sPWF7&66 zWqwKAg&v}DyiabF3-)h6<#~mX0z4xsu?zp?Y0ojoSVh@J86h=UrSQvbY7T|Be+HF# z2IP!X>4I+TOsA{Z`US6hs`HZ_6XW@w!=7TcM4^xkD=rK+LLl}o-XsI03O2YR_^D?- z{n@&}x|1uah5=GXpYzzQ+A=FFLyQ)ixy;Wg7YbxJd)shfk3 zLVG_X_A$Oz=*wp_l|t_6 zV&dy?^iCPu$?7P);kAi|D_eD;VJNhZ;gWGX6I+XRq2-E(39aa?Ur7j7eO*MK(29M` zUfF8FcW)@bmN7tW3?PhlGN*iW_2Pz$9(;*$uG`A`Uz%pf*dIpv1XBok<&(r(<{cob zcTi(!ff2ISjRD_xFpy6WYgNlY!N4#K4EG22X6-wA2M zIH9@G_rsIrt70Kn%$Cp-Z$hTo4F2M@=#BHdE5@*{#$H8eSzNz-NKABnfg zt&e-7^G{z$jD=7Lpe^%$i%k{t7#CWUbGay&kSGNcrL6L0;^b1vZoo91^68!uLT%0BTRr_L-jv>olrAS0S62B7U9E6d|iewUEAIO z1@xHi83A%!d}}I> zSStBt0*6j#4Ux&{YxxZimtTh&>JdphS$HY2vAkz6EQ2%7x@*X7gI)dbSBeaiY(T*;7}Xg z_Yc+uirqQ$#ji8sU-?WpW}wq$m+6D+t@tgE3|$mnVreiSal zH-a6DGw0bdoZO<$i{dzIe`93$X(%Z!H2KVEFMKuX1q-A4FWu7bP-y)rHe?w$zHq24WL7)&K*D9}NMd!D3xl#?Ye~v7i=uH*_81bO! z%)THmjH00})_oC#H^uFGx}+-ETVCoHNt7y?-i%Q~nFf`>Y1O6B6;l)hBgO!1{gEDNhxea!PY>QhQTF#sMfA>cx; zw;Q~dyi&(iN0glvW+{u7dD@y~X0hR}Jd3`F>|o1rI5?YUwMJa)w^)ge^P0%ZGVb@J zZbquyUe8ra)GdM?_v^_Vd(&A(_UmI?yBZ>HdTGIM!!+({FEhr)xttLM=|2bD;D>$o z{#Yk~oJPb35FpyCB(-1a6xKu})}ntkB3c z-Z4OfUX~Dm8|53O!?pxd)BU6?dAF33Y*I@i>>DJLKD{*@v7z%&rOD9 z&Cvw`HnKl2l_JiQTNhh!4^rJzQxXet&*3NO8%$;>|?hUQyQJJyxrl+2<8y9dDtGxOL28LIdmY%Jctf z6(_yzUE9P!#!JxYS~=ku?qt>I)E;m36Byor8v5TNmgSKPn07fTVIWYR@lUH|iean4v{-O+514B&bOrROOqzeM{OL@37PafJ(Cr)PnnrxfF zB27Y>!5jAAu3-Q&0|1a2Y?VeA@XXseJZJ`6USXbjAG8>k*err)23%wYZ)ha88GIpo zw*t@nr3NrFIM1*fKgcGnT`fWup5&PUH<N5ZtK(t)d&6O^qS$WU^oDoTbAYf83o|9v{yB>x);aqoDTl3c0O6#w0 zs8iFtZMM?-*HI)~>tAFtBCV%HTy&Dri!nf2Kc-V-;R;94lhq0;y_2C0D4qZHS7-`I zcmP|F!jHgTr0|f(BFmNPjHK@`K<`lBJKXNN80pA2dz8GeBJpl{{dO08Mr=Jy2j_da zo)yn>zR(UP>Vg1E*_ziibIm+>*yl0AvOLKr=8m%*Gqn z1nGO(8z(mMT0vu2KbslDHfR^o7>rpmv!Bc5n5A*3s|5%sfoFfmXRBv_CpDN^#4%3d zKeKVI5@v4j>@Ok(SO+zf>y9>Xn^)lg0;4GZ4yQ1r?!cQ2PN2e^B8#Dni>`)Iz`A<< zSF{i3``yvh^vfsvGOx#gb2q|~4&g)swNEsEf4K=CVv3~I(DmN3C6qj7tRQ(=g)ypqvA?#JXoe$$xXe-)y^C{M_KK{jHE>KkvYn0 zb5N+y;dwpM5T#WPJ$ERqm(4F+8rTg|F%oI1C8Wtn-xg40YWqa&$Ai^~rKZ ztUEh@R_CPZhPhx4Ucy*1cd-e7k-OM5r}+8t zDG)6Bi;crv|K;H6C| zJ4ek4ml=TO1O(um@DBr!!vMes54tRImI3sn5P^OFnK??oc7YBl{W|S;-DFyGm43B; z$mKHKbCrIbL9ATA_AoM_Uw1iKK|nxAfd;7I+`s@e!e2B%jpi1&r2lE8>s--csWA%n zwq3D#VD3bh-B}j|sAiXLD>+Xc)dfQQ;^i;LtbdDpG##n0?e7BVyqVBKj0}bLF##~N zF~k5p6$+>)(--#bj92g&ZPyR}rYGVH#x7!ZXvIF}%(?0=J1-Of7#jCaV;CrJNdzhQ z`@%3zNEjsH8he6t{V*~?uv+Q{y92Nf1Mjrg!w|u~8>!Lr#KX20JoLEhcB?NI^U=>> zTm`&KTz+sDwb<|qsBPK@u}tu)`l2!bzPUp3;SGIj%!#zJ`RQI zjB6ohKJCg8)pE5mk{_iIkJw!Ggg;h8?JN8zA@kAxXI#lfU3vK#S3OZ**I-j^YA&0n zn&;9?co-S5ukou-a;3)qfdw=mcA^rXiZK_0QI!||<7yCIP+jhv!>}Mk7QLQJd^GCWT>GW;^Sl90zUQwtZfo#9%>YtosyB78 zPEC{R@2t_#d^%UXlpfD;kYMSh^f;TvVYxvT>7_IqKvWR>gn?;jz%ignz=Yb-$u&;=q3JMh^b1HCQ%7G04Sd-(Lc~hwT;QHD_|(V&4;bxQ*?!fFTKWAT5z5Igk!gO(Sbt)pN?Y8LoELkH|ImBBxk40$!x5 zto&8-VQ~xN{lXPsU~t*q<)!cI`m2-cvidP{ymSG;x$sBV)$w+EGwjPD!8O4r_Md;Rada zt4J*%JA>TO!Rv%9p1xGUh^a||Vn>R|W0F(>zt5{FrL#sHFi-zPK#O^jnJxxlUeYs9E>!<-Q)`8&NT>B(ZRD!%*00Mb zEN4(~XSHO(NYB8ik6(q5tLR&5iCr8V@MOkL6t22mE_jvJ0Z(E*dmV6YxvR0U6|1;a z7&OqLB|r!*Tmpm@RF~;Bed!^kxCDUYE=W!;x-dG-`W=gIXQ-E~ANuOH};S!*71&FS-sbSdtztBdKGrxpQ;4250Y zdCCQi9$oJfQT8?HZ;_=;nb*`(=Gr{<>BAvMl6nd&V$~YDDrKIG-Qwyjnuk}7-F90V zB=@8B5g>(JD36IA;g!z+bzhonvfb5E+!YGyW8V6jN;%mp9j?AdghK6i%ut0ke}Ep6 zT0SJEgxA71(gs9+A%U5pz&_?PHi3*6Jw7o%6lxQIDggqsnz^ToP2shOz&nb-$DzPJ z<~u~7y*LsIuyF%4fE#zNa{Ei3d&T$RRf)hiiol66zYCSoSgH(~C}h zecpsK7I+>i+vk<&`$`aPGDiCLxf(kfX|(pta*HleKD9FzkWU5OhnXcMf5?8<-G&&- zD(b1_?$>E*k?y@N48@^YWynF-%jT1C&wxI70&4~nJzOB-G3XPoYaa~BHwq8I-9}xk zX-_NUgC7M6;_4V^;FJ=i0kaAHHiyAG@7)kIx9DP>Tf|aEi1@PH4a5V_8L>;CWFb*EdK`0Wkuxpi!Dc>LsN4I9T292 z71$EZIpOLiQs02y2izTU8zxaZK}kq!l4$eLhFMNtMN3qIM6LV^n3z*}8Mfg;hU^Gy|b}pO2ZzxR( zksWFZE3h?X%+;i};%CN6B-^udXN0sSO)=(&s92VhR|(S;xP|t;E2{7oK}BKBl%foR zp5ymZgZAe$>rNHvyfG?D#)LbBF<&W48UvD|+<-@z4aHx3Mr=PmP@p7fbt z#QgBS$m}#SXqLoi+(ZXZ+vRa!5@`c$xt&7?nO zLqfvE15M*@tYB}rdMr@;8DLX=^p&-s{mh~wYz`TeG7diaI{GRcC2!%?gIvDHxZD+K z5SpxRlJ_H`Kf@QoKX1V-hz#`(n!-Y!G<%rPp48 z9R;rQX>;>8Ql-t!KlqC_H~%as?vQ2ib=Q$1JDj;6Sc66Ng&_(#EGu3Y1c+vTR;q0b zToIYpa#3F+R+ssy3)S6RYX+dZIRL&Ak{v&& z7j14`s1BB{@AFnRw?S15yi7qx`4%9SaSmI6yAoJIKt&Y2-p<2Vm(;QVf00@iEJU@8 zuQ0a}Wqy{kww9~rU>67W)5IYT>$7kj%@f}-;&}d+^_4CN5YIkQO8xw2dhLobql)#S zxTdiyCH=!z(&$CZPVgNb016Ad{Y}W@Nc#tiR|x87jYUj9Qy0<1%bvta+CKoQq;byf z2@$&H|6Psac{Psk6bW{3O^lo6qIfIa=pqZ_t!mcq$TT0ZFIX>V#8^Q9;-K1eso8BS}27#%8rVObC9f&kI%lcgQ0&8d}S&hC0O<@TAi z9~RGQ5^A_6E>b=vhXLpf7<|#Crgf*e$R4f593C941$?yLjyzh%L^-9Z)x#N~cm8Jp zJH8vcKR4cbnAuzs+FYXi2bo`IS>=plj+j$!6(jb10zi1FYk2HvJ@t&RuERs5iXgo}$R!`@5K|~jWh%PEb?5^(tyw6IK zExbUQ4B0-U2hy}O7!N5;@Y9Cl14%)~OGpax-K3up=VkaOm;(k&SPmG3`6&qkq}G7+ z-1yHO823%#FRU%e2(7mjmH-`^e|`_KDMAI93AlDmoD;8z~xzU zKV8YW@l=wI-}m4IONS%$_~aro(hrUCHB~4A1`^Qfz%8+=^o2Yi83V3s$iH)^C(Wv zSejqZ(3)qI-47j=-gZ_CagcR+))Ur!#$N1gJK6YTT%3744fC5rj#3`zt5K;NvI zc<0DkB85Yd06;Z?exd`1W7pd*!8c*?zIgdUtq&yG6=~Rw_L@HdU`coC9#F!!@sSCF%M zSp7@t9gz*esLAa;t&Yal+$^iU*v@FcnA`bDwk*;4N#wa6R;eW5V5IHoh?js=$R*v7 z=?HU^$Tgk4JEU)B{YT|L2Yo|iuOAXC$uxT&8$auI=irCt}{z3WxKUS?NusJ=Nha<~?BQBPWly`bqEe zmXMS4>QlZh%=Actq^6~>EA6?|jY@;brROmGjGJZqnPfo*R@r zH!yy*JdcOVbDiDA)g;eG5i@#RWTBYZhhCUhCVpwC zTQI7~q|vY{f#=H6YK`k&O8&vY1uSE~Ol&H94TR;|_UrK7!kmmF737eSR(wg_Jb4Kr zdp`_bLNJzsqOIB(OS!66L`FNA<(Aq`qLws9CXW)GSZkORvZ|iJS%Nq07;G324n=~4 zW2KBBU%;G)A2jzRBs4J3LLp`ZiQx48XO^gpAdiDADI>`EP||8XG9E*6t<|08(QsZk zUbWldCBQgMFQtgQfGx&M^yF}Pjj6B3KWhDCm~Sjqa|!&VxdbyU2br z@-gcS?R&O|E5;$E7~vB~NiqTixU6SxSt?(y=t>b=7^_HE}!~GVpW-sVyey#bI znqTX{-|+c$$W)kLdrh|Ll+0diz7pinDOMYiz$gbr72gI+xu~kXrDoMC@E7-sl+mLn zYkMPPWp>k4n6Tv8?-D6*#|W8m&7C6GzF0NS9!N3ql7lvl0p z=J;hS==CX95Bx}T89N|4-F$o*ITPb~xqhD2JjCV33eylZaAl0`h-dLt? z$rdmu?I2%MXwBuz=w^dW@iMQxyCI^bdn=9>6vEEO5kZpvzQ71Zadv<{;djMgqujCr zZIB@YL8G}=1DVkvshqiQnH+i=ElhnVe@G4b!-pBkDkqS8%t`t5s5Y%!^T0cHCF1kzBIa8Y?O<2Q>B+L8=(7 z3j*w9A1Sda=EE#n*APh>snS6Aa;1Td86cp64NQPi47D zDI>?;<;or?Bgekw>d?qSBHSPJsVrn5;5N%DAKv&7tAXeB!7mFW zFth+V+)YWnMAQmE!)@fcW;?)KY3_?@rAgF>2)Kp3w87dY zoQx)^K-CpW1(F#cr~)QH$zqzXU>4JoRn->LbcM2*3}_O`VvMSC-4@Fws-~1?3`G9FBK^jrZ*cc*hQOH7`a0_Pq7+3gt0&g`?eRqb(q`A&v;= zEx>IuRrZqM`Y*C6XjB&w z4HCUrhiGo>p$h`6WS=ha+$hQJf!r2xpGK_a$H6O=wU1?hptT!=<=B1Jt>%=Kq~Oo7 zI%JQNRw@ghzOtx2l7bJGaRMT)zb;Cntjj^Z;p+N>*GIP{~U8i&V1Gs_-RSJ}lYV8$ z8ONgw0u)QVL5Ten&(a%vTq?gp8%=`UleJi-?#a3`DBY6*fTBqHasXbDApiqNn!w*c zZiP|265f;fSE<|zPcs1NH{JdLG=KtQP!b~a-k&a~oU)D@_N5rBp)SR0uF^yAwAcFZ zFk&&%qu}V3Km%9%kX^wkyM1o8vC|<<)jjy<Qt|hI2~5s*dYtfTMdiW z-qtp?wfy_M6>SWVLB!{#*Qpy`wVSvehSS`!N*-?G@rKj{6ID+ItnFBx1Z#i0nDtfS z{33gGb2gCaLt>f>_uE?YK_PCI@M+#?MQy#Qst?;1BfFSs< zE%)qoS3T;$_~y4&#)Fl}O5i>cGakUFf}!TEq7lOYbZ?XCeWS`54G4{#Tq85ZOnjT( z2OHI?EVm%arP3?%&Oo2DoJ?&3w(1AA>51(#NQNe?iTI1W!^F44y#sFOM#y8|TE`=K zh@Zc+a)o64(%dv#7X+wge_G192~Gp;#0Njb#Kp^N-&@nf8cj#L2?P8n$UFDNxheFC z6Z5UNRXkv~OV%i{E4)eUU8B>AHlT2`2;J~6eOu*1Xnc#Osf;}hUyT{{qt!HE`mBXA z{TXjZH2wb~7i9Xs0CShEG1gKn;Rc_>7$t+pLs+N_o_xh`KZ z^d7M3Js6SRaGTzv{~Nta5^`_z{%P;{5~G7o%xEJsuUg)swaGWW9#-3g&gcvWoI=o< z6%{~>)s*2tUcY8laPolwL6OU94oES-0n@I4g`#ScU)YJ9kYD%+f01AKXmw=20QpwW zhWQ0bwHi3+iIw}WTknW7ymNTScv2Sx=$G=%+FZP8t0HrLO-@j$RxfK3Y90Gu7=Ox@ z#Q-$Vr@xz;W~^45*2-(xrZsjA^xrlqy=irw1UEIZh|DT-DvFA~+uD~%5tb(USyW5(tu2HKW$~!r4 zjamhNkFw+b@G~Y%eYOL6CpWm~Rw!eX!T+9_V}B)f5n~Lv&a#e$qnpoagq-#`8KHn` zq9AEOosX@^G~UBsWE$_SDRz%{3={!RdM?Je&xBb?URATLggxF$N1^7#e)4xxm#AqC zN6IW*W5?lZXn?=${iT{*A5y76e$a>|PUFslx*$Nwe`yU%1yXjcwhvMcdbd|b7JA)m z{=Ei_H>%OQICP{Jd%)}hdLe>K(=QA-RkYKZiXkw*e&r1LjY9m zb@Wcg=X%X2#o1L{2OQZBpZF}8TuBHl46sSLL%i$k+#yMIyE;mSXV^ilrf|o zvc#7xH8qAjl`({s$e?sh=Q@??q};loWGQV3*E^`4w(LxUV~&=3GN=J?WG!m}Lu`Kya21Rjra@b_j^z&79kJ?1x~k3{axT28@6+LFhOSAuLw*mhLt9MA63?M{v;j~$mjI3_b4VJip!-#Ky+YoWK?ykk2sxz= zxs^i^IY1G)u}tPPbI%Y%8C>JO+r~YbK?yei0C#)w3A=sG>!z%t~I=iSM&<8;f;7;+Ra;c?7gyCGZi zu{Q4J)~h&jd}31=tJP`*9*5aXU>2NRbSVNl_UbFQ8~O$`Z1G@e-yo zc7hPr&Q_VXSsPLrUL{OrRDzKAS&M+iv=FSBwmhQ(%Ar$K(C{cp$mvi7w&5MOHRia6 z+8TptLd>5xsJoqCHCSoPl`v78*CS{QUh){1u%?|w52%r388s!@umU?*2rms9gz;%u z?CCc;JU=4#wx|{F8Y*YV zDh*eiS!Q=;BXuT*ncQM%f|){=*u9x<_lA*By$LI@GllR{>dlxpodZcNS5Wi6k zR?8Ui)7e=#d=RJ{HEZjd+HyJUsdwigB6u{4A?OcY`c-zdji zb=4IQutvn&eKv1niMKG>Q-TmZMcWBN25TI7c7hOAq^;Z>WOLqqV~}&&!|?SD3`>@i zt*!#w1zg0_9%eaGqdm+D{6%}16&oY(VICOk-V?runb)wLeBu%JJz}S3o3;*FTXjKz zYW9IrZBlYD4MjQm!?U#)i(?wQI*u#^Dd2JBe;9!Lq&n@{$Z~}IyirYqzp|<{T377R zx=y1N8iGKx9}uCV$U@dKIQzl%QQ;HrTB7ErFa=H6L<(xumg~nyIEjn`Y--Lcf|lmI zcAM0k*Ph`G&Ut1Vh1~4Asp#=3&2_*t&2=0(sD=HgGQueN3!snRVvtWZsbiYmtQINdN4EA9lJYA52vKH*9JWv8lb%rQvhxf&kU*!=)O&nR4>n6FgB!LrsFl(5NTZzYOR4 z?O3@U!g~2?2)pO2A?(R&(GcF2uV$$J`Lvv1R}qUP4IyB_A#_IQn!he!MQe=9*JH@e zbd%JXE_DEtg_z^=m04o85cBbTWtMf3B|fh4oJT&c_{}sYg9b#5e2`tfh%L!3r{XUf z)TwGv1y)uMmmydha)&rs+;I>Q#HvGw>dC<$I%_-U1hLHxVw)STB7^YuHz}&F|0%g5 z$KB020C6dm2x5IWPbCp~I4^%_M%6Bc2?ba362EP@0P(&K{{*v$Uiv(Y=cTHF)1V^L78#)`rBjRB}I65zz5&-n!PMO&!cC&f8sBCD%cg@ zC(+ZVn)srDp1;h%OJKSUKZ-XmbUC#LkK^f1;ZZz2q4Sx|=ugR|$4x`qB$p6}{d0nb zovqeat~>8(P!Z(^9KA1RO)|U6dbx1-bObArNDs)u!)}%T8{S}4u))|R?oMXo_hj!6<61%BwKE!I0cB0(+6{?`W&(B64v&m`PlZQD7!`l) zd+KuV_NDG^F(DPy1JJ&2xtEL0jIZAJc{+(5tN_$rr2{cGD+cf@uvr^*ji3$eDfw&z z;+67H8|x+xOQHU2!#E|-cxx&<}7eqm@g(qwq5D2C%z0rklV@C zE9jl?_C>rFi^ z1N58oQ5Sifd|!}?+Bp*Uo(D6>}Tk&Jm$%A?7;%sV}rip!MmJX z*X%40FHTt`zGjty7yA(Fi_LV*BhPMfN1F#gz<8-UIz4%g`42?w_HM49&i zu|3C;n6Gg$N55ZG%o)pkx0!!zR%bmx1SXb4uUPsA{1ljhiLk5iFU~uVzp4 z+-7yY^Z91`ApE(l?(HIzaihD^{(W^~)m}sG{?H}$fcNc7>VXi>-FK<=%(d@JBg?8M*0XMrP|_F2M8jhuAkbRUmq>1y z^3nXx)zQ|v(uDg2CQm1YzZaif<+JxyL_GYZh=x$I6?*;TwRr|>e$u5#^t zm0jf@CMH}C%%1#vW8<%I4XF5mN~I9uIfhP!1s74FTq~14EzxaSprao1xA)}*r?ZCR zH_eh-BveiOAk4q~tcG!NWzdhy&~u(_r6E?<>(7!T@Cou{)R$9^f-S^W7*!Q=_)^60 zC6G9#TItoLV|4!cLU%=@>>WT-rBCV0h@&{=qTW&P2>qxV@~)vN4UQzpDdRDlR;wee z$ex-RTaaV1ggfePs()iJA6wTCNRT{r%JUinI_%QPa!M$z5MiGC zZ-;2vc1UttRHziWsJ16o77WD9K#)>JK6%nTGiv1rc1D%A8B;-(g{Z!ukT*pVaz`iR za1J2niB(E1?l*05zp44M#l0t7+^{P|bs}*uAaO^|ta4hTD!trKgc1#r`{>z2qw^=7 zcUwl3xy8<`Qg(|rpn!bMGF#X>qB8ssWQK_0?!Zu~Ye0<~gr-)x0SbN1mhd$#7F)tT ztw@%-pQcXb1fS4%73V2tF?mvot$Id8tSUJh_ zkWtVX!TI|Sfjb*xWkx*!a-}RQ4>Iz>8Oa>JMQu6p%V_S8!x`d;RhkuE0^HM1`pc5< zB4%~>xhn78ZGx)tR3 zYXedwO)nad@r31y+5nxVY%CjDr-RD0o-5NfrA!X4Op@l7UX49X8f4Cbt%4^1K%dC$jT$)kHrtSO6e8^I{ zbkJ>Ypj?f1njXx~nO9+584zu+emyCvOG`B&q~Ggt$Vsj1)RBX~NQ{=FueqN!hkvMY zyga~|3+S(LACvgl|6AgN}k z2WbhI13pw~V5Dw#BZUp0s16J+M22x;=l^1Q>Kf+O4`ty*Z?f3V=%YMgmamY`#JNw2 zGt?WjFXt&qdYCZ5y(gEK_q2Arr#Y|%_j$PB;MOY88}l7oRrNcv%NhY4NmYFz+;Lpe z?TvSW(x90HyeTE?dYN3HeH!&56k@Wj2)^C_!WMNJbvoK}A||AQI*s~EcdTxy<=SR7*QJ5OoYF*q1w`zS8Ci8I$ip$7;i9`HfhqQe3YQY9KTf^uH1rnxif0Q38}-CIM2Ick}g)(kyh37nB!?(3TNNVs(WO{ z+>UV89BW1k29vSzo-8NF3`FVl0T`wWk41=xEdB*}A^oSbo_ybR6RlH30F^73keXQcQ*Gj1OT_V={w zsSAS|P>M7{qyZsZJR}Zj5=;a3*&6V9IFvMCA8CNt$AG@OJp-!g{||8M-z&G*^gJm3 z&>%&H?&p62DwrOn{5FuM-UixQh)}%SuNDpswB6+L)EB=n%*aH7{(sGct%U2tl<>Ue zX<;_qrj(GfqBPs4lyEO%;Y#=}Lo1sINZLsmQQ9)zV3~Tm72d9ut^l_g^Aa+h91{>B zrQ2&OU2m*SO7}1PMN0RtZKQNgu5^KR8=zwt8`IY3`9g5btCQqOGsH+uTT)G?`*V}gd--XsE>{-?GnZ*uRpP;W9Q z)zi*gWe+5!(0JP($fpo5AIRaH5P1{Ip|L?1(?sDO7T$23t`Y88oE#Pyn_=5j7L9$n zot(82yiVlGb{35j+gKKj$TcNp(ct|EkOc9N@A?r*k{VscU!+Et{|_|+R!NPfrFo7= znzvRo^h^?!wgW1?o~8bz#bmve5a!O+4R5@KCz^cFc_Fy1#7kOt>h(_Ksw`YQb zS5?;pWwvXDbJ7h#Oblcn=z};Z1bNVQTN*Oh#MX4^ZZTVY(Q5lvUE; z;SjMo#88Izd<)NF@hB_EZ0)fV4@_XCw8y>NuCf45Rq}x%Z79HYdZaeSc3F7dN((1* zm-M#rL>ua68TN(>IVB({f;^|4x2{+p2{~Mwd3+AmKrIB_k6>kzv7Li}^&0MAvXh<` zhZ#P)V>o~X{LBwSG#uk>iI@eU{ngf-nVr)hE;r1!wQ0&Pn-5Gx(4G&lJwqk!XkRz%m6l2Qu% zx23U8c_JZvgG4g`jA2gz)pssR*MH-PC>=~(%3B3y@ z8wl+pKA)&sL>k|aC@BlkqAqZlK?w&|X{iT{(El|c#)Jc013^UO$w2$bJ3NLgk#`t} zzsNg`+Zn+-G*{Bwp~&m^dRB>!ngvNu zbh@$vFiZQ3Jsm$%p|I^VG^m252;YyJ>3LC3>Raz_F-RlUJ0@oYa{hrIu^9eGSTkCD zj`~QwsPO~CxcDpv1C4sik0OqG9eLprWUtGZXNT<@ui(%p$-^Jkamr^$zzj7Isq(>Z zt=X_=C<@kpT^FlmW(kA!17fO{TispW@v6oOs@=TC1hGz+NLp{L#sX3vkd_YA|Af^e zmrGG>J3dlxAa-ade*Vq!N(4Vv+x}c2d)Ti`?zRtC^)|rR#M?rq8Y;wTyYxdSi}AjuJ_|0 zj}+zdIBP*XKFWEd==|v)+tK+mSzY398sl$XQT`}Ge+7!4PyACgmVAoPcZ8JCgOcYN z$B$}`DY}Izn>xDVs?Ov~Q(*xTBM()GzsN%sejH&cq@%kEPkD}pPKD%`mL*N_7~-Pl zTluA*Sb_FS7e7{h>1z!Q`lV8Y=!3z{ksTVOwHFmWfsW`Uk(!B}5y<(=f5PJQ-K-h; zrJA3hU+Q6e!XorrgjZ@3tfXV}dxlrKEm(=d@`s1Rhkl}73qHyKB(NdJTBHGe9hERX-F(~0ifD#97fr=S)no2Hw ztfvw@WnWb2;W7D{yVNG>C zHK6MliGM(ssN+FiB_M=5ciEBnr&w)L9gM_x@FtRGr$=|G$A@Ef*^dwB&-45su7>Gj6vQq2ZN7-}1C@6cu62ZY4q>KvQlA0g_|v za$kbrWJ#73lHZZh43niDk{^POWZ9Fop`%t_Maze7A~4JgZ5n69M{c#3@F@{1(3M zfuAQ2(FXcFIq;1UiJ^SM#<;E=Qlnf06NE-e5+byqu{lDDNlPdS-?2w)W|)@PQTQPZ zNlOx08`2V9B}_|H6nw`lQ?gWQcBA;q*t>x4Kv z=?+p9{+o`>i4i&Hi-tpfgmt&Cz^8RhH`?pntRsSG7DYSokit8UlNCx}2XpbCw zrn*aLZ23}mFN6mw9zE3EB$PGk-hACX3dz5&@!`(N9=fZlYvQVg!pUD#6_H zpHV#&PqOA9UHho~@x6+<;d|Al1(>5v%NACfnA=>0If}|Zx>rTzA7k~2xkAp|xk&P- z(0n~-+oAafHKKeKn(yF6%JlcyTyNG~)5e9Zb=1a%udx$C$O_L`o$sSfxN;2Nehd{PpDV}FNz>JqrlzR<;PkA0rT z=IDKDiA&+>WA>?2vJQxsFLmp2LU2lEzY?J+SPp|`r2Rk=&%P2SV>=q4Dfo*9Xi9Md z)a`)hP^1AGe9&{hcujMFe$O7DTwNL*pi%@m2aZ-DdqVBH4~x|rI~$u7_Sk$74y7|t zfL=(dmEu^Tq4v;3;MKp}9-3KULj(JeCgw?dXejjjlsz=d5icK_*_=?=&~R8_Xn-UQ z%|&cSL-RfUqM`Y|xS?5m)Kd^?Xf}TeZ&k|fhxSEmr;IKQ4oyKRZD;gno<~J>jhKx} z{C;IIDdA8W6@b#H#A~QMDiPT9SKY4+=4#le{By$7)aWdmob)s`Z{Dv=r7B|NY(k%;#}_$L@KjwLK& z9ASQnF$Me-F%ExA7%`54$CE5)PP-WJhy=L>kMPZu36@$iifoG;*xp3V#E;3$$aorS;1b}L-PpJn#z5b-FGq#RuS zksk8L*|8O*t6_~;`Pa{$B(Vs)PJ(<*8ee%-ocMfQh`(_3v!5urMO--3I8pYRlmgjk zm!GU8zi(Mr7<1(vUwHOIA|da8Jn1nTI6-+O)eivTn)r_k|8e6#Ui>Es|EZ1tq~Jew4jA%W=K-xvzf)#@?@5T) zG-4EuN(XQaYsoRy?rTtk6NJ_Q&dbQ87M*L#3*UPlNQfvDdG~)kv&BtFF-)ft+UP

l5UV}N4xHpZa6-Rs5}EC!qRN6*aa5g7xiFRIWdQJ(wJbG!33 zEp^QbcpP*dYxdjDW6gea9^VYE>mP%BJ&gaf#DALMKO^v;;qcEm|BMPMvo=Gy_^6c31%ueTFb&~09*}I`v z*=epW#9w5mlWu^W&fY$$vMl$j=T8Tx!16b|cR=NDcwaL>T&esGn+~x24TtOAUy|VB z^;aRpWpaP-Epq?wp2~vpA!CPmhh?#XVAo6j?L!$L_n<83SGijLZGU>o8s<58;B;U0 z`{^$valp^cM$4mb#r;ceo9}kW$yYt|%yI`+$ajT&uzn`FJ7O3 zLVQFYVSE6)x-b6D^sWjS(Xj`;HyMf2+o@KfjO|%#jF`+g8(Y@fN&K4?fcn>y>18XV z$ytWCiKMI!PiuHk9d?%75&|N=L#B7~R+Jsed*{dx54$Ug`I?R_{LE{oc8EaT|HeU; z+Tn!?-j-rjXtQC?Vp?D}2bum9q;q(qcdgN42Wz&Yim#9Hp;9Pc|8g#KGkoF~KH8)* zE}UdFdpGp;F^?T&$riq0P{MOei4O5Vatsn9C0rN_cOpu^KRCmnSX0Z_Zp_ z8TDZS@LB6mm8&LLa|wD_%Y5RX+Q`k==WQd;IlL9!h(Nu|s&)u|;r|A5FsweP7OHPx z6|RI&VuA8~2h{b&fzHlMM@>W!D5fLLwl_N)8MSjOduxdl4U}My!_A~abVd_j#10!D z!t)wI?9e^IYU!)uO)G_AlGaoTPO>{-NZ0y8ZovjM@(`SyQ>anKwbUt>*1-JRo1G<{c;=3~OJFwYOJP z!w)HUk(1z!wlsDd%CP6AdK>3|mEi4UikBJMDGj`}}E?!}!VE? zZ>MTSFh6$)4%lnAu9iQ*|om0Rk2-!EEmbkT|_Y2E`x zD$1Dp-e`jsZCOTNxu~JnA5tf*8}QWik#QS_mMH-bc*J`#D+rnx`0Y3GRk|U=2^m)4O&2+by z%JgPlR|sP4HggFzis(r`IGp1~)K5TV^rk9_l9>2CjER_Epa9m)-{TH7O*Xkuvzl!D z*12dos-@Qw2n?*5i81;rU!?+FirtQaYN{he>eGu*S6F@Xm&3AZYi~*j`mj;7w=9>{ zC`MfZ3S&K$s^wp8?LA_M%rJ~bds(NQ_a@Pvm6I~w!3vPo7_1TKZgn}PxwpFPILB2v zyk#vVt>IzKjrO_iy={tCCb2vbRyhi2DY1mHRZEgsUJ9!Zo!H*N+dc$)m{cq^$ZZNp zx6Mn3@%015mdnbC%wO5E`;Hkh^F=l^M9FvbgpY-8EKnI|@ZnqVj#C<%gG3TS)lchf7|5#49k{ z%zVR?Yr1;ti?W4U*#p}WvrJ(zOQFgDz>E@XEp!m>MYg7-GxU^ZCbqw~G)t4Q<~2|P zNHZg@vEd?h@gc{2we%-+6}K+G!C#(XrWxy+S}qMJB~R&vK}xjS`MDrJv#0kKqwD}6 zr83J5WJH7V>|dNbhewp>jy}ohGJT;pNsjpvQnHm=ly?*=QQpCLBT+tq1zeQ9><;#X zzaUDUW9DVn_{KF>b%l01 zly?|^LBX#nPVifl;2m6%<&+ta;0MSxkU1HU3}DDe*v*$(_$zJUuVnm@@DGIxf0-?h zH%`A{yfmN!Q7XEmh|$>aG&{zC)34kN0<5j%}fr6Um>M7blyIEZ)vfP)CxEalzp z9bbyg(pb|tqV(5btdIy(uz>6DKX%8ik_aOw?P<-h;A*s*|5J1^98HTO%FY2zKt7Ze z0GuivXq+riN1=3}aSRIaKqG>82h5aQ20kd(Dr!p9y+2^%UJuud0}Xa zpGD4=@+2dDly{s;Dl=uc_dCO!eMHS7@Rw$hH5Eoxk>^Hu@090H)h{cjwrtv17L4#t zhO>d*55g?+0qa=M`0|TWl24S96g!LLjDSh1;AC8!JnQ$CBozmp&Oo1@iP`{aJo$l+ z^#uF~F7-%vj$;8I^mX>2uZF*P0!Cq)-?L_9d)pr_`5b~AncpfhkmByjDA>-f1W7|0 znfzx)dp$-})uVO>nQBKhyFr1*9wnnC}eg&5tAvEIi@YIGzy2e3ktgCC)i zOUD8(xk^Wsxs->$D7nck>bxj!X3cJlO!jx7G&EZGolxQhe6{~^U?d@Ktl!VYH_<1VPCJByQc zK~ZV{ILSMzG-_&YJt|j}_p}mQ87Cy!FTy4Jf!*)-;4f;ae&PHZYpZ62Y2nV{XWbZu z2H(gA>us&F7thAucJ|^N@_ClLT-Y`ZrmbQphG|Fa$fy^*ABSud@T6N#e$o4Y=AqfF8S= zvp-dD(B^6g9pM_YiXpP_Q+g*ELW7>80S)?82BRSh_j>PiMv%3?2QY+r`CCA5F;oxE ztlL(gWvpHOaK!{mU&Fyro z7|jLbaZ9}}M>UPlR@}ReDa9S6A?oho&f+L^W?Q|NP9M%_fo*w_-Sdq7!uB*W9 z;=F`T)fg(MOZrGm_I57Ax}=WF@fWG%@?)fqPOgrDW`BcGVj7&c7QoReTPx>3vk+DV zVy7mJ*KxzLw(5eQQkME!IM4f&IHnOZEiAOP@IT>D(!xTeg+FsG{FT+zT6m>61-V|V z78WWkEY$dHEv){T(!!dbfe>wj1xmxsgwKjm_1d2mqlJY^3mFZig%PCeFHld09ob=^a1Y!MKytKjECSK8Wm=@0XO!>k^;ZT~z0ZOy@y3d$1e1}!lYPhC24cP)XB2MGR z40&ZeIKvqlA6)W7K78rx|3Fjo)6Y~u%x4;`JmQh!D4ma>ix?aekr2ejG?eR(HgKDN ze5Qgb{t74bTXBTS9xtl&7+etrU9m%EG%mYO=lk8!)U=N0zEQK5@Eiw4;^vijycqMU z8-dc;fv#e^)XmH|u1vU7IE@a)(dZF@1}%YL^v7hQ zAJtXD7eP)A1A;WYJn@-I$u(WKlX028tYRwLDY;%h&Qfv}gO*Zq@s0#Yg0N_X^$wCG z-?9OJk#E^>ym;RNtkRU$ZM%09_brn423>b}A!!Bc1x;&vbV1O+>@MY@(BwRCU-kjM zbD9KmEvJtw*K#QwO0ET<;96i~fVTekab@e*Syh^Mt`?`Xl};2jK?;NeytFqstx?&N zTha+-8MRMbt&^SP@>^y{u4vp(_LWRb44JFlFQfOS~;^_505y4eb zm>l$qb|Z|QGQ|j^>pyi|jvbTWHjZmcgz0qeK5s4f-rIlod6Ue?PAIE8g+k(1_X(F; z*gJa;gJxtqND4wAoX=xNNs(W`U!=${K-zN5i^78yIbs157HRHl zx*({zdrPmm1K0=p)@u?>b61~Gn!7C=N=viVvY^0wr+N5<3WF_Vl}Kj~7B{@7Nu5H@ z;^IzwyO=fsikH=refclZ*}dzR#x% zf+M=Glp_j9l6~Yqn^XBW`&wx_Y*?F}RKwaO97+xep!D&@z9-eV_Gh(dT<rh#E$_p7uQ3m!aFdA3DNaGrz*Z!tJ1;*8I$+6#fN3w~sn!K_()hY4wedQ+s3oua@ zOilBelTRv>ZHjF1@pWrHi;ORaK{GO0piJYNgYC#qL1|~Q52s!wXdt+sKgT&@ywV+H0kcgUA1N6x88>CUDy$>MoV<;-hV@pKocLX-ZaM5>8ZyCE z*>SVReL!Al;mH&IbcxijZth{F_>?6Is;TECMe5V@k}+ZR&3>m;D#{|&>9x_8{{~+h z5oXFo8CJEMm=gi%;Wi#`2+w%D?Cy&-NwoG;$dGDs6DDuMZd`AC)g zz*6`Heju+^y<{2nx3`hIErPfoNYNbHet_~>uGYnJ)}6juaK{@PD+ibD4WEzrI=OSy z2dC})mLIZ;G;MA^U5u9QK21w_WXV?2gA(&xnj4|Nn3QYvX-aY_*T(xw{9uSy2Q;>m z4WGlYQge5}&Ubl{6|sDmznoV2E`QTtJbtj#PX1I}r^@*?BL&LQEuT`;qX) z(<<*}WDf8%pi#awk@z_@)7uq0;igk2Rr0Bx-~J=ovrQ`R%+n~tlj?=V8pbSDG^{`Ddc}1 zMK;L)Jchr>|2+12asKB>v~Pb=|MR8rjWg#a$&C0x33A~kSE88CI!6ngxvW4hbf$l< z(tf?9p#kPg^KEMFswgMnN{wBuY$A~JulQW8Y^F1u<{*HS$5;=m+=(-e|{%b&}z@l0CN|LGr*5+do)j1!~&Y9L9{w| zp^w!AMX)o1SZ65NiLe+{`OcA^fl;l`*r^NKGBA0}mS>9bm^YsxkBMRndQ3`V*z}C@ zm_QK|x`a?%-_h3~yr8;FujxwlA%Q9=8p%s8pQTDFoYb}S=EEjE-1Du!!J$22$2P)Fnks2cXZbgud({nt=!_e^(J*oux?4(KfR)QC1x;8dbKjm=JhGft5Hr) z_V@;gLe>CT6^AsdGQ;b8E$Ukkev_&x$>JibN?d+j9GAZo7ZU~C2%tc3SAnt;gGVyStuY^mxjN{)uo*+&ei>0 z+qbQ#tBXqU{Uo|z^MI~n++0sqpuJm{v&y?=YG}~AmG*FkChPPDY2C%W8oTmt5y<(6 zo>ks$^yqq@i1Dlit*jn9tCFpbIjdsbh8#)iDRRPVW$Rixt>N3c!e!z zRT95L3_uG%0O*{CpNBx;1bXnBNsLDjTFDKO4N}nHtwi%dVmNw0CY~n zxDaRnH&mhJB?y5s8`fvF{vT^^9uQ^KJ&yZ42r3s81O{cD=b0IH5Zu=Uw_FiTD=QUJ zQ%6lKTQo~(eJe~YE4v9*+kMD5nO2@ zm_;fO0aRdS!&`hRJP5AzMS!t!5F1eQ(w|-JcF$}?8q3+J_Z~GH#i=#&69PTXM$hxQ zZuVixWkUXR4!TGw#F~TD{h(I}@nU)0^WPW()xDErBi1R%)?~C*m2h;x{}l!3fMFz% zbcp*%Lp2-i*(+zGJ){ju&Z zeVm+POKxNe!=jS)XO6yABOPA2pGa6BZ7~Qx&*c} zK%!_sRHA4=q`)#D%%(V(P~>kw){`oqo@hX~lTK(rw27Yq$#jZKNDpN{q?@##9|GAA zW>j473&66Umq2@vage=4YQcWy=^xk2WB*S{1$w-#!DRha0NsjXe|<~6wP8^&B};K( z`0ZB^&qX3dACl1VJP*ngnIgU80uw1l>{Aw@+O*VKtazad#Su@3~_Du}e~{CzY>_;~z0d#ZLRpLe4@ zIgXrId*yv8f8j>^C#)_YkRL1{<(X|;@~B(vaXjT_I|Fb9x7cIb1q25N!hFt~k+-q) z0U`eGOIF1^dvapq_^261< z0{P(v7iE<3CvUUg6+!Wk>{I0jWcI1+6d6dHeCmDe0rJ$lZ$+a9%BXyEzAyIZ$*Gfy zDLo#(n{W*au*~E&`|TN+bc$boyZvXKACOP;#9zocRlV}caQ^(A_Aw&mR20AEPW#H{ z?*Q9;>9adxc-~$11oj@0!l-a#lKwVoyeGHM35nJ}hJPf$Bm1s*+j%2i;&@2R*J}Br z_tOemfIi62;(V>?Tgr0g@SAA?J}uUTmZ!G zF}%YP`*=3Vzk~S5Uyu$_OYL8>d8EVUQNY~|2XSLfo5PnpXdla#`qwWyD7TbWk&02f zp(9k_e${Q4&otRfq!yfmwHF3WaKCB}{1pkReqCn2m3>H>A_ebT7{$zJt3yh`2o@?3Y&@wzuqEg9{+fiUdr1Cbv{}gVNlOHg zbBN^Bx`@;Y%vugFdelB#fWVEefa*KQ>sJ^nL)}w=Y(Be3SSlmU_~w;%Q}1w)7t|P6 zyQXz>}br{ zuFp`2fUQ%IUjckGFFJXJAcitDOHp?~X3RpbvPu<;380v-`lPY$ekS(}$_PfV@%k%` z6kamaHlDrai);Yjbf*>`v0jv7R6XV(?%(l>481?UaXh4N+eUiK`Nb&KKRqPZd!Leu zrO(4b{Oo+^GX3x&Zj7+S^6k$>N3)+u6Qz%XR3E>gJ{Zvl@4MDMRIfiISF(UjTVN!H z6G$a**yFjqEF_ju60me|nQ8izmc^RI`bUT4vhRaK8ecO_&*hz;vwzRB4lDZ-jKNm& z`gQgsmPX2fuX%dWVY!a&PbwrgCwg_%4in=VaX5f+iFJ9e!;+h{!*X3taVT~gl*YYe zf69j*WXEyXkDa?-hRNVgLLIVGA=#-Q<*23+Dbsf8E8*jgrA8WioYVqOll4a^KhFXt zcroFlol$d)9(wg*+@oUEq`Mf6@)Gr?!*Va|eNwB`|1QPwSpbRQONr|0*X&6GPtm*Z zXmj-+QJMOI!*VrxC?ME<6zuT;U~%&c2*%AXAIf+9Zj9Dj{wTM-!hcj|ff5P(k!U#f zN4d*I?DZfQyIdgxa&%dEf)8W}E;8l!Lnevd{N3vVl<&^vXZY6bO$v4{R0^; z9}3XyZuK`i{x*!F>j@F)9%lb2-NS5Bq3rJdAEn(bBDE;xdnxT)O1Yuk-SwliySqqt zWq0d-lyxI_XYrrmIowD z%cHcT<(;)G?+;(-ll9XSaL7-=EKfj2%cGE$<$*$Qmz63+S)O0%#f%oL5ktD}1N&Gl zmv{XT0_P4tslkCJm;I9(99j=<-)isdqqT`!?Y)S(S*f52jssfte5{9%B<^42QIfLWgt8Zz5kWv7ADlH80jq5^_4&2dP`ebTe;0XQG-t& z*KfCHvHudTaZ$C2XiNVB{vp!f5C_3in;S#<_D6Td@R~~@u~5n3#z!KsB+S=0g3*cu zSsMu@xZtW21vEH%^C!9BdL91K1X;h4o){hN9iG(aI1On!t}tPmgjadxaoC4kIqRZu z{?ga>qs`m@41RLWnW!|D2){fbs1TqQ&!hL+dtoH0xp?I_aHoQb@4avAvzxL$)nk5^ z@`@pdg}mB!69rUWQM`V?y`LWWGm48Q!5T{X{wosGF81Q00(<0KiI>xkn*1) zu)5jIW!DkhD6ngZz!spuB8k8bf=ld~p3j%uvNNCCpUV0dEY597&`l^o2|nO2!Ksp~ z$tc0VX_(d!ApediANL|9qO7esV25;8AAuA{RhT*K6M`0{_#u%Zq&)z$^Pkpd4l+A% zdp?Bun=Zh>Rk^{MJcQr31o}Q93I%$|U!dv4K5ZYUk5FZj=UQ-D1zO0QBXHY!ONN78 zPr#zDpG{f3H6V+LizJKby!-((zUeH^uvnZyXh9Yi`?EOBVrL3rag{2gYQ@Yxsb}o_ zLbd>}cvbEL0v~zZOnKcVd5!Z?XEXP_maxBjF)w(*DCFCg?rg)CY_+%IBM;jflf28j zqo}`Q@%#><33;yf=lLy*zgoic2~{R|)?bBqr68_ITggk$+lT27<9rR7dWM=g+D|f5 zPk?yBy$q(=@}!~==P!_&>z-T}OZ!C`Jd8Oj-Z6hsN!*g}^Phn!U>-DdX+lB(6k1&i zqqEH7w&!nq7hNCvi`*)PzaooUEo68~gb4*0*?gBXgIz}$K~-P-iyFDw0$v|t_)ftP z!IU?43I^JGYi>S0)ac0E1TpIK0Z~AQ=~SRtY!Od}zhaAc*cC=8dxCTW!8hhUut!Y2 z^;HT3T1Oek3i7b=J^AV3wP#uyDO&T70UvL5myyRlC74lCTdAZV1Bbt)3Yl?J6C~Av z?`WBB)3)%X5wMT2gRU{a~N0CM`J5TyHS!Ta0G(Iw0k_j@) zjxyr45c5|nft~YLHA+xq_Ft88>3Q%Em=^qJ+77qHcHpH?e&gcrwKWo&Ai&;Q5`Q(u z=)#f+87R9#Q9xza{#R*gHu&pJUN?qxYqHozDGWYh%P)0?uPu!?H0>5%*3QUgw-T%< zvw2iz_xyv*O3v8Z@$K!6^d`yd26%>M80-c@2FmPVf0KNI6^8Os!F|wU0a%X*aad?5jp4*d0|ImG%Hgm#GbvCh;IB*`K)_3sTId?A>)ri z>hyI^7lR+(1!c5pUTzCOtNW^>@}>Pi09Rv7YJrC*kiISd#+@dnZ_^hYGF)Uh+(2JCTp7odpTdFPUDFkjJJKyDmoZ{ zvmJyS*uk?D`?)IhAgyY`_i=Ed-Sn$Hmgj$Bw&CSZCB;eY9#D9QcIzzdo+P!X-8zqU z;fJqw0}$-qdz6pbXG`L{cbNTH>tm`19@vH-;{`2~VNM_w%D_bJ^R_N5i_{_s;m0)o z{Fi1bgCGA-B#0;f`c`RR+7zDG4PHAAJ|?Uxo~M3g#_B_kNvql`c%oMI31JefDur*q z(H_lH`Xp{*B?P%}56K_X&lM4q*qdKw>5o2nh!%dlzec7LH_Q$G>7@ z!;M6~a0pC=9Tf^ zgyDOY3A|{y(Mz9rT)K>00hC%(JAy^H3^BRD5qS$t{251TJ;Je2!sbnf&bHa2H+q3` z@eB1-F7*^(K1nJzHu`C&^6KHRWjoSX&h90IpmsKm9ocJyD)iv5YHGM(uh^N&Ywk;L z!IxasCWgn4GFGwG3J>2buCJ^Fc|8@^g}qEF@QMah;4P1hqyol;yqN-f1DnSh!}S%= zC_iBa`-(I|usbZU`$+|Yg$e|Ff>bE5J1AJ0J|z5vGG>Gjc0$}8>C4)Y3d9K&c%fy5 z0Md&u2@8+6-KEfY zF%kAdpnw|K?FyB=DuQeAVnQYGSLM(uMGjB7Nlnn#ry>1+k*0OmSbUv`45 zPoFp;59bGoR`Mzf$HVz0C*&dN64D(`^1ARPcSIN=Z=Ha>`nyA&JaG!51;ExlnKvl( z4^M~#QbvJCO)|Ra036Rp;V+zz4%GL6=4Zzntd1Zq|`5{3NidysJfbvy((BtxpQNTT?`^LlS+qtfPl?c$atl z8e>>U8bIBg*~7^){Go1Nn9)(QfNq}@+EzoDKC&pCW^@k`w3m$Nk;o|Ro2MCm%>}5->1Va$^_C4^|F2BRbEQ)Cgik+q$JHSx&cpPX22#8 zB?N+X>+Zq)6L&w{Y(NkZbNQ^rV; z)0$I8QaCAAhOEDRQXcoeL#oj_-lRI)dNQyjYa9598x0#TnH1TAZ6F|&HSYx_3TtNd zq*|Hu4;0OjhO!eTEwLo&8%|1#4*5-5bm(u&*hc+fOyO&;1J{OHX!Dyqi>Fp5Z-D@n z(wzOsrRJRen`O?K1Ow7s`f~q{1Wl*kg4r^m`NTEG(2!vO5^Z^eKS*%{P8&jiUWPy$ z8nd7rjhRx8#ypF_^cpizuymf`@K?*FdgX8YkLiYs-9dUGb2Yp2DRYY&(jhEasA233 zBi9G8GUZh#EmJ0h_^Cd6F!u8|5B7n@6N%y!%oezygNcpfEqAM(r=`b*!9sM>h@aCU%z2eBwuH^ z{_=LY+7Z!8zOH142?)R|9}s8)ijI| z9WQ@2Dv}r85$3dYJq7GwjMYv2!WgUDDf#e(uC!#<#1(fKpZdjEYuf5P;flAhh?NKc z%12vE_u;D4Lq$~+^6lZ$z4UJ5EjCpF#;8i0#Mdtd31KdgiSjq*5(z+od%`Ihj(qkX zxL&$3xp^ETtzFmJ!t7@IUf6w{z&2%!w3-dEUTqyRKp z%=@fqd^`fo=T^rjhp|TpRL?!nY@S~l*_pjUs?c-`KOD=#MIl=51RlM}cq!!bQ&z&H zZKS!^g=(Kl8CFb=3YX6B+fx`BEElbZSMS64wcMD%uJ><0TeTOLy5jk=+n5|h-|196bQOM9;Rabs9xj~#F`2bhZGH4i3+v1b%H zwf0p;mBtRK5)K#o(s^M@n{53!2(36Jo1G-JcxCP=rTov+GE3JQMLJxHDd-aIim4Yx zC_O7n*P+vxr7H-&*fSEJ?F@9YtXbgG+VVBefJ0OR*nZ~!gi|EtiX=S31<``aa688j zZgwTu(8X+;u7!s{Ys}5%*R6h5b}<_qsD}=`sq9^euoyY+HXtD!?49a}iN1NZ3zmMYon)pg?>H zmK!!l3}3X)h-9M3W4^c}6_6NS|B8{URq*^8V>0tj%~b|3dp{$dSDbc6@J->#p}KZf zdZ)S?qrI-5mHSgG1Pbbw?jShTmi9!Jypgp!tH{AE?c4o3hp85FOFNE$^XS{XLQp)) zW*3do;0*B#4bC_le9!UrGjh-Iz^ldwex`>J*YVekCs-L~yf6H{3^>epb$cQ-I*ScB6tp5T_Sf0puq( zCb#lxpRYc#7v7z;HzN7Mw_vAxk)``>@1*0*)G6swfsQJ^6Ty$$+?dm?nv{YO7xTtn zIYsewz&Pz80u{H7ULXb1b&97r&x%qE&p=WtuiGZl7_ZrHJS(r+ZzL6X&3?N`>GsW8 zjn{_{GTClYttQW}LCoIC^T1gV&qXW}Ej=%yFqhj-AV6fl1XOr|oT5@|F27PZl-z7| zV6+t1TyMhQ6U(b-&&oy1(*RT~uabWUv?^4z9wa4*QXeT`Mz`+2%QQAUNhjp0VpV5Y zTYhA%&$R(u`v5Lh5SDn+2gX1R+gR(XJOTs6Z>_Jg1r%$2mGHZlR7^%N$G3+?>a~>A zqE!3CA^-W^x~Fy@>40RGN6w*SE<-YXBwuaV&E%(qD(K9Ay8?88_ciPt87bjHzS=@U z__c~~To_W*Q_(dsevdN{qZ6a+PX$8sQ=f@n=%+sWJ=nyU^O^BxAn&xdPwy7I`njEL z`MUJvJ?x<3Li(v+Ndfw)gTG5ZRj(>Mq*ZNhQtUlde5LFfrvCxl&``gy_~Kr14Y9ek zKS)NmcBB`&sn|c{!_z2UwhO{^Oz4*H-zdkoQTdm~05;ga(E!@$23G1{f7KuIjNn>Q zfm`uVq0+f6AhkH{mK>YdA6URWd5cJU$DB*qa?%hvS!%(5l2jmks8A{0){|O5NKH&BfJ00v9vnEEl+>ie@dL;=ZJI(~m+3U-|Zcee=(5>KaZ8aSpo{a(Rgz@fqi=9r4E=PC3fX zkY*^rlTv`}B&oou8Kv0zyp&?pd0<1iBI_(8;yjUJ!uh~bY&RhC1 zf0<$iwwp+2AyfEV%%)$ABz8S1N0Ex$YuaMI^fYWmFC~@AE*DXWK8g~JAa;3BCSAMt zygW0zm%zZ+Z}{@`)${WG-v&~P7@`U%bkrz<_W~fm=YIfL9t=t9j8`_IcG2OrWgy&8~?>D4G;nB}drpX+>Z^F9L))2t03opIn5{wZVPLQ(-%GEcwi zPx*p-0;xd#;rZI1WXMhX6N6zNDPsn*OaGK(4sf76DGskZS%XqcuSQGJk@We~j~`60 zwu(@P{5)#$^C+o6erhd#-Xs;u;x|x+wgh8ny~Pk9iT=Qz7*0Sbekf)v#k^{?6!}>} z_`$qt=Lj@p<&4G38Bzfoez%0Q{maUx7W)^mInSB27R3v~P3zPx1sY!hxD`OGT-iaXHMmX?*+ioICZ~{*oT0g7oof5Z*NiuB+F<(KGVw>#&4B(QZ~O zv$+HaAhwn=b3_YkDO38FT*?5cxRj~&?O_E6ulbW&dK?sh3D&;&OD0&`PC6=jAsek% zOS=PUsoG?OTMN=};82s>(iko}^sC4)ETSmPm zfRj=0*+es4cmFM8-3yZh6^Atw$&V9p1#dMf60CED*m? zBMX9R-e0|E& z%j=|8=tX;q*BNFSdy15!RsvA!e$vuPl~*gU7Rl6iSz1Z0$cfUwvb6G~07$j+0Kw2u zE2P#V7=aG8a!~X{tsD}+P%DRmYUQNUd_9m>j=9WIc7YI~v~pgRdXQJW*L1DK@Ku|? z!Edm+S=$Rhx!PT__M=;0kfX&;YH|MoD(Vf>#afdJR7(I--H{jMU^yezLbjpX!-eup zyLJ&T%mO|2y&wlnqyS1)^Sk0-tPj<-$kq4V$l_F`M>ql_YG$N>gqkT4zfdzJ7Xo-N zOcP1+D0v}4njcu+T4^H3d%;ccf}0@0F?IM~EY1Rr&g(8`d^)tq^a-R)}ACRq6*c` z<@{{d43pp4$$UnC@dCH+Pw5c(GR4j7=Y8tn_jfisu??zR5DBkC_#mcV(D=IU8F%>g zS~EVx&NuZO){$)u)Jwa-M;%OYL{L<`@{zV9VxAMtapZ(rU*mzM??iV?UpBx~VQmEj z5Rv;i7}UjWr)p2~qFxzY1hY|XmfgLq%$?SvS+nuW+$S$+)!oe@1dDavdhmi+7$ouX z*h$&(fgwZu`F^Jaz6<)>mMf;jFAVtrcjfLhl_PRDd zVBXH-2V}Hn1TQam*qmHU3cOtJYy8LnOzUJe%cy?lUwS!Y16gTaBmNe>>`LaVuF4v~ z;Y)qt{H_7!bdl3Cf>)eRaq@}#60q#{=G8z3U%6su_VUv9E!YYojm;05lk{cH_~z#v zJ!5K`!w_zD-IQx4&z@B_{n};jCqP6SAZY(=NJf?v^prv7&5gLZ04&soENQ0mn!i)h z82s>>O7vW_IA((=pmWh8NXGd>PCro5(ytxe_+wX?3)#n{7Z_M^%ryUAAIe@_8wx)E zo@RVhwb_kVJZTGuJa|x6z}LN+kf6_M#*N*si}mSn5BFQgFk1j^xu-SbmGNm;^SWW? ze|_z$pnqB~eq^}0JThAIasiCxe_<4bs}f#tr(=v3%}0%a> zSB`@8d!uQ$iyUM0V%U59C3~1Y6t2h2%Nonvq`{p2(BK+4`isem<82;x+1bscR)g-^ zHBv$)UA1U!sQ5iP7$L?jSy%C)PdkQ1xi11JRbgnSla_%KTE9CqmJyCQ7?r8F1j-^a zuaI_|e5uKjML&5>=xOmw{L_>6@gi84ROG}Y=ZXqyiA1MhP~$Q?h`f)tGSN&rJFvOS z^9+&qG2}H(=S6FyGui8^nlG(4r|7T1eOMS_Z5xcRO?>s`W*3I^;Lh|#yzX*yYU73& zT0~1;a+MjTJuieQGe7S1=V`4X52&A?0k6TncC?bC>|0eQT;&M9Zd__(Qc}Q(C*&}K zl9yd&-olRh;<1+eM?@)3Rk^%yy!kW>(Y=C}o_k5A9xf*I6J4B%5f>B?aAAkj4Vm;Y zQRm0T5OVI@e15)KFAv4%OpyUeE)41t6UBb$$XP2zfynBq_nXkA9^+ ze42qR4&mhq)50`Ji*}=<2yWF1&2W(}OczPmgp(3`2N6U@&BXj=B@LUR^U4(&nQSWI zMoh3WGxH=}&SEv=8uj_ve^3)nWt1jMHC0WW%1EZLDjnxCt*UnOG;^V*y~2y!W)^#m zu!=KOjZ|F28R}hNe}maEk_;digwY2Q@_ETdvvYOa&K5Fv*!MHcM$YoJ`inZ>@jq8P z_97t*=dJCcfO?DPbfM28{TZP56<3~i9ZWwNZnmFv#6eYhtJ%mwRjb!29F?0hinJ$R zFE`7y=B+|tj>j}%Flao^i3{mzE%=j zcvA!z5+Vf{LMRggY@03$r~n}^{9Ks4|B~`+{>dT;0p|2coW**Qu1yu8*3FAWO0c>d z#^~%52?Kb^>t=>{DjUVOUzrNARbB6J-m}!%lT`frZE~Vk%2(ZNc3@W%s!-Gu{z=p` zrKtUkb=47JtQKB)qI-Tv3z>YZDH6ZJlK2&bK$Q4x{t~}T%3@522(<#|9a~C(G+Fi! zc<~Y0@A)aAKVKaQq27CMW+n5I{S!j@$ajZ@^0yAyd&r84dJy{?d}M{0$KE0Yq1a#l zC$axmiaml_I4^lN12&^09q@IMLhuo#Ga*e`Qw08sCGb}WX(;fo{RO^G3gE>M=^{+7 z&2(PNej@#vEaO976hy|`KOPg#XWea{32Dh^;zu8ZF5{GWh^p-G8 z=Q{I+Mss=O)-1>au*KDe_nqs^mSr>Arzh!U&AEL`hLcSqSaE)t7>w^(l5bzzS=u5U zZ6}v+V>?^%br(lB&33M|gmEPy3x%=JUl^BL+>e#QSnU0$5QhFFc+Iz6qiYu}HFZsU z71Gedp6&($6nR}AjMw)9=(y$~b3tQu{F24iON0VsYllBu&s%(~m2A~}|LI|??9RL* z9fF0j&ohSV_v&&1cNa|bVgVN*MseQ>b>HO{>9L`F{ehe`W(!r84#P_ZPjDA~{aa>o z_4W`~(tQ7^oIsVUdQ#w7QdJ#o{0h!kXTB{nkG=8;q=3?T^3^NNsd~>)v8unCw|S&E zobR5N+C@$cb>j@iqjtg94fa1~Zq`df`KG&^ne1x9mNowfjvlHxpVDxqpBWlFR>JA$ z#NG&gycc-GsK>7l=Y^{q6)^!{TeK_qMQhA_b_F31o#AbwfR66VPy_JYhIp4gCR9#A z!_S!4u?I<4;SYN?QPx}FT80pf7nSgg`lwK@m79Y(WJ+SSN1rlNHT}&{ZY*>NYVPZ$CTI2E5!ZZl%_~he>If%jm@^RR|z>N%K!O`64t?9{$8>~i5G~E zkgorZC?SP2Mdc&PVUHz;^KVn&1sldRm@=yLs4EQeUM2PsUKxDli{?DNZ5TJ&XFFMJ zm>QYrpQ6HoEYebV-3GH$09ULKVQ#7>7;Z>Jn9iRMOXqQC|6?W|_ubP82eMVUIBCyz51T9K(dN4`egp%~P*2+dWdK~Rj z__A8FC!0d>qsZ>{7unSo8xzBLQD}Ate%lh~UF{zH0Q8`gdnjsR$Q+N zyq^B6-(h_PYYijcC{`I~B%H+~MfL!dfWn6FZ5bqTmrn952~qcF}Du#I|-E zx8Ii<&DxQsp!LqY@^c2PAQUL zf7$5f;H$U9rHAx{e%kP8JL^r*;hsu&iK^jrGpGe$bGg~s$I3RBIdVe)1+R2Qw`T;G z*s|-x3vY-{v;~khj5}_0b|mTFhp9b1wrtvH+{1%!y70XlVck}kZG`I6TJVYO9Z7uR z@box+dJDO&_nY8~4&FVKO}VWnvXPY&?!?ID{6q6*Hj9>CWv24N<$Vj}OHo<{ELiEt zD0D!K8(P3Z!L_au+fo4xPfH&Zzwos5L0F+jI9$vr%nS38t>tSX9MgFHN9Ol*@2vKt zkIfj3y+{Z`3w>4to-M_vwCCI3HRrPT6bfmpZ?}-P`Z=kNAaeIxEqKw`bSs%!E+GNrGFAuLDu*O?X1z#-81-5vum9fc%7&0~ z(SbkvrD?ECQtBNfaRIUOqFrXP{sfFW&%SpkjuF0Xm)TLD+ENY-%%?W3r5qS<2|3b% z@iY}|Sw#*^x}&>A^VB|x@3Gm06yd3ppYrcLQ?&rKT#;TBN8te~913qCp)#G)-J%B$ zhkL{?91i!i#NiM}hJ$xs_^H}W|1*bbkv`Elzx9udJ~H0$q&e%vH+^eXur-PxJmx5V zOci)X%Kj#f6c0{Jt+tE3rcmHW(Q2fA-zVkh)N4QqUZ=jZC2{JzNK-Xjwzmut8NnCa zzwq<4!l?sd`(86KqDDcJrxo~JoRBkMkUM6;Ho)(yULIGRl874mbiGx>!E*dAN0)$@ zaQ4`AWlp-D(2AE0a2hPB6{whw%66@S>^G!IM83gZ;mjiGGDSA4FT+|9& zz{>UpEA&U!I~cN|0k|4@!2AcUa8A5hU=nlUWPePh!7yDL0F#&#bufh&U1>>-sEYWS z07mOx*HTW29Q>ExaG!SA><%e-)*Lpw=}TM5fxb@Ym=5$ul+vw(EljGng76~7c+$iE z9hcJ7lEgu59qG4zilaC#VC&j-Kbw$I@10is#4R001#ZJT`~nvo zC`4lfnc7lMj%R$!adSQk4F^7~p(9RCbvW)Gv}!ql-AGHtMiG9I?s`#*76w8o8gF*tu0PB#+5P^F zD}ETsKrwhYd5@};hm*CBo-?~?`jg>&X;PMpJ+11c*Ig4H#2KywRYN2lIZpJDK|36B ztzS{nMSE=d4u{N074evYXLL`vKMsR040VKSPH`aAnPc$vfkfAEjqqhS z%nMgXb@an$+?dcY1d#CPjVzHhK&JAe9f3BOAMIDwNOJg7Fb>a34kIXseDkZ>osq#L zL_25klp!H)80>M1ENRgUWI?79Et2oh9K9M&S&0mV=L@=EZ0BwWRHT^lmE8I<`3B!V z&FIPs2nsMeI2?kkY1(6aPKd+d+eh30;H8yX4F7t%VT23>BF{}Xoa|x(K}4Zi{~$z; zl0^DRJY|Lf8s?)z9l4BXSByF9In6!c@?4tO8abD4P&yWpsxev$kgQKZ-x-dl(>iSY zML&^Nq?d!)%<3?SJwRAMA>eqpUzB>r!mTA3v&6mn(OE<&!%vPcC6oKT?x&Ylq@;OtGBDi_f`BFHwv zpok#b2!H|CXYCX`YkgJ{nw+6SH;kA{RkidCS4m6_hp#)LVZ@2M2!Mg_2un@~C!oCR zBU=EmyW=C|>I`#++()_z*@WB;@Njvyg4E!q%-xnapCJ{ZOH1hDpD#oddG!DPOAT&m zT!5kPnLB;9G}g3sL|4c{BLTKGgwSgLiV(3%5x38_g%|%pJ4pJfns$%wI+-&hfuO|; zaRD&7+edP^5O+Jvr;SB4mJ=zXv5ZK*^s>xRaREDXduK}b&gNRzY(%E064{k~QAz5sADG)Z+a$ysgaL5bt90T>!l0SBWK=RIr`caG4 zAAD%-zzf}>IjnPQpv@XoNH9+01)|i4;))wmChNmm^Q8~MyOR;56NWEC_|gJLuZ9F) zh6MYmL^JG0@>D@8TC;VFeV~E~6T_Ocj*OIu$i|xA`w3Lm{9e!+rLRrn<((Y;*rkMh z=pgr8d&?&-s&k;>z(~SYy55#+}68JW)As40hZTy17LFhx3%zANqqL~%n#Uiw1>EQ`#&jR z%uM+uuj~Wsh|-<=B2hAblO5c<6m`lF;Aq2Jqv7ggr>Vb75Yq#N^*K&@C}dkDvzA@7rx z2>M+KdOImc(C@b4qh=KJVtYu10u8medjGPuT)hWTKE@ZTS~r+(vIjfz^b2j|avU>; z+%wqGG5Nnj@pR@{qb$MNB2s6ZEu)n3aSl2*#L>trjn~PPA)yqacLGYLrQQiBL6oB7 z0vkVZ$T6+o;dP?Nev8bb~h}}o} zi2XDhZQ>D+EvoiJN7wBdTR~c*Az}Ut(na}Ry#SaGhuaZ(Ae~7$c^vbKyh#Ay41%KF zV2O5vs<=IfQw22Ze2hk>3`9<23E=sm(saA3S}S@IsYXIZ zN5eX-B-spC)l$eM(P+O7r|Jp3vJ7GiYQACvUmqULqyGah0Yq~1h~WyHwR#g9-r9|P zO{v4=>}uRe!Wd?5Fg&+6#DmK=04=xgeQ@9g3T{_D5{=tcY^5TB>{+dl=o;=>Jp*8I z&x$Yxdt|t0B~V7c9iKpj1aSjwq5S8v9C)LHHbn$XY>JdxHiZdEJ|V>U*_4%##HS(wah4tz}J1uFSbi zPi-rYX$)13)}$r#_2m$Z1-?L@-Bxa}QOR?0RHL;Q-QYIwRmnMU)egl>FiSC)?41)A zPVnKY3P@9uPYYF8*i3-z=k-jOsN`zWUGX}>;&pZ5FU;Y!9^#QqjE;Co#Cb=wa7n-dDYE&sfP1tNuikVGlsZ#3eUQUfG;4zHIf3Icp zs2f4i2~l$46%T3S#KJ2r#?P*C9pezCo^Sxyqjl4B=7to-SldngNiTF;ePe=5?;~Ow zPVaa?*DD66ch-%70yW6hirzU!t`i|`EUptJxz^fizHb-nNa3aiG>gn8AxnYgIp-78 z*+Zlk(!4kr&5uc%BYXy6{!4i-5=B@kPVQGg;jzf0g`5Em0<>6KF9*dAc%)uqyL6+5aZmk0Sjs{-%R z>VJ)2S{dSSXz^2Np(3qG0xz7Kd|!AhP;5m3;DpEMf5pgs)i$I;?ofeoh=Y9lWm7wb zq{hNjB#zY$(hN1292>;yvSX#ykrxUaXJx>M+o^vMX34Fr{(uViQwRE^Dhh^bWB^n+ zF#`&C!I_-MC@Sx~tWAa4(qXdc1d-Y&o+7a|oR+T#0>yQ+2yuVIyIF&?vcQM8zzA=` z0c_w1mx@i}g+O5{6khbbq20c@LU_dBxn>R5UH{ik4yE^ZD} zK4ITP8@xlwaVf>dxV9c9{6!9o| zqbl$k^S4bjW;i7XP3ahZN1R<4bH zBMs1uj|H=>zXI46u8jbscL&!NfLHeyu~M_O0KubKYi|@5s|H72HoXsbq2TNoulHe^ z8TdjbzS{jlkVuvLrlJ`)#mCubiATAB6_uM4=TUC1_=U>NjSHgOoy#3x2T<;@YR42d zNObq?h=|jleyYH$*WHcQYi;xjN2bQcDWLMaXKbAGOH)aOP^C7O=Re}OT)!z!YH}W_ zM@`-k7sMgm5!cWmp(X*9(qsVc++*UTCi?&ck0yPNH7;7W)4}ZzB)8BkP42lTCt82P z(&QLHBGqJHMYE+zS^|x6m;zSRa<*SV=XgJ3FNjY(tN#u(bbY>!ubXmB3qJ2jM=3k+ z-}J0%idQ)TQ0m?dTCv{G-{QH&LD~twYwBBw%KUC|7&ee5-r|7IYT)?84{W^mjH7$< zZb1-L*$0Y3xouS2f2|`{izpC4)*%a^9~+yhVyI;{h)TvFGdmwQ+4^S~mMoRZB)o_r~OF?*|d=a+R>tiu?C>{~{LF^7$ zRo0)1EewGlwd=c#8=&dkn{oS~tRM5P6reAM|9R6Di4t$Rq71BaV`7(q0A=$d!?Lu2 zeA`Ax|3-`rICPPTeir&>ih=w`ErlR3@yPe$JpsO4ctYHX#_QQ!+?>R#n+L_cHoP@= zL0m7v%L%8%u`V7HuM*qrxP^aE#H1Mc)`|cIBc(pVo8nB{a*Oy0Zkuc4uU^76@spNH(N%Jlvjy+6$#EotqL4`|>UQAY)Q7rN_f^ZR1(q z45(_8{_E(e>0iamyi4#`@UJ{(Gh3ohbqo?(Eo^+ zk=76XDVAEa6OS?r_~MTo&o{<6g(!eN8?Q*#T85mC*Lh#}h-3yoyyjqh0*|T^+Cc%G zrBBAo=WEB}<@2?aH(qSP&wb)p!}3H^k14(8EN=U`07m;}^U6M6-Mtt@L=@*eVVgho1OqcCBOPX-pD4sIB3|^?Ev=mv;tm!&e@SK-sfl;CHlz_ z{vq+JCtthI(J!f+_)RUr6b07c-#p8e!t=LvZCl%AzvFR@JxuDrE=KUWDbB`3n_f}> zanKRLstMH1*{%ibWm2%?N>?#^K@^~&bgMmnNGyRrCQV?rE7m_~FHbf;P!-^DMMkKa z-yD1N`u6h9^?p^&jd89i`rh_I{PM3LK)7ZU0>a|!Z`XS1-?dk33-%p>qxE-<)=^l=uLZUKa1ZqnRGD@6Ypuz|MXwi8;!j%btPS6CXPAn5>P!z}W|8(?Vq@0+*B4E)n z0q=Q{z7d9}II?&F{)(G=&w_6j2S&39FT$BbxJ7|`441{ z!|#;cM|zq`M7PoY-++I*B~g;+hQEqD>wsu8X^k|#+knQ` zbmuMlHvm1vna*~T_DJ2=!Kgdnp^gu4?#xbFE8G@(dnVV6I|-zRnmY$ET7ZMjp4u)< zvxt9J5igE|B8lgY*Q?8;Q)|=1obVaPywZ8r zqNa_crhSrBtSt%hy%)sQzS_z;QfHlm_p>f=!w=&)3szGXz3hbk7vOaM3+83Adah?iF2-_$pW@-I)y^3yXF>7a%w)ZR^|0(5 z>?FgrxJp&(!RcNDU)pp|WHqWv23rB!CdpuH+Y_#qJTu<;Ci{?d!-(tsBpGqN3-$v~ z;&|b#tP-}zztwK2?GI7$FSH`jIYx&HymNQXw<43*JbpueDZXL42X<7yq`oXBS(!9a z&?Z^JHfV)_Eh=UMNw-}-(_|fdYe7Gw^nRiVUh4B;7@X{!$p+J=BB~roVoTzO@zxXySvRmFcWt zuh6Cf!^;+iO|(K_5EZjCda*BjD=gqp>j93bW)J(e8l&$|CaGpm(^`QQYCYXC(hg!| zD$;%h?4UuUO?t^ldjS}oPo$kJ`pHP!Oo3nGpPn?cuYm1An%Sf^q6rPVZxaRnVYf&% zyMUz&AXXJb7bd2fEl9Ca&2}QSVlL1+aBZ+N*!r?h3I+iYNEq&%14Z?ho8zmGbGJVoZ1U9GAygw$64 zll-5T@{gqQ7mBnG)>epq)<=T?H-<_Sw-qWiD2n49Iyo<4q+Eqc@EJ}3+MSob1N+en zQbfd@TRWn&bBM<33Ejx=4;H^as0xeUlE}H;dEJm`1MVu%?h^6`nBI;WyNjJyEiuG} zuN!+!ui<(pG}SuX@a4Vi>5^{xZz*zZbv(9p%Wwi!m^&ArJPS#N-gwg?HC2rUjC~SQ zgT$tpsc7qdvNlFUXNUX-EZ|`Z{P2z~6{&(KQ2bOBmiQYK#qqCtI%hCa&W#;Tlh5kq z%wVGku^?o)`2z<7k)$om*sunQ<59hx%Y9*Z7ChSS1}e;hjHu4l>_%VU#gJ_Fco%0< z#C59NQXpRLTa+p<_bpb{a?NvpFabU+1;~iPc*Q_xu6|Fdyy|>is+1GOXvwKTQ5?4w zIj1pFuFO=Q4J3$&UYclL?a+SCM2&4HlnN8oK9dZ7rphUUKUxg_tg0o0hk`M9Dj0+N zECxTb7^E021{)N`arYo+EhFWG!H*S#-X)7RPiPjt;RVJIO9JstPcc?SD(Fb!%P_LG z^OPfZgw_5z*mEuxtLzdsZcR9nkDyvxMN(_0@4j(JHI5mSkO$6fE#MRf>(do2p zu-USXSB`OZ@)R~#+}eMV+y*JR7+*7V&uiHXuAZNC zjv?uyn_`PkS^|BN5QqZZ>MzjMQlO6sfp*YLnJs!Z>DFW!{!hyAF^>%8h%VXYVtm21 z&Tm7SnO3@J-BiXeq{+*tH_!hkVMdrZrhS(iWw+)!c==t<4E|oZGqtf6dCn5xIU)%Z zV2U7;dd9O-fTz$Rt54epYI(eV0T|6GUxtspdIctt9?he+W+n3cxy~E((WXooJ;tB& ziu+sS3n;+`;DkV&&#rZK8!`$oGw#SRdyxNm?uk!w2CA#+W)aHwH| zQGfmuk>PrXLxfO;Def6!`k@9&VFr(hzHZ|F+=Qo`5q!z|sU64=q62gZ^-}*>Lkmc5R;19mU;WOnx=rf#`YzM?Dt@OI(jh(?O zxrc`oeVBvi=B5|0VT4AZ@tE17fJ%3;L*8>3=#cjuYEC3S$nGHB(0^v%*VvOxN>zoz zg%>0GIb?e2TW6;h^3_*66L|RpAdGFN;CA|mD(8CmO3#HVXEuA0kmHr~v%w_&x|Fo9 zS1o+k8dZQHy>VWJZ~`9$ox9kX!=569p?E*?7w;O2<;TH-yeWOZC*A%v@uq4D6_M^} zKKsw)uDs%JXBuDFJw2VLeg)s`c=N6#t1R{Iq(u05fPERrIn=2}rbo{3SssH2_2X@v z0cJ3-tlNCNGZvi}U$XMwu%EviGTHZEM1ClCLl91_`kW<;vzAq3qVFz*y?;&YDOyJ% zpnf`_B4QuR_vEKriN4XYkJ})}w@UO4(`SR)BS&3{`c+Pu_j>{%R_KD4&Y7P7PpX&} zNEJAxmacU6Y_iFRT@*w>U0xW7`oQx$lQU#dQA z`jj${{iFcP!>00Y!m{;)PWdF^tbc9IJ67$`^fY#m)UH|QyxbOmO7{UU81d@obEkKs zy%T&W>i9Dd4#ShHwQzoCbIEP>0|Fi$Cff)C?`;;IDpEZsyOfr3u)O`O)6Eh{sn|q* z==kAmUNf>sv`-CKg_Y@1c*I6|?wsZ=~x6?jOh`k;xL z-hL%aTjftAh4S*J;L%NCM`JXbsqhfRPjgAd&-brI#fw^@_-UjT6(4|T_f(h2*OkI^ zYn=U9HR*w8ngU+PgD%*}6*-lk@~=iKe9$8175`e%S$mM5U+;7bo6Y22!jh#1s+CU>aM}K~ zXmC)wvR8ID)}GX&k^>O!ZkHxKO|vu~B@f@|?5qvpl^dO%^r30e)3g)tsD48T0_ABi zrS2$FCG?x5`*$uTEquIAJgM=>)(zcdM%`(o8!j|ff1VI-3*4o)=4Ufr({BW6L0;V; zjd=bq=3pCP#fuX}gSNFuphVkxK>R}6dLRvbT0q;<)1+<9eBZe_z+5$Vi<7gplnr4} zPpSeB0ZpE(>@R=Qnk3dO|G@b$dspG%czpjBa4D_^d`2t8!8BCh)qvf;71qHt)Z)qV z>(E`?J18&Dzl!}vn~L-2V-|2NU5y{`WLSZ~+xS*kz@ZxjUVYLW$TECej?tazGS6>U zS|N}^g{LZUV%d_ss$-uDTF?Xc6Xmgdoim$^a zr^9n!@P#vPOpN7OUpPA@Z4hFh17$UliyA1nDw|2D$0<3hcWxv11S+{l;Smwj6cl5P1qj`1T%%XY>5h$jzC?-B(#8-O)nLf4bP3MON;6;v#uD(tgiYm>GF2m zj|8G2ZpR&jPU7<3F8C{M$L&a$=U3t^j8QgJ;6=>H<0H_JMK;%N8Gss{RCnbKb{BiSBf&8=(q3SgW=+ajGl)&e@vRtaG&BMZn^8N~lzBrS(DQwus}Z$~rHG+$fMCwfU$pZa?Jgum24P zF+0) zZ0a$ONcOAZqt^bDvr1#RgkZQUkc}jfbsqWjQb}7rv4uZ5Kl6F2tZGME5RxJZ1sJunU*OX zITaUP(m+SPI6w~_7&I

E#Pw9C$U51z5sy=MWoFj>j{&Gcx6EP-2_jIx#wguXE-x!?PqYS^l-S3=HQB|A0>^0t_$Yf1(AKfm=cA)}_BrEv!I@Z~6_+ zv>;(~s6IGL`l}1CrnlFJWXUDNUcoGNS)UN@aY^V&+`N&MP-4WA@MHhZBUB4(Nl3tX z)GTC&Vf$3k8m(-a_=Q$BEh~7~{&A)Z+fV=H{5Zhm7<$3^WMn0wz`A&RuPTzZfZDFi z5;3Tizxh_x#6xA(M@^bRr^)=yk1N3P5^(@b?#HskCF0xJYoswo{xwhOzMn7`Q; zq%$i2W@zhCK5Rr?+uW6}@3J($?VWTR|Dw68bJAl11y%Qaf)i(`)tjqg`1V9&9Q%P( ziNLoy%+<)a7lk46Ift>`1Sr0%I!OvJ=sP9~Fz5rh;8O@p+;crq3Y$utK{q;(`R&WN7&dSir0fiTsQ3K9M}VLL0y)6S7e(Wum}GEFzCH zTs0_c?aE-4q&Wr&w+7?#{(xLY{}|t2pC`FwH&9?A624B7D-u#fxccdmTI-p}8>BH3 zx}gD~n7(;iwmh%hLE0mwp9iD#yMUBp0_P(_MRe}}SV0BHBN8~15+e8yElxIgIl&ZS z)GAdpPsWDFD~Pd*Gi2Kwpa6YWjQEAVD<&t%3^~f?dMALx8XNEWJu*jhmv-%WDbZOK zNr!bjX=Dy$BzN`VQU5igi!)Tchpwvko9L~|-$=ZM4N-ulw+evCJvc``dBFV56G;zr zSy$$u%hDkEw%ujrZobLC(e=KK%D*%Qu*Lq3?)Pof`ufa?Y^`4-cpF@n>gvii&~mYR z@nnun-n_-P!dfOgDTP_mRg0E{&Sc-yhOhw9zLAiBrsV?iHwf8!Z}7Wstp)xYfABVr zDV(Eoy{eY$r^sBneoCbkVvz%%jd8jzV!6KM7Wl|&hikY;z?i^!5N#(`PyH;wV`zl{ z+>aNfyLz*$eakJt{Vc#>X`^jHRF88Fd;)^bH948CEd7pL8C{fTx-Lo@EaXC`85a?h zS_rAc%~gaT++>OB*sjr&js26v4(wh65ht28q(C?-_P8iOk2<(^O^)jhjcp`NAWSdT z-^j)5_Pi>~1#if4etALPl`9iheN9@UC)=4DWM-+$l{3p7qK9{8L7)2tXi6k#22A31 zH)0Bb5F1~idhwR@%Ya*VKc^33&GM8D;kNA~0w#*u%E|l&A*-;Xs~>AkyNJuPVna5L zH1jwS_an8(I|?}@kscV&Vp?X>gLu>pz_hp}{R&9Mo0ho`0f2(+ktg3R^iUO+G{@#i zX$(D2@vh4~Ypt8l3%!fNK5xIP>@mL4x_y8kHmSVJG>IOw|9C9#sV5FQ3mOFt2I#@6Z^C3bgGPuuTaG$E6 z4E}8~*eqWe7258f!59qBN84@4;O`cLfDsv_7=ghBQ?eom4ajmFhqTKDjI<>D?e*dB zFe@S?3f8nfusH+^qCTqJ;tZ26kIR=ym#zCw9-Sx?r ztWlJf?iv)uam=+$$_Z~hfd)%=_!1@Rr7M`0E7wSm!(Z_dPOs?+(eYzjpvHq`xN_W^YqqVrBG3z9e!j{Phx< zFTZZ{H))KNp7*B|w^lI0a$JFxU^%|P&+uXjf~dzRK*RG@4<=YvA%T@(xs3t}>7qn} zWl}=a5K$nxIWM`QHO1fD+}Z{-9!Gh zau=z9=ci<(vr1Bn`*Z*Mf^e)Y-y+hxrb|;=6b_V4e#Xk=C9QShvO=`2@l($4}MRlrvSJ}Q6|ctj!KqXKd|dK8c= zexU+#J2n^tQUM)iyWa9sfVei7U+yYngG6`F)|c2j@23hpSev*3P|3H=am{7p6ksCz zu^r_QnCf3!veV3gisABtrgiq`)HyiDZ!3>fX{Bb6!R=W;QRA~mv)P*a3^PoW@$3#rdLW#VVp>!zGz`OWQPrNFxWY2I*e)BwiHIHOeA9xubLJ#&{$^rwmhZR*}K1`#%1p zN!uA&1s$TalC&fKXUed?V!<-2P5%n(NUWcO_Ki;Nw&mT3klZg>Db%A&P_m%%Lh~OSM=W)CNX|mUfL3hCR2uo>Kl6s8U%h~~Kreb*j!oH$0mQgT4I)W5 z^cJ%-ho_0&YpnAt@viy6n^w2@{B~h;Pi6`FQT+fq#z=WDoU$mh$obX8M0ykvHCxmw_>?+B4+OS82$XiaMLE8}&{M zusD7d&KC0i>Dw`ql^W>W9b1VF4V%P@wI9NR)3NIlL&f&EMhSXv)>Irg;+zl_gjVcK zA6QIZ5?NjB$WNZ77w~>pen}pvj%p=u7KgQh&uh2_>x+1c*|Qx3)p@PVv^DzeyqW+& zH9g@20Q7{f0z&8s->z-e3`^fukW%EYVTn3#iED3?5+#~%x4Pq?h4HfHIsAqH^<=2& z+loBmxQ1kd?5}t@~>aX)^7>J4Lu~y9Lz6ZjA zEQ>mkLC3X#AM??OyuAx5X<$eNYQa~hl540hfzUB4O}RfeFL1gjE6uKZtxxF}c`+?F z@vro&Ivu(Xx-(Cw=7_S78??}Ga&%XQTKnnOv4pnRpj&h$i`i-Ph}KN_V2%5!p{?cd zQ7EsWgqM__#@U+E)99%_)hK^^YbO8J@FWO7rpx7zBbS(?Hf}9X9sm&?s&GWc$wNSq z%tfQ~a@4ziYDjCj-M!vQ-opOg%6#DGD;zq1r;HSHTT?~~eLiQwT#074mMhW!4+BKY z5g#&ROiHS{9PKI|S-(`~rPv0N-;q37*;bnItaYSfIo4X{o6uk7?9vK!gpb%ez&3_i zvJn%<_FHFGa`{nTX-$E|`YRkQtv=_mgj;~p)^hcEUK~4UZ3gLPiXU;f^((w1PMHo> zlhRi8k{8d0Pps|4v7am@tx0h;M4G5b^12 z)&ddlj*SszuUXfqC)!Y63H?n@1Bvf-Ccd*IKHo*{*dR#6d~Bu7$`VN2{K#6#wPmY% z%#i6ZP6^5M8-JM|mh8PE712l`p^DwepmGJS-e(AIyV#)wt# zS!D_ZxeIf)mEpF`x{*Hs9|AA6HW1}|&uZe!pFpjvAUdT1EWXx8dIL@lNvB~|h+REGseZ2qWdIE_uzENkjr9=_>Yz~wZV}?JEOM~%v{0t<;*!70hDN{r2>lsls z9;Zqkr*d+L$9w#FoGh7|VDR{$_rILSK95*J#EuWF=hfqF>2Z<%8i!1b9`$GRUCF4A z?cM&7)m=$5q8ySu9padYr!W0^dPy?zg2B_z-v1gr!Mc*AY!mROx!CtybTni%O8gXV zvp0g9f;*rfYrp$`sKYD|$?Yi1gPzikX|vZYQ4+LVvwUi8>P%RG*QGf1BF?U7!T8!|@-Ar?)HMNLw;WQ*lzkErAy$4>sfUfg)?-Sc zDEJyqqzXA9H2fu4!l&&d90OQH+L;+2^j*9gnmdvEpGsL@qUAxtpo|x@zXeSiD~|sJ z&dL5&4eE+r7p?HQn~T<`)RXPD+>_$cPjSQ~xHqsfw|egf5nS`{tg|XHQHZ+ZV&V5z zhkl%6CQ1FrUs6Y;qz-|4c#=2h*Lk-pOX_zisY8aON~Wr+p|f8!cpVf zv+YS*`yk7K$5f_>T}#VrisBt95u*63N{^)_y1gojr*w7d@WXT@QC{`BU%IB_-mj_xQ~R4J$XXf7wQU<%;IQAUH`T=;yG@{2OF3GS-9j$Aby9Xd z))$m2M~p48g^J4;jkG&enUd<<_LQ$epUX)h$q9eS6&Y;JFeHZwEA+j*A01$2_-p8s zWo~i zS*Pj0a?(im&}}|#m$z;!E+0!yQMR<|`#7jzH>IX3tXVPAWsx)1~c8I|J{q>E40AK7pT zd0qu+AM_QRewwTw*04>|m-6D~ds2q`m3Y5>#=#m|fOOI|Oj|! z`sa9&K}p?T0FM@vx<}Twz2vKXpVYS9&|l${km9|_N(_`$xr>J-VwqTfr_D?!0jao- zB+rX|HxN&*C#AlaeJU$SP&CacLpeWV&E?rH)R@Zo16R(UeA;@I^E;+GmTMI&Cjchp zJjKD7%2}tQp_~yNK|Y={N>a|yj;8vnF&!&VPJkT>$|>?DN{>&G=eRiG6UgyqQVM;!4-Ig)5O>hO`x4%SvQlt>hNhyNXmV`A z)-*Xb<1d;Vn>*6vh~$&Q)9+wuaRZx8@tq+*=h?f6%MEQG==(TwnkIW$i2qt+8IC6NtcPCa9g*ObG8pGr<=;Jv$8wo~GKdk!g0- z(TScV>aGCzHV(g4F!-ywr=(ecYcQi`Ua|1B+<`{+r!;tq) zax1k$4z|p)IaCCX>)4zC@H091WfFYAI;I>Ed#$!OU+T>%8bk-(hhe~Q6?+V<4@}XT zbomkraR;BBwTa@4q#Ei&o#bpS3WLu(?d&9H>tP&UK3kvU15OJXW*5;P=Zv5a759XH z&qsWkz~a_`mv|-|bfdH)`eELjcD9sPBzPYqugKe-WL}ZrjbvUC&VUCg2#2i0SBR6W z!`JwWti#ux$T~y?vkp(dY{C1;^J%u1eN65Wj4Aoy@DuCWb8F~x(K9(Uu3d~>IS!(XI1u>E0Mr&L1xDc%4YWo|Lx%9&@*N0xh zi6%enaLB;QoQ9H}rW1yOr7>apT^ueZ`v~36O5ozk^VMGc5mqjCcTDLA?_M{wwM!^=wLlw6^brg?rTRGE&K9D=n;8Reen*=tSX)f=p??w-JZAaur3H6Zaoeyl z3D`*U;lnZ9EiTiqad>#Gs9nVpx>gJkyE@zUSn76x1tz*(l3u?H)Ohrjc9G#-*g_HC z#YpF|79kinv_?7)y$jtC>a{qC3op0qr&fnvn9t*CXL;Rs1vDM=(PKUj-w^`SX?#?e z>xq|G&{6zE@leD-)?pa_BI__roXND=g80?$EZd;~lTfP9=2Vh3n88X6j8%DDNs73y zjWd)b^O)Hk_9Dn&xVL)*g8FCzi9QVpDY?3bNX>-X*%A3kbS_r^k zl17@7^jSnmlk`O~HpezLZY37*nd#;v(SkzhGLG5E`mjRz)DCi9?#(O^P@M`%j zt~uv`BDh-CUc_cnam1=Vwx;R{sW$2n;0-@n-l4CpGVy0V;ttghF=~uYmjB6$%ukjp z)wlGwrRg=h0$Cot->|&(1l7`&>3u|3nGJ(c4^J8>8^-SlmgH!>;Q~DJ3*{9cbP~eU z0EBjqu=W2DA$^dXBjl#7566WTNd2>m{1`d!A#K}e|F#z72a{juK8@*ECxG{BUF6KB z50Mwh4elW(cMuhso!`62R2W?6Jawq#mV zolG>wgQh1~k=*p|?8+WAZD-ZDl%9lWYd8Jh3_5&4J#Atn zD=^Tx4|SDqlK#obaO-DT13^y1dtK#Yqc3}9*z|Hg{A`c|cbUdCLYfF(fjW?AxZF5(D$0H5#kxgrrAsvq! zCu73J%LTTyxI;)KH*XJcvdO&BX>BJ?Gx^KHzh`^i1Rn>L_8xC*sOY_UxnEafG4|;i z@onR!`WW7c-uR5f5}FmFtNa30;w0N_eX&nNeB(1eL%#8u&ui#`Yx-Ng?Us8oz+wNc zSCW1oucu>=yEB+A+nPa^IJ6Zu^Df~B?wJ)=&u#KvOHSVT;=nXpOejZby!HtwiWJF( zwkA3+m#=;10CtQqnw22~Rb!^w7U^$sB4Jn2Pd#CB3_I6i~7fTBo|GToM{^K!}CYbI~7dbJhn2g0Ydre{ch zXC(Z^{AI&{boltF?#u*@)G}qvcc6=2^1g!!5Ke?ZJBxvssyJDDyJq zqRN@Y<5jgwCi!9wIr%M88r2wi;KnNF=DDA zpK*-i+eGo3(;A6)j(4vm!WY=uTgp(xt{#o($MJjBM%AF?HgT+F(**HFOw%wi)^VnG zJ%=Rd94CmpgAX}tUu8<~fU~BGaVHbuEWUkIH3{$hjj)LNY=Rll&1W;|I{-my-UF!U zB`2!=L*f=oLV|NAGFw<9#lDm_)y26*;ELUr#q|syYg6EP(9We(7u)Vu^f2DV&z2dV zJmuZx>dj56N7iW0arK4^S7Y_I;V)XfZCMrX;KBCM4*u9O+pD2I>$nKth*@V#t+C?R zKe3&Kb%kxAp26uQ_q`J~Z2Y$1%%!zGTo>k$29{{EUzy2JIdHB51xMutJ%oh3~N zds-vtW(MHO!*3r1=9yLyIlFTqy9MUtTD{KJQ$NlT)8Y4F1c`^=r+F0#@US7kFL(_d zejgTt?|=;*^fhhf|C0(lSyS3Tq`Yl{=H2_0z=xie+mdB2u0OM+r%=8>sgZgU1_^JA zauEr47TR;HbQJDQ#-&@jaf74j>#Y*o?$A~Yx#6aEVnxzTZPksrsp+iRAg(G2b|KVaG9}^C^BG|I zY(5AocV0Kj!lh5)t;v0y&`s`%$99u@;tG1>sH>^a7Ph=_E7;_I*jC=r4aXVYb{)1y zio5Q&wTR0@@O+S)aD3nq-lebSC3Fgv+NnupPN6&^pwwIXJsd1~fsgSLT3sK;67m8; z9OMaL@-6)ppN8lrz1U59fiLnJxi81`TW7n;^jrD|KJ~aCFY9Jn81+1e3!i%5fz7;L zAm!Y8r<;804VdVuH^*c+NC8DM>6XsRrGxZbH|b!IBVEtYwgDlC3;EA7FQm1=4iY>9ZOlWi8Q6Y2!9wB zDM^{({!HVoX@Cj?$fN99tFz?;xV5|kkyp&gyO+q*n6!nm+txVlArwD9Jy^!!U_LF~ zr-Xc;#RlPpUc%A!@l`WuXq=>RHD?m0Rr(FYMyBTk{vy+JBDnMJC z)HX!_lG9BK@@K5Xz+3Wi6*uFF-<_?FG2_u9V_w`{`Y#NHT#zrpV6TDW_1n4wN{@Qc zf($jZASVu;(!vtn9oAP!&7#-k?P%D-x-+ec6%l)Ft%KZ)0W?~LFL4UItFQu5Gf%-@ zrA+|z792Wk4*+_=rIH1J%1bdH=(H6on-`s~4(m<{So9GbJh-LC8;>Cjhh-viim6xF zLJvn*lzIj6VCog!2ambP1{p#3Prx{u+mEt6=62k(Hk*2Tce$+o^HxHbdPjG;tp0?; z;THECmliCm!=reKp(Kcc)_T6vWA4EC39k7kk4{$+|az4XK z47^o8DLM@a4SsIyh!Mx`Ydk}LouQD*c?@19p>m$(HKd$S1Ijs6{i?e(cHi(8v){H) zf;aug_cZPxgBUK6-uR6u+B)T!NP5xMH!28s?xWpl;FKrDt`}_+yw{Ey2W;?hxAzmO zt9lPPgbBrI;c93PIfO@%5I%%Yamr{2d5IxPL`Fjx*8@su2;=b=4PktbiiYslmuv@p zhww@?+%W(2vTcms7W;c9G!0=(R$|~S`F9oV%g*EHYQqoV_GT#L5ccRHhj19L zp&^7C8p6UJatPhL1zDEKJHKsUX{n0p{yhQM?R;)frl2U-u$R@BQaD2RXM zAq4pn{NoMc#}XFAk9BSeXN8F8+uWV-pD2v5qsYkb@r4+@JKK*>Tj-I`V|aH?xA?!} zy(Qg-7UFp}UAb(=g9|#SYy&$0mz%amskow(qxunAJF=lq;-sNT*%V1=S$gyhTTMkR z2W48?EOyJ{W>)o!9^%5;W_gyL5dXWu7Hbu2PTB@qKmy{6&2fE2`M?2b`fWX-Gs)uy z^z=mE|AiopQuu`)RLSDX&jWAty(s?R6HR;#RM0uS?PH}!{{fN!?*(-DD1tNM_nJhj$YfINBb6V(j=58$E zQ-4BF`CPf6r+lt_{-Ui!-^u&o$xpp5{{42C{qWJPI-369mR{YWkmyro-FnKf@vc2( z&_s|Sa(4mg9BeXP{P__$lDvU@X?y8o+Y_M|89m1K^=DQjx33p_nkF*$YgX-1hQn1- zhP9&LQ`=U(S`L8o%r`LMPI2shy+c$Gd~Qn)#*N2`?Vs7Y>2-NOT&pVTLeb(YKZnWX z;9Y3%o022VYYlIIVH>Vz1T^ae)%czym)Fp(4Ajtjl2N>d-jhHL-Rc;i={?DO z-irFq&XMm)*6-&l`$1-DJ`!L$F` z(#5iou3Dm?C42$v$0d&1Sk_tphBu|-ie2B^DrssNZMr`Rk%A(yf6I{(*w;8(dJslm zwEY$2gXaGK2O7xcbE;ruX`QR8&8G5*tae=L`)l*z$SNuXjpGQfnMw-&OD!%1z*qG@KNKYB3L+g687;}?W#&vi5FKCdzSJ|fM9blJTIg) zx4Jz_fxw|jHSEpx-W)Yb4g5gpZiMEMM>nW<;51)f)4sHlqEoYa%lrXZ95u?W?qq-2 z!P@{}MeWpE$}VA+y+~ioyH#0O3%nS}%k#`{N{TdEw-?sjtlXyDcH3>@@(DFY?0cqR zh$ue;pRPXkO=3%&n#m&X`{)#PS8o{<|1c+x#QBiFIG+wC&M^C;%8GNFAHD#nS+ubitU%I{2$sDf!!uNd;X!pR}|MfUNV%9kW>KlGNd@KzDg0JIbS z>%;2l6-`4#bR+v95q{DYBf=Zm7plGb$k_Nk2+}jtiD%dy)VFsOG}8tLW4HM=$!?Mv z7GD*1yY-Q?uN$X?*q!3fE*#YYfADzwK&*YPvQTo{88QIie#kRZC>_b)arW=k?S15} zz=Iqz@wk=o_=My!ln*H!%~nfFmlpqYo%id|_r$BPJybUvOm60+5R)(aGkL#c@;=Gr zDaqu0l1a!8MoWMB6*U5~bi(gGYNK9q%NN;8Zux?EXzuz@hjH>Z`(T{BUE@@EeMjX6 z;xfYIL;ROv4pxTA^Ab=Zas@xB{EjbTrF~uLE}K0?Rg?QlFA)Bc7r5SOZwztsePz^p z@4kL2tM=&2oWMbS16K!d0&^kT7$mBoi1+(iR%)Y<6bhg)N#x}Zsx8u**jwmXoERL? zdXuq)J1|}Ql5ePV68Wv|%>=!)U&6bQi5uIdQqGh~Q*oS9OI;{&sh#@DNzuM9xre3j zUHC*r-QAa>-yh+~aXzR!xd5LDBEbF~>>$9s<)LC_OM7%BRt8@>;Z^_QR(6-Zol`>6 zJL)gJ2Mp${Ffl4ML_`OBOP{?6NU<`xBYkD3UhOLbysvWnB)o?G{8aCXA-qdc z^(ekO4I6nZ{;iQ<;^i*2m3~r!m;5AnK0Gx z_LC_H26GxowE6waDGs?EP_({V6IzwXMW1=u+EA=-S;gtJzgLUeYClyxRU^KQ-jCBm zqMq$9>fQ$bJ^M-5(ED*0eI4&iXM559O1@flR(gt6U0?x+SvziRQ%Gw9f8TZVRue$u zK83HO#PqG$#79HhyKUpei5~Vhe9sQ(QA)k5XOqO=wxoXgyPO=l!#TxDKsU&cpQ@T6 zM>DBmBz+8hmtHStDC8Z^=l#UE@lD!jyn?Q9paQ=`sDI9D%)Wn_Rk^({A9M0)?j^6pF)9C=&AQ zultN`Da77d6g`hqLPOe@l^7_i@nT&YVva!HrqT}r=U_GaoyLxCuG`%OcE#voX(K)pB~da+hMplyUm=p1uY zKh5jtac7Qy_jh;`da=d<8sq351K4L;^P;}R)}%TY@fWGiMX5SbOm*;_5T~>|Cs#i1 z+&0o)78%TW8z&B=+4J#;i1+Mw|h%%p$yvaVn0~Clz+F;>gj(bemH&CRo~SX+zCu69pwq>a<=OtmQ`cj>iWKTusZj6n z3bGW>itrisZaQ=|_1@H{?X1|~!2OJ&Pn-LDEJfZ-dt3EKL!Ta=X^&NZGW6*g?9a90 z0S3^xF2S>;tGrmg0Qc{Cg*Txv98QYc3rt!hCvO7u5O(|r4jJ{l#jB*g;z5IvI-ntXUH`-Lc6X9tviARh~3S{Si1ZdQRFpnSzs8%+u=_4K*Az-Q1?}R@C2-FK=!;@EXDiHJ<)-a~nj8?w9jqKpx!O&J_P@ z5g)1ZR&-~pJWR?HWq7-wDg}s&Lh%ao<)TJ80G8ZoZx#14vd-1#Q7#K|cIjlIh?9%k z!w!`nPyqw_0Nj=&)zD{fu#^H|B`bjk&E6CMcd&Ab)K^#L%Q#uyL&nK&^=}Iw1in&Y zZxYIz8o((7K>R)S5Eb6-PzHdN;){Fiu3&8`1HfT_;1+-?C<6coFK|B?w*niJcnw?Y z!!Tt4_>9A&*UaazgnTm??%kbjPg;Hl43q-k58jw|z*qCl9k8knFj4>%Vmsqz+(-d% zIbWs#_>qI4x7Od~%V*%{;4eM{|1cl->_!RzAA-Sn$%o64Tur>xqVaNxj5Rf^kprNR z>`Ev6MRujrfC~06zi+ai3}W7^ZLzP_2V-~71SI2<&q@r;C2v*H;e;csFi~_Zp^>;E z>{ImV422BEEgT>pd`ui5V{Ly79j>qCt!M@pLoFJl`*{t`dZ;0*v5VJ`)qonB^#B=X zePj^!+!Mr^?e=%%eCPG@jYi)A?NK6ns-0&^OjqLv3Z*|pjwbq4V}60y zfs6y!Kp8>k%K_yVsDnL8n1(+Dm}Gu|3Q%SlD6<1lW^k0b|3{RRVSuCLmUAMIazq&hd>YeXR{;0nKsFi<$}liTo>B1O0AZ0?t20o>D00>F)J*_o zz!=2`krJ{X58*GeAP)iEdSh##XEJcF{k>41y{oA6Gz2En#U}+OzV)5_ zv$Ov>_>fGqLDKB}^PIhrnm$N+swWUEw>$?p9y%5=1Nqu=>S)Ka-@kh+-h_@tI6z}G zQChV3$i>#APyO*1=~Mqfq)(B-jz#vD?tanUObN0sHF(MXXlNlrZoGsnVny;LWZ@vR z?eejB?nG8?5LX4KSino9sWOmn9Rn-_`GTNwuN@=<`L^@cSMaMh0tV~H)IRFQK{Al9 zg5EUFV+YYV*Y-M>qG$)4)r3736DEpZNvf_MGDiONVSAsrwTO$4_&AQ7qWWIvB~|q+ zJu;DzeaAUyitPJ@myoOV5tfim0{NJceV2S1Vr1X$i9FgBeIW|%gDZqgQQFM5&T7$ z?tK`2jO^>f$s-BmV2O_eD6((zU>PY<$U6`}6FEO~g7QO=5(SbUeH4d4{^sz(GPW;A zjC%vFH6(3DY~N1anh4wxKp@5Ty*OCj;=jZ@5P{Eg0$&YEppulB6n7TKfG^(rIVcM6 z^CxhjE(hdAY2I*)-zG(|yBxtk4< zX>VrDa=xMW;9bZbWet(`sLK$!MK3rD*HdExnvL*lR`h;Sw!R>s*&M%SVRM~h^?L)F z{R@zx>%N26kn0XL5zW(D>re3-a^0bZTz3zli7nEG=&$i+#LrO!^ch}5prHmpM~U#H zlmz`tUQO_!+6VsWh0aC#AG{gCziPm*G1Sxpxod%%%vI@~_4>SqKtqiO^p)n#qqckr zH!DqeD}<~#MgA9X%-)e#5aG_Day!$D*C1f%vZ|q@IpjC39;1R>XiF1R2SoEmjyN@B z2(2gHtGV_1`whjVY!f)jbsbh-mTW$(TA~>sR(>am|o@zNF|}9<+TiuUO}D z^5{-hUNe~k5u-w?xyQZKGR$joiaiXAM^;E<~ z>k7vu*A<-?Vf0WEyc4(g&@Xb_D~MEgiI%y`ft1wT~zG9nWS+I^ay8_ zSasDNS2{C0ZL*?UhC#7s-Gpuqk@0>^YhTLH04qC?r7UGDJaKb06Ax~Uzoe)5_3fu7 z4wG_CJyZF@LuC>E3woc~^t4OA5n_+UD1{@?$j>C{AFOu?He=erCUdVC! z$pk{5tnj zcN@ao&1=Z@340{|3CrPOM!5D-pL!JOAuiHWQlvUpQ$cx*ONT*H5IBp?n-E%4FXd3Y zLEDxKfCW>hh%f$rZoHGJGQ6QzWoQnHU4s*!*Yo|l8EV73Nws;1tIdo09KU}3l$k=YIAZmgyn+;F z{m8VT>c2qP*(phSiBC0}wmVHZt6PTC4D?kOOiQh-#a4zk!cl%q17<$$6{@$;y- zX1-LBNtuQKn~S0mVjBKtcL*@2o1E-tT>U*)o zvsTjvkdnMTJ;KP;^epc|Hs>kM=}VGRzqJ=_j{3M{RezX6p#9Iz5h5Z9A}!z#?#)&c zamN1VKfEE!I`4|3M6B);IAa<%4!sGmakI;4UIbj?wWa}jDBBkRM(MEK%1Wo{6(9ejFA;= zewsu(Uh>`iKhI>IwRYIt!Y%A!e2BhPgOK3 z-IE;u_8k>^QJ9nL7^}a=(bCWyWhDmMs$_tJq4}4%)YvgY|A+yW19H|FkZ*Vm4aixM zZ*|!8v%JC_kRT+w&lm&piX0HWPe~93Gpscf72Y&DT&iW19Dy?kn~%W1IWignUSfy> z@z4m=8wDja0`>71jX?cT0rR31-u=P%HUbX>W;z|?^(NTWXJR;6iGi{z-`k)Y7YKl; zCGI=voTg_m=yC`;jgoUBm)Fo4GuFK6wCbIBjX4HE2z7THB_~D7D9;)5LrolM%5)Tb zw4j6M5tW)Hjaj*&r1wZAO@2Da%@e~UxB|!`YWXLb$&*S>yKgMczm-5oJFi} z=I9r7w-;K87g|XGw7(#k#}n4X>JE1dWG;B+(*fBH2$knR$5@@hppsH+zz-v}Mp#cu zt&z4Fq2CYxcvEX&2}`Ykb#992j}e(I9cdQCbS9}*yAFFQZyaGuEHgl?$ z#(YyO`Rn*{mY(MJ!1r(Tu<{!IqK9~!@gWjDp=yVZ4(L71!}yEdH1x%LJi6_C7Ek`4 z$A8A+ksX~+hv2rK4i;kbaE6gJeFcBfG)_U5L79Xydi=^-C{UoQOl(-G_7v}A%xIyX z!UiPc*FYmZ={ioZQm9A2pk#FwWb{R|Xpy(l3Lo_S{F5m0Pn`+1mCfQ>8^@dKr=!I2 zwvJ}{=M1AbFep7q#Ij zCikvuf;BEe>xl!o5Nljie?n@53LuGbueOX9Q#(0&HF%A&YsejONsWgehQ@z9iZtHV zY&0}VgMYjlk0oA>rz-aeQP9<~$^xK8vx)Qjiu4SJLmP%YY1rX0!tKuNE$>Ezz^D#*Iohc6TU>`p{?@vju-4 zW-CtY9OcR`9oy59tyFs*SQmd4I@)R{m=Ge?Ia+NjzSc~6Rmz}vVt7cs@2bH>tUYJa zE$T>zlR<9kQ=Wa87f(r9m@mfB+962}_t8tV_rm0Ndi+8D9wOmm0Ubd0ZxOO0}gRl{I2lzw@d7UNG9 z11&04j*C@Rj=NHUHzg-;7~1&TgUFzp zM*tKE1%fgSXP=+AX$m^uO#>(1(Fq) ze{I2-S&&qBo};h2cC1KR>>8|f^KU``x)#W9eAL-$P1N%Jn;?fuS1%lT7F@yLQ9`F1 z@yuFB=OCS8CM)$J6>6lX_Sh;VXw*oGDW+_Y}ySPTGBDwKyK@nxx)c zKu3mwc6@7rJU*19)Pfhxi^j_IPU#>^GT+7Qr4hQn{O=pPeklqB#d)b%qU&I z#PP6pkQIla`6fo1SG*y8R_v}!|HHQ3CF%0Mwr z7%oKp0Kak^cEgOkzFdxbEU&H7UxeQYW{+;E`kPRtuG1GiEsL=`q%PK$n)RgYkd?xV zHBjN#Nzv*YDP4_8oUs-_2j4?k*xB+R{J?84ZKpqi?f(nGo}gowgjZt-I{z+9v>wP3 z)l_DRC55y9PZ(;o}vc+`;lX-13q^j?SEM?drbyVn>|nK|>t&c$K6|`;e5Una)ijy2##dls^Tr38 z%=8Ye3*ds3?8>97nf*$?3uOi1H&NKe(9Mn_Z5|_urtYz+N{Gf<3j&(8#nIKL zlx%?&s03R;rdkvwj*d`2ERavfUYBL-XWJswA2r=9kgYC&jg3|CzA%u2ikS3*QCbO4X}*WMZ}YimVS0| z=MT~85`OV+M@$uV5bCevDcz6uDrJ zsq&^vwNLQkp-sp4<4cb}=5Q<3@&FU%%F_lgoG3w2{!*WGWdhB)Knac_32MxYi2hGH z)>c7k3M9zd<7lMyW^|CyW?}(%X?hyWWCL*^G&5VCwu<#7-=>P2Rdt1l%8;8(MfjzX z6e2U`tv`IOvrLu;`Da4J&(ApSSD%<5Fgu>Mhmk`f-JdzRVv#;aBK2K2Gon+Q3qa9D z9Q*T3O_BJhD@0r#;;6#Z-l*)Ba^B5|BRRj}FXx90=C@Cf=K(>o=xOH|lv^V44^5;# z5`Si^D_k6V!7*FJyJKU-{udnE)PE*W0ys^XXigXJmZs0noO{9~RdQ5lG`(F&c zxk&2aoFdj|oUJJerbFt(s*3u$6!mo`BocKT63kWlcZ2I+rAjNwlqF6}XN=tv={A`t z?Ev8Mk#64WEkZ=dH(?D##tV+_;`1L86Gg&UNVoa-za2{~Lng}XaoR9Ok5|xxCX$T^ z6!iH2A?OR^;$5QbRYy}%z86wfefbk4%BiBX)x3$)?B+2lN!;`N#obSe0Zh(;mmN*F z{Fc~VUF$6>J`QJK-;b9QJ+FILN@*nPVannoZ;_8IFdJy; zv6Bv6QEyD72kY8R2Hwl>9~JRiV-n3gUlW(`A{>2#T$_l~8_vosbmHeBRXSr-uNvH6 zW#kd}4JY|cyekH)mrU**lW2}8mxPCVJfBnE7X|M+`lw~&WuBsU#>+fKLA)XN+faw8 z=tfS$RCG3NG-5TE^K6;5emF=YxoJk6`#8D@+!`>L@(i05cwMevZ^4n=>FsBAvHo&g zlpyEp?=r_}MO`&XI$!XYGSh8+-_c!BpO{3M>9jqJ7aVaxYucm=Ou%z;#Qij!Jgtld z&i3MRM=-VF56uk`D?h5rsy1JEScwna4HUu!=?{3{*+@j3aWoQBqi2R`Sne4GQieCM zfXn?MIr8fENpivKGa{)#`-F8P8$9}2YL(7Qyp*aR8JY&)fBzJ0&I6OA&3PycY|fjX z!BY3YXO36Y+a_a1J58Nzl23v!np!PgsYvkpWSVL|4%(tG9Jg2ArZ5q!HztYe=N(Df z4JI2BX*?3iMS9H;=~Yms>Z#4diuEb$v=)q&TP)IMljY>S>MPQnYavZE<+vkDQ`RU+ z$3%B_vG2b*)kVLr9rvljCsWEhZ6qVkYtn{Ju0X*j1()+!0Vv{col>g!v+HbOSCOrBJS2-c2b-s5rRn&tZ)JCZ(+VhMG zuTb|_B-A5PsD4(1)~SeFWHVo{NrFS4@(t%#ukJuQH2a z?th#-UTD8KF8Ut5(%ZH6zd9CZX;VyQ@U|q^VHS8-lCN*gN)jqEa_u$6>CpH|T2~W| zyk;so2iHs;r_f6(t)G7_T|!|kL=S5nS#8oO=dh?CG`l-Yk?*J)Pr-x#nHrt>he9ry z61&*&lfy2G!{ckJ)24{bL^vfb=xeX9PM<=r+G0B(d~Tzx3?Ur;rwh!8r_E)hG;!8k zcP!V7%+k>U6XI#CL?m@{3-rD~~4226nCRGit^hZ>4wpDF~s9Q;bvgO$e zrEVQYfLynpWEeoV;zikl#0U}JIp&zw)R(l}*eCour?M9Kt^#g&YKn|*;UQ5BtY?f- zXryD^u@~uB5Bx3 zbDdVe=pvOHWfpkIDf#a$P&q)^z|5Ve%{9?5y_;1it;#C@TGYF`v!K-Q1~;oRt9;_2 zlynWtJ&Hj?AA|?@%tEp<$`G+D)Hw@AK0M6XS>0)jd{LM)THR%g{7i($M}9a%Kvo5l z>1j`}Qd}b9hWYn<)NCOwOaorx88qldx%9LnW^p6QVzJ`oesG>;cZtX8d zKk3qSv%rJ9Zmfm{d{X>w;u16|{z-H`p}oo|g`1#-ma?gE;}+d6NjuAG z48JiQ#Drg{3_Nf8e5#Q!>J{uo!J|N%*s!Tin)(*V9n$l_LpU;qT zRUZO7d({jvi7fpq#rd(KDQ+JP!taYVFzT!iNCt&c5QvD~X{RgMveqThBymJZY`#rg$T@j$1U} z-#k);x|~Ju(Sa2%XN%CTCN2*RU$~rYv>s-;mj+GDNOk6GtcyRwTGFTK=!bB18feyJ zp*C?22rV=Ldk_-Sv&?cY!Vri=(V9BDX{?h!%Gwg;L=)u!J*Bzmf4pw0@)s&VtXR;@ z**E@A?_f-jJ&u|q350A|*c-xIaJgk_>#<2RMKHI|BS<9K!$)V? zVhN|TaIVr0Gj7QezHAnFu$Fvt3s%+jTa&`X{(X&Wic6sp^+b5L2H|39E9VI90}~<2 z+bPIomAPdKgLm9ArAiR8+;6+R_M)%2zm2n%$7ry|WHi+00U9{$QKr?nfmq3EsMDlN z1qr?e#=eck+;+Uks3Y5fslBw2Y0%6t=JFP~Fg#q0t(IRyBz~LHO>H=hGJ9#!tQ}n^ zM@_51jHFDH*U2jO@LCZ{@>O@543`d>CX;-nEAdr23i6CZs9w_~Z?uuCrE-4 zedR-hCnWmP2Ab9QeonpsQ2R@+0x#@Fi@dJRR-wL3QQogC1Vn;1Yy%*cdA};4V7@`Y z!k`q)t%!nE|2GOK4H&1uxQWkrASO){3^jQ@Xb#n$(_|_z-iuO!X?udTw;-dK4oqVm zq%8@MNw;Zut|YU8iHvM#&8V6tNYCtaXMqA^-dLup-a4EjXfMjJAK8mD_>1ht86X^U zfieF{ZUOgocV6Z<@TE`na5h)8A57eG&v(%*@E|Oy`knlIQM5N{x%RgS+%OBcnZGej zy50J8;DUQowB5s6-0t0AeaX!ZLaF;Yhz+-UJD*9)(H#Ep)`!QYsnd749NQ!D)Pu#OFDO5{g?fw^4wC}qB_Q3auAyr&>74k|H|CXYQV<8Z~ zIDWb`T;=gg5l1;2*L`*HF(aVp>WbC7lFp8?LNL${lhz#^IcUQ&kkh*=~x zgmhs0boQ!Pm`yxXmYl8fV%CeYhG{REz-c~22Epbo6$L|_Yqa-RTXT_nYr1?6d_t@r z>KqUiwEuK@nHXNPpHEBLc)>h!>*c;Ax!}W4(9g(~0J!OSCdX~Q=n5!JZp-(s`s_5P zqJ;Lq{&Gfm>{_l_#OzuRND1Q2gqUSE@z7TC&MmNOn1W23U;-z*78L}Wd;Cl@1DUp% z^)Rj5{F&0a%@!AmoD;MSK^xuUZFFTeYzFoOZST+R{tXMp z&PFJhw@sVrUrF4InkA2*migD_{XEu#L!CX7(v(%CDCE#|hB5SYXp+&Pi4}CO*57HZ zsXhq&;NkX-lQH3<)(U6a*zqWTzJzsU142ufc@OruFNOWY&%GK~X&s|%WsjIpjWz6$ zS%RZ(tYI%*8D_>Z?IZuzw1}OZMT?k-Tj>l@AZ;}U6%@Q1^Dp%hh#<^r*DkYe zWFdbPXYQ(S`MNPnE?*B~FYoe2hW)?T&se?yD=uFith90!w+oFF@hhFRfed=>i+Rhm z=prA@&W(K@A=5w@vCU^0f%*42vowcq7vo5nHS-uM_wzzo?=-TOX>EMFIVowG#=1$P zeHz)wQr;1>A9Tu`W!g~Ro-(9C9atpYgMqBp6z{AeDc;$v7R9U1D5_vzzO<+!(W+C6 z`h1Gi^H~0F;Oe*vMnX`;mb6_;xV_%$k`3E(HN6DO#y-4@0)B z2gz2=1Ku$UkRe>mVWyq)?P>`314FnUuv!u>r7^o)WQ1<~!m3HSmnxF(O(|WSE3V9F z_I(k{X!gAc5LWf1wvENE*COqf`m<#yhZwz;rV&k)y6_cuXUD*E+Qiwx1~Lf)H~_p1 z;PAm?<~D0LTLy4+m~GAqIQ*Ch-wQ`vfw3FeKp4etaK4NTXNU|loM{XhZvTzg4G=LY z6Bn_mOuUqo2~(VDg^VsgWim3H@qVOC3w*m6%EX$P%0#o3@|$UEeR~-S#d=AFI>Qy} zMeQ-)UfH62l1&q<9&*NNyIB<}5~Vjg4DyEbX4+9!OJjSeg0Vd%$JSSkDAQRf_At!f z?%7hb9H}YVfKp6#=0hNPj}IY0Bh#5NVKCE~cH10NH)vHrJFnc7Y~Eyym~1wjBiW2* zU1_>R&8ff`rOY864&+mcq#FCJ&;FCdZvwJgc6VGKTOet z@(2v%P*z18LejJ0%3Lw_NoQkiKC2`KXII4FO39$c=8Y)c<7}$VF!&ofM~)%KXYvb^PZi;6-MSgQ(u}T_hv85l6$k)83V*P#S$LJQqPia zCO-RejuBvXf%PJ`zo>}qA0*qMjBU6=LffQ%A{o~{WWaD!rkY;4{WAI)`W_Ce`w!^G>tCgSzDND(|=Ei}a_?!F`A)HJY~5L?bs8;kq*o zX3>>3;GaL^Un!5f=8E)qh>_dQYT?+iO#Q~hEVct_-X)kkE@G3Q*Z_B^1|Jf(sgDLi_vK2MHA1OHka z2c^2W{HD{URcDoS#v6oAceQzP9Db7Hz@CvMi&d{X8q2h3twsJ@uq{X^P77Dt%#)*1 z4Z-tK`Pmc$UTvGBLN|!4)*~cDj>8h!13}TS^u%8@EIoztIxrD%A+YUrXL*nbbG6y~ zR#8VZ?yeOuw&mL#v%rJ7(2&ol;U=seG4iG2%h7`2)PrFl|LMN8iXJUT8IXJ%jD7OJ?D?w zIqYf71MqicvW(mh%u)~5l5AO?pP*@?|{94Ocbn}yx%@eN-8r^L|_+rwOx!f zd^b-lIOpsb`z;o8RXxKbhi56Jf1PuVP_)~935WZDPn}gbN1=gD5xW*NsiChiK^uoD z+szVonDPLYlA{7cO<5X#_}sZ(d(po!ouwR{51DXV#D=iSRbM&RtMAPh8)98nt&CNW zU-QoV3jCT+VT>USyamK24y;x>s&CGhUNxYgP1!*P%Jez|N_Uq#+iJX&yv}`q7QN1= z=gYhd`x9KFw1@@3skzi-i~XXbrYw+W7@@3^SaK|oEV)<(v1D67ECpV`w-U3zbhb7* zN?t%5DWPKbcg`4%V=x&CD7F2^ndsA&7zzQToT0kkIm_3{Ldy7GT?CTOp+$_T3~!>52?9+fa5gdXNTY#lKQf6sgwh5vvo z!zg^nYnXJ&IZ^wI0VHhXyWhZ4&y=9e23-U-TqqB;q8FNagpyOD#Ff7*JTFXHNQw^P z6U9zfZ>26amb+vvj6tH?9}O#wjnRz-0)2EzYP!g9S5MROSqGEeTr6euwh{w=bxyB* zAP||6SaI)F=b)+rDLwd`^E*YIzEC8-=19?IGWtn$?*ApaMN)J$qY`3z+3IdWn?PpO zIJlcEe*VKbPn*oZ;%m70fQIAE7WnS#kH~sreG6A6WZ-Ug!`WSXz^q2on9DHLl@G@@ z$&pzfnGh0dLN_WI^wRQ{u4qMj*#x-xfGfAY*`=O@_rgL*h`o1IC+(!!Qd;H9(Q`v| zs5XXl6PVVQQk#l4ZNP+`^KH!OtS{kyDCrFUFfv4a0Ti~aE0Zx}AU}wWvMkR64ZHsn z*;C!SklqNEwr%ICt7x?sdG#AR3w3=%IXF2iIE7;oF!) zjgnBU;*9FbQmZfWC)&UY$9$@*o!Dh@g{Xfo6i-`RIbOoGYOXGdHr&MFM|cB?0=|ZX zgikTsF~SE25?;f#OIzgIm=oSmLY*%O9~?lqffYV@=^F7#LhGI0C*w~x@+QZIM!%-is|jp)e1?%gR8m#DU=H;^gv ze^1~q@_$b(^54P_7T~fLiXEEky&wtb4(P5nwKpsD;vNF)k1uM}NUVPkT!$~2#7tNA zGqcn~Q^|+7z?Cfv1MRwG0++6A5Nz(B7D-q3w>r?H+G4MgqYg+{R=G_yx4De(0o{aD zVqSMPHfZyPzRl?q%^m83hPCo<9)7e}T3};(CBMi^MUj-gM%qw%f`PXW3)%8Lj2 zSuJt`2a)SzT{f*bDTZNyPV>js*-L={)w&x_M$vRd*5c>%$kCSj`2EoMj0`%!XP>dwVvM%5jQ z<*D-?290o$zC4bl9(^$#!Pg?`*PN?AvuUaZL)C8AyoY;^Bw&C*anOa@1;0)Yj3}(=Y(ncUi z=}n7O8#;GYhL$F^b2$|41rwJa3lWlq10EJ$Gg~qipxTcGasfZ^ZOmCP?D!djg#*D@ zFmON1SgX|JW6Hx8P zL~d8t2`$C9F=xW?z>}8IIH<}pa%7oC8HoSp9NYj7&<6+NVc5X+xa+}~xB#7DYG$~F z>4PoRRc)!X7dK3MLDxBKJ(Lb1TbMo07rH~HLpU4RB8PAe{vwBP&ayy<5N27D#o?YS zx@5bu8qis(l(84=WSD34=?C~B6X8P;P<|K3cTJZfr&hv06xjZ%*&BwCpk^G& z>8t%qG{z9Rb+)?S>jkw_b6i4FIsZpZiVAsF@?{h#jKk6zGQ-{04LYs2(L`32I z5yCmtm1F6?9K5Nl;SF`(06*y0QyD4Bhq~5=zgJ#{!2N47hrc$`6{@JKms8dwWp(MQQLfh&%ag!+`R@%oYfmv2uN-tuP#%|h zg3i1+^8D-w<#~}g*7Zl_*nL}hShN}Ea%m4UG^?J0bCr`=z_(935ijHl34=(d9m{2g zqR!)CgYp^c3M$vHo_mRZ-*aYP_~@uI5%fI#lYIO_poEF}M^mfqq8xI}uk)yw^Uqo+zH`+NNcgClJ-l~pvK=^CVB1;7?7hD}e_)RkUU5Cj}*eSmkL2WR{- ztQ7%ouu{_PWEBJ)D-ihpa6MUT%W4TY)cOGb_X5{EEswP#;C&6?V^{?Nhl&V%qCTBf z5L~E0xC(r~XR&LDwvN?P$5ks?7W|E@mheHXhbsD>bWjx%iA!D2TJlz?V#fQk6E)UG zfNe-tqgRMC@1)ML7PfU`&KozhG)`lVAwK-CC*yq{3_x*Oy|}K}gqxFCbEuXJ`qp$p zPV6%64MyE`(EwCeD zdLXt&Yg~_LmSUiaT&7fUd}eC0_->7>ho-U8q`y;h;rqLHt#xGwwhnDuw*dt5x)QXw zz%Kt<2gimS0WJ}-DmElJSPcJ)F}%AQe2hI|NwcO}YX*;8l3njcheUEN01P>TYU$6n zyXIKbZpAW1NYFOo)W2Lk)PcqDG|}PI2Kxgi4p0*LQF zcTE+?K6GgUa!c10=>?UY32&?0ie;A5ZHx|b7>-~8pA|w5LgKatR&`UcPlD+)tTWCG zQBdlt#LEJln{O-cnRt{bg z1U?e8A8@T!)W27Wy$4+#wcA#kDoygb=_fBWWObk+D}TxL^=6wOboCb}MX?X^6!+DH<I*yw62%HMIlq~@=Yf#L)GSXTS5VNU<(And;Up6l*Pj;PW{WR|%aX?++{ z9MF2R{5i`pSn0loMpRvC{vTOWHsB&_Bv@U7zh#0|_=FKSs5x+ejDG5t+c#UqWsw{b z6~w7@&ncGKybrFC*}R`;M8PaGvU%?Z2|zaQcy}SX8eI4sra;%#cLTBhzpna~6Vo%I zJTaB$@BZyW*A9z%ZjH>}4Sy+r_vlYug<$sA$o$>6t@Tx1^(G(3khOto3%=|9RV6T9 z{bP-|{XA@9{$SFhA&o_XxV(NdhVU2AJajPjUx~Y4OJ`(*&_`66Af<`eeF2w%HF6I8 zyheJgMPGqi0oN@bf9*=shBK^W$_8U6z64ANBCx-{sjM4jj%d7+FSdQ_YNzEh63C{_ z_m@{LF#=Pj_@e6tZ6j-+KQ%2^SugJUuPd^u@@gOse?F+bc=D0{G_@%-U& z{M}BJy`_eT)QheNI4z|DdhE0wmZ*nqowk$@s$O@uzf|s#4fDbw_U|tF`|=7UM7bS* zXQ_SG`VRZaOYl-tsV$mZhBJI^o!=a(xsKVo$aR5pWY`tg*8h*T_YRDz=pI15cS8ud zn~*|6OF|NA*m4u9fzg6F?)o0ZnNfS{YH_=c(;cg>e{aO7v1>V$Z^EU`<07HvyMD4?cHO#-T28-2U zHzP%Z^vlJ?KmSyZF1qY`iZcI$1&N-F8j{^)U)gmtnCdcB$}Z+!^^4j7I~0DaS=> zG2344A*=9cjP{-(wBu8~TX>BiTPsE6?MW=7R+&aGDpZ^1)66SPW6iwAG-~F4MK?r> zF7&V1Sh$q$5vW>;7rm^uI$As<3FQ~l3=$Rv7`rIF1Q`qTorO1(r?H0>y0YqzMw*>H zShxk|)C#k;RMbh+S=Ltf^MFTvBzx*)W6rChnb zBlY6brLdv0TMG2^ZRP_w3sHG^$ccMh#4Rf zBan=sETJ=un=Rv64p~#^3~5bHmVs4ZqspEXTZ#rXJ)r&zIc(#KQO|me>2?juyTvTXK{;1Z8;l}nJ>pJIKJA)OWO$Kxh zn!$8y5Cuf0Gz4pqDGkLhGNqw2$dsa)Dd8Fync%tUQ_#V$lpTy2v~*oF(Bmj}+7$>aj!ToZk3o-vC^e^8pIxWx|D z38D<8$+%KYuWN(7aVWnEwMr(CV z=+aJV&XjHZDV9NYQd3N9X>)2dSvuK?ANpK1W=aRsxRotc>&t2oq-S799gHl8vvhJV z&lspDuneO@NE=%P?HQK-U#Q8wl$+@`(YkG6WVlRBZfk3yE}tnqOAQ3YO*EFlCePC6 zHoT!g3n6P+mh>z!zO`4gBBp0yFx{F%$;eI$YsgLtzho!%A7&FXQ<}~4_O^J%Z-)gU z?`WGR`efL?(5^6g(1iWvCrXM=n8fX!-%=UrsETOa9-4)A`-PJ6kyJ8tw zr5aT6Oqx|kjfGPePFXl%VKup90W&=f5JyCQWQQclPRwIv*Sgx;t8HhADQ#_4M0z({ zRkhtLqZdP#xUHQxc@(Ct(UMXphTQ1Id~0X0BBre|m|SkM7sDE|7sD^vi_I$7MV*tj zChGOH{m;*scKkE8UD{Me1-YpyW`di5%%YBI`<%KOD(2sa2^8~tmW&ifd&9EiaubiB z?Mq8$$^B~!LEP{RiAYUybkckU`I=h+cYPF3mI;>p35TQSRtxiZnk_e#m+JaA7r>|(@{D< zVt2hU3!gsNDwYkhJt4+k9vP*vQgXZ2_*vu~qiCBJZP@C7nCQ)e?qc;|+l1IRkRxuk z6HOM4UYz3K{TPX8vh^RC+O1k|2D{Ht+gsX5mOxQ4x_f^dOU0;|I&wB$yPv=K`6fwD zZMIKw3qTcFw<_3t%Xb&6hTDP_n{WfYF{f&hZ=pmnzdk(ozQZ5T+$ZAVyvkDqWds%_ z$r_uaIGed!Z4b#Yt!FTShM1t-H4Un4w0sXV(}OfWva&Qw|8_Qu8T~%nc!8!n z7Be=#0k`-9&6l%9%3?Ux#Q+?Sx2LI}L7g!b8>?sF7f*G)KO5)Cbp=MQy;MT;vAjQ< zX;I8H7@^=I+eJGvA%(n;6Tis&I5P{Fj?Eood+5jIeDsoSmDU2Q^N~?gGr{9>elKE= zmfZSssQ76dm|8Crx^y(%Go_>Hk|`Zc`YX0!+8EzbFPNpMf%+lR)j3l(&`A?)^<@KP zrDOwbm`M#Z+H9c95fe4gb(yl4**4MEJ*G1z^JbdLD5Bmaxn-G`v|TKfENTZPkVOGC zbX2h8WZN$F9N_)2dNu6=D-Tv>Y^yw*$xQ1Sa0)k~XzQ@3v@C(kCF=ViAb8nGdyl~& z!#b8J4QmJdqG4^#WQMhgl?FdzO!OHyZXJ{O(6S=t0AjMNNcWCGR@Xgvm+#KWYx?BHvyUd6w$~=yni)HSOUA36Sv2gj}SLz z*!pWtO*~|7N+YpmCPd@v<4=7tKQOp-v>#er_2x)h+O)w|5t)e;!!D1kps}LTpeoMs zHK@Uekqm0&9BELsGi?K6>tQlCsLCc~hTo^fopENe4B#BzQkYkWV35(${OM3s1;@VmU4L2c++|lKd)pK*`@>j8Z0d*6ECaha1z^(^v-y$ab?F!)&iv80vgHnx+4*tDMC~_5h{@KkKKRu8k}Zv~C64X3 z8BE0x&f_)vCWtzFY?alhx#F2Uwu)NmxgZ3?`aQta$hoZ5C(M6mgJqUXWSvt0B&c5-+*qa7BKnAiCWAbaz*V&|t&fU;O zjd;K|ii;cwp~f{`%wBD470sQ1I}2S8`r*$JAo=0z_(gvB`rLee7z3_@bG}_;3-afT zYp=Df(Eenk(X8UGnefQG@2aqyQ6kcnT29PgZ!0Axt+x%d8*VdlH z1Tw6EoSoZXZ-qK_p7ht#Sy7MgQD7-%Cv<;!s!h$BCtY=YEa~N{)k*Wr8^N_n43g=q zH_em2y5TM#U%kOZVc9#+aMRv6$V~%S>8A6+H{J9(C_`@g0;9p?=B$ZIy(YQQ7$)-2 z1~26;h|hGcWTzeD#H*6zm48NHPZfR%!UBq#D zUf9i2V$3PqF)cI;$YuS38k|LwKP6BkoPjanKkvibuZnM>MDId*%}TV^8u}Kh#|sVB zy7=aIkojt07G0JU<%dyMF|p>X?Uw9oSibCQewpvv*NjIT)YrV8CHtDm=WP9Ai(xYF zYi=`{%D!fJG21jPlaYvHC}F)&_>n%zI4Bo7iQ z3wCrjs*|W4VMWQk;;36am}L%BEvKO@j<~I_V_BoS5XVyM)K>RpvEE`I0|mVW?C!j5 zi&gWo=>C22;A6A5pp%6+7!LIo=n5te-YD>G0SiEtorMqh#Kq6Y*^~g0bpb9l$h3bymVJPQI6AnUilT z(}i^98%|xdDOwvwAUVLL2$f967;U!5N%_ z1;&4FYyAHTL3mHr| zgAAMyz(a{a;@Az_d~Kb{zU(Q?I)-muEkIDZ`0)$dW^FGkjSVW&WfnJXiGY(q9y(S_ zI%3R12Fzv*j+eiV=K6HEp`}?ObG5ByG;ihZykf8`9Ub-!gh&qi3;ZI7{lxFyL@`1?vT+5zAtx2eFSdHp(X&$0(f_)@*U>LRMC9mKydfPu zJX{3`^}* zLwUn=y6Vw4q(fYRCEY&v&eV#v)NP=I8L&J<(Uffr5cu3SmQMhM(l$I^=)d{++bbOW zR}y>(2QS~kumDKuaD8AKk(&R#A)o2F&oG-E$3F~-rT9W)4&Z|YLN&N&{7+kXjpOjR zTy;IDta~C{eD_!3yGJtV$x6J{`j$!Q1o{55=3HnRI8AKQE%C|f;|t~U%k@|;vDW8{ z$Ygki=+3|H-lW+=kk)h%*W_}i=JFA0BKJHX)nJ>yECMN{y!qcSC+ky zn(I6h88V#SDo!!t0c;H5a-q_+%roDov;|qB$CY_`8ZPJKzB)2sjDMdh7re-6FCNVm z0>YwkNzy`kUO9@lC3jxnqBZuk=p3YiJnDY@B9FR%p?{B>vqG^4cy9{Xs@hW(?Gj^! zyyJr%c`vx$;JFUWR!c+ zvy5|dF`u4L&S11)Hy`Ud<6Aq86@kV4y45}R)4C$?8V!mCG8ArQqbzA{e-Hv7^BRm_ zWL|?8k$L&up>}4W+((iSYPa~CYz--C-x>0%NtOG8oLOd)yddY*MYs@cT#z%-%ymXHfd{dVlR%Mkq<6A0~K7gD%6L zyjb3W`YJ0=y=40Q@-=+f%JjdSG}yDnIv2CB1!o3-!Uf^D`#E3G(e@mLdiGzNCJiNj=@o z$P5sNopN0^ikrVj-qe)Dh>c+(BK5VvO3{%5vdB4=!Y^`8rG)>!PefL=|CN6>k&{u) z9;k#ku)efqw@0dNCP|Ov5X>VbnYkX1bg@VtX|-r*gD1*bn}DT9@`K6MO0Wlz`>-0c zw$M{FcG%mhU4`67(C1P@J8i6Qq0!!jMqEy4rp@;)1S|I(61{!A(Wj8QPKZ0t!_{3Z z9rhS?7GWv&I@$@AO52m5G;J_)Q%6r7UuUJrvt9$*aXZydECV+#Dc2BeX%UuCse<+o z%Ou!P%L_KWZ5*-0qguJoB6Nv_9nUgoQxs%0o|4=^bFvJA3mI;>cT!TK7k^Q;uhxPU zB9faLU^}x60t*?mQ>#DAAh3|(21^%X`PcOEC!qVNB#iDu9GzshiAnYBA?oW(EMqC!?ADHARbMHNbR?Cr()na-`}$U^1BQ22bs8Hy$Kz$f|mz zsMHe~E$uN{J(g)ovdf!Nl3jVOrz`FxvRd0?%{!j@y;+bj;kXVIZK>9KQ+C1(n;}pu zPm)rlhlpQgn0=*cT;j}X3XdH5Susi1sTfTI=h~PUS5^D!Rz^6(H=%d{OA={9ANl}8H9%kv%=S&5Z z%;(Uv!{0IDOvb)482gIlnv6X(7*m${7!$eg`|p(l?AAXCx*(+Q@$ivm%ulMS-Rw@KA;3;sk@h$4?U>aOXT{@D)`0qndM951ZNAQ znr03gF~QwY({wLyuzj@U)H1`{oMsiwp7#W2^O9sU#K#Tbo5IH=pW0yth1QP_ER*zY zgkO_B<4xg*tTYjMFCUTkoUkQ&Iox6Yzw%YJGRytgmr_bx9A-CmdnCdJF;fhLb32-w)laL;5wUOvwT2Id5Z56w(@<6zI6;6!yp#5BR_ zj$bsv=`Jpggc%$=9w<+mx?ZsVl7D_9R*kX`)J8D|D84t`OmMrr%%2KBeW43WkBzeP z_k^dJC@{#^88+lmjBg=Jrx@R>%jGM=ud)mZt@$C+HD$Rx7~@**9uR9|?RC^$%jH;j z)%GeS5z%yesqzSp4~B;_`0+FBJ)+G2yJdjjG3*uf9_EqYPv92`{zL(SkAB&H*N@=a zzhWP%T{m&a^Ssy01UJ&mpNlAX2&|S6lj9Rz+HDiM46NQVg#LhKkkB#XbW&yQ7Rw-^ z`ytTvlOgnvJVJ+A$m43v3Mq7aC0L0S$&>A+Vtzt+ThyL{om;I z9&m4az`dPMjZO^rB!~vH?7gE1i97yc^gfNm&RO;*mPQkdXEX3iWNiw$Dx&7Vlz8J@ zkulF+NqZMjm|@5Ui~DyA63@)F2Z`)Cb}jlCWE-zCG^pf`c!M3!u}7;N=SvWm3II_; zxhO8ov&WXjeP6I=tRVnMl1KSI2Lo~mqyCrwNBuImf67n&fg*jLy|Q-q|EiAL3j9=m zMOIf=`WJwkdbqZG&3t?Gq#cN6EBx_1H-ahbxe?5B(WUqB48misRQyv8FASyIxLe_I zce=gdEPm0s|M7SpnhtW8!()VWRQD`?(V52acxs1^hBbt<7eich2&E!!r>4^bKjY3* z+R6G0?hB%QM!({kF)c)&#-$8e#qq`VCh!_*$}&*)zPaMqLVLWLJy(P+wpX;kzGab}{X|qKNH!Zuc^m)q6&Dsj z)ta(uGF8PFgx;_xzzYyJ7uqXT!EJ5scSnk|2R{H#4`d_*|E!mA+DSOAC7ksV&MJaa zmBR`4hO-JmEW$sd7l_;i_JPWC63_t23#1}1$}mxKvAt4N+_>SUD9{_yFcjzj{4>*l zG(|#!OVUv)kV=qVBS?w=0qHda0{da$d6v$w$_|e(-VpX#+6HEQG>%&bw?lWT6D6)L zvG-8+A~JY(wyhd2=3Dy*YwNH$4K5qu=I|O~L{dbMz^7Ei_|}89>d?mB&DDHF#ot2= zjYP?%_UPzngqMteTH~Jq_-EoulvzFT;!^uqXu)Iz=aJnEOB-|{Rbonu<;(2lDByD= zFRq;kTyC#x{T1tyBl%&axbsY6)5Yh)gVS!YRLG}}V`Skw4tmHW_nopKqR$?Cs3^O_ ze%&vMHw%yA&P$FyIqO#1UstUms~Afu#bJriiYdIG;QYyp_+q;TLa?6u0NWeV}<8>}La9z_^%v+FsQ??JGucaux#FSkS8dSI1XIWS9sv}>k(N0{bHn1=n^CnGMYT{FS zt)eTAlpZ=DqFDdr)gGbXelu~Y`=#L29;@gwPO)mQ{XUGPSM0ObvQ}8lS}#gZ zEx(##2@&~>E=lw~Vy_8;JDy`7RAj*^rA5wBd%U$YCjjLZSszol(Un>)@3;zIEiV-N z@_>E2wLP!*=me*>mB^HEapw?p>^%e+TUU{J*#50LX0;fx!yYAOzGIKEj^+4CaH9(n z+^cTEfyFft$1XWSMcxs6`J#((gcRWjP6~-|p|1#^H$>=?BHXa&m|d}MVM?UFm zvg-|Lz?0!14YVM-T?||q-Y%vzMk|B$@pZ9w+2-;-b(D|x<5^u#uA)5~BK3rQj*m0O zH;qc2w7(j1o6#fRG_wB9l0;VBiXD~PNJ)xFeKEXz+AWsrcH!%b?!qI)fuoKo){r%< zX&nC@o^d|5z*;Zb4^o$PjeO5&)M;o^<$1lGN0Ry%RD~WiI(FRA&zi!k+_{_BQFW}5 z+dh&2GHm-O2*ebNV{w=(7OI;s4R04aKP^_u%IU;8Rf786YSH(uqo+uVaRkL;9l6c2 z7k=S?-H+SEuAzNGu~y9B4ei@e5>2$6284;(Pemt)V>4?Or9&yB_Fp64xtZ=ml7|3Y>%|&@sgy(&kIuGk5Y*mQ=*vtiM>js$&+!S2gsm6G$+H@QG;#>60j%Q6-T0VB#r)cbd{)-1!oE z@;*iqKFZe$lZ-p-n`651GG7z?HeTlQqbgV9x9HM(*x{7@HH_LXapFw#fqCFJu-&e% zFQFVFU0I*TQ{3iou!tR4{4e&(@(IS?wH=D0{%M#3{L=Iz?~iW5qE1~$O|kl+JyQJh zy?stV%vw<6q_-TEta0$=@#SO@AoJOaNS2DaZS{)wQ^+GcAjI9HH}vzw;krFRA{%26u~XT#Ed%J5btnK8;SP~OyS}kD#bh45N}WuM<443UJbjdh+ljSeVr87U=o)S zfsV6>-&v`n`d}?ZsinrRqtoKnL|%-#)VOs8 zjEn5+{Eds~hK~m*UO6C+_QSC2K3oBU8^ym}i=)41VB$C8o;{&rYe1fcj5Gft}xuT-DaH}1>W~Hitm|JMc>KxZqYo&kTasCuzwF^lEVHy z@r%O#J=f84i}eSLd(rmrK5N9y*KN;rq7HEB7Bmrht66~6>H+Qlxw1m5n4bIL%)aRRTB%z3$k zqn~1ZpJ$>2h#BTv|AbitW1{j93f)x8Asb>v4&}i;tVO2s1%8pKd?8IGnwyHd-Y{q_ zcyINdAjb;7MzgJmM&owtA>!}SEu11f*pV6XkIC9f!-kagK#^zugOk*Mqz(PS%NlXr zM@3VbHJYP^(MO!vW+@dR+CH#68SMwND{8%INCg#u`J@mNLLC*{=EMO>bNbcSoa!MR zWKK;)hmwvqu~C@7&FL%CZdt zGmBEWEo~-tlZKmX?P47k=S?-64;C z>t$!R9y7SuhR~)aL)ClG5b$B&N=OiA>K`u_FyJvf-qB03+BoGja=txO zDdb?25n|1UPtYv<$+zV!ydg(xPNV9f)C%+7Jxst0#7?ttP7jEN*4y4GQeR=<%d70T zq4o!b;@lg4X~NZJttD6-yWpscjjXH)%Y_geeAQ5AzAaM6JE~Y`bN*?PF#W#_X3^U; z=dv<`Suc)XbksqprA6o^Mr7Z)9`?kH=0jnhXHg$xx*`V$9eU$w`C;aI>$jWxb|N%_)f~etI-^H zI-V_3qXF$1j9-zAU*SX%Le^=aWq6!EE!#3HmS zgZ9s)L_g!ikwhP23YX|r$>kM8q7-z9+{jEH2Z@p0eXE6Sl&geL&n+Eld0>Ck@_Hj! zqviF0rr>BB?WZZYx^EB}n_wybk7kY?-W?Y`hV#=?j%TesI5iY$c$%fS8`Zu?(Wqv% zfaRfK3_6VmEv}6)SZ!6lmUTSOq9BB8qYOgK;yJW*<`QFDL3aan&G89D(4VBmv}ivp zxCU>Ov4aj9DR!XI2ny$rnK9ycq9amdw|0an8^!U~4!gQ(qZ~sGM)+Kzoj5`Y81NKB zT!@PT1_!V-4ciam7Y*AFZuAWp{Igz;u`}B`cBJ{yW9B1}zTr^<(;UmJA8{T?<+&`y z;NcM>{j9xXXtW;`t}izVnxw`5;|LW0raKbdGc{gVuJ@ghS}W(#n(H5=nWk#WCKx$K zq7qAqpE4ZHV!y;JuC;TFKQ?KTF@O?K-806eN!y3M^#jc!K9e>M*^nHvMKOSQtVP;S zz%SB%!Y0x_ivf_rX|ner7~d{vuA4eLw)(Y$qOGnB6k!daSG(O6giSGkNe|(x+tZF- z*7_!YD=B)DR+pt1d=+tV$3#Cg$`5onqdT&jG7IQ~G?E1jf-koP zJnZgh659&1xCPW={4fiU)AkWOlPsX7Z~f=ZB0d(tAsdo%wb~>tU^>~_f3<@%L713eGkGot-Oz-O$XWhe~ z3-Zd@o1|BMm*-Gu7;-$JVdau&+#g)@N4yk8hI4_-O%?0qUopP{54+-uxmWisFfyzH zWKYl_+7H979VGG?b%`_+WuJKESw~XfJ;3g^j3duFN~-sP#L4!^*d0g~w~(crPV($L z#gHqaA`SjZjZar*q#U0?~J>X(I;9~NDa|dJk4RWmU z3C7^cLEfNhnmAkGCOr7O-d;>bWNITg?}$tTmL$W(wMF=77^u=dloXb0P?@=-@WuqY z7AJ~jLm&*(fdOV=7(e)28DjNN7@G9qH7E?@xA0~e3ZyX17+!@opS-YHZax{dS#CZl z0ECRe^n>d8VlcdhbVYVR>DhdOb)*+si(mL(cO<6YW@&2~n89t$i3whjn2kKejKu7M zWEqLs!wXO|%HCW+Gdcn+<4G-|hoUe*$n7{sTD_tv@^u&;fuS^s%|%)`KkGShwCiN* zXh*PO{e-8}HqE=EEXGFW+yLp_d;yGMZ9O?mbOYHsh=7jm0BFOi>q3 z3dn+@E=P;hO2&wd;~?Nta*GVOz%K<{e%;+YSoD0w@ugB*G#c-yYOTA4nGVi~)S6og zu!F{122*dyCzl?llMB3#N(eh z!bN&wVXe;KnnFlZB;QjwZN&F_U%n?Ae7<7vz1RG|n{S%WftGPTr&_njmraAV$d^t1 zn3te1qqz-&}ydf#O#?}H%I(4gGlWr+Wu6L9Wt~rjvY}auU zUPX0omAf^ZoFYU#MV-Nm73k51CHotujzTA*dr+ zj;{jd08$w(na9zSAZHgO$Ty`Ry<5%lk1JOc@tYlXQ7si(P2P%Lh4IxU?b8i$PUm!y zIJaO57w78+n^O#NQl#W4uSb!RK;L?Y&3bO}P|E^)qn4#@l`X6I)`DABAP5Q9Uh|eX z_IP(P6ejuXO~-TA;@h~5;)VIV{lv_b4&Bmen<~B-3IYF* zRyrcp&fDa$CJNzlB|gRx(GZ%a7(zlEG=zQ@OVbc~Ab!yhdf+zSA@q9azi~IkwAGH? zX@2}-W>IBMo+EFqqnNP1m2X8r^3919Dk14 zM%pP&Lr>ZUu^wrpsqi+ps(xGVXdXKk)47VqF=p62SVltj@=TfskM*s;%PitE59W{! zF}dcFIkk)a5NnaD&*2xT`kYjCl(~LQ+NDUy*qroDj!4C?zHbQY4=j4)`<|&3~5u1!*V`))}jfcZB@I^OqyJM95?Iv+T9q+`ZmKif`DhTO!e-cgMoSQ2%Z>P;rk zwCgO}AgPG^Ohzw0>)v7VfB`o{8_|Any6%I?l!1jPICoW2+&<>et=1hTFLLKx0rkuy zHi^6nMLFVj$S6m-9Wu&M00sy?bkI!ZA*OIkxw^wxy9H+O z_(n-F@-i%{UjhB$wvkIaytj?i6u19!loZ)lU@a!r;ppo5Zw0tiA@>UGyRV(i8V&NU zq#($GHWoC>&d>kP9~X8z3F#_Mb!1Ea9h?^AKOzHDIRDipzg4p(`+YtCb+b?NGf*|n z&-O!u`xGvg+_Qt`XHkBv&9z&EeFhR-m@NYzi#ZLR7NEeZ7?<&g{n?kb7+;-msB-5B zPjOpy(RPl!!NVR0v!zADFIlvE!$@6JZ)uVJg=0}b9`GTzj(o{EA`Rd8FAd-FqhYY{ z=HlUB5Coa^M4^Hp-~yMapJvPW$ETbiQu6~$;cEUw>h+^+7XFCX$t<;qdqtM1C3nh( z1SrUKE@peSh@{F^(r3=);-X4JSTdzHME_mc&{00%2_Qs%A?-(o`M~%(qH}T zi1+TQC{|MX7g)F1&B>%G^bVHdZf!-|)G$HNZjw_BFpc^w@9s2qlYGRpC{Xh5PC2Uo zlIPH<9&*ODa#XfLWpjLDMoRpU?>fGd2IH{2(C04fHw_g>?>Zco$94hsci_V1Pg_Hv zMA;=rM#m8>*X~x1heqH$#gGu9pb>cZE=Zvfcm#gY2s~n!Z=fUt`aKMkz%G({q^-q& zIG#)Mqt_zt?06B~OsKG?IckZaf5L8QI}+s{)RDTYu@r-uM}c&7v>(8(db>QENUFK# z)4ZG<%qGGEP7u&4P2*S!nPec5G@tI~RvK&`DJzoyb=YF-VJ6pDWyTVlRLi(YU!F;m z>Po)#dznRiCe<9WAuQyHCe>rH7HNJQev#(KNzJnzB&1`Cn^fB6*+KHS+XjL~kFT2q z3;ltkgI{YX+NP2hMc$>WB}BW2j>XnDOdgFX`#hFn@K(fKBnG}X#p#On1KqX8u!h>I zv#Q$~csXeeGxJ%)ex#JF;h5VRY!+ve*fp5W4Iz`U#0)`3S5EUxGKAT_^-r2bOhX8B zcGIHF3_MCk`UGys4!*!VvV%PQB0I?Y4?CC*c7PFW*hf-JdhXV}-Jbhcac7LT=cc_S zm4cjIt^Y6@uV9y8))#b&!t^+AV!_Ii5p48gk6Y zOZD9{@?z)3Xueo&cLCjdo!v6>;?=#&$P0jm$V+PVMFEc~kKsSp-X!GZy=^KP>z9^;z%sFrMpbHXiMFqd5R%!#3tkASe=YuAbyb% z41_-1TCp+<#6UM-24eUO+zk#R5EzIV|sE`k`#3V#K;p;g(OK*`(JP*FfAW=d?u}#ah%z zjJrZkh$qTBo94r{cy>fFvAw*rtK}}#?=w51w1|&!mePLr#hPb{e^R~85ULM$Fgl3S9FGkctIE8gI??|oGaTzhtoy4uD?>2N+kFtl9%xA;wj8))rN&I@eePXsX_;VU@Kvy#+w+roIBtEIFMr=0nX! zT?_KUd-JYWbB->=gcL+VbjB%J;$D)ok(R~KqJ2l~^HtnjB%z5qdykxwma#c^YiC$3 zasj!c%M}y%ZBCozBVcHXrF2#8V^)S7L0+i=4Sm_k0}(+uH((DG7H0!WCq)hR#gDi| z_`c8zURa6Nd}ZJF(2CPwWd{CN-rIo6psDaMOf#m!E=dkfg`@l!gln+K)t#UDSP$;G zyqoO&C8W+?kKse(PClQIsx>r|&?P4={yfkQw|jaPc+zT^1<+%WdtO*XvwLlSx$+|S zt2V)6`Iss};&wG>NpYkm=(eMY45_ImMjR{iWRxEgTpi%tu(OTU*SA7?Kc#>QIq9{X z@LN>k?^ZXW?%?m{fc;QGB<8PI1qiyh8eC=NO9?@Rk z+{xusn+mz%DR61!QCs~A+Iy_X&W6q*mFvT^(mrQ}P*sxhs|J=IeREfz zFNT^-8D0%G!%YvYto_YO5E7`$k=%dM`JxuS&toEF4`P09F}uj95B+2X-z?%IWS@Lo z$-#0FI$S}L(h?j&{L{tCyV;oB$T?JN&I)?iP?|^_oqRJ1M-u}_KbA{4;O-zF9EJLi7VRr{C!aE?{R2cNw-I8?C z$XU9P^^i$FOhT5|sVMrq5L(@Gav!*{J7p_s@09Wj*vxdy zzavNJnEzyD$Sn{@cR5Fo=Vd79DzQM9zP) z>A5matBB={q3_K%oN3m0OrXhghrROItZD6>wH2))D+s(AuP@fik$1<{Gjn02_+8b6 z#Xr=H5F^?<*IK&d7}Dx$mNE6ObP`jBd-cox{7WqFV%e4=zFA;Nc>W1$7!NT5e!4V{ z<2Npi%a;@-p58JfQe)}9ik;ymb(UXJr}>h)&_Ai5+=?-#0*rAu$7}E8d@esB$2vJ3 z%2x49CubFHyI%@mr?$7S_Dc$U8q9f1xrF~FAft;jIX?kp;=8*zZE&gC7hRmywM)KK z#Gfw_Cc<2G?aFx{QY@c?@UmX7T|;B0E{b(^R{d{ET6T3d@TDZ(@;d;d!Q7v|6krom z?)o5C9uo<@oVC4B2X=Q>`ft?DyF>56)dDT2mB=1iFA%{$E=IfqHyhUyS^b>4XxYPg zP)pixHWsrDRNgP!KxH#mwgGYMx2UCXFKX&D&Wc)7GnZL^BXOsXvpzXLrCoj=`u1|R zQ|eQZRZa{!4D7NRD`matA$ccvwiHtm5eMAc z-o1CYQY!}}-cZptdQ)R~oOOn@*O|G7wCN$MWBcVpR_~hGOx#BpD<6`$t;|~Y3Vg;& zIVj~F7TdrsrOi~C8M;tnp@WZb0;a;7Vq<$yn1dT4O>&?MjB zj$VE$e?Y$c6zg5NnxKxS>;cx5Ry{x+j}L$N@>A3SdihCtD7oXP4DRwJMTuEMo!hKD zUF__XoFLLGHMMJPys2p>(yIjohw#Fn`;WEC8cUMW8BuOfpeY-*R*w086fDxqMwnVf zgH<=Y%@eLGgQO-QyvJ7el`MBq37Kk=0EU(_B{*Ju7gnyhHpfgyGiWA`4OW6JP+H6k zFV{h1)sUdHNYjE#NeiBGz>G=6R+MR8_>ImoB1euLMm#K6McF2Hj&fGjc6cLCQ@0$D zn@m2d)1#2H@E!ukGFDE3T#x4|MhBj`rAX7Eo;k^5oFf$VBQPY~Tmrwe6d#|}C|F#J zOMuG&#=tCn`&ehD`tJdeP}WvSyXVcZoO-K&bGr;YC|8MjyMs{-bngiw@AB2sVrj9s za1mccFQkNe3Lra%?krJ%KOnA80Y&`I$RahDIS4Z1gTOna=EmwTz+^F-E`HwLtArRa z-Z@^gV^J0xly4AZKijZq^u^z9SOPo^#JdP7tu_C2KrYZ39%=xO=)siYrSY zD%aVY3PZ3N2U&yfEd}f4mM>0rb}L+L!w_S3s~ROl-&dT~w04XFlHo{S8MZdqX>m}- zH+HXb&ef)}YSaKRrWN@iDum1bRkN;J6twIPMn~IRE`ovKHkWe;aGOipD0ATLp8UH$ z1S`WeoBvI9PWNdb7-;xlnzNsF&YPNQ0;lC^ADF3bXqn53)^^10%U6R$+ZoPf+Sev@ zbU{gC^}NQ|$*j3$YomS+vcfC9{gB}L?4V~xS5wTM1x7vd@zGHlD=MdSCl2D2u1ge6 zu zsND~-<}>J!>@Op*s4?}V@qpR|W{&uFFW{oN2FGP|nE8^TM56`Hjv7lhhXZPZL-LYp zJN)7$)k#1lKK;IiQAwg$i3x5|tZ7hXqvh}+@CxM~PtcCAvLFt_Aspl!od)n<=_yth zV@W8BolbS1$4-V)aJ}(W1d}h$+=HQOLGWK|TGjZ2Y#vvhn*N#8v$;Yy9n2I^$*IXGN*; zD-j}lrSoal_PZfUYWsaf%qnM_*y@Vw9%vRbTJQuj zMYiCVF@ems)M3_w7qD`k7Ocz_7vF*f^|@vyZ@`-m%LcsF%w`RE<6+i-_kmP#KXYF! z>eYbP9hMDvE|?xXz8%7G84WmJlF@)!I%~kQ56cGpGW=o#ehH|=2K+0dk{a+WOz@Hf zJ#8BNj`6gq^&QCPhDqc2pm!Ks(eDsjA)GA;?%~s>0q+oBr5`h)xDD9_dJ`i*XwqE0 zZ_s+ni&o>A)23!ksk&55@FJL=IqePv(=(?%Sp{-CL~vJ5@IXnh#t0VrHfNO>)0B$K zhTn++8@bKdP~!>UVdU&d&3H#jI~9HnX`??X%`MTS8rCvXLtAPK8Ei7P)#u6uNBgfL z*8Jv-$vL#c`HrH#^^Umnik=bWx1`A1>1-9v+m9PBHdnl7^Z=qIk9QEi$m2m*zsp&r zGY9>s$@z((_HvGKX*;rzdR^_n=Ts5UF z2Jm5QF*v%Lwiu*eM5yQCk7tVkrm!srnCGHZ9as&8SNHIb17pAxT|R+B2^y3{ptYAd zj4!sW666O*r-Vrx1>FE|5ENj7&XemKRJS@b2DK74JKChKJ0+osA zP?6C^l0S18l;S|YWaQ&*fKJX@E`ii;;z54SvdgfGS?Vjc3mMi8*7czD>E zs4+|;#iFN0Uy&09SuNMl0c7WeufFFT7IRLO}#qg7Xx&r7kbDP;vm(I7QuYL{7co z*If3_{yIKb?0DaKR=onr&ww?3!Wc%&d}H!ox^mguFx8tN9bE3t{J=T15T>&8o^zyf zK`cAtY@uCX_{e&H_tnscQrPsm*#~0&S(pX|9R;x%?Hkn^xxu$mv7>T2{J|00uMQUg zQxljBk943UXw4Z;p=ayHnloIcf=!RMU;7ciYr_#aADmq7Qep3nLJ%}ZhC(SLU|DX$RcE^Pr*BCbQQtL42{>jN8F51ktdL8zMEK_BAuW*W zriIX4`_$P*v-uV!G*ypDj-T+&jlb2~E-vOlIBfM;t%}ydH$U&WW=)l29y}K>CzTcr zt~*<5eSAyy={?d8B~zMKtgQ|6%|veCbzKwDc;6D~zxL*ch@lHFr?u7=`IaPxvJ6aX zeRBy@7GkQS?extgu|ZWYu~nFm)R1|D{<`eqW6Q;eN&eM=CgQzoXJy{cps z)Dmd*yVtq?ks@q-R52H(C=X*Q=Q>s`VXvG z=Lx+=%~}I$)OtLn?&Gxv)P45xngeSLe7tVW{!i5GSG(4;{c5Eo_pAAM-+{Gid0b7X zTK2d+q}dn|b4H>~N`PWq3O{-lX0a{JWE`5MiAj;+g^2~Zon5FkKcW*qItOV_Gep=& z#B}jcXpvn%t0>m|JOOdp1`>So73R9w5|Y^)7snbc{Su!~99gHY^p z4J!Isv$WgIySf|~BU`4F7k~fk?5xZ~ydAWKW;r=(rLjhq`1cp+C$m_l56VD^a?bxt zlof6}|I`jLa3*{E#PB=L3~e9F^ucA!wqRrb|Ha;jdC3{E`Q*Z64g-!Fl^bg}7&4*+ zCs$Ft92gdjP`ilLzd5g}w~otMmH#4nzdM_&_m0!~T5L2u~N_>IwYP>PerauxYXWzs^$ut=@%YkG3uJ>RKE4au1DY zW)YTSPZn7gHm^`Sze~#|UXCE?p0hBAwQ(q?Hhq^4q-sqWZnB%_Fo8RTRHUSd+TdLo z)i3+N*<5>>)gq4&cddP4JOYg>U-BTJ(0{#m=> ziwx0?>!df-F0oog7TpC8f_$PA6$15r>Ob#_PXhI7+W#08@> zxfO50AJsE6!193h65D!iqwHH5a7kwKRBJ|^&nx?1wI z!VsD>MlUV&XuXy8DXUs!$$jF%l3#LN%7EmQ6Ck;U?}6kj@Z~mhkK`VDOAdCjD&_Q= zzJlvgh_N9x%>NnU`XA$m-_;o|yRGV+Hhu0C1~MlsFr%lmpm{e+y~Lp3-5w8jfv zBhBsOvAG*_`xxn(Xm0PPb9R+~S6=4$+zGnVKpV`kgPxiR95txVo-i(R4ELpl!;~8+ zcnYvf6Z;};ph&5!j}@yY_b8Q9CPBBV>YNjD900#G4!B)WKNYYWs1_sp>6Ns-jDEMi z)tx7VGRoEl=E10EAGf^va%fpGd6yn3KD+`4NJ~~Jlyd(z$$IRbQ!n!>WPk3o{}?D%39}aAkwIm;_FF9WXy4v8AAgHJ_`lf1p@J zicPm^p(pb<4K?^AiApVVQtmGC>imt}CDi-BSzU+go$Y#Ip2Z`jRf|ZufTd50_%nXn{5?l1!MYLzkT~K5&CIZSil;{6AxGF@!DFm6h-AR z_NlHinAvvHSOI6|AU>(1Cl!_(ph@mxWW-TF9C_52n}vpox|u3U*#RmV^#p|VTRow_ z67VH5@zXkJd0+cuBF|vr7pakgn*ZWYp!LVrFLdiyKR-#AYG|J`B1l1xo$|5hYleb8 zmKJ^W>GlJ(Qdr0wj}^N0ho6$2!^cuw%DSAqhPtW*)Cc(D`>lFKtpUS?W-C%}lud>p zF}g^##VP;oer`k==_LC!(u<478yC9WtF=!_G1X>dkeIq*0&n;=3|910(n~&QqL0v? zXVs{Coa*abU1l}x9+h?I2aTt4=is+|qgtJHLT-hcc0%6B>Zjv!O+6t)-~T?PXKJi~ z$ZD>CqwQm~V0<`jmzm&>b`)g;6g2#PVo^(dp!R_Ym}2Rclc!+86W*%PK4CfF2_f!$ zHPEJ<6n9$bb+m6-CWhdHpc*a}{v@)W3yl`5T9ggZFv)Frpoa$X;Tk`jxK5msr_HyX z!cbo)WrA4IMz5q;#Jg?uifX|7GOBk1;c+$YFcHAwgZrUMLGxejeG@qas znW9NF2M3iYIs%l@$@D}lOsmEf@rzcCE50x9ehfv8&^{T`Bh}k}N~*Ven*O?%dVfgM zuV@VzYEthLW`ak(qVQ`Lpx#b6iyo?_n}DTy+rDq8w-?JX)!SC2bO7}ZWtpg6rLB0s z15EFsc7Byc`Jvv`Mr8HSW7V3VJE_rY9rbu+miV`$UO}C0XtWK2;~K4F!Z$QJ|9aza z@p31K||Dn~|?@O&t z>ylrq@DAqF`cmx#qk&X=%uIM>ss&78LhGjY)IKqxOZ{GU>-QU$W9s*^)bDRBlk|I8 z{MH@x3$^{|*AEM>OH#iFJ^C%y6Z9J{s`Lc?Mx2%{_7Z~Q`hCZQ&-MFl3D9rZ(oZ)6{CC{I%M{BE6UXT^e)89+fRBVrzsc zK(P3#w|*+5jmd?3L9?ToBo{Q>oW`Xa;{n+gX6~aUC#|2}LK|d47ih52e$cs|J1t)z zdAYwHA?h719xh(#uZIhpqfD59G^aL^L6O#mXJcQ6O)$8JcFbwHjjjOD`PYR+<7f4X zV$O%QD2>&T>p_jdxWJ`E(K--qrd@}~X+;PYp9kuVVxPkVZg~$qrJBg`ee@#Wk7`=`-IY^(PUFT&7>uKt>({eNHH8TU2 zz~L~Sh<`5rY0Dp{ja_GdnfbKfr2Ym5ffG$dBn;7OYg;kjSZwM$M0cpaf>3Y=EFho_ zbR2=Pfi7QClxQ;)V6k)@C>vY4K0YnCbe)7>JlOHB=<~cjK&$rwAT|e+a9RVouZyXi zdsyz?uXg@GZhm;0)q!E*vuei=Br|=987pJvsF>8(*?j>AP<6dQ>jqYbXkBa23U{G_;G;OL!1K5u z*zOb{`i{_}Vv#7r>WuZARSeh*qxHrbPcTKj+~8rhHxJL}m9DOR&OkuBGUR>Dn}@sF z@4Ofq+MN$@gJR0!^MRT;T&sO@jX$x(!W)l0Hp4Xrh<151@}ldp;*i(@b7&;<^9Qh% z=yG~&2z6oG%2+)^W9iIlel%FQCRtJ61#`rWfV>$2JZUPRL)r-FIO9Pf z^+an`eyijhdRecfz%&tw035uyRl?GDw2Z4uqk>+ZKjDrb{K=q1UF9Cj5BgX-|vij{CD70y{fW8+Lt9 z)1jXSv-LTCTg+>PZ!xfnn=G=|!C=_g2m((@bMzA-txeguTTBNtNw%2QXFV+@IIX#v z>o(uaM@3T)?Ku;=Y%PA!xdxtbYVb(c1Q)i8%rH}F(`rvs4l8EZNE)>+su(`Wmz?k;VDt#=5ie-w{?_onBKv6hv)*pk?no%vAx49^aSMz zabt!4RIG}ix$S+yq(GsY#kKXJAx%sQaIk@Agdw6_O>1qY8zVV9BMhZwsFzivP;bl) zgwD}5VgM-C!|_8|>JLC7XmQa)urOKNQ2Zi`8~S0vV}cuJMMf`(r}bTU#&PhK*Hc&tTvVptO1}b>w^_kXAeMb#( z_U=9O*S-GG%K z)8OEsEcplEgiPaUEKH`+6~D+dx}GaIs`NXWMt?DQr#{24eJm}!eNdqH=j_X&qQ)!H zwZxTO`izhlOkUhZ^0JvEeZ&jrq>spZJVtA0W_n!2BOxhpuiinMXF`{LVwjoWM(3JK zl8sRYiRA5iX9)kN@6#(PYsKh&dZN1SoSZDo#fn^MLl`7ESul5nY%%lXD8%Jkd!t#x zoH5w7qh_)hG_W4VR5AkBIXP+gY`^}p`tdnAX}HQN(WK!ckS|UezC0%<4QsK0_oTrj z$e1+bG9bGT>g_e2U`7khos+YM!|;o@@W!&j zOlFN`DW+0mX?fn$SYpMnE;nODsRMdrbd!VpnN zj>1)bt1LbXt>~W7iu{&1Z?qz=88=3$WTO>DUVvn3MWyhIT2ZMB)QU>`n|6bI=-g@) zKlOV}fA=GN{$8&5IQ`oUp%yZGfFgUvSn5!55X@N&I=n%+OT(PC);+nV;M5~Mk@r%}@ z8e_DT765#evXkRXyT)QJ#r%_Bax4nZDBB!e!<8<&pN zYg5BIiYH%eQ@5Q33W^;qBIT`woXKGtp4K^$9Fr#ew0@4fKe zYNo-;v_)~^_Nj13%xo-29>HietfEN$MBi^+&LQFb{;_5qBdpEp!0u*5w!L-4adoo~ zGFGvKaeRZrh7E-&iyKrcVFCEYap&0==(w}E_Ex!BL5Kx56nrkSCaEn%qbFmEiF@BY zRn?m30rDvzd?vA}h#%ZaYsXT7Mf5(I-3vdif@8?%(yse~Ii&C~8&658k>mVAAE{a& zFv#-U(T6wnHkP1V@CIw1j1-P9^{Uq3T(@BXqx7y%U@qM{5b=2ca90A(O$`|SeBZ&t z7P?A_u&?w5arY4{_xFegH)WtS5{1(9W}?_|t9Ym%{72tRsUsR(hzwI5x#GLu^*UBP zA9`Cs=$}CJH3D3ff&O@BRCzJ^>eW~=^R=Qq9_pljwOSOYNL1@9>)NU7>EMLOqGN(eMROomuwIaydMXL>hpfl3v>Gvh{&Wn&ax5+NvSZfsueyAUkD~kuRgttDcmHN z<pl<%My>e1Z)K#rCXFMH>u|Nhj()2Cbr^# z>zl1QmZIJWH1G(;X}?HnQvsQmIFoNz2^N|E>fZ!(0nFlh^^`i+uABxEXs3(hxbji41RJ_f)laoN=+*Xh{4@q%C!%ndzw=TpM zS|4-V1T-|f*QurzK1{PBL7wv!EYYjoBPEHwSy~*q0Xd-e98a7wJ4YQtG5_IMO zJRjXF_e!qZO!-o-+)U}m1-r&TgT;&Gss<%b^YPkvkHGIi$-h~XE-@D19i1d`Y=O02 zT4k0D1!&+fv#1_DIC;MHaRyjEdg}+3tL`Nk9SgT6e{D_URp8NEhq_1=^MdPE6s!Bg ztzWG#(V=r|PhM=~$Z8!i2anHNT|8&!$4(dK;2ChGxyXn}jus#Qet1b-j7hGe@eHa7 z8N|{poYRv?sQH}n!9f*{g@phD|J$niOWmDx$uRWWzQX= z?X?rtMCAe}Oiv;Il5H27h}gm0j3!6AEFoEqPt-$Dq4ndA4@AQMfN9*sY{B%_#XI|# zKH+Gk=j?!l4vx;EKBpijlv*7a-@u+O>hKDAFxzWnPldUi9If^KJ7CdVM@Lc2;DGoIRN@Wf6?7x|Cy_#pXWlzjdEH}X9gv3LjG!uCW|Bk^1auV*BM0;ai8loy(mtA*7ZNfv#X z)C_uTPHdRYTP$E3$%`B!8dhcNNied|@o;P@lK?3^Uy=bCP3>dEC#+meX6dWA(j745 zd3y`N(I}rzGutXIoU8V5v=zHUXwm{zSYb;$IqV-s=*M=bkN?BMz$lM>hqxRE_T^3I#&h1GV_XF-uA7#D)3lvPa=)Kn%w z-n0*F6+*fWGnWC&HI(N$@w8)ctQ+Puw@2%8J)v*yLeWghNsf-Avu|LQ2fRz`tkHY# z1Ycb3x}pzPgC69&^=4`m@1*rh{p@y_QNKYKz57l&(kQxc5=Y;673v*P;RmvPdNceh zSM^;x<$Zqu#;O;(qF)Y+b<2@6N+{gt|+V;|tGsQ0giC0*@@ zt?)rjXpmmcagVwhG=;Q6`>pzwoiM)8UL^kF)wC$!J%`EDwVjaG-QG@Iu8)ZUc%N|??{H)J?xvcS}?89EZkRa4*(=IFic z&7fhCJsF~k>>Y%M*OBHK@M;mJtrnyp!Rjc%Qg>Me`|Vcy9_=neTCN$X{;gAmG+>3fs{Z_Sh2=WTHZS+GB^a` zrtVR5%C)d*f_;K$!2yV^dymqn1Fs=etf7fcZ(c(hVGT{8h-fv~I@U2rjOI{8d4xgv zAznk2v4#|Sg4Ymbtnn*!!QpsNtmY6zb-6)xJ+C3ESVL4l<~2kWYy4CbcH*UWr<*yt ziQOEGNN+btALBJd8f%F3MP5UsvBpoD8rPhyioLA0h7zkxu<(J{!NSMEh;$o+bPrx5No)8a=}dc`7|1J#GNSk?(=~KqJHl>tYd6hSSEFNw z%vL#;dQ1E9-LUH4bsVr}mOV9I;;1?6lTv`yuy>ZdMcN8k%IBB_yzM(U}F2(yH5@u#eK;-U~g> zHc5d)PuOo2?{P9THp%o7p9-8a$KF%C%WG-aFqs&0+zopvgR!k;peP3g<`sMC^0w0V zp0qd9#32S@&Ws}V?NvEeEdB^Y4&$ikqIvdL#CcW@t6Jq0MoLJv*u|>H{ z378yKKp4BgeruYEV<=^@9F1}`<*&NWln{b!ZcJn?nC6tf?mji;Z^S9km|lM$jQ^`) zEm5D>1m^sCywnfBsG}pz3Ln%ov1*X3y-zhw79(P9n!fs=eQL5ll)=zsUoSQUE9N!k zZ2x{}iTG6f+ zUTZelxAC@Ob~$3}4{s)XLpX2|Bm7AW7ldj_D?YV+usVTlGV}g>AbEaL;(wwFC z;acoIMi@7azs${mA0|gWEPi6;l40w`L;FQRn>MjS^?m!`{4)Co5x?z2goY6{B9Mm4 z`8cs)Ig-N3A(tAW_cIr#ctA@HT;PDIN-M9lzZ#)e->;S$!o$>f$=;`;Xu!#m6TR@d z{dM8w#nOqi2Bj{C)CCP)9s}%Pa$suTcmhI zGFEYOw|oThp3(vD*iY-?MJ^CFNuj<1E$+!l5i59&ocu4Iq&1ExMT=Z$uhkXr^J<#? zzq|h?t23YOr)7-@8~~wbd%Zzb(`B0}HINsK>(nPTlquN1=~6dhKh|fQ=$t7IhH%|` zGp@ffuH(P$k`tb5(Gw9hW4WsMMQ#7cp5g{)M6OE90%#oiUe=0%pE=eKB7#L#OCS1B z=Fl7#HrIFMz>!toHWbwku+AXeGn7Iy4Exv~)Dr05Ik4_y`)F9VQMK>QaN!esUn_I! z8-Mq>GYYad;Z&g2|3-q-o9rX3REBJ}&lH9K8{C2au{X2gk_4OnV_z-?{{sQ}yqpym z=V^ud3)tLpv1Q4Az(s_{rSE)ZPte6|PK>;G#sTHUGk8tFi=R7Sc=7YRn!I@Nftz^o zO9!l8oM?J+zVhN3aN#R^YAk1Ic+&@*jpge{uaGHtxpJnJ3kEh6 zJ2(S!2o8t=NPdXheD3m+#-j@9O%a;!GIhSo-lcWQO@+YZuMRneDMOUKfBf$xA_-7pz?uwlqS z)45jd(s;1ypqvZ&0R=10*l@20IkSL!;lyX$E_+I>6@k1fq$nB2?5&(AcsbzO&k(VQ zlP1UFFyvTOOAqX}574a0+_{}8TtpXV^tsHgv@M!l*U zReKWl9JV)Q@uI70(p{>3IA=0w{n(JAWSD!z{*mD2>hNfdeS_{0)eo`WLyg1%F@=$_ zlou%r;Wn;mp~j_kezs4>R^+tELb->O$LI1Ive5e3t?KAShv-2k(Ti78DD83RCZTlT zA@X)K%#7pq+H7F%sSJahR5}pKvN%1icEtTyFW*cP4|1NgMKs}NJZBy$PwhcRM*`_s4t!pjx!^{4G!#Li&eu^iAKuy%b(QWydx z{ICB&fc%fsl>XOU!=~a9x9vH54PA)C%$Ldkq7Ezni{dqbp*-WTF_dTVYVyBYhi~G4 zjSid9RwksZYu>IrFbY=vjYBzSX?Q{bXA_9EItodiV8x(d8&YHp<-A-C|BvVD*k^UoBLp?^`ggdqKBpSkEyyIaiQ6i7+Aa1#VB zbBe`R>}`UJpHi5F2=(ko!IF~5Kl?;*jAgM(_9wz+0+p^H*Z zmOSKb!$aQYH31L#*6$%(cr|&**EjQ!-8c7;!OBD4RvyAx8Xj_nvoSpcg(MHLVvvV~ z6d4}E%bAB%I>NdLc?btI`s*Rhu~G1H<5Y~rv;Zwuj+XzDo^y_6v(T>P&hoK zaviG(G+=r64~c;{u60R+zeX0fjU0-kAmjJja>ZSo=%T5f=J;|@3h_l^=zx=Xu`&vJC(1vAfdYBl&~8TM799YKOsD zn*iI=a5LtO6vs$?naMH^e5sB`Vl^ie;H#~GFHaiSrJT)^`hN@#4YP2I z?@NvzARhM_7WbHfX+eggKoe&;UVxc? z;wT)>bfm|gVAT}K>Nuy6V3g(Wvx#VCphs6_U zFQG8Uv0h~V#Iz0COBku>TQJQX^F~KipGv{M@?g=!xZovs%=!AO3>g=Sq-h)d8iyd<%Ri}Y^e5oF!!c1L{fx%;@5CpxcJ$VMRtjbE3c{@Nv*Oy6*GR5f z6-aP9y6Jv>%$?&-9F&x5XOQp1YluA7kW#~V4UumbAaCw@PvuZVd6Gf-NnS&gv4$uw z;Wb2g5>eL37S+^_^jjQ=2(L8=Z{jsX7;ETU!S}p|2(Jx@yzL>!aPcb#Afi7TM1SWs zL{!#{t!IPtk5#NKB7R}bLzI6GP^P`^oA|AHGJ7g|K*(M<$C6PXQy+?M;os{{l{jjz z+adYOe;QA%%}s?3_3)*w*Ke(!lr~v{@y+kMWP#tAEgG#V%OW;9S(%5vJ{5{lz?ec>-^ z5B6CGqV`~)GQ@g{*HETTC$9g+i%G7hlw210Ai0ba;q(7Vu2kBAjrjH#}kdqF#`v!FR^lS6IMU{ zi#lk{(bVpzDW$PL&UwQkx%(-OF)yc7LhgR1b3i7f;d1ei@KJnH>END@k0SJ%$7nP3 zA5f~PgXFEBbCilkAw21TZ@pu53_G?St46cPIToJ7zE9+_a@wYhKuEO{%29$2*nmLplQ&~Gd3(utmn-D@$A%Twm{y=%&(eOB>#dwqCnlK%Y1V9Js+W2kiz(GhlfNj{OFMqERIlSu z9N+lId6+)bX;u2iP)DRDnn?ow0m01moUGUoVeaH|<$9eL-|Z+A?HOHlCNd1Cl6Ixr z?sjBqqCbbGLAmd7mHUj~HF8ka`a;iV>F*Ty7x;Bg%6P%FB5T zQJ$+PzsW0zGNMSzxZl)sl%q&|&H)H>GiakR>q5?(C)n>52RQ&S-D@yC#cL$0jy06H zT;Vmu6>I$ZAXS?>5t;ZaYeq?0i-XKD__a|6uOP~Czp7lT39li_SmUQm2O>Li2qM~6 z5xtF95Ye^<(V@JCh+>VOsF@p1;b260qM|&9R}kfi2Ic2?4N=A#Kjom~kQ+EGkzb?8 zf5Iz>{2GJ&7G6W-vBpo{JPmoAgAwJQ6y;02f++v=t7<|0zpQD9GS*1S=r>y*a*Plu z96-|4tNmAbd3|0(L}g7N^=!_oi85CEWv1LSZ09=8&RKRu_X^29IhM*j8y`1w&*~CK z<(_v*0pvd^_kwlFupB(5{5kHD6l=w zAdv-)x0C*>UcT)#+tCBxrFm|)qqlg4!O;OkM$tI*x%wX|mVWbyqmd>)`X6W+S@iq= zBQ1KkHbkRPW75&d-ND?_OiUwFwqOQwcKzgk)zQgwoB}27r_n<4=;Uc$6G+;%6U=k` z@N_`Y0xz>;Wbqowt=~7#&i7 z#$_2gJ2{o{S2#S-VP57$J?bP3=~5?4M4!Z3f6SCgs#Xzv%N(sj7xJr~RJ*Jg zkKsbb?M@BPkS=qiL2>m84aHxaE#>6bPNt5-`LEb$flnHJoGVG0Crgx+r6}co zUEE=T@n_?DpOb1KzYnjbh5T_pin{t3L$7hXn)DiV6TK!gy*6wYIjn=%Ql{<$yIyiU zAuJqamt$ecfV`D+r5GRiisK<|DXe%X3a>#sYU;)DgpzoVudBcq0Hs9ij%Hq`J*!;Ci_`ApVKCF|B; z9gOntLUpLM#xVu1zV3*DnjIX8F!qDN72v})mzuf;ig1CAkg<#fcr)pB2w89B0)fC;D6&IlRualOMSIkKd{&h==?uAB@p z?xYyUc49TWuMcG9)QCD_1Ti)a9=8iH##VMf#uLj@n4=j@ZE>`~az8$MOdhcE=-31; zPg=MI6xYBD4zcsmRL~MM%w>O`I0d>PW^jQI<(5nFX)d@z{-U|yic>TfjO8E7=}$X$ zCYOHouH%bX{pC|KYNkHD{#r6@{?y^E`=UgpE`By}Q<<^AWSKakI#naqgu2q=Z$Z4lbDaIN4r`X@=6Q37vpjHp%8s@ zBn2(GDE~K9PR(g;wz14;F;fO@;GNT>q$O}mtW@2J*XnDBU0jfQl5tLiER9TiL0 zf9udSQROt#jdJQZS;8}ZuBf^puFV$5bQt+HcK=hSaDb9uMV#2;cuLgf#L!T!VaBld z3UIz@bOl>otTUd#X_MoB0w)c&<+@wI)^GIaG?TB9%ZKtk@?)DPVp}pM2J_ghcn?wm zE0?XrnYRnayk%JC#ylVlbG#N0*Q;l2!#%D3LA;DR0Q#PmiJTA0ctwi8ZQ_K5JKc)M zOZ?tej$84FRgXOm+u|LLFZ3Cw)lGQ#7jME#gB1fB;44UdoiXsjPRE;(ub{TzJK@L{ zuX4TV?BGkMXGTHs+P7A#_Vxqij|xl<=>yn67HPK zPOD4Po=4FaX5FjrQvcSTSB<;rOhmK}RMs43yl9KoX2=TT5z(oq)xB4fPSd?t$zhCK zG7-k@cNFNA&%n{X4eE%PGpxVRf;4@eR|z)k#c_Zfc}%d3oUD3go0s@ob5+@62O6#j zy8MKB;?_QKRZG7(=!n6;$O2->F%>P4m&=KybTqB3qS6t4)eFSuO#|%y=2Sc zng*)mfK4TtDf$r99&a;@`1G_6JyMga!I-uAv9R)}qh8sXnWU|aBk8!G@Jg*7oHtGX zCdd-r%-y6g1$yT*>IS*Te|D@Dk8w1b&DRY^n;k%t_nzSmUDQg_52ShMz4b=2%y@6T zp8V|q`QCb1U#JVk#~u5EdZ)boY~`ewNOZd`)la7Jn5=Wusuk%XzjJ_38^wVb`;S?^Ih_l?=%U_gVbv~=s+Ho8+ zE+RO43g}qHgmaG3VOqNGdB;1kcQUi+cVY&aIPI%bD@GF^i78X@+oC*ssI&#E3j<@0C`a^GqLJ!#7b_owg zzQ|E%b#uj8wYs^1*U;)F)+9I@*`V{#vFYLyUQMf;SWWAuOBY{8EAQd;M0kfm_&Bd2 z!m?&8UWYL4_EA~l60au0SWU~OOV0u=^*(ULF+{|kLz4&cH@PfZ`J56wh1U>$Su?g? zbvS+%hr9Z`n&@M-pFSQou)#0au$L5YFp@vdpx=|%5Phtn-GD*7hDc+LpEPx?n>3-> zwHBcEs%vpj)wTMa4Ro#A{;nnARo9v;nah6~Ck^noy3Kx?1mWGRzbx>Z4o?|0eYVhf zyI919r@8FP40rp8rRQ)qw#$_*mhpPIE}$O;rk-3__E_h# z+|iB0UvEgM;EdB3oum0)+WS%fuE%^X(fA1Gr(%<(1Xr!0$%-;viW}fAEKKNuysf*d zImJ%SiS|Z+lqD3PuutNLrNd!LMQ4dPZvm9wm7YGQ)?rTb8ZtP2MiO~meMVC8JZmMg zw|<`4JN|sAy|+d=)04iJWXViM){Fe;yfx>CZHk|23SK0AtWZCJZ7R>4A4iuS+NcTC zigxBgr^}Aoq79b^lcYjD_qo#Uaan00xEAzqBUi$>Y5=dhlug4K8cOgYrNmZK30$yf4s_7^ z=W}Y&^GEzE7d?MCXTHv2?SnLsx3f8?R_9&Q-}j_>Ve=;yTp+4Bv-D0E;HceMTXea= zI+Gk3lRL1I05a^Y<{WdAssYuV|AOm}XC@1dDpktVeHUb8wx^d!TMfUJ!mvtxMoTvI z#4=XFdr!G?(@YPDR|{rsnJDTBCi};o5+J3fv#XfG>u4%(q8pcPPU0ZGJL>wXae@Ke zkUhTdiu)fQ!Nk(d7ncSOC3^`Cj< znVHYX1vd(2vNkY&(+s-8Z&<>I#zPm>40`_sHMctJa!wO9B$R*L$35LXWfV`h{T853 zS5NP`pzet8`XXMo-?f?ZiwN&;I?QOFS6dWto@BMW-`FVD?Y9uS!HRy)CUCZyGYW2e zyFCh?$a5x@QP7B%QjB}@>kIs0s!k>w6l}8QN-50^T1)3taWBUxkFmxY#&Z9rZh-e2 ztLG23qhVlc=U0(SkQG!}=c*%?a;9W0;MRIMjJ3Y$0x_b%TY2%IqC_=0(-#kDJZnSm(SIp6i!~A0;}Saj>b2^O4B0C=d85 zcyq*fE*Uk)=!>l9KXmaXJs-(L!Ln}7l(II=h>H;KYn&oRZ~>@c=E)N7$afn`4ZWzs zXZ+nFPFaQs9Ww_ACS)e0vzpcnAzv=6ITXW%hg0rsha9+|znnNO~MNlmt zhV*l~__!^{pQ5rFrtu}^dyP3$X_&+!S;7s|K#5-W5_Xq{cwup__YrXyM=OtA?hFw3 z+eI6f)d^_Kd1Z87I?Sl&PKG*zobw~*UeaOun7kY@pED;z&0&UmF2qpeO6h}~m7wuH z9H-NJdn=b`{E2uJ1);$jf0&_>jQ4u5@n$LgW?WMJ_I#nY3#8oXbcv5SE=_q>*xgMd zzCzmD?CwV58%up)H~tG#(}*1iyJ(-=lFY#shr3?6v_rwv2^EWkq}}mg?KTFqCO@#an59`_YGSW|ADg`WvY0-5`Yap z308jA5+5y_;I0DW4(_Q4P3|lEkn-;DDssNdB_Y%8l_lJ{-ZHdX_q*!-$L@D75ob6a zeWAbh0cS(;J1?eD`^@iZ)V3fXqw=LkCrz1np9MS*6b;QLIbV#d^9LH+`@AL*8}9GLmAF(T>CKSFyh`DO7WXC%~rsO*VR#vjVW8Jxc~abi1J!cCke1uD>M{-G?K zy39LF+|JR;;hlK%x}UhkRB@~Dg|Ru)ovopGx^ucV9ga+Q))zB5R~nV3GGjd%##nMj z1RqStDN&o_I4+f}s~HXBb~wxOr5r8;->XkD%r=QjLS|bQY_*0pb?3^?1Ht1t`vGS`jub&P$c4IQGUzoDW6p`NLSP+{Yy#6YgRr{3VPDabDB} z#y;Y#0Bs&CyTAQt816^TpA7d$u;G4Cx_xID?)S%?&xz>Eyqn-xf{<}rY$SaA1Wr;D zd7bRmS~Pg)VC1zRmAhA0x~zsVl*_Pr>4hhqNm@kP%a~8Rb4L<<`?kBPXwRjg=;^!6 z#^N5ALwhti>EXHPq{Z{gY+=0EEPa79OSIwqrGb-%$P(V6TN;`)zpQ%n;Fz?^uxwS{ zOmRO)rocHP!P8Jo<;Bv%5eNv2-plh@G0JV@driqKetmvH9**eoVEHlmF}+QRz<|9(xlP3@ZQ0I~c;aYW2_x?7C$Vh z@_0eH(tln16EYS!Glj;bAQRS>CESF687_0pu;He74?gX=%sETsa%9t)eY}{Q83C0u zTQJJ)%+3B(0Rtrq-vDh^Ilqp)7sY|hJ}ww}?Kp1oX*VYvRaH(Eoe0gSn`tCnfeAvyUAah@n zCEVOQ45hXi=5Fz(6GW9OylY-+R(tUpTr8}{OQoUpDpyo;Yk@Dfoy8U9)hLqR&bZ8S zEwU5xhgB1N>7omlgsj`)3JV>*uY`sUnvFiVq3pBKf-A6P3@*PFaNcCoyJZQtX}+OA z>nn0PIuJ&@?d&BcbG-5d-3J+UJ||s2vsyGPeb;$Dauu?InFpFT6fbh7WT+L~P;0^% ziiWAJ?_yfFwUw(ZtD*_5oD*REd(IYODd$e6`b3s+Q$1%W^XwJX+u^&sWnw$WyYND@ z`f%j^W;qcDui#nThdgz~VO~$ShQ*gOZ=~;MszsbY;6<}N)@7BW8=XzdI@jI~?|kU= zT4hsRDp;qjrcQqUJ(}0_R%r3Db6rHOt2!LohU;G$S9u?k)3Q{U`Kf;AN@VfF+VA=P{R{=wNE*6niE4gB*~pPsHeTX56oEdpq>_$N|{zvEOi2B#a)f$L~ zoFT=`y4Tp?;<*;mGXri`5#IZ2dlg9e8aJlPu?C=JL)uPfYmv<*p;*&VmT*&MTvKCZ z+BI^!QnV#LfZCrUmeFRk7;(Ev-eR_OkEBM!iPL%Y)LtC+u!=BnuXBU;FjU#+Y$|4R z0mz0kxDDqk8wQ=@3)6L}bgA!M2=aDEol2 zB^0mhFQDf^=T-3zM=qm1H`H-W&`b^%b7m~UwW#Nh;9AsON1Su?{ny~a5nOgS$k~z= z_i`)#8pac8qCfhlJuz@Z-%+VtmfLwv?YiycQjq1Y1Y7P$L$4pM!L}PXgsmLZY`loQ zUjB|tP8fY%`8ZOySZ!s++oECcapyTaMA73{r$;p79LZkJ>#XN`uZQ;BY5#Q&E@Q;g zn!wBx&J59nb0z!SDoc1TZKyQR>cQsoxFbL9q;rh8o1>M{r^q}*4fE8yZZ*%x52Q!K zp=?)W=%VG5y>7`7eFmbr@xH)qsI|epRu6i$OMflG|)a7@J{+czYRb7V+41 zJT4HK?-uyOT$LuPy%B7+*@o3-N~=90KH(VUG1!NO!Da>-Z0rSGy6s#gKLO$^=SRZ4 zsQl_s9E)GKEc_imV`>_epAYu?a-!kmi_Vb|$5D~L=!n`=urk8cP&~!ClFj}tOL!z)a0A9~uT!AiP+2lX!f!ZQc?|bufVgFxSXjSq zG(@H4JM66*h;Cu8#4n zMjB_^VPfrsq8pb>T2bpH8MLBr zJ#jNSp|Z<*8YVT~HL{F0jA-{4UU*R_zm~usrZuD$6Nd*|(WmqrSG`Jtp7)n>#?y84 zmx?JIS3bl0Y|nOW#B5$lYm5j7J?rOZTM>|1xi)sSNmjWme*D5{+=Q5)>^guiIgYfs znut;^6a>otCo^xCCA_=8$<%qx zF!L)7+jS7Xa$H>E$%fNS^BY85K&#fU;|bb}ygqO-ymrpiFX9Hm%7ZgOBZJqGpHrU6 zR|JZtj?P$QB>k%V9i$&#@+rFuxe@ATX)b?yS{bU>a8M}to2v%gc>WW63DQVO*SflzOe+YMwtp z4C83!2+-P)0C9_@WTsk*nQA2spQbsU<7y@5agJo2Czy30jCE4#xb7;Wbs`@5+Xx)^ z!)z3?&uhW@c>WD_X}ZB?9DU4r*5~48{u$UCqR`U>@2>(5R6sm_tB; z*jpl)Ipn6SRDj+dx2TMkDqqz5AYfF#UpUq_x)ttdk7G*4@ja=~ys2xco_7lrcF1oe zyj(1Dj@FQn>+d>UZh@l7F6+84u4^@cjQkc=;De5s-j`!(MsINoJk}|{foQ>nAXgb6 zOL*|}NT~{R=PhvbgVs%8e&_u4VjM>+PgfcpAU@%}m}q78tl$M?j8eN>C`?L#d>@;&l1#3C*P8SC9(W6f9kJZTuKd(ZsW#Mc~+ zPFIfG>yCo&&Nr_gvHg|^$eW9Sbf*OHaz8V1&#J`%iFoj z(~SD<8eFK-+?O;XScTh66<90W3S9=}XTgk_Evmy`9bB*KD>O&|Up=vkOHWO)j7$GU zn5MwBx?W{%iY2hQGtN?$aIVx89|h~N*wEu?qbc@xas69t<9Ou=L;Ck7b!Meb_-Hat zt;Q9)*6M$1kkQ?hA+B$}04DaDeE2Fja-!zzh z5B8VexC~@2n;zu3=M05T8|IpSvfX6SKtlPGwQ`tCs|y=$#UTNSTdXysmur_^q{9y* z^XrISoEb&z9umvQ3R{UqfSbT z_ITh=4s30@wcjLWakTQ7Xa*72+QZDjXes}J>neA+-q&B(;h}qR%JnAaMHYIMS?J$k zEJP;^7c|*X0cs8?^TY=)Y~4G+l_g%{?8!o31zTv9ve0tFLWc`-i^TzsRvruORTf%q zwb0)O1Rh2yENgGO zp~J4p*i1LL!epmRDF+`Xt|~j>Q9tseT@U3?6do=t4HN5!XOIq{BBHN3f(>& z53uD7cRhr6NUa=>zVtBHg<57BQ)6zJmcfH8-OAcBlOrH=dS14e%(;^M%Y)^AkmT3z zi%>1IZUinG9~kNCCEnt=<#FS6%0l-+@ja}gQvw?|#`RU?UStF*Pvq7X`#DQ8(r#v? zV_}SRWvuJgG8#$S4(GWl51DcR_Tl7xYQ*%kQT- zT2v$@N7|Nv=0j#T@yTz&#~0L%VjoeP?$Mn=G< z&(i9N0?ym~Og=9XE=08UrL7AVgi}_Rit!SZnl2=Kxm=&U_lE9sT)0%fApeqfH*9^- zb&q~`B#b}P62GafGZc6Gv#LZxgGKqZ)y{AJBv%#qb)svAHW!9Zay1h3xlXd}^*NDd zimN>bJtqe(A>x^jGJa}KvewZag@q5fYKTWUXXyY*ugenNlCxAx>N6r`FKN8^_l)-X z2WFWZ;P5s_o%2 zkZRY1RoiK(@gq}BR8UzxmMPT$RqG5*{~Z+#>mGJ}tlRO^fEO^&a#moSfOKq9!E7|W zbp;x5lB~I2$)u=TZh?gd_qgEu+2zwyZ%_diJ>;q`8gM~K(eAQ@w_#mFshkRC8xAtd zxT4D+bG;Y&FcJXYs@xngn-eE3XK*d&D=kAaHOxce;oxfA^567?tBl`?sP@#S77bG=zc`RG(?Sar*x?4}8G^SkInBSHJKO-Fq&cH7IjUBkwsL6NX( zjcW+tMJc%uJs&5DJd)r=S$M(S==rYO#2;Kxc{57)-&l!1fq9XG| zx>qX-@6GJFAO6<}sf_if2^BNkmd=aj7I z?v&w!l9t*I8w%o91urCXnME!4$Oj_S*7o()HSF0KS|yIdLi=!#(9<;oFb zISk$MGqNJ<`jaYx_P5I&+fst5d%NUaMepWkB${FvuO1AAxaVD~tz5~sLm&rZTlRA` zhn4Mdzj@$NS0x))!SJe*o)sa}R^UtK&ET(#gsn?m-EA*PvFM_jm*p?IsODuv`_xrC zhFw$xMW4Ec!*?&Z=7jO{Wy@T{#K+tWEvKK`m*HsHePjMmv5iqzcL#2% z2#b>39&wo0By7m(rDKhwQY()*!)xSygP4)TuX5EBTX+TDIMf=v_a~$zhtZ(qJ88Ex z{oRVx8?*&bd$lV|i-At7U71c%DZ+nWuSej0y>z$Fcak{o6{VaTUBk#r{0;P7Mc80- z_q3%VP1Qna@)xyGTBVz`P}EDV>D_rG`adxIhPLjWaOf3Rb!hXl>lx8pO5tA`poVs_ zlK(?~Ai6WcAa4SU=u!z2`T=!XiUGVzhB@4T9sjDUo8F-kY}?%84sjm`Alz|?yQ-i` zo_Ls75$-s`#j8${L@NrAwlGSSv`5-YU8!1QNO;@TCp{1e=Zd!7yEhp;c<7K(qXrLt zM#aR{Q2d6gObH~=lRPnrqOV2Hx-NhTcjzU$_VDwixh`f!;#tHhJM@d>} z`;UaC?)|C!Mb7i7a-L+?z2%j5$qFn#>HwXPB30Ow6jzlW9hoBrvt_i=Ky zl6PH+u&HjlY2qTI4m6gXtE9%VQNjHo3i zjRxIL4T_z4_}i{@tsy-Aw#%1xQgY`lx08!QqZ!@I?Si@HCaVE)uqCwOo_8g|r}U(T+)^)uHKqCm2?3>bN=#2+>O4_L*3_viev zq93D9QA2(Z{|PQ9%UhbYBK7-x_3D|nFmjaOM+`E?>n$qN0H10G`N}fL4;eRZ)FdOq zPlDNBxtgc-l>B&{XvGDfIC1(|{!#HTFE($an!}4}R~rFgMn`9-Fc@?v)eFHGcnE#@ zx2_3RcsgU^{m#`uUtbxDPT&!fw>TbVs!iaB?_ACB17ETZ9mDt#FZ?NN;e?SV^J^uy zl<-_JsR3LV8dJl{Nv5c2A;8l)H;P1ucnL+K{j!82QA=bjBayeL#h3b(%CMCxd6)hZkq1L?gW4AEm)1 zg5#V#gToOp4Xg*7UVpGrGAs3WFcf!u-GYwVX(>+&SbrBjWwIa3{&f4aJ*uo{ydG`i zMqs!z?`h_N1{d-did(rbGR!5KhBN|9cku3XJtu~8Nb6ig8x2i&xoV5C97Ih;qRr5) zPf`YpWd<{*B1s`khepGwOZnZbTxl*60$LocqGWfNxyMxyN~$Z?f96Sst-t3F7B6!V zDXg3Hj0;;=MdLN;?qTBJ9Fzid2s7>>`Jh3nD<`q)XhUCe*am^A`(53{E)Gni ztI5xJT8v}EqTbD_mbSQ(uUF82iG~X)xm}q6#w%YI1mAs_t?}UC_Xrhp3T@Y<1Qf2X z%U=|(uSZj=ANJNz^g>#MNdDP1JxtEF|7TZUksQOkopQDWR^pGo<+xU#vX=NWu6XEi z%r(pwhI&bMjEbou#y@Fla~xL)-O&FyX2{u69v)`mn1HluPWJTEgYu(JnCtT0y17lQl8O-shxAc!;y=6p<3NLO6#=}crgp%Qt=GT>gnlZ@7F*lh< zzxkVMYS@fuVL3CRvA?@wVa*SoCZJz(6^jIcqWH%m>YcHy#NRvr511|$^%!9_naU9` zezym|BH}f2s;uQKzU*o(+VOI_ZXYp@ZufN6GlZO9sij0)7>P^Lh3fH@gullh_!B42 zcfplEah)(-66QTVnsX|;;#wxg@Dd8fm4lH+au7-|9_A&KU`&@KlwedAD#2KJ&=(D} zuemmA%fNdbkBF||NE8N^3Ns97uPy%D<%zjV0vSPI%-^0|9ZZCXME4U;cS{Ie@87Ow5l9ba<|Ndx5>~+ipEI;Q&G`8}995Iah`vzJ zG)te3|Hec_pMtG~Q!E=d6vLq;WK%8ge??R*^Fr#$rm>Bl92pCn`?))o-q770G?DSo z2&u7ha@GV6M!J6#4h}C{Gtp#VywchPHdMq{t>SkkN9%|yV*mp(q^Kc*3LUw*Mr#MiMj~fXG$C3$0a;Z1QJxkM9qJA>rFc}*OhXnz@W@u9B z*<0vq2G~5dLb8o_G`}mTzFKH2mEuri-f?>scZt}> zm7~bEg_ZatTlsDn?+qv7+zIeYynCqlg;57u^*w@(BUgQY<2Cfk4A$f&y3@oFUK3dM zwS^J1#l zR9gZwYLdNn*L0`hXIsD5bhk;HDaGN28pY&O`&9Y4-bck!UQ8={<3{<)vVVz58VQ^% zp5r8G&|1$+XwX_COK8wSEofGZgVt{STlAXic!~KIjz9y;*Ky{6rSFb|4Uu^s@-04M zeU289Bi82}oklGA4vl^;j<&O4be5aW*AwA0oba_!!uSA9rwAmdhAa!^z>p<2bB44Y z_%ZejTo2UO#HoSmb<|9*1#;uiTHtcgtP0w~pCC~He@&93#xveu!HZjHr1`VJ+eLKb z@G_<*neaxc+pdbrG!c&m4->#3*t7~|n$;}g7%hUpFmGkUjyCQx{+^_quFy743PC+- zy!=HyX?&HN^dx&d_y3Pnvj`4#@(Q@UzI%~)k{g9O)d1p*@N4`uW4s*u2fMq8h>1rk zeisdVxusW%XPq)RULDB)LsBw&C0==4KWSF52!B^mC+;jfX@xBW^twf?$@sw6KBpUE z9ZVkMfc|oq+b(ihxq7bI0rlMO-hv~5sa~N{uLnmn)$7XD>-W#<`S&N{m3kJQLFyTx zq3Zq8%soonZ;|KrCYeBuF3Rh$!&2w%myicoSD=PIXe zuHs~Ivb2hW2(*f0K?sa;`fun|av8_o_VzL^;|vk!xGdY`3QpSuwSv>0i$n7guPhy8d_djm}TfiC2iOR7x(Ijfjqx!?l4(_|eI1U-a-dMjG zE!h|7{S(yGErinTO1z$%TrtT^O(qzv;BX)C*D22`v@MZRP^Wob{-RFvd_w53>gen~ z9Hx`>?c(ku-sYN6Ct1fz{GFs6uS`;^7gyqaT71I@s|A-Y64Zjr9$q8IIUQ>jJ=UU? zIL>Qm$pvfV7^(e7+Rp*BZxu%5lFbRK`@NpvAL=rCxNB&Ypk)uYCvCH&%lq1!oDq$5 zbl{n;NsmuNV1JjQw6~1!O_43;kM$;qSWa?gcJt)YO=G>6HIdHC1AV(O?*GgEpQe^t z`6Ob)L^i1ACaS(&NrLgdT^FHb->%E?&A#1(7t6klU#U3yxEomE&90rENMB5))slE* zL}P@qXhr>XY@+I~<2egTLrr93`*(DrT5**fwpJ}oJw3%K`rW@4vVQ~@4Bxrky-GaE z2~(dn2^(+4JyyD@pSznTUJM3J3ISb#GRQ?5G0f9Ryu;yxWHv}|NK~ma;?V+42*DTN z`~ZvsOA=w#L*7pMV>g4F4ci8~?-RdpmXzI_6phE*jwGrjt6z>Sc6Yb&j^S?s)wc?5wUW>QC;+9)Ulf4SlR^U!9hUoki2I>1QE1_v z?jq4bqWgOoMIkpU@kgNrWgn`CjC2oz>qFhcY+(qObVyRMqG^&pR-7E>PSN^8#k<_O zX&s~}JXScEY-&HI(QI!eO%(HTx}KJv1Q^bXY3M9YQu{Gh1pj`_j3m|DALe*8l21!w zy?t(y>g|0c81LjJ3KyJl+&TG((yC=#5K8|lrGUEcIkH&$VQ}eszCX_O;6LXjorJ%4WK-Cz? z_rv-@IFO&`kXH7_IDRHcb@BaZB)Jb0LJ6M*qkWj0NJXPK_ZYv#%IOMiHL9Y*)QM`! zU(|_eR=r6l>Nei}c$iL+&7 zRu~JasujN8yoOfzu!dF`3wRB>m^xT$3nOTWuc}&M9LG_J*r=-NVCytqLraWULra`< zd5s^3mKaCznt%YwVFiF8liX=~gR1_ZFnyvsQ+pj&O>}2C-#|L|m)ueb54D;nTYZu^ zj}(nKH@V=L%uD>9;FFAsY#SvoIl_nX7dgU*VH^R|xe+jAvipHBj!^3%cUQ5KbERmy zjg|Nvp?o=APk3O8dt7oD!X-Z|yL}h1+qkLj8v3QG@Z?mtJMCvF3b)bsOg1&kq1Qid z@ZxeNT|MER<=#Ybm60saSnaG8*h1ax*j=e&p@0BdT){8HTm0 zaN$w6y1_`#N~S0rdr8t(Q5esVY+U8dOp1|+q^Xe}iDW2R?@6&TrDI837vEP2ysN$0 zddpaNL&BHUW`AJ;$w@4GDfu!x|t)S*jTrq9N}WJaU_f*P>vvvgpnut zyOCVd#)DwkNAModqhk~F{mK4=U{togM{YtaSKT<~8b8-NNZiUfQwD5$sj;Qk-KH|& zp&XPlU=!3xmWyp_@J19GyiEXuR#%%Eye;Aw_Kr!0^mn|Sl6ipghir;*4Zu6AVvcRD zl!M~-Jo$^__B`872JoSa-Lt~P?Z)69C|=J3q!c%9h=I6 zm)ZOS9xQREYo9~u61Oky9VrTr+bfuCDsI#BL*Mh_a-aT2VH1sKr@!TdWpFA@-{{3@ z-9cV1-5~9NEa8FIf=d1D0!N~Lc2<^9KSMiEKRYs_(R~r3S_Ej_5;8<*A2S-4`i|&bGd{BGI-Cd02Qj!ne!%F-< zSl+|Q%f9o*!igF<9ScLfWKuQdh<8>aM+`o4eD|oaL+&%yPUpbAueh71O_DNl=N!g_ zR#UVGzVKGm#M8W7#k;^8PfK|n1-+-Msd<_OE3hi_b~P1(-{pAZ85_7~d_tZPGe<)4 zY1$eDlGC&`9Ni4TJ9#llg9tQDvmj6iF2<8EItoh*uJhh>mt~$t=jO0olHh|^)L=#n zIDeoCNk_P5#iPe#ezh68HA_R7_-(OgeMp`xC?AIk%?w%+;RN!Dt|1rb(8$5 zlNHKe)X55~hwWs;;jOpA2Kp&)r+KPjd%!s_t< zBxwZW@c;elH!Y%u5uxP1>Z&IW#PEjSy4E-MFyiDM#yxl4H~7x`@4ox4dyVe647tsX zz$!Sr%WH#zQg?RReNqD6HwSZ(XsOlzI2c}1xZ8W1c!dL)&-|?A#j;0eufX~D+-vYV#Ti4+i<~3n!#zH5e=EM^#nfZtj(b~+A9yjz_az+M=$>JPH}yFh z46lD#U1h%(29!E}Az{ggk!o$vA{q^8e{*s)q+ORKG^AlW`VM(F>osf8F+7o418e-9 zE^~JMyTI`k`UHJOPzPb~1Kk+emi~YxkK*C92Z7Q+1{)F22~fg^hl{?#?G`%uf4#a& z_^wFzY60@(zpw~=&hBXiaX)$Yih-OEb$?S;@p9}ocV`_13R2I2v#3W06S<@6 zuyUub(8eQ{e^5}NvCuX`3QL1RiTp)_LP^b=3<{rZch3uxc|ErS_wi?Ot!Yr0&Px1) z!gFO`zQgGDZE_fzC5vFyE?nrET$6%)j2YyUVAZqEs!-*w78SMC&}z54YuX|y6OZOo zn2;*d`t-7Qye8h@<+NykS2sHJcWc5kSG-L{siit_F5zu-9RH`4`etlHytOfQwS)~M z)tj$+>$fbQ8Sa4v*DxD=16J*KKOD;?HO`0hJm792_HYs9%wB(^ri#xT11LUkm$2L{ zuX1GC;G25G+d>!Tc{$BiOjIL}vY=9Ek4!=8{%}p9U6Umg+83db9F-E zzOJ0f;pvFV`Au1k^t2Ra+=eMI)7vcAxS0>sbm}!y)QlyWlc5<)Vv3rvXenyO@)ven zc~FgutY-7irhB5{;4hd1-N~s??>99z;^iO|tb*?|F@b|p$2UQZ9k+2Qs^cRHb$k=R zpw&M`&FC#68MfM96Sf|2kp=N__|%r1Qzdin_4jPm9bnw6@v&-x|AG{Yy7)5ri@Nx- zl$&(%wkOgR8<5`RBmT&{lJ8y22&&lg)5VYTD_ zb&C34{B!zie6SFPf5~SlD)U=|Zi1N~9<MnAYW>!}% z6;<+gGBaC9=fxyowNyB?5l{PC5KN66;SlK3I12)W4V#4JX`Mwj>ia!7IqLh}WC`_s zY$WRYV}5t9!&TQ>f4J+3Q5>EY1c$?-zx>JF1F34c`i!(eAf!&I=4+=7lVE8exBOx_ z4a)8Y%1V{pY29GlpY8%YWKBhs+*!n?FZlyHZthXF;Ik&J@N-?zT&n3UtXr=5=PhA?(LW<&_Z)qV28lgs{y`!--jjuEp^f7`9n;Q9!hDR_$2s8`@rlT+#rlQm==FIqb>hrgYEZBs zlzUJ>BUBT$I5Qd!zH|8&iUM9t&bqvY$1S?>Vkue#0>YxVqicl0SlP;#BL)Ox=moXl zkjK~5ia_ImPr~x?z$%>l-s!n!zKxoGAKD`&w;x#f~sY^U^%&RwVMW18Ml;{P8gGs6|SIRDavU(NzIu zF=+o846CCC)AO+rttOH$CmhQ6)fLg{%(ML}7khmvR)nBdH!>97bhHm!TG8iA(nJ;~ zYAVuz7Za~6oCvh@)qq189svuoJaJZ3YWt>beFH@6U{npSHqZ9t2EqH)g5^1^5fv9# z5NvOICfM8ihKb@}+BzaoB4p7c$OJaEf?zQL&7Ydq@eI(!L{60SptZLdyjYq*n+VotRcjXmr1bLr~-y$c+H62LRC%I+~%_pYU@)xGM{p^fbb z`PGtkLIR~NKHR%e3@1R@-%qm6Slio{uGaRxmt_T(=vj)HA9|@XgSkFseP(Q`tJG|g zp|ZZ3y?k~}bO}aC3_<7sJ>8yPMSl({Cx{HPjv{?K9Le<*=p8atS{6d7ZH8JH^1_s6 zp3XW-Lg`xwT*C~tHfL|{nIoR$e1lYKp!hzPp;oZozuh-Wyujg2uX~9XQ%8LPrNPGs zm>LGTB}xsXD#c^b-KcNKNm254{SM!E;wxSpBxn;Q=x2uQZLM*r7DxUW;eer8^Fh8x z#RU#;jv-fgF==)|X_jOf*5H3O12%l)E5NrTf(&oe?^O*HvrCesv9JkT$ZD6bqu@cd zFfc5(piGWO4;_{b!8JUdeE2gtmA@3)T4o|E%H&$fUzEwU$_&lq=;Rd?c*32$>fP4U zRrHqVfjOkS+_Wbv@z3qcaq=pmn`Z#Dy302#ISk>FJHgT3lcsmgq;!mZaS|nWYlaUQ zb+@rkGXXZW_juCol)~{0t&mBp7W4Mq?W>@PDZCutH>$mOjkAuJ%}c4#r(~)PQwzM@ zFopPGxzB2uYQuCn$D<9?=QG*L)T@~)L`{%je8+S#LdhM|#T=h}knS=1m=}{ch(J50 z76fz06s4sd)8fRt%d)P3ZE>fVWML{#wjM?s$Q{$8yoMID4#*NRx3SW9Fw@*Ig)N1i zC>tl|_tFC>W?;MY8mCGf+@xyka$e3<+od9lIb)Cj#^Kh=S!y*6QK&P9(7J@Yi0K zxMsA3)|Hj`yIJ|Z?CJ@HlYKF8;6C5u;%-J=O_A=*QeUpz$7|@z6|A8zS03gy^yLcH z(AS-VveacEN8V~zJ()rIZ8tDW&8j+NQ8%t>uE*1dVbf} z7C1!lb(V?=-&$(rr!8M*v6!$kOT~m2B^Zkd+NZE-peIdy%F)e`aEcdGNcc2Mg#-(N z3JDX2H^S_}! z66?Z?`vw>H{V?LbJIRxk^om60hMR^jsvc^VX5~!}U7oL2v99=mGm~)^Wqoh5r?C~@ zwCT@=O^GG^-lQFDGL0n`cSZfVt4Jl+&59yT+H7efT~3i!oy(NT<5d^#%1Me~Td1@+7nyWb3Tk8Ps^w35(lmD9 zKftQ{tzK*`XV~ud!2mr*;l<=dWL7&(Z==k3Tv2$6fm%t|Roel%c_Q-XFwJj60&406*sgIcZjYrU{o*E?~lCTB1y{ zm_4lMzz5X9a%3-@3GM|2^FkH$LRXzlr&L7;5V4fOOySFy@EtA5ovj= z!nSNNEynS67hm{r&bT0Wk#I%Nx;6~_`qeojgWyHd73uE^hS%?sttUQR1yHvq$|!G2 zqKxuP^{Do|0K>JN%cJjZja!}Y^}8TLRdDO2p+2-GCsAYHQUQYWq>`Lp2|cMj#JLAO zb2JvwhFGi6O2p;F2)?gJjiwBKn7$hIn9Pa{784d@e)~D`Rt)h0cm7UY_=0yY0>+!hq5#)Z2ZagA+^2HB zXU|h1gUq3sZ1uBM%eLlRr?Ddx6o>PHu0?IwF9G>f&=b|9@QjRnA#e z&Qf+W)f6tlW{?v9671@3{6bby{JLmI3}03j)6*V?g>PY!T(C?|!UaoHGr40EIogSn zN6wfqYMM&ZKFD8wAtyI}p%9fu<2Mr7Wr7E;=ZoV7Ssk13+xF!2Wa}w_h(I6=`{#w6 zIQ&q&_z1>x6aaUXo)#szt28x9o+`pi_KqgWOZMKS2$-{do0{~$lVpD8K>?-~K6o$e z>(E|t%iil0AIA;eviEb6yk&34KDob!lz*g@uSpK2jMwY|MS0Dhg>)dhYk!q+^jju0 z4R3~h1+-rddl2xaxEOW^G*Vm)yCyseUJSeME6-$>n+(nKXL~RTn<`MSZ&Xg#nJgp0 z*S?1B)$SA?(-FLi}D@i^P2a;+R@#Dz0-h;$tp(>cYYC8lS)cr%R%9s9*ku^p^C?3C-YJ22KC+oMF#WA<*Pc1*7kx zAh`K|n3kZMJ|s%eO`n2+&^s@us_|zz^)&sf6zQi=Q4I8^CsRo1aXv+Q)29R&_0ylF zNI(4<#YaD#FgP+(ua(Nz?;3woUPNlDdcn3GB`qX}(~TxoXDSLFMX16(3(ds~wm=uJRR|Rw zuO9CKm~izt>ls47l+Yg}>06{0Z#@a>ClkF*n1#BSWmXm>w2dL!@_QKQ7o1~0NRemd z52eUS=4I$1G0D(gHgT$=YkNP}*eWU{PB5mGsI3=wbrv&b!BWhw<7m z-W_^MTRDlDQmB((79^a+s88{mi}X#Uc8`z(Co!-1g_D@KEly%#Z_NbL#P6eA{3YkU zuu~bo^0y9fDvSFq=P5Rr>IP@A{-ne|i(M_N*>T?4F<}V%e7y1xI0VtFt>15d@JCKd zZ4UqQkDM;?J|PKp**6f;q|3f=x?>z)HXa@)-hnHTmtF5Y!tSI{*xh}C3C*V<=)51K zCBk{zR*DjI-hHYr{*}{D)1PT8-S%@77M-PJ0a^v(bT7w&>P=hB;BGbq?5#g;4HMl4H4M5!O8o^pp2;7csmL{oY&>Ex) zHL%kgv+7<~3zko7kuua0$}t?n^8OSI$@fv@N7EW44>h=vJe}4cX{hm&#-Kcmj(w-v z$)NnLc7Ep$L3s;pCBNf3N2mBxLPgZMAEi2z*O#B}*pYt{=g8$t;~WpLHB<^Q{F=TK zOk*_x(fQQzh1c_PExSS0YfT)<8heJ+avbj_0d*W}M;eLO?u&Q4sb*bEr##+K(z6}e}Gq9-UTj!n9Zc7YJr*=gMmQkNJ5~t0#u=Q5&M&}3u=@a{J&zO z()hzI921x=ofx2KP6Ly)g0Ib|wsd%PK*Q)Oq<$-9DYM7lcy_R4N;yapb%RsubRPX` z&acd%pk~&?ON%k7LU;y^jlC9aEm8sE&48~Mc=g-_M*l48cc=!PQlPE{;bH?Y)=LZ zl7|{}i;ZXvl7<=!Y4o`5C>WAXZZ9Rzr8P(zYLIjnT7#sa#!nhOZWxvO_M}UXyCL20 zaeKHOt>ITx&GHlxR_ST~6A^3O6edHG+SD1O^u?_M^Iih@I7V=$p9 z6a>TRg|q~7A$N)r45v5301>&6bsb~7Kc58E>*n9oP9wy%clo>mhm|(Q)RMM}seyrvslSIG7*n66 zEK%g|2vz-8DRLAMSq0VFBk)}i$g_vaT;J{~)az#OX1`{)Vf8bJVdu6#t^yvZU;IA6Co?x%S6bXV4@=1J|DUV5+O0Pivu`SJxd(# zY3v3nr*QlYObby7;-0*DnWL#pgY56@h}765g9nGR!yGZ?Exo_`&5%>JDS!f4 z1OkYUZI8%^;2CFI* z!g8D=sgv>>p7e92_7uS!=g3s?3+Kqx%Ic^U-M_$D(UYJsuH_%a^ z*G+e%@yG#=ajcjs2PaAoDe+H~{{yCL*kD3fPLKUFyH8{yY4Nfw%Xbny>P=k|9 zpG^t z(RlKLG1pQMeBn2}Uv^D?dA`@jcG9{abafWof*$=>&aF0zgA>z1QGydw9#|zzO#H!0 z$4B}JP=WYh*-46kPWZD-;)KtDF2%g`kN`91B|`%RiLKO+DLPI|=;9-?(8cp}Bjmh< zgtaU}xL%g@?u0PR9>Tjv08P1>Y9VeWP2MLw{X+)YhW`ECOzGbb!r#Kb?}KIv|4tPZ zz^R%y#?cC1`OAW~`ExrM*qhy?b`(oMbn%7Fe&ZayG&cOdBMi-wiIsJWy&th@6dt{m z$v`>pDOu9F0v@i1OaLXppe%H*T7Oo+^G7f5)x<+Cx z^n>`qX53`hFngB52MMa+cPT*u57!~4pbDUn(hzR7Q5fBq@p+$Sbz#RTY>g#9No9CxvX*~FaCE7l_=ey_Op%9ksiqmBXm!b9GBSqdSHUJ*_gYIiu|S1nlC znjg*7BHE+zeiRtD^&(WT}-mgA3L03uBt6>$9@)6jYRGv~qLcjhe0Z7B{FA zMc7*9bBFVjw>bt|*@-24dpWZLlUGRdI2zG} zUub36Xh*7xuscpI{E+=liJ>1c+p7H2&)HS;Z!8?A>Gm8x^#Nx-Yn%hE^LtekzY#yV z$e~{SZjlpK{0@zLA(ZRq@cB=9<5+!45N3lyp77KtTeJ`jyGIEE-&elJ@fq__Xgqki zY!$rN(S;Uc3dWNo59EgM?I^@mA3bJpK0q9Z2?44jfV_Im9RBfkZ)g4I>}udHnu-=T z_E>E=eX*m=ZqdDI7x3A(Qv1C^YIIZgiC^fZ?#n?pWjk{QT*`%-@a=~s9N+#~vc$1C zZ1i^(FZJLEocy%c;D0T3+`~3eEuxECPfGkQ?tj3K@uAOpm$MfMb?N7xm$sD9uSOI7 zS?HV%hMoU)zXPU}5YVGmP|S(!-|ZdD&IW_(-+}FlkFNhoYcQsS8jLAxJBU?dObIm@ zQ-TyCaS;RFvdFMxz=O>szS(-YaEFUO=*>9h1(<6*Xa;%<%ZJX zaq`{SJBfb_K;VWn4yNToXn{arU;6FPxD0GKfWm=>J1NE!xM4 zYWxPr61IoR6Vz{NDQ&^TjMLi`38#-YLD$Xka3! z_^*K1-|FD(1`3IhtO==(H}rDKkh{PsLunI0k;(%ANKjPm-{yEgW78-_^F;U@T8tCQ zG$%jyt~bSsfb*3&$xp0a-TgJ$DVGX|cRF5St0*~KPwnYel&G!aCw9S!rwx``|I1hU z8Yfv;ZFPnYw||~?BoI|8#;bVyXB=&IZXS4hpNAU zU_5zQaaOK)rqt|f1^R$82Ivf&=tBVVsxDMH5;T_J`mZ*7y-RlJlP@?1>Q0wznw#R8 zO@lXn%sXZaU7=kU+%z>VGF-B08I){L(-df$OWHYzg-b@WX$k=B9AB+5;FQ$~2x4H& zg$Hcy#5E|R!<%n^$#U+Byt(_K^~Q zxU=S}R&*2j*>Akt*~f&i%yYdD)+An+J_bE5wsQ__u9M3yQZNiq&IN%@dDYQ})o~MJ z#jTkdZW-ak(i$WHHTddtYg&U54%A?T=CijtVx7f+6Y2iu8P1gQTGbNiU@}NE&MVq;W$jOqcnN!q7N<>#L7o zx%rK^X3e@$5L@r$Yu|SCi$5y#PD8W3v?DMy>%sCTuotK}V(DvKopnrOyD3GCB|iDd z`ye|^i#^SqUG;a}eD24NHtaa9L5I`+?K*Asqi*7GK6lG6pYIf~Dm2^K!r8LHYodTI zdJpsX_Z*p4b{O=8Kw1RFkn_Z^-e)!TCzS_-x&yy^T}(HKiQ@eEr(3=h9EyNZV54vd z%|3KI6Nba(4;}6KlK0JtOb6miFL@ue!V0}<2EXlNM-uBm$(w3(8ANR*MtHR~G?k%F zP5`^l{`U5=vJ29i0=4K3{o|g0ybJZ=z)Sc?le7vEt?=Rl^9L?_e_>Oo{HB^`(PEs^ zr|`+2JDLW;2VV8OHw=8o6OIBaJl-a@{e&Zx-*$p1d5Xc^5rvOhVS`$&PBmCtA!dca zCmmdWHl)=mXtTg$V0@TLih=PVQG$UnjBhiq@|7X;DyJv{CZ zX2_e!Kc@I1v!Z`ssMFPkOgg`8VA9z-X5l_MqpBjZ5R%)s4Jh=m#9U(d82p-Dtger1 zk!zmT;p5IYzGhB}WWHsbPm8g4o&2A(usjQf@5XwD0sZJ47`_D*BMDO;6)3=W2G?&Y zjHy~0U6>xhCQ?dhX=1ps8MGJ&^u%1gqoOd$ih!~0&TWN;eornhs4UE3_fbSl7%k-U zfAg;*SLTLx%dwZ8S;SSTKw~1G`m-b3$_-T2jXgyf_$8|>aOMWViuaeXDKCXX7__bW zrX0hjIBXOTTk;NR$!FEHgm@2sOJD_kpR;Xs;{8O~_}g>wHD`M(0&05YAC8Xjz47CJ zIPzGX4#e^TE)L$CnE$6=+YLK}dbp@d4p&$iZ!2*o@crk(3rzU1sIHZ{xq45gTm#aI z`vy%rQ|%rnw3YF|(NneLvHuVNFhtnuPOHlO+hK$K8%o(66uoG%V5oKFzy0G#2!Zd$ zMuq`BeA&^?3L03$5s6#K;I?FCh4VQ!my$7CzK|AU%jbf6tu0q{ZV`Qu!7F+=qV=?8CmypF{GtR5T=Q`TvV@Cjzb*Q=VM7m3={}nY#Fn7Nah{2+>7rsngGhE`T&HNlaZR zo}de{c7f}8-l^^EqJzf_57#VL9yY*qcGEmE0D@d^iew&_r_$LS@?<)@BgMg4!^k5c zLFYVlPj)hE{GeaszapDgo^lwCe5Uk@iz82_wjGpsI1MZK%sg@5d^%5?S-6djp-5(i zdonG?ZXCnc*K&GEe<^As^KfAZTe(p0;svK-B13`F^Ki|lx6R|nW)*gZZ`TBXNlc&g{5{HGW(ZtFi~Tod#4Z{S8uz-FI>It%Bv>PJ*}a0eV8TNphnJT z*y~gaxMX{kl=zoy8?I`}R>`L%IP3Fa?!wjVB%v9Fmw6cjz?7*! z*3onU+Acn|g)`fBhXAE(sfR@YT}!Rzr&>4@t=up=4uPa{R>4~8ca6P8B|*Q6%c%Eh zF^>ATxGT~5QW$s)ZN3eKuiDzi2{&I@7zBx>UMr_!;hsD%Pj=4GFL#tn6|)&C$hX3a zuca2HIAP+B$|q)Swk3uZV_Twl-L}pPR`?*%)QfIbR$@JIPdn!>yF67Jg!H*OX_51_X^Iu`~EEWh2O<}K>eGdHQKUJ6&B%oL!G$6Z;x2o~AQ z#cZwHpZZc*ce9vF`A-+P@}1~F}Oys@G}J*Ncs3%glhx~0t&dJ z$m!K574Y_B3t^p45lxRbfl4{M07A5a>_}mk%HyS%I6H*ZI4lwdSe1f8VoGNjRFd&NL6P&JLbX>jakuhc`la zqxYT*21M`57BT!Ohrq1T99b4)O$RRW+`^M`|_E6Ra%-&=N4kWl{+q z3~cqf5->ib2@ledEP`5V_;62OXPKRbF8-KSMn9$YjY4RQX*Y>q7}IX@R1?#F*Uz~r zOiX*czw&bY#bEVZ z2-s;bBXNx460N~#7iutFU&l+V6JtuK!DtmoW4b;}(|m72SBZG?IWQ_2PsR>&w%1a4 z=V8tf@ox%lG@h)Y?9F3oS(G=%llv;1R~S#4>Z&czrnRTUMPyl3>#o9|H0Gt{xIyL- zB{VFwqKeR^{z&ITdbwAIE+)KskIn**iS|eDE`-Yghf-F!$GUTAVJmGcubALWWfa{X* zT<@h^9}L6w@)OQB4a0D)nzf`bLaVN+J7rU!4$pKuW%^=523_sDA;nccwnzN;~iI~O0`}R6gR_O4DdikHc zFsL7JEfCUUp#$W_2MfpOtS=>sAB0HgUARggSt#TA(Uxj)?s7P3*_1-QYh7MWq)@sV z8hGq-sDP2DX7s*=I4QL>B~q_{P>IyVyHRTjXKL(z%2T)pn~598BX4%PL^d?ZyjJ#3 zb!5s)QLa)v;4$vXNw2zfU16clwo%f!IxtDAfaZxp>*^qG)ja1HyzVVBgNQ-XtCR`` zP4NA}`OfqJ6s`+Q%IaRfy@geY7GwW@Stu6+76dbX{-;pJ z&({93pZ?V0%hQr43`2{Sg~1vP00+0fSUyt z1hXk6MY1WKDIx}2MMcCJ_xeAy1y=$VcBZPwQa1hu;Yz@QfbwnGSy-gsQpA7QS?FcA zQABekFq;Z_cai)$GMO>pI9b}$g&l}jGj*Q+y0eGXB!u}8=b%787kx@L0z&$4Zy|Y? z9LyL4V-rf*_v3{mFy2F(6Eq%FXt=vbC4WCElJW2-6bHI!ltvr>b!ZRCXxJ1)5q`Hw zM#Jw?dVy$|s7k@VT}1M|5yiyh&6wCmi?LrLiqZWLbt-b#@a8KZUx&L3f;60H4(0g< zbft)k4;RU}c((+M4{6NfbnJ?_*j|k@di}-1&UPA%`6FZ*&z0J{izZ-%Tq=HHgj`x& zO@zGtVdu6m5%PxB&K+zt)dfb#!%2xhLf&%q5popY-}sYAKKD`Qee71kLLN@OS?U=N zC(kG*q4LTQ(B*voTBn0OMk_EQXWzqe6j_; z88OV+1jUypTi)d<8=T|grwcwbdLBj@V>WhzEo&zGlon(3yz{ZEik?kX*5vaNoHf}; zlmmv)cW-pYXzY7hjv@4EQ9?s#E2;>glOA`@*MElrAfvowV86S7S9x zfUy7Fg+Mf`)#o2?f%vC^r8aO1vu+9T+SixJfa_f$qKXqR05WAzVSG*QdeXVOI+odz zr6WAcOvMCLeX2V&axVQBM#>`waq zCFo^aoARh^HQc|{uE@p0i)e)&1)m+WoI7ehUhLJa@snUGL#rwa9~bY-Y_8Z29c zdY@J~d+Y2pC5=;?NxHeT_){feLOu2;Ma1w&??grb&MJSF@FOl~niUqKK9h;szyA$X zB(lM+UUIgHU`;70j7J8)<}_F$Ek+JaJIT<`f?&o=Mkg6Bb)bkCFS$CIBTp;g%U^cp z*l53D>}N`;4wwQvjQuR^u|#P(1$GxFO_MAZM)NuCs; z`u^mI)7v0a-#qPgXStPSko~BhiR(m?ydiYJy3G57z@9OTF`<;9e_29ezF%oWf(C}l z!v5Gv#e9uA%b3sJnT!C@HCh9H>|+R@4)~fk(Gxm{bq|mNH6>A$>vonwUtLPj4EjRg zBRi9zFP|crL0>0Yj24>TSq6O}};F-LjLOI!h!5dS|@B~WjTCu;(J;uOeO;0R-P_uX@!Ro*_|KwAofZ=LWyq)f@YfY z?MEFoqfQWxcw1RJK1472ghh5CBMV2PE=sU@HRLo^vy0qfIeWr6fiH7Yb=-Y!K1AcY89ojLRyT@Gncckog=L9=xiVP z+F8VI2!@XU!n}DM_4Qxh*g5sw}ZVpQvQ?M2cbQSoi zk^918ocwMfldX(D}n61;;geKb_jk{9fkQV7#M`Pd=^3!i!c~` zns%k`@S*mEUq|O_%gSr;Bj=neS-q~r&T+wFqN~diEaVj%d?Wec2<~0wmTUc*4JRS2G&Yv%1RZS-2MeIz)cn!<0qcv=GmS{RkShutpnw z=NC8~Hupzjqw&1sPtI;(K+#4AQMqt(itoy&PR@(BBA6yRF&IIM=jp#Vr&-|xvaq>f z;46Q14!6RK4r?0HN~&??l<-X88cH+BDXHVn4|i1|!i&%x@rwICii6SH9;*ApU1f|w zbuSV_4Sl9miu7*2{*to^+f50YAwmfF(_Kl3@GV6$Lxl6R7<=Jcum!QH9zyPGXpiCc z!ui-B=c%OI0f-_cw6!a5{;aFB{&01GTmmwxWPa*0Y>?9V%0KnXS+LaJz8lykPW>6; z7f$^d-Kv@T;qCTFUZ%P32s8gT)?Kq$S3$$ScE|a@gp~N_|EqmBJteKEEHII>40wHz4YsN+qd&e*v%neGfXgiaXgHezW%(jo-1C1{nVN+aWlu^nyyxG z3(>inu5R)D1w|SY6jBx#6Fi<;RKhmUV%QIC$(XG=^u{qD9f7DGL-FhE78SWoq7P)a`7ZlcyjGW%k_e&{Z z?XI5jBLrP)Hf59%4vhoO{K0G+EyiSK*`bIlJPI&?g9>8VlawSLExo%#(If0dT8y#4 zUQvQFs{D=x6HWUlMMBelOO&8#g91#`KGR*A_Bo1x@BE*Z`ouNsZ_2Va3aG#^#&`Zt z2{5^P$xc!t!l<>+MXkDt{H^Y2*xKu&%o|08#v5Z?Rn5Fb5W%FC0u#U0;e2W~SiQlP zQYzo=Z=2w1rm>R$fS^*P-claD)v=28qo6{W4NThVKCM1{ej133-+2HuoYzbsMK8Y; za|Bg;Iu&i!*bGWFyu?#W<+9{bm!h-mUJ8%vf(86+qN_VwKr1kK6YucrYfAYSyBsap zI!m=beGGSIRyJ{|?eix~W%ii#6vub?%_gY3j2H0Fl3Z=AEX}m)0m@2<7y+{J=(3{J zC@Lg5WhD@EKvIvlzQ(;Ox}WpVj@T|1Xo?@-DsCptRoV1VJ_+6ZD^>sWp#%~fWn ze#Gyur7J46=azxRONT9fNrzoljl)iB@7f&plAcXh>4&Fexvt|MrrOi^;(S*v{(6RM z8S5+L@sC9eiF%O|{|xXy;Jl1YB!p!&G_FiWL!K@tf^c ze7glA&|ds}iK`J$^|&^&u7tX@-I5;iAY*@8gWI!EgZDv=rZu=d3pKbs>+K=zUfFvX z!F`?{(%w^g`0agtk*lS)kRK{?b&2-~!n8lyQcf7cEa{T(0Q?}-UT>DN91#k}X}qGa}z1;9VM>6?3y^~7^Ms zz^cvB4qaTyjn;?)Z1lA<4+!jd$4N!)tbEa6LtsNBuKIOSQIf`vQHe10GEr3)Cj^y0 zF{NlHJ3%q!?#Pw`w|=?@|Es&p!OqZXSpKK+cix1LbbU*k`b!UfvD7uBp~*5*w(LX? zURmbKilRJpo-sc%fiIX=!PuT`obRVdP_m$>>ovWooF7Pbw`L_20k=QAJbDmB@fb>$m&?=!?ZJajX1nx`<^13f_%v-t zijJ9^gy{vX*l1de4j2$J&gUmv5nzFo#48%tNM!~^z+e=v3L4}OMia|rFxpaj28eO*V{qm&RvcV?HU`<@;G*~KNVV{R#e53N7<-w}3|%WyFLwxTKQRSJ(& z4t_KHZCZ>iezjZ%H5LR6YCMYPMS10Rf2Lh856c8e_=_zvKiL9Q-3Gy;R&5ZG1a zazm{CqJp8Uc28nmLE2Df6|e2dcMZ)R$*!ZIV)zhSR+lH)d&=xPpa|aaCT~S+6;%Sh z7fLNu=jZMyDz#Gw=bv7rk1Vx&g%CKs6pCLsy%fTw>tPqe3o2ZT!^|lID_v9BVA>iC zh5C~c|D19a*&)0qd+)-cWo#NDET@ynJ!L2~9{*QULm2)(Ur#wT^zP}O8ZM4>wW{*~ zP{jQq9(`|76Yd`6N{aUhE_9x_fwC3zMAf!YE~myGq2)m-<;Q!fl=2n}knrA^Qr_5; zc<-ls%9OH@#_zo$rJSANm^^dD=q!gjJu@qNWM;N2!|BQ%=^W+C8l5@X<;)u4&KjPR zJ!*J%M*HDeuFBEbaOY}ab~y)S#lod51vMi;MDAHqR1`&JRZj8K-uc<=2o+B_MOZZz z`dpo>Yuo{!D_Q@nCqLtJrLz+h+1$Shc{t?@8rmMNOmRHPl6~`|T;!x|knaC%<^!K_K?!(?fi*bw= z6lQhMpYFwn4a_&#vzBV{DfgYd$iUp!OI~8UR)7WaJ9XC-WgGv4w#VsPq>;oQ74&Iq zHc`1S-1v-^V7T##D8X=J36K#HKPdukrTj{pc5QDNZ;+;Oj5mG+C=qY` zNb${hBd#}a^^X{weE|XE4GV%9Z~Q>%U`F>0Ac&0aC%t4w_d^(ABBN_*w3*SRJ?l4h zw2d-*Zy^ktdLQu%O}$U=YD~S|eAgXe69iZNIfW;R>hqzuyY{h3R5>_oe5AxbZ2kxQ zo?&+p!dxt%BIfsoJ@LVb277>3;f)0Id&}zuZsp7FcG-FE0@pD1R0!1O-g0gB0<96G zwat9lLRSa&8m+*k8KB_31xR=#`+@=>=YK1jKhPRn??DZ$_vDx8{-U)=7-~(za1rsn zu7ND34>3KY9^FSu+>+KHb*RDD;xcHBpsYo6ZLzDners=e);CNC`EKbggN2d3{jMiv z2_#f|@vci;p7>jYuynAFq0-|z^3$$ayV)Sh8dpi9gE9M45ImUMc$sU4#>UZdGx<1` z7K^c`jpH5fhh(J%9v3hsE0qhkuxfs~RZP_{_q)bvY%!&Y!KjIZsO{l%9W73QV{ZXJu9TO4nZ++eAsD2kFmU2HQr9u@#&6S?+@IPb(09;Das~+fR$p z<7|S?-I>$GiXc)HQ!2H=(M4!7?u27FBQ|? ze2K{W|DYW>yIOBn&6rh>xc*`_ZXhOYHaUtGql#+qy^p%`t?)rYsr%ft8?d*?n@yen zqfqj=>(6UkH|Z>s^2Kn-Y;!ZY%1*mMZZS05;JObkiuw--jU_?}$n$X`c?qpFFcH*k4G;01PqSy)ErH5^XAca$0OMbCMQNA_;5#r6R zQwXWllJHG_Ixp~ZFSvTLmxJXZWYnow3liScd1R049sMYXBi=GG*|w2-vcTgfY3Lm6 zpN`}-UTXhV2!K)Icj6aDiQo0DK9fEgLIe2zFz^48Yg*WV@xH5D_pCbLs?EP0mY&Yn z?Q`{JdOvFM`;teL{X;b74;rtY=R$TJ<%BU~Og|MfwxLxRTgCK~5m+?8_`1u!>cC3&VYiU^V6c^MzHe~0DI<)qWL$iL7HbIOZonfMU{wBcE>p;Z_t12`BWI!e-JML0E?x495#-jVH%39=^UM2ao3i|HW3!epBb4AEk|j&CLO^w1oBququnWQ3#4YW19GdK4Ti+cFdJX zjtWiVpC5DG7^d&belHrx?xAhPzQ2o

gO;#}@Fu^d@1r zv&;R1kFEGmltubO74B8yI>J|v$+4}2((ZVK+ucPhg-_T-w;GfH1rJ{DzKGuHj&H4Z z?-qA~I?M{ey1cK#V2QF(*>HFb)CXHo5cBweEQDCiggOf5y%7lh6ecpu4{U`a`1|UFwea zH9j1M&u(^qCD!Z#n5Y8}P{1NiC|3qe!DKTi9{1Z=R|(dU)dP`A0nrH2n!HbsZS@4Vr5qIVh0*ptohAj~}3S~^Df z4S+>Gteltuhb^3#L2cs1qycZas|fh*7i1e_CVQy|-oBIU%U+@iqfY$H*PI6>Ko^U5 zx!)42_XM@swaIW;!uBGn_rz0HA8f?eCD)Vsi_u1Pzj();#n)vU9o=@jJBn?M04(7O zM+o&aU?sm;kpUbC%Qz%C_P7HDG_oh&xYwO5j`nJOcu$r|9&7|JQQ8{PQ{D^Mxz8Pd z#OV-8y$(P;tsovDY>0MeqRFI9vbhYLnp%T=KXQxWmqG@C7L^U=_8++03dr6Q&-l=t zA(n#*bk&lL)_M`UROuS`l*m5%CM3QEK{`60RVu%((D{lNooWqiNhe;s-+c}p?};Bh z;La3J!X6o!-+Pg{T+=fYnnLRpFIv?a-&oT+^^p6#U*leZ zxN&h{jM%gn&}K$#WG|)wKv=7kt{dR7AGzbCiAUTg1hE4I>S!%d02#ex`KOX5`Iif7 zjRw8smkVC9w@LfIbiW~>yk2<0QFkY?0Cvad%<-bLROxm!r88D4|JwbUU&velWXG^= zc;0vJCgM||94vw7_QE&6bGI>q4f~$J$_!zxX)k12lG6(Pd*1)!?K;4tDBixip#(Ak zLhmFH=_P>xp@Seu3B4%QB!m)rhtNC0fb^kDxy!YHfaOqnvCsr;SW*6B1Ep9IM8BEY z-P?EOX7@n-cpjg4%+7CS-adV{)Lyf2jW(=e>o2eoY(Nc+WuxBe={mEf1~JRXF+gJ$ zg3K~wHL!leVma$)_bpxeV&_403erGD2cVnv*6`3vo;v3;koFU75lP2*nl1VXVE(Fc2XS7YA)&|U8kv0r zfBcP|Q*x_480|LwgST|SchyRX_SgJn=jGh$U{Z}SIVYV^_)@@u2?c-c`#aaG{>Sg{ z+@-1$SwZq1!`(m`T#o@zo76#^t!vo9uFD`{w%BC=OBs^fq|0Eaa1k8!d5fa{|0#~k z3ffMU#^@_h+W}qVlKHf8K409!>wo!t1Y?f#%?B3`YYH6L_;-NQV1D<;exMCi{e|*4 zG8Od_ZvgLeaB2WYJBS9bUuU!Yf-9a_)*KqZ}R7o*i+c!j4uvs?~z6k7Hk9M_n`)qFC%C0M>=%s-Z0fajBl( z(ykq~ZD~oM6q94xwlqgkM+ZE;sH3F1q9a~g)G-9D0=dP#X$gAC%O9ZRPl`FlBacmC z_4UG>_Js*s(+uJ`F|Y`^ri5b>Isq$Weenh*$sY4FFqtv(L`QtPq@ytppo|1=p`k?N z%u@%2Mc5jX#fDNgleh);80SwN17VTf-*uBV(;_bZK)#uAae5g?S{^l`6Bif5J3%;g z3%_&}-NFwYE#jgr38qH?Yjn1Vq^GTjPShG5@P+lcR`b5FF8LN588KP5D&;TqxZ|R# z_GG2mgvUX;5W8tbMf=mLI=Y9cX`RgQ2;Sy2gU4_YSEr_ftX)lFIC(Uj7=Tzs!_EXv z<K~$WTPupx$Gv4tTa#H3SQIYiucYqXAoyafdUl&lR z2C2V2W@(TnbXJd>N)Xk1ZJP*MsfFSn)C8w*;(R*6QA|-k=3F+Ozi_3IQgS9cTH>K3(bc_@ zWMPT61elfxwo}_8lD?)S2XChikgn$H%*S7)vo-C1X|xAyQa_Kgxrd{3el@x?jV4X- zmp@w^c)y{`zFcRkP1U7I5rkhQ@{l$JZL0n&*jT}NoO_h%hB5r3^Elt?&7=Gb!LyzM z&$`+0tTUxW-+yloY%y7jE8_n>#W7dG-ql{@|0%^mw#|)Y1=~dOX8E;I+9<8mXn%N` zBPUFq%Xn|IP46iIhqpJ$DDHnN-7!w_zm)D+si-Si5%QqkGk~@V>gk%~)ZU#%P4C<} z$j1V)b)=jN7Td#Yx^AF1PM4b&m_bj#-aZE9*PhorG1~Es#VE~xWQ?P!g5HNsWy7=! zox}0&cP=*t7m$>MW z=h%(jp?o*o2kW|@0V$>;8d|)M3N%Rb?J@f$N-(<3^Reo6K?%O2Ra^8LzShL2ci_Ft z9r22qt1CBhRk}hrW%G|gZ2sCx^KD6xYQ8NZ=@?IR=nj1CuA;HmAoLJ!2RaK}2fhdH z(tUds)CSUQ(QR+lRXq1z14qqtlnt+%F2Al(LYa-WNpb^iJFSO@ZfhMUi^~-g*I4Jc zh%zW8P!o$!0VzPTBd}wox~wby3p)m)=RqE^tNgBRj?Z<~y2?vHUQix;HKoZ0$8Ocp z6<^=rn1`}KMs3coMdCDsvo|{8&@T9mO#)?i#qpaQjd+wWoA#dGlpUd);%~p%@q~)b z!+OkMcnK!6>d$x8Ci6IeQ2qOQ^=Is>r?X^W=E~q7FNc8rgK1qpN5F&|ZFiirkh#C? z4$^ZAF<2v!x>egzMev24jvZF}W|ue|@1jcGfbOux{R-XiD^5puQ~`dWorBo2AjQ-I z@{4s2zLfemd(1bysne0cx>3Zvb?6od>`Dtyn+RI5g?DR1zL{~okK55ILQU1+B(867 zytE^arp~QXH!-ZY>88aH`E0!{5vGR&VwEHO9bR#qAg}BIK59nN*zf3xR>5SZpi8^q z@BNO662Q{^j;E1B259!0V-*h&W>rh*Zz}Okl<6j)BOrhyuRA`r(y84C9G@1qcuyg^j)rQ%mUzZdg3e10LS}Wvm}6wVe`aeu z>X;)*-PZ;mr2k*l7DpU+^vS!F>`Ke3HVhv+c&RFRkF8WUy!N=Gks8qvUpVdgMkp^d`(`ILq*3!QbWPUm`J&gVBL57i;=^feM z)1-r*nI6UR(Dr4f=bO#`ahm>}l>QsJV~Flz{+j$Vom~d-4gJO5Q~8$uVy`58M}M*F zeZQx_*cE2i=r4BB*>(DhT{7?k{l%^#_>ul%2YznQU+h@WP5Ns|>)GV*E&5a28cBb# z4U|98Uu+WUXZnjRYW+fgv9+&X=`S{a^&9=g=DdEVzt|w_4*kV~!C)FXmwH z(O*=Z+1qaT?YlXBaqWoI>bO8oPFED!oqRRoCs~?&3di*d%dO_`u06~Xb;?mgQOk6v zy)mhK{%ctcQoOMiA-2QuK9jQwF zKD2^o=%0S{&j9*o5dD)(|D@7CY4p!f`e!)(GopJqj!0WwAIB9#LQ#g|Y`^8vGio|<=DcUlO{P2&Pp8TYu zl9ZUX)xWKtL9=L@t-T%S=91|4;acpBxIkPQAwRt93ySCDMni>ARXrf9q(DVjzM9 z-`2S0O(nldU@v{^aPXDUfLhpWuKu1{F0Ax)>f56gP@2hWy5w8hpYXjSQBhmzRI~;; zH7X8XbBsnEU@{}1br1i->yEq%;t)bpN@$!Tx70j9Q_A47@%F{v=TlAbbJJ|^V(Gg*T3UfqyEwZpSj~$ zkA4Fg*$@wuTV5;orw1&z)m_IcYD7=`ckx|uD6%IoJvPGXbe6e^K}*Vgq1QS?AjAQp38X~b%kG;*0#>=Y>tM&WF6rDEVpxp!Xqd*fWlPN2;kbn zwC}6D&Xf50YmWS3#P@3_65kJZ)<%n9J*MND)e{fM=WNFi>J}1ZyLe*o#eB{cXgvh5 zhLOBq=&?NI;hX)Z&7=lM)lCI;iRK4xrTLYInqX?@IFB}+!&mRlFq0xW4N zfyQ6L<T704ktUkT?1)C&}cj}>^aJsJR0s1k&cJnQ;o z^%3&&W;aNq7FMMRrhX}>Pf;g{f&u1{91I2K0T=}fH%Z4|mT?|O%VDdjF@Orj+g1SV zPhNpxe^Uu>%|#UU?5D3+V48*Pe{$1S=p93GO4UiekrMP-6FbzmZusC-RacVELDogN{(xew3ch?ysb&D>G z8c75o540-lO}I1w_=4fu`>bwAKMU6EebzlNnFVWiZ|!|n(^J0~T&5nB==-e7$q-H2 z8w}T;XRVmvTwIv$FDdOD4&2cz!TI&-=$ov{RkOO<<~jO6Ym*++pBv&O60j$*KFa4X z{E}{hN#XpvN$jDD729T2BG(`!$2raYG>`Q$#)-Isg|@EPao=Io_RGuXU$)Qk>jG6$x7P6^_3-#!*A@3ssxSq!!< z*&>pvQ;LJPEinyalzVu}v$@9el<(9i4=hCLyOtL9bY3p2yg|$94j$+*rB_dv-tj(G z`<0IL(e^9(Xbs{ekURTmItdmj!N!+uw84hjgxs&hrkeQKqNJKYxk51O51v`S*)Z#8 zjajUVVQyFQpPuOaC_*jvH0`Sd?N%^Z_LbhI!cS}N$X|Ibxd2?P{Iqnpf{FWG#C?|O zOv$S@U^uv2!Gs|Fy`{oWGd4@^;wVVaRE_TisqxRYqPZm(jn$qcnQT7eWfL@YC|7>G zZMD;b(h2VZnjtup$91B4JdwUu!vj0+8vFxh%&gcurHh$_%~#A8(8gHwM(1imj=(Wj z7gxjU*EuVz+cdb*8QsF6sVp*|7G3w;r~jQxd0?6otY|(b(0rO}HSbH_GHB*E^Srmg z=}^?~LzzbtU3}kYr9}JhZE_-2y&K9ro)mGjw>rsV7x|x|W+gX|t^tUZd3>dt$N3HfdBJFhFK$umIJS%oJzugny9FoiJU%j+J5A=-@SCQ&|dh-6w6yMnTdsD#ABc8U6w~ME`PqqSrdIMBGkRl;K6&H8zq1m`$PK8F#GjApHq_;vPR?YO>ynUz-IJKHd!T7h%FIj4;c(XY!OM@@UhRP z7R6(KP08hd`o~1c?F;Lj;;%^9&J);=m*Ze3K|Ft6gsaLBv`o~!P0{%|B%-s z)_G;mV@~fEFnFd+Q)y!YHp?s1B=RkwOt|33&JWZz8r-n>l^mLOUT5|bJFk=a*_pg8 z8B&wCMI?QRZ`UeZ6uO00dGZkcuhLW(`+H(tZo9Uk;;MYUpoUc)N%2aOT#)-6lEnHqNYYiB>T zi3T?`ERjP~4U6qBYFOF+7Q-W33QXk!GcLA>q`xW6!80xZYQgsY4Dn=5qEiI;Hw^}+@HttMXPk|GGdN{piQh!Zbq{WYVMPrRhiW*dI? zA5FX{dh;khL-6c?z_a}}JbOjsnK<+E;;+spa;cYCK{hil-SkGiuay$*pLEyxZZ7pZ z#_OPiVWy#_int?xJFDhW?=YNvXgN6mu^L)l)WoA63R34+Y-O`gE}Ms$dFj9lC#btB zHv)hAJlV??)NlaM4c70kM^cE4S--zCj>((d1!sk4M55Z%k(CYdpLeJ zHY3#p`GLzI{;M0_oiDpg2q(5o`arCl7E(OxuCJCo5KG@|95H}*V#8?LEW%`(Mt=m3 z|C-G49E->vsV>mqh7+61p{WxaH9&M?X#*aS6WeU}KrE&GWr6m+TqC|X;@BO3(iq3D4VNl`cIwkvFbDGfICr7(@#xGyh`g4o!IUHc23Mk zoBgkx*jC<7tQ+7$i|8F(zmRZBQ+4Ki}p8f zm+dI6#t#fJeVirY`le+6ucX?F;oxJirg%;o5In9%w(KV7(gaMkInO{*oBy&E%{{qj z9>#}t*4w5Bm_P93QAwwK_RBVRIgFlNH`HW9RW7A|WS z`9@07$MOdjWT&cUHMHTfPH|`|s>$7RvT*hkGfq^dh2wnuwz-LLA=LmKge2L+LCXEx_||*?HjTihpWR_K{g(1f!?Sz zt(0j0pdHy~!_{ew)i&L(Z6a=`FFQJ1&15)vx9d;Bgcmt|`;Ngv~=H_jKuPrRDF5gme!X?4mMiwEKUrEuvv*|F#i_>K9t zLxZrxpWT#49joby#fA1~w?da>fE@aTtA;v5Fj;mP5EI}Fn>C*HTDDt3H({y5B*&K$ zEK{%t^x`<`VD=`I?^z%bHW`!$q?pP~ezCsZ52mjLQ&Vyb-h3$gZ4?d4)6TygtvjG8 zstS_{hdYxk233z_$MN|ozrY0H?>fzVeZ;7Oyg#4A@Zbg&_k+BDXSK_-yeW604Yct5 z?a4R8l&fO*v24FOOoJPqKaE3E&)@A?(N@|&tJ#YD7@{o&ruz>m1%K4Z?1d_N9`ajI zC8R%f$XEIBY%Lu0f@pP2UsO|b1m1c$?(mT%+u$v`y5XC*vxlnc8v*7jW#8!-!J#Q{ zcL(t{`&o;D08gVKU|lgxwt^WPTSQU?p61Z!*Ka;6ZcO^YpqO9kjeaM)vZ973Q?;}S z43F!=%bm=0GTMLoJQ-oCrIJH*WsN731Gozpvyq}!V>o$WNC;GA6&TcH@dDBxbR`FK zB;dXV32$wdcqO^X=41c)_p{$qP;Wwiz=sM7-qK#dLHLkYVfYR5B*3>jisBb9WoHzZ z2O8YsqwF8iRM-~gRVRTI)2|ricA`oY-!vr9PqI4Z*bF z;8ZX*QbfU2O0n?Eat`YTV#?%!iC)MP9ojFCOcDL^aD!ytFZaEXT|iM6GTLqY@^iZM z=4quw`+vBZJy}uLk!p;aqQO;|=6t~_0f#@ioqb=;W-z&1-WWhwx#ig@qFWxGq8W(X zElY%9{rlz z*fQp%?}8N55_BC*+9!3=a*V&_{p@4~6-~7!{*X>QUx3W(@;M9xHJWvTS9HzmlIO0} z_*CAyYtzP9Sa%Kb&9v^Gs;jr+Z>PG(C~60-6vM{bafMJDua_#?c#Tv$=W9!iY3M-s zas(ch+qKt9z;*JtW}+F8`&7Wir-2lc8U8YPT}#5yQt%OP58GY|znkCH2d#q1?Agv~ z5w3RX(o}pr!d00^(JQF^#gJ>Jf?Pqc|3$j~pfI+Vh^tH(6@IR325haig<^g|*LP~< zaZt2=IB()uNb7K{p_PvF7>Wt^*XsXyhssX#CQW#-B>KhN&puU|>1yX79zNT|-b5OlCDU zE92^@<{ONcmT@)XQS2d^$`HT?@+9xfvaaF5d2!c2v)Qf%BirV3uFiZmfrzhUL?oAY zjk8kA@5;NjqkgbSOf8=VDL^gnRB(~4i^IW3wzCQJF22(n01MC_XdhG2wM(5g7?-c) zT8gH_A{f{1RC2l0DTCP)CSZJhO;R4{aR8fyHJVMv(;jziu_C@^W!LTE7FQXt+hSM@ zG;WJw{|LS<#x)r4uIB0;cB@x7KJs{0E!2=~#Nn=r$s0pfOS7IGiff#AJ{y+)dkQ{V z-PJblc+yGBs+5ZNUdpZ%mVPq@x2WOjo_8|Q;H+BXaon{_wJN0dB7Dj!I%LxLiNn&y z*BU-*?D#R0(?+F@o;YDm`U`{c)f%pZ*)EbNGo4gV{?fWL(`kK~q#pX0){;p|r+;bL znXJrAf+oMs>sMZ<0%5V~0R6>|wH>6t*zUYT^cUOhbC~{O1C1l}7a5#Xc`W@X{mEkP zG5U*n$K&)D^A{)Rucrs&V|U4*drsOz=JDAS3lFJOL z6|SI?!<_W~l4$wxhTz#W(6TTbe=xEpEqfih8B}bc`8Dz=l2WZ=b)Ps_t#GOuBnG`; z+}PoZbA1%9Mvx1DjLTlZT^(co{aqco@r7KUmd0Hhy9yKzPct|}f00&*w|4Luv@lwR zf+#yWN^k9uL$q5vjyG{FNA*Fa?ADIrbwLU#n+5AKX?SnSmNNcNnz~MhMYe`Hw1eRn zTe@najvyWQ{?=)@Z!1?V8SLd&uAXRs6vna>Ca}fm6S!5Sl#=+nW-cG@6kDNytgMl( zU9o74v@ErCn*VxhR|Gk~1i!P5L@Tn+x|Y{l@5cCNa}{~&ow;$}~|s-RP1-Y`NPo*Nrgif=Ft7?n&t z(J$lT#Y`Bj4gJ9hMm~q32!^^9CJ=bI{zupvI*2T1R;k}faSdi+Td)swaD74E(t_zM zVulSdO@V4sl6o%C~deDe578&eRKGuAF1yFS_#gMn)TJy>f_4_ z$Qn#J@i|0UH`aD;Htp@2g~mX3)1E_#ks!r%805;Nb5W&nf9Kj+XeP*^ota+cK$ zNFH`(p3h5E7wFLw8ac2+c4i*`a3-Swo;7t*O}t{|tV6g{U)LRVizo+R18sr}0$mJX z1F$MUo9=SE5>}e)w`6N(C-vYEe!%k@CDibt!k)QT$v09$1ZLA2+XuLgsOkqA-Wck< z%fabT=kO45sPpO&yP=LP1?Er(=z=YxBk8@63z_}3Q(R3{^d}S}>md(l=k9}Y4F%?_ z^^ntCZPh=A;7(7uD+Qzco1b#WD5z8rEV6_9O$uXOd9E_SoQM540v%1np&iRsn+-KR zfYi1oSX8N<%T|*BUg|-n1mm@C^NZ=O^=JU(g?TzV4JNZK%mYY0&u(i4lzVz`!Mbas zr?b^*p&B+b81IiC<+@N#&16vE+CZ&ygHd{|^pLi?0n{pG=N$`t(2TTPJ^jbBTuEVQ zALI|4$_zNeq}=*3MZSQ5Hw3eKd=A5WiB7YAXN2T@GCc>bo*&BF{#n`>3)??MzL~b) zf0gULs(z>84cq^kgHzkTI8?O#Q$sDLGHppP&HjOjF3A%edMdLpxrvKkR4X`)ksR2r z!LCSdyx#RIs!F~D7-exW^5etA_e=^7vztDYFu;tT52#f5^^IhDM;;sT+)b|CXdrDl z8_k5LY2D|3AjPE0zjd?g*<5HO_^4fwRAaj<4o!r~)T+ZsM%?ZFCS@ZbLYrqceu{*^{`&jdI6B6lDv5wt|UG$^E7iDWX{100nF17Ks6_6Eo>5I zPJfZprtEcHR0)g)JPt+!UaUz}EeTP~yfoDYb`8lk6_Wg7&a579 z*MTbs)Skn6XV#6j)xw!|Cf`hFw(n)vkv!@s4R1KJbPi6PS#NTS6#s%}=izo88CyC` zj|Mt2wumJ1P+Gx^qW+eLTs>5@9!i2qe9drtB6 z=(Ufzs-uGt#f)mraQ{okT#XbS!L;xlnAvEP_k?Q;pO-2I(Dtqp#n80}ar5nCYpWx7)dRfvCdEWI2ngI(HdOCe1(0}3_ z21uL(yEtJ(I`16T(Z*Ofht=ep=^X06>zbsh`!u}a9A4z$#5pLNaLhp$JZ`!=-J+vo zYviU|cwmP(f~PrjN9VJ2v7_^`K{3B(JM)t30y)FUNDo@GH9h+{U3fofr9}HLe(Y+g zs(D68*KAGP3=x<4nTx#2U7X?IqOA#85`bv45Mpe_wIE zkNSgem|6E=n8G|k{}Gxe;PNuBFR;}I6-X-k6C zJZ%w4FY!c&HqS4K{`2FI&jHEi9%%f|vuBIr>DOJy)jt^hHYWO-F2UcllA`^`esFal zH%0;~R; zs~=yFU|*O1Bm4TCS2cEmf5}MRv=-84TA0>6@-1Lm_{Q=6dHf&Wagn#Zw`+wM_O+EO zgWA{9k<7lp0gZV$`FmG6r3RVa&xo$ssiAT4s;y}Lfq7lyX%1~(XNcbN=Jhrp+cYnK z{rj#Zih7liZev=vbm3jmN{RNj`rCDjM9om9bw|W`6!&OF%{_{mBs>&lDz2iRy1qhr ztDjjD!r$eQ%&veS-e#FCUt^NULo_U~fGx>Q49lNCxBFcM)g1*)iFGFDyf!^IE|Aw< z4>gA0m_5}Ug*WGQFXK^yVHD5_=Bs`9z*CezFm7H+kUWaFj)An97S_>^d<$5Ie@cEg z2|O7Z-Y|?Q9Gn_P>L}4L$dv^59))3)<7p0U7!IO&ykTtDC^qK5{M!q-%PZ)0NTkKw zmw%M_DA;zq_ok~nJbeTtUmT0Et1>=kPIC4mNM?A z6m<-v-NsQHx3rDaN{RLlFX!H)sB=g)lC7nt)H~@?58zf-aMxDU6$~fu|MUz%tolF0 zM~nTR9;5C0KN8-G76OJTlH8#G(+}^xomCW{ujuY?HPmQT$$bgEP1T39r8hu|shNga zCo@~}J7V3_RrDdqs?CnDnT5+RnZgMj>(9aOS)cSnut*=+3 z#S_M}$yT*y{xu8N%w02+Jcf3QY~f1h>SpT%pSN^}DJXm_X{zBmSXpsTxR0x(1$5~b zO#VKn8w8{mlg*&T@UYhISyr0B>KWebB+Zm9I?j0V{Qq`PK%^3b=7ThhZ6p5@5}Z&*|hI zY{jR$o!lF&Rs%gr?qkI*cH6Oyr7Qv(8%x z=M9?B0vF8lX;s{1P zo?QhBzfK#%Y>oaRdL-_`G-JFB$57kB3tG1hqzLu8php;xH0gE5m}> zy7Q&s?hB|kOr}d@N@YBEp1UkAR6wZ=$}J=*m#y#&%0_wo(?^g_C3*su#a#1;Bi-{* z2bj#9lzWu>Y4wS5SRL(l@F;fCX7>Nql{pASo7GXZDIkwX*B$GaDxrSKb#OUitcT}4dc z>u-$B9;e-SG6TSXda>t~znb8lrDl)AsS^nmZjez6hd1bfjWRF0qws}7!%N~L1ssKN z9Z$LZxORF<^>xQ`N1_)YhPBBpZIk|XoFjCb{0k<#^DF2aESNE(;LGl*=mVI{>N_W` zucRitQ}*@Ir@ATyF%F7|xdpiQ^$u(R+xu$b^;ge+g;|)MuFh~DM0v&oqhsq21z-y6 zXyh5Mtv_&i8TDOfxD!#d2#BN^jXp*iK9b=cf}dZX9LZNk6&sMLKVt@)$qLc;!zPY5 z-7eV8W|CP^<1NH%Z+aA%?Y^n1Pcgi{b8OC_qBVdKRF*(3E)M3Uz`UY4Zqql#4g^gF zJI&0dCI;IuBQm}py;zeW!C7+k~s84C_hgE4WM-5->zNDyb$m(qs3rFB3neG@M>JGtpKtI_03TrTl zA-`Cp>rGTl*!=p|czy(OlG0~{E@3w882Ls@&^Nzse$E{crhcj6jUmYA9Gnh8PK_7m z|HvDNBiv=le5`y7VoQQK26uQ0I{|0B;Et7`&b&anVsAkd>xwzHxu>ZFRbjh(EstWcmHK%(Y%0CgP2ch^${A0Fz zrAkn9T<&%}%9K$Bh%%~q&h1X+0YWUB7fgWM!9l47Yv>Zr*4Zit+veMLBJbr|(?(i& zxt8P`vv{_=-q`0}sHlT9ykYYFIXE@>rzVOf-;x}SBQG!JkvlnCGE652OkR%gkK66e z2t$h?(}mv5hG5qEllQsjlKpECW%kWB!(^(0VI(7t`5`QtM+hR^6kN|g5#jb=5z_aR z)DwaTk8(2Lmu(J_Z>9*l_}#xN>SqBF&b{mE7{Q^b1m6gf;Gu~Y3j=ad=w8wk9*9u3 zh>kfN$)VS&@=Oxf1;QpVf{k@5%=T$7?Y4cwx-*`r)n6P7$L@>1M%dZMTLqORc>}s{ zv3gZ%lDKm_Y?9sNyo5fplNZ!UljJ6yH2;>v?mG%%kVH1)ipFx_?%Y3zp32+&Kv^Jw--zJK>jBACQUp*IC(%tA;Nm$_6xSLip)cAFYl@V~ zK*&b(kG|u6N&+afct~y>5jU&`Dk4RlcXyJb;?UzVz{v~lcpktMp-{XhAFgrHJsdTJ zD5ecpFS`4wL>TO3DMu26X1?q8piV)kvGqJ_a?#xQc4|Z^zDhwe4oWnGjW`d#@1BB& z!lIe@$G{ZEzoC=y?GM~-_`HILJ`!BZKk?9SaPEo)S+>J;-DEzAc1_SVJvn!NSyz}hl<0|p4GWfhbf{LX*&hy zJnl(BZQ&Q@cE$`#YmWNEWM(!5@P1`aJqch%m8WyzJvH-JMx$k@*Q$7;c@%rnYsLJ6 zF=&nmh@|Zy+QWt^ZSeMvDb?_{7*84e>bv<0@THKeLDSGGu>h5{b9XgQWj-$>?8e!Y zn#dsn!bpv{+n1AMZQS-UY2&LRf>zP1hUZzn3QE+v7fJrNW%-k9ddL$k@C$4HCosie z^W0jVs(fD7{MpVSUC|FxKyA+?3BU{of5}isX*l4T#Ht~vI8_DK zfEfu0r&uHiMzKiHFbG8>0p)L=1Wzr#apOMqR9*Mfuv(}S1Q|TLnc(Tp=MTtZpe+B7 z^*zn`{EYag8+dA>u`<9H^b1D@10*)|JdNhb0PGkC2cR*gyy-Zm>eseIGuO_@u1xgI zKpSD9tS)AlJ76-Se&bXvo^b$LSFBmr3`t!epn>Ii*cvk^kzZ^J)I9zn0&`dPsi}NK zdy_WPBBGrj-^_@X*3{Ea{htQcf?3B14oqX&nWUzY_rHaAjQ;I@{8Fwc|y5KP7!}{ z56=PxeF3s+^OoPj6vo3ZbRKefO&9r+@8fBYA~Jx;7!OI|AN29;=kp3) z^evr-kS@)OmU_lB8C8OX(&--HfKSPwY=N?VU(blh1{C@^S@s^VCjB~&@9XJPirdeU zC>CAR^tWg9q7yQ-70Gyz*W@~8E0VYRc~aD*4BWFnIpEU;WMoU+pwP2=p&dgP>fbQH z6HaEHZAv?*mzH8*8eK31JTnO6*iCM`Ddqohkf*nT=D-@6SeL*QD%MDv$LQi+#PMTO z%i_{0#E3YoU@GS&vXTcd*fNvVOGq^DhdxJw$m$)}Wbcvn}i`Zq`c5}K6#4cMz(iNWC(DP+KWr*`-Hvz>U zaz(H3+)>ns=`;ie?V~mA;5%Jx;nSJ0qWzm!d4{NJ+36u-)D01rvDR~$>{(_wd5ros z0I`Zuxu=W!Xm9F*Q1IT2>Cs@5xrD9a(CdMPaF-VXJ83hBG0wcNxj*5LmCik*@s8=7 zDFHluqGyIWJ(K_x{r#D#x&ZL-NuH}}Rw(}G6=82oCQfRz4f_iO5LWD;M9|b8lBbLI z@XU0(F2V!I0z^tlZaQOHZkp!>CGr$yv$6e2yW6e84o`J-5u}6j?x&{X(bGLs5rk>m zL=G-W8Hm0TP)RBQoSor0!~=wYRZ3?RY$yv@{$jH{u?qSdmde85z3F((Y)=hz4}M`W zmNg@4hDj7{Jh@J6I(E+SRN(<+4stlEB+I*bu4j#qmmfWpku(`N-;mtL(ephEQ9D>S z+fUF2qyYWD(|LC}fBXW^IVG|e%%KUa#v)H`GytTV0%O^Y$P$O664T4BTj(i@Z!Yo_ z5Q@58Y(Yg_b1|7G7$Yr8?KK1MTI^|rU<&duhhPG}qtrf2``DQ4dDF(cIqvxzTHk1_l>8u&06%y_LYm+BIQRjw|Lb8Cv z-YuSe>Pj0S3=1Hvgpf|q)GB(<6s@B3OuN`7;jt(YF#MI|1`;7>jJoVD>L0VsGhc~3 zOt~(JbZ>%m;5cb^!*O20g&g0O#98idBk()hJcsd$ot^>+7Km9a`A8@#Nj*%sK(_3I zd8Y|F=lGVBnu2Zv;By$B%FwoHytbLA;O+_9c84~~!p;4v5gCEI-8@&#@5=Ug6}9Lr z<|Pe37c~pQsYLGwN%Ys5kI2u>w<5Zg)@b#wj+i|o*PLrLzl_p^d(gRQlBcPpw>PqJ}rzLVXTSbWn-GipK-5@F_Lh!YkNP zAnpCwB9cz7i}q|6p69%N7quJA!{RvC{wLFOoimsu8xC!O%jQ>Qa_*!YRlx5Jap1*-?Xkq?(X<7tGiA9Pni|AXpiu`lV1+2X#W zQ?u=yq=Yz;6`&^~$qiWXwdSfSp7Xq}qR2VK^b9{I%)nlg_yKL7&#()gCJHJ8v1B$e z7Qc7V^Ej#mli8Fa&1kr}TR6UU*J8L(kAb=HmJ6PbaF_Qyk$h3YIPM2oGw7xg|99_s z-d9i)Sf4<`4NL4(A9^Y(sJ#vLmK1x*a{%>)C^lB^15!+1=8yQ;vqV9|z(*|{9Q}kY zWWr=NGcat9w&cM9$jWLjG*6Z{<}*?XmsfD)zv>k5t&=%&K8NVY@A1aN`giojT*ZT< zj)J+_Y}!hT?%huEE#Sv-?cCl<{-c*Y1;Ui$tPI1KAK{9i{R!V3u|KhMj)gO~r9$e= zZ4pTk{4<%Mo%s)QL}&iJK{jyaO0<9bRZnqpL(JR|L)pUmd!OoD#=K~J7I}O6pZ~^F zlU%MgH-z^#9vKdRPZsc2!35k5U%uxlfIAfQmel?^@GVcITA7t6ck2}b?XYs|f6o!! z`uDn&g50`<=b|qIZe5Za__ElCl~8X&CEo?_q48GY)-RvPhcEv?+QwfayC)Zo&$D>W1eS!nAeJkAq=eU0r%S{^8v~BF}8%20E)R zGZi-H6ZS$b37p=oaauceqq%_lw}}f-&uN7iKHxN02K522&J}&Y?zxZ12Ry|S9oh%{ z9;9Kv7Hu)!xktT>Vh!Mwo_ z)EF6T@M{ZthodRvYbZ0HI8QY5f%E>QnS2aNsUK;0!{|TY;MC}k%@d9OwRw-o=oj)t zhc&51aw*I%y{{PpAzV%^QKQf5*!!@=A8~Eyh z$MfMaMZAshtfS-r$vl!Tl&Q}qN7@H%dIDYQWL$eVeEz>Q^^g(W-?x~zzKV9y=0WQQ z8$EI))~&5=l_}{hpr8XH7IX)8OR!AOg3hr7k`Nif9Px9){+$()ET4{`r z74(|hUK-L?S`4ic$TvE)@*k_@9TcYYU`WHScIAN7uQpvE`qhL57Jk*X?a~32Eh6ax zPi<(wI&*>OS2J{C=^h`jDAlTqw-%1B?)^$xN69aX=aih@TIwn<>5^Nm6%>sxG$&)K zPiuH9D~gL^o8WDW=9H9TKNqpnYI%QC{1hd3vsVKED>u7hf#_y4bZG>+SqX1#`cabH zpd0c1!%E`YAW2-+7#QSc7q0&DNH{KEm$=#Q-Y0JMKGZ;qfz#auqMN z+^i%w9XM@1lwHnWIl)Ud##LPie1otT;P?N?)bH~w*G!!}L#{lDl}eha&z-ltO$2R< zg{8M3-vW~;{<96eTU2ErLmTGak3&;)Z?{l1_ZABuk-6vNpJoni?n@Sm=DyINSYqx2 zT6sI;o7KJKCDdl#Wy*HS2phvMq(APuRVy;uPYgdpQT8$Z;S1rO22z_ZF2FFc`6`&y z-38yQ<$av~>PIHAs0i2H++JVW+bS0*!^#b8S}3}Kg}RjfU)?~(hn3JzK@z&Du`}2W z;6YD%Tj4u1i3{~Nx`3Mt|D_86gDSZTAgy9ixCTxh-n%Fs)6TmD)uU~N z-7e5|iqqxDmnNG@;d2=FY}D6)XS?PK=$qwT7x61&Nsw{EpsEA;W;%m*9lTXkb-0E% zyulC-PQ5|*MWQ$8u;>wagC}^RLwkeOi$rg*!XTOR27VI!3n^+2qupj1ti3Khk5-Bn z`SBOsyo2$r@zW!5r<&x3G4ju`>LF6I?aEjeu_)#gZgwFK=|(MYWz2r<>EVr3&#|K9 z6E3|2rC7Oz>_wtmSfPvS|J5z@dstE34-(Z~jmbf7;Z5u=LOeo|#i2byp~a#{xVz|4 zc?9x!^S3*S;)&0AQ>=zMKRn}g+Fw$W1S^zrq%cI)fCG8~!c* zy!BKx2z+Em4Z!Gcq^>ux0Bxkxf1tOsf<}p0;KD{ru=0TmEZuA#`Ndr3L|#R1H`(1; zUAma}UW;ivEV?oa$T#M_h$&a~-%a-BRn?su-tb=AI5_oQS&NzX0(assz!!UZt?yv6 zr9nD?u|*^;;HlPT!_sHOsuu*(&v9+%Cm>H7q_ZszMTUCogsI>2q<_P~De3P9k$#$z zE_s*1mV$pk^D3U^(0;qf647rLT4D+t4BBo@CWE$5#(0b3Eu%;;Zr~_y54Gl!5cA<1 zbOo-al^Kl-P4)KFOBwCmsx~9F+xqSo!~&L2BON-@jDBho!^)j?b^vDOtSc`Oopqrl zT5Jt+))Erm_>ru~wj%kY$_Q#`PHSk2yKb4DH^Q93t%{>Y5XbrdYLp*7EHlPPnK4phhIqP& zILkcB+RJ0N=eaS2nI0SSkYW?hTOHJj#e95aLHZ0&(4ZSaE$U z71xKBy8Fe+aJ+Fb(cPC$6GwXU0d)5VsqTKr7-#tgkR(!waRm&DCAmRdxx)s<{vDa# zTM8<@lvtb5dle?g?(0J3i<6Ct`5cDzl9E}MGAu8_n1^Lz>N%?8XHSv|vW7S+1I&dd z(6(4~E91#Gvs?MUW!^HX(v`uDUS$%8rd_K>OT{s9{8EcCu`L1rpl?->CpmQADr2eG zx0(VdHv3lo3#+_`6=gLg-DXa#SYGWWo)ual(f-0~y_HqPL18xY;4va>5B53~IOoz;FC zmjYaVnqw2s2*$(A4i3LAZrywS@*O(9?tP~RseqBw=3Ng#z*R>->D@0RS9QUoK6dv=2H!+~DPvX&Uc%M`! zliF=H^^jN|(bOt<)(N8iL{lqkzYf1iCX5%cqU1VzGEj<@&JM~Fb+-MZ5Z9@P71ygl z;(EzaX9u3lhcix-zH_;WL}|}HfYP1{Qredu1sC3ZST5WR;==EiN?QwGxInaJlM%^` zW&dVC2R1s$J8F32hu--iRw_uBjIMWdz2se2+~Ua~_LLMG${SBfv3~?VCADuEp7M#e zq1t@{-t!6B$#!O%_JGuWax#=WAf@h^gXQp2wTg5WdTeII@ zn%{gU>J2IncGB}r`ing^@D}~W?kRhl{$giDPtjlOfb(hki*0N>Lw=P=XZzpI(nPkL zdyf9f?kgr_%C0Nn!aXg zLA+#uJF@U)+C0{groTvcReU{)&!DO5Z3?2JZ~5y{a)|bNRD
    rupVvr=upUpPo1 z-`F_)_A>T*l>h1Py|I}pXdWOhmATR(e~)Kbgw!XLahcof}@SI%s^ z{=5{dnyrW73Oh2|hc#awzRr``0kwn`u)ABDF4tZ~GE35*j0!F(<)$|o^?)U?J6>+x z^tMI)U^3f6*kd_6YY&=OP#b7-1=HKi{N-RZe4r9TLd zIe<`m5v}$U4^aEPyWaK+`h}||z_&kPGUMAX%dvW&Y!c-FwDvM4?Zvd(ZxQgMl;pLi z9>WJCo=C)F4=MSJ+cBc_U)~7{D*rq%ASRK@Fom_E{PSzu`)2Z4X(I}ojnLn-DvfWC z_r>F}eFsI^*6mPy(F%GB)&2!}0bHR>zhYOs;j+GI6}c-JYl#jZ2mAokVdffF(24PJ}5;wc}Q3Cw#fQ>~Vt* zvbUfc5Kw4dbp}MqUvSuZ!^FY<$ zDKwMi1MTsvLg7;^@Ij{-IC+^J5^s!eGujQg&aV0JffUoS4a*@!MnK{S$+s zz!iWo0W91k2;ZvW%R;|$B#;0ADp+J&0q`~Q3Ji{A5p6WrbjU?ioz%iB`E5c4SAup4 zgD*tBkrMQiV{cdYH6u4NYj|URyDEgQ9J;-UvQnJhMk}?I1o`x~EdkQ$ZCgag9k^B7 zQAO~3b$l}_$d%7v&RFdcvrTcn6f}U6p?BZ4o^)T3VsgkoGTt{!#h;hZbd3eK5(&Q1 zXadNNSzqyk1Ya+_p`;Jt2K9Y40}$46eZIbLH(CNA)Is4k(xn3{Ehh18DKOOtSdJ~C<3*0<&~x~?R*5qg$|{{=ZVulc z+1^(`QOe=lm3`XMAb6w0^v@q@k}Iv15$)gF!M9FPYEx7^?z(G3MJehskHWrAzF!ow z4TFNlzP~G`oOu}0tm|#np^Xh;JAl->`mS?S>8U#ZQ)%Rzl=SuD!LCve=Yp zJsF#S(%8H}mngWWp0;8Gp8MXkn&hQ!UyGs%O(pFZ*JN24Ht(%GNY*OKdQ(-T&ADUS zoIbdDH(&FrvX%^=SZ4yc_1n1on>Jp{UBx=Lb~m_IqdSB;{%tfYppKuvI=w2G%bd&9 zu?;@_#o}<3KX5X1#J|uq*8tyq?8{@l#<*@a=(wSr=t91DiJsi zW7eNve}m_y;TJx5#&=Xv!tlx-K6p0SL=+Jbk^Oy*6{QG8G{MpNrk4O`W=vSQ04yMe z+oxv705SX!CpFZ0#h1wN$>Vo5SJF*< zRT;jC1g}k?Wu*94qYOZtc1)K%!H^3#PxU3BdGH$><7BMX#yG*Kl7q?EaE%BEBN_3^ zm-3h5>tUnGu63PlP&P!c(IlyYU1e!%OA84FEciv^6(?r3R9+9kfmRZ{HWGS&h%aAW zc05GQ4;L{hTdhd>-^OWRf`* zcn>C1@r03#cx8n)rFaDGwgH+Z*|+I|m3TVut;{#pDz4$j02S7lRwH&}%93wHm)SyY zRXlQnZ;aYRgBwGDL=H{+ZLw>_F+kZh7X3CkS9Q}h`)vgq5H6q0+8pZsQ z(~EO`GjXFSzE=3c9bXkR9nx&Ect3TGxOktk#?C`ZSYhKKCAq1GtU1m15z3~mGe$F} zI_`$a%v)ry!N)UvBX|It2R$mw`~7rZbw014xvTyo&0Wt+(R@qkTS0TLLOBRSjw|FF z)7<#47gxh6vwS1f$JTP2v+i?fs=40>Y3`LrrMcUAnnP=D^|hkrR$0p^4$|DOQA_eA z;Ib_Awb@!xU#qPBf7jOv3w(Pk$fLdP1d?jvi-pLvkGjw|t+;$dk5?}AeS&6D8V#*y zXS}9^6qA1cCyRXNRFnliYH@W>t#@+ck28I>&>HxSSxVMgoV=76K8Iq%|5uj!o{>tX^N^EKyup0K!KuN#yH<4dr*)-~Pxsi8AocgQh@|s8(dJ$2 z#nCiIf*wXA$IVNid17v-7&DPjlNM zlD?)y-|UEW9}zWfdMVZX=iDQ6>*V>19_i?d<7>=`2A%f)>qM9Fj7ECEWn9@fy`&P2 z<9jce6WUcfyK?kExoC<3|BDs{O)G0BFLa5 zE7!1zqeiZol>S)W#~w>(hhFqNrfQI1Y|!v6Fv@?(Y-bR&cNlucO$p&~JAH4ehncd^gndjJb`)t5ZzuUm|uuwl7=#g2CWsHxrRtf4cR+ zI;#QT{&nKC&<-ncydW1x?vcq8)22R{JZ|&ycu3cnUnMd$C&DdaD>w&J9M9eAYXuHQ z6~VfT0HWjeoUHTthHKYC=koc+sdX@QKQ`hlq%*jtR&ccc51+5EqPE1+{b8nHN(eZ7 zW|!|HwJU?kMOh($;6w?itwyP>i=(G3D+6X!ieS6wFY!=fZxw7wm*fW1DwXlE&!!gj zzqH5KTtzbpLjtx-UV@Fqd5Y(>LJMIs3&}GvKJ=2W5)UxC+@7g+hc@l}fJ*1A-=XI2wZf;p+F*)7LRLQ*S?;LHWRSYNJ zNY(m^%?q#js;TPt8s3Ox-*9ji!?762PUC+U$-r=pXN%Ep!_7Xy6K!FbAc7THFGjFJ z>w_(mM6gYVeY@3~>qA&!dtG?dv_hi&=Z=uQ8EP|9i)2T!X@y+`98NptTcaj1nA{3` z2N0YU0@5n47aeM$^%nE&5~hmA_rN0P_pl}cf)3N>8Qq3fr+mri zO_;*G&f)d={wd!YKCj>shW|${VGJ)C%_Yz`9DZbaZMuYOkgvip_*?Rgxdalqs^V4W zd=9+uobQmDX9G7D4%+}k!`>3Pxn6V&-|G5U1J8}kh^}e&x8z*ajoj?uKCn(s;|UM# z7UDLDZlM;ThmbAN$rmpAp1_Ur-{&bmW=f`gl zXZZ)D*+M&i3)0RnADMPK@$FiLi~7T^_zEj1b|cVEHiK9brZB~f-H0##&-WIeS8$zP zd&Lax$(LO9!qSmuvFIf zT=l)LCz=G4S!JU(;#SvudwGCR+3T{(*ml2J*U9|WGFT`(1#Y(UpajZ{>LEL!$9dHz z_S{+Z60vnzZw4C|ZHGnw(?Py5Q)Y8W?i;?$Jn9JzZ}dNpa&T(OIUAWNgIfp45$N+i z$?ZD-b)5N#CpWYu|F}_%GuJeVgDrXW7jNdn?u(@BlQD%@bJ!-pH4AHgY!iz$;DE|C z$_RSHl6+BB!Vj?@_`t#D3NvT?!d>4^RGT)|h&4>D$K3OEM-5;yQ|sEBaM?e7-FSeY z*562UQ?sEz{`7sMpw6&VW~;qn3ah8{CjYX(ea{M+1>fv8+LOS)7S5@OS__EQxaCbHze->; zisba?>tSmexr^q!hI&C1qoY8voQ)LaEk+83m0`0#nhsG$>zXysi538Sf3%Q<6~J^K z*ohU#x9gCTbmvRtyl%Bt^g_uT4_XIX$+nAcg(m#5Wq+620=4em)D7f1!xX2qg>8(6`h1w*0{4Ug)#NyX8clgPBNdD z=}4=XobKqd3~(bRXDbh2h2N6p?NBMF2A9`Aw^9x{wW4kT_Q90mc5Kcel{9D1<2eov z!JdQ$+Zv)JWCIz4!69Uf$yxG?P0d%~AB|`3ncmv2*4z?s&+KKxYP78u{<$*wX8LDG z)tr2})F(B(;h&%2;IyMsdy6>csJun@<*ZjfVKBMrWCjpcrt{KP(R8+Kwd+z!jNze8$Nxk7 zoH`21`vR~XVcfpvKT_|Fyr|iQz_Bj`G@FIP7}^dC)hNKfJmL$^fWX?@Ai#QOq1wqa{&9x8a+ zm;NJFe4UCV8kg>$^Gt=o4N`_Qs8_dMYD#jwgoMF^6YJMaOKX%cBsn>?enLu$KdQ&f zvAN2}HAt>ox51El_2Ux~8q{l;n2?xUe{f1_N?gO#)VlTY_C_;{`r|rfW+~-UQYbPd zHLiX_!jK_#lN+Tqs5d0F!H|Ro_2Uv#wVW;Y&;Lk?4pDOozBV|gR|Wf;6Y%Y|GwR@F zX*q=|q%^8W{)^Lfyebk{giSFbS#ggX<|`rVy+oYcVSZ8nw&M$ZO8JJ#Y00UH4eK^)kP@Fzw?T4B zT4Gvi!{mkyQW_>SOz_{%nRisFU|(qiynXGAxabg-4yIJZ;pbQ8RIHGYmX?^3+9*Db zG%KM|LULk*)a1HpL+UkX5LZ8~UVYrE=d7as=o0h$<*Ja-pi!gx_3GD4j;|Y+kU}>9 zBqyde9Gsd~e{g(4T4JjIO66Hcl=Ah+2BFlHl!guKr6nXJHmpx_H%J&#FD@=MHEr+^ z|K4#cjwsO~YW+X%nvgOzq#1NMp*`G0sXJjpQ%zkssbow|Nz|p7 zO{vBtbE?H`(3|yIoz|R^WHeaO^}F*ubd_+Z359$=zMAuX)P!_ylK&wx80tdHU3sPCW)#{R^j&t?i$2T2tNrP0@`xQ>#b#rz{c0pZl-@xpx}tPuc!cHgP8S zzg9LA8g_cBz@J@(Jz3vD5fTo1@HK{fRG8rxQ18&n^ywdIBSi2XytK#`p!PZ%ij zAMY?wKdeHxHrV3%m*%5J8*L3szXvCGXGNgB!IvWW5sT57jkZ{R-g1<+(bk#&W)=E% zqpeHo58y$hr@aK%aMROp{q(dESH2bo6TMl?(l9jd;Im=qi*2@QX!TZ`z{AS*!HIQMLg~%g zVu;!3+*aFkp|e-hlRtc+G$*!=+%e)zWeaKMb8&6H*C%zsokI=bhpnkrd|htT+C0pfG2y(^iTTey5O<00ZH_P&ppKe2DX~ zd~`=#FGp2ppFOtM1BJ2~kV`b=&T6uk946P3qJPuK#I58O`(dwMs7`~DwE~xG8!trA z*}3gjcS4nfkE^4bxwh^B0D>Y@Dpy6HUwf}Sx>WB44XSX+Rtdd-$d($=917!`1k~iK zXQ0xDZ4223@QQ-!Tab8_m+9N}bDNu^Hb-n}LN~e(B>G1eD#x260?N7@QpIUFY8$}| z{iv#l9Mya|!};jAtt>CROcyD7R6*RHn}>@IEo)AzjtL5I&jMNy0Do> zO|HCbpmJmw=d9DVQyhOJ10|ldRjsaGDF}ruty|N%{;cgtK=3gd5BZd|WX;C9f{V(= zkyfNHNyjo!l}ol3Do|+bC0k?RnkrZTG=i?*o>of*jH<*IE6rv~@M7dE31>I)7Hy9Q>HW(oPWL5X@DaU5yJih?!yx~*?Oa14bx z2<0Y~(JZ-XtH)c`p!zp$^@SExF%BNm5FP9r(2|c`gWw>Ze(^v)sOphGutH_uN=Z!~ zJ~VOgutjMd*94&l`ITFvPPc5es>l)*F7_m54SMUA%`DI@i=p1m-m+~#6LM|kc(5kq z3r_x5wpkEcLU+g(iiY2|<)Pb$Y;}0R@bVp7Ulk1J@7OL1;}w1Gi1=@8SspYezOg+H zm<3%V#sW}%b=TIBMWs+8sox9-GrqN*64ucT;q5bu?HV<<_t{v@`S?5VdHC(XKghgp? zOvGKV?xWJWh&exFQ-60gn)1-rG5{c)S*BMyayW(NZw|gT3712h1q_ooDs2|rSedXW zTEs&@3o*ug{3i};Ni6=e7XMj|{~X5!NARD~_|HiEX9@nZ5dOTKHitqtBMqZUCun96 z6zKro4`*T683b;I?D&z^iD@FOlN4!PTiiOaucUP{oTT+3p4QW5ufZX!$EwNwX)mYvG_*)tbu=djz)fBLdIEDR0Y^#dx!Kx9D4*|k4H?A-(2S}R5Y9Zh2(Gwg`9ViZuh6H@R)1{01h2!|Ey zKk&2GqLEeY4~022CTtd}$QY#fgdaiG=(X{o)2XU59}y0Si8_bco&4Ih=y9lBE3Bs~ zidRDWRktS#HaeSp>RP`R)vjTGp9R1Mjp~FnC1gB7C&tyZPv`U3qQF}AnSzUMO+lCx zg78GiIGsal+c$8+O&S?F9?)*eM6K{GolPjZxfbPx**mZR)FoYr(cVdA5-VNHcjbT(mP>vd>eJ$rK&V9Mo!D739rV5IPp8o-b!yIBQ5lVy(- z2CD(|tZ#3{0?1t&rv}ibfxR^gK)OU)n5_oTu%TVY0^o72Cl66`Z+?*>k^&#DUnkpV zDpsTnuk(f%7yG3e*>7_EP6AI&+hH=ONd;7Q4u$dFp&}XiAfY0icbeF>oRCKoO_*0{ z?U+`=DLR{sXWlw=rI|fR1pq>@ScID@085(N-(u@4c-KKBfax5bVkF-ESrYF$dBcmL zQX+KrLY@y^uW)&&VUyxjsx(c4MurhkaW{(!8Y%PsMenAiVJGm-N`imY2fWu@$@b8r z*{ENveUZ?0J*CHZ$y2X0l_Q&XNRi3-jpAvNnvB&!&=+R=$HG7g9f>R{yg}z+!3cml zB)lYB7q5P0ZjBPDrJE9kd_uj9Z#aH3Jy0aPqzwADH>kP^q>+1*J_SgZFTIlJkE_=1`R)H>C<6>)BBvb-^hX1u@{`-uCtvg|F!`C1Ugyl_N971G}VHjHnsNKge<=`^B({Tp2W9 zYY!{F856icZcRA^9F)mJ(65tyI0pxpFt}#~!Wd{g0%bQSM}XVl#j#PUiWA z=)Mv9D#s!4ge4#`83t}&9L3U|!1SE`D&I|{yZ9`z7?r^Ju&aGpIqpr2=Q%2tp{zLD zM8z4rp*V&>ZsYOIsXLab8}O34MfK-!17aKi`Dw~-8@x`0P%#C%;QmUB0)%4=G+E^&DH zHC{5j%_Hy>pmFD#~6AqUD^L1z;VErx~$ zu8yZhY=8=8VhqGUd3;t$T}xC!Ai96Hx9v?z^SK0pbr@&AkL~%KFq1+k?yr)KmxXjTVfoC>=6kh=A)c~rk0G2Z?$lF{_HGoPh z?Ne9)#Tea{#)zg#+zt<0WxvJ=g)~-qAL$&OO~@(SjB+#VV^{!kGeWy&WxQ}l4WRT| z`z96u9K|Sfb*;Uv@VgQq0J?%kJo{oD7J~HY&^mh$A$SX=C!RhHUT+`C0w~u@)HO!zTSRy^UO=uP%je1Zt>Sqpb#ps}fn-J-P4 zFfD`u8MY4vv>1+uCEzh#oWdRf# zT0y$;P4`ID&~Dr9Z}7rx8mrvceL9;oc6$qYeW!i1F93e4k{$r~bQh>1(}F^MJR#ob z-u)Hz31u&5i&6w(fVf8J!4}H5X@Gm_Lwo8$nXElmI(09DnqC{%ifd0$cr>Ujg8@rZ zldVb(s<+jL%gmDL=?HWQ@59Q z9Xa-@Ww|*759&R9nn`uvB3hENnOl8rE6vy{ZYzz(%_z5(-rVZtXH(lsgK@7ts#0R8 zN|l|9gh)yWO5oU`VvdEpxVU3^KMcze8K&G;(td7l6Tn@?X#8v|jg)$HNkpPS`=4F2 z!a1E?K+(oM~^?^CF?nUhi;Gh&^^VjQ$iX$c2DX~tv+kdS_N-K~JtV+WZyP&xC*aQbFh1R&tl0SM;>IU%{9qB>V|Y>-Xl!_%vndTv zH`~8Cb#L|}yeGdzLGwbU*Q~{vN7L*aP-^^ij?ZL?wlUzC=%rpn&$InKYfEj)__ww@ zS$a#}ptxXDZcv=1NR}^)I$!>ueKf~^PiXhLEh;N|wj{ClL@XL-@0<3^93NoE+kIZK zZDqK_O1O1j*&&c>6#_?J7nMQsi$Q#ugu6E7b~ELjgB~6I6mSSW(uF#kRB_bfoz<&2I`I4$fI` zxdXBYJLzn^CJe?E0Xun$yAK-JX}ku#Uc;eB5w#q_EEdJ8biTwp+RT&hN6y`~9J@K8 zfNo0Rw=GnGeHtRsz%a)hU;BIm!W~({J-T(W&v%!~k);??c;S|?3g74UVzD~RE{y}8 z7cZSjjWDK<+V|Wd(MQ9J-`3vjJw6OQ>^;5-Dy-|MiN@A-j1#IVF;QO*Y$}*2PEn2z z-Ih0f+f~8{T*Hw;beXJ*$KcNRm<*dhnMcK=ot^4C&TxD;5#BQyc45HroM6Z#nnT4s zY=TCHI_mIgUIBLfk|3|GpP1-_EYT%K*?Rey2+mSg)yJB~j|y7#&wRq53ve5+dkq zLPGUz=vu5Ji3Nb?x1-R(pE@-WbV`5#z>I9E<0DxJ!livf%CrzVC?R-g;)=zQtpY$k zG`ye&(65DKJPV-M#`{u*0e{8N+-7x-#Aq46jkPgja1VXhn0KH|wlUGI9ba(#ViDeB zV-_&r*v3rUrktJM+2+IVRF_le54(TU$S(2WC`Dcw@`2(pAP)>0+tD$Z{}npce4V>{b#)l$FFhTPIAH*VkouxHh|VU)XFwL(+sCoO7r+=bfZBZ>%~=3) zgZACNjz5H%Gyu6pclde7CLWp@`hue=3xzG#l9#6G%F{5OUiEp=VP&f;>~B+PoM=9X z9#h+w0CYEvRN-vJsDYBJG+kbH^x^ZeP^Gr6aC9vruZiHM@sQ3HWT7^%I64ajbP4WU zRasxOQVXAFp~&{@+E=5h%HvCJ+BlP5bsXV@pQ#%70%-#OeHMDZpW{>Ed%8r?j81Ci zJHO4~izJkT=;<5HICZW54G(xK`l`h`g7z)~J*Sl1X0JOc41hbt(5 zlj%CUV=&l5ISC1#lk7<1`57$bA2Q&W@{wMY58m!$+VV@nUm*G=mgthFt?k>D(^jU3 zWH#WWYhZpT8u!h{#;Ds+M+BO?YE=-@?p+m(E_}05SDaUs&m-LNGqd%V)ZsI+9SzF8 zyK#t!VB6|d_0X_yH})(3Zz$3(87J_Up_hK0=@cc>N<$s{`MU&6ed-%l4B>0)JGxyt z^<_!|tnOH=jHS}CrrZye+Td7w)b<^A9EtFLQEy!oAMq)xwsk)Bt+q9xtXOSP`|Xa; zd5Z|{(OMG&jb%6TQ>E6{{Pge1F16L?pXMo;X78;&nf5mnw5Kq=XBF2f(yrXI#uc;W@-tH+pS>SPCty>E;3H>?G#--`#6 zCOG}*`6;P?MIu5CvK@1L;0&JTumtco$pHA-|GTOLzIMXV7q@?f=YJx=>RSDEF&v}S z)VR6iapU)T3Hx@xgO;g2Xiu~Im(Pxx*VdG}ia2}Cbv)#SMms2>QMgOLQHYBLi>!1{ zE^yrB1TzgQFV@@A*~FzW?{JP=?1)xC5a-do1eT|LXb9pwUP6v{c=HbBdGS9~dPGF^ zNr`Uqv10=~9YnWBI{xSrhh7*%XXB0sKt;52Wo#W42y$q~NWNi+o2yx*xmPL>jz! z5sAh*#OCP1@h?Cteq9`c0uD8II1chD1Wer+wkn2Tj3ITStj$iPixa)mYu2Jx_pHDX ziTKMdPDgeei14*|7hIgBqVN=-dS48T@+Eu=sF8>kU7Rdd_8bf}mc3;=m9n>B=iigP zCw6gqVVZroIE41=3fiwSy=PsVOCs$`7pKK8N2{{@pF}Ri`_QUiGhdd3Yjh^hVV?ci#1j;yL`(_6DT9biqTvrcsJbw z_ymH;kLqSfo$4lH(Kx}S$qC?J-&KO@+LUnM&1eJoVFXTHcXt1U2y&>}=nX9+Z z*~BebvkR3y?f6&)fJ~%0Y5?X&n_8#<9GEb@hu~5J7;)ASr2;^@bWIJQ$2rG(7JxWP z;pbsn{(BmLI7-8tZhDCaLONV<%wwSx+h(6p3@#ok;>-=W2)oBZh?5#aa$PUjiTYh} zydebBB{Dzj(b#r#6PzNE36|p&xqq_)r^pxm zl{iIq%~#=6rz{-K>J8NHjjlCLBoP`%ls4k8Ay zs`iuP1GM~%qa44@Nn%%pUSxXUX#izeSJZaa``NKMQ22(bAx5VA^*2XP;RiaKs66`J z(VG9piO&A+7|B9m!LBEFyS(VqvrPl>qFhsP8`v72&UvV>3?Ovmpjx|SW{Q!6)asHzQ4BBe$c4#ll;T=3Y$P}J-YcECMVLq9#A|kH%p=4xry&VDrEoec zcgx#UR45|3YkA0-z2Fi^JAshq{AE2HhZGIC{2HW*4pkiVw)D$g}ZA$=Mlh^CyD%#NR3hHr9aLe*N;pjawsB-OEAIboWcuyD= zR?fV_btKT9#d{iGjDPqG2~8XfU!e8%8TA1|0=ynN_wTxJI-RF$)U|1Ovl-!VU~w# z^4Ti0R_0)yb2DTYFwmInJzivI{S#zUSMSt^8J!5v+)>?^-Y3kSXhJ6H&8N^R#JO=envP>BX2HogX(LpdP`@ogd$J8t8z?j>=k>(c#}%`K$Z6GznC z<^uxdem=G~YI7rdqi}~Nj)>I*I){*ZM-o@2E*bQIY*`<~;|Wmr-CNn6S-c9)eB{j; z(TRBWtL%y#UppH+A=2Xocvho4pE=&3&fMGCJ-OgUR9D2uTuDr99hFT*;BJ(S_I#bK z6=*0#Na~;fNZ_IF(E6?>zFK%e0pNKpHXDt0c zSqQ?Wt#oD5r}^3Frw7^X*}6oc_NmqV_WSI%Y+Zu4P_6FQKV(O-bxE)LeX^;QaGeIg zy$;6Y!GtCqM89?~`#IEm`KDkN0cIBEEiLwD7UeBbGm5%Kp(a0Peq$^eZN(dC0* zvukpEXA$1xt94+&@hsjvN9n9J%<-|g?Uw>oKg};h_bi6ylE15r$Wc-}l%kkAF**Ft z>|uO5piK-nK>KhJL=Q1l^e zxtSv#0AKsEQ*)HxREFkw?Z;BzR8*KMudlqeR#j?KJUD?e>hV=jMLy?B9Z4z;4(54DGEO^6;R(+%;~}B z6R1Ab)Xd8x6wKw+SGjbtexFj`=kEKP`d;D;=WJ3rr-&1N#j@j3adIA{*iI#smBQc9 z>Vn|-Y>YFbYECzf7xq)i{+fWy6sXNHjM zEb1b1-V`>{eIe#;?SAx2L{2?nEnR}ULLsf7CKn`L{6F^GP)3X++2g2EKc^JuEL}e*oa28I zv3Q)M?-?Z6NxHgUX)Mp~_qU_vmm1kqdeTWMp)M+_1k>~{HrKca9~&Q%Q}eDE^?Af| zn^T2`2Y?wKZO0oRp;1(h%qZuaMmh1kV4?~UNN^{iHJwAW+;jkqYnl@sOxG2cYslR+ zr>W3O0U@rY0-!nyN=a<&)kYMWzQYwMBr3oXcxWglCMS&rP)MdH!Y)mfcvm2*c}~7C zhDNF|c1zohv0V@en;SU6n@9xcN~77!S8eUop27) z=54ReFFGJTIYpzD`AnXis)YtVn|E1QLU)eXmX&l4VfK;(==-jDP1(9+nYB%=?&WTI zL)p4;&TO!7NUbjMu9!Y3c&k%kkhs}$phw;eUbskOh5kn&SHX-XXhlR0`6@>GfAIkN zvsYdmTbE1;vhVjJjfYrNz>NA_dt0Ldrn$&97D^waq}tO?ZlAn~EC8m5vP1?IdekkE zkFk?1Q5eN*q=^1tjU%{tI=pM zBxMoKDpm;YDVYIDGbul533|Gp+_d3tIL(Q%W6Vk|(8Zk|?AfEI!Ee;PXk5 z)G4=V2bIxdM@S6kP}bOS8tQP&P&`^58(ZSBZ1PoEk_><&b6ZDBGXEm8bG(?nhY~Z{ zL3ZZ!%M0T8GeqFLjxEU?dO_;aNfC<%W!7Ce1G!(%yTRWg-1Rz$EyH@kNf*O59hi5U z|CxZ%CzoUhYjJD7R>*}1l^*jRU*oY$eLQ>}R#F>~p6q~#E9xiKm_dJ4W3;(SjcJxk zY=xS}!1LE;i#f@foN7vex7W2+OOh!z*<>h!ZgbjEtHqSGzOynp27@f$LFtDr!iiN8o1W%!$Um-$Z# zn7aB*FNW}?KC^O_>hq4T(HW&aI!~iMquAjQ)ra!*{ZBZGXz3+SG+%oSisi^i0)~e)!)j~a(vZ8^7a4~xKB1>OBHbFz^FV2A4R~_$8A+Hgs*Y? z(`($m$`w}~>i5Z1IIG+kq&5mvYQx5$bKpC9Z*am3Kz^~7;-z9tACVzsTfU5@ndbR7 zQZ$P`Tr_17eyH(2gicArHHu;4KUf)sM!lD35C+lN#9!+JTp5#hO7I4V4qRyv#;5@- z7@KEg0Td4F7E0`jdqLjceREvibHXATDOn56r*fd<(yZ)kHa<@Wr%b6ratexaB{QX# zSOhS2dx<(*!_x#bMkfB9tSc$U2|hrCv`+DP_8i<9AO7SXD3kq3+vL0#`12yT$DcgI zKx2P0_mI+`+;hl>Kk1hO*`K7;+b=}IewOBv)tf)8oE0C76c^8mx=#6<7G~y^MFT2s zibK{3`3;2{hbe~ncp;$LVda$dSYm=WWlWLX}{An4`*^2=kfI1j*mI12@ z%AyK0^5T$rQC>r#-xDz46_EkuElI_{ju zWhTqnxpWRO5!2z!cbS#7*}7zzoT0260QivRVW)7mGFfNNo0Vq~K2<{SfW6-Ayv{6u zV!?RkAJXzm?0}2$d>c-W;x8U%SB>XzH+^XNX(+>5?wmh2FM#8J5J5c}exHWSXlHMU zvZmx!r2;LT#sjMsXi0sTpdaj!geR8n8!WLt)SJ3o8HOHA%Zso4UH3B2h?7XIBVNM2 z86^z86oeiv1nDj{1=QOBb&5Gft2c#MixKOQd%?#cf-K>+j?iA||B;G+`?O3*R5Iap zH6}~~CM>S8B@Wf@3_N)E33xDCl?Si?8$9^=X?d_-$%8d&JZSYvUOYP973j}?0{VBW z(!b`2KOag(Bb2tjL^J1Xz9R1&C)~naWbE8`bPlm|w~mN*j;TxR+%rchXk0e{>WFrZ zsVv*M%1Q_xu#e8jYsL12V2@I(OAfU$$cc51Rjb>6ZQfxPuiTMm)c}sJ%j?AgC>*#z zDI6s|0@CrW^?7GFVIYll%Er7Ggg59M!p?z5k#1AoLbh&hh0G}Q&p~QpA6(fU+LUs*18~d2jgG*hkInd6~ivx-Z1_&7yK-yv_tiUN=rSL=}obhK^+B z^$e@|D>d9`o*@wT?;%-*)&>fCs2(PM&;_`8(W8 zACu@eP=+T_1XuZ@(V6YA^;+&2nS(tOX_;d*G?%_mNq!*` z>Z=E`^)aVXyO-u;N|)IPbOGhX9;5gk0P6E{-lPbN*`iIhn#?An*_fP|oM^QsY2yrL zOR52~ll9`xtD&S?WFx6JH0*aHshK1V3CDbGBy~Hc^vaFL=qa1pdDY>;@|f4ZwDa1K z5>8;xU)e~S?8WN|BCnMjNrBmUYxs|excS*bvPeBzA|lbCO7CrHg|v-lS3@z`dBLdS z{=9PNTBF(Z(7|C_nyC~>;cvE(k?^z4)JECRrhR!6`Mm^8eY>JlF@&$}iiO9N+e{OD zjon!Fv3r_rCLKF?PiarOvG$~7rF!5s(BG*Jv~xplUfmD~sHxkR=k;cUyj|2s>V28x zL^Czc9;fokRpe@8u)eArOrEzBiXmKI=FO-87dZf;CDN1~SDgw>BRBMcry<1c$&&)p zD86Y1F11Wu{)n-Tqr< zY9%Y_-eyW>SynO2;!|gJEboV7TSbm3%#<@+$UhkbFXH-_-u6-JovUJwK6n$kJatOw^tRTf<{x zfLFxL&R_$(5@jQA!ZE7x^cTfID1<4PXPP13azLQ9HMz+Wg;kaP*plUwsLDfQ8 zL&tX$%6(2V3zPe^7rEbIa@Dr2{%KNou%wpk4VXXoa5>1T&j@`MBM^@$ z?&+2PoiLmRB`0!+oIre^d}Htsszf?q8L?(_V_^!FPhE%uu-kp|-xg>vM2`P0Q~)Fd zKpk}NVp^o4GP}v;2?Nh`oWy##)Hi=AFKngJDmJ)oNHZ@DOF2lCWnyc1#05A^X5Oz^ zAtf^}ez%GH3?;?^=O1-PQj zg&-92d45D*2}e%?rSO+SMI;(DFZ07z=uc~YfAIj3+nT?GpF$Y!XJ@CJ63f-3{N4O~ z0;YOFEg{4MK{zhPuEkpf)DWeKL!^0kc5O;6p7%dQebk5OX%<+I*fH|jAos6M)e+ar zQPo*_P(H-YKT7w8e5)X*i3{j#@|guHijPZsL-da7&{X(B3Be!DLkrXL>#|J{PQ2^QU@~XwaLZS@Yq0){jAHzgeLZrJb_jtpIy0B%lB$LE57nr0JAvyVB0^5`=1l^)$nkz#rcvk6^%JHI`8 zuRVBlPMTaF9^H<7O@i)DQ|5A#3 z|N9dV|BDy#U;Z1!cX=Y>DQn&cWxN9u?)}A+DpDse8WgZD13p)UG!uXU>plPmw1r}i zfkE`>Q;1t(#2u*f77Yq~EMQfJ^Dhs6@291Is4D$wYV@}oeyJ?VpPV0uHhlmpF!c$T zFj>ijw10yMuRJXivQ(MiP+`Kt^6s)|_y@p)Gi`te$De=)N0dBpz?Skk6z1b>*%L?u zwX9RAjhA(=PRlH}-OwFcFmk^f3~Y>L(zYs7z3l8oR#$HiK8 z$#5cHmlT&2Yev`Z&adV?*gL&nV7S?!x5jGY^s!ch5x%inEs5IHWP`zKO*JLzQ&Gsl z@l~Cx%TAcZg~JC~qt=`pmzrWQCYkhcDM=<{iou+eq|=#Fl8|m3)NHqV>UmD%zjb3G z%KarjAwpY1(|v?_TGap7{IU`H#8kaGHdPmwXoxc=8x3)Ay&&0=Y)(nV-OxI7-(N61 zFe2HQXo^eK$La7VW354J)yA1(wJAnxvJUv5N7wJpui@Ngn!1S#OH6^4g-LI=rkIS- z`NUXroH;fwSr==LH9_xcO$&9pKN`Q8E2(9qiz(1)N@y64Q7s;?Ma}l*w?LCdt&T(o z>KBxYNU`V)hFDXqDb8v(CRweC2CLqh92*-4H;!Uctp{b^> z-k7LQOp4VSV^dAI8*xcS=ud1ijCNeC1@-ANp_)@ueJV(v|GQPr#5?m=a+9onhblF( zE;QM-_bUSudUfp7V}Q}WjK;FHQ~dKRwr>BX=*FC>)x-UgWJMY23mQkHTC7%6k{NW! znqo{f>n+Kt=G3@EeNv)cXEDY(BZY-9o=IAx*_>)gv8JR#0@k|*lg^+|1wlwoPEK`3 z&dy)OMOY11Q>s-Tmy`(OX*65otQMW#pab#O>MgN4XJWm1cR5W74O&GdGx={3O^GQG zl`PDvOHE3Sv*?mjQ*=fPthe+sYRV@fJ8F3t!dXw@2% z45?Z}QnJpfPl-d3vD0ce-L)rdGWU~EY{dWoyh{X56xf@5`nd5gBAuMRqxDLF&lQCY3Ne zW>!;5kVpety9Aacih4C6R8s;~Nhto@hmFE5Nfv9W#gq&-&uB~r186X$m=pCTb8=F$ zL61iEFR13Mba!6Az%Zy78>>$ROQ|)QQjJzK$fe$-HN;xubg}4x?R^;3vJ+-<5oUd& zNpFoyPPXV{!E7caCW72sEyffWU@*dxhWT$eHWl?boBv#d)o-f?aa6A)7E}n=C8cO# zegaiaNi^#9(90B^!I%ibnP>nJxxW#FZs0~BB;2BngHet(#)1AD0lzf`wBKrhO);~< ztfkZ}Jl2|$V%6gPu~@LYmXt)j7Ix1Ji7BR7gWiCy@Awdy^ZWZC$bK77f|*uwo0OICFdtLN^S5vjsd_`K(WH%w)ukjGu?+zyG$qBLk2C2kamlgh zdV`5Iob$q_Zs0WjTL<%z8#7H8;jdwfHc6b;dhrEqB24BKvoXZKss(Nc zgNq0j%wmbPq=Hd2$HGWS=34X={crg@v({lxv4oMavT9a>SbEKWetBiaYPM*it$LV$ zk~DP}M5Fr?ZS7IDDh1vCTcrKBNc(S*=CzUV-y%)9Ec|bg_TM5+Z4K=;N%`G2Pgy?x3Wnnc&cUdRkXF)0mzXj`QD6`x#>MV8D3zZyE_6+8(FK+bSJ!iUcd|h*N}V zop6fWJnoEB&l7N8 zOsyqnSUA2PHL%okaA|+@IXK)T>fK^vh03qs9+GdsI0fHomCwPk6~sdgZ(<;P>a;tK zTp%8_qP{t+gNV<;t=(2IPnbqED!vIfmC6C!-;ge%wa^Iyl;pnDu2Lp`5YHov8TWw?57*R zAIYo87%GU`x7US6j@s0|8dZ~`0Y^_pj=crV_){))Wp9B_I73w=XP_yR6-AUqC86xe zf9*n%IR$3nt{-fbL~OT9!d4r_?kniPbA@Q!zJe}7K%p!Y$_|EzC?A)Ma`pa#Z-rV) zRF!4+RTfc&qR4|Tc-ZUJ0U@DIiWrKAICL{LauVN}ks~n$BG!!U8W39;v}AL7H^D+T zjn9j7@C^-GTIjwRLLsXv_JTo1#Gucif-!vWLX>}~po8!njf|X#Y<0L`j_?YdP40d@ zS14ZeX8^F|QG|zzP4=V+?@l422q&Sp!;Tib$qD1A8e*t{UB^HHrqbD@2jiq3FaU}k zR2O^jZpl5stgk1JnbdWfTf}ULMu3Xn&(`p0G>}H@Mi|%)`XR+nX)4J5KDo&TVqdq> zRmf-$JW;S*$fdItkW#EQ29gYIMqa@={&XRZ(cV?KKw}^rJX?qoPZl%~&eA0$$n!UJ zj;HSZf`T-ax__$GEnQg9lC4XGX;@*wn?gl5rFI_V+`!fGl;|`TnQ@XDxI(HOh3KH) z-315vCT=Piz1FLdW^R$%W^@UmwmqFgIs|nMrwWD%-gTc>tDA7TK+D!8)NVOl&_hU7 z1HjZ$*0704Z6miBpWZj6wVa`63oZo+GrW*~AW`=LT|%f^M&}Ufpl&0H{MA^JMF?-qmv=A#}s?W1jpv ziRJQZo-zww^oCTQVrbmnMD+u%sl4XN=N7T&`S)Y;JPxPgeambp12pBGeeM;U;`oaq zsOK#IIR+9RX+K<~Jj`EZ zn`^q3d8UyVxAZbN{4d9qdghr{Bi>4BQ?6Mvy;g5*rZqOx=`}iS3%#X<)`T7fx?YHm ziHXtZjD{FE8WUrTi_w|mnrifLc%p?#pQ3G{OVsLGw9x5v2DI|W0%I^!5k>x1a4g0Y zV>BkTZ$3%`{{|1!Xk+xF%9T@TP7{r5qN1M)elJh=Vt*M|Cp7Snf_@E5`WU^=9HWc1 z#K33trWym_)|+BY4H4+~zdz}Ce*>5d!$E;H&?(bckbgF&NP_Sa~1 zu`&AC1dT?oi-}{pXjbi_Srd(GqIQo8+M!mz76eE9$HBkM!5&-~O1x1ZhKe!B?+D4Z zW2k65YKfw(6yA9#@z;-=qn?io$}!>sLOY-yBZf~buZtsHu75&YH$JJP&JJ?*S4b-K z;RP(HQ$W<8N+|mWy83bdF-5dp9!&+N^g`Mt;{+}S3tLOHdfMa~-PMFmdZ5#Xu+;}k z`G034ooHfdm+((W-al+8yF9HBf@L(L-z&N*)clWQp6RZ{xx|c`RC5J$ZLoy4LYnZg zq11(9*&J^3m_uJ-$g0CavhF86gmOJRF=e@v{w|-W_#m>6>$L}$L!QdK^Q0ytC;HH1^I$om6^fLnLC=Z(928 zzU-n=4^#Pt=zbl=cOF^=Z3}ZP4fWx^zaH*dCgk9rOM9|pdo*GXl_T>6QpA1#3T535 zsp6a(;kp+Pe1fiuxYq(TKdb6Ke2W3!`{vp8@Wnz zLQ@)o><-%+yK(|?Ur_6cgR7(AbzRj^>n52MSQKRC98Uv#noDl#YR1+jD`$A+yRpz$ z4WL6aS34DeZOvdqAw>Aam0}XA|~sIE7;L zt_T)@h*EF;`i{au8UTwD+E&LEhALIy8c^K()4MCuUc$V?6Wj5pOCsg5H@x_ucMqfM zSB}3y;HkZYsA4W81V~ZR*>NGmz?nX1$NxyR9i!rKBzPV=^g9lNZl*`3nD1*LBQM!`iTtoP#BDlu_H)5c%1+I2lX@P@J`@8Gz zmkikgQ{SG{A)J$2x*|E@CEOv8VI?Bf_cZ#WmFtkumoCBj7A_B4J(Xb-KNKamac$v8 zpBA@~$IvJU@^?<79c^J3?;W}%^2@FDQD{4tR+vd=djK-pxdyWUWUq3CTHRgouzAQJ z$33qq_q@K;^S4fm`=`SxEY!e~j|_X;yEbsbVXB6>cX{A6%I@fTUN}IPKrFi`)V7nW zwQz>cCPV%PAR#4GEq9WTr736tOZ`x^r5F=!po^@q& zLisb4ED);`*3H#Gs6uBGddi9J7hA3IH&!9Wcxt0pE=@LadO(as%{kNkS zdr$9}u_s&2pFi)~A?#!t#PP;uv1z8lJ7VXa(!?6DiIt|;{4?_Os%qCQz8aP0*UJ=w zXtjx;nqYat{E^NkzSmu72)@8j{Aj0wnVv6$&dRi@cCEb%0&(;G z<5yi9gZLT*f%=5mSp`;VoJ^R}RO70QP4$J~DMxdd%7jUt)a`PXoiIC|rKDf6nH&#g zWWpp%me*5VT>|-mBD`nD?9YJX8MEtI<%}7B_8*ursWl6&By#5=h1V7d)6wiM_ z-*nv+rsLjurcd%R!dyCsSj*{WMQh2_CGK>FTHSAkxhyPRYyc?voAnQk-~x68$y21C zDF*K-!+kcu%^@h02k(QoV0Gbq_bpch$6sfM@G64@58(-~Av|=}$43FbVI?uNm%gf(Jx>jYhag)9eBNgO zLe{!E3AL4V192S`U$J|20D7gCh%aEa)r<*p_|B3(fE|1O4pE+ak&^?!eKMHYdArg9QZ{m=WQ2|Iw)tl{AVE$5^I;=Es? zilWOl7xJ}7mu`2#u_Ky9@`-&vl_PT-Qe++tMY)&XtLn^hxXuL#g;Z4p>MXtoE}WyY z35yHQqc)$qntKB*dF!1f!X35x^>(<7Y<(i(ilSPdwvN`56rwG3uRgFX&D} z@CBu6K+i7jbWLXKD(3DQ(%7+_f#$rtFSdq9Qa!wjVBepR-+nY+V7)IL?xsh~72a12 zl#vOXJZQ6Nw`&ZaAcA|GuWk%9p1ET$D4nmE3;vuhzhubMH|2c!g-B?G9yF_572V(K zIw*{$hX9|Cp~OArA7ZqTWwiKI0)BpPzJk$n7*?^K(oCAsyY{>69KVHS^hO36GkT#H zqi0_5;Uf9vn9O6!Me+-g(2k|KWEbi51*MBrL{aQHH~}uwY^LyVo-|vXjzT z8oaMXEE;G2QI|G=e+11mUnj;cZJ_2P^;E!hErUjWSfz?H{d3pHJYV4=2B%-Akz0JJ z7}A$p^wkBWTT~3_A#Y(s6iG_ZEXesqBS6^Oed66cA#^Jk!*QU zbds35#K{<61fI(aY5?3xS1ya30NgtX`*MTS0LGqzNu6l{+ihZo$Eej$ISmUNrao!l z1kRqR2GIYEtC2c@fDW8-H5FET){!6A|G)r^IrlHIwrD+Jf zBvb4$4FY{E#o6n7S9uJ%~L`P}!e1=V=XCCpGi24k!=q+ud%jq{D5!tITC9W?GS z7}TRkvf7uG;sbl&HZIT?Hss?8n7X0(xER8hp{R99X($3O`CC8zlZGOiL@ZuXc}$>l z!)t{DcwrbYq)T_uPpTZq>NwgD8HR2pSe!VbKn8859F-IN%Ncdp}K%rmF zq>EK7VZ}bq6I(q4ivO%I2IUMaOcQK$Pq1%UeKVCKt5*<82pL}oZBH!xP1sA-5Z~aI z2fn4$M;1$QAE~L5t>IB)Xp#7^@od;kVgtzIF6W5I%5QL=#+~tD1B#$bwgG=67yiWY z_eFS*4fvJ;$Ns^EOG-zq=#md3;Fknd|G+OqLQj_Hl8r#E%St0q{jyB5#|VIbaAa`d z!7$!%xde58UK%~Eh(+TJno&4EjPD4|_*M5sO1O{>g@IxG^8`*^-_I0-_|o@gmzDZn z{jxuOSK+PFF`yP>Dz)Lf2pYCvRT!#&v~Zm;1$a=b;bcPXa(!lFA)U@9KEagBqUtgL z3e~MuO8k_|wpy$flNjAr|U7L07gC}4I15(zeWU7R^}_XA3l`% zB9zI>{B3^WT8{r!g!d@(&kQ(L<}WWRmHFajAIj{v_o~Y57b2krORo=QE-yb?Q4bXz zF7%52thpkSO(}FzQQ>dp`Bqm-Q0R8j;KhkpG|uZ+3coDRCtN8(p@%BrT7F%)yBy!2 zz^N7` zBYH|cJv9w<_vQINMR<>%{>Fe~$NLt_7*t3*-dC^qP*cAYsH&-7h=l*KH2Y9fDm;I~ ztI9by>Z-Sj`ggp!c4)q<(9g$=JJN`@7Ew!nH`fP)g&}v)=2%s?`@PcQG~)pyZa3_+ zVyGqeGEAypE`rK-A7q^B(;IoI%CIfBCP@ZU5t;(y>2IT`yWPLVzN zM>s_!=P^zZ2kV(HAVsDO4yT9+mf>-7C5+f_wl`3_H@eoqmnvUha73eWPohs7gx*MZwAG_=Di>O>excw6V7_iJ8$!92wl0JnZ zs*4U~g_XFAD|b~CBpR}n6_(kcg8LJ9P5v`w(a?iXH1I-EHU5mUXte{1TyfniNoc=R zR>;}_6XDwPKm;fJ#|wv8>G!DBFK!Nw5UcP0U6sK%9E&>xM|# zFNxW=_OZ2-#q8wmklp$~Jx{wM#q4UCkR5mWWMyumm{EQeWE`}+t8p{Mj5>D6Xjl1E z4Q{EJQ5H)$)t&WXwhmJ_aGkpzw_VKma252=o^q-dcRmY)v%*-Cyr6&0P>7)_Vp4JOaYxjz^$c@a;|&QTWZ%rMVx(+$pOex5q|z zb^e*_3Y|N>28zn$##NR?AXr&p{z|AYxb5j$d@W^B#&RgyzX?oILuFB;jZhRd;B;-? zs4Uua7>eA1XCnD{Wl_7uP*iEVyDHyPS=9Xy6j7r3nzBLwrtz~nfc6b#QH2~R+Orju z@@-|&bH|~`VgnN1R~8+{9N%YiNAPo%MY-#tsI47r*m7mjMXbtLJowGZqBWo4wjAzg zewVUn1(u;t7M!WfA66C_5QfSG>*Q7zg=3va{_;#Hf5oe46BISw2Aup_S=3`K6dAud zQ-y!1EQ-f;)y#6&;R4b1O`x-JSXX3m3K4T-KZaa9OkB8_F?kzg<2!5+2$g%qj36wy-FLfdamU4shgjrDA5V)JA8&ySxsTVy+y#5wW_Tf-Ff!Xh=7oEc@h$L1Mb02&TAS<)oTCT2`@pcwuXudq# zj%$ua?s8kv>o?sM(EgM$<8I7?SF1z1t;9e9nDq{s- zwcp*AOOi71gt;yFTmm;j%xJX?G6vN;*9xAXCmr36Wpds@_e*fEhh)^ngaeKm=p)0d z$R)p@E6pJ^e+Trf*Z!hX$d$OTs>JPeBEW8Jr-mJJzshBa8E@fHX>!=zn%ggCRKs&q z-eGqfmnUY#;<;$h5qAi8Ud-5s&3>CT=lXIt#f-%#Aj6Tj&SUVu7qi!5TU7p-`*rTI znDH|f*IxI|b>@W|3Uhc6lNvW*Qyl7b!d;rLsVukPNqk(z^WFId%A&FuYijNDeR%^_ zbZ{*=1miw;$MWr{T;dQ6!!rNUPmY#iTM5eYd3fsiW?MnLSpF(oUK+K@b61{J7zmza z1op&s;8atbI)_tnIQ0omb;halIMo-Yj^flnoLYfXLvd;|PL0K>1voVwr?PQs5l&sl zsSKRDgi{WjT8C5FUrd7J2Aup1XYRtOGdOh{r@q9goj7$5r#{4~KX3}+RM~5g`WmM~ zacVD4)x)WcIHkp@c{tS?r%vEhH=J6FQ!nAvHb_lMOUB77ICCUU72(uGoVtlqGjYm| zQ%iB`4oHtoCic|SG^(9VSz^SV^bql919722Q^LPJBH3z4f<5UJtwZf@=IMo%W*5K5OIQ2iAO2VnnacTrk?ZK%D zIF*T0AK{b@rx2tjrCq?ubvW~5oXWzf4{&NfPA$W!Je*pIQ|EE&FizdXsZBWbJx*=G zsmD0A3a5k{kjlfUnmDx_ryAhY5u7sM)K@swE(#})<75I(&Bv)%A@%mGz|q5#MlHet z^9oVMNw*oTEp!j!-yudshX$T|TzYph%(}vwZ52h3if#qAn zBKN2KEU^Nb*Ox2DLs{+{Me+O)DRXt5qB7{`eP=EFTQ|`4Iz=XNX}6zl=D>bvCflo- z-8Yb~V-W!ydGJgxH0U&}rLKua4$Ui7DullRD6hLaBR~*>?!9?NKznO|%h9$KtRM!R zafk31Z=fl^yL(c7KS!F0=TAdFBa6auuL$yKX90QeO=9f{a;_XiR&whWw<`*z@LwEq z-iW51gE^)QDMt5?7loIXSrdqJEoj6(U0Xx(|Y77ae;jzhhp1Iuw{1^y8i z-2EWR8E#aGRp$rmg^TW%{2;pH@FoM(@oksfgJ91}4e{&hh~tZjdZGGPU`|>@Bc887 z-22E$iQ^+)<)cy8tH72ys_o2V+ktxuW>H*VjET7Hl*FZXLQz{hCi4@DV#SsIDbfQS z(!5aA096`aRE5Jqq1+Z~Obc$J#N%t5p@HLy$`die-0nU8Y;FE0y8GYD-EZ8pC;FsWe-jjPy;l6vbSO_2dcDgrmv@TT>z5c`L(tN}%Sy=cww?s)Kh})Tp z1Qc<@t>)?%zh}y8P+)el~ zG`4qWY=s{|2bSPX5Taj&Iue{u8_;QrMe zj@-k}mqPD-4QjaB3;7CfP@H0qe>6mVQ54_K)EGz&Q|6cq6c@}dbI7fJ1hV!1v>D^-A=R+ln?;*6VSW= zbI(MiTOLBgP_JggYNE&AyUU?IH{87`Q_}~d6+BhLA zENcGjuprd-A#lWgSH$%AE{lnXQiY!aLXhnbcSUsjTMrVMt&{%*-?{KR5kB&s2rt_u zPIgll;ho26x3Q2(b7#Q`n3J%*;-}tLPN0)- z7aJ8Au3qR_t|)@vM4+|e%(nivD5HR-G78=gGF6c;isskcR@#$Q1bIBa{C2TD33(kR z%T57M{S1xrB#pAy_kc3{l?xj5ct}tg)Gnx~9AD^#Jl`AngZnVP&zC9+0EX>3jJP}ElnDr&(sLX&@Y_oD1_gFB)frRe7N z11p<9266_JEvnAO=DS03D%bQ;+-8ktrodY+rAL^jzQ znXcujUZ~>wpt9(b;36%*i^ljVjd4W7Gv!fBp{OEyyfi2h?OzrYgsxR8D#vY8wqo~g zg>?B)#iCYd5LYx45&0Q@yoeyIj1IhZ0bUDT1}wq|k(nvAeiv$>GSwi}wzLR3 zzcdRu%x5PNT5qDgRCxVFNCAXy-rs~-GW5O~NDjXud=b~Gp z3rReR*(ZamiC+OWe@*G?Z?~aG#JAXhG6IWe-(v08qHi$|dvw@^#roQ#7U*jp!651@ z_Zi9xDC&X$QDsDQ>(&1SSNMN?oq1r5NB75n_bEa`HcK{H5FsQH`!0)pP1IIa;L>&czZoH;Xd z=FFLmGNzvhr^Ye%Fx!{<-^Cc9nDEc^+_Dkf)iV_i5%OarQy{-3xY-|q=iE&TyrRfl zP~R zJQ`k-{&yk0l0~g6suk;{uWFR1W(oExT7MPZ#|!70)YoO{U^SY5u5%sTQgUSto_0DQ2Wi*Y??eMo4nd9_|Z48$emt+8#;6H;0y` z(w~C^Xzu4QoHc9MRafj~3vGSt;v5>0Zm*#oP{gFyYTCQ#Xwg{nmxf2{l}hz%36nOb z7EGF=SRTnIG_u#Ffr*ApY=_%4wzsBcwMD9zYnxM{Bm?MryHzlXa;GTa|2)trvaJ0^{EkS4Cr-GW*eR+EvdmKRo#5eQ7UG=?NhyL6@*d+TRl9 zxpRF%e51Y}BAcGO^TUE^YKncix$@Gef2yf``Tontj33(AtI(V@qmbSPF!{-_vUH$6 z%C|bj6-a#=n2?`)klxV<=8-LVg6x|KL&G#!W&Vaf#P%&=Xb`8!a+>B;t+EcZJYl`jP=9a!C*&EwiDkeGln%5-H#|--0EPJ$;;gd9+ z+Ge9+wz=l(mbT zXDz9tI@)V%^DL>Kky1R(QgDPO>)!EZRJ{{^zQICS-N~M!y=|eavr_butgH}Toep+} z(f!6kO6Y<@erX|n<|TP67e&-7QmTrDWJPW13d{7D1zoF~JyE-9LEn&QDBO!i9WpvX z{9Lq(T0@GPJ>;nl-c``xy3!)94?zem<+^W;Ci9mpElK=Eu)Lu%PvJa$JYJQLK2paA#E~h>1g9xWtIrduGQx?RN*G1g$6Y7;~FVvPv zq4c<+?MVvj4x=;Wx^L4v(;L&%^&qAh^mXnSfWN&Dj=$mvLe-Lqr$4Wge*NBU-Ku-_0N7`Oj5LX7<<8k?@ zkN8XcBQEHc=$9e(XxnZDF=VK{hHaNGqVNF-y~Pb02A$z>o31}D$cbV0y0&6pg!2Ii zU5azVA;mof@o*lbxb2Jh^8pB5irf+QTDExVJ;0FS`w{kJTXi}#)KryG`iE>y(ImHl zBWo+iQt3#0Ia{`Z$Q=blhA*Ox1%dWD%r;s{c=Azu1KUX7ggAxgFYlj6qZVIQQV$qo zkF&ktoBCP*sq@mYPCMW+d#r7Xf;jpZoRigq>@Ag6yukzT8ntd{QM$eC%q>d}EmP~D zZ4Dl4PqLj-kf+DmQ{m?7`cy_X*A4H;rdPwhacB&8lw_^O+w0l>@-56wmc@31mJh)g zgf78DNsn$-;;F$ji~_O0vk}eTj|u0Y3HB81sI?6@Rb&Kz;C`WCxH1n<#DI~h5PD3q zr`g*25?c8supp02hH)FE5ROlV40*nUp?(Q0L&+4#@S;K(ITbQI=S!IHmvAWKL^GQ7 zguSu0Ng>>Q0s)u*`4ZmoOJEtsy;&tzsPj7ovve97^|!v5uO5t9IUTn4xL0R|+VqSAbZQ)y4%oQpmY*IS zj}Z@1&UNGM-SPXKvkYVJ(*HYKZ_eH}USG6vTV36HWRNr66Cdnm!{!rRsI?7?6Kzki zJWAVs@(**{UUR8R1YLUuMq-sGSs3-4gTk%!Ez4`7EKA8Y*&e5OY&mo7RcxOq$@k5* z$Jjpd&HBSXcu20TuiGyU7(Hp)6Jtj|xnkU|Cbs`uTygBAQ4^*=I(p353HrC)O=!Wh z_A%O?CN#CTqjGpWek1NMm2UyzK33>igfYO?`@78~*L-`fzNJ6NJ==X<)u%yD8$EAccFTs^zJ) zeAV#$hpGnAzc1RuwFx(UW4&W&5xgN@M*YJfH7{686U#aY(h4#+c=N8yOD~zYriHq%NG-|HB zQU3lW;dElIj5~1guP=rdT53UE^`g8z3<}^H9K*uOQG|mWYY5BCJ1SH)HmWwbC1#hp zT5Ks4_7cKZyrj)}7Tgl5iKc`R*f4o;DFRW+`j1Qz=35?Z^E`as8_43oGR&L?s__11 zI2LT)w8v8V#HxW*I;v^~*1N3_!<8{Im!`rsq>}G~a0lmBdmQ`r9NRec8fFkLsyRGo z&LMo|I?TKaUbnZk&G*I5@rPYs(b0#ludvtCcB$AxA1oy_F=?e_a@A03umrKKZJZ6S zT}^z^-jZMYg74Y;Il~$z>HnRr`K^{%?Kd^oUww1+)J6VERK?4yP!$(BKc!dwXswF6 zTD3owDy~dfOOz_+TFA16>R)pdwO7(V$hczQpPm-aihp}G6yIKjW}2ZM#bdBrf$ClQ zmc1HAd!H;?`OktYq06eOaa3ugy`nZn&1a%dKHi#uPO6JK7{~c=9i%Olb)caLp3Y(W z(N86C@9R+j#ZD=Jx3fv+8oIZ7xNn}hA*lVh^>9Dl;j9$(7yRkz3EbHlyp81_r&@v{ zUz(>@Dfk^Yncp)~sffe+2U!tcdnK+=1onirq`T48D$|nV zMS<`I^@>oW{_9U#z5!8l;5|yxP!y{LVJ$6MR;?19{~re3mLltBwERt_Nrlt1@7Y_} z8tY%xY|{VoD2ErI)@?+2M+ropF9NH>)hWGGwLqG`2|pXkFhwnc^bb-k1K`X`iwpsC zXzOO4bFo^M_=3}(flYw1uSU6#S1U(Lw}8ITm;REMZW};5*BRY6UH@;N?#ntky31aU z?$oJj41nK?VtwVCy9_LbQ3+KGq0!-3^!}VPSE}QnS5G^Ous|8P1M?^hzIrW}`T`Sf z7X{Ij-S!wdxE94JrD|9JEre;f%2-8Xm-P=)W0$-d<2^kMb|UJM@V8N5#LZzJ1lhgE5j`Pt5nR4zdcRKP)u1G^ar}mr<-An3e`Ne zDS1FeNp$}lY9Re&wJMbUKGuRZ`_1h=b8g-ahe8=0&ifHwlKzn*X2O!O%e5*~xLh1= zNchAasoiCv8dB(Bx7_!G4=9n(I@c|HHNsN*wx9aR5#jXj=SAi4+{}eNXj{>A=mXR+ zFuXaVIweets7C)(i6~ENM`MvALjSwkp{v~XR0BHnL|bRU>7Z~7*QzQNJbNONF6B8Z z+p?IWG@^F;2U!8FZ+j}B_p4a)e)OQdwr!dKPgTIi5X|5j6j;^~W}D;-9`7H_w)4f$ zU^~|f@LCltI~0Sf(379rtJ+rkf>-$mV{{xu>%Xu^*p3SD5e00->$9;0sw+}az?Toi zP1UCXdgY*Tcq#|0)H$|WzL4MjL%11#_YL}Y-8)MEu1z~X70zXTN4VBNHl~B$LM1i% z557xT@%q=hYLrB3Xi`sfRZocs!wk1-HcrOb*El_@Vb5{o!%AXe*rSm=8DOVhH+ z|KT95(7)F1G2=jIsG{78cJSwspttz%xMC9zoH)uNloTD^PT&aBnBCuYgIj`EKf zr`%Q4?INGxdC1h~XyXHD!jc92y(T`8TAJ*W4|& zF-%i8K99P`(UL^{@PZO837cb$mei!IpY4xnwJ;+?u%vR~Ge)pPJ`z1oz(r&NTyFDu z@*@w4gFbY6qY!+=a;KDzC$h)(IOST+c8i=_?wL1#tUm{HGyc~o;|!luRdbP4Gl1b_ ztS-a7PL9U1e72a?}>*j>jw)BQQ$yOjrwnml=jBx6j?5IznKSbA|w$q`jH$}-58tJq+@~rdd zp3j?q*c+oOv!1?IY2$9%r)XbTv~x&m=fFQ6eX||8bPK!V{t}#m6H@rN8Sbbm1b2cL6*Wt=>6D#XV{Fs|HHmWR3V^K>C{c(B&6Jeli*uX zb;~)@De6xnK}jsyc0zz7lWPBEat089yJ`5#3Zu8~kxeR(L}ULp7_T-)yUDBI$e>xb zMb6*d_LKA0Kt~#VddEn`IhR(f-hg_3TQ7jO9g+R6Nd|=4{Kf{rky zT1+wp2Rovu-oHYIXZ{s3cx?@#Yw4?AD}*@^#(t*!I9+~ZV;_{MEEMZ!;I%UUM>{VT zccRivg#B&QyNttk>hte?vz3QUnXV=MA5ATBWZ}d-Qgqf+hf(P~Xm45VC|r;bj&tgG zm?FTT&Uj+~j~Y&s1EOw8iYq%BYq=7HIG+b}J{ENm|9tfzDvff6+qyAGF-x6UOpXs~ z9gzNUhu9gRL*uGB8fkMRbe00m*#zn4uQ*Yg3Ik)yQqd4cHQNkd^0faTKN{(1p>3Ar z_Y`t^Cdfrq9Enu;Y4tEVco$RecYVq0|AV|c+R<7&F3B#1yyIPi{OLE(C(-EdU zVgdKFf(>yI)Oq~`4#<4t2%!p99E(IF^~#ICR-)2Nn3aT8b>u1ml4l>l%uIrX$*pFP zaNY?=I_f*xQ^u0&!d3a7=G(&F(LBaw`8zNlXB#^jW77tcoGJ-cb%Iu8N&mgn;bF~ePm-F! zNImorTRZLl9#Tb$g-8j_p{su^v^x)=O={t2sijL=s!GEEhq0zKwl)>iiW5detM`y^ zDeF8WYT8%I&ssT}X+tGVcxy@3e5YTe&Rrjx5Ohli1hdVePqo}5$&x~)1 zKBFYyb4eMU94R!gnUP@0SE8XLQOIRSRT|OUp>FDJN};XL+7$+l74@b$UBGy+g~33k zIW#}hQI?JcIV#hKEk*VLt<2dAv(XK9>hD%Y(kT(T7o)eV$;EN9%iG$RWLWBvf%`uC zlHT{V0`#dS#aSAODC>Qdkq&{fE9ICn~lQJp(mv zakdQAsOIEte!M*=|6*JM4Qr3ZBdx4(NRT+3%H%pyaa)2<;(KK%Y+v#CQ2l_uGC!_L zH*y`7vBGNW>llZr+?3vqD&gCY7&GEZBG?f{Q#+tOr|1R^ATHSLGBkDDao)JYJ55&n z7FUA`FUFMC4(V8G2%95{fgCJhy|;yi#5boEV+eXpduDPhFDx5P!|9D zR2jWKTGOp487wmCUv4fWDeSAYjiAvAf5I*=>oLFFXbJ{k#`tkry3nmSTmOA$0wA0a zg2ZI3D6A&O`>>G?f3lp=C@kx-y&QIaZJ?vJ_G4M$A(kk#f-|5^`6woaN}q_A-rZR* zQgQKcUpv>*py6TKagd~o$MM)N20Ie5=DPl2R3q<4s8mjvWtP|oHul#7%lVqmfO5io zD#ROmG55bY6k(suIVhRVqlUSTMtmTffrx-&_P8z{zOC+qG`CQjSgEYi)I0~?rc>m6 zOqCNo8WWTejyBq(7UBpikr(~OjdaA}LK9EPX?b5&(k07d^1hDUV;nWGlgT5gc1X-wH-6lFJ(b_IaAyjC?dGcQd z8>Em)C|=wIM;u)oVzP?a6gC)^*$=2L#ST-FkD`R(rj(N{DH~44{PmGMBN0?Ol!lBD z;%*-y#O1z@zNGhcY=-cfDfCtT_NwPw5bZsW^Z3TzTm6zR+5Jlcg!x=nQj~~gOq4)1 zyO#qzz1~HFO1 z8$ac!ueFh!mOh-jPdSF$nt3@&hi|NZ&DPS9QucN3nUBwOBx_?OZj28O&1e|bz;#)D z31f!UOBhJZ;R zU04i12#Lcec#0f2F*AMboMeZSY-*Tkc9u>F|3hv7_j>!n8_`?nMkK-s&_Bup~mJ8gg z3T|0~vp(hSu3487DkRIm)*`?3m;KY(UaVN}XoSnuxa`;|>`^Jo-bb-zANd7;=pPJ& z_N?uSVB$&u4-)~iX}E>Wp8|f+zt*FT8yqz>MV~BU%m2YNM$%N09;K}+g}q@^J%{&L z3#E0OaoG2bKUtO#LiDfJ+T!WpOB)?2c!$zUhhyQPBP=-{(+Llg=c4C!8FNuZQubmh zj&=u9=7L(`R8SXQ%!N16^|^sgjzC=+$$vmW_3(N24s?>I))^oK8D;Z1wjA;6mkNY5Cky;Y zgBpnR4l4B3dIMr;zYT{L$?>*Hno_egY~0WR*+AH2)6tCvx;cOQK`|Ol>L^A-xp1`u z-PkOhpQ?3XH?lA{v;@W5RWkST$9AKUkI_?R!y`e0&VDWqx`KWYEk^RwE}3? zt0{pvc7Z=z8qiSAMOgVkmGBQa9o4tw#W%xRG>67s7db3ba+vfA?k@>C0yC~J;@OsX z>57-O&?_!Nk+a~Du%vqx&hSCFLIs;N;wgP;Vr>z5-{XZTmgxiit8D8#A*vdFFW!ea z&t*Zsq|nd5tlQ6Hpl3!nB5b&Z$&U^${0BJbQ%6HBB3SsRRcPl9L&HW?G@c4ZCN`pj zv$5P1rvKfd;$Z#j1LW>;$dRUXkoYVG?^R3bXNgH-`K+B^d~5%BL}EwM!PAMAXnwpS zSeq*In55)^3$8}l#`}dn?jOoM_~4gtX4gvIYK4bJH->KQfd+i84O{7-1`+3IMn;!_)e4 z-(dyCw% zf5R%UnQ1K>vK}BG?o}y78qnFhy=7K>jsGkX8;gK>kID$2H;Y&~L>?MF=bK zn-0j>H0dv_1+}#h zTUm*`T2Xx3k*ZCR#EDWqO!G%-<1CEFtc*iv9kaAGGWnY_Ip*2*s9;a+YE)EGTSN&o zvd~soX*_VBx`@@01~qX;{;=eJEx8=PVD64)$?7cU3k&>^70%7|=^qdz`%7|fN-obI z3cjqJNCmS?0w|#)0!}w9$ZJ+48-#+NV8jx`xQ1z2v7>SR8SF+i0%9rS|>FZM>LDXq;0yYC3b|yuNZv4<0BbA|+WD)(=&YGNnxAk&JyRKx8GVO4b_x2B9sx&RL7 zcnQ6zEt(5o#gzaj(cGD1!#$muBW}G?qoPG;?nqNg(3!Jwo={)y0wkQUNwYeYghVCN zxdBzgY(vWk_wAZ(!aW_FtE$RP_?eRhZi0&A$#cp2I@PHlsg4M{YGW<9F)VbJHY(iH z(|J=wuRk%Qza_A5s8|lcW&VYwoO}!Hbt{aU=nH?tPx@BCzEWYlO2IM~4XGp7zdpBM z4_dJt+ceazi*1-Pd#*jrP%_Z`AsA;988@9dw> z`ki5Oremi*i#^Mi&H*lnoviH4nc+*H_8;^QA96ON%$s^|(wiwl*!2hvpr+TTQ06UD z=UV?Cw7<$a)9L9y4VnnQ?SXXq+8oXNOAfey!AK}dD=Iqc zP_utb5e@FAbTVruWaXIuW=e1&Z%=#{$#ZOCr!{+3&_ylc=s)(SCeo?g& zw22?8S&r$}9Eyc<1a0cn!XKxP`#=3*nF#%V_<5=0L-0zF{vc#`8NvBYs!pGbAs1a- z{j?UVQ}>d-+pA2*ln72-RU!DsPcRdUp$kDyHJlw;)w7Don%q*&iIehG#U!CE*#n)O z2`R$}v*WS0R{96w!zxpw=2bmbl!GDrBb`mOagyU@lI8Uil5wTb-{X(J+DX95*nD;N+f1;h( zcXYrn6k!)1C@+^Eh<7&AZb;}g1&X3hM|j1be2BLApxEwwk>td6LY|;-98IkXQ^Ch# zV`yg_)XvtED`W6oJN8R`RyWlrM2rXweyQ3~RDK*V9QsuB$~lfrbhgCSOK(11eDi5n z+xax&Ekoq{2%O?WGLZAq;rvIk-WW$m5{d( zw`cM0AuZae?hJVAKWP8Xbp}zk)NX}wS z`Jyh2h<;;OVVnu{=YN21Hb70?j5k0Wx8d?}@TY7I6Q~v~PgW|Htr|KaTd^kI4%D!z zJD0w0Lrbx<7~tA50;7P5QVSs*hrLZ3M28FE%K3zTWYJKBV%;uBc&r=j$je$RqMVrjVO!VK zrbhDqZJcv)KCNLhQ{Sti|3daXT#jbgG?wH-TUeuR64hBj?P=$nW9#6HLImxBsG2S6 zH>PEgj*8k0$(yF|VzZpj*{1sPCjAF*Teh>K_O3*&S5QmaJ72M_^+m1z4^-`r&K{aw zqK+!4;7-nEcn!oyVc+}*YD;Hl8|`0-x~rg|`w_J6bUo?o;b^A07H;{69_s2`Y^zTT zGO;(SF0Icp>?=2i%iWywZMF5UVsba-QK#J5LuESB(-}stHm2U2qq85-G=OYR(d`t_3)CdTl>C|hNItl?GaLJyWO7vfg;;FO z2z|X?b4q)teiR=hqJk_FZ_|J9j`VT1rQfp+aW?dI&ZEc<>{8LV4)CcIl|ZResPN-@ zArv|cdj+O;G*VR@;CzLV($^p6oIz)LiUeuB z%n9J>JVz-x#&0>V`A6VHc(<(g$`wfqa?MG(ya6Mf&1g+;BmJq7&RKNeVUZxTk4V4< z5%z}-;w5P;b^i}`jlX^4`4&X(o?=4Hmw4%Kk!da9H|Q?w=3bb$HI4C|P&bP4xPE-> z=+$phjAKWGV%WxM1K=;}Q)&>x2zSxrx{R+=qN%}Vs8f%`YkgyUr_{Y;Jm!*PZa+Tm zjMbi(yag&R?=*O&6P?ld-{boEH6>u4AL|U%=31DuS@tY#CNR=5H#yM+gJ0*L& z%H}5~x=(3VJ8HO=h#iK#W|Y$0T>pW)U6 z^7y;O^$xD?(e{Ng?!L5rs#9NXVPZR#_=Izyt+f}SINdGuuhJAXt?p4U2QJ)CI_u+D zGvmgaaT%1;D;38Q7dgXikNX9W_7CRP-)BH-Jk_7*tcbJCOvi(Jp5iatjJS2`5@#ZX zwo9!>Av2K0O21jW=06Lbpf;H4tc|12O#f1$m(Fzdvwh|lhsXO2RoI%+p-HHgVEzAE zQ0T8kL6|%lwa0B^`|gzLa&BfL+cf<6UnQHO(Rj0hTi}%OsfiTw5h}7|Htx^8>&;s6 zGXC~fBy0ZIGthi}fvrnZpE8<;5z`N&+&5COQaK0CRc-z676-1T{#Dj%e5|KlS^e;R z(`=6jdOyGP`9&vEsm&tLANEVn@lWR{+M`=i6GY{{AhLK?$s+oiBbE|2r>4;3OF*CJ zm;Q`@I)@3WeUKVM&pd~w^S+?(Q0U+P3i|vHQ{}X5`xZihywPGvkUq!{@LC!<-oxJOoTTSXhXMHVOW|841i%3zY zZTx~;`UP`?8MGMS$r3z40ULd_hi$B1<`}E#jiROw6`Sq4F!yDDwT3DAPv7; z3O(aKU_bhJ-J6A0Axck*^6SfanvDfj+eiW5U-yB)=e z06qq=D!`P0(^smW4TnD$V- z?`Zjd@t!uqy9py!Vt+(qK}%O@cvPbzon47Z0}Q9n0#m(svA|R(-qXw3KqZp1Cf3SX zw4n-Ye?U+b%2-3Duk#vb{@}`%GSLQDCE!yz-0Vicy6E`Kvdw_cW`weh1xl@A>TC~=Q)glY-npDLVuY&mw zkNaDkWogGcXM~oRAi8x8nwsw|X}EG_9A|PYw?Po)Y7KBVbpiS}nmvB)yTpuPCLfK- zZ)P8@M`pccX1)G9v)lp5Y|Y!~H;D20$*0SIB-eqBiQppU@B5`pe>NOBP(uKfVWRazbX|_Q?WQ zI(5J?T7S4>791qbq2D(-<89c`zZx^D58lGuAiXC-)O=&smW_zkwQURs^VCMvB(~l8 zQ3TGYKcFV7)5mMz`lB~^Un+>nKYpSD#kNN4xV9CMqqo+I*}%26m<=ecfemum?bs&y z)jESw@+E>Ex1C*tJbXhHSTS@Jf2Zwl zvl#jBSft3I==br16Ym&OcvF@}q7p0YLg_wy*Ca}zR}{7?=&5X&5245Efq2*e{`cGb z@7C0EW3hVY`iU3Bjo8>p*@~9Vn;FQDBWsmv(v5Y;2MEIwSkrf=6HwD*W!XWA+~Z8q z8o)u)*YQ(o3ZtE{6o)nV(z4(7IGbz9K$_R_lbD;O)j~o!3t@+3T@`m(y8K*vHR|!P zv!XUcatEqhzFKOpvys-{g6(6)Vu5C+_KM`ZsB*ZT$IW@CCbe6Gi(mAsTD0dZ$oYPd z`fEUa_G2!#TXJ`)Ts&OVSSz%Ews}EZTTmp|P8ldvA4Z>jLe4q$U8DRe^{tvbfaWi9 zNHhOCBUCeg-CG;nlt&(NMqm~+bwAI7vJS{d3=sNT7d2_?@rEJPDh4-Ng%SR$Mz@3Y z57HG1qC+1!<;ALDpF4*mh{nh){Wl_bt|P?=a^*|R3b$QoSf0*0aj!}{1}nZ>>sp=` z!!o9PjhPyPX1a{yeSoNw3`~K1L>sMtkfPz<=Z}P!=7p^muvI>=pT34NR{FwT^9y5- zp~AQD7`_p(FMVL>kCBwns1e?`dAe~WS~u1ej+u{-pr86>v!Kpbypf-Wi44ou+<{u`NE4`yAH?cex1(u9*C`jRGm)DE81)PxS43 zQHgB9Y+g+wWYLG}A9Gg0RZcpSdVeMt8kmX>*H-Il;dHWaxS&aP6cm#Vozvk9m2=+i z%+#K;aGvzfNpZqzw*S((h-E;-NTU6xaY%T7pGE=n{c1c%5&xAi>QldRc2`P+7YqAP zan&ZFv}|tUa+LM8bGbm2b0yK`V0=$`$`wX;zZR)`eq&0_Wtbj`U&VauBu#R%}$D~&9=u#3@nAE5uH8_V+E~-eTF0!WXbRNAl+b$EvZ*m6_ zI&KV2K6@g7(xySDgO}?%bqK^%hY7*0uIB}36m@n=1i$&07w3wh!l_Mgmg!mOw3f>> zK%K7b+tOIOT#$i3q9DE9YC-azZd8UE|Ac|AX|ah@KFOEE@(lPH@(epJ5uUbBd*`9? zx4j5X>l30hOHP8aSoNeblDDI?R zv9oW~X-nSc7bEYyR~wb5oXe<@)@P&uXG|QPQapAA208DnM3m^Qv&V1F8r1TfNVDji zDGfL4c~{}8UD_ zrVLpvD{nz9(=W-qSS>{#HVUDl){V7A*Sk<~9qUbDLp1R{tpwSN}92xK<-7Lpf>XTvh4w zza$4$+nLt=Ez;ch+mwcvMw^y*)ur!m%b)XAcSrvMCa)3%Saz#XWs&WUI|5<5YeKMh z+Aq+RLg(&E1a939qVtOtL;!A|XpS(^HfZ3`J<|%wa0VHD0N?#88Lrc0u&kW=Od##Feq~l8f)~XlZk) zgB&M26Y6S4;UZnE5aC>yt3KV(T)HkOs-;0v$>WFCjhI;G{TXIYgqx$|1=Ju?q?R^HOy)v^()m(sdZT+dLfTRvh5aa2=9O>}w<%9fK@WK&PGoZ> z&Xk6;c|X+^O<%;zG^`*LF`C{ZQAnzv)(=pra z;%vC)Jf#~{s!Ztu4z)Cv1PfC{Wc0{QV`jIF`RdGWbBbry#B-BAja+dWF5%#L_OTQ( z&jtWTuk^>4;fMuOfxTrEWj1z&Yu}~#di~#u5@=rmVeFi5;+n4Am&ki65_fZ=^PX&3 zk1Dox2Wq!1v_Gvh9+l=abJfyPQiYVssfv^wlsfw)x;40vx4A1xOG@>X5(mck?jS`< z-v7Fyg)31TD7pPjT;0x;{?syomb65{`&f{f{n+KUqToQgEM7Aq9z+kR^) zn!GmO0-y5$_=YyFNNtyd7piddqA0zh0%=ZLSG2axg52yya-0ASf#U@4p+V?zf=Z!E zqZ*q5#_y@3Ih_l|+Vpi!uC}D#@CEmiBrP^?qwF~2AjN8$YSN2MT;d*!u0Pom>0A8EXNOUf zG*6S~!TZ?Xt&-%Tzz|yB%$02$NVc|c8UP5R)TgmQ;dCch?pLq0il^HhFd@ec=5%?DsJXX{Z*q^A6!q-~ikw;tWU<&H&3e#U1@{`AW zOCH>7bHZCk$~<<9Ja#F0@XC5=7gt9-a_kSf%>re=Xm;7PH6`>%0WDFWSOJrI$%|=? z+mX9N=CgkBr@VOY`MzE>sfVjNE;I@20G(B8Ai6MXe11!)ggr2*q!vv(STS4+Y~b64 z0~&a0k#~~}?B!~P&901VuHtxu+m=4Arj+nUo2qndY}){eiNKTGO)SiY4TM=pYv8Fu zw2;}h#{~9K6^lbw6^XI;1KS2t=;v+9>(7m9BP`TmRw_3P$HT6MwiN=sTt%?0Fs6wz{I)Uo1-a*-B?6JoiG|Bx<-T0K3|Lr;qLN*0 z<7rgAhr(>Vd^75g4Qa?#hs#oS4smrx ziNncoiz-p*Z*3zee>BWy1^v&$Y$}bqTtl-4mW+W0T1sLwg{a@MkCDAL%LEO_|1J_%0WRY||>r5C&mvG4b8SC-CCM*ZQn4x|1Qef;Df%=)-L z#Z?2lZZC{;Wz&XH=+~kt>)I$9*seU?nhIdL<11DW?!Nx4UHdTKLv%c3KGfhy(`{x*~ zAdvdaz{KLq$0dv#z>cPw6=>4fb^&yK4GOSxtckeFKhay@@lRu7Rx-{Ydb&feSukN= zj~A1Vs0ps_nxZevSO(?~$}C5}O>hyH3lX4>bYY??@8A9BjX7iv?SBrkE}G-2OqC|f zyp4%3Y|%6Af@$(x%+qd6HWBfN=VU+C2b-URML^7C6Q&9nVoH%zxH=<>8a#)Fw(WT| z3l0$nJRwRn@CkE?luofM6TzP4C|uqJXE|#6q!bU4qjcK0CZh_q{Q;qcm}vquahe%q zlr9!_w8m7lqSvOoy0D78<;z=$@@;t@&Yi3A ztLR+Y=gH)Tk;T2l6|#b9!Zi$%ug^DuUU~qi&oY3%SYQEhsd7@X0%_idP%}rBc04O| zWP8r6BctjuJ9-Tb`_yxird0f>tPtAzylaFW1qgY;CpkJ5En0zAaqR_}61^&&#;ru) z@%W1(&*YcPi3}y8L4MmVgoZ4}-B3I7ap}`TFH44@)7muu8~nl>iN5r*K(>6vjP%-u zPgcP;L@tyd!&j(HQ;uhqr}71;W!oZ?b{}tQsb#LFfOW1=+I|;WJpU%P95r7ok=_bR zFGYo|y@Lv?y~KoEX+`p4`_FH=>d?SfC8%@)ybVl7DpC6Rc1a?9-EpZ2^qCc8$d*J; zFSAHgbgo^w`~tM~(aTMo>sAhXLUq<7&b;h3Ls`=OiJ?-x>B0&>7R~7YwP?)>N%Z#mlAC~?o`5H%=dBb~XkTfrLUw}3Y(V4rFdtHVy1`Y8{?3Os z+amSyxBaBv_P(nPO?gMA#(7+!^8BO>97x>-TRreyk$TI!=F}$jR-nxK=+LQ^(P{EG zpe75KXwme;23eCPmGf`a;P;CEnW}RqOU$7)Km4AQ)(B#ErH?iWApFRr^)GQ7PwZy%;W z3ENBsXhAi$`6+-`VTJqA9!GAMFt2h}AAqMdWQQoq_8n$1IQoD1Q}l+n3uQ`-^mtKt zrz!K-{AX_T(?B}4s{^LOhfq6P%u&snHf+&`;CD#sR&sGeI`LrT{pVl?)Sa9igW@TPL>x$05TA8n(=?jl^*`Gs|=+PIZxs>z-{RRy# ztrOm9I*!R6uIDraRdQJ9KL^x)A1XQFin1LPaNN-;;p~P38;-cSD-Lr=f7m_#u`KwN zQ?4pFj>$U34V{L}yaNP7SPTw^bPAwvPeW#0)#*p(pZ)`W=?nrY(XB<40q01Mxp-?b zYg_4ty7-mKoUB04W^TmwB>0u@MqS*IbqsAo(KaYeDukMs!_xLoyrAtm@eu||ZEO}gT)y38{e@I-2<%8r!{5wCu@?3KHbe~K* z>=yl{dNKNoxm0~9^k-KU?Wh!?(Q!Ex@m^RIDxR+V44>)faY0BpVJ3K6W3@}L6t_>v zyiJV|4}D(3^zGb9!AL*lhtcy7*t+|tWO8hYe_y?DS{+B(Hh} zZO3+2Cie+8`*c(#f*pu)*i{=8%u-Z3}HG6Yan+I9ms4E}On z$kD3AEC+X+X4j#tpbL^=*h^gcRPJOD?OzUIGX5$8WiFbm-v3e9Zx1pmti$9>GWFS8sF3o%h};JKV$O|2 zW7=QXWsvf#A#5G=0>tC9sr+S`=(0HxI|y;N;UJ`6k%_zxLT>BMb?D%khXQEOYuHs2 z`kP7Ym;8&(HP-H`g#B|D5+`0WCH%mDLLO{t{)53L=ekU73^wspsr<=MT9S{G9*s&( zunYcSygbzEKK6DDy&+-x6O1c^-Q6hjcM~C)*5B}>exA3CvAL7z(LW5r*H}?Ud@+U+ zes@)%W#4rQrs#jsjw5dh?T))Cw9BIxh8$z`;(sGv%&})!cn*N;*NEJo<9SB0DHWA* z*RUSK4`ow5*!NlWjZol-aiJ`foeyiTR;V7PwM=fV;VE z3uXOo3dL_!O1`0;cQo5kJi&HO&`v8fcD3@-y4Iq9+IQvE2-^u?q}xAIG_#cAI$BVM zSo$rWA=ZspPTaB;M1ylqwW5+&u*MUbQ5>k1&G20}(lUg3fT*lcD1a6EqRbNtEi--O zxbJAaqo}#(uJO?Ki>hedGQ+j#~8Yh8oNMODP*t;GE2mmY4qIbJiqxoU( zFzs~koq zwW}81Wh;;E-PUUE4BSAqAkdwy#b$CPLu*&2;aS#&Z2L%J8J+1{!x5QW z!*IUBD!Q|=ryTz$-?_`m5Ua)sLzEt)KT#>yIfv^xic?R8qh!C)hA>ZE>K=$M`cn5% z^HO)uS!FCs-NR<#l?^O)*By>OT9&$hd%BEV>Xz?xOwZH>%+inpcl-YQ@78pxpRyYN zO?7t-+7;{;%iKHq;|9q;@h_jAy*^Vvn$_%~acGb{bs9aqJFXIlb63PwWUSb)GHJnh z$0Gz=U4=>}{#cnZM|6**i>;v6&n;>_DAcO$mm-3{V9xPu`XL0`mkUSsuH?6+XD8J58&HJ2OgfzN1c-=+^Up#yuar?=5{eTK4>_ z-P35&Hb|F<;J*2!M-9#)ON#?Sb{gikxi+c-ElqUS)CNd+UlqQBt-%B$O?QNAaPJ z-AURTl9sR1@C56_+Upk3GAjsI`^?h5l8nz)2FKItH*v?&{oy?mY02@TK<%Ifx!;Op zA7xu}j3j?ZZmG)U5MpdcH#Qkf>4_7VEzr%bTDX_3T#l5UY3WYZ655M-S1k2Tlg5#i z$gfd{<_dHpy4ng?9^m0L{Kj|I6`_C4))bAhn_0GvJ5lQ?>D_$j=$TQJ-mhmUU2o&A zgM~hS;12%5iR}QMCBZWu2oBBw7>^(Nk$9>H%D=|mGbIc7p8Ad}> zdj(MJqfoKiE3mSPjtBXSdvDpIoNJj|mnL^`m($APP!;alq^WIX$f(w_qE z>0h(8+Yn4Or!zXa)3ruS%(7vZjETvQIplP9=h(2>4}bA(2FdzY6O%WXZ0!QCX}Dw# z@nLd2c1c(FKy1qL$Lw!ma+EQ$r#p;FySvL%rS9$!ZLy@k;zQ@ik;`sP=B$O*I}{PSPKC_r3Ev8K{3XRi#($ul9x7xAbv`(DV-OMZ|J>l`#LS zUNyvF*>N4+yybjfM|XF%q4ChVyB{v`eXo;|9@Zd<3i`Y2(b~=;RcU9Diu)&8KljgL z-sZ~oYuF?1WZVC^TzI!bFNjxFu-Z}ioqN@xM+dsY@tlXhVy+RzRIuE+o*U$j(C?Cj zy6_&n8OsA}QNv#0l=*H>c^W+!HH|wT{pj$p7q0HB8E`4b*ueXLorLB6$0rZOV5(61 z@tjy1Hx&3gUc6!v{_5zl2&kJGT0H^N>U5&4**KPO_*GrB#7@5BbB#`Nd`24C{dr>j zVxI0uNl;%2;`w#%2zRE|+XCw41#v||C{IPnLUTxZOyk}W(iSe0_$3k#8`wo#Xd%DU zNiALu;f;v8+FqG<52qbP=-QpM4=ibSN~yMci-)UtW@?vY@}FeZdK01ah?8~c;LO|r zYWFytnF|)$IX^W0QQm%I-5FXHTohM=y<%ase1sb>t?B&=H^>H2n{naCuu-{x?=sYSG8*1AU-DE7nfuGYDX{SG zN%Ff2nQ!U-Wb~wS4^Jv>$iMo?WH*v6_4tzyzqwT8N0v>U+><>1Vym z(fzM`htihmFdCZvOSSs$3wiIMsIt0v=5^#LcWtey#5eNAW3EtzazE=`hxUC9Xaiqp zivB?^7bs-b?4_A-@JCAWa9=WS!rMOE9Zl;hJd79~?!m=Vj6O0C{15zZvw&YJ@rxgX zZ)SVN7y6E8!A%+GzqxYtINr_Z6W+b-Ew&fcMP)5`(%qT*#Tt{Ifn9kbtt|EQr}Swe>ckD= z(HGp+ZF7aFv!$p=9!}iKrmXD~L+h&asYC-`gp@NaQch=nmi9zfj|O@h2rm9SwE#^0wMA5lP4AtR z?s%*lGVrnj#96E$`s5gfvt#*iIxbmwKl$VJqJIhTiD+D(qmQ}~bmJBD9~SVfVQ`Iy ze5?akxnuQRr?0@u7yeQdtMn%9I(Fc;;;^K z|1FFLtNqfk71a-&cTgl3xNB)gCH;s(hu@3mnr8N`PI2ood-}#N_)EWF?z2tbcGss$ zE8y^RZSevdTh@cq`yD+Ue1j3R!QGN> z{=f_Lu&iyC(g%N@n|pDci7(?x|GuO(RFB zxE=larub>=)ux~F?vL@C5xTAOmhpR>(!yIgJKe$g%TdVC5BgWa9f5rVXxStBO4%Bd z#Tw;*$%;a6c`AvU{~G= zr|SRfTV5dQt`~?|>#d0VLLl0Ki=AC6o1 zHG1o^Cr^b^VljNV4jW9ILB1SrN9#X;yEE&524_fREM6}A9Grss0|IE~hwiHM@OviC zOTHW)npW?|3eB?{4bFStqj>`nOtbgES`OVL^sr--Ne?W+(bNIuY5hm;%Cva1k=!so z^=Zr&k@BN0rj*<|R_=uc*K9Qsc`AXDN3OsQA;O)d2H8EWp64-AA+bMi}wh|xjiNZH@%Zzq3M0_k-;#UUITjRW0C0O$EHMFS7*LK zUG3g$B=Xi(?hMpbN%?*_^FITd3YL9hDt}j6{)tt4O#JyUh~MtB64_=SJc2cVZTp2l z_xGCw;s$%|J2co+2aM!sur28QPfeNQ=~6$L^SFNXC;}`$9W+uS!jMge4w+IH`Av;c z;R*WXGb15}fehOFxe&AB7l_e(&`o%}@FaLHyAmFS9z%U0QaQQVVnc30FM%N4`^qk7uT1P&tJrMQLhs@vVt zHi9l3G0oP7aTemCg~3QFU4D*aH93xO!V1Y-uJEq!gv-xPS>fVGB5BHjM=DWtEqj;^ zZ&;Y|i~Qp`^xgX;BGiW@{(yovW)!V$pZM}V`VZci)8Ji`yeocqF?4;_DeO8wgFzp! zS(qjL**}>($LzE2I4!2PP;4YED3(qmD|h}Om{aHhHzdx6l^%T#^s4+D-`H=s{xw_k zRrB-bq2?}<-qD9{QZ;9Ry_J;*hEm`z+>n^a(nNm5#UM zMNxj*_t78R)wGv-i-xy0#MmqGypCz1IED+Div~!6ge|qF0r4Sng-j|#s z8LmVeD$#$c1mw2%=2c@_m+1{mEv%5DEb>A z3D2sxQo{?7YRZ0Fply>Pp*>8AjWoH0b-p`N!h&#II{lZggg1M8Rw%gc*YqA3DWh`L zai_5EQAd&eoNNJLgwg%e`Vr7uFrZf-9*EcPeueK>jeo-}Kq-FZhdq6lN2{Ti-SxFj z5{tl&37dHpLs|N@fq}Gdd8hKcwaSJias0-&Vd24>b7)wt05U=@`m3y%}43lQN$v)_gkKCi(@Bvw*qhuDphxRv>X}d~oN#6xzV^jn~~(ZEyMolLgHC>)$EG z(%knFeAovZe;ZZ|YL2Jt9R>xjJX#!P``R!33k#gh+3A~52a@6no!_w@az|$Kmrpha ze@3{($Oe}64@?wq`pxIY1M{hCt3&I5L6s!pK)ikvJ+~8s+(N6-$9GN~*GJ5WQHMNv zMN8q4A{0`}ATiH9uJj!kD>rK7i7bYyS-==oq`~*xwP?)WSS251$!9{T5@P*SNs}bX6-3x3%y~Z~7nf zie*3_FX@k4>9wiEJqV`~-@}`@qy5rHdg;1F{}Z#30s8;RT|#JgdOJkR_nOrkidlVe zxiG8Cd*ZBj^vYl;Fwa1@2K~EPf(>7{T^7{QY+g}ug`2-KhX^t%xm@w4-IKa6)VDq z-1iH<=NHWFuYRTCWUUc{v$O^(nJ4V`D&daqlzzS)Jh>ltaO~hRN!cN!xUn`|!iK0Y zj(o+37I)AFT44PxFm_qY0HiW_0Uh=CncAioF=U`?9;(QrKMeH~XG>lZs|Sr&9V z3!2Bb>eY+WuwumMsVbT;sfcY*98L2ZV5u!*O+G)m(XCHhaa}APF?y|v z=1WRg>bw_+;}MhtxGQ|Mg}O>mwc!4uzMy3uf38E@`b=e6cYDh+b@hF8>@wz=AgdA&wp{h-U* zFzud2$lJ2$f0`?7Q(|#CmW*^Xc3sqnEbdH9R+L()YegDAH~Cp()oQ}ii<1lagA^91QdR>=M!#;xTb6$ zoBKggI5y*W#C`R);pFe~Cv)KdPqlFu)0bMYM8OJn>j^p&2;sy>@2;j4ch&DFH!Jg) z6lKuxFzvemX1}0)8ah~6+F27KYt*~G)FC7JU>-U`AN_7}GxDAnsaw&6V!57%l~BF# z+vJ~h%Q9|;$FejfZmT%eQd8#BW+v9vvh;k_nMu1xyjw-Nt&R}_j`9kKgki*!)4iF$ zB-8xH7`pTL&%O@%P^MGKW3__BfAJKh9bHIx=x7tmLh6_ zqsTke;|6urE9&r*MRLp6WnXzOJz{N4S_pPB=~JnSG_^r7uQMl!b;^3Fqte8ZeFgnb zYX2-p%Tr-I9zs$%%R$I!iq=M=S}Le*ZHhbDn)w16TL8RzYHL@VqK%c5F$#t6j5?Ns zN-wdE!ix!QMwO?MtD~w>g$(!&qkQps7Cal~x|zjwwS0+xUBUCUS14~aI@WGf4Y4G< z%on=E0_BmuXMi2o-ewoaX`f5-L50jg111mud33xW@AoC|wUAldksTmzsf1otpk8r< zdqLa@17Sli`$F;Bm#ic99xsVzgw5CJY$9S1mFOmk?1r&=uHepAxNP)hWsgB9ygSAnyd~j>JKZmrjp?}_Fs54s zcca4P<=$;Qi`(mONBBX$?H9=&>A$^-lVP7(1#Sh2g=s9z<`j3-?Xw@`F~3Oe6f53) zEFt)X6$@6(Ss|=L*}?2dlf8R!qx_yY=EQrapa;BIzv;2cl=?9H(*Cl+<_AAY=F02Q zr#MM##AtmlrGz)4=)R~;+{V}4WC4=(50={E3$70A-el|;8!mA}3|t-J_Xq0rFK&Vz zls-%h@P3#)e;q%dxEby3QoM*86yAzPd+I%=vseXsw`;MwruN)}G4Bm5u21K?NeoRM zRNR}2x|>oLno@^#LgAAM|JMQ+@JeC0dd`*n%yiw%u!NO5q`Vhv6Ta55=K7JqU zd76fUS>Hc0)(B=r4-pnPf({K57Pu+_ga^7l#w=k_*tjSsD#MA#+ zOS^|-iqJvQvV3VAkN~YdyR&$)K&L4&#n$=<>2$RKL|S$ZGkrG#6M(6bJjs_FQXYQe zpr6LYQG>{FczJ4MaUeV}AN=F~@!a;@qtN!&O8jbHe6QaT#yb4fxCELM2mHLtMS-?e zzW9}9JV$PzAD-#p2{ta7?w|cm>j$GwughxIYx4dhKK_~Z>kv_$CkCQAFLG+1>ip5G zdaqv=L^noYSS&wOOns0#j953VSDlKW`QzM?TG^q#Qy*=p2shpLs+=qHxpBn}5sqMD zQP_@oRQslqCiL)9JbGXdUy>+yX4O&e}O53!wo;`sjFihv@hpkNp54HO$ziajcby%$8HuDy2wD`&+- z9gRjY_LwLp8cXaYv5Sq{GbUn-jURp6WHHGr@G5gSG(CX%0Gylj3u75>jD{JE}CEFYnxY%`pj`)_!DhacD$#Lq5

