From 2794e406834614229dd2bf02d7b4b08e0ac2a4fa Mon Sep 17 00:00:00 2001 From: elisno Date: Thu, 23 May 2024 15:23:33 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@4e2cafbc517f092cd088ca83bf49eef8767d363f --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 284077 -> 284077 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26580 -> 26580 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 133532 -> 133532 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 91271 -> 91271 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75599 -> 75599 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120431 -> 120431 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 48686