    &5XUNy@)AGf;)DB&$xgG0vSN9vbDKg<%@o~J3>{k4loK68N0kuoeus_*soDG` zLRxBedvnX-`UrfPRY!a{TaVB4%5ooNw-PPqIHf$rEoD6mej?@L>=GhnuC4?5s4fPs z$Sy79d1}gs=Q*d$^UzCS`TRui?J@qM_d6_{Z<(*h=M(q+S7k?wr3=*fISZWQ>q!?9 z8`_L5D3*MjT~J(0)8ixk*5b6)$^3V2=5rJGdzH6{_~LC=A>qBqh)zW~eRXyPai#ZI zKd~VWbur*Cl;huvRBJjcR;}SV0bB;VvTsc84K9gj;_=ArM(V54`RgX<)^&eY87U<} zof0g)t>0cgGl2$f^BUW<1joXKF)NThOJLt2ZNQE{Z9qYTzlhtA-AY=Q;5r#t!#ZQ6 zRSC4n6(d0-Std>9a1$}Gy31;cbXT)0t0rEK`PAf3Zg%}(vWq{k&O1nTXL&@CHQE@1 z`2OmjmrdJ*W$Az2O#53i?Tuy{l(K1xW?G4nrdd?`16d`d=7Xrn@U`%k?4qLJBus|L zJ`29FUXyL!%x)?y>$A(PioY6L`H}N5R`-tkFxL2vI*ifc&9>~K{_lQr8Mv^>k%2zf zbdXxnjVRbuT>jYf$ug~(NDJ9KYzVHnR?&isADoSvOGaVvxpAWu9S(I==NDSp?QoPG zH1MBWV-mc794;Z*H4d9?^sNI9$)S8*m!vikwYii5MdsBLyQVnXMRB=D*laDlFWXl{ zw;5ktWYkVnZxg^LKkw6?WoYO2K36M-RJ9nIlrT=-n%?=P;<#~^4!Zl4#CCGAMAwGx zpJ>nQi59o{oNDbxp2F^Sf*K_>0WNu ztrv0wX{npGMGkFTq$mw;`Grs_v=Y7b8`n;GT`SJQ2lY;w}Itic~oQ!=VEE#6T5 zq=L6Axa-Z(ELzu8D<8{LSF0bM(FSgH^w^RxHoNGz`(T`#@5TXSc*VA*gQC zu$82_x%3gDntR&?P1RYGs`QgsKR@$cEhh~v+yr19XLGzMn=h2B`h?ijwJZfh!nd%s z;}6(iVgKhP!jCxBfCsjPwX9O_!eR?z;1ctE`HEoe0mABA05tgXX5X>zvYS~dGsD%j zRAAleoHIDd$gy+p!pe&y0qmxj6QB<>d_<|8x5AD7Wx+WGh`1(&vv0_TTT*&IDSn)>~xm#Br^tos+!8(uG*dOnGmDGo2IUdO*=}Jy?j>RK(Z7 zU$^Qmo15GEZ?kHnO1TQYsIR|9on%#}x&JYf?!zcI{R>DsOLbIC_1DgM;HogHODOUe zk1l7I#n}fc1k)SIT}NFmKWGaVd#_}d&Fl4HesOhnfq;B+;|Q-jBBzOQa0Dw8r`4)1 zDB`lPHR|=DNXUXC<|Gbgp~HHJvFDtIOA8U2OaD2lmvdSpVoG(*%m~t|nc4Ch-h}J9 z>Ii?oj;`0U<19GHY{Y(hJ-ZVQBe+A+@r{T}9cl@X9jzve2M1gS$lM@rhOc*wL z)Czf|TNNAmD6e( zXWY^_?Uu&z|2GZgJ!!mD(|Dz(@!BnoS8i#1Z=}J_29?euEqWe@(br#mi8Ub(HW9Ci znFikAd)d*r_o_&i=DgRI)JM9-BIK%*%die{xPS6DDfhEOapRRas=x4hfNs2#qng~- zb|N&FwhS>mJ-dRShgg@p>Z0MJhuG}6?5g2{n}&o(@BuGfBIo}(yPV~PYvgBckvaLW z&CNYUT*s+JGWK)P!m;&}VI<-4YrB z3hr8}w9&cGKWyvX=YPXDmA!2rN>A~`yeU9|j5=@fP}@}+PK)6s&oV+>eWH(~!E%?6-ElO)C+fDj9Q(|ysz=;Ri zW*arXTEAyk$49byOn*^rpslv_ms|ALZqY3Xww0E0BJ+`ICSHURkp0rbTr0Z-Q_KnP zDXcUQM_*yVySXX)2d`0KQEt(jx<%(!*Z)m+Q*=c~>M!4*YYcLWKEQ~MQm5~J9EHC} zEBvpbu7-%r7uQPiXMt2G`HyDR#V|z5aSUL2PF4l!6F1Fbm~-(T*5!|vS6WF2-Q>Sf zEs?$+=G=XA!W0iNZ;UO}a!1#I3)%vN-&k9H>9(61`~Ofg>d5q-V)V~8Pn_%sdC7*y z{C+h+G#fGCwJ6Bifi^WxsD#x%(Gkd5->8a}XORxPck&M+eTi`O2uCU}2v zF=~=(R7%;dJ{H-zeEmFaWi1;_8s>Xqn`fP?hBg0N!zb&KqclrSn)FomwzbDThKnVK z->WCQ6qQ!1@N9U5x^tHuG(VEuqGB{Axj1`(Hr}1#- z%E@VB!?ihDlxt<_6Wl_!D10*RVn{DG1piqU?qyRC`ceP7SQy65Hpd=X#Mai5>>7K< zdt)#0w{?)Vm}6&zqhQfdoeN>Zdt+azV{0s(HOGEk)D}(efzGi{zBl&fOLOaMA0_;1 z*0DX%7K2Y)Ty#8i)v-LtHbwFqq1GQ4TViqB2RP)sr-)Pic{4%nW8H_Vm53_fK`w$* zQ3tu>-Hn&f`eH~)TT`jEraXF}-qCP36qK9lGJ1q_UEUr)zc&8m-sUMKIU@UuE~ViL zuxRFN*#MJeeMcBQE#|GQff!lFR!K@T>-epVt)^w3tB%?4*THS^{Q3DUM07Ze*=bg^ zx}2?}WxJ~)9NB_(YB8CNVMV8dZB?bqnvVFfSBr|aAu#5GtB$kp*MZl$80q|KkzUbO zRxEuv-&?Eom&kL@wFpuBGv9n7C)-v;dND%WE^n(t&%zaK=#~S~Er(XHHN*dwxfI^7 z|2r+bv@NS>3zaI4bk!d+QutOvZ^P4}KckYZrBrsL>sVWgDKV0%FgPQJKUFjGw6e`l z>gtw6r;(yV6Ew_;!Z8eG87W*%6+@Vcw7%8K^;lHGOIG5_YMIbRHMsiiaF06)G z0l6@#s+)pJ|3d+Lu{g5=@?uhZHwA4?3e0c5kMAyQAmU$K@RY`ywFK2irH^vcGJKSC z3Hmlb=UQ%#xU7LKOj_y|agmmM+9>A|OrK)QCpJXb%1V39T70M4s!4m?wCr+d;Whzt zc)EdN2T zbM&kzTRp7XxTN00EjqW=?|)z1So2*eW+l^OY^||;}zf-A4=BwMiLImWfG<{jf$q34p@(bm=o zE3%G=O+TN1bKW z#j%cf(fHmJyIee+`)Rk>Cp43eY9>LOt4Unlkpq_bt4d#+l-BHwN#h@GN^?ynaTj^l z8RZc;*3?1gcd^xz0>--5abc#!NWNp$s)8oN9J7Nj)6G^)>B#38u&DOBy@e65I+3Eos=Dmo!3i+?O<3 zA}($;Z4Qq*nbli*sack_#is3Bzi_kc8Dg8)GXli&Ug)!kf-}XV;qnTLn66F^7uQ3A zpw9majB~C5Uf5`0Qb7wFmb$JgYQJ9vFK*!F#V~*tH}D$cVnCPo$L4Y`|piz3a7883Z!fpw_hcfNHT!{kBNj5CUl(|0((W2U&|{BXR=CHaG<k-8&W3KV8|+k{@BSYh+@q?Rbx@DOT7`>_ z@@b^ydO zj8ifd_=n?-0;lyiX^|s})?m|Ijhn~DNwdd0w^d^aNZMuAQE;q{|MI}OkhZ(&Kx1tr zrq)^2U8E;qigVSh1ML=npgPW$fW=^!lEMvlC@D6^JZP4kfY->EW*vJcp!8mFbW`@9 zIkNB4-inI5L(p+ibpC<|+aeQO9kCx%VkDmlMoBmtTZAb-kCFA<;)lD(H(DB|MvnA( zRO{guzpH!vkiqz%Ht4m`|8{()Nz1Bfwp!9OH!YLhwXhYut(0Mk&(8l-xA>np;*+z- z3**({nm@D5rr*si*n}`hiChKhoBxVArUje}r?MJhbCPrIgS++AlRqueY+lp3ws;G!M}>JN z{VkmJ^RS7WVnk|=Pd<6nwCua?vcx;&bQay3Lbl^JI$GkjEMh&T7M?cIC@#+Llm)g1 z_}Wd2bCv#HqClFhvE_4Di?*38+Kew!%rk?pa&FZZ!#=SU#7exTX{XiJldkD?&K7Ry z1wkz~S0y;s?w1Q-y{8`ZbqW0xd=71UhG_FOA!wisnX>Zzen18 zy{)nETEe;)t+#a&UoKIlA1`^2^uZ0tzOt018)n$ri}}k`=@ZLTY3_;WL^LH+ zK1{y&o%%&1uZl-~hLw*mCaaT!|Ge~N%N^py5+^UTb+XYL4d*3YaKzKR7w-N;Jd=CC zwSPIf)E4jDD*2?m$tCGiVO4xm^jSvI(+e(NU+iZoTqWB`s zd1Ku9t9JMbxjvXH7I6qox>jf!p`KKwBQ} zX6;bT+N3G!i&T>->Kg!+vf296O;zicg@2Y`Q=j3Q2kFx(B5s$h3q2jh^v^C^Z|M^^ zc_-Aw=EeWst=Ya1+8o@y%b1^aA6r3zDB+ea`{Vx%%t)e`^1WV+U_xxFlJ zL8e!gdQNq1joqdS`+i$b2~UTuiw@ZONuAwN>!_vXQlFNiV!(b|N%8a`8e^JU3iGCl z*h46IJRK<%{MI&1n(dZC@>G}QmcOl=>S#^mD|2}qI*jGB-EQ%}&@9}cl?U|kJE)7r z()!jyK5DBWJ#e))@7<~SMW0QZ^wqJuW}{P&!G-IiT>Z&`bu~@j4b-SZIm>`EwRBa zMv70uHxJQqT5AV1$sI% zeeI%cq;$&7>f=mlPKVme1)3d4wO&fJzHAG`E&3;p+u|gj>Eg@Fwvl;#rt7vpj)Nhc zx+MmQu+N(Yi48;Z;`a8?ot|RlQM|6jSM|uJo&iM6<5$pO@pKr}Jj?cl1Kb(xY=2J`V(cbatknbHU}^h64L$ z%jR|>(uQ}}ZRSE)Z-ckm>}JG9)d(6XIbBQ)C|&%=295mc>rwkgiheq`zSwnPvwk=U zABw3Z6evDutW=bKQMH?j_z@Mc`gy{3=Owc4oxR;oOOM2r?jxRNCrP6^i?Ki00s=mO zkkcBOG(+v3kF?UdKb^u&#Io8q9QUpJe3#WV-tKEs#7XSn)`Flf^c57SOM zZ%uS@MAWvj;@u*~G9^Z8H^X@v^yUucY?I6i7Up1;d%T;1G42Y+-nDI&)|lgty=R*& zt#XU|u_>JE6nuk_p zf*4q$t&hdUr1rmJMXi&e!C!p;tF0>TRB+MI{=FJbMB!-3rQhJ-@v=)cbZ7z_`aZ>* z{8(2FqntEwuF#@5S2ehuHWB%}%nQuVu}Opr9!c#TUu{ttw>*+zCbzH^hqcYEa(ee| z4Fzp3V!K_B>n~zoVAt!ct4Vluf-+HfN;`abaL05=Bw13LU`50czi3`11~YS)LV4^Q zzpQ#!62BoNM=CTlU;Rb39vciE@CtsjTsxJ|ENAmSd4=i-H^mEl4gVbG7Ow_VVx+3G zocmO%H#n?-YqyMaPrt$TStqynaqjU?{ArtKfj={%X8dLAE=_QYI@UcZze`^K8|?r$ zKN|4|{)7H4+~TirkB=i9eJn>zQD48c)szmoMcwa+$_)smr@DP?CemReGzQHbqo$%n z-RY(yDvbtgZzMXN&+?S;%Fesz@22Das{h;)`NyS7M)>a5=V`%?m_@|lP^FDjCfT({ zOJYGF44p99xnihENiEFr1M(`(rD(VK%^dMHe`Pc%=|gk;qaI2lDbX$dz+}gij*rG9 z&)HEaOs_tl2Wu0SD&lHBrH!iSBVQ#aoubawV_~Jw>3{>k7aY$0y3PdO>CKQ1$ z?UomHishH|yh?j%Vv2K#U#z{eI=eQJYo55Qe@@R z<9u9HX(_sUswpk^RIYML`n2gjR#ut>D)HiXFFnG;K&6LR=*JMOCoF0i1JCiP8KyY}Pfn{LzT+PKubec4fX$*209Zg^*1Z0A;B}=WBOQw2hZa3ZD*5lQ#ChDMaP)nllEu8Sh4j_uiR4-r8 zHd-DRt!YeA91+zq#e#nUcP`*-s%?C~!SC6aV2WO%9!A9eZqfU=MaRjW2BJ}YrG{m$Df*H6=+3Eb(Pz0uH-<%RDA;CF!lUA5 zHzgZYCE{vz^w0Qi*YJgEbr_4hb~1-4MnrEfC#Chw6QD~mRs0!ITot4w0MaZ^_{w+2NTqd85ntzBUF~{aBA*dE_1R@RC2GheiID9v<>tdIZTosG-gD zC?Rj9hoAfnJ@Uzq>0y!g(ZfTYM~^(RNT#Qs{6u{mqKB`%jUIXBbTxFI9);vh^sva8 zD)C2p_{mq*&_j9@lC$Vxk$+J`ztST>-bIh1^4Ik6knhpMSN@3}dF0z3$#~|I_fs%J zzD5r(c`-dK@*;Zp$~)=NQMS^nk1j)1%1<}vxQ9#~6kNoll^|6i~p7LpWo}4$2+?JpnK?j03KoU1bl8Bq;kw=av=uFUc8akKU zoqqNt=uOZUki-p+V#MNKFXWDZByM0t8b#Osjv*KaNa8j|^r3Wnt4uHgki-p(=u_xM zt!aQHnc5SP>ft^Uxd9+qZU{`0sVx!Xce+#ICBbVzl1$Bs=&kXUs{8>#2ZD|Soe8=T z^d#s*(4QcIU@*ZD0-0bA!90Qm1XhAYQC`V;f}?;WZt7&|&-8WU6F?HTVj|U|(}8se>Jv01XhIN~(+U`apGn+~Nw^0sllCI$ zL(q=^e~*b=5hM~M5ey+1Mligym>sKB;HI3;ZFd>;klSSo(zzw;q;zh{6r!T#=AF*% znn>iF)472=Le#)1M9w*#Te>4eP2LD4bK^IH+zT8b>JE+&^$SOcI*21g9fU&U;?udO zI6~BA93kpDj!-gnB1e#VlOsgk$`PXeWtRvLbDb$_1vV%$8*%6|C z?Fdl^cZ8^eQ;0^GbnfYn5cPBleaAfN@{SPoeMbm=KbeCx;H0w`Af_53ci;$-JD?Da zJL&8f93k=x6e2&7&JMy6B1ho}k)xmxIgWJp7|D(x`3^^jd8xW8lE_Zb$})CJo2~ z+8>^T8$q$kp8=8P=6Pam4<*!(-ZKy^!c(!mBD;rD8KwDe52XuMsyg*lS{7AUqN*IO zAlbb3JQz05h#ftZe#!Lafw()=2fcY9L_;7R^yYyF4Q_aZV)~XK)B6XFwjJwZel;H_ zJLUF`09yzi62vwJ{72BU31Brro~D2X%>d~HSp*Fu0kx7_178trZv%*E4=C9IaEah( z9AINdK-YLctImL`U1(0XRWqYkS7LStH17$xLolNk;N$*)a{~ak2Lc)<0%{}y#(oI6 zGz9R~P?|=5G>r7oixg#RoGZJTT-Y@S7Hi|Amm8nhf}4 z4nVS!B)xw@QfMldF9fISBEY$Hz_R6lxgPt|~u6P~LL@Q2Qw0D}uyh0LyVe%n88!lYod*fP1F_RnG%HB6thXXXyM+Ne1r2 z&@WH91ZZ%BWC#x41Wd{XoVEd0DS*;;%Kv9Tx#ACidA9-0ej<(ZUP`J)J^-oqLqO|i zfU^Wsp96w&0jUISUjiz=qTp*loi~6V{{&R{53q#b4ZwH}$kbG~&LicK^Cw$?KY9W- zc>z{?10LlEC1%AG+Vg_HoyEDg9^5fEPqV5tn) zK=46Tz}aemsnr1$YXanO3HiSPlq2hqK6>LOeO>E<6jTrJYa_s(#(=F&056*YhD8Ea zMFAq318TMa;LBaC9<&0~YE7ExrJXdDZUfRCf-|vzHgSMI308FkG>Vrnjo%cHpRt_* zySo4eb_Mu!2XyKK_?DnjUs9^QI{l*Qo`6>k*0r!RjJ{|#x z90iy=9`KBy=LA3&AX&!O>(KqHrnKiwFiOn=v|9kUNH8;vXjTdm%v=bFS`4VT1n_Jr z;CVVA_anf$6@Y0g0hI(`_&UH%f~Zd^on2ZwJ{v%KoI&~jc@ut)+ziMiNZkVHvK?@N zpw14!8iLTz0q?#5O#Tw^6G5w806W3XJ%9>d0TvRx03`9k2vtMFy{1DrVo2slhk zS}y6A4DO_(ptU^)`0_hIz3&0v5;Q*xNIVaSxd8Z)VCF@@9|XfL0oq(9RX=gAu;ilF z`r9kugj@qyZGge|0AY_vkQQUeAm86W`u-`EfA44b+583ISw6h>e&Y!U^8(x;Xp|q| z>jUsE2sq~p814s{T?lZpFkoj9KH`in1e|OJ_$CI>zZKwH_$yJK%Usb`>FhcUKX@EM@0b^zWUJ}U50KcpTEc^t} zXdNK+)4VAE1sm|Q!$!c^&7_y6IHc;pR*(wr0JQlWFncFpwVK88GKDpyw07i{Ajpp8-1M0!IG zyx9vV4o4yHCFqJbQTaSU+(E#wBY*+N0S`_A8k_-meh;{J0Wb+OQMm+qkz5)Jr}8OG zJLS2zDDhQV;(l;da@`!jcFZp2!pZl6tsaud4NaseW?J%)UjVy*Bl<#(ejIaVx#J&z z#;*WTe*t>E1yp$l*pZi3&W>ub3p}xy<`n=)C0QTWbN5Y6Av`1KQLBG;RRc5dqlV5OAw8pnNmHUj$i^fGbge0x^Iu zn*+|Z06c67u(Saz0wnP=HL5RJ9@h@Ek+FbD9Rc=uz_Ct%rCk66x{>h5oGoo>QI5jG zLjtd8Q~e)7NDk-+csK}uA=%ZM?AvW1*>?c^b_0UG2GrO`5@;se;+h`> zY2+cm@b8HJotmA2SO`f@;B|M(NDhLs&rQIjA4m!fnPVsAfE00;NN9#2$-SRY0icC3 z{}w{>^rwLNF9BX}0BtRJNwfL@<_FR$DVjLT_Ad$2pJf1(Dgqu<>XYF9YU|1w5Zh!5M(5sel)A z02}60gzFqZmaU%2$Ow8T8~2!&d+#jcAkDKOeSK|Nu8d`(1m3Wq+SrPa zT;eXE`!5vnffn)XGmtvu0={|!SpJTf=;Ew3)&r}u9rMwuEV?*I@&ha=CGbuMDIHu8 zd@n!1`9Km{LVHBSXi)~V@5=(FRskf36Bn+JR4i2=8`TH=4-sic1P^!*dYn@qa8MN5 ztvx11jn zCoY!c@%%2ob)JYCs)QtO#e4e96^ng`CX64DG1E%r5pp~}; zt-LE}zrwetI; zm0$a;yhLo}7d9)uYgu_^*2+78R(`Ls^4o}&-z2O&^|$iopOvTTR-Q;(d4g-@nXHv3 zp;n%QT6vynm6I_NAb*P)F?`|oPDUC`tvqU4c~G?SXlUi}&&ng4m4~Y|9yhE!G^FuB zU}YC?W%p@izi4H*Xk~wBWd~+u*JPEC)54aOy^WQO@^k?i9On|AyaCodzToYR>ei*CNHv&Q9lt?4ccbrn! z2&@{XG&KVDaY{WSP;|V~-3W{wuXHp5-;Y;18G&*Wa1E$hI%~zK2_|iOCMeCc0$)o7 ze(M@wT((}|U((v28c`8NCn}MeEGB7~m19j%E`LXt?UZB4o)J?fDh;$0&xm~!m1aiZ zuZcz#oDngTl;#F!Ap!wvVwfUgOYk}1_Fs9#iHS-zk<+@cw;>ud*`%@0WTmCS**e*1 z6=%fb$)>bwPcaJNj7Xkhw3jpD%oL+i&xq1fm5%-Jo2y5 zO5}{#JJpof>#0iRP&MKYWPZ(hi0J4W7wRLZvN6BL{Ib49SYqsfV!$+|N+}a#UPA~r z#bPM;sl^fE#p0{AMAkH=KoOHvyGD>&A%2~vL}_KlS~nB^@WAxPqG6SiX2%3=iroQ!x! z+$th$rqa@!a(!9^PHv{9JZ4$3QcgKrM(ktF)KufsiUo?CRmBRMOYI6tln}LMDYeYx zh)9ry7(GjAVoolM)|el(wuoRwDJBYg*YXwVqXz<)kOT4 zK}G$|CV$i)G6%%;IZ7L|^0Na#zA#YCn4>fn>6e3iikc(+KpP5G5-lQXEh---28;Mt zLEc8I=hP!;!=a>DIM?t%Os-B_5CcCHIUl1laqiM*2jQP+_x)5#t40eGMgy$Kvr$~O0zPdz7EsHF2Vj4t}gio4MsitZm-uv;EGy`OZrwy5fpvvAy>_;<2 z-!!AiGbtq*BAH@$n$k`)oXKlwL*_-AsI>_LPDnkAN4l>|*EQ@SjI#FGp$cC~`PxeP2-ZPkw@3+ioyCC;WpV%BntSh7{AEplF8 zt*5s)W-q19pYbAhp)x`%3ntH@?VzDzMDjP{*G0-GvlZX106A=>!wNBG zVyS|HmV6tamic4a%u?(3 z36=RYaeSH5SJT6kX0+3_QiP@}iCPO|awP42z1(IIyZ57@Q&uRIL}r09`9yp~h^Lk* zmh+&Uv0w1tyi{dbMXyy9na4`|n>GDK5)q%{PcgPb6N?->Te_H8Nt@3hl7FWNOINyy z!Z%9$7@dIAD6tdlSz_i#%3!nNrC)%2>PxLH=q466E51&9bO&~cSsy|1@sAZhbI#B1 z0y9zE`B>?1CXdeqd54Hwq4YJYI=Bzy>EDoN=_WGd()o&w*S#+rx#%14E&IjYb$UUh ztW@&XF_nE0+6Y_#P^+fT0R&a{A*!0E#755)wKt)h;%}F!XtWRJXOev418wW&_&hyn33-sgB6} zyG%t9wWPGCQQ@52UD^c=5?9tJ{mfCTU^i4wJ+DR`^NCW^%v?^)U(btOpC|*g4#B$q zA$qq9da0MEeN(m6)2Y<=iiT^IE?To<%4CvQavx*uF4V)A1Eord+;Qc6jM8SI`Zp-G z8>06-xb56Y<*JGFq-*(B)hVUVEm-Owl0x5DXS6UTAGir}lE_)74A4rG$rH0d{#wL; zs&vsZ#^h5rkmo5PW&zBpeWhGQGjpW^rjK3tZA87Yt^XaYoZqaqlpPYwMe2H`w>g&^ zi5&2QMTC$e<(QF66hE^_1==*8a9b0J-XBuUobp`SO|JQqYF1WYnbND8mhsjKp6zb> z69kg)>ji&{wwl#~KTiceLbS|K;R#QZ>H zl?d_GdnoG-e*^BtKSlT!a0f2D=I9d4zWpcI{^H7JCEjdg`TszkA!=_?I-8SPOyo!Z ziB6xQOpv>Bp}MbPWv_`H|4y%(uW74Zt(r`#npUF7R%Mu$3{$*m8^5zyv{f0Ry?!zI zwkOCRc}c2ATija|@vG3?JVdb6XAqDVc#FG7$e3@+R~5nes}<2R&mzJbA~*Ak#aoqL zToGDknE5b2n9qI0nC*&eroZz6{Xszyb3)f^E>w>CvLHm3`H5ZobrCArVtQe)%mzP7 zJ3tbeU81qDEOhpBynshVsq{`oKW(cRWzd$ z4PO^C?5tncT-c|G+Y%=n)KQ^$aRk-6_>t=3b2|G#qr%lS(4Tv|LJe)g%G_W&6fvT- z7Fl4z+ESk`F@FYF@|HT1=ra#f>EjD4);03Z{7ZC{BC3+4jyWk;u9YJfrnPI9=t$=* zav^c|W2B!ksA3JL1oBh{due4Yfid$c);0PpM_*6;h9YX0;eD9gwkpW`t4V6EC|!~A zs$xN{)L7*EY7iM(T}1Cv+KWQxt{J_Bxl^ix8&Fep$OJbxu#%UPRTXN2+bdiWqc+26 zs4pdskE!UPI|kM;jLwCe674gUu3AfH@^vDIip)%ShRyLu` zbL?Uw2mflScNx~Og$}ITZ)zk^Ol0L$a*R?e^G8$2^o$h!_u|W`-3_W4Wysv2bkJp9 zlnA+uF)ZUurHUeBdXBeN`7E)LPQg@euGKC?jM+A`8_@ZfQlj5prMo#+4LULNT}z4H z-_T_CR|*p8n=5-bS&u(R$8K;dBkgLA*%YhZPG@b(wid^;bla#`X*I$UVXYyt8KBmP zwGD!5jbOJEX07^0>8e@9gr7)YabNt?3copQtWsKJRIcKfX|mAiSO_%`SHCfuE0bHt zf&6ov<|1+^ZdTta{#v_XkvAkVPkgyw8Du7}q;o)Ucn6F*21_@jGeIB4n~jNocg@9^ z&q%1L$UUI+HD{zlXOP!-kwgM{gy=Wd(6JpO4XfYP1tJ~0iWdizSmC#&ls>F8b3j)x z|L!JqGvwoo3*4X4X8%|=0H{CG*c6{rAYAk3+M zu*@7f#r5NORnM5yRgI3v+^59FZLKGip<2sea*qih@0lQpSQ?9R^OqWF_3qedNNyo{y;`kR; zugL6MV~{w0v$~@(v(N_%AoQ*H_LMSFD|;qiAo2(ib6S~hCeKI%xq!HIT1hpNOIlgU zfHO*(*?T+vnxOzhJ$uos_Xq~j@BJ0>z)b@x|-;CK^ZEN8`sqPFEcCB(Y)Tc znM)aMPDx$|@@WxwK^bc%-ym|B$hx46)7k+miA0UctF>xffpb&{s_kGGwSxj;h2L1?-DcfLv}O^GVGpJyXmdK?elyY!+iL zDXq0W$Mok!AGAfJUd62q(N#nJj7bKwQ|L%xX%T$cm>V;>^LCIAiByoy%FYuxWQSOL z4ay2fh6a|@r-K|Tdg{*lP_@b7p^oSEEm7s!W1%2i`U zm6a$&p71q|rwv5zo6tfc^J!>)r^5Z5PEh)PWr&n8t1bT(m{Y|k*No*sp1JWWM+gG8Mj;jO_}nHpJH|sJTj3Q}=s_d~OmcuX`0{A0l?RSbtM#s5NmW z$D9SZ^Lf3Ar$+>1uHcW|kl5*S;W*T*nj#A_c^n>a_|QLj}u3(~;DR z7bG#3a>_zY>cUKOY1}565f{aVn@Z>^o1(AcbNm?>!Mk@+WGdJ;$lOt@oW6s?+~0}Y z^O9~Wc2JCAhWSIm!fa@dO=+fW)-k#DWsr;F3@rCzxl$Hs;f-uMAS?falIP93i$5%? zq7^7Jg0DevicJz%Qm{poq9|pxroh}ZI!fC`>{gTrGdYnC*On1)6s3mN09iWp5y%^U z)onQS8-l70`^koaBGzuy3sb&(3W*P%>3L1fjxH`T?uHv1MJ&_{eE9t)Q!nf;Uw@NV%G8}EW0HMOp<;f9#KkB;`15hHFX4K;tm4b4_KUK3|@p}37M$KH=58Sb0%xxvYoQ2dvAnz$GIzCoH0~5zg)Ey?r zIYEb%KM`+lEA_OBWAf*8Y`L6>`B7VSbjk4(evu$b7l{s^U|@!)!26yyT%vv&P=mMSY9#BWUvP*Y|d+>icvayt(LfSBW%NTj!b}A3@hpnwiO$=*;*>;@Mp#+D!he7RWV3)IFuK zxssdEx$?j3ir7~QUhJRNDK17&Y+&q>uyF|^T|Cc{B&Rwu@hYm!J%PR{1r<4^L73)@a?%o~Zz%RM# zkrHXnPW6tUw&&!<=5wlrc=wSU2vEh-@)Es9r9kuV;MQy!HQycm?)%9RHga5d@ zSo{S4ubx@Ej&In6_@QNI}b^i27Hz9JA}`7cUKEpaAqqwfl~j}m^=V2;}x z`G|oLH;U;+#v%tsL1fx!(di+IEaPgU0%F<2M#YTkW0{4cA=5!DdZN@ZYwt^+DO{UK z#id1^+3ZGseQf2J_wW&eJadwk5s?}?wYa`FO6T?DO7tazV;}Y*1=Wl$BKEgp;IB#_ ztywVTOZw^|L|pt;X=x^h({~U9M96PSTg^h29z6r(`!mG!-;|Ep7|irPh~8^iUJ>SH zFDufYHFm7AGk@4J@CS(=xfZg9v%sG*V<% zX{H|}VX1}?kjIEo&y?=w$SL?dL!N}MGq|c3ccaKS4InowV>Wm`eZJ9TV_tFREjn23 z{Y@*1BafQ~7}dlnwBHD!&SKAVC0c7tOdf*|KI8>k^v2X_8-i*X@1!!`FG}Yc?-@+- zq0d1Yd@ert8v{s=Z)9n$q?y^8J`))$F6SzZGy|EON*|7-1bc`=e_-l8a7UEB_RHK6 z^hHVU6XL~RN`#31HmZ?wLftRaz(HBDxhqpxBrpQk<-A>yXpFkB3C8_?%6A6}r* zsGLCL5`m7fjs+&sr!*Ze3dJba>@lwRbLqJobvJoy+UaB9xc8J)~ZNNb{>&fj`|BZMaxg+?l@U@w%p#_`q#Q zJmt0GX>JNZ*B~KX*A(RJjPwwh*P^|2uftmW>0_XBH)$k`5G- z)kc$y z(w*YQoX9ABP+-0nef%^|0!G55ULk3nuD+WxJyGZ%Lc`amk@H@&!DMmna0tS$F9 z@OM8WA6Rac6jfdn{x{N?ZnDI&XOM`_)$(YGa!jw79Z#QJ_5VXeK41kQBIQMMKka3Y z1xC^5SRekW=f_ecs-07QCxIpReyj8E21Rvn%C8I-UVndlYaByjwf=eV!A)dd57je@ ztV&T`oEmBzSn{KM9wLEUPKqTezlg5U(s7)GmAuXep%m1;H-u>mlM^!LlRojFm1n zsirTu`Ni#b#t_Ej5`G|mx-#6ZFAXsD%Oao-UOCIIpTA@3gdk9-t-Na2XN^o8o_pB! z=_{*$K@!_Uk$iUjd?=Im*8sUJk%Y&oNmT2jHk-|!Z}J=+v?vS?gmh)ANA zw>{R}L;YKUe7-%3>MuHV{QC_Y?z`C9&)CA}vbxnCLLYV3OpxDnMNpmFSZQv9Q)%Az z4q8^2(z-h&){DOR?Jc#eFnL!mkni=;vy$?*Z7Y4A%KYEKk|+1m)5$ZyNarG@b464y zV6Ug;n<+I0LgL*(F{XgMj+PM93(?1#_W^1PzT0$SMZGYX{|E6C#0#j?mcf}kb}Yyj zCaBRw&f|71dTaS)_7C958>ebo7Z*t!k(4lMM8cr3VWTD_jT@CPLT^2n$=c9qkakSE zTTe$&EwnUZpA)xy?6DCh%36}xitk+5X!&M}5#c07_zxUIp9uGe$FkPb_O-OiWRbOV zAQC>`L)`VTmli35I}{U9z8#8bHNzq?^C7ZP6!f*X(&ooZ-UFNDuNUcAYc4h(Y+p@8 zeb>H(G2vmkQxK8+;HFi(zGlPZ;mbh2wNe!Dvqxx?Vx~V?3HtRldX~0-f}on?vy`P8 zVuYW)w^pG{iTD%}_tuNTLH1y@;akS5;Z^iAv^8&qv#_wLv>`e?%Jycu8@{!C*> zUyCa#GRDLf5g83{meKtR3kE|*uCht=3P2(dsiC(G)r3vpRu-KK+uLeo%j5<)KQAxa z!ev`hWEP97shxCX?uISkF2!+QweAwPA*f~)C4=#Et0-H<-crj9lTts2NV9_uYuoCX zVfH*6_>kxB(b%c?;@as(GJ6F$^2Z{=->#nqA&@y_2KDRSH2G#2HV`xREl zk>)3K#qiX7`}Vz)S;rnR)|&HVZ} z!`v?Tyi-1SKr62J?QxYvdhd>&P8!aUOs#`d*`Xq%ZCoj*EXJa2CG<#+P)`c=rOhNup4Yy`8x%Ctd;BTgXB70b1)}UB&U9F8_N&D~{k& zos5$$%r12k?5`9Lu|C*dQe=h4`HKOAZxs;H-8ZttZnl5_Mqw?N*9 zvmi+y9@Tadty%syT0Je(F)xMz1~Bj*A%0#ckK{>oePQTaNIH*+;8J#d z>dut7KOj-s{ zB}pdtd<$}*m{HoUuahvj@;i`Mi>syWZM14)@^*aIE{EZ3cD0)FdLgKm27T%-&-cuy z?q$p79<*#2lvYAn+0`e!rWN; zWPTYwndhFIv9engy{|HR1AR>YGtOJjDvd%vKCx>)%n7?yFsJ^8KDAFOCkh8cfBKCc z9wMu(UH@)~l}x1X@Sg;WS(PA>JEg0!{>9wC=>z@W%8MrD?D|qK)8Eo3`(DCY&K_<~ zE{Hzje^N!wZ0&6~i|AcXRaOPu5u#AAU0>~I@{H;r2jP!aLhQk-mUs0Oh4*&XPXn_+ z6}ko>J4}2UY}Z#inf{3AD{H9{f8FG740+7mLiYxA6}3a`^|dJmlLymH0$p&E09U3M z( z7HULS6|5Ew%iHxMgG}B|mlueJY`gez!mXlOt7Yaky42vDI8xqtgJH6rt~n?od@I=N znsXFFcOEN z8M7MB!$Kk-`9RYxKWm4e+K=y0KOQUYRI=;ecQIuI-3XB+!YkXGYq?;} zQaB%GFK=clba%wAPAW5VaZi8oeA+ENiyZxECrHffqGyro3xYl(e)=u_Er|t}Kn6qR z@G8dZEtC7>Itr|G9Iaw6rFp3ZWPVM$gTgUyeMmtycbLp!!>ngM(b0~V z1=rr<`Xc6eulmLZXe_dcZp0Xm8!=RoTH;0j-r;5)bLh5=m%|(asrP$T!-tc-9fzG+ zk%tVqR8gk7F|aXt1Cjeo5#Ls~h>1qLg+v@ahwx=HH<|7 zmbMdlfap`h-dbymJL7*Y|T<{HTY zOOC}QAIz6SrXr|T*a@nzU#5uBHH`@$lU~zhAeF`0n)X=D940rQ>p?zPr6=^_r#{AV z4fA_}CFkJg5K2fqKh@7zP-Av3-6?{829TuXVEvZ|NVadn@J# zf`zTtL$&PjT03WQbzEyA|8hV#;3(Z|q8fmyBu?2L#Auw~9w=gK8!w5>7(sWR^v2yM zTnfpX2FB^BF%c#nFzLQ!JR5<)!(JtRn$CWkk-zkejTHIGNl2oUcvWu);jh| zT3H+*!8T7oc39W_S3}QDV%wkO69Y@4EUJelh8f+ES<~pQmWjBlg)LYdER%ZV#Z zvjg<0K8wwRg#7xoNUdwvS6i9x`3Cd|VXtdUpqSi-u6&sy!s;0wi^*wp3Cu*1TF>56 zD+N_Ku7#2RF5#(_!Y#TNMlA)rCE-p>kz3E0q%-9WT^f@l+SfN$Etou!u93Mew%50} z)*3LA?^gr)Tk)>Gy{-1f!Q=~c(@YiIG{fy6WX+Hk`kaf|5p)MldE7z6?1AToG}D_2 zv+L09H1kA(2z!KC=}NkRUZsaIYqoKX7mL;ad(9Jj1#OQ|hhFa=O?oD^$JjGo&ochMea&_HiX8%jK zIR zMCxZvgT-^{i9T;)sW}jk@fWMl8`-OBwln=1-NbWHRBddpsdX1sDc#L86nFEmQc>h) zKwZ5BGJgtKat{8{A<7;g{(Tl_e7VEiT)NL^sjxJ$>pPoFUXL4o?hl(r*{U#ilSc<=-s-Cguuyiz}7nZ?ZIlWh2t{o}BNy=z=?V}8o~;&&n6O611a8)?=txf?Ed zl1JliC)K)^&kd~)NbC2aYjb-ut=}`HJzW8{@r@cm$uKz` z*G0)M^LlB?{6+UgsfCE;2s+8owT0pAnG%P~q_7q8MGLz=h~<#rRa`4&DulwmhMr5r zPF&T}aMMiiq&ue$iheEaFJ7J6)yU>v{w-+ciMW3%$>K2R5$6Ig{!UPP7SmqC(5xn znD~Eey?0;~)%(6}5K~A(NGPFqq<3l3kt!t#y@wF$l0aw*s4NJAQbP$33eprQQWeF9 zfDHtss0ecw1XSz_makp;-S=}cC*kwH|D4%#JmPjl9cF zWT*)VRw z*sQ!4xMsZ&Z=geXGqxi7|jE^?_9mAa- z$sgA5(A%hfjk*xNQ=d02{T8*2;;u06jpAF?c~Simw2gkoD8B@q7u7G}YBZ>dFn$X+ zUs%5%Ya8PhF}@#*@5|;j)^AzaDDH{kTUKN5%olxhk=uKg=(O-vrM$NK#UYd&%@q)~2yD0c6 zZZz7k-fzX7-h5%b-D;yBb6PF&g3N2IH%@I-?@k`ZE!DiJ-kh{iz2||Ollh{0%LCCM zgko3N^<>-w$!q-P61TbBErq9H@10g^=+b!@=aV2 z?-TQf^-Y`&>zgsWiObhG5l7tIt>xa6<#nxZ$!y!)w`BR->RT%twQsHPRtwL+e?+gI z*R^{?mDjbtpR$eh4GZ2+<(rniU$IfWn(vPHFL`bCV%|n~b8EH5#l4FL?bWso>lN!< zTz$K6U{2n&+;wYSR4-d?TfL;hWoy2+dQoJf?xHBKtzPon2 zq?xa5FRyHYxy$60oWu_n3ExF|J-Vbw0$A--8A8N-lsQC=J7C5OE$ z(ZjtaalDGcX1!@QApSCQxYy>+)%b6X?BU)(Bz-g78;V8eRBu?cUU41x5zpTNNlx`T zOXQWJG57~SDKJ8FhuFn|5ngJn<|f=iE($rC?sbe9KXDAcG5xMgNYgHlr(u)6D|JSC zgRxjR(wl(AFC($_-j(6$UVkiJvWu8e-YERP`s7hwTGS3Z-{Q+9G|KA?T6wfL9*ZTT zy-Y0r8tqMpU`}8f{)uudK73d*#_Ni}`7wB|c1WwSUKK1xjP)AZwDkBjW4w|Pff+?1 zY}g^Mj`gO5t&}?Byg^Yb?NE)D%d&A^^RU)8)#ASMq$!mbFnJ&;Z%P*j{&vYiRs)o&FgK~W_)8Q z9Pp~h;b~seaC@~ce^2x3Me{K>@{;9IcgTN>JZMLzdlAxSx|d+nvSq?_ueE)AMD|Sg zT1IH|pYM^I)3I6YdjlEpfY&&hkI~mt>?v7lJmeLzST%;rTgzhN)em{4V|9k=E<_=*1&m$! z!nspaePOdUoO{o*_0luarcOY z5$`U41E{xfo3wt!8)he>l0p=GMd?IpFu#~xb@dXKlESmS{uZc<@D$vN-bf47LU>3n z&Gypm`l^3$Q<21f(kgXR=TjFH;&y?by|NApxS$O5~_NU8Lw zmsSKDQA6q&L?O%H#=hsbY$A_5>cu5!hUx`bpz#Pc9#%w;zZz7t;6oBU&&!Napc=uI z!{xtu-pItM)8KiYI&FNqKbqPEkITRFyh*lm6$r9G=b7w$sEnA;uUWt%=+9pLfh>?S zQRY78jgljYR|?_Pqa&(E5QVfqdD|LHT;LU#1`SHa#@IX+31&(30&lJzTNQ#V&~Jtv z`>zFFf?W@l2JRmxG4s3uGHIb#JX!}+Y2XT3zR(*J{xV;?tL5*7UW-C}jHlp7JO%q7 z_eRR5$Gw8lnxNLe;&AeL<6;%4ClG}k{S)&Y{yB*A8g8>LF7}#Yi))^G1X-XH{B1EiLAYa#2Gu6`72F@n*7giB~38lhh}OLiVM4iE?Cb>ATmg@CwRrOS~eHdUN9DrZA~L49`%NrCysj zBFre-&S;7JRH96CH0X;7X|~!1SztnI{pbKW@`e{3s|hL_L?Iu1?!nQp+zUw3axXku zgQ^-_CL@-6TP;w@;5;dk?LB9K>IG-W(QI#9f;LgHAdCD1_LH7_y;$2qwSsM=!b)#T zjJ8md;KemkaizCPMy&D*TdXF*a%<)AS`W^lm0r3OKH){$K8{l(cw8#3_MWoI>JKcu zF<tByQYNP4aD+JxKNJhF0)*S!!Q zV*}U9j*`>Iyn32c0avjxnxtaE)?1{=Q{EHu<{MtD#VQtTvrP^^pWAKR2CpCfdE1MK z)@CXcEGTcT_0}gSP=6o`Y_&BKw%(g3H=e{xM}uk(>>_bbd18UO0!zvMr@Xbcxmp5Q zp!rJMJavP2m&CR&6JwjGB=95oYn`_?Ry$QOAPSj#K6kA)K8e!{x3TSWDiwh&(C0$i z=Y|trxNWVXKoohcv4#U}LzM)wK*L40;i2nZl%0qA0pq2}MsG$$?(H&JzR|lsjumX@ zZgxkWC+(l}=3yt+9JKsxU^lfSRoVQ4y13PPV1fr1H7qRQ+bzR{( zuSm3xt-8SKa_@8AD%(UAfheT>C$}|uKM$C`g^=(HeZ#3 zDE?=HJdP!33zZA9!1K9C_WxZ0){cE%SK)qPGt@1};v#T%db-ZAQ}Z<_6pm1s!|Yz9$fRy zQ;%HQP>q6fq~1aAal5W65o{<&4|3-rU_=vX0<{ zjHj!8#6ISAxnl1?zNW8H@uX*r!q#)+!$S6>h>KIE^V$%^(Z(w=!RUJaO2rR5f_LDBG;& zYDC(GY8YgJhB^5f@`;Jou2nGDTCTk1J!5-Pr{LQ#4*rhAQ^g}yO3Jafz2@QeqY%04 z9j{X%KE`%Ghwa{Q54LXd(5g^WyyrDuv+H8jXw6i)U`6@v9dCAm0<{UUz)a@K(cx90 zAA1isTJ+?u8R`@KpsL*Z04JQQC-8LWiCtrA5=@e(-}9E+?$jN~;(xl+>mhBT_P`Bt z>KKkx3e+2j;`TZB$SGegCYn2!N&}D8ln;)159_mG*Fd-QTw@AU5(IwJB=&+b92h;60I`DeCiMfvxe7>_1)&uZ6Q-2YV3F47K_F z(n|K7;8ow|YB+~8fd>rRrwaYX$^J85FjiZrzYhg|H;t!w(+3`GaP7-P+c~MduW5(> z?T-7f?M^*@wPpA@?-4simG-f~6d!O??7|a;4yV$-?UMDOH^=s%j=p-Z2YJ)Nuk-mS zBhx?fx)kDLY_r%EQ4+fV?^pKy-`ypo;(4zNj)5{G>^vaz|4e zU-M*+7S!z>tDUHS4~5;?*hWuac1X4G^^k`zdMj+UI`>fI%f_ZG8m_v%RN3!&kK383 zT(1zs$R~4WB6{tpL#km9g?++wNM5YlhHBS)Z3tgnb`^xzj)k?MD)w0Dv3b>qnw3{I z7AeqMmck<0c7jRWMsn(-0(KScOR!@ZZi zUQzsz6S<97$coE&N5N`9^?V&tc}#uM9+4HRmyZRWqNnjz5?c7Hc*~S`Zq+Q6^RYnI zGkIA&zea0OO|*Kv~Z8HVHDo}hW^=VO76w&ZoB!|Cx^vsBl2Z2}u_ zi&dhEJ{0z-uT#`_Pa0G=Uu!w}xwpw?tB4OpzHAl$X%|9w7 z8@}?oMv>r2>AOO1eC6#(&;+&cu|W5`<)?4GEqYwGLACF(Kya50p7{xv;Cwr4GgQRK z0vRvZ41G$pZ`JWVEZ=_X9nBr=35b$t<3sjgo1OZ-S0T462I=I>n~9!QZC8sBq>&H7 zy|(4o?_G?G)}Si++DPn=-k}%;D&woNR0{v-ZI{_MaK)fl{d+$wlMOe#*DX=i-jCVx z{ZB~L%S=sFw;l_Ow%@IHyd6yqd&lLwpS*(>s8esI?Ecx?Z`VXUdMwcVIon)M*V?z* z^aAT;&(9bVTl20s90xU`LcNdI%hg}K{kba!jb5OQtp7i6RJi@*U&4R$I>qrZp2$a5 z=uMLm_{FE!U-tcmAE9cN8ueIUd^vgu|3)$5K%K&p^*er{T>p1mH)xhx^}c+DXZy*~ zO4Os5A%`4Lf!+;*VY2Bjk5`_WsOG#mTczcn-lXDbQ^rou96fPbZcO!gz2)9NaUreA zD$YA0hyV0uCMZx<9t%t_lXD+ma#Y&1wA}V8$zy?NfYE+Z@oz8Du9>RxSm>H1*R3hR zf4uvo&N7weY457bV{v;*%YVE=c0MZ3dq9%^@g9oR7OKocAtO%V1*Ds5&Oi8mf4)hn zKCj~*dGmMN6g+Y(Z%e2^@8TXA^56e=OQ<<-rwsnj-x6xet1MUk^S6Y0@>uAWNc->h zEupqN7Kql7YfsjzoD*we!u3lYr*kTpW>I{I{b2iwoK!O)S_5j#tDAGwq{eDpRe31n z)7f6doH^#63iZa0o|Zagbk?LPc*-la39$k{N{IEs%k z)Qc-5rhrLG(2yGQSfE{h*RJ52yG&JisemaGty${K+a+fUm?1F=8Xv=6-T0WCD`0vh zW=_wTHXgsc9gUydYE%VzugUs5%^=%e)p+gK6f`4kT?Kd}C9|LzW~ZUHI~JHmpWCL< z&?`S>iEy5 z1{I<;O$~Py<;e)s)dH2;JucrznENeIon5-Lk2Gy!wTX)CP)KrFQ%kD%@rvM&vrH_0 z`O>^lMBpF?kC87TO^Y}_#@Ltb*ga%&qUkJ;c=&f8%~HV~3#>_32D{=z35}@LZjfAy zGJ|Ytd;S|W3#8VN6_KV|!uU}Qaa=Sfr5zL>IVNLL+O&pEb7LyBi;>we zW{~YgC3X=pvb2OrDx02`k&!xede-PEspBV($8)0nsmboR^oliuZ5x%>LCYD8F-c|8 zCuL@h&%mc#nyUgk7Fc85a^2!pW2ZqC*c~k*VHHgIHHA#WlIhb&;UK0lwb-#h!z6Ci zZpBAUnm*EXtU5asGP$!UyC&8&lErbRu$_;}>}nNr{U(flfWJrAe$`}ms+goio210i zGp0>R<0~012aT%8?rF&=Vg}f*R9!bRQPc6WWfNnuD(i-o)U70s#hZBhoT#gAmTZp4 zu|xY)Jsk@BoF0icO(ZqJMB7f(PIs}Kn`X&zX&Ga3C!%sX7J1uE6?NLH%IP{+wxcg7 zYT|8wDy2JFMW2QenUh9M&)|n^+Cq(VD0Cj&)N-Vl374V8Oq6Y_Qo7G;%H(4H)YV6a z;`S#0)34g;P{_n~xzB?3yRNvuq102irM_;zl38g}@PQxn0RFU8SJ$$UyjjPT)90{3 zNfRZeg^9DQKn+TDjw)1rkm-jkPV*SNAG@a%?78pk}(Gay8Lp z+BH=t-AnD|MwPrV6Xh_vv9D2;)3LyopTHfjx700V%Gk!LsC%+2xBNiaRmw!#LDW&# zUJjQsqbyK6T@R^O+Dxa{wUYFiERUmJs@)^`Nt^!)QY#$_ z-O;5%8PizKlrgcky}Ich>}~gEZIwD|e7gTaRX5!z=~dSBwdv}j`=h@-l>A%P6tY+) zbccu9BL`j)<8jp1-A46u=V7PA3zSEsMu{`C{CTN-j)mJp6K7B?r43a<#{$9L`sz)b zHG0aV)Ui|2@ZL{T)I;|{x}D2+<^98&dg#*ER51O+?N=gYXa&YV#*x|FYMnuP0jH3!R}%BFcCKE||D zS4ORAVaiH&HB$;dJjcbrVxC`K$2T@5><#=>xk?q&L>ZDtt(3GX=FwSmq=s+*f5^=p`AwtqFtu|WTi+}?i$yOOGv>%Lj8CHgD*@2=L-wmWspWy!gkW@z~H z+=>UKaV^t6ijT4N=B|`SYMC+78d9xXwES4hWW_2_l^hBl)ZnddY}(?Mr$*E!hk`p( zZ#mM=6e>Pu(v%0&reJ^71Qp6<9IzeU) zP&LM(;4U`QKQn8tdg6X~o5#OliFs#cjj16HMc#x;jGR7Zj2=8SL0xeuB)+v7Dg*1| zG@x8%agQ9gou-c)pD}96XuO~`rlvR)d7Tz_=W9(+SzOZ-aUM`5 zX=2jt%v9or!Va~hsfo8-?QJOXJpt}atv#v7t?K7?*nQ1#r8&D9PSP4vi`&{Sq<(2U z3y3Ad!-|=zye;CZd`%`b_nWA}?a{C0MlI7v_iDM>3@82;$sM9&?RHn0+kkKFwi?>P z#3blg>TqL$CoNN-G&$Q6C+A1jcZii>2@?^i4mT8B#nDCWzM1=6s=qB+Cf;kNOKPII zD_nhT6XnNy%}m?93ffqp`zfybayF=THWmmz;DUORj*C@C8w&(y+ThhzrmB4&RM6H- z;#!+Ywkwsfu|W2C*Hx6NQ2Tm zj<+-&=p z##Tx)+L@8I+uiZ_Li_G`N$Z*WqANaaQtIf;tZBHg*B0tzn!w#*z|JVuFF&b0BTF08wvx^xZLpqx%J5M#MeI%1Q8pW$RO$Ry*9ynabPAI9H ziSW-hmFpsa!X5^6H4u)ooAEIQQT)$lEXBJHdI{}sEj6g2_@6{+aKFF3RinlNv#Y~r zxMrfh;k28p3C5wwv)b)}I-Az$DL)EaMu&)N34|1RAobINC-7G3$ zW0Ak_dvg0$Ash$_9GFcX=pKXtnO)|3*G(&}KEHLZZ_?o#XE{Bp#$?#Jg?Tmzy%-vCZjM3_@ zl0wO*U4n+x%fp8&8w&)XR!GM6>!$tPipFS5HM9MaCO4B!r)VWA zWt%MRQgG)+foj-TpnbJfm8KSzVDs)#ax%q4ho9!e#>u4=(;$wIF|k&5GYnwnn(lC# z{4pNKmaCbc7mEoz&UF4-XGzgj@wSkksF?;HmBl?(D z5pS{me?fVsk7-kg6}0QR3WwTMQ&Nyo6yKJ|otAceO=5!Ps-cYq`Wfl>qgicig8JE5 zAR+a(1h^|&^+<@(ZdBK{|8aaZ9v9dCIM&yOw*i`>rna{iOX~Q1DYbC{tWg!VO^`bM z%@8}Tn%Y=kT-?6t+p~thL?TZb-Mk2z>4q7F>2H?tDGgRKj z0)0Rw#XcS$V4BOBfjwcj)f82@u|Ucsmr`49rS^oQO;c3k#sVo>`BFAEKVLr9rl`QJ zBEIdFiFLa<0N17avU-+@vB75eP5_hwmj>bOgLbIqwx-W=V-1qRZO@m;9Y~#REHF?X zNl7y`JM!?vJjd*$~q)juotPhTWltu}M$)V7MuQZLW#xbep@= z&Z|MXxtGy+88j3|AWcxK8w*{1zkR%zp{A(KP_Y{eWXyCU#LKW@rd*8np^mp_URX2S zjFN}aabi-cZnqcY)-dd`3RLRG0v!chM-^;P)ov^h9PfffWq2xX)M#_HyS;djqZCg~ z9giCrsj0bZscN@A@?$FA=xeTe+}?jhR;2U%1dm%$yE)Y0#sZ`CwWG9qHYqa3M#mk( z^E6KGPctKIH>z+OeuU2x-nfp$vpQk;d1$V53>CPsKwl%+*8o{Q(nQi51aqGj z=+oTOq9V7uj$vK;P^%WNo6U}?7Po6BIrT|)L#n`Sxc-Kx=To2(mahR0|dRk_7|F6+nQ;(#i*+(ebQb(G9;rfc}eoKQ=7eVl0+$H$n- zPCJwSvUyN%Nc6_z$!nL|yL?PQb5-azMuv~ajZ+1xZ`<=dH)ko?7cdpLzD*(*v19xM zQNre*FE0ZErdb>j`hU^(KS9oY(Yv0Unt&U58;kXUTUnc^+>HfRbYi}gBfs>itT_1~fx8ZsGWopy{TCYTRNhSAp9IIWp07 ziPc1PwxN(o<8Us?nu>4qL&_F|olnE+Y-53y!hi2g#^pPmZ7~{DTifsDWW{6*l4onv zn0ne+pkWu=(AwHGs-89$i1u>Pc*!c+KPEvl)Y!%X8SQOG`N_Dqr$P0$C04U*M{is1 zTK`oYnwP(-b3(mrrpnqLt|eIynihGoHtj?;Z7eWCPma(+_HFE2Jhv;AwS9^2tFR$t zZFn7NE7i1Z#kUH;W#85Q#q2n$X&co*jy}Lm0X18+W~-DfU3N`1oh?uYTW9%qs_ABd z`qo-V$~4o(_N1n@?f5Pk2cT)q=BZ{G zE*zqiB+oR3<=+|R?r{72U#U6MG%Li%*zqG)M@hZ@*ljf{d!}g|ty$_p%aGGEO_~L2 zK$|Z2&N9PdG()Xt7okL(WqPRa%;u@;>`f{35I&>OJXM-4?IUMqnojhc6_Ub52Nj92 zKSoxu*>Jh|kf|TOipP~4iGA2KEW*c_UCGsYU0kXDs-rcE7p;e1b5_Cqh|w8%i?NW| zL*#*nO`Rw{Ms~T?^8CZ5Z8$EC@Ka^E`LL-S$Hxd&wjFhlYmb-?*bg;DHE0RLB=m^s zRxphE z^pe`w2ji5WTs3DsorT=W-M;c zlD|6-iL%>A?Pg~s@Tln+ag@&id}c2_YMR8cf+yiV`y}*}$&cc){>XgX1V}zVq=fI6{x%{AcYp0@QouFx|LSuo+_H)51DnpA2Xo_mk9+Q;iX1r~q{xcS6 zGc;eDD;q|Yu^FmDV}Xpp`7(mprj*T4D;kUc>7#J3bSR7MxFw+Kc?<eqBgaYlCcW!Ulgc6jRo4|PT*=& zuaq4@?P-l<@M<%}0`;cl$dT1%hHb8 zOpQ1`#%k}ftKD4At})HA#+staG#2Qv10$_uV{`ltN`op+8!YdyF`Z%*s4DH>p;B6K zfuTe#X_aMym=aARV7F_eAkACVOhN%zesqiNt$nD?2;)^4VhY#Z#tg6cIAc zt(N$8=wCC`dUkDzOju`nCn!(WKf2sxV`bH{Qg7UbJ0d6_|}ZVORL{K>RvNJ5h5P3$$r1``c$0mrk2at?*Cy zRCJQ*n@#gLKE`wKtKE&0Y}UKkCINqvZla~Zi{J8KtSwYz#sb~p+c{fIWp`|SfjvGd zNn7yIEgz%DzgNrREjV#%NR?*u<;N{}5q-(rj#BFx(>#igky{`~COl)hg&$^UtGxD% zsUOG32u0-R1y~=M{0!dJ=&2&O6<la{G!>n(Kw1|G z+dj2|TzM87;|q>?OyaiU6J|cfm_>4==T_|A8dBd`ciFoY7b^@=;T_!u2E$dQRV&DdxS zsr~Fdxw_M2#wt+n849Vp4PVK-`s@Rd?5Ln@+-dO7BT%5(b}B!cEvKG0O`{fYj1tWv z?vS**XH=60yG#*f7^`KDblYXhg=5EnQ*@dx$)r4c5?g$Q#XnT$&+*BzZXoh&1l&pLM9)d zRaIuaXzsUYf3FC+S_OX$`2CA!PK5SzE=dZ1Vg}0x2TYPp`ZEQ;wkbTThV*#J47KPU z40f*LtVZ(LOXz(I$Dc6)Su1AMl=PQPtvDi#|CpU@C&@mDv(Q7Hsce%E49uNM+(A5H z+J1gIwo%rF>aygZc_>2Bf8(U^D`t<4XQBUd<@Yp_-(E5OBR}VmHy@3V291}LmWp>? zC?ls&!UMADReU(jAO>H9!6og4rO{$uHMMNJ&oU!q&eGYnrP*uv@`-l!yi9q`OtFtg z%D1nXZ8o*jgGjw|PB;1Nb?j`K`ZY$aAAO;Q40*#$hJOSkP9+zl}Xf6JKA8J?YYd^5VUXqmQC$()=B>+&O{L6fY)EZB@kE3q-?g;6nA7Gyi%wz8N$ZwYmVpokvM%DZ=zWA2{gcdn<);YA z9(o~Jf*<3fKq9ngvPSlNj8~gxJn>oXk)q0ZY#~L*zQ{djEjw>!MkxC8IuBY~ZG7#Q z5z;XILT&l-6Vu(IeHceyvuPJhW7}l=ce3t+>1^ZiKjdz(|1Ovo7PUr`Ys;h*pN9sy zO@5N)7jgYIpHtr)5qSsP!<*hbTU?5GrcE3vX5Y`QFZ@pzaVuL7d76LYm)sS3-@~P^ zq5*&89`f26^MFM){=^As%7y-N;sA~pyDs7*z~2twPT1*b7ZM`_+UiN11w(kIwX*D1 zgj@(=(`zjPzsI>`df3pVyCUrhEWKpfT6A|rq{Ppun{qg511j z*4j$jsmj?HLsgw z+spTLWX^SS&{j^@lQv(P*KGxVr2LgRU>jCx6e+VCZ%UOiU*p-*?wNU84SOpam&EB(S6`THBw%f|k0!i_i6R+coAv)`J< zwleNs8Tp;rY%4Fdl0x5`4YsnomF)fAJZCF0?PTZ==AB3#sbD*-TkkFX;`bz3>s>)^28P5InLg;Neb z`iF@Pvja{}j+C$^&-Red|1@K4dU%Q?|7G^(woQ@nzp+N!xjFGg-C2K|8d0oZbN;zT zp8wm-h}g;4v!kTeKW0`GD~SEKMt1*W`b28%hklWg(igAKX8)QLn|{w=S^lqi)mF+6 zk);33Ih*|J$VfSKc54@zbjx(J@kwcN_?CIfR=yvZGa|Ij=1xt=Ukd&G+&yw%Sm<6G z?mbH8hlNJl%6eRwg@sl}ZsZIXXGO}9mfKp%@dBX+QAC($d6BR?L+R0)(Qh1%BKUZr zM5r3xU2ThzO?QTdM`)SobHKn*)?FDp3_p+S)+IqAJi z@yfb&p^4Ov3{{UJ!lYY@42cX4jnIswsdBA!=wA6FGSu6Wz2ooMCdfI7IUnZ}fQBpd@ zhN?$sHhzeh6&sphn@-P(loJh}zgwaThmvhPGe<@g4z0D7rR(KZ;m|X-^7Tg95f|DU z{tgE{CD-CZy<}IB(A`l47&1d7R3wxVsqsylBW3bCyK2es_)xb9Mel5pJ@KI$F=w|# z!s5~wJ$c4MkPX3qKGj5Qjy^$LIWc-zK%+i#SW~=yDrJ3vZ19mzT|SGWF9|rue2!_>T2WJpUTp5p_#UF`BRB4 zAL&-F zv7jYyJJNWBro8Jwk2D3x9QbUcg7+OLK2yO-2X@X<@BzU(ZjPCA6rA;eZjKLG3u-*> zagBfM$Kj+@@QDNUa}->3K%P=y9Juz3f=dq6*`eT52lnq%aMgjUuig>lzVVqOr{30- zFC0icq2Nmg%!dlTCb-CTYj9D)cRtW{`@ydT3V0g6LGUi~>4?XeKU)BMt~U79#h<&X z@!uRc^}T{W9EgMS6g~Xq041mZ|2QBw6#VDF_kSw514=hLi_HHN6bL#(J1ROU=s?^Z zVFck0YzR{j>A+uiDk$VYY`B6L2f9WoDC|HWN(`8ZKqA1%idm*cGR3 zI-oBL((Slb)yjFcw8J!HA1eudE3QrM@qtdfDQmAY{9j_&9YIW^g-c7@B}tBSEw7-r1Kles=;uKD z$_fVNfockdIFNm}g5eI_S6xAx1MtCeO-3yb`ZM=xD;euj?zeLdH~=p!+hjTbD=a~l z18~9;Om*Ot1rIm?Ei5x;IuKlK$-|Do3d&@MOlHPyi) zyvYHIUjeo_K-=qrAatUR(DRCv=NzEl6=1sq^t%G=bbxwSfL#ty?+UQT0s375_BlYa zE5Hj1f?O3!T|o}G6zW_7UUq;MSAbU>ps^L;H3ukZ1$e^&s#yWvbbxABfFll2$I92= zTaM7j3h<5t^sxfG=Ky`I0LLAmhZW$212nJ#oN}Og9|flgp5yBBzdVp}jvz>)Pu)i@ zPRAkiO<3hHt-z0KYjv zy(z#S4p3(b@E5_?9HS2Y(gfgNALs_Y#o9{@zx;%T3&5`!RHE^MsM() z1t{YHeWC#69H37Wpn?N5i2_veK`=mnC`c8b1n3V1sOA8rp#aq#peYofCc(E{d;ARy zK^-6H+Sl`I0h&P(Zr}i&pa6}sdH&TNXaNPe$E8pJ3eeO6nm+-WJ3#X%z`YJo`U%j= z0g65W+BiVbCqO#~rUv&Z>EH-$o=EBF0PURsogJXI6QC=>Yg~K&%MCzxAL!cm^lJgi zIuTBCfR;{x6oR1kKqDteAD2S+CO|(2=-UJs-~dIN0D~N$P7`2=1N3MD40C`6O@LGf zAk5V3-!w;P%tT7M19W2oj3(H|mCZb*V4M$hWdnXK03#;zGaVRhK^8$aJK(?mAY-Zp z{_B6bi_?aQ_=676ehDzs0V*#69&&)jOMpilpz#twUtBsUjh6s(T?QSO0Q2%vD7gfA z%%#w039!%s>MH@BaDd)QfW;0_SqZR|-~?Bee_{lX?E~FfEB#ua{&jn#S?vg2m1wZW z0a_^m);d5FCBRb-P(cZ>-T}%d0X8^5-z2~$2WXlE*rKmLohZ$cAkVrKnk50AbAV<^ zfb9;@DG9LC0eU0>b~!+IB)}emXSg}wj3n6a1N?gnsxPvNA7s!KS%C4EeW07`6~7js z9}?l$9H0&o;0*_8e*}2b0V*E>jyOQWBfwj^0LLF19YNl4DRemkyypNdjsV9Upt%v? zgagzy0-SPyibjCb4p7kuaF*aQ*L7ziK``)ivZUg2-2_!^0^~aDgs=0fHFmZuN640e*0R zGDUzJ1n0Q+uXI-Mv%daFbnSn2aT*oT;5P?oR0R0L0SXlX{&IjWMSy=Cpg$4dKL_Yb z1h@l69XpGhwm~HY9HAr;DFq#%6cHfY0s0UDA|0Rw5ulI*v>*b+5M1ZV@*l+j;(Va% z8m~3I{-ym8@uGe_K<^b+_pcD&&+~-m# z5(Mbv06l^LT^yi05TKg_bO!=-cYwY?fSwLe5(tpwK#+n!kQ7H~1qA3r@Etb?On?Oa zeW06TpkE760f_Km2dMo680r8me*nWBpxzH)1VGS^LA4*qNS8vLAHXOFsPF?A;{e@# z0OK5>yAL4X0Ihuh84gg|2Qblr8!PSWFUt`+`j9fk0Xq5sra3@8AHV|+(8~uf!vX5} z0A@MR#%{rf3HET4@_+b{5nRFRPZHgxb6uPYKE&raK;<65V-C=`2e8lq8utL6aDb{k zfW;2buLrQy0s8g$`djV@-Fg5k9H34QV3h+@=mF$7Kw%z$I6zAtz>^Npk_WKP0Xp#j zo+b$D_Mi+8WTQ)=0S{oa12o_PJmUc6cK}-*pzjV~8^Md*$fpk}*y#h^#=HDlfWAAP z|MoaS;~jd~=K#%i051@H#x85%PYwZI@_}}F(60q(v_tq+2WYSZc-;XS>;Miq5TvyZ zO)&U%KfZ95Mw;iCd4&Yq}sHp=u<^U~q0Pj0MOC7*T2Pmck_yD_L?z&M*2Xcns z5?7Z0=m_wk4|HWe_GN>9Ds3v?m2)<1S&&{`QE<%uJ}a9xaQXa z)XSm4=MGRU2XNg1TIB$~a)3HHfNvb2M-JdS2WXH3_(6f5|EQ1yx#3c%jsy6~0s7(q zesO@lIDr3ifOa^5-yNVG4&YA*sDlIe+W~su`1)KtOiiY0m{?>syIM<8bCD%Xio#E z?f`9R05t)Ec1NTx4Wzb9p)L)et^-t~0n~SZPBegq4$y`M(AWXm&;Xj`fnExlIZ!Jp zsHBA>)SjVDO9!Yr18D64?PdUN9iZI|puGe1ngQJB0DWcvogARQ44}(Oo_}-?ptKC6 zn@gdm44}IMG?W4KB>0fW2mWg-K(Y_?wcFdT1*j=QxUU10k^%I0fDSV5{{tPNatvUw z15}Oy40V9YF@WI&OE`zW$zYggP*!EOvnUFMy>EQ2Yh3 z+yRQe09H6a?-#%-2dMi3$Z>#OJ3wU@z(xls z>jK#900mtD&p1FC7r<5ruAH{7zip1txP_D*4$!p)@Vo<*Yys?cfO;)}y$(>R1+d=% zI<){^bbul)fS2_3ryGDKEs%pQg(fY4R~?{23*dDJsLTR5ZSm`a)7!ifNvb2VG7_o2Pl^U_`w1CqyTO>K#3H_y03sZq z@ChKw0g9dgq8*^z2_V)1N}K?KagNZ}1QPE69Zdj59iW#9ptu7RG65tyK=l$pDF>)q z0x07E{Yn7kaskeN6fA*Ma4D230aPM*LeDXM6;$%yehFo%OMM&xE03}5L{T=u=N5MdX12owH9Cm;v8@~RJIzp8VQr;$ble1V5uHZc%=q!%=wE#Uf z$Uor#1vUVu9H77k;Isp@)c~AzAV^OQ$cK*5O9Sw+160ufeBuDjGXNJIpmGMlI6&77 zz$FK$ngRIK0lH-XuIlSgSCkk4ESZ888~I6#jKz?TltAOrBV12o70eCq%WG63H@ zK!Xgxk3I+nD31ZT>5~BEF#tb1Ky3`buMW@`1Mr&zbi@Gs;Q-w*0Dn0^Hw?f(4$uk% z5d6;(YGFX`z)yzl(@!4^KmiA+g8?Y$0Cg|`;RIK>$4tIoL6i@4kBRnc0m@&HAM3#M zV3LwJM`(XRO1uN~z5o<;fZi8?;ttUD0+2|sinGWWprEu5bQWbiDjAV~2FNIOR;TLI`maFmE7rz#uUj_Ny9H3qWpt}Rqs{r(LfO-{xBmf+LI0p49ASo_|dKG{^1Z$b` z_cjIneW0@#=+^?2s~~@{1JtMh40V9g6oBCl(3isRpN$~F2@IB$S2ZQw2Rg=RzZRe> z1wD*)fT|RL@dWR&gV`S`$nb%7Fp;%47`|e|lYM|N#-Hj}12m$bzv&K8djjwv0WMPT z&7p4;%<_Q_@UUMC&~<|R*#tO?;|IOpDwyj7&7a2_&YZNG1U0_ECmMg;uLWo_L4S)J zpu7ZNi39YO04#HWni7C)2WTY$Sm^*ABmk=k_UrxEmwG4>C774a;z_?2pko9L);U1A z2*A@0&?^G4(E+MN05&^7iwM9o4p1Kg5Zvkr{UIRR9H2S`V21;Ah5$TIu$$YjZBGSz ze4rEG=hp&Mg&_Y02j~a^IN-p)!J$fCc7%=)q`X3~nq$lzqu_NP=op9mT7ZfWe8g!jctXKxALz8svW6>R zHG(kzBOhq^yk84Y2ZHbgJ^pC}nm|B2mqPsqK*#~=KL9Q}K<5X*6$dE$0J!D=Js$v{ zJ3zAsz;y?Lbb5e%{o4p8C&@Ph;NcL3aQfZ`5-pB$jA1K<~ePq=+L zom22z&?mZq{_tx7`Z&28h0@P+8zo`S%W&kvIfPxHwdkOIF*9tNK zTKgcVUAFbBfrxh6po0Ugnk(q!06ZD&va18IWDsA<8e3PwBdf(7FoSc4&W|9=9> zW)2Ej20NMP106JrHN4|gJqE*5eW2m#ek}ku2E#KPfEk0}AqUPSDVXiRpTQI*a~**d zgKg#$sK5eF41$F|&_SQ@YXMj=7+&H492f-49r$mYf|U-yg29X&f*{^Zssw{%EeU~+ z@swW+z;(g!(+)g8S-~a;Mow4oj0139u*q`{z<5EhgW!FR3Eu@kFtE!fI_Mt17WjI; zHrVd~Vhe)T9Dvq>;E)59S^yj&z+DBb|LJFxyzLX6#k+nj0G$OJ z9Cv^+3xJajz+*vh+5uQB2+lcBZJmOT9oYS}f(rmaJB{I+lo*%to}JcZg1ww5#1`!J zstw%jYzF-2tdAnE$l{5L*y@=K!=8di?p(k^OdzpB#YNf^B|vV2924onRNI z1-k_^{_=rN>mR=sNO@huw;Xuzh=KwT9B2o)|9e!)T|NmwaltMl9f071Ald=wEeHxb zaPy3Ucn2zete}_!B`rvF0D24d5iIS-m#!QfmaZ}zk};SQyS$G`{KKYwI{iSp|@ZU&3vF+xP@N}z-_^BD+geKIU4kaTq^+rLxL-2uogn9<7ts4WOm9N2C_UxN9ZIOP_|7~lh) z_#nR)fXf2mU|^^tP+71+ssj*N5R7!-N!#UU2cWKC#yAHe3h1B{9Du=s8513Vzk*=0 z1-$>d!jfquxS6X83#L5i1D*LyzZO^*r9C|CK%+tmf(~3vRPZPPZue4Sq2MteXpaj~ z3)=WkB{jatj|cXbQLxm3-^(e;b|AHaf>jQ*t*T&+1JGM=HJ)?;atng>4s59zRI<^L z@9QYo;=t*83br~BXsBSj1JGQs*XJF8?gpDSqd%`99YBiKZ$OSmtFkt zCK`X$fhElpyy3vOdlejZ;H6dy-g02K1@Af#(@ryvI{^8Gp8roe^5}hdQ;!1p$zm;=yfut}l=z3sG0 zJFwn@as(SWaY!`Sq@oXW;+0Vg+Bg*&h*$IDfld2@$oz*DK3TH45ajR0LBc00R-zgPxvwj2KzwgIn=M=pSm@i>Hs7e z%pd7MrUk*#jx1fTDdQaY+Kw@S;2jQn3epR7GSLS*XqI0KK$pSrR0rO%`T1QLnlXbJ zU$Mve!GlU3@`-l&h+hl9j=?VHH~=>W!1Nk{c@BNKM{^c906zvBJ>kH^c910m_}EDe z8O&HNJpPgBuq#~r&sVjF)ee+DtUw%q9fLhQv_Kxc=1CG?{VOjiwgET04oMNIN-ppO9~D;051kJUdsi=@vA7? z=8#K)8splC&^S9>|&i=;Bz*{@Tndb_>7f{9d@zOE?&0_e0;`O$S&}? zDQnN!#mjbqkIM*OvWv&;Lio}E{njpCvx{wZk!=?z?BW@_zz3*oaM>=-*~N9cIBOU9 zg<$~Yv#R8uXa&ZYCO>>FQOS!-&k6bLV3w%n=+VghtgkA7sd_aEG zj>Y44!4Jw&J8l>JWEeGm5Qzmp`on@B_+h~hp|H4O7x)|_$m&8{g17Oo;N3SYcvlJw-fP0*ODuv| z9=289@Ij3?X|UkE7c6*>1q{lkK9 zuCU;n87y!`&IK=uhYi5Ha9ia?At9X5tk5@EzBZYf!*44m0Tb;_=^2pdwrB#RC(0+3A)4EZTzgkJ!t$H>}E{_dG zhi#N^#)ev}<0>0!_ZwqFRpt2yLOSZk+(vvtF{)HLva`&pD@S$I&3;VIjSE#?mHMvI z?fGewu#+}8!ZyLZWSyv`_@kXrbQJC$=d!s0baVBvcC+Djn)eIJ$!|l9{O5q83wx7L?t@`v`&D@ns z*GqgxsFX~Z5Gody`*;&u?aLo8EoUZReQ|SKr=@wNR~##dNtroREf3@_gtM6&j z-rMQE_akL_2A;vMWL*aQVz~XSJs*>_%uu;idr#^dajQK)-S~l0++EM36(uPX8|QF- zRx|2I{%S>Ov+ksBR@{cqYgxWnv(yIui|n=kjWqNlxKn?7n?`=*&D$cYvd`#>zU}Bw z6GIhc_e9L@<=feunWuC*ujI!yqmJgUR$NujCcSk#Eqpc{H$12F5Hou{PWp#fq_Y^n z;vp7eSe$3EipBFRwzJs6;(Zn$vN*t^6N|wt=Ce4(VkwJ@ET*tn$f5;{rYwS8S&m>a zgGE~wi&$)B@fwRWES_XBp2Zp#(^aMB@v@C@b3=%i`;ta4{py2bqNbQBsV9A>V|EBSTj^B zoM)0H( z^HPaGQGj04^(^Y*b$Q;ZADZ;#vFM*$0t=pDvEbTc!9%^@o6H>> zD#wF%p|ZIxxdD*GHTRS99lZ+`%}wKx+mFjnfl$SgP4u%)>nVy-RYVsjBY!=6OAp>2gJ_wBENQ&sw&yu%yzsq_6;fddFJJ1{M&0@0MI^d(LA-oqYQAwPY4vKYcCTYXm4*Fmu8guBui(!h0lTVoW0^ z+=Up4Ni-c8+=%PV4%BUgZUbi=eBNS+0NZEGgTJj}U{->Lo!g^zAft)bMqe{Ls zt6N|f5mLOWn-bU)BdePtSU9`7DTRe=tD8_VrMfAW{jXLxrL!=wrfE0}r`0s2OkfLj zaph?EgQy0G+z1^71~)=pGjwz(TStEYSsSIU08TdXhpKZmP0G2N=8Hb8xp7RdKzY*FO}!)GofuQwNKVLRX?@`5O$&=n6=tJY zT3AxSQso!-Qh_V?Hpj36-`U$dgoRi4HixqC-rnX+7LIzmIUOq!UhN_b?FywO%cgt1 zle=OmN8fHvqb}OtRd7M7eDRJ~Fw5t;uNhUBvacCc_2RzfAuCa;Gu?!%-L$St0OB{I zh%*A?8=*-+^+u=xINk{T3FK~s#sjMxp)Y~XjnE$->Zld?+bC`+5VsNf1sK~9Nxj4; z*FNz?MeX_kIjhAxK#ASoJT(9-+SX5G?r9Q*Ijtvn*f#nV9;H={FS6LNu)}lVa%Acp2yIPqxxWTp%7KRVDp>{?O zwqZBs47P=__{zby@Lt%Rb^O~^@}h-40ceOH!SjizwMCrp4)*0Z5XEB38&qhu!q3){ zAi`lzI0C8is`|bIF=J2~RWKsWW?&WMq}k$FxGIe*+>>TYrEX345XN~x8x6AW7{7>c zvYhcALKchk(rdGt7Mroh!-i17qlVbx=CJLj*l-j6AbRRg9dRDOl7?|Fb=6T>cO5MT zRya!C3UqLUdiT~*fj2|SsUfyZ99$1X8(LyUk!=iX!mCBLVNas2YWdwDqYsmDkkL|V zDloEs()wmE|GwUUK}Ms+T*7`l6SDtYWD5wz?8o>I;R$cbZd_=xF4P{0uuyMhTBx_? zT5RF0<`otj4#Ib}@RG%r$l@PZYza?cFZJXEKh{g$lTCSM%U|n-;nkeKUB zY^cBs+W$98Y_XHpq=R<%v3}!$%Zt!Mpy(o0oS~y;pwFT>4?#z3r)fwM|4dhmrM4T- zvU;Z;BQ-2PW}C?VKYz?NorQtNZBtlSc-%IYg@=xl{9hlp;nZ*wLT~H|RWPtdhsZU{ z0zznJ$v9z4A_EM_?i03w-O%LaT1aMPHlDDJV&Q`mw&C>n22R+>3JaDSzq=HI zgTZ*xHj?I^t(cgsuSt79vSJt#B?|{?wkB?M41&xqhe$ zKk)gR&65rm2X}S3Q^t~uKtFVY?w)vpPi|WL%+cv z;Xj7Xik1DUg5$8WMrEtduzFs}R?`e?fj5f?wmt=FD?%e=4N2lA<=@%rb4fIF4(G>K z$r0B=60n#_tJMrv%-YrJI2QhUwK{}qY~cS5HI9(8)~Lan|Kd#*$K%5{Rjqqx z@-IOhz6U}><($o`cT6i#LlKA63&8J0XcrJWA(F(`K4fMjSC2HLE1zsuho*V>c*%Fq zspzo7&a0zYEpyMSIGR?TS8*~rcwWU>;nI0}?sqK=zo6pmG3J6A`{ZFDSt2^7kymw8 z2lPf1*9yEwg!ZZ$lEnVspfIMR5rezN=NwN^_8hW*>ml1_t8-3%p^oe+dp}f5l()WB zyQ4>|yQ$)=ZM&&Plio#sCFng=&I(Tm!!Am_r4D8-Fx^sd^|bXCwcy+>vb1}*)Z|37 z8zlIGS$oDU9c=(UBZ}JwL`H}tu}GPETYa-X)ioMyp>}<`Y&sbku;soQL8hP3!_Jef z%;x7;$-94vjP*u;$1mhJ!1Gb;`RLvhwTa)t>>)ldQ2xD#-8(u1$cKofD9ckv5d$?rBe&%34>IZAZ_0G~2Ej;A;LIR76d-y}!5BTp^X|OA6U1 z$Bv!&RE{03cX^H-2jPJn`_rtjjvPChROl>wD*Jzm7OtFSM^!e=vZthu0_Gs%82TVY zM|0zJWRKU7ByNTW!M-k?j7?QW&$ibZNO{rxAdoLaPP4~olkxp!R9(t)J5F4)m)miU zczwAY=Zpi(?eU3|he5&Y)K`4@X&t=}j5`#UJVry3cucv!+@3aw$)9?F3Y>d@+Pm|B z9bL!G1NJf0Q)ghb%B4HwqS0h>58Bb_cOA5kWchzMXdl5spF{RRk^Lt^6>cU#ZkCQd zovtBCJUY=s&bqCp$YnVReoEaT`)18BGkG4`8z*N4BqUI!0{{0axq3uGGFDo5$&P;P z=S%jOi8!tPC~*38P-%n;*s-?wL7|TR5Ovf6>@Jjg6KGu!N#ZNH%v5T4|4`X(PK;8v ze`}A#-aX^vz$y86AIB&XWHW!XO6Jxjjr1g={D8lJ|3}NaeI1&uf5xjI{t%hlo){qy z>XOtKh5pUgF_|_uuqFxOs>EGFcoq)m>v$UbU0BHp>!De)-}+ zk<3tPvK=_HH)!FdY)44&3ZPseZkBz(n}P^jMI(0es?4SRl;9l4*_T-M<`a%++G{Np zVwjn&`ZF~YJ2UyD12;#{pLB$yB7|Q#!3(w@*hiy)=Y$AR_5#5Pp%uVvLTCa|njn(I z8~?#t8-j*KDqo&-tj2xwv88pANe2J;NKvV1_-U10-AfXnF zBa;1x72ARQgvc2-0qY5&VxT)gB#BQdXD&FBQ8PcalkWXG90oGD1$+^-@a%+9fw=DE zOL!~P(XFD~RH*MAm+(JAR8R9_lSP89xh6~#|C?5QKJYgX(ZeS|+(76*z}P@&KQJ{A zS_~8ogzf`310qR`DC)u%po#ewxm(4M{_@dHUHp~%9geVdtSdq!C)&zb$%&4)QgY(7 zzF%^pSGg=XQ)n^$9S3~@VkXL~#HaD-BXhA6JGPFzl2TkOPT$iu}>d@gy3 zGl`PI!V7 zx-;eVK$|P1$9x-{fvmEm1}BdG$qml1`7yu@L6^UC59mk%DhP^e0}cp67YtoBbUj%| zQ&M!)@EGL{(c^v_sv$|7uUu?!`uoP>Xz=4RK(amsh1N2QX{qtAhY9>xHs#7DQxT5J zgioA?RLo;$Q!EY*(@ZFpy>=Bpo24VKxf+thkCe(!oKyb6n)z8#3odAWDQdwvIn2@$ zNv2ioA*^Lb3~} zXi#xWD62})LQ8Q=;&9AV*G0GhnNVc!JP_|ICi1#PI{LLjLy}ls(DjK5xjOuczhW2LBo)MaWs_`3U#|9!q|mKLc@|`K85W5}eeP!S97*d?TGG^!{%` zC8Y@cIbjmm7dG$2Y7mFL>=x(1n_xm;!aHz6%`oH$y$-Ly33Y|H;0$$rLK6EZ5ocQj z928}bTB2wU+r)nXW{~xPfIGL3AGP3;uk%q$9CctH?Wn?E=6-PdV+X#K?qYk7x8}K` z=3x)yazd#tVitU*Kv%}S;q01F=x!a2f|t}3m-V)erolM{#eKM6Ltw^ma17dZ%$ypl zbmLqh^T>B5^C_S{KVx>esjLiqr_q>ivS=qKa7voW5B`72;5*Cp;}@d~*Ihe|E}Z|q zGP=-*-Z8qyqWST){1wRF!&*AOqL^lIna_3M0Jh}1P%$!uq!mAeMe>ECR= zP&0nP4%LG>!-Yxs+J#U8yj37H54Hq|BypoM#p-J4$8^h8xuO$MES~L4aS*M7bv)f5 z|Li9XN#bpY1bd4Jo{_4&QswH6o^#y+S1^yc$1o|@dzY1$=9{fnV?}9^S@-Z3els(g zVlc=;_!@y)wS{kh$lk@~@&z!+%S-dCWZxG*}@$kYC=JrWe|4#iFu_Hn{D@W^^ktCYt) zZjMo#7llil@I6cM)>7b@&1@kF%fj90W7mbdX-g|S;Dli?UgR<0$n=tKaO3I8JcApZ$_fJsU9W|W25Owm;Eth2GxIRzl>|^u_+@Pnp6>xQ)P%hk=Co}^t%MOeW-R8A1~--hvIR7W8s&s>cMi9TcoFb<8T@^TXzi+ppuJ7zkLRtJAa8|#0AtMGJZ zeiK}QCv+R`z7zTpF1-_acZQBC;hH_w~b8~tz!3$DOxIUb|_aL1kE_B=+*%JsN-Nk{*J zi|+6odqW!oH`+0aBwnh@UG7$Lm$#}WCgIrTRy@yH+T0pX&h$AC7*5dlQSgJPFQLXR zH@9N=pt%*7mI=02^p1iSF0!@auI4=(m1VcJ;(XBa*~hr+P30b-1+O;Q1=_wwP{P)ad1>t3m=Fr3do8~(R|!G{u52I znD3#OQ%qacaFrgBBo4ofT96~k^CFa#^=)5IW?g^($2N2qAy?XB>8;SGd=nHM1TVI) zm;-5pV7bzUK4-&~w&+3VCcAOMC=h?WuMs|3fkP8x-cn<}#biZK0GqIm9+P&oquox0 zFaxDXd)$`d(gJX~rR4>MC2%(Im$r;$ZSgX)!=KW{=5mXv41MyE9qkc8SjO|5kj0+q ziO&?4N|@fcqdkbyU*m*oN;gaSM%e#hde}~qIb&x#YDV1Ij$7sTcDCb&tVv71zf+UF zu07TV>r3(wMzZl4ZD>e{_ncdn~z$9e9bbyUJnb?vx1@ZZ&rqiw>jcC@6D zT@)|xYEPwwPtUG`xvOSBwLpMCR0;LKd_c$mlm~=NTz3ua1(E~pIbb(HB#HZOue1n!1*MU2Qm*YBc zK~x{tfoqI2aUGFisLXl~VINbbm$A%JS^+Pu7nn;5u!A1Pb!f*apL+;b*)zS31?8qC z#=O$X$MykBk-LzDbAn$O=%Im)yiLH?K0?+m>39M0SX2} znG?Eu5`-BcOxY9Pakrf5bNh~tIP%de`Qsp#zdV)~2jFDYx}yUJMDLxX@{v1955*9o z7ZXxAAw%}t*)gyWd|Od&E`TvitNe>QJ8(zlS=TXsG^)l8n_azaOMusb2p}qQbQCa8 zN8bX21Exyi_fwShbsa%wCg^(}oe3o9TK*6S8X=pCE=NYt_&ow^QHb-IUszHAYlpJG z9EiwPgHr6bQZI{GJ&KVYgPo>89e+WE~k)*$a)ooGJEyE<_mnYODl zf|jH&azZ7O^WyWBk+eP#mceqsL$0ZALKk;&S0}p29`zJv)OXVKUf+ouV7a~%U0|b@ z{yY3XHvqn6CUObC?K=7ZKJ2BqAK|N8LigY^T0&dllUG7D$8}T)pQTbEyi;LNCiq_8m`-ov!}xdP zqvx&%(h>MS;A0S|va!AbH=_e4T{ono$&BTM5=g-zYz7Jk;(GYX#>Vd;?K9R zIni=f&^OV_o0G2p(2o=r&P!FbR`^7)5C|La(tuSIyZ2xUiKnEo883pfnFF5_J;$OYd7e4CH!vASuH8{P-G)-DD8 SROEuju`@|TI14wInJ|9ac@;JQ delta 63 zcmV~$!4ZHU3uoea>kzx(SXJ9qZxPCrnTvt#N~NgNU28>^aNuybR8y< S!c=2.19.0\n", "!pip install \"cleanlab[image]\"\n", "# We install cleanlab with extra dependencies for image data\n", "# Make sure to install the version corresponding to this tutorial\n", @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:09.522414Z", - "iopub.status.busy": "2024-04-12T10:18:09.522250Z", - "iopub.status.idle": "2024-04-12T10:18:12.283715Z", - "shell.execute_reply": "2024-04-12T10:18:12.283173Z" + "iopub.execute_input": "2024-04-22T21:46:42.299574Z", + "iopub.status.busy": "2024-04-22T21:46:42.299093Z", + "iopub.status.idle": "2024-04-22T21:46:45.119929Z", + "shell.execute_reply": "2024-04-22T21:46:45.119370Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:12.286267Z", - "iopub.status.busy": "2024-04-12T10:18:12.285977Z", - "iopub.status.idle": "2024-04-12T10:18:12.289701Z", - "shell.execute_reply": "2024-04-12T10:18:12.289254Z" + "iopub.execute_input": "2024-04-22T21:46:45.122500Z", + "iopub.status.busy": "2024-04-22T21:46:45.122114Z", + "iopub.status.idle": "2024-04-22T21:46:45.125643Z", + "shell.execute_reply": "2024-04-22T21:46:45.125212Z" } }, "outputs": [], @@ -152,71 +152,45 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:12.291690Z", - "iopub.status.busy": "2024-04-12T10:18:12.291358Z", - "iopub.status.idle": "2024-04-12T10:18:15.356177Z", - "shell.execute_reply": "2024-04-12T10:18:15.355698Z" + "iopub.execute_input": "2024-04-22T21:46:45.127698Z", + "iopub.status.busy": "2024-04-22T21:46:45.127382Z", + "iopub.status.idle": "2024-04-22T21:46:48.603680Z", + "shell.execute_reply": "2024-04-22T21:46:48.603157Z" } }, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "Downloading data: 0%| | 0.00/30.9M [00:00\n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2307,10 +2281,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:53.671574Z", - "iopub.status.busy": "2024-04-12T10:22:53.671403Z", - "iopub.status.idle": "2024-04-12T10:22:53.676121Z", - "shell.execute_reply": "2024-04-12T10:22:53.675434Z" + "iopub.execute_input": "2024-04-22T21:51:27.185290Z", + "iopub.status.busy": "2024-04-22T21:51:27.185089Z", + "iopub.status.idle": "2024-04-22T21:51:27.191494Z", + "shell.execute_reply": "2024-04-22T21:51:27.190972Z" }, "nbsphinx": "hidden" }, @@ -2347,10 +2321,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:53.678484Z", - "iopub.status.busy": "2024-04-12T10:22:53.678315Z", - "iopub.status.idle": "2024-04-12T10:22:53.853585Z", - "shell.execute_reply": "2024-04-12T10:22:53.853016Z" + "iopub.execute_input": "2024-04-22T21:51:27.193684Z", + "iopub.status.busy": "2024-04-22T21:51:27.193496Z", + "iopub.status.idle": "2024-04-22T21:51:27.393905Z", + "shell.execute_reply": "2024-04-22T21:51:27.393350Z" } }, "outputs": [ @@ -2392,10 +2366,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:53.855877Z", - "iopub.status.busy": "2024-04-12T10:22:53.855704Z", - "iopub.status.idle": "2024-04-12T10:22:53.863518Z", - "shell.execute_reply": "2024-04-12T10:22:53.862996Z" + "iopub.execute_input": "2024-04-22T21:51:27.396174Z", + "iopub.status.busy": "2024-04-22T21:51:27.395762Z", + "iopub.status.idle": "2024-04-22T21:51:27.403512Z", + "shell.execute_reply": "2024-04-22T21:51:27.403051Z" } }, "outputs": [ @@ -2420,47 +2394,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2481,10 +2455,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:53.865635Z", - "iopub.status.busy": "2024-04-12T10:22:53.865249Z", - "iopub.status.idle": "2024-04-12T10:22:54.032464Z", - "shell.execute_reply": "2024-04-12T10:22:54.031914Z" + "iopub.execute_input": "2024-04-22T21:51:27.405486Z", + "iopub.status.busy": "2024-04-22T21:51:27.405174Z", + "iopub.status.idle": "2024-04-22T21:51:27.603905Z", + "shell.execute_reply": "2024-04-22T21:51:27.603338Z" } }, "outputs": [ @@ -2524,10 +2498,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:54.034461Z", - "iopub.status.busy": "2024-04-12T10:22:54.034288Z", - "iopub.status.idle": "2024-04-12T10:22:54.038711Z", - "shell.execute_reply": "2024-04-12T10:22:54.038253Z" + "iopub.execute_input": "2024-04-22T21:51:27.606168Z", + "iopub.status.busy": "2024-04-22T21:51:27.605820Z", + "iopub.status.idle": "2024-04-22T21:51:27.610280Z", + "shell.execute_reply": "2024-04-22T21:51:27.609863Z" }, "nbsphinx": "hidden" }, @@ -2564,130 +2538,101 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02aa7aa815b846d6825de794a39e43d3": { + "06eeda89138d4f9cb0591265de93cf33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44f58c09a06b40749b5039f5d51cde64", - "placeholder": "​", - "style": "IPY_MODEL_e61c93af0eba452b8343196f5ce0b896", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_59110a63f7bc403b9be6d465faa18a9d", + "IPY_MODEL_262cdea3a25e4af5a6fade2a4253a59d", + "IPY_MODEL_fb428a754bdc4020a571efeb1e699942" + ], + "layout": "IPY_MODEL_0b0640ddc13e496a8d28040572fc6783", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:45<00:00, 811.34it/s]" + "tooltip": null } }, - "02b62cf37f1b4b5fbc52831c07583841": { + "075dfdfbb299439497d5b44d7843cddb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6bed8dce4cb4b9e889847ad45e96d17", - "placeholder": "​", - "style": "IPY_MODEL_8f13f9842f5e4d8eacca7b538e4ad854", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_74a7a0ebc7464db2bb2ec8ce05b62826", + "IPY_MODEL_bb559c6645ad40198025d78404a023a4", + "IPY_MODEL_25e4014520c240bca37b585313a2b809" + ], + "layout": "IPY_MODEL_71bc40ec9a174f93b63f0d5870a63723", "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "tooltip": null } }, - "03f73e8be3214af4a3ba1b71864a7973": { - "model_module": "@jupyter-widgets/base", + "07ccd6701f3a42d786227ea4159ad159": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_241d9bdce9324df6925381f936ba97c9", + "placeholder": "​", + "style": "IPY_MODEL_e90fcd89988d45cfaca0ec05bc3a3b66", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "0455f236fdb64796ab989306a80244ca": { + "086acd8397f6464a89d86eae66b1467e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b2e1bdd3278d49f3b4228b9170723ac0", - "IPY_MODEL_9f715596f1d247afa2a4d367b47ad014", - "IPY_MODEL_02aa7aa815b846d6825de794a39e43d3" - ], - "layout": "IPY_MODEL_1144476a3e8148d88304d1491863522a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8ebeebe0947b4196924fe8b151a7e458", + "placeholder": "​", + "style": "IPY_MODEL_b82cc8f880874f01bd91706bb981ebde", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "04a628c5a8aa4dd2b35e6faf391d4e03": { + "08b35994ca9944a684a5b30e2db47952": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2740,56 +2685,41 @@ "width": null } }, - "0a7466066ad24fb6b2aa5eed0afcd1e0": { + "0902dc20bfd543a298156a7ffeb71f69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_04a628c5a8aa4dd2b35e6faf391d4e03", - "placeholder": "​", - "style": "IPY_MODEL_80b478f9f0674adbb2ff4d666adb3144", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0c7ec5fe8acd47d3809bf609a89c864f": { + "0a67b9129a4c41be893778799dd3e33c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_190b5184d5fd4761aca11b22a26f5a8e", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2c07b9f454e14478ad04e666c2700dd2", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0e9f0fd30f6d435d9bc20b6f61c0f2fd": { + "0aa95b525dfb4cffa6738016ec0a929b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2842,7 +2772,7 @@ "width": null } }, - "0fd1a013d1324348910b1d08c3b3377a": { + "0b0640ddc13e496a8d28040572fc6783": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2895,7 +2825,25 @@ "width": null } }, - "1144476a3e8148d88304d1491863522a": { + "0b0f68b39f1f4129984bab940f56b609": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0d013754c7f14ca0950338e735f3303a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2948,33 +2896,83 @@ "width": null } }, - "147586f3357c4142a726d3c4888b61bd": { + "12111d06b5c846d4b8a039591cfd75c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f83e16c5fe14880a8040188f55da07f", - "placeholder": "​", - "style": "IPY_MODEL_ecd3c5249d86402e84c13b074d11004b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3e2004b573b416992ed7109da94134a", + "IPY_MODEL_a6a09fca07064475927cb950137fce33", + "IPY_MODEL_13146069c5ef419faf26df577dde6485" + ], + "layout": "IPY_MODEL_fcc4b333e4d94b5fb6798ba6bd9e0c37", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.42it/s]" + "tooltip": null } }, - "14ebcd0568cf4e1d80a851199ea4ded1": { + "13146069c5ef419faf26df577dde6485": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a5a7bfd7829d4c4c886803bc8275afe3", + "placeholder": "​", + "style": "IPY_MODEL_d0fc51710b7e44dab28856f8fefeeecd", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 614.33it/s]" + } + }, + "15ab4017801f4bc28c8ffcda1d378be3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_08b35994ca9944a684a5b30e2db47952", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_eed181946bee47e8b8cff4dadd971cad", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "1ac8ed2dbee1474496a41a645c0c1eff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", @@ -2989,7 +2987,7 @@ "text_color": null } }, - "1650325f79d6441bb803e37c32382c94": { + "214f0d45bb144e44812e1cd974d71774": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3004,16 +3002,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d1fa4ab4971b4b1a97ad09f597ce0005", - "IPY_MODEL_88a33c5239d44a959fd23f4a3bf4239d", - "IPY_MODEL_d2bb5a77ebfc4577ae593a6d71e5a54e" + "IPY_MODEL_086acd8397f6464a89d86eae66b1467e", + "IPY_MODEL_41a1f01b8eaf48e581a5b349f7befb05", + "IPY_MODEL_a9564bc645fc44d5b9cf9fdf2c98ebcd" ], - "layout": "IPY_MODEL_b2e3fc29bcbe4c319779a3e9de6d8542", + "layout": "IPY_MODEL_5e4aa11dc6464655b84497965e8f2c1b", "tabbable": null, "tooltip": null } }, - "190b5184d5fd4761aca11b22a26f5a8e": { + "2298a976ad904603af3ee5ef5c1a3549": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3066,96 +3064,31 @@ "width": null } }, - "1986423b5057455fbcf741624c4e1156": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1c300cedb5f94d169522af14149d605c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2142f782834a4d5399fe0b6599716397": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "22998f7b85ec4497a3c8abce7cc3984c": { + "22af21d5758f47ed8c5aff93d99f1eb8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_952127f614bb4cf9bfd563bc7b716ff1", - "placeholder": "​", - "style": "IPY_MODEL_b8e2a441399849d987355d944e674ffa", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c6593a4d742340b5a9a979fb281a0adc", + "IPY_MODEL_15ab4017801f4bc28c8ffcda1d378be3", + "IPY_MODEL_7ce0e37bc05243879b80865f93025d14" + ], + "layout": "IPY_MODEL_5c7347b53a124f43b5f1b1c5602b1ffd", "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "2828b73012c7416ba7d800c10fc9519b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "2adcbc83ae0a4318b963d08b1959ea86": { + "239c737f46d840da885833e972580c4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3208,7 +3141,7 @@ "width": null } }, - "2b6ff6ed70654818b8c5c965649f8963": { + "23c8a161b5d54a6eab69dcef0d1f2289": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3223,15 +3156,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0e9f0fd30f6d435d9bc20b6f61c0f2fd", + "layout": "IPY_MODEL_2706c906b1984affb0d0e7d7fbf869d6", "placeholder": "​", - "style": "IPY_MODEL_8eda62240a844dc8add0a53f75fddbb3", + "style": "IPY_MODEL_f22aef94a5384220b26893e15a7f9a93", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": " 60000/60000 [00:00<00:00, 298366.54 examples/s]" } }, - "2c07b9f454e14478ad04e666c2700dd2": { + "2413e7bf36f549b7a6e5d5d8321385d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3247,25 +3180,7 @@ "description_width": "" } }, - "32680ffbffc047b292cfc60dd3742270": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "373e5d2b2c5b4b908c84363defd3b4b5": { + "241d9bdce9324df6925381f936ba97c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3318,48 +3233,7 @@ "width": null } }, - "3a8da44a25d0486a85f3a6d4e9c9be7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3ca31c427ac64cf2926617bfb55f4d8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d091685f04447b79981ca5080823361", - "placeholder": "​", - "style": "IPY_MODEL_8b61af9d7d4548cf838e78654ff25e03", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 591.91it/s]" - } - }, - "3e53b84c85d143bd839a75b4a46c105a": { + "24b369c811cd48c8a403d7df384e5b5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3412,70 +3286,56 @@ "width": null } }, - "3edcd89f710f48b992b7cd96bcf1c0c5": { + "25e4014520c240bca37b585313a2b809": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_67d833b083c34f4dbd54ee46643c72df", - "IPY_MODEL_ebd258422ac14e8ea1c43166dc17533a", - "IPY_MODEL_5d215973d6bc4905a7fe9d829730909c" - ], - "layout": "IPY_MODEL_373e5d2b2c5b4b908c84363defd3b4b5", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_539767b68efe4bb1852762f8a4963e13", + "placeholder": "​", + "style": "IPY_MODEL_3a5d39f22fbc40df8d56495e2bcae35f", "tabbable": null, - "tooltip": null - } - }, - "40f040897c8b46b8aeb514a211607f9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.81it/s]" } }, - "421d29fd3f2a434ca422993000da5c09": { + "262cdea3a25e4af5a6fade2a4253a59d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_edd1d0858fdc47fb8cd561ec01046d35", - "placeholder": "​", - "style": "IPY_MODEL_599880db00d149409fa3bb013bbf2a82", + "layout": "IPY_MODEL_dbcfa560af5e43aba4b839659c80a569", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2413e7bf36f549b7a6e5d5d8321385d4", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 40.0 } }, - "4247a9372b8049de86a34cc77483c052": { + "2706c906b1984affb0d0e7d7fbf869d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3528,7 +3388,49 @@ "width": null } }, - "435b45cec9564a2ab72bb08af983c9f1": { + "27cdd1f63f2942b7a7f52037478576a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2f9364c1f6bd41b980ce64e83a497305": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c82f7ce8b3b048ca8dd6be97d98c2ff8", + "IPY_MODEL_5ec79d6bb58a4a339e44ad03833ddd73", + "IPY_MODEL_3d40def91f6d452198996f9c4d63c30b" + ], + "layout": "IPY_MODEL_cf376dc2e03942899bf0534a1f81e070", + "tabbable": null, + "tooltip": null + } + }, + "306ffe1638a34f1db49f116e4b3d40b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3581,7 +3483,7 @@ "width": null } }, - "44e1ba4090d040698f36744323e05a7d": { + "31684d40b1c14845b41cdceed9f73395": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3634,10 +3536,28 @@ "width": null } }, - "44f58c09a06b40749b5039f5d51cde64": { - "model_module": "@jupyter-widgets/base", + "32b173f655ed4f1db1d734787e34df35": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3375f3884b154835b7545beed9a74a4e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3687,7 +3607,7 @@ "width": null } }, - "485d9634917e4d568529e19ea0fa8f95": { + "33d1e1b13c7949499987b06bb34f7970": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3705,162 +3625,160 @@ "text_color": null } }, - "4ea9ee23440549f5a87db408e0dbdc17": { + "34da655764d3453e87e3e8edc0580ab6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2adcbc83ae0a4318b963d08b1959ea86", - "placeholder": "​", - "style": "IPY_MODEL_670217afbf65407f9c9d905cb66ae29a", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "53d8f50c663346d982fc143c63b140ec": { + "3509bd951eed4c8d8c33450972f39ffc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_435b45cec9564a2ab72bb08af983c9f1", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_99e31dc384aa4ca88fbd102b461d5350", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "599880db00d149409fa3bb013bbf2a82": { - "model_module": "@jupyter-widgets/controls", + "354af9f7333141069d08c19ad05b90c2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5d215973d6bc4905a7fe9d829730909c": { + "39094f6e6f94433fa4bee5395c08e248": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_936fe16657cd41c5a2383132456f8898", - "placeholder": "​", - "style": "IPY_MODEL_14ebcd0568cf4e1d80a851199ea4ded1", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:10<00:00, 7178.16 examples/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "60b8365907314e949d6375c7c02b09e2": { + "3a5d39f22fbc40df8d56495e2bcae35f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a167b2fd511342669075cab597932764", - "IPY_MODEL_a396e3b5bf514600bcdaed59bdf5edeb", - "IPY_MODEL_dd1ecb40bd5e4864916f737c558f6e5e" - ], - "layout": "IPY_MODEL_e27fb6533eba4dd68cdea122164a9a4e", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "62c93ddfe8e748eb98fccb119503cb53": { + "3be51d1bdfc7426eabd22230d15743bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b76a079b0d354eaeb65c665644922525", - "placeholder": "​", - "style": "IPY_MODEL_81ca06dbdaaf432da694f870a41d362d", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "670217afbf65407f9c9d905cb66ae29a": { + "3cd156a9c8124e42b06ba9df7f0d7a95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "67334d5dbd2c47b3a952c3e40852fd29": { + "3d02e92274f742f4959e8a103e28cc5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3913,7 +3831,7 @@ "width": null } }, - "67d833b083c34f4dbd54ee46643c72df": { + "3d40def91f6d452198996f9c4d63c30b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3928,33 +3846,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8fd1e2f882bb4c859fdbe156779d72df", + "layout": "IPY_MODEL_5320f86e513a4d7cb9bee7bcda9e7e31", "placeholder": "​", - "style": "IPY_MODEL_1c300cedb5f94d169522af14149d605c", + "style": "IPY_MODEL_cb3ea9c24e1344318ce6c56b85e42c91", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "6eda8d71f84c413fbf9bfea0aa40b82c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 63.37it/s]" } }, - "6f83e16c5fe14880a8040188f55da07f": { + "3f8f4db9ba8a40da9b3add733e4792ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4007,7 +3907,7 @@ "width": null } }, - "7003370693624569baf61189aa79625d": { + "41a1f01b8eaf48e581a5b349f7befb05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4023,57 +3923,88 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4247a9372b8049de86a34cc77483c052", + "layout": "IPY_MODEL_3d02e92274f742f4959e8a103e28cc5c", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7254023d4099473083cf575a1db1ea3b", + "style": "IPY_MODEL_39094f6e6f94433fa4bee5395c08e248", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "70d8b40aac404bfba3eb276b2785492b": { - "model_module": "@jupyter-widgets/controls", + "47049a8fb80d4e56aaf7ffa696d52ab1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_62c93ddfe8e748eb98fccb119503cb53", - "IPY_MODEL_53d8f50c663346d982fc143c63b140ec", - "IPY_MODEL_147586f3357c4142a726d3c4888b61bd" - ], - "layout": "IPY_MODEL_9443687591a942aa86e769a067c128f3", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7254023d4099473083cf575a1db1ea3b": { + "49ab7db09aec442f81b7b02f32f3c3e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7314110e3b404116a8b840d61c3bd951": { + "4ec31e2f6eeb4db5afc858701783db81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4091,31 +4022,135 @@ "text_color": null } }, - "7444685135a74575a775c37ce9d60f7c": { + "509dd1d736f74e8781d9637462482d2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_421d29fd3f2a434ca422993000da5c09", - "IPY_MODEL_b0144572ff3f414b8e82237f0e671103", - "IPY_MODEL_8034a2fd4f6240ab934cedfdc771ae1e" - ], - "layout": "IPY_MODEL_67334d5dbd2c47b3a952c3e40852fd29", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a4ed4ad057424bf294b6646f68d49625", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3509bd951eed4c8d8c33450972f39ffc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 + } + }, + "50c72ad22477447e91b77fc706b6c28d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_47049a8fb80d4e56aaf7ffa696d52ab1", + "placeholder": "​", + "style": "IPY_MODEL_4ec31e2f6eeb4db5afc858701783db81", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:46<00:00, 879.27it/s]" + } + }, + "5225dfb404844516aa092731b6446018": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc1ea47bdab44589a71be092a474cdc0", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_34da655764d3453e87e3e8edc0580ab6", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "5320f86e513a4d7cb9bee7bcda9e7e31": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "765e32834baa466ea4d9206e7dc616a4": { + "539767b68efe4bb1852762f8a4963e13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4168,7 +4203,23 @@ "width": null } }, - "7afff21ed2fd4b4a8eb4f82227e437e6": { + "53f0ab05fb9e4f2a9c13b5138fc1dcd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "557da05190dd4be583de7f5aa0a129f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4183,16 +4234,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0a7466066ad24fb6b2aa5eed0afcd1e0", - "IPY_MODEL_0c7ec5fe8acd47d3809bf609a89c864f", - "IPY_MODEL_9d2505631532429f8686a2fb4db19301" + "IPY_MODEL_b6af5eb0c94d411e80a14cf40d7861ce", + "IPY_MODEL_b3bd2382b41c4ea8a6bba60127b4a83c", + "IPY_MODEL_ac0d8bfff59a49aeb0a28c4dfc414ac3" ], - "layout": "IPY_MODEL_c5269badcb544457b682bfe2f4b5959b", + "layout": "IPY_MODEL_5b89f515182c4bbe8670c13c291a35cb", "tabbable": null, "tooltip": null } }, - "8034a2fd4f6240ab934cedfdc771ae1e": { + "59110a63f7bc403b9be6d465faa18a9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4207,15 +4258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_df86badfb60d43d685d25eeaf678874c", + "layout": "IPY_MODEL_88bca7ad2c68401cadb15f690de8d47a", "placeholder": "​", - "style": "IPY_MODEL_a00049a0a59a4852b4eea2a640f8ffba", + "style": "IPY_MODEL_ec7203969370484281952453aa3b76f8", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.05it/s]" + "value": "100%" } }, - "80b478f9f0674adbb2ff4d666adb3144": { + "5a6cf65a16df48c09fb289ed50fd8b99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4233,25 +4284,113 @@ "text_color": null } }, - "81ca06dbdaaf432da694f870a41d362d": { - "model_module": "@jupyter-widgets/controls", + "5b89f515182c4bbe8670c13c291a35cb": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c7347b53a124f43b5f1b1c5602b1ffd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "85fd6669a4224b0b9c04c8e99594a27f": { + "5e4aa11dc6464655b84497965e8f2c1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4304,7 +4443,7 @@ "width": null } }, - "88a33c5239d44a959fd23f4a3bf4239d": { + "5ec79d6bb58a4a339e44ad03833ddd73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4320,64 +4459,51 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed32446d09b34dfdb55c0ddc9f1f37a5", + "layout": "IPY_MODEL_d03f8bbb7b04410cb95b55a928ab55ea", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fb083e417bef474f8af4f5d4aee9d9cc", + "style": "IPY_MODEL_64fc4427b0c54fceb4e669c81e330b41", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "89fbbdc0fa834739bf9b08a2c8c77d3a": { + "64fc4427b0c54fceb4e669c81e330b41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_02b62cf37f1b4b5fbc52831c07583841", - "IPY_MODEL_8d775ddc5af74c5bbaee8fa1dd3e8060", - "IPY_MODEL_8b4ad5aeef69445d966afc09a90be68d" - ], - "layout": "IPY_MODEL_0fd1a013d1324348910b1d08c3b3377a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8b4ad5aeef69445d966afc09a90be68d": { + "664953e9dd68417cab94603b3019007d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6a2a8a604804a3788bf5fbb65ee4ca7", - "placeholder": "​", - "style": "IPY_MODEL_6eda8d71f84c413fbf9bfea0aa40b82c", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 259786.44 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8b61af9d7d4548cf838e78654ff25e03": { + "687001d4a83f4b90965bc742259d9572": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4395,33 +4521,318 @@ "text_color": null } }, - "8d775ddc5af74c5bbaee8fa1dd3e8060": { + "6dd3a29d5d1f4882bbd9b6908f254547": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7126bc1e01884b67aea100ab6c2de2c6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7153d2476e634dc8a2cff938488ae767": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71bc40ec9a174f93b63f0d5870a63723": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74a7a0ebc7464db2bb2ec8ce05b62826": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f8130bfc227547c58c86e16f2bc102cb", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c2766268476f42d3a6152af57a621cb8", + "layout": "IPY_MODEL_c685fc9fc061441c8d45abde7042c8df", + "placeholder": "​", + "style": "IPY_MODEL_0902dc20bfd543a298156a7ffeb71f69", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": "100%" + } + }, + "76adce2c7ef34574b303aee79938d205": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_306ffe1638a34f1db49f116e4b3d40b5", + "placeholder": "​", + "style": "IPY_MODEL_9108cd4e620a41d48a5fdbe145216dfd", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "7925b7cca73c4ed896ac1422edd12b39": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8e68ddce58184c3a91e0c27a7e5e00e1": { + "7a8b4d06266b4a20a34d088726c7146e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4474,43 +4885,30 @@ "width": null } }, - "8eda62240a844dc8add0a53f75fddbb3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8f13f9842f5e4d8eacca7b538e4ad854": { + "7c970d6ec2ee4a5e8a14668ebd23e985": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f8f4db9ba8a40da9b3add733e4792ad", + "placeholder": "​", + "style": "IPY_MODEL_fb0b3b1701234b4eab30e0398e3c2de3", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 270161.03 examples/s]" } }, - "8fd1e2f882bb4c859fdbe156779d72df": { + "7cd52714add94106a03d2eee1c35cbda": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4563,7 +4961,54 @@ "width": null } }, - "923b47945e32451d9664b31bdcab7cfb": { + "7ce0e37bc05243879b80865f93025d14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_885c635dcebe4e3ab529e347ffcdae68", + "placeholder": "​", + "style": "IPY_MODEL_932e37e678c343488b4fc33576eb5374", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 5660.85 examples/s]" + } + }, + "8612d3bd631a446583d9af614fbe9ae6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b40c633ddc92422cbc9e1f59fcbcf8b8", + "IPY_MODEL_ac3cfe4fc19b4baa8ea58ddbad1520c9", + "IPY_MODEL_e5fb048a6a2a48779161a6522df7784b" + ], + "layout": "IPY_MODEL_f25126d05ffc4c9d8281cd8a201787b7", + "tabbable": null, + "tooltip": null + } + }, + "885c635dcebe4e3ab529e347ffcdae68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4616,7 +5061,7 @@ "width": null } }, - "925308daef3646488e540810e5e79392": { + "88bca7ad2c68401cadb15f690de8d47a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4669,7 +5114,7 @@ "width": null } }, - "92745029eaad41768778378fa73dfab5": { + "8c75252439b2427fb7c660c25ab15433": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4722,7 +5167,7 @@ "width": null } }, - "936fe16657cd41c5a2383132456f8898": { + "8ebeebe0947b4196924fe8b151a7e458": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4775,7 +5220,7 @@ "width": null } }, - "9443687591a942aa86e769a067c128f3": { + "8f626163c9f743ab96326bd4df1185dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4828,7 +5273,66 @@ "width": null } }, - "952127f614bb4cf9bfd563bc7b716ff1": { + "9108cd4e620a41d48a5fdbe145216dfd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "92b82430334e4bde9c493974ceafec74": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3375f3884b154835b7545beed9a74a4e", + "placeholder": "​", + "style": "IPY_MODEL_cdd5ce777677499eb33040aa130a4a05", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "932e37e678c343488b4fc33576eb5374": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "95b7af2721a049bfaffc788f1adba341": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4881,7 +5385,105 @@ "width": null } }, - "961a39be7dc84d0ca2a69a6a22666a52": { + "9b601eea7c8a4d689e85fbb8139220da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a0ac21c104204e258632159d04dda6f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a2b551ee827046009176cdfcb79fd379": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24b369c811cd48c8a403d7df384e5b5e", + "placeholder": "​", + "style": "IPY_MODEL_3be51d1bdfc7426eabd22230d15743bc", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.40it/s]" + } + }, + "a46fdc8efae54b9c85de9dda9bc593b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a4c512f26bab454398b1906f5baf4767": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_354af9f7333141069d08c19ad05b90c2", + "placeholder": "​", + "style": "IPY_MODEL_a0ac21c104204e258632159d04dda6f2", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "a4ed4ad057424bf294b6646f68d49625": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4930,45 +5532,11 @@ "padding": null, "right": null, "top": null, - "visibility": null, - "width": null - } - }, - "99e31dc384aa4ca88fbd102b461d5350": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9b175ea378a4489b842e58381203e99c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "visibility": null, + "width": null } }, - "9d091685f04447b79981ca5080823361": { + "a58c26d5659848f5a383e8ce2a02c174": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5021,30 +5589,7 @@ "width": null } }, - "9d2505631532429f8686a2fb4db19301": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9f03106683b24f3f8d230f60c76a9313", - "placeholder": "​", - "style": "IPY_MODEL_c6a7d21396884971ac8fb7463cb82c84", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.09it/s]" - } - }, - "9f03106683b24f3f8d230f60c76a9313": { + "a5a7bfd7829d4c4c886803bc8275afe3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5097,7 +5642,7 @@ "width": null } }, - "9f715596f1d247afa2a4d367b47ad014": { + "a6a09fca07064475927cb950137fce33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5113,35 +5658,57 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bbd524fd36de40748040109eb8970f68", - "max": 60000.0, + "layout": "IPY_MODEL_7925b7cca73c4ed896ac1422edd12b39", + "max": 2.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_40f040897c8b46b8aeb514a211607f9d", + "style": "IPY_MODEL_0a67b9129a4c41be893778799dd3e33c", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 2.0 } }, - "a00049a0a59a4852b4eea2a640f8ffba": { + "a73c8e162cdf42378722ceb08df4e3bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_07ccd6701f3a42d786227ea4159ad159", + "IPY_MODEL_f5b4b6b8015f4ff4b12a628b5a7f6891", + "IPY_MODEL_cb2ecb496b1e4c3bba642beb81eee920" + ], + "layout": "IPY_MODEL_7126bc1e01884b67aea100ab6c2de2c6", + "tabbable": null, + "tooltip": null + } + }, + "a836bf0e8dac41aeb9d11f36fe67fbd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "a167b2fd511342669075cab597932764": { + "a9564bc645fc44d5b9cf9fdf2c98ebcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5156,117 +5723,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_925308daef3646488e540810e5e79392", + "layout": "IPY_MODEL_c0762b25d2154afe9089d2216aecaf1c", "placeholder": "​", - "style": "IPY_MODEL_485d9634917e4d568529e19ea0fa8f95", + "style": "IPY_MODEL_1ac8ed2dbee1474496a41a645c0c1eff", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 65.99it/s]" } }, - "a396e3b5bf514600bcdaed59bdf5edeb": { + "ac0d8bfff59a49aeb0a28c4dfc414ac3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3e53b84c85d143bd839a75b4a46c105a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de906e780da44829832dd247e3b05a64", + "layout": "IPY_MODEL_31684d40b1c14845b41cdceed9f73395", + "placeholder": "​", + "style": "IPY_MODEL_e8d500a035d44d43a9e448e1bfa77713", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "ad3e74201ce84c60ac95e1ce7b4dc331": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 40/40 [00:00<00:00, 67.83it/s]" } }, - "aed727a1dec148caa93c7db1bcdd0ebe": { + "ac3cfe4fc19b4baa8ea58ddbad1520c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_92745029eaad41768778378fa73dfab5", - "placeholder": "​", - "style": "IPY_MODEL_7314110e3b404116a8b840d61c3bd951", + "layout": "IPY_MODEL_239c737f46d840da885833e972580c4c", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a836bf0e8dac41aeb9d11f36fe67fbd5", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.60it/s]" + "value": 5175617.0 } }, - "b0144572ff3f414b8e82237f0e671103": { + "b3bd2382b41c4ea8a6bba60127b4a83c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5282,43 +5796,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d5e3d2656a63434b8fcd194e84369666", + "layout": "IPY_MODEL_a58c26d5659848f5a383e8ce2a02c174", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1986423b5057455fbcf741624c4e1156", + "style": "IPY_MODEL_f5c9244c98be4b7fbd3f800a9d967189", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "b2961c5452f544fc82c014cc4d7cdd9b": { + "b40c633ddc92422cbc9e1f59fcbcf8b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_765e32834baa466ea4d9206e7dc616a4", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2828b73012c7416ba7d800c10fc9519b", + "layout": "IPY_MODEL_0d013754c7f14ca0950338e735f3303a", + "placeholder": "​", + "style": "IPY_MODEL_0b0f68b39f1f4129984bab940f56b609", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Downloading data: 100%" } }, - "b2e1bdd3278d49f3b4228b9170723ac0": { + "b6af5eb0c94d411e80a14cf40d7861ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5333,15 +5844,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ea02dd9c49164b08a0cba690ec113f12", + "layout": "IPY_MODEL_2298a976ad904603af3ee5ef5c1a3549", "placeholder": "​", - "style": "IPY_MODEL_32680ffbffc047b292cfc60dd3742270", + "style": "IPY_MODEL_32b173f655ed4f1db1d734787e34df35", "tabbable": null, "tooltip": null, "value": "100%" } }, - "b2e3fc29bcbe4c319779a3e9de6d8542": { + "b82cc8f880874f01bd91706bb981ebde": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b903786aa6444c39809ac0080ce5b9ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b9658a8795a04d82bb42d36c2c5bfcb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5394,7 +5939,33 @@ "width": null } }, - "b76a079b0d354eaeb65c665644922525": { + "bb559c6645ad40198025d78404a023a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e864e89d2e244d9aa6477e3789287d03", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3cd156a9c8124e42b06ba9df7f0d7a95", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "bc1ea47bdab44589a71be092a474cdc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5419,71 +5990,35 @@ "flex_flow": null, "grid_area": null, "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b8e2a441399849d987355d944e674ffa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "baa218fdcdd3441a8bce6def41cfd76b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bbd524fd36de40748040109eb8970f68": { + "c0762b25d2154afe9089d2216aecaf1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5536,47 +6071,79 @@ "width": null } }, - "be40041c34fd4fa49cb41be22bcf9073": { + "c1c3972e26b34403b7c2776c52c48447": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_22998f7b85ec4497a3c8abce7cc3984c", - "IPY_MODEL_b2961c5452f544fc82c014cc4d7cdd9b", - "IPY_MODEL_e8317f555ab6411c94510a691f07c87d" - ], - "layout": "IPY_MODEL_961a39be7dc84d0ca2a69a6a22666a52", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e42634dca6d54a1a96f5370d950c9d72", + "placeholder": "​", + "style": "IPY_MODEL_33d1e1b13c7949499987b06bb34f7970", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Generating train split: 100%" } }, - "c2766268476f42d3a6152af57a621cb8": { + "c6593a4d742340b5a9a979fb281a0adc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7a8b4d06266b4a20a34d088726c7146e", + "placeholder": "​", + "style": "IPY_MODEL_5a6cf65a16df48c09fb289ed50fd8b99", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "c6659da6a4f740c29e478417ea16bf43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c75252439b2427fb7c660c25ab15433", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a46fdc8efae54b9c85de9dda9bc593b2", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "c5269badcb544457b682bfe2f4b5959b": { + "c685fc9fc061441c8d45abde7042c8df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5629,65 +6196,30 @@ "width": null } }, - "c6a7d21396884971ac8fb7463cb82c84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c9dc488d16cb42de9904445733850dae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cadb6c50e5194eabbfc0b003b153ff17": { + "c82f7ce8b3b048ca8dd6be97d98c2ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4ea9ee23440549f5a87db408e0dbdc17", - "IPY_MODEL_7003370693624569baf61189aa79625d", - "IPY_MODEL_aed727a1dec148caa93c7db1bcdd0ebe" - ], - "layout": "IPY_MODEL_923b47945e32451d9664b31bdcab7cfb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f626163c9f743ab96326bd4df1185dd", + "placeholder": "​", + "style": "IPY_MODEL_27cdd1f63f2942b7a7f52037478576a7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "d1fa4ab4971b4b1a97ad09f597ce0005": { + "cb2ecb496b1e4c3bba642beb81eee920": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5702,38 +6234,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_03f73e8be3214af4a3ba1b71864a7973", + "layout": "IPY_MODEL_e7d9ecf0291244d893f8d548796dea7a", "placeholder": "​", - "style": "IPY_MODEL_baa218fdcdd3441a8bce6def41cfd76b", + "style": "IPY_MODEL_687001d4a83f4b90965bc742259d9572", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30.9M/30.9M [00:00<00:00, 88.5MB/s]" } }, - "d2bb5a77ebfc4577ae593a6d71e5a54e": { + "cb3ea9c24e1344318ce6c56b85e42c91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85fd6669a4224b0b9c04c8e99594a27f", - "placeholder": "​", - "style": "IPY_MODEL_9b175ea378a4489b842e58381203e99c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.73it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cdd5ce777677499eb33040aa130a4a05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d5e3d2656a63434b8fcd194e84369666": { + "cee334daa12f4bbb8050b89a47144c50": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5786,7 +6331,7 @@ "width": null } }, - "d6bed8dce4cb4b9e889847ad45e96d17": { + "cf376dc2e03942899bf0534a1f81e070": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5839,7 +6384,7 @@ "width": null } }, - "d7d9b064aa6d40d38448ea1cb5c4e0c3": { + "d03f8bbb7b04410cb95b55a928ab55ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5892,46 +6437,102 @@ "width": null } }, - "dd1ecb40bd5e4864916f737c558f6e5e": { + "d0fc51710b7e44dab28856f8fefeeecd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8e68ddce58184c3a91e0c27a7e5e00e1", - "placeholder": "​", - "style": "IPY_MODEL_3a8da44a25d0486a85f3a6d4e9c9be7c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.91it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dbcfa560af5e43aba4b839659c80a569": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "de906e780da44829832dd247e3b05a64": { + "dec0551c5ff44d398269f73047f45e36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4c512f26bab454398b1906f5baf4767", + "IPY_MODEL_5225dfb404844516aa092731b6446018", + "IPY_MODEL_50c72ad22477447e91b77fc706b6c28d" + ], + "layout": "IPY_MODEL_cee334daa12f4bbb8050b89a47144c50", + "tabbable": null, + "tooltip": null } }, - "df86badfb60d43d685d25eeaf678874c": { + "e02910a7a8404b258c16b7d4f47a2a33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5984,7 +6585,30 @@ "width": null } }, - "e27fb6533eba4dd68cdea122164a9a4e": { + "e3e2004b573b416992ed7109da94134a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_95b7af2721a049bfaffc788f1adba341", + "placeholder": "​", + "style": "IPY_MODEL_9b601eea7c8a4d689e85fbb8139220da", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "e42634dca6d54a1a96f5370d950c9d72": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6037,51 +6661,54 @@ "width": null } }, - "e4e340a0d06b41119d42f6790236e35c": { + "e5fb048a6a2a48779161a6522df7784b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d7d9b064aa6d40d38448ea1cb5c4e0c3", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2142f782834a4d5399fe0b6599716397", + "layout": "IPY_MODEL_7153d2476e634dc8a2cff938488ae767", + "placeholder": "​", + "style": "IPY_MODEL_664953e9dd68417cab94603b3019007d", "tabbable": null, "tooltip": null, - "value": 2.0 + "value": " 5.18M/5.18M [00:00<00:00, 19.9MB/s]" } }, - "e61c93af0eba452b8343196f5ce0b896": { + "e64ca809fe914be89d47dac0edfea796": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_92b82430334e4bde9c493974ceafec74", + "IPY_MODEL_ec8e06cca9f142fcbcaedc009fb61acc", + "IPY_MODEL_a2b551ee827046009176cdfcb79fd379" + ], + "layout": "IPY_MODEL_f68e04379f5e4e85945089b30d9fcede", + "tabbable": null, + "tooltip": null } }, - "e6a2a8a604804a3788bf5fbb65ee4ca7": { + "e7d9ecf0291244d893f8d548796dea7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6134,30 +6761,7 @@ "width": null } }, - "e8317f555ab6411c94510a691f07c87d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc05ff5a0ae54291a9426f5f20ad91ad", - "placeholder": "​", - "style": "IPY_MODEL_faa94797ec2944218645d1deeaff5048", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 297028.56 examples/s]" - } - }, - "ea02dd9c49164b08a0cba690ec113f12": { + "e864e89d2e244d9aa6477e3789287d03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6210,7 +6814,61 @@ "width": null } }, - "ebd258422ac14e8ea1c43166dc17533a": { + "e8d500a035d44d43a9e448e1bfa77713": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e90fcd89988d45cfaca0ec05bc3a3b66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ec7203969370484281952453aa3b76f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ec8e06cca9f142fcbcaedc009fb61acc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6226,17 +6884,57 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_44e1ba4090d040698f36744323e05a7d", - "max": 60000.0, + "layout": "IPY_MODEL_7cd52714add94106a03d2eee1c35cbda", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c9dc488d16cb42de9904445733850dae", + "style": "IPY_MODEL_b903786aa6444c39809ac0080ce5b9ba", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 + } + }, + "eed181946bee47e8b8cff4dadd971cad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f0336800513c485b84e4dc8ef8398118": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76adce2c7ef34574b303aee79938d205", + "IPY_MODEL_c6659da6a4f740c29e478417ea16bf43", + "IPY_MODEL_7c970d6ec2ee4a5e8a14668ebd23e985" + ], + "layout": "IPY_MODEL_6dd3a29d5d1f4882bbd9b6908f254547", + "tabbable": null, + "tooltip": null } }, - "ecd3c5249d86402e84c13b074d11004b": { + "f22aef94a5384220b26893e15a7f9a93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6254,7 +6952,7 @@ "text_color": null } }, - "ed32446d09b34dfdb55c0ddc9f1f37a5": { + "f25126d05ffc4c9d8281cd8a201787b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6307,7 +7005,49 @@ "width": null } }, - "edd1d0858fdc47fb8cd561ec01046d35": { + "f5b4b6b8015f4ff4b12a628b5a7f6891": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b9658a8795a04d82bb42d36c2c5bfcb1", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53f0ab05fb9e4f2a9c13b5138fc1dcd8", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "f5c9244c98be4b7fbd3f800a9d967189": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f68e04379f5e4e85945089b30d9fcede": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6360,7 +7100,7 @@ "width": null } }, - "f5701968c3c84fc5b9ba604a9aa0a9f6": { + "fab6aa8a669341ec8a3264502715f063": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6375,69 +7115,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2b6ff6ed70654818b8c5c965649f8963", - "IPY_MODEL_e4e340a0d06b41119d42f6790236e35c", - "IPY_MODEL_3ca31c427ac64cf2926617bfb55f4d8a" + "IPY_MODEL_c1c3972e26b34403b7c2776c52c48447", + "IPY_MODEL_509dd1d736f74e8781d9637462482d2d", + "IPY_MODEL_23c8a161b5d54a6eab69dcef0d1f2289" ], - "layout": "IPY_MODEL_ad3e74201ce84c60ac95e1ce7b4dc331", + "layout": "IPY_MODEL_e02910a7a8404b258c16b7d4f47a2a33", "tabbable": null, "tooltip": null } }, - "f8130bfc227547c58c86e16f2bc102cb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "faa94797ec2944218645d1deeaff5048": { + "fb0b3b1701234b4eab30e0398e3c2de3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6455,23 +7142,30 @@ "text_color": null } }, - "fb083e417bef474f8af4f5d4aee9d9cc": { + "fb428a754bdc4020a571efeb1e699942": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0aa95b525dfb4cffa6738016ec0a929b", + "placeholder": "​", + "style": "IPY_MODEL_49ab7db09aec442f81b7b02f32f3c3e2", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.72it/s]" } }, - "fc05ff5a0ae54291a9426f5f20ad91ad": { + "fcc4b333e4d94b5fb6798ba6bd9e0c37": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 9c866d7b7..0bf0d6c51 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:57.997731Z", - "iopub.status.busy": "2024-04-12T10:22:57.997255Z", - "iopub.status.idle": "2024-04-12T10:22:59.063748Z", - "shell.execute_reply": "2024-04-12T10:22:59.063201Z" + "iopub.execute_input": "2024-04-22T21:51:31.046338Z", + "iopub.status.busy": "2024-04-22T21:51:31.046160Z", + "iopub.status.idle": "2024-04-22T21:51:32.130120Z", + "shell.execute_reply": "2024-04-22T21:51:32.129498Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.066325Z", - "iopub.status.busy": "2024-04-12T10:22:59.065884Z", - "iopub.status.idle": "2024-04-12T10:22:59.084279Z", - "shell.execute_reply": "2024-04-12T10:22:59.083825Z" + "iopub.execute_input": "2024-04-22T21:51:32.132811Z", + "iopub.status.busy": "2024-04-22T21:51:32.132533Z", + "iopub.status.idle": "2024-04-22T21:51:32.151021Z", + "shell.execute_reply": "2024-04-22T21:51:32.150519Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.086527Z", - "iopub.status.busy": "2024-04-12T10:22:59.086125Z", - "iopub.status.idle": "2024-04-12T10:22:59.109905Z", - "shell.execute_reply": "2024-04-12T10:22:59.109363Z" + "iopub.execute_input": "2024-04-22T21:51:32.153300Z", + "iopub.status.busy": "2024-04-22T21:51:32.153042Z", + "iopub.status.idle": "2024-04-22T21:51:32.178642Z", + "shell.execute_reply": "2024-04-22T21:51:32.178074Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.111903Z", - "iopub.status.busy": "2024-04-12T10:22:59.111608Z", - "iopub.status.idle": "2024-04-12T10:22:59.115087Z", - "shell.execute_reply": "2024-04-12T10:22:59.114529Z" + "iopub.execute_input": "2024-04-22T21:51:32.180911Z", + "iopub.status.busy": "2024-04-22T21:51:32.180515Z", + "iopub.status.idle": "2024-04-22T21:51:32.184022Z", + "shell.execute_reply": "2024-04-22T21:51:32.183494Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.117041Z", - "iopub.status.busy": "2024-04-12T10:22:59.116751Z", - "iopub.status.idle": "2024-04-12T10:22:59.124293Z", - "shell.execute_reply": "2024-04-12T10:22:59.123848Z" + "iopub.execute_input": "2024-04-22T21:51:32.186104Z", + "iopub.status.busy": "2024-04-22T21:51:32.185700Z", + "iopub.status.idle": "2024-04-22T21:51:32.193161Z", + "shell.execute_reply": "2024-04-22T21:51:32.192748Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.126270Z", - "iopub.status.busy": "2024-04-12T10:22:59.125985Z", - "iopub.status.idle": "2024-04-12T10:22:59.128442Z", - "shell.execute_reply": "2024-04-12T10:22:59.127995Z" + "iopub.execute_input": "2024-04-22T21:51:32.195312Z", + "iopub.status.busy": "2024-04-22T21:51:32.194999Z", + "iopub.status.idle": "2024-04-22T21:51:32.197529Z", + "shell.execute_reply": "2024-04-22T21:51:32.197023Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.130352Z", - "iopub.status.busy": "2024-04-12T10:22:59.130078Z", - "iopub.status.idle": "2024-04-12T10:23:02.059472Z", - "shell.execute_reply": "2024-04-12T10:23:02.058929Z" + "iopub.execute_input": "2024-04-22T21:51:32.199435Z", + "iopub.status.busy": "2024-04-22T21:51:32.199150Z", + "iopub.status.idle": "2024-04-22T21:51:35.084395Z", + "shell.execute_reply": "2024-04-22T21:51:35.083840Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:02.061993Z", - "iopub.status.busy": "2024-04-12T10:23:02.061809Z", - "iopub.status.idle": "2024-04-12T10:23:02.070821Z", - "shell.execute_reply": "2024-04-12T10:23:02.070396Z" + "iopub.execute_input": "2024-04-22T21:51:35.087388Z", + "iopub.status.busy": "2024-04-22T21:51:35.086784Z", + "iopub.status.idle": "2024-04-22T21:51:35.096592Z", + "shell.execute_reply": "2024-04-22T21:51:35.096028Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:02.072681Z", - "iopub.status.busy": "2024-04-12T10:23:02.072514Z", - "iopub.status.idle": "2024-04-12T10:23:03.803507Z", - "shell.execute_reply": "2024-04-12T10:23:03.802722Z" + "iopub.execute_input": "2024-04-22T21:51:35.098855Z", + "iopub.status.busy": "2024-04-22T21:51:35.098545Z", + "iopub.status.idle": "2024-04-22T21:51:36.951372Z", + "shell.execute_reply": "2024-04-22T21:51:36.950764Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.807731Z", - "iopub.status.busy": "2024-04-12T10:23:03.806582Z", - "iopub.status.idle": "2024-04-12T10:23:03.831029Z", - "shell.execute_reply": "2024-04-12T10:23:03.830544Z" + "iopub.execute_input": "2024-04-22T21:51:36.954832Z", + "iopub.status.busy": "2024-04-22T21:51:36.953651Z", + "iopub.status.idle": "2024-04-22T21:51:36.978757Z", + "shell.execute_reply": "2024-04-22T21:51:36.978237Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.834532Z", - "iopub.status.busy": "2024-04-12T10:23:03.833614Z", - "iopub.status.idle": "2024-04-12T10:23:03.844635Z", - "shell.execute_reply": "2024-04-12T10:23:03.844136Z" + "iopub.execute_input": "2024-04-22T21:51:36.982500Z", + "iopub.status.busy": "2024-04-22T21:51:36.981541Z", + "iopub.status.idle": "2024-04-22T21:51:36.993046Z", + "shell.execute_reply": "2024-04-22T21:51:36.992546Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.848084Z", - "iopub.status.busy": "2024-04-12T10:23:03.847167Z", - "iopub.status.idle": "2024-04-12T10:23:03.859666Z", - "shell.execute_reply": "2024-04-12T10:23:03.859174Z" + "iopub.execute_input": "2024-04-22T21:51:36.996643Z", + "iopub.status.busy": "2024-04-22T21:51:36.995720Z", + "iopub.status.idle": "2024-04-22T21:51:37.023004Z", + "shell.execute_reply": "2024-04-22T21:51:37.022451Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.863155Z", - "iopub.status.busy": "2024-04-12T10:23:03.862233Z", - "iopub.status.idle": "2024-04-12T10:23:03.873268Z", - "shell.execute_reply": "2024-04-12T10:23:03.872780Z" + "iopub.execute_input": "2024-04-22T21:51:37.026730Z", + "iopub.status.busy": "2024-04-22T21:51:37.025808Z", + "iopub.status.idle": "2024-04-22T21:51:37.036398Z", + "shell.execute_reply": "2024-04-22T21:51:37.035969Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.876729Z", - "iopub.status.busy": "2024-04-12T10:23:03.875798Z", - "iopub.status.idle": "2024-04-12T10:23:03.887403Z", - "shell.execute_reply": "2024-04-12T10:23:03.886965Z" + "iopub.execute_input": "2024-04-22T21:51:37.038786Z", + "iopub.status.busy": "2024-04-22T21:51:37.038383Z", + "iopub.status.idle": "2024-04-22T21:51:37.047559Z", + "shell.execute_reply": "2024-04-22T21:51:37.047025Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.889683Z", - "iopub.status.busy": "2024-04-12T10:23:03.889167Z", - "iopub.status.idle": "2024-04-12T10:23:03.895719Z", - "shell.execute_reply": "2024-04-12T10:23:03.895310Z" + "iopub.execute_input": "2024-04-22T21:51:37.049653Z", + "iopub.status.busy": "2024-04-22T21:51:37.049474Z", + "iopub.status.idle": "2024-04-22T21:51:37.055941Z", + "shell.execute_reply": "2024-04-22T21:51:37.055355Z" } }, "outputs": [ @@ -1169,10 +1169,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.898036Z", - "iopub.status.busy": "2024-04-12T10:23:03.897526Z", - "iopub.status.idle": "2024-04-12T10:23:03.904252Z", - "shell.execute_reply": "2024-04-12T10:23:03.903696Z" + "iopub.execute_input": "2024-04-22T21:51:37.058225Z", + "iopub.status.busy": "2024-04-22T21:51:37.058039Z", + "iopub.status.idle": "2024-04-22T21:51:37.065083Z", + "shell.execute_reply": "2024-04-22T21:51:37.064535Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.906352Z", - "iopub.status.busy": "2024-04-12T10:23:03.906014Z", - "iopub.status.idle": "2024-04-12T10:23:03.912600Z", - "shell.execute_reply": "2024-04-12T10:23:03.912048Z" + "iopub.execute_input": "2024-04-22T21:51:37.067163Z", + "iopub.status.busy": "2024-04-22T21:51:37.066986Z", + "iopub.status.idle": "2024-04-22T21:51:37.073953Z", + "shell.execute_reply": "2024-04-22T21:51:37.073376Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index b55034951..84611b9e5 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:06.427281Z", - "iopub.status.busy": "2024-04-12T10:23:06.426876Z", - "iopub.status.idle": "2024-04-12T10:23:09.029755Z", - "shell.execute_reply": "2024-04-12T10:23:09.029118Z" + "iopub.execute_input": "2024-04-22T21:51:40.356739Z", + "iopub.status.busy": "2024-04-22T21:51:40.356256Z", + "iopub.status.idle": "2024-04-22T21:51:43.003980Z", + "shell.execute_reply": "2024-04-22T21:51:43.003360Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.032515Z", - "iopub.status.busy": "2024-04-12T10:23:09.032053Z", - "iopub.status.idle": "2024-04-12T10:23:09.035184Z", - "shell.execute_reply": "2024-04-12T10:23:09.034737Z" + "iopub.execute_input": "2024-04-22T21:51:43.006901Z", + "iopub.status.busy": "2024-04-22T21:51:43.006321Z", + "iopub.status.idle": "2024-04-22T21:51:43.009750Z", + "shell.execute_reply": "2024-04-22T21:51:43.009204Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.037235Z", - "iopub.status.busy": "2024-04-12T10:23:09.036820Z", - "iopub.status.idle": "2024-04-12T10:23:09.039983Z", - "shell.execute_reply": "2024-04-12T10:23:09.039423Z" + "iopub.execute_input": "2024-04-22T21:51:43.012098Z", + "iopub.status.busy": "2024-04-22T21:51:43.011690Z", + "iopub.status.idle": "2024-04-22T21:51:43.014667Z", + "shell.execute_reply": "2024-04-22T21:51:43.014245Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.042101Z", - "iopub.status.busy": "2024-04-12T10:23:09.041777Z", - "iopub.status.idle": "2024-04-12T10:23:09.064754Z", - "shell.execute_reply": "2024-04-12T10:23:09.064284Z" + "iopub.execute_input": "2024-04-22T21:51:43.016549Z", + "iopub.status.busy": "2024-04-22T21:51:43.016288Z", + "iopub.status.idle": "2024-04-22T21:51:43.164680Z", + "shell.execute_reply": "2024-04-22T21:51:43.164123Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.066706Z", - "iopub.status.busy": "2024-04-12T10:23:09.066381Z", - "iopub.status.idle": "2024-04-12T10:23:09.070154Z", - "shell.execute_reply": "2024-04-12T10:23:09.069708Z" + "iopub.execute_input": "2024-04-22T21:51:43.167167Z", + "iopub.status.busy": "2024-04-22T21:51:43.166656Z", + "iopub.status.idle": "2024-04-22T21:51:43.170586Z", + "shell.execute_reply": "2024-04-22T21:51:43.170050Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'getting_spare_card', 'cancel_transfer', 'card_about_to_expire', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}\n" + "Classes: {'change_pin', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'supported_cards_and_currencies'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.072131Z", - "iopub.status.busy": "2024-04-12T10:23:09.071798Z", - "iopub.status.idle": "2024-04-12T10:23:09.075011Z", - "shell.execute_reply": "2024-04-12T10:23:09.074552Z" + "iopub.execute_input": "2024-04-22T21:51:43.172537Z", + "iopub.status.busy": "2024-04-22T21:51:43.172236Z", + "iopub.status.idle": "2024-04-22T21:51:43.175306Z", + "shell.execute_reply": "2024-04-22T21:51:43.174758Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.077022Z", - "iopub.status.busy": "2024-04-12T10:23:09.076701Z", - "iopub.status.idle": "2024-04-12T10:23:13.269837Z", - "shell.execute_reply": "2024-04-12T10:23:13.269288Z" + "iopub.execute_input": "2024-04-22T21:51:43.177262Z", + "iopub.status.busy": "2024-04-22T21:51:43.176962Z", + "iopub.status.idle": "2024-04-22T21:51:47.253572Z", + "shell.execute_reply": "2024-04-22T21:51:47.253008Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:13.272512Z", - "iopub.status.busy": "2024-04-12T10:23:13.272302Z", - "iopub.status.idle": "2024-04-12T10:23:14.153647Z", - "shell.execute_reply": "2024-04-12T10:23:14.153063Z" + "iopub.execute_input": "2024-04-22T21:51:47.256521Z", + "iopub.status.busy": "2024-04-22T21:51:47.256105Z", + "iopub.status.idle": "2024-04-22T21:51:48.108153Z", + "shell.execute_reply": "2024-04-22T21:51:48.107582Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:14.156542Z", - "iopub.status.busy": "2024-04-12T10:23:14.156130Z", - "iopub.status.idle": "2024-04-12T10:23:14.159362Z", - "shell.execute_reply": "2024-04-12T10:23:14.158865Z" + "iopub.execute_input": "2024-04-22T21:51:48.111105Z", + "iopub.status.busy": "2024-04-22T21:51:48.110712Z", + "iopub.status.idle": "2024-04-22T21:51:48.113583Z", + "shell.execute_reply": "2024-04-22T21:51:48.113099Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:14.162610Z", - "iopub.status.busy": "2024-04-12T10:23:14.161641Z", - "iopub.status.idle": "2024-04-12T10:23:15.689534Z", - "shell.execute_reply": "2024-04-12T10:23:15.687575Z" + "iopub.execute_input": "2024-04-22T21:51:48.116742Z", + "iopub.status.busy": "2024-04-22T21:51:48.115793Z", + "iopub.status.idle": "2024-04-22T21:51:49.663168Z", + "shell.execute_reply": "2024-04-22T21:51:49.662488Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.693551Z", - "iopub.status.busy": "2024-04-12T10:23:15.692383Z", - "iopub.status.idle": "2024-04-12T10:23:15.717902Z", - "shell.execute_reply": "2024-04-12T10:23:15.717395Z" + "iopub.execute_input": "2024-04-22T21:51:49.667351Z", + "iopub.status.busy": "2024-04-22T21:51:49.666183Z", + "iopub.status.idle": "2024-04-22T21:51:49.691256Z", + "shell.execute_reply": "2024-04-22T21:51:49.690748Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.721520Z", - "iopub.status.busy": "2024-04-12T10:23:15.720546Z", - "iopub.status.idle": "2024-04-12T10:23:15.732153Z", - "shell.execute_reply": "2024-04-12T10:23:15.731651Z" + "iopub.execute_input": "2024-04-22T21:51:49.694730Z", + "iopub.status.busy": "2024-04-22T21:51:49.693805Z", + "iopub.status.idle": "2024-04-22T21:51:49.705308Z", + "shell.execute_reply": "2024-04-22T21:51:49.704807Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.735681Z", - "iopub.status.busy": "2024-04-12T10:23:15.734758Z", - "iopub.status.idle": "2024-04-12T10:23:15.741347Z", - "shell.execute_reply": "2024-04-12T10:23:15.740783Z" + "iopub.execute_input": "2024-04-22T21:51:49.710635Z", + "iopub.status.busy": "2024-04-22T21:51:49.709458Z", + "iopub.status.idle": "2024-04-22T21:51:49.715631Z", + "shell.execute_reply": "2024-04-22T21:51:49.715222Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.743462Z", - "iopub.status.busy": "2024-04-12T10:23:15.743290Z", - "iopub.status.idle": "2024-04-12T10:23:15.750020Z", - "shell.execute_reply": "2024-04-12T10:23:15.749588Z" + "iopub.execute_input": "2024-04-22T21:51:49.718319Z", + "iopub.status.busy": "2024-04-22T21:51:49.717604Z", + "iopub.status.idle": "2024-04-22T21:51:49.724490Z", + "shell.execute_reply": "2024-04-22T21:51:49.724033Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.751951Z", - "iopub.status.busy": "2024-04-12T10:23:15.751778Z", - "iopub.status.idle": "2024-04-12T10:23:15.759504Z", - "shell.execute_reply": "2024-04-12T10:23:15.758962Z" + "iopub.execute_input": "2024-04-22T21:51:49.726556Z", + "iopub.status.busy": "2024-04-22T21:51:49.726166Z", + "iopub.status.idle": "2024-04-22T21:51:49.733655Z", + "shell.execute_reply": "2024-04-22T21:51:49.733128Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.761525Z", - "iopub.status.busy": "2024-04-12T10:23:15.761228Z", - "iopub.status.idle": "2024-04-12T10:23:15.766791Z", - "shell.execute_reply": "2024-04-12T10:23:15.766345Z" + "iopub.execute_input": "2024-04-22T21:51:49.735666Z", + "iopub.status.busy": "2024-04-22T21:51:49.735340Z", + "iopub.status.idle": "2024-04-22T21:51:49.740979Z", + "shell.execute_reply": "2024-04-22T21:51:49.740540Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.768741Z", - "iopub.status.busy": "2024-04-12T10:23:15.768567Z", - "iopub.status.idle": "2024-04-12T10:23:15.776936Z", - "shell.execute_reply": "2024-04-12T10:23:15.776363Z" + "iopub.execute_input": "2024-04-22T21:51:49.742755Z", + "iopub.status.busy": "2024-04-22T21:51:49.742591Z", + "iopub.status.idle": "2024-04-22T21:51:49.750544Z", + "shell.execute_reply": "2024-04-22T21:51:49.750120Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.778954Z", - "iopub.status.busy": "2024-04-12T10:23:15.778634Z", - "iopub.status.idle": "2024-04-12T10:23:15.783810Z", - "shell.execute_reply": "2024-04-12T10:23:15.783326Z" + "iopub.execute_input": "2024-04-22T21:51:49.752328Z", + "iopub.status.busy": "2024-04-22T21:51:49.752159Z", + "iopub.status.idle": "2024-04-22T21:51:49.757501Z", + "shell.execute_reply": "2024-04-22T21:51:49.756971Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.785946Z", - "iopub.status.busy": "2024-04-12T10:23:15.785523Z", - "iopub.status.idle": "2024-04-12T10:23:15.790899Z", - "shell.execute_reply": "2024-04-12T10:23:15.790347Z" + "iopub.execute_input": "2024-04-22T21:51:49.759333Z", + "iopub.status.busy": "2024-04-22T21:51:49.759164Z", + "iopub.status.idle": "2024-04-22T21:51:49.764568Z", + "shell.execute_reply": "2024-04-22T21:51:49.764142Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.792909Z", - "iopub.status.busy": "2024-04-12T10:23:15.792605Z", - "iopub.status.idle": "2024-04-12T10:23:15.796003Z", - "shell.execute_reply": "2024-04-12T10:23:15.795537Z" + "iopub.execute_input": "2024-04-22T21:51:49.766407Z", + "iopub.status.busy": "2024-04-22T21:51:49.766239Z", + "iopub.status.idle": "2024-04-22T21:51:49.769764Z", + "shell.execute_reply": "2024-04-22T21:51:49.769227Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.798137Z", - "iopub.status.busy": "2024-04-12T10:23:15.797742Z", - "iopub.status.idle": "2024-04-12T10:23:15.802907Z", - "shell.execute_reply": "2024-04-12T10:23:15.802434Z" + "iopub.execute_input": "2024-04-22T21:51:49.771840Z", + "iopub.status.busy": "2024-04-22T21:51:49.771518Z", + "iopub.status.idle": "2024-04-22T21:51:49.776457Z", + "shell.execute_reply": "2024-04-22T21:51:49.775959Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 9c7bad222..a9c040801 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:18.919581Z", - "iopub.status.busy": "2024-04-12T10:23:18.919116Z", - "iopub.status.idle": "2024-04-12T10:23:19.982813Z", - "shell.execute_reply": "2024-04-12T10:23:19.982259Z" + "iopub.execute_input": "2024-04-22T21:51:52.984100Z", + "iopub.status.busy": "2024-04-22T21:51:52.983929Z", + "iopub.status.idle": "2024-04-22T21:51:54.076611Z", + "shell.execute_reply": "2024-04-22T21:51:54.075985Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:19.985182Z", - "iopub.status.busy": "2024-04-12T10:23:19.984917Z", - "iopub.status.idle": "2024-04-12T10:23:19.987785Z", - "shell.execute_reply": "2024-04-12T10:23:19.987341Z" + "iopub.execute_input": "2024-04-22T21:51:54.079479Z", + "iopub.status.busy": "2024-04-22T21:51:54.079017Z", + "iopub.status.idle": "2024-04-22T21:51:54.082330Z", + "shell.execute_reply": "2024-04-22T21:51:54.081913Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:19.989851Z", - "iopub.status.busy": "2024-04-12T10:23:19.989685Z", - "iopub.status.idle": "2024-04-12T10:23:20.001529Z", - "shell.execute_reply": "2024-04-12T10:23:20.000980Z" + "iopub.execute_input": "2024-04-22T21:51:54.084483Z", + "iopub.status.busy": "2024-04-22T21:51:54.084311Z", + "iopub.status.idle": "2024-04-22T21:51:54.096267Z", + "shell.execute_reply": "2024-04-22T21:51:54.095730Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:20.003383Z", - "iopub.status.busy": "2024-04-12T10:23:20.003212Z", - "iopub.status.idle": "2024-04-12T10:23:26.272462Z", - "shell.execute_reply": "2024-04-12T10:23:26.271987Z" + "iopub.execute_input": "2024-04-22T21:51:54.098313Z", + "iopub.status.busy": "2024-04-22T21:51:54.098000Z", + "iopub.status.idle": "2024-04-22T21:51:58.808852Z", + "shell.execute_reply": "2024-04-22T21:51:58.808391Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 565ea8e49..169c6130f 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:28.176499Z", - "iopub.status.busy": "2024-04-12T10:23:28.176334Z", - "iopub.status.idle": "2024-04-12T10:23:29.247412Z", - "shell.execute_reply": "2024-04-12T10:23:29.246865Z" + "iopub.execute_input": "2024-04-22T21:52:00.971289Z", + "iopub.status.busy": "2024-04-22T21:52:00.971117Z", + "iopub.status.idle": "2024-04-22T21:52:02.051392Z", + "shell.execute_reply": "2024-04-22T21:52:02.050807Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:29.250183Z", - "iopub.status.busy": "2024-04-12T10:23:29.249745Z", - "iopub.status.idle": "2024-04-12T10:23:29.253136Z", - "shell.execute_reply": "2024-04-12T10:23:29.252676Z" + "iopub.execute_input": "2024-04-22T21:52:02.054107Z", + "iopub.status.busy": "2024-04-22T21:52:02.053656Z", + "iopub.status.idle": "2024-04-22T21:52:02.056979Z", + "shell.execute_reply": "2024-04-22T21:52:02.056523Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:29.255179Z", - "iopub.status.busy": "2024-04-12T10:23:29.254869Z", - "iopub.status.idle": "2024-04-12T10:23:32.165763Z", - "shell.execute_reply": "2024-04-12T10:23:32.165053Z" + "iopub.execute_input": "2024-04-22T21:52:02.059458Z", + "iopub.status.busy": "2024-04-22T21:52:02.059133Z", + "iopub.status.idle": "2024-04-22T21:52:05.038204Z", + "shell.execute_reply": "2024-04-22T21:52:05.037490Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.169073Z", - "iopub.status.busy": "2024-04-12T10:23:32.168350Z", - "iopub.status.idle": "2024-04-12T10:23:32.199721Z", - "shell.execute_reply": "2024-04-12T10:23:32.199154Z" + "iopub.execute_input": "2024-04-22T21:52:05.041290Z", + "iopub.status.busy": "2024-04-22T21:52:05.040716Z", + "iopub.status.idle": "2024-04-22T21:52:05.073377Z", + "shell.execute_reply": "2024-04-22T21:52:05.072787Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.202215Z", - "iopub.status.busy": "2024-04-12T10:23:32.201908Z", - "iopub.status.idle": "2024-04-12T10:23:32.229886Z", - "shell.execute_reply": "2024-04-12T10:23:32.229319Z" + "iopub.execute_input": "2024-04-22T21:52:05.076249Z", + "iopub.status.busy": "2024-04-22T21:52:05.075864Z", + "iopub.status.idle": "2024-04-22T21:52:05.106541Z", + "shell.execute_reply": "2024-04-22T21:52:05.105942Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.232504Z", - "iopub.status.busy": "2024-04-12T10:23:32.232096Z", - "iopub.status.idle": "2024-04-12T10:23:32.235155Z", - "shell.execute_reply": "2024-04-12T10:23:32.234684Z" + "iopub.execute_input": "2024-04-22T21:52:05.109149Z", + "iopub.status.busy": "2024-04-22T21:52:05.108865Z", + "iopub.status.idle": "2024-04-22T21:52:05.112065Z", + "shell.execute_reply": "2024-04-22T21:52:05.111595Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.237101Z", - "iopub.status.busy": "2024-04-12T10:23:32.236919Z", - "iopub.status.idle": "2024-04-12T10:23:32.239601Z", - "shell.execute_reply": "2024-04-12T10:23:32.239154Z" + "iopub.execute_input": "2024-04-22T21:52:05.114140Z", + "iopub.status.busy": "2024-04-22T21:52:05.113763Z", + "iopub.status.idle": "2024-04-22T21:52:05.116341Z", + "shell.execute_reply": "2024-04-22T21:52:05.115903Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.241598Z", - "iopub.status.busy": "2024-04-12T10:23:32.241420Z", - "iopub.status.idle": "2024-04-12T10:23:32.264434Z", - "shell.execute_reply": "2024-04-12T10:23:32.263866Z" + "iopub.execute_input": "2024-04-22T21:52:05.118435Z", + "iopub.status.busy": "2024-04-22T21:52:05.118123Z", + "iopub.status.idle": "2024-04-22T21:52:05.141692Z", + "shell.execute_reply": "2024-04-22T21:52:05.141143Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c260bc1ea9743258848135604c9cd07", + "model_id": "0d01affcfd654e91bc4b3c12c4753ece", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "28e7b0cb6a8747838aa5a5c29c2d207f", + "model_id": "ecfa98554fac42d4b9d44a61144d1967", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.271267Z", - "iopub.status.busy": "2024-04-12T10:23:32.270917Z", - "iopub.status.idle": "2024-04-12T10:23:32.277479Z", - "shell.execute_reply": "2024-04-12T10:23:32.277056Z" + "iopub.execute_input": "2024-04-22T21:52:05.148575Z", + "iopub.status.busy": "2024-04-22T21:52:05.148402Z", + "iopub.status.idle": "2024-04-22T21:52:05.155067Z", + "shell.execute_reply": "2024-04-22T21:52:05.154509Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.279542Z", - "iopub.status.busy": "2024-04-12T10:23:32.279203Z", - "iopub.status.idle": "2024-04-12T10:23:32.282672Z", - "shell.execute_reply": "2024-04-12T10:23:32.282212Z" + "iopub.execute_input": "2024-04-22T21:52:05.157280Z", + "iopub.status.busy": "2024-04-22T21:52:05.156882Z", + "iopub.status.idle": "2024-04-22T21:52:05.160426Z", + "shell.execute_reply": "2024-04-22T21:52:05.159903Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.284674Z", - "iopub.status.busy": "2024-04-12T10:23:32.284288Z", - "iopub.status.idle": "2024-04-12T10:23:32.290577Z", - "shell.execute_reply": "2024-04-12T10:23:32.290040Z" + "iopub.execute_input": "2024-04-22T21:52:05.162479Z", + "iopub.status.busy": "2024-04-22T21:52:05.162048Z", + "iopub.status.idle": "2024-04-22T21:52:05.168341Z", + "shell.execute_reply": "2024-04-22T21:52:05.167863Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.292646Z", - "iopub.status.busy": "2024-04-12T10:23:32.292223Z", - "iopub.status.idle": "2024-04-12T10:23:32.324821Z", - "shell.execute_reply": "2024-04-12T10:23:32.324229Z" + "iopub.execute_input": "2024-04-22T21:52:05.170357Z", + "iopub.status.busy": "2024-04-22T21:52:05.169970Z", + "iopub.status.idle": "2024-04-22T21:52:05.206396Z", + "shell.execute_reply": "2024-04-22T21:52:05.205710Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.327334Z", - "iopub.status.busy": "2024-04-12T10:23:32.327095Z", - "iopub.status.idle": "2024-04-12T10:23:32.356377Z", - "shell.execute_reply": "2024-04-12T10:23:32.355672Z" + "iopub.execute_input": "2024-04-22T21:52:05.209421Z", + "iopub.status.busy": "2024-04-22T21:52:05.209118Z", + "iopub.status.idle": "2024-04-22T21:52:05.246322Z", + "shell.execute_reply": "2024-04-22T21:52:05.245738Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.359293Z", - "iopub.status.busy": "2024-04-12T10:23:32.358854Z", - "iopub.status.idle": "2024-04-12T10:23:32.476300Z", - "shell.execute_reply": "2024-04-12T10:23:32.475620Z" + "iopub.execute_input": "2024-04-22T21:52:05.249675Z", + "iopub.status.busy": "2024-04-22T21:52:05.249165Z", + "iopub.status.idle": "2024-04-22T21:52:05.367206Z", + "shell.execute_reply": "2024-04-22T21:52:05.366597Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.479308Z", - "iopub.status.busy": "2024-04-12T10:23:32.478540Z", - "iopub.status.idle": "2024-04-12T10:23:35.512512Z", - "shell.execute_reply": "2024-04-12T10:23:35.511934Z" + "iopub.execute_input": "2024-04-22T21:52:05.370149Z", + "iopub.status.busy": "2024-04-22T21:52:05.369388Z", + "iopub.status.idle": "2024-04-22T21:52:08.425820Z", + "shell.execute_reply": "2024-04-22T21:52:08.425236Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.514767Z", - "iopub.status.busy": "2024-04-12T10:23:35.514559Z", - "iopub.status.idle": "2024-04-12T10:23:35.569433Z", - "shell.execute_reply": "2024-04-12T10:23:35.568850Z" + "iopub.execute_input": "2024-04-22T21:52:08.428334Z", + "iopub.status.busy": "2024-04-22T21:52:08.427969Z", + "iopub.status.idle": "2024-04-22T21:52:08.484464Z", + "shell.execute_reply": "2024-04-22T21:52:08.483898Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.571859Z", - "iopub.status.busy": "2024-04-12T10:23:35.571454Z", - "iopub.status.idle": "2024-04-12T10:23:35.609363Z", - "shell.execute_reply": "2024-04-12T10:23:35.608783Z" + "iopub.execute_input": "2024-04-22T21:52:08.486528Z", + "iopub.status.busy": "2024-04-22T21:52:08.486195Z", + "iopub.status.idle": "2024-04-22T21:52:08.524318Z", + "shell.execute_reply": "2024-04-22T21:52:08.523834Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "9b42ee36", + "id": "c8f17b20", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "3d4d1251", + "id": "14004008", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "87bb2a34", + "id": "8d2a1e18", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.611896Z", - "iopub.status.busy": "2024-04-12T10:23:35.611457Z", - "iopub.status.idle": "2024-04-12T10:23:35.711759Z", - "shell.execute_reply": "2024-04-12T10:23:35.711251Z" + "iopub.execute_input": "2024-04-22T21:52:08.526275Z", + "iopub.status.busy": "2024-04-22T21:52:08.526097Z", + "iopub.status.idle": "2024-04-22T21:52:08.639122Z", + "shell.execute_reply": "2024-04-22T21:52:08.638496Z" } }, "outputs": [ @@ -1354,7 +1354,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n", + "Finding underperforming_group issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1387,7 +1393,7 @@ }, { "cell_type": "markdown", - "id": "3a4977d0", + "id": "a9e1ae90", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1402,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "0e8e3e4a", + "id": "744edcb3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.714369Z", - "iopub.status.busy": "2024-04-12T10:23:35.714073Z", - "iopub.status.idle": "2024-04-12T10:23:35.790798Z", - "shell.execute_reply": "2024-04-12T10:23:35.790269Z" + "iopub.execute_input": "2024-04-22T21:52:08.641537Z", + "iopub.status.busy": "2024-04-22T21:52:08.641290Z", + "iopub.status.idle": "2024-04-22T21:52:08.710633Z", + "shell.execute_reply": "2024-04-22T21:52:08.710104Z" } }, "outputs": [ @@ -1410,13 +1416,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Finding underperforming_group issues ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1444,7 +1444,7 @@ }, { "cell_type": "markdown", - "id": "12960534", + "id": "b66f3ef5", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1455,13 +1455,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "89353571", + "id": "201e836f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.793275Z", - "iopub.status.busy": "2024-04-12T10:23:35.792931Z", - "iopub.status.idle": "2024-04-12T10:23:35.800499Z", - "shell.execute_reply": "2024-04-12T10:23:35.799927Z" + "iopub.execute_input": "2024-04-22T21:52:08.712864Z", + "iopub.status.busy": "2024-04-22T21:52:08.712685Z", + "iopub.status.idle": "2024-04-22T21:52:08.720218Z", + "shell.execute_reply": "2024-04-22T21:52:08.719681Z" } }, "outputs": [], @@ -1563,7 +1563,7 @@ }, { "cell_type": "markdown", - "id": "59b8a427", + "id": "85fd0060", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1578,13 +1578,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "33839777", + "id": "b2725995", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.802402Z", - "iopub.status.busy": "2024-04-12T10:23:35.802236Z", - "iopub.status.idle": "2024-04-12T10:23:35.819623Z", - "shell.execute_reply": "2024-04-12T10:23:35.819070Z" + "iopub.execute_input": "2024-04-22T21:52:08.722126Z", + "iopub.status.busy": "2024-04-22T21:52:08.721960Z", + "iopub.status.idle": "2024-04-22T21:52:08.741958Z", + "shell.execute_reply": "2024-04-22T21:52:08.741363Z" } }, "outputs": [ @@ -1601,7 +1601,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7808/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7754/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1635,13 +1635,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "8798fb52", + "id": "76ef1b38", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.821505Z", - "iopub.status.busy": "2024-04-12T10:23:35.821336Z", - "iopub.status.idle": "2024-04-12T10:23:35.824669Z", - "shell.execute_reply": "2024-04-12T10:23:35.824191Z" + "iopub.execute_input": "2024-04-22T21:52:08.744017Z", + "iopub.status.busy": "2024-04-22T21:52:08.743671Z", + "iopub.status.idle": "2024-04-22T21:52:08.747029Z", + "shell.execute_reply": "2024-04-22T21:52:08.746472Z" } }, "outputs": [ @@ -1736,23 +1736,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a7860f5b87a46e4819fea6653dd9061": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "14f2704100154f4c917be99b1c1ce2ca": { + "01d3a49b1a81424a99b6058be743e938": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1805,7 +1789,7 @@ "width": null } }, - "16891e481c9a4a92bcacd7b8bb72edd9": { + "0614a2ee5cd14b049369fab77e863695": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1858,75 +1842,88 @@ "width": null } }, - "213dda6107794666b3335fe80eff0358": { + "0d01affcfd654e91bc4b3c12c4753ece": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4a532edbc3ae4cbdb048c5d9343f1354", + "IPY_MODEL_ac6a6f43ceb24e75ab89abdb93ab981a", + "IPY_MODEL_14c78ffce17e44099ad57db8516e53b8" + ], + "layout": "IPY_MODEL_c1141852bf9c4c0583555090a921c356", + "tabbable": null, + "tooltip": null + } + }, + "14c78ffce17e44099ad57db8516e53b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_14f2704100154f4c917be99b1c1ce2ca", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_69c079fc55ec4e2ca9a1c2e55f07cad5", + "layout": "IPY_MODEL_01d3a49b1a81424a99b6058be743e938", + "placeholder": "​", + "style": "IPY_MODEL_9920ee4f6ba347dea7c22692fbdcd7e1", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1060909.07it/s]" } }, - "2504522320e44c048af1ae4ab8898d64": { + "1a77cc19f1bb4cd48ffe9b0ccbe9e37c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "28e7b0cb6a8747838aa5a5c29c2d207f": { + "1cc70d40ac3c47d5969f8340ac97c61b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7bcdcc4382b1410b88badabfb5c9f776", - "IPY_MODEL_213dda6107794666b3335fe80eff0358", - "IPY_MODEL_e8cbb81e49284b308740a345fbe93891" - ], - "layout": "IPY_MODEL_16891e481c9a4a92bcacd7b8bb72edd9", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "38bf144276b64c7b8e01c11808a69730": { + "2861e639a9be4f5595f57a3ee1d56a3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1979,49 +1976,46 @@ "width": null } }, - "48156a975187400d833ac4a7ee4322fd": { + "45da024dc7e5474da2edd2b331e98641": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_efe1c309040647cdbe04b81dd7016fec", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a7860f5b87a46e4819fea6653dd9061", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "69c079fc55ec4e2ca9a1c2e55f07cad5": { + "4a532edbc3ae4cbdb048c5d9343f1354": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8261e5c8177d407ba3b4724837ecace9", + "placeholder": "​", + "style": "IPY_MODEL_c7893fa914f5433bac6dad87821e0d8f", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " } }, - "7b22deeb983f4425b4bbcd3fbb2862a4": { + "4a8db3753f104acf97c64c947eb6fe8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2074,7 +2068,7 @@ "width": null } }, - "7bcdcc4382b1410b88badabfb5c9f776": { + "6d38458374ea47cbbdc8c7448393bb68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2089,103 +2083,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38bf144276b64c7b8e01c11808a69730", + "layout": "IPY_MODEL_0614a2ee5cd14b049369fab77e863695", "placeholder": "​", - "style": "IPY_MODEL_d6c80a655bf244179f87527dbdfead1e", + "style": "IPY_MODEL_1cc70d40ac3c47d5969f8340ac97c61b", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: " } }, - "8c260bc1ea9743258848135604c9cd07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a22289d860344bdcaba834db217e956d", - "IPY_MODEL_48156a975187400d833ac4a7ee4322fd", - "IPY_MODEL_c7510bffa2c8406e8ebfeca0afd07ce4" - ], - "layout": "IPY_MODEL_ceb2ccf2d724460a9d41c4e0ee8c217c", - "tabbable": null, - "tooltip": null - } - }, - "96740393cd8d45dfaaf53864e507c6f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a22289d860344bdcaba834db217e956d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ddb85543e31e4fcfafa7b15ad5422d3b", - "placeholder": "​", - "style": "IPY_MODEL_d7e2e9cb252b4f7f8b8479ee2ea373e3", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "c7510bffa2c8406e8ebfeca0afd07ce4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6a4a87457184eaaaad42b37d42db17c", - "placeholder": "​", - "style": "IPY_MODEL_96740393cd8d45dfaaf53864e507c6f6", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1101040.58it/s]" - } - }, - "ceb2ccf2d724460a9d41c4e0ee8c217c": { + "8261e5c8177d407ba3b4724837ecace9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2238,7 +2144,25 @@ "width": null } }, - "d6a4a87457184eaaaad42b37d42db17c": { + "9920ee4f6ba347dea7c22692fbdcd7e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ab19415e02fe4fa38b47b69c987798f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2291,43 +2215,33 @@ "width": null } }, - "d6c80a655bf244179f87527dbdfead1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d7e2e9cb252b4f7f8b8479ee2ea373e3": { + "ac6a6f43ceb24e75ab89abdb93ab981a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2861e639a9be4f5595f57a3ee1d56a3c", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a77cc19f1bb4cd48ffe9b0ccbe9e37c", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "ddb85543e31e4fcfafa7b15ad5422d3b": { + "b38d401f29ce450ca6857d1b7ef72d37": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2380,7 +2294,7 @@ "width": null } }, - "e8cbb81e49284b308740a345fbe93891": { + "b799590b527047acb2919c345b85074e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2395,15 +2309,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b22deeb983f4425b4bbcd3fbb2862a4", + "layout": "IPY_MODEL_ab19415e02fe4fa38b47b69c987798f3", "placeholder": "​", - "style": "IPY_MODEL_2504522320e44c048af1ae4ab8898d64", + "style": "IPY_MODEL_e6cd35d0225f4dca9566f56280f4abd1", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1539872.24it/s]" + "value": " 10000/? [00:00<00:00, 1555116.24it/s]" } }, - "efe1c309040647cdbe04b81dd7016fec": { + "c1141852bf9c4c0583555090a921c356": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2455,6 +2369,92 @@ "visibility": null, "width": null } + }, + "c7893fa914f5433bac6dad87821e0d8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e6cd35d0225f4dca9566f56280f4abd1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ecfa98554fac42d4b9d44a61144d1967": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d38458374ea47cbbdc8c7448393bb68", + "IPY_MODEL_ff0836e3efe8493c95bceed8e5f03110", + "IPY_MODEL_b799590b527047acb2919c345b85074e" + ], + "layout": "IPY_MODEL_4a8db3753f104acf97c64c947eb6fe8c", + "tabbable": null, + "tooltip": null + } + }, + "ff0836e3efe8493c95bceed8e5f03110": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b38d401f29ce450ca6857d1b7ef72d37", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45da024dc7e5474da2edd2b331e98641", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 9825cccbd..ee9e0524b 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:38.980369Z", - "iopub.status.busy": "2024-04-12T10:23:38.979963Z", - "iopub.status.idle": "2024-04-12T10:23:40.114205Z", - "shell.execute_reply": "2024-04-12T10:23:40.113605Z" + "iopub.execute_input": "2024-04-22T21:52:11.830493Z", + "iopub.status.busy": "2024-04-22T21:52:11.830091Z", + "iopub.status.idle": "2024-04-22T21:52:12.956551Z", + "shell.execute_reply": "2024-04-22T21:52:12.955935Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:40.116704Z", - "iopub.status.busy": "2024-04-12T10:23:40.116446Z", - "iopub.status.idle": "2024-04-12T10:23:40.292321Z", - "shell.execute_reply": "2024-04-12T10:23:40.291818Z" + "iopub.execute_input": "2024-04-22T21:52:12.959088Z", + "iopub.status.busy": "2024-04-22T21:52:12.958772Z", + "iopub.status.idle": "2024-04-22T21:52:13.136515Z", + "shell.execute_reply": "2024-04-22T21:52:13.136003Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:40.294919Z", - "iopub.status.busy": "2024-04-12T10:23:40.294476Z", - "iopub.status.idle": "2024-04-12T10:23:40.306878Z", - "shell.execute_reply": "2024-04-12T10:23:40.306355Z" + "iopub.execute_input": "2024-04-22T21:52:13.139088Z", + "iopub.status.busy": "2024-04-22T21:52:13.138714Z", + "iopub.status.idle": "2024-04-22T21:52:13.150951Z", + "shell.execute_reply": "2024-04-22T21:52:13.150351Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:40.309026Z", - "iopub.status.busy": "2024-04-12T10:23:40.308721Z", - "iopub.status.idle": "2024-04-12T10:23:40.515012Z", - "shell.execute_reply": "2024-04-12T10:23:40.514466Z" + "iopub.execute_input": "2024-04-22T21:52:13.153342Z", + "iopub.status.busy": "2024-04-22T21:52:13.153000Z", + "iopub.status.idle": "2024-04-22T21:52:13.385524Z", + "shell.execute_reply": "2024-04-22T21:52:13.384918Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:40.517380Z", - "iopub.status.busy": "2024-04-12T10:23:40.517039Z", - "iopub.status.idle": "2024-04-12T10:23:40.543276Z", - "shell.execute_reply": "2024-04-12T10:23:40.542696Z" + "iopub.execute_input": "2024-04-22T21:52:13.388001Z", + "iopub.status.busy": "2024-04-22T21:52:13.387664Z", + "iopub.status.idle": "2024-04-22T21:52:13.413891Z", + "shell.execute_reply": "2024-04-22T21:52:13.413406Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:40.545521Z", - "iopub.status.busy": "2024-04-12T10:23:40.545217Z", - "iopub.status.idle": "2024-04-12T10:23:42.188216Z", - "shell.execute_reply": "2024-04-12T10:23:42.187564Z" + "iopub.execute_input": "2024-04-22T21:52:13.416344Z", + "iopub.status.busy": "2024-04-22T21:52:13.415900Z", + "iopub.status.idle": "2024-04-22T21:52:15.058789Z", + "shell.execute_reply": "2024-04-22T21:52:15.058131Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:42.190670Z", - "iopub.status.busy": "2024-04-12T10:23:42.190275Z", - "iopub.status.idle": "2024-04-12T10:23:42.208368Z", - "shell.execute_reply": "2024-04-12T10:23:42.207906Z" + "iopub.execute_input": "2024-04-22T21:52:15.061515Z", + "iopub.status.busy": "2024-04-22T21:52:15.060989Z", + "iopub.status.idle": "2024-04-22T21:52:15.078595Z", + "shell.execute_reply": "2024-04-22T21:52:15.078151Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:42.210334Z", - "iopub.status.busy": "2024-04-12T10:23:42.210148Z", - "iopub.status.idle": "2024-04-12T10:23:43.587931Z", - "shell.execute_reply": "2024-04-12T10:23:43.587353Z" + "iopub.execute_input": "2024-04-22T21:52:15.080607Z", + "iopub.status.busy": "2024-04-22T21:52:15.080418Z", + "iopub.status.idle": "2024-04-22T21:52:16.466029Z", + "shell.execute_reply": "2024-04-22T21:52:16.465391Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.590812Z", - "iopub.status.busy": "2024-04-12T10:23:43.590056Z", - "iopub.status.idle": "2024-04-12T10:23:43.603605Z", - "shell.execute_reply": "2024-04-12T10:23:43.603062Z" + "iopub.execute_input": "2024-04-22T21:52:16.469031Z", + "iopub.status.busy": "2024-04-22T21:52:16.468302Z", + "iopub.status.idle": "2024-04-22T21:52:16.482090Z", + "shell.execute_reply": "2024-04-22T21:52:16.481639Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.605792Z", - "iopub.status.busy": "2024-04-12T10:23:43.605467Z", - "iopub.status.idle": "2024-04-12T10:23:43.677986Z", - "shell.execute_reply": "2024-04-12T10:23:43.677445Z" + "iopub.execute_input": "2024-04-22T21:52:16.484023Z", + "iopub.status.busy": "2024-04-22T21:52:16.483766Z", + "iopub.status.idle": "2024-04-22T21:52:16.552482Z", + "shell.execute_reply": "2024-04-22T21:52:16.551951Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.680310Z", - "iopub.status.busy": "2024-04-12T10:23:43.679977Z", - "iopub.status.idle": "2024-04-12T10:23:43.891156Z", - "shell.execute_reply": "2024-04-12T10:23:43.890601Z" + "iopub.execute_input": "2024-04-22T21:52:16.554676Z", + "iopub.status.busy": "2024-04-22T21:52:16.554385Z", + "iopub.status.idle": "2024-04-22T21:52:16.762288Z", + "shell.execute_reply": "2024-04-22T21:52:16.761706Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.893478Z", - "iopub.status.busy": "2024-04-12T10:23:43.893179Z", - "iopub.status.idle": "2024-04-12T10:23:43.909858Z", - "shell.execute_reply": "2024-04-12T10:23:43.909401Z" + "iopub.execute_input": "2024-04-22T21:52:16.764493Z", + "iopub.status.busy": "2024-04-22T21:52:16.764152Z", + "iopub.status.idle": "2024-04-22T21:52:16.780864Z", + "shell.execute_reply": "2024-04-22T21:52:16.780432Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.911908Z", - "iopub.status.busy": "2024-04-12T10:23:43.911646Z", - "iopub.status.idle": "2024-04-12T10:23:43.920955Z", - "shell.execute_reply": "2024-04-12T10:23:43.920504Z" + "iopub.execute_input": "2024-04-22T21:52:16.782917Z", + "iopub.status.busy": "2024-04-22T21:52:16.782584Z", + "iopub.status.idle": "2024-04-22T21:52:16.792037Z", + "shell.execute_reply": "2024-04-22T21:52:16.791625Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.922907Z", - "iopub.status.busy": "2024-04-12T10:23:43.922643Z", - "iopub.status.idle": "2024-04-12T10:23:44.006657Z", - "shell.execute_reply": "2024-04-12T10:23:44.006071Z" + "iopub.execute_input": "2024-04-22T21:52:16.794122Z", + "iopub.status.busy": "2024-04-22T21:52:16.793794Z", + "iopub.status.idle": "2024-04-22T21:52:16.874914Z", + "shell.execute_reply": "2024-04-22T21:52:16.874301Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.009278Z", - "iopub.status.busy": "2024-04-12T10:23:44.008899Z", - "iopub.status.idle": "2024-04-12T10:23:44.127203Z", - "shell.execute_reply": "2024-04-12T10:23:44.126645Z" + "iopub.execute_input": "2024-04-22T21:52:16.877155Z", + "iopub.status.busy": "2024-04-22T21:52:16.876925Z", + "iopub.status.idle": "2024-04-22T21:52:16.992477Z", + "shell.execute_reply": "2024-04-22T21:52:16.991885Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.129686Z", - "iopub.status.busy": "2024-04-12T10:23:44.129298Z", - "iopub.status.idle": "2024-04-12T10:23:44.132944Z", - "shell.execute_reply": "2024-04-12T10:23:44.132412Z" + "iopub.execute_input": "2024-04-22T21:52:16.994722Z", + "iopub.status.busy": "2024-04-22T21:52:16.994500Z", + "iopub.status.idle": "2024-04-22T21:52:16.998468Z", + "shell.execute_reply": "2024-04-22T21:52:16.997916Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.135040Z", - "iopub.status.busy": "2024-04-12T10:23:44.134724Z", - "iopub.status.idle": "2024-04-12T10:23:44.138374Z", - "shell.execute_reply": "2024-04-12T10:23:44.137840Z" + "iopub.execute_input": "2024-04-22T21:52:17.000557Z", + "iopub.status.busy": "2024-04-22T21:52:17.000129Z", + "iopub.status.idle": "2024-04-22T21:52:17.003797Z", + "shell.execute_reply": "2024-04-22T21:52:17.003311Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.140470Z", - "iopub.status.busy": "2024-04-12T10:23:44.140123Z", - "iopub.status.idle": "2024-04-12T10:23:44.177318Z", - "shell.execute_reply": "2024-04-12T10:23:44.176868Z" + "iopub.execute_input": "2024-04-22T21:52:17.005797Z", + "iopub.status.busy": "2024-04-22T21:52:17.005483Z", + "iopub.status.idle": "2024-04-22T21:52:17.042345Z", + "shell.execute_reply": "2024-04-22T21:52:17.041919Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.179387Z", - "iopub.status.busy": "2024-04-12T10:23:44.179056Z", - "iopub.status.idle": "2024-04-12T10:23:44.220995Z", - "shell.execute_reply": "2024-04-12T10:23:44.220521Z" + "iopub.execute_input": "2024-04-22T21:52:17.044348Z", + "iopub.status.busy": "2024-04-22T21:52:17.044024Z", + "iopub.status.idle": "2024-04-22T21:52:17.085292Z", + "shell.execute_reply": "2024-04-22T21:52:17.084825Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.223026Z", - "iopub.status.busy": "2024-04-12T10:23:44.222634Z", - "iopub.status.idle": "2024-04-12T10:23:44.344379Z", - "shell.execute_reply": "2024-04-12T10:23:44.343810Z" + "iopub.execute_input": "2024-04-22T21:52:17.087291Z", + "iopub.status.busy": "2024-04-22T21:52:17.086967Z", + "iopub.status.idle": "2024-04-22T21:52:17.176249Z", + "shell.execute_reply": "2024-04-22T21:52:17.175547Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.346999Z", - "iopub.status.busy": "2024-04-12T10:23:44.346626Z", - "iopub.status.idle": "2024-04-12T10:23:44.430647Z", - "shell.execute_reply": "2024-04-12T10:23:44.430049Z" + "iopub.execute_input": "2024-04-22T21:52:17.178856Z", + "iopub.status.busy": "2024-04-22T21:52:17.178637Z", + "iopub.status.idle": "2024-04-22T21:52:17.262491Z", + "shell.execute_reply": "2024-04-22T21:52:17.261872Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.432860Z", - "iopub.status.busy": "2024-04-12T10:23:44.432630Z", - "iopub.status.idle": "2024-04-12T10:23:44.644391Z", - "shell.execute_reply": "2024-04-12T10:23:44.643766Z" + "iopub.execute_input": "2024-04-22T21:52:17.264785Z", + "iopub.status.busy": "2024-04-22T21:52:17.264560Z", + "iopub.status.idle": "2024-04-22T21:52:17.475922Z", + "shell.execute_reply": "2024-04-22T21:52:17.475354Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.646431Z", - "iopub.status.busy": "2024-04-12T10:23:44.646241Z", - "iopub.status.idle": "2024-04-12T10:23:44.820382Z", - "shell.execute_reply": "2024-04-12T10:23:44.819803Z" + "iopub.execute_input": "2024-04-22T21:52:17.478110Z", + "iopub.status.busy": "2024-04-22T21:52:17.477794Z", + "iopub.status.idle": "2024-04-22T21:52:17.646943Z", + "shell.execute_reply": "2024-04-22T21:52:17.646312Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.822782Z", - "iopub.status.busy": "2024-04-12T10:23:44.822415Z", - "iopub.status.idle": "2024-04-12T10:23:44.828228Z", - "shell.execute_reply": "2024-04-12T10:23:44.827794Z" + "iopub.execute_input": "2024-04-22T21:52:17.649168Z", + "iopub.status.busy": "2024-04-22T21:52:17.648932Z", + "iopub.status.idle": "2024-04-22T21:52:17.654785Z", + "shell.execute_reply": "2024-04-22T21:52:17.654297Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.830285Z", - "iopub.status.busy": "2024-04-12T10:23:44.829942Z", - "iopub.status.idle": "2024-04-12T10:23:45.040133Z", - "shell.execute_reply": "2024-04-12T10:23:45.039564Z" + "iopub.execute_input": "2024-04-22T21:52:17.656637Z", + "iopub.status.busy": "2024-04-22T21:52:17.656468Z", + "iopub.status.idle": "2024-04-22T21:52:17.870516Z", + "shell.execute_reply": "2024-04-22T21:52:17.869974Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:45.042281Z", - "iopub.status.busy": "2024-04-12T10:23:45.042094Z", - "iopub.status.idle": "2024-04-12T10:23:46.102368Z", - "shell.execute_reply": "2024-04-12T10:23:46.101824Z" + "iopub.execute_input": "2024-04-22T21:52:17.872858Z", + "iopub.status.busy": "2024-04-22T21:52:17.872517Z", + "iopub.status.idle": "2024-04-22T21:52:18.913739Z", + "shell.execute_reply": "2024-04-22T21:52:18.913203Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index f7ea7efc2..edd8f20c7 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:49.391078Z", - "iopub.status.busy": "2024-04-12T10:23:49.390898Z", - "iopub.status.idle": "2024-04-12T10:23:50.452554Z", - "shell.execute_reply": "2024-04-12T10:23:50.451899Z" + "iopub.execute_input": "2024-04-22T21:52:22.067981Z", + "iopub.status.busy": "2024-04-22T21:52:22.067499Z", + "iopub.status.idle": "2024-04-22T21:52:23.142423Z", + "shell.execute_reply": "2024-04-22T21:52:23.141935Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.455137Z", - "iopub.status.busy": "2024-04-12T10:23:50.454867Z", - "iopub.status.idle": "2024-04-12T10:23:50.458040Z", - "shell.execute_reply": "2024-04-12T10:23:50.457590Z" + "iopub.execute_input": "2024-04-22T21:52:23.145178Z", + "iopub.status.busy": "2024-04-22T21:52:23.144708Z", + "iopub.status.idle": "2024-04-22T21:52:23.149596Z", + "shell.execute_reply": "2024-04-22T21:52:23.149011Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.460013Z", - "iopub.status.busy": "2024-04-12T10:23:50.459842Z", - "iopub.status.idle": "2024-04-12T10:23:50.467796Z", - "shell.execute_reply": "2024-04-12T10:23:50.467373Z" + "iopub.execute_input": "2024-04-22T21:52:23.152027Z", + "iopub.status.busy": "2024-04-22T21:52:23.151691Z", + "iopub.status.idle": "2024-04-22T21:52:23.159217Z", + "shell.execute_reply": "2024-04-22T21:52:23.158758Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.469988Z", - "iopub.status.busy": "2024-04-12T10:23:50.469546Z", - "iopub.status.idle": "2024-04-12T10:23:50.515538Z", - "shell.execute_reply": "2024-04-12T10:23:50.515006Z" + "iopub.execute_input": "2024-04-22T21:52:23.161157Z", + "iopub.status.busy": "2024-04-22T21:52:23.160834Z", + "iopub.status.idle": "2024-04-22T21:52:23.208411Z", + "shell.execute_reply": "2024-04-22T21:52:23.207820Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.518017Z", - "iopub.status.busy": "2024-04-12T10:23:50.517498Z", - "iopub.status.idle": "2024-04-12T10:23:50.534348Z", - "shell.execute_reply": "2024-04-12T10:23:50.533932Z" + "iopub.execute_input": "2024-04-22T21:52:23.210979Z", + "iopub.status.busy": "2024-04-22T21:52:23.210437Z", + "iopub.status.idle": "2024-04-22T21:52:23.228127Z", + "shell.execute_reply": "2024-04-22T21:52:23.227691Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.536552Z", - "iopub.status.busy": "2024-04-12T10:23:50.536024Z", - "iopub.status.idle": "2024-04-12T10:23:50.539914Z", - "shell.execute_reply": "2024-04-12T10:23:50.539410Z" + "iopub.execute_input": "2024-04-22T21:52:23.230262Z", + "iopub.status.busy": "2024-04-22T21:52:23.229939Z", + "iopub.status.idle": "2024-04-22T21:52:23.233771Z", + "shell.execute_reply": "2024-04-22T21:52:23.233244Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.541990Z", - "iopub.status.busy": "2024-04-12T10:23:50.541690Z", - "iopub.status.idle": "2024-04-12T10:23:50.569850Z", - "shell.execute_reply": "2024-04-12T10:23:50.569413Z" + "iopub.execute_input": "2024-04-22T21:52:23.236101Z", + "iopub.status.busy": "2024-04-22T21:52:23.235790Z", + "iopub.status.idle": "2024-04-22T21:52:23.262480Z", + "shell.execute_reply": "2024-04-22T21:52:23.262054Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.571828Z", - "iopub.status.busy": "2024-04-12T10:23:50.571565Z", - "iopub.status.idle": "2024-04-12T10:23:50.605713Z", - "shell.execute_reply": "2024-04-12T10:23:50.605219Z" + "iopub.execute_input": "2024-04-22T21:52:23.264611Z", + "iopub.status.busy": "2024-04-22T21:52:23.264271Z", + "iopub.status.idle": "2024-04-22T21:52:23.290370Z", + "shell.execute_reply": "2024-04-22T21:52:23.289938Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.607962Z", - "iopub.status.busy": "2024-04-12T10:23:50.607561Z", - "iopub.status.idle": "2024-04-12T10:23:52.306188Z", - "shell.execute_reply": "2024-04-12T10:23:52.305627Z" + "iopub.execute_input": "2024-04-22T21:52:23.292483Z", + "iopub.status.busy": "2024-04-22T21:52:23.292183Z", + "iopub.status.idle": "2024-04-22T21:52:24.991406Z", + "shell.execute_reply": "2024-04-22T21:52:24.990836Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.308677Z", - "iopub.status.busy": "2024-04-12T10:23:52.308386Z", - "iopub.status.idle": "2024-04-12T10:23:52.315080Z", - "shell.execute_reply": "2024-04-12T10:23:52.314524Z" + "iopub.execute_input": "2024-04-22T21:52:24.994019Z", + "iopub.status.busy": "2024-04-22T21:52:24.993511Z", + "iopub.status.idle": "2024-04-22T21:52:25.000338Z", + "shell.execute_reply": "2024-04-22T21:52:24.999792Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.317228Z", - "iopub.status.busy": "2024-04-12T10:23:52.316897Z", - "iopub.status.idle": "2024-04-12T10:23:52.329370Z", - "shell.execute_reply": "2024-04-12T10:23:52.328859Z" + "iopub.execute_input": "2024-04-22T21:52:25.002483Z", + "iopub.status.busy": "2024-04-22T21:52:25.002156Z", + "iopub.status.idle": "2024-04-22T21:52:25.014567Z", + "shell.execute_reply": "2024-04-22T21:52:25.014009Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.331436Z", - "iopub.status.busy": "2024-04-12T10:23:52.331116Z", - "iopub.status.idle": "2024-04-12T10:23:52.337220Z", - "shell.execute_reply": "2024-04-12T10:23:52.336798Z" + "iopub.execute_input": "2024-04-22T21:52:25.016679Z", + "iopub.status.busy": "2024-04-22T21:52:25.016371Z", + "iopub.status.idle": "2024-04-22T21:52:25.022682Z", + "shell.execute_reply": "2024-04-22T21:52:25.022244Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.339282Z", - "iopub.status.busy": "2024-04-12T10:23:52.338968Z", - "iopub.status.idle": "2024-04-12T10:23:52.341494Z", - "shell.execute_reply": "2024-04-12T10:23:52.341083Z" + "iopub.execute_input": "2024-04-22T21:52:25.024560Z", + "iopub.status.busy": "2024-04-22T21:52:25.024392Z", + "iopub.status.idle": "2024-04-22T21:52:25.027108Z", + "shell.execute_reply": "2024-04-22T21:52:25.026655Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.343481Z", - "iopub.status.busy": "2024-04-12T10:23:52.343160Z", - "iopub.status.idle": "2024-04-12T10:23:52.346396Z", - "shell.execute_reply": "2024-04-12T10:23:52.345863Z" + "iopub.execute_input": "2024-04-22T21:52:25.029076Z", + "iopub.status.busy": "2024-04-22T21:52:25.028781Z", + "iopub.status.idle": "2024-04-22T21:52:25.032448Z", + "shell.execute_reply": "2024-04-22T21:52:25.031995Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.348429Z", - "iopub.status.busy": "2024-04-12T10:23:52.348077Z", - "iopub.status.idle": "2024-04-12T10:23:52.350624Z", - "shell.execute_reply": "2024-04-12T10:23:52.350198Z" + "iopub.execute_input": "2024-04-22T21:52:25.034438Z", + "iopub.status.busy": "2024-04-22T21:52:25.034120Z", + "iopub.status.idle": "2024-04-22T21:52:25.036635Z", + "shell.execute_reply": "2024-04-22T21:52:25.036214Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.352699Z", - "iopub.status.busy": "2024-04-12T10:23:52.352320Z", - "iopub.status.idle": "2024-04-12T10:23:52.356683Z", - "shell.execute_reply": "2024-04-12T10:23:52.356215Z" + "iopub.execute_input": "2024-04-22T21:52:25.038645Z", + "iopub.status.busy": "2024-04-22T21:52:25.038236Z", + "iopub.status.idle": "2024-04-22T21:52:25.042384Z", + "shell.execute_reply": "2024-04-22T21:52:25.041846Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.358693Z", - "iopub.status.busy": "2024-04-12T10:23:52.358359Z", - "iopub.status.idle": "2024-04-12T10:23:52.387430Z", - "shell.execute_reply": "2024-04-12T10:23:52.386890Z" + "iopub.execute_input": "2024-04-22T21:52:25.044378Z", + "iopub.status.busy": "2024-04-22T21:52:25.044085Z", + "iopub.status.idle": "2024-04-22T21:52:25.072997Z", + "shell.execute_reply": "2024-04-22T21:52:25.072415Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.389694Z", - "iopub.status.busy": "2024-04-12T10:23:52.389405Z", - "iopub.status.idle": "2024-04-12T10:23:52.393990Z", - "shell.execute_reply": "2024-04-12T10:23:52.393438Z" + "iopub.execute_input": "2024-04-22T21:52:25.075315Z", + "iopub.status.busy": "2024-04-22T21:52:25.074970Z", + "iopub.status.idle": "2024-04-22T21:52:25.079626Z", + "shell.execute_reply": "2024-04-22T21:52:25.079165Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 65f1d180e..25052b0fd 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:55.175052Z", - "iopub.status.busy": "2024-04-12T10:23:55.174880Z", - "iopub.status.idle": "2024-04-12T10:23:56.293270Z", - "shell.execute_reply": "2024-04-12T10:23:56.292722Z" + "iopub.execute_input": "2024-04-22T21:52:27.871661Z", + "iopub.status.busy": "2024-04-22T21:52:27.871503Z", + "iopub.status.idle": "2024-04-22T21:52:28.987816Z", + "shell.execute_reply": "2024-04-22T21:52:28.987286Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:56.295811Z", - "iopub.status.busy": "2024-04-12T10:23:56.295427Z", - "iopub.status.idle": "2024-04-12T10:23:56.484825Z", - "shell.execute_reply": "2024-04-12T10:23:56.484201Z" + "iopub.execute_input": "2024-04-22T21:52:28.990431Z", + "iopub.status.busy": "2024-04-22T21:52:28.990030Z", + "iopub.status.idle": "2024-04-22T21:52:29.183019Z", + "shell.execute_reply": "2024-04-22T21:52:29.182448Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:56.487488Z", - "iopub.status.busy": "2024-04-12T10:23:56.487089Z", - "iopub.status.idle": "2024-04-12T10:23:56.500074Z", - "shell.execute_reply": "2024-04-12T10:23:56.499549Z" + "iopub.execute_input": "2024-04-22T21:52:29.185640Z", + "iopub.status.busy": "2024-04-22T21:52:29.185241Z", + "iopub.status.idle": "2024-04-22T21:52:29.198498Z", + "shell.execute_reply": "2024-04-22T21:52:29.198038Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:56.502218Z", - "iopub.status.busy": "2024-04-12T10:23:56.501834Z", - "iopub.status.idle": "2024-04-12T10:23:59.122623Z", - "shell.execute_reply": "2024-04-12T10:23:59.122125Z" + "iopub.execute_input": "2024-04-22T21:52:29.200404Z", + "iopub.status.busy": "2024-04-22T21:52:29.200226Z", + "iopub.status.idle": "2024-04-22T21:52:31.836938Z", + "shell.execute_reply": "2024-04-22T21:52:31.836353Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:59.124863Z", - "iopub.status.busy": "2024-04-12T10:23:59.124542Z", - "iopub.status.idle": "2024-04-12T10:24:00.449018Z", - "shell.execute_reply": "2024-04-12T10:24:00.448472Z" + "iopub.execute_input": "2024-04-22T21:52:31.839072Z", + "iopub.status.busy": "2024-04-22T21:52:31.838839Z", + "iopub.status.idle": "2024-04-22T21:52:33.167293Z", + "shell.execute_reply": "2024-04-22T21:52:33.166650Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:00.451459Z", - "iopub.status.busy": "2024-04-12T10:24:00.451135Z", - "iopub.status.idle": "2024-04-12T10:24:00.455264Z", - "shell.execute_reply": "2024-04-12T10:24:00.454807Z" + "iopub.execute_input": "2024-04-22T21:52:33.169786Z", + "iopub.status.busy": "2024-04-22T21:52:33.169588Z", + "iopub.status.idle": "2024-04-22T21:52:33.173702Z", + "shell.execute_reply": "2024-04-22T21:52:33.173237Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:00.457156Z", - "iopub.status.busy": "2024-04-12T10:24:00.456986Z", - "iopub.status.idle": "2024-04-12T10:24:02.203830Z", - "shell.execute_reply": "2024-04-12T10:24:02.203195Z" + "iopub.execute_input": "2024-04-22T21:52:33.175586Z", + "iopub.status.busy": "2024-04-22T21:52:33.175403Z", + "iopub.status.idle": "2024-04-22T21:52:34.903849Z", + "shell.execute_reply": "2024-04-22T21:52:34.903269Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:02.206204Z", - "iopub.status.busy": "2024-04-12T10:24:02.205840Z", - "iopub.status.idle": "2024-04-12T10:24:02.213889Z", - "shell.execute_reply": "2024-04-12T10:24:02.213422Z" + "iopub.execute_input": "2024-04-22T21:52:34.906320Z", + "iopub.status.busy": "2024-04-22T21:52:34.905957Z", + "iopub.status.idle": "2024-04-22T21:52:34.913712Z", + "shell.execute_reply": "2024-04-22T21:52:34.913204Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:02.216020Z", - "iopub.status.busy": "2024-04-12T10:24:02.215598Z", - "iopub.status.idle": "2024-04-12T10:24:04.765736Z", - "shell.execute_reply": "2024-04-12T10:24:04.765135Z" + "iopub.execute_input": "2024-04-22T21:52:34.915746Z", + "iopub.status.busy": "2024-04-22T21:52:34.915441Z", + "iopub.status.idle": "2024-04-22T21:52:37.497915Z", + "shell.execute_reply": "2024-04-22T21:52:37.497397Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:04.767846Z", - "iopub.status.busy": "2024-04-12T10:24:04.767636Z", - "iopub.status.idle": "2024-04-12T10:24:04.771503Z", - "shell.execute_reply": "2024-04-12T10:24:04.771040Z" + "iopub.execute_input": "2024-04-22T21:52:37.500331Z", + "iopub.status.busy": "2024-04-22T21:52:37.499958Z", + "iopub.status.idle": "2024-04-22T21:52:37.503499Z", + "shell.execute_reply": "2024-04-22T21:52:37.502992Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:04.773387Z", - "iopub.status.busy": "2024-04-12T10:24:04.773217Z", - "iopub.status.idle": "2024-04-12T10:24:04.777237Z", - "shell.execute_reply": "2024-04-12T10:24:04.776790Z" + "iopub.execute_input": "2024-04-22T21:52:37.505636Z", + "iopub.status.busy": "2024-04-22T21:52:37.505214Z", + "iopub.status.idle": "2024-04-22T21:52:37.509388Z", + "shell.execute_reply": "2024-04-22T21:52:37.508908Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:04.779284Z", - "iopub.status.busy": "2024-04-12T10:24:04.778862Z", - "iopub.status.idle": "2024-04-12T10:24:04.781859Z", - "shell.execute_reply": "2024-04-12T10:24:04.781434Z" + "iopub.execute_input": "2024-04-22T21:52:37.511366Z", + "iopub.status.busy": "2024-04-22T21:52:37.511060Z", + "iopub.status.idle": "2024-04-22T21:52:37.514206Z", + "shell.execute_reply": "2024-04-22T21:52:37.513660Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index b2fe475ee..01cc635e5 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:07.097281Z", - "iopub.status.busy": "2024-04-12T10:24:07.096933Z", - "iopub.status.idle": "2024-04-12T10:24:08.212553Z", - "shell.execute_reply": "2024-04-12T10:24:08.212007Z" + "iopub.execute_input": "2024-04-22T21:52:39.874959Z", + "iopub.status.busy": "2024-04-22T21:52:39.874768Z", + "iopub.status.idle": "2024-04-22T21:52:41.002190Z", + "shell.execute_reply": "2024-04-22T21:52:41.001578Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:08.215102Z", - "iopub.status.busy": "2024-04-12T10:24:08.214711Z", - "iopub.status.idle": "2024-04-12T10:24:10.950953Z", - "shell.execute_reply": "2024-04-12T10:24:10.950282Z" + "iopub.execute_input": "2024-04-22T21:52:41.004829Z", + "iopub.status.busy": "2024-04-22T21:52:41.004587Z", + "iopub.status.idle": "2024-04-22T21:52:42.502836Z", + "shell.execute_reply": "2024-04-22T21:52:42.502157Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:10.953725Z", - "iopub.status.busy": "2024-04-12T10:24:10.953344Z", - "iopub.status.idle": "2024-04-12T10:24:10.956460Z", - "shell.execute_reply": "2024-04-12T10:24:10.956013Z" + "iopub.execute_input": "2024-04-22T21:52:42.505492Z", + "iopub.status.busy": "2024-04-22T21:52:42.505092Z", + "iopub.status.idle": "2024-04-22T21:52:42.508264Z", + "shell.execute_reply": "2024-04-22T21:52:42.507828Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:10.958480Z", - "iopub.status.busy": "2024-04-12T10:24:10.958155Z", - "iopub.status.idle": "2024-04-12T10:24:10.964418Z", - "shell.execute_reply": "2024-04-12T10:24:10.963977Z" + "iopub.execute_input": "2024-04-22T21:52:42.510261Z", + "iopub.status.busy": "2024-04-22T21:52:42.509930Z", + "iopub.status.idle": "2024-04-22T21:52:42.516878Z", + "shell.execute_reply": "2024-04-22T21:52:42.516462Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:10.966556Z", - "iopub.status.busy": "2024-04-12T10:24:10.966227Z", - "iopub.status.idle": "2024-04-12T10:24:11.451698Z", - "shell.execute_reply": "2024-04-12T10:24:11.451066Z" + "iopub.execute_input": "2024-04-22T21:52:42.518847Z", + "iopub.status.busy": "2024-04-22T21:52:42.518514Z", + "iopub.status.idle": "2024-04-22T21:52:43.005619Z", + "shell.execute_reply": "2024-04-22T21:52:43.005051Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:11.454681Z", - "iopub.status.busy": "2024-04-12T10:24:11.454271Z", - "iopub.status.idle": "2024-04-12T10:24:11.459580Z", - "shell.execute_reply": "2024-04-12T10:24:11.459100Z" + "iopub.execute_input": "2024-04-22T21:52:43.008477Z", + "iopub.status.busy": "2024-04-22T21:52:43.008132Z", + "iopub.status.idle": "2024-04-22T21:52:43.013203Z", + "shell.execute_reply": "2024-04-22T21:52:43.012773Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:11.461685Z", - "iopub.status.busy": "2024-04-12T10:24:11.461362Z", - "iopub.status.idle": "2024-04-12T10:24:11.465128Z", - "shell.execute_reply": "2024-04-12T10:24:11.464646Z" + "iopub.execute_input": "2024-04-22T21:52:43.014993Z", + "iopub.status.busy": "2024-04-22T21:52:43.014809Z", + "iopub.status.idle": "2024-04-22T21:52:43.018689Z", + "shell.execute_reply": "2024-04-22T21:52:43.018168Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:11.467197Z", - "iopub.status.busy": "2024-04-12T10:24:11.466872Z", - "iopub.status.idle": "2024-04-12T10:24:12.125116Z", - "shell.execute_reply": "2024-04-12T10:24:12.124486Z" + "iopub.execute_input": "2024-04-22T21:52:43.020739Z", + "iopub.status.busy": "2024-04-22T21:52:43.020342Z", + "iopub.status.idle": "2024-04-22T21:52:43.740955Z", + "shell.execute_reply": "2024-04-22T21:52:43.740423Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:12.127345Z", - "iopub.status.busy": "2024-04-12T10:24:12.127144Z", - "iopub.status.idle": "2024-04-12T10:24:12.299269Z", - "shell.execute_reply": "2024-04-12T10:24:12.298836Z" + "iopub.execute_input": "2024-04-22T21:52:43.743337Z", + "iopub.status.busy": "2024-04-22T21:52:43.742962Z", + "iopub.status.idle": "2024-04-22T21:52:43.996488Z", + "shell.execute_reply": "2024-04-22T21:52:43.995921Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:12.301260Z", - "iopub.status.busy": "2024-04-12T10:24:12.301079Z", - "iopub.status.idle": "2024-04-12T10:24:12.305435Z", - "shell.execute_reply": "2024-04-12T10:24:12.304991Z" + "iopub.execute_input": "2024-04-22T21:52:43.998707Z", + "iopub.status.busy": "2024-04-22T21:52:43.998370Z", + "iopub.status.idle": "2024-04-22T21:52:44.002592Z", + "shell.execute_reply": "2024-04-22T21:52:44.002163Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:12.307363Z", - "iopub.status.busy": "2024-04-12T10:24:12.307187Z", - "iopub.status.idle": "2024-04-12T10:24:12.752036Z", - "shell.execute_reply": "2024-04-12T10:24:12.751469Z" + "iopub.execute_input": "2024-04-22T21:52:44.004706Z", + "iopub.status.busy": "2024-04-22T21:52:44.004389Z", + "iopub.status.idle": "2024-04-22T21:52:44.456572Z", + "shell.execute_reply": "2024-04-22T21:52:44.456005Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:12.755169Z", - "iopub.status.busy": "2024-04-12T10:24:12.754969Z", - "iopub.status.idle": "2024-04-12T10:24:13.087409Z", - "shell.execute_reply": "2024-04-12T10:24:13.086834Z" + "iopub.execute_input": "2024-04-22T21:52:44.459190Z", + "iopub.status.busy": "2024-04-22T21:52:44.458832Z", + "iopub.status.idle": "2024-04-22T21:52:44.790719Z", + "shell.execute_reply": "2024-04-22T21:52:44.790179Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:13.089853Z", - "iopub.status.busy": "2024-04-12T10:24:13.089643Z", - "iopub.status.idle": "2024-04-12T10:24:13.420095Z", - "shell.execute_reply": "2024-04-12T10:24:13.419497Z" + "iopub.execute_input": "2024-04-22T21:52:44.793608Z", + "iopub.status.busy": "2024-04-22T21:52:44.793244Z", + "iopub.status.idle": "2024-04-22T21:52:45.152105Z", + "shell.execute_reply": "2024-04-22T21:52:45.151487Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:13.423524Z", - "iopub.status.busy": "2024-04-12T10:24:13.423020Z", - "iopub.status.idle": "2024-04-12T10:24:13.834773Z", - "shell.execute_reply": "2024-04-12T10:24:13.834169Z" + "iopub.execute_input": "2024-04-22T21:52:45.155344Z", + "iopub.status.busy": "2024-04-22T21:52:45.154983Z", + "iopub.status.idle": "2024-04-22T21:52:45.562774Z", + "shell.execute_reply": "2024-04-22T21:52:45.562226Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:13.838759Z", - "iopub.status.busy": "2024-04-12T10:24:13.838433Z", - "iopub.status.idle": "2024-04-12T10:24:14.282152Z", - "shell.execute_reply": "2024-04-12T10:24:14.281540Z" + "iopub.execute_input": "2024-04-22T21:52:45.567064Z", + "iopub.status.busy": "2024-04-22T21:52:45.566562Z", + "iopub.status.idle": "2024-04-22T21:52:45.988534Z", + "shell.execute_reply": "2024-04-22T21:52:45.987907Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:14.284971Z", - "iopub.status.busy": "2024-04-12T10:24:14.284579Z", - "iopub.status.idle": "2024-04-12T10:24:14.496527Z", - "shell.execute_reply": "2024-04-12T10:24:14.495932Z" + "iopub.execute_input": "2024-04-22T21:52:45.991231Z", + "iopub.status.busy": "2024-04-22T21:52:45.990782Z", + "iopub.status.idle": "2024-04-22T21:52:46.204068Z", + "shell.execute_reply": "2024-04-22T21:52:46.203517Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:14.498802Z", - "iopub.status.busy": "2024-04-12T10:24:14.498448Z", - "iopub.status.idle": "2024-04-12T10:24:14.697524Z", - "shell.execute_reply": "2024-04-12T10:24:14.697045Z" + "iopub.execute_input": "2024-04-22T21:52:46.206235Z", + "iopub.status.busy": "2024-04-22T21:52:46.206054Z", + "iopub.status.idle": "2024-04-22T21:52:46.404266Z", + "shell.execute_reply": "2024-04-22T21:52:46.403693Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:14.699593Z", - "iopub.status.busy": "2024-04-12T10:24:14.699404Z", - "iopub.status.idle": "2024-04-12T10:24:14.702238Z", - "shell.execute_reply": "2024-04-12T10:24:14.701789Z" + "iopub.execute_input": "2024-04-22T21:52:46.406359Z", + "iopub.status.busy": "2024-04-22T21:52:46.406181Z", + "iopub.status.idle": "2024-04-22T21:52:46.409147Z", + "shell.execute_reply": "2024-04-22T21:52:46.408688Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:14.704154Z", - "iopub.status.busy": "2024-04-12T10:24:14.703979Z", - "iopub.status.idle": "2024-04-12T10:24:15.665918Z", - "shell.execute_reply": "2024-04-12T10:24:15.665388Z" + "iopub.execute_input": "2024-04-22T21:52:46.410919Z", + "iopub.status.busy": "2024-04-22T21:52:46.410739Z", + "iopub.status.idle": "2024-04-22T21:52:47.354011Z", + "shell.execute_reply": "2024-04-22T21:52:47.353447Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:15.668649Z", - "iopub.status.busy": "2024-04-12T10:24:15.668325Z", - "iopub.status.idle": "2024-04-12T10:24:15.847432Z", - "shell.execute_reply": "2024-04-12T10:24:15.846883Z" + "iopub.execute_input": "2024-04-22T21:52:47.356366Z", + "iopub.status.busy": "2024-04-22T21:52:47.356183Z", + "iopub.status.idle": "2024-04-22T21:52:47.520348Z", + "shell.execute_reply": "2024-04-22T21:52:47.519913Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:15.849530Z", - "iopub.status.busy": "2024-04-12T10:24:15.849349Z", - "iopub.status.idle": "2024-04-12T10:24:15.966721Z", - "shell.execute_reply": "2024-04-12T10:24:15.966284Z" + "iopub.execute_input": "2024-04-22T21:52:47.522432Z", + "iopub.status.busy": "2024-04-22T21:52:47.522132Z", + "iopub.status.idle": "2024-04-22T21:52:47.636759Z", + "shell.execute_reply": "2024-04-22T21:52:47.636341Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:15.968766Z", - "iopub.status.busy": "2024-04-12T10:24:15.968587Z", - "iopub.status.idle": "2024-04-12T10:24:16.706556Z", - "shell.execute_reply": "2024-04-12T10:24:16.706054Z" + "iopub.execute_input": "2024-04-22T21:52:47.638829Z", + "iopub.status.busy": "2024-04-22T21:52:47.638531Z", + "iopub.status.idle": "2024-04-22T21:52:48.327849Z", + "shell.execute_reply": "2024-04-22T21:52:48.327332Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:16.708878Z", - "iopub.status.busy": "2024-04-12T10:24:16.708548Z", - "iopub.status.idle": "2024-04-12T10:24:16.711993Z", - "shell.execute_reply": "2024-04-12T10:24:16.711572Z" + "iopub.execute_input": "2024-04-22T21:52:48.330017Z", + "iopub.status.busy": "2024-04-22T21:52:48.329837Z", + "iopub.status.idle": "2024-04-22T21:52:48.333357Z", + "shell.execute_reply": "2024-04-22T21:52:48.332930Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index fee58017c..7ceae64d3 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:18.938915Z", - "iopub.status.busy": "2024-04-12T10:24:18.938732Z", - "iopub.status.idle": "2024-04-12T10:24:21.616346Z", - "shell.execute_reply": "2024-04-12T10:24:21.615740Z" + "iopub.execute_input": "2024-04-22T21:52:50.554233Z", + "iopub.status.busy": "2024-04-22T21:52:50.553814Z", + "iopub.status.idle": "2024-04-22T21:52:53.231577Z", + "shell.execute_reply": "2024-04-22T21:52:53.230911Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:21.618912Z", - "iopub.status.busy": "2024-04-12T10:24:21.618617Z", - "iopub.status.idle": "2024-04-12T10:24:21.936376Z", - "shell.execute_reply": "2024-04-12T10:24:21.935799Z" + "iopub.execute_input": "2024-04-22T21:52:53.234178Z", + "iopub.status.busy": "2024-04-22T21:52:53.233772Z", + "iopub.status.idle": "2024-04-22T21:52:53.557178Z", + "shell.execute_reply": "2024-04-22T21:52:53.556628Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:21.938714Z", - "iopub.status.busy": "2024-04-12T10:24:21.938426Z", - "iopub.status.idle": "2024-04-12T10:24:21.942588Z", - "shell.execute_reply": "2024-04-12T10:24:21.942060Z" + "iopub.execute_input": "2024-04-22T21:52:53.559861Z", + "iopub.status.busy": "2024-04-22T21:52:53.559444Z", + "iopub.status.idle": "2024-04-22T21:52:53.563646Z", + "shell.execute_reply": "2024-04-22T21:52:53.563119Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:21.944789Z", - "iopub.status.busy": "2024-04-12T10:24:21.944364Z", - "iopub.status.idle": "2024-04-12T10:24:29.222246Z", - "shell.execute_reply": "2024-04-12T10:24:29.221744Z" + "iopub.execute_input": "2024-04-22T21:52:53.565528Z", + "iopub.status.busy": "2024-04-22T21:52:53.565355Z", + "iopub.status.idle": "2024-04-22T21:52:57.764311Z", + "shell.execute_reply": "2024-04-22T21:52:57.763806Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<10:56, 259731.90it/s]" + " 1%|▏ | 2392064/170498071 [00:00<00:07, 23857808.75it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<02:48, 1010343.37it/s]" + " 8%|▊ | 13991936/170498071 [00:00<00:02, 77849170.46it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:58, 2895573.18it/s]" + " 15%|█▍ | 25395200/170498071 [00:00<00:01, 94277574.59it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3538944/170498071 [00:00<00:15, 10513753.31it/s]" + " 21%|██▏ | 36306944/170498071 [00:00<00:01, 100008810.50it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 8257536/170498071 [00:00<00:07, 22175081.30it/s]" + " 28%|██▊ | 47349760/170498071 [00:00<00:01, 103682268.88it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 12812288/170498071 [00:00<00:05, 28449487.70it/s]" + " 34%|███▍ | 58392576/170498071 [00:00<00:01, 105859075.94it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18448384/170498071 [00:00<00:04, 36823409.78it/s]" + " 41%|████ | 69730304/170498071 [00:00<00:00, 108244700.57it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22315008/170498071 [00:00<00:03, 37341811.03it/s]" + " 48%|████▊ | 81002496/170498071 [00:00<00:00, 109561697.95it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 27688960/170498071 [00:01<00:03, 42227777.50it/s]" + " 54%|█████▍ | 92110848/170498071 [00:00<00:00, 110020167.03it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32014336/170498071 [00:01<00:03, 41086138.53it/s]" + " 61%|██████ | 103514112/170498071 [00:01<00:00, 111226768.48it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37650432/170498071 [00:01<00:02, 45330493.08it/s]" + " 67%|██████▋ | 114753536/170498071 [00:01<00:00, 111565572.11it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 42270720/170498071 [00:01<00:02, 44025235.90it/s]" + " 74%|███████▍ | 126091264/170498071 [00:01<00:00, 112096431.55it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47349760/170498071 [00:01<00:02, 45783691.14it/s]" + " 81%|████████ | 137330688/170498071 [00:01<00:00, 111524672.46it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52002816/170498071 [00:01<00:02, 45293683.04it/s]" + " 87%|████████▋ | 148504576/170498071 [00:01<00:00, 111234535.48it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 57016320/170498071 [00:01<00:02, 46466542.57it/s]" + " 94%|█████████▍| 160071680/170498071 [00:01<00:00, 112554258.90it/s]" ] }, { @@ -372,191 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61702144/170498071 [00:01<00:02, 46159856.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 39%|███▉ | 66650112/170498071 [00:01<00:02, 47063952.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 42%|████▏ | 71401472/170498071 [00:01<00:02, 46452020.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 45%|████▍ | 76087296/170498071 [00:02<00:02, 46302971.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 47%|████▋ | 80740352/170498071 [00:02<00:01, 46295395.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|█████ | 85491712/170498071 [00:02<00:01, 46558436.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 53%|█████▎ | 90177536/170498071 [00:02<00:01, 46080133.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▌ | 95092736/170498071 [00:02<00:01, 46911944.12it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▊ | 99811328/170498071 [00:02<00:01, 46398006.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████▏ | 104759296/170498071 [00:02<00:01, 47151076.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 109477888/170498071 [00:02<00:01, 46607933.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 114360320/170498071 [00:02<00:01, 46768582.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|██████▉ | 119046144/170498071 [00:02<00:01, 46280527.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 123797504/170498071 [00:03<00:01, 46603926.77it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 128483328/170498071 [00:03<00:00, 46268292.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 133365760/170498071 [00:03<00:00, 46356516.76it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 138182656/170498071 [00:03<00:00, 46875977.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 142901248/170498071 [00:03<00:00, 45982883.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 147718144/170498071 [00:03<00:00, 46616803.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 152469504/170498071 [00:03<00:00, 46381436.79it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 157122560/170498071 [00:03<00:00, 45454926.55it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 161906688/170498071 [00:03<00:00, 46105683.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 166526976/170498071 [00:04<00:00, 45410939.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 41711758.77it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 106705501.09it/s]" ] }, { @@ -674,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:29.224547Z", - "iopub.status.busy": "2024-04-12T10:24:29.224176Z", - "iopub.status.idle": "2024-04-12T10:24:29.228815Z", - "shell.execute_reply": "2024-04-12T10:24:29.228374Z" + "iopub.execute_input": "2024-04-22T21:52:57.766516Z", + "iopub.status.busy": "2024-04-22T21:52:57.766184Z", + "iopub.status.idle": "2024-04-22T21:52:57.770805Z", + "shell.execute_reply": "2024-04-22T21:52:57.770382Z" }, "nbsphinx": "hidden" }, @@ -728,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:29.230901Z", - "iopub.status.busy": "2024-04-12T10:24:29.230497Z", - "iopub.status.idle": "2024-04-12T10:24:29.753754Z", - "shell.execute_reply": "2024-04-12T10:24:29.753156Z" + "iopub.execute_input": "2024-04-22T21:52:57.772635Z", + "iopub.status.busy": "2024-04-22T21:52:57.772461Z", + "iopub.status.idle": "2024-04-22T21:52:58.314810Z", + "shell.execute_reply": "2024-04-22T21:52:58.314208Z" } }, "outputs": [ @@ -764,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:29.756054Z", - "iopub.status.busy": "2024-04-12T10:24:29.755592Z", - "iopub.status.idle": "2024-04-12T10:24:30.247066Z", - "shell.execute_reply": "2024-04-12T10:24:30.246453Z" + "iopub.execute_input": "2024-04-22T21:52:58.316967Z", + "iopub.status.busy": "2024-04-22T21:52:58.316777Z", + "iopub.status.idle": "2024-04-22T21:52:58.832112Z", + "shell.execute_reply": "2024-04-22T21:52:58.831587Z" } }, "outputs": [ @@ -805,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:30.249388Z", - "iopub.status.busy": "2024-04-12T10:24:30.249026Z", - "iopub.status.idle": "2024-04-12T10:24:30.252641Z", - "shell.execute_reply": "2024-04-12T10:24:30.252072Z" + "iopub.execute_input": "2024-04-22T21:52:58.834206Z", + "iopub.status.busy": "2024-04-22T21:52:58.834015Z", + "iopub.status.idle": "2024-04-22T21:52:58.837580Z", + "shell.execute_reply": "2024-04-22T21:52:58.837127Z" } }, "outputs": [], @@ -831,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:30.254722Z", - "iopub.status.busy": "2024-04-12T10:24:30.254333Z", - "iopub.status.idle": "2024-04-12T10:24:42.549610Z", - "shell.execute_reply": "2024-04-12T10:24:42.549011Z" + "iopub.execute_input": "2024-04-22T21:52:58.839465Z", + "iopub.status.busy": "2024-04-22T21:52:58.839290Z", + "iopub.status.idle": "2024-04-22T21:53:11.931301Z", + "shell.execute_reply": "2024-04-22T21:53:11.930680Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "280fb116e0644adab3d685ef09fb3885", + "model_id": "22f9d55bc16e4694a529213d79af963f", "version_major": 2, "version_minor": 0 }, @@ -900,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:42.552070Z", - "iopub.status.busy": "2024-04-12T10:24:42.551671Z", - "iopub.status.idle": "2024-04-12T10:24:44.256041Z", - "shell.execute_reply": "2024-04-12T10:24:44.255455Z" + "iopub.execute_input": "2024-04-22T21:53:11.933626Z", + "iopub.status.busy": "2024-04-22T21:53:11.933432Z", + "iopub.status.idle": "2024-04-22T21:53:13.680226Z", + "shell.execute_reply": "2024-04-22T21:53:13.679633Z" } }, "outputs": [ @@ -947,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:44.258846Z", - "iopub.status.busy": "2024-04-12T10:24:44.258374Z", - "iopub.status.idle": "2024-04-12T10:24:44.487066Z", - "shell.execute_reply": "2024-04-12T10:24:44.486463Z" + "iopub.execute_input": "2024-04-22T21:53:13.682977Z", + "iopub.status.busy": "2024-04-22T21:53:13.682599Z", + "iopub.status.idle": "2024-04-22T21:53:13.936210Z", + "shell.execute_reply": "2024-04-22T21:53:13.935628Z" } }, "outputs": [ @@ -986,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:44.489873Z", - "iopub.status.busy": "2024-04-12T10:24:44.489576Z", - "iopub.status.idle": "2024-04-12T10:24:45.162929Z", - "shell.execute_reply": "2024-04-12T10:24:45.162425Z" + "iopub.execute_input": "2024-04-22T21:53:13.938586Z", + "iopub.status.busy": "2024-04-22T21:53:13.938380Z", + "iopub.status.idle": "2024-04-22T21:53:14.621752Z", + "shell.execute_reply": "2024-04-22T21:53:14.621246Z" } }, "outputs": [ @@ -1039,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:45.165730Z", - "iopub.status.busy": "2024-04-12T10:24:45.165385Z", - "iopub.status.idle": "2024-04-12T10:24:45.504159Z", - "shell.execute_reply": "2024-04-12T10:24:45.503623Z" + "iopub.execute_input": "2024-04-22T21:53:14.624468Z", + "iopub.status.busy": "2024-04-22T21:53:14.624050Z", + "iopub.status.idle": "2024-04-22T21:53:14.960729Z", + "shell.execute_reply": "2024-04-22T21:53:14.960245Z" } }, "outputs": [ @@ -1090,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:45.506478Z", - "iopub.status.busy": "2024-04-12T10:24:45.506136Z", - "iopub.status.idle": "2024-04-12T10:24:45.752880Z", - "shell.execute_reply": "2024-04-12T10:24:45.752361Z" + "iopub.execute_input": "2024-04-22T21:53:14.962870Z", + "iopub.status.busy": "2024-04-22T21:53:14.962566Z", + "iopub.status.idle": "2024-04-22T21:53:15.204461Z", + "shell.execute_reply": "2024-04-22T21:53:15.203874Z" } }, "outputs": [ @@ -1149,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:45.755480Z", - "iopub.status.busy": "2024-04-12T10:24:45.755182Z", - "iopub.status.idle": "2024-04-12T10:24:45.851592Z", - "shell.execute_reply": "2024-04-12T10:24:45.851100Z" + "iopub.execute_input": "2024-04-22T21:53:15.206908Z", + "iopub.status.busy": "2024-04-22T21:53:15.206689Z", + "iopub.status.idle": "2024-04-22T21:53:15.300554Z", + "shell.execute_reply": "2024-04-22T21:53:15.299923Z" } }, "outputs": [], @@ -1173,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:45.854183Z", - "iopub.status.busy": "2024-04-12T10:24:45.853822Z", - "iopub.status.idle": "2024-04-12T10:24:56.145063Z", - "shell.execute_reply": "2024-04-12T10:24:56.144406Z" + "iopub.execute_input": "2024-04-22T21:53:15.303380Z", + "iopub.status.busy": "2024-04-22T21:53:15.302993Z", + "iopub.status.idle": "2024-04-22T21:53:25.516620Z", + "shell.execute_reply": "2024-04-22T21:53:25.515964Z" } }, "outputs": [ @@ -1213,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:56.147687Z", - "iopub.status.busy": "2024-04-12T10:24:56.147380Z", - "iopub.status.idle": "2024-04-12T10:24:57.822798Z", - "shell.execute_reply": "2024-04-12T10:24:57.822256Z" + "iopub.execute_input": "2024-04-22T21:53:25.519659Z", + "iopub.status.busy": "2024-04-22T21:53:25.519405Z", + "iopub.status.idle": "2024-04-22T21:53:27.197282Z", + "shell.execute_reply": "2024-04-22T21:53:27.196707Z" } }, "outputs": [ @@ -1247,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:57.825537Z", - "iopub.status.busy": "2024-04-12T10:24:57.825158Z", - "iopub.status.idle": "2024-04-12T10:24:58.027152Z", - "shell.execute_reply": "2024-04-12T10:24:58.026662Z" + "iopub.execute_input": "2024-04-22T21:53:27.200016Z", + "iopub.status.busy": "2024-04-22T21:53:27.199480Z", + "iopub.status.idle": "2024-04-22T21:53:27.401838Z", + "shell.execute_reply": "2024-04-22T21:53:27.401225Z" } }, "outputs": [], @@ -1264,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:58.029626Z", - "iopub.status.busy": "2024-04-12T10:24:58.029281Z", - "iopub.status.idle": "2024-04-12T10:24:58.032329Z", - "shell.execute_reply": "2024-04-12T10:24:58.031885Z" + "iopub.execute_input": "2024-04-22T21:53:27.404481Z", + "iopub.status.busy": "2024-04-22T21:53:27.404075Z", + "iopub.status.idle": "2024-04-22T21:53:27.407250Z", + "shell.execute_reply": "2024-04-22T21:53:27.406801Z" } }, "outputs": [], @@ -1289,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:58.034368Z", - "iopub.status.busy": "2024-04-12T10:24:58.034059Z", - "iopub.status.idle": "2024-04-12T10:24:58.042436Z", - "shell.execute_reply": "2024-04-12T10:24:58.042016Z" + "iopub.execute_input": "2024-04-22T21:53:27.409128Z", + "iopub.status.busy": "2024-04-22T21:53:27.408955Z", + "iopub.status.idle": "2024-04-22T21:53:27.417350Z", + "shell.execute_reply": "2024-04-22T21:53:27.416809Z" }, "nbsphinx": "hidden" }, @@ -1337,7 +1153,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2804fea1e75f4c7f8732720107ec43ba": { + "22f9d55bc16e4694a529213d79af963f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_afe95df11c484d24931106f22f1499e1", + "IPY_MODEL_9b85cbebde4f48f3a7c2424fef20f6bd", + "IPY_MODEL_cd95634aa4a64f878d6e87e3d255d7a7" + ], + "layout": "IPY_MODEL_ed1a3a47e4b54e37abe194f39999812e", + "tabbable": null, + "tooltip": null + } + }, + "42e51f2194824ef39fdf6b3d3f4b56bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1390,72 +1230,7 @@ "width": null } }, - "280fb116e0644adab3d685ef09fb3885": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7aeac87296b1426abe8ec7a76b747433", - "IPY_MODEL_bbbaac5bc0544ff2a9e63fc6f46508c4", - "IPY_MODEL_3fb1cbb773e44875a1264f300ccedf05" - ], - "layout": "IPY_MODEL_2804fea1e75f4c7f8732720107ec43ba", - "tabbable": null, - "tooltip": null - } - }, - "3fb1cbb773e44875a1264f300ccedf05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4ee8bc910f27494a86ca2ef36605e358", - "placeholder": "​", - "style": "IPY_MODEL_46995353a1204bdaba8c7dce5d14e8cb", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 366MB/s]" - } - }, - "46995353a1204bdaba8c7dce5d14e8cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4ee8bc910f27494a86ca2ef36605e358": { + "559e322b466b4b5daea0b3132a5a4562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,7 +1283,69 @@ "width": null } }, - "7aeac87296b1426abe8ec7a76b747433": { + "7e6aeef5716a4fec83724de6d7575f06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "83e97d1a003140f2bdb9eadf88b1fa85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9b85cbebde4f48f3a7c2424fef20f6bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42e51f2194824ef39fdf6b3d3f4b56bf", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d189d0882711471db5e3652040431f7a", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "afe95df11c484d24931106f22f1499e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1523,15 +1360,54 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b93b931a316742dfa6b3d4c1d289cde6", + "layout": "IPY_MODEL_559e322b466b4b5daea0b3132a5a4562", "placeholder": "​", - "style": "IPY_MODEL_e764cb1b21de485aa6f278ddfa80f38d", + "style": "IPY_MODEL_83e97d1a003140f2bdb9eadf88b1fa85", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "b93b931a316742dfa6b3d4c1d289cde6": { + "cd95634aa4a64f878d6e87e3d255d7a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e5b3e13ebc974ac99395bb3ca53ef7d8", + "placeholder": "​", + "style": "IPY_MODEL_7e6aeef5716a4fec83724de6d7575f06", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:01<00:00, 128MB/s]" + } + }, + "d189d0882711471db5e3652040431f7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e5b3e13ebc974ac99395bb3ca53ef7d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1584,49 +1460,7 @@ "width": null } }, - "bbbaac5bc0544ff2a9e63fc6f46508c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6bf6323cba344dd852ee94faac54bbb", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d06a226f35144637848a5dbcb07cc254", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "d06a226f35144637848a5dbcb07cc254": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d6bf6323cba344dd852ee94faac54bbb": { + "ed1a3a47e4b54e37abe194f39999812e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1678,24 +1512,6 @@ "visibility": null, "width": null } - }, - "e764cb1b21de485aa6f278ddfa80f38d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index e7b0a1ad7..bbbc032b1 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:02.333587Z", - "iopub.status.busy": "2024-04-12T10:25:02.333248Z", - "iopub.status.idle": "2024-04-12T10:25:03.453616Z", - "shell.execute_reply": "2024-04-12T10:25:03.453061Z" + "iopub.execute_input": "2024-04-22T21:53:31.774797Z", + "iopub.status.busy": "2024-04-22T21:53:31.774402Z", + "iopub.status.idle": "2024-04-22T21:53:32.923980Z", + "shell.execute_reply": "2024-04-22T21:53:32.923359Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:03.455996Z", - "iopub.status.busy": "2024-04-12T10:25:03.455733Z", - "iopub.status.idle": "2024-04-12T10:25:03.473205Z", - "shell.execute_reply": "2024-04-12T10:25:03.472785Z" + "iopub.execute_input": "2024-04-22T21:53:32.926573Z", + "iopub.status.busy": "2024-04-22T21:53:32.926157Z", + "iopub.status.idle": "2024-04-22T21:53:32.943814Z", + "shell.execute_reply": "2024-04-22T21:53:32.943262Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:03.475370Z", - "iopub.status.busy": "2024-04-12T10:25:03.474858Z", - "iopub.status.idle": "2024-04-12T10:25:03.477808Z", - "shell.execute_reply": "2024-04-12T10:25:03.477381Z" + "iopub.execute_input": "2024-04-22T21:53:32.946002Z", + "iopub.status.busy": "2024-04-22T21:53:32.945619Z", + "iopub.status.idle": "2024-04-22T21:53:32.948493Z", + "shell.execute_reply": "2024-04-22T21:53:32.948081Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:03.479592Z", - "iopub.status.busy": "2024-04-12T10:25:03.479420Z", - "iopub.status.idle": "2024-04-12T10:25:03.713443Z", - "shell.execute_reply": "2024-04-12T10:25:03.712870Z" + "iopub.execute_input": "2024-04-22T21:53:32.950474Z", + "iopub.status.busy": "2024-04-22T21:53:32.950158Z", + "iopub.status.idle": "2024-04-22T21:53:33.043024Z", + "shell.execute_reply": "2024-04-22T21:53:33.042556Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:03.715755Z", - "iopub.status.busy": "2024-04-12T10:25:03.715427Z", - "iopub.status.idle": "2024-04-12T10:25:03.893499Z", - "shell.execute_reply": "2024-04-12T10:25:03.892882Z" + "iopub.execute_input": "2024-04-22T21:53:33.045231Z", + "iopub.status.busy": "2024-04-22T21:53:33.044971Z", + "iopub.status.idle": "2024-04-22T21:53:33.224282Z", + "shell.execute_reply": "2024-04-22T21:53:33.223666Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:03.895840Z", - "iopub.status.busy": "2024-04-12T10:25:03.895627Z", - "iopub.status.idle": "2024-04-12T10:25:04.136470Z", - "shell.execute_reply": "2024-04-12T10:25:04.135879Z" + "iopub.execute_input": "2024-04-22T21:53:33.226920Z", + "iopub.status.busy": "2024-04-22T21:53:33.226584Z", + "iopub.status.idle": "2024-04-22T21:53:33.466115Z", + "shell.execute_reply": "2024-04-22T21:53:33.465573Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:04.138477Z", - "iopub.status.busy": "2024-04-12T10:25:04.138293Z", - "iopub.status.idle": "2024-04-12T10:25:04.142665Z", - "shell.execute_reply": "2024-04-12T10:25:04.142223Z" + "iopub.execute_input": "2024-04-22T21:53:33.468371Z", + "iopub.status.busy": "2024-04-22T21:53:33.467961Z", + "iopub.status.idle": "2024-04-22T21:53:33.472221Z", + "shell.execute_reply": "2024-04-22T21:53:33.471764Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:04.144529Z", - "iopub.status.busy": "2024-04-12T10:25:04.144353Z", - "iopub.status.idle": "2024-04-12T10:25:04.150383Z", - "shell.execute_reply": "2024-04-12T10:25:04.149964Z" + "iopub.execute_input": "2024-04-22T21:53:33.474231Z", + "iopub.status.busy": "2024-04-22T21:53:33.473822Z", + "iopub.status.idle": "2024-04-22T21:53:33.479953Z", + "shell.execute_reply": "2024-04-22T21:53:33.479521Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:04.152543Z", - "iopub.status.busy": "2024-04-12T10:25:04.152119Z", - "iopub.status.idle": "2024-04-12T10:25:04.154852Z", - "shell.execute_reply": "2024-04-12T10:25:04.154430Z" + "iopub.execute_input": "2024-04-22T21:53:33.481941Z", + "iopub.status.busy": "2024-04-22T21:53:33.481614Z", + "iopub.status.idle": "2024-04-22T21:53:33.484096Z", + "shell.execute_reply": "2024-04-22T21:53:33.483667Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:04.156757Z", - "iopub.status.busy": "2024-04-12T10:25:04.156587Z", - "iopub.status.idle": "2024-04-12T10:25:12.280210Z", - "shell.execute_reply": "2024-04-12T10:25:12.279579Z" + "iopub.execute_input": "2024-04-22T21:53:33.485977Z", + "iopub.status.busy": "2024-04-22T21:53:33.485661Z", + "iopub.status.idle": "2024-04-22T21:53:41.696382Z", + "shell.execute_reply": "2024-04-22T21:53:41.695825Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.283300Z", - "iopub.status.busy": "2024-04-12T10:25:12.282629Z", - "iopub.status.idle": "2024-04-12T10:25:12.289681Z", - "shell.execute_reply": "2024-04-12T10:25:12.289190Z" + "iopub.execute_input": "2024-04-22T21:53:41.699266Z", + "iopub.status.busy": "2024-04-22T21:53:41.698639Z", + "iopub.status.idle": "2024-04-22T21:53:41.705535Z", + "shell.execute_reply": "2024-04-22T21:53:41.705083Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.291744Z", - "iopub.status.busy": "2024-04-12T10:25:12.291407Z", - "iopub.status.idle": "2024-04-12T10:25:12.295062Z", - "shell.execute_reply": "2024-04-12T10:25:12.294584Z" + "iopub.execute_input": "2024-04-22T21:53:41.707433Z", + "iopub.status.busy": "2024-04-22T21:53:41.707138Z", + "iopub.status.idle": "2024-04-22T21:53:41.710782Z", + "shell.execute_reply": "2024-04-22T21:53:41.710230Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.297028Z", - "iopub.status.busy": "2024-04-12T10:25:12.296703Z", - "iopub.status.idle": "2024-04-12T10:25:12.299796Z", - "shell.execute_reply": "2024-04-12T10:25:12.299287Z" + "iopub.execute_input": "2024-04-22T21:53:41.712977Z", + "iopub.status.busy": "2024-04-22T21:53:41.712680Z", + "iopub.status.idle": "2024-04-22T21:53:41.716049Z", + "shell.execute_reply": "2024-04-22T21:53:41.715604Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.301759Z", - "iopub.status.busy": "2024-04-12T10:25:12.301436Z", - "iopub.status.idle": "2024-04-12T10:25:12.304464Z", - "shell.execute_reply": "2024-04-12T10:25:12.304005Z" + "iopub.execute_input": "2024-04-22T21:53:41.717915Z", + "iopub.status.busy": "2024-04-22T21:53:41.717747Z", + "iopub.status.idle": "2024-04-22T21:53:41.720581Z", + "shell.execute_reply": "2024-04-22T21:53:41.720164Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.306418Z", - "iopub.status.busy": "2024-04-12T10:25:12.306034Z", - "iopub.status.idle": "2024-04-12T10:25:12.313812Z", - "shell.execute_reply": "2024-04-12T10:25:12.313347Z" + "iopub.execute_input": "2024-04-22T21:53:41.722322Z", + "iopub.status.busy": "2024-04-22T21:53:41.722159Z", + "iopub.status.idle": "2024-04-22T21:53:41.729904Z", + "shell.execute_reply": "2024-04-22T21:53:41.729486Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.315696Z", - "iopub.status.busy": "2024-04-12T10:25:12.315519Z", - "iopub.status.idle": "2024-04-12T10:25:12.318030Z", - "shell.execute_reply": "2024-04-12T10:25:12.317617Z" + "iopub.execute_input": "2024-04-22T21:53:41.731829Z", + "iopub.status.busy": "2024-04-22T21:53:41.731660Z", + "iopub.status.idle": "2024-04-22T21:53:41.734157Z", + "shell.execute_reply": "2024-04-22T21:53:41.733741Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.319880Z", - "iopub.status.busy": "2024-04-12T10:25:12.319709Z", - "iopub.status.idle": "2024-04-12T10:25:12.446802Z", - "shell.execute_reply": "2024-04-12T10:25:12.446226Z" + "iopub.execute_input": "2024-04-22T21:53:41.736001Z", + "iopub.status.busy": "2024-04-22T21:53:41.735835Z", + "iopub.status.idle": "2024-04-22T21:53:41.854569Z", + "shell.execute_reply": "2024-04-22T21:53:41.854079Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.449151Z", - "iopub.status.busy": "2024-04-12T10:25:12.448933Z", - "iopub.status.idle": "2024-04-12T10:25:12.551379Z", - "shell.execute_reply": "2024-04-12T10:25:12.550840Z" + "iopub.execute_input": "2024-04-22T21:53:41.856749Z", + "iopub.status.busy": "2024-04-22T21:53:41.856387Z", + "iopub.status.idle": "2024-04-22T21:53:41.962309Z", + "shell.execute_reply": "2024-04-22T21:53:41.961824Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.553858Z", - "iopub.status.busy": "2024-04-12T10:25:12.553438Z", - "iopub.status.idle": "2024-04-12T10:25:13.030239Z", - "shell.execute_reply": "2024-04-12T10:25:13.029624Z" + "iopub.execute_input": "2024-04-22T21:53:41.964574Z", + "iopub.status.busy": "2024-04-22T21:53:41.964217Z", + "iopub.status.idle": "2024-04-22T21:53:42.441758Z", + "shell.execute_reply": "2024-04-22T21:53:42.441235Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:13.032916Z", - "iopub.status.busy": "2024-04-12T10:25:13.032497Z", - "iopub.status.idle": "2024-04-12T10:25:13.138408Z", - "shell.execute_reply": "2024-04-12T10:25:13.137834Z" + "iopub.execute_input": "2024-04-22T21:53:42.444476Z", + "iopub.status.busy": "2024-04-22T21:53:42.444006Z", + "iopub.status.idle": "2024-04-22T21:53:42.534082Z", + "shell.execute_reply": "2024-04-22T21:53:42.533512Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:13.140819Z", - "iopub.status.busy": "2024-04-12T10:25:13.140471Z", - "iopub.status.idle": "2024-04-12T10:25:13.149090Z", - "shell.execute_reply": "2024-04-12T10:25:13.148537Z" + "iopub.execute_input": "2024-04-22T21:53:42.536488Z", + "iopub.status.busy": "2024-04-22T21:53:42.536036Z", + "iopub.status.idle": "2024-04-22T21:53:42.544415Z", + "shell.execute_reply": "2024-04-22T21:53:42.543983Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:13.151137Z", - "iopub.status.busy": "2024-04-12T10:25:13.150732Z", - "iopub.status.idle": "2024-04-12T10:25:13.153501Z", - "shell.execute_reply": "2024-04-12T10:25:13.152973Z" + "iopub.execute_input": "2024-04-22T21:53:42.546328Z", + "iopub.status.busy": "2024-04-22T21:53:42.546009Z", + "iopub.status.idle": "2024-04-22T21:53:42.548550Z", + "shell.execute_reply": "2024-04-22T21:53:42.548133Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:13.155613Z", - "iopub.status.busy": "2024-04-12T10:25:13.155292Z", - "iopub.status.idle": "2024-04-12T10:25:18.542395Z", - "shell.execute_reply": "2024-04-12T10:25:18.541811Z" + "iopub.execute_input": "2024-04-22T21:53:42.550584Z", + "iopub.status.busy": "2024-04-22T21:53:42.550276Z", + "iopub.status.idle": "2024-04-22T21:53:47.930432Z", + "shell.execute_reply": "2024-04-22T21:53:47.929860Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:18.544811Z", - "iopub.status.busy": "2024-04-12T10:25:18.544472Z", - "iopub.status.idle": "2024-04-12T10:25:18.553283Z", - "shell.execute_reply": "2024-04-12T10:25:18.552725Z" + "iopub.execute_input": "2024-04-22T21:53:47.932787Z", + "iopub.status.busy": "2024-04-22T21:53:47.932372Z", + "iopub.status.idle": "2024-04-22T21:53:47.940933Z", + "shell.execute_reply": "2024-04-22T21:53:47.940504Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:18.555344Z", - "iopub.status.busy": "2024-04-12T10:25:18.555064Z", - "iopub.status.idle": "2024-04-12T10:25:18.623924Z", - "shell.execute_reply": "2024-04-12T10:25:18.623438Z" + "iopub.execute_input": "2024-04-22T21:53:47.942890Z", + "iopub.status.busy": "2024-04-22T21:53:47.942698Z", + "iopub.status.idle": "2024-04-22T21:53:48.006741Z", + "shell.execute_reply": "2024-04-22T21:53:48.006153Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 1b1bc7173..9db489293 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:21.309693Z", - "iopub.status.busy": "2024-04-12T10:25:21.309518Z", - "iopub.status.idle": "2024-04-12T10:25:23.743540Z", - "shell.execute_reply": "2024-04-12T10:25:23.742874Z" + "iopub.execute_input": "2024-04-22T21:53:51.006310Z", + "iopub.status.busy": "2024-04-22T21:53:51.006137Z", + "iopub.status.idle": "2024-04-22T21:53:52.140306Z", + "shell.execute_reply": "2024-04-22T21:53:52.139612Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:23.746236Z", - "iopub.status.busy": "2024-04-12T10:25:23.745823Z", - "iopub.status.idle": "2024-04-12T10:26:26.178469Z", - "shell.execute_reply": "2024-04-12T10:26:26.177892Z" + "iopub.execute_input": "2024-04-22T21:53:52.142798Z", + "iopub.status.busy": "2024-04-22T21:53:52.142611Z", + "iopub.status.idle": "2024-04-22T21:54:18.175876Z", + "shell.execute_reply": "2024-04-22T21:54:18.175231Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:26.181001Z", - "iopub.status.busy": "2024-04-12T10:26:26.180709Z", - "iopub.status.idle": "2024-04-12T10:26:27.256134Z", - "shell.execute_reply": "2024-04-12T10:26:27.255581Z" + "iopub.execute_input": "2024-04-22T21:54:18.178364Z", + "iopub.status.busy": "2024-04-22T21:54:18.177990Z", + "iopub.status.idle": "2024-04-22T21:54:19.258691Z", + "shell.execute_reply": "2024-04-22T21:54:19.258134Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:27.258800Z", - "iopub.status.busy": "2024-04-12T10:26:27.258379Z", - "iopub.status.idle": "2024-04-12T10:26:27.261669Z", - "shell.execute_reply": "2024-04-12T10:26:27.261103Z" + "iopub.execute_input": "2024-04-22T21:54:19.261134Z", + "iopub.status.busy": "2024-04-22T21:54:19.260853Z", + "iopub.status.idle": "2024-04-22T21:54:19.264079Z", + "shell.execute_reply": "2024-04-22T21:54:19.263651Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:27.263783Z", - "iopub.status.busy": "2024-04-12T10:26:27.263466Z", - "iopub.status.idle": "2024-04-12T10:26:27.267133Z", - "shell.execute_reply": "2024-04-12T10:26:27.266705Z" + "iopub.execute_input": "2024-04-22T21:54:19.266111Z", + "iopub.status.busy": "2024-04-22T21:54:19.265801Z", + "iopub.status.idle": "2024-04-22T21:54:19.269562Z", + "shell.execute_reply": "2024-04-22T21:54:19.269062Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:27.269406Z", - "iopub.status.busy": "2024-04-12T10:26:27.268999Z", - "iopub.status.idle": "2024-04-12T10:26:27.272616Z", - "shell.execute_reply": "2024-04-12T10:26:27.272086Z" + "iopub.execute_input": "2024-04-22T21:54:19.271732Z", + "iopub.status.busy": "2024-04-22T21:54:19.271325Z", + "iopub.status.idle": "2024-04-22T21:54:19.274995Z", + "shell.execute_reply": "2024-04-22T21:54:19.274535Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:27.274590Z", - "iopub.status.busy": "2024-04-12T10:26:27.274300Z", - "iopub.status.idle": "2024-04-12T10:26:27.277078Z", - "shell.execute_reply": "2024-04-12T10:26:27.276555Z" + "iopub.execute_input": "2024-04-22T21:54:19.277062Z", + "iopub.status.busy": "2024-04-22T21:54:19.276686Z", + "iopub.status.idle": "2024-04-22T21:54:19.279572Z", + "shell.execute_reply": "2024-04-22T21:54:19.279120Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:27.278993Z", - "iopub.status.busy": "2024-04-12T10:26:27.278705Z", - "iopub.status.idle": "2024-04-12T10:27:00.941139Z", - "shell.execute_reply": "2024-04-12T10:27:00.940519Z" + "iopub.execute_input": "2024-04-22T21:54:19.281671Z", + "iopub.status.busy": "2024-04-22T21:54:19.281283Z", + "iopub.status.idle": "2024-04-22T21:54:53.054859Z", + "shell.execute_reply": "2024-04-22T21:54:53.054243Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7f06238bd8ab4433a0b5aa44c1f04204", + "model_id": "3a5c3f4075c34414a4f0ca30fa9719d5", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d6787cbdf5ee480b8c56d5548fb98447", + "model_id": "3471b75d2ef44fdf9649652bd08a32b1", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:00.943823Z", - "iopub.status.busy": "2024-04-12T10:27:00.943407Z", - "iopub.status.idle": "2024-04-12T10:27:01.609659Z", - "shell.execute_reply": "2024-04-12T10:27:01.609127Z" + "iopub.execute_input": "2024-04-22T21:54:53.057556Z", + "iopub.status.busy": "2024-04-22T21:54:53.057154Z", + "iopub.status.idle": "2024-04-22T21:54:53.727331Z", + "shell.execute_reply": "2024-04-22T21:54:53.726783Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:01.611994Z", - "iopub.status.busy": "2024-04-12T10:27:01.611523Z", - "iopub.status.idle": "2024-04-12T10:27:04.327844Z", - "shell.execute_reply": "2024-04-12T10:27:04.327245Z" + "iopub.execute_input": "2024-04-22T21:54:53.729675Z", + "iopub.status.busy": "2024-04-22T21:54:53.729241Z", + "iopub.status.idle": "2024-04-22T21:54:56.456534Z", + "shell.execute_reply": "2024-04-22T21:54:56.456038Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:04.330264Z", - "iopub.status.busy": "2024-04-12T10:27:04.329804Z", - "iopub.status.idle": "2024-04-12T10:27:36.944707Z", - "shell.execute_reply": "2024-04-12T10:27:36.944134Z" + "iopub.execute_input": "2024-04-22T21:54:56.458824Z", + "iopub.status.busy": "2024-04-22T21:54:56.458531Z", + "iopub.status.idle": "2024-04-22T21:55:28.874804Z", + "shell.execute_reply": "2024-04-22T21:55:28.874259Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38780db575474dadabbc09378f30dbd2", + "model_id": "6027c2cfe03c4dcabcad54caec9d5a83", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:36.946860Z", - "iopub.status.busy": "2024-04-12T10:27:36.946678Z", - "iopub.status.idle": "2024-04-12T10:27:51.770612Z", - "shell.execute_reply": "2024-04-12T10:27:51.769974Z" + "iopub.execute_input": "2024-04-22T21:55:28.877126Z", + "iopub.status.busy": "2024-04-22T21:55:28.876730Z", + "iopub.status.idle": "2024-04-22T21:55:43.455474Z", + "shell.execute_reply": "2024-04-22T21:55:43.454911Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:51.773061Z", - "iopub.status.busy": "2024-04-12T10:27:51.772875Z", - "iopub.status.idle": "2024-04-12T10:27:55.558506Z", - "shell.execute_reply": "2024-04-12T10:27:55.557951Z" + "iopub.execute_input": "2024-04-22T21:55:43.458126Z", + "iopub.status.busy": "2024-04-22T21:55:43.457715Z", + "iopub.status.idle": "2024-04-22T21:55:47.115280Z", + "shell.execute_reply": "2024-04-22T21:55:47.114665Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:55.560743Z", - "iopub.status.busy": "2024-04-12T10:27:55.560387Z", - "iopub.status.idle": "2024-04-12T10:27:56.949047Z", - "shell.execute_reply": "2024-04-12T10:27:56.948549Z" + "iopub.execute_input": "2024-04-22T21:55:47.117497Z", + "iopub.status.busy": "2024-04-22T21:55:47.117221Z", + "iopub.status.idle": "2024-04-22T21:55:48.513103Z", + "shell.execute_reply": "2024-04-22T21:55:48.512489Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "790a745551d748e5a360877de35a5528", + "model_id": "b0ae4a13367344b6923aa49aaa66c9a5", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:56.951632Z", - "iopub.status.busy": "2024-04-12T10:27:56.951266Z", - "iopub.status.idle": "2024-04-12T10:27:56.979941Z", - "shell.execute_reply": "2024-04-12T10:27:56.979444Z" + "iopub.execute_input": "2024-04-22T21:55:48.515417Z", + "iopub.status.busy": "2024-04-22T21:55:48.515129Z", + "iopub.status.idle": "2024-04-22T21:55:48.544568Z", + "shell.execute_reply": "2024-04-22T21:55:48.544052Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:56.982412Z", - "iopub.status.busy": "2024-04-12T10:27:56.982040Z", - "iopub.status.idle": "2024-04-12T10:28:03.073281Z", - "shell.execute_reply": "2024-04-12T10:28:03.072741Z" + "iopub.execute_input": "2024-04-22T21:55:48.547111Z", + "iopub.status.busy": "2024-04-22T21:55:48.546723Z", + "iopub.status.idle": "2024-04-22T21:55:54.642681Z", + "shell.execute_reply": "2024-04-22T21:55:54.642087Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:03.075625Z", - "iopub.status.busy": "2024-04-12T10:28:03.075256Z", - "iopub.status.idle": "2024-04-12T10:28:03.130541Z", - "shell.execute_reply": "2024-04-12T10:28:03.130055Z" + "iopub.execute_input": "2024-04-22T21:55:54.644972Z", + "iopub.status.busy": "2024-04-22T21:55:54.644638Z", + "iopub.status.idle": "2024-04-22T21:55:54.701576Z", + "shell.execute_reply": "2024-04-22T21:55:54.701031Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0732b60926b34bbcb8a0fd33bbf5a2f9": { + "0386c13e21844ee8b04e9df1675e1812": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1054,131 +1054,82 @@ "description_width": "" } }, - "126268b6a1584c17a94a8817302fbf2c": { - "model_module": "@jupyter-widgets/base", + "0492ba9f1e3a4efe8249c8ded7b8c391": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f5ef443f4b7a4b0fb4fb79fd69a1727a", + "placeholder": "​", + "style": "IPY_MODEL_efa97ca09f1b49c78483bbfdee4a7f09", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "1339dcc0a1a7407bb84512ea53bd7ddd": { + "07807a8083814c04a2d25bb4e23d0e5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_13f54d4753494df3862296468197d3b6", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ed7a51a06384ecf88c49dee2eed29a2", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "15d59503a674417cbdc653603d874548": { - "model_module": "@jupyter-widgets/base", + "092091cdd83146a9a2f6e2549a82972c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b657af8ea5bb460aa88500b786eb45d6", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0386c13e21844ee8b04e9df1675e1812", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "18ef058881f346038d8b473871f68d57": { + "11d1ca0e51f14e8b90730994f5756791": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1193,15 +1144,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b1fcd981dfe14852825b927813270962", + "layout": "IPY_MODEL_1b5a099043484b90bbb666cc286d8673", "placeholder": "​", - "style": "IPY_MODEL_a55fe4efaa49442fb04c3f03cd1b2e94", + "style": "IPY_MODEL_de850e0652364bc7b4f837d483999359", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": "images processed using softmin: 100%" } }, - "1b86e3ad6ca14d29b09772eb97fbc589": { + "13f54d4753494df3862296468197d3b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1254,7 +1205,7 @@ "width": null } }, - "1ce0f29231ea4220a0e134aab1a376cf": { + "1b5a099043484b90bbb666cc286d8673": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1307,7 +1258,7 @@ "width": null } }, - "24a2ac6046f544919c44046d073968b0": { + "20a2be1421954f0ab8f7c284fe766970": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1360,7 +1311,7 @@ "width": null } }, - "2af276f19a394d439df5d8d7ef529e00": { + "2914fb5ccc2f424fa00bc2535e1ada44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1413,7 +1364,23 @@ "width": null } }, - "31721cb9fffc4dbf9c7ab1c32f8c1b76": { + "3130e614161f41b1a4d381b1750dd32e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "31fe8cba878b4bc8a86c452527a2d16d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1466,7 +1433,7 @@ "width": null } }, - "38780db575474dadabbc09378f30dbd2": { + "3471b75d2ef44fdf9649652bd08a32b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1481,42 +1448,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6beeb0a552624a8ea20d743ae5632351", - "IPY_MODEL_72a52b9dd8264f8caa81db84e9d1bd63", - "IPY_MODEL_ad4165ddb7c0400cb4c76c5de818b869" + "IPY_MODEL_a457b7c67e424d3390a8311ba4996d9b", + "IPY_MODEL_092091cdd83146a9a2f6e2549a82972c", + "IPY_MODEL_81a2479c8be9447db7489f483514d756" ], - "layout": "IPY_MODEL_1b86e3ad6ca14d29b09772eb97fbc589", + "layout": "IPY_MODEL_d93d489d2fa94b9792c1cdc2e6a477d8", "tabbable": null, "tooltip": null } }, - "4780407d9fe34c529ec54e37cc115ec6": { + "3a5c3f4075c34414a4f0ca30fa9719d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e0b646e0bec435a96b1dee41c9c674a", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0732b60926b34bbcb8a0fd33bbf5a2f9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8067860b488449a18af1c27664a0a892", + "IPY_MODEL_4a0946f646bf4ca8aac6d870673a5559", + "IPY_MODEL_75c4cbacdf61443db7d30eac887030c7" + ], + "layout": "IPY_MODEL_2914fb5ccc2f424fa00bc2535e1ada44", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "4a50cc9af4e34bd29f2912703ac5ad6f": { + "3ae73ba4c5df4ae0ac7b1e526941e4a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1569,51 +1534,23 @@ "width": null } }, - "533f1a42129f4ae0be6980b6f919880c": { + "3de0a11828de416a8f0c2fa2a93b9b6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5628b646987042dda0264bb377694437": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_84de2f6247014256ad132c3fda537f24", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e84f83e40c284b1e84c952d8139068a4", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "bar_color": null, + "description_width": "" } }, - "57e70ea78ca640b986138a820d9510c4": { + "475e81558da340a38c892c5ef4e9ca31": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1666,23 +1603,33 @@ "width": null } }, - "5c0477f8ebef4770a735132f365dddfe": { + "4a0946f646bf4ca8aac6d870673a5559": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e67c2d1d54404598b81f4502aa6a9167", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3130e614161f41b1a4d381b1750dd32e", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "68094c16496444c8bbe119b88e573704": { + "4c1ab18c9ba948929ced3d28022b0dd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1700,30 +1647,7 @@ "text_color": null } }, - "6beeb0a552624a8ea20d743ae5632351": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1ce0f29231ea4220a0e134aab1a376cf", - "placeholder": "​", - "style": "IPY_MODEL_68094c16496444c8bbe119b88e573704", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6e0b646e0bec435a96b1dee41c9c674a": { + "59f2bd2ad2fa42b8b52d04e568ada0d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1776,57 +1700,157 @@ "width": null } }, - "72a52b9dd8264f8caa81db84e9d1bd63": { + "6027c2cfe03c4dcabcad54caec9d5a83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0492ba9f1e3a4efe8249c8ded7b8c391", + "IPY_MODEL_974ce86284a74430a1055430bbe88a37", + "IPY_MODEL_7d40b72bf89d411eb24563cf26440372" + ], + "layout": "IPY_MODEL_e8a5db45f62846fd8b23c2a3fdf40691", + "tabbable": null, + "tooltip": null + } + }, + "75c4cbacdf61443db7d30eac887030c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c8bf85d04244dd0a33e7a257dcd326f", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bc8b662f40a045f4b7cd125036b91633", + "layout": "IPY_MODEL_20a2be1421954f0ab8f7c284fe766970", + "placeholder": "​", + "style": "IPY_MODEL_8d9c43c6d3914fb7bdbf0b79d6ff486e", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": " 30/30 [00:00<00:00, 626.10it/s]" } }, - "790a745551d748e5a360877de35a5528": { + "7d40b72bf89d411eb24563cf26440372": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f236450961ed452b97efee3295189d6b", - "IPY_MODEL_5628b646987042dda0264bb377694437", - "IPY_MODEL_b3ef70c59ba34c959852b2d99e2a6697" - ], - "layout": "IPY_MODEL_eecfaf88c5c44a558868f0a076d29633", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff45b2ab489f4e62896a50959a91017b", + "placeholder": "​", + "style": "IPY_MODEL_d4331616c61f42669ed6c5b868a3b32d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 152528.46it/s]" + } + }, + "7ed7a51a06384ecf88c49dee2eed29a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8067860b488449a18af1c27664a0a892": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59f2bd2ad2fa42b8b52d04e568ada0d6", + "placeholder": "​", + "style": "IPY_MODEL_4c1ab18c9ba948929ced3d28022b0dd7", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "81a2479c8be9447db7489f483514d756": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ae73ba4c5df4ae0ac7b1e526941e4a8", + "placeholder": "​", + "style": "IPY_MODEL_badf424ac71644abb9bc459cbbcd1fc6", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.40it/s]" + } + }, + "8d9c43c6d3914fb7bdbf0b79d6ff486e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7948ef1c398d42419477bd0cf0baf4f3": { + "9063549653644d9a81204f29fe348c25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1844,7 +1868,79 @@ "text_color": null } }, - "7f06238bd8ab4433a0b5aa44c1f04204": { + "930f0ee2e8904928ba6e7ef34b2b252f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b7409210da674f7686827a50e20b3c95", + "placeholder": "​", + "style": "IPY_MODEL_9063549653644d9a81204f29fe348c25", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.80it/s]" + } + }, + "974ce86284a74430a1055430bbe88a37": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31fe8cba878b4bc8a86c452527a2d16d", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3de0a11828de416a8f0c2fa2a93b9b6f", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "a457b7c67e424d3390a8311ba4996d9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_475e81558da340a38c892c5ef4e9ca31", + "placeholder": "​", + "style": "IPY_MODEL_b6ea770293f7436bbbef805fbdd92ee7", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "b0ae4a13367344b6923aa49aaa66c9a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1859,16 +1955,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bae087527be5415ea679769d16765afa", - "IPY_MODEL_4780407d9fe34c529ec54e37cc115ec6", - "IPY_MODEL_eaa4f866472b404491414a32d99a41b6" + "IPY_MODEL_11d1ca0e51f14e8b90730994f5756791", + "IPY_MODEL_07807a8083814c04a2d25bb4e23d0e5a", + "IPY_MODEL_930f0ee2e8904928ba6e7ef34b2b252f" ], - "layout": "IPY_MODEL_24a2ac6046f544919c44046d073968b0", + "layout": "IPY_MODEL_f70fc43bf9204fe2afc56e1e3ec2547a", "tabbable": null, "tooltip": null } }, - "84de2f6247014256ad132c3fda537f24": { + "b657af8ea5bb460aa88500b786eb45d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1921,7 +2017,25 @@ "width": null } }, - "8c8bf85d04244dd0a33e7a257dcd326f": { + "b6ea770293f7436bbbef805fbdd92ee7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b7409210da674f7686827a50e20b3c95": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1974,7 +2088,7 @@ "width": null } }, - "a55fe4efaa49442fb04c3f03cd1b2e94": { + "badf424ac71644abb9bc459cbbcd1fc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1992,30 +2106,25 @@ "text_color": null } }, - "ad4165ddb7c0400cb4c76c5de818b869": { + "d4331616c61f42669ed6c5b868a3b32d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15d59503a674417cbdc653603d874548", - "placeholder": "​", - "style": "IPY_MODEL_c372091e7515418898c0d76470aee87b", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154970.45it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b1fcd981dfe14852825b927813270962": { + "d93d489d2fa94b9792c1cdc2e6a477d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2068,131 +2177,131 @@ "width": null } }, - "b3b5fb29ca66447b9b8123119a028613": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f8bb5c74bbbe4f728df7f9a2ca21849b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5c0477f8ebef4770a735132f365dddfe", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "b3ef70c59ba34c959852b2d99e2a6697": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57e70ea78ca640b986138a820d9510c4", - "placeholder": "​", - "style": "IPY_MODEL_1339dcc0a1a7407bb84512ea53bd7ddd", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.85it/s]" - } - }, - "bae087527be5415ea679769d16765afa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2af276f19a394d439df5d8d7ef529e00", - "placeholder": "​", - "style": "IPY_MODEL_d4a59f2915474030b09560e4bd1e0b2a", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "bc8b662f40a045f4b7cd125036b91633": { + "de850e0652364bc7b4f837d483999359": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c372091e7515418898c0d76470aee87b": { - "model_module": "@jupyter-widgets/controls", + "e67c2d1d54404598b81f4502aa6a9167": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c8b5b8f4a94340a98ed0a993a042f8cd": { - "model_module": "@jupyter-widgets/controls", + "e8a5db45f62846fd8b23c2a3fdf40691": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d4a59f2915474030b09560e4bd1e0b2a": { + "efa97ca09f1b49c78483bbfdee4a7f09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2210,54 +2319,7 @@ "text_color": null } }, - "d6787cbdf5ee480b8c56d5548fb98447": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_18ef058881f346038d8b473871f68d57", - "IPY_MODEL_b3b5fb29ca66447b9b8123119a028613", - "IPY_MODEL_dffa34f9f86349d18f5ed9d223add48a" - ], - "layout": "IPY_MODEL_126268b6a1584c17a94a8817302fbf2c", - "tabbable": null, - "tooltip": null - } - }, - "dffa34f9f86349d18f5ed9d223add48a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31721cb9fffc4dbf9c7ab1c32f8c1b76", - "placeholder": "​", - "style": "IPY_MODEL_7948ef1c398d42419477bd0cf0baf4f3", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.43it/s]" - } - }, - "e813365659b74cbba3b2bd6690626fb4": { + "f5ef443f4b7a4b0fb4fb79fd69a1727a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2310,46 +2372,7 @@ "width": null } }, - "e84f83e40c284b1e84c952d8139068a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "eaa4f866472b404491414a32d99a41b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e813365659b74cbba3b2bd6690626fb4", - "placeholder": "​", - "style": "IPY_MODEL_c8b5b8f4a94340a98ed0a993a042f8cd", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 637.91it/s]" - } - }, - "eecfaf88c5c44a558868f0a076d29633": { + "f70fc43bf9204fe2afc56e1e3ec2547a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2402,30 +2425,7 @@ "width": null } }, - "f236450961ed452b97efee3295189d6b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4a50cc9af4e34bd29f2912703ac5ad6f", - "placeholder": "​", - "style": "IPY_MODEL_533f1a42129f4ae0be6980b6f919880c", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "f8bb5c74bbbe4f728df7f9a2ca21849b": { + "ff45b2ab489f4e62896a50959a91017b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index e38dad2bd..1541dc011 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:05.390887Z", - "iopub.status.busy": "2024-04-12T10:28:05.390476Z", - "iopub.status.idle": "2024-04-12T10:28:07.161439Z", - "shell.execute_reply": "2024-04-12T10:28:07.160860Z" + "iopub.execute_input": "2024-04-22T21:55:57.071212Z", + "iopub.status.busy": "2024-04-22T21:55:57.070842Z", + "iopub.status.idle": "2024-04-22T21:55:58.239716Z", + "shell.execute_reply": "2024-04-22T21:55:58.239143Z" } }, "outputs": [ @@ -86,17 +86,17 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-12 10:28:05-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... 143.244.49.179, 2400:52e0:1a01::1113:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.49.179|:443... connected.\r\n", - "HTTP request sent, awaiting response... " + "--2024-04-22 21:55:57-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "200 OK\r\n", + "185.93.1.244, 2400:52e0:1a00::845:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.44MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-04-12 10:28:05 (5.44 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-04-22 21:55:57 (8.65 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,22 +131,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-12 10:28:05-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.168.129, 3.5.25.18, 52.216.9.75, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.168.129|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" + "--2024-04-22 21:55:57-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.151, 52.217.169.97, 16.182.103.49, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.151|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -167,23 +161,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 168.53K 842KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 8%[> ] 1.45M 3.63MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 52%[=========> ] 8.54M 14.2MB/s " + "pred_probs.npz 39%[======> ] 6.49M 32.4MB/s " ] }, { @@ -191,9 +169,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 21.9MB/s in 0.7s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 56.4MB/s in 0.3s \r\n", "\r\n", - "2024-04-12 10:28:07 (21.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-04-22 21:55:58 (56.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -210,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:07.163761Z", - "iopub.status.busy": "2024-04-12T10:28:07.163576Z", - "iopub.status.idle": "2024-04-12T10:28:08.370108Z", - "shell.execute_reply": "2024-04-12T10:28:08.369498Z" + "iopub.execute_input": "2024-04-22T21:55:58.242396Z", + "iopub.status.busy": "2024-04-22T21:55:58.242034Z", + "iopub.status.idle": "2024-04-22T21:55:59.455182Z", + "shell.execute_reply": "2024-04-22T21:55:59.454641Z" }, "nbsphinx": "hidden" }, @@ -224,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -250,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:08.372983Z", - "iopub.status.busy": "2024-04-12T10:28:08.372464Z", - "iopub.status.idle": "2024-04-12T10:28:08.375835Z", - "shell.execute_reply": "2024-04-12T10:28:08.375399Z" + "iopub.execute_input": "2024-04-22T21:55:59.457646Z", + "iopub.status.busy": "2024-04-22T21:55:59.457364Z", + "iopub.status.idle": "2024-04-22T21:55:59.460899Z", + "shell.execute_reply": "2024-04-22T21:55:59.460450Z" } }, "outputs": [], @@ -303,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:08.377974Z", - "iopub.status.busy": "2024-04-12T10:28:08.377634Z", - "iopub.status.idle": "2024-04-12T10:28:08.380573Z", - "shell.execute_reply": "2024-04-12T10:28:08.380113Z" + "iopub.execute_input": "2024-04-22T21:55:59.463089Z", + "iopub.status.busy": "2024-04-22T21:55:59.462748Z", + "iopub.status.idle": "2024-04-22T21:55:59.465821Z", + "shell.execute_reply": "2024-04-22T21:55:59.465272Z" }, "nbsphinx": "hidden" }, @@ -324,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:08.382549Z", - "iopub.status.busy": "2024-04-12T10:28:08.382232Z", - "iopub.status.idle": "2024-04-12T10:28:17.453178Z", - "shell.execute_reply": "2024-04-12T10:28:17.452640Z" + "iopub.execute_input": "2024-04-22T21:55:59.467925Z", + "iopub.status.busy": "2024-04-22T21:55:59.467525Z", + "iopub.status.idle": "2024-04-22T21:56:08.577604Z", + "shell.execute_reply": "2024-04-22T21:56:08.577121Z" } }, "outputs": [], @@ -401,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:17.455742Z", - "iopub.status.busy": "2024-04-12T10:28:17.455378Z", - "iopub.status.idle": "2024-04-12T10:28:17.460991Z", - "shell.execute_reply": "2024-04-12T10:28:17.460532Z" + "iopub.execute_input": "2024-04-22T21:56:08.580097Z", + "iopub.status.busy": "2024-04-22T21:56:08.579685Z", + "iopub.status.idle": "2024-04-22T21:56:08.585305Z", + "shell.execute_reply": "2024-04-22T21:56:08.584758Z" }, "nbsphinx": "hidden" }, @@ -444,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:17.462929Z", - "iopub.status.busy": "2024-04-12T10:28:17.462607Z", - "iopub.status.idle": "2024-04-12T10:28:17.801642Z", - "shell.execute_reply": "2024-04-12T10:28:17.801097Z" + "iopub.execute_input": "2024-04-22T21:56:08.587395Z", + "iopub.status.busy": "2024-04-22T21:56:08.587082Z", + "iopub.status.idle": "2024-04-22T21:56:08.927057Z", + "shell.execute_reply": "2024-04-22T21:56:08.926485Z" } }, "outputs": [], @@ -484,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:17.804014Z", - "iopub.status.busy": "2024-04-12T10:28:17.803671Z", - "iopub.status.idle": "2024-04-12T10:28:17.808143Z", - "shell.execute_reply": "2024-04-12T10:28:17.807640Z" + "iopub.execute_input": "2024-04-22T21:56:08.929600Z", + "iopub.status.busy": "2024-04-22T21:56:08.929258Z", + "iopub.status.idle": "2024-04-22T21:56:08.933506Z", + "shell.execute_reply": "2024-04-22T21:56:08.933000Z" } }, "outputs": [ @@ -559,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:17.810268Z", - "iopub.status.busy": "2024-04-12T10:28:17.809953Z", - "iopub.status.idle": "2024-04-12T10:28:20.119925Z", - "shell.execute_reply": "2024-04-12T10:28:20.119174Z" + "iopub.execute_input": "2024-04-22T21:56:08.935545Z", + "iopub.status.busy": "2024-04-22T21:56:08.935161Z", + "iopub.status.idle": "2024-04-22T21:56:11.227104Z", + "shell.execute_reply": "2024-04-22T21:56:11.226447Z" } }, "outputs": [], @@ -584,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:20.122955Z", - "iopub.status.busy": "2024-04-12T10:28:20.122406Z", - "iopub.status.idle": "2024-04-12T10:28:20.126579Z", - "shell.execute_reply": "2024-04-12T10:28:20.126020Z" + "iopub.execute_input": "2024-04-22T21:56:11.230044Z", + "iopub.status.busy": "2024-04-22T21:56:11.229493Z", + "iopub.status.idle": "2024-04-22T21:56:11.233931Z", + "shell.execute_reply": "2024-04-22T21:56:11.233447Z" } }, "outputs": [ @@ -623,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:20.128669Z", - "iopub.status.busy": "2024-04-12T10:28:20.128194Z", - "iopub.status.idle": "2024-04-12T10:28:20.133866Z", - "shell.execute_reply": "2024-04-12T10:28:20.133344Z" + "iopub.execute_input": "2024-04-22T21:56:11.235763Z", + "iopub.status.busy": "2024-04-22T21:56:11.235596Z", + "iopub.status.idle": "2024-04-22T21:56:11.240954Z", + "shell.execute_reply": "2024-04-22T21:56:11.240435Z" } }, "outputs": [ @@ -804,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:20.135918Z", - "iopub.status.busy": "2024-04-12T10:28:20.135532Z", - "iopub.status.idle": "2024-04-12T10:28:20.161557Z", - "shell.execute_reply": "2024-04-12T10:28:20.160983Z" + "iopub.execute_input": "2024-04-22T21:56:11.242997Z", + "iopub.status.busy": "2024-04-22T21:56:11.242662Z", + "iopub.status.idle": "2024-04-22T21:56:11.269008Z", + "shell.execute_reply": "2024-04-22T21:56:11.268584Z" } }, "outputs": [ @@ -909,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:20.163556Z", - "iopub.status.busy": "2024-04-12T10:28:20.163243Z", - "iopub.status.idle": "2024-04-12T10:28:20.167818Z", - "shell.execute_reply": "2024-04-12T10:28:20.167340Z" + "iopub.execute_input": "2024-04-22T21:56:11.271132Z", + "iopub.status.busy": "2024-04-22T21:56:11.270805Z", + "iopub.status.idle": "2024-04-22T21:56:11.274756Z", + "shell.execute_reply": "2024-04-22T21:56:11.274231Z" } }, "outputs": [ @@ -986,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:20.169898Z", - "iopub.status.busy": "2024-04-12T10:28:20.169573Z", - "iopub.status.idle": "2024-04-12T10:28:21.560484Z", - "shell.execute_reply": "2024-04-12T10:28:21.559957Z" + "iopub.execute_input": "2024-04-22T21:56:11.276841Z", + "iopub.status.busy": "2024-04-22T21:56:11.276531Z", + "iopub.status.idle": "2024-04-22T21:56:12.692982Z", + "shell.execute_reply": "2024-04-22T21:56:12.692481Z" } }, "outputs": [ @@ -1161,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:21.562475Z", - "iopub.status.busy": "2024-04-12T10:28:21.562299Z", - "iopub.status.idle": "2024-04-12T10:28:21.566506Z", - "shell.execute_reply": "2024-04-12T10:28:21.565956Z" + "iopub.execute_input": "2024-04-22T21:56:12.695262Z", + "iopub.status.busy": "2024-04-22T21:56:12.694870Z", + "iopub.status.idle": "2024-04-22T21:56:12.699061Z", + "shell.execute_reply": "2024-04-22T21:56:12.698593Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index beccdec6e449aa1333d45f72cf74189fc0070b36..1029fe8b940ef8a8d1fedda14186fc833b15f86c 100644 GIT binary patch delta 62 zcmX>tep-A(E~8tep-A(E~BAYepzywv6-d5k+DgNk%@(&xrIrJd8&nRno*jCxpA_kagwP?YLbbe RL6WgWVw#D`=6Q^|TmVT+5xxKb diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index fa3a66c8b243d1113775e1c73700c326e799c6e7..ae4b23eaca059f4902b31628cf0ce7fe6c96432d 100644 GIT binary patch delta 64 zcmcb6i}~&?<_%{!4U5fFbK(MT`TVhV%cYw0(FulFQVl%8BZ0bL1m(t%{eD! zl}`5bAJ04g=Se=MtZp4X|HSqG z(R+7%=&9jrPHi9l<>c=3!*%ZPwdvr>jn^Ok#HmY%J8ypB@F%A(9_(%Rbo;NZE*bvp zxx4z3(O>JA^v>FAz=C%PloRXc_sx%vJ7?T3b2e%}l)xaG53u1&{}Uw`=8 zm18%$qiH3$qeFG;p3Rf+`snubA)N`;C7Z@iBvxCu^-u4;{+L_2;pob{-Ld28D1I*v zkKFpA?w(L>zo`HJN$_W5AFh7*!2fEk(|6x``tp`?5+hgCM;Qdk$x+UHG{SLdl1*ax z^mlG4zeFCt`1DI3c;=jzvP`ArDR?DB64XdeWWpaByd)v?pKA&)4VNF^cKVrb{PLVu zT0%|s$tslv5ypD0y;_+0Wb(vTuIHV7rSjZTWBl28g?m1O+6 z;!FMK4n4Bv+%_a5v$Q~l!{;ow*}5Q!Hr6Sr#pH9Pmrj$%FF3blG~(=yXF4g7dG^_R zMQnEX41$|{s`yeL*+oz8I=3YuIZZPsRvIChcEJ(ef6RGC1ZCrm7GLT=_nhBWFRXs_ zwF|3VcUNENp1Qrhsx?ex=9FM2OM!iQ&1FuJQEDh*QH}1otvCNN^E{&8TvU zX)C$qoGBk^ck0P{Yj-jYwvFySzkW~EFc}4LM9NH!@XDaNFy}H8#%M=WSKVE29o?7* zPgKPSx-Z{Rzp*U@;5&C;Wm}_Vwy0`GX)1^()>@yXA%rB0J8;w8gxnWBoFVPQ%*tpT zbE1mS%uF=hf$!JbN8i~|-&?gR_ea5nNfaro334_^pe)lMOr&mf<(9#>s;01Tck@jH z+7_0j-D5WmNO#5O>!yt%up~o}ECvyXa8zaIo%Mo8m#J9Wh|Yo1NCnk+ClQ+@%ZZu9 zoli!LuVwV;6V?6IQZ!r(&REh$D3k+ARAd=XNGwiApSxjjrfLeScBc?v8|E+S`)#Q1 z_4n7i_6fdEzw_10#}4g0abj<~GYU(Q1&IL$A_s$t{{jYiL8&(QgN!Gs|<{uf`d1!C9>reHzwy-VR9k^of z(pIOCL=4uN#6*w+Xi_Zd5V{=?*ZZ4N1aH5uBHcG1uFr3cLKVx#GQx?7 zNjXbp#vwZibzv2oY^lZmG{=@*Fh*z@O$ts>iu$DpM_zZp&?OVRH6bP;Jqjh0UU)}Q zyGjE)gRO^XoQY2D#rqf8VZN^nxeuvD*^+dy6&EC zEi)UNp_G!eOd2TwO0b&OF6O|o7s*CQ;xkn%g9LRdRF|wo00X<^M3MrK4pf9ZsT)i4 z*X=&{bj{krg0{z-?*8^<^^(1025eTQ{=O4RNf41H>rxIm5@CH*l;+V9HMn6@Q=s@M z&I;E;*CVHtlk49u9n~7nn!=8{2QRF5Up6i@mL!NEgFC>HGp-ECE0|vECI>*x78;Jz zVL=<3V-_?TD}+War$|t%Vhm&a%mR)&!!6|o8Se!#y_{B3;p;>I)XL2Qt`LXqKKcuA zTQP(ypQ>!bEg-I0ln`8kn*>H;O3Cb5#6R+x6m3bAhJ~nYCQ?uc4@aCLEaUz?!}A1i z5BU1NYKd4M`iia<%7^q$V@sM_BYMS`x-AcZ*ufy1I`X{1d878#^<7mtl&5Q24q}YH z9lxtz)R1gIvQ8scQR}S26W1AV!YOkzdtD9G6qq7;h${-!=S)PA=yinyOa&Ro+cVym zswPp#JY0_!6xD}m&zS`Cc<7gu66-7J_Q|e(_1pThRWm;bJFY3k^`CjVKDbxSz|b&b zCHO8H&^Fff&NvSiw80Zp+Nr=QisLB`A!+7amt2pmQmU?hyKr7)4Tn%{^S3nNJ7`n| zzra}nF)1zaJJ2M+Araa*qNn75+|}G06jZICs6b_ogUujId(PAUj6cF4feaWASB@{C zoLR^gk4I{fUr%_Y7`j(pSiiX~h5&83+HAwfQ_{y@CW53T`E7l`P3#1}BvqefPoYhD|LffGX5Is7ne6A-9A^ zHsUt|aT0hMv-qT_K-Ms(419tV4w}a&&?|BtA{zQ+O5%lO`BZI|mL03jKU`YxS+;ba zy!sz%lR4_3tpwCM6@sE>c%aa6&YgroSkur2i`bWmi${;Xv%al5S-7kX=qn}adi44E zXGYJWue7Z(`Wjd+urOCBc~11{gmi@(@yuITQ$2A8W2xQ1_P|D4xEl`C1>w2mfqN&s z&%((uSy`x50Pw7R{4HZ3?UQ>V$NgUp{CXjkX(Ak%PxU zvM|ybThcV>-UYERQ$$+S3~MaNkU?)i!dc~Mj2TuO5Y&9Sm9bTAj6!*3-euTy!6C+D z@TfOnN+E-yqX#eV_flLOl5=VPs^hJE>Vt!Gx*ck;ds*$%YzB6UN3EGr5MWTeXoD!4 zU`r@P>k-;wY6_Y{D`ggTR?oks^*}16=lZt`hi1>huC%QQ>}>SjpznqfDPi_dfI>nS z1@a^j@Zi|JO&o3$aWueAcG2~g1HzOBkY8{N6*cN{7RYEm8EtNtPqUAyMMp3Xe~3=T*>=R2sung;!uG>Mk%-O(iU*s#N$^C;Dw>V$u{U|_KSdtU8cKW>md+1{UkZX+<>WSxE6SR}C4_H>6LH5)p zf=!#zrLTg?Tf!MA*hDF`%P2J3^%c;g;mTO{P~^w!i#KZLVgOUto4>x9^jLnD>)p$G zAGb4llSkBJSZhvg6bxN2h17-eOJE47NgL3GqLHHsjIO5M==+)s zi3g`=VV)&Yz(CGG*GmQbT8;N-TAGD0NcWZZ)(4tG1l?ngRJ7awzWRbjq6I(#V;p@3 z!Kv^l?TiGlIl7i~9hpZotr+wUSRMd`fCI!dwvVO-gIDZcwPkR&wP_;ij3?L-hX6zu z80dx$=a~f+vzn6M{I&f!Uzg@D+x_^a0qg#HWblGEqa}fYk$vzS83`c_J14zO`=l`M&+ynR3|p? z>-WIrEzMtl(x@%0KCUO%EVF$~&F~%?#gGvSUK=567#U<-@(iTxt%9?i`khjveroho z;d0i4u8^A>8k>a^GiO0p+ERDw_WIy+U-su`jeo8?=g=pw+w#`MU|}&>SPT}{jk`AB zZ!uW-*Q1TaU|}&>*f8(eAQu;dg=t@9F<6*0-B=737K4RN<*t4|7@ujdw55LS*bz?g zw-_w^ySc_sPGLj< delta 13405 zcmeHNTdZAG6?N}>f$|cXwxE>Wv%PI?z@}aAM+}NYNsvdW8iKJ+Sx?%iZD}iNY%M~6 zh(?RYxP@pb5}}Diz{VV75aB~U_%JFzkPxLYCTfDpmn5h-_C4p`-dpi3KlJZ3X`8gG zd#<_W9CMB_XYYI9?O%J~?N2;+E>(N(44EstnQ;-BFjN~6buv7&Y%~v+dnu9^lz47j z7UJaJ&OLu$|F(l``yW1dN&l=vEBkMJVSWG9!FB!S;FbM*4mSN~@$=z>m-gRzXxD#r z?*1>n+W+<8HNCLY?Y=#2+p%}o?hPB84Z-aW=~LTw9N6b}@6T!9*S~am|Ejxs{bPsM z_y2Nub$|A*)tBD6YrosJW6!>AJ3j69A4vOx+ZQ)%JJjB>vs%;t%3YuPAAh&M{Exl< z1$Q6ouQ;-r53jrQwhNc-9JoClIIwH??K}4Gb^Fqe?rQzLN1Fcc?wM^#tX58UXYg1n z@u$=MYmcnxAG+t}|Ie3C9zXKKE1N)L@PR}|y%9bUpHg-)J8Cr%iktplpSinyh`g}s z$mYl5IbdF8V7EDNa_@gmQCs(7fo z*@~CfE^9btEZ~hOGgbr@thUigX{9GR=r{~R@lf}<3x8j&uAckRMb+8|tM9dcK3ZSb zv&L(|H6h+G!I(DQXwQ`3hzS>L@X)>Wp6MAQoRCToF0&UxGv|>ISvnbRk&+AE(AeJbvuefQ>W|bfRlV`{L;HjK>zjJx z?W^`z&sU^9dZIe7$%a}Y4GA78Z@b*5IdbWOh=H2y2B)sCcTYD~Xf6eJzDw#PlZ`56 zr3`{)WVEEMuBk5_JhP^Lv}&xPjA-jTRYVvkT}m=o7H!BuOQ!}n`_rmuxxH`W6zLTV z4?Vf+;ks#Z%qbc?qohh$CSXol9*hLR5 zeDFgz>?mdD($l3ko87*#Y1hAAuWCvzweCcz0?GO^F*+W20?Tp$qH0JDnlN+GNY^k!_b~k z$$`CKxa1*I?%}s%?eg2ERt1Rj;HeYBhOK2y&TnzlI1y15aWX3({TIe%heSd`68^LsAU!kSHs996Ae;ReW->lYeG>cH@ktkB)0v4GTz;mdaE-gYGM?BHDx~{-MSh)A-3j{8~#yB!TCJuaES$@XwWHUAQQ*HRV@ny?Zipx^WqLyvfRG^qWYsv$?&kleY={v zsF6&gj2pxcj0NS=0@)zS4AhY@8RlIPD(8$ImuX0XDGFCL+8m%2bPmBR%GHJl2P!6| zLURM$v;zxu=r;l7gn3EkTSLL}5Ozhwb4mKrJL=iFvPpf{iY$RZL}6eW8p0&Wf^un| zcd%$E$e2O9qUe6qdHANXrf9{`HcL3AO%9ZUCqX*zvj@$$HlSI16C>mE?6@n~<17zd zDH=YFw?DnB-mnpIxN#Auvo&1XiY>w#$RxKGI)NC>1<=e5CPD%i@5TlYFt1$S z%?-xSOWNc20+F{(*I%v&7WvGqd%M~x0BEFgjrL5l_= zCRoTGFiix+j(Wn3q$r!-N{ShR2nL}CazMy1i(pdCRiq_z6I4=2r@$=O7)2*ASw{>X zAbg;ZJzw1BN;hcD$LbrK@fSexpsa>UzjkU_gE4?YX#mFpTLK5O4C4bQH54h-WMHG} zp)y7~0a}xT$r#EkMhc1xMU&5oyY|^9tCb@q7i_SY6-J~tMiv6|DogvmsX3mR^`T`}~bXm=iR@7ZiOQL%_i zV#aAv4efxw9wVgY9LT3L5Jeqa>5{;l+c(YLl2{6**qdGYq*OH!VaT3q6B8PzMJ`>3u@>! zJ2)1nzFVz=>x`FehGsljAjHQ;+qjL^cI1IU}unr7LPTr zK}(j07%Li{$Jp8JP50L8H`7g4ENW{$V^D$^@We1zH2}QE#WBi)rf2-Z2!j2<+n~& z1d|oPWJT~+3#_HkovaAnVmC4DeUlZzWJU0AE1WYZ=43_ipH>r-6~Sahfd8y8SrJTD z1d|nk9}2w5ieO>2GFcH!Rs@q3!Dy2+SrJTD1Yc&gI-X|}(`qgt^&b*bHs#!*(YT^>KtUgJrWwwp13azzjgLO4L zb#>p#O*xiin zWE~ZkRwC*kUAB=*O|m=xD{<$`4~w6o00VdEKDjMuI&g*9Cq><7|1iF5qP^EvHydKA z?5$0)72Kj|E;J*f#(pV;RL?M3;HB@b!iDtI{N%6{Pnxro}C#QW0 z?AS(I@h3qwPSHeHW@yi)(NN6po^2rqLoRYSb$NXJsHd-dYU{$;gO5Lcbb3&QqBvWx z$ySz$A~)4kYzp@RP&)Y~VD7O?<1dP7R+0%QSH3Za6ajT(hzv<`O_|c8X=C>Kf5+b* zJ+XU-j6aCbCr+I?ci+iRf9BqELpWVMJyf=XXODJ&d_f$T4CQulTio5fcu4G>a10?M zkJ>7mVuEK14e9yRnn5ELP~~EkMyG?x4Q1k_TC#yDHsVbDq-@%0m4M{RU`{A0Cz-4XmN3IQfOz93%1ua1lq9#5d#o#pT2rXXRFBUf z-Nm=Z8w<`2+@UQvH*g2rV)Jx^jX5VPC=O(8pQZg2O- zwejKO?2h~U-l1N|&StIH_^g?g@+Kn5g7J-s5&ezS^Vt@Q!RWJzjB7?uiXCQqD-?}a zH&Sn)Q+kz5Lug$+JygA(dJh}|^@eg=Q18w0o@qluM#p9#cdQM^+JZ9$uryFJwdCFu z{~Y_i6=rB-3H`%FWkP!widSSZn7qN*99XjT6~qp~V<2ab(b^YkNAZRtcQ4#3 zPEG~__dTZW-rFE}N#lMgv??tw=?$<*RW_NSf+llXP7z~c&OmZV-U5Uz>BLSYN{*~C z`CSDsL*9du2^5f=K)PbBQJw+z+^GBczr=y=)U)CPv)i8%&q5z}y-9ca+E`5ouCWxo zdp5-3DR7o_Mg@s2hY&+G!6DHQQbw0}k=T?%HlSrH1h=782nNH`6xo8J>aCfLE{Wfa zHe-#da`pkXz*P%A*8q|i{E_p}yytpp916J@B0~|EqW2MT{Fq!3y=s-k@biRDWpW7YQ=}V^m^wEo<3pC9|=MPlVHi=j0+XHK{ybNV#td>qNSg&#y);X3f`(8*3{VH36EZ{v1frItQbk$6ln40gP@6ZB zOe-9li$n_NoJr(dgs*Mr_cbIE7E%fg7zl+1iF!yedI}6G0=N9Z+V1rg|%d7FvFB z@1BRmCUjNG(i$1hcoFp4ZyDoSbI_J&@TA+LCk9$Yt0Wr0XI(u#P`P%Uasx@}>y+Cw zO}@f4`X-x65IP{rN@xX?9o|d5GjxL1y?9wonkBdde;FJ|*FWL{^+RW4_K$yy?~Eo9 zxOEu8z-M552fQQ5l?Yp-@P=CSck#L#3f}$Xq&PjTyT_(Jo2~A|De=K6gCr0;SS>sy zVTBW+ABiYvsFRC3BQ#TUz^jQ6Vsw!3YRXYo^q-v}yzXEdZ?>BFK=dAu4L^T9>11P2 zIz+F6g>v3tHHR+I!&Xjqzrwsl)P3TNI5?%IGaRQSj0ujUy>khM%)nzv9jjdGf&(}) z6ba-)Qh4LzQSCJhcFMu|Mcr>o3iVPMZ&gqgk0-qPV(@qfOIK2Kuz<_A-rx-uL>#z4 zTk2kKJWnNY_m)0R?gl1e(ikiTvV)6fZ7FHz9gGCvgg0H==^b_nrc?ur<+Q>W`?B7?U`7A`xP5W6KOflh%Uk~kwLbWR delta 8863 zcmeHLO^BUW8TR&`v81U?LdM|2&i7?#S|v&6{JiIHAr;X=)tE>@4I0AvB}FjSqPx%r z7X>LuRQPsPH;TGw1@VH=L@Cu(wE+u7a8W22NjKTL(dV1*W|Hw|&eF}DVK$dD_dV}< z-{xm#-#YNZ ztphXs-M6@PVE*?Lv-#pJJ>Ps`_P62o)9lGEBvZ6eS`}L;XdXi%9fK8|gcD-%=8NnS z>ut#1*sPPanPk<0lnACI?v0Ptn8iDvVK2>k=~LC#h**m!=c8A`rIKnOimE8TICg@) zH|zEfnTKC~gPrLbA&09kF+QAmmL2R%P)S>ntCNn3;V#Eugh-Xg9Ju9+8!xi2u}!a| ztvTd?`{Niz$|7>_IGJqa5I)L2xabeA{bJVF;1v>;s$|@}IIpcY6r!q5k+N>_&NcSx ztQmLs-4Vw7{lf}39Ns`8PyA_qtm7sZT$^+yT*|tTwBXVSiaxm*hr?Ic#^UR*&cDny zt=7RNnWH0qZTn7dx)9g3vbUqa?-l5eq#IC^IMlMpX|4)jH5VOms$|#T9qnptf38qmxWt3^#7z4c`3c{5!MfT4mZo%Tjx&>e|~};?Hj47vAhotuRP4&-(^wIcp>JJiF=QNxojy3ElnnXW2a5K zBBe4yS#FghD|zrq0-fHV$wf^&Z#6vrJ$7`len0!>tkdKpaA>pQ8J%NeHVNI0UX4

    t|z z>Qe$0*jh)DBFf~d(1k0JaNS^nUtGP(uFp23)3s`_5aG)}LX`u1N>^p6NINF}p}ctA%#>Ud1pNL5!Z=J22ok(nv~1DB(gXlvU8wZ zZ(>wo_|f{>l0mv+gx4a2UaTPwN)k>-FeO#R4KP1;@c^=6I|*&>AAh)hgvrfD@aK=N zJu>|EJ$7XH%RlCioRXGK-^Cv&5x*cca_9^W);85z$AK}mgViO3JDTn49F7r0Z9dKP;$?UtkU^On|3rhJAL|#A!ug`k4a0w}q z7`?`L6fEQbun78zMed4pBjC>EJHr3(6LRPuVi!&sdyk}14F!0XpeG_;N1&_1Emb%p zpVN}fduf#_GDy%!CF3*L8Lg)a+RlZd>;NmVF?1K%gNw5pYnNxwwQ8~#ER9|adr!BX zY!_OsIeo0HZsqRt3Bl*C->5r73U#O5!P8wPpNl z0nq#q4e4qkr4+0JC+G*5wRo3cd0k8q-2wl2Yu1c8oIJ&z>KY-3L!wW*4LjCZynKy<^JFmwAQ_`Q2bUGVELgc@hzQ^~ z*pM2d$H1Vy#0N$Rl*1^3E1VdDs<#2dh1WcglhN6rgOnNuBMYu+$q*>+zCkC3XvLh| z<6DojM^7oM?~yN8xKv;{p0omvV0FP-0%?JrwX=&KudiKVofZZi7X+pf7+stKC8U(C zhAmdc4mh>z9QQBJzv)-2EBAt|^<;NI)-|#kt{h!^bo^=_c|!H@^gDFOF;JkC)yEvc zbY^(wV=#D!9%El&9gq~Oh;Wb?TSV|AFtfmb$YKSaZaJmp5DLLfa)~iR!#ipd&@V#3 zI7+bY5@n6Jb@=%i_W8axVou`q>9gzueTdcvf+i*l{8SympIT@V1d+l>GPP!>H7p8b z0TW{-3^W0bObS##3grc#>NpK*KC4)gD^W>LaEh2xl{GfPy$fzJ`AvgbEAZH!VzUtz zLyeLo&m*d{#F@bRK(!29KXMi@fzlc;0*pdZ zp4%l~U>a~Bp=<)@$R4(GbS#*)G5HX=1!@evZpEBn)(Sbn>~rgD$G62}+}(pS(h4;Z zHjE820vfZv*8xtb%Ayi2bK**aTvA59f#5u1tqudKQBfF}W&fX=)+p0n0JYk4@9D-bayIZ`y09-ba)u!a`dS)_ct4+yjQ?lBWtTrY8Z9TKvl-yk|-5K3ho08S0WVI>TS!nGYz5d^u N61({8(Y0Sa@Gk}gvbq2O diff --git a/master/.doctrees/tutorials/datalab/data_monitor.doctree b/master/.doctrees/tutorials/datalab/data_monitor.doctree index 63b94db68dc9c1af8671cbc2ce9d5b41d9c314f4..d9074453c9e510363a9be8314b5dd36103dba1d4 100644 GIT binary patch delta 3884 zcmeHJJ&2t}6lInz5=0QxL?mQCSC9>^?%bI>Ki9?xS_oOx!a^jhcmBZN6tNA0r8W_Z zuTrp(h{2$4@d(?fm8*py*a&VaJBgqmXrp)E+r(Ya9V~^{J}%!m=iYPXysOubT)lqe z<1dfG`A}clcp>9jYNlpjXKKPi7HUl3Eo9%cH`H3Io_wgZ`TNl;$5%|Hj7%;v>(~+? z8;+p03Dy+P1&TL1q22uEp5u%EW%{Ru%|BM2+8#>Ol|Tz2&S-3nPUq}EJFQcr#&5s) z%j?~t&0Bw6KQXvM$xwBgkr13oI=Wzdt(>ikI!`~<8=9QBO_hsF)5SzD-|<)zC&R%q zCmoVC(ZS^N9reoMKwPT{t?Cc}8~GGlV2B=?O+{8U%Gm9b)93cnHw5y0nKg0~cLcAg3_r z<7vs?a5%E|Hv{<-#QIJR_UJZap~N+uP0j^>pp#@1uF`&1-L7d;j?N>|pHX cwfFDMJFmTY?d|^U{NL2xvy-pxUpRNmU$shwc>n+a delta 3904 zcmeHKJ&0XZ5aujfB#0m=SqQ@Gf)C%s1cn&D?kS=CR8+ zkA3{*aTE4lEbKzuwhpQVGDuLdkz>n*u0)qTv?us+9qbmIz*jXkw^zX zEjdoL#l+2K$Bkfm;r=(L*H-^a^bafhzi&QyFc`>IM>fH6gb+-ERxpLkw&rG>d;OW8 zUhW3%-}>{;sexPLgc^g31{gU})X_8N9AXKYW>@usCZ}#w^|d<%lm{Qlxd4zknG~bo zb{?CLWi)@NJ0|)wb$)fQCTDFMVGJ64jnW>6(Zm47>Sp}-`89R>tucM5=yr*{hC72%-4JA`-hHV3r0g@wm zHkUa^S4<;6kwTwa9SRk;m~se&kPYX;8s$}!gGtvo$Me8<>H{@+3$=3bKG+P-7V37nmHOmEZG0|vXqkScxJm_>7Q{qx7G>#Ug6bkK{NJtVVlxhmkV+GUuLQg0C z98@>EfZE-P`so+8pTDqi@#5C70VP;*M7GWvaI9nT+@x^yrj*L#rGvlq*E7((UVUce z74=e&uMJ84=o3%v?mYhRBj)XbKt?`rZ)rs{UwzqDmyYG@hOk*Dm2TTQl z8I!Nsxn!IbRXS)3Zk>o#dtWFDLslnBDQM5oASb}O(BRyE5t``Jqwy8Nlq^TIvDsFd z8eNB3uMYdKSHt+m*XrEREkOw0-o$(LjN2lT11)e&6uB0cQuQ)rn>HjyYhi)QR8CfY zM~etxU2MLfi8d90=xL$Dg%7bcY9i~%3>Z@O39WY(Gd6^{@a)`&o$NEou6L4;r+-zC zjSpQ__Yazh*jJeoU}acovceh^1I=0)2sA~rx4NF2u#rQH5*LxO5LTm13PjDB79`EV z$oUW~c?{WrmOF|!J`3Rzuf5hYlBPpN4A{#)H=yrj7k@~Hyi3yxxTYJ479|R8Ou)qkDau8u0ANm9_N_tnuv|>ciy%TrR-n p0_=RQ9rfRG0siw2UM|4i3Yz^(ST4Y$miqq|;Q7f{_pI#Q@+Y|PE`?z6HG=L(NI(!T_SxNLVPMY8&g|C8#Ma8htM^C6J)3VW-Hb3F zNaiR|%N!tiC9(^`C=m^DBRvsiwD*?$?Rwbn* zM6XF`)t%m9&zh3~zyc?X!6m2*EfQ%N$QW*OdA!b!m+h}?syzL{7R&Qpc6W3g_D)eY z-m*)*LlpeR{2&`gUTYy-^}<9Qq{vtg=*(puqFG~;-Rd^GKGt&N=y|4UoCNC>Doh%T z;=wtL7`yfzTWeZwG}vS$SJ6Ro=wm{Yy^TpFsLquNo9@o;vKLL;!yXDBGTuu(QZiqz zZLozFC=*HrK4SzWxOZd;oU80I<+%Sqk@J|0QX~7pWyIiFdC@Bjb+ delta 1895 zcmeH{yK7ZJ5XL#n1u>=!#zMG z7V*)fNF&}`i4Rg(DQK5Q(7j$ktPb{Rm+#ES@0-lLom=i zdM%dvjYILUX-$Y8C~yd1k&xKf1V(A71ITLEzkDISRM~)WckoJFX$O3{3!epzF@^%1 zB?N0R<;a{Qmuei7<>>lvQ?WB@RYmd%YnZ9#>J+DtYU;9t`d}pX?Y`J+TGkkHu_b!) zSUEgV1|UU5zJP_U%9i_$ui|mj4j5x6kAxgFokf~^avP$~#`~m_E@&u`2kT=!Iq;Yr{HEF-4W8^Q z`KA8(5AmS6Gqk0ZwRYv=wHsTPuU^=^v^8{-|EdRaiz~O*y0;T?dXQ_D$GPt8PvN@N e_u~5C%^#QTxNNoL$7TEbllsrH^|frzPW=M11~%6K diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 32c91a409ef84fa1ba87750d411c621dc70adb1e..33e7373ea9f0c112afdda79c308922fbd1c012df 100644 GIT binary patch delta 72 zcmbQ<$2q-^bHf!*!(#K)ocOF{6aAz#qts->L{p>GB$E_NW5ZO7BttV}!(_8G12ZGb bw6wHTGfOk`RLf>ou69-~#_gBwJL&8aVsF6?FtcPSNc{3Yh9?c zs0Tf6wNl%o=F&Ss|}5yu}MT9c`kWQ9MVsbj7nZ*HmRMZObWD zc2XHBrI?va#!Hzg!!x)1xnfr{nd`sYu2)Q%taQj`hg9jmJ*IifK4YrLw{(<{Ek7N1 zewAPQ@B-gTCCONS_T;2LYkEBy?LRl=?xba?PTG@GisNQ9MK#ifqBx!{rSYey+IC88{LSBKBCB(# z(^WD5?axzWhW}Bj!H*p{czlN>O;n{0b4GHmBu$c}(Ti8^J9T_=>H!m1%&**U;?m{b zl#L7H^EWQ6S>N?g6tR)z#NY)EWO=W%}PADYR9 z*ca7b`c8kcinY_uOmKEBX`;(xzIFImvNU)*PMYcTtNpJJnL+OGYaVvO4c(R7(DDyB zg*&JC_y6&lmUK#1T-A0V1D2+x^t9@lRwgBD8QU|hV8KB0qhe#oATpGc`ez?DwQMW! zr6obl^Q4vte82t%1AdT)_j@7U{;bD_)9Kj=2kO2wJw=t09=K2MkkkJ%_x1P?<32Le zw~jcX{!!pQz2skFzUY+yYv$|mATL} zox72V9uQdKzddtm*$W&Mzvhr|OX;B{{^p%ygJ%vVb@d7-n742!lhsBreAE1mAxn~p z{)vZ=>*C1!IY<5>!jU(!4KDvRpFwbAGGo~(%Sv0Rl&Na6=cFxFNol&I7_trptqKKM zY!p+Fm!74&Fk>qj5^v^uMzf|Ll2nLQrUFX*X5( z^g`8Lc~pImQ}yd^s?toUFHhIYol?fhIkHNsno3KOE~}1~*6pClau~8$C%zy z$|T*tX8Hr<(HuR^_+SR*q0%i|j?f8th0}A|gG1vDqS>D~b2Iq>ty9Yqyd^@=2f7JL zZplOC#t;>zD_dw40S%9!Gur%%kDugUHES3d>DO4b!9_0+i6+Z}*7vAMo69(Ir_6p9 zCbh=mn{CGTVKDbA+j7ZwClWG?wfk?)oe3Nd$JLb0bpB9~Q3kG*0`i^M}zB7v!%;^b-8;#FSqbZbR&$?`=fEjra&y!iV`+go|M=bf6AlGdqiQqgt)@C9d( z|F`E?Rds2_?*pScdKf*8V*4&Ky>=Yjn7a7&VQV)(&~jiTOb7$OIx@lLV`yuLjgZWZp=ADMi+*wiA@lvW z*Gvd5dKh@DSyk#M)fxVdRr~q$lwst*7-qh7icC*07ksm_TnNL1r#wu2jfwEHhC`w4kz zi?e(HAs@5e+UXd-w;T@lJ_}tcqaCesm5!uL2>% z_+a}Jw1k|+pag3lCJphr@c9$V>Av*J@cE(P^Y^#cZ+U%fStGrvf~kv^AX!a2;!WL; z)CVU%Pe;*v!spHpdwL?u20wn)_sQ%2*;ido-{81#D!*EhN99Ym%)R;vLU&aJ7Z0Y5 z{`Tex^pgsov`c96e{s!Gtf#pu*63IN{8Cz0$)cd(+Ci~$|D~Uw!iF4j?W1hSjvJ{~ z7BFmH4c4}hDK!OPentZ_hmH$oy+Eq{=QcG_sZ!{z36+BX##M@K+W3oQae5g3U@GGf z-YK|GspQ-@t}@4c^wkQ!Vbuko?)2Mk{u#ZL1{*BW;=g_Kb@T@e?eTo|t1I(XfA5xu zZ`mEA>na70-NzQNx{~u)O~KILMOUzTa})h_xPt4#6UBGU{VIB&s9>tyfLNlC4P&A8)%{VsX)JHi_+#rf==L`Ja_^B<5naur{2lOZSm4L4u_J%+5;TLBEF` zTxIv@fr6y|rmqhy+_~mhw^bp>_{&~^*YTZ^oJ9Jf31u>!kGUNs9ze*m%rb7;uSw7NgD=yX7Tj<2+9H67cZ zbLU}fg3sYd%f6MM^m%JJG*X%xxPU`2k?PyWj(^l-E>MmZ*I>t>XZ{;fO5 z2__lP|6gU2xe+FzXL3Z#|BKHO#smsNe96^x+mEJlSzgLvsz;Ff`5~i6W!? zX;HX^30YL}ktxlchfvEzf#*E*j8oiTvxxA`j&-6k4ul3|oC@IkJos_v&z#F4m=o59spm>a_v? zD)0U(%Dcbhq%7aWXA!)cfGTsWv}9&HQ`T%RZMvG_T8`wo8P77z;KYICoMe$fDIU&l z#RA6pZ|$m!|AsB%o&gc=rCGL$u2g}*pl9~IW?0`rPoDUOSy*8{fgESUK<;dhLP`^_N6H*K3!Dn7_f>{3zzj z80JW!FZ+zS{XBiyv!(lEgc0C&hj^7gIxu4Cq?G5mR@#)+w5w%I$Ch+cR#Lj_nW~df z!<136QQXqKJ5X4^BcvbuAJ4!|VWXy%eaQy|3(Cl1GLtop_4m9|UluE2&jmGc zlFKNx59*RTQo}mB^DhGj2^0l0>=8KjzzpRjQ4@ErK>UXc@gK(wBMl{{$22YHsLd^C zQ^+-ug$-f|UNs1sYeP70pQy%S(}dpHq<=uK@!5MAaWMIBPKS77I3IJ&_I?4SnuiZl zS4V%Njj5?^-85_CQ-m}N?*BDyArYGWFrQ{UbLE7RZvTt^l@q9Z&!7lP>N>O$l5M8s zx=>Fnr|uaU-LfQ0#u<|#oUdY|I7?Pl3)`wQw9Bib+NrdfX{TJWZBIVtyTaXOVSRie zdpMsV_pN3ONzwtSAz3=7n!7F2*tpr%%$5@GvLR$z{1DM1bkVA6;i=5X4a?b5I+LLi zW`xt#->&ZU>L?GI0<9i+@Vj|Dc#FXGMuw|UM-K^nk7pA+P+h2w$cr5J1)`TLqxVA8 zGhth|rP>xj{l;EU@0k@&jP?J+s^anMZ zH_qZ?Yq+1azD8K8ABi@>9ap1~`LP$~26l1BDu!Li9Sb;ddd6*Dh?~$*rwinI;Es#( zxZ^p2@iQFbU~oN|MRy65FJm)&P!rr)PadIPg*aawHa;|z983oc7C2ug8hIXyA6wD) zx^bqMn(>QBn1wM}bwQMSWA?~K@(V&I4HkKaDYav0=K;aR3Xw}D4er;^KeC}N)|u-? zR)WmoosFy$$DK9nX-9IS$T5xq+8BwXOJgu$IN1cqm}dgdyi|6LZwtO`ByB-QGpXu= z%I00o=j|SMM$j>goEc1NA(d<#OKik{D`?weUf_04U6I)cDiSza{P|#!+PHeKNNrp( zIAD3^;E4pelHP?sSZd=A-YHTWn+EgL#ubCRQX7oPkc%p$+P2_Ft=OA;MQ$TFc?6kF zKIDt#$&L3xn@9rfq3l0LkokmsF37M!O5Puwy}XUMl$H(Q)DNy1L)z)UAuR1v zSvDjj@W^0C8yOk=tQ`c)8<^w+SzF5(;^p@#U437SA(OlMW{)Kk=s{h5w~Zx>y82S% z$UgL#uD(mhk&Rt_9I=I6eLvraoWT0{raUH=A~vO9>CZ$r<$>|olnq0~rmP<#Hf7xq zu_-^AKrRn%n@nm0p6~n>?-tu~G4cdRQm-4*wJq-t7TZz)?GM>~Cz5hXpAN}+f=njT zmju>myI&?3=K6dvdaUyU-dFN8NG%vWe3GZ%{?YZ|aVqJ|Js7;MV$uP%JT-^m(=;-M z^|9PsaE?Zzd)>6v%=xoS1L+Ld=~}VlFfA)ZAJ@ z%;RbWF^{fg#2g)HX>u-Ii9Z;JFXNqpl=EvjDKU0dqh~TOu{hdPQt-A^ zNi#B*xmhy)H|D_hS%iBO>C>z3Ri2If4k6?v#Ht&14gDeQ5^9NlTI zZ5(fUZ(T6^7;-OtSZy=E;0PKM2WsblCWdjtk zwrW1vO33$EkH{q~2|KD65R;Hj)-g4{S~Nx&^*{z=D#iQ}quMi9t_^-_k;Cbg^VkdXetFfB_5YxdyE+82VGj;m44N_)7Rm(F65D*tgXS&3URz#*;V1 zO1bWQl@AaC|42O-c#P!&4P$BOdGGt=|Z5_&G=^BP@%h2rU zYsmhMR2eE{>93;o&MV0I4fFssGI9S-86VnBMcOp9+oviW`t9N#)bk8-0iIWuMPt0> z9Le$}d>Wo%8I=vTkfX`q%h9xgN$G|70TeD68oc=m9UfLJoXc?NN{@)gd-m*l#^Sm> zEdEE3>aL-j@1D7noJ#2Pf>JlJ_mP`gt^kBHH+Eiy|8yRP zVNvSs+YqH*x`9zIcPKleAu0}nUWF{YBRF?E`G)E~j|oX4_-s2olI55)JQ!L6;1S>H zrEKPYVp6)cL5RvLj801$vadZz<`DYR2H`hNe+ZLY*1&Bt+HQG>+{ya5MSWE~A>5OK z+27_=;y&X(bZY}QrsSUB{ujt3nr#r`^}!?L0{SBUfGs7@vA#B5m$0pYOBRN4$y(AN zPLT>A{J9Lee=<96+lQ7l3Tq8Vfz@V|_iOC30Ug;JA1AF9bVQ?wl|EreCmO?8Dfr1} zczk#x2;W}QSX?{ep{2XkE_B|EeLP#&?HHuXzFf%P}GJqXcw13$rs@uD(d7 z#OU%yF58pijJ%E6hh8DuV)UFwA=`(Bt-pVrs4?oJ6~bLMhqnsoBKTO$F^qK{*T_gi zX60cvqcIvor})DSQ0LVJ6kCv8{|@;Tp^r3*y*=Vx_*+jm^1Vgdf4>XI8~>Hxp~HiX zJBdQy?&|ydPI4COFVVsXJ zwl_XH4aEk6kE(j?bjr@?YXe0jnMWOtwt*|C2xw>h=Tlpqa5peK@jlC zJX9YKQ5DX^{Q_4OlNW5>hjCF=a8Q#Fygg!Mz^e-8gpD7Ejh&BEHCPg-`vh;DPg{Z` zPu?qHT3Z&CSED} zY!ep-{P~Z;bW+$nJUD6y9Y){n>f1DgPG)^v7{)Lp?rstqwP5;=^6vVA;JRAcM5=2M(vULE~0(g5hI4U&HXBCULYkck1qxdK6ro&h?tqAv<~{FJ@`p26Ye z4mM{F=XP%Ta3Ki!cCNF5=G(dD7#6j2?(nFcvrq)tou-`5Q0daLcQ^51qyU#`$XL*G z3ONh}e_$BOSqdVTm&$luM4&fOnOqmtOroOr=2{>Xv44kTZ)l>M3Bn|d(Bp?P(qB6~ zds#ERh|q1rg&I64K^5`{pQG#%4A?e2dsBkO_yE3Rhl|I=juk+d)xBebg2f&1lKvug z?9btj{YmUtRvSUTM`*lRM3p7YY(K?z?G@Ygr^t3)J6vp60kFBKSrTeYz@kR8u!$O< z&McRkBRcHiQM4vbk7^d8>9R%4YR*$zGn$3kGTCF@YD;d8s;!RZh}xPTk^*XLCSNW+ zKSbe20tI?@GxOxGpEi+FdR;R&i<|gE&Do7IJ%`fUn}wpfC2U=w(N78e9a@>9x=XZ1 z6xGi-lC*POU>!vp*!+nX z(25q}DLuia`n*}}dBNBn(T#U? z0p1;#&4KcTGc_o2{f0tfDZ^s`j|FM~O3Qql53pchH z$Biw>!^5EhFb2TP76}FVMhjOdueS80QtYD(R0>VxtCUY#qAKO17N$~iuJfxcQ9k&* znX8lnOr`~+kEII=dEv3((qrjig}IPJg#I6J9GyzlL>HS#Kqzsyw+?zc5#8Q55)mC_h4kP$h+#pEWT*y{V#zWbNn-p5;!Lar6v*@vwO9kg+!Ln_77TAv9II99_HUu;I#Oc)D(JV`K8#N$*p30Cbf#~F*TRD+2jx!@> zCRe;9rt3MqaYK?PSqiX1v1g=K>>+{G1BF=azN!$b4+^k)H4m$o^RN=r{VP}R?QkV`XeFM{kWy!$_H`2KcFLK0iNJu&&XM}i$8;d0op(~t! zRdD=GbXlSL`AhJJo9MCMG<;A>hts-|T{ds<$UJ@YgY1(x(>h8=jubZUOa^%H$ZX=b z^l?Jvk;3Mc+=^mgb0o8Ql`@6H;UT`Zts%zliZlx3GbUqMm*<&};4n7NC z)EY6jaJvfdIG1l8Pd5z;4%-52w>+>O2(8_ckzBWs#lc=2;bi;YPEk>FA@3K)?gBnQ z=$DoF4>Bx^gNZLui3|=-e2E@hQvmHERA}dXZ4T^zx`Ev#fR*3D*U59I9odChI-dk@ z-bIH73-*w*VB)=q&3?R)P7F4%U&&8NeX#G{v^x05r({_0{kwB*8(7=)-E>&+C)aijYuj}y$ocBl+_UH3L#wkl-$Q@&p8y;HaBJ|?cv?YT5`<2c z(ed#s*cLuNGSA5G0CO=Tzm*ZJ+sNNBGHOL{8yPY3mxPSKjXbA+Rj~90774crBU0MN z;*8*i?Q~#b(TWAGwfy7-i&m__dqH?p7{6CIOO|_;s+QK$LF*Z0$Uvz>kyKMrD%pF5 z5^o#8+B7|#u2fMs9qb>F+Wu&gRmn_O8Ym*$|Hq_`4U&yiI#r3%LyZqQ2u-SlH|Pr9 zdwzC5_7-$yQvC1Vja5@2R$cEdwYPB(=tV};wzlB*2k0Rq7Oj}ai8e1vwR!(v$yT02 zFd*wmbMW$m)cDV$v7?eCXu6Gif|K7C)Zv<|`!)23{zIE-uy zD8{_x-GX8fFS)f%c*z5hZ-f+6CO*o|$Rp9nB+JuAr>#%V^*oa)@v-Hk3;UM3~AqfW=ZQMbw z2?ufq`PuO4A)=8x$Qyo7GjaM3XPz)BAKLv)=pg?!d{7H}n1f8t2v+T+hX-?BpiQ)9 z6nBluz##b^@`qKUm}h)59f$w21Cw^vEDlVDjN&B42<{VOVLbLOAi}}HY!b@_-*ZMW zH!m3QA&rwM(QMvDLBlKb#yqEZ^{9MDuX9w?(K~4rbM$hd_v}&8Z9Sunhu#H<%*?*} z2RfC|%SH*O;iw1&std**AN=w)dP*T1{4;2Moqpro>j#WE5`q6ZqUi0wD$M3=1^SUN zeL=SV4f+wGPleDe27T+O>_KnQKNI@eD35f&%&1GzModtElZI^1>cnsAEW8B%;pxV5(e2J#QV9Umj@ z_vU-ZS|*dhGw;*7(n_7Zg+-Q;vBCV$XhpF0Gf=tu3tAOOXFv%|{DM}LRGPXOeDq)N zBX3=b@{6;+#JEjg=8gO9CurO8NnYD7Hm>|rn*6sy9FlW^x~#*qqq(zjFQd}aql2ga zMh^)(KBG;+Z$GDv|Gx>~TXXAcF8u`O@a%u$I-27)1mtV7Z=ilg>;ElC1l+Iq<7km# zdL$&o34e!+|L6Y}YmZvkbK0X8 z_LTOB`k`A#aSL0pSJa8GIM_`)-^1y$kEMZ~*mo-5;RHaQ;s9(@?112e{;{gA z(O(ygMn~2j5JS1nuH&Y&HD|`IA&CsC_wAIOmT(`9hB8B2R;-kgwsp(Mq|#s4*n@O39uBK)7cCT%jhGS-Hu8N&nlJra|gSD7u8t+Q!PR4R9iPcQnj%ulP zDwW;wM#(mkFdWBC8IqjA+rkQ7RY)m{;aQrjo0f}zvO7kV-bWHeKnCQVQaMosAX|)d zP~=jrd8-sj!rL<|tx4jiEJ>qA@HKjdYkE#bQt)~g$~)7hnn}C5hRsd6o|V05SIN?n zWGZb)lI&_$TE*s=5;nnh3{6pV(=~NN$?iC<qeSOLBiRpBQK7(DECRS(Qoi*E$ zJxNZd!C{8wSy(!*Lvj??Q=F98!GzWO4RXPb+e>P*|Gc2&$7GFEWE&X+9yaUv1v8F3 z=-?w36k%-6uHB=H(Qm~3@j=PzSbehCvKVpN+5``)remlm)lIo+O~NaEX}mb4dZwZ1 zczaz7HZO*(PWxqSZb=fmo3b;Km&QwB`{N6fW;GGPbJ=VNF^N-T;I&JF*F> z#l2FVrKerjW?ZaDju}9vhh&#-ioHx^rFZB~x47!Ep{L|fT8m-ArFBC1NGPn5E6J*% zYmSkT@gA#W>bQ6*?HQ_$*A*o-d-1N4B_&D8mY`8=6&Jx|G`u!uf-NlD)TE4_vQrYI z@H8f?n&hNZ)pZ?H0hc?rV|sE%H=*2|OxjLoXCK2Dxp#;mBNv0nh4qmCov`A*F4a{u zBju%3cGZ-nIP6{<KnbQ<7>Ur)El0aQ5n0UG~ji zl-x`b9yGJ0;bt&Pu^{ufHXt%>6Z&+af!f zFSf;4Jb!c%BH9q!WKasCCyT9%%k3yGw+4)j4PC=jlZGpd%#`KG;6=}MWd-~jYA(r2 z88%e6X=#vI_R_YBjWbN_z3L&u%Efz+5xbBiu*rD08MFc;Zj?W0m?K5li|XxQLq)v<4dTz z1i#SK!Kh$?G%grZRotftqnd$b!JS*osB)=mK`SKIHDE>!+!SM^;ZmklLrW=IT5*Hf zzro8uLgv{*MF#ePiy~4w}(f->@tRxPQQjQ5UWY}jY3me8Ajw-y6Ogd${sqFo4GURcCo0l;) z3tl-iqhu>k7pf<-sKK<%EEL*ylEB@-7FgZZ85vR@d_NN&JuYdHGm4VVx!pwo3faN~ zy#Z9YaSJAYU0N5MIx|)qhd-6-(BWhGv7rf%x!96rSa8EM8{U^Ar)&e4D`*CcuNtb2 zBA0M7C0)lX8f2^3uH;Kg?|i7Z`J8 zYDSA1vm$WSVA=_>Sw-Qpy`31mc|xo|BFhvmw8s6`xJOmX$SxwDj4Y=-=uTIYY(2ZI z4Hlq9meP)^c_~Fgkmth5(lf5@$(pXnQ14L#V5BUtq~aJ}25Q8>Jd$d89;`TS-%zBS z0VoESnKC)iJ6M+q*#1HDA4?J~i1ad=YnwK%hGn6FX{(kCO$GfA2OztBd&#nr7F)7a zTSnNbsG6-od{oJUx=(v53!#{dZG&&hnby@R&6XEHH>>FS?^lEgjoxH>+SvNd@9kTX|G<6ifaV}P^ZWAVg` zZl#<|N{7hfruVc1?-pK`>AAX;anrWRgE@q04paqlE-q}k%H-36aWME;xTAmzYYmt3 zrr58+$VC7PJ5UTR+Y~7{^~bT%NjQCoBz1_l?cp+d%hsW)RJ=ONNa>~0LRTbI#ZwK0 z*>EH@)Kp;g8MqWW0zDf>TMP3mhT};XXCt=+H3}~u8MAasM+7J-;CqcZidb(EkU~uq zfykDS;-;)omf2PG{7(AuB73AmZ+E11Vb^q|7c>KC;uaPdGo<%2@FyHSB`LO?$z6 zlF1T#ubKFgN8!{E$J$p`V6=S;e3`nz~ZtZ*G}e% zSdp#Cw{1oEu|UL%(2J!*L>9Byve>4!3EQT+l7bAfVla14$soOjyZ}vB zS1gj4DzejB1_?3*2AZm7EL;`k>4;AqDeWQV3X_<~Z^{`-wvoJq>A+=D_;?9|8?e3Y zA>7b;67$Zf5HUpZy@1wXGari0Xz3kn&^j|Fa|uhrDf00DK+-_c!o-<^mSJB@(PayX z0v-5q(`Kg?2L?9{1&=iYQP+eM296L&;h91jSs@qK&EuFvOCddvR2f1XC>C5l ziSMn12B8SZ;G=CNN^`I9g0sIYk%Add$Ep&JWTX_tFRlWw9r+HpSf;DMr?ouC%E%)2 z-TP$;4u33MhVR1t@Zj|t8UkoI!Z;GZRv;x0)4)#+5|*i_;9#JgDM(!8WI7oWw>v=s zL98%SB65&LU}G#hI*^ON4VGCY-y3h55eb99TNbh!zyklLv%CCpsT7VmJot}}EM#0T zSdqIswWyfEI`_Ii`C?X#C-X-aA)DJJW<}O!b1@T#1<W9LraDOAh>||q6E^2IOf4ExF&9il-Oms*gTu1=)&wr0^geO5X!?PMN(d2>2u3- zF&5qz63vca7M}jV@mR00xhccRV-e6IQ&%NqO~rXYMr9{IVAZsWOdvu5a3j9OVrWRW zWLtOeRGq6ko`Hl0?q@Yk4;e5?lfVut0ykVZ7g{q@flO+M%v9X#3JHV(Fd=xF0}TRu z&7Ch~>59SRCLrPV4zk;vC6R_wxto9lIE*NZ)Ku4Su`CVLhIhgBMMA}ec(MyMfy65E zFo@G2lPIFanG6iMorRB!IL%VvkRWM=RHcNJqXeCj!bg)F8}2aN`dl)k2uLPnuwuOe z43LL9exlZ)Nf9YS8qJe5z{!9ok=HemGfN}tL{bV45tN$HeZ{UAjY?RtUCEc3BJ5b; zSr(&KPQnsJ*2R?PD3R57aeidMHMST9;9tQyL3<-Uancgn&Crq~eGQj|9lhyDmm5f1 zA$tWqkJ4#)VPG|WYOb&^UU?S6UMAwW2{DziaH@&ZWjN!gapEav?j|ORfDMvImdwP_ zbFWYtQwle+1px{UCM*{xsK{o?4$}BIxkt3^;_y%l4~-!dtRfuWoB^{TL5HvtVGB^h zp}2uec&Pr7I7V6wz9f7!mRp3o20sf?4J0sag{wI7^B7L6dWDLEW1NjEExiNnmaGSRxDuP{PF(mlz!85lb6nWXhNYvTTavt;G;dC)qAE{pazXJ~> zR1la29zRqJDh4zOL91@S%6T{o$I%4*w(!ufSE$gQ+=OXGKnC{@hY2&3h;ZSYF$G7} zMTLdOOf51;Y3MPW&SxA1mSKLe$c?Qmw8-Tbi)>6`#;|v0EErvkR-tGOMLMXrMTzvH z5G@=+J2*GdAxtoQQ zAzBDokh($^Nt1E<#y*|IiW!gugVTn?>4@FJu}tr9gIP}L%tR5eLbmoxlvXAb6I{=7 zPbO2*s+CdUzj_(nku4S4Ak>j6f@?!X@7@h;R_BsoZEGc1bZsgNW1A za9=&X%7?2`!RlZW*l*c^7s+c*ih$($K2Zc>1VR1o3BtT$xacvm3 z?1`MSo`AN{L3{}b5_o=4h%C~@r~Gh22zxAx>>}Jq3F#bsL=crS5Dcuxg4d5_;>1(4 zob0BvS@B8lP)$^YvdWp>0pbje$yGXfC6H4)pQGtf{>aeu#mu) z;BYC3+j;nvO}-aH{M9>TmB(Mn-XUZ6yNp*7HVcskJPrv5pkPf_v;}v`gOyV7M<$do z$&?ht+!Bs@aXNw2a+)m-i963WkO~Nsi%B?=2FkryIaCVCbmW~;0|m8%@-I}dDX1{w zhquLm3bkJhX19gB0*zl-Oi-WHXq~W-yV4ENzDV%|c4N1Zez>R%4x5_Z%>ax-< zR-oZ2%n?UrOlZ2810k`K37n)rZXF9rMm?>oNTI;%MOBPgL=l+$1X^k79bzb9a>Q~O zGDFUDObconNemm#faL0^IfGk(;xcidUgS1kA%~(ytJt0tNLLYF%pYBhR5_;*^)kJ# zDr&k|g_?zY0ICEuqyP||ppru};mIMqK)96C`N-2l;TzyH923E~K>$5O*hmLMvD;uZ z<`yPVy~AA^=5%Q~;&POID26KA2-jf3(n7Y@vTDji5x^pG4~x<(Tp?R5agWn!IHFw5 zqox4?q=~dW>crTIIzl%`96BeFb$1jP2MC;`c{mD1mJt<@E{aJ3DU)-kP||`jAQVHO zLJLPY2sCjXjI%f0M$U#;J8{t}0#gZ=4KGnzdWRShEDd_Vw9*;yJx=c+@)pz=oI}(@ z>WUQ>w{pL*#dGkbTLsA`_SIXQD`aq539iMNiRz+A4C%w|$k4(KhNq0GEu=v330ydj zsJCIc926m@g_F*+8;N3&w;?f`S;cR- z=__tV?PXtab9X&;UvYC^adTgBb6;^YZV2tQpt`TP8Fk=&#m#-i&3(nq-&T*FpYZrk z7dIb9wK3ve{_60a=dtm!Z+z&L^bgL8m#riZWj~IWmB;A0W3pdWmhFtus(bCTtBExr|%99-WXJNczpI4bT+LDE{c~mP3&BZ zkEE}!I&G16`h?})(k07RZtVOSz8kx~|6g~BT3wc)gGL5#RF^f;_{iWN)n#Mq?!h-D)>p9)5lvWhigl8Q z>24bpq-)AX)2G^l6Kl$b)5FFDXVsJ?)*KJq)^*-S*}uEX*}rTl>#zp)@4JK9zYPC% z9Pf1;)pZ=XbsVX6ouh!-y3RrPw$i%JIRBS{$DI7%r*J#>y3WJc467D4p1E;M=cD+& z@X*f3@So1|H2~cCIQw}A`}G9-wYMDq{GR=K6{vJR$$qT{I-O6kU+h!7olmo0K|TI? zhW%n6Q|{csezC9mc0S8~u}`peKF5Bs&vJG?&wjBFB6hyOez7m2b-p;J--v$rmKc7% d#2VR$K{{V%zu0Bxov*N8JKD2b2bUd9{tu+n_T>No delta 39769 zcmeHw37k~L)h|`uGd(kGGr$Zp3`{q}3_HW!7eqEuqlin~1B$o1Zwte|XZbzkTTo&WmuMhrOpH-bqmn4Te^uR{zTM!o?|mc zRdr6C{hX>>{pj-puKihkbXD1P(M{2DLD^4&q?WN+dKom6=zjvTc4#t~6cF*|nFy4f{n6t-X4!~bYF z8RnfcvDLfONRXl4CabSEY1|MxB;wWl*&t7NKO9$otSm{b7ys${%RBks#R*kvv!{>c ze-kq#X`Cbtoww{T{$X@N)~xAM#x6a}TR*PvjIT7E-X>eq$MU}iPp2zw3ZJiP{MbcH z+zIQ%>el=_&^`O#fbMtKU9xV)y4iK@lOo=p1IPBC_5*xAJkqV(^5pF9BiOUyv&+_e z;+^D<_RbmK=W9S==Kl%@#vg+GM}4))4yJ!@GC_QgoSq>6w`17gU-Kxbq$fqZ$sbNw zIql{{QF+VMh37Arx6nz?S#WM5?JRS~CB72J50>{FfpWrLRXDS^aa?reSDLyM?V(6H ziT|I(epH~thf>#K^qH=n^1lt=4v}{ve$5PWcx>8FIXAq)f9Tt5P4|V%mn~YpY?iac zb=LU{W{|;T9JfWQb|!jWzI^tu_HWT{-7sK?*J2yjo_jK#c8|CC^As8D)r@N-e$H-@ zb>1J0`w~f4lO#<}sahtjWgN{;!9XTmMM6#Z`0&K-d1QGyvZj_ z^A0=V8+1@KpyzYE7wFlK2oyi&a8~Uc4LD)cUW<5xKOaF}^(Vbc2GMEvdG{VYo$Sh! zlb#;+*H;m};*=z z)E)Fb%yZz_*tE9*U~6>qs?&5rpXP*&P5T>f^FBX)6MZE|whu&G2ifT6sK0gwQM_Ar z_Q1ShG;R#g2nhE&C)_9gzTw35+P^W7_AB#=Nsgd3W&S>k+O$_0$7;fiT~sO)SRDYg zF=d<6GshA-xeV-`7>g0!=Dm8>Pw7czjF}T+H9=b*tC5&<5*;3`E9=(HTfD56P0pTP z>g~=fBLlprXU(PGDuc|abb8#Ich1*oD-oF8lp08H3NZUYfZ26r{v{@9_3n4BpKOG%AB52Jo`IBJDZ{&~xgpMWC zV**sJI(HyBiBDd=m&)|`azXoPzJ|+bAyIf$e3^>|+ z{y;i6CRAy5Ot90934wj<{Kx5~{FxBgOJYJ`=f?uIaAOR(w{y$jKxWBx-qRN>rT21B z71MvrP`@j-`N9h)5&B<2<1M1m`{bgl$eo+NdvQ-f-(-(Qd)rn-tM_2;*`sDhW)Gh| zV)n@C8#lkW!YA~DVC*m0*gY|S`}5>*x+muS;k>VTV^^n?oUk_8iDy8{$@ya=N+ zOSHWy+PtBwzeg8V_-l`%r;zhK=e#kVbVZc4oYaSojQu4TdF;{jFnXmJ`A#r$`>?vr zUtCe%KyRw>-A70L!(PXr_kuz5UdN!j#Gr4`JQa!wmh?v4egWM`{7rMA?>lb4 zfb8UmFxozgMTclRd-IAro+0$L3cu!D+Td*)G={vz`ue-alPH?KM}KxQdpfZ;(%>l@ zu0sUsoHxQ>IFVF%`!~#IJ!aqeB#?CN63Zjxqr@7S`k~z7BHt$ETE{jA1vU;2O6m#EMQ%*fVIH_ zX8c!Kce*jOfO~=k+>l!UdNQ*{=6L(I99dHY;u#KNB=W#2<-s=6mGH>;MUl|S+=2Utwyn943J@?X((>S_HIE|@QA*YdY(n%ww zORg^4n(HK!nUs{2BsD4PY9<3pv&gk%C+0NHVR&<=@hQXmtg4XH_(oOOX-usOV?Mbm z?=@l{u%VE@Nfwf|bK?cEJtVn&lU>%c0qfm3SIX?83U!LU23yvcw1kldeV zMrF`^@f&l=(;Z~34qEeMy|pS&)~gDTyCOi2dz08_0d|{uQ@fbdwGpP?VbLYsIlak& z4y4a{`J0HG$nR0|0MY{)9{sy}O`q&1qtH6SfBtRKKh_*H&-!#eISkDcVql0E91N%5Rj}Kb%9&mV)JlA z)&3V4Gd|Cuo(m&Izutp~SLtBRRnIkhhk(xv)TzZtal=HDJ$NuyzL3x0t$(v`WO$IA z9)_h(M0mgcO_m_Abo9`2_|1?UB2EhEQ*mvNkR-~6E~$#1F(HB)vgo8Gsjh0KR7JIv zl&x_|EZGT?Nbl{zqLuPh4Bxu|ERXNc@NJ}D{WOVI1j+QZA>6O-5fa4<+315rk-W~3 z_cxwR`xC}ogBc|H31?gRm2AjI-lRW$L@RnSqL;4~Ef>8pkJk4TRQ!Qx3R7_(=A4M| zIZwrx0!)PXT^gWrDDnGIvG~ywdJ6M%oHu!&>B02S**&>b-NvSIdosI2FW~sa?hKk> zbLeV;U~E&+mRFNx&%D(+u4hR?Jan-vw=XD%SVPQ<3%xQ}K%cAHnS% z0YZo3_NxbR`@8_pr3}v#{Ye#MTm;sf1xo%k6{I<$%N8>_mmacJSe>iI!v4enuj$3Y zB;PF~lfokk0wp#j?9U^mIs{SDEu2X22D8Kdd^wgpOzP}00wuaJAn_-`jCm5T4v~0i z0f`SSsNJG)j{{=YZS6+7u{is!X+iY)hM;Q2?p|S`mC{yHlN=|dNm??KbW}H~mndZ;?`YSoC| zVeuW>Td0!|-yQ*KOnj@0!u(c$aUXJ0P@Vh{NA^a6EQ^q~=8+xECfVGZhe%I^kX3?q z79;&$AZrIrd1N;hB70*2vWFIg2}}@jMcyiZavk9gydqYe=YQOEGMS7byJ-c*-lXPO z*bU2AilUgVrkbw*!dc`yO`Ui0CQj~8hg5U-bQD88!C>Y6(;)V>&_N+FuOm6{8m$gl zu1RcygN5Ma4)p1X)j3I^^QyV=I*E^|W>P>`;2-#?(|MDBNi~^Auc{VK>g=E`j9Z4y zJCU3i#%Fqfk6`_=0YZmjeJafQNAoCd=P3GGf}BWS6FAOc)4Wpczmy@*3;8#cp(Q>k1948J8U&;TKuLK z(&C>ujC9XI;q%Pl^W^(o?4Q^|R`@fAlPcDa*Ay-ZsLAR*#h72ls5#18b#708_z0A{ zuBj1qg{x{rUEzuvUd8hNK7!mxH}Hp|u5bq?XLZ+W+45L*_llZaT|s2##gMM`?-&I( zTrJ89{#B#NN%U2*QdU-Z3G;*s3qQyv#*niJ{VVICR!qNL8_fAX(r-|Ta37)w71 zh`miA!{`@+o@iSq6Qkf6!BU2jpdf<|lN90>b{JCFp;1L$EI0d7m5d>JVTTu0GN+@% z85$WyjxOww)yTSz4h%nXW?_fzIyswl;QaYvur|)0B0Aif=g%Gk{8`mU@MlFI!JiBJ zF#bG9Z{Y2MHP`pytRdg_fmuDhuuqOL6a?f2pCTalWY4lm1*O~i2=QHY7#T~R3}K81 zZyZLh?C8Mco4k_m5Z%@%C*;8#yb$(oz6Tq6;o+pcV~Q^h2aE&x4pnRlF6y=Z%5emL zCP36NiWScM+b57)NVV_Ca5gBNeV;w}Vj>tFfb%)Zt*nC_@0h6~G2dM_dtth5o!HA8 z4jIA#PV`@NLiAtdiGIyw(nOBC-Xv4$F?~77$x;3)lMMAwokG4xTs-N=_aTyfg+3hL zSLg$}y~}%qsmGE1ls?s07~HpbD}!AtHr41)`gVkiWDQ4(wu=<&r5aZ9DOSA?!f5Re z(E2z)YtBjJ6-xW`<7oYp!Rp;F>z_iL2p!UoqeaR@~r+!$MBj!K0X9aHANEIyDaZk>AC$lsVdU_@;)^oX}X?KR3n3GlxEt7le8^cl?=y{ z6irKs-M*5YSWLC5ACIZ}GmKaC3&m6yV%7PWD%~#}x;Xtp{$2c~VS(_bmE_sm9X|-HFrUZ@39AXnP!>^u!KyjLA6ym{mt2O_c z8AN44qJPQ^Qpa}<6VRkXN$kn~#<}EJdSz|L2FT^L1>WRLfBZc19KC^cfHRrFpj}=o zHbC(2U1?%-7x>J4nAokg{@~B)RG1*XCAzUzc))8GkkNE!Ei=Eu%sz{L%me-ku($_A zPga5O(r+cA$6R1j|Gj* zx01{1sahv=en2_v>ThcA(D@#9d7b~*e||}I#qr@Tf&jC5E<*i|IJRBm& zhOdCvO<}z1`U`sW?cYI)~eSl7M=|Fn-ow=j)H_Yc!( zME@|2V3{B0A*To~4^5=o{GUEe4zki`GMSJ24bPAhrVyLVddLBA1gVcn6PdRX>XPnf7c1!c2R}&loNGc^mbC z^c;*~dx%Bg9>R|8Mf5m-|8K}Z@<|BRM*>#GzC4H8vd_Fo23OL)_1u_0!B$aSFO0eW z;FEL|?OD%{CsglegCNpD8E;=9OWx}rvg_LdTEMO!&#|CK*Nbp$Dkfv+CnnbmO+Ixu znGm6=dalXUF-G+I?AvdUha+@ZJ=f&Mpz*!8i5j7o)(bZ|Otj|hAU#W<89k;xuribD z`BNb=6YwQ>Fs3P1$w&A1dD>J&JSBVYyX1C4e+5X`sPq@SN5;}^^_=Hud*MCA=DBB^ z-zPfV)$wfLUh*yWjLU-=!1(=M@@M)^FxgA{h)h2a1JHK(2jt|AXB<$pfdj&`ULTSf z>=~cT4klxfZ!xzgVjms5oqpR#q>+wl5Of~iAn4rMAf#&VN3cIr`9oopCpQSO8q*Mv z3q83}{t}rwCMINR%tvG(T^2xDETB{@z$C$GqPA?0PsxIIuQTkgY6uI} z6&N{*4zD?njm!(xf`$;!=Hg54kV9-*KmjgN9EnE*B(?`jeW*c*)MF8btK zVXrl0r^V>Kk?QNByzInm5SsTjZ~?m`=yFtdIxIrT03l$%5Un8rdqtoeeLP38hr-A{ z5Fjf;gLMJ6JTxd0um@vehhHDSiL)c<%6IsW6m5?OZEIensz1Dj-b_y&Aolss@}1sv zg!g=XlyCNM&4x~S(4}g+Pfu0>m2a!j3cYo30NT2Xv z&>%Xlqr;Lx==B*+QolX9Rba3$C5s zN@cRnf1#1e)oX!I$oVy7pKhg_2>A(n8XQk(tN_i|Hi|mJGsEZ#LN_)FhNebPo%~Al z<%c&mHfEn4K_i50^br>7u|dIDE<{DJhHzTi{`W09kp7XgagP2tpf<#9TzD`&V1Ekqr0uG|{QFbsz^&(LAt&Uv1gH zjHNX(GL`iZyXhvwd-A}rotl7w%ubDD1M_yOd0>c1aeV2pQ&O;Y*r|5%O#ywmfKHb9 zP8>&Hu&MsjBw`J4gMsEz+cG|EV0PmrS7lAmo=~2s>4GrFams zP~R8GMlS@ioKj1|Xf6!U6c%cJfG4+5MHIZgLWoTB6nZp$cVI`%^jFLq5}O}p@0vm{ zBlMrF2V$llvnl^NP^f89-`gs<(L;%8)0lwT8-ni4@R7m!_IrZ%?2+^(Di0EN&-VA3 zA-jiWZud3?eVN@O)AMs|7VX^j{po1BtPeShKlB#$?vX$3lnq8R`$y*INAC~Xx%?I_ zgy0y?aANygW+0qj!^ZUUAGWAOR{MJ`7`5*W5+>*Tneac!i*uTIjlX-iXw@C$ z!u-4}_Ow4bL!ar9uVi5qcO!!Yi0o%`s72_K0B}42%$Z$;WNX0e*DeCHuSOXIresYM zHznZrNi*rt>;v=YlLRq2o{9R_?SRJO^|ioH47Y z{>$my}_-TV^4OyoNm>Eb$N5%ufG{-~e#qlK{psxt<-6B&^i2B0 zcuv4-Zos@D>$JVnb0o96sPzf|mTRa+H^+JG^(+H(L)_=F*CV{G{CVEyPj+cv|DLsU z7yV6~n;`nC0L9K&qKTWI7lZLU?0R3!`8(0ZP0ucmrmN@|@xrj{m0%PPyLu-$CSL?? zObUx}j`{L~^f3Rro57~GgkaOCgkaO~gfKU!-$L)ENArgwzMq;9Vkjj7YNIE&Ian?e z!(t%S49KX^L9oRM5#lVs1YvuVMK*7ff=vE8bP3y<%Ya8dyty_ zF{z;#m#qOVn~QPjeMd1auN2|(YymD$72vY@E8x;xjLW|QTs|$vW$cDxT;hWZ=~6Q| zL>JP_zvMRBaYXCWuYk*_B3#HMHid8thXYmtn@+g97@c$xI;Rz&b8-PXhYvoOO%$SY z+|AU^3kmsd9)WKcBe3x2#RzODLg1zX1b$F}z_$m7jKiVD43hBf2F7roFr`XZfJ5os*ZhmN(8bk7=4ZSA*%s_P z7S($jxKWDx-}xmSNz0paMyWc|Tws)r&%XalT1#m^)&pMeL_al%3kmQZR5lETD~qO6V=*Cv%laj@QQ6%&UuhF z(Nwdr9OpC(%W+mSw;b8FhiD6-7xSmWbX?FZOot2Hxd%g6ZaOe0_h3bfO5sc=3%KV! z2m^I@0A_;#Q*j3-=_n0cv7Mep`~{CAW}0w-l>2Y*p#A-eWw`f^kJDQJ<;Q6s|7ZhG z|MocA#ypYxde}=y%in(l7P;=xP+Nn4*Ar-)UD)>d6PVzEjvjV!bJxvD z{#iis{Q+k`Zsyx2Pd`n2txP*h=FVE0TDZhbB<3ug#lOy3x^%f)rD~RDCGelrrbw!- zDC~3a-ziJbL6;O$VhyZ=rdzyoxPxk|2LFx@vMSjJbuiVHsu;j}n1&^~izW`kl58zE zg(}JNK~ogI1iWiJdnLF^On^5!ORjC@zjJY4VQpi-%Hl+%3fZV1!lSGWjKj4<{NFuG zkKzoRndjh4&cd0q{!=`hQe~=NVV#{V)0a;pgZzI!N6r5S7URiF>cpGJBZjc(cjXqr zEN0|F?{`1;)kXBbC!s4DpfA_I|0e5luOff>a#qg$kBQUjd>EKwQAGJkV2gR0Qsfn%sS;_*FLoi#T{I*Y z5!B2dQV zfB7F#)uSyU()a?DWP3fI4G}qtwVQsAHu8re(5P<_fkw0?2sF@>2O3x^&ryniVE3gW z63$VMY!Nxi6ig5fe%X%WHU79a=!SwkWe&Q9^OPCDC7-99(Gt#6rnH2(K7R;LQ;N_T zoc;VwI+4)JT0}56v=jP__8c%EExp-OeUZ5XJ zaFwj}7rKwohXe2$1AlLesGwZ%4t~dKR)~jZ`D^b-dH(Kq z=u!UoztiqP?}5JicRGo_&3mIQ`|{uE5qv5hWEue!CIr~W9Q{XntiSF<1b)3*1=qW` z3a(eQium%@z4Qt~hw-O^?Jcc>?bWS5eqNp@27DQULLuhHv4P#(pu}n&iEwPkGEC*3vJ53a&0`k{Oczyy!_7s&WD#vTe*?=I^)cu)^J^DKBxp+ zR(U3)5(_TQzv!5_b%_YFfm9)-Zw2nl} ztMKxZD*3-Ii{SVG>ooEUn)tUv>6^P=rX%=zq?HF>S2IFvYrSq?QD>-dqi18rVmErV|Jxps!rjd8qFdOFo)6^m zZgknu@WGw48E&#b6*p9|lE{+*sd$u8)b-c?A9_d5EcTa5 zcM)l&t0TkcV{97kFKc!H&yc@-v3vH{)scm$-VSB;qKoOPtZPsz`g?8UX!gLUi=5ig zVei2mvX}Oc;QYFnqQRfs5ILQe4a?8-bVFnu`3+}?-+K$KkNu7268MrP-mhCi#8Ky1aAgHVQ zYkNd%v%8OoyhIWuz^eX?*^%Q)g7qhz5E(mEX_Hp07@cUATstFW(yElfQdAx5N-01x zW8kukjN)(qMWi;n?TN^YXxwtsj-e<(70XShEGM0o9K0TF>X~#pnaobUA+n7$VQ9v1 z)23wTxHZj6S}8qc8@i#{8Ot_&bgIwpeIj}XNpuc5llJ!>ACXEy^-o$FZT0u+kskir ziz6cvc3QG!yi1pn@J^kXG;Q0GQ;sfKlBKAsA!jc+JhC9#WF-yR$=D#M1~gL{OSN3n z0?K%$MR)yu*Ma7XejB-qB-E6n$|+4Tos^-aGK#GjhHT<}C!EyP(w385za{b@DG4`N zOs8O_j>X_y_=SI17vz)Z*nwlcXDc90chUBDd-NhF(35KX@u)26g zHznCNtdyFvv`k7*+DXTdG{<%v$+0v3rr~h)2Of*`$ZmT(vVyEsI%k^N3^_UG#4~42 zKVj;T$Ia?oUiDOA?^5(@K5MkU?zTu>qSV@$*tYn8oE0gL8@j79tx7tMW*9D%%T^@A zHPb0WHXKdxIIckRk|ruwO3Kt^Bk7oFyd9jvwJ@NXZ2N;xi}dr~pAxCdj=e0hoWzrg z4WZXHUCHPg$cEQ!C0R?QaPMC#ofiEAMKnub;P1R5a$-pY*0%}K?d~tQGSVYq>x!(H zP&_S}grwoBr?hUU$rPkmhEfI0O(ZQ>aqvbk%!!5f({0>Fs6%Zv%{5Gjuan&_M;;<^ zMZxoonY45_rD?Y5Ko*=NL?x9{G0 zMnTVHbcmg+YlvoNDd`Zt~t=~JoLrleSHy5UdX7U`dW>^QidiwPlaij-200<;{%QD83&M^^%&EOA8| zvyX+U**P1Fl&ypaCks^*w^?>Z%yfrpmRehfYL>+_7OKs-Jp-=+>YAC-t(0ZB5MNvY zCre5yyL}iuV^az*iW-VxX{M3U6kKCw$hzXdY{9|EDZgeqh>+LJgq6k%(dl$bcQU31 zbCz^m*UC6@8s^ZF49SPc_YG9D1OiFF{hr8)iOvy7a*mJnEANF`rj4YVw$dqA!)Fhjks8t6RaW* z&+UNPat7`NCMLtKo6ERRUq{2u7z(!6*KMTS@CHr#fbrg0@~LLehMlB}j>Rnf4CV&i&NIW55vCRNqU%3~sn zqKQ(sl_t+WB3YDsqtQPg|oQO;X6aIC#MQRhBFU@p9ItW)FC&4fq zA*Ci6a04n_gNBnaf`2u zAVO19d_ob;m4Yi|wR5m~Age!kIWjbk-M9?QprIp_zy+DQgIhdQCZxK7)!EF$^%G$> z?(B7wskEdce9M55h*=z54I$e$i*wwxEDT9pPb-KIO%;|RrP++H8C(}(!7E|6PqGj8 z@10{{1xqRcJfwci6E?`9+lFT@S0u?aaZ_@e95_YQR9zsNRA97WJE4e{rW$J6MZ&?% zUtl}c5?A(xG*SetrPx@gWTiy7uy+ZrzQg$8nporDP4OJ>KEl3xWBt-d$9%Tz*KHeQv zbZ&wJw^#}T|DAr(>G4tsclGjc+0 zAXbub89*|F97{4YHmnbXHkE|aa1}cUS`)Z>%XVE{xvfdKLjrN5Wu|e*gyl-mR2ZDV zJ1U(6HUd{t0;a$BUy*SMTfvnpk^+R`(%C+^X%-pkB8Qnh?mp6 zc!{<75Yv&k2UJ(VBY2Iptbs|EYC9&(5K=~jqPi2<9ymUhI$CgfDB>u#r7CG$_-=yJ z=wxWZ4aO1MqZpIa5jDx0AxU5;(ADi^8u4D*<*F%EEnWh!zxIR3@rhDkg%fQ1Fj5H# zMGf8pIJj}mfXhZIC0UR~-8F3-4ha^bVWCh!&6aTi2Qo)XhfvFqYj$^V#@2HZDjQ}J zS9ZXqsK~_(Ty>^HB;ZPH6;V0X8%Sv9K!t>sf+M*Rgc2A^t*!fqUOClo0% zxMw&GS0%$2q+A0*4I;Zt+BBFksQ0T|qP?<-$D=oprnHR9(48czFf8dq5d`U@1ovj+ ziZ4mZ-n=F9Fv_8wgI2l5l?0vh&^`RbXOXG|bSRDb10)fJ+oY7VQxYs9Vtw6)qM1Pe z9k-JR<`H3-7Bhl2%%%cuRV^8(&(OI*^$?1)3(8z1`N$Sb6n1Q;rl#!b4ua{xev|?% z>_-W>hfqFK4f(jF;;JY$pk$4*N=lV&H`Sen3S6e6)WOEZ8W`okQrUsfmVzmSwggCpJH2>1W1-}n zhI5dxuL8$_yaKfrMCho!m~gXAY>UVN3Yv}jiVhWp$4(*}WtBrs%2*lPsTMeG-2Di3 zWk0F_R!O)O1Z!|%XOTh3jw|Pst^~}Kz`qpCP*{1v_oFRiBt4{Z2I>QdE)b3@U`rCt zTvt-C>EIObQ|!RsmAI@>7?iy$BUg}>rFc`QY@G|FRJ2u5if%b&i>AEUoPsYL?A>_@nGRZUwph?Y;u@k6E zL0GA)X$vLplwp9Z28#Jg28n~3Lfv21Bv;T$C|D`L!q=688;UEFrh(IK*vEu6A*^>1 z#sCkj3b*$ux{}i{wtprWV7LQ+h~OAyZFp`IDW9B1-YMKMudc*V*|gPkI)gG1GFumy z*JM(uBx)D9$`pH};myBNz=gLf1$*CL!4|&x$GshDDJrTgDIK*I#K|a}p#CL;_Shi7 zQgh`ZHLrGyWL%hV&*beE)gp3k1Zry|(f=M*7@se_6 zIf&8a%f{Y?mSNFBZgZg&VE@K5qsPZP2dm^&unDDjL%|L?D)TIRP?DBcazib{24VtYJv3S<&Ejk`N3y9PH7v zXuyTV;fY=6ASDrImV_yM98gkaK(y2(K&lxFfjZ6+fT9KpA98REB4uFb6)z!RLmC^F za9AlAL*NRNfGt)lhrbQ~h^nWG8`l+V6~cWY2UIfH*+xMLySTZ;v~!rMf8r!0btOQC zTpUa4+VnQb4(S(+11qMXx`mBkgg;3G1?UV4(I{CWau&6dk{4j+ciF`@LJ9s9`ngh4 zS=hT2?cnDUer=CvT~p^P7^2`{aVs#vG3Lc_8 zh3z0CX~B!2K7#B>HdvKU*v8OK9{X7qUAK)4;xUv&GjO09;NbiMONnGHtZXIFu*4>N zDGYKhf^V|-j5`v_J2oojNYI(vmQpwxVM{32VYf@pWeh6zCMCpQ8Ej}F%E6(JR0hW_ zknZ911*}I9mLWt(K@GXDX{AxFM8QqLkpmQ9BvVnHR8Hkkg6R|}$`H!H&H(!Ix`-kY zIvh;Eo+_*pJ1hj=*a+oSq>`xTpz?t74L{!!cTt!`T820sWeJ3pI4ptm2-Xn^C)k*U zY~rjAEQAT~A?rx^41}ntyr86nq}Rq3uIaG5E(JF5X`Ms$d367+Ga@mzjb1lJ&;L@P z*gLRfxlPqViYUXp!N4P@v*6IvmZeH?(qNutsBDi%thVH}c}%K;9X+vsP>OLy+Eqem z3wukQQ&r8yoQYD4V@9gQzw(vn(b2BcXQj@8WxGzFb#m%0h^D(vpB10p>rlq7(`Q|$ z&$>>Zb)7!zI(>%2%w4C?4t@MBydTkZ`YeC2uIuz!*Xgsa(`Oxr2n+MUuG431|E=@$ zZ(?(>>-1UI>9c}g-8`sn({=i+>+~5r^2X~KiLTRUU8m33mVBvGU_nj1#4)gJ*Xgq_ zKls*l`ivj_>^gmxJ6b0;C)kOYuG42-r_cDwg09nNMMq@1PM;N@ddnYuNt8MO7C7xv zC&2h&@UGKm`SWyH1}ax=x?vj=Oc8KKuXo z^w~2vmLEe~hw(cs-w19?n{iY5K|f^mVt0SzP36nT53;R4EU$>r^M+-|-dv8K`8{@+ zUw3Qyx%Bmzzw*{{HTG0Rw{B|&rM>aD4~n#BD*cylEywMrHGcJN<;T(~!~B`Il@D$^ z3%_Q#ru%tw-1EmQaThIIvTR-Z_wfT$YkJIclJ2}Q{C@4F>)OA^+D4t{pVNY$)@yIV z@2jlowQ%{ed2`$)9ewJW{P%AwkJE0=e)a9;jr7yO{+Qd#hu7YPn^xC!XSbA(nKR!x z*Tr>9=5M^cJihYSVcoi|ZvO>ke_xNWzier% zu_pHSxA-CO)$LPwAGVs+d;zOD%Bwl5tJ~{<@apz%xXO5S`=|IJgw^c~snx)P{bg9J zZXd^HSU$U9#k%3`_u=#GueINgf7&Zn0&x2S?Bg%lr~hJ~_Qde#LH6lcpwj*j`!omW zv_H%~u^&Zf-^M<%-%V}b&OWhUziZ#YKCxdhYk!1&V!t=l{wVvzeqyNoG4_f5%tHI) s>=XMnkoG5r0c-p;0zN*;8rj{u?N6~!>`uV;r`e|+L$mMSQGP1~bCb8H>rHk`7n%GtU3#)!x`aeoW^rOne11_(d~RZKNorAYVo{2^j)MB+iGRf> zzt2#delUnpdU9X78dFT|pKP5GNvT2dlXqt}Prj6;#h;v*mkbP&lA^@C z;CMivXv(5WSf$#so6hgyMGR&(mMcD C1(|68 delta 479 zcmeykh4bSU&J8;_4bAe)lGBXMEcK0yO;U_ZEDX&pOj68KEsWEQ(k#r4lP!&tOifag zObiW@j4cw=OiVVv|0S`9z8v(P}-?&WV&|7AMBU=NHAq=Oz}Hq!uM77NtziPnVhOk}fiNak|BH$776& z%<4c}MAP-9bMlKzAgYT?@^e!2V&V%j^7B%G((2O>1~E!AtH;z%4!k5bdH)6W$<`T> zv@u?O^6t!LA&|>~4o7x(f0h(~a$;U`YEFDfQDRtvz{O aw!~!79Er&~*`}15(d?hI-9Lv>=^X%1P_Kvp diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 1eae5ceae30a0994ad280737ed1428055640c490..b9940ce40cac7c86c874fd2c31c0a40bc723db9a 100644 GIT binary patch delta 80 zcmbR9NqEjD;SGB@4U5fFbKg^%vyN6ci;Q&yXVX~=R5Ch zZp>_M%&c9V7H4gGZ|NO^#gJtp;k8TwA}Wzw5Jm|ynHz~Y=VZ{>ge!NSn7?*+dihez zBNskr%F$>@C;~xHBqV{=Dp6Yb;_@fep=LmtFZ_qu>7)W6jE+-|p*v&FrPI z_m}^@>qgU^dY3)3^CdT${^s=gFe%%WsRP}eM+dY0@$cEkP3y^clR;4m5|Y(EIP@U~R6d{+z7v13 zC;OW-gP)ojf^Pmcd#$YipzhW>TkNjiX49>cg^?yFtc}2J@G5|n;FL||DPdopeP*g9 z>rfS~L}3j|g#tPH=&X|>@#yjhVz+jmO?6-0V~_VI4h$|eEqJYDih-0*K!p(pN4mHS zR2HfzG9p&)`lhJ@=`OA_UdK_G@osIC`Id{QJYW#s36S6sgW=kRWI-iVZpf^Ng_5VD zr76t8#^fzYX;9`6DcU3+PE0^KkP?9;Yy#kjK583-)50XJg4<23hGR%fRACfeCxIJ| z9FK7O_D73nPcNK1ceq`k5*FdK3>gWi5L8<0GUibVQrZk@o|&4fgtmL}NA^_z_h9g8 zbH1k9LV4<|C*D{(cKqd6jxN>AJ3d`IxP{Y)JGO7|^s{@j>Ta&HLx)EEgL1{VB1@zM znv*xKNFjnv*~+Nw7XKD>^jtzDn>1L6zW6fApvuBSXJA|BU7^gGJ7tneIXOT@r~{=G zUDBB=A^4WWqfoXr4Bed{*s(f<|5C|~fP%0DGYTlFL1i%eU~O`yywuyI1d-*1y(d+c zZ`4?(oEl!EB_qNJ;{&NQQ8_3+v5-7i3dQM;ER@Wn3c-w;dS1D*bAmxaXDzy{w&^89QR&E~)VV0IYn==6hqJ3F{q7HFe;E&_~v^4utntwd@5A8LsN&o-= delta 4019 zcmeHKJ&0UY6z1Jof{UvOBt{Ei-Y!}QA$xz${j*cF5E2thvxIoh{Xr28qHY%i?JR__ z#Uq6%7%YT^)fCSvonU2=N)#kP5QHqT*${|@XXec&*(iHUo0(#md2{c5-*?XUo$t-g z_R`Mw($?3D!kk}^MH#;;6(k8xSO>{wr;04js^}GJ$OwX?a-jfh+&Q>><<8>zrPf7h zI7X3!x1gkUjKC46@K}TM_TE!MIO-vXTdtUQ_w+2>7z`N+cG_> zx`zM$TBYQ<5uLcr4tKX69UbjY{lGqKT3VqE)l&;91n0>q6(R(iGgVlYG~Li& zUmE?~)F5=rH`%M>3WDzX_l$Q}Z?eU4O6ar(m6ga)VhJT!6gnggQYO{C@Dn@IZyg-1 zEwm&MnSDg5B|@>qp#$qPT@1?70RyeAzu7|f#a;GzfBMMiQqu-0rSpjjq5v?(fWeXI zPzsy9HZyLt>zk&nfWht};jZJjF=4m0!@@Y3026U(D;(rNuLKg6rT2uw&idsIRb6=% zlS`me3884^3}nr1G{yWku}JOWSW1x5ksPwiSaJ+J6mmh#Ff?sOY=0baLQITnFo@R~ zCAc8<9oO!y4_4nlyK>>ev34b9lra{WtOPJT_yi(C<~fsF@6oI|cL03oD*LqgsMfU= zy6Y>aUq5&9)Jrd)I9Jo}-qp3jt(-m9u>+$g$NRI29o6HRXQu@aP^9HFuDH-pXc7sF z*?SaG#4Kaz$#L&4w8lqneTiCUDi2-vK}4CgF4QrS{Ltw8#vDsQmJLR5YdsiaP${KL zc08BDmG1a$a>vw{Z4E+q>qmC7j(|9=PMz5*heZHLYtTTn=rSidf(BVI-YP!hluUFy z7_G5T^99j!R!f^O(acFA51bx$rNx+H1mz@($&_~vLkd_>M_;TRB;OC>tpS<2vW8>V zmCtuyJ~diyEz*3+89jv#vD64im{dWO&d2~WdQx-HQYy(aK;%GaBtnKjh`mc@a9Q^- zJ<>hWT+ZO715|u6R)YdvNEOQYVFJ(S)qo82syHtG%GQ+f&dTEw9`L3xbiYXkL{GEG zON=2V>L#L)2Jt9Iv;%Q*&BxcXLR-yoqs;| E592_yO8@`> diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index d40d8773ab584425b9ec7d71472f08012a401263..77d259428511e95e336802ea15f24b0c0a86debc 100644 GIT binary patch delta 76 zcmexsaadwQAfsWid1_94RsaadwQAfusKepzywv6-d5k+DgNk%@(&xrIrJd8&nRno*jCxpA_kagwP?YLbbe RL6WgWVw#D`<|f92TmV3C5)1$U diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 7328135afbf3abdff49d8c697ec159beaff0912b..cc13f15d480882273965a4ef85bc19b84059edb5 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4U5fFbKv_?TBO~l>tj?LI@y@RA6SmHT0ZD{bgml_L04VqX#hF zk8vR(SSl<8CT-XZjJA)IR(G@yUxv=9{*|Sv{tc7WimiXEC@*(c(W7jp85PRi>7gy8 zW6`$d&(D(@*ycrH<;UqYbf$dJcJ5mAzsl}6ttxKuKC>VEvyK)Tj2FVCL;{zF#|0Tm zm{-OIBUvaeY5sJdkh-f&@wo*OWtG zCioy7^DJ;Dqzl>3i)d42u87XnwRob9$68ZG2v@{A0Za;tIp&N6m3-*?xMsv zEm8;00}osWW>rc#qBYs=^Jsk{ zgaJmW<5IdP##^x1F~X=7mJ3O1q$QexQJz?g8R0lk=bZuTgN|MdR*QM;mMl4j)>Vd2 zp@%530gUj0kd$lgDUZI5J`9uw!i@n^i3M*^K8K%|5YC_ewuE-iD{D(YI0l4)OO4_- zHHI1C980ZW5R}(7qFNM43lM}N(#F-NnkmXXNUwwv0cSH^s4;69LK_z}rQQh1xV79$ z9<yvh6~Zg47BuBjsA|d?F0r!6-lf0g*?6`@(ZvF+>fsKIx delta 2228 zcmeH{%S%;J6vo?d%Zdg`qEG{mmk5GOcR$vCoDz$$LExp7L;`QJpBa=&T2v4P4hwo5 z>(HzsBCrILxU>F+hDEa)HE7U35VViou;_6n4L!3B-`d~$t-Zc8zqIM=i%pg58}D^2 zSDtSnV)~*DOr&+nz)?^{Dsa*(7HCkC*_0U$-T=XdDIEY-K5Q8sL#MN6dawq2&dwdc zct6Iq1c)R=aCf~;aLp$A##Vl5l82fLvE z_dBzPc2|CTFX|}QT|r~nk{+o3>6+Ene)O~|`=i^+8~3EYSK(j?5grQw?X+P|DDDGJ zL!5=;+1*F;WttUu{I=PBbF)7;GpT3K%r0aL_ded=u=>5~LyZH86D9~onKhaLIHx%E zK82vQ z8kj;)BXx;$jv5G;8t20eG?IY#%Gi|P*cGIpm9U!n7!!fHXI!-@K%^;WoM}Qan7ANX zS?R3jj(}Izv?*BJB5RD4%mXONqg+5>7+dRI!2D;5GUx9UWyS>s&Tm~tI}hTuh>l;N z7|RIJI2`j?y?V8lRH?!cye3}q09F=}r;=iVrMJM0Zj(mYKci3}bmbG{Xj}e%5cTCV zC(vSXT)tNJgw@!@(c>p48pj5Y3{8}+?yu^y!B(5K{AEDhNf~7^uig3Q>qzFwDKuP~ aiuFvcXL9Xtu%5}E68wKN*@~I$>HY?&a(hDn diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index f29750b780c68fb7e007ffdc69dbfb4444d02fd2..cb64d0e5fb559f326c3526423037154426a7b570 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213VX=8?PJC9fiGEU=QEIYbqN!18l1YlCv0-ea+jlunuWP>vZZm7sYz;* TiJ?J~u|;BnOZ0!cJkj7SXaxnCF&%@9Ax zVjN5sVpdKRUsvKr1QE>23W75E1ClJ1+04S7EeHnUR(z_eyVGSzU)a4@=j(aS zb50%He)iz@voF1TRzBm(H}=1tXfIY(l4PSwq#U#?K1!=)vQ=0WYOTcv>q>b3;Oq|% z&Q4(OfV~s80ecth-LN}gXJGR;?}6P3y9;(V?7gsiVDE#yANB#*y|8nzP1qLfJnTN$ z2VozAU6>u5-Tw4v2hAqwO2XlTND@;OiM6O4oDA8FkNs@>`DyFXjVs%mv;RE2{o0v9 zlatYztV$)SxduzY8WpqftW}iDFKj%T;R}Cxd9Xscq*5(HC(4Oq;%q2!Nr;TSo`2VK z?N^KF&Wzg^e>z0Lg;;8B9ny_9D9ucPnXOHM7wJCNel`Eb-|u$+yf`fu5oU?7NRSCW zdRfT`g)ihF?RewQ-MQKDX!pd%prsbYN|F{&WRy%PFS2{nKP|+pDSyd(#eKaZy zD#m)wEV7-!?>9H51T07CQ-~bM2NhDuIx8=fipXQ0@O`tFzSRGEGWCerTM@~7LXD;8 zDwA^7B1QH{WTQVf`>Z+@*4L&LY5C$cxbaCiU7ardj;1A`K*Vv(d|Fu*lO zU(qd3wIGP##4@G9=a5LF$~s7@(Zw9Ah%RJXD|uVS8$asKALay}P>P&#MJGw;=rX#> z$)iJBq#4rx(`4FkJYL=JWZUf`o6Api9}~(xD8*CX-h1ZBoom;2haI&D)TESDB}J8m zh)Ef3ibS)B4ijsV8;PA8Z~nErYj*oWe{FKT(J{3H-w%E9%lnUf;d7sVc)x|z)z^*6 zxt%9>$G^mWYuZR|l)vgOU0ReOTI0C-!X`$tg4uh6N&s}2wdNSILVKH}E=mH21@jlM z4!KI}P%keRI2`xB+ilJ6xxfF;WGaFZL8hF&mINBJs+ESOSp)?J#>lPHiM*XY4!^@UG$b zFp-wuBi?O|f8Xja?4BeZ1U$p@d`1R}!J$C_N>ar#IhT)8Yl`6i60g;%RVpv-{_ z{imjN&N0Fk6dh9(HO@sK)NG+yPPy6Zx4Lg_3}wC&C5UsCkwS7F=!>!D0!X_m!b!La z3JUsIWzkFprBe70)F8X)6IAAqcn!zA!0WW(czpFrCqBL-g}Ag72Z)x5iXppTNI^A& zWg~(KSV)9)vzt%P)5)YYHW8cV+lYc3mTZ%W9&)dvRuJ-I_Dx+TOjQ*tkWW&UsK{8I zsse9?b|;0r;XE!W*mQnG!8^v!g#Hr>!1520J)wZbv&k6pb&eKWvyVzA#TpwY35yCZ zx0S{QIlex@D1Y@r|H9;Yt7ogEYCzSkzHSsy9aFHC)`EifFT_vkYA9oNYYLPrG)^fj z+t$l~on-u5?KWpWexv)!Mi1Drku0qCR8sXmQ2=Zq7Fh*;tNb}H9DCuhol+76Myt8N z7NxT&W&|CMSa^C2(JtlBogTna{-!b-kShq%P3#U*W(n37Bda86e-KW?4OIi#aK}_^c-KoRHXJXgIR5tW z{_+5U!jzUGvvpLR1+Oq05w#Lgr(g~>FrX<|EUZByxDMG%C8**oET{rDx|5j%TxDY3 zHjg3&~A|K5$Y5s}mIqbFA2tuuChh$=HHf zR}e8B&CBMgwW5LFpImP=YL!vqbdd7u>sIN&zhV6Mi{0k5k=yvnes^iyOT8O^aI1T4 zeg3V_zxDa|Ha}FXQgD6#z1{t}KL6I|U*k|;rPBKR!%v#0-=FLAZ+-sZ$LjU@w?6;Y Y=ikcVxjz5idO81p=idzH-yiP$FGX3im;e9( delta 7670 zcmeHLOQ@tr6{huS=9q)7;w>b?Q96 z?|i2ZZeBUKdF7SYcBOshxm30F`$|(*#L_WkS6Ek7+3DnUG*lu<5jBTO^u2@K7Y=qO zuy?`U4cmde2ligrZLnjo@yz>Rx5Ms$-3fa?>@L^`U>}5i2zEE@IP3)MBz zW5eE=AI_W?!I3dWW=C91&{nW>xo8uNQM?Mcb!xovH|M**pPAVrqNVY(B*G=$Mwt=1 zOg>phVgCBF-7`DA(<)lwm5rJZMC2f9);h*&f~v#ihx_Bh{&U^Q`CT9Fzd7j%ag%V_ z*P@RNhe-R!LP>^7w zTr7t0_F$cN)@Ny*HKB$%&i-yPZTKDj@Kh&fnHqlIyx8pzFW%XIdN}`Nci*hA)Y=+r zd~}pz3_7Zqt@UVnTO*CN`P$AbaWs)D1y7np@LV!JJ-|Q!Yszck^abdsY%MtzNf3ES zl7d#*`#^H|%d05NTekoCr0IOP{!}O0z84`~c)I(9(C&UOpZ>=F*Pl3h_3HWASw%sG zWChu3#)tSsc#+MhwYMC_D!L}bQGnya^*?ua%x|9VuTGwCRqQN$Kk((RTzcqBU-;sK zmyYh#WH(PAoxW(#K5>5d#}B%bvsQ2e@^bIFMII{0Xp#f0Vxj63=jy5tDg`B(d|c(h zBtgzqF0oYn0UFRoY6X%uIp#$2mQ|A#nlndoAWK;-XEVHgqdUIp)t2{VuQr_@!Y}mFDVd_LwI<53`s6~C z3EAc(qnlqJIT2h82Cn$pb0$U7qbxCtR7J!@ta>e&S*|r`svg+W1omLem+Z4rI^;~e zppoBC8h(e%m%t)Tw}+5BIsElxfBKVp4Rca~IXK!N4P!_;P)0z4offD?9p0Ms;N^$A z$9JZU3AfDt8>jmhC(kzu6=3-B)*}IBBh_U{yh;QgmokWrViTORMz?b4~@LqR*L?1-qsY0EEa? zP-yV=2Id;h>+q|O^^eYC!|`zD~#D)&VSgo`fUf<~tf!BCJT>`J^ zeC*i!&PpN9Ek}bi*?6QG!?vD;iZ^uB9y`| zt_Kw|$&o2hLMRiFA|<5AWXxEOY)1ui&-}@6cR!uXTHaTaujTv@hPMr$^ZlnJc_;2C zvkpf1Ex^A`K|*AE$PnjLiQd(i3@=30h(`2bOGn;10~;ljn;>iT@8;=7CjB8Kr?L?r zMBBOL2*hqtR7JNrAxRko}st$!tVW3MF5=k*diGPzfDr3k%5pkd;9H+)A zz?Q6MG`7kalh0zhY6snhC1FWjOZC}uyqJKHLPz@@xrL_?cOoSZ>WAiqxL+ttOg|lx zL6O(cI5k>V3CKzuA_&Y_@L1^Z3KhgGhPNj`*vo(HeleLiDDXE6aSnnV^!F9}*D;U&SRBoj9rM7PFTel*wRj*AfHCpu@qw~lFx)FK#)$Y`^ z5!+%G4*RKh!*_0Uk2H6%F&En%aJvJ(V*y=F!q)zI2*d3TxUt|aV7T1@w>#i=2fXD+ zip?Rp-2wmW^10ms7e9Ws*08n3wz0Wvcfccl!`OsmBa_=5aJvI;cfkL-vu|SQ|F{Fr Ku>=10_J0BE+Ne7K diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index 6caded55a867a44cfc8e17b8a89c616ff3425bdf..56163a32e9a3de4e7371dafdaf1d73c7131de930 100644 GIT binary patch delta 1761 zcmZ4cgsb@p7fS={RKATYM>q|O%~NyYvyx5plhTY*lMNG1jZ%|LQY?)PQ!SDV&5R9` z&C(3aj4adA(o)SV&CF9RH~-}PZ7OfX%D`Y#P?T!NrK@XXU}U0eV4`beq+n!dWol|= zYCd^Sbd-XHsh*{=o}r$RiHVMak%@tU70_@4E5k$}%gVyUbn*lT6K*6$lP@|P)6><} z)Ae@JFIE78%sd4HJ;P!yE-W@EXjtf(nNH4*{mqSRZ(-a*U1L2{JtGS}LsLT?1ydtE zBSUjNLo-V~OLH9sLo+=?3nM*417kfCOC1G0J-x~CA;DY-9Y8mDPktF+H2Ie&zn-a? zo{2BATa2-~#X>;?q;j&kmxEdcd+d}9!HCh|K|~57cvdrZPOcBIM2WCH(V>%TytznE zEC)hDC)@i}Ql4O3C!Y;Y(m*5u{E24rPQO^>^l~8N8mZ|-BOq)vAV3*LBfx+1{r#Mi zWx~QF<$whWRg04ClOlL1PaIS!P3lNZA?9A@ic_FP$!Nd;D-=W-V!ruIg46uT>HiJ* ZGGh}GrcCu^W@G??Rv*T#K1>fc0ssNVvKRmW delta 1829 zcmZpE!nO7Z7fS={ROXE=M>q}5^2?IbjLj_djf_oFj7%&H%`Hq)%u_9l(~QzA%#D*R zjgw4GQj<&!4U&v464OjfHvi=OZ7Ofc%D`Y#P?T!NrK@XXU}U0eV4`biq+n=ZWn^Jx zU^+R_HA>mUSkK7BM9;)h&(PdbN5RO%z`)AXDAmBqFwwx!%F58t(0FpMg9$H+y2&4% zy(iC&$(g*)h0Wa3)KbsV#9KkZRL{i3*Ga!v0SGel6b$r?in+M3*sGucQaSm6<8N+c z*T_dMR5LZwGcq*SGc>c%Gc*D^$5_u)&&X8I&_YK6EM=x=sb_9Fx!*a04^=79MQ4Co z^(;{wV2;%R<_a1hm6IK#%_k>#ajIpo$483KNOg%!Y4}vDFNf1!o=h{S=>Bg|Y6 z%XBM3*GZ}Z%Ozathq4l>g7S1jSs}D{a$YD8sp-Zs+I}=lptTY#oj68YY+jt;IG=NB a6EhSource code for cleanlab.datalab.internal.issue_manager.label

yMT6s=-wNu})j)%|61llPYgd{FCEAz;ra ztskN_sCB48t-nWW&_Ba><zYFVy)%|L;1#E@BRm4uxYE&syqbc{TJWu_L}!f!sNZ-ofInZaI0HUA zm-@Y{J!@sD6$#6Pfh2TK8z>W&!bzG5%O26i$&E~ps5a+-5nmKtTpWgD`VVmOuY|Wh z>uSY12XS^f_0yjd11V=UmOh^PJPL_}1!p`XtW@;dzdwJZFaI*&wu? z{K@mK0bw|{zu-!WSOQw;X)kWcmWAiJi1K_ml;`Y=t`^~VZolX%3*p(4r~c?_8}T&o zEN@(#%$^O;b0_7wFO=uppIk}db-U}j;-{=!#R?}rL?@PT1>>J@1|&+e~(KaelqmfeY+4MuKgvQ-PK?*^Kgq^7s4v;?I{Mi9P*TlO0qj^}y5$gB>o zy-lKOnWCr_=}xn<4%ZV3{yb5_cANWImNb|QnII*orFQGV(h|?35{O|dnz5ohy_UL{ zn^z_@i-~9iCX({RDEY3drU$D}VO}06k53%^C4U&}PbIKmE@A!7Pp*nf?c0R_7?$l2zc75*F}V7?#h-m;-eO0*d#-g)7Z;>6nz|>k z!?aN%Oe^~rDNzzET7Gp24t}ATdl@@H2;&Zw{^?*DSAPiIB0euUuMd2uerTs+gZ)Nf zaV`0i35y?T+L;AkQ?56J*einBhR7H^p4MR02sL<~FqPI|zz8)MFoGDk_z9x{-v@)` z7SR5|n3`y2E;pG>O$-|~amw_YRf3{Bf1tHHFa8733Yum(NSlQ_LwVhc53n1kNO-t# z$^_4q94^FNbWnDE{!SZrP1cLj#a&|`Ex}#mF`@)_jiHHwU1RMozCYQW$QDv~^ip>W zArs_s(5c7_cNbtPGmM+Ya{)?h8qcNpm;lE^YMW^>Ccps!H;pX_;JVZywK)_4H;rcj zg4i@31060tLq2kd+%&edSsYHQy41TEK0*FDrGO4)gebw@QExPSG6c6W`1W-7H|$pm zFZ1Ss=;0cEvAsK$=|h2lKQc$<{6m$)hRW!HC`UyPjZD_+j0bSzbNUzOTiFI&cf$~b zA3^h3?%P=^l>wcf391g5Bn_3>Ye2!Qv~whhowsxxrS^Xb z5zu)b62H)S9~v6=Xu>$Yzk_>L7>~Vdin|8CBhTH7eNG#MZu=8b;&J{rN@1L zsDIPl<8{Zur!)q8-Ol*4LLll|Kco_(Ydzt0SFl_v1iIEGTeGj&wSqz#G8Z9P7FWC$cx5XWifaf*b~&SRnkryb~LbJ{t`FLncEy+YwpS^KHjZ%MIjL|O8z(q4cP z)6QOsZ%#X3(PEr-00E~R3xYZAR8a(+cAfTy?hOh4Mzk0j7 zup1~vR1WTt4xz=!=m!3KALtA#d|(H5axlDpLxtQ?wIJY*s%avs(Y-3oIxvK?#>#lfk;lto?JP^E<3 zB!!4K0Tj`Olm;HYrskmYb?0ysH*Eq>wT@O4G#6lgu9hhPH}nOs?%93^eL6{wC0UeNc4b{sC>6n%D|h*Cq1AKpo9nXQGC+_ z-cO6s0|EkiKnsHOfZq>ot5xEu<@iwok1F4=5E5y>rz>UJ?^#-d1Ik2J0q0Jz4e^Ny zae%DpX_fY)6#e646tIV{(DBl7VDfKM!Wi$FgjIO>IuI6Ti-!2z)7c3MA0&u^|97Qy zLx6|zW(dL803hIA{-y+j1W-}pAC)rTtUH{Hiy+?01=@y7-hhHR36r;?^%`X-yo$XV z6|FDN>1?N?!LL3!#!Br@Aq~10m-vP5#Wg(Cz4Uw~Yb-xL**(MRUNBn#v1f1AlQs+8 zODQSwyO%{*>0T~Obw9wy62da#964M@oHJ<+Mx0Qye4#6s-AQY3X%98Hw67RWqRlWe z`-Tmd?x^!{bVqTfJE|qz(X1&mlsDSMC(UqY#Sas#=z!=-d1L&!V_arB|M&Q;-fTOq z!yt5S!{{q^BA_0dI@|XYB`hvC;s+)dJX94w%RN+MFVV_?gLz}PbTDsOYQ^Q8M}`vz z_~CHrU^WRby0Sk6P{P3+qWGqRIY*1p!2kj}7z;um#L{0HELevQ9 zVd{+lP=8Q`gUdu#ujkp|fKtH2{G&V!rRX0bF9LhvVZNB}*~yYAVI1HlVKvpa9#I8v zuyxaz=fA_|fe^wQv5`5QSuYA7B($R4V}$ewfQQ~Fgt;+7-V)>-!Pn0z=&ZMvfDJ+b zTkz;R!2{k-c?Pvdea-8(5z=8jKtY4VQ~QIx7m)Yqs z@%Mood!_al1wOi|m&7l0Q!kAObyFwTy2tT)cf+zY^n$_-)aen@OTCk)}=^ZKqI;ESQEB=^eQ2|7Vw93(;4qvdlI6We7WCVYH zcX1}mr!W|Ra8ymomADdax+R7K#f+4UMMoPB_qN3X~0aT+u9Vy-3M71;8)V0`IkX1m;tsrEMsyQ<7?FLmM@f$}VibCuiDqCVH$HBx z95-p)q%kTwdI|{3`&Ad!p6;(&xWZQ-4srUnLgftKHMQVp4uc1d#@Rv?I+#aM+3-jW zE%Emqh_%a}U2cC-K+8Ep{E~Bq>^o*2sabL!Mq=wiK5yoAwit1!RP~gf+HF7Z<>^V? z?XL%@y%C`HMhLYZ&IoD=5lKE+1#fnDjYUR5Brl)Q`L3TE6-2;~s$Dq)iZuQ58JcFF;crY70qQ#>YgGZEj9FBs=TjDX-R~Md>#bbUwcq|l;gZ1I@s(3sZ z4UZk-k=_s<+2WDXNc<@tZ;Hn;@p#k@j}786JQf~f#A8Tf@uzsqj)TWs@z~Y`9#4zM zNAd9ZEPgILyETVLxp*$6M{-@t$~W zNQcK3@yN}Dhetdjv*A%sJXYtxW4(C1;DX0K@i>?lam`#Ge#`ec5B!Z^VH;8mzwj#) z4~bhu@j_#dxcLrmEbQJLe&H2u-NlVDc(YGR5BP<5p7a*4GUF@mH;FeZ@y*$h@ZyyZ z-(>q;oOH&c*89cYBW`WJpDuFcm~;PGynbnFFf7(5f(8T%KgqxOm*5dt9HA4w1`|(bK2w?H;#bJjkk7StUozdT;~U-?R%v* zpSs&Un>7u=ZvyxRPuSl%RzH=@ckFauuWw8hz-j!_PWKAt4#98$#=zK9&@sxTm~15G zY}O|Psb_$V_70!-j5}UGm?lM<90EHb0IP3IN0H#Ihbg<==~AM5Ll71UiR>G}7(ygM z#5rtJ2+oE86YVw5t3aUaT+-|VAqX!4LJxl7rOvik@vZX^P7-}K`!odeBa_v`eB2&j z1>f>CHT-J`!cT%#i&kczitjdtFqA}Qv*DuKT_}F%U^Xr7EJ73+q&xMYzR*$y#^tzl8d3Fzc`+k6!G2|c(diUL2YdB zQ!>!uy#0o#Nd4FtzWi;&!{ih+@9uyUsQE=SSVYY6<-PW9~Fti?ROES;?DU zZ)86(@3(Zl=~%g-OE{Jot+yS^=YN`)$v;m@i{ukCZf?vQz31+K1vid>D(1mC#iqyI zxwbgM_N2ed8s>{qY7MbtMYhJHHyX=N?&*-mk6df?j-;qxy8B(BBzn0?8@_4bf!DpK zeC_VSD=zkm_vVK`bU&rd=F>lNJ8ZWQrU5n0qH0<&miL^Ul^KyY7G883+b4F_ z{T-wDfsfsJS16x0o$vU>-Oe_ha5gpdV6dj9s@60;wh&uW%l} zp1-&28wdTKl3xc#Jf|v^HB1-9iY%z|{zboGh*9qWwtbN-3xNQhU zy$V$g4A7=V_Q=GJk$m+T_aW_0UU}Bt%C>;83#jaNs{j+iW(I4H3wiAS5 zKtrEW4V^YMl#mt^%i|Yj*5&Jtxg+_ldB^Kt^(fRo9LM+k3~uv7B8jQCOTlV8u3B~s z)z)s+FA2pu^T~k&WumouG!7sqpZAzOQu~ub^pL@KJQEkE{|2$%?|Gf{pJ1N*&E3sT z=2v(ecwSTyuxApRwBObJt!VlcfjIuJb)K6{E)!f(p zy?Z#XU(=|~A70bDA^-JHu&qjyg_wd<__97VjMy-YeHA{KTlT~?;qP5?-)*~z;DL)u z=2P^DRDBxg?X|3K`edKF?E7!G$F?*q=zT$;C+ZnC-tHfFd)wx)@Q($-CtP+9u6hA87#ddImk zo4Tx(Nf8(|>Nwlh!7Rab3O{hC7RlVA6m7r4C$ieD`Me|@)>yTS$+mt3BV)8truQDt z=Z`j;@Fq2kNZ8n~tZnqv$B*aZ7a1wGi3Av|a}>D#$|wWAlq06|o5tg2pw^tXZ(^i1 z%n`6SU8r|yfpE{qa^w7jdp0mq$?sUs>l$%HH2Gh`fbJfg*2|BHK2S3Y7arCHFp3fpYH&$bD_&mDi}R2`s8}RO|6*T7S>#==uHDYyXJm24@+cCELxYf(L8n(YrFCARAq)vjMi1+=Ths++ZTS`!ZH}&*Euj6zEMR@_#QkTHE3$23hKL6N#m^kyN3NA4xEh!xGJS06IBD zLlw>Hw$}3};s%|~W91=Nuz8eEw~4q%ha+OWt!pb{O@19oYod(Mnt}>q`H+=HnMEG7 zrWMkf^wRP2^N7oOYmx9pAMj%8%MI@FxY4IMWSO`u*G4?KaC`7Ya`-BVolYd6JHH2q z%P*37!fZX!zDhI~_cgfqh5H&D8Yr$~trQ^&CR9gO{nOgewXivc$F4kK1xxtee8-3G zSpIw)<44;rtLjzAw9PCHgiQYvo{x8eIqGb((cN~yWI;lvFpPcsC#sO?;}qjw+Xn;> zL#Ac_?%P&_TSGp~$+3M+Dlz1EccOSX-_EDBHQLyIB(;e8MNi$U0|@TVzdcb#TT|N^ zJ#4l~&<*CSuL84LlO&t#NG-B~3Vdt*%`~HxtqrL)*#L-z&FkqfCl&;QV*J-Zu_+_9 z$ObBqO>u_N!Zw)Hnrr~X&jtgj>J%C#ka`*PjDZxv!9Ysi3@VB+hFlL2Dw4WaFc*I= zko$j&uH&AMz^3Z-FdD@}hgn0bCr!meD(=@J`LO|x365pfW|TJdJrRt)*aR8Fn;*&d z*eOBag+pxrM6sEvhS+9-f>f%j@u_Ekw(K*;V%Wj@5nP6@wIt|*A_b&I)@CiRa4uy<(`g4cim6> za7PIn&5v|6GHmHV2)JN^OpG4~ZN9p8g|Yefpt)%C1V`HZ^DvOW=IaB5viZS+_j`P( z$HcezQP96Q3=9p^49)T)m0! znIuiTxX4%)*2LFerHL;+<&F`PN;W@KY`kb&VK#}_`7*OKVCVl6#xS#tusvo{Cw3l& zr*Fe#W#>xq=6C7#Y z_fD4P4G_w_(*)y9{JSzECmyt8HSfh{JE(bM@-W*fF_`zFVDtR2tmB>Ud z_YE%TVR7IE zP!LDEou90LQCnSShZ(gq!3J>D5*#^d2Tzfs79iB9T`E}5TvPD|{o}V&t`XdJ(*qe!oduCAXe5OGt8Svna(;KWz$0ZfzcA%(WdN7-AK# z9pv*y8`tweBmB9o7W~L)qoe-uR9XL|lgqqO=6|4b`K~8>w`k-u z1y+eHV1o%D$_CfFv;al73BnnC%D`dK0nw8t8f$FBhzKb9ASL=BQh}mxw>j(ZQ!|YY z+BCjnlHswTq!+#Z?)enqloBQ<*tAYicZ;}=s^XsJmF^OTw00^f{X4# z8uav3W2S8KEo29f;KGa%wK6rd&|! zpn_OFd%jU(qovrE6+vxTbi47T?JN-p+wz@i%Xg##+cIy_kTf`>aI8Me?E3T|L;8m_ zLub=XhlB}fQ~&C!Fkpfy$`B@)3jN_ONQJiI_63j%O$_GLV!COvdV9$UY}T<5QlZuG zQ6HiQW_;K9o9z6HuPSQsXBQd?*LDW#d`&yZk8};@Q$qRl3Gn&hZX=2GjK4jyXJ~V< zXMzf1`RaR&avLqho;elNGnk#ei%2ATMw`zs-e+8In@`H2V|v0Ts(p(fIlY>cqiJ#4 zf=#jo`qHU9qX{H*O;xE2*yc}{+36tiBs;CYG@YMm0-W{-bJ|Ne9WgoC;$e>{94GAj zAWkYjeR8_YPk$B6q^Bc*2hSK_YsBFeh7_#^|8%*LXsb2DYP}l3 ztnkmK(KBS`8x-|uf~BwhisJ1b2cq6B<=efyz}slef0aBt%}Tze2UMrZR@ z4?;fl76Kvc3oe#0wYETN4F+QVLq-Z|jJmZB*kEHQ8*EHaK`j5_A!D(PmWsw`aM!{L z5|+RL0Vl_#`|~o?YX3u|O@l}a?*D=BQbY9RwUOA;Ot;6-AQ!Aa#*}>dBSyLXm}nrb zA>S3ha1Hq`bQ2`nqbylKUJTugSqqFT#lR8;7hT-Y^V}@Ea{=5#d8TDtHqamzL5T+#t*l7s>qc!|7gX9%%5d_gDZWX`KCT^XHHbFOEggnjREs)#!q|HY6ShN-y z=KDL^Hv>+cinl=Y8Dpv{_ZY<*{NN|IcK(!%7rfC+K}OMYYPnknMK^Q)wq@I5wfE`o(0_<$c5K$n#{75l2WJ_%3n0< z%7;VXY&Fkq@kt$i#*t*xR`N%;8LvmYF%#BNUo}l*ZxNP!*S#H@^F!MWgB_>ECtoWl zjQ~Kt!ol(w@kios}ZR~V*mWk`g~qiQj&4om3Ixiu@=kk-EDNR5nlY*ZsV4S z);C4)i{1f^qeuq3&f?KkJi3cV8K9jg9MFX*SS?fBHwgt_ z&!;pRks4zms>b(WzV-!UTAKN zvV>M$<4fQNUo&h69V2-h>b{vMl4UfKBKmf1xCw#@@0f0 z`yhH>Cn(^Md6;|NHpI&ak!6pXh2j^EnCVyEE#`<>*7}piyme7&C7*Hk&;~re%3yrT zLAZx;0a$xjwrj7P?ZMBD(N%XHG{$PSeP)CB`f0f>c>N!1S4JELy&Sx@GRO8hsXo>) zZ>0X}O&I()yzg4@74#&}@tgS6e;I3=z9cYkylHY@TyOx@o)OOFAa8%}p4AyuzD>a zl<>tPMx17gnq_vmAk4ehSkvDYLrMi*I1}{!8^)wi=-)c!cC@t#g^qs<%!$$tYOeAE zAyV0@Te7aZV!c)_75FIbrmSvxo$Dr%w^{eP^zcVLvo^Emu@o(m<}1X4&S zDJ1lo9tgSTNJM!#&9n`6En=Ot`@87I#$+<=IC@Kl%TeA_1( zy?it2bki50(WKgg8#4Ie%w59S!YaPtrpc@0iSuKyLoQ;Y%(1Vv9!CI(bk2-kdx**OXfe6%GwjY zu0IWdU+V=qlcw?rXkPGye>2v{4IFTXUx!IGg+`@i2|$|4s=we=8g7vOWE?NrVC~MQ zf01!Xna%rr2@5kX6YNg&&-A9K#lWdJ!XgwkMH^e4cls6H_PYn;UZbr;8#pV(d;kH1 z`QWgg4-UwD5J4jtw2R~Y{Q&cgCDU{p9Bp8o`1I-%Zsm@>7+AfF} z{FG6br`^to^ug-D<_6g6*5FP?0&78dL96!_1=NpI#!Ej=951b&{By=_Hi9%WtX{>v z?J%P)TD>{`Ee{C@?V#1e#>-xy>UeoTpe(Cb881HozxgX{J|F-*B-pI+FI!)V;}?H} zm54orFHo&Mliz8Sif$hVVu#CR<{5n59~qI#Zhq*G3@bZs;O9s+e?+#qno;N=nsRIuWsg5>D0Q#4ntx$Gs?* zZUa^b$F3axd&f7E2`$XtS@OMTmfEC zE39B{!JZ=J!V{ppl$q=C_?sQW*jQ2telUb5`I+lDoxy=(4uKLV)Lt+01!1XTLA_#a zwv^OT!kb7rC5#TZn^d|upo8Wq0^mvWLsCm=enrYD&3N<3aP~8)L}6F?n_GGaTX6!h zzlX5ZNG&B?hm;$HHI_)qk>tRPrpbmRX@HgCfgJIWSP{ObqAbw%k4VWNT$Vk`~ z|5L>bvn01ndzpbHq#(N0;~+uc{3)6 z0DF=xB`t*2)kPCzn%zVygxO7tCeSpyn^e1axjD{)Z>Iynu;v zeZ2UkD07^`;z+}yXh?g}6XnM41X2NGmc~54mfBR*iYq9Yh13>x(uRo&vDsRw$&~~% zY%(8}_!#R&fduaEI_^QF!oUr+i2E5*i@2eJ;x5_jZ)PtOAViVl7uZahDA)CMCTi3* z4`AyFAPTrfXQGHy7)(GdGI5yHA`?(SnW+79zd$~}J`nhrLJBD_=>)ze6$SyQMFPK& zS|k7!l)#@2&HY%=B*UzNdBvaKNr3(?l9VIrYvUhp#+7)`e9JeLMyxTZN96vKT#;vM zU04gH_(p}=r#5# zsYJ|UDCPpTjn)gKuSul)Nx6aaHG#A`&;Jl6KBou-Vt$QchDTXCYa`fo3M9~9k?3!c zas&Mpg8n{%K=fA(^r_~tEJ9qyq>s4J4MQi(IIBl04Ai0U?1edENsDHUSTX?+n3YgI zI?Jp-FHm!$e9NWmNayxOmSw?tLEvh0E8@|>Cll2AA=S9*F=Dcp zY25_SmRR)wE^yU@KdqSqe3;B(#uUqQ%3$8oVs7igp>x&aRl*mpdJLW{S3Rga#;V6g zH*mmR(Pqvp8+WlAunM^Gu-RZ9V>f59ciid$*?zlubs!=AJhz{06~{jxrA=p_5pd{z ztvq)?AODCeQ0j5n&0yg-S<&-E3))XUVW5CjUAUyC_(qobafRJB$~jpJ{(}_bn(b|O zy!r1@7icj-C(`Oy z=DKhNM~M#`}Ln6`Fe znXB4TTk^@cib}rRweoPj*f!g|xcD*i5rw4^D(Fm!Q=~H`k_x9YDIIvP0k9VS5UE68 zYB$A;FZG<_#h0R_F9A99B}xu`DUXmqUlNew$T)=*zT{F+`U-TpRUbEBbt#pOBwS-U z!77yM0)~yN4Kg=#DaFRZQ`nM!Yn-{-+|ae%d~m4dQ(Tqae6abN!VVBbsPtl8>BXc1 zl-|K~ZVG(%?;H}#E|413_@T zP76?H6UTz=wAARH*i^%dMQ`Q;hK-*bZl35;>TJwc@`gm4jD&nZOR@3%k&q`d|Ff}m6!fnyjfJUqyPBF0NYAZM+;z110*pimO0@Um zQ}w-Jqyp_deyVQo38V(?J#MO(2%9lgk1#iT>n}b6DYWgcB`H9A3rJya3W@fn z1%|z8sdMnMhag3>Q7CMi|Gas;3khf2Q~%la!*MWZq8QO?9bPbxVxN-6XmSc>n4Fdx zCja3-8>7ix8Vi#Tm`bBNp7)$!{*{GHGdv!R9W+fEJBU<(v77RIEil?tf0}+0p&_Y8 zi`Sjz#o|fR(Be2AmB$i{F1ndat3VU2PHCdm+Y>5ibpa`?P9f3iv;Y;jDc}5}3m67! z_7sSjfdng>-J|jSDdxH^jbYfItp-eUQDE^8Q$-&-gJ44qPSrIyl~foST<*}|N>Ys) zTJqHF$QJ_Jj)U6$fsih7JnQnM4 z>Mv-z7Y~e_Zg^nfhe|!t&7?^60Yy|FrHJZFB1BMq0#c}tLZbR;0jRIL3j_-PixggY znD3Zp{*Cn~s8Q^`(`DrKB^4<4sEdIOm1p?q0&vP_NhL}>%A3@ah}1>z2U4k9NU4D! zN=*r()Qboalv+RvsVO8%O$!FD)!Mp16s^@>QFlz|_Cn3fb`qR8fql~(;|Hf36Ii&$ ztsR+|q&XOOnjV&?#VC{Vfy#blx@)W+T(3nc>;_>1b$(sf`E^oZ==`44`Cp_Gb^g0I z)+@YZc$%Be&60H>h&rbPQRk5_Ic4Iga{(!IP9ag}v;YIu{F+wJ1uP`YG8yg<9JK-l zzpV&f)O*@XUc#jHOQ?4xm-Ch8%qSyEr#o0TIQ(TL^ox`c%&sd|!K}OwA&9wwg5kK6 z7ND^{cQaP%8gqieCJ{tvtnn|&02xmzjJ&WAZm1P`VG*fCYZZ7Ccr~$>TVAk9k%1yw zi&8{u?IuKowP166&U$ksqkw2ET7bqnx*oP?(Nff0{06g~oh3+7a}*34-`rqs>e=}B zljbJu+J83wdZT%yOJmgi^DkkbKvwEz*3xk^z1lq=pQ(T=nz1amW`zLN3e)IymIR)d z8aj!uE9{{(JFt2L2`v4!;kPHjO*?UjiRahItgi;okWXqzJ|AU6NDE|fkQ`GAjYi$B_FZl(O+8yCZJ-hLn2acDP%zp=->@c&Lzw!KqqKILoM zVf)O>eQaA?yx-iv0-H(P030V)7`}Dwmh#c@3SnoIWrS@ zAtO-Fd&fM+g}NbO7Xq#GI`6c(uM4zTn({Q>WSL-Yhrdx@nZQH7hmS^+p9%EmZ=EsM zQJT}-w5TV;aGE_KI_J@T8Blf^}O03caa~Y@GgNsC7kj`^Ft@iwinGbfE+aW zl#37-Wt05iA{gSQnf%^Ga|3qUo#qeTX#VM>8Fr~`nq4oIMRV<**8Y6`C9@g6EM2_> zj$3V(5e6t`@GLL3j+y1Kb=ZgI)@7n_-j@|uA?-ueHJhD*P?mt4{$XLt^2*dmZc7z#S;QF3mfK6YKS*d z&pAo;{me`yGf0Wil?$nuO1=E~gU`%O)mLV5TPR#1+U~MBoXvM9`m#5o%bY~JUNNV5 zlP^Nw?QWkX&xPW1XBV!(u(OCOpTio#E_Z_4y%BudNwD!%bIURbx*1j%Uz_C;#I>)P zA2D44elUJ><__`aE3d(hu&-wE6W3ss_iJ~KzVOD;Z6`-xUpFTbjvkUGzB-F1-ZwXn zxoTi^Y_Z73&t2JYQeqoa7z_Z*Z!?cEK^lY)YttqQbkYdzC&h`>Djb}TerfRsBP^KtCxyv!gwM6V7(X5*n1qSsD5_A3{?9x%N%8!nptDZUoJ`Mr4#+fO(U zeX?3STaL7fNd=~ph#$=@l(W3ckLF}{o>U^=?|S3=QzzeJeln*KmOD$`13BT)}e0yW9o)XS4 z+&0Iu>ZGL*PYL6re=(aqCq8j=9FBhDj=64`(&1_VVV8?B3$ajVzV)Vyg(CR9pUtaG zZRhAY1#aQ>=LheaYb%}k<-6v3EZd#ChrDpt+sWN8znB|VGor1F)O~v(F(vWEXa+x= zAFR>VpVfzVB*X8*hUsm;nrkYf_=#U(I`<3#L$$!&m1U}Bf|IcNySY=@go|=2l|gvx z@8%xLBL3iab62*6kV{I?;Ol;w#MU~AW!*D(CpK_Oi9tcaUax@bwSR$aCN$^t_|yCr z|L1o{&Z+;Gxi`G$H0dvMPxcPs28BQFg`fAG{G9mP{0JeNEwz4xC)@|cX8(abHTwFD z`!Kb*NeG~?ADP3qd}D5gkkxQ=o|vk8@b-QSsj;B#PD>YG><>+`uPORw9 zH~DFe!S9i|Q95(*cjXFNJR9fE*>nHK*;FTIO+c-Lc#h=knKC)kD@V9+R;!Zsy1MRV zUh5RfZMXt?tZh{x@dcaxx>vk%XCUl9>&Bt-lt-HV~xFu_Qd!5+9&h**Q{) z4s+(;D1PFk=r){mP<&bTm>wh@J!Vt&&dX#>dDor#t$(9_-$`AJE4|1Y9=cf7_hQ2v zjyNpZz)OR)uFxNZRMFB{^|`JgqK3`&GV+O=>*x?Ns=CC7A*~qscrvoq#n4H?+HhFM z8y%qyR5~mP(K6XX?ku$P#zIdg3zchVZ3w0AQnc3m4fD%{Td*MR4(BCBZu|B{$LB=j&bgZ3)$ zz?xbbQQ>x}Lc|3-gfQ3~o-fCW>W_1U`$zJe@646>k2SR*c8g#}ZGP`fl6y``${IF0 z#E~i`U8i2L6>fkK*Y4{J7S|%RUi_V!S|I<-PYag6PR~>ER|uaRrDd_WS6m}SiQ(59 zXl0C?n!e%)l((X_hl!W=lq!xC?UG(Ser9FG#AzPma5;ctA0PhC{z!tW9jOb^LR!JP{0jRiCVwzjod9Kxq&S;x-w>v!^_!# zoV=V(OeWMy^ZDinuma~l-!&ZI*0!S7US|_w^UI!17^K|RiF)%1Nk(5Eo1t|k`waAN zH{*;?Be2ilY=*`YA2wA`o+F7*!wf3y)FtneXki>Jp2#)Z-KtziQFG4|>K>7kmjyJR4_cL8UjZ$8+(AU2Zk$<#8~ zDg%O?$@10?UqV}urIoN_{mActB+o=R#FIaIhH|Ffeuo^_#6(dLI09rvT89C43|F*k!sJYhAIR3hq* zZm99d&r}KpM}E{vI_?5eVek#Lhyew)L{oX>M_B;B z#Gj6Hm++gHwvP&n5+L*l$uLpiIBJOx#@XVl+gL?`KtJh$yJfoFGl!sJsgDgME(BgiVJY)5FIbrp;DO) z{_tQ-wc?4rv?eB&W|ZT>7>);6ETj|%SZRECU+sApXjB4T1Jwj^C$iuU zp!@UkIC2I2u5TJ@2c5N zN|CK?{O7@1V;5)~K973c4{pXL&}iLl{No{7J5T6NPeBK48>~4Fv?$y7m8W3Mh%zD2 zE@_|Cf_>+Sb?;F4mgEl1k%zxMq1Wa?cBIg5n$eHScxZ;7yE&*r@s?p)4~5lOXhf+{ zgsIv>ec>B^IOA6+4zC1iLJCoD)p+6vZ62e*sJHJ&XuX(5poQMlY76B^*aQ5lkudDb zb^}+c@d=|~MSwul({H&1+@AgS#HC}ssLOgqp z;D!|4hOd3ERzP(ZXnoWJDEWf>qa%xde@43+piToyk*%V*{r$+a@G{}Kb&@ufaY6t$ zb1f1Da*8=$9ywdPIHwJtH(6W3b`oIRH~8j4`622}QUU2j-_m{pOo*53pCZ+mV~;KL zl4CC}#2o9AUP|LEwZjaJwUi@jAdR1GC~4dmNDFXlU-48pXG}|Rciz^8d~}SKRa`ht zdrW1fR}Cja$sXvEJs_-O;>4ZO)nAo6B5RUnC|LNbUIeTAs;6K@%Pg@(FnwnvP{yyl zlrrv&Y(~)?r{oQLH(@;pRuLO6VAy#694*476dRvc z2G?Ux{%7OSFN5Duey}labb9_j8(*8N6?ry}eb!!&&Hm5E{pM-Wo{cxp(|WQM|JE2c z(z-Gzg@#Pe@wn+sS8L4q!G@KqTM2T6tDGM99h`H?hF4FTsD^iU*NL%D3Y+5h!3>&w6&`#z9AdNbpq)`Wb2r<-wfD}5Qkf;M%fS!-% zG-xUGKl(Y1F$AmVfLyR)V?3up8>1GZ78zRPpU*R&VoM1o^rJ<(5*LvQ^doUv!L&^% z@kvu0dy`a$jIs=dPqL+-r)7A44&3Xh!zF7pntAkXGe8(sNC~3~&k|CoLIEjMNFh;$ zv;a>n&;mTQ@ZBPLYT*Zh6NjANdgK2$P#GM%cj*(h&$eX7Qh6dzcxMJcTIVplg-B6-qAEs8~wa>D>Ai**B}k!tkfq{Ut=U|a0r#cmeRzraQ= zmKLCt(E<+>T4(_QDJ(!C(E_vp{SePE&{A=RK^?uAk6r<5L1PGFG{Z=5LQI4fV1_DW zl+Z zRj)3BBn|h|s|yzLOux*`AeV8EI9*d1^(9%%TsF4B|Py@*sIWsfS{*$_a;^D63>LQYN(|(Py9&p zWtuNUQy*F)&r?xOQMPB?Woz${jbHx>EEW7ow-D7ISo*3}2YzU5?SSINC7Po6ErxbH zlUbTDP9zgHdo};}1oc&K(iN6rvqML;r+u~Ad}*`!gb9>um%ChZb-8A9uvtQJz;P{8 zVJAs5OiUL*QjwV6ClzR}bKV5HBF$AsVuD*MzteoVp#?2=Qnwgo5hc6jF4-}sWG)uF zaMjYQcdQUj3p(_y za>Z90F5`=`h=L7w7cA2u*ubl>`Pva#Yj)QN;LEFyh~$$mb_n8$#abgi(qakZ_b+Md z;nkJG53~fffXL~HH070llXXQI_B;KdHqux7&DQNVn{a|+zTqzB3@PTcVzA#)g_V*9 zm?3cm@C?^i0N*3kXu)^>O{$N|upq7imLo&LtAcZ`K=P-I;z%KJX>JbtiSQ>z3Ti3m zv)WpkyMUu2Zn`Vtkgf<$?OpuiRjs1}TOV3php!~DOFiRKjaurZ*K4xWGbV?9p^f*^ zrluN8P5k@^9hx!t;autxvV>`(fCgpwQhBp)=u&yJ@7b@k4_OXrhKocyu0#d!+e4y! z?yR~PWbhJTJxGdoeWRr-%Jck(Z?$Ch0wIe-h2Sog6BTbtn4 z0g%@tce%dYMqt;@oo>GZ@XQiMqET0jORUAD!vsh z=Ow>sDT;n69D$Qxh`wFw{6drvfnSD#g5c{*CqWbM=IpVImo~Ok<45jjwfJYhYi*(* zxZC_YqBU_jTmr9pKY0t-&~r1FLrsShlZlUyqG?X{Mcun88_6wPyM zRA|aJ5^NY`c-nZK^pdsLM}{cyed$;5n1a#pO6)xFu6342*|($>@_WOL-!vXm7<81~ zCvbp0o82P?I2jIJQZdA(6c4C|ESCpV!?IG#TUumtdJftH1Ai-DbE z7Tma8WWjos7AN2)WS+D}31h_s3RB`W|Mtzq6>=gY9w(Lf=^Rktr}M();(pi+UQjWh zdPEswR^(Q8F9O$;v^+(BXx z=@6!4y+t~#!AG3a0$?|*%r2zec-A3Zcy?xT9#g|2zVXUy z7zCe~#KD6giKp?zNXxUPsVnqV_vu6q%;a$Iqj#&#TOrdqu^NY!_ZS}AreamtZ46EI zoIZ}=HF7$fx2R*uQU`%L#FE^=6*83{Ai&7=UJtHAYFl=&^8^l4`MadRNaeH?dTsr~ z<5v!mzb1`PO&&U6zz@PO&?BLj8bPJEiGpv-O!*lsSya7)Y4ZPNiEzM=nWPuVp1EyOB!2-M0XVhG@>(z5SY%2$276P zdc|0yoa1^0T(!~+?h&0z%0)=4lU91^=;yAKW4RHcg+7+UwTd&%Ek2Ir#&gh51h@C; zSWz9jQYJ0RC?YSd!YFl@LtMkXPScDVO25fzCwCZ&@j0-n0r>a_qno*V_J1 z6c8TMcy_AgA6A3FVa!(}1xC!%QXIZDTP25Y@dO;@YqH9VRnu3=;TsXqF?@?MG+#k} zS)}wcwTwZywXW3KpG08+IaFk0$+25s#u?c=kahUZhb%q$xojMp=qPhLSz5cJgs0CtS>~}!H@xs#_}^7fYlGnBW(t22|r}wxu_F(hW-Riuc)3Ufr~($Gf}s!g=4WmY>-~ zg3(w&oe5NN3*~H5jqdc)YD_+!$@Nv9+1iro?oC=)o?%D*n(&FdUw7!OC}lU6bwC%E zoufnc7U4+@w%ATlfQgs$+dVADP3M7qyi4pN0ma;TR>9?d@zOO6;m!J6&UQ2Mt*hv-&(*$rpoHy-aId0t?Xrf5J-(x!_L0- zGN}B<>Mx*Kaf>JA6jMl);ET$5$B+fbm*ZJ;!a7dXnur1nO;9&XFzfUDMrv#R(}SP@ zzH+!_1M5Iq;8vzKYvq2hHnc*-3QZC|B>B~cgTFO{beQK=?OQIY{ScV#+ z=<985_^6SV7)FU=!cIK>P(xGxS`&}G*)fhyb*DYa3+=g*c908gUi8Yy=xTYMwAadg zIg~i=%b^9Bu(pi0baLSldt`j(;B~?pt^?A>xGjbj;CwSvFrS3yZB;9HQdmYjuQ{he z6hA-4vYeeG2+=TSbi-6kfhulVa-k}&?xzK) zoS^3|{ai{>$WyLD;%lS@J>a@Zv#bznm}(P{9%dg(Ls^FFm&CbAx}{-FJR8$(Mj@17 zx;2Ymm~PF5Wu@Dab-6?M#POCA&vZNeMOew`DcXBXyK{_EXSzM&bGj|QGXe4*8)hJt z33f=KOt4QBk_0==9cr>06uxb>fgFwIewi?@I*h31RrJyqn{K4x|l~?=!!f- z3ydU7ON}JEl<#;PLIHmb$DSsYD55*Lw+wcs_a=tT7RTb371XSX&=u16|yfOzGmL*fxX~ zZi*FtvtQis!7eB+8qf7Z5r)yqYHpNa!6iZCkI;&fX-jxYyg8Qulf)73XG~ z*2}rsI)ccUo2^+d*_^kYu=yCfL4a{?_JzS=aqxNzQ`nyb1m|VHkpk2-esQIxxMWvl zgG>;?8w@8ycL{`BeahU$UTcHb1QBJpOo*JAQF_BR!TLNcK$pL(i~NNYS#7nBohIk1Mg(C=JwXX0TJ}1ssr7;`SJnd`)vD{+?f1ZeNq;hUw~!><}o+G=@?y&&4t(T6xUp8cFr>KuJ+@p<&Y z;dSyM{QfpePd3XyOpcqEK`w9R2Jr3uwIcb?Z&>o!YSIpe5X(2nk;{?|@~C<2c8Iw> z?oc}oD4ZIWO-M`);RV7u(3&1cR+@JY4!%dT>IE(3}kYe$Or7StYkNhVsS%L8;;wvu1>1q%l89^szdZ`=3g7gpXb*P+9$Ao zj1t+U|0N1Augu&azYFHpc=CX$=0?~Azp`c=i`)qHhKoF@R^R9)2J3Ic7&L(vcwE}R zR%+Nre&LB0Q7nw0kX^zQCDmjB3Sx1IC+x$OKn!rRH{=}&@*=pP-ULYblzJgGU9f|Z z8uM#I^O^+^l13&A+$b~IUmN6l%OBt%a1wwKHIcBU1|vFxux`v_$Eyt@W(Xn}+cU*4 zjP02lF}9fz+p7f1I8&p%1N`FymfY%CBNgh1uDmy4=SR^m)$Hn<&leBepV3x+OI6A-=S1SEHV=!+7&roV4bpXR~MeQ5ofgOC4KIujHh3{pLoB+S@0p+{m7e3t? z0XK7ASlFxyA5vnO$aV=KbVo8wvSXvzvKVd>u%(Nd)vgc>7lsbxNqbtw@MWbI)>vF+ zq@R?1eKPFp!pq%0gBx^#5doWrH|0)sA$7J)QfG8h0v1V4Fi15%>Wx%;00L41HV^NP z4TU>54XJLHN$P8zlz>H2fpANcF4ewc-bn3|qy%gpUVX~o+Cqbr-=;DYs3`o-z%~&k z0g99=!0mcErH&`OQ92|pje0y!z~qoy61< zXT+mK#ut6zb9t*}Hd)KxJ>H-r&v~ME#TLP1URu=mc!Zk4^bBgh!sUTr88s0^dm}XRN(>?uV9&#mmlH4k~QFA%PGp zJ8GXOptETrBQMRdNAPPGEwckp8SOU7*Kvc+Cyij|jbdIjwLQL$8xRhK9@hh$;!~Q~ zB4fF!Tu#|jX2+{O10uQKC+}JN)}Srh;yk+Gw-foqzd?We^)eT9sy5voro5s3=Amh9q<|Ro6}buPozO z327xFEwrM0tGAu4@E}6{&2n;`zdj;BIEC15uP^}<&11vEo5G{HDCML6%0L^QxGpF_xhs&!IE?;V#1)l;V)Y&eyUG;@efaq%pN14$ zZ(5#L)X3N5!A|(!IM~_MmJ+~U{@zmTm-!l)d}SSLebyR&InuE(xoUe&4CFhhU0y?T zo4SG6*7v(r=YgYAf_U%`mg;=zj}~8!TtI9{9(ndpmKfCxEQ(WQX2OB+g0KOifNC%O zHFdJ#nPTF zBD7J3dqn|N;R0QS^K=znyVG_PdzUm5krWo@-s~M+6R@w_p$W*7@H-36yTgA;eEY6i zwUio5{;+gVtAUEd$rbACzy{7D!(NjoR|4<3zxRh_&4|9dsDS7h9@rQW`o^F zV$~toC>244BZKwjkCQO|`d^kltgeBb7lqgdRWE~FUY#xaszc1u4#7Ob-Zg~RUfQ85 zw-sgtb0}-VS`jpbE!*@|)3(T!h$Q@9?%Vc?J84JP5qx_iOAya*XoV09u?G0n2aNom z1u3-|;fTjYTkEI{&PIG_hr!1KOXXkzCs!E;i(mEmxCfS`DB#%D{6V5XA9USG%uM9i z%M2%_B7`{GVe_%SN2d(qTdG+D*-(nMy1gSm|55d1HieXiT*=H1oFod+IqGbYOAH@` zTc2S|2;9KW+hwZ@x5y>rg`}c%NhZ8M+N-xezZ+q#ufD#8*Q#!X8?XonxKJw35AT!= zJL@o^?b(705$fPAJiUgsS=e|1j4`4QmVi*ws~M4u5}Ib(s>rAs|LUV&(}3xxBdztyWE%4UEUrcGR``MZ8i{dXEv%{2D!XVTlE`s7u2yP zvbRV(99MX4Qbylj42@-=lU6d&r))I>JzBuYK>twu5`Q}GJ1ySIV>h;{7AeZ&kC#k&uqOxxT9`IvBpizzrK2oPYpc$mDhkDGi72oL&F3M~P-acI1?TwXs;-VL;`nYAcb z&DtiXknq1Th0HluKY-h<)^|-$f%Hk$lk2fOB0Wxg25*yT>RCRpoi!zh_y)vC&c1fd z_^2V5YVwl%S^hkBO1zJLlCM0@TV-17u*WI=m#kew#oyHF2LL~JGP2-4)9d@;BEFwe zk|(j{q!D<^Bfd?=@>TA{ec^6K7QZtXMp<2F*aCR!Yj8VK{}#zXd~Jy>mVepCx*RU6 znAFzVkR2toQDKL5g}sLga|xy?k6P3D8^bQaTO5yC!+hoPz&1X4h^+}bKq%up@v6J7 z_HL6??YDGgC1xaNv%92Od6aeAKyGMj<c&*<4YB1^6EhIFJu z=WWlh&ZJd2bfa{1;x<%sRyfk>ZdQ%2?q;2$jN!4}t@YS*gd!?uG*QlEPvuy9SbO`Z z9C$;wLr-fAdzz3$)huvVO`c?bh_0GW?UHA(jilA}b8YJL`(NAYvNuSn7&MsxjOVvc z?%)b9CQ?84vZk}cZt%)RKKT)AGZ$#!sS7Xpu)5Ew1h&Kp%L4lj?f2kI`&dt^x8L9c z`&t{YpD7o@BYz@F|JzgP5Vw!|sC4x^;6f~neMe}b)~mef=8)e=w!hM~KC_>71*;=~ z^ga;Bo?ZJ}lUWl|ibK^pZ}O{$t#w_%%dN)RyfhEg2>dwI*pYWyZwlZ)yfy z=Xct+bm{Jv^t3lB&%jBw0q&jYkpYAzN;AY=8qJW#utv!v$&5cb*4mOMjHPdSnEp>EG_RXlcMWyte~QlkB;6X@ zhbB*D2T7}Pc&fV3KyE1K+Q#YuJbi+-RQ+;0zgE_i^(%xb+E&@&=Bc0R?0;nFCV}VVTYIo@0cy;md>tFZ{e{X5NE1N7 z&<_r23Z_~QD;m$42H&5ogcv5f4ADv->UH2r)7^%8Bd1&Y_^O;1J7k7yL1+7zZ z6v=wx4jIKao=aZFMvzw6vF5&Hk7r{^spwdh5xjIJjM6AH&?w*VWSEm3LzDP1uf-f| z1`nKLo#?k2_~7>C_E@%sawIxe*dyoE=q^u|5S)YV!@2%}n$ivpS*;S{Lw zh!wh8qgL4mu}?^=a)hJup%b^EqucYXpTKourwicQfLdgDH9FcqhFa9XBJ4a|k`zoT z()o{X*%?n<=zFjFr>>koiI}LI7{L!!&hJuyUv%ZXvd{huOD0U0M>z>RZayd;a0}%W zD@&|Z6c}^`bMVwh2@O=tBLY|-j6GR~V&a$jJfTo~6v+_mL5QL{o_AMAj%2w@kqp6K zXC*IXFOyang0T+=`SC-ulN+&DNfi!oUoMgZT-v7GfjG;_l;LCrRYz3el~!A``1`A@ z^G(N!VBgp7zG3{#uGDJm1Z7JE;}N3V^JOR(z3$pps~_KS(O!w)o^z=ZKflK3slVwE zuoE{wIhMf>XI4jze<2E}10ImV?bS6tfJOWBRfVt$`WtDAYM;M4IiCGPN>Ss#74bWJ zQ)}}68)sO8#E)C1A`@2r|4Bg|d9@9qam!^cB@C3@DzBY zyx)aQZkmmxMUK{L`W5T*Sr7I8T$;;V5(#*%mzVI_F z3K+NztrTp6YiS=@o(yMg2U=@z@TLvQEdJ6qm^IHKWKlaabnPti)K0-CkN|i1XI9~r zXJrMKXT)im3f4g{gdZ+m7`Dk>Ta$H(Cg|EK2~G>*S63xZWBW;4!wrv+QtW{DbEU}I z+6B5izL$B=&@%AkrsYYqLy${^Bkx_qz*h@wl(;joGi1K}Z4W9bM%Qyr>+b zA20>*$#41G@tA&es2qN{syt+un}dF*tNa^7<>?}dd$alilrAP<jng=Pka( zc;GRgdoATCziF_ z&wagrKyl_NtDoXmXE*3+%H@_#Sv~mW2o@Yj#q!Y?t!BO>DLF)q-|gvv(EX(I{8QGd z{5-s2&tn@T`1r9ZUy0&V&%k176k$OqEYvOvsKROrp5V-XjjADP#BS+?{9V|1(UUZV z^@(h?|85?_GaIp7QUOa7={z{EWiz;p0cFdnof4|-=7j}mE=v@A^eS-Ua(vt|0Xuxp z!DOooUntT9cagfeiey-+>yOC+yv7CVQDqIkd;u1Z3W+FaA-JT;X`!vsLSEM$M}3r8 znQQO+oRQUKyJePGMz{cpx`wz51aA{KZS<;cBUogs#qBB9NIq$QS~qrq;3$W8D`#Cv z8M@0J4+|N6k3sLY;}dIre&{3XR`rkFeC^lP2>$k+%y9N6;Q)2{8_}iTTb|wy!--rU z2V16}!5jLYOipC*!x>}f4H0j-IruFi(GR-vVr%F4^Pf&758^SGtut8@(Wd+h9BRY2 zWWNMt48@(dG!NhbS7A5Zwa={!{JH@xZmXFEkERi-IP~iJmh7DRNoBb?-u0dEq4f3| z`0{sk75sCh5BPF9GKAXcE$Mxo2pd9!VIxHWO%WZWSV~)7dJ{fp77Vl2;#bclx8>VE zOm67>vpbtcFqOjx)qGuzZGl7QM^uqvH?O{7RbYS0ny+Exx{Xjn^}VL6Z%^62W?i!O zQdJ)L4t#wmhuTaV-ZJspA0%fm_~CRK)Y~a{y%p+uTU`u#Gb`*eX;B{ie4^`THPKJ; z)gP=(F`4$5c*v*8%~^##26w0(Wsh{Os(UaJ!(6_?|1a+ac#4+i{P}Svk6#Bf%t@b> z&$~?bK}{H-@WWM2ae_1IUVrLp`dzqJ0?%FhXdutIlKdx2BQlgnU&(u9SpH7*#q)c> z-uI@zSU>f949M_;7qc3${)8YZt*@@Mr=-$6mxHeT0w17;{pRzR1XC|C7=D0)AFg^D zFAAuhdgx;0?2*0ns{SpWW%Ee0^62Pg1Gy1%+h2kwASR{Q{CVPE)`u7GNb% z|A)(+2Yj6zzeKgw;lcNceHk2@hDt(fubc|G~Tc6s^KP3iyIF9Gv$qM2te@zZ4 zPv4*ngx$=x6gH4Bf{J~~U9tTQxs^wGY@lrgTSgj{N2T!I6xi(5^EWC+EcU~D=HWDS zZ#bqYH(x(mZ1kzctE<==DM|@HS=E-#jt~Y=eemRs(<9$4!z1qn+lKoXx2F9N41fL& z%e3&rCGCZN?yjq1Ls#l<-3cGuPkxsDOq!NQW4Bxh7*3e`@qmEh$>Fy8ieJsW&_~$& zv~0;D;g@5qh^ejmUfHqM-|HE)pH#Pv@KHrd82_oZttks5^f0rv6a_R&gZIkrEoiTd zP|R$dNHgD+Get3Q8+xg_JUgKHu_#-bVtQt;iPx;0qOoTQJygpmT`iN!P|N8U+cUnZ zWw=z!a6%8&QsAzZp*rh>b+rsPjn*6USDGk|sgbmczJG!<$DnnbR>f4_4Ra?jTtp>JOcAU^dZQXR& z))8Hx!@9P9Xb3s!K52#vthYl`?5x5*5&`1i%l*B)YhznI7jU3bu1}omp9VvQhIf1w z8^Cj$+HNZ?;0|_MJWHp%h^461eKH!e_IXC5qYL%t_NHwr@{;B@UpIi568Gtw1mTA> z9iV1=iUJy*&G%t=Doyx;mbQ3P-pzmbq6AxG_7rIe>nrv64+*v=%4l9a5u$z!sl@Fc zBXzkZ?(^9G!L3QQ1RotleG0bui@QB3Hz>z^cR8Mva;Q!A89fMhj1d3w+X?WzB&|(6 z+f8^!=iZ_7en{HHtq+cFAp77YX>H)Wu{4{n`;|=Fz$S&UDfJoraJ9*KcUiXRHrXU> z@-q91G$>D2xUQ>c6IGEI1{V8g*di4Z+i&9E)=O!{g7zC63KhWvU{l(_NK2eGSF7*$ zbltw1&6n5yaKW;|emO?2K!^$xhc*@k)Kyi%MV9hFXeEJ^14rz%Z2k81daCv$Xx7lm~@K~(CYXS&9rGJ}7 z?x1z}%BCqT*o$t65k9_IN|Xz{!S^d}@G9_)?oT->Z|YJqP>t#X7cXdQ`wMPr@7&JT zoRv^6g!K;+>z|g^cMB4+__O4}$2Ix>_C5y)^yM=;KyKMf$fF-z76sG~-jV|B+%E?d z^E%pgu-l|nIbuZl(TUqg>$pL_X=mHFe$@{^7Fjzmy(y~+zvwti3Fk#!922Cv2RuUr zv-^rem#Xt?f7;8n#-oJroUXPw7D8A+MWu-Xs;DZ0Cw+p%4oGcf=h(Kej-)AW?i=+< zYGwZJ?Uqf{18{tPE~Lqa35ZDXaF2o^;D7_3X+AijO_TC0p{pGa@B%HRZ6IN86QA<5 zR+nGtVM}IX2}5{lrDUiQAR1wWkVYJpG1^@j?Oc^X%o_ts$9-%m@alapTLYe8ONr$P zfA?YB(#!U^vWc(l1z!0Yp^hnW15w9LX>Yfn$p1DuMxd<6{d@b|m8)wH$aT=QgaH)r zn7e?h3<2S}q_ur)32@c)`93i6`IxjtbK6^|XzKL?d_Z4Y2K$oK;s=wQWueWKt3R*qbyb}^6}O2QLQ%LdtwsLvndvDqoH>;*y&2RzT|`k5y63@lHX9E6j(-NS zNmD``Q(;4%`GVf{!CBv;;jqR;mhU+n=z)7?#@J$g^d+_K+x*kVQsP)$LKstEdr?5c zEmm-%cX-in%aFU8)hd@gN}85KVM=d` za$W|&d}E2^J8m{;Y&v|%#7mAvH)5r(f49-9g~(Bo#@UBMJ(^xq9q_N9+ED{ zO;K^{ZTUQRzU>$F#vyq;8vZwqN5?LJUXXERp{*GUI_wq?{`>-W%xJ0~_KXMIZ)rbZ ztHRd~g>SOiRTAK9+^as_$OCN7QY!GwMYfu(0^tKgq_HTVhF5vq8e5k70PWs<$*-|( zl~&Foyh8175K`QJ)oF?CTeaU|K59}*b2fk=#(;m62spG10ddL}H5R69mnXy5*z(Bs zh?MOS!UD?nqPuK8r6Ao73!j#9C=zJOaX{Ji>Te2oosad+q|lWdOo>>xqC@oJCYXzP(OW*bY@_ z%i?#}+VcIB639!Lg{|r_6Z~?Sd&ACDr=&q8o}P+hwww!MTgp0{FQ?McKmU><{^c%W zZNU!p&p)I*zZxQ{2_oJIC9D zW`V#bQ#z^BOXRC8>tDCo*#>v0wI%Wqm7Szw!KZLt3RJ-RDdGIqRv6ZlkXp#;a5r{0 zHA{ftODaG?+>2hl3<2||mB6JBu2+`iPihyyFTP=m=9L$wgfr4gURg36{O3b^p9s9I zBq#_zOnxKC(Nl*)@#>JbPS z@ul(|#{!e#P6)i5EWQ*kB4W1$L;6K3SKqSL2{TCR4^`DD3du^*dqiN4R8{FGS)PR9B(kO6{om-A~1;DsZaOg!xvl#|ryfX+U5+Mg+ zBg7(7ey4ATp6b+6o>a-4#@3MvykrO}LJHyg-BeNmmmyiW{kf3Hh%y+@n^G$D6{Y5t zqSsf_y`Han>QYoC>GUOh@*!Kpq*B1CU*?+@2vLEzUQH2%XzCkIC>OPFSDV`xi}~2B zW-Q#Oai~pDFN#RbiMSx@&{`M8FSOQ0@78KtVtX~4+iTYZUyyq{*4-2#Brk@D%ya^q>?Dpgh(fgN2Y9Oso$|W!n1- zELWP|mo+8;*tGr;_|B9SZ)Gh>4K}TR#Mu;Ik|;x*ygzk^_(D1abEd($q5SrpkE>P0 zMED4Q=cKJ;)Sp5h)ciLL1#vWg?rkNQ_&D*)*75IeHwuPSI{_q*wNVb45f#Lp&QQ%-= zE-#m#eZ^igaLV3t!x7nAu06t&)@9V>&Cc4|u@ZNvg9a4ZuMF1m)*O)mJ?jVtv{K9; zoU_$euN~nH&f7Xitr0k>#pVzq*mL16F*ivm_FM%);lAwkho~B?-%0f~MJc+joQsfi z{~)F46~BuD+I6|Kt8Smj0*?ZO9xHeWpT8);bOge~lZ|O`QoGg|wc$~IzE*l2)|kNK zEVlkp*@vYZ<#GE`lG!yuQt!hu?QP=KxTEqRp=i=FDF==i)H*8fp7ZCUFT=rt+?o{v z)QU&-*EfhHhcfMEZaI+hGs`0=LSD(r4m0G_-wPZJ?LSC~F5Y`E1#Wqs>K$Hx4s8;` z$McnkQpU4a3Aj+7C;Eb;{CcajOl6W_Ig8Zm=w3X^?>v^8X&QGFMoQmItHqx$Ntw@f zx#0~p*w&xp8Yfi{{6TntGT0rrF4_|kcLXt^BZTsPKf-g5q;!ZN{^zWdKHMeZvfu(^ z{EGO6F@6P%1~DE;W1K&@YWt71ftq>U_9gqB=mE3AU8BIk?%Z+^x&DRiEUR)1 zgwq`w^K`&5nGGu9|ME88h%zYWRX8St{l}w@VApQgV&N+Hem88bqbdlzG}dn$%yW$O zA8y#LvzCOsaqW?fl;Wpu0F&1qxxhQGJ?iELueLnK*PKat#sxhLH0yEuyD3eSCwb0I zxZrCDX$51<1b*(_losj}$7FzxKF05KNl)g(zO%)I-xADIX#^kq&J(Pr3kfl_jPig@ zC3H$5iSY3^@gqLwj{;GN`QsKitjHhsZs{l0H;?g>#;^*ugS5qQFy3~%P3Lj{F*y*9 z7f^ZLVuJzbaJW2R zb9BS3_G;lVc{6UoF?loYE8s717iI*JmbRHPq(vHUa>rJ{Djf%A9Vt{~B|~9)S}+|K zS&6e61k!Dqa9p1z5C~(Ma9p1z9QV|Ym?ngJ5Ujz6{bK9lLJwyN9)RJ;F`=ozVbbcf zOi$MT2LQ*?!uk1MZ39?e!X4&c10Rz!j9$liQUBCIY#4#WRO$iwluj912+G9EbX5N% zD7t-+ndQw8lRiu7#9k)A*z+0mf+T0ejJ(_TnGwaU?%9+I>ayefPGqZ2gnU&`cz9zY zD}uzk(+_0I=n}C*kjLCwBz|FTEjsRf`~*H%_(sY={^tYRs~$tA#h2{;*l8jV=E@UB zfrI?q#l9!xqG0>O+Rt#bTtDdf&J|Tm6DuERAnE~m~`!TzX zivf!Y;39$}MeXA1j$P=;rj9UAu$dL%g|)(*v=Ln6@PW~_P5i>> z+IFI>>DG~5ppVmS1{`|;|YG}MDR_>g;5NY9;hWC^*nIhVsE8(J}F-x z>`YML_t~yrrlqK3p;?8jdc0PoUF=CTa6e0MPb~xY>L_~)6X4__2ddW!Ah>bR(ZML# zM5Ggg4mf2ATqkjShCKD8d`mS+mWgM`BZ$UmTO53p#Mr-OZyU%tMzf)GJ^1#WKjjL|L;!v%TFhEI!Mm<^vk<$bIHfrMj?kDJ=pd5kr9 z_Y`{+A5k^6C!0aU!t6HHC~z<_w;VT2jD&7=a? zVWGkrni|a(lM3fLY9Oyu+%hmfm9%Es6g6RNrj_D<`R1h zJ4`B^v?I!-eM+X%iKiT?v~W>oHQq199--bp#h**DH%j^kuz9ThE)pbYmYqy!8mqtf z95AVJm?m%0DY^VxuNOE@pBv%E5 zghUVo5krTd6bk~1fG9`@6&4XGiV7m_eepfptMK|-Xaa(wNR=)vpcD zj=3C5!>zz5I@(6!7aCHdt>Fv_!_KSTzd!86VRx{DBZ_~}rCc)a-`+8lIRrD*D%=~&%V zJyF3-E}3UA`neBb8my#rUmMjz{!QZskogAk-m^xE9CUCdDbUO%DTI8;k;?D6`+$kT>j92La z&Vo`2;!Xil?nGo2N5+QVSk&m^BUe_9;*QDX8dwGj{?PIViC<{>gSM3(V%fLK5UXKN z$F$H8>q<{YE}K9^#^~y4UEpVA=G@y~prX}g-JLPQ5(aVMtZi}{9lgzOK>58Lb&Mr^ zWN$}y!YsiG9m-=gZ*m$f?(O&^>K$E5(=+dHlj#|su9i!uiD%lhGGxb^o43go*%ARn zGc)S|KqPk8k=8mhvyYTwW(L49Gef~KGxN?inVFgUy7zW6Gk*24SeZpxp$P}1X0C6O zshK}?J$~>v_KGM#9jcLcb(=hY;V6oXtW((tgH{CzSAg@9~gfJQlYoGmq8wUny5 zT_$H55=dO?Xh^kTRByXn>Oc#z)FCV?R8iY;x5^SAtmX>yGGr+Dhp8G(IhI_(0-8w| z@e9qQ%l2>+WL|uq!F=an$MjI^fJ0Wj*$^TOTE_rg;3qrt4!+ln-J6u3QHi(i(mobG zbnL0d9fgj*Y=WkPi5BB&ZVYo+*(_3yd6uWQ^LbP4ZP;t10@SYZEKrN5r=Hp__L|fl zQy3WvM{k#g`0#eWAx@g&t;T0O>R@m&kU#2hCX5yos5SN_Byl>!1I+kX_ZOrJcb0GS zo6Uax#IXNRj4>XIZ_^0JH6v=TE~d8s^LAd2qyr1N*6*&Dfh+0%}WX4}%>vH+3T`l&k8(TBZC=mtqt zRZ28}hjdKu638G9)!~JA6o=3Pb1<4ig({1n5ILBr0EP3B1sOROVikT5p{y&%vPZN> z$Fx`cLdUdsM>xlXOW-yW9dkk*Q`4`#j3-QTbY|xXJLsLx=mJ0OnJ?er+c#$%Q+ zhzpB%NSASZhu>w4o$RO!PYAs>+2Ktn7OYTjaZ>Xpw_;j6?B!H;7rvQL3_Y~4vn|lvZ zio5_gnmYwYa|b4I7bdk%_uHQ9LEV-4XTvheMa5{k0X||3s6y<*jMMdUs((@x(5Zg( zH`+(kZl!!g09xfEp5#YoIA*a|2u8FejZw|abH9w!}0fyfi$+zXJo{XzIFF z;h6=Rg7YYru*`hJafT-Y#y^YV}T=))g|SB zNgEHC9tIxZST&qS%j1s5#>0FJcQi^X06ZaS#j8Rv>L891NrTdgq{`nZLR>smI#Mu+ zLt&Kog+pP~&Tu{zgS~dIh70zpEOO+t=|o%{3sZD~pX?n6d!wJp7-K01r@!fF z7!yj8Z+;U#UqUJ3iarD|SUdcY6|hfKeHVzJ>>Be8wcc`c0{a^DmLrwbCzYTUI~P~- z&BR?&EiHG6>-cry6^ODiQA9Uzntj65j1;0BYqIMuextM9%I+t%z^ppNm9Ln6c$YZD^$=l7#i<>4@xHnC^hyM|$|dE#>qzD; zSL2o@%po3`MgsUgUF_WhmVGa;NY}&p|IFv`eL;)te!MI9}d>L!`q&1F4Y&`+j zgYrEk&_}yM2c=%QWX7rJQI?r<&|!`?CPJ9y}H-ThyV{_H^_ z3%ckYy1-BN4$p0O<6C`>(UvfX3y1EOF8aRRei!}C2abluIR4uQj+}&{f)(nQyJ_B} zU&fE;OeUpwc<35gjZur2i4?E!&WRs8IveaIQY?BuVV)?UPBoyRu%ow06JbZ}O;Lb$ zG?Z`tx8vQ2&AZ`PQ0M3*_BjF7HuTwU>A`mFMjMJ6C!nNb2j^8cC%U=$@oste+D8ze z6>NktD6HVk-O>t{?Uq(RxrA6G*Fv=G?|IchIhJzY0zn*b<;5=?aOJ-ZH{g;A?1TB7 z|2Srb4!Gk}_r~%kKX*7;l0f1Q&crRd1YO{#eJAIGG0XA#cGyihQ!`_LB@Fh$COqWws7?M0`PQe+0eamhu&qs75D z;1ZWyMMG~ty$YI-YWqyK=DQSd2X&Cz_EdexVted%~F!`fb~{;rw>o9@ra<7wxG9Ro4Z6vUlva z=cYT$@S=?wGgvE)T^>_Q-XqW2H^cu`9yAOOg-!RMoxxWE^S*cVf_2R5@4>_0$9I1Z z9=@qSOUo+(t^ja|d2;xisJPos zB>1&aS!R2( zh$K@{NR)08_7IsRkr+=Hj#*lq%;J*~<_A3GRu4 z3nj;Dyp^Pq?R#Z>*J!VF6dFJ=T7R$1ye9Fq(~x-uzR{tCz%f81GOtaxWIWHt6NZB1 zS8?Uoy)r?3&(@5m*lYr>ZD9c^MX6>3E08iLLMUW2ln{VaFjreMrvR8n^|oYl{Pv9h z@^Qc53L}WaYEm=*Qa$wBj*MCc`&MI+o>|jS@ZTtjR_@GrjvXW5I4^{NA5lC*vmk{k zeA}er&9C?Jk-IZGn81$!ObEe5gyVSnkBmxQ_p+mlh4>=BM^)Y|$5Q7z7^>*V6U8rd zBZ-Achb>}{!X65=pg`8=tdZE(4M00f6&_%fJ&i<&!WOFa{*U^l+?0bS8RB7i$ zo9eYNzg7A?@*SV#u%<^5eTqfH=vuAJZ@!bRdn-YJuKTO+r0f3Ick;~FKe?j}oRFnV zik0*H#LP&3@OZ{#R{eY6kofKxtr_JKWBI1C&M#OK0*E%Q0oArv!|$bYjs0HQxCT&| zs(vq{Fv5-BKnh>{j_*2Yhp$&uhHquz2}&|HOQ7UH&#~kSX3&i96Ti@m@B2QS8H=oU zRz>IHP&0N!!`mT0MLDB*!(TFbv0+3$Tu=|z1%CQ77yTV(JojwIZ1$YSE(5b?zn6j8 zIQ(A)W?^_J9Q(aA_I}^{js2@AXA|QMUKHhYXU@ONf4$=_@sR=jbir6bkdF8PgaZiK z?iL?$Y%Zd;X8f}Y8Odxlsn^rgKS?Q0Q>&pKAw0rqcN*X;7bBGcxP{Ob!Tn9$!kk7o9~ms+Z%$m@~KCsy6!P*3ZM=w zj$jZD0K#=_Jh6tep<(d+`c60mI;bXt&o5&LM_BfUaBY9jIKcW5JQyHoVU_Xr*(XD| zZGU8B7;M~M!jIm^(@r?nvl#?ZchbwG6gz3gJ{iMNaG~`W&4`NOUPK8O?23rT%T4h3 z9Z2aSaEjr_HJmtQYK-K|6P+E6J_sJG(JJr<_hG06o^cl2LAVRjh6=H^?2`fAGj*NQ z*dYS0E#)LB6(SmkWOt0LpT?p~hLXbflV%pLn8RUe5URH3Qo%i_k*d&cPDJKT7Wo4i zc;bSqZm8m`azDuKYu^wC2CMg%@O6HW0`4l8IgOc+AjRk}1Rx$-!us5-@q>*1fLo0ILI8>UGWsI}T1J1wt@+)ya+x`nX9UMMZHyPc zaM~FELuu2--sYuF8=YFfw6U{=vlm-Hlz`L5OS-^M|L>SK;&_*2=Xkb8W0%v$D(ENi z?$lfOznV6}@KCto2RUub`oTYK^h|X&F?WFGqu}-fPj$9SSRt^}IbseW2Xn+G_B|=k zL;Vmb#gXtmU=@=B1^+uHg?P4ykiwZ@d%ANjyGBZZt?uj=DG(e*00f`+&&Zm=p!N8& zHqHht`bTX*D8aQK_@PW^N&q;{0#^lQItx&a@G8+ltMg;SZ2F_PO4OPc{8Xh9UtKSz zPJ(W!E@sh|D9c&9^DN6Ete`ATQXqJP$N%QFcE$$-DoMHqK}P^Se)RN|TH)b&_T5hZ z^ZtOiPFrWIP{8qRoh{f?L5R()ANkUR%r;@c%kx|9oDJEuFl}bn&a4yKChv)EW%$9` zna$X1L2dj3#HvG+LZ02vMONd$l_Ikys0j%2Y_>BsfC_$f;83=+G5ahO`eE2j4uB5o z>KM654(>2tIj1w$VEYI{Gzu-uVN!+TYTu81m&aL?A44%z9sr4KrFxwMSls@gkq+P(?@%d%#J7YIU#yW*8fEr2SWAKt z>0st8la!+5E%);-P2hZ72snme?SsILmV84;7WsVQ9sGq9$MgR zuK^V4>-*(we`P-(Z_Vsr0xRJGkL;J}t5jR&bmkz0gG6d33Ag=8#w;H`;GE3z2{?{Q z9A-U9Df-fUeyOL^6{~qvxN@ZsMq5#Dhj$p_B5Q{L9no4-(b$b%&h5NyPaK^=OeRYv z$3mzl^loXJSdw}Z0+i?NV0jeTH=-sfV8uBunO~~s$u`F7R%9Aet%w$6OhyJIf32^xi-m*{{+LL`BRQ6ff)>VPMdBC6 zWJN!P+gia>OE>yC!yHkEQ%j7Ge+gdYJ>1`!%_<(yV-$n3vbw;}z#X4oN*U-JX$gb4 zu=)WRY29_eA8FzFr6GME8KllHHQ_mfoX&*mf-4$snVLkfCS zr#S!|eV?vXcvb;fv1M5bOSol8#*2SgtI?NZ`9;u2yE-d=p z&>YzxHC&88_Bfn;D02{y&@A^|y1-BSj&DchjB_%6;0fR)USpT*oazVV^BPS_1z!7r z3cU7VBNd?UrhI+7r`*OtdFvzgpuY7H7l!jfNSi$6tZf#Tm@M4Bs>XB2fFpl^_Z;KQ zPKXissj>b^I#^%&82ZmvU0Gkk%c!x=+rG{W`iN$I2r`kG=5XKRRX*~;%=$jZn5;-c z{7j1)siCOVKYLJG{X|_&u75mpP+I-;gVO3B5Kz?W#{ht^`Z1)rw)$nH6s;b>(dsEU zTK&j_m>H-uLbO07s&kA)xB&az1idOw9Q=onz-U8bP>0_>g{~E^=!#ohwIfV9$p)ZR zc07V_nB+Xn4iJoJ!5U*_+4zTpK6&xux4#4}0^%hXKgu4`CKAM}!fYOrkr6aQqYoi{ z9`q#gAio^s%b$i=@Q2a>zk`8Ya`PjT5DpSarH#@KNvCuVfed0%Wm?^mMI()Ge%UF$ zTMMU2A@)hotSXe>5#`_wkN}SIXLPs_7P`IRw*piE! z;S94ScWH)`vuQ*)ob_MO1%C2(yb*Wcsm$tp{VeAywoGG}E^6^1nTlC>NIn4`m7SNz zJ_v@|ct|?3FG&SDGN{0Jg7%UMbY$Z7Z)2nAk2XBdYDAlU0%PVm^VxXbXC<4W# z0trAxeuC|8R`GDaIF%RVj5C^mu~7WJ&k{y|h5V2VZYBaUdA=RC8k@n_G`GLv?2*6) zP3k0{BTRskOyMa>_m}k*K9T7*SUTYYb{TWwGlW&Svnk6a<+v**KD}bLIV^ou$HVfo zE6oIy@>Qc=hmRE&m?^g%Q9!TOHq#ID;-@m*!F<)@sYUh*eB!IlB%>c+{wkz32889X zKyf%+au`K8gnc{T*vzEZ2Sr1wAD}t%khOLIO$hNiv*!s3^sNB-;ke8e0g$M*g;Hya zNCU041&XH?;kDK%EJv?DlX+h-oq9ZBeCFL{J^?Dc;6O$b_GvIZJhJ_fqW3j?P7S`G z7NmnqFJ)#_3!{UG1usU`3!o^L02A z^YUT7Z(?Qx_8S4w`YBTU-VEDkzfTJ2GnKYGt@?}-6@A8MEicJRm;hA#T;{!@oK0Ba zOf#DB4J(|U zENaRO)U8ZwJb2g#p>N{|_7GuI%rG&!YgBHir*H1N&J=?^83ajKQ13g9IwI%H&NDJS zYzhI#2}vVX+dY$y$T<_5i8+%{R``bVd7r^!kt=6rK5MWQ1RqX?8lRejmnrg_W@j#A z?-OugOy*}t~m0izHV{X?l7R28IhMFUkH=d;Yu%rse3 zf;ULzYHTz-Dtf%7?>NsaGFWQ@kFjK419uDNBBjV(>!bX|MVUhaz)_BFL6Go$*R`KO zVlymW{^!TqCIMxTz$)mm9hGAY7{$0uYeY#f96G$E-DwUx!c%)>bufE|Xhs2c_rYLn zW3a`9$snbu^y0#!G7mIiv-4?#eL&!a_z@eAM(|I&l&!idYJ-p}t`mPQL0Y$U+fKwz6xH8UpM!WoeXcO9fzcvj@pq5% zXWxY^C3KhotgQ!!0_?7BS7ia)tj_#}JxX{C8Ul$@@S#8Z=Dn9$!(h)6P#EJ4`KEh4 zjoB1ZiYD>w&-}r)ne76=(Q7UGS$eI-q=oic3xAgL$=g4N&L=@$tBzz02;uEA$`=r- z$1hg#R^V%QJDWy)`m_3O?xtXx=(#>oG`IdNzobfHAui@H;>P_nxpR-RNq}rP+^78` zvo$+Hi1<~3GaltIXdo!OPyZ}!d+5*DeF?hzR4~)1-L>|fLk|%MFDQzG&)9JfP3MX zd;xAMfd@m%;NqI5F`1_wbE=1o=N*$NlN!l~JOVd?pg`NfN8nZ+!@VJX z;V4c^8uvQ{_xoXR;{$MjQ$7Gkk&6V2lsdCfGBfW zh@xmSe7yA2W6lw*NaK|Ufwitx{`4HEOr$`*Iu5&*#&JF3MAyWGfZvqN;IqWgG&(BF z6(eZi08l8;923cn|FT4a4LzvFrjkGL$9eRZnO9jVfkdw{_B3qj+exYL8b&I=cG_tT zfJUdG@v1%MmdDX)81a1f38#w;Fh%zaQHw}^#D!HPpZg1}ylysmpw;anp1;&XOqzQ;b)*k!8b zeRzIwUuGuzid0~Z1S-UL*cMEO52<`dDxu?4p5%QoB+__NkFxRRhT}5Rvp(J0m0cj< zn27mB5xGGskO)*@rYG`5fVC(Bzl0%>WU&rs^$9oNFxJxG5Az`ct>@RjuGUY_Lv*KlJK)G^iDQ`;%fysm)V&T4Q`sXT*7i z-lP#uEV_}(f%NoMt>k*iV8eqTV>P65?uCH9XL@pZbyS)=lWNArgh2K5^{wox1YamB z9iL*i=SlfR-Cbv#%z#%JVUa+HDj?5EnXtcg0nSq{BRGRppd9_;lYGM}dkS9_?V7_j z5O5(p!LGp90(SW7kqONNd17D+z(Y{rgcY`j_-nDQ&TKb<732sumHQ`+IUadCcRAB* zn1@fw*R!=Q)wwAOkJA=$7H|9QTKbzD%T+-hr>$$^7fxH(PL@7x!C1s;>#6FlrD3P7 z*KYsNKF%Xa*D~93*a;oMqEBhl!f7i?7x?9vd8gzi)^a^z34^#W@sxDP6ucmm>S4+IgR|9hCtJlL1^ws|$ z1pY(pc(qh5P)i@G5Zo1mOs9`Iryp0 zK~xen66NVhW9g?>ws7SbW-q`kz9^*Om6N9M=%A`Ctrr8UoG-!W)>rFXOGv3^qiU%hkPZsZJpcI733Q8MUon8f+|SgvPBKskhxn zpW)G!Tygv}rwhLORXVt$F%@Wt6C88n5+h?YGF3ZTXxA>U`V0`iU7;|2d4bzCi>)K1 z&`W7#%D`8nILUlbJ?kTE69EqrM1lYNj7$TpM!H0=s=lwrfSKR_vO~HgSflC%q5Ys7 zk+Qf*Aa%;(8Y#s@=fyMp`e|oo0669>v}`KGJExe1i`c^Wm{XR+ANRH(m zK^}c;d+`f>Yx`eH_pQLTOkH$wy%{zJeEp7Mz(QU*#hT2W`K~uvU!ocGtqA72`o2{P z|Hq^P@k0grzAdBzaTmSSHv~84DSjr9i2IPjT|_DnH&h_*o1_A9k6amm8^8V=M$d&K zAXy?l=iTEM^r_|K*PHpSc0#BjWqd%80oCSs4*03Md*8=bx1kaXx9TBjTse%82;DprD9&tin6>tc-{$UW|w( zUKJ4oav2dXg&!CZFDK-X+q}mHwlWmb)sopLg47=o16quTL)fiqak|aV&&oToUj$>v z7ZNus^gF}p0`9|_fE?2o6gj3Zax^}_c@{!1VEW?Tvoa{oIxB->EA)p5ib;>sHqjMa znZEaixL!9{xjZ_p};~dVMz7dbOy1>Pn z(&1Hr+Z2fSr%r-R)dDvE$>nI@d&6CDJfj0a8J=$s@}11{a;;DBPanmx6U3~Nu=_a~ z!$S*<;k7ghzzOtW2Q{L`Ir!G{xq5KCOMHwF6cZji0`Q45jgTU#!nfyH$FXUpbE_t` z7tYB%Nx3H=PqK)B2eGWcxndcbVV*>@tN48FO$a3VCJm{)b;AqNoyJ~}{!s%c(p4|W z11V7#c;82@9ZX;a9cc*Q_4E8v14kWRd$_e9dw>uY9-pwNUOwo?fyESFbA+`U8%m&q z*i_Ji6r0^7n`GQ7fa^qu!i81~qw!om@u&2TY+4XCf=u~i(iSr~|9ZtW-!M67LL_js z_)2XCQDU6B{P>YC0DYwU8B@Y4l(1brX=uU-QP!$aZs7o-pS?1JBi zm0#>iGjCnstrxonBz!LrQ)jf9P{L68*XB95$;g2u4vh~>&Z}+(;zgThn$n)-U ztSrS1uekDyPg_s0>a}u7xy8LCvy}Mn_pLK3^N4=1<{eDBfp)kWW=$J|2= zbK6Be>SbFt+d-O?Oc?O_Kdt+H;RU&y=w2cJf=^rxTajN7lz28Vgp17=#UnE*JbAQx z4ZBLfF{4s-jmyDql2SYba#d<#*H$w!l=81qHR4;j#%2NN3WfO;VM;!gYkbUqSnKL& ztSSZk?LhD-GG5@yQ|c^hj)hp4-%BV9&9P(`!QeqJK#Zt7^e5@IshThyvMJ4H${ z;JYul-Ejhe@7FE+*fq^$S4gouPWhU(HT#p4VwUkr5wEk@`c(ip#BI%Zt=Fv$%;-zp z@w&AMi@l_K9^ETm%&BrorYUM)lE+IA3FOMPrfqgLiq*U-*9z2@S8Q85fEqG~C&AMR z6+d&sms*zvfCF>6X8TL>*lS19Li6QSe02@O7an^J#}^zbjgKVSL6;u_7@%x1Hw}Bk zI-89kYy@?ZS`Y`c6H~=x(gdf9iJ}0fiu;P>RFOBi*5l@qOMF)?IFhuCz%Sp`zQ4Ix z3Hk0NUiZWFR*Wj&>F^|*3qkr#8SO2v=$3vXEd&yn2AOwBhRPE!$xwOxB^fFcc4-^` z-e6VVjd!f44R%zcmO-=DS9N)w_~0cz?_FmH-@V8XKSo4LljOB>Vwv)q!g!!CVbbouI2&IIR9wu z>Q$`^s661~9to)R^3@y6)W%t-Z{1N~8;2RW;XhI!Aga*d@y)pZ8~%KKh$y5qFFEb$U@*2}RxBnV^h(ntKl;HA&6 zr7y9-BjFNj?IIiFukErjo^%}cvqPTXy?NZVi9JQ6!o}9(y1>uL%s2jy#n#eaUDf!x zldiRFwk9D1k?Ft6Kx7I;jv~a^^iIV#>}>*tnWr~`phkWPYwb@76eg}d`c(!Z+ermB zhYGy8yPs5m$*RN^)MDbw&%(dYx(e8@1Qd~9RLG6r^jJXTP=Uy+kP3|)Y6Flvwpj~U z69S6J8~i3Yw~`7Bp&IZ>7hUa`hm<4kO(}(LYwm}keLQkBZ(3)nCem~`w=#rFoUbshkxsNXRB5i zAGO#pidF;#`+s#UWaDY6Sg@%W(u2skX#_Q~{rUekg$Rz|afJyO$*Ws(KjRsps_`pbP({-1f`A8{F zDeHcdx0OS{F>u=w20U?}^`8OQC+)hYAwP1-+LEW-ESal}b$oWQYe@hg&Y-BQi%MCS z2!2%7d7`Z1Qj`^=RiI8Mtm6m%baf4&6{IT#NOgsI{Eu$Brkd5SNWZA@s^E@-W4?CN zE!P#+@QOA!t=X2O6gAuMiqtFx$J>tCVIZ>)TeCwEuQ%PvEI$a`Xvpmm?j-@xLDH(@ z1C)J~w)ashH;0Bus{$_yE;c>+A=51mNn;c{PH=%yEZA>J!oys6g(t3XwPcG3lhBd! zc8$5I_yjG9p+0{G9P-@dYqjjjj^+SBL=dSQu z=V0X&1lf>Ron&jw%3alC!w>%Bd2kC99K#09m5K_^fEwO%$NA<&yHg@qJ%Xsjz*sX< zisH~d<&M7YOy(fXbnmpiDtqVNtD(J8qE8VH`?E-*j2%D?;F+LnDvS_nsGexx}1`YL+-C^Gb6^Sny2 z)f!g4&)#E8;-6i#Hs_D*^HdI?rVG}rZq7bQVso@VZgWCvbG2S$2FH`q@D~_i?7b_Yum^&2nH=} zTT+VBW?YkZzC+NYU6U)v;;S;A4gt7+RjwSjm^L^nS3nR8f%!8H(BBCnQKAxFqc~d* z;*zp3J(Q0PhF4;bBUq5Vf@}QAvbOX9a3MAsgVGNb_U3h)x_@Hx2?j0p>!cL%&JPj0 zq14_>O6=a(g2h&JKx|xZK!5M5VC!Il+r#yS){g?*dqr;7W5Re3VL5>6c5_Waju+(pEd1i`S&X`SV(+!-47GZZduqg|pYd;XojEmf#E0 zrGh*qcuC>QrdijrgzI|XqCzoi+<=s#LKChBk0XVv=5;xaPK78`0UU>}5ckNBUgNvR zxI36TB_Nq;6yRPmd*ImvGIjA9neHwY63_Y#C=9fuHQmxBsSfRRumW$ySv=oaKIvEzor2 z;_9XAa&a~LI$2z;B~ZA4c{d0O7gt{rC|sia=ek^?>?IZ094c`A^E0W?>mR7a^^czg zTwE0sP(*%BA+Pwm9!!WFDiC>fQh~_xicPnnapM9gjGhZ;U6%`>(SRs$0aPD0>VIe` z7eIDC-RT~dFiY@77eHeOqj2_M1#=QUaP4#0KKPE;KG=sA){f#93!rzBY_nM&EiG99 z_4-{dfO?Z!F%`mVdwsobwOKdlcewzv3n01x>LLp00x0iyezKmeVE{1oZfUBVCq!eAjbHDSfMz&7^z;&duI27Esrm+oPd7$Wnm@6l( zlQM@fcwST6ljcTHgV^oXvZ#=qf{PW0&(jQE<6!?G9B47Nl2R1oKfm)TEo>J9z=POQ z*S#nmWNTVW+XnOJ5Vqn%rNHx$R|#pcK48C!0$d-=;+yYtUooTqkSl}OKcGVGEtO0K zMisvMez&@JU;7U^9ndjRvN|xBfUM06YLsox$`f3;9a=_Iy3AjH#|45>Bt}{q7rUTQ zL_+@};c$2N5tDTzNHCA6J3&o@d4G^)L2aAu4>pjr(E;zHq!jf(@DIMlZc7dT$6#NR zP*0Wg`$Go%mD<=Q8@}S!HlM+!5p>wehuhlhY#u2UM2u;CZGpRK0CY*jZ@k5``?{^{ z9nuJue&nGct%%Augi$$${F>1O+4Ix>kRd;1PHW&RLI*Vf;282#a4pM^VZeJkZIHMo z6VAj1loRlKHLB+iBy%5q;aE#>&8P1*}ElPZtc}#WmrQ)#u>uw^D!h5(_hO>tWz92m+$e%#ul2Z^> zZ|H%Edc=6P1}Q~7R=p9dM};ivhSZ}#DsD1|$oqrR<9Ed}p8Z?`lIcld$|0sG;@KcC zJH5Lt$3g-We`u*fo*YY0!81m*y~Hn!XnWlV7tyXC+;A{&^tAhf(1^C-GwxOFaUwlN zv?FwZpX|()e@8^?Sni7D%X-;nvgw+H3}&a?kiqP8H)Jr2Vd@*fP)lyeFm*ktz(^7* zFp~U~ROm1jYB5X&uyw`5R>VLZ}7FxxrZlA5`<_l z`3Rw`&w!mKrAH^bZ~LudJn`XIUwL^3?1aYcyY#%fqRFo55`51);i@R0p&)64CkA=d z0k&7ovVY1LN`tHGWfUCGO}zf1`(Bg9{t0MRAOdqtGroR~y8(Qe%Q*vP(?n7U77mxw z!~>=Ae@a*0^iR2!dsuL$qSof~-Hobg+L3a)1R@;YYzv}RkFQ>7YiTgS3lI%wUwk9(S3*blbt9Jl&fWF^XbkE@x+i4df3na$ z*ow5B#c=eld>^HnAXE!n!c}a9`#@@u-y~%Fk z+*4okq;5bEp1>{R`>s(-+@lTFo=^p+m&k3tRKOQ0lvnp;)Xsq0|We83nto*u*XR|9Sl89N^zQf{H6@@DY)nlGJ@4R zbt8St-g4KDV4R@9`TLvq+^yJBQi_QAO_|H5;3dJZ`Olj&m;XL#hOtOhN1s-P>a5Sg zbe4$g32#Z#QE@nr>COmXP0Rcpq2Xr@!+Oe^mgH0rxWRd^HQ-b!v=*dT3Gydtg@Vl8 zome7B`CFl*4i_l8Fa3htREp^a$)-4&|&LK^(EAWEe3?=ldVfq5owVDrwchuSo&x-my}|* zbkh?f?<`viYHPq|QM4j&_u>j$oWYioVll}jED;4Xwxta*5!d8x+oXs!ca`DuK2J;G zBRiYXeA8#vNYb*L^x(85hPh4Nv2{1t$Alz0HW7G6d;ti5S_zq!uShkRx(sxU&w0`g ze~NZDXnC49J!-0el)n=RiGk&UP!%{s(s9yO$QhoP5cmg>* z)hI*BTE)<&QzEO$3|@DKyER{*)+*Yp2_MuAFKkSxusr`;cl`jOI%-QHw1l^c5ULrs z4uWOMB*twah(mf(#%=92N*cFC+z;|4t#GwqJv0Cb+`3Zv`WoCw^kgv7nIwAaV(?K8 zPkXby!8cdC*V#~Wrqa=bGZnpg48HD1_b7hrecR7$GGPE?IE^5VuihtPxTgAH`hTbx zE)cDZ;h-rWHO!sB^NfsW-+rI1o5_|C{5X|q{B@-fECTtS^~iVSIHYPZlH;@Y<3_Fy zXnX{b=p8tnRQCvM7b-x}Eo5-3&GYv_&-1RwRr59Yw+$Z5-$QWVEY;v!T#`$EuliD1&x?Rna7#bNqQ#6N^fb#_w_om3s-Ny?v=JlfPY zfa6lYFYWJc9ROb<533&z{vjtEZK3$JP&QKul|>qs2xVmQODFt}#chU;#nNTEG{e?B zfTrfLCm~fL)7-)ClmK|-G52d*hlodk$5+3$dD#fk5O^G54AbmIj0LE9`!iYvIlcp1 zY>x0+Pu*(E4WNkeogSj9gLWD`ZG}g^g%cZ6`yM!;dQgk^=wUR&A5P+W)G+68=F)wh zttR{j*@H@%z5_ab)>DV<$wzDfxeBIQ+p%q=wd|p8PqoqtFux1aKO)W}>?kUq^WDF? zrj%1Qz}POob*nmb)Xs+%Un} zPW-~SuN{2cHZ<;=`%2@%eDd$^FGJ(LxqrCVu^ys5jr+Rl0zcWA>+U@6TgrxO#4^w; zgk+Nl^ae%nQ9~dW3q!eZAly3;u~;szdlO@^XKuRhHfHmWZo0=O3=|k?ES5(|U@Ug7 zakiU(dCT34aZ-h&q9`Wa!IqLzbl80UDNn-yV6e6v-la{g+x|ijq$iv4wY#k4D!rnq z;bU60B>Vwd zJhT-fG8F2A2)_BhUT1a68Z2dThZRur2~DiEd^?WXrW>q?lFWkh$V1C}lG$}qicS*1 zc;(}^zM=4okJ~&fvWy;YXop1+JgK6mNhtW-6E-VfTG{aA2dj<$8thxr2Itz5KW0?m+ly>X%>!ll-7`HY><|GF^R2nRjE=n{PM47rE}Jce zs!FSiFG*C>)YY2-K#TXi49cTKv8Q%kvDx{fmXg63AwV6!+B$}U;%KZ|HgK3D{KyX7 z6GGv!AM1sKPrG6p6$&p{VHrX2#<#pnEl3b zWkV+ZQDxP{|2S!l6Mx>*16mnnbypbU7bL=xo%RDx{2^3^@i~cLiNgp&ocKck2O~Rb z;$KX_^~Aq|lnM(m7W1_F9y=GexQRbh^1WJCdrf1ofOLfd4JeCF)9hQ8&;HTV!RS&7 zTxSUvMO7ZbPu_yv%RKEi{j;o^>vAk71jjhJpA^4vaz9xXC-*S-w$mGW!hF`SRwK`| z>=qFnH!q8IfuHK%bKkmIvZpfN)EH=5%8`L@^K^qO%Fz}c_3C})a(u&>d<$>-O?F3? z91Phk5EAn~Du*$Fd9^I>yV2Vd5;Slzx;A$-_mqoNpGnRwSBBU5$W?>aZtl4| zAxco9al&=22l=Y;+s!@qupWdV@H7qhxs>c?5q$ww&D89stUsy7sQzKWuRL%T@hCuv zsGb4k5+~CxExQrFxFz|{5AlEJXr48pb8@3k~B^xo}Z09#loPzvXm+pMjZ6?>zpk$n)BIqWPg1`*>DYlfX#W zsJ$S|)7h+9UM4*2RI|5dS-~)wei*ciFkBYaC@<~8DDSt6maRQ4jh_6$)}DtFY6yhX z2qFjt43;<9vU{_Bq!bgENl#nvZ2W@U)!D-otvKQNVq4E*Hj0#DJTOueAd@PE6VOiF zdw+p6!5c%*i2@wWApeFG&q{L{$S;QT8w3=uye}!Q=OXjH@^U=)6i_NE!126@k92rC zumz+wUK4t`yqFrC=5v4^hOs#T|F-eGs%B(>e4jcUt$m3u&su{WBS>&U)dH%!Ux&-f z2{q{tdoy2)Bs<(dE-t;1%7& z?c}M??kAPtQPpXP{0h34jEDK=&X89mog^-|SJTX^_jG{{KitILEP$X+n?6Y>DfX)5 zdRj&i_8|AEZ@5n-@Ssz9!`*1Z&*plp0VF`C+=$nJxbx}E#_V;{ObhfX73iH1f#lux zFcL|RPgs<9+e0Ajq(MeRF2j9Xi}2_j}GW zR#6)UhCk(XfuHl4e*>j@3m))1#p-F~GQCl!qD*hpswmSNVW=0@tf*XeMReKZl5!)S z*4@*nf{JHcylpSfsDzq=2KC`(2+0a$s>EPI_`_=ddFB6}LY*t=wjWOU*a`gocJ1J>h< zo2OgZv~Y-%Tcjrhz-zu=3kUyh8+$*Mx)L($?N603JiA2mwm9+JUsa)Ys#( z5HJQ6N4*@)Uj-;v4mX90ixj*5m;DmO^QNkJqDziIg zyZA$ep5e?(c)(~S_ltp3z(+5g<{vc0N zRzT{t`|lko=d--T^cW)&_W@a30jYuxW4NbjOjl8WLYI-*zHYqja7b-Xk~mmH0E1ce zT^;UeVz4QM7Ywa*LzSlqZpc@S^sHyEkajp>=dN^Q8B6%4Q63vxMk+zT6uxtNy475) z1Qa`+5${Gq?qx`sM83Wp+^LwbBfUIdzsk|PnkKJ~FajZdah0Q0B|`CSKIzf6b@`OX zJubG1&=OPdg5;*mgf}d8HzIxq^qZSz zHDJXA7UWdd%&!qSA+53DDXH*bTa+q$eB=SUl6E=zf2V zCS92DZn7>X`VL$(l``QbXKe$3yOy^ zj0C8In2bq6p!ze6N#Hwj>nD0Tnz^OHbz&IE@~Sf(eb~PVQ$Y$)M+ZLyX;S$5dorx- z8v-nhhH$E$3EDCAPX&$eHo4v6brJ4kf zRwAAU@Z)MoLn*@Bp*if5#ZmVCyJTbe@&%rb7BVpXrlkgWjwL<{l#B+QAbz1iCq$LH zDk|ol*McL%w^*iVN)uISy1-9y=BszOZrZg3J`0!kq4 zOm_%Z$G_$&Z*=1?yynSIa0|}ppi0)P%6#iq7rf#85Glox?Qo~JjTjsS+X=n0v)E8l z4TD-f$!iXbB4+zIz(!wBXvMk-SY@`AmUyyn_a$MFzn1w>6b_bz7X(r&MlZq%+OD0y;)N`pbgJAed(3iwen2y{@flav}0 zJY9?^8Ba|M4Bq0#;uzLv1Ee7x-nk^G^w^^8Ayv z)`(#rz}wBVR_4aT?c@02j*dpG1F03a{tYWHS_c{5R+VMOx6Ks$!>k|}s5j4l57JG; zNx496^ybcWaQ%GQ7}khALn^`DHRX91A9e>K$B&`SCveEYJc;~GQjW;y3FLORfs`ZO zBl)Jwm{)>%!@e8~|8u&%C)-LO5%ZT4^ADsPF@K3{FR->~!cLMpjs43K?3m&X(^rLQ zm8A!&SvfdgQjPEWr>B}fUs9g0{--A=Ax+Ss7Mwr`<5Kdcd(;2Ls#ej%1lY+RYj(hLePtp5?}Q1k`z&dz>H@!fP;#8kYNHBlxDj#VL>2#IglXTUQ{r8lY}8x>=t zWbRpEzsRaqB_<$7Lcv?mvo%O5uIS*om2I##r_g%bHw%I`t5%h9Aq5XojM{dOs!GBz zU<|`BEvDl5dKI}tQDddOrNQnahQB``WX zc&)0AcFa{EjyPmpUUaPrcHjftjawILO{oDPDEgn3GLs&E<%L%!y)yolCbHuxJ9w-j zr1>1BxaRBaXW7?;GhFBIA_Zsx0KvCxuzLbP(PHo>{?9@1=GRKm6myWGYfDzYpo#{r zf)uT!g>eBDa&N=DQUwoXm|zp(p^wN>#P@Er&t(bGdfW#MqWY4B8qw0W#Pd_U`oCcN zHsdebq+*+7p6s(f&%6X&xbGOPZbiby>mGuzYh)igGoq2}P?(ki#>JWmWH_VM=a=ev zvQ1!5h)Jd_h4ct<0C1V zEcHfP;s;g8-0P3M)O?;}Su7aA`0;h|3**Pvqf1Ys$5)m~^e=w)Obxq%H0SmgLc0fe z@8@$*c*^sA%`M5i!EsM7<|B&2Ov*oXfnS)Je*?`a>>G_(29jH0ER_V32S_bG9|g6T zZvQfx_q~?ei~U9bFb*vOEym|%Gc!gHbZiL~B`w8Gs4x;0egT6EPT!hq0J}VC^V*-D z+D1L@DC@mD;R`{FMpx?zaha(9#WRjICzLU|S{K}|34y>9gBQNAcVJnhG^m{lmT0@Y zbDlwr7HmG}S;=}59HQUi?$-tWek)wZ&!2}7euS=)r!s~uxCr6*cv6fS9Tp?@KP-IW z_sI>}3{neBs!b38LER3Hk@5X|MV=hCf`DS6ybSUGgA^nFWfcD=QmgR;NC5tV9rph0 zM*@oYzeD_|NHOC74o+l=3vyRTg+>jv0yUg{E4bphuM~aVy6S1bcbu>{s!$J*47sn+ z$LYY(9juNn-$zK{Hl<^Jb{coMt479=D$*f9Ag_AkSie(fB7UJ$fM0ywZhHfg2yGI> zCvELgu;43ubie>uzR=T_=UxZvZ6}(OWnf%uT|kJo_}#ORb<Zp`PK_|4GlgZh0PLyD52LZ98;@^I@gtunh5CWxV(P)ks$7Otuoff;3F3w6Fqq z1Ae5Ew?$lz;1JcED}JGx;aWqKx6%JPn4dXn@5crZLD8iZ=mJ9b?h4-RY@Du=E^Rd5 zZF;TjMN*DFVRSX&)8csR;}FFyAhlYR0D`J~3_#(wM)j~{AuiZ`(q8X>@(t?l-$R62 zphl~cDlM5LksJ55Xou?DB7UJdx1c)7&1aYpc)qJiqHoG6dz8s1R`I&n4nh#4@rzZw zX%YLXmEkRafn55Jq*|vPzpJJL@rYvpi)lyU{rr)5PPDgqjP`tLXKM$a9_?)(N;BmG z1pmc=XT$eh>#;wBY2vdmzZ05prZ26!H-k}%kH&fHhNCz();pmTiivTGV%<34+`p^u zKY9hP)NHQml_y$_=KnjvWpUn~p#)Ql>`e?e?_%*bWZtmkoP->lp$?XBWOZ-7YM~kh zrLDhY?;J`nv4%Gp=B?Zs-sWs*Sb_ry!N-wc6j3PbiA?&{-YA?(*VXi{2_PtzD+wXI z(fDI`EpI$pIm>@a~TSQ z3~hr1R!Fyt;pd9j0>ix7s)6!T*Ki~%+?Z4?HsYA%yRKwE%%ZC6u^!Y*&1ElDtS);A zPdL;e;6Y3)@c8Q5G)!oV*#)f$1+|eFcs{&f5)gUsvUulbZkrAD%ha?v?`IOM6m|P%B&yr9jZtph5JW911l+{R5L1-OlyAPR6BS8y-3aa-3=+qi8BtoA(i8rs8~_tcP6 zn;}3|o>pw*8X4S~@2$-;2nxN4+nbbPIy$3<+{LBfxQm-gAn{~a%NoLDon}G}c`~df z{%zx%=0&hd8dx0+^A&gXHh`qGu8_wqYKQ{t3UzH@4#*)c`HQOwd~HhBNw%7_37Y!f z2L<8O?;|j%powSNv@)oEHiyxVnEGQh2kP9#YCiS>uQPxwI_40-caYU&o|2x`jU6Ez zppVnw>eRd51pUjwbX=c;K0mV|nl`n{W`suv*KusYxb= zJOUoXu-Z_|Aq>M+hz$>UT?twV3g=9sCNVEW5o3e#SI{Oa$3jfp?<&pLb@ci~ggAi}C;T_uj`|CQ_lFo}&x=v}e9_M}GP!dspL> zxs10#vBH~vKq}CiLIrx$FG)p-H#OcCI#o9%-vCJQCPEl~3zyfF9(8(6zejy>h&RbR zRg=Fv1o~vTKu%riOhOG^>S0$_0V^VBIASff%}#*q!iHu82_UioDZk)$Vr1BP%|=KZhccoF&JV(7=c@N zFM!qKb2GpcdiD^YBen1VV#GlZFs(;cdlNJh9`fs2hk%U2U3=*yF* zdQY;;q!i<_^?kFNmAL_>eAn~d2J9xO2dAN48DXr2o2DHksr`hZo18f8B>4RDgvfI-8XQlVc%ox}&BQ3RGy1nn9 zj0}!(HfSX}0=VLv`)AdQBJ6=gnocwq#b=gjeD%cp>#4SEhzE7#P|BoNQ>4}vU+wujO+pVY6I!9u(9{*WX9x!2G^&@TBxi?=_7-9WeoI!Slw&z3FrfoEFMgo| zIiC>DfjC&^U|zVu`(m&IY0EK$^l-i&|A=1q!x6qmgWE=mgYtrU%niSyr@Qvx|T4U7gnn+9nhZ%eg~A_ z8_skmE%rtly?FD*-t2^Gf&ev&Tcoeh39TF2Duo{ymfn^1C(Mi*>%5(Xx?dqoZJ`tp zl;QzWzG;NxRbTBfS$&MC$8;U_EE8)h&+?qEmrqyb&5ds*G@`x}H4`)}j#Tv$aAc_- zF%B@GV}TzfzDYZlH%KXlO5@-G3~`N%f}>}74E9vu&C5EYL<<_I60rh2%YWb*Ch#o( zB^1!2Gy-+QZ4>saPW#`bHroRbEAIl0iFc{gH*+03L-w(9`4+`l%qAOeq2XqV{S&)%q zA(rI#CCVamETaS;=*J!tztE38RwtYv!`DuJTI-!3>c@QRyd&8RA`!ZVcIJXR zbYVHuv(~UTG-Bz(mVjo(Qg}V7Ko+qu+z4s=(D)3UL^*kYjPV1@ny+5+kq*O#s3#@G`@+trFrkI!O zaNobY>FhTGp%+|5bx6YRCI~6K$YBAhyvS*vxAkpAPw4zWmC+UCqP;1i@f$U>6(M5;eB; z7-NgFY7$F|sTzz)NHc1R=}}XSF^R_f(yi&$cXsxkXXoyDi0?4_oUFu;XNr?g2=e{ zrwieLFP5YUWDj0Du|crj7Q~3ROIk}9zFk7Kh5J%^^KbUTd4;8f4YpKOOCxi)D2DV& zllB$l!%N1OEOaLpg6mQ?_Z-O{BIGz%e)~W{4(uy6eyJdvJxP!_Q7+lkG)1db=CHjO zW9Ki#!R$Eb4cM3X?(-huMfEK@2 zu->RL@v#W}hMA3Ic_g>DkXJ(76(yK&iUy8>}xaeY&)=(%%v?5xP(;tdMxQSC~0#kBJU z6Zjv$>dp9%_YVx_Gei1~Voxg(Vusg=?_U?vE7FhP%BMiH8O70j%}*Ka*ej%%7!vC% zvGxg9G|&2=;37LlO5o1gN3n8f`<5VZXafWcZ4o@@qk?$$E5WMq4M=cy{vKa@q9Bs@ z{kWirHHq_DSB{-5P6}v45JCWSdCQJMv?mj|VhyDz>ouPgl(T$7iMnUU@!h8ivVsX5 zRR=h#{`WCZy_{f?f9+QVd77F1@1GXrvjv0@+0QdHzl9)>KOk`7;`$5@1#KW$r9Y5R z{hgl|3}(9sB?@@N5by#)pa4K%1s?ta(jIRTtP%huNi9A$D7y>`M-i` ztcXy8>VqZokpzm&U6MJzFF2JT6?2!F`8(ef3}M$3N?{jmiDbWqz>)nD$v*A7f)uue zAQk&1X7-0m9VM)eP$K(1lKra$j_mgk?cXOz#eR=uufGR9wm8XNPvc)3J8%|%Jh5*m zU)Hf-C=Uzo7aVX9S||T^ZPyq^3UL@9;`KGy{}1Ek7yCABBj{w`uO+}Q@#oF!E5kys z62Ijr@RT5-qrf@=Fh)Y0aNgC_R>lHFc>{{mkA5G_%&~yK5#tCY+ zsX+$i92_7*MR2ltkgq*ga5=9$Lw{PS2PVk3ol}Kms=tk>f~WFNoG;kHx)JDQ?!*hR z%)}j5^>z3ERPdw5@(FufZdY~RmC6PXC@#126XY(B5BaKJp?Qt5kZbw8?QaFKzRain zR*=j4{RXKHdBwDrUl;Uy!Tn}6aJro*SfX`|eI}FsQQ0nj_~WQ9Y!#7=CkbvB0GxBf z@ROqzPT^DjDyU!&6S|7e?Zx^7P@#(jt=R(vAv3u*_U@qXP1q1;k7N4?QU%BJG&tVy z4UTNh9@9+eZ(Ott0>c~FTbTrIkFh7408n)oPakY+px>LotMlDC`d0XV>3~%DY8G_M zzY=}078i_KTp$QWDgM{dw)hf@s#Cz*QB7VikrHobtn9T8HuV)S;(DvSUdYxEeXtHIWgS)$IM!j?yuw8NemIXFY)@c2 z2v*hNURsM~W+Pk#e27Qr3b>#9B~*s>N-VT0GszKAL?-^ubzuB5UypfvZ}a zH)`<{!KzxErM39y(zP%?#qx=)1(k@kpa4~ik1Vw)4Ydzvo!YDL#x~KRy=>VX2m-57 z{-M^<)~`L>IQ~#l9LpwXRgXUHRlCsK`~b6O@)b?&!KU7SYZH4c@rdz7?GF4%6NoD+ z7VAO*SeL53(*w2k=CC>wW*^9|Au3^2<``9(LlEA!q2JyfJE=PeQdQ(OS`jWPVjjUn z`zCcTUhJGB>pmBi3l>9&K)Cy+ymuU5Q*29Re-cqJr^)BpXSHA(5c9Qrf?G0DN?!j{9@DtJ z-nfIz+=O*d(S}#thICK?qqpiHQ#Z6D-QCYggTj_g- zWQn235`sWQmdu6=Ge4YdZ_m~f6e^B=jDwmS%?}ici3vG!ejZVc>8|--QPjs;@4^R5z!EpFPU2gFRVQ8 z=)^uJC{+HV4*ceJ_BvA;(5je(W{T{!--BC5#WzAuw6`~nA~PD#V!aYZD;_>&-e7)i z>##sRp@aQ))5Hy5u`7&+SAyIf?O_2;I>Kx^Be8b}77o8Wvs|&fjtW%(6Z5Tq%xtYU z>?l$#>5VEypu*dP2YGp-JqC`5E=#nxg{eVFy1jX{8aUIX^1+HFhb+sjEQ0_r;h8D` zIQh!sIX&%pS`K`T&EDFU(-F3ZR_QJEoQ~LKxky3P+U*@lQ@Xn2CFdlWQmwp>yxMKg zA;vZk{X0tcr}D#H?YX2r20oc+0k@7C*YG3~sO%oZTa%>j%ACA&XM1Vn&7uG%kZuvb zFoASSN8C0b86;bRcxiGnPf4}k=lsW5fF;-D~tWM67*4(6oNGIU{klfS&QlY1Er$H&PA;$6eZd#z43@Xrw~l#}ZS)Z=8}z~|yid1BqK~!C{L?I$_@@b0#>x~OoU8yuffe1s z!5tE@#U^`OtXS)Y!g6?J7`Qie`mD)gr_P)^arXR*>BbGl8V~4UkJWP%*)Idisdl=4*5g__`|FR(=YMW45Squlb+U&#EwuyE` z-Y*JbqkcgALWe(4ufw0{YroFd;jNArgvdty0`TB%j~BFMFA{}>&tslb06*H~^0m6w zOn*vxpY+$O``e>hlIE>XpY3hhM|@nKD~(&HWJ#BQP5|igPX$1^ybZtDS#QCc#Cn`=tX&Y`f|S9VH(bz(%5z- zT}HzU0>Egf6afFxus8|30^8ywV`K*a#=}j7i8mf#%UH{^%ad>V>UzR~tVRY%4VQ{i zJ@~m5Q(3sTff~3)0+*{-f=kTZfq|b)^iTmYfk0J25KAaOcm+CTkMNQxiao;1;ui+Q z%k>6C^CJ7rz5#LQL_xUh5sm>5e)L2^0y|Dr!cpL;0w`_x&SHp)_hnS%`bGs4Q89DY z*zxlwRQLu(kO$+5iL=(2D3%ugP|21t@izfrO#C4LG$sbF3XI~bN}z`b=_F$!q?3#Z zoA`li?dF}JkP-PRD8hO8aJz9XsBI_TKEkrh9wb$4EJ}%&Z^KEz7`R}>as2qrA3l*` z5dBK3q$1-d0`*2l1hEJ4#i6TVN>D25gz+#){K9w`)TzD>;@vX)GT(TZc@1kU<6$cB z;NkhUST>E=3gcn20uUWW4uN13S^lu4^j zP(q~RZzlkB{H+3@9G|D(Ww`q;!`%SD`M`aoq;mE);_RJ%oNdWR43lczw$$Gs$XOz9h*Xt#t z?MeFYo%o{B_Rj22q6@nFR|QaN@RTv&?(@>!WEybe7<)Tdwmm$?o}h;&TYWo18u2H^ zQTn!3GN^7eNAzu!04U$K;r)9BHR4Um?U}Yt$?!7xLA@2P6?yTDWOQ*?!ocfdJuR6` z`T8dNHfT#ud5lyqC0V9xQWR5~uDM!)<^95#t^s11t|6sJx@K~+OxH{$g)v<-k?J@n z*?+o*OiYxH;!vS4A`xzF5N`rTC0oZKqhxcUfr`Lz0`*2<1aTB`J)2}Njo2XyVB9?@ zeqr1_$g3yW>0KtCHD>T+e}hkXpXdhs_+)!@z>C15=35wh_7gR5Hu{1BC=I-Apd4qT zaPaHE6nmG3-rT`oQ|!@g$y_vOLdD#QITPo4C#3KDL}s~k{j*A(jLZ`RfRXu`0MN*U zWL8hxIq<&7Cj`KctN7{G_U`N#QWBFg7m}?ji3w8Z8N+3t`MAs=I7V10mwim2%4MVm z%3%EO=`cVfq$z=1st7o@sezN2R4mB(fLyZz;J%WZ2JJ)q7>tUCH6g+;5pQ^{{XyPvUDpUk@Nz$XpA4QhKEYG@gOJx)?8R$5dx5`9T?F9J|xrGWB#V%7n;9mXKZfd zvp{HK8Bz)I(t*B1Mnv!}KV`S(u|Cfoyfj-D9ziICmm&x^Rr8wV_TtF7f)rcEJn;)%Gw;%_skz?1 zwtg>U@v4Ja0sO@E_I3d)fh`Z8-5`mrB3fbFSfKz)D{tGFE8B)&BHrUh`)+A=f|q8$ zsa~`17VDHV=Dv z?&W-{LmWp5p?w{Xd%NfOVhRD>L?c~Ud)en!>(;KYcM8xOr1Is@l}^I{XO@iPCw>_o zTywE;0RLyth;Tl$2D+yGfu98PL#yp~*pgG>{P2?_It?_H6F1$(5Cyb|E_#lX%`+RsX&yJ0{oR{Fya!dGE8|{f~3DE;BcdylQ zi;UV`D=o(ty%aQsJxz*TiRtzz=F)U^V7j)N{#hzNF&_>QeL>`)nLedv`p(x($y@9t zm+>ZpFp2(gD(|}0-jjVygrZIUvfAVWL+vAmOBHDXm}NT0j|j2i7$KB9>h~0u(!TU zgK6nCJM2j;ohX6kDiZ+O_&UoPX|M#}X;0&y$2w-RDWueuSZkt}_u+@^xt_MSEpTu! zZMA&3r^r}OxzjWiUVD9KLGlu_jxMwJ@+HFtd zcXgTR^8T4)`xB~M@~JI@{Y}+`&v@&<6GLl(eESpjuBHP-Up!&2xLia33{t~$I=5o* z!))jl>6Vy1Z`ACJjM;Nf+9$CTL1YYVR}!;H>Da=xGhA8iYVNGFe-Ussh>)|f!9*BF zU}?H)+hQBhYMA0@?ISMJFnUos*LJ{gP(*}c09FeCZOd*$cLzW4q&>Cfm)HXRdI{1U z=|+cDm;QpiM1w10mhZKvvWEyytjPVeB2V~M%#)wR`VwwQZXlR%rBe?<3 zdENd1%OeHQfN9O0eOMuZq5*+S8j#Xou>rHCE_#Cu)3{l?9LCMPZ`uFWuH(f;7C6!j>>;J%e26!@B2G?weth$LK}8b zVJy~|#Q_T7S%R(HcG)Wz4l9?*eC1~&Ze=lwv3x@b-lf;X+r6C$LcFx00|H*d>CJi* z1T5H$y9od*UX{_KfJ(gG>qp_r$S&OS!Um)rf_d#H_EvHcObW?G@Wl*~dl(*p?`nv% zD3#-cbX@#a^6QSlDUC=0pbpcBe&QVsT*S;KK)e}i)|ks$6nG5R(0FZp7Udh2-Imuj zYB+}7LZBke7;>WkU`_~Zusbck8~=V~;7jaoLWk!XHv(3?GO&>#ya$Wnoz=K6U~2LN zLE_d(SlEy*S{KsKy#PKGFE3XLN@M*fwmO?F696<;pj?>?f#M)55lDAN-Xo%LagIA9 zKrDAgNGZ89vZg4gz5aC<9(%wM&%Pyvu`m9L>UaTy;gF+?NypNs9sYI1gPT+u9^AA5 zqWD|u0_T`)2Td9>zw-(L!92K$a$^^HnbmSoC3WCP*1jtk#F(p~r{V>`Ro|{Vau^L={1_l%=e2^Q`My-%dlx5B_?#_#f?4*`uWX*t0#T03NAV*t3lm34jp3 zIlsCkKX=*=-|IVVAHiNya^!`pFLsq5VR`%vjCO|!7GGU^k>{MX573|MD!Vg3T2?;W zwZ87G0bg|v2D>I=6p<@{pr$l?f6g?F1w65g;U z_7{ZrzoJG)-xPA2vs?4#qA1EYUdIAKJnglhT$4ncFKu}(Xb{UGqHs_b^aEZG8f~H% zgLBS3 z!J=)dLaV#L1+sDP7>6JH~Gq8VNh0FxQg4+YI*#|fS46OR(8>JuqcSf*z6&_=u} zAvDEy4!m~$A(qB2kb)|7&QSaOjrM6wLI+Yce9a3X$!(R1jLWBpM0gFp$$LQ=jDR?r zAvSSTAUFU=hF7E&wBdZ4?#N{{La=uvEzr|Xi5?*C`;y{_ZeSnm95cl)>>M+@)z>+~ zw%lO9ndmF{&@W6&M)Ls;9Q#RH=x*{WNl!L(jAM%}MEZhma*laBLEsz{5HQCyzQeSMVAVtuNN}R*k+5<@gNf`3 zLMpm%eU~9&KS7`bKqv|C60DK{BpwMzvaXKg>q8xb*f)d}C7d!O{6Y{Y0T3V|f?sIt zNMW`t){9i5dTqhL*4Dz^34z!%iX_}T zVJ9krlZjG6jO}HR_=W9dP*(l>sP=At_EE!l$0$cjzYXc0D_R(hmKopLmX1LF=!0+* zUxyZsscbr_AhxS13gD^W%Kw$%b?gSkT`tR(X2~YAmLM?P0HFeUE5UlgEmsE;46;Sw z`u{74;D^P_`p*zj4Cp5f39#kq?LkliAe4j;2v$h|5|0E7V?V~JT$tr2jEzlaLN6nD zT$Xj=_m>ci5p3hbVjaDs7YYCk;E6;v3}D=A#xy$XuIdC@7e`O97H&u=Fn|d+kAFoK zFo5F)F$Qpg_=N$S(7pZuo&fhM4K5tVcMh#;D-QyMW!VGxkOW7C@7cY76C8Jk_EGA< z=!Ms^ zB3>~%usKibReDNF9F%tq?YV0)vE=_e5utNj@@f*j>$5&-WJ{oYoj5&(bO$dr0P@K;L8SgtS@T`d*u4Zn}@sr#gE%bV54|zW`WiRw{VF_l==iA4$seE-;?xNq7(JNtk#24WC%34f>>2APz43_^y7A!O^>fdbBIqr1X{N5OJ&P zbppi&c;jrx<(xHu?iSULXRlI@u;}K|*9IE=)873?Nn7C+ev63Gf!1@WTyxk zmQHE>(A!>i(a~@{X``g}!2aYn!o+4#4BAY+&a=8Cna-17HKqZ3*jJsOe^pvaAke+g_-U$De zm+_lo2G^=2SUru)2>+sptwMQh(%Zx@Y|`6!=>UhHW8QE)E{}IEazy*K>NQ2ss-Go> zz)A5_3g8jE^1jP&)wtM%^B0ZzR@aCizOCo1OAi-(K>pjWzxIr%!tvFfHdPxb*2m&PlLP>}tSd_4BR$?Adcmy1{u5?g@ z(!yh;%GY}OnH&f6w{Nt!k!w6+S)3umW4=dp(20I+luL(J{4|_rh zmZt)}pX`k!D5?_<0u_QWM$9<*$YIwY>*sF{pu6Io4vHt|d z{fGRDaZZO})2v`xR;U5C#zuY}L0}W~IAH}rpc(=paxsU8IeV~;1gly@MIqu0S5^JEdYpW(e^(e2$T#6 zjDW8x;y)tbOM}s$lwMRC5Euas`&uHvQzDWeP_!uFjevF(d#MQUuL^n2$A}$pHzzrk7W7X?uVWEexs)&FU1c4FYDY20tJbq9Su!CS#1VC9M0^*iA zYS=zPgwB7yuXO%91c8+YM741Krv!mQ0fEjxO%ea${O=4#T0iAuWCRFweiMQ~(Vh}* z2*O*!>-=Pjy_EAkEc??!!ss3)iU`7_#7Kf5N_1mWDdJMj2Qlb;k5zA=g@qo%s>1ne z2?Cw(DY2CxJbqBl-$}5_`A`-oW-EH(Eu&F>rXH2I^$Ot2KdI`#&jdJ!vbPBzSh!E- zeeQ4+)Hj~J-jC-@b{0nZXDe5uvq7}@gyuoMe3heJqaT4k=C%06Rza=#8><|N(V&5O z9ygcH1>l5>JeKzhQ4O;ycr5Q90>!KfkjbM@lpYouMSStb;>$VV>X~3A^ZwJEf$Rbi zh$*dqKCfz|vB>@^x>37j)zu?dTLKl@>5=_;=?rI#iF|p8bBH+Jvfj~^Ws(B0?3LLA&W%V$#Fk@L=MkLzC z0j*kA`^xDrm(^4dE~|Ygt!Cq=tDO_r5~2ZwZE;&w&PZjEa*)c(c%o5i-5p<76~lef zq$pLiIJERCW%6O|kUmE2sXKxXNQt2dtddN$c=C?ADTT}`$a-f%1DSc^m zy2gUCRa6QYHd}T8AA7dyS_VJ7(`t(l<5MaZ|4T?6)O(P|IukBfhoo$NXo+(POCksh zd*dF|_StCGD8FWfs4IP~SxK~yGe|gayx=#iYtXx_lt@DZuUhV$&4v>wRvyTB`YqMV zP4q%LBB!aeFqO0XVaJnf0bv$?qjQ8lFIzNB`1Iwop^bTV_n@Yc)rv#~NPoWS6S%GJ zi`%Nx+u{pjm^f1PGVUS;dGbqLhk67(U$^y-D!4Iyv*IUDpNWGgw)>$H<$qPRXFCX5 zohP^#)sp8e^xABBPL6gMcos#;H*OIHS^Vw4tGbzlS{!GP)?|xRO?Uh}SlcKg!9?su z>b{|(a1lF7^u+wxhXR0RxUHAGU-<3aj?dXogbq)goXwV}PRpGLJIt=+i3QwW6vgUm-L9{o#(-6(PN zuQQP;j{a#$L|peAdGe2l<9PBChp_(FKzjlpfM(CyK|f^Y8*jL zOh7!zV>0k_j@~8;Y{cri$n8`^=*CR6BCA^Sq@|Xso89wYWkJ1;CT0-wE*^G6a-b%= zC;dD4UtAu2*Ivh;>?q-dA^HJ0Oq^%^fFM+e{^$wOGX$+d^m}6F-~WF?)VTOm2o)jf zBUFSaynP&V079r~u4)w+p^f?O1D*yE4VR*cv#I|Pp-L7;D9FSJ&CHb%nq_4V=WM;~ zv;DBQM5vd&5urYH!3Z6eD>j7o9VRXZYLCWBXv7#r>l&Gm0M zzGr(0KMc)h!BZkMpCt$tnn!Yt-t&Ee#?UM;pGc{C@;4$6ORXiZeb>>BwazmKy&jcEX3yPu$Nv-CMNeaZ6qyUUb3V`Tp zU-P~rgH5BliT;vOc>|LIRbVduud*1Kw492}r-dIakvZ=}$FJ;O!Vn{KOP-9(Ed-$= z^XWVzGM^!6Z>On0Nvy2DlviJHl7T%@2B(lJdQBgxIIthflLPy4B2%2t!t-y!To2Co?UXIOrkA_XYx>khL@1ntFFy_=Ks&3n z*nHI(^i)66ED=hiVT4j?-Uy{Yj8F=|2&DiFv!c93y;up=PJ}2W^M)t|st_IbUu7{w zX*q9*>UZVIySHIX$IGq1#+hu6{vk}i;A3z4doXtv2ZT2e{y1Y@Cjg!qEAIGy-luvh zdxX%z>Q!Ftz;+O*sEB-Nf>}t|S+2X!@x#7Al-&=QlYl2MV#Xj7?2$hTRPV8aYjvHrM z0hk3h&UEn$H_r5e`ZmrceCv4FcayB_I~YA#Yf;{_$s>+WL@9tr?Ehku>|54FF_zn7 zsRg(_rgtikyQ9&k9TSD3DX6GkQJF?g?0>><&y+CG3ClLf@=Kz6O(rYQ=KeD8A z4Mr;|JtPLTxk7RjKXEEBhHWND6z?hZ5J8}LK&UkN(-eEDOsR+Eo3xNsk)s4@Qsirb zAc}NjKU2gdvZYYxwZAx=y2rSU?Ib!xvQ!vXBuk?S0+Xel5}gRb;|`T9?Ln~KWGT3~ z;&(XN4RLUOl;Z|gN{BE7ig@+k;E3|jpcpomAVvMPBEI%th>sZrj&h6aG7OedMEzj^ zw{jt$J1My^{vshfi)|-xlxxsGPT(kak)8N|FU4NM{~isF&@x1WF9@7!aGJo02Hn_S z6mbd1>!7wslY7h=;V?TM;BmS$izN`a@VkdTgTOuJS8nf5uwJ+8;33=~fmsFlvXH@md1K z%;7^0nHi_#A~SA#1=OB)vMPfeBt>A9oS?ttP$Q)6Fp#Z1mI*I*3o_%yE0G;<_MiaJ z>^O*8yTQ?snM8R{oqY?8@YLD&W_d<>{A(22k>AtA8C~;N_olkAs`ucTKUsM2jLHI= z7f1V0TFoajO18CWVMA-TzK$Yj0c|ejt%RlH;d{Ff=bF$A2JDtUHj& z#1ANK|Y%{3gd$gd53mkmr*ePf`3xay-jr zB*%LYv|2o7qFP3BJl7?s)U?0AFVWtZJINJ?>`d|#C+u9GJ3B|E~EDmvAB$Wo>*RcgU6-8!i0## z{CGVATkB9)Og^53I*au9DJ%CcDEHI8+;JK0TOBYGrpJBif{C66Zkgx_a;xCRy4c)m z*nxXlcK5N=1((r&rQtG~O7kwGDG-;@6oAWU3czOEJ=2-Ux>DuDGMbWkm(dicdf0;h zDvQf#S`OmfIIFwFC702Q;D3=Cugh|N%PI*o4A4n#8K9F0LIvm&w-KPr2wDZ`b;QK_ z3b)Mika+QI-zX~^DPAE}WO;m~VtC%`mf?9n5sEI|M&xO`d|irJ9)H3x3kgCo3we+q z=?$y-*R9-Nq1@l|H&uGFQ``-});OT!=s%JK#Q>mVr1S%>bQ#};wN%d$q^JN9j_Uu+t0>i!PvD7YF zq3Tfdb%nme5@vc-__dQ0KPm?^Jrtl!F|80YJ#g*DZih2h)EpB%WKa@`p5jQdw(yQp zFa}|!=MAAYW_sQfzcADDW?_Aqo^3AYJwBNpexuv@J3B?{kEfx(PymnA|4pLjPsLa! zdVU4N!Z~RDLLo`?G#x-s}Pa7Z) z!-4-X!PAluVS*=u*N%YXLPr9}sz*TPM|i#)L7+@PpywSF@gJVgGZ>Ae^rE_eK+jJl z2o&upaScJB)ghBz;qm-U6nQDndpK^Qg{Te>5`;;IrwBsnki}l6@Jo1J%j4zaoKD?i z($8pFp@lH1aQqJhfsO}6Mx`Swn7};-dWY zI+f=OX@aK%VRfkl5A3*PPj(K7^v_kEgFIH~IS1KliZe094(yFj1vKN^UCw5_Vv4g{ zH0WSX_#7v_7$$u10=R)hIlKUFC;{MV4k%=Jbd~_nR1aL6Hw&i8 zCQ05*Pc87lOwSW$aYm+R7nS*fFsL`p<143F9)zTVz}&^rK9p9=$u!SVq5-CPR5>Hf zL&|y5JipF{gQM&`DT-N!)5ZMEW=A$VO%NC*wt=d7cqs7@B&8HuH&fD$)WUbgGR5+7Fb6AlnlJYSWtlP#d7c^N*C$qK%Q^i5vJI+SGwI z10dH#*o*v;KG4YRj3x*Rdn30q{J+@C%Jy6A%+lB`gcSz%4gB3D&ZX=I0=I}T@;ghV zh$z4IgiyoNk3L=?F+dVLj}mFv=rF;vhd_mHHXxG;9!f8?BQa_uc&Hpq@Vrl$VS?w- zKx=~MEk&Xtqu6hPN7c(n@PIs@1kcZkA4%~13zfjrk5`qbSXS%CzfmnC!4q5}XVSEn zzyyzyZ)9yimQ3(ap%%v(q~`{b1kWrZ!9(mt>W&GXE<{gUV5A8EE-=o+L{ubr?z!Fh z5i25exPEq($n~>}Ak_M~qQqD~k0)qlhp{E9yVPe$JA@KDc-GI#5=M$gNEPd6AE~&0 zzNtj6pKl>Tas7M)mAAG;9%LZ$B5PKX>a~`sady9(u#E&>!L;DqnYiKIYyN0GfTtia;uAwOa8?s38@Y~lp z#jEF{4V&EJT{+WY*t3R~sVF`2*kOO*s+)JBOjFHY9%tSGl@IDWL*d^jLXzg z8JDR9q2khBYQ&|JpjBMvmy);~R4Vg2Bu+f3M`ck5=mFA603dFdi0E|ltz_?VoofA|;5uudU8=(}45qjaj zieZG(A}T_YOEE(E+J~Gy_?oM=U_HA;W;fC#EcWvf2JtKJJ{_c*0d~Fd0^sR-Rc@yj zp;Nh?ECLl3G44JkP)}}0FCHY1@stpxiunP9NX(BI#4F}p(n$|79{ zVg2>^L73RmQiL6H85xmec84q^yh9WWK$zWGEA+Jmx$(Slky>F{g3`Tn)5%edS90FR}7rA#R6wEEIQQz%4Rx zeb6d`ybTez&a3|v9#3SoXc=QpE`ES8vk$8-K8y*wHAI3XgS1 zm%{U^6_1oqcw~r2%f|4C5s#hW@Yo|B zbEDv~Ks;6~Z3)lS;_+~6c_av_38#cu!HSxRwL&_n0jX6XM&VO~pYLJP&hBWH?0TWM1VK z*_@w)7Cd@AGOU=x53CPQh7`^nPdG2KPet1{jtORznmMe*`Gk1* z_foMIKN7{pSxdmTK)i|#hc@G*m@K}KEw+|iNMv32Gv8PTihcJBk+soUVuL6#BI>%I z{fLnz7qUIpLbXK9z(089b0B8ipG3^N))H@FmEzm244gA--t6%c*H;ew!;eJCWFh;` zTK;Py@z=k3pS>Wl>R)N`fHI3?HNO2vXB)m|KRkqw;PCdqmz`~Fk7)rs=Xqym{?3a% zzhp7iV$q~n{});|=CQ9jo3^ZjKE}rZ?*Ncjq(7KogJF;tb=U~^+;uNZ=6hdt=Cl4@ z#y$CgpPWfGhi$EE-U$yb?xPUmmzck-oO1>D#e9|)S@+^Wr>^gz@J42?a!ezX=S5X{q`4+sh zJ4b<$C(j-{yS+ZGOs0=WA%6a(vzSOTF5dQ)cH)D+iMBh+AjP+2WJk8z%D>7L*j~F` zI(l1Xm(gX)NMSnTGg_WHYJ_`yH^$w$tISm}t|*54}Q=kKyRdHEw_g89>T&1oqN z9mm%+`lK;`^AqROa5?w#V^EnaqLJ6&@M(fCVZ&nCgs@;=i)RlO7Vl#F4ScqJN?BCR zx_+U&Jk^!J|H*TOU$L3BRQ}p=_-IcmQ4Fm-NC2pn;ltFT)`@)gXU<>PBtpOYbLT^P z)nL9j*X3ff3F1huYl1dY)vl>eJYB~tPB=5Ma?AV7znZ6iI`(p|ZtzBpHi0J(#a4E6!qjNM*e4dR$e=*Ij#wyUtB$8O3k^ z+v&dYYCX!gd=2T0M~OaItwYvoJtV#Kfbdcp-}R0219plO0$0WJ$G>&1*G~`T1>ZSK z*ja)_fBm4U=j*RO&|ms*&`USIx&`0%y)(b*W7hU~O8S7xMP+>mPe>m;Abp^{B^%VT z`yzw2C&lj!{3?;QTeNSdwiBCq&CMIy%TE%~t`%Yx*ZYr^$s4v0CAA9Vx1JcAz#qS- zS12zjbVc$%PCLu|_P&o_dG9-xr++mzkcZq7mdXpxI-g)ALsZuTk<*FqUl-D=cz}Wm zqu~($zmh(ZjaA$^%3M>{pjV_HnU!OP;9bW&{pIP`uz92yOi0S~>LKy~#f%~H07dyv z&LQj$E7fg^3a`qpM^4;#g`@cMT6r`4Nb{ZBQegM}ng&5(l@-8nWgw0%>n}dP0xfwj@ms1p5_O zO-`KF!h01J#J8B7q=wFWoxQ8T{t6p&4WGhwX@58qHFlho#@075p??EDFy6IA|9S{N z8}Ay*z9l5!w+Z@JLok!n+^4&|Fa$nm_<64`HZTJBbT5U?R81Pl6GO*`@B_`=Ic2p2pj4(n4Dtm-#@8+NT`5fgK|O)z}`jO>VKU{8cViPA3i#xz20#sW{N{PDl9a^ zBUi`q!&Ab-c>2Y8f&8^yv-0%3p*-e0S3E0Fgd$KgdHV5&85+D9ue;j#pLYx#D$;4) zG%$>FP&*!*AJ{~Lie{Jq7|LUtxe6I42;n;IPH!cAy|;a+^q%${AKlzFtf}&j zA@g>g)5w)(l7=0p58?(Rt@;?NB&B7qPRw9ye6(HB5W_zL2_~ zLtG6s_N#>}$6&f(1k(kD^&d=)hsj_H8>S-I8%%o0Fwuls^E-mOx2FSvNAu^^k6> z1r6g~PK58jkz(jM{QjG)nD5N$1?eu{rnM`P1iEnn{Udy6YZu&iN?3v$O4xe@;Pn7x zmlsC6x`hyG2zRmU4Ez3?c=naGj97NsfS6x5`kEv^rE1$ir}nGAQXna%t*fU=FVUn) z(=#ftLlrlg-nq7}he8?;_eQs&V)n+?DJ)Wf)yf!BR)w*y@r;y_3uDz(n;Y*A`v~h9 z=lY7J60YX43T~@D6Ymdit%fF0$OkDu@AD$^UncL&A!U*ILEYPv!< z(2fwHz*ry>=MTFO1eOK_oHI1O+>}kQ*n6BP)pNC2UeVn(K=9xFaZzN=m?k6Ha5G_< zKG@(tnIMoqAQb<31grQD_VUMC&bMDv%2t^v%k&k7fV&9-1popMO1|%auIv$lRRUI+ z1sv`&c`SR`Oj)MyGXxwV2owMaRf8`G76sInhUIzLqc4vgn4iynH`A5rKO5`=M_Swm z2-LsR%k$$|bAna+|LhfjE01~tuill%>kwByD-Xg1S03Ho~6Q4N`GAF5lNR+^ceqAo~M`Z*q*4=u^NbF912fi^Q`MII4 zt~QX*F-a1d@4AvCiE7g!x^pCd;iR*ZNlP4`s)Ty9dId^fsNR{P>)3JyAxnoP0*aj( zw0#)$AJXq0DGxbpA@pLn7s*C_bA7dbXe1sk(sM`hZOkpF{CdquoSw0Dgp~-3ngwa? z_0=Qgps)nwiB~@s;orum1&I2>z4<&lFDy8c`i!WJefLQr1N-hT#V_o;zZ@wy%W2=u zm%ll1GH+Js+U2LmZaBd8GW&~Yt9tC;6x7>eU%`h%JSi~vJnL{*EYIFrQNe;of#OEj zh=MU8;74#}qfxS-ZZgodoW+u2VBIo3dX(%@TZ|$JfgV<>Ohr}kTk!~1LI|MafW+7! zS2i0%pn^G^*55tIH9%`2{*$leN7kcZy$w19c=|MG!bGMLE{w!fLQ_F4TlDSX7yQXX zcFfCa(@6Y9L;h#tA(>3TeA-$;XIRynPt)$=Cx^I7**ye_&3e-)Y}UT1vNgdHH0sv`6dN@J3LdB#+j>|S zZ#>fVrtSa0e%t$J#j|fnQHZu4{M`Qd6#bN}zi+p89yn{+X96m-271uwdb-Vs(Rcz!@GlJ-&`0pc6OUH@H9dxQ z(mRiqi^;Un%D1AA!pwx8T%U}dN`^NtVFLktdAsnIrka5LlX!WH2FdJGQa^9sbrdRp ze}0bknrHt{IK}7bE?b;3iJz zjNrG7ca4ccjFCX|a4af=Lu}%7PElFi+KjRS%_bmm_D`^n>btM}_xcS&P#he6&BRF<3oyRodE-@hEuzo=_ z^-G2-`&|A&kt*p+OcB<3biZN-s2l)x)Ob< z*97)$$A0vso-)hzh%a^jD%UuEXf`xQG@4-hSCwmrFX6k@u5uPO#$;kaed}zO!hoW^ildJRZE2rPjLS>khphk7xvm6TpD_Wvc0-GJ*3ZmX-sAhQd@&C+{Hg}%; zCYhf&uZIf+B=gec-p5#>8k|#zh)C98sx%KehZDy-w~q457;3rny6hG3vst8+?7m)hk6_mj zD0W}7_=y#+z9wprQN+uePP&|Bk+Sb}!@e0~&G!8~EIGLD$Ca*5n)VQnS_LVqM~F^d z1MjHMz)yM%Jb1OM@^TG)IK8-$HkS9RENaW{CF0S%2L*sO<*kN!@2&&$x;1u;lt9z2 z_}y)1UlOP=t$u7QPyWN5&#$}FHPBQBr95TrFg`X6cDFKE&U+A;(6Utz_8jTKo>o0r zq`w~QsWEc0k`exz3Bmh-AVilh0IO|DU_j1&XgCh@AHfysJFxqQWVoE2NUS7Pxp zzt16Kpwj;zPza2`EcPc9d4-NHv954&2o=^}XH2jtF)U*gZ3*H?yx!YR=% z<-9cA-Yhy-AZUZ>EC5EAoxamGB9Z_+VI>@lr{A}1cg08kD@x$}`l9%S^XrS{a(=x_ z6v5o?Zl1BrHHFW-*EQc7(0zFFeXc6jqC!blQQcfYJ>pj`zoMw_%5T5lm99nd7w(66 z>8SXVsP-eZvO@)l>K>$+it5Y?8P#?x7NY{NDyqxOB=tnKF3OyPkJxSL-6V!hF_$r7 zL$Wnud%l^(H@3YTF}PQl$rVQo?u}NgsTvsEJIo}$!R?iY(fyp6T**_>U61K8x|>vx z=#CV;FuFewzr>%O=#H$A(cM8HXmp1Q0F7<}@PwCew2JO8MG1`VQ{op!_o)iM(ft7p z?7FbWUH5A2Zz2$b`ot6SdlxC7N9f8$mmkxmf4XzUv73>MjZ@Y0cF_^P`--a!u3Phj zYk|h%NC}MN?6lYvZJbPVwH!y%Ts^InRk|%%?`9#zorqE^>9SUOvR-5%9rNwjo7q$= zDRP|%q+(Oz8Y>nV0aoSRZz3cI&bz1SfEBkN=pNBxcP8cO`qDP@$OeUe};CMP*J}k?Aka7s&HJxkt0J1d03)DgH;Yu8!ot zogF)ZH5{+}tEv$&URo>Cip6RG7Pk@3KH9$>Yez^>3}8hy;6C}o`(2w@UxG&gu`Ro& zXa@g6D-!wlME=G;(Qrb7`~hn+)Av7*UCd?^DwGoTd$3o^GAk0L%pA{`A1#RF`;vRd zuvLTvr2v*liR9_ekBR1M7N-}p2MMXN*nLKgp0Z+57GRa*UnV3d3$R311fTUfY^xn7 zR7%WIL(KP9?6!9si25oizY_|S0!2+yvi}}i#=<99+`r~9@R=aJA7e#gT|y`DlYiy+ zWt|BY1pvY%AS^n)oY@JLsz$CMq0EX!34lcj;|LZd0Ky{ycc=VzL*qCmvt5T>2~9$w z4XEt(+wveBDaB#(9k2gH#(;29M2-P#g!s^Lyz{Tl^fti)O#A&`NEawG*tkBeAv!~S z^X2;Vh4(HiA?N9a8}h>=;{w^8igz6(U|MVJ0R@p+sn}y$C$^J7L5E@+knzK*vrB#H zOWNh7uzeQ#P{9`Rct41|Tqci;`XQPZe&p(4DlV2S(f5mzXcgnA9#K)`h~OQBM$H>M z{juvCjeSg{oNNObw9oSUwySv}AS~b{V0gwO?o4)y(7f+DdNotZ7*`5>Jb~{$=34D5dBLZyHt=;L{;4aL1x^Q8VX@xD;G8D8}E0RC(nd@)XnP`NDdiQfzhk)(?5rz8LiSp$VN^TKjoTDOQHk21$$8IvS%IEuU)Ph5<7f{?e35HpPRyeutzOP)z zHMY%4y(UQy*6*Gu-?_h=U^7w*2f}gal5bo|>}djDyU;yRd*Z(=x_=_>fI#T&zrmf- zTv^mORs&Lam2*fmqvF7s$^7ECuD1HoiE>Zmm{sUU|0VP*DO6tr4Z=C7J&8Q8R6JT| z5?VdYooofbRrue#W}BefW1vMY{lR5t`XtpLum{UNs|A~Afn^lW{?WD91U)huIIJ1p zD1|jA94byjPKO!+3m-Y{N-;q(Y}Rxf)`@i>g+CyY)>X!OT(a=C z_Zx+o3PS|Ss~faU!uCCQ)m}~96;WO4POE$Moa>m*Mw_|j^QyP!FnApTzYR2;AVoas z)suMXH?RjVhaf~i>9Z!)(~m8lM1zUA)wp|LIEWG#icnGDuR-iiDnbl4!c{tuivyM> zauEfgr2J^O9w#?3hNnN6*Pt%;H`g5+dzdgoi|#M2Ol7+XRJbEVka@-i9(S}nk&hl5 z5awGt`@YIv>}5-78|LPI^4w`8)1;h@c4&f_P4o!g^@gH-xt+pgqh7 z|Lxji;%w<&TFCB>*g+0b<#X^sXR%UCZb zSlMC|%U@vg2~>oLF33f^Qu322?h^Ld@SQGb9?Ij)%=63i}Biq6-%J%Ot_p2sC;o`Px&@ryNFsm-U z^U5bRbx+sX6u!OC-I||m>UOfQDW(7~)lq6`U*u&r*V6Q397D^2V*m zgxIhP@d?LfH+nK@cHp3B_n+)}v&?*st*&m0Y;|=63;l>oKQx8MePfSjM+gE(n0El- zcc%R56dYk}u%zL;-w$a={FfnXBZP@IONHSWbDj$Ejxj)v&4-eU=3^?4qxJq+ceM$M zU19d86^Zxm- zM2;@#g-t0v_Jfnmltw=YWU?Qm^uT{6yVgvPoYDN05_>NKkiA!I-EXPx78+Y+W|7Yi zzo`e4E~Klpo4Gu6A)WcwqxUtadnVoO)U@qf>*Aimc9?k;hu#MO&zztIKa%cl!8iAC zH)aCvSzF-*Grp@kn>|CIXk0OC(eC3fbajt26~TEyVJ7URy-AAT*nsnj$2BBjF-B(H=Bxxo|LqPZqf`}r^-fpH{a%VNAlS2?oHa?qVmzaZ(r!* zwMtbnboIYe`4YRk8~c}t#2SCt1Nz)%W^!Ym24$}839~p_#-dJ^ROe5#I;(oQ*Xvy? zWvAZ1w>y>fFbgQwy7AX~yN9xF1dfs9CIF#05T5Vjj}~MT=k$Sz=o-T0dXObBbY# z`4cIMedF26diutHDoNkC>F(bBNpSa)wR+ufA{A+=zd`v5ssBYSj&CajO*>3e4iS~s z6Q;@7Pap_Y>mCHEYMsCb7P%)eTEtsxIJTNy3~i~Hl*CHAr`1#GVbkibbZ=Q{Q1Zw{ zck5unQ`DJQ#~_TECMPm?PZhaFpJCnTAV@zchxOh@6RoL(g=1SAyORhK)!vXjooUnL z__3Pcu-4n=6(;HrPU9zn?FsB*g2hq&0aea(Fxr4j4ndS2=SKUxO%LF240X3-pPEY+>mUOMBU%OrBLeVDrC%B5-m0_n zgavY6GZN-$e-J1J*7<4NG0Hu`M2=$ubn#sno37#zmt8O3Q{Km>%NFt&!9r3cnb!^oXs5lx z&rNkFv4aGO4dkWi^-OyYPgf0O?ZEO*q_q!`%7Q?QT`CY`mjFBysW+y%^ECE7k&edh zIRirU0)e8jzn{*3p8<0XN-m5|rd%$M3SMJ_BrT^^v%2V6Zf0YRXLu1Zx!~DIERpaKdck{)E#|rte5t3*b(itpb1B=%dG42d3B5|N z0T$kR;~8>xKoz%ivL&+4!862}?CyM9L91ZC_!@T*BlhO2uW>u|ho{qZQl0Bscd5n} zn?*t$Yh^N=`nIrJ3i2ky=pF0tS^`$Lz0q+`?|h=rT5U;1+!3NeRIYz0`_;`7vHm1Tj;*|W{upe7N3X9>-M22<#qM}g;6BJtxEYBH#^e=ZC z{_nK%ynrphhR6OgxF_327~-7lZW#f-Im<_8k~tYH(xdpfh8bz3`x|XUf(kb1{`xk` zC^e~rb-`VQ{Y13Cy1@7AU89=%6vhaDClwHwJ1dDOqXclQXf_&S^0LG8p=x)s@Ee16OY`+r*7Ye}85-CEKU}jltB17MP zyxv`Af@0xe8{DbLaW8ze2-^QAS=2RY0_Wj%sPZIMBH?jCPqi-K`i zaJZR)Sq>IPPtYo(Czh=(421ixs`K4Baw3t+`)+dI&X$<@8GcweOZs6U!J;455CFOj zcT9jB`xibiq@>R>Fuy^}i>3H^;S%$F(dQ3n)d!YFCSZ(l()%x$V@Rct1CoLrQpnjc& z9k%aDb=VJj*xgMGdiX}y1yBku>tJUn0};39mcS0v53}U!pvPu;b;R4EGpa06j{CH! z0!nnuto#06_u~P~ZKcMo7JHR+otQsZe$DOAR@B!DlVMg0)NckOidG8I==>c<*2^aBHvNs>)g~dTW6(jwcH+v5=(L?;xxv=4qTvb-i zg`4wH_mmg&pz~iw^UhDWTWW#a@dPx?hSe(4pm%D=+iodOVND3s+q$)eyyG6|2x$>z zk~mUCm_%<_Ehn**TqsM{4s&Jv1XRmOY}ixoa7Hwj^Vj}WvW=uxdD{qnGme~X;2Gbz zizDelBGORsMZ`Okg9O}dN|-zly{uzg?+69-Xi#}; zwR}}N;(7NSY^x#=Zw@BaY>Z3Ms^u|KUQLdX)>#PQPNJzklz58tkPoFeMf#S7DV|&V z#!8B(NKXN&IC%Ms54M3#h{R)Sw%IB+@z@%a!eeWoH6B~@V|-C{b!_c+VDEEmjg*qd z)~bP>=U{%AC?b!oWeD-N^QkYnd$hS#KQA8H zfnvS;Y<_Zus}G~(&^C(r4=sjX&ig@dzDs+fkRVU|P*E_MHctHPo-I%O?6Jywygqq*QJ$UwcyZXrk3czTq4IFjVgW?)|3}+< z2WC+;kK^1WAY?C)LJ}YeB=i~x(rZE|&vW-Y0YZ@)=>e1|MSAa{3Ry)u2nYxXEm8%M zR|FMMQ2{{^>uUi-U-h;9W@qntZtlsG_ro{g_YXXo-6=aevokxlw`cr0syU<3%%^FO`|qbTu%TG_$}`W%eC28QUwpc@!+Wp`E%q#^gT9uB+W*tk{-1;uYQOBW zQu~n_KFavvgOu;tU_uMSP{_3)raUVxaUf|#^O))GRGNpRX(0g!fYbBMA1PIdV$36Z1A(uo08_r03cpC1c(>Zn9rZ}NqaJ+# zQM~ylDFba(QI7`*Rn%iXylq!gD%kKW)9UxEOzBa6U|j{{X>6I{d3I zS4@Y0epZJ1JI~5c4>Dpp+=8+b8b%qL3MiE^Z$@ngoaJ@-_7+Jba}X%*Bto)Fgxa9! zP=m)whZ;({qvfQJD_}W;Ef0*)^rskWbuo`%QohUYq&RIXtz>T=4VqF-QKgGg#%~pMrvNM04HS61yOY93W7%R`ZWkEezPS%S>%CkoB(r@$(=Zn5e znaUnm)XAG>et2g5G)`t#+rLlQ%}R}jfm(|-yfOu^uE2Td+#gb$sxqFWR`I?)#k)NA zewbJ__w6Un@x!xa4@G$2B#H+stQSl5?TLAnK3?Wk1ASZZeE?{M_ZnKVF{Bj}D`>#P z$|EzrF*Bd^5_uzzPMvLXSnb=2lFsJ$9;6IlTSy}^04xs!%-jl4t(Cd`0yB~?b0b(X zbGtsy%G^Q)ip<acTc)TppyR{S?;Ex1;;YcqTrf_D{!X)|)iq zGCp>KT*jXv4Y-UyB?p@S8SvBz@@d7T@%;3hlsaUL!E%?{dx8w;lotkcAAngqr%<#c zJe0kb$|II}+6|Za`XwAIZBT2aPMaVT#%}Qc3}?N(C675CQ`zfwl4jxVn5mg#q!l&u zfvK4*qyaT^xggDaR-k6g)AGOzQyt0+HRA&?HAA7O89X2T7nMh7hIR`Lc67A?5D!mA zmzijpvhYn?H`HjW(vJ2vC>AZmF=-Z0kTJ=kOcB}jZi5cK$npG08Ao0A`2UGKD8%uK zFS0!9-0}a!U0YtS!L=|)JsSbb7+&)+hQM%m1%qV}y68^0eHb=Ty2&uo>XR~0pJ=Ac zGf5w`i>VU}*hws&h#rG$LvHrqYGK}0AzFHjU@J0a8(Z;wZxiL=$(RG6n|!`!>o1Nk z<2Mx#PL$tNJWP;b?P|pD?P=3MDM-ju6Xo&cOZ@e6j_Sm#Eg8{vDNnRr9{{X;FAk2h z4Fzow%horENN9ukkh@iIw9bz_<97eY_?Ze|p7;Jw3bUden`{&;Qy4svt_unLhZx6E z7V(_TFXXbIgmR^#BZh^NMvN3WBU)BhYVpj9j>@bKX%rTq)Zpng9eC+^{`|f%Pp#x= ztir09TBCcFvKiKbUr`!C=yTEtY%GNlI4B#h5kNO-1hhYB`YG1m-rrDxGEN=siBsnT zfT@djgxkg}%a-Es%S1vISAcxTH!Axm41@5Z{}T@%zffx434^l(LZR}~aahd7(+br! zLGFFpOptq@mJ{Uu>^Na$1;`@;Y6eJo*&RNv`1m=wKf6ki#1vlnA5(b8nnJjPPPr_) zc46;Q5@LG94ox{PCC3}Kk38p<6nAMMlYA@=cWJ=_N+mUSY1Mpt<1Q_pKym%WT^fao zAO^QP&#LRF#afcyxK=ftRKQx*agr^%le{Eenki+0+cXNWJiRaFD54GRh63X@jY1I_ zw`pVkPh{MtQDm>ps1+wk`v{)o)jF2JNkS#}Xf(Ygs>eOrCLsat(Kd@;xJTPODgPdA zRzpXXpo_54$|^BzerTcRx0`W)$8UBDXxAeOSgD@Q6X&y{Ej9m;AV+lM)~R zc=g^c!DR>htd&HYn;53PmCOJ-{UK1sGWJ6z2y_Mn?ib2#wVb} z@4B|fOZl!7D6|XP&q^=+RuwPhyV=Q6iqB}~D66dDtD8A4sCU5(nmej#_X#t8Il5~+ zpOjO+q4t{%43cqo&A=e_{v@8%!qMFi)~ObbhFZ{MpYeFH^p=jnb}Xf1S3UfD!G>-G zen2a2T61*=#cT+a{^dt08Gy|*ll#==J6buO_iPI*!=E=cFz#;cs26Nwz(Yrj ze}aF}+7YAF<4PMx1)t_)&!s=3yqEV<8?e^uh8VS5{L@YR(?k5zQ~c9g{PTqPr{Cm2 z{#pAzUCDsWT|x3>vEsz=v1JF>iL}XJu6o~3;-``vgQ7kmGXfNGMHC9aODn&hWL{b+ zAi{GRjuLD~z&~Ek5fI`zqAdd%))T*KP8L==g2z2IzA2y7!Ql*80WvGumzu~Y%}Y^E z{5WN$fXAU}W%ZcEl0qo3>4nm!Z*+8YV0#5MwCSCER(FTIXL7d%6u;10zk_FL7 zHb(W@WS*JQDT#-?GOiH&eN)a}8sR+|FJttpkmE&FNY}ivPDcwx4VWUYa}@u>b&h;v zzuFzdm$r)MO*R~*l)ze3pg^GYfwZU&{PI{q@>34^GJg#ivqQej&rij~g{qCG$O{d3 zxE)!A^Iw>)uKZN0qp?zj|0mT^Ppe`vp3KD>6V^pQ=!C`b+ua@QlvsYbo8x8H&qBZn z4*SD*g8N{9HFgT#n5R?_qktO`;R{|uA=V{u#YBU=#!~$gm^X(@z3%bKL6LNpOzY41 zV{#sR1tCDOPa%E*;k%xWlWZFi3lwNRE#727g_P(=h5rJAX+~XnQo5rOkN#Q@=Rfy$ zq_6`P7mmE~HaI`LGxkrB)y&WOI99Q@2^zSHSI#ghpz)aK7SO2Ydcj)o{LafTLvK zAt1`NKPy$zD55Z;c=aV9DIW2zI6EPTud8&m6u&j*PFdb|pd%Pq)~4#Q1i&;~<-F!BGtH6{O<) zUj3lr%0hl`1f)CDdHg)^R`HS@VfL6zD)KR#G}7?}d&y4Jh_!?)l@D(+eqn4MLCIX@ zFtj}afH4|e1V1hoJ=y_v_w%G9=*=v){c9@LSG0dwtq_jWQsVi&HqIFS!urwC>dmQq zV-~Eex2!(GIfp8r^3BiKR@Hw`m3x&sQ@K0I2`^M^7#$vNjlq1bBzQt`#Sc%|%a`Kg zH;#@CP^Sg*H5*6AvA}7Tl?tY6v1zzblFNAMX|j+5=FfL;8ePRNGu&#E0rJo+M--1s z4=Bs>LAPW&UbYJcPS}MvNDC;goDsuqr=FUMHB7#-+t}iHQO`QQQdnCeq@~-I)1+=& zTCJ$tu4?yb9N+UvvszH2YAPMvKsh+24!=FYQG*OEO4@>;FN#!zK2M(LaI^7*EQ%ve zI0isBemSXR1&#DK=NezKUo=g=WWR)9gU02DBo7Y?fn=Mw`Td z(pa3;*^-cveo{?s<~aJ=u|eQgywZ{2GCZm2V_{LnEjkuc@T*q?YB%AoxsC?0J1N{; zzQaAk*+9r}jjqOqKPaCoP5?m#%>V;90t? zNB7gF%hJ#c(jS+CDX_%CyY6x+STx;mbBR)jU6w+Iv#nVK2_B|4e5{a;!%fV7uLR@A8@U>U4-?&1-z-*aVa9}#aFeYF zDDSl>T~6&kgQu=Zt;qTlIw<%rs~!C`0>zxa3r{+lQ38}HJ~yFuoq@&$x6&kLJKAX^ z=0h4*%FrWdV&)Z|-_CYa3!DV}cw&i;H6sLLEPQPjzp(JNeFhf3G;~P32zU2no*r#f zR^H|>amRotY>>H~*JqEz!icr5<9Vqsh+3Bbtb8T-o7VdT;XUG?u_DBefq%xEADpO} zAsQE9!@}|2?@nN6++4iPUtjB}8}K&JQYMv4F7#fiS7rNN1y;(JMB0i8v5+WZ_*ATB z1;E&N-1X<2{Mb523+;{&8%KHrl;SC5-6BwE$K6Usq4%QPQ^;c3Cmg~2{CdYl!yktw zh30@s^p}pddCfOECaRh;lMYIh#%^qOw9!i0z~0iBGE?SL`LPB~g(Dqjwm{h|+Apf2 z@UdIr;1T?{4ax`Deb5KaAbw-3qYOW_)zN}KvE31*nyST`nhmF$*0un`c`+|L+9>vs zVEi4h%2`=UrC6D}Qgomiu*1>A-d{x2*kYn9-OW(V%kKzd*<;j9S@zJzP}-Y+aOvvE znX=?D;}xy2B@dVz-tQGhY0bu6e1yWUB^)iPB@Ez8_rr{An%TE(-W$6dSpn**nX&>R z{ukeMxcM!-H`zDOQ7W(AK1WGKd5t&8akSQs($QyLazCjao++31oU)VPt2Z-c-Qz~h z1jgI^+fk0s&2<8WN>prTQ20tus6w?>}vG4Tln~9%UQ19JX@Nx2-jaRhHLC$9U)DHncuy!ja zA!!iW&I4^T1-`pG{54p3s?Q=rMMYPhMHJm&mQZxVfGePy<$Xp)@r!9jDL!aFXgn#{ z8P0DWaa1Ux+Lem@$WcdKts<2~C_Sv5fKZ=_=I&##btwlDuI!q?-K~0-ZNu4G`-BRC3j2^M>~msm_~G&sZ#jAtRc)8}`{x|Bv`dsV zs_kb1p=x_q4(7b6wi9EVnOe!QrnA-wd~LTq5KW0#yQ>ohj3N9NeYfx7s#3kXQH zoinl|<4Ny2J_<|*sd&9D&gxowDjzDk?QG)K`fPM-VVQ{+9ce{XaZBF$5-eveDN~{1 z@PPtCRou)RLSv9dxbS;>o!$Aq%a9d3OOa90S^J!ZHpK?^D*D;kd{jxjk{_%xA2>Q_ zOAExpU4@MohVz_KdNcmRWtk+1NUj2hO22mW;edVHKFPXhxs-zkK^(!ei}c9meypW9 zI`{538wT-ZA3LrEehvby8KBqDzOYFqLgy_y^*_p~4}=xH7~fp4EPO`y`QGM|e&VVl zwurW%ema}4y9UPaDHQ{aq1YTBW4LOL=_At^{!>El&r5#_#!yyt^`^rjb3FN&-c5_K zfxX61c8)X#8&>KK$3!imKm@b{8-isAZEjk25CDDntOiqJ?J`-0(2cS{LjZBm5Ny&Zw2&Er62xNlsX z*Wh!g3)yo#d@wTWj$@y;jS3ukBxSI%i9k#uS-Xmw`hB1sAY^&w7JYD}A4VDb=g21@ z)6lH|$--6O0JI9C_Tgj+JE& z0RiiP^BX)qwr>QZL}AL{xy2m$+~Q_)XWbBiA|F(go(sPY@v;AQw29p>pmdR2PpROm zX*mZRQ?#-I$7a-+BgWXk9-~&u^0D7Ln%j}&YOBM)^83&&6taafVI)KmOIWN>WH}{ z8cmohYhI=2%9Fp1M0ZrEdAm4p5JgkX#v!$$UfT}IZRd>Sk3BakEtqzM9ev-xIJ^;B zTTKOlZMJSFusNnj6#w#pBi;^1XU7fSc8V{Y-QE!exb(B5jvb8AtmZF{R@!S6Uu^Sn zFKX|NM6jMjMY~aj!DK0H~9(4+@Mr<7sfA1fTSUbLz zjn#WtA_-NTOYB4}wSHu&70&~9oh!><&F0G5YU89K zw9~J3j^N@Gyvo;-(zp32eMu=juu%#CskrzUu6?wrdiU;HCMA^K3znOwKr^B&*&o=7 zFL=Yeh;w)vUDB{F8A;b+GDCO}ufcqPU_CNX{K9%<;(S?;ydlbNSdY9lLw>kBJIJ}k zPduH$oIAA?f$v$?F`jlJ5NN})-HxKhQ#fQ0?3|_bA+%*s^}{Wr_k6CDF)H#QrJcjI zrzwgEs_H0cZVsOT8b03}P#f_#$~Y6X1^N2UvHIeffCAXTnSd2#`T{l$skzsRm(?hO zJPVLKpTtywBV+18@vATI73ORi+gtpmF}1w_c(jZ$)!O|ZrER#iEj_t+;dlS2=?Z3` z%pm(%a!>Z@Ncm)zdc_@%%3SUjF|TY#N#sf zi1hD4!QTXwS!f2#(1pYgtbiH3kmx#kq5L#FI0Ht^QVV6oEJbm>5mSA9AwGWP&e|ko zCQ^cJ7ka%5AH4!WjF|-x>?H|meJDTl*)&RZu$^iEP?NFFMiygTaY_keoeEkP*=LXbDf`1cfY2IenpPcZKoI-C=v4Gmgc;NvY&7J4WzYO`ILH z8nh?!t+EJD#l83XSH7)HLpOA%z? z%>`285FT!31&$27nS%EPUZI7vS?oChrGfVV)er_=EGJK-@?y+AIjCvjV=hj4MQt3R ziqSTU0A#dXBp|qSz&}iea?Db0n;(dTfz6worvT+d9i= zCukqx!padjz2Y)8~WFET%Zn#)%rKFJEtt4l4^|M91 zWU@0}yG@&s(+yuv-+4L3wsThV%Lzk>jT43t8w5f?re=e97j9*f;Mt6a-2H$FBeX(d z%wiap$IelU0|BnPUS79FL6y zj>iVELZS_fA@K<+f)x^N9j%aP16v_+^urRtkZ2>~)vOw^Scb&)rdrb+&Sr|Xl9EQX zE;ZGxZHMEOV z4okPT-bf_Q?d+x5z^Gfy;%+}Ik-n+UP&*MUzPy;~tg1brM6mc`s>*ic!$G7HY zu{Ae%J>gp61?|*Duuh0oH|y1+rzCCv|B0qsUQ8q7t3f^lp8Se zd^rk5kU7d3AmzzXLIsY@QRWE#H^4#0IFn+p2{27k&Qh&nl7bI!7g3?Dm42lS?5R1b zi?ZZ%8yglZA5K2=X=mX}?p?UYbV_UU31`f2atJ`?H!$huVgq)A`OV5q=Sl4X?T8`d ztt=Ut-=ZxTLOz3mz$Mq(ZCi^7Avdzf!t@=?Jft-0oGclcUlHADP6He;gxEM>2(dw| z5Ml#cA*9q&AnY|^p>J`9l2Pf9#^>XmJvAE*oU?&t!NACw8v7Z)1I~#kt%lMsZ*RSWtKQ-X+bL0(&JL`y?bMT5m>R%42=He!KB#>0Aaz%kOjw#xc9^g<77$EWU=6VnmhQ`B z!jeW2FkwkuM%IOa%e+R635&i=CM;bk8YV2AmdS*r@iLjPfJEXV0xgU7M2QypNYscg zf3aWjyl0j=dnwvx+FcxV)Yel7DqUPdUr9{v+^5g%p%9&xuw_?{H6#st- zF?6*v-A+UpSoU}EB@}bk7Rgytc1fFZKi<>6CS#^qZ8@=Jqr2m^+XndTEh8q75NieH#% z_Fe8j(;UG&ZFJ7?lWA(3oVT=bbX=HejwKM2Z&r3uGtI8N_!cO6%^|d9YUzht#_Z)X zwfuRDbHDZ?MZw%|&2pJ3u3Sz^Ub*?Yy=v>0F9Ur$AHrE1f|-Hdrrj`sykT|A{aBCW zCwDmeXus2LDCIBEO=O^ttpFu@(gY*`EpQKUBu{t+Hlh)<88gsd_~tzjdEHHvP}MWU zYP+2CwFKG~dDLDZd9<>uSK-pqFT z3VA>(KNg;rd!axqENR)WFx25`xqu;fG*{3~pw zOi9CN3&y_MD`o7fYikktS4}?aB&2s%^|HxI8PcCyfvJ9&CAIlnDvW0yb4F`6CYXcS zAQ;`SSY!jE`tZ474=Rckoov04$X@Z>&;|w~=5xbg4@>0r6V4HKB32GnMyQ~js;!je z%?Br)9TjZ}rHtBLU}|>(Z9(mBG_||g)*`gK-dDT33)HTe;=*$>pPoz~2 zXtpYlZ+arFn${v8w)-SD+ zHXt9jCn&cOgxi$Me$QDiU?z|c9gtQ-o1KsRbV@#pkWUzxR=Ysm z!I7Qso0d>LOmZs4mEt=Fro{(r15OtPrd8Fp=i{`6a>^l`z8sWRgRCo_S(27-(;8a7 z4dS(Y8x$@7Jt~1^`L>R7MG@!2Y+#S&7w7OYSa3ewiTjGPqaS={9lg31_&o8H{P>`nC_dyPXSf|dbajeDi=?RkOA}o`b|%^JLH;zY zCdK#5x*UFYDj#Y*7hkQ?TKsQ(9J+oL>hv~^SUG_6A@D0z*2~-Rape*B)7#b^o>M=q zcwWkN=O9JPq;zpnAM?BnnPX@Rt_+uI^ex4E-f&h|=J9DaoOQGXw2N4UlsRyTn=N*( zd>&UKJ-Bf1c-QcbsvWvYMDYs`xM8F|*Yk6_5PFS(Pk@o-sc! zOGGyDaT&2e&;)lTv-*CsJCqw{<+lXH%F55Gf3KG1 zvSMp|3|Re>PE^nukMU;y1Sf5O0}ou@S??T2NuE);^3gk>@t7;SFQ8fkM+QUvtH0X+4AZMhpQhvTt3vcah$?aoFW zOJz2QWmvN*Gt1j-y)DbKfq{r=S*stG$iIFE)AA(}&+*~G_J<{cPY-NFytbuu6q;(M zHd^DIJ$yJz_j~f#G2OCz=W)3#M_mrFSDMt? zk4t}QNYLtet7omAwz{Tt==?OWW^;sc7K8*-tl8KQz(JgRd2mD#YBn59EJS7 z1>t8t1pbZY`oetpY1*8JK!w}-d)QIEE4TXJY$a0p#hKs6<;-uREjaVX z&6z)GYY{oyQ9ASI3YvNIDHAZjnYS^(nYTeODB{y!8yNS)Ur`CrAO`)om@x{KF;#4b zZRltZSP1%!_WmC<&d2HF?KHeAj283)@f$P;8#9yvcXKwdH7A=nos)VzM=Mc0uVfYd zj-u74q;X>EydWp04sF4SY5#(B$&R)bv5!mUv+C=#2I_jD0Jk)+g90WvIW{IZIW~wj zIW{m(&KN3%<*l}kh`+X`UQx4wJ+osLD`q?_B`j9hDB&Dov0^19f^%f+h>~Ej!Ujfs zELLoN2>c)F=w0n20sJ)W(EmmSwVK6-{H(Fq@YesvN71p^kRKm|*VTu>NAtAdd(Bf+ z(Ch2%R9G?a&4!<|W$JzhQVnrd@K&~b(5<~lya3}&DFN}s8F=*GC~tP6{-L79)1H{T z$5IFm2$Odk7;U`qi_*rMQUnY;kH1L5PV$S?zH3=w$J|6y!d601q85)&4+z(2tGvei zZev)?dr_X2McaC#?0cK&k@<*JZ9yL&=@iPOrb>3nDYyP@y7%T=les_)hW`GzzP&p^>SFhS0b{kRc^#&|tEp$S) z1o6Zny1ZmP*aC`Q!i%%U7J38ay>6`(zt`(pIo@f1YC13fR{1cVv;m$NxVz{P{BQ@o zv*C|z;rDI)b`O03f2E_oizQg&!9nsBzdXxg1d#4uD0^}dS(~-;A~KfbO9ej(-ipsk zgDX>VZo~xf6~PgOn0P5DuVj?gY$D)oWEA3=it|O7iXJ-WcnjIJuKJUK>d>|F7BcZa z+(MRD(xo?36gY3`)|1&%GT_{My1aTFUdD0jEyK?Rf=!fqX6UdXPmf6-`PAwRzE<8u zHa1mX`~QA*iqOGEs6}7z2G0iOS$x-u?Wi8M%XhA33$3?PXRMXC=iKbBk7Xw3Rb0XxB_ z+@H6O;(IpeO?cleB}1~i>4n%hqT1BY*7AS#(d%lTS)!PF3wX)L#y^!Kx(Y}BpU`iy zDA7*5Uz%|dRHl}FNnXta9Ei@c*Yyp`TiRbQqbP0o`T=@NmP9xUwPnB4s)6znM)CZ% zmGY9jd`+lr#ZP^oEP}EEn!OarD}%GN!E2gY`D-ISVXI&c1^MR9*Y##RTO!p3(yqxQ)jB zwBDRWuJalX7wY1do~hG-r%v>@GRCd5tatPBzEONs_|?*U(^$P@Ar+^VUdP*Hz{aVx zC57qm4F!a1jtQaQfOEMrp=!x>(u}J;s}JL2(px{q2UTPxIQ;o6>tvC7G`dvUTbz}W z{PtA6oia5K7SMi*GKTM+pf_Sq6P_NMQ$`h_#Yseqo(mXD!$t0T2*2CvN-V#=vs@5w zkWrY+4rTBe&VwfDO|;>bP^M0o`08|sH8M3_>NGEQvTi7BqlNs4v2;$kpS*v-oH829)F%^ZJJKw1xVU%w@3BncT(OZ;Bg%McKZO-xdSJNYyH7azhc(v(z`Pk;Eo+{jicwMg< zBJkw1n_)tbR6ZkHZx?F_D0RT*loXz>#guxqUHA?%KP=ppvR-2@%|;Tk_kPr;u~`HF zO6tJzgN@S#6iY~8$xuStsjk}~ziF|7^!F@r>e>wjq>no{$nRSW+aSJgQI*GaC{aeu zhDn0Q(`*$Xg{%kFRhhCu7AmF#KT+nIf`2#V_$_*y^rZ|Vk}8i#jKzxEf;<*0J{P~R zSn>G=S*!>WO9Wo86b#$1^RD5%`v!fx-)-=|B5nCb^NYQ8#{b!@7w2upr6%zE8})1K zPcm{`NN(+)&{DU6-UaMYF(1a*Mi{ZV->}xM-}3X!2-+yuu6GV^W&GS*{o{C}O%UpP zyOGsDbu)yT-B56Pl(17dJ4$^?c2Q`js50{{MXyam1 zfIh9oBp9gB#RRXXqFC}F@K0d<;vulLng~R>np_dTf_dLPdehh-@tdwDzmN&#iLZ98 z$Oqkn$JZC1(D$?JqBGrc;s=#}78sPoC!`w|Sd!X@1VvK9fPiZQSPFXDPXYry?Sc4( zp7vlPdRip)G!Nd-8)SU%zfaGh@ts3_Z^e7$=)0M=2|81AJ+(?}VU)C>UKcr7B>x=9 z{}~8rNwfV>#fY}3lko0`XGVoh(nZFeEgr(BG^!QKPaWvml_e4aXjJt!$v|Ig6VDvc zAvLl9T9$dl0)>3$L9wKH1Z?s#j~Ia{&0~Q0CH|bhIwK?)N<|g<{V(psa_3<^Jhp;p zq?27-0HmJR;>m%$-G}vxiZ+D8tzGtL3oMdCLm9%Cy{1=Yq`TZ>PtV`6?-4!2P8avs zu}2GAelh3n-1*+YTDrw=Ej)gQZ_^A4Zp7AGP?^Ju;KtSpC>n4D9{Q%& z3T)!9g;eJQPwGKRkTA5N>a~K1e*;9}{pbLgR6eU#?XH44o}$c8edZ~>wpwg6kN>(; zWu|WSPOIebx8x9(uXw2OIr?-@a%*JIycj zC=?p@5fjhp4a2g9TxithML2!hDJc>B?sTDO`fP>lozXo&AGnk*= z(QA>xnBTYC%Im$W57M?;G|j;reOGV7&RbwPn5{hJJ-v;+yU$=u!VuT!U?7eq@_P#s zE5zg*wn3O+M8MC0I|P0^wZ&$csByT_2kyXR#1r{Fk)zQi#yk6)WaKEb1t1tXLc}kO z93fi@%F!a;hbTt&gEC%}{y@LUY6EFC%ga!2Q&1kws#*F44>F1eYb>J8&QntvGW}SG>$NCgD%(wkX*{*ilBGaTF zKha09>At-tTfHzH@iTrQhZS#H0EK+E58EQ6!(0n4mlAwnaIxmFLOw7U$i=jjv+>?bc;Hs&Uj*P?lC(1dic1n`2Ddu5 zVYHuiuFUR`{ul^OT@PrWfcoG|Y56PVKfwH6?A%b@y@hObu5XcBosS7AWQ|Mbhg;;* zc?KAYz0N88+uZBe#20=Sdiq)5917Dt8}FJZ}bCfC_zI}H=0vYxbe5D!|oqo5y-JR5GR@bf>CHEL7n$bcLcLn32k(avjpIE4)%tC zqH`Gh@?AYgy|q<-Z}W4~9aET_TMO`u??K@rg#lgg%o~FrSFdfAKJgJDVfn-dTcuCD z0csUK@jCu(`h-nt-2YoNJccRk1AU^}Hjo{CqPqBnK2d#JK|ZnlXMIaPpU7MOi>|>( zNd$&;wj3>5YBNdE4xP-`?S>ck)X@XXM+p+D@n^qa1*Ap{NmVbC_Y z1?jg<297}wy7XjIeS1CU(`(NkdNy0_+iL~%5+%tkqyhKH&;Yye2yXnP4`Df^73S3} zNkSLgDSPB_PpJb>6#v$Tv$siq6#1;l=3~-;Y@lJ*Cmkc#1R9mtm!#3+0zEujFaQ>y zFDn4LfeiI=+>cW%833DX^L288D4jg~W%%XhyHulbtS+F`$(vbX%Ka6G#}#w=z5wGL zR$d^QW`z!bLGa#arO^KEF`vgmWpOK#a6m6lAOK{E)xJ6cie3)3gm<+pJCjs~fBJWo zQEJzhrNcW2COUlQmkV(Cw3nsBgI=V=w|`kWd|N^SnPU)a^|EyMIxkCyuZe#*<(HOf zEQnxWE=ko%WJZ5qCOV_PFBiYi-4q}k-0lO z=ZWNFCZty2jY=C`Sf0hg^7#lqj57{rmoYZ5cS(QroVP*s;vToNFZ0ctpzc32#0ch3 zhZs%Rm%d$Z%dSCZp<(=!L)Qcq@$iGHzsP`ToDSQ|pb z>o4#n=-l2e`9>LB9CF+3mRB(;H6$GC*_(ai{Q3!4zH%EwkVIvW1it}Hy;_-;mT zKDN41f^%bJSw6ms@iY6@8X3R6%w@!WBLLKesSxr^U)vs~s|WnPJ&>nYPN>HIAQXhc zIG*YI)wFJLrf=-%v;)oxRC>y&%eufXkHK8-VGLF}@Y4x~`L@8!SL%kU-FC=x zeZSN-W*6chfY1X-S5Zmgl@g4mEQv5oPcV$Ip#ngsthJB;DmpvlVU@@08|&C4f&~+; zx6CTK!YV2gyqv^gAGPTYe*dLTUHHZ62|;{+qVXPF4?U})QHyOM+)+sze3i5ZmDDg` z@D8#1JR8M7>*a33Pu@-}%)u?M%GUCi8o?Z`CG1gUCw*1M=OD!cfx>p$#$g7xTB zcG1hprm}tCbSciCYi9hR{=S39xl$9@AA~*X>{nl%72he3MG2kFYBeE>hbY}k@tKiV ztMGyD)R3ZTPkpe1ztqxb&K?j+P<>H5eJt*t9Mlg|eR(rGxhp8Fj_74BrDAOfFXyZE znmgrDN5Jza15ccQ(^)4@Vg+sU#7TLn0&(IbimVErML7dF@X!}3SK#;olbH`5- zNxW;6I$)>x2y${vX8&G%c#B818!txrKe>@9&{G>aYZ|Y(+F5EJ+K-tchbv5d#Sd0zh5yF)0C_;0@d* z7p$(sjH9d_K?OA#VbgurxwaOn0*T3RNUPTGl*b}r)%FG{bq=n}=4VxB>=fJgWPXoV z4vHkf#2coj@0158mX9=+YqSH$Z>tW?Fg^-iY{>?xc7ylglh`T?B=#n?c+QCubrksg z!*I}V()iG5W4_hH!z^n{krLyPyy9G=BwzAcg>e4;HrFt=!(zcSw!T zQS&}&Kqbwrpw4;NSEXX?orBTQibCFc@GnD6Fw`q+cGVSR@vS1(S#|^v`-S; ztO4nXBG=`inNY83L*QNtN?opuH(D_#X%up(b$4UgQ_3)!4JGYJG+h#XmcWtdpev0{ zlCww?l1!&0BYDdk2`OwX>4bFQ76BpbP6D@th4)s4u!l(_QqHzhzBt)PVHZg!q| z`Q5J);@LpbF?3n#P^B+V-fUZLM}m&v!A&rV^jyheC>Ia;CIJ$JFZ&d7XO7E4X|?+v ze!6T*a_kf#1s#>!5^KAx8sIK;wgndD2AvQ1xlbW8L@9xmpHa@Y)oTSj5BfRvW^7Hi zhHwPSFv}AwrIN;0iwNZde=eF57!g5k7YM++3O|zVLZ3y(Z;EF3jf z@@ixmfr@%-53je>sK-7hqsAb7)7L7#--AIo+-4QUGA4n2KzK7c^R3GYoyMrw_VC>G zMs0SDh#~Tru)hU>+R4Y}M2MGbKHMWibBHl&8w-0CdRm*uqU|Nhyeczg;2<&>^)k4= zs8hguh(URg&l{Q&*c|xr#dkn=EeU5#0h_)`wiO*;MZGbiH?FTSMinxRQ6A@+*+w1q zIAMwzUoQcmnrdK#QwlF@># zCLB>kE2xS#NEP`tt+ruTyYn0C3T;{ne0M|WD~m{g`pWUu*CKNu^G$tKY#m*SFY7xh zkG)B7Mb;O--`6TnTeu!2U|j+{&YSYVjsX^0vo3K!{B}n9ar_J*E=m$f0l&W*$dv{4 zpkhk+dzU2j*H>jVVyCY#glNIb%Ns>Y^0Jp2A$fPV8rM~|(q6f`i2psS3*WTE_)kE` zy|9t%*rpomyw~zgoc{KEiHD@_&F>-KXy`v74a*fa zC|NSjj8#gi<1Bt?NKN*V0_l%?jq8CMfH}{6vVK*ziHLz(T}QRL%fD8iEZn+7bSdOi zUf_}Yjmqo=A_6M#xByTEt}zF+%2eRk@_hn%`2)r&c8TCVVlBRFF|}#&(%U_P_>Dux zcY(hGbDrMTRg?Wr#6T_nLbVvMFTZX6m}d-oBw7r(4<+C=#&x1Qiw>X&!>F#*%`;zP61Jc zUxzfV-%p!uVL=WmKAY0g1s1Z{0^<`tp7UKL28iN5I!16rYOnK0Hw81iBHCuaeX&{) z@B5~41>Pf1JZscoCy0Eg|07iYZ~3ucTwRy-cvP#aSP=pafjNXG*Q>zbhu0`k_g4jg zt_k~1+uCO;|C3&>A?yc&_K25*e_Q-)nv7f7Hi+LmZ(N2~%yTXn)mdbYCA!e062@n} zXWJXa<>X%vF1=%CzXBMW)?IndNl2>?kDH&0FWnt>>Wh2MFwZg*G zSMM7O*)k%QsOK1qEr5qmQBIYLP|r^_cZc!q9~yJm%NBK6^ul`1<{YjJ>>R;A>zY)Z z9Uxt>>abZT#QdJ%`W&AAtMLT8Kss3^g12(ujRJRDc9pauiMK2g@RbH6Cn^LHeg>Pd z4vw=Klli+J89@r38jzJa^+66leXlb-R(_>aB|he3t99%rCF+RQ%<~-^v+!KYI8ZQA z)f24?uNf`b10oo>Uu&%MMf#N@ho=T~j#203@Z6rRJ`9Ty!Q#!KIKDabYGr=wx=~zB z%;l-=T#@{*>qdFCA^ahV66*vLYFG;hS1d~4o~${M6n*;H8%8>7LZC@MLU#7c4S0Z_ zlFM@wJ5>ls$qnSEm#O8I6h7mo;bPrLZ(QA6xiq@u;^FJkiK3UMR#A*=SHio7cNQ=d zGC-b+bLL{koWG$**tnWCBIgL! zc(i7&_=QJn=H|*HX=eorzJlt8{kV7qHQ{sPpdaU{b;nr7)(dun8yxU)QRupv|G^l{Iua9Z zM~r9#`0abPh&F0JdJszzJ*5ZndiS98(o+Da`}7s4%{X2Mk*~3rXzUtE1oO^b&;8PC z$N;@t;$QpY;bkvkN7SUJr@zFGTX6My$FO>=PUWY9L4dG+L{!1JWbP{AE;A-SCI-h@)bV z)FWOdqehRwlFWv`jAN`95dhtyTg&)zeABx|U4Ej=l^FXAK|M%k3^;B7G5V_`4oH_7 zalmw$5&X(OFcV`*ZwxqN4v>H|`G9m6m*{1>OKru~JA9}BPEM4pukpkaz{+JKtVkTfH#v3pi-WZ+YTBpjY9Ep`;a=Km&RrFcEJaMEDtP#(AE~Tu1o2 z()A)3X_wD}_JbXQYeag}uZ*UGM`=jJGTI)LezInzJDh)|x$4E77vfVVIYh>TPJ$(> z&O}VH6^K3Pi`T*GVLoutW9F9Pb;`gKr41?W$M}x}+$DJBGOkW6&FYG0K4UCmW@bf* z@yqAj6}dYlvW|Qedn7>ybsE|*0l*W~2Vvy(J2d7wL1QNJQK7DQb?!lVjCwvn5)Y}= z*#|8jR95iJFjr&NR&+95FgMKARGoeh-#3VyY+-v0E(3V2TW~Qd)`Oc-sP*O|Jy!VSNnftVez+n4`OYC4Qm1e{~SuJ(4DsM7?;MQj-d<9sj>L zex-`8GW_E@kx&+Ww_*wYakT4&;9`e>z4U(1DTI<1NJdADLd6aVze(nCPe%qBe_DF= z47~LG+%nuy34+t{=HC_hiV{Il5q`Pw6>+c##H7}X46=qR*MR>V^j!n`2$r}8q{A1j z#Re>_vMVVjMu4gN|4vAu`&$Lpkwj{-2E_a(`cmX!qzAa|R5pzO&{-!706Ob$Afj;A zAF8^huvMgA=t7sFE<1#`q_btDA@O-vL*8I`T<3sYhu}$uGc=CvA7t`&KgZ+s&^ijdp;W`wMQ{>VrQ0~&&U4lA1w`>NHDQsU0-ZkXGT@?B zF;#qKx#Vi<tv-VW=MCVQvk6d4e4ds3c#R z=pu)?l}Mi1z}2|4Z9v6%d_BX7mm2_VJI{sLi5}PuFAxM z%)1175K?y=xVkV3Kz*kQ+U?Y&!>DR0asxi*R#a`ak|3kp%c$JK+Va@rE;tzc3h5}! z4UV0nmUFI_(D?C2t_F#_MUT}tixpd#F+rSIAdIR+KXMcjB0N!*7{mlZBPC*(!Ai1LpS$WKhJADvgN znQM&_aPKgrqZjJC3+%hAJB=6-WC8FB5yNM;a8(O938d1$38@|lKg`JSSRVYs$njWS z!I1-O4kO3Rmact%BgeubrHl~qx782f32kAyt+lj%LUwD{mf(0HnLTjSvOpwo#OIN~ z5o>kvj6Um83D=jkv8Z#59)8$mw9b>!W9*9h8LS7vz)0cd$;qykkP7t-6TiAe7C=Ij z5tJxCOLsj1o22-5t^{Qqceis5jA<=M(p9?x;eks&JPWGNYqxj3%BGPfO#90FB2Tt@ z$h0qS#_IYN6}H5J%N)PD&-PZqMcIES= z**QDAUiE8s3m%2pWp#0V8hpYUt|v`7Yk`QhouJls#OmT1Y}TWasSN*SZT+t7n#Dqz zoFASUS3!vm*K~G|bVh6YURs;@D!KBFw6_BA(cTVt?Cn$CRZk6hO(q)ghO1M|RY96s z-C@EDtga%zG$AfjJ~u1>8uT??mpnI%x4=T7a1+o-xIU*ma1jsA2$INwjF>~d93u%n zy!zNKl8E3@zfc9*T07AhZLPidg|^oIwSt$pL#C~5OD!Ndo?CQVi{Uf2)KB2$xk-H`kWID-ODpSR0X&>CCcP#XwiQN1YGeT& z(2TnCoSwLBv0kp)>IAfIdoh0Z|GwNwE5>-wxqp1zU_|;yn!E7^W!hAK&7kLBe zffhliQL)h?UK5?sB94e(Xc0&Lhef2l#uGnxJjqKv;o9bR^_f#di)hf-bu0J-YX}}Y zxNd=n9eiNgL7dnhU9`G*#+mg9#EItT_tZ~j_blqt8vL-!xJ#{}fDUL4Z+om^#6VXq zwe%6WsJt@J)h6byU_`Cq9m3gKRPbSD)Dh@wmXXjJF8CssB|Xp@2sMwEgxJCwA`(Pr zw1)cP7g|GoemUJ$J<8wS8JO`|jUqcmlGCAJ6V zixRwi;?T})59yCocS6^@aBs;`(qIvSR_nC)InqU(_J%9n;zzrjDhQPOTxul$eK!=s zZj(;P;D*WIE@`kBK&!a6guh;=WhM3(>4FSyco|@E^1W`AlUU?YYxcZ!;1ojU)9`Lz zRnmyu!;WI<5fViZwIx;_A`4PI9!MW?#5|BrdSL-V(fOuKS9%C^Fslx!g4qZj`i!eZ z%uoTPZtEsv!3-4N=Ice|!{pQDi`T>IVJ4riJ?lzVf`<|~R0{eA#_{UoU5(fn3obK= zq`OKG_J;TG@tcy*@x-VvYQqh?E*Eb;!4=F1DVbJSLYTEmA_PyKnHrgQc>?V1*doHK z;w0CTY$XA}Ty)?UC%J-@Mf}<%S4CTIk-dajY=Yz#b6(!y$*vMg!0w~4!#|VQfUlbZ z=*#)a$=woTUJ#D(a1++%?0sk=-Dzf=sw2XP8Oms5mszlyB--At-jIgb~$xmYEFK5%E<_ zR{R)@*j$%DXhTy4z*K?wDCUUl*^mRok#1O6ia90=OEIJY3QLuFgZaguQkxx<_2L$! z6)PG|_~k|568P3@hhy@pjZ~0WT(!|qw8@H#3goexM9E_{$p;X{7tMpCU=)g#f%1YD zeCy$ffuU;TG4YAVdU;dlyA~^K3KdC|$R?U2nMfLNB)29GT@mp7F>uYCxN2+-X@&({ z-a@LZB;(l#gcRrFDvalT^VBx#QaA_JA~l9BC79wBknAxP>!^9hDE2xFnlZb(!&gejd&VmU5a+}n4HRJN!OI`C7_BCPdvoe&E zmP1kH>mTXMU1QlV1tXeYmdlUWZ-wh13pj3>8)grd{Z`D!QEX@1!7A!Il?lAXD%S*7 zmC!<)j5{uEGLAIBOiof;9bXgQDW0_|ZVCAFjXq&NuYCB<;;yZ#$xE$Z6+fRq8>M>dP{O71F zd@dytqjxSA0FQTi9?~pVcOIAiwu|(~5pMS#;Xye+4-LVk{e}B5mX+LZRXYR}!ND)bU*+?@dcyED!o$4LOttyRwESEc+Cd!3e*d^Yl%w z^GZO{30V^K-w8IEuC9?JBztuVDHmS!(@QYJ+_$&*g}HC<6TW+6e67?oL%fN3nCBk$ zBrR{ke85YX>Zp@){e<%~hdm(zD2ou`p)8^U`5na*UUNlz0Juu67070m!cXFdsCmQ@ z*D>}76+t8^ze=ImucRUMsB4-U{<_Q~B3=h2n0cI7RMpVe$&>j?JogwR5HPFq2EgFg z@rk@3i$RT&#h~T`h~ig|!&z_&#R2^6X8;hJ<9Tr07ZJSeNm!bDQo+Pfy1g!=bT`s~ zQTnOZF-ngma2&~KI+Dpa68JRMic_w~)e+`6fF_QE(!_E205CW=VH7IHp}K%hhm>R$ zCIMseYB?^9$#YK1a5wX$jLEMP`OyB33xLP|teAZ5b!kqYlKwcJPw05Q!tr>_N&Qd` zh+QH`$+g{v`tIxUe8lnBz0zRt4L@bgJ4zEG05)mj&beB!s-&MFsKoQ+vtWBT#E?^7 zqIhLE^*P8dJIFH-#O*ynM6Bu<%5*^gyXb1jRuMGuxGKUg20wk#wTkT|eZ>+FkJoXY#FYl>CYUF21pXB1WQB_3 zpl@*$>OInmQ34t;N(gjul-Do&Q+y>xiPfjfC_#G3C^6uah!W}1f;^sp_(S}H{@!=v zSM$sdU1ekD2sjNGg9N}_oFHI4&5E720Qgq?fM-hARfA6RSslAnWg2Nkk12WDTFcbP z)3^d_$Q_R&tUkq)cXWy4gVg$k4LF|JF0B?jE#HK%DTJVd_{$oEc`yqv7pqT%#jtlN zvglGU!pwVct3T^Nc%ic=3jjJh7#xJY;d#;5U6CpqNIGKB>w8)*x_wClM!u!dz02`a zjh>F>4W1iZiQnqjo$*0E+&UZxn03=tl}#cD-fgcso=(Udpbh(8Mka)B{>;@x%{(nP zz?p;w&i1C?Luv)QblN<8vYs^KbiYWc?~v1Nqdtqd>j~=O%NxvxdN1|$(>%3H_v-94 zp^Kt#f|7tjXvIqJ8eqbyVHiN8SdY4MKh{Qj5a=iC_dy1*IA7~!EnUu zYdyboZD0?GcrcmrF`O^WDE{9KY2g zINXmAb-#h=9OX+wJPY(C5yij$##O-v#i-f)w2Yc*@c#^F0)O{g*A~`_P(;&f_J%yu z(Tp^JTv0seJE-PSC=zY_hL@-a#cDS&BJnwsK6Y$<&NbW`_=Bi zFSV{0#P{8IeGzyT#>*S?Vh-p(vTGji_5|K7Q8 zJFjXGZ}X??(|~8rn6LGZBjXZN58qRUA(>Uz>1XoKe5=1*{R%(xmb4X>(Y)V3V0@#A z1Y+L9RtNx{_mQY&`7z#MXXMM0ah2RZvuy-bR0zX5_@ZvMqY4v&E6Bv8@mu%RP@yKT zg(zJ`gL%0_N3)ao%&DJ=%jj@Mo^yeBsJCmhgS^e_{Xq9P_B{~~-(dO10(dRp)kkFk z6HB;1Xa86nWd4iqgZyzuz7G=orp<`WHx{AwbXu3Pd{E`;5j^7(@~$cw?;hjcG>D15C~1oPp9td)lhCbZSeH}mHq7|s0(o*N9w^&(!PG|0Tf zFYyJG_!=Y*-wbmV53`A1wT!!=DkfvAqk{N9{TjT@I%t;CNPYE9xdGfqsH4Jn6T%8S zSOtaKv)Ro#?k0j(=o8(eZQ4!_b*D%AvAB%?o{?|jeHiNA$gUEGu&$XVapg_xC06#e zZx^&F=z{MU{o>n-C&RD2nO)XBja?y);M?YltOW=qP9CUtU~kH3l0RDM6)z8XZ-x$&Xr&T<5S4Q$n(e5NRg*4*6aU?%o-7R08hNsB*8*fJQGlmT3 zS+V*1|5*F)z$lC7aUAD)E(FLPAt5B8B#_WMgd#`{O?tR{?k-e;&xjQIXzQSq;=qOc(uHvYg{)8-~-u&@kDt-GVrSylom{_ zW+oJ1*_J52VhAZixP<{wP$~AGB!HGl*i*{Tw5{lvCH`RbC{#Uwr4Kul69-sSwau0R)gR)hVS>=UT-Nd~PiaD5+N_dpNQIJBoC+-;0sygasfweCA2Spo z@5Q7gM#T8u9gb>SeIpK@JS5+A3liizxs4^juh)2?=S|(UMRmi&>dS7(O|QDBF*Aom zgsBbM0bBCu3My1m6-Ou0nW3Ph(qj@uTfOlX6{{m_l%$%?>d}C_nu|4iZO1(AL&&V{ zs4teW>cm-QAZIHSXMzbCcGq##iTgoHopjJV2>(9ARl2UDhu{DyPHlnW`BlX;eyJU$ z+7#%s4P3L()R}oOrq&-b3CrV5F=r$>GCpVJFET!7w*)ah*NUZdk70QcA0}ML`wlV1 z-1MQlEL%B%`#SZj?0?a#8F8T zJy;XUhIPe9NafDZkF$60fb@UgbSPj~@!KN~irgelp%^a)63#^<_ z&ooiL#R`0uTE|kt{bmct$6_g~Lb$Qi!W{#2&}uEKWa0TAQo+44#YGGhZ|!i1J*+0N zvdd)UI4iJFU@5ZFTwG$M#03^ms<7iPDpi=5d?{7f{1-D-$Z9EXQTP}2jwaSHeMGsf z_)GrN`;KPwUzGc=DXVa=QH1eC$-)HL)HG~Xvalwe-IK|}+N_kUarLdt8b7jCnJ^+x z))?thvat2(d_7p{)#IYDxRWDPPuQxmg`Ff9ych8nTjr4}^_G4Q3tpgyGyVAxj2z1s z4q?P_@Kfw*5W0;Oyp7y& zdWXyXLnZfcE_ZC{yI!SdY$a!?O@+i1eCysMB;6qWwqc}3CsklcierKJi4l{F!uZD} zfaGo7f|zR6Ftf8i_i%hF_E=zbeZp!Os?HLyhIHOUpNyQzy`TyBR~{RB$LUz8iR%mz ziRiKtk+{qXR=FJa@DsvcxgD6q-ezg7Z^0s8_!;EqV`H|dMGF%Y{OZB*KV+Lqo`x_y zr2RRY6AHtvu8!I;Gu2T!q%M|2m$N;pLR=pjESvhE|*tYoMqyK$EGnWqX_W1uGxejVUwu5UzX$~Sj5 zZc|Sngy0YJLlRpVO3LkEFzK&Rzip$J5F+_dpejx&3fk}<6<}Sbl!&Nwi;-|8H_QhP z!mx)P5y@4EyTpSWUF?k6k74elE*<>ZsBp0$l7}Jb`@A79SW>D9SW>DAafXc zb`GE*@Sf`az?=JohNep*>kBCr<((lJoe@XW**M>VmL^;fE;{yiVN?b|8m=x-e^u1u)|^~X6HgXe`z+`f{2^9gzU;kpG8|J;+4!YGlm%B*j(MjuxX|JnhKOV${cwe#xRk z$?Fx{)k~qrB5H+YIVU=78eS*#Omb8gWp-Hegk%=IgXw!Ed~tp4V-2GG^xb^ddDR9- z8`wD6k)N-h_&CKkV-`)p%t0h$gGAR@0=VeHcPP;bPC%n6Zy)aWYuvW}Y|5|geVS>Lw zV6D1XORg7_Splu2maZFETiYoYQn>B4AHSfN!fMFXlvWqod~4?5e5~Ag1D9*VSxv%4 zH)sYUr2+WN;Kn(4iemz+BKw3}9Dc~?Bu5b0rr+5ilX>&t)47hyDw)S>spZ*;9V(ee z%QH&mEtJ$KnfD<~&v5jNyA!C@r>tSjx|ZQ+q>IlPhZNnM3~ci$t3jE$9~c1ponrr9 z0%$>U650O8@jx7ARVaGczf(mI`&ogNl)JuDWwUOwQd$OH-N}sU1C%T#<-~`wmRbhF z(v^-T`b8YSmBGla_n9B2Z=<6l844cbYlV|y6?^1jFvsuBOrH*le0|?!#{^-I#aQrLQ zvQ{LY|0((WkHJYkUwr6z)3#?9W*g*9jNe%?T7UB<#_m8V9o?l?R(#9{EOR`n@7SeQ zRy!D;P0JkJ^jo_i@$6$2#cftVBXA=SH@+T3pWy^j$kuj{AEB8(5}rn7($WN_5X=JdzQ4 zRRX+5#5#ca$**ccEob#MH^BaY_c_U>xO0{!-{@+Fwc;ts1%+};Z0*0wwM^k4Ihqhg#j zR_5o%uQ6OXM;xOB2hg;<%osmPjLQwlZyjx8nC<4>rCSn7yDgoh=eB}Z&T?is*6CVn z$o$@6R0v)N5s`Al!K(G)QCS(^IZEiby&zk}=FtK+^&HeOhWR5Of9U!s3qM5iM_Krx z@)u>{hwcu%SV6&%S8eEG#jp*I5A8fgQXBt{9~`fX>8#Hb*F0kZybKiNm=DD@^(Q%s zf!O585${;o)ox%0j=BtK-q@{n1HWVytPo;3_EMe!UB^l(BEkYn?8@fy3}_JU(`WBi z+knkCJF2S4fz?ux!-U=HK`bkBI3X!fVIcNlwqSiaX^B)v6T9pU0KLrZ~2Xg0FLHphfb0%-7OXRX@i7_W&$R)qqO_-qw; z#Ipj+T|b(wtV?rND(9=-B%1{u9kSJ2JueyJfk(q^6?h;K3OqOw@&^py^#{Fwb?g*F z89j=+9!k_CX)_hdTB@AV%H59E`ULEa%qdOCRyidJxG>$(LQG=_X)*N->wxw$B<^uE z6rBG7dmPQ8EUIQ6brN<+KC79lV0^YpoFo{LVWs+M%4abi%~VoZY>yEXE{=14bNo-N zVO-H@e3Pw0jc-^13Mv-r?{z#TIFtgiRSKORivu9DIi-k;Ho7farE>~pD`#?rp_9%; zT$BK%7=VgV6$W0#FCx;;Y1ke$(DWsu5W_&n z`|q3VU9{LE@6nD`B=(XefU_5o(K-_TUF~>J>jN|Xa8wcfSQFx|7vpYN5bnr#Si@#U z6>f%xdvffaSM_RrX}oj(PFCqtj(A;s!>CZ2chDI}s`#EkQHUzTTU^%lURRHSF|AI; zl$rP9yjk<6&8x0-G#9clXK@Si*I>xBZ{XHhM^Yet2RuASIe8ydtoX+{^zt0H%p#Pu z{6T%r--kq1n03`-S238u1m1JUI5-Y%gHm@mSsg)UckyW96 zRxBlVob;P|oi<3f)9XXpO~-EKh*`OE#HD`=bi`js8svz-`As?EJGUH9#MPHz?ug4V zUS|F6_)dJ!0OV211~ysCYLGk4W&kovyCi_jQdyY$kK>`Zz-o~FK8p;?O@Onkz~@ah z8)V*fR27APx72~0srEZ_rX_w?ru7?%f;-duC~LWjM;hczISpF#1^~=eJcp9gIE8rR zD*goi^{wI`<2=blZ`PbJ|lk~iL((8BC6Qn^s;WVfx0RVIL z&Y{$k)`*AqWSj0>Co(xtvM2AGJ$auMSPSm8zncs0b*$L8;MTKvhc+W74ex;Pp`pe0 z*T1X9_SXytEw+zhbGg_)&I(9Se{j6#m7t0A~&4sQ{wEUQ1==RIt~R05ug*7!^OunK5e(Vg_Lqg-n=o0mgf%0E7cz#I2Vr=6q_cILWkSqw0vMV@ zk@#h64xn&i9^?Iai+34LL^A_q^%-VHIlG7h3^4^3LF@je0t-(m=L(zc^j;NMln!1M zyPw#&-D5G#Q2L10|4lj4dy*kgR4C}~O z*gh|2A%78Ov5znZ9{Cyp8_POB2y*Ugc{yigO;nccP2Y;s)_ig*!Gd}jnEhG){W*T9 zq&IAIrIg0k#RiWQ4K3{IDS#m4(i`kkPXQFJ;Jhk2vlg^c?XXYz<~BIH@qs6L96l|u z(&PS>@U)bGh_(Hb#FW6A6Z~psWmj~D;FstFYt81h-WHz*mVe|c-&Do%6*6=cXF(L&GY+Kg?>8SJ%oxo9fQAl32lX<(K3yS>OKggh%2U$bWHP9?$ro zMRn8h4hOtc!?{!3U`4dDUio_8{H(0~2Dm6B_wF1jt}@&d4;0;RsTvuay!NTM7;(qa3$ixwSI*S32lJb)9dEZmcaK?PMbD z#0qfRzcduBkCvW832BD_q-B$whs6ZemXMCyue|;^RzSWI&qXzXUmG}I(%;w*2|b*3 z#ha`OxwO~!vnb}h{bb~AIJ7XU#l%>M&|Jk}X3U{VFu>uApx3AMmystK(I8dwVw@^@ zu>e3Uyw@1@l0&I)PX_eu;v>#ABAfFk8(=I zlfyu-{49}WDt-_PSwlLs{jTDYUIKXefRC$H)m{C>K{kBy zF&|dL>-*BRtnyu)TXkE@gDNP7&Jl|2_YWm>p`E^TvEW8W5AHZVUV2a+$wf5$yjmDRtxIw!R-HvW-%ypwtF-@ z*2~#c{9(~i5l;}p>4#AhR(CE3<$F7OiL0yyMLZXApk-?R{6QEu0(0|uVW8mQD5@X@ z53H6-3H*4F4qZoL4KsR(KZL)I9)uHpowef*OE3=}HZwjbcv$&0ey4SFKWBGX(GMf^ zO0u;XKT=-c=RgbztOmsaO&EaeMI#9yBlhz_wHW%WzjLGL#_B1TeMouNPOQMUrq%}^ zQZ{cWD<#L8c8E>4F^9;$=<$ch=;@CiQa-fPA>|r4ZgLF)fLNG2$oYccP;w0&4w1#y z8o{c;&bE5eA!V>XWz0}tmq~zMUny(+lga#MR-c&P#F^h6!2Ei}e9T&_l~;|^QIzz} zoNrCWmiZW?h2A}@iCXC031lqm-Uuh2LyMZ9?o1TXhpk~Iz9J7Zp;kDoj5ewg+<&`h zVmwmE`lLtZ6`SG=foGKSh~NN{VAx?L!8^n#X5Au3JKM%E?crUc9mehqC%wZKv~pI$ zlg{sTTi?UVbjJp*g!3ifV?IpreS~p_l5u-V5+>s|Uj8EEHvTXfH})|f>rFNs3)(vT z=qcyVLG4@t4q$pi?+{ozD5VNCecE|Tyuk!x8M{|4sJBP6|2x7@Omx037Fi^eoeM%U zec@rXvU_)ubCg)kT9BRl3Ux_dT=@)EPIe9y+XKtDsB-CEHD^c z)lzo&`NQfpHLPLU;ntGcVwg7F**R{ZgmN?d5@VRmaOYtu--!;4K{CEC2DWQ!)yTs4 za_`veJuQg&&`AHcx>XbdEU>f(>Y)*>C!Bo2IU-1#&t7s?hn+JhEa%nlzUX{Duj5IrqjIC}C=0RYoK zaVT+rGLZXv&_2UCRdnDSVL$MOzT+Kd1<{7VNhp2Z!cdk&Y3rN3t=oA2!DhlV(tqBzsn{6Pyd4G*8;jU)Y|Khz2+^AF|bxA_xF zv2T$8rGAH5e)p78gEOo;dDB0+8eH{P1N|8CfXn=t!&WPcZ?vWI%XkNls0HJeBRbjVlOKJoUyDP?>oC0=NxSi zB!A$1OAKL!(%>;u5u>ONl+4nOC?sDE3xgRSI*Z0IoLq8ruB;X{P*2>IJ?fL5TrB2c zaMUBPZ!%V7@DUr_I^p}__s5mX%2?*?8e)6@s2PLgRhJGeFP@#%B$D_qm&rAx@G--|2pfAn4Sd8_aject)Q)%c4(W4rom z{6*jD{QDdHMIZEw&B9;w{id(wFZ!~MYYqOQkE3jpzv#ml-PhtTdSZXni1qlB-a+jz zA2gu1?oP^gC+HoE#_|?9J%LbIUPh(sttaH+W;#hdK_0lFlToGRMkH;`mXjG#O6UG4 z!(&>TJuf}>t2nwYV`fpgDS+La51HYEJ3+lw&X)G;asWsM7jc*`bZ$3)S7cbq6$Zs} zIiF`gk^i;wiKF#m;MilhuuC3(xD-6L+L;}c#GCmik@T&zA8h>ExxpTBjP)pKo+Bkr z0(h{)d#A4F+t>JWO$>={L?z})_Q@}qXh;1IhX z^HzSuMfmWF!5;J`X(M_9DZ zxlkJoO}}^6vyb7O9+&MHgwLDGPSfWXuav15sZTj3F9RikXT5V~KIRM6Z@#^rfTG)+KZYb6mpi(}jH>pE_{(Q?;D_T`z;lwuIPx&OTH5%EFBu&MNk@oCztss8$lf%|z^Rb>plQawl(` z-P-B=&~ET{^p4`(!NqFZ`}l!B>(X5_pzE*BivIQYlC_9u9KX?E$tFE(nl z8&%AY2r`FX1D#ngozZ((ouPYeUj26Lt`Y`)_sA`GWCDiDn?{!W4wUzaVbwU_gx6CRL|vywg# zd=)B&#c;2H-KOZd^)Z#wS%26$H>i_XT5u;33HlM|UVDoiHXkF`b{U+~ltD~}X8$Mj z?jCjaws&RNVcZAZ2gd}Vm)<2uWpT!itse%Cv=`z+HT$TwOEWt+w5z3N#-6`qWT!lz8uP4+Yj*KStq*<(SOfj#`gpY zQ@$)eCr72PccW0{7BFI$=>dQ2&hp)B`a@Q=?G^*W&N;jIgHg1dpuWdeSpPOhts|GA zobdpY_5sX2k8x4i6I_I{-?0+n*Kf*WH$I`d(S$dkZZtf>y3yu@e>du#P)poetQo^k zOWf)w6l<|3)FSPJ9Q7ezK1i$$W{A~y-|gcVQVOAA>8`S2(Lvi~t+YMJl4Wfv-W>^$)+8hT{@QdPR!bi z{fWKw&g?cV9qF=|j?5x@%FgD&p=E3~Aq8b@cvWR=K0zd2V-qJUDr3_`QkDNSUn!bh z8k}oTNRM9gM8$8A)wuOpE&*O1$@)-$*OIf20bX}F-gJ1rBPZ`56*a%_)r@1mcDehr zcEb-MXK)V*A&tW!qoV^u9ykx$M*kTCnXMnGXdlB{WS;NT1g>tZSQ}RzdmdsoNUb>j zR0lbl{0Z6%uIBpiKj|QceK>C#>FJWF-nz{AlZ*qj4l%-XT+T|nfFD(}@V$?Cq;*4l zG65>_$%kkB@o70d>cGn1YsKsT`%``k!k)#c5zem}&P^81jEy}S*pN3mBI1wK+1=%` z59Wx{dUi{ZXv~9>J^oY%v73Ue?D1%%-CxS`tu{W`OuA$T9!TtD2Oi2_WCtGpNp`@_ z?SMK~U%QC$LXe4nyNEH*Uiu`q_o@_4{89{J(w)7afD?alF{78g8bhq+d=OIURZprp z4`IfW_LjT}&G|=9syW~Iq}s9>J72^1NkFer=0Vb$#5E9& zn#8=Sn#3heT9Y_JR#cPtIr*ywj0!hu##fcU`J9cE0Iz^?&eqM!2{+O-`zsu7#j|t$ zz!=Z!ubhN#zd95B8~6g+=nuRN-q8wah2($fW_Cv{GhTr+k;WDO*65?VL2~sH`CgiC zh%(C9U-VK&f)vqgVgMD*JL3plKFDz8?w@uU3+uSgNi!ILVYImkA zBvd%xxuX3#FQ!o7@<|p7+`|EvbN)F5b~37z`c77-!7z7@5j{BfHjlIW(Mc+8bk<72 z)Y3*}d(0^|TtuPdDT{)Z0FmX4#*)C5&PLTd3E+dg7n_9Y*em%u@BFexEv+fkE^Ab? zH_L_p5stq-;n$vnj^&J+Q9<}up_w216q@-#C^Y-KoH5M5pA?!URPPt6om8h9f5X4> zRAcpc<8k{0&KV8LxKnCS#_+0TQbl@7lY|_Fe-; z9-uRWm~;#50iOKbX@>_%MiDq(!{}h|$4Dq&5QJ!Y-_yz$T&!ut!jYQB82eMa9XW(2 zPb-Izep)RF^T1;n`2L7O8F*e5oVOemwbRVL%X-SbFOk3c!`F4tzW0^CxqW|30=(j* zn2gdD%Q)CF?_c_XrFma=8jkIEHn;mV@R@h}54?ddUm;taIN)^nw<@q%_YP8V`v;6H z+4f@$pltge5<*i3hY6=lqpVsDjmI_n4PKM%$Q3M?%hfBqgzQN6xYT0MsIgH^D+2u* z8@27l&M;}xL@Rv8GQWD%88YzN5_t9zqh6^45+MzSc_$btDEpq9)WA8oB@x-gh|_98 z-6lq&y-onBp&F;u#7C)JQ=@WlO0()ujStc(qV#K1q|^g0G(}3z07^sj?wnL#FRA&> zjLK0#`lRfmUzf-}`a#G(E^lU>_2-D}W5n~dLQ%Kr81Nsc{YoK#l> zeV0NDb=p~hyuO2DJQN&bG&m}?4VCEW1^k&!iq+7sogtTWgOef_uW*F-6+(RpiU7lS zd<8nPoe^jEV~~RQB^(bK@I}}ed6@cjq-si0?v2~)o@IJVQmiE*ep1BH=M}ivDKrA^ zb};JN+wmrH=gHohLufoB=7&c5gRPjT=UEjK_2#Xpv!1hT$_zg1oiYiXjH=}=^(v;4 z1)Qikc{m7UaHLN?3(uA|D%q#yqBVundf7+oa%ZF3|NpdP=VY*?FF6Z!%3^jpGZ(%0 zIla#nJvoq_${97{|If}rST|#$zc8)fp~YD>uC>nk##Qdx``JO|l)1fUBTP>DPsuJh z<&*LkIpvdQgE-~1aw!$H;;=o%=oL%rHPeB35f;MjN!mp(bWH7{YlUEw!#H2(qQrY1 z|L5C7mk_pxF3Zv>0aW~$+CwjnxM&Z(rD5bVDKMn5f7%-Nl^e+1BIQ&+kx2`+R4O9|j%0w>M(p;OMGmBf8$ z;qb@M9_anfZs*kdoioGI^RreX2H}_yZucWko6#KN6?gt$$;(1gZe5>nPJJ*){*~L$ z$1k=D%i7V;D54c#C_8u*2lerJ=@;gYF)BfiF-CFmKI`|jO-7@)XWp)-zjuxdSQOrL zEHt~=Q$vRh88bR<yaLCt|iUGWa1o$;#C8CI^) z3rBq?p?v7xI;Zvq-$btD-r#!^j8o!Q))q&+J8ayauU$K0Nq)mh-(iuVUAx)m)UI^O zGqGV1I>flG-#P~mhZv8D+l;nPW;c|~O6HQ82G@of4Q*>s(^jq<5(}+{8SV2cJ7V<8 zIcPi_#dn3VVTmv5e1P~an*BO&iZ6MDv0qe^wJZyeQgU>l)GNcRk+_V*R$gh)6P2i0 z))SRaQJ>===Va~L+BvxnXajPWEjoyDr;mo@QO4b%Heg|aY``G+>j@)AjAdQIQ8917 zK4C#+56P+(l-&6zjqzfJg&2t3TzBDS(Lu~-XVqm~*T%wJA%IG3C2W^92+T?U7p&pdk^FT|r zffdI@;eHXu>^}^`MPtg-Mp%hihnS;Ue(4nk4T)32ANC364qCV`rTEsaWH3(L{YiMxs!Qy6f`SEQpw3w2YrFfAc9nQUa8E;w+Tgd^G9*vB1jAj|gmd z%c_B&lpM7mVbwA zQw(e2F^^GmJgTD)o-u~oyI9IU;az2N?*1L&};qEHAP?Y z7dX#$t}ZgI5;?_&YVSkFOrv>jxAgg6D(`sxJZyTtORXr2_u@+GNQ+KfGg{DQy-`a9 z0AgXzdbF$@IxY+6)HcRR(n2GpG^^n?E9sIdOy6Lwsh@xi0<;xZ>8<@1**pTDdE^uBTfhO&R!1^Rfl?SfCUm5d(dA*13Kd@@pr zKubvGMiUYwAu)nVNCALY`0-`q1;L@tSB&_V>kZ?NdLoTTAqYtx6NHF@K3wZ=JW0hoVXp!W{(kqvu zkyQ4mjM5(@N1|cmlxP?rEAma_z9tw%&ZZQ-^97X`odrp6VXjfWcBxHQJ(V|b@k}7X z+v@3mspID>7~j^c`a(jzv&zbkZofeJQL&RXk~2l$npbD{TWUbL(w~t#c_4kGg@Gxw zI*`8pf?Aw?aX~H4kX1U6Zo6pdp2cb*3H7piVz2QCOao(sC>>Z?2H2%bSx`n6=aKWf z!WHbiRGEg_7nNzKYqe9OTk~QbquUg35X(IY(>5@>X1=?{h`{R$P>(qPXMaVQTdh}3 zk-{iS6A;a+S**jng+_fp45R~*7fFJ+icDK%wAIp;D#)~R3^S`1n)B*h`ea6v1S}6b zR0!Szg-#x{0z|Hlh|0=--}q9uy>wBXefa;;rYa)kUG7{j*M@E|1VquqxQxjy^788VK`sRx&`F(Afks*$-W;hZmc+(G}Zpi}>doQZM zZNOLz!g`D~I*FS>>tD6%ubPZcoh;pGlz=|TJ)&StIQ%|_0-Y07iSW1tLV=11th=z@y8I?tHV3i!F-c}-@6BpPY;_rvgkyh`( zs$WJo?qe z|05oiC{#T9p=5I_EM8$Wjo&PxJRV(X4W}88(kg1Xf7iOh(vpqynI|9}ttvid7%9lw zzyLlQE7nOU&9lu}CsrGcG;xU4BM-UnlJb!Itb%i3ol(1XNqLSNR}uqcO#dZJTe6mKu7+<%W5w4e61KWb~Aa3;@JJ^DGR!IFv%H#LL(vQ~9NR^{aug zS}Z)W#u(%WrJw;{fRp@=?K2=!-;H{Q`>9z&)*ATc&tn{;jHudPRw8L@6>yRCzpO+u z&?;6U=?9VD2MasXFZ)TOm#k(=14)rI7%3%<0Du{Aawth-4&#BO!E2B-W^XWF6dX#@ zXf1j0mj)dD!MG^C<_M)QR+z$AVHKFdNEn{b)3)O>K401`GC}OJ%9S+mn>#_JaX?8! z|L_txtGOD;H(q?=Kw=~gMoft#01yk?f5LPghf=q`$ki?UlFTRV3TJiOY=9=huQ1(_ zoeR67Mmo$YFgrK5Z|$CX)hiS`SGP)4*DB-r;a~&Z;EIYNuxqqoks#}-k;boojoW6F z6O5AT83$lw7@Ku!n=wT5t4CccB5?(bSgD=HZ(=0lj%M^wvr|K@0<%+&;!n@9&ANhL zYkr}6RZbW^ocUV*j6Ayb1|rqEHN+X6wA*NnUuPS)+laSMZ+w^6la&X znn&0ff7NRnj_fz;#$`z}OCBX!MM{EUs(Qd^E;zu7IvcWTWCwUPvI7kd1~ire(TiSH zA^YtszK+wAIo!WsMe_rv+`aika8U(*!z2e3_zjo8DDWG8l>$G(0zWyHiMHzL&0)=9 znSQuD?94Gvr354KVg5<%Ic1E6C;v27iXScB zsYCQ(xcE&H$^#)zpKYW3cGcWQ*&B$4wo$ULs%?~&@3+lQc!XR|w);`09TX1nihE=J zWpV9q;|+C_?~^meMP0vhRqdt7zj7}nyJej)82OiRIHbZgT%i6C>#8mi@t0Q(+VphM z?uix;8CT5+3T~eMB2uq)P3@XIe$kkl4~0d>-qFgyHOTIt&K>V_ejJgYI{5e|9gU z>=PNjU+=G0$CSvl7BKRzF*Lu5wG-a?7fJ49BrOSD4U`amYEmlJ7NuB=?-^r7$aQND z{3l}4wd-obZ%crjXa+_+G_v(t*Wu8P?o~t`M%ybWy~cI&$!hL3xlT76Nw2(*FFuxE zSyh2}-BnXmVN`vxis~$(T$?JI-Kc>4$bHN6AG%%=kF&P_jkNk$WN4?(oQJSzbgMA< zqOj{IW}jaRMYdmJqvx2_et&# zF1hncayS>qhP#I4Q@`{B*I{u9R}FE1(X%A=uY__1+iP}Vk145Jk?zZ-O56x3^iCn~ zQFI=n+_j0wK!0wBHkDm?domn9!GvhMlAx_#bbPec`{vvUOYK^1d{))C?=3s)z)!b*%p#8yV^HOMeRqr*6{v#yF-3S2Gg zN{^6rRqE?A`D-MkmvhyQA0~fuC39NMud1zB3MW=tU@KmXa|E{jl2tqLtLs_uGXu~> zrcJ|55=tvC#|?FVsZx2@IB|$oUiGmnMc;>|@|yztSizoFuFv#qH|TJrxWNi=jD~7g zlr(1!i3n2;;Xb}liYY7`c3Pc}yl_LkSbKpr&DiUz2utro)UZY0RCy4%SkV=xEtUg6 zRFAr8c^EAbG80^l@r^S_HCIC$Vo~c{j!rx4a!cM-f{fA8Qe3f+kY+38*CT@dPzmEp z-cK|HDHtH2qO{dE!K&IgZRt?`2Glk@NGkf@L>aRAuC`tTsNKcfg5iu1@+BH`Thc?@hJtMCNF#XtmWusY~(}j|j7P zgRwPS--K*K0NgL-t}J%2`oz{RoUMIcwvubPYBHrWZ<+kW8oyKvXD$awG3pylHdiP% z@uS8l&$cm4Tdj`Wkb5y*!fyFVHzhh~-K>puT(4=i$Xn)>)1Z}5Ljtax@;T-mE}Z6c zrm?ytOzZC&@)xbYYuuvscl2V(C2hQr6;{KXwX(h|Lv%4~<+cgkh0TMws?*f)Gx3-cnY0QDfK3Vgzd@Ev`P~ z7H!>V10nkn*BCJ~u>4spm*0As!wS$|nXeIIsqf~hSQJ==HaM^f?WGL7rEah0!D61K z+>KbdDW}6W3<;o7si;4SRLZ(WM#$RAm~WTA+z`^-RWIHte{*BrLIRYHFpc@fTgGCM zZGo9FZywls7pq3b{1gNDjJY@=p`?q=VVuKN6=qh~+rb|#T@%DZ)_@H9zqgb@|Cbez zL67}g8T2xL`#4s%H~MeO_Ue`XR>mAVt&Dl(-^!RrvSyYsZ~nK}m?vAt{85guqe7@} zzeP!G8{$#soFgQ2j+~P@=bT&SJQs9oJ6D3>P_je+pdQJuw%o$M@*>#q_OAKjImSB) zX*$07BE8;pR)9i657oi7-?ji*q|c--V#SgBTtoDCdCxvZBpN={jy=2fsI!$m&y>_W z)`}$M*jTX?)a~R-M62lNDF9(bQB7?*eBg*B*dUe^Dnzqo}_%Pb1H4;V9+y2UepI}?n#noIn{*t#X zUCG?9RZ{QnqZlIlxco8G_@dBhe7VrA@eP2s^&1-++Npp0hL)azzkW-3#uI1{|p0IfH`n>e!IJWZZJR>EW=B4vqC@pi`DI#jeSg^)DSwbz_`AF8# zey&=Y_Bdob?&=gW1WVyTV^<`1oaz zt19Eeym>kw9u9InBIa`(=h3VU8tiH%HgIS>hQ9OR?qJuT+_hgF;z}0T0k!q{|G=hF zUD`xh-7$&2WpxMrGoCznIjL;CRm&8S+rme=>lW%s73V){5-0!T8%%m!l6gk11oX0X z(L0u|;XtQE2d$iScetx;h%M%hiX4Mif@hy_b&laq+^a1Z>`=5=M-roGv9A0@(PG^@ z>X=TjXc0A)j_Dj3?OGf(WL#Cikn#Sg!zJMNS}_ga=`pVFMJFZ<)E6^uY;Qrm;+y@S z5FS3x?~vqLNh(}jtUujKZPsR(X1JTj3e);(>_D*sM9|0j(7DDF9z0{g|%eh z_%y(QfnzJAA_GTR zTLq50<*(kbd6KJ6e5(A-1IIQJ;1@Vj?suOBR)OQ(rFBKQz{bC^S`;^)X8@n=v!9Vr zvVF-YVXf;3c;Xq?iz4K%k2Fv?ROqe>hYGO*3Ww<6Lfl=`5tV1fWSYv}wQRgz{Vt@f zbTroPP@Jd7+@+pW=DfH{6o@n_*TofyUNRtV@=4*C-e(zU|Wb1k&y$e zf7uG;-s8wV!GA1sG@Ac{tA&Znbn%GTa`8WSCA*1{A zbktX7Y_y?}IonlH3}xP9QTf zR_P_{wbeWR>*JBal*LvPHNz=iw=frv#pk--!xyzbnd_=6vRE79@#{by@iq$bh))G> z%Wx&dCHoA9>3vr)1Tk;9dI=7YBG$f8+%B}Zm43K1vox%O7&K+v5@n#$JlCUe_ia~c z{o21!YM#p@ZZJYL0@8j(`q(i)Wq3srYl^F_vSHITq&sVOuf1y^q!?b zh&m-EcoX@V!gAlvch%SM1(YOk8F|%f)4N+7{106HMMZzi?Ljgf?_=70y4#N&WS&O8 z7QgG-rPcpGsZ4vq)hU`Ad#^60Lec`4Bc`LIP4Pu1`HSLoC+8qVc7r9Q0K};5?YGypq--3G8VD^7Nt~k8A*wsdiv#_&xA_&d&vG-Iw z@yrs}6!9`^M)Ab+_f!gM1}t5Qk;Ia~@`b8gpK(tG0(nr#GY}Y$2y+Dj42cQ^dfiij zfUKvz5TI?%-z+f8AoU4sy_;2|NZ#O;7G_mvMV$6Ao5ioMTbfGYP@MgTjkvPV(( zl^=~_&B%|^;|4A7%Tt5!;4|N1S#QqKbyn!`;92Hc+zCJ=Ds{xMk()xc$xU&#EjN`5 zy61D;JmpYwGI#GOCvzMB%GA-%U%0*yFEGX_%9wdyNoXc3APFrpCA63okc1ZSE`1s( zq4}nS=Cfv&gf=P(*;iT;+Q8B6^p_AKQ4-?VNJ7XqNr0u3^H93)9GunCeOG#5siUR4 z2@>knU2@;0zjb}Cw|by7GMP0ZdAE4LG_uQs0F7+=Kxt%C*36Rkpa*o0bqFgYoC7(| zClyYwS|TPTbdHiT8I3G7Ofu>UP!jSX-`z-f;FAG`2TQCrEIe2wp?)%`@x5zG__q@5 zy@DPJd)B*3!FwOOii) zFT;gsW{#{L!>k`%UBp#}RJ!ljpmkAi)<09PY?f!E>u=rm07biLM?FV{JnEX3v?SfO ziRPBnE3UB+`7?Ui=!Xa(FB>C&k(Z5mn75bh1FL>^-3#hvR}^sl{@P}j9mf9<+Ypv* zaeXf8OMc8vMjR>A-`2LEUOCSGPYA!T)s-SzTiBVu4MH=$6<&T^-8l}%Z*z?n9@dQf zt@EK;zjuEKnM+;0#pu8aBUJ_ba`!l!+q{#K2bnybZW~0J%jq&C%IQ{psGP2>t(@)x z`Kt{K-sP$l-%9@GPPc{x_&HrV6tmO7{F(^#3~7;Nn1T@({5LP zP3&g%$eZkVsJzJzRv=g2S!J)dQZ)VSLv?}TJS(Q@eEK1?aW_!P@m^hYNjJ1T4@F#stB0t z#rB%`E6@qKG(kh9hLWR8oRl7=c7+ySDoN)kGCkvp$EnHkH{>%k2{(~08S9doo z4!bT_67c5jG&~em2)??VR#kWc@j5wPT#6~Y$NzS<$`fy6eNrJ9cPFiim=cI>0>}2e z7hC2(u2weeG&s6HT28RuzcbEV5fYwGt}NbTn6x9V6srE&9akc+4&+#t9>FBQmxZ9h zJ?zg4){aK9QgqFR=BY^6Q)N?~HDB;LZ2?70&8=!qrX_p_-)+r0Kc_ zk!9WGgw6_N++-`S6$WilnM9GmN=P(unx&drO&E8EROrMhS94owY;W~jdy>%5NMZb=tx}-+RS864;BiLE zvZhBQR9RC%Yg!csUezMAR$fiZ)bzWkTvdit5%*Y2QlWp?sOzCR8e5moPTFpIl?Z=u zB{KB#x-yi^kKR(k0Syx4GF~bln;}%k%5>hg5#;=>iTQCvX8R^(Y+Fg zZoUtlG?J2^6aQf1kagO!kzX)u(niYK&Lfy|W3`!y+^8!P`6Fva(%BHm#7-X*(oRaW zGw-Lx`=O=y`>Hjr)*Qn*FTV+QNrPF(-EH(Es5+}s+vs1RN5yyV#C=BHQog$q8lZd; zaOuA55GI*^d4Q8P#^yh!dPy6zUJ0=BAz8084_$TRtboGIhlN{>->L6@MDTx)a~t9j zs~n^xqge&3XON`1@d*}Im+a3=n!Bp##G%s8vuX@OS=~L!4+BkKVN~MEDYz#+5y%JdUf>kx+X^%4|4`Qp*Qu{%$^R_=B!d%flL!zSn zPi>Il^d!ODs#U|Fb~#tw2-!}>{c$1q>nC_B(%mF}qlEIf|8t99^SG8g;w>u5Hs&IX zCVlpHJuL3Cz}6L5HH!NmVE~`8us4)YG8UiN@W6MU5s+ERJySSYWf>CTswkqYJ5F?G zaNn+*Jn2x@T~Ul;h2+tO<7S*UUdNNo8RguK^*DTH<-I`-^ubgX2LnqNuBCU!=Z|FU z!qHo?OD<@|((Xonb!p~z2_eU=cf@u0M}6u-#WL=B;tR$Tb>vgkkxv=i>d4QkBU@M@ zb>v6h5xk1SJFq{s>w!^l@>^!AwfK_{X$l(4pXeaw1>r4AO=3j3?m{59Q#kT9=O>`8pQ zG0?H$wuLeJmAAs%vo_@Qk|DC9TYbQe?!2WGR?&+&*myAl%R9w3wc1%-KzllFTieI* zI{^|0%q-oeidGpSYbYLPP43@UOtspvJk#V{TsExiUaP$YmnysKiFvFI@i;et$Hj_A zjFlp)x*Nn>6Ua;~&9)HWRfu<-t~r*r1J3M7{*2_9~OpWRer^>d-LD7iD7Eytk+$f`Q55oy0{(PI|gLYhzxkT-MB* z?k_dlT^x1FYvqC2G+L4Pyz}f*@O5qXR8ch4U#I9gX?aV+QED5_4 zgql9quZCA8VP!q^vD`X(eJpy0aq~PqV(Lix>Ku&xrOv^G!m90_DzU+wEOJKQR@Huh zo%P*Ms5)lG#fy72UUHT9m$lVdbCcYUX*LO<>&s0fjYjxC-}Pk)Vb_;sSvsB3{^6>6 z74`>gD_@0eR#1*Ae{l}CAUgw6R4`pw@_y4 zQ|URrvcaBdX(J$cMCZ~)rHBv}zTLm3ZYQYlh`WjyCA&Zp!MpmOy4!~ zV9Xwv|8T^*@jQ0?;i6EbefKmN-^ATBWke7r;V%lzAg3lLLp&#-|Au^Z!1MYmz^OLWzXxumu zpTR-Ju%tj@cmn9#rC+shR|>an#7Vd3J=;)yV<@hCdJh7+3-?J^_c{GcC}ebVHx}nu zm-lpY57tkGDhHqak`bw24~4|pm^uBXyL(JN?!aN!pVo6i@mXefZIQz$X+7L2QH6^H z49rpFvOlhg4kOh$?z-@M5BGFYM%J>_v}Zoq&|)C1hr6wI7?P@DcOe8)g<)0PpIlF?d84CcWMDIKjFWcG14)NIh^kh>bRcDrlk zm$_yT;lZ_2Ge%O1sAT^@5jCM+=#7df35_*8^@m7-iEDx z-3`Utj4p{PO9J>bpQ}3YhAFCp{oG^44%Vt50@~`s?I)m>Ba4PXjREdG`t>4kZvb92 zy~zlYc&-MD=K+bwW-C${dc;M?LcKJ1<9y0SzgPssAa`?dkx?b#L=+7W4nFCMvq3*& z3g?eZ)T3Ul++$(t2cA~ySMS@=;i9r^_#e!^L|8RQ(eo3SBei>2*1%!za82t9V}`qv zMR!J!1lC!$WV251SybAj2D+^XWVRYy8rBza6@!fv+=XG|Ax}kkxM*Jy^{L>2Zg+kj zr;tWV>j0mQbk`6a7&j!yk%5A2t2)*inUW^!>VA(0#ysK1S@~MKaCrWJC)PgALJ|sT zuHK2T=&&bMyl8>J8QUvGpH>tmAM`vbo3|9K5g=uJiR|(G_vRTNlYY|QFtI`yyz!*_ zoc1kD9OG^v)-aYx_}>Hy|3@W!w0Vc#!r44`Z_g0OE`KQEzY%-!mB;{wDHmkeQ6A>D zc9)0s{Hq9LgeI~gZKvJP9peW5$;pEIp|h^W3eA(JTo;yHW@uUYQ&N|K9dgg2GeW`MLE^bD|Dxo`N?y z>oB@Sl(4)A#>|}yq&BEMu0J?<>1>H`Ipa2Fma~4mUxLVK=S!4P(II_U6^UgXZkGn z_hJKURuK8Dvyl5~5`C+>+zalX^wani^%pQ8JIg4Nq)u{4T~m_6nSSp@w3A`? z@e&%+C+)h*I_6BCl zn=-;At$q@~r&wdv4Xptr%yIuN#OVAdg47s zlce(wm(GV?>7bwRZX*6-6iGbcB0xN6P4S#k;#u>3YClm?R{9SnR0W|X)TsdR)bEC03mEji`?l5@ z`Yd)oD!MX)B$$rEnoYV#kiR0ywE1aVEG$~$&d+0TBShXBoyLT1k)tf&zXX@~Jv_+3)Db?xtc9BTE9>C;@z8y=Mw&zA2#VpSYhEds(xB2xyNfp!xm+ zde~xcICTBYy({EjBm}z-p@8l)k|dxzOhEXpyAx~N4gF?SIIPS`je?o0a5Yf3W5LX_ zeoH{(FVTzLVqB2C%Gd+sb={QL6;oc#zjA*g>d0FE!Bnehr>TZdp!g|N>lZ7BLH0`b zZy|0Z1TD{}))J|VB+1LLTayjnNRaYE*S=}B+nHY-N`W`NAx+=Ey zPIfiPwtwSZEM8*G3Zg^LTgbisJaS_n13G89S8HFwy(}EI6^s@M<8v;IwImF=oE$fC zU}>nk*4;3_BKZW0e1{R>CyXA6WJjP#J~Br#6LP+DXNlviK|zFZ#1uxR-QRtWSw1lg zCa-sY7ZO?=HDptro;5^K{N+_jDHOa~uWjQCZM-#|xr4N%#}Dov`4veaXulCNTZI@k z5=mtV;97FuwGRi9y%w~1ZuTXkJ-!1M+qBo-^g;H`_pioj3-+0=Q+|#sQzipXt$xDpiYdlhUWW;Con;vS-B zg@fa)d%XT560X&+QWzt-s&ML1ZDXKZehpXq?C6hHebKWazP5pbX+BN9R{m~ETd%O< zusag(XA)rL(86K(;5QBlJt0sKgH!VvxML1>Q7Rkd1Pi(3Axdj41b(*m(+*jKjhgC4_rO( zZW}c$u&el?k#UdrY@?@8Bl9_nuB!ifLS4idmMynKXOZkLNt#=Xqn?w9Sot!9|${(Mkn z$o|`1N2FO`mFeysp)%L3et|RBdaA{dDcLOTj=PFxdn=+aIOjEpf}?wTmJ#z9GbGfx zT&RmlsA@$*+X@k|{+It^BWE_WxQBwB&8U-LS4sdE?5k!sUNQxna^IaTerC-IqI{by zG}IFY4lY&4`NLCRTw(-CO6R$hZj+P(LM_K647GBKdh(ms*H1@4W-+9F zn$ad16^jgz(Vu2Fj+-*Fg?P4zcv-99t6Tj3M25}NR!7`{B08nDhZl=@lEh<-l$4IV zXko+Me0nQ^4lFn#tuzv)N`5Hn$!~%UH~g0tL#nM9RVkN}g97D(_lqR!O_8_^xV{SW z{46H2Rs~QUZM+Y+Z*~>;6xKrCNBqztvR4hUgi#`?EDV&&awQdV2 zqK3U1ia7k`od+~^OP92~hF%pfiQ=v`&D~Wu$H&6)o(|kADAO|(a-uykkh6PVQRuEk z7Ht2Z6ns(IQ(lx}tk6tuDgk_8BJoMIIlbG0mf)!i3!C)XEV{8a1<+T$v%-wo13!u7 zEW?j3cZ>6EM}>}!_cRm}7(Ei#I4-UkN?iWim*Fs`MXzYMyaye_wDS2@Uww2*6;F<4 zERdKo0>zYGQpJ4-^7;|9MbgERuECi^NGH!BW~y+0VHb_GQU}%(`l&?R?{`tWUjF8DtEk0A)~tG-nYx%^LF7@(6qwt;Pd<+lrovwhJmKP5hOx~u z&$D7410V_W+r1eQO5=~x%&6IaL{_&(o_?BG!D_d8EHy>{JW5@U{G1i+dCpUD{uHf_ z{!6ynpm4XwR+^ejVA6|^ZJH@|ttE1P$&6)n5>LMu+cO8zq zxrMvV08ifXiiUv~n}qr(tgMhw3_cm)N!0PNh3x}8RfH#yjFXcYpvd5h^mAL~Au773 z!9{hgm8X{9C?Np9bKlzYyB~B@dryk~DQXVht<;y{M3h%FjwXAKiMfm=(l0zlPSzo~~ss|%v`Xn$?fib9)Cp5{QYYfQ9H*)ogvY=H@REK`{uQHV86 z>x~okeksM)MHH;b)~2^TZTt)a8ZYyEV9X?WExEL>bh5sOL`^5_9r72Qtal(Qc(Ps$ zm9?+pX{_`SaALb>1RU(@nVj2wKsV2eVkBdc+{aK0;3YcymHfMpaXG2UknDCxK#den zFEQD|u6#%ka_N(zl@D3Et8fe)sfmxBuRPnepP0kiN^hdQ22KYKgX0k`QhQ1MHe&KX zN3P?ou2w}ljLviDF!h<&{NdQ8e@2Dn%Km^ z_!!4W|@?!oiR^anI#bcD`DG`Gxxs?_%%u1KR zTGI2Zi&mb;V%)Bj7jY}k6G+7JJX#Vg?t|x<8wOIU$0@Z`l(coQwy&pVR1iYS@8qIm z`5g}o>4$!&XCNIHr<3NRGv#ql<=}Lr+d<*^+zwj!68$|j#MD5{lQ`xVeVA(x@YF69 zqz5D_)9HBe`<#yUK5QF+{&`6tk%gSda%(^`T6wAm<$qOJTDdSb=47Y2+{jL6q(VmPGt4D5R3B;oj-e!^Sw6xTv&`}#3H7R^WtMNpD6@QrH6p)ri}%JB>r*dj zm-TB@sB*UA5^G9^`L7sdm=7UtlQA;PeDYX^nOOj@jg&@<40DTEWSR_fOZkfob4%nU zs9~-)((`0)!+d0LO6X$tTNFfpFqztm9-$lJPF#2_H@HFW71Q&Nd9QF=P~hiKpp)}#89?RW0A=U zaOl+oz1o|Q^Q5PlSiuT69qTy?;TdBr%s0n)I*YBW4lOc%HZkvK1s3L?CFWST`g!Y0 z;uNbv=znJDM~eHbm@wZlF^kgH*!VE(Seh~3(_EBcrGyoq_Eb#cpXM+(G%PkI51Epm z8XjxX}Ti?xun4wrlaa8X$^;l6Fs%!hDa!PR6Q8~(ow_-><1h(p#T1lK_1=NS*ybqUDAM}o; zVO-JFs;m>{-PmnrCpdoUL;xTbR?PHt6&y;P*b>l*EwenYiSlJoRHo@6Z(p{I^7ds} z0rjFm8P$tMtU&exFT$>R-WwseDx)lM?oODF9?{cchNGuW1OQ_HKia-KFskAS*mp+) zWRsAD6i6#=s`0a6TZ~S(r z{Vq0@h=mQAXf$LZDZqx@ZZzahQh*IvN*c1d!iE?V86b}hq2#e4CO{mob&tIhqfl(f zc>ji|>CCh`GCd8i!!HhW!rLn=?4#LxL{@aLY4NFy382@%RL;Bt4HtLad`IeF`@Saa z`&qRQr!rrPGGi)po>UYWQ~ONHir;lUUe_m9CeQH%rLhL_%7m2j*B4Mf;a*y8znir+ zBa0U}St|nFwgx8V6yS>m1L9>Y$R*h5NB!bSEN}vriUl?m3!-E!prr3vXLtJXLPyDr zmpxEFUN-gcdV6=jnCBZE#E`J-P1K&zeA)(ke(WkCB@PZ&izgf$tOnTv4i2Vlv`;HP zI7r!Kf0#W%T8o2&9SY#(S$aq12M0?(u@B(KxxIjuDZ)4!hzY>SvxjfpY=4lwOK>q? zz8x=@`(6j7z37bP5nb{-h7csM4C6xniwYAj3)wlaQxM<#t=-N3BKR^1$IF2OOYk!> zgV67=A%#hpl!_#5fr5f>VeJ)UK@JhN%n__5!9wC036gjYDL^T=?i-P&CGaD!xjM5v zQi!ynmX|gzSO(M)bhB8nd^z68?gU9@_bnj0$nJn)WcS+yqnG)pZT2+V9s#A zPD9UbvlnY@84(U7hgHi*?3GFH!UWhoAf9xkUotyQiZL3T zN+8kTd;&%TE2x)GKi9w&)CcSM8SykGN?jakG6+TD}zOd9nac#YOJ*lR7g{I zrcEj=lN6xBPBtm3xoM}pvDTM2*$E4W{RskQhTeSXYks@5g}w&$-eu2-R!WPMK@?c< zQ#m!_nTc0({_!q*eQgr|ZI`_fn_}kUG4q-0;}h|sy$MmAkB`iANU$oy5 zN}$Hh<>cLvd^Zs}#0!FcQUkd--smNJy8yNCc?lx_6aTe#?>+XFel#(|r;EmR*Y=b_ zpCwz_yMzqd_uEEyy-fSGL!U!YS8`Fxa-#`?8K5R7>46e~#T!PZ=YQbZ#nny$nn5tI|kkJU{=pvo?=-&pv|HBJ6OFGXOhJ zcs;rJ5qZKspQVr*ID|;9CkH)=^?1P#j#xhEB&>UPHel_TLzjC5OXfF<3BI_AL7lI^* zF25$?(8UHA#?YlqJc<7<-{6S|gBQaa^2qn>;Km=>qix}$kd9@3SDngnrQ+I0_NPM+ z2sD|@3_r$K@LyM8JaeKQ;B!8<&tU{zNR`WLoeQeWRRS>bnG*VnVq%PSBF@@}hkj1M z>Q;cu3XCFIKCj1fKZWxW1YgLMXFDe_vFX)hASR4>WIyLZR;|9T)$)cP{M3skpcn+e z`qaFxetj7Ll1U{D0EzWU0BBxc27ofK5wR9p7YmI55JReB0EntD1Aqp!MF9A_9-dic zR8kcHNY{D&Q8=vw%Y*ghd7Je#|wUeMqp7)=A(b;>8!FKvjoQ zoJL(Ir6OKvCwcz2_JJ0Vz%);*nWW4X83ZLs263bS8RUFfKTS)L^ixP7#v`bO@yN>n zr)gaX7Siru&>lz%l<-iB!Ol%ekvJ51iDR&2n5=%7WbwA+%xQ%i}FvQUDt$4!F@of^09b!rB@YS0GK}(#Jdg)jDlJY}| z+kS(sZfi0SqB|=8s786|l$KUL+Q3W9IpRKw2p;|iEYC#|b~uy>z|Ip1pRE^Hs5<|& zNAZ2`>HH{Ng- z))FkjAxC@c;whS+{>$Fl7Ac;o9p6;i!W>;z__uwZ#)^o5;DUL4aqY;;tT*^+j~VN7 zE=Alh(ngwNOPGg%jRSqxHOE*sL%}&5=<5?V3jnh{w^WC=b#4Sdcqqb?EQjJt4%A=? zq6W6o*exd<mKMCT&~zliZOfdPA1v=)ntBTt=<~mDVbKo(WLeSfs7&>pHc-TxL84%;GD5u zbw_KttY|G1f^X zRdKA-q=A$x7HEsH&RrmdG)_nu`>HVA-hz!m(4Q?T0s4+>wrEmM5U4qGz8{l{j!6z^ze^hL*=D>)j^S ziT}!)e;4H#z$j>qG!&@ zs>>(Ub|)B8rEiTDtm~O2rq+39>S~ndL;QmhRZg?lmLhmgHRoid&KtAk1UaYIt*Y zQHCSUx}}j}joU~aY}`YnaZfjrDFNITQ$l@@>MbL?6Be*Qizl%Oh~sEtM5ZG}JIa@5 zI#Su|W`0KqzY|iKnv?Iya-`e-jT!$T3z7h3g`Ix~(eO;AVN3+n(^VoMQO6sTMUccq z5S#*rfr+5Hc)~)2Effox4Fd4=WTeP!5Zn$%JH1E^Oa$Hd5j&V`k~1j5(m6#g7iP3~xLC0n zQ}@Tj*=q&-FlS_?7&(I=$(#|FB69{{7&&8wc*^1*b#!FdGQ=~@8Fh&yIC~w`$#EZB zL!g*44)w^YWXdq~daSb}l&vIWF;zTD06w2(+XWQENd`aC#c>rf>CUc>BzBl!%iY2h zW4DkL6y!LDSUyPMp?%=4xYMKno%58`vwAi0JXoVRIk1AK^>t*{eppmM{TTCw{VB#y zA)y35nQ!?ug``9O(gBV7%T>C}F%d0pj@Jo{mCBq3E(N z3x@6Zv;(k4=q-~Jh-O>PHsUox0Lq z6pqu~vK^v`7)WeMkzlwhdH{iD8f^&yOrnZiEJwKa@ugm1lE+)z`WduYZJVAIjN~! z>2{59^kg|^%ufE8A}_}TXrm{R?<{fLWsPp?U5isP8EbJ(!S5RfYjpP$bn&H!sB-9B=(HV=I2{vWfvV__IhSHW%404Q znBD78$v{!)gn}wR(j+II&z=D52d|j8+7wqKfe<2c;qN_KMJ)W`@k#+i24F#WeEG;k z$CK;|!NoXtsi}-}mq-E5A5TtqWLo}e%DYa6`~LnRr8qYDQ<{?+e$;Fx#|D#m@=Qky zqFQ6Y2>4)pr+hH&nE-J-YN}&6qfim|v@fKtN0gpn8W_5G6|nO($92}B8MKoQ4YHfb z24#~1UxTzfuFZhqR6Z%h_6+2^<~ii&h;TCJuBbW2(H`J}&7oYdITQd{ybiB1cVb}} zfy%=xNqq5l{d%*xL=GG_iW4l1U~_FYjK?Vewb2U2<=11LO|hIeEKhv02@boWNs1er zEXSd1MWB7FsZ0k?o0;Jn<`V+yH59d9`v#~{OnKiTl~7ag!7D#ay)QLonGAtSyjFNv zl=o%(Nj;qLzAQx+A8WEa0mKc-aK`%&K}I#8WH-x6c47ex2BT9|k0Ub9cq0fDXS@`E z{qJ3m4B^8UI_iTFEnWyWf2NXpnC2R%l96KTRIgQUTjaR42M3c7un<1=!?8)2eJP!~RHDo|*JX3}1bRqnK?_)aAL{0PH;L`LsJ7U$CbLF76>cmWq2w z+IC)Y51demxeKP8uM(uJwGKOcI~VtdPZBuTMKgYVts@NzFHV71d*HMVhh(R`bYOVidY&!!u$l=5HW&0`c;}Ul?yN6CLHbZi>FcW;BUlMRLi)v${!{`-`uVqc(zNDc z^EsBkvD(puEhHF7zSu{8*BV$F-bBig@;XU*2Z1Ze*BO#uJq4597YGWHhEm+z-kvH? z@&q&pFl=!Mc~hz}4k1W#9C91f7Mt6EVGKkr2u7Ru%Nrc6Z0iM-4n!7_zQyH%wi_L} z>@txJ#LwePo(!$@@_^UogZaYffz?9@X*e#^kDojf*OL87pukYRYs7vNP>jLrc?ox% zW3g!fpjj;{O=h(yQh@7t;sS-#G`YW$MhY>OHBBS2EE}-IYpfTV<7=$7e-cdT3IXuI zoJM(IPBQ`G___PRWGECvT`iDNobwIk+a7QnV&jN3IMf(rv|$t}fS2_9S{I}lUkO}D zO0WU*Xanw24e0i;qY-I|b$7tB zW6gAvJq4vpdkP{2*owq-qc7@{5^P06Ix(hZ={{pJ^+mYMjKBa}K^b5xC?N82ht4Pf z8(;z1e0J1=XFuV1in)n2*bNS&0S;1t4VdC>z%){V4VXk5Fu%eE7$ZDjfDNDwumKc+ zBfN=E!(tYNVk?IDx8mMs9GltGL?mp*<3=kUCk4<7GIx+Bcv2ta)7qvxNM0P z!k=+(h4O4;m;!9DEtCzm#RQ1s&pr<(MWNW19kMN!&@?&8!LNhXOp_y<-ANpUh{KW1g~@@CSwaZ96p*d}UfE0kN8F*<=oBTvAt z(ocIF>zISo!12o940+@xFN0saHawQ!`mfsB~DyJr}=n;^;D-2`fj+zl8;?%pe&y7P|v9W8BL#WT&_sYHq!Pde-K zX|wA^@|X9+i0U9I!p|`_GgscHF!1|-ZRL?JLetx+Lb+&=r$rSs$dAMm8staPAY%d@ z>4Nd#LC4jAR=MtfV3j+!6vBOamj(p!q3<{{c)!Dr$Juq&DvpEr?-jt?p3?s%b9n9T zRmWiVk76T@Gyq@E-(X$BQhc1*p()Cp6N?7JTV#?txkhVx#G1q-HIojdmmj zXruYHBGW`wF)&6G?ME=sM4>90Xjltrq7_JpCaSeCOq3u=6TNJhC}0>SI!8Qd{I<6o z9c+IKHBb}1LiBd!%tbtpMJpR5^kgEQ{Ge zMO;oW190;k;1MSrJK2W>7pE~NdD2P8K+8MS7{50mS-vrh@efj<0w$CyYpjt8-CRwQI}yY z06WiuOc~Z5JPY%Jb)*J{wN-GWOla|8<3oY$cWV;WHBaCVju z#1}+( zYi~O*J8m_b^=USVNQW7FyaIUnmEKjg;R0VX^K2yl=|pl}o_592i7ikpq*({x>6xD; z&AR5djyY^Csexv_GE18EJz3JMFZ8V0pFL^DdenrK|Gi@fJ7UH4Ce@L2~P`ot?P~!w)p}|ons7<0-fXS-Gy6N zsHkFCp>Pf!{#r(*7lyD`*pF~-q$VMYE|N?D%0=o4D7pxAj&PB(_WyD0vRFH{4C33m zW;bA6NVS4$&e4_*EtQkNA&8Pc9IZ9DyY*K`Cu=rTy0|bjfx&~XO>#$MR(z&qL`xo7 z&za1h4RwZSV>nV9MyX9gYL?)Z{Kx=jdo7!v`oj^!4_~cTy*$Ot#>H9i(Lh0vEhp@d z>M}|dKA#LS`cqA?WVe(Tj%8*$TUwt0!FLwsH(*bhDLqCh?Ix{_<7?VFQ?SW53Wvmd z>1}G~OtroPQtZVXR;@yd-&cOW9y0+K8oEYs+}QaH zKPN++E=#*s{Ko8IO;`srg=|8hr=);wTG}kNA1WyM;`jhIftnxM%Fz5ULRIvk<|b6f zx8mKJ6t|Lg_HUYB0_0Hh%LqAa<|0C_ln7a&;&-%?ihs;ZX*;2`)2FZs_5POB`!O?_ zHwc*zePjaY{d+_2SIrc@B@})mO%i&CPFox5wE6kX^rp^2){@u}rmhw(W$LO2h9**1 zLQ9#tXaK>~wRJ^f7NbI#HC9$3%$Qq!n3$R>kOx!Kh}K4GB1m!= z-V~BBVsCF9}GEVUu zNzORFq&OtSszFuEPw?QY>dQ~COBGSi*?=#ouhLU9O0umaX*mTQ4f)9eA7c~uMX++z zFtQB-W|&h72s4y3ml7?aa&|%yF`oc&yb$xkb5omJfD}fx*@P74lj)Sy;x;m$Kv!cv zK>@|(nqFF%P<1n#^&WtPxiT6`KhPc0oJ>h|XKZHjaN8qot#xSQ{ zmav_J+WT81hPuq#V_A%%;*C8b4&WfYX*SpohPr0r2}518>V@;o>CVBdKv9le^y3>aULY8WssKpOQ0wyW6~*euUv^MXX!RL5cHXHXX-8$9@o33qM9 zcr>`Jj32y9XAEr^I;yoLM5Efu&;iPnq2n{?P!ZeA^f<VyP6co`$>nc|1oJkj&4q8%hAni z*>ZGqBwLPdXkV#`IWZTn=LuIppXWkC^!d%=34MMu$Q5v6-aN+{;1b&lInD)a7ilRD za-LNHFVm`AVvC1jFx!r3@JTQq-QAhX4l5SY=L7Kc9BM0lesB+GG5d(rKu>=kUNRDk zPVcofd-_!~>bD9NJ-q^E=;^P5Y2vpk2$J;lC)!F+2Moj06WYPkt30@mv$^e%fKpF? zib#Q;ep?^s7M3ik(8+ZrFLpI4^^d;JP*#u7Mt9F90Ojtj1QgvJ6pV{dU0-qDZYgLd z=dMFYC3N;d?TB9%x8qr@N?P;71DqW!1F*z6^xTKkLrd@3PFi{^AS}l5neC*dQ!&xf zPnOnYF-lurn-l$yhQ3KqMnmV~2@RdMtH97t>fuXRy9D4ksr2dz%Q_zh_XM6ooh7qw4y8zd8@V?m-s&3 zo|oJ=G=ry%aP|n@uh5N~o5tR%=d;%oSl%MCzr8&9u=DtQ7Uk2XacunM_Trd%BG1=a zNAaU2&M(<{QXh|+D=CcokUxdy%^MoSn~ZYqXFm{h)c*DOnIWN{3aD56crN|c(ayc> zZ;A}PTe}?XKil(D>xXu;01w}p^zv9Ax93@7ofny{1F$iov5+-N(K9p#S1*r(OHu3F zwQzpl&S3b6`4}9rC{gPO8h)Y<9Pj*!btI&PArc`B((O7(QR{RFD5`-4qOL70?q+?t zJzS#Ew{>T6mc6&Sl*n+!+a zoh?o1;^UVy`czA2ca=wPI>p(?gg!)1<~!5h3*yWAR!iqor^q=hT;ga2DLCs_tvMs& zh!BvMsMK#9r6Ns`cZ-x=nCh&dv0X$2lbaiFLXev3MjOmDDsK3^31TK@nzsa5%rtL{ zC(JZ&cfd>&a5oP^1McSSnE}awe)_9mrt?+y1rZXn!{-X%WnH?Viu0&ivz;s14MkWc zh5(#A*E{g!Tb(mma7ShIB6@2U-ffOkexk+l4f$8QDg0inBZ-B{L}2BN-y?+mKyQr zqq_vNY(f@aU(F)`75)bZD0(%h4F^ey3!RU$Q3M%Ju?_Di4-*b21-O7SW|6a4yOkeZ zp zpOt^m%xtrn*<(It^_DraqRKPlCCgx?*31gun}2bcGfg|lFF-|h*vx6anbR>Jr=UBW zt!tO(1fTaTbj16y!ozu#w>XBU4V9$vK7#?Eb1|Uo3s(?`50m^(d*PHN%mvu>-LZLF<8?_2-F8u6qK1rZt|7{lEV zQXPl8)jP@L{fm+gU+~B!h)TNt0_v3xzvNT0!g-`}-#G5d!Mtr{&)w^MQq#tB*Ggw| z<{?~hB0QG14(tzF2j5$sv&xx4y2VJ)BRk2t_DDhm=kBYaQYp_~4Yr%OPR-m`P}*Q_ zl6KJ=XKP|yUfO)y8t1Z5LKUs&tx%m_MWih9bF47$Tq zO?b^{?Qb!)`Qz)Hv*9DziR+yWLywVSj#s8lUJv|EDX`3Z$M|3Coue2*M}9;{#!=-r zI*IRB!k5fq>WA2rG)5_rMt)f`=gI1kmLkJM`gigfFuo8&W0IQtlep;379xgYqKfDY z=7WhUQaoXzitJp$lxQn=26*>#_-5yPmMUt~rM|`r;AL8scR#m13YR-RH2Z8gf9lW9 zbvNDb?84eB4l-8-VCiYsS>~!df{Zhb{!k!h{eAGSk*6x4fO)E8XCqG$B$=m@JInb7 zU>JF7fq3f3mp|mpw6zn@G)*-mqQJ?bP3$fLP>y|vfTCkV8!&Oe*l~_!JIE`(VZVb^ zLciSFSw$VobI^riyK@0wyVcp+@*tK$z;O>r3n3LT-fZkF~Jn-S{JBIZRxM_OiNc* zez*g+RK_9*6MS(v025EGF4B5Z2r^nvG872wsfT|%@WU%(>jY8_5J2OJ>S7oV;UbKu zp=Q_)AQ-kYSUg4Xtxr1J*lLMqYCC@@O>nfGVMH=zJ4FJDwgUnv+nEQ_3foygDxvMn z=|XJhPLNsH&S1Xt8L*w1SY{-vsiYP!VNyPVA4@ijC zb5PVk>p3Kz(0UGmC;?X?_dRdgWku_mvJ;lTKPH@Uu>7F{c$rpZs}+uEPlxb` zmtnv4zP$;xdGHI)mh5ZAN5-Q7j6IjT$VHV;UU0(KE=UbDtKSW?`nij^@-?5ubOlWq zo`56lNWOMAY{)`6u0K}50Zs0T*W?J2j8`Y1HtaM+0)}C8-36a3UHGy+&StjD0!)qW z6cH20)xYe4lNhWo5e~XIk5_UN)lZ>etQR4R%PPeLfTpx{dw<3R5G@=us@5Loc9p9t z^GO}CssaOOP#hg7-_cdBtaR@xkL1h{2*yoQQ%G%L<=RA98wZVUU?J92oDzoHY*c2E zcQ>7Bz+#lvyk;kQA8q}BV1TxMP&}cnAM9Fzt$%aSc}Mw3`QjnxW_E@MinjiN0(hC0 zuBv>bl&_)wR2avH9dV9kmlbts;Q`orE_Ia_KI&EHQg)NnKm-0wXl|>xagwwR-Qx6{&W>8>a3viqjfl05lfM+EvvCS62Z+P@ zn{PY&nb5^rN9H3B!)IlWfjZ`uuXFsEa~&frgy^|^b%WY;loGB0UZzz!iwf77KgyC7P3ds~n0S)9Nsr^FozJkgqz2}cR!}Og{_aHz zpd01;*D!P2_KC9-8$t^4$UW2&NABS*k!@#T*>c*n%%N-&K|<2w4bt;Tfg(L#lD?Z1 zB5A0lNY7>4NI6n{$e{W>DNs}&l2i|nLZk|{6xCRsv8y1MH$Mk!CLa+@r2oD_|0`0U z=)W)N|40gvKGec@5L$G@)Eg79BlyMhurtxHn-O9Njtnt1p|aTH2Mi;`Bz1?UhCK12 zvxO~5Kxu?wL3`rw5xu zr_W62JWF%%>zAAjn2XfGVP#==;`1ZnLv}E%v_gx;E0$T7d@MDbejurfPT#M)99XvN zE(exvx=V+rk}8KMn)3Rda0_(!2Lx$!_y@%kI{bqmOu&I<#JA3JuTym5AAIXv&t4)T zVzS+(0A8k5-lNN(1Dk_8e{lwj&y+;-HQzhCvDXwI83Y0__8jdlgTU#3;Hwg6Ne#65 zkGjh|`hItrca?kmXhyvXghaf!rH7xD8TU0nDSj#-oRp$}Kmqy(aKIc~fsB}g-vAT9 zC0~Lh9po9PEgS?e3T}s zNN=x%vaWT!wMe3lVOzS}$Wl<05DA020D3h?% zaFp?+E;`DX9@0??dq_tq=ph}2N{WsWQQVouD1~`VR#*=DNtvLGezI3Qp`YvpSpxdW z%$tGyB>OM$lT$=O^pkfLz{|8Mej>l~(Fm>q^ZJRMT~I8fiv-~5Ip2f0$SEhbVRn)5o}dmoDh=r=UBpHTpzjSAfl_plR8opA0tM(IzyV#P0vXXozJSh07a>T} zMc#tiV)h0YhKslaqc3{!@E})~?Ysa}A2~)Eiav60kZY@j4I|Q3)kpk#B$O2q(&!^I z2|)S?eCaB5nt-B{K*z`tWQc2)wu=^>MQN)MrOs#HSs<+WB}Ip`uE2-4^xABrb*kq<$XfG+Z3xXb@^ zWI-+0UiJf#4!z@w0(kjV`Ap>DcTb1&7V)m?d`miHk&H-JTXs|NkuDN|vFA^)Z1L9d zwAX_o_=48WYVnjPS0Rh)1+AqX5Z+5VO9=jztEVvm3G!1`*Im}Xdm83UaHKhZ1>Pde z888fU?kbr5-IE`ScBR?=6kux3mq{~(IrE%vCR8iy9pl=lh4xZn8oSa7qjI~jTm_a> zuU>p>oU4I9`i*L%8}T)_*Ggu?%cD=OO%Bfet#=xrDt8<9tvaK2|L(F?9Vet zgtcai2voVu0s%#rfsR6#8J^%eYrU_Rad7+rQVVBYyccnrM|6J4FG>!B8& ztb_+&@8Xsto`gKm3r|AwuE{R(P80gzK1%NGUg(3CuD#?T$o0MCW=}bCOAhCzS}y{( zg|aP7dGHgRKy_dh_XJ_Go_fSnhUhDZkOo)!TY^?;w8mcy1%M zg7Cx!Ehi1yKpOPZJGo7wRfD{@>0gn%SFSipT z70higXfO6}17yi8e*Lbj_(Uazq1G0POE6zL$<>Kx+O0uanjp~KlF-{{1h_9oeN07q z5=w%JIbfu}Cg@|Nzb>9I(q9MN1dQ~vGhNFA-dwS|ic4?jW9)H!OO|U73+V$=(A9=u z1@H=A`oCfq%%`++m9V;sh0GWMczWveF)~JLmz%X9HE>YXypPNiP4I6AzO`HXIxz~# zE4iS8!=8jbMxG$7WS+RCkDM6*hLIy;4l?fumX;ALOM4_I~OQ#-k4v+ato?B@WSJlmiL#i5@vf{b1KqS3`WjV@jj z91<5>0R`;i9o{}BNV1Pt7<~*FMjwAAo_6rG99L`GHt|gRxRi*3%Og+cxH7eR-zu{P%7U)PGbs{M5k0WIkflw1)irr_Dq8%`ZCE4BfHHV%)&}Z6Ch5yDNtg zszTUYp4r1y>Ff_`x7C(+e0{AXF^(IQec!`n(ZZtoLUX0ZLqWGU+b8jaUaqq&UctHe z>{YA{0OdY=6~&8tyXrAQ1Ve7^Fi{(oXne3Oye~O^P_C3nC-2GaO1P_Z+DSk$or0O* zxWwJpRm=(rvN+_V<-miyYp1$ANtBA zbx;hx!uKf_8dIV(q$-YXQoxOY!}DHb=fj8YiHBa-ALQy2e_Vk+0wHVIc&F zSI9Oe0B>JwJ>Yd9=!IUS47<8pKho8M`uTNrqUvhnV=08R@%=0Uk>5%Yovw}Js~s@b znqcNOhH{&!xQRZu{Tny_i_`o*F^Zi?;X#s4^Q|p z&_9yk3BRUzvjIG54dEv)1%7Pe=Z_}vgLl9$zD-=uhgYmN5w}j^g>9F`6W)vUsJJ5t z?<5*6?ry>BXhw;5&hhSz-r|)^eAT(Vc+U%84tzqq$$~ErJuXff6Iy>O^gxGV&{r>mF<|J-$*2KLA@$-yW{KF;Jx5Szdt}J~erqehnzeOY> z9Cob`Pneu7eW8QarKR%TC9X1dMRd0@2E{0H867CbD$tH>NULwT2?>0pE6oxH!6$4~ z?PkPqy{Xuv9LoZIbW`y95t7Ej5FXSBX{= zkMX?$XYTlsb+&Y#^m15ID&8uGVM?8%BWL=6nb*4c#ob};dCtMU16j72TPwmXjBg(2 zN^Jb!TX7jQ!`BW;O|Bt?08Z!m+Ql%&8!+D0k~w@V@_E)ISI}A+SAYJj$MqnarCNba z<0p?^NL#=??AQD@5?{dv-&qNZ%QKY=`LnNWW_zVnv-pxkt%i1-AD!)L#f}rU z+O4j!)fZASWNx>U09n*zXGC2XBM-oktPb z!DVHCS%wdgqZ90_$pb`RwX|M^&L1A#FOJ`T%$31cyc-_LLub1x^L_yeeez<{n*7)z zS0h$LWDuQKd$9mew*n<%+w35U=)L2MU5|yXSJnE<^U2s74=6CITwBi@FLfw2}?c8~>Ty1}*iiFK|zYzGld_0m?-OV7z(ss_R27QQV#I+kBw@9I(&%eFoU z`nq16m%!k`7`5e#_UA<%7695e_mTE&GWzDDjjm(tLsIpBXWoz$l`Q~2ul_JDFW&6> z$@1qwKKnk{vii%PzhU0L6U9}}RpyORc>X$9Jsw_Lhuy3A7F7$yqOYw#d({XJ{%Wk7 zYf|Hnq*>PtHBPImzsAx9CXPMj01!t>wI4C(;?!Ij&Y`YXCGfW`U-C$7h!|R&y04_a z_Jl~-i99JLrn$C5jvp?ZO;3oWLml9T!{A5y%SFbYx42gLkA(_eEAGhO*y{R{&GwhA zDW7(@PN%%-3M!<;(J8O=Fo{EE8^&MT?i$YSP=sZ`${(q9iVeWdb9=5_SAOjg*DiLy zf3;?On#J1OvI#n09Kv6hD^5$t@~!Tv9oP#2P}4MtsjcHlkHMzwF*DAZ=Q;};RO)_e46g z1am2}fl@ynX&4w@_t zo-tMwOakz&Fap4%)OSM7D@U&z-FH{o%3>e^ZxOkg?d;Cmm z{XsCRiEo$8l1T+$`m!VrB7@=PgG3lk;yZ)2DEN@#uD!5zTNe?G1;`kG8a?^-Meu#n zs6leiRvRR@>;BG@2Q#S5(6v3~ZS$nByg^As30&|RE$HKd*BJ4H3tnRe$px=`fqh+k zo^uGq3)gtQf1hhpfOvS{e%GsPk-wluJe;qfUe=`#RVg02__TwrIc%jOOyXexcAnBf zG9KQ22-Zj*@vmmY!!6JYA|5_4NJb$H5BtohnaAO?ML?|XyS-{w-}1*I79Li3@MRE})Mkqwl3+2Dz(3KUba(^Xn)HP9~? zBuE7rBxXa~d_h7~kwKz^V85DAf78|8Rw|%0NX#LUV~~J})(Gx+%hfwHM~O{mTYVK+ z&bD%R!P_v~BIwe+*9>b_$@wiBP&7Yr%oWT!6L#q1;|M_bI2$bh=;NjQ$Z^+`)@AvI zci%x!m3J?Jv7&f|8RrnI@|Aa6K~sDi>)%j*t@Jj;Gn{;`KPkh>XXi^N9}Sy7;$TJz z%=wGqR4Wx)IXTg_*VBaQqm#cW=%bUrC7#g9-^vf@m~ zOYf_ae-Gwe?{J0l;167**mXsnIC%h`o@=0KvB?@#0PUmRfXP!D?M?{J$(j!_55q`|)2S0+X*J}byUE(Zh61oIVhuis!ZA^zF z&IMI+IYcV4?gl^BZ3q)I_FMwMgw`KL7XcsisS?`w0>k7zq=L`nwXs6G#v5X2_Ol9z z*@HTi*~81^fSZW7@PzmilSZ!<@yO3$U9EqC+|21C{%dUJQ2CYJ6NP#$P)Lt<|Eyqv zcK@7sLc4#iAfVk(`i}J4dXwmpkCHhHhx%Jh~Vcgz#)>46m??! z0eE^&7sw2E{-SFd``*8r%y8N_(gVIKkO^+#pgw(AwZWhhv#(fg87wngl(|%79qksr z>oRQBC7BCF(h-GU!}3XfwiapeavF2V9o}z``qeP~I z;I#@Y7iIuYF3gm#fD1E^1genQB`DsX0}h+deeY_?>wl+)#rNRJ){UncZwf-Ju=iq&O= zfz182&IMI6_YW3pcM-hVkFHR*oN&Z&Xd9yZ0mETk0l?f39;U)!+aX3cY)>j+I2^IA zYbR|8836QvfwOmbZv{J2k6aIh@@Tj6r0$~82o*kg>Tb(vuUoUX7SNy9PL;XEsDg#6P7xAxg{yHEn zzUwB;pdSY+f+ZRTN=a>)g-<%u=X0qoMyJP|(mpgYp!T2Fq`81P^6d)65cL zsa=ToErr%rrLaZxRZ%j>i;#|4^k(qg+n+3Y21`>Yvgg+HvvsyKEhHY2T`140d_9E6 zRns$T|0zU4H3iA3C$Ph%g7WM}I9xUP)7A78Savy8O;2U{0oe_t?A(go^&mYhAUkm% zlBsnAU8(+%mHNQdt{4~Ea zWb$gu6QE=9g@>mIK1LW+;A6B!yH$(uM&0dLXvCF={p%ZX=%LuLgj`2r~t4Xn&D{T4-vMpNgPxQvCD&Mp>}0|s#P`Y$}F^4 zUQkPKV*#tkx-hJ{O<9HUu~ov7pQxp`XA~g2;Yb^AH)x;x8j6RSiARVoGge86KYD|h z2q+jobA`khKl8*B#?L%xjW`xWR!Pb-qV(!ofB;%+P`~Q@&CRabd{b?GHXCPF0InU6 zQc$k|Raq+m=eNrR{qz{!!){g7NfZsh(=*#nqUgQ;)r=^57odnJdI$bB?f|NQ77oDX z0vQ@cv)t)1A%rw^Lj!FXUs^|ZM+jUQKlh5Kx%|62dVAY!@l50A2vQy6CvF)WBv6c5 zcpxI8TgytuPo=`@#w;rQOY1y?Fdx)J z7sn)2fSE(7-dUb1eq&*fLtaF_q;1V+mWLejwbLz%6`}V4rT3(yX9bhRcTZ7H{1yR` zQ>d>QA5kZ$IUC?l(umA`9a5`p9X_pMXg*7@QLASJz)!1pG}BkGYXlD(o)`L^0vMs$ z52Dic$yB|W#p>iIUmupvf}B3plJ>&IEvi>)IlWe9OVhJ#%F2uYP1x`WX?ixJ01VLZ z+DR~U^wRTixa5p#FGgtMVFOP1H?r$9391RCml6$9qoslmn=fclS;U%X;!IY5|BXsGDmO`N!Qf`jY_ZOYE4Ckt&2WM*uDxx{oyUAc1-t zI=qSv-QQkMfJ<0DZm+MmzAu{bWxb5h4+$fA-stTPdPeA{6s&D1&b55#`MSA?VUPaMCGu&D%EF&{H!Cs>u;|01bFfIK}b9 z7+%s@zcrM(h~i5A&5)C{Ceov zy8NMTy6gY_WXJlYkJ#2fbS{oxxTpv7;obG{FiIcp@E$+g&3~WJFRJF`siVhCnz_M~ z#;G)j1-sr?H;4OAzLesjMm;*4T4uq+!dc( zGGWRF&xbC4WUbzce>X@U^Z#yPd}+SkA8zD*Ctpu1FIQ&Gm>`~7pqE&#y7+~A^%m^9 zS+?*0O}0N!w$_$QF1~B9o)`7Cs7=Sg2YKWWy{A88t*8P2eYf6@Md+#rkKC%~ftb;S z(6i;#cd|}=5T8=0Pt+RmvxRya)|k{38niUfG5wddMtmoOv$w#b?N4^MzZgcBzvnBrgXgwq7 znd-%soh;Iy)YvLg5hQQGA1l^puuTN&6My_LeTZe1F2x_#(OQdl&Ak-Ie;cMxw?1Yx z1TK15K3remNA{vnU&aVMhwUX~QGKiUTO;(8^4ReudUtlLJocUv-R*~sB6l7M96ux2 zhRC=2q+K~m-)jBdt88ck9wMY|7s_s^lx;+NqBJmVNYoq4E{@g{tFanxWxK#FuePdM zOJ=HSZp=z$izn!>X)M-+AFc3>z+BA@E3lttNAuSv>O-uJ;D2k6X0_ng>(pUqvw38aK1pM(Ol$~#U4;+l&l;=D8X*h(n<|sR*V4j%n4&jheN3biRSOcz zQ{YD$3~j;pP1V=IhcWY}>0{VXQXhNm!Zh8*MiHpb(C(hD_kk28EIjn6vO4_k-hBQV(p5w2uqmVzIO4F+w=rJZ>Ih*9G0##3xdf;g(su+ z{8@Ta?P31NEWJ6~N(+C{M_C?pR}g8Qa;xQZ5fBf}*3(HqtS5!r$p4mM`3# z&x6&=a_Bir7ggt%=Yw7R8KBO*`LOEsFLlC-l=pb~coyib{py%nT3;&g^Z(k?b6Ps@ zx=`=ST2L+`wC!G~?`GKq>a)1Li}a0_7DY0&jb5yOV(ndIL}q~Eflcue4C&7#DNb`< zuw0k-GyJQ;B`?+QhYjZaOZ7%vvWd?5Pr|SdMBQ9ul}&*YLPKMA`QL>@j&}tv{fE3C_no6qe#Sr zmJkj$t<(!Dp%AaE^(@~M@#`xgT75$Vz^)D*3cf_gT$f~5FA0aUcwc}3;!ysU=X596 zSL;8qB!O-Wo7LDfb*M2mO(VrPvT8aM<6Ts_acMR`ycSl$A=3SIXJH+_bC;g6=~&&$ zEF-8!CJp78E8LC!gv2n=*WAd&q4HQYG!TzfpD&Vc0PXxLDTEK&pkKC39Lhf}gpe|s zv`F-rWrA!``QDl{6nm>0j1`UZ`tvi28j5jZLRGpBj??CI7+Q}Zf?%WWF*j`55$RZX4n9Bx09oWY_%jddvqLEY z$8+%Ox9C5IB^3LN9mfBe?NH8vzKPNDeX&0SSk zWfAcvaXSow+9|>uOfi)oUKiRSE&w}E+u|UewI<2N8$AN~zc;D3)af1_8@P%*Xj5&6 zewqy>HM%Wy7iuu>c}yQ@DJ2rJVHnP~!~L3f3qLh@ZfAZV+FF@|F_;`w`+|na3_(Q}0mqgu zgruQ~w6zS{x=&;6NINi+;wnTAf#O)S-7tQBojcVJ9foNO*Kx9;$ff^y&QJ zOlIRtHn^KuM}h`%?gDp@mFZ*sD59Qy3mcYOhskU;m+(Mc&#Fk*%cQPNru5#tuJzRN zMvOv$D4jW%~ zd7u7<#txBIfTntK+)UgzOnwY&A1MVjH0Q2^dIReRAXsK-ehNEHictlpDpJAuVdzba zm>b`ENN-eIwc4260&Dz|6lJ~inBF{$03bua8eURa;bA>qW4{wApb6B#j9nyBRSt}Q zI|7SZ)rTuz67}jSS&R!#NIhUFru=35UWG9zi}A18nNJ&NiR6b5WrrjxBF0DjC=u!L z`0mACP%+GXEiZv_>~LrB@E)6j`I*=C<1E{sxa<@X{=;Em zS6uElkQ8H#gNq>E(mR$PK{;u;Y%CLe+6!dOPkCDaMYwSV6~K`@iY9SUHtEE<28}_I6w*AJrmcgtC9^x8t(k z2s%eiWxfxS@i>Bw{dU~wH;Rt^MgiDw6o3R1KZFktl%B#6C1^2 z_7dN98V(%200%u_*B2(Z@ZWZPMBShe%frL)Y-1P+h%#6-yR zr!M66WPI(JN==3R^ByCtIZlcRz&A+UUZp|mR5>4h@)Ny_#kyvMoDXYj%JM(c+i8|P zBlyYP?xt)nX(Ud7ck|@W1I2<@N8oJAFE~H*x$dmoRBDcOCrGqrUGF3Y55BRQNL*1L z3II+0&kCit<2VC;3d9g|sS6?Q8SEQUHS(uQ%c5QKXMhu$$4AH+=%9LWAza_oJBEkv zcGu-O;qD0D^-F!VR*Rqb64uKiOO*Jiz%ah_a)krNgpz<-Y{}ni`U&GLF6ouIDFJM2 zj-_S^Z+*bskkusepgPk9fT|O&;=Bx=VFgiyCja@)?P1+Wt*U4eJ~U;}_9-#UK7>Dh z1vE1AioVD?z66fc+zQ?9AskU}WB*NWvjXTX{5w6rlGbM#S;D&g`f2kT0C4p4M9HfA=@YDA7a+)KWVEpjwI)Qgye41OHQ?pn;@9RTKo*)fr^{74&Ev z;~j45hpjV5!U9E9N+UL#a6}WE{%?9(99T~+d5g*J>b%*B)GAq*buvhm+%UcYg9rZ{ zvDU0Ok8I&M5J&{I!!z8I*rT)-jNPN|HfNUYzFJ{rQg9P)^s-$ADa@l3=llIp!C&9v7j^{ z78jD_l9J#TE>@88NAb1w-EllW#NEqw(`-jyD?M>oIoiftL{OYKUN%>;6AU=!(mj^Y z@akHKJ$+zNZp>7HjAsX@i6=ZeIE^n2bvKTEKp2v$okNz zAb#Ue^)BprQi4YJkhC7leWTQCxApy{+o;{5-6HY+#z65H*#ji zgb?}=s2f<8j4~V4X@PaU8eYS}1hRky{u7lzV6B-h$=;@lHh>}VilETLjwM=5}p zf9btd3Rr`9&UZSz@mI%vJ4;v8IrOLgsBZePK`%C+;E2lb70MencMiLoz;VqTzD@~s;Z`sB z(~;v1+5vRpX*60I*0Fl-2HpTg@MM4r8;$l9qXN`(f*sn^9=@i&dyuV>08mS+MFhe{ z?aUL|Q5*-P2T2i(6Y}_yCqpZ_`fPNHp6m`|`v_UFV#q!q0GtwwWkYsSKrvi3D$8%+ z?xwM;CcI7m%wW)?k@1BI>|0VM);QpG9k?j2#NEgOJ8P2~!F`j~G0OCC#qgie6)aGP zjp1v%IodEm(pY}yOaF4G)P6@mPd4Bc8;)~^L=wGo``PFFgS&NLa>&@Nc zG`5*gLyHkh$Jz$IE8T5l8%QCTLaya$qcff*1!w_JR-~4)@@f&C5v2^kSf0MgGHPIV{C9bV);F&Gm34Su7 zhio3j`23KfdX}KE{Qi)lMy&c+lZRNxR$#1=W6OKU0albu>_$n8c0;6C z>vg?Z3nCNR4aLAE*8XkWlS2vA#ivgg(~yTh6qLlek=l{j?mRywl!O-z_X8lqA*4!R zhNZQNJbv}iP}hz@L)E?#fgF}+lZqoP7e~uw!jlq)UoU+Z3|ZWPLZcuI2H-W>)JPVi zqL?=uipVdraqK!F7-r-3;t8|y`my+aNGKiT@#zEX<2EhpoxoSdx|{OCj_$kw+4xFF z_a^oXX)9*qCltWTzjR|2v+=c_?r^@PAI#jgc6Q&(jw%)+B^O!_jg>ih-&lE-+mb(P zc3__pEX=)U6qeX_-c+Y(4Eqm3LQ>bp%1MGYP8l-Rh5|K7s6|R~k^rT6)euO4v_<}I zN{|EzYol?n4bwfN3(F=Y$hFZpUv<33A%GG+uZ)%H`_rE8G;jJQcrtxIGS)mC94dHW z`W`(_&M%Jkau2Y*A{tJU_@hJK6|9phx~-$6?KbN{|^GWQ=K7$WlXHH9z_34E0P&2hLr6*^kf@k{@u0)lEczC;89 zOzrDPWF`S}E$7F{^ncOBS33tAP7oaebN)_pW`wgG1607+I|cwT)EK}zUXB5R#)GiN zNE>%`G`=g(-Ld=;ty=s@KHLXJnPTDz#1un0Z7mJ~On^9^InLeIUnwG#rxS@VvX-m& zNotYJT(1GgL#JK;Yh~Omqa<|1+gFzmN&e{fOd&(HBl(f>l7e>XBj7#;fqRkKkeWD;sZwzqd&V zhQG4$GWr@euXV93CC`*?HUyC%3`;QMtvk1TdOZ1)QYjd^zx zL3}Zf4?5+(gZ)E_aN@FNn7h&w7YJdf#&C9%ki`%dJpp7ge9Sj-35^s`jA8eWCo!y< z85v_($^;q1Qb?(P4C^#O#;`5~17lc}r@|Q4cY=&zzY2-{Vpy1hw0LCzr0J)YC z6J!hf03(7?D2@%EBQjwGqZl|C#Rx{Bxao`$?C^iBj1i1h#(`yn3Gxl&NU#*~o_hEM zIe?_rh~X=#cC*lEpFw)VhzE=i$B+LJ{4sj{B%UyO{RFCm_lwJqANiq)?mGi616JWf za~PFy4gZ@-?uS{p$0sbuAQ++mUg@hG1d-i+Q{2l~ilQ#p{gORKNNYt(Fr+1WWJpW& zsCB>C0MdDEut6Y}je8G;qm9UF>U1~r#yL_$#<^-9bDYx!Ym9RxK&seXhqs;K?qahE zFb#IqiHK`wxF28>2mnG)o-Np1Wh}wKr9MK#t6tFnG>#<#8I5D9ctYb?>Otd(qmv6L z!^j5Q_|n#~y<^FlNFUL*#o~?jW_V3kFY01eHm?G!i(p0cPbD$r~3qUpK(riheGiRSd~xbferWL5gTE@C20j@*8F+y zV)nXXp-$|^1YqoWjc3hwk7FN@3c~VZ1LAt*QQh_n++VXRqz0PkB{a!10CDVGNY&a&~f%tK~um@?yPkh zT2b!YE~y~BWD9zUI=3roNgo*|c#Hpf&+Urma_4qm6Zq75wh4fdrg5a8&h3sOtr2OL zX%&k3c7H7mAi8&K{saG=U2Hqv404@m;9}(-FkWQ*fo)pl*M|< zKf9(vX&MGV-?`R3y*zakzD)phJj_gl=XjX855a^iLtapZ_Nv3opT7}p9Ag0^#yNYs3*or`8oK-I!BWKl1Nhx;klz;bXXnO{P ztbMg-BHKZV(UYI%TlbaPy^F_$>fQ&R7@trjPq~@-O)yAsli6!T5Dqxgq!Qtb@z-^5 zDny~m$=)QD&l~o>l$f?5r+siWbe_w9Q4LxCGK@uA>cTt|ZtC6#>*W07S_Hfbcv9=!>6+BH&$>Mb7Cp@CM77jDX_!)lO1pfM0JK zl<>9~^licv4GI-%*LK7+Qh}rje@@UbZ~{77fTCkZqyS76rT|pFNEK%Hj8p!P%BN_U zFH8ZrVB=%uk=24Ra-?1{0Q%HCX$;(lngG#B>_d$gur84#07BE@>jIfDthXJtW6t6)S1nK?`V{%P}_zm~^w+MItjhw-S7b0WOO z#W@pon|qx3Ijwt~{G9gs^EsEa`TXpmoW^V+X|+fh)8~yVW!qupI83Xv_Qxj2a#|xV zerzRVBi`Y=Y*w-Pig$Br+U9`Nm|_e+{L@M?v{l|F0CcV~3)&@Kpqma7E*sd~miLv1 z|KWvHPcNy88&r4rZdeHU^h1iNNI!$b1MQ8Rp8V|WqzIn$QqFt&#c}-Hf8hp|OGF6N z@JFR-_-ZK{w%=LiVo&b(1XQX1-Z+_M{2q}AHTqkiM&C9YcV22VJg+Mxd-8ErU^}a_2*77={M)$E3{LAT**2EP7O&OBSI@n$}98zL0y_}=lQcyapp z5MJEj<(xar4h_^Xd^XbQG>pp0L?Bf000E#*+stfhV-QFrJ$5{k<6k)8~doKUCdZMMXLR;wR>DKl-l(|IH;rPUySDme}r3gt`gp; z!_P|7;dh~QxceOuXKUKa@@x9L<@g^*p-24hf~|gKJb&|N7z3{mDN(WE`2mXk#BAqB zAf-rht|k!7MgRX=r?L4m8~`usu~}#9NAP18a$d8g<(rAmU5FH@-Ol-?^#4BjA^JaP z_YN+M3m9$Xu+<(!!mMZb;a3c*(iN!6HnMqIOJ4Y1PO`R>AAB#TJDWi3!H#3)2Lpri zcvCGc^HDAO6pWT;;xml#;_H3gfrCuEe8z4FKlMRQpO_GnjXb!}@WY&+GD8&I<+UC( zGGc1;&mTeJ(MzOtxEXy|0sIr7ySq<>GR7q5^NNMsqwQ5DEHlp^Ko}N4)@zIy}3#OxC-u0 z#}~lOFEetg^G~lp{=ut)IE`x0D{eBsxt^%0PR26hp9`##NHB1Fn$S=Z=gaNs4gwjs zr#p&YxINvm0Jo<}f;0LGZV@~O$UazgLO*#o zOz+}9<}~zq7r~R>^+Aw#%@DlMyB-Dh7=>p4l+!8xhENUlu8)YWR7L>KUzZShaW-&r zdiotNn=N*VWD5yx+`!yS0JvbsYY?6iP>fDD3cRp^nWnLq0ugcZ^6&(?d3l(WitQMc z()`8*nG$f8VBn6-YZFSDU3@S>CIo;6&4hq=@?=i)lLCTTG;^APJthPMu+PwMPLK%! z-vx5LUK-awLUAn_o>RASDO`OS0U(3Q2#A>|GXml!f~4k{f~~C#1@KZ`@C^fr6GOB% zv2jkrO2K@2Kh0i)(Z=HTPyoP8Po+@UBkIoXBQoLk5XHc~IZSJ&P~0PW9&9Yqnu{mU zwC3T2ntyjr_e_-j;31{p4;k82p8O}Ac}yp8)XU`3^fE7$UIOf4=IsJg^a9EhGn+S< z*4P-xbzNy(cZT9BtUn7F-5D&X~u{_S0Oae7^Zy*|4@ zYNC?PmL~4SP~zhDu5unFE^aPT?&v)M0MmOY6usv+A{2TL#X#@D zN{rxfOm3zCWLS$-3C$3bn`u3CS0}ij>8`NgX~V^qroIox7-L8m4P05|rK|&27KzO? z9K!m-e4B*CX5V-z#se6z+wty|>;s3SK_AiR)5TP)hQVa~>m=H*zP|r+hW>Y}%=6oh}WlRX9 zl`$BPoh%aq9pEP-@McezftUKC3cREb`GTM5x42U3EF{2~d!P7)G55YHrN!J4N%rL- zVs7)#A!`kH0CSS<1K1GKDvZ7Z6~HIJ(lvJ+dQE%Q9GwQ7+B^dSQO_4zps$k7|t#e0EV-)7l$!)T#RO*3Kh+M2*kx`b`!KEKG3{LN-fb$FE>@LW+JA79?1Nj z5A9NFIIA*MhO^Uxs+npf*E1go2wl&B02s~!1jx{vO_l4JqyWBplc}Y|v$mnQVmvE_ zt1q5`4E}hgX90PU;oLuvZ)RzH9ijMQL<_|iBN}ZjMzjEc8PO;dBiali6b2=Vp&}ZE zs))AqZ!2R&qm@NO)4mmbHkEI=GCo?r2>v1t$3K*?;=b*o8Ffn)+4?Du@&y*rH!-rE z6p~q-!fJ~q z%eTS$tZ5{<<0Z<-{b4`%oqq1u#4qGNNr-^lAMkO{na(Y zXw4jYr!&62QAylJg?9lzEH399CjNXXE?2?pT;__4Ebs=8Nb#vH-k`8ed_0LCW6l$w z%iz~ZVIpN1^Y=H4Uznrp5_xq)#Ghhun1Saf$$iA0BW{s@Ab#O?=6JDe!F5ny5u$Jo zaZb4IyHmwmMuT|PupyoKl0o)mY_%|`a&bt>`MPl#e!hpjg$=~#wVRi#V-tS(?WHO; zYSBA2pc;c&hsaXc2;Op@InNEV)|3y1kT5{7nI35Ps?d!7G2*xtOHa9?=Qq=ctF zXfI@M`su#P({DQDb4sr%p!g-kTAF(o6TFMbv3&dx`|FvZ2v5Ir!Uxye)A*(Nt}^^= zw*6K1jS?H%!t;;rU^N7g1|=c`*FLt#@;Y|=uk2S+H&=Jo;V09a_w(f6?~T&J_-2Rw zK2~PB&#_2O4`d^bW6Lcp_QgNYM3S4rT?>CZT`~3 z_EBtuf(tFl^yvwC_6&Gc=2V`2o9)@@X1et1>G;@?K`8}Vo0&JO65j(6V!ZXo*oTI( z(}WkgWZp%4U;T~g{OCn{TXvR|qC37u-SGqEj+JbQAQL`<_4_CG4waM!A|?CN-qjQA z;d&(D=WFvnCfRqh>x7fP%_kl_lm^L;3awXWWHj$J%VqaVIK_%QqeQ* zHAI1U_Q{|m17$H^RSJ~Fdts*iNsT>VWh#4|3M_FU%^1rszul=3JWyI|Htg(V2a>>) z&p{xXNcsHeQT)J%dEf;u)AGqb2h6MfPEL zki7+3m}A=nLS5{iQO|%M=J@-njINbm77#iDYyi1M66ce^S>(gjm_D*R?|I^C4A1|l zZ+RY7Xz$IFbD&WhLKJLj^9+uI{c05u>4G)4mU5ikGWGF{scO_FE1m(fFA)mtT8h{hu@p>-jq7@9$9IR z&{(oS!^w}FP4K(bi`I;%Zm@UJfsIrP2etI%=l(S?g705r|4JV`Q-;GKgtO2Oymp^n zWbYsc=b=(PmO$8^zrNRgC;P?1T=0hTIc`rhvJ_Y8Y?USjDk=jTpuq#aTkOf+H=nd; zX>5_I_P=o-NU=sW^_of5boeQIRW0lQFyke!IPYTz30u_BKBA+eQb&5?blxv@XhP8$ zXAqJP3HwW?5T#XIGIXmARtsJ zx1~~kN4Mc~cG_>T_NvzZNHJ}A^nU1Ezgrc9oy)n${;ihF`#fv!z=jdVs2I34-mjRk zQZd-K3Oi1T<16;syWgRHZ1!1Z1cD#FKw@fWPN0T{NZ|(oe-Xr6dR+bZ+xzW%*=kjn zTc`5+##wSi+DuTeMH@(qc4LchDql&CO4(KNrUVWmt7n<>J4MQrGzfKtUs4gn^tBkv z+VHHQjhHq==1|VWXfAUo^{FtE`5>ovEFIKA9XNHL0y74Y2Y3G=`+7zYc-9$b2XFls z?2l>ewh~FKROEX@nZGHhZy|6uXQt4}bH&=L96#%|7qAMC_zfm`t{52JJ~jl;yvRrJ zD`@YPBld+Ft4HdsEU`D{`MRyCR-0cr3S0j1kI0ND&v!irvyLG#+xjuDJpW)U$E&6W z24c>wt~Z5{?W4K!r(vv8*3HYN~LaMwqHgw^5Wtr>x(NM{r;K4H&di>!sCMJ+s? z^$GpqN&7gq)ruvXr*AYF90)8G3`FUbaf4#`z!G~4cHD|GT9jJYcwV-TVeeY88uJw& z4{oNJTs{pfL@sZEZqE$q#BNzjN9#~vVerJi9P=2Pt<38;lU{bVR8+OVQse-o>M*;Z z6=k%jYhe@rx??U&vtpU*>S(gb3@k-9P^#ECtSF;(D7CQJ^`_%tHra}0vMDgx%nK|< zHc*QCT4^mEtwVu@L#^|U0c?*I%jB@b1r{Qgk7i5nDvmPhu-~jGqjf0talzBFQabR#+`$fh;$276uqbdJzHv!X zErX)+tp^7u>OaonEBg&f<+VpT>qZGgxoO;Z4*ZJZ-@Ii{ONbOuI_~{Uq7+Z>KPdSQ zX6MO*LC`ETidDSBH5SIX3al9+D|QOJ8{V-`(O72!#_bsKVrYCP0mX)yyFUT7W4s&Q zv){C_K7Ui&+@&D3y}-Mp#&SqS|Ly?Xo%+&6dpq_JDHP+IK6DOQaplkP?^RW@fi=kH zfD+r>o5P=k}yZs)^>q zHoN)C&+Ro?ARkE1Y_5L>bq5Y<#J&j0=D(E9P02=YJcp-Vb~UXW%x8}LaFsGDOmW2V z+PStWl)bm)OEEOExyp^NRB+Vcr~2iU<+HwmgpJCiNSox$)ENKcE4U0SsLJDC+lR3F z!PuR?vG*|uc92ock9n!AxHVPz8r(|DIuVK}+W6~mAMgDHic)prH?P}|TCmZAn-5hD z=cn3FDZ@X#0XvY{JohF{Gwq~0nzA@EJVk$SF7ezEb9u>4&%I#EWw-1jh$+p-r8@EO z@9ZNCBA#qmf-;7QNg6gyteM(yd`N2tIGsp~+cpOu((`pmAm(r5ONLTt~C7vo!Kq&eCle)9`^s}LSjUG69W8$9}@Y?Q|YLC+P3Co&54 zc})^~i^w8OV?jfb-B&oDut2drE1eJNpM%I7ovqoIgod)ur=&spEomRoqLr(h4-mCi z^|i?F)6?W*>{Q<3RM71cpj*=fct7yFzuVnmtVW@~qFDUEc3+`1K^!SS=Mpy-*pdsw zxz;DTHcKVN{`dedMW@zq$V*@34nc=Pj1fZc^i6~7knxDI-0+2 z8AlphNYI7(h4#?1D7x}23WZoy$D38w0lPaJ36)SIUA#|K%2arGal4#jwXGN|lKT{^ z&JUD#bYw3OQWz?p%vKx%9DPXa{gpDUDWFM@5Zy;MIp-wod{^xj2( zwoqhcSMd%o92+%uEs)^VLf*TA<8gMC6aae!R}e#mkZ}vRUGYDQ&J=c)`uZ^x9+2O zkw$REW-*RT)~VDw(}q;n>hc>g4hO$o1@!ow3g=nxR#MReg& z=huXJch+#M&{(mRVWtMRASJ-P6nhEWA7QjJT&wA*!(JhU{`jK5{3sc;&OKUMY)O)m z?lmn(8L6)RIpqLd9mJ|t+mT=qO9uKYeZu(I+Kv|NXHo?_3~<2iPC2OVPNAZ^^QnoB zw^@aG$^k?5_QpQp6&m#R7i@|1%#MDleeW<{RM(Nj8W2+0+w1b0^&F2FbroD%k;L6* zl6vX<+ z^Ji)NL<2`fL%_|&K@iX8l4m!?)8B8&P-aR-v_||(-~Fg{_W&Jb<|}~61eiKHS?5TX-{*lnWGg9Akm#14T$Di$W{Oc96%@s4gh4k=d$S*lP(UwGt*2S);xuEXX=HPz#|v6G-eNT# z^E-z*%XrM3Wsm}4CO!Evp4b%ne<~?Zc542ZvXkE7G2i+lz)-EEq2eBshKeJkl%e_& zXd#aDk4ZyO^qXPM-ta2Mme!8?Y$UDVx6UvsQGt{Qr)e(?qt;O($>{;5$3 zCIx7sS4|WBn-nM$y+Rf8c4;PRD@_DEurE;_%0ypL2Es&uj(v%uqlx~MCc0<7ax*2- z?^L3Q`Tjv;rPV}ABs3A_p*m0y6iq~-XrgD*9GzJsA`O~I4E>DaDjQKK+GwBEM&A3o zI67-A!%8w!?>S%gqn@Myjg&iI_M>5>K&iw%pY)@#QYFCwucI^)@IWI`9?D4bC<9?6 zKu04{bZfxVIKR@}(SWU^RsB6`EtPGXlr2=iQ_`WmC_81ZASl|4LeXBo^>DOhB}5!$ zFN%wFi{C0=g;6L{xZV?%0~h}9DD3G49hg$kdON1E&q!r4(poT(^Y^`BdP3{r^yG5$ zvQ5}ee_Q##ePF^sE2Eor2mhg=;9`d36&Alhbt4P~RToGvt4a#c%Tg9dFKa;xl$Rwf zAYRsSK`GJtKIvt^1HFv$P+r!bG7w${=;&n>U4#Ptp#^+vYezjciq`Nu*KjJ*1SwL8 zaIIuQ-=a*EZv{bL8Q>VmC=~7Uz(7X|TS25j<5DyvIlil_dT`~edR?2br~kGxCW}*& zXxtbu8#V5+!7%;&Cn1K$J#8BIG${b%HZ2-qt7-dafqA9fMN+CP`~g+x7gC+rR}Wq= z=wiQ%v@x(k8&g(bqAvSz$75#k__70j{uab}aXd zuUbzl;8$`Xb`+56{pvY;+cp4Uv7N*J%*7R|qPdRJ+^J|5tQ*=wF91!6Jrqh0L;Sf( z)l>A73wd?!J8pv7|5fhL-3kN z5T%-{PmEv#1r#;ciAV2s)a3Z^-Otk(^k~)rL-gBm7B#izC zXTs*iQ=}>`Uf1!Fvm67BbqXG|knAPNtp($Vz_x0UT)fVH#PN!DOpvX`htGC&VkL?O zszN)#f1B;t#7+=62ImUPQ_Jwz=fKX{1yUr$2@|+-M~c)6lBle+ zJdb(Q(S!XQKwkf05kK;%W0UcNDhMLpM-snjCGM^Em}9=iYA#krMg3LhKhJlJX4MHC z+UQ{^1RxOg>Wk$zAHkHYgZ(0wm&|i?fjgsbE_C!E#ik(&1w55|`nHaS#4z!D^|{Z= z^0d!ls1ukz)^8C{edxg|-rp8E%IIuVfK;~Oi%oBZ9~N&V?$lo@#Iu-3PlwasIRsO= zt4BbUyC!>IS?U<2u@wXvr)>6Rjv?$x0+lgX?9Z*>k;@(3ELFDdbJXK=1$0lSD*B4W zGA2?szB-lo%oUCnJZV|LHsA_gcBKQ376?IA<>8gECq(lOam54{;ri!PHY z!rVOPaR=jdS39~Ggi(;ev!rUD5C(6{quz;$&_T^Ohy|F_G=k5Zv(`8=ZT#daY@1+c zE4Re7B>X7Nk`Bo(Y>BjFU4p4B87830k{EcRz021*+GxDflgJP(IgND;tc{zjE%~+$ zj_Zi1`*K#*KK39fKwlKS&j>fYYl9WffatSTZw{o^J4 z=njX|_*fMLQ8fMFeMQl~HAwossVp!SIwX20xK1eVGzt2=^V}{+iN>lvt{f3vw94bA zi^7l6Tr^iUHtKQVqA`5g>9j^HnV>5_jS^7lr(PH!AvmWIJm}J+SPufgikC0-W}JH+ ztu45?63ijELR$XS9_Yby4>&Fugl>>3-BR98kMr}Z9qC#W*A60PT@S`-PjF3!bn@ah%ud@Z)NYIs1W(%n5yvg3yFF4j{Y(GIp%^W5Gtc{&_ zztj!IM%}zhu(4C_=X;L8u;U5pD%vVaoZq>K^hz`8~3cK!P%%m zGU}O)@25t(Ew&~RRd7~@IVnASJK*ps;?!Q<^@v4sg8GY^pq8v2lx~om4*0C#;NXl{ znxEs-8zgeTmy>;C>n{Zeeva8d{KC&M8!VNd=)Nj)4sVD@%U^>Tp?Da^e!{UgFoUt9 zH}j+;Lu2=e`ep_X%va3}#tsVV&tTkk=btp3|G+VU|GNaT+cFhlmAn`ef?ZyQ_x#IZ zkRDEIsC+ojQh7y;V=2j7oE3))XL@p1&1Vf}pjlfPJdG5Q8MPXTBOPS?II|WbQms>LT%Nc}Px=Q%>t7C;j#lGVv`GBitmTjMOGs5VY5) zuy~ZS^!qI~7C<~T61GjHDZ#X_+lL>F|iA>l(%>5Eh5(@|%1n#LV=GrYd zRDYbnmFX5zS=TO?+maw_!EcWGq}P}kkp<8g+*2g9)c*go1S(EzL88R(9k2sQ;Mkpu z{io_Dm&;T25`v%8xKehS!K6SLr$3L5cG6r|&&tyJj+vwj zjL<@qk+RSf%0*ZR(9uE^Js`#{St(=OQd-wD{;h-fj&Q&}tsiWZ|# zwAdjcjp|Jl&2KS-Kw*fw<;fH>`+F0g7wtU7KCsfu)ZZ~J_6{jPi(NAjHVNY*CsirBacrYBXTH1rs!;mEohP5F) zw}G<`%OT8=Zd7(eiawaoh0m?h8ai8wm5(?V)*^UuLuU{!h2Rr*WN=){jU8oC@pb> zEs>oerAl+BNDK8hrRMy;T}kV-r!jxKuQ(@zpsE>N94Eh~EJc&o9Ip?zk zf{Z<Pb)MPZTBk`m`Go(7H5kw-c@a!H8s|c zu*B{Dj5TJX;YVqWHop()xkfg66v0%D?kS+bjh;@BvC)MDfVIV>g_m#VWPHhl>}Z2j z2x_+}$Q0RbkSA2TO{A|@ds90(;Zv%8gdsM0x39_YqqHVBk#^p0Hu(&}R88J4pg~RM zM>}I+z}8+2tSDNmzawpon7#uzVqTN^Te6uTL#Sq&NYcDjycfGTvvgK|t!fdrHGHjU zUieX3TT^6P;W|b<&B23<+5}xSSQAjv;O5@Xx;w9EER|s6$wfN?@EciAUCW<6;%II` z$E|@C4TpsBmwG!Ju->GiXh5VO?MtfvgQxaz-p7k~epZpM=;}Pc&pn`3_zPAaC3srs5_dy5wu25cPv=G3+3w z&n1a!?vAZ#mA_*idVW&66sZg8HPon_FPvu8sTo zjWKXn;U^B~SXQ8@tK+KJ5Ipnpi}0=u{*BZ530p|2`OjMPd4M7=yI31oiYEwA3WqHn z*fwkFXi*Ih59WYPcMK_D$E*nEanTWz_`d^7kvNnh@%OEzqjf0o5yvC1&cmED*i9=| zV;=SP)MoIx3`&1Hun-wsGZ{p3<(AO$(K;0P7>J{f(sZY;IhY9aYs9wPn10@|>|6%OYjS9IrO$E1>lBBY;GV_nXnq zVPVYmH?_lM4-TsRLB8`^o3tq zaFOo7$DH3-py(7+Nj<+)SkSQYj0Mi+7N}s49=@0m2+jD5h0eA?b?~$7x@1d7Rd4iSwYwP7!L*mQ4NFlhVVEkpkgiX!f^Fv%gCUaSfWbu5SyC zTK#gVR!@*U1NflTDIc`@kCe8sI$)yJDWwq*@iVB6tLlVa8_p>=~*f35!oGUEs{E^`% zVH8?aG%_WIMjj5<6T5(4@Z1rwSjn&LjMhKpau@J|gsmuO5Uro%au=}PdeswT2ou9l zqJWyikoV@F&IC=nkLPZ4)??`e9~B_B)wE8$pu}=Y(R;o8<^p1Uzl0$jZ0**Ydw}r6 zH&c?=`*{krmin;uJi7ky`h3GwHL)WIH++MzUGzj?DmDZ`#ke7OCJ-4n1WN?e zH`3#WA_w<4?=QnX4aCMB!OK8X9JyX5rT$L&Gl(t5;9p6hYUPiCtqg(I8* zFF2ntNZZWasvyZe7HxqS#E!$p&j;%GUBGc0E5RZYk2vT|4?y}L^Thfn9 zq#tYNWY`cdzZhh?Y^Idbr4R9FOewu28iMQe%ipipbB+Fkg2Ld59ck&tJI^M?wN?IOA13lMC5~$RsaKrCS-GcxFim6iEKKSU z6U;ZS>{Dc&UX#>P>-6e?BG&260!wkF3#GV}Zf`9etwRB>bYq{A>+}Iu1h_G~}Lx5O{;UtFg1^os8`;qA{mqZ7)C0=h)MMM;XQ z3B8^z_A(lKUmylwH<;eyPO=vLZWKpZze8AvMY{L&1!ohDeL=w3`K!Ov_rzSDKL<16qjVPlSNt_yZ=um1h3?&OI7yWW~ur=V zv>quCF_hy?ejPW;m1bvB>JOrNdnomcky1Jy;i z9vYI9i*gzxIq7dbC0ClE7~zDHGEysvASmWEQm8W55+aS?T#Vu(-SErKBn#A>=(RyJ znC^%3yr8PlSDfiVRpknBKVcraa<~6DyIU&bBry?8Dkh0F`O53gWbferI`7xn1wss3 zlBu6H4S$vt_y^A~Olw>vh05-qQEPlxsx{2CH(<1~jI#z+g)#=^j!>N6Qz(wJm`)kJ zNqIWzgQAJbJKJ1!YK%g$GNx13{kzH>(Y_mzGQ??^CP#d@^Yz3wMUeI-u zOs53j6zP?;~C|H z>%l{mwpb5>MA&^Prt+8|D0&QqDvx=SkVd6ZG$0x4z3`*6hh~w9rh5ZfGWs(vT>@mne>W?IuV}6Ye2(Vw zCzRwz7PPRCT(cP+5$3t)!(5$o7wGua?D&X~^!6e>wx1L#_ufMVJrYC}Zy6wBnv2IA zLJO6I=_C(smgywjH_O!{s1#R^R|Bze^!{8xeWSN{^3&@s>v~4B*|xwfgWo1q=e5hb zGFiDTN=3*C7e(P)WPc7PrRbX?PdUsBGL%Gs8nrL zlO1`2)E4Cf+S;J+Hx*SJ$O9F%m+;VD`fEk`7@3M9oPrc(qK;FFQj5qS&HqX~)W3+- ze=_~~bLr1oSs5PQ-Tv!|M?BeAxb&-f>h#1m;HxLNY+7V|{9e{@96cum@Y$mUyE=6(K@c|_keDk7FH zBuFR31#c@ME-rXmi(k0lZN0U$1@GY+u0?dgD_()<$mhqq4zs@2cAJad-U{lIZRyIp zT=aIT>6*b@iZD5o4#6(ZxmB)phtzVt!X}YwxYj*2Bc>TxDDm9j-uf8$SDY;`4Mf6^ z9Tx!|u^?U_Si0q%L_q>ql)J2jqjji-D@ve^YgYVxuf&RFu33+p49*6YuGlitWMF=U zc+rY6T8FAWF1T(jMGtD->H!M!e3_!kg==?ci|>3nN+8OGD|;G#d3c+Kt~Loy0i_GZ z9!es4oGhP^i57K&ma6$<((ibw3dXO&H#c^bVHF5%Ts1Zz05z1?6;K>^oP2997-)<4 zj_vCGrHKnpkkYL+GWAYR<3PjrHp0Oe2Web14uZ=s#r5wGk{bTF2{$nx?Bt>;@3~LQ zg(K)pE*xu#dZ@6nveN=5v2diEaLqU!YKk@E%#e)W{b4Jk`I3>&o|fyzP<+J1)5pg@ z=d=LCX`>I|n=6_JjoXMEINj_-07xyTg=>|sGM+KMKro~o#D@t%^=_o)NArD+T;(B+ zR!rTr_M&lJ^fph+tI+jUu67#x&`K;*e^;7_y-N!G!`ru}_HK|uWu|WewfAeO+A~)+ zzzh$3C^MYkM{QG%jd|{Xi4%N^Db!Q+M%kDMDvkfZhhqAap2V6E!l-YGhWbu=Eu}7x zSX-{5MFm&dyBw_J-&Q`-!8OQI4=t8S>M4r_amLSlC=|_h!D2REx3lXMn`kANsgK_# zXK>?50a&f4zHpoTmSiz0@LNouzm1HYtGCJN8~8eY>7#tz%vb;>Xf4VFt+ksH7t1lg zL~Bt@f7f6^P`tp7LeXA$f!%3B8tp~VkR)DUN1<35FR**(Z!4q9X=PmGi~()JB1d!; zOvDqJ^N>Xc-KTBQ2mKk`)Qfp_@TyTyR|-$@M7Ct*o>2~qCO$W}Jc|%O6&qXe0}*3a zz?Ijz54akz`lN=mi1;w$8Dfy+XZ!}ildS|Sgh!?3m2ZZmY2?QxL+mqh$q@bwkAZJ&h{L zz08FxFyJ?@8Yvb|XiPk0dX}&do&a+FnB{uVAaa=-ph1+!(yHP?*7y3k>gwz?0Si93 zFn)~yk8j?-7bT(<<50Dtc{*dg3+?GQyfiCv=$i zyUtcjaf}Ju4iKD4hKpY~lZ0!7hPWDpI63)sh-+2wMDjwmYb&cMYMY(|rZOjz)fLn~ zku19NiDatX^(JesXp%W(2u^v;w#zx>7KiI4)|FIK=Oy=Tmy^g2_-}i@qD(|wY$>$V zJS-V#$$1z>mGiKe?PMM%5am29U;Ikud)=;%3C+ZBIuDBz0I5849tQ8!{lTUvFvo~L zn*jU~U!SsFu1E>`G=8vfNCxkGqvf4U*+9)B_<<^&%dm-rA*TI3Hq14NaRQZ539iYj zStOv?sxUcOB9+DCybT*C@r}b>gKc}ZoA**hjc_$#2M96j8GHGf5w1*QuY#M)M#aE< z?r7I`45+c&2`b2dp|NPYe7yS9L$0p2v%nEAfv-E#mCD{$=<=$l^L+nES8LuWN< zI@&dl)!X5BCV2y-*vMgt0*abx<~=t?NZ8Jbm#MefAxHaGq(IH3Gj_c zSnhb2d5WFALr$Z?<>fS58P2@e065`5PC2Q8JP6A3T|F3uV)#bynM$O=ft;ct$*2Kg z(ZQ8#k94(Ui~qJV-i}O3BIipJT+P^qzp9K=tQJBiseH?o@zL-=q&5j=$u)P#{mT=i zvVZ6_jtZ!>(RMC2+j!cB2K)36cJP~%T@Besq>|G7dqne}5zQAiZqieOOq}tq1n#LC z-jtms)sZLWlDtlYJc>fXY0cbeFfFaLGn5}y6j0NT(x$uMnc9Ydcw%^GbqQ43p{Pu> z1*%-D!%pd1ooF5Zhkxy$)PJh+z)q`g#Vg-34|yo#|IBg?w(vyrVRnd<@IuF-^-$nu zvt2cVE8n+sdlno2x0Sohf%}gsNt^-J-YF+i6?e*sR867qwp{F08MH@>kt8FQjtYLI zZ^5)62tdMk=R~A5sBU7BbJvUeq9x_1%7&c??yKG34Nhl z`kg%%n&yzyRMOY%OjX!uyJ{MRGkR?%xn+_?Sh|UF?wHW=o8S z+ts08K9W0%r;X}awVY5Ukb-2JZ)jW=8bc+2xRWP7KBz0N{cul~ zL7-4By3o=|cRm%maxpp9dwroRT+6%|g7W4&ro4LV&U(DK$kl~!KI1Oq-M`p%NH_i@ zEO_p(*?nr}{UJbf5<|s+lM{O4rVD9IV%_z z?)bDlh4>Wy>Rqd)fW!0lRlL`iyZ))$TI~YgTxT1hx7vko-1G4_t4Da3u69Lhnw@W2 z<7#6#Y1?o9d*Dz#dl$yDN>7G?2b7;M;-TT=$L2mfZcW}uzH+VW-~aD^?$g9{+aQo9 zwbnxo4fvs4Fn9ce8I@-U2sKxK5E-7g*ZOkpN!M@2GE0qLvom<)ispA=mg)NAl7ZfL zmsqr<>wTczj|}YL{e8WwtERoc)1Gpr8(zv5)$@F5>M0TGX`$!AN5LCi)9yx12YhOR z9|3B*5U8fTrkZvOH6`;Cn_Zt6Us$UBFLd>(sjJ;qUGcM9n?!hbJnd?(X%+a}+gzQE zsNFfur0Wl@Z66Y=mzbJqz5`dGd)1W%-JK!ed95Ho7A2#tU;=Xe*9=NA4~Z zpF89_W85Hgc|r7$VX+}N1+j*=qhcZ%Sbj=P#gi;8j|W0jEU)@~ku0uGd}3oz~NA5w$h zyUZz1x?VS)qz!@T1MEy3*6uU}f#rwsbN0kC##%}iW*jlzy{B9QHDf1*%h}2f0YXX5 zhn6jM3oklm8b@g@n6_mYM+5}dI^aV6>g0^_o;dC5pc(H{%z|6a4E?P=xO6t&q9s>8 zwI}lYV*|?bb4{`v>tF5R=lC-DgM>Dsrg-{0I1b=dPR5`5*sqMd&bfP3`3w z#>c+m>ImOi?Rmvji@$l((?DOfhxbbz>PS$6n7c8Sw%>dyH_6KBU@BbMdzSZm4dT)3 zd*or!*GF^XHKX^lpl08E8P)l~vr?T8&=Mgk9=5rk#ob{emzJU;o&3s$QWZHGszDwJ zC^F@;s~J(GxhVlmQIS@rLXj2-DpF*6S;4sjvJ=JA%Spy!Dwej!nPEl5`j5OZX}A^a zH-v5Dv*A3Y>!!ZOW=cpHL)-9I?c4pVOyLSPP=wr%vor$@WPzZ8x(NM<)!vfwy9If)2-zwr# zK5y7XS7*)0rc$9*2JMyIW)Lm$cbl<$Ww#kmONC+d(R*=45*&M`LzR$S#!RFHhG-JX z&@{<%%EjMgZ4ght;;LcL3eqALi0We&Fj{2Hw1}3*Zb}_3VnM|EGi&Bf2w)@vvIusz z<9p3Mc9IejeM~=Enlk%;%4AOiD|cZ@y+4>pBs#*jTLrgFbkzPO zf?``n$m%Bv=0I0uS$#{`)X32LH{{3qdSMwxGoVA^U?n{L4_7Ro_?s(D|Jr1E?l(B)xIt<7JEneZAJ6^W)xx+&ivw81%W>o? zW$^^O%&^7gj^|(h;p%9_>?Z>HiNj6pg@3w68kJ~i0B!Rl?F#!X;_tofTCTN125X17 zyBX~%1x3Hj+8^DI7;R`_0D1F(gO`Qt*OX5yqRHcSYSJ7aR6cS zW7{Du1rY(eSm*Y*9ZuI4 zB&=XQkp!7i^J&#&VC$ml?k#R^t$a{zN3 zjh?jR;Q2uV;6BFmSa(O`L0SNg*oa^5r$f%x0n9(t?&axm?g>Ud#X`bk0AYl?HKPSc zcZ{UFlolwuqS{x3dP}-+Rm{%v9gOW1RnXA49>Ak_9~LZ*-Ntc>g(AFYw(T`qf-<}) zW%z&=C>fw0l_4!ICBwKyQIYz$CiQ!YiP4ezw~~4VT7cBg71i#lS&749J%O)yBqh^m zNYRl)-C}8*R z6mgY5yn$QSjRh1gW6pd5qO1I%x;*Xk5oP($jod#NYyPUfxuy-SKdp(|W9*<+!DMp& zVtcw6b~|fzt7gCt6+=XjPEeAW%l073JKt~W){GOhX2HWF68Yw*-MfreC>R;yorEWf zW#)&aRscV9@n_)&`yD+o!OZwHfN+L!ML=-QR__2gguY!Y=a$+*(lne~{!v`Y>VX}U zXSLu)94D8*Af`FF{DE@D$>o+xlghwNM}?Q*u;5CuoLhbZ{}*%1wv;U>Aj4=SAU-*9 zZu#GP-J8l8{Q@w}xn;&dIk(K9#W=SdaZt`JN752(*)S-9ljq=dQ2}Y0m|a#<<~5TV zGrZ4tc3;vA3%dZzn5aD|Uz}aGPIo^RW~`xbv^mZ$6)STfUvZGkF83THv&#cP6mWLA z7r>!rmjdn|`EY8Xc$o{nU7$rVyWGx82DoE+LPkn|{jA9nXP0kN8Yr}2X*+)~oY%}u z>1x1_QhCJ6QTh!lkH>qt_v+sxj|4urx4X6R3#H-bq5pW0f6?2$(fE-T2Q(v2vbbes z(IdmXORL6jX1IqNHJ>8_`iW~b_<>CKDx(H14WMl<7UG^GDvI%jWw~2xT4zB#oD5tR4&#)lI=jCz=>;2sB zZU?)%RNlbx#9W?O`l_14c0VYiRx9u;u_A`3g{hd9po^1OI%k7;VTpuMS0m20 zAtfT`g|Q%rbzUec%6VbbA^4TTmyL7Zm(W~5>AbKil{|X(&}475@$ScLMy#mh^GTc- zew$GJPA7)S@49zOtzcB9w8a#WzqAErc#SC-!xnBc)jz}|o_3Ei>eFI1*XlsQSPSP` zP^)l4c6Dnl5knK|i3+F!GfUJWj+$#_2N2FM1`7zr0O%9Aj|b0kR^%W5S$DKP=@2h@ zaBy8?3ay3Hk_m@O+02{E&rf%^(xVRXf^viF^V;3YRMf{IvN`9o7s5cs?GP;U(qE8qd;UWA1!D-Ufj0-KJnG4(~VX@CTS*<{Mbc4E8$i9HTl+U?i$ugIHoIM%>5dRFltQiA3!(5=qn(oCy19gruW?L zUSu2Vg;deeaf!xwS_8+p(cV(F8K!%214Tc5nEPM3(MKY-IiL@t#Be~z6FQF4*s2~eKTvvVM{16dKx>P2tX7?`@VeU=)oB5`+LzaI z8;Cs1hJ5oO@Wo_`;CDK``VqNW71yMb=9=Fx#PaA9a55~ep42KsVi0VzR6Ok7W9#h` z>fOVz1DQohqfi-As0>ufs9w01f|V3=LrY=ieauo)=#`JC?SNp_MM=!4cVZ&6KZWbJ<#?(UWa!_#a!UXm z2192>UkHO8T=CTTA+rZ<}o`4sVqA+fMjY?o4X8SUk2e1c#FKy_?v?5BRd8Ex&!*eHRNc{7|4mYir6V>@U7Aase^9 zFj5>9;L$^@SRCSFvxyi?lOaO-KBurjgZcPomHP0r&Y?|MgBPJ3n_ru2pSZgfy%8Oe zSyutYFA-&zPQ2rZFc;rYaQKD-ZZUe#U6$YYV$yJ4^PlcVLh`xuOFuC`A2_7(@mD8R z^FH*dd$Z2EsiuhbWhQhL06N{Ejg{Y1415v4r(lCg-IeP+nOc9o@;z{NeDopej&78+ z$XJG7x<09#VG#g7sh|*_{_k=J3G^~bep0dUO?QcAoB5*rq(YnNJ$TMNPJ=62YQN=9 zVcSTXweZ}QtLOfd43}*|yUiOs?rU8sTHp7g$azoYoiDhT-(hYx2$XNz08%uXkaaJE zAAUEC9+{h2=~SSZ;PapNV2oW0oFT!TZ-2*qhP_Q{fpIhVwS?+-nkz2k(a!ssz@}rm zzUoE!DTU{KcPlOIH{ixIc6vIpKPX?Hl70zL65Noq@PCFQ^VBJa1;p3D;#tS-xqi|(&jbAhS4d1j@Ff)?!tO?d7npkJu! zYdY?`&fOLpq0f8~bJ(?Mf_wt69TU@3ndN*XSxA%^^ z;$Ew<$yB27T=PTr0tFQUV&pk+$C1a^+xqjAPu+I*m?F->x0~=41H;?LhG3aD?k4d@E`!yjGa;gT*~aC*M$F_=9Uh`2u((ef^BTr(v<&ea-zaYe}$BAu0Ue4ai^ULf|Oo`MSG+Jxt1x@(4+JDuFA#j6l+`;C=SKx@1PSTGRqI0Xy#%i4uRkjF{t_ugsiA<-j^$r}@1Dgj5G7UpoQ_mUtl{3 z{HEVENLbH*wP#<}i69~Eb|&rKq(ISzQlyxb4h`s z4W%V#hIC@fNGZ}DXQjQR#N%W;2@=xYX3~Cv6e!wIinLFYQl!1jPa6|KN{I`&D{@rx zbgH-j`kC4WIfY+&Fj9+`gnR1fW1#PfZIGF|r&W}wB6mP;3hoQ|DczHrFi${fEFPzN zFl66|yRAFfJma*;pOnZja6(FUZGI!_$p-AUg7ce>+)VwaV>~+?R6{BVX&$`uQ3yk5 zIr%-v_lh07H4fi&u$sq}TY{$HwQce0L=6GOB|5}YyplSxoM)oW+EMH}Aa1MUa=qJ1 z6~HiL{j4M7IDXc_`YIf*MdyytdmqPTJ;#Yj_HntCzj=%&G|Nt@94D|*wPt<>u##6I z5Hf|Id73i9n*$(@cZu{Iv_MnGdotNnQg3BuZl(nT>;1EWXPyPRa=51sfBb8Ec|NzI zr!QMfC?pOFMWI)eCnJzTeID6-R9U{I!oyA2hQFmSG1{}mLP4AA$<$kbnnhMYGEZ&m zN%mf<SN;VLgHVO$|@?QqUWOK>s-2^RWe8%*1LcKQs48tnJX!t5^0G)$(-Hc<-92QR3%| z8tX#IgOlJ5M!g77v`Fj1jXIvk4T5a;jjwuz_Xu+VI`3Dqw;A)0iZHuL=4W5Ox3%Wr z(J3A>b+_f6fTirHupw2H$mS_OaNs}dy}DZD!g*#8YG*;UE#Go~^@u9w(-YPP|es13G>SLC}4%a7CsqiJc}DFcv}u z@y5DAEAaHrj%IvDguSNz-U+@w!d{PkK`T{R*IMGP@S0vTcsH1qu1Di;R5s9WW7`Ik*R(fn*!ZbM$7sV72%)p>aC za6Y@Krz1u>{#sK{Mfs%|#JYkho-XmqN@k7;<(KI6G_vGW9sy#er1X$0TW8~#fwpyr^0=nX*(ctVR_eb^5K-A5l4P3TKS z2LR%DQD@ICgFsD13t!fwPw`V>xvg2{Q^dD~iYuN{E}|vyk~B|Cq2T~`t}C~V32~0@ zOaZ9gBR=(t0WQf~^$$-cjdiC?g^s(Nk`CQP6_~=}A$iUzObB2ORV@8^2oY9)2PH^ z;R$XnEybAT6Xb-lG$sY0G4BI2`DZIh-cfx#aN+4q%262enrX~ys=$c5N z5BP>m713E=Uqm0$xAchKR5}%*E44-esI{-GTKjl_$D^@_Xyb*}hL*@KFjN(oauz?< zp@BZ5gx~z^!9+Go70WI#jVf({RGJM#`kn!Gs^qCokSgT`J{X=TAKD9^A`Gw>Kn3gt zw1Vsf#iKfu=aYwc5+HSX^$<@T_8h5;onSu|?wGRZo@`G&(g~DkXi>sRS~LI<#|Pwi zyas_%i+(IE%08jOh@MbC+cc~GCFsB$IRfHZvQJ6MH8HLcUL1_t7d|pmJt5g!#pSuA zv*?#qEgYvKUzRqFR0UE}oVVA1SP`IHdM|%l zet@MO&NsVUFF%gW|J%wKoI%#QwTj`nm7I}3Dp?H>lUW9JD)oC&=_ zedHr>0iQpQ^*lh9KKJ^3#P69f7dg>4yrxBR)OF%GPZxHR@Cj|;PsVwASSsTh+;-Z} zfQQm`HD27)QOQzIECGv__iD*v{-$mm$4iBYwnP`q)FYsGsnLl4qrmeY)}GK3T~KSy zwTUq1w^ndD8OvgQ6iDvSv_3662f>w{BLEP`ADHARFbI@}pHZjf#43-FM~gjln)K>P zrlEDA`~wOko4?L%KEajE z4*3h|VjV@kdg;j#~|l-K5UH0;7m)7AO}wG}a^J zF`PmL92#i_bAtHt0}X6#&%lxT5?dYCo>T;1Xvw$S8k?d~*}6dsmJY1Vi_2)0#00ik zp@+^Am4Fz&2|sC~06-kSv2GYVms#kEX0*s}CpMHwgvO$1XsnZudb)+scgj4^6WSDh zVxA|5O(R6m#V64wJ$lCP;%vUBcY;!P7oWQQ)&gVtFL(Yz`h%W)Tmr>i;d-;|cmaWvlX%1)l%I+It69RWyymo^wfnYyt@(goFeVdMBYtCqbkWf*=S|aw{R!AXq_z z1yQ<%1q($*0Tsb^6+z%ZK{^4Xm++v{q^XFg$TvH?_wJmNmBeH|FL=BaV*(fu5YHZcJ0mNs6st~{upXr)W#0;2i1#O*r)7Fj@$AX8V_4nUk|jmt@9gbUB_=bXSE zAcV!J?hvS(R`zHgK~P~paUPx6gXK_U5FU}&yx*gxg|2qN$pl}xARJ@c{YuvTg|YGG z`PqfB55Ah!*McnqW5msrdhxpEmpp1TT$S|k{H(qPdsoAywyOw0XluO7k1ojS6G0F` z*S@di)Zl{_W;J3PDZV(1@GdV{m^I!)IH)eqcq2G60;2JHR#zKg%pFX6J*zhRfe;qs z4B%gXJ!_DKur0*dQ#K{l6-KV~_=m7qVMAU}SPG!f(X=pGz{`DPa$Gh<1N8qB2$oH}y zV^3=iBt>2X-<+viXo`FRsfRhZSGLIW-gCE*{P=1+)(18$OpbqN$NC0XiRAb}QlRsB zP>OlTA4sXl=b2D|N!ox2m>j=Fuu#yOia6T}4Wv&g0GFK|u~s8sMOl<4p9tw+8(XFHX#|eaFZn8~ArvBgOpa#|49rM2=JP(z>Sclgr>_hj&qk1Pl-;dJPa*}{ zFi;A#Rd)Otf`YW&LE1Vy{suup1`8B}m83v3fKs&l7o;?QW7cR&S>?v_2?|o)r6`{w z1)4IHqFEq2p2RK@6cl|IWk9pzq2K8?L@wrc()JZef#w3GD1UWQitP#ofp*pD@wNmD ziQlb=cP9m!IFussfut0PLqUMJ&X12LSV(*{V8N9TVFa#eLm{THXOdE+Eo#Ay5W-`S zHs;5d5iF#=R0;kGDbU2B6p3#lrAQnK0>m*vUd*VV6XefAU!w`~+wvnDkrnUDg72i$KK` z5+Tq6A7;1Zx3^@qy=~m27Vypt#I~kr|WiJ9cHQFj#krEnehRn zh#*?ef`*%iQU|iSTA;WNT0g3E8J>3_t0`MZDB$*kGC~TCzRzlAq0skWRxLjF`>bU4 z{=ZgkcrYv8Ubzcf|F88h&Ok-M4QeN79f&iS9kjDj6!wWHzk#^?I{{op3}xv(^46YcuX4+uUG7FDr>jF1`=v$#D3ecC$N5`042xF z^GE^}lAC~zJ9dH|7$z{K^8~4Y!vs{o9XqW+GS73i%gpmUQV#05AcBuqzLQBpZ3gu%1)(lOSrmZIkqNC%dKiy; ze>9whPsvK+yDw(VW)*j6hea=m+#$!yNL>&ZFGc>l?hcjzuCL2wXREz~G-LA}*xAhQ zRQg*BuI|bJHt1cHjf$-IAe7Ou02kYu;L5hP0b=>OD_Il52~B9Q$iFd0LQ081*%i*Csy&%R&EfA6nZ>kalgVCR6rX-g`}h*356KQM0h?y570-G6Z+ERHb5-T zy_vNroIt6QU)mv^{0bqD#=c06eKTlmOc-fnt9wZZap~g}fIj|;wlv;k8h0zJox!T_ zw7GWGohss^3zW1X6At0*9$Hq!nz5aAP$8)Ns~hV@X{cIdiCFj|L^fGxVUrR@vPmfb)8GU^T9bcb zIOP!?_8JvLr2o2^PIXS_Rnw`?=@cHb)NLn(ylhVj!1k;H4MoN*f1A?I9tPV*xr$D+ zO||DXU7+N}WccZwDj9x8m&+DCMeTMeXgAD-YrCm)7{CSXMz~13*#NP;26HY8Cs1m< z{$-W%_>*Ow!ShX*%LeS$HmrENsS`tlva}lopxw6E?6$9*vlX1X+hywq9d^ln&_Nd{ zQ867pV3$mXKcI`H+4}F&9l>z%^oq_F4%oQxHINOD&e4WbXC6B6#%VwnjY}U5WUbH)WQ`y<$cXVv$@yn@*j`I4|3jvQV>j4MG>2 z6U0F)6I^L!8$hk6DHLYD0jxbCh>J6dfvaJ06*Hqyy_D`lD&ta`qRCBAk~6_l8BP6@ z)zo}TZq{iwkr2Z*()iujfg;B10y)TMvS}J5$9KR*GZ0*91{*+SJ_(dKoB7smIg`Fa z$m2}9WVh~<=BnMrEf>|f9ztFE8U>&M#(-+X*La78JzivoC|BWX`;`Iq>w*(0nPEQH15)MBCL0Hw;SyPSX=A=ECOygHl zh)ZT0C`BRWSCrVcpqOyaK%2s}P}$Q`S$4)w>J%k) zDM(6ajHHrJXBTBb6fk7360r2%poMV`GaUSMYiC<|{3mK}z>G!9w|8QEidktgZ@Q8G+-_WSj$t3 zJ!Gdej!>Esq!hH@hqY=~VZ;MP)~B9))3GaUi(o3Y^B$QwY6dMPGDpyR#QhI!6=fXk zJ?{%>p!Z-Nc4V5<7s|F0Y|O)M2KmM951Vy?>I_L+dza-;bamD@kL~5}b#*poCp3<1 z&Lc#}vq2rVcXOtaxvPcTv~A`Q-JNq7;lpu&+1B0JpWPyq#VBKJ=8yDn4k(N*h9g!! zU%QpUezK=C&4LXFAf{nJx z;^Xgk=2);%@-p$E<@tvD&xY_S1DuWdhW+8e76&tBZ0uN@gRO#nvZrl>#(Mz2wO0L zUvfD!3s=c;JMUwi3u9OEIPbM!>j3kB!q}l+XG1%77nWTZ@r2je$byJ+-|ce_W{=yj z&4hij15h=E*~qY<+PN~%9RceDXc9>Cr1GocTKhr`_g%ic5)_;QPt)K9AR0@N8U+3) zuC>QLg{gsdI>92c@5VYYUdhLM&G%v86GvL=$`y&Y1%#3Ghs?r{pWcwgko*rBR7Da# zCSNFyN%(!@7bfBN@zXiZ+KlAj1+C=px;g2PN1qw$8##I+@0(ILn!jJ#UAGeA$y9J4 z&7RZzOL-+o^Dq7KN|5HTzQZd)jtMr0;h*4@AOb?J1QBJB^@o3eo4gW4{18`y%pcLc zq&I>DF1nDHNL06ef)ClP(c&9Y{2Db!SZmxCeFaDvp&+0@o=Ci?+H^d)a{2v$ggTey zsoS0M9*}Si6u-peHFH9V&l|{lKsx3+|72A)VdTce9X*MO0*YRuUN)!vame?7Gr`%} zU=9DJy1EXlaP^lbIyV}u&A(Jv>k~`${Mtgx{x56(~=_KS9425aRcuEC-qP7Qedjy;GdG9PdJXWB%Tj9G}I0 zTgcbf(GP(0YA2+Y5fXrBuH*S%H15W)#<^>;Z$xGEO!$y5;F+5=Q2avA%)LX;6gSk& zUvabyzZma!@+ogN#FmKXd2=2P;ghF2yJZx`bzzCQ!tE3d=06W>?~h)e5bdAww3D0c zzgjQSF-{98O@LED+<0?nOO}2>yT#I*@}e5EJrs(Y zVeW)%`3_PU%_?S>=qP*T?{sBh9y8^DT*`VSN;weIWAl|_ydAK&RX(ZZki2DBcl_`P;GXfAa$Fj7N<1LB>t z@Us&1z@{9NCVam)15$0|Q)hs(&x9ukEzNd4sjq2)u8UtH0UedwDJ}^?PzI zu&*7fx5f%yD$7O^tf*zq{-#%B!D**T{D^nd5H^)yA;&2ok2pOzhZJCSD8NHznbSt6 zu{W)y_2k{QQ@C?KjGIXVL#i0?5&gT)>FjfYi1a^J^uHkmNFNIDAk{u=fg=4eB|U$I z^GkM-;34I+itzrp!NqSRpif7^78l9%9WEV72zkM#qiM9?m>;@ zQ?@V*mg0LGJ{(rQ7O>VwxYo%#P6!PSowK?b_PspAHU7&+VSMq2&UzI@J$aC;g%A(^ z#hsQ zT&iiPYg{cfoUaakoDH>CT=G^A#sm;oMB(3)M{3!l1bJz5SB5$9pbXzk)CK!x)<&PN znt4#3ubQoKM5pqaFTy>>MNVJ~4$6b|Ee^`VR$2{p5jU_EQRQ$eTk!~|1%gjD;`_7~ zFy1?W@6-PN8Dw$9`?PGWRk-GSbw)@EfAw=`yTbG9HwR^)9mEr_)+T82%F4Ys;l{77 zbv9uX08W%)=7QZspnWWm60dLKqqXc36+)QzyfW{3T_DXXlRAe~Qs)q~mRdBTVQ&{_ z*a)a0zE}Xs@fehrTwN3j4AHPwhQhEGNboI9M!@{qpH8@X1fHv94TwbG(HSuWEjV_D z^SK+HldOb;P2=czNWP}Y(g`ilPPUBM{!lT#)ALYqjT0dohlnB@hXSy1ev*x2jP+-J zu;=0@c3NR|{|RtJFQXi(mt_%FILV-wK`qR>(^@L) zUM;CC-_T`9GF*PR<}d`59wr2El$lVRta(ya2h4^%a(+Y|(mGmL^j0fdG0a#XILthD z)cKkfjDv)5AHMo9jNg5hwrj}VvP!4M@2*FR8oxgPQ;BnRFbWFiAv3MIu*o8XcyyN$ zh;aN2vj#M<8o)6mh~LtUIw*4_gJA#>Ig)_~dG64G>9KUy)e|d3K@K#l&I?#tq<_FE z=YuA@M3lfb!q~KKYIVx!Jn()D0^Lpj>-?PkWv_EJ{-Ln&^8y-}z^9J$H1a=w1{RSl z{D^i`9J2oU(b<$$Bv3JAIRK5H{Bc_K!uW@Of_Q6f8@?HSgpcbsAh9rd_{9m$;S46k z_A#E3VT5z4Wt;dmKy2S%W_@;S-nxm_&`RyTi zGJ9ZV%jg_!GIi=GoS(hm9Ac5Lh|xeHmpvlGybOSeKm z1CD@c?2oQG-!jatM`Ye`8>xk+{`b8fiR1>348?e*zhB;{MgU?9voJK&;6iA zWAh?#fYd2}^A@%~4(gGE!cxrh#c{ZCM5a)oUy2l}xd|E=aXr zqu7y9JpFsWb~cJNc;jRsRMB=a5?1@-vE)WTBJ<-b`+N%Xu$Qf9e)QQm7cv zmt^udW<7C+py%YTx76Q zc03XBt9(pD_39G34ez@)q*^#F#kma^&%c6F;%>j|x~}w`YsH!2wlqUv@l2NeHRZ~Z zFygZvuI7vaaI~FU=Yjex=9um*c`zzsR>X1x=F_vy0Z-+ zRp(Q~T$zM4h4ZY z)7^YyjH?1Ga~#@O?M^Xd6WJIZJ3b~quLFsvzUzFRB@-lMka%1&XhI5*0Tf`MslBy8 zMS>FfwR>GMhGhb6{B*AvdlnZ3nhPowiUJWDG72;ah>I`zf>EGIQBOvJMhVg8@?-I? zPKmPwl*WJ_)fR&&j`*B!WEB^@j*_eOQA>r$B-dN)F%6bWgh z1uP-2mKG4XPkh8K-B?|Jzr5{sg@(w$5-uy=6;SN1k3dUSADr#KR^1hEux|)928cEu zmm8stxws&Q~AHV*RS`p}wrp2)DmQJ5c&^J`TfXki?eF(R#sy8IS6 z;~vAxS?n<^5FI13fN`1e!IepjH(2XQ-~~-wy?H@RR}@d#H#~`#ujLXeT3pj$py;Vu zu6B^#Usuaj4ezNmM)Ay4*U$tlmCCacCNla!0b+zV)(fROnQOt%Au_~YuJ8JbwLSsn z4n%mw{<6ghY1S6HK$;cjw%#Y?+}1~z%DJuQiDFhogH8mDiE$wKgle!!%omE&m7l=v zU*RTFx7iYzWD`*UPQp#W`eO43ZG@lPebdyn&tMy=7^0EZ$wp%9NP&(M?ITcO3xSS1 zc!F+;6a8SV(3$V86~T-XGE77&kucHk)+)#Y+mWDy--vd!K(HOhwQ}vVg7MKEF)Z=5 zEwKZL*ia0u85|Y(lWklrESjU`zLb_T*7`Hsx<(tU#YvlEr=FCKovI7ec!7bF?k8p7 zq^B;HLq%7H*hD+FdKen`q0uQn8a5e47~#Sc!zNG*!zQ$rJ#6w6 zk56;eW>X0Pa89o=r5H(PNJ-7(Dri!asMvN^rlRdE5FIqJfOXI$E)9k;44Qmsl}!ar zR;S@ub}3DbW#%XtNkyDQOQb%8voOGEhCnb*Vl)=o!ZbN}coe)I0h4npE&A{*nakZ&wPLEMkUej^@l-yj!6j_IF80hL=i7pfa62LY9FWK|l#Ol2bdWnQxuOU*);@XqX_4P zQ-5KCNon{ec=|~|$mu6hmV;Y3!2llu6F=}Fu#M4;@8Aedb?f;9I4%_?_MVuPog`MT zPaM-{{T!e>&r2Jlp8M(`q(U8A@!TCQdCae^28v&zf6mM)@wQSP^J58aIBGQOXc%9= zWjN!nc|34tYjRbcUKKE(Y-TdlsSGfp_pz^?6<3&9y@Tbc8qWJ1@u29D-Iq*hT zmMcEPf~s_yQF5Iuf`oFOF|wlH>vT0X*a&Srw5UAF=o3)7$D#7b6I+iI$P-(S*$IfT z&zw}ir;dIgo#(9xFM+Gr495s}zQ*J76ltCh@7z4ydE~W;_5Ihpt^~ues6ZawG8Yx_ zzQ+e8^2I~ycNS@{FkWV(BY|%?ceVk){ABkiz9h|8hIh(#y<&b-AlI*3h*7Scci}T+ z=6?$0Qhka2bk|;}C7vTYQMWOhpW~Wv2cFiQr|s!h3D0=JZl?AqS8Mh)ktP3AS4Q+1 zd*glu3J!x4L|=d$;&4~H(XLhO2B{{x8ahVwe0$yBbX`1!^cntrH^+y!z;gKuojuIg zQFC<+i5JLYNTg8(QJhxigWG&Pz{wvT=b9Z(5jZ@()t2`h?>fgip4MXk*j9yi+G=Qk z+RT!_#TRtIzI^x#k$HsR z3^^@dFX}kR{Q#S6$9hy_>DbOIRxEYP*IbQ?*Cze^uxlavz>3=6Tn<8s0MA-$fuaGW z7=-!GURu!C>?G>q-AN!aayT~B{R}&8MeT2%P#msU3ls+^g&U>dKCkCPYq48)6l4P^ z0X7)tDaN)K=h-{i)x3NrkkOHyCGva^sl~zJtD7x>vxw}RY~3r2H<;jx@4V_z#Rt3UEdS4}e_Rp85M2nGrLkWp(5mxHO;S{SMR(|In# zV5F9i3tnO!)~p22{RMqXS1mq1&z;N$6Dag(@gC&N z=Ug=kW6ymC)^ei@V-KDN8$e1sb%raCfAkz|9C13%a6lo?J=rqBj#ZuG#guak)4X@O zji#3Ot-{!~UT_U6Ogl+@!u4rk>?SY5?K(Djl_XmVV~5UgCE2m_*kK!DK*bmp{kiYI zJoVEDVmQih!G;VL-aOMa-$GRk!HInZBKnv*>u+gEe3PoonV^sH)4#bg!b1cAM@bl7 z@P@3|Ij+8?SPg=R19eK`L}r}9O?N~!T?n3<{$7oCV!BV5l>1)MMn(-=T5#>jqm$NTTkM&-+3+OUZ7)mXacDDZu4> z-uJaGvQi5Bq$vDNANZcI;6sB{=M9@?zssLmZF8K3KVY9Lgzlg9g0Hf{4q54|Run=R zGko!uS~eR*%M7E%2I7-if7lvVgb{H?6BdKs*49b9V5V;oyP@I2Rol;Z4=TfV&+F}*in^`3ZUeBEXqsqPTVqKhn(`T*^ zLRixuEq$dkpIgriGaLUX$LhwqG%!|2u5-QO=mGNJSlvq_$f2*>kHw7D1AZi9b!VuL zV>SG+jn(+U`B>l&ADr_G8}v{;x;V;@E6VdWxZ0bYf8=ZG42@@mFd6PZFN|(dz2tC5 zA!@i=G~c(#9^7Znm1AB|fMVEJg=N{t{aA|H)2-<85wEVR-3 z6fA*{$LaZ3U0(*Ac%wIb4H;pnmri`~zJP0In2UbINU;SId)oMwrCPG%L?RrT1wo#a z?X6z8!nka22X@(3!C1tveCO(F!Nx)FuAhRfCl{Aua0cvC+g$A}*kY{3a9jmzjSPp- za>){#mMDAqdMi4!nl^kOzHtXEil|MrrY&vQNIfzUUg0f-e|e{?A?s$t7lvFK`#`b< z9c1sq2HP+}j`ZEGK6XT@U(uYsWy3~ulw0o0w&2@_59NKdKghwnVUO$>ldUB*ZG-uLND&U^fGY>{ zqAI1Z14ZHEU{3M%VBYcjfXAyDBuK8eKGt+xk4)TOF8RS7#9OS90GW}?QU<#|( zPp)i6z&z>-D$vZZgP=Fz>v;5@xF@d4dJlViY$%t9I4WtIjxQ@z*3A^#vU9C&8!vqmY zW6=5lkc;o1z;vN>F+73s^Er6}K+lqt_q7_QL}hy8Y_P5eB#&{L3|*9Uug8 zkazv<8q3O^x42h^3Fr-O!MQ(*u6Kk_ z`0C^yafXlAb+~)8Y+XwZj^coh={aA_;5gwto(3r;qI&#l&qpB~Udo+DI#5H|07K5p z+!g08quyW*yo?@wnWpd*N?=Ql_wF%YE|!D7q+ek8QS4B%?< z3p0SL&tnFVwG!BPst_sk&jW0(r+ruL5<~K`)qe=BjbE+co@ji*z0vMz;n_m=9P!WS3wX6hwAMzQ$$Ai*AOY|8h#_=DC7e~7@zoXG zxs|F30D27ml0_G!r#HL6;WnGTd`FD?mIF9oZoBCdqQ;}}PcXMFASAaf%5sopSMjUU z1(9!F%*T8cS3?@|^UCgIV~KQ?H>s=i1|H}tLKbk9@5x0UUkh3&=oivozS02k3;iYg z4*do4(v|qRc=wKsqNqP#V(Na#5W_3=$F<1lgbBw4fF?r-Tb^3RQ;8QGXkXX-`GQOa zUncdT&vfQEuU@zylfmV_DapA3k?-iwSBLq^gcIf$I9}dCApsk&F0mE(wTA8~d`aGe z6+cgQFD&JVzNk{b(HBJu*u_u%+#!sQ@8c`Q8=vV0UtJ#a!WEFq&c^exn{r$8E1wK5 zXD@(xEZ(>%@BC8%?UE?(nK4(nJDH z5AkHcUDk~nx>GIKz@#@%%8M;Ya!Uwqj@0sCQn^0ZXiEQXkZMW@;=*xLGnwW1>i>^V7HgyburcB?Q8_VlA0;}$6cQBqOwQ@(7)U=CvZmPQ(TTJ+) zX*UZ1HSHTpm4(u@{vEsBaH#qasRx7oomuOEW?`|`lyTL<{c~ElBMtMPi?I1{w`F(z zZ1cd(D-Np%hW#u&P}*zGpi!}W(JAk}JS{1P0Bj9Pq{eql4%`W?|TUyT;z?XDzyG!a^eR)b(cSF{fuoMQXFi8NY!7`*e zJ%Ov}ww`qND|}$Odlh?uRJ~)PO+zklk*V_@upRWp)GdSW<2UYc|LIu$a|mDbM44E= ztDZNKSGm_6!9FIegN9mVH`F@fX2UCXSKV^>kKVexU~-8E4r8UX+)5$?T5h-9a_>pY zy(2B>Z{5xPEId;~s@<{GPD!i16SNwRVB@aEhxtG1=`L*;Wx2nX8{W6PWb2aS-|UiN zTq2V~%q8rS(y5y8avARCCG{)^znS4qVGhDm*eAM<08r1m>yn%iZYcwWX1d|9SX)vL z43rVg?899vS)It>JqD4qt2#PM031`59@PXiS(k>{|B@-)!Ke(nXI=-!eRHQ1?*w9^ofe@BUXtxXYMq2LX$I zov>X1P%CxI5Um)M_9KVe5-AYF^W}su{Y`@H%lLuAd z-;Q#-&FhzW{n73b{EdR@cUkR8%({(TZTg6rPpq?%`;AC4^@l%I(eC+XxUt zs+50gDQ~5g8ncigpE#VmhkrG`C0x)Y!R8P|+!A6qe+EbamxQw!q%?WDyShA`^d1-mGu|smae6I}*Iagm zOpKpgk@pw8bD86X?@OVY$bvBV5p4UZKX_X5)uUpoI(9%Yo=KW91?__bw^4$JECegT zOV5>SIt0~g|IMyqTp`Dit_TUmainX66%xEe3I3%C<}P$KHJ4tINi-_p(x#s39IvL2 zhI=l>A*7hAT6~ykJZ98YqII>a@=gWN8n2}n^5LN)O4Rt=)87OmiwuFq$f@l;4eS7T z0)3`C&I%1~__`8d#1LggYwwBWtNfli7HHIK(2#iUXwbh^p8sifQ%l{{8s5%q6sfkU zeo;J|Y){r)_O*nPhFK~u%{9tV8vEEWp~+z<`inm8CNk+RbVGhb|lW!4u6@_`&-i!-%goZ z;BRrDgOWp60>ROhsNm>IHh^*^3pD6THLqzQ(UmM{!j;Bu@kCmTgRX=JD_Z`q%2CX?3z8?wXf zOHwL)&-jdpy!l$t^)O+oyNbGE33y<_l<+4Nqx?=%G!cGQeCT!eeGb-+P}FVI>KEBYtwz!Brrk1R2WtY2_`z(EZU2W0%B1_}5P93+C%qVXuteal^g_joTjMi>vvCfHW5*@-O=62mz$;}_2vjaPgEyWdojnQ{urRezkZ~=g{&FAs$YPlrD~CU}$s*YG~mQ5d;99EAG|v z*IDj%mtt3m1h)0Dy8et*#jv+A+ zc_N(mPEl4T0Oe&x1x42HnUyJMG>g_yWgngVa zvh?x$2@BoFp%(UWQcL&ok-y45K8jRD=|eCQ=pk>5kKKTS6 zwcBOa?wGbce#Q)s@%Y{9B*eF*HuxW04|cyJ#Q2ZEkRM!|Yk-fE4^Kjr`Az!?$`>L4 zR6hT__3lukR5gI}HOu!_@X4 zMx5x5x%P=d0?f5f62CClJ_(fDet#|Yh1gVKuKg=M^@2N_xBA9Cvxx8$`xdgcvxzDg zetJ;@0-Lj$uia7jsgKB3MDx~*o$-8kjfXq2H#G|xh{_u}v~7$A2KeT@@tcf89p38x zjD4aJKu?GYee|1*L%shS*Ab>21Ph}rTQwF&f-<(l$7*K?7ScKeoJ54_8Y#f)Pym+) zRpz%=_DN>9Nht0>$|xT>xmjh1SFU_5e}^J9Iw*zzz+~jQj0R_lu23EoP|8s<-peu3dJa&d0oyzU4Pe3i%!v500K^-XCc?`vVA=SA9c(6owV;*tsA!Q z5G<7K%N`(AgHw=s|L;<;&cHwkhSSgM1RDigP)M+eKe~?@AM?zgAk+0JK}We(Q@OsD zazXNL{8@LC1l?EENsK|b5W;fIMM%qU{g*mu$WCo6vgs;aRDCk>_nfx&y`vOAnKK5FMK!wW9Cr?aY> zI!Rm;^ z%raz?0v!IK0EhpEH`FC}b3Mb^RDy+Mr%1AM2pq{yQDomF1xOYOEMz}w-zJpDrFy%v z&j~8h{#erfhQN{b$BOnoQh>CfK+pyo%)Q}$i(Mq;NbsyAc$2`9;8{hm^dGwEksuUU zgzfOBdn`*LSc0sX@Q0jV8E))dlVjiTJ=GJ+Tq#J62C73b~5(=^h z@*t6brl#2(!7_>8|Bt(UVxoZ3X|{|ufXafL{Kx$}8&AZ9QKUETke5{ASvKI|i88k_ zhR}{$47rWYrl*C$#}3IZ&9li@c@D5yq#h)2 zy0BLXApHwZA3it4)5?xki!b>UKBj)phHL%-0mpYd;|imTFSYr)(jJikL8@~~dm35L zV4%uK&_b)UgiYu*ET6E%gcAyKgh0j8+W}~NYRVIdcKj~vVo|7B-Mx=lP;JtvoBF6U zxO^#l6O62eJe&|h1psF%7<6#?GB@0lXt0_DQBU1TH|6priIn2homtNFm)Y*7jE!_4 zr5HDFbCXPO-EPXb2>7l1Xrkp!6&HaYLE#`S(%+ED}^ZHXVA-qWFqgd(oXSR zO7T-k(a7OTV?51_mi+q|Sl&@RF+6}-hn-+sk#*QjD5CYYQ;LVB^-NG0vkpQ$d~uc% z#qbKW6|R72Tj2`G22i153p5xizUxojB)CPiparuI6sofh75=R{7r;b z6T#p3oASAlxb@J^Yz*P9d(X%}W$zhDO0oA``P#F|d=4ZRpCCO?O0oT)p+e95)7E>Q z`cw5D_+jlmE1(3kckh!D^!oQG#n1k?; z#xw@4hiQyj|FeonW6&z-%6F40=*kw1pes|TcIBRbNmuSoh-g>t{ugoOfqxb2%8@dL zLRctQCJ^b$K5$Rv$`~Zyv(wYZV0nbQcIC-`NmrgsO3{@I9`VjK7VxB0$VI+J3el72 zQ<>lS%jU^1{iQq^egr)k%+cFi2kMCk^w*>S9eFJwXne=>n|WG@kuey3HedQnCekQL zbU;u5M@OmvdY}yu%ZKjw++r4}*dIOy2B7`^x0ars26OzaCD+Eft&DY>h#xeTS>!)mRLf1|bd`|b3k*`Cts2{$f^w~8#5iUFWVIZ|?H zDUcp5MWshe*#NQp$@ZT0%mNjb`deEH-KyaUPtQ_p8j%_;wYNHaKJvHps;70KKY50? zv|%n%Mp~jv#2(6HzCjgRX*be>fRW%w&`4rw0YTd}T|71Tt{&P(8!4&X+D3S$K~Tah z%L1O<&C}ET>2IEU(^-q1BZSc;{kLorVkj=!B!U0}sgphDJ?U^RhLG0ho>B-Dm!W{h*I)GPvf_)g z0G$Y`7|P&z<#K&sF=HWI!wUxv`gpqVi@ngU5^;W}r?myowpdkPUlZB6IGE!n2})QfP(jO~l26n5>HFb)L*(}{VJ66g*^87@omiAu!Q;+G3H*>i?Bo~+ z#(rvLi}rl{dbr+Y^eue5+`s%c&%*{QAYyE?YF$O0=R&O^-Tb@f6?ToFqt-VG0JXlR zw5FI^Yxa-T^GrZTttq-q>jWvsWuo=*BDGcm!y_A@wfX%mUVezDTTtIILp(za)`bXQ z(^tJ6)9D}4%8mK-zdbYAK!T3?4krNgx`BM}AlR`{M5*q3-o`AKU}GZ>1mfZidx~yT zSA8GfpQn!qG%|=(L?bJCI|{^3j<)}VylQy62Gsp*n74<)J|O&U+Nylya;0se$CJm_ z6Li$}TLM6B*Gp|FB5J$D3od<#V57F{m9`Y!rmgz?el5`!L@GjCCGRq+?b3fj`1>JR zU4NNSFSKrj+uFT^zNGJ{r+3QnJkf>!DeaxhY7lHxw*dj5GuOB+yD-H>eK&@MmEz+^ zfzs_s9aI|XU=!0iHl?dek51xIV**WF?sid1E1{V{?BpnYJA^;Mh|-6d*JZFri3B#K zRi<>JPi`TMQ6BCtp{O?D)l(_ci0~7O6kajUMd6Jxyw3zr_ker) zS55G&HP}unfVI6;it#(yUYYB>KeH1ATZD2*>ndz`QYC27?}`*kA$}_@x(W1svLzWA zA$FDuHx{PGC+bmG4W?w;(3$%%^C?(Mh+ITGzxF6JCdTh$Z(^9-2o9qu(pIe<^}dn zZ5C?W#f_RH(v3QN?lh?{W(D3QxTx>j0$|ZMJI`|t-b?5^)swWM}e|+9#8|^%w={mB=ZACc3K?P3)Aue8$tu3Kcs+h^AE!``5bp&w4sq z>xw0f!_e(6x|tP2@Vr{X8)t=z744_WtZ$=P;i7Z&FmbsxqX9SQpDG1Tqp&a#1}u%4 zjFv(O%w*gxeqko#Zi5?pyw((W>K^Y%{`7Ru!XmO6t`|JlStij2vl+cKAehZqdWYGJ zQ;R&wJZ-Tvn)4Z+Og3DzASsO^80QQ#cvSrn34HoY&zEcxsV2hbMlN4E%hSsoWALS) zKjdYzNIAycUoiNlRBsFRIw`=oI~4S7lGB#0AO#qAhl2ctuucb(eb-N@#6R--hOz$; zETsFjqPv$AAYCXxx+h5i(uINm-Sm_ZFhn7);YY4LgAJT!#k*Bwq6bMfmAf+@2aT@5~OK{lMvgReUx0ZnB!-WMF5 zeDCX?)``Oelx8)$Yg4Pk1NXn-S#Gd3L`;#^Xgl-&z~AezRhq0HG8(H*woyam_t_f+ zfF>_U9r=AWCNFlAdYHU8NC0BkGj{VGZ$tXRhN#jP=L%!5ddHJn7#p(})t1Rg1;{#p z9-mhlj+|4%VgZq$C07}YRfGwoUDmJ)4$w{I40Hw~o$tI*3gD(R&em) z-Mx=nDBFZl2@EO>CNO#sS~z!g6#yJjVTf^-%g*-81csL&>QIc+!KbbpTZK7EsZL-_ zad6`dL^+=#r6S5;Ji)Jh)vL@`+UhNPeQyQAR_1~|V7az%dXNwDaL%NNX9M3jQh z6GtSo@};zkU|5EgA}gY}QfM)u>eO1dvb&7KDQe^AZS#d5vMB#npM}2OT{B z)QHA@nYCC&1khb(WhvQZR+7?S*237r*KB}L?{}mS9pD=(_CDzVs>_%gOYzgIz^68n zO4w&EK!I3b|4a&S#d(fW`yH@I&k^L-toBq9|6|v|PcF*AV;PenJQW$DJrhZVLrNmJ zR*#1mYJk)e6WTdIBAKwDqM>K5EQOv)jewqM11Qh5K!cvyiOM3@xE3_wCHUP1g`#KT zcNhKtS7l6C(0Z7#@cqv!B4I(Rpd&v@s-PoVFoKRuq1usW!V@9Fk!KSk+L2$RhF<`= z-=ZB^8xQ)I?DW84?M;NOcHi}oR~IAxdQz%`??)g-CPw^Y zq!j%ZUQgF<0@rntA>V|jP|$z(lS*KP-X_HJ(jWKM;4khAj`=1eH8i2Jq3CZ8Sl#g4 z6Yge$6z=CJDfGAXA?R;ZYV3tEG1%s>aP{k`WNgLMwoogru;BaP>u zhTfP)3blcTz{DX8G>nuA0~v$4aa2u-MmC>%*wZ}Fy$67jqI(Y@RfKtrJf58IsmY!u zaGcGa)TGRrb_)SDv=F6+7D@|63sJGrLKHCXm}iegG5jK=z2GNDK;uCU&eOy%lM-8r zWZFKPrF}N*LY0&_rEGIrmtax?UXIhYfp6!DZH_4093fS3=yQ~oLtjW~-9$KE!Btt> zf64<^V7!7wg9+qt=!5@p=)1b7Sqn#<(xH4)z1B5ZJv*&hlvXoMYjJFLdk2WbGkdqL z!l-OG{$OsRJ0%8#m*9PSo;SgQjt#R}HVmiU&{1cKZqr$%C7P6xI)gkx zohuZQHlAO-2@%{%Wx!*Gc)FSaZO0DrJZP}z345EiD#-tg(iW2v3kW)DyMzEx+XYHn ziYc`fS&5GcI%*5(s4YdeX{)jluPSXpo}#o>(&nMI#$Y&E7j?kDmsmez(1hC4sUd1kTg1Ra&$M*u=;V>@T%y)`X}Hu+UbVk?m!coZeSlHg;M-?0kTNqr}f z?)cFJ&zA;^2qQjb9cxwkplq0IHcU%YCFmk8K}I}z|<&8<_VIHFgEHnhgg)&doDZOctGyN@Zrm@0GsAXH#mFN@5x)EOt!O2|6wto(&_*hL-?~E*tXTZ?Qtl zBeifDk6WjeVYqeTGvmE@`c)jdTu#Y-PRPNo$pmt^M5E-yN`Or!^f4(RzLzr}3zJ!i zY+?0QJSz?!Dust06TL&&SyBPD{y_kw)_%~s0$iaM#wS+uHeh!#?F^{#-&Djfh8n|? z^yMUP6B6W7S&2UgBg{%rfL?z%Fc?P#qhmNK15 zJ<-Rk7=j;WBrH;h<^FYLQh4YiU{c{p&fcTbY4lP=TvbYfhEM}32?(I&Umnq?(j!6& zOi4T{eql=DQC2u5fnVkE+TQtvQxg7(b)d1>JfaWgBxY$qFekD24s#Mu%{>~&pPb=| zb#G3lv!|ZcX4P)OQg9{~&>uIiHGAXf}AYjydJCkwv zvIJ*6Nhy+EL`grx4v})Cx?fWLk-(AaekJR# zqyP!-4-&*&M=_qHa~*FnmFpmwGS@Mkkz5C$sa!{L1pIo7uWaYNJ8`jq(p<-j+KE)I zqfvYB1%uTQmFS0(ONRC@@h2RCE)*(1;iySy<0l*)(_oNcEeTjms0l3ufMz{tMg7S} zXHpNd9=!+v*Fv2m_|CUIcQYHNN_z||0{x?RJmU+aW8Py=XE|@dc>4zTUQi8b&hUf1UqmTTbRb z+S@6$rj)u$N+t*<5+H?0VFqM)Ih6r%+G!1?v_@%K!4!xf81<>A3Zt6ha%u0x_!RS* zaxw?<93hO>n@S1KDHpUJ=0Jd!%z;p%7(O`^fpIO`R2bK?0aT>f0u4r*{X`bwq|AaQ z))ANkp-|keU=C#4zg5N@2(63zgJYx`u3an`!O$^@m% zE%_JN8$!q6I4PsO{S);Vq*5S+fr=axh>RQ`fbJloqxlgu{ZX^L_E+6?lFG}jlSE2` z=?}AAdD(S3kWy^?Hs!Ui!+y-^gj8Rk=d>&@drnJI342Z!6o}Qlixgnb8Ahm?qXCQb z9H53h2maUTk7vuv^v5(irKc&Sxss9)EM25OKp>g^ppv0eCY490q((rev;mY;TA)Fv z{DR6NoYI0O90b!J6pBuX>5uLIt1_lPXgy4S9RHtHMEZkPK_9+Ms-O>BFoHfzq1uN{ zxb$E6aH&Y`N7{$)iqsBamWwRLhgJ52Fi<{BAkv2u!7rr``R1b078AVSPy7d=yX(cbUGVAQ?QfEFErK?*|e2D zS62F*lxi#OlU6!F3eie?sahv(R@$kow3F0AEB&sl^am+GEB!{vnNc*y#M6r8x_i(%j+ex zexw++>k~!%f2h<>3_M1M(Y2!WAg(S811@69jUZes7aToA$fIoH5;F&2^Ld|y#W7M% z-*EJN6kqdoPEGa#sf(gLM@4&?7=HXESM8!?L${FvYZS0N8*c)}J$~_&Ak`vEKT_Qh-IZBl|7iI0b2c!7BNn;bkNF|(j?y7(j4_`b> zhkX7agp6=rFx%TAuvh~!IOV|qI_*@mf=WBpuAuz}?OVNqZhGjIf|6)?%sL%}Cc~@~ z{0Q!6aM;JJQx{4L<_r^9V%CYGV>j3sg{?v?C9_ThV9h%D2x%Sh8B3tJHSty8>n?hB zGYh(i)#MROF;_SML#CZ~L(tJCfR3SSiY`PaeMMy)wp5T=m`|Zb zF!NMM&NUS<&T4*GfiK)OvYWZG0?j#9jn6Li!T&{128ZqrsJ9U4Z#aKICnP&j-|$$);xsUz?gL z^O2|2#AMT}1Rd3UlK?=?KEMUDi4;+4DRNC85p2}*Ri!0Gw`r-83@<4y;f*+}mP*Vi zO3TN1-4$9(nP$2`*xHm-$&R0tl9*=ti=d;Dj*7$=gy;UHw4|7*C8n8T2s&yB=-8GN z-KM2VMf{<({K>ARlJktzlARJF{tC}?^{m0C&THQ>*s3zslu0D8DXg+1y(*GalarvM z!XpVlIIrR4Ss!~FF^Y)#>P*uUqzWqStSFVHb!bHd)Hu}Zsqj2f#v(^i6x8t)+h?5KB8jNDv#IGa2HTXt}4-ASD zU$Os4iVwMgH^0>W>6baCuo&WC)%3JAR)t_ZVSE9k?I8<3Gz%m$qrWy>tsH-!10qTxT`YET(1`vBE4kphQ$?p{b8<;5bV>< zwXo|IsikZpIL4B^0`LpCu!x8|t9o0=+|n~KayR-M!N>W0YK)%G%{hQYcB50^Pmx-h zLMqASA>1Nhz851?OCN03>x^ZT+9#4)U`J{KIb8Kpa$>q?j}iJhwe)a|RN0FbN0pZ* zdLLvz5NymVofZJ8vOjOD*I}4{#qj68gU?fL5meOnCY7&rrGU0?ZSyuFK}7XJ;dN3Q z^GXz;R~d;4-lX{|0Suq4Z%qv;y ziM8r4%ATjSJu#<5bkDS_j=)uN1}wh<52^G$)r0y@DH!L#Pgd@UpybR&zs5K)GTB&3GaB+zyRNzH!8_o z(vbb|0plkcLEZ5PZXn>A&9YMtn~Pcm0^02Sr6{ zAYj9jZroe7Fh6*3Erb`$oD|9fPqc>cCY{~zDp+TCKVusIMS4bs2YsFQTvsT7sJ!{2Q*3M_v($vIx2%v_O7Nv%J)FZLDN2M}jP~8Zo7@oTpru{TO47^DE1SnNKP~ z!@#BFU~)KW&Hh6Qu$jLm)Xbf-VNB>)c-$JuVarf**fM#Qv1O>_*fKUiEFbuX_f3m} zc(LUa&>W0p?C0}tLdbD%tUTeeLHsFCxR~p}j$-u{6Q|n`9lnA9NQdX(@U?l?RU;DK z*&H*+Oo@|G{HCN1D%m)Wcwf7?pf7{>8TEPEEjW`>o7BMt()jhGLyb6|de7)i@E@)S zK_*-tjU>1zldnjbhTZnQZ|24Ej~YBwpFK_LpiECvnPy6vcs;|{n2a9krqIVp-G>Zc z3ZnqMN_vZ+p{rZagv*XIeU&VgaVzw(=}Tju{%hqi4qqcnW!!#jA@#7I6k>`?B@0ya zlSks@($gnxYpj!Pk6#7TQBN-l7b?BHP{i)EvCx`?z?r3!ndbPTUTSH%y0$ z3oP*}%&y|2PyBpzx;PSnhbx{FONtk{!F*F4pgN!Ob(>!NO2fp4>~0}B8X}cXt?TPN ze^*pkMsp1mzeJ~-IjZERkL1hI^Nv>Kv*$frmLDJHs>{np_;O0H@W`*_>(8%L@Regk zMjlnpH{H=Q98UH z9v{z_uFI{k^{QwNTakKKM1FGu9Gd2OT2 zZSmaM(3i?DC;FZ%nKQg-_<56RKDaG`GF$G;h(2y_l~2JOwSDR4ns}a?GO96O6?T7V z{`DB&dUlo8t?L_DLQ%|1nnQXja9S15bMG0|jl;vXVg9SteX$0tqsr9uwP$fvNUsZ+ zCZ>uujZuRewS3J?cx}C9t&;YX7tN?DJf)hiE{mf4z&aIL2mtlja{Ov-Uni4QLF4#K zo%2;RSa({jUj8#_I+o)ZI zpiN$F=<}4cm2#9#aws=pli7BgjF2|*D4TrM*jLkFZ_#RZV3WntCLXIzG6(by^B+w0 zF{9KrV8m0)b%^GFH1*YBJ1Ac;4j-Qsonlaz`95f#z}7B`7xXz;pAT>DE6KyrFs8g{ zZmzVT6bWqKcunNTaC5&*_vVg)YiT@ z!>G=Cw(+%NH4}>HS4j!FUzv>)#E{cebgW0)`bL(}iHrpPW;?J-0_7)0oiqWUR*6fH zqfVs+IqEEL?|Xywr`1Ys7PGG=ZW(a0uH6^L+onO!dV;r2_qAkGD8oR{dW_oTd2JWt z8Vtz=Ess>@ryBa=OKPD>eCj>ECTtSrEG)FpZlMWEiE+|G{#l)URSotbt#=0|TB)g9 zOq7yUlkvB^`i_|g5_n!WUmbRkatzpLAGJ||v{9*}FkkS<>5o?8tGoN!m()PJ`HCLC z4s17ND-86D-9S5(3g0OMebdud$zY+0#MSS>K#oM|pg=ufprw_@4)A}U;j3*x1my2N zzI#~{$}C`;28pC!wNAu-F2v_u;H}c9T;hdqz-xg^r2)1TUB~&m_L1>ue<@VrM?gN z+OX-AVZcz&QbWB&47IvyTr7Wl@WFO)D_x0)X!u-s@nGm_d6c!V(K~hSf zyn0wHU5`SW;RYU9aAS2s7OyrOMni(ZuO9HV<7Sp`7rUz}@$Z2n>hp~+g}2H0TT3g% z#GT0H>Zx3inuKcr2iBG~1WtBMiq`EK7^tQM)2zj#D{Gr1~Xb97Y8 zFake)!iR7SJg1Wa=TYA%Q9%TrjYMvYgq=c`cv508K|-nns>*nFHYq@|P=I6~CIv_q z3Mko)@0D%K<`5*TJ)R3*?XiM*}kpVentwgA`~Fo&7=U?LIH-+6TwE}zN2F7 zhhg+3kBn&P00MmWv+b)fg2|^Y_f1RNQVsZ(t3Fj*^^m3sgnM)4_ zOtB-i8tj4hXC{WjkARxcGdoU5@`pX*J8iPA8qTLijO@bt5J2+JBQi<}4Bn>P$R-xt zHIseniCkxq721~{*~U^Ky?%CQzUXORn32j;|1%=P0d)E4ZLVm3a;dAX1r=x?XV2Nl zB7XWa<*QjxL1cJ(>1|Ik<2L*VAveTEE{a%1GoHKVr#Sx9@^cmV-Zx!k_@Mfpauz~D zJhp<+5HgxwtMP*R*>x|Ne~)hGge;|IRU7Id(Db>6UP_Pe~w zjG%W2!k9s#A_z?XtQUNh4c3)V7A*x|qTYVdmtY}m(^7>{sg}??YZwv3H7%Hi(zmuw zf{c-G5gVc5A`;eqzI#v^zI&GMX=6C=JKJ}}@kkP&H*mz6!@&yTLIFZaj9Jvi>hW^I zoo8Ln?qoKuCbI+$s&PEjICHLVObC0+%DOYp>QIxJzz+NJ|Hs;wz(sW=59htX0~%CB zQ4tVOK@>R@R7B+vZ$R+A1rcWE%^2{&Gx5l=W~1>~mEI(3bQ4XC#v>O=Orma1jftB3 zR+BY}=F*tm-0`cfeluNf2G;+lyT9MYp}M-Ny1Kf%s`_|aRjE0ax7JoZZ)1-uIN#n6 zw0dE9qoD!M1C*B>*^|T$lXA$vr0^5Rd-l?w1x<^0eJ}xYEQZfsP~C$+rw>nPsVu}i zUHv%kwi$vP%16u@yu%jkI2;2|D36j-EF3d<9Q_9(15PgjjmJ3PiB?)6_K2gD1;i5b z6XQ$JzVzyhK^9aTx#0vAXBUAAvrCo*Rm>K(``~jnT?o36LVKKV-R9FWl(~80u6)+l z2OH&B{B`eW3vt!Pg8J}VL8#vWI`1<29d{w@q z$PXRcdW#P>O5gv)i~$yOlxEqE%3`*$K75d-U7(yMgl13O64Z+0oVL>k8#MXT&dN#t zv`f=>rL(8}v4bC~G%VOY1IIKyV)Gm(r|`O@;f~fiJ4p$O8R~rs5Hr-tSUE%aV45@3 z1s`8&m#4CcHS!&J4Gv=~n1-HynaH8Oo8N;=BzWlMuy|w{ya;k#AM?79RhY@PNGnILE zmP&y$)x9y^nF^mi`|^p(p&D~q*-N)Whu7?JL$iXEo_*dviY-xqO}WrJ6>+$INbxQW zaCBo9z=_H>{KQk0g%&9G%CM&^b9hRfw^u9}mqfkOWr6V)C{B#~z8czyPkE+tt+tDQ z^GxMXwp+=?50pF1>r)TLsi_gZC4T8(Wx5TVPQLDk$!&P{vy}y85jBsPQNbU479wQ| zK$+K-2PU!C2tQ#S7BtX6JIEwVX=#CC*UF;R+ujOnVX1uJQe}}o1A0a5 zNW)r#=iItvRJzl9ca+EJFGceeadWfu&K>3MbZ1g4bdRGKKXY%pXniD;()B5=3J9zjW5mFl;$#jnz-#vX_h_j7{g)-nNww8 z$kC9W7iR`TIucz@VfzUls__v4kZP<07k;0{ULq)B`-dGN0JPy2wT(k9P+`Nhi@@i( z<+aLA`Uf5PL$5(j|07Zl)%6~2+Bwy z(UG5uvUg-xd|CcRSq66U_R#rgd;EWAIeUYBs)c3liOK@jp_4L0u~1tuKsoCz0IZUB zl`3ucH=FDeE%k78Ja6{kBeDneRvqLs5Hu`<3EMofMkO23fE5t9{ zgRbZ#_n^}R_C;}KE1j=c<#1?4{9;^XG%t*|_u#AFuAE4-A9axZNY>a=(jw?sGxM=n zK|K3$dzBm5U5YSAc9{97hn=yylRUdO^Zm-h?0!-Wvjz8cl1YjKqyV!8 zP=MKjL!>}t3*ed8Bj+l!cyTW+RKFLHyzfuHPcV`8+a~QVNCDD@0;K&TDL~q9TWRBI z!jR6&y0CU&XL;NZnB#-boe2W+jqNPcIRuUs0gh~QNdYE6pa2sfp5~maN}I+e5iBG- zuCtlXAq7Ym3Xtx6Qh;=!z(W_Gmst9F*j&~07YE2#_HO$w1V z6k@LEUZJv4;SKb>CufrpuoiSJlQslZCT(guVbZ3BK#@tC4+OWheDRl+10q)oD9zI> zAiXB?H0HMBX(Ay+VnzJ$yy|Pr(TuIVP?^L&CIr#NDk{!y%tv3S{DFN(iZD;}tpLzG z4XuoM8a*B`%oLKCDmcl*2oY}#Jh<*d*!+qjc$lJzSvr+LWsK@rJ5q|%{?_j* zH(H?Rx}14_1bh?szuI6H>NOWz?Zz7D*45*vI10 zkEM9%$5KGPz`4~PGYd>f?5bCg{Xxj1rS=$!Z)q6w`UX$m0$q~_w>w#VU2iG%|6S5iy`Q~ zV*4C6SkdLU>ibbxtJ`n1Ru&F!7zipH+^~3g9_0MUuE+t5B z9h!yS`e|sUIOKbp)Bau4*tSE261MFip`;!4iX+-)11-syDX6+Ig!zc{CWbKYCrI;pCBbW6c*ylv z!Vk^sCjqdS*P(XyAsTC*sQM8j8AbpqlA%x>a>c9df&A6>_AYS9=~8=pch;HI!xqLS zDyz~{61}4?EXtljRx>k!LK$ErLjlOq8_7Tl{$!NB6C38saS-J=T5-fcMve3TGsm1e z+XnK(PJ5i@;@djd6WA_<>+GDh}d|s@*Gh6S=@Gi>m zUd3=toIT;cGdvY%e}_?}is?#gTHDEhJ9mguo*UerJx?pt9M>!*mUx5aC)ftJvhNU zAQ58J-xLcHK-I(8_!YXKtNkPk?W#tOaNIR`SEif27wbUa=(mS-mGMA#Qh+`?6kt3M z2ngP=X)wV;vU!s17y?JKc_!HzqyWi6frl(cOiKs?)?Cn4ZW#yioK*X5Yy&Arj%y{y z?F5eX)|wpmkpkoh1s;yr5Db`JC0I!IMM?Hu0!Okhnq>b)3Xm)mc*x>LbOXJif|@^| z6J=0CP-Rf_c_Icip#nt)H7&cruRjv`>0b8Uk-rKsjcU#jd%&nh9vo~dDw$!!`abq+ zJY_nTqxHpHs0#kvgg+Pt%sX(qK!> zpoX%+mQVn;WV5#=G^n{qczc_pe*?H8sQHGJqC2lAd7Fnp%{SdJsG)f1zES`NH5A~Z zhUg^Op)ra!32GvfNQZV!YN$iapoX$RHBbPm;k;E1d{&|TcQ%@^R$3UDB(*S-l%f_Y z6acj_G6}Un@lXpEfN`_Qx44;}0qqrcqaG#nak%ai0Pk=W5kQME_BopE^&~R_I6-QlJNg>!iVu>c&kbV> zBY;Z&!iZim^r z2MHx?-Tjo(0iV{{pj9#ypv}Wj;04lq7z!Ltl6JN)$!ljA3VcR5qMe-<0Agq9b@!Ir zcWdk?f{3BOWdcy40EObjp+W)1(<&hp2uW5(fo%*-CPvXFS%v~&rx*&THK3IYz$pU^ z1t&vl( za-8nv_@`m-dMzCHcZdn(wJv)se3I-b7cgAp%dmzryw%I_O*cdy|E-C2ZD!dMG)8rb z)7HiA(tJ*L_nHsJ0@Te=u>f(8JRZ4lj4>8?Mu>{Bz(Mf~V}XOo4a5S6BT5?a9SiMk z`T1)5?fy~06SM7m*xS~|n^D0@1@*|V`l0KL3R-OXFo5UGw!_W(xpp`ET(KZgK|PF( z&!9WR^V;{$voB=7kZQv9)&C9sBc4RKl+2IRKo%@CMU4Z9{`-4hYyO@q zwMH+ohp=2i8&mlOOYASQ(FBTF{80ixU0zxbU0yq>vOUW_l8L`@YJ>hz9`7v#&Ff9r zmZq23qkB@Mf3%sPC^zx%Fe!P@X6;Oo{?ULGUY28@++Nhc z7McDoWsU9;1%&3>N5T|WmTS+`QcQ361mUTg@|ve9@Wa~_^mZx0+l<Dp4lxK2?3a>A6=f7aVOz${+222xgweA(4dcDI`Bk~csy=Nj0-LY$`E zD;u`Om($&p(}VxBh8>a(JL1dkIm+&}|8v9eL;=+!9uGK6sN>!O#ekk(&nN(^T)s*b z^F#ryhnCtWRhni(s@F7e8KhH>S_a9~=~;rrN`T8?d>Ys;E`tf;7cPSdX$>rcZ~fi= zkpJTM&%5oPupCj_OgVswnu}jQ1@&-Vz56;BKe#T&__kg42)?S{gfM>oUi$<#Qt=@x zU_IQ8qBOYzezw`ZlU0yvxWJXA$(++vUUHv3oL6s!&%Ty!wdb>&eK8kN%o?`Iw|sq? z+;_j96kr|+3UJ^304cyc5)_C$5^Ny=?P?{gws+Twd}37Scm?B{Ka@*4C$j?!;A#2K1_y{Su%p zmwkdNm;K&pa@$^@$YsB;U{}KLc+lQIvPeMbs-H=ve9(TJpldy?2Wx#aFCHE~m6elvxI&Z)zz^bV4%nYs@s|=jwM;JV zVXpY_!#k#MrNDiA3iYm)a^JqThg>cHPAaO^a$^s&X#AsxT=M(&kU1{ZGIPzRY;d`x z0Gxyt^uQE?HjkIR07t&BoVI_*UL%}Ui(c`x2!425gbP0f_%!BovoYsL9o3k#v@zc| z*cfx|r);n>6o8F+kv1l|u3w#fs>a&(RN{JDqqpiQ^E<6bDdu;&DgfqpTJ^;I4#mU# zjs@V&?@*}9@8m0*GQUI7&?t@{gxzim#rA}PkdWVzos-N{Z`;+VF7P?~csN%}D5^$P zn2o9+rP!z?3V@BOkd2~v*eDAC8dZDPK9o@)o-(aDZ12lUpT}KYc{){*=h&RCN9=d` z*ZbEIdmej`;MQMx`#)iamNG?M%%HkB#*Py*UIo}*?P-oW_~Ertl<20f?Y$X=V(*;! z8g@}WBe=NaQ#7pn(M$G3Yh`hq;3cm_+h2yAt=TXLA^E12a`@AHoM>tf`BX8iC7tocM*ydR%$~%X-_R_Ij>H{&v*<63Y^`FNui@cj3)t zy|;pTIIq6GtC3^HE%0`7rz_yNy?_l@EXayp4`X9kx?IuEyaZoM{pq-U4J##e#R8^H zfri@)^a<%Qu3hL`KF?dOHip*uAnB{2c3MRS+e!*>>4gGZ(f5!7vFd88dD&a`EWYmd z@|NNwPs!EcJZH${eD)GS#HII0y1DeeMM_ZeBZ`FhH7dLT4XCxZ07%HSm!QhEw@12M zdj*PIdvC~qUj;nk9oSqNCZLz0t4ElR1Ev#UaC1psmv1cUcuYcs+}D1s(d>1x!^CWa zEUv)k-?Lv}tqBxY;8p^FQkr)gX+5<9Cz5)&0>=x$55kbaUepSlPw>=SkdtA~1@Ob$ zRvgZ_0#m4U(E>}`{u#^*(?~tFW=+Z<3$PNG(rFghVSpeRZmqOLb8`Mkn zJYg@ z+E6G;)TNi)>j8=Iv{!F1IkDFh4}Xijo{kxEsVNOKSdh}Bm^9>>^wwl5@J#r|Fn;no zdvW+}LMU8mZWq6BrMbOV11rrN-`kh_1(0={F4|jYY%6Jc`>R znJ*lf62U+E!Jf(8xI&;1Vsk9ZOOBZ7pB z#d{Q~oLwg6NaXuoa+T3~E9=9GP=KpUb5ek@9TZ?}XR_V@GsKNu2okO%aCZGqn3sAH zI8yD@TTty6MBqpi;FM_F-|UOoRDy&=CrY9&0zcBoF;+vGS!@x3BhiUgqFev4k7j=( zNJw;zB)W~jQPMR?)%?QXUQ&vrp_IydvWI;-dxan&=@%sFcL*FwzhDadIVnJ@P(Z0V zbjN7+J3&IKKTE1XeSA9XXOn7MQh-#Uz@&O0z){80NVy=Wckd%jAe$5jIpKwr12(wq zT}a@9Ai!rgbrfjQ05G_(Bq&&Q20zurk;CQ@I0`=ltLg{Autj9wfYB@OVjtM6^ezah z^e#5_lHP?tk>162!EGO35adXV+#{gWyWqs~(YyF2$N}ln2Z@9$f*sdI`mc_xemQWN-r&dYtbWH zIL_I=@6(v?A5$F1E|FqbK4H#eNG>pi}+e!h>~4nI$-;@XT~ z%nQquU(DmbwsCmR#fD}Qq8&2jwj~f%AIk%xxS{Psbe!HhQ$A*znF$K;xOCz=Tn42% zP|*~hBoi{?#xeY>J~cBLL_3n0*@;ahv~nHxN{y1TOH$f)zO{{GfDHtaUz(wk;d+uAp?y4Ysc-|BEj%Z1F%!=T@MfJ<&wocL{jPcmPYVMjJPHB-VlSZqwd!kraxuKG zPmj0kOROlSuhoi5bMjk=eiRRHQ_0XWPl_)t_US7RT=yk(v9-M@-Tc1TTIl}eogIB` zKuR7Ppfs^R_h({%S~Ls&8B74?`vi~2J0@t%LD`D;Lo&NKHnM6074~BTG~Vo&fDRUX zy#0<3eca-MA0o(l9{Nb+rQLSL@|doUa7%SaYvl9qx?!(~q=e?+r@K13Sa8s!;bD&; zKA@YUE8FSA2dezD8`!&FEASrtQ~uZolIp`&Z+jf`siHgj%4Z}f2k`ESBA*cR3{J~U z<*^2$Ve_eu&nPi*5&i-Nh++8|P!~^i_+XkB;eW3O9iQr;=$IVBr#h~rc~vP0qs{qZ znoo7aWGN#Sst5eqRh8{6a`?28`L$9$mhlLTWpNzJGw!?hay(&UBM1XE?uTT_aX*BV z;*-D@ZAhgt9C-!iqO%wbZh#!+vU(9QIR5B^X@e^p#oiopaX!HSBLU z3E{IE8=$7Rs|*vqn4Dqvpm+exkdzRPs3BQ6qAW6t5k&yzh#H#h_yle(5lPT|N98*5 z*dYSN5d~=SOS^vfDXoSE@%%hT4|d9@61<~&G7p}<@vG8lAiU#tdLXt`PzS{42RdRc zi0ZA1fBTcYGv6`N4;!DVXwpxaib?vmL5=|yWNha5gB(LyJAdr;gM9=+Y#gB7{IP3> zIL74T`(WywKIF@4P2{N5_*RQjZaol+DdxrzeBNVfNr zBiRSj9LX!{LC29y(Y+&?Z6N44Jb^k6XJ2%4IPdVm*X(>`iKCWLbf5Ny%Hd4gi!Vy# z!w?nO@7L?jjB=!D>?9$L1G)IoXr}d(ydMr}i}=Fnu>geAQ#{cz&;rFiIy@1^W=?-KE-+<5y}YDJ{Ew`NX~S}myAM1qqJ#)VV+n6uuYds9l;uVl8WVd{Y-z< zY}2Ep^we?3pZXj9rP-V$1;T8!=JnxchK0gcum@IU=(`6a1t7G2Wv*kJ1&Z^>@p&+R*s_%+;r!uOc~OnSZmEpgUM+-9iIjrMzteNFrH=DR0Z!5bvdJV}kZm1leY2&K`;uB^iydQZGvTVf zxW&qk-;DZ2QZp#2YDEf+A zoahfcJUUGW8aUFZSlIVSbdO1NuP@PuDbc5Vh}wXd9Bh;-c7LaA?0$<*MfY0(qWh;T zcZ{$=aj?C;93HDVLxjP>=2sbWAA@y9Y|B0^l4NOo-R$^K{Ygj_ zhMhJjPBJI+hIb6H1Dvr4bCRl;|Hi12d*k?@+Ps?`oKug%phIiyK`Hh?F z*4KqtF;b;y{A}^)O|gSjdwxe;^cFObq>zHCDkzHdOk-UY(AGGcZeJ1f-1~} z7$Ru76d|0~{>?F#Mfqa2%axhiZlnOyukHBR4US$clfcWwle|ztq=I$et9G785iDe0 zWRfi<1xU6?kPYYC7P5GDBPm4MP|HIbbGr>_Mdfxs0IkT}E+AplpB-wro|z*d_3GAbcf6~!*Bh=ABtsNZhYMbH zmmY8o*Vso5S2WM>(u$bA{+?99t?h3F0B4?ebL!SV=-8mKpgaJ161rZewQ-(YMjMk- z^jv})Ip5IZ^5olSok%IJS}}QKu1W?h;bCmfm2aa(!r#JcjU=_uYaN^?6P7pa^SUZ} zKBY8DQ9@@GDB)5H|Eh$gk!L0>-Gn|$<)F0YD_UN^M+ZWI}2=ej0O`oil7VO;N5 zQ^NP;NoRO7pZz9eEP<3Dd^bYD7q`)ZYI9|tduQUu>EpM629q1#3=kY|bk-!`RCsks+AH{wfPa4gk- z&Evnl;26SwCzL>a=JSR>Qyn%QC{H?o$)vd}Mn|e~*j$bc$_9@JPynvZHn3a~Zr+e5 zL$go9oVglH8R%o>VrN|&D2==uDMTZ0@$8I^@F+v*K}Sb6j1;0Z4H`&neDpx8jpxGO z!p3t+El|fe-8E3|pUff!NX|*gEgY_@4S2&5Ww2XML?jXioz&fJgGQ|A2|vk zoQ1fs3=2T`>gmTEgDgK_A*GnzSf4NB ztqr6=Oq%c#h-$}{d>L-Rc*mG_6;SJ56%|D4;0p0XzRYXXkpfi8V}#fdsT8r^;3@&c zaFu|6F{SZAzMRHCB1BN4_Xv@5QX);x;yTpDg<%z`qZWogOo~@XDN_86Pz)SoSr>qk zTo))wF{ZT|*>hBrn9{HSM9<+JZwkc$iYbk>LCWHAbX(9w2hS0rsSd_dK7ZuOFyWhA zdCKQ}u8dqt2{rT|rV4=RKj62<>oPxZOw;rwgJl2QOe)~)wrCKUELRTlPL|j~HSo8X zENe(D2(B~unlZ&4Z1)Y4d*giRX%%5_q4ai3&590J+u}eJdma8&VfG7yu^9{cR1^ava}oxoeh?X z3>mEY5d{q#OcdE>u%99=ZAS4@2Akrg`O@l6X=N!|Uhzc3ao^rlBBrEA50=;2$NG{h zq2#7Za;QUbo!thyllD%PDD0ihCThcI^~OQc45tqAnjv2JUPm~h8QvuT7Bk%Nm1Dlf zb`eBzfll8sSWdM&NC9?W^_#&7`g4Q1wy`>n9U`Tu?1QvLM@fqgycOK3rE*HlSE_gL zj^99xN15Q}gCF8{!U&^?%v|SJ>>PpmL?7mR&a@tGT5JW$MO=T^V6Ud|QWuQ?R7_8T zEKhVTf?SO0TMYqKVocv!{KA;N^$@?99-oQj?_G2};2+oj^OEB@OBS^~VT3oX@2a34 z&Z~D_XI#JSvg1zHUlAtJd_C-pe&EM>qxsRK8pg{bhsa=k#1I+HyL=Js76dbzzttCO z8B`YszSoli5q9fP0EgyU^W~YzG3-84ig7oTV%!bfRZRaB!9p1yAHvh_aQ6x#aHI`z zJm&W{DL}GN;313Qd;@Ax;e0kwkl{Q*l}EKY50OW;1d5F3^`Y=9oA3U^krmlbKxsUm zKx7d|wZzw)=JB0>I_9&cqMpY>L|}hO$$LwW2$cZN1p#>x|h@*@XkMFo*6xIWx6REEkUnm9eDy5LJ&ip&}>8C+q33@!}t zuL_iR4mB5shX{2P=mA3MQAvr<4s!O?p*}8z6G#o^1|1tJ9joJ{6y2a#3B7lRN>@(@ zUBS~SHXtR}1xgcRo4lbA+q9=mM>mKn7egBgz|iJT!XKR#dC8 zF|CUcN*t+%5emgn;W33u#d*WyUc+RB(uYt2?U~_m`Y^KY=M9tLG3XG(V`bCkMF7eM zBNPfi{~k6WnA3Fs`VFNavWxInrfnZ4P1{aNy)m+W>o95Bx0BK%1Dur_m3r+ki)r5s zb%fV5QuxMr=lARhDv&2kwjCI5ZcxDw?<$DhgTWkys$lLlf{TV| zK@-8;UatTmj)QZTIJmc+tqRq<43(~7XP9rrF4V7t7_M$V34pn}(O9na2pNL38KERa z&4%$)nHE!s9pM?+xY#rwAqRGIQc;C-nIp`j&RL`wR|z=dZlybDgjy=R$DM&XE@kkq zitDD1kXA6A&_r1$`_gnuSv^*u0~uV=sIWLNFm_r2!eVH5t1sbYzJ%|RgylL3RPpUD zN)^}b9i~zr^rd&dFTDePO0_f_#XIT|?=@d?ulSOChlr;&=f%C9?M2Nfntc7%-T zzW1f{wJ)V#BqgCi4D6tdasj7}#lVgcS|YI1nhIL*D(i5sNn%{rwLn=Inq-0i5R*)= zE68%*q_cqp5#ze-0y#HilLG8LjO)f1$hdAIDHT?sk1ZgJX?cN~7erX67E{x)%;ukE zJC8HU1H(E$#4N&R9eAJ|!@6Yz>f?ci$$TQMhhbeG5L|?H2?bt7VOU39RSfIaMP@RL z*Q7t~iLFGiBX?>AZ@E(|e#xC$AnvnMD_s0o{&K!^U>n@O^`SNhzVUS6$5uJopt`a_ z&cT{Z0M_pc`D)oyNMHPCMGX9Bsrb*(IQY*X_)m?orpXOA+`O@iA<+JcD0g7-9W};( z;9jLDdO}pjZ>)|G(hnB@`6&wigP+_)f(r#zLD0w+|EcK&|G{rNe4dvGKk-G>*Thp# z_+V7;H28&YNc0ewQSnCWCUJ2DZ=W0z`;53(*;zy=U5D_pKvx-0X5}}rkA)~^U?R-b z_CW!h?f9ryE52=*GsAWP{#yS+S_-c&&_nsU;PRkgKrroekomdUs>GIoyv353*8Ha7 zPSzC^1!}kf)L=Zk4E}Rb+$JSol=XHPB&&uyAF?$rg!!iSWG{YksTQQ$3Wb@1la|=B zgRMm9JU%k5spug%Vg3kTzf2#(&x{_G#5xsvB#-8?RnGj{*F%GfVii#Q62ocrq-&44 z&wi2;&L*^)!x(>okU480!krTe(m8V1&?I?=M6#yDn(nj(1t14UboUiAV@am-V z!TgnC=PIfR4bgDMGpUnxcoUHrgVUd7;=}s_Ze%;%&D8k+Qht&g?d;4Ea3uA0a{d z@Aqo)1b{UL z&Z(%JSv9N7dE-XoqeAh8?lk`4MCa6N_-6T8Q^aU^a{jeR&Q9zo;VwEY>^lLVrt~tX zKfW?of1wb+$<2>XcD~E>BFjiB3ft~m?TV^~UnD}M^Q+UO!vuL;>41^^>U8pSrz@CZ@JnyQcZkkRcdiW?uEYcM)Hh;t*eC@OVb{p9kPs_>wq!3xF0ZuQOAX%1I{jHdjT|L9>n(v=#-JIrwQVs^!c=axI= znV#@^xEql5DOocslK*FhGl$h!tIcev2Bz=+ST?COKXI~63l6_p@fI_k{n#o(V0)r5 zMqgPZ({Oi_0@O`$KyVU#*#HSh)+g~S~8dRj`$`1 z#E(atMdreh5e$E$iBt+KYQh5r09UN&LVjvxbqdc;Zj&ASAqB6PWRK<3<}^#P{i_Hr zUR-L|k$s`cIgHE-{j(zUhx|w7MNkDC-C!u+!lptnt{Kj5*E&MMYMSXE7V!gyGdD^f z>C>F|lw2^5#N>`+GEm^jRtgI*WO1uzd9<4y`vhec8NtNhig@g(*&V`E z<1?fi1&l@H7EBlyaxKk0lIm3;iIDyBzgz zBE4!P<^(AA?7th`to-2P<*{|kZ+9-#*eOEb>}Vs7cV6ktV;>Oc`lp;l+9`fyr4w#A z5jbL}{;PQ^`qVf* zF1eVeybEVo(Ln=Qd%t5{jW)okgUM`Hu6lI;c}_V;c!38dCGSj6AlPKt%(z zjeN^LoGUEYDF2B2p&#}VY#~2je{{douwWzYH)5Mr@~Ar-)?8L1zY>Y*_r>b+nLJ- z_+VpOabQuk9NFVs$clYXf$)Y$oZT#hF}(Qt5$Bz32Em58roYILHsTjkf*R>FOZb5R zBTTeItarqY%;ROD@2cg#}aU33jqkN3= zXsy4PK*k&8~b1=J5Y$V&AAfl~5&2N4l)@F*R$Yv94lWfHyP!h#PvLysj zkQG`G@u&q;Ow(k2Y$Ip3CriNFbmr={P{U(h1k1FF4J9H7&9$wC-dOuVzSXqa|I=A( zW2=b_KBi?(qIZlkO{>St&c5s(g0D;qa4e?9x9xZ>pw9M+vp{FNNexg^K6{J+gnn#* z!DoNkE7F1*d(1hGy+lw^@w@q{W6n|wA}YT0HD?STc@zx_b-tT__!@LPW$vTND5=SZ zMxiFPJGl0`Gmq%dZ2s+|P>0$I{`c2mxYWRc)x;P<#=CjPc8(nHUCDSS!_*{}0AswQ zW1q0PZ{BdOY|NrYD|5wlzcT?~GopC%yUr8~A}*x82_l+K)M&YoQj*?1yJ8k=i2L#kT z|FN^5#%?8*paq@z+6O`s*(w6X{=Jny@~LyL1shxO#~NcO+d{B~cJy0E^W{5X9QqJ1 z;*(E%rxqI&%7xDd%Ut-55Td9_Ac}*KqWhRmXW7iyuAj&u5wFTtk_8l!AQ4Lrc{47@s+(|hQwJ;6iO z;aA{05-1v0d;Xsbuu@QLSoa=a83a)*d9~#eoAUnsL(28`V`MU|I3;L@ZO|AU;PZOIIRi3NhN!l)I{Tkk52#MTxCUs*_})i$x>UJp%H111}5__e|3(s zy$gSZo^Bh(C;sM4V;}iYwY?9;r*fJ`F!GfueoCKL$M(GHQEB zu5UvJiyhlj@b5FTTJvpxIM>?($3mKOGmGFwf5P2_W@8l#LCnUW7@5NlFLU$@dS8J6 zAcjCu1&klM;;dp6+s9zcerz(ohki(IO{#X1qLi64 zP&?mYWs*)XS0mwIw!+X3>4$joN-&5Q3?Hn!A(9tcQj;M}6b}GS7%3#`&5K*;LDqbV z2#I<1m56xT%g`Cx%I=-nt3+Wq#xVc=;#f%n^WUeJ&bp@jx5)d7tP&$B4w(ce0B_dw zI-UW94D(QaU!M;e^V0SPT%cP%xm8_Wu#u?Sz7+<3x2*zyXdgzD@%<~>1o1bU8<~7@ zbK~KFuyGJ4ZHotkYz@CWsVr|ID0Ex{iJ%VSL{7YiB@r|v)F`>O+?SF*8oub*t0jc0 zAw(QB)rRDa!2&LyKUYJ=A7{_N1 zbPeVA++%CYW5SIiHupG~x#tg#VK)*9ym~Ym(&NH<^!R5RW5o6Av66q;))>qxi8!do zJAL(7Znmw|)MHSD;bvP&wG|OY>2=Ga->cYIR9F?A!1%;Sx%oVLZuxBGu5B z!93a(0u?K=4bWt;N%3*<4jr$CBzlZLjpNJWjA9FA6zH6o#i&3(DuINywE%v&qmie7 zJ624QseIpK5fSO`yr0jb%R5s@MdIjW-@((u zT>-o^-OB6Q-@#$ol;>|~)Q*3hVEm0ORxIQ$(-~WJk~Ur*nw~SB=cdAEFLDwgFZnlu ziJLKN#>>r^ZKMEZjYPgYLhq(SDelJXC8f9<0|mGn;~`#MojQfRLa>nd3nuY*NP!{_ zrAYj9Qi{Z(z(aidlXENB?*swq{%q0>nxL!$>8=Y)741f{ZAl@Lg<66v+^s22HJmJs zlq1#d6QnA#Nr6{dc$2d@#c0DXu58?y6%q_24OKl7<5}){`rMd3o~wPSqpusGocA;m zG;=$O)WGd1Z4%egjUjCoh+P-lkD4c#HWNEjH%(~Fa~|8>n$Jr&@}p)8?NGy?qSR&X zJK?%;8xb0sRmji$&2~NOLR0=)FC#d3g(54rh3bCpWjqWottdEGL;qd^#i0*qa_Cch z9Qu#=poRzxkKf*npB#3+6+hP7Xv?3OS{7nqC+35wzlrLo7ISyVPf)IB8NaZX2pc8m z>jWy~)L!C`_A|O!u+dA#r1EKkjV}626ZoFHj0moO+NPzYj%XSGq@N*9L6~&c3^4jx za8L@2mu(ZF4VT2J6p3vEVfp&Ug4$W|Q4YNL*_z;^xBe2Jon!R0U<37aEP){6v|HmjDfL4+6>mfWXec>?-_kbO4aZa3oj{ynn>^5tL72&kJs&={w& zQr~L0VKrqUZde6RQKfJK;8$0XJ`YNMb#-C$Rf*gmoinik4{iBGxjzcy+TyakGVb-2W6 z!f(1TIf3mbiuJ!iDDR0AUz z##6`I8tD^3|022^H&LEPf3d*mqp@EIMO4t4XT~xJ$i%bm!T(l;W+#SBlAYLmlCo^v za%7Vl=)`uDuG)#_Nx*-bok+OKPD~-pR44vhb|S^bPNaac3q~JC0iOO#X2S?k>^h2u zUFRHSOtVzRX>Bs8hrLGYVXsjD_S&rfR>j+Ev>Nu>wwCi6i=LpJc518M6az;rPym-`Tl}{PPUzs;An6{Py%~MmCFJ6Ktp}^sO-BCG63O}!V1%PVG83kbPtxK5Dm3>BtV((Ej?7jJujc7|{ z9C#uZ$5&1C&fgXc>^({dd#~|iW$M`B6vNwl6sX4BD(Di@ef+6s49>a{f~xltCd-}v z1X2n+{lje8lg;<|a!Cn}x&D)J%=vHgkKnV*jf`O0ZG8RPv!YuWYUVUw=mWO6&rjHz z`}}2u9g2Cl^(v-=Fk%4UeYpre+)Zb(bN z)YGji_TJb_|8lZ?nd);w3OJh+|Cz~B&J&Zpa^k`8_$kV;m7E;~RLR+^?ySq`uCXj% zWRYZIy$KZ6*P^y@XfT1A%f`qla@i;$_}JFMDGe+elc&_bY(y#xZZ9Vu!i`U>GCEp> z!aukarhcT^(vQMlwI`~)KQ4J}GTmM^SSY+CA`)nh|QW+PEP5-Ule_^_Bj#0oK zylUn7b76U-?ZD<9x;rhHuU>P$UF|$$BzyX5RM2IhM3lv+!*`lG!B=Fbcnt>+$`cn- z#5(4iW;AT^n$UQD;P2Z+yPuy5jRSnp<9w_IM~|+0qLGJ>3&8E6kR9<)*0B6G*qrU|Q z`C}-)lTbt*0Vx@ZQ<^9NhT=~Vd{cr2>mU@T*hu}obw(vSMzGD+@%2Wc1=~l9jpUqX z(V{v#`V}Dv#$=uyJtv^JHiNapH`DBOH*GMEYs@y?VtV-;GJ6u&YJ9Xg7Q4jl#H zLW!X`g<@Z+P<%8YkFFiXMGDW{ZQRKybmTpdA*dkrP%Lz8C>mCdyw^Bxsf?>+b%dia zyiy%H*^vkTz=5&ky2m#ghc$MmFIDW3zkuFFkNicInmw}B?2&D%M8;;D8|smVuihhO zWCmQZM+jHhBZmny)gynIjy*!Lu}3HX<7x`RmJl@BX5qw*1|T=x8s(gw!j*isyeAsy6M^hD)q zG@5VP0C((r!d>>gi?CCDpH_-}PqDG@DFAi4{SjjbqfqQa49#yRl(8cz8diR0uhHI8 z8K&}1d}(n&EB65iTdoB$ewI8(+GnoYnYEhG8MculTTlOv_9o1l91JR3_6hlSnD1W#*Kb zX_ zfaNI`Bz_$*L&mRtXOQ@H5<$g~ZQKkQzdA?(SezNZLMeuV^GPX2YfymEnuj>XuWJbw z5?^H!-$Du$aVSONyGbb$hXN0A3vH?VxvD)j*~sbMmLcHaMH%0jY3iHDrozikjH7C;v$75pMeKJ zp~`5Q%~W=Z?gK@`%6q>7hlfI;@;VlCwR)HlrPb6@vjh4->;e3vTyCPCJ7>Umz6TMC zs3q*l+?lc`b5*I?lM|st^yFk!B71WD%m!SCikUM0{x4nGLOKq>6}ysfm0h`nFjHNb zI}^K-Vq;fQ07iQh;OWI=wuunM4y0(<2UTCgCLV=i-e&iCZ{EgIsJe|-!ESq+u)^-9 z7@{6_8wILv8vqJ7yA8K)?kkr*!kTjFBdmgM6^ zP$r0;RHKRpIxwt4`hKJXi#TrHXccnv<_{}xbMxlcnNrg8Grf}H=1mUatR(F(pk7Jg zaxp)xFK$#f<3}Ud#wPk!!E?f6E2Nc2R>ewrUATCxX2mr--MT$caaXQ28p0obgn&!IMLe@tf^Ol)K zp0e*8xq4BBw3_}EUaP^K8?s~(_m}!I#D38Iji>|&y1(tkFLZy~SEBnHOm}Yh*)#JB z!|9U=9!l^U1-zD&$frLS-Z8w3mt3NkT%sh$6uDR-Tx_E*MmAi5e&)kb`E9UFy3QU? z+2{d<;^8D4{HQySF)?2gzwqg#@jV3f6!D)q0>4W9XQVjZUjYA6PbUeqzaq*VSWKQy z!piti2v&9q3fVlTsVhm(hDfZ@oXo!0_bg9NHhqQ!v+%j%upmBcA;dHWi~md#rvdSF z;U8k(0XH(@#Dbo{O9NdiY@iuFwQNHHPYrU#vr5rq)Ke)h3vv||l`DYwCFX|J@jjtiPc_>la_v zCC%Ow>>6zL2lWZ_PD8?cE``x{^Rca68TB=Pb8A5orT(=eWtAu!g4dj@VzO|n(|K`>E0L9vLeU1axv8=VE&ZC{;<2q=J*CO5 z(Zdp3DZx!oADC_0JbaafDXR0r@J2%eZUt_<x?8YxWIy;Fc+lGf&gs4w@rpy-Y;mb8=-tON;f5gtWKRde%+ebuQ z@gkfw-ECJ_pZZ?soWv92UCn|m5?mVNEU$O^TXS90-(-2~sVu>j6kvNB3>j}di68RT zle1|M@A^5I`?eGPI`C;X*JScflUx;z8L#d|waOPughyU{84BZ7gLk zmXK{Fwp2kN%YRy*F7*a8>3iv}N!M^eM~J5vI{4nvuwEAu&R%`Bob9Wx;i@(8#iUF9 zTq*omFV|D-c2XUd`~QL7Zc&`{Ar7nFPWJB}#E)gVQu!^JuJr+XfVp^psT5EbWU14CF@#uKQphGqYXE*J>c2I(U~HS0{hbmX^5# z`Pyl2cqB8axJ5vS6NJuU zt|b=sN~wP6A1S5k+q_m&2cxZ%rWZQ7Gt`yJM%E|b2q~cdIGgCi`N`@&^|(fL!l2=U zU72hM5y9J>Fqd!Z^PM<7iEm66!cco;h-(g8Mymc#hMInpeNfxsDgqu~;Ydd# zSAQEEeeZSCQ|MTl*G*rytLvt%se=fVF$H&=S50%h@8dg)d!}oqgIsSCxk8V)XBNGo z03zPPNPX#bd6a|r{&D3_c2*JQuzGdn>&7(d8(t4P;|%nv_=?ZnEoMBzej?S@f9V>d zUpC~X;rE8zG%US5bR28$0$EMZ4Y8QZi*@Q&cQH#K2$wztG948H-fN9%HDfBvCRj)& z%O&?73rPW1hXU9cY|V@R;?7}{N$IIGE|(6axIG9mmVNA6$>tFRq+4y$y@eDYT__NA zYkMViVe3dCl7&JKS=@DOKzVpSH0OdVw)y9vJoRMhM)_nZsl~yT`BKTM9v>p7OaEXi;wpC`xZ$s}p(d2NDaXw;Q>AN3nOCI`nkwBz3Q?sy8dB+F4XV_?)Yxf41$7C#qRH$_0u`yY0D;D1 zLPqrUuOLoLvR`~E*q{PWEe$BJ;O9OIxxB-#r^YchOIi5#d)y|2+~y-1su1N<0U3<{ zeb@mD1MkvI2E2K#)1n2L{=37qTw|Gput?k3GG;aARab^pGx*^hg+lV$wZqfd2m%y> z3v|q6QEZjTnhxlg$>PDQTtOOS!=D6C9+Oy8XEiX?T(eXXtCbpO=G8MH-p~5*ffn)V zYqyDSX*cf5thQQx-QU)_j=1mYPI}St*bqw$Vhu_kD7dTl448RXxX$dGhnXU?CNR3^!9SJvI_H@9&Lg7W|(7(YmC;Pmu+)J^6y&? zAIkD54)N`5y|e&KbS{^4p1-vjljZrkBu2S2Rr ziXU)IVh0Hn+3oOSXTGkrU9!{r+$i3B?8U2FwP;Ny7*h$f3(zyEYq!${XYfBFeCo47 z^N~Qm>U`!yuAA6-QX9J_WS46=yF{Qu_7H*Qxj)k%zVzZ6z?T-JgjlM3&4(-==-80c;?FqI_Ar`+nC}3$~JPEWt+kviST1&`L_% zi_H%`>K*)A7B7Dkh6zQiuOTV*Gz9124KTM7@1ySgW3FXzsh-HA=HWF}avokoN^zAb zeMd{M?W{5n0Y5~F(fN3ws)0r3(JHS$rwwp-CSy8N$_pHEDyJNADqmicl@>(!pzpD! z3MXfZjNTsw9C!+HFcg4ljrmZ6d-RkZ7>NZ99lvqUxbi|sW!N0ceI+x7pI96a#&b@5 z)Q_jWsrTf+)yY*h$faJa^r`k|*+TGu#N(9#)$;oqeHG~6>?=IE6Y7>H z8*XsRlMR2kKYjE6NoC)n!i|umb;t(Zb)$3Y|N~OV0)NExspg9ymYX@7v^=p4PfJOeaW{K7Lp zbNQ*0uzyu5kS~hM+vWVy7j6ePPPy*zOL_IJ>+`0oOk=A_`!VNrhXQ!GuD*`9)nIEa zn}4rg2<3h6D{IFOy$#OLy^4j*ewDtQnAKVVJ$#LOW@GZJ?(jRV;Tk)jFt|t@!4YyW z2sjfkzEOL9*KC;qgOlxyAHL#h#v=;#7Toh^8awJ+`z32_%#58SNFoKLePTsY*|A>; zCT6kzJzHkSn#@tAi&-ovP}#B8q!iOwP%6?`+Ad!DvFi?&Ov-`mSa?|tzpveoz>#X# zIVv|coD>S8T33GHb5{Y-JoBmRAy!U`QPk-s(b=Q`i9!L2y77#w2U|u;k?M4$>eckN zvn~hwJ3&I)8%^3fNdeM^0-&A69w!Az7BX=lte0%7f4QDuuM;FBd(CjcJgLVPqKZsC76|TJc*xhT+{k+b^fHX?5$1EHw-YnO#3SxOk0Ju2 z--LVj&0b8t#=U#b2%b1BIC!L@Et8IQ!I#|dYE_wnlU!q|fL;~?o4H26>b&#!u4h@* zRcf2bMZem0?u%gP>}FCOo!@hpTw~bn1S*_g{pPvyh!90rZmN>iOh)=~vbfLZwfFH!F1C}ptRPZ-C z&8lMo^8kEFfbsBSJ}=#n$h3LVfxm$idYmV%EnogC9I}caW#~JF&uhRV>@*KOLal)B zAK^|S4Q?s>;f8tWj#Fmnj#B_SbVa|zb~J^eC2czy7|ajxvt@!FT_dP*b{n-_-58-X3bpE; z-y7%_xl~j+MZ?OQg58;x%BZz>tXkvugt)(CB}786(loe8*Tfyk3P~Z_BZk@)ur*Zn zP+}~zlVUW-@|p$)>+BkHu+|Q6#}jLemSeRL>WS!p@z4^zN=Bd8Gw>SeGjkkS}DFq@m?$U8J)dNh$)4i zlnOsd3ek!twRPXgz93LE(vzmXD7rGzpDDU9Qb3bNO7W5W;j;w+d~$>vzNs;vSoS73 zns+9`-CRE@HBIXYO$QTznQ*?bz58!0h7iHFiH%3HM8?SOrnSu_az~_lh}M&T8wvZ= z8TC;iMq?%$)8!< z;4}(o(n2Y|oN+od>#Sd#&$aui;@A(Q9>|x@&+JP|)f$rV_xYHluz@Gdx3l4$hzWV6 z#EFD5#fgLhaE92>&0S|v9S-pO%zpDM@!{RwyEN8)ff`BP0j?)5kor#~rJgA@kh@ac z(R%Izezt`@jtwLz*bCVU8t8>Wr~#iX1s`a8s%2g^Kb`_iu@@*))eGf>5B36}$zGuN zDCD-95rO=-GK-H9zCby3EehGe|eD`U@|?gY{YN=A{Uu?gmbJ6dbP1NuOXz=gz`#PNhi3mY(ou!SCDXrEcXF`%*2zC~lF05tZO zGu=Ni3Pod&2LmQP7yoOPdlSp2(utEMIM?JXl(wEjNVzi-g4K;11 zr)fU!Lz-MqfFGJU<)_SiF=2yd4rtQMDL%@#uCPgG+Zrg2Ju)Pgts@n2w!!O64as=V zLN(hQX*+_>HeNBY11MMQ01ChkxOjJYIHOQltBcrEL>w_BEErf1ALgL-u;cneZ&S^rSKT|FAJq)UoG@XhKc)Z!VV?tCjh2oX5xMf!NJ6R zF#(`zb<%ZkJN$8Ejowasfaeyud$T=OVP(R8S3?3nxkw&` zFW`=m?!IIe?k$JV&P6g)jYl$7bIj6zn58+z?$B@|B1uVz9_!6x!V*~n8C{XT4*x_5 zjrr?O#V^cXe+rs_*GK&m*au78GyM|SS-f(Tdl~zQv>x-J1>&-9r+()*grldc}<6VK@c z0TYm^3IUVO-N(BJu>yjHWQH!5>ETJF0INd*rbU-daK|wRDHZuk9ZK=+Byh(BW&@2- z3CyNI!7qVHYRLrVcZ*a4v#qEi6PUH)m-rLE_0G4t-wo&OT~(oxjYPp^lFhuR`i?_3 zGo`L-vb(L$HVZs6iG&f^<5S)7>;VE5;hesCvAmz*haOYv?#G_=LDx3($m#C){D~v> ztNz$emb&k)7dw!zEQ7f5L;otRX1EJ2Rba#q;}@4TZPfRFV3KY4$;q*egYQ;+;nw!^ zv%-04x%(YVt9e!-6O?9lBoHSm4dI`VuL{%(1 zsEVaJ>KanVOQ;ST3_*V2;n8XOW2Qc~NPQ4KQXdq6P5ORHRCE4owL6BwFky6d^}mv)o%C(M4< zItaWdUc4wjiL&#$6p&U1gfzbGY*nb<)U)0?{vT`K9T-*dJkEQU0@(x- z0tti=5?X)+lF+3GkRT-#0R?H1B8FT8QBf%or3Oe4SejJnEg%r8G(qXjhFCxpu~Fn> zL&V?g?7Q1}FBkp(gnz;@J3BKwJ3F>i%$g{p>uES>BOQ01wxk7auU*wrX;*3?J9F zc>o_UB{ZD37zf$AD~gZYG?rH;6x72#^YSY){Kk#X`i%Xi5agyYT;majfSblQUy+-} zm)n-;z)Fo#W-5ZK#(4H?S)Ftb65g$dw<1;XB4HeFNy~M@I0Q8wU(F82fg-5*#g2FP)>Iu7Kq#RK5kkl9&`|9R9|fyb`uP<(Dg zKsjDF7xI`Ek z%luago4)B#i-%tSt|YIQ3zu@!lRJi($YAse2mOes96DA;W!SFV8AM2{pghe`^E6WG zRr3l%%_~VEs(D#aYTjI=nvJ&=rb#tZcBp0wKuzI>C52kHD^3xaaKnS*3JSPgL4l~5 z$rjE0x-jc1`%aKr8yl_Sn+YngfUkzt_V9U zJr3>A20npzYt<=^-(Q>+9h@QY3lRcC-yw#DwM=i;!2uEPvSOQC*M8XuirAAR) z8%nM^SpT}ESyg@UL+dxO6PJ1@0K4TxZF@&*NtRyeK}5n{u@b;up+M}FA5^bg={_up z&tCzXcB2U`)hnaMNxv|Pl!9j3+onTbXr01h*-TP`YMEA)TIMUYWUMl&#dr-2m|-_i zW|(usExXNx5pLOy8i!h>*l64ofLi=~bygonp{T~cM%zkr=kKHZ`Ijl(%CcjGJnE8G zkYp-%j4n(@ZR%h87YgyF%GeVlK)r_Nh-2;~9<@H}4_0ivvToHA_l%ynN4VhlaGej1 z*UOCO+H6;47D4K|8D!DM7cnwo$E%UCy-$n~Lg&y|NpGtH5ODy74lZxr$N{ zNpMVNu7F+^9}=H6-YXieI=&;=DB3lXXkyjTV`tWVcAwy3Lh~*GplUIpNul28R61Ku z0?K3)>lEwf(Ci{iEGFAD35Zs1*Lc~E@>#qmYaXKj=+myOK4FHoKrukzcvBVZ&fg3j zT~j*3H4d3g$u$m{3DQ|8o{4=%@WnOGF!2l5IKz0@e#jLSIupBYf7VnVOPrSvWKCn) zM1EZ2j8Om&)11iXTY> zs{dlPn(Bv&Dsrm-gZMRz-#?nwI(nw~O=tQq34k%r#q*4z>BHY*w+R%TD^B-2jV}Hl zr~69%A;C8kZ8_aH&NCK!RY`(82aamRqP_AO)BQrVx!(yGvnBtzvXM+PRgT;FTx7w_ zlUbi=Ec%~o8?$j!ZCq(2lX~b;Y6}25J1`SIQ?V-TRXJ-&Bc)zPG5`w2Y9fOa zqLb|RY7vfP_^Z;9{E#hI6MuVEXBy^^VmelD6OnBw6czrdbM)M(8{}{5VdlkD6O0>QY*&Q+;vhb zlpSh?0#GY3%k01?)S{IiiA<;!itE)11)^3~OReasuW}5mEnbz;t2X=}HVI)~t$mg? zm{ppfMhBW&v;cTbO~lnE6J%U%Mo>{XjVBagGVLaKO$Os?{RuLzCQ}ODxLSLHlq`Az zkt~_F%JffUBS{Su&qc&DHVP*b9E_{45df+f<0^&X)UB1RV;yaR91e>~6>QsrqT04b zwGD6hsNqmXF0Lsb+$p30?3!$&!7kZgz1FL8tB^PX86=4l^~5U?ComECrH~kd|^8YS04eg&h@P6><`jv43NJlfQMnu)CUZZOGkbbM*`$`*VADiP6Wt#-QX&4 z@z<37f#PfNfs^VqEn8TO%)r-3e2gKrFg`}TCgWqoYa~84v|`m&SQsCDG*|FZ@i7P} z6pD|emW+?LpdUS{uuxG&#>YY8R}kNIBdcw6p!iMWCmcd27!tUkv5V4 z`b$=~!r0IKnl+3qEsWjpH<-i~qJ87HtP#B9FL+p1k}cT%d)70W2@}Sd@nouMgb}Pw zjS%KLuRAQjO^T@nCvp=nhe%Te8W5a@)`zf$_~R41)$HwU`?Tx zu+)gigkg!|dczV0qVM||+AG%FH(x8r{xD0|SYJX1wbJ#&QA~q|i?fYSl0vUmT!vOg zkV5p?j-s^kN|9PIR@+a$j#{DYP%9LGTESpVp%$$yATps=D6Us46o^{s2~Cn(k-_@M z*Ld91@Nro1MdCouC!jR30e6Z}M@u^{0A5QI!TS2^GFX34P*FM8ic-%1lyWdwfAzWy z)?ZKx-e7&{bs4OWzwQ+c7r}88m5B<`Sd0Kj(F(?wwAavBLxO^Fx-J2rb}>#wG*PxSW}>&PxR@m_K*nj}%!hhg z4G%es3!c-3#2BY%h+i0|XK;5JyN|`}fv9f&yi{5Hn?3^eow9b$R+Hvqz+RyMLk-S3 zv;TX*UK(Q`B-gR~BJD4+9f~?xz53vpxgEN}yLvrIs$q0~ANoS9Uf-QaqVv~QtjiO{ ziKSS0lG&>Nyf6&a$#Cc&?rd~>utJ$k!<(h$9r z2#6sXAHG}sSNa|nDe76{G{4mFssFN$1*Jb5Tt-neMds=XP9k$P0j0ZDg{%J*Yp51^7}VO6is)({6#yL1(AO%c4I+5xzC%9^V%j9>z6X#(?@)dL3dIU^G%3WP zJZe%ALwUj^Ih4aDVNffrT5oK$z=hU$dj&?>q5Gx)bTAmyDAeMI4z^x~7jBV2hHcB^{NauNGg5Y3qTSNe;WDIT;>h1b%ljVrmL8@TW zwieN}1FC7b22}&XxGG86$X6x^Y0)>@eA3*>*j%l(?3b>gdJrQHL54Wu42P1g!KLVL zf;fh_-^DKsalcP4yc7k-akd(n+5DZR_EwRY%9TFUOYu2)0R=xh0zZt;jtEfR+K}rl zv?)OQzF<&NJUPMOkNVh%D4c=?&I%}giSd#%=)Xt* zE8+trOE$UL+~Y6$^QE6%4B&s48dRQtpK4#k+A3Z`fb@!O1OQ`@pG6Fi*`AmZz;CziUCvaJ-`4(|c7ZSZxlAN)_NcvS z@fU?8F9GV8ZF)Zzt^_s0#qcR&q7e;GUJXi!BrHTN^f^$2uX{W)ia*<|#$#oZNV~ik zd`mlfYa1XMW-6-0wX5}Q-6;ZlBK#SdIU}%Gu`#nV1!T&|%wM5*#>}pPWtqqo8dEH@ z`xMdV!+5M?R3lz0p>#MOzo&fY+|KqOUUlAxINK&5tj#^!Q0_skpCV!;yuDwubR}Cq zD9WoIol;y#2$r~#FDp5yJ@4Dm-khBjw9#IUqP@&L6&93!OaaBOhh{HtxMl_LXFAyr z22&2=S;jctv$Opq`%W%bO;D%PuHUC{`{VX6LkL^w6MVy|OMJ*uR*i6icFX6R zTGj}8Rfn1|M9RXKCW9T^)yw{bt-)0JaFZzdrkB07xh?DM=`n@allBAKl&vM|@RLv2 zQ*GUW6y7Z8&TBmhl%Aks{Ay3vdWZ(MF0BX#$sycTz#H?+CmD-Sbv(9`3Hb7zg6X~O zb!;O%Tt@IudfSuO3#tas6I`CNaxorMfT#5SPh4s|WuF9RF7uzVw`KFJ#AjQH8-qJn z5ihIikS6eD4M%i~F4T0QOAfXaQ81>Ty^qEU6b*iRfE~Vy)66f9?I%!dY5{+BfPJtP zyB#}M7%^|4eWVpplI5R2Z4c65yb9$N@XZ=z3~8%W4q3-#K3{nHR9Eb><7 z_ZI5yS>QBf@dot`gX}d;*r{M*L@mbVP9e1n9Bi+thg4DoJqCYsg`UUa67G&)@YivbvW+(+c5h!M#u>*SLQLR^@i**N(^*j12mq$T94zKhS*=_ zA;ZB1(3~^th}j$Xfhd9#^i}K8QRwEVue<0B&8>!@6uCI zL6IgzBXo!%(lP$A3I+A;_BV7}Hb{K%L{irX-?#{7!r1uwpAzpB~7a)8F+ zlq7zuTsg+a4=9sBMnFQL${bn{!CUqyS>09zYGzcfQ;k*2Q9~>BC0Dv0mm@D;;nwz- zW9|PXC18$omZ&N|kz{I-5y=<+_nDuEUpyc4I=H^v@%E0ItphX>zmp_>xGP2ulppuW zf7O1;<^oW5W&c`iglhhrJjWp2k%NnPp4+NgnEpzR{0>qja8cUy-jV#W+nL1Aer9`+ z*pD*CXqkM`>-J_WQ}M^n51%0bG>!8N^oRH!(%>BV`GR9*ZP(axQVsl6dU$JVwI!+= zezYLN=+^NoB7*b|IU*yN%s0Os6{V+PiSgxvHaQ~ImCA4N%Dx>0FydN%^gtdz)jo>O zVEDlvj%NJoRQpx-J(2F*Gzj276M(kV)kFV2M;z)-<+09)p!931)D!1&racT}$c?lW z=YRaFhx3CS`qykr}|d&an4nWfeZ}_P29z zgiqY*GKbi1ru_s(c?LmeR@bQG? zim`0A6=VEjJC!7(jw^z{JjdRNZ6uh;W3A+|hrp2sin$hBYA`uwMY**ygEGPUhNrlF z4*QB=B9kv9lUoF?n0$duj5pKnTTxtV3NvYSZ$J+gIm2rdTrknYXUN+S)kuNj0;S^C z0)7;to)zPAH@&r}@98;g%GpJ5Qlb+9EX;uNupU0SmuVS-%1<;ag{Vk7126Lqg!0EWk99%yR{6@n5_) zX%vmhEC#E?%m%^m2iKed0-yS=t7=s9b0b~Jd|_!@54MoB0~a_gK5(S!D`)WR4;%?> zH7OM<8-2wL;*Ph>z>F9}fy5i1nUQ?mhmHnKADXu)sV|&?&uK>=7Lw5B%p;HYu(_;f)bnTr8E{b6Q~>O{FJ?pbUk9G%)LjDf-6U0CA?>|eYIY9CfBYGuFmR{ z(%X5C!FuvcVkj+U@|0hO)C(bo0(PIVvTGwf5oUgy21m0*LO|JJFJKOK$UonL3mG)Q z9+dLaP#xYkv6^68LAP6rVNoW!SKhYwfcD_lEN#y1)Aod50)TXm$TV!*X8$u}qLRxq zyM&c^ByYUl{RCu9Y<1ZTg`wt|xF(+n(u+0ukOKSLw#75$62%4-dA|f(Q$|S3d8RT6 zV_{2WGS=f2Kj>Y8$L_LMwe0~qxG3MlGj`eQume;MVSD>#k{kPqwy_Y~1;U9_ZacWP z7bc;&0>5OC)Gy8C7hy@xE?a4S?wh8uL2!}M9Hsv~lfSqZ7V=uIvMC%DfBB{oDksQ) zNGkdc=xEPN^3jFlC%Tc-=!kdh7eZncD^GVt?6)6hH56QRQt|=&B0V-&cGA@Y_M5iG zxkkTJ|e@`SltmhAoC_Z=pAloAyjC#EFbt@iKv45hwW?N!6+gH4z2;f zT%1c7Knieh;jP}6bLFkxF{BjpOYk1TK2LsWQf}c95L)1@4VO{@N$yYR19H*mDH~z* zCcXfOn#z{jPCrN?Q#&ts*-;+|*#xXo(J}s)C+Bth?jV0tMYsY5A=gCfvCk5E7v%^Ar+uG!TClqhxJxYqv(WT}Q7uqGS za5v|EV6US$&yyF~K3d#20e<*;|xC))@+! zEfqqUph7HwNFM(hIAar3D5PuEHi_&q5djrqLK6zv_L;q5Fo90td7FmD@!#HST8sTm zYHvB?NH;SPwU=Hf5o&^>I`e#}bKV#Bk6Gj_i)n?=lBN|-3P6*6_~l`tuvEHi@1`fs zk`X$EpkRcqJ&TxE(^*AE=$f-+gsw>lq~Oyi}|TV29e95Qh~kvEOzmhJoxfGfgkwN79l@;z2kfPNB*{J z&`wO~h#&I9*V&OleARcoOLEt3`)OP78v*>v^X+0;$v3=)i&>qZH;C<(djqpNra9bG zckEsN+msgfb5Pb84YIBOv!}5D#a-rfY6$?&y^YthZEwh&PO&#+PG{6F_MNN+sivm* z?FdvDmezt_{uREvK(XD)jwc>idcCO>3U-sOba$li(2L!|^uK1w&ti{%ydHesc?H~g z+}qeuiHH8}2;|v+*ysAa0OIkuQSGa+(MnL%`6#OM2|je*_)mL}2bNlM^Sbw7=IB=3 zrOxLFz#a0YkHgUUa6{+K|AG@@Ye_X+#4YXD<3Sd2(h&4jhAQE6mW5R5jEQG_{@?cZ z{mue&p7Ksy96PVXK;50Dy8FzB?#645?hmfJksmAx14C@H!kM6qFh@O;52>`<(Sr}{ z@eu3>K1qE&$kB+UDFLu!N)HzR+A(c~NUinM+0u{PV~#z+<5Vr9Ur@!96d1ci8^;HR zIC?XJ{%|y`!5cb;P?&l4_>kOEj&J;Sf)xCI!+=D#Tgijk-9fbbZei^%33K#&V2ihH zogKi#Qfo&s_~Fevi2O+Dj|70KcC&2721B(A!yV5Df3Ip8s&(Df`#*6q8yF2NFG+%k;MB|aBO2e zNzI4nleO-G9h^KVS1L@8oFhN0?lDd08yO|})EJn^c8zgt1OvVw<7mvrDnU?_FA+^n z_N~dG53axGd9yf2JbPX-m-<^^)!#_fAo#!(=x;6CL@GT*)vZ^YbeBbSEem=uzNo6> zkpAHuKCqgj2K!hEfoi)z)OJOxE!>ouD+ZrxDpri2%XZb`u2Z(4xida0&i_1Z3*xaS zdpyXLRYqgmnK{OwhaaAyA$5Aks?(FIrP?uRlWWh~@>$?qRrBE~R`;7L=Yhv8N?jVz zGl-W+aC~R0GZ(&^`2jripR6PhTGbQhk|}MIxrN6ygrmB=OKnHugPUXx9#_XvmDNxp zp!&i)2>>0^)nt3L$~>hZ4Cma9?O?x()WT_P{*TFiyiP(|J2s3IiMg!}aQWE;c<(DuP6u5fPe9oE$ktU`yWA~+*z<3gdb*&hH{HW zzcbo;4GnkhWY^QIs=&Doli*A|f!LWpoTWh=$04s><0h@Pe7$NA|Kyr2ir;MEIA-g} z1NfP5ZHcTik>cPC*IifJ&Cy$O zIRl;fnJbHpA=R?4yE?#iKcY)9&;f(T{b-9dp+1~}{*sc&H2v%n1G$3UbK8~Wbsm8w zY}XsMhP=z%c9p#U4d$nB*vi8O#o2a_nrx>M8LfC5Rs12T_@b=1mY^QQliE8fJa|{+ z^IPqqEAo{*()oTM0MsjNG#b9n=!%yQ1rB4^NwtUQ8@^GzsFGJFcXDW2DW1~Vk<7y8 zc{^QbPz&K19gXFaUSVEg%f)~-{;#v;`OUEbB_7gBssta<#ZiZqP_oF#Ut0jE_8_g; z5#oYvp0s1f?=}ZZCABbgwJI|$kv&GB7_|UR8Z*VmMa35)AxF8i@N)5}?O>J6RQ=j4 zavtX@Chd&#IA20G(|aDrN2Vx5=$OaQs+BMNr(E#7OV|Q1i<08xOZf#{>+TBYe3+wN^jcv? zbOg^Pb_K^;k_yT`>)5NYI8oi0EvV#eO#;Q_Z5)4XxMPY58v|t1!iambAc5eMEDyW8>Kw+|#oRC`TWeR(PD`Wj0npIG!YVSpdZLfaoT1 z1+!q8+W}t;pHC6R8IU;({`uu*^y?3ipqHSsKvilUi*q8ws7Uxo*{{> z>%UYk&+{MaTiR3^Hrsl!r~j#5xB2dJe8yNu6;nOjXPX5kCHC27E|9ORjv42;%q9_H zxKlh~p)|Y+q(JNx@5pupYqrG;4eMJUw7({_fA&Ee z4I60VN2}pq{2owfi6>g=L5p~$rp~G?c#*OnwCUoD$S{mpRM@6dn>pJEc}+CCmMGWS zR%ekhP?D`g6DiRqK8WH#5k$oaEUE+?C=(XqK%sq#1H}S>uNdU}$1xLB*g8JB|1^;a z2Z{+z43s4~4u`3-Fgtia6AS~Aj(rA%3Dd)`?p>Vj$kf>+LQ&e@BE$Ab0iIHr)ZmE* zkQb{^i8sk}OtLKjJ)sX=Mi9{lzDf18eo>KTI3H9f%y2#-06uWA?Xb}Wyv`iu{|-{B zXNuB3&_olo(1Z(Y!UVrvBu(%;!V&G|8%q3+58`NpKpgD_{zV%+P`pYFoxLeP!4~qS z*9LK+R^m-!f{}0HS7uE9I-`-h5|3>gP)Zkcg~?E%rO7OkCPTy(CKEhC0r1dXY{9ho zj+r`Zs$`J&e?lJdYr@(PC`SLL{L&&vI}9@kHf7xX9Ia*UYR?0}{V7(`4 zkT!^iE(0VQe_-9zv-Arhy5Ky;_+D>Q-hYWBrZBJM=c@YiO-mdu?PXqRDUcdt&3nt1|FJCUMw9(G9jQQO??*2Nz>g8%4s}F zDG!C}J||5;7snr^i{lU4b7d(!2Tb^(%ckuEKqOza87$ZY^}6gCq%yi}6Pl>JA>Z+; zsWQ$KB0-l#<^1jz$A|1~LJT#&+0giAQUDs?qMtC7eTo!-vWI9?BOe#7>m!D)kC6I! z{Aua*xETE=P=}YAdCLN&>z^p)KYi#rZjQ@vct9K#PKl$!H!ntqM_Ypmw*VqJzQ0VN zUI(UC<2QCX8nE~!#5jfjs-q?($J&Jt(f$BAG#J_=PH zd&m)Ks*GBHe2I5_;B+SAu;Xuy-6Yh+0MUMsYX5=2QSE_CrP@m@Rc3-}_g_lPBz$R+ zYS)%ZwQGccQhNfB7Xu{ZeKkO8Qp$~>deIsO;;3;-95w!f)HrPpYTN>d5$Y<(Z=G_~4JMpDCwfkU zf1N{WVG8>ch=FN2f#sWMvX zb!DmeglrBZcEs7rmlw#hl`q1YP`uvrBcYFpithx#o2U>Epr5_q*bE;)9sdDbx+$?t zSuU>8{Q0@hJgdL(WrfWP?kKg@G@kbnq@(cpp1%mggO%Yx^Ifo7A=!6Jy^`U}J*@~U zl&rY`5XtHn1b^b_VPm}sBA)#0xlGOodXj=GmmJ+~_GQM+S0^dKW(+6I8117O{Xciq zB=bJwQ_(&7{LdZ380BM`$Qg*;2tT}sob!ca9GgR+=$ocK5zvsmNuZ*~wK@F#FJWp% zu?3eHHHC_ompKR*xR3!)O4Kgcd)YC?pS@=#d6+M`1{37N1damW)cqoXq5y~a*l!(= znXo~CwmkH9si1HrMQtg?{$>2!(P!%vWL$@4hQadCU3IYmSO6j})jC z$Z7&byUF9le{-}pVf(V1BxyI(m-8$0ht%O;|K@m(9ip_v9dBi3$%dIN=c%WkP1T{A zw~++PAUbuqI0T*w&)2^BhvPAQ`!aRSi7Y{C79Kx%y+}(JI%=&qM@6RU;56|ONs{m7 z=jOW7BS>Q0vymk7yj$)$J4cjS0p^V_Y=w$n_`+7`3VdNJDC9=Y>y~PKH=|g$* zUVX~St*n=N^$FtaFGmZyl_hVQ=l+EvJ=Kp3DL&TZTR z;8nMHGjZlyGHsYgP*Hc&NplwZ(4EK{YEuM~G2?ojQh*tk_Npi}KEvsLOU}ALGMsh2 zPmocvBPPj&A^cp%na4gScw*AUE)oFFi}B4w3iX=BZNn_?kSf@;o1|%f`DmIji)htP zC8X=5JT62!Tbo1?U7>wM8hk`HSi35_CBMrfVT_Ci>CY=GYxa0j;XTlw*Ix-;h5o#O z_=Wzw!Af8L{6KgAXZZ3c=aj+@d_)DOi=~VD)PZ+U01w-oyocey57cmm@V}#-*=&en zfnHq8;Fl|c_wBcmoJkmCMH=lzQbz#hSdjF*mGTI{3R2+p-J%rtx3^eJaeo_1aeo`c z!2N9>n#k0l}9U^zrfK{diKm zGm+n~?)2<-`w2Au<@GL=O%*UWxUy0oEI5FHga?148f1ipdPHR54Op@Opr7i?&vkKD z=i_VWZFqbw=X{n+X#Z<{`F=e zDAHU{Y3}kt6Sw7nrpTyxXks#@!zzp_R4Eu$EPzO!TG!c;Q7A^0G*GI@(6(JA_i~@C z=iJEtN5sPn?JYy~w@87=iOaoQw%X8t$ZBPgsQ(hHiT)#37pZ^$)iMv|PY8(3TrG)b zH*!|tKQ&hBuT5yemw2^ia8HA3U+m&)kVa_ijAkZ!-c8)cSIbb?lW@ac=tfBoC`=kd zA(Dot0VV_o0GnmaU>+*=akUqCOjBnyHrh&b6eS8DWwFXDc5$V=l<1STg`m}poSN}L zR)X^>!PSKcqN#vJG5JO{fcA1r+6(PTv=<8?l22LZ-;tT1-u&4aB9fS8n$bk^4KGL2 z%4lpqNn_L67R07Hi)-wEgpRbc)pCg6A_crR*lt=~Wd91lMnv{+)fysRU-lQlL(%S8f6ki^KI^Q-V-x&K@#L=uFh1}|)ljbYc7Dnh zC}uK?Fc*|8zArIrEt!CBwPI~DVRdE434)qq9#vS~_Kk?(i~2hIv#$s$<}JQhE9a@V zNP(gOr8rN$Z!N{Q(?Ce^=GZKLtG{z4i(Ci#@*I4`SJT!>($z?TA|1X?kS@!Y4TSY# zJu3>%g8>ES!JrMCX?J}&!H?(O?_82!&2aW+ok%5YOM8Q1A5x$gLMbwAKgb!&hFMXN zA)t5|qRO5<@86eY6I5g~#$Yp(6eu=OD%jv_aBo^MkPBdVxTq7jI|wRr*=lfkmlP;2 zP>LOM-dc(rpwz_>b6J*A!naHVVr4qBsOlA|5fR-nvu0AK#y9sf3F z0mN|{CAoo0BquN2@xPwOi8*F=whOT^+QY!WBgs8pawco+0u@&*}$S?kD<$kX_;nWw=GA5#N zYkum#R5p$y)5>@pdC@=BQ^%2MJ)8-h1alHI)MM+(apZ%97%naLZIDK{j})jS>?hEX zXnCKKVqtlZ>+{-&{`H0;4e$I0X?W*JeX)YI-2=+vI5MB{hBCUlglO@Na#l#K4o@Nj zNwhi>N$(;ycB5RaRNiQ@ycm8k*OLoR^g$a>fdXwj1q%PFlgMp1%9F_LtR!0#l3jg} z6iZm$N)itu58DW@2;GX053-URN=QEEgCq_RK~kJ4r5eBivTp+p5ZaeGKr8^`7_tfK zT~aL~BH;irp@{*4$B-#hn47j+^qp}G8B7k(?aY|#EYR3NLQ&e>M#JVv0WN2+&vPEO zT?E~r&0QkJXmcME<$SZTNSnI=dK1p>0;#W@-Cxo`_}xXy?*1f%OKd7^cW4_x7VXYT zcCI}pL66%cS2|TTnaxhGw21`n+CFIGx(#RxyMr&Z99-;dp*=cxiL(kzQ?&5ZaT`ji z+a`JHm<|th>R8Yd7D8o}7P3)V2vLo+5Hlc>H(BOf$M#XEcr_6ZwT@PD;ddC!Xu?AB zmpj*+poWFO2vinw?#pND@c6f!zp=%HAR5SmP0~OXkODLid|q(JCddGZ=LL6?Vw@#y zqZ&HoL)rL9TR!v^ERyvFn@|^&3F^WEh~yRT`d4Qrs2DA`O4sw_W7jyFv1>#Q95N1r%?Bf_={2Tq=&eKqSE4Fky+_sI(Q#lR{A= zHK3`6MuhX?x%2z_6)bq$`IN>M5t68ud4^i%kpfhUc;r;u#&2zRR%Sa$A*y04RmA}x zst}Ky>YEHz%#*61EKn5|KqS9g;Cz&spdM9xO(Z~7n6QK@*e>TmQ(aWW9Hk0OZXJcy zn8+S&UoUqtx2`8I2AZb8_+sF)JQTbj|n!>v-$c*Fp_x)S5$_fk~)0J)mJf8kH zOy5ZbZkp|9_%(z|a*p4aRL22QKcARaYxs|KaU$mUWyp%Ck{lsX`SJjOiK}^vZ(y3* z2ai}k#*+tz)aNnps40Gikjgv77n`@O7FOSA8wX9peT{4)HCnQS|BD> zXXBqrvV8*$8Q4C#Ci|8YV?(aehTN772_Z2F79hEy0oBRsu!___FyhBU1NsLOj>f9J zXIMae7P!T0KDcVvPQm>o=i@%mZ=G_sXXP#EHbFlyJfJQk^rcxPU2Eabe?RTa^s5b( z(PkP4|30!vbn*-5FFRZ7pg`|y;v_X;sF_-de8u~y z;WoA_w}I#Eh=-H8agtw~LOdJh#(N9tFgM;u{KDLLpRK;mW#BoxWmlcNP==h3``S60 zjU?^F47pPQJZy6oJ$Qz^2EVn|FN}|E+dPoRUV|^I_~4V7y_F;_t9fB6b5ec&2??Rzi~f=;di9wOKx*lTO}cR#>cGK!6HwabNYf4=`m=S#Mawg&Kb z>i9QfpOCu3|7jlx3o}0V_tjSE{+0?PC^`r-R$W--9h`t8YFV5qcgazBL z_&>pv>T#tK6*F!!95es70q?eaN(n=sE&x9Z0CX*$toti9;6pw3ZMj)mnc!n8E#__F z@e|*ct4q>kh-A1~8uhkZT}BZCpw_{*wr|U5&+T`-D@(mKrP>v$iak<76<(x+3-~}2 zmur-!Sgx@M!URw8hlBWHCZ@kFBmdu9W#rE$h}itG0$^(X{NJ4KvAF~fxASHZ08B3< zId11sDB2881J*$caT>6JRKjV%8rsYqvY8>InZ`6ATJ@%pKc$Rz+;wI$3c$JOOrynP zRg2MS5j#MqRhA4ekN1G@=;q&ZrbqlFEh4Q0 zPp#xi;o=D%kOY6jr{m%xd}t-J>^A9j&-%Lt%Clw!OYRcghkiHj66FcD=yB(7lOFfS z0M~%%vI2Yu27E{31?*x(JUna01L1Kqwv2$GO`Um*@v#r=#$>nfq#%bn?f(Q9jF=h zj;qR3L>6+w@s#@UkGz;WX%Z)Tu?u!ee16R}*fRP?GLA~kG*N6z%coUj%ps5kArx=Bz8X7_a z4K-wcm{pJ4BVFg%T0#ufu+mV&N>YGoz=J*qx69adn3Q7d+E3MRYP*bGq|-gIYY%8h zWJdQ80$K&v0R0<7!QYYsxxS;6Zx^Ltpo{T~(#3S+N~v+$9Mrf45Xsk9bd6*bib`89 zm8QKX+(=`dJ35%biU5y$zb!zm^?a}{anifV4rP-V{~8H^cZ9)7Z>=ZKsNky3o*ci@c<{eqhdlVdi&VijZKrKI?4wP1#Cx+Cx9BmA<297Y;&@k2MgiC( zi;UJzldaVtLm_%bd^&;=zbBUw!~uKapz!#(jJPXA#*qA{_=O?)Pas}&NQSSj%m7To z@!*#roe8cbtW1G|V)zYJ01w-T7=BO1ILgj(x+?I?$xr$5UbS8QSb}0G195zT48&FV zz&fs>tc|t2r7YL06v$)PJ|xbpT;L6jt+-&ybCO+521$Z1gCqlFbC7&i@WdeLE|5X; z@e~M>l?9jv$q*tN2Fd#=uDTibpt?Kd%@VL2`zI$RIgQ0B{I{E>w_Q zOYuaITv;Gv$4XM5V#k3389NS66eSB2u~q7LAm<3uNqAS%9&F@{pd4 zkj2p|VkR@8c?0Jyf{U?(qG8}nu7`16IzMQZh!{%>WZ>M;)ODPd-3jt}mN}yFVLN5x z!$^T@eC?gG@kyjqG+s;KDUZ4;zLEcD4BigX9^nVux*8N}K73LX@Y(|xY&~Uyt+xQ+ zfNM)vW-x&o%h^p&WCZZ$tz3;+KOzZU^d`viqBowArBI;_tt1M}Z>vzhXyN#q0s%Wi6MPNr(6^Xq&Z6&IR zEu;0t^&fbD160h%mrJdtPv7a45QD?l1Q{i~Qb@usX|5ye4}yom;THl>!GS_?xrV1N zLw3oQmD;6j1}&fMB9>o%S7FPSr!OZ7b46cae7ldb>Dd7s9|d49{Y=_?MYS0hY-GgC z@IYLT$4?8dhvA{CkQu{6H}MO@L$_VN!b8^z{h#42JG-X({7BH;hq3Gu561K7(p?ML zaH2|#HP0x3rwus|k7v!UuB-?jEHX#$BH5~}?g3S0Tp*}2E@S{6#D%iz4a!_0Fvf*> zbGy5GMvoT%rvYKGYEgl^yUS@~OBF=CW}04ckhRX63IpD(`eSe--l|P#Py`|6QI3!t zJGekp!4BRjeqjgilpP#Nj@XKbj{_HY%5Oq%cmiU6p_u^O)GfuG7vNp*B^){{rfS+N z?3|K{<0qmo5&(W8`rIyYn$h?~^eI*9kv3=T1DOwginKgm+$t@ce>o_iJnzyk;Bj_C z@sS^T_Q5#wCm5o&o{66ObLB9eKP{>k^VgH-u&cbcy~+2u;o8IB5kQ z!NiC7n^G}E+*1$nw;@F$_}KtgKEzKe;W^AN$Cmq#=P)fAuf!S?u6VMr(%^vd8tY5I zH=lMr$_5hv*mxWtILKAM+)BS<#f+~I4;lcO#9Jbr2z7bMq_hMR5!_QzjeU`l6O9#> zf|Ju;@KGr_trMH-3*R{`Al-y7HUpxc5~$b{#@Wt7O*}Ky6|1r3grt;CFj_~T*b9Kh zn-34TSs4Fv?Z8@WuLWOUzFQ`0DS07RjFPLk)Dw{lcB;BvtWbt$HB76^KA^Sf-8}WRp=JCtzlLIdu-)Qve)#Lah2|0bY?iAI z`^{XhIUheb)Sur<3i8*#-p#l8Wrpkj+btc|+2eXpxN3v(^;cj4GmEm?NPf=ls@}o@ z^fEG^7p6c=;}0GFk4~ykeN(IWepf(R1Q|FUHzP(nI>icmpl{JBMvGtQ6r=a}ih8)W za(R)DK#E!|pkr0X62;r!UsiUM7J0^2kKLWr-iR-(e|1oo?97O}xhmgfr zW1?RS$YxmtigT*kS6wai=l5{?RaXu6qAG>6SxNlN$$Aa7=lH>wUGlm;T>f^w;OZ4V zT;S2snze`T{o2*sOkQks6v8B8;R*>qo}Iv3W%?(ww-kH1R$3+iXoH|^-0g^ZC14TT zMeuO`xSash{EKFImBr>FjK=PbM z=V!+T)QnN>GM*P8%)l?)OiPPp1SI$9o3&5tZoBPaeaFiBCSm=TPuBY$OKbmctUG20 zG&QltDeP83+qkvA3=9?)7BH1Z7+zv0-6E&4#7sSdN?1G&==ys>A2^^Jh+jCM8|?Kp zpkW$2oL|1sE}ZYb>a4-Xc6Qa|180B4c*Ae{_}F;3{8|89Y!@`?`0k(p9#L|pJka?5 zgbh(NWpX29uiP6LNeW;zg18^T3-No!)<6WmH7TGP%eG?R6%weAS4jHpB{LHrl4te> zL@_gY6rRw5Ni4dJ%~Jy6_2r;fmpdfNo?h^nUmCzO(mEY$C9AY0*Jh6yBw^uIW&yfNghXX&<;%(pU zHO@Q!K#Fl8_w8P?koyJnDN-2A1(uP*fb))(%4F^m5LA&d1c9G8${I}gP2pNfRu{(h z0jip2%0m)1z~gyu2bE`}0?(`KPP0|o2b-P;;cH59sv;g%t+14wmHzU4aJ)8Y?rc{THigu{PI{eaLVJT>nGJasst9%=2&MNO$*q3*Jh1V+WZ$M|3N{YdqH0Svj18U9f*1mF>`089vao6Z3gR(M4j+~tt$>TP< z%4p3c*`A~xu0WfkFb&usQh;(872E{wsgQRR1RO^SJQ7skx6Zrj|BDE3kcu9PppOP@ z87ZJ5Y$k9|1rVVMPyWzVn(ZT{9yvM|A%YIAg<%=ZL-%(`lnVKnR7c{_I|oySG+^J5 z0-#%y=a)<~>f9kko;s-~U7eY>Uv)Ls!FU4{G2Vbd;9bwlM*_yPD1wSs5wV|GMGaCa zRG~xZ!6l%hhNM8SwnglxX3?G$dzA4{W}&w===LQQu}M&XosvlkP!dm#7fFGq1{%gh zQs9x{9}UAR!~#;&LlT8pLkdhn>>vf68p<@@C8ZuoiZl&q7n(-wihxAT(8?Et0FoEo zAdKTjQh*&TzSHCFq`RclQw{B-_yJ$`0Ypvqadx|F7KX~^6Jj$#=2;|Ltv-|+xP z)0j>QJOccqX?P@9Mk-PXHWN6NU>|`K2@IEUf|Pp1DAF#3?80TVN{UUC>iC9KM`0@R zZu>zUcL>~T6wq&|L+zmIdX%W*0gg6NiWFci^chfUvWb-kUE^5|f{H$)>OtZ&8j?~R zBv6Vzqb(^wd8_g*hh2kMF9P?d;h)Sw?`{yxBo(nOP=Mp~MN)twcxp@}1t>yyo_o~Q zh|MN&j|l&05MCM9keVhLc8~&-4DXTxB|}viMb48#k03>w1hfiG!lm01bdQ#QBot5} zQ6PN9T~dG@jK0ECt@t6cU1(K#tCR4|S_FY(tpiD!ZM1`4tGL}C-nUuT-~B2}BADnY z5?~qU@f6KTAr6oPe&saSYDWSW(%KRZQBTp26noV1Po@E%3P-YTQV(_9TgU>F1p-Gg z4E*T?j!Nr&NP3Eeq`)J7w~_GMC15K7M3#2$2-OA!a84OdkV={4OCy#Uy_I zibnrAi4T+f4(w^d3sd)hec>vhv55p6cG>j`n?V356JYRVZ=}VTP;r^|roDZAZ8?AT zimM)bi&VRv2XFZ%pDvN8FFj0_t(y+>ZeI?8i%S7o>5#qx-<#T678jUU=5+z0$vwgO zN?c&|!kk6&5DxHVU3JxD?<>yU+@bz1WqkfHcfa83S-LO-zUOOK3p07KDNqQ}syzOa zyZvBxLvhBPycku_SayJMG@#h{oLfs7+jjo$r7feJvN4jOyG!T>f5`rUNB#6}Xhg?>rdVCO&6 z=NaWURw!sWrhNmAy-A3nUgtxD&yHgvnoA6HJIgDni>xp;6k$esyhQ-znNK zG-~luQ{2h=H}CS)Dei8OS5%?NCT3o2+mL?=m@&9r6##5J1R8v2 zq|D#0>KYqF5kJ9{)F~{MjV2}7^ij0w6J*mZ9x?k;WJS^@ znH{t+*+-e2kW4J?x!tUNCF0?|Yy$X}u7MSqr9p5q{*5Lv`qd-ygJIuT_+6p= zZu)2xT-}fL%`LlsV1E-gOhdYMr-fRf2_^u%4ARsDz_D68cX4+Xc2wED7_eqEIKw=5 zo27;5*Q@+nHTk?D)eNR7`+~i}K{l;-K`e7u(^z{#2Twh>Jt_^dEh#{Q?0eKO$o`~6 z7^K#R9}I9CFIx|TgYl5~w)CIH9xKbi2&~W^DJ!(c@xTi0@m0l2*rPUZSB79Pt9k9^6)(i)33dbt?ZXlagNjqe|o)_B~)?kHjRfsZCxjFB)y zW2DTKF` z3Z3yJ%4CjY^3Rs(Wn);TrCEk$ZhTK#=4K1O^_1T(AC0n@CgFyrNx3Q0v_KOW1)ynC z0Gj3}vF>*4l9En7bYepD*e3;|eg5=s)uf-K_0UgN2dhIr$-z%1^FdYIzp&EpD_cj? zEcw1P&61=5O|$y@hH2IyC1{#e-zTP7_x++wlgwOdNM{LWZfm&9@&h;g0vY9p=Gg)G zp?P*v{Lp6F6L#=rw1e^PddwQXi{Mp3hvq4>bN~x9OP7U37G?1gviN7K^fU+vV)VAO z#<0p+?@OzkZDE&7*}+)=Yl|#KNtmHgQfA61Ezks$hS4ZZ7~(Kp;<~;i_~k@*3Ok@A zl$L42^;jkaqGg`{w`$TdX+5+|21W;#sT*#SFWi@Qm;FYFp=sVRO!E#YK+|N$pdUBZ zj0-xZj2SJn#4%!-k;ncImTBDfze6mOvO~*E0(NMbDT*IjW^KX_p2*H<@XwY>c~#J% zbzaNV9_QKh-Bnpn3xjTy!2o3N&vxly;jv3gTMWB=;h40`(H3^2D7y)T+hegy!VK+_ zGE;VGfhI5tK)a*>be5+ZyPL6iFW~d!OUCi z{6Bg`WC2t4)<@*d|M!GGE|b0$0PiwM+y(fenfqDxH^IZ5|33);wSyOWKcmBwdl`4tUhLK4!9*-b=AP+Mzs(1<`Ai4ej zJD7!N^0&vlO~(CyvTBt3|0KCLg*0C5|CjA0M8^I9C&Vw@|9^sSNp)AZ+>FL^_LV~V zM0yV>)#6Li+$H$F*6woFBLU5LbQ`ymxrjdSL_n4TcqDni14`}qjJEC^Hc1gyX8~*z zpkrXuz6F~@igD{^!f~0(9|xV{Js#~ty3DbFC=MY#a~$)jS|o3t=B}x4KQ6MVW%;dx zfi0uQ3hFeQ`Yd6G+0>U01rB5H5Gc&!I`jX21_@hTI!uP?J%lbMO79#F9Hg;R1dQ2F z%x-*qTxK^el2Y`=A5vSrDs7c*7g)wwB9YxFb5a0k$`iQor1t__o7kaOSo~gKclHNi zgE=dK-|79pekOd89jaJ}G-;P{z$)?ta5qjT;b1N!063VTpYVWH{o{ddmPqkL%A>{! zIcusx3cLq*^j0V2cT`)GQq)O{6J-2$I)UTYq!V#=CtL|`q|AVuwi!MxOvr%;Nnn&a zc+zsb(W$^HCMdeLYEWH_>oO8@ z2c|Frk`8UU(ePJP!_lD;Ly!)Qj4zKH5d#$uH2olCMu+yJ_=OJbM<8r@yPd<^?a%VQ zecba3`>v)>xi2yQlTe!;uGAF3!}Ot?X5w&~sWk7~&pnkzD;DU*<`%alYA5A+rZOkF z+H|Z>5OLEnna2%r8^;q`lS15UOXk`jcSF{dz{R$fE%_wfbbOi=gM0e-Gfn*^+2=_; zL00Q8WNFA=BXAVMz@J6nxVzT>q}+5|N(wvz{PU)xL2($E!X zSR1eiJe&X)A>Lpw>%%ZJ!})=GR=^g)B;ed1IwI68i}Ianr<6vIcWGSd>-2m*!h(M3N6Q~Munu_p9~ zv)%X%VMVqZrx7r2H@-mt7|{SjZZ}d?3@&23QD1$EXI^pDWot=2wcoh%6p1izpCbE> z83NzD-#Ar(Xz&%Ralf$;YrL#*;*`9sa7wX;b&$NQpdX{0KR$&Uj^REy$mwzGVl8(ZRXt6b+A$&je(-?O5j5zzB`CRVcX5v9$s=xa|l(e2CSH zK!sR(tJ8Atk)m6qGGb=4f0oMFdwj*p;KkFt|4r9u_97{;FfcYBpZjM9bn|gJA%@yr z49&*PNBH4wwuOzc`M5x`iSVsmviVr3Ux;zY&BvpJ8Fszcd}OByR0sz_AcmxC41Zk%F;e>_C2hTJAtzQ-vn;@U;V}+G6ZL0;@thkfqKL-FbH)%b$^R z^a`XDr(cn0h_|SAM$Sixqre?VGKh_h#ZqVZiF2And zjly)1Pi~Md8W5z&$#)uX3zCX}Ya9x|Y!LV#G2NnkQRi0*VYMP6{gj zTV0tlqLp!7^%N*ZtgAYl!F83E#=9+Y_hpX}a%jTs1VEYa64sw!;DV|T0jLEPh2nxr zj|E{)ZJQd zcUCST)6U4NA!I1al@ytbdB=A6Nx72RE+od4)DH0rS5iC9;z}x*UeV`QEM3socUUKhx$-OJdk&kK}6CziEe(3N)xIRHaXDJb?0&N|#bxe{k(pBiixnF)J2MCWsgZd~a6K;m zw44fmnu$ND)8J1F@n?(pvq}89ApV>ce{7;j#l)Z1x$vi@_)|*UMH~qXMrF<*gr^9i zj$)IM;$);Y87WOhDwC1IWUM`TROYX6k9^GR8d92LqG2daLm?7M)7UG`8m~0R#V?fR zuJ{ESN-aJ-L1;?zAMr?&F%NXHCP93GygctW&R%jH3gp%KsHZcp2o+ote^$`7{S+! zGQ@iV_ym;DV0o+ZC{ZBx4^hG>ePXf}_n zUA(dl#v;E_r+7la@9W&_w2~8rCU%HFv7iZla8`6}9=j_fwuU;0^vMh;#W_2Zqc;N3 zL8nG$0Ty-PyzxeNrQ)Irz(3-7Kc3JXe)S3vPg_^F(y z|9jtG`8+9tFWKZi3$9Nf9Q3?%VtG}U@6$WP#}wuRRG{a75Ivc|Z*O%c@;bH- zA?60&?l!D5(Uu{iMOzUCukCaPYrz|pT<3UppJ(FuzFqD%8a$V@8@9D~sZyen?Ns2y z=Wxzr8*>h3W7B&_^2=^#GLhW4M=JPuByYuU?R2N|FZZ}Z%=|5q8&xfmx6rSgOgK=naQ z`Pp(&LA=)0_Ekth?xli9Gu~w|w49n7H2LJkLlRT2~vx zTOM}zO=;+Se$dc*4IfFWTd)4$y7e2UG-_ObaHAoO>kX|tv~i<)gC42(bc6asp01yg z{B*s>8AI#WhYcY)n%nVPO^3(WY5@DQH3uaJ!ws3kk5IapwSGTy{nV79sahoo8=v35nqK_8nBye#&2L9V!3Tq( z;q5gI%jZs)u2 zu37p@1r-J_B+7X}e!|;!;`>jy2eF-sx*XzNpVpd1_~4mYa2_8T;)hSVr?J!KYBl9u zisMR|2NLTu?L0p?>KO;S<`em=LdfSPWOZftt;l%a0>1YJW{TZpP{tdY31{7pvxo~` z%MwkHvgoDZ3rXTuPgQFv-s*u;@r6u2^_)AA)it9G7j-djdK8*0@}@r3!LOWmPx0Fg z;__1is#gl8NW9zJXX5lFU~lt=rSLO-!h(3nc6VshuXb>VJ_-7x&J*4Ld)LS`5 zRW>39sSLhdq}%vF_n;2iB%c1Uy9=A*i%Mxl#a~WhUgzCzxf^rWJ}s#1tE!5}k~5d_ z0iU>k;Qc>>vwd>zg5jPJGQz+jMJU22q4Od=)U9G631~ZHD&l~WL%5Ul;C%w{vl!~j z!2OjRHmu~tEu#&p zh*DN6`stecIwM7L-j@p$#=LI^ZQr5~)VzwMe7G;PyRpFzC56+YJ1poE-11u$_#=a zAkH`snTmp%iUWe8Wu}5-qNUsk$HcP1GSe(~v)XLsK!f+aUZz%7HfomUP=K0RPGDxK zY2VswpL_Q@2k7@cdw)dNwb!)QT6`Y8cc$i$ZSO1q{;mLCgVuAulP{x=B&g_0(VX?+-;pRC_nkjVGv_;c z=|jH5Ct+g-DpJ+)!K9*SSKk48|Lu7HN7!=h0rNIUoiA6zt}8XlWJm*vt!$&E~GU@%79z*9dFRq+19>B@iIaL zJCRQmn1sk0{@$gcQDz#P(yI>5VE;6s$8qVI%SA7OU=M}Dp53B!W- zD+`L#05P=ZS6+ofQW*^fvA}&M&&$W7a^u2{Barys6qi*>hvd-M41$L(;iF_!RI6c z9sT~nq`$3NF~yo^(y;hjBc>-W!2nx-MoEyU48Y#x74J74#CMOI*oxgQ)WP~q4vGF_ynM{g!Y( z|0QP#&#CVSvMqpksp>l>Hk)Gl>Tu6>*TD-a+^w;d$}oJ-d`A}Fyh#sCSRtUlf{}a^ zNGhAJd}wMEFaI{ZrM_;TTtmM=xCoo`4$p@K>udIrMf7vq8(hyKx)wv>(wQpdGsr*q z>b!+B_xtF?D!1IGiJ?NhKmuARjX-`Y8tpAB`K*3a(aCC41?StY5xmgs2B zGXk_5_0#)gm)_ysf-wE^KCvF|$e(lF!gz3)BZ5!gJ0XOhdDD@>w=L~_JuibPbu+#m z6wON#v>@9_P%?dLP&WoY{EeXKcEha^A^R`ya%5>NSzs8AM;qjT z8;atyZLJ7&@jZ@gJ$XO>x}77Mr^TGI^TZfOhw6m*>9(F0LM@qVv5ssLwo-4qHR=-g z`_$uN6|R>V0afxsbg=#@WG;QnaD6A1H0DWBQEl`c`@}(#Ot})TAxH{AkX(r$igP?- zZh=+bPVLD{;~jh0!$f!V>h?$NJ+hZ7sL&QWlE<&R5ps0m+5yf8KKq*MR`!hI&Ozqn z=o-WoKD}SApn0NWGkcRzK+D5bYnrxS9^razzkGox|JOmI*=JVF6&uqjCN7(gSdnm< z`=fPpJ;0-zH0!bxLyXeVZk5GXMdVC zoVB;2qL?<{OEKxzQWOKFC}xPYREQBzHMDdL)j>*bhr-+0WGfO1$VUO)f~|#Xi{Q;c zWFIZx94xV7pp1OKjDmLX^jF5fvHjVTR!pI*?eXu87nNVJ7UR1TkNX*k6hdwBu<|44 zZL4F)M6BNF3|ZBrWe`96QGSr^x&3u{Y}~{oMxuyAb4$^e?3XEp*`>Dx%kHQ!&B4Nf zz{n#pYXJR)8XJg<@*!PgQPO5A2~vx*pD3i zUi2d)s-t7?alwKfBDng}zg>88%qjSCPLv~&uiY6QV&Z{)O68)Uz|{)_uXEHH%&}Q+ zubUqdvR^3zJqPA6Sh_1+4?n;Mr@Jy)uFSg85f)7Z6DP^U&+|kK&UUsh(Sq%3 z1Qe&-&_P4?XBy9`dL__%q=(}#jcv7(U<&BpV3GIkjJN+=mBKhy2CsqRH@Ch!AeW5$ zRk0WqTEj;#^q%_O17vB^zx|%$lJV;U@+%_$K7h|#5&^turlSp`fXY6O157)p zLRdD~k6fKteF7B*4H0O*7I+I^_o1s1e%&*w6^~{6vupZ^>ueRz^jDv3J2mK)%9BG_BBBp@OYGv`@0s0o%^7OY3V497G zo_IaL+iQqpo5nVo6)uOF0w`MN5lf%(Zn8JN3NF$v6_2UTEddwEs1qpR+V%N+-0 zT)ut~qC6kuEIFC>lh03{T2+bT>hfIOB!F9<2T$74J0@ z_ZZ=5Ql0p|5sp+A|9=uU8|he9op?pv^ibsSyAp7y2xO&0AjdvoZ|?i zP;98#i+grq-x8(J@)Qj%-*JLtsEHWlXY1p@kcQ<&KGmC*?`W;DOJ;8UdHK7em}c1g zH&v)?{)l#1nmppL3S2oD2$MHFOiZ3|*lcokSel$EQZ)Gx;3+K5<0m_UwTZ;oohiFa zAU7Es_@S{0KWXgz*uXaWZ_?VN7Sh@lKn#Cvs$(XjP_XtbY`RiXq;IlK7-;B*Pxo?| zp~BGT&4%W;Kj^xjEjKgk&u8D!ltHa=)O}DD?&C!dx#rnkK5RUE{i-UGRw;R+M=zkm z?|0#X{!M8V5!PDonW;Rff8B=q+QYJUd+;y@91$Q*U;)JN$|om9GYZ8H3Maq&hzi(2 zQM8qJI0l*MFxKveiqTe{@t@@Z-t~7n=EKv)gd12@wsPC=P~WP(ISF?7;am3azA?LXP^iYw=PlYfPXx&P8&!%WLS|oqY z?ReaT?H}gC{G)rKF>~e>9*2BMLkkhVhbE|*qJd+oLc!VFGxZC~9C%}Q^8uM5Uvofa z$e)2xQGC72Y1XYj7t=X5TR`P>j_1#H?9`Y4AP2n_1l>Oy)0RmUaX$_NR|%^6M~Gc!`bFXNI&1>d{jk3ah_ASC-Q$_g>b28rrAg~j5}5|JKQ3UOI~MgecfCM{s=1(uOl z6cKNG`A0~59O@RyHBx3a`&Y=O@7_ zzroX4Yf#bmt)$l$!Ip=tst|9j9xq?!c)_+8WN52*cjJ|JX~FvLA4O*leM+nFCbql9 zM7eq6jzPjYu)I0WGvDYjh(EL3(bZn%*ZkCve9!CC`r)C-vjl4BxopbyrvcS|g8hYq z_4(C?lj8ZdM;y!Tb;^A80qL2=MZ*&Q5|U|JfvUn6zcn?ISK6mG;*~2LiZFD9RuDSyw)el<4dRuJCN*OZ3T_yTOZd8z(4H%Ye!+$*p!kIeN?0M;2XBJ;O=Bv7m1&}5NsS;|RNP{mkJ_}3h zcL@(P2yPQ?LHFOl@vP;;A;H&^utRNM3!d7*Zqfj^i73Qp@$3I8gcn5h(`{wocia~e zKeU5!1>ViiI|4LYU^&EtI44=JTsgn$HfNVrCBL`VZRI$HjMxU>d0STBF=guHS$7mn zzw@!euyVOSbnr#Tod5q;%Rwi%+yVLv)F~-(x3|L&U+{r_;hrW^UyFZu8 zc*V<(msxkBGP+n~Q2BMftLs-u?^^B`gS$8v%Xm@08H4zmchZ9S=zHA>d{K_8Ie&Y- z<5}ATFkhecliITaqKn^r<7zYC3^ZRSTMCf(-kS@bh284v+Vh{>miMa<4^7W|!_nS8 zMk!?2bD`Cqqm7D=ESHB)8})VO^8FheU$K>nm~YJb4XFa8yYd1TGM^qPGE{_(OWMlkQLtU=y^@}Jf)-+d4WBmYmijfzCv#5&G^d|%g=3rzSq95aU5(%*B{IV5H8Sd8Yffx zR>)1h-W6n%Z+wlYw<=WJ6SjdytpD z?-;;dvlim^9+2Ypo=;)iMf}i;ic+>2QubI&QOY(UC7Q3D!f%5(=`onxlpYL>v{Nd1L^-xX?k8T^?#`lt0Sk z9%92+Am9H2(OV5d4aY}a&$Iv<;WVBxCabP}tzrwk3v4}jv%hc*(Ab*_E~ho({7Yh~ zfTFU-DP~GecK~-Dkvo8&)Wjx2u`#yPK7`ZikfDj$uF!pbO(7uTwSTzmkH`(UF-K)8u-{Qk1rj;D;4vMZS~o7 z6vuh(S-$QkM^1wBh_PlP`j_#{W7FE1O^Ih`Go-8a^rP}D@ok^F{$$@1J)kn#`nQHF zzEuU(6_ti7&Z}bSinFz;{-?zizZkCgR=R@7k*=@+j6Ej`MOWaSQ_?XNz{)sQizAFJKqAI)gb9L<*rOb=?u*Io zyg?@%%QZHgD1x4tats>No!E$Y=8j)E|X9(1^DV?1ZLFe%bM1D?Xm+20Zy? zM?%0+i2W4giPu<(@GSR~W7vo&iD*P-p;dh#$5qxmxh_vU4M$4eA)Nf(5$V_?jD(Rw zgQ+7P?T9+#cv}0Em!5IF%05%YHFm#IlFP?nIgxq)5dQxzTwF^y=h&*39pi`3Ip(qo z!UF^07a0hr30wuj$=U+pqA3ta$7&pCt~ka^3#VsRFZe+z7gn#Z8-8|yG-#s=#JG_E z5c%_o1|2kCjGB}Sj#2P-^-rc2kgc_Xk1seH+gmBP(R^{I@TQ;Sw$(sYEShf@9y%tt zgVv9Ctm~AwSgNmybAOWCSkR^7&S9UQL(06QajmcSO776<7J1JQK&W(`fuDjd{!yU z_gsN3EsBO6hS)naTTrxHt+}W}U(tV}1IAo++@i4$2shDeHTc}1aKQTtP91R2aKK?z zOdRn2-&yIn#R1)n>qPWI4^TApfY?+tn-D$lAHN6iHVkem-b|Qbzd7=_ zoJ@>V1(4!^4Mly{aXx$R9ZiE(fgHQ;I9^L{KVO=IhypH+0jm*Wn!K`OwWOuihj-)kPDq&xw|$uJnH;>juPc$au*5i2Ih z7#H8fJ6p0v1nRdDoS$3V!r2|KQj!W7!d8DQA(mF4lz!3>1#U&}uUiyg>azHwvxEN`+{KZ-q zJ?tbdBKW}+r*Bl!8=kC%b;3#W`T=<3ys8%7T_taJ!$}hBVu8}RHUXK{1z=xm5+M3o zc2reI%z3i)@)Kxt4W7_y0mBiP95<#NL^g&DntYak`j=pdQ@VKn-O_nM*B;{=+c?{> z)r3fl5c;FFDZExG+*+I3mIQw*8T`w6NLyz+ww!VlYbLx~wuL}dJTK>G+d3b&6Ow9e z*kJzPN$lz1nsUeX&Sz}a<%IUN!PxL4i(XMo^d^-baz z?p5FPGwxM~ED>1{+`xsTF0X7pVjAz$&3R7^3EcWOI7``h!N5p0fWeIf?yU;yOR6k; z^!gLHumdoVuU+p5=exT*$FVyUcQJ;y<|36FRfEjJnY{Ey=LhT_LICbEvbKwU#;mP2 zpC|Qn&S6j2h{S)E>B9BaQjy}*p%ia7c&(+FD&#yf-8odB|Fg^rXMZ;77Pi}piAl*X z3@JZaOHm4xil+@$7qw1hr>z($=?jzuH35O}Wu&^nG0`=e<7ck&iL-!HwR|F_lKI3@ zKqHb@uCi%p>~2_ZQG>RFLK+YH=%}bkm(e-qh4`Kt?QXVzsQw*+-lf3;fGg7 zU(c;CQ&a|FZc|VCMQ*v6^cGW-gj66npk?=abs&JUGYMmu(jbG24-bMXc21| zlyC!qTEm}eAee@U?-iI?kqJt9Uw@s=lU)txvhMISm9N2KEa1$dtAOInV&=~>xx3_6 zCmg07X~xdhho6$`vEix!T}jHfhyoKDuEjo@;B0S#B5_i_GlgyVKZ&>I zJBL__Q~3=A&Teem-x2RAaCWxRrEu&x_xv3lYP@!D{ZKnGg0XrW3Vwmrqn72ZnB*L< zv5SNexEapy8jd@!3Jk|>JM4T)Z*W@Xl0r|b@W7}Sxg_0w8od`@?QBIHFPP@+qJ#4= zjTCfR&f0?%7dmV2bXrD77ga2yql4sMJx|pe7(y~h2*A5HAOL69CIMn*t(}+gLaHa@ z#R7=o%LdMB!6;PC0;dwa{QaZ}7hUkw4CieoC_RwH{3ZP+|ci@pOy{wbyZ;aefP}7vHB;cdFH$+P1!D0EM2m* zHka&`F0sXlA^nF*o%J2SLZnb$KaD9AB1n3`0*K)^Ih`vQg`zQVRQ#Q&fkvcgXpBuR z=OjCU8pe1PswuK3S*JLzWe1#+^XjhfZ}ADCPGBstmTi4T#kcDIS_r7W`x8%!+;m2U z>Og`I?O}@E?@TRCA(wY7ad!1bYM(P`71on5z!hKjGg7k_XZ)JslJ72ps5F~z(hQb- zt9RcQ=q;J={L*H7@(i59`>@BWd)rl~TR#p>{wu+Ct z$GONvB4#W4uV*;Rab~jL2$g@h)~lo;s&_1Z!6Q#_)<%oNsY*?Dh`P@?#B2x4w9l~E zBTBHG_VH8qIj^wzvntTAe`rboBDA%5{?Y@^wN}Iwjt!w}b?j?Pow;_xR!*JBJTyVN z(4-LVHY_tjZoUdRTx8N&0>?!ro#vA!fs4#Lg-W={oF#tYB6HSR`GhcCWQt`*Qb5bX zm&*9Io_F+#!ZNu;@XbXEpWvmBIr`e3DD#~tgqPEmoYRz+)Ms#2V;UuB~(~wn3$MpBsh@<>%58(%2h9 zC#>SjJUP)N-$hxkfZ~_vUY1R}{x!2Y$Gqt$R}laDQRlAgnnc`t{UWqiokO{Ol_$h8~v$uZmtbDcPFd-Edk*}6~e^#bG@Hpzzoo~LL zb0?_eLmVc~L^$vj4}MaJ&*cB$!A}rX#MhRLjr1OR!WpQ;OOzE)Ij7mQbMja!&-tiR zFyHdD^9NfC0Bw8P179OOry^m`3(iS;vvYFdd(3()wevZ7EOpbfPSt1%Y=Vfc0huN)!54^ZC}7V46Ok2=^OqjQ~=^%`pt;7KZzhy+w%r zvCTFcHgo%I<^`Me&;kyE5Wc(1$S8htjVqcRCNj}V-`8fPkKme+jD&U8_u5WTcU&CSbqp0HP#-(SYOE~^K5V~V0K79`npHak3?Lu_9OKx{FyT;aq@d1kfi+s^H5E+Gr^ zI`edQrOb2|@x>oFqxtq%>i1+T2~x*yt~~u=6VmF=SvhPy!9hkZRmyCrmlPl|6ksBB zCn*4mRvb@eLa8{JsTuNT&+c#=`_YVGClk2h+@Elc;io#e2C#)@#5{ej!TBLlfSl(_&QB7!;yjmd9?RY&ID*!;vC24- zx}B5=6KNZfP%nZw67S>I7-M|JN6zI9r+^z&-WX20z&TV#@HsU06n#h~FL>E?YpB4M z8RIiTqJ*lp}}jyKq(g81&S$#q#JVGGlc zXg=&y=VwfZhU*I((d{H?0)Sc?M^6deS$Xy`n$Y091=C{@0t)}t5$zJ+A9-q%tCu(Q zb7z>wIuep~ue-AKw&&%NyR9mKp39#j%Q`QYmP1rAuR0A&%Yo->nJSDrFS8(Ls$>?V z-+8&>ZhIbA+(Zs9z1h{qP5>ZSoZX6j+trd+e$=xbzw^DG@G5QFQ@#1d4THn^hPPcU zn44%a;h<|MTSx%@*_#c}kC=(F5g*ri7W{19U^i^r;#65;6?k2P zOwH%GkhlNN*`Mts@X~D8WPL|%M*jLd zt_XE7vbcQ_sU#aoSP;P<`H!oyRaVOCE`0*|5C3tw^b_a#_8fRz=x3|cpK6o(tCVVk z#^fKayG7I>TRvSvtLd{532Q@BVxzP2yjg1qNs%6Dab6yGns(6nj>b};E%+J;MsDJ- zGIA4Dff2cwB<%64OcM4|#XPKmYqHjzSN-7Z8BuMHI{?1z{Ttk90h?leu*@S zGDwyZD(vR&t<4UrE|{VuTy-_ZSMV`VyQ z(*>DxfTzcTBU?xqRU6Js!#hrJY^r+LCtq={)7dp5AH)9g1=&kpRs}}bZ;CE{N00tZ zhJEaBmavcft(LG)`OO^mp})y)GL&#YpO=q@^Rzu4uW~hIy+|2Ges{?|ym}|h7u#H2 zv6sx9(nAO4rJEkF(f7Q65$h9LK1} z*!5n%fL$*!m26G~U^J&=0j{1lww&l8=4_-Fi>H@V@SpGtJj!o6Z?{|#8}z&n~arRs=$a9 zJi`5x5i2KDF^;JE(b{6A$`UJOMy!+(4j3yXH`H&X*S{#=ePS0?EMm0OyI4ysM!^oZ zIKC|=B>4Oj2*8e#3J|W`L1{L+b_!YCLYc9&1P_znOa*NT^G&mZ6efp4H2LgO!USrn6*L%Zo#Y*zi#0e!*?KLuB`p4ONzYUO&Dl_>-+avb`h-{m#!{osNQ)8O57aijZpE7q?TEPS!K z;U8cv$Qslsd|C2hfB1RfJ?<6+L8MyrrV1f)_CUmGATvg zm@jCSu^M|A4ZV!?V&M6*0oXAVM)P-Z;*_gx!725QXWtFd(ao({S(W)!wdtY`Q|k zZ9&4)NYYICZ&->e)7oA9&pxgjSV`?Hja%3Y{u`EfS(?|*%eZ*GO7e=TvBo^NuWLj? zH7ijw%T%G4$bkXPc-!u60mZ@QQ(p8qyuGsdjXV1Br#HEJ8tKAs2pLXqz5;E;ed(`M zfibr!T-ep9T1eIv*7%lnn60-)x!gL|U!ifTG zdNx*WGd|2k>PFLrw-Vtn(|cB*e3|2uEmKJWE~F=3uEol;FUy5ASQ+z$N_0ax41)}r zFSH0#`9gTOa9a*Es0Xb=@2gGdV^XLMdM=VKtUKk=qNg{mwbyP~2N=bsb}iF=NLOa2s!YXFgqgKt!3-s*xcaS$Gui%Z~( zN4siBe73n_3JwyNM&g8u!CV{#_~*Uvfq}(L9Q=T{R6oDX^@7Ioh!*IFoGa1~IjVsA zVdfR-hdWg<`ay%Ge2v=AxngpIHdWxs_cdWyNiKj@9}$JFuoD2thEBx0rodHSV^0vF zm>*k90KyLe0)r>DpE%Qmt8D+awEY%BhqiyS7VWp2ZBIrg<2LsbSNO`~aPF6?RzvGB zuuT=Srnt(LQZ&VNQh{ZPtNe;gaaG616xZb%@G-?j@O{gKX5p&28z~WZjCHiDBVVy5 zER1)U;i?xxbvE)_!z9k^TPKA1!|Cb_*Fzd>^QUSU7)~wzl;PAu6&T?p@>_7Ryy8yS zG`dNZ%9KUspSARq!{Mf~*ad)|5_bX8|CGz^bix7MEz(>1G$dnvS)?V&&6B*4(HB=#^7hzstewejVOuRqJBrSnoJZ2wTT zA#C#W7Jp*zM9d|7Cknt0X06LL$WEX}$mApz_hQ?KZn#ZA@HkR`;dW)#KwZ+iXWQWa zleog;im!oqb3#@MJNkFjFhhvtEvM9vsDZlP9GKhx_IK3l=D40?rkePY45<)gM%RYv zGd9n)hs9mBgktnn8H&-Wzz9W5{dBr2Q$Jl)v5dtIS8IvI-dD}Bn08ghVjAI~VsSK- zidcMop^C-4+E`BnWEzXW8e0uF8bm0wNDXaZYV)?~`n`mV8eMBp*Ognfaj_ zi!jup`QpXUGZRzEFr)wsqzj8(b4+Od@g@SyO`X#H9$0qoAgW^ju+?zNR#jj)1#_AQ z45u7Y#nLJJYpdc<7N_hroU)g2K&N2(?5Z>&f9gKvlq-^T^^{G0Sh%^m8phLsG3GKU zW3=5?X**IQX*&u)+qGKiaxxRt7trroY=`d|^uJ~a=!|O^&@6)#%znr<-*($I<9+n; zqy!`5)@vBc)$4XU)=l(%_?|(Bt5ZU?YdB%jGWg<$Ar`0rRu)CCKY|} z8d3B%7V(#IA=tvuF;qaMj$T;iE!DKv{K{%qOO{5^QM;CZ)#AQx@Du}vX3P_=He`m_ zQZ64-38V2(Ku1dfIIZ3B1Z-jqC1~g>iiWQG>`B-ACSrecPyS2RIP@=>oGiV>F*!-r zy1rRQJP)nNX0@c~FgLkKD1y1k67dUjlO-Ska+8eYCi%u^T&HVDN>)7U+Q6P9l~Kp> z9#>FbVq)1p_%0kA#~a2cynHZ}&wC=P5r4nS$ol-VHLfn~RV7DeB|97(-7`u7eZmW0 z0hfxbcfD zmb3q_jA>ei{}PewuREKk?#@Tw=>L-Z}6qd53ggYgPq;fr5#EpPZ5@UE6N zBlws$gKMJsFT2Ku3S^lz>nudR#y@}A)jr`B0i`*!N0q+v+?RL2D=vq|ZX|kQ(kyhn z>$;O>=)70gyF%>U6kFo}SGI!SQGEHufgu8l&Gi+&_BGcG_B+tH+qKx#&@0sW)Y~eNVa((c}EU>D{p~S z@|?esd>@hQJ1E|*M)4~v=ERxA`;3)PO<7_rBbBt(6s>K&Y1>39=^dge&M8YZUiCUG zQA$+-4c9NBiWsh6t8$sc`226GctGO?AGo?0F{^zdPzUKC3fmwNCEFkcU>n425{0U4 z(p91d4!aZ$iSfxu3dI?$$R^ps^m=^pG5EYjgsxfxhDt-OeeUX6y*o+Z+dp=7@ka@X zQsd1?DyZNSxL08U7;`f?6f7cPS1F8$G06;OYShZ>+i z@>RL?$8ELLppfT(0J9z0eQ37`ESXW#K@|Ffh?4%G05s|D&4I~`LNTGVoTz}VpcqJp zZ$?t6a>esLSG-8LpexqaQjv|dy25xhk_tjsm;gRk^bzch@9s?CyLY?#>bKS5EB`Fc z)Q8mJx#g}*eGm-gb?3B~Q{|tCe%Mdq!Q>+XD#x|IcmZ5owbilJ<6)jVn+4lcXo-0! ztPDhGRqui9Hd7?oV~K^Zja{KHzE}u6iQl1NPax?Lo*=WfP`2 z-gpQAHN^1-(8PEX!Q&3W*(yq;hMEV=l-YW=jnCTRO1GkCv!^VWS~f2`?3!po^!1^n zDI1y(Ce*kQ_{9&d`|WQk=vkigRADkN`4N^I?<%mI?uhDWZ*sj14#*K2-#oq<>9dUs ztVEvdv$cW3@O`yzJf|G~2j70*?dr~RLiJ!q=373F#<2xD@q;;`&)Z^Y5c8{05|;)S z#4lVLz%Mwn0TU3qHUOg}2evHy1U52vN6qOUgJp87)j#=u7YgxnB=E!d9Ekvl&ylpf zD%f9!KmN<30zxj2iZXFNq7KNAmq+3M;_@gT|C8$<-9}6^-$8-{pF_kI2)sv8DmIdF zKYE3j9zPCEwf>9}I83zWIAmfv27pdj$u?YT;O@_JQeR@j6j1yU=3I8?^`FGR%cFNq zaYyl_{S)f($`h{r+3ji&vFiFotefU;BDg2<%11p>ykwHw&UyCqNbl00U1=H{uB3@t zW;f0j0J?M_`tZ!NuyV>c<$9ToBXm`#T=Uoz0suzot0#>K;{Q4Ax=9H3?u^qgWi)&unw9==fS7q3UsEZ6yYuw~ zOm#Cwh7bh;>hV3%Q4?!)&O84*=Y(X%dPA#R{WRMaA@NDu6#P+?5R=byMh^?-iF+o% zea(7V?fKcevikA-vps_O_Fr9-ZHECL=Po}IKNNLy%a5=e3=r#~A-0o%wd0!`JM#X& zxt3hV#Y3x=KwqBm^&q(FHehOf9hj$24eG}B5fy}MBd!Pljj6o>yz~uErfoNnWd31m z%b)z+^%`p!XlilU5gV;^_CTc5cJrz~U}XN%aD2%N(ZS;U{U0zaZF(y%PJavQYg|d( z6d;z~nY@yx1V@{EYV?O219-(IPXYh>vTJpX9)9V6=HdM8f=1q?KV8k?sY_DZ+^eq1 z*?9^e>WzKN|5h@eea&?%o2KM&5Zs#QTx`-aS^<5+3#SIcZ1UZ>cn)9a_<$``7(7>V z!_B!sOliRPsjGB%G{^H>k6V#envw8IHhgn!~^?GwSJ=9ZYN zYyoYt;K$Gp!FgS=x;~^z19-u4sQm8RLqmCozua~CCmUz=)8Q;! z(FjipyQC0BoxAW3hl4t5a9CYb9A<7}S*;h=<++>Ooi(^H7Y1LN!Y|ZXC5;j<2%rfdeSKlRa&!Cme-R`S)mZ6Q!3~8=)`xl1$p>w)W0sc z!t|#s&Ut_@j&TptK^Xdl2$Oyx0H0sRrnp~W?-F5}@Jr}6cMtXffeOE9@A40ux|`Vv zHngg>^OE`Y;NSp0CM>Hp`Qd|Rqp%)HR^fWg}(X2tOQ zt?ncfzQv2iEjLmjIgLzf?*5)#qe}RzQ#VKjpAe>BtH(cX;qF)+y|NW38(RbVx|Z(b z>gX7Xt!qG^*~)!$b#&z3s|NHtTD$w3&@FW~PHn8=9*^>%v ztbxQsQGm>Im)hd&CaR+M=D^j;Y#V&X-AW}sgQ0_{ju+=xh%hD}=>*o?Y9+$YU;q)e z4 z+dH?5;Thea$2y}>ap2K^4#L^B{(F!bc`ClDpBbTK`#x9^#5dmH9?yt09Ce761}4=~ zI8`qRlG_W?t8KkqZ*+%ita*LaQv6=kQuw+a?j|gS6hdbo!;kcE-)JXLqo$$fg9>cD z>%-C@pr9+uAXGT6_Tss{V0al^-&{MQbDZ27C7gMuboV5a0ubq`yu)l;D37~5A&%t} zDI(mX2(f!eZXaexv;mq1OlfAp<@0)f$!Pv%GAD* z0|jQ$cECU?5`OQ)FzrwHy+p*K#YMu8Jujeg?DxXh-$t`-2YYJIG)iV45CS!3zb}pY zMScI64bRl~u)PaZ6$|b0cKG2Ne+@4s-4@)*b_~j^-W%2wURrh6hpreHcITDbQ}Byw z;3ZonAnchK+DXg;sLP;fn-T*{JIaIjyFno;O= zgJncV2K&_$`(?;%&&!GNteSS>2#77s$F*IJTw5DlyPLTR%_>5R;~A;5@KP(BxxF4=NjIX)p07_`HkM5%iYRYQ6;L%(>+1bvi2EtswnV5e9`3u3 zQ2AY^-)*SBLaJ{Q6HM`1U!-d0#)sMO0!Cxvvu4`i2l1j9e{*u&?byo-OuAJ;wV-iU zXGW;x;2Zi&aSHnvA;LlNu3$cYTyg8_=s3!KWkz*%y9>WC zyBpm`^s#s=4HF`=EkJT5YEI+ep-{H0?$qfsU2yBEWdwh{-lUdMNFdh({_eRC-#r1W z(kH;Xc>3I%G+Q4SiC3-<`FW6#H%I(gBybnNA9vyMdUfh7e5_^Re1I>-f(P8fYmjngxxFHK&3gGYm`UI)!<#5}!P`BuG>kVDM?z zMfyNKf3kakeUqpX+F(879k;vXchTP^t2<=JIdj1r?II@kf>yK<0%3_ zlea__p7|e2cZ0C#5!q(fXW?}M)OYKGB<0044Fe<2} z8iWwpcIcMGo`4BtM8LoPxod{3Uh8P>tvAozTDN^EWQpAX@k4xioo}pnXE1MlbWl_1 zgNx(%+J_28@;;aDps>)N2X(gn3IzCZ_TPwEiYn#40Hla8@-a=3@xr7q+h2f=8wA}K zx$pl6)*8Yqd(KGI&)E5*5_bpt8717#g;T@BLo8ACi%_LIFKM6!+fINMxGk{!W%qNu z_1*60SaX4|+TJjpbdURb4yyUwX(-q<1UD4)6LvYWZ$D!T){oh}vzNFBYqnt__2j47 zhZE^OP%MhwpRe|6|j^X782z-CgYim1JqTh#6MP^_O+9 zWr7OAYTl5g?i)0=NKvlVAUSt-Sb?1{d=SYP1av0g7klf$kk;ipihX* z8XZwxQV8}9b|T8KNHx?2hF3E~OkS1$5SvB%m*{W#fTi}C2)zWJ6cyD*`&hP!@`G*T zqibl`g*)wXuV~9k_u3j;{;U7I<>&G>&lI%t4qWAq)mUf)75LyI<0(wLf(nn|sPjLN z{5ET%7>kgQ-~5TGL0n;C17mmS@zw5QtSh10^DM00#P@czj=b_oNFB6ozzYTx!?#3Q67s8HJ1D@Ht zxF>tkTwuJO38lD~W9YEy8TVrLrWF&al_t4wHy7pU8yoPI0q#-kD|3Ot9ZD7V$Jhxg z658viWc{1DFi$^L2Rot_xEjS9&M%>BI4Jj5=nE<{!%@b@( zhM1}BIVH(XX~ck#Y^w`JxPLXSt*2cmAR7BuQ-vPMJosgI_e2OebMI4M8489Bv3uo( zAp;IF&LrC7EGEcGI-Ov^EM_*FM*tQQW8PsQiT3td?}j534_F8jl`Lbgi4cOCxP|l# zA=)#;lWl)e0B{`^)PV2EbT{KAE%koh=5M&+8AUI_#+fH3Z{KPtlecfFQhSZtM_)G- zI~7fX6&}yEd8X)J!n>@#5llbSP#!p&%5yfkyXd;RJtGUI z5r%r0Ie>LwjC)2F^!_Ze228PCWG9%_0=9w7#Z;>*?iZyIj;g9%2o$TD7RH}TbI-67 zbSZ}fcvv+#Mu3Y)kzmTXb|>U>HZ&CbMs2-eAG^D0Yyy$v?|QVceBCGR#`dwQ5QBWP ztvC!;Dw~s<=T7lVh7%ZJyWBnHZ22C6C9>308}gjHi+kIO03h<-41V}}3NdS4 z-Tmg)`qN?9QuwCNF^ojlr9G**>92&D+DK6t&s|a+XD6)eyy`^pNPTRWY&Aq}*=i^N zTg}5?xSwU8D_wYQx~CamcxQ2YwwFMK;R6I3A9}=-Z6feTKl{l-pno1FyD-APT0|J% zYNv`}@IUgk`$Kk>a12}Exs?Tm`>lqpEJR>H_5waCRcBcj{`JT1t~_)qT+AVq)q=zL zDmoDy z0j#eA%VY|Eg9ec0)}o0@Z7t?msc>sCEnIFbnuu^~aom1)8k=e*!Y&JlunQ$bG8iZT zgQ4Ji_hGic%!Cdb#(`Zz2NivIZhL;@fP0MX5vbCvEe+%NEeByI>M_DbM31(Te}B-O zXJ4t{(lOzxBWxsF?ZZ6tBs9+l!$tFq^qxE94zjU#6&-pWj=|-Yx!c;eD7azu*UQ|4 z*%u0|tPV88%V8g#(8$hvZ8>c1|42ws<1IX{!ackO39Bn$C0I$&{o?~j=zRp{3>FFf znI2&dTtEyz>YivtOp(Tmtd5<0%$-<+Dl?D4HcNAYPF1;Z%-ysW3Ec^asH_b%#(=Dj zA95T-47T8d{*NDbk2Gt92@mB?W4H88<<3}7H$FQuG>Y`phR;ngg;SBx*V@6pz6b)11umQ4cgC;7~24AvLVH;c+A={vd zNNw+Xtwh)cfe70mA(Cy70wh>B){bj{jNFE(hbeIZx;~ex_ zKSl8TrgIzd2Iun=dFY;AA?$=g6Kmhe8hrKnJal{h^q5{1A+r>)DB;)k6bv9!ePdrs zi1Ky334G;5&~-$RbR7kt>z4lReu7OVQg9NJ{RebMGYM2Qw-ABmGhZs-{=2(bqkA7) z{FvA{!rdyurrMBcJPAwXV+j1`l6wPNLL{O5$1l5Avt9jxA0bp?hNb^V9A`TXXuc^H9t1cD0GwjM4>H9XZ3~E! zm&W+#x<^dYacQVWkst_-@=dUcbWgfXa1!T#n3O$FeCzKH7Am01%sY@qSR( zbCWILet`4jA@Gr?rGx~Ha4%JPm0#u7%+oPa_2;c*Xf6gbHf-xmv%?RceT~i*KhM5i zfmLSs&`(LoHMLw z;Q3h#C<9`i-@?<9RS-5<;~!{^Px)*7WSFNN5s@Zq3=fDN4D&R%A5dJ33g>rOAHYY9 z4CuhLXumO3t#zP$FWl3N5lS)RNZ}14JUv(hp}}53p!s@*3|`*QlflnMcp6yAjkQ`c z3%QUcj+&bFv>4f_(szcDhedg2vvk4;wfiN?lg4f$Q0z0(`Rr)V2s^MwXcDj7!))^(+#>6OW8*p+O zI-tHWrgW6QO&BK^R$28GCl{h>B=MHSdH%9#>v&0`XGD`4QT$oAemwd8_I;vF2|Gh{ zVgq?#;a@^B9$5Id_=N`+;FmnG&{wp690D*a?`y|+Z)0GR=dl`d@z4MBTzqG5NwOzI zV|$5NR2u$k1@-k#%l;QaIS7sAz1I{(@voYC`m!TRj?Btue3aTVS^<5+3oF20aAl)0 ze>2td7W+eCaDP%>zYr~-qNt4KnQI{3i^=xT7}ZVzHBYz4__4xTc#2s|GlI;t>!~p^ zm)y-lM`{ZYTHt7~N&WeYr>M;iU8RpVFT@*m7dUa9j zR5sUKXk@C#_=RASx&}|7v1&+C9|Id=lA6-UB=s&R@+Yao0ntcOzamr+bi==z)FBa^ zU`|tiq5NQ^sX6S?jp2oTop7h2oo6lEK9&Du}%akma~kK<#_kX z4_owhBFdPFRYQG^h{BoJN1b8lsv=P65VIRAI^$Feq4QRB@eHxCzX%OvV)9tMSQW0q z0Qz4s{CIcIE<3@r^BpJeN#$iXdfKu^1mE8a+W?vO8SZRO`J>&`(X+O(^5_|BPdK36 z+QbsO-585@(_e|zD7+}_x7YyM2jmYfl9ce zI)#v;N(EG%r+B)P+~RpiA#Jt7%Pc%F~MTX1pqtd&w1En58Qtd z8yH{r_4L!&8w6P`R$h&jiP@z$PK;z{F&eZAzf8T@jvT)K< z8p(D|1RF~q6%0oDm}pFwJ}_Ou({IsmLxHH+ACbU-P1*f%m8MQ2|FW;47y`j5#422Q2>NhQ@$n7^DNs-grX-)Mu8^}5vcH_ zwwK3__6)LO8&ldd7HoZQBRQod%&WzhkwT_g$@TEfo;55m&Tl1-DdZ3Wz|ayHGPEe} ze=#^Uv2fA@<78+NKGj0YNInx~X=vp)GKCg@VXUW&4JL9_WDSUuku^Y-`Vt^B6US;3 z`QmY&R5n?a%1FqMQ^BR*8K-)bq8}!8)^CfGJqj>K*AwQ_^%g)3e`o?MuP79a{3sDC zj2uNU{ByX^`F;7G91}5)6fgdF#4i+hGVGKuFKAUfOz#)xH=(%bps$IQYlG#na^3t8 z^u_*!#C{?Q`}S`IK=$ok=-Wdz+xa*+R-KoV!Y&Y8OhZ%>Q`)Wpny;Ng8X}snxZ&nz zw$lK`#tJ{Ija841ml=fEcz>DnQDi*vQA)hbNyz4k95E+h<~Z8cBiViR~@zS0P!+@Q<3K(`!dDGSefE2gtrw~EzNC! zEN>wYD%=fNJ+3&3eN1RX0PD-*;~8Kl=+!z%k< z0LCDSh<(Xz)e+w$5y!t^N#pC9>JfazJ)Y6*RkMt2GQ({ryMGr*A430o9d|3Pu!ttVq_#rNO@bnQQ zuICLG-`QR~)ZQS)e0&q~hj7HKP9dH=gLQnJ!mp$8riTsc%q!=`4&(VxC8h-@KnWTk zneW)(>A(8Ru;A=e1r)zTkG*WxKgccp&_0^ut3Ty0dV+ZVYX<}Q@|B)%Yn1a3UR2%j zqUScReU%3`i*8ai5Y@_V++P6bL0(cvp7{|R*2F{gqY~ty`kT%4@=(1#GC|BKe>RxaCxTL7JxWB zQ~%@7al!oKr#u(6=lRyBA#3m=sdet}9{HBeS}=(?G?!ly8)n-Gw0K_rz%!nEuH(=* zsI=7f3^3Vscu)@pKm5U0@VzHHVu#gBPbSC*a8`S@H6HlL^>>5<{5p&$ygTfAj>QW- z^lv0{eRYD&IE%yZwpF0q;*V_u@%d@3Agmhh6ad<348^+HvOo>IuaUCB^BB9Ikcqw~ z+$Fq2$(BfyWF@LN(^nbx!Q=T0@E`JczCIVj$#~2O&guIfbBd~=e<*bE@=cx#HFg~@ z{-dsA2JiEhvo5#aAKH%Rr)8D!?c-vDx&4OXM1H0e!lzfum|$M=ChQ~bCI$fC8AtZN zP*7nH97O&H8jWIQiZMrVEAj$+#MB_J@JH|yKIjDB?W@lZltO>ems_8Z|)wAGUb z_ku9c@R;|RMBZ_WX95dpq8f!j((5;oI|P8B_7R#9EO5T@wo|ehb#>>g9F|TnQRt0a z`?seX8$#fU!;SE%A8~YlOtsPvA-~uJ&%WzIlRm{o%t4Tl^_`M+34trtcN(mhTTAg= zJ(P-b^@2CtVVKHZAy~-!1`D~b@Kh46LliaW}i0bnb!=@MOY4Dym8#gE%6AQl@u)+mV)Bo4hyitS@4 z!A+JGJ3Sr40ngZE87t%pvco%_X^9Za=1ygo3St;(@FlAbYdl9-fmz+`#-Ca##}f>k z`uyt?&lhYKfr2Hn6BV6tAArz-L_F4i4a^t{7L9E` zCKSU-=H|)Z3S(5y%rD+x>yT`0q;#SsM~l1j*)1ow1+o5lp4JPVUiEabK?vfuSh$J> z4)&Ujf{@@4oM+z6;nX-LuFy(iZ zqwA61F3N9zb$(SxZjT3l!TTn?ZRZ37@mZ-V!XLSup} ze@Webc5#}CdPhWYw*EjerhK)>yvfHr?`!NPQk^1Db$ z=F#HG`s@_dG;DVXG_ex{;fgykGXa1Oh94#e<6-{QDYDmkf)t{69wSU)0k-33Pgh@$ zrO!;kWGtf`(L4CK9n=8bLu-H?837m_nYY;~4_w*$mf1YS0Z{F)oH3siJjpeDZFi^ z$6-RZ^Z>@Y=R}Or1K=01N5Ugf@VN?T{}3GQy}PPBV|3Prh*1&JqN$9K7Nis-q#r!u zhY@lUDZvQIY)T?zxIm*3k}d!lBO3=(vixFsfN)w<3=sbLMb-YN5O%t=scAUV)0@iR z0IvRUQ^5hsV{lOAF*pdoH_F|9$@6c<2^)wFi0!0V#rg&G%gbssZbNRSlDM42w zBhcV2DJlYoxgW3ihdCP*stZyk_LeX*o_{0tkYR-PqYe=TR4tAYDAwXoQ+Yp%qQfxV zpZ!(?Cf<*tnAia7r7E-gc;eM4iitcM)qsgF=}}BeC5=bhs#OwiMs*|%RV8mEP*kX6 zD&CA@6x|}mxWZ9Q%v%A)%ULdAD8#IO1fCxoLx4hxmdpPPEG{-73n64kHqP`DA+$lJ zHZ?WKXX_P@(AW|pMK#EhRM{X)NGT4>^UI4rwmp+-49m}vV(em{N>!~=e>K%KEUyMC z?6u*CzZqphqvZJT*mfuur;d4_hQ(q=hOPX4!q4^vVE9@&9yk^p@#V4AspRFcV*tgM z$Bq*@sNE65O|O*Ni4g!_9uv%Pf3KQ)`0`j#GlOezGo?Lpt=o*$IkK6*>kwSwKxBDn zabre#g3si`V>(zFdk$)49Q7#xM*SH6by)FaMxhvt`Qb1{?nU$wVG>2q)cDU6BZ{9e zaliq5VJZy?UOu59!28#-;`=mKK-j9d7}re3#W+%maUnhsYMTo-!rpp5DMmjQ6C2s? z6=<}#b^-t+1Adqz11D_HLa~?y@$D3Ya{GIlJ9 z`m)QvHM#gT)|JRb#goXkGb^l;THC*p`0E*mEROjD9NP-NL$BGha-?x}iN^ zm|DDu-A-g+G?w(YF|D}_#>u1*`;*N}dN#K$Xl^vvyGSwmd|q?XU>|5s8*I}kvJ^75 zBZ0lVtwiJ`aCKYhIl>=xn;r3n&`rEW$_NdI!8?VgwJdJVHd{$Drh5bl#u6pL-hcwI zH)ztTxSNSHw&jB6KD$AlL|zPmyMMS2D~Zi)rj>~NNq3HyLl!~?z<(Cw6wwA#3MU1C zq!haHoO|M&wz@5#-NtoKW&Uq!J!?ruWe&`D^i6sbvWFZ9q$5(q_lxfKW? zMI^iTCR7C?MG(R$Hoyjm2t1xwMJdncvp?bc>k0Xh@^A{(Iai*A7CV4lbka#A<0mLNGozSmZEmtoC#_n)d6Pr>^f zsgb&lvV1{W!3hHNqLzi1u-0msulp;IqNM|R)kf1Q8#hBsU9gng#PD!cVgu}@8$n>C zO6+%+Juf}Pjl-2l@xG3cp&`+$F_NxJ%xOaxd!Jr);6rp6f(lXLq8oE!>SLY#|%hK-gEFWZ{58SI->p1D4>@+`xhXyv&v^iwO({V>YS=cnT=une9oGtSF3x1*)Veb_4lt6sb1657OcFD2 z0|{}Vj$GY2x1s5lNV$)ck7ShlD*%7III1$vNV6yV`S1;D#-U0J$_I&({k zkD(J;Qhdr`A*6lC!4fY}((sE&CYD)~fF!!2h@p+FDC%`lfl6IKl4{u)0~H_}9#__b zmey0d&_xu5iOC{4DG#zbC+!N)`kkBzuQ}%BOR`a}p*kBS^>#Ohnbg}0xCWv(Qg3&6 z;p*-Dm}tFyG&hdqfNm6;0_97-Gp$2RV(BP=CFOR$6G=yzJ*wq)j()D(Ucn&+l|PcS z8cP(v39gdAgUju>0xsOliFI=q`WOm09(@dj;Z*DG70?5Jep82qE4T{}qd7iE(jPIz zwwuEiq1Z&QF{-J1ue}Yj3*w$6BhLt5oAG< zZeA87>E;_q;hk@Q#m^Wi#L9ooJOpY$Szu?j9mVt#!K5say{>8s*I|%ayoW z2&ekODXa-rhS+&2!-65;? z=QzP8y^g!VsvV-+h!tghlAeLTcU-il*XKu7msr1o7stcrWKj1TnYzE^pou>-b>mOT zh|j=BKj4)*5t`%!68Fxbuw`-WL z8E|}W*nmn-qdQ_eXkD~Y%kCUebn!esT((^r!2x6>jpJHL;2eP-E-zcJ>8*Qg-&7CsK_>B`3eI7sqE-Q-AcN!i`7Jm7FKyI9hV+Qky?F0qSk-Bi1{i@QVY;`VOL zag!dz-8j400)LZ806(It#F2n(&K&7R4P);LW*AR#;KUcZMFR`@#?Tft@+O$lcwo#f zfOcXRJnh6TxCYfOB13NmjMCQ}QMiObDy=_ojaUid*WFN~)n%EQ-oz^E<}#kDdy=@# z!_`@Z`b-l?619qt)|5RbWpeO7Ocos4QVNNn;23!moubF+>JA& zGWeSq68z8@65Yn#0k=t2@Wn06lMZ z&+u?gQaEf%f$?NY;Rz!~xqsJ`Zt#XtVw1cqh)r@0)v=0{1i$Byld2ji30~w{i3xn4 zOG|=$cV;n-@|cWp_hj6SmIV0$BnRtr2N75`RARq;C!PJO-;3eM=SqTZ4lf~|lmrX7 zR*Xh)BlDe566Aa9EV3mnoN!opi=3LvTVyUedlwW1=WtkNXrfvkG*+#|H;@Y5ob6==npRSw3*>3I zh{!w2>Il+v93_m6XH+(x;qDSP$PUaYV1p!SXSmyhjrVyrzNBp6ypwpq+c1o{6#US- z6xo7F%2!uQukIoiLVQ%nXL3nu1U>lGQWAzpeCq8yZoSkIx{>u#=X{2Tkk^5OCR+1( zDHB*^2PTHP>7v|4tcF>nhY8;*jh>?s$7x`SKo)UT9wc$qjn9wmCaC)4WlZ$RHxPYJ zd$??t#J3V#|Nh~!JZULM4z~4Ft{a!gZQ5JbK?8xzC!2JGTN)0AWj!jHTPIUH9v{Fs zrnM;emS5RJ(qkM@W>5$7sb3uA?h=E_zIWV2EL_j7&NK4dNthL(n*8L?oXDk@q3LUkL zu8UTlEVIEkdzb+c>?5CS-6M@PRwFOn3gX%^YFs*+@PB2CrAJr~L~7N$&2$Ik0W*Ta zd>T66dC^emS$(hLnqJeS_w^m#W*x|BX#+6;CG@oP9Y7JOS#zCe&3XykiPo%JLO-=; zUEcz~@Sm%;ls0aFvR`~74b^haXp#xcX$#oP8DWt5l7rLaIgZ8{0(%OkICGhPWCPX% zMv_8wd)7pwVGeE}QG1!06{1o5cghs057(JZg*_~ED(u1CrBmUI>~TrsEb6LY0(Tq7 zQE{w=OEi2I8tOp|w9r&yp^xwbbdn|V(8)x|H;{?&p7&uNmv1FmqRT?&Fu@*K@Il!O zLE6TV!FbrJ^01Y=%ksm6mA%p8tm5jU^Mc%y03`|HUJI8X{sO&7g7_N;jL`QJ2TZJO zr3qqvv^`0-5?CZb1WKcZLyC-~pq^<}fo5CTZ2~mi$|6YTbsQ8>IIX6OYj~M%wbF7rb_V=$l?>*|Y6+hw zn-pFRvJ1^ad(N^k=psMATr{17rEQS0)OUdu47Zpnz-HfFo-P5;D^?#N$EVx zMq#2oKe0MThK)1mt})<U4r0<=56-0L{ZckgGnklkrEYMV;b1c&2iCcJbbaui zm97u$7W`mffnY%!e}jxW$3jn=WTNx6WfL+@Z(x(2;t-Ln`w85j&NC7CenuA|=}lEP z(%W2TBHGt^(SE2=&`B6X^bJ3>`X-C;U*R^{vV5eL96bm5GY2lIj$IpKF+ig6lQu5I zWa4WTW=&Kr+i6Jjwe5@KVBBO$hbHPC^2pane85gMSvNwle!oG$SoqlT3F z3X=k-{G8hI5b;GDUA;YFNlW%b*hci!6iS7g+|S8XW~&hW4k* z8L;U7cd9%njr5>dR#Z@Scq$pc2*aMCz6iq(Sug$yW!^-LVjNteU!lY;+*c^^y;5@Q ztRIXaZ@a)h1f^xcl|7_QUz*TO`vf$+;{qO@gpXX}3mj&-rj#6UfhEE29eSX(yiVGH=^|{dL1!M6>FX}mvPS$1yY9LXS9}gG@>UzUy&&yiKrtrz4amX_ zd2rI*pp~3J)8=SThFl>YaL`Xd-t8bqG#kL(Y6_uW$+psLv@TQLDLup53FXMNvq60k zM!`dF1?hL;yX2AcI&`tm@f7(aOI{~R?{fh9?v&f2d)vyRrH{GRD4G4*$-R@HKP3~j zlV$OHmCW}Yk=*t&ydahbx1dZOfGRu4sV&}S;P5XJ1%Wnn^wxg8vfji^8ybWfndQu8%+S;~*zEw8@N2pyt9*-e2t#M? zRm^o)9|nQ$f=!0=b9wS;@gE%IrVO(BKCB&>m{c_0E~lWQ`Leww7TUVHi#%RJ`IecR zOG`1n*(k*%cd1(pzd`id(V1=GmZm zcDYY#As$FPm-7e&Zl8m$bI9Z4I-&U=P3`Cx2h7(4wLFr*o7#^xGWUwS=#)>1(r9)M z&3_8Q)f?UACDJ6W6~}Lczr_LX3E9^}HpdQ0=?PiI+&DuH^^||s4B62~Zo73y-D~08 zn$TPBEUnZI?1YYuPU;~pb&+(n`Kn}?CF(5<1pV{odS+d}rF6Xu^4^!5PUQ4rr!pIj z#`KZ<>2ZxregF`l{KgNbqKxx>t)<>-BQwyDXAh`oN@9H6;q6zX);Tm*&nA}?u-5R&)gia@A_Y{AR zr=JuztW(71z0q&OC@JsW;HFylt&6QeQm}8;7R%5_`IdjWvtW`7k$L9<|*%U%rl0d?7{S zLOG-5wUUbiN#^;tN6X`->0E1co^LuvZi+UKk#hwXIzC3;EY5e6WCZ?PFjnp!3+k=0 z@?dF&5vY0B$xaF-4LyCGJV(4O3Tn_emyw=| zAZUx$`{j=@mPG+MU&Dn?ydz_Mqh(NTCJ0kew;7PNO=na%$Tu0c4mLZa8LX8iZDfya zI_f-A&TqgEQB&v1ckb#bDf&S;brz5)AiBNhs0oNCX>7`A!yiI3}CI}uYr z68ljx0%OsWI?RAM^0lILn4_75(2*tbq@-toED~{^<8Fgtc0xGf2+t61Vgt^}?nVJ; zEG6YInmJz{p+QIj&PVg*v8eQVlA}grP2~c)uXq@~9)4WTMqe(F=ZQadrz;<5BoC+Y zgcCSN7s~UbdOft}zSTFOE?RPfJUI#a(*??f8{{ows~!YeLktDdK=LKPmT>y`&CRLk zpNr(i8ZwDo&Oelt1;?XuZUm>w*J7b_J-o{7iKz%*$UcdI(Okr)Iaq77=iOitIw z2_6`Ub`U2TpzsavHb;?V@;W%vG+;T{65ov|>DY34maq?XSpjp%el1oy0|1*WPM%>O> z1GzAdQ5TO@(l~=ao_pc_)dMRbnau3ToRFwx*-}d_H0&06B0TN%z%8JgE?f^1R!A~- zZO=H#vaOoj)5!{Kr}b~%iHnyrsfIFp(s;=u*SVA0lOr1D3cS30W}W<%FcKYDFVEmS zsFVWMbO#SgL&G=7m2vXe&o{^iq}f{T2B4Au8X`4kjm&pY-Hr11lEQA`X^M{kizp2< zSq~r?e>`*NCiyO59qMzN9FjJ$yPWGizZDXTD(;rX^}L&9v)=1?IK=BNZk8VqH-KQF zXv9f;F(vAjo@75FZ8gKeICG!_8A=;eS|vXqJc}A{l`Ev@SU)|P|K@IK$TUhKcsSL; zp*yJK&gG0ld=OKB&bch>AETs1? z`8Me(t~F{Q*}LV1Nzk8WAiHv=PD>FL%~{sSi{{u1p*E3Q_R6JVgNu9*T3SBTeS0^lR&R|9s4qLd*bD7? zR4y|bRk$DCbk`!@s8{#PV z>WUL@#Q&IlRuFDNC67bNo4diu9Zuog-nMlFJuVLyq+7JeX^gQvDNjsV)tgw*1oYXH z@&s`kl>jW>rXGgX2i%NSQwjh34$C%aFV_m@sFuK1p`K4c%}O_9lyoFc@ARkTTupDH zq{UCm)1(vHA(Yy87gi0brnWh%Gpnf+J#j=X6i-u<#Z|ra8xiYcrp5af5+h< zn2V0dQ>5Rx)~Kiba!ei|e%Bj^AcSfih13%M!1GrY%d2jU!3C;78_zWlfGiLHL!QLq7bst{#WE7sfId5IWNoC3#%dx|0xSey#@im(xLcL zh%Y1XWfZ=Q#h3B;G6`R%;)@4g{P;2hUrJHobMoMlf%x|jd>M`}#rRT!FJtg!9KKA% zmnrx%9bbI-62zBTa0#rdztB_W^UPl~YaSFJ=k|e91adPj`P)jFa$N#buRjlK$Lm&N z&^P1DYJ920m$mq^9$#+7mreMx8DFaK1>wsb_;M${+>I~y;>!+vxes3+KqW89gX_%0 zzjwvZxQo)bxMmvB#+T*$g(JxRiaem{(-_(@xCBZG;D5#dK1KoWuNiQp{NHl6Xnz}n zd=Fnv;md#Vlk(s=^WTdn zb@*E0{K9}(pI=mpN21oaV&ZqU;eX5dQ**RIO&!QGs5S2s-l|%q*2=mYrcwR%8UPBmOLzrDd_*_GHtR(!c0p5WB%F+xVaSdT; z4Pj;tVWg5Uv4${ENr+!V2wzi*XKtc$D)U*;4B>AjyNwkGbL1 zW$(!KguBqxx8;naXCT2ZI6NemLKtQUVK9Y&`H6*){3`%P9@9hZ>SAw&veO2%X{k6E z&3RW|A(ch}`q6?BN^$WF)_{MJa|Tnd{G376d-6dsMd5&=f}K#NS#(NXB`s&o=*;)( zvS!$6d1ev}ph@csr{z83roOb|ub_=* zCd_8)Zq|T*k%?ADtv{4cN>8#|n5qHj#EWA6_6&!5)JY2g#QK&4_9wzE#rGU&#YggP z=~XS9V)3QEw1)T+ccb7O6xCn(SUx13;aYRjlw#o}bfyPn+b4R}ZigCuC)YAHfY<F-&U7s!!@j-8kNd6gKHPU)%CGPu5=d97W}xgb9(-NlhXlz2N)qI5ggPPlve z8~K>Dk834DzMT`Y#w4p)PXm)|!I|VgSkE{nnHW|}3hUSJGJKdQX%3=)}O;otl+0<5Z7}oS?=D7^!hC z{|O>a{eH|=L^C|5aYL)fA?|M3- zwZFgtp#8tft>78X7k`Dyv5EEL*zeYld8N=DZBJJEqRjcQFWB&+oX2^ldH|+9D!vFu zv^bn3Cbwf!Qai@jujVVuOJq=7bi!#hF630F9xEc?o1>A9mD+%+Pc5ZXdYuDC zM06)7B27p&WD9v}D}A^lbXuKP&$35rEB}{rj$!Ic-wb)Aj?zu~ku_6!lETTkerRA_ z#VK)v^j6j`j>#mjvJP>Ea1;54dJ4Q0qCazGVrB3_xcW*PDV=L4R`x=DWs79tT8RkL z`^T}eR;;Iim38E-Y!K@i$I24J>O^6^o1&bM#%o~}3u6d3DPvf>YGqlqN7q858Y%%{ z4tl(y(nGqQbx}?2y}D)*J{`|&O-2VADGFz6ovDxs5^8HnfQbgmxs8?S(gqGFk=Gbb zUS0V>nV84UC?{L6Uvj{Nw`-nl((JLO$_OE47bBtC!SHtUL7_&C ztsaWog^E&@i4una5mR|BRe_fRHB;&feuTLecA@!c%7dDYx?Dho$oUjb5aAoAEtG|+ zT*k|633Y0zgry%j>PhbV9c$qFHfg2!q*?M4HRGT~mx-rzMwNfay8~{gh zVEd)R0HvRl!GR)rZ9M>GPf)T_TC*Ffv`2hsuZ8BfQSt;cx)=VDtgH(bxKGR78!{fr}EA^S!#H_`@>eWTQ73^vDo&LAZny_^BdwR_qq5(Lbtj4vr%^W0D{Y{<;a53;$53jazFA7Huoztr|41@7jBv1s=U@fqpby%bt>kbV z*r;#;fsO<9#-y4#*qEctL36XJIcU{Z86!Q!kwO%4zskX#SsVwAze}x!TD4OK3Ww1& z_(yu08%8*Ig6H5l%z?}iZ>PiqY#s6HjqNoOA34xLfivk}ad-*2pF^#`qhe0^oZZmd zjVKI6+uMNHlLj*TB}D(h5iK?th&=6;-ssCtN?VR}2PGZwVA3UKIS!Q4UV#tKOq|vv zj@dLWRz`8|q1vFvJ;=f1;x5X0$;=T4^GJ+yx#Bt3hh3Etalk<8TqWI=sWOpeQiezySZ5jo*HR|dvUZh;hGu0z@=j<* zFMn$8fVQ7>*FzIbN<-;>)|K+Jo#SVp$`8ri=bDw4=uwN(gyXCSahjf2%C@dFX)@G_6n>ApM6UiYVs<wbt{wMSke?XB%t}MnGybs5A&NM2@T-Eg!v)&xpWL}dBlwXn#R@1&Vt)4mQ3Ha-1 zTD>mPVK$7?8sTVtmeLyTuViz`2T<)DLXY%UhD(Py03@{`v;VtXEAfFt==cET9!+l@ zPb%2`HSrVyo`#7~dYUstF-f%sGixOgUw~>T{uC^!Dm5BRBR(3cwCC(kJ@b5V5P1tr z%0))3>X;;Ib{tHjCMqr>c^U!Vfd_9@!RsO>1ON1JWtPN&N9IChp){1EnRplw@_V5& zQqxl>9Tn!!HAx5Q97MGg&ZueDxTRPbmS*fF^gQ0w`});JrV)xmf_<@Q)en0}){U%z znOfAjh9Yy{`@10s@hK>6q%tP?R_KoMXPa7}n@1{X(k3>VW>o73a3iShEp@E zBzFr^SFvFXDcWA52?y#JjzG$7`%%iMc-)peUFkrh54_VAeKiX5p2G|esfedO&Kh{c zqm`r53+xtMm*G+|mk*Rs7I+9WT}~dW%og7pjA!&d(isj4F^3NZ(}4Q{cZ0ar$VFrF zq;I*_>h7nngH)C8j;)82rFv%f9aWZZG7ua~Bvv#Zugnpeq2=RYB5OH>DV{iSD$1Im zWJ{@BJEn`AdhWtCs-1tEpp4RV*4gwJDxM~2$2g^5YJ8#|>NZIcq>*|Ag_N2?uKmDd zSZsN@20}?83QU2diSMYRL_P94BoQULTu&9LMzN`W(QRh>P?TaC(eqggJ_Y?fb=Wq$coZom0-{Nxwx;QIp+D$$+e(D!z4d{=5v+(dsF?8cOLHCgCO>^;oP_ zK=I_thK#Y98UyfWn#sfa_g{G38gpS2st8Vyj? zGeTiF1a(oAP0}m|4Pg}M*!-Z>1~(Fl)wgp7S+9sGq=;fl8EY9zH$$hDE1RXItQmu& zCz|?IC=0~0p{OAWy`ddgvUhP&I+IUpDnt(3)}>0O`0FgR^SJC{WeZ4Xs`QDJw7Apzv+121(x zpZ$nM+N`CYdOV3+L^o=xy^-}AN^Qh@yYi;AgEdoi{9bx}H)%K5N<^{)oxMY8AKSav zHU$=IvAvIPQ#$B-k3@&>f)xvFQ(y%HVl<+|BR%xJ+9E>1saTk6?@~-D9KBR2oP5>A z2+t{zFMQK_&61tskHg3e(lI)NaDjX8(@OUCbDchW{fpKZS!HBd3Wm zPEPHR%1Ic38t+y{8H#Cg>`40f^UQySW(eXmDke@P(_;syD#=;5#3jrlsB(=oGAHrK zrSV73k25l6qBe9h^u!*eO1e`kS2|JO&Kg-*i@N2Ks3&u|fZ-6-bFZ>ZI>?}*GkcX` z(vw^RR=s#|IQrwdb>maGo>Z6I3{Xj#j)X5OXL1@@8#}-_2=O4J zK|IRsR^YY>UY7{(Y;YY=#);n!N1F~P0qHzuf(Cp%zZ9f=jT^`u|K;#V@j>N@B%u-7 zcmOiZ4v#6LrIbQVe+xS8y}6$F{cuz=F4QcgKEA6CM#56q4Egmj#ng?xQz0RdhPi{` z2=qck*_3K*5Az;Z)=L90A>90j6Z>`rtkJ+84jI{l;Slu26UuYaBnFKoZf&CiKT74G z1rSBSO&;1F`pM(jsNTeL!_o4My9!0Q5FNPw#&q%b;rIb|v_U&q)n}+sug`^rc>6gWo)cZ(K9tRAG$Hv+qj_w$ zOgLirt3WSsy2Bc3Ay9*jGJagg_z^Ab1rlTYFnZ;fVgdm84Jkr)Bxm>LL-oZ|g=9v_ zFp6JqQGLA!IMP<6qj4`QJyMw6zFmksEkoT~Jc9*FkJi75u@hTATu5zQdPPZrbC?Aw zp=|CoB9G&K%oKZ}{nAZ!dag^JxoGYjcp1$#_=G+ooc1xW%#+NN;tMCONNW|%isD*D zW4Kjq6)jaEgN*vVs_aP;Ek$TS{>@X{8_1|ASD=*SQvlhK>;I#qCyV`y(D6Ihj4~YJ z(hvFN=;n<{;%HFqo6AZvjj#-e4#8s05Wguz7hYJJ!)c>i5z&U&vPf^Hjf=>b+5+Z2 zMimWktE!4K=1}hf2^!Ybn&W{d_%BHnMc1mdVH*Y!(kbdvZM$d$UVk#9Uhr&XXS8wq zl6K;Ho$_wMgc`f_YPeOcyiRD;Ddkh~K{~qHrSH=YR$cnm7+I}WWz`iMD3#Ua`!zRr z8v1qQi!;hSqVx);i8%qydD~S7%c5zVSk-QD@A3s4Fc5I#10dipbOQcVE29D~W`0yH z-~;d9+bQzKCyF&mOe!YMRW0FbiZ$v{C44qU!XNz=624^XQZVymp|MiR#T4r0oe`Dy z3RT`+ST}W%@zz=8JE;e2W>Z`H=;)gaMiXsuN1ps&D-o%Xg99n^NNEh$fKw)+5S=)u zOi$rDl8mW8IjU^tkL?U)Lop%LIie)3!o0&-<-ea-K9J_Hu6T_!Qd-0{5VUj9kZ<6a zn66`6bbV31+UTKglwxU>ZiqOin4Q1U9APsg3_bF#(w95J#tS-1Jxcjbxz?b#V&F*n z;!5XBoKA~2p_7fpW~kBk%G@~l(x&f~pQR_Y><&Q7+Q?En)@UGdghd{cqeqO!M3f(u z4T5x%-D76Og1}DIth6AaNH{;x_R!nHE`uPD-QbpX;@8xRqlwd(m>%OO`x)E<%xdB^ z_E%-BSZ9PL1|*Nr3|3>n`C|Qy^jR^Tk&L5kLQYur#6?-d5s^t3l~OS!57VTk5ww=} z%^$Eg?O@Hgj3(q&EeqYzfbYz|LS_i-O|?W`A(MyR6GE~UgSNO;6p7UzEu)O> z(>b_g{ap0<<^j@7u9YmJrjI~pKi}LQ?Wq%Ll){anE2;L;6@AeYvFN}`FW+2_8koz` zlXtfhZ>0*4n#(#&s_{=Xm3dM%-!VG>5C5?=$+q!Uz>DHMR`nw=@q{FN8f%e+bs%{&P)a$nH$T*9r zgbc7Sz=gnsBZ|J)vaBwqmLFZ7kFB|W>rh87n=ToNn#>OMuhR+9u8( z8Gn87tE#b?bbNN?beoVQh~*>WuMY%~E-9*qAYVpknYa!}inlzd8yyjEc@P+hc619D za@C09kul4HPHb^!Aj<^vtwC>Am@I0DF66@dZZ|%-*MJqaecfM+yZEC;W`O6c(rP9{MyjodSZ_fQZ+DKt9Dg& z=mK16E67^)c$e~g&b#a-v~rMxQRpiNtx96-lB*n~VS-irVawG^FB}xL=PaxSVa?MC zYfgM&&7#60xe*r~a&Et`SwyynmJ8?wQ+b2PB710)Ag(QmA1*>Fd21*@C};m;=>T{m z@jg>zzdh7Xi1cxXz7WK_O5%r)n{^-}J9>m#CW(7NW%1(2rs$A(@#AKyGGPHa&?nTK z3nQ}07$Dg6q22M4-3MI<(VX-Lqc{X^U0 zBn(prgbqsLC}yh|JubMm|AWzFkT5)g9XJNP;TZJCz|b2~D;*B9RnFq+<0^|<2vHo| zgNB6Ncw?$t_ow|2BD;i?!3um4|27_A)@Iwbukv4B7Siv)bmK)}b&E^RNK z*9rJ5t%!I5f1wfZtz$z?1fd?C2jWi7+~4Qt)k zB+*=UD20(7*)cKHR1l^Rp`jCXcRLJ+)z%F|T_=Y&3UkS*t><>w4HJ(B(LwQMu|cEt zS+HqzOt!&g!3N6EXTdc_kw>P6+KSRPY!~tK-j*uqT7;J$r!$ja49j~VP8SOiBDLs} z{gBo|dGkKNDY{c6%Lir+4}J6I{fc%lHE-bwG;*9KDL9}?_5W{t{wfeEPLh61EZMxj zNV2vV$#y~eYgM%un~%}XfKA3|A^Mcy82tp; zaLoT=0=#o>sJkGI!8FA;-Tr@(fQK3g`1Jm@?ZpL5zy)>h8&F>>B3{0;dHF^a zqmR=ERDF)uGpXR|f5Hpo_|y6FAa!*DjEY;_9SQ&xUkWMV~Vju6>j9%?5_ZN?^a zfrW`(fZLcbMh(F6>|Ugx3;8>nqti=68?y`#a#ZI5MUS8Z7uGdL_bm(UO*1~;i*goM z6$s|YL(4;x1bF&4X=UhB_@?uhD?|N--YEa3Q2V4q#dT2rXZteiyaq+bbt7&-%f5SK zL~`kGCGgF+l3mw|&ar5LZ%OxHAK<>Sv^Q*tR+hpTxZ(koxFcMh_^x^^9Zsc>!J;C> zkHx>pQI+fPFS3I(4*w$M`tkS|S-efazy2s8-)pLinSl_wlN_6d4ftNGLNC`9=Z@7M zoSyY34^H11d8ZXRacihy(^8C{gg5*Pa9gW#c9e6+r?nlZxm4gmmc<3f&?-$C@!vdb)bY*3fKtJ4OQ( zdQ;-Yp$of1#Tg8%dbXOwI+lin*wfVpoa$3CP5}nJODo2rQ*it$GUkp@)=5v?I_#8X^awJ6%T)LU-W+6U*t)Q9>nqLN4-<7bjcw zTr~#`WD9Saj@*4;Xt5{_(84Kh%Cw>$pze#o_Dk!EI0lFcPMri(cyIsSZvBVXs31$6y%nCn4|;`pPXPoK?y3y}w#`Gs=pFh#{hgTVQIvDB@3mrcshx+_2R9`41Moj>d1JE&m$pPs4%gnZAB&0vz=od)b=Gvmgtuchq#p6+G)g0jdc<2Er$6G& zhN?%r`JwcPcgf+<=c2e~9Q|kn8=xNX)(jvA$kYJK9rD)LG=IqZ9!?fSln-(Z#J->h zJ>RYCN*`Z*T-RN=2Mzm2Xo19c)`@5m)vbmk9DG#~ok$>}DX~NOQwL=+#)I<=e1wm*`XGC=dI9nDD=SQ2I%#-LNml~qY5F%x6gC1h(_Lv z(a3A#JCtRbLa17=9cmkFy_34!O3Qz?Vg}p-VEXOYneT;Ot0(rE zKq3uyh@1J*i`0*L0w&|#SoZ|F8`}Y6(C@}(OrW;Qt-HD1*w&a{x^^PjazQCMJsf8{ zmaK|&tD0vhby$iui0TH7sQOFuE=w;?+MYsY=8fC+K6z+=Til)#;-j z)knPjRs)3;U854GYJ^S}mul}ty|ssI$iV}8*jT5%PvdLvBTjprBKN0+?-0bKiNsH; z%cR##WPU)_z^p z4*i@8YvArJ!_CpovsE47Wq#pWXvEp7EHwNpxVz$PRYx@Y>#A&2^mSDW^wB4~($EKK z;R#nT_PejEQpI%>oB~tuQl9X)hgTpZE}{kKugX8>5JQhQ-#T>;Ml|MP}YU2iGK!&c`}^iy?bK( z5arX8-R9e>9%z3$(AGaQ+$MvPjj8U~ExV)7bGDGQ8%Y6VqZ7UN^hD=7hs)_k zNntnGD1krMi2h0O-LOgz<$Ra$cj6)-GoFdx9UY-Dafuz%EJEA6g^Rf3SWbBDAYN;5 z`P$`KIJa40XyMh1iK6?_8F^@P^j&Uvue1Xj3TN%Y92#NP2nu*F|M7gMPD+7drL2It+;ms+zqr$z5v=AbQ16$_-u8(V^)U7v8eX^xx$zh@`65)v`#Zxg z3zCVWn()%o9fprWbFD->CUn9bHfefeR=Ai~{Sbr}Wt6B(PA;F;h5&MCecEJx0o7lc zjL9=z%TIt?)$ZRZQrt5>8;oyPY(#+9XkXgK)?47R~MM!b5Cssg*(J{WDlkN zrh_dWnM_`NnaSMytynhWZZm0ZlvvVb=K$k}gujrorZAt^iTzWR9u61Y=t+&dG8E4H zrR1`a>dsVVVfZG=&YIcI)W4c-4T!l@P;T?B%Oq|fE!Mr$eCv2=7&ngSD;GUp9A2#H zt#jDVV+n*fc=--{PV2Dj82W-KQLiOOIxvaGPCFZJF{dpr2`_*n9dvZ{VsJG#nkZk-^H;4v=OLmWJd>Hjg z++$IU+7?i;8@Wf8%jt1d`%8N8joZ@txxYbqIbKtu)y!pjP3e_- z&DSy7{E~`a?=>akUs{@F^EzB6zuD~%m~9@P#cQ^C&32R328meE=JZpivDVZJJB}^#|iXmAEvfVXIVX$ zb8RgTKQF*z&P$=#tb3w_<)jrVK}8fscI3Ym;XDDB>M(3H_b>??u~Ihztyvo01y3@9 z9!43e;FjoscrG$*y52=>)8oW0Gtg-eyDrB?7Hf5InJ#kcmAc5oF?!oYWv+J-vL-Q` zT{geN40DO!XA4>b-hka<4?^x0u$XK@o`N1Q zR?ubmNcH2hYEpb9KJs0RtS?Ym>n9iMn(#5PfhYcKvQw2!eGgri&{O@rZwd3K`r*$h zVx}klys}FVrPb}W!7JI#f7I{DgICzs+l5aUQ5tscUnwdTaY?UjlD=Vwj40W%f_Bk zg|WmFZ&C@vXl*tY@WhE|USP-|qFsi=Jf_vnl{n0S7&-5wa@IS{W1GYO7GF%@Fwd#P zJXh^7zu&pLCjt+thfY_8N75~x?RV|YjkZk|-%a2;ujt_&+8W*`ehKu(bDh_sBjUNv zKVw{HUp(zRY^d)y#&Mi1VCT;{&bwO8 zT#4gcA0y@2RLXkC3EUfgOkC}aKhvC5iMff6&yL)?J=|IlZ}-NZR=&{P{q zDV}fq932tQHBwt_z=v(bjv0+KS|- zZ~Z7){3(IDYN=1DeP6AvM;{JPt|iv<#aCDL6V=fnvpa5mF#6Yf(t3`h z>XW_gZ()rF+ZOrwA=DW3hGQa69SOgfB;C*8;oT^HySKZ_pLTc@0p}~)9_kJdCXei; z^wmBY%icM1+!x(FA}@PBf@v|{J~|Ay0JDV5AFu9=-u!2Hj`$88UA=qsCO4Su9zEmJ z?;aiYQS&t3^i9YFJ4(o%t4KJaXc#rorq6|sNrGQvqEn@MTm#w66HwLj;Uay2Oc6kb>R=(9k=6=a758fnB&+K7QeJaEZ1?aaCGZTd@`55v3ainj;i=l1JW%~b&|<3}TIgTpuY757Up3jL!IivuxP3-@Tm4Vd6RwcEXl zGpzW6dRZr^7vc-*UsO=~Jm2)fBMT!Je+*{}5%-1gUP1gU5I^UCLnZ2C3M(5O8M5102-e9$4D|-7{?G2G-bC{5cRm$2_Bh7}@k=xP6jXFBm_^{3<$xXu#lY`2Pj9 zZ@#sM5M$i`N~pAFjFomd>w{OdTBAwTB~Si8k;y+|yBIDPq+UUd3Gq4BMGlKUXB?)*IP#2vThYk#m{49Mh&RyD)j?-IH<$#S$w7V4858_p zPOJ?L*e36q*{);zZjN$Y*xAOj9hp|Ee6=7xq2>EAZZzS0XAIxlf`2a9UUDwcTFY{r zl_z(!_(Qbd*RTbhuUguOdkyYsj%&7a6M3Ru`9eYbEf_y=WGB;;EI(5K*^x)3@^=KW z!HoEkp_6`y(6D^GAZE;n9~sQiA)3g*vGoIHt2;V2xt#wr&uP{CjE_wlOk)WS1se1& zt%wY7Qr=ROhRx8rG?#hzR!QfE)7L+oYgT?p8m}A39k1;hJMfBP!62=LkXUd!u%W$p z;|y&qScqvcjs^4J7KsJqdD(B%%Dal<20FYt7_8++6Q?Mfp$`W0X8bRM!8jwn*WK4% zJgnpUagK6bF!*~l-{c`xQ+oL<@ii^mC%M6d?Wbed{`(9*7TEDA|EiO7on z{3RLKbj-S82G#|g#v(|bsa3r&Gp_1?ry|g&VJEZ7r`H#=XOc9`@Qm9m)qXS3jxOby zcrwSY3+7z5HNKIKvRB`f)uJ{K5R-}huG$Ody<8^tE0+A9%EY{!ht(jkF*<>j#1~jG zW(C(K)E6w{50SwekM77VFRd-kpBX=t?p4W|O95m@R@=(k*AbV`B%w5)eLsk8fgjNg zfwwGm#*bNbDt#|9qEC6tq{yH?<+(}XCeTy7O6O=i)T`=HrCQ` zET~v5T~6xtfL2YHnR* zl%}_CDf$^lST&F2fd1pH_w9*v8(Q8_kUr+X>I!OK#17{Je2ok1&cn;UiBm8%6_y{A z>dexJp1!9znKj0SnxY?Y;D{+08jgvaEGmZ&on$h2`huZQi$*u?@JmL3ibt0JCfVb| zPe}})OQEzBsB;`$`^~T0!8tnnLRo}6U{h&cEJ~( zwVzD5ZB|SK;~uUvP(Xq#(V#axKKj&@@)Oc;*a}z;Y^s!8${I-d>$h2G|DVEm06 z?HL{J2`}ctFQ4JgJ0s+|zC0uL8sGF)@GI9;j_7w>cYvb7~Tzj#j? z3ePWJCH`C*KW0o-754)LLShDanQ1HZ&VurXg!-sp>XII4`>JIv4G#(W_2YkDSRMi~ z!zcig8A>zEU1wL1!csPVKI2=+iXe<|DtVuDuG^`U%Y-g3j&Sv)gnBGmfSNq}YO~0S z8_V6v(%{+5vvn!P;>2d(hrK*CF}@0H1=&Mcc8TAX_`n6UEVN=smfPiZ+N@5K$?LM% zEEcEB>vDQ64x1HDo?C5}$d0?q=Ot&kY#y84VKZ6nL9fl`w0OMm3`fxJvHLuBm&*Y` ztfF~jd%cRaLYBoAu-XDn2Rz^5vjr@0MAz&Jcx<*nz~l3}%*ZorW%Eei$5*~3WY>V( zhlbr)QCuVL9hJ9rKqqconbOg1&NEe1bjxlVbeY{IyUXPB!lPGi{0x>k=(pNEKAYcX zcA?{~SEWX_cfD)U=O(cjzG}iaKWK3m)-Bie6@_6XjAc!kmYum zEheYi<25@>HkZfl2?Xpux5e-F1$|Dt2jx7tvSnmr#>xkUtir30Z!tCt&uQ>}H$K2dAUGE{8wpwfF*lcfbn|uTc$| zel6c4WY>VzikhTuG-o74igG5ew4muFuhc=GudZmD>u}^bXZOp$VM<$~Dx1yW0JS*4 zL|itD-Q_j8O%9hQV0D@8PIn}yVa5F9tQsDziyXLr<2}OC8Z_i+3zji-jly2znvntcF67v&8Ic;z2l4WzdEDlS+6$B3hg_&LOOq3Vg#u^A( zY-V?)$!Jh!mdE3^Tm1ot$q8o}wj?N)FApUY~u`hsSw z7x?#B;LJXDIMdxLcL|wxzYYA#8g%%*How#Eve*N_yv1pSQ~p+S#C+@Cqe50fygt~j z0Q;;7C-JntJ1VZtvO}D6Sv)qs9Zr6FgJyVk)8z{|JtjW{J%=3?j9Jn=lHFqEq~t76 zfYWF8L0EKoY$h|frriaq@&();kbyM<$^r6x5aRp+r`Kur0tj!=YXyS6(B!p3to24f zF-L^#8qm7Xj;eA~O&AgA#Eku{HX6I9qH|X(=VTDhoOVmlje~*B<+6IL0jJYq@jBcP zp*?PDNhbm;K|eJ-r3Y-KM$Wgds1%m^6D!E9bs%$M6SZr5*C01LcDIipQz+wI|1#AwF)8l}6ZiczRW&tC!Mw%SM z^LD^*4qAiG00dMAJcI0XyG>@3*=z}dJqCkdSfAcnJ--Ef0ZSlgwL(0y+q^!vCx}hf zIB+*$$mzzh7M_1_T492-p#pJbTI9qn<-3Kf#Mt3v_Tw;D*M#`M#cJ1k_T`EW zU0s~(dBH~Pc0lb0OY=bnWD5AKR+!~%K}*1Aj|fSdaekHf0l>)dg_~f4t3gFptq&zM zPoKxD?d?w}F`GN;aWyc6Ko%X)vKKbi&Hy#S+=ZtEDV)|X9Lnbm`h0luXc^fbd}X(g;eiay zZg;?x1|H`0K*dBz6;#NxF_U=BPY)Pxjyz~-`R!0EzFn2_m{inf_JQkuPZ3UZs^ z^#l+KEKWF-?F!f}J_np+pAK=2PHh&y%M2-)3uY=aOnYXJ7dUeSoo1MU;n9c)WV$f5 zxdR@^G^_!e33DCvLW=Kp`(SqVy8M2NmCJ{-6Qd45d;==8Yd{N&jMR-z)bCuywYebu zA})n=Ti_`T2hPs@@bs+Tp!%Sd8kv}RLX1eWQXnqUKYEG~_ z{AvInJici)1^p(78|qTjVexfzu62z^24m?4Mt${!^u}-tdKlI3YnD{sp@Bs)LoL51&dve)oOAEov;`) zn*c9x1&RbJ+>q_^IV3z80U-c$>2N?-kIQ5=dtf0JfQP|t@CXBm7^X)z0V@vdd+=Hj zJ47Hz+#t&cx-77KfW<33Dy}Z7-`==a$V`YG*1mbG%vp)?5^fymaFZn+axHld3+HN( zL0a8zSeTexPz`{2+Xb&~umRDySm36~5eXuhiJvJ%o5tLhrsk2}#AFxnY?Di6v;mtGXzVo+ir&SsLkgB z#e1B7$i1NSV6i*Ya6~f5Ok8JyRg%x*hMda`!QT~h`k~AKD;!t}qfJL4AW>JV0d)Y~ znzN)Ry9U&-9NG`Q)~)T5x>>N?cR)~p912oTyVK*gc;S5mb|)-AVd?0L9Dfk!kB%VJ zaD1??v_it-GF#kGIdE8Q4s*a83|OJ);aCM37q-xJx6ci)^6-N}LqWm@PyBez7M}+% zPXl-;_%jmk~+DyB{1CHT6=f`>WGW+%Lr!D0*g>1r)2F-9lytgbL;2SKFqal%u4Ffluj#kQnFo;%NM z;}S-AoZSt<4@ zbvdRtvBbzaZOnm+7Fmgz^3$md)*ogQOiNY|RIglMOAeb8UW@??ZJ4LrLA5Mm_4qBY zbc5oX$zg-Xn7z2H2NRzY7GrL!g)U}C_FV#H5m>vxG6BpGmNG7Qs1ve(huiP>gRz?} z@a*4cNDQcd)qvWIY7baal2sFGTo&nOfr^L8r7qK;aA7w?xVF38P++tMT=4Rn06atL zbO!xSt2=Uh1x_6y+p;?>W)qGSHXHn7HCe3|2TX<50Njf#NM3SWNQc#t+w1gzf!hKQ zVO&sV3HqV>07;+|omu)yYJ?Q+vTDGI%z3Yvvui*}(q9w0t7u8rk{<#9mC!R+>W)y&akF$X~# zegNnPKlHjmzpym7z#7mEQlcwOx;jgY+CwU-*)?Ewpq!sJInjgHEoq-;&U4$i>C791 zstAbQ8n8eO(*+*y1cISv1x!M1R9&3a@W3KAIO1z-g{6s9t3ha1 z$QrZTqE9wdG|#GmE4o74cy_x}tojg@eDh$lq^r9DS9b%h?gk{-wbG@PS9b$68xdD` z1Fr4{T-^=0x*K4$5pi`l;OcI`)!l%ry8+SDF;{m3G{;b`?gnT#BChTRT-^;wuxWF3 zHvk`;yt*5}Z9-h#4Y;}+aCJA}>TbZ*-GJy8%9ZQ}^gttTRO$*-@xv9PIvG8$y3*iz z1Z1ABq@oj3muyV@nd71#P|mjX&C%v*|Bt;dkB_2A`?ovckRFgI1O$={5afor5AXm5 zQ6Q1STSR6iGisDe?f{bsnM^V>;Rpi7ArL@;MMMy=)l~#t4-^z!U2lQ)UOd2i@%lYg z-7{U))7=5x*U#?{-u=9OLQg$a_1sm}UEe1h&Lt&IrMpzrHAd8N`qF`o$@SQ)#R=oW zL%1CBkLgX$Ij6XE2K*Q9`JKEX_6|22t@DR_@#2lh5-sc8xEj#HYR%}Yx8LamH5}Rp z!q;+B(4;`P|Mj!saz(sUgt8d%Qrs$D%E2|Rc^sr1l39_amTbPCFAAd&>Eq8}| zaj5)AWplCRonc=#w~+{SP+F+9fxc76Ps0E2nm8Ta0=c|>ZFcw$6<)Es0k9dq*R+S= zlLGiY+H3d2dqY2b9pblp@M}@zTN5w9!!$?nTQ{4|-+<>tWQqTR3E7u+TsNn;4X%4g z7dY7l(ygXPF%hXgjZ5Q5S4OEaWZEQX(u`RybpOO~L^z}jigp|dlgp{O2bG8TFLHhA z(YsJbM{Ni3;Ys1=InxJJ3p8;3%#LXNJ>e?h6Xh}P?UH4Io0_5-Q^L3NAKZnGP6@v# zP=sjmoN#fT!hj%gNe_-rmQ8Ps3f7lh&1c<>e%~A)CN#P`EhSXfJW>pHa(GVIv#e&a z&>oLYWYIjME3smF_*vdmpiti>&3p2!@Is-h@>rSoh_dkATmgEjEIdquZqfSk65(Pk zy3c2aM*-c%bHY6YYCOX3`3k$|NpozEr+;~FTcsyjepVC6o6mXoA z<~T>{?be2Sd!jsi6DQ1~daGC%?t}(Zge^h^^%V41%*{eCRfOj;t+Cc9HZG6`o@O|3 zPVuafoikXcHBAg&GGD6tIol#-h$$^!2o_Juw{=G+%n#Xw9qjA}VVmfXmQW{YqT7^4 zcS+{;c{Kbl;c4YDvfdr(f+p@P>n^-NJ;m~9j+?=#r21hmlryxpA47>Hxon8lCA_U7 z73*##oS)Pzp2WN5(QEUrl&DfAVeu@z6CLc}f*|UX)3SILFM^;^KICEyr`? z(c$OHLX@lZ&?11kmi*6fDff+g3%ix1gN}v@lxw$U)Uh_~;oFQSbL*`&H?K4l+f6!D zQJ3r47P79j2(J`|D!n1l;!t4}^#H4$ zA37fWetj(ze4~EADx}0ZO5&9s1|2)LptX2zT{zD3rQ;EIJbnkI^J_B+C`X`#Lw5-* zN)Z{=EeY=vDyjJp;ege5N?U!~2lOR+mN1(Y_`9^0n zScBd3(53t;iBxk9_CqGAw7lf^h35zlQk)Y}?4%xGQSc8=MAjc>wrftcysHTsxe}&5 z!uG%*;W>%`?|U#oU0!q`wVF7UIR(i8(V}O=1NgTMX8%hjskCyr?H}R&P5I9!k`-iO z+Wd;nk!yvr`X^H6oY4XNf2G0tXt+mFdp+9Iw60HI317(x=TB0si$vv{4~2&d?Wm{3 z#Li!KID8}17+V;{NjKx!P>>`nud4i5)JLNl@6(4@cjgA7!_S8E_}_*h0;hf{o}qSr z><>SYI7<*oHvTg_m*Z|G)T#7%14}H2*()Zg(_{Zhe=f|PHrF1O>xOYjqLb9PBo!3b z6fTMP^@s!Ycq=@DTa87KQL;?2#mi(3u9P}5qk(TkZbmo09bU|B!=xFoBns(ZHEG?| z6@Ad6cfuD#ZEPTwut}&YW(w)>G^t($Mw8SCM-{SKqza4_D2aw?se>+s`>fGg*$ozr z{G&yZPiCm*D@mei(7~VH5BJ;+kS`;bm-k1OSHf*H1$2`vpeB>`@Sn2*KZULB^3^11 zSx2QN3Tp5;wtne^3>|){{L+C!5u6w56h?ZGd66${b9~* z0V>aA#cL`1^<6k`8Fwv~k%8&nAx~(e)Q1_J=vVO#hE-l(P8Zu#tZssupzk9UlelS; zD$M83)>g%|G?kvM7Ee~&s%Ns1Dx5IkOjYQ?32N!W&+0;o{S@+!v60V4hgNL-U{K^-XbalDy8Hoj!MgGb1gaxsT~{6wj<8)6bI+iY>&oxZ7?B(>o@AR# z2demhk$+|~x@1ncJ2QeRvsKCxW;umvO0uS6JljH@+2U-BKXz)}aK8OL?5?lvJ-S(~ zHTKc?dU1C|4t|92(+RoQUUv|Z&*_+RfKy9&)j_@u1E zQ!tcvA%q|AkqRMvh(}NtLU>m;dhML}7M|~)$%(ru3j^(D=0rtS)+wyh_nD&W^gZFH zl&vU9QG9n#IiJNBO;H2QDGBatc{)R-4$PwOnezH9e(V%AI;BGLtD0oi^W~rM{DdjG zyXPX4TxM)2I=sJ}fFhsVU*3^IryMdx+CAH+kQhY4%k?BAbTKVzh0+a6Btsi#k`_N> z)p3Sy-i|GRMsN`abgeGrH>*_lfWGS1r&LEydpaL1zb%X3Cy}S(^&Xa5cJnP6vRW_6 z>Q9C1(@s;pw0Os5jJ{Iwew>{>?c$#?yf67@`Mo?;l;%Dx&r7kMJ(aO}ne`JHtbc}C z@4%O4lzB0XS4xCCZMOTfY&X1uwN6#9VEX`18qRv^t@3C#Hx#pPu!Ox_cBLUwCuWiV zp!~ON?iNg@y@nmCrkMF*d1*Fx7pCZsbQiIs(`4yItg7_gAmEHGeb;Ad#v+#5b!n(V zz3XalvGDHaiX5ArWNnl- z@a>eUyP<<$mOsqBN{CbTeSoEv?fbE*>ZREBsedkmpSFEZVwrB(zW zljXJ9{Q1-LlhJfpapz4V4q_H>`=PvFBfj%A{bUqZljQtTeor=UpQgr2R`S>CG)da9 zRoTciO}#t&;m;a2wbNqFQoZ`$j&_`^h0lHX$a5zk*GbXFcJ zd#touJc>0dxd8Ra${m_CXnf=Od7`^fLKA9b}YV*ay7K(^` zk+KLKZ628-Q0>XLANh*LpVgh?krt6@jZDudUCN)SRJ4k05?)dsll>=})H<>Rc94y7 zBjW^$2EW0UzC$>|QWR%FE7Z5@yd_L?)t=)yjoA_V&j?qvjMHf`t=|Kz=R&wD<{M9E zmylWTO_G=XZnrAW~8eIgtA+!^{Q>D)AhUP}6Ux;iDj zEjt;tPo>sc8uBz)YiYDDeH4wgM&8rOLD$$KYlLF>v^3>YNtEIm z<=>h#;(PW;EiVL>{xq_WSr#1KgOq)~b48x#geep?IT#|}-OZ++lJEc2kCZa4RsP;dV_MoFot}6)G^aeJs9Q!AO{iqFJz2=_n!(2P9e9q~Z@IR? zPsHCl_B+rWJ#|UsGyb4NoeJwOvBa{wKRQDl*0;^jad$%|G~L~hqR7Uw-LSj=2)@O> zCHOAIHS;k6I=E)-0CdR}kpi@6?b;^D^2FNaXu#UF*7UOr_?9#EgMmlZYx9{zre@T& ze(hbD_IiC?aLbT)|vX@;_7sN zdf}qkOm(>UZibYTwZnymJ`BQzMr#Nc1BOJN6~=;OQZa!zoaL%WA0b3N#SWJR&5(8R zIy2K=YfWSuM=HV1pUFB=0?$(0iK-=qOP|!CwM*7H`Hd2F%853x#Ih4D zoT+xA>Y0C$69rke8+M{YU~#My9i+Hca;9i2j%;qie{SF>cgd>zMC!mSj=et8sVRTT zz(?Y0lAp##7Bqpko)u#w2B#F8(`0(C@L`549Gv-o>H zJE$?EKa#cn$y%P|a8Q4bi(zFdpJr6zDQf#$1b#{{Qqjvtm(_7=331BZ?qg|XcdMDD zcDKl^Kj&`Ln-9&Xmrm91W2Q4t^A+Y_Wtl&~GC;4;_e;#HUVMnTQzG{_<&H}Zq5B!Y zC$bVho2B>mta{j)NBgF0`29#1;sy!{Nm2slESn6bS0f-*KbcPP`f zmJ8vhl(i^v3RzbtJBXK-N1A2v{mb-|dSAI9ok!}$EFPE_S)RoYFVj!x{nRAy#UiFG zeoUEu&b~5Dq8F%~Wzsv4j%8{izOc+lDY;lM8A>^mmmsOqwAjKyju~e}+Lph22l|;8 z7Ez;T2D$5HuIV16Aa{6S0kNOzyMlC*1%WlN%xN_T%(S=VED zCfc!RH~f^cu5RM{izB%_|GGq;ibjW7YB?G`m7&PpWq&Rjoi@v*EXxfi|KGrL+2sE- z#Wv+s&m-7Cw3$uZi7L*i9JWo8wbp7j5gT1T34O34vK*bbXLfV+?-h}HzT0el7n`B# z2Ax_Nd4>1P*7vaTG=-jr<-q+%wg%qMnVv;$qBYFwj90}^td6`U1VI)l7fm^dV&}>K zk)7AEN++pjJFe0;Z#ElB%kgxyjeU-!HF=@?UVY>yew9R>vi0RGv25$n+3KJ*2fi6P zG_^x!tu_s*DxcFSyT#Mayel!=I+>TS|FVkx7g-MI)cc&ozB=`m+#gvc@SlS5!Kcic zA02Fvb@&mCrTx*tvDs4EJ&1=;r`_jf8%6kM@PsoW{28R(`zQ-D78chY9otK-(b~?@ zHI>%zQz|Yh0YdcejC5+u0j}=eh{0>jR25i<)QMSa`b6Zd#@tnyO#3zFIr1gyG{uek zB261}HzMB)kx`mDX_KbV3kcRZQp(Mnqqg4GbBq*nK9)*`Le3=Re#mO%^p3>PzWtFC zLM=6TW-zhIOtW4FdOFP^>R*oB-+Y5IMCz;fHUlaOg$I@A(rw@k=<5TKK3eUE9*h(U zPpR7T8|I+8V>8ixWu&Do_fIi3&(7W39iN6Hre>AYq zx$3Y>2m*0;|TfJd4Fe+JIC4eKvP6X`MZ4D@7%fxc^~gSRwwa3(ot2CIbA zObFdBt9YjQ@Nn7yn1pbx@?1&?!_m?K75xONy*j=xrDh@96ztT}3F@>1+$uJ}k@$Y3 z^ZkYV>@d69or&kD9pIP5W+dQJCz+s*L zNpc&lYnDZirzo&EwJQ)G4wJx6$^P$>?Eg>W`kp@;*L#+$<=?HG7@az^I+jVI zR7c*>-imjw;~v2>8l{<)E|A6ZFz!&!O8a`u=}V2ZRg%x4#Vc}5Z>Ht5Op>S0?S*?` zI)5tKHkaphrqPy~_lIg39o05ja=r4G228e-JfHujOqMLHn^))u+-_^aF0+ zG=-k2{vfGBWvWLFRq?*2D$XS6c3^dJhC$bfZCpY8A&c3_c?%2q8!Fhydu@eo$HM@e%o=4=U6H_^u%Abm< zH_KBx)0j#LXk>D%W-c`~<4^zsUJ_B{Q7I!#SM0%{Uwq_={dlcr$o zlj5gjo_YmaY^Z}_nmRa>V0tI31Syy{_`&Gh8S}p5gr}*|Gmpossh%}XA1>W+oR=4K zhCBD7`Ph5tcbl;OyYW+0UN-OQ0w@g}gwl9UsG5!|gIaK%MW^5AwptukkJTy{qICO8 zye@Z%GvJ2Og|?8>2jxS3u3*68b$R_E7qZSy6&5bAd7+d%)RTtNp-@cJ3w3L)xaxHX zDi}ijV!Kp>SSrWZz}O||vdVeam>U?|g?3mf`{f0F_JGrEErAlP9w?k>@s#*|P}MUK zviM7U;?wgMPtGpzI{i?P(O2RF4xo(#s?kIFc(2FeaFswwK&cY%q4sk(aRnit*ABee z>_I5#?tp@hPPZ3o68r5Tj~$BAi%_(850`H^C{*O`bI@jPU{DWQS37THfyGr4gvmN^ z?NW!!?ePViR*TJJg<_CUn%OVaD9nd4lRkIApjIB^c*l5h4 zRjRxA@#U3Wd%Ec&I3XL9%yk98vOw52pVjB_J6tXo)MB(jIdyT;Cvzud7x)}d2Gr&E zxU7JTYqxm3E>I#=YjimSwt&})DypD1?uo*=ajv`pjd<9yiw#(zs=z=4BD1B6br%>j zS^V5~xLMbwaUEhh2m!+)xcPXtP1tS-acfhFaZj zs4@=)g24;DF0f;3D1at^0%c1{0pS9t1FA<`yim*50u^CHZhwg@0Okv}=(j-?RW!M} zE>+>Qfw8^l@llnd8yvf0O5BRZjIL}^5cE2sQa3IX4s}62exKKBwFEsDw;yVEgNumZ z_`pjb0DkTcg)p44!vR%TLsn-H%3KFvvOZjP{?mnRMai+CT&Ob?f-=`W2XqLb28!MS z5V8}BWIBR2C{f<0uC++Yf|?r`+l33tTk{(j8Y+!g(TIoVb;)-@C05A|z^!aPC@CI- zQluW2*W&d%d?L4h-lXh&J5)Fe1?-*@OEBPY!_QCv8j7m>y)M5WDj{1Bf<4whQw3Fo zq1cbpS_0w24K=bM-dH_ODBKFg%Iy}H)gyxCLfLWSF&%z1vUZ-WgW-@luUB4#%#QH+ z==NY`*WOSxohoe#VGjNWp$dv4ga1G{hAOdcj|JQbimAKAb+Z-&Qvr(&ShSTm-2guw z055a8++HY+Y$>t3pq@7bgp`vtpdD3R;0EkcRdYCKEU_SVvZ*H)w<$2@3BvT7Rox3h zRtV%JP=MV9^7q+Yo)WL$0=05IxN>bMAXgD~+kF9u`7RfPL+}@fK|ZJf?kw?Ig0_&& zBPAor$vi%{rz8mVd96@+*B|tHLsqEQ9fT6{&|}Dgj(w4KvIfTXqf4e$UQ^J}*rW!| zyVEL#0$&g;&hLa`xj`uN>v8(*KDXNj*5$E7(Qvt#{J2ev#$@Naf`Aw9_WMh0P#)M0 z>D3tm#RHZ&sM`av7+30+9L)>YPY+*P*L6%3VFQ_w>KCJ;Ci+s4Q%Ah z4U7+BYQ4yoZ#c4Cp5xVUW!HjWz-P4uq1LzuLOxV-htL3p#RD$8%jxr$$fcV}{rCb$ z2~;Qs2LoI6I08`OI|RHywPU*-%FkO%P|i1VWPb9&vY`-rz+uJf3fvxIk_X()55dSE z6bD=zews5kFti(SBkr~4H!$dqUm;|S8+ot^`lPzDYcH3Zs@v@d`JgDe1InM7Hx!J7N zfQ|at*2WUEd2lgd^znkZtqU693W2G1S>|8VC?C>!AmDUboS~o_3d%eEK`1C6f(q+a zueAg`lZWtls5Cw%JI@L$EsGO$2@6SA5VF7B210 z)#--tX@dgRLA%}Wf_mh3dmvO|msVYQKB$6S;)mk!ekhv`Wv(G_xgk|qgDwd4$j8rZ zBW^!jw*?lB7N|ImSH>a8|2C)FZ*h79))3^ipeN{sqW3trExI5EO^pY3;?!n=xL`1_ z4I0H4cR@#U=bF&9>nc0uxj_pdKhzfwxS^5&aN}}%EfDg8;Cw!G_^XAj#g<>-AOcS0 zft5+f?}u97ey7(44_tODs0Iq|I7P?@Pjg@sUbhbl6nLE$pTlGGd!Qz{&t`MN!lMN0 zw~G*JAi;sG4F+}FBu4zkBO+_h#TGO!SlJYnY^l7cx83cea-1hB zYrs5J4%&dw9I1t5zA;lMXM6oc=;)xujXU@)0Z?S~)A+Nv0@Ajifw;s%u z{4F0G%^$M*VNnU&6|2wdu)EVb>8%9vc%^LI$)7$vB6fu3F}Iy%Lhhd zwZfv(=CvT-(8|xKqgK zhgj;gIvrN1IUjU*rR8Kkl$D2s0hQ(L!H@$sH$GUd*{omzeybfe1$94G<;ouCEwTH9 z0Z-6xw|O0~h=gsb-R*MwVL@-TxZR@frMY0F4UFnS`})LSpJOzr1rjE>Bzoo9%1#B4 zn**>)fMPtb*7aFj;6ffyQNZT#TKs{KoCK^O7sz5R*arZwR#+X{+%B)x2aAb--D?pc z0fU>t_P_(dpv2{~SYQIM+QjP`*k!{m$l>saCpQ5H4UH(3Uu|GO1O=Q)UTchw9H{Kl z$J)o@q1?>jw1YORZXY%e?9;H(_d0#BW(wJY_J9Z$1S@@u-3j3(Py+n=9I!s|he96M zp}OpTtIG%LSy<_lwIpOVW7SyLT-AV4sw#6gAhZyb*^IeD1KzCaicW;LI@>JG<)ydT zrSHS>$gN8VVBgtOlC!5IXHQ9PE4pUT;NiEOJtbjJXwIIJoINGcI>S<}AkUtXXr9oV zJtaANN^R6e-b85FZsEIS?Q1(W_$^@7Pi0O5|U z7tDV<4;_80(%txDDBw|Bh;lx7=c3$gP$QwX`P~zJCB3KK5$s*!o9bHvbwO`>yRv_i ztKfQ9?d2g$TTzJ)Jx;-$Eccqyiimj(eRGhT{Y$DtMcS1BpnxDqBx zY5_LEe~}V{P4Qo(K*hQEF9M+24F5%N>jeDQuoIM(%nANS+Eatsi`ASp1 zppuA|Dk5C^r-}%7Mkk(nrv<9Mb#sgJJK(X2fbn1ONszjTFxx=VKwnIxUqo1&L@FZO z<&(<$gsYW7(ZIZ@R7Chn0|hMrCFtfSu*YG z%1?zI%4124k5dl_cSk?JS3nn>th|zK+cqkJ#J;TAKKGl-DyF?k7WtWzBC?R{)qW@$ z`9(?rFhz{!3{o_CY&2KA>bpv37XNJ}DU(X^UzpJznrN4+)eyXLbyhA{dv28YA5{TP znVL%)itPr}mGQ+N+d|ebTJhh?2Zb)tv=64;p`erU5Q|%Ohm=JOLhCw1Ih&(bFMmR? zD=i5*!q(71nc|hw6sZoe^jeD(XU4wa_<>QW$gI--s*Lt9fiz2$(NaBXOz}D(Q9cMK zMIpw2b+9u(F3Nroek-27#2%{HP?hm%^v&=)bR{4R>$}?@E#$hn{SLnczR|(oD1`9K zEf0Kj2k&`;UUw}0S<)<1-(>;D%_Q^?|mVj5P723|S-0<`wLXri^YJ6+l``jl`IPg_c9X?JSZ4LZ37^|4 zdXaFUx+e?}o&}B3$aq#e4XP_!M=wI#a-+?-4w5rt0{-_X8d+4Er_uhYSL5A;OSDG8 zLHlRKt_2CzMnPPbE;^ zmr03yduwu0afj#(VLQcs-I!=dc#L`g(kte+qeXeq%coe%2{5Ym2md%UFE27Uf6_eegpEu*)!`xWWiMDM8G+<4vH#PXij83GmZ$`L4C-()B z167|hEr)b%PgWZsd?^W17dP1!s-#xbl&v{cv1s#fUWl>TqG>FxXU%NU2!4l=rEDSI z>yEzAiZ7J5h+e3f8c}#tKs8P%)mK!pm#PZW-JH)b0G9{^$JyOMcF+1~& zkUlKMI}Yh6@2mJhzBJAHj`4Gb3b(U8^yf!s@ILG><$aO{@1)u^Qt`foop}cDbt&En z`2Ud6Q8&+TXPJM9?V>-wB7^z5{{{2ZH4jZw5&PZ{9l;B4;^|OniY(g-6|bt03p=rW zoViz3V-d@>jK7MJm8_;0*XoTY7c>4%qNO(Y%3K#|&?4XW@j9VJwZbKdg1OWK5(QhJ zk+()Krx;(N(HR{E%WjE|){4hP%Q6W?Sn0ZRxPHi570p`~TbhryJEDE4!B%F{Fkx>f zp+qAl#+;f`+pkA|hOzIkh9j7pCpvR?k_n_Qu7|Mr3|7kl_+5#AFWwU!*piz^x=1Z$ z%h?|K^LJINu|NV?B^{b}E7dN<#ag5)ivNKCn9UYPAOVn6LVlR#eJeZjj2Q5@6z?ai zqHDPq8LppWY5Vg#GPwR5=2`;*<$uj?bCzA5E2Gr)wQs7`_Z7dEI8EOJulq-=8=4%C zekU}oQS4(W`qsu)*ARfRN6y&jYP2rxi@r`qpU_#f z@2Q2g=B0SvR5V<6FsE5zf90XFXiqKgiaKC9W(==MBZe15|HTQ{Dg8+c{adLA=>;u+ zT@8v@X6Lib$%iUye|4Z(;Ba5^Of+}RW89n&rK@wPgzc`uJc&^m5t0^9+KSWawy*&*!>$fL$8$7@j-SBqBs!8! z@8s3do*dT*t=kB0-wu%#5+7%J=+A#uqmGWBpqykhzp-{~G~_{vjno=JlL8ghM_L>Ri48`-Z-@@aY<-(f>mTlq4rW@b zls{NjK0C9t-%@L2wuLIG6b)mQpDr;9i0oK<>GW8M=V@R75%?V&fau#4?au=wJFWZs zSmOSCO4=AzKLbH;Uuv?u1*rq%e*3{f`~YAYc#hh_ixO326&4S zvTlyynp0y9M!zm!g-kja6>& zqOluL(Li%HX!3#R7QJY2FuGkRQB8|vPoMHoi3aI#`nqQJ)T9w#eI@GTgxN}eQV6M} z9w;GXHv0RaXiv5^PM%A3T0d|&>SJ1~WOqcC9XmCx5W==lhmen1k0RjGq}1(`2{ws5 zjwfmmLmq|S(@6wf|9W&O|Ay2>Dv7+t_Ryc-lTZheM-xUz42GO2(S))aO$zb8e?>d- z!Y^vc;}-Fl@_%3pRAw<|zN1EQ6I>LQpRZy*!OlEmyH%ZHo-C%?9gkLV z{6?1f4QvwRA<&h66fjd*Rhqe+j3@P zy}l-F26P6S1?~yE>>)2;8(4jgU;r*^`9ro6f6!{TBj3dNH4V3#JZpAa{tFnHMV?X8 zrb8}7@;OLc#%ovY^F9G;7J257ENcmthboJ55bH@in=VG<+E%s19kfHqwpBSO(szvuP55$CZ;cgVg=`U3nPS#(>-ptsy zMzS$Q$EPR;=c{#{(A2ef`_Iv4+5ARH#Z_r!sG zm4`?5!DMrBFkdx*=S2fO-l6J9{58Akt1SKn14WjlN%Rz1uc^pHtrYOJm#-S4HdwxD zw1(yD`^~Cma>944T?|qmF)xzm&-QWVORHt9`eA8R%;lhUZK^tCmHsvio$NIG3Zcb( z<5ViZ@5-v`ffiLyb3I5Ge5t%O@5=VjpTA(fI+F_X|Dt44|3{O_4fEB>oWwtnzA%Dt$e~gj)ioa z=GJznJeNl$aw(UHkV{%{+)HWM7NGiAq^)KLkE=U?L;W%VhJ>9I-*3FrujIFG4&M;*>$HokultD33(}MZ2Bc~^u|b;bO4MngqXPb>(Yh4ohHi-+XfH;ts~W@! zGlBh-dy=mlp?RxM#jRGa$SW#O>XOlO{k zHn!;Qo2$0!9EkM3rD`u)cw<%S3mSYD()#bpJe9K$bjz5kLBav$C*|`wYSTJRo+{mi z^pVVo{HwE3-&?D`6W-D4gW9;JYJt&x5Zldg8n%V{3}dcVfviSL3;7=xq&Kd08zO_6 z;rSTsTTjC8>0~QT8CUfJ$G2Qax=8I?n=fR#=+FOm0m-(Mxt_%4+JP_ai7E=q%)JyC zX+tJ7w{C_MMYY-mvUFkwwamN(RZObtfc74p--QBO?FXy@_o|F5b_rH}(Tu--A=z_j zy7W@n6h`B2iA$?Mlt)P8S;i*JXvFH-O(-PgehYOL?`|yUKb0jHP!@V7S&|Y|wWgq= zlAzS6pW(Wyeqy(2RS8Z!F}3Oyj;~)xwqTm;^ON%AR!e=+h?C-oSyiVvvOY%}QPs8L z=2=zSIDW@M{WzR0ql2eNib+W*rN`!8k z?u<#Olvq}#^=YL(^^EGNvO-&xXOdJ?WyP>Vq{AU~#$oIzJ+zBFNQLxpocK+0^7Q+X zpYew{~))-eYF*>ZTsVZ%RPWT^aF5X{Lbx$LRA300G=Zx2xc3Jdo7Nysj*p;Ys z-)fOmZSI^!AP9A}xt|thY@n#qjPJG8a0aItz2xc1TF5-jNK2F}ChRKvoMA9uBZ*#x z`N1Ekv2SI-rxs^%rMR=(H2r9yJf+(udRhkv{OCsU6slS;Ig<#^#Pb{!`;!%6uqa)x z>Q)4YnwiDH(UDB+(u{+o=cC(`h1_$Bo~^zugPJv<=BFt&cN1@3SGAMlJ|JDB_p|S^UG(Q)$dJ|3 zSXO^UhJC{zaA5ZN7Io8J!Tz zn~RG!R}JF%9(DRBo*&4H?Fv)Tu25N6M`A{9OFXzbW;8`PJFD__?5+`JC)4iEAY{DB znw?I_AhH~*lI1N8$nr)>ma33}F6){sMB}zqZRN}A^p8N#mG9ookUBAoiyp4JnB$Xm z`boB>iUbYmk<3SHcU3n-dv{dzK`VDujpJ8=ru4QxZBrc(k!x&yrb>$9$JME$!;MB- zx=ve5XA&KFd1_34y-e9R8RypmEzs;|2BS#XysHWT?$P0N0PGjw76Pty2;hyqUbvQG zce;as`6pr00mz@<4*+Z)fQ|;FwGuB}T(P^ofXnO%064N0qg$pRe%$~-?E>6PKY(!q zuw;o3z@0I=irooFeSpd5>%8a-&fLJT0n{QZR@C6I>z=K%cD3}e%$?iI+$rGqc!O4e z_yWK<2LP!8WG4WN0_dsN90)PuH0R&yA(*@|4c3Z&X1bAuy|1NO>5}z$dHV0G>Dmu#EsniIF#3iHCxffPx5;_F1e!0D=uT z`~d*4v;Z)j#aROQt4;^Odrd))`a%GB<_dzEhJkDW0}voMVb*S^ z6;KXCB0xX`2%_-|DRgq{yc7sx18P!1*fe0Bs@BHh3Se|L^wEO3xdja{h0G@o^vn;2 zoGvS%{Q3aZG6Zna&Jw@f?z7qfY7;P6#gTh3!ZFyU#pw)qyr2?*()IxC9$=ILq@dsD zaF@_n+JJZo_6SJvPJraL1^}DZ4`|7L8vyTtFIyxedkJpTYCLoh9XnDryujYT*nkpc zK_f1TotqD4<*)z)Rxem(!0z*vIN@?z&|(EV?Lbh5(gp;3fOHQ4T&NomR&91~5J2~> zUcjq%IJ{1eI5`_|ZVMpH0Hi3`tTz;LxB+4iFxmkes@r0Zu;Q9_51V4)hF!aG00Jsrgg##Xpo!?57Kz#uf7R2rc7*`Ci z?Z(K)ff6so0Jj@3M*&S3!=TEDsZM}|w|Ssm005_2pdY|Kclzz1qYx<6g7F*oad}1q zdkA=Aegi`iC774ZX@aUev2H!>lxGDnL@3A%5WeBu9YBi#f7T7i#i5cQMC70p01Fy8 zcNcfuzi16t-hf(EsPhe&qKidH1aTXQ%98e~1{gvBZ`=hf`l8;A2Arz8G5>5PJDbVQ zW-@u5bvBb3WYM#k>})2J7a0G4WwMLWg#%(O`B$X_1d?VKu|fRtDB9Ddwh!;AL0@&LbvCiW z$JVv|Z%32r;p6nuvFORcF$?z?`f_m0%70Xc%vZ(+mVW_zV8EP#yXf&!4_s%6mtv}T z=~(#iDqi{+92>_=Kf-MkM4I36wwYX*KW8!gMK0NM_%Cu*hsS@BO9)x`FY*C$HvWse zn`?ysBAeyXHGr-&7yYMX){Lf@e>mNF935T~&*#iycu4GDP5BEKlfxSdr)I*R!l~(s zT3i!rfy^UgEzZxy^B@N__%9e+jZ?!mkWOH`V*Rm=MM+;A%zJnAif2B~r~JS7RP0%ci$R*Nlx#;+{l%$HpcLd(_=q z);Dj)Kd~6Cdv2PWe9}a5)>flOZvL#k=)!R^8~?AxsAycwCA`IUS$u&ans!nLuaoWv z<{nmB;=g2VqaAs(+9RJYb~XRyVzkv4D-ym|8e$>PUAC9HJboHozUhy-xomV^Aa=3P z_};Y1lOE4kCMg5_@Tg-jcDdmkyO+e~3wioI~0$xl5F3n`;R7?q@k2K;mrNv_D+xcfp zW6e1sraZ@fEdeMkpdJ#5#L)b^fpv9b^xLX!HlaSV_2%)hyG>MU$-yZ(STbitBBA=a-e*O(x6s9E03*ft!-0lBC#sr0aiWILSen~ zP{XF?Y1xz}iI_7lR>TQUD%}wipuAni%VDY0{ZmnoZIMz<%FGqK9R8n6NPy6ELK!fJ z?F&YeaUwpHNGYHi#q?yv9Euc;+gsCy0OmCRR$*{4;3KVs4oBD?7$p3xJjaX=LL~ox zy9CwcMF&z+kkNCf&Oz*CUW=X$4?x#f#c0?FWm4-Uf1v5mv11EbivXXqsWn%C4zG#P zkU0wF#!O0i#KW#v24cEV6lg@6E)AGN4@tQob(M#0p;DL{Fei;110N;8*y&rbreRC< z{qQRI4TL25ApwoyZYR_!FD#*ni5HGos`kRGmKu4XArqQjs7WE#Z-@bI$^tweX(vGZ zpiq%(8ySp)B~LrTY0EWFflT2Z&{tz8z2Ri&sNIB=+IlK8y-0(U0H!p5PGOJnf`iI) z$_t)bO1yxQK@W|dX*W2&DK=VjO1(4)B|rFSOYFi6xRaP0$`7b9EgGcqm>4^X=a!LZ zqUj5F>(OR>xWQ^w?F&*7+Wi`lu=ZieS_5IEmxb2VNo|iI_RlESk&7iD;q5JN)U; z7kd$4+_H?XvZ(KuHJDe{ev-1OJgm{Ww7b~d9c9RZTY)J0bldg{js1<-oN^#*vrE6>`X}BFML*cn3?yBV1<}EAuubS9ca^_vL9!45X}c- zn>gWprB~^I;A83mUS#s`FGDT+CVntcEu~dvz7luV%krVelXm`#Es2|W;a93tyj_v7 zMH(SR;AE&@m!Wr2beoB4P9F%gq1uy-O+XBR$h{)EB4Z4UE`kc)h&AJKQL6U|uEbKd zcf8S~LeBjfj1b?=2pcr3isz>k{UGZ?Y3w0>1Y*NR5#~u}Ejtu`ONR|{?^`iD$KNT@ zr{YG4CMR)Y6jH~Hp~xtU8uFn856Z+1DT*GGOnl$Fu?KZbyyCrBLRh8JC4m-Lt~}H* z@jZ%(Qy#5JBc6Ic){he&QTih}owC>zz!ps|ZH)FFiJcPuK~WOp*^A&BO=738m->Mm zL;Q<+kZOtXF-=rU^{%YwW!cQA(Z!Y@##-~jS5$YT{~xFar2nrFdjI2CXA{*@KIiED zNo2r>7NAN-*#P~xRgeyOdRSS7qgga@RjYrZ(=kM z@Ra37UTnyPrWYGh6djYi__l9jcj|cY``^a)3NKQsN$;Vu{;|9XdcV_~Jum1cZDioz zsl-YYbp>(uebiG$fbbW|l%HxkyCw~4_d{&E@VU|*IT1rI|81>DI7vMv7W(;el=v~$ zN8NmskhLN`Nhw`G%Sk`Q2AimkGxFXyvYFBIBDRbU-Evd5IQYM@t(?%F>X{_JaXaRF zgwE7cV%6=%?LWr=UtZmupkz5!t()UkU|0k-7%s}3iuFV<{~BwNK`ov24N;NzrpX(d z?+D%#?6ah5iFCpF1gum_saa$=*LNCRYdaS$mrNa>Vx23EzQj*h!Ft$Tc=|dXc84Sg zX`{J}tA3oXmZ(#{6{U$uik!4Uog(j8p|i9$WI*vNYH4jqQKZ5oY;H0k1;a zQ%wsfOqbv>|DGjU+Er&~^T%Pf?6nw$x+qOe0-46r{~s&V_e{5~Fk1R+h+4h$rZOv@Gz4t4P&@GjT-omI%l9gSm114&K3=f{BF}FYB z!LzjxZ@N|&a&D8E7cA>W#wPw zz*Q{A4Lk6YE7cDCIK{Byz+zUf>Vh`h8<_PB05!!D_~k4tUo%MjE~opuD- z9MtYgt?M;f!>g8erdHoypm}1R-eZ4?PF}gJ4|;i8^+Lh6N^xXmebQ%D6V#&1o3_;Y z1pckDKIut4Rje2OBI}bm_?~&j@q#9e_`!_oc3Hw`r9WwbVy+Jr3b#;CiNlXZ8)jGU zRkt1`jL&S?Zf^BVb;C~R>ABUzg>qGEe)KAW+Hay}kr5TDWtFpBr1_+h9NQx0*(up9 zVDI3Q%T5C@4%Wt1>Aa3>NeFn7I#Hn>ep8~tp-A;}{L>P3Dl9xnQG5FsDP{=S1;wV(BzM*Q?S0Kb5>JyBnEwPABjPf@IS)B*Sc)U zGM5@2I>ZU)55%BnS!NsdfZnUs9?%2$Nkv`C16F)ieMdfbC1%}VX|i8d+7(hKX0fVC zO?Cly1Cf{-+f}jWuJR4XG#S^m=7xNDTZjd{?CW(-&E-ifO{Euy2CP=cp&qM^b`u)v zPzR$1{b1;j8V4sV!B(ODBH?p++U#Iy!)|B*H2&(EN6g0SpE+5mV{~&LG=6AJt?&dp z73n2+)}yPNprWpCT2c!j_;+f;#1*9jnw`{B#mr^6Hw=w`{r)zG6+$shuhpeuEz5SK%*=swwB45_xJVW231_7|CCwUdrUI z(OJqEPF@Kk6xf3yMNv!4ZstAXhQo<}jhge@B+gTB0TB&o>4ICEC9aU&8S(}lPLJPj zgWF~Ji3{$f+DhPdBE}$VuoVHcoDCzhfR;*lNnIMA2_n}9w44Ui>>J11WLalGkBz~K zl0BOnS99q=BRos;9k85KQeJaDWs`qU%nxRWc{62TO4LU8-CXk@{vT`f&w@J3li4TH zo5f~hYKl4jjWzm5K;2a&=+Lb-FYzD4l=O~$ENKe8K)q*;I#6%clm7#n^4Ghlt)+kt ztO7D#>lyoolMMw8`$UJeYM;1ptr86=WwrCyEashS^_A6Mp14h-HzP}+<`jSBT76v& zR8y=kshP=N4>Qu!)m3Q6z2<(Q64*|8 z9yyXrQV+DTY~ynp-B+6z1|R>h(?kPFZb2JyDif%&Mw+G8ev}+qMLO@}e%Mv> z58*D5P|8cldDqe6K>}aj1l4qZv+vSz7dA27uCz!m^@PsUL&ad>FLKmX+$8NG)cUkU zi$?4()?CdAihz#uMn(Cu{nt8+JllUxBBuXSROnshVrltw*62PuHYA zFX5g*hxXK5s%|6q_>-zf{)u|&JdT>F#H8{GcF`@FOycia*9$GzF={TR1aoU9&0<7u zs%+j@GZP>0JX7Nlx=ODh{CGzZcu(J~j4%M{bg%ebl17E8dCHzD^AX7Ra zPl;|xI3QDMwqCK;RC6*Vs(Hqgg7TEUpr+Jzx(iKe)v`4u*OXeo1P&jX>PC~E;+hGR z4Wbcm)Z9q9N6K6?;)eL{8#Vcy(2trc1khsYlakxz8PTNLiwCwvD*va#>3AGYneAi` zM4-TKK)$zXlryPo@lrwo8%~BK9QW}J^ zo^=|7{1NNfq-8z91%+HQR53rUSWlA;`qq;TzY*)f6*ka>uWD96Ucl5T<1y33#CS{_ z)W(y&L1*Q8ns!62JPj#|cCZ}ltUM`n%_4Moa6F@|$WV%DW#1*fbF#+Mo(p024URTN zS$hGg6SKIidHiU5ZU!dnuZHGUl4I+p(kdlQ_Eq2>%WA%Du7qS6flFjFGIZA>7zrVx+KxIx>pv2`5h;^2^ld=n}z#%}U`9h8ozr*Ub`b&Hz zZjZx)A;|nr3+m{KwH3EJD>rj_c84z*a)kgj%HsgGJYFwg83Ck{*Xs${P{ne{w;u?AFSiI#W`G10vIi_y0D^M31Aa$| z!;f)`01V5Hap>F@r#N{|B_KgHFk*m!lQlFV;vNUAwQ(a4Hb#H*#|xX->>hg`yBpm$ zcTt->U%(!80xFud#2x}*yb`a+=JEu<{%jsc5Y_ECkSmVcv}jCrp5YNA8n|^aU_<4G z6I?mKKpE)AWnM|rg^sM8Zb-c5V zM`wlqbH{U{39nb0xLr7ZkJ7yD_LiKr>0~QmzqDKsU(mptyJGp2=kS8~qFfymk&e@s z4s1+T7%4Cq@{j2NqEcKs1O5wJi<4Kx-r)|TlXY3-Z^fr|ME{#i<1TYilHBKN01!GDqK zQlH|#$gPsk@L%N1^w05MvejQ@25 z>iAi*h#QE8Zi*jao8kkQJcTV8TZU#t+N2e%FS{C+)W2!f>DPVb#OWj-*+R;2= zz4y?^IaG&jq_sKIAvq|sZHZ6i)}c*X;1|N#gVVh#HP?L~BQyx9N zNr+Exi?`rRAJQYKxROz2jx^jMfp5tW2P01m-y&YHBVNjxepQdzSs|6tVrWuoZ%hFV zur1V<-x<7;f>$xMd4TdB%qFG%UXt=!(M`x~Z`&2OaHcNwbFRLuBff=U>didG8tQ_E zKN_FNHlKV&?P$|w8cnB)@p)`htV~J{GUy9EDIy0MUgd@dNKm8TRTL4*$SgD|4X<+h z0}{N7Lg3I4fDXKhhSZgvqYSSySDG7z?4S%aFw@g0^->2&8UvNKL?fPxKWJJ(%QGDb zmr+j@e}lhB%)JKeA>#`bO%n9^p7^V#T~u!fJ0QRP0n~GPY?^61{fjCv-7IlO_bUY^ zjId%lKvSx0P{w9qC@F}QcO;!r_90`k&;*nqDL-LbsQu(Fkc)Bv3D<6h^Z$K-d2uQH zfTt}b790rZ@|oYlPtXB_uyX!JLN1>l3FmEOsBP$|zv^86=LghhNZ$g7`Y0=gOlTfJ zYEqy>`{SEhYnxW>OYx^ngYaxKlI%e0X_^}x!-#1`v`kBrM06jBKgXGFp}LbW&gQm? zUStZ;k8vu@f`({hJgc1s#g(mrVw#$QzhxsDSyY>+LGaY8@owmsgG!>sZOPF)GaXeF zN=gRJa+BtlvNE=X+REyH#Ef2jt@cuW^F|W5G=sx3ozZ02m&YVh&6u|`lN9;(*5pdK zFE3JpqHteKhp6XdO(g-pyaZjg85A@r#8oHaBY0B)Pbua4I64=mwNlht zzU9c$r~QCBD`i`#{Gg~kmaXgvWs)i>#1dsZv)*{JCnO|VYTK#M7HZH+xGyUy4rwn~ zPd%r+VC5zW_(kcun?~2P8+`IzoCbbT2vdkLv~+0Tm*#B=rgO8=y9^BhC@a#8C7(v?(w3s9RiXwUY4Ggm2#~K>a9qQxq@^9kh%hB-QnFvG zM)hqHyG+&e4`dU)ntno7merf3M9j3siJ0<;6zU8+|1*z3b*y?*U?hc{WR~fwZTs*n zwHJMR;3s0#a0#M2n$|vXH~&6s)bFswl2LQdqq+_W8pdFctXJ)K&Mc>@NU9h%b*tBq zq6n@combXM+@6>Coik7!o&%-DYhEQYU{PE)><~JwMg(aOylTI zi5TvnpAa#O`y1N+W$Zn+t;#x6m_Mur($;y}I@&BjO_*w8ZdrEP`?xx9W|A zo{5#{NY?~8J|c%a=1XP?ohc^LW}G4|+J;>~3Jlc5>I`XiNyhU?uf#^q^dQw#IePXJJXl{CP5`J1nJW?)5kOc z-dA7(43m^O0>Mc-Zj;1G_;?wOcO{mwEmg|@y9OU5LS!Udn$t|ZJi~@2g0GUlg`w>bk=bG zN=Tw|tszCxD=fzi=UU$ub*>#taZP>7aNQ+|QygEmMg1YIlF;6ewKhZQz%2grvcv?Q zPi|3vM6Qs$rzUy)^2AY&Uj>t5%d{yZAEijJL_1`6EB$6T!dDcjPZy@5F@qD=Q_>$x z+BWT0$`ygKd!d1*GBb5iR70c&`Cg+n93!o|GVzMeF+g}oVw>r8Y$&OfK zZHDQva#9H^)G?MOjoAL`L@&;Coa#@CBj3_bNc26v1^qrW5!Gnh=s{|ZskZ%xCnmCO zRYB($St0bi#EwOYdwEkH(_wvCA)44P;x%<)9^-?~JTzlO;sD#8BoDVn(^Df8{n@7Y zOcb@amI^X?;#Z>*fCCK6a{DBAcBTcRhI0XsW?#H)-P)$h#w4ynC+?Zu9OaLh-CKTgE&u+5`XMM! z-PeIJiCX?km@9jaMTtON(iCJ9p#e4X{DbO``M1kj$+)DhA!Bvyp@P3g>r!Q6Jx@y` zRG`d5`|e~;U)ya}%urE?c=x!(D;(!STriRG8JjY^U6zYo>I6^%{E5qXZU`o$FH$HJ z{nQjQgNa=n-020143q$c?D8~OS^=sIV8M*pP^8n6_S6?_?Y2s;@qem>tIkvjHEJbP zX)9q!X<{r7Zw`%>aE&aRH7O-@AD?KJ#XX|0gfS`#w6AR81>&Ab2`kS%(|{&Q)3j+# zoZMgDkutGWk|xYE=F^&}`YSXs{Y*9Sjan05Yipu5y6zjE7ar0NP;+IuG<}HplUY36 zZb@kt-{B$sI22Wr)JV&|j3TH?dqdoUIRl>9DBF`zfZWoHr4Gzu_QpiC1OJ18 zHwZF*Op4^uXA{q~=NhAm2OtA2nli^lebuZahSD@u+97Z_qK+1iJfzOd`ycv~4nghs zS<_S!>6^#alQVWI%=t9^bFG}9;@@o z#8sx3n8$cW^bC6LWFpSCR|UimG{(~2ztFPIw3d%pbSWty0-zRv=VN!vD*bI3!Y~xV zS9q4%0r5Eer0ieTe3uvoS4Oy&$<(C}p~=Gxt-O8tcAI+pa(tUkKs4k**}hOf6owQ< zUt+E^fhZL2`;qylkFVV<1N1u?2mAz`rQc3SKonxzpAvJ<<*vuwT#Sx>Tb8RCvwo1Z zIQroG!BwtfDW+<;NthB22r4^N=MRF&VMt;do_RHen?RCqf!5(9clKQ(KNX&ixV+f##I?5F^p1^9W^D*S=ETJV8_+7*%apa9G8J<6^Yg>#cy974 zbYAOZ6PAh`1dnKw>|<(8Q;~yUpgPbx>0=4VFq5`qXQQ#XNgL{&n6%uEbnMmY`0X~yF>J@G=z9+(m$coJB5$oOOkRnaT$mhZ8cFx8dMQ6ugPxKwwZznv zaN29iSgb4(QwT8F1eDVunZ8CR+=b_&9Z>IppFp+p3R7&Kya~QS#l)!vW|XCs1L~yh zYGb@(`(G4LD>2hL0hKT>vdr&d8K48|4vBenK)tLWxjdWuC+P-_m>6?X2zH9E*UCyf zgw_=%84Nv+{Mbs+F#*78VH`&2%NV0e6nhOU% zrOZVMs_3$=$wPeS9r_zpQJ#%iqBo;O4_6ICA9PEe-QpWJ7u+ALR$_(BG>* zpQg}@r+GVYn(N1(yF+cl+zum^{HCpvGl{3$S)H6_JRRFRc^7AziItMF2omUi=#%Vc ziZGAyif$%K^i5vIwkMJFhrY={rp0u797&=55=(NXM*G|5CHoL(T9 zjMUMt@62>BdOb4~Ie zS%mJdMXUo(i4~$Q~ z*PLGm%FufcxhF+Jq^j`}piI&QA9{quGv;-qfg*0vR>YZvvpeLeG0Vf#J_z_2)~>lQ;3EH|W`rXoaJX>3#Y!S@*s12x?c6w6g>d4hzxTilo={HBCU)eL#>iFWHeL zNRNPuDwO!v9M1wwij<=`7Y#hnuMJBEuL=v%m6gffrVDmbW}F)5mCB@zB_QMU`A@Pj zvPY8^Qx}>_W=Gr;O;&L%nQFQDA4<+?-yxg*S7XV+oaqv}TO~CNW*+0za0z;&Cb^Dn zPo}sbp6p?|fo@OY{UxYtBH4*;uZs6yYRruYG2;^oHB(oS!UZF&G&aMmv(y zQugquIfI(vIckUeneY?zA&8S}lh<(^RG0#~RE%H3(#bJCvQxbTn7Q*Wit)TQKBdC< z3u(T|naDp_2Iy7nK8bO4od14N^7W?Nhol>_iq(wuf(#gTbf;dde}5;5^=|>GMrYYiQ0v<4Vl!i_UAm@{13zI?K`e%wb#?NhEZ)9LKjdF4 zPsbv4U`7Y#MJ`9@jYW;o5meP~Sxt>uymehNH;W&%OFs+Trs_pJet*)G#b3Kie_4B1 znnZ6|+k2O^ti5oT+NN`M8R@767E`8<&Lj^Mu}V74W$leylC3yX4L!VSn>?H9H#J2n zwou=yXvP+F%hqJVw4NRyb*^2omU@~tlk~p28u{+LzLhxnq2vJ0w4G{-NOb*RTXLxB zG3GHuSAP30=~S8_P=(95%o003*kVSwWLwBFFFnJBERZ1y8yJ3xKce!2_wY2e1LoWC zQ_2gvp)YqNU*><3s8dn%dzM&^n#VFM?Co7TQPYqK&BIhfilP+;QIoLWZ8sYPy6o0v zzZ3if?5o4(r@ND}X8fStWO=N)@n0|Na3DJNy3WS`Qv6f@Ha+kV>X6xKw~;#*;0b5C zWA+_W$KSm~?(3^zN}Du$Y13FmnHcb=6EcakW~!t$O2)pcB1sWm=_4nD|JY#VjBy;mdZb z!{a@M`k1J#k2496U$6?1Je^u58=HI~;y$UlK-}=JBLYi?-C1&`C(kGn1X02wC}IL(qOu}c!jdJq zGPAQVI}{=kL?t7bS_K4DFrXw!f+(2C*{oOJsp_8T>YnZ%7T)##|NHR!?%tuhPSvTC z>s0kAmdm31C&*6hf-=zJZy=%DNbwHGrdg=Tv00ZjfbKdDv8hX={f^_aPAJ=}5NxiA z;DE7JQQPlkJziDYX>9mz)@1GxdbqgLsQMuFG@*CGitlG-vfM!Go#-V_|2XSzZkXaR zp65U)4hP&)v?nom_KPc;aZ~B`BnBUdhMb)Bys|wZrt{RSuIRlJa*7+eK5}YSBW2V0 z3dF%J)9CuW)3feXwpaNpvqVDW)V2JTvW41TIhEzlM1K`1Y{2e>Z~g~ARVT6iwF6_R z?XNzDSF*nvaBkKK_Jjx>_gCL5fhB*n`z^J~fBcq?zcQSJroS?T$Ze0Ot!IH@`b>4? zNe{`1`b{WnX(XtLOe zNqCqIl_|{>V=(O_hR>@Z4yA|gEycVfG6vsIrWs4Dj)M^jYh-sOhRu^zg*vwDZQsaL4G!36FDo-^gR^AwdkD6_6@> zzLml#A#wPdAasn)FD0z46uOJ8@Fz8f^r>jQ%#ejkdz%tdY|_OKrvDVk2TxjHe`JQ* zb5%9LNOKTXk|`>OF3owk21gGpo@K!YO3>FeLh(<0L2}Dk!x1k3V zcP<5#StInRvMsUexC9N?g9ac;CFndi zHJyq`r0Nwh%JHgKuH*CA{FH(+T5B^2Ik=u)Zk#AGJz`w{*w0-y&q2GS|iv)z} z2k_4a-y+4WGB8CzU*I@yaX}Vi652HhZOLFyzfD$IRDCPob=9}ZMw9m(E|0dDLpN7G zfrlq<3IBqz)s?Q44aAt^4-BMV=}H?!taSC#kcl-=S8M2TF7q9EWbvc)i=D@muSz|I z_awym<82|w78=8H^{AJK)K`%)DKDPDsYEv+XAN-4DAw{0`e%7TH_k@CCg!bubP?Rj zaBIkgc7Mv2t1EX{L8C)bGU`QF=mV|?-4RjzIquM1Tp#*zLh+m48gei_(12S*V29`y zSZgcGLsk@r?27TZquO0mOPLg;zLem!1?-5#mKDlZrmjs@a{Peacp<$y5<1^Sa?=aPh19No=A;jk2v&%@k#e zxG=|crzU6{UBRl#yOctxq`RJo<}Gv+@|o}RcZb$7Tn_ylFMEg}G*vvsf{=qUx`i4m zn-dD(rqT3dx6u5$g*P!b;r}KSOZU5L4ux8GqsX3vdgg|*G)C#KF-qeez(+-=m_rn` z8zfJiP+O{#HTqp*9I2WyGNT$LgNk*sn)VER$*?ouMSHg82PvIzrUd{+i`YL0q9yyI z4Vw770FTH~KMmf>XY-{xSucpVQKfKX+?-n7fJBH6nyMS9F;LzgZ=<@sLo2y=Xo6yM zHuv*Nl3_>MWj6u4gCH2`VsNc)63EXa~b8!W~E*5RV9a22TvbG!j z-6!;rvOQ)kMed#=4d}s1(Gcc7)bpW`9ZeYvHI-cthN?5_C*>IQ>cb(9z4)$JUq`0v zy~%xQDcjbE;T`lK)$Fg)FH|LsZ6d-;t8lI% z4Ni{QRNA0kftTGNCPB3eC>YK_UWQY$qz!?NdP1*M(~-01yrDO^hcT{Flt6qnma}RP zP)}u22pfGNmf;?!UJ_qTsq|!#M@smFSW*U5*+OkVXDE0yrD%C~cDjm3Pt!zJeLyh@ z-Vq*=%J}6T3q8j!RI=!K8k(?ZW)h1gZO}=Q7~(E-=c;F0q?m2$FGfDzpccw))P&=w z(khw2qBWgTjP3hZP`fnr5xSTks)5?}TGh~HlCPUjTtt`1{_QT_9!m;0f zal`?^aW&ZE8%QF)em1t|Qiut^NJKkNl+CY2TA9$04olmhh22(h<;1y}dA={|&}&sa zcQSR_q$W)QJUf{@ad43~=9gDBM$_(C+VX!g`jo!o8nKr*kllwnwdk}+Nhg&Qy`du% z_G=;^`IPWOPF#I3MIQ$oouv`ri(~Ge_iS%JNs?RLRu4-AFgo(`<)%Su& zK!ugx3vQFFP0}~B8rDV*N5q(dIxnr!8e)pL3akN3lbns!u{hM;kpp!Y5lXs?!@7}} zSye_Bnfp95DLY`}d7Ig1wFUh)xJbbbR}GlGa9M)a7j*MZNY~(PI#HvRSTwpt8$N5Oy+YRKMeeS#mwNCnkHzQmIh}s1baQUXRzyX(P3qlxS?3Rn z~KE339$)Z@-MZSLr7&TBDepMp78ZHuU{wAui=%I{^}o8)jW9{n&T z^!@D6VfOw_`kL{Bh|9eqxJkGp8fwe1!A<&_aYhM&ek%^W%Z>tsl!sSk;$MyfC^Unb z%{`mc-^sc+>6j)5;HhDnN}?KHE2uB3##M)@zbe915|pn4p`tb~xiuI?$sVe?v{IW( zBcBVMWB>`{?Rtu>rNZn{)&CJsVHFzEb((B0^V1)+ZIIgxGD zp}+*&aw{cz(Bs?oP2y>@*EXqFb}Kg#82b1(RRT%FKdZetwRqQPEqn9aTByUKP(D}d zJxVUf2{L&i+0sOm9RVXtW)^cBD$8Aw(mS}aEaOB|isk)V&W3T(5dbs1gOP~?Yl6zY z7EXv&PsW<)1=y)WgQQu2B!8i(l3=aL}HQCihO1Z7|COjcA;Uzt$ zbt+GztTIcZsrgc7Nq9Nbm3a>LlC=LS^UWdgZLZh{6yA9y^cu4gL($u>GC&(Oz^ltb zJls400Ahg`YWG!!>KKQ@RHfo4%0NZm69s)z5-Ua%Al+hL8XQqe`c-qIiv~AtSr6iO zF2N0aNSHfqz>X7fcC0_Ts0q^sty~>?uR^P*29Fr_R3MNaXu>x|FRTeYg%+$1RnUDs z1xh32ECB(mh1NegzAKlunUZ%RvKNx*bmIC%mio|IgQS!>=!=PTEgsdnS#7I%m=<)V zj$3*?xC0`4zt0a*iPOvnZ7#3dZSgvNem7jF7Bu_d7C14ox29@^!xpAHp{4q4wk)1L zNj$r3){9*_1L_dFl$RrW9t~R>s-u)jD!y-t85YlXrTqLxBZA3&R6+_f;~EJ*K8fIC zMS`n?d-$xd8Y+4-^ez*_q%trVPfA$L5j!#oJKutxDfrAAODo!)vBJ?n%T+?y1ZwVuCG>}%GF$TFK!ns{Wk6L-8QDz28tSyhSYy77(&kGEf}7mOl#CHQ+*Lc% z$>{i)E}6pe4WUvDcbdjVMRYLMv7FYZ&3zSrM6HuM&)A|cqjYR zKi&)NVof4=+(Ol*p^1emyG89(88qy5INqe4i#9Ym*Wg)Wc-~}pY%13kBNx|3Oy?|F z$`(p=zKd={KKhyWK8QB=ApKkg8!w)#fYrGcMPq(yKSh;d(rArMFfvVBRTp*G7K-X+ z+lRhA)`3jhLyvNkX~g4OJJlypPi20mqa!m`)fUQr6pAujA=QK=-W$l&dQGC1vKydu zl2j^Ns3N7@w>6}4^PU&#v#V56xf~;-6Y0GS?}$`lS1X+UG}N#R`=L@Sx6DtOB1)#8n9xW|1S@OD%ND3 zTgjFxC35FAAPC=0h*bK&OB_v;iVsVbs%T13MwGJJ$`)~n147}zJ{K;gy%c(;y7mrN zI$B&~wFAw#9D162B8i4Qx8Gepi+U=HbG-A%(bliVWD3PsLffIjJk?Y_kugQ_6rXh% zyA{>=1$IXj?a48cg};OrqMaXz+v$lDB%xnJV=++rZ=sz^AiSkYkvm=j@NsHLieywQ zt!$wt*-&MHGIA2RJub_(X{*xjyo(3Y(QpCY$r|49&(PR(_J9Z~gbatpAqWTGcah3A=cBt{ae$62vP`MssXtGSH#fevvem9W>P zsi!iX($S?(%j*cwmI zH(SCxnVau(;R@y1?jn4gn_Xyd!cF`8YHqfCUuVPAa0)UbDG@e=$lalww9ftowTK<{ zzIuf-B0gos7m#SnQ_odLwcCd)qoUg3Thm--Co(?~&O~);hjY>#RtIWdJN&HnpF$&8O$>WJ$`36$FMT!E_O-tm<5;~X#*GT3TAE-69=?9XLQfjQHNq8Q6=Lh;qmnKzKyF-LG zp<@q?Z-e+|;oH&V0pY1^pAYm^rmPzFQnT<#HVC-s3H&Vy2t9#s_kmjAn|`2^@oxku zYjC0@i{ihOtVmi77;8yYWyQkOhW3Rdw$0aOThHF%BK9oKTKCiNdJ)NkCvG-Ie4$j>agRTd9y9xwz>TdtJCgt`gn_%cLywDQZHpIVyEhV zsJj=L>yXH7!pKqiW(x1RD5nMZJk@@E`iD9yQVM3Jp(0nmBbm!fIF-~`Q8?eHrgcw| z*6MT~u~maU)VEa~BwPlH@JY66!iV~{>Mk`bu~lKC^&MT0}`z=0z*u(Ijh?0Exm@v8@h zXt1xMx5N}lAoz&hI}!u_Z6Ibt5+mt}*+I3KZB>Zbf626tDUoTVRukrJ>e!^!HhtS_ zcG!8V#U6BmQMJJ#D6fmR2CPn>)nav7d~Ta)TT`|owzVsatQP}LmdJe9HoX|I6F@6t zz*gII%xZI((Dj+sd1J+evM<;TVu9 zh4%Ce8*FU7Bq7giCn^T4Q^bKxRSch0kyu`Vu2jS0SP(9J2PnEAu?(<20iegdzmvFk zQo+6dlD&HCTJ6{S5l7aw%`>P=|V zdW3KIz@a1C7RNTGi60T6#SOyaO{qZ1LY5hZX`fW6TV}v}5(5Tr*E3{Kz=V{B?EdXK zhU{LL>Gc`1w8B!8^_P&xMCA4QpN@~w4f23BQiXUmFB1ojzEg0^e1}iBX zDcaNQW|tTw_6tIgsD3QQhj3Zp@!sM7n)~zLN>gnjjwodezkys}ytC#gcOZm^cpyc1 zI9a>F-Eg!8Mk9B7WTVA1CfCp$_pEwck}K4lgp?-Kd55DzIOh=`lD(60`F`<%L)1#s83CGCnRQMKh}>KO$i7+ z6*!Wl0^9UB^1e1lN@8OMO{;l4!;OLB)J3|Qw*Kqy#8&91vRJO0sU&D0HHj*tHZ z3)Z$o7L3CA6-|yT6)CE1#XP}a&|(hwE%42c*XD5rytbgrVzD>_Hmft>kgQm$R%D^O z8R!iQUCl$Qoh5p2#299=a4oIsYm;{pL47Vt9kq(*tUF5-T>vP;HPYOL5hX>|P#CKq)kW z@{jB%YJYxKk29yVIa3m2)-{fgxF1zQW9GXmV@6GGz$fZ}v7bnOb-2Ih+3@4c*c2=r zC?P*8&caQz!n>JgQ!s9b8me?S+=H2)f^nk~PRduWo~aaMa`FdX7{j*sRC!jUDaKRhtVknxN6w0nZ|keh3*U({ z=7k?+?-cuppBK4wSn=FX zr{}{DbE9c)#n1g@kEEW;RDxgRJlZ@gqE&>Z3&IaE+;plbIsZeQZk;djl2e(HH z!1Ypihz7vEm%=vgJ2k+~cy@7(nbHCs?>4*|n*MTljIswZ?Vr`aEKK{&SHgZ}Tb0Tz z&>*k2%Fql*=I7ERmFdCO*`d^ynmc4Twc)P@?})Z^SP}k&wTqB(9kI}WL`SlAsLxbY z+aX$4?Gti_$ZINzAw(`*(TOeWm#e~QEY}yK7e5C=*uP`NA{XaZJjO>J`|dys)`n** z0f!x>CAg84M~hQG!%;jDKN~D z;hk)}?-s%lxF=%D@^IpNroU-mB9f<*MDklmFzy~%2hvtk8swW=$hROG%9bpR)GR*)KWRYzS{&4tS)_=0#7&Agcj1Bp|6T`))#&_JO5JD%tTL5R8PM zx~B7rl_YF13$BsO-IK`NMI^I&&DYMcx*A$}IQ$G7_*_4ORZqgmD|SLMSme-RCYt`7Yn7;BDAd9hMzFS03#mG5e@QfPKO+?Qbw7_jkH3G*)` zHVWmw3vXxG69(+MLk)8G58*o)_E!Ubb&G@O^J{k!zo392Fjx7VEVYZGK~uE{p-K&F zw5Dv=eWk@!)f*>aG0=D?B@c;JRRij&9KOIWvZ{Ir-;|b#MxF|P%-N}y>W?ZOkqDve z4KzAQWRxx9;Zl4&k5Xjh%VqA}sSN$^!N};uTHWED9BVBqUSemT5W(Z||Kl_?3ATFg zRIiaCb$kenUQ(=OI04OA%MclRYSKg&|ynp=*L>N_4B6I{am1Th1!{p)$N6Fuw4uvxq1}ghy6l(9W zPml!TAramr9O+nio?)Iud%h2A7u%SrhUn0_Fpps-U&M?^x35j z@!Rjx3Gp>#>Y63+`H~WUO%m}}ip0~9z+T-7??B5w0_pqUDx`0VD1B6^ww1fY3<#48 zvfBc6;POqBpSlV%P$@!<)|4W?gqRaAW}+u@3%i<(J=#N(N2@cX*unjdrxnkWBs|(L z)KgjM;1}^|EAa(uRfG?E6xvxXeK*yC>Pz<3lFZQEA@UXcv|fc>8Llb~OOiBj$B=`o zOFur|XlxHC+8esBaHF!lDpj#oV=SUlN$!)zCV6siD8)&>>!#CgrTgrFvD9&&ZQ)&9 zo135=$L7vv`-$Lj_xUglP26Ya-D>yQ7VT+QsNp^hCm_2|YI$Y|k^3H=a`N&_o_bg{ z^=E11RfcS)IQ4`s9iI=iQcS{w4;P|RX!55oR2BYwv@lkRU9nq#f%TEZ%U57r?JJCz z?iMe+iQv)H7v9XobW=r#)NbiCjD1|>uW8A(g_5-tq&uo2-C+aL9TZ8YT677&1q=J6 zvA^%uk3nvcuGRQO?7$@K%`5ykjVXs_`w9*AM{BFWDi0}alLitBVB!X;<_fEE9E^}z zvx3SMkv;4;Niu!Vm^b^hc~g=FSJ^mvqEQ#spE9Gyx?mv}wxMXe^jB1>!Wy#Gs!*npq8TxKi2?gJf^TM_qZ0omNA9XlmOVQQClreYBmX>B^OBS z9$WYoH(AjsRMu8a%G>Aq@aBoB3J*GshQtlmIH5>()T-T5N7R zt^377OB*myB*IsixL}KW4`ZogayP)cgvp&-Zeu!{e0Q00Xv?I+hfu3!kqYS5Nrj`B z!=%Hw5k5%wM~v_Xd(?Xv8}{fVj1A@J8mw>^qua)S7;L${N(Yp_SDzZC;2lsyZH0SJ zEqt^r+i0)8>AhECX?++>+w_|D64P6q!$YV|Z>haW@eXBq8I19DS>A4x#2Hv#OsT)jndsVp!0`u(+8f~%;oMH)M5ufF+>-ySwX?8SsuZ(rL9nZ`%TpcXe5zKbT$ zFWfAwiWUA2cRTFWUlzV1%`MT*u}|055Dv^P%x8qP&lN6YSOkpI`)=d41hig!K2&5J z+jp;8#(Nubt(P{}N@A0Xm24|vNVW-UhE&~VhbX(6by?o0Mv03VQ3I*E%@Gk+vx3Za z4OkMYqArUHKdx|wq5)mq<_h(ks%~>;ue!R;ryBiBxRL5M>0c0?)Wq#G4Op?dP30F0 zE2Xp5zff1V*{uN~jYg{5G!{qGq~aMpSdnW~;>^$j=3Yq`6KAzn6^`UOenDw|e3?4FXSGifE zgI#N&gD2D-u)V%OJ=Yd?R062n-JcR=lxV}SN%E|05qDWIMY4WkG5{tQRT?&~CJSLV ziL=+`jc>rt`9f*oBN$B`e-{#GOiWf2^xe9`D7#7ok9)V}G&J#U#b2m3KLnzqxgBaa z1KGP#c_KrI+;Yk}r_K}Y2N6}KNcM^|PWUuAPjuuBSf%g(v#>FDhMu!dj_4%xtUMjQ z_lqR2MXk~`CZSJoZ56Ln8bkr5R<7wj4Mj6GqMphk6_>}F8RQ}zA>*CG)ePsP+Nux!)Xos=8qocT2Y=dcfJ7B{ zCk;zt%fTlD^USB+swDQucDJFEv90K7{LQ zNA6SV+c1o$j=l|scc8YSz6n2UDfBUHScH!&+_N+|QMgh2)CxCvpN_&APC-^UYEf?p zk=qJSI(bnqPkxhX^6%2vt5i=AC!bI~X;D9VTVa!Q_RD?x;iOYy;Q<&-JDmJtpBPSV z#zUyXNnu}-Vp8Gc8yMs33MY9=!cvf{!hWT!l-sW_E9vkqE-O?rH+^?u4VG=XUq6x@ z8OKNLz$7f)TNq;5Tlecnjg!xYW75+I6D5x#Vq_hw4|ttql9VmtRwX{-OISOlkoFZ|6&y9t48~UIjVFb) zZ;7y)VdEMNSTUq+{7vD`3frk^(jo0m>NyqCZr`sCY1eD?PvqW&NJ#sw0dB8rzzWBY z7tX27Uf!>cW(AGL(m*7dWe?~R@OM4f5;BY_3k;KEHZY?-*qj4OlaO^l7ALRes^ihP<6F_OL7}pxaG`8;^P$3qI_LE@=4245 zX|z^EYM%ABDro6{3Lnchwmu8QnC|w!3wx#r)M|=$>hRx%cXMy!xyOxW+)ib`Nj;T? zDQ-1tqDn{GRYB`o-(OmI?VrN#EVrF%pA@W>6@xXpPZF%5K`%@yiyHng>lReRMal>( z*vLx^w~y|M#BTYeBHg*K6pwN2w(kJSDIF0s0Gy|0b>+@$0jw+&`A!L-%5&D$LY8b5 z)y#;rVz@E~DRQZbT4!s(5^YP;ahep#+);~xqdZ+Rj7o9M%F1$u<~~R<_m12^ z8hcfk7!)U;P*eC%@L9UG|a=l|fuD3*Tsj`m3(z=oS((Ivw`eEWU37`F92PR=j{YYjR_S8ZB zFmbLLq-C?nfYR*mz!bfV;)(=_B21)CTkHiXtvUBLCP{qXGGxf>+6*a4yf{J05mC{p z)ReK%ZzwCKrW#oyUXDLRiAUTJH)u&cm9-syk$`b4)|w>iVhr;UhLJ+PyAJ6`ET2hJ zQ}#w+J;T?uWgie>HABAL8n9x>SH&JVT;VZ#QmEH_K&PkWbV&59qZAlJab4L z@$J*-o|ro+;+txK+5rt%F^PHJ8F{iC8wINYw;oe9qYrC9NTZRkZ>a$h|IvdjA=A>! z0pS&4Uo$kg6S#!;4<%eer9QDvEl2q9vP@$h8MD8uhDeHuOlocrbr8?MUza%qG_yIBO>m8Yib_R}= zK?}P?+-QGqI8;*`8pbh3bO1Vrt8=*MN%XkY}1&SI{v$AGSn<78M-8qp|dU- z?#_+0LmlS=1^QnF1^OmYp!2^$fqEsSKsbp4&+1a(LQkN;%v_+r(yO4r;v@<@`)^R7 zc}Xd-Cy4?(btteMwdw_vKXDb4|2}E*JO7Qz+e$k5s)yBfpz>ioJ8=7h!2ZA6!WytS zv`J+Gnn2IW&nYS+=H7_vh!2&rzY0S@1q&LjsfFO}<-}{|yFDEF57!4{8;>Q)hk5P1 zu`%4E^kax2+RXJml!0#V8+nZF14j;ykEx}ER3*CaC?~Gel!$=ONQ!HeE#h>OjD7Ci z4s{t+7& zQ%$@hzJc8|hk7b=H;!eGa>(;+G*kG#f21PIEv4G3SFk-Ly3qZJ+YOVvku40jo`xk$ z)&V4e{07~|lJ4fUrFc&bEI)TPnct-+_VWC+~g^dFvEf}`^5fZ1wBaMtB z6gY`AemYDd4eDc^ItL}ZCa1?qa`&XwZwM?LnE2^o!QE})$hI<8mWTPhAH}LH4J*~LqE$9 zh7OB7{r?$kP|ppM8nO=@Aqx@BbAE#)$?lDqha%E92V0wsZ%rlVdf`{M*2udZlV80m zw;wTDm0K`3<*Vk-C%op5agQAK@D^JYX^n z9MPZrbKr;(PX)?ZZ7!S31pi_2vAQi5{9F33_i$)n=PgbiKZwg${4M-HX<&6*9pqVD z$kYv-)^=9$8E)ZpxWwk-BhrP7ciZA!Sb4LVAS88z8z4{Za8=ZAY~<$u^-ONP_L-p8 z+{&8lvLpK0krk3$yd-kcgtq2KI+Gdqm6_LXjr?I_0j2Z z5!e44bE%H_x#KwY?IZe0t2fk~oG>9${r}IhJ8Wz3DwDQJD)~RMCVfPEbG_miD4t$C zrFcTI7`c87enc;ixFx|wMIMoIBTI-INy`f#QD;4-8~Tu^wS7oQ5{WM=ok&u^Z5+bv zC?_ToKbsPHl>3LqCXq<|i+U=@Uhs<~68GR3C@E4jhB=5~q(ox1uk;g%UrAF__C{by zBC(MOtC>hVrU9Ec4rxOBr$v@maC{|uaC!r|E%lt*Kz4kkPA7h^F$f9cq;%rF1_=JB z0V}2xC(euvNoT!Zsndz4H6WzXNIG%20V&hVi(;Nc$`Z1!VtF9HGMzYgHiWvfze;2i zNvK|RDgtmE;GlW|6A{O`p?x?Io>a!+|jD?Om9b-If z3$RglRzVNWk35xPWxhwuAIyC|lIj~mSi@H;li3m>Xv(#tClNP%rZ&`5S(+t5%C(e7 zX6Lv}Veo>;8HUTH+NzTPHi-;$e_|5ghlP>j4EG2PE1o%A9BIq>6pwKd;E|&!v?MY{ z1Hk+uY;-@R0U#WDG15gfglhfo&_ItUXp(85Cy-2#HcCAqo6mJtf^ArERB0QY!+7f0 zhPm)AVH<>DuSB8@`=$sVHx94S;KVpAJgPPhbC2p62g51I#(_!!7((QB!IRcb0U$hi zv|vsoE0F;BmPTD=Bfb%5p0E*80>HWoCjjnQ7s(bA0L}0(k^oq+4iW%u)+iS37xA;2 z>#1k8(8e{exF1A6tBG!23+SCUzIH2CdEb@auWIP_M2eAP;Q;1-HDLx%_2 zmXj6+|0V`DZe=Fh>udehbVOo650PRfRQH`oXOy!6=HYoKQun`4qv7pV)RP2LYfU*ArmUehAQuALFp^A!y z;BYWCdJDl<668`W1gX8=ZeJ5q!#clKyQJ1%8`+r_Sk;s5Oi31k&nOK|3BC7vrT2zU zdYYns??)Q4t5rs6g@I9eg)&M_&=Vg-V(c~%9Go{(XJ@zaG%)eqYm*4|%GcNDyQ#q5 z*mu9HoO0^G{sM@GGO#}@PB`JTGx1iWirDrV&e9dN9)g4sv<1@Eb>GtZUEI5k?qf$ z-HQitkJFD6+n=V|^X_8@e1kR(jy<9WIl%~0=rc67oY4SnK0G#no1+POWO%GI9&~oy zX&tDuL4@AmQz zo5$nu+jzg#WwW^g9<$GD_t^rxPZ;*&gdwG}EoPe~=yX|JR-4D>w_DxrV1W0+1*UGN z*X&9bTK+YzdiL3 zV@ff$6+PLosC&w>nRkkK)Z@q58QFZm9pr<4D<6cpSnV(|p9QcCI?O&kXbB3Qu2YAU z%5nw#9*4yOIKo{0K9|Su=RI&cw9_8+`@O>K%~Q89*%kl`Is$$t@37lkW|!CHv-{i* zyTj%Vy4(&_snzVNLeZyFS29_~gQE3s7n!q-$Mm8pBMNxb_QLFD*=|4YHp6vbK_0FJ zb9$X_x6ADF*m)Q4vRJJSVc5*szz>(#VfF;wKtLOy=L@>5u7J}8sKSL1_5d%Uw{Fku zl}xtP=dqf7HjC5abJ%=Ai`(LGn4NIx4HTZV`CY>Cv$Hod*~X)q(URDBKIN!n7CnEP z-H5ll&8^(#fg@Xw=vQyTgchcH9=|oYsa0r#rj% zPa%{(W$P3q^VI9t0)1aNp_(bhtjwsx!Rbx2oeq1zidDz!@z@-W0BDfg!aD*^zt3TI zc!VWxqGF(3UMK8Y6oq!*#ZuyEr_<(no&(4!kJ~U zK$D=;>#_%YHk;e&0mgg0AQnEK)$KyF|A+5WK1bW7A4eVJaW*3E`c1QTSgXD zLNj_5nX=$^czZBt2k8pfZ5FrLed;D%Qn%!kiRbh8tLEln!J@Crub_RSF zn1{vea@g#Cvp*1k+g0pv_t?&&s>0&;r>|k^Sk2C$-EQ|lJy)|Ct{b(Rd5^crz2>y_^lp?*>3TG`2o)WzE3#5VD=&=+vSI= z82x^q-4k@$z#4fyfq*OMG5f)oxp;@*d3Nzx#*|`2FB+d$)YFt=L>HFK)~NOqpk#iB zH{f^qeE}Qr!|M*XT%bly519IZ+u=8h&USZTYTr^>L9;aoFToH5z?KI*KA*?wwSzOT zdHgOr%5lu7Axs`qu$-w2_R``DTAe{N^l1-zeRi-&;1`{C@EvIO&c$&>OEJ2WxB`>Q zcw}2b(fI5Dh@HoU?YIj}xz*`%c|pUx5IqE7hM}N% zkLvV`PA$c-XiBTkC8y>BE(RDuc`XfM@nUb ztpuMO@Ph`qZ7?J7N?-r=xWebB1_ zy}rkQ9vO}u6tykIus%`SF7}zzC>xIC1i{`p><|lpX}5de)@v&kPrCzV=tdoSPn0H; z1$6fM{Jb6FtspQG!VM2xLu+=safA{OE*)D8fw0|gF@w-s!7TV}Zs4jj2p7}3Ebs`} z?iN5NVHzn$b&2t#@qm8RvuCt>O*7wU(8$|({#KrE(f26}&pVxFr>m7&@@!V8H2^qy zEnttqID)RZY*vTWAAq2!gc3wl6nf*wgEvz%5i6J|aDQVKB_#Qm_QgatQ5@>VYd?Z@AkUR5wnoxK`n z0#?Tfyb6FNbon3x1cL#L16}p=0k1G+I?*`eLG7s0=+)+I!!hkZmDqR(YW{vvgBA{+ zTCKS)fTa^+S6H_|0E^wL&1*FSAw8f+!FUkmflCW~c0K^h6I;OJg{X`7f;f52u$m4M zlE;+{UK?@8sZ<+7nY7sb%GMrZdIhkO^W0*Z z*A8)y+2-JR;3ObzcYFO1x50_s0TZf9N|s`H4^c8xiji%o(z+rSh$ZaaxL_o3$~Fgh zU|8btE|5Tb!0EQS#Wg^d4Q2|eXLFn3)<{^)x$GdwW{_nZssz!V?U)NH&qgIU^a9*_)(F+s8HK?vymwg6ZQZvYJ)KeeX7 zzc3YoVDPmNgYe*r1JDrW>%_&B$v~IB( zndXj9$LdwDl`0()fJHO}z*e|-7<{cCJg^^t(0)(7&kPP+mUbl}2y9eR9-3_|r6vN)d&F8?n%nLC%#0^dtwsdZ=j~38MtIG`M z#-Y6!^%4!sf)E-)L}vhe0fhKYNUON9E;`KtyT@*md{>H*gXnndb91)wpd{ucz6&dt z(@J?SuO(oG1OQ}zA;ICZn%xk{!wugMEjeIOY?G27W`~`(TI@jx@*Th#F9cN902l*U zyg)+DEqG29LGr_xGrV1?SjLj*Ryi(+VvUGJ6w7gTakcCe6C%kE#NRx-Ocpq7zXh_? z9d0`z6Aqb=zgi8%@N*l6tehb(F zD?9^Y_^_P2;cg{>@_^A1mYj%yze+Kp9c^tj!<=P2AZ7rMc0E6*e3n1xg4C@aj5`lo z5MbD02>^Kx2&y6P;S?aDIjmF`pkQ-DTEh;y2maOz>q4BMv++S!Fz6M7+V(l0uYkY- zG!f_KfH^!|4F$6ZfYF3--|PvPC2cYu(gvmya-JrS@t`E0b)Z?@W;bZg+bLyoz&ah` z0tlilz!5LFVY|f#h8dUyn4w;8z(NY*A@IVmsE6sAt)TxPG}sE*eV|XEcMd*?y>Q%F zrC^L(sZ+pLBOz2J`ay|}NJexDr|w~8VKgrb>cz!ZTviDG?7jeG;lZ+7AOHrnh13n? z-K^lYq@4>`G+WKEli`AmG!QkHE9mt@zR_!Qm|?rjjy#`2Feq-2*{yyT_r)m410rEQjJH(`52tTCoT+98dgYl z`0SAKfB+Zr7m$WB1My+I0p=*Wuyu)n^6%r_5^DG{x1q=^PVBtMCZz8h@TM{Wo7jrjR0iWT}>t;@Hkrh~Tn}t$4 z$ZA?)Aqo3vcuT_Lfh4vQTs7}-`pg!WkaP0{$gDYezYD@ykH-f~O4!i@C+CGo9R3Gx z&TSF44#)ZX6#P*sPzvc(W&2Z5E0IskHl7dc?A4poEZYp(TRQ~%euzvUGjI0zJZ7^O zGHiHH2JAYCinC$2%jtCoVdE2+ZiAQvqW%B`GO#uP)9y#Gw~;9vJ2U|{%6zb21G3@r zKrRfjtnjfJBoZJ?>~h1d0OY7~Vo!_=Qw$wItEN_!!)n_`rSG%AraBxv zeq*tLbMb;mfLno$YwY0z0+<)<@eBtQ14L7bL8Z*SnAiyNRx=FhvU*`uYtRL8HSDeP zKG0*g)r@B`6jmv)QwiUg!nQ4J_JL#af$alqLH8k!f)j9f4?x0SoN5 zfvbeonk5KZz>xN_@`5?C`aLEK$YC%lTGBFVG5L%KC6kbXLwhUUO(_;w0i5K5HX!8$JL%?tAA4U|{exKp>t}&YrGU-q4A2|VyfJH333#BL zkw~htjVTCbPUH_$%u38{zy<`EKnRFn0RqW1yd48^l{?^dxt+jPIyDTT2)u;nJ}@v2 zuM4~cq%L47V|G9mPFzxn-VEnh?RK{#2*DPlCWGK1Z7>4t>*F;HY|G*-2oJBIEVo28_<~=!aDoZ6-*u2#em0PHvNz~gw&S>w&Ecn!aFTi4_ac6 zlD#o-b;iR&(17y-hQp%81#=pqW7Q^bq6dThd)T4`lY~#p08iWym0Mxu2U!+K2{;7t zY(N0Ags_f+z#Gy95HP|X5-e-LD8lj(xF^852vC0>jDizfh1m`(GzY|{0guX#={~HtP)KrMs?uL=k6Ws>U6!!Y;I+>Q7UH!GY#e(yps#OwBO~j z^5A!YcP@t&_D{r|+LoTM%bsO?8!B!Y&nUv0$be}+mD;6{QdNE=1tG0*wKJud8QCRk zgf328Z9`w6+11l-oVvPk>gvX+tN2ksRV;bq)RpqU*NszGH%?vYos7G2>gvX+tK{=u zH%?vMICXX7)YXksSJGLp8>g-`kF4D|b#>#^)s0hE_*|`WqwU72E1g4MH%?vMICXX7 z)YXksS6ausZk)P`f8m+pkkXA)S2s>w-8glnI_h=f)Rp2i*^N_I#%G^yoVvPk>Izpg zxN+)=KJRto)YXksSLy?Cs^cFwPF?98`nqxI>c*+7|A$Xq)qF5ojd=}qSP4}hdk&dl z*DM_VokpQ8WF9cKD%$*Dv~!ALWpI%^E^Fp|C^{^=(mQe)wdAs7^H9$Ga3(tPP;_p! z6K`v^L^-2k9m@QH-*piN514otQ;GazRQgRf^~f6yf1wcfrH(TWvj@LH#|}-cjq3J` z)?s^ZK<_mSwPN$PpeOo8t!!W`THG&MKb?I){iaasp=e5ngVoW8pC7JSX4t3jq!a3} z^Kj=fyPy_Xs5aU&Ex#(-Ir3l`zBup7E_hUa)WE>#mcs)>hYTNCoL3(%HxF@xJl?>d zmgL@v5yg46@w4WmP`fS%o7c>H4erhj-8|%}k%I;Xh9}yrJb;co8qH3N98O2O8qBMe zJ`*nb3Dp~gcJ+(YtCr`6BCDbD_%?x-1E2If7Jy#OM^T^t(MD|dZ_vd4FsqNgK@0jv zYfL%_coyXK-hlt+Z^3^9Tk&5!yMjDCqk=pTXU?=>!jDP(C^v%11f3^Pt{``c0k$akd#=pqj&cEPa zLkDZ)>1q;f(eTk-+dfbgx zdZO*P%E#b6DelJ|Bem`EeOEmyQcvMMF3ueCv>y57Q2al~kWo-8#^G)a-_ygfUKbQ# zfZ|e6tOu&7K`|#diwdWw;Yc);JF(&qGi}JTupk?~>Wz+Kz7!hyq8~D*)_4F5{$s~~ zT=>sz_)lB>r^7K+E)aFy)e8T^jQ`m1A1D5EEBP zkq6NML9L&zTuTU!ioTl02~@9W*v2tA=$mg=mqzbR9ow4QOux%HIV+bHjtP76qhpvP zu=?o2^s%kDJsJ>*nGijv1i&m!iid3Yr6)%>^elfobd*&GWXL&(4?i}4WE>(&6 z7b}!wPaQ)`wms!UyFX>iQGHg|=#vSLZ7uvdDY}W}(vQn5CDr9C%jnb;LDNvBXNt{e z=)?UhRlA95F4G>ZuRFH3FlTDCKEq{GEz}*>7CWqcbseI=$`8&Eo}V7Qjp3YhuUk(} z?ZvgDpD?(Fz4JIKoEhz+Y>O#OO{uPk0aPYQHKj^D#`db8L<^cVL<2;5ZkbZlBo(L+ zDgbv)wHwzIT{Nw+a6{->;DV?W=URxk4x*coTi-`M8?`gs1o}Cy?LYS}vxA$ic#6p~ z;W&CM6z!ed9&LHEvW-Jp0HedvMM?lnM~WP+l5r#CFd@$~6JKOsJx+?MH%=I$JeiVw zGALqfW2y=tM4~epcJpz>oGEymqJvEfVA9yS?4JYClKs&JP5cS_qht>;4RYaH6Uqrq zbg}zI+*)ek)tfL++%1a7SOzk_MgQ~(J*Wgw8J~y6xzpnb42te!*e2f+ zmQd{Po7`4g8|dDWC;S*pSibRP*tUZ1>|Ng~3)OeRbCFEExm1Xn>WT*z&|H5>;SQ=_~j1$=$=S{=q}%?D`|ItnSx}MY2F=1ZGk#)`KA`#o$#A@ zH^a%uH#|_zO&bDjm_M-&`p>@nk=1nMDEukN(Ytr7>BG&Td6|%-2=!E^5Bwr>G%X=V zRMBK(kY~l)SJK}dyOLW$bxtfe#rTLw31w%A;V3hxY!T;R9K)D`@l%SHcW1Y&82&&pE%1&oeosbz6ZD^rV~?`mD4G2g4NaK+aT2q)e5+Fp+z@w}&r~&VLx^sR0N3P; zJjkpoey0?7?mL;CYH=?M@1UndMR4gFkDL|JH_EZizf)gUDO=p-BGa0{SlYK(H2hAy z#i9}(L4Auw+3$?1%a_3jlTdfWF@&$GY+pVXmRzMCANk~C>sdicWnE==6|CC)F*LLi=4~SEjM!z9ZK;)Yr29{}C}6Bf^`6!C#E6Q;H3Jr@n+Q zLD}34Mg{W6=4eqGy8xJ>Ec7pfWF|oL3jIGNa)b4Jr#4Ry8M2~}HY@ZB{gc336+Hi< z;Ds35T&EyCvocIUhyS8TNt*8n@wRX-J~hhmwf2 zTOyLS4L8(OS+^-0t_>j^{v>)o!&UoU7HwiH8_1k)Epb}e0nn&~bhT^H^_KNOSL^pm zJ?6mQ3g#5}`-XZE&QF*6fYG%uS;oi&4^r2ODr9#bX>LP5U1G z{YBKS0nl?~?^fJGH9#8lj4m9`%TYq$xQfEArxtcN%Fu{kH7F>@uSrX1jn)unqX7q^ z1$u$SKL?_}al7e>#AAvEpHoj|Ig+@SJ3wB%Q$d9>4AfT|( z5{Z=EX=#eGg-XP7hiPbvslv1MnNrBJJt|)m&io)xQ0-;^20V$Pkl14JSJ8n?T>>3f zlUg(|QIj%1sMX|eBQ-IcgRCZ$3DSlTHhdi&$a0-9K5-9B5*L^M8EfOZ(~n8cqSFtt zDf#m%(CwwGDf>RZybbp#4Irl#I{ko-GWnyG!>B}jvIhUeYv|g2A03j$jiS3wELA7c zPd(>m^k9BKgHA@@NN$dDPenU%MH=nTo{CzP?J;VU5q??&HNxN|Bdks2xcnDrh}Pyk zFVtrQrD(l@k<_ul>)~BOw1g+mM(<*n-3rqkGP|oJ#?##qnVegBY$;*U&)9o6rs0Was2I+>gKMpLj6Fl+ABFdR zjb^JLRHC*R7Yqk49oy2?fzJLXx=2s3mi!%kfm=c|BOzD|si!g} z;)1nZ7Ay(_ZJ0M(6+gsqZ&Upd??g$`9*M6sylCC3u*Klnw$rdAH@TC3LUNPae?&D) z6>rsOdrYhCoYKV}Wm}c3eW8Jqwye=uCsXQ6rK~{;rYRcQb6kBk{e)8BN}Z5_)h?5P zce22B$S8I*tVx8AJI%T@IFY!rC)5(hoX}a18%{wMHY%<(gvk9tIqB55b9FtTp7LGP zl;t}Tg{fA;O+o#d&G$*9N4|QG?7L zHun(Ao;M(U(*#I@^he(s*Mz#>?<0T~6r^7-vZ)LM2^A?B`Cp}?`=+z7a6Xkr8!oKzcuIw$`nBj8rfIkn6MPO6Q7 zmzptU1kN=s9$$x@cv5|DsJvipCrQINu>+HEu2XUIx@_d6zPc|}gA{p-y>-|{fRvuP zXQYYhKJH{f<}Q6QDTk7|F(=jP?iJf!yUbA+ers3=c^fEq5Ns>rTe9m+DRywXuw=y7 zFmWee?KA4BEO)}zDaAEd?kM#Vk=Siw7v$i6P&|g%Ee#r?oU>^rC4|bKj+AJn91_Gi zX_=sG5s$$DJrdI9rztF%s7X7=HDI|@N=+(zN}iEguFAkWS(7qm7RT6zB6wVr>e0|d zlWsnx)}%70bTr9u2C_S)E~++!$eo7goSfg5=YGFx?)TEzt5W;-h;vsbxj%chcwq)R z?3DVhW?84g5(fvvVA@&kCr*i3?g#J?>MZv?r^IlVGPcxR&D}A^arwkq?hYl)a_7#V z1S|!)UY5yK>Eet|HZx=zxUIdtwJBG;zS(c4+ss$@Ngr z%$Zqe@o#fE;lljlpILVADSfMST-A-xcVY2QEc-3+NzW>sOMvKEr41sV*kwr~y~vPB z3$&S3g8X;xE+v;l<)_xl#)|M8^4zvMQ`oh%xB_H`Pg5d8?9=>Fg)S~j@ffcytDQy* zUM_xI34qNLwFLPOg;zojNrtoNmEvifgYJ}Et19coKN_IKyp+(gl`fTR*|waW)PT7U z9e=L4PFmjI-O#0a<2rIZF)}(!(_DC$uxx^VMez}a8ARaOyjp1eljFN`18Hz#+U`HC zHf_15|0UB_1y5SXw2{d#P)+_h8he##n=4LUZQ2H}E$&;6d7E^Eibjk#p<`F_t7U1$ zs&%AuXm6g@vvIGT7H!-@JeJzV%{^^o#}iGCG@bCq@deb72Qr5(CtT&ZYm>( za^@|qg2veM>j}SaD(=sqPx$c_&`5iJBmD0t7$yVtT2fpGO|CJnqh{bgOv1MG8G@}z zIJvp_r8K4{2D=R{o-w(GCfIlt7+P{$err7B0}R@|sQ6}K-nQat4AT^MbFU^BpGowf zX93wW;#J@0lO+E~Ll%Cg&BBscz&s@nMI%8aQM4_fF!7V(rVQ5)NSP2JV)G_oJY+ffe<-6_3-D# zT^TMy51=xb^EF_};3f11i=|`OccShl<4}0G6bg6UU3@FIo<=Pm3TLmSp33GGevzp2 z6}U@bZKiO`p5p2(x0z~61;!sK9^=3m8lqdeqKFbg6&NpOAdceN zB=^ySIgfQj-jz9nG1PG!C*d6oN^C$AVcUV?jtrZAmW0&tn7Gtg3Y<8Oi)Yl1+HE=}hr}QtTUN^<&@aYLHJZ7Jrt;ehB=~i+$@SK=dsC z3nD+*g0pJTonpw0iQ3F4iRCXXA%_J!q2E;OYb@}sP^E3Vsvy&6Gs*}xe=VNHa=+0i zscfv38Y?bC*D@+x3G~IHOmzF-g*~&4ZR{(k!^gW?p&ox0-_6xJM@eqN#8#)C%9aFv z5fj^v%umSqt9UcZHKCePCYDz`#(u8JIkfPf;#Eojm4)pf(LyzJnR@7r(bTcCz2F^mQ(hRx#u_v1P!Tk4VxOcTiHUvaoLWwM zozpR~hS+PGSVM^1UUUOqJX7V7nL@om*#!~>`e?EG^^1{Ps_ugk#RM~PMnVqH`b z>zo0xPK(4+Sy{v{Lw@1a>{u%n)f=`W6CGHA`bhsCSR{o7zqEq-P0iFJF*4vW^!q#@A&XFH_Q`ZyhnU*e(~8F0}In zeL?96@8W_&?FyA{6I;x%feZREXv;EU4C)m-FbPfD#%^ZWQ5W=MP`euB)%LL&3_Amu zq8EdFs#Ih#~DUO_CW>62sR>!VMcZAYlm&UuWbQ*e4Uc(JA&9 z_b!c$D){V1jS@$g8jnhLXd7CzxO40Zx5r?FKE@+lwcYAl2B@G4>5c^o8?fh9@^}U# zqhq*E!n?RUHbG#xDxiy9Vr|&;i^}EmMXC#N`J5yGColX<<|}|Ft`pl40ystF6PDXX zW3RGbW_SnPsqNPzxv_d>*!wQ(+pobA8+)Qlcj(wJ_)Pu|uwQOGgxY?YFB+*!D~xfn zx?KH-6SuoQY72#FTnbBK1BHBltRBlXps`Sy*&Ww81nQAnSQo8$EcR$M?WH}c z`*`dzt}~57Vlm&5dMevB_(c};2SrL(92gr~it9}^6$yN^d+{KyFa0<{U{mdR_p!Y% zp-qEhkLW=TGlCTQ42>;kG(ejVj}72vXo4OY9_x$;on3cY2kL0^mlA=Ma|KHv${pp$ zlr0jD;?EH=Uy8KJLByPRF%y;BKXrVz_P2_0nr;^l3b%VI_E|NZZ~95q5wbHGuR22h zkz93T!zHv}Oza*u^ey72<=0R96uz@)eR6G9`d@IKICRelH2J3k_oU@L|08;KY^+(@ z>zC5el3vRjwOj?MD|Hc(Oo%0t%Z9WE5L_;VT?Iqo>K_|`@&$Pz_-wEs4~B!kc&q{# z1OJ5);4kjJAP;v~kOv*$C-|>i&0{D0GmnsI7yd=Q{@jg!kuNp&;9ul?_Fnvp9Ekk_ z{{r!Dd{f>&{F7|2?8m=Iy6ph|MWT>{_*chEr1(Y}&==j)re023lRT3!Yh3KT4ED?= z;>S8Awhcqx>nr_$hJJat94b3Kc5~&Ecx>XT@GlTBb=e1H15v*I#6Vcvx@jK9)doRB zM~`)&aWi7$xvH1tLFL*Hm8qxjo`gK|NSd`DbU?(~56m;Mm(sWvRIj25*gGpWgtO6) z6DFYN!u+0Wi_5}yq1ZM?35tzuT^SvzoCA#jRnDQ;WwD&YeX3EUat`-grph_UeM;pV z6n&C%4(p3z0fu{$?hG5`Dl({4&S4>Sjyq2Ik5tUn@+VLhoY&@q*4x3 zuA;L?VzK8L?ghFta!UGT`UyED{laCm7R6pxw#7uH29_!~JZC&Gsosz@b((6Fx1&B= zR<=;fm%4hxetHI&+7$Dp>J5A8CS(Wl;`~?@hWn0wj&m}kdczsTQ=BIG?lRiCAU06h zepts)@A6trzkfm96jQIhObDrN1C13SgjBbo>J?%|sJaa@s8qLs1{Lcz{IMvujA0vI z5$iU{08-rsC4lyKZ+rz~-4xJdMf&O$bx6MqCZ}Jp!4Q9W%ON$> zj=dTys;(zH{j+wu(Ux@(zWqk?FCL55|CxF!(<3fBQxdX6nIU74nQFpI-&t4vDM5X5 z607o0@^EVMSA=(j{3M;Z>&1qp(cwe+eNg_((F$n)q5Q|#R$_1Q^k#FqGs2DPKdHG< z@h6@9fZ=>(Mo@_nLx^s(0rlkc0Qq`_d~yD$iV}~|$g9!=4~mpfrw1PYDt}*DHvcDe zdO$Wh^F=ip4P$9`ruVwQ*T!#o1UE8hkcZ8$EG8))93(7psrP zR38Vsjpt$wP{G-l2{kzfdzRn-xV#$ry4pBL$-sU(AFIkv`B|MZOGs>Pj`R`NL=jOF z3SWpljxN_6R|8$H1%Eo#8dnKTx){3+&8RufhMu_;%SH!lj;oD&I>*;$8}~&Wwydg; zvM~603&x{S>QK#pfC93k>Q%a=2&kh+trN z;})jI$WwoOCR&^|t`xd(1?buEr&#vfx`2K7C!k;SN~{L5{v4~pPAEnz>W*{&U+L_Y z3B}WkrxZiMMDk(ui@<+n)=-`ipO}%JZ5a2n`dgU5&q)@V`u;>@Zg z_lqyVCv-s+rnNm;X?p`1_y><>hOY;8fr8Scm3T&A$*j1IrWl5vHvlfco zV6kT-@59<91*pR{+$OAK9*<;aWR8UqH5&nuOfv{zS)G!{cmUOmC`|!Z8j#66NhM`m z#=9`)wQ153H2)eO_syYXnt1J5`^$KI^S z?U>wvP1^R-tWj0a@7K&d_A7eGLoG@^@kh4^Q6|fj>|H8^vXmVe)LjKXO2FhQIN<(1 zR@LNIu7Lz9Z+daDB{#*GKY<@%Mld|Cq_ddJ71M30m_PCPowKrefX)d1Wo-mt)5Tx_ zG&o8~D8b>zn=bf=gpxnSv5+oxyCrHgDAlZj{9>;53(eJnv(46+V{*=!W4mW<@e`+m z=H*Nwn%y5)h76ly?g@`gAL}ngrk6BF;v(1p%hxoZ?lS>c6z4^Y%iuGXv}w_wl(%-AJD=6TES7v4Rvn=gv4$9_xMztZh&{nWz0L@>{M0y-WTOhe9ZO?ehRE zVN>eRzwqOIOJ3pY>hvejpc`ZTfrNOEzB-@wfla9_;msm)B68xR5uOu8Pf{{Xv}i7Q z#7Q)a$xF2-p-4F3Lki;*#(bu@ap`> z0@nDR^J2xOTrrJNNJX6RyvxQTbna?_GH$;A%Dby#URkt6D7|lZ<`|*VrmSE}rpXkO zMV@Kyie*#ElhMRqx!OM6hXb=|rtb~CzskDtKk`@4^CLF#SKxBZGJNvEl0xc(E&)fWQoZB-Xh@=8~by*u`h+x>t25s%VXES{(k1i zk^|MyOMkQ1-{1zFHdmikB)E}uX8iv9g}>$Z-z#Vr`uE?(e|t?BAmP$tO0lZXJ`*k( zyl~Av4it>Y*88*obIXif$93%b&VpUv$n4U;0N-=5DciZ<@QPwtC2`*Gtyi+!nr8$4*U;UDCne@{(fUAk*|y;Qi*rq+0hDd zRJ%Qv4ji1Z*1x_3-$3Gkn?NCSFUf|2c2%XROb^mJe~bn3L5nVOth)elr12nBclDrm z8Vt1XrpHqyv|F7OOvx~DRCCBP=BU^gZx#gN!wA`Bxaz6aKsfVMi*M>Z)tsAm=c(>^ zxR3F}^&J;{gd3mtjtkybhfNMEfw-VWb=*@xCvKV>otmuYd$|D{9^Y_d`;t(M@r9|g zLU6A}8{3e-+~}f(6)sdnueKpIsD)z%B-}E$!et%^XN4e8I7Y|W7VjN3yEY2yi^rcY zX<-s080eElj9^fkZl$)bgI!|mEu9I0y+AeT4aBou9BF(wCRd2t>#^W%$GZQJZB+2e zq9rgGe#>JZY$_j0i7~N|!Q`1|DwlfQi#G{qs*G1HWD*fZt&%hdfi;UP9D5|E^i!(dk3N2L}52QKG1M3mlP51BApq}5GoAgH_9uYwHlnBf#TY(lesflJhu#YnE!YV=>gVB8vqmymfk;+x&V7xB^D>tci zOOHV83c-o^MDC($=!%yWd=W}kCwr1iN1u>8C(4!%2DZ=uG zJ;W8$rAXdw+^)y$T|7XyvPe~U1zi~v(H+u+cXz|%!wr^Z)RA`Rj;Dwi(&brftpcT* zf07#Zz{yB_0Xzg5W43a|bfbb)l#_CC2;C5~lp*q6dO|8NJ@YkGr%A|Ti>KaZc@e%~ z>gd@EKTOFqakvM`Gmpc?=lkNLWP6F)0NtlJG`9~`bPtw!+plgjZwp>;9;9mBQ1E)U zY)QT0!pRbmeV>o42&myb_;CMH?Ipmy_XKLh>zr*}@{9~z?`;1VfX@b?jC-&Ux4xY| zm80edMk^vry$9z6R5Vl*$ACaRi8L_{x2+pV`_X&cy7%COqqrfA8Nli(jFNp<9(O3v zFmsQ~aw9yf<5`gf&mNR{rt`QPdX2;g6|;64=o2<-EL)?{v{-J$CVe^@PeW)8V|817 z#zqbIf*$wQSbSbUn;Fh{KHTAfFg8=^=u&4dkfnnr-Gg0u80PqR&{8z{#-gc=t6j;< z#_L^*wGF&&Wb*|ir@)UoIi9qT;}1ZN(YUA(Uq&}&xEf?#hiGQ@r@c7!!#()qp|Xho zzTJOhW%qRKZ3N!#TM6cN--0|du=}M&cyl1?C1`eUIFlbzgx4JpydN9oi|R@rL}1%f z3nS~s(XRBS-$Jl5{U}QLU77yJyn30$rYsA?6B^rG{T5~gTX1c<%r%|mOOD5I?<%N_ zwPRuWA<9+f61f$dG+{P=u?pJExNTwjk$T+IPvR^7XeYxNn|`7P!kIo;yRFnDB+SLm zJRAl#e5YGVXPU8eDr5Zt3Vqbdi5hwZHOAI2ohZh`{lwp4|GHh2UZ7!BgDTSnZuu;J z*eq_^@+_V!)GO?(YCd{M)u(MD-mmb#-*Hsak#Z%U>~+|+|SBV99th{ow9WRt5UE*ha(V3f&?$EfF06)L zL7EFST&zx3#JCM{p%bvsEhW=%yYN!li{5)KrwnUk5;rZQG~bo;91m2?2g6Ql3}dI3 zEckUo=9k`il7xF5$pue8s&p34^DTv@+j1*5O!DeErRm#o4u)M9bjC}$N!Ai`S$%ITtID|2 zS9oE0xl&_`kp8t3j}ydUen3~)nw2Hh8^aY-&os;r*Lw#~;{nt&f$g_H03{v;WQVlt z?Z!*R>9A3q+rDN11#bI}o!U*_sa!6ac9qxXPP^^vX>~= zRvAs)S!e|A!-1JMEAi8Z&d>Up1cb(tQ2g;f@MZy34ULlx`g?8AY`5{4#i)lND?sOa~BVG=B0JvG{jnv>L$dglJ~+FM2V`;r~A} z`G<^6UK{#3ZRpJIe}&ZR0+^rWvFq*r&+qZmRfKAI-&eT3`PR=gMRWmG%*@`eifs1h zX*YVa|JhQtexy`;tCmSxIinZn5A&L367y{*+9GtIBh`*ywyk1r`f22uf$9Hx8h;`P z!*S*zJO*U<)i!S`6l#Xbc$<{|3vQ2uBHFXpS2{GP%%reEh70poRRoSd zDlg1+J3fPDp`cDx^g(zUgP6pW$&@MH0;!CxujM6jr*X=y^LRHBUxxi_`QzSz#bhl8 z^2fbg1@9|!+{+_%OR2qpBz1Hk>HuGXvvx!uR>hg!AFj>PyhR%CxvQ(LA^2jW4Y8P9 zSiMjDNk@Ixl21c}!v76Q!Af%5Rb1OoybK;_SneZj=xEm*}Z-vLcPj;}91Ndn;fs$zw ztHqLMsx3yB+{TMgwv1LCcW(%0jysiP!{)a+V*^Yax8(q|SPcZGmWb@*W<#E-8}f8W zwa#Hr14Gs#54;YQ_C+PE9gD!@v?9Efaw9f8!LRf+v>`wXIhq@!qsTt1gY~M4XKxZ( z1@R&@}Rx?Io9K0bY>@IEZV&YKzkZ2DQmcFllc<>F6rrkCff2 zW7924Zdt24crR$uMMy~L8-C&q*af>Pb)jZybJ4FV=$YM;x)Fe5QW($o z=rKW`G~x1ErB9jdZ?&&o`k)vG=~DN%Y%!oz^Gd2ghX>*vXG3dCHOH@>WjG6T6lK+f zfLTUL7B#3DDcK*7RlVn)enr#Cza&V$*md!-fc1nGOXIL}#_BNqa??`szV0$hO&KtP z+!kAE!@qxXtVuv?a!F=se{9Q}(*$>pDvd+ys^Te8r3o=B$X=~JFJ%x}Re9&7JYEGK zj4Ew_T2{rsMU_VSts>&Jk6BrFE+wG2=n~21Q(Q#*EH0wG6&I~z<+Ow1BHCne(Qz`P z6&JN+n-|=-N4*Qf3cfryXY@A8^29|kvHir?kReQ{$#t$ zyXh}BukWG1m_hBOzhbK5eb={)!=1Ux{fyFokxy1wG*&}yY_xS_1D)#!0>&uA;uv!>w7d=;^P(7lXFasB8a~yb z)GaOSP+C(EXTk27i1u|X?Jh2W#Y`r%0&#Aq(kvc8WztmRXsEYLm}bhMAISO!iPLyZ zelgXoOO%=AduWL-*tRB$8z3>1-(a*hxy$vi3LEW`%+llH>#$g`Z5bxM154PzUJu00 zx|Xis>*@y9#Jd+ZFeRDfmx0%_X%pxF~o(KHN{c+0zsrvq>`${NxWyPA?2??kWConkC#oS7p~k8GJYurbDX zsac=WF9p=T8WmhTp4=CO;=OxPgMcy*^oANMGi=;@a3jg!wEZV?3%4&CUX5SD45b55 zy{8bqrZc!GG?+XiEhsO~+V(G9ji$J|0#Y@dBzEB&)s0;ef86@`fs1 z3n>dbqq+=g!PDI)czF&02F`O`)qhp;AIiHWdv29J8ENcm)S44D6N)OE%$2?iyt^1hHN)DOS~-4gYw}vXP<<7B_y%o`s(dE$f0vP;oG{Y#@)) z1vpRiX2B{N_=okin;9UC78{fF4WJ?9s5#vP=6a;;0a2Kep%u_-7KIt`M~lKL$<51z zn_TE1XFnF!;T<>0!d(5TZW$et>bP{_LkW3CT2XROyXu!^_zSNyxEemZ0@3rU9cU*6 z>!XK~V3Q3{gTWSgY*`B&zy_!#B0GRjd1G>k3cQv)9*lJZ{!Se*e}QVNt!$OQK+@mb zBzrl!52br3&JIyh_xvF@Vv{~-R(91NRTH)SPw?tS!>P$lJ-DRSWrhC4;ZPjh_|zb& zp03O`J}(91#!c4t1t;#lQ{>>4|G|K(dZh!`bPQ^1Qp@f|W#IiP%(pE1lF{<9YcG*0 zpZ?w92Z?1dbx;9gj@Ow1jYESJ4&{nwFAv9vc>b8RUBsh()iqErQPxzML*SfvcS4HC zW6uBVz)*gtNx^5En>blZQ z7|V@?VfLcXNE&LAEkzo#W4&WP)4Q@s9IE1+o@Ehu?}=s2z}n0|L~*XXui5)(S*ak9 zt$_jpG4(YA6^=HP8?kMed}|#N5-4i0p_3V*14ze1*US`zOp0iSZPjMg1!o8~Vdr~b zoaBVQxS_4AJ+@6>)&RH|{}5P-seq)kji==5SgF$V%jM~MV9uQDO(yO-1eckeU(eMf2)f7+2yiY!Kh{p zACdVuJ#P5zvZ+DH#&E`=&LR&)uexJad8_UzGbx-fmO^EGPd9~uG{FOjKN;8mC$=b#l9BHQWdi4z%6$D$f6 zItBMh?!zYzl{FOpt81xusR-^k&;jJW?JPEUy})f@Zg$8I*JeHtj&|Moog=F zlG5|nOs1iS3T}R`I^_8qn-?B>|(N&LqkzD zIejILKJJXSiwUj?XGb89Ktid3JSyX2<}1YiGZ*tRe_+kT#Q@>W)d_F5q41<;pR5TF zK&8GU_PWBx)vCny99lCw0B!OmvCs6lSC6jwcNO%Og~WdKK=cyZC9d&WMa||U_Fq~> z`2|+Sxd0)Y)d}GjnSFZKLZX>1wNRB%s{XQTF!k|{QxJU-{*rJx++l1CK(eCPm6a($9gtrM*$f>Ni0rWoL#i5ZhhxEI`B&7MU zIhtO}ho|{6NLHa~aw|4W;+RsY{f@PlYhme`HCwcw;W)lzmWY-xo?G~!H07+Fr$rLs zjFy%^N?MfS-d|f#8151LbH672l>hxgPu(o9zO8_TLP!OlU2Gyg2uxe3HXMWQU&pA^ALdrz)?HURzQOMDS}+=pk@Ua5kr)uyIq zEVDEZgp(PVLjH|yP1eFGM?ou!+ukFJD zT~tU~C%0mg>~+@d7SVRbQwui}s+?T);687%?(1N*m*I@{G|>a$^puDpGlz&l_i|%_ znHc67i=i^UnKGCm4S$7FDwqCe5VHf<+Zk>|qzZ{Yy@miGO*3P;qzuqp>_H<7fnhrhgX1jH_NrM-y2`KXFFXF#D(iayy)Ged5)1FNLG?zSLJz zuH>9m)pyG$>!RzTd%}IF@6UQ%-+!-L5{_yzoU!`Wt0{;3XY1(I_x=Ii>ifBw7!DbW zp)xLKyF&awb2&X~R?_A4AWY$7^{jA1mm|kEW5a#8oPG);N6W1!vCR};A{(ZIDY4Cb z3z6k`AbOEK@R+yAvcmrd9%nq|{y*_JuX#yfhs;0D*3&%^_F5rA-PKdby-3sZV7C;4 z!s^NqxHP1d{fiJGnxKr&gEdla+j#)4bo-y8kWK&=$H6*zPHOqtIqy;9pC+q5uT~4UW>cS)~m5XM;JuhkLK&V1MMH1-Sg@{ z$o^uu$vxtE{WfL>u$WH0gwFo(x`d8S)y0d4*b@RA;93vF5=kgqEev3Ja#? zjl)9orA^Scb#bks_TJr35g8O0(W=Eov{G@=x3uKZqO0VdGYy5Vl0S>sC8BHe7rVUn zC;i2)ApJ#ur3Zog+?0BvT@Lj=cdudgErBSc9-ZT54+k!E55KDm-F0#Me;=!cw~Vz{ zuN72}5W;SC&|icA{e^D6f-H@O6l8v(+ZaMGbf@A*x%MbA4Rk8s>P`kFq-`eihV|&J z?o(nn@C>{BTrM~gaZ3`K^zBrB$rGZU{%m&yp4n4oCjx=?;y*Coua8P<{ zT~oV`Mo^NxK+2hEpCE|cA(UMa?NT2{&$f>jyTB)up4wWYo#jS5)|W2?wgXi)CSh_R z@Lp-+6ZX}9;sj7b9``sp?pK5Ai{ytk?u!p?jlu&K+B=DJU@^OXMG+lqK3)%vtB*%N zNvbS|RoE3wSY=1|4Rvsf1@=_20@h>q14#>SF0hX?>-#k$z^@DK9eF_JLPr#CwZNVv zerN`f>(jXgWCQ@ZlVzYg^xmA*`FZ<6L9B5vkQ}{o*Hr6ugg4aK+d;a3?%Z5ue@1Kt zJ75BCey?IJJGaOu;Rdm{^IjS zbx%3$0}L7;TW(Jj*Bb%OmD^hx0G7A7zm@og9-z`+PdTmB1&1!MhvVB$`&jW``pT5_ zoi2UrjPzqhb=Oqbuknh@o6PvPt8wBbQBZK&~r{X0PnYycFAIY9pgxcdhC zQqdniVR~|VgMET{FDzzyLI59bwD<4=w8ULD*}I4_Mu6j+?8|w8j_e`>vYG8&-)s*i zUyp~4GP1K8;IUimE-?!}p^XBooZ#Ikuu72lz}PAYr&#hRG<%zUI6_Ngyn0o15eKK4CZ;sd-xVF-KwfhqjCjrdqPP3{CW%8hluk)j%1Xlb>Y)oL3135%wmOtDPD$o3 z-`E%VMes^;PlUz+{gU}6830p~DQI;|Tz{AS7K)JJL`PN(KhP(b15*{L5}{X-o0ckK zNx!BdAj&jGNFTprC#SoAd(j?*g2>X1CjaR}sZ#?z<|VpD;3a$PZ9LU%=tWi`;0cj`fo`?(ut|6UZ~hdUDw?8bAN8eIY*XiWl*UckL_CGae!At5|9vglS$v zm=IxQr^YN*lt>c-SiYDb@Y%N>Z-6hnPnIdKK<4WLlRf_#K7ZiN=bAg_G)153_E z&mVJqe)A)H89L+P?v96N_ZENR&{W3{d$IT9{{(x18#H0B;`%?6vmr%(V*gpJ(Gcjk zj?G{EXV`qqo6WY6r<vUli})Y(}hD*Hpez(t^{1- zXpS$wXKxf>JlR8Z*Oi`M$PQq_@7a4@P2j*a9``MxI4owy0zQfNips72e+4 z-(OmH+@6la2#W@)8#TZ(v5ft<{fZb1p)9Cv)d+7pMb$?|I^>zG7!sOlR2; zT9N2B+YM}jU1#mJ@!lWp4fzJxE9DfG z6y#*2B_}1Oq^BpRCnTk$#wX`xf#oi+;OF7lj=P2Y*IS`BeCx?t`H`d!i z&BluP16v@ul-?e-KL-zpbu_}u$L|lp+ZsD&qnO6jt5{gUa|(ei0I)-=|e(n2!{%{P{i$u&YF z0l9er{S#9<pY^T0~NfY)D0fyB#!BL2Uno#pJHmrS~2FwiWl$T+BY9_W% zjKx+N!`jNrO*X7M4jn$cqtF4|q{zf4TRFVa&~(Yk| zV1v(~HVGM|ZEYQyg1C{ez~g9HINh+lW2m?t7PFag zD?4u7j(fMLQqw=IsnRnFYl`E#lHt@RB`T?yb^KXZ$4(U9l&xsPw6XoHbXu#ae3r$c zLupVq$5Vn|yQYD-aqV8c#SUJ5Jl4ap3uSoqaYpGQ#kvnqf@U9!+|$&Uy%yXi3iov{ zM{MTT|$lB?y50c>Ni z{-cf|;^Pp&eAMno9o<4`^Moe0g&m0#raB^V++&XFd@Jlt|AfaJ!^CI3T3Iq>cn?JS z9yQ&unMX16c0+(l=le6rMie(N-7aKzB|9bL3_B~kVdLWtLEHr!rJImo`sifJsk*{C*#Wr~^^5-~Sl2 zqG<^|!`MJtG~e-!Ad1a^W@Uc4F$zDsfb4XI!D2?L*bK8BIUcZ($f~)%t{Ffk^9T7Ljd6u5|`zv)nOA>}>@2W3i(>4`4Aw&QrvBk1_(VH1%8$ zR2=~OvK96PHuJ^4d!>s@90UEtIj|o_Z%y~(?Zw5gn6Yn8Gbv!1gM9poL+JYNuk=6D zXa5bPGtZJ8DRCq0NaNRbSj_t0*bEYYL;PX9NpgO<=dIU}1Rd z0x^Jgy?wQ#lUTDk(07iq-X&!B8x9ET*fUs>&cQoi&(qk^P7o7eXG}T+`nsoyZDBE! zPGWQUs67YJbw5PuKDN1~a(d#eM$oBg#!r5+m!$YYn_6{n@>+*Od;rp;b92L#Ub)8T z7e(4g)7Lq+AiQjmgB=i(hga^HAkKo#(c$?$(p)|k%2&>JI%33S`pW1LGCp!Zm9LxX zB6Z7+>b~P5+NBafqPHjKrU#n($L|Ja(g_zd_yGMs*+F z<=Kd|yJR!*m)@LLQ0Lg`cslb2?eLoi$;St7F6@q;$W>Ibel#zgC16ts+1)`t9xf^{D{ zHll89=oW7VDiq;$ksGl||N6*LQ$RyWFP3ixHtBG9z{iefQ6YmF?^y2eAmFZ716=%x zqXrmXr)d5AfR@o#+g=9jwb=GDs788t+OcR^FK%SAV6`P*( zm7|@AYP95RT5Jj7)TaN8*4y-jXcL>Z9D<=uTOzXm>3>RXER`pd1@q(f&Mwfs;X>BiEi1C?y|9^8ntj>QN)!f?h`UE2eJR^1pF zbl;YGgHCN}WzYt^)f@C3TU0}QF|Hy^x^RK4uuSY5H@f85BfdoShufCf2ud{FBEMM7 z-IRVpLEe@DN54%l_keQg7+@vx@#r8VUWYJt2&d02atH^t0-RzF z=sHoyTaH;gKo=t>Dg9h+DKB|0gT^)Pvh9r3t;;WnQLq;lp!O8X$B8kpm~|f23X?>9 zJ$Qhw^Ax3XTPt6k-z&xYmH&vuey|_1ixY*j0?NCILt!!NzF#Z+V?cRx9>BKH(yEr9 z5XV6P6YGP4KHwqlDk^$=@B?#|6(&T1;lBpU5+9hB^{f{+2)TZ_Uk6LTd=8 zGt{|O`Wfn{Rwgr)?m0#-ZMQXaMbfV^s(d_8NBW&gS0cE zeDXtRKx;bZSe!q2KoMhhYtQ)uUDEX4qzS^Wx~a6EqI;^|b5D`>g@)MHUULaJG18in zt-AGpbhKv}&@wVe@AC*6&lYMtOK7(`E7*c%b7Yq34kSp=KT}>^Ku*?<#q@q#`F4a| zZp9`=Ei0cbpdF0W@|)`Bk@Rcmingkn9#BO-`>*19RmE@D@oRt|UREB6w?9`t055y4 zd@kC@+A*H)t9zO-o9@@h(n5<{>$Q81rKn~Zi>fkb5dKv7LUrFWJ%h!&u}$EK&zCO{ z|AO7qH;{gRv{vqNlOLKAQHKXy*S!iqVAJy4due4k7R1mPfMxU8sJdJ8#rm+=_35Ym zgc$s2NqJkoKJ5!Qyap zqz5*aS0iuM;3J&_C{*|kyJQXkUw*0lEinc{nf?Pod+0a(3!CZ zfaG{{Z6a?D7u&tu4~=ZYZ?fG_Ni?zkA>^56{a53P!($#~WLr*Lp;{-fLI&3{N6 z6Z5yEUJG}C`CB5gm-6HFZT^lndh=ha4w*Oq4xg4^MG_mj#f1I5BDdG%Mr@LFu)Ih> z|02CuuE*EtaJcMH`FH4R1~Zbb|{f9NR`RjWfmZ`c>?t!L)Z=h(X(;k$Wy3dH!t9x$jU8*~X zD2>%!8uxj59l>UN42US2GIPoIVn6w!e7Sg(DiECZ!oL6|nr=!Te_4LUU;GI?l=p_& zWz2K1m`!0n#p3bbmfLuMZc@3b@R0A(GpzzA%hyotMIF#hUhf(wt#5_LzW;0#3X9`s zme4qDKzhxqPM%R?lXiSxp4||&k)i6O(uzY;I}4A~+gbHES-i$a+$@Kn%`8B~#t3Qq z-(;mE-bV>i<)+(O8>f6w4mKd)-`sV({1g&%A(n*(pZ$>*K*Z@x6pP?9Cdu45{D7ac zxdCd2pL38n+YsRI9LxiBqAxNa(Kw!fgV3a>ihgnck(sulV4^?XbbSqPIQWSaO{ zJ9(!0S)r0PJ zI8yHQ3AIz|V0jPQqNei(AkIQ^B0@5sY=)t)*Pkya{+%7BY3FNEpRM*wnc>y~*Bq{cQ4Pyh+q%Fj6hh{Re*KD}J=T{fa=Y zg*)MQR&Id-*ArxKOssoZjPu{<-UK=YTey_(6n&_hz-+>X_nqC)UW$t)nu%H`_*kZ# z(t}@*bN&mpV=&`o%5NToNB!viP2g3+@Wn7E^eVURR`Gn!>3DLY^F6ceiC#%glGg4K z!XD3j&$cHfgAz>{$uAb<{Yj-NZ%=@Cme!bCIA{FO+S1q*=X^i$Y0$j+A0fA;Et$@p0t!#WIbUrFYXTp62~RU(pgG0}DKyJj)$|2(Y&Yjt zF(y&3IW0knSLfNa=?8_qHnxm0cz<{2V$>}W5ANZN6?=eoG2u-&oY%t{icj@$4n$oO z+5IBGrA7*uV9Ropy1A$Gj3DN~)|hNYCramfI~NP$X!uCCEoL)nmL>MM-PgHSd>lf_ ztIB5hLbkJ`I3E_Xu=nvqT-?vOln3ad*d_*jfhe|>mRTAO(wpVcRplItO$IoZ`dGZx zu8Kq7-x7=e9^iaP+zP3tP9btLDDm!xEVoZDsf|xmA5=xUHqg0{+)e=XWh>t}*jX&T z2aAa{b;D2I=NyN2CCcaby-~?SoR5lMd!eomao$H!1BN;q8}#KE>KrAW)1k6(?_tia z6vfVea((G!9k1{oj#_>Pl5)RuAW31G1XQ2d@T0Q8)?1(2QdeQaKaX_|k1QxGNXScy&xlWsPfbqC z%g-%{PtHwG$j?uUPe?5+kX-iJll&v&bJEgN;|o)A)6;U2QwvC*hK$03oYd5mr2PDh z_*6XQsTE<8v)U6&g+}QKDXAo(LrMav`(RCiK?zcGG=A-Kbd~x;cxagGl*!U-&h_N-v&(BRyNl8vBNJ=P3F3c;;Da=XB zO-RYfPf1Qp%ukX+2R|{{zfoF2VnIe;ZemJeZgOE-VR~+Qa#}_KDa=VqODe#ju`B9G z+YhhUEJWrcCMKq5^3(H^Q}PRQatc$D(o>TQQsUF{QVXSopBC*E8WEYq=N1;`B<7_PVHczq z<;3R{=95|lQsdOcyU8G|JIuo;SAUw&$hto~cKVhKjAuKWBqhWr5Y38BNgqEg?vc?= zn27QUauf6N3KR3w5|fit<8w0dlN0ii3*rk3NU{&ln0zGuz!%>#WYo(#O+IiMoOKvhc2LJf%6XA`lM}pzxVfiTkMj3hWX&HriDJcbnJ&Aca z8951gi3KSsg+yLC`8f2_Y-V)N2$6{i#1L~*6XMg-GLlnMQ*)D&l2Qr_(&GyX3*(bg zaOQn;RI5v{?mvfFU87XXzOnPY6^SiWlS@j^ElfyGPE1S9O-;^A%S|tcCxb~KtJj>= zjI<W17m}ZvmmZ&!nv#-RNW`8%29}DRegdAqXhA*cP=hBn2$5;I zdHH#H$w}#nxe0_(x#{V-Ir%xcg}Ett8HH(SxbcgmYR$ywHxO@Q*)>jx{WQUM&!iG= z^Ui@GctD9Wfb>orML|JsMtV{q8C6PdaxS4KsW3M;F+DXgM{;F6L57o<5}%xsn3$9p zUyz)f7oVJ-Q<#ubkeow^%}CEr#l)J_;SjaXB`&ofIU_MWIX5YuI>wx&pYSu^?YMyo0#LNFTXG@Wl;JsCMT=PN}@z`OwjHzP1mhC8%~6X+5ZX zJWyQT3@<A|q<|0X>WYX0A(_kWX~aRROXZzsLJ zXeL=js>f+t7@hI#?7gVOD+bu>;D^pR=lj^zh*dT~B7b+b4LA8-8vAe^d()wQxQ_kd z_2If&n5=-8`W5C(Sygm}e57h=i|KgVBlhP0tBPK0fTJ!t)6w;Y_<@VgUIDozYu?gS zyzS(%82rser--^l;h!%$yP*eL;Mhyf)~GZZkG$j@j$UYq-?-#_6rGR3Z7w@WvU&1$ z`?B-Fst=Rhz@_QrTX>goTHvap=42~l>2N&k=VL8#rz_6HsvBrQ>*=`MakQ1Vs^~dN zS+l&HiEZ$db0k07XIGrTb1AvSjM8F4ApL!vWTq}IqQn&!bs^aoii;j37YB=rO37`c z;-VMG8PnpT^W<<^anWJ&-o3bpQc=u0FD{}z7PF4P$M-hVJppzo;3fKN75#MA7W#{P z*<|Hcqj&`&@IfHH#b02bcmcK{=PITnte8ojZ4t&b^@?DabR zMRqy#-vQ(+$ghIFqaeEb-p4QxkugO64&Wn#Ya^aD*cpUAPLe+Xc$uR>?SOs)Fap1b zT<1mqWQ|1mJAfiAVH-yDJAlYP8NcT5>dXV^4pl>qVC8#%uv1JfErt%fl zNxs{Z9u!?m$;$^seE!Sjm3oK?E zp)+c`hM@Jy__NwBw*jg=%r!^c2T@GT9gDyIP80 z>98H}iM$!r@QQHP{peB#o`h#K$KO645{%oqW(0-sO(o2zRtLAd)~${KVNcg}Jtm&l zHJ*hB)N>7>gs~l3*c!{r0r*#2zMsJHkG(YLQQvhyteyf)jlGHpO2HHFbu|}*;1iuq zg`2b~MK*AC6U0^!%Gmf?gsX4s=A@YT84!e{mz%Qt>{oYPpfFq4Y7`A#SQ!b3Jd`!3HsSEd@CS?0kjIwN9K4 zd!w%>noa{HT5a-+dCe%J7f;3z9MQz}mG~@Zj`!GrHS!N$FZ(}4^}JDS8k2KH8p=RjIc?|E6llz!DU>hi9= zN}iDhlzR>vTewakbVP=$#|S>-;Pe>5t`z+-f>%@IQxnFA(kusH_!`m}fjh*wO2bWb z;kOvqdeJ|X3{{y>`Nec$h({LyzpWu73B-m!JF>JRYLKc0t8KJkRnzaW zvWWQx89ry~){dw(z=L2{!{>YBu@LWiMr;R0h1rYd0f{eUiCtka^C0a=7rf1l^KO%= zfDJEyZ%$`4%ok0{hw+q=-QB-pPJz1 z*T{D)!7qsfIEzuf(N&V_F`J7`W_1-;Qf`{q&2sXLG{Y{qMN1E6ySfT!n~YcOW(xuIg`&2a$=vank8@)-Iei08M}0$N!QX=XN*=N27UYWe7f0i# z2f9AMVHxXNi09#GckJC9g)a5Qx}4=_Q}v0Kze=?_ZDqg&{dqbtM;O#D`YuTl?sGjS zgxs4(c&A3%nC0<$XNaqb*aVb=^k4U;;kH9v_Zz|X40W{QlGli@gFl*<`u?4%X_?K4C^8s2cUYnfQ4C(>_qS|DD!;b?pO z+>KRLMe>(Na(Mo)71>Rn2PNd0Vxel=H;ATtohvbhNaS2PjEW z`35{)fOpt@4INeF(@mTKvJV5Y57r$`%#hn)58z4%M8Q>3YqXnr<>(@uOAAQA|=(nmZnSDnEMP z^VP0&{e1N%7&|yFN;1sUm$prJZ9wP?#sIHFqnfI9P>lbu+>}k4Gqz;0AdQ{vx-Ouf zNRI}W+cb1vJ$i0_Nv!b3Jl6~X{lUQS?5Ktt<-svCHJC>art9zgyr~Gr>qxqRVDwYy z9SfzXvO;N=p%+S%3{4?5p-4*?x-KEqF@tKhg*>JxoM|VwVv`QvyQ;_!^(Wm}N@9i{ zw_-}k*9eVaIAbBq^FTa8(48Mo&oDec-XueIu0l4+PY{DM#hEs6=lBl90nX7H)Fu&) zVpZ8s;gd6Zh2eRRm241~5ss+g4Q9D)Hm@Ml{AyUtoZhkw9RIwlF%QtWu%*h_`R*$} z=RMEs3!C%US1#XXg4RA({T3zD#D%>f%UTY!arr7&3i?uptB&gkho+8ecZS|^y^--h za$IZqG5dC0x4mrSZ!ltDBOAyC`3O|6tq&VzIr+^C+XenwUok zd8UPgL0%q9MD|%aT<;t+Y}h~P zhW&3yw{9_dTpqS(F?w>%ta^e?vi@l#ELUOxwiAhsuN{nFQ#H}POFL-JS(Q6x~>_PzyHmciss_ehRvYK z?Quq%ic2Ewo$bVdrTTh>Z9Ms;bFb|qzJ|w68pKsd;l>t^&%{-HTGwP349AUJl!{S8 zgjqDUmotU-LI%!phUA-@{7eF+YOzBHRcW8URV~9 z&Mlsb5`Lk2r{&8!O?x)+5vRyAb%u$S9LW`p1%x`V8A|mLw>dcV5x=$9`|nfjO?-sq z2s9r70uf6@_Pcb<-hqf`>?lzt-g6Zoi6W;p@b(EbxSoWljWpgc9 zHd|(yE#(RSuno?O}Xd(HyHTgnSa8O^e8*qV~ z*(sWBC9cPf#Z{RAB}5@jk(ZY%Gd2r6VNk_2@ha?|MI@I&iKhSL7jri4{fS1%J%GvC z8q;MCjH>8O`Q z2yQ&EBElf4hUE}6Z*#|k?#mC_cSJI@qkhPP;pzyVKLj|dZ8o!U`$1#0l+pSBu3n01bAs|MGOyM zuhIN-Dq4w$A%N`=kRFP2Dthq%-7eZFgW)i(t)#)^^18zehJ9r2Po2U1LCG|ko-dJS z9)rQ|{EBI~B)?)A3hl&A(bYS_CaBR|_cEGGcWE?WiiVQbIwrrEcbPy3ZZbtP24u>_ zd#31)9QFL$>vrTBY0hIl%7($9aTPr$q0yauOwo@jvK-OLY>FO6njrkD+m-gCpQ77! z@`|;=9Gye;U-hKaHisWo5_m9vpSIXA6oxX zu}-Yt8R#8#Yaw+=2_c59y~xh(w4>qp!~X7Ocy0BWAtHUKsVUhFwbcS8d%Co#mA21F+c2A=;<%FVv|nRa32gnd5p~#^TTmHu0>sU zYyf(M;f&{pD;|j1{Lq)6sSc-S>UB6i(@HFDD0{rcQknTd&0j_}oN!Z~AHb_&Yt1M7 zY^Rrm;V&ZHzls|mF}jdDM7c}_Ta!Ig@5b(_;_G^7q~_FW7(nH3l1sTw++PafK?r71 z^Cy}3`6zdh_z8SMqh>G(geuK`n2B>fa>q)znR|sGo`VQ>vEa~*2KDg6E!^G3Kj1TR zG_C_4J7##by4OgtVoe>Q$hw;?zRwYXlGCuDzuHQFzhtsW2c0IO{=wbHpa!96-?+n> zA@70y0`b_Onvv4HmhMS{7}W(xoekL51@~_4UMkw)6FOk+LQ8fXg@6bg+Q^-NCyy8t z8qRg0xns`<27S!Dp(J@vKv)~xtBrfF*a!Aa*Yx2%L5XI@(u`R5U_l%U9?F?lYrM8m z#H0GUZFo+cTg374?#|*kSc|Q>#&%(x1p~WR8Q3T=u;Bowb&Xft?;Z%|I~BahYa z-|;ond5g5n77#X?H%7PBK)<&qV7%{7u&=p_Qe`sdtsu{sHzWC4qoqAb?yZ5sb_Q3c zysaFXx{Iv(Ewhj9i!6m%HDZY9X0>Huu~`Z7J*zs zB;2!j|ItMe`~|rYn=~oYeJ?`(UFl3|;lg|CaYB~+c>#qnoUscZ?16AD9E|TA9ba3# zchv0KAj#v=E?({%>~|OlMZezxJh4G-a7bq)^Td+7hx;bB(&IinIojPNd^c!G8?D|?svt-vkRoszd=1stsoa~-I}NtO#J*wZm&J#D z_hbQLbSE-y5|XK-ly;18w-ix?3?)u-#qa}tf;k}dkyWzvKJsQ)6CY_wyrGY@L}XX+ z!!_}d;N@xeEd6F|S27+pEAakt>v;FCU&KQx(iW9cAw z=yB&JyAL5WkKv3RYXES9|pCFbHv*pb)PbG5t|-! zpAz4u3Zr^T<|5wA3dH?(9(@2m5cW`2k^H4Srw$_gbx@*dsr2>?cRwNI3;0mJ{gF1) z-Cq0-lxy#x(HB|x;7oTj5yJE@j}IuE<@+T{;kCWX*U%f^5ndZ*<0~LvXY<1shr6|x zulID*Mx|HBn`9WOI!5EHIqoY`+8lR?AVjb>R3qeCU`E)@%LubfjL>orhDKw z`won-n|{hOZE>s3?4Rn!Ay~E5za5 zm|=ofhh14!_@);GEe7niuuFs5)GnVcc5f25Q$0~_kFFSOTS1AYh2$5Te1$;lYKm&( zJx{xT5O;&B`nxoKf%5FmH)murd=0(HR0|{+U0i>He&6d`#&Y^Tpz*M+S;3SPld%3v z@{H*Y3+vASu(uIj zG2ac7XE*3>Xe{5Xa=(vIT6a3nTg+I^6v-vat=Oc-rS3#O)U&&f87oeY+rQSm8KL_b z&UnUZ>w$1H78qLs9a|!{O<&dkg!B!%Tg_Sq?6t5CgWA+O#yQ

self._reset() @staticmethod - def _process_find_label_issues_kwargs(**kwargs: Dict[str, Any]) -> Dict[str, Any]: + def _process_find_label_issues_kwargs(**kwargs) -> Dict[str, Any]: """Searches for keyword arguments that are meant for the CleanLearning.find_label_issues method call diff --git a/master/_sources/cleanlab/datalab/guide/issue_type_description.rst b/master/_sources/cleanlab/datalab/guide/issue_type_description.rst index 84a961075..dcb1171eb 100644 --- a/master/_sources/cleanlab/datalab/guide/issue_type_description.rst +++ b/master/_sources/cleanlab/datalab/guide/issue_type_description.rst @@ -118,10 +118,12 @@ More generally, examples which happen to be duplicated can affect the final mod Non-IID Issue ------------- -Whether the dataset exhibits statistically significant violations of the IID assumption like: changepoints or shift, drift, autocorrelation, etc. The specific form of violation considered is whether the examples are ordered such that almost adjacent examples tend to have more similar feature values. If you care about this check, do **not** first shuffle your dataset -- this check is entirely based on the sequential order of your data. +Whether the overall dataset exhibits statistically significant violations of the IID assumption like: changepoints or shift, drift, autocorrelation, etc. The specific form of violation considered is whether the examples are ordered within the dataset such that almost adjacent examples tend to have more similar feature values. If you care about this check, do **not** first shuffle your dataset -- this check is entirely based on the sequential order of your data. Learn more via our blog: `https://cleanlab.ai/blog/non-iid-detection/ `_ The Non-IID issue is detected based on provided `features` or `knn_graph`. If you do not provide one of these arguments, this type of issue will not be considered. +The Non-IID issue is really a dataset-level check, not a per-datapoint level check (either a dataset violates the IID assumption or it doesn't). The per-datapoint scores returned for Non-IID issues merely highlight which datapoints you might focus on to better understand this dataset-level issue - there is not necessarily something specifically wrong with these specific datapoints. + Mathematically, the **overall** Non-IID score for the dataset is defined as the p-value of a statistical test for whether the distribution of *index-gap* values differs between group A vs. group B defined as follows. For a pair of examples in the dataset `x1, x2`, we define their *index-gap* as the distance between the indices of these examples in the ordering of the data (e.g. if `x1` is the 10th example and `x2` is the 100th example in the dataset, their index-gap is 90). We construct group A from pairs of examples which are amongst the K nearest neighbors of each other, where neighbors are defined based on the provided `knn_graph` or via distances in the space of the provided vector `features` . Group B is constructed from random pairs of examples in the dataset. The Non-IID quality score for each example `x` is defined via a similarly computed p-value but with Group A constructed from the K nearest neighbors of `x` and Group B constructed from random examples from the dataset paired with `x`. Learn more about the math behind this method in our paper: `Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors `_ diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index 0a650e172..3c94e30af 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -120,7 +120,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index 34167bfad..8c324c5db 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 066e6b2f9..6bec6d69f 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/data_monitor.ipynb b/master/_sources/tutorials/datalab/data_monitor.ipynb index fa6381239..5ec9581e3 100644 --- a/master/_sources/tutorials/datalab/data_monitor.ipynb +++ b/master/_sources/tutorials/datalab/data_monitor.ipynb @@ -71,7 +71,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index fffa0125f..4cdbf620a 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index dab77d59d..05de9b8a1 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/image.ipynb b/master/_sources/tutorials/datalab/image.ipynb index fe63052a9..39bf5d7bc 100644 --- a/master/_sources/tutorials/datalab/image.ipynb +++ b/master/_sources/tutorials/datalab/image.ipynb @@ -57,7 +57,7 @@ "You can use `pip` to install all packages required for this tutorial as follows:\n", "\n", "```ipython3\n", - "!pip install matplotlib torch torchvision datasets\n", + "!pip install matplotlib torch torchvision datasets>=2.19.0\n", "!pip install \"cleanlab[image]\"\n", "# We install cleanlab with extra dependencies for image data\n", "# Make sure to install the version corresponding to this tutorial\n", @@ -173,7 +173,7 @@ "\n", "# Apply transformations\n", "def normalize(example):\n", - " example[\"image\"] = (example[\"image\"] / 255.0).unsqueeze(0)\n", + " example[\"image\"] = (example[\"image\"] / 255.0) # each pixel value was originally between 0 and 255 \n", " return example\n", "\n", "\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index 1e5791645..0ea4a041c 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -80,7 +80,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 4b795de80..6a67699a6 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index 956d2c1f2..717272a09 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index b08057a25..937d28513 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index cbe9f390b..69465ed87 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 6a7ae4373..cce7f69a5 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index e253b5ce3..a8b1c13a3 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index b3710281e..1b95d6117 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index 17fefe1eb..897ab6748 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -110,7 +110,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 331d081b3..50fb23a4d 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 549f934af..454fe2904 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/datalab/guide/issue_type_description.html b/master/cleanlab/datalab/guide/issue_type_description.html index 8d580cb27..dfa8ec901 100644 --- a/master/cleanlab/datalab/guide/issue_type_description.html +++ b/master/cleanlab/datalab/guide/issue_type_description.html @@ -689,8 +689,9 @@

(Near) Duplicate Issue

Non-IID Issue#

-

Whether the dataset exhibits statistically significant violations of the IID assumption like: changepoints or shift, drift, autocorrelation, etc. The specific form of violation considered is whether the examples are ordered such that almost adjacent examples tend to have more similar feature values. If you care about this check, do not first shuffle your dataset – this check is entirely based on the sequential order of your data.

+

Whether the overall dataset exhibits statistically significant violations of the IID assumption like: changepoints or shift, drift, autocorrelation, etc. The specific form of violation considered is whether the examples are ordered within the dataset such that almost adjacent examples tend to have more similar feature values. If you care about this check, do not first shuffle your dataset – this check is entirely based on the sequential order of your data. Learn more via our blog: https://cleanlab.ai/blog/non-iid-detection/

The Non-IID issue is detected based on provided features or knn_graph. If you do not provide one of these arguments, this type of issue will not be considered.

+

The Non-IID issue is really a dataset-level check, not a per-datapoint level check (either a dataset violates the IID assumption or it doesn’t). The per-datapoint scores returned for Non-IID issues merely highlight which datapoints you might focus on to better understand this dataset-level issue - there is not necessarily something specifically wrong with these specific datapoints.

Mathematically, the overall Non-IID score for the dataset is defined as the p-value of a statistical test for whether the distribution of index-gap values differs between group A vs. group B defined as follows. For a pair of examples in the dataset x1, x2, we define their index-gap as the distance between the indices of these examples in the ordering of the data (e.g. if x1 is the 10th example and x2 is the 100th example in the dataset, their index-gap is 90). We construct group A from pairs of examples which are amongst the K nearest neighbors of each other, where neighbors are defined based on the provided knn_graph or via distances in the space of the provided vector features . Group B is constructed from random pairs of examples in the dataset.

The Non-IID quality score for each example x is defined via a similarly computed p-value but with Group A constructed from the K nearest neighbors of x and Group B constructed from random examples from the dataset paired with x. Learn more about the math behind this method in our paper: Detecting Dataset Drift and Non-IID Sampling via k-Nearest Neighbors

The assumption that examples in a dataset are Independent and Identically Distributed (IID) is fundamental to most proper modeling. Detecting all possible violations of the IID assumption is statistically impossible. This issue type only considers specific forms of violation where examples that tend to be closer together in the dataset ordering also tend to have more similar feature values. This includes scenarios where:

diff --git a/master/searchindex.js b/master/searchindex.js index cd0f38d94..a5769b8b4 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 80, 85, 86, 87, 94, 96, 97], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 85, 86, 87, 94, 96, 97], "generate_noise_matrix_from_trac": [0, 1, 85, 86, 87, 94, 96, 97], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 51, 52, 64, 88, 92, 103], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 86, 92, 100], "benchmark": [1, 37, 79, 80, 85, 86, 87, 94, 96, 97], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 50, 52, 57, 58, 62, 64, 65, 66, 67, 69, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "core": [1, 40, 43, 71, 73], "algorithm": [1, 2, 8, 10, 31, 38, 42, 50, 52, 57, 66, 75, 77, 79, 93, 94, 96, 103], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 55, 57, 58, 61, 65, 66, 70, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "introduc": [1, 84, 93, 94], "synthet": [1, 96, 97, 102], "nois": [1, 2, 3, 36, 43, 46, 52, 58, 85, 86, 87, 92, 96, 101], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 85, 86, 95, 99, 100], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 52, 57, 58, 59, 60, 61, 66, 67, 75, 76, 77, 78, 79, 80, 81, 84, 85, 86, 87, 95, 96, 99, 100, 101, 102], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 86, 90, 95, 96, 100], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 55, 59, 62, 65, 74, 78, 88, 90, 91, 94, 98, 103], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 52, 55, 57, 62, 65, 66, 67, 79, 88, 93, 97], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 52, 56, 57, 58, 59, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 52, 53, 66, 67, 69, 74, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 50, 52, 57, 59, 62, 65, 67, 69, 70, 78, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "matric": [1, 3, 46, 93], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 55, 57, 59, 66, 68, 70, 73, 77, 79, 82, 83, 84, 86, 88, 90, 91, 92, 96, 97, 101], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 59, 60, 61, 62, 64, 65, 66, 67, 69, 75, 77, 78, 85, 87, 93, 94, 96, 97, 98, 101, 102, 103], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 52, 58, 59, 61, 67, 69, 70, 71, 73, 74, 80, 85, 86, 87, 90, 91, 93, 95, 96], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 52, 53, 59, 62, 64, 65, 66, 67, 90, 98, 99], "trace": [1, 85, 86, 87, 94, 96, 97], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "more": [1, 2, 3, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 67, 69, 70, 73, 74, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 103], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 102, 103], "noise_matrix": [1, 2, 3, 10, 46, 52, 85, 86, 87, 94, 96, 97], "py": [1, 3, 33, 37, 38, 43, 46, 48, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 86, 94, 96], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 85], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 50, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 50, 52, 57, 65, 66, 67, 71, 90, 91, 94, 96, 103], "true_label": [1, 2, 3, 36, 46, 52, 94, 96], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 93, 94, 96, 97, 98, 99, 102, 103], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 53, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 97, 101], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 50, 64, 69, 83, 87, 91, 93, 94, 96, 97, 98, 99, 101], "achiev": [1, 2, 37, 38, 41, 69, 93, 96, 103], "better": [1, 5, 43, 57, 59, 67, 69, 70, 79, 83, 84, 87, 90, 91, 93, 94, 97, 98, 99, 103], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 57, 62, 64, 66, 67, 69, 73, 77, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 57, 67, 69, 82, 84, 85, 86, 87, 88, 90, 93, 94, 96, 97, 99], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 65, 69, 79, 82, 83, 86, 93, 94, 96, 97, 100, 101], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 50, 57, 58, 65, 66, 67, 93, 96, 99], "amount": [1, 3, 88], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 87, 88, 91], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 103], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 84, 92, 93, 94, 97, 98, 99, 102, 103], "condit": [1, 2, 3, 46, 51, 52, 67, 88, 94, 103], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 92, 93, 94, 95, 97, 98, 99, 102, 103], "k_": [1, 2, 3, 46, 52], "k_y": [1, 2, 3, 46, 52], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102], "fraction": [1, 2, 3, 10, 20, 38, 46, 52, 57, 69, 90, 93], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 51, 52, 59, 67, 69, 70, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 98, 100, 102, 103], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 52, 53, 55, 57, 58, 61, 65, 66, 67, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 102, 103], "assum": [1, 2, 3, 12, 43, 46, 51, 52, 67, 71, 74, 93, 97, 99, 101, 102, 103], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 51, 52, 57, 58, 59, 61, 62, 65, 66, 67, 69, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 52, 58, 59, 61, 64, 69, 85, 86, 87, 88, 93, 94, 96, 97, 102, 103], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 92, 93, 100], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "return": [1, 2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 97, 98, 101, 102, 103], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 52, 57, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 52, 57, 58, 59, 61, 62, 78, 83, 84, 87, 88, 90, 91, 92, 93, 94, 101, 103], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 57, 59, 61, 64, 65, 66, 67, 69, 70, 75, 77, 78, 79, 84, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103], "perfect": [1, 2, 36, 69, 94, 98], "exactli": [1, 3, 10, 36, 37, 41, 43, 60, 66, 86, 87, 88, 90, 91, 94], "yield": [1, 37, 41, 85], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 55, 57, 58, 61, 64, 66, 67, 69, 70, 73, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 50, 57, 58, 59, 64, 65, 73, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 52, 53, 56, 57, 64, 65, 67, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "loop": [1, 3, 46, 52, 88, 98], "implement": [1, 2, 3, 9, 14, 22, 37, 38, 40, 41, 46, 52, 69, 79, 82, 84, 86, 90, 99, 100], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 57, 58, 62, 64, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 50, 53, 64, 65, 69, 71, 73, 77, 83, 84, 86, 87, 88, 90, 91, 92, 97, 101, 102], "do": [1, 2, 5, 9, 10, 36, 40, 41, 52, 53, 66, 67, 71, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 56, 69, 83, 84, 86, 87, 88, 90, 91, 92, 94, 99], "pseudocod": [1, 100], "happen": [1, 10, 43, 59, 85, 91, 96, 102], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 82, 83, 84, 85, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 61, 69, 79, 83, 84, 85, 91, 93, 94, 98, 99], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 50, 51, 52, 56, 57, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102], "distinct": [1, 18, 52, 103], "natur": [1, 10, 96, 99], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 102, 103], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 51, 52, 53, 66, 67, 69, 82, 83, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 52, 53, 56, 65, 69, 70, 83, 84, 85, 86, 87, 90, 93, 94, 96, 97, 99, 101], "round": [1, 40, 43, 52, 69, 93, 101], "astyp": [1, 96], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 50, 51, 52, 53, 58, 59, 61, 65, 66, 67, 69, 71, 73, 74, 75, 78, 84, 86, 88, 98, 99], "rang": [1, 3, 5, 7, 12, 46, 48, 50, 52, 65, 69, 70, 85, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "pragma": 1, "cover": [1, 3, 80, 92, 93], "choic": [1, 8, 43, 50, 88, 93, 97, 99], "replac": [1, 51, 56, 67, 82, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 67, 84, 85, 86, 87], "05": [1, 10, 26, 30, 51, 65, 69, 75, 77, 90, 92, 93, 94, 98, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 85, 86, 87, 94, 96, 97], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 85, 86, 87, 88, 93, 94, 96, 97, 102], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 69, 82, 84, 85, 86, 87, 90, 92, 94, 96, 97], "max_it": [1, 83, 84, 91, 99], "10000": [1, 40, 92, 93], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 52, 53, 56, 57, 59, 65, 66, 67, 69, 71, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101], "diagon": [1, 3, 5, 43, 46, 52], "equal": [1, 3, 10, 12, 59, 64, 74, 100], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 52, 69, 79, 83, 84, 88, 90, 91, 93, 102, 103], "impli": [1, 10, 36, 58, 65], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 61, 64, 65, 69, 73, 77, 84, 85, 86, 87, 94, 96, 97], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 50, 52, 57, 58, 59, 62, 82, 83, 90, 91, 94, 97, 98, 101], "maximum": [1, 10, 66, 74, 78, 102], "minimum": [1, 8, 10, 20, 43, 45, 59, 64, 77], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 64, 69, 86, 93, 94, 96, 98, 99], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 86, 88, 93, 101, 102], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "necessari": [1, 2, 3, 4, 7, 10, 12, 51, 85, 86], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 56, 57, 58, 60, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 52, 57, 61, 65, 69, 74, 78, 79, 82, 83, 84, 85, 87, 91, 93, 96, 97, 99, 101], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 52, 55, 56, 59, 66, 67, 69, 71, 79, 80, 84, 92, 93, 94, 100], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 53, 56, 57, 58, 59, 61, 64, 65, 66, 67, 69, 73, 74, 75, 77, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 103], "when": [1, 2, 3, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 50, 52, 56, 59, 61, 62, 64, 66, 67, 69, 70, 82, 83, 85, 86, 87, 88, 90, 91, 92, 96, 100, 101, 102, 103], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rate": [1, 2, 3, 10, 38, 52, 84, 103], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 56, 57, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 82, 83, 85, 86, 87, 90, 91, 93, 96, 97, 99, 100, 101, 102, 103], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 52, 56, 57, 62, 64, 65, 66, 67, 69, 70, 74, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 55, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "high": [1, 2, 16, 40, 43, 52, 64, 67, 69, 82, 83, 85, 86, 87, 88, 92, 94, 98, 101, 102, 103], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 52, 57, 58, 62, 64, 65, 66, 67, 69, 71, 74, 78, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "imposs": [1, 10, 94], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 51, 56, 57, 66, 69, 74, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "low": [1, 10, 52, 57, 79, 85, 86, 87, 91, 94, 98, 102], "zero": [1, 3, 5, 37, 41, 45, 52, 53, 86, 88, 97, 98, 99], "forc": [1, 2, 3, 5, 41, 86, 103], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 52, 56, 57, 59, 61, 65, 66, 67, 69, 70, 73, 75, 77, 80, 82, 83, 84, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 56, 57, 66, 67, 69, 71, 73, 77, 78, 79, 83, 84, 86, 87, 88, 91, 96, 97, 98, 99, 100, 101, 102, 103], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 55, 80], "produc": [1, 2, 5, 9, 10, 16, 48, 57, 67, 69, 71, 73, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 102, 103], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 50, 56, 57, 58, 69, 87, 91, 93, 98], "opposit": [1, 103], "occur": [1, 3, 10, 36, 51, 64, 86, 87, 88, 93, 99], "small": [1, 3, 10, 36, 40, 48, 50, 52, 58, 65, 83, 88, 91, 92, 97, 99], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 50, 51, 53, 56, 61, 64, 69, 70, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "max": [1, 43, 66, 67, 87, 88, 99], "tri": [1, 37, 41, 100], "befor": [1, 2, 3, 37, 41, 50, 52, 66, 69, 74, 82, 83, 85, 91, 93, 94, 96, 99, 101], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 26, 30, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 84, 86, 87, 88, 90, 93, 94, 97, 101, 102], "left": [1, 2, 43, 45, 50, 52, 59, 62, 65, 85, 86, 87, 97, 98, 99, 102], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 57, 62, 64, 65, 66, 85, 86, 87, 92, 96, 97, 98, 103], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 56, 93, 94, 102], "length": [1, 5, 12, 26, 27, 36, 38, 43, 52, 59, 62, 66, 67, 69, 71, 74, 78, 82, 84, 97, 99, 102, 103], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 50, 52, 55, 56, 57, 58, 59, 66, 67, 69, 71, 73, 74, 75, 77, 78, 84, 96, 100, 102, 103], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 52, 53, 57, 59, 65, 71, 73, 74, 75, 77, 78, 82, 83, 84, 93, 96, 97, 98, 102, 103], "ball": [1, 92], "bin": [1, 3, 59, 85, 86, 87, 99], "ensur": [1, 2, 10, 37, 41, 50, 52, 53, 56, 64, 67, 69, 82, 83, 84, 86, 87, 88, 91, 93, 94, 99, 100, 101], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 56, 57, 58, 59, 62, 64, 65, 66, 67, 70, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102], "least": [1, 4, 10, 18, 31, 36, 40, 57, 58, 64, 67, 77, 87, 88, 93, 96, 99, 102], "int_arrai": [1, 52], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 97, 98, 99, 100, 101, 102, 103], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100, 102, 103], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103], "regular": [2, 3, 40, 56], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 52, 53, 58, 59, 60, 61, 66, 67, 79, 93, 94, 95], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 50, 52, 57, 59, 67, 69, 79, 83, 84, 85, 91, 92, 93, 94, 97, 99, 101, 102, 103], "cleanlearn": [2, 3, 10, 23, 30, 37, 52, 56, 68, 69, 70, 79, 80, 82, 83, 101], "wrap": [2, 37, 41, 56, 66, 69, 79, 82, 83, 85, 86, 87, 90, 91, 94, 101], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56, 65, 66, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 56, 66, 69, 70, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101], "classifi": [2, 3, 41, 48, 52, 57, 60, 66, 67, 79, 80, 82, 83, 84, 90, 91, 93, 96, 97, 99, 100, 102, 103], "adher": [2, 41, 69], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 52, 57, 58, 59, 64, 66, 69, 71, 73, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 93, 95, 98, 99, 100, 101, 102, 103], "api": [2, 3, 14, 56, 62, 65, 66, 69, 80, 93, 101], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 67, 69, 71, 84, 86, 87, 90, 92, 93, 96, 99, 103], "four": [2, 10, 92, 94, 103], "clf": [2, 3, 5, 48, 69, 79, 82, 90, 93, 94, 97], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 55, 56, 66, 68, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103], "sample_weight": [2, 41, 69, 94], "predict_proba": [2, 5, 36, 39, 41, 48, 55, 56, 82, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 99], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 83, 92, 93, 94, 95, 99, 101, 102, 103], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 50, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 99, 101], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 52, 55, 56, 57, 58, 59, 60, 64, 66, 67, 68, 69, 74, 75, 76, 77, 78, 80, 83, 88, 89, 95, 100], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 52, 53, 57, 58, 59, 60, 62, 65, 66, 67, 69, 71, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 52, 66, 69, 79, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 101], "element": [2, 3, 5, 36, 42, 43, 45, 52, 57, 59, 67, 74, 75, 77, 83, 84, 91, 93, 103], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 52, 57, 58, 62, 65, 67, 69, 82, 83, 84, 86, 88, 90, 93, 96, 97, 98, 99, 101, 102, 103], "index": [2, 10, 26, 36, 43, 51, 52, 53, 58, 67, 69, 74, 77, 78, 83, 84, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 50, 51, 52, 56, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 50, 52, 53, 55, 57, 62, 64, 66, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 99, 100, 101], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 59, 62, 65, 67, 69, 70, 79, 80, 83, 92, 93, 94, 95, 97, 98, 101, 102, 103], "size": [2, 10, 31, 37, 40, 41, 43, 48, 59, 64, 65, 69, 71, 73, 83, 85, 88, 90, 93, 94, 96, 97, 98, 100, 102], "here": [2, 5, 7, 10, 14, 40, 43, 46, 56, 57, 58, 59, 61, 62, 65, 66, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "re": [2, 5, 37, 41, 51, 57, 69, 79, 82, 83, 84, 85, 86, 90, 91, 93, 101, 102, 103], "weight": [2, 10, 37, 38, 41, 48, 57, 64, 67, 69, 83, 84, 85, 86, 87, 91], "loss": [2, 38, 56, 67, 69, 88], "while": [2, 3, 10, 37, 40, 41, 47, 48, 52, 69, 79, 88, 93, 94, 96, 97, 101], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 52, 56, 57, 62, 65, 66, 69, 70, 80, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 52, 53, 56, 66, 67, 77, 79, 80, 84, 85, 86, 87, 88, 93], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 52, 55, 56, 57, 58, 59, 61, 66, 67, 69, 70, 71, 73, 74, 80, 82, 83, 84, 85, 88, 90, 92, 96, 97, 98, 99, 100, 101, 102, 103], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 57, 86, 87, 88, 93, 100, 101], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 53, 58, 59, 64, 65, 69, 71, 83, 91, 93, 97, 98, 101, 102], "clonabl": [2, 69], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 57, 62, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 64, 66, 67, 69, 70, 73, 75, 77, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "clone": [2, 69, 97], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 61, 65, 69, 75, 80, 84, 86, 93, 94, 96, 97, 98, 99, 101, 103], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 50, 51, 57, 58, 59, 61, 64, 65, 69, 79, 86, 87, 88, 93, 95, 97, 98, 101], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 52, 59, 60, 62, 65, 66, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "manual": [2, 69, 82, 83, 84, 93, 99, 100, 101, 103], "pytorch": [2, 37, 38, 41, 69, 79, 84, 88, 93, 95, 97, 102], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 52, 56, 66, 69, 83, 84, 85, 86, 87, 91, 93, 94, 97, 99, 100, 101, 102, 103], "__init__": [2, 38, 69, 88], "independ": [2, 3, 10, 58, 69, 91, 100, 101, 103], "compat": [2, 37, 40, 41, 56, 69, 70, 73, 77, 79, 82, 83, 93, 100, 101], "neural": [2, 38, 56, 66, 69, 84, 88, 93, 97, 99, 101], "network": [2, 37, 38, 41, 56, 66, 69, 83, 84, 88, 91, 93, 97, 99, 101], "typic": [2, 37, 41, 66, 69, 82, 83, 84, 87, 88, 90, 91, 99, 100], "initi": [2, 3, 13, 18, 37, 41, 57, 69, 82, 91, 93], "insid": [2, 41, 69, 93, 94], "There": [2, 3, 7, 79, 94, 96], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 62, 64, 65, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 52, 57, 69, 83, 84, 86, 91, 92, 93, 99, 100, 103], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 73, 77, 79, 82, 88, 90, 91, 94, 96, 97, 98, 100, 102, 103], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 52, 55, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "prune": [2, 3, 43, 59, 69, 80, 98], "everyth": [2, 65, 94], "els": [2, 65, 85, 86, 88, 92, 93, 96, 97, 98], "mathemat": [2, 3, 10, 46, 97], "keep": [2, 13, 14, 52, 79, 85, 86, 92, 93, 102], "belong": [2, 3, 10, 36, 43, 45, 46, 58, 59, 60, 61, 66, 67, 71, 75, 77, 78, 87, 88, 94, 97, 99, 102, 103], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 70, 74, 75, 77, 78, 92, 93, 100], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 52, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 95], "erron": [2, 3, 36, 43, 46, 52, 58, 59, 67, 69, 70, 71, 99, 101], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 50, 51, 57, 61, 64, 69, 70, 75, 77, 78, 79, 82, 83, 90, 91, 93, 97, 98, 99, 101, 102, 103], "linear_model": [2, 5, 36, 52, 69, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logisticregress": [2, 3, 5, 36, 52, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logreg": 2, "cl": [2, 14, 30, 69, 79, 82, 83, 93, 94, 101], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 52, 56, 57, 59, 65, 66, 67, 69, 74, 75, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 96, 98, 99, 101], "x_train": [2, 82, 85, 86, 87, 94, 96, 97, 101], "labels_maybe_with_error": 2, "had": [2, 3, 69, 98], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 89, 95, 96, 100, 101], "pred": [2, 43, 52, 82, 83, 100, 101], "x_test": [2, 82, 85, 86, 87, 94, 97, 101], "might": [2, 5, 57, 69, 74, 82, 83, 86, 87, 88, 93, 98], "case": [2, 3, 10, 13, 36, 48, 57, 69, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 99, 101, 103], "standard": [2, 3, 5, 30, 36, 43, 56, 58, 59, 61, 67, 69, 79, 82, 86, 87, 90, 92, 94, 98], "adapt": [2, 37, 39, 52, 55, 69, 99], "skorch": [2, 69, 79, 93], "kera": [2, 55, 62, 65, 69, 79, 93, 98], "scikera": [2, 56, 69, 93], "open": [2, 40, 92, 98, 103], "doesn": [2, 69, 79], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 50, 51, 61, 66, 67, 69, 75, 77, 78, 79, 86, 87, 88, 90, 91, 92, 94, 97, 98, 101, 103], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 56, 57, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 56, 62, 64, 66, 69, 79, 80, 82, 83, 86, 87, 91, 96, 103], "made": [2, 5, 16, 37, 41, 69, 82, 83, 88, 91, 93, 96, 98, 100, 101], "easi": [2, 11, 46, 69, 86, 87, 92, 93, 94, 97], "inherit": [2, 7, 38, 69], "baseestim": [2, 41, 69], "yourmodel": [2, 69], "def": [2, 7, 14, 37, 41, 56, 69, 83, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 66, 67, 69, 82, 83, 86, 88, 91, 92, 97, 102, 103], "refer": [2, 10, 16, 37, 41, 42, 58, 59, 61, 62, 64, 65, 69, 73, 74, 86, 87, 88, 90, 91, 93, 94, 97, 100, 101], "origin": [2, 5, 10, 41, 42, 43, 51, 52, 56, 58, 59, 62, 65, 66, 69, 70, 73, 75, 77, 82, 83, 86, 88, 90, 91, 93, 94, 98, 99, 101, 103], "total": [2, 3, 4, 36, 40, 52, 58, 78, 85, 88, 93, 102], "state": [2, 3, 5, 37, 38, 41, 47, 69, 94, 97, 98, 103], "art": [2, 38, 94, 97], "northcutt": [2, 3, 36, 66, 67], "et": [2, 3, 36, 38, 66, 67], "al": [2, 3, 36, 38, 66, 67], "2021": [2, 3, 36, 66, 67], "weak": [2, 65], "supervis": [2, 10, 86, 87, 93, 96], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 51, 52, 55, 62, 65, 66, 67, 69, 71, 75, 77, 80, 86, 95, 100], "uncertainti": [2, 10, 45, 66, 69, 93, 99, 101], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 50, 57, 64, 65, 69, 79, 83, 86, 87, 88, 91, 93, 94, 97, 100], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 51, 52, 53, 56, 57, 67, 69, 79, 80, 83, 85, 86, 87, 92, 99, 101], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 52, 55, 57, 58, 61, 62, 66, 67, 69, 73, 74, 75, 77, 79, 80, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 103], "deep": [2, 39, 41, 55, 56, 69, 91], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "subfield": 2, "theori": [2, 94], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 50, 55, 69, 82, 83, 86, 87, 92, 96], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 58, 65, 66, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 100, 101], "varieti": [2, 82, 83, 93], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 52, 56, 57, 58, 61, 62, 64, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "pu": [2, 52], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 53, 56, 65, 69, 79, 80, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "discret": [2, 34, 43, 46, 52, 66, 67, 71, 73, 74], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 52, 66, 67, 79, 83, 84, 86, 87, 88, 90, 91, 94, 97, 98, 99, 102, 103], "would": [2, 3, 5, 37, 40, 41, 43, 52, 59, 69, 79, 83, 85, 86, 88, 93, 94, 99, 101, 103], "obtain": [2, 5, 8, 10, 16, 43, 57, 59, 62, 65, 67, 70, 84, 87, 91, 93, 96, 98, 100, 102, 103], "been": [2, 4, 36, 43, 46, 51, 52, 57, 58, 62, 64, 66, 67, 69, 84, 86, 90, 93, 94, 96, 97, 98, 99, 102, 103], "dure": [2, 10, 16, 66, 69, 82, 83, 84, 85, 90, 91, 93, 94, 97, 100, 101, 103], "denot": [2, 3, 46, 48, 52, 59, 66, 67, 77], "tild": 2, "paper": [2, 4, 10, 57, 66, 75, 77, 92, 94, 96, 99, 101, 103], "cv_n_fold": [2, 3, 69, 83], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 52, 57, 58, 61, 62, 65, 69, 70, 77, 83, 86, 91, 92, 93, 97, 98, 99, 100, 102, 103], "converge_latent_estim": [2, 3], "pulearn": [2, 52], "find_label_issues_kwarg": [2, 10, 69, 80, 93, 94], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 59, 75, 93], "clean": [2, 64, 67, 69, 70, 79, 82, 83, 85, 86, 87, 92, 101], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 52, 69, 84, 93, 94, 96, 97, 98], "messi": [2, 69, 94], "ridden": [2, 69], "autom": [2, 9, 10, 69, 79, 87, 92, 93], "robust": [2, 46, 69, 87, 93], "prone": [2, 69], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 56, 59, 60, 62, 65, 66, 67, 69, 70, 78, 79, 80, 83, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 57, 64, 69, 85, 86, 87, 93, 96, 98], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 57, 73, 77, 84, 86, 87, 91, 94], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61, 64, 65, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 96, 98, 100, 103], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 57, 58, 62, 64, 65, 66, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "experiment": [2, 37, 38, 40, 41, 42, 59, 80, 85, 93], "wrapper": [2, 56, 82, 83, 84, 101], "around": [2, 64, 85, 86, 87, 98, 99, 103], "fasttext": [2, 55], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 66, 69, 82, 83, 85, 90, 91, 92, 93, 102, 103], "along": [2, 48, 59, 77, 85, 86, 87, 88, 93, 99], "dimens": [2, 52, 71, 74, 88, 93, 99, 102], "select": [2, 9, 10, 26, 57, 67, 88, 93, 96, 99], "split": [2, 3, 5, 10, 12, 40, 48, 51, 52, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 97, 100, 103], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 59, 62, 65, 67, 69, 70, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "fold": [2, 3, 36, 43, 46, 69, 82, 84, 90, 92, 93, 98, 102], "By": [2, 36, 58, 59, 69, 86, 93, 102], "need": [2, 3, 10, 36, 37, 40, 41, 43, 58, 59, 61, 66, 69, 79, 83, 84, 86, 87, 91, 93, 94, 96, 97, 98, 102], "holdout": [2, 3, 69], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 52, 57, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 79, 80, 83, 86, 87, 92, 94, 95, 98, 99, 101, 102], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 55, 57, 66, 69, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 102, 103], "numer": [2, 3, 5, 10, 13, 22, 30, 34, 48, 64, 66, 69, 74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96, 97, 99, 101], "consist": [2, 3, 37, 41, 52, 57, 102, 103], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 50, 52, 56, 59, 64, 67, 69, 70, 73, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 103], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 52, 58, 69, 87, 91], "close": [2, 3, 10, 40, 46, 66, 84, 86, 87, 88, 90, 91, 93, 94, 98], "form": [2, 3, 10, 37, 38, 41, 46, 51, 52, 67, 69, 93], "equival": [2, 3, 37, 41, 46, 66, 99, 101], "iter": [2, 3, 36, 37, 41, 43, 52, 58, 59, 69, 85, 93, 96, 102], "enforc": [2, 37, 41, 52], "perfectli": [2, 36, 58, 94], "certain": [2, 3, 5, 37, 41, 56, 65, 69, 85, 86, 87, 92, 98, 99], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 77, 85, 86, 87, 88, 93, 103], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 56, 57, 59, 65, 66, 67, 69, 74, 75, 77, 86], "filter": [2, 3, 10, 40, 42, 51, 58, 60, 61, 63, 65, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 93, 97, 98, 101, 102, 103], "particularli": [2, 79, 96, 99], "filter_bi": [2, 3, 40, 43, 59, 80, 93], "frac_nois": [2, 43, 59, 75, 93], "min_examples_per_class": [2, 43, 59, 87, 93, 94], "impact": [2, 4, 10, 86, 87, 88], "ml": [2, 4, 5, 9, 10, 15, 69, 79, 82, 83, 86, 87, 88, 90, 91, 96, 97, 101], "accuraci": [2, 38, 67, 82, 83, 84, 88, 93, 94, 96, 99, 101, 102], "n_job": [2, 40, 43, 59, 71, 73, 75, 93, 99, 102], "disabl": [2, 37, 41, 43, 99], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 57, 59, 65, 71, 73, 75, 83, 84, 85, 86, 93, 96, 100], "caus": [2, 43, 48, 86, 87, 93], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 58, 59, 60, 62, 63, 65, 66, 68, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 87, 92, 93, 97, 98, 99, 102, 103], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 57, 59, 60, 61, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 80, 93, 94, 97, 98, 102, 103], "adjust_pred_prob": [2, 10, 61, 66, 67, 94], "control": [2, 5, 9, 10, 16, 40, 43, 57, 65, 66, 69, 75, 77, 86, 87, 92, 93], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 52, 57, 58, 61, 62, 64, 66, 67, 69, 73, 77, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 98, 99, 100, 101, 102], "much": [2, 10, 36, 40, 43, 69, 85, 92, 93, 94, 96, 99], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 52, 56, 57, 58, 62, 64, 65, 66, 69, 73, 74, 77, 78, 79, 80, 83, 84, 86, 88, 91, 92, 93, 98, 99, 100, 101], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 52, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 85, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "suppress": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74, 102, 103], "statement": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74], "big": [2, 40, 59, 65, 69, 94], "limit": [2, 5, 16, 40, 59, 85, 98, 102, 103], "memori": [2, 37, 40, 41, 59, 65, 71, 73, 85, 86, 102], "label_issues_batch": [2, 39, 59, 93], "find_label_issues_batch": [2, 39, 40, 59, 93], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 52, 53, 57, 58, 59, 61, 62, 65, 66, 67, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 50, 64, 65, 66, 67, 73, 77, 86, 98, 99, 102, 103], "inverse_noise_matrix": [2, 3, 10, 46, 52, 80, 94], "label_issu": [2, 40, 43, 59, 62, 69, 71, 80, 82, 83, 84, 88, 91, 93, 94, 97, 101], "clf_kwarg": [2, 3, 10, 69], "clf_final_kwarg": [2, 69], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 73, 77, 79, 84, 88, 90, 91, 94, 96, 98, 100, 101], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 50, 52, 59, 61, 62, 65, 67, 69, 70, 71, 73, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 101, 102, 103], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 59, 62, 65, 67, 69, 70, 71, 74, 75, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 97, 99, 101, 102, 103], "final": [2, 10, 69, 82, 90, 98, 100, 101], "remain": [2, 69, 80, 82, 83, 88, 97, 101, 103], "datasetlik": [2, 52, 69], "beyond": [2, 5, 7, 9, 10, 11, 35, 79, 82, 83, 101, 102], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 56, 57, 58, 69, 77, 82, 83, 84, 86, 87, 90, 91, 93, 94, 96, 101, 103], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 52, 53, 56, 57, 58, 69, 74, 78, 80, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101, 102, 103], "scipi": [2, 5, 13, 52], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 52, 53, 87, 88, 90, 91, 94], "csr_matrix": [2, 4, 5, 13, 16, 18, 31], "torch": [2, 37, 38, 41, 83, 84, 88, 91, 92, 99], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 56, 57, 62, 65, 69, 79, 80, 84, 86, 87, 88, 93, 94, 99], "tensorflow": [2, 52, 56, 79, 84, 93], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 52, 53, 56, 59, 62, 63, 64, 65, 66, 69, 77, 79, 83, 84, 87, 88, 90, 93, 94, 95, 97, 101], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 73, 74, 75, 77, 78, 80, 83, 84, 85, 86, 87, 88, 92, 93, 94, 97, 98, 101, 103], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 52, 67, 74, 78, 82, 83, 84, 88, 90, 91, 93, 97, 98, 99, 100, 101, 103], "wa": [2, 3, 12, 14, 40, 50, 52, 57, 58, 64, 66, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103], "abl": [2, 3, 10, 69, 84, 93, 94, 96, 97], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 82, 84, 86, 87, 88, 90, 92, 96, 101, 102, 103], "make": [2, 3, 5, 18, 37, 40, 41, 48, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "sure": [2, 5, 40, 43, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101], "shuffl": [2, 10, 52, 84, 88, 91, 97, 99], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 52, 57, 62, 64, 69, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 94, 96, 97, 98, 99, 100, 101, 103], "batch": [2, 40, 52, 56, 57, 71, 73, 85, 88, 93, 99], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 50, 52, 57, 58, 59, 62, 65, 66, 67, 71, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103], "destroi": [2, 52], "oper": [2, 37, 40, 41, 52, 56, 67, 79, 82, 83, 91, 93, 99], "eg": [2, 5, 10, 52, 62, 65, 86, 87, 93], "repeat": [2, 52, 57, 96, 99], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 52, 61, 66, 75, 82, 83, 84, 85, 86, 87, 88, 90, 93, 96, 97, 99, 100, 101, 102], "array_lik": [2, 3, 36, 43, 52, 59, 66, 70], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 52, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "seri": [2, 3, 40, 52, 53, 69, 77, 93], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 52, 57, 58, 59, 61, 66, 67, 69, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 99, 103], "rather": [2, 3, 5, 26, 36, 52, 56, 57, 64, 73, 77, 83, 92, 96, 100, 101, 102, 103], "leav": [2, 43], "per": [2, 3, 5, 7, 13, 36, 40, 43, 48, 51, 57, 58, 59, 61, 64, 65, 67, 70, 71, 73, 77, 87, 93, 98, 103], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 52, 57, 59, 62, 64, 67, 73, 77, 86, 93, 96, 98, 99, 101], "cutoff": [2, 3, 99], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 52, 57, 64, 66, 67, 70, 73, 77, 82, 83, 84, 88, 90, 91, 93, 94, 98, 99, 100, 101, 102], "section": [2, 3, 7, 10, 80, 88, 90, 93, 98], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 59, 66, 67, 69, 70, 75, 77, 92, 93, 100], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 64, 66, 77, 80, 87, 89, 93, 94], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 56, 64, 66, 67, 69, 73, 77, 85, 94], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 56, 57, 58, 59, 62, 64, 66, 67, 69, 70, 78, 80, 83, 84, 87, 88, 91, 96, 98, 101], "automat": [2, 3, 5, 26, 36, 79, 82, 83, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103], "greater": [2, 3, 5, 7, 9, 10, 28, 40, 52, 64, 87, 92, 93, 103], "count": [2, 22, 26, 36, 40, 43, 46, 52, 58, 59, 65, 80, 88, 93, 98], "observ": [2, 3, 46, 84, 85, 86, 87, 96, 99, 101], "mislabel": [2, 10, 36, 40, 42, 43, 46, 57, 58, 59, 62, 64, 67, 73, 75, 77, 79, 82, 83, 84, 88, 90, 91, 93, 94, 98, 101], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 99, 100, 101, 103], "get_label_issu": [2, 39, 40, 68, 69, 82, 83, 94, 101], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 57, 59, 64, 66, 67, 71, 73, 85, 87, 93, 97, 98], "boolean": [2, 7, 10, 22, 40, 43, 51, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 84, 87, 88, 91, 93, 98, 101, 102], "label_issues_mask": [2, 43, 67, 69, 80], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 50, 51, 59, 62, 65, 66, 67, 69, 71, 75, 77, 79, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103], "return_indices_ranked_bi": [2, 40, 43, 59, 75, 80, 82, 83, 93, 94], "significantli": [2, 88, 94, 96, 100], "reduc": [2, 40, 43, 52, 84, 93], "time": [2, 10, 37, 40, 41, 52, 57, 80, 82, 83, 85, 86, 88, 92, 93, 94, 98, 99, 101, 102, 103], "take": [2, 5, 10, 36, 37, 41, 47, 48, 52, 56, 67, 82, 85, 88, 90, 96, 97, 98, 103], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 103], "skip": [2, 10, 37, 41, 69, 84, 93, 97, 103], "slow": [2, 3], "step": [2, 7, 26, 48, 65, 85, 88, 94, 96, 100], "caution": [2, 5, 93], "previous": [2, 5, 13, 52, 66, 69, 80, 82, 84, 86, 90, 91, 96, 100], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 52, 69, 82, 86, 88, 90, 93, 101, 102, 103], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 57, 61, 64, 67, 69, 75, 77, 80, 82, 87, 90, 92, 93, 96, 97, 98, 103], "still": [2, 40, 41, 52, 66, 82, 84, 88, 93, 99], "extra": [2, 37, 41, 52, 56, 57, 58, 69, 88, 91, 93, 96, 99], "receiv": [2, 10, 37, 41, 42, 58, 61, 62, 69, 71, 75, 87, 98], "overwritten": [2, 69], "callabl": [2, 3, 37, 41, 48, 51, 56, 61, 93], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 51, 52, 65, 67, 69, 74, 84, 85, 86, 87, 88, 93, 94, 97, 103], "appropri": [2, 10, 16, 34, 59, 67, 86, 90, 97, 98], "earli": [2, 88], "stop": [2, 88], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 52, 66, 82, 86, 88, 90, 97, 101, 103], "f": [2, 7, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "ignor": [2, 37, 41, 51, 56, 69, 74, 78, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "allow": [2, 36, 37, 40, 41, 45, 52, 57, 65, 66, 69, 71, 73, 83, 84, 85, 88, 93, 100, 102], "access": [2, 10, 13, 37, 41, 69, 83, 87, 88, 91, 92, 97], "hyperparamet": [2, 61, 66, 88], "purpos": [2, 86, 87, 93, 97, 101], "want": [2, 5, 10, 36, 40, 53, 57, 59, 69, 83, 85, 86, 88, 91, 92, 96, 98, 99, 100, 102, 103], "explicitli": [2, 8, 10, 41, 69, 93], "yourself": [2, 5, 40, 87], "altern": [2, 7, 10, 48, 52, 56, 57, 67, 80, 83, 84, 88, 90, 91, 92, 93, 94, 96, 97, 99, 101], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 52, 56, 57, 59, 66, 67, 69, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 97, 98, 99, 100, 101, 102], "effect": [2, 10, 27, 37, 41, 57, 66, 69, 88, 90, 91, 93, 99], "offer": [2, 5, 9, 10, 83, 84, 86, 87, 91, 93, 94, 97], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 57, 69, 83, 86, 88, 91, 93, 94, 96, 98, 99, 100, 101, 102], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 66, 69, 82, 86], "label_issues_df": [2, 69, 88], "similar": [2, 10, 36, 37, 41, 52, 57, 61, 62, 64, 66, 69, 73, 77, 85, 86, 87, 88, 90, 91, 93, 94, 98, 99, 102], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 51, 56, 58, 59, 61, 64, 65, 66, 69, 73, 74, 75, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 52, 62, 69, 86, 87], "were": [2, 3, 5, 36, 41, 58, 64, 77, 82, 84, 90, 93, 94, 96, 98, 100, 102], "present": [2, 3, 5, 10, 12, 13, 20, 36, 52, 66, 74, 79, 88, 90, 93, 99], "actual": [2, 3, 5, 36, 57, 58, 67, 87, 93, 94, 103], "num_class": [2, 36, 40, 52, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99], "uniqu": [2, 31, 52, 74, 86, 93, 97, 99], "given_label": [2, 5, 25, 30, 36, 46, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102, 103], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 50, 51, 52, 67, 93, 94, 99], "trick": [2, 93], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 50, 57, 65, 66, 67, 79, 85, 86, 87, 88, 90, 91, 98, 99], "account": [2, 36, 57, 61, 66, 67, 83, 91, 93, 94, 96, 97, 99, 101], "word": [2, 3, 51, 77, 78, 93], "remov": [2, 10, 31, 36, 37, 41, 43, 69, 79, 82, 83, 87, 88, 90, 91, 92, 93, 94, 97, 99, 101], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 52, 57, 58, 64, 67, 69, 73, 77, 84, 86, 87, 88, 91, 94, 97, 99, 102], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 52, 56, 67, 69, 71, 79, 80, 82, 83, 84, 87, 88, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 50, 51, 52, 57, 59, 61, 66, 67, 69, 70, 71, 79, 82, 83, 84, 88, 91, 92, 93, 94, 99, 100, 101], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 50, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 79, 82, 83, 85, 86, 89, 92, 95, 97, 101, 102, 103], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 52, 67, 69], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 56, 65, 69, 71, 73, 74, 75, 93], "test": [2, 5, 10, 26, 41, 48, 56, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 100, 101, 103], "expect": [2, 3, 37, 41, 43, 48, 57, 66, 67, 69, 82, 83, 93, 94, 96, 97, 98, 101, 103], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 65, 69, 82, 83, 84, 86, 87, 88, 93, 94, 96, 100, 101, 102], "simpli": [2, 10, 36, 67, 83, 86, 87, 90, 91, 93, 94, 97, 101, 102, 103], "quantifi": [2, 4, 5, 7, 10, 13, 43, 61, 66, 69, 79, 87, 88, 90, 91, 94, 98], "save_spac": [2, 10, 68, 69], "potenti": [2, 10, 36, 43, 51, 59, 62, 65, 67, 69, 71, 73, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "cach": [2, 83, 91], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 52, 53, 56, 57, 58, 80, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 96, 101, 102], "unlik": [2, 10, 43, 45, 48, 56, 58, 59, 61, 77, 86, 96, 97, 99, 101], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 52, 57, 59, 67, 71, 73, 78, 79, 86, 88, 93, 94, 96, 103], "mask": [2, 40, 43, 51, 52, 59, 62, 67, 69, 71, 73, 74, 79, 85, 92, 93, 96, 98, 102, 103], "prefer": [2, 67, 75, 97], "plan": 2, "subsequ": [2, 3, 37, 41, 83, 91, 93, 94, 98], "invok": [2, 37, 41, 94, 100], "scratch": [2, 69], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 56, 57, 59, 61, 65, 66, 67, 69, 70, 71, 73, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "share": [2, 67, 69], "mostli": [2, 52, 64, 69, 97, 101], "longer": [2, 34, 47, 48, 51, 69, 80, 83, 91, 93, 98], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 69, 77, 86, 87, 92, 103], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 57, 58, 61, 65, 69, 74, 77, 84, 86, 88, 90, 91, 92, 93, 94, 96, 99], "docstr": [2, 36, 37, 41, 52, 69, 92, 94], "unless": [2, 37, 41, 69, 93], "our": [2, 3, 10, 56, 57, 67, 69, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "is_label_issu": [2, 30, 69, 83, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "entir": [2, 10, 26, 40, 43, 46, 58, 59, 64, 67, 69, 71, 73, 74, 79, 85, 86, 87, 93, 98, 99, 100, 102, 103], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 57, 58, 59, 62, 65, 67, 69, 70, 71, 73, 74, 80, 87, 88, 90, 91, 93, 96, 101], "label_qu": [2, 57, 69, 83, 94, 96, 101], "measur": [2, 5, 36, 57, 58, 69, 79, 82, 92, 93, 94, 96, 97, 101, 102, 103], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 57, 58, 59, 61, 62, 64, 67, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 101], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 50, 57, 58, 61, 64, 65, 67, 69, 70, 73, 77, 83, 84, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "eas": 2, "comparison": [2, 37, 41, 65, 94, 96], "against": [2, 37, 41, 86, 90, 93, 96, 97], "predicted_label": [2, 5, 25, 30, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102], "ad": [2, 37, 41, 85, 87, 96, 101], "precis": [2, 50, 59, 62, 65, 92, 93, 94, 102, 103], "definit": [2, 7, 34, 48, 69, 82, 90], "accessor": [2, 69], "describ": [2, 10, 18, 57, 66, 67, 69, 75, 77, 94, 96, 97, 98, 100, 103], "precomput": [2, 4, 5, 46, 69, 87, 88, 90, 91, 92, 94], "clear": [2, 37, 41, 69, 83, 91, 101], "save": [2, 5, 16, 37, 40, 41, 65, 69, 93, 98, 102, 103], "space": [2, 5, 10, 66, 69, 88, 90, 92], "place": [2, 37, 41, 52, 69, 82, 96], "larg": [2, 9, 10, 40, 69, 88, 90, 91, 93, 98, 99, 102, 103], "deploi": [2, 9, 10, 69, 88, 90, 91, 93], "care": [2, 10, 37, 41, 69, 91, 93, 94], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 69, 93, 94, 96, 98, 101], "cannot": [2, 5, 12, 14, 52, 100, 103], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 69], "__init_subclass__": [2, 39, 41, 68, 69], "set_": [2, 41, 69], "_request": [2, 41, 69], "pep": [2, 41, 69], "487": [2, 41, 69], "look": [2, 5, 7, 16, 37, 41, 52, 69, 74, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 103], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 52, 57, 58, 62, 65, 69, 74, 77, 78, 79, 84, 85, 86, 90, 91, 92, 94, 96, 99, 102, 103], "__metadata_request__": [2, 41, 69], "infer": [2, 41, 52, 69, 74, 78, 82, 83, 88, 96, 97], "signatur": [2, 37, 41, 69], "accept": [2, 37, 41, 50, 67, 69, 86, 87, 93], "metadata": [2, 41, 69, 88, 90, 91, 103], "through": [2, 5, 7, 41, 69, 83, 84, 85, 87, 91, 92, 93, 96, 98, 99], "develop": [2, 9, 41, 69, 93, 94, 103], "request": [2, 41, 69, 82, 83, 87, 91, 92, 97, 103], "those": [2, 3, 4, 10, 40, 41, 43, 56, 57, 59, 65, 69, 73, 77, 78, 79, 84, 88, 93, 98, 102], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 52, 62, 65, 66, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "www": [2, 41, 69, 99], "org": [2, 4, 18, 37, 38, 41, 52, 66, 69, 93, 94, 103], "dev": [2, 41, 69], "0487": [2, 41, 69], "get_metadata_rout": [2, 39, 41, 68, 69], "rout": [2, 41, 69], "pleas": [2, 37, 41, 56, 69, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 101, 103], "guid": [2, 7, 10, 41, 69, 80, 88, 89], "mechan": [2, 37, 41, 69], "metadatarequest": [2, 41, 69], "encapsul": [2, 16, 41, 64, 69], "get_param": [2, 39, 41, 55, 56, 68, 69], "subobject": [2, 41, 69], "param": [2, 10, 37, 41, 56, 66, 69, 93], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 57, 58, 65, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "set_fit_request": [2, 39, 41, 68, 69], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 56, 57, 58, 62, 64, 65, 67, 69, 74, 78, 84, 85, 86, 93, 96, 97, 98, 103], "unchang": [2, 37, 41, 69, 103], "relev": [2, 16, 26, 41, 69, 88], "enable_metadata_rout": [2, 41, 69], "set_config": [2, 41, 69], "meta": [2, 41, 69], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 50, 69, 84, 93], "alia": [2, 37, 41, 69], "metadata_rout": [2, 41, 69], "retain": [2, 41, 52, 69], "chang": [2, 32, 34, 37, 40, 41, 45, 69, 77, 82, 83, 84, 86, 91, 93, 98, 99, 103], "version": [2, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 52, 55, 56, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "sub": [2, 41, 64, 69], "pipelin": [2, 41, 69, 101], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 50, 51, 52, 59, 66, 69, 71, 73, 74, 78, 83, 91, 93], "updat": [2, 13, 37, 40, 41, 56, 69, 80, 85, 86, 88], "set_param": [2, 39, 41, 55, 56, 68, 69], "simpl": [2, 37, 41, 43, 57, 67, 69, 82, 83, 85, 86, 87, 88, 90, 91, 96, 99, 101], "well": [2, 3, 9, 10, 37, 41, 45, 46, 57, 59, 65, 67, 69, 74, 77, 78, 80, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99], "nest": [2, 37, 41, 42, 53, 69, 75, 77, 78, 103], "latter": [2, 37, 41, 69, 99], "compon": [2, 41, 69], "__": [2, 41, 69], "set_score_request": [2, 68, 69], "structur": [3, 66, 85, 90, 93], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 57, 66, 67, 71, 73, 77, 87, 88, 90, 92, 93, 94, 98, 103], "channel": [3, 84, 94], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 52, 58, 83, 87, 92], "inv": 3, "confident_joint": [3, 22, 36, 43, 52, 58, 59, 80, 93, 94], "un": 3, "under": [3, 10, 37, 41, 58, 65, 66, 87, 99], "joint": [3, 36, 43, 46, 52, 58, 59, 92], "num_label_issu": [3, 40, 43, 59, 74, 78, 80], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 52, 53, 59, 97], "don": [3, 79, 87, 88, 90, 91, 94, 98, 101], "statis": 3, "compute_confident_joint": [3, 36, 43, 52, 59, 94], "off": [3, 43, 52, 64, 88, 94, 98, 99], "j": [3, 5, 36, 37, 41, 42, 43, 59, 62, 65, 66, 75, 77, 78, 85, 86, 87, 94, 102, 103], "confident_learn": [3, 43, 59, 94], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 52, 57, 96], "cj": [3, 46, 52], "axi": [3, 31, 46, 48, 50, 71, 74, 84, 85, 86, 87, 88, 93, 94, 96, 97, 99, 101, 102], "bincount": [3, 85, 86, 87, 94, 96, 97], "alwai": [3, 10, 37, 41, 52, 82, 83, 84, 94, 101], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 64, 65, 71, 73, 82, 87, 88, 90, 92, 93, 94, 99, 101], "As": [3, 7, 79, 86, 87, 91, 94, 101, 103], "add": [3, 5, 7, 12, 13, 37, 41, 56, 65, 83, 84, 85, 86, 87, 88, 91, 93, 94, 97], "approach": [3, 36, 40, 43, 56, 82, 85, 90, 94, 97, 99, 101], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 51, 67, 83, 87, 91, 94, 101], "know": [3, 10, 86, 87, 88, 90, 91, 93, 94, 96, 101], "cut": [3, 64, 79, 94], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 98, 99, 103], "underestim": 3, "few": [3, 9, 10, 65, 79, 87, 93, 96, 97, 98, 99, 103], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 51, 61, 62, 64, 65, 67, 70, 77, 92, 93, 97, 102, 103], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 73, 74, 75, 79, 80, 84, 93, 97, 99, 103], "num_issu": [3, 7, 40, 84, 85, 86, 87, 88, 90, 91, 94], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 56, 57, 83, 85, 92, 93, 98, 101, 103], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 94], "v": [3, 10, 40, 58, 59, 61, 67, 85, 86, 87, 97, 98, 99, 100], "rest": [3, 5, 7, 9, 10, 11, 35, 58, 59, 61, 69, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101], "fashion": [3, 5, 71, 82], "2x2": 3, "incorrectli": [3, 36, 58, 59, 62, 90, 103], "calibrated_cj": 3, "c": [3, 10, 50, 51, 59, 67, 79, 82, 84, 86, 87, 90, 91, 93, 94, 97, 98, 99, 100, 101], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 57, 61, 64, 70, 73, 77, 78, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 102, 103], "truli": [3, 99, 102], "estimate_joint": [3, 36, 94], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 59, 65, 94, 98, 100, 102, 103], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 57, 58, 65, 74, 98, 99], "done": [3, 10, 56, 69, 86, 93, 94, 97, 99, 100], "overfit": [3, 10, 62, 65, 82, 84, 85, 86, 87, 88, 90, 91, 100], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 52, 57, 58, 64, 65, 66, 67, 77, 82, 84, 85, 86, 93, 94, 97, 98], "baselin": [3, 37, 43, 83, 99, 101], "proxi": 3, "union": [3, 5, 12, 48, 52, 53, 59, 65, 69, 77, 93], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 52, 57, 59, 65, 73, 75, 77, 78, 84, 103], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 5, 10, 40, 46, 57, 71, 73, 79, 83, 85, 88, 93, 102], "practic": [3, 82, 83, 87, 88, 94, 99, 101], "complet": [3, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "gist": 3, "cj_ish": 3, "guess": [3, 46, 94, 96], "8": [3, 5, 7, 8, 47, 48, 49, 51, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "parallel": [3, 43, 65, 75, 92], "again": [3, 56, 82, 93, 99], "simplifi": [3, 14, 93], "understand": [3, 9, 36, 58, 65, 87, 94, 95, 101, 102, 103], "100": [3, 37, 41, 50, 67, 82, 83, 86, 87, 88, 90, 92, 93, 94, 97, 98, 99, 103], "optim": [3, 37, 38, 41, 56, 88, 96], "speed": [3, 43, 83, 92, 93, 101], "dtype": [3, 23, 25, 26, 31, 37, 41, 51, 52, 61, 77, 84, 98], "enumer": [3, 37, 41, 84, 85, 86, 87, 88, 103], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 52, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "num_confident_bin": 3, "argmax": [3, 43, 67, 71, 74, 84, 93, 94, 98, 99, 102], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 52, 53, 61, 70, 82, 84], "eqn": [3, 46], "margin": [3, 43, 46, 48, 67], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 58, 94, 100], "poorli": [3, 46, 82], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 94], "variabl": [3, 7, 14, 27, 52, 69, 70, 84, 86, 90, 94, 97, 101], "exact": [3, 46, 82, 85, 86, 87, 88, 90], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 59, 64, 73, 75, 77, 86, 87, 88, 93, 98, 102], "percent": 3, "often": [3, 36, 46, 58, 93, 94, 100, 102], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 52, 53, 65, 82, 83, 84, 85, 86, 88, 90, 91, 93, 97, 98, 99, 101], "wai": [3, 5, 56, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 100], "pro": 3, "con": 3, "pred_proba": [3, 100], "combin": [3, 36, 86, 88, 92, 93, 94, 100, 101], "becaus": [3, 46, 52, 64, 91, 93, 94, 96, 98], "littl": [3, 40, 92, 98, 103], "uniform": [3, 67, 92, 93, 94], "20": [3, 7, 42, 78, 84, 88, 91, 92, 93, 94, 98, 101, 102, 103], "Such": [3, 88, 99], "bound": [3, 23, 25, 37, 41, 51, 61, 62, 64, 65, 98], "reason": [3, 22, 37, 41], "comment": [3, 51, 103], "end": [3, 5, 37, 41, 65], "file": [3, 5, 12, 39, 40, 55, 65, 82, 84, 86, 90, 91, 92, 93, 98, 99, 102, 103], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 94], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 80, 82, 83, 85, 86, 87, 88, 90, 91, 94, 102, 103], "five": [3, 62, 65, 94, 98], "estimate_cv_predicted_prob": [3, 94], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 98], "confident_threshold": [3, 10, 22, 23, 40, 66], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 65, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 96, 97, 101, 102, 103], "u": [4, 82, 83, 84, 86, 88, 90, 93, 94, 96, 97, 100, 101, 102, 103], "assess": [4, 98], "contribut": [4, 10, 18, 98], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 90], "metric": [4, 5, 10, 18, 19, 26, 31, 50, 52, 56, 65, 66, 82, 83, 84, 88, 90, 91, 94, 101], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 65, 66, 67, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 66, 87, 91, 99], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 50, 66, 86, 87, 88, 90, 91, 93, 94, 99], "knn": [4, 10, 13, 18, 26, 31, 50, 66, 90, 99], "graph": [4, 5, 10, 13, 16, 18, 26, 31], "calcul": [4, 10, 18, 26, 40, 48, 50, 57, 61, 62, 64, 65, 66, 69, 73, 88, 92], "directli": [4, 5, 14, 16, 33, 34, 40, 56, 57, 83, 87, 91, 93, 97, 98, 101], "lowest": [4, 10, 57, 65, 87, 88, 93, 96, 97, 98, 102], "fall": [4, 10, 64, 73, 77, 94, 99], "flag": [4, 10, 22, 26, 43, 48, 58, 59, 62, 69, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 99, 101, 102], "approxim": [4, 10, 18, 40, 66, 96], "top": [4, 5, 10, 36, 40, 42, 43, 52, 59, 62, 65, 67, 74, 78, 79, 83, 84, 86, 87, 90, 91, 92, 93, 94, 98, 99, 101, 103], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 97, 99, 101, 103], "arxiv": [4, 18, 94], "ab": [4, 18, 94, 98], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 66, 79, 83, 84, 86, 87, 90, 91, 94, 97, 101], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 59, 79, 83, 84, 86, 87, 88, 91, 93, 94, 99], "suppli": [4, 97, 98, 101], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 52, 57, 82, 84, 97], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 58, 84, 85, 86, 87, 88, 90, 91, 94], "num_featur": [4, 5, 16, 37, 41, 56], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 64, 66, 90, 99], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56], "nearestneighbor": [4, 5, 10, 18, 66, 90, 99], "cosin": [4, 10, 50, 66, 99], "dim": [4, 66, 88, 102], "euclidean": [4, 5, 10, 50, 64, 66, 90], "dimension": [4, 26, 52, 84, 94, 99], "exce": [4, 85, 88], "transform": [4, 10, 32, 48, 50, 52, 66, 67, 82, 83, 87, 88, 91, 99, 103], "rel": [4, 10, 36, 57, 58, 66, 86, 87, 88, 90, 91, 94, 99], "adjust": [4, 38, 43, 61, 66, 67, 79, 94], "closer": [4, 10, 64, 98], "highli": [4, 87, 88], "influenti": 4, "posit": [4, 5, 37, 41, 50, 52, 65, 92, 99], "convers": 4, "neg": [4, 10, 64, 65, 86, 87, 92], "valueerror": [4, 5, 12, 13, 34, 45, 48, 50, 93], "neither": [4, 5, 10, 14, 98], "nor": [4, 5, 10, 14], "larger": [4, 18, 69, 71, 73, 85, 88, 91, 92, 93], "55": [4, 51, 92, 98, 101], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 84, 88, 89, 90, 91, 93, 94, 97, 98, 101], "kind": [5, 6, 7, 10, 84, 85, 86, 88, 90, 91, 92, 94], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 53, 57, 65, 74, 75, 82, 83, 84, 86, 90, 91, 94, 96, 99, 100], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 52, 55, 59, 66, 69, 70, 79], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 55, 56, 71, 73], "pip": [5, 7, 9, 11, 35, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "github": [5, 7, 9, 11, 35, 37, 38, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 52, 66, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "egg": [5, 7, 9, 11, 35, 79, 92], "label_nam": [5, 7, 8, 10, 12, 18, 31, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "image_kei": [5, 10, 88], "interfac": [5, 9, 10, 79, 93, 94], "librari": [5, 10, 41, 62, 65, 66, 79, 83, 86, 91, 92, 93], "goal": [5, 101], "track": [5, 7, 13, 14, 79, 85, 86, 92, 93, 94], "intermedi": [5, 9, 87], "statist": [5, 10, 13, 22, 26, 36, 57, 58, 65, 87, 90, 91, 94], "convert": [5, 10, 12, 34, 37, 41, 49, 50, 53, 57, 64, 73, 77, 80, 83, 84, 88, 91, 92, 93, 96, 97, 98], "hug": [5, 10, 12, 88], "face": [5, 10, 12, 16, 88, 92, 97], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 57, 58, 64, 66, 85, 86, 87, 88, 91, 93, 94, 96, 98], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 57, 58, 70, 74, 77, 78, 83, 90, 91, 93, 96, 97, 103], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 52, 57, 58, 61, 62, 64, 65, 86, 87, 90, 91, 94, 96, 97, 98], "path": [5, 12, 37, 40, 41, 65, 84, 86, 93, 98], "local": [5, 7, 10, 12, 37, 38, 41, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 66, 75, 77, 78, 79, 81, 86, 87, 89, 92, 93, 94, 95, 96, 99], "txt": [5, 12, 103], "csv": [5, 12, 82, 83, 90, 91, 101], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 52, 57, 97], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 83, 85, 86, 87, 91, 95, 96, 99], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 97], "imag": [5, 9, 36, 41, 62, 64, 65, 66, 71, 73, 74, 79, 86, 87, 89, 92, 93, 95, 96, 97, 98, 100, 102], "field": [5, 10, 37, 41], "themselv": [5, 82, 83, 101], "pil": [5, 88], "cleanvis": [5, 10], "level": [5, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 75, 77, 87, 88, 93, 95, 97, 102], "load_dataset": [5, 12, 88], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 85], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 58, 65, 74, 78, 79, 92, 94, 98, 102, 103], "empti": [5, 12, 46, 57, 87, 93, 97], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "sort": [5, 16, 40, 43, 48, 57, 59, 62, 64, 65, 67, 73, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "common": [5, 13, 16, 87, 89, 92, 93, 94, 97, 98, 102], "real": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "world": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "interact": [5, 16, 91, 93], "thereof": [5, 16], "insight": [5, 16, 65, 96], "best": [5, 9, 10, 16, 47, 57, 67, 82, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 103], "properli": [5, 10, 40, 47, 52, 53, 71, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 101, 102], "respect": [5, 37, 41, 62, 65, 84, 85, 86, 87, 88, 90, 91, 94, 97, 98], "lexicograph": [5, 47, 52, 84, 85, 86, 87, 88, 90, 91, 94, 97], "squar": [5, 52, 69, 92, 101], "csr": 5, "evenli": 5, "omit": [5, 64, 65, 88, 98], "itself": [5, 32, 37, 41, 98], "three": [5, 10, 36, 57, 58, 69, 74, 82, 84, 85, 86, 87, 90, 92, 94, 96, 100, 101, 102, 103], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 79, 90, 97, 103], "th": [5, 42, 47, 51, 52, 57, 59, 62, 64, 65, 66, 75, 77, 78, 91, 97, 98, 103], "ascend": [5, 36, 58, 88, 94], "segment": [5, 71, 73, 74, 95], "reflect": [5, 82, 83, 90, 91, 96, 98, 99, 101], "maintain": [5, 56], "kneighbors_graph": [5, 18, 90], "illustr": 5, "todens": 5, "second": [5, 48, 52, 65, 67, 86, 93, 94, 103], "duplic": [5, 9, 21, 22, 37, 41, 79, 85, 86, 94, 101], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 57, 93, 96, 103], "unspecifi": [5, 16, 43, 59], "interest": [5, 16, 22, 74, 78, 82, 83, 91, 94, 101, 102, 103], "constructor": [5, 10, 16, 23, 30], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 69, 70, 92, 101, 103], "random_st": [5, 82, 84, 85, 86, 87, 88, 94, 97, 99], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101], "comprehens": [5, 79, 88, 97, 101], "nbr": 5, "n_neighbor": [5, 10, 18, 66], "mode": [5, 11, 18, 37, 40, 41, 99], "4x4": 5, "float64": [5, 26, 37, 41, 77], "compress": [5, 10, 52, 71, 73], "toarrai": 5, "NOT": [5, 40, 91], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 87], "suppos": [5, 10, 62, 82, 83, 99, 101], "who": [5, 64, 82, 90, 94, 103], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 56, 86, 93], "clean_learning_kwarg": [5, 10, 23, 30, 93, 101], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 80], "prune_by_noise_r": [5, 43, 59, 94], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 78, 79, 84, 85, 86, 87, 90, 91, 93, 94, 97, 101, 103], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 55, 56, 58, 63, 72, 73, 75, 76, 77, 80, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 101, 102, 103], "show": [5, 7, 26, 37, 41, 47, 52, 65, 74, 78, 82, 85, 87, 88, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103], "suffer": [5, 10, 13, 22, 59, 67, 78, 103], "onc": [5, 22, 36, 37, 41, 82, 85, 86, 93, 94, 97, 98], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 57, 58, 61, 64, 65, 69, 73, 74, 75, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 98, 103], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 61, 64, 66, 67, 73, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 98, 99, 103], "compar": [5, 57, 66, 77, 86, 87, 90, 94, 98], "issue_summari": [5, 7, 10, 13, 85, 86], "With": [5, 9, 10, 40, 83, 91, 93, 94, 96, 101, 102, 103], "usag": [5, 40, 56], "usual": [5, 12, 32, 33, 88, 96, 101], "ti": [5, 57], "exhibit": [5, 7, 10, 13, 74, 87, 88, 90, 91, 94, 98], "ie": [5, 69], "likelihood": [5, 10, 40, 42, 43, 59, 64, 66, 67, 71, 75], "wherea": [5, 52, 59, 82, 83, 100], "outlier": [5, 9, 14, 21, 22, 31, 44, 67, 79, 85, 86, 87, 94, 95, 101], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 94, 101], "global": [5, 7, 22, 37, 41, 92], "non_iid": [5, 10, 14, 26, 87, 88, 90, 91, 94], "hypothesi": 5, "iid": [5, 7, 9, 26, 90, 94], "never": [5, 84, 94, 97, 99, 100], "someth": [5, 7, 37, 41, 67, 98], "123": [5, 85, 86, 87], "456": [5, 82, 83, 84], "nearest_neighbor": 5, "7": [5, 48, 49, 56, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "distance_to_nearest_neighbor": [5, 86, 87, 88, 90, 91, 94], "789": 5, "get_issu": [5, 10, 13, 84, 85, 87, 88, 90, 91, 93, 97, 101], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86, 87], "focu": [5, 13, 91, 102, 103], "full": [5, 10, 13, 40, 56, 65, 85, 88, 103], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 58, 74, 78, 79, 102], "specific_issu": [5, 13], "lie": [5, 10, 66, 67, 83, 84, 86, 87, 88, 90, 91, 94], "get_issue_summari": [5, 13, 85, 87], "get_info": [5, 13, 87, 91, 92], "yet": [5, 17, 27, 56, 92, 96], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 86], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 84, 86, 88], "load": [5, 12, 40, 65, 88, 92, 93, 94, 98, 99, 102, 103], "futur": [5, 10, 22, 37, 41, 57, 79, 83, 84, 86, 91, 93], "overwrit": [5, 86], "separ": [5, 36, 48, 61, 86, 87, 88, 93, 98, 100], "static": 5, "rememb": [5, 91, 93, 94], "part": [5, 10, 37, 41, 43, 62, 64, 65, 84, 86, 92, 102, 103], "ident": [5, 10, 22, 52, 85, 91], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 79, 82, 83, 92, 93, 96, 101], "walk": 7, "alongsid": [7, 37, 41, 86, 93], "pre": [7, 8, 10, 37, 41, 86, 87, 101], "runtim": [7, 37, 40, 41, 69, 71, 73, 84, 88, 93], "issue_manager_factori": [7, 14, 86], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "thing": [7, 41, 83, 94, 101], "next": [7, 57, 79, 82, 83, 84, 85, 90, 91, 93, 96, 98, 101, 103], "dummi": 7, "randint": [7, 31, 48, 85, 86, 87, 93], "mark": [7, 10, 80, 98, 99, 101], "regard": [7, 87, 94], "rand": [7, 48, 85, 86, 87], "is_": [7, 10, 86], "_issu": [7, 10, 86], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "whole": [7, 26, 37, 41, 87], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "popul": [7, 87, 91], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 98], "raw_scor": 7, "bit": 7, "involv": [7, 40, 74, 78, 85, 93, 97], "intermediate_arg": 7, "min": [7, 48, 64, 77, 86, 93, 99], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 71, 77, 91, 93], "easili": [7, 46, 80, 82, 83, 84, 85, 87, 90, 91, 94, 96, 97, 99, 100, 101, 102], "hard": [7, 41, 92, 99], "sai": [7, 10, 37, 41, 97, 102], "anoth": [7, 22, 36, 40, 51, 64, 67, 83, 90, 91, 93, 94, 96, 99], "try": [7, 9, 10, 40, 43, 56, 57, 71, 73, 79, 85, 87, 88, 90, 91, 93, 94, 102], "won": [7, 37, 41, 86, 87, 93, 97], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 86], "instanti": [7, 16, 40, 56, 66, 83, 84, 87, 90], "477762": 7, "286455": 7, "term": [7, 10, 46, 52, 65, 84, 85, 86, 87, 88, 90, 91, 94], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 98, 99, 101, 102, 103], "003042": 7, "058117": 7, "11": [7, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "121908": 7, "15": [7, 50, 56, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "169312": 7, "17": [7, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 86, 87, 92, 94], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 92, 98, 103], "dbscan": [8, 10, 31, 93], "hdbscan": [8, 93], "etc": [8, 10, 22, 32, 37, 41, 46, 56, 57, 75, 79, 86, 87, 90, 91, 93, 94, 97, 101], "sensit": [8, 10, 50], "ep": [8, 31, 65], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 93], "your_data": 8, "get_pred_prob": [8, 85], "n_cluster": [8, 31, 93], "cluster_id": [8, 10, 31, 93], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 87, 88, 90, 91, 93, 94], "search": [9, 10, 20, 26, 27, 51, 69, 93, 100], "nondefault": 9, "Near": [9, 93], "imbal": [9, 21, 61, 66, 67, 87], "null": [9, 14, 21, 87, 88, 91, 94], "togeth": [9, 10, 46, 83, 86, 87, 88, 90, 91, 94, 101, 103], "built": [9, 48], "own": [9, 37, 39, 41, 55, 61, 62, 65, 71, 75, 82, 83, 84, 87, 88, 90, 91, 93, 96, 97, 101, 102, 103], "prerequisit": 9, "basic": [9, 41, 56, 90, 91, 99], "fulli": [9, 10, 37, 41, 56, 93], "platform": [9, 10, 79, 88, 90, 91, 93], "write": [9, 10], "code": [9, 10, 37, 41, 46, 52, 56, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "being": [9, 10, 13, 36, 37, 41, 43, 48, 51, 52, 67, 82, 90, 93, 94, 101, 102], "100x": [9, 10], "faster": [9, 10, 40, 66, 69, 71, 73, 93, 94], "intellig": [9, 10], "quickli": [9, 10, 38, 82, 84, 88, 90, 91, 93, 97, 99, 102, 103], "fix": [9, 10, 57, 83, 85, 91, 94, 101], "scientist": [9, 10], "million": [9, 10, 103], "thank": [9, 10], "ai": [9, 10, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103], "suggest": [9, 10, 36, 57, 58, 64, 83, 88, 91, 93, 101], "power": [9, 10, 88, 90, 91, 92, 94, 103], "automl": [9, 10, 79, 93], "system": [9, 10, 84, 85, 88, 90, 91, 102], "foundat": [9, 10, 79], "improv": [9, 10, 57, 82, 83, 87, 88, 92, 93, 94, 101, 102], "click": [9, 10, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "tune": [9, 10, 83, 84, 91, 92, 99], "serv": [9, 10, 13, 16, 96], "auto": [9, 10, 82, 83, 85, 87, 92, 93, 101], "free": [9, 10, 79, 84, 87, 88, 90, 91, 93, 94], "page": [10, 87, 93, 94], "variou": [10, 13, 30, 39, 53, 55, 79, 82, 86, 87, 90, 91, 92, 93, 94, 96, 98], "why": [10, 85, 91], "matter": [10, 36, 58, 83, 91], "didn": 10, "plu": [10, 101], "_score": 10, "badli": [10, 64, 82, 83, 103], "issue_scor": 10, "outlier_scor": [10, 28, 86, 87, 88, 90, 91, 94, 99], "atyp": [10, 66, 86, 87, 88, 90, 91, 94, 99], "datapoint": [10, 31, 43, 48, 52, 67, 70, 79, 82, 83, 84, 86, 87, 90, 91, 93, 100, 101], "is_issu": [10, 22], "is_outlier_issu": [10, 86, 87, 88, 90, 91, 94], "annot": [10, 36, 47, 57, 58, 59, 61, 62, 64, 65, 74, 77, 78, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 98, 102], "dissimilar": [10, 90, 91], "preced": 10, "incorrect": [10, 64, 67, 70, 82, 84, 85, 86, 87, 88, 90, 91, 94, 98, 101], "due": [10, 40, 43, 67, 71, 73, 84, 85, 86, 87, 88, 90, 91, 94, 101], "appear": [10, 36, 47, 58, 59, 62, 70, 87, 88, 90, 91, 101, 102], "now": [10, 40, 80, 82, 83, 84, 85, 87, 96, 98, 99, 101, 103], "token": [10, 42, 51, 73, 74, 75, 76, 77, 78, 93, 94, 95], "hamper": [10, 88, 92], "analyt": [10, 79, 93, 96], "lead": [10, 64, 67, 88, 98], "draw": [10, 85, 86, 87], "conclus": [10, 91], "veri": [10, 36, 58, 62, 64, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101], "rare": [10, 43, 65, 86, 87, 88, 90, 91, 93, 94], "anomal": [10, 67, 86, 87, 88, 90, 91, 94], "articl": [10, 40, 93], "blog": 10, "unexpect": [10, 37, 41, 91], "consequ": 10, "inspect": [10, 83, 84, 85, 87, 88, 94, 98, 101], "extrem": [10, 86, 87, 88, 90, 91, 93, 94], "record": [10, 37, 41, 84, 90, 101], "abbrevi": 10, "misspel": 10, "typo": [10, 78], "resolut": 10, "video": [10, 92], "audio": [10, 86, 87, 89, 93], "minor": [10, 51], "variat": 10, "translat": 10, "d": [10, 50, 82, 90, 91, 93, 94, 97, 101, 103], "constant": [10, 31, 69], "median": [10, 30, 50], "question": [10, 22, 79, 94], "nearli": [10, 22, 87, 88, 90, 91], "awar": [10, 80, 94], "presenc": [10, 94], "near_dupl": [10, 14, 19, 85, 86, 87, 88, 90, 91, 93, 94], "signific": [10, 90, 91, 94], "violat": [10, 90, 91, 94], "assumpt": [10, 90, 91, 94], "changepoint": [10, 90, 91, 94], "shift": [10, 90, 91, 94], "drift": [10, 87, 90, 94], "autocorrel": [10, 90, 91, 94], "almost": [10, 90, 91, 94], "adjac": [10, 90, 91, 94], "tend": [10, 36, 46, 90, 91, 94, 102, 103], "sequenti": [10, 37, 41, 56, 88], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 51, 52, 77, 82, 90, 91, 92, 93, 94, 100, 103], "x1": [10, 62, 65, 98], "x2": [10, 62, 65, 98], "10th": 10, "100th": 10, "90": [10, 77, 82, 90, 94, 100, 101], "similarli": [10, 37, 41, 86, 88, 90, 93, 98], "math": [10, 88], "behind": [10, 66, 94], "proper": [10, 52, 57, 62, 65, 82, 88, 91, 93, 96, 98], "scenario": [10, 67, 85, 86, 87], "underli": [10, 42, 66, 75, 77, 103], "stem": [10, 66, 99], "evolv": 10, "influenc": 10, "act": [10, 64, 86], "accordingli": [10, 32], "emploi": [10, 97, 99], "partit": [10, 100], "ahead": 10, "good": [10, 37, 41, 50, 56, 58, 64, 67, 71, 73, 74, 79, 85, 88, 90, 91], "problem": [10, 32, 40, 48, 74, 79, 86, 87, 88, 91, 93], "deploy": [10, 82, 83, 94, 101], "overlook": [10, 64, 98], "fact": 10, "thu": [10, 36, 41, 58, 82, 84, 90, 91, 94, 100, 103], "diagnos": [10, 87, 93], "rarest": [10, 87], "q": [10, 98], "subpar": 10, "special": [10, 51], "techniqu": [10, 98], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 87, 88, 90, 91, 94], "excess": [10, 88], "dark": [10, 102], "bright": [10, 103], "blurri": [10, 88], "lack": [10, 56], "unusu": [10, 98, 99], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 79, 87, 88, 90, 91, 95], "get_self_confidence_for_each_label": [10, 48, 67], "r": [10, 40, 69, 85, 86, 87, 101, 102], "tabular": [10, 79, 81, 86, 87, 89, 93, 96], "categor": [10, 66, 81, 82, 86, 87, 89, 93, 101], "encod": [10, 49, 65, 71, 74, 82, 83, 90, 91, 93, 101, 102], "miss": [10, 27, 37, 41, 52, 62, 64, 85, 90, 93, 98, 101], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 52, 66, 93], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 87], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 79, 92], "health_summary_kwarg": 10, "tandem": [10, 92], "view": [10, 37, 41, 42, 43, 73, 75, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 103], "ood_kwarg": 10, "outofdistribut": [10, 28, 66, 99], "outsid": [10, 93, 97], "outlierissuemanag": [10, 14, 21, 28, 86], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102], "howev": [10, 37, 41, 52, 82, 83, 84, 88, 90, 91, 96, 100, 102], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 84, 86, 92, 96, 98], "fewer": [10, 43, 52, 98], "vice": [10, 58], "versa": [10, 58], "light": [10, 88, 92, 98, 102], "29": [10, 85, 88, 92, 96, 97, 98, 102, 103], "low_inform": [10, 88], "odd_aspect_ratio": [10, 88], "35": [10, 86, 92, 96, 97, 98], "odd_siz": [10, 88], "doc": [10, 37, 41, 79, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "studio": [11, 79, 87, 88, 90, 91, 93], "data_issu": [11, 15, 16, 33, 86], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 56, 67, 85, 86, 87, 88, 96], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 65, 96], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 88], "dataissu": [13, 15, 16, 33], "central": [13, 103], "repositori": 13, "strategi": [13, 48, 93], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 52, 59, 62, 65, 69, 71, 73, 85, 86, 87, 93], "recomput": [13, 83], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 58, 79], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 66, 86], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 71, 73], "stabl": [15, 21, 24, 29, 39, 44, 52, 55, 66, 80], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 94, 98, 102, 103], "creation": [16, 41], "execut": [16, 37, 41, 86, 93, 98], "coordin": [16, 62, 64, 65, 98, 103], "behavior": [16, 36, 37, 41, 65, 85, 93], "At": [16, 65, 93], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 56], "valuabl": 18, "vstack": [18, 52, 88, 92, 93, 94, 96, 97], "25": [18, 26, 37, 48, 50, 85, 87, 88, 92, 94, 96, 97, 98, 103], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 51, 52], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 85, 86, 87, 88, 93, 94, 96, 97], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 83, 91, 99], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 51, 52, 82, 84, 86, 88, 92, 94, 97], "near_duplicate_set": [19, 21, 86, 87, 88, 90, 91, 93, 94], "occurr": [19, 20, 22, 26, 27, 28, 31, 51], "median_nn_dist": 19, "near_duplicate_scor": [19, 86, 87, 88, 90, 91, 93, 94], "class_imbalance_scor": [20, 87], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 64, 79, 94, 103], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 66, 67, 86, 87, 88, 91, 94, 99], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 102], "priori": [22, 94], "abstract": [22, 32], "applic": [23, 57, 93, 94, 96, 103], "typevar": [23, 25, 37, 41, 51, 61, 64, 65], "scalartyp": [23, 25], "covari": [23, 25, 69, 101], "summary_dict": 23, "label_scor": [23, 25, 30, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 67, 71, 73, 98, 102], "empir": [26, 47, 57], "cumul": 26, "ecdf": 26, "histogram": [26, 90, 101], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 87, 90, 91, 94], "null_track": 27, "extend": [27, 49, 56, 88, 98, 99, 103], "superclass": 27, "arbitrari": [27, 36, 73, 77, 86, 99, 101], "prompt": 27, "address": [27, 83, 86, 87, 91, 93], "enabl": [27, 41], "null_scor": [27, 87], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "multipli": [30, 50], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 52, 65, 83, 103], "50": [31, 41, 85, 93, 94, 96, 98, 99, 101], "keepdim": [31, 93], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 84, 96], "npt": 31, "int_": 31, "id": [31, 57, 86, 88, 93, 96], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 87], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": 32, "mainli": [32, 99, 103], "content": [32, 66, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "fetch": [32, 40, 84, 87, 93], "datset": 33, "exclud": [33, 42, 74, 78, 86, 93, 103], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 85, 86, 87], "continu": [34, 56, 82, 83, 88, 91, 93, 96, 98, 101, 103], "binari": [34, 48, 52, 59, 61, 94, 103], "simultan": [34, 101], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 86, 87], "typeerror": [34, 48], "12": [34, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 57, 58, 67, 85, 86, 87, 88, 92, 98, 100, 102], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 82, 83, 84, 87, 88, 90, 91, 96, 98, 99, 101, 103], "modifi": [36, 37, 40, 41, 52, 93, 94], "rank_classes_by_label_qu": [36, 87], "merg": [36, 51, 79, 92, 93, 103], "find_overlapping_class": [36, 93, 94], "problemat": [36, 58, 74, 78, 84, 98, 103], "unnorm": [36, 58, 94], "abov": [36, 37, 40, 41, 52, 57, 64, 65, 67, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "model_select": [36, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101], "cross_val_predict": [36, 41, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 100, 101], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 94], "cv": [36, 48, 82, 84, 85, 86, 87, 90, 94, 96], "df": [36, 52, 78, 84, 93], "overall_label_qu": [36, 58], "col": 36, "prob": [36, 51, 94, 100], "divid": [36, 58, 67], "label_nois": [36, 58], "human": [36, 92, 102, 103], "clearli": [36, 67, 88, 98, 102], "num": [36, 58, 92, 94], "overlap": [36, 79, 92, 93, 94], "ontolog": 36, "publish": [36, 103], "therefor": [36, 67], "vehicl": [36, 92], "truck": [36, 92, 99, 102], "intuit": [36, 58, 85], "car": [36, 92, 98, 102], "frequent": [36, 57, 90, 93, 101], "characterist": 36, "l": [36, 37, 41, 62, 64, 65], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 52, 58, 60, 74, 92, 93, 99, 100, 103], "cat": [36, 52, 58, 60, 92, 93, 99, 100], "captur": [36, 84, 98, 99, 102], "co": [36, 37, 38], "noisy_label": [36, 85, 86, 87, 97], "overlapping_class": 36, "descend": [36, 37, 41, 48, 58, 65], "overall_label_health_scor": [36, 58, 94], "half": [36, 37, 39, 41, 58, 92, 103], "health_scor": [36, 58], "classes_by_label_qu": [36, 87], "cnn": [37, 39, 41, 88], "cifar": [37, 38, 92, 99], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 65, 85, 86, 93, 96, 99, 100, 102, 103], "forward": [37, 38, 39, 41, 88, 96], "overridden": [37, 41], "although": [37, 41, 66, 82, 90], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 53, 58, 65, 73, 77, 93, 96, 97, 98, 100, 103], "former": [37, 41], "hook": [37, 41, 92], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 65], "recurs": [37, 41, 48], "submodul": [37, 41], "children": [37, 39, 41, 103], "nn": [37, 38, 41, 88], "init": [37, 41, 94], "no_grad": [37, 41, 88, 99], "init_weight": [37, 41], "linear": [37, 41, 83, 88, 91], "fill_": [37, 41], "net": [37, 41, 84, 88, 92], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 88], "tensor": [37, 38, 41, 83, 84, 88, 91, 99], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 84], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 99], "compil": [37, 39, 41, 56], "cpu": [37, 39, 41, 43, 84, 88], "move": [37, 41, 48, 80, 92], "cuda": [37, 39, 41, 84, 88], "devic": [37, 41, 84, 88], "gpu": [37, 41, 83, 84, 91], "live": [37, 41], "copi": [37, 41, 69, 82, 84, 85, 86, 87, 90, 93, 97, 100, 101], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 88, 97, 99], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 79, 86, 92, 96, 99, 103], "get_buff": [37, 39, 41], "target": [37, 38, 41, 69, 70, 99, 101], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 91], "resolv": [37, 41, 85, 103], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 88, 102], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 88], "break": [37, 41, 88, 98], "pickl": [37, 41, 98], "get_paramet": [37, 39, 41], "let": [37, 41, 66, 67, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 88], "16": [37, 41, 48, 56, 73, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103], "33": [37, 41, 92, 98], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 67, 85, 92, 98, 103], "diagram": [37, 41, 100], "degre": [37, 41], "queri": [37, 41, 87, 88, 93, 97], "named_modul": [37, 39, 41], "o": [37, 41, 50, 51, 84, 85, 86, 87, 92, 93, 94, 97, 98, 103], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 96], "preserv": [37, 41, 52], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 52, 53, 65, 86, 88, 93, 94, 96, 98, 99], "named_buff": [37, 39, 41], "prefix": [37, 41, 84, 103], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 83, 84, 91, 93], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 82, 90], "fire": [37, 41, 92], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 86, 87], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 88, 90, 101], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 83, 84, 91], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 56, 80, 84, 93], "design": [37, 41, 85], "ordereddict": [37, 41], "detach": [37, 41, 88], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 58, 64], "complex": [37, 41, 84], "integr": [37, 41, 79, 93], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 83, 91, 92], "desir": [37, 41, 51, 65], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 84], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 83, 91], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 88], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 98], "noisili": [38, 94], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 56, 88], "decim": [38, 52], "forget": [38, 48, 103], "rate_schedul": 38, "epoch": [38, 39, 41, 88, 93], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 67, 93], "250": [38, 86, 87, 94, 98], "epoch_decay_start": 38, "80": [38, 82, 90, 97, 101], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 83, 88, 91, 94], "train_load": [38, 41], "model1": [38, 94], "optimizer1": 38, "model2": [38, 94], "optimizer2": 38, "dataload": [38, 88, 99], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 55, 103], "wish": [39, 55, 99, 102, 103], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 93], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 72, 73, 74, 75, 76, 77, 78, 102, 103], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 71, 73, 85, 88, 93, 99, 102], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 88], "loader": [39, 41, 88], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 80], "mini": [40, 71, 73, 93], "low_self_confid": [40, 43, 59], "self_confid": [40, 43, 44, 48, 59, 61, 67, 75, 77, 82, 83, 93, 94], "conveni": [40, 82, 83, 84, 91], "script": 40, "labels_fil": [40, 93], "pred_probs_fil": [40, 93], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 57, 102], "read": [40, 45, 87, 93, 94, 99, 103], "zarr": [40, 93], "memmap": [40, 102], "pythonspe": 40, "mmap": [40, 93], "hdf5": 40, "further": [40, 42, 58, 59, 61, 64, 65, 73, 74, 84, 93], "yourfil": 40, "npy": [40, 92, 93, 102], "mmap_mod": [40, 102], "tip": [40, 43, 56, 93], "save_arrai": 40, "your_arrai": 40, "disk": [40, 92, 93], "npz": [40, 103], "maxim": [40, 57, 71, 73, 102], "multiprocess": [40, 43, 59, 71, 73, 88, 93], "linux": [40, 71, 73], "physic": [40, 43, 71, 73, 98], "psutil": [40, 43, 71, 73], "labels_arrai": [40, 53], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 65, 86, 93, 98, 99], "store_result": 40, "becom": [40, 99], "verifi": [40, 93, 96, 99], "long": [40, 57, 66, 96], "enough": [40, 52, 93], "chunk": [40, 100], "ram": [40, 92], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 93], "shortcut": 40, "encount": [40, 43, 71], "1000": [40, 84, 91, 93, 99], "aggreg": [40, 44, 48, 57, 61, 64, 67, 77, 93, 94, 96], "seen": [40, 85, 93, 99, 103], "far": [40, 57], "label_quality_scor": [40, 61, 64, 67, 70, 94, 98], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 59, 61, 67, 75, 77], "low_normalized_margin": [40, 43, 59], "issue_indic": [40, 64, 88], "update_num_issu": 40, "arr": [40, 93], "chunksiz": 40, "convnet": 41, "bespok": [41, 56], "download": [41, 84, 88, 93, 99], "mnist": [41, 79, 84, 92], "handwritten": 41, "digit": [41, 84, 92], "last": [41, 48, 62, 65, 85, 86, 87, 93, 96, 98, 103], "sklearn_digits_test_s": 41, "64": [41, 82, 88, 90, 94, 98], "01": [41, 67, 69, 84, 94, 97, 98], "templat": 41, "flexibli": 41, "among": [41, 57, 94], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 52, 99], "train_label": [41, 83, 99], "scikit": [41, 52, 66, 79, 82, 83, 84, 85, 86, 87, 90, 91, 93, 101], "span": 42, "sentenc": [42, 51, 75, 77, 78, 83, 91], "token_classif": [42, 51, 75, 77, 78, 93], "encourag": [43, 59, 67, 70], "multilabel_classif": [43, 58, 59, 61, 67, 93, 97], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 59, 67, 94], "num_to_remove_per_class": [43, 59], "bad": [43, 59, 64, 67, 91, 93], "seem": [43, 94, 97], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 59, 61, 67, 75, 77], "label_issues_idx": [43, 67], "entropi": [43, 45, 47, 48, 66, 67], "prune_by_class": [43, 59, 94], "predicted_neq_given": [43, 59, 94], "prune_counts_matrix": 43, "smallest": [43, 67], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 79, 83, 93], "too": [43, 48, 66, 87, 88, 93, 98], "thread": [43, 59], "window": [43, 84, 92], "shorter": [43, 62], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 52], "clip_noise_r": [44, 52], "clip_valu": [44, 52], "value_count": [44, 52, 93], "value_counts_fill_missing_class": [44, 52], "get_missing_class": [44, 52], "round_preserving_sum": [44, 52], "round_preserving_row_tot": [44, 52], "estimate_pu_f1": [44, 52], "confusion_matrix": [44, 52], "print_square_matrix": [44, 52], "print_noise_matrix": [44, 52, 94], "print_inverse_noise_matrix": [44, 52], "print_joint_matrix": [44, 52, 94], "compress_int_arrai": [44, 52], "train_val_split": [44, 52], "subset_x_i": [44, 52], "subset_label": [44, 52], "subset_data": [44, 52], "extract_indices_tf": [44, 52], "unshuffle_tensorflow_dataset": [44, 52], "is_torch_dataset": [44, 52], "is_tensorflow_dataset": [44, 52], "csr_vstack": [44, 52], "append_extra_datapoint": [44, 52], "get_num_class": [44, 52], "num_unique_class": [44, 52], "get_unique_class": [44, 52], "format_label": [44, 52], "smart_display_datafram": [44, 52], "force_two_dimens": [44, 52], "latent_algebra": [44, 80], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 97], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 97], "onehot2int": [44, 49, 97], "multilabel_scor": [44, 61], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 61], "softmin": [44, 48, 61, 64, 73, 77], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "transform_distances_to_scor": [44, 50], "correct_precision_error": [44, 50], "token_classification_util": [44, 103], "get_sent": [44, 51, 103], "filter_sent": [44, 51, 103], "process_token": [44, 51], "merge_prob": [44, 51], "color_sent": [44, 51], "assert_valid_input": [44, 53], "assert_valid_class_label": [44, 53], "assert_nonempty_input": [44, 53], "assert_indexing_work": [44, 53], "labels_to_arrai": [44, 53], "labels_to_list_multilabel": [44, 53], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 56, 57, 79, 96], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 52, 84], "behav": 45, "unnecessari": [45, 93], "slightli": [45, 82, 83, 85], "interv": [45, 48, 99], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 52, 69, 84, 96, 102, 103], "increas": [46, 50, 64, 66, 67, 84, 86, 93, 96, 97, 103], "dot": [46, 77, 93], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 57], "ensembl": [47, 48, 57, 67, 82, 90, 93, 97, 99, 101], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 57], "format_multiannotator_label": [47, 57, 96], "formatted_label": [47, 52], "old": [47, 52, 80, 84, 92], "check_consensus_label_class": 47, "consensus_label": [47, 57, 96], "consensus_method": [47, 57], "consensu": [47, 57, 79, 95, 103], "establish": [47, 56, 83, 101], "compute_soft_cross_entropi": 47, "soft": [47, 92], "find_best_temp_scal": 47, "coarse_search_rang": [47, 69, 93], "fine_search_s": [47, 69, 93], "temperatur": [47, 48, 64, 73, 77], "scale": [47, 50, 82, 92, 93, 99, 102], "factor": [47, 48, 50, 71, 73], "minim": [47, 64, 99], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 92], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 67], "get_confidence_weighted_entropy_for_each_label": [48, 67], "75": [48, 85, 86, 87, 92, 96, 97, 98, 101, 103], "scorer": 48, "alpha": [48, 61, 64, 85, 86, 87, 94, 97, 101], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 59, 90, 91, 94, 103], "formula": [48, 50], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 67, 94, 96, 102], "recent": [48, 103], "success": 48, "previou": [48, 88, 93, 98], "discount": 48, "s_ema": 48, "175": [48, 88, 94, 98], "underflow": 48, "nan": [48, 57, 82, 90, 96, 101], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 61], "n_sampl": 48, "n_label": 48, "worst": [48, 96], "class_label_quality_scor": 48, "42": [48, 91, 92, 98, 103], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 60, 61], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 84], "wider": 48, "splitter": 48, "kfold": [48, 88], "onevsrestclassifi": [48, 97], "randomforestclassifi": [48, 94, 97], "n_split": [48, 87, 88, 97], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 59, 65, 71, 74, 82, 90, 92, 93, 101, 102], "onehot_matrix": 49, "avg_dist": 50, "scaling_factor": 50, "exp": [50, 66, 67, 86], "dt": 50, "right": [50, 62, 65, 83, 91, 97, 98, 99], "strength": [50, 65], "pronounc": 50, "differenti": 50, "ly": 50, "rule": [50, 51, 92], "thumb": 50, "ood_features_scor": [50, 66, 99], "88988177": 50, "80519832": 50, "toler": 50, "minkowski": 50, "noth": 50, "epsilon": 50, "sensibl": 50, "fixed_scor": 50, "readabl": 51, "lambda": [51, 84, 86, 93, 96], "long_sent": 51, "headlin": 51, "charact": [51, 52], "s1": 51, "s2": 51, "processed_token": 51, "alecnlcb": 51, "entiti": [51, 79, 93, 103], "mapped_ent": 51, "unique_ident": 51, "loc": [51, 85, 86, 87, 88, 103], "nbitbas": [51, 61], "probs_merg": 51, "0125": [51, 77], "0375": 51, "075": 51, "025": 51, "color": [51, 74, 85, 86, 87, 90, 94, 97, 99, 101, 102], "red": [51, 65, 85, 86, 87, 92, 94, 97, 98, 99, 102], "colored_sent": 51, "termcolor": 51, "31msentenc": 51, "0m": 51, "ancillari": 52, "class_without_nois": 52, "any_other_class": 52, "choos": [52, 67, 82, 90, 93, 94, 101], "tradition": 52, "new_sum": 52, "fill": 52, "come": [52, 85, 86, 87, 93, 102], "major": [52, 57, 80, 85, 88, 99], "versu": [52, 94], "obviou": 52, "cgdeboer": 52, "iteround": 52, "reach": 52, "prob_s_eq_1": 52, "claesen": 52, "f1": [52, 65, 91, 94], "BE": 52, "left_nam": 52, "top_nam": 52, "titl": [52, 85, 86, 87, 94, 97, 99], "short_titl": 52, "round_plac": 52, "pretti": [52, 85, 94], "joint_matrix": 52, "num_possible_valu": 52, "holdout_idx": 52, "extract": [52, 66, 83, 84, 91, 96, 99, 102], "allow_shuffl": 52, "turn": [52, 79, 98], "shuffledataset": 52, "histori": 52, "pre_x": 52, "buffer_s": 52, "csr_matric": 52, "append": [52, 84, 85, 88, 92, 93, 94, 96, 97, 98, 99, 103], "bottom": [52, 62, 65, 98], "to_data": 52, "from_data": 52, "taken": 52, "label_matrix": 52, "canon": 52, "displai": [52, 65, 74, 78, 83, 84, 85, 91, 94, 103], "jupyt": [52, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "notebook": [52, 57, 84, 85, 87, 92, 93, 94, 96, 97, 98, 102, 103], "consol": 52, "html": [52, 62, 65, 66, 90, 93, 94], "allow_missing_class": 53, "allow_one_class": 53, "length_x": 53, "labellik": 53, "labels_list": [53, 59], "keraswrappermodel": [55, 56, 79], "keraswrappersequenti": [55, 56], "tf": [56, 84], "legaci": 56, "newer": 56, "interim": 56, "advis": [56, 97], "stabil": 56, "until": 56, "accommod": 56, "keraswrapp": 56, "huggingface_keras_imdb": 56, "unit": [56, 103], "model_kwarg": [56, 69], "compile_kwarg": 56, "sparsecategoricalcrossentropi": 56, "layer": [56, 83, 84, 91, 99], "dens": 56, "my_keras_model": 56, "from_logit": 56, "declar": 56, "apply_softmax": 56, "analysi": 57, "analyz": [57, 79, 94, 96, 97], "get_label_quality_multiannot": [57, 96], "vote": 57, "crowdsourc": [57, 79, 96], "dawid": [57, 96], "skene": [57, 96], "analog": [57, 85, 92, 96], "chosen": [57, 67, 93, 96], "crowdlab": [57, 96], "unlabel": [57, 88, 90, 91, 96, 99, 102], "decid": [57, 83, 91, 92, 96, 101, 103], "get_active_learning_scor": [57, 96], "activelab": [57, 96], "priorit": [57, 64, 98, 102, 103], "showcas": 57, "main": [57, 85], "best_qual": 57, "quality_method": 57, "calibrate_prob": 57, "return_detailed_qu": 57, "return_annotator_stat": 57, "return_weight": 57, "label_quality_score_kwarg": 57, "necessarili": [57, 65, 91, 94], "did": [57, 58, 82, 83, 84, 90, 94, 96, 101], "majority_vot": 57, "broken": [57, 65, 92, 101], "highest": [57, 65, 86, 88, 100], "0th": 57, "consensus_quality_scor": [57, 96], "annotator_agr": [57, 96], "reman": 57, "1st": 57, "2nd": [57, 71], "3rd": 57, "consensus_label_suffix": 57, "consensus_quality_score_suffix": 57, "suffix": 57, "emsembl": 57, "weigh": [57, 92], "agreement": [57, 96], "agre": 57, "prevent": [57, 93], "overconfid": [57, 100], "wrong": [57, 62, 64, 80, 83, 85, 86, 87, 91, 93, 94, 98], "detailed_label_qu": [57, 96], "annotator_stat": [57, 96], "model_weight": 57, "annotator_weight": 57, "warn": [57, 86, 87, 88, 90, 91, 93, 94], "labels_info": 57, "num_annot": [57, 96], "deriv": [57, 96], "quality_annotator_1": 57, "quality_annotator_2": 57, "quality_annotator_m": 57, "annotator_qu": [57, 96], "num_examples_label": [57, 96], "agreement_with_consensu": [57, 96], "worst_class": [57, 96], "trustworthi": [57, 96, 101], "get_label_quality_multiannotator_ensembl": 57, "weigtht": 57, "budget": 57, "retrain": [57, 83, 101], "active_learning_scor": 57, "active_learning_scores_unlabel": 57, "get_active_learning_scores_ensembl": 57, "henc": [57, 84, 86, 96], "get_majority_vote_label": [57, 96], "event": 57, "lastli": [57, 90], "convert_long_to_wide_dataset": 57, "labels_multiannotator_long": 57, "wide": [57, 82, 83, 84], "suitabl": [57, 82, 90], "labels_multiannotator_wid": 57, "common_multilabel_issu": [58, 60], "mutual": [58, 97], "exclus": [58, 97], "rank_classes_by_multilabel_qu": [58, 60], "overall_multilabel_health_scor": [58, 60], "multilabel_health_summari": [58, 60], "classes_by_multilabel_qu": 58, "inner": [59, 73], "find_multilabel_issues_per_class": [59, 60], "per_class_label_issu": 59, "label_issues_list": 59, "pred_probs_list": [59, 67, 88, 94], "anim": [60, 99], "rat": 60, "predat": 60, "pet": 60, "reptil": 60, "manner": [61, 82, 83, 96, 101], "box": [62, 64, 65, 92, 98], "object_detect": [62, 64, 65, 98], "return_indices_ranked_by_scor": [62, 98], "overlapping_label_check": [62, 64], "suboptim": [62, 64], "locat": [62, 64, 98, 102, 103], "bbox": [62, 65, 98], "image_nam": [62, 65], "y1": [62, 65, 98], "y2": [62, 65, 98], "later": [62, 65, 66, 83, 103], "corner": [62, 65, 98], "xyxi": [62, 65, 98], "io": [62, 65, 84, 92], "keras_cv": [62, 65], "bounding_box": [62, 65, 98], "detectron": [62, 65, 98], "detectron2": [62, 65, 98], "readthedoc": [62, 65], "en": [62, 65], "latest": [62, 65], "visual": [62, 63, 65, 82, 85, 86, 87, 88, 101, 103], "draw_box": [62, 65], "mmdetect": [62, 65, 98], "swap": [62, 64, 74, 78], "penal": [62, 64], "concern": [62, 64, 79, 87], "issues_from_scor": [63, 64, 72, 73, 74, 76, 77, 78, 98, 102, 103], "compute_overlooked_box_scor": [63, 64], "compute_badloc_box_scor": [63, 64], "compute_swap_box_scor": [63, 64], "pool_box_scores_per_imag": [63, 64], "object_counts_per_imag": [63, 65, 98], "bounding_box_size_distribut": [63, 65, 98], "class_label_distribut": [63, 65, 98], "get_sorted_bbox_count_idx": [63, 65], "plot_class_size_distribut": [63, 65], "plot_class_distribut": [63, 65], "get_average_per_class_confusion_matrix": [63, 65], "calculate_per_class_metr": [63, 65], "aggregation_weight": 64, "imperfect": [64, 93], "chose": [64, 96, 98], "imperfectli": [64, 98], "dirti": [64, 67, 70, 101], "subtyp": 64, "badloc": 64, "nonneg": 64, "high_probability_threshold": 64, "auxiliary_input": [64, 65], "vari": [64, 87], "iou": [64, 65], "heavili": 64, "auxiliarytypesdict": 64, "pred_label": [64, 83], "pred_label_prob": 64, "pred_bbox": 64, "lab_label": 64, "lab_bbox": 64, "similarity_matrix": 64, "min_possible_similar": 64, "scores_overlook": 64, "low_probability_threshold": 64, "scores_badloc": 64, "accident": [64, 83, 90, 91, 93], "scores_swap": 64, "box_scor": 64, "image_scor": [64, 73, 102], "discov": [65, 87, 103], "abnorm": [65, 88, 98], "auxiliari": [65, 99, 102], "_get_valid_inputs_for_compute_scor": 65, "object_count": 65, "down": 65, "bbox_siz": 65, "class_distribut": 65, "plot": [65, 85, 86, 87, 94, 97, 99, 101, 102], "sorted_idx": [65, 99], "class_to_show": 65, "hidden": [65, 85, 99], "max_class_to_show": 65, "plt": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "matplotlib": [65, 74, 85, 86, 87, 88, 94, 97, 98, 99, 101], "pyplot": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "prediction_threshold": 65, "overlai": [65, 98], "figsiz": [65, 85, 86, 87, 88, 94, 97, 99], "save_path": [65, 98], "blue": [65, 92, 94, 98], "overlaid": 65, "side": [65, 92, 98], "figur": [65, 94, 97, 99, 101], "extens": [65, 94, 96], "png": [65, 98], "pdf": [65, 66], "svg": 65, "num_proc": [65, 88], "intersect": [65, 93], "tp": 65, "fp": 65, "ground": [65, 92, 94, 96, 101], "truth": [65, 94, 96, 101], "bias": 65, "avg_metr": 65, "distionari": 65, "95": [65, 75, 77, 90, 92, 94, 101], "per_class_metr": 65, "Of": 66, "li": 66, "smaller": [66, 85, 97, 98], "find_top_issu": [66, 67, 99], "reli": [66, 83, 84, 85, 86, 87, 91, 98, 99, 101], "dist_metr": 66, "subtract": [66, 67], "renorm": [66, 67, 93], "least_confid": 66, "sum_": 66, "log": [66, 67, 80], "softmax": [66, 73, 77, 88], "literatur": 66, "gen": 66, "liu": 66, "lochman": 66, "zach": 66, "openaccess": 66, "thecvf": 66, "cvpr2023": 66, "liu_gen_pushing_the_limits_of_softmax": 66, "based_out": 66, "distribution_detection_cvpr_2023_pap": 66, "fit_scor": [66, 99], "ood_predictions_scor": 66, "pretrain": [66, 83, 84, 91, 99], "adjust_confident_threshold": 66, "probabilist": [66, 82, 84, 86, 87, 90, 91, 99, 100], "order_label_issu": [67, 80], "whichev": [67, 100], "argsort": [67, 83, 88, 91, 94, 98, 99, 101], "max_": 67, "get_label_quality_ensemble_scor": [67, 93, 94], "weight_ensemble_members_bi": 67, "custom_weight": 67, "log_loss_search_t_valu": 67, "0001": [67, 92], "scheme": 67, "log_loss_search": 67, "log_loss": [67, 91], "1e0": 67, "1e1": 67, "1e2": 67, "2e2": 67, "quality_scor": [67, 99], "forth": 67, "top_issue_indic": 67, "rank_bi": [67, 80], "weird": [67, 78], "minu": 67, "prob_label": 67, "max_prob_not_label": 67, "idea": [67, 85, 98], "AND": [67, 91], "get_epistemic_uncertainti": [68, 69], "get_aleatoric_uncertainti": [68, 69], "corrupt": [69, 101], "linearregress": [69, 93, 101], "y_with_nois": 69, "n_boot": [69, 93], "include_aleatoric_uncertainti": [69, 93], "sole": [69, 82, 86, 96, 99], "bootstrap": [69, 93, 101], "resampl": [69, 84, 93], "epistem": [69, 93, 99, 101], "aleator": [69, 93, 101], "model_final_kwarg": 69, "coars": 69, "thorough": [69, 93], "fine": [69, 83, 84, 91, 99], "grain": 69, "grid": 69, "varianc": [69, 94], "epistemic_uncertainti": 69, "residu": [69, 70, 93], "deviat": [69, 98, 101], "aleatoric_uncertainti": 69, "outr": 70, "contin": 70, "raw": [70, 79, 80, 87, 88, 92, 93, 96, 98, 99, 101], "aka": [70, 84, 94, 98, 101, 103], "00323821": 70, "33692597": 70, "00191686": 70, "semant": [71, 73, 74, 95], "pixel": [71, 73, 74, 99, 102], "h": [71, 73, 74, 102], "height": [71, 73, 74, 102], "w": [71, 73, 74, 102], "width": [71, 73, 74, 102], "labels_one_hot": [71, 74, 102], "stream": [71, 85, 99, 103], "downsampl": [71, 73, 102], "shrink": [71, 73], "divis": [71, 73, 86], "common_label_issu": [72, 74, 76, 78, 102, 103], "filter_by_class": [72, 74, 102], "segmant": [73, 74], "num_pixel_issu": [73, 102], "product": [73, 88, 93], "pixel_scor": [73, 102], "highlight": [74, 78, 85, 86, 87, 90, 102], "enter": 74, "legend": [74, 85, 86, 87, 97, 98, 101, 102], "colormap": 74, "background": 74, "person": [74, 93, 98, 102, 103], "ambigu": [74, 78, 83, 84, 91, 92, 94, 103], "systemat": [74, 78, 96], "misunderstood": [74, 78], "issues_df": [74, 88], "class_index": 74, "issues_subset": [74, 78], "filter_by_token": [76, 78, 103], "token_score_method": 77, "sentence_score_method": 77, "sentence_score_kwarg": 77, "compris": [77, 78], "token_scor": [77, 103], "converg": 77, "toward": 77, "_softmin_sentence_scor": 77, "sentence_scor": [77, 103], "token_info": 77, "70": [77, 90], "02": [77, 86, 87, 94, 98], "03": [77, 90, 92, 94, 98, 103], "04": [77, 90, 98, 99, 103], "08": [77, 94, 98, 101, 103], "commonli": [78, 80, 86, 87, 97, 103], "But": [78, 91, 94, 101, 103], "restrict": [78, 93], "reliabl": [79, 82, 84, 93, 96, 102], "thousand": 79, "imagenet": [79, 92], "popular": [79, 96, 98], "centric": [79, 88, 90, 91, 95], "capabl": 79, "minut": [79, 82, 83, 84, 90, 91, 92, 96, 97, 98, 101, 102, 103], "conda": 79, "feature_embed": [79, 99], "Then": [79, 82, 83, 88, 93], "your_dataset": [79, 84, 86, 87, 88, 90, 91, 93], "column_name_of_label": [79, 84, 86, 87, 88, 90, 91], "plagu": [79, 87], "untrain": 79, "\u30c4": 79, "label_issues_info": [79, 87], "sklearn_compatible_model": 79, "framework": [79, 97, 98], "complianc": 79, "tag": [79, 97, 103], "sequenc": 79, "recognit": [79, 84, 93, 103], "train_data": [79, 82, 83, 99, 101], "gotten": 79, "test_data": [79, 82, 83, 85, 94, 97, 99, 101], "deal": [79, 87], "tutori": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "feel": [79, 84, 87, 93], "ask": [79, 93], "slack": [79, 93], "project": [79, 101], "welcom": 79, "commun": [79, 93], "guidelin": [79, 98], "piec": 79, "smart": [79, 88, 90, 91, 93], "edit": [79, 93], "easier": [79, 94], "unreli": [79, 82, 84, 90, 91], "link": [79, 84, 92, 98], "older": 80, "outlin": 80, "substitut": 80, "v2": [80, 82, 90], "get_noise_indic": 80, "psx": 80, "sorted_index_method": 80, "order_label_error": 80, "label_errors_bool": 80, "latent_estim": 80, "num_label_error": 80, "learningwithnoisylabel": 80, "neatli": 80, "organ": [80, 82, 90, 92, 103], "reorgan": 80, "baseline_method": 80, "incorpor": [80, 94], "research": [80, 94], "polyplex": 80, "terminologi": 80, "label_error": 80, "quickstart": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "sql": [82, 90], "databas": [82, 90], "excel": [82, 90], "parquet": [82, 90], "student": [82, 90, 101, 103], "grade": [82, 90, 101], "900": [82, 90, 101], "exam": [82, 90, 101], "letter": [82, 90, 103], "hundr": [82, 90], "mistak": [82, 83, 88, 90, 91], "No": [82, 83, 91, 93], "extratreesclassifi": 82, "extratre": 82, "ranked_label_issu": [82, 83], "branch": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "preprocess": [82, 83, 87, 90, 99, 101], "standardscal": [82, 90, 99], "labelencod": [82, 83], "train_test_split": [82, 83, 85, 86, 87, 99], "accuracy_scor": [82, 83, 84, 91, 94], "grades_data": [82, 90], "read_csv": [82, 83, 90, 91, 101], "demo": [82, 87, 90, 97], "head": [82, 83, 84, 87, 88, 90, 91, 92, 94, 96, 101], "stud_id": [82, 90], "exam_1": [82, 90, 101], "exam_2": [82, 90, 101], "exam_3": [82, 90, 101], "letter_grad": [82, 90], "f48f73": [82, 90], "53": [82, 85, 86, 87, 90, 92, 97, 98], "00": [82, 86, 87, 88, 90, 92, 99], "77": [82, 86, 87, 90, 98], "0bd4e7": [82, 90], "81": [82, 90, 91, 98, 101, 103], "great": [82, 85, 90, 92], "particip": [82, 90], "cb9d7a": [82, 90], "61": [82, 90, 94, 98, 101], "94": [82, 90, 92, 94, 98, 101], "78": [82, 90, 92, 94, 98, 101], "9acca4": [82, 90], "48": [82, 90, 92, 94, 98], "x_raw": [82, 90], "labels_raw": 82, "interg": [82, 83], "categorical_featur": [82, 101], "x_encod": [82, 90], "get_dummi": [82, 90, 101], "drop_first": [82, 90], "numeric_featur": [82, 90], "scaler": [82, 90, 99], "x_process": [82, 90], "fit_transform": [82, 90], "bring": [82, 83, 88, 90, 91, 96, 101], "byod": [82, 83, 88, 90, 91, 96, 101], "decis": [82, 85, 86, 87], "tress": 82, "held": [82, 84, 90, 91, 92, 98, 99, 100], "straightforward": [82, 84, 90], "benefit": [82, 84, 100, 102], "num_crossval_fold": [82, 84, 90, 96], "tabl": [82, 90, 92, 96], "212": [82, 94], "review": [82, 83, 87, 90, 91, 92, 93, 94, 98, 101, 102, 103], "iloc": [82, 83, 84, 90, 91, 101], "58": [82, 87, 90, 92, 94, 98], "92": [82, 86, 94, 98], "93": [82, 92, 98, 101], "827": 82, "99": [82, 92, 94], "86": [82, 87, 88, 90, 94, 98, 101], "74": [82, 98, 101], "637": [82, 90], "79": [82, 92, 98], "65": [82, 86, 98], "cheat": 82, "0pt": 82, "120": [82, 86, 87], "97": [82, 92, 93, 94, 98, 101, 103], "233": 82, "68": [82, 92, 94, 98], "83": [82, 94, 98, 101, 103], "76": [82, 85, 94, 97, 98, 101], "suspici": [82, 90], "carefulli": [82, 88, 90, 91], "examin": [82, 85, 86, 87, 90, 98], "labels_train": 82, "labels_test": 82, "test_siz": [82, 83, 85, 86, 87], "acc_og": [82, 83], "783068783068783": 82, "robustli": [82, 83, 101], "14": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "acc_cl": [82, 83], "8095238095238095": 82, "especi": [82, 83, 85, 88, 93, 101], "blindli": [82, 83, 84, 93, 101], "trust": [82, 83, 84, 93, 94, 96, 100, 101], "effort": [82, 83, 101], "intent": [83, 91], "servic": [83, 91, 93], "onlin": [83, 91], "bank": [83, 91, 92], "banking77": [83, 91], "oo": [83, 91], "000": [83, 88, 91, 92, 103], "categori": [83, 88, 91], "shortlist": [83, 91, 101], "scope": [83, 91], "logist": [83, 85, 86, 87, 91, 96, 99], "probabilit": [83, 84], "drop": [83, 93, 96, 101], "earlier": [83, 103], "sentence_transform": [83, 91], "sentencetransform": [83, 91], "payment": [83, 91], "cancel_transf": [83, 91], "transfer": [83, 91], "fund": [83, 91], "cancel": [83, 91], "transact": [83, 91], "my": [83, 91], "revert": [83, 91], "morn": [83, 91], "realis": [83, 91], "yesterdai": [83, 91], "rent": [83, 91], "realli": [83, 91, 96, 102], "tomorrow": [83, 91], "raw_text": [83, 91], "raw_label": 83, "raw_train_text": 83, "raw_test_text": 83, "raw_train_label": 83, "raw_test_label": 83, "39": [83, 84, 86, 88, 91, 92, 93, 98, 101, 102, 103], "apple_pay_or_google_pai": [83, 91], "beneficiary_not_allow": [83, 91], "change_pin": [83, 91], "getting_spare_card": [83, 91], "card_payment_fee_charg": [83, 91], "supported_cards_and_curr": [83, 91], "lost_or_stolen_phon": [83, 91], "card_about_to_expir": [83, 91], "visa_or_mastercard": [83, 91], "card": [83, 91, 92], "utter": [83, 91], "encond": 83, "test_label": [83, 94, 97, 99], "suit": [83, 91, 92, 93], "electra": [83, 91], "discrimin": [83, 91], "googl": [83, 85, 91], "train_text": 83, "test_text": 83, "home": [83, 86, 87, 91, 92], "runner": [83, 86, 87, 91], "google_electra": [83, 91], "pool": [83, 91, 93, 99], "opt": [83, 84, 87, 88, 90, 91, 94], "hostedtoolcach": [83, 84, 87, 88, 90, 91, 94], "x64": [83, 84, 87, 88, 90, 91, 94], "lib": [83, 84, 87, 88, 90, 91, 94], "python3": [83, 84, 87, 88, 90, 91, 94], "site": [83, 84, 87, 88, 90, 91, 94], "_util": [83, 91], "831": [83, 91], "userwarn": [83, 84, 86, 87, 91], "typedstorag": [83, 91], "untypedstorag": [83, 91], "untyped_storag": [83, 91], "fget": [83, 91], "__get__": [83, 91], "owner": [83, 91], "leverag": [83, 84, 91, 93, 94, 96], "computation": [83, 84, 91], "intens": [83, 84, 91], "400": [83, 85, 91], "858371": 83, "547274": 83, "826228": 83, "966008": 83, "792449": 83, "identified_issu": [83, 101], "lowest_quality_label": [83, 84, 91, 94, 101], "to_numpi": [83, 91, 93, 101], "44": [83, 92, 97, 98, 103], "646": 83, "390": 83, "628": 83, "121": [83, 85, 94], "702": 83, "863": [83, 84], "135": 83, "337": [83, 98], "735": 83, "print_as_df": 83, "inverse_transform": 83, "charg": [83, 91], "cash": [83, 91], "holidai": [83, 91], "sent": [83, 91, 103], "mine": [83, 91], "expir": [83, 91], "fight": 83, "hors": [83, 92, 99], "duck": [83, 92], "me": [83, 91], "whoever": [83, 91], "consum": [83, 101], "18": [83, 84, 91, 92, 93, 94, 98, 99, 101, 102, 103], "baseline_model": [83, 101], "87": [83, 87, 88, 98, 101], "acceler": [83, 101], "19": [83, 84, 88, 91, 92, 93, 94, 98, 99, 101, 102], "89": [83, 85, 86, 90, 98, 101], "spoken": 84, "500": [84, 99, 103], "english": [84, 92], "pronunci": 84, "wav": 84, "huggingfac": [84, 86, 87, 88, 93], "voxceleb": 84, "speech": [84, 103], "your_pred_prob": [84, 85, 86, 87, 90, 91], "tensorflow_io": 84, "huggingface_hub": 84, "reproduc": [84, 90, 94, 96], "command": 84, "wget": [84, 98, 102, 103], "navig": 84, "browser": 84, "jakobovski": 84, "archiv": [84, 103], "v1": 84, "tar": [84, 99], "gz": [84, 99], "mkdir": [84, 103], "spoken_digit": 84, "xf": 84, "6_nicolas_32": 84, "data_path": 84, "listdir": 84, "nondeterminist": 84, "file_nam": 84, "endswith": 84, "file_path": 84, "join": [84, 85, 88, 93], "7_george_26": 84, "0_nicolas_24": 84, "0_nicolas_6": 84, "listen": 84, "display_exampl": 84, "expand": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "pulldown": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "colab": [84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "tfio": 84, "pathlib": 84, "ipython": 84, "load_wav_16k_mono": 84, "filenam": 84, "khz": 84, "file_cont": 84, "read_fil": 84, "sample_r": 84, "decode_wav": 84, "desired_channel": 84, "squeez": 84, "rate_in": 84, "rate_out": 84, "16000": 84, "wav_file_nam": 84, "audio_r": 84, "wav_file_exampl": 84, "plai": [84, 92, 93], "button": 84, "wav_file_name_exampl": 84, "7_jackson_43": 84, "hear": 84, "extractor": 84, "encoderclassifi": 84, "spkrec": 84, "xvect": 84, "feature_extractor": 84, "from_hparam": 84, "run_opt": 84, "uncom": 84, "ffmpeg": 84, "backend": 84, "wav_audio_file_path": 84, "torchaudio": 84, "extract_audio_embed": 84, "emb": [84, 88], "signal": 84, "encode_batch": 84, "embeddings_list": [84, 88], "embeddings_arrai": 84, "650": 84, "stft": 84, "return_complex": 84, "view_as_r": 84, "recov": 84, "trigger": 84, "aten": 84, "src": 84, "nativ": 84, "spectralop": 84, "cpp": 84, "_vf": 84, "n_fft": 84, "hop_length": 84, "win_length": 84, "attr": 84, "512": [84, 88], "196311": 84, "319459": 84, "478975": 84, "2890875": 84, "8170238": 84, "89265": 84, "24": [84, 92, 94, 96, 98, 101], "898056": 84, "256195": 84, "559641": 84, "559721": 84, "62067": 84, "285245": 84, "21": [84, 86, 92, 93, 94, 98, 101, 103], "709627": 84, "5033693": 84, "913803": 84, "819831": 84, "1831515": 84, "208763": 84, "084257": 84, "3210397": 84, "005453": 84, "216152": 84, "478235": 84, "6821785": 84, "053807": 84, "242471": 84, "091424": 84, "78334856": 84, "03954": 84, "23": [84, 88, 92, 94, 98, 101], "569176": 84, "761097": 84, "1258295": 84, "753237": 84, "3508866": 84, "598274": 84, "23712": 84, "2500": 84, "tol": 84, "decreas": [84, 93], "cv_accuraci": 84, "9708": 84, "9976": 84, "986": 84, "002161": 84, "176": [84, 92, 94, 97], "002483": 84, "2318": 84, "004411": 84, "1005": 84, "004857": 84, "1871": 84, "007494": 84, "investig": [84, 85], "040587": 84, "999207": 84, "999377": 84, "975220": 84, "999367": 84, "identified_label_issu": [84, 91], "sort_valu": [84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 101], "516": 84, "1946": 84, "469": 84, "2132": 84, "worth": [84, 94], "6_yweweler_25": 84, "7_nicolas_43": 84, "6_theo_27": 84, "6_yweweler_36": 84, "6_yweweler_14": 84, "6_yweweler_35": 84, "6_nicolas_8": 84, "sound": 84, "quit": [84, 99], "22": [84, 86, 88, 92, 93, 94, 97, 98, 103], "ve": [85, 92, 93, 94, 96, 98], "prove": 85, "monitor": [85, 92], "ran": 85, "data_monitor": 85, "your_datalab": 85, "new_data_batch": 85, "your_label": 85, "get_your_label": 85, "websit": [85, 92], "todo": 85, "get_ipython": 85, "7b4b0690aec3f23448ea3fade9afe2b3fe8434d2": 85, "cmd": 85, "dep": 85, "dependencies_test": 85, "missing_depend": 85, "__import__": 85, "importerror": 85, "sep": [85, 103], "npleas": 85, "toi": [85, 86, 87, 88, 92, 94, 96], "mid": [85, 86, 87], "workflow": [85, 95, 101], "unseen": 85, "inf": [85, 86, 87], "bins_map": [85, 86, 87], "create_data": [85, 86, 87], "800": [85, 88], "y_bin": [85, 86, 87], "y_i": [85, 86, 87], "y_bin_idx": [85, 86, 87], "y_train": [85, 86, 87, 94, 101], "y_test": [85, 86, 87, 94, 101], "y_train_idx": [85, 86, 87], "y_test_idx": [85, 86, 87], "slide": [85, 86, 87, 92], "frame": [85, 86, 87], "x_out": [85, 86, 87], "tini": [85, 86, 87], "concaten": [85, 86, 87, 93, 100], "y_out": [85, 86, 87], "y_out_bin": [85, 86, 87], "y_out_bin_idx": [85, 86, 87], "exact_duplicate_idx": [85, 86, 87], "x_duplic": [85, 86, 87], "y_duplic": [85, 86, 87], "y_duplicate_idx": [85, 86, 87], "noisy_labels_idx": [85, 86, 87, 97], "train_x": 85, "test_x": 85, "train_y_tru": 85, "test_y_tru": 85, "train_i": 85, "test_i": 85, "train_y_idx": 85, "test_y_idx": 85, "scatter": [85, 86, 87, 94, 97, 101], "black": [85, 86, 87, 92, 101], "cyan": [85, 86, 87], "plot_data": [85, 86, 87, 94, 97, 101], "fig": [85, 86, 87, 88, 92, 99, 101], "ax": [85, 86, 87, 88, 99, 101], "subplot": [85, 86, 87, 88, 99], "set_titl": [85, 86, 87, 88, 99], "set_xlabel": [85, 86, 87], "x_1": [85, 86, 87], "fontsiz": [85, 86, 87, 88, 94, 97], "set_ylabel": [85, 86, 87], "x_2": [85, 86, 87], "set_xlim": [85, 86, 87], "set_ylim": [85, 86, 87], "linestyl": [85, 86, 87], "circl": [85, 86, 87, 94, 97], "misclassifi": [85, 86, 87], "zip": [85, 86, 87, 88, 98, 103], "label_err": [85, 86, 87], "180": [85, 86, 87, 98], "marker": [85, 86, 87], "facecolor": [85, 86, 87], "edgecolor": [85, 86, 87], "linewidth": [85, 86, 87, 99], "title_fontproperti": [85, 86, 87], "semibold": [85, 86, 87], "first_legend": [85, 86, 87], "align": [85, 86, 87], "markerscal": 85, "second_legend": [85, 86, 87], "46": [85, 90, 92, 94, 98], "gca": [85, 86, 87], "add_artist": [85, 86, 87], "tight_layout": [85, 86, 87], "ideal": [85, 86, 87], "simplic": [85, 97], "327": [85, 98], "9297": 85, "000124": 85, "259": 85, "000725": 85, "269": 85, "000794": 85, "002061": 85, "125": [85, 86], "002908": 85, "fly": [85, 92], "feed": [85, 93], "simul": 85, "tqdm": [85, 88], "sleep": [85, 92], "generate_stream": 85, "sleep_tim": 85, "desc": 85, "singleton_stream": 85, "seamless": [85, 93], "singleton": 85, "batched_stream": 85, "processed_singleton": 85, "suggested_label": [85, 91], "250997": 85, "285757": 85, "43": [85, 86, 92, 94, 98], "120906": 85, "principl": 85, "processed_batch": 85, "51": [85, 86, 87, 90, 92, 94, 98], "002748": 85, "189996": 85, "093505": 85, "037250": 85, "149": [85, 98], "076397": 85, "154": 85, "294010": 85, "160": [85, 91, 101], "073622": 85, "166": [85, 88], "140832": 85, "167": [85, 92, 94, 98], "041743": 85, "181": 85, "169429": 85, "127304": 85, "235": [85, 98], "090310": 85, "254": [85, 92, 98], "183343": 85, "256": [85, 92, 93, 98], "048720": 85, "263": [85, 97, 98], "138820": 85, "292": 85, "239609": 85, "295": [85, 98], "022075": 85, "306": 85, "103040": 85, "343": 85, "234755": 85, "354": 85, "001612": 85, "359": 85, "068359": 85, "367": [85, 101], "015793": 85, "368": 85, "029022": 85, "391": 85, "106761": 85, "troublesom": 85, "623844": 85, "812647": 85, "816854": 85, "661968": 85, "632244": 85, "395": 85, "474599": 85, "396": 85, "653901": 85, "397": 85, "584554": 85, "398": 85, "817287": 85, "399": 85, "881545": 85, "183": 85, "937927": 85, "309": 85, "939505": 85, "133": 85, "947290": 85, "177": 85, "952187": 85, "314": [85, 98], "997293": 85, "27": [85, 90, 92, 94, 98, 103], "655501": 85, "underneath": 86, "hood": [86, 93], "alert": 86, "introduct": 86, "mayb": [86, 87, 91], "your_feature_matrix": [86, 87], "dup": [86, 87], "45": [86, 87, 92, 94, 98], "remaind": 86, "modal": [86, 87, 93, 96], "132": [86, 87, 94, 98], "9318": 86, "006940": 86, "007830": 86, "40": [86, 87, 91, 92], "014828": 86, "107": [86, 87, 94, 97], "021241": 86, "026407": 86, "notic": [86, 94, 96, 98], "3558": [86, 87], "126": [86, 87, 94, 98], "006636": [86, 87], "130": [86, 87], "012571": [86, 87], "129": [86, 87, 103], "127": [86, 87], "014909": [86, 87], "128": [86, 87, 88], "017443": [86, 87], "6160": [86, 87], "is_near_duplicate_issu": [86, 87, 88, 90, 91, 93, 94], "131": [86, 87, 102], "000000e": [86, 87], "000002": [86, 87], "463180e": [86, 87], "07": [86, 87, 88, 90, 94, 98, 101, 103], "161148": [86, 87], "859087e": [86, 87], "30": [86, 87, 88, 92, 93, 97, 102, 103], "3453": 86, "029542": 86, "031182": 86, "057961": 86, "058244": 86, "348": 86, "378": 86, "357": 86, "34": [86, 92, 94, 96, 98, 103], "54": [86, 92, 94, 98], "039122": 86, "044598": 86, "105": [86, 98], "105196": 86, "133654": 86, "168033": 86, "101107": 86, "37": [86, 92], "183382": 86, "109": [86, 92, 98], "209259": 86, "211042": 86, "221316": 86, "average_ood_scor": 86, "34530442089193386": 86, "52": [86, 88, 92, 98, 103], "169820": 86, "087324e": 86, "259024": 86, "583757e": 86, "91": [86, 98], "346458": 86, "341292e": 86, "specfi": 86, "new_lab": 86, "scoring_funct": 86, "div": 86, "rem": 86, "inv_scal": 86, "49": [86, 92, 94, 98, 103], "superstitionissuemanag": 86, "unlucki": 86, "superstit": 86, "to_seri": 86, "issues_mask": 86, "summary_scor": 86, "9242": 86, "is_superstition_issu": 86, "superstition_scor": 86, "26": [86, 88, 92, 94, 96, 98], "047581": 86, "090635": 86, "129591": 86, "164840": 86, "lurk": [87, 88, 94], "_split": 87, "737": 87, "thoroughli": 87, "904": 87, "_base": [87, 88, 90, 91, 94], "246": [87, 88, 90, 91, 94, 98], "efficiencywarn": [87, 88, 90, 91, 94], "sort_graph_by_row_valu": [87, 88, 90, 91, 94], "warn_when_not_sort": [87, 88, 90, 91, 94], "8561": 87, "001908": 87, "003564": 87, "007331": 87, "008963": 87, "009664": 87, "0227": 87, "is_class_imbalance_issu": 87, "022727": 87, "conceptu": 87, "856061": 87, "355772": 87, "616034": 87, "821750": 87, "901562": 87, "betweeen": 87, "is_null_issu": 87, "is_non_iid_issu": [87, 90, 91, 94], "is_underperforming_group_issu": 87, "859131": 87, "417707": 87, "664083": 87, "970324": 87, "816953": 87, "375317": 87, "641516": 87, "890575": 87, "531021": 87, "460593": 87, "601188": 87, "826147": 87, "752808": 87, "321635": 87, "562539": 87, "948362": 87, "090243": 87, "472909": 87, "746763": 87, "878267": 87, "examples_w_issu": [87, 93], "013445": 87, "025184": 87, "026376": 87, "inde": [87, 91], "miscellan": [87, 103], "428571": 87, "111111": 87, "571429": 87, "407407": 87, "592593": 87, "337838": 87, "092593": 87, "662162": 87, "333333": [87, 92], "952381": 87, "666667": 87, "portion": 87, "huge": [87, 94], "worri": [87, 91], "critic": 87, "60": [88, 94, 101], "torchvis": [88, 99], "tensordataset": 88, "stratifiedkfold": [88, 97], "autonotebook": 88, "fashion_mnist": 88, "9m": 88, "lt": [88, 90, 91, 92, 96, 99], "148mb": 88, "18m": 88, "2mb": 88, "num_row": 88, "60000": 88, "transformed_dataset": 88, "with_format": 88, "255": [88, 92], "unsqueez": 88, "cpu_count": 88, "torch_dataset": 88, "quick": [88, 97, 99], "super": [88, 90, 91], "relu": 88, "batchnorm2d": 88, "maxpool2d": 88, "lazylinear": 88, "flatten": 88, "get_test_accuraci": 88, "testload": [88, 99], "energi": 88, "trainload": [88, 99], "n_epoch": 88, "patienc": 88, "criterion": 88, "crossentropyloss": 88, "adamw": 88, "best_test_accuraci": 88, "start_epoch": 88, "running_loss": 88, "best_epoch": 88, "end_epoch": 88, "3f": [88, 101], "acc": [88, 94], "time_taken": 88, "compute_embed": 88, "compute_pred_prob": 88, "train_batch_s": 88, "num_work": 88, "worker": [88, 103], "train_id_list": 88, "test_id_list": 88, "train_id": 88, "test_id": 88, "embeddings_model": 88, "ntrain": 88, "trainset": 88, "testset": 88, "pin_memori": 88, "fold_embed": 88, "fold_pred_prob": 88, "finish": 88, "482": 88, "720": 88, "817": 88, "329": [88, 98], "88": [88, 92, 93, 94, 97, 98, 101], "195": 88, "636": 88, "493": 88, "060": 88, "330": [88, 98], "505": 88, "431": 88, "476": 88, "340": 88, "590": 88, "328": [88, 98], "310": 88, "518": 88, "reorder": 88, "hstack": [88, 93, 94, 96], "vision": 88, "grayscal": 88, "max_preval": 88, "7714": 88, "3772": 88, "3585": 88, "3651": 88, "27080": 88, "873833e": 88, "40378": 88, "915575e": 88, "25316": 88, "390277e": 88, "06": [88, 94, 98, 103], "2090": 88, "751164e": 88, "14999": 88, "881301e": 88, "9569": 88, "11262": 88, "000003": 88, "coat": [88, 92], "shirt": [88, 92], "19228": 88, "000010": 88, "dress": 88, "32657": 88, "000013": 88, "bag": [88, 92, 99, 100], "21282": 88, "000016": 88, "53564": 88, "000018": 88, "pullov": 88, "6321": 88, "30968": 88, "001267": 88, "30659": 88, "000022": [88, 103], "47824": 88, "001454": 88, "3370": 88, "000026": 88, "54565": 88, "001854": 88, "9762": 88, "258": 88, "47139": 88, "000033": 88, "166980": 88, "986195": 88, "997205": 88, "sandal": [88, 92], "948781": 88, "999358": 88, "54078": 88, "17371": 88, "000025": 88, "plot_label_issue_exampl": 88, "ncol": [88, 99], "nrow": [88, 99], "ceil": 88, "axes_list": 88, "label_issue_indic": 88, "gl": 88, "sl": 88, "fontdict": 88, "imshow": [88, 99], "cmap": [88, 101], "grai": 88, "subplots_adjust": 88, "hspace": 88, "outsiz": 88, "outlier_issu": [88, 91], "outlier_issues_df": 88, "depict": [88, 97, 98, 99, 100, 102], "plot_outlier_issues_exampl": 88, "n_comparison_imag": 88, "sample_from_class": 88, "number_of_sampl": 88, "non_outlier_indic": 88, "isnul": 88, "non_outlier_indices_excluding_curr": 88, "sampled_indic": 88, "label_scores_of_sampl": 88, "top_score_indic": 88, "top_label_indic": 88, "sampled_imag": 88, "get_image_given_label_and_sampl": 88, "image_from_dataset": 88, "corresponding_label": 88, "comparison_imag": 88, "images_to_plot": 88, "idlist": 88, "iterrow": 88, "near_duplicate_issu": [88, 93], "closest": 88, "counterpart": 88, "near_duplicate_issues_df": 88, "plot_near_duplicate_issue_exampl": 88, "seen_id_pair": 88, "get_image_and_given_label_and_predicted_label": 88, "duplicate_imag": 88, "nd_set": 88, "challeng": 88, "dark_issu": 88, "reveal": [88, 98, 102], "dark_scor": 88, "dark_issues_df": 88, "is_dark_issu": 88, "34848": 88, "203922": 88, "50270": 88, "204588": 88, "3936": 88, "213098": 88, "733": 88, "217686": 88, "8094": 88, "230118": 88, "plot_image_issue_exampl": 88, "28": [88, 91, 92, 94, 96, 103], "difficult": 88, "disproportion": 88, "lowinfo_issu": 88, "low_information_scor": 88, "lowinfo_issues_df": 88, "is_low_information_issu": 88, "53050": 88, "067975": 88, "40875": 88, "089929": 88, "9594": 88, "092601": 88, "34825": 88, "107744": 88, "37530": 88, "108516": 88, "lot": 88, "histgradientboostingclassifi": 90, "cat_featur": 90, "boost": [90, 93, 96, 101], "xgboost": [90, 93, 101], "think": [90, 91, 93, 97, 102, 103], "nonzero": 90, "358": 90, "294": [90, 98], "941": 90, "7109": 90, "000005": [90, 91], "886": 90, "000059": 90, "709": 90, "000104": 90, "723": 90, "000169": 90, "689": 90, "000181": 90, "3590": 90, "051882e": 90, "683133e": 90, "536582e": 90, "406589e": 90, "324246e": 90, "6165": 90, "582": 90, "185": [90, 92, 98], "187": [90, 92], "898": 90, "0014": [90, 92], "595": 90, "702427": 90, "147": [90, 94, 98], "711186": 90, "157": [90, 94], "721394": 90, "771": 90, "731979": 90, "740335": 90, "0014153602099278074": 90, "issue_result": 90, "000842": 90, "555944": 90, "004374": 90, "sorted_issu": 90, "73": [90, 92, 97, 98, 101], "deserv": 90, "outlier_result": 90, "sorted_outli": 90, "56": [90, 92, 101], "96": [90, 92, 94, 97, 98, 101], "style": [90, 102], "font": 90, "18px": 90, "ff00ff": 90, "bac": 90, "unintend": [90, 91], "duplicate_result": 90, "690": 90, "perhap": [90, 94, 96], "twice": 90, "67": [90, 92, 98, 101], "wari": [90, 91, 93], "dive": 91, "your_featur": 91, "text_embed": 91, "data_dict": [91, 94, 96], "85": [91, 98], "38": [91, 92, 98], "9710": 91, "981": 91, "974": 91, "000146": 91, "982": [91, 92], "000224": 91, "971": 91, "000507": 91, "980": [91, 92], "000960": 91, "3584": 91, "994": 91, "009642": 91, "999": 91, "013067": 91, "013841": 91, "433": 91, "014722": 91, "989": 91, "018224": 91, "6070": 91, "095724": 91, "148": 91, "006237": 91, "546": 91, "099341": 91, "514": 91, "006485": 91, "481": 91, "123418": 91, "008165": 91, "0000": [91, 92, 94], "313": [91, 98], "564102": 91, "572258": 91, "574915": 91, "31": [91, 92, 94, 96, 98], "575507": 91, "575874": 91, "792090": 91, "257611": 91, "698710": 91, "182121": 91, "771619": 91, "data_with_suggested_label": 91, "withdraw": 91, "monei": 91, "lowest_quality_outli": 91, "OR": 91, "636c65616e6c616220697320617765736f6d6521": 91, "phone": [91, 92], "gone": 91, "gt": [91, 96, 103], "samp": 91, "br": 91, "press": [91, 103], "nonsens": 91, "sens": 91, "detriment": 91, "duplicate_issu": 91, "fee": 91, "pai": 91, "go": [91, 92, 94], "strongli": 91, "p_valu": 91, "benign": 91, "curat": 91, "refin": 92, "instruct": 92, "studi": [92, 98], "mnist_test_set": 92, "imagenet_val_set": 92, "tench": 92, "goldfish": 92, "white": [92, 103], "shark": 92, "tiger": 92, "hammerhead": 92, "electr": 92, "rai": 92, "stingrai": 92, "cock": 92, "hen": 92, "ostrich": 92, "brambl": 92, "goldfinch": 92, "hous": 92, "finch": 92, "junco": 92, "indigo": 92, "bunt": 92, "american": [92, 103], "robin": 92, "bulbul": 92, "jai": 92, "magpi": 92, "chickade": 92, "dipper": 92, "kite": 92, "bald": 92, "eagl": 92, "vultur": 92, "grei": 92, "owl": 92, "salamand": 92, "smooth": 92, "newt": 92, "spot": [92, 93, 98], "axolotl": 92, "bullfrog": 92, "tree": 92, "frog": [92, 99], "tail": 92, "loggerhead": 92, "sea": 92, "turtl": 92, "leatherback": 92, "mud": 92, "terrapin": 92, "band": 92, "gecko": 92, "green": [92, 103], "iguana": 92, "carolina": 92, "anol": 92, "desert": 92, "grassland": 92, "whiptail": 92, "lizard": 92, "agama": 92, "frill": 92, "neck": 92, "allig": 92, "gila": 92, "monster": 92, "european": 92, "chameleon": 92, "komodo": 92, "dragon": 92, "nile": 92, "crocodil": 92, "triceratop": 92, "worm": 92, "snake": 92, "ring": 92, "eastern": 92, "hog": 92, "nose": 92, "kingsnak": 92, "garter": 92, "water": 92, "vine": 92, "night": 92, "boa": 92, "constrictor": 92, "african": 92, "rock": 92, "indian": 92, "cobra": 92, "mamba": 92, "saharan": 92, "horn": 92, "viper": 92, "diamondback": 92, "rattlesnak": 92, "sidewind": 92, "trilobit": 92, "harvestman": 92, "scorpion": 92, "yellow": 92, "garden": 92, "spider": 92, "barn": 92, "southern": 92, "widow": 92, "tarantula": 92, "wolf": 92, "tick": 92, "centiped": 92, "grous": 92, "ptarmigan": 92, "ruf": 92, "prairi": 92, "peacock": 92, "quail": 92, "partridg": 92, "parrot": 92, "macaw": 92, "sulphur": 92, "crest": 92, "cockatoo": 92, "lorikeet": 92, "coucal": 92, "bee": 92, "eater": 92, "hornbil": 92, "hummingbird": 92, "jacamar": 92, "toucan": 92, "breast": 92, "mergans": 92, "goos": 92, "swan": 92, "tusker": 92, "echidna": 92, "platypu": 92, "wallabi": 92, "koala": 92, "wombat": 92, "jellyfish": 92, "anemon": 92, "brain": 92, "coral": 92, "flatworm": 92, "nematod": 92, "conch": 92, "snail": 92, "slug": 92, "chiton": 92, "chamber": 92, "nautilu": 92, "dung": 92, "crab": 92, "fiddler": 92, "king": 92, "lobster": 92, "spini": 92, "crayfish": 92, "hermit": 92, "isopod": 92, "stork": 92, "spoonbil": 92, "flamingo": 92, "heron": 92, "egret": 92, "bittern": 92, "crane": 92, "bird": [92, 99], "limpkin": 92, "gallinul": 92, "coot": 92, "bustard": 92, "ruddi": 92, "turnston": 92, "dunlin": 92, "redshank": 92, "dowitch": 92, "oystercatch": 92, "pelican": 92, "penguin": 92, "albatross": 92, "whale": 92, "killer": 92, "dugong": 92, "lion": 92, "chihuahua": 92, "japanes": 92, "chin": 92, "maltes": 92, "pekinges": 92, "shih": 92, "tzu": 92, "charl": 92, "spaniel": 92, "papillon": 92, "terrier": 92, "rhodesian": 92, "ridgeback": 92, "afghan": [92, 103], "hound": 92, "basset": 92, "beagl": 92, "bloodhound": 92, "bluetick": 92, "coonhound": 92, "tan": 92, "walker": 92, "foxhound": 92, "redbon": 92, "borzoi": 92, "irish": 92, "wolfhound": 92, "italian": 92, "greyhound": 92, "whippet": 92, "ibizan": 92, "norwegian": 92, "elkhound": 92, "otterhound": 92, "saluki": 92, "scottish": 92, "deerhound": 92, "weimaran": 92, "staffordshir": 92, "bull": 92, "bedlington": 92, "border": 92, "kerri": 92, "norfolk": 92, "norwich": 92, "yorkshir": 92, "wire": 92, "fox": 92, "lakeland": 92, "sealyham": 92, "airedal": 92, "cairn": 92, "australian": 92, "dandi": 92, "dinmont": 92, "boston": 92, "miniatur": 92, "schnauzer": 92, "giant": 92, "tibetan": 92, "silki": 92, "wheaten": 92, "west": 92, "highland": 92, "lhasa": 92, "apso": 92, "flat": 92, "retriev": 92, "curli": 92, "golden": 92, "labrador": 92, "chesapeak": 92, "bai": 92, "german": [92, 103], "shorthair": 92, "pointer": 92, "vizsla": 92, "setter": 92, "gordon": 92, "brittani": 92, "clumber": 92, "springer": 92, "welsh": 92, "cocker": 92, "sussex": 92, "kuvasz": 92, "schipperk": 92, "groenendael": 92, "malinoi": 92, "briard": 92, "kelpi": 92, "komondor": 92, "sheepdog": 92, "shetland": 92, "colli": 92, "bouvier": 92, "de": 92, "flandr": 92, "rottweil": 92, "shepherd": 92, "dobermann": 92, "pinscher": 92, "swiss": [92, 103], "mountain": 92, "bernes": 92, "appenzel": 92, "sennenhund": 92, "entlebuch": 92, "boxer": 92, "bullmastiff": 92, "mastiff": 92, "french": 92, "bulldog": 92, "dane": 92, "st": 92, "bernard": 92, "huski": 92, "alaskan": 92, "malamut": 92, "siberian": 92, "dalmatian": 92, "affenpinsch": 92, "basenji": 92, "pug": 92, "leonberg": 92, "newfoundland": 92, "pyrenean": 92, "samoi": 92, "pomeranian": 92, "chow": 92, "keeshond": 92, "griffon": 92, "bruxelloi": 92, "pembrok": 92, "corgi": 92, "cardigan": 92, "poodl": 92, "mexican": 92, "hairless": 92, "tundra": 92, "coyot": 92, "dingo": 92, "dhole": 92, "wild": 92, "hyena": 92, "kit": 92, "arctic": 92, "tabbi": 92, "persian": 92, "siames": 92, "egyptian": 92, "mau": 92, "cougar": 92, "lynx": 92, "leopard": 92, "snow": 92, "jaguar": 92, "cheetah": 92, "brown": [92, 102], "bear": 92, "polar": 92, "sloth": 92, "mongoos": 92, "meerkat": 92, "beetl": 92, "ladybug": 92, "longhorn": 92, "leaf": 92, "rhinocero": 92, "weevil": 92, "ant": 92, "grasshopp": 92, "cricket": 92, "stick": 92, "insect": 92, "cockroach": 92, "manti": 92, "cicada": 92, "leafhopp": 92, "lacew": 92, "dragonfli": 92, "damselfli": 92, "admir": 92, "ringlet": 92, "monarch": 92, "butterfli": 92, "gossam": 92, "wing": 92, "starfish": 92, "urchin": 92, "cucumb": 92, "cottontail": 92, "rabbit": 92, "hare": 92, "angora": 92, "hamster": 92, "porcupin": 92, "squirrel": 92, "marmot": 92, "beaver": 92, "guinea": 92, "pig": 92, "sorrel": 92, "zebra": 92, "boar": 92, "warthog": 92, "hippopotamu": 92, "ox": 92, "buffalo": 92, "bison": 92, "bighorn": 92, "sheep": 92, "alpin": 92, "ibex": 92, "hartebeest": 92, "impala": 92, "gazel": 92, "dromedari": 92, "llama": 92, "weasel": 92, "mink": 92, "polecat": 92, "foot": 92, "ferret": 92, "otter": 92, "skunk": 92, "badger": 92, "armadillo": 92, "toed": 92, "orangutan": 92, "gorilla": 92, "chimpanze": 92, "gibbon": 92, "siamang": 92, "guenon": 92, "pata": 92, "monkei": 92, "baboon": 92, "macaqu": 92, "langur": 92, "colobu": 92, "probosci": 92, "marmoset": 92, "capuchin": 92, "howler": 92, "titi": 92, "geoffroi": 92, "lemur": 92, "indri": 92, "asian": 92, "eleph": 92, "bush": 92, "snoek": 92, "eel": 92, "coho": 92, "salmon": 92, "beauti": 92, "clownfish": 92, "sturgeon": 92, "garfish": 92, "lionfish": 92, "pufferfish": 92, "abacu": 92, "abaya": 92, "academ": 92, "gown": 92, "accordion": 92, "acoust": 92, "guitar": 92, "aircraft": 92, "carrier": 92, "airlin": 92, "airship": 92, "altar": 92, "ambul": 92, "amphibi": 92, "clock": [92, 103], "apiari": 92, "apron": 92, "wast": 92, "assault": 92, "rifl": 92, "backpack": 92, "bakeri": 92, "balanc": 92, "beam": 92, "balloon": 92, "ballpoint": 92, "pen": 92, "aid": 92, "banjo": 92, "balust": 92, "barbel": 92, "barber": 92, "chair": [92, 98], "barbershop": 92, "baromet": 92, "barrel": 92, "wheelbarrow": 92, "basebal": 92, "basketbal": 92, "bassinet": 92, "bassoon": 92, "swim": 92, "cap": 92, "bath": 92, "towel": 92, "bathtub": 92, "station": 92, "wagon": 92, "lighthous": 92, "beaker": 92, "militari": 92, "beer": 92, "bottl": 92, "glass": 92, "bell": 92, "cot": 92, "bib": 92, "bicycl": [92, 102], "bikini": 92, "binder": 92, "binocular": 92, "birdhous": 92, "boathous": 92, "bobsleigh": 92, "bolo": 92, "tie": 92, "poke": 92, "bonnet": 92, "bookcas": 92, "bookstor": 92, "bow": 92, "brass": 92, "bra": 92, "breakwat": 92, "breastplat": 92, "broom": 92, "bucket": 92, "buckl": 92, "bulletproof": 92, "vest": 92, "butcher": 92, "shop": 92, "taxicab": 92, "cauldron": 92, "candl": 92, "cannon": 92, "cano": 92, "mirror": [92, 98], "carousel": 92, "tool": [92, 94, 96], "carton": 92, "wheel": 92, "teller": 92, "cassett": 92, "player": 92, "castl": 92, "catamaran": 92, "cd": 92, "cello": 92, "mobil": [92, 103], "chain": 92, "fenc": [92, 102], "mail": 92, "chainsaw": 92, "chest": 92, "chiffoni": 92, "chime": 92, "china": 92, "cabinet": 92, "christma": 92, "stock": 92, "church": 92, "movi": 92, "theater": 92, "cleaver": 92, "cliff": 92, "dwell": 92, "cloak": 92, "clog": 92, "cocktail": 92, "shaker": 92, "coffe": 92, "mug": 92, "coffeemak": 92, "coil": 92, "lock": 92, "keyboard": 92, "confectioneri": 92, "ship": [92, 99], "corkscrew": 92, "cornet": 92, "cowboi": 92, "boot": 92, "hat": 92, "cradl": 92, "crash": 92, "helmet": 92, "crate": 92, "infant": 92, "bed": 92, "crock": 92, "pot": 92, "croquet": 92, "crutch": 92, "cuirass": 92, "dam": 92, "desk": 92, "desktop": 92, "rotari": 92, "dial": 92, "telephon": 92, "diaper": 92, "watch": 92, "dine": 92, "dishcloth": 92, "dishwash": 92, "disc": 92, "brake": 92, "dock": 92, "sled": 92, "dome": 92, "doormat": 92, "drill": 92, "rig": 92, "drum": 92, "drumstick": 92, "dumbbel": 92, "dutch": 92, "oven": 92, "fan": 92, "locomot": 92, "entertain": 92, "center": 92, "envelop": 92, "espresso": 92, "powder": 92, "feather": 92, "fireboat": 92, "engin": [92, 102], "screen": 92, "sheet": 92, "flagpol": 92, "flute": 92, "footbal": 92, "forklift": 92, "fountain": 92, "poster": 92, "freight": 92, "fry": 92, "pan": 92, "fur": 92, "garbag": 92, "ga": 92, "pump": 92, "goblet": 92, "kart": 92, "golf": 92, "cart": 92, "gondola": 92, "gong": 92, "grand": 92, "piano": 92, "greenhous": 92, "grill": 92, "groceri": 92, "guillotin": 92, "barrett": 92, "hair": 92, "sprai": 92, "hammer": 92, "dryer": 92, "hand": [92, 94], "handkerchief": 92, "drive": 92, "harmonica": 92, "harp": 92, "harvest": 92, "hatchet": 92, "holster": 92, "honeycomb": 92, "hoop": 92, "skirt": 92, "horizont": 92, "bar": 92, "drawn": 92, "hourglass": 92, "ipod": 92, "cloth": 92, "iron": 92, "jack": 92, "lantern": 92, "jean": 92, "jeep": 92, "jigsaw": 92, "puzzl": 92, "pull": 92, "rickshaw": 92, "joystick": 92, "kimono": 92, "knee": 92, "pad": 92, "knot": 92, "ladl": 92, "lampshad": 92, "laptop": 92, "lawn": 92, "mower": 92, "knife": 92, "lifeboat": 92, "lighter": 92, "limousin": 92, "ocean": 92, "liner": 92, "lipstick": 92, "slip": 92, "shoe": 92, "lotion": 92, "speaker": 92, "loup": 92, "sawmil": 92, "magnet": 92, "compass": 92, "mailbox": 92, "tight": 92, "tank": 92, "manhol": 92, "maraca": 92, "marimba": 92, "maypol": 92, "maze": 92, "cup": [92, 98], "medicin": 92, "megalith": 92, "microphon": 92, "microwav": 92, "milk": 92, "minibu": 92, "miniskirt": 92, "minivan": 92, "missil": 92, "mitten": [92, 93], "mix": 92, "bowl": 92, "modem": 92, "monasteri": 92, "mope": 92, "mortar": 92, "mosqu": 92, "mosquito": 92, "scooter": 92, "bike": 92, "tent": 92, "mous": [92, 93], "mousetrap": 92, "van": 92, "muzzl": 92, "nail": 92, "brace": 92, "necklac": 92, "nippl": 92, "obelisk": 92, "obo": 92, "ocarina": 92, "odomet": 92, "oil": 92, "oscilloscop": 92, "overskirt": 92, "bullock": 92, "oxygen": 92, "packet": 92, "paddl": 92, "padlock": 92, "paintbrush": 92, "pajama": 92, "palac": [92, 103], "parachut": 92, "park": 92, "bench": 92, "meter": 92, "passeng": 92, "patio": 92, "payphon": 92, "pedest": 92, "pencil": 92, "perfum": 92, "petri": 92, "dish": 92, "photocopi": 92, "plectrum": 92, "pickelhaub": 92, "picket": 92, "pickup": 92, "pier": 92, "piggi": 92, "pill": 92, "pillow": 92, "ping": 92, "pong": 92, "pinwheel": 92, "pirat": 92, "pitcher": 92, "plane": 92, "planetarium": 92, "plastic": 92, "plate": 92, "rack": 92, "plow": 92, "plunger": 92, "polaroid": 92, "camera": 92, "pole": [92, 102], "polic": 92, "poncho": 92, "billiard": 92, "soda": 92, "potter": 92, "prayer": 92, "rug": 92, "printer": 92, "prison": 92, "projectil": 92, "projector": 92, "hockei": 92, "puck": 92, "punch": 92, "purs": 92, "quill": 92, "quilt": 92, "race": 92, "racket": 92, "radiat": 92, "radio": 92, "telescop": 92, "rain": 92, "recreat": 92, "reel": 92, "reflex": 92, "refriger": 92, "remot": 92, "restaur": 92, "revolv": 92, "rotisseri": 92, "eras": 92, "rugbi": 92, "ruler": 92, "safe": 92, "safeti": 92, "salt": 92, "sarong": 92, "saxophon": 92, "scabbard": 92, "school": 92, "bu": [92, 102], "schooner": 92, "scoreboard": 92, "crt": 92, "screw": 92, "screwdriv": 92, "seat": 92, "belt": 92, "sew": 92, "shield": 92, "shoji": 92, "basket": 92, "shovel": 92, "shower": 92, "curtain": 92, "ski": 92, "door": 92, "slot": 92, "snorkel": 92, "snowmobil": 92, "snowplow": 92, "soap": 92, "dispens": 92, "soccer": [92, 103], "sock": [92, 93], "solar": 92, "thermal": 92, "collector": 92, "sombrero": 92, "soup": 92, "heater": 92, "shuttl": 92, "spatula": 92, "motorboat": 92, "web": 92, "spindl": 92, "sport": [92, 103], "spotlight": 92, "stage": 92, "steam": 92, "arch": 92, "bridg": 92, "steel": 92, "stethoscop": 92, "scarf": 92, "stone": 92, "wall": [92, 102], "stopwatch": 92, "stove": 92, "strainer": 92, "tram": 92, "stretcher": 92, "couch": 92, "stupa": 92, "submarin": 92, "sundial": 92, "sunglass": 92, "sunscreen": 92, "suspens": 92, "mop": 92, "sweatshirt": 92, "swimsuit": 92, "swing": 92, "switch": 92, "syring": 92, "lamp": 92, "tape": 92, "teapot": 92, "teddi": 92, "televis": [92, 103], "tenni": 92, "thatch": 92, "roof": 92, "front": 92, "thimbl": 92, "thresh": 92, "throne": 92, "tile": 92, "toaster": 92, "tobacco": 92, "toilet": 92, "totem": 92, "tow": 92, "tractor": 92, "semi": 92, "trailer": 92, "trai": 92, "trench": 92, "tricycl": 92, "trimaran": 92, "tripod": 92, "triumphal": 92, "trolleybu": 92, "trombon": 92, "tub": 92, "turnstil": 92, "typewrit": 92, "umbrella": 92, "unicycl": 92, "upright": 92, "vacuum": 92, "cleaner": 92, "vase": 92, "vault": 92, "velvet": 92, "vend": 92, "vestment": 92, "viaduct": 92, "violin": 92, "volleybal": 92, "waffl": 92, "wallet": 92, "wardrob": 92, "sink": 92, "wash": 92, "jug": 92, "tower": 92, "whiskei": 92, "whistl": 92, "wig": 92, "shade": [92, 102], "windsor": 92, "wine": 92, "wok": 92, "wooden": 92, "spoon": 92, "wool": 92, "rail": 92, "shipwreck": 92, "yawl": 92, "yurt": 92, "comic": 92, "book": 92, "crossword": 92, "traffic": [92, 98, 102], "sign": [92, 102, 103], "dust": 92, "jacket": [92, 98], "menu": 92, "guacamol": 92, "consomm": 92, "trifl": 92, "ic": 92, "cream": 92, "pop": 92, "baguett": 92, "bagel": 92, "pretzel": 92, "cheeseburg": 92, "mash": 92, "potato": 92, "cabbag": 92, "broccoli": 92, "cauliflow": 92, "zucchini": 92, "spaghetti": 92, "squash": 92, "acorn": 92, "butternut": 92, "artichok": 92, "pepper": [92, 93], "cardoon": 92, "mushroom": 92, "granni": 92, "smith": 92, "strawberri": 92, "orang": 92, "lemon": 92, "pineappl": 92, "banana": 92, "jackfruit": 92, "custard": 92, "appl": 92, "pomegran": 92, "hai": 92, "carbonara": 92, "chocol": 92, "syrup": 92, "dough": 92, "meatloaf": 92, "pizza": 92, "pie": 92, "burrito": 92, "eggnog": 92, "alp": 92, "bubbl": 92, "reef": 92, "geyser": 92, "lakeshor": 92, "promontori": 92, "shoal": 92, "seashor": 92, "vallei": 92, "volcano": 92, "bridegroom": 92, "scuba": 92, "diver": 92, "rapese": 92, "daisi": 92, "ladi": 92, "slipper": 92, "corn": 92, "rose": 92, "hip": 92, "chestnut": 92, "fungu": 92, "agar": 92, "gyromitra": 92, "stinkhorn": 92, "earth": 92, "star": 92, "wood": 92, "bolet": 92, "ear": 92, "cifar10_test_set": 92, "airplan": [92, 99], "automobil": [92, 99], "deer": [92, 99], "cifar100_test_set": 92, "aquarium_fish": 92, "babi": 92, "boi": 92, "camel": 92, "caterpillar": 92, "cattl": [92, 103], "cloud": 92, "dinosaur": 92, "dolphin": 92, "flatfish": 92, "forest": 92, "girl": 92, "kangaroo": 92, "lawn_mow": 92, "man": 92, "maple_tre": 92, "motorcycl": [92, 102], "oak_tre": 92, "orchid": 92, "palm_tre": 92, "pear": 92, "pickup_truck": 92, "pine_tre": 92, "plain": 92, "poppi": 92, "possum": 92, "raccoon": 92, "road": [92, 102], "rocket": 92, "seal": 92, "shrew": 92, "skyscrap": 92, "streetcar": 92, "sunflow": 92, "sweet_pepp": 92, "trout": 92, "tulip": 92, "willow_tre": 92, "woman": [92, 98], "caltech256": 92, "ak47": 92, "bat": 92, "glove": 92, "birdbath": 92, "blimp": 92, "bonsai": 92, "boom": 92, "breadmak": 92, "buddha": 92, "bulldoz": 92, "cactu": 92, "cake": 92, "tire": 92, "cartman": 92, "cereal": 92, "chandeli": 92, "chess": 92, "board": 92, "chimp": 92, "chopstick": 92, "coffin": 92, "coin": 92, "comet": 92, "cormor": 92, "globe": 92, "diamond": 92, "dice": 92, "doorknob": 92, "drink": 92, "straw": 92, "dumb": 92, "eiffel": 92, "elk": 92, "ewer": 92, "eyeglass": 92, "fern": 92, "fighter": 92, "jet": [92, 101], "extinguish": 92, "hydrant": 92, "firework": 92, "flashlight": 92, "floppi": 92, "fri": 92, "frisbe": 92, "galaxi": 92, "giraff": 92, "goat": 92, "gate": 92, "grape": 92, "pick": [92, 93], "hamburg": 92, "hammock": 92, "harpsichord": 92, "hawksbil": 92, "helicopt": 92, "hibiscu": 92, "homer": 92, "simpson": 92, "horsesho": 92, "air": 92, "skeleton": 92, "ibi": 92, "cone": 92, "iri": 92, "jesu": 92, "christ": 92, "joi": 92, "kayak": 92, "ketch": 92, "ladder": 92, "lath": 92, "licens": 92, "lightbulb": 92, "lightn": 92, "mandolin": 92, "mar": 92, "mattress": 92, "megaphon": 92, "menorah": 92, "microscop": 92, "minaret": 92, "minotaur": 92, "motorbik": 92, "mussel": 92, "neckti": 92, "octopu": 92, "palm": 92, "pilot": 92, "paperclip": 92, "shredder": 92, "pci": 92, "peopl": [92, 98], "pez": 92, "picnic": 92, "pram": 92, "prai": 92, "pyramid": 92, "rainbow": 92, "roulett": 92, "saddl": 92, "saturn": 92, "segwai": 92, "propel": 92, "sextant": 92, "music": 92, "skateboard": 92, "smokestack": 92, "sneaker": 92, "boat": 92, "stain": 92, "steer": 92, "stirrup": 92, "superman": 92, "sushi": 92, "armi": [92, 103], "sword": 92, "tambourin": 92, "teepe": 92, "court": 92, "theodolit": 92, "tomato": 92, "tombston": 92, "tour": 92, "pisa": 92, "treadmil": 92, "fork": 92, "tweezer": 92, "unicorn": 92, "vcr": 92, "waterfal": 92, "watermelon": 92, "weld": 92, "windmil": 92, "xylophon": 92, "yarmulk": 92, "yo": 92, "toad": 92, "twenty_news_test_set": 92, "alt": 92, "atheism": 92, "comp": 92, "graphic": [92, 102], "misc": [92, 103], "sy": 92, "ibm": 92, "pc": 92, "hardwar": 92, "mac": 92, "forsal": 92, "rec": 92, "sci": 92, "crypt": 92, "electron": 92, "med": 92, "soc": 92, "religion": 92, "christian": [92, 103], "talk": [92, 103], "polit": 92, "gun": 92, "mideast": 92, "amazon": 92, "neutral": 92, "imdb_test_set": 92, "all_class": 92, "20news_test_set": 92, "_load_classes_predprobs_label": 92, "dataset_nam": 92, "labelerror": 92, "url_bas": 92, "5392f6c71473055060be3044becdde1cbc18284d": 92, "url_label": 92, "original_test_label": 92, "_original_label": 92, "url_prob": 92, "cross_validated_predicted_prob": 92, "_pyx": 92, "num_part": 92, "datatset": 92, "bytesio": 92, "allow_pickl": 92, "pred_probs_part": 92, "url": 92, "_of_": 92, "nload": 92, "imdb": 92, "interpret": [92, 93, 94, 97, 101], "capit": 92, "29780": 92, "780": 92, "medic": [92, 103], "doctor": 92, "359223": 92, "640777": 92, "184": [92, 94], "258427": 92, "341176": 92, "263158": 92, "658824": 92, "337349": 92, "246575": 92, "662651": 92, "248": 92, "330000": 92, "355769": 92, "670000": 92, "251": [92, 98], "252": 92, "112": 92, "253": [92, 98], "022989": 92, "049505": 92, "190": [92, 94, 98], "66": 92, "002216": 92, "000974": 92, "59": [92, 98], "000873": 92, "000739": 92, "32635": 92, "32636": 92, "47": [92, 98], "32637": 92, "32638": 92, "32639": 92, "32640": 92, "051": 92, "002242": 92, "997758": 92, "002088": 92, "001045": 92, "997912": 92, "002053": 92, "997947": 92, "001980": 92, "000991": 92, "998020": 92, "001946": 92, "002915": 92, "998054": 92, "001938": 92, "002904": 92, "998062": 92, "001020": 92, "998980": 92, "001018": 92, "002035": 92, "998982": 92, "999009": 92, "0003": 92, "0002": 92, "36": [92, 103], "41": [92, 98, 101], "71": [92, 94, 98, 101], "071": 92, "067269": 92, "929": 92, "046": 92, "058243": 92, "954": 92, "035": 92, "032096": 92, "965": 92, "031": 92, "012232": 92, "969": 92, "022": 92, "025896": 92, "978": 92, "020": [92, 94], "013092": 92, "018": 92, "013065": 92, "016": 92, "030542": 92, "984": 92, "013": 92, "020833": 92, "987": 92, "012": 92, "010020": 92, "988": 92, "0073": 92, "0020": 92, "0016": 92, "0015": 92, "0013": 92, "0012": 92, "0010": 92, "0008": 92, "0007": 92, "0006": 92, "0005": 92, "0004": 92, "244": [92, 98, 103], "98": [92, 93, 101], "452381": 92, "459770": 92, "72": [92, 94, 97, 101], "523364": 92, "460784": 92, "446602": 92, "57": [92, 94], "103774": 92, "030612": 92, "110092": 92, "049020": 92, "0034": 92, "0032": 92, "0026": 92, "0025": 92, "4945": 92, "4946": 92, "4947": 92, "4948": 92, "4949": 92, "4950": 92, "846": 92, "82": [92, 94, 98, 101], "7532": 92, "532": 92, "034483": 92, "009646": 92, "965517": 92, "030457": 92, "020513": 92, "969543": 92, "028061": 92, "035443": 92, "971939": 92, "025316": 92, "005168": 92, "974684": 92, "049751": 92, "979487": 92, "019920": 92, "042802": 92, "980080": 92, "017677": 92, "005115": 92, "982323": 92, "012987": 92, "005236": 92, "987013": 92, "012723": 92, "025126": 92, "987277": 92, "010989": 92, "008264": 92, "989011": 92, "010283": 92, "027778": 92, "989717": 92, "009677": 92, "990323": 92, "007614": 92, "010127": 92, "992386": 92, "005051": 92, "994949": 92, "005025": 92, "994975": 92, "005013": 92, "994987": 92, "001859": 92, "001328": 92, "000929": 92, "000664": 92, "186": [92, 94], "188": [92, 94, 97], "189": [92, 94], "snippet": 93, "nlp": [93, 103], "mind": [93, 94], "alphanumer": 93, "facilit": 93, "classlabel": 93, "guidanc": 93, "labels_str": 93, "datalab_str": 93, "labels_int": 93, "remap": 93, "datalab_int": 93, "my_dict": 93, "pet_nam": 93, "rover": 93, "rocki": 93, "speci": 93, "from_dict": 93, "datalab_dataset": 93, "number_of_class": 93, "total_number_of_data_point": 93, "alphabet": 93, "labels_proper_format": 93, "your_classifi": 93, "issues_datafram": 93, "class_predicted_for_flagged_exampl": 93, "class_predicted_for_all_exampl": 93, "grant": 93, "On": [93, 94, 98], "merged_dataset": 93, "label_column_nam": 93, "datataset": 93, "fair": [93, 94], "game": 93, "speedup": [93, 99], "flexibl": 93, "tempfil": 93, "mkdtemp": 93, "sped": 93, "anywai": 93, "pred_probs_merg": 93, "merge_rare_class": 93, "count_threshold": 93, "class_mapping_orig2new": 93, "heath_summari": 93, "num_examples_per_class": 93, "rare_class": 93, "num_classes_merg": 93, "other_class": 93, "labels_merg": 93, "new_c": 93, "merged_prob": 93, "new_class": 93, "original_class": 93, "num_check": 93, "ones_array_ref": 93, "isclos": 93, "though": [93, 94, 103], "successfulli": 93, "meaning": [93, 99], "virtuou": [93, 96], "cycl": [93, 96], "jointli": 93, "junk": 93, "clutter": 93, "unknown": 93, "caltech": 93, "combined_boolean_mask": 93, "mask1": 93, "mask2": 93, "gradientboostingclassifi": [93, 94], "true_error": [93, 94, 97], "101": [93, 98], "102": [93, 97, 98], "104": [93, 94, 98], "model_to_find_error": 93, "model_to_return": 93, "cl0": 93, "randomizedsearchcv": 93, "expens": 93, "param_distribut": 93, "learning_r": [93, 94], "max_depth": [93, 94], "magnitud": 93, "coeffici": [93, 101], "optin": 93, "environ": [93, 94], "rerun": [93, 94], "cell": [93, 94], "unabl": [93, 94], "render": [93, 94], "nbviewer": [93, 94], "nbsp": [93, 94], "cleanlearninginot": [93, 94], "fittedcleanlearn": [93, 94], "linearregressionlinearregress": 93, "n_init": 93, "fit_predict": 93, "continuous_column": 93, "categorical_column": 93, "data_df": 93, "feature_a": 93, "feature_b": 93, "unexpectedli": 93, "emphas": 93, "crucial": 93, "merge_duplicate_set": 93, "merge_kei": 93, "construct_group_kei": 93, "merged_set": 93, "consolidate_set": 93, "tolist": [93, 97], "issubset": 93, "frozenset": 93, "sets_list": 93, "mutabl": 93, "new_set": 93, "current_set": 93, "intersecting_set": 93, "lowest_score_strategi": 93, "sub_df": 93, "idxmin": 93, "filter_near_dupl": 93, "strategy_fn": 93, "strategy_kwarg": 93, "duplicate_row": 93, "group_kei": 93, "to_keep_indic": 93, "groupbi": 93, "explod": 93, "to_remov": 93, "isin": [93, 99], "kept": 93, "ids_to_remove_seri": 93, "tmp": 93, "ipykernel_7808": 93, "1995098996": 93, "deprecationwarn": 93, "dataframegroupbi": 93, "include_group": 93, "silenc": 93, "assist": 93, "streamlin": 93, "ux": 93, "agpl": 93, "compani": 93, "commerci": 93, "alter": 93, "email": 93, "team": 93, "discuss": 93, "anywher": 93, "profession": 93, "expert": 93, "depth": 94, "survei": [94, 103], "focus": [94, 96, 97, 101], "scienc": 94, "multivariate_norm": [94, 96, 97], "make_data": [94, 96], "cov": [94, 96, 97], "avg_trac": [94, 97], "py_tru": 94, "noise_matrix_tru": 94, "noise_marix": 94, "s_test": 94, "noisy_test_label": 94, "purpl": 94, "val": 94, "namespac": 94, "exec": 94, "markerfacecolor": [94, 97], "markeredgecolor": [94, 97, 101], "markers": [94, 97, 101], "markeredgewidth": [94, 97, 101], "realist": 94, "7560": 94, "637318e": 94, "896262e": 94, "548391e": 94, "923417e": 94, "375075e": 94, "3454": 94, "014051": 94, "020451": 94, "249": [94, 98], "042594": 94, "043859": 94, "045954": 94, "6120": 94, "023714": 94, "007136": 94, "119": [94, 98], "107266": 94, "103": [94, 98], "033738": 94, "238": [94, 98], "119505": 94, "236": [94, 98], "037843": 94, "222": 94, "614915": 94, "122": [94, 98], "624422": 94, "625965": 94, "626079": 94, "118": 94, "627675": 94, "695223": 94, "323529": 94, "523015": 94, "013720": 94, "675727": 94, "646521": 94, "anyth": 94, "enhanc": [94, 96, 98], "magic": 94, "liter": 94, "identif": 94, "x27": 94, "logisticregressionlogisticregress": 94, "ever": 94, "092": 94, "040": 94, "024": 94, "004": 94, "surpris": 94, "1705": 94, "01936": 94, "ton": 94, "yourfavoritemodel1": 94, "merged_label": 94, "merged_test_label": 94, "newli": [94, 96], "yourfavoritemodel2": 94, "yourfavoritemodel3": 94, "cl3": 94, "takeawai": 94, "That": [94, 97], "randomli": 94, "my_test_pred_prob": 94, "my_test_pr": 94, "issues_test": 94, "corrected_test_label": 94, "pretend": 94, "cl_test_pr": 94, "69": [94, 101], "fairli": 94, "label_acc": 94, "percentag": 94, "offset": 94, "nquestion": 94, "overestim": 94, "answer": 94, "experienc": 94, "knowledg": 94, "prioiri": 94, "known": 94, "versatil": 94, "label_issues_indic": 94, "213": [94, 98], "218": [94, 98], "152": 94, "197": [94, 98], "196": [94, 98], "170": 94, "214": 94, "164": [94, 97], "198": [94, 98], "191": [94, 98], "63": [94, 98, 101], "117": [94, 101], "62": [94, 98, 101], "206": [94, 98], "115": [94, 98], "193": 94, "194": 94, "201": [94, 98], "174": 94, "163": 94, "150": [94, 96, 98], "169": 94, "151": [94, 98], "168": [94, 103], "precision_scor": 94, "recall_scor": 94, "f1_score": 94, "true_label_issu": 94, "filter_by_list": 94, "718750": [94, 96], "807018": 94, "912": 94, "733333": 94, "800000": 94, "721311": 94, "792793": 94, "908": 94, "676923": 94, "765217": 94, "892": 94, "567901": 94, "702290": 94, "844": 94, "gaug": 94, "label_issues_count": 94, "155": [94, 98], "156": 94, "172": [94, 97], "easiest": 94, "modular": 94, "penalti": 94, "l2": 94, "model3": 94, "n_estim": 94, "cv_pred_probs_1": 94, "cv_pred_probs_2": 94, "cv_pred_probs_3": 94, "label_quality_scores_best": 94, "cv_pred_probs_ensembl": 94, "label_quality_scores_bett": 94, "superior": [94, 100], "timm": 95, "glad": 96, "multiannotator_label": 96, "300": [96, 103], "noisier": 96, "111": [96, 101], "local_data": [96, 97], "true_labels_train": [96, 97], "noise_matrix_bett": 96, "noise_matrix_wors": 96, "transpos": [96, 99], "dropna": 96, "zfill": 96, "row_na_check": 96, "notna": 96, "reset_index": 96, "a0001": 96, "a0002": 96, "a0003": 96, "a0004": 96, "a0005": 96, "a0006": 96, "a0007": 96, "a0008": 96, "a0009": 96, "a0010": 96, "a0041": 96, "a0042": 96, "a0043": 96, "a0044": 96, "a0045": 96, "a0046": 96, "a0047": 96, "a0048": 96, "a0049": 96, "a0050": 96, "na": 96, "60856743": 96, "41693214": 96, "40908785": 96, "87147629": 96, "64941785": 96, "10774851": 96, "0524466": 96, "71853246": 96, "37169848": 96, "66031048": 96, "multiannotator_util": 96, "crude": 96, "straight": 96, "majority_vote_label": 96, "736118": 96, "757751": 96, "782232": 96, "715565": 96, "824256": 96, "quality_annotator_a0001": 96, "quality_annotator_a0002": 96, "quality_annotator_a0003": 96, "quality_annotator_a0004": 96, "quality_annotator_a0005": 96, "quality_annotator_a0006": 96, "quality_annotator_a0007": 96, "quality_annotator_a0008": 96, "quality_annotator_a0009": 96, "quality_annotator_a0010": 96, "quality_annotator_a0041": 96, "quality_annotator_a0042": 96, "quality_annotator_a0043": 96, "quality_annotator_a0044": 96, "quality_annotator_a0045": 96, "quality_annotator_a0046": 96, "quality_annotator_a0047": 96, "quality_annotator_a0048": 96, "quality_annotator_a0049": 96, "quality_annotator_a0050": 96, "070564": 96, "216078": 96, "119188": 96, "alongisd": 96, "244981": 96, "208333": 96, "295979": 96, "294118": 96, "324197": 96, "310345": 96, "355316": 96, "346154": 96, "439732": 96, "480000": 96, "a0031": 96, "523205": 96, "580645": 96, "a0034": 96, "535313": 96, "607143": 96, "a0021": 96, "606999": 96, "a0015": 96, "609526": 96, "678571": 96, "a0011": 96, "621103": 96, "692308": 96, "wors": 96, "improved_consensus_label": 96, "majority_vote_accuraci": 96, "cleanlab_label_accuraci": 96, "8581081081081081": 96, "9797297297297297": 96, "besid": 96, "sorted_consensus_quality_scor": 96, "worst_qual": 96, "better_qu": 96, "worst_quality_accuraci": 96, "better_quality_accuraci": 96, "9893238434163701": 96, "improved_pred_prob": 96, "treat": [96, 97, 101, 103], "analzi": 96, "copyright": 97, "advertis": 97, "violenc": 97, "nsfw": 97, "celeba": 97, "make_multilabel_data": 97, "boxes_coordin": 97, "box_multilabel": 97, "make_multi": 97, "bx1": 97, "by1": 97, "bx2": 97, "by2": 97, "label_list": 97, "ur": 97, "upper": 97, "inidx": 97, "logical_and": 97, "inv_d": 97, "labels_idx": 97, "true_labels_test": 97, "dict_unique_label": 97, "get_color_arrai": 97, "dcolor": 97, "aa4400": 97, "55227f": 97, "55a100": 97, "00ff00": 97, "007f7f": 97, "386b55": 97, "0000ff": 97, "y_onehot": 97, "single_class_label": 97, "stratifi": [97, 100], "kf": 97, "train_index": 97, "test_index": 97, "clf_cv": 97, "x_train_cv": 97, "x_test_cv": 97, "y_train_cv": 97, "y_test_cv": 97, "y_pred_cv": 97, "saw": 97, "num_to_displai": 97, "09": [97, 98, 101], "275": 97, "267": 97, "225": 97, "171": 97, "234": 97, "165": 97, "227": [97, 98], "262": [97, 98], "266": [97, 98], "139": 97, "143": [97, 98, 103], "216": [97, 98, 103], "265": 97, "159": [97, 98], "despit": [97, 103], "suspect": 97, "888": 97, "8224": 97, "9632": 97, "968": 97, "6512": 97, "0444": 97, "774": 97, "labels_binary_format": 97, "labels_list_format": 97, "surround": 98, "scene": 98, "coco": 98, "everydai": 98, "has_label_issu": 98, "insal": 98, "nc": [98, 102, 103], "s3": [98, 102, 103], "amazonaw": [98, 102, 103], "objectdetectionbenchmark": 98, "tutorial_obj": 98, "pkl": 98, "example_imag": 98, "unzip": [98, 103], "_separate_label": 98, "_separate_predict": 98, "begin": 98, "image_path": 98, "rb": 98, "image_to_visu": 98, "seg_map": 98, "334": 98, "float32": 98, "bboxes_ignor": 98, "290": 98, "286": 98, "285": 98, "224": 98, "231": 98, "293": 98, "289": 98, "282": 98, "281": 98, "271": 98, "280": 98, "277": 98, "279": 98, "287": 98, "299": 98, "276": 98, "307": 98, "321": 98, "326": 98, "333": 98, "261": 98, "319": 98, "257": 98, "283": 98, "243": 98, "303": 98, "316": 98, "247": 98, "323": 98, "226": 98, "228": 98, "232": 98, "219": 98, "239": 98, "240": 98, "209": 98, "242": 98, "202": 98, "230": 98, "215": 98, "220": 98, "229": 98, "217": [98, 103], "237": 98, "207": 98, "204": 98, "84": [98, 101], "205": 98, "223": 98, "153": 98, "140": 98, "124": 98, "268": 98, "273": 98, "108": 98, "284": 98, "110": 98, "136": 98, "145": 98, "173": 98, "297": 98, "317": 98, "192": 98, "332": 98, "324": 98, "203": 98, "320": 98, "199": 98, "291": 98, "000000481413": 98, "jpg": 98, "42398": 98, "44503": 98, "29968": 98, "336": 98, "21005": 98, "9978472": 98, "forgot": 98, "drew": 98, "label_issue_idx": 98, "num_examples_to_show": 98, "138": 98, "candid": 98, "97489622": 98, "70610878": 98, "98764951": 98, "88899237": 98, "99085805": 98, "issue_idx": 98, "95569726e": 98, "03354841e": 98, "57510169e": 98, "58447666e": 98, "39755858e": 98, "issue_to_visu": 98, "000000009483": 98, "95569726168054e": 98, "addition": [98, 102], "visibl": 98, "missmatch": 98, "likelei": 98, "agnost": 98, "vaidat": 98, "inconsist": 98, "000000395701": 98, "033548411774308e": 98, "armchair": 98, "tv": 98, "000000154004": 98, "38300759625496356": 98, "foreground": 98, "000000448410": 98, "0008575101690203273": 98, "crowd": 98, "alon": 98, "explor": [98, 99], "resembl": [98, 99], "000000499768": 98, "9748962231208227": 98, "000000521141": 98, "8889923658893665": 98, "000000143931": 98, "9876495074395956": 98, "bonu": 98, "uncov": 98, "irregular": 98, "anomali": 98, "object_detection_util": 98, "calculate_bounding_box_area": 98, "num_imgs_to_show": 98, "lab_object_count": 98, "pred_object_count": 98, "000000430073": 98, "000000183709": 98, "000000189475": 98, "label_norm": 98, "pred_norm": 98, "area": [98, 102], "lab_area": 98, "pred_area": 98, "lab_area_mean": 98, "lab_area_std": 98, "max_deviation_valu": 98, "max_deviation_class": 98, "deviation_valu": 98, "deviation_class": 98, "mean_area": 98, "std_area": 98, "class_area": 98, "deviations_awai": 98, "max_deviation_index": 98, "num_imgs_to_show_per_class": 98, "class_num": 98, "sorted_indic": 98, "000000422886": 98, "000000341828": 98, "000000461009": 98, "train_feature_embed": 99, "ood_train_feature_scor": 99, "test_feature_embed": 99, "ood_test_feature_scor": 99, "ood_train_predictions_scor": 99, "train_pred_prob": 99, "ood_test_predictions_scor": 99, "test_pred_prob": 99, "pylab": 99, "rcparam": 99, "baggingclassifi": 99, "therebi": 99, "rescal": 99, "transform_norm": 99, "totensor": 99, "root": 99, "animal_class": 99, "non_animal_class": 99, "animal_idx": 99, "test_idx": 99, "toronto": 99, "edu": 99, "kriz": 99, "170498071": 99, "41711758": 99, "77it": 99, "5000": 99, "plot_imag": 99, "visualize_outli": 99, "txt_class": 99, "img": [99, 101], "npimg": 99, "show_label": 99, "data_subset": 99, "resnet50": 99, "corpu": 99, "2048": 99, "embed_imag": 99, "create_model": 99, "strang": 99, "odd": 99, "train_ood_features_scor": 99, "top_train_ood_features_idx": 99, "fun": 99, "negat": 99, "homogen": 99, "bottom_train_ood_features_idx": 99, "test_ood_features_scor": 99, "top_ood_features_idx": 99, "inevit": 99, "trade": 99, "5th": 99, "percentil": 99, "fifth_percentil": 99, "plt_rang": 99, "hist": 99, "train_outlier_scor": 99, "ylabel": 99, "axvlin": 99, "test_outlier_scor": 99, "ood_features_indic": 99, "revisit": 99, "return_invers": 99, "train_feature_embeddings_sc": 99, "test_feature_embeddings_sc": 99, "train_pred_label": 99, "9702": 99, "train_ood_predictions_scor": 99, "test_ood_predictions_scor": 99, "lost": 99, "unsuit": 100, "ok": [100, 103], "convention": 100, "aforement": 100, "hypothet": 100, "contrast": 100, "tradit": 100, "disjoint": 100, "out_of_sample_pred_probs_for_a": 100, "out_of_sample_pred_probs_for_b": 100, "out_of_sample_pred_probs_for_c": 100, "out_of_sample_pred_prob": 100, "price": 101, "incom": 101, "ag": 101, "sensor": 101, "histgradientboostingregressor": 101, "r2_score": 101, "student_grades_r": 101, "final_scor": 101, "true_final_scor": 101, "homework": 101, "3d": 101, "hue": 101, "mpl_toolkit": 101, "mplot3d": 101, "axes3d": 101, "errors_idx": 101, "add_subplot": 101, "z": 101, "colorbar": 101, "errors_mask": 101, "feature_column": 101, "predicted_column": 101, "x_train_raw": 101, "x_test_raw": 101, "randomforestregressor": 101, "385101": 101, "499503": 101, "698255": 101, "776647": 101, "109373": 101, "170547": 101, "481096": 101, "984759": 101, "645270": 101, "795928": 101, "141": 101, "659": 101, "318": 101, "305": 101, "560": 101, "657": 101, "688": 101, "view_datapoint": 101, "concat": 101, "preds_og": 101, "r2_og": 101, "838": 101, "found_label_issu": 101, "preds_cl": 101, "r2_cl": 101, "926": 101, "favorit": 101, "968627e": 101, "228799": 101, "646674e": 101, "402962": 101, "323818e": 101, "952758": 101, "422144e": 101, "456908": 101, "465815e": 101, "753968": 101, "791186e": 101, "110719": 101, "485156e": 101, "670640": 101, "225300e": 101, "749976": 101, "499679e": 101, "947007": 101, "067882e": 101, "648396": 101, "synthia": 102, "imagesegment": 102, "given_mask": 102, "predicted_mask": 102, "set_printopt": [102, 103], "sky": 102, "sidewalk": 102, "veget": 102, "terrain": 102, "rider": 102, "pred_probs_filepath": 102, "1088": 102, "1920": 102, "label_filepath": 102, "synthia_class": 102, "maunal": 102, "100000": 102, "244800": 102, "leftmost": 102, "middl": [102, 103], "infact": 102, "rightmost": 102, "discrep": 102, "3263230": 102, "783381": 102, "275110": 102, "255917": 102, "78225": 102, "55990": 102, "54315": 102, "33591": 102, "24645": 102, "21054": 102, "15045": 102, "14171": 102, "13832": 102, "13498": 102, "11490": 102, "9164": 102, "8769": 102, "6999": 102, "6031": 102, "5011": 102, "mistakenli": 102, "class_issu": 102, "aim": [102, 103], "domin": 102, "bunch": 103, "conll": 103, "2003": 103, "love": 103, "n_i": 103, "optional_list_of_ordered_class_nam": 103, "deepai": 103, "conll2003": 103, "rm": 103, "tokenclassif": 103, "2024": 103, "179": 103, "2400": 103, "52e0": 103, "1a01": 103, "1113": 103, "connect": 103, "443": 103, "await": 103, "982975": 103, "960k": 103, "959": 103, "94k": 103, "44mb": 103, "mb": 103, "directori": 103, "inflat": 103, "17045998": 103, "16m": 103, "octet": 103, "26m": 103, "9mb": 103, "bert": 103, "read_npz": 103, "filepath": 103, "corrsespond": 103, "iob2": 103, "given_ent": 103, "entity_map": 103, "readfil": 103, "startswith": 103, "docstart": 103, "isalpha": 103, "isupp": 103, "indices_to_preview": 103, "nsentenc": 103, "eu": 103, "reject": 103, "boycott": 103, "british": 103, "lamb": 103, "00030412": 103, "00023826": 103, "99936208": 103, "00007009": 103, "00002545": 103, "99998795": 103, "00000401": 103, "00000218": 103, "00000455": 103, "00000131": 103, "00000749": 103, "99996115": 103, "00001371": 103, "0000087": 103, "00000895": 103, "99998936": 103, "00000382": 103, "00000178": 103, "00000366": 103, "00000137": 103, "99999101": 103, "00000266": 103, "00000174": 103, "0000035": 103, "00000109": 103, "99998768": 103, "00000482": 103, "00000202": 103, "00000438": 103, "0000011": 103, "00000465": 103, "99996392": 103, "00001105": 103, "0000116": 103, "00000878": 103, "99998671": 103, "00000364": 103, "00000213": 103, "00000472": 103, "00000281": 103, "99999073": 103, "00000211": 103, "00000159": 103, "00000442": 103, "00000115": 103, "peter": 103, "blackburn": 103, "00000358": 103, "00000529": 103, "99995623": 103, "0000129": 103, "0000024": 103, "00001812": 103, "99994141": 103, "00001645": 103, "00002162": 103, "brussel": 103, "1996": 103, "00001172": 103, "00000821": 103, "00004661": 103, "0000618": 103, "99987167": 103, "99999061": 103, "00000201": 103, "00000195": 103, "00000408": 103, "00000135": 103, "2254": 103, "2907": 103, "19392": 103, "9962": 103, "8904": 103, "19303": 103, "12918": 103, "9256": 103, "11855": 103, "18392": 103, "20426": 103, "19402": 103, "14744": 103, "19371": 103, "4645": 103, "10331": 103, "9430": 103, "6143": 103, "18367": 103, "12914": 103, "todai": 103, "weather": 103, "march": 103, "scalfaro": 103, "northern": 103, "himself": 103, "said": 103, "germani": 103, "nastja": 103, "rysich": 103, "north": 103, "spla": 103, "fought": 103, "khartoum": 103, "govern": 103, "south": 103, "1983": 103, "autonomi": 103, "animist": 103, "region": 103, "moslem": 103, "arabis": 103, "mayor": 103, "antonio": 103, "gonzalez": 103, "garcia": 103, "revolutionari": 103, "parti": 103, "wednesdai": 103, "troop": 103, "raid": 103, "farm": 103, "stole": 103, "rape": 103, "women": 103, "spring": 103, "chg": 103, "hrw": 103, "12pct": 103, "princ": 103, "photo": 103, "moment": 103, "spokeswoman": 103, "rainier": 103, "told": 103, "reuter": 103, "danila": 103, "carib": 103, "w224": 103, "equip": 103, "radiomet": 103, "earn": 103, "19996": 103, "london": 103, "denom": 103, "sale": 103, "uk": 103, "jp": 103, "fr": 103, "maccabi": 103, "hapoel": 103, "haifa": 103, "tel": 103, "aviv": 103, "hospit": 103, "rever": 103, "roman": 103, "cathol": 103, "nun": 103, "admit": 103, "calcutta": 103, "week": 103, "ago": 103, "fever": 103, "vomit": 103, "allianc": 103, "embattl": 103, "kabul": 103, "salang": 103, "highwai": 103, "mondai": 103, "tuesdai": 103, "suprem": 103, "council": 103, "led": 103, "jumbish": 103, "milli": 103, "movement": 103, "warlord": 103, "abdul": 103, "rashid": 103, "dostum": 103, "dollar": 103, "exchang": 103, "3570": 103, "12049": 103, "born": 103, "1937": 103, "provinc": 103, "anhui": 103, "dai": 103, "came": 103, "shanghai": 103, "citi": 103, "prolif": 103, "author": 103, "teacher": 103, "chines": 103, "16764": 103, "1990": 103, "historian": 103, "alan": 103, "john": 103, "percival": 103, "taylor": 103, "di": 103, "20446": 103, "pace": 103, "bowler": 103, "ian": 103, "harvei": 103, "claim": 103, "victoria": 103, "15514": 103, "cotti": 103, "osc": 103, "foreign": 103, "minist": 103, "7525": 103, "sultan": 103, "specter": 103, "met": 103, "crown": 103, "abdullah": 103, "defenc": 103, "aviat": 103, "jeddah": 103, "saudi": 103, "agenc": 103, "2288": 103, "hi": 103, "customari": 103, "outfit": 103, "champion": 103, "damp": 103, "scalp": 103, "canada": 103, "reign": 103, "olymp": 103, "donovan": 103, "bailei": 103, "1992": 103, "linford": 103, "christi": 103, "britain": 103, "1984": 103, "1988": 103, "carl": 103, "lewi": 103, "ambigi": 103, "punctuat": 103, "chicago": 103, "digest": 103, "philadelphia": 103, "usda": 103, "york": 103, "token_issu": 103, "471": 103, "kean": 103, "year": 103, "contract": 103, "manchest": 103, "19072": 103, "societi": 103, "bite": 103, "deliv": 103, "19910": 103, "father": 103, "clarenc": 103, "woolmer": 103, "renam": 103, "uttar": 103, "pradesh": 103, "india": 103, "ranji": 103, "trophi": 103, "nation": 103, "championship": 103, "captain": 103, "1949": 103, "15658": 103, "19879": 103, "iii": 103, "brian": 103, "shimer": 103, "randi": 103, "jone": 103, "19104": 103}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [55, 0, 0, "-", "models"], [57, 0, 0, "-", "multiannotator"], [60, 0, 0, "-", "multilabel_classification"], [63, 0, 0, "-", "object_detection"], [66, 0, 0, "-", "outlier"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "regression"], [72, 0, 0, "-", "segmentation"], [76, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "outlier"], [51, 0, 0, "-", "token_classification_utils"], [52, 0, 0, "-", "util"], [53, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[50, 1, 1, "", "correct_precision_errors"], [50, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, 1, 1, "", "color_sentence"], [51, 1, 1, "", "filter_sentence"], [51, 1, 1, "", "get_sentence"], [51, 1, 1, "", "mapping"], [51, 1, 1, "", "merge_probs"], [51, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[52, 1, 1, "", "append_extra_datapoint"], [52, 1, 1, "", "clip_noise_rates"], [52, 1, 1, "", "clip_values"], [52, 1, 1, "", "compress_int_array"], [52, 1, 1, "", "confusion_matrix"], [52, 1, 1, "", "csr_vstack"], [52, 1, 1, "", "estimate_pu_f1"], [52, 1, 1, "", "extract_indices_tf"], [52, 1, 1, "", "force_two_dimensions"], [52, 1, 1, "", "format_labels"], [52, 1, 1, "", "get_missing_classes"], [52, 1, 1, "", "get_num_classes"], [52, 1, 1, "", "get_unique_classes"], [52, 1, 1, "", "is_tensorflow_dataset"], [52, 1, 1, "", "is_torch_dataset"], [52, 1, 1, "", "num_unique_classes"], [52, 1, 1, "", "print_inverse_noise_matrix"], [52, 1, 1, "", "print_joint_matrix"], [52, 1, 1, "", "print_noise_matrix"], [52, 1, 1, "", "print_square_matrix"], [52, 1, 1, "", "remove_noise_from_class"], [52, 1, 1, "", "round_preserving_row_totals"], [52, 1, 1, "", "round_preserving_sum"], [52, 1, 1, "", "smart_display_dataframe"], [52, 1, 1, "", "subset_X_y"], [52, 1, 1, "", "subset_data"], [52, 1, 1, "", "subset_labels"], [52, 1, 1, "", "train_val_split"], [52, 1, 1, "", "unshuffle_tensorflow_dataset"], [52, 1, 1, "", "value_counts"], [52, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[53, 1, 1, "", "assert_indexing_works"], [53, 1, 1, "", "assert_nonempty_input"], [53, 1, 1, "", "assert_valid_class_labels"], [53, 1, 1, "", "assert_valid_inputs"], [53, 1, 1, "", "labels_to_array"], [53, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[56, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[56, 2, 1, "", "KerasWrapperModel"], [56, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[57, 1, 1, "", "convert_long_to_wide_dataset"], [57, 1, 1, "", "get_active_learning_scores"], [57, 1, 1, "", "get_active_learning_scores_ensemble"], [57, 1, 1, "", "get_label_quality_multiannotator"], [57, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [57, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[58, 0, 0, "-", "dataset"], [59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[58, 1, 1, "", "common_multilabel_issues"], [58, 1, 1, "", "multilabel_health_summary"], [58, 1, 1, "", "overall_multilabel_health_score"], [58, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, 1, 1, "", "find_label_issues"], [59, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[62, 0, 0, "-", "filter"], [64, 0, 0, "-", "rank"], [65, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[62, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[64, 1, 1, "", "compute_badloc_box_scores"], [64, 1, 1, "", "compute_overlooked_box_scores"], [64, 1, 1, "", "compute_swap_box_scores"], [64, 1, 1, "", "get_label_quality_scores"], [64, 1, 1, "", "issues_from_scores"], [64, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[65, 1, 1, "", "bounding_box_size_distribution"], [65, 1, 1, "", "calculate_per_class_metrics"], [65, 1, 1, "", "class_label_distribution"], [65, 1, 1, "", "get_average_per_class_confusion_matrix"], [65, 1, 1, "", "get_sorted_bbox_count_idxs"], [65, 1, 1, "", "object_counts_per_image"], [65, 1, 1, "", "plot_class_distribution"], [65, 1, 1, "", "plot_class_size_distributions"], [65, 1, 1, "", "visualize"]], "cleanlab.outlier": [[66, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "fit_score"], [66, 3, 1, "", "score"]], "cleanlab.rank": [[67, 1, 1, "", "find_top_issues"], [67, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [67, 1, 1, "", "get_label_quality_ensemble_scores"], [67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_normalized_margin_for_each_label"], [67, 1, 1, "", "get_self_confidence_for_each_label"], [67, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[69, 0, 0, "-", "learn"], [70, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[69, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[69, 3, 1, "", "__init_subclass__"], [69, 3, 1, "", "find_label_issues"], [69, 3, 1, "", "fit"], [69, 3, 1, "", "get_aleatoric_uncertainty"], [69, 3, 1, "", "get_epistemic_uncertainty"], [69, 3, 1, "", "get_label_issues"], [69, 3, 1, "", "get_metadata_routing"], [69, 3, 1, "", "get_params"], [69, 3, 1, "", "predict"], [69, 3, 1, "", "save_space"], [69, 3, 1, "", "score"], [69, 3, 1, "", "set_fit_request"], [69, 3, 1, "", "set_params"], [69, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[70, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 82, 83, 88, 90, 91, 93, 94, 97, 103], "count": [3, 94], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 84, 85, 86, 87, 88, 89, 90, 91, 94, 97], "creat": [7, 85, 86, 87, 94, 96], "your": [7, 79, 86, 87, 91, 93, 94], "own": 7, "issu": [7, 9, 10, 21, 30, 79, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 86], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 86], "us": [7, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "gener": 8, "cluster": [8, 93], "id": 8, "guid": [9, 11], "type": [9, 10, 94], "custom": [9, 86], "cleanlab": [9, 10, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "studio": [9, 10], "easi": [9, 10, 79, 88, 90, 91], "mode": [9, 10, 79, 88, 90, 91], "can": [10, 85, 87, 92, 93, 94, 96], "detect": [10, 84, 87, 88, 90, 91, 93, 94, 98, 99], "estim": [10, 94, 96, 97], "each": 10, "label": [10, 23, 25, 30, 79, 82, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "outlier": [10, 28, 50, 66, 88, 90, 91, 97, 99], "Near": [10, 87, 88, 90, 91], "duplic": [10, 19, 87, 88, 90, 91, 93, 97], "non": [10, 91], "iid": [10, 91], "class": [10, 80, 94, 102], "imbal": [10, 20], "imag": [10, 88, 99], "specif": [10, 21, 102], "underperform": [10, 93], "group": [10, 93], "null": [10, 27], "data": [10, 12, 79, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "valuat": 10, "option": 10, "paramet": [10, 94], "get": [11, 85, 86, 87, 96, 97, 98, 102, 103], "start": [11, 92], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 93, 94], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 68, 69, 70, 93, 101], "prioriti": 30, "order": 30, "find": [30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "underperforming_group": 31, "model_output": 32, "report": [33, 88], "dataset": [36, 58, 79, 83, 84, 85, 87, 88, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 59, 62, 71, 75, 94], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "token_classification_util": 51, "util": 52, "valid": [53, 88, 100], "fasttext": 54, "model": [55, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101], "kera": 56, "multiannot": [57, 96], "multilabel_classif": 60, "rank": [61, 64, 67, 70, 73, 77, 94], "object_detect": 63, "summari": [65, 74, 78], "learn": [69, 85, 87, 93, 94], "segment": [72, 102], "token_classif": [76, 103], "open": [79, 93], "sourc": [79, 93], "document": 79, "quickstart": 79, "1": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "instal": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "2": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "common": [79, 80, 103], "3": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "handl": [79, 93], "error": [79, 83, 88, 93, 94, 96, 97, 98, 101, 102, 103], "train": [79, 82, 83, 84, 93, 99, 101], "robust": [79, 82, 83, 94, 101], "noisi": [79, 82, 83, 94, 101], "4": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 98, 99, 101], "curat": 79, "fix": [79, 93], "level": [79, 92, 94, 103], "5": [79, 82, 84, 85, 87, 88, 90, 94, 96, 101], "improv": [79, 96], "via": [79, 94, 96], "mani": [79, 94], "other": [79, 96, 98, 101], "techniqu": 79, "contribut": 79, "how": [80, 93, 94, 96, 97, 103], "migrat": 80, "version": 80, "0": 80, "from": [80, 82, 83, 85, 86, 87, 94, 101], "pre": [80, 84, 93, 99], "function": [80, 86], "name": 80, "chang": 80, "modul": [80, 94], "new": [80, 85], "remov": 80, "argument": [80, 86], "variabl": 80, "cleanlearn": [81, 93, 94], "tutori": [81, 89, 92, 95], "structur": 82, "tabular": [82, 90], "requir": [82, 83, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "depend": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "load": [82, 83, 84, 85, 86, 87, 90, 91, 101], "process": [82, 90, 99, 101], "select": [82, 90], "comput": [82, 84, 88, 90, 91, 93, 96, 100], "out": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "sampl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "predict": [82, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 100], "probabl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "more": [82, 83, 85, 87, 94, 101], "text": [83, 91, 103], "format": [83, 91, 93, 97, 98], "defin": [83, 88, 91, 101], "potenti": [83, 96, 101], "an": [84, 88, 93], "audio": 84, "import": [84, 85, 86, 87, 88, 92, 94, 96], "them": [84, 92, 94], "speechbrain": 84, "featur": [84, 88, 99], "fit": 84, "linear": 84, "datamonitor": 85, "leverag": 85, "statist": [85, 96], "audit": [85, 86, 87], "skip": [85, 87, 92, 94, 96], "detail": [85, 87, 92, 94, 96], "classifi": [85, 86, 87], "6": [85, 94], "about": [85, 87], "addit": [85, 87], "workflow": [86, 94], "instanti": 86, "object": [86, 98], "increment": 86, "search": 86, "specifi": [86, 93], "nondefault": 86, "save": 86, "ad": 86, "A": 87, "unifi": 87, "all": [87, 94], "kind": [87, 98], "inform": [87, 88], "fetch": [88, 92], "normal": 88, "fashion": 88, "mnist": 88, "prepar": 88, "k": [88, 90, 100], "fold": [88, 100], "cross": [88, 100], "embed": [88, 99], "7": [88, 94], "view": 88, "most": [88, 103], "like": 88, "exampl": [88, 93, 94, 99], "sever": 88, "set": [88, 94], "dark": 88, "top": [88, 102], "low": 88, "numer": 90, "categor": 90, "column": 90, "construct": 90, "nearest": 90, "neighbour": 90, "graph": 90, "drift": [91, 97], "understand": 92, "evalu": 92, "health": [92, 94], "8": [92, 94], "popular": 92, "faq": 93, "what": [93, 94, 100], "do": [93, 94], "i": [93, 94, 100], "infer": 93, "correct": 93, "ha": 93, "flag": 93, "should": 93, "v": 93, "test": [93, 94, 99], "big": 93, "limit": 93, "memori": 93, "why": 93, "isn": 93, "t": 93, "work": [93, 94, 96, 103], "me": 93, "differ": [93, 98], "clean": [93, 94], "final": 93, "hyperparamet": 93, "tune": 93, "onli": 93, "one": [93, 94, 97, 102], "doe": [93, 96, 103], "take": 93, "so": 93, "long": 93, "slice": 93, "when": [93, 94], "identifi": [93, 98], "run": 93, "licens": 93, "under": 93, "answer": 93, "question": 93, "The": 94, "centric": 94, "ai": 94, "machin": 94, "find_label_issu": 94, "line": 94, "code": 94, "visual": [94, 98, 99, 102], "twenti": 94, "lowest": 94, "qualiti": [94, 96, 97, 98, 102, 103], "see": 94, "now": 94, "let": 94, "": 94, "happen": 94, "we": 94, "merg": 94, "seafoam": 94, "green": 94, "yellow": 94, "too": 94, "you": 94, "re": 94, "One": 94, "score": [94, 96, 97, 98, 102, 103], "rule": 94, "overal": [94, 102], "accur": 94, "thi": 94, "directli": 94, "fulli": 94, "character": 94, "nois": 94, "matrix": [94, 97], "joint": 94, "prior": 94, "true": 94, "distribut": 94, "flip": 94, "rate": 94, "ani": 94, "again": 94, "support": 94, "lot": 94, "method": 94, "filter_bi": 94, "automat": 94, "everi": 94, "uniqu": 94, "num_label_issu": 94, "threshold": 94, "found": 94, "Not": 94, "sure": 94, "ensembl": 94, "multipl": [94, 96], "predictor": 94, "consensu": 96, "annot": 96, "initi": 96, "major": 96, "vote": 96, "better": 96, "compar": 96, "inspect": 96, "retrain": 96, "further": 96, "multi": 97, "beyond": 97, "mislabel": [97, 102, 103], "given": 97, "hot": 97, "binari": 97, "without": 97, "applic": 97, "real": 97, "download": [98, 102, 103], "objectlab": 98, "exploratori": 98, "analysi": 98, "pytorch": 99, "timm": 99, "cifar10": 99, "some": 99, "pred_prob": [99, 102, 103], "wai": 101, "semant": 102, "which": 102, "ar": 102, "commonli": 102, "focus": 102, "token": 103, "word": 103, "sentenc": 103, "contain": 103, "particular": 103}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [50, "module-cleanlab.internal.outlier"], [66, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [68, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [58, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [59, "module-cleanlab.multilabel_classification.filter"], [62, "filter"], [71, "filter"], [75, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "util": [[52, "module-cleanlab.internal.util"]], "validation": [[53, "module-cleanlab.internal.validation"]], "fasttext": [[54, "fasttext"]], "models": [[55, "models"]], "keras": [[56, "module-cleanlab.models.keras"]], "multiannotator": [[57, "module-cleanlab.multiannotator"]], "multilabel_classification": [[60, "multilabel-classification"]], "rank": [[61, "module-cleanlab.multilabel_classification.rank"], [64, "module-cleanlab.object_detection.rank"], [67, "module-cleanlab.rank"], [73, "module-cleanlab.segmentation.rank"], [77, "module-cleanlab.token_classification.rank"]], "object_detection": [[63, "object-detection"]], "summary": [[65, "summary"], [74, "module-cleanlab.segmentation.summary"], [78, "module-cleanlab.token_classification.summary"]], "regression.learn": [[69, "module-cleanlab.regression.learn"]], "regression.rank": [[70, "module-cleanlab.regression.rank"]], "segmentation": [[72, "segmentation"]], "token_classification": [[76, "token-classification"]], "cleanlab open-source documentation": [[79, "cleanlab-open-source-documentation"]], "Quickstart": [[79, "quickstart"]], "1. Install cleanlab": [[79, "install-cleanlab"]], "2. Find common issues in your data": [[79, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[79, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[79, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[79, "improve-your-data-via-many-other-techniques"]], "Contributing": [[79, "contributing"]], "Easy Mode": [[79, "easy-mode"], [88, "Easy-Mode"], [90, "Easy-Mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[80, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[80, "function-and-class-name-changes"]], "Module name changes": [[80, "module-name-changes"]], "New modules": [[80, "new-modules"]], "Removed modules": [[80, "removed-modules"]], "Common argument and variable name changes": [[80, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[81, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[82, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[82, "1.-Install-required-dependencies"], [83, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [101, "1.-Install-required-dependencies"]], "2. Load and process the data": [[82, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [101, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [90, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[82, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[82, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[83, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[83, "2.-Load-and-format-the-text-dataset"], [91, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[83, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[83, "4.-Train-a-more-robust-model-from-noisy-labels"], [101, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[84, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[84, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[84, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[84, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[84, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[84, "5.-Use-cleanlab-to-find-label-issues"], [90, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[85, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[85, "1.-Install-and-import-required-dependencies"], [87, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"], [96, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[85, "2.-Create-and-load-the-data-(can-skip-these-details)"], [87, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[85, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [87, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[85, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [87, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[85, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[85, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "Datalab: Advanced workflows to audit your data": [[86, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[86, "Install-and-import-required-dependencies"]], "Create and load the data": [[86, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[86, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[86, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[86, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[86, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[86, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[86, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[87, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[87, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[87, "Get-additional-information"]], "Near duplicate issues": [[87, "Near-duplicate-issues"], [88, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[88, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[88, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[88, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[88, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[88, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[88, "7.-Use-cleanlab-to-find-issues"]], "View report": [[88, "View-report"]], "Label issues": [[88, "Label-issues"], [90, "Label-issues"], [91, "Label-issues"]], "View most likely examples with label errors": [[88, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[88, "Outlier-issues"], [90, "Outlier-issues"], [91, "Outlier-issues"]], "View most severe outliers": [[88, "View-most-severe-outliers"]], "View sets of near duplicate images": [[88, "View-sets-of-near-duplicate-images"]], "Dark images": [[88, "Dark-images"]], "View top examples of dark images": [[88, "View-top-examples-of-dark-images"]], "Low information images": [[88, "Low-information-images"]], "Datalab Tutorials": [[89, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[90, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[90, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[91, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[91, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[91, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[91, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[92, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[92, "Install-dependencies-and-import-them"], [94, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[92, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[92, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[93, "FAQ"]], "What data can cleanlab detect issues in?": [[93, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[93, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[93, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[93, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[93, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[93, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[93, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[93, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[93, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[93, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[93, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[93, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[93, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[93, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[94, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[94, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[94, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[94, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[94, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[94, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[94, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[94, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[94, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[94, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[94, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[94, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[94, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[94, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[94, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[94, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[94, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[94, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[94, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[95, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[96, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[96, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[96, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[96, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[96, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[96, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[96, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[96, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[96, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[97, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[97, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[97, "2.-Format-data,-labels,-and-model-predictions"], [98, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[97, "3.-Use-cleanlab-to-find-label-issues"], [98, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[97, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[97, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[97, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[97, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[97, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[98, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[98, "1.-Install-required-dependencies-and-download-data"], [102, "1.-Install-required-dependencies-and-download-data"], [103, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[98, "Get-label-quality-scores"], [102, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[98, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[98, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[98, "Other-uses-of-visualize"]], "Exploratory data analysis": [[98, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[99, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[99, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[99, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[99, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[99, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[99, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[100, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[100, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[100, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[101, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[101, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[101, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[102, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[102, "2.-Get-data,-labels,-and-pred_probs"], [103, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[102, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[102, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[102, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[103, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[103, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[103, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[103, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[103, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.outlier"], [51, "module-cleanlab.internal.token_classification_utils"], [52, "module-cleanlab.internal.util"], [53, "module-cleanlab.internal.validation"], [55, "module-cleanlab.models"], [56, "module-cleanlab.models.keras"], [57, "module-cleanlab.multiannotator"], [58, "module-cleanlab.multilabel_classification.dataset"], [59, "module-cleanlab.multilabel_classification.filter"], [60, "module-cleanlab.multilabel_classification"], [61, "module-cleanlab.multilabel_classification.rank"], [62, "module-cleanlab.object_detection.filter"], [63, "module-cleanlab.object_detection"], [64, "module-cleanlab.object_detection.rank"], [65, "module-cleanlab.object_detection.summary"], [66, "module-cleanlab.outlier"], [67, "module-cleanlab.rank"], [68, "module-cleanlab.regression"], [69, "module-cleanlab.regression.learn"], [70, "module-cleanlab.regression.rank"], [71, "module-cleanlab.segmentation.filter"], [72, "module-cleanlab.segmentation"], [73, "module-cleanlab.segmentation.rank"], [74, "module-cleanlab.segmentation.summary"], [75, "module-cleanlab.token_classification.filter"], [76, "module-cleanlab.token_classification"], [77, "module-cleanlab.token_classification.rank"], [78, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[50, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[52, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[53, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[55, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[56, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[57, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[58, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[60, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[61, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[62, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[62, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[63, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[64, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[65, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[66, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[66, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[67, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[68, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[69, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[69, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[69, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[70, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[70, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[71, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[71, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[72, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[73, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[74, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[75, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[75, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[76, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[77, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[78, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 80, 85, 86, 87, 94, 96, 97], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 85, 86, 87, 94, 96, 97], "generate_noise_matrix_from_trac": [0, 1, 85, 86, 87, 94, 96, 97], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 51, 52, 64, 88, 92, 103], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 86, 92, 100], "benchmark": [1, 37, 79, 80, 85, 86, 87, 94, 96, 97], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 50, 52, 57, 58, 62, 64, 65, 66, 67, 69, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "core": [1, 40, 43, 71, 73], "algorithm": [1, 2, 8, 10, 31, 38, 42, 50, 52, 57, 66, 75, 77, 79, 93, 94, 96, 103], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 55, 57, 58, 61, 65, 66, 70, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "introduc": [1, 84, 93, 94], "synthet": [1, 96, 97, 102], "nois": [1, 2, 3, 36, 43, 46, 52, 58, 85, 86, 87, 92, 96, 101], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 85, 86, 95, 99, 100], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 52, 57, 58, 59, 60, 61, 66, 67, 75, 76, 77, 78, 79, 80, 81, 84, 85, 86, 87, 95, 96, 99, 100, 101, 102], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 86, 90, 95, 96, 100], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 55, 59, 62, 65, 74, 78, 88, 90, 91, 94, 98, 103], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 52, 55, 57, 62, 65, 66, 67, 79, 88, 93, 97], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 52, 56, 57, 58, 59, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 52, 53, 66, 67, 69, 74, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 50, 52, 57, 59, 62, 65, 67, 69, 70, 78, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "matric": [1, 3, 46, 93], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 55, 57, 59, 66, 68, 70, 73, 77, 79, 82, 83, 84, 86, 88, 90, 91, 92, 96, 97, 101], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 59, 60, 61, 62, 64, 65, 66, 67, 69, 75, 77, 78, 85, 87, 93, 94, 96, 97, 98, 101, 102, 103], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 52, 58, 59, 61, 67, 69, 70, 71, 73, 74, 80, 85, 86, 87, 90, 91, 93, 95, 96], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 52, 53, 59, 62, 64, 65, 66, 67, 90, 98, 99], "trace": [1, 85, 86, 87, 94, 96, 97], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "more": [1, 2, 3, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 67, 69, 70, 73, 74, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 103], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 102, 103], "noise_matrix": [1, 2, 3, 10, 46, 52, 85, 86, 87, 94, 96, 97], "py": [1, 3, 33, 37, 38, 43, 46, 48, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 86, 94, 96], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 85], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 50, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 50, 52, 57, 65, 66, 67, 71, 90, 91, 94, 96, 103], "true_label": [1, 2, 3, 36, 46, 52, 94, 96], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 93, 94, 96, 97, 98, 99, 102, 103], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 53, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 97, 101], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 50, 64, 69, 83, 87, 91, 93, 94, 96, 97, 98, 99, 101], "achiev": [1, 2, 37, 38, 41, 69, 93, 96, 103], "better": [1, 5, 10, 43, 57, 59, 67, 69, 70, 79, 83, 84, 87, 90, 91, 93, 94, 97, 98, 99, 103], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 57, 62, 64, 66, 67, 69, 73, 77, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 57, 67, 69, 82, 84, 85, 86, 87, 88, 90, 93, 94, 96, 97, 99], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 65, 69, 79, 82, 83, 86, 93, 94, 96, 97, 100, 101], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 50, 57, 58, 65, 66, 67, 93, 96, 99], "amount": [1, 3, 88], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 87, 88, 91], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 103], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 84, 92, 93, 94, 97, 98, 99, 102, 103], "condit": [1, 2, 3, 46, 51, 52, 67, 88, 94, 103], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 92, 93, 94, 95, 97, 98, 99, 102, 103], "k_": [1, 2, 3, 46, 52], "k_y": [1, 2, 3, 46, 52], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102], "fraction": [1, 2, 3, 10, 20, 38, 46, 52, 57, 69, 90, 93], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 51, 52, 59, 67, 69, 70, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 98, 100, 102, 103], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 52, 53, 55, 57, 58, 61, 65, 66, 67, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 102, 103], "assum": [1, 2, 3, 12, 43, 46, 51, 52, 67, 71, 74, 93, 97, 99, 101, 102, 103], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 51, 52, 57, 58, 59, 61, 62, 65, 66, 67, 69, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 52, 58, 59, 61, 64, 69, 85, 86, 87, 88, 93, 94, 96, 97, 102, 103], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 92, 93, 100], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 97, 98, 101, 102, 103], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 52, 57, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 52, 57, 58, 59, 61, 62, 78, 83, 84, 87, 88, 90, 91, 92, 93, 94, 101, 103], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 57, 59, 61, 64, 65, 66, 67, 69, 70, 75, 77, 78, 79, 84, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103], "perfect": [1, 2, 36, 69, 94, 98], "exactli": [1, 3, 10, 36, 37, 41, 43, 60, 66, 86, 87, 88, 90, 91, 94], "yield": [1, 37, 41, 85], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 55, 57, 58, 61, 64, 66, 67, 69, 70, 73, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 50, 57, 58, 59, 64, 65, 73, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 52, 53, 56, 57, 64, 65, 67, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "loop": [1, 3, 46, 52, 88, 98], "implement": [1, 2, 3, 9, 14, 22, 37, 38, 40, 41, 46, 52, 69, 79, 82, 84, 86, 90, 99, 100], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 57, 58, 62, 64, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 50, 53, 64, 65, 69, 71, 73, 77, 83, 84, 86, 87, 88, 90, 91, 92, 97, 101, 102], "do": [1, 2, 5, 9, 10, 36, 40, 41, 52, 53, 66, 67, 71, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 56, 69, 83, 84, 86, 87, 88, 90, 91, 92, 94, 99], "pseudocod": [1, 100], "happen": [1, 10, 43, 59, 85, 91, 96, 102], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 82, 83, 84, 85, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 61, 69, 79, 83, 84, 85, 91, 93, 94, 98, 99], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 50, 51, 52, 56, 57, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102], "distinct": [1, 18, 52, 103], "natur": [1, 10, 96, 99], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 102, 103], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 51, 52, 53, 66, 67, 69, 82, 83, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 52, 53, 56, 65, 69, 70, 83, 84, 85, 86, 87, 90, 93, 94, 96, 97, 99, 101], "round": [1, 40, 43, 52, 69, 93, 101], "astyp": [1, 96], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 50, 51, 52, 53, 58, 59, 61, 65, 66, 67, 69, 71, 73, 74, 75, 78, 84, 86, 88, 98, 99], "rang": [1, 3, 5, 7, 12, 46, 48, 50, 52, 65, 69, 70, 85, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "pragma": 1, "cover": [1, 3, 80, 92, 93], "choic": [1, 8, 43, 50, 88, 93, 97, 99], "replac": [1, 51, 56, 67, 82, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 67, 84, 85, 86, 87], "05": [1, 10, 26, 30, 51, 65, 69, 75, 77, 90, 92, 93, 94, 98], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 85, 86, 87, 94, 96, 97], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 85, 86, 87, 88, 93, 94, 96, 97, 102], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 69, 82, 84, 85, 86, 87, 90, 92, 94, 96, 97], "max_it": [1, 83, 84, 91, 99], "10000": [1, 40, 92, 93], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 52, 53, 56, 57, 59, 65, 66, 67, 69, 71, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101], "diagon": [1, 3, 5, 43, 46, 52], "equal": [1, 3, 10, 12, 59, 64, 74, 100], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 52, 69, 79, 83, 84, 88, 90, 91, 93, 102, 103], "impli": [1, 10, 36, 58, 65], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 61, 64, 65, 69, 73, 77, 84, 85, 86, 87, 94, 96, 97], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 50, 52, 57, 58, 59, 62, 82, 83, 90, 91, 94, 97, 98, 101], "maximum": [1, 10, 66, 74, 78, 102], "minimum": [1, 8, 10, 20, 43, 45, 59, 64, 77], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 64, 69, 86, 93, 94, 96, 98, 99], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 86, 88, 93, 101, 102], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "necessari": [1, 2, 3, 4, 7, 10, 12, 51, 85, 86], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 56, 57, 58, 60, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 52, 57, 61, 65, 69, 74, 78, 79, 82, 83, 84, 85, 87, 91, 93, 96, 97, 99, 101], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 52, 55, 56, 59, 66, 67, 69, 71, 79, 80, 84, 92, 93, 94, 100], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 53, 56, 57, 58, 59, 61, 64, 65, 66, 67, 69, 73, 74, 75, 77, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 103], "when": [1, 2, 3, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 50, 52, 56, 59, 61, 62, 64, 66, 67, 69, 70, 82, 83, 85, 86, 87, 88, 90, 91, 92, 96, 100, 101, 102, 103], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rate": [1, 2, 3, 10, 38, 52, 84, 103], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 56, 57, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 82, 83, 85, 86, 87, 90, 91, 93, 96, 97, 99, 100, 101, 102, 103], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 52, 56, 57, 62, 64, 65, 66, 67, 69, 70, 74, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 55, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "high": [1, 2, 16, 40, 43, 52, 64, 67, 69, 82, 83, 85, 86, 87, 88, 92, 94, 98, 101, 102, 103], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 52, 57, 58, 62, 64, 65, 66, 67, 69, 71, 74, 78, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "imposs": [1, 10, 94], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 51, 56, 57, 66, 69, 74, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "low": [1, 10, 52, 57, 79, 85, 86, 87, 91, 94, 98, 102], "zero": [1, 3, 5, 37, 41, 45, 52, 53, 86, 88, 97, 98, 99], "forc": [1, 2, 3, 5, 41, 86, 103], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 52, 56, 57, 59, 61, 65, 66, 67, 69, 70, 73, 75, 77, 80, 82, 83, 84, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 56, 57, 66, 67, 69, 71, 73, 77, 78, 79, 83, 84, 86, 87, 88, 91, 96, 97, 98, 99, 100, 101, 102, 103], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 55, 80], "produc": [1, 2, 5, 9, 10, 16, 48, 57, 67, 69, 71, 73, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 102, 103], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 50, 56, 57, 58, 69, 87, 91, 93, 98], "opposit": [1, 103], "occur": [1, 3, 10, 36, 51, 64, 86, 87, 88, 93, 99], "small": [1, 3, 10, 36, 40, 48, 50, 52, 58, 65, 83, 88, 91, 92, 97, 99], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 50, 51, 53, 56, 61, 64, 69, 70, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "max": [1, 43, 66, 67, 87, 88, 99], "tri": [1, 37, 41, 100], "befor": [1, 2, 3, 37, 41, 50, 52, 66, 69, 74, 82, 83, 85, 91, 93, 94, 96, 99, 101], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 26, 30, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 84, 86, 87, 88, 90, 93, 94, 97, 101, 102], "left": [1, 2, 43, 45, 50, 52, 59, 62, 65, 85, 86, 87, 97, 98, 99, 102], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 57, 62, 64, 65, 66, 85, 86, 87, 92, 96, 97, 98, 103], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 56, 93, 94, 102], "length": [1, 5, 12, 26, 27, 36, 38, 43, 52, 59, 62, 66, 67, 69, 71, 74, 78, 82, 84, 97, 99, 102, 103], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 50, 52, 55, 56, 57, 58, 59, 66, 67, 69, 71, 73, 74, 75, 77, 78, 84, 96, 100, 102, 103], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 52, 53, 57, 59, 65, 71, 73, 74, 75, 77, 78, 82, 83, 84, 93, 96, 97, 98, 102, 103], "ball": [1, 92], "bin": [1, 3, 59, 85, 86, 87, 99], "ensur": [1, 2, 10, 37, 41, 50, 52, 53, 56, 64, 67, 69, 82, 83, 84, 86, 87, 88, 91, 93, 94, 99, 100, 101], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 56, 57, 58, 59, 62, 64, 65, 66, 67, 70, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102], "least": [1, 4, 10, 18, 31, 36, 40, 57, 58, 64, 67, 77, 87, 88, 93, 96, 99, 102], "int_arrai": [1, 52], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 97, 98, 99, 100, 101, 102, 103], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100, 102, 103], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103], "regular": [2, 3, 40, 56], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 52, 53, 58, 59, 60, 61, 66, 67, 79, 93, 94, 95], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 50, 52, 57, 59, 67, 69, 79, 83, 84, 85, 91, 92, 93, 94, 97, 99, 101, 102, 103], "cleanlearn": [2, 3, 10, 23, 30, 37, 52, 56, 68, 69, 70, 79, 80, 82, 83, 101], "wrap": [2, 37, 41, 56, 66, 69, 79, 82, 83, 85, 86, 87, 90, 91, 94, 101], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56, 65, 66, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 56, 66, 69, 70, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101], "classifi": [2, 3, 41, 48, 52, 57, 60, 66, 67, 79, 80, 82, 83, 84, 90, 91, 93, 96, 97, 99, 100, 102, 103], "adher": [2, 41, 69], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 52, 57, 58, 59, 64, 66, 69, 71, 73, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 93, 95, 98, 99, 100, 101, 102, 103], "api": [2, 3, 14, 56, 62, 65, 66, 69, 80, 93, 101], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 67, 69, 71, 84, 86, 87, 90, 92, 93, 96, 99, 103], "four": [2, 10, 92, 94, 103], "clf": [2, 3, 5, 48, 69, 79, 82, 90, 93, 94, 97], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 55, 56, 66, 68, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103], "sample_weight": [2, 41, 69, 94], "predict_proba": [2, 5, 36, 39, 41, 48, 55, 56, 82, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 99], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 83, 92, 93, 94, 95, 99, 101, 102, 103], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 50, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 99, 101], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 52, 55, 56, 57, 58, 59, 60, 64, 66, 67, 68, 69, 74, 75, 76, 77, 78, 80, 83, 88, 89, 95, 100], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 52, 53, 57, 58, 59, 60, 62, 65, 66, 67, 69, 71, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 52, 66, 69, 79, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 101], "element": [2, 3, 5, 36, 42, 43, 45, 52, 57, 59, 67, 74, 75, 77, 83, 84, 91, 93, 103], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 52, 57, 58, 62, 65, 67, 69, 82, 83, 84, 86, 88, 90, 93, 96, 97, 98, 99, 101, 102, 103], "index": [2, 10, 26, 36, 43, 51, 52, 53, 58, 67, 69, 74, 77, 78, 83, 84, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 50, 51, 52, 56, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 50, 52, 53, 55, 57, 62, 64, 66, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 99, 100, 101], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 59, 62, 65, 67, 69, 70, 79, 80, 83, 92, 93, 94, 95, 97, 98, 101, 102, 103], "size": [2, 10, 31, 37, 40, 41, 43, 48, 59, 64, 65, 69, 71, 73, 83, 85, 88, 90, 93, 94, 96, 97, 98, 100, 102], "here": [2, 5, 7, 10, 14, 40, 43, 46, 56, 57, 58, 59, 61, 62, 65, 66, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "re": [2, 5, 37, 41, 51, 57, 69, 79, 82, 83, 84, 85, 86, 90, 91, 93, 101, 102, 103], "weight": [2, 10, 37, 38, 41, 48, 57, 64, 67, 69, 83, 84, 85, 86, 87, 91], "loss": [2, 38, 56, 67, 69, 88], "while": [2, 3, 10, 37, 40, 41, 47, 48, 52, 69, 79, 88, 93, 94, 96, 97, 101], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 52, 56, 57, 62, 65, 66, 69, 70, 80, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 52, 53, 56, 66, 67, 77, 79, 80, 84, 85, 86, 87, 88, 93], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 52, 55, 56, 57, 58, 59, 61, 66, 67, 69, 70, 71, 73, 74, 80, 82, 83, 84, 85, 88, 90, 92, 96, 97, 98, 99, 100, 101, 102, 103], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 57, 86, 87, 88, 93, 100, 101], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 53, 58, 59, 64, 65, 69, 71, 83, 91, 93, 97, 98, 101, 102], "clonabl": [2, 69], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 57, 62, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 64, 66, 67, 69, 70, 73, 75, 77, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "clone": [2, 69, 97], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 61, 65, 69, 75, 80, 84, 86, 93, 94, 96, 97, 98, 99, 101, 103], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 50, 51, 57, 58, 59, 61, 64, 65, 69, 79, 86, 87, 88, 93, 95, 97, 98, 101], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 52, 59, 60, 62, 65, 66, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "manual": [2, 69, 82, 83, 84, 93, 99, 100, 101, 103], "pytorch": [2, 37, 38, 41, 69, 79, 84, 88, 93, 95, 97, 102], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 52, 56, 66, 69, 83, 84, 85, 86, 87, 91, 93, 94, 97, 99, 100, 101, 102, 103], "__init__": [2, 38, 69, 88], "independ": [2, 3, 10, 58, 69, 91, 100, 101, 103], "compat": [2, 37, 40, 41, 56, 69, 70, 73, 77, 79, 82, 83, 93, 100, 101], "neural": [2, 38, 56, 66, 69, 84, 88, 93, 97, 99, 101], "network": [2, 37, 38, 41, 56, 66, 69, 83, 84, 88, 91, 93, 97, 99, 101], "typic": [2, 37, 41, 66, 69, 82, 83, 84, 87, 88, 90, 91, 99, 100], "initi": [2, 3, 13, 18, 37, 41, 57, 69, 82, 91, 93], "insid": [2, 41, 69, 93, 94], "There": [2, 3, 7, 79, 94, 96], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 62, 64, 65, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 52, 57, 69, 83, 84, 86, 91, 92, 93, 99, 100, 103], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 73, 77, 79, 82, 88, 90, 91, 94, 96, 97, 98, 100, 102, 103], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 52, 55, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "prune": [2, 3, 43, 59, 69, 80, 98], "everyth": [2, 65, 94], "els": [2, 65, 85, 86, 88, 92, 93, 96, 97, 98], "mathemat": [2, 3, 10, 46, 97], "keep": [2, 13, 14, 52, 79, 85, 86, 92, 93, 102], "belong": [2, 3, 10, 36, 43, 45, 46, 58, 59, 60, 61, 66, 67, 71, 75, 77, 78, 87, 88, 94, 97, 99, 102, 103], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 70, 74, 75, 77, 78, 92, 93, 100], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 52, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 95], "erron": [2, 3, 36, 43, 46, 52, 58, 59, 67, 69, 70, 71, 99, 101], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 50, 51, 57, 61, 64, 69, 70, 75, 77, 78, 79, 82, 83, 90, 91, 93, 97, 98, 99, 101, 102, 103], "linear_model": [2, 5, 36, 52, 69, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logisticregress": [2, 3, 5, 36, 52, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logreg": 2, "cl": [2, 14, 30, 69, 79, 82, 83, 93, 94, 101], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 52, 56, 57, 59, 65, 66, 67, 69, 74, 75, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 96, 98, 99, 101], "x_train": [2, 82, 85, 86, 87, 94, 96, 97, 101], "labels_maybe_with_error": 2, "had": [2, 3, 69, 98], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 89, 95, 96, 100, 101], "pred": [2, 43, 52, 82, 83, 100, 101], "x_test": [2, 82, 85, 86, 87, 94, 97, 101], "might": [2, 5, 10, 57, 69, 74, 82, 83, 86, 87, 88, 93, 98], "case": [2, 3, 10, 13, 36, 48, 57, 69, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 99, 101, 103], "standard": [2, 3, 5, 30, 36, 43, 56, 58, 59, 61, 67, 69, 79, 82, 86, 87, 90, 92, 94, 98], "adapt": [2, 37, 39, 52, 55, 69, 99], "skorch": [2, 69, 79, 93], "kera": [2, 55, 62, 65, 69, 79, 93, 98], "scikera": [2, 56, 69, 93], "open": [2, 40, 92, 98, 103], "doesn": [2, 10, 69, 79], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 50, 51, 61, 66, 67, 69, 75, 77, 78, 79, 86, 87, 88, 90, 91, 92, 94, 97, 98, 101, 103], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 56, 57, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 56, 62, 64, 66, 69, 79, 80, 82, 83, 86, 87, 91, 96, 103], "made": [2, 5, 16, 37, 41, 69, 82, 83, 88, 91, 93, 96, 98, 100, 101], "easi": [2, 11, 46, 69, 86, 87, 92, 93, 94, 97], "inherit": [2, 7, 38, 69], "baseestim": [2, 41, 69], "yourmodel": [2, 69], "def": [2, 7, 14, 37, 41, 56, 69, 83, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 66, 67, 69, 82, 83, 86, 88, 91, 92, 97, 102, 103], "refer": [2, 10, 16, 37, 41, 42, 58, 59, 61, 62, 64, 65, 69, 73, 74, 86, 87, 88, 90, 91, 93, 94, 97, 100, 101], "origin": [2, 5, 10, 41, 42, 43, 51, 52, 56, 58, 59, 62, 65, 66, 69, 70, 73, 75, 77, 82, 83, 86, 88, 90, 91, 93, 94, 98, 99, 101, 103], "total": [2, 3, 4, 36, 40, 52, 58, 78, 85, 88, 93, 102], "state": [2, 3, 5, 37, 38, 41, 47, 69, 94, 97, 98, 103], "art": [2, 38, 94, 97], "northcutt": [2, 3, 36, 66, 67], "et": [2, 3, 36, 38, 66, 67], "al": [2, 3, 36, 38, 66, 67], "2021": [2, 3, 36, 66, 67], "weak": [2, 65], "supervis": [2, 10, 86, 87, 93, 96], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 51, 52, 55, 62, 65, 66, 67, 69, 71, 75, 77, 80, 86, 95, 100], "uncertainti": [2, 10, 45, 66, 69, 93, 99, 101], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 50, 57, 64, 65, 69, 79, 83, 86, 87, 88, 91, 93, 94, 97, 100], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 51, 52, 53, 56, 57, 67, 69, 79, 80, 83, 85, 86, 87, 92, 99, 101], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 52, 55, 57, 58, 61, 62, 66, 67, 69, 73, 74, 75, 77, 79, 80, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 103], "deep": [2, 39, 41, 55, 56, 69, 91], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "subfield": 2, "theori": [2, 94], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 50, 55, 69, 82, 83, 86, 87, 92, 96], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 58, 65, 66, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 100, 101], "varieti": [2, 82, 83, 93], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 52, 56, 57, 58, 61, 62, 64, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "pu": [2, 52], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 53, 56, 65, 69, 79, 80, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "discret": [2, 34, 43, 46, 52, 66, 67, 71, 73, 74], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 52, 66, 67, 79, 83, 84, 86, 87, 88, 90, 91, 94, 97, 98, 99, 102, 103], "would": [2, 3, 5, 37, 40, 41, 43, 52, 59, 69, 79, 83, 85, 86, 88, 93, 94, 99, 101, 103], "obtain": [2, 5, 8, 10, 16, 43, 57, 59, 62, 65, 67, 70, 84, 87, 91, 93, 96, 98, 100, 102, 103], "been": [2, 4, 36, 43, 46, 51, 52, 57, 58, 62, 64, 66, 67, 69, 84, 86, 90, 93, 94, 96, 97, 98, 99, 102, 103], "dure": [2, 10, 16, 66, 69, 82, 83, 84, 85, 90, 91, 93, 94, 97, 100, 101, 103], "denot": [2, 3, 46, 48, 52, 59, 66, 67, 77], "tild": 2, "paper": [2, 4, 10, 57, 66, 75, 77, 92, 94, 96, 99, 101, 103], "cv_n_fold": [2, 3, 69, 83], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 52, 57, 58, 61, 62, 65, 69, 70, 77, 83, 86, 91, 92, 93, 97, 98, 99, 100, 102, 103], "converge_latent_estim": [2, 3], "pulearn": [2, 52], "find_label_issues_kwarg": [2, 10, 69, 80, 93, 94], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 59, 75, 93], "clean": [2, 64, 67, 69, 70, 79, 82, 83, 85, 86, 87, 92, 101], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 52, 69, 84, 93, 94, 96, 97, 98], "messi": [2, 69, 94], "ridden": [2, 69], "autom": [2, 9, 10, 69, 79, 87, 92, 93], "robust": [2, 46, 69, 87, 93], "prone": [2, 69], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 56, 59, 60, 62, 65, 66, 67, 69, 70, 78, 79, 80, 83, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 57, 64, 69, 85, 86, 87, 93, 96, 98], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 57, 73, 77, 84, 86, 87, 91, 94], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61, 64, 65, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 96, 98, 100, 103], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 57, 58, 62, 64, 65, 66, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "experiment": [2, 37, 38, 40, 41, 42, 59, 80, 85, 93], "wrapper": [2, 56, 82, 83, 84, 101], "around": [2, 64, 85, 86, 87, 98, 99, 103], "fasttext": [2, 55], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 66, 69, 82, 83, 85, 90, 91, 92, 93, 102, 103], "along": [2, 48, 59, 77, 85, 86, 87, 88, 93, 99], "dimens": [2, 52, 71, 74, 88, 93, 99, 102], "select": [2, 9, 10, 26, 57, 67, 88, 93, 96, 99], "split": [2, 3, 5, 10, 12, 40, 48, 51, 52, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 97, 100, 103], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 59, 62, 65, 67, 69, 70, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "fold": [2, 3, 36, 43, 46, 69, 82, 84, 90, 92, 93, 98, 102], "By": [2, 36, 58, 59, 69, 86, 93, 102], "need": [2, 3, 10, 36, 37, 40, 41, 43, 58, 59, 61, 66, 69, 79, 83, 84, 86, 87, 91, 93, 94, 96, 97, 98, 102], "holdout": [2, 3, 69], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 52, 57, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 79, 80, 83, 86, 87, 92, 94, 95, 98, 99, 101, 102], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 55, 57, 66, 69, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 102, 103], "numer": [2, 3, 5, 10, 13, 22, 30, 34, 48, 64, 66, 69, 74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96, 97, 99, 101], "consist": [2, 3, 37, 41, 52, 57, 102, 103], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 50, 52, 56, 59, 64, 67, 69, 70, 73, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 103], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 52, 58, 69, 87, 91], "close": [2, 3, 10, 40, 46, 66, 84, 86, 87, 88, 90, 91, 93, 94, 98], "form": [2, 3, 10, 37, 38, 41, 46, 51, 52, 67, 69, 93], "equival": [2, 3, 37, 41, 46, 66, 99, 101], "iter": [2, 3, 36, 37, 41, 43, 52, 58, 59, 69, 85, 93, 96, 102], "enforc": [2, 37, 41, 52], "perfectli": [2, 36, 58, 94], "certain": [2, 3, 5, 37, 41, 56, 65, 69, 85, 86, 87, 92, 98, 99], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 77, 85, 86, 87, 88, 93, 103], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 56, 57, 59, 65, 66, 67, 69, 74, 75, 77, 86], "filter": [2, 3, 10, 40, 42, 51, 58, 60, 61, 63, 65, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 93, 97, 98, 101, 102, 103], "particularli": [2, 79, 96, 99], "filter_bi": [2, 3, 40, 43, 59, 80, 93], "frac_nois": [2, 43, 59, 75, 93], "min_examples_per_class": [2, 43, 59, 87, 93, 94], "impact": [2, 4, 10, 86, 87, 88], "ml": [2, 4, 5, 9, 10, 15, 69, 79, 82, 83, 86, 87, 88, 90, 91, 96, 97, 101], "accuraci": [2, 38, 67, 82, 83, 84, 88, 93, 94, 96, 99, 101, 102], "n_job": [2, 40, 43, 59, 71, 73, 75, 93, 99, 102], "disabl": [2, 37, 41, 43, 99], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 57, 59, 65, 71, 73, 75, 83, 84, 85, 86, 93, 96, 100], "caus": [2, 43, 48, 86, 87, 93], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 58, 59, 60, 62, 63, 65, 66, 68, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 87, 92, 93, 97, 98, 99, 102, 103], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 57, 59, 60, 61, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 80, 93, 94, 97, 98, 102, 103], "adjust_pred_prob": [2, 10, 61, 66, 67, 94], "control": [2, 5, 9, 10, 16, 40, 43, 57, 65, 66, 69, 75, 77, 86, 87, 92, 93], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 52, 57, 58, 61, 62, 64, 66, 67, 69, 73, 77, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 98, 99, 100, 101, 102], "much": [2, 10, 36, 40, 43, 69, 85, 92, 93, 94, 96, 99], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 52, 56, 57, 58, 62, 64, 65, 66, 69, 73, 74, 77, 78, 79, 80, 83, 84, 86, 88, 91, 92, 93, 98, 99, 100, 101], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 52, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 85, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "suppress": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74, 102, 103], "statement": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74], "big": [2, 40, 59, 65, 69, 94], "limit": [2, 5, 16, 40, 59, 85, 98, 102, 103], "memori": [2, 37, 40, 41, 59, 65, 71, 73, 85, 86, 102], "label_issues_batch": [2, 39, 59, 93], "find_label_issues_batch": [2, 39, 40, 59, 93], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 52, 53, 57, 58, 59, 61, 62, 65, 66, 67, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 50, 64, 65, 66, 67, 73, 77, 86, 98, 99, 102, 103], "inverse_noise_matrix": [2, 3, 10, 46, 52, 80, 94], "label_issu": [2, 40, 43, 59, 62, 69, 71, 80, 82, 83, 84, 88, 91, 93, 94, 97, 101], "clf_kwarg": [2, 3, 10, 69], "clf_final_kwarg": [2, 69], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 73, 77, 79, 84, 88, 90, 91, 94, 96, 98, 100, 101], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 50, 52, 59, 61, 62, 65, 67, 69, 70, 71, 73, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 101, 102, 103], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 59, 62, 65, 67, 69, 70, 71, 74, 75, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 97, 99, 101, 102, 103], "final": [2, 10, 69, 82, 90, 98, 100, 101], "remain": [2, 69, 80, 82, 83, 88, 97, 101, 103], "datasetlik": [2, 52, 69], "beyond": [2, 5, 7, 9, 10, 11, 35, 79, 82, 83, 101, 102], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 56, 57, 58, 69, 77, 82, 83, 84, 86, 87, 90, 91, 93, 94, 96, 101, 103], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 52, 53, 56, 57, 58, 69, 74, 78, 80, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101, 102, 103], "scipi": [2, 5, 13, 52], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 52, 53, 87, 88, 90, 91, 94], "csr_matrix": [2, 4, 5, 13, 16, 18, 31], "torch": [2, 37, 38, 41, 83, 84, 88, 91, 92, 99], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 56, 57, 62, 65, 69, 79, 80, 84, 86, 87, 88, 93, 94, 99], "tensorflow": [2, 52, 56, 79, 84, 93], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 52, 53, 56, 59, 62, 63, 64, 65, 66, 69, 77, 79, 83, 84, 87, 88, 90, 93, 94, 95, 97, 101], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 73, 74, 75, 77, 78, 80, 83, 84, 85, 86, 87, 88, 92, 93, 94, 97, 98, 101, 103], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 52, 67, 74, 78, 82, 83, 84, 88, 90, 91, 93, 97, 98, 99, 100, 101, 103], "wa": [2, 3, 12, 14, 40, 50, 52, 57, 58, 64, 66, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103], "abl": [2, 3, 10, 69, 84, 93, 94, 96, 97], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 82, 84, 86, 87, 88, 90, 92, 96, 101, 102, 103], "make": [2, 3, 5, 18, 37, 40, 41, 48, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "sure": [2, 5, 40, 43, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101], "shuffl": [2, 10, 52, 84, 88, 91, 97, 99], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 52, 57, 62, 64, 69, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 94, 96, 97, 98, 99, 100, 101, 103], "batch": [2, 40, 52, 56, 57, 71, 73, 85, 88, 93, 99], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 50, 52, 57, 58, 59, 62, 65, 66, 67, 71, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103], "destroi": [2, 52], "oper": [2, 37, 40, 41, 52, 56, 67, 79, 82, 83, 91, 93, 99], "eg": [2, 5, 10, 52, 62, 65, 86, 87, 93], "repeat": [2, 52, 57, 96, 99], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 52, 61, 66, 75, 82, 83, 84, 85, 86, 87, 88, 90, 93, 96, 97, 99, 100, 101, 102], "array_lik": [2, 3, 36, 43, 52, 59, 66, 70], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 52, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "seri": [2, 3, 40, 52, 53, 69, 77, 93], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 52, 57, 58, 59, 61, 66, 67, 69, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 99, 103], "rather": [2, 3, 5, 26, 36, 52, 56, 57, 64, 73, 77, 83, 92, 96, 100, 101, 102, 103], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 51, 57, 58, 59, 61, 64, 65, 67, 70, 71, 73, 77, 87, 93, 98, 103], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 52, 57, 59, 62, 64, 67, 73, 77, 86, 93, 96, 98, 99, 101], "cutoff": [2, 3, 99], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 52, 57, 64, 66, 67, 70, 73, 77, 82, 83, 84, 88, 90, 91, 93, 94, 98, 99, 100, 101, 102], "section": [2, 3, 7, 10, 80, 88, 90, 93, 98], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 59, 66, 67, 69, 70, 75, 77, 92, 93, 100], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 64, 66, 77, 80, 87, 89, 93, 94], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 56, 64, 66, 67, 69, 73, 77, 85, 94], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 56, 57, 58, 59, 62, 64, 66, 67, 69, 70, 78, 80, 83, 84, 87, 88, 91, 96, 98, 101], "automat": [2, 3, 5, 26, 36, 79, 82, 83, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103], "greater": [2, 3, 5, 7, 9, 10, 28, 40, 52, 64, 87, 92, 93, 103], "count": [2, 22, 26, 36, 40, 43, 46, 52, 58, 59, 65, 80, 88, 93, 98], "observ": [2, 3, 46, 84, 85, 86, 87, 96, 99, 101], "mislabel": [2, 10, 36, 40, 42, 43, 46, 57, 58, 59, 62, 64, 67, 73, 75, 77, 79, 82, 83, 84, 88, 90, 91, 93, 94, 98, 101], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 99, 100, 101, 103], "get_label_issu": [2, 39, 40, 68, 69, 82, 83, 94, 101], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 57, 59, 64, 66, 67, 71, 73, 85, 87, 93, 97, 98], "boolean": [2, 7, 10, 22, 40, 43, 51, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 84, 87, 88, 91, 93, 98, 101, 102], "label_issues_mask": [2, 43, 67, 69, 80], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 50, 51, 59, 62, 65, 66, 67, 69, 71, 75, 77, 79, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103], "return_indices_ranked_bi": [2, 40, 43, 59, 75, 80, 82, 83, 93, 94], "significantli": [2, 88, 94, 96, 100], "reduc": [2, 40, 43, 52, 84, 93], "time": [2, 10, 37, 40, 41, 52, 57, 80, 82, 83, 85, 86, 88, 92, 93, 94, 98, 99, 101, 102, 103], "take": [2, 5, 10, 36, 37, 41, 47, 48, 52, 56, 67, 82, 85, 88, 90, 96, 97, 98, 103], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 103], "skip": [2, 10, 37, 41, 69, 84, 93, 97, 103], "slow": [2, 3], "step": [2, 7, 26, 48, 65, 85, 88, 94, 96, 100], "caution": [2, 5, 93], "previous": [2, 5, 13, 52, 66, 69, 80, 82, 84, 86, 90, 91, 96, 100], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 52, 69, 82, 86, 88, 90, 93, 101, 102, 103], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 57, 61, 64, 67, 69, 75, 77, 80, 82, 87, 90, 92, 93, 96, 97, 98, 103], "still": [2, 40, 41, 52, 66, 82, 84, 88, 93, 99], "extra": [2, 37, 41, 52, 56, 57, 58, 69, 88, 91, 93, 96, 99], "receiv": [2, 10, 37, 41, 42, 58, 61, 62, 69, 71, 75, 87, 98], "overwritten": [2, 69], "callabl": [2, 3, 37, 41, 48, 51, 56, 61, 93], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 51, 52, 65, 67, 69, 74, 84, 85, 86, 87, 88, 93, 94, 97, 103], "appropri": [2, 10, 16, 34, 59, 67, 86, 90, 97, 98], "earli": [2, 88], "stop": [2, 88], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 52, 66, 82, 86, 88, 90, 97, 101, 103], "f": [2, 7, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "ignor": [2, 37, 41, 51, 56, 69, 74, 78, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "allow": [2, 36, 37, 40, 41, 45, 52, 57, 65, 66, 69, 71, 73, 83, 84, 85, 88, 93, 100, 102], "access": [2, 10, 13, 37, 41, 69, 83, 87, 88, 91, 92, 97], "hyperparamet": [2, 61, 66, 88], "purpos": [2, 86, 87, 93, 97, 101], "want": [2, 5, 10, 36, 40, 53, 57, 59, 69, 83, 85, 86, 88, 91, 92, 96, 98, 99, 100, 102, 103], "explicitli": [2, 8, 10, 41, 69, 93], "yourself": [2, 5, 40, 87], "altern": [2, 7, 10, 48, 52, 56, 57, 67, 80, 83, 84, 88, 90, 91, 92, 93, 94, 96, 97, 99, 101], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 52, 56, 57, 59, 66, 67, 69, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 97, 98, 99, 100, 101, 102], "effect": [2, 10, 27, 37, 41, 57, 66, 69, 88, 90, 91, 93, 99], "offer": [2, 5, 9, 10, 83, 84, 86, 87, 91, 93, 94, 97], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 57, 69, 83, 86, 88, 91, 93, 94, 96, 98, 99, 100, 101, 102], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 66, 69, 82, 86], "label_issues_df": [2, 69, 88], "similar": [2, 10, 36, 37, 41, 52, 57, 61, 62, 64, 66, 69, 73, 77, 85, 86, 87, 88, 90, 91, 93, 94, 98, 99, 102], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 51, 56, 58, 59, 61, 64, 65, 66, 69, 73, 74, 75, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 52, 62, 69, 86, 87], "were": [2, 3, 5, 36, 41, 58, 64, 77, 82, 84, 90, 93, 94, 96, 98, 100, 102], "present": [2, 3, 5, 10, 12, 13, 20, 36, 52, 66, 74, 79, 88, 90, 93, 99], "actual": [2, 3, 5, 36, 57, 58, 67, 87, 93, 94, 103], "num_class": [2, 36, 40, 52, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99], "uniqu": [2, 31, 52, 74, 86, 93, 97, 99], "given_label": [2, 5, 25, 30, 36, 46, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102, 103], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 50, 51, 52, 67, 93, 94, 99], "trick": [2, 93], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 50, 57, 65, 66, 67, 79, 85, 86, 87, 88, 90, 91, 98, 99], "account": [2, 36, 57, 61, 66, 67, 83, 91, 93, 94, 96, 97, 99, 101], "word": [2, 3, 51, 77, 78, 93], "remov": [2, 10, 31, 36, 37, 41, 43, 69, 79, 82, 83, 87, 88, 90, 91, 92, 93, 94, 97, 99, 101], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 52, 57, 58, 64, 67, 69, 73, 77, 84, 86, 87, 88, 91, 94, 97, 99, 102], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 52, 56, 67, 69, 71, 79, 80, 82, 83, 84, 87, 88, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 50, 51, 52, 57, 59, 61, 66, 67, 69, 70, 71, 79, 82, 83, 84, 88, 91, 92, 93, 94, 99, 100, 101], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 50, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 79, 82, 83, 85, 86, 89, 92, 95, 97, 101, 102, 103], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 52, 67, 69], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 56, 65, 69, 71, 73, 74, 75, 93], "test": [2, 5, 10, 26, 41, 48, 56, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 100, 101, 103], "expect": [2, 3, 37, 41, 43, 48, 57, 66, 67, 69, 82, 83, 93, 94, 96, 97, 98, 101, 103], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 65, 69, 82, 83, 84, 86, 87, 88, 93, 94, 96, 100, 101, 102], "simpli": [2, 10, 36, 67, 83, 86, 87, 90, 91, 93, 94, 97, 101, 102, 103], "quantifi": [2, 4, 5, 7, 10, 13, 43, 61, 66, 69, 79, 87, 88, 90, 91, 94, 98], "save_spac": [2, 10, 68, 69], "potenti": [2, 10, 36, 43, 51, 59, 62, 65, 67, 69, 71, 73, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "cach": [2, 83, 91], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 52, 53, 56, 57, 58, 80, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 96, 101, 102], "unlik": [2, 10, 43, 45, 48, 56, 58, 59, 61, 77, 86, 96, 97, 99, 101], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 52, 57, 59, 67, 71, 73, 78, 79, 86, 88, 93, 94, 96, 103], "mask": [2, 40, 43, 51, 52, 59, 62, 67, 69, 71, 73, 74, 79, 85, 92, 93, 96, 98, 102, 103], "prefer": [2, 67, 75, 97], "plan": 2, "subsequ": [2, 3, 37, 41, 83, 91, 93, 94, 98], "invok": [2, 37, 41, 94, 100], "scratch": [2, 69], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 56, 57, 59, 61, 65, 66, 67, 69, 70, 71, 73, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "share": [2, 67, 69], "mostli": [2, 52, 64, 69, 97, 101], "longer": [2, 34, 47, 48, 51, 69, 80, 83, 91, 93, 98], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 69, 77, 86, 87, 92, 103], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 57, 58, 61, 65, 69, 74, 77, 84, 86, 88, 90, 91, 92, 93, 94, 96, 99], "docstr": [2, 36, 37, 41, 52, 69, 92, 94], "unless": [2, 37, 41, 69, 93], "our": [2, 3, 10, 56, 57, 67, 69, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "is_label_issu": [2, 30, 69, 83, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "entir": [2, 10, 26, 40, 43, 46, 58, 59, 64, 67, 69, 71, 73, 74, 79, 85, 86, 87, 93, 98, 99, 100, 102, 103], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 57, 58, 59, 62, 65, 67, 69, 70, 71, 73, 74, 80, 87, 88, 90, 91, 93, 96, 101], "label_qu": [2, 57, 69, 83, 94, 96, 101], "measur": [2, 5, 36, 57, 58, 69, 79, 82, 92, 93, 94, 96, 97, 101, 102, 103], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 57, 58, 59, 61, 62, 64, 67, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 101], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 50, 57, 58, 61, 64, 65, 67, 69, 70, 73, 77, 83, 84, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "eas": 2, "comparison": [2, 37, 41, 65, 94, 96], "against": [2, 37, 41, 86, 90, 93, 96, 97], "predicted_label": [2, 5, 25, 30, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102], "ad": [2, 37, 41, 85, 87, 96, 101], "precis": [2, 50, 59, 62, 65, 92, 93, 94, 102, 103], "definit": [2, 7, 34, 48, 69, 82, 90], "accessor": [2, 69], "describ": [2, 10, 18, 57, 66, 67, 69, 75, 77, 94, 96, 97, 98, 100, 103], "precomput": [2, 4, 5, 46, 69, 87, 88, 90, 91, 92, 94], "clear": [2, 37, 41, 69, 83, 91, 101], "save": [2, 5, 16, 37, 40, 41, 65, 69, 93, 98, 102, 103], "space": [2, 5, 10, 66, 69, 88, 90, 92], "place": [2, 37, 41, 52, 69, 82, 96], "larg": [2, 9, 10, 40, 69, 88, 90, 91, 93, 98, 99, 102, 103], "deploi": [2, 9, 10, 69, 88, 90, 91, 93], "care": [2, 10, 37, 41, 69, 91, 93, 94], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 69, 93, 94, 96, 98, 101], "cannot": [2, 5, 12, 14, 52, 100, 103], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 69], "__init_subclass__": [2, 39, 41, 68, 69], "set_": [2, 41, 69], "_request": [2, 41, 69], "pep": [2, 41, 69], "487": [2, 41, 69], "look": [2, 5, 7, 16, 37, 41, 52, 69, 74, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 103], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 52, 57, 58, 62, 65, 69, 74, 77, 78, 79, 84, 85, 86, 90, 91, 92, 94, 96, 99, 102, 103], "__metadata_request__": [2, 41, 69], "infer": [2, 41, 52, 69, 74, 78, 82, 83, 88, 96, 97], "signatur": [2, 37, 41, 69], "accept": [2, 37, 41, 50, 67, 69, 86, 87, 93], "metadata": [2, 41, 69, 88, 90, 91, 103], "through": [2, 5, 7, 41, 69, 83, 84, 85, 87, 91, 92, 93, 96, 98, 99], "develop": [2, 9, 41, 69, 93, 94, 103], "request": [2, 41, 69, 82, 83, 87, 91, 92, 97, 103], "those": [2, 3, 4, 10, 40, 41, 43, 56, 57, 59, 65, 69, 73, 77, 78, 79, 84, 88, 93, 98, 102], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 52, 62, 65, 66, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "www": [2, 41, 69, 99], "org": [2, 4, 18, 37, 38, 41, 52, 66, 69, 93, 94, 103], "dev": [2, 41, 69], "0487": [2, 41, 69], "get_metadata_rout": [2, 39, 41, 68, 69], "rout": [2, 41, 69], "pleas": [2, 37, 41, 56, 69, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 101, 103], "guid": [2, 7, 10, 41, 69, 80, 88, 89], "mechan": [2, 37, 41, 69], "metadatarequest": [2, 41, 69], "encapsul": [2, 16, 41, 64, 69], "get_param": [2, 39, 41, 55, 56, 68, 69], "subobject": [2, 41, 69], "param": [2, 10, 37, 41, 56, 66, 69, 93], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 57, 58, 65, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "set_fit_request": [2, 39, 41, 68, 69], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 56, 57, 58, 62, 64, 65, 67, 69, 74, 78, 84, 85, 86, 93, 96, 97, 98, 103], "unchang": [2, 37, 41, 69, 103], "relev": [2, 16, 26, 41, 69, 88], "enable_metadata_rout": [2, 41, 69], "set_config": [2, 41, 69], "meta": [2, 41, 69], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 50, 69, 84, 93], "alia": [2, 37, 41, 69], "metadata_rout": [2, 41, 69], "retain": [2, 41, 52, 69], "chang": [2, 32, 34, 37, 40, 41, 45, 69, 77, 82, 83, 84, 86, 91, 93, 98, 99, 103], "version": [2, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 52, 55, 56, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "sub": [2, 41, 64, 69], "pipelin": [2, 41, 69, 101], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 50, 51, 52, 59, 66, 69, 71, 73, 74, 78, 83, 91, 93], "updat": [2, 13, 37, 40, 41, 56, 69, 80, 85, 86, 88], "set_param": [2, 39, 41, 55, 56, 68, 69], "simpl": [2, 37, 41, 43, 57, 67, 69, 82, 83, 85, 86, 87, 88, 90, 91, 96, 99, 101], "well": [2, 3, 9, 10, 37, 41, 45, 46, 57, 59, 65, 67, 69, 74, 77, 78, 80, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99], "nest": [2, 37, 41, 42, 53, 69, 75, 77, 78, 103], "latter": [2, 37, 41, 69, 99], "compon": [2, 41, 69], "__": [2, 41, 69], "set_score_request": [2, 68, 69], "structur": [3, 66, 85, 90, 93], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 57, 66, 67, 71, 73, 77, 87, 88, 90, 92, 93, 94, 98, 103], "channel": [3, 84, 94], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 52, 58, 83, 87, 92], "inv": 3, "confident_joint": [3, 22, 36, 43, 52, 58, 59, 80, 93, 94], "un": 3, "under": [3, 10, 37, 41, 58, 65, 66, 87, 99], "joint": [3, 36, 43, 46, 52, 58, 59, 92], "num_label_issu": [3, 40, 43, 59, 74, 78, 80], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 52, 53, 59, 97], "don": [3, 79, 87, 88, 90, 91, 94, 98, 101], "statis": 3, "compute_confident_joint": [3, 36, 43, 52, 59, 94], "off": [3, 43, 52, 64, 88, 94, 98, 99], "j": [3, 5, 36, 37, 41, 42, 43, 59, 62, 65, 66, 75, 77, 78, 85, 86, 87, 94, 102, 103], "confident_learn": [3, 43, 59, 94], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 52, 57, 96], "cj": [3, 46, 52], "axi": [3, 31, 46, 48, 50, 71, 74, 84, 85, 86, 87, 88, 93, 94, 96, 97, 99, 101, 102], "bincount": [3, 85, 86, 87, 94, 96, 97], "alwai": [3, 10, 37, 41, 52, 82, 83, 84, 94, 101], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 64, 65, 71, 73, 82, 87, 88, 90, 92, 93, 94, 99, 101], "As": [3, 7, 79, 86, 87, 91, 94, 101, 103], "add": [3, 5, 7, 12, 13, 37, 41, 56, 65, 83, 84, 85, 86, 87, 88, 91, 93, 94, 97], "approach": [3, 36, 40, 43, 56, 82, 85, 90, 94, 97, 99, 101], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 51, 67, 83, 87, 91, 94, 101], "know": [3, 10, 86, 87, 88, 90, 91, 93, 94, 96, 101], "cut": [3, 64, 79, 94], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 98, 99, 103], "underestim": 3, "few": [3, 9, 10, 65, 79, 87, 93, 96, 97, 98, 99, 103], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 51, 61, 62, 64, 65, 67, 70, 77, 92, 93, 97, 102, 103], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 73, 74, 75, 79, 80, 84, 93, 97, 99, 103], "num_issu": [3, 7, 40, 84, 85, 86, 87, 88, 90, 91, 94], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 56, 57, 83, 85, 92, 93, 98, 101, 103], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 94], "v": [3, 10, 40, 58, 59, 61, 67, 85, 86, 87, 97, 98, 99, 100], "rest": [3, 5, 7, 9, 10, 11, 35, 58, 59, 61, 69, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101], "fashion": [3, 5, 71, 82], "2x2": 3, "incorrectli": [3, 36, 58, 59, 62, 90, 103], "calibrated_cj": 3, "c": [3, 10, 50, 51, 59, 67, 79, 82, 84, 86, 87, 90, 91, 93, 94, 97, 98, 99, 100, 101], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 57, 61, 64, 70, 73, 77, 78, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 102, 103], "truli": [3, 99, 102], "estimate_joint": [3, 36, 94], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 59, 65, 94, 98, 100, 102, 103], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 57, 58, 65, 74, 98, 99], "done": [3, 10, 56, 69, 86, 93, 94, 97, 99, 100], "overfit": [3, 10, 62, 65, 82, 84, 85, 86, 87, 88, 90, 91, 100], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 52, 57, 58, 64, 65, 66, 67, 77, 82, 84, 85, 86, 93, 94, 97, 98], "baselin": [3, 37, 43, 83, 99, 101], "proxi": 3, "union": [3, 5, 12, 48, 52, 53, 59, 65, 69, 77, 93], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 52, 57, 59, 65, 73, 75, 77, 78, 84, 103], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 5, 10, 40, 46, 57, 71, 73, 79, 83, 85, 88, 93, 102], "practic": [3, 82, 83, 87, 88, 94, 99, 101], "complet": [3, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "gist": 3, "cj_ish": 3, "guess": [3, 46, 94, 96], "8": [3, 5, 7, 8, 47, 48, 49, 51, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "parallel": [3, 43, 65, 75, 92], "again": [3, 56, 82, 93, 99], "simplifi": [3, 14, 93], "understand": [3, 9, 10, 36, 58, 65, 87, 94, 95, 101, 102, 103], "100": [3, 37, 41, 50, 67, 82, 83, 86, 87, 88, 90, 92, 93, 94, 97, 98, 99, 103], "optim": [3, 37, 38, 41, 56, 88, 96], "speed": [3, 43, 83, 92, 93, 101], "dtype": [3, 23, 25, 26, 31, 37, 41, 51, 52, 61, 77, 84, 98], "enumer": [3, 37, 41, 84, 85, 86, 87, 88, 103], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 52, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "num_confident_bin": 3, "argmax": [3, 43, 67, 71, 74, 84, 93, 94, 98, 99, 102], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 52, 53, 61, 70, 82, 84], "eqn": [3, 46], "margin": [3, 43, 46, 48, 67], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 58, 94, 100], "poorli": [3, 46, 82], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 94], "variabl": [3, 7, 14, 27, 52, 69, 70, 84, 86, 90, 94, 97, 101], "exact": [3, 46, 82, 85, 86, 87, 88, 90], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 59, 64, 73, 75, 77, 86, 87, 88, 93, 98, 102], "percent": 3, "often": [3, 36, 46, 58, 93, 94, 100, 102], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 52, 53, 65, 82, 83, 84, 85, 86, 88, 90, 91, 93, 97, 98, 99, 101], "wai": [3, 5, 56, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 100], "pro": 3, "con": 3, "pred_proba": [3, 100], "combin": [3, 36, 86, 88, 92, 93, 94, 100, 101], "becaus": [3, 46, 52, 64, 91, 93, 94, 96, 98], "littl": [3, 40, 92, 98, 103], "uniform": [3, 67, 92, 93, 94], "20": [3, 7, 42, 78, 84, 88, 91, 92, 93, 94, 98, 101, 102, 103], "Such": [3, 88, 99], "bound": [3, 23, 25, 37, 41, 51, 61, 62, 64, 65, 98], "reason": [3, 22, 37, 41], "comment": [3, 51, 103], "end": [3, 5, 37, 41, 65], "file": [3, 5, 12, 39, 40, 55, 65, 82, 84, 86, 90, 91, 92, 93, 98, 99, 102, 103], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 94], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 80, 82, 83, 85, 86, 87, 88, 90, 91, 94, 102, 103], "five": [3, 62, 65, 94, 98], "estimate_cv_predicted_prob": [3, 94], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 98], "confident_threshold": [3, 10, 22, 23, 40, 66], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 65, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 96, 97, 101, 102, 103], "u": [4, 82, 83, 84, 86, 88, 90, 93, 94, 96, 97, 100, 101, 102, 103], "assess": [4, 98], "contribut": [4, 10, 18, 98], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 90], "metric": [4, 5, 10, 18, 19, 26, 31, 50, 52, 56, 65, 66, 82, 83, 84, 88, 90, 91, 94, 101], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 65, 66, 67, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 66, 87, 91, 99], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 50, 66, 86, 87, 88, 90, 91, 93, 94, 99], "knn": [4, 10, 13, 18, 26, 31, 50, 66, 90, 99], "graph": [4, 5, 10, 13, 16, 18, 26, 31], "calcul": [4, 10, 18, 26, 40, 48, 50, 57, 61, 62, 64, 65, 66, 69, 73, 88, 92], "directli": [4, 5, 14, 16, 33, 34, 40, 56, 57, 83, 87, 91, 93, 97, 98, 101], "lowest": [4, 10, 57, 65, 87, 88, 93, 96, 97, 98, 102], "fall": [4, 10, 64, 73, 77, 94, 99], "flag": [4, 10, 22, 26, 43, 48, 58, 59, 62, 69, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 99, 101, 102], "approxim": [4, 10, 18, 40, 66, 96], "top": [4, 5, 10, 36, 40, 42, 43, 52, 59, 62, 65, 67, 74, 78, 79, 83, 84, 86, 87, 90, 91, 92, 93, 94, 98, 99, 101, 103], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 97, 99, 101, 103], "arxiv": [4, 18, 94], "ab": [4, 18, 94, 98], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 66, 79, 83, 84, 86, 87, 90, 91, 94, 97, 101], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 59, 79, 83, 84, 86, 87, 88, 91, 93, 94, 99], "suppli": [4, 97, 98, 101], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 52, 57, 82, 84, 97], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 58, 84, 85, 86, 87, 88, 90, 91, 94], "num_featur": [4, 5, 16, 37, 41, 56], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 64, 66, 90, 99], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56], "nearestneighbor": [4, 5, 10, 18, 66, 90, 99], "cosin": [4, 10, 50, 66, 99], "dim": [4, 66, 88, 102], "euclidean": [4, 5, 10, 50, 64, 66, 90], "dimension": [4, 26, 52, 84, 94, 99], "exce": [4, 85, 88], "transform": [4, 10, 32, 48, 50, 52, 66, 67, 82, 83, 87, 88, 91, 99, 103], "rel": [4, 10, 36, 57, 58, 66, 86, 87, 88, 90, 91, 94, 99], "adjust": [4, 38, 43, 61, 66, 67, 79, 94], "closer": [4, 10, 64, 98], "highli": [4, 87, 88], "influenti": 4, "posit": [4, 5, 37, 41, 50, 52, 65, 92, 99], "convers": 4, "neg": [4, 10, 64, 65, 86, 87, 92], "valueerror": [4, 5, 12, 13, 34, 45, 48, 50, 93], "neither": [4, 5, 10, 14, 98], "nor": [4, 5, 10, 14], "larger": [4, 18, 69, 71, 73, 85, 88, 91, 92, 93], "55": [4, 51, 92, 98, 101, 103], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 84, 88, 89, 90, 91, 93, 94, 97, 98, 101], "kind": [5, 6, 7, 10, 84, 85, 86, 88, 90, 91, 92, 94], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 53, 57, 65, 74, 75, 82, 83, 84, 86, 90, 91, 94, 96, 99, 100], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 52, 55, 59, 66, 69, 70, 79], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 55, 56, 71, 73], "pip": [5, 7, 9, 11, 35, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "github": [5, 7, 9, 11, 35, 37, 38, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 52, 66, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "egg": [5, 7, 9, 11, 35, 79, 92], "label_nam": [5, 7, 8, 10, 12, 18, 31, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "image_kei": [5, 10, 88], "interfac": [5, 9, 10, 79, 93, 94], "librari": [5, 10, 41, 62, 65, 66, 79, 83, 86, 91, 92, 93], "goal": [5, 101], "track": [5, 7, 13, 14, 79, 85, 86, 92, 93, 94], "intermedi": [5, 9, 87], "statist": [5, 10, 13, 22, 26, 36, 57, 58, 65, 87, 90, 91, 94], "convert": [5, 10, 12, 34, 37, 41, 49, 50, 53, 57, 64, 73, 77, 80, 83, 84, 88, 91, 92, 93, 96, 97, 98], "hug": [5, 10, 12, 88], "face": [5, 10, 12, 16, 88, 92, 97], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 57, 58, 64, 66, 85, 86, 87, 88, 91, 93, 94, 96, 98], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 57, 58, 70, 74, 77, 78, 83, 90, 91, 93, 96, 97, 103], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 52, 57, 58, 61, 62, 64, 65, 86, 87, 90, 91, 94, 96, 97, 98], "path": [5, 12, 37, 40, 41, 65, 84, 86, 93, 98], "local": [5, 7, 10, 12, 37, 38, 41, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 66, 75, 77, 78, 79, 81, 86, 87, 89, 92, 93, 94, 95, 96, 99], "txt": [5, 12, 103], "csv": [5, 12, 82, 83, 90, 91, 101], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 52, 57, 97], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 83, 85, 86, 87, 91, 95, 96, 99], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 97], "imag": [5, 9, 36, 41, 62, 64, 65, 66, 71, 73, 74, 79, 86, 87, 89, 92, 93, 95, 96, 97, 98, 100, 102], "field": [5, 10, 37, 41], "themselv": [5, 82, 83, 101], "pil": [5, 88], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 75, 77, 87, 88, 93, 95, 97, 102], "load_dataset": [5, 12, 88], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 85], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 58, 65, 74, 78, 79, 92, 94, 98, 102, 103], "empti": [5, 12, 46, 57, 87, 93, 97], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "sort": [5, 16, 40, 43, 48, 57, 59, 62, 64, 65, 67, 73, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "common": [5, 13, 16, 87, 89, 92, 93, 94, 97, 98, 102], "real": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "world": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "interact": [5, 16, 91, 93], "thereof": [5, 16], "insight": [5, 16, 65, 96], "best": [5, 9, 10, 16, 47, 57, 67, 82, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 103], "properli": [5, 10, 40, 47, 52, 53, 71, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 101, 102], "respect": [5, 37, 41, 62, 65, 84, 85, 86, 87, 88, 90, 91, 94, 97, 98], "lexicograph": [5, 47, 52, 84, 85, 86, 87, 88, 90, 91, 94, 97], "squar": [5, 52, 69, 92, 101], "csr": 5, "evenli": 5, "omit": [5, 64, 65, 88, 98], "itself": [5, 32, 37, 41, 98], "three": [5, 10, 36, 57, 58, 69, 74, 82, 84, 85, 86, 87, 90, 92, 94, 96, 100, 101, 102, 103], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 79, 90, 97, 103], "th": [5, 42, 47, 51, 52, 57, 59, 62, 64, 65, 66, 75, 77, 78, 91, 97, 98, 103], "ascend": [5, 36, 58, 88, 94], "segment": [5, 71, 73, 74, 95], "reflect": [5, 82, 83, 90, 91, 96, 98, 99, 101], "maintain": [5, 56], "kneighbors_graph": [5, 18, 90], "illustr": 5, "todens": 5, "second": [5, 48, 52, 65, 67, 86, 93, 94, 103], "duplic": [5, 9, 21, 22, 37, 41, 79, 85, 86, 94, 101], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 57, 93, 96, 103], "unspecifi": [5, 16, 43, 59], "interest": [5, 16, 22, 74, 78, 82, 83, 91, 94, 101, 102, 103], "constructor": [5, 10, 16, 23, 30], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 69, 70, 92, 101, 103], "random_st": [5, 82, 84, 85, 86, 87, 88, 94, 97, 99], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101], "comprehens": [5, 79, 88, 97, 101], "nbr": 5, "n_neighbor": [5, 10, 18, 66], "mode": [5, 11, 18, 37, 40, 41, 99], "4x4": 5, "float64": [5, 26, 37, 41, 77], "compress": [5, 10, 52, 71, 73], "toarrai": 5, "NOT": [5, 40, 91], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 87], "suppos": [5, 10, 62, 82, 83, 99, 101], "who": [5, 64, 82, 90, 94, 103], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 56, 86, 93], "clean_learning_kwarg": [5, 10, 23, 30, 93, 101], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 80], "prune_by_noise_r": [5, 43, 59, 94], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 78, 79, 84, 85, 86, 87, 90, 91, 93, 94, 97, 101, 103], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 55, 56, 58, 63, 72, 73, 75, 76, 77, 80, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 101, 102, 103], "show": [5, 7, 26, 37, 41, 47, 52, 65, 74, 78, 82, 85, 87, 88, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103], "suffer": [5, 10, 13, 22, 59, 67, 78, 103], "onc": [5, 22, 36, 37, 41, 82, 85, 86, 93, 94, 97, 98], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 57, 58, 61, 64, 65, 69, 73, 74, 75, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 98, 103], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 61, 64, 66, 67, 73, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 98, 99, 103], "compar": [5, 57, 66, 77, 86, 87, 90, 94, 98], "issue_summari": [5, 7, 10, 13, 85, 86], "With": [5, 9, 10, 40, 83, 91, 93, 94, 96, 101, 102, 103], "usag": [5, 40, 56], "usual": [5, 12, 32, 33, 88, 96, 101], "ti": [5, 57], "exhibit": [5, 7, 10, 13, 74, 87, 88, 90, 91, 94, 98], "ie": [5, 69], "likelihood": [5, 10, 40, 42, 43, 59, 64, 66, 67, 71, 75], "wherea": [5, 52, 59, 82, 83, 100], "outlier": [5, 9, 14, 21, 22, 31, 44, 67, 79, 85, 86, 87, 94, 95, 101], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 94, 101], "global": [5, 7, 22, 37, 41, 92], "non_iid": [5, 10, 14, 26, 87, 88, 90, 91, 94], "hypothesi": 5, "iid": [5, 7, 9, 26, 90, 94], "never": [5, 84, 94, 97, 99, 100], "someth": [5, 7, 10, 37, 41, 67, 98], "123": [5, 85, 86, 87], "456": [5, 82, 83, 84], "nearest_neighbor": 5, "7": [5, 48, 49, 56, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "distance_to_nearest_neighbor": [5, 86, 87, 88, 90, 91, 94], "789": 5, "get_issu": [5, 10, 13, 84, 85, 87, 88, 90, 91, 93, 97, 101], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86, 87], "focu": [5, 10, 13, 91, 102, 103], "full": [5, 10, 13, 40, 56, 65, 85, 88, 103], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 58, 74, 78, 79, 102], "specific_issu": [5, 13], "lie": [5, 10, 66, 67, 83, 84, 86, 87, 88, 90, 91, 94], "get_issue_summari": [5, 13, 85, 87], "get_info": [5, 13, 87, 91, 92], "yet": [5, 17, 27, 56, 92, 96], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 86], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 84, 86, 88], "load": [5, 12, 40, 65, 88, 92, 93, 94, 98, 99, 102, 103], "futur": [5, 10, 22, 37, 41, 57, 79, 83, 84, 86, 91, 93], "overwrit": [5, 86], "separ": [5, 36, 48, 61, 86, 87, 88, 93, 98, 100], "static": 5, "rememb": [5, 91, 93, 94], "part": [5, 10, 37, 41, 43, 62, 64, 65, 84, 86, 92, 102, 103], "ident": [5, 10, 22, 52, 85, 91], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 79, 82, 83, 92, 93, 96, 101], "walk": 7, "alongsid": [7, 37, 41, 86, 93], "pre": [7, 8, 10, 37, 41, 86, 87, 101], "runtim": [7, 37, 40, 41, 69, 71, 73, 84, 88, 93], "issue_manager_factori": [7, 14, 86], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "thing": [7, 41, 83, 94, 101], "next": [7, 57, 79, 82, 83, 84, 85, 90, 91, 93, 96, 98, 101, 103], "dummi": 7, "randint": [7, 31, 48, 85, 86, 87, 93], "mark": [7, 10, 80, 98, 99, 101], "regard": [7, 87, 94], "rand": [7, 48, 85, 86, 87], "is_": [7, 10, 86], "_issu": [7, 10, 86], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "whole": [7, 26, 37, 41, 87], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "popul": [7, 87, 91], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 98], "raw_scor": 7, "bit": 7, "involv": [7, 40, 74, 78, 85, 93, 97], "intermediate_arg": 7, "min": [7, 48, 64, 77, 86, 93, 99], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 71, 77, 91, 93], "easili": [7, 46, 80, 82, 83, 84, 85, 87, 90, 91, 94, 96, 97, 99, 100, 101, 102], "hard": [7, 41, 92, 99], "sai": [7, 10, 37, 41, 97, 102], "anoth": [7, 22, 36, 40, 51, 64, 67, 83, 90, 91, 93, 94, 96, 99], "try": [7, 9, 10, 40, 43, 56, 57, 71, 73, 79, 85, 87, 88, 90, 91, 93, 94, 102], "won": [7, 37, 41, 86, 87, 93, 97], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 86], "instanti": [7, 16, 40, 56, 66, 83, 84, 87, 90], "477762": 7, "286455": 7, "term": [7, 10, 46, 52, 65, 84, 85, 86, 87, 88, 90, 91, 94], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 98, 99, 101, 102, 103], "003042": 7, "058117": 7, "11": [7, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "121908": 7, "15": [7, 50, 56, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "169312": 7, "17": [7, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 86, 87, 92, 94], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 92, 98, 103], "dbscan": [8, 10, 31, 93], "hdbscan": [8, 93], "etc": [8, 10, 22, 32, 37, 41, 46, 56, 57, 75, 79, 86, 87, 90, 91, 93, 94, 97, 101], "sensit": [8, 10, 50], "ep": [8, 31, 65], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 93], "your_data": 8, "get_pred_prob": [8, 85], "n_cluster": [8, 31, 93], "cluster_id": [8, 10, 31, 93], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 87, 88, 90, 91, 93, 94], "search": [9, 10, 20, 26, 27, 51, 69, 93, 100], "nondefault": 9, "Near": [9, 93], "imbal": [9, 21, 61, 66, 67, 87], "null": [9, 14, 21, 87, 88, 91, 94], "togeth": [9, 10, 46, 83, 86, 87, 88, 90, 91, 94, 101, 103], "built": [9, 48], "own": [9, 37, 39, 41, 55, 61, 62, 65, 71, 75, 82, 83, 84, 87, 88, 90, 91, 93, 96, 97, 101, 102, 103], "prerequisit": 9, "basic": [9, 41, 56, 90, 91, 99], "fulli": [9, 10, 37, 41, 56, 93], "platform": [9, 10, 79, 88, 90, 91, 93], "write": [9, 10], "code": [9, 10, 37, 41, 46, 52, 56, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "being": [9, 10, 13, 36, 37, 41, 43, 48, 51, 52, 67, 82, 90, 93, 94, 101, 102], "100x": [9, 10], "faster": [9, 10, 40, 66, 69, 71, 73, 93, 94], "intellig": [9, 10], "quickli": [9, 10, 38, 82, 84, 88, 90, 91, 93, 97, 99, 102, 103], "fix": [9, 10, 57, 83, 85, 91, 94, 101], "scientist": [9, 10], "million": [9, 10, 103], "thank": [9, 10], "ai": [9, 10, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103], "suggest": [9, 10, 36, 57, 58, 64, 83, 88, 91, 93, 101], "power": [9, 10, 88, 90, 91, 92, 94, 103], "automl": [9, 10, 79, 93], "system": [9, 10, 84, 85, 88, 90, 91, 102], "foundat": [9, 10, 79], "improv": [9, 10, 57, 82, 83, 87, 88, 92, 93, 94, 101, 102], "click": [9, 10, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "tune": [9, 10, 83, 84, 91, 92, 99], "serv": [9, 10, 13, 16, 96], "auto": [9, 10, 82, 83, 85, 87, 92, 93, 101], "free": [9, 10, 79, 84, 87, 88, 90, 91, 93, 94], "page": [10, 87, 93, 94], "variou": [10, 13, 30, 39, 53, 55, 79, 82, 86, 87, 90, 91, 92, 93, 94, 96, 98], "why": [10, 85, 91], "matter": [10, 36, 58, 83, 91], "didn": 10, "plu": [10, 101], "_score": 10, "badli": [10, 64, 82, 83, 103], "issue_scor": 10, "outlier_scor": [10, 28, 86, 87, 88, 90, 91, 94, 99], "atyp": [10, 66, 86, 87, 88, 90, 91, 94, 99], "datapoint": [10, 31, 43, 48, 52, 67, 70, 79, 82, 83, 84, 86, 87, 90, 91, 93, 100, 101], "is_issu": [10, 22], "is_outlier_issu": [10, 86, 87, 88, 90, 91, 94], "annot": [10, 36, 47, 57, 58, 59, 61, 62, 64, 65, 74, 77, 78, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 98, 102], "dissimilar": [10, 90, 91], "preced": 10, "incorrect": [10, 64, 67, 70, 82, 84, 85, 86, 87, 88, 90, 91, 94, 98, 101], "due": [10, 40, 43, 67, 71, 73, 84, 85, 86, 87, 88, 90, 91, 94, 101], "appear": [10, 36, 47, 58, 59, 62, 70, 87, 88, 90, 91, 101, 102], "now": [10, 40, 80, 82, 83, 84, 85, 87, 96, 98, 99, 101, 103], "token": [10, 42, 51, 73, 74, 75, 76, 77, 78, 93, 94, 95], "hamper": [10, 88, 92], "analyt": [10, 79, 93, 96], "lead": [10, 64, 67, 88, 98], "draw": [10, 85, 86, 87], "conclus": [10, 91], "veri": [10, 36, 58, 62, 64, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101], "rare": [10, 43, 65, 86, 87, 88, 90, 91, 93, 94], "anomal": [10, 67, 86, 87, 88, 90, 91, 94], "articl": [10, 40, 93], "blog": 10, "unexpect": [10, 37, 41, 91], "consequ": 10, "inspect": [10, 83, 84, 85, 87, 88, 94, 98, 101], "extrem": [10, 86, 87, 88, 90, 91, 93, 94], "record": [10, 37, 41, 84, 90, 101], "abbrevi": 10, "misspel": 10, "typo": [10, 78], "resolut": 10, "video": [10, 92], "audio": [10, 86, 87, 89, 93], "minor": [10, 51], "variat": 10, "translat": 10, "d": [10, 50, 82, 90, 91, 93, 94, 97, 101, 103], "constant": [10, 31, 69], "median": [10, 30, 50], "question": [10, 22, 79, 94], "nearli": [10, 22, 87, 88, 90, 91], "awar": [10, 80, 94], "presenc": [10, 94], "near_dupl": [10, 14, 19, 85, 86, 87, 88, 90, 91, 93, 94], "signific": [10, 90, 91, 94], "violat": [10, 90, 91, 94], "assumpt": [10, 90, 91, 94], "changepoint": [10, 90, 91, 94], "shift": [10, 90, 91, 94], "drift": [10, 87, 90, 94], "autocorrel": [10, 90, 91, 94], "almost": [10, 90, 91, 94], "adjac": [10, 90, 91, 94], "tend": [10, 36, 46, 90, 91, 94, 102, 103], "sequenti": [10, 37, 41, 56, 88], "realli": [10, 83, 91, 96, 102], "mere": 10, "highlight": [10, 74, 78, 85, 86, 87, 90, 102], "necessarili": [10, 57, 65, 91, 94], "wrong": [10, 57, 62, 64, 80, 83, 85, 86, 87, 91, 93, 94, 98], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 51, 52, 77, 82, 90, 91, 92, 93, 94, 100, 103], "x1": [10, 62, 65, 98], "x2": [10, 62, 65, 98], "10th": 10, "100th": 10, "90": [10, 77, 82, 90, 94, 100, 101], "similarli": [10, 37, 41, 86, 88, 90, 93, 98], "math": [10, 88], "behind": [10, 66, 94], "proper": [10, 52, 57, 62, 65, 82, 88, 91, 93, 96, 98], "scenario": [10, 67, 85, 86, 87], "underli": [10, 42, 66, 75, 77, 103], "stem": [10, 66, 99], "evolv": 10, "influenc": 10, "act": [10, 64, 86], "accordingli": [10, 32], "emploi": [10, 97, 99], "partit": [10, 100], "ahead": 10, "good": [10, 37, 41, 50, 56, 58, 64, 67, 71, 73, 74, 79, 85, 88, 90, 91], "problem": [10, 32, 40, 48, 74, 79, 86, 87, 88, 91, 93], "deploy": [10, 82, 83, 94, 101], "overlook": [10, 64, 98], "fact": 10, "thu": [10, 36, 41, 58, 82, 84, 90, 91, 94, 100, 103], "diagnos": [10, 87, 93], "rarest": [10, 87], "q": [10, 98], "subpar": 10, "special": [10, 51], "techniqu": [10, 98], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 87, 88, 90, 91, 94], "excess": [10, 88], "dark": [10, 102], "bright": [10, 103], "blurri": [10, 88], "lack": [10, 56], "unusu": [10, 98, 99], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 79, 87, 88, 90, 91, 95], "get_self_confidence_for_each_label": [10, 48, 67], "r": [10, 40, 69, 85, 86, 87, 101, 102], "tabular": [10, 79, 81, 86, 87, 89, 93, 96], "categor": [10, 66, 81, 82, 86, 87, 89, 93, 101], "encod": [10, 49, 65, 71, 74, 82, 83, 90, 91, 93, 101, 102], "miss": [10, 27, 37, 41, 52, 62, 64, 85, 90, 93, 98, 101], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 52, 66, 93], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 87], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 79, 92], "health_summary_kwarg": 10, "tandem": [10, 92], "view": [10, 37, 41, 42, 43, 73, 75, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 103], "ood_kwarg": 10, "outofdistribut": [10, 28, 66, 99], "outsid": [10, 93, 97], "outlierissuemanag": [10, 14, 21, 28, 86], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102], "howev": [10, 37, 41, 52, 82, 83, 84, 88, 90, 91, 96, 100, 102], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 84, 86, 92, 96, 98], "fewer": [10, 43, 52, 98], "vice": [10, 58], "versa": [10, 58], "light": [10, 88, 92, 98, 102], "29": [10, 85, 88, 92, 96, 97, 98, 102, 103], "low_inform": [10, 88], "odd_aspect_ratio": [10, 88], "35": [10, 86, 92, 96, 97, 98], "odd_siz": [10, 88], "doc": [10, 37, 41, 79, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "studio": [11, 79, 87, 88, 90, 91, 93], "data_issu": [11, 15, 16, 33, 86], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 56, 67, 85, 86, 87, 88, 96], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 65, 96], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 88], "dataissu": [13, 15, 16, 33], "central": [13, 103], "repositori": 13, "strategi": [13, 48, 93], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 52, 59, 62, 65, 69, 71, 73, 85, 86, 87, 93], "recomput": [13, 83], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 58, 79], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 66, 86], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 71, 73], "stabl": [15, 21, 24, 29, 39, 44, 52, 55, 66, 80], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 94, 98, 102, 103], "creation": [16, 41], "execut": [16, 37, 41, 86, 93, 98], "coordin": [16, 62, 64, 65, 98, 103], "behavior": [16, 36, 37, 41, 65, 85, 93], "At": [16, 65, 93], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 56], "valuabl": 18, "vstack": [18, 52, 88, 92, 93, 94, 96, 97], "25": [18, 26, 37, 48, 50, 85, 87, 88, 92, 94, 96, 97, 98, 103], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 51, 52], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 85, 86, 87, 88, 93, 94, 96, 97], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 83, 91, 99], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 51, 52, 82, 84, 86, 88, 92, 94, 97], "near_duplicate_set": [19, 21, 86, 87, 88, 90, 91, 93, 94], "occurr": [19, 20, 22, 26, 27, 28, 31, 51], "median_nn_dist": 19, "near_duplicate_scor": [19, 86, 87, 88, 90, 91, 93, 94], "class_imbalance_scor": [20, 87], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 64, 79, 94, 103], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 66, 67, 86, 87, 88, 91, 94, 99], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 102], "priori": [22, 94], "abstract": [22, 32], "applic": [23, 57, 93, 94, 96, 103], "typevar": [23, 25, 37, 41, 51, 61, 64, 65], "scalartyp": [23, 25], "covari": [23, 25, 69, 101], "summary_dict": 23, "label_scor": [23, 25, 30, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 67, 71, 73, 98, 102], "empir": [26, 47, 57], "cumul": 26, "ecdf": 26, "histogram": [26, 90, 101], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 87, 90, 91, 94], "null_track": 27, "extend": [27, 49, 56, 88, 98, 99, 103], "superclass": 27, "arbitrari": [27, 36, 73, 77, 86, 99, 101], "prompt": 27, "address": [27, 83, 86, 87, 91, 93], "enabl": [27, 41], "null_scor": [27, 87], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "multipli": [30, 50], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 52, 65, 83, 103], "50": [31, 41, 85, 93, 94, 96, 98, 99, 101], "keepdim": [31, 93], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 84, 96], "npt": 31, "int_": 31, "id": [31, 57, 86, 88, 93, 96], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 87], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": 32, "mainli": [32, 99, 103], "content": [32, 66, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "fetch": [32, 40, 84, 87, 93], "datset": 33, "exclud": [33, 42, 74, 78, 86, 93, 103], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 85, 86, 87], "continu": [34, 56, 82, 83, 88, 91, 93, 96, 98, 101, 103], "binari": [34, 48, 52, 59, 61, 94, 103], "simultan": [34, 101], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 86, 87], "typeerror": [34, 48], "12": [34, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 57, 58, 67, 85, 86, 87, 88, 92, 98, 100, 102], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 82, 83, 84, 87, 88, 90, 91, 96, 98, 99, 101, 103], "modifi": [36, 37, 40, 41, 52, 93, 94], "rank_classes_by_label_qu": [36, 87], "merg": [36, 51, 79, 92, 93, 103], "find_overlapping_class": [36, 93, 94], "problemat": [36, 58, 74, 78, 84, 98, 103], "unnorm": [36, 58, 94], "abov": [36, 37, 40, 41, 52, 57, 64, 65, 67, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "model_select": [36, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101], "cross_val_predict": [36, 41, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 100, 101], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 94], "cv": [36, 48, 82, 84, 85, 86, 87, 90, 94, 96], "df": [36, 52, 78, 84, 93], "overall_label_qu": [36, 58], "col": 36, "prob": [36, 51, 94, 100], "divid": [36, 58, 67], "label_nois": [36, 58], "human": [36, 92, 102, 103], "clearli": [36, 67, 88, 98, 102], "num": [36, 58, 92, 94], "overlap": [36, 79, 92, 93, 94], "ontolog": 36, "publish": [36, 103], "therefor": [36, 67], "vehicl": [36, 92], "truck": [36, 92, 99, 102], "intuit": [36, 58, 85], "car": [36, 92, 98, 102], "frequent": [36, 57, 90, 93, 101], "characterist": 36, "l": [36, 37, 41, 62, 64, 65], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 52, 58, 60, 74, 92, 93, 99, 100, 103], "cat": [36, 52, 58, 60, 92, 93, 99, 100], "captur": [36, 84, 98, 99, 102], "co": [36, 37, 38], "noisy_label": [36, 85, 86, 87, 97], "overlapping_class": 36, "descend": [36, 37, 41, 48, 58, 65], "overall_label_health_scor": [36, 58, 94], "half": [36, 37, 39, 41, 58, 92, 103], "health_scor": [36, 58], "classes_by_label_qu": [36, 87], "cnn": [37, 39, 41, 88], "cifar": [37, 38, 92, 99], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 65, 85, 86, 93, 96, 99, 100, 102, 103], "forward": [37, 38, 39, 41, 88, 96], "overridden": [37, 41], "although": [37, 41, 66, 82, 90], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 53, 58, 65, 73, 77, 93, 96, 97, 98, 100, 103], "former": [37, 41], "hook": [37, 41, 92], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 65], "recurs": [37, 41, 48], "submodul": [37, 41], "children": [37, 39, 41, 103], "nn": [37, 38, 41, 88], "init": [37, 41, 94], "no_grad": [37, 41, 88, 99], "init_weight": [37, 41], "linear": [37, 41, 83, 88, 91], "fill_": [37, 41], "net": [37, 41, 84, 88, 92], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 88], "tensor": [37, 38, 41, 83, 84, 88, 91, 99], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 84], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 99], "compil": [37, 39, 41, 56], "cpu": [37, 39, 41, 43, 84, 88], "move": [37, 41, 48, 80, 92], "cuda": [37, 39, 41, 84, 88], "devic": [37, 41, 84, 88], "gpu": [37, 41, 83, 84, 91], "live": [37, 41], "copi": [37, 41, 69, 82, 84, 85, 86, 87, 90, 93, 97, 100, 101], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 88, 97, 99], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 79, 86, 92, 96, 99, 103], "get_buff": [37, 39, 41], "target": [37, 38, 41, 69, 70, 99, 101], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 91], "resolv": [37, 41, 85, 103], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 88, 102], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 88], "break": [37, 41, 88, 98], "pickl": [37, 41, 98], "get_paramet": [37, 39, 41], "let": [37, 41, 66, 67, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 88], "16": [37, 41, 48, 56, 73, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103], "33": [37, 41, 92, 98], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 67, 85, 92, 98, 103], "diagram": [37, 41, 100], "degre": [37, 41], "queri": [37, 41, 87, 88, 93, 97], "named_modul": [37, 39, 41], "o": [37, 41, 50, 51, 84, 85, 86, 87, 92, 93, 94, 97, 98, 103], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 96], "preserv": [37, 41, 52], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 52, 53, 65, 86, 88, 93, 94, 96, 98, 99], "named_buff": [37, 39, 41], "prefix": [37, 41, 84, 103], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 83, 84, 91, 93], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 82, 90], "fire": [37, 41, 92], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 86, 87], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 88, 90, 101], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 83, 84, 91], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 56, 80, 84, 93], "design": [37, 41, 85], "ordereddict": [37, 41], "detach": [37, 41, 88], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 58, 64], "complex": [37, 41, 84], "integr": [37, 41, 79, 93], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 83, 91, 92], "desir": [37, 41, 51, 65], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 84], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 83, 91], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 88], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 98], "noisili": [38, 94], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 56, 88], "decim": [38, 52], "forget": [38, 48, 103], "rate_schedul": 38, "epoch": [38, 39, 41, 88, 93], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 67, 93], "250": [38, 86, 87, 94, 98], "epoch_decay_start": 38, "80": [38, 82, 90, 97, 101], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 83, 88, 91, 94], "train_load": [38, 41], "model1": [38, 94], "optimizer1": 38, "model2": [38, 94], "optimizer2": 38, "dataload": [38, 88, 99], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 55, 103], "wish": [39, 55, 99, 102, 103], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 93], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 72, 73, 74, 75, 76, 77, 78, 102, 103], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 71, 73, 85, 88, 93, 99, 102], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 88], "loader": [39, 41, 88], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 80], "mini": [40, 71, 73, 93], "low_self_confid": [40, 43, 59], "self_confid": [40, 43, 44, 48, 59, 61, 67, 75, 77, 82, 83, 93, 94], "conveni": [40, 82, 83, 84, 91], "script": 40, "labels_fil": [40, 93], "pred_probs_fil": [40, 93], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 57, 102], "read": [40, 45, 87, 93, 94, 99, 103], "zarr": [40, 93], "memmap": [40, 102], "pythonspe": 40, "mmap": [40, 93], "hdf5": 40, "further": [40, 42, 58, 59, 61, 64, 65, 73, 74, 84, 93], "yourfil": 40, "npy": [40, 92, 93, 102], "mmap_mod": [40, 102], "tip": [40, 43, 56, 93], "save_arrai": 40, "your_arrai": 40, "disk": [40, 92, 93], "npz": [40, 103], "maxim": [40, 57, 71, 73, 102], "multiprocess": [40, 43, 59, 71, 73, 88, 93], "linux": [40, 71, 73], "physic": [40, 43, 71, 73, 98], "psutil": [40, 43, 71, 73], "labels_arrai": [40, 53], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 65, 86, 93, 98, 99], "store_result": 40, "becom": [40, 99], "verifi": [40, 93, 96, 99], "long": [40, 57, 66, 96], "enough": [40, 52, 93], "chunk": [40, 100], "ram": [40, 92], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 93], "shortcut": 40, "encount": [40, 43, 71], "1000": [40, 84, 91, 93, 99], "aggreg": [40, 44, 48, 57, 61, 64, 67, 77, 93, 94, 96], "seen": [40, 85, 93, 99, 103], "far": [40, 57], "label_quality_scor": [40, 61, 64, 67, 70, 94, 98], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 59, 61, 67, 75, 77], "low_normalized_margin": [40, 43, 59], "issue_indic": [40, 64, 88], "update_num_issu": 40, "arr": [40, 93], "chunksiz": 40, "convnet": 41, "bespok": [41, 56], "download": [41, 84, 93, 99], "mnist": [41, 79, 84, 92], "handwritten": 41, "digit": [41, 84, 92], "last": [41, 48, 62, 65, 85, 86, 87, 93, 96, 98, 103], "sklearn_digits_test_s": 41, "64": [41, 82, 88, 90, 94, 98], "01": [41, 67, 69, 84, 94, 97, 98, 99], "templat": 41, "flexibli": 41, "among": [41, 57, 94], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 52, 99], "train_label": [41, 83, 99], "scikit": [41, 52, 66, 79, 82, 83, 84, 85, 86, 87, 90, 91, 93, 101], "span": 42, "sentenc": [42, 51, 75, 77, 78, 83, 91], "token_classif": [42, 51, 75, 77, 78, 93], "encourag": [43, 59, 67, 70], "multilabel_classif": [43, 58, 59, 61, 67, 93, 97], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 59, 67, 94], "num_to_remove_per_class": [43, 59], "bad": [43, 59, 64, 67, 91, 93], "seem": [43, 94, 97], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 59, 61, 67, 75, 77], "label_issues_idx": [43, 67], "entropi": [43, 45, 47, 48, 66, 67], "prune_by_class": [43, 59, 94], "predicted_neq_given": [43, 59, 94], "prune_counts_matrix": 43, "smallest": [43, 67], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 79, 83, 93], "too": [43, 48, 66, 87, 88, 93, 98], "thread": [43, 59], "window": [43, 84, 92], "shorter": [43, 62], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 52], "clip_noise_r": [44, 52], "clip_valu": [44, 52], "value_count": [44, 52, 93], "value_counts_fill_missing_class": [44, 52], "get_missing_class": [44, 52], "round_preserving_sum": [44, 52], "round_preserving_row_tot": [44, 52], "estimate_pu_f1": [44, 52], "confusion_matrix": [44, 52], "print_square_matrix": [44, 52], "print_noise_matrix": [44, 52, 94], "print_inverse_noise_matrix": [44, 52], "print_joint_matrix": [44, 52, 94], "compress_int_arrai": [44, 52], "train_val_split": [44, 52], "subset_x_i": [44, 52], "subset_label": [44, 52], "subset_data": [44, 52], "extract_indices_tf": [44, 52], "unshuffle_tensorflow_dataset": [44, 52], "is_torch_dataset": [44, 52], "is_tensorflow_dataset": [44, 52], "csr_vstack": [44, 52], "append_extra_datapoint": [44, 52], "get_num_class": [44, 52], "num_unique_class": [44, 52], "get_unique_class": [44, 52], "format_label": [44, 52], "smart_display_datafram": [44, 52], "force_two_dimens": [44, 52], "latent_algebra": [44, 80], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 97], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 97], "onehot2int": [44, 49, 97], "multilabel_scor": [44, 61], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 61], "softmin": [44, 48, 61, 64, 73, 77], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "transform_distances_to_scor": [44, 50], "correct_precision_error": [44, 50], "token_classification_util": [44, 103], "get_sent": [44, 51, 103], "filter_sent": [44, 51, 103], "process_token": [44, 51], "merge_prob": [44, 51], "color_sent": [44, 51], "assert_valid_input": [44, 53], "assert_valid_class_label": [44, 53], "assert_nonempty_input": [44, 53], "assert_indexing_work": [44, 53], "labels_to_arrai": [44, 53], "labels_to_list_multilabel": [44, 53], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 56, 57, 79, 96], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 52, 84], "behav": 45, "unnecessari": [45, 93], "slightli": [45, 82, 83, 85], "interv": [45, 48, 99], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 52, 69, 84, 96, 102, 103], "increas": [46, 50, 64, 66, 67, 84, 86, 93, 96, 97, 103], "dot": [46, 77, 93], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 57], "ensembl": [47, 48, 57, 67, 82, 90, 93, 97, 99, 101], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 57], "format_multiannotator_label": [47, 57, 96], "formatted_label": [47, 52], "old": [47, 52, 80, 84, 92], "check_consensus_label_class": 47, "consensus_label": [47, 57, 96], "consensus_method": [47, 57], "consensu": [47, 57, 79, 95, 103], "establish": [47, 56, 83, 101], "compute_soft_cross_entropi": 47, "soft": [47, 92], "find_best_temp_scal": 47, "coarse_search_rang": [47, 69, 93], "fine_search_s": [47, 69, 93], "temperatur": [47, 48, 64, 73, 77], "scale": [47, 50, 82, 92, 93, 99, 102], "factor": [47, 48, 50, 71, 73], "minim": [47, 64, 99], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 92], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 67], "get_confidence_weighted_entropy_for_each_label": [48, 67], "75": [48, 85, 86, 87, 92, 96, 97, 98, 101, 103], "scorer": 48, "alpha": [48, 61, 64, 85, 86, 87, 94, 97, 101], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 59, 90, 91, 94, 103], "formula": [48, 50], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 67, 94, 96, 102], "recent": [48, 103], "success": 48, "previou": [48, 88, 93, 98], "discount": 48, "s_ema": 48, "175": [48, 88, 94, 98], "underflow": 48, "nan": [48, 57, 82, 90, 96, 101], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 61], "n_sampl": 48, "n_label": 48, "worst": [48, 96], "class_label_quality_scor": 48, "42": [48, 91, 92, 98, 103], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 60, 61], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 84], "wider": 48, "splitter": 48, "kfold": [48, 88], "onevsrestclassifi": [48, 97], "randomforestclassifi": [48, 94, 97], "n_split": [48, 87, 88, 97], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 59, 65, 71, 74, 82, 90, 92, 93, 101, 102], "onehot_matrix": 49, "avg_dist": 50, "scaling_factor": 50, "exp": [50, 66, 67, 86], "dt": 50, "right": [50, 62, 65, 83, 91, 97, 98, 99], "strength": [50, 65], "pronounc": 50, "differenti": 50, "ly": 50, "rule": [50, 51, 92], "thumb": 50, "ood_features_scor": [50, 66, 99], "88988177": 50, "80519832": 50, "toler": 50, "minkowski": 50, "noth": 50, "epsilon": 50, "sensibl": 50, "fixed_scor": 50, "readabl": 51, "lambda": [51, 84, 86, 93, 96], "long_sent": 51, "headlin": 51, "charact": [51, 52], "s1": 51, "s2": 51, "processed_token": 51, "alecnlcb": 51, "entiti": [51, 79, 93, 103], "mapped_ent": 51, "unique_ident": 51, "loc": [51, 85, 86, 87, 88, 103], "nbitbas": [51, 61], "probs_merg": 51, "0125": [51, 77], "0375": 51, "075": 51, "025": 51, "color": [51, 74, 85, 86, 87, 90, 94, 97, 99, 101, 102], "red": [51, 65, 85, 86, 87, 92, 94, 97, 98, 99, 102], "colored_sent": 51, "termcolor": 51, "31msentenc": 51, "0m": 51, "ancillari": 52, "class_without_nois": 52, "any_other_class": 52, "choos": [52, 67, 82, 90, 93, 94, 101], "tradition": 52, "new_sum": 52, "fill": 52, "come": [52, 85, 86, 87, 93, 102], "major": [52, 57, 80, 85, 88, 99], "versu": [52, 94], "obviou": 52, "cgdeboer": 52, "iteround": 52, "reach": 52, "prob_s_eq_1": 52, "claesen": 52, "f1": [52, 65, 91, 94], "BE": 52, "left_nam": 52, "top_nam": 52, "titl": [52, 85, 86, 87, 94, 97, 99], "short_titl": 52, "round_plac": 52, "pretti": [52, 85, 94], "joint_matrix": 52, "num_possible_valu": 52, "holdout_idx": 52, "extract": [52, 66, 83, 84, 91, 96, 99, 102], "allow_shuffl": 52, "turn": [52, 79, 98], "shuffledataset": 52, "histori": 52, "pre_x": 52, "buffer_s": 52, "csr_matric": 52, "append": [52, 84, 85, 88, 92, 93, 94, 96, 97, 98, 99, 103], "bottom": [52, 62, 65, 98], "to_data": 52, "from_data": 52, "taken": 52, "label_matrix": 52, "canon": 52, "displai": [52, 65, 74, 78, 83, 84, 85, 91, 94, 103], "jupyt": [52, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "notebook": [52, 57, 84, 85, 87, 92, 93, 94, 96, 97, 98, 102, 103], "consol": 52, "html": [52, 62, 65, 66, 90, 93, 94], "allow_missing_class": 53, "allow_one_class": 53, "length_x": 53, "labellik": 53, "labels_list": [53, 59], "keraswrappermodel": [55, 56, 79], "keraswrappersequenti": [55, 56], "tf": [56, 84], "legaci": 56, "newer": 56, "interim": 56, "advis": [56, 97], "stabil": 56, "until": 56, "accommod": 56, "keraswrapp": 56, "huggingface_keras_imdb": 56, "unit": [56, 103], "model_kwarg": [56, 69], "compile_kwarg": 56, "sparsecategoricalcrossentropi": 56, "layer": [56, 83, 84, 91, 99], "dens": 56, "my_keras_model": 56, "from_logit": 56, "declar": 56, "apply_softmax": 56, "analysi": 57, "analyz": [57, 79, 94, 96, 97], "get_label_quality_multiannot": [57, 96], "vote": 57, "crowdsourc": [57, 79, 96], "dawid": [57, 96], "skene": [57, 96], "analog": [57, 85, 92, 96], "chosen": [57, 67, 93, 96], "crowdlab": [57, 96], "unlabel": [57, 88, 90, 91, 96, 99, 102], "decid": [57, 83, 91, 92, 96, 101, 103], "get_active_learning_scor": [57, 96], "activelab": [57, 96], "priorit": [57, 64, 98, 102, 103], "showcas": 57, "main": [57, 85], "best_qual": 57, "quality_method": 57, "calibrate_prob": 57, "return_detailed_qu": 57, "return_annotator_stat": 57, "return_weight": 57, "label_quality_score_kwarg": 57, "did": [57, 58, 82, 83, 84, 90, 94, 96, 101], "majority_vot": 57, "broken": [57, 65, 92, 101], "highest": [57, 65, 86, 88, 100], "0th": 57, "consensus_quality_scor": [57, 96], "annotator_agr": [57, 96], "reman": 57, "1st": 57, "2nd": [57, 71], "3rd": 57, "consensus_label_suffix": 57, "consensus_quality_score_suffix": 57, "suffix": 57, "emsembl": 57, "weigh": [57, 92], "agreement": [57, 96], "agre": 57, "prevent": [57, 93], "overconfid": [57, 100], "detailed_label_qu": [57, 96], "annotator_stat": [57, 96], "model_weight": 57, "annotator_weight": 57, "warn": [57, 86, 87, 88, 90, 91, 93, 94], "labels_info": 57, "num_annot": [57, 96], "deriv": [57, 96], "quality_annotator_1": 57, "quality_annotator_2": 57, "quality_annotator_m": 57, "annotator_qu": [57, 96], "num_examples_label": [57, 96], "agreement_with_consensu": [57, 96], "worst_class": [57, 96], "trustworthi": [57, 96, 101], "get_label_quality_multiannotator_ensembl": 57, "weigtht": 57, "budget": 57, "retrain": [57, 83, 101], "active_learning_scor": 57, "active_learning_scores_unlabel": 57, "get_active_learning_scores_ensembl": 57, "henc": [57, 84, 86, 96], "get_majority_vote_label": [57, 96], "event": 57, "lastli": [57, 90], "convert_long_to_wide_dataset": 57, "labels_multiannotator_long": 57, "wide": [57, 82, 83, 84], "suitabl": [57, 82, 90], "labels_multiannotator_wid": 57, "common_multilabel_issu": [58, 60], "mutual": [58, 97], "exclus": [58, 97], "rank_classes_by_multilabel_qu": [58, 60], "overall_multilabel_health_scor": [58, 60], "multilabel_health_summari": [58, 60], "classes_by_multilabel_qu": 58, "inner": [59, 73], "find_multilabel_issues_per_class": [59, 60], "per_class_label_issu": 59, "label_issues_list": 59, "pred_probs_list": [59, 67, 88, 94], "anim": [60, 99], "rat": 60, "predat": 60, "pet": 60, "reptil": 60, "manner": [61, 82, 83, 96, 101], "box": [62, 64, 65, 92, 98], "object_detect": [62, 64, 65, 98], "return_indices_ranked_by_scor": [62, 98], "overlapping_label_check": [62, 64], "suboptim": [62, 64], "locat": [62, 64, 98, 102, 103], "bbox": [62, 65, 98], "image_nam": [62, 65], "y1": [62, 65, 98], "y2": [62, 65, 98], "later": [62, 65, 66, 83, 103], "corner": [62, 65, 98], "xyxi": [62, 65, 98], "io": [62, 65, 84, 92], "keras_cv": [62, 65], "bounding_box": [62, 65, 98], "detectron": [62, 65, 98], "detectron2": [62, 65, 98], "readthedoc": [62, 65], "en": [62, 65], "latest": [62, 65], "visual": [62, 63, 65, 82, 85, 86, 87, 88, 101, 103], "draw_box": [62, 65], "mmdetect": [62, 65, 98], "swap": [62, 64, 74, 78], "penal": [62, 64], "concern": [62, 64, 79, 87], "issues_from_scor": [63, 64, 72, 73, 74, 76, 77, 78, 98, 102, 103], "compute_overlooked_box_scor": [63, 64], "compute_badloc_box_scor": [63, 64], "compute_swap_box_scor": [63, 64], "pool_box_scores_per_imag": [63, 64], "object_counts_per_imag": [63, 65, 98], "bounding_box_size_distribut": [63, 65, 98], "class_label_distribut": [63, 65, 98], "get_sorted_bbox_count_idx": [63, 65], "plot_class_size_distribut": [63, 65], "plot_class_distribut": [63, 65], "get_average_per_class_confusion_matrix": [63, 65], "calculate_per_class_metr": [63, 65], "aggregation_weight": 64, "imperfect": [64, 93], "chose": [64, 96, 98], "imperfectli": [64, 98], "dirti": [64, 67, 70, 101], "subtyp": 64, "badloc": 64, "nonneg": 64, "high_probability_threshold": 64, "auxiliary_input": [64, 65], "vari": [64, 87], "iou": [64, 65], "heavili": 64, "auxiliarytypesdict": 64, "pred_label": [64, 83], "pred_label_prob": 64, "pred_bbox": 64, "lab_label": 64, "lab_bbox": 64, "similarity_matrix": 64, "min_possible_similar": 64, "scores_overlook": 64, "low_probability_threshold": 64, "scores_badloc": 64, "accident": [64, 83, 90, 91, 93], "scores_swap": 64, "box_scor": 64, "image_scor": [64, 73, 102], "discov": [65, 87, 103], "abnorm": [65, 88, 98], "auxiliari": [65, 99, 102], "_get_valid_inputs_for_compute_scor": 65, "object_count": 65, "down": 65, "bbox_siz": 65, "class_distribut": 65, "plot": [65, 85, 86, 87, 94, 97, 99, 101, 102], "sorted_idx": [65, 99], "class_to_show": 65, "hidden": [65, 85, 99], "max_class_to_show": 65, "plt": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "matplotlib": [65, 74, 85, 86, 87, 88, 94, 97, 98, 99, 101], "pyplot": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "prediction_threshold": 65, "overlai": [65, 98], "figsiz": [65, 85, 86, 87, 88, 94, 97, 99], "save_path": [65, 98], "blue": [65, 92, 94, 98], "overlaid": 65, "side": [65, 92, 98], "figur": [65, 94, 97, 99, 101], "extens": [65, 94, 96], "png": [65, 98], "pdf": [65, 66], "svg": 65, "num_proc": [65, 88], "intersect": [65, 93], "tp": 65, "fp": 65, "ground": [65, 92, 94, 96, 101], "truth": [65, 94, 96, 101], "bias": 65, "avg_metr": 65, "distionari": 65, "95": [65, 75, 77, 90, 92, 94, 101], "per_class_metr": 65, "Of": 66, "li": 66, "smaller": [66, 85, 97, 98], "find_top_issu": [66, 67, 99], "reli": [66, 83, 84, 85, 86, 87, 91, 98, 99, 101], "dist_metr": 66, "subtract": [66, 67], "renorm": [66, 67, 93], "least_confid": 66, "sum_": 66, "log": [66, 67, 80], "softmax": [66, 73, 77, 88], "literatur": 66, "gen": 66, "liu": 66, "lochman": 66, "zach": 66, "openaccess": 66, "thecvf": 66, "cvpr2023": 66, "liu_gen_pushing_the_limits_of_softmax": 66, "based_out": 66, "distribution_detection_cvpr_2023_pap": 66, "fit_scor": [66, 99], "ood_predictions_scor": 66, "pretrain": [66, 83, 84, 91, 99], "adjust_confident_threshold": 66, "probabilist": [66, 82, 84, 86, 87, 90, 91, 99, 100], "order_label_issu": [67, 80], "whichev": [67, 100], "argsort": [67, 83, 88, 91, 94, 98, 99, 101], "max_": 67, "get_label_quality_ensemble_scor": [67, 93, 94], "weight_ensemble_members_bi": 67, "custom_weight": 67, "log_loss_search_t_valu": 67, "0001": [67, 92], "scheme": 67, "log_loss_search": 67, "log_loss": [67, 91], "1e0": 67, "1e1": 67, "1e2": 67, "2e2": 67, "quality_scor": [67, 99], "forth": 67, "top_issue_indic": 67, "rank_bi": [67, 80], "weird": [67, 78], "minu": 67, "prob_label": 67, "max_prob_not_label": 67, "idea": [67, 85, 98], "AND": [67, 91], "get_epistemic_uncertainti": [68, 69], "get_aleatoric_uncertainti": [68, 69], "corrupt": [69, 101], "linearregress": [69, 93, 101], "y_with_nois": 69, "n_boot": [69, 93], "include_aleatoric_uncertainti": [69, 93], "sole": [69, 82, 86, 96, 99], "bootstrap": [69, 93, 101], "resampl": [69, 84, 93], "epistem": [69, 93, 99, 101], "aleator": [69, 93, 101], "model_final_kwarg": 69, "coars": 69, "thorough": [69, 93], "fine": [69, 83, 84, 91, 99], "grain": 69, "grid": 69, "varianc": [69, 94], "epistemic_uncertainti": 69, "residu": [69, 70, 93], "deviat": [69, 98, 101], "aleatoric_uncertainti": 69, "outr": 70, "contin": 70, "raw": [70, 79, 80, 87, 88, 92, 93, 96, 98, 99, 101], "aka": [70, 84, 94, 98, 101, 103], "00323821": 70, "33692597": 70, "00191686": 70, "semant": [71, 73, 74, 95], "pixel": [71, 73, 74, 88, 99, 102], "h": [71, 73, 74, 102], "height": [71, 73, 74, 102], "w": [71, 73, 74, 102], "width": [71, 73, 74, 102], "labels_one_hot": [71, 74, 102], "stream": [71, 85, 99, 103], "downsampl": [71, 73, 102], "shrink": [71, 73], "divis": [71, 73, 86], "common_label_issu": [72, 74, 76, 78, 102, 103], "filter_by_class": [72, 74, 102], "segmant": [73, 74], "num_pixel_issu": [73, 102], "product": [73, 88, 93], "pixel_scor": [73, 102], "enter": 74, "legend": [74, 85, 86, 87, 97, 98, 101, 102], "colormap": 74, "background": 74, "person": [74, 93, 98, 102, 103], "ambigu": [74, 78, 83, 84, 91, 92, 94, 103], "systemat": [74, 78, 96], "misunderstood": [74, 78], "issues_df": [74, 88], "class_index": 74, "issues_subset": [74, 78], "filter_by_token": [76, 78, 103], "token_score_method": 77, "sentence_score_method": 77, "sentence_score_kwarg": 77, "compris": [77, 78], "token_scor": [77, 103], "converg": 77, "toward": 77, "_softmin_sentence_scor": 77, "sentence_scor": [77, 103], "token_info": 77, "70": [77, 90], "02": [77, 86, 87, 94, 98], "03": [77, 90, 92, 94, 98, 103], "04": [77, 90, 98, 103], "08": [77, 94, 98, 101, 103], "commonli": [78, 80, 86, 87, 97, 103], "But": [78, 91, 94, 101, 103], "restrict": [78, 93], "reliabl": [79, 82, 84, 93, 96, 102], "thousand": 79, "imagenet": [79, 92], "popular": [79, 96, 98], "centric": [79, 88, 90, 91, 95], "capabl": 79, "minut": [79, 82, 83, 84, 90, 91, 92, 96, 97, 98, 101, 102, 103], "conda": 79, "feature_embed": [79, 99], "Then": [79, 82, 83, 88, 93], "your_dataset": [79, 84, 86, 87, 88, 90, 91, 93], "column_name_of_label": [79, 84, 86, 87, 88, 90, 91], "plagu": [79, 87], "untrain": 79, "\u30c4": 79, "label_issues_info": [79, 87], "sklearn_compatible_model": 79, "framework": [79, 97, 98], "complianc": 79, "tag": [79, 97, 103], "sequenc": 79, "recognit": [79, 84, 93, 103], "train_data": [79, 82, 83, 99, 101], "gotten": 79, "test_data": [79, 82, 83, 85, 94, 97, 99, 101], "deal": [79, 87], "tutori": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "feel": [79, 84, 87, 93], "ask": [79, 93], "slack": [79, 93], "project": [79, 101], "welcom": 79, "commun": [79, 93], "guidelin": [79, 98], "piec": 79, "smart": [79, 88, 90, 91, 93], "edit": [79, 93], "easier": [79, 94], "unreli": [79, 82, 84, 90, 91], "link": [79, 84, 92, 98], "older": 80, "outlin": 80, "substitut": 80, "v2": [80, 82, 90], "get_noise_indic": 80, "psx": 80, "sorted_index_method": 80, "order_label_error": 80, "label_errors_bool": 80, "latent_estim": 80, "num_label_error": 80, "learningwithnoisylabel": 80, "neatli": 80, "organ": [80, 82, 90, 92, 103], "reorgan": 80, "baseline_method": 80, "incorpor": [80, 94], "research": [80, 94], "polyplex": 80, "terminologi": 80, "label_error": 80, "quickstart": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "sql": [82, 90], "databas": [82, 90], "excel": [82, 90], "parquet": [82, 90], "student": [82, 90, 101, 103], "grade": [82, 90, 101], "900": [82, 90, 101], "exam": [82, 90, 101], "letter": [82, 90, 103], "hundr": [82, 90], "mistak": [82, 83, 88, 90, 91], "No": [82, 83, 91, 93], "extratreesclassifi": 82, "extratre": 82, "ranked_label_issu": [82, 83], "branch": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "preprocess": [82, 83, 87, 90, 99, 101], "standardscal": [82, 90, 99], "labelencod": [82, 83], "train_test_split": [82, 83, 85, 86, 87, 99], "accuracy_scor": [82, 83, 84, 91, 94], "grades_data": [82, 90], "read_csv": [82, 83, 90, 91, 101], "demo": [82, 87, 90, 97], "head": [82, 83, 84, 87, 88, 90, 91, 92, 94, 96, 101], "stud_id": [82, 90], "exam_1": [82, 90, 101], "exam_2": [82, 90, 101], "exam_3": [82, 90, 101], "letter_grad": [82, 90], "f48f73": [82, 90], "53": [82, 85, 86, 87, 90, 92, 97, 98], "00": [82, 86, 87, 90, 92, 99], "77": [82, 86, 87, 90, 98], "0bd4e7": [82, 90], "81": [82, 90, 91, 98, 101, 103], "great": [82, 85, 90, 92], "particip": [82, 90], "cb9d7a": [82, 90], "61": [82, 90, 94, 98, 101], "94": [82, 90, 92, 94, 98, 101], "78": [82, 90, 92, 94, 98, 101], "9acca4": [82, 90], "48": [82, 90, 92, 94, 98], "x_raw": [82, 90], "labels_raw": 82, "interg": [82, 83], "categorical_featur": [82, 101], "x_encod": [82, 90], "get_dummi": [82, 90, 101], "drop_first": [82, 90], "numeric_featur": [82, 90], "scaler": [82, 90, 99], "x_process": [82, 90], "fit_transform": [82, 90], "bring": [82, 83, 88, 90, 91, 96, 101], "byod": [82, 83, 88, 90, 91, 96, 101], "decis": [82, 85, 86, 87], "tress": 82, "held": [82, 84, 90, 91, 92, 98, 99, 100], "straightforward": [82, 84, 90], "benefit": [82, 84, 100, 102], "num_crossval_fold": [82, 84, 90, 96], "tabl": [82, 90, 92, 96], "212": [82, 94], "review": [82, 83, 87, 90, 91, 92, 93, 94, 98, 101, 102, 103], "iloc": [82, 83, 84, 90, 91, 101], "58": [82, 87, 90, 92, 94, 98, 103], "92": [82, 86, 94, 98], "93": [82, 92, 98, 101, 103], "827": 82, "99": [82, 92, 94], "86": [82, 87, 88, 90, 94, 98, 101], "74": [82, 98, 101], "637": [82, 90], "79": [82, 92, 98], "65": [82, 86, 98, 103], "cheat": 82, "0pt": 82, "120": [82, 86, 87], "97": [82, 92, 93, 94, 98, 101, 103], "233": 82, "68": [82, 92, 94, 98], "83": [82, 94, 98, 101, 103], "76": [82, 85, 94, 97, 98, 101], "suspici": [82, 90], "carefulli": [82, 88, 90, 91], "examin": [82, 85, 86, 87, 90, 98], "labels_train": 82, "labels_test": 82, "test_siz": [82, 83, 85, 86, 87], "acc_og": [82, 83], "783068783068783": 82, "robustli": [82, 83, 101], "14": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "acc_cl": [82, 83], "8095238095238095": 82, "especi": [82, 83, 85, 88, 93, 101], "blindli": [82, 83, 84, 93, 101], "trust": [82, 83, 84, 93, 94, 96, 100, 101], "effort": [82, 83, 101], "intent": [83, 91], "servic": [83, 91, 93], "onlin": [83, 91], "bank": [83, 91, 92], "banking77": [83, 91], "oo": [83, 91], "000": [83, 88, 91, 92, 103], "categori": [83, 88, 91], "shortlist": [83, 91, 101], "scope": [83, 91], "logist": [83, 85, 86, 87, 91, 96, 99], "probabilit": [83, 84], "drop": [83, 93, 96, 101], "earlier": [83, 103], "sentence_transform": [83, 91], "sentencetransform": [83, 91], "payment": [83, 91], "cancel_transf": [83, 91], "transfer": [83, 91], "fund": [83, 91], "cancel": [83, 91], "transact": [83, 91], "my": [83, 91], "revert": [83, 91], "morn": [83, 91], "realis": [83, 91], "yesterdai": [83, 91], "rent": [83, 91], "tomorrow": [83, 91], "raw_text": [83, 91], "raw_label": 83, "raw_train_text": 83, "raw_test_text": 83, "raw_train_label": 83, "raw_test_label": 83, "39": [83, 84, 86, 88, 91, 92, 93, 98, 101, 102, 103], "apple_pay_or_google_pai": [83, 91], "getting_spare_card": [83, 91], "supported_cards_and_curr": [83, 91], "change_pin": [83, 91], "beneficiary_not_allow": [83, 91], "lost_or_stolen_phon": [83, 91], "visa_or_mastercard": [83, 91], "card_about_to_expir": [83, 91], "card_payment_fee_charg": [83, 91], "card": [83, 91, 92], "utter": [83, 91], "encond": 83, "test_label": [83, 94, 97, 99], "suit": [83, 91, 92, 93], "electra": [83, 91], "discrimin": [83, 91], "googl": [83, 85, 91], "train_text": 83, "test_text": 83, "home": [83, 86, 87, 91, 92], "runner": [83, 86, 87, 91], "google_electra": [83, 91], "pool": [83, 91, 93, 99], "opt": [83, 84, 87, 88, 90, 91, 94], "hostedtoolcach": [83, 84, 87, 88, 90, 91, 94], "x64": [83, 84, 87, 88, 90, 91, 94], "lib": [83, 84, 87, 88, 90, 91, 94], "python3": [83, 84, 87, 88, 90, 91, 94], "site": [83, 84, 87, 88, 90, 91, 94], "_util": [83, 91], "831": [83, 91], "userwarn": [83, 84, 86, 87, 91], "typedstorag": [83, 91], "untypedstorag": [83, 91], "untyped_storag": [83, 91], "fget": [83, 91], "__get__": [83, 91], "owner": [83, 91], "leverag": [83, 84, 91, 93, 94, 96], "computation": [83, 84, 91], "intens": [83, 84, 91], "400": [83, 85, 91], "858371": 83, "547274": 83, "826228": 83, "966008": 83, "792449": 83, "identified_issu": [83, 101], "lowest_quality_label": [83, 84, 91, 94, 101], "to_numpi": [83, 91, 93, 101], "44": [83, 92, 97, 98], "646": 83, "390": 83, "628": 83, "121": [83, 85, 94], "702": 83, "863": [83, 84], "135": 83, "337": [83, 98], "735": 83, "print_as_df": 83, "inverse_transform": 83, "charg": [83, 91], "cash": [83, 91], "holidai": [83, 91], "sent": [83, 91, 103], "mine": [83, 91], "expir": [83, 91], "fight": 83, "hors": [83, 92, 99], "duck": [83, 92], "me": [83, 91], "whoever": [83, 91], "consum": [83, 101], "18": [83, 84, 91, 92, 93, 94, 98, 99, 101, 102], "baseline_model": [83, 101], "87": [83, 87, 88, 98, 101], "acceler": [83, 101], "19": [83, 84, 88, 91, 92, 93, 94, 98, 99, 101, 102], "89": [83, 85, 86, 90, 98, 101], "spoken": 84, "500": [84, 99, 103], "english": [84, 92], "pronunci": 84, "wav": 84, "huggingfac": [84, 86, 87, 88, 93], "voxceleb": 84, "speech": [84, 103], "your_pred_prob": [84, 85, 86, 87, 90, 91], "tensorflow_io": 84, "huggingface_hub": 84, "reproduc": [84, 90, 94, 96], "command": 84, "wget": [84, 98, 102, 103], "navig": 84, "browser": 84, "jakobovski": 84, "archiv": [84, 103], "v1": 84, "tar": [84, 99], "gz": [84, 99], "mkdir": [84, 103], "spoken_digit": 84, "xf": 84, "6_nicolas_32": 84, "data_path": 84, "listdir": 84, "nondeterminist": 84, "file_nam": 84, "endswith": 84, "file_path": 84, "join": [84, 85, 88, 93], "7_george_26": 84, "0_nicolas_24": 84, "0_nicolas_6": 84, "listen": 84, "display_exampl": 84, "expand": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "pulldown": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "colab": [84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "tfio": 84, "pathlib": 84, "ipython": 84, "load_wav_16k_mono": 84, "filenam": 84, "khz": 84, "file_cont": 84, "read_fil": 84, "sample_r": 84, "decode_wav": 84, "desired_channel": 84, "squeez": 84, "rate_in": 84, "rate_out": 84, "16000": 84, "wav_file_nam": 84, "audio_r": 84, "wav_file_exampl": 84, "plai": [84, 92, 93], "button": 84, "wav_file_name_exampl": 84, "7_jackson_43": 84, "hear": 84, "extractor": 84, "encoderclassifi": 84, "spkrec": 84, "xvect": 84, "feature_extractor": 84, "from_hparam": 84, "run_opt": 84, "uncom": 84, "ffmpeg": 84, "backend": 84, "wav_audio_file_path": 84, "torchaudio": 84, "extract_audio_embed": 84, "emb": [84, 88], "signal": 84, "encode_batch": 84, "embeddings_list": [84, 88], "embeddings_arrai": 84, "650": 84, "stft": 84, "return_complex": 84, "view_as_r": 84, "recov": 84, "trigger": 84, "aten": 84, "src": 84, "nativ": 84, "spectralop": 84, "cpp": 84, "_vf": 84, "n_fft": 84, "hop_length": 84, "win_length": 84, "attr": 84, "512": [84, 88], "196311": 84, "319459": 84, "478975": 84, "2890875": 84, "8170238": 84, "89265": 84, "24": [84, 92, 94, 96, 98, 101], "898056": 84, "256195": 84, "559641": 84, "559721": 84, "62067": 84, "285245": 84, "21": [84, 86, 92, 93, 94, 98, 101, 103], "709627": 84, "5033693": 84, "913803": 84, "819831": 84, "1831515": 84, "208763": 84, "084257": 84, "3210397": 84, "005453": 84, "216152": 84, "478235": 84, "6821785": 84, "053807": 84, "242471": 84, "091424": 84, "78334856": 84, "03954": 84, "23": [84, 88, 92, 94, 98, 101], "569176": 84, "761097": 84, "1258295": 84, "753237": 84, "3508866": 84, "598274": 84, "23712": 84, "2500": 84, "tol": 84, "decreas": [84, 93], "cv_accuraci": 84, "9708": 84, "9976": 84, "986": 84, "002161": 84, "176": [84, 92, 94, 97], "002483": 84, "2318": 84, "004411": 84, "1005": 84, "004857": 84, "1871": 84, "007494": 84, "investig": [84, 85], "040587": 84, "999207": 84, "999377": 84, "975220": 84, "999367": 84, "identified_label_issu": [84, 91], "sort_valu": [84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 101], "516": 84, "1946": 84, "469": 84, "2132": 84, "worth": [84, 94], "6_yweweler_25": 84, "7_nicolas_43": 84, "6_theo_27": 84, "6_yweweler_36": 84, "6_yweweler_14": 84, "6_yweweler_35": 84, "6_nicolas_8": 84, "sound": 84, "quit": [84, 99], "22": [84, 86, 88, 92, 93, 94, 97, 98, 103], "ve": [85, 92, 93, 94, 96, 98], "prove": 85, "monitor": [85, 92], "ran": 85, "data_monitor": 85, "your_datalab": 85, "new_data_batch": 85, "your_label": 85, "get_your_label": 85, "websit": [85, 92], "todo": 85, "get_ipython": 85, "2e9c4a958aa08fb14a2a81002732d6ad1d620b43": 85, "cmd": 85, "dep": 85, "dependencies_test": 85, "missing_depend": 85, "__import__": 85, "importerror": 85, "sep": [85, 103], "npleas": 85, "toi": [85, 86, 87, 88, 92, 94, 96], "mid": [85, 86, 87], "workflow": [85, 95, 101], "unseen": 85, "inf": [85, 86, 87], "bins_map": [85, 86, 87], "create_data": [85, 86, 87], "800": 85, "y_bin": [85, 86, 87], "y_i": [85, 86, 87], "y_bin_idx": [85, 86, 87], "y_train": [85, 86, 87, 94, 101], "y_test": [85, 86, 87, 94, 101], "y_train_idx": [85, 86, 87], "y_test_idx": [85, 86, 87], "slide": [85, 86, 87, 92], "frame": [85, 86, 87], "x_out": [85, 86, 87], "tini": [85, 86, 87], "concaten": [85, 86, 87, 93, 100], "y_out": [85, 86, 87], "y_out_bin": [85, 86, 87], "y_out_bin_idx": [85, 86, 87], "exact_duplicate_idx": [85, 86, 87], "x_duplic": [85, 86, 87], "y_duplic": [85, 86, 87], "y_duplicate_idx": [85, 86, 87], "noisy_labels_idx": [85, 86, 87, 97], "train_x": 85, "test_x": 85, "train_y_tru": 85, "test_y_tru": 85, "train_i": 85, "test_i": 85, "train_y_idx": 85, "test_y_idx": 85, "scatter": [85, 86, 87, 94, 97, 101], "black": [85, 86, 87, 92, 101], "cyan": [85, 86, 87], "plot_data": [85, 86, 87, 94, 97, 101], "fig": [85, 86, 87, 88, 92, 99, 101], "ax": [85, 86, 87, 88, 99, 101], "subplot": [85, 86, 87, 88, 99], "set_titl": [85, 86, 87, 88, 99], "set_xlabel": [85, 86, 87], "x_1": [85, 86, 87], "fontsiz": [85, 86, 87, 88, 94, 97], "set_ylabel": [85, 86, 87], "x_2": [85, 86, 87], "set_xlim": [85, 86, 87], "set_ylim": [85, 86, 87], "linestyl": [85, 86, 87], "circl": [85, 86, 87, 94, 97], "misclassifi": [85, 86, 87], "zip": [85, 86, 87, 88, 98, 103], "label_err": [85, 86, 87], "180": [85, 86, 87, 98], "marker": [85, 86, 87], "facecolor": [85, 86, 87], "edgecolor": [85, 86, 87], "linewidth": [85, 86, 87, 99], "title_fontproperti": [85, 86, 87], "semibold": [85, 86, 87], "first_legend": [85, 86, 87], "align": [85, 86, 87], "markerscal": 85, "second_legend": [85, 86, 87], "46": [85, 90, 92, 94, 98], "gca": [85, 86, 87], "add_artist": [85, 86, 87], "tight_layout": [85, 86, 87], "ideal": [85, 86, 87], "simplic": [85, 97], "327": [85, 98], "9297": 85, "000124": 85, "259": 85, "000725": 85, "269": 85, "000794": 85, "002061": 85, "125": [85, 86], "002908": 85, "fly": [85, 92], "feed": [85, 93], "simul": 85, "tqdm": [85, 88], "sleep": [85, 92], "generate_stream": 85, "sleep_tim": 85, "desc": 85, "singleton_stream": 85, "seamless": [85, 93], "singleton": 85, "batched_stream": 85, "processed_singleton": 85, "suggested_label": [85, 91], "250997": 85, "285757": 85, "43": [85, 86, 92, 94, 98], "120906": 85, "principl": 85, "processed_batch": 85, "51": [85, 86, 87, 90, 92, 94, 98], "002748": 85, "189996": 85, "093505": 85, "037250": 85, "149": [85, 98], "076397": 85, "154": 85, "294010": 85, "160": [85, 91, 101], "073622": 85, "166": [85, 88], "140832": 85, "167": [85, 92, 94, 98], "041743": 85, "181": 85, "169429": 85, "127304": 85, "235": [85, 98], "090310": 85, "254": [85, 92, 98], "183343": 85, "256": [85, 92, 93, 98], "048720": 85, "263": [85, 97, 98], "138820": 85, "292": 85, "239609": 85, "295": [85, 98], "022075": 85, "306": 85, "103040": 85, "343": 85, "234755": 85, "354": 85, "001612": 85, "359": 85, "068359": 85, "367": [85, 101], "015793": 85, "368": 85, "029022": 85, "391": 85, "106761": 85, "troublesom": 85, "623844": 85, "812647": 85, "816854": 85, "661968": 85, "632244": 85, "395": 85, "474599": 85, "396": 85, "653901": 85, "397": 85, "584554": 85, "398": 85, "817287": 85, "399": 85, "881545": 85, "183": 85, "937927": 85, "309": 85, "939505": 85, "133": 85, "947290": 85, "177": 85, "952187": 85, "314": [85, 98], "997293": 85, "27": [85, 90, 92, 94, 98, 103], "655501": 85, "underneath": 86, "hood": [86, 93], "alert": 86, "introduct": 86, "mayb": [86, 87, 91], "your_feature_matrix": [86, 87], "dup": [86, 87], "45": [86, 87, 92, 94, 98], "remaind": 86, "modal": [86, 87, 93, 96], "132": [86, 87, 94, 98], "9318": 86, "006940": 86, "007830": 86, "40": [86, 87, 91, 92], "014828": 86, "107": [86, 87, 94, 97], "021241": 86, "026407": 86, "notic": [86, 94, 96, 98], "3558": [86, 87], "126": [86, 87, 94, 98], "006636": [86, 87], "130": [86, 87], "012571": [86, 87], "129": [86, 87], "127": [86, 87], "014909": [86, 87], "128": [86, 87, 88], "017443": [86, 87], "6160": [86, 87], "is_near_duplicate_issu": [86, 87, 88, 90, 91, 93, 94], "131": [86, 87, 102], "000000e": [86, 87], "000002": [86, 87], "463180e": [86, 87], "07": [86, 87, 88, 90, 94, 98, 101], "161148": [86, 87], "859087e": [86, 87], "30": [86, 87, 88, 92, 93, 97, 102, 103], "3453": 86, "029542": 86, "031182": 86, "057961": 86, "058244": 86, "348": 86, "378": 86, "357": 86, "34": [86, 92, 94, 96, 98, 103], "54": [86, 92, 94, 98], "039122": 86, "044598": 86, "105": [86, 98], "105196": 86, "133654": 86, "168033": 86, "101107": 86, "37": [86, 92], "183382": 86, "109": [86, 92, 98], "209259": 86, "211042": 86, "221316": 86, "average_ood_scor": 86, "34530442089193386": 86, "52": [86, 92, 98, 103], "169820": 86, "087324e": 86, "259024": 86, "583757e": 86, "91": [86, 98], "346458": 86, "341292e": 86, "specfi": 86, "new_lab": 86, "scoring_funct": 86, "div": 86, "rem": 86, "inv_scal": 86, "49": [86, 92, 94, 98, 103], "superstitionissuemanag": 86, "unlucki": 86, "superstit": 86, "to_seri": 86, "issues_mask": 86, "summary_scor": 86, "9242": 86, "is_superstition_issu": 86, "superstition_scor": 86, "26": [86, 88, 92, 94, 96, 98], "047581": 86, "090635": 86, "129591": 86, "164840": 86, "lurk": [87, 88, 94], "_split": 87, "737": 87, "thoroughli": 87, "904": 87, "_base": [87, 88, 90, 91, 94], "246": [87, 88, 90, 91, 94, 98], "efficiencywarn": [87, 88, 90, 91, 94], "sort_graph_by_row_valu": [87, 88, 90, 91, 94], "warn_when_not_sort": [87, 88, 90, 91, 94], "8561": 87, "001908": 87, "003564": 87, "007331": 87, "008963": 87, "009664": 87, "0227": 87, "is_class_imbalance_issu": 87, "022727": 87, "conceptu": 87, "856061": 87, "355772": 87, "616034": 87, "821750": 87, "901562": 87, "betweeen": 87, "is_null_issu": 87, "is_non_iid_issu": [87, 90, 91, 94], "is_underperforming_group_issu": 87, "859131": 87, "417707": 87, "664083": 87, "970324": 87, "816953": 87, "375317": 87, "641516": 87, "890575": 87, "531021": 87, "460593": 87, "601188": 87, "826147": 87, "752808": 87, "321635": 87, "562539": 87, "948362": 87, "090243": 87, "472909": 87, "746763": 87, "878267": 87, "examples_w_issu": [87, 93], "013445": 87, "025184": 87, "026376": 87, "inde": [87, 91], "miscellan": [87, 103], "428571": 87, "111111": 87, "571429": 87, "407407": 87, "592593": 87, "337838": 87, "092593": 87, "662162": 87, "333333": [87, 92], "952381": 87, "666667": 87, "portion": 87, "huge": [87, 94], "worri": [87, 91], "critic": 87, "60": [88, 94, 101], "torchvis": [88, 99], "tensordataset": 88, "stratifiedkfold": [88, 97], "autonotebook": 88, "fashion_mnist": 88, "num_row": 88, "60000": 88, "transformed_dataset": 88, "with_format": 88, "255": [88, 92], "cpu_count": 88, "torch_dataset": 88, "quick": [88, 97, 99], "super": [88, 90, 91], "relu": 88, "batchnorm2d": 88, "maxpool2d": 88, "lazylinear": 88, "flatten": 88, "get_test_accuraci": 88, "testload": [88, 99], "energi": 88, "trainload": [88, 99], "n_epoch": 88, "patienc": 88, "criterion": 88, "crossentropyloss": 88, "adamw": 88, "best_test_accuraci": 88, "start_epoch": 88, "running_loss": 88, "best_epoch": 88, "end_epoch": 88, "3f": [88, 101], "acc": [88, 94], "time_taken": 88, "compute_embed": 88, "compute_pred_prob": 88, "train_batch_s": 88, "num_work": 88, "worker": [88, 103], "train_id_list": 88, "test_id_list": 88, "train_id": 88, "test_id": 88, "embeddings_model": 88, "ntrain": 88, "trainset": 88, "testset": 88, "pin_memori": 88, "fold_embed": 88, "fold_pred_prob": 88, "finish": 88, "482": 88, "720": 88, "791": 88, "329": [88, 98], "88": [88, 92, 93, 94, 97, 98, 101], "195": 88, "502": 88, "493": 88, "060": 88, "713": 88, "330": [88, 98], "505": 88, "533": 88, "476": 88, "340": 88, "778": 88, "328": [88, 98], "310": 88, "442": 88, "reorder": 88, "hstack": [88, 93, 94, 96], "vision": 88, "grayscal": 88, "max_preval": 88, "7714": 88, "3772": 88, "3585": 88, "3651": 88, "27080": 88, "873833e": 88, "40378": 88, "915575e": 88, "25316": 88, "390277e": 88, "06": [88, 94, 98, 103], "2090": 88, "751164e": 88, "14999": 88, "881301e": 88, "9569": 88, "11262": 88, "000003": 88, "coat": [88, 92], "shirt": [88, 92], "19228": 88, "000010": 88, "dress": 88, "32657": 88, "000013": 88, "bag": [88, 92, 99, 100], "21282": 88, "000016": 88, "53564": 88, "000018": 88, "pullov": 88, "6321": 88, "30968": 88, "001267": 88, "30659": 88, "000022": [88, 103], "47824": 88, "001454": 88, "3370": 88, "000026": 88, "54565": 88, "001854": 88, "9762": 88, "258": 88, "47139": 88, "000033": 88, "166980": 88, "986195": 88, "997205": 88, "sandal": [88, 92], "948781": 88, "999358": 88, "54078": 88, "17371": 88, "000025": 88, "plot_label_issue_exampl": 88, "ncol": [88, 99], "nrow": [88, 99], "ceil": 88, "axes_list": 88, "label_issue_indic": 88, "gl": 88, "sl": 88, "fontdict": 88, "imshow": [88, 99], "cmap": [88, 101], "grai": 88, "subplots_adjust": 88, "hspace": 88, "outsiz": 88, "outlier_issu": [88, 91], "outlier_issues_df": 88, "depict": [88, 97, 98, 99, 100, 102], "plot_outlier_issues_exampl": 88, "n_comparison_imag": 88, "sample_from_class": 88, "number_of_sampl": 88, "non_outlier_indic": 88, "isnul": 88, "non_outlier_indices_excluding_curr": 88, "sampled_indic": 88, "label_scores_of_sampl": 88, "top_score_indic": 88, "top_label_indic": 88, "sampled_imag": 88, "get_image_given_label_and_sampl": 88, "image_from_dataset": 88, "corresponding_label": 88, "comparison_imag": 88, "images_to_plot": 88, "idlist": 88, "iterrow": 88, "near_duplicate_issu": [88, 93], "closest": 88, "counterpart": 88, "near_duplicate_issues_df": 88, "plot_near_duplicate_issue_exampl": 88, "seen_id_pair": 88, "get_image_and_given_label_and_predicted_label": 88, "duplicate_imag": 88, "nd_set": 88, "challeng": 88, "dark_issu": 88, "reveal": [88, 98, 102], "dark_scor": 88, "dark_issues_df": 88, "is_dark_issu": 88, "34848": 88, "203922": 88, "50270": 88, "204588": 88, "3936": 88, "213098": 88, "733": 88, "217686": 88, "8094": 88, "230118": 88, "plot_image_issue_exampl": 88, "28": [88, 91, 92, 94, 96, 103], "difficult": 88, "disproportion": 88, "lowinfo_issu": 88, "low_information_scor": 88, "lowinfo_issues_df": 88, "is_low_information_issu": 88, "53050": 88, "067975": 88, "40875": 88, "089929": 88, "9594": 88, "092601": 88, "34825": 88, "107744": 88, "37530": 88, "108516": 88, "lot": 88, "histgradientboostingclassifi": 90, "cat_featur": 90, "boost": [90, 93, 96, 101], "xgboost": [90, 93, 101], "think": [90, 91, 93, 97, 102, 103], "nonzero": 90, "358": 90, "294": [90, 98], "941": 90, "7109": 90, "000005": [90, 91], "886": 90, "000059": 90, "709": 90, "000104": 90, "723": 90, "000169": 90, "689": 90, "000181": 90, "3590": 90, "051882e": 90, "683133e": 90, "536582e": 90, "406589e": 90, "324246e": 90, "6165": 90, "582": 90, "185": [90, 92, 98, 103], "187": [90, 92], "898": 90, "0014": [90, 92], "595": 90, "702427": 90, "147": [90, 94, 98], "711186": 90, "157": [90, 94], "721394": 90, "771": 90, "731979": 90, "740335": 90, "0014153602099278074": 90, "issue_result": 90, "000842": 90, "555944": 90, "004374": 90, "sorted_issu": 90, "73": [90, 92, 97, 98, 101], "deserv": 90, "outlier_result": 90, "sorted_outli": 90, "56": [90, 92, 101, 103], "96": [90, 92, 94, 97, 98, 101], "lt": [90, 91, 92, 96, 99], "style": [90, 102], "font": 90, "18px": 90, "ff00ff": 90, "bac": 90, "unintend": [90, 91], "duplicate_result": 90, "690": 90, "perhap": [90, 94, 96], "twice": 90, "67": [90, 92, 98, 101], "wari": [90, 91, 93], "dive": 91, "your_featur": 91, "text_embed": 91, "data_dict": [91, 94, 96], "85": [91, 98], "38": [91, 92, 98], "9710": 91, "981": 91, "974": 91, "000146": 91, "982": [91, 92], "000224": 91, "971": 91, "000507": 91, "980": [91, 92], "000960": 91, "3584": 91, "994": 91, "009642": 91, "999": 91, "013067": 91, "013841": 91, "433": 91, "014722": 91, "989": 91, "018224": 91, "6070": 91, "095724": 91, "148": 91, "006237": 91, "546": 91, "099341": 91, "514": 91, "006485": 91, "481": 91, "123418": 91, "008165": 91, "0000": [91, 92, 94], "313": [91, 98], "564102": 91, "572258": 91, "574915": 91, "31": [91, 92, 94, 96, 98], "575507": 91, "575874": 91, "792090": 91, "257611": 91, "698710": 91, "182121": 91, "771619": 91, "data_with_suggested_label": 91, "withdraw": 91, "monei": 91, "lowest_quality_outli": 91, "OR": 91, "636c65616e6c616220697320617765736f6d6521": 91, "phone": [91, 92], "gone": 91, "gt": [91, 96, 103], "samp": 91, "br": 91, "press": [91, 103], "nonsens": 91, "sens": 91, "detriment": 91, "duplicate_issu": 91, "fee": 91, "pai": 91, "go": [91, 92, 94], "strongli": 91, "p_valu": 91, "benign": 91, "curat": 91, "refin": 92, "instruct": 92, "studi": [92, 98], "mnist_test_set": 92, "imagenet_val_set": 92, "tench": 92, "goldfish": 92, "white": [92, 103], "shark": 92, "tiger": 92, "hammerhead": 92, "electr": 92, "rai": 92, "stingrai": 92, "cock": 92, "hen": 92, "ostrich": 92, "brambl": 92, "goldfinch": 92, "hous": 92, "finch": 92, "junco": 92, "indigo": 92, "bunt": 92, "american": [92, 103], "robin": 92, "bulbul": 92, "jai": 92, "magpi": 92, "chickade": 92, "dipper": 92, "kite": 92, "bald": 92, "eagl": 92, "vultur": 92, "grei": 92, "owl": 92, "salamand": 92, "smooth": 92, "newt": 92, "spot": [92, 93, 98], "axolotl": 92, "bullfrog": 92, "tree": 92, "frog": [92, 99], "tail": 92, "loggerhead": 92, "sea": 92, "turtl": 92, "leatherback": 92, "mud": 92, "terrapin": 92, "band": 92, "gecko": 92, "green": [92, 103], "iguana": 92, "carolina": 92, "anol": 92, "desert": 92, "grassland": 92, "whiptail": 92, "lizard": 92, "agama": 92, "frill": 92, "neck": 92, "allig": 92, "gila": 92, "monster": 92, "european": 92, "chameleon": 92, "komodo": 92, "dragon": 92, "nile": 92, "crocodil": 92, "triceratop": 92, "worm": 92, "snake": 92, "ring": 92, "eastern": 92, "hog": 92, "nose": 92, "kingsnak": 92, "garter": 92, "water": 92, "vine": 92, "night": 92, "boa": 92, "constrictor": 92, "african": 92, "rock": 92, "indian": 92, "cobra": 92, "mamba": 92, "saharan": 92, "horn": 92, "viper": 92, "diamondback": 92, "rattlesnak": 92, "sidewind": 92, "trilobit": 92, "harvestman": 92, "scorpion": 92, "yellow": 92, "garden": 92, "spider": 92, "barn": 92, "southern": 92, "widow": 92, "tarantula": 92, "wolf": 92, "tick": 92, "centiped": 92, "grous": 92, "ptarmigan": 92, "ruf": 92, "prairi": 92, "peacock": 92, "quail": 92, "partridg": 92, "parrot": 92, "macaw": 92, "sulphur": 92, "crest": 92, "cockatoo": 92, "lorikeet": 92, "coucal": 92, "bee": 92, "eater": 92, "hornbil": 92, "hummingbird": 92, "jacamar": 92, "toucan": 92, "breast": 92, "mergans": 92, "goos": 92, "swan": 92, "tusker": 92, "echidna": 92, "platypu": 92, "wallabi": 92, "koala": 92, "wombat": 92, "jellyfish": 92, "anemon": 92, "brain": 92, "coral": 92, "flatworm": 92, "nematod": 92, "conch": 92, "snail": 92, "slug": 92, "chiton": 92, "chamber": 92, "nautilu": 92, "dung": 92, "crab": 92, "fiddler": 92, "king": 92, "lobster": 92, "spini": 92, "crayfish": 92, "hermit": 92, "isopod": 92, "stork": 92, "spoonbil": 92, "flamingo": 92, "heron": 92, "egret": 92, "bittern": 92, "crane": 92, "bird": [92, 99], "limpkin": 92, "gallinul": 92, "coot": 92, "bustard": 92, "ruddi": 92, "turnston": 92, "dunlin": 92, "redshank": 92, "dowitch": 92, "oystercatch": 92, "pelican": 92, "penguin": 92, "albatross": 92, "whale": 92, "killer": 92, "dugong": 92, "lion": 92, "chihuahua": 92, "japanes": 92, "chin": 92, "maltes": 92, "pekinges": 92, "shih": 92, "tzu": 92, "charl": 92, "spaniel": 92, "papillon": 92, "terrier": 92, "rhodesian": 92, "ridgeback": 92, "afghan": [92, 103], "hound": 92, "basset": 92, "beagl": 92, "bloodhound": 92, "bluetick": 92, "coonhound": 92, "tan": 92, "walker": 92, "foxhound": 92, "redbon": 92, "borzoi": 92, "irish": 92, "wolfhound": 92, "italian": 92, "greyhound": 92, "whippet": 92, "ibizan": 92, "norwegian": 92, "elkhound": 92, "otterhound": 92, "saluki": 92, "scottish": 92, "deerhound": 92, "weimaran": 92, "staffordshir": 92, "bull": 92, "bedlington": 92, "border": 92, "kerri": 92, "norfolk": 92, "norwich": 92, "yorkshir": 92, "wire": 92, "fox": 92, "lakeland": 92, "sealyham": 92, "airedal": 92, "cairn": 92, "australian": 92, "dandi": 92, "dinmont": 92, "boston": 92, "miniatur": 92, "schnauzer": 92, "giant": 92, "tibetan": 92, "silki": 92, "wheaten": 92, "west": 92, "highland": 92, "lhasa": 92, "apso": 92, "flat": 92, "retriev": 92, "curli": 92, "golden": 92, "labrador": 92, "chesapeak": 92, "bai": 92, "german": [92, 103], "shorthair": 92, "pointer": 92, "vizsla": 92, "setter": 92, "gordon": 92, "brittani": 92, "clumber": 92, "springer": 92, "welsh": 92, "cocker": 92, "sussex": 92, "kuvasz": 92, "schipperk": 92, "groenendael": 92, "malinoi": 92, "briard": 92, "kelpi": 92, "komondor": 92, "sheepdog": 92, "shetland": 92, "colli": 92, "bouvier": 92, "de": 92, "flandr": 92, "rottweil": 92, "shepherd": 92, "dobermann": 92, "pinscher": 92, "swiss": [92, 103], "mountain": 92, "bernes": 92, "appenzel": 92, "sennenhund": 92, "entlebuch": 92, "boxer": 92, "bullmastiff": 92, "mastiff": 92, "french": 92, "bulldog": 92, "dane": 92, "st": 92, "bernard": 92, "huski": 92, "alaskan": 92, "malamut": 92, "siberian": 92, "dalmatian": 92, "affenpinsch": 92, "basenji": 92, "pug": 92, "leonberg": 92, "newfoundland": 92, "pyrenean": 92, "samoi": 92, "pomeranian": 92, "chow": 92, "keeshond": 92, "griffon": 92, "bruxelloi": 92, "pembrok": 92, "corgi": 92, "cardigan": 92, "poodl": 92, "mexican": 92, "hairless": 92, "tundra": 92, "coyot": 92, "dingo": 92, "dhole": 92, "wild": 92, "hyena": 92, "kit": 92, "arctic": 92, "tabbi": 92, "persian": 92, "siames": 92, "egyptian": 92, "mau": 92, "cougar": 92, "lynx": 92, "leopard": 92, "snow": 92, "jaguar": 92, "cheetah": 92, "brown": [92, 102], "bear": 92, "polar": 92, "sloth": 92, "mongoos": 92, "meerkat": 92, "beetl": 92, "ladybug": 92, "longhorn": 92, "leaf": 92, "rhinocero": 92, "weevil": 92, "ant": 92, "grasshopp": 92, "cricket": 92, "stick": 92, "insect": 92, "cockroach": 92, "manti": 92, "cicada": 92, "leafhopp": 92, "lacew": 92, "dragonfli": 92, "damselfli": 92, "admir": 92, "ringlet": 92, "monarch": 92, "butterfli": 92, "gossam": 92, "wing": 92, "starfish": 92, "urchin": 92, "cucumb": 92, "cottontail": 92, "rabbit": 92, "hare": 92, "angora": 92, "hamster": 92, "porcupin": 92, "squirrel": 92, "marmot": 92, "beaver": 92, "guinea": 92, "pig": 92, "sorrel": 92, "zebra": 92, "boar": 92, "warthog": 92, "hippopotamu": 92, "ox": 92, "buffalo": 92, "bison": 92, "bighorn": 92, "sheep": 92, "alpin": 92, "ibex": 92, "hartebeest": 92, "impala": 92, "gazel": 92, "dromedari": 92, "llama": 92, "weasel": 92, "mink": 92, "polecat": 92, "foot": 92, "ferret": 92, "otter": 92, "skunk": 92, "badger": 92, "armadillo": 92, "toed": 92, "orangutan": 92, "gorilla": 92, "chimpanze": 92, "gibbon": 92, "siamang": 92, "guenon": 92, "pata": 92, "monkei": 92, "baboon": 92, "macaqu": 92, "langur": 92, "colobu": 92, "probosci": 92, "marmoset": 92, "capuchin": 92, "howler": 92, "titi": 92, "geoffroi": 92, "lemur": 92, "indri": 92, "asian": 92, "eleph": 92, "bush": 92, "snoek": 92, "eel": 92, "coho": 92, "salmon": 92, "beauti": 92, "clownfish": 92, "sturgeon": 92, "garfish": 92, "lionfish": 92, "pufferfish": 92, "abacu": 92, "abaya": 92, "academ": 92, "gown": 92, "accordion": 92, "acoust": 92, "guitar": 92, "aircraft": 92, "carrier": 92, "airlin": 92, "airship": 92, "altar": 92, "ambul": 92, "amphibi": 92, "clock": [92, 103], "apiari": 92, "apron": 92, "wast": 92, "assault": 92, "rifl": 92, "backpack": 92, "bakeri": 92, "balanc": 92, "beam": 92, "balloon": 92, "ballpoint": 92, "pen": 92, "aid": 92, "banjo": 92, "balust": 92, "barbel": 92, "barber": 92, "chair": [92, 98], "barbershop": 92, "baromet": 92, "barrel": 92, "wheelbarrow": 92, "basebal": 92, "basketbal": 92, "bassinet": 92, "bassoon": 92, "swim": 92, "cap": 92, "bath": 92, "towel": 92, "bathtub": 92, "station": 92, "wagon": 92, "lighthous": 92, "beaker": 92, "militari": 92, "beer": 92, "bottl": 92, "glass": 92, "bell": 92, "cot": 92, "bib": 92, "bicycl": [92, 102], "bikini": 92, "binder": 92, "binocular": 92, "birdhous": 92, "boathous": 92, "bobsleigh": 92, "bolo": 92, "tie": 92, "poke": 92, "bonnet": 92, "bookcas": 92, "bookstor": 92, "bow": 92, "brass": 92, "bra": 92, "breakwat": 92, "breastplat": 92, "broom": 92, "bucket": 92, "buckl": 92, "bulletproof": 92, "vest": 92, "butcher": 92, "shop": 92, "taxicab": 92, "cauldron": 92, "candl": 92, "cannon": 92, "cano": 92, "mirror": [92, 98], "carousel": 92, "tool": [92, 94, 96], "carton": 92, "wheel": 92, "teller": 92, "cassett": 92, "player": 92, "castl": 92, "catamaran": 92, "cd": 92, "cello": 92, "mobil": [92, 103], "chain": 92, "fenc": [92, 102], "mail": 92, "chainsaw": 92, "chest": 92, "chiffoni": 92, "chime": 92, "china": 92, "cabinet": 92, "christma": 92, "stock": 92, "church": 92, "movi": 92, "theater": 92, "cleaver": 92, "cliff": 92, "dwell": 92, "cloak": 92, "clog": 92, "cocktail": 92, "shaker": 92, "coffe": 92, "mug": 92, "coffeemak": 92, "coil": 92, "lock": 92, "keyboard": 92, "confectioneri": 92, "ship": [92, 99], "corkscrew": 92, "cornet": 92, "cowboi": 92, "boot": 92, "hat": 92, "cradl": 92, "crash": 92, "helmet": 92, "crate": 92, "infant": 92, "bed": 92, "crock": 92, "pot": 92, "croquet": 92, "crutch": 92, "cuirass": 92, "dam": 92, "desk": 92, "desktop": 92, "rotari": 92, "dial": 92, "telephon": 92, "diaper": 92, "watch": 92, "dine": 92, "dishcloth": 92, "dishwash": 92, "disc": 92, "brake": 92, "dock": 92, "sled": 92, "dome": 92, "doormat": 92, "drill": 92, "rig": 92, "drum": 92, "drumstick": 92, "dumbbel": 92, "dutch": 92, "oven": 92, "fan": 92, "locomot": 92, "entertain": 92, "center": 92, "envelop": 92, "espresso": 92, "powder": 92, "feather": 92, "fireboat": 92, "engin": [92, 102], "screen": 92, "sheet": 92, "flagpol": 92, "flute": 92, "footbal": 92, "forklift": 92, "fountain": 92, "poster": 92, "freight": 92, "fry": 92, "pan": 92, "fur": 92, "garbag": 92, "ga": 92, "pump": 92, "goblet": 92, "kart": 92, "golf": 92, "cart": 92, "gondola": 92, "gong": 92, "grand": 92, "piano": 92, "greenhous": 92, "grill": 92, "groceri": 92, "guillotin": 92, "barrett": 92, "hair": 92, "sprai": 92, "hammer": 92, "dryer": 92, "hand": [92, 94], "handkerchief": 92, "drive": 92, "harmonica": 92, "harp": 92, "harvest": 92, "hatchet": 92, "holster": 92, "honeycomb": 92, "hoop": 92, "skirt": 92, "horizont": 92, "bar": 92, "drawn": 92, "hourglass": 92, "ipod": 92, "cloth": 92, "iron": 92, "jack": 92, "lantern": 92, "jean": 92, "jeep": 92, "jigsaw": 92, "puzzl": 92, "pull": 92, "rickshaw": 92, "joystick": 92, "kimono": 92, "knee": 92, "pad": 92, "knot": 92, "ladl": 92, "lampshad": 92, "laptop": 92, "lawn": 92, "mower": 92, "knife": 92, "lifeboat": 92, "lighter": 92, "limousin": 92, "ocean": 92, "liner": 92, "lipstick": 92, "slip": 92, "shoe": 92, "lotion": 92, "speaker": 92, "loup": 92, "sawmil": 92, "magnet": 92, "compass": 92, "mailbox": 92, "tight": 92, "tank": 92, "manhol": 92, "maraca": 92, "marimba": 92, "maypol": 92, "maze": 92, "cup": [92, 98], "medicin": 92, "megalith": 92, "microphon": 92, "microwav": 92, "milk": 92, "minibu": 92, "miniskirt": 92, "minivan": 92, "missil": 92, "mitten": [92, 93], "mix": 92, "bowl": 92, "modem": 92, "monasteri": 92, "mope": 92, "mortar": 92, "mosqu": 92, "mosquito": 92, "scooter": 92, "bike": 92, "tent": 92, "mous": [92, 93], "mousetrap": 92, "van": 92, "muzzl": 92, "nail": 92, "brace": 92, "necklac": 92, "nippl": 92, "obelisk": 92, "obo": 92, "ocarina": 92, "odomet": 92, "oil": 92, "oscilloscop": 92, "overskirt": 92, "bullock": 92, "oxygen": 92, "packet": 92, "paddl": 92, "padlock": 92, "paintbrush": 92, "pajama": 92, "palac": [92, 103], "parachut": 92, "park": 92, "bench": 92, "meter": 92, "passeng": 92, "patio": 92, "payphon": 92, "pedest": 92, "pencil": 92, "perfum": 92, "petri": 92, "dish": 92, "photocopi": 92, "plectrum": 92, "pickelhaub": 92, "picket": 92, "pickup": 92, "pier": 92, "piggi": 92, "pill": 92, "pillow": 92, "ping": 92, "pong": 92, "pinwheel": 92, "pirat": 92, "pitcher": 92, "plane": 92, "planetarium": 92, "plastic": 92, "plate": 92, "rack": 92, "plow": 92, "plunger": 92, "polaroid": 92, "camera": 92, "pole": [92, 102], "polic": 92, "poncho": 92, "billiard": 92, "soda": 92, "potter": 92, "prayer": 92, "rug": 92, "printer": 92, "prison": 92, "projectil": 92, "projector": 92, "hockei": 92, "puck": 92, "punch": 92, "purs": 92, "quill": 92, "quilt": 92, "race": 92, "racket": 92, "radiat": 92, "radio": 92, "telescop": 92, "rain": 92, "recreat": 92, "reel": 92, "reflex": 92, "refriger": 92, "remot": 92, "restaur": 92, "revolv": 92, "rotisseri": 92, "eras": 92, "rugbi": 92, "ruler": 92, "safe": 92, "safeti": 92, "salt": 92, "sarong": 92, "saxophon": 92, "scabbard": 92, "school": 92, "bu": [92, 102], "schooner": 92, "scoreboard": 92, "crt": 92, "screw": 92, "screwdriv": 92, "seat": 92, "belt": 92, "sew": 92, "shield": 92, "shoji": 92, "basket": 92, "shovel": 92, "shower": 92, "curtain": 92, "ski": 92, "door": 92, "slot": 92, "snorkel": 92, "snowmobil": 92, "snowplow": 92, "soap": 92, "dispens": 92, "soccer": [92, 103], "sock": [92, 93], "solar": 92, "thermal": 92, "collector": 92, "sombrero": 92, "soup": 92, "heater": 92, "shuttl": 92, "spatula": 92, "motorboat": 92, "web": 92, "spindl": 92, "sport": [92, 103], "spotlight": 92, "stage": 92, "steam": 92, "arch": 92, "bridg": 92, "steel": 92, "stethoscop": 92, "scarf": 92, "stone": 92, "wall": [92, 102], "stopwatch": 92, "stove": 92, "strainer": 92, "tram": 92, "stretcher": 92, "couch": 92, "stupa": 92, "submarin": 92, "sundial": 92, "sunglass": 92, "sunscreen": 92, "suspens": 92, "mop": 92, "sweatshirt": 92, "swimsuit": 92, "swing": 92, "switch": 92, "syring": 92, "lamp": 92, "tape": 92, "teapot": 92, "teddi": 92, "televis": [92, 103], "tenni": 92, "thatch": 92, "roof": 92, "front": 92, "thimbl": 92, "thresh": 92, "throne": 92, "tile": 92, "toaster": 92, "tobacco": 92, "toilet": 92, "totem": 92, "tow": 92, "tractor": 92, "semi": 92, "trailer": 92, "trai": 92, "trench": 92, "tricycl": 92, "trimaran": 92, "tripod": 92, "triumphal": 92, "trolleybu": 92, "trombon": 92, "tub": 92, "turnstil": 92, "typewrit": 92, "umbrella": 92, "unicycl": 92, "upright": 92, "vacuum": 92, "cleaner": 92, "vase": 92, "vault": 92, "velvet": 92, "vend": 92, "vestment": 92, "viaduct": 92, "violin": 92, "volleybal": 92, "waffl": 92, "wallet": 92, "wardrob": 92, "sink": 92, "wash": 92, "jug": 92, "tower": 92, "whiskei": 92, "whistl": 92, "wig": 92, "shade": [92, 102], "windsor": 92, "wine": 92, "wok": 92, "wooden": 92, "spoon": 92, "wool": 92, "rail": 92, "shipwreck": 92, "yawl": 92, "yurt": 92, "comic": 92, "book": 92, "crossword": 92, "traffic": [92, 98, 102], "sign": [92, 102, 103], "dust": 92, "jacket": [92, 98], "menu": 92, "guacamol": 92, "consomm": 92, "trifl": 92, "ic": 92, "cream": 92, "pop": 92, "baguett": 92, "bagel": 92, "pretzel": 92, "cheeseburg": 92, "mash": 92, "potato": 92, "cabbag": 92, "broccoli": 92, "cauliflow": 92, "zucchini": 92, "spaghetti": 92, "squash": 92, "acorn": 92, "butternut": 92, "artichok": 92, "pepper": [92, 93], "cardoon": 92, "mushroom": 92, "granni": 92, "smith": 92, "strawberri": 92, "orang": 92, "lemon": 92, "pineappl": 92, "banana": 92, "jackfruit": 92, "custard": 92, "appl": 92, "pomegran": 92, "hai": 92, "carbonara": 92, "chocol": 92, "syrup": 92, "dough": 92, "meatloaf": 92, "pizza": 92, "pie": 92, "burrito": 92, "eggnog": 92, "alp": 92, "bubbl": 92, "reef": 92, "geyser": 92, "lakeshor": 92, "promontori": 92, "shoal": 92, "seashor": 92, "vallei": 92, "volcano": 92, "bridegroom": 92, "scuba": 92, "diver": 92, "rapese": 92, "daisi": 92, "ladi": 92, "slipper": 92, "corn": 92, "rose": 92, "hip": 92, "chestnut": 92, "fungu": 92, "agar": 92, "gyromitra": 92, "stinkhorn": 92, "earth": 92, "star": 92, "wood": 92, "bolet": 92, "ear": 92, "cifar10_test_set": 92, "airplan": [92, 99], "automobil": [92, 99], "deer": [92, 99], "cifar100_test_set": 92, "aquarium_fish": 92, "babi": 92, "boi": 92, "camel": 92, "caterpillar": 92, "cattl": [92, 103], "cloud": 92, "dinosaur": 92, "dolphin": 92, "flatfish": 92, "forest": 92, "girl": 92, "kangaroo": 92, "lawn_mow": 92, "man": 92, "maple_tre": 92, "motorcycl": [92, 102], "oak_tre": 92, "orchid": 92, "palm_tre": 92, "pear": 92, "pickup_truck": 92, "pine_tre": 92, "plain": 92, "poppi": 92, "possum": 92, "raccoon": 92, "road": [92, 102], "rocket": 92, "seal": 92, "shrew": 92, "skyscrap": 92, "streetcar": 92, "sunflow": 92, "sweet_pepp": 92, "trout": 92, "tulip": 92, "willow_tre": 92, "woman": [92, 98], "caltech256": 92, "ak47": 92, "bat": 92, "glove": 92, "birdbath": 92, "blimp": 92, "bonsai": 92, "boom": 92, "breadmak": 92, "buddha": 92, "bulldoz": 92, "cactu": 92, "cake": 92, "tire": 92, "cartman": 92, "cereal": 92, "chandeli": 92, "chess": 92, "board": 92, "chimp": 92, "chopstick": 92, "coffin": 92, "coin": 92, "comet": 92, "cormor": 92, "globe": 92, "diamond": 92, "dice": 92, "doorknob": 92, "drink": 92, "straw": 92, "dumb": 92, "eiffel": 92, "elk": 92, "ewer": 92, "eyeglass": 92, "fern": 92, "fighter": 92, "jet": [92, 101], "extinguish": 92, "hydrant": 92, "firework": 92, "flashlight": 92, "floppi": 92, "fri": 92, "frisbe": 92, "galaxi": 92, "giraff": 92, "goat": 92, "gate": 92, "grape": 92, "pick": [92, 93], "hamburg": 92, "hammock": 92, "harpsichord": 92, "hawksbil": 92, "helicopt": 92, "hibiscu": 92, "homer": 92, "simpson": 92, "horsesho": 92, "air": 92, "skeleton": 92, "ibi": 92, "cone": 92, "iri": 92, "jesu": 92, "christ": 92, "joi": 92, "kayak": 92, "ketch": 92, "ladder": 92, "lath": 92, "licens": 92, "lightbulb": 92, "lightn": 92, "mandolin": 92, "mar": 92, "mattress": 92, "megaphon": 92, "menorah": 92, "microscop": 92, "minaret": 92, "minotaur": 92, "motorbik": 92, "mussel": 92, "neckti": 92, "octopu": 92, "palm": 92, "pilot": 92, "paperclip": 92, "shredder": 92, "pci": 92, "peopl": [92, 98], "pez": 92, "picnic": 92, "pram": 92, "prai": 92, "pyramid": 92, "rainbow": 92, "roulett": 92, "saddl": 92, "saturn": 92, "segwai": 92, "propel": 92, "sextant": 92, "music": 92, "skateboard": 92, "smokestack": 92, "sneaker": 92, "boat": 92, "stain": 92, "steer": 92, "stirrup": 92, "superman": 92, "sushi": 92, "armi": [92, 103], "sword": 92, "tambourin": 92, "teepe": 92, "court": 92, "theodolit": 92, "tomato": 92, "tombston": 92, "tour": 92, "pisa": 92, "treadmil": 92, "fork": 92, "tweezer": 92, "unicorn": 92, "vcr": 92, "waterfal": 92, "watermelon": 92, "weld": 92, "windmil": 92, "xylophon": 92, "yarmulk": 92, "yo": 92, "toad": 92, "twenty_news_test_set": 92, "alt": 92, "atheism": 92, "comp": 92, "graphic": [92, 102], "misc": [92, 103], "sy": 92, "ibm": 92, "pc": 92, "hardwar": 92, "mac": 92, "forsal": 92, "rec": 92, "sci": 92, "crypt": 92, "electron": 92, "med": 92, "soc": 92, "religion": 92, "christian": [92, 103], "talk": [92, 103], "polit": 92, "gun": 92, "mideast": 92, "amazon": 92, "neutral": 92, "imdb_test_set": 92, "all_class": 92, "20news_test_set": 92, "_load_classes_predprobs_label": 92, "dataset_nam": 92, "labelerror": 92, "url_bas": 92, "5392f6c71473055060be3044becdde1cbc18284d": 92, "url_label": 92, "original_test_label": 92, "_original_label": 92, "url_prob": 92, "cross_validated_predicted_prob": 92, "_pyx": 92, "num_part": 92, "datatset": 92, "bytesio": 92, "allow_pickl": 92, "pred_probs_part": 92, "url": 92, "_of_": 92, "nload": 92, "imdb": 92, "interpret": [92, 93, 94, 97, 101], "capit": 92, "29780": 92, "780": 92, "medic": [92, 103], "doctor": 92, "359223": 92, "640777": 92, "184": [92, 94], "258427": 92, "341176": 92, "263158": 92, "658824": 92, "337349": 92, "246575": 92, "662651": 92, "248": 92, "330000": 92, "355769": 92, "670000": 92, "251": [92, 98], "252": 92, "112": 92, "253": [92, 98], "022989": 92, "049505": 92, "190": [92, 94, 98], "66": 92, "002216": 92, "000974": 92, "59": [92, 98], "000873": 92, "000739": 92, "32635": 92, "32636": 92, "47": [92, 98], "32637": 92, "32638": 92, "32639": 92, "32640": 92, "051": 92, "002242": 92, "997758": 92, "002088": 92, "001045": 92, "997912": 92, "002053": 92, "997947": 92, "001980": 92, "000991": 92, "998020": 92, "001946": 92, "002915": 92, "998054": 92, "001938": 92, "002904": 92, "998062": 92, "001020": 92, "998980": 92, "001018": 92, "002035": 92, "998982": 92, "999009": 92, "0003": 92, "0002": 92, "36": [92, 103], "41": [92, 98, 101], "71": [92, 94, 98, 101], "071": 92, "067269": 92, "929": 92, "046": 92, "058243": 92, "954": 92, "035": 92, "032096": 92, "965": 92, "031": 92, "012232": 92, "969": 92, "022": 92, "025896": 92, "978": 92, "020": [92, 94], "013092": 92, "018": 92, "013065": 92, "016": 92, "030542": 92, "984": 92, "013": 92, "020833": 92, "987": 92, "012": 92, "010020": 92, "988": 92, "0073": 92, "0020": 92, "0016": 92, "0015": 92, "0013": 92, "0012": 92, "0010": 92, "0008": 92, "0007": 92, "0006": 92, "0005": 92, "0004": 92, "244": [92, 98, 103], "98": [92, 93, 101], "452381": 92, "459770": 92, "72": [92, 94, 97, 101], "523364": 92, "460784": 92, "446602": 92, "57": [92, 94, 103], "103774": 92, "030612": 92, "110092": 92, "049020": 92, "0034": 92, "0032": 92, "0026": 92, "0025": 92, "4945": 92, "4946": 92, "4947": 92, "4948": 92, "4949": 92, "4950": 92, "846": 92, "82": [92, 94, 98, 101], "7532": 92, "532": 92, "034483": 92, "009646": 92, "965517": 92, "030457": 92, "020513": 92, "969543": 92, "028061": 92, "035443": 92, "971939": 92, "025316": 92, "005168": 92, "974684": 92, "049751": 92, "979487": 92, "019920": 92, "042802": 92, "980080": 92, "017677": 92, "005115": 92, "982323": 92, "012987": 92, "005236": 92, "987013": 92, "012723": 92, "025126": 92, "987277": 92, "010989": 92, "008264": 92, "989011": 92, "010283": 92, "027778": 92, "989717": 92, "009677": 92, "990323": 92, "007614": 92, "010127": 92, "992386": 92, "005051": 92, "994949": 92, "005025": 92, "994975": 92, "005013": 92, "994987": 92, "001859": 92, "001328": 92, "000929": 92, "000664": 92, "186": [92, 94], "188": [92, 94, 97], "189": [92, 94], "snippet": 93, "nlp": [93, 103], "mind": [93, 94], "alphanumer": 93, "facilit": 93, "classlabel": 93, "guidanc": 93, "labels_str": 93, "datalab_str": 93, "labels_int": 93, "remap": 93, "datalab_int": 93, "my_dict": 93, "pet_nam": 93, "rover": 93, "rocki": 93, "speci": 93, "from_dict": 93, "datalab_dataset": 93, "number_of_class": 93, "total_number_of_data_point": 93, "alphabet": 93, "labels_proper_format": 93, "your_classifi": 93, "issues_datafram": 93, "class_predicted_for_flagged_exampl": 93, "class_predicted_for_all_exampl": 93, "grant": 93, "On": [93, 94, 98], "merged_dataset": 93, "label_column_nam": 93, "datataset": 93, "fair": [93, 94], "game": 93, "speedup": [93, 99], "flexibl": 93, "tempfil": 93, "mkdtemp": 93, "sped": 93, "anywai": 93, "pred_probs_merg": 93, "merge_rare_class": 93, "count_threshold": 93, "class_mapping_orig2new": 93, "heath_summari": 93, "num_examples_per_class": 93, "rare_class": 93, "num_classes_merg": 93, "other_class": 93, "labels_merg": 93, "new_c": 93, "merged_prob": 93, "new_class": 93, "original_class": 93, "num_check": 93, "ones_array_ref": 93, "isclos": 93, "though": [93, 94, 103], "successfulli": 93, "meaning": [93, 99], "virtuou": [93, 96], "cycl": [93, 96], "jointli": 93, "junk": 93, "clutter": 93, "unknown": 93, "caltech": 93, "combined_boolean_mask": 93, "mask1": 93, "mask2": 93, "gradientboostingclassifi": [93, 94], "true_error": [93, 94, 97], "101": [93, 98], "102": [93, 97, 98], "104": [93, 94, 98], "model_to_find_error": 93, "model_to_return": 93, "cl0": 93, "randomizedsearchcv": 93, "expens": 93, "param_distribut": 93, "learning_r": [93, 94], "max_depth": [93, 94], "magnitud": 93, "coeffici": [93, 101], "optin": 93, "environ": [93, 94], "rerun": [93, 94], "cell": [93, 94], "unabl": [93, 94], "render": [93, 94], "nbviewer": [93, 94], "nbsp": [93, 94], "cleanlearninginot": [93, 94], "fittedcleanlearn": [93, 94], "linearregressionlinearregress": 93, "n_init": 93, "fit_predict": 93, "continuous_column": 93, "categorical_column": 93, "data_df": 93, "feature_a": 93, "feature_b": 93, "unexpectedli": 93, "emphas": 93, "crucial": 93, "merge_duplicate_set": 93, "merge_kei": 93, "construct_group_kei": 93, "merged_set": 93, "consolidate_set": 93, "tolist": [93, 97], "issubset": 93, "frozenset": 93, "sets_list": 93, "mutabl": 93, "new_set": 93, "current_set": 93, "intersecting_set": 93, "lowest_score_strategi": 93, "sub_df": 93, "idxmin": 93, "filter_near_dupl": 93, "strategy_fn": 93, "strategy_kwarg": 93, "duplicate_row": 93, "group_kei": 93, "to_keep_indic": 93, "groupbi": 93, "explod": 93, "to_remov": 93, "isin": [93, 99], "kept": 93, "ids_to_remove_seri": 93, "tmp": 93, "ipykernel_7754": 93, "1995098996": 93, "deprecationwarn": 93, "dataframegroupbi": 93, "include_group": 93, "silenc": 93, "assist": 93, "streamlin": 93, "ux": 93, "agpl": 93, "compani": 93, "commerci": 93, "alter": 93, "email": 93, "team": 93, "discuss": 93, "anywher": 93, "profession": 93, "expert": 93, "depth": 94, "survei": [94, 103], "focus": [94, 96, 97, 101], "scienc": 94, "multivariate_norm": [94, 96, 97], "make_data": [94, 96], "cov": [94, 96, 97], "avg_trac": [94, 97], "py_tru": 94, "noise_matrix_tru": 94, "noise_marix": 94, "s_test": 94, "noisy_test_label": 94, "purpl": 94, "val": 94, "namespac": 94, "exec": 94, "markerfacecolor": [94, 97], "markeredgecolor": [94, 97, 101], "markers": [94, 97, 101], "markeredgewidth": [94, 97, 101], "realist": 94, "7560": 94, "637318e": 94, "896262e": 94, "548391e": 94, "923417e": 94, "375075e": 94, "3454": 94, "014051": 94, "020451": 94, "249": [94, 98], "042594": 94, "043859": 94, "045954": 94, "6120": 94, "023714": 94, "007136": 94, "119": [94, 98], "107266": 94, "103": [94, 98, 103], "033738": 94, "238": [94, 98], "119505": 94, "236": [94, 98], "037843": 94, "222": 94, "614915": 94, "122": [94, 98], "624422": 94, "625965": 94, "626079": 94, "118": 94, "627675": 94, "695223": 94, "323529": 94, "523015": 94, "013720": 94, "675727": 94, "646521": 94, "anyth": 94, "enhanc": [94, 96, 98], "magic": 94, "liter": 94, "identif": 94, "x27": 94, "logisticregressionlogisticregress": 94, "ever": 94, "092": 94, "040": 94, "024": 94, "004": 94, "surpris": 94, "1705": 94, "01936": 94, "ton": 94, "yourfavoritemodel1": 94, "merged_label": 94, "merged_test_label": 94, "newli": [94, 96], "yourfavoritemodel2": 94, "yourfavoritemodel3": 94, "cl3": 94, "takeawai": 94, "That": [94, 97], "randomli": 94, "my_test_pred_prob": 94, "my_test_pr": 94, "issues_test": 94, "corrected_test_label": 94, "pretend": 94, "cl_test_pr": 94, "69": [94, 101], "fairli": 94, "label_acc": 94, "percentag": 94, "offset": 94, "nquestion": 94, "overestim": 94, "answer": 94, "experienc": 94, "knowledg": 94, "prioiri": 94, "known": 94, "versatil": 94, "label_issues_indic": 94, "213": [94, 98], "218": [94, 98], "152": 94, "197": [94, 98], "196": [94, 98], "170": 94, "214": 94, "164": [94, 97], "198": [94, 98], "191": [94, 98], "63": [94, 98, 101], "117": [94, 101], "62": [94, 98, 101], "206": [94, 98], "115": [94, 98], "193": 94, "194": 94, "201": [94, 98], "174": 94, "163": 94, "150": [94, 96, 98], "169": [94, 103], "151": [94, 98, 103], "168": 94, "precision_scor": 94, "recall_scor": 94, "f1_score": 94, "true_label_issu": 94, "filter_by_list": 94, "718750": [94, 96], "807018": 94, "912": 94, "733333": 94, "800000": 94, "721311": 94, "792793": 94, "908": 94, "676923": 94, "765217": 94, "892": 94, "567901": 94, "702290": 94, "844": 94, "gaug": 94, "label_issues_count": 94, "155": [94, 98], "156": 94, "172": [94, 97], "easiest": 94, "modular": 94, "penalti": 94, "l2": 94, "model3": 94, "n_estim": 94, "cv_pred_probs_1": 94, "cv_pred_probs_2": 94, "cv_pred_probs_3": 94, "label_quality_scores_best": 94, "cv_pred_probs_ensembl": 94, "label_quality_scores_bett": 94, "superior": [94, 100], "timm": 95, "glad": 96, "multiannotator_label": 96, "300": [96, 103], "noisier": 96, "111": [96, 101], "local_data": [96, 97], "true_labels_train": [96, 97], "noise_matrix_bett": 96, "noise_matrix_wors": 96, "transpos": [96, 99], "dropna": 96, "zfill": 96, "row_na_check": 96, "notna": 96, "reset_index": 96, "a0001": 96, "a0002": 96, "a0003": 96, "a0004": 96, "a0005": 96, "a0006": 96, "a0007": 96, "a0008": 96, "a0009": 96, "a0010": 96, "a0041": 96, "a0042": 96, "a0043": 96, "a0044": 96, "a0045": 96, "a0046": 96, "a0047": 96, "a0048": 96, "a0049": 96, "a0050": 96, "na": 96, "60856743": 96, "41693214": 96, "40908785": 96, "87147629": 96, "64941785": 96, "10774851": 96, "0524466": 96, "71853246": 96, "37169848": 96, "66031048": 96, "multiannotator_util": 96, "crude": 96, "straight": 96, "majority_vote_label": 96, "736118": 96, "757751": 96, "782232": 96, "715565": 96, "824256": 96, "quality_annotator_a0001": 96, "quality_annotator_a0002": 96, "quality_annotator_a0003": 96, "quality_annotator_a0004": 96, "quality_annotator_a0005": 96, "quality_annotator_a0006": 96, "quality_annotator_a0007": 96, "quality_annotator_a0008": 96, "quality_annotator_a0009": 96, "quality_annotator_a0010": 96, "quality_annotator_a0041": 96, "quality_annotator_a0042": 96, "quality_annotator_a0043": 96, "quality_annotator_a0044": 96, "quality_annotator_a0045": 96, "quality_annotator_a0046": 96, "quality_annotator_a0047": 96, "quality_annotator_a0048": 96, "quality_annotator_a0049": 96, "quality_annotator_a0050": 96, "070564": 96, "216078": 96, "119188": 96, "alongisd": 96, "244981": 96, "208333": 96, "295979": 96, "294118": 96, "324197": 96, "310345": 96, "355316": 96, "346154": 96, "439732": 96, "480000": 96, "a0031": 96, "523205": 96, "580645": 96, "a0034": 96, "535313": 96, "607143": 96, "a0021": 96, "606999": 96, "a0015": 96, "609526": 96, "678571": 96, "a0011": 96, "621103": 96, "692308": 96, "wors": 96, "improved_consensus_label": 96, "majority_vote_accuraci": 96, "cleanlab_label_accuraci": 96, "8581081081081081": 96, "9797297297297297": 96, "besid": 96, "sorted_consensus_quality_scor": 96, "worst_qual": 96, "better_qu": 96, "worst_quality_accuraci": 96, "better_quality_accuraci": 96, "9893238434163701": 96, "improved_pred_prob": 96, "treat": [96, 97, 101, 103], "analzi": 96, "copyright": 97, "advertis": 97, "violenc": 97, "nsfw": 97, "celeba": 97, "make_multilabel_data": 97, "boxes_coordin": 97, "box_multilabel": 97, "make_multi": 97, "bx1": 97, "by1": 97, "bx2": 97, "by2": 97, "label_list": 97, "ur": 97, "upper": 97, "inidx": 97, "logical_and": 97, "inv_d": 97, "labels_idx": 97, "true_labels_test": 97, "dict_unique_label": 97, "get_color_arrai": 97, "dcolor": 97, "aa4400": 97, "55227f": 97, "55a100": 97, "00ff00": 97, "007f7f": 97, "386b55": 97, "0000ff": 97, "y_onehot": 97, "single_class_label": 97, "stratifi": [97, 100], "kf": 97, "train_index": 97, "test_index": 97, "clf_cv": 97, "x_train_cv": 97, "x_test_cv": 97, "y_train_cv": 97, "y_test_cv": 97, "y_pred_cv": 97, "saw": 97, "num_to_displai": 97, "09": [97, 98, 101], "275": 97, "267": 97, "225": 97, "171": 97, "234": 97, "165": 97, "227": [97, 98], "262": [97, 98], "266": [97, 98], "139": 97, "143": [97, 98], "216": [97, 98], "265": 97, "159": [97, 98], "despit": [97, 103], "suspect": 97, "888": 97, "8224": 97, "9632": 97, "968": 97, "6512": 97, "0444": 97, "774": 97, "labels_binary_format": 97, "labels_list_format": 97, "surround": 98, "scene": 98, "coco": 98, "everydai": 98, "has_label_issu": 98, "insal": 98, "nc": [98, 102, 103], "s3": [98, 102, 103], "amazonaw": [98, 102, 103], "objectdetectionbenchmark": 98, "tutorial_obj": 98, "pkl": 98, "example_imag": 98, "unzip": [98, 103], "_separate_label": 98, "_separate_predict": 98, "begin": 98, "image_path": 98, "rb": 98, "image_to_visu": 98, "seg_map": 98, "334": 98, "float32": 98, "bboxes_ignor": 98, "290": 98, "286": 98, "285": 98, "224": 98, "231": 98, "293": 98, "289": 98, "282": 98, "281": 98, "271": 98, "280": 98, "277": 98, "279": 98, "287": 98, "299": 98, "276": 98, "307": 98, "321": 98, "326": 98, "333": 98, "261": 98, "319": 98, "257": 98, "283": 98, "243": 98, "303": 98, "316": 98, "247": 98, "323": 98, "226": 98, "228": 98, "232": 98, "219": 98, "239": 98, "240": 98, "209": 98, "242": 98, "202": 98, "230": 98, "215": 98, "220": 98, "229": 98, "217": [98, 103], "237": 98, "207": 98, "204": 98, "84": [98, 101], "205": 98, "223": 98, "153": 98, "140": 98, "124": 98, "268": 98, "273": 98, "108": 98, "284": 98, "110": 98, "136": 98, "145": 98, "173": 98, "297": 98, "317": 98, "192": 98, "332": 98, "324": 98, "203": 98, "320": 98, "199": 98, "291": 98, "000000481413": 98, "jpg": 98, "42398": 98, "44503": 98, "29968": 98, "336": 98, "21005": 98, "9978472": 98, "forgot": 98, "drew": 98, "label_issue_idx": 98, "num_examples_to_show": 98, "138": 98, "candid": 98, "97489622": 98, "70610878": 98, "98764951": 98, "88899237": 98, "99085805": 98, "issue_idx": 98, "95569726e": 98, "03354841e": 98, "57510169e": 98, "58447666e": 98, "39755858e": 98, "issue_to_visu": 98, "000000009483": 98, "95569726168054e": 98, "addition": [98, 102], "visibl": 98, "missmatch": 98, "likelei": 98, "agnost": 98, "vaidat": 98, "inconsist": 98, "000000395701": 98, "033548411774308e": 98, "armchair": 98, "tv": 98, "000000154004": 98, "38300759625496356": 98, "foreground": 98, "000000448410": 98, "0008575101690203273": 98, "crowd": 98, "alon": 98, "explor": [98, 99], "resembl": [98, 99], "000000499768": 98, "9748962231208227": 98, "000000521141": 98, "8889923658893665": 98, "000000143931": 98, "9876495074395956": 98, "bonu": 98, "uncov": 98, "irregular": 98, "anomali": 98, "object_detection_util": 98, "calculate_bounding_box_area": 98, "num_imgs_to_show": 98, "lab_object_count": 98, "pred_object_count": 98, "000000430073": 98, "000000183709": 98, "000000189475": 98, "label_norm": 98, "pred_norm": 98, "area": [98, 102], "lab_area": 98, "pred_area": 98, "lab_area_mean": 98, "lab_area_std": 98, "max_deviation_valu": 98, "max_deviation_class": 98, "deviation_valu": 98, "deviation_class": 98, "mean_area": 98, "std_area": 98, "class_area": 98, "deviations_awai": 98, "max_deviation_index": 98, "num_imgs_to_show_per_class": 98, "class_num": 98, "sorted_indic": 98, "000000422886": 98, "000000341828": 98, "000000461009": 98, "train_feature_embed": 99, "ood_train_feature_scor": 99, "test_feature_embed": 99, "ood_test_feature_scor": 99, "ood_train_predictions_scor": 99, "train_pred_prob": 99, "ood_test_predictions_scor": 99, "test_pred_prob": 99, "pylab": 99, "rcparam": 99, "baggingclassifi": 99, "therebi": 99, "rescal": 99, "transform_norm": 99, "totensor": 99, "root": 99, "animal_class": 99, "non_animal_class": 99, "animal_idx": 99, "test_idx": 99, "toronto": 99, "edu": 99, "kriz": 99, "170498071": 99, "106705501": 99, "09it": 99, "5000": 99, "plot_imag": 99, "visualize_outli": 99, "txt_class": 99, "img": [99, 101], "npimg": 99, "show_label": 99, "data_subset": 99, "resnet50": 99, "corpu": 99, "2048": 99, "embed_imag": 99, "create_model": 99, "strang": 99, "odd": 99, "train_ood_features_scor": 99, "top_train_ood_features_idx": 99, "fun": 99, "negat": 99, "homogen": 99, "bottom_train_ood_features_idx": 99, "test_ood_features_scor": 99, "top_ood_features_idx": 99, "inevit": 99, "trade": 99, "5th": 99, "percentil": 99, "fifth_percentil": 99, "plt_rang": 99, "hist": 99, "train_outlier_scor": 99, "ylabel": 99, "axvlin": 99, "test_outlier_scor": 99, "ood_features_indic": 99, "revisit": 99, "return_invers": 99, "train_feature_embeddings_sc": 99, "test_feature_embeddings_sc": 99, "train_pred_label": 99, "9702": 99, "train_ood_predictions_scor": 99, "test_ood_predictions_scor": 99, "lost": 99, "unsuit": 100, "ok": [100, 103], "convention": 100, "aforement": 100, "hypothet": 100, "contrast": 100, "tradit": 100, "disjoint": 100, "out_of_sample_pred_probs_for_a": 100, "out_of_sample_pred_probs_for_b": 100, "out_of_sample_pred_probs_for_c": 100, "out_of_sample_pred_prob": 100, "price": 101, "incom": 101, "ag": 101, "sensor": 101, "histgradientboostingregressor": 101, "r2_score": 101, "student_grades_r": 101, "final_scor": 101, "true_final_scor": 101, "homework": 101, "3d": 101, "hue": 101, "mpl_toolkit": 101, "mplot3d": 101, "axes3d": 101, "errors_idx": 101, "add_subplot": 101, "z": 101, "colorbar": 101, "errors_mask": 101, "feature_column": 101, "predicted_column": 101, "x_train_raw": 101, "x_test_raw": 101, "randomforestregressor": 101, "385101": 101, "499503": 101, "698255": 101, "776647": 101, "109373": 101, "170547": 101, "481096": 101, "984759": 101, "645270": 101, "795928": 101, "141": 101, "659": 101, "318": 101, "305": 101, "560": 101, "657": 101, "688": 101, "view_datapoint": 101, "concat": 101, "preds_og": 101, "r2_og": 101, "838": 101, "found_label_issu": 101, "preds_cl": 101, "r2_cl": 101, "926": 101, "favorit": 101, "968627e": 101, "228799": 101, "646674e": 101, "402962": 101, "323818e": 101, "952758": 101, "422144e": 101, "456908": 101, "465815e": 101, "753968": 101, "791186e": 101, "110719": 101, "485156e": 101, "670640": 101, "225300e": 101, "749976": 101, "499679e": 101, "947007": 101, "067882e": 101, "648396": 101, "synthia": 102, "imagesegment": 102, "given_mask": 102, "predicted_mask": 102, "set_printopt": [102, 103], "sky": 102, "sidewalk": 102, "veget": 102, "terrain": 102, "rider": 102, "pred_probs_filepath": 102, "1088": 102, "1920": 102, "label_filepath": 102, "synthia_class": 102, "maunal": 102, "100000": 102, "244800": 102, "leftmost": 102, "middl": [102, 103], "infact": 102, "rightmost": 102, "discrep": 102, "3263230": 102, "783381": 102, "275110": 102, "255917": 102, "78225": 102, "55990": 102, "54315": 102, "33591": 102, "24645": 102, "21054": 102, "15045": 102, "14171": 102, "13832": 102, "13498": 102, "11490": 102, "9164": 102, "8769": 102, "6999": 102, "6031": 102, "5011": 102, "mistakenli": 102, "class_issu": 102, "aim": [102, 103], "domin": 102, "bunch": 103, "conll": 103, "2003": 103, "love": 103, "n_i": 103, "optional_list_of_ordered_class_nam": 103, "deepai": 103, "conll2003": 103, "rm": 103, "tokenclassif": 103, "2024": 103, "2400": 103, "52e0": 103, "1a00": 103, "845": 103, "connect": 103, "443": 103, "await": 103, "982975": 103, "960k": 103, "959": 103, "94k": 103, "kb": 103, "mb": 103, "directori": 103, "inflat": 103, "182": 103, "17045998": 103, "16m": 103, "octet": 103, "26m": 103, "4mb": 103, "bert": 103, "read_npz": 103, "filepath": 103, "corrsespond": 103, "iob2": 103, "given_ent": 103, "entity_map": 103, "readfil": 103, "startswith": 103, "docstart": 103, "isalpha": 103, "isupp": 103, "indices_to_preview": 103, "nsentenc": 103, "eu": 103, "reject": 103, "boycott": 103, "british": 103, "lamb": 103, "00030412": 103, "00023826": 103, "99936208": 103, "00007009": 103, "00002545": 103, "99998795": 103, "00000401": 103, "00000218": 103, "00000455": 103, "00000131": 103, "00000749": 103, "99996115": 103, "00001371": 103, "0000087": 103, "00000895": 103, "99998936": 103, "00000382": 103, "00000178": 103, "00000366": 103, "00000137": 103, "99999101": 103, "00000266": 103, "00000174": 103, "0000035": 103, "00000109": 103, "99998768": 103, "00000482": 103, "00000202": 103, "00000438": 103, "0000011": 103, "00000465": 103, "99996392": 103, "00001105": 103, "0000116": 103, "00000878": 103, "99998671": 103, "00000364": 103, "00000213": 103, "00000472": 103, "00000281": 103, "99999073": 103, "00000211": 103, "00000159": 103, "00000442": 103, "00000115": 103, "peter": 103, "blackburn": 103, "00000358": 103, "00000529": 103, "99995623": 103, "0000129": 103, "0000024": 103, "00001812": 103, "99994141": 103, "00001645": 103, "00002162": 103, "brussel": 103, "1996": 103, "00001172": 103, "00000821": 103, "00004661": 103, "0000618": 103, "99987167": 103, "99999061": 103, "00000201": 103, "00000195": 103, "00000408": 103, "00000135": 103, "2254": 103, "2907": 103, "19392": 103, "9962": 103, "8904": 103, "19303": 103, "12918": 103, "9256": 103, "11855": 103, "18392": 103, "20426": 103, "19402": 103, "14744": 103, "19371": 103, "4645": 103, "10331": 103, "9430": 103, "6143": 103, "18367": 103, "12914": 103, "todai": 103, "weather": 103, "march": 103, "scalfaro": 103, "northern": 103, "himself": 103, "said": 103, "germani": 103, "nastja": 103, "rysich": 103, "north": 103, "spla": 103, "fought": 103, "khartoum": 103, "govern": 103, "south": 103, "1983": 103, "autonomi": 103, "animist": 103, "region": 103, "moslem": 103, "arabis": 103, "mayor": 103, "antonio": 103, "gonzalez": 103, "garcia": 103, "revolutionari": 103, "parti": 103, "wednesdai": 103, "troop": 103, "raid": 103, "farm": 103, "stole": 103, "rape": 103, "women": 103, "spring": 103, "chg": 103, "hrw": 103, "12pct": 103, "princ": 103, "photo": 103, "moment": 103, "spokeswoman": 103, "rainier": 103, "told": 103, "reuter": 103, "danila": 103, "carib": 103, "w224": 103, "equip": 103, "radiomet": 103, "earn": 103, "19996": 103, "london": 103, "denom": 103, "sale": 103, "uk": 103, "jp": 103, "fr": 103, "maccabi": 103, "hapoel": 103, "haifa": 103, "tel": 103, "aviv": 103, "hospit": 103, "rever": 103, "roman": 103, "cathol": 103, "nun": 103, "admit": 103, "calcutta": 103, "week": 103, "ago": 103, "fever": 103, "vomit": 103, "allianc": 103, "embattl": 103, "kabul": 103, "salang": 103, "highwai": 103, "mondai": 103, "tuesdai": 103, "suprem": 103, "council": 103, "led": 103, "jumbish": 103, "milli": 103, "movement": 103, "warlord": 103, "abdul": 103, "rashid": 103, "dostum": 103, "dollar": 103, "exchang": 103, "3570": 103, "12049": 103, "born": 103, "1937": 103, "provinc": 103, "anhui": 103, "dai": 103, "came": 103, "shanghai": 103, "citi": 103, "prolif": 103, "author": 103, "teacher": 103, "chines": 103, "16764": 103, "1990": 103, "historian": 103, "alan": 103, "john": 103, "percival": 103, "taylor": 103, "di": 103, "20446": 103, "pace": 103, "bowler": 103, "ian": 103, "harvei": 103, "claim": 103, "victoria": 103, "15514": 103, "cotti": 103, "osc": 103, "foreign": 103, "minist": 103, "7525": 103, "sultan": 103, "specter": 103, "met": 103, "crown": 103, "abdullah": 103, "defenc": 103, "aviat": 103, "jeddah": 103, "saudi": 103, "agenc": 103, "2288": 103, "hi": 103, "customari": 103, "outfit": 103, "champion": 103, "damp": 103, "scalp": 103, "canada": 103, "reign": 103, "olymp": 103, "donovan": 103, "bailei": 103, "1992": 103, "linford": 103, "christi": 103, "britain": 103, "1984": 103, "1988": 103, "carl": 103, "lewi": 103, "ambigi": 103, "punctuat": 103, "chicago": 103, "digest": 103, "philadelphia": 103, "usda": 103, "york": 103, "token_issu": 103, "471": 103, "kean": 103, "year": 103, "contract": 103, "manchest": 103, "19072": 103, "societi": 103, "bite": 103, "deliv": 103, "19910": 103, "father": 103, "clarenc": 103, "woolmer": 103, "renam": 103, "uttar": 103, "pradesh": 103, "india": 103, "ranji": 103, "trophi": 103, "nation": 103, "championship": 103, "captain": 103, "1949": 103, "15658": 103, "19879": 103, "iii": 103, "brian": 103, "shimer": 103, "randi": 103, "jone": 103, "19104": 103}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [55, 0, 0, "-", "models"], [57, 0, 0, "-", "multiannotator"], [60, 0, 0, "-", "multilabel_classification"], [63, 0, 0, "-", "object_detection"], [66, 0, 0, "-", "outlier"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "regression"], [72, 0, 0, "-", "segmentation"], [76, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "outlier"], [51, 0, 0, "-", "token_classification_utils"], [52, 0, 0, "-", "util"], [53, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[50, 1, 1, "", "correct_precision_errors"], [50, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, 1, 1, "", "color_sentence"], [51, 1, 1, "", "filter_sentence"], [51, 1, 1, "", "get_sentence"], [51, 1, 1, "", "mapping"], [51, 1, 1, "", "merge_probs"], [51, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[52, 1, 1, "", "append_extra_datapoint"], [52, 1, 1, "", "clip_noise_rates"], [52, 1, 1, "", "clip_values"], [52, 1, 1, "", "compress_int_array"], [52, 1, 1, "", "confusion_matrix"], [52, 1, 1, "", "csr_vstack"], [52, 1, 1, "", "estimate_pu_f1"], [52, 1, 1, "", "extract_indices_tf"], [52, 1, 1, "", "force_two_dimensions"], [52, 1, 1, "", "format_labels"], [52, 1, 1, "", "get_missing_classes"], [52, 1, 1, "", "get_num_classes"], [52, 1, 1, "", "get_unique_classes"], [52, 1, 1, "", "is_tensorflow_dataset"], [52, 1, 1, "", "is_torch_dataset"], [52, 1, 1, "", "num_unique_classes"], [52, 1, 1, "", "print_inverse_noise_matrix"], [52, 1, 1, "", "print_joint_matrix"], [52, 1, 1, "", "print_noise_matrix"], [52, 1, 1, "", "print_square_matrix"], [52, 1, 1, "", "remove_noise_from_class"], [52, 1, 1, "", "round_preserving_row_totals"], [52, 1, 1, "", "round_preserving_sum"], [52, 1, 1, "", "smart_display_dataframe"], [52, 1, 1, "", "subset_X_y"], [52, 1, 1, "", "subset_data"], [52, 1, 1, "", "subset_labels"], [52, 1, 1, "", "train_val_split"], [52, 1, 1, "", "unshuffle_tensorflow_dataset"], [52, 1, 1, "", "value_counts"], [52, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[53, 1, 1, "", "assert_indexing_works"], [53, 1, 1, "", "assert_nonempty_input"], [53, 1, 1, "", "assert_valid_class_labels"], [53, 1, 1, "", "assert_valid_inputs"], [53, 1, 1, "", "labels_to_array"], [53, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[56, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[56, 2, 1, "", "KerasWrapperModel"], [56, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[57, 1, 1, "", "convert_long_to_wide_dataset"], [57, 1, 1, "", "get_active_learning_scores"], [57, 1, 1, "", "get_active_learning_scores_ensemble"], [57, 1, 1, "", "get_label_quality_multiannotator"], [57, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [57, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[58, 0, 0, "-", "dataset"], [59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[58, 1, 1, "", "common_multilabel_issues"], [58, 1, 1, "", "multilabel_health_summary"], [58, 1, 1, "", "overall_multilabel_health_score"], [58, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, 1, 1, "", "find_label_issues"], [59, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[62, 0, 0, "-", "filter"], [64, 0, 0, "-", "rank"], [65, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[62, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[64, 1, 1, "", "compute_badloc_box_scores"], [64, 1, 1, "", "compute_overlooked_box_scores"], [64, 1, 1, "", "compute_swap_box_scores"], [64, 1, 1, "", "get_label_quality_scores"], [64, 1, 1, "", "issues_from_scores"], [64, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[65, 1, 1, "", "bounding_box_size_distribution"], [65, 1, 1, "", "calculate_per_class_metrics"], [65, 1, 1, "", "class_label_distribution"], [65, 1, 1, "", "get_average_per_class_confusion_matrix"], [65, 1, 1, "", "get_sorted_bbox_count_idxs"], [65, 1, 1, "", "object_counts_per_image"], [65, 1, 1, "", "plot_class_distribution"], [65, 1, 1, "", "plot_class_size_distributions"], [65, 1, 1, "", "visualize"]], "cleanlab.outlier": [[66, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "fit_score"], [66, 3, 1, "", "score"]], "cleanlab.rank": [[67, 1, 1, "", "find_top_issues"], [67, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [67, 1, 1, "", "get_label_quality_ensemble_scores"], [67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_normalized_margin_for_each_label"], [67, 1, 1, "", "get_self_confidence_for_each_label"], [67, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[69, 0, 0, "-", "learn"], [70, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[69, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[69, 3, 1, "", "__init_subclass__"], [69, 3, 1, "", "find_label_issues"], [69, 3, 1, "", "fit"], [69, 3, 1, "", "get_aleatoric_uncertainty"], [69, 3, 1, "", "get_epistemic_uncertainty"], [69, 3, 1, "", "get_label_issues"], [69, 3, 1, "", "get_metadata_routing"], [69, 3, 1, "", "get_params"], [69, 3, 1, "", "predict"], [69, 3, 1, "", "save_space"], [69, 3, 1, "", "score"], [69, 3, 1, "", "set_fit_request"], [69, 3, 1, "", "set_params"], [69, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[70, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 82, 83, 88, 90, 91, 93, 94, 97, 103], "count": [3, 94], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 84, 85, 86, 87, 88, 89, 90, 91, 94, 97], "creat": [7, 85, 86, 87, 94, 96], "your": [7, 79, 86, 87, 91, 93, 94], "own": 7, "issu": [7, 9, 10, 21, 30, 79, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 86], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 86], "us": [7, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "gener": 8, "cluster": [8, 93], "id": 8, "guid": [9, 11], "type": [9, 10, 94], "custom": [9, 86], "cleanlab": [9, 10, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "studio": [9, 10], "easi": [9, 10, 79, 88, 90, 91], "mode": [9, 10, 79, 88, 90, 91], "can": [10, 85, 87, 92, 93, 94, 96], "detect": [10, 84, 87, 88, 90, 91, 93, 94, 98, 99], "estim": [10, 94, 96, 97], "each": 10, "label": [10, 23, 25, 30, 79, 82, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "outlier": [10, 28, 50, 66, 88, 90, 91, 97, 99], "Near": [10, 87, 88, 90, 91], "duplic": [10, 19, 87, 88, 90, 91, 93, 97], "non": [10, 91], "iid": [10, 91], "class": [10, 80, 94, 102], "imbal": [10, 20], "imag": [10, 88, 99], "specif": [10, 21, 102], "underperform": [10, 93], "group": [10, 93], "null": [10, 27], "data": [10, 12, 79, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "valuat": 10, "option": 10, "paramet": [10, 94], "get": [11, 85, 86, 87, 96, 97, 98, 102, 103], "start": [11, 92], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 93, 94], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 68, 69, 70, 93, 101], "prioriti": 30, "order": 30, "find": [30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "underperforming_group": 31, "model_output": 32, "report": [33, 88], "dataset": [36, 58, 79, 83, 84, 85, 87, 88, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 59, 62, 71, 75, 94], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "token_classification_util": 51, "util": 52, "valid": [53, 88, 100], "fasttext": 54, "model": [55, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101], "kera": 56, "multiannot": [57, 96], "multilabel_classif": 60, "rank": [61, 64, 67, 70, 73, 77, 94], "object_detect": 63, "summari": [65, 74, 78], "learn": [69, 85, 87, 93, 94], "segment": [72, 102], "token_classif": [76, 103], "open": [79, 93], "sourc": [79, 93], "document": 79, "quickstart": 79, "1": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "instal": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "2": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "common": [79, 80, 103], "3": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "handl": [79, 93], "error": [79, 83, 88, 93, 94, 96, 97, 98, 101, 102, 103], "train": [79, 82, 83, 84, 93, 99, 101], "robust": [79, 82, 83, 94, 101], "noisi": [79, 82, 83, 94, 101], "4": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 98, 99, 101], "curat": 79, "fix": [79, 93], "level": [79, 92, 94, 103], "5": [79, 82, 84, 85, 87, 88, 90, 94, 96, 101], "improv": [79, 96], "via": [79, 94, 96], "mani": [79, 94], "other": [79, 96, 98, 101], "techniqu": 79, "contribut": 79, "how": [80, 93, 94, 96, 97, 103], "migrat": 80, "version": 80, "0": 80, "from": [80, 82, 83, 85, 86, 87, 94, 101], "pre": [80, 84, 93, 99], "function": [80, 86], "name": 80, "chang": 80, "modul": [80, 94], "new": [80, 85], "remov": 80, "argument": [80, 86], "variabl": 80, "cleanlearn": [81, 93, 94], "tutori": [81, 89, 92, 95], "structur": 82, "tabular": [82, 90], "requir": [82, 83, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "depend": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "load": [82, 83, 84, 85, 86, 87, 90, 91, 101], "process": [82, 90, 99, 101], "select": [82, 90], "comput": [82, 84, 88, 90, 91, 93, 96, 100], "out": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "sampl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "predict": [82, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 100], "probabl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "more": [82, 83, 85, 87, 94, 101], "text": [83, 91, 103], "format": [83, 91, 93, 97, 98], "defin": [83, 88, 91, 101], "potenti": [83, 96, 101], "an": [84, 88, 93], "audio": 84, "import": [84, 85, 86, 87, 88, 92, 94, 96], "them": [84, 92, 94], "speechbrain": 84, "featur": [84, 88, 99], "fit": 84, "linear": 84, "datamonitor": 85, "leverag": 85, "statist": [85, 96], "audit": [85, 86, 87], "skip": [85, 87, 92, 94, 96], "detail": [85, 87, 92, 94, 96], "classifi": [85, 86, 87], "6": [85, 94], "about": [85, 87], "addit": [85, 87], "workflow": [86, 94], "instanti": 86, "object": [86, 98], "increment": 86, "search": 86, "specifi": [86, 93], "nondefault": 86, "save": 86, "ad": 86, "A": 87, "unifi": 87, "all": [87, 94], "kind": [87, 98], "inform": [87, 88], "fetch": [88, 92], "normal": 88, "fashion": 88, "mnist": 88, "prepar": 88, "k": [88, 90, 100], "fold": [88, 100], "cross": [88, 100], "embed": [88, 99], "7": [88, 94], "view": 88, "most": [88, 103], "like": 88, "exampl": [88, 93, 94, 99], "sever": 88, "set": [88, 94], "dark": 88, "top": [88, 102], "low": 88, "numer": 90, "categor": 90, "column": 90, "construct": 90, "nearest": 90, "neighbour": 90, "graph": 90, "drift": [91, 97], "understand": 92, "evalu": 92, "health": [92, 94], "8": [92, 94], "popular": 92, "faq": 93, "what": [93, 94, 100], "do": [93, 94], "i": [93, 94, 100], "infer": 93, "correct": 93, "ha": 93, "flag": 93, "should": 93, "v": 93, "test": [93, 94, 99], "big": 93, "limit": 93, "memori": 93, "why": 93, "isn": 93, "t": 93, "work": [93, 94, 96, 103], "me": 93, "differ": [93, 98], "clean": [93, 94], "final": 93, "hyperparamet": 93, "tune": 93, "onli": 93, "one": [93, 94, 97, 102], "doe": [93, 96, 103], "take": 93, "so": 93, "long": 93, "slice": 93, "when": [93, 94], "identifi": [93, 98], "run": 93, "licens": 93, "under": 93, "answer": 93, "question": 93, "The": 94, "centric": 94, "ai": 94, "machin": 94, "find_label_issu": 94, "line": 94, "code": 94, "visual": [94, 98, 99, 102], "twenti": 94, "lowest": 94, "qualiti": [94, 96, 97, 98, 102, 103], "see": 94, "now": 94, "let": 94, "": 94, "happen": 94, "we": 94, "merg": 94, "seafoam": 94, "green": 94, "yellow": 94, "too": 94, "you": 94, "re": 94, "One": 94, "score": [94, 96, 97, 98, 102, 103], "rule": 94, "overal": [94, 102], "accur": 94, "thi": 94, "directli": 94, "fulli": 94, "character": 94, "nois": 94, "matrix": [94, 97], "joint": 94, "prior": 94, "true": 94, "distribut": 94, "flip": 94, "rate": 94, "ani": 94, "again": 94, "support": 94, "lot": 94, "method": 94, "filter_bi": 94, "automat": 94, "everi": 94, "uniqu": 94, "num_label_issu": 94, "threshold": 94, "found": 94, "Not": 94, "sure": 94, "ensembl": 94, "multipl": [94, 96], "predictor": 94, "consensu": 96, "annot": 96, "initi": 96, "major": 96, "vote": 96, "better": 96, "compar": 96, "inspect": 96, "retrain": 96, "further": 96, "multi": 97, "beyond": 97, "mislabel": [97, 102, 103], "given": 97, "hot": 97, "binari": 97, "without": 97, "applic": 97, "real": 97, "download": [98, 102, 103], "objectlab": 98, "exploratori": 98, "analysi": 98, "pytorch": 99, "timm": 99, "cifar10": 99, "some": 99, "pred_prob": [99, 102, 103], "wai": 101, "semant": 102, "which": 102, "ar": 102, "commonli": 102, "focus": 102, "token": 103, "word": 103, "sentenc": 103, "contain": 103, "particular": 103}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [50, "module-cleanlab.internal.outlier"], [66, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [68, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [58, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [59, "module-cleanlab.multilabel_classification.filter"], [62, "filter"], [71, "filter"], [75, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "util": [[52, "module-cleanlab.internal.util"]], "validation": [[53, "module-cleanlab.internal.validation"]], "fasttext": [[54, "fasttext"]], "models": [[55, "models"]], "keras": [[56, "module-cleanlab.models.keras"]], "multiannotator": [[57, "module-cleanlab.multiannotator"]], "multilabel_classification": [[60, "multilabel-classification"]], "rank": [[61, "module-cleanlab.multilabel_classification.rank"], [64, "module-cleanlab.object_detection.rank"], [67, "module-cleanlab.rank"], [73, "module-cleanlab.segmentation.rank"], [77, "module-cleanlab.token_classification.rank"]], "object_detection": [[63, "object-detection"]], "summary": [[65, "summary"], [74, "module-cleanlab.segmentation.summary"], [78, "module-cleanlab.token_classification.summary"]], "regression.learn": [[69, "module-cleanlab.regression.learn"]], "regression.rank": [[70, "module-cleanlab.regression.rank"]], "segmentation": [[72, "segmentation"]], "token_classification": [[76, "token-classification"]], "cleanlab open-source documentation": [[79, "cleanlab-open-source-documentation"]], "Quickstart": [[79, "quickstart"]], "1. Install cleanlab": [[79, "install-cleanlab"]], "2. Find common issues in your data": [[79, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[79, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[79, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[79, "improve-your-data-via-many-other-techniques"]], "Contributing": [[79, "contributing"]], "Easy Mode": [[79, "easy-mode"], [88, "Easy-Mode"], [90, "Easy-Mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[80, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[80, "function-and-class-name-changes"]], "Module name changes": [[80, "module-name-changes"]], "New modules": [[80, "new-modules"]], "Removed modules": [[80, "removed-modules"]], "Common argument and variable name changes": [[80, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[81, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[82, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[82, "1.-Install-required-dependencies"], [83, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [101, "1.-Install-required-dependencies"]], "2. Load and process the data": [[82, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [101, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [90, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[82, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[82, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[83, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[83, "2.-Load-and-format-the-text-dataset"], [91, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[83, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[83, "4.-Train-a-more-robust-model-from-noisy-labels"], [101, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[84, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[84, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[84, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[84, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[84, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[84, "5.-Use-cleanlab-to-find-label-issues"], [90, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[85, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[85, "1.-Install-and-import-required-dependencies"], [87, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"], [96, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[85, "2.-Create-and-load-the-data-(can-skip-these-details)"], [87, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[85, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [87, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[85, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [87, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[85, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[85, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "Datalab: Advanced workflows to audit your data": [[86, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[86, "Install-and-import-required-dependencies"]], "Create and load the data": [[86, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[86, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[86, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[86, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[86, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[86, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[86, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[87, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[87, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[87, "Get-additional-information"]], "Near duplicate issues": [[87, "Near-duplicate-issues"], [88, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[88, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[88, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[88, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[88, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[88, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[88, "7.-Use-cleanlab-to-find-issues"]], "View report": [[88, "View-report"]], "Label issues": [[88, "Label-issues"], [90, "Label-issues"], [91, "Label-issues"]], "View most likely examples with label errors": [[88, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[88, "Outlier-issues"], [90, "Outlier-issues"], [91, "Outlier-issues"]], "View most severe outliers": [[88, "View-most-severe-outliers"]], "View sets of near duplicate images": [[88, "View-sets-of-near-duplicate-images"]], "Dark images": [[88, "Dark-images"]], "View top examples of dark images": [[88, "View-top-examples-of-dark-images"]], "Low information images": [[88, "Low-information-images"]], "Datalab Tutorials": [[89, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[90, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[90, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[91, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[91, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[91, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[91, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[92, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[92, "Install-dependencies-and-import-them"], [94, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[92, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[92, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[93, "FAQ"]], "What data can cleanlab detect issues in?": [[93, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[93, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[93, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[93, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[93, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[93, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[93, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[93, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[93, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[93, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[93, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[93, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[93, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[93, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[94, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[94, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[94, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[94, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[94, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[94, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[94, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[94, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[94, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[94, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[94, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[94, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[94, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[94, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[94, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[94, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[94, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[94, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[94, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[95, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[96, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[96, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[96, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[96, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[96, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[96, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[96, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[96, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[96, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[97, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[97, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[97, "2.-Format-data,-labels,-and-model-predictions"], [98, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[97, "3.-Use-cleanlab-to-find-label-issues"], [98, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[97, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[97, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[97, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[97, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[97, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[98, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[98, "1.-Install-required-dependencies-and-download-data"], [102, "1.-Install-required-dependencies-and-download-data"], [103, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[98, "Get-label-quality-scores"], [102, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[98, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[98, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[98, "Other-uses-of-visualize"]], "Exploratory data analysis": [[98, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[99, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[99, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[99, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[99, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[99, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[99, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[100, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[100, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[100, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[101, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[101, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[101, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[102, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[102, "2.-Get-data,-labels,-and-pred_probs"], [103, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[102, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[102, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[102, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[103, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[103, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[103, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[103, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[103, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.outlier"], [51, "module-cleanlab.internal.token_classification_utils"], [52, "module-cleanlab.internal.util"], [53, "module-cleanlab.internal.validation"], [55, "module-cleanlab.models"], [56, "module-cleanlab.models.keras"], [57, "module-cleanlab.multiannotator"], [58, "module-cleanlab.multilabel_classification.dataset"], [59, "module-cleanlab.multilabel_classification.filter"], [60, "module-cleanlab.multilabel_classification"], [61, "module-cleanlab.multilabel_classification.rank"], [62, "module-cleanlab.object_detection.filter"], [63, "module-cleanlab.object_detection"], [64, "module-cleanlab.object_detection.rank"], [65, "module-cleanlab.object_detection.summary"], [66, "module-cleanlab.outlier"], [67, "module-cleanlab.rank"], [68, "module-cleanlab.regression"], [69, "module-cleanlab.regression.learn"], [70, "module-cleanlab.regression.rank"], [71, "module-cleanlab.segmentation.filter"], [72, "module-cleanlab.segmentation"], [73, "module-cleanlab.segmentation.rank"], [74, "module-cleanlab.segmentation.summary"], [75, "module-cleanlab.token_classification.filter"], [76, "module-cleanlab.token_classification"], [77, "module-cleanlab.token_classification.rank"], [78, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[50, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[52, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[53, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[55, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[56, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[57, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[58, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[60, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[61, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[62, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[62, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[63, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[64, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[65, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[66, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[66, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[67, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[68, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[69, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[69, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[69, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[70, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[70, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[71, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[71, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[72, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[73, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[74, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[75, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[75, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[76, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[77, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[78, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 327235679..d5fcefd4f 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:51.639375Z", - "iopub.status.busy": "2024-04-12T10:16:51.639209Z", - "iopub.status.idle": "2024-04-12T10:16:52.812960Z", - "shell.execute_reply": "2024-04-12T10:16:52.812403Z" + "iopub.execute_input": "2024-04-22T21:45:23.453506Z", + "iopub.status.busy": "2024-04-22T21:45:23.453332Z", + "iopub.status.idle": "2024-04-22T21:45:24.640462Z", + "shell.execute_reply": "2024-04-22T21:45:24.639799Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:52.815476Z", - "iopub.status.busy": "2024-04-12T10:16:52.815210Z", - "iopub.status.idle": "2024-04-12T10:16:52.833957Z", - "shell.execute_reply": "2024-04-12T10:16:52.833546Z" + "iopub.execute_input": "2024-04-22T21:45:24.643334Z", + "iopub.status.busy": "2024-04-22T21:45:24.642963Z", + "iopub.status.idle": "2024-04-22T21:45:24.662460Z", + "shell.execute_reply": "2024-04-22T21:45:24.661999Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:52.836095Z", - "iopub.status.busy": "2024-04-12T10:16:52.835855Z", - "iopub.status.idle": "2024-04-12T10:16:53.099357Z", - "shell.execute_reply": "2024-04-12T10:16:53.098786Z" + "iopub.execute_input": "2024-04-22T21:45:24.664875Z", + "iopub.status.busy": "2024-04-22T21:45:24.664482Z", + "iopub.status.idle": "2024-04-22T21:45:24.859334Z", + "shell.execute_reply": "2024-04-22T21:45:24.858742Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:53.130290Z", - "iopub.status.busy": "2024-04-12T10:16:53.130059Z", - "iopub.status.idle": "2024-04-12T10:16:53.133694Z", - "shell.execute_reply": "2024-04-12T10:16:53.133252Z" + "iopub.execute_input": "2024-04-22T21:45:24.890700Z", + "iopub.status.busy": "2024-04-22T21:45:24.890311Z", + "iopub.status.idle": "2024-04-22T21:45:24.894165Z", + "shell.execute_reply": "2024-04-22T21:45:24.893628Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:53.135689Z", - "iopub.status.busy": "2024-04-12T10:16:53.135511Z", - "iopub.status.idle": "2024-04-12T10:16:53.143874Z", - "shell.execute_reply": "2024-04-12T10:16:53.143427Z" + "iopub.execute_input": "2024-04-22T21:45:24.896344Z", + "iopub.status.busy": "2024-04-22T21:45:24.895922Z", + "iopub.status.idle": "2024-04-22T21:45:24.904435Z", + "shell.execute_reply": "2024-04-22T21:45:24.904008Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:53.145956Z", - "iopub.status.busy": "2024-04-12T10:16:53.145625Z", - "iopub.status.idle": "2024-04-12T10:16:53.148083Z", - "shell.execute_reply": "2024-04-12T10:16:53.147655Z" + "iopub.execute_input": "2024-04-22T21:45:24.906315Z", + "iopub.status.busy": "2024-04-22T21:45:24.906145Z", + "iopub.status.idle": "2024-04-22T21:45:24.908605Z", + "shell.execute_reply": "2024-04-22T21:45:24.908188Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:53.150181Z", - "iopub.status.busy": "2024-04-12T10:16:53.149874Z", - "iopub.status.idle": "2024-04-12T10:16:53.664946Z", - "shell.execute_reply": "2024-04-12T10:16:53.664441Z" + "iopub.execute_input": "2024-04-22T21:45:24.910562Z", + "iopub.status.busy": "2024-04-22T21:45:24.910388Z", + "iopub.status.idle": "2024-04-22T21:45:25.436166Z", + "shell.execute_reply": "2024-04-22T21:45:25.435613Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:53.667359Z", - "iopub.status.busy": "2024-04-12T10:16:53.667016Z", - "iopub.status.idle": "2024-04-12T10:16:55.263747Z", - "shell.execute_reply": "2024-04-12T10:16:55.263114Z" + "iopub.execute_input": "2024-04-22T21:45:25.438472Z", + "iopub.status.busy": "2024-04-22T21:45:25.438275Z", + "iopub.status.idle": "2024-04-22T21:45:27.083375Z", + "shell.execute_reply": "2024-04-22T21:45:27.082764Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:55.266319Z", - "iopub.status.busy": "2024-04-12T10:16:55.265769Z", - "iopub.status.idle": "2024-04-12T10:16:55.275685Z", - "shell.execute_reply": "2024-04-12T10:16:55.275124Z" + "iopub.execute_input": "2024-04-22T21:45:27.086464Z", + "iopub.status.busy": "2024-04-22T21:45:27.085476Z", + "iopub.status.idle": "2024-04-22T21:45:27.095728Z", + "shell.execute_reply": "2024-04-22T21:45:27.095201Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:55.277832Z", - "iopub.status.busy": "2024-04-12T10:16:55.277412Z", - "iopub.status.idle": "2024-04-12T10:16:55.281431Z", - "shell.execute_reply": "2024-04-12T10:16:55.280905Z" + "iopub.execute_input": "2024-04-22T21:45:27.097877Z", + "iopub.status.busy": "2024-04-22T21:45:27.097550Z", + "iopub.status.idle": "2024-04-22T21:45:27.101585Z", + "shell.execute_reply": "2024-04-22T21:45:27.101039Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:55.283695Z", - "iopub.status.busy": "2024-04-12T10:16:55.283282Z", - "iopub.status.idle": "2024-04-12T10:16:55.290411Z", - "shell.execute_reply": "2024-04-12T10:16:55.289838Z" + "iopub.execute_input": "2024-04-22T21:45:27.103636Z", + "iopub.status.busy": "2024-04-22T21:45:27.103261Z", + "iopub.status.idle": "2024-04-22T21:45:27.110494Z", + "shell.execute_reply": "2024-04-22T21:45:27.109972Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:55.292645Z", - "iopub.status.busy": "2024-04-12T10:16:55.292252Z", - "iopub.status.idle": "2024-04-12T10:16:55.402952Z", - "shell.execute_reply": "2024-04-12T10:16:55.402470Z" + "iopub.execute_input": "2024-04-22T21:45:27.112582Z", + "iopub.status.busy": "2024-04-22T21:45:27.112186Z", + "iopub.status.idle": "2024-04-22T21:45:27.224498Z", + "shell.execute_reply": "2024-04-22T21:45:27.223883Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:55.405101Z", - "iopub.status.busy": "2024-04-12T10:16:55.404770Z", - "iopub.status.idle": "2024-04-12T10:16:55.407441Z", - "shell.execute_reply": "2024-04-12T10:16:55.406989Z" + "iopub.execute_input": "2024-04-22T21:45:27.226901Z", + "iopub.status.busy": "2024-04-22T21:45:27.226520Z", + "iopub.status.idle": "2024-04-22T21:45:27.229332Z", + "shell.execute_reply": "2024-04-22T21:45:27.228882Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:55.409390Z", - "iopub.status.busy": "2024-04-12T10:16:55.409068Z", - "iopub.status.idle": "2024-04-12T10:16:57.317602Z", - "shell.execute_reply": "2024-04-12T10:16:57.316853Z" + "iopub.execute_input": "2024-04-22T21:45:27.231426Z", + "iopub.status.busy": "2024-04-22T21:45:27.231082Z", + "iopub.status.idle": "2024-04-22T21:45:29.227466Z", + "shell.execute_reply": "2024-04-22T21:45:29.226747Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:57.320501Z", - "iopub.status.busy": "2024-04-12T10:16:57.319938Z", - "iopub.status.idle": "2024-04-12T10:16:57.331018Z", - "shell.execute_reply": "2024-04-12T10:16:57.330552Z" + "iopub.execute_input": "2024-04-22T21:45:29.230709Z", + "iopub.status.busy": "2024-04-22T21:45:29.229921Z", + "iopub.status.idle": "2024-04-22T21:45:29.241793Z", + "shell.execute_reply": "2024-04-22T21:45:29.241351Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:16:57.332987Z", - "iopub.status.busy": "2024-04-12T10:16:57.332680Z", - "iopub.status.idle": "2024-04-12T10:16:57.429287Z", - "shell.execute_reply": "2024-04-12T10:16:57.428720Z" + "iopub.execute_input": "2024-04-22T21:45:29.243980Z", + "iopub.status.busy": "2024-04-22T21:45:29.243647Z", + "iopub.status.idle": "2024-04-22T21:45:29.298666Z", + "shell.execute_reply": "2024-04-22T21:45:29.298181Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index b6fb16301..799a752e6 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -783,7 +783,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin', 'cancel_transfer', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'visa_or_mastercard'}
+Classes: {'apple_pay_or_google_pay', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'visa_or_mastercard', 'card_about_to_expire', 'card_payment_fee_charged', 'cancel_transfer'}
 

Let’s print the first example in the train set.

@@ -846,43 +846,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1181,7 +1181,7 @@

4. Train a more robust model from noisy labels -{"state": {"98b743700b8242278b87b2643f99342c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84a4564035fb4472abc43f5a5ca58860": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "24e34e76a54c4e268018ea44eeacb81d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_98b743700b8242278b87b2643f99342c", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_84a4564035fb4472abc43f5a5ca58860", "tabbable": null, "tooltip": null, "value": 391.0}}, "f8190580cb7049dfa11fd35ac4dc18fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9473543ab0a54e5e9d6ef668c6b85d90": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9612079ab16048a5aee5c92d9cfc75a6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f8190580cb7049dfa11fd35ac4dc18fa", "placeholder": "\u200b", "style": "IPY_MODEL_9473543ab0a54e5e9d6ef668c6b85d90", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "fdfed84e751649249cf593c874f48103": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6848d3e9f8f44b469e6d7235412ebe46": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d3ae1d0514cc4b6b86dfb2ced9eb21bd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fdfed84e751649249cf593c874f48103", "placeholder": "\u200b", "style": "IPY_MODEL_6848d3e9f8f44b469e6d7235412ebe46", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200766.7kB/s]"}}, "4466c4d6ea484258b09068ae381579f3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c1dcbc0d21b84be0beefadfa19704638": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9612079ab16048a5aee5c92d9cfc75a6", "IPY_MODEL_24e34e76a54c4e268018ea44eeacb81d", "IPY_MODEL_d3ae1d0514cc4b6b86dfb2ced9eb21bd"], "layout": "IPY_MODEL_4466c4d6ea484258b09068ae381579f3", "tabbable": null, "tooltip": null}}, "498262e8f34248d18a9cbe343ef2419b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa953de6072f4f75980163d778e01ec7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1eed949c328d46438b1310f158d21dc5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_498262e8f34248d18a9cbe343ef2419b", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_aa953de6072f4f75980163d778e01ec7", "tabbable": null, "tooltip": null, "value": 2211.0}}, "535b570e38b042f29007e0e94a6315cf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6984107b0153473c8353cf13bcbea2d0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d5d475a3f6db4d75825e3d7273b15311": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_535b570e38b042f29007e0e94a6315cf", "placeholder": "\u200b", "style": "IPY_MODEL_6984107b0153473c8353cf13bcbea2d0", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "584a82a4d58c4bf1a198ce7a0d447658": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1ec7c1ca458a401d8458e60ce9a8b037": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c98bde7b71bd44bfb335bbbdeb3227b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_584a82a4d58c4bf1a198ce7a0d447658", "placeholder": "\u200b", "style": "IPY_MODEL_1ec7c1ca458a401d8458e60ce9a8b037", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007393kB/s]"}}, "c6b752f96d724883a3e7722b694e2a97": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8bd6cbfc2a9c4390a54290ab9ba2e747": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d5d475a3f6db4d75825e3d7273b15311", "IPY_MODEL_1eed949c328d46438b1310f158d21dc5", "IPY_MODEL_c98bde7b71bd44bfb335bbbdeb3227b5"], "layout": "IPY_MODEL_c6b752f96d724883a3e7722b694e2a97", "tabbable": null, "tooltip": null}}, "b53b7235effa458dacd60facda4d2595": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95b44702478043549c3c2cff3d5074b0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5f9483e37f564d178065f9a062e90cab": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b53b7235effa458dacd60facda4d2595", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_95b44702478043549c3c2cff3d5074b0", "tabbable": null, "tooltip": null, "value": 665.0}}, "0e8714c2d90e46a7a6514116442b3339": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed1f3f7e8ae6463799010112f1bdff89": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ece2ef3348d54bc9afbd44acccf50b23": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0e8714c2d90e46a7a6514116442b3339", "placeholder": "\u200b", "style": "IPY_MODEL_ed1f3f7e8ae6463799010112f1bdff89", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "6ed6acb4df4a4b35a6f4cdb4e05057ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4b7b6cec8922437fa5009403d597d945": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2871b05135b48d79e8f3f3e7321b449": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6ed6acb4df4a4b35a6f4cdb4e05057ad", "placeholder": "\u200b", "style": "IPY_MODEL_4b7b6cec8922437fa5009403d597d945", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007118kB/s]"}}, "b94855f3e9da4ccb80ec33b094f2ec55": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "867ebafc8b3b43dc96b931e4adf9986b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ece2ef3348d54bc9afbd44acccf50b23", "IPY_MODEL_5f9483e37f564d178065f9a062e90cab", "IPY_MODEL_d2871b05135b48d79e8f3f3e7321b449"], "layout": "IPY_MODEL_b94855f3e9da4ccb80ec33b094f2ec55", "tabbable": null, "tooltip": null}}, "3f4c60738b034f43bb0070d9ee80022e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "353c0844f04d480a813b9dfb03eecabf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e2c861c7edf5490a824292c0b01a55bf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3f4c60738b034f43bb0070d9ee80022e", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_353c0844f04d480a813b9dfb03eecabf", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "527de7880e6c4a979b5327820a5025ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "46fff410f1ce42619ee7c83348c7fcc8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "04a3ae55682544a7aa54a8cec8062b50": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_527de7880e6c4a979b5327820a5025ce", "placeholder": "\u200b", "style": "IPY_MODEL_46fff410f1ce42619ee7c83348c7fcc8", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "c6b71bbfb3904be799277c78e52c6aeb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d8168a85bb14761ab6ff6f7125e4536": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9ea6433e40ff41fba4499c73bb8dd236": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c6b71bbfb3904be799277c78e52c6aeb", "placeholder": "\u200b", "style": "IPY_MODEL_2d8168a85bb14761ab6ff6f7125e4536", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007327MB/s]"}}, "4921c662079d43ddab228a3f6c8907ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "34b680d19de14ac2b14b15034c1df47d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_04a3ae55682544a7aa54a8cec8062b50", "IPY_MODEL_e2c861c7edf5490a824292c0b01a55bf", "IPY_MODEL_9ea6433e40ff41fba4499c73bb8dd236"], "layout": "IPY_MODEL_4921c662079d43ddab228a3f6c8907ef", "tabbable": null, "tooltip": null}}, "60a03b3eefd14083bf9e60022dc0be73": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4893eb80cf38405eb26520daac63d379": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7425dd528c8f45ac8b788bbc6cbefa7d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_60a03b3eefd14083bf9e60022dc0be73", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4893eb80cf38405eb26520daac63d379", "tabbable": null, "tooltip": null, "value": 466062.0}}, "5956ffd24c27476ab9bc34b30fd00d9c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64af65f174ff4f9cace8efcc0ac81ee8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b9f885c1a00249a48a1d11140dd1fbf9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5956ffd24c27476ab9bc34b30fd00d9c", "placeholder": "\u200b", "style": "IPY_MODEL_64af65f174ff4f9cace8efcc0ac81ee8", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "8eaa3307f7684109a456f21ca0098358": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5598259bc366410a8031a2ceeeba48b8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c625e484b56c422b9a0f82f34543b93d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8eaa3307f7684109a456f21ca0098358", "placeholder": "\u200b", "style": "IPY_MODEL_5598259bc366410a8031a2ceeeba48b8", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20072.62MB/s]"}}, "96d399aa908640d6a8e7441a299349b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1184d6131edc4f3ebe565f0a5e204cdc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b9f885c1a00249a48a1d11140dd1fbf9", "IPY_MODEL_7425dd528c8f45ac8b788bbc6cbefa7d", "IPY_MODEL_c625e484b56c422b9a0f82f34543b93d"], "layout": "IPY_MODEL_96d399aa908640d6a8e7441a299349b0", "tabbable": null, "tooltip": null}}, "187c3f63e3d641d8beac9e0eb72f829e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "51f6fb9519614c8ca0a7d637dc1256ef": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "26430e9c29d54162b8f7d120b1558bb3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_187c3f63e3d641d8beac9e0eb72f829e", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_51f6fb9519614c8ca0a7d637dc1256ef", "tabbable": null, "tooltip": null, "value": 48.0}}, "ced6489fa5b4457a92be4a57f24310c2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6fc4ecc3230948129ae163461ebfe3a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c9c99bad825f4845b0b12caae3889851": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ced6489fa5b4457a92be4a57f24310c2", "placeholder": "\u200b", "style": "IPY_MODEL_6fc4ecc3230948129ae163461ebfe3a4", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "56ae486cfcc04dec95deb7c5ef71bc74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f57ae5826a5f40ae8c074c7d375fc8ea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5dc60e5d51e4e59b2f36117b3b24fd5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_56ae486cfcc04dec95deb7c5ef71bc74", "placeholder": "\u200b", "style": "IPY_MODEL_f57ae5826a5f40ae8c074c7d375fc8ea", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20079.14kB/s]"}}, "9de976afc435455f8b7b1f04fd5bfd0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d453a636398c41c6b6af5b2f45720b4f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c9c99bad825f4845b0b12caae3889851", "IPY_MODEL_26430e9c29d54162b8f7d120b1558bb3", "IPY_MODEL_b5dc60e5d51e4e59b2f36117b3b24fd5"], "layout": "IPY_MODEL_9de976afc435455f8b7b1f04fd5bfd0d", "tabbable": null, "tooltip": null}}, "2ef105203af448ad86477ebc7caac9fb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3ad260f5c9064204bac4d08374839327": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fccf37f2cabd4853a32169ddd92b12ab": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ef105203af448ad86477ebc7caac9fb", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3ad260f5c9064204bac4d08374839327", "tabbable": null, "tooltip": null, "value": 231508.0}}, "d7551b9a58954e3e89c4eb4f77fd7390": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68a562100a7d4400a303326d243e68af": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "97a4b9b7a5de4e6fb8f29fd8a446f7a2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d7551b9a58954e3e89c4eb4f77fd7390", "placeholder": "\u200b", "style": "IPY_MODEL_68a562100a7d4400a303326d243e68af", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "d92a4ea1d94e4fb0a5350edc870846aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14dc0fdcae55473b8a2131a688319bb6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "021f853d1d9d4c7b97ca7232cb499543": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d92a4ea1d94e4fb0a5350edc870846aa", "placeholder": "\u200b", "style": "IPY_MODEL_14dc0fdcae55473b8a2131a688319bb6", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u20071.94MB/s]"}}, "bf52fa563e2848859b7213a63b0acc45": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3122cdf912894c6c979d95595b07c7d7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_97a4b9b7a5de4e6fb8f29fd8a446f7a2", "IPY_MODEL_fccf37f2cabd4853a32169ddd92b12ab", "IPY_MODEL_021f853d1d9d4c7b97ca7232cb499543"], "layout": "IPY_MODEL_bf52fa563e2848859b7213a63b0acc45", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"824f2a6428f54574b735fed2118102d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ba0ea80cad9c4216a62795393326bd1b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "25d40a055f184b689672aaf24887a060": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_824f2a6428f54574b735fed2118102d6", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ba0ea80cad9c4216a62795393326bd1b", "tabbable": null, "tooltip": null, "value": 391.0}}, "875f9c6f867140b0999bf58000e9bb6a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cf29ff3fa15d40f6877dfe1601f28d81": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6f2118348e104870b77fd30df1c48d1a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_875f9c6f867140b0999bf58000e9bb6a", "placeholder": "\u200b", "style": "IPY_MODEL_cf29ff3fa15d40f6877dfe1601f28d81", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "dcc2e5cc52dc4c04a16faba9b43daf14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7fc11d141704ae09e52fe28e3abe84b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cd8374322e7846358106d2f635f30312": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dcc2e5cc52dc4c04a16faba9b43daf14", "placeholder": "\u200b", "style": "IPY_MODEL_c7fc11d141704ae09e52fe28e3abe84b", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200743.7kB/s]"}}, "d491aafe20664fc89e4b2558ff9b99e9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "130dd361bd5c40fea132bd84a358e9e4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6f2118348e104870b77fd30df1c48d1a", "IPY_MODEL_25d40a055f184b689672aaf24887a060", "IPY_MODEL_cd8374322e7846358106d2f635f30312"], "layout": "IPY_MODEL_d491aafe20664fc89e4b2558ff9b99e9", "tabbable": null, "tooltip": null}}, "7ece4dc998e24c5480c62d7eb390858c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc9df3bd0ed148b89cd24aa002197f80": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4d3b99f8564341c8a62cb9182b5900ef": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ece4dc998e24c5480c62d7eb390858c", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fc9df3bd0ed148b89cd24aa002197f80", "tabbable": null, "tooltip": null, "value": 2211.0}}, "8621df8920304de6a915f25da5163962": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "908734c5ac88475d8eca4114ab6036fa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cde45b74025b4ba1b5df39435968adb1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8621df8920304de6a915f25da5163962", "placeholder": "\u200b", "style": "IPY_MODEL_908734c5ac88475d8eca4114ab6036fa", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "47ddd6a2c95340bbb71627a94c2dd3ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9f67ee5925854fab901b7adfc336f529": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5c5159640ff64c84aaea4e54cc5c14cf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_47ddd6a2c95340bbb71627a94c2dd3ad", "placeholder": "\u200b", "style": "IPY_MODEL_9f67ee5925854fab901b7adfc336f529", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007390kB/s]"}}, "95e7eceedccc4d1e9aefcfd049bd611f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "12f1593ecb644e4185305e5e51cb50cc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cde45b74025b4ba1b5df39435968adb1", "IPY_MODEL_4d3b99f8564341c8a62cb9182b5900ef", "IPY_MODEL_5c5159640ff64c84aaea4e54cc5c14cf"], "layout": "IPY_MODEL_95e7eceedccc4d1e9aefcfd049bd611f", "tabbable": null, "tooltip": null}}, "90e61b8c51e542368ea8c80629ea9cd9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3cc42c781fdf41d894474deed091addc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1a83913804db408d931656c80045486a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_90e61b8c51e542368ea8c80629ea9cd9", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3cc42c781fdf41d894474deed091addc", "tabbable": null, "tooltip": null, "value": 665.0}}, "3956472d512f438e8e12665fb2d2d53d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d582cd79f05419faa0a602ffcfb2a0a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b09bcc7fc763415ba708d7398444e4e5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3956472d512f438e8e12665fb2d2d53d", "placeholder": "\u200b", "style": "IPY_MODEL_0d582cd79f05419faa0a602ffcfb2a0a", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "0f8118a7edc24a96a7e37f36f38038d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3fb99eebb271464a8dba1f248ad3a405": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e1a2bc1a74134c27b325206b421eee20": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f8118a7edc24a96a7e37f36f38038d9", "placeholder": "\u200b", "style": "IPY_MODEL_3fb99eebb271464a8dba1f248ad3a405", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007116kB/s]"}}, "82895066d8f14eeeba8ab1aa9cb0fc96": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "59018fbe966f40489b77ba272097aaaa": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b09bcc7fc763415ba708d7398444e4e5", "IPY_MODEL_1a83913804db408d931656c80045486a", "IPY_MODEL_e1a2bc1a74134c27b325206b421eee20"], "layout": "IPY_MODEL_82895066d8f14eeeba8ab1aa9cb0fc96", "tabbable": null, "tooltip": null}}, "03f653032e434675895be8a8c0478a07": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d573b8e597648d99fa3f8524fa0027c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "023da89f88ad47849b9cc2b47818ebef": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_03f653032e434675895be8a8c0478a07", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2d573b8e597648d99fa3f8524fa0027c", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "092ff4cb44d2474fb4ffdd21c47c265d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c2acc51561f4322b44da1bf78a42879": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "87020aca895d482db97b309848ff2295": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_092ff4cb44d2474fb4ffdd21c47c265d", "placeholder": "\u200b", "style": "IPY_MODEL_5c2acc51561f4322b44da1bf78a42879", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "e8472f7b6e1646bfbe76e90fb5ca5653": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cde1613828e14211a84709b646c0a5e2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bd7e226816a54adc9bedddaa9e10a621": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e8472f7b6e1646bfbe76e90fb5ca5653", "placeholder": "\u200b", "style": "IPY_MODEL_cde1613828e14211a84709b646c0a5e2", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u200791.5MB/s]"}}, "2a1a390430d1441ebbb6d8a333a58674": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eb5d1ced389c46439da54e6e466ba250": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_87020aca895d482db97b309848ff2295", "IPY_MODEL_023da89f88ad47849b9cc2b47818ebef", "IPY_MODEL_bd7e226816a54adc9bedddaa9e10a621"], "layout": "IPY_MODEL_2a1a390430d1441ebbb6d8a333a58674", "tabbable": null, "tooltip": null}}, "6894d336252a49848247640b2b9fe87b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "601ced9487324fc4b353c3ba4bbf4a59": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4f16f78791d44bce819074b2846da69c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6894d336252a49848247640b2b9fe87b", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_601ced9487324fc4b353c3ba4bbf4a59", "tabbable": null, "tooltip": null, "value": 466062.0}}, "53bd53eb6bac4e9f95944b064f96a7f3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5eac0e252eec4bd4becfd36d6544109f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "97ef0d92a4b24930aee6bc50a9283187": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53bd53eb6bac4e9f95944b064f96a7f3", "placeholder": "\u200b", "style": "IPY_MODEL_5eac0e252eec4bd4becfd36d6544109f", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "76f016d32f444e279753e71c79b992cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "44d98937f2804e9a96b1ddfa8042173f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "86e8a2baf0ca436a9dcb1bfb2745c619": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_76f016d32f444e279753e71c79b992cd", "placeholder": "\u200b", "style": "IPY_MODEL_44d98937f2804e9a96b1ddfa8042173f", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20076.72MB/s]"}}, "63d7728661ba4ee8b61ec8a11b4d08d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce85f59e8bac46939f9ac50789a65740": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_97ef0d92a4b24930aee6bc50a9283187", "IPY_MODEL_4f16f78791d44bce819074b2846da69c", "IPY_MODEL_86e8a2baf0ca436a9dcb1bfb2745c619"], "layout": "IPY_MODEL_63d7728661ba4ee8b61ec8a11b4d08d2", "tabbable": null, "tooltip": null}}, "9dbb8feae1454dc1a3ce2d648ae0e430": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "de8be81fada340bea91c9faca246cd7d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "35e49ed269924d7d8d4f0fea91e4eee1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9dbb8feae1454dc1a3ce2d648ae0e430", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_de8be81fada340bea91c9faca246cd7d", "tabbable": null, "tooltip": null, "value": 48.0}}, "0f33a8c435bf49b2916293334bae8174": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57d0e356dd0c414787476442b03052db": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f255ff95850d4ae284017b56288b9a92": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f33a8c435bf49b2916293334bae8174", "placeholder": "\u200b", "style": "IPY_MODEL_57d0e356dd0c414787476442b03052db", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "acac42d45e284030834f33ac796bd2f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c1b0b3370f9c478d8e7ffb419e034b88": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2936627547af4bd7a46dabbd822fb3ab": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_acac42d45e284030834f33ac796bd2f4", "placeholder": "\u200b", "style": "IPY_MODEL_c1b0b3370f9c478d8e7ffb419e034b88", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20077.39kB/s]"}}, "3d8194ab319d429bb15b59bc8445bd46": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "21d0fe8b27e64f3fbfbb609fa74066b0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f255ff95850d4ae284017b56288b9a92", "IPY_MODEL_35e49ed269924d7d8d4f0fea91e4eee1", "IPY_MODEL_2936627547af4bd7a46dabbd822fb3ab"], "layout": "IPY_MODEL_3d8194ab319d429bb15b59bc8445bd46", "tabbable": null, "tooltip": null}}, "ab6c2dc48c614976a4d8a6e644b2dfd0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55cedf19d2ed4bf889cf9b1d3f593327": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f47c1659d6154b88aa950656ada97270": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab6c2dc48c614976a4d8a6e644b2dfd0", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_55cedf19d2ed4bf889cf9b1d3f593327", "tabbable": null, "tooltip": null, "value": 231508.0}}, "59f60c2237ad4314b9dc20c0b2fe117b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dd832d149fe1475ca958744bf6725fb6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "68dcd7b0d6134722a65bfe593f2c6df6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59f60c2237ad4314b9dc20c0b2fe117b", "placeholder": "\u200b", "style": "IPY_MODEL_dd832d149fe1475ca958744bf6725fb6", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "fece174fbcb344528799e5dcbb5bac8a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "609baccc3bc34f348584714c599ccfeb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0e22b501666f40ba979eb35ad91c7328": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fece174fbcb344528799e5dcbb5bac8a", "placeholder": "\u200b", "style": "IPY_MODEL_609baccc3bc34f348584714c599ccfeb", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u20072.26MB/s]"}}, "f21a4b6aa0c347d992dfeb26e8b96edc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0cea71f309584527aca03fa74ab20412": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_68dcd7b0d6134722a65bfe593f2c6df6", "IPY_MODEL_f47c1659d6154b88aa950656ada97270", "IPY_MODEL_0e22b501666f40ba979eb35ad91c7328"], "layout": "IPY_MODEL_f21a4b6aa0c347d992dfeb26e8b96edc", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index f8dfcba82..06bcc3f22 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:00.400639Z", - "iopub.status.busy": "2024-04-12T10:17:00.400279Z", - "iopub.status.idle": "2024-04-12T10:17:03.243895Z", - "shell.execute_reply": "2024-04-12T10:17:03.243345Z" + "iopub.execute_input": "2024-04-22T21:45:32.207203Z", + "iopub.status.busy": "2024-04-22T21:45:32.206819Z", + "iopub.status.idle": "2024-04-22T21:45:35.145406Z", + "shell.execute_reply": "2024-04-22T21:45:35.144809Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:03.246644Z", - "iopub.status.busy": "2024-04-12T10:17:03.246185Z", - "iopub.status.idle": "2024-04-12T10:17:03.249442Z", - "shell.execute_reply": "2024-04-12T10:17:03.249016Z" + "iopub.execute_input": "2024-04-22T21:45:35.148196Z", + "iopub.status.busy": "2024-04-22T21:45:35.147720Z", + "iopub.status.idle": "2024-04-22T21:45:35.151375Z", + "shell.execute_reply": "2024-04-22T21:45:35.150893Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:03.251373Z", - "iopub.status.busy": "2024-04-12T10:17:03.251060Z", - "iopub.status.idle": "2024-04-12T10:17:03.254203Z", - "shell.execute_reply": "2024-04-12T10:17:03.253651Z" + "iopub.execute_input": "2024-04-22T21:45:35.153403Z", + "iopub.status.busy": "2024-04-22T21:45:35.153124Z", + "iopub.status.idle": "2024-04-22T21:45:35.156374Z", + "shell.execute_reply": "2024-04-22T21:45:35.155904Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:03.256323Z", - "iopub.status.busy": "2024-04-12T10:17:03.255887Z", - "iopub.status.idle": "2024-04-12T10:17:03.350298Z", - "shell.execute_reply": "2024-04-12T10:17:03.349766Z" + "iopub.execute_input": "2024-04-22T21:45:35.158371Z", + "iopub.status.busy": "2024-04-22T21:45:35.158095Z", + "iopub.status.idle": "2024-04-22T21:45:35.213752Z", + "shell.execute_reply": "2024-04-22T21:45:35.213190Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:03.352462Z", - "iopub.status.busy": "2024-04-12T10:17:03.352014Z", - "iopub.status.idle": "2024-04-12T10:17:03.355568Z", - "shell.execute_reply": "2024-04-12T10:17:03.355040Z" + "iopub.execute_input": "2024-04-22T21:45:35.216178Z", + "iopub.status.busy": "2024-04-22T21:45:35.215747Z", + "iopub.status.idle": "2024-04-22T21:45:35.219359Z", + "shell.execute_reply": "2024-04-22T21:45:35.218904Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:03.357701Z", - "iopub.status.busy": "2024-04-12T10:17:03.357394Z", - "iopub.status.idle": "2024-04-12T10:17:03.360886Z", - "shell.execute_reply": "2024-04-12T10:17:03.360437Z" + "iopub.execute_input": "2024-04-22T21:45:35.221357Z", + "iopub.status.busy": "2024-04-22T21:45:35.221179Z", + "iopub.status.idle": "2024-04-22T21:45:35.224452Z", + "shell.execute_reply": "2024-04-22T21:45:35.223949Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'apple_pay_or_google_pay', 'beneficiary_not_allowed', 'change_pin', 'cancel_transfer', 'getting_spare_card', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'visa_or_mastercard'}\n" + "Classes: {'apple_pay_or_google_pay', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'beneficiary_not_allowed', 'lost_or_stolen_phone', 'visa_or_mastercard', 'card_about_to_expire', 'card_payment_fee_charged', 'cancel_transfer'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:03.362735Z", - "iopub.status.busy": "2024-04-12T10:17:03.362562Z", - "iopub.status.idle": "2024-04-12T10:17:03.365686Z", - "shell.execute_reply": "2024-04-12T10:17:03.365170Z" + "iopub.execute_input": "2024-04-22T21:45:35.226398Z", + "iopub.status.busy": "2024-04-22T21:45:35.226086Z", + "iopub.status.idle": "2024-04-22T21:45:35.229421Z", + "shell.execute_reply": "2024-04-22T21:45:35.228971Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:03.367671Z", - "iopub.status.busy": "2024-04-12T10:17:03.367346Z", - "iopub.status.idle": "2024-04-12T10:17:03.370565Z", - "shell.execute_reply": "2024-04-12T10:17:03.370123Z" + "iopub.execute_input": "2024-04-22T21:45:35.231449Z", + "iopub.status.busy": "2024-04-22T21:45:35.231155Z", + "iopub.status.idle": "2024-04-22T21:45:35.234480Z", + "shell.execute_reply": "2024-04-22T21:45:35.233942Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:03.372555Z", - "iopub.status.busy": "2024-04-12T10:17:03.372158Z", - "iopub.status.idle": "2024-04-12T10:17:08.678066Z", - "shell.execute_reply": "2024-04-12T10:17:08.677428Z" + "iopub.execute_input": "2024-04-22T21:45:35.236466Z", + "iopub.status.busy": "2024-04-22T21:45:35.236164Z", + "iopub.status.idle": "2024-04-22T21:45:40.442251Z", + "shell.execute_reply": "2024-04-22T21:45:40.441617Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c1dcbc0d21b84be0beefadfa19704638", + "model_id": "130dd361bd5c40fea132bd84a358e9e4", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8bd6cbfc2a9c4390a54290ab9ba2e747", + "model_id": "12f1593ecb644e4185305e5e51cb50cc", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "867ebafc8b3b43dc96b931e4adf9986b", + "model_id": "59018fbe966f40489b77ba272097aaaa", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "34b680d19de14ac2b14b15034c1df47d", + "model_id": "eb5d1ced389c46439da54e6e466ba250", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1184d6131edc4f3ebe565f0a5e204cdc", + "model_id": "ce85f59e8bac46939f9ac50789a65740", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d453a636398c41c6b6af5b2f45720b4f", + "model_id": "21d0fe8b27e64f3fbfbb609fa74066b0", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3122cdf912894c6c979d95595b07c7d7", + "model_id": "0cea71f309584527aca03fa74ab20412", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:08.680893Z", - "iopub.status.busy": "2024-04-12T10:17:08.680649Z", - "iopub.status.idle": "2024-04-12T10:17:08.683505Z", - "shell.execute_reply": "2024-04-12T10:17:08.682958Z" + "iopub.execute_input": "2024-04-22T21:45:40.445220Z", + "iopub.status.busy": "2024-04-22T21:45:40.444772Z", + "iopub.status.idle": "2024-04-22T21:45:40.447789Z", + "shell.execute_reply": "2024-04-22T21:45:40.447234Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:08.685496Z", - "iopub.status.busy": "2024-04-12T10:17:08.685191Z", - "iopub.status.idle": "2024-04-12T10:17:08.687917Z", - "shell.execute_reply": "2024-04-12T10:17:08.687372Z" + "iopub.execute_input": "2024-04-22T21:45:40.449889Z", + "iopub.status.busy": "2024-04-22T21:45:40.449579Z", + "iopub.status.idle": "2024-04-22T21:45:40.452303Z", + "shell.execute_reply": "2024-04-22T21:45:40.451860Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:08.689958Z", - "iopub.status.busy": "2024-04-12T10:17:08.689627Z", - "iopub.status.idle": "2024-04-12T10:17:10.924744Z", - "shell.execute_reply": "2024-04-12T10:17:10.923993Z" + "iopub.execute_input": "2024-04-22T21:45:40.454020Z", + "iopub.status.busy": "2024-04-22T21:45:40.453855Z", + "iopub.status.idle": "2024-04-22T21:45:42.670065Z", + "shell.execute_reply": "2024-04-22T21:45:42.669324Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:10.927615Z", - "iopub.status.busy": "2024-04-12T10:17:10.927033Z", - "iopub.status.idle": "2024-04-12T10:17:10.934742Z", - "shell.execute_reply": "2024-04-12T10:17:10.934286Z" + "iopub.execute_input": "2024-04-22T21:45:42.673199Z", + "iopub.status.busy": "2024-04-22T21:45:42.672569Z", + "iopub.status.idle": "2024-04-22T21:45:42.680437Z", + "shell.execute_reply": "2024-04-22T21:45:42.679863Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:10.936845Z", - "iopub.status.busy": "2024-04-12T10:17:10.936576Z", - "iopub.status.idle": "2024-04-12T10:17:10.940337Z", - "shell.execute_reply": "2024-04-12T10:17:10.939850Z" + "iopub.execute_input": "2024-04-22T21:45:42.682553Z", + "iopub.status.busy": "2024-04-22T21:45:42.682160Z", + "iopub.status.idle": "2024-04-22T21:45:42.686277Z", + "shell.execute_reply": "2024-04-22T21:45:42.685702Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:10.942229Z", - "iopub.status.busy": "2024-04-12T10:17:10.941911Z", - "iopub.status.idle": "2024-04-12T10:17:10.944801Z", - "shell.execute_reply": "2024-04-12T10:17:10.944266Z" + "iopub.execute_input": "2024-04-22T21:45:42.688318Z", + "iopub.status.busy": "2024-04-22T21:45:42.687922Z", + "iopub.status.idle": "2024-04-22T21:45:42.691217Z", + "shell.execute_reply": "2024-04-22T21:45:42.690665Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:10.946845Z", - "iopub.status.busy": "2024-04-12T10:17:10.946489Z", - "iopub.status.idle": "2024-04-12T10:17:10.949539Z", - "shell.execute_reply": "2024-04-12T10:17:10.949083Z" + "iopub.execute_input": "2024-04-22T21:45:42.693146Z", + "iopub.status.busy": "2024-04-22T21:45:42.692856Z", + "iopub.status.idle": "2024-04-22T21:45:42.695856Z", + "shell.execute_reply": "2024-04-22T21:45:42.695305Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:10.951484Z", - "iopub.status.busy": "2024-04-12T10:17:10.951165Z", - "iopub.status.idle": "2024-04-12T10:17:10.957913Z", - "shell.execute_reply": "2024-04-12T10:17:10.957434Z" + "iopub.execute_input": "2024-04-22T21:45:42.697699Z", + "iopub.status.busy": "2024-04-22T21:45:42.697412Z", + "iopub.status.idle": "2024-04-22T21:45:42.705681Z", + "shell.execute_reply": "2024-04-22T21:45:42.705122Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:10.959762Z", - "iopub.status.busy": "2024-04-12T10:17:10.959588Z", - "iopub.status.idle": "2024-04-12T10:17:11.185172Z", - "shell.execute_reply": "2024-04-12T10:17:11.184645Z" + "iopub.execute_input": "2024-04-22T21:45:42.707831Z", + "iopub.status.busy": "2024-04-22T21:45:42.707403Z", + "iopub.status.idle": "2024-04-22T21:45:42.934542Z", + "shell.execute_reply": "2024-04-22T21:45:42.934014Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:11.187701Z", - "iopub.status.busy": "2024-04-12T10:17:11.187320Z", - "iopub.status.idle": "2024-04-12T10:17:11.362996Z", - "shell.execute_reply": "2024-04-12T10:17:11.362487Z" + "iopub.execute_input": "2024-04-22T21:45:42.937234Z", + "iopub.status.busy": "2024-04-22T21:45:42.936893Z", + "iopub.status.idle": "2024-04-22T21:45:43.113002Z", + "shell.execute_reply": "2024-04-22T21:45:43.112489Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:11.366261Z", - "iopub.status.busy": "2024-04-12T10:17:11.365331Z", - "iopub.status.idle": "2024-04-12T10:17:11.370174Z", - "shell.execute_reply": "2024-04-12T10:17:11.369675Z" + "iopub.execute_input": "2024-04-22T21:45:43.115529Z", + "iopub.status.busy": "2024-04-22T21:45:43.115206Z", + "iopub.status.idle": "2024-04-22T21:45:43.118835Z", + "shell.execute_reply": "2024-04-22T21:45:43.118354Z" }, "nbsphinx": "hidden" }, @@ -1113,53 +1113,33 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "021f853d1d9d4c7b97ca7232cb499543": { + "023da89f88ad47849b9cc2b47818ebef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d92a4ea1d94e4fb0a5350edc870846aa", - "placeholder": "​", - "style": "IPY_MODEL_14dc0fdcae55473b8a2131a688319bb6", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 1.94MB/s]" - } - }, - "04a3ae55682544a7aa54a8cec8062b50": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_527de7880e6c4a979b5327820a5025ce", - "placeholder": "​", - "style": "IPY_MODEL_46fff410f1ce42619ee7c83348c7fcc8", + "layout": "IPY_MODEL_03f653032e434675895be8a8c0478a07", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d573b8e597648d99fa3f8524fa0027c", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": 54245363.0 } }, - "0e8714c2d90e46a7a6514116442b3339": { + "03f653032e434675895be8a8c0478a07": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1212,49 +1192,7 @@ "width": null } }, - "1184d6131edc4f3ebe565f0a5e204cdc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b9f885c1a00249a48a1d11140dd1fbf9", - "IPY_MODEL_7425dd528c8f45ac8b788bbc6cbefa7d", - "IPY_MODEL_c625e484b56c422b9a0f82f34543b93d" - ], - "layout": "IPY_MODEL_96d399aa908640d6a8e7441a299349b0", - "tabbable": null, - "tooltip": null - } - }, - "14dc0fdcae55473b8a2131a688319bb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "187c3f63e3d641d8beac9e0eb72f829e": { + "092ff4cb44d2474fb4ffdd21c47c265d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1307,121 +1245,125 @@ "width": null } }, - "1ec7c1ca458a401d8458e60ce9a8b037": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1eed949c328d46438b1310f158d21dc5": { + "0cea71f309584527aca03fa74ab20412": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_498262e8f34248d18a9cbe343ef2419b", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_aa953de6072f4f75980163d778e01ec7", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_68dcd7b0d6134722a65bfe593f2c6df6", + "IPY_MODEL_f47c1659d6154b88aa950656ada97270", + "IPY_MODEL_0e22b501666f40ba979eb35ad91c7328" + ], + "layout": "IPY_MODEL_f21a4b6aa0c347d992dfeb26e8b96edc", "tabbable": null, - "tooltip": null, - "value": 2211.0 + "tooltip": null } }, - "24e34e76a54c4e268018ea44eeacb81d": { + "0d582cd79f05419faa0a602ffcfb2a0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_98b743700b8242278b87b2643f99342c", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_84a4564035fb4472abc43f5a5ca58860", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "26430e9c29d54162b8f7d120b1558bb3": { + "0e22b501666f40ba979eb35ad91c7328": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_187c3f63e3d641d8beac9e0eb72f829e", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_51f6fb9519614c8ca0a7d637dc1256ef", + "layout": "IPY_MODEL_fece174fbcb344528799e5dcbb5bac8a", + "placeholder": "​", + "style": "IPY_MODEL_609baccc3bc34f348584714c599ccfeb", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": " 232k/232k [00:00<00:00, 2.26MB/s]" } }, - "2d8168a85bb14761ab6ff6f7125e4536": { - "model_module": "@jupyter-widgets/controls", + "0f33a8c435bf49b2916293334bae8174": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2ef105203af448ad86477ebc7caac9fb": { + "0f8118a7edc24a96a7e37f36f38038d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1474,7 +1416,7 @@ "width": null } }, - "3122cdf912894c6c979d95595b07c7d7": { + "12f1593ecb644e4185305e5e51cb50cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1489,16 +1431,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_97a4b9b7a5de4e6fb8f29fd8a446f7a2", - "IPY_MODEL_fccf37f2cabd4853a32169ddd92b12ab", - "IPY_MODEL_021f853d1d9d4c7b97ca7232cb499543" + "IPY_MODEL_cde45b74025b4ba1b5df39435968adb1", + "IPY_MODEL_4d3b99f8564341c8a62cb9182b5900ef", + "IPY_MODEL_5c5159640ff64c84aaea4e54cc5c14cf" ], - "layout": "IPY_MODEL_bf52fa563e2848859b7213a63b0acc45", + "layout": "IPY_MODEL_95e7eceedccc4d1e9aefcfd049bd611f", "tabbable": null, "tooltip": null } }, - "34b680d19de14ac2b14b15034c1df47d": { + "130dd361bd5c40fea132bd84a358e9e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1513,101 +1455,115 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_04a3ae55682544a7aa54a8cec8062b50", - "IPY_MODEL_e2c861c7edf5490a824292c0b01a55bf", - "IPY_MODEL_9ea6433e40ff41fba4499c73bb8dd236" + "IPY_MODEL_6f2118348e104870b77fd30df1c48d1a", + "IPY_MODEL_25d40a055f184b689672aaf24887a060", + "IPY_MODEL_cd8374322e7846358106d2f635f30312" ], - "layout": "IPY_MODEL_4921c662079d43ddab228a3f6c8907ef", + "layout": "IPY_MODEL_d491aafe20664fc89e4b2558ff9b99e9", "tabbable": null, "tooltip": null } }, - "353c0844f04d480a813b9dfb03eecabf": { + "1a83913804db408d931656c80045486a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_90e61b8c51e542368ea8c80629ea9cd9", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3cc42c781fdf41d894474deed091addc", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "3ad260f5c9064204bac4d08374839327": { + "21d0fe8b27e64f3fbfbb609fa74066b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f255ff95850d4ae284017b56288b9a92", + "IPY_MODEL_35e49ed269924d7d8d4f0fea91e4eee1", + "IPY_MODEL_2936627547af4bd7a46dabbd822fb3ab" + ], + "layout": "IPY_MODEL_3d8194ab319d429bb15b59bc8445bd46", + "tabbable": null, + "tooltip": null } }, - "3f4c60738b034f43bb0070d9ee80022e": { - "model_module": "@jupyter-widgets/base", + "25d40a055f184b689672aaf24887a060": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_824f2a6428f54574b735fed2118102d6", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ba0ea80cad9c4216a62795393326bd1b", + "tabbable": null, + "tooltip": null, + "value": 391.0 } }, - "4466c4d6ea484258b09068ae381579f3": { + "2936627547af4bd7a46dabbd822fb3ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_acac42d45e284030834f33ac796bd2f4", + "placeholder": "​", + "style": "IPY_MODEL_c1b0b3370f9c478d8e7ffb419e034b88", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 7.39kB/s]" + } + }, + "2a1a390430d1441ebbb6d8a333a58674": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1660,25 +1616,7 @@ "width": null } }, - "46fff410f1ce42619ee7c83348c7fcc8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4893eb80cf38405eb26520daac63d379": { + "2d573b8e597648d99fa3f8524fa0027c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1694,60 +1632,33 @@ "description_width": "" } }, - "4921c662079d43ddab228a3f6c8907ef": { - "model_module": "@jupyter-widgets/base", + "35e49ed269924d7d8d4f0fea91e4eee1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9dbb8feae1454dc1a3ce2d648ae0e430", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_de8be81fada340bea91c9faca246cd7d", + "tabbable": null, + "tooltip": null, + "value": 48.0 } }, - "498262e8f34248d18a9cbe343ef2419b": { + "3956472d512f438e8e12665fb2d2d53d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1800,25 +1711,7 @@ "width": null } }, - "4b7b6cec8922437fa5009403d597d945": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "51f6fb9519614c8ca0a7d637dc1256ef": { + "3cc42c781fdf41d894474deed091addc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1834,7 +1727,7 @@ "description_width": "" } }, - "527de7880e6c4a979b5327820a5025ce": { + "3d8194ab319d429bb15b59bc8445bd46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1887,60 +1780,7 @@ "width": null } }, - "535b570e38b042f29007e0e94a6315cf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5598259bc366410a8031a2ceeeba48b8": { + "3fb99eebb271464a8dba1f248ad3a405": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1958,60 +1798,25 @@ "text_color": null } }, - "56ae486cfcc04dec95deb7c5ef71bc74": { - "model_module": "@jupyter-widgets/base", + "44d98937f2804e9a96b1ddfa8042173f": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "584a82a4d58c4bf1a198ce7a0d447658": { + "47ddd6a2c95340bbb71627a94c2dd3ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2064,7 +1869,59 @@ "width": null } }, - "5956ffd24c27476ab9bc34b30fd00d9c": { + "4d3b99f8564341c8a62cb9182b5900ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7ece4dc998e24c5480c62d7eb390858c", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc9df3bd0ed148b89cd24aa002197f80", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "4f16f78791d44bce819074b2846da69c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6894d336252a49848247640b2b9fe87b", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_601ced9487324fc4b353c3ba4bbf4a59", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "53bd53eb6bac4e9f95944b064f96a7f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2117,33 +1974,65 @@ "width": null } }, - "5f9483e37f564d178065f9a062e90cab": { + "55cedf19d2ed4bf889cf9b1d3f593327": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "57d0e356dd0c414787476442b03052db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "59018fbe966f40489b77ba272097aaaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b53b7235effa458dacd60facda4d2595", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_95b44702478043549c3c2cff3d5074b0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b09bcc7fc763415ba708d7398444e4e5", + "IPY_MODEL_1a83913804db408d931656c80045486a", + "IPY_MODEL_e1a2bc1a74134c27b325206b421eee20" + ], + "layout": "IPY_MODEL_82895066d8f14eeeba8ab1aa9cb0fc96", "tabbable": null, - "tooltip": null, - "value": 665.0 + "tooltip": null } }, - "60a03b3eefd14083bf9e60022dc0be73": { + "59f60c2237ad4314b9dc20c0b2fe117b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2196,7 +2085,7 @@ "width": null } }, - "64af65f174ff4f9cace8efcc0ac81ee8": { + "5c2acc51561f4322b44da1bf78a42879": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2214,7 +2103,30 @@ "text_color": null } }, - "6848d3e9f8f44b469e6d7235412ebe46": { + "5c5159640ff64c84aaea4e54cc5c14cf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_47ddd6a2c95340bbb71627a94c2dd3ad", + "placeholder": "​", + "style": "IPY_MODEL_9f67ee5925854fab901b7adfc336f529", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 390kB/s]" + } + }, + "5eac0e252eec4bd4becfd36d6544109f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2232,25 +2144,23 @@ "text_color": null } }, - "68a562100a7d4400a303326d243e68af": { + "601ced9487324fc4b353c3ba4bbf4a59": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "6984107b0153473c8353cf13bcbea2d0": { + "609baccc3bc34f348584714c599ccfeb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2268,7 +2178,7 @@ "text_color": null } }, - "6ed6acb4df4a4b35a6f4cdb4e05057ad": { + "63d7728661ba4ee8b61ec8a11b4d08d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2321,115 +2231,159 @@ "width": null } }, - "6fc4ecc3230948129ae163461ebfe3a4": { - "model_module": "@jupyter-widgets/controls", + "6894d336252a49848247640b2b9fe87b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7425dd528c8f45ac8b788bbc6cbefa7d": { + "68dcd7b0d6134722a65bfe593f2c6df6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_60a03b3eefd14083bf9e60022dc0be73", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4893eb80cf38405eb26520daac63d379", + "layout": "IPY_MODEL_59f60c2237ad4314b9dc20c0b2fe117b", + "placeholder": "​", + "style": "IPY_MODEL_dd832d149fe1475ca958744bf6725fb6", "tabbable": null, "tooltip": null, - "value": 466062.0 - } - }, - "84a4564035fb4472abc43f5a5ca58860": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "vocab.txt: 100%" } }, - "867ebafc8b3b43dc96b931e4adf9986b": { + "6f2118348e104870b77fd30df1c48d1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ece2ef3348d54bc9afbd44acccf50b23", - "IPY_MODEL_5f9483e37f564d178065f9a062e90cab", - "IPY_MODEL_d2871b05135b48d79e8f3f3e7321b449" - ], - "layout": "IPY_MODEL_b94855f3e9da4ccb80ec33b094f2ec55", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_875f9c6f867140b0999bf58000e9bb6a", + "placeholder": "​", + "style": "IPY_MODEL_cf29ff3fa15d40f6877dfe1601f28d81", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "8bd6cbfc2a9c4390a54290ab9ba2e747": { - "model_module": "@jupyter-widgets/controls", + "76f016d32f444e279753e71c79b992cd": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d5d475a3f6db4d75825e3d7273b15311", - "IPY_MODEL_1eed949c328d46438b1310f158d21dc5", - "IPY_MODEL_c98bde7b71bd44bfb335bbbdeb3227b5" - ], - "layout": "IPY_MODEL_c6b752f96d724883a3e7722b694e2a97", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8eaa3307f7684109a456f21ca0098358": { + "7ece4dc998e24c5480c62d7eb390858c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2482,64 +2436,7 @@ "width": null } }, - "9473543ab0a54e5e9d6ef668c6b85d90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95b44702478043549c3c2cff3d5074b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9612079ab16048a5aee5c92d9cfc75a6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f8190580cb7049dfa11fd35ac4dc18fa", - "placeholder": "​", - "style": "IPY_MODEL_9473543ab0a54e5e9d6ef668c6b85d90", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "96d399aa908640d6a8e7441a299349b0": { + "824f2a6428f54574b735fed2118102d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2592,30 +2489,7 @@ "width": null } }, - "97a4b9b7a5de4e6fb8f29fd8a446f7a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d7551b9a58954e3e89c4eb4f77fd7390", - "placeholder": "​", - "style": "IPY_MODEL_68a562100a7d4400a303326d243e68af", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "98b743700b8242278b87b2643f99342c": { + "82895066d8f14eeeba8ab1aa9cb0fc96": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2668,7 +2542,7 @@ "width": null } }, - "9de976afc435455f8b7b1f04fd5bfd0d": { + "8621df8920304de6a915f25da5163962": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2721,7 +2595,7 @@ "width": null } }, - "9ea6433e40ff41fba4499c73bb8dd236": { + "86e8a2baf0ca436a9dcb1bfb2745c619": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2736,31 +2610,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c6b71bbfb3904be799277c78e52c6aeb", + "layout": "IPY_MODEL_76f016d32f444e279753e71c79b992cd", "placeholder": "​", - "style": "IPY_MODEL_2d8168a85bb14761ab6ff6f7125e4536", + "style": "IPY_MODEL_44d98937f2804e9a96b1ddfa8042173f", "tabbable": null, "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 327MB/s]" + "value": " 466k/466k [00:00<00:00, 6.72MB/s]" } }, - "aa953de6072f4f75980163d778e01ec7": { + "87020aca895d482db97b309848ff2295": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_092ff4cb44d2474fb4ffdd21c47c265d", + "placeholder": "​", + "style": "IPY_MODEL_5c2acc51561f4322b44da1bf78a42879", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" } }, - "b53b7235effa458dacd60facda4d2595": { + "875f9c6f867140b0999bf58000e9bb6a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2813,30 +2694,78 @@ "width": null } }, - "b5dc60e5d51e4e59b2f36117b3b24fd5": { + "908734c5ac88475d8eca4114ab6036fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_56ae486cfcc04dec95deb7c5ef71bc74", - "placeholder": "​", - "style": "IPY_MODEL_f57ae5826a5f40ae8c074c7d375fc8ea", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 9.14kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "90e61b8c51e542368ea8c80629ea9cd9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b94855f3e9da4ccb80ec33b094f2ec55": { + "95e7eceedccc4d1e9aefcfd049bd611f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2889,7 +2818,7 @@ "width": null } }, - "b9f885c1a00249a48a1d11140dd1fbf9": { + "97ef0d92a4b24930aee6bc50a9283187": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2904,15 +2833,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5956ffd24c27476ab9bc34b30fd00d9c", + "layout": "IPY_MODEL_53bd53eb6bac4e9f95944b064f96a7f3", "placeholder": "​", - "style": "IPY_MODEL_64af65f174ff4f9cace8efcc0ac81ee8", + "style": "IPY_MODEL_5eac0e252eec4bd4becfd36d6544109f", "tabbable": null, "tooltip": null, "value": "tokenizer.json: 100%" } }, - "bf52fa563e2848859b7213a63b0acc45": { + "9dbb8feae1454dc1a3ce2d648ae0e430": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2965,54 +2894,25 @@ "width": null } }, - "c1dcbc0d21b84be0beefadfa19704638": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9612079ab16048a5aee5c92d9cfc75a6", - "IPY_MODEL_24e34e76a54c4e268018ea44eeacb81d", - "IPY_MODEL_d3ae1d0514cc4b6b86dfb2ced9eb21bd" - ], - "layout": "IPY_MODEL_4466c4d6ea484258b09068ae381579f3", - "tabbable": null, - "tooltip": null - } - }, - "c625e484b56c422b9a0f82f34543b93d": { + "9f67ee5925854fab901b7adfc336f529": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8eaa3307f7684109a456f21ca0098358", - "placeholder": "​", - "style": "IPY_MODEL_5598259bc366410a8031a2ceeeba48b8", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 2.62MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c6b71bbfb3904be799277c78e52c6aeb": { + "ab6c2dc48c614976a4d8a6e644b2dfd0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3065,7 +2965,7 @@ "width": null } }, - "c6b752f96d724883a3e7722b694e2a97": { + "acac42d45e284030834f33ac796bd2f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3118,7 +3018,46 @@ "width": null } }, - "c98bde7b71bd44bfb335bbbdeb3227b5": { + "b09bcc7fc763415ba708d7398444e4e5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3956472d512f438e8e12665fb2d2d53d", + "placeholder": "​", + "style": "IPY_MODEL_0d582cd79f05419faa0a602ffcfb2a0a", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "ba0ea80cad9c4216a62795393326bd1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "bd7e226816a54adc9bedddaa9e10a621": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3133,91 +3072,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_584a82a4d58c4bf1a198ce7a0d447658", + "layout": "IPY_MODEL_e8472f7b6e1646bfbe76e90fb5ca5653", "placeholder": "​", - "style": "IPY_MODEL_1ec7c1ca458a401d8458e60ce9a8b037", + "style": "IPY_MODEL_cde1613828e14211a84709b646c0a5e2", "tabbable": null, "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 393kB/s]" + "value": " 54.2M/54.2M [00:00<00:00, 91.5MB/s]" } }, - "c9c99bad825f4845b0b12caae3889851": { + "c1b0b3370f9c478d8e7ffb419e034b88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ced6489fa5b4457a92be4a57f24310c2", - "placeholder": "​", - "style": "IPY_MODEL_6fc4ecc3230948129ae163461ebfe3a4", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ced6489fa5b4457a92be4a57f24310c2": { - "model_module": "@jupyter-widgets/base", + "c7fc11d141704ae09e52fe28e3abe84b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d2871b05135b48d79e8f3f3e7321b449": { + "cd8374322e7846358106d2f635f30312": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3232,15 +3131,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ed6acb4df4a4b35a6f4cdb4e05057ad", + "layout": "IPY_MODEL_dcc2e5cc52dc4c04a16faba9b43daf14", "placeholder": "​", - "style": "IPY_MODEL_4b7b6cec8922437fa5009403d597d945", + "style": "IPY_MODEL_c7fc11d141704ae09e52fe28e3abe84b", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 118kB/s]" + "value": " 391/391 [00:00<00:00, 43.7kB/s]" + } + }, + "cde1613828e14211a84709b646c0a5e2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d3ae1d0514cc4b6b86dfb2ced9eb21bd": { + "cde45b74025b4ba1b5df39435968adb1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3255,15 +3172,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fdfed84e751649249cf593c874f48103", + "layout": "IPY_MODEL_8621df8920304de6a915f25da5163962", "placeholder": "​", - "style": "IPY_MODEL_6848d3e9f8f44b469e6d7235412ebe46", + "style": "IPY_MODEL_908734c5ac88475d8eca4114ab6036fa", "tabbable": null, "tooltip": null, - "value": " 391/391 [00:00<00:00, 66.7kB/s]" + "value": "README.md: 100%" } }, - "d453a636398c41c6b6af5b2f45720b4f": { + "ce85f59e8bac46939f9ac50789a65740": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3278,39 +3195,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c9c99bad825f4845b0b12caae3889851", - "IPY_MODEL_26430e9c29d54162b8f7d120b1558bb3", - "IPY_MODEL_b5dc60e5d51e4e59b2f36117b3b24fd5" + "IPY_MODEL_97ef0d92a4b24930aee6bc50a9283187", + "IPY_MODEL_4f16f78791d44bce819074b2846da69c", + "IPY_MODEL_86e8a2baf0ca436a9dcb1bfb2745c619" ], - "layout": "IPY_MODEL_9de976afc435455f8b7b1f04fd5bfd0d", + "layout": "IPY_MODEL_63d7728661ba4ee8b61ec8a11b4d08d2", "tabbable": null, "tooltip": null } }, - "d5d475a3f6db4d75825e3d7273b15311": { + "cf29ff3fa15d40f6877dfe1601f28d81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_535b570e38b042f29007e0e94a6315cf", - "placeholder": "​", - "style": "IPY_MODEL_6984107b0153473c8353cf13bcbea2d0", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d7551b9a58954e3e89c4eb4f77fd7390": { + "d491aafe20664fc89e4b2558ff9b99e9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3363,7 +3275,7 @@ "width": null } }, - "d92a4ea1d94e4fb0a5350edc870846aa": { + "dcc2e5cc52dc4c04a16faba9b43daf14": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3416,33 +3328,41 @@ "width": null } }, - "e2c861c7edf5490a824292c0b01a55bf": { + "dd832d149fe1475ca958744bf6725fb6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3f4c60738b034f43bb0070d9ee80022e", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_353c0844f04d480a813b9dfb03eecabf", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "de8be81fada340bea91c9faca246cd7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ece2ef3348d54bc9afbd44acccf50b23": { + "e1a2bc1a74134c27b325206b421eee20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3457,51 +3377,92 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0e8714c2d90e46a7a6514116442b3339", + "layout": "IPY_MODEL_0f8118a7edc24a96a7e37f36f38038d9", "placeholder": "​", - "style": "IPY_MODEL_ed1f3f7e8ae6463799010112f1bdff89", + "style": "IPY_MODEL_3fb99eebb271464a8dba1f248ad3a405", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 665/665 [00:00<00:00, 116kB/s]" } }, - "ed1f3f7e8ae6463799010112f1bdff89": { - "model_module": "@jupyter-widgets/controls", + "e8472f7b6e1646bfbe76e90fb5ca5653": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f57ae5826a5f40ae8c074c7d375fc8ea": { + "eb5d1ced389c46439da54e6e466ba250": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_87020aca895d482db97b309848ff2295", + "IPY_MODEL_023da89f88ad47849b9cc2b47818ebef", + "IPY_MODEL_bd7e226816a54adc9bedddaa9e10a621" + ], + "layout": "IPY_MODEL_2a1a390430d1441ebbb6d8a333a58674", + "tabbable": null, + "tooltip": null } }, - "f8190580cb7049dfa11fd35ac4dc18fa": { + "f21a4b6aa0c347d992dfeb26e8b96edc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3554,7 +3515,30 @@ "width": null } }, - "fccf37f2cabd4853a32169ddd92b12ab": { + "f255ff95850d4ae284017b56288b9a92": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f33a8c435bf49b2916293334bae8174", + "placeholder": "​", + "style": "IPY_MODEL_57d0e356dd0c414787476442b03052db", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" + } + }, + "f47c1659d6154b88aa950656ada97270": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3570,17 +3554,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ef105203af448ad86477ebc7caac9fb", + "layout": "IPY_MODEL_ab6c2dc48c614976a4d8a6e644b2dfd0", "max": 231508.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3ad260f5c9064204bac4d08374839327", + "style": "IPY_MODEL_55cedf19d2ed4bf889cf9b1d3f593327", "tabbable": null, "tooltip": null, "value": 231508.0 } }, - "fdfed84e751649249cf593c874f48103": { + "fc9df3bd0ed148b89cd24aa002197f80": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fece174fbcb344528799e5dcbb5bac8a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index ad7d03370..d8d460ce1 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1318,7 +1318,7 @@

5. Use cleanlab to find label issues -{"state": {"ac6e56353e7e4a50bac45ba71041811d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ad967d5c77d42f5a431a6ec0969bf66": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "29cf5761bfe9489b9318cecfa44b3e39": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ac6e56353e7e4a50bac45ba71041811d", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7ad967d5c77d42f5a431a6ec0969bf66", "tabbable": null, "tooltip": null, "value": 2041.0}}, "ea3c571df8284e608dba611cf0bda070": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "95b7fdada2f54e64b4d1b098046d7218": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fa9377d23eda44e8957964ab3f834378": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ea3c571df8284e608dba611cf0bda070", "placeholder": "\u200b", "style": "IPY_MODEL_95b7fdada2f54e64b4d1b098046d7218", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "06de1cf45f404678ac5102814b9c8bb5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "755a7c68b8124ef792ba2729e0db4fe1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "82660bed196e4cada4c84968f0bd7052": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_06de1cf45f404678ac5102814b9c8bb5", "placeholder": "\u200b", "style": "IPY_MODEL_755a7c68b8124ef792ba2729e0db4fe1", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007478kB/s]"}}, "f20eb6c353f542a1a8b4666f52202553": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a403a6b86123430896c5752f65c2c91e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fa9377d23eda44e8957964ab3f834378", "IPY_MODEL_29cf5761bfe9489b9318cecfa44b3e39", "IPY_MODEL_82660bed196e4cada4c84968f0bd7052"], "layout": "IPY_MODEL_f20eb6c353f542a1a8b4666f52202553", "tabbable": null, "tooltip": null}}, "ad1e54eabded4099ba28d74c1526d439": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e223613707384720a9c253e963c51fc3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "549bc097d30d45f7bd6ce643f8b23af1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ad1e54eabded4099ba28d74c1526d439", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e223613707384720a9c253e963c51fc3", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "e9524cdd52d948ba9110e807b747a936": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc9b97fff2f844d48f15e031c5f7a6a9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3b85ff5e4a494845bf04e835f374e273": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e9524cdd52d948ba9110e807b747a936", "placeholder": "\u200b", "style": "IPY_MODEL_cc9b97fff2f844d48f15e031c5f7a6a9", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "6739968f0b8142acacfb4986909b4a4b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d5dfc38d0ec474981d8893b96bb3afc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e61951db097640608185b9bf4f30618e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6739968f0b8142acacfb4986909b4a4b", "placeholder": "\u200b", "style": "IPY_MODEL_3d5dfc38d0ec474981d8893b96bb3afc", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007274MB/s]"}}, "08d8d89374864300966f778012300d61": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cc029b42d5734dc0895679c7d0d36492": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3b85ff5e4a494845bf04e835f374e273", "IPY_MODEL_549bc097d30d45f7bd6ce643f8b23af1", "IPY_MODEL_e61951db097640608185b9bf4f30618e"], "layout": "IPY_MODEL_08d8d89374864300966f778012300d61", "tabbable": null, "tooltip": null}}, "f1dadd07f6764a368d9b0f298b0a5fcb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73acb7f66ed143fa8ba96d5d90e2f289": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8a78de6211de4be99f19d5efbfb0af0a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f1dadd07f6764a368d9b0f298b0a5fcb", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_73acb7f66ed143fa8ba96d5d90e2f289", "tabbable": null, "tooltip": null, "value": 3201.0}}, "aec38b553de44685a3a77251d83c2958": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "66e8737bbd2e4e389b5f643d7e00d814": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "99de12a0995141a694222ff99479eec7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aec38b553de44685a3a77251d83c2958", "placeholder": "\u200b", "style": "IPY_MODEL_66e8737bbd2e4e389b5f643d7e00d814", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "eca12ea9288b4742b97309c6365a9d27": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d68a8890d684ce48f3d7d8a339aa1d5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "66feacc41fe940d68d528f4fb07bbe28": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eca12ea9288b4742b97309c6365a9d27", "placeholder": "\u200b", "style": "IPY_MODEL_4d68a8890d684ce48f3d7d8a339aa1d5", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007867kB/s]"}}, "4faebf425f3440f09763e074f4319dc9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2733e2a2b4af469dbd6b0f5e5fc8ae37": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_99de12a0995141a694222ff99479eec7", "IPY_MODEL_8a78de6211de4be99f19d5efbfb0af0a", "IPY_MODEL_66feacc41fe940d68d528f4fb07bbe28"], "layout": "IPY_MODEL_4faebf425f3440f09763e074f4319dc9", "tabbable": null, "tooltip": null}}, "c35cc5505fe74455be2bef75f191d149": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f17fd057d81046e1a832d6b8f7e7d81a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "98fc43336c304936b96e98ccf38bcb27": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c35cc5505fe74455be2bef75f191d149", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f17fd057d81046e1a832d6b8f7e7d81a", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "b21f8381578642688e33b664733cfd35": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aedcdbb24b264a689487e271e6618250": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f02b1431afe54257b059c1f4e2e8e923": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b21f8381578642688e33b664733cfd35", "placeholder": "\u200b", "style": "IPY_MODEL_aedcdbb24b264a689487e271e6618250", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "17f19fb100c74106886590a8be09ca72": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc418d40fbb94eb592c416317e763452": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4f97a3f2950a482b87a5a225e64d1054": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_17f19fb100c74106886590a8be09ca72", "placeholder": "\u200b", "style": "IPY_MODEL_bc418d40fbb94eb592c416317e763452", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007375MB/s]"}}, "8e0232510c534af2ba12a15906d5587c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5161d1a1ec0e4cf2b68dccd75729367c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f02b1431afe54257b059c1f4e2e8e923", "IPY_MODEL_98fc43336c304936b96e98ccf38bcb27", "IPY_MODEL_4f97a3f2950a482b87a5a225e64d1054"], "layout": "IPY_MODEL_8e0232510c534af2ba12a15906d5587c", "tabbable": null, "tooltip": null}}, "0b0cbe087a684ce095b09cf9bdb7bb6f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd81bf1b22344e1a941b3f6402e71534": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "daae43c5024045c0956a100116ce290d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b0cbe087a684ce095b09cf9bdb7bb6f", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fd81bf1b22344e1a941b3f6402e71534", "tabbable": null, "tooltip": null, "value": 128619.0}}, "ab79a4f1dc724bf5bbf4515414e4e496": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "55430973b3ef49e0a42a21510b13910c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9d3bec8eb329435fad93767b82610770": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab79a4f1dc724bf5bbf4515414e4e496", "placeholder": "\u200b", "style": "IPY_MODEL_55430973b3ef49e0a42a21510b13910c", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "725c1de8f24d4a06b598087c2490bcf9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1fd89aa6abd24b15b927691aaf0c3907": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "99b821fd6a00430d88dadd7d452f448f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_725c1de8f24d4a06b598087c2490bcf9", "placeholder": "\u200b", "style": "IPY_MODEL_1fd89aa6abd24b15b927691aaf0c3907", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20071.08MB/s]"}}, "453bbf17aaae419fbd4295afa8f2e3c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0350c7cd808a4d83bff89c863b16a4b9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9d3bec8eb329435fad93767b82610770", "IPY_MODEL_daae43c5024045c0956a100116ce290d", "IPY_MODEL_99b821fd6a00430d88dadd7d452f448f"], "layout": "IPY_MODEL_453bbf17aaae419fbd4295afa8f2e3c4", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"e6913911319d4c408e2e2e733ef1255a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9d988138131f4ea88f0d0c3776772ad2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3230cadb6f804963a65603ad12674cab": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e6913911319d4c408e2e2e733ef1255a", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9d988138131f4ea88f0d0c3776772ad2", "tabbable": null, "tooltip": null, "value": 2041.0}}, "3eb2123861004bdc8a2092b4e10d8d1d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3dce7bae4a5d48b4a1c631a3e18338ba": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b2902f08f0a24dfda13117c6a0deb158": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3eb2123861004bdc8a2092b4e10d8d1d", "placeholder": "\u200b", "style": "IPY_MODEL_3dce7bae4a5d48b4a1c631a3e18338ba", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "388363f69abe4866bafdf0ad34d3a976": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7aa3b927e1564072a2bdc49e9e3575a5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b18d3cb738d94746a6e7e192f4ba5a7d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_388363f69abe4866bafdf0ad34d3a976", "placeholder": "\u200b", "style": "IPY_MODEL_7aa3b927e1564072a2bdc49e9e3575a5", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007480kB/s]"}}, "29d24c68306e41b0a4f2f2af2cb7ad19": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c214052e28f449ba931550050107f25d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b2902f08f0a24dfda13117c6a0deb158", "IPY_MODEL_3230cadb6f804963a65603ad12674cab", "IPY_MODEL_b18d3cb738d94746a6e7e192f4ba5a7d"], "layout": "IPY_MODEL_29d24c68306e41b0a4f2f2af2cb7ad19", "tabbable": null, "tooltip": null}}, "c4a99c010efe45d598409f3158bff57d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4d62334d95cf4f24b2fb6940af04ad8a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6412c53c517f41ecbd5504d8db2f3f4d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c4a99c010efe45d598409f3158bff57d", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4d62334d95cf4f24b2fb6940af04ad8a", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "bb90f11a913145e4bbaa5ce8cc44b63f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "11f3732b363e43119dbcb1b65960eb46": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "03109fcfbcd34d20a3309e25e83e4033": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bb90f11a913145e4bbaa5ce8cc44b63f", "placeholder": "\u200b", "style": "IPY_MODEL_11f3732b363e43119dbcb1b65960eb46", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "5eb4eaa0f4b14e5381e8a083a32dc9f3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d396f4b1a45141c7af04c0e7ddf7f3f8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "27b2704394d6477886102047a69c02c8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5eb4eaa0f4b14e5381e8a083a32dc9f3", "placeholder": "\u200b", "style": "IPY_MODEL_d396f4b1a45141c7af04c0e7ddf7f3f8", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200747.8MB/s]"}}, "9c76c32458c3442285a14edad272aa89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c6d61c68c5a402ca802470cafd0a582": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_03109fcfbcd34d20a3309e25e83e4033", "IPY_MODEL_6412c53c517f41ecbd5504d8db2f3f4d", "IPY_MODEL_27b2704394d6477886102047a69c02c8"], "layout": "IPY_MODEL_9c76c32458c3442285a14edad272aa89", "tabbable": null, "tooltip": null}}, "fa4053af508e4354aef975d31157672d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "508a7043d44d4ca4a78feb78835740f8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d1b5b92956c941468e99c998aa3c8192": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa4053af508e4354aef975d31157672d", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_508a7043d44d4ca4a78feb78835740f8", "tabbable": null, "tooltip": null, "value": 3201.0}}, "b3043b9fe1644d85b1a0e1f1c1235c4b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "56acc3819b864d6fb3b472b0b70655ca": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0d0921be5314b5e8d665284a45cf07c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b3043b9fe1644d85b1a0e1f1c1235c4b", "placeholder": "\u200b", "style": "IPY_MODEL_56acc3819b864d6fb3b472b0b70655ca", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "0cab3ca3c046499a9e597b9f99bc1574": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09c52dcbd080432995ff55d1f920e865": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9aea2e4c890047e68a0e94ead80478de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0cab3ca3c046499a9e597b9f99bc1574", "placeholder": "\u200b", "style": "IPY_MODEL_09c52dcbd080432995ff55d1f920e865", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007810kB/s]"}}, "2e62663e80644c07825518350146ec2c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8ee0dccf5a04e33ba5a0e34a2d5f3a0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c0d0921be5314b5e8d665284a45cf07c", "IPY_MODEL_d1b5b92956c941468e99c998aa3c8192", "IPY_MODEL_9aea2e4c890047e68a0e94ead80478de"], "layout": "IPY_MODEL_2e62663e80644c07825518350146ec2c", "tabbable": null, "tooltip": null}}, "a5741e83d2bd4cb3b308bb134050d4de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab74924740cf40489c4f35902c644918": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "61c959cd1107486dae7fc31d95c4456e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a5741e83d2bd4cb3b308bb134050d4de", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ab74924740cf40489c4f35902c644918", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "cb1d9ffbc6a84e2cac8d6a3636649815": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f1c8cc68c76e49ceaa6520fb122d2688": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d99ef85105fd4af7a00252075b077a20": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cb1d9ffbc6a84e2cac8d6a3636649815", "placeholder": "\u200b", "style": "IPY_MODEL_f1c8cc68c76e49ceaa6520fb122d2688", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "15a1bdd122bc4c0b95f5328fe09b0592": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b59392858f84402daccf10c9a219c646": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "31167512fb0a49f3ac534ed2ac95645f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15a1bdd122bc4c0b95f5328fe09b0592", "placeholder": "\u200b", "style": "IPY_MODEL_b59392858f84402daccf10c9a219c646", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007123MB/s]"}}, "611f8d66b18942ffb72a7d24704fdd03": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d3911dff0584b4ab14e64fa43493649": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d99ef85105fd4af7a00252075b077a20", "IPY_MODEL_61c959cd1107486dae7fc31d95c4456e", "IPY_MODEL_31167512fb0a49f3ac534ed2ac95645f"], "layout": "IPY_MODEL_611f8d66b18942ffb72a7d24704fdd03", "tabbable": null, "tooltip": null}}, "b8ef4f8f1f5b4355b061fe1c6db1b22c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9336c9463034174840a97c4f6f80900": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a6887bc12079494998d907da7782631f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b8ef4f8f1f5b4355b061fe1c6db1b22c", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e9336c9463034174840a97c4f6f80900", "tabbable": null, "tooltip": null, "value": 128619.0}}, "48513b914167424bb0d99b00935e87ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c0f74405a8e94fa0be4ca1e42f4750b3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "674dff2148564073b6a9239a8296cc33": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_48513b914167424bb0d99b00935e87ac", "placeholder": "\u200b", "style": "IPY_MODEL_c0f74405a8e94fa0be4ca1e42f4750b3", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "0f3ceb4608c74a03877beda535713ae1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "711d749067594f629603834b6bc9781f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "482c24dc64f44d3ca98e1017dba7245d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f3ceb4608c74a03877beda535713ae1", "placeholder": "\u200b", "style": "IPY_MODEL_711d749067594f629603834b6bc9781f", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20073.07MB/s]"}}, "d12530cc70a34360b37875cf688931fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6775de5887cb4b4aad961dc25ba3766e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_674dff2148564073b6a9239a8296cc33", "IPY_MODEL_a6887bc12079494998d907da7782631f", "IPY_MODEL_482c24dc64f44d3ca98e1017dba7245d"], "layout": "IPY_MODEL_d12530cc70a34360b37875cf688931fc", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index baeca626c..ac4c83517 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:14.336958Z", - "iopub.status.busy": "2024-04-12T10:17:14.336469Z", - "iopub.status.idle": "2024-04-12T10:17:18.827866Z", - "shell.execute_reply": "2024-04-12T10:17:18.827310Z" + "iopub.execute_input": "2024-04-22T21:45:47.269503Z", + "iopub.status.busy": "2024-04-22T21:45:47.269337Z", + "iopub.status.idle": "2024-04-22T21:45:51.760736Z", + "shell.execute_reply": "2024-04-22T21:45:51.760185Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:18.830487Z", - "iopub.status.busy": "2024-04-12T10:17:18.830156Z", - "iopub.status.idle": "2024-04-12T10:17:18.833599Z", - "shell.execute_reply": "2024-04-12T10:17:18.833052Z" + "iopub.execute_input": "2024-04-22T21:45:51.763408Z", + "iopub.status.busy": "2024-04-22T21:45:51.762908Z", + "iopub.status.idle": "2024-04-22T21:45:51.765966Z", + "shell.execute_reply": "2024-04-22T21:45:51.765533Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:18.835548Z", - "iopub.status.busy": "2024-04-12T10:17:18.835372Z", - "iopub.status.idle": "2024-04-12T10:17:18.839928Z", - "shell.execute_reply": "2024-04-12T10:17:18.839393Z" + "iopub.execute_input": "2024-04-22T21:45:51.767978Z", + "iopub.status.busy": "2024-04-22T21:45:51.767650Z", + "iopub.status.idle": "2024-04-22T21:45:51.772217Z", + "shell.execute_reply": "2024-04-22T21:45:51.771802Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-12T10:17:18.842072Z", - "iopub.status.busy": "2024-04-12T10:17:18.841894Z", - "iopub.status.idle": "2024-04-12T10:17:20.931134Z", - "shell.execute_reply": "2024-04-12T10:17:20.930519Z" + "iopub.execute_input": "2024-04-22T21:45:51.774202Z", + "iopub.status.busy": "2024-04-22T21:45:51.773881Z", + "iopub.status.idle": "2024-04-22T21:45:53.310693Z", + "shell.execute_reply": "2024-04-22T21:45:53.309859Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-12T10:17:20.933697Z", - "iopub.status.busy": "2024-04-12T10:17:20.933321Z", - "iopub.status.idle": "2024-04-12T10:17:20.943871Z", - "shell.execute_reply": "2024-04-12T10:17:20.943448Z" + "iopub.execute_input": "2024-04-22T21:45:53.313573Z", + "iopub.status.busy": "2024-04-22T21:45:53.313167Z", + "iopub.status.idle": "2024-04-22T21:45:53.323853Z", + "shell.execute_reply": "2024-04-22T21:45:53.323396Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:20.946026Z", - "iopub.status.busy": "2024-04-12T10:17:20.945705Z", - "iopub.status.idle": "2024-04-12T10:17:20.950804Z", - "shell.execute_reply": "2024-04-12T10:17:20.950366Z" + "iopub.execute_input": "2024-04-22T21:45:53.325808Z", + "iopub.status.busy": "2024-04-22T21:45:53.325518Z", + "iopub.status.idle": "2024-04-22T21:45:53.331056Z", + "shell.execute_reply": "2024-04-22T21:45:53.330488Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-12T10:17:20.952908Z", - "iopub.status.busy": "2024-04-12T10:17:20.952485Z", - "iopub.status.idle": "2024-04-12T10:17:21.376442Z", - "shell.execute_reply": "2024-04-12T10:17:21.375891Z" + "iopub.execute_input": "2024-04-22T21:45:53.333161Z", + "iopub.status.busy": "2024-04-22T21:45:53.332875Z", + "iopub.status.idle": "2024-04-22T21:45:53.785353Z", + "shell.execute_reply": "2024-04-22T21:45:53.784811Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:21.378663Z", - "iopub.status.busy": "2024-04-12T10:17:21.378376Z", - "iopub.status.idle": "2024-04-12T10:17:23.067983Z", - "shell.execute_reply": "2024-04-12T10:17:23.067507Z" + "iopub.execute_input": "2024-04-22T21:45:53.787455Z", + "iopub.status.busy": "2024-04-22T21:45:53.787238Z", + "iopub.status.idle": "2024-04-22T21:45:55.078807Z", + "shell.execute_reply": "2024-04-22T21:45:55.078269Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-04-12T10:17:23.070465Z", - "iopub.status.busy": "2024-04-12T10:17:23.070094Z", - "iopub.status.idle": "2024-04-12T10:17:23.087743Z", - "shell.execute_reply": "2024-04-12T10:17:23.087282Z" + "iopub.execute_input": "2024-04-22T21:45:55.081262Z", + "iopub.status.busy": "2024-04-22T21:45:55.080995Z", + "iopub.status.idle": "2024-04-22T21:45:55.098992Z", + "shell.execute_reply": "2024-04-22T21:45:55.098508Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:23.089723Z", - "iopub.status.busy": "2024-04-12T10:17:23.089347Z", - "iopub.status.idle": "2024-04-12T10:17:23.092406Z", - "shell.execute_reply": "2024-04-12T10:17:23.091929Z" + "iopub.execute_input": "2024-04-22T21:45:55.100948Z", + "iopub.status.busy": "2024-04-22T21:45:55.100626Z", + "iopub.status.idle": "2024-04-22T21:45:55.103729Z", + "shell.execute_reply": "2024-04-22T21:45:55.103225Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:23.094411Z", - "iopub.status.busy": "2024-04-12T10:17:23.094028Z", - "iopub.status.idle": "2024-04-12T10:17:37.022529Z", - "shell.execute_reply": "2024-04-12T10:17:37.021941Z" + "iopub.execute_input": "2024-04-22T21:45:55.105641Z", + "iopub.status.busy": "2024-04-22T21:45:55.105389Z", + "iopub.status.idle": "2024-04-22T21:46:09.128736Z", + "shell.execute_reply": "2024-04-22T21:46:09.128116Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-12T10:17:37.025158Z", - "iopub.status.busy": "2024-04-12T10:17:37.024925Z", - "iopub.status.idle": "2024-04-12T10:17:37.028608Z", - "shell.execute_reply": "2024-04-12T10:17:37.028069Z" + "iopub.execute_input": "2024-04-22T21:46:09.131472Z", + "iopub.status.busy": "2024-04-22T21:46:09.131109Z", + "iopub.status.idle": "2024-04-22T21:46:09.134905Z", + "shell.execute_reply": "2024-04-22T21:46:09.134404Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:37.030645Z", - "iopub.status.busy": "2024-04-12T10:17:37.030465Z", - "iopub.status.idle": "2024-04-12T10:17:37.745102Z", - "shell.execute_reply": "2024-04-12T10:17:37.744523Z" + "iopub.execute_input": "2024-04-22T21:46:09.136958Z", + "iopub.status.busy": "2024-04-22T21:46:09.136632Z", + "iopub.status.idle": "2024-04-22T21:46:09.827232Z", + "shell.execute_reply": "2024-04-22T21:46:09.826654Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-12T10:17:37.748786Z", - "iopub.status.busy": "2024-04-12T10:17:37.747829Z", - "iopub.status.idle": "2024-04-12T10:17:37.754717Z", - "shell.execute_reply": "2024-04-12T10:17:37.754221Z" + "iopub.execute_input": "2024-04-22T21:46:09.830087Z", + "iopub.status.busy": "2024-04-22T21:46:09.829729Z", + "iopub.status.idle": "2024-04-22T21:46:09.834322Z", + "shell.execute_reply": "2024-04-22T21:46:09.833857Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:37.758250Z", - "iopub.status.busy": "2024-04-12T10:17:37.757328Z", - "iopub.status.idle": "2024-04-12T10:17:37.853926Z", - "shell.execute_reply": "2024-04-12T10:17:37.853336Z" + "iopub.execute_input": "2024-04-22T21:46:09.836726Z", + "iopub.status.busy": "2024-04-22T21:46:09.836360Z", + "iopub.status.idle": "2024-04-22T21:46:09.935073Z", + "shell.execute_reply": "2024-04-22T21:46:09.934376Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:37.856644Z", - "iopub.status.busy": "2024-04-12T10:17:37.856363Z", - "iopub.status.idle": "2024-04-12T10:17:38.080920Z", - "shell.execute_reply": "2024-04-12T10:17:38.080413Z" + "iopub.execute_input": "2024-04-22T21:46:09.937463Z", + "iopub.status.busy": "2024-04-22T21:46:09.937101Z", + "iopub.status.idle": "2024-04-22T21:46:09.949022Z", + "shell.execute_reply": "2024-04-22T21:46:09.948596Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:38.083013Z", - "iopub.status.busy": "2024-04-12T10:17:38.082821Z", - "iopub.status.idle": "2024-04-12T10:17:38.090655Z", - "shell.execute_reply": "2024-04-12T10:17:38.090216Z" + "iopub.execute_input": "2024-04-22T21:46:09.951211Z", + "iopub.status.busy": "2024-04-22T21:46:09.950768Z", + "iopub.status.idle": "2024-04-22T21:46:09.958479Z", + "shell.execute_reply": "2024-04-22T21:46:09.957867Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:38.092493Z", - "iopub.status.busy": "2024-04-12T10:17:38.092316Z", - "iopub.status.idle": "2024-04-12T10:17:38.096483Z", - "shell.execute_reply": "2024-04-12T10:17:38.095920Z" + "iopub.execute_input": "2024-04-22T21:46:09.960681Z", + "iopub.status.busy": "2024-04-22T21:46:09.960346Z", + "iopub.status.idle": "2024-04-22T21:46:09.964669Z", + "shell.execute_reply": "2024-04-22T21:46:09.964175Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-04-12T10:17:38.098551Z", - "iopub.status.busy": "2024-04-12T10:17:38.098155Z", - "iopub.status.idle": "2024-04-12T10:17:38.103567Z", - "shell.execute_reply": "2024-04-12T10:17:38.103124Z" + "iopub.execute_input": "2024-04-22T21:46:09.966989Z", + "iopub.status.busy": "2024-04-22T21:46:09.966603Z", + "iopub.status.idle": "2024-04-22T21:46:09.973621Z", + "shell.execute_reply": "2024-04-22T21:46:09.973090Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-12T10:17:38.105651Z", - "iopub.status.busy": "2024-04-12T10:17:38.105329Z", - "iopub.status.idle": "2024-04-12T10:17:38.212088Z", - "shell.execute_reply": "2024-04-12T10:17:38.211529Z" + "iopub.execute_input": "2024-04-22T21:46:09.975750Z", + "iopub.status.busy": "2024-04-22T21:46:09.975561Z", + "iopub.status.idle": "2024-04-22T21:46:10.300576Z", + "shell.execute_reply": "2024-04-22T21:46:10.300008Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-12T10:17:38.214294Z", - "iopub.status.busy": "2024-04-12T10:17:38.213970Z", - "iopub.status.idle": "2024-04-12T10:17:38.314652Z", - "shell.execute_reply": "2024-04-12T10:17:38.314116Z" + "iopub.execute_input": "2024-04-22T21:46:10.302798Z", + "iopub.status.busy": "2024-04-22T21:46:10.302530Z", + "iopub.status.idle": "2024-04-22T21:46:10.404868Z", + "shell.execute_reply": "2024-04-22T21:46:10.404322Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-12T10:17:38.316891Z", - "iopub.status.busy": "2024-04-12T10:17:38.316532Z", - "iopub.status.idle": "2024-04-12T10:17:38.418178Z", - "shell.execute_reply": "2024-04-12T10:17:38.417615Z" + "iopub.execute_input": "2024-04-22T21:46:10.406953Z", + "iopub.status.busy": "2024-04-22T21:46:10.406671Z", + "iopub.status.idle": "2024-04-22T21:46:10.507832Z", + "shell.execute_reply": "2024-04-22T21:46:10.507318Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:38.420455Z", - "iopub.status.busy": "2024-04-12T10:17:38.420196Z", - "iopub.status.idle": "2024-04-12T10:17:38.522949Z", - "shell.execute_reply": "2024-04-12T10:17:38.522400Z" + "iopub.execute_input": "2024-04-22T21:46:10.509874Z", + "iopub.status.busy": "2024-04-22T21:46:10.509687Z", + "iopub.status.idle": "2024-04-22T21:46:10.610549Z", + "shell.execute_reply": "2024-04-22T21:46:10.610096Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:38.525191Z", - "iopub.status.busy": "2024-04-12T10:17:38.524792Z", - "iopub.status.idle": "2024-04-12T10:17:38.527880Z", - "shell.execute_reply": "2024-04-12T10:17:38.527446Z" + "iopub.execute_input": "2024-04-22T21:46:10.612698Z", + "iopub.status.busy": "2024-04-22T21:46:10.612368Z", + "iopub.status.idle": "2024-04-22T21:46:10.615446Z", + "shell.execute_reply": "2024-04-22T21:46:10.614999Z" }, "nbsphinx": "hidden" }, @@ -1397,31 +1397,48 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0350c7cd808a4d83bff89c863b16a4b9": { + "03109fcfbcd34d20a3309e25e83e4033": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9d3bec8eb329435fad93767b82610770", - "IPY_MODEL_daae43c5024045c0956a100116ce290d", - "IPY_MODEL_99b821fd6a00430d88dadd7d452f448f" - ], - "layout": "IPY_MODEL_453bbf17aaae419fbd4295afa8f2e3c4", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bb90f11a913145e4bbaa5ce8cc44b63f", + "placeholder": "​", + "style": "IPY_MODEL_11f3732b363e43119dbcb1b65960eb46", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "09c52dcbd080432995ff55d1f920e865": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "06de1cf45f404678ac5102814b9c8bb5": { + "0cab3ca3c046499a9e597b9f99bc1574": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1474,7 +1491,7 @@ "width": null } }, - "08d8d89374864300966f778012300d61": { + "0f3ceb4608c74a03877beda535713ae1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1527,7 +1544,25 @@ "width": null } }, - "0b0cbe087a684ce095b09cf9bdb7bb6f": { + "11f3732b363e43119dbcb1b65960eb46": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "15a1bdd122bc4c0b95f5328fe09b0592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1580,7 +1615,54 @@ "width": null } }, - "17f19fb100c74106886590a8be09ca72": { + "1d3911dff0584b4ab14e64fa43493649": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d99ef85105fd4af7a00252075b077a20", + "IPY_MODEL_61c959cd1107486dae7fc31d95c4456e", + "IPY_MODEL_31167512fb0a49f3ac534ed2ac95645f" + ], + "layout": "IPY_MODEL_611f8d66b18942ffb72a7d24704fdd03", + "tabbable": null, + "tooltip": null + } + }, + "27b2704394d6477886102047a69c02c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5eb4eaa0f4b14e5381e8a083a32dc9f3", + "placeholder": "​", + "style": "IPY_MODEL_d396f4b1a45141c7af04c0e7ddf7f3f8", + "tabbable": null, + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 47.8MB/s]" + } + }, + "29d24c68306e41b0a4f2f2af2cb7ad19": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1633,49 +1715,83 @@ "width": null } }, - "1fd89aa6abd24b15b927691aaf0c3907": { - "model_module": "@jupyter-widgets/controls", + "2e62663e80644c07825518350146ec2c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2733e2a2b4af469dbd6b0f5e5fc8ae37": { + "31167512fb0a49f3ac534ed2ac95645f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_99de12a0995141a694222ff99479eec7", - "IPY_MODEL_8a78de6211de4be99f19d5efbfb0af0a", - "IPY_MODEL_66feacc41fe940d68d528f4fb07bbe28" - ], - "layout": "IPY_MODEL_4faebf425f3440f09763e074f4319dc9", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15a1bdd122bc4c0b95f5328fe09b0592", + "placeholder": "​", + "style": "IPY_MODEL_b59392858f84402daccf10c9a219c646", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 123MB/s]" } }, - "29cf5761bfe9489b9318cecfa44b3e39": { + "3230cadb6f804963a65603ad12674cab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1691,40 +1807,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ac6e56353e7e4a50bac45ba71041811d", + "layout": "IPY_MODEL_e6913911319d4c408e2e2e733ef1255a", "max": 2041.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7ad967d5c77d42f5a431a6ec0969bf66", + "style": "IPY_MODEL_9d988138131f4ea88f0d0c3776772ad2", "tabbable": null, "tooltip": null, "value": 2041.0 } }, - "3b85ff5e4a494845bf04e835f374e273": { - "model_module": "@jupyter-widgets/controls", + "388363f69abe4866bafdf0ad34d3a976": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e9524cdd52d948ba9110e807b747a936", - "placeholder": "​", - "style": "IPY_MODEL_cc9b97fff2f844d48f15e031c5f7a6a9", - "tabbable": null, - "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "3d5dfc38d0ec474981d8893b96bb3afc": { + "3dce7bae4a5d48b4a1c631a3e18338ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1742,7 +1888,7 @@ "text_color": null } }, - "453bbf17aaae419fbd4295afa8f2e3c4": { + "3eb2123861004bdc8a2092b4e10d8d1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1795,25 +1941,7 @@ "width": null } }, - "4d68a8890d684ce48f3d7d8a339aa1d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f97a3f2950a482b87a5a225e64d1054": { + "482c24dc64f44d3ca98e1017dba7245d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1828,15 +1956,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_17f19fb100c74106886590a8be09ca72", + "layout": "IPY_MODEL_0f3ceb4608c74a03877beda535713ae1", "placeholder": "​", - "style": "IPY_MODEL_bc418d40fbb94eb592c416317e763452", + "style": "IPY_MODEL_711d749067594f629603834b6bc9781f", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 375MB/s]" + "value": " 129k/129k [00:00<00:00, 3.07MB/s]" } }, - "4faebf425f3440f09763e074f4319dc9": { + "48513b914167424bb0d99b00935e87ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1889,75 +2017,39 @@ "width": null } }, - "5161d1a1ec0e4cf2b68dccd75729367c": { + "4d62334d95cf4f24b2fb6940af04ad8a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f02b1431afe54257b059c1f4e2e8e923", - "IPY_MODEL_98fc43336c304936b96e98ccf38bcb27", - "IPY_MODEL_4f97a3f2950a482b87a5a225e64d1054" - ], - "layout": "IPY_MODEL_8e0232510c534af2ba12a15906d5587c", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "549bc097d30d45f7bd6ce643f8b23af1": { + "508a7043d44d4ca4a78feb78835740f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ad1e54eabded4099ba28d74c1526d439", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e223613707384720a9c253e963c51fc3", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "55430973b3ef49e0a42a21510b13910c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "66e8737bbd2e4e389b5f643d7e00d814": { + "56acc3819b864d6fb3b472b0b70655ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1975,30 +2067,7 @@ "text_color": null } }, - "66feacc41fe940d68d528f4fb07bbe28": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_eca12ea9288b4742b97309c6365a9d27", - "placeholder": "​", - "style": "IPY_MODEL_4d68a8890d684ce48f3d7d8a339aa1d5", - "tabbable": null, - "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 867kB/s]" - } - }, - "6739968f0b8142acacfb4986909b4a4b": { + "5eb4eaa0f4b14e5381e8a083a32dc9f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2051,7 +2120,7 @@ "width": null } }, - "725c1de8f24d4a06b598087c2490bcf9": { + "611f8d66b18942ffb72a7d24704fdd03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2104,57 +2173,59 @@ "width": null } }, - "73acb7f66ed143fa8ba96d5d90e2f289": { + "61c959cd1107486dae7fc31d95c4456e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "755a7c68b8124ef792ba2729e0db4fe1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a5741e83d2bd4cb3b308bb134050d4de", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ab74924740cf40489c4f35902c644918", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 } }, - "7ad967d5c77d42f5a431a6ec0969bf66": { + "6412c53c517f41ecbd5504d8db2f3f4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c4a99c010efe45d598409f3158bff57d", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4d62334d95cf4f24b2fb6940af04ad8a", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "82660bed196e4cada4c84968f0bd7052": { + "674dff2148564073b6a9239a8296cc33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2169,94 +2240,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_06de1cf45f404678ac5102814b9c8bb5", + "layout": "IPY_MODEL_48513b914167424bb0d99b00935e87ac", "placeholder": "​", - "style": "IPY_MODEL_755a7c68b8124ef792ba2729e0db4fe1", + "style": "IPY_MODEL_c0f74405a8e94fa0be4ca1e42f4750b3", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 478kB/s]" + "value": "label_encoder.txt: 100%" } }, - "8a78de6211de4be99f19d5efbfb0af0a": { + "6775de5887cb4b4aad961dc25ba3766e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f1dadd07f6764a368d9b0f298b0a5fcb", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_73acb7f66ed143fa8ba96d5d90e2f289", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_674dff2148564073b6a9239a8296cc33", + "IPY_MODEL_a6887bc12079494998d907da7782631f", + "IPY_MODEL_482c24dc64f44d3ca98e1017dba7245d" + ], + "layout": "IPY_MODEL_d12530cc70a34360b37875cf688931fc", "tabbable": null, - "tooltip": null, - "value": 3201.0 - } - }, - "8e0232510c534af2ba12a15906d5587c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null } }, - "95b7fdada2f54e64b4d1b098046d7218": { + "711d749067594f629603834b6bc9781f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2274,79 +2290,49 @@ "text_color": null } }, - "98fc43336c304936b96e98ccf38bcb27": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c35cc5505fe74455be2bef75f191d149", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f17fd057d81046e1a832d6b8f7e7d81a", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "99b821fd6a00430d88dadd7d452f448f": { + "7aa3b927e1564072a2bdc49e9e3575a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_725c1de8f24d4a06b598087c2490bcf9", - "placeholder": "​", - "style": "IPY_MODEL_1fd89aa6abd24b15b927691aaf0c3907", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 1.08MB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "99de12a0995141a694222ff99479eec7": { + "8c6d61c68c5a402ca802470cafd0a582": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_aec38b553de44685a3a77251d83c2958", - "placeholder": "​", - "style": "IPY_MODEL_66e8737bbd2e4e389b5f643d7e00d814", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_03109fcfbcd34d20a3309e25e83e4033", + "IPY_MODEL_6412c53c517f41ecbd5504d8db2f3f4d", + "IPY_MODEL_27b2704394d6477886102047a69c02c8" + ], + "layout": "IPY_MODEL_9c76c32458c3442285a14edad272aa89", "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "tooltip": null } }, - "9d3bec8eb329435fad93767b82610770": { + "9aea2e4c890047e68a0e94ead80478de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2361,39 +2347,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ab79a4f1dc724bf5bbf4515414e4e496", + "layout": "IPY_MODEL_0cab3ca3c046499a9e597b9f99bc1574", "placeholder": "​", - "style": "IPY_MODEL_55430973b3ef49e0a42a21510b13910c", + "style": "IPY_MODEL_09c52dcbd080432995ff55d1f920e865", "tabbable": null, "tooltip": null, - "value": "label_encoder.txt: 100%" + "value": " 3.20k/3.20k [00:00<00:00, 810kB/s]" } }, - "a403a6b86123430896c5752f65c2c91e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_fa9377d23eda44e8957964ab3f834378", - "IPY_MODEL_29cf5761bfe9489b9318cecfa44b3e39", - "IPY_MODEL_82660bed196e4cada4c84968f0bd7052" - ], - "layout": "IPY_MODEL_f20eb6c353f542a1a8b4666f52202553", - "tabbable": null, - "tooltip": null - } - }, - "ab79a4f1dc724bf5bbf4515414e4e496": { + "9c76c32458c3442285a14edad272aa89": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2446,60 +2408,23 @@ "width": null } }, - "ac6e56353e7e4a50bac45ba71041811d": { - "model_module": "@jupyter-widgets/base", + "9d988138131f4ea88f0d0c3776772ad2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "ad1e54eabded4099ba28d74c1526d439": { + "a5741e83d2bd4cb3b308bb134050d4de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2552,7 +2477,95 @@ "width": null } }, - "aec38b553de44685a3a77251d83c2958": { + "a6887bc12079494998d907da7782631f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b8ef4f8f1f5b4355b061fe1c6db1b22c", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9336c9463034174840a97c4f6f80900", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "ab74924740cf40489c4f35902c644918": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b18d3cb738d94746a6e7e192f4ba5a7d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_388363f69abe4866bafdf0ad34d3a976", + "placeholder": "​", + "style": "IPY_MODEL_7aa3b927e1564072a2bdc49e9e3575a5", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 480kB/s]" + } + }, + "b2902f08f0a24dfda13117c6a0deb158": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3eb2123861004bdc8a2092b4e10d8d1d", + "placeholder": "​", + "style": "IPY_MODEL_3dce7bae4a5d48b4a1c631a3e18338ba", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "b3043b9fe1644d85b1a0e1f1c1235c4b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2605,7 +2618,7 @@ "width": null } }, - "aedcdbb24b264a689487e271e6618250": { + "b59392858f84402daccf10c9a219c646": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2623,7 +2636,7 @@ "text_color": null } }, - "b21f8381578642688e33b664733cfd35": { + "b8ef4f8f1f5b4355b061fe1c6db1b22c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2676,25 +2689,7 @@ "width": null } }, - "bc418d40fbb94eb592c416317e763452": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c35cc5505fe74455be2bef75f191d149": { + "bb90f11a913145e4bbaa5ce8cc44b63f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2747,31 +2742,30 @@ "width": null } }, - "cc029b42d5734dc0895679c7d0d36492": { + "c0d0921be5314b5e8d665284a45cf07c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b85ff5e4a494845bf04e835f374e273", - "IPY_MODEL_549bc097d30d45f7bd6ce643f8b23af1", - "IPY_MODEL_e61951db097640608185b9bf4f30618e" - ], - "layout": "IPY_MODEL_08d8d89374864300966f778012300d61", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b3043b9fe1644d85b1a0e1f1c1235c4b", + "placeholder": "​", + "style": "IPY_MODEL_56acc3819b864d6fb3b472b0b70655ca", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "cc9b97fff2f844d48f15e031c5f7a6a9": { + "c0f74405a8e94fa0be4ca1e42f4750b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2789,72 +2783,31 @@ "text_color": null } }, - "daae43c5024045c0956a100116ce290d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0b0cbe087a684ce095b09cf9bdb7bb6f", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fd81bf1b22344e1a941b3f6402e71534", - "tabbable": null, - "tooltip": null, - "value": 128619.0 - } - }, - "e223613707384720a9c253e963c51fc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e61951db097640608185b9bf4f30618e": { + "c214052e28f449ba931550050107f25d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6739968f0b8142acacfb4986909b4a4b", - "placeholder": "​", - "style": "IPY_MODEL_3d5dfc38d0ec474981d8893b96bb3afc", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b2902f08f0a24dfda13117c6a0deb158", + "IPY_MODEL_3230cadb6f804963a65603ad12674cab", + "IPY_MODEL_b18d3cb738d94746a6e7e192f4ba5a7d" + ], + "layout": "IPY_MODEL_29d24c68306e41b0a4f2f2af2cb7ad19", "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 274MB/s]" + "tooltip": null } }, - "e9524cdd52d948ba9110e807b747a936": { + "c4a99c010efe45d598409f3158bff57d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2907,7 +2860,7 @@ "width": null } }, - "ea3c571df8284e608dba611cf0bda070": { + "cb1d9ffbc6a84e2cac8d6a3636649815": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2960,7 +2913,7 @@ "width": null } }, - "eca12ea9288b4742b97309c6365a9d27": { + "d12530cc70a34360b37875cf688931fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3013,46 +2966,74 @@ "width": null } }, - "f02b1431afe54257b059c1f4e2e8e923": { + "d1b5b92956c941468e99c998aa3c8192": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b21f8381578642688e33b664733cfd35", - "placeholder": "​", - "style": "IPY_MODEL_aedcdbb24b264a689487e271e6618250", + "layout": "IPY_MODEL_fa4053af508e4354aef975d31157672d", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_508a7043d44d4ca4a78feb78835740f8", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": 3201.0 } }, - "f17fd057d81046e1a832d6b8f7e7d81a": { + "d396f4b1a45141c7af04c0e7ddf7f3f8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d99ef85105fd4af7a00252075b077a20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cb1d9ffbc6a84e2cac8d6a3636649815", + "placeholder": "​", + "style": "IPY_MODEL_f1c8cc68c76e49ceaa6520fb122d2688", + "tabbable": null, + "tooltip": null, + "value": "classifier.ckpt: 100%" } }, - "f1dadd07f6764a368d9b0f298b0a5fcb": { + "e6913911319d4c408e2e2e733ef1255a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3105,7 +3086,65 @@ "width": null } }, - "f20eb6c353f542a1a8b4666f52202553": { + "e8ee0dccf5a04e33ba5a0e34a2d5f3a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0d0921be5314b5e8d665284a45cf07c", + "IPY_MODEL_d1b5b92956c941468e99c998aa3c8192", + "IPY_MODEL_9aea2e4c890047e68a0e94ead80478de" + ], + "layout": "IPY_MODEL_2e62663e80644c07825518350146ec2c", + "tabbable": null, + "tooltip": null + } + }, + "e9336c9463034174840a97c4f6f80900": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f1c8cc68c76e49ceaa6520fb122d2688": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fa4053af508e4354aef975d31157672d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3157,45 +3196,6 @@ "visibility": null, "width": null } - }, - "fa9377d23eda44e8957964ab3f834378": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ea3c571df8284e608dba611cf0bda070", - "placeholder": "​", - "style": "IPY_MODEL_95b7fdada2f54e64b4d1b098046d7218", - "tabbable": null, - "tooltip": null, - "value": "hyperparams.yaml: 100%" - } - }, - "fd81bf1b22344e1a941b3f6402e71534": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/data_monitor.html b/master/tutorials/datalab/data_monitor.html index 9397f50f5..4e1a33b10 100644 --- a/master/tutorials/datalab/data_monitor.html +++ b/master/tutorials/datalab/data_monitor.html @@ -661,7 +661,7 @@

1. Install and import required dependenciesdependencies = ["cleanlab", "matplotlib", "datasets"] # TODO: make sure this list is updated if "google.colab" in str(get_ipython()): # Check if it's running in Google Colab - %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2 + %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43 cmd = ' '.join([dep for dep in dependencies if dep != "cleanlab"]) %pip install $cmd else: @@ -1144,7 +1144,7 @@

5. Use DataMonitor to find issues in new data

-
+
diff --git a/master/tutorials/datalab/data_monitor.ipynb b/master/tutorials/datalab/data_monitor.ipynb index 44458bd52..4609f24f7 100644 --- a/master/tutorials/datalab/data_monitor.ipynb +++ b/master/tutorials/datalab/data_monitor.ipynb @@ -66,10 +66,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:41.669160Z", - "iopub.status.busy": "2024-04-12T10:17:41.668811Z", - "iopub.status.idle": "2024-04-12T10:17:42.797297Z", - "shell.execute_reply": "2024-04-12T10:17:42.796728Z" + "iopub.execute_input": "2024-04-22T21:46:13.744518Z", + "iopub.status.busy": "2024-04-22T21:46:13.744351Z", + "iopub.status.idle": "2024-04-22T21:46:14.870085Z", + "shell.execute_reply": "2024-04-22T21:46:14.869532Z" } }, "outputs": [], @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -103,10 +103,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:42.799837Z", - "iopub.status.busy": "2024-04-12T10:17:42.799432Z", - "iopub.status.idle": "2024-04-12T10:17:42.805345Z", - "shell.execute_reply": "2024-04-12T10:17:42.804916Z" + "iopub.execute_input": "2024-04-22T21:46:14.872704Z", + "iopub.status.busy": "2024-04-22T21:46:14.872251Z", + "iopub.status.idle": "2024-04-22T21:46:14.878566Z", + "shell.execute_reply": "2024-04-22T21:46:14.878145Z" } }, "outputs": [], @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:42.807490Z", - "iopub.status.busy": "2024-04-12T10:17:42.807205Z", - "iopub.status.idle": "2024-04-12T10:17:42.815823Z", - "shell.execute_reply": "2024-04-12T10:17:42.815366Z" + "iopub.execute_input": "2024-04-22T21:46:14.880789Z", + "iopub.status.busy": "2024-04-22T21:46:14.880342Z", + "iopub.status.idle": "2024-04-22T21:46:14.889368Z", + "shell.execute_reply": "2024-04-22T21:46:14.888938Z" } }, "outputs": [], @@ -334,10 +334,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:42.817660Z", - "iopub.status.busy": "2024-04-12T10:17:42.817487Z", - "iopub.status.idle": "2024-04-12T10:17:42.822546Z", - "shell.execute_reply": "2024-04-12T10:17:42.822123Z" + "iopub.execute_input": "2024-04-22T21:46:14.891468Z", + "iopub.status.busy": "2024-04-22T21:46:14.891141Z", + "iopub.status.idle": "2024-04-22T21:46:14.895971Z", + "shell.execute_reply": "2024-04-22T21:46:14.895564Z" } }, "outputs": [], @@ -350,10 +350,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:42.824509Z", - "iopub.status.busy": "2024-04-12T10:17:42.824331Z", - "iopub.status.idle": "2024-04-12T10:17:42.828188Z", - "shell.execute_reply": "2024-04-12T10:17:42.827674Z" + "iopub.execute_input": "2024-04-22T21:46:14.897761Z", + "iopub.status.busy": "2024-04-22T21:46:14.897586Z", + "iopub.status.idle": "2024-04-22T21:46:14.901552Z", + "shell.execute_reply": "2024-04-22T21:46:14.900999Z" } }, "outputs": [], @@ -431,10 +431,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:42.830272Z", - "iopub.status.busy": "2024-04-12T10:17:42.830090Z", - "iopub.status.idle": "2024-04-12T10:17:43.013457Z", - "shell.execute_reply": "2024-04-12T10:17:43.012931Z" + "iopub.execute_input": "2024-04-22T21:46:14.903856Z", + "iopub.status.busy": "2024-04-22T21:46:14.903437Z", + "iopub.status.idle": "2024-04-22T21:46:15.083764Z", + "shell.execute_reply": "2024-04-22T21:46:15.083274Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:43.015838Z", - "iopub.status.busy": "2024-04-12T10:17:43.015397Z", - "iopub.status.idle": "2024-04-12T10:17:43.307678Z", - "shell.execute_reply": "2024-04-12T10:17:43.307053Z" + "iopub.execute_input": "2024-04-22T21:46:15.086183Z", + "iopub.status.busy": "2024-04-22T21:46:15.085816Z", + "iopub.status.idle": "2024-04-22T21:46:15.378677Z", + "shell.execute_reply": "2024-04-22T21:46:15.378139Z" } }, "outputs": [ @@ -534,10 +534,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:43.310232Z", - "iopub.status.busy": "2024-04-12T10:17:43.309784Z", - "iopub.status.idle": "2024-04-12T10:17:43.334810Z", - "shell.execute_reply": "2024-04-12T10:17:43.334232Z" + "iopub.execute_input": "2024-04-22T21:46:15.381217Z", + "iopub.status.busy": "2024-04-22T21:46:15.380777Z", + "iopub.status.idle": "2024-04-22T21:46:15.405411Z", + "shell.execute_reply": "2024-04-22T21:46:15.404864Z" } }, "outputs": [], @@ -562,10 +562,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:43.337011Z", - "iopub.status.busy": "2024-04-12T10:17:43.336827Z", - "iopub.status.idle": "2024-04-12T10:17:44.928895Z", - "shell.execute_reply": "2024-04-12T10:17:44.928264Z" + "iopub.execute_input": "2024-04-22T21:46:15.407470Z", + "iopub.status.busy": "2024-04-22T21:46:15.407168Z", + "iopub.status.idle": "2024-04-22T21:46:17.021510Z", + "shell.execute_reply": "2024-04-22T21:46:17.020931Z" } }, "outputs": [ @@ -648,10 +648,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:44.931511Z", - "iopub.status.busy": "2024-04-12T10:17:44.931133Z", - "iopub.status.idle": "2024-04-12T10:17:44.934468Z", - "shell.execute_reply": "2024-04-12T10:17:44.934038Z" + "iopub.execute_input": "2024-04-22T21:46:17.023867Z", + "iopub.status.busy": "2024-04-22T21:46:17.023530Z", + "iopub.status.idle": "2024-04-22T21:46:17.027101Z", + "shell.execute_reply": "2024-04-22T21:46:17.026542Z" } }, "outputs": [], @@ -677,10 +677,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:44.936563Z", - "iopub.status.busy": "2024-04-12T10:17:44.936246Z", - "iopub.status.idle": "2024-04-12T10:17:44.945516Z", - "shell.execute_reply": "2024-04-12T10:17:44.945106Z" + "iopub.execute_input": "2024-04-22T21:46:17.029185Z", + "iopub.status.busy": "2024-04-22T21:46:17.028809Z", + "iopub.status.idle": "2024-04-22T21:46:17.038233Z", + "shell.execute_reply": "2024-04-22T21:46:17.037687Z" } }, "outputs": [], @@ -717,17 +717,17 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:44.947609Z", - "iopub.status.busy": "2024-04-12T10:17:44.947209Z", - "iopub.status.idle": "2024-04-12T10:17:50.019371Z", - "shell.execute_reply": "2024-04-12T10:17:50.018769Z" + "iopub.execute_input": "2024-04-22T21:46:17.040309Z", + "iopub.status.busy": "2024-04-22T21:46:17.040019Z", + "iopub.status.idle": "2024-04-22T21:46:22.111612Z", + "shell.execute_reply": "2024-04-22T21:46:22.111013Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "14b209f163f94661a4ec7a6bf2dbe133", + "model_id": "d80e9101a5ac423e850cc510500bf9fa", "version_major": 2, "version_minor": 0 }, @@ -787,17 +787,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:50.021762Z", - "iopub.status.busy": "2024-04-12T10:17:50.021344Z", - "iopub.status.idle": "2024-04-12T10:17:55.312517Z", - "shell.execute_reply": "2024-04-12T10:17:55.311928Z" + "iopub.execute_input": "2024-04-22T21:46:22.113724Z", + "iopub.status.busy": "2024-04-22T21:46:22.113409Z", + "iopub.status.idle": "2024-04-22T21:46:27.404556Z", + "shell.execute_reply": "2024-04-22T21:46:27.403973Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "feefa70763914f7fa89095ffbb69c608", + "model_id": "5d9b29e50a494152b085726eeac3580c", "version_major": 2, "version_minor": 0 }, @@ -925,10 +925,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:55.314998Z", - "iopub.status.busy": "2024-04-12T10:17:55.314818Z", - "iopub.status.idle": "2024-04-12T10:17:55.326305Z", - "shell.execute_reply": "2024-04-12T10:17:55.325890Z" + "iopub.execute_input": "2024-04-22T21:46:27.407482Z", + "iopub.status.busy": "2024-04-22T21:46:27.407101Z", + "iopub.status.idle": "2024-04-22T21:46:27.418263Z", + "shell.execute_reply": "2024-04-22T21:46:27.417819Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:55.328289Z", - "iopub.status.busy": "2024-04-12T10:17:55.328015Z", - "iopub.status.idle": "2024-04-12T10:17:55.333514Z", - "shell.execute_reply": "2024-04-12T10:17:55.333041Z" + "iopub.execute_input": "2024-04-22T21:46:27.420255Z", + "iopub.status.busy": "2024-04-22T21:46:27.420000Z", + "iopub.status.idle": "2024-04-22T21:46:27.425383Z", + "shell.execute_reply": "2024-04-22T21:46:27.424943Z" } }, "outputs": [ @@ -1244,7 +1244,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0f88f5d1fb42434082f564c14e222c88": { + "1421bc01a1c24a1d8e61cbf1226c4964": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1297,31 +1297,7 @@ "width": null } }, - "14b209f163f94661a4ec7a6bf2dbe133": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_524ddfc5562b432c8529efa4d65722e3", - "IPY_MODEL_7d726ca1be56440daf79d0ec358d4453", - "IPY_MODEL_afcd86ef92464c2993088d0e7b4cd1cf" - ], - "layout": "IPY_MODEL_4c6263fb232143f09c5febc1751ccdf1", - "tabbable": null, - "tooltip": null - } - }, - "1dfa27ce927744239e5c7192ac44958f": { + "1b2a8a6a7f4a476fbdc77c966daf9d2c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1339,7 +1315,7 @@ "text_color": null } }, - "1ef561f67ac74ff7a5db33a132b1f34e": { + "1fcccd37b669427697c397ad37a91b1a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1392,39 +1368,78 @@ "width": null } }, - "21bb02e8796045d9a3f3791964c20e15": { - "model_module": "@jupyter-widgets/controls", + "25a52110972143e78fbe7251e3492f91": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "327a055c897b420a8aa605f4e4ba47d3": { + "2d73f47535784f3d8944116ced763984": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4c6263fb232143f09c5febc1751ccdf1": { + "33cfaf09788d48a79c21c9290ea3ee24": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1477,30 +1492,60 @@ "width": null } }, - "524ddfc5562b432c8529efa4d65722e3": { - "model_module": "@jupyter-widgets/controls", + "3bb41c5959044426b6ca635535f88ad4": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb89e1f2e41b44a38b44e3bfb93c1e85", - "placeholder": "​", - "style": "IPY_MODEL_c8cf27ab66874b1fbcf07cf2e2e4a0d9", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "57ee8e1919ff476ab5a7253d7b7e7499": { + "3c89d8defd97466da0d623eabea5d734": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1515,15 +1560,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ca54407a51984bc3aad5b4be01807ce6", + "layout": "IPY_MODEL_3bb41c5959044426b6ca635535f88ad4", "placeholder": "​", - "style": "IPY_MODEL_1dfa27ce927744239e5c7192ac44958f", + "style": "IPY_MODEL_1b2a8a6a7f4a476fbdc77c966daf9d2c", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "value": " 7/7 [00:05<00:00,  1.32it/s]" } }, - "5beba4b6e9fb4978b55cd9fa4770fb83": { + "5490ff3a1bbe4290a846ca7a5f367106": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1541,33 +1586,54 @@ "text_color": null } }, - "7d726ca1be56440daf79d0ec358d4453": { + "5d9b29e50a494152b085726eeac3580c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ca11221c12cf4f9dbb42076c062a681c", + "IPY_MODEL_8278a76c9d5e4e5aae511062a66b91c1", + "IPY_MODEL_3c89d8defd97466da0d623eabea5d734" + ], + "layout": "IPY_MODEL_25a52110972143e78fbe7251e3492f91", + "tabbable": null, + "tooltip": null + } + }, + "63a7faf2ca424dd58c6f4d8ee200298c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f4345459833644bfa1a993fa357e59cc", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_21bb02e8796045d9a3f3791964c20e15", + "layout": "IPY_MODEL_bf15794777234cd1bde858121ecd5e3b", + "placeholder": "​", + "style": "IPY_MODEL_2d73f47535784f3d8944116ced763984", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 50/50 [00:05<00:00,  9.89it/s]" } }, - "8e56a01ee2fc4bc19104f105d85a540a": { + "80523c312f2a49b39ff09ba2caf641ff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1585,7 +1651,7 @@ "text_color": null } }, - "94e9ef5715d741cb97b012b2d8833606": { + "8278a76c9d5e4e5aae511062a66b91c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1601,40 +1667,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ef561f67ac74ff7a5db33a132b1f34e", + "layout": "IPY_MODEL_33cfaf09788d48a79c21c9290ea3ee24", "max": 7.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_327a055c897b420a8aa605f4e4ba47d3", + "style": "IPY_MODEL_fdc86c585c5d401fb861852bf208e4c2", "tabbable": null, "tooltip": null, "value": 7.0 } }, - "afcd86ef92464c2993088d0e7b4cd1cf": { + "9aee27fe07714f96b8f7a1861f3bd4a2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3b058057c5748ab84b20cc9f689fd07", - "placeholder": "​", - "style": "IPY_MODEL_8e56a01ee2fc4bc19104f105d85a540a", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.90it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "c757274996b14f92896e788bfde26ce5": { + "bf15794777234cd1bde858121ecd5e3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1687,25 +1746,33 @@ "width": null } }, - "c8cf27ab66874b1fbcf07cf2e2e4a0d9": { + "c12f50c9e56745dea30fd1df57e30c5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f931e88694164ebab2a73aab07b32851", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9aee27fe07714f96b8f7a1861f3bd4a2", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "ca54407a51984bc3aad5b4be01807ce6": { + "c5c5487965644d29b527bab503ba4c47": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1758,113 +1825,77 @@ "width": null } }, - "cb89e1f2e41b44a38b44e3bfb93c1e85": { - "model_module": "@jupyter-widgets/base", + "ca11221c12cf4f9dbb42076c062a681c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c5c5487965644d29b527bab503ba4c47", + "placeholder": "​", + "style": "IPY_MODEL_5490ff3a1bbe4290a846ca7a5f367106", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" } }, - "f3b058057c5748ab84b20cc9f689fd07": { - "model_module": "@jupyter-widgets/base", + "d80e9101a5ac423e850cc510500bf9fa": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e8f99d11bb3e4e5da994f33c47b0bb75", + "IPY_MODEL_c12f50c9e56745dea30fd1df57e30c5e", + "IPY_MODEL_63a7faf2ca424dd58c6f4d8ee200298c" + ], + "layout": "IPY_MODEL_1421bc01a1c24a1d8e61cbf1226c4964", + "tabbable": null, + "tooltip": null + } + }, + "e8f99d11bb3e4e5da994f33c47b0bb75": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1fcccd37b669427697c397ad37a91b1a", + "placeholder": "​", + "style": "IPY_MODEL_80523c312f2a49b39ff09ba2caf641ff", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "f4345459833644bfa1a993fa357e59cc": { + "f931e88694164ebab2a73aab07b32851": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1917,51 +1948,20 @@ "width": null } }, - "f566628576b1402c8c515b34e9fa0500": { + "fdc86c585c5d401fb861852bf208e4c2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0f88f5d1fb42434082f564c14e222c88", - "placeholder": "​", - "style": "IPY_MODEL_5beba4b6e9fb4978b55cd9fa4770fb83", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" - } - }, - "feefa70763914f7fa89095ffbb69c608": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_57ee8e1919ff476ab5a7253d7b7e7499", - "IPY_MODEL_94e9ef5715d741cb97b012b2d8833606", - "IPY_MODEL_f566628576b1402c8c515b34e9fa0500" - ], - "layout": "IPY_MODEL_c757274996b14f92896e788bfde26ce5", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index 0bfd8edeb..ba7e5695a 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1252,7 +1252,7 @@

Functionality 3: Save and load Datalab objects
-
+
@@ -1517,7 +1517,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"531334e563474f5fbb52c5335f5d1bb2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25922c7eb8594b4fbeada0c53feaa52b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5ac829abaa264949b56d2513222c9637": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_531334e563474f5fbb52c5335f5d1bb2", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_25922c7eb8594b4fbeada0c53feaa52b", "tabbable": null, "tooltip": null, "value": 132.0}}, "4caf2be02a664decbbd0bfb56cd6bc74": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f5d8d4af4db4171bdad7840fa4db504": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b34aef6fc89849ab899e22919998f262": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4caf2be02a664decbbd0bfb56cd6bc74", "placeholder": "\u200b", "style": "IPY_MODEL_1f5d8d4af4db4171bdad7840fa4db504", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "54dd231d197c41bf9b38e6f02739559c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b33fc6165aed4929b6d8e07b1bf17177": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f3c0119147cb4d4bbfde7a037e59705c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_54dd231d197c41bf9b38e6f02739559c", "placeholder": "\u200b", "style": "IPY_MODEL_b33fc6165aed4929b6d8e07b1bf17177", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712383.37\u2007examples/s]"}}, "ac3e588d1d3f459d98268c634284e72c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6562d6f35f9e458bb2f472d6f6be52da": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b34aef6fc89849ab899e22919998f262", "IPY_MODEL_5ac829abaa264949b56d2513222c9637", "IPY_MODEL_f3c0119147cb4d4bbfde7a037e59705c"], "layout": "IPY_MODEL_ac3e588d1d3f459d98268c634284e72c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"f4adc92360a34c76ada1bccf4cc83ce3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "feb9c399fd724af7aaa3222faa95f153": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b44740facb8d4444a7aff52bf6607e74": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f4adc92360a34c76ada1bccf4cc83ce3", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_feb9c399fd724af7aaa3222faa95f153", "tabbable": null, "tooltip": null, "value": 132.0}}, "e68f9551181b46c5b21ea1ea45e027eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0a0a90efd6e24783a3ad54630b88acac": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "06547d6203c84d8a9cda6e97cd3d4360": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e68f9551181b46c5b21ea1ea45e027eb", "placeholder": "\u200b", "style": "IPY_MODEL_0a0a90efd6e24783a3ad54630b88acac", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "4fefa2349eac431098f7f4887cd2dec3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c00cd633740f48eaab9d8711f7421f88": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "072333f697674abcaa2be0610cbcbced": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4fefa2349eac431098f7f4887cd2dec3", "placeholder": "\u200b", "style": "IPY_MODEL_c00cd633740f48eaab9d8711f7421f88", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713116.20\u2007examples/s]"}}, "14c14572a94e447f9d859c54de658854": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2a7bf5fe55545aaa12e92e78d6e31b4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_06547d6203c84d8a9cda6e97cd3d4360", "IPY_MODEL_b44740facb8d4444a7aff52bf6607e74", "IPY_MODEL_072333f697674abcaa2be0610cbcbced"], "layout": "IPY_MODEL_14c14572a94e447f9d859c54de658854", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index 081d9bd8b..914182fea 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:57.537354Z", - "iopub.status.busy": "2024-04-12T10:17:57.537174Z", - "iopub.status.idle": "2024-04-12T10:17:58.663963Z", - "shell.execute_reply": "2024-04-12T10:17:58.663342Z" + "iopub.execute_input": "2024-04-22T21:46:29.874726Z", + "iopub.status.busy": "2024-04-22T21:46:29.874554Z", + "iopub.status.idle": "2024-04-22T21:46:30.994922Z", + "shell.execute_reply": "2024-04-22T21:46:30.994425Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:58.666653Z", - "iopub.status.busy": "2024-04-12T10:17:58.666246Z", - "iopub.status.idle": "2024-04-12T10:17:58.669230Z", - "shell.execute_reply": "2024-04-12T10:17:58.668707Z" + "iopub.execute_input": "2024-04-22T21:46:30.997483Z", + "iopub.status.busy": "2024-04-22T21:46:30.996952Z", + "iopub.status.idle": "2024-04-22T21:46:31.000163Z", + "shell.execute_reply": "2024-04-22T21:46:30.999633Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:58.671397Z", - "iopub.status.busy": "2024-04-12T10:17:58.671137Z", - "iopub.status.idle": "2024-04-12T10:17:58.679392Z", - "shell.execute_reply": "2024-04-12T10:17:58.678939Z" + "iopub.execute_input": "2024-04-22T21:46:31.002432Z", + "iopub.status.busy": "2024-04-22T21:46:31.002135Z", + "iopub.status.idle": "2024-04-22T21:46:31.011032Z", + "shell.execute_reply": "2024-04-22T21:46:31.010483Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:58.681365Z", - "iopub.status.busy": "2024-04-12T10:17:58.681038Z", - "iopub.status.idle": "2024-04-12T10:17:58.685331Z", - "shell.execute_reply": "2024-04-12T10:17:58.684922Z" + "iopub.execute_input": "2024-04-22T21:46:31.013078Z", + "iopub.status.busy": "2024-04-22T21:46:31.012785Z", + "iopub.status.idle": "2024-04-22T21:46:31.017490Z", + "shell.execute_reply": "2024-04-22T21:46:31.017084Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:58.687324Z", - "iopub.status.busy": "2024-04-12T10:17:58.687005Z", - "iopub.status.idle": "2024-04-12T10:17:58.867649Z", - "shell.execute_reply": "2024-04-12T10:17:58.867099Z" + "iopub.execute_input": "2024-04-22T21:46:31.019527Z", + "iopub.status.busy": "2024-04-22T21:46:31.019209Z", + "iopub.status.idle": "2024-04-22T21:46:31.208028Z", + "shell.execute_reply": "2024-04-22T21:46:31.207414Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:58.870096Z", - "iopub.status.busy": "2024-04-12T10:17:58.869750Z", - "iopub.status.idle": "2024-04-12T10:17:59.236253Z", - "shell.execute_reply": "2024-04-12T10:17:59.235627Z" + "iopub.execute_input": "2024-04-22T21:46:31.210754Z", + "iopub.status.busy": "2024-04-22T21:46:31.210354Z", + "iopub.status.idle": "2024-04-22T21:46:31.525945Z", + "shell.execute_reply": "2024-04-22T21:46:31.525361Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:59.238520Z", - "iopub.status.busy": "2024-04-12T10:17:59.238186Z", - "iopub.status.idle": "2024-04-12T10:17:59.261436Z", - "shell.execute_reply": "2024-04-12T10:17:59.260868Z" + "iopub.execute_input": "2024-04-22T21:46:31.528217Z", + "iopub.status.busy": "2024-04-22T21:46:31.527870Z", + "iopub.status.idle": "2024-04-22T21:46:31.550820Z", + "shell.execute_reply": "2024-04-22T21:46:31.550365Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:59.263672Z", - "iopub.status.busy": "2024-04-12T10:17:59.263350Z", - "iopub.status.idle": "2024-04-12T10:17:59.274513Z", - "shell.execute_reply": "2024-04-12T10:17:59.273963Z" + "iopub.execute_input": "2024-04-22T21:46:31.552724Z", + "iopub.status.busy": "2024-04-22T21:46:31.552550Z", + "iopub.status.idle": "2024-04-22T21:46:31.563382Z", + "shell.execute_reply": "2024-04-22T21:46:31.562851Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:17:59.276722Z", - "iopub.status.busy": "2024-04-12T10:17:59.276420Z", - "iopub.status.idle": "2024-04-12T10:18:00.874672Z", - "shell.execute_reply": "2024-04-12T10:18:00.874100Z" + "iopub.execute_input": "2024-04-22T21:46:31.565489Z", + "iopub.status.busy": "2024-04-22T21:46:31.565182Z", + "iopub.status.idle": "2024-04-22T21:46:33.168541Z", + "shell.execute_reply": "2024-04-22T21:46:33.167919Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:00.877236Z", - "iopub.status.busy": "2024-04-12T10:18:00.876766Z", - "iopub.status.idle": "2024-04-12T10:18:00.898006Z", - "shell.execute_reply": "2024-04-12T10:18:00.897544Z" + "iopub.execute_input": "2024-04-22T21:46:33.170788Z", + "iopub.status.busy": "2024-04-22T21:46:33.170451Z", + "iopub.status.idle": "2024-04-22T21:46:33.191486Z", + "shell.execute_reply": "2024-04-22T21:46:33.190911Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:00.900036Z", - "iopub.status.busy": "2024-04-12T10:18:00.899705Z", - "iopub.status.idle": "2024-04-12T10:18:00.919256Z", - "shell.execute_reply": "2024-04-12T10:18:00.918712Z" + "iopub.execute_input": "2024-04-22T21:46:33.193654Z", + "iopub.status.busy": "2024-04-22T21:46:33.193363Z", + "iopub.status.idle": "2024-04-22T21:46:33.212631Z", + "shell.execute_reply": "2024-04-22T21:46:33.212077Z" } }, "outputs": [ @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:00.921330Z", - "iopub.status.busy": "2024-04-12T10:18:00.920941Z", - "iopub.status.idle": "2024-04-12T10:18:00.935927Z", - "shell.execute_reply": "2024-04-12T10:18:00.935371Z" + "iopub.execute_input": "2024-04-22T21:46:33.214536Z", + "iopub.status.busy": "2024-04-22T21:46:33.214240Z", + "iopub.status.idle": "2024-04-22T21:46:33.228308Z", + "shell.execute_reply": "2024-04-22T21:46:33.227792Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:00.938187Z", - "iopub.status.busy": "2024-04-12T10:18:00.937854Z", - "iopub.status.idle": "2024-04-12T10:18:00.957370Z", - "shell.execute_reply": "2024-04-12T10:18:00.956830Z" + "iopub.execute_input": "2024-04-22T21:46:33.230592Z", + "iopub.status.busy": "2024-04-22T21:46:33.230175Z", + "iopub.status.idle": "2024-04-22T21:46:33.250434Z", + "shell.execute_reply": "2024-04-22T21:46:33.249922Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6562d6f35f9e458bb2f472d6f6be52da", + "model_id": "b2a7bf5fe55545aaa12e92e78d6e31b4", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:00.959233Z", - "iopub.status.busy": "2024-04-12T10:18:00.959054Z", - "iopub.status.idle": "2024-04-12T10:18:00.973873Z", - "shell.execute_reply": "2024-04-12T10:18:00.973346Z" + "iopub.execute_input": "2024-04-22T21:46:33.252526Z", + "iopub.status.busy": "2024-04-22T21:46:33.252114Z", + "iopub.status.idle": "2024-04-22T21:46:33.266769Z", + "shell.execute_reply": "2024-04-22T21:46:33.266252Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:00.975971Z", - "iopub.status.busy": "2024-04-12T10:18:00.975548Z", - "iopub.status.idle": "2024-04-12T10:18:00.981326Z", - "shell.execute_reply": "2024-04-12T10:18:00.980785Z" + "iopub.execute_input": "2024-04-22T21:46:33.268763Z", + "iopub.status.busy": "2024-04-22T21:46:33.268466Z", + "iopub.status.idle": "2024-04-22T21:46:33.274107Z", + "shell.execute_reply": "2024-04-22T21:46:33.273587Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:00.983346Z", - "iopub.status.busy": "2024-04-12T10:18:00.982946Z", - "iopub.status.idle": "2024-04-12T10:18:01.001772Z", - "shell.execute_reply": "2024-04-12T10:18:01.001307Z" + "iopub.execute_input": "2024-04-22T21:46:33.276141Z", + "iopub.status.busy": "2024-04-22T21:46:33.275745Z", + "iopub.status.idle": "2024-04-22T21:46:33.293224Z", + "shell.execute_reply": "2024-04-22T21:46:33.292683Z" } }, "outputs": [ @@ -1431,41 +1431,71 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1f5d8d4af4db4171bdad7840fa4db504": { + "06547d6203c84d8a9cda6e97cd3d4360": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e68f9551181b46c5b21ea1ea45e027eb", + "placeholder": "​", + "style": "IPY_MODEL_0a0a90efd6e24783a3ad54630b88acac", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" } }, - "25922c7eb8594b4fbeada0c53feaa52b": { + "072333f697674abcaa2be0610cbcbced": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4fefa2349eac431098f7f4887cd2dec3", + "placeholder": "​", + "style": "IPY_MODEL_c00cd633740f48eaab9d8711f7421f88", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13116.20 examples/s]" + } + }, + "0a0a90efd6e24783a3ad54630b88acac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4caf2be02a664decbbd0bfb56cd6bc74": { + "14c14572a94e447f9d859c54de658854": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1518,7 +1548,7 @@ "width": null } }, - "531334e563474f5fbb52c5335f5d1bb2": { + "4fefa2349eac431098f7f4887cd2dec3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1571,7 +1601,75 @@ "width": null } }, - "54dd231d197c41bf9b38e6f02739559c": { + "b2a7bf5fe55545aaa12e92e78d6e31b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_06547d6203c84d8a9cda6e97cd3d4360", + "IPY_MODEL_b44740facb8d4444a7aff52bf6607e74", + "IPY_MODEL_072333f697674abcaa2be0610cbcbced" + ], + "layout": "IPY_MODEL_14c14572a94e447f9d859c54de658854", + "tabbable": null, + "tooltip": null + } + }, + "b44740facb8d4444a7aff52bf6607e74": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f4adc92360a34c76ada1bccf4cc83ce3", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_feb9c399fd724af7aaa3222faa95f153", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "c00cd633740f48eaab9d8711f7421f88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e68f9551181b46c5b21ea1ea45e027eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1624,57 +1722,7 @@ "width": null } }, - "5ac829abaa264949b56d2513222c9637": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_531334e563474f5fbb52c5335f5d1bb2", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_25922c7eb8594b4fbeada0c53feaa52b", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "6562d6f35f9e458bb2f472d6f6be52da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b34aef6fc89849ab899e22919998f262", - "IPY_MODEL_5ac829abaa264949b56d2513222c9637", - "IPY_MODEL_f3c0119147cb4d4bbfde7a037e59705c" - ], - "layout": "IPY_MODEL_ac3e588d1d3f459d98268c634284e72c", - "tabbable": null, - "tooltip": null - } - }, - "ac3e588d1d3f459d98268c634284e72c": { + "f4adc92360a34c76ada1bccf4cc83ce3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1727,68 +1775,20 @@ "width": null } }, - "b33fc6165aed4929b6d8e07b1bf17177": { + "feb9c399fd724af7aaa3222faa95f153": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b34aef6fc89849ab899e22919998f262": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4caf2be02a664decbbd0bfb56cd6bc74", - "placeholder": "​", - "style": "IPY_MODEL_1f5d8d4af4db4171bdad7840fa4db504", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "f3c0119147cb4d4bbfde7a037e59705c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54dd231d197c41bf9b38e6f02739559c", - "placeholder": "​", - "style": "IPY_MODEL_b33fc6165aed4929b6d8e07b1bf17177", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12383.37 examples/s]" + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index f73cde1ad..68ba6fcff 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:03.571183Z", - "iopub.status.busy": "2024-04-12T10:18:03.571002Z", - "iopub.status.idle": "2024-04-12T10:18:04.712412Z", - "shell.execute_reply": "2024-04-12T10:18:04.711814Z" + "iopub.execute_input": "2024-04-22T21:46:36.105696Z", + "iopub.status.busy": "2024-04-22T21:46:36.105526Z", + "iopub.status.idle": "2024-04-22T21:46:37.279773Z", + "shell.execute_reply": "2024-04-22T21:46:37.279242Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:04.714892Z", - "iopub.status.busy": "2024-04-12T10:18:04.714632Z", - "iopub.status.idle": "2024-04-12T10:18:04.717733Z", - "shell.execute_reply": "2024-04-12T10:18:04.717311Z" + "iopub.execute_input": "2024-04-22T21:46:37.282289Z", + "iopub.status.busy": "2024-04-22T21:46:37.281829Z", + "iopub.status.idle": "2024-04-22T21:46:37.284941Z", + "shell.execute_reply": "2024-04-22T21:46:37.284348Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:04.720025Z", - "iopub.status.busy": "2024-04-12T10:18:04.719625Z", - "iopub.status.idle": "2024-04-12T10:18:04.728601Z", - "shell.execute_reply": "2024-04-12T10:18:04.728120Z" + "iopub.execute_input": "2024-04-22T21:46:37.287259Z", + "iopub.status.busy": "2024-04-22T21:46:37.287084Z", + "iopub.status.idle": "2024-04-22T21:46:37.296613Z", + "shell.execute_reply": "2024-04-22T21:46:37.296070Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:04.730623Z", - "iopub.status.busy": "2024-04-12T10:18:04.730192Z", - "iopub.status.idle": "2024-04-12T10:18:04.734750Z", - "shell.execute_reply": "2024-04-12T10:18:04.734200Z" + "iopub.execute_input": "2024-04-22T21:46:37.298597Z", + "iopub.status.busy": "2024-04-22T21:46:37.298295Z", + "iopub.status.idle": "2024-04-22T21:46:37.303320Z", + "shell.execute_reply": "2024-04-22T21:46:37.302902Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:04.737017Z", - "iopub.status.busy": "2024-04-12T10:18:04.736731Z", - "iopub.status.idle": "2024-04-12T10:18:04.918284Z", - "shell.execute_reply": "2024-04-12T10:18:04.917688Z" + "iopub.execute_input": "2024-04-22T21:46:37.305351Z", + "iopub.status.busy": "2024-04-22T21:46:37.305050Z", + "iopub.status.idle": "2024-04-22T21:46:37.490442Z", + "shell.execute_reply": "2024-04-22T21:46:37.489950Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:04.920725Z", - "iopub.status.busy": "2024-04-12T10:18:04.920529Z", - "iopub.status.idle": "2024-04-12T10:18:05.230186Z", - "shell.execute_reply": "2024-04-12T10:18:05.229635Z" + "iopub.execute_input": "2024-04-22T21:46:37.492878Z", + "iopub.status.busy": "2024-04-22T21:46:37.492566Z", + "iopub.status.idle": "2024-04-22T21:46:37.863805Z", + "shell.execute_reply": "2024-04-22T21:46:37.863244Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:05.232398Z", - "iopub.status.busy": "2024-04-12T10:18:05.232044Z", - "iopub.status.idle": "2024-04-12T10:18:05.234852Z", - "shell.execute_reply": "2024-04-12T10:18:05.234403Z" + "iopub.execute_input": "2024-04-22T21:46:37.866112Z", + "iopub.status.busy": "2024-04-22T21:46:37.865793Z", + "iopub.status.idle": "2024-04-22T21:46:37.868626Z", + "shell.execute_reply": "2024-04-22T21:46:37.868099Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:05.236894Z", - "iopub.status.busy": "2024-04-12T10:18:05.236560Z", - "iopub.status.idle": "2024-04-12T10:18:05.271348Z", - "shell.execute_reply": "2024-04-12T10:18:05.270852Z" + "iopub.execute_input": "2024-04-22T21:46:37.870548Z", + "iopub.status.busy": "2024-04-22T21:46:37.870366Z", + "iopub.status.idle": "2024-04-22T21:46:37.906093Z", + "shell.execute_reply": "2024-04-22T21:46:37.905517Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:05.273241Z", - "iopub.status.busy": "2024-04-12T10:18:05.272940Z", - "iopub.status.idle": "2024-04-12T10:18:06.891902Z", - "shell.execute_reply": "2024-04-12T10:18:06.891232Z" + "iopub.execute_input": "2024-04-22T21:46:37.908131Z", + "iopub.status.busy": "2024-04-22T21:46:37.907946Z", + "iopub.status.idle": "2024-04-22T21:46:39.549633Z", + "shell.execute_reply": "2024-04-22T21:46:39.548974Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:06.894445Z", - "iopub.status.busy": "2024-04-12T10:18:06.893953Z", - "iopub.status.idle": "2024-04-12T10:18:06.912615Z", - "shell.execute_reply": "2024-04-12T10:18:06.912142Z" + "iopub.execute_input": "2024-04-22T21:46:39.552268Z", + "iopub.status.busy": "2024-04-22T21:46:39.551778Z", + "iopub.status.idle": "2024-04-22T21:46:39.569833Z", + "shell.execute_reply": "2024-04-22T21:46:39.569355Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:06.914597Z", - "iopub.status.busy": "2024-04-12T10:18:06.914334Z", - "iopub.status.idle": "2024-04-12T10:18:06.920593Z", - "shell.execute_reply": "2024-04-12T10:18:06.920102Z" + "iopub.execute_input": "2024-04-22T21:46:39.571847Z", + "iopub.status.busy": "2024-04-22T21:46:39.571520Z", + "iopub.status.idle": "2024-04-22T21:46:39.577789Z", + "shell.execute_reply": "2024-04-22T21:46:39.577347Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:06.922598Z", - "iopub.status.busy": "2024-04-12T10:18:06.922269Z", - "iopub.status.idle": "2024-04-12T10:18:06.927897Z", - "shell.execute_reply": "2024-04-12T10:18:06.927454Z" + "iopub.execute_input": "2024-04-22T21:46:39.579725Z", + "iopub.status.busy": "2024-04-22T21:46:39.579474Z", + "iopub.status.idle": "2024-04-22T21:46:39.585013Z", + "shell.execute_reply": "2024-04-22T21:46:39.584524Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:06.929858Z", - "iopub.status.busy": "2024-04-12T10:18:06.929533Z", - "iopub.status.idle": "2024-04-12T10:18:06.939749Z", - "shell.execute_reply": "2024-04-12T10:18:06.939201Z" + "iopub.execute_input": "2024-04-22T21:46:39.586932Z", + "iopub.status.busy": "2024-04-22T21:46:39.586742Z", + "iopub.status.idle": "2024-04-22T21:46:39.597229Z", + "shell.execute_reply": "2024-04-22T21:46:39.596656Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:06.941872Z", - "iopub.status.busy": "2024-04-12T10:18:06.941565Z", - "iopub.status.idle": "2024-04-12T10:18:06.950134Z", - "shell.execute_reply": "2024-04-12T10:18:06.949587Z" + "iopub.execute_input": "2024-04-22T21:46:39.599324Z", + "iopub.status.busy": "2024-04-22T21:46:39.598903Z", + "iopub.status.idle": "2024-04-22T21:46:39.607600Z", + "shell.execute_reply": "2024-04-22T21:46:39.607146Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:06.952160Z", - "iopub.status.busy": "2024-04-12T10:18:06.951835Z", - "iopub.status.idle": "2024-04-12T10:18:06.958793Z", - "shell.execute_reply": "2024-04-12T10:18:06.958256Z" + "iopub.execute_input": "2024-04-22T21:46:39.609656Z", + "iopub.status.busy": "2024-04-22T21:46:39.609258Z", + "iopub.status.idle": "2024-04-22T21:46:39.617773Z", + "shell.execute_reply": "2024-04-22T21:46:39.617316Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:06.960723Z", - "iopub.status.busy": "2024-04-12T10:18:06.960554Z", - "iopub.status.idle": "2024-04-12T10:18:06.969666Z", - "shell.execute_reply": "2024-04-12T10:18:06.969143Z" + "iopub.execute_input": "2024-04-22T21:46:39.619983Z", + "iopub.status.busy": "2024-04-22T21:46:39.619568Z", + "iopub.status.idle": "2024-04-22T21:46:39.629123Z", + "shell.execute_reply": "2024-04-22T21:46:39.628685Z" } }, "outputs": [ diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 9c963859d..6becc1f73 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -645,7 +645,7 @@

Detecting Issues in an Image Dataset with Datalab

1. Install and import required dependencies#

You can use pip to install all packages required for this tutorial as follows:

-

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1021,7 +1024,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings

-
+
@@ -1053,7 +1056,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1085,7 +1088,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1881,35 +1884,35 @@

Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -2003,35 +2006,35 @@

Low information images - low_information_score is_low_information_issue + low_information_score 53050 - 0.067975 True + 0.067975 40875 - 0.089929 True + 0.089929 9594 - 0.092601 True + 0.092601 34825 - 0.107744 True + 0.107744 37530 - 0.108516 True + 0.108516 @@ -2059,7 +2062,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 24f46181c..2625074f1 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -57,7 +57,7 @@ "You can use `pip` to install all packages required for this tutorial as follows:\n", "\n", "```ipython3\n", - "!pip install matplotlib torch torchvision datasets\n", + "!pip install matplotlib torch torchvision datasets>=2.19.0\n", "!pip install \"cleanlab[image]\"\n", "# We install cleanlab with extra dependencies for image data\n", "# Make sure to install the version corresponding to this tutorial\n", @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:09.522414Z", - "iopub.status.busy": "2024-04-12T10:18:09.522250Z", - "iopub.status.idle": "2024-04-12T10:18:12.283715Z", - "shell.execute_reply": "2024-04-12T10:18:12.283173Z" + "iopub.execute_input": "2024-04-22T21:46:42.299574Z", + "iopub.status.busy": "2024-04-22T21:46:42.299093Z", + "iopub.status.idle": "2024-04-22T21:46:45.119929Z", + "shell.execute_reply": "2024-04-22T21:46:45.119370Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:12.286267Z", - "iopub.status.busy": "2024-04-12T10:18:12.285977Z", - "iopub.status.idle": "2024-04-12T10:18:12.289701Z", - "shell.execute_reply": "2024-04-12T10:18:12.289254Z" + "iopub.execute_input": "2024-04-22T21:46:45.122500Z", + "iopub.status.busy": "2024-04-22T21:46:45.122114Z", + "iopub.status.idle": "2024-04-22T21:46:45.125643Z", + "shell.execute_reply": "2024-04-22T21:46:45.125212Z" } }, "outputs": [], @@ -152,71 +152,45 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:18:12.291690Z", - "iopub.status.busy": "2024-04-12T10:18:12.291358Z", - "iopub.status.idle": "2024-04-12T10:18:15.356177Z", - "shell.execute_reply": "2024-04-12T10:18:15.355698Z" + "iopub.execute_input": "2024-04-22T21:46:45.127698Z", + "iopub.status.busy": "2024-04-22T21:46:45.127382Z", + "iopub.status.idle": "2024-04-22T21:46:48.603680Z", + "shell.execute_reply": "2024-04-22T21:46:48.603157Z" } }, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "Downloading data: 0%| | 0.00/30.9M [00:00\n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2307,10 +2281,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:53.671574Z", - "iopub.status.busy": "2024-04-12T10:22:53.671403Z", - "iopub.status.idle": "2024-04-12T10:22:53.676121Z", - "shell.execute_reply": "2024-04-12T10:22:53.675434Z" + "iopub.execute_input": "2024-04-22T21:51:27.185290Z", + "iopub.status.busy": "2024-04-22T21:51:27.185089Z", + "iopub.status.idle": "2024-04-22T21:51:27.191494Z", + "shell.execute_reply": "2024-04-22T21:51:27.190972Z" }, "nbsphinx": "hidden" }, @@ -2347,10 +2321,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:53.678484Z", - "iopub.status.busy": "2024-04-12T10:22:53.678315Z", - "iopub.status.idle": "2024-04-12T10:22:53.853585Z", - "shell.execute_reply": "2024-04-12T10:22:53.853016Z" + "iopub.execute_input": "2024-04-22T21:51:27.193684Z", + "iopub.status.busy": "2024-04-22T21:51:27.193496Z", + "iopub.status.idle": "2024-04-22T21:51:27.393905Z", + "shell.execute_reply": "2024-04-22T21:51:27.393350Z" } }, "outputs": [ @@ -2392,10 +2366,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:53.855877Z", - "iopub.status.busy": "2024-04-12T10:22:53.855704Z", - "iopub.status.idle": "2024-04-12T10:22:53.863518Z", - "shell.execute_reply": "2024-04-12T10:22:53.862996Z" + "iopub.execute_input": "2024-04-22T21:51:27.396174Z", + "iopub.status.busy": "2024-04-22T21:51:27.395762Z", + "iopub.status.idle": "2024-04-22T21:51:27.403512Z", + "shell.execute_reply": "2024-04-22T21:51:27.403051Z" } }, "outputs": [ @@ -2420,47 +2394,47 @@ " \n", " \n", " \n", - " low_information_score\n", " is_low_information_issue\n", + " low_information_score\n", " \n", " \n", " \n", " \n", " 53050\n", - " 0.067975\n", " True\n", + " 0.067975\n", " \n", " \n", " 40875\n", - " 0.089929\n", " True\n", + " 0.089929\n", " \n", " \n", " 9594\n", - " 0.092601\n", " True\n", + " 0.092601\n", " \n", " \n", " 34825\n", - " 0.107744\n", " True\n", + " 0.107744\n", " \n", " \n", " 37530\n", - " 0.108516\n", " True\n", + " 0.108516\n", " \n", " \n", "\n", "
" ], "text/plain": [ - " low_information_score is_low_information_issue\n", - "53050 0.067975 True\n", - "40875 0.089929 True\n", - "9594 0.092601 True\n", - "34825 0.107744 True\n", - "37530 0.108516 True" + " is_low_information_issue low_information_score\n", + "53050 True 0.067975\n", + "40875 True 0.089929\n", + "9594 True 0.092601\n", + "34825 True 0.107744\n", + "37530 True 0.108516" ] }, "execution_count": 29, @@ -2481,10 +2455,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:53.865635Z", - "iopub.status.busy": "2024-04-12T10:22:53.865249Z", - "iopub.status.idle": "2024-04-12T10:22:54.032464Z", - "shell.execute_reply": "2024-04-12T10:22:54.031914Z" + "iopub.execute_input": "2024-04-22T21:51:27.405486Z", + "iopub.status.busy": "2024-04-22T21:51:27.405174Z", + "iopub.status.idle": "2024-04-22T21:51:27.603905Z", + "shell.execute_reply": "2024-04-22T21:51:27.603338Z" } }, "outputs": [ @@ -2524,10 +2498,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:54.034461Z", - "iopub.status.busy": "2024-04-12T10:22:54.034288Z", - "iopub.status.idle": "2024-04-12T10:22:54.038711Z", - "shell.execute_reply": "2024-04-12T10:22:54.038253Z" + "iopub.execute_input": "2024-04-22T21:51:27.606168Z", + "iopub.status.busy": "2024-04-22T21:51:27.605820Z", + "iopub.status.idle": "2024-04-22T21:51:27.610280Z", + "shell.execute_reply": "2024-04-22T21:51:27.609863Z" }, "nbsphinx": "hidden" }, @@ -2564,130 +2538,101 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "02aa7aa815b846d6825de794a39e43d3": { + "06eeda89138d4f9cb0591265de93cf33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_44f58c09a06b40749b5039f5d51cde64", - "placeholder": "​", - "style": "IPY_MODEL_e61c93af0eba452b8343196f5ce0b896", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_59110a63f7bc403b9be6d465faa18a9d", + "IPY_MODEL_262cdea3a25e4af5a6fade2a4253a59d", + "IPY_MODEL_fb428a754bdc4020a571efeb1e699942" + ], + "layout": "IPY_MODEL_0b0640ddc13e496a8d28040572fc6783", "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:45<00:00, 811.34it/s]" + "tooltip": null } }, - "02b62cf37f1b4b5fbc52831c07583841": { + "075dfdfbb299439497d5b44d7843cddb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6bed8dce4cb4b9e889847ad45e96d17", - "placeholder": "​", - "style": "IPY_MODEL_8f13f9842f5e4d8eacca7b538e4ad854", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_74a7a0ebc7464db2bb2ec8ce05b62826", + "IPY_MODEL_bb559c6645ad40198025d78404a023a4", + "IPY_MODEL_25e4014520c240bca37b585313a2b809" + ], + "layout": "IPY_MODEL_71bc40ec9a174f93b63f0d5870a63723", "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "tooltip": null } }, - "03f73e8be3214af4a3ba1b71864a7973": { - "model_module": "@jupyter-widgets/base", + "07ccd6701f3a42d786227ea4159ad159": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_241d9bdce9324df6925381f936ba97c9", + "placeholder": "​", + "style": "IPY_MODEL_e90fcd89988d45cfaca0ec05bc3a3b66", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "0455f236fdb64796ab989306a80244ca": { + "086acd8397f6464a89d86eae66b1467e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b2e1bdd3278d49f3b4228b9170723ac0", - "IPY_MODEL_9f715596f1d247afa2a4d367b47ad014", - "IPY_MODEL_02aa7aa815b846d6825de794a39e43d3" - ], - "layout": "IPY_MODEL_1144476a3e8148d88304d1491863522a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8ebeebe0947b4196924fe8b151a7e458", + "placeholder": "​", + "style": "IPY_MODEL_b82cc8f880874f01bd91706bb981ebde", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "04a628c5a8aa4dd2b35e6faf391d4e03": { + "08b35994ca9944a684a5b30e2db47952": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2740,56 +2685,41 @@ "width": null } }, - "0a7466066ad24fb6b2aa5eed0afcd1e0": { + "0902dc20bfd543a298156a7ffeb71f69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_04a628c5a8aa4dd2b35e6faf391d4e03", - "placeholder": "​", - "style": "IPY_MODEL_80b478f9f0674adbb2ff4d666adb3144", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0c7ec5fe8acd47d3809bf609a89c864f": { + "0a67b9129a4c41be893778799dd3e33c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_190b5184d5fd4761aca11b22a26f5a8e", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2c07b9f454e14478ad04e666c2700dd2", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "0e9f0fd30f6d435d9bc20b6f61c0f2fd": { + "0aa95b525dfb4cffa6738016ec0a929b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2842,7 +2772,7 @@ "width": null } }, - "0fd1a013d1324348910b1d08c3b3377a": { + "0b0640ddc13e496a8d28040572fc6783": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2895,7 +2825,25 @@ "width": null } }, - "1144476a3e8148d88304d1491863522a": { + "0b0f68b39f1f4129984bab940f56b609": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0d013754c7f14ca0950338e735f3303a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2948,33 +2896,83 @@ "width": null } }, - "147586f3357c4142a726d3c4888b61bd": { + "12111d06b5c846d4b8a039591cfd75c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6f83e16c5fe14880a8040188f55da07f", - "placeholder": "​", - "style": "IPY_MODEL_ecd3c5249d86402e84c13b074d11004b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e3e2004b573b416992ed7109da94134a", + "IPY_MODEL_a6a09fca07064475927cb950137fce33", + "IPY_MODEL_13146069c5ef419faf26df577dde6485" + ], + "layout": "IPY_MODEL_fcc4b333e4d94b5fb6798ba6bd9e0c37", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.42it/s]" + "tooltip": null } }, - "14ebcd0568cf4e1d80a851199ea4ded1": { + "13146069c5ef419faf26df577dde6485": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a5a7bfd7829d4c4c886803bc8275afe3", + "placeholder": "​", + "style": "IPY_MODEL_d0fc51710b7e44dab28856f8fefeeecd", + "tabbable": null, + "tooltip": null, + "value": " 2/2 [00:00<00:00, 614.33it/s]" + } + }, + "15ab4017801f4bc28c8ffcda1d378be3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_08b35994ca9944a684a5b30e2db47952", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_eed181946bee47e8b8cff4dadd971cad", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "1ac8ed2dbee1474496a41a645c0c1eff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", @@ -2989,7 +2987,7 @@ "text_color": null } }, - "1650325f79d6441bb803e37c32382c94": { + "214f0d45bb144e44812e1cd974d71774": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3004,16 +3002,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d1fa4ab4971b4b1a97ad09f597ce0005", - "IPY_MODEL_88a33c5239d44a959fd23f4a3bf4239d", - "IPY_MODEL_d2bb5a77ebfc4577ae593a6d71e5a54e" + "IPY_MODEL_086acd8397f6464a89d86eae66b1467e", + "IPY_MODEL_41a1f01b8eaf48e581a5b349f7befb05", + "IPY_MODEL_a9564bc645fc44d5b9cf9fdf2c98ebcd" ], - "layout": "IPY_MODEL_b2e3fc29bcbe4c319779a3e9de6d8542", + "layout": "IPY_MODEL_5e4aa11dc6464655b84497965e8f2c1b", "tabbable": null, "tooltip": null } }, - "190b5184d5fd4761aca11b22a26f5a8e": { + "2298a976ad904603af3ee5ef5c1a3549": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3066,96 +3064,31 @@ "width": null } }, - "1986423b5057455fbcf741624c4e1156": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1c300cedb5f94d169522af14149d605c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2142f782834a4d5399fe0b6599716397": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "22998f7b85ec4497a3c8abce7cc3984c": { + "22af21d5758f47ed8c5aff93d99f1eb8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_952127f614bb4cf9bfd563bc7b716ff1", - "placeholder": "​", - "style": "IPY_MODEL_b8e2a441399849d987355d944e674ffa", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c6593a4d742340b5a9a979fb281a0adc", + "IPY_MODEL_15ab4017801f4bc28c8ffcda1d378be3", + "IPY_MODEL_7ce0e37bc05243879b80865f93025d14" + ], + "layout": "IPY_MODEL_5c7347b53a124f43b5f1b1c5602b1ffd", "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "2828b73012c7416ba7d800c10fc9519b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null } }, - "2adcbc83ae0a4318b963d08b1959ea86": { + "239c737f46d840da885833e972580c4c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3208,7 +3141,7 @@ "width": null } }, - "2b6ff6ed70654818b8c5c965649f8963": { + "23c8a161b5d54a6eab69dcef0d1f2289": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3223,15 +3156,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0e9f0fd30f6d435d9bc20b6f61c0f2fd", + "layout": "IPY_MODEL_2706c906b1984affb0d0e7d7fbf869d6", "placeholder": "​", - "style": "IPY_MODEL_8eda62240a844dc8add0a53f75fddbb3", + "style": "IPY_MODEL_f22aef94a5384220b26893e15a7f9a93", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" + "value": " 60000/60000 [00:00<00:00, 298366.54 examples/s]" } }, - "2c07b9f454e14478ad04e666c2700dd2": { + "2413e7bf36f549b7a6e5d5d8321385d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3247,25 +3180,7 @@ "description_width": "" } }, - "32680ffbffc047b292cfc60dd3742270": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "373e5d2b2c5b4b908c84363defd3b4b5": { + "241d9bdce9324df6925381f936ba97c9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3318,48 +3233,7 @@ "width": null } }, - "3a8da44a25d0486a85f3a6d4e9c9be7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3ca31c427ac64cf2926617bfb55f4d8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d091685f04447b79981ca5080823361", - "placeholder": "​", - "style": "IPY_MODEL_8b61af9d7d4548cf838e78654ff25e03", - "tabbable": null, - "tooltip": null, - "value": " 2/2 [00:00<00:00, 591.91it/s]" - } - }, - "3e53b84c85d143bd839a75b4a46c105a": { + "24b369c811cd48c8a403d7df384e5b5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3412,70 +3286,56 @@ "width": null } }, - "3edcd89f710f48b992b7cd96bcf1c0c5": { + "25e4014520c240bca37b585313a2b809": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_67d833b083c34f4dbd54ee46643c72df", - "IPY_MODEL_ebd258422ac14e8ea1c43166dc17533a", - "IPY_MODEL_5d215973d6bc4905a7fe9d829730909c" - ], - "layout": "IPY_MODEL_373e5d2b2c5b4b908c84363defd3b4b5", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_539767b68efe4bb1852762f8a4963e13", + "placeholder": "​", + "style": "IPY_MODEL_3a5d39f22fbc40df8d56495e2bcae35f", "tabbable": null, - "tooltip": null - } - }, - "40f040897c8b46b8aeb514a211607f9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.81it/s]" } }, - "421d29fd3f2a434ca422993000da5c09": { + "262cdea3a25e4af5a6fade2a4253a59d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_edd1d0858fdc47fb8cd561ec01046d35", - "placeholder": "​", - "style": "IPY_MODEL_599880db00d149409fa3bb013bbf2a82", + "layout": "IPY_MODEL_dbcfa560af5e43aba4b839659c80a569", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2413e7bf36f549b7a6e5d5d8321385d4", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 40.0 } }, - "4247a9372b8049de86a34cc77483c052": { + "2706c906b1984affb0d0e7d7fbf869d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3528,7 +3388,49 @@ "width": null } }, - "435b45cec9564a2ab72bb08af983c9f1": { + "27cdd1f63f2942b7a7f52037478576a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2f9364c1f6bd41b980ce64e83a497305": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c82f7ce8b3b048ca8dd6be97d98c2ff8", + "IPY_MODEL_5ec79d6bb58a4a339e44ad03833ddd73", + "IPY_MODEL_3d40def91f6d452198996f9c4d63c30b" + ], + "layout": "IPY_MODEL_cf376dc2e03942899bf0534a1f81e070", + "tabbable": null, + "tooltip": null + } + }, + "306ffe1638a34f1db49f116e4b3d40b5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3581,7 +3483,7 @@ "width": null } }, - "44e1ba4090d040698f36744323e05a7d": { + "31684d40b1c14845b41cdceed9f73395": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3634,10 +3536,28 @@ "width": null } }, - "44f58c09a06b40749b5039f5d51cde64": { - "model_module": "@jupyter-widgets/base", + "32b173f655ed4f1db1d734787e34df35": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "3375f3884b154835b7545beed9a74a4e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3687,7 +3607,7 @@ "width": null } }, - "485d9634917e4d568529e19ea0fa8f95": { + "33d1e1b13c7949499987b06bb34f7970": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3705,162 +3625,160 @@ "text_color": null } }, - "4ea9ee23440549f5a87db408e0dbdc17": { + "34da655764d3453e87e3e8edc0580ab6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2adcbc83ae0a4318b963d08b1959ea86", - "placeholder": "​", - "style": "IPY_MODEL_670217afbf65407f9c9d905cb66ae29a", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "53d8f50c663346d982fc143c63b140ec": { + "3509bd951eed4c8d8c33450972f39ffc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_435b45cec9564a2ab72bb08af983c9f1", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_99e31dc384aa4ca88fbd102b461d5350", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "599880db00d149409fa3bb013bbf2a82": { - "model_module": "@jupyter-widgets/controls", + "354af9f7333141069d08c19ad05b90c2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5d215973d6bc4905a7fe9d829730909c": { + "39094f6e6f94433fa4bee5395c08e248": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_936fe16657cd41c5a2383132456f8898", - "placeholder": "​", - "style": "IPY_MODEL_14ebcd0568cf4e1d80a851199ea4ded1", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:10<00:00, 7178.16 examples/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "60b8365907314e949d6375c7c02b09e2": { + "3a5d39f22fbc40df8d56495e2bcae35f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a167b2fd511342669075cab597932764", - "IPY_MODEL_a396e3b5bf514600bcdaed59bdf5edeb", - "IPY_MODEL_dd1ecb40bd5e4864916f737c558f6e5e" - ], - "layout": "IPY_MODEL_e27fb6533eba4dd68cdea122164a9a4e", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "62c93ddfe8e748eb98fccb119503cb53": { + "3be51d1bdfc7426eabd22230d15743bc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b76a079b0d354eaeb65c665644922525", - "placeholder": "​", - "style": "IPY_MODEL_81ca06dbdaaf432da694f870a41d362d", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "670217afbf65407f9c9d905cb66ae29a": { + "3cd156a9c8124e42b06ba9df7f0d7a95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "67334d5dbd2c47b3a952c3e40852fd29": { + "3d02e92274f742f4959e8a103e28cc5c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3913,7 +3831,7 @@ "width": null } }, - "67d833b083c34f4dbd54ee46643c72df": { + "3d40def91f6d452198996f9c4d63c30b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3928,33 +3846,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8fd1e2f882bb4c859fdbe156779d72df", + "layout": "IPY_MODEL_5320f86e513a4d7cb9bee7bcda9e7e31", "placeholder": "​", - "style": "IPY_MODEL_1c300cedb5f94d169522af14149d605c", + "style": "IPY_MODEL_cb3ea9c24e1344318ce6c56b85e42c91", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "6eda8d71f84c413fbf9bfea0aa40b82c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 63.37it/s]" } }, - "6f83e16c5fe14880a8040188f55da07f": { + "3f8f4db9ba8a40da9b3add733e4792ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4007,7 +3907,7 @@ "width": null } }, - "7003370693624569baf61189aa79625d": { + "41a1f01b8eaf48e581a5b349f7befb05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4023,57 +3923,88 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4247a9372b8049de86a34cc77483c052", + "layout": "IPY_MODEL_3d02e92274f742f4959e8a103e28cc5c", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_7254023d4099473083cf575a1db1ea3b", + "style": "IPY_MODEL_39094f6e6f94433fa4bee5395c08e248", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "70d8b40aac404bfba3eb276b2785492b": { - "model_module": "@jupyter-widgets/controls", + "47049a8fb80d4e56aaf7ffa696d52ab1": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_62c93ddfe8e748eb98fccb119503cb53", - "IPY_MODEL_53d8f50c663346d982fc143c63b140ec", - "IPY_MODEL_147586f3357c4142a726d3c4888b61bd" - ], - "layout": "IPY_MODEL_9443687591a942aa86e769a067c128f3", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7254023d4099473083cf575a1db1ea3b": { + "49ab7db09aec442f81b7b02f32f3c3e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7314110e3b404116a8b840d61c3bd951": { + "4ec31e2f6eeb4db5afc858701783db81": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4091,31 +4022,135 @@ "text_color": null } }, - "7444685135a74575a775c37ce9d60f7c": { + "509dd1d736f74e8781d9637462482d2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_421d29fd3f2a434ca422993000da5c09", - "IPY_MODEL_b0144572ff3f414b8e82237f0e671103", - "IPY_MODEL_8034a2fd4f6240ab934cedfdc771ae1e" - ], - "layout": "IPY_MODEL_67334d5dbd2c47b3a952c3e40852fd29", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a4ed4ad057424bf294b6646f68d49625", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3509bd951eed4c8d8c33450972f39ffc", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 + } + }, + "50c72ad22477447e91b77fc706b6c28d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_47049a8fb80d4e56aaf7ffa696d52ab1", + "placeholder": "​", + "style": "IPY_MODEL_4ec31e2f6eeb4db5afc858701783db81", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:46<00:00, 879.27it/s]" + } + }, + "5225dfb404844516aa092731b6446018": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc1ea47bdab44589a71be092a474cdc0", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_34da655764d3453e87e3e8edc0580ab6", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "5320f86e513a4d7cb9bee7bcda9e7e31": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "765e32834baa466ea4d9206e7dc616a4": { + "539767b68efe4bb1852762f8a4963e13": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4168,7 +4203,23 @@ "width": null } }, - "7afff21ed2fd4b4a8eb4f82227e437e6": { + "53f0ab05fb9e4f2a9c13b5138fc1dcd8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "557da05190dd4be583de7f5aa0a129f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4183,16 +4234,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0a7466066ad24fb6b2aa5eed0afcd1e0", - "IPY_MODEL_0c7ec5fe8acd47d3809bf609a89c864f", - "IPY_MODEL_9d2505631532429f8686a2fb4db19301" + "IPY_MODEL_b6af5eb0c94d411e80a14cf40d7861ce", + "IPY_MODEL_b3bd2382b41c4ea8a6bba60127b4a83c", + "IPY_MODEL_ac0d8bfff59a49aeb0a28c4dfc414ac3" ], - "layout": "IPY_MODEL_c5269badcb544457b682bfe2f4b5959b", + "layout": "IPY_MODEL_5b89f515182c4bbe8670c13c291a35cb", "tabbable": null, "tooltip": null } }, - "8034a2fd4f6240ab934cedfdc771ae1e": { + "59110a63f7bc403b9be6d465faa18a9d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4207,15 +4258,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_df86badfb60d43d685d25eeaf678874c", + "layout": "IPY_MODEL_88bca7ad2c68401cadb15f690de8d47a", "placeholder": "​", - "style": "IPY_MODEL_a00049a0a59a4852b4eea2a640f8ffba", + "style": "IPY_MODEL_ec7203969370484281952453aa3b76f8", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.05it/s]" + "value": "100%" } }, - "80b478f9f0674adbb2ff4d666adb3144": { + "5a6cf65a16df48c09fb289ed50fd8b99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4233,25 +4284,113 @@ "text_color": null } }, - "81ca06dbdaaf432da694f870a41d362d": { - "model_module": "@jupyter-widgets/controls", + "5b89f515182c4bbe8670c13c291a35cb": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "5c7347b53a124f43b5f1b1c5602b1ffd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "85fd6669a4224b0b9c04c8e99594a27f": { + "5e4aa11dc6464655b84497965e8f2c1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4304,7 +4443,7 @@ "width": null } }, - "88a33c5239d44a959fd23f4a3bf4239d": { + "5ec79d6bb58a4a339e44ad03833ddd73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4320,64 +4459,51 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed32446d09b34dfdb55c0ddc9f1f37a5", + "layout": "IPY_MODEL_d03f8bbb7b04410cb95b55a928ab55ea", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fb083e417bef474f8af4f5d4aee9d9cc", + "style": "IPY_MODEL_64fc4427b0c54fceb4e669c81e330b41", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "89fbbdc0fa834739bf9b08a2c8c77d3a": { + "64fc4427b0c54fceb4e669c81e330b41": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_02b62cf37f1b4b5fbc52831c07583841", - "IPY_MODEL_8d775ddc5af74c5bbaee8fa1dd3e8060", - "IPY_MODEL_8b4ad5aeef69445d966afc09a90be68d" - ], - "layout": "IPY_MODEL_0fd1a013d1324348910b1d08c3b3377a", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8b4ad5aeef69445d966afc09a90be68d": { + "664953e9dd68417cab94603b3019007d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6a2a8a604804a3788bf5fbb65ee4ca7", - "placeholder": "​", - "style": "IPY_MODEL_6eda8d71f84c413fbf9bfea0aa40b82c", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 259786.44 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "8b61af9d7d4548cf838e78654ff25e03": { + "687001d4a83f4b90965bc742259d9572": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4395,33 +4521,318 @@ "text_color": null } }, - "8d775ddc5af74c5bbaee8fa1dd3e8060": { + "6dd3a29d5d1f4882bbd9b6908f254547": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7126bc1e01884b67aea100ab6c2de2c6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7153d2476e634dc8a2cff938488ae767": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71bc40ec9a174f93b63f0d5870a63723": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "74a7a0ebc7464db2bb2ec8ce05b62826": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f8130bfc227547c58c86e16f2bc102cb", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c2766268476f42d3a6152af57a621cb8", + "layout": "IPY_MODEL_c685fc9fc061441c8d45abde7042c8df", + "placeholder": "​", + "style": "IPY_MODEL_0902dc20bfd543a298156a7ffeb71f69", "tabbable": null, "tooltip": null, - "value": 10000.0 + "value": "100%" + } + }, + "76adce2c7ef34574b303aee79938d205": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_306ffe1638a34f1db49f116e4b3d40b5", + "placeholder": "​", + "style": "IPY_MODEL_9108cd4e620a41d48a5fdbe145216dfd", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "7925b7cca73c4ed896ac1422edd12b39": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8e68ddce58184c3a91e0c27a7e5e00e1": { + "7a8b4d06266b4a20a34d088726c7146e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4474,43 +4885,30 @@ "width": null } }, - "8eda62240a844dc8add0a53f75fddbb3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8f13f9842f5e4d8eacca7b538e4ad854": { + "7c970d6ec2ee4a5e8a14668ebd23e985": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3f8f4db9ba8a40da9b3add733e4792ad", + "placeholder": "​", + "style": "IPY_MODEL_fb0b3b1701234b4eab30e0398e3c2de3", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 270161.03 examples/s]" } }, - "8fd1e2f882bb4c859fdbe156779d72df": { + "7cd52714add94106a03d2eee1c35cbda": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4563,7 +4961,54 @@ "width": null } }, - "923b47945e32451d9664b31bdcab7cfb": { + "7ce0e37bc05243879b80865f93025d14": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_885c635dcebe4e3ab529e347ffcdae68", + "placeholder": "​", + "style": "IPY_MODEL_932e37e678c343488b4fc33576eb5374", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 5660.85 examples/s]" + } + }, + "8612d3bd631a446583d9af614fbe9ae6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b40c633ddc92422cbc9e1f59fcbcf8b8", + "IPY_MODEL_ac3cfe4fc19b4baa8ea58ddbad1520c9", + "IPY_MODEL_e5fb048a6a2a48779161a6522df7784b" + ], + "layout": "IPY_MODEL_f25126d05ffc4c9d8281cd8a201787b7", + "tabbable": null, + "tooltip": null + } + }, + "885c635dcebe4e3ab529e347ffcdae68": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4616,7 +5061,7 @@ "width": null } }, - "925308daef3646488e540810e5e79392": { + "88bca7ad2c68401cadb15f690de8d47a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4669,7 +5114,7 @@ "width": null } }, - "92745029eaad41768778378fa73dfab5": { + "8c75252439b2427fb7c660c25ab15433": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4722,7 +5167,7 @@ "width": null } }, - "936fe16657cd41c5a2383132456f8898": { + "8ebeebe0947b4196924fe8b151a7e458": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4775,7 +5220,7 @@ "width": null } }, - "9443687591a942aa86e769a067c128f3": { + "8f626163c9f743ab96326bd4df1185dd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4828,7 +5273,66 @@ "width": null } }, - "952127f614bb4cf9bfd563bc7b716ff1": { + "9108cd4e620a41d48a5fdbe145216dfd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "92b82430334e4bde9c493974ceafec74": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3375f3884b154835b7545beed9a74a4e", + "placeholder": "​", + "style": "IPY_MODEL_cdd5ce777677499eb33040aa130a4a05", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "932e37e678c343488b4fc33576eb5374": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "95b7af2721a049bfaffc788f1adba341": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4881,7 +5385,105 @@ "width": null } }, - "961a39be7dc84d0ca2a69a6a22666a52": { + "9b601eea7c8a4d689e85fbb8139220da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a0ac21c104204e258632159d04dda6f2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a2b551ee827046009176cdfcb79fd379": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_24b369c811cd48c8a403d7df384e5b5e", + "placeholder": "​", + "style": "IPY_MODEL_3be51d1bdfc7426eabd22230d15743bc", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.40it/s]" + } + }, + "a46fdc8efae54b9c85de9dda9bc593b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a4c512f26bab454398b1906f5baf4767": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_354af9f7333141069d08c19ad05b90c2", + "placeholder": "​", + "style": "IPY_MODEL_a0ac21c104204e258632159d04dda6f2", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "a4ed4ad057424bf294b6646f68d49625": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4930,45 +5532,11 @@ "padding": null, "right": null, "top": null, - "visibility": null, - "width": null - } - }, - "99e31dc384aa4ca88fbd102b461d5350": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9b175ea378a4489b842e58381203e99c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "visibility": null, + "width": null } }, - "9d091685f04447b79981ca5080823361": { + "a58c26d5659848f5a383e8ce2a02c174": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5021,30 +5589,7 @@ "width": null } }, - "9d2505631532429f8686a2fb4db19301": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9f03106683b24f3f8d230f60c76a9313", - "placeholder": "​", - "style": "IPY_MODEL_c6a7d21396884971ac8fb7463cb82c84", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.09it/s]" - } - }, - "9f03106683b24f3f8d230f60c76a9313": { + "a5a7bfd7829d4c4c886803bc8275afe3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5097,7 +5642,7 @@ "width": null } }, - "9f715596f1d247afa2a4d367b47ad014": { + "a6a09fca07064475927cb950137fce33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5113,35 +5658,57 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bbd524fd36de40748040109eb8970f68", - "max": 60000.0, + "layout": "IPY_MODEL_7925b7cca73c4ed896ac1422edd12b39", + "max": 2.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_40f040897c8b46b8aeb514a211607f9d", + "style": "IPY_MODEL_0a67b9129a4c41be893778799dd3e33c", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 2.0 } }, - "a00049a0a59a4852b4eea2a640f8ffba": { + "a73c8e162cdf42378722ceb08df4e3bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_07ccd6701f3a42d786227ea4159ad159", + "IPY_MODEL_f5b4b6b8015f4ff4b12a628b5a7f6891", + "IPY_MODEL_cb2ecb496b1e4c3bba642beb81eee920" + ], + "layout": "IPY_MODEL_7126bc1e01884b67aea100ab6c2de2c6", + "tabbable": null, + "tooltip": null + } + }, + "a836bf0e8dac41aeb9d11f36fe67fbd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "a167b2fd511342669075cab597932764": { + "a9564bc645fc44d5b9cf9fdf2c98ebcd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5156,117 +5723,64 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_925308daef3646488e540810e5e79392", + "layout": "IPY_MODEL_c0762b25d2154afe9089d2216aecaf1c", "placeholder": "​", - "style": "IPY_MODEL_485d9634917e4d568529e19ea0fa8f95", + "style": "IPY_MODEL_1ac8ed2dbee1474496a41a645c0c1eff", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 65.99it/s]" } }, - "a396e3b5bf514600bcdaed59bdf5edeb": { + "ac0d8bfff59a49aeb0a28c4dfc414ac3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3e53b84c85d143bd839a75b4a46c105a", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_de906e780da44829832dd247e3b05a64", + "layout": "IPY_MODEL_31684d40b1c14845b41cdceed9f73395", + "placeholder": "​", + "style": "IPY_MODEL_e8d500a035d44d43a9e448e1bfa77713", "tabbable": null, "tooltip": null, - "value": 40.0 - } - }, - "ad3e74201ce84c60ac95e1ce7b4dc331": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 40/40 [00:00<00:00, 67.83it/s]" } }, - "aed727a1dec148caa93c7db1bcdd0ebe": { + "ac3cfe4fc19b4baa8ea58ddbad1520c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_92745029eaad41768778378fa73dfab5", - "placeholder": "​", - "style": "IPY_MODEL_7314110e3b404116a8b840d61c3bd951", + "layout": "IPY_MODEL_239c737f46d840da885833e972580c4c", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a836bf0e8dac41aeb9d11f36fe67fbd5", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.60it/s]" + "value": 5175617.0 } }, - "b0144572ff3f414b8e82237f0e671103": { + "b3bd2382b41c4ea8a6bba60127b4a83c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5282,43 +5796,40 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d5e3d2656a63434b8fcd194e84369666", + "layout": "IPY_MODEL_a58c26d5659848f5a383e8ce2a02c174", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1986423b5057455fbcf741624c4e1156", + "style": "IPY_MODEL_f5c9244c98be4b7fbd3f800a9d967189", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "b2961c5452f544fc82c014cc4d7cdd9b": { + "b40c633ddc92422cbc9e1f59fcbcf8b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_765e32834baa466ea4d9206e7dc616a4", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2828b73012c7416ba7d800c10fc9519b", + "layout": "IPY_MODEL_0d013754c7f14ca0950338e735f3303a", + "placeholder": "​", + "style": "IPY_MODEL_0b0f68b39f1f4129984bab940f56b609", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": "Downloading data: 100%" } }, - "b2e1bdd3278d49f3b4228b9170723ac0": { + "b6af5eb0c94d411e80a14cf40d7861ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5333,15 +5844,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ea02dd9c49164b08a0cba690ec113f12", + "layout": "IPY_MODEL_2298a976ad904603af3ee5ef5c1a3549", "placeholder": "​", - "style": "IPY_MODEL_32680ffbffc047b292cfc60dd3742270", + "style": "IPY_MODEL_32b173f655ed4f1db1d734787e34df35", "tabbable": null, "tooltip": null, "value": "100%" } }, - "b2e3fc29bcbe4c319779a3e9de6d8542": { + "b82cc8f880874f01bd91706bb981ebde": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b903786aa6444c39809ac0080ce5b9ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b9658a8795a04d82bb42d36c2c5bfcb1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5394,7 +5939,33 @@ "width": null } }, - "b76a079b0d354eaeb65c665644922525": { + "bb559c6645ad40198025d78404a023a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e864e89d2e244d9aa6477e3789287d03", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3cd156a9c8124e42b06ba9df7f0d7a95", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "bc1ea47bdab44589a71be092a474cdc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5419,71 +5990,35 @@ "flex_flow": null, "grid_area": null, "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b8e2a441399849d987355d944e674ffa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "baa218fdcdd3441a8bce6def41cfd76b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bbd524fd36de40748040109eb8970f68": { + "c0762b25d2154afe9089d2216aecaf1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5536,47 +6071,79 @@ "width": null } }, - "be40041c34fd4fa49cb41be22bcf9073": { + "c1c3972e26b34403b7c2776c52c48447": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_22998f7b85ec4497a3c8abce7cc3984c", - "IPY_MODEL_b2961c5452f544fc82c014cc4d7cdd9b", - "IPY_MODEL_e8317f555ab6411c94510a691f07c87d" - ], - "layout": "IPY_MODEL_961a39be7dc84d0ca2a69a6a22666a52", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e42634dca6d54a1a96f5370d950c9d72", + "placeholder": "​", + "style": "IPY_MODEL_33d1e1b13c7949499987b06bb34f7970", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Generating train split: 100%" } }, - "c2766268476f42d3a6152af57a621cb8": { + "c6593a4d742340b5a9a979fb281a0adc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7a8b4d06266b4a20a34d088726c7146e", + "placeholder": "​", + "style": "IPY_MODEL_5a6cf65a16df48c09fb289ed50fd8b99", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" + } + }, + "c6659da6a4f740c29e478417ea16bf43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8c75252439b2427fb7c660c25ab15433", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a46fdc8efae54b9c85de9dda9bc593b2", + "tabbable": null, + "tooltip": null, + "value": 10000.0 } }, - "c5269badcb544457b682bfe2f4b5959b": { + "c685fc9fc061441c8d45abde7042c8df": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5629,65 +6196,30 @@ "width": null } }, - "c6a7d21396884971ac8fb7463cb82c84": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c9dc488d16cb42de9904445733850dae": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cadb6c50e5194eabbfc0b003b153ff17": { + "c82f7ce8b3b048ca8dd6be97d98c2ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4ea9ee23440549f5a87db408e0dbdc17", - "IPY_MODEL_7003370693624569baf61189aa79625d", - "IPY_MODEL_aed727a1dec148caa93c7db1bcdd0ebe" - ], - "layout": "IPY_MODEL_923b47945e32451d9664b31bdcab7cfb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f626163c9f743ab96326bd4df1185dd", + "placeholder": "​", + "style": "IPY_MODEL_27cdd1f63f2942b7a7f52037478576a7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "100%" } }, - "d1fa4ab4971b4b1a97ad09f597ce0005": { + "cb2ecb496b1e4c3bba642beb81eee920": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5702,38 +6234,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_03f73e8be3214af4a3ba1b71864a7973", + "layout": "IPY_MODEL_e7d9ecf0291244d893f8d548796dea7a", "placeholder": "​", - "style": "IPY_MODEL_baa218fdcdd3441a8bce6def41cfd76b", + "style": "IPY_MODEL_687001d4a83f4b90965bc742259d9572", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30.9M/30.9M [00:00<00:00, 88.5MB/s]" } }, - "d2bb5a77ebfc4577ae593a6d71e5a54e": { + "cb3ea9c24e1344318ce6c56b85e42c91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_85fd6669a4224b0b9c04c8e99594a27f", - "placeholder": "​", - "style": "IPY_MODEL_9b175ea378a4489b842e58381203e99c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.73it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cdd5ce777677499eb33040aa130a4a05": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d5e3d2656a63434b8fcd194e84369666": { + "cee334daa12f4bbb8050b89a47144c50": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5786,7 +6331,7 @@ "width": null } }, - "d6bed8dce4cb4b9e889847ad45e96d17": { + "cf376dc2e03942899bf0534a1f81e070": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5839,7 +6384,7 @@ "width": null } }, - "d7d9b064aa6d40d38448ea1cb5c4e0c3": { + "d03f8bbb7b04410cb95b55a928ab55ea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5892,46 +6437,102 @@ "width": null } }, - "dd1ecb40bd5e4864916f737c558f6e5e": { + "d0fc51710b7e44dab28856f8fefeeecd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8e68ddce58184c3a91e0c27a7e5e00e1", - "placeholder": "​", - "style": "IPY_MODEL_3a8da44a25d0486a85f3a6d4e9c9be7c", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.91it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dbcfa560af5e43aba4b839659c80a569": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "de906e780da44829832dd247e3b05a64": { + "dec0551c5ff44d398269f73047f45e36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a4c512f26bab454398b1906f5baf4767", + "IPY_MODEL_5225dfb404844516aa092731b6446018", + "IPY_MODEL_50c72ad22477447e91b77fc706b6c28d" + ], + "layout": "IPY_MODEL_cee334daa12f4bbb8050b89a47144c50", + "tabbable": null, + "tooltip": null } }, - "df86badfb60d43d685d25eeaf678874c": { + "e02910a7a8404b258c16b7d4f47a2a33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5984,7 +6585,30 @@ "width": null } }, - "e27fb6533eba4dd68cdea122164a9a4e": { + "e3e2004b573b416992ed7109da94134a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_95b7af2721a049bfaffc788f1adba341", + "placeholder": "​", + "style": "IPY_MODEL_9b601eea7c8a4d689e85fbb8139220da", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "e42634dca6d54a1a96f5370d950c9d72": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6037,51 +6661,54 @@ "width": null } }, - "e4e340a0d06b41119d42f6790236e35c": { + "e5fb048a6a2a48779161a6522df7784b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d7d9b064aa6d40d38448ea1cb5c4e0c3", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2142f782834a4d5399fe0b6599716397", + "layout": "IPY_MODEL_7153d2476e634dc8a2cff938488ae767", + "placeholder": "​", + "style": "IPY_MODEL_664953e9dd68417cab94603b3019007d", "tabbable": null, "tooltip": null, - "value": 2.0 + "value": " 5.18M/5.18M [00:00<00:00, 19.9MB/s]" } }, - "e61c93af0eba452b8343196f5ce0b896": { + "e64ca809fe914be89d47dac0edfea796": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_92b82430334e4bde9c493974ceafec74", + "IPY_MODEL_ec8e06cca9f142fcbcaedc009fb61acc", + "IPY_MODEL_a2b551ee827046009176cdfcb79fd379" + ], + "layout": "IPY_MODEL_f68e04379f5e4e85945089b30d9fcede", + "tabbable": null, + "tooltip": null } }, - "e6a2a8a604804a3788bf5fbb65ee4ca7": { + "e7d9ecf0291244d893f8d548796dea7a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6134,30 +6761,7 @@ "width": null } }, - "e8317f555ab6411c94510a691f07c87d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fc05ff5a0ae54291a9426f5f20ad91ad", - "placeholder": "​", - "style": "IPY_MODEL_faa94797ec2944218645d1deeaff5048", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 297028.56 examples/s]" - } - }, - "ea02dd9c49164b08a0cba690ec113f12": { + "e864e89d2e244d9aa6477e3789287d03": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6210,7 +6814,61 @@ "width": null } }, - "ebd258422ac14e8ea1c43166dc17533a": { + "e8d500a035d44d43a9e448e1bfa77713": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e90fcd89988d45cfaca0ec05bc3a3b66": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ec7203969370484281952453aa3b76f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ec8e06cca9f142fcbcaedc009fb61acc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -6226,17 +6884,57 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_44e1ba4090d040698f36744323e05a7d", - "max": 60000.0, + "layout": "IPY_MODEL_7cd52714add94106a03d2eee1c35cbda", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c9dc488d16cb42de9904445733850dae", + "style": "IPY_MODEL_b903786aa6444c39809ac0080ce5b9ba", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": 40.0 + } + }, + "eed181946bee47e8b8cff4dadd971cad": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f0336800513c485b84e4dc8ef8398118": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76adce2c7ef34574b303aee79938d205", + "IPY_MODEL_c6659da6a4f740c29e478417ea16bf43", + "IPY_MODEL_7c970d6ec2ee4a5e8a14668ebd23e985" + ], + "layout": "IPY_MODEL_6dd3a29d5d1f4882bbd9b6908f254547", + "tabbable": null, + "tooltip": null } }, - "ecd3c5249d86402e84c13b074d11004b": { + "f22aef94a5384220b26893e15a7f9a93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6254,7 +6952,7 @@ "text_color": null } }, - "ed32446d09b34dfdb55c0ddc9f1f37a5": { + "f25126d05ffc4c9d8281cd8a201787b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6307,7 +7005,49 @@ "width": null } }, - "edd1d0858fdc47fb8cd561ec01046d35": { + "f5b4b6b8015f4ff4b12a628b5a7f6891": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b9658a8795a04d82bb42d36c2c5bfcb1", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_53f0ab05fb9e4f2a9c13b5138fc1dcd8", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "f5c9244c98be4b7fbd3f800a9d967189": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f68e04379f5e4e85945089b30d9fcede": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6360,7 +7100,7 @@ "width": null } }, - "f5701968c3c84fc5b9ba604a9aa0a9f6": { + "fab6aa8a669341ec8a3264502715f063": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6375,69 +7115,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2b6ff6ed70654818b8c5c965649f8963", - "IPY_MODEL_e4e340a0d06b41119d42f6790236e35c", - "IPY_MODEL_3ca31c427ac64cf2926617bfb55f4d8a" + "IPY_MODEL_c1c3972e26b34403b7c2776c52c48447", + "IPY_MODEL_509dd1d736f74e8781d9637462482d2d", + "IPY_MODEL_23c8a161b5d54a6eab69dcef0d1f2289" ], - "layout": "IPY_MODEL_ad3e74201ce84c60ac95e1ce7b4dc331", + "layout": "IPY_MODEL_e02910a7a8404b258c16b7d4f47a2a33", "tabbable": null, "tooltip": null } }, - "f8130bfc227547c58c86e16f2bc102cb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "faa94797ec2944218645d1deeaff5048": { + "fb0b3b1701234b4eab30e0398e3c2de3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6455,23 +7142,30 @@ "text_color": null } }, - "fb083e417bef474f8af4f5d4aee9d9cc": { + "fb428a754bdc4020a571efeb1e699942": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0aa95b525dfb4cffa6738016ec0a929b", + "placeholder": "​", + "style": "IPY_MODEL_49ab7db09aec442f81b7b02f32f3c3e2", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.72it/s]" } }, - "fc05ff5a0ae54291a9426f5f20ad91ad": { + "fcc4b333e4d94b5fb6798ba6bd9e0c37": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 9c866d7b7..0bf0d6c51 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:57.997731Z", - "iopub.status.busy": "2024-04-12T10:22:57.997255Z", - "iopub.status.idle": "2024-04-12T10:22:59.063748Z", - "shell.execute_reply": "2024-04-12T10:22:59.063201Z" + "iopub.execute_input": "2024-04-22T21:51:31.046338Z", + "iopub.status.busy": "2024-04-22T21:51:31.046160Z", + "iopub.status.idle": "2024-04-22T21:51:32.130120Z", + "shell.execute_reply": "2024-04-22T21:51:32.129498Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.066325Z", - "iopub.status.busy": "2024-04-12T10:22:59.065884Z", - "iopub.status.idle": "2024-04-12T10:22:59.084279Z", - "shell.execute_reply": "2024-04-12T10:22:59.083825Z" + "iopub.execute_input": "2024-04-22T21:51:32.132811Z", + "iopub.status.busy": "2024-04-22T21:51:32.132533Z", + "iopub.status.idle": "2024-04-22T21:51:32.151021Z", + "shell.execute_reply": "2024-04-22T21:51:32.150519Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.086527Z", - "iopub.status.busy": "2024-04-12T10:22:59.086125Z", - "iopub.status.idle": "2024-04-12T10:22:59.109905Z", - "shell.execute_reply": "2024-04-12T10:22:59.109363Z" + "iopub.execute_input": "2024-04-22T21:51:32.153300Z", + "iopub.status.busy": "2024-04-22T21:51:32.153042Z", + "iopub.status.idle": "2024-04-22T21:51:32.178642Z", + "shell.execute_reply": "2024-04-22T21:51:32.178074Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.111903Z", - "iopub.status.busy": "2024-04-12T10:22:59.111608Z", - "iopub.status.idle": "2024-04-12T10:22:59.115087Z", - "shell.execute_reply": "2024-04-12T10:22:59.114529Z" + "iopub.execute_input": "2024-04-22T21:51:32.180911Z", + "iopub.status.busy": "2024-04-22T21:51:32.180515Z", + "iopub.status.idle": "2024-04-22T21:51:32.184022Z", + "shell.execute_reply": "2024-04-22T21:51:32.183494Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.117041Z", - "iopub.status.busy": "2024-04-12T10:22:59.116751Z", - "iopub.status.idle": "2024-04-12T10:22:59.124293Z", - "shell.execute_reply": "2024-04-12T10:22:59.123848Z" + "iopub.execute_input": "2024-04-22T21:51:32.186104Z", + "iopub.status.busy": "2024-04-22T21:51:32.185700Z", + "iopub.status.idle": "2024-04-22T21:51:32.193161Z", + "shell.execute_reply": "2024-04-22T21:51:32.192748Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.126270Z", - "iopub.status.busy": "2024-04-12T10:22:59.125985Z", - "iopub.status.idle": "2024-04-12T10:22:59.128442Z", - "shell.execute_reply": "2024-04-12T10:22:59.127995Z" + "iopub.execute_input": "2024-04-22T21:51:32.195312Z", + "iopub.status.busy": "2024-04-22T21:51:32.194999Z", + "iopub.status.idle": "2024-04-22T21:51:32.197529Z", + "shell.execute_reply": "2024-04-22T21:51:32.197023Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:22:59.130352Z", - "iopub.status.busy": "2024-04-12T10:22:59.130078Z", - "iopub.status.idle": "2024-04-12T10:23:02.059472Z", - "shell.execute_reply": "2024-04-12T10:23:02.058929Z" + "iopub.execute_input": "2024-04-22T21:51:32.199435Z", + "iopub.status.busy": "2024-04-22T21:51:32.199150Z", + "iopub.status.idle": "2024-04-22T21:51:35.084395Z", + "shell.execute_reply": "2024-04-22T21:51:35.083840Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:02.061993Z", - "iopub.status.busy": "2024-04-12T10:23:02.061809Z", - "iopub.status.idle": "2024-04-12T10:23:02.070821Z", - "shell.execute_reply": "2024-04-12T10:23:02.070396Z" + "iopub.execute_input": "2024-04-22T21:51:35.087388Z", + "iopub.status.busy": "2024-04-22T21:51:35.086784Z", + "iopub.status.idle": "2024-04-22T21:51:35.096592Z", + "shell.execute_reply": "2024-04-22T21:51:35.096028Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:02.072681Z", - "iopub.status.busy": "2024-04-12T10:23:02.072514Z", - "iopub.status.idle": "2024-04-12T10:23:03.803507Z", - "shell.execute_reply": "2024-04-12T10:23:03.802722Z" + "iopub.execute_input": "2024-04-22T21:51:35.098855Z", + "iopub.status.busy": "2024-04-22T21:51:35.098545Z", + "iopub.status.idle": "2024-04-22T21:51:36.951372Z", + "shell.execute_reply": "2024-04-22T21:51:36.950764Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.807731Z", - "iopub.status.busy": "2024-04-12T10:23:03.806582Z", - "iopub.status.idle": "2024-04-12T10:23:03.831029Z", - "shell.execute_reply": "2024-04-12T10:23:03.830544Z" + "iopub.execute_input": "2024-04-22T21:51:36.954832Z", + "iopub.status.busy": "2024-04-22T21:51:36.953651Z", + "iopub.status.idle": "2024-04-22T21:51:36.978757Z", + "shell.execute_reply": "2024-04-22T21:51:36.978237Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.834532Z", - "iopub.status.busy": "2024-04-12T10:23:03.833614Z", - "iopub.status.idle": "2024-04-12T10:23:03.844635Z", - "shell.execute_reply": "2024-04-12T10:23:03.844136Z" + "iopub.execute_input": "2024-04-22T21:51:36.982500Z", + "iopub.status.busy": "2024-04-22T21:51:36.981541Z", + "iopub.status.idle": "2024-04-22T21:51:36.993046Z", + "shell.execute_reply": "2024-04-22T21:51:36.992546Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.848084Z", - "iopub.status.busy": "2024-04-12T10:23:03.847167Z", - "iopub.status.idle": "2024-04-12T10:23:03.859666Z", - "shell.execute_reply": "2024-04-12T10:23:03.859174Z" + "iopub.execute_input": "2024-04-22T21:51:36.996643Z", + "iopub.status.busy": "2024-04-22T21:51:36.995720Z", + "iopub.status.idle": "2024-04-22T21:51:37.023004Z", + "shell.execute_reply": "2024-04-22T21:51:37.022451Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.863155Z", - "iopub.status.busy": "2024-04-12T10:23:03.862233Z", - "iopub.status.idle": "2024-04-12T10:23:03.873268Z", - "shell.execute_reply": "2024-04-12T10:23:03.872780Z" + "iopub.execute_input": "2024-04-22T21:51:37.026730Z", + "iopub.status.busy": "2024-04-22T21:51:37.025808Z", + "iopub.status.idle": "2024-04-22T21:51:37.036398Z", + "shell.execute_reply": "2024-04-22T21:51:37.035969Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.876729Z", - "iopub.status.busy": "2024-04-12T10:23:03.875798Z", - "iopub.status.idle": "2024-04-12T10:23:03.887403Z", - "shell.execute_reply": "2024-04-12T10:23:03.886965Z" + "iopub.execute_input": "2024-04-22T21:51:37.038786Z", + "iopub.status.busy": "2024-04-22T21:51:37.038383Z", + "iopub.status.idle": "2024-04-22T21:51:37.047559Z", + "shell.execute_reply": "2024-04-22T21:51:37.047025Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.889683Z", - "iopub.status.busy": "2024-04-12T10:23:03.889167Z", - "iopub.status.idle": "2024-04-12T10:23:03.895719Z", - "shell.execute_reply": "2024-04-12T10:23:03.895310Z" + "iopub.execute_input": "2024-04-22T21:51:37.049653Z", + "iopub.status.busy": "2024-04-22T21:51:37.049474Z", + "iopub.status.idle": "2024-04-22T21:51:37.055941Z", + "shell.execute_reply": "2024-04-22T21:51:37.055355Z" } }, "outputs": [ @@ -1169,10 +1169,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.898036Z", - "iopub.status.busy": "2024-04-12T10:23:03.897526Z", - "iopub.status.idle": "2024-04-12T10:23:03.904252Z", - "shell.execute_reply": "2024-04-12T10:23:03.903696Z" + "iopub.execute_input": "2024-04-22T21:51:37.058225Z", + "iopub.status.busy": "2024-04-22T21:51:37.058039Z", + "iopub.status.idle": "2024-04-22T21:51:37.065083Z", + "shell.execute_reply": "2024-04-22T21:51:37.064535Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:03.906352Z", - "iopub.status.busy": "2024-04-12T10:23:03.906014Z", - "iopub.status.idle": "2024-04-12T10:23:03.912600Z", - "shell.execute_reply": "2024-04-12T10:23:03.912048Z" + "iopub.execute_input": "2024-04-22T21:51:37.067163Z", + "iopub.status.busy": "2024-04-22T21:51:37.066986Z", + "iopub.status.idle": "2024-04-22T21:51:37.073953Z", + "shell.execute_reply": "2024-04-22T21:51:37.073376Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index cdc2b2a8c..44c8e81f1 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -757,7 +757,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'getting_spare_card', 'cancel_transfer', 'card_about_to_expire', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}
+Classes: {'change_pin', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'supported_cards_and_currencies'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index b55034951..84611b9e5 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:06.427281Z", - "iopub.status.busy": "2024-04-12T10:23:06.426876Z", - "iopub.status.idle": "2024-04-12T10:23:09.029755Z", - "shell.execute_reply": "2024-04-12T10:23:09.029118Z" + "iopub.execute_input": "2024-04-22T21:51:40.356739Z", + "iopub.status.busy": "2024-04-22T21:51:40.356256Z", + "iopub.status.idle": "2024-04-22T21:51:43.003980Z", + "shell.execute_reply": "2024-04-22T21:51:43.003360Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.032515Z", - "iopub.status.busy": "2024-04-12T10:23:09.032053Z", - "iopub.status.idle": "2024-04-12T10:23:09.035184Z", - "shell.execute_reply": "2024-04-12T10:23:09.034737Z" + "iopub.execute_input": "2024-04-22T21:51:43.006901Z", + "iopub.status.busy": "2024-04-22T21:51:43.006321Z", + "iopub.status.idle": "2024-04-22T21:51:43.009750Z", + "shell.execute_reply": "2024-04-22T21:51:43.009204Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.037235Z", - "iopub.status.busy": "2024-04-12T10:23:09.036820Z", - "iopub.status.idle": "2024-04-12T10:23:09.039983Z", - "shell.execute_reply": "2024-04-12T10:23:09.039423Z" + "iopub.execute_input": "2024-04-22T21:51:43.012098Z", + "iopub.status.busy": "2024-04-22T21:51:43.011690Z", + "iopub.status.idle": "2024-04-22T21:51:43.014667Z", + "shell.execute_reply": "2024-04-22T21:51:43.014245Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.042101Z", - "iopub.status.busy": "2024-04-12T10:23:09.041777Z", - "iopub.status.idle": "2024-04-12T10:23:09.064754Z", - "shell.execute_reply": "2024-04-12T10:23:09.064284Z" + "iopub.execute_input": "2024-04-22T21:51:43.016549Z", + "iopub.status.busy": "2024-04-22T21:51:43.016288Z", + "iopub.status.idle": "2024-04-22T21:51:43.164680Z", + "shell.execute_reply": "2024-04-22T21:51:43.164123Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.066706Z", - "iopub.status.busy": "2024-04-12T10:23:09.066381Z", - "iopub.status.idle": "2024-04-12T10:23:09.070154Z", - "shell.execute_reply": "2024-04-12T10:23:09.069708Z" + "iopub.execute_input": "2024-04-22T21:51:43.167167Z", + "iopub.status.busy": "2024-04-22T21:51:43.166656Z", + "iopub.status.idle": "2024-04-22T21:51:43.170586Z", + "shell.execute_reply": "2024-04-22T21:51:43.170050Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'getting_spare_card', 'cancel_transfer', 'card_about_to_expire', 'beneficiary_not_allowed', 'supported_cards_and_currencies', 'change_pin', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}\n" + "Classes: {'change_pin', 'card_payment_fee_charged', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card', 'visa_or_mastercard', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'supported_cards_and_currencies'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.072131Z", - "iopub.status.busy": "2024-04-12T10:23:09.071798Z", - "iopub.status.idle": "2024-04-12T10:23:09.075011Z", - "shell.execute_reply": "2024-04-12T10:23:09.074552Z" + "iopub.execute_input": "2024-04-22T21:51:43.172537Z", + "iopub.status.busy": "2024-04-22T21:51:43.172236Z", + "iopub.status.idle": "2024-04-22T21:51:43.175306Z", + "shell.execute_reply": "2024-04-22T21:51:43.174758Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:09.077022Z", - "iopub.status.busy": "2024-04-12T10:23:09.076701Z", - "iopub.status.idle": "2024-04-12T10:23:13.269837Z", - "shell.execute_reply": "2024-04-12T10:23:13.269288Z" + "iopub.execute_input": "2024-04-22T21:51:43.177262Z", + "iopub.status.busy": "2024-04-22T21:51:43.176962Z", + "iopub.status.idle": "2024-04-22T21:51:47.253572Z", + "shell.execute_reply": "2024-04-22T21:51:47.253008Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:13.272512Z", - "iopub.status.busy": "2024-04-12T10:23:13.272302Z", - "iopub.status.idle": "2024-04-12T10:23:14.153647Z", - "shell.execute_reply": "2024-04-12T10:23:14.153063Z" + "iopub.execute_input": "2024-04-22T21:51:47.256521Z", + "iopub.status.busy": "2024-04-22T21:51:47.256105Z", + "iopub.status.idle": "2024-04-22T21:51:48.108153Z", + "shell.execute_reply": "2024-04-22T21:51:48.107582Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:14.156542Z", - "iopub.status.busy": "2024-04-12T10:23:14.156130Z", - "iopub.status.idle": "2024-04-12T10:23:14.159362Z", - "shell.execute_reply": "2024-04-12T10:23:14.158865Z" + "iopub.execute_input": "2024-04-22T21:51:48.111105Z", + "iopub.status.busy": "2024-04-22T21:51:48.110712Z", + "iopub.status.idle": "2024-04-22T21:51:48.113583Z", + "shell.execute_reply": "2024-04-22T21:51:48.113099Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:14.162610Z", - "iopub.status.busy": "2024-04-12T10:23:14.161641Z", - "iopub.status.idle": "2024-04-12T10:23:15.689534Z", - "shell.execute_reply": "2024-04-12T10:23:15.687575Z" + "iopub.execute_input": "2024-04-22T21:51:48.116742Z", + "iopub.status.busy": "2024-04-22T21:51:48.115793Z", + "iopub.status.idle": "2024-04-22T21:51:49.663168Z", + "shell.execute_reply": "2024-04-22T21:51:49.662488Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.693551Z", - "iopub.status.busy": "2024-04-12T10:23:15.692383Z", - "iopub.status.idle": "2024-04-12T10:23:15.717902Z", - "shell.execute_reply": "2024-04-12T10:23:15.717395Z" + "iopub.execute_input": "2024-04-22T21:51:49.667351Z", + "iopub.status.busy": "2024-04-22T21:51:49.666183Z", + "iopub.status.idle": "2024-04-22T21:51:49.691256Z", + "shell.execute_reply": "2024-04-22T21:51:49.690748Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.721520Z", - "iopub.status.busy": "2024-04-12T10:23:15.720546Z", - "iopub.status.idle": "2024-04-12T10:23:15.732153Z", - "shell.execute_reply": "2024-04-12T10:23:15.731651Z" + "iopub.execute_input": "2024-04-22T21:51:49.694730Z", + "iopub.status.busy": "2024-04-22T21:51:49.693805Z", + "iopub.status.idle": "2024-04-22T21:51:49.705308Z", + "shell.execute_reply": "2024-04-22T21:51:49.704807Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.735681Z", - "iopub.status.busy": "2024-04-12T10:23:15.734758Z", - "iopub.status.idle": "2024-04-12T10:23:15.741347Z", - "shell.execute_reply": "2024-04-12T10:23:15.740783Z" + "iopub.execute_input": "2024-04-22T21:51:49.710635Z", + "iopub.status.busy": "2024-04-22T21:51:49.709458Z", + "iopub.status.idle": "2024-04-22T21:51:49.715631Z", + "shell.execute_reply": "2024-04-22T21:51:49.715222Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.743462Z", - "iopub.status.busy": "2024-04-12T10:23:15.743290Z", - "iopub.status.idle": "2024-04-12T10:23:15.750020Z", - "shell.execute_reply": "2024-04-12T10:23:15.749588Z" + "iopub.execute_input": "2024-04-22T21:51:49.718319Z", + "iopub.status.busy": "2024-04-22T21:51:49.717604Z", + "iopub.status.idle": "2024-04-22T21:51:49.724490Z", + "shell.execute_reply": "2024-04-22T21:51:49.724033Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.751951Z", - "iopub.status.busy": "2024-04-12T10:23:15.751778Z", - "iopub.status.idle": "2024-04-12T10:23:15.759504Z", - "shell.execute_reply": "2024-04-12T10:23:15.758962Z" + "iopub.execute_input": "2024-04-22T21:51:49.726556Z", + "iopub.status.busy": "2024-04-22T21:51:49.726166Z", + "iopub.status.idle": "2024-04-22T21:51:49.733655Z", + "shell.execute_reply": "2024-04-22T21:51:49.733128Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.761525Z", - "iopub.status.busy": "2024-04-12T10:23:15.761228Z", - "iopub.status.idle": "2024-04-12T10:23:15.766791Z", - "shell.execute_reply": "2024-04-12T10:23:15.766345Z" + "iopub.execute_input": "2024-04-22T21:51:49.735666Z", + "iopub.status.busy": "2024-04-22T21:51:49.735340Z", + "iopub.status.idle": "2024-04-22T21:51:49.740979Z", + "shell.execute_reply": "2024-04-22T21:51:49.740540Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.768741Z", - "iopub.status.busy": "2024-04-12T10:23:15.768567Z", - "iopub.status.idle": "2024-04-12T10:23:15.776936Z", - "shell.execute_reply": "2024-04-12T10:23:15.776363Z" + "iopub.execute_input": "2024-04-22T21:51:49.742755Z", + "iopub.status.busy": "2024-04-22T21:51:49.742591Z", + "iopub.status.idle": "2024-04-22T21:51:49.750544Z", + "shell.execute_reply": "2024-04-22T21:51:49.750120Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.778954Z", - "iopub.status.busy": "2024-04-12T10:23:15.778634Z", - "iopub.status.idle": "2024-04-12T10:23:15.783810Z", - "shell.execute_reply": "2024-04-12T10:23:15.783326Z" + "iopub.execute_input": "2024-04-22T21:51:49.752328Z", + "iopub.status.busy": "2024-04-22T21:51:49.752159Z", + "iopub.status.idle": "2024-04-22T21:51:49.757501Z", + "shell.execute_reply": "2024-04-22T21:51:49.756971Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.785946Z", - "iopub.status.busy": "2024-04-12T10:23:15.785523Z", - "iopub.status.idle": "2024-04-12T10:23:15.790899Z", - "shell.execute_reply": "2024-04-12T10:23:15.790347Z" + "iopub.execute_input": "2024-04-22T21:51:49.759333Z", + "iopub.status.busy": "2024-04-22T21:51:49.759164Z", + "iopub.status.idle": "2024-04-22T21:51:49.764568Z", + "shell.execute_reply": "2024-04-22T21:51:49.764142Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.792909Z", - "iopub.status.busy": "2024-04-12T10:23:15.792605Z", - "iopub.status.idle": "2024-04-12T10:23:15.796003Z", - "shell.execute_reply": "2024-04-12T10:23:15.795537Z" + "iopub.execute_input": "2024-04-22T21:51:49.766407Z", + "iopub.status.busy": "2024-04-22T21:51:49.766239Z", + "iopub.status.idle": "2024-04-22T21:51:49.769764Z", + "shell.execute_reply": "2024-04-22T21:51:49.769227Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:15.798137Z", - "iopub.status.busy": "2024-04-12T10:23:15.797742Z", - "iopub.status.idle": "2024-04-12T10:23:15.802907Z", - "shell.execute_reply": "2024-04-12T10:23:15.802434Z" + "iopub.execute_input": "2024-04-22T21:51:49.771840Z", + "iopub.status.busy": "2024-04-22T21:51:49.771518Z", + "iopub.status.idle": "2024-04-22T21:51:49.776457Z", + "shell.execute_reply": "2024-04-22T21:51:49.775959Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 9c7bad222..a9c040801 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:18.919581Z", - "iopub.status.busy": "2024-04-12T10:23:18.919116Z", - "iopub.status.idle": "2024-04-12T10:23:19.982813Z", - "shell.execute_reply": "2024-04-12T10:23:19.982259Z" + "iopub.execute_input": "2024-04-22T21:51:52.984100Z", + "iopub.status.busy": "2024-04-22T21:51:52.983929Z", + "iopub.status.idle": "2024-04-22T21:51:54.076611Z", + "shell.execute_reply": "2024-04-22T21:51:54.075985Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:19.985182Z", - "iopub.status.busy": "2024-04-12T10:23:19.984917Z", - "iopub.status.idle": "2024-04-12T10:23:19.987785Z", - "shell.execute_reply": "2024-04-12T10:23:19.987341Z" + "iopub.execute_input": "2024-04-22T21:51:54.079479Z", + "iopub.status.busy": "2024-04-22T21:51:54.079017Z", + "iopub.status.idle": "2024-04-22T21:51:54.082330Z", + "shell.execute_reply": "2024-04-22T21:51:54.081913Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:19.989851Z", - "iopub.status.busy": "2024-04-12T10:23:19.989685Z", - "iopub.status.idle": "2024-04-12T10:23:20.001529Z", - "shell.execute_reply": "2024-04-12T10:23:20.000980Z" + "iopub.execute_input": "2024-04-22T21:51:54.084483Z", + "iopub.status.busy": "2024-04-22T21:51:54.084311Z", + "iopub.status.idle": "2024-04-22T21:51:54.096267Z", + "shell.execute_reply": "2024-04-22T21:51:54.095730Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:20.003383Z", - "iopub.status.busy": "2024-04-12T10:23:20.003212Z", - "iopub.status.idle": "2024-04-12T10:23:26.272462Z", - "shell.execute_reply": "2024-04-12T10:23:26.271987Z" + "iopub.execute_input": "2024-04-22T21:51:54.098313Z", + "iopub.status.busy": "2024-04-22T21:51:54.098000Z", + "iopub.status.idle": "2024-04-22T21:51:58.808852Z", + "shell.execute_reply": "2024-04-22T21:51:58.808391Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 9d4bdc357..4a8dfe1eb 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -797,13 +797,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1748,7 +1748,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 565ea8e49..169c6130f 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:28.176499Z", - "iopub.status.busy": "2024-04-12T10:23:28.176334Z", - "iopub.status.idle": "2024-04-12T10:23:29.247412Z", - "shell.execute_reply": "2024-04-12T10:23:29.246865Z" + "iopub.execute_input": "2024-04-22T21:52:00.971289Z", + "iopub.status.busy": "2024-04-22T21:52:00.971117Z", + "iopub.status.idle": "2024-04-22T21:52:02.051392Z", + "shell.execute_reply": "2024-04-22T21:52:02.050807Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:29.250183Z", - "iopub.status.busy": "2024-04-12T10:23:29.249745Z", - "iopub.status.idle": "2024-04-12T10:23:29.253136Z", - "shell.execute_reply": "2024-04-12T10:23:29.252676Z" + "iopub.execute_input": "2024-04-22T21:52:02.054107Z", + "iopub.status.busy": "2024-04-22T21:52:02.053656Z", + "iopub.status.idle": "2024-04-22T21:52:02.056979Z", + "shell.execute_reply": "2024-04-22T21:52:02.056523Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:29.255179Z", - "iopub.status.busy": "2024-04-12T10:23:29.254869Z", - "iopub.status.idle": "2024-04-12T10:23:32.165763Z", - "shell.execute_reply": "2024-04-12T10:23:32.165053Z" + "iopub.execute_input": "2024-04-22T21:52:02.059458Z", + "iopub.status.busy": "2024-04-22T21:52:02.059133Z", + "iopub.status.idle": "2024-04-22T21:52:05.038204Z", + "shell.execute_reply": "2024-04-22T21:52:05.037490Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.169073Z", - "iopub.status.busy": "2024-04-12T10:23:32.168350Z", - "iopub.status.idle": "2024-04-12T10:23:32.199721Z", - "shell.execute_reply": "2024-04-12T10:23:32.199154Z" + "iopub.execute_input": "2024-04-22T21:52:05.041290Z", + "iopub.status.busy": "2024-04-22T21:52:05.040716Z", + "iopub.status.idle": "2024-04-22T21:52:05.073377Z", + "shell.execute_reply": "2024-04-22T21:52:05.072787Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.202215Z", - "iopub.status.busy": "2024-04-12T10:23:32.201908Z", - "iopub.status.idle": "2024-04-12T10:23:32.229886Z", - "shell.execute_reply": "2024-04-12T10:23:32.229319Z" + "iopub.execute_input": "2024-04-22T21:52:05.076249Z", + "iopub.status.busy": "2024-04-22T21:52:05.075864Z", + "iopub.status.idle": "2024-04-22T21:52:05.106541Z", + "shell.execute_reply": "2024-04-22T21:52:05.105942Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.232504Z", - "iopub.status.busy": "2024-04-12T10:23:32.232096Z", - "iopub.status.idle": "2024-04-12T10:23:32.235155Z", - "shell.execute_reply": "2024-04-12T10:23:32.234684Z" + "iopub.execute_input": "2024-04-22T21:52:05.109149Z", + "iopub.status.busy": "2024-04-22T21:52:05.108865Z", + "iopub.status.idle": "2024-04-22T21:52:05.112065Z", + "shell.execute_reply": "2024-04-22T21:52:05.111595Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.237101Z", - "iopub.status.busy": "2024-04-12T10:23:32.236919Z", - "iopub.status.idle": "2024-04-12T10:23:32.239601Z", - "shell.execute_reply": "2024-04-12T10:23:32.239154Z" + "iopub.execute_input": "2024-04-22T21:52:05.114140Z", + "iopub.status.busy": "2024-04-22T21:52:05.113763Z", + "iopub.status.idle": "2024-04-22T21:52:05.116341Z", + "shell.execute_reply": "2024-04-22T21:52:05.115903Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.241598Z", - "iopub.status.busy": "2024-04-12T10:23:32.241420Z", - "iopub.status.idle": "2024-04-12T10:23:32.264434Z", - "shell.execute_reply": "2024-04-12T10:23:32.263866Z" + "iopub.execute_input": "2024-04-22T21:52:05.118435Z", + "iopub.status.busy": "2024-04-22T21:52:05.118123Z", + "iopub.status.idle": "2024-04-22T21:52:05.141692Z", + "shell.execute_reply": "2024-04-22T21:52:05.141143Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8c260bc1ea9743258848135604c9cd07", + "model_id": "0d01affcfd654e91bc4b3c12c4753ece", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "28e7b0cb6a8747838aa5a5c29c2d207f", + "model_id": "ecfa98554fac42d4b9d44a61144d1967", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.271267Z", - "iopub.status.busy": "2024-04-12T10:23:32.270917Z", - "iopub.status.idle": "2024-04-12T10:23:32.277479Z", - "shell.execute_reply": "2024-04-12T10:23:32.277056Z" + "iopub.execute_input": "2024-04-22T21:52:05.148575Z", + "iopub.status.busy": "2024-04-22T21:52:05.148402Z", + "iopub.status.idle": "2024-04-22T21:52:05.155067Z", + "shell.execute_reply": "2024-04-22T21:52:05.154509Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.279542Z", - "iopub.status.busy": "2024-04-12T10:23:32.279203Z", - "iopub.status.idle": "2024-04-12T10:23:32.282672Z", - "shell.execute_reply": "2024-04-12T10:23:32.282212Z" + "iopub.execute_input": "2024-04-22T21:52:05.157280Z", + "iopub.status.busy": "2024-04-22T21:52:05.156882Z", + "iopub.status.idle": "2024-04-22T21:52:05.160426Z", + "shell.execute_reply": "2024-04-22T21:52:05.159903Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.284674Z", - "iopub.status.busy": "2024-04-12T10:23:32.284288Z", - "iopub.status.idle": "2024-04-12T10:23:32.290577Z", - "shell.execute_reply": "2024-04-12T10:23:32.290040Z" + "iopub.execute_input": "2024-04-22T21:52:05.162479Z", + "iopub.status.busy": "2024-04-22T21:52:05.162048Z", + "iopub.status.idle": "2024-04-22T21:52:05.168341Z", + "shell.execute_reply": "2024-04-22T21:52:05.167863Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.292646Z", - "iopub.status.busy": "2024-04-12T10:23:32.292223Z", - "iopub.status.idle": "2024-04-12T10:23:32.324821Z", - "shell.execute_reply": "2024-04-12T10:23:32.324229Z" + "iopub.execute_input": "2024-04-22T21:52:05.170357Z", + "iopub.status.busy": "2024-04-22T21:52:05.169970Z", + "iopub.status.idle": "2024-04-22T21:52:05.206396Z", + "shell.execute_reply": "2024-04-22T21:52:05.205710Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.327334Z", - "iopub.status.busy": "2024-04-12T10:23:32.327095Z", - "iopub.status.idle": "2024-04-12T10:23:32.356377Z", - "shell.execute_reply": "2024-04-12T10:23:32.355672Z" + "iopub.execute_input": "2024-04-22T21:52:05.209421Z", + "iopub.status.busy": "2024-04-22T21:52:05.209118Z", + "iopub.status.idle": "2024-04-22T21:52:05.246322Z", + "shell.execute_reply": "2024-04-22T21:52:05.245738Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.359293Z", - "iopub.status.busy": "2024-04-12T10:23:32.358854Z", - "iopub.status.idle": "2024-04-12T10:23:32.476300Z", - "shell.execute_reply": "2024-04-12T10:23:32.475620Z" + "iopub.execute_input": "2024-04-22T21:52:05.249675Z", + "iopub.status.busy": "2024-04-22T21:52:05.249165Z", + "iopub.status.idle": "2024-04-22T21:52:05.367206Z", + "shell.execute_reply": "2024-04-22T21:52:05.366597Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:32.479308Z", - "iopub.status.busy": "2024-04-12T10:23:32.478540Z", - "iopub.status.idle": "2024-04-12T10:23:35.512512Z", - "shell.execute_reply": "2024-04-12T10:23:35.511934Z" + "iopub.execute_input": "2024-04-22T21:52:05.370149Z", + "iopub.status.busy": "2024-04-22T21:52:05.369388Z", + "iopub.status.idle": "2024-04-22T21:52:08.425820Z", + "shell.execute_reply": "2024-04-22T21:52:08.425236Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.514767Z", - "iopub.status.busy": "2024-04-12T10:23:35.514559Z", - "iopub.status.idle": "2024-04-12T10:23:35.569433Z", - "shell.execute_reply": "2024-04-12T10:23:35.568850Z" + "iopub.execute_input": "2024-04-22T21:52:08.428334Z", + "iopub.status.busy": "2024-04-22T21:52:08.427969Z", + "iopub.status.idle": "2024-04-22T21:52:08.484464Z", + "shell.execute_reply": "2024-04-22T21:52:08.483898Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.571859Z", - "iopub.status.busy": "2024-04-12T10:23:35.571454Z", - "iopub.status.idle": "2024-04-12T10:23:35.609363Z", - "shell.execute_reply": "2024-04-12T10:23:35.608783Z" + "iopub.execute_input": "2024-04-22T21:52:08.486528Z", + "iopub.status.busy": "2024-04-22T21:52:08.486195Z", + "iopub.status.idle": "2024-04-22T21:52:08.524318Z", + "shell.execute_reply": "2024-04-22T21:52:08.523834Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "9b42ee36", + "id": "c8f17b20", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "3d4d1251", + "id": "14004008", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "87bb2a34", + "id": "8d2a1e18", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.611896Z", - "iopub.status.busy": "2024-04-12T10:23:35.611457Z", - "iopub.status.idle": "2024-04-12T10:23:35.711759Z", - "shell.execute_reply": "2024-04-12T10:23:35.711251Z" + "iopub.execute_input": "2024-04-22T21:52:08.526275Z", + "iopub.status.busy": "2024-04-22T21:52:08.526097Z", + "iopub.status.idle": "2024-04-22T21:52:08.639122Z", + "shell.execute_reply": "2024-04-22T21:52:08.638496Z" } }, "outputs": [ @@ -1354,7 +1354,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n", + "Finding underperforming_group issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1387,7 +1393,7 @@ }, { "cell_type": "markdown", - "id": "3a4977d0", + "id": "a9e1ae90", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1402,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "0e8e3e4a", + "id": "744edcb3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.714369Z", - "iopub.status.busy": "2024-04-12T10:23:35.714073Z", - "iopub.status.idle": "2024-04-12T10:23:35.790798Z", - "shell.execute_reply": "2024-04-12T10:23:35.790269Z" + "iopub.execute_input": "2024-04-22T21:52:08.641537Z", + "iopub.status.busy": "2024-04-22T21:52:08.641290Z", + "iopub.status.idle": "2024-04-22T21:52:08.710633Z", + "shell.execute_reply": "2024-04-22T21:52:08.710104Z" } }, "outputs": [ @@ -1410,13 +1416,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Finding underperforming_group issues ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1444,7 +1444,7 @@ }, { "cell_type": "markdown", - "id": "12960534", + "id": "b66f3ef5", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1455,13 +1455,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "89353571", + "id": "201e836f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.793275Z", - "iopub.status.busy": "2024-04-12T10:23:35.792931Z", - "iopub.status.idle": "2024-04-12T10:23:35.800499Z", - "shell.execute_reply": "2024-04-12T10:23:35.799927Z" + "iopub.execute_input": "2024-04-22T21:52:08.712864Z", + "iopub.status.busy": "2024-04-22T21:52:08.712685Z", + "iopub.status.idle": "2024-04-22T21:52:08.720218Z", + "shell.execute_reply": "2024-04-22T21:52:08.719681Z" } }, "outputs": [], @@ -1563,7 +1563,7 @@ }, { "cell_type": "markdown", - "id": "59b8a427", + "id": "85fd0060", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1578,13 +1578,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "33839777", + "id": "b2725995", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.802402Z", - "iopub.status.busy": "2024-04-12T10:23:35.802236Z", - "iopub.status.idle": "2024-04-12T10:23:35.819623Z", - "shell.execute_reply": "2024-04-12T10:23:35.819070Z" + "iopub.execute_input": "2024-04-22T21:52:08.722126Z", + "iopub.status.busy": "2024-04-22T21:52:08.721960Z", + "iopub.status.idle": "2024-04-22T21:52:08.741958Z", + "shell.execute_reply": "2024-04-22T21:52:08.741363Z" } }, "outputs": [ @@ -1601,7 +1601,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7808/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7754/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1635,13 +1635,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "8798fb52", + "id": "76ef1b38", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:35.821505Z", - "iopub.status.busy": "2024-04-12T10:23:35.821336Z", - "iopub.status.idle": "2024-04-12T10:23:35.824669Z", - "shell.execute_reply": "2024-04-12T10:23:35.824191Z" + "iopub.execute_input": "2024-04-22T21:52:08.744017Z", + "iopub.status.busy": "2024-04-22T21:52:08.743671Z", + "iopub.status.idle": "2024-04-22T21:52:08.747029Z", + "shell.execute_reply": "2024-04-22T21:52:08.746472Z" } }, "outputs": [ @@ -1736,23 +1736,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0a7860f5b87a46e4819fea6653dd9061": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "14f2704100154f4c917be99b1c1ce2ca": { + "01d3a49b1a81424a99b6058be743e938": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1805,7 +1789,7 @@ "width": null } }, - "16891e481c9a4a92bcacd7b8bb72edd9": { + "0614a2ee5cd14b049369fab77e863695": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1858,75 +1842,88 @@ "width": null } }, - "213dda6107794666b3335fe80eff0358": { + "0d01affcfd654e91bc4b3c12c4753ece": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4a532edbc3ae4cbdb048c5d9343f1354", + "IPY_MODEL_ac6a6f43ceb24e75ab89abdb93ab981a", + "IPY_MODEL_14c78ffce17e44099ad57db8516e53b8" + ], + "layout": "IPY_MODEL_c1141852bf9c4c0583555090a921c356", + "tabbable": null, + "tooltip": null + } + }, + "14c78ffce17e44099ad57db8516e53b8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_14f2704100154f4c917be99b1c1ce2ca", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_69c079fc55ec4e2ca9a1c2e55f07cad5", + "layout": "IPY_MODEL_01d3a49b1a81424a99b6058be743e938", + "placeholder": "​", + "style": "IPY_MODEL_9920ee4f6ba347dea7c22692fbdcd7e1", "tabbable": null, "tooltip": null, - "value": 50.0 + "value": " 10000/? [00:00<00:00, 1060909.07it/s]" } }, - "2504522320e44c048af1ae4ab8898d64": { + "1a77cc19f1bb4cd48ffe9b0ccbe9e37c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "28e7b0cb6a8747838aa5a5c29c2d207f": { + "1cc70d40ac3c47d5969f8340ac97c61b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7bcdcc4382b1410b88badabfb5c9f776", - "IPY_MODEL_213dda6107794666b3335fe80eff0358", - "IPY_MODEL_e8cbb81e49284b308740a345fbe93891" - ], - "layout": "IPY_MODEL_16891e481c9a4a92bcacd7b8bb72edd9", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "38bf144276b64c7b8e01c11808a69730": { + "2861e639a9be4f5595f57a3ee1d56a3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1979,49 +1976,46 @@ "width": null } }, - "48156a975187400d833ac4a7ee4322fd": { + "45da024dc7e5474da2edd2b331e98641": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_efe1c309040647cdbe04b81dd7016fec", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0a7860f5b87a46e4819fea6653dd9061", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "69c079fc55ec4e2ca9a1c2e55f07cad5": { + "4a532edbc3ae4cbdb048c5d9343f1354": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8261e5c8177d407ba3b4724837ecace9", + "placeholder": "​", + "style": "IPY_MODEL_c7893fa914f5433bac6dad87821e0d8f", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " } }, - "7b22deeb983f4425b4bbcd3fbb2862a4": { + "4a8db3753f104acf97c64c947eb6fe8c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2074,7 +2068,7 @@ "width": null } }, - "7bcdcc4382b1410b88badabfb5c9f776": { + "6d38458374ea47cbbdc8c7448393bb68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2089,103 +2083,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38bf144276b64c7b8e01c11808a69730", + "layout": "IPY_MODEL_0614a2ee5cd14b049369fab77e863695", "placeholder": "​", - "style": "IPY_MODEL_d6c80a655bf244179f87527dbdfead1e", + "style": "IPY_MODEL_1cc70d40ac3c47d5969f8340ac97c61b", "tabbable": null, "tooltip": null, "value": "number of examples processed for checking labels: " } }, - "8c260bc1ea9743258848135604c9cd07": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a22289d860344bdcaba834db217e956d", - "IPY_MODEL_48156a975187400d833ac4a7ee4322fd", - "IPY_MODEL_c7510bffa2c8406e8ebfeca0afd07ce4" - ], - "layout": "IPY_MODEL_ceb2ccf2d724460a9d41c4e0ee8c217c", - "tabbable": null, - "tooltip": null - } - }, - "96740393cd8d45dfaaf53864e507c6f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a22289d860344bdcaba834db217e956d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ddb85543e31e4fcfafa7b15ad5422d3b", - "placeholder": "​", - "style": "IPY_MODEL_d7e2e9cb252b4f7f8b8479ee2ea373e3", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "c7510bffa2c8406e8ebfeca0afd07ce4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6a4a87457184eaaaad42b37d42db17c", - "placeholder": "​", - "style": "IPY_MODEL_96740393cd8d45dfaaf53864e507c6f6", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1101040.58it/s]" - } - }, - "ceb2ccf2d724460a9d41c4e0ee8c217c": { + "8261e5c8177d407ba3b4724837ecace9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2238,7 +2144,25 @@ "width": null } }, - "d6a4a87457184eaaaad42b37d42db17c": { + "9920ee4f6ba347dea7c22692fbdcd7e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ab19415e02fe4fa38b47b69c987798f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2291,43 +2215,33 @@ "width": null } }, - "d6c80a655bf244179f87527dbdfead1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d7e2e9cb252b4f7f8b8479ee2ea373e3": { + "ac6a6f43ceb24e75ab89abdb93ab981a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2861e639a9be4f5595f57a3ee1d56a3c", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a77cc19f1bb4cd48ffe9b0ccbe9e37c", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "ddb85543e31e4fcfafa7b15ad5422d3b": { + "b38d401f29ce450ca6857d1b7ef72d37": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2380,7 +2294,7 @@ "width": null } }, - "e8cbb81e49284b308740a345fbe93891": { + "b799590b527047acb2919c345b85074e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2395,15 +2309,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b22deeb983f4425b4bbcd3fbb2862a4", + "layout": "IPY_MODEL_ab19415e02fe4fa38b47b69c987798f3", "placeholder": "​", - "style": "IPY_MODEL_2504522320e44c048af1ae4ab8898d64", + "style": "IPY_MODEL_e6cd35d0225f4dca9566f56280f4abd1", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1539872.24it/s]" + "value": " 10000/? [00:00<00:00, 1555116.24it/s]" } }, - "efe1c309040647cdbe04b81dd7016fec": { + "c1141852bf9c4c0583555090a921c356": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2455,6 +2369,92 @@ "visibility": null, "width": null } + }, + "c7893fa914f5433bac6dad87821e0d8f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e6cd35d0225f4dca9566f56280f4abd1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ecfa98554fac42d4b9d44a61144d1967": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6d38458374ea47cbbdc8c7448393bb68", + "IPY_MODEL_ff0836e3efe8493c95bceed8e5f03110", + "IPY_MODEL_b799590b527047acb2919c345b85074e" + ], + "layout": "IPY_MODEL_4a8db3753f104acf97c64c947eb6fe8c", + "tabbable": null, + "tooltip": null + } + }, + "ff0836e3efe8493c95bceed8e5f03110": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b38d401f29ce450ca6857d1b7ef72d37", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_45da024dc7e5474da2edd2b331e98641", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } } }, "version_major": 2, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 9825cccbd..ee9e0524b 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:38.980369Z", - "iopub.status.busy": "2024-04-12T10:23:38.979963Z", - "iopub.status.idle": "2024-04-12T10:23:40.114205Z", - "shell.execute_reply": "2024-04-12T10:23:40.113605Z" + "iopub.execute_input": "2024-04-22T21:52:11.830493Z", + "iopub.status.busy": "2024-04-22T21:52:11.830091Z", + "iopub.status.idle": "2024-04-22T21:52:12.956551Z", + "shell.execute_reply": "2024-04-22T21:52:12.955935Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:40.116704Z", - "iopub.status.busy": "2024-04-12T10:23:40.116446Z", - "iopub.status.idle": "2024-04-12T10:23:40.292321Z", - "shell.execute_reply": "2024-04-12T10:23:40.291818Z" + "iopub.execute_input": "2024-04-22T21:52:12.959088Z", + "iopub.status.busy": "2024-04-22T21:52:12.958772Z", + "iopub.status.idle": "2024-04-22T21:52:13.136515Z", + "shell.execute_reply": "2024-04-22T21:52:13.136003Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:40.294919Z", - "iopub.status.busy": "2024-04-12T10:23:40.294476Z", - "iopub.status.idle": "2024-04-12T10:23:40.306878Z", - "shell.execute_reply": "2024-04-12T10:23:40.306355Z" + "iopub.execute_input": "2024-04-22T21:52:13.139088Z", + "iopub.status.busy": "2024-04-22T21:52:13.138714Z", + "iopub.status.idle": "2024-04-22T21:52:13.150951Z", + "shell.execute_reply": "2024-04-22T21:52:13.150351Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:40.309026Z", - "iopub.status.busy": "2024-04-12T10:23:40.308721Z", - "iopub.status.idle": "2024-04-12T10:23:40.515012Z", - "shell.execute_reply": "2024-04-12T10:23:40.514466Z" + "iopub.execute_input": "2024-04-22T21:52:13.153342Z", + "iopub.status.busy": "2024-04-22T21:52:13.153000Z", + "iopub.status.idle": "2024-04-22T21:52:13.385524Z", + "shell.execute_reply": "2024-04-22T21:52:13.384918Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:40.517380Z", - "iopub.status.busy": "2024-04-12T10:23:40.517039Z", - "iopub.status.idle": "2024-04-12T10:23:40.543276Z", - "shell.execute_reply": "2024-04-12T10:23:40.542696Z" + "iopub.execute_input": "2024-04-22T21:52:13.388001Z", + "iopub.status.busy": "2024-04-22T21:52:13.387664Z", + "iopub.status.idle": "2024-04-22T21:52:13.413891Z", + "shell.execute_reply": "2024-04-22T21:52:13.413406Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:40.545521Z", - "iopub.status.busy": "2024-04-12T10:23:40.545217Z", - "iopub.status.idle": "2024-04-12T10:23:42.188216Z", - "shell.execute_reply": "2024-04-12T10:23:42.187564Z" + "iopub.execute_input": "2024-04-22T21:52:13.416344Z", + "iopub.status.busy": "2024-04-22T21:52:13.415900Z", + "iopub.status.idle": "2024-04-22T21:52:15.058789Z", + "shell.execute_reply": "2024-04-22T21:52:15.058131Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:42.190670Z", - "iopub.status.busy": "2024-04-12T10:23:42.190275Z", - "iopub.status.idle": "2024-04-12T10:23:42.208368Z", - "shell.execute_reply": "2024-04-12T10:23:42.207906Z" + "iopub.execute_input": "2024-04-22T21:52:15.061515Z", + "iopub.status.busy": "2024-04-22T21:52:15.060989Z", + "iopub.status.idle": "2024-04-22T21:52:15.078595Z", + "shell.execute_reply": "2024-04-22T21:52:15.078151Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:42.210334Z", - "iopub.status.busy": "2024-04-12T10:23:42.210148Z", - "iopub.status.idle": "2024-04-12T10:23:43.587931Z", - "shell.execute_reply": "2024-04-12T10:23:43.587353Z" + "iopub.execute_input": "2024-04-22T21:52:15.080607Z", + "iopub.status.busy": "2024-04-22T21:52:15.080418Z", + "iopub.status.idle": "2024-04-22T21:52:16.466029Z", + "shell.execute_reply": "2024-04-22T21:52:16.465391Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.590812Z", - "iopub.status.busy": "2024-04-12T10:23:43.590056Z", - "iopub.status.idle": "2024-04-12T10:23:43.603605Z", - "shell.execute_reply": "2024-04-12T10:23:43.603062Z" + "iopub.execute_input": "2024-04-22T21:52:16.469031Z", + "iopub.status.busy": "2024-04-22T21:52:16.468302Z", + "iopub.status.idle": "2024-04-22T21:52:16.482090Z", + "shell.execute_reply": "2024-04-22T21:52:16.481639Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.605792Z", - "iopub.status.busy": "2024-04-12T10:23:43.605467Z", - "iopub.status.idle": "2024-04-12T10:23:43.677986Z", - "shell.execute_reply": "2024-04-12T10:23:43.677445Z" + "iopub.execute_input": "2024-04-22T21:52:16.484023Z", + "iopub.status.busy": "2024-04-22T21:52:16.483766Z", + "iopub.status.idle": "2024-04-22T21:52:16.552482Z", + "shell.execute_reply": "2024-04-22T21:52:16.551951Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.680310Z", - "iopub.status.busy": "2024-04-12T10:23:43.679977Z", - "iopub.status.idle": "2024-04-12T10:23:43.891156Z", - "shell.execute_reply": "2024-04-12T10:23:43.890601Z" + "iopub.execute_input": "2024-04-22T21:52:16.554676Z", + "iopub.status.busy": "2024-04-22T21:52:16.554385Z", + "iopub.status.idle": "2024-04-22T21:52:16.762288Z", + "shell.execute_reply": "2024-04-22T21:52:16.761706Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.893478Z", - "iopub.status.busy": "2024-04-12T10:23:43.893179Z", - "iopub.status.idle": "2024-04-12T10:23:43.909858Z", - "shell.execute_reply": "2024-04-12T10:23:43.909401Z" + "iopub.execute_input": "2024-04-22T21:52:16.764493Z", + "iopub.status.busy": "2024-04-22T21:52:16.764152Z", + "iopub.status.idle": "2024-04-22T21:52:16.780864Z", + "shell.execute_reply": "2024-04-22T21:52:16.780432Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.911908Z", - "iopub.status.busy": "2024-04-12T10:23:43.911646Z", - "iopub.status.idle": "2024-04-12T10:23:43.920955Z", - "shell.execute_reply": "2024-04-12T10:23:43.920504Z" + "iopub.execute_input": "2024-04-22T21:52:16.782917Z", + "iopub.status.busy": "2024-04-22T21:52:16.782584Z", + "iopub.status.idle": "2024-04-22T21:52:16.792037Z", + "shell.execute_reply": "2024-04-22T21:52:16.791625Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:43.922907Z", - "iopub.status.busy": "2024-04-12T10:23:43.922643Z", - "iopub.status.idle": "2024-04-12T10:23:44.006657Z", - "shell.execute_reply": "2024-04-12T10:23:44.006071Z" + "iopub.execute_input": "2024-04-22T21:52:16.794122Z", + "iopub.status.busy": "2024-04-22T21:52:16.793794Z", + "iopub.status.idle": "2024-04-22T21:52:16.874914Z", + "shell.execute_reply": "2024-04-22T21:52:16.874301Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.009278Z", - "iopub.status.busy": "2024-04-12T10:23:44.008899Z", - "iopub.status.idle": "2024-04-12T10:23:44.127203Z", - "shell.execute_reply": "2024-04-12T10:23:44.126645Z" + "iopub.execute_input": "2024-04-22T21:52:16.877155Z", + "iopub.status.busy": "2024-04-22T21:52:16.876925Z", + "iopub.status.idle": "2024-04-22T21:52:16.992477Z", + "shell.execute_reply": "2024-04-22T21:52:16.991885Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.129686Z", - "iopub.status.busy": "2024-04-12T10:23:44.129298Z", - "iopub.status.idle": "2024-04-12T10:23:44.132944Z", - "shell.execute_reply": "2024-04-12T10:23:44.132412Z" + "iopub.execute_input": "2024-04-22T21:52:16.994722Z", + "iopub.status.busy": "2024-04-22T21:52:16.994500Z", + "iopub.status.idle": "2024-04-22T21:52:16.998468Z", + "shell.execute_reply": "2024-04-22T21:52:16.997916Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.135040Z", - "iopub.status.busy": "2024-04-12T10:23:44.134724Z", - "iopub.status.idle": "2024-04-12T10:23:44.138374Z", - "shell.execute_reply": "2024-04-12T10:23:44.137840Z" + "iopub.execute_input": "2024-04-22T21:52:17.000557Z", + "iopub.status.busy": "2024-04-22T21:52:17.000129Z", + "iopub.status.idle": "2024-04-22T21:52:17.003797Z", + "shell.execute_reply": "2024-04-22T21:52:17.003311Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.140470Z", - "iopub.status.busy": "2024-04-12T10:23:44.140123Z", - "iopub.status.idle": "2024-04-12T10:23:44.177318Z", - "shell.execute_reply": "2024-04-12T10:23:44.176868Z" + "iopub.execute_input": "2024-04-22T21:52:17.005797Z", + "iopub.status.busy": "2024-04-22T21:52:17.005483Z", + "iopub.status.idle": "2024-04-22T21:52:17.042345Z", + "shell.execute_reply": "2024-04-22T21:52:17.041919Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.179387Z", - "iopub.status.busy": "2024-04-12T10:23:44.179056Z", - "iopub.status.idle": "2024-04-12T10:23:44.220995Z", - "shell.execute_reply": "2024-04-12T10:23:44.220521Z" + "iopub.execute_input": "2024-04-22T21:52:17.044348Z", + "iopub.status.busy": "2024-04-22T21:52:17.044024Z", + "iopub.status.idle": "2024-04-22T21:52:17.085292Z", + "shell.execute_reply": "2024-04-22T21:52:17.084825Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.223026Z", - "iopub.status.busy": "2024-04-12T10:23:44.222634Z", - "iopub.status.idle": "2024-04-12T10:23:44.344379Z", - "shell.execute_reply": "2024-04-12T10:23:44.343810Z" + "iopub.execute_input": "2024-04-22T21:52:17.087291Z", + "iopub.status.busy": "2024-04-22T21:52:17.086967Z", + "iopub.status.idle": "2024-04-22T21:52:17.176249Z", + "shell.execute_reply": "2024-04-22T21:52:17.175547Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.346999Z", - "iopub.status.busy": "2024-04-12T10:23:44.346626Z", - "iopub.status.idle": "2024-04-12T10:23:44.430647Z", - "shell.execute_reply": "2024-04-12T10:23:44.430049Z" + "iopub.execute_input": "2024-04-22T21:52:17.178856Z", + "iopub.status.busy": "2024-04-22T21:52:17.178637Z", + "iopub.status.idle": "2024-04-22T21:52:17.262491Z", + "shell.execute_reply": "2024-04-22T21:52:17.261872Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.432860Z", - "iopub.status.busy": "2024-04-12T10:23:44.432630Z", - "iopub.status.idle": "2024-04-12T10:23:44.644391Z", - "shell.execute_reply": "2024-04-12T10:23:44.643766Z" + "iopub.execute_input": "2024-04-22T21:52:17.264785Z", + "iopub.status.busy": "2024-04-22T21:52:17.264560Z", + "iopub.status.idle": "2024-04-22T21:52:17.475922Z", + "shell.execute_reply": "2024-04-22T21:52:17.475354Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.646431Z", - "iopub.status.busy": "2024-04-12T10:23:44.646241Z", - "iopub.status.idle": "2024-04-12T10:23:44.820382Z", - "shell.execute_reply": "2024-04-12T10:23:44.819803Z" + "iopub.execute_input": "2024-04-22T21:52:17.478110Z", + "iopub.status.busy": "2024-04-22T21:52:17.477794Z", + "iopub.status.idle": "2024-04-22T21:52:17.646943Z", + "shell.execute_reply": "2024-04-22T21:52:17.646312Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.822782Z", - "iopub.status.busy": "2024-04-12T10:23:44.822415Z", - "iopub.status.idle": "2024-04-12T10:23:44.828228Z", - "shell.execute_reply": "2024-04-12T10:23:44.827794Z" + "iopub.execute_input": "2024-04-22T21:52:17.649168Z", + "iopub.status.busy": "2024-04-22T21:52:17.648932Z", + "iopub.status.idle": "2024-04-22T21:52:17.654785Z", + "shell.execute_reply": "2024-04-22T21:52:17.654297Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:44.830285Z", - "iopub.status.busy": "2024-04-12T10:23:44.829942Z", - "iopub.status.idle": "2024-04-12T10:23:45.040133Z", - "shell.execute_reply": "2024-04-12T10:23:45.039564Z" + "iopub.execute_input": "2024-04-22T21:52:17.656637Z", + "iopub.status.busy": "2024-04-22T21:52:17.656468Z", + "iopub.status.idle": "2024-04-22T21:52:17.870516Z", + "shell.execute_reply": "2024-04-22T21:52:17.869974Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:45.042281Z", - "iopub.status.busy": "2024-04-12T10:23:45.042094Z", - "iopub.status.idle": "2024-04-12T10:23:46.102368Z", - "shell.execute_reply": "2024-04-12T10:23:46.101824Z" + "iopub.execute_input": "2024-04-22T21:52:17.872858Z", + "iopub.status.busy": "2024-04-22T21:52:17.872517Z", + "iopub.status.idle": "2024-04-22T21:52:18.913739Z", + "shell.execute_reply": "2024-04-22T21:52:18.913203Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index f7ea7efc2..edd8f20c7 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:49.391078Z", - "iopub.status.busy": "2024-04-12T10:23:49.390898Z", - "iopub.status.idle": "2024-04-12T10:23:50.452554Z", - "shell.execute_reply": "2024-04-12T10:23:50.451899Z" + "iopub.execute_input": "2024-04-22T21:52:22.067981Z", + "iopub.status.busy": "2024-04-22T21:52:22.067499Z", + "iopub.status.idle": "2024-04-22T21:52:23.142423Z", + "shell.execute_reply": "2024-04-22T21:52:23.141935Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.455137Z", - "iopub.status.busy": "2024-04-12T10:23:50.454867Z", - "iopub.status.idle": "2024-04-12T10:23:50.458040Z", - "shell.execute_reply": "2024-04-12T10:23:50.457590Z" + "iopub.execute_input": "2024-04-22T21:52:23.145178Z", + "iopub.status.busy": "2024-04-22T21:52:23.144708Z", + "iopub.status.idle": "2024-04-22T21:52:23.149596Z", + "shell.execute_reply": "2024-04-22T21:52:23.149011Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.460013Z", - "iopub.status.busy": "2024-04-12T10:23:50.459842Z", - "iopub.status.idle": "2024-04-12T10:23:50.467796Z", - "shell.execute_reply": "2024-04-12T10:23:50.467373Z" + "iopub.execute_input": "2024-04-22T21:52:23.152027Z", + "iopub.status.busy": "2024-04-22T21:52:23.151691Z", + "iopub.status.idle": "2024-04-22T21:52:23.159217Z", + "shell.execute_reply": "2024-04-22T21:52:23.158758Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.469988Z", - "iopub.status.busy": "2024-04-12T10:23:50.469546Z", - "iopub.status.idle": "2024-04-12T10:23:50.515538Z", - "shell.execute_reply": "2024-04-12T10:23:50.515006Z" + "iopub.execute_input": "2024-04-22T21:52:23.161157Z", + "iopub.status.busy": "2024-04-22T21:52:23.160834Z", + "iopub.status.idle": "2024-04-22T21:52:23.208411Z", + "shell.execute_reply": "2024-04-22T21:52:23.207820Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.518017Z", - "iopub.status.busy": "2024-04-12T10:23:50.517498Z", - "iopub.status.idle": "2024-04-12T10:23:50.534348Z", - "shell.execute_reply": "2024-04-12T10:23:50.533932Z" + "iopub.execute_input": "2024-04-22T21:52:23.210979Z", + "iopub.status.busy": "2024-04-22T21:52:23.210437Z", + "iopub.status.idle": "2024-04-22T21:52:23.228127Z", + "shell.execute_reply": "2024-04-22T21:52:23.227691Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.536552Z", - "iopub.status.busy": "2024-04-12T10:23:50.536024Z", - "iopub.status.idle": "2024-04-12T10:23:50.539914Z", - "shell.execute_reply": "2024-04-12T10:23:50.539410Z" + "iopub.execute_input": "2024-04-22T21:52:23.230262Z", + "iopub.status.busy": "2024-04-22T21:52:23.229939Z", + "iopub.status.idle": "2024-04-22T21:52:23.233771Z", + "shell.execute_reply": "2024-04-22T21:52:23.233244Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.541990Z", - "iopub.status.busy": "2024-04-12T10:23:50.541690Z", - "iopub.status.idle": "2024-04-12T10:23:50.569850Z", - "shell.execute_reply": "2024-04-12T10:23:50.569413Z" + "iopub.execute_input": "2024-04-22T21:52:23.236101Z", + "iopub.status.busy": "2024-04-22T21:52:23.235790Z", + "iopub.status.idle": "2024-04-22T21:52:23.262480Z", + "shell.execute_reply": "2024-04-22T21:52:23.262054Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.571828Z", - "iopub.status.busy": "2024-04-12T10:23:50.571565Z", - "iopub.status.idle": "2024-04-12T10:23:50.605713Z", - "shell.execute_reply": "2024-04-12T10:23:50.605219Z" + "iopub.execute_input": "2024-04-22T21:52:23.264611Z", + "iopub.status.busy": "2024-04-22T21:52:23.264271Z", + "iopub.status.idle": "2024-04-22T21:52:23.290370Z", + "shell.execute_reply": "2024-04-22T21:52:23.289938Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:50.607962Z", - "iopub.status.busy": "2024-04-12T10:23:50.607561Z", - "iopub.status.idle": "2024-04-12T10:23:52.306188Z", - "shell.execute_reply": "2024-04-12T10:23:52.305627Z" + "iopub.execute_input": "2024-04-22T21:52:23.292483Z", + "iopub.status.busy": "2024-04-22T21:52:23.292183Z", + "iopub.status.idle": "2024-04-22T21:52:24.991406Z", + "shell.execute_reply": "2024-04-22T21:52:24.990836Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.308677Z", - "iopub.status.busy": "2024-04-12T10:23:52.308386Z", - "iopub.status.idle": "2024-04-12T10:23:52.315080Z", - "shell.execute_reply": "2024-04-12T10:23:52.314524Z" + "iopub.execute_input": "2024-04-22T21:52:24.994019Z", + "iopub.status.busy": "2024-04-22T21:52:24.993511Z", + "iopub.status.idle": "2024-04-22T21:52:25.000338Z", + "shell.execute_reply": "2024-04-22T21:52:24.999792Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.317228Z", - "iopub.status.busy": "2024-04-12T10:23:52.316897Z", - "iopub.status.idle": "2024-04-12T10:23:52.329370Z", - "shell.execute_reply": "2024-04-12T10:23:52.328859Z" + "iopub.execute_input": "2024-04-22T21:52:25.002483Z", + "iopub.status.busy": "2024-04-22T21:52:25.002156Z", + "iopub.status.idle": "2024-04-22T21:52:25.014567Z", + "shell.execute_reply": "2024-04-22T21:52:25.014009Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.331436Z", - "iopub.status.busy": "2024-04-12T10:23:52.331116Z", - "iopub.status.idle": "2024-04-12T10:23:52.337220Z", - "shell.execute_reply": "2024-04-12T10:23:52.336798Z" + "iopub.execute_input": "2024-04-22T21:52:25.016679Z", + "iopub.status.busy": "2024-04-22T21:52:25.016371Z", + "iopub.status.idle": "2024-04-22T21:52:25.022682Z", + "shell.execute_reply": "2024-04-22T21:52:25.022244Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.339282Z", - "iopub.status.busy": "2024-04-12T10:23:52.338968Z", - "iopub.status.idle": "2024-04-12T10:23:52.341494Z", - "shell.execute_reply": "2024-04-12T10:23:52.341083Z" + "iopub.execute_input": "2024-04-22T21:52:25.024560Z", + "iopub.status.busy": "2024-04-22T21:52:25.024392Z", + "iopub.status.idle": "2024-04-22T21:52:25.027108Z", + "shell.execute_reply": "2024-04-22T21:52:25.026655Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.343481Z", - "iopub.status.busy": "2024-04-12T10:23:52.343160Z", - "iopub.status.idle": "2024-04-12T10:23:52.346396Z", - "shell.execute_reply": "2024-04-12T10:23:52.345863Z" + "iopub.execute_input": "2024-04-22T21:52:25.029076Z", + "iopub.status.busy": "2024-04-22T21:52:25.028781Z", + "iopub.status.idle": "2024-04-22T21:52:25.032448Z", + "shell.execute_reply": "2024-04-22T21:52:25.031995Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.348429Z", - "iopub.status.busy": "2024-04-12T10:23:52.348077Z", - "iopub.status.idle": "2024-04-12T10:23:52.350624Z", - "shell.execute_reply": "2024-04-12T10:23:52.350198Z" + "iopub.execute_input": "2024-04-22T21:52:25.034438Z", + "iopub.status.busy": "2024-04-22T21:52:25.034120Z", + "iopub.status.idle": "2024-04-22T21:52:25.036635Z", + "shell.execute_reply": "2024-04-22T21:52:25.036214Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.352699Z", - "iopub.status.busy": "2024-04-12T10:23:52.352320Z", - "iopub.status.idle": "2024-04-12T10:23:52.356683Z", - "shell.execute_reply": "2024-04-12T10:23:52.356215Z" + "iopub.execute_input": "2024-04-22T21:52:25.038645Z", + "iopub.status.busy": "2024-04-22T21:52:25.038236Z", + "iopub.status.idle": "2024-04-22T21:52:25.042384Z", + "shell.execute_reply": "2024-04-22T21:52:25.041846Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.358693Z", - "iopub.status.busy": "2024-04-12T10:23:52.358359Z", - "iopub.status.idle": "2024-04-12T10:23:52.387430Z", - "shell.execute_reply": "2024-04-12T10:23:52.386890Z" + "iopub.execute_input": "2024-04-22T21:52:25.044378Z", + "iopub.status.busy": "2024-04-22T21:52:25.044085Z", + "iopub.status.idle": "2024-04-22T21:52:25.072997Z", + "shell.execute_reply": "2024-04-22T21:52:25.072415Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:52.389694Z", - "iopub.status.busy": "2024-04-12T10:23:52.389405Z", - "iopub.status.idle": "2024-04-12T10:23:52.393990Z", - "shell.execute_reply": "2024-04-12T10:23:52.393438Z" + "iopub.execute_input": "2024-04-22T21:52:25.075315Z", + "iopub.status.busy": "2024-04-22T21:52:25.074970Z", + "iopub.status.idle": "2024-04-22T21:52:25.079626Z", + "shell.execute_reply": "2024-04-22T21:52:25.079165Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 65f1d180e..25052b0fd 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:55.175052Z", - "iopub.status.busy": "2024-04-12T10:23:55.174880Z", - "iopub.status.idle": "2024-04-12T10:23:56.293270Z", - "shell.execute_reply": "2024-04-12T10:23:56.292722Z" + "iopub.execute_input": "2024-04-22T21:52:27.871661Z", + "iopub.status.busy": "2024-04-22T21:52:27.871503Z", + "iopub.status.idle": "2024-04-22T21:52:28.987816Z", + "shell.execute_reply": "2024-04-22T21:52:28.987286Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:56.295811Z", - "iopub.status.busy": "2024-04-12T10:23:56.295427Z", - "iopub.status.idle": "2024-04-12T10:23:56.484825Z", - "shell.execute_reply": "2024-04-12T10:23:56.484201Z" + "iopub.execute_input": "2024-04-22T21:52:28.990431Z", + "iopub.status.busy": "2024-04-22T21:52:28.990030Z", + "iopub.status.idle": "2024-04-22T21:52:29.183019Z", + "shell.execute_reply": "2024-04-22T21:52:29.182448Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:56.487488Z", - "iopub.status.busy": "2024-04-12T10:23:56.487089Z", - "iopub.status.idle": "2024-04-12T10:23:56.500074Z", - "shell.execute_reply": "2024-04-12T10:23:56.499549Z" + "iopub.execute_input": "2024-04-22T21:52:29.185640Z", + "iopub.status.busy": "2024-04-22T21:52:29.185241Z", + "iopub.status.idle": "2024-04-22T21:52:29.198498Z", + "shell.execute_reply": "2024-04-22T21:52:29.198038Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:56.502218Z", - "iopub.status.busy": "2024-04-12T10:23:56.501834Z", - "iopub.status.idle": "2024-04-12T10:23:59.122623Z", - "shell.execute_reply": "2024-04-12T10:23:59.122125Z" + "iopub.execute_input": "2024-04-22T21:52:29.200404Z", + "iopub.status.busy": "2024-04-22T21:52:29.200226Z", + "iopub.status.idle": "2024-04-22T21:52:31.836938Z", + "shell.execute_reply": "2024-04-22T21:52:31.836353Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:23:59.124863Z", - "iopub.status.busy": "2024-04-12T10:23:59.124542Z", - "iopub.status.idle": "2024-04-12T10:24:00.449018Z", - "shell.execute_reply": "2024-04-12T10:24:00.448472Z" + "iopub.execute_input": "2024-04-22T21:52:31.839072Z", + "iopub.status.busy": "2024-04-22T21:52:31.838839Z", + "iopub.status.idle": "2024-04-22T21:52:33.167293Z", + "shell.execute_reply": "2024-04-22T21:52:33.166650Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:00.451459Z", - "iopub.status.busy": "2024-04-12T10:24:00.451135Z", - "iopub.status.idle": "2024-04-12T10:24:00.455264Z", - "shell.execute_reply": "2024-04-12T10:24:00.454807Z" + "iopub.execute_input": "2024-04-22T21:52:33.169786Z", + "iopub.status.busy": "2024-04-22T21:52:33.169588Z", + "iopub.status.idle": "2024-04-22T21:52:33.173702Z", + "shell.execute_reply": "2024-04-22T21:52:33.173237Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:00.457156Z", - "iopub.status.busy": "2024-04-12T10:24:00.456986Z", - "iopub.status.idle": "2024-04-12T10:24:02.203830Z", - "shell.execute_reply": "2024-04-12T10:24:02.203195Z" + "iopub.execute_input": "2024-04-22T21:52:33.175586Z", + "iopub.status.busy": "2024-04-22T21:52:33.175403Z", + "iopub.status.idle": "2024-04-22T21:52:34.903849Z", + "shell.execute_reply": "2024-04-22T21:52:34.903269Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:02.206204Z", - "iopub.status.busy": "2024-04-12T10:24:02.205840Z", - "iopub.status.idle": "2024-04-12T10:24:02.213889Z", - "shell.execute_reply": "2024-04-12T10:24:02.213422Z" + "iopub.execute_input": "2024-04-22T21:52:34.906320Z", + "iopub.status.busy": "2024-04-22T21:52:34.905957Z", + "iopub.status.idle": "2024-04-22T21:52:34.913712Z", + "shell.execute_reply": "2024-04-22T21:52:34.913204Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:02.216020Z", - "iopub.status.busy": "2024-04-12T10:24:02.215598Z", - "iopub.status.idle": "2024-04-12T10:24:04.765736Z", - "shell.execute_reply": "2024-04-12T10:24:04.765135Z" + "iopub.execute_input": "2024-04-22T21:52:34.915746Z", + "iopub.status.busy": "2024-04-22T21:52:34.915441Z", + "iopub.status.idle": "2024-04-22T21:52:37.497915Z", + "shell.execute_reply": "2024-04-22T21:52:37.497397Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:04.767846Z", - "iopub.status.busy": "2024-04-12T10:24:04.767636Z", - "iopub.status.idle": "2024-04-12T10:24:04.771503Z", - "shell.execute_reply": "2024-04-12T10:24:04.771040Z" + "iopub.execute_input": "2024-04-22T21:52:37.500331Z", + "iopub.status.busy": "2024-04-22T21:52:37.499958Z", + "iopub.status.idle": "2024-04-22T21:52:37.503499Z", + "shell.execute_reply": "2024-04-22T21:52:37.502992Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:04.773387Z", - "iopub.status.busy": "2024-04-12T10:24:04.773217Z", - "iopub.status.idle": "2024-04-12T10:24:04.777237Z", - "shell.execute_reply": "2024-04-12T10:24:04.776790Z" + "iopub.execute_input": "2024-04-22T21:52:37.505636Z", + "iopub.status.busy": "2024-04-22T21:52:37.505214Z", + "iopub.status.idle": "2024-04-22T21:52:37.509388Z", + "shell.execute_reply": "2024-04-22T21:52:37.508908Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:04.779284Z", - "iopub.status.busy": "2024-04-12T10:24:04.778862Z", - "iopub.status.idle": "2024-04-12T10:24:04.781859Z", - "shell.execute_reply": "2024-04-12T10:24:04.781434Z" + "iopub.execute_input": "2024-04-22T21:52:37.511366Z", + "iopub.status.busy": "2024-04-22T21:52:37.511060Z", + "iopub.status.idle": "2024-04-22T21:52:37.514206Z", + "shell.execute_reply": "2024-04-22T21:52:37.513660Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index b2fe475ee..01cc635e5 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:07.097281Z", - "iopub.status.busy": "2024-04-12T10:24:07.096933Z", - "iopub.status.idle": "2024-04-12T10:24:08.212553Z", - "shell.execute_reply": "2024-04-12T10:24:08.212007Z" + "iopub.execute_input": "2024-04-22T21:52:39.874959Z", + "iopub.status.busy": "2024-04-22T21:52:39.874768Z", + "iopub.status.idle": "2024-04-22T21:52:41.002190Z", + "shell.execute_reply": "2024-04-22T21:52:41.001578Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:08.215102Z", - "iopub.status.busy": "2024-04-12T10:24:08.214711Z", - "iopub.status.idle": "2024-04-12T10:24:10.950953Z", - "shell.execute_reply": "2024-04-12T10:24:10.950282Z" + "iopub.execute_input": "2024-04-22T21:52:41.004829Z", + "iopub.status.busy": "2024-04-22T21:52:41.004587Z", + "iopub.status.idle": "2024-04-22T21:52:42.502836Z", + "shell.execute_reply": "2024-04-22T21:52:42.502157Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:10.953725Z", - "iopub.status.busy": "2024-04-12T10:24:10.953344Z", - "iopub.status.idle": "2024-04-12T10:24:10.956460Z", - "shell.execute_reply": "2024-04-12T10:24:10.956013Z" + "iopub.execute_input": "2024-04-22T21:52:42.505492Z", + "iopub.status.busy": "2024-04-22T21:52:42.505092Z", + "iopub.status.idle": "2024-04-22T21:52:42.508264Z", + "shell.execute_reply": "2024-04-22T21:52:42.507828Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:10.958480Z", - "iopub.status.busy": "2024-04-12T10:24:10.958155Z", - "iopub.status.idle": "2024-04-12T10:24:10.964418Z", - "shell.execute_reply": "2024-04-12T10:24:10.963977Z" + "iopub.execute_input": "2024-04-22T21:52:42.510261Z", + "iopub.status.busy": "2024-04-22T21:52:42.509930Z", + "iopub.status.idle": "2024-04-22T21:52:42.516878Z", + "shell.execute_reply": "2024-04-22T21:52:42.516462Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:10.966556Z", - "iopub.status.busy": "2024-04-12T10:24:10.966227Z", - "iopub.status.idle": "2024-04-12T10:24:11.451698Z", - "shell.execute_reply": "2024-04-12T10:24:11.451066Z" + "iopub.execute_input": "2024-04-22T21:52:42.518847Z", + "iopub.status.busy": "2024-04-22T21:52:42.518514Z", + "iopub.status.idle": "2024-04-22T21:52:43.005619Z", + "shell.execute_reply": "2024-04-22T21:52:43.005051Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:11.454681Z", - "iopub.status.busy": "2024-04-12T10:24:11.454271Z", - "iopub.status.idle": "2024-04-12T10:24:11.459580Z", - "shell.execute_reply": "2024-04-12T10:24:11.459100Z" + "iopub.execute_input": "2024-04-22T21:52:43.008477Z", + "iopub.status.busy": "2024-04-22T21:52:43.008132Z", + "iopub.status.idle": "2024-04-22T21:52:43.013203Z", + "shell.execute_reply": "2024-04-22T21:52:43.012773Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:11.461685Z", - "iopub.status.busy": "2024-04-12T10:24:11.461362Z", - "iopub.status.idle": "2024-04-12T10:24:11.465128Z", - "shell.execute_reply": "2024-04-12T10:24:11.464646Z" + "iopub.execute_input": "2024-04-22T21:52:43.014993Z", + "iopub.status.busy": "2024-04-22T21:52:43.014809Z", + "iopub.status.idle": "2024-04-22T21:52:43.018689Z", + "shell.execute_reply": "2024-04-22T21:52:43.018168Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:11.467197Z", - "iopub.status.busy": "2024-04-12T10:24:11.466872Z", - "iopub.status.idle": "2024-04-12T10:24:12.125116Z", - "shell.execute_reply": "2024-04-12T10:24:12.124486Z" + "iopub.execute_input": "2024-04-22T21:52:43.020739Z", + "iopub.status.busy": "2024-04-22T21:52:43.020342Z", + "iopub.status.idle": "2024-04-22T21:52:43.740955Z", + "shell.execute_reply": "2024-04-22T21:52:43.740423Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:12.127345Z", - "iopub.status.busy": "2024-04-12T10:24:12.127144Z", - "iopub.status.idle": "2024-04-12T10:24:12.299269Z", - "shell.execute_reply": "2024-04-12T10:24:12.298836Z" + "iopub.execute_input": "2024-04-22T21:52:43.743337Z", + "iopub.status.busy": "2024-04-22T21:52:43.742962Z", + "iopub.status.idle": "2024-04-22T21:52:43.996488Z", + "shell.execute_reply": "2024-04-22T21:52:43.995921Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:12.301260Z", - "iopub.status.busy": "2024-04-12T10:24:12.301079Z", - "iopub.status.idle": "2024-04-12T10:24:12.305435Z", - "shell.execute_reply": "2024-04-12T10:24:12.304991Z" + "iopub.execute_input": "2024-04-22T21:52:43.998707Z", + "iopub.status.busy": "2024-04-22T21:52:43.998370Z", + "iopub.status.idle": "2024-04-22T21:52:44.002592Z", + "shell.execute_reply": "2024-04-22T21:52:44.002163Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:12.307363Z", - "iopub.status.busy": "2024-04-12T10:24:12.307187Z", - "iopub.status.idle": "2024-04-12T10:24:12.752036Z", - "shell.execute_reply": "2024-04-12T10:24:12.751469Z" + "iopub.execute_input": "2024-04-22T21:52:44.004706Z", + "iopub.status.busy": "2024-04-22T21:52:44.004389Z", + "iopub.status.idle": "2024-04-22T21:52:44.456572Z", + "shell.execute_reply": "2024-04-22T21:52:44.456005Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:12.755169Z", - "iopub.status.busy": "2024-04-12T10:24:12.754969Z", - "iopub.status.idle": "2024-04-12T10:24:13.087409Z", - "shell.execute_reply": "2024-04-12T10:24:13.086834Z" + "iopub.execute_input": "2024-04-22T21:52:44.459190Z", + "iopub.status.busy": "2024-04-22T21:52:44.458832Z", + "iopub.status.idle": "2024-04-22T21:52:44.790719Z", + "shell.execute_reply": "2024-04-22T21:52:44.790179Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:13.089853Z", - "iopub.status.busy": "2024-04-12T10:24:13.089643Z", - "iopub.status.idle": "2024-04-12T10:24:13.420095Z", - "shell.execute_reply": "2024-04-12T10:24:13.419497Z" + "iopub.execute_input": "2024-04-22T21:52:44.793608Z", + "iopub.status.busy": "2024-04-22T21:52:44.793244Z", + "iopub.status.idle": "2024-04-22T21:52:45.152105Z", + "shell.execute_reply": "2024-04-22T21:52:45.151487Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:13.423524Z", - "iopub.status.busy": "2024-04-12T10:24:13.423020Z", - "iopub.status.idle": "2024-04-12T10:24:13.834773Z", - "shell.execute_reply": "2024-04-12T10:24:13.834169Z" + "iopub.execute_input": "2024-04-22T21:52:45.155344Z", + "iopub.status.busy": "2024-04-22T21:52:45.154983Z", + "iopub.status.idle": "2024-04-22T21:52:45.562774Z", + "shell.execute_reply": "2024-04-22T21:52:45.562226Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:13.838759Z", - "iopub.status.busy": "2024-04-12T10:24:13.838433Z", - "iopub.status.idle": "2024-04-12T10:24:14.282152Z", - "shell.execute_reply": "2024-04-12T10:24:14.281540Z" + "iopub.execute_input": "2024-04-22T21:52:45.567064Z", + "iopub.status.busy": "2024-04-22T21:52:45.566562Z", + "iopub.status.idle": "2024-04-22T21:52:45.988534Z", + "shell.execute_reply": "2024-04-22T21:52:45.987907Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:14.284971Z", - "iopub.status.busy": "2024-04-12T10:24:14.284579Z", - "iopub.status.idle": "2024-04-12T10:24:14.496527Z", - "shell.execute_reply": "2024-04-12T10:24:14.495932Z" + "iopub.execute_input": "2024-04-22T21:52:45.991231Z", + "iopub.status.busy": "2024-04-22T21:52:45.990782Z", + "iopub.status.idle": "2024-04-22T21:52:46.204068Z", + "shell.execute_reply": "2024-04-22T21:52:46.203517Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:14.498802Z", - "iopub.status.busy": "2024-04-12T10:24:14.498448Z", - "iopub.status.idle": "2024-04-12T10:24:14.697524Z", - "shell.execute_reply": "2024-04-12T10:24:14.697045Z" + "iopub.execute_input": "2024-04-22T21:52:46.206235Z", + "iopub.status.busy": "2024-04-22T21:52:46.206054Z", + "iopub.status.idle": "2024-04-22T21:52:46.404266Z", + "shell.execute_reply": "2024-04-22T21:52:46.403693Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:14.699593Z", - "iopub.status.busy": "2024-04-12T10:24:14.699404Z", - "iopub.status.idle": "2024-04-12T10:24:14.702238Z", - "shell.execute_reply": "2024-04-12T10:24:14.701789Z" + "iopub.execute_input": "2024-04-22T21:52:46.406359Z", + "iopub.status.busy": "2024-04-22T21:52:46.406181Z", + "iopub.status.idle": "2024-04-22T21:52:46.409147Z", + "shell.execute_reply": "2024-04-22T21:52:46.408688Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:14.704154Z", - "iopub.status.busy": "2024-04-12T10:24:14.703979Z", - "iopub.status.idle": "2024-04-12T10:24:15.665918Z", - "shell.execute_reply": "2024-04-12T10:24:15.665388Z" + "iopub.execute_input": "2024-04-22T21:52:46.410919Z", + "iopub.status.busy": "2024-04-22T21:52:46.410739Z", + "iopub.status.idle": "2024-04-22T21:52:47.354011Z", + "shell.execute_reply": "2024-04-22T21:52:47.353447Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:15.668649Z", - "iopub.status.busy": "2024-04-12T10:24:15.668325Z", - "iopub.status.idle": "2024-04-12T10:24:15.847432Z", - "shell.execute_reply": "2024-04-12T10:24:15.846883Z" + "iopub.execute_input": "2024-04-22T21:52:47.356366Z", + "iopub.status.busy": "2024-04-22T21:52:47.356183Z", + "iopub.status.idle": "2024-04-22T21:52:47.520348Z", + "shell.execute_reply": "2024-04-22T21:52:47.519913Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:15.849530Z", - "iopub.status.busy": "2024-04-12T10:24:15.849349Z", - "iopub.status.idle": "2024-04-12T10:24:15.966721Z", - "shell.execute_reply": "2024-04-12T10:24:15.966284Z" + "iopub.execute_input": "2024-04-22T21:52:47.522432Z", + "iopub.status.busy": "2024-04-22T21:52:47.522132Z", + "iopub.status.idle": "2024-04-22T21:52:47.636759Z", + "shell.execute_reply": "2024-04-22T21:52:47.636341Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:15.968766Z", - "iopub.status.busy": "2024-04-12T10:24:15.968587Z", - "iopub.status.idle": "2024-04-12T10:24:16.706556Z", - "shell.execute_reply": "2024-04-12T10:24:16.706054Z" + "iopub.execute_input": "2024-04-22T21:52:47.638829Z", + "iopub.status.busy": "2024-04-22T21:52:47.638531Z", + "iopub.status.idle": "2024-04-22T21:52:48.327849Z", + "shell.execute_reply": "2024-04-22T21:52:48.327332Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:16.708878Z", - "iopub.status.busy": "2024-04-12T10:24:16.708548Z", - "iopub.status.idle": "2024-04-12T10:24:16.711993Z", - "shell.execute_reply": "2024-04-12T10:24:16.711572Z" + "iopub.execute_input": "2024-04-22T21:52:48.330017Z", + "iopub.status.busy": "2024-04-22T21:52:48.329837Z", + "iopub.status.idle": "2024-04-22T21:52:48.333357Z", + "shell.execute_reply": "2024-04-22T21:52:48.332930Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 61c1ffae0..f16ef0883 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -746,7 +746,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:04<00:00, 41711758.77it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 106705501.09it/s]
 
-
+
@@ -1090,7 +1090,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index fee58017c..7ceae64d3 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:18.938915Z", - "iopub.status.busy": "2024-04-12T10:24:18.938732Z", - "iopub.status.idle": "2024-04-12T10:24:21.616346Z", - "shell.execute_reply": "2024-04-12T10:24:21.615740Z" + "iopub.execute_input": "2024-04-22T21:52:50.554233Z", + "iopub.status.busy": "2024-04-22T21:52:50.553814Z", + "iopub.status.idle": "2024-04-22T21:52:53.231577Z", + "shell.execute_reply": "2024-04-22T21:52:53.230911Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:21.618912Z", - "iopub.status.busy": "2024-04-12T10:24:21.618617Z", - "iopub.status.idle": "2024-04-12T10:24:21.936376Z", - "shell.execute_reply": "2024-04-12T10:24:21.935799Z" + "iopub.execute_input": "2024-04-22T21:52:53.234178Z", + "iopub.status.busy": "2024-04-22T21:52:53.233772Z", + "iopub.status.idle": "2024-04-22T21:52:53.557178Z", + "shell.execute_reply": "2024-04-22T21:52:53.556628Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:21.938714Z", - "iopub.status.busy": "2024-04-12T10:24:21.938426Z", - "iopub.status.idle": "2024-04-12T10:24:21.942588Z", - "shell.execute_reply": "2024-04-12T10:24:21.942060Z" + "iopub.execute_input": "2024-04-22T21:52:53.559861Z", + "iopub.status.busy": "2024-04-22T21:52:53.559444Z", + "iopub.status.idle": "2024-04-22T21:52:53.563646Z", + "shell.execute_reply": "2024-04-22T21:52:53.563119Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:21.944789Z", - "iopub.status.busy": "2024-04-12T10:24:21.944364Z", - "iopub.status.idle": "2024-04-12T10:24:29.222246Z", - "shell.execute_reply": "2024-04-12T10:24:29.221744Z" + "iopub.execute_input": "2024-04-22T21:52:53.565528Z", + "iopub.status.busy": "2024-04-22T21:52:53.565355Z", + "iopub.status.idle": "2024-04-22T21:52:57.764311Z", + "shell.execute_reply": "2024-04-22T21:52:57.763806Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<10:56, 259731.90it/s]" + " 1%|▏ | 2392064/170498071 [00:00<00:07, 23857808.75it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<02:48, 1010343.37it/s]" + " 8%|▊ | 13991936/170498071 [00:00<00:02, 77849170.46it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<00:58, 2895573.18it/s]" + " 15%|█▍ | 25395200/170498071 [00:00<00:01, 94277574.59it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3538944/170498071 [00:00<00:15, 10513753.31it/s]" + " 21%|██▏ | 36306944/170498071 [00:00<00:01, 100008810.50it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▍ | 8257536/170498071 [00:00<00:07, 22175081.30it/s]" + " 28%|██▊ | 47349760/170498071 [00:00<00:01, 103682268.88it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 12812288/170498071 [00:00<00:05, 28449487.70it/s]" + " 34%|███▍ | 58392576/170498071 [00:00<00:01, 105859075.94it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18448384/170498071 [00:00<00:04, 36823409.78it/s]" + " 41%|████ | 69730304/170498071 [00:00<00:00, 108244700.57it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 13%|█▎ | 22315008/170498071 [00:00<00:03, 37341811.03it/s]" + " 48%|████▊ | 81002496/170498071 [00:00<00:00, 109561697.95it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 27688960/170498071 [00:01<00:03, 42227777.50it/s]" + " 54%|█████▍ | 92110848/170498071 [00:00<00:00, 110020167.03it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 19%|█▉ | 32014336/170498071 [00:01<00:03, 41086138.53it/s]" + " 61%|██████ | 103514112/170498071 [00:01<00:00, 111226768.48it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 22%|██▏ | 37650432/170498071 [00:01<00:02, 45330493.08it/s]" + " 67%|██████▋ | 114753536/170498071 [00:01<00:00, 111565572.11it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 25%|██▍ | 42270720/170498071 [00:01<00:02, 44025235.90it/s]" + " 74%|███████▍ | 126091264/170498071 [00:01<00:00, 112096431.55it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 47349760/170498071 [00:01<00:02, 45783691.14it/s]" + " 81%|████████ | 137330688/170498071 [00:01<00:00, 111524672.46it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52002816/170498071 [00:01<00:02, 45293683.04it/s]" + " 87%|████████▋ | 148504576/170498071 [00:01<00:00, 111234535.48it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 57016320/170498071 [00:01<00:02, 46466542.57it/s]" + " 94%|█████████▍| 160071680/170498071 [00:01<00:00, 112554258.90it/s]" ] }, { @@ -372,191 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61702144/170498071 [00:01<00:02, 46159856.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 39%|███▉ | 66650112/170498071 [00:01<00:02, 47063952.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 42%|████▏ | 71401472/170498071 [00:01<00:02, 46452020.84it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 45%|████▍ | 76087296/170498071 [00:02<00:02, 46302971.18it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 47%|████▋ | 80740352/170498071 [00:02<00:01, 46295395.07it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 50%|█████ | 85491712/170498071 [00:02<00:01, 46558436.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 53%|█████▎ | 90177536/170498071 [00:02<00:01, 46080133.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▌ | 95092736/170498071 [00:02<00:01, 46911944.12it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▊ | 99811328/170498071 [00:02<00:01, 46398006.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████▏ | 104759296/170498071 [00:02<00:01, 47151076.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 109477888/170498071 [00:02<00:01, 46607933.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 114360320/170498071 [00:02<00:01, 46768582.33it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 70%|██████▉ | 119046144/170498071 [00:02<00:01, 46280527.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 73%|███████▎ | 123797504/170498071 [00:03<00:01, 46603926.77it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 128483328/170498071 [00:03<00:00, 46268292.99it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 78%|███████▊ | 133365760/170498071 [00:03<00:00, 46356516.76it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 81%|████████ | 138182656/170498071 [00:03<00:00, 46875977.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 142901248/170498071 [00:03<00:00, 45982883.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 147718144/170498071 [00:03<00:00, 46616803.82it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▉ | 152469504/170498071 [00:03<00:00, 46381436.79it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 157122560/170498071 [00:03<00:00, 45454926.55it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 161906688/170498071 [00:03<00:00, 46105683.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 166526976/170498071 [00:04<00:00, 45410939.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 41711758.77it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 106705501.09it/s]" ] }, { @@ -674,10 +490,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:29.224547Z", - "iopub.status.busy": "2024-04-12T10:24:29.224176Z", - "iopub.status.idle": "2024-04-12T10:24:29.228815Z", - "shell.execute_reply": "2024-04-12T10:24:29.228374Z" + "iopub.execute_input": "2024-04-22T21:52:57.766516Z", + "iopub.status.busy": "2024-04-22T21:52:57.766184Z", + "iopub.status.idle": "2024-04-22T21:52:57.770805Z", + "shell.execute_reply": "2024-04-22T21:52:57.770382Z" }, "nbsphinx": "hidden" }, @@ -728,10 +544,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:29.230901Z", - "iopub.status.busy": "2024-04-12T10:24:29.230497Z", - "iopub.status.idle": "2024-04-12T10:24:29.753754Z", - "shell.execute_reply": "2024-04-12T10:24:29.753156Z" + "iopub.execute_input": "2024-04-22T21:52:57.772635Z", + "iopub.status.busy": "2024-04-22T21:52:57.772461Z", + "iopub.status.idle": "2024-04-22T21:52:58.314810Z", + "shell.execute_reply": "2024-04-22T21:52:58.314208Z" } }, "outputs": [ @@ -764,10 +580,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:29.756054Z", - "iopub.status.busy": "2024-04-12T10:24:29.755592Z", - "iopub.status.idle": "2024-04-12T10:24:30.247066Z", - "shell.execute_reply": "2024-04-12T10:24:30.246453Z" + "iopub.execute_input": "2024-04-22T21:52:58.316967Z", + "iopub.status.busy": "2024-04-22T21:52:58.316777Z", + "iopub.status.idle": "2024-04-22T21:52:58.832112Z", + "shell.execute_reply": "2024-04-22T21:52:58.831587Z" } }, "outputs": [ @@ -805,10 +621,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:30.249388Z", - "iopub.status.busy": "2024-04-12T10:24:30.249026Z", - "iopub.status.idle": "2024-04-12T10:24:30.252641Z", - "shell.execute_reply": "2024-04-12T10:24:30.252072Z" + "iopub.execute_input": "2024-04-22T21:52:58.834206Z", + "iopub.status.busy": "2024-04-22T21:52:58.834015Z", + "iopub.status.idle": "2024-04-22T21:52:58.837580Z", + "shell.execute_reply": "2024-04-22T21:52:58.837127Z" } }, "outputs": [], @@ -831,17 +647,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:30.254722Z", - "iopub.status.busy": "2024-04-12T10:24:30.254333Z", - "iopub.status.idle": "2024-04-12T10:24:42.549610Z", - "shell.execute_reply": "2024-04-12T10:24:42.549011Z" + "iopub.execute_input": "2024-04-22T21:52:58.839465Z", + "iopub.status.busy": "2024-04-22T21:52:58.839290Z", + "iopub.status.idle": "2024-04-22T21:53:11.931301Z", + "shell.execute_reply": "2024-04-22T21:53:11.930680Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "280fb116e0644adab3d685ef09fb3885", + "model_id": "22f9d55bc16e4694a529213d79af963f", "version_major": 2, "version_minor": 0 }, @@ -900,10 +716,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:42.552070Z", - "iopub.status.busy": "2024-04-12T10:24:42.551671Z", - "iopub.status.idle": "2024-04-12T10:24:44.256041Z", - "shell.execute_reply": "2024-04-12T10:24:44.255455Z" + "iopub.execute_input": "2024-04-22T21:53:11.933626Z", + "iopub.status.busy": "2024-04-22T21:53:11.933432Z", + "iopub.status.idle": "2024-04-22T21:53:13.680226Z", + "shell.execute_reply": "2024-04-22T21:53:13.679633Z" } }, "outputs": [ @@ -947,10 +763,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:44.258846Z", - "iopub.status.busy": "2024-04-12T10:24:44.258374Z", - "iopub.status.idle": "2024-04-12T10:24:44.487066Z", - "shell.execute_reply": "2024-04-12T10:24:44.486463Z" + "iopub.execute_input": "2024-04-22T21:53:13.682977Z", + "iopub.status.busy": "2024-04-22T21:53:13.682599Z", + "iopub.status.idle": "2024-04-22T21:53:13.936210Z", + "shell.execute_reply": "2024-04-22T21:53:13.935628Z" } }, "outputs": [ @@ -986,10 +802,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:44.489873Z", - "iopub.status.busy": "2024-04-12T10:24:44.489576Z", - "iopub.status.idle": "2024-04-12T10:24:45.162929Z", - "shell.execute_reply": "2024-04-12T10:24:45.162425Z" + "iopub.execute_input": "2024-04-22T21:53:13.938586Z", + "iopub.status.busy": "2024-04-22T21:53:13.938380Z", + "iopub.status.idle": "2024-04-22T21:53:14.621752Z", + "shell.execute_reply": "2024-04-22T21:53:14.621246Z" } }, "outputs": [ @@ -1039,10 +855,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:45.165730Z", - "iopub.status.busy": "2024-04-12T10:24:45.165385Z", - "iopub.status.idle": "2024-04-12T10:24:45.504159Z", - "shell.execute_reply": "2024-04-12T10:24:45.503623Z" + "iopub.execute_input": "2024-04-22T21:53:14.624468Z", + "iopub.status.busy": "2024-04-22T21:53:14.624050Z", + "iopub.status.idle": "2024-04-22T21:53:14.960729Z", + "shell.execute_reply": "2024-04-22T21:53:14.960245Z" } }, "outputs": [ @@ -1090,10 +906,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:45.506478Z", - "iopub.status.busy": "2024-04-12T10:24:45.506136Z", - "iopub.status.idle": "2024-04-12T10:24:45.752880Z", - "shell.execute_reply": "2024-04-12T10:24:45.752361Z" + "iopub.execute_input": "2024-04-22T21:53:14.962870Z", + "iopub.status.busy": "2024-04-22T21:53:14.962566Z", + "iopub.status.idle": "2024-04-22T21:53:15.204461Z", + "shell.execute_reply": "2024-04-22T21:53:15.203874Z" } }, "outputs": [ @@ -1149,10 +965,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:45.755480Z", - "iopub.status.busy": "2024-04-12T10:24:45.755182Z", - "iopub.status.idle": "2024-04-12T10:24:45.851592Z", - "shell.execute_reply": "2024-04-12T10:24:45.851100Z" + "iopub.execute_input": "2024-04-22T21:53:15.206908Z", + "iopub.status.busy": "2024-04-22T21:53:15.206689Z", + "iopub.status.idle": "2024-04-22T21:53:15.300554Z", + "shell.execute_reply": "2024-04-22T21:53:15.299923Z" } }, "outputs": [], @@ -1173,10 +989,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:45.854183Z", - "iopub.status.busy": "2024-04-12T10:24:45.853822Z", - "iopub.status.idle": "2024-04-12T10:24:56.145063Z", - "shell.execute_reply": "2024-04-12T10:24:56.144406Z" + "iopub.execute_input": "2024-04-22T21:53:15.303380Z", + "iopub.status.busy": "2024-04-22T21:53:15.302993Z", + "iopub.status.idle": "2024-04-22T21:53:25.516620Z", + "shell.execute_reply": "2024-04-22T21:53:25.515964Z" } }, "outputs": [ @@ -1213,10 +1029,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:56.147687Z", - "iopub.status.busy": "2024-04-12T10:24:56.147380Z", - "iopub.status.idle": "2024-04-12T10:24:57.822798Z", - "shell.execute_reply": "2024-04-12T10:24:57.822256Z" + "iopub.execute_input": "2024-04-22T21:53:25.519659Z", + "iopub.status.busy": "2024-04-22T21:53:25.519405Z", + "iopub.status.idle": "2024-04-22T21:53:27.197282Z", + "shell.execute_reply": "2024-04-22T21:53:27.196707Z" } }, "outputs": [ @@ -1247,10 +1063,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:57.825537Z", - "iopub.status.busy": "2024-04-12T10:24:57.825158Z", - "iopub.status.idle": "2024-04-12T10:24:58.027152Z", - "shell.execute_reply": "2024-04-12T10:24:58.026662Z" + "iopub.execute_input": "2024-04-22T21:53:27.200016Z", + "iopub.status.busy": "2024-04-22T21:53:27.199480Z", + "iopub.status.idle": "2024-04-22T21:53:27.401838Z", + "shell.execute_reply": "2024-04-22T21:53:27.401225Z" } }, "outputs": [], @@ -1264,10 +1080,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:58.029626Z", - "iopub.status.busy": "2024-04-12T10:24:58.029281Z", - "iopub.status.idle": "2024-04-12T10:24:58.032329Z", - "shell.execute_reply": "2024-04-12T10:24:58.031885Z" + "iopub.execute_input": "2024-04-22T21:53:27.404481Z", + "iopub.status.busy": "2024-04-22T21:53:27.404075Z", + "iopub.status.idle": "2024-04-22T21:53:27.407250Z", + "shell.execute_reply": "2024-04-22T21:53:27.406801Z" } }, "outputs": [], @@ -1289,10 +1105,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:24:58.034368Z", - "iopub.status.busy": "2024-04-12T10:24:58.034059Z", - "iopub.status.idle": "2024-04-12T10:24:58.042436Z", - "shell.execute_reply": "2024-04-12T10:24:58.042016Z" + "iopub.execute_input": "2024-04-22T21:53:27.409128Z", + "iopub.status.busy": "2024-04-22T21:53:27.408955Z", + "iopub.status.idle": "2024-04-22T21:53:27.417350Z", + "shell.execute_reply": "2024-04-22T21:53:27.416809Z" }, "nbsphinx": "hidden" }, @@ -1337,7 +1153,31 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "2804fea1e75f4c7f8732720107ec43ba": { + "22f9d55bc16e4694a529213d79af963f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_afe95df11c484d24931106f22f1499e1", + "IPY_MODEL_9b85cbebde4f48f3a7c2424fef20f6bd", + "IPY_MODEL_cd95634aa4a64f878d6e87e3d255d7a7" + ], + "layout": "IPY_MODEL_ed1a3a47e4b54e37abe194f39999812e", + "tabbable": null, + "tooltip": null + } + }, + "42e51f2194824ef39fdf6b3d3f4b56bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1390,72 +1230,7 @@ "width": null } }, - "280fb116e0644adab3d685ef09fb3885": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7aeac87296b1426abe8ec7a76b747433", - "IPY_MODEL_bbbaac5bc0544ff2a9e63fc6f46508c4", - "IPY_MODEL_3fb1cbb773e44875a1264f300ccedf05" - ], - "layout": "IPY_MODEL_2804fea1e75f4c7f8732720107ec43ba", - "tabbable": null, - "tooltip": null - } - }, - "3fb1cbb773e44875a1264f300ccedf05": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4ee8bc910f27494a86ca2ef36605e358", - "placeholder": "​", - "style": "IPY_MODEL_46995353a1204bdaba8c7dce5d14e8cb", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 366MB/s]" - } - }, - "46995353a1204bdaba8c7dce5d14e8cb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4ee8bc910f27494a86ca2ef36605e358": { + "559e322b466b4b5daea0b3132a5a4562": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,7 +1283,69 @@ "width": null } }, - "7aeac87296b1426abe8ec7a76b747433": { + "7e6aeef5716a4fec83724de6d7575f06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "83e97d1a003140f2bdb9eadf88b1fa85": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9b85cbebde4f48f3a7c2424fef20f6bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_42e51f2194824ef39fdf6b3d3f4b56bf", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d189d0882711471db5e3652040431f7a", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "afe95df11c484d24931106f22f1499e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1523,15 +1360,54 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b93b931a316742dfa6b3d4c1d289cde6", + "layout": "IPY_MODEL_559e322b466b4b5daea0b3132a5a4562", "placeholder": "​", - "style": "IPY_MODEL_e764cb1b21de485aa6f278ddfa80f38d", + "style": "IPY_MODEL_83e97d1a003140f2bdb9eadf88b1fa85", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "b93b931a316742dfa6b3d4c1d289cde6": { + "cd95634aa4a64f878d6e87e3d255d7a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e5b3e13ebc974ac99395bb3ca53ef7d8", + "placeholder": "​", + "style": "IPY_MODEL_7e6aeef5716a4fec83724de6d7575f06", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:01<00:00, 128MB/s]" + } + }, + "d189d0882711471db5e3652040431f7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e5b3e13ebc974ac99395bb3ca53ef7d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1584,49 +1460,7 @@ "width": null } }, - "bbbaac5bc0544ff2a9e63fc6f46508c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d6bf6323cba344dd852ee94faac54bbb", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d06a226f35144637848a5dbcb07cc254", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "d06a226f35144637848a5dbcb07cc254": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d6bf6323cba344dd852ee94faac54bbb": { + "ed1a3a47e4b54e37abe194f39999812e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1678,24 +1512,6 @@ "visibility": null, "width": null } - }, - "e764cb1b21de485aa6f278ddfa80f38d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index e7b0a1ad7..bbbc032b1 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:02.333587Z", - "iopub.status.busy": "2024-04-12T10:25:02.333248Z", - "iopub.status.idle": "2024-04-12T10:25:03.453616Z", - "shell.execute_reply": "2024-04-12T10:25:03.453061Z" + "iopub.execute_input": "2024-04-22T21:53:31.774797Z", + "iopub.status.busy": "2024-04-22T21:53:31.774402Z", + "iopub.status.idle": "2024-04-22T21:53:32.923980Z", + "shell.execute_reply": "2024-04-22T21:53:32.923359Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:03.455996Z", - "iopub.status.busy": "2024-04-12T10:25:03.455733Z", - "iopub.status.idle": "2024-04-12T10:25:03.473205Z", - "shell.execute_reply": "2024-04-12T10:25:03.472785Z" + "iopub.execute_input": "2024-04-22T21:53:32.926573Z", + "iopub.status.busy": "2024-04-22T21:53:32.926157Z", + "iopub.status.idle": "2024-04-22T21:53:32.943814Z", + "shell.execute_reply": "2024-04-22T21:53:32.943262Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:03.475370Z", - "iopub.status.busy": "2024-04-12T10:25:03.474858Z", - "iopub.status.idle": "2024-04-12T10:25:03.477808Z", - "shell.execute_reply": "2024-04-12T10:25:03.477381Z" + "iopub.execute_input": "2024-04-22T21:53:32.946002Z", + "iopub.status.busy": "2024-04-22T21:53:32.945619Z", + "iopub.status.idle": "2024-04-22T21:53:32.948493Z", + "shell.execute_reply": "2024-04-22T21:53:32.948081Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:03.479592Z", - "iopub.status.busy": "2024-04-12T10:25:03.479420Z", - "iopub.status.idle": "2024-04-12T10:25:03.713443Z", - "shell.execute_reply": "2024-04-12T10:25:03.712870Z" + "iopub.execute_input": "2024-04-22T21:53:32.950474Z", + "iopub.status.busy": "2024-04-22T21:53:32.950158Z", + "iopub.status.idle": "2024-04-22T21:53:33.043024Z", + "shell.execute_reply": "2024-04-22T21:53:33.042556Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:03.715755Z", - "iopub.status.busy": "2024-04-12T10:25:03.715427Z", - "iopub.status.idle": "2024-04-12T10:25:03.893499Z", - "shell.execute_reply": "2024-04-12T10:25:03.892882Z" + "iopub.execute_input": "2024-04-22T21:53:33.045231Z", + "iopub.status.busy": "2024-04-22T21:53:33.044971Z", + "iopub.status.idle": "2024-04-22T21:53:33.224282Z", + "shell.execute_reply": "2024-04-22T21:53:33.223666Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:03.895840Z", - "iopub.status.busy": "2024-04-12T10:25:03.895627Z", - "iopub.status.idle": "2024-04-12T10:25:04.136470Z", - "shell.execute_reply": "2024-04-12T10:25:04.135879Z" + "iopub.execute_input": "2024-04-22T21:53:33.226920Z", + "iopub.status.busy": "2024-04-22T21:53:33.226584Z", + "iopub.status.idle": "2024-04-22T21:53:33.466115Z", + "shell.execute_reply": "2024-04-22T21:53:33.465573Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:04.138477Z", - "iopub.status.busy": "2024-04-12T10:25:04.138293Z", - "iopub.status.idle": "2024-04-12T10:25:04.142665Z", - "shell.execute_reply": "2024-04-12T10:25:04.142223Z" + "iopub.execute_input": "2024-04-22T21:53:33.468371Z", + "iopub.status.busy": "2024-04-22T21:53:33.467961Z", + "iopub.status.idle": "2024-04-22T21:53:33.472221Z", + "shell.execute_reply": "2024-04-22T21:53:33.471764Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:04.144529Z", - "iopub.status.busy": "2024-04-12T10:25:04.144353Z", - "iopub.status.idle": "2024-04-12T10:25:04.150383Z", - "shell.execute_reply": "2024-04-12T10:25:04.149964Z" + "iopub.execute_input": "2024-04-22T21:53:33.474231Z", + "iopub.status.busy": "2024-04-22T21:53:33.473822Z", + "iopub.status.idle": "2024-04-22T21:53:33.479953Z", + "shell.execute_reply": "2024-04-22T21:53:33.479521Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:04.152543Z", - "iopub.status.busy": "2024-04-12T10:25:04.152119Z", - "iopub.status.idle": "2024-04-12T10:25:04.154852Z", - "shell.execute_reply": "2024-04-12T10:25:04.154430Z" + "iopub.execute_input": "2024-04-22T21:53:33.481941Z", + "iopub.status.busy": "2024-04-22T21:53:33.481614Z", + "iopub.status.idle": "2024-04-22T21:53:33.484096Z", + "shell.execute_reply": "2024-04-22T21:53:33.483667Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:04.156757Z", - "iopub.status.busy": "2024-04-12T10:25:04.156587Z", - "iopub.status.idle": "2024-04-12T10:25:12.280210Z", - "shell.execute_reply": "2024-04-12T10:25:12.279579Z" + "iopub.execute_input": "2024-04-22T21:53:33.485977Z", + "iopub.status.busy": "2024-04-22T21:53:33.485661Z", + "iopub.status.idle": "2024-04-22T21:53:41.696382Z", + "shell.execute_reply": "2024-04-22T21:53:41.695825Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.283300Z", - "iopub.status.busy": "2024-04-12T10:25:12.282629Z", - "iopub.status.idle": "2024-04-12T10:25:12.289681Z", - "shell.execute_reply": "2024-04-12T10:25:12.289190Z" + "iopub.execute_input": "2024-04-22T21:53:41.699266Z", + "iopub.status.busy": "2024-04-22T21:53:41.698639Z", + "iopub.status.idle": "2024-04-22T21:53:41.705535Z", + "shell.execute_reply": "2024-04-22T21:53:41.705083Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.291744Z", - "iopub.status.busy": "2024-04-12T10:25:12.291407Z", - "iopub.status.idle": "2024-04-12T10:25:12.295062Z", - "shell.execute_reply": "2024-04-12T10:25:12.294584Z" + "iopub.execute_input": "2024-04-22T21:53:41.707433Z", + "iopub.status.busy": "2024-04-22T21:53:41.707138Z", + "iopub.status.idle": "2024-04-22T21:53:41.710782Z", + "shell.execute_reply": "2024-04-22T21:53:41.710230Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.297028Z", - "iopub.status.busy": "2024-04-12T10:25:12.296703Z", - "iopub.status.idle": "2024-04-12T10:25:12.299796Z", - "shell.execute_reply": "2024-04-12T10:25:12.299287Z" + "iopub.execute_input": "2024-04-22T21:53:41.712977Z", + "iopub.status.busy": "2024-04-22T21:53:41.712680Z", + "iopub.status.idle": "2024-04-22T21:53:41.716049Z", + "shell.execute_reply": "2024-04-22T21:53:41.715604Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.301759Z", - "iopub.status.busy": "2024-04-12T10:25:12.301436Z", - "iopub.status.idle": "2024-04-12T10:25:12.304464Z", - "shell.execute_reply": "2024-04-12T10:25:12.304005Z" + "iopub.execute_input": "2024-04-22T21:53:41.717915Z", + "iopub.status.busy": "2024-04-22T21:53:41.717747Z", + "iopub.status.idle": "2024-04-22T21:53:41.720581Z", + "shell.execute_reply": "2024-04-22T21:53:41.720164Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.306418Z", - "iopub.status.busy": "2024-04-12T10:25:12.306034Z", - "iopub.status.idle": "2024-04-12T10:25:12.313812Z", - "shell.execute_reply": "2024-04-12T10:25:12.313347Z" + "iopub.execute_input": "2024-04-22T21:53:41.722322Z", + "iopub.status.busy": "2024-04-22T21:53:41.722159Z", + "iopub.status.idle": "2024-04-22T21:53:41.729904Z", + "shell.execute_reply": "2024-04-22T21:53:41.729486Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.315696Z", - "iopub.status.busy": "2024-04-12T10:25:12.315519Z", - "iopub.status.idle": "2024-04-12T10:25:12.318030Z", - "shell.execute_reply": "2024-04-12T10:25:12.317617Z" + "iopub.execute_input": "2024-04-22T21:53:41.731829Z", + "iopub.status.busy": "2024-04-22T21:53:41.731660Z", + "iopub.status.idle": "2024-04-22T21:53:41.734157Z", + "shell.execute_reply": "2024-04-22T21:53:41.733741Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.319880Z", - "iopub.status.busy": "2024-04-12T10:25:12.319709Z", - "iopub.status.idle": "2024-04-12T10:25:12.446802Z", - "shell.execute_reply": "2024-04-12T10:25:12.446226Z" + "iopub.execute_input": "2024-04-22T21:53:41.736001Z", + "iopub.status.busy": "2024-04-22T21:53:41.735835Z", + "iopub.status.idle": "2024-04-22T21:53:41.854569Z", + "shell.execute_reply": "2024-04-22T21:53:41.854079Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.449151Z", - "iopub.status.busy": "2024-04-12T10:25:12.448933Z", - "iopub.status.idle": "2024-04-12T10:25:12.551379Z", - "shell.execute_reply": "2024-04-12T10:25:12.550840Z" + "iopub.execute_input": "2024-04-22T21:53:41.856749Z", + "iopub.status.busy": "2024-04-22T21:53:41.856387Z", + "iopub.status.idle": "2024-04-22T21:53:41.962309Z", + "shell.execute_reply": "2024-04-22T21:53:41.961824Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:12.553858Z", - "iopub.status.busy": "2024-04-12T10:25:12.553438Z", - "iopub.status.idle": "2024-04-12T10:25:13.030239Z", - "shell.execute_reply": "2024-04-12T10:25:13.029624Z" + "iopub.execute_input": "2024-04-22T21:53:41.964574Z", + "iopub.status.busy": "2024-04-22T21:53:41.964217Z", + "iopub.status.idle": "2024-04-22T21:53:42.441758Z", + "shell.execute_reply": "2024-04-22T21:53:42.441235Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:13.032916Z", - "iopub.status.busy": "2024-04-12T10:25:13.032497Z", - "iopub.status.idle": "2024-04-12T10:25:13.138408Z", - "shell.execute_reply": "2024-04-12T10:25:13.137834Z" + "iopub.execute_input": "2024-04-22T21:53:42.444476Z", + "iopub.status.busy": "2024-04-22T21:53:42.444006Z", + "iopub.status.idle": "2024-04-22T21:53:42.534082Z", + "shell.execute_reply": "2024-04-22T21:53:42.533512Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:13.140819Z", - "iopub.status.busy": "2024-04-12T10:25:13.140471Z", - "iopub.status.idle": "2024-04-12T10:25:13.149090Z", - "shell.execute_reply": "2024-04-12T10:25:13.148537Z" + "iopub.execute_input": "2024-04-22T21:53:42.536488Z", + "iopub.status.busy": "2024-04-22T21:53:42.536036Z", + "iopub.status.idle": "2024-04-22T21:53:42.544415Z", + "shell.execute_reply": "2024-04-22T21:53:42.543983Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:13.151137Z", - "iopub.status.busy": "2024-04-12T10:25:13.150732Z", - "iopub.status.idle": "2024-04-12T10:25:13.153501Z", - "shell.execute_reply": "2024-04-12T10:25:13.152973Z" + "iopub.execute_input": "2024-04-22T21:53:42.546328Z", + "iopub.status.busy": "2024-04-22T21:53:42.546009Z", + "iopub.status.idle": "2024-04-22T21:53:42.548550Z", + "shell.execute_reply": "2024-04-22T21:53:42.548133Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:13.155613Z", - "iopub.status.busy": "2024-04-12T10:25:13.155292Z", - "iopub.status.idle": "2024-04-12T10:25:18.542395Z", - "shell.execute_reply": "2024-04-12T10:25:18.541811Z" + "iopub.execute_input": "2024-04-22T21:53:42.550584Z", + "iopub.status.busy": "2024-04-22T21:53:42.550276Z", + "iopub.status.idle": "2024-04-22T21:53:47.930432Z", + "shell.execute_reply": "2024-04-22T21:53:47.929860Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:18.544811Z", - "iopub.status.busy": "2024-04-12T10:25:18.544472Z", - "iopub.status.idle": "2024-04-12T10:25:18.553283Z", - "shell.execute_reply": "2024-04-12T10:25:18.552725Z" + "iopub.execute_input": "2024-04-22T21:53:47.932787Z", + "iopub.status.busy": "2024-04-22T21:53:47.932372Z", + "iopub.status.idle": "2024-04-22T21:53:47.940933Z", + "shell.execute_reply": "2024-04-22T21:53:47.940504Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:18.555344Z", - "iopub.status.busy": "2024-04-12T10:25:18.555064Z", - "iopub.status.idle": "2024-04-12T10:25:18.623924Z", - "shell.execute_reply": "2024-04-12T10:25:18.623438Z" + "iopub.execute_input": "2024-04-22T21:53:47.942890Z", + "iopub.status.busy": "2024-04-22T21:53:47.942698Z", + "iopub.status.idle": "2024-04-22T21:53:48.006741Z", + "shell.execute_reply": "2024-04-22T21:53:48.006153Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 4c6d84dea..1ca830458 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -766,13 +766,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1162,7 +1162,7 @@

Get label quality scores -{"state": {"6e0b646e0bec435a96b1dee41c9c674a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0732b60926b34bbcb8a0fd33bbf5a2f9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4780407d9fe34c529ec54e37cc115ec6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6e0b646e0bec435a96b1dee41c9c674a", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0732b60926b34bbcb8a0fd33bbf5a2f9", "tabbable": null, "tooltip": null, "value": 30.0}}, "2af276f19a394d439df5d8d7ef529e00": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4a59f2915474030b09560e4bd1e0b2a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bae087527be5415ea679769d16765afa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2af276f19a394d439df5d8d7ef529e00", "placeholder": "\u200b", "style": "IPY_MODEL_d4a59f2915474030b09560e4bd1e0b2a", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "e813365659b74cbba3b2bd6690626fb4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c8b5b8f4a94340a98ed0a993a042f8cd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eaa4f866472b404491414a32d99a41b6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e813365659b74cbba3b2bd6690626fb4", "placeholder": "\u200b", "style": "IPY_MODEL_c8b5b8f4a94340a98ed0a993a042f8cd", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007637.91it/s]"}}, "24a2ac6046f544919c44046d073968b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7f06238bd8ab4433a0b5aa44c1f04204": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_bae087527be5415ea679769d16765afa", "IPY_MODEL_4780407d9fe34c529ec54e37cc115ec6", "IPY_MODEL_eaa4f866472b404491414a32d99a41b6"], "layout": "IPY_MODEL_24a2ac6046f544919c44046d073968b0", "tabbable": null, "tooltip": null}}, "f8bb5c74bbbe4f728df7f9a2ca21849b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c0477f8ebef4770a735132f365dddfe": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "b3b5fb29ca66447b9b8123119a028613": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f8bb5c74bbbe4f728df7f9a2ca21849b", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5c0477f8ebef4770a735132f365dddfe", "tabbable": null, "tooltip": null, "value": 30.0}}, "b1fcd981dfe14852825b927813270962": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a55fe4efaa49442fb04c3f03cd1b2e94": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "18ef058881f346038d8b473871f68d57": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b1fcd981dfe14852825b927813270962", "placeholder": "\u200b", "style": "IPY_MODEL_a55fe4efaa49442fb04c3f03cd1b2e94", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "31721cb9fffc4dbf9c7ab1c32f8c1b76": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7948ef1c398d42419477bd0cf0baf4f3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dffa34f9f86349d18f5ed9d223add48a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31721cb9fffc4dbf9c7ab1c32f8c1b76", "placeholder": "\u200b", "style": "IPY_MODEL_7948ef1c398d42419477bd0cf0baf4f3", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.43it/s]"}}, "126268b6a1584c17a94a8817302fbf2c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d6787cbdf5ee480b8c56d5548fb98447": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_18ef058881f346038d8b473871f68d57", "IPY_MODEL_b3b5fb29ca66447b9b8123119a028613", "IPY_MODEL_dffa34f9f86349d18f5ed9d223add48a"], "layout": "IPY_MODEL_126268b6a1584c17a94a8817302fbf2c", "tabbable": null, "tooltip": null}}, "8c8bf85d04244dd0a33e7a257dcd326f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bc8b662f40a045f4b7cd125036b91633": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "72a52b9dd8264f8caa81db84e9d1bd63": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8c8bf85d04244dd0a33e7a257dcd326f", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_bc8b662f40a045f4b7cd125036b91633", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "1ce0f29231ea4220a0e134aab1a376cf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68094c16496444c8bbe119b88e573704": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6beeb0a552624a8ea20d743ae5632351": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1ce0f29231ea4220a0e134aab1a376cf", "placeholder": "\u200b", "style": "IPY_MODEL_68094c16496444c8bbe119b88e573704", "tabbable": null, "tooltip": null, "value": "100%"}}, "15d59503a674417cbdc653603d874548": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c372091e7515418898c0d76470aee87b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ad4165ddb7c0400cb4c76c5de818b869": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15d59503a674417cbdc653603d874548", "placeholder": "\u200b", "style": "IPY_MODEL_c372091e7515418898c0d76470aee87b", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154970.45it/s]"}}, "1b86e3ad6ca14d29b09772eb97fbc589": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "38780db575474dadabbc09378f30dbd2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6beeb0a552624a8ea20d743ae5632351", "IPY_MODEL_72a52b9dd8264f8caa81db84e9d1bd63", "IPY_MODEL_ad4165ddb7c0400cb4c76c5de818b869"], "layout": "IPY_MODEL_1b86e3ad6ca14d29b09772eb97fbc589", "tabbable": null, "tooltip": null}}, "84de2f6247014256ad132c3fda537f24": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e84f83e40c284b1e84c952d8139068a4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5628b646987042dda0264bb377694437": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_84de2f6247014256ad132c3fda537f24", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e84f83e40c284b1e84c952d8139068a4", "tabbable": null, "tooltip": null, "value": 30.0}}, "4a50cc9af4e34bd29f2912703ac5ad6f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "533f1a42129f4ae0be6980b6f919880c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f236450961ed452b97efee3295189d6b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a50cc9af4e34bd29f2912703ac5ad6f", "placeholder": "\u200b", "style": "IPY_MODEL_533f1a42129f4ae0be6980b6f919880c", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "57e70ea78ca640b986138a820d9510c4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1339dcc0a1a7407bb84512ea53bd7ddd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b3ef70c59ba34c959852b2d99e2a6697": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57e70ea78ca640b986138a820d9510c4", "placeholder": "\u200b", "style": "IPY_MODEL_1339dcc0a1a7407bb84512ea53bd7ddd", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.85it/s]"}}, "eecfaf88c5c44a558868f0a076d29633": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "790a745551d748e5a360877de35a5528": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f236450961ed452b97efee3295189d6b", "IPY_MODEL_5628b646987042dda0264bb377694437", "IPY_MODEL_b3ef70c59ba34c959852b2d99e2a6697"], "layout": "IPY_MODEL_eecfaf88c5c44a558868f0a076d29633", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"e67c2d1d54404598b81f4502aa6a9167": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3130e614161f41b1a4d381b1750dd32e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4a0946f646bf4ca8aac6d870673a5559": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e67c2d1d54404598b81f4502aa6a9167", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3130e614161f41b1a4d381b1750dd32e", "tabbable": null, "tooltip": null, "value": 30.0}}, "59f2bd2ad2fa42b8b52d04e568ada0d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c1ab18c9ba948929ced3d28022b0dd7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8067860b488449a18af1c27664a0a892": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59f2bd2ad2fa42b8b52d04e568ada0d6", "placeholder": "\u200b", "style": "IPY_MODEL_4c1ab18c9ba948929ced3d28022b0dd7", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "20a2be1421954f0ab8f7c284fe766970": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d9c43c6d3914fb7bdbf0b79d6ff486e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "75c4cbacdf61443db7d30eac887030c7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_20a2be1421954f0ab8f7c284fe766970", "placeholder": "\u200b", "style": "IPY_MODEL_8d9c43c6d3914fb7bdbf0b79d6ff486e", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007626.10it/s]"}}, "2914fb5ccc2f424fa00bc2535e1ada44": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3a5c3f4075c34414a4f0ca30fa9719d5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8067860b488449a18af1c27664a0a892", "IPY_MODEL_4a0946f646bf4ca8aac6d870673a5559", "IPY_MODEL_75c4cbacdf61443db7d30eac887030c7"], "layout": "IPY_MODEL_2914fb5ccc2f424fa00bc2535e1ada44", "tabbable": null, "tooltip": null}}, "b657af8ea5bb460aa88500b786eb45d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0386c13e21844ee8b04e9df1675e1812": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "092091cdd83146a9a2f6e2549a82972c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b657af8ea5bb460aa88500b786eb45d6", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0386c13e21844ee8b04e9df1675e1812", "tabbable": null, "tooltip": null, "value": 30.0}}, "475e81558da340a38c892c5ef4e9ca31": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6ea770293f7436bbbef805fbdd92ee7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a457b7c67e424d3390a8311ba4996d9b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_475e81558da340a38c892c5ef4e9ca31", "placeholder": "\u200b", "style": "IPY_MODEL_b6ea770293f7436bbbef805fbdd92ee7", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "3ae73ba4c5df4ae0ac7b1e526941e4a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "badf424ac71644abb9bc459cbbcd1fc6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "81a2479c8be9447db7489f483514d756": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ae73ba4c5df4ae0ac7b1e526941e4a8", "placeholder": "\u200b", "style": "IPY_MODEL_badf424ac71644abb9bc459cbbcd1fc6", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.40it/s]"}}, "d93d489d2fa94b9792c1cdc2e6a477d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3471b75d2ef44fdf9649652bd08a32b1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a457b7c67e424d3390a8311ba4996d9b", "IPY_MODEL_092091cdd83146a9a2f6e2549a82972c", "IPY_MODEL_81a2479c8be9447db7489f483514d756"], "layout": "IPY_MODEL_d93d489d2fa94b9792c1cdc2e6a477d8", "tabbable": null, "tooltip": null}}, "31fe8cba878b4bc8a86c452527a2d16d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3de0a11828de416a8f0c2fa2a93b9b6f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "974ce86284a74430a1055430bbe88a37": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31fe8cba878b4bc8a86c452527a2d16d", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3de0a11828de416a8f0c2fa2a93b9b6f", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "f5ef443f4b7a4b0fb4fb79fd69a1727a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "efa97ca09f1b49c78483bbfdee4a7f09": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0492ba9f1e3a4efe8249c8ded7b8c391": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f5ef443f4b7a4b0fb4fb79fd69a1727a", "placeholder": "\u200b", "style": "IPY_MODEL_efa97ca09f1b49c78483bbfdee4a7f09", "tabbable": null, "tooltip": null, "value": "100%"}}, "ff45b2ab489f4e62896a50959a91017b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d4331616c61f42669ed6c5b868a3b32d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7d40b72bf89d411eb24563cf26440372": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ff45b2ab489f4e62896a50959a91017b", "placeholder": "\u200b", "style": "IPY_MODEL_d4331616c61f42669ed6c5b868a3b32d", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007152528.46it/s]"}}, "e8a5db45f62846fd8b23c2a3fdf40691": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6027c2cfe03c4dcabcad54caec9d5a83": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0492ba9f1e3a4efe8249c8ded7b8c391", "IPY_MODEL_974ce86284a74430a1055430bbe88a37", "IPY_MODEL_7d40b72bf89d411eb24563cf26440372"], "layout": "IPY_MODEL_e8a5db45f62846fd8b23c2a3fdf40691", "tabbable": null, "tooltip": null}}, "13f54d4753494df3862296468197d3b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ed7a51a06384ecf88c49dee2eed29a2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "07807a8083814c04a2d25bb4e23d0e5a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13f54d4753494df3862296468197d3b6", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7ed7a51a06384ecf88c49dee2eed29a2", "tabbable": null, "tooltip": null, "value": 30.0}}, "1b5a099043484b90bbb666cc286d8673": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "de850e0652364bc7b4f837d483999359": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "11d1ca0e51f14e8b90730994f5756791": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1b5a099043484b90bbb666cc286d8673", "placeholder": "\u200b", "style": "IPY_MODEL_de850e0652364bc7b4f837d483999359", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "b7409210da674f7686827a50e20b3c95": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9063549653644d9a81204f29fe348c25": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "930f0ee2e8904928ba6e7ef34b2b252f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b7409210da674f7686827a50e20b3c95", "placeholder": "\u200b", "style": "IPY_MODEL_9063549653644d9a81204f29fe348c25", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.80it/s]"}}, "f70fc43bf9204fe2afc56e1e3ec2547a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b0ae4a13367344b6923aa49aaa66c9a5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_11d1ca0e51f14e8b90730994f5756791", "IPY_MODEL_07807a8083814c04a2d25bb4e23d0e5a", "IPY_MODEL_930f0ee2e8904928ba6e7ef34b2b252f"], "layout": "IPY_MODEL_f70fc43bf9204fe2afc56e1e3ec2547a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 1b1bc7173..9db489293 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:21.309693Z", - "iopub.status.busy": "2024-04-12T10:25:21.309518Z", - "iopub.status.idle": "2024-04-12T10:25:23.743540Z", - "shell.execute_reply": "2024-04-12T10:25:23.742874Z" + "iopub.execute_input": "2024-04-22T21:53:51.006310Z", + "iopub.status.busy": "2024-04-22T21:53:51.006137Z", + "iopub.status.idle": "2024-04-22T21:53:52.140306Z", + "shell.execute_reply": "2024-04-22T21:53:52.139612Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:25:23.746236Z", - "iopub.status.busy": "2024-04-12T10:25:23.745823Z", - "iopub.status.idle": "2024-04-12T10:26:26.178469Z", - "shell.execute_reply": "2024-04-12T10:26:26.177892Z" + "iopub.execute_input": "2024-04-22T21:53:52.142798Z", + "iopub.status.busy": "2024-04-22T21:53:52.142611Z", + "iopub.status.idle": "2024-04-22T21:54:18.175876Z", + "shell.execute_reply": "2024-04-22T21:54:18.175231Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:26.181001Z", - "iopub.status.busy": "2024-04-12T10:26:26.180709Z", - "iopub.status.idle": "2024-04-12T10:26:27.256134Z", - "shell.execute_reply": "2024-04-12T10:26:27.255581Z" + "iopub.execute_input": "2024-04-22T21:54:18.178364Z", + "iopub.status.busy": "2024-04-22T21:54:18.177990Z", + "iopub.status.idle": "2024-04-22T21:54:19.258691Z", + "shell.execute_reply": "2024-04-22T21:54:19.258134Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:27.258800Z", - "iopub.status.busy": "2024-04-12T10:26:27.258379Z", - "iopub.status.idle": "2024-04-12T10:26:27.261669Z", - "shell.execute_reply": "2024-04-12T10:26:27.261103Z" + "iopub.execute_input": "2024-04-22T21:54:19.261134Z", + "iopub.status.busy": "2024-04-22T21:54:19.260853Z", + "iopub.status.idle": "2024-04-22T21:54:19.264079Z", + "shell.execute_reply": "2024-04-22T21:54:19.263651Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:27.263783Z", - "iopub.status.busy": "2024-04-12T10:26:27.263466Z", - "iopub.status.idle": "2024-04-12T10:26:27.267133Z", - "shell.execute_reply": "2024-04-12T10:26:27.266705Z" + "iopub.execute_input": "2024-04-22T21:54:19.266111Z", + "iopub.status.busy": "2024-04-22T21:54:19.265801Z", + "iopub.status.idle": "2024-04-22T21:54:19.269562Z", + "shell.execute_reply": "2024-04-22T21:54:19.269062Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:27.269406Z", - "iopub.status.busy": "2024-04-12T10:26:27.268999Z", - "iopub.status.idle": "2024-04-12T10:26:27.272616Z", - "shell.execute_reply": "2024-04-12T10:26:27.272086Z" + "iopub.execute_input": "2024-04-22T21:54:19.271732Z", + "iopub.status.busy": "2024-04-22T21:54:19.271325Z", + "iopub.status.idle": "2024-04-22T21:54:19.274995Z", + "shell.execute_reply": "2024-04-22T21:54:19.274535Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:27.274590Z", - "iopub.status.busy": "2024-04-12T10:26:27.274300Z", - "iopub.status.idle": "2024-04-12T10:26:27.277078Z", - "shell.execute_reply": "2024-04-12T10:26:27.276555Z" + "iopub.execute_input": "2024-04-22T21:54:19.277062Z", + "iopub.status.busy": "2024-04-22T21:54:19.276686Z", + "iopub.status.idle": "2024-04-22T21:54:19.279572Z", + "shell.execute_reply": "2024-04-22T21:54:19.279120Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:26:27.278993Z", - "iopub.status.busy": "2024-04-12T10:26:27.278705Z", - "iopub.status.idle": "2024-04-12T10:27:00.941139Z", - "shell.execute_reply": "2024-04-12T10:27:00.940519Z" + "iopub.execute_input": "2024-04-22T21:54:19.281671Z", + "iopub.status.busy": "2024-04-22T21:54:19.281283Z", + "iopub.status.idle": "2024-04-22T21:54:53.054859Z", + "shell.execute_reply": "2024-04-22T21:54:53.054243Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7f06238bd8ab4433a0b5aa44c1f04204", + "model_id": "3a5c3f4075c34414a4f0ca30fa9719d5", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d6787cbdf5ee480b8c56d5548fb98447", + "model_id": "3471b75d2ef44fdf9649652bd08a32b1", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:00.943823Z", - "iopub.status.busy": "2024-04-12T10:27:00.943407Z", - "iopub.status.idle": "2024-04-12T10:27:01.609659Z", - "shell.execute_reply": "2024-04-12T10:27:01.609127Z" + "iopub.execute_input": "2024-04-22T21:54:53.057556Z", + "iopub.status.busy": "2024-04-22T21:54:53.057154Z", + "iopub.status.idle": "2024-04-22T21:54:53.727331Z", + "shell.execute_reply": "2024-04-22T21:54:53.726783Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:01.611994Z", - "iopub.status.busy": "2024-04-12T10:27:01.611523Z", - "iopub.status.idle": "2024-04-12T10:27:04.327844Z", - "shell.execute_reply": "2024-04-12T10:27:04.327245Z" + "iopub.execute_input": "2024-04-22T21:54:53.729675Z", + "iopub.status.busy": "2024-04-22T21:54:53.729241Z", + "iopub.status.idle": "2024-04-22T21:54:56.456534Z", + "shell.execute_reply": "2024-04-22T21:54:56.456038Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:04.330264Z", - "iopub.status.busy": "2024-04-12T10:27:04.329804Z", - "iopub.status.idle": "2024-04-12T10:27:36.944707Z", - "shell.execute_reply": "2024-04-12T10:27:36.944134Z" + "iopub.execute_input": "2024-04-22T21:54:56.458824Z", + "iopub.status.busy": "2024-04-22T21:54:56.458531Z", + "iopub.status.idle": "2024-04-22T21:55:28.874804Z", + "shell.execute_reply": "2024-04-22T21:55:28.874259Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "38780db575474dadabbc09378f30dbd2", + "model_id": "6027c2cfe03c4dcabcad54caec9d5a83", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:36.946860Z", - "iopub.status.busy": "2024-04-12T10:27:36.946678Z", - "iopub.status.idle": "2024-04-12T10:27:51.770612Z", - "shell.execute_reply": "2024-04-12T10:27:51.769974Z" + "iopub.execute_input": "2024-04-22T21:55:28.877126Z", + "iopub.status.busy": "2024-04-22T21:55:28.876730Z", + "iopub.status.idle": "2024-04-22T21:55:43.455474Z", + "shell.execute_reply": "2024-04-22T21:55:43.454911Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:51.773061Z", - "iopub.status.busy": "2024-04-12T10:27:51.772875Z", - "iopub.status.idle": "2024-04-12T10:27:55.558506Z", - "shell.execute_reply": "2024-04-12T10:27:55.557951Z" + "iopub.execute_input": "2024-04-22T21:55:43.458126Z", + "iopub.status.busy": "2024-04-22T21:55:43.457715Z", + "iopub.status.idle": "2024-04-22T21:55:47.115280Z", + "shell.execute_reply": "2024-04-22T21:55:47.114665Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:55.560743Z", - "iopub.status.busy": "2024-04-12T10:27:55.560387Z", - "iopub.status.idle": "2024-04-12T10:27:56.949047Z", - "shell.execute_reply": "2024-04-12T10:27:56.948549Z" + "iopub.execute_input": "2024-04-22T21:55:47.117497Z", + "iopub.status.busy": "2024-04-22T21:55:47.117221Z", + "iopub.status.idle": "2024-04-22T21:55:48.513103Z", + "shell.execute_reply": "2024-04-22T21:55:48.512489Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "790a745551d748e5a360877de35a5528", + "model_id": "b0ae4a13367344b6923aa49aaa66c9a5", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:56.951632Z", - "iopub.status.busy": "2024-04-12T10:27:56.951266Z", - "iopub.status.idle": "2024-04-12T10:27:56.979941Z", - "shell.execute_reply": "2024-04-12T10:27:56.979444Z" + "iopub.execute_input": "2024-04-22T21:55:48.515417Z", + "iopub.status.busy": "2024-04-22T21:55:48.515129Z", + "iopub.status.idle": "2024-04-22T21:55:48.544568Z", + "shell.execute_reply": "2024-04-22T21:55:48.544052Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:27:56.982412Z", - "iopub.status.busy": "2024-04-12T10:27:56.982040Z", - "iopub.status.idle": "2024-04-12T10:28:03.073281Z", - "shell.execute_reply": "2024-04-12T10:28:03.072741Z" + "iopub.execute_input": "2024-04-22T21:55:48.547111Z", + "iopub.status.busy": "2024-04-22T21:55:48.546723Z", + "iopub.status.idle": "2024-04-22T21:55:54.642681Z", + "shell.execute_reply": "2024-04-22T21:55:54.642087Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:03.075625Z", - "iopub.status.busy": "2024-04-12T10:28:03.075256Z", - "iopub.status.idle": "2024-04-12T10:28:03.130541Z", - "shell.execute_reply": "2024-04-12T10:28:03.130055Z" + "iopub.execute_input": "2024-04-22T21:55:54.644972Z", + "iopub.status.busy": "2024-04-22T21:55:54.644638Z", + "iopub.status.idle": "2024-04-22T21:55:54.701576Z", + "shell.execute_reply": "2024-04-22T21:55:54.701031Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0732b60926b34bbcb8a0fd33bbf5a2f9": { + "0386c13e21844ee8b04e9df1675e1812": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1054,131 +1054,82 @@ "description_width": "" } }, - "126268b6a1584c17a94a8817302fbf2c": { - "model_module": "@jupyter-widgets/base", + "0492ba9f1e3a4efe8249c8ded7b8c391": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f5ef443f4b7a4b0fb4fb79fd69a1727a", + "placeholder": "​", + "style": "IPY_MODEL_efa97ca09f1b49c78483bbfdee4a7f09", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "1339dcc0a1a7407bb84512ea53bd7ddd": { + "07807a8083814c04a2d25bb4e23d0e5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_13f54d4753494df3862296468197d3b6", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7ed7a51a06384ecf88c49dee2eed29a2", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "15d59503a674417cbdc653603d874548": { - "model_module": "@jupyter-widgets/base", + "092091cdd83146a9a2f6e2549a82972c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b657af8ea5bb460aa88500b786eb45d6", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0386c13e21844ee8b04e9df1675e1812", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "18ef058881f346038d8b473871f68d57": { + "11d1ca0e51f14e8b90730994f5756791": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1193,15 +1144,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b1fcd981dfe14852825b927813270962", + "layout": "IPY_MODEL_1b5a099043484b90bbb666cc286d8673", "placeholder": "​", - "style": "IPY_MODEL_a55fe4efaa49442fb04c3f03cd1b2e94", + "style": "IPY_MODEL_de850e0652364bc7b4f837d483999359", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": "images processed using softmin: 100%" } }, - "1b86e3ad6ca14d29b09772eb97fbc589": { + "13f54d4753494df3862296468197d3b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1254,7 +1205,7 @@ "width": null } }, - "1ce0f29231ea4220a0e134aab1a376cf": { + "1b5a099043484b90bbb666cc286d8673": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1307,7 +1258,7 @@ "width": null } }, - "24a2ac6046f544919c44046d073968b0": { + "20a2be1421954f0ab8f7c284fe766970": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1360,7 +1311,7 @@ "width": null } }, - "2af276f19a394d439df5d8d7ef529e00": { + "2914fb5ccc2f424fa00bc2535e1ada44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1413,7 +1364,23 @@ "width": null } }, - "31721cb9fffc4dbf9c7ab1c32f8c1b76": { + "3130e614161f41b1a4d381b1750dd32e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "31fe8cba878b4bc8a86c452527a2d16d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1466,7 +1433,7 @@ "width": null } }, - "38780db575474dadabbc09378f30dbd2": { + "3471b75d2ef44fdf9649652bd08a32b1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1481,42 +1448,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6beeb0a552624a8ea20d743ae5632351", - "IPY_MODEL_72a52b9dd8264f8caa81db84e9d1bd63", - "IPY_MODEL_ad4165ddb7c0400cb4c76c5de818b869" + "IPY_MODEL_a457b7c67e424d3390a8311ba4996d9b", + "IPY_MODEL_092091cdd83146a9a2f6e2549a82972c", + "IPY_MODEL_81a2479c8be9447db7489f483514d756" ], - "layout": "IPY_MODEL_1b86e3ad6ca14d29b09772eb97fbc589", + "layout": "IPY_MODEL_d93d489d2fa94b9792c1cdc2e6a477d8", "tabbable": null, "tooltip": null } }, - "4780407d9fe34c529ec54e37cc115ec6": { + "3a5c3f4075c34414a4f0ca30fa9719d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e0b646e0bec435a96b1dee41c9c674a", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0732b60926b34bbcb8a0fd33bbf5a2f9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8067860b488449a18af1c27664a0a892", + "IPY_MODEL_4a0946f646bf4ca8aac6d870673a5559", + "IPY_MODEL_75c4cbacdf61443db7d30eac887030c7" + ], + "layout": "IPY_MODEL_2914fb5ccc2f424fa00bc2535e1ada44", "tabbable": null, - "tooltip": null, - "value": 30.0 + "tooltip": null } }, - "4a50cc9af4e34bd29f2912703ac5ad6f": { + "3ae73ba4c5df4ae0ac7b1e526941e4a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1569,51 +1534,23 @@ "width": null } }, - "533f1a42129f4ae0be6980b6f919880c": { + "3de0a11828de416a8f0c2fa2a93b9b6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5628b646987042dda0264bb377694437": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_84de2f6247014256ad132c3fda537f24", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e84f83e40c284b1e84c952d8139068a4", - "tabbable": null, - "tooltip": null, - "value": 30.0 + "bar_color": null, + "description_width": "" } }, - "57e70ea78ca640b986138a820d9510c4": { + "475e81558da340a38c892c5ef4e9ca31": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1666,23 +1603,33 @@ "width": null } }, - "5c0477f8ebef4770a735132f365dddfe": { + "4a0946f646bf4ca8aac6d870673a5559": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e67c2d1d54404598b81f4502aa6a9167", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3130e614161f41b1a4d381b1750dd32e", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "68094c16496444c8bbe119b88e573704": { + "4c1ab18c9ba948929ced3d28022b0dd7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1700,30 +1647,7 @@ "text_color": null } }, - "6beeb0a552624a8ea20d743ae5632351": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1ce0f29231ea4220a0e134aab1a376cf", - "placeholder": "​", - "style": "IPY_MODEL_68094c16496444c8bbe119b88e573704", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6e0b646e0bec435a96b1dee41c9c674a": { + "59f2bd2ad2fa42b8b52d04e568ada0d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1776,57 +1700,157 @@ "width": null } }, - "72a52b9dd8264f8caa81db84e9d1bd63": { + "6027c2cfe03c4dcabcad54caec9d5a83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0492ba9f1e3a4efe8249c8ded7b8c391", + "IPY_MODEL_974ce86284a74430a1055430bbe88a37", + "IPY_MODEL_7d40b72bf89d411eb24563cf26440372" + ], + "layout": "IPY_MODEL_e8a5db45f62846fd8b23c2a3fdf40691", + "tabbable": null, + "tooltip": null + } + }, + "75c4cbacdf61443db7d30eac887030c7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c8bf85d04244dd0a33e7a257dcd326f", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_bc8b662f40a045f4b7cd125036b91633", + "layout": "IPY_MODEL_20a2be1421954f0ab8f7c284fe766970", + "placeholder": "​", + "style": "IPY_MODEL_8d9c43c6d3914fb7bdbf0b79d6ff486e", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": " 30/30 [00:00<00:00, 626.10it/s]" } }, - "790a745551d748e5a360877de35a5528": { + "7d40b72bf89d411eb24563cf26440372": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f236450961ed452b97efee3295189d6b", - "IPY_MODEL_5628b646987042dda0264bb377694437", - "IPY_MODEL_b3ef70c59ba34c959852b2d99e2a6697" - ], - "layout": "IPY_MODEL_eecfaf88c5c44a558868f0a076d29633", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ff45b2ab489f4e62896a50959a91017b", + "placeholder": "​", + "style": "IPY_MODEL_d4331616c61f42669ed6c5b868a3b32d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 4997683/4997683 [00:32<00:00, 152528.46it/s]" + } + }, + "7ed7a51a06384ecf88c49dee2eed29a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8067860b488449a18af1c27664a0a892": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59f2bd2ad2fa42b8b52d04e568ada0d6", + "placeholder": "​", + "style": "IPY_MODEL_4c1ab18c9ba948929ced3d28022b0dd7", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: 100%" + } + }, + "81a2479c8be9447db7489f483514d756": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ae73ba4c5df4ae0ac7b1e526941e4a8", + "placeholder": "​", + "style": "IPY_MODEL_badf424ac71644abb9bc459cbbcd1fc6", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.40it/s]" + } + }, + "8d9c43c6d3914fb7bdbf0b79d6ff486e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7948ef1c398d42419477bd0cf0baf4f3": { + "9063549653644d9a81204f29fe348c25": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1844,7 +1868,79 @@ "text_color": null } }, - "7f06238bd8ab4433a0b5aa44c1f04204": { + "930f0ee2e8904928ba6e7ef34b2b252f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b7409210da674f7686827a50e20b3c95", + "placeholder": "​", + "style": "IPY_MODEL_9063549653644d9a81204f29fe348c25", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.80it/s]" + } + }, + "974ce86284a74430a1055430bbe88a37": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31fe8cba878b4bc8a86c452527a2d16d", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3de0a11828de416a8f0c2fa2a93b9b6f", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 + } + }, + "a457b7c67e424d3390a8311ba4996d9b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_475e81558da340a38c892c5ef4e9ca31", + "placeholder": "​", + "style": "IPY_MODEL_b6ea770293f7436bbbef805fbdd92ee7", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: 100%" + } + }, + "b0ae4a13367344b6923aa49aaa66c9a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1859,16 +1955,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_bae087527be5415ea679769d16765afa", - "IPY_MODEL_4780407d9fe34c529ec54e37cc115ec6", - "IPY_MODEL_eaa4f866472b404491414a32d99a41b6" + "IPY_MODEL_11d1ca0e51f14e8b90730994f5756791", + "IPY_MODEL_07807a8083814c04a2d25bb4e23d0e5a", + "IPY_MODEL_930f0ee2e8904928ba6e7ef34b2b252f" ], - "layout": "IPY_MODEL_24a2ac6046f544919c44046d073968b0", + "layout": "IPY_MODEL_f70fc43bf9204fe2afc56e1e3ec2547a", "tabbable": null, "tooltip": null } }, - "84de2f6247014256ad132c3fda537f24": { + "b657af8ea5bb460aa88500b786eb45d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1921,7 +2017,25 @@ "width": null } }, - "8c8bf85d04244dd0a33e7a257dcd326f": { + "b6ea770293f7436bbbef805fbdd92ee7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b7409210da674f7686827a50e20b3c95": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1974,7 +2088,7 @@ "width": null } }, - "a55fe4efaa49442fb04c3f03cd1b2e94": { + "badf424ac71644abb9bc459cbbcd1fc6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1992,30 +2106,25 @@ "text_color": null } }, - "ad4165ddb7c0400cb4c76c5de818b869": { + "d4331616c61f42669ed6c5b868a3b32d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15d59503a674417cbdc653603d874548", - "placeholder": "​", - "style": "IPY_MODEL_c372091e7515418898c0d76470aee87b", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154970.45it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b1fcd981dfe14852825b927813270962": { + "d93d489d2fa94b9792c1cdc2e6a477d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2068,131 +2177,131 @@ "width": null } }, - "b3b5fb29ca66447b9b8123119a028613": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f8bb5c74bbbe4f728df7f9a2ca21849b", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5c0477f8ebef4770a735132f365dddfe", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "b3ef70c59ba34c959852b2d99e2a6697": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57e70ea78ca640b986138a820d9510c4", - "placeholder": "​", - "style": "IPY_MODEL_1339dcc0a1a7407bb84512ea53bd7ddd", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.85it/s]" - } - }, - "bae087527be5415ea679769d16765afa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2af276f19a394d439df5d8d7ef529e00", - "placeholder": "​", - "style": "IPY_MODEL_d4a59f2915474030b09560e4bd1e0b2a", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "bc8b662f40a045f4b7cd125036b91633": { + "de850e0652364bc7b4f837d483999359": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c372091e7515418898c0d76470aee87b": { - "model_module": "@jupyter-widgets/controls", + "e67c2d1d54404598b81f4502aa6a9167": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c8b5b8f4a94340a98ed0a993a042f8cd": { - "model_module": "@jupyter-widgets/controls", + "e8a5db45f62846fd8b23c2a3fdf40691": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d4a59f2915474030b09560e4bd1e0b2a": { + "efa97ca09f1b49c78483bbfdee4a7f09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2210,54 +2319,7 @@ "text_color": null } }, - "d6787cbdf5ee480b8c56d5548fb98447": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_18ef058881f346038d8b473871f68d57", - "IPY_MODEL_b3b5fb29ca66447b9b8123119a028613", - "IPY_MODEL_dffa34f9f86349d18f5ed9d223add48a" - ], - "layout": "IPY_MODEL_126268b6a1584c17a94a8817302fbf2c", - "tabbable": null, - "tooltip": null - } - }, - "dffa34f9f86349d18f5ed9d223add48a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31721cb9fffc4dbf9c7ab1c32f8c1b76", - "placeholder": "​", - "style": "IPY_MODEL_7948ef1c398d42419477bd0cf0baf4f3", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.43it/s]" - } - }, - "e813365659b74cbba3b2bd6690626fb4": { + "f5ef443f4b7a4b0fb4fb79fd69a1727a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2310,46 +2372,7 @@ "width": null } }, - "e84f83e40c284b1e84c952d8139068a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "eaa4f866472b404491414a32d99a41b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e813365659b74cbba3b2bd6690626fb4", - "placeholder": "​", - "style": "IPY_MODEL_c8b5b8f4a94340a98ed0a993a042f8cd", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 637.91it/s]" - } - }, - "eecfaf88c5c44a558868f0a076d29633": { + "f70fc43bf9204fe2afc56e1e3ec2547a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2402,30 +2425,7 @@ "width": null } }, - "f236450961ed452b97efee3295189d6b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4a50cc9af4e34bd29f2912703ac5ad6f", - "placeholder": "​", - "style": "IPY_MODEL_533f1a42129f4ae0be6980b6f919880c", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "f8bb5c74bbbe4f728df7f9a2ca21849b": { + "ff45b2ab489f4e62896a50959a91017b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index dd367684b..15f2ee2c2 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -676,16 +676,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index e38dad2bd..1541dc011 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:05.390887Z", - "iopub.status.busy": "2024-04-12T10:28:05.390476Z", - "iopub.status.idle": "2024-04-12T10:28:07.161439Z", - "shell.execute_reply": "2024-04-12T10:28:07.160860Z" + "iopub.execute_input": "2024-04-22T21:55:57.071212Z", + "iopub.status.busy": "2024-04-22T21:55:57.070842Z", + "iopub.status.idle": "2024-04-22T21:55:58.239716Z", + "shell.execute_reply": "2024-04-22T21:55:58.239143Z" } }, "outputs": [ @@ -86,17 +86,17 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-12 10:28:05-- https://data.deepai.org/conll2003.zip\r\n", - "Resolving data.deepai.org (data.deepai.org)... 143.244.49.179, 2400:52e0:1a01::1113:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.49.179|:443... connected.\r\n", - "HTTP request sent, awaiting response... " + "--2024-04-22 21:55:57-- https://data.deepai.org/conll2003.zip\r\n", + "Resolving data.deepai.org (data.deepai.org)... " ] }, { "name": "stdout", "output_type": "stream", "text": [ - "200 OK\r\n", + "185.93.1.244, 2400:52e0:1a00::845:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|185.93.1.244|:443... connected.\r\n", + "HTTP request sent, awaiting response... 200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", @@ -109,9 +109,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.44MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-04-12 10:28:05 (5.44 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-04-22 21:55:57 (8.65 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -131,22 +131,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-12 10:28:05-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.168.129, 3.5.25.18, 52.216.9.75, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.168.129|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" + "--2024-04-22 21:55:57-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.151, 52.217.169.97, 16.182.103.49, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.151|:443... " ] }, { "name": "stdout", "output_type": "stream", "text": [ + "connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -167,23 +161,7 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 168.53K 842KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 8%[> ] 1.45M 3.63MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 52%[=========> ] 8.54M 14.2MB/s " + "pred_probs.npz 39%[======> ] 6.49M 32.4MB/s " ] }, { @@ -191,9 +169,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 100%[===================>] 16.26M 21.9MB/s in 0.7s \r\n", + "pred_probs.npz 100%[===================>] 16.26M 56.4MB/s in 0.3s \r\n", "\r\n", - "2024-04-12 10:28:07 (21.9 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-04-22 21:55:58 (56.4 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -210,10 +188,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:07.163761Z", - "iopub.status.busy": "2024-04-12T10:28:07.163576Z", - "iopub.status.idle": "2024-04-12T10:28:08.370108Z", - "shell.execute_reply": "2024-04-12T10:28:08.369498Z" + "iopub.execute_input": "2024-04-22T21:55:58.242396Z", + "iopub.status.busy": "2024-04-22T21:55:58.242034Z", + "iopub.status.idle": "2024-04-22T21:55:59.455182Z", + "shell.execute_reply": "2024-04-22T21:55:59.454641Z" }, "nbsphinx": "hidden" }, @@ -224,7 +202,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@7b4b0690aec3f23448ea3fade9afe2b3fe8434d2\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@2e9c4a958aa08fb14a2a81002732d6ad1d620b43\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -250,10 +228,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:08.372983Z", - "iopub.status.busy": "2024-04-12T10:28:08.372464Z", - "iopub.status.idle": "2024-04-12T10:28:08.375835Z", - "shell.execute_reply": "2024-04-12T10:28:08.375399Z" + "iopub.execute_input": "2024-04-22T21:55:59.457646Z", + "iopub.status.busy": "2024-04-22T21:55:59.457364Z", + "iopub.status.idle": "2024-04-22T21:55:59.460899Z", + "shell.execute_reply": "2024-04-22T21:55:59.460450Z" } }, "outputs": [], @@ -303,10 +281,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:08.377974Z", - "iopub.status.busy": "2024-04-12T10:28:08.377634Z", - "iopub.status.idle": "2024-04-12T10:28:08.380573Z", - "shell.execute_reply": "2024-04-12T10:28:08.380113Z" + "iopub.execute_input": "2024-04-22T21:55:59.463089Z", + "iopub.status.busy": "2024-04-22T21:55:59.462748Z", + "iopub.status.idle": "2024-04-22T21:55:59.465821Z", + "shell.execute_reply": "2024-04-22T21:55:59.465272Z" }, "nbsphinx": "hidden" }, @@ -324,10 +302,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:08.382549Z", - "iopub.status.busy": "2024-04-12T10:28:08.382232Z", - "iopub.status.idle": "2024-04-12T10:28:17.453178Z", - "shell.execute_reply": "2024-04-12T10:28:17.452640Z" + "iopub.execute_input": "2024-04-22T21:55:59.467925Z", + "iopub.status.busy": "2024-04-22T21:55:59.467525Z", + "iopub.status.idle": "2024-04-22T21:56:08.577604Z", + "shell.execute_reply": "2024-04-22T21:56:08.577121Z" } }, "outputs": [], @@ -401,10 +379,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:17.455742Z", - "iopub.status.busy": "2024-04-12T10:28:17.455378Z", - "iopub.status.idle": "2024-04-12T10:28:17.460991Z", - "shell.execute_reply": "2024-04-12T10:28:17.460532Z" + "iopub.execute_input": "2024-04-22T21:56:08.580097Z", + "iopub.status.busy": "2024-04-22T21:56:08.579685Z", + "iopub.status.idle": "2024-04-22T21:56:08.585305Z", + "shell.execute_reply": "2024-04-22T21:56:08.584758Z" }, "nbsphinx": "hidden" }, @@ -444,10 +422,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:17.462929Z", - "iopub.status.busy": "2024-04-12T10:28:17.462607Z", - "iopub.status.idle": "2024-04-12T10:28:17.801642Z", - "shell.execute_reply": "2024-04-12T10:28:17.801097Z" + "iopub.execute_input": "2024-04-22T21:56:08.587395Z", + "iopub.status.busy": "2024-04-22T21:56:08.587082Z", + "iopub.status.idle": "2024-04-22T21:56:08.927057Z", + "shell.execute_reply": "2024-04-22T21:56:08.926485Z" } }, "outputs": [], @@ -484,10 +462,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:17.804014Z", - "iopub.status.busy": "2024-04-12T10:28:17.803671Z", - "iopub.status.idle": "2024-04-12T10:28:17.808143Z", - "shell.execute_reply": "2024-04-12T10:28:17.807640Z" + "iopub.execute_input": "2024-04-22T21:56:08.929600Z", + "iopub.status.busy": "2024-04-22T21:56:08.929258Z", + "iopub.status.idle": "2024-04-22T21:56:08.933506Z", + "shell.execute_reply": "2024-04-22T21:56:08.933000Z" } }, "outputs": [ @@ -559,10 +537,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:17.810268Z", - "iopub.status.busy": "2024-04-12T10:28:17.809953Z", - "iopub.status.idle": "2024-04-12T10:28:20.119925Z", - "shell.execute_reply": "2024-04-12T10:28:20.119174Z" + "iopub.execute_input": "2024-04-22T21:56:08.935545Z", + "iopub.status.busy": "2024-04-22T21:56:08.935161Z", + "iopub.status.idle": "2024-04-22T21:56:11.227104Z", + "shell.execute_reply": "2024-04-22T21:56:11.226447Z" } }, "outputs": [], @@ -584,10 +562,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:20.122955Z", - "iopub.status.busy": "2024-04-12T10:28:20.122406Z", - "iopub.status.idle": "2024-04-12T10:28:20.126579Z", - "shell.execute_reply": "2024-04-12T10:28:20.126020Z" + "iopub.execute_input": "2024-04-22T21:56:11.230044Z", + "iopub.status.busy": "2024-04-22T21:56:11.229493Z", + "iopub.status.idle": "2024-04-22T21:56:11.233931Z", + "shell.execute_reply": "2024-04-22T21:56:11.233447Z" } }, "outputs": [ @@ -623,10 +601,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:20.128669Z", - "iopub.status.busy": "2024-04-12T10:28:20.128194Z", - "iopub.status.idle": "2024-04-12T10:28:20.133866Z", - "shell.execute_reply": "2024-04-12T10:28:20.133344Z" + "iopub.execute_input": "2024-04-22T21:56:11.235763Z", + "iopub.status.busy": "2024-04-22T21:56:11.235596Z", + "iopub.status.idle": "2024-04-22T21:56:11.240954Z", + "shell.execute_reply": "2024-04-22T21:56:11.240435Z" } }, "outputs": [ @@ -804,10 +782,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:20.135918Z", - "iopub.status.busy": "2024-04-12T10:28:20.135532Z", - "iopub.status.idle": "2024-04-12T10:28:20.161557Z", - "shell.execute_reply": "2024-04-12T10:28:20.160983Z" + "iopub.execute_input": "2024-04-22T21:56:11.242997Z", + "iopub.status.busy": "2024-04-22T21:56:11.242662Z", + "iopub.status.idle": "2024-04-22T21:56:11.269008Z", + "shell.execute_reply": "2024-04-22T21:56:11.268584Z" } }, "outputs": [ @@ -909,10 +887,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:20.163556Z", - "iopub.status.busy": "2024-04-12T10:28:20.163243Z", - "iopub.status.idle": "2024-04-12T10:28:20.167818Z", - "shell.execute_reply": "2024-04-12T10:28:20.167340Z" + "iopub.execute_input": "2024-04-22T21:56:11.271132Z", + "iopub.status.busy": "2024-04-22T21:56:11.270805Z", + "iopub.status.idle": "2024-04-22T21:56:11.274756Z", + "shell.execute_reply": "2024-04-22T21:56:11.274231Z" } }, "outputs": [ @@ -986,10 +964,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:20.169898Z", - "iopub.status.busy": "2024-04-12T10:28:20.169573Z", - "iopub.status.idle": "2024-04-12T10:28:21.560484Z", - "shell.execute_reply": "2024-04-12T10:28:21.559957Z" + "iopub.execute_input": "2024-04-22T21:56:11.276841Z", + "iopub.status.busy": "2024-04-22T21:56:11.276531Z", + "iopub.status.idle": "2024-04-22T21:56:12.692982Z", + "shell.execute_reply": "2024-04-22T21:56:12.692481Z" } }, "outputs": [ @@ -1161,10 +1139,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-04-12T10:28:21.562475Z", - "iopub.status.busy": "2024-04-12T10:28:21.562299Z", - "iopub.status.idle": "2024-04-12T10:28:21.566506Z", - "shell.execute_reply": "2024-04-12T10:28:21.565956Z" + "iopub.execute_input": "2024-04-22T21:56:12.695262Z", + "iopub.status.busy": "2024-04-22T21:56:12.694870Z", + "iopub.status.idle": "2024-04-22T21:56:12.699061Z", + "shell.execute_reply": "2024-04-22T21:56:12.698593Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index cd1823370..e213569fe 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.3", - commit_hash: "7b4b0690aec3f23448ea3fade9afe2b3fe8434d2", + commit_hash: "2e9c4a958aa08fb14a2a81002732d6ad1d620b43", }; \ No newline at end of file

|KIl5`_wN7jJI0a*zd0Tx7g@&j&Z5O(YZeNBqg!Hw^mKf5#e z`ogNlY9K0%9JejjnH-~cnqD@?cu6|9{W%Xt@Ou@vt-LJOfeD)duN}iWlDroGQ zA~gC!bro#=FF00Z%=Tj%vmN_?!E9VeqrY@AXhhXdMtY@iWYrq6Kb>pBATqtuhkKG* z2YxZVvMQxlxY6}t;)gD&YLq2j#&yUv3CDPkD757}i2JUnnrspMJQ(An->kh0Dyxx;`tB_BEhUSVROK4P#ik3<)mWwwMVpAF?(7!i z)3H^HjaX{#xT<@^13ZNoOYP&Hq)>uijHR~gvXnkdyn(N3v_<@Z>rl&5dlgFa9mu-u z8$UH{mZKOr!SO7M*?@n-beZKS`7v0vS*PvUdTl3#t9}@)mPsy0BBE@=~S7{1S^qFei1{Ye3sg%&NquNB&;>3y-;E|WiZj0@j?vtuI3c|fd zS>)MSC-N*hrjYI~xr4&^?kQF83c?crF$z6@)q-Xu zBteof|Fl=4-8sw)UsB8uA%|-g)aTHDj8Up?FJxAfl;r=21XdLZSm3>I{%zfaYragE z`Ky2{BbmQa#v@|)k5*hG+@wG&(taZk$fSMTmsrM{`$YF&S@{~FyXm1T9E6vR{7fr`%QSR zewHlk&w{h)=1ID=Kh1cqP)u3+d*rsK&TpKzrcW@ksita@*zhZGP{KM=d~Nl(wuyCiv+i0X3UwG zoy99GCM_2ao83(q_EoyH453psu#kiBE@>gjCtp;p5XLKAC?a!>3c6-#U+lIu-9M)} zN3=m-=}V015_BcT6ryM;U9@gio2|WEXYEnd?A2NA+vK&UWwqCSU3G7L;ZgL4tah%R zv5YEId>C!?)7lSyC8xD3=@{Cy_HB4+oYuaDPC3DvG_5TsQBOXtU9_BIGE5;EW(jA9^P+ClMl2s8C2WEcF|jEqNHWa^jV)Y{&`OO_`2-s93*wW z<`_fHIE2eQ;%L=l8Yzzan%rEs`Z_fLRYY7w`Uf|iB)8G6fAV#k*-OP~e5aZO@}D}O zOpDY~htadkN?&&6!eVwktO6hbARM@R}msDZ#0S&7^vIuLHJ`^4H01wX0e)-p0 zC3frAe~%JtPFJm`#Mt6L&{_Pu{OmP5b9?2*r|GcajjP8r6n;Q&MmnsWQd#yL+UV=B z<6p}b-5N7E{e8Z~M8}*%!88b@Ftt}?#cIl&q#}!t?pfW#BHqrA z&ve+T0dqa#D%E4E!)`xD2A^9!T?gQkbE^l6Pw4^7?^S({8bG7;Zs(?+!~#`%ac4pG zg%)uK->XLJ-Khi1c>TW`h<0^eV zb<<-V8qtXwsPj&E$0U?GweeN%>hmqaV5N(HkVSv36~ zPp4yO)%ircG}amu=#+V_QEQjWys*Ey6gD^d%W#T95Ry3#xz2 z5)K|W_DID#a&Y>Q+(BV{XJPgDY~fpg7^PiWYe60uS-mq$`1822N7^X~Vx-7Fl&K=T zn#RH}nUdsrElFyx$m=MRqa2o^%ZAA_dJ+QD!yGgL%f`y2UDS!a8FW7Cw_QL^+$pj;9klq^m_gY zQ=x%x$gJ_zkEq*fROldOiR!_UIOWoi>J|wdm{`WJI)F*0Az4)a)~%)8ER|&BGL4fH zqZ2hyp%J`8M@sq1^g#8WmPh0s6o2?39++v+>Tk3fH1dtU1~pxQt_C%QC>lxEtmh9C zw)BtEm;NC?dyPN*p1gFm0u>8~*E^%fqH6l}%Yk^o#Oj&ZB!A7qoVaab^}=k+FLa20 zE4R&RrR$7cr4aYWZ;UkSiEm`h`Y|0`t6AT}OJmLYHeJhK(yW(qyl0BZb4b%Q8Yb%g ztuYgI!8^u8Do>d-s!xLP`O~ZSXIqAmMfX;Z({*{*D3cl@cTz}p<@|r_eRq5nMfbP6 zDFm_sLPF>%5PC~5bWnOiQ$z%Wn+lOCh(IWzN|YAJ&4iF!0w_g5Kw-r~v7%T&K?Fs> zf?YrmQ3T$Z*}Zqq%rFgbrYKbZqLg~Bs5=WO`MuVR!KFktuVexq&m%EE3 zEJocj$M~a)r;D#juQHs!n-zr)ttjp%y~z}l24B65GFBG1VhK3BylBuMm=Y?Dm*45} za_R#+TMBq_&%65fL{JmF{1!jc@bcjH;vgigDGo%xtuBrgeXl6ts|uaM6~Ko==Px=( z`u6hw20E{pLMPFJn4n4y-_^%L@j2}5fS+MCu-J)T9u8Yq+`?ZRg1O<~Gt6i|^iMz3 zXkT$N-&T2ekN@g{r#pi8N&~Ja;Fv_X^WfM4KQte5ZHcgO$W=M){0%so88}j1Eius5 zLS9!O?wqgaijO-llovY%(Rsx@?riU`#GN*UL7MFAD6T1rdoYPv+?mLeJXKM=Oc0M; zF^@aDxk=1muuL(Fxa{`hNeD%&pDF%Z`W*_x zg`ERID=sGj?SZh<7f7 zI_OH;Rov8HT!pz|=rTN!Fj+O?(`e5uYhw+;0<}{X%TdpHC7tWdAZ_pfHu0(_0GmKW z{#O8&3w+F@#$IPNM%T@}!T^4~swj-dufuY2nIL|7)f~SzsseqkFi4ZXJWz}eeO$&Q zX85(8Cwb)6;sQaud(|AjUT~8z_yvse88wRdrp|+3^=Od;yhW-GUmIAH=(hii;Y99n zxOlTzH~u%(Bdp=~2=|cx@^)QBv84;5P{TKhXGxu1&q;CA#bx)Q)zw$zit)dpi~DCZ zl-%UxF&9)F26DNa4gg-Ioh$hOtVpCg{fD34bMN zMB@k1BW4?Fd&VoaEz0VaHPFaxIC*jX>eivSv|oi;4`XH*`DE{ zulN~IDqF)fE4Y+;K~*YA?_s9Y!KaGXn;mhybE^3Jdd9cpt0~Dl=s9^;@(%ikE_sLl z4czS&{n5qO*5VoaOmVW$J6~5r=lktyD*9bQ>GS49h{@lf$@At6_x}_hbzBjRRwSQo zA^!RsDmq)-GVBuGnBuc?4E~j7;Td!-?uWhKQzIw-+xX`rJuV3=aTm_)`Y77qDHxqu%* zfM)3VpNl6+Q(!SgfQi2p4-s>($p?QaeoJ7<2+B6mgiy02z-B>~gcaA6ED5V%3-o%z zQ`bP21dW}VB>}Qivm~szTAVFNTOlKYzabi}nk8ZLH6=?z1*obiPsx(-(Y4}2K{^a- z(Bs5_nVKcx)k-i+x>3AAkUoRV@cH6lbdacyguhFSw*o%9h6-;MKf_if`ULH&NfJ(a zX_q8P(Dj_rnzobxmt@%*yhDK`3AL|lqkyUgm|RVg5Cp5xmxjk~6^95?I4q}^Mq0oU zs)_LHsQh;E1h($QCQnAAnB)~5r4%EALw9%rqB@`jH7Np=iwiVG^?RTcHAMnLNS5*jDH05fpdHjz zQzXpfgayeGG+}!wOJ|m!dujwLI<|((>}b8OwOCpUbxneZW~)JoHgNDS3Ts1*8Zah7 zjs30brEP$nk{V$TETR6e?Yfd0fvL+O%_ya}uqh=qLf-(ZzbL%R*#E0NcAiH3^P(wBW#zfV?|N;-LGs%-WwbMJyLsXr?-Mnn6VPwZf3!4Vcs1dZRiTG1}UMo{0h(3p9nDRzwnSP?6H)YaOlg zYY1Uz=s4HhbA0X6NJG*eIMRTd*g8TBKw4YOj{v(iTC0D%NSW;cuk)6Y6j5HOTe7V3+PnUI{0{)`*^=zsXezZ(6O?sX%k*WRx}Y`VeEGEP^A*|(KF zYv%VxpQKwmp@HevMkr{IH4@#fnIDd})yl7j%4+9JXjQHJMo1cLZHC$p!Y;cp-P#5n zu9ctm56Joi=hqcpC2EFmMcrPT9;IHGI-m%fhRz4)k4MvnT05X6!>pmG+5K3?o=x*Z zQNb{)FFHQNS|5cDwWgqM_hZQ(3C(YgPK4&yM?<#c2ccU-ts|>U8!dbQh8G!`;PtI0 zXe(aONpoKV)4e)%XLzJl!(W=K2TCi2I`sg<0{i^K>6ejRY336JjFCpjfu*kdA7AsIzfEI71t1l57*?LY~b*y zR;&Dus79_e$LE_rs-fU->o-Aba;>q_50DXECtdmjH6Cw$NV)`{kabe1*2Gk`iLd@p z_Cd~ry1?~Gwn%jU1nZAdt(!nz+Dzb0RGMcUA_c-HTr<uy!LWTH`AvJ~ggEx7I-+%Le z1M!=fPJ4&=yEl1=|J&7H7UH`*^1tyF>;K8W*wpN{UA0@?Kh>4Ymd*L2{lwOognhB8 zk?iG3^0()|=PRcE$-mgtNM3Q1xN)4jhh67S?H)FWUjDxMUkCFVtF5=CT-<#(nA4$< zu*TX$n!*&5&E4ET(MM~n=_~;^7LIxz3t&IS7#)zb){4ybV-Bpf-jp^#xyXJ@bSWs& zhJ_1uPin9WS~sSVD~he}`bc{LLnR4^X3q0!2O$IbVyU&e7<3qrRYMn#jBJVqZ?LwL zj)HO}*U{lW(We`%t2hcR*U?!>L0=|didHu3ED5%u8A+FKAhDby<7B|}1rcg_Bycn7i`G(y3zS{nzn$}`??^w>g&ZJsN;&2 zHPGCh)~8qooWBJav~BEfP&&PWYBD((sK1d!Gs0oLzr9AJH<@H#R{EhHy|V7MCZOfJ zt?9xU#_>Ld9H`^Hu5-MXJv*Mq-e`_jX=B$%ma8~vjXNv-NS32swnhoU!wR*EDI*{uHSN8(_!z45E#nxfk~RgK zX&x!k+cW+39z!j;#lz=9wX2AYp{9N2Oc2od*YO^jGi^%<`mnD(Q0{Qh+DkyYrCpL> zBP!8dpVelh1l6Er3i~vKlK^x_Q>U#9kex@Yy?lgSRHx{8=#p^$Hm%0xUXF{r^SrYI z6)OTA9@Qd9u6EHG>H0g|5hNURbB#b(hR=bQJT$KNyScjKGA=U_y2Y=r7b*tTB_=X3 z55F#|v@tDJH0G~5WBz1pOq!TTsD_3@85L%s(Fco`h-G#t8BV|IEAOB z35tYPfYxklKm7?8E$TV0gro3is@m*Jg+5JA{o6V^T=)$*x9Pz6o2LzG zRFc<36mQcNqtUCbbc>p8<4gB=;DG6KIv!xkw6|zglN?G0hTzf3`$)*^R5D45yA4JH ziAEzjf)dTiTuyon?Rmf+T5`UYubkVtL=>eSpt^GXvL7s=OOPJ7(dDdy_H11mob1kc zq@DDz5kWxrl0hs1H|#!8b;`hrOf-qd!rRQjeR_I*J`vPp)aB!6 zxN$XnOdDTNB$lZx)S-tUH6413Z}ag*{%zyWYB9rd~35`I~+ocosIP(UAtKriOR)E>iD~xr>D2XVgVluqqo?vfoEcx?{er z)lt28AFnV-lTSWa(#u!ui%HD3wL0-6t45WS`-mg%n1fUw7YVXFtxVb+NX6VyZe2FM z!_OF@l*Gg!!9*p{AfAuw8(E~4DjIQW_Xr0FXYA~9kEI2-MCobRKKCx~LBQB0BWMDw z!Hk>0J)?8?Xe2zjGE^?kE}0`p8$C2=@!TMoIz2a-Ym%trkbzIWO5`zttpoTO^+}qz z|B(qLCq(fxm4}L3ryx1Sts^=II6xf0C}i;1i+=!IGnsyS4;jR}e8_Ou)nj%Pic?DZ z31XwW=A+P+0;v97sxq8ib!y3OL2QRf%tql7)!J^78;_NA5X3Hb%{P}q;K>$9q*o z1TXt4u7o&l+Kpu;OZ!^0GQHk=52|Qw>m+u(2L)RYOdi@& zp)m;nqKT@Yp{gDLTw^VztgO8U0LwR)JS#|c*gjo$(0pajGR1hc?}IC%%bQDHW+}LJ zN0O>12x}l@@G2Bq|7^*GFoP8w*`27rrDU4)F%*of$-+JYB^pS{H@B4F9AX#1LuCc_ zJuD$BFdtk89Z4u&%~s}mcAwfawl#OW1!5Dnh6^;YWHcBWV4TrGtR#Drv6Y8ZZf0?6UpI_t}^yM2%OCfdudjOtp-B zM2HL)3^{=l3X0}X&;UQvprH3VCD+6hm4gZeiIAGEQldmUO#xLkKzkY>qg9H>KKuhL zc*hhAXy?bXou_+C*-(BC3o?}6>#!jASjqMPafzs5f#E^hg^>1z3t=m2B2WCqBjl-*7+TkR(LWo>+ zrQ}Uf8VRZ@!IuS=&=V4*4ptaFA%W0^ttIWz!0RQmSXwR?8=>li6~(P~5R0)j_*iU= zJ}=D`f7DW3?!(|Og`lNGa+3w{BBc-N_IAi0CAY*1m4ynxc1TSD_$eQLov_HqBpCD9 z2}1z(NRggvnwp08{)9pAKZNpg0DMg8y$*o8-YUtdF8<=<1%Rij#{AL89Du*`p#WU( z6Ven9z{jxO@S4md7&}TN|5pe+0eBnsF+&6v>Odlx^WKCA2&Mxnm=3v1NtRiOJ85>uc%q4R@xu^$+&Iz8Iw9{`fGQv{gGa@UH&9$QuQ(8DW+;l|kq+MqTqcT3C^HYCW>;0Lg$kE6 z*%6EC`-oOe-yTBE{ycHVL^M$ppHYcPsA;$?c+gE}hI8{3Q;B(gJkDi!w9{DLPF2Ub zB-T*6Rj0>sl%7FG1)KJuM>$?~o;R@S7apv7#${C(7D#AiXB3ELbVf1aO_iAn3%^4? zQ9GXQEao2@xWQ*#8O-oC1(I0fgc<6j+2B$Ap0aTD+}+`774{d_E1DlS)9sBpa$Qqw4I z8otKLzSf#h%>=JKcET`<^GK0?-lW_647$A+3QpFk0Cb*rb(=ZcfS$-iY2pdW%R>-y zNwwjJ3X?R{Hw(QeeueKnsc#yT7^H>Kz3QJi+Wwd-cX%7*$VUDmPL@Ymm_{Pk+|*{U za|{V{O5@OlbIYrXvd&J=V>@xnV{ib%K=u3q2ryg?YU3Ak@`hYA#!rd}0ArF{#@z8d z1iUx#{Uo&CCnyOtfwRap4~j&`Z;x#ubpz$fm9wM(l=c|vCP4}%pQ!deqeg%dkh8sV zk4vvYp*hphlV&hgZwAVh@}OK4rgA|EfT>?*Ae_&07I+Bqc^1H8CZDGdra1y9ZI%_3!Yr?77?KA zP|}2+#ygZ~ask?Dc3m-wjeo75xYKMc>)qB){lR@}J}vouB_Azvv*jMSkT5px76;6a)}e zV=EWB(tD;oiCzy7YgKncViZW{nf0&Ic{W0a*P!q^Qgz%sH7@yu+a60&1=L%2<-7K1 z&6L?G?H|FPK~csuTUBwj2trO?!h=knQCbdP6B0CZ;Ic&2Yc1a6Nd@hrp1*8L4@&|i zm^qzrBdViw5AJG&daOhHrM{p7in>!Cg=$YI&5{Pg;ys&Cy4bfm`l=Yku>=?U*wUM5 zVh1XHgN>q#FK_LL4p`9|abk5eumlxLlOgYgqwVP-8iyc-Ltb@s8 zW^JpBhP=O}7CLB0o8+-}R9let!-lCX${nbWbPyI(TkNlnx;oK)ECI1aGfk7hdRtJJ zRAM@i77og#DcR+T^{^Kgp%WR)MoC{mIf#xyA0w64&ciAfNgp#eqVv)fSRB>kgAvkA zSVH@BrFzL`RK!;0y3|zP2&a1Ynhk$r;d8BxY;4hP2CG zU67^ll@4g&Hk2(5tAR^ZIHGXSY%nO%+q###IS^VHlOV@-^rNtPv>t}z ztMD_-NL_{0-HoimPKATI2-(gMle2XtHTXrysv1ggYkZ5{V>h&wh<9s@-iu1ju)f9% zXrput?8gHk9G3L--<&Rn1=1)H_})T2PZzipEbAf0 zd6Q|eo*oTd=d3GlehD>xM(m~14|#ij5@_{FJ(b#O@Yc;e#9^RSL)18ELa*ClVRh~H z`T1i@?Gc_4WipyJb#{9+eq3pVG>2ED&rJL}(D}`$cqm&+t4a7TP4zX)-MGa~a$$i)Y6Q1cAwii^@`hmZ4g+q}6Ii**mJ-j@vbd)p-7Gpgu6YrPMw#Q0`vIJc8@|l6|$poVd$c*K}5>jOT z5|hvjWUW!ejM4|BMNk+nD*H}pasjMDaq`ZL(u>j>SRA!_M>JYfe_Ntd3X6$n`QVD^ ziY=r$N8w&9Z09M&HIlLk%QV3aQ8oE2Bb-TmWuOr)zN(`Bu3`PL!2wNhd|J})QJy6I zGKmgO;AfbVnpAu4oYGWZ@ruerjSqfd$Vq%~M&jdx6Ozd$r9qeT++#=!4Z!<#j}+e(njb{jKII7GPlK)YpN~4JN_k#E_Ltto$E^5)fJpTJ>-i6 z;MK9Fo?)tbY*YuvCrZnLkg#Q2uRx!4*M`Lss2^~VXCW5I9c@)C*x1$MYkj(hp$;h( z(b5O1@(@i|O+O9S>wNV?V_*I5xza_F@T0k}{-_G^oy%8$d8u?zkZ=nql*=igDYS-~ zQ@~C8!rP_eB{8t3wsQ_%u4;5`U3BJt`i;&{KQyt!G2RZI-_jWw!j(fzHG~4Jm3Hm{ zmB|Nz5oTnp-fG=z8X`>W+_F+Z995G*v+mu8rpKYG9v@P;q-{x`UnYtZRrMD*X6w#h zXtWP=v~tJKOXmpUTwpuHL6qgDW8Qjzv%bS?QiuUJ2)ox*!2Z9AF%yXyDvvSU`>NIe z7_&psqYh(Eoi9CGM?9+O6&_8|RQkB8nzyI|jPd35niO9o4PSOJ$^ihg4NLRy0A{i( zP?Z7Zp-1(udc)XN-}}8ZCs3?Y%ZsZDYIcHJwW!0V$uA1)drM-oTJ9CE2VafiiKo?E zpB5;_tHj(JI?W)x+;nEXD%IkB^@f=_uJPumI?nvX+M|j%V_{N$n9QEw&_f<_PFmj+ zgfqE{?)k$VU7M^A^%oa=v*37DnFTHjo@%y!j=xx3DGM&*iQj3n{(_&l*_#DzZaOmy z&eK^ix7PmvZT1_bBJpmM)6^yaa!xAR)Im;p&$2lpn(9~|jGVU8U^MRXGj-(S-PdpO zSH2(r*MPD|jh;X6FJ93sVvJLVRHgnxRcDM-Ki1-L>LjC9fKw-M7ycbiy`&0MHJk!d zPE>8gZDNMkHk???`mbM6183!2*s@G_kV(UhH1*zYvce=y-u}S)I)TDKLZ;+a2Wi?h zvhf@l-X?ENzAn%z?+bZa_WIU-^7!oa_z3wZ!UrZ>*H|odvoQ1bgxWk}h1Z7u4h+)> zi_aLQ>WI}_mFJ&DMouP=fyw9qW?ZW?<7#6w()dVt&WjnhsKRem%}B!|oW=IN^)4zUFcRK3H`>eYcFc_SjLvAQ8KZ%7A4JnGqv2m<$?%VtU9S`US3V>P7+$6< zD*!(It>{jNPvf3g-z!f&)4WZ_>J?r0YA!Y=735=Gj_Xx%+T+-xfXV#~+6sK#N^$-~S$Pw>5 zR<^H&xLBp-uIp(oo~|DH8H=K3m(fIr+%CarYA(1-(1%pTmr#`u9+>1_EVs*F5m^RT z9b^`&z4&J!vx_-}W&$#J`E_-X>fInBk_}C_zinBVzxata%k5LOc-&>Vve>e@{^B>4 zvfM{J@v4-vul&U8-c0wSi_Xk+ALvXcGp745L5)v9m7r$mVLjAD*P-J`2Q@ep+EGXB zQAdLs!%YQAJ?+#L35OM@=5hygLPLja=z?~aZK?*AU(t0;X3r=r4&&HW#u`6WqN;^8 z*j1xav7Fpq>HyRI z&YSK$W4iwm%+w-ZVy@(*jR(?}T-6vLqDc!ehM7l~mbK_4j@Q%*(_UzEXMI&O*=SGh z2IGq%IPpO4hI;|Vq=lGZOn)rPzr&bdRh%kgOv)O)pOz@9;V=f_NG4OR^+s7{3vq9V z7oa&+Lvftv6;^2ohcl(}svpZDGhGCaZ_(TpX;&%Epk^uho%jG~bXNB7Wk{ zdCS}!%$#=zu}~KjIVV3DfKQ2;nbz@Usyg_5sOsgP#W=SDD*-+rNUagd2dULU4TIFn zoj0`d7n_B8v8pI3R*h7+q{$n4ZCK?mCWKZ7gBtV175z6{_Y?0^iA^ym*-gio5p)w@ zk0vj(fC;OG!jbl00-+&Nl|X3x^Lh}Pp(s)p>l_)jp+%^;M$@bDvTCHNnw3-m#>=Xw zLiuIY3`RL1hM$I|`FAihOckigFm&sr9)=DY_^JdydMDqVvf&3m6uzW9NcNe!;i{i_ z)|&@kRRuil^59uBHyo72pEON-fTUpcB&(Zv*WwMI1&X)4d2pPY&dh^P>OAwrh0V%3zR%qgCUe zi7K(_O8HS29V+^1gV9R4cU=lWAYD^OQq{du{x3n$bYhFj$3eG)%XK?D<%$}05Y(f5 z!}vPlOPX4ZA!x3unSE3N#t^i(E`=cQGQFHp4uGKbSekzaL655fRT+XT539-n8v~b& zJ@t(}8-A`KieX+nH9$Rie^>QXIsUZ`?+1z@VU=;!Ry^?&?{4_GhS*FcHg(nhE;=(; z{afd%m&~m3HE)foV~wDS^UngF@ii-fH8{Y(oT<0nh%iHxdH3{&n*QQ+Z?>DF$~{%# zk|vM(a>ERNaY?0YSI86h{dU7yKe5=G?KZpU(9o=M`-}} z>7K90nKuTo9g*9}*iiWfA!8sp5{s%p;B{u|@W*)Sew-h{dVFmnV8^Y38hkSb5r zUV$&2|>e&Bt(%Dc#qsxnm#aKKJoD(MV72a;6Z5O2!nmDdRph7s*}csG7W z6=$%*Bu$Qay8L92kV(jN-yPSs&BE1dd2X_~>&tIS!gNB`g?=2(&>-DiWGHr!vo5;Q zrdM@Wc1h4feEWvjWJpnd2nfWJ6q?ft@xUu6}MK$C%6;J8@^{THlC^oE{Mj($OUS5)-;SRC)XiPj*XbYn>+9hS zkY#^)tk0Pm0jTE3i(89R1JU9AXw_Tg9asW-sY4T6-ExMF z(wlj5-?z&r2+}6Vl(u#5o$`6obFi3PEGij2QbPNWmS>8aaN1{*&WE9-H*2&;)fF#n zlMyzOXYamn_P5z_`UMU(#KFDdSCJ*P@?J4McV+ITGyOsk_dF7pjL?d z$+7ZTzS0kXyJCb{$IItRS79-|adqE`^3mcC4ba9D<HCPBwOEng%J0qhXD`stI_FaRC)Pi`RLADWstKklNa0dhvM58=DwyJyw+ zm1mwQ4;9dW6*VP!+L`hef;1koqL;8V@9bv4iX=slyL?_gQIHlwQhGOaUPI(_u6%+t z4?ZFCg=kEBC`@NJRBk8E1XVSqp{tqpM)H6!%Zq)aEue;?hfP=yMK9E7AmJaH9)c&^ zqtV!XHM>g(U@^T1MkvDX%&PB4D5j&}%>!@_gRje5O2=STs$^GHAM)eGBK#sI=2Cf* zbPiUew-z@wMC-mOA8#haWg~*OzAf*@65yNy(a7(c@_0#T1Ulnt;mD=(VJrc~o*v(o z@0LO!0UazozAs-BM7oH5ji!CBhZbHeuis#4v2u!$e%*#VcaJg7IK33(I6NDNUiZ{l zl<_!vf4JX|<*5N;r$)-8MeYwb(Wve-axQ#HRBm*w{6j$+06RzgvYAHuu$~m4CK%~Z zB;Z`1{a*gGlnoo8mbWxghZp|AY6ys(t#6wSFFEs%@=_mZ9weoSFdAAudQe&li>XKA zim2k{kR}EcV_!JdPeMF}IIj_U=Wpz9`X)x-#$L6JC-5On^juskLPs%4dWEk{xc_jc zoU3d3&55s8w%^iL`oM_b;N9{eI_6Q<&bBz|yg_~IQCk~*bu_gs+ZT;Jn$tqM$`iS| z;Cf|GdNj29?0V>&U>hU(GzMm(0|s}(D)NnJov3R>@VJld4^AqQ=A)%i-8O!?II?qsBY_PK=47PEdVvC zVe2L38d1Gm!?uQ{;$+V=keyt)l}`oQ0tIO?WJ+aU&=_?NvQg8uM3QH#esHF8;=;F+BD}yZ;J;JC76t7b&^B28Y_p!i>WcbT`!Y zh4ec#0}V)i10|YLTsmED6p$E`$nS;Ok_Aa>f@xjR8J&kZ)VDn%g~DPw4}DSJ)>o98 zpymy1i&!eoJ=Q7i!M5s_3%Cbc!)0GrSJvy@S5O! z+3t!XR2HgtJit&B@95El_YR!RoSe8a@eYq2G4u|P6azOac_jOMeniiG_cloM&E3fn=MLDlF?9WMQiz7 zQ(L4UzRjBJ4ThYU>v^5Iw)`i|1!4|kbD`&(+e)Qhh&-+V#052n{xiybOQ+n!U(RkW z)(F=Rg=*pEL%|n6(}u#jR<`wGGnIup6e1aFqFX7P9}2$V|AC?4Rk!k&ZEQG^+5jSu ziE>Z=XOw$Zr`+z>uyS(^l$*tqIK3$LyYLnzgj7eq*~z9@?KMm>^keb6tDl?Jh_ zIP|{b(N11R85+{rcE&6K>E6Zmrqme zBBX5i1c&9(=+#S4^_TKtF%8Qx!MxtK&MX1lk@&v1t-G|6CkP^(T^8(wD(;K`f@LyGm}8ZrdwJKR_v{X}*m>$%Abv(zoyl zT`|#h^DS6RO@j%#53%)O3Ft7}JH)n33W{Wh*?nmFP}?XGQ++$swwI+M_K4Q}vYCPK z)T;YY=>4{bTJ7uU%9E?nG&i78e7T@OjIX@&e%l~Hii0xYJaAE{)o{G5?F5UdGU6i9 z&fzwhC7^vPdJsqEX^?Hq4`|$*-$)l_Pu!NBu_8C9EpmuZ4)>Gk_{{7%}x(V zmy8I`=3sj<5^5VNH;o96Jh{0MOF;9c)`$Y*j1EjJ&0FJbMQmNleAxtBTdA=Tfs|*P z#S+k=f4N8JZc+y$f&q`(Vp#%i5cg8Oi?x^Aq9BP3Tf?=8#J!@k8O@Ny?ok~6epz#I zc$7Z!9!4ZJS%eP8&v5I>a>XRudVg`UO0GuTk1~`bco`8zqi*opd@!n5XKSMW@~}tw zwWVjJdz@LB#9ZK*M`;v)Zpy0m6{)weh7Oz4KuAMDPuO;gduYdXxpOom%~K7xOJR~G z_nc*`FNm+>Z^bbm4ghz=HR7opF*-3D!_&tqEq6pyBYVO{MpSHk%&lw+i{WfJywCQj>s_H)2!je*DQBbg|~j`H?YMF|n4MoXni8q{M{m z)Yy#7gpByi*tpDub4U+H>h=KiK^>HO^HI)bA#M9 z=lV_gD-vQ;lQU{}$;fdn54~plqVKEK5$YP@^HqU}CGZHX`Z=dTinhTi<$;Q}`TJT$ zuf1nMV;9-Bh`CJ(dUzNGt5u=06i#Vq(6Wjy=-?V#6ml%JHAK6Y;Bz(3;md=N^khYQ z_CX(UmSzOq?Fr2iR=y44$a|yE*egq-(7Yq>rIBCwE!kr$C2_gRk2`j#u_|}7GCR6v zq2`8Hf(DwIv>)y>V^Yt@4vlQOoVBSki&q)}EB@K2dtEo`4tW}N*_k<()Re@;gd9s| zLR?ltMru|_(8FgN3(NXugW^m(Cw@p>ZXC6k~Dcz_$WM-mQc@ud& zJ!fR0O{|5gKI#IS@zYK~Gi8e9rk$VPC0@PA))t*#Wt%BRH}f*|UQ{KEQrM-TiO1es zLQQHDm@?|3-+ynqyR500*vyT39tPaYJm)<{wlBoqDy`|@I^rfX8(iVd_;aBF z%}nsp5BKU{4z8W7>8d!m-mYSJF;{2j*~WGbDzP0Ft=_ErzAF4$)w=RfWNRge&sNHS zA9KX$YN_p6albbMo^g|z8F01EfU~gy%|Ak95H;{I2H5#AsEuO``Kb-Io`Uo>bO;)C z-<~|6I(q4O-#TdbU|Sv3+-7Sn{RC^#F#qdjXq(M;p8mt^#k~b%;j6+Z;VZHO7}z#%-dN11>EAAr{mX_2cy0pNoT)MtlZG z2cQdIJTh2%0901aKW*P^ds!T+Yvnt&m2|JIG?LptYkN}gnTgx5EPH%_G)vdU(5<#t z#2LCazE|6r>bVVfT52!LG^tttLlH7Q?Tt+*%FQ+GFb~9pkx(o1)Q{J+>Vz6}P0k zX5?F>?J6SRUkn1$my(0~&S@$BhTTSc?OpP~>Zm{>r^~gtm)<`s{Z?OkZ+g)-Dntxy zu5eISl>yBmIayU+$KJqxlj6eX6}5*P?c+SZ3qC4Xky&Qehb_!1Jh2E+v=alwxt1oOnh*Dq+U@>hQEd&-*K?7T$ch2J(j3LlAxtkji ze0KrAG-3!y&%n$yP!+FQ3uR{V1za?5p&y2j$9-ixBS?Kg4P|5Uf@4#HG#D0BdHc3N zblZ<5AUlygzO}_m79)ZWzr`QyVtY!=)u(wey|Pkkq*FisPU%0ncqb^ z0*h$}544ak{z6`1GZb9=gVpx;d2XM4)G6lJABx$zafH{OlJ*DYBI| zmJprXTEPS~Oxwy>+;-7!&_+qI(^Z*<4TF4rEZg+gHYYfOVy)v|B$ zd@&@wGZL1q?11LiwjY(Y!cNk#>={s^+1DjYt|kiz5k1pPQo^$P>)8Jiq(gwcGE2`1 zwGWWqfyH!y;fl(cbB02Qv*$}^_{!p;RwyFO-o$|WkVXZ4q@RokYSgnoZa}c3p8Y}T zwh_UY`t~&}0kJ)J_xqS?dsZFpI2P>GvNc?bA(xV8>DCkIqvcPx6r)?irIfOuh-$4F ziQhU5$Ir9{Mb}35-0EUim4~{R>co(f1x1V2{DLC9wX*9r0-Xq+6WMN7vg=zV9(!T9 zj`B#6Ue5H}BT##ycov#;o$XldUn7SN6>FDF1gZEY`PqiVf*3KN(C z3UzF4pQUV(#<#W?h()a{voX4jV~E{HpgG{Tt?ZyzGn zXal5l5kw@|e`E0FK5p+{!>H|Alim`1NB#4w3L?zMd`~H?(&Xp*+w1s<_BNFn_5teW1>D4m>Gox! zxJxBA9rqz_Iymm5KwqD1!@m%jhRtF=$PF~j4|4A#Y1dGDqF}bQ^XD-8A?XtFA7&tb z4N5ex#J^~$-i&a)-M8D0@FaiiEtmgJZFVwB)jBqcQf+1t}5I(yfygW9@CF zuCQ2G`N|-nE!r^_2Q*B5A}81giC5c-ZL6%+Ishh`Zj~=&`djQ*q_Loa5@9vVu#cB= zVR6L^J4xf0GVFcX`ds6QYU86kHZJ3Rggc^C2wR{C+BnzVPbz}N6hRByqC>g%7AyhX zajP@lenHv<38+z-CIvVF{J@ zs46d0SCjWENTA7!ss5U3U(L3_$(yRm`=)1k$sJbUx-OT{xh^{Kn0o`%4-uGP&%M!lRKa! zPx{$jQxHF=%sfo`chzroe5PfWuIkmOr>|M}m|FY3U?WbigPSm@p@rQNBs=>Fp*p9rDkLdV6 za`KOuE_-)!XGh-2ZE9z^oh;(y;sM%o5A)$E)pGk4CN3|3uToxqjw4pQ{H!-GzvLz} z^YRxu@?LJk_V`y`-sYp9#Cw$J+t|yoH_?5kU;UKiB;yhsH_bM*CMP=Hk?O>N0YRp| zh+3dTb50lI>!@gBNvM1z$#KkAiUd`ab4T=sYAaYwC$-2JbYB-oBuBsos5exFvhBMk zS`eVJHC)5TCE;zx7wPajynR(mVK54QoSSCSh@d8;uRngKO*1ccb2M)vj8|CnK^Gr= zWndsfOa|c47=8fuk5LS6d^XQxKeVX^Y#bU>$WM=PED)vDQ0?3<-gxyxfRKT_aGc|& zDA^zx4HmX#IufO4U@;9Aa7A>*77~gEWjTU5GV&&QMV4cjB=cmVEe54#W58nC;X;f& z1M!SQ4A=q9crM#d^~WY-7boe$_LjnzdfR_a1U0e!XZV?B`!8}G_xlTfxNMIPI1Z4m zGt|WR7j(w|3>%+h<<`AR^w*rw{MllzBUIe%%~JbRtyQR& zLI>wMhEOiS^Bi48`fKO{$1OqJS1IGY%JX}3p`)2gs!s&;+G0nP>(BFo_?9=TzUk)Y zw(7KlD_eohJbcUq-#NSwUAVX)0K5QRj!kPmvHmCRdyKI!on0nhT-8$ilj@$$cy3RxCfkTvL7ezm74VGX3_BFTT3)M4*DNNGj4_7$`2x3lLWiaMzju@?3<2WkLRB25y<|j9q z+Z(xCu7l%vj7g3AmyYOlvPT2gIo|NHw{aa!`vjkQ8ddB#DeWR&iV}2_^_DccdE-tSNW2lCB#OgxDM@ECGFoMdk932O44IDzrP|St=^m4|Yc< zsS%`7<&x(+97_e3g0>S=;TR{ihZOW(*@X&6AJTsu7W4$i(|y!04>L+ehu;qkmCH9e zo)LV8#s{Ej*EfYUWoo#wMKzrkIRGazrjUQ$?5Jk?rn~yHj-662l%D!c7AVpCO$hl| zwBk45G>vDP2Iy+Zs!;UC7RLm!ARcwt>gXUX0<9=Ft#)j6WD4`q&}S-Q*B$>h7;K=2 ztBQlIC`n(JZgYGuNac_hwOMJreDpcTGC?YZkGS2nNF%m1FVESXj>FQ6kd&qpdT*Db zyYwn7rmLP8<5AZ0juk8c7x^|dXbVKXz>=_&n)=a&-HvT$D?G;@$0q4}C>Jqg*teiW z<0S9di+xSH0Uj!YdGU*mLg@}Hrp`QiAGX?!c;$Y9o~qV<$Kz5+0_N`m9~V^(^yPlX zKtkG9c0?I8I9qm%mRdp5i?ZWMLO_qCGHr3Di&51HyQsWUseQmP6eoIxT$SG7xNR)`9m1A7%I&tOCc5YNlZY{2fP?cFpvj$Ac%aSQZ>K9zv#r#i2y(v zdi{uFWJFv_Qfzioe5xfiBRe4{F)=kUCo$O)pPe0>m6&9SM?+KAgv!Ua&K>RB#FCtx znHig!6PuBdkeQW`l9Q92nh}$knUS5E9gi%++Pd=8`1hX{npiTEEJ-;D@tN5faS7SU ziI$9%R7*xyMrynzBNbgZzbH(uomcpo;I(n#@1=txVm-E-jEY`e9E0qCFRdPt5{LVe zn3)oroSc;qlbm6R&qzp)OGt@N&d#)CX3IkD#Z!DEGLutM<8eBGSlr!&`1lMgZI&e~ zB{?N7HajLO1s%CKH&l)sy7)OEJi(F}AD5k#kr{8vPRPVPh)GDvOw3A+Pl(TnjhC-n zTXaZ>^wMf7itYb?Y`B+3D;}5^iy}`tEDGNhoPVar1IPg?V|u)w2r5)+!@Ci@Q=IW~RpeZAAhdUVQ^SPNS_ zHo>FXQksrw7m0@7UQ{>2OQ%rJ8*`hZ!@cJDMP$UMV7H9TiA&AQPDqT&v?QfqQ^aN@ zXXhlxWyPbSBa5-kj^Uveo|t8ciA%`JOwLYBNKVMIU?Hpz$67>A zPE1OCQg(cHPIgK{YJ6sDVn$|mc2-JuVopqaY^+>VSoE_H>80spw6L}_JtDzNvzBp1 z&C%{dO9PeR7Lyd4fF;8tE-N+x4~^9Lq|_WsMsjj?N)rAl7p1Jl=8VnEOpd|*wq(ZR z95-2sskl-~Jo!5{IWs91?fL2b`f|+9MO%c3q^$Uq1nd>b3E7r};H|x>q_Wx!*5G?%PtcQcl|C{yxZ`Sh|ru_dl>s6#X z!^C|F?(Ns8Rz^ofdl;-O$p&dC>NCi>&}`e{+#u(OFyjx?DPIMo=UZG~1*CuIz6u!h zF<$zv@X4`EE6(fK5FH=tY%gAJjP4F~ruZk~RKzRpMR$9iy*HpZ&xW%Gu1G?=dYx@o zv;BlJ0ko6fd+vMfW=&_iuxb)T~HA zJ^P#uK@kr)o7I%?JHZu}@l&2?pEafZ1Y~(BBnnM?z}ZRM8i#g1;Or*ih3_v9ILC@# z#iK#Pow4G3IOZPiOjtlfEyPlie=p-tgB0cw2@9!Yg;);qdn3N3S(x_;zS32gcLASH zEzBeB7v_;h3-h+(Jxcdu--;#|0`jL`L~Kj{Y&ejvYSy51kjFPaeLC-RHl!Tp*1qW9^3A;0LQn_tNeM6TWb0#~mOv>=JD_1g zqI_A=(ID9mEgx{U7y4rA>>$+D=X5%{oZ+k{#R8d>uPt@}CAdNQ%DP^n^0mc+Oy?D; zJE)-S*wL>o_JzgtYm40z(dukx50-%JPBqcGqJC`=Hj2on<37)eabxs#|B%)s)bv_~O^1xI5ZtZsOJmp@KoGb9F z0}ss9PrDxR%#7TZ0rpe1&)AQqZ4aI59O@&Thwahb#kJF&Q>E`zr zpW)nOKsD!a=X~jJ9aX=X&Y^^ghSVbeZN2BqxoYSQ?9P9f~ z+u6<`L@c^D3&oc!frT&mHeVx!d3H8r+wvc+mC)|h%GvO)! zmGA5=NZF8-s($r6XPRh9Lg(f=n@AS;m>R6*eCKRw4lJfrSLQp1Mv~eX$LQxLd?W9f z8(FM;VNekP^Rz5*u8>yih`SbGYvadcYq*&u9X|=; z=_F-(nVKdBqcvyaYXB9*>q&tMz=yCPbA6|};!d&WlIVBRt|#e_gkB{baiKhyGVWLW z40BS`ru|;%%ogPD3!U=?F({ciJ5VDTG9hONZY1$%2Y$u&CWj`B52tzTkM^pu5;ppL z!q`pRhF3n~`u9rbWT`umU!9uiG}x>QDAD@nq8;vb8ekI7B%?41{=E79 zOS*{FJf@`pegDo+-@)T|@YdbG9@e zmQbXbnamH)@p_)rInvO=f@M9#wccb>KPw3PB;&7xep*l5sFIQogMy(j*|fpnt($v@ zdqIPSO8mftUK#9_w%aMJcXlYzuauoo2LQZA@F7v7$xu3mpJ7hPh@Rp3W|z~7PVaK= z5`Sa|(sv9CGLSw=<_FR-Y8!)teo(iXB&yG9W2n+yKM%X^{R~cM3O$1Z?qCL|&`z^= zFwuqP&(%iRd!28gG1oV>l-l4*Zmn6`ZHpGe(-C*_rDY1A-#s|R)5#YDP4GwTz^iV9 z+IjU7rZ6Y*S8yOO@FbicEyGzOF-{I2s})Z?;HLmZxh>dMZCjL6DlXB%mX zDOtozcxH#K@zKIBdWTj<_3@XSN2MnrV?1*=L+>1LJ}Rw-#dPLg^s;lH_+$$D=w;^^ zmWrM}8TpE{o3t5HQ9!^1zrEsY%My^#1B}?qdI72Zb@R8e!jbfv)9D4Yhby3c^EKy6 z>7-7`<0d+W?3p=_ZBsfdrktAI}7x$2an1`JWMd^3I zodyHZZY)ptSChc9?A#54_uXs_*N{+U#2>$cqft3$PQK_@CsjYE*Gkp;$e)Xo@H5Pb z>#s@;9BMe8jdY5A`HqD~6naP-rRzA#kZqLMMh)gquv}9($qz5g3BT6lg*D2Tjo1 z?>c{yh7p-uGc>)NTC>TMU8IL$F+FiGELDlS83KAHLbHkMgH5ni8Pe99SH6RF(Wu(Tcmc#VKrSX|!nwW-1%(5{ zsL~G8PVX@ED}^tx4s+$3XQBd$v?deRPW+7e3w606gP#gPqhGd$pf3kMm4cd`a^{Qg zv)=PA!;E;(KArdMB;M0l%+sACWjpPXNgV^4=Tuq=NsJOq<}i@=>IS;_jT7d*y5{OW zbBt8RDQ^yoLM;?rw_+^#u#9HKuIjLtI#Kndq3*ZVbw^XDtqYKyN37iibmy!y5?$_6 zfX|zpbG{`Ak%U)c8S(nv$DX&hI1=XvL|qJZxLxM^#P`4Qm;L1Fr6H!Ynx z4QAQuo#^>eFv_o~cG8_;H?R{w!B*Nvd6lsdIFvmOet6PGM}Ab&kHMm6NTC4 zMw+IoWTt8)dD3G~<@pFt0d<<1Vir$3c;-`|i9#8mH8n+no7Qa#?%?@!Y6{)K^D&(~ zMLm@;ig(B@y6SvWI*JwIMq8X^XRve}mJp!z!FAB?o&}L?WrDN-%vPv9Wksv{?6;Qj z5eh}*v!LXf4EB664~F5_iKr%Mc2%)74#PjUjuC5jW>&F5ogpDXu0K2R!S_{c0mEB1 zY!6-S|8wNp!1UMzxxlFC)R`X@$+$ZdxmoC1bkn)2v3Ni2y6yzcA!vz?|vK z5113!Jca|tV=oM+dXE(8Ka+kNX1pQa-^253QE>%(?Y~JEuJ>T++7Lg({Me< z^O`7#z8O-D>~gGMRRM`gJ*sW0UTu?jwShcAd5YTjnK(AD;x`{*1>vR39-xi>`_$}3 zg$k22dCTOA9AClaR(3d=x;nqUVPrIzr(HU|;xiv%r<*ncT^T+n%+Ok++_Yw>vrMs- z_*fU-z4JU8Dwj8u=Nv&smg=esr&>z4mNp&~=+NwnSEO%X^Yl{1MNpzSzsoBoYUu+3 z+<2yWOrNf7>R(%%i$YiZy7Ufd-2`rK;b$7$9GzRy(NAos@=({M^}0fG0yjQgd3)T# z_ArDSkG(L28;=y}i#Q7?%=?q=!CS%45=;#R2(N1VcQGN)x zGTF1M4$wfx4Fgs4%Lx#<8q_BHb%9S;j242PBTfSM>zbmH6%`$%7eG1KuY0a5idb3E zTTh1Pi;{*#l_ZE#xO{(z}9e$5Z9>O?xQ4E2w786 z7HK@(T~#NlRWGcm*zGxBNk6HiDnD0LVUupdPLhDd=g+PIXi%-wX(6qYJw5!lTdRl$ zE;m34e#Xr&yA6@VGtGWxMA5*dVE$7$H+MHZl01qQ4+^RmoKl z>BLZC5D{9SqL(T{fv<*lGr@Bq%Nj09yO@%3l)DzvE6|i(U_(KDA7;>|DyNAy7;;g z7sNE4X?hVF_N5>F;M$<>3=&OUzbq<{G;R{o^uy0EBjuf+ylQ{N{eqaQvQW_|iy$i1*@i2N{?9tQeODIHhtUl zbvs@SUf1Pdbu{>uid1xYJ%0PQ1uDSg?ce6^^zC1umPd6JQAxN-NY3Uma`q`)NVKIGUaiKeM9lOW30&b^nv_W^M`zoWe z(qkusaUwE{(=YbL_h5z&&0ZWs1T`5u?eQ~h?A(5{LJ-6>m4`ZZ`ZMHY>?HQ!mjms4 zm`vr+YMK=I7XgibFm@)AZW~SIwD)rjdOw>HpPk8PD!pgN5#D`h|87OUDPn04Z6*gv zGBwwHT(zYY34=GPpQk6g4dhyu@ss&XtU2?^d^!={H8B3s4#Z^O zZ=O{5zJcoAm_7qP7WdS|5r`Vs8Gece17FX<%GY_o?1!bZ= zIMFqE6AjMlnKN2J`yHtD!Q)8#wn;C-w(zcLP>Yej3Iw@BO2D80*g%Ao%0(1{z z30?X`ZY&)eARO$&26>yCWF;!^QYR6oXWydD(Um8y_`Ocv8Qnu_znr3~a$6(8dx!4? zH0>SUZ!7l>ueY`79UOVE>>V5tDPt+uR=oqJ%&YP3%$;MUb`tj>%_>jc5rU@fA#-rf z?}gP??TqfhGU`m`x_qFW{Xnm2J8hs>l~yJ94dvT8^$lfc%l}p1Fdi72qu{2Cg1bKN zVtip)ZlG^?Sd*LFH{6<-(#fTfj_Se3?9&6Xb0i$! zs#_?cbOZ8^dsnLja`V_Nl6zX8{bT8=om(rZFD52bTwZppF&W8!~**2Z|;1PE6-0jviejPA{-a z2wx}WWZdVjT|)R8ZJ$jic!9hll(g;nxLAjn@Zh6aIsPd18%~IKgq?Hp8e==I z|5_T6mOVfgX0h9ylEGK3LnY&z;3j0_ejn= z=p5vL1<02=;5x^02BDYW8@2>;7CbSxW{TwrbH`+?8t-<{0_Sg_ zb%1%xz^P+lYk`76;1o;fflpWPav^rG!2`Xskxcj>{ahM6w4j{Y#LZ^pT_|n_kDtl; zDI(}QlM@|D&Q4~8c--tO&>(SBX@j@?m;;xJnsu}pK{zsE88#geDLDe`d56vA9p$jO zMCV!zo9oWyd`-7462=|ErjKhMYebTRzg)~29HtzgFzc{+R7SjVCFioLoTLbcuz4~B zvkRM99p$jOgeXCpssdrtLaq*B)1ov9n|Q<9IiJK?&r;~dIi-NM1?=QIIgg=Vsp;rr zAU0|7W5+0*QvRLcxb>jd3Lx@7<2?-~m2ZJ3hUx0W&uO{xsRznM22Z?~Q%i|1+R300 zrG1xD;)9%)s5E#E*13yz!u}6(sv!uI7pyOE*^5oF%5TIHx}WKdeO<6s=BD%pJL0Cj z{+8X8w${!~$vftzltQr5)f`174$4UA4l1B&V$-IRoY*w$WaFWZJXm_DBO>LRz;!-6 zw3Eq0b%sR`{o&)B2@3I0!nuQoex^H)MkG0S_0yc!72=@;*1~?@)J+*y>>Tpe7)qBL-g4rIb*O?pW@QgN+|we}+Xm*V=vE`E=DY8{aeWNpO9PVm|-hgjtmlk&!JTYupcZF_Ic=_$JNw{K!>xBAKXZ&7->lFG0 zK;#+pWG>wwI&0JN--EISd3IfIa83bNdj&;z0gYt~q@PE*>Y!5aG0X9zyWpt>T{T4j zO@K=oktKy!U$BcdgM=Fwa*b6Rbit1la!o*uAWiXzl9ZktSr7NB~ch;j1%~_iCtj9?kp}|#Z@1lu8~;`%sijgxfbFV9#tn0i))s0wZk_vEULLiF% zw}<*6lZeA)^uydX-qQ#t<6cu2w8YI~U0z}*3G#cM3?dqcb$%)xcP|pj|5n>*Y$lIDk$Wn7bc~|IZqDA}QXQ3E5_<>!a z7NzNgN3C+M2nE&e3L*i^$CJ8}MZ_xajK<%UcNIY7e@0ki`FKt6#IR=ai%m+d!na=} zN69a*;M$G4f|8hh{n-mXVIND8GI;-qk`=|m?Edo2N#0s$jEqpbcEyJ)xjKjdHr*0e z+0`1&wgRvNXN2a^7zU;d)^KG(=Gb{l!TE8nC`HZgidV+F8lfE~>RDZJasOU8DZP%< z+T2x}c-UUW6{(_Q5J}@8n516M5r?{J)7S^P%G20-2||-iV{e4i*fe&T>aOOB`fgX; zC(+d$S8DGnq=u7|cE|^5>f5F!X7CDM=S@tj;aaGopCD1GiJ2U6i#PFGQxo+Pgr=#9 zLDIx%MJ?A2rzW}Dq6*!BQL!eL=_X5YGp{hFTaYXzY*tVc2$EX2l^1T%O%q_`mXQ7hLZj_K0T^78V)ODtsHD>Wfrfve>Y9nT^qWt zD`*}>N=?n?h*`X;(@jm)OZ2yIYFse4i7Tk6k9Nbuo4FoD`(TBvsk=>0-N7r~!J3+c zub%c6z>W6Qs}$VZ+_fnz`UIfC$IXSeKU@Vp51xZ@^NDWw-Bzw7D_Dcpt}5tFTiD^& zu8IiO#)jL#9d_}SKFLM&xJg8Mi5)f~3ibEE#dWt7U3{Lu6h79*^$ZH{4s4R@EY9c> zcJl^7Xw-ddRwEeG&Q(Z3r68JZzAOQrn8V~=+IgBbkU3*=g$|b`8tgvH2HnkxMqOIF zO`=hoyfel~Q#!iNN2=X94W4Lp5#Th@Xw+R!G-`LZNi-a}uuL=@5h-T`zHJf>ur%G89~(3H8(=dWUM=66fbk_Z_ubD2MhFbU5!xpc9*gV%SDpwGI-b!S89ZM zn1gMzhu=duA$tI9uInz3m}U@-*e4AZLUu?REK1X)Vc%%i9}4=Anuk8tp}qpv0?QQC zCImzR_ipW#3KEPsAwaK>RDZLu_Fn{Z6&J;R)OF9&>Tkxo(#Zv1$(qM-YcHA%orPNa zA0})6k;~TlkS>u~-SG%janmH&0pN&8xgYQE+PGw}U79Oii4~)cPCPjOVOM!2);hVv zfl02vP%7n1R};(al9QwG@Wgle>0hsq{~IM}b{E?fJONU9ZHj9FngHHuOU%V4?m)O^ zh3;kX_piH(;_t(g3*q5a3zyA46A_K3!Q!-23L^xxYpw-KQYu!T8xU-XcJ$@X(_9DC zjmbD?x~o0f1gVpSoHZyLK4EJ(FVApwkER8QDY3KoYT(rAt{S-6kOoCW0wg<4z^iAv z8lnS`3hPQYC2Na7LXEW1pv!8=8@(Y}8-lL`RDc+7&vGqR&nM$)vt8rSMNmc_(l_Gt zUUjC&cG?}EGF@RlLu)>#2fV@BN+xrak8rSUKRGLe zv+F0*Q`m+*b+$=AlZk%p`%4RvJM@|x*4yc z`ZSroGiJTn2H1s|e_GhU@3eLs)Bjb|9{)C{;dWOkMUCwt^p_=jKsdGizfH3J)z0=E zxv;c-M?}gtf$zMt!!|uwb_h0&wj%5hd5fDyjc;@C?wzhaxaQ;g5>bE1xXm{?eR{|z z^0n&WWM&rJIhdJ6X=-NsA8{2`DqGuN$f#IOfj{2u`pPbAxUt7|9c57_bz^0LeZ=GE zyP)0hF$?TjJ@A&jWTa;XT;EHkN)A~8rtWhkhyXSrz6F#uY)fx>PC;#>ThslnfeN|^ z%F5lQn@59Jd$4Y}^h=;Dpli7oL&u73v2sMQgziXsYXgEovSHe=$6bl)FWiaXF(W_H z_Srb%E%MIjgC5Cs9V|@F)oOcW6oF$bHZ)VtkgL{W~&Y>4%Ppl+P&J zmOHsA_hcU#YdK`TrO#;E9nUJg<4jJhpVez$utk_`1b1pSZxey|t zoit+kVOC$A0292$5p21dy3{Q_nT3O|K+~OcwMN#}z3=62!kfmGrFF|-dfnPBg3DiX zh1m_yg1aueS}Le$DljCr+*UXh*MHqL1r>&GSPZ`KI!UhM;bS(UA_ej3dhf*JgP+`A zK!ma3TogbU!6I1sP1oZpY7Sn?>-rCIu0;aGSWRh(SVE6xq%xL~PcB3-;xNAKH4+W` zrwSSQ$RXR}8PhhwFqJfw5aI`JS9#C%N0>U5li<;C66GcYr_pd=svHedQ*EN5BNLX< z&=HZc#)j?PBHQe1&z(ZU#f&^#=UdFk8(nw(q^eIbVh$PkMy|x;8kOYWW1qN&hN-Wn z<|iY^GI-e+uJ={-Jr1_b$a6wCAtMLtUdQm!yJRhmeqyOUYSK|Q(UE;tZXtGubjhML zNtbZyP1k3rU@z!>G%1e+PYheqE%_K#smc1CF;AJzpnu&>iE8y;g7q^qs7h-O*{^5@ zapWB{e>RD=`g>P>MSYOd;O5^_fK&6Y(MvY}xL!8q@5qIv`8y&~&Io+xos>`PB`4+M zHID6)a{9qM9{JAug>a!y0?qKcllv3VQYZnN?0iu#IXfRuWMXe_7Hm40n?-4AZbg4_ z-H5X`MZ>tXJ(8_{b?rjODIyAG+>df}ITcdbA-KtXK=aP}Xrmgr0Pn2il?^up+_ ztGNh}=FHyUt@tSKRs<9NB>O{9q253+Mz>f3K4#Sy>a9)L2>@C>SP^`aS09Ocjq=pT zo7G;$V{HUMXU4#6l`cL}E1~EBw&aN=bnn*nMy!|ZJF2g`kK|z=M8&jdFec1B)-J2S znc?o|^4N<@);6b4o1cVtMYtb9!=c<*{xP^W-W=)fjRwOvG?7Rc0G=2oqH}WHGB!G6 zJ{MvH8z;3IO=9Ef-saf2g4S*m8<&!IMr!az5qDNZ@TDT|gAwYZoDz?aj|fC)gk0NO zj*v@xYtg`Zn%|KjBTNDVa73h(D2%TxD@x}1W8EHd2N4jl=3J%9xcj1u@G-OQ7klFu z%D87)0H#KbjKY)4x>M0LD^!_s?yVw9nujgTubmQ`9kOhY^@=4zy4h9U{hr-6x%3L| z4`QuvW{7PdvWge>Nl-$rFeH!wOd;}Al}_QvK{#pGb0sWe1z;ND$?`)BH>wSr#s-g@$PQw zQyp-ZDrCdnw;eI2|6c5jKd<5*puX4{KUmdWSMA#yPpj%~u69bs2dcV9sI8MRN^mb! zGkf6l1otp?O%MEKf_sb_k&08QxreIBz43u+?wyf`Nm$J2gl{Ie%j1!Q->*fg?9dx$ zRVS^B=!4&@?(V%bx(~f7jxa<1o+F3lr>A+y!ISA}Ka!K2($l_Sf4h;Er>D{Or;{er zzfZBh-;#~->1h|qX20~b7unywMCs{ioyg35dRlAtH?lzY!!0OixQ@WoXmV z(>hS!Nl%NQjhG#}qb`p8H;rxSkEg%b1vFLYFLpaYRr-sa>6<`*v18Y&(O>MWw(9g3 zJJ2AJ{$i&f)S$oEH>&s3U+hz*n)KJ%4ok`3TJ$H|by=JKVp}zn=r6XkRfqm!D`0i$ zFScw}kN#qlUG?cNHYe7A{$fM1hV&QfZ5z>FtWR!Cf3aZPg#Mz&%kI3xz8dZ~Q5X75 z?{CR+W*0niXs<}6k9IfF&HLT86t#aJEoWwT6BTPeu@LG=QF=^b`wxqjeykEcRm+WP zQRC&43W25i=c_hLbwAf~Cq+@WAa3?D-m+9B`(A6i>!CTJR!!@}uHNY}6FlK{XAJsR zckh+QO?+jG;YZJI9j&|^d^^cKMrpj2){;g4WYa%8=$~Em&u;qXQTk^e{gXrgxal8H zpD27|s!>#MNJC~kD z(M%WY7n3ich|e^x(I$-i2u}ZFdIyF6!uy|i;ENi^Y58O1&&;$;a);sKtTg&0eI~bN z_9~6kiZ73yzch-{Bw~I_zuYi+Ev^uTySH-31PeEHZ;ent;A&pBcRsw~aO^*q^0lsO zO4Ayulz5jmm9a*Dk!ILmb0`+otn3>KXL6+nU~2;raO;x|M7!qjN^AEi6w%kHU%Sgm z1y9I3CTyb`I-zH(#s-3KC9f$T+||ZCT#c>(snQQ{s^G--?m8#|JO>+zD)bE=Y44t; zAc$jIf+`wqiP7e!VC~wP@T(o&pQvs7;zOO>@uIRDzPj>fE`eNMKT|XMq;M<^n?(A-jhC%@8hWWKN?fc@)E^fD2HOn-O z#`Bx!9_*`S+bsblL+beUm`BS8i*<81Rn$cqKX_@HyO8>BA9@#6JjUJKQ_yOF#Vlo8 z(lV8fHNR8kZ*tzm9WY3-nTY$TL z+5SdAs=S>=j~?J2rlT56k_{nW>pdt1!l!GTWpX!ORd`v zdj`38p!%R78yNzcl{A`3&NP)F?#pVYe)!F~kJUq6AUQTDt2flW4E2PMS=!pAA1*wM zC{X}NTB)qn-@&^NUgLQ!3g7>tpu6 zpxV`{83=J{TPDUZjW!DhFU4RkWrHtzZ{mo|@o(A^K@Rlytpk z235gFCla4M1D=Bj`*c6tEX~~+L6{a(9!qm?MsGkAYa#)#9n%7Uwy>&Uebvk@WS*$? z7~m>3$b(^*!v7M1Pz;m2^d7*)|skpvn+U%{7{q(IZO`U!UxL3b*zTjTW(z zP@0&V$%v4<0A~bp)TaGI6R+{$enLa2&CGZ$3H^J9yRM>k=6G@;U@X3zv7`!+P)iFa zo!C+n)9~~y3leH1%rgTxI<;FF8o&!bmiv#G0q3T8M~ z036f00^Kp^5mAflHteR<&-wqUADTOlmjUjsminoRY&#!iOQ&1N`567={cSNc1iPq5$U>84|$|hj6j%3NB zWk47qs(pkbQ%}HeQ^YJ8p>`n$Ld@M!POL(5k{y~MLUy!cV1G?_lkYh)AW@GG^D)}5cKv#m=g0OMe zOjGZ==ry)~=hdd8W;`a>*p>?ZndM$vLM=K_lS!!S0#zS3LwVKgLfgt5O2_1Nj0@aC zT~W$?{6;2GK_S-yr>KY}^uCCDa!QnNvlN?=W>?y_9%znvEe3{6z%u4FBkyUL4u>XiwGoXh`@ zO})l1Q*8s}MbN1`~bhJ3qUE%P;S?E2T|MbkN5cT;>J z+8l?(_8Cp*T9C&xesw3RA8;x>#=k35V8Q1FlUAM~TKP|cPa|vYl_-2AE>}2brEtVx zXYN(<-okGV{qA-vN&=;4+HGi9a0{-@c#TMM@a?;9q$-VBGw9Av({4ip+fl|2{@cA? zQ96dOrj3RMHdV)BrEYE|3&*K6So>U{&|u~{V56bRAkcBZVOpY9GNUoZ)cN#*;QMOs zHwv0V<*xf6yG?m8j*G~B3eA8o*eCK)k-4?dI{28DCyK$n8nrDa0?1$?0Uv1@9*=g( z0A(=lS0HzXRQ|8s@p$Uo;i>2`i}Eb{7aBy>eZL6T0@Rgwx zbqLTQn^zzO@zHDbDu@Vno5jiEx%Zv%yX>x6AOmI^9-05WY z7!cHU+!~GE%!MTq2vq_4H?f2~ipe%dczPqS`WV?Y55IvsNcuP09EbkRL*BCp&&EQv z;&OA<7daK)zdbKgVEx;nA#&E?8R9gCab(CC!vOs|B2xC@QMWT_XZNRGbrh91&Rk3&namJKP(zRtL1_y*`-oH4(c4T@dLIBb~Mzr491 zuJB;mJ_m~$K;9b`^;W0cA?h4XhR3RzG6iN+BZkSbYQQj?0hA*%hB@V%{l6*uma{iZ z3LXn7xMUur*_(Zu6il->Bf90DjZ&WNmJA&TGr_#CwhHl&fRw0eda3_jgC zw{mG8txKN1*++yY?STh#0()rl^?>`2rf(G9LaGZ#>HT6My&tWl2R?ecrAbfz=xu%f z+;-t=iQ&{J9j0%3@un3W&YG4SOdXQ@dbnD3cu43D(>G&e@UD@$HNw?~9Bey%Gbeo)YZ4LuI_#QrkkiNEs+6RnjIY~WnCC9USnZ-eE6};#e#z#${nPj z8AP-p`(fd3%5WS#G4~-f1-_xtF2=Cxjl3CY!||C@m)pgHqM?|gN4hC#xlQtjbQ>-2 z-F4<=oB7^dcH5GqNLMx=XWQto8+IZlR0x@TkxEYkUg%aLy1 z@c$^%?Y6yymr3D!3n|=`d5|LASDF+|k*?{q+~3Qog-3*(4qn7-*hDV3iKr3w^VAU| zw0Y{=v?@8!eMMwvALu@(t^Zen?orWqEV~INyaz{^JIj_MoK2`XdCyEpoTuKInR~a4 zI)o8)2z34UZrp(ymE>SqU#`2HI?0f^L!ir$!Hv)6eq2Uf#KE?K?u8J}F3|PU)TOo^ zA=`QL5l*^lLWKo&b?);Tae>HcXicZ4%Sx^g(z_V`T{)K|@jTF@G zi_n%jA18vNm+Tw?Wkbr>qZ-NI%C}6*CPvvkj9c<&8Tw{&>&6ipEU&vSf*6Wv2PiFhuSU>GsLs zCCC#OrM|$ywvq1H5Y8^r?a{QQrjL{(-Ev1&Es<4q?~!h?sH=QNy6n=PAi4u-$ z>e@EN@1_lHiN?UkRNmwWlqD@a^~Lg3dSGtyS1tjucH*n1jzKKJBYVix|1@%WD2Zn$QUI%&8ksae6#*i(~%>ie*iN! z)`;NE1kY*}orCh13=Q#%C`AJIF6I*E3t-vhcVCEN-h4F>Ur3e_?R!A{yrD~(-GcFR zO;4f{{IaH}jiTN+TJMH$KRLf!;Xh?UOxRzUgnfeu+p-@PnU*ZakTaNFaYUq47KD)Z z!2vZ#%V)hNj^-97X32ll@l;pT_KbapzM~pfW*d!4axk}^CsR@Tjt+I#4tR1k@eTU@)P9wciTtCIbZzXTrY(YFY?6uWsng%3;)#yZ4II2b(*mDEcqb`q4 z2}P@9YC&3r0}+#Nw#!Fjz>WKg;1P|ci5vvb1 z5V(a{LUN>(VS-z*)i`>;oBA7fXPB7&LR;z(f`26MjS&2IYZ8J>j1i(j(J>MQ78U*& z%|b9R!5?)Kw2r}!EE%x@*oZYEIH9fQu!5S?R_Q4#HA9dnOtO%(wj(fI0+|HW zlrkQ-9p{0U@eLni6TYnlPUK8Sk%o%$&HieE{k+4scZ?jq-8$1^_-@>jXiz=PxOWKO z8@L*u)up5W6k3BFFB0hqnDRw3Q5=>F0Sb3>6tGxe)LGkFy8l>7{u6V9!@}kvx5f=N;$I zC{oU1WzEJq_~1~_5?o=4hkf_T!hK`V=ulh=h5KVhxCc$N#std`_l#0dPe4%Kgz+qw zf=IwBV2dT>fPGeQ1QxLAb!O_MvF4n4B5jXDz#dQD8*$*mD9?+kx|-ABN%IPs1dG^H z#>z?a__0n&vm;AJGyrP>j);`EBKf^q<2_k+OZtT#@+?L{s1d64%1?kNA?bva{()xH zB_?<#g`pQgQA`d3kH-fd_6$N7;bY~+-5qhiNuEyXi(~PgNuKIvRPfd$&te6A3}NgL z@n@%aexoq9wMwW=8m)fBZ3nhpyB~P?G|!i6^q+t<|FV4MOiybRF%EboNiF!7<$sRF zXqIOnf-o&1*)q$s9+j3*DJlWXneCY?0;oW|<>rv%W$uRn##!22&q<16oC(!PoL#r& z?BYDn1Qm6Fq}wj^tVPN239GEkB2RakCE1U>ZmiwJ~Mju&(NXx!401AkqwB4WwgN`jd;JEdT=!U zeuL-!0yXKgAuO8A%f-Pn$7y&bZ0rrp%g| zmG=HP{9J~o(NbDtdRi^=?NoZ&46+9-J#8qN>r79hwWOyVBx!Vd8l|32sM5cbW;#KW zzq3P!>HJLoo5sZS3;o4DQ~Z_wVmlb`&|hq4*l+X~8wdSPe~|%M;(cj<(4Q%TiPXo_ z?k`cf78Nv~>NO6ju^EbO-sHJ}YFZOb1Vo$N15wh#&|<|nd^A`!E{qrn-ZF1gd{~XN zc2dZ1wG?a4&bK>h4<(b&o02_eq1g8t+2NBs{~2tK*T^J-Z15?Dg}_W#g+Pi?dYJO|(Y zFBy*;=XjDN7&(+B4sXiw^hG;tVXa-B53OLG-JS##u!99(a(fDs&&c3=_JyY6@ia!y zz{f1WllGli>n<+==+^W1JY+igk_{jRk6ei&)g|Mz{hl(|?e!$0>yAakNQ>~56@_B( z0H3D;`oXcVM)yG!{*dlP?Z;D@rZ6hY6N;A=+e`bGs)jZ2L)1iFhH^;oMX6Xq*S2m{ zB?yEcjZgzNgpPeH8ny9*M5=)z!Q}@$Kam^Lz$0w*vaR7`ri3OB;aZ10%R~UXurJlB z?8L*KZ^W{a0Qeaiuu06l_%R3*9x_}SeBWxY#7_Z%cNsHpQez0kL%Ksr^m0hd6E4!tanMX=C@G3?^UB4mQ5gHL;nrZ>>)6KREX4~8gW z30?R2#*>~WPykAu<`t#A;E53z$VGJ*iSFg6X0|gik<-B^jyf_9+C%6w;ysEI5~1+44i=Wtr5X* zpZ5$fwxj8vjIIZCY%`YvC;ZlILVa^#zU(g)dO`ax;`y z%|4BP6I5*}&O0`E(;}#iLGJ$6lM;r$g+gL00HJ`F62U+B6bXbP9+)~5OXvHy-=J0rw)%M$_^hs(Pqlj zkqg7u^UZe|f$zMhOj9PxM`d@@I2L!BX!qBY`pxq*8Uxw2ITw56MEP9oZbSg~QWf9`G{b`8u@XtX);jhFnI*F66^GvS96~!OA9`4%y<%)Ocw$&YaQ>g3k>SV- zUTUXZMXKI<=rDZD9Ns$-Z&AG!qalFL&pf*7Vij}-B1jk79^V=iR#=&c2Znjii`B54 z=?$rTib`s@5$;V9%d#`VhD3OKpwA#cZ&G+9X)J7#))S11^!m`R5WsqZK?S@UXf>Y~ z@OBYVtVt*hh>oRvr0mToZ?;sH=G})25)zeU0Fw^!D|XP{t?kpjw{efc-e?g|yN^nS zV(;gn0jf!x5c{IAx0i~Vz)DyYMO?BDdL?amNojsR0uHo#3pH4pD5HoQNg#1 zd21_ZoC(&ug!hU{V60CRV3er@gQ+A7rdY%=?W%xm8`epFv3S=|@Ow5x%#MH9lxB{1 z8ML`J2~IkBXT-aWrM%BYsyJUa*R{Ci)ekm}9+` z7R;>TZLWw2W_tx6mVJa!U!CCHBbJqHJk`P+G#fuu&6};DY9^}j597Uw-WJjE;01s(vCAF`+-}@DUwQIwLM{5#64v|nP6u^8! z07ydUVal@a7s9dlYjGe&%}Mg=am*yA)XYN2a%z@moW{{@y$9@)u}f`9 zOiU+25|gnt;0Z9w_uF~jL>RmSGf{itV-^NTK`jgj2o^Jr%7s-t3AgF!ogz|~y6Z={ ze8tugw=i|rVhP=;xH+fn7mSm2*X*nMcbQcQ-vXhxXiIIJ@^$i#IVB|#yxZA3T~Tjy z8r&(r6X4V--=8Eq!R`H3kQdWp2e#jC+Ej? z&&YKQ@990I_TyMv&pj7{*?DfA$+G8`ne61b7MgJIT#M3VP!%lN+j~w$D~P;8?#X)5 zTN&qgNo_qIm6C4`oEvEq6*(hgs#Jtr1F*TRD!4qF@PFc$UkiNa?U#{LWWNlXV&#{?V#B@b6s0mgv)DT#!8mQv z=&^2b%~jCw$-xREy|?HQ69iEK@B6(@X?%I>>Nrd69T~f7w0DZ4v;o*+>cYz4kUFDY zg@68DVTzr2?6a~c4JI)PYDbQ!x+lH zjnQoQn0epiDR}M#??w?I^@Z^q4A)cc$%J6JMA%$Hp$ZkatD|Uq8=VUQr+7B)DCU z72wn^Q>V&y*=4GYT{<#hnOQj^QXafVyWBEWj^LR($Kr5j-Xd=oMGY|49fmvlDSBRw z3Q4V|Ww#72TjHIis3)i9Cvi&V2B1?2PFm)zqp0UO*fw+O8^YN|a`#j@l4laN*iT1W zNLr5MV9aAtnnZHEaiw>DtQciOwpL-4_Z<{AP4b<}_kkydW$K1KO6wDruJ$feQE^Zd z8`BhJ;bZ03M|&vK@UeB?ePVgmhxFLJu`#M;QNC%DLk~#h>GcQCe7?RbYGqMAZi6>L zEN`@@r$za@8@&C*@@xWjNrrb38U@R<3E1bF9~z(*pN3rW*`bN6hA=M zE0)leqKlbK+S1eB+HCSZX{SE4+4~;a44cY!>um&2%<7w_sc-rg?;#aE3W~~sP(M>o zBo|@?On`_bWJcx*5rO5h?6827(}Y0CZi{`2w#OzC9w+ZYkq}SK_WrEC$w}})ctt?d zK=|x5IS?M7rg@z8jIbjoMl=LUbVQ`A)Rfq8r}rs4B`UkTdr{}P5I#1RRc21tmQ_qBzSUr}3C6Y>5ZI9e-bcmCq+qax z3qWjb$cI4m7E6SDp!GrT@;v0UiP~7H?GYCjR<>Se)CIazTany<$m@=^-o>ZwTV=VB zzHgQN$Fy%%eRVp1`>3~dfo){XE+c6o9yOZW*52}%H(Fge33or{tyAC(ky=LlY&`v~ ztoQ2_` zmYzn5r>CtX6G!Q3lw3L^lb*Jo_<4HTee4NEr>8wl|IQ9=PyLYmH;oD7Bl?Ri)Lx~( z*ev2T`it4#b^43-n>Xk$7LY$Cze=YuxBi4aWVZV${WW?zuK$F0Ss0NWKG-5f+s^s! z6W*7i)H~BdnFZX=IsRX6=S)83O(^j*t((OL`it0({dP{VsAfb_GYFhIl=XH_8wkE# zE29a1>pAaIRD}}Y^=sQXD}yKG9gEjdGuU=cJgsNHaJ+eOctr62=e@NQyf&4rM%w%&B}toIicwT4g@zly%>U57fs$JC*-hYmvc$CtfRqA7yN ziY@G(z{+`F4DRrv*Ng9el`QWHZhOv3{qIU&a4Ii_(wepg8pt_id{F2u# zq9krg*i?woWp8&iX9ga0nXKTuVFheOao-H>W;a7a{H{V#E+>3-apo28S@oG2xXtGbyJG`IIy&;WyEpAhnmj*sc^n0Xt)Nznyy1yF|S)1Gj#Q zwEq)OQ0ot$dds^8eGMP8T0gO@m0u=!EzeqmBi`{AQc%=P;1P_;uVZ}kP%-$Jb-z(F zS&s-9c#DVxq=3>zlOe2M+d|vnOYb|1`iUX=SUl!yZ#+3Xg_!f zmT>*>F$;mDpcVoJ1Pg&D<-+RzS$NhTWE+}LmSqcVBA2y97a@Rkw*+wMt~X5tNS?Pu zb05eKOOdj#&j=5`{HJ$@fHwa%Pb2I-VO6Tr=W(AGLu=|**G@R zw*u9LZy3`rM*5DSj_@&K;N=3ottvqciSl(8QHE*;LzG_4_=3JMB0%cSR+t&Ej%-kQ zhAom`EV8XLxi{M@ynMDfvMr(Qw25pB$vfuWY%#tR@~u|XU7QAwY*>KPnUa;W<(ZO& zWb9@i+8jACLK_(2S|ftVMSTmx&>1LqDT&!>macYOR$eO%EG-RQ?b_)mys@IMIj&RNpNIxP{%w}2`p%J;sans`jNAH{Aqy^z>`zNq@;2;wm3?;< zw1PHI?~jZ?xgI`d)=3I#9gKir9n5aIu)1On4zKD<6{)k>x4f!vEII@MEcP`{@bwJi zRm9@I(wat68l#r(D}_%a_$HvUCd7riqo&mIJs_eCfkw^+a@GOEYx_o70KTv7 ztA)x~0cI!p9ufhpT?Om-x}cg?fXC_(QWlKt9o-VOv;sU*myi+wWR;>iZsQ(b3-z!B z)bk~q0KL#itFn9R`|68jnN9pz-!}uzfBWyRVg%Xr4ZGT7*IXJg-7lp~O)d-M(U2jDxV&78UT&@NvG5hca$=gjr} zli2+tjACrPf^Ag2GS}P4wjfccIvg4_z1vHTL5eW9PRt zUDnfxBnOA~@zsx2JIo7B448JUhOjA5@clR;a73E#(Nbz(4whDM4O|wVt*@u;_kBq+`U9&_S9GYU)sC`cqtx{M9s66y+j66?uT(z7Ln$l3&`dJkF)L%=E2C3Uq9tIHkKDxr+iLU)&8+~B&^|#1^g`XO z%CbH|D697g1@WL&z6bH=^KlW}cB`)f8V2!37eQpkx(G87)@hyqZ^^M5T#q?x$VB*5?5iyTSc^*T@C`)I zS^?NcA_C*Id@jCuTQeCXlYr@51M`WB(LAW_37KZ1`L_ixSD`ZobU>q;={T4Yfd z=-|MLJZy~-p~)|{vbw^20|eXk9lpRE;gtmjUf!wm7vaL_;o9sW=|n|Ng7<6X1T^i} zA{WS!^RM~;u3yVH+Z$}y?q}-kOPA!r>Jtm_$A?Lz5X!PSpOhoM z9CRH5=$sFu&c3M<5Rx}O?d*-<=qYD!d@hVmZN}hQZM_>STTg9r$L+odk4ite4WWfV zN^CixAb4W}W z>jVL8B8>o!Jmq^z1W3{JWiC_5j}}dTdfGP!4TnVOED;FAuUbM+_;#t&7vjYyeN)j) z869JI<#~>tx{zIA5jzQ#H3W)p&vI437oPErQr9iSb)WT(N9#dBwx|t=Uf@L6I1{Do znZa47d{JaN+JV|dPHm4fHM)2R#G*4MNR(Xy`@(4-xvcLbtkF>4S@@W#@8m*!>3QGR zB0zG9*DQ2k-9f?T81f~*SO@i%Ia0HGBfrMI-t-CAIioLVLv2Q2pOSZ>{wWywlJ6r$ z4O=A4p53MFYz$*z(`6l1@i zIUm{q)2bGw)1qbs@4V;Rt3-z{CVtBk1^!{zwd)&dA_Sge(y8$;>cbb~t{;*u8W5%} zjeqx{Z#b$Xp;A-=@P6cbRs=|$Raq`5*ida@;?`APf`T4^R9OsdvKUXjP9_YSz&C7E zz?zW^AG1*b0W7=WOSAxtc>H`9G~5a>_hVm{2#}(5d5d;~D4nMY@E@P}R-+ZLZkB{B z1y78q8vOoK-`7g?X82M&;4kV6G8o$do&$w#UW_+=;p-~F*a3eLUy}49U<+IKrLQ@H zwXtvXK#zDoXCF3KQ(MYczE>3VJS5FNhBwlLS{7I!IuKhRbwe2B7wh2ahm$BRZepNc zEveTQn@3=g`5mG=oUY&Ir>jb%N9X@Lf<3 zO!r1&r*KV{nxkDq z+Af=DSC704MZ4hg0{#Pv+LP1Z;VxN#({R^pDGPVtf{%JwN%B`v(+1!x#TUfYHs(Ma zx%da+Zlw+1i!At_FEm`tAm`|Oiz_MZk-vkY?qI|mg5G+r#qAoEK#6zcfEV zZ>tQhTg+cmQJ>~u8uY;BKSpeMM8{ECv)h}ctADmG#l7|&Y@wL6Lze0Z!e$-CLPPiL zPPk`D|MEDPv>6tsTWn%DzWw)wO{Hz7WAMWdWH-SVV*E4EZ&Yvkj1^0RegRJm%E5!B zh!dj%%Rq55vyy-pm-aVCMd4$X`4w1(qs#dFSO7McA%J)*KwMdWR}sLzfZJKtpM)A( z0piQ~QzU>m<9vXtQRK-g0*EDa57y;*)a(iD8?eF4%n@J!ZK+KJ=u6(Q2*56nIaR@* z6t2$XGN^~3oA106g4y+@N0!O?&MvMH z(}3PWyt2cCq}!r2$ag-xM`aXP&XfVRCxtI(=4Z7%>Dih7)!VL}iNc+q@;Apnq>!CS z6-nukA=~UsDz{wTnH0XYoOuqF&pvrUmmQ}&|gqONCWAcR<+TMBEhqb{BJ5~4kRnJ^gCN@ z)u#R`3R)#&f|4UTMhC@<9(C-mFR!Rk#l3>$N4MZdOH`k2gl7AW?O>afZ9r)R{ju<{kRJJYyOWK-85AxMM%KL{&b1h#F$3RnPXuu{$n>k@WYAQeJN z@acj65{lZLvF?x+_T=j8qESf>_8jbAq^Ltz<|ixcCxLPMq5eDSB#yPs3WtVZLNEYa zc3dfEg>_fzfnf4*|NUT@$3h{p)#p19jJiiIg{zB@{)3viej8H!Hf8_A91z|IXXSYHB z&b<|S{I5_@lE?p~iM(l$c>JI+wd5+n*^8}`o&D}g+1Y>Mw)Ow+?5hQq^LF-Dt7K?D7PRn-2Bbq8n9;HvARQArMxY+)H$mtB<~XWuG;F-Z&Vs&hHk*4cN4V0O-) zx=MET2Uh9MF0JWWnCm}w_DAng8D32pz}elJ7;T*WCA{n@;^WUk1GMq+6RTt&cM}Qx zD<20RQ(6cOBtKq!=J{nY!QONHWmNPfZ7l5Q!CKj47JeTjBeSXs`bCC;{NRuUjM=a@ zaSXObIk)qP2<@xS;tTybvDSlG{OUsgN>pYw;DOD;l>$#dG&s4)|23)(-eF@Bt`2<6 zCgG~D#^aXwkBIJOZXZLt0{L_i4EKn&-p7#iRsZ!RehhH1yS)=YDD7CLYU*cPQhr1~m9 z8UvYAl{NC5UF9{*My&#N^i?`%M}}y>Z6!mrJ8zQ6-HenDSv!o}Kpc&;y}}5s@*1bO zZNZ-`4G_02N&{*9pv7%vyT8AJ#?Yq1xD5jEum7V!@uwhu7AV-o@5|Ph1I1z}Iw@aU zpecc$IN;sk-=nHKISn2tvIRH|6f4%qfnouXwB^K)quBmIpeQI@bZrwTfZ3hZ%nn3~ z(>ljOq`)LnB;mjJ66fr;fw&a=b$)}tr1~L~hC}cu#&5cPPa~`ak02pXT~WVXlb=Wt zD^nnm;urN#jd+dsI@=S~)h2djx_|C4ag zPT)K5aBxYpG!PEX>l|BzgH}(F1fc5%e?!cEo!j7#QNLi)a0mxoxk^9P2qyElDgr(3u%TBvcw&erIPV#MLlx}; zFWD>;7;R4CW(5goL#d|E`FkkHCu2dzGsObSG-=wa1gRU%)5S1Lupk!V>K#0gsJuwM zLHzXKdD?pTdTam|AiQy zxJNPEHQD5Ewle~+1d6L^niS^8>lQFT*zWBlS{KwSl>+@rw zXJi7zLKA5VhNw+A0o$R+D6qYY^A^b7wWlqkLnq}Ud}VdX!5kN(wFc;51EZv zL<)s^7#jnfzg|u+#;muQNw@I4f9$7k-=hQqngl>f?A0XD6q|x(5`OqoVxVl>L)T4W~zkB5cSi%O!ey!*3ML))l3!4pn3lb zMSY(iMSX=$#2d?F>^0Pm}rSscXF z;`m0zfZe9we3&g5BU_Xv-Ai!f*Zyb~^`kA+lU3>4o)`$zcTu zM*OztbRaWPow323MoonhlLpC?G`aH|iJtw=UtU!=a2h;~S|`A18Z~Q!oJNtW8Y>2@ zcDp-r@ek6dq5|JGX%w)8b6%s89Q^iY ze|1&8wjn>A6gi>(7TL>@76Na$<993S_Z&<+D9bFWj*esYs~;Eyn0!SucRFv7;7K9>BM=GfM_r-}S#1hAL#(8~=lx5s}=z8-GW^2-xr`MF}LT%`?o#--Ncu zX8hEUyfelS!_>g{1=Zf11~>km0-PFuiwxQL8XcF*}tP8*j3qP}vT?9pf%)?0=WNTAmHkoIeG^+3FOG+%c7tW1>HaU!Ks6{jW! z`m1L+729Fn3n2nR?hFiNm!`zjEelJ6{CU-Xp~P47qr^z1vJ-eM!u@K&Fj3gTNM^DG&F)`!A&MdVZt;n%Ov0j=v2EbF4=<#orTZkIX#m z_C0PP-8CYH-Im2m>jj!=p9#NKKG2E&w}Uz&Ge7b7noN|~Z4JDsPM`|4+v+&84zb`% z^#jrBR8G&awe`>V~C7F4V5Y`jLDcs$Yv0miEn3Tp{9O z#jvzB>u`&ffuzV1WNT1HQ(SD)`^^h1Au9wKrKjRvC;X+u(muC{@vqM*7-M5Lv7`D8l&|mD*1(p6{hm?iUU+mM^ zaQcgVZW}>=v9+T}@~dG&Ur<83qwc3Zf#GNYGvEuQGrpk`=WYPIKm;1w>?|1AI z>{2wt(s&CXkIXVI;~PKE?*neE5KHKhn6#1w{A$FQ_&sW+w*a@K$_5gxqct%G7NH*~ z~A%vCYQw5!pSj`&6m=C1me ziGpNt@qOju@K19CFW^?$ntd?~o(Y9OEjaAqE!yYKp>oDKudC(4>cd-bw*_R(uhW!- z)m3Y)&=MLSxUlx*A*}9ZxF)P6ivl~tl!JzZfP#9OL0my`v)#>xB*dajWV=tJC&|{q&#VZHLtjCuvmHF2gD1eBH?IurM8AS};C8vc;bW#} zQV=io%pV{kq);_OV+U5KT_^X<>OfIdExlFC9LYs~vG{Vvk}5zCv&>Ks0l=IsBo4Sa zzb=r0>TQ*r9#pW#u>ufctScadS%}FX_9!j~T@PDTO-4a_1t@4(l&RexHm-U3WBPYhREif}jME4wej7|(byg9Hi z*4iL(n=K@P-T~FX4qDg_o)|*WW$MFMmK7}-9J7^7*&+`ps%6qYWCf<6L+~-_**fB* z+XH=7&sJO@nqKdo$vf9f1kxEeix@=f(>FDRKog z;}Y2<`Ze`mVhP4z{YKkqV_d(GcZP9Q-W~Y0kWvaO&y%TrZd)a` zK{U0kzf89E3$ZQB{kV=i7-j`r$`R513gkNP#efI5$&*nn2{(*iVKOTCr9V(aQ3g`R zweuIi)g(p)e^*moKaECmaQ=ZnwxUd=s21#m1xwUb5rx+r4E&_br=XVX2nDddXjJu? z4zin8>b*^#R%*G;W?IQYr1E@9z7_EGy(z$NQh>)o0mYL^YH`1o%YR5l;~5k1?xTSY zW$IU-G^<6udJojAS39nLy(UfTHEvw5ew}*Faj|Y2%i(L8dkWy3qk-1;<(8c~S5|pG z53T;7iTXLNRXpkZxt93b#{&dqX-$4Xj-pX6bDf9vfE8Q=6% z8*6|$&1abLb->qeER6!w@}7TTfncAYg}tVQgq9Mn+?xr;WXUn0c$PT^AZUVk+0%ht z_=6rh5nlOpz@;SNqi^!K0M1Y`npB8iJ5*C6oE!|C2%J`w))Z!a{)&MuDPuo=Ch&lw z^ax>1=d2jmiXm)BQPOH)VwM~wif3tQfc5=%7NVC!1<0=~N)tulqNfAL(GnsHeP)i$ zj3q1tPmC^w{9>DDYE!jpeIPIeXG{Z%NygLrtZJ=n4+*Ss9SdJeY070KQe^o3`_{Bp zat(Y9D|`zJyf(?!^K4)nIu4klUlv!xC0`)(7|+7TB&q13X7MARL;#(M`t}7fbbQSU zu;uYWWyKoESaTe@0n4&s=5eB2dXlGMA`eoME@l4cl%WCJd%cwaMfL zkaxtKwOwPl?VEwA>KsmjXL2(IG|A+Y5qSDf0eGhEfbBMkoTHSDL@wW4uM)Vn#;=79XMYlyh!#R_Z7g?Qwrshh3IG4fa>2P_)|MNEiyq0Sh)aAH z*cNM(1DyOUu)VVNz@Mm}O^^7rZ^?Fl9&n?lDW|#@u$ibQ!4tz^f``8dTvXA^;H5Sd zbvW~41U~e2APKz&-!ad5IU6_mhU`)nP;8B9{WpPj=mrGn6X6KgxEZLSzMLKGeKRmm z5wVgJ9p_FYHksJ5DV-5Z=#iWYB;^^wo|qHS%Wu@e*xVCDVM8c#ej7pFF)w0=bCkIi z@RQH5I1TPc@dBLsQ8bqQC<1GCWIbWz$ckl$;D|_h&CEPIlfIV)^F4&ti`yH!3(Q~n zB~Uq1O%s`aNPtu3` z2RbZ_(o5lIeijyOQhRxk8_>^*mURK?cbn*afBs3G(e z2pz)qLaz#vAfTvNfZgn_5P1}_0ijBj8ro2W&|wSRMT1lYOtMK(ks=`Y>=m9O7L@PI z+`D^c?%v%1`uUgd_X}^GJLk-tGp9{Evm(UUus3dH;6D|>NLRtVg|8>UDh?{iVCAGI zZhscFI(S}^5~&}_aAi>Q`Ad<88kO~(o{*Qah9^d(gzWYkwNWKlv`mD&)(`k$@tev%gs02_kZ zC%WTvFS>gON9bbWi4Uwmixb?9RRG92lJ`^q{IAqnEveWu)qFW<;N<)w-Ff{Q} zZMT;NP&n*#iIpr-AW?TIg+@jSiNhw(TU1`D;;>gnaoF$;T9i8$);5+ShlbQv3P@DQ2~Abh6vWKSL;wVm^CI!{-o@WcW9vxKrTX z^vXLipARX3QM*R&rTlCOHlq1_Gz3P1A{Fy#Td7=X>m!Xv*vWfV?ufTisvb3wR;f)b zhdz0iV{t$n3u+?0Ut}X2IG`&{+{LJ37nna6)1nt)7E-uU>CX29@sVdCDl{oMK&>;X z)W*hVXmj@tPWTmfFBl$>?YzUeh2>C(mhScfw~G3PEl@nJ4XQ>?R!vym!kvTaZLr6) zNEFs$_}^qLMlmBrtOa=rqxq_EYtaOEJifMaXX z5)RVa5PgQe(W-yQT8v}pF56l>yGj|_4ihO3m(cl3cD);iChFX9j=m{~>QtKU2%SMRl0LJ(U+cxO%M3=|1&H2+k-SAw-Jch>(Wps_&phaUMA$_alNPtFMu~mgyIBB5i*Ks6 zNDd4>oZ-G8oT8DEYv^)k52}C?3A@Xv^cW-A#LwW|`uu0B!~M)BxIYp6%*XJJXf#-M35VooerLe3Mt`xI_!(*v@-dcWwQJ}qaxBL+_pp+3j-k73jc&e1snJc= zMAT@!*O33 z{qFIUdw?*8E+(Qqd=0w(l)FC*pb+iPRpe8A8mRbb_c>0OLt~XSH zRX`}r$(Jgv-HSGS&qxK)29kLGz?yJv*pIs!K^ykKH(48MINVS3{Ame?qz%OkIM#+Y z*C?Z|Js=1F$hzY14BcgG!|!3*@QX;X!oPJH4)cQ7b>P~nucf#ZK@qB~RVu|Rg9z{09e57#kD!Z*YB<)Sm&UrA#?t`OE7t{M-K~X5 z3JB?yYXIy2y!$D(9kRo5;d%EP!Xg@q(DC0F+^cwin*1Ulr5mG`Z#L6VxOXv75v{H< zJ(-12C~h?sUQmilWiX_krW-(x0Lo2$( zPLIZ!>7RKm+)g`icO%$o8+^ld+TVYUTN}$yk-#MrJ&}RLCVKd5N)v5+O?1`j`(9D0 zP>oumLS$OP=_ZM`y()C?V0zE)du^5IMkHEWy2$N~;ZLx{A7{WZ@jJta-wMR5`lqN= z+ymXc7`n^$PuE^kt|5LGq*wy(KVW=a*zcPB&iq8w61it{6;buw?y%?7WUcKhiEjCI zL}W7jrWNiuj;n{k$~w09hyoTa^Sh_RIfo!ks*g90Q*8P&AE;dwTHDintAO?_%ZiB(D zup_R&$&QR*R~M|4B!>DV%hY#CS7H`mPVgrwALE-m{K$U6A(EyWNHSA(rfX z1`w0IHH_?ae+SvrEJsBI@$N_8eeMs-37_E(1!p-VpzHspJ5TtIF2(`f@}~v~sBb<@ zZa!Nt-ce#86~=h)-z1K2;xWlUKOA%qN;c@6My*SywHhosgVUwAx*RT(UGLDl40fZ* z?&o&qj*3loXf0NU#$wT#wOWH&>#!T0dXrJ7F=z~Wt;>vZE6q&skJcB><&v#-i!saY zv^$&zm%-xF+ss)ygU;Y`x^x=A?C%;o@mnsXjAmWv@H_5-NoBOEZ9h?ip8d*QE!k+a zI`ul8-C#1=q2CUh)26ZOwR)Y+Xfqg1ep?z)kz~<3t!9VTrqSrN28~N+ci62?o5N+X z*tISjy8il%TK+3pi#%MC%V{+_Tv~0G!D4Xe3|74sF1onjxQ^CfwK~z%LAeS3lzww| za7ocyMpGIV=~AM%YcZnSf@xaxREaw^*=e-vom#!qo@F%~Y*|*T-fFbl^;tHf-sv(s z{HfI@!f=?KCY#ggGMcp}8*nzuqBrXd4yVasHkyqt4LbeF!dm_=U*$mmvK&^UNpG;( z3^tR&WieYECa1;h)H`%Wqr;54)>~BT^)zXmys%Zg9(`(Zq?ZQyMve^Lm@X?1TX_IQ3?m-3d|$5(odYXm$Sni8Fz;GLA%{ zqgQhh{H6AZuX2-Z(ML(!2pa9(Z_tp;hkEqP7*d8@I@sFL*=930db%}wUQ zME#fNG(|@aEHHM9IC7W?)P?eqf%M9pGdoPX&&5No*dS!B7ElI~kcT9#eqa^RI`Whti2%cHORE#qiTghFS zBz6UDjQ4!QFAVF+B=w%O;_s~|BdS7AcBuDctJIUMYM#UVfv}!zRqY9Sx4K7Yg=ORp znX$YE^x*xl9;|O{E6+(CxLLz>g751 zSbxoA&vITEK!cM>#fPb$9N`JNn5+_ax=^DIdb5$IPYi&-)9tYD*r2f|4^@58(|{ka z0e#fivxLQlCmP9eXW~RHq&pLLpLj2%W)n}gFoSNA+zXjTl~8nl+r%@E7ZCLkk>j9C zHu&Ff?y1NNOXyFy7ZgjXh`pdui>vp~wDRoYg}pQ=##(JBl)%vAQ)G|#;qSW-^>?P$ z^{-6#bm0a3O|%+mAct&2)l?e7hXec$t>*$K6w;u0g@Ec~4HZ!0H%{q2QxaJQiiS|P z0Sz{ImI|NJSP2iWQY91*ZAQ=gT+D44$uU1|teF_0)=;zOa!fq8QKnMbpn7e3ppj6K zDo3zf*c~le`9x)IBl@zvr=1$qLmfOVh5D*c{Kh!c-_W(58W?G;jVc&4wz8w=uo~2i zPM!`z=Lk^#2Aw_6a%y1vx_Asi{|I2Hdsi?^G(VK1-as5WnxCS04eaK5I3|8Lg*Xl! z9TuB{&h+#&jvWi-DCNxB#=;9!4b0SL=vsD6du|Ns|FH*NRQPp3y_m_stLsHII-+_H zcK?s4h5Y7?sQQDR zdOYB2^PuNp6oPpI`I9oPgPEQlEG~u8NF*@qBPVL+_VpYR zKBk*f=uC$?x4ViL$d*SWHoIpH?!Jjjvny``6>0{mI5ztMu|$jYl9Zs-6fPYN9bm5%1CahP zzmMs`;a@0sd;FEjxZcxCNln|>?0Ikj24}$|_y~$h7;^>u&+{1L82ry={Le@DA0B_W zjoG#n|Kq{`oW}nY!#^)%FQCxP&c>+b5Hzz1ia7xO6fVNBvkBa6ISM4L6I(=DC%;JR z&xTqjMwYZr29&hECD?lQsf{?D=rELWxTzT#pYrtL^_#FWH=}ElxJtZc6W$onqR}mC zBolV@-(Oc7hxrZG_^n{>(f>T{IUdLNC4d@)ubB4;-RPe;^e?*O%Pvn+jXs!#Br?Rm zpzX+MN7<^PWgd*di8IERzr^ER)TPS^AY$6lp~E~Qg_o)JNjT8>1*!y)lSo)@rlMLi z5kSzjjG6WQ=ZAZGl@k_HSj9L(#+e}M35`XxYMxP^RlKk^3aFHhkpU$dEtGCeL^;=% z)t>M@q}cB8A+CXy6N;k5KCuJazb!o6!9)cy0>s z(&(_ws41h7QYgLy(u0$F9;2$td__2^C#wIF$IoBhgg$u5qYHQYLbqarE00ItW$h;@pc{`|?}BO05}ZR{$*Z3=&e5b-69*%tFs|Y*huvx{G~h z`h|Url-kmQxKo}E%ikH7sLHRN;m~5fmY;GxB|O&)LyIvFHAqr6O_e4|W=qJ6CN)VV zwv?IuXn2#-5EJNO(V?G+04?e)wGYPjE~v9ei(rm3on|zi<20U1mB@x0ei6SrEaVWW zbG6YyMxvv~#xD|9Q+P!?Kl-70&4rD0F;?pss3>N^WFSavE3as(X}|ay1C2LMFK$up7k{uN+J13VI^+XLcRZep#N&k}8z8EWAXVw@oo&z@F>hX{&xcve;7w{Df)40XF&R;OK}I&IpDCm2%7g6nV01+Q!l zWPCwddoO#IytQ+psf$Yl>4OR0@M>xZ^;6QD}{$xfh%$uoeliyb08Nvw}+oYR_HMbkI=;=cFfp@rWASF zu>jRazLti*F7k91TxtN*1D+x$C+e6nTO%m{vOE7b|Ql$OP(*RYg!ZoFaXow18 zVj0A=e*Cv(^~|P%K#UWoe&}gcp1&m_2<6|V8h5I|N{y4`e!}*U&a3lvdL#s*fZg$6 z&clPrMlU3FUaRfljzJ?;_c~~`@noG6+AV*R%z46P4rjXK zi&SLpU7CxE`_d=G5s+l=;jcZA^!_te=HL}<%5P(tD-M&n6B5hSFDpc4q8zf_vEaQK zPCUs_R%1uF!d2Zt_ntjtDZn>b;hy`!Go0gFNjM~hYtDdU;uCf#6;9X@ZNl((6Mq5| zpNo!uI_?!=AnqM4X-TqdmPnE|fUZN9H+TH#`9R2`i{)jWXX#?%+p~6{mN#I(iUA-i zF%y+_<8dA69Z73pTK<#Aj6A-1@hm9zs8lykt96rJBWW%__@Tnedsf|#5LbSD0*d>7 z+=yiLc^9x&oJolr!E=A{ye{mdNyZcWG!IoGOPU0mc@+;0&Z4Cw8Etw>-{B09VuizW&4W5DP#?@_%Y|Kl{@&m9487x^JbSqsbB1-v4*o zbA=Nsxhd(CSFUQ%#e|YdZnT{Dj#B}+Rx+W7kfsLkQH*yR3qaz{y|LcTf=LMw16@J8 zKh`v0A)rrbXjM6HZ=shGf`>kJD(@Y`0w|)v?^PH;6d){spji|yB|nARGm><0lsnv> zjleyPFpC-v-$M2b{SoI~$Iq5fNakz?1C7nu7`M`#4R=Q~XHh9pwdGMEGH-{|PLfyc zSD}3m(|gvI?__BA3Eo+JF-v6&7 zEhlPm!|gv-%^SlBH|S49VJmyWE2A+ryp7np3WcpAU1q0yB`R!kP46&XXiQ@z?X;px zNT(WmkUr77U8QbEwYsxwgFZ5N6*?5mVMq7rUUVptxoA!na7bDshbLTzY`CWpbZ9Vq zlXa-!`3c?mi4qD)hsHC|AV-`Fjp^v67q13;B81>9mBBthZ?LDi2klA5RI9FD5#qfn z#P49b&#qo=6^Uo#aag^Y)6knxk$=}CPpGJjn{vp}T#~O7p2*8r$35cm)lS@$a`|d2 z@J$i9Q_EMIaLRjrpP$u`qjEGCp_n`+S=Qk z^RH{=-Nf;Ay;vHftY3|hdYI@XVwiz!-%ePIQKWL{QLVQY>bG@5JR0ZDTOb#v@-5+| zFlqZL%JNo@68BMW-Uy5)h4W9)dslFLI|)z3m9E(#6l9=OR=R3>$@p@&l{#@V>e&9I z9NXxrJk2=5$x3rQBb4_+%LaQ$mIA<5)R2=-`MfWv`ed_>@~*)qRqC zqVC7ycaD2_pXc~CzA~&!z9hRXMJyTqCiiotTf~O5kz5ypV0SuLK;?W)y|s zBH4^)KIKL8>b@{XKrP{@3`>-Gph|6O3FiYb2K#RxFC3bk0DKARGJt=yddoAmx; zMg~ZrLNWoZAcMy${xaO32#UWrC<%F!H?{CT-_QFS$M2SKNQ&=cz_IMF@+lR6vBYWh zm7A!%yN7s1B@GfuuW?z0_>Y+0vx9UQ&q#X`=rZ1U3Nwe(>m@H z!?YH-DP@?Jx-(2WsW2@G_xvw~X}?mc7L{=?sW9$&CF7_tZH&k`MVRJ?ZN}xX{1SpJ zN^CYz;@ct-ONPJJ2yfGJ{3e;-QG%~$l)!t(cwujGp9CDydX5jlMY5jr#i8QI?IgO* znb5ff-sW_=ZEA2vDhKE8Qs zI}sZ1&1L}<^VwX9H?)-^`&$0_6TAmFA#N8XiHb08i3%)550xK^#xCn5{31JfE2aEU z115QkqAw&uO1v=_UTup;OopYdmUP$1LSi$jB)pk*_zHViNE;mnjyFE?T224w_veh^ zgsv2N;@YS+*c}otXmsNK;P=zK7lntEpp;kisDM&zq?Yt)={PxQhG(#t_YqXDix{@F)Bpn5r*!v zBf_1#lo6pPNHG%;qP%TW6H$Y?UJYt-dQv<})=#Z~|FZ*sif|)}nL8m3={q9g40Lg> z_fP)(u8>!WV&#gIumk3MbI{pM-VSI=rzy2n-O>9Ym`E1x*e+#!=z;N3EEG`jp$f~D z@ga4fPo*}*hv?`+?`a`%H;7u$m&r@mNpvwbS20i#^?p3Zz(OeO)nyfB5$#pQK{+~3 zXcvao1ZdF{IiCpdL+*$I?G-h&B<)|#W!}r2Fo1@YiFkr8CPY9*Gk)Auz@^RhEwv#G|eS zULD%?!KC`slQlPC)c%rvqSmd{?Gp$di9f0$Ti+Q8Xz1GsvHm7IyjmW;IyxubpSr`_ zjTdad%#is~1V9NAX)O9sltBeRY>lA22Rl$dRy@Hv+Us3ZMgX)9rEXoGjxv4TMZzm| z*GK>~g({KND%ebFY^ZCL?N*0DKYY3kGUv@%SP3~h_^SG2c6m>6!YT?swXwQ^E+(Pp zsy%4o9`D*n0Q=McuI=@A<&1saTfzw%fLv=_vERFmhi1CH?rqIN$roHcqM?HQ zYU=me6#(pZdTVJ^X~u}5T+ajEG-Ns8?Iiq2W5!ZJg@Wm-@c8~xgEzeWW6JN1L#L-{ zdkK~IQj$e_7q=JHeA9cs5J!K(HabDxAkawIWA}=;e>keHJmlnBli!l>eVY@sR1JLR zG?Q<$7d`ftcdyWf{-S6{E49-idOP^q4i(D=dq?w5-Gi_-lp0~iqRPgyBn6mbZ@34s zVJaeckiqax_8^Hzy>L8bqJ%^8AmbTu>_J?6l^$g9UeOk*ukb`AMKz#}3X$18ocJR< z7Bu5`s1U!E={>u`vnfbCNhEswgtrOjfBl5F6UQHCS#X3wf?41RW5Fh1f$Bm}R9fzV z`o|dR%XXsQ?NvI_uY+{6PP9wL)-EWy*qe+r?We?{(TA4_s9mAg$(P?(hGTtN(uJ6P zl4C7iu&x6dJ!VM~TEAy{brI>5=awX*^#fBG1LyD5^VdL_E6Hb$NZ%xu!3VA1fh~RCzRm2g~tO`;@Bu$i9C_j;CS< zs4iF%K5SIs!+NIw?7s3^kq==DmfxT8wyVe=mZeR7!SYo}SPl}AP`?)O#y)Yuax-p9 zxnQ{#_@)TQs5P-wxaYx1-aYLrzan)IOI1|H{iwpYYf8pZ3zpxBj8iUHF8aj#U<_9k zU9IU0OMNPP+xMkj3Hv3@pW4hf-T%gy-hrIBjr_)x1xA!IerYUP-@?}cf3a~~3dTz1 z9c~-Cv`#6=Wd-Wq74B;>bt%67e-ZU>Jx8g&Y$+J_ce~wgfNDsBbGb+bqHf5 zgHUll8DaiLm|A=nb$Gv44)5JBc^0wb8@3J?-J0AGL-a1^+Q#~OUh{s)3l12Oki;n> zu-~Y*LUqV&e(R6k&p6>Z8djdok7tU14)o>r`}_S2Cl6Qv5|wVg36t-63;^WjM7w_R zzQ{kfADfu2R9JLNr9(uZL^hNejlcezcMCi^#WaW0G*@%Y)Cv3OViMoMQR<<8cpI_+ za#(yq1;B6o(;LgN5He@ZsX(AVZhK!22Uxbj*Gu?Xt$t6=hZObkeVD#$<{O1uY5;3^ zUrQE1v0hQ3oH!$8We2Q>$ksddRaMFX3>$4ey?0|XzVYkIXfw6)>ycemL-+=Wq{kl< z%lUqd;X6nuBoAd}z_EvF^19MPHGKUa@=#3}vLi%V)I8mV^4j`zs9MT|s+4`r3R2BR zTc1?+UEn7Z>Z2@_wvt9LM?{k0?-K9J;P^$a-%0SKR{*2fs=g!qdI>gS+|(fi#+XTp z&~cd1cBo(O1p1l1EEpGs2c#BESs5hJ%st0WJ(z(Zu~XfTK_1@^lgAXHl#wWQ0uTre zjfjGcoxWuy^D71qmdrC@k{S4?B=aH60M*!u@Sy=%*Q#sT7_zQkp_tTWZz6mHgkiB$ z)!M!e6?uz4By6c_H%c=fmjuR$Y?FKq#7D64jZ#Wtbof*I+DW(}W#p9T50e`za;k~@ z{g)!A{!;g%MNWimBUIQnT*)>{vt1(F6p<5x$Z3#YNb_Ci`Pl?x6#dSV`ZhyEmEni@ z>0k`MQf9fh6QUX+c@)4@gye?^X*TEY)yB7$#;&M? zm!%xMyN`=jv7>jFanW&BeEJawcvJ&Vqr*?NVsQc@7ur&88lXMPqo(pr0wJz zCiJ4e$Xy;x7ZdUTpnqpya~6QaMy#Ni9&TxG!q1@?JS{f%-@f-PaOJT z;`p|4*>3_@=9xyJ!>^vTj0~nbI|hYwvXkN7_nd5ihkr5foNNGte=!J^?e+}jE4jS% zA^t^DQ=G-W$VI7h_!l|6a3236tN0i2uPJ+QcC#sQm|pNKGlL1setXb&D31UBfb3DI zgk|=7PgwTQBR+GDZ*a?mx%d|}8#z}QTUA_J`4fYa>sa!QDk@i51Q0P-+1CSo(}g;3 z$nA@%OKVXj@Qp0O{&~QE=~3U?u|iYoqnM$v_(@-1A)PKJIzHklUq`;_8_4~XZww2C z6}_?C@5*Ah&$bGD5RE34u7a%*>{pQd8UP|Cg&IhA2G1fJ%B@K$s0Pqgh*kM>u&)O% zWYOhhgLhGzt*wM->0)9#vfe%`L85+l3GfJYN7&# zBYeJDHX4&VK8?CIsUlEvbf1B6b|n5b)k`Y7lH8s?s`yf>sM1EJv zA{m<(UC>veM)`qoNXi*e>PzF6i3zH2Ca5nvS?}^tpb77KGkj8zg-MjGl5&?|D0~A< z(!%nlvA#?EWC?{dS*yJdAXlt1t7@hsMT#T$G3v5OQsIr&+#1-R?`4DtXMwRw-xtj`&{2k zED&j67hRwDX{dX7p0A^#E?#EsH6IotkEsC!=KCIG0Z7RHzyejT7 z0)%y=<3uw_kD_?P^o51KYP|3*jTX{BW(q&iC4`i3^ZnMvzCj#YSz*X?!rPe@x6}uJ zJK=8^{OyLnJ@B^|{`SG&e)xMG{`~NF0RGjj)e~BJv4PB${L>QE+{U3hzkx{rf}tJvpI>L5g!y{ilC^ zOW^~$822y+Dx%!ImFlt(gl(VGl~32%-j_Rw3I^nNW2?%t_KQmWV-M$dX6qBwmENMH zRYHCEk^D5aD&cIG@>4np4e0uWvqc9{@vW`dECA*a6;Uk<=MfcAQ7%SZ&6Yow|Ekb6 ztmTexq0b)6Z!UDCzbIN>AGKvFpiyrbm_ufwTf*G>k;~(npkvSGC(+k8QL7R8mH0mo zC}TJ~^bp5ze(e+aT{(X0TZ}KCg!>H8j5-+B!79E&rK>3a`L6P{Z=JgaxHO zm!G6^<@wNCasLrc>yYJ^zYO;}E5%vZmLgi;2mq zaR?1|5)R~N}_6Anfi|A zJ(Hg!WYJ9%Q#0fc${Lp6R2V{kQ8axaYSVYD@KVw%x2+4@y2pg^H0wdY1dr@?RH6?!O|A3^Z|6eldUZkV5%Y?Z!<7=&{lH8GMDqA}CgN zYQIdjHd4OK{{nmQYD!Wj>S`IEN?Ernhm_~i3dFkqkLv#V*!UL&D zDHRbt`snJL+tU3nzL5VQ7xTbj>ELb#jf5D7-iMLvrTmLRZ~BY8#5b5O#sD!;QC!^% zhajtaqm>XmG*NGSzMgFY>u7>ZL1l@8o-jiA$%Aeb7Fn14)hFZ+;!u*Opc4Ph0UTdu z@{126vL3jYf}rMw+vs9K08~U>U#XfbFc2gO+M-vgrV4K=A!2dGWyu}2EQEprL84$m zR0|zv2dCGf_p*XtD-6i_;sh8srdpY{6@oK zDN2+3QcVSxipi)mDRgh;(UGi7W@30!Cz748_K|Q)nQ%mgSDKFM@QqkXvgYyO^!&y= zuaR&_rm_tKj^m`dN0hd*`jKesTv17p4QAO6$~`+DC91D^pvULruMzCHuk>n1@(`*- zWyi-|gnK7#tq&u<=214t9J&GYkH3$H35 zx}$0hY?b*VamxqWTBfWMRQcMAUA^>@fE z*i$>EKe`5-o;wwl&f9xu#!Xl94z_v;RF@OMhpUO;OA&4_cxxlp)x+)>~T1V0HJq43k z08Afcmh>w0shgz;qbl8%vWA-_oHvvkhEj_Q*k=ZuxT6u`H@nCsDSor>FF4Ol6){LQ zX%YiW=59xoHpzZ8Li`q$1lb%>wm2$8W;aZ<@;Fl2ah&fcF~-zEB)3Sm@*onrT4nyE zWWCLp1y87J%V0`KLrJhiJ1MlZxzIGe6?fPhlU+nk~uU`>QMYKq9Ylo@65ao=+L6I zsc7Adwe`@h>1(SmFD|Hwy408+D)|bj*ZTlgg-rb&a1c4=sK3LLQz` z5<8}nK~UGWNyn7hHtd*a+rqTX31s~>Z5z&x&)wU#eIlQ~WbRH;0HfWxYX^dACLm3-`SIw@K!J<@zAO!z6+#k8 zgHDEN(C$bBG)9Sa+l2(!7B&plJQ+f>V5_ z<7L>-#S#JSMI;&iZ{I7>aQs8Z@5BtQPynN)9~AibArfpvGq^4U#tb4ws09<+0dDI| zs7~E8Z**Lo*{ENMQ!!S`l}2heOQkkGxFNZ@&Ei~Sz}bR6oUjO36VhWcGo5!F{c^4# zMVLo_ffzUq^*Udm7dFtvBxnYJ56>68uL5xX0s!n&19;}60s{+x1H}}%lRGHc3-%9o zEys)=*9LXHSTH~+q0!=7=gCD>2@s`l?vM`?68!sJzm>o`Td8gDeiw@#} zF!^U|C>z`#9-@x^ZCexmHzKv{sqve*KM`WopWqv`F2$%*uNDmCYrZW`zNH|w+S@cV z4pMI&R|cs+fq1Fjn~h3@YLFTgBJ&VKcG+s*5#`>H)Sik^+W|>HH0w3dl-~;$Eva8z z5q0^jz>3V53!4cK)3np?N>B>d4>!?Wkl$8n_cra-s0Do$(v)gOMe8cHDK$HJmyDRI z%7{r38G$Z*Sz(kWvKsHuD$8yvRE2M{!Y{a1@DZObp^y~56$6bGzVYT0L1@%2gLsvM*Jlp{x8`%DzH+wbD+v({ouA3Sf&11@Fpjuo=}>-7IX=T zoKjDSc8{qm+r9Q`0L1Vy03pLCWU2x5<_kNpy^&iOq6CNm%;Kpfwh4TEdyKL&5B;wl zTX>wsE_de@HGoy+3Ljzt6icA7Qp!-8*V4hW@`YzOVKt4FtVdQ}T4)e9(#3?kt52Zv z6$_WB0Gy~;*j(7J2GF}wA)Mi(zbJZFUafcJbUCVA_=ympK^0pvaVnt1(ubWCph>6v z#PImS8D;DKmBN>WALzc22>Dy8M8+Ew-vlvldgrQzZ8+f%swzILorcy_ zE9@p$>RvEPlkKg7PzMo zLh7dQP4=)mY8Ia7drBzoM|tzzeJV4+*ukcsR65wECnGr6s5GcX)KMWao2aE6F5AyO zcT(wRM~P&!ewNE1%f2Zljn15<%W^q2`YeMZ%Vy8AIgExZn={MmFxo77yc9J%xr|y! zJ91uKe(uT8{91i2s*NNMvrk4|`JHi6>BmP&3=dn28i7YE7-8Pi%5O7DKtV9>el03r zWHz-Hbs#8X?7{`4&`U%=)GwUJe?TNI%IdF0>eOiwQwFM5vK{j1jh+urM>H(l&wnPf zIm*gZCnc7NNrjX68xm~9WsII7FlHHp3bcyJ;AK!t7zZK^(0=6r-ThjWmK~wHG#n2y zhNEoVX?=?54mF%DPDv(%8BYI%Mum;4^F2?Mu@Kc?>U}p6ONKwyP*|xd|LCcZqC^?N z;Ac(iZ#HRg(8PdYI;-%(2AP?XL zYQKh?QeLcI4m?u?nAEn^65R8@WSm}OMPF&0WX64~!nm)LjH6`wbCGe(a=DN}9j){a z9aA_c7QI^)9;*3a__%WZ;bRJ)isj?pEkoS9Nf|)Py-SoP!{7VG!fqA$y6@hJxId)? zj+s(;AdYV#0Y?<~mqKun#GQXvOgr@bDWxy}Jn9hsS2=`tZ@$_~ox_R|ihHO96m^C1 zH=JAe5+^(jYz&Ez;&8=s3UR0oh+_guo?p1IjA$_daWm()MYrY`4ia9Z8zIr+SgJ(U zKKMl@J1cQY@&y0Y1%>Z(!gQ*tc(w2S#Smi8ql-zjIQ?DZ$Sq7)0XUpn*hP3v4d98z zg&8UUq=j8-0FN#yoUH;trU}Q?09Gw6)UyDJ0Cu&+WtJtOfut-STO(+)f=tU}GV@~1 zB`*biMHGs)c%S2rMu=bk3*Y4UwIM3}f#(av5Lj9vy3Ii20QQ@Al|ujDcSXCUerGT$ zA*xYqRESJ>80q3eL2aduw?x-pAD0H%cgLp)tqUU4-U7bKv?r}D{EF|z(%zGS#d4vKw3RM&VAr zfrR3IRK4NaK9w0@?8V9zDZSVqAgijIx>0FR^WioEfFKy^EBJdp}SW zrnu4)RI*)Ta~f<~z20PolZSSbRj0Sv3|5=XW-?`2ZTRHjoRl&uiAN84dr@erp+4*T zO_GNpMUj`Fo+?tB$NP)Ii~}{*>yC#ksJ8dC4t0Z)(tG0gVv*z2ByXX}ab}VS42LY# ziRg`^g~xa|5xXesP_a_h&}|~74FBz8g&jElpv>YZix-s?z-aH=g$MW|2{z(nu6hV8 z(qwKk88~|RX<^jCnWr3_yPw4U$&OCgvc0+v`3p`K*5`%$0+evb$Ef4zVmw8Pfr{b- z=L`hgu!rFIe8m<*JtYKxUjPj&ENrCG1hKZQ)d0vHKc)r6l&66-0xVG=lwnJ6Yz?Ks zY!se=o4l0wa3I`Z_QO4mFz3mHZ_v6Kjj1rB1$w8r@DM*jLLtq0hBMIEVh#)_EoNpQ z+MFjUCHG)9TZhwLt^1T_{7MztmovR*PXsIp(oX!%viAz#;P9XiS?Dnh6byRa_-G0);**xlj>3d7;pXGB*Mz zOi(kVHW4_XM_pG3+M&|zD=Jc)XjmL!x%cnn!~=K935Svswuqcqva_%v`tuSnV%%pC z@sGa)M!clT2-`owh<vnX)VUNy;`Nmqtw^{5oH%p`oPdl&Dk8D@pWwux zyX3^TN=|$gnG;jaU8scoD>quug{z<(d`Sf5h{ahJ(CSvV-!X@YHDhZgpB4H|>d zYO!0iE`w2{gCN^x)tXT5(N_}uSANcUDmF>0*EmgDgVqE!w05n{;Luy(|IJ2?!=cxq z{)up-akRc@E|+YuX{-j5%VaRwU9e|tvDvar4vSd>fxOLVG$O7VAgz`?=Ny+(M*C(o z_0yuvWPKTJUr8vkCL66TxGJHuIdm?YL1(wvjXHnHiu2)@aLXzkBUt;WNB@7 zttHE9w^M}ty6SodUetwz(N(Zq?ZQyS?sHl5w6 zHR!ZfBV4+&*)1*@D~rM9gnn3&E&i2S{-Gb>k#ShF40>R(-l{dY>}I>e?$X%JR)@*u zGFVLF$fWdt#myzdEiOZr-InEW!AKhP4!hX_qiV~t!06~TS$Mb!U0b;1=*^o^|3@Zj zQ!LS&cA~uZr=cF%F5EY3_63$rqS55bVj|=sfF<} z_@`zS!Elvz{Y*P?Q7wOImsjR+lgk)0T_fOW?|y@ZWIoiRXU32+WYo&mE`x98Mo+g! zkNhz$F2x&#Rx0_v2)rD#-O-r^cGW= zR`1klK@goziyb7|>TqdIX5f=Wiv=;LbsDQqW7TFk92ULS0NQKQxlB%-5yaP`vzkFc zEl^d|x-!}}5v@xpqir3!nowj(GC)r(TBFh8u;~pNo8FQIT9svlD@;ynmd!t9Q10kh zAl7L!n>9MC-eorEO?JE8>9S~yF1y2F)j6G#*4Ye3v)!C!GCM&a9D2PKbWN|-+F{mj zH94&Q-QN^}ZbofSuSKUfyrNBx-kz**?NGIw>*}|VwN7tyn)T3PmeJud*qj<$mf5a# z8g(YCK?}<`U)1NG?+M-%S<6{D}$~0GQw~+bvmot2pv0{pRf8Qp#xGhQ<`+Xp^Hi4IUJGyhB}zDkX!HGTL=E z@U@^8PGG6kWHV~4Mk@p$8m$>szYao|^8GrX$Dr3k_+iSzA&3r~pwnT>GTJTR;q`V1 zL3Y<(58ms0_ckucVE|LAv%5g#4O*?!t}_@-`Ye|Yv{j=A^_ToN__?y0zkVY}3+SS? zjHYHS)}f)VE~CaWJ5 z3#>|6$LWq57YEg^jPcU43RQ-*n%Uas=*-iF)UOPxkZovg%Ve$IWi&XzOXv+&gTn>> zOs9j3ttN}s3c-h63d_tOX*Q$QrZMR)24|MbV#zXCK~TXtICQYsOZz#qMPs&EG!_Uy z4OtokXs{0ZP^V7s&^V2v{P+82-FYrKdef4dE2C-A%_VE?Mo=WH#-KM?z<`3H+fA?z z4FMU1wkET`>%_${f(|D*ai<0@?dnZnXUw3R7CrFOqPJSDdMWbl^4%g2m!x%QK{cI5 ztxIbFzi!o-^?={tGMbGhGp%q*(VIq7lNRez%4k^9x2oS4bxH;Y1m;+)ao9{|gUf6J z^#L;o-PURB`YfwI*Mcdr!bm{uU@`(B1_#6tTAjw=(pgVk;y9(BM(B z0B5W^i``~&nw>7a!LGA|7NDb7b3k{A*(jq~7`GXqXwh3m>))Sd!Qo_8lyS4D7USVu zW{nHNV7m*#Ac&E5HdmI>gs9RWnZ+x^bHR+1v9UnKl-lT{q);+%-M>@1 zf2VZelgWRlbgC28f2VZ+PU-%g(#eYr|L;?}I!k9Pow{@xcOQ2j{@=uFK!pDOjb{H3fq$8a4DoNEk8bC+1|jaMD@4X5P4RQ z95M|)t4IDL{8_!>CFpWYz*@l!FNMr&I~>{UXWPbPKLuG%V*_awY_JnLFZBg9=FHO6 znC!1kpmni<6n^x(=xA&}Uw%3qn4Fh{u8+Hr!VfAz4ax{9oSsQ&@HPF1qQrro$fsB7a4{0-vaF6s@i2q5Bfd@olI zEE0}V?TgRx9imDAIXTd^wFJR)d=30dY6L!y6-uZY;+uS1Y6n&bXX#?{Cf|ZOfoJ)W z67+kWKpqQ)kE=D5J1@P-M>ma=X17IM>jm2KH%riS^#Xd~SGobb*%KjxLg_!a{iiXqpH}3 z0BkO+jdBeG_0h!!fjWGXQuK3!fLUl31#vYIapOBcTsbMwo$pYJ`XvP(5IRM{SzW~0 z?hbIikR13<7#Iat4G~xW=(un`ZE8%V5n;y^(qE%0*OvB<8B-dE)_=VCL18T2E;+S6 zsuWe8W^$lZLcFLxTHwhuHF zs?#6j1l&#OVyXT+>4EG>^(`v(KWZCjuc(hxLU-2$MhFk8)Q1z9T`8eyDUug|S~L)q zCFm!vs6t{RE9~!4x_)w#7?A(iBJPToFOn$hybuq4WN-Rpiuze zTp`npf!;!%8i0b{RwBKQsPy_zn*ujtgyUiO4of5+roYG}o}r5gi2zXeXTS*gax*Fl zEEFE4e#Y2xsK@O<8{rEz(4yOcAquEjo6-tz9iq_ia)V?V3lB_o5hMx8L0Gd#U~_5Z?leiPmYhN zw^?NarwNBg{gVO(mf*?TtTL2A1qvSvRC$|K#W2c;ho!e!mr=c>-e#5C z>n66x;!=yt*cu@-j8?@i6W?atP4g1pAxrd8C6qB)-6yb8I81#Leb4BJ<~0{i(#2Rx zW1yn=HY)?62*w78RL~7lZ?k?ZF+qNtRi^*Za7cAGMB|o;fnUT8Jq0XNd7Jgtd*OEu ze#ImPL)1L>-2Kn+4KSI>^FIE*{Q_=|s|9cJ1{!kGor4@G-BXvdI=`>Hlhy%>NH{RfP%tE2NlK(PC`uH1e1 zbr}7evs0xuZFCx)p^e7SMyE^BY1+*_7s%bdwRe9}WCond%MN{a7Hcxjx;P4(BtpMs4d9qb^;iHK%J$ z)^w}6b&3|wC|Y!IPEnt3u%aQO0*_acYvX?OLDfbFp2M9fkG>rosF-dvr5iHo9_dwk zWJzg`Yoddr17=k9i9lkbe;IdAjH`$$X;%r{<5=w)AkE4N-3{{chio|hBN~o@q6jO6 zc1}5@eQR=hoiat%bPv+%b_I(64nggS`eg;|cP_2thXm}gSWv4M0|GY=3t$IyZQ%Gs>H$32ChiK_L~@fwoe!nL^~%1RwSy2@962tFblegyBu6VB-tN+qDtg=6Mm6k_X~7-O4XYFX;T6} z#Kf2TKn9i)HM}-G&`5}<%Be&RAGan40ZK$0yo&Y*T-y3^$&bCP@WT>p&`hM zvU_geU@Yzn%G>RzjYhr_sD;qHKou4R$y1&~1LNihcR_B+G&%w0z7j}4@$-F3SUin> zYkr`mut13b^RU~3Ko>=07+~jufKFJi2GC()paTnlr(4w2_$yJ*St)^ThG`^QBRJ~` z%F#6d$v|Tsp5BQ+`hh%~R-LEbh|pvP%3D9P6Mve5SDlUj8V)b!A-SC!$Pup6Y#{5f zgq>f}#bo%eet_C62_&-sAX`r1ce*YSE2xWCFetwL5#EX5lERdkUAZ$d4^(Nm9S$zO z$KGdI;8%`Mmf-P9TOH-3u@`)U-ivc&WM2jQHP1*Gq&c#KfyO4d z-x=k-{9b27zoTx6qY@%pV(P}FI)s1nnm{TiEXExQ8dxGn3(lb5*9MLW3+OLc%aUZi zH&z)qaf>NyU0_Gd&NKAV^FA68X=3*ow0C_#E9|Df5ZUhc=#E%aD-RY@Ptf0jQ0wyo z!xd1WRmXE`0Q)xtny>(vk_4HOCK4rH5H-9FwS&S!4K&{B^1rb$u!R%;q-uz(%fFpL zZ*C4eBK$^wA>_2*0`{%ihe{R$z=vA`Jrn>TN*XBvVgNH-EP1gB3!xyTsYJ@p(Mcf> zwT3f*mJ%_=xM6!BpA+t)_XJ8J zHSnCWzSKY>`ZL>HJ_cGrr>9j)Km_@8Wo1CV+6P0zbVeb>%_9o&vYmlRF?rB}ZB6BR zNV6-@N!UWSK*Vw5hv?m1frY|G`io*nf-i-x`w-<6EszbKk%B~kKr)MgX|AM6`5@MPoZ)c(Le;Tqi@UVo=5R zuHZXD~T#R3lAJ`hlKP(|oxX$}kz@&DG>&&9sRb{6u5`w!N!;#^x zlRSz%?JVOuNiNIDn4uBYmvi77@ttJ)^7P5T1F`&S35Vo7S1{n%c}_p8be=gdLO4~y z|F82zx!2b>L}LSi&xB*NkjSq|6wt-^^&S4KWFHv-5?fzX*5%HkuS)_J7B|*;O7Q0W zP2;yXeEjh1v3$(A@bSCvT;%cl1Bj5vZ}fYCCOqFj!XagGW1#Wyl{=>#zCVb9HQ*jY zr>l=oX^qoTgh!TgC*T*J_Q_$-9Y=iY7_!UWA-MmXGT7@5E|46{ zPm!=GQj5vG_#}iV(z3{)bIN6r?&qQ{i_qRg8YktlNZFz3${z!DdBKb2B^a6#McGf6 zU?&^{b;KuHn98ymo>W5c-gBtO&A@{!c12`RPRcS)6NAIsbie+Wz%%89ufwo@eh%IE z17^9O(_iG>_gi!^i5>s|cHbXR0N}~5yzyS;JjH+@6xn!>&`gR70NHqF>*H3)#=B0X zJ|Y|MEI?@Ey@wirn=c-spaTQ6iz!YO9#sOwV$7)X2~BNO5>sr91UF0x#{Xtz6{Io#1at%k{vT6ABnd98&><4|zgVG|=Y{oQ?W{R3j`|w< zi#+Ok=wdQ{0I3|p%l&QJsqxfQ!tiGTJOqG`CY;*FL2)Afj$;#fZREazS5?E#; zvR#KaD|b~bJ{u!cx&XyN(?GPHJpEpSE+!1GbOCitC~m6)(Du}et%NisKs?4AWO#j) zzHokhwD1X3g+)Myc-DgaRKcV~P?bhdRG`U0nO;h09{PJev3Lp#pz!>4 zq@iW`1)UCy+}Iky$ScUvWac3dvgkn`pHU*Q{>m0%41d~0!Ij<0i3H0Y8wu62jlW`PY`|xS&BIhAQQpYB z2LtguLw4B)qT5BKf#?k65Q^D(*zS(Sx>o#?g!Cx$u<_FHJuYI&@IN!Wcuxy{1mt0@ zSgJu&){P5G=q#I;ic%8fAn?}QCB@D790@k!tZQWmEYhrN;6>%EtMkQZvo4iUxo7*( z9NGHLNI;{T&W-hNK3F`27q(-82}WDQJ{S&zeb`MG6Z-%aMf(sA@h3o_HLXhI;}n&M;WvNW`pI?G}Ub(Zp(Yz<{+yD|wuu^y9$acW!&56h}v zlDn(a3jw~#mf-hyif?dyD+z~W37RwD*b*dMQpRP%r3j%yR3cO@K~#v$z6{xATY`a? zloSsLQp{R{;|0Y>8uB9v=}|1fBhv6aD`Ls;SNN(pw;@0I(w$g>rApvx6-r_o@(U&4 zh^F972riN-7pr&yuwehUC_m8hNL}^V+HVFr@h=g<>d;0bl z;H`_d>0&a|I(SJ`X9hr_&h^TPi+OCTAq}C_nXRGJkd$)b@sYgdB~udBH6NKrPPBo1&w~rX={Mw=Agx8+}w&rLH%ZC}GisD4}$nt)ZkOy&S->r?VHC zmNw(-Uk+FHI+x`RD@DH+e3O;^+cqT|Io=@Qkd$4^fMaEEcvuN~e-fD)X~1--)vS zM+w}nPsxEw{0a#eE4$hmw9M5(ILu|WS;3gg%2~maq-um&feMS2s!pktN^LoE%RD8i z6#sb1`ba8u;PI0ALMaxbpg|xi6`)FF2@R@LG0NSrJi&i@P)UpO!ey!|^#;!8bTP3e zmoKA&p(Tw~0P5LF9u63EihKGSFCIQ$JRE=ei$9@Xk>Q zP*vEd5SjmFNG@Ap?H?-%9ug#&Rag?Ia}zM-Q6}(&aDwaBYNhz3PGqyp8183m7aMBj7DV7tioWWx>A#PmD-fLBBb@sPC#A1DjAWY z?f^sj2a0{WXkqk4Sy)|#*Dur2_ODA`6fR=9qcuG7JXJzT^n!0n{uI8ZzKPe@-}ts< zknlgcm>f1dlvlGndgHU_JM&+EEQSgUs6tiON$h8v4yh`|D7J=DRX2-_D*e7>UKuP{ zE7n~2L&=sz^_%`;at9Ld2a`LH{|Ha+(D({E@xPLe6|Tc!RXMrC&*#PD4j%$<oopOgJH zgeP;d3&0Z2$u1@(^>NJ?LWvzr@SoXaE#8cOkpsCF{EMvaTk$UZ;5^%N0zlfjc zfPWDYtk4nvJP)$IZ|f9%_xkA@CC$0*Xy%QQH&ANj(#GfqO=&&u3Do~~NoVv#EhzXH zo55#LSFY5KhTbe`z&$U1^f$pDZ3px z?YdZ6o?9)JewGBK8NWhc23aL;m)Oy`ywY@TzxeUn8l{bwdrQ-}W8!~zyjhZluKZR~ zpDPgy0x1AJ`1g`jSn41h?cbbfs19w`hFIR+y7qD7?s>AsmsNnD-}yS zBfddt8XDT}bOKjRELc?$05iANttJ6B6pMAg0APndOX`7FAb>w}0GRn}No~$77EDM6 zK$!(S#L|Ws-J~(6Yjgd@g7;%e8!u~9TALdz{`awRfaiy5brR4}KXC3@v9!7XVBc4( zQ%fv;SuAZH2c-)VhsC2^9Po37Sh}e$ly<&xx(>HkEU1viR9h#O?yL=^m10U0;50g+ zKvM?_EXMb0aBqkO8!-CARZ44dC&Yru)uEvC*!Svi?~4VGwS)q>16Rb-BjurVNV(F+ z+;?KZ%6KSnpLnl6_nTO710#Cv*D6&crdB}LYnRqTi_4d$qxx0gTZg%I1@uFCASwZW z>WsQ$2_r(1Di+lJ69%Bchi$7$DAL8^Gy;$%?QxKrV@7LjaiT@pko9ft%{|MIJ;QT;#Z9MWXD<(=22p?`4$u(sZ^TE<%k7M8v$U|n!vz0VnN+{ zP(X>wa^iUqr|>>LnE8*sZw!7|+E1|2dRNDaOvR`cKn55|`!a|L2S zpIE5ZsY+=QoFXAiSyvSb$N+sR7Hq{MZLV6{oVzX-tp5XWtoreT8gOHifD8t4L#2i@ zb-2oCOhaJo(pFGVvCW{MeAf|+^IAZ0tLi{p6R{wxCKTj%8x)Va^g2_X(}|_qnnCIO zeorQ%^cpZ&oyF4lhEPh44IBi6ra)tN*C{n|gTzW-@K9;?rojRl_09RJX!OkzfpdwU zc40}ZmQY%Q8!HwZ#%fAfJw+^7gN5W)0EU11P3P=M-#R7W*fDp-s2T>Y=b^GO`GfCV>;>Qjk%IM&hF}0=f`H~bbn+~O< zPdCJB%dtfIW<8gH2G<2%@Mw2S;IFX)R3lAQ6$`px?I68tAQt4-D>ZX1#NQ|I5O-|w zVI$5Y799Nf|M+d1rQZc6N5Qsgkx*KKzakoIGEA z*v!mzU6h<|87MxiX1*dlTE+%8@xd#SeYjQ{K=}t}_)>J2Gk%uo;!jiIUa5bK+|lxq z_%MmJN_oFC^(@Q9hjvx)Vcyy^;S@XUOtNLY__~bw_nbJni)EYmAXyk)oZQUvnfOqX zS>CdExi^lga77$ojR2r*i%onu%#e%ror$#|YGA5*osBu;tIPc?cg2Tf=E-U&%FQi* zh!5*nPbs>3ritWngU#n!&~B#Q@o&uV^%6l{sPesIb$oAL;cRy)PWe*Kd{uFhTvbX{ zzMN-`?vpGJB6}0L38nva+LL}}X5KabY+I?F@~g_sc}=Y;XG=YlFZG${9N1xN8#-Kc z)YuS=6><6Xd>#*1MSItr zZ6~efUz$_%6ggz>w-x{QzcKyTSY66WBU$MLD@|pkFIZ_lD_v!!rL44zmDaM-TdedR zEB(YuAG6XCR{ETk&a%>JR@%!-mssf}E8S+LH(BYovbiW;W5o*BP+G!DL9Dchm7-bc z94pmkrMFqB5i4D1rPi#pn3W1x=>{teVx^s|G?tZKWu+Oc^eHPXV5P&Xw1SmhLTT=p z4XpSM`?#Hz&al#6R3dfCnU$8Y(x0q!l$AWcN2!FBDznmh zR*Gk(k6EcMD{W(?ELPe&mlfNy;w!Awla=vC{2|b5U%_iXX9$typO-E9JA&`>ZsOl|E;sF|1U^O4C{Cbyj+b zm3Fhza#q^GO6yr^B`a-XrD9h4jFmoNrDLqLpOtJV%^kCf6|b_7-?7qNR=UYbf3VVP ztmJV6rAw?7%1UprQXDIN%}S}P^cgEPWu*hG)Q**ovr-RMva`|JB}#Ye)Qg15^pE$@nNL2s01 zOFM4R(V21sJ_V5e(88C!QJQG^%?SSx7(J|w8C}6Q_B#^s$6f zK^r-b{TtR_9=lQw>4q+cMs8}ipwgi&gOOADdFK7ht z_FC{Z?!Y5II9H#ly(9-)a*g2GZowbCY|W$1P2@D`SuOZv1Ng+I@&L<3Bjh;ukiF!t zbS_KIlHSrnZZJUZY9^0FCc~hDH~t;6dJDOcbXp7ftpPHxhE36LT(;cA@{JMvD;;>w zU^!P}jmQk4To}T&Y5v zEY9l|wXFMgD&;(ueOc34E|-qBq%-1NDfJdT=qR^k^daQqQR++E3S^{>u9SvQ+XA^B z?Jkj{HCV|&SIp~L1A9L0Y+k7v6}6T2>WC1v)K^EE8z+~OPVwDb>HV~%ex*P)TURnpUU zz%{3X+>F}y5nR{w(Q~zqfWV77%JK9eu&kVmgOM; zdux!Kujz1^wEP(~jYeN!I*@j?EAkImfa^QeTRTVnD0+3-_mh3;T7S8nQ2)jPxi#ig z_>jq4PlG(z9dcJfbplJe%W=|b1(ExS6&g&nhS4<9ULlzN?t_`lGPf)iyJr#BQ_hq= z*TNsxz!zReE8OoXx3U~?3%b`G=rrlR7VoYG4=SihN9s)op~B9kK9<{VL2sHsuU$hc zovK?YfC6t-2&7(xjzCKkO&THRTB=dYNveWl`^g8C`)@nl3-4%chstsEcM-Y_2t&v(7IqTw3>x?L zB+=2bCZnUBz3ucYoT}9@D6`fSK~4H|>o2~o>uVQj0|ZxzSR>m4#y&cwu!e=Qm*$7s6rQunyb zK^Ba|5b~vfJZgk2KX3D;P6y5fQnur4E&8tKnP4=DI}ZEZatNM-z7qJ3mp84MfI093 z!RDTk&Ac`6%3za0hu5H%S0~9nmOF0Qpf9^q5Ua@1BDt9q12Q#+ks|MiVT)^LLQObQ zUX{a}y{glpHC|qvkraN1f`62|YV0cvAlRF3vY6i{%k`vAS`O{C9MV^bS_Dx}@Y~hs zRL?UZQX3O^t{I$LN5r#ok~BjL{;U=p))Gv`rDwy*W11W+O*Y|9G~*75JJX$NO_!@n z?`Uz~(&GNp44q|7u3rqz-E9w%HkfeVbm8*u%{m{8IzAI!f8)_OUm8@uG>eVc=*f_9x+4H7)nIBJ7`cG`dsNH~ntR$!Q@0MJ6HuZ*}UZXTS@ z-X-RcY0zE0PrLf(X)kIpA1-FrGI$J*z}srk8o3&k*9-KZpch~g-HLS%eN&*ttka_vd!G!Pvlny)$r_B3A)l z$-gxd-}n@De!nv@wDFZ_>>pq=*1$>58EXTvxY(b`*pB8+u_`XO4`bh0)Al`S`7XI} zg)ta8_8i1S_xM{_F?!BP7DCP5#!Aq1BiU5`K^Wwu`(*XE@+1Y1L9;evU1psI;^1bi zbFMK$kc+c*lcOPRd2Q_5j@5(hS`;26tIyw7Vz*vdv;$_GlxdjAe8iX}lDzLM=Z~T8RaeAD}BSl_-*N zm2BOLx@BrG6SiTgH_eEd!as1WS|({wdva7uH^Gv(wQYWBL*8l(pD!Gb5%B9?K$dEx z5qX#fd59=;m;*VoI(cX)mYY`#m}M;?;0pdrO;E6`oDHpwD%NE7vgtB(PMt%l(4qTS z!Tm@O=5@iSGjliMiakc^o#i4Ecb2;Bk#}40(gIW}tQ&vg*1e7556CeBpKI>o2WZn@ zHPHP&l?3n7W~bH?K0Ed=i!L!)BF=?XD)QxPvlf7#GO7<8PXbJwh{Q^ zR3oou(O$&#i=2cZ^yglzqr7UOT)-*SCTl=H>_bjw%5k|pfn5lV-VZPI=(ya34cY16 zU~GHqf!-3QACRkAzSA)J=>YPJCrylwE49|p!$0JsE?i-pTmM6HymZe*ddE!4>)7`& zOsX=Tl!wAO{n^8EO)2;nqjmy*5enC{Zb+Apz%@0}&=(v9|N18S3^P6FpZ7V8vY&?j z+t1}%Qg0J|kAI=ROrgE!Rd4w zgVhWp&a>`uAWwfR6}zN3BSVU{M(WqyQ*$Yi2eToG0ra6xBQ@i z_|q;owOlhoT=@@(St~0?3tf0p#w|6J;k|TeDJ&MJPwwi5KMVVit8E)zn^kAfHyFHRZO4Gt&%HJAZZBK1R=O*j}U~3!yGo;G<-t zjHkGa*d8;)(;BB_2O3b4w1G1MxR#O%z=3rfH`0u{raPvES(jwCFM(fEssRHZXSnZt0n!@t42^!R#+I# zd4i;u)dcw+s9C1&<&Dp?Xa9*OiVi-&YzXOMrikTQ%)(~Y zDBAt2T$Kv@g<(mHDS4?0bCFVkSATOVnI}Qk{e|hRiT#i?m zH$8nR%!ljS(urehM*sHggR(l*=693I6Qnr`pP)+6u)YSW(xU~JC4VEqGQ-H=S@#Th z3+#D{z;2tiBJUYks7;};NM8~bM0M|B)&3nLpSSdUc;hg|85)Q4eSK&+wi;Tj9?}mA z^NlgRjJ3-vf)zwd))dPX&P&rE7hMg)JJa#_D*lvR!RjXkJl3>05F?mw* z_)$P$6)%c>e~XXBOZ?K1@~FhV=1S6IXR~kz*`$&+O3KnQYHVcWa*>A;!RVjRDxN&$ zYH8qNq^VElV=DHrc4VBm-dO$I>FwuC)bolb^fpytUo7o3)pEX;GFW{Qg6ESn=P1f`c;V$I(yy4L1WLW+1FfYg-d6=#kcw* zDmba-aa_+MgiXmflhbrNemy97~ zRuR&LOIzo^xkNX7zIXAFK2S8pYNBY08ySn3*#BSPvD!3etjmrr zNDcqggpk=sWn}|Sy+2JMB)&M~E^efUbL*-`+J~cv=u7JPrwC?%7DCt);43=f##&XY zQqak2o>Ulv)q>tBR@26uJkCReU~Ex2FV-4^)hz2G;#hp~zf)r?e0!y;Sk}9KR#^;b zkY?3xwwVcOSlBh~Pp2Q`eR^m-bUP{0trayJmXsM;BB_JaR14Nw0L2 zFe=WfTA3y%TEpmzdO9S#8HvXxyOOcmyRn9~Dm|&M!sRr!)?^h6rDaLh5c;`+m2W%B zZfNbKt%*v{c6mR@w&q&u(Y2=PpuyFIrQ|$pjpAPo?kAOfZ7inl8tw4jda{-^(ejMI zEOdiekIL>>^`-+8@K4TMc({RXS@d(yBI7l*=j}SyI+kL=Vu_K(sgAZN+%EwY7s^#D z(&1;T2Jyuy%R;w&UUAQdZ+{7^i$NGCA((ph8Tl0ZVwg_3$A*TW@Y<9%yQ(K0Y;)Gf z@~K-sAGznl4GMeKD^a_2Ya`1~f*E#s>Dyv=GnoG}wqUorNq7n!sT1x`MH$v$q!!$@ z&$a(xwloubs*YhJU5ikwX4_;RDflmA#2@gN`|csv zN9(lKFleb|FyW_CUn+{Q1(&R^t_(ao2c?8Ro4Eu^isRrG1Y2x_sAUsJ)ePV3@jGNV64}WD zO){qWY;%UAE9JDcj!e$OpG*mkOS9BmjPeliJ|RBe+6*4dkdcezZGy!fzDmK9bnG~v zbXO~Ezvqy1yKR*7=HL458AD!%y{$P~Ekvnrz*CK(pg{+~B+8zblL;%>p;W#tJdpBV ziU^_Xj@A&&0`Pb3#IMp*ry=uQI}JNolcdH9q_7YtpgL0urXz=NV6LowL^V26!4}MH z1*n=3IgNb~!Hksh)M?$^2K#ieHjsvEg@&0pd0f41O8HvY6Y&NH+mq{@f(hT zUJ!-a>d@|}$OcsY97dst5n`YpHv$9w9|rZ_?1lF4JyIo|^_R5{m1jk!QO*o&6&gHB zknS1fhO|}F$T}2s*y=~Gk5=iI%?E4HH=(j*uwFk#(3g*KL;rGrbk*}?RnmR~tkdY) zIIDJ(?~62lBKojV=*t7GO(=STO8LPc>vT$*C|J#y=!R9pLKxA_e>9eVorX++i*)I$ z_|J%1wENR5e!@n}*xyag^0Iq*&J4q3X5&z6q$QLdJdcz@S=#}8XwM8c^#pE1OOAkSZibv}X=(&&WCmjUHfoNvrXh>YWgBAvx-!R_g5DEZ zmkM7+mmg__#2zk#Y&_H&KN^Gi8UaZL$i=IK71XAyezq{A-VD{n1j+!(6OG%)T2t9k z52nE{4Uk;QvfkEIiVL){-LeMALncVxGwzK?#eWr$SQOAT%C^<8b>8f8fl*#`9-Abbw6MOex6#&w$P>zt!?SVMth>A z89kV9)h>iL!3L9VHa(#L;W(JXk6ygXw-5L@pat8K=y#I|N%z z@F!uU8t>2tyhb?GJabnnoeJ+zYXN!-$ABjDD6S;RPk4vSmvuev1twdrG}l7bm#zF5 z0@q{obZe&cnUIJ+c*WXYV0HCDL(4s)>SAr!7DAI>)nV;&kM+z<^!shEsq*AAZ&f@n zsu>-=glXIMg`yunU5I{c6yxLPtyy$ykxII=5@X*bDv{*pt(EEiEJUY2Ef)06mbjt! zpJQ!6NlR6FsA3$|UM2`;EptQAd!DtSG)@vNF`9@Rjle&-2Zm#L zPKv7_v>i>Bby{s>C`_SwkIvSldG}!Z5$w-eMPuf&&W)nsS@LQBB5R7&MFH+;09GaL zZ)s=5#AL-CChrozFR`Xc&ncMG4VY;saa=5at2I`b=f-)_ii4SIWHCw4;^=8xO9?$V z_;qxBTmk?`A^Z${1pn4heB&E|1{4UV!2(2fO@nj{TcDVmIWh=?FOOqC=kSJz~{QJu5CSftW9n;Hb_F7A_xb2LA|@I4 zp6IWK-a~(_WFQ^?2K@4S@2jNm4`-yd=mr$DuC|xrV74j_W~&?eqid}V>Gn329)jns z9uyhM^AU7!yP(Y3;fB(Gy|s~atfH{p&ne?w=9roK(wEq{3^gcygEhu-nEgp>w+H@R z5&bt}Z{RNq=6x;ZCTkJSp&O8H|2xu-w;)|C?&M)3N)#>snDrF43c%aPC8GQ`!rfIL zKz2i7rwXHS-&{{NTQj823U&t#cF}NKGYqh2Q>eIUGT)l)gGakLZv%QOx9B|8(qap` zE>4be$){=1x#WwJZM93DoUJW`tZ97_}dzAE;?+kwg@*ix&>b6 z9+(AO`?dktt^ms#U@rB<8O$WMTU%I8xdlF<1LiIPJ&bjKYQI?xJkW``LqPh0`6zx6 zp~+V^9(V-rf~CfI2xkz;Qc>I)MACy}rs+vIem26PY!Bp9%_Uc3;;G7E=6RTjfIfsO z>_KeS)E#{z51RCmb!;L#Hm{i&xBS*TG45INv2{#xFZ{(cFTQY6ofrFyh5sI$7pqpV z1Qx8SQhg7~m~z&&8*tx^m}F&IJKI&+5c=aoYd!3TbyL~t?uC89jj*q9VPE}kVU=A9 zt2Dxbg(@s>Ip`Pv&vpL7mwL{2xLV1k2%bI%=b%r!llfZ@r?JnZth`B9 zA=ME%j*hgAjiACUvB6Z{96e*LRmk~>q43j;o8mXQzHqeKkJ7%h z=Hr|?|C7P3edAs{ewt*-F|7anqagofL@r-}_+e?LO;JG3SFuP%j6>M-hg(L!xo3pE zAbIrh*VcGT3N1g62(K1xI;)yYP;sdr%{gxEj)M*OYMSd-XJ3`TRnuJ1Z600y#+r<) zayVu$4JJ1r-eemt#40oC?rza>)Zt&yyHfk_tT^TLEvC~i3l=YGSoohtd?SwnI-g3< zbBm6>p8thj%krTB-mM27hO-UsRDn|t?%;Tmd9I8kbD4mY!!8JqLO#_wYYDeMhhaXTZOG?TJ!NZ)$nSsy*~x z!`tavVD96wgAXLRQb%tJ?r-lyPfD%bDfoujkF@r7#(TW4Wu8S}^Sp(=R-S7Qq4F|o zE){*8piD76e-u5e?~mwVW4)bDgZKQA=h5?XZ>yxK7p#LQ`zPHZ*IF)jOD*XGHpsql z(V9k6@2I5h7qVb4BtD$V>&Gjdd+c4o`rutXYcBPf%NR@F{8^>@=fCxfz-jVOkHb?YVYji8SF{V7KKz3Jk9YT2Qjb2kyce4wE1QqTfUTWgnioU2ATA=LwUf=}9RLVVwh zs7jhDT~!b-x#TO9&YLjKm@&B9>2e2d$B(W(fh+T-YZja0jJfW1PPY3})Lkr1dWb(6 zoN)#AHCJmyd>MY`&(`XAnS*0CG-6J$W6AKyEo(Bxb+lC!K_-?%8Dj%FmO~Bb+{D)3 zwG}lbEUv6Hewbvm3`Te6f1f{&~lqH@x*ed z8x~mlRK(^U2mP9P7pienjWXdO*cU0mn=)d~WKm=9Gp^JYzsK(ilSFBV{r<`t7;Yy6 zur|ka&Xq>3> zXwo~@wg3qs);%cS^IT1u(+F|JBX65&|3Nl*s;N2V!S*~sH=8W5DAUi@o&(MP%Q}&M z^|NWW9E|3|wUkEqIo&5Wus{BW4@?QLE#j2No?0hRy+9phiF?Y`IkpBgE=VCPo{t$x zP?hR6HNJCduny-7_c*jtvSrdoAqo&=??xLdoD+jT9SzlCl$$ZQJG@%aRu5r_B?cX| zy1z@MyDHhHNOAr~uNBRIQj4~D*y2qZY3vEC?gA@cgO$Ds&4Vg7pu*GEV5y4JfO$T)G17A;nCWI1-cmknx9r7J2?%XE+JX>iaKNn^Kt3(p z=zXr1%iBm>O!%As1>X{2tAo>%9QCXQ6=HUyqG|~ufRr32K&u&$XZTwN0nn4mlWe){ zC_yb-J8ok<9m7q<&Epcbsaa1G8=GceZ#S}5E#XyG^)XOZDz!JDek?_2|sQ?2Vl z*DM;=VPBQ_6it?qTbhfpfxE9zUz?JhM-S%i3rSG!zFxlQJgMJ+-!Cf74d8Bo%C6y% zJ)b4d;=qQK*-ZRQ?YV4#98uMliA7>A`FbunLkJ-xBr;0Ash&WuhGW*8nXLE#ejNCx zWQY}1zcd7w5~=f8u8^m})griG!67e>cv6F??u+P1MYYTx<(Nw@G+I7wj6_EsTF16X zh@h^4aSi8VCSy8bCPzWZlKimj7$H$d-HN~19kT#~AS@C0DlyP(f|9U1nQ>e{qx zbWvnYRolS`VT%X2NL?OX{$`97bGfC)Am3yzk8pNv=fTUuVEXCE5@#6+O)a4x7~wIO0vz7 za7`%BQJvACz#4|*yodosc8{WpmL_=w2`GdtjWq(brt-y*IqqdF)BTVA$uwvC`#+GI zU`K^iPeDew;zY()ivbpF+;W3go8p_nC2N|MPxMEp+7hKg1qxA$6H1N2U~cawMvB$H zer}O_n~-^Ivm(uwBrQ>p5u7-YA!KWklWmnmLJpg=+=%;<2^2cbqr(}tWNBXz#aD6U zY9O(Lr8dD3J9&N8zt*Y=0$qXaclE|pq0VRaQ z@rxR^I4WFSxiW416Z>RXh92AXEgfvy{Q@z;PUpqvTvHokb4{i8wnZF=>)}Yqxdgr- zSkgh)joNc5iQQ`_wF%a{iOo#`lipE*K?~KP^y@XkNZyuIi3l|~Hi@`AGA@@99{)+YaUjVctBfe?>vIH4(d zIx+CPDl~7Z6Cdo)x5MvGZ@~O!7nbYMa@Pv*Q-0@zM9U|;S`pi`FR*xzaXNjbrkG*j z*)*nl%_xOkT<&;rW1rs2mW0hPE)Ho14t)AibfQKg9X=NCsmUQAox?;i%t30guS#xC zqa^swS(d>XHUkW7T#od}`$>@{Z6dMj9J@DIg2xS)UhcW5+DpM1Ygdh4Gq7^$tf;(3 zWny=Ouq2NgHZQto!*ebH9c>A?2i(Qx69XG;_3XuRJZ^AzyT|2zEu*t7(SlnFolSn- zfU7nLwoEOCL9KSIP<2c9S^QNG7$(Vbv?Mk$s#gI9wkU;j?$BI)xXpi{yDk%@P%Nr&~i7=$^7(u#ijGmNFPrm7oN-Z9% zk|Lt6O`J4;NOCAm9cLS&*?s|6z?)1XIybH_rX+_`twFfva^H9r$u(Q&aN&b(Vf66? z-IS@P8ID({X(9aOorx+ES7Q1QSjDX(QIjT<^florv*|-^Y0_tvh5db8ncJUe1)e?Q zQVjMh6Pp>N4=Nk&ao4{{^U*L{hIB*0{a%ZkeiG9jz7mdhO5j<1>8c6$k{et$LH>P& zEe)s9AIwA)5*X%I+<@A)7|AcpD5-atsTug#*I=}*7OsNlh|RQ!+%=UQPsTmm>T0Fb z#01;W49lA%=M)YaP8e&8!A%kzd$blCV5;3{&S`a4GDI)H77fy^gli%)Quk_EK;a;ggoO$Mq+Oq+ZcwjC`wzj1jv& zTaz*BG|-$e>N-%#80F!Qri@Vqd=%%Om5fm`XN8Sa*n3b#1aMyB6L+33&evSd=**`} zeeo9f!n3`_B(axK+U}@}a~YMJ#P*go@k$BH7Cm1@#Pc&4k&-GadI3j}C(N*owje5E zU)f-;aU+vCo@=RY|4ig-Ixj?j=akrJ*+-LN@3TmB`mKx5>EEd0bei0K13xY_REAZ%mA7aVT45sr&kcCls?F;m;&7I>?B;E07t zE0hV~%SK?n87yZ_Ob}9J;tuc#+gy@FJb7Io%FdQrUVC z)Y+{Pe6qnd8+S+vf(?7z5aevKWz(AU=c5pVxAY9_Rw$3!+Q;WJd?t8Z{mc!ot?ywo)7iZ$0jfWQ3X|15 z_rrZUAD2$nL(FZlS+kLI`lq%8O5cWsrA7x-wAWxvsETTy3!$w$ zY=N}okV<-dHw3{SLg~a#M9-TJ>jYW&AA$g~6jbbHJAK&gLrfipisK3*cNOn<$W~AKPC-6tM6P|3Ewg_oTl<DBdU76V!Tj%2LaFIph<(!teBA`h6DyU!vn5Da^F)a zaRQCRjzV_S<%+Hqk+r>|Iz33tn-c2b4fk4R_&Vs`kg@awk z!If@Fq5F|HX(9fHy7fIqzZl+lck29*Z|9 zv~FxrZaEi*r$#Al*-UVtckd$Mf}D3fW{ubgpMI_iox5ZUmKw$wV~u(-&bH+0{_ZlA zF+!2_8Lg!13PW(oE2$}T&`mH^@li{l^KaL;fS`u*}hm7NecwU2VH2GJb5fiVP(wm=xfxQvg40EdV@F;p{T{m7(-WydbifWP#fb~X$1u9# zw8dXax*Dg#=lj_C#$Mk3DR$7g9Y%H^bQrH|RKM;Rc;|wZ1y6FdZ69bS>zk{<+GOE< z;}(bcVRqh(y!&AcW8Dvr=dr=9WR&LZBlcpY(gPE45j8soa%FuoiORi!QK?~$QEyD!Tzir4zs{nT_$H2Y*hIT$+-!z zrc$;8S_h?G+|k4`ilb;e@o@G*@x(*poPC%(n(B`+M6FfCd)dKi_&3a%m^6HC@4j6G9(--D`J!rgkOl96N;egS7hh7N zkL#Ssu!*3|rEqSDr~ZO`$UOO?g)7Aie+-BaQg3<+ru4pby=mZRT!zqZrrn3S``S&L zivDrwoR6)qKgHM|;cs6=9E+dpj!Q`kCHZ090KB7H*NfIzfc3k-oo@l?5Mb{lCB-|{ z%&sC?{k}a4lXew@-`;fi^SV{2*^|1Vg8Z*QLEbgUOimw2psy8drZ28wk0##`K{_zR z4e9=hAZ;9~lFmyg^~DYQUKH2xN+b=fT_J=bDhu*)mG$J%X*Nas_VK3u9`|MD!tTG@|2eF>3j@F6i`Oce zns6JLarw4$Doj`lAw93S2`M)rNUT|SiusuThTH)}emVXr{G790c0mCn+%(V<-AGK4i zAskm^CP_3)660q#dV9B({mls6P! z+GFB#U%%(DW?MafwK<&%8nVivdi0=#uxY~)%_Tk-RNP@j8E`kSfu9TNZ z1v2*5;V1Tyo)gyL?KmX|G0Y>%-NeHX(#2$fg85Sf`m~ZRC|}DXmL% z+K7uZzo9}}($i6u>NnC+o-$MNBQ;*N?J+d4vC0%(H=J@_$qXQQQayiKe*%IuZ6X}} z;wEtL8qQn;VJR3NhBj5{ng62k3+$0JcwIej`a1>6Y>_4Ci?j6f!EZbADY`DBZ>G{0 z&bKGg#73Fezng|Zv1xOKb#px_@&(5@+bU?UIA-MhP^5^&K9H#v-PB0 z>Kd8gIygrqbxFOXO=b}NWn-*cDy&=T>4m=Qqp61Hs`O~8B-+tAGmwHxLE5&JAbq`+ zo)iPtL>k-LNi`Bw2WQl)N*7*D@uAjjbPeW(2Ts_m$*Ay_jUoEPwkn8A^tdMW24ckt?8;##rVL6B4?r@caP2VpqedV zgR}Ak{dakKdTv7ABQ>T0`nR-Bfxm zb=@|QdSQ1#b*a0aigQgat{+5i^{|uZuH14DEUWKJ&D+7~U+yVL&-K)ka?34j56k_e zm&(v(x#{yV{pr$e*wC8Zg8puAJw0bVup=t`c^{RYvkqFBS&?!&q5H1yD@e=x>PZo> zcc(F((ci!Ar;=V}HpoeLFV6I(tM>X{G;cQe@9fV(N(SgLV8Y#LPFJwMJV3=zeFl!D zuFedm)N1f|M+VxpyHeqNhQixwY?%Ws%?HrEL1v)8D>m?<=L?`md9V(szy!owaD6wl zpk;^(gcfW@H-`u{G#;w20=I1H0m}}4MkRpzhuhf-4b19^%9lT*W4g`6l&kXfUQlK7 za212A^1|-Ss#M$?7$JDMQ!|M=XTsoJ^8G$A{oIi%#^Ao_l1Zb4;4?<)1?MW;-47}o zFj^(xy3coHR;Hzgo$hChj&ml>AEnnlKZtl>fIXh(ja7ltpN9rE4z$P7gmHrXk#X+X zd(gQ-=o?$dtE4U&@=ig901MiG%>)5*cY+>-Crqyt+N;xri7Gv&iS6mTB0&&0Nl(D- z{n1cVI(V{5!0mlpE1WL5`V36OYlm;Po*!>dqjzVikT^fc{c0lB{SyOh{^!i+Z@zY#47#Anm8`2l^R19Pd`_WtTbybL`O|Pkus>V&A z6$VhulSZCYd#XKvj=i8_pgq#qA3W$u6-?3Jd{MB!_o5s2wWh(gkG-Ul#%8iAcsGux zv3W3`w-)FGdEUJse7{!f8DM(+WfdrBro9Kf^@@)CJ@@3i%T0a`UGD2wRdRH>wzTmz z9eJsHa_(Ahuw>z~W?T#>;VhPRIfxl*E%uV?Hm+Vovq=VxeP;k_cr-8KBg!73R2P5uC%UuC+TY*qV+)U}F3F5jN zh*#|+@SN_^wMbNB9cH~|))7KHTv+&;y$V}{VSh3tR|yM_F*lgaO_)5duyrxCHAP?+88PurwJ%LrVsFT<9&>{^#)Qd(vk#Wqt6`G{ zulqV9rrH#^$#rcLFY1%&2xhmCxj`o|kT>=4YJ; z8%tK$!!d7!1j=M@VvDnh797J~Z`Up;-bi&#^H{R8+e&+k zu`HxsEmjB)+m)9HHMo3eoJIEP(nv+_85dz(9=)>;KfkBo-qGR)b-?7N{Pm`x zqT)ZAAaA%Jxk14icnaZrZYE;?&bHR2Jh{WKRmt(jiz=yUBEvJS4YoYirsbdNEGjvT zZ+WDSZA$~IPMTi9bToF>^a|o=>}>qew9)a`X%&=>j={pbT5$&AKGbB|bO7EYQGDVX z9ZR=p#5?FMCrHmK;w{^$t{hA@$~X}}(I%h1e$X^YSv8O%x4;6vR2Ur9 zFu+1Ou0UX>&lr?+ITt`a@7dWq%@9JIkm6k+?NcSEqJifLiPSyoe5wBX_E7180)I~f z&zIBhzi)3tM?O;o=5Vw2x`AVR*RVINx}uMmbfJ$(I=Wv;$#I?F7=fabc^_ugrK`54 zNXaijlvQcJStrUqaePC~GdD95|hI?Qxw)I1MhICp1{?-7z;UjyY zbRX zhWn*)8o%_>MmdJ^FTq`^FPuhy-Mq45=ig;;4~oZ13m#$v=1GRA9hHyc@2Y=d&o<8; z)dO2ij@l!oaz*H$okBB^nP+glTcQXZE1E`oQ8r=HV&O+^ZN^&EGXg((w%Eq zJkkwv@7|m3O^>%@adgB*9Taw?8K4l9^rb7O5PB3};!wdQnB{Vm*tRW{EbZjWIuz_g zGoWzCe(yA;Z?gY6=vsnQqPO9%$v6bLgSzG2$(ALr8$>SxvFn^R!bpWrJ0APiaX~qLiTf7s@PY+jZx%fJ)YS=G2fR9W75WX*c^#hWG%O2`$Aon^K zNZW2eU6X&+fm}0z@V*fFL5@EaKeFSRKXUbj=tbxY-`+yZFy}X+bon>E($y~DL-&3} z^7o_Pd1cTK`p{dCb&Rtp_=#Tiobl72&}*585~j>$g8W;aJ>ovp2R-(g-=`b^ zKB*5Dun6yk6su~-0guqX?2Q&IYUmnuSQFMdaeNW7;bU!JrH9o z4xJ0+%_k3N=}E05?B>xJAn&aMeuaB&Q9;laS1`~%vX7;S6*)T?dP^Gpn>~#BR1&}5 zT1o$FZmL{c&%e|%kjhWAM3So)w6)s90l&9IilA#Aj`k28dK*eBJssNRxoHi>Y*FKj zhx~!=`i&Q7@6OY#`xDLjske~E+ea@AQx_Nq(JmSO=wLs4AU*VPDej1^MVMG|y5%bX zn)vAfP@O#b;ct5~CHr%__}du45I-Y4e~KYLHbBr#3eeLjjFV_cppKo#>VF*7sDF^4 z+7YCu;$v}=1VwEM=42Rs8wrOBQ9bD3O}N$xj!Z9_cv|+M4Iu*NL5LoPn|sHpxxREE z)bWPe&yM`uB7rWPl0)crWkHt}rl;d6x)C0ZG>WYP84h_ks?*Rays@rzhQnFw>!?c; zer@5;^S=I71F6c0ETMD04kO*E<|=w7SlhVDxraDOg>(*@lV zJUi2~kq+%r04_y}btsGS8cX4(_p2W^Xl{+-07nM_;Iuy$Nhw0iBBB zBxNhmyr^dy6$K)$aHV+n#|i}hI5!BRf*nohUK~d#sE2LEDuTZu$$LItpwvllgR(u; z(TsembCjI!Kq;>5=t~c)>*{{^KkANdhkFwevpsMxkRyE+9f? zpZrKi4XR#SSE;uDijqe!MmdtHYaNc_>U@QNwuqppY+OK9w{|@*S`v*VlZ+G{=#+m2 zRowZm7)K2CPjxBj;GEV$RA#U5DH6iX>k1_;tE*QMx3lAMjwBkN#)%ChYEd4<`Z^v- z^`7ZEiB7qfhNrBBPn*(^986|ZOjpDeG$}ivWC~y}6yUX|Jto+lZeUrw*CEvrBK@GqdQHV8 zJ|fnv>j;ysn4m72p|B2-N1f6f36@~8v~c7~0akbJX@E#;MEYAJ4o zhzYSGkl_f!)>RId<%Dy!QTm$fI6Ac!RUVv)-FuBq=nY)xe5Q=q7f=0}rgxg%I@qPm z#GmTqm%j+sR@ALs2$j}{wM{Z{nULk2({b5PG=QrOYt1ZPZJjLoyS3t&+Q7_LXF2C^ ze3ANMBS$DzZ_E40HN4SDa(hQCecTwUQ5D+h;)r8PjWh^+8Rk+G@T}RMBd9TSbMovU znD*_UXUfI=DGN@uPDf7S?*ngmvMrb%Ylg3$ofNuGdODu=zt!APP3qZG?+SNLFl z6PHF~FJPm=A1%S5Yd)thSbzp9`?76ivgZOdqd*7pu3HekV*W=fC~ZJD4gw<`K-t}e z$jiIC5jn6ez@O=%6FHWCY76&PwWpvP-P1tFcD{tQN4IT=bs0D@dZCwyI+R9kL=SuE z+Bdbi=ntCq<&D+32R3fi=);*0S%*wW+zQ#7?$t-QR@M>YNMK(@*?sjA@T~+@Izz_R z{S1=Fu5TMib-pjf_|jh|!z*SPxVm1S(>90}w?`U(@Bogbk6KIe5LJZ^)Ioh@hElhw zc+y&XTW?zYD;7jr4Ptm|XNjf5Be8-XSAZt2Gg#DX_F#Rz)V0Sb8eXWQEm;mDEbNS0 z^&TQf-yfnUb?I}_P+pDuJsdS@`ZMC!-#nxLwNrtXN%UYitdU~!;A#^fDwR(${TxZi zv$@1Pt^;%h8N8?d^*(w`TrW8UFVynd7^ME(#6)iemd6@Sk93@vLP`cgAHTRozHdV2 ztJq(?0w3GA5Ce0KY>{kDzzsbPzC{*VMi0$G>sF+o(KyY!`1jIaODy}lHpd!8*NXI- z<|*tZg^m=dn*y4r1$|KH7=a^e2AB>e7(P86KGcyU%~fD#X<;y1ZA3+f(La_QYwJnX z20KD5GmWTtHA@kW4@MX^*kC06kRcX2kq_mA6W$9(qExI)^|>MQb*XD@&NL)>xFb$F zk(p!DUf@ugRPJ2-M62iZ%R5BS_p^b?TmpH|Jd35}QtJx}uU69xcfTZ4J zM>=k!bmD5(G){7f#S;J;eDvZxVn$)H(4Ga3T)Y*{sa?SRr#c!~p18%t&GjsPrObKpAkV6o`F#C3rE5D4m~IWjCY*Oy(k=a4vQIH@CrSR;NA4#+zilq+ze*13N@n%ftu@**{hRE zvVRR@D;zyF55miV*sTCT*?A$2rdN^m1x&f}sI+U+5BghhWTC(Ju+n zcWoDoI9%azbK&PI=5n)>EV*KT1aLwKi>$cjD8Ex>nvmD2D&1I%T^&yuthOzm2-(=S zcs53`cIC2PQe;2x{N_t<&z9BQ91Ur&pByQ*$`w7Y{1sW*x1W>CVj}G&XwC5(rR(wY zqWxcVq)NjTfrlyr10aOmjPFb7FFD#vgL92@j{zLFrPMdq+4p$$7c6kpkya>Z%d}{` z`f(ne>#Xeh7}xa9z@%fb3HCL&u(*Qd6-TmkSb;sDh2<;1cV>3=rntk<>atHe1+DDz z*h?_jYhv(;TLxX}o7Wr}(p`nYZ7l=tFjWTWbni$fWtMo;1b*EN&ZGV(ixBl!!*(R$ z@sGakXh&SbhcinNMtI=%j4O*V>V*>iWXh%lQNf!Smo=K^8wQ>(aYRUM70_0Ul7mLm zk)`lJIc}kvJE3?#hAHq-v}vx`9u&0Psv1-SifYzHJ?y-ol`yN*>(znt1qP%YIOpOg zidAttNLb;>l(s0+Z5GmjJcL?UVN`#uaCC!1cURl>TtwUz5&w}`isaG5fK}*K4h7Dt zfy4W&-QdFAA)PcL@jTYt5*R3s;_|k5szKuCV$se4R7j2%aN+JS9~&|Etj7_P9j^nk zuE3P)v}S$25AppE^WJcDk!rR!_MRH8`AkJqOP=JtxW-XS>aXDRQE}Ll(Sds$0W`0$ zOE8^W3tl}QC#RdIKo%nC5$$Aw+2fum=Nc>N36a9 zh#xD6A7~LFUJxCs*tH6k&FJDu`_?bxBBaJ?{3ruguNmbei4;$^gZ#ET0;R7N$S<{!*bWVaJd1mE@Iy}u`WiW!qb3fA{+&Yz z)s4*arIQuye$uZBhX*DO8!vVZrn(V%-W0V99PXJo+%a?DbC0aun0v&x6-^n_R@0RH z!f^D8j#6Y>qejBpnl!?@{>Tr|b-F5OowR5;zm99`zj9#X08@sXljjqv#1^h?jO|T~ z+L#$}=Lgl-lAc!>&CoJZ6&^u1{jq!TSrg=Bw~z(&=_g15zNbLGqlH9oR@%_}tFHcZ z_)`q5Z<%m6xNv#5gRyhh@8dFB?t%vHh3MA=AKLVd8iw;80AGu>(#2pR56Fw8Vf)aQ z7fqbbDV#LOTq!T?cT|-E+VQre2PbvNY#b~}?275nhCDB7-oC3RjXi*Rc(pUOZKZai zZGoPlypqQEIPT2L4_0FSEWtx++)iUJINYtYaQ@$UJ|w4f^`fFfV9~(DBD0;-4{*T; z9fnGVE1*NQplX2RP5Hm)MN{FOydZjd7d04v1jvI;$O9DN`?hm>3ZD91aMY0?txz~D z({d;qgcatz&mB3^ViVeH0u8qa&cBSA2o9uNR%aI)?eHn*pp=5Digr#aY>sQ$z%jO$ zj+r=oZqNi?cc>*jQUHF@0>G{dr28g-yGn&`yDAJT>p}I8BYTrTmJ5h$V%uw)iJMsQ zr2I5${tZ+Z)!x|t)!K{p*C6sn>Tv?|oIHWpS&N9PSw~78OgL=?4xX0h%KKceJaszB zX3~~d1?mDVDmq=h^nwX>t|Fbr_W2I-E~gz)mX8I_2U;8)@=?sPa3+@eo66`?yG*d# z&9J=EeXNcqn6Gd(UUk7n3s)99uAnwe9EiTehvG{n*z+z}?h`PIa-VRgwFn1KO%@L= z@{PSM0^}GezJnNxH%!4D(lK~POU&jp6Z=T~LK_EuR*Jk!s}3UE%3&1k2-Ly!-5umY z=bdphvoxoS>$*8mQw}VS1~+2MBoB?v8$Fu|bj!TXR3jDGlgdZ=(l-3~ps{cT~ zdlASd6y&enAUCvpX~a9K$KwqJCG(gmT>On6#={7g;7T(jj-#WIY!bvlX`L$2X>ctQP zZq7mlgk{8b6aggU=gRn>_#0Qo(<_>cM592trbLP|YTZz0^mxwFtc>L@WpHzQ<|Y ziR(Jt%9Qsq0?V9#y5U*tpSlH7(QQl&%Z%Wc-GaCL$uU+6?IgmbpiaWCa$yUv!_RPG zgGP0)MK9lhpYiWxbgn*~xO3Ht%Oc6mcQJD3D6q}7uoyQgGg+f(!>aC{wCrcVHZ{RE zGQsi*?9O|bz>Zg7$7o^sZug@5j+W9$6WA~_7<)tFaJeH|TBCrG7K~+TMb+n3Le+cU z!iw!G6YO#UEA3FM3WmU~YN=2(x2hSf#q^lpi?jA2>UzGD=wj{LSQDi)96~!SvE$E5 z*W$C-o4+Dd8(g7u5rH6>u7+cqV*iLzoa%V1N7a&cJ-ldE5wu2&SE1_QZU0NDohT69*0V)5-C!dpUSa75xvUd2jlwu+cuK zS@x(Np>%af4?ZZ+oB$z}9H5s9J1_F6rlqtx?FdxKcQ3{&RrxPHBk1o*P)f7}VO|Lm z^yh>0^t@K}E0oruPl8qYpsZ5tDXUnDtaga53V4zxqBK{l6icPjadaS5rS$eFZAvRE z>xlZ%gTT_-bljsfUQ5Xt_w_7|qkUm2xoQ=Gln!S{Af@J?0Me89v(Dn{yBeVu8&@h5J2Z5^gw*p zF~z^M7JVG40;OCA(0<$b%GC6;USTebWl;j-T9h7x3$r*7!W@rQF$}^4y>QN-zL|kl z(d{t;kk!EeIUj2T$)r7Tx)vBkM-$xiDZYtieQ0S6U5{5W_}Q)XHKCQVZ9SBI z%tsP*Xsg|$@n~dISZOu7Rb55vHx+N@E=vSjQ5CHG?@bhy@vWh+439e3RK+ju)=)|3 zd0Ejs;iai`B1uq1CF`lUOL(IiddhFfDivHpBRW-65X9Ef6L7_^iiFPos-+UR6hG&S z9w9V4sx*Yo)E4wL>*(qEw0vDOx=N)Km7WKNMKPt#=xU0f%1G5yaXa4|3p@9&t5T_U zj_jSS2NpCo;Cam}bp?HTnx39##tz4qCQ?YcNzYNTj5_+h$y?;R>S&RK zOqEh?k=pb$Q}D~Lr{~Az{i;T3l2k8WjLqr!Vr=HafEreMQ(*&~;>h0DyDDY>3@>ve zsnkbG%{PwHwe!UkNb5*hRBSsdhZARm*da)Lq%Mt}`p%%^6 zz(5aNt5a}Zm>K-#H zH}#)WOQWP)inKpyVO6USpu=?$j9xQAUNJ-R!TN3*8mw}GXt3Y{jil(rk{QjaQz-Z;Ak=`^3_=X~2Nr66SnR=v8H03oe^^;C3kl$({ z?}u1@Y3#-GkrelFpHQmyk{m33V*>xm3~p&!Iz{?Rf&4=Ysm?C4q~A31uKYR?23q3Rz<9_qtO^o zjbdYr(b#*}s4@0vniUJTYuCiYSYr7`V~g?kd2jdb_HN1VpU>XBnfc6{nKylQFMszU zB4bXsJR&(VyC7OhPUNv>a+FD@f*F5^saY609;@k<8#b^mB@KWHOLD71%3@;TQYS!IPM77TLlM90T|m?EqFVQDR{2XWO?_Z`o>(>1g)#-oS=0z;0O>rthI~7grerm z?$}psixHt?f_qmJ$GqAX_N*|jUhT50Nz-(`DMmibLw!Z9_V|yQi6)kDtZ%e5Cc)8U zd3*+2K{4N}M?Nw8MRo!FB?%p!Nn3NGEhExB5pGy7G}}$41lF4q;GuYN2b9)zomVyT zqDS-|UZD{)7DLN7;oaqL;XtkX=BktEW)gn8L9bC~Z#xeM4uAWVK8wRPU?}4~Eia^^rmq zsh`f9m=kZXD4o*7OT@l{7WCh8QZEyEcPBZwS{Mko+IBE$eb=1FqR4sOOX=qKrJm$c zW0IH^`HC--uoRj!v<%eXOHYK>3f~;J0oA;SnQyIue^A28FnJS z#MI%KiSMwk{lU%-L$veaZ|~=*KEet^l>Vou@HFQX5Kym{Z_&$fiCh{4&^^ zqJ#R9V!?2G55|p=KXAd?uSm=;f-je_zgvGFNYZAKL3jK;(I--SowSWR>8c%C5jV$I zOLF4F*A3kG_;B)Zzw8>)c%5{tJL!rf7&$bpCLSka@EDaNb6U>KzA0edpfj)iFXr;% ze6yb3;`Vu1BLBhRsvOf;;Yfq+5SC)MLw2J>WOsG$Y8#6i9klP0L=VdDC_Vp3>r9^| z;Nv3vozN%5X1sOq2tn+-&2;2?c5rqrsZbZK{%|>Ne73e>2MYaa-MdsY;JzRAEGe2S z!p52(g)#2h`H(>0Eb+qlY}|WZlhvz+C_NN&mnc06T#<80f=?x#No0K1(?{eRhHF)g z+|#L_b2@B=Ra0Sw!}KI%wAY=7dq#2H%|WEH43$W zi0{;=l<2z68Z{T-lVG;sPX1T^e=cYO`FR7iCKds990OuijW%s^87My6P}{v=r9O zSzXl8Z2lC*D(id$9en&k8_G06>TjY-a#C?-i*(a6TdujvlSGrP&8X$PO zUErfR{=s~cTl&(Z<5FG6CEc|J2k5yOjAeIY(fpQnw8t&rpTb$CaUSH<@z9+s z`hxzZNzrRi=Ie_?%3pCcibW62MzKts5ZQ9&FX3fc8YM!g*@v&TH2PcD6#T5IqHFp; zd}NH;9NS0b9$GU!S_bw}p@)0VS{B}V&&n6p+hSLnT4$>snsFc+);~01L;(hh;Minb zKKT+8#uh!?Z6%t?qw%_1^j6JQcnj<4a%?qytkaG*(r#Ok9V3k}@uZq~aJ_G$v`(j3 zZKSx<1GD_|yRb%kcJF>!;UAXl%}1irS0>soO|(2NS6q$W^P20J8`#ezNAtprz?Q}tSBQgD{kDj8RKzP;jOsX&2DcU$q2${zc4E24+i zL}3_gRAqW-9pk?THKXE_?exth@{6YhY@Yac5G1a*Q{`LSF2|WZxZM7YqJK|^m2tr= z+MJCKvVMcjTf_+vd|{yRUsrJ-G83OKy`T)#)D>SG)b?^89mHPl)SiyspC{kDw_+3h z;`2 zk_i$=wqX%7Fh}zKCUX9M)8PHtMJ>xTa^X(Sy9!+CJ0A`75$z9Pg1$IM_5~((Hh%e= z?0OcwJ4B^^%ANh+YWNIdwHH@QiNv-8s`5Q_OonqRn4>wfZ}>L5n&pMY{@k5C{xw#1 ztb5eMLHJwmL(u(6j_i*d>^$8-L!ee=Nz$x|547iR%WCLRnRf4-w?@KyYrXc+?HKw( zd%O4AHF`V#PG`Z<>|xSJz4fVZZ>`rxv;cuKBVTc?h+Iq@J4UnM-tHZCdnDqVRmX{a z$1(p;*Qq8MsdxwCZF9Ml815tI*CwdrO?+cn&uD2>Z)ZdO8K<~szQfMaHl25~k(ZA| zPJf}67Js+JLH-64=iA=CxgAVEAUOA-^#yF(L^wBD(c^|EE5VxS< z@5S~!n;j&AOSa9gb^B3$+-s;QlSiXTpSWX~etmKVTRWq4+B73={Mqd0(l8T`Z04cu z@0Ibx^N0=SaF7;w1ET`J^z{k-;%#=;({CW|*PLGPM`1DXJd9|WM$NB&O@5!Pz4~QP zk4OA3FJQz!r>l3`s9yIhY$E<>Qty;mJ=#EDb`h(ww>r-&BM+Z>lz4l!vN(PPbCDM& z#^)wR{(I^}m$3-1l&IB5`9wo~@Noj_Bd=I_1*wK4x>rT%L~SPQRu#9hvm>O=I%7v8 zBQ7W6O7`2Ubu=C0OpNU`MyXLBZN!D$u;G>Hqm8&17P$Y3`JzP4`c^DNgUaCO#tHG~ zNFMXdimP1bnQN_{rcL-wR!`o9mo{5*t;ANS&~OBDnOts8)S3fGS*zLXZY&nIH(cs^ zeI0X~>$+AWVll&1OxK1JD=f^|@p*!h;*sSV-h{Z6hNI)=*tdRV zDy|nuMsHS_?#GKAP4g5JX)UrmMa?JKb3o&Ksr>2f>^dUgsmn1k?nyqg&v8ohb?u-o z^cn9bBJQFw#y(@JyLYoYi~7&C8HDvYW)OxbIFySQbJ}Kwh_V0U(9eI(?j(}`a!GDn z&dKq>75`gyEwS_k$HgnsTHZ5rr(*e!H(15Qms+~#Ub?2slb&zmvTBHZe{)=Xi=?Dz z{|AoDSG>}qJbmRFg_FyAgw3|#SHp{l*N?D$bLq9FbYCRA^D#D+;T0&R7EJXLPaoq# z&AvA-8Ts)4WCYCh#q+l=d~L<`cbYOa{xK=jTkLF==I8h6;%SQ~FV+?@{lxAM7{C+7 zZV#LGp7d&di$3Zl4hPcC<@OODo?zb5i~NmSgxyJ?ZxI?Q$6mk%G83|b@gJ&8j!#EA z$c3ZC#jf(HWyJe#*nq^xBVE~N{y*$RKFX?XIjk`sG&1ws>81b5ZfV)?&bRkJ`Nrb% zGb{PKfy!P2jV-^rGu_FViRX;xYUaUEazA$g(WUQ|0(h%A%+J;g6Vs%8wpM5$(XX<5 zVSWmiX$9a%(i}^(x2PGJ>Lcd$%qn1Mt`SD*gmx{G8#v|DcZ( zXblBKdLK+!w)RFEX<8b?^fV0B6&#sbFf%3Da9iQ*>*v^v z;60X`S~jk6HUuIUToP+*X;E_2`ifI)%SG)sW`+S0NJ&r29)}G7>9xb~b|7!Wl}x5l zp{sVCpjfi|bR;m@p_yZwM2bk(#=yqO+8DTbr~M}6q1@Lhim8h+sy0Y=9|P+$d9+kJ zSsNQb&E;5#-Hk&cEG z$GIy~xW85l0sXlaK*}FsEf8q)6MbVw2Z=i?Fz3pT)s^e^b-w;Q7m+~977k@OyNC69 z_~d_@J-e>erG)<4^dbH){C#mea~P)&vGCTj?EFH)7+uAYnu;RpHLjfSm+>jO$NG{F~{s z6{GY7mYWjz!ju4?=(j0iD=l5n6F6&3fd44~C0tMX*+lk(Uao`tYvqa(p>h?qO52)> z^+AS-4>!F0DO!0JD2_c0zRZ&^#l7`;r{vK3LQ}MQuaTm)J`nVhs;0PCb0ubrmddAa zbHm?vj=;f*NUNsgv#_YKcsRzeUEQ=KN_Dud)XoL=P3oa0r3NEiw6Y2hTw7TwUoX={ zvAnNX9f=R@#$U^hty}>COxuzV@_D(=96#079jvJv{5s2_?(%SLpO@R<0bSERjqI<< ze{IrqH^La3;Z?olY6V``1Z0eu+K5EbK@&l4UO-F&VJO59Yq@~R;?Ku zBtCtFnb)BliNA3Whc(0GZ~!+$3qII|qSB5KeO70cavU!4P_v?BR;ZL~pw=Y)x7y41 zJx4Mq{Z`|CHNbHRgQMS?wymIk38So&q@eh%7BW+2pnJP6i79u#O#K);?loHf`1#@ zf~9vRg4a%hF#XmI6a3T279@oXa@b2jF|08@2~>KJdsUY}m;v~%+>^$(SpUtgT_(;P zBW#7RI$0HID@C1TK{2n1t+55WPEnYk{8Z20H!jdtI}Pv$)J<%i+-cG@nx#Zj+VX{1 z9bxNGXjvq>W1o>pA15cJjUGHab+L@UB5-BR{C`<@Fl(vH#N$0IXODfxx)D`!nHvPXz{h?*xsg{9f8tZct>oa%O<1VZf+)CFY$~+(iztB=yQPOGM zW>(I95eo{>mT0%Xn5=O8{}yB_$E#l$#<}3 zr%1D)SP)~YWXUV0b+s8Ua(c2r`wEpaHkeNEhB|@Yg-vhb$5y?Ia2VdX!y4J zd4x|JG?`9Do{4R20eFH`16Sh!G9e0Yb|A*pOXIo!O4+F*1?`#7sxG3VPMd$yAVwl&2>Y`6Q zo0oy5HB8wu!JXyfoLPAM=+h0o>?#ArU)`|PvBI5VnJWd`5sH_q=&@Es{P#qEzS6#R z!sY#}hb`QqGIyrMzUt3rCW8@O!qI2Wwe-p!Rj;HM?pi%JX!XRclBQm?g-OMSXtP8M z7F+o)p~VCZaUYcmvm{z_k3TWd)<4dkQ5Wa6*ED{ zLAD9fdt==4gKh1lx2CwS%yHR-Vr5%`6g*Vxw2|2W@kX}wkV*}8ug2mmiI&{84;^Z& zEj2e192#nCC`D-mT#vox+UpUKxdu>t+(XVEqVlxzXpcQ!5~f&-^;|3%>RJce^3G_Y8`Kd82R`mwNDLln zi;=!H5gqssqPe3`{C6A_A){@{(oIwBYv$O|8<2?$i%@jAhjDEn6CD?0uA6I^dsVzQ z$L3;N`oj!+tElMUz(!3WvH4?6S<9J-f>{zRxtGR@&Yw2bOQVg02w$M>A;p+Dnrj^R z*ZYvUSo6@>Vi`lfn@J;wYPEZHzqS*IraMBKrV)xA2QHQuUFX;u8hWaU@Uz$H_^i6( zyGhvnSmlfmAUaOQ!j zF3zJTXEqm+3vHg#??#5qsj#eHO)A_mtH3O_?3rctvdo*RH8W&AK(zS8R!j0sb+6mp zEQyv3%3#?RE&aVz%>UF@T1=X5%P-YRrR{+F;&@RdFn9ITyyDM4XI9e_sh%nd%&^5! z`Qo32X4oR6DyBp#=A4M7ubB5KiYL)PFZD_lzB6H!cshB%nrUk(bvN;L$(dLBV}+*t zt>&}5bv5T3)0mqo+Reh?fu}Q#>$7alC95fong5Z-7pt^1R_>VPEo#k1tsOHYk^3-8 z$!F)RTH@)O3!c(pV?ssdz*Y~M658)fi2E!UC-+(7hG|y)XG6pO_WY2nuK31h$Qn#~ z;+oix-2XL^zJm$aE!^H~S@3UVdc1;SXPPY%f1-6_jmu=II15BpeZeSTW($<>3>F3JQ^uJiB)56|`Q;U@gZJjLGvvrN%H;4F+ZVN|K&iF6K*rF^m z-Q!O;#829TH89;Ip*8l+YqRU>x!7i43CzSyX|p>EJ~F-m_K3J#0=~jl*>ctpYo4&x zq<^z>)%^!8ZTgt1<)mvF&cABQBcgUF$1E$meax}xB^v+NpG$ zd7~}1C@IMlug?f^F%oNZq)l%of`$##RhN3=_EuX7%r=~K^Hp0pDZ@nfxj_voi7MN% zyx(hxw|Tp*rnJixZ#zq(r7gN1;K@Ocy29BIe=(5eyJo8@-8PZla8qXSE^IhTBefA0 zEh|8j+KnOQgDK)akZi@vLLtlWppyXO6kDR+5)qjEa@O#2%>A#~Z_c(0cv65x`&#qP$U z(FDWR*syY0J)~NrG(+*3h|iN&ALU-BRp4zOrpeMB8yixbGh%?aFkPuDwKK(T&5~%T z2RD+psOM@O$Gy*0+>Zts;T_6t4v=Pu=_^;c4< z(T*An5Y%DeKS!r2E<<7v37Sc+(Yc!`Cq)^fQx}5^A#TwdxHswlrW;cvVtKn-bS*L~m z;D~o@y3!Jp9XGv>YkD0S?P{F7o%6sE*CJgkB>XPf>LPtNf?sncD03Oc={tsN1(9xj zXA2a!F58l%ykp#(mnTc2CFo$cE1n0I&PE~Ba!}y!c?yYr*%;cYn<%OvlrjHK%j)2W z@2jA7wKqj=qos})Xm|hXm`dwbHPR6|U8UnHQ{Rw)TDe|72BeOYPcSN>)gV9GdMb6eDOEF_~>l>q4BWi%H5#~hJiN8pp z%GORU`{FOQd74dAj>!u}ZSnMEmM1>bH{vhMm>v(-4;Ap@bJ+h}X0XM^y4KAu52ZF< zwy{UUpX}yQ8dw^0G{X$G0SmM_U)`||>*S7W$S<}!I5~Dwy!i#&sE%spEz%V)&G?|tz4S(-6cth|SA0#9CiB4Y(b|w;$O$iKO@T zsB<3Mx{0d)xmOXAw)>B$)~B|(B~KJx->_%4&f*h` z!WlebQOp^9l(iyEpLGkdAh)8I%wNy3AGDa$Fy0Va@E@uA{bftGd~1k*`Y+pH>3}Kz z*Z&dU|D|oJ1uxh*(tr5UHdDH0im&`f{Mc96)5tYW8@ae@AHK4+k=~mK-u?%H{~KGH zRL)3n?G66DC3u{B7h8%Y=Gw0D&elqbF%q1Ahx7jCCW5H{Ab9-`N^G!^;Lv;9aA|;v zAlXd7n+20LtPI!ZAajj0Uw%NhXEo8xG}Exf=i9R~RHxZ#q-kwY8cEwsG@G3?+-%Y2 zxY-^zG~2RA41Z12G`Er<-5)3J{$$f{EZ);d4c*OM5#XyhUma$>sI!wi$5Xs++|fz7 z$GcZfE|x?~@5ecMIgT4XZ2ZXchSeGmRd$y+HVA`({T73n^Tr<86? zXA;uclCZjk-cBbO5}KG#=_HLeB{X)t>)L6mFSa^2>sc@1r?iqbnBuI}m0LBQmra(j z;zVhs8I`4rt{<9ey8fA8DIi@ps41!AMQi~j0S9N!f_Pg%=^to?yNkX7 z$atO!S`8l$P*Nmmf_n{r(3Sj0SMpNMN_N5Dv`~TWDg-6#PjJ?mRA&OdvV=0jlSd`4 zuET|u?oya3v6>THOYx^7N`EOyS8!&aGDzxUiqn%N(NZ@YW|p?$4?QYsWoTbGa($o0 z7oJJIaYdotB7=IlGbZE}wf3y(sJFljqn5LaDZQo7O)1XSQ*^JWH~6$XCGxm95;QB844wh0Pq=%+B_jQf#aT!EoV6c~h z(ULr_w(`y;cI94MPRuK#c#70erJ*)+C^=F5Rt5%(r&GVF!Ad)P>*aa4Vw{*@c2HYs zpuIfDMH}8m%nMO4J)LN%^fnWPe_3P?PbcB!vdVa|JzQyM=y;kFU1?$eCn4@UK9o~t zNMk2zW_h!`G8;<^H!adg&2LoD(9(%L#&SKY%+F$pn_g`#`M(^&)2VahhV z@i48GV!WLhHOX}ne(UktcrJa*3}V#>fR5oxFU)f(uED&fkf50~5r5cayp}P$j?&(; z(GWYduF{DvkhsQP?TF1IEfk@VR(RJ_noEINO&Ui&ZVr9%(KK`d{tX%}HokN7n`?>X z{skqqz;j(&z1#W4SPUx~DBUc#-IckaDT7XjmAN~Pm62{?w7|y)M2ETB7lgP4WmL=x zk}6HsW@lS76@9*5UhHn?QnVqHdH<^7kFNVy3lh9dw~{v{c#DgNY$=sC!_%~ZH3LGI z4Xmb|ly-<3B1R;lv6j|EeEH+W62n~upGsMMq~W@@KWAo_w+wYxbTEAFi)8z0lQhp6 zML$cJ!|@FDKZ^v-q)#V1>px0Km3A9r&Wcu|EIZs|ZZ*fG{WG89>xT&c<`_4x7&(SF zSH|Hz5-MIp>gOFC_HLMKXIa?#cEZ0UI9|DMv_!SPU=G8Q>N$egb506Oj6q);G)1dg z6jp%91Ea+?rD}Gv^e2Tf+^VMQUrL-N?vsuC@ zk1mBtl#hFDXrP<%U?XSccG$ET;Le$>aT;rcNZPhn%1U#M(Z6r6RKZc4n@Tftj(#Rq zsUz()M(-AX60fDCem*8H6<@oq{7X}&T3$!^L=(p*z~YtHdsc30x1J;wMednjF`ou>HPa*jWA*+%?7X@8ri z_(aC)oC`m(7iK(_hA76X8W&8_`NGB6-bw{gWvD&o%ic-yw$ts_Rc z(WpQ*r*+Iz*o|{NGF{D}x@G7aP-N<(D`!PYO{Qu#aeJZtMr*^V?lw^mVT?5ryj+Qr zdO9N(6o==*HoKW3e#DY!snb-~Dj{PMK_ihTBwJ9BC5g==T}oq|78U+2i{HHlevY@yjqh|c3xtF95OQI#OX|4rQanj~8;?|3e zo>I7xW%^L1niOhcsiCpp%S@JO_TJ+m&i(P5|Ju~OxC2s^N>V=~@xoLEmr_i`y>#ME zMApnw&%hZzRU6(1tA;nzd$-xrQXES|C%#N)Z+sP3%Y=z|F}#fy^yHH*)%jYhbkG?w zK%~J2r2VGYdo{JBUD!S}UgQ64loBf4FcSEWR_aSvO$4@S4wGOjdOI4cmw${A7mUHC zz#CJG$4WP;@+a;_P=O`U zMi!oazZ}0cB(HX@IPMc|67C^iU*RpnmUax*>G4Iq4C72(iu**I9gj0JJbC`g3HO+Q zE~}j>;nrHhmR$zBS*+z~0cWtW$hc=X*K1X5TdZS;kh2y1z}`zNHnA`G#I=sq$+)Dv zUn>s8D<}p`LGA7}#oMK6C2hxl6dUKplhT!%maB&N9#gS=vYFyvcE;y^4|;GvIPVk9 zVh?sOoC8g$npF=sr!8Nij#eeu^h^Btr@PltzUi)+aU2HG?Gin*cEwk!VTxRJx)|~5 zQZsRPiNfzavd!@g>;y;TW>UNE>C=)}P8-wF&uU?H` z7%2E^Z>EW2ksAdoUv#$83h%u;(?2*{iIonTBJbBCwb~F}o)o=*%LSx@n&t56dP3%wHDuu=&dc}P?DiiUvVF+)zTUNNtK>dVe z4H~V_3|ITY@tlYFIsIHEy=>|kh~x~VKJFB`5uxgJBA0H6#w1I3Lu?wA@M&?1ZJ0nO z%y2a+`Nrw8+M;y4A@2A^uzJ+AYZgXnDW|z*;p6;g?6E;sA$gq?=xD0!j6+hL+*aD4}@>01^-CJ!iyp6*QPgGhu;{=F9 z^T5)~6fu$|(NdF7|HDS~b;Tef*We7yUsFt6{hVATGm+*P367+oL!4zI_|z>IFIQnr zvDFyylhr7gO{R$J^_17Rm7W_3ep!dr-xCwT zBPRiO0LTj0sG(eOVli9_p6RH^0Fiei780dqx>sg#mT;Xg7b=&zN`0zzCW|&H#nR7W z!=Rl-&ZdW_e3~8wBdRXKc zns7Zm^2;{Ob%`DY9$xad^zfE9&?89BqDLP2 zC_Qq^%jn@H|3Qyn`J(1p;E^kxXz0WLc>F+*0`f}Da~?hN$QS65Tc&TKBFG-ib)6oP zOy9(W@Ekq7Dc_-oMP918cF`k`yj^oGqKB89L65xhetLMzhv-pI zraM-Mcb*;Vo|xQ?@G2*|>WzmdktP%9X^X+Iw+j`Bb1Kmn;QYa;31nlITtyi2UmU3IbBt zR!JT)8KNkHW&|w=VhCCjv?XW{NMVbm2+hwz)RLeTAYE=lKid(+5_BNwNRU7c9=YU61XBp6PC(<5 zKcSy92xbz@0;I6PQH=5U7YTVHAcYN#M9b(yy2}Z^0;I5wk$f?IKsA$KDIkRni{$I* z+gBR^DKgm;iTcu)Mfw5K<^I4FnQVzXO5+mOLw}+&B5uScHwkU197^jfsl*3_zZ3- zP8T&9r;D17)0Iw*$myikvTa z!CjuyMSY*sMV+A2h2GHMqF&MIN8O{-Mg64HMI9!&(zWuXuG8sBeW=q#ovG7By{gki z-K*0@{jAeP9j?~|EON-e#uEQj|}dIoi6H!$wjk^4DOJfF6x<`F6yG4 zF6yhDuJK0Kn7MufhYs(TIC^;Ufnr}{scbnddhAnb`aYbQH&=u@jero+!UGQ)+wka)d0diA%MTiC zC(?v&PXoZm4FMMk0vZ9v6I5*sm_cxgpn4NPzovl01pg59j{x*cj{%0X0$d?TZU=~I z4|qfHFb;6817K=AU_>WC=LDM4(ej7X__Q;5b^)Yz1LW%t*hFxw58!1Yz&i=hKN-+9 z1+ZcO;LSk5twA)4JUW>8XdOj-Cx*bI*>FIQv4G9v0Z%4S2pYvv3ZWQrlX#&;!7EIG z|Mqmi57PlPtrU`$UkLfDPI+WDe5TF;yvzU`S^(I!5U_p`rT^Dr{2a0bkVgR8E(N^& z0?>FRz;6{`5g>(^ag^r9)ey;R07Etc!ZraaZU&6r0*KiPIJ6CrYX{&Z!Kz(=-}eE& z*$;>~Ky<&cdg+zr;@?1alc3j8z%7FL#{e~s1BRUd?D-Cmd=ilVdqC&YfTIMJ&kz;O zH;`dkQj&sqG4jjn&H?&ep)lEi-w4*&0M8V_cPgOuRm%T)pd5c4u=@sJ@GWAbWhqg8 zaSx(izX3)*0lXks{}j;t8DKlX=of(am*o5#(B~B(?;Ajee*p&x%6%ZtW15yTbn20q zk;rw^Ex^29fC~htya5G$0M&f~A%1|f`AJq7aF0MP0(b^Uk=N@~N)SY`#Q>X20^XJf zOsW8=Q4w&4U`%DeizSMOtfYvrq-<>%GVn3JQgr24p6=W;5&kpcnP!k z3-S0lz7ybj0$^@uK>aR&$vpx02|D&7QhnugU*}$h6_h+Y5fDERaEW00AVA1qz+D-T ze<ft(81H40FCG++k7KY(;O_jux_{RC2Y#$HHRZq1I{f^CpyYbM zc7pUxfL8>4HUqvV=)MI|Z98BsfzJ-W2!cF20m^PbhdqG(1f}*;YP2sxsrCOFq8|GI z&%Xsk9wtxPE$N*O-!(@e8+{CL^#?%T9|89XQhx%>KMfdm29WnGU^79PbATlTqs|l6 zSDX%ZT(smWXTc}-5@4SK$oK`&<975`a9V z0pmgdqsjtar9Des2JH(iHGZG+=g1zz?kf zsqFyc+Y`hAx^@6e?Fd-c39ujmP@yZ}aW8 zLNrzeTp0%VEfsKJIKY|)C@_}7YFh_#f2={0csq+C{sEVKZ33XrM8NV%fZ)l1%=v&K zUjX(m1EeemY+sQZ<-d0&evVrWSh0?HX@)~o_clP(U^8IU7Ql|JfG>^%#0fxw?*RJ< zik|{J`5y4#2f&t}0PTMUB%cPXJp-6~77%bA;ClhEgCPAPpv9$hVB}>$uWZ148{k_N zP~!%m@=d_@TY!$g0=~ZosB<5%^AEs`hk#Ol0v;8TaI+y` zWg|djOMq8<+SOU7SIcLeAsW>MaJ@UAOfT}>rhER=8=`J~0Zozs!TkVVjR1I$ptH>mtB=%m6@%L{y<)1K3OyRvws{3kFNi-dhiaj^^7DiV2873g|Qf#=&LFhSB zcte!Jc3TEfe^`xNW+fnW6(AO~I=MgQA#yVGmd|3KO5v?jicn}HL_1*W@}6DTqLokV z#?LHle#*D8ODUH_FCw?V04(1jn2PN|`EP;=m=4NIjsWHy2l$@?^!pxA`$qsxLgh8s zP?cL^@R3_*1D>jYUDqh_EWLyp-GV6b4&Vx=aB`D$%#!30zfq8*dXPbXK(y!q;QC{d zBY)f=9%IfdPy7oo;3Z(l8^EXk01`d`vUAhM8KQF7y`I=h3oiutya-@I5a4WaK>5;u zHDv&mLI73L%K=+dAa`ZJ=Bj|sH35Zc0WJ|N2nA$>0Y=pU45$alt`E4<0N~je5Z4q? zAp-CZ!MjL6y=cJIW`LK?0Rb%mHCh1<08)6D8nuxwf7KSUFJb{}Iso!?1Uw@6HUTi_ zBMOYYY%&~_I6a17-yw-Nw5d8Dz$Hia1_UGnwi7h!56Bt-*fj_cCIikA+)M+E9|7bf3#!5xT_ z?~;f%MNj}UA5sCF)BQak!GGhQfITk&;jaLrEm))N%LmvKNSmZr^{}&xLsY&rU`=^| zf7Nv0>zaW6VSvOsfbZ%79!CK>wW7ES^|(W0Axez{eAX3EwKt$cKMEoA5IY7y^tTMy zH3Cp#0y!rE)=vYJngKX7lOmvvQa&=Rp6STQYCU@4*$9yTbHK5sfY`Nwk?R2)Hv_~T zK((&{4GsY29R$22=za(=@-V>rC}8nvK$WwU%p;w6#|@9J?EFG=q8}qqbawPOtUZ3x9+$Pp zZ0&(wkb=;G2p*gGF=otMNgl;(`MWbk#Lr5IglE#vN>Sclw(>Ecl}`a@@gbm<&j77_ z1Zd?GKr64qt$hAx<$Y)?FT$<72DkF!+sbQSE3a6syehTwa@5M}PAe}vt-M&Y@*2-7 z??{J!R$iW2d1YngwUCvM`>ec*vGUr(%IgLzPxP&P(r4v~xs|8QR-VpUdERQ}DW{cZ zoK~JyT6ywh{$jY4!c1Ad>7|f6&bs$#iGt%*(-oncLfR$Ucm0PWq zo1&GQpq1N;m79o__ff6f8mw&lRyJ}g+qIPq+6wa}PBK#~AKO`Z@65_JI!h)KoyA9X z>9b_A&{=$9H;WJKX7PF5EZ$JFvT@Ghv$|PqnzQ(%ZWbTZ&Em~TD_i9(Hp*FiNHG%ENADh zU*5rgT8uoeG}a@Y7GIxNA{~ym=auFTM~e$e8;4`@1tr?yxN$*=bvQz^l=cqC^eiRD z;mFD|1S@}0iFf!+yl4pa(?zA7!>9NqgU`TAO01r#)0C+#69E0moVm~rOm$@Hq_}oT zsjIV`6oHqO2#2HRWhLCHZ(!t^Q;fm7H;V7N0w01a# zWgFObWh+f}ZBLT6*De7@+U(kHr@cR|hHi^OHYGw2dz->a*b|h?-nNJBc*hZTr})^W z)YDVkDZaKTO&yNcHbZs+NqQo^vA?_3-t|^TR88pi9!OqYT zUyInSDpkbrQ2}|p_0riXUS3lw*3iP9A?>@>L0D&Fc~uuq&6~DEjkYE+spB)8Ylg7U!*DNV^y~rw2$QXG#1=`zK?0le<6VC<|sc202BzgKZ(GosB zp-6tCXEoaSO^BdmYl$fDB6-EXGm7LhDv(5*!CL_a1(1XH9ffNtYTj0A84EZ$0^*Y*^|r$rxb%9^KD2);izw4jEuz)oRKGwU zajblxZ&5>W1=B9|J^NkP)|`k0)vVhz5BI;cU|mkYk56> zrDRD8lusP%6X;vWC7Ug2|NEM_dq=5jO#d~BhsW#b-;ISGrTrM_DT22FvK9vVx|G3# zID|ed#@|(%8Oz`-?WiY-vv*y&(?Ki$jqP>Lo1Htz)sE6=559SVm~dCYdjr4V{m25p z1^QJt<}v{k@*g_SVtGerIJF|gk`Ma^;^Hq#w4N!Jq<2Ax?bwIsgwZ$}+pUkihjoMZ z+iqHo-J42OHj;N8{CDYnvcfz;g^JkAnqwdB1Mho@ z7BQlxS~hcWP*D-QGAOTWm=}o%^Qx~FMx<4|SW@)O3i8q$Dbsk-K|?~aMMV6glywC0 z5Vc+f`53dCOlJ`>IE!Fqqq8cO5>fs|tLe>#sk+cf#oPg6#CtTjT@8y?M~_l8zg~wN zVmTdS{2{viu5{O16N_IDg!mi|Hi#R4T3M)ANo1&!!?rlkP58?zMeu#4Wi>;^96=4p zgNEpF<=6P7*W2e*Z^uQ(eWi`AB}<~|oTSZIYTV_-ohAW+VpYV&ymkxZAl=6z$Wjsc zhw_nLR4m>!9^#u5ETVmYT1&)lFB;;|kp2I}k&C=Q_&iW5RM#}b?gy4olOcBY!?9D~ z)V#6NfKB=-qUQsLsk3NXI)dB~J02))bY84Sbqj*id9N4o4PI2V( z04_th>KsQZ*sQ=LK+JupB}A-z;g=@eYm!FS1FNb zFCg~*mX3o~il>j1p?dYQcqbhYEfzx`E5nT9bvQDTe-RHKE2%~W{V zZ-ve9P2OS=X?fL9kri9AyvUk(v9P`K;4q`;Sgr0>QRBJtk(f8GlD%Bnv*lKJZrLWn zo+-6OT9=aL#MEC(`q^ukgM7OUL7s}|e<=fv3V+xR@x2{}n5+Cs*~de%ps28~1DR5u!?wQTA?+DGuz1 ze~km;4)Jr|{XZ*}x3;15o8qKU-V4ww=d*9%)V#4{hXZ(WqdAIN9?&7}YO%QIQHakSC8G)xyRMe1CRSA~;b{zUlR`{6M#hQ|mrB)j3_(mV?-;yG z;zJ(KH17(=THz4Y>EyE432|3anV^D*f1}vDPYyAZjx|?{;ct{d#*}x{L1(9vhKN~f zFZ$Wdfn)ZgW6<}fsMPRxq@zk#bIG$GosTvb=ie&5jl2nTSi1eR7AbAZ#cD2;N60tm zjM)B8Nz~g0CspYT(2e2>Hn#O?P=qEWos2Jvmt z;a?>|H%%saszAJ3#mqVYX7Q|d=@OYA6nodfAx@|WQU9v&qxzu$;;XW%eICpqT3tnm zBVy_YrH7IF9El^ZTSTyzPA#$qmGN~9)f~6Obp%>5}_ z$JW0JUrFs^jQSUe7eCdTFh_k>C#0ZW!W?rQopsk1cO*5%7_-?kh?hSzCb}xOYVVjh z<~9nF{6cH|&vL8PjkKd)z%x?R@KC!MX*;|m+P}4e%k)%>iKv3*{B;A2zPKxEWM&BZR+~ zI#@3Qmeiq>|0!a&mpV`%u37Bu1@Tb;@rbDJ%J#7j80>wXy!U!b;`t*bRQLy$t1PI_ zbY(fnNpA$fOCxi<)b7GiE$kWK1J4q^Vt8Iv)(eN_)qElM_mjkkHyUqUdk?|h!G7>Q zlwWKwiUz}}8cLT#oXJnA7M8@0cOY1m7xNk_T^E*s!U%J@u*QNQH3A(20(1OI{@sg6 zc<;xaIVxwD0vJr!A8sQIE85prt*191W_U`zX}Aud)k2G+aB8)%o@&7+PWY<*^!X}F z+S9FxrMNZ05oo^J!k!%aZ-SS6v9=_7{Ej(w@XzHdXHF}h&(YpF%p1CIF{FZ|4MTS} zl&`3lEc;HZ0N;`oC2{8kG8Hwld~xw_K*fT_Al2!H#S(gv*B#8D5WOcE+ z1k&IzG}|&J)S)^;d>ST+Fi-R|NT`Hyyl0XnxKAQK4bw<6k}H(e&7D0zkY{(XGeG@F zuP_!5t_|@?fL39DhQp~9Y}Xo z&Nk9?IKH`JiOf6|y^Qg1P=FJSwbJMtP_dHTLOD9Vu#U6srVjQZ!auB{ywX`6Pp`CrNkZ;=kXUn@AZI>1RPY4ssc?X24ZOMF@*#5cVpZ4~rxRjGz+&xHNy z-q2C}=?0I*Q>VLXah`k!iKoTXUPjf&b%OYGf+X&~r!J;_rLxBM!o1fK5M*L!@vN8{ zD@qqDm){tFPG@*l>>`Q$5;cRLDwVU39~`$H-CG(eR+Vrqut{`@$<|Ykg;YZdJ9<8j z_d5lM5<^R>UG>(%;`m+=ZvkjE>~ zT5|NAqae;Z+8F)#fyy;$-r(UZVh&mip>XLovaC8tuTU0GC-KeEl4wt3&Z-}()U@~i z?EQ|s|2IzWz5Odyt?Fny>@VT=nEcfwdksCO>tk9C{X#V~LhLQ44liMl#L(TcOSlWh zRXP`cm2|9XqFA;3l4Huo5yyOnVE4th<<&8IF|ha*iI<9~3hG3oc+)J1>xr`!)M-X> zjFn0HR8(gf#ji-bRJ^LFjx~xm&4###m{Lg{XH;083vuMu@X>TQ)tWD=jUS1hho!Ku|d?#xi_46UKI(0N!= zXf;AC7bhUrv&rIubQ5qEfJ#yH>o42$f$jeJ|<@7`*uEybONHM||$UF|J#`ycceFcw>N?;jZ2q z3iC!B4O2TB6U@5<;=Urdwi;&?r;+$~kzQMEWh@|%oe;0uOGQvmgg&WJK>T~UMqZb) zwe3cbh&_%VMeTdMtZCdH_^tkOhRvCLL1t>rgNW}{YO#wxC@dTVV09 zpCF!cS}$^(2$T{T2W$C>_zAV_%R&w}4?*N!XT;$;nB_ndUooXZEmuv3(hb(vXC#qE z`9_!`jwZkq-e=*zR9vjDHqdL6#hXZ+|D4#_5a(-A%?fyktOA!Ehf^G+^f?5XaZc=R zfEmHlfXn&peGB_8Cf|NyR|B=Fexk?Xk>??fx?r!Rj&x&It0i22!)356$$p|&Nw0jC zx4(pN>u{--jYurGRjax^HTM6S?%Sq|9Szm`#%S~D25y_*?a{Jkj4NwjymGYe@RH9w zvTO77F`Sw@~ae))>N$_ zhK&#Ra`i4oSA8#fidD_voi!rd&ru^B`!0F65knd~YJ|nz>2B~-FA>=sv4+>L?I>>c z{Xo8*#fQeKeGSFp{&bDFay~J%F(Q55vbLk$vu^{sUtG>t({p?K+TQkFfqld2;_*E{ zahDQ2GA`WT#rFl>NS>KrV-9Y3*>U{9aWnJ7cZC?@1|D;RJKZtit)jE22z+xL+b8aW1BGh_Ds-AT5Ii|2!*$Uc4ObT}{>^N2zx()qD zVet>DplHh2q@gZJy(Zs-fm&G}o?j=QOV)m-OVm?>GMj)obZTu+7teWgxq5t2Evo;b z+BkS_ciGD&h?TBhXBO8Aj)Ux)TidxM$og%do7q2?&};x<+$`uS-PwLo%Hi!H-h0&b zv70V}n*vqgn=0a)sS(D?n?m=>ABdIB)TTxy-_T9-qqW5D zc(sg(zf!x53)lHt@a-xhnyZbBkp|MG^on&v`z~sk%oZyCKk`m(=Wz;`Nj;^??yvB zUNmXxm>_WSR=OC!Pb_cg*hORU_jFahcRMQedZP5Z`kt=seHdM$A0#@&sLk~G1IHRi z*XjqwOaog^5F$m=2;N^(4Vn!wb0BVV4f@9o|u^?VX|Fj&pjB zn@;!i7m2T0sZET9vX*Y{PfgJ5`&o3jYtzV}EB%GLiaG7n;LMN0^A{QJ(yq$WW&i8F z#Emv;O|ddA+_gh_)C<1P`*6E@)>^f1Pp~!?dO5&9iQ8+?=<#VOF1*1>@a->R+o<8j zY8c%Q;s;_u8?~WP{DxjENEg@Js15Xq2q!TguNue?0NO-k@E|y~&K`HNu~riiZPjR< zhb3cVgg7ZO+Nv$|5@PXXdNtuns_-MT*>$gBKH=X^4K#+hmx>Vhx3c&cHCTk6ZRjKX z?lcUv+c=Z#AC4g7#O!uzZDY(?^q#}NV^BoF;@Q$h_N4|#$&c3`F6bsrSFUP$b7s-rO3+QFQ z0eaKx6mvvytlHWb@5@OL7nm$2#Ht;P@-pAN~bpeK!qaI|v{@-+p?dy2Xa*f<55-!>wTV;aL@iqQ)& zH@_z<=P<#p8T#{kc&oyq?e1P*fjf?+)XWDEb@8u($QvB^Zd3#v~vo=aSy8SE_uV5 zw_<~mh7NE^y!s6U3A(8lykWAz1eNG5rscOZ)xJ6z;TV3{cN@Ll6eS*aSEG$e#nTH< zU*998FfhM}b}{!;^deNb`ywP36_w@RtdhOOGGjQsA@!Ab+Cyz+Y=ArdfOynHX9J9` zA5l{rzZBsqj{F|s<7(5>5l;5~Q!n#BBg(pZm!!9@u0Nq}uZ-yXHlnN;{vyIT^JFz1 zJwceE&$Mi3^iu7Y1=({Fy{t9+FVVE6Mi3&VhBo&WQ*Sl%H0r#JUgui)+OBgeY?idB zPeJ`lxm3U!1d(U{V-MFx3l~-3Nv{Q+TEB;L@vC*Bj@(ed&+n%y8mCz zix)O_Y7-DbF6ikY`cfa{|1Ki0SXDmK)3s>I(u-!LyhQ#)wVkm8tKmiRydGkB2XwP2 zvk(zq;!0tcnyZl)Vcv<0iE3+O)O9At?e(rWb^tg?ok|F@w-OdA z%|Q?~Jf>iYl(gZ=gGRZS(n$){tg?rA+Ds26jy1aCXWt28rcRX+<|2SbR&lppOih;# z>n?fsts=sb?7H}-s6NILNvnboPpgQ40XS|uA9cmGAOAqUQ>uE1VU3}}ol`M|15^6D zC^@exLikk^M;*C+lA;C}3$au+gt#pH2dMT-$E^9UB#y6cCl#;6JrXxM844w-t!t6s_EE3)z?@w z)oLTe(Qqw9+Oe3tMUzG*4Rfud^Wg~7S5zCMwlwBBu|CAu;2Y$aqj8>3Hh}nSL#?p< zJGOFdb6+)rZ%t8iuo`P@1`#bG{=1!rc-}+Bw|I}m_>1}9$9UCpsRqyX2z0cQ-fzg| zK7v!51g)b<(9F)b*0vt|M!UMHxRQOYbwzt?XYY|+5d5_0DLY0)7GLWQasFOnx2(qM zGcJ~w?gjbU-uA?*Cpr?_Mv1)>RfafLz%1$77a^)8iQz-k+WMv%%Nr*_UZ9_Dy(c!d zaon0>?=tX_KNruyruUI7UNHjVSEKdh=SGTYYdk_k-=S)-UIiS=YYal26AOl_rF7lz zk#gN9K;KGt(Cd%W1Kt#03$XucR?f>6HjkW|h4z@K+pzV=IX?aix^qz?i5O zLdZ?Tf;2T=-@9XR`!x_JthMW%J~+08OSEKo$(=;}2uCyGX#HS?@}c!qprPWZM_gbH zqe^Gi!}r?__FT^22&Yz`kYUu^C`yfVoO7^fI~H^D;DcHW(f3Sjaj|QATn)#-&VhF0 zB_??nRvcV-b7REnn{lmmv*ZBB;U^#4V-FB7Ec@f?is4V3r24O%G2j620JtwYFtMbwc_ca=Q-<%bM^CXD<{$0q4}oXUs3}&H z{G(lT6u8_8XS6LT=gN06lzcZa+*}z+tDcXM*Nr?=tv3E+h2RwI!rn-Kbt+dQsgZLy zmv9^+_{l7M3wL#n5DfA7m;xdzjN6*7ndeU3EiUqGdmCP4QhN&oH^a<=fB-9wf5M+ zxmW$u;C+vO1+I6`bG&;tzE+UN)xweb>W0<9lwDl7{xG?ED-?!qXA)9>mY` zrB6D4Ga-s%`}d4+E{7!P6#r~LvP>bGJsZ=GF#g2m<6h>PNOCIhullpfl4mXk(Q;JJ zNVEG$IER1l|7E#K%$(yr^WGgw_$&4){7Q#jFz;#v7h=Oga|)Sf)y=;l zy0UX2ss(kMXAZ=YUXcw9cj@JMRxST=OYmQe@3bsL`(|J_l9_1vL7!szr|dCn8!AED zkblZf^(pe7{k=Zo-p^X=bx5>SRQ@qptb4fGMuKY+dqwy>IdSdt*(6@s4lSe5;}Vs3U9j9^)UL^H=qj=!`}Esy)xI+KqH= zzParsWG#y(vMBZ?b1P184yz}AN#YklNy?nqH-a9W>g#;OD;Wh@Nnv-(%gA0}h51J) z33oW*bt<>O9E1fQV2j0!UKIC|RT*-96-4V7n72xju?UI_d@<<51y)J_0SV_qd_|kR z7J1jK;r+0vSM5^{f8VzdB{ab)qvS$!2`qsYtim`*T^5=*!Ggosi?LxCbzO+Je7=DG zW-piMPL5U^PInht4g9BX;f-0OaRed_*)&V)Q%dXp&L@eIaF!(-n?}+3MQAqdPQSd5 zSS7rN^&8P%4m;m15FX1ij$Kr0v6(Evrx?F9jXqe6I|+yFo6cwS68xIo9i!;LV)J%g z@U#iQzf$ND^X6V~A@+MLrv6K;_WrFTc>N^cF|==q)hhpb&SVA1y{XQ6;vcPU^pByl ztp~WAt4yi=H!{4_r#ZV@SGI)cZGtOe{LE%LjazCi;sljvhe&rivDE77KQRa%%2tud zu!``!QgV+$4V)8$gkNOeNCQV`S&Nm@sO5y&+c%>zLl*ddh9GR@m6^a`n{sqpVluoM_>sQd;^Kq_RtT@t-k&# z6W*9*Cv_k@(Yr<`+V^I1Cv#CJDXkIpwx#3`X93$) zbQl-oi14x#rtzy&+B$D>B;0^KELrfdIBOR-H>Fi}z|au?(MOVU5ck%Co<*-nXs+qv z3U@Jw>a8;Ss*s_a@ii@2WmWP|2pe5+R}|P8%WCiQEOgOBJ;UKbcMDPSOiak5RaUHj z%_Xp%r7t-Yx7vKFD|p{8z~z6Z%+=-_NW$y<4vwE^&Rt_wrC2+)xY=3~p2*IatyF7` z<@{Jy@H=dg$)U_OR$KqN>rUX6@m7XTMz4E7Ni6CyD<1Pydbq}1aSN%y)|o8olx=nK z??!@i*hBNAn!lYTO(?hANau#2BzUSL;dV>_&0US3O{6D{a8pQ)5hcvnCFyro*z}-2 zWOeqRSp*MbsZ9c;HZn-c`E^9a>?R|M{w@$;=5RQ2QGh-pemH!B`67cvLfI+wi0*B$8v1uV!H3y0)C`s(8QqfF6#i#g zRZ5&t$YpjA$?L)*q7=&9Xf^gvmEZ}iCd$TN1#ZHrZ^%c_L^!J^(e3OknorTMn7a;w zv)N))0v02gupfUL-_E&|lyG(S8&!ed$O+e`@zv7JN7j_WOp znVZa)D+K?-xZ^=8umPuvv9-q4{m&@-vO6h-YH$8;TNBu(^gGSjY_-Y1#xC|Ny>OCZ zH)D;H9y}9duJ5F)Rcu}=c3Mve!UeP2j|(*)j7v&Yc$vK4obyk)_jMLC=}mZ-H{k@z z%CTDe_iG`iU~TgDfvickk+iGmGkdAFLGi_);Z-J zViRtdcJNjlH`A}p!B%XADZ@X zHwP*wL`-+I@AZkX&a_K-D*L0(P|mC7EtlY{zXR{2hp$?V{c|Ar5FAt9XsD%hUzOmO z@=u!0eNCetTdfZM7pssNobd|1xz(!XZwGJP@#Xkn;Ji6#7HZmghr`S1$yW1?S|N4V zRCS96ZnNV3b1C>&xU0O+!dRupbC=y!dLypqcE;h;r!pCs%NyIQTK-{4;3xK5t)?>D z%^oUvD;uxY#nGT`Ru$U3WlB+>bN^DpZ@`7+o!!9S+hp$oNP5`jvjUIaEEG$EyN(|| zd2DLCag#EpuU>@^Zu#I#ED-#RYB;K)9;EnvsxKG64@a;6C)%(gkdB@#_!QOIVHI)d z#p9H)!z$|23)i`3EHpBC?TRQyNB3}a1{5-R(OL^IMjbuHQTC|hMMa~cqvGIzMkQZV zv=KU*>*LDvdgc#{oj`||a`fn!{Ly`R9pmP)76;^YEZzWJ7q_c$^Knl8y7GH}9mNeK z{QhH60bjmx$uHD(cnOEMjQvl^>hx=zfl_ zh5T68^|7K!e$uGJ^Ef;KKXJ@!T7GJ$quV%o2|vQii^}i1bo3HO)9U7r$}f&|^h=I* z=#W2(U%kK*sl&H9ylGJWu>9mgN9B9?6K3a+%GdC9bUD{;fUo7}4NJa+t)s^{+6`aI z&Wp-drzPqW>6m^T$Kl)miON@TbQB*X;Hx;>^VgNnsB{$f^W`(Dd@aj| zN; za0fLnDt93f^+8J}_d9SKGGAD3cj(G;Ct+i!{Lw#`n%Ocp6!Myu`w6gOd0VCH$~zdmt;$zd-oWUnT*ptvTN_i? z=auVt9hU3uF_2-Juvad(byTikcj59oFM2R)%<*FgE|$`y@{zRdzdxunUf zEEgd0;g%@UaNT^Ut}Ql0&4EHQVLuo z&pxY55I!AZs+I>*?mnw8B{ewr?9=$p^TmDEOyqQX%bJe|>n$q_58k(}rFi(`Z7Tu) zSJB}et7#xEKe+z)%W3gDRwvL)?^ylt5c@8AK1s{owT9v0r+2LZcu0898i|MZ-m^yF zq4a)h2p;C_7x>+N%ZsIM?+bkEeJd49#SX~Q^aGNTd%$XjKgcNafmJQ=xb8P_1too8 zH3ePrft84duRpNb;-TC@t1BMHAGF%x;oXC%f1FAmLTkrq&LL|k9&!(1pvS4{hmyJQ zL#)$rvhd*YUp7(Ple3Z3>abNlkO|hZ;tCpb80pvPz+o$?z#a-ZV%7KXbrga%Rs=rv z(&{BGs9c-y;fBo?GF)KM#awDD~7X=;t*lOzxw{Xz{^du>wBza zJwPv>!EShf?w+wm>bx}S`-PRFpC6(lUs$8{^YIjO)*2ryJwB*j;Hf1gDbBU2BppAC z4JNcuO)7lO8mQB!Q2IG*tXl#b>lUEdWur<{f%8_PMvr3((D|4seC+WhzMc8{d8>rx zgKNW8cII3ux_#d2p+0-e8LCF*|nQRR!)I2~St zHIP|9c+qMcpx-#qYXP!jA!@ zHIXz>^*16y#%Z)m zS*bcvOpMi^-?r#zKWs$rSQe3fRRPQf+b5#jK}GT zZ4J~-ihZ$0Guo}tdD0bpwtn=A6|7_8T})}7ue%jrTcJg@Z&8{P(;^rD?G$OHBP8K3 zRxEOXgbpvzQ6&CASFT&bbk8D3Je^2|uUiRGGIal-MURNWv`~xwykSM^TB1cv?@nK%7LCZY zqBIs2VvipFJ>@$Xb@u04F#)-}W6YzwxmJ7-KgT{9lojaT={|cY1V87n>ft7w?Vw zlKWQ4P{|PWAqwht)GA8no+(+Ge!Oo*x#UJjsT>MijE=(&{yaU#ajhksfdA_RyAkqgXRHgAr) z^vYu^HCTe;Kb%N~|FTE}aUQm#y?2MtTnl6afn1jTKM(*Jlxt8RzUTqL#0(=9TRim zfWwp=s$$o)QlYe>km{N@xuMd4$O}>EjV>+x(?At-iM4Rqk$eq5ct#bDkUHWkm5u2xeKx}x|BxyY-?Q>=qxD&zveMY>gkPD~gLf)rksNyO_L8Tiy^$xbjw>lm*Q-uOWSjYt~D{%un z^Xt<1S$d$tVb!fX0lP8V_{r5LZq+%6pJV28uv;HFhC@wWYWF}@(k-dUr?GYSo-a)+ z165yLJBuC#sx1Nf<|(ZWQaytBIa=C@mT(HecdQDlp17Qo6!9UV&^rktz2s#QEJ3j$ zrck*Ml@%gDCLKxc^2kcL0v({}8PQ0-V%0*G_NYyS_vczgQ zfP9haB@IMjIDx{W)cgp^5P2aN=;Q_6$@n6wE&ba7`=(@wyO0ZHEHN3$ArcgWVe3bf z8L6fdPld)}E!_EtYI|_#dQ?nxB6mStOGy=x7Eb(yVv3;(zdSS+X<_28RG_d^#nWCD z%5I`U^vHLzvT!HWDy9}_Ad2yFxA!Tolu8KV=g4}v+Y)<~ z1Vv=X1*U&3WfiN?gfh#ip1cZ$XhoEA1xuO;4ZondWz>#P0irKNk*`tNJ`xmtVR#Vb zmQ~wAgowDX2Hx;hP^;zeuCWLUqeH1xIkiEzD}q84`XqtDjtG|<54znbm@2}fIDNHD zvR(%f5^{lcSd(uZc&7F6MMpTAu2oR4>W;-g_z(*BzI;ViLlvhJ6;;E4Z9Mgts9+`4 zE{LCFN<&r#QmhA4dbGM~lKpvw@_1(^Y2qa8LU$^uIS~RxLdXS%F_#KdS5xRwW$dyN z6#L+x73tp?1rP6`3IWuzis~LLF>w#hqzzTna@~@c2D!* zN_rG2;1g<5Q_a^EMF%(O+5YLLmJ}Q}dF)vHh3!ck(_`0FDn&`PRG}b_ zV;XC$3|te=J7$b(j~SF&A_;6wH)^SQAp%4T_$+>RR0ET=IR^71SY&`-(?2n4p$6jr zJ5O1)orY9Z>9$4gcdRAtYk~s+M$tibaXtX(xTyVxw&o_L z=t+~lMeWyz2Gvosb)Ja)o^D6`IFDcGx<4`aU7+!GRi*}_>+27{keU>rKQ5z5^;8EB zKgWD@Tq#%Z)96@3H4Rs4k|M^wppKMOUoD9cB9=ZbuqV90xzqD5B!VSFgnbz_r-51- zB0%(f6%wgbL$yj1G4mZu-z`|B&89AQHRidt6#26G`a)-mi*GUQZK4+F;fQ^&L2qhV(?1;laa1}M2j8p# zyqSEm3+g&z-urF&5JL%c%Ayvz-T3)pf)%;6^2dv>2bYJS; z9G3w695X)}FKE65$nKyIq_t_tkg8$s)$&h9_^wam7Ahg|w$2^5l2)`(>q2gxaL6s*N@iXmfj2D)0CiA$3LG#|5_It2CjFS|z8zUr;vg8-UKNymSQ-i)i+Z7Bx!#UYAtLTW zA&2R_(aHN1Nf2Y-Xgb+eZPqo!)raDLYVe+}2PcNU;*_2M`&N#A1SLqTP2{D!Kxs!FLHRZ+KmK5T7#nx3rvvN&z*s5%BR z!lqlkk{)zauSZCRDEhcS+q)>IqiRk6c2Pt0+egU|J0BOw*r_wdbyp+gEskzOM15Q! z^vxnNJtB9kI3sl)|+Dp;r zaH%4?zU&ROs|N69$^GBi63br#T}yUmOMHG@pmP4%LP!4D z60;u{$f!wiLsex8OHuBCW4v!YrZOq2VGuvZzV$6m5ji8Uwn=ScT=YYVs)ad~JhA=t zqoXM*IaGjn{!q}>>-bR0$&aDYD`W860Z9?n9~bDjDt<7pDuzr-nK%Z2?8rU$q_aa+ z-9Ubho*%5F;9)8;L_#9@n|OqdrQjkpGdHFXEg7a71xrlaeioe_rUvL_arh;lpmW1i zLeaFzV<(Lsn=&*NA~8u9bKiHgez@wV>x;85jh+lwLp2aN-!dATss@Eh6;bh_paNI0 zW={82izg?KOr3;J>C%#u{f)a%0y3j61yk*b8t{{er^@eG zVelC?3C%uNFUTeTVhGjVx1&{K&zpJ(#a79+To?LrjA~DwZ{pk$9Px^Nj|+^ZBL_QT z3=$FL-ivg@tNQ8Gv>!2HT*y9x)Jl{-MimN?Y%%Z^$5*?@sKJ_ubT1cQJN+Y7&d*Y(86I5bkN_zTO+`X27NcV;ZN?S#Tju<;W zWl~%Ne@v8nC}{3hT+>L4XVUPdN-BzRuP)`LsT2)FviA#h9jE$-N``p#P?+jX_1cP9 zj|;4=%-VC|;=z$hBG$VfmYu1}WMdVy|3)I>*5d-z5-C1ib&484dFWUiK_x7XJrtC_ z!x`+NbiDtUpcwXgNBLWgi_qp935j0skEpy^E1EiOQbtO0Mru0jHIgEZz0YaP1l313 zCtkf}Mf2*=qYPCr%2D1(B@yc_EJjPFVk2>w7G&TSv&2NGx1Ba;sAS!sDD+fG%E?eY zXz)Z8tg&eG3YKw(T}(@DqzO^yagjHP;%L!{q{4N#;>`PCgb*mv>}o_PjyP4tdemphI@?S$D30#Uv}&i6{xqhNb*onT8=aO z(%!l$xWyvvi6{@=qA6;it|E#&6qK?XRnljuru62d1|FR)a=Zq#c&bX#*`mcmL9-V- z*-6uIX)JAv9FGf3#!!B#Jx8^t<9_3qCT+s?+K3zPesfA$gV%=iwRbx1okoYZEEK9Y zvS{*hO@b`{K&u0_~46?FUlL8LFgiU$l9jbmSTD8Q9KQqhO z+eM4_YWKX|Q$CzaO&&ga7_LoZ#>9=cg1XLDJ$1)o!>iawA5;FGt%7vNqQSdM;d7i_ zU)*;El6jY;*g1HCivCX86!9GwW|u5Fjh&7X6#X3+2zHk#EIK1KV|?<+j1;^Xl@w9o z{W(kz;f~K4f~fHDy=$N99q|_-Wkqi;yeU+v+M_vM3@pKd7!$Uz`w_r!h%U~;Bq*vMyA08L7qI2isZbIgU zub|$PsA%!HKs1pgntr#j8}ITZEM~mIQ>gR{s(!#rygu`(?+dC?5I@KItXmaGam)Bc zbh$|pihdCXjw zXdsTfofNZBEz?bl4UY>nJ^Q~+m(?pRLcFOt`sJRt()V{Z57upp8gBzMbZTIL{su19 zS*+p%`8lTa&?=g>Sd9plkXZ2=(*4CMJw$-$?=m3j9)l@;v_!SUTUrT-01pN4e%&c- z84f|QOL0Jzp!o0B9_29&Dm5v2cq%?DABWG(`9eq%#DIrF9}v-QD=L8|bZznA75<1~ zm#NXAk}ldi6uhGjjPjq;B_gsr6nPEhJF`oM`0h~T4fI)k^1>%Lk|5?g6cqLf-U0Pl zp~7{iqP|0sujyf`7#eg^TBpuCGgY=1Cu&D30 zoZ=VepvYmOy%R3NI}~(en}1G=4ELY+B`&r*6f}3U8dzfZR4U4zrB z)D(f;02;DJrRi-Z(z<1rc#Ee{lWY~N^F&s6fReJ+a1BIFSCfupt6{navC*N>JuD_? z_QgYoBH!HVbB(jEVx&v@R`xNv@iI>6v)AH+O@=2zx{oPqEzUIp#6eg0cE03sFFQM{ zi0F2IPY)L3f<$&?v=*W3iFfXWJ9^>LHmI4pD^bL8fv%>Qt^#TBMpaB# z5nEgfn!6FlMd?Mna5JdzD{8!MLmY5ippDV_+IaYi3f387gX01j6Z2(^-K2`>wGtN` z3aUL52kaH=a1-j@CY*((M=`<$2a)F$>|ZyZZ|mPn!~|E5e4Eu+-H52)Q1DTI;D654 z(u^qJ+R>OCHB`4N@;4PuLw4(bsnoIc#9M(9M*x}l(M zV|8Mau(7yKmoCNWmRps^=3u8?u@h&```ex4r`X)mt5KKNRG+AE`ln?I=-bKZHcIj3$)df zxUKLJqj41`!MotzyESD{l<mQ6bi?%x=}y!_RS^AGBKDyL&0_i;gw2-^CXt zH&4J`;2R z51+vc5#!rNYWWt!iKrl>V*bs%MZtnep>eLCaI>Tlz- z;=kWkEh40nSmC(90J>7Q_i&?4?x7rQ-ZhY-k8~~^xZ3*(kED7gZFxtv2;v1a`T`n# zcodD^cuzH_72kC(8Z2qzh&w?k@2W8o0>lf)1v*IP4iahk{?1{zzLv1~;jS*gm-4YP zXsa1*eh=@`Bqox$hl^=2uP9=zbc-U1;{q*q*Dc;yb^(8jCzZqv#|5JODCGlHQ%_W@ zj$Na0_4@&@3;z^qNfd?0L!cA!zN!<*6f3oQHFbR-pB+k)IOB$Gq^vXO{m}tj-i6KW z8YA#MHR;dqUjv%Nv$q-Eu$M3VO$q{&Fc%@cs!k2f1yN( zZdYt^!|2KfcvB!l5l`IEtvpHn#1rT5;?y?0%(*}pJt+JWRgEtHrosptuP{ON6@rcD z|8W;JIHcNocmeCVL+?j}xJp+#eMIr*kVG-a?RrCxE9|K1OnpDZYg=L>j^jdB*Qpv# z>O;IYkqj}%ae<8KrtxqZcvzJVk&Lr%VZ>+Oq9=#daGLQk&OU<07k7>RJ*>v-JQ2l} ze^*aF#?h6oAHiW!lEoIs1$x1yfPWPtY0y#Jh>;AD#a-Voy%b4K#{JI>zW*sPamD%Q z{!v_42@o~hukX`}kFot&4Hu#lMG7~aa*yG)Dv6?l;{yHm(fw}x2zTrxC{nmZM|l&K z$^J;yCxn7%M&YDL9Typ#=VOXHu14wR!~@3#nv*Rt$k_;@fQvi9!|y>urdvUD|6}En z>C%mf050@24|%+vKykn2P|zppMV%tnx3*u>gQIAJg>Sl3QN3}2PW$sZ^r7f(-3sYO zMD+H6=6;Hg;bo=v*w|WoZ2bZ}cY;58;Fn@%^Y?`bPJEvX(D^$0^O$Q=!1jZp2h1?S`pjZSG4Xk+%gp)nzyFk()!PEGH1Hd3DZUWqEzLU7=@hG`_X>=pWVtZRjgHEdcAp%73 zX5ZsU!q0I|tFpX)_1){x8vklB`__dr)ccfb=wX8PAL#bS@PV51yU^x;y0fEMYKZ-f z3#{b0d?`@CIVmE4;{qvToswxch=x@>GFI0^nevUyu!I8SOQc!el=~)!Jn52l}txhB*Us8=l z@fIRjx421N@wah-x*fP~J<6QY6Nj$!o;Z?AidfvZKuUs1DS^3^u*lrF zKsa9aUiwQFrdLFiZfz>*^<$-*e>|00=2p2Xk0(KAipTA>>NMWM2=hE{(uEk@xIhe}LRi-6I>)Ml5Pj)}$Xyg!!oJihZLjf%x>MJye?j1Jk{=AT}1wk@YO zFR1pxk|>(C4EpVb|Sk_Y8OT67jB8Y(YCOV5o<0_6&07Ud(G;pz?FNGMm@* zFvYp{n2ualoptBpSF0bdhsl05ohN2Bi^f^brVyFhFKy@_?(Rs;#lrrLCNj0Kc2r8K z?t1W|PU8ao%idF$t{3SQ<&0YtYVUR64vSNwjXTGGD^)q*JijT)*>Y)el;#ozjEzW=LZy{ z-@nG!akF?0k5R}~6&J|Qv4%a?Q2VQ@TENE~dWj}qRWZ&Re z@F{0~PYNHMy=5Bczhp*|VOxER1-tnDe~mv(^&yxW&1jv!gBHH?Ee|E$l0dRm0aA5mvqsx70RHd-{49? zh#1+pKwtRm>l>Bm3{j+PTsV=AB_~c!OH1LOr$|-Nv2lTfrj&9MHw~74tD;@F$`l#f zJKw7M9$vtfnWMK%FHY-)-9~c6&Q^Xl4Y-LLqC!N>Hk3}^#0S0tM8)nDI#3UpucXZ{u+pCEuMyar@Suz@8jwGcen-13mD7tHB|C8Zum${{Ayfa zC1z8(+iCz6em$B0@Ib<%S>poX89KatY;w6^35sB?H68t4&DM>HT8#^2CsXdxyCOpLV)PixImK~ z=*Kz96>0I{$$`}Tt|}F9m0NoQK3~<{!_U#$Ha*b;DDEEKPAo5I<2S0@``+y-0d6lY zY57O}RPml_>fr^{cth7n(={GE!nI)YJE{b&*s`Ncq^==4HZCxTssEdIW2IFsLK+q! z8y85cNk8_(|8H%$uR;RE74Qx1zONbv@^f_hHg4$OS3@EsBwjWyP_I6ncMq#b^B$;3 zw^#(W-YG;W*%zbe?FXv5hY_lOpvU~&svlpArjUoKhU*NkS)ses;-RYJ;RR$J@y~^1 zZF;DhM@W`<+qgh?y_{GDI(lSSRInt7!EGNUJyN4}4N7SQ!?z>@bO1_o~=c%NL&W(%zwp9C6YDwMIJ{G%ifrJ<;P<})OYW9-~4N$y(xs>>m zY8=SVv3lq5o#dZzi7p}WyK#YfBXvE`uXu-?TxLYs5U-?&>n(?TKP#`UBW^b?P-j@a zIxKj@5l1SC+U<85^9$~73J|Fq7pOGERBEY%B6H&cL7b>~^fHP)cSi;XOLg(O9it<^ zs%g547~Qx)mErlSw7N5@lz-qNb?ZhS{H7WNtmJtZL%;o|s(Sc2=Ha&9%#G;SZ|YfE z{=4E=ujGl`jSIBh+Js{wBq)kEE)Z;Hf|Z@RVtV5O;T9%bA!6dN@frBQL7EWlTLO9i zP_Y5T1KUNL|4`)v`8fvm%NjcMhl-DokQm>%kg=Tq16QC&OaI`(JWE*2Z+j^1Pt{oG zi}H;NJttfwEEPneH1%hojScx*%ThYPNlxW|!QsQHkptHsE#s#tyb#{7K zT1}lTy0?=Q{FkZ|fI9$uN#5o!RWFdAV;x-Cl=+wH;LhO?JKnmrO^c#$|56nL86hJi zo5KD^SCS#FH!jdsCkmgIhX09wqG}eEJCl+j+BYtcflFm4qa=Q)uRleWERnu(fvhe% z%TvIv6`?0zQbYhZVH@p!g16koKPnWdMIJ1eVz6xXulN^EEPopmrX6O{jwL=r^;H(||vJ6Ts0`x_T|6)_{RlzsqTb(9(+fLnD^Pso`A zmVZJ-`o;w+Hs>)Fp>t2$fzyMl)iHf!x{x!g=NHJU|8 zvMAxWKyy`B{kRXm(|kI^r4RHwxV7Ds@Qhv8!_U!71KmtgUgqv+?0UhHDYCe|bpIK< zLBNY#HJz#zv>SQ&IjT0-RpX`V-nAL{np#1-O29SFJWmG-+O-4uIWk*k(~kx10TB`s zWgHh6VAs65cOT*QYjhzyf>zX?7#Zo6T=B?pf!q#~8vWEn$M-%u*uPVWI^FV%%=Eh`GTChDb zSVE$k`-!dx+i4L3L^Q_*)^P}>L`~{pK8m)4+RwR#2RC-%w-?hYQ}M!f zf<~*Fx~N;dOKs`x!gdplmNj!x{N!nIRM}%U(~TUYQ69USOB#u2K}S7y4ZTpK75(I~ z2f07uv7PMbqL|X>8qm@(yR3&12DVDiYh%g^vy0P(FuS}3|`C0qk3V=no)dF?8xb5&Q+rmk#?;>4x!S{Z2BkCPI61;$Szp(ftM=M^eDTN zMpqMDbba3CXu2C^X9h^tKQy6;{YHp9uhboFSFA@r&a$ge!n4@51P`HI&)W0cd%63q zV_fv0|D|d)w5VO(!wB6T)nkQ$eC+g+*+uOjI$G2&uPfZ>>mNnoV%SR3#@=BrnsfeA z6@1;yII4`ZLfB(;*k_t>7o|V=h{$M8M}su5&FNS*Ss60(88khu#D}& zMzL$Tq(;<>w7IHXmoAsF2WgVBfSOmco6*#=_DD_oFQog`?DkY6+U}+Md1;Z0k|$q^ zrT3%lej4R2b5YpTOL5exoShOPZHKPJrmEk7a_mLr=xEOuqv&2a>{}~%q>m}7yge+C zpJRxBXVanbc7L~oK3nagqq8p6q)rv=jvD=tjV(HTekppdf;}c!vJMj(Z%RoO7d4|% z6|wUOy}i~&$L3xtLsmuX8G^b|!%FsY{an%MO7?2~d=ZVPY-j1`KhZyxv1Q-mk=>$w zRqRX;KgY<5lbne9@Z{B?F;(ptoi&m+RkcY!-%rh|*>C9Qztg>H_7=Cal(O4DOP^N9 zAxqFzs#(L%)ZsbrxoG#c#bxNr8g>UAzDQ+j+7sLdc^sZx*{kaF4pq^^2*atXhtr9& zV(qe2wiY&{B+ovmH{<+Tc6VL7mX0?$?xMX{mo%Uf zwe7JQy?)9?S&x=kIgMw~LoT z>6K=7tZwM@r`&X@8McO`w|<7oHn+RzP*Im#uild8c1w*?+-?fHa;Yr+)ExV^R5|UY z$}Q|<_d;IdlEvNBY9-aCLoMt|9!6Nxy?RaC(!LdhKSF6~S8+-5r65Y|j0qpz62}K2 zX~Ax4@ix_LA|i84n65$ zzoQoh*QF0S+B0*ScQj^$qGlnVswjfxLkAy-)PG z6IM=Q4I1+7O?S(}iAGq3Wt(f#-<|EjI{qqdyLGX1^unX&6xh{%MK65coOXA$x9f!t z@iZX8{#ZBDGTu$I-p=Vovl8tz9sjT`Jxa7c)eG;or4N(rkMzQwb~L}6eM&E!>_C0H z+dK8bM;$1*hrLWMbn8x=d)S}rg*ILGr}wno1@uzWF68TF{}Upsus8vGYX3geZR4xY z(ks24hF`$9lKa@VbcLsr_7Ci9m+@DBuKWJE{p`>Jdh9#9xoK0K%U$T3{`Lr+9^ai3 z2iSZ3b$d{ufmo{(Jh5-}py>ncs)4+KiLJMm-WX_4bHC5A>#1%!+hS`^nls3*6vzk} zjn~r7L3R(FQMHeoa;n;OsPSMNPo&cL0dCqnZ)Z@F8A-PbZ+SMl@mjj(XWu&lRE*!|d2Vj$l3dt<4^8 z57T)oMk6nl3XI!biJI@<9zvUjW9N}3GRNYtob3A4I29)>A%`cpDK_ zk4OC|{PulJ6qOxePt=JorMvORH#^$Vb%Xu^ieIs#J#8Lo_tseh(cHNKm#a~gQJ4wo z;XR;`Z97WQ>QT6A`Ha`(&N4TCD0{g+RUd6v@i4+FOj#@E{GJqlct<(fI@7N2lH^5` z=*CRD3H?6W?yku*GkGoM=(ZmD{44OU*KVcJ_l$17R*Hs>ajLwqfDVqqt}88iUZkY4 z_Dr2TbAg-wo%wo6dN9_G*XSDz@A|>lOH>1? zO?gM6AD`LTh`vv^$GaAB*RHLUn_+jQHz(MYJxtK^4&C!}l#*drq=FfC6}RMG+2W?~ zN;|95pbSjEpeL`o=~%s;6+JJl_6Bct<3D)0(YP(#=xR5cN)ed=(|txYWn(Q8EQ8j@8|@jeNG#v z+mrOd+*4F+2F`C1>CN?dk6Ay%PIbS=V~W1vro-W9np3-(xTt4@F@2*a1wVwGV^^ka zGwpgVNq+DZ4{yF+_*wDDYS7wQc30ijSJ(Z+D>559q|~^5mB!7sm+JV5Yd9@cJKKbs z&#^n|_^Io(WR5*uFBH2$AwIjE?+{B~xfs=OKE9yDOP@MR>{0b+i{EC-O z^IEZ@9pOt3kg&x|_|k=Tv?F}Q0TRCIEcv`KAyWOiL%g4Q1mqfEMF{xTfM-exxMjeT zvI1^1ILVzpsUYBv1EkY?&XRX$H3>gpC$p|#Hx}~9q!djM@RI=zk_7x>!1V3{ely@) zF9ClTaC)GC#|9(}7Vx(LCw!XxYe?N8lJXQ3q%4Ak@<$t$9U$vg)midBtt4EX z!5+?Mw?Fc0X#gj(RH$v@+iyrb&VbYR1k^Ra14%7fsBZvUYXKS>Ko12pHsIc$0-73- z_OF2EK0{b%i$+=+;CZS5gLng8DIlPY0gs;%(9VF+00A8g=;#*koB`fI0i7M-^R5UI z($yi}Ga&*J8QkF+TNNdsy8~pxdOAzq*5MNFV?cz??{7eh2+0^^z$A!nv1&tB@as?d zfFzg6Fq5)a1HyyO*y)js)@VzEVY*)}&E;`6)!mHcHjXm*t%y_^?*JM21YWw#;eU%3 zc*=)PCpkpoQ=BF5xo4&NbOYelfNi`O_@)&;|3JNk zY6{t6Ql{v!ZZiN%Uas?+0TA*sc+&uwcp2{pZ-Y)!?9RQy@K(@;%EctZ&kdA-h#J%@4IB!51 z{H+ICxWHfoH_89=0dUy?(xh^h#KDX36$4ne3vkr{cI?i_zoc9@geAL3$u)rOx&YrA zz;<1LTL!RA7vQ!5Y|jPw!2q`B0^Bu#mAL@-1^9SX*p3VG(4?>p7vM(&*n|u4vjObB z1^CqfR^0;pZUCEZ0sb_AO}7Al8Nha1e*OJp2chfU}r2qWdqn2 z3s9B8QeJ!hiy43#8aU^_S|-l6Sj1}^z_wU`I0M)g3sBbpHp2qcXRw(2=sR0LBL~O? zH{m6V!{02FaB~2k5Q(=maW=oAy?6uI_6pF(05-e=v|}KW(o*>U8i0-tkQO^ROJ3Hv zBHYCQwzdK!_zYoHD@c+7tZD`5ZUC!V0eTw1mR5k?2C$hGpsxXJW(DYP06SR$20Fm! zWfLpNV260w#0oIP02Z(U3^jnIs{q3pEa3^|fA0Yp=>S>#(aw^W4XX%`F@W8w0BKo# z{*@M3rV29Nq_9U7V1fZGPz9K101H$BCL6#4Re-4murw85x&f?91(<2TCf{BmvkhS* zDpF*-$jI1&3NY7Xumu(11qQcx?Tf!JV7>!n?H4#pUUs1(e~|$!Km}OBz$Y!R?G$90 zNnyXf>D4E3}C}3z##+JEedd0wzG_j<)R=*O$xh20X{N-)u8|% z8^F#`fKLrzT`0h34EFQN@}ExuoN|E7)){BXJK&Z+(wsGf4WX!T-T;<^0(@lvyFdXh z8o&}zfXfE3{u4kMz|K#AD+aLb6X2@6{$!x+_XN3aQrPbakZS<@JpsNofR&yAw+vvJ zC%|n3Sl|ip1A`+x9k6yXxaR=;Cl3}M@Zvm<^Ph16{OACguAiMHFPl0M{?z~$a{~Ns z0DCwA{xpC+oB)3r!0t_efBXQ)A9inoJTWP3-2^BAgO(l^OE&?YF(4c=O@KlMuw4_t zWdIvB0RjzRqb5KwgKfO7{MTZ9{w?efS=lgW$;|;8_D$lnGGG z0Cr>olrVthm;j{=@Ua~eq>LeK#{`HrfW4RiKnk;OMr$3u=Nt4u>mZ-1ZZl& zv6em|%?)AAB~n@%z=BJFcmr5)3DCv>R$BtJGl12W038^7$t%nM1P9Q`0kW=LWJ#`n z*=vb-f)n?$(GnoZ0Jc~HbT@!4mH<5sV2LF_Zv)s|3DDO7c2)xPH-J5r{Q4Vc2#YEK z1{=U~N`N5-u$&TLr~xdb1Q>1rt0)0R7{KaDfKd$A@O1RWKi>h2Vc=sT^O44jw>i%L zjE8u-10}90W6XPm}USQBmrg^zy?WxSu6Sdr*z8RNRT-uC3LKS zOas^ziHzqBU^gVdJOkJb2{7LPc0mFxFn|q^0E-OpvHcNbi6Lx#1X#x48=elR9vNgg zK&E4rv*cyPBf@J8V51`deBb^CSl|fovH|RC1XvH?(|xd?5oDuDVJ9QNCIeW(2#{ld zcZq;k4PfmeGPW7O!bN}`2C!-o;B^B^uF|i+Hw|H(B2so4zzRixJqEBn5n!JIY)k}r z+W>YY0=#R0SA+cwmh+VI|0g2jgOz;!$wcP#kcqP$5%I$Yun`g9r~xcQ1o+4R79s+C zYydkD0X{W=MTY>N8Nf~u(S~1oB`}B1o+Yb_7ehJFo6Ap z0GAA48zF$jz$f#;20{?qq_AcX;A;a|C_PMGRnZA3#wCZ*mun?&;TG z35Q4@rJN-(^r1o-16a%l5N!ZE`2flrz%o97iUzQY51_IEY~cf_DnQPE?A`;ZZc^B} z2T;=h7VQDV7{GEpfLH@qt_M)Z0G8_k)H8sEdH@X!V3Qud{u&v=@;rbh2Cy>^pqT;e z$pdI%0Ne2ZS{cADJb=~)unP~MtpO~)18C2{C)*NU~L^he*@T32Qbh8w$uR(Hh|4^ z07DF5GabNC16V`{FdV?AcSN?&fs8OIESm!uWdO_N0K5jUP!3?M0ql_j7-s;x;{ek0 z0Nil^83y!D^a+_{2y5ezGQ|K^#Q{t+fW>eCGYnuc9Kb9CSP2I(#{gEs0c0A$4mg14 zSMm8r_5c>Yfy^^0?0N&3Zvb1~02VNKgI~P-Z@U1C9U!mWrOuLYP@t9*Y5;o-V1*jMJ_A^x2JrSOzW$Se zvO^8zU6aE4G=TjEurdwcfB~#X131WFBd;v~Nio1-2gu4Eb(XxWNkjM}1E5Kh*Wbs6 zupbR6pBlhUG=R?xU25{N{)}8@;VF26C0L~e}ax;K00epJoY%>G7U{Y9P z25`v$ww3`{2C$_Jz&3#WWB^|qz+y6hYX-214B&z8M z+W^*q0R$PqCNO{y1K9orP zl@~w>16bt+P|5%w+q*!@7{c~0fM^5Q)&)@B0Je1jR5XAET>zC0s8(7)RRh?=g^cP3 zuzU-krq2+zZ-K-Zz{V|rSOZwK1yIKTR&4>)Gl2bC01XUasTM#Z16ZX6(8K{g(P)7* zbBLGySpY2zV0{)qD+Ab;1<=|6)?@*+HGuV40PPK6B^E$O16YFv;Ok@vYp+1M7{ID4 zfCK|rZv~KK0DG+fx*Kr3k$|2Cu(b*qy$xVf6+mAN!bQ~;?4uz?C-B!ivYBL5{kfLHc^Ceq|s6KCrb;^Pcp(-c6u z0c@HA$S{CKQvj0;V8;}|6b3iB)73KsOm_hH>GRIy#m_nZtB%icfQ%{AS@Np2C!fV;5P$UEd=m~0W1{) zcx(Vmh4}UVw;^m5Ldw4kum=a0A!?1Q2NetA7BB7{JaSfT9Ml@&}-}0j&4|DCskV zy*?nN4PcoMKv@G=;{#C60QUC)R4{=3Jph#qV1Exl6$9Ac15nKYJ}--VKx#O|%ixr1JIp87LVds9|64_AfxEROE@gyePdq<_h;Z^BJqK|_$kM~*YRWrNI1n=^0EU5 z-3>E~n2C#evV1WTFp8;3|;M0Aud0`6A}~-# zWdK`R0L~b|Ru+J>43yk|&Fv!OOCcDSjN*c`j zlLGM2fNDONQ9yn)gk2~AKQkciW7h})zd1nq_`_N9vI+(Hj}2f03c%k6u>1tzUjtZp z0`L@mP3`qbAFMh7d76m;wwwSIG=TLc009hexr`lpp@2XK$gqNWDTl*QoN#_&2S_-~ zS@N>l1mTEmKK@AsR+)fAnH08`06c2|i%I~B8NhZDfD#6Z0jOyJdqV(X7~JLgfh&YToX;UL zL3N!aFPlLSug?JQByhL&nt((@l_2qF@Rr}i> za6&*)8Dx|hL~+V_gffS_-R4j>m?A1FTa@vXnhIV^urLS2Re3GDmN}GZ-8`C>Lzz<` z+)DK58Q>fNxu&VzpSPUe@38j@KcDxX{e9N6)?V{oYwfkqdQK|3U;zxXHG7Yu^pPR| z(b6AKunPY>U7}v_Z%{? zOozW!Y1syYykHO%Q7{j7)A{H71#gJ{dG}PvR@VSyeSq>obC4m|oK$wx(g)yQA2M~)5 zqL89oYB;qgQpkU~B<2qyqDT@T#DOuak_50aA_f<$ooA>yfvDLt&-R>hKOyFursk;5+@)D-2dN! z47_%cHU}oU%OEJxJ?MG|y-|$=y!RRedG9k^8c1-U_m`3Y0S+V%NaDdWL>!VtTp@^X zK#(JnnaOD!MFQT)NrMAJoG=JV^n1glf#L>wpOOUVZ6I-05=ogvR7m0<3y7#fqVO|J z19Ug=o}Z9Gg3|cKaA_c~f!-G-QIku=Wl4a-28OUp0`xVIsFj32C*ek-4ATUK4G2-F zH5d#fdd+ZY{%=qW*Cml&Lc~o;ytIah+mZk=4NUaEk^m_UB>pD}6w(0V9ulN!QTXR} zVjda{<)Vc!{6RtkZ}5}^2xuVDS`sLq0fd(%Ksf^mA4yEwLPQ5iT-r)RCm`Vb4_3yT z+lUE}L2h%lx*%}?LtH&bAwms;@)>Tpw0S$oJ5mysT|~r4;_hxD;w1s18Z`cNlZ=hi z=phLZ*1)3llEg0@qAwDMF5$<#6Pf+S8| zrXbTK0csj}&kRZA+KEV)L?#n+BmtTlc*{IVJYqsa0)#YR{43$oEYul(__EPOViusR zfidJ61l4eX;nF}>1HE6B1c+)Nu~ZTuse#0DNr0dR5=BT9QX2o^G*-zVuIm(JwIo1N z1MgWQ2@upkqEr$tCe|TQk6i;LH6X-BgP@FWGF%#nXMlI1CL{ye8F<5ck^tolB(_Qd zB{G26CJB(lKw`Tjp7bPQha^B514HbR1n6QQ@hKCy|N0{{pChvda}LrN7~~6spq&59 zaA_CXk+($>poM|qzm`O2j^G<4u3(Jk`%#Ev20<~N09PUVgCYjTaMJMCu7?qES`vM` z5^+uv??n<(DGAWVz&NTU0m>Li{45F3#XzD)61Jp5Vyu!$=t+c45?;NDa7yCizC^er zG2;m$>LmeE8JNs9Nu1)+Uq|9ytd4e5D8x;H^FK0FAGf6cfPv)yyCgs~1EahviS0v) z_)`+U4JYD(BpR7$0mr*J(J`qM!c!6;p+WP1Ysq{wih_7a;wvV6B+>LVh3FuOvtx+p zB#9GD1W01iWD3zm5>JgMA{2>2s*j<}M93hhumRbu!(S`PB4V~AKvV-m%#{R6Y5Dh*(1e?SFK5gP2ko1Oznjo^_G{`3xjBBJmUE6T~x+C^rbor!ZXbPweFVo+S2d zCSt23b}~`8O){sqQjqPEK>Z9zV+Rs%Vxnz6B4U?8P@;Pbmj+517=EuLKqmu<<`Nl1 ze2F388xow#C_G5a0fV6^4;n5FgfTFN!;%153?R&j+P9L5+DBoIO9G@Z@TTu2Vc|qh zA+Z{h1#t`varPY?|B#_%f0X|H4wL_RNxXQBh<{50)G;uIUnBwA7)V@{#KJQ~T$aSj zb41uB0SXy3{?#J06Y~WE85oJ%AShe)hD*Eg6M0{g#GOk-T$co>VqgR}CDC9b;v4M|)=&E6J zh|M`R|6l{()G)|eHt^9GUGVJ=4SZ`w@5Y%~x#puz~Nh=vT}JKEW#eXZhRsQQ zqQUcPHapnhr$-?1V;>m�Lhyv4O!4Ct&c)1sMDu0pwey0ncLH^MKfP(mK!!wks(tNamch zCV6da?gT;U0dKd)n_x@yuTWk62c`AynX_o#Ch#e1?h_$a)W7Y8H@y8gUDR(K(WQ^m z4}P%vcx`x`>wOBi^^b7@{d=c9VI;WjF)tDJ6vzD5 zG4YJmr^AQ(9oUrXL7%p|`>xP3$Fa6pK|2jUQFX=|UFJAWENlc*c26VQ-$W+5ER8+? z+1wLuIYGBA3e^_g~0=IThQfk5SFGRF^IV(E`iqwL=7+D)N8 zYaS}3?AU24;l9V&eP@XMyg3`^^=Wfwi2uO9`YmjzQ-&z15K)o2r>%Iq0@D6QyjNjO z@H(jbuNE^at>I;%m6R3OAE&#R6~UFzS7GD*FD_C{sDzq=jrG5{Ze9nPJ0m;wH7fZ; zb3USZ_P%?}NBC?%N5wn(7+tolg4kn^u@H@XSYZ2J&&O})t&!r>^N_c%ALs1Iebb!l z<^>-Ln%!2`zKRBcvnkzpcrpeIooPYZ9pn zmxhadGgpLr!hk9k{$%Y=nzyBi;#QP3u`SOmrAZ<+5p;=pf`J=M$yU6fQbhi2jc<(; zOlg?-aIiHDg5W$;8X=C4utu7$hz&nmLrm|&UmsZ$TH-7t`pj4y)rMx8(r%*T3yWhm z`&G1UjpI~lq)5-SMnV)g^OSZGj}}@(TH~}+8Y0ErT7x%EL6F|IS17%m=!zBFmV&}u z-7nUNK$tIEEa&MG3{IC|%0%D=>)7@LrEvYruZejW@SQ+4pQ?5+#uMynK z-$)T_#t0yOJ78#UObuzZ~=dEG*EVUV@ z`(jlt-()WJTQn;_XMX0Q#c8i*&H?rR{7v|zVR?9|k1G*=Wy0F!t#7OuZN25Ei`Isx zJ#ya{MwtRQ{N>vApx!l8+i1w(5Ed=dl4_jP&%)4?!?FSW6 z8kZ)Hr+5X61W%i9Bo%6)NqruD+T$OmFHA4UNYk=27ZtzW)t+ z-sjcIMitkim5nOu*;cl`g_NsrTdCGodc$=Coi|p5O9O#7M&m%)jnRIPbYpZ6wA>ht z1`#(#=Rm!U(VvG5R1b1(%q;<(Hb%dLKpP>mrB!QNb`UkV(pBjJWf2?hID*B*n~t_4 zu{=$>Vp4AV zP|Kg;wwC!&{LLF|VOR?h8*Ee?LpN}vJ-@*gf&8l*Y+b!5y{*djVv#$)LlAYlLl8cR zYAM&G?x40C1v$w|pVc!nKi`a_G5LOGQa=Y@vGRjXUAi+>X;Q231|NCDqPf|6@arb^ z2Ksdp8_xRqV+NkzXiGp_w2?EkZKJIhx~n(ZdZIOzafZWnJGji2Fb!WWwf(=rh0xG@ z1~Peo1{!hGTN)?_q~Dl(1vK9nz2jvdZ*K$5@kL}gTxJ_dPtyH!-0_D0XiLGI6#i)I zw~(r8ld=uU&;iTWGc7ASeNGy-lHM}^RQ4K$@0pgCm9Yr_ZIo`?r|btGZ@w)pBUgHS zsT=|iU)^JVdj5R&5|I_$dLt^h^`=$Wx?)zARq!*jL$_5Gwj|{5SJ=7@rFLm+QafTr z`;Jeam67#$M%2zGHIQ1!@HFxQYc)<_WhE#4f$lz5X^X@J>MCuqXxpB*#h^_-&kt+* zdCt&V=WSGXCw2GD^S1bL`vyV9{sWurRZ#6>lmyyajNTn#Ag{3o>Zuy&tBE=?YYBrb zGpcMip2Bn|_}i(#Oa1L*(fz%@eKOiE0rm-K=LgtR(e4SbQ-%E)V5dRgCRkr;42K$t zRS+hkDuet*ue(9*F#Pa9dv~;2pq+YUneILoXdi<7{Xlzv9)#AK)VDE$P*L5lI+O>Y z8A0}eJhZ%HQulx_%?V#kg(Bd#h8C4(APpq0nEL^wtr%?uO)ExqAZEpADu`Aw^3F6+ zje*Qs`{zyY#FzG(ot2Tk2%pV4>Ehv&!Eu(sUF_GWAhDykq9%^AKhcf~{+{B3=XHO6 zFpaLCjY~(oq6-WzrV6+oU4AkZ|9htRj2cEXiex@zm^_;RyyuZl~f0p{Z zy&c!WJDco%u&&N+vQuAZRc?=@p;@`9+=dzp61Dw8f-%JSay!j!ua?_sPTNs#?}z-A za{Ci#J8rhe$JT)m4U1zrUN_L+*XYQs@Xgyp!YrFM+y9SxYN>^DanxcT z#RdOdISK{;a7!pGx@J}TaApS|v_FYSEk9`Q6ZsWrVXC31V&WiwvR$v>9+Ufko%SM5ORQ+^lVs&n10Y6!F07!2XrFS z+Eu$B-nHzieKI%4?`o*g93Oy46>Cvdg0K{$E+8O9$gF*Ad3e=+#usltbH`3|=Yu;& zYfn|CL!tX@4-Xg5|8Dn@5hLb0*$hi6qTY^668pMExAshY;Ui0R zf+NFQIG5U^K_=WW%<|C_j@C42jn+G)QTwTKtD}(P$z6V#nB^a!&S%!?kQ^8Edw0_?IPw*f@l#TvnDJvrZ_hG zbCkoVj|>vk712SW!*oX!_qjpy9SR3{Ntp|2!o~&$*yefBm+AS+TA*V@uFu6d?z`)h z&CradwK2h>O{T*)Rs+2uRsdSw&OmCQj?7v$co&G{j+$_>?dKSOOJ=5{`!gJOpfU{N z4i!;TVmpg(?$~MAJ9^O3mlIm0?0|$OejFPh{0=#Mu!on};0qv>rO- z7>@q`JLI5F*W+sk&D_&<`}Wsd#mByOB=?*PnnA2CWCyVzMkNUb^691{vvw2$7KlkT zHU1)HXI!Y|Z-*V_)E>2$9klH9zQV~2yW;51Eo)ZZgq2H5e3Y+7V^XQI5sDZjQXAre zxW*4%aU}Ly+z%4DfNi*QxPh#oyTjZIDLOK14hRT6?begQ-9%OAgtnGco8ul8d4#u< zM%4x0PO6GM-cFi!9(g-cuqsl0obwD z6y-VFV_mM#b1G^X9WT?7SwnFOTxp+b-&xH3rbnP9puid4iJPalG7!qqS$x>@ zVgTmrxz)}QToZ~iwOBlwoZOXK?c3E(TDr6?c6Q@CGZhW)3=p^W^#~MGik;Nmmlrz| z*n5@oIz_y{??wMYDAq!BQ>n&*C=AQTxIp}c(OeLDVN@qk9B8&MS1QrlAlt%RHOR9t z8U!*djD~>x3Zvzqs=~+($d{m5dlOQIib#Diy0hq=(9uim3+ma%l3(KNLSy~fPn_}H zs7FpvUWCkdn4FQ5omY^N*E5fRzA&Dq%%+mv+SHS(?9L}nT3vS8>7+?#t@EHWEOZwrvam)< z709X(f;r|m6=%cZKAkN|hn&ZzcF9y|iO~GQS z|23&T9(t?H1sN39OQ{6?6Gpp0_=HhDD4q~9Yau^Vs!@skqAk{-+ErADw1nC&Q>p6u zC}W^@yq}sdq37J}yjRon=IGTnPRRlfPw?0T-60xX)E#_43Wc>B4ombdsG$&N)-o&= z3AH__X6}uvrHYRHTdlrCo2M**I0Hn~vLXJ3d3r*Nlzbpt738I78t}<-jjSL)YQ`4UsS_!SZZo%!P-<)OKTe6i?uY054~6$!pr#^9_mA*SqFp20}C^p z19b;RuY#-tqb^$vv=M|Hn6rX_10%m}28#ZtfewIH1NoY@QqUZLa>vN!e8yriqUp(C z%dZz}Q)nXTm2f%$)>E6MU?{bhm+AAT7aMXONI!bUU)8j)Ia6 zv{WLSL~r*se53p6$gFL&I6Bn@_{CF&bW}z_N!riJ%+JY6Uy{~*_d-d95qXoyeJ4GX zI>w-wy2xI1Qw9#j^f0ZR3enGg`bkRYl)Ur#l_6EfL~nu_W;yt0nQtl^b);TZYL zx_zy(E~!7=wAEAn0dAs94xR-W!jI0HCD%YvW*wQeBXe59gubrmVu0mlW!-B*7-3d@ zT{JiK6k{u?_BFWU48)SJJ--a@fG2SO5H;FTRbQ7rnCGAvr9b2|RHS~S=Emh4-XG}-%%r+J&N~s_v$GfGm|^QLXUSq7E>wS$It~U@DnjilNc0kQaRGXKw#G1NDZF^u(F9A(q}zE|s2$!kMlZ&g(kmEaWvzRPR)IxUQV( zqSwtoX1WsiCBD5$je-ooc(*e5B2~+nbQdkR7N)ymW>7uPG^yD}CYNu8B=P&bHWxA3HEw4!=}jv<$iqqpKh52>K`dt^j7uYWIYAi~lTF*o-Kus2)l(hQHr+8+5`&{dDRH7ro&Yo^VmW z-lg-6CtS1$PW;YAdol~ZbJ2_5o8P&p-|zj-rSFF1d8pfs;nM{_pWt)wv*A|*jNX7B zSTNdj$Uu8x@1MD2#|%^f{e!uA@X4RisUHpGTV%&&@F%eGlRH}We(!48A(2`mREdU~^UE(tpS>Ur`)*do!VKQChTYjXT;+*g zM-R$G02_VeJ9q}y2tF|$zF~&nueg|@cKV;F0{%fE&{xHx7_YJi0k%4Y{ zw&FX?+6A~79*zCerUqL+@o|5Yi=|grxWj1BQ=U}jKqkFsXJzK3;nKs{hgRmnJ0NU1 z69=tjUId?epa|mq6>fTSt61TtPJd&Co8Bh<3fQ*153Mn^DLY`Ur1Y` zk9pN5^%wN<)qP;sE+dQcT3FE^L& zrJII^(v_Tzy}GSh$z}U>rJFy{s5TGP4G$vx-&k(IbN+C`i5joLL;b^eJjcVyeLmv9 z1CH!7Dho2uRXC*2+;BLY&*%u8%4d`U$MG3G8DpU7Z~$NTg_HM;P9!mcU)U{z!}d%j z!BWz21r+p-G9PL=SVYCS zf_VqxAD_5sa6JmPD?N(qaXYfK1GhgsiD~J1dFj+k#G_B#aViC>Rqp6d`xkIPo=?&r zhJ*2pBH#c#qn48m^b?$cXYM07{7wjVG%UG0-8Xylyf~FMox;S-`!DjmSbE8w$Zx2* zN>ggSzIEC;3GNqngW3Hyu z(=gzjT2J$H|J3?kJSu0jQ8%~I`_C{qjL#?Pm%%A~MjycOdqxA`+&!aGIB(Br8XUAI zWY(U8!{9I~kDQm5Y`L0R&zoPTia1|)i#Xk=mG!haHeqFbJb#30ZBnN~qtf~=0*>MH zdHpGH{+`jxaPXc{&R04zYu{QvUs+%CR6FYb;mR(k&Pm&5#`K`-R6bQl8ZmwWhwk}w z{ysQuPspr=e?vK4zdAk1;`KwlruV`Gr4M!B4UT%_fxKQH%RO`y?We)NpSPVA+nrK< zOF5zEdeSct^A|Ww9DxJ(gv?s{1x%w<+;V&pWf}HseZ_d}4cTSv`#5k zAkmOCQ9Ek3p6Y8u8fY5&$B>5Do|u-}%A^i~5|#R;!H-;EXC!UblC;@b>G?Dzfd6ol zIu`xAi4D;W-FPqw9oj%WXw1-tuC#Pi%T4OX5DIEqTLvfn>8GEtim$_rigi)5qbxgz zHmo_y-)x>zU}1lwsSCT-DW8dNW?!S3WyL)%!~6F*n@8_8&<2O?UIV=md*5%ME;;0W z19jaQU`J3f`p9A|%$@@iaCY9D%tf#<(5x7#SPY*u_$5YK_A42AS?M`6Lw|d}fkwvK z`wf8uD6VHsFvC(<_!QbaEL6weP3n5|Ynzr~o}C6SbreVP1J1YlfGcLng9ds{wmfK{ zSFZo){@xGu{6B1n??7pF_fQAojF^}vqI%5^7o`sye6Tg&d)Ppo`P4&>;oidrS}(*t zYT#j19qXxglI?0D3mKYwjosu?Zyo^%WZ6W}+v(38%AQUas#Ad$dm zt*Nz+DnS%M4+m-pgv?si4Qj|fp7UeBQX99e#vI;U-AJ7vw78Ksh>IKPH8Zogu^a7s zD0kFuP*o!8J1U1QZlj=Wy;2a`tg1HXM4fO3w z0}TM-2ljP?;sYVG)?^uq4o=S=EilSsdHnKuR= zU8AwY@#q>(cjbXiWYi|?z2)X6e5)B3jYZinU{+@yC@Dp0* zTEfp}8O7}}(D(2gRp!0{wFgG!@M}{>N8m@Agv{Cr%Uh^-ALLH(c33qcKlLo0K!q&|&Z!!ltkUeYy0b+*O@X3-RF(@wF`= zx;{tPx<;b^9ztWz?o*PXxRi3-i6vH#_T{YTBUu_S!@4| zBwA8$HoY={OB+s~MX|KdTZA?4KVd_tJcCT?Y$HD3t`N%>jPGcIflh+>0&!-oI1*zv In`ia>e;)**CIA2c delta 1819871 zcmb?^2Urxx8@Ic6$2IP_yWIupMU)~P>sYsU|Y8&tbieE&M}X*CiCrX|G2q{Y`x9h8tzcw>Oh zK4@1nCc{^kF=RkyZ2$OSyAJq`V7tb~1;obGjjdTXJ}#ho4E$G=uT4uGJ#fI#QAPQ6 zqQ{KLME~sw|Icj2oIsENe__Qh0*5FV)i21$V(veDVCu->scF&uGscb_Qv`Cq_X`IP z&im@c3*mLeHC3uH5g^ObDN0-u9>sWw*4ZAaqI^#=tB@}~o9!ZA4-F9GA~~^H&u}p& z%ukFP7|i$st8bjYP?YaBX6%@ZQA1OQkB%NXa=^gsqWlJ+@t@%hm?DtH^$!$FgE?^V zsiz=j_2orNgr68cC=>*Wqx{4LRU<@~G#jwY3h;rwSDnfB650M?Vp&Ln__{~1xGT&9 z%Jpg*?3NtWz-)48F)DTBFfp}HJW~@Kd+JqFj1G?$7Y+y$vm*V#LqkZ6I3+j`oI90m z6nzJ|i|wPrK*61x76?)uyzCQdfx3l(*f%Y!Gu6PQTS=kf=)N}4Z{$rM@o*>y9+Y<1 zz#dh^)Lnk!w!vB^2$W`y4HEr&qmD652za<9HH`59u@`%LikBjT#8%a-G6CRKR$72~ zy^l$J8|*Hw>FX_KRjVd$3HBGop5Ee=w94YT-ad>*jOi6BW)28q!o*`M!rY7UEe@?R z#*P_2bRdi@Ur@Giw6FM}rweT= zy)KmjBaZSB(?Wbe$sSJ)@@@j3@8$p=G<5hFgxg58&J7ha=6i^*BEz6r5`Q$1MFyj3wgaNWInE{xIZeKiQV-iYInF8G}x1I4Am9oYp|QeoHQ>{)jyP>rlbKB z8y<;5grP8HVV)?w#7p6|89xx1mhI;V185d&d6yRD3*eGZPY-DE!sK?oVoWJ=1o1H} z5LOUz6SmAeau2uK?|-d{|KsxQ{+ z<&AB~=6iz1F`3>dSdrHa&L|hR4z2~#PG)^ zm4$t)GS2lQvzjj$#q|#mzZvWeLk+Dj_WAx0PL9`+iFkSG-zQdF9ULZ33-)Im(+{o? zm5YbpbQe=Ysz7UVpk&`IBovt>Y*9X$@v%_>;K9jkckyCm6)X;#=)_P7EM1Xy{XMvr zD(8Z_Ql&ZC14kPdJ`!BgcVp^Ca#KuQ$5gy;YfLS}RNRhaOx?iL-GUTMoy62nsXZ{Y z0#j?o6KW%-w0jA)5L2Ef33VU`lWU(6@*$?~YkFar+nD+%f>3KQbu~8)x2?z2xmyD; zwHH%eXAH*FcbICmj!=6r_0)eTZkvIrxClZ4bq>=0hSxCM_ycZy?4E_G{g|qAa}=gF zU~0`zget&P)crBI?JTAy4$sEa8ce0;5NZde4i-(oZFezMr{-i#T~b%df$Xb#aQX~eUGX51v7BlGfcU>n2o7zm}1OxF|`X*_gxAx^$n)#tPnAE4^!ti z6Y376a^`491TMmj5^i)qSc<93m>T|MHKy`0RbRCRQ*$x(iD^BiHe+hT`F)tm!&L6_ z{h0a^Q?GX(#MD=qYH^29vk{e}Jz4t@Zu}fKrrtb^sneKBtZ@`m3oy0Ishk~d=P@}8lR=?`T7;?R125pV zW0(qibs1BOF~x;n!PHSqJzjqmQ>QR>>=dC6Vk&0sHQZK$sVmFxV(K$YUC!A@$g7wf zyygLJEW?!M)gw%8CDi^Wm@2|lVDIlR^);rROd`}eObNGs#BJ9wb$QrNnA(Y{M!wH6 z^)04O)yN^_5lr6leSsSvW6FB)C8lm+>Tbd-Og+FB}&+5>skp!%e8|IHtC|zKf|(F?CLV4^x{k)$DD;X4G>Prsh`v5mV`Mc$BU^;eHI<9=OKQx zvWoaRYpCclEcJdIbPjH2ZXiIn>kttd@ zD^VObHk3&fr;KYR?wa7w^v0#e6TQV#6T?&m>FdSVNzKJUMNOC}#1iCMJj|{|1?gxT zfq41N#VM1cK){yjmBj@!8i}JnX(s+Pxq-NAULCP>&SXeOgO}}sIPsIo&6pav@5NbF zwc^pq^&o?AF?&iBcyRNk-X(K91pQ7l=hoDsUC1u#vJDn7WxN&i+Z|yMJLNPGXJ%Q% zg2^7B^m4XFI~ihEFry*VbFJJd zcqp51A2$>-LOUJl9fOWRuHv4V&9rEXLzRtYRTY_8jW9#are<2S+1WLLW)@>+CbIcM zpcGxj9PP*- z(wEKe3fX)lz7$==lDTH5>d-Uwv~V+ZjBY-^xoBONBKBDTWs`YGy`VdE{}ZuvK?D{h zpfFKPE0`pHJGH0SB}eYH@5LV{)kMc57`=tfm_Tspx0PNZGq;u4X<>*S?Y~e`d7um^ zT3_DEnxa%}vrB8d9Fh)&+_$0NV`6aN;Rq;P)Dl+jLNghLg%_NWI6M~R-qMl?`bHdC zJc_v^uGoP(s6q0SSQpU;G!@5e_A(ZvqkS6*1E=6pA7J?=)>Tv$wE!jl#V+D~;Gsu5 zIco0%8sE!lEw*0jF7{m<$>c+Zaay#M+iiY%jVDunfglXf2LB!aT2!V^YfhMax5PtS zUt$q6mtKY9pacN*j>F=lTy5zt?${j1bsmnUmcMt~TirD@H&1aV+dQ#4y~R6tXS zk5>jly}U*1N+0GcF=}NLGh2MMr8bN!PiUpj#ok$A&_dNABa|W_M$zJ>(UrlDp-CQM z@3p}gZ0M@0u=4_Fw-ydy-`&-ql+jE&NNqT$x7fAB47(I#ysNPK3JeN_iV_Hf+CzM} z^CPk2YIh_doaKl|in^n(8cylMcoYu)HBFiOBC}=`GfNz^CW2WcmaYlYqI?1Ah?d02 zwQ(XeEY>S`ZB;GG9#9*a4Rdx`#6xSViGHB5Xj#`DiW;p&`GmdQWm8i<$|#UL3F5Z3 zVc_WCu|~&yLFt8^jopOnN@6f8IHRC?C1UBudg8g#CU`cWzydaU0_fuAcl1(WJ8rKWNbhu?B@%}Y5s0VoP+e#xi*K~vt zt;{H~K~@-uoHtNxwrm*Q)2^0yiq*D_#~M%HK1l4mFjzb>sta@@%6-rPGI7=T5lNqd zKxkq#LJ*%WckEIYsM=1%QjFSZ0;{y6wBpQN^_Xw*goIV1Zl{?!Qm%svuI!@k&T4Sv z<6R?nc4YJ@EkgXF#en6(*iGV!jYd((MN#jEBfxhz3d(sfnmu5h03NIzXAqa~L|ceG zxR9zS!$C+>#P<7!gBN+z-Jv=t(Lt3naAnR|c>XNF`3|a_Wv|qMy0$qyTuD*x16#zS z2PTU*q%op&U@~|+@U~t&wf~ivxc?I|>9a}T-2hmTyzdwB=>7@f1!*$4y?eeMN_bpM zJUAJw91L5VA9^P~JvInLi)*dop@VwJ6y-H`Nd|zei#G&`*ACBR&cQ*$LGG+gJh(S{ zlZ*J>k!-Q=alJV7*so&0V|wxXqaTZXPv#V-L)7n%!nV(+iVsibf{gUrF5(baasNb) zc<=LE@!s)V@&1uqvCj!TR0L&8NRfVDWQw)VWQ#3Ne+){7A&gU*;*K*qcz-J1KQ&%F zdRhlXe<~h0GnM&5YH~{>~gswb79w_%cGh9|A&>};oWHWUCCEQFc9L<)p=S45Y`^7 z2TTo(yH?ySWSHHc)ZD+N`0@Q+3ZRfQV)7M}c;TT{T=3v`1rSi0KD*q%d8bx5799A5 z^%svnEm1bUuXz8tAO`&7zRU0XdoG|+$8lEC^zur@!2EWteRYZ@U=x2yt0-8>n>GY& z*WbTgRuS0ye=V;7>@KJ<0b1088B_rvXgNPAlVQ3uSS;xl%iN~LQ))({#rZCdViz6r zm~aMdTp0y#BmfK;yVLxnJtpRi2D1hWIA&l)HIaB`EtPI~WoBnZ;U0Q2qlo9g03Rl` zqHwc)nGV#V&-|D_sGx6xm~9nB9u&+RB!WuuAO>* zae}nD7E?$iPO8T!of8s-9Z4lU+>oL3Lh@?NY$9PGU2V=BQIlX?*M_-9SW5ZH%q=pz zrH{KXk75I(=s`JzbS@ODSXmrC~+P32&mr*zI;DvUV`n z6k7?y{=S!4LmjbYKNCYe_0th#F|0(}6HGEKZaM8Jx}J9whhJiz(GEkdF|%m|FgKZ> zp!ty*-aTOE=}B?L56ri;w&-Ujjt;y2E3<>vE`G~gBq6?MJo}1DGtq@TMB~1dj(uZP zYR3Q%rn>Y8&-xfh+=u(KC8`R6&8Wh5qLTj*&YGz{`e?Q_Ee?oh-%%~b)M3}q7zs^e z@6iq(AF*F3^x%AHMH{vk)y3R}y{teN2`<^!ssI1z&F-hg6RE5R74XM_Y&6v%ViHb2~73#t3(Cv5T3P z?tRaeL3u#IPwb)!p!rFkKWBF+$#4BfBOrZo}01h4t`UR@Y%8Y;k#z^&p zROgT$x@xL#P;@>^P~Ee@``M3F!%%(AR;u}Gct4q>YL4!%9aPm(wAb#W8jk37-Bbrr zG^h1bWRir9;^Bo^?#GC z`V-Z^oS?dg?iVJhE~5I9TvZ{$iJPWcg7CkbP3S&zRS!{n;sVtsh4#n6T7IqrU{T#h#zRRWU3xK*X(*Z>WiDRtbY!fTOcr*b)bcd33sy4d!r zRw=bd2T64RVVL(TmIM5FP~|Gc9Z=OnVLtMp>HxZjA6D%}MtXQmwOOffk;hfx3irB9 z>GzYWxk$6=r&XJj3UJ|!DqrDpmMQ&xPBj7vkp7iwtx^HDUr@O!wm`4TWMBF1igFh; zy{7t9u>kouRjZH%BJQY^91QV9nRr+AxndXGyRRCH1nBgQau+Olq&lHkfVWRn8;}6& zzf)~g8UruCSM5^lf@VLdK1Ko@e4)ew5_Ca*#k@zpCd#}2syzPEep5A7m}+$ZjWS2- zq?mWAd_QOblxl(5Z&mP9Npn~)>8-E&09v2+2dWirNEqJ?_E%H8N?!%30b2D21*@;1 zd%bGvp3v+P2vrB7WMW^m`X;IuW7P-Hrk`9(J=BEio2g&v;C*wF8Ye9uw^v_BbaD@M z6EtpNs`?u=Zft*b4}^Ddpt=FNn}?{+qxw5T)pL{_>!Dx6q@$VYIVfXkGgkcwWlGW0 z)g?%{i+SoZsD9~u^&%uhOtG3l_qY{A3D;HXnn=i|8`P0Vn5>QJztMf<7Ih4|uiB<= zi|#+}P`jY}>z(S`=zd|3dMq@#^wB`Av*Ay`g1hy@eTE3M4!2%HX!=SJ#~^E-h;kVyCA%<=W4tKJ$a#?h5C(n zt=?@w?Qhkupwag58a*23$7+tC=6f2=Wn{}TttJ<-k8{<;qxwN^8hjjzv1*>6c6Uy* z4z(Zj&@5D#pmmbI_SQ^Cw(M3#ljI8T>!US8eBj-!t;U3y`X+16DmfrShb9BdyOBZQ zUCYFD>2+rf17#&af3}l`27S#Qno|lz$LMa-+&&tdMgNwn!2x}#zh)jXO5Y(GcjT*a zBQz-$kzWf6CTq-~q(KjkXmVq;M(faI<0!i(f!Uhxlsu@n+es@yKI4(a4O56FkEaq% zM$OXrB25bNHIWLZRx&smnqdO(d@`m;=R{37gd-c2;pt{Bl#60e61pQ71TcnRZ*9@x+G2u!& zMB%33#MFU{Jp)~&&+cmaBRPG((JVoea_?i!5k!ysUUL_%Nu7SzbTz{J7L`i@nlBA3 zE^iTC-^XQwx3V2I8NA%6wt`QZHPC{9Z!-pfCAC~QFf+-;4C;TZnFNySxP;psHouO` zHihPMvN1`w5?#(A?bbJSd4`sfg&(=3BX9lF+NHYUD9${uGJrAdGM9m*6c>e$N0I?X z2}{Ww4lcBJIR<4a?BL>IP-aYt+nG4MYMQgFZWdRcLdZEim6m!jiOBaP1RTxNl z)}oKpX_d>P$x0&xBD4jKhP8A7Cu(TXb4ZKy&%I1N1Iz(hUvTtzYYwa$-m&9_8;ex_HFZs{2v#Q_L{|{{XQV= zrAxG*qwxbuNPCslr2We^q<#K6?M2kycMECv+eX^I*iPE>%CtYB4dUZ{T91lEtT&k7 zEGu7Ha74RT@uY--k6~=mm&diIQIIY=rQL+QoA{+R7Trf((k@dhB@DH`pm*=AJSq8x zc7e6R5i8C4L5q{0Uw1J0*nhnEs z=}M-IQ<_zybmOQr)yC?Stn^N-*m1gGCF_F|;n8^A5-QESNxGR8vQ6n^UGIu{DnHj@ z8*ZBJlL|@WKV5f2L%gn=qsyoemS(OlgUl{4V}VY|N06Kr-&LSvRYa~+qAsmMa_ueB z&7sRe`(oWa3Y)l8x1>U_gO}-|sk$3h=>}B<3rt?EbCouf=sHq4jjMIvQ90G?b;}fD zOK`1OMnycZxq?>QyhZnhid42kw@{%-X!-M#E|uvfR%{O3+O1nkXXFg2f-`c-XS&4{ ztH}Y~@Cs>G|Df)7YNd~k>Sk34tH&{2oRWhdoJB1_-#iNkcC@Xpk$g_;uDb&7lkj6l zx~sZS1uLNh5$n@^bK4yq{2&|NW5?aoT_Sdqx;@mT&<^{a=&Zy7((UhbiDYq+BA)BM zpu^NJbt$yNz}LD1CIS}A=+oRuajl2GCmm+-)vIizHaJ?}Nl%J-we`PIgu?pz9!hqa ztigsDscjSeGcB=9+t&JFN^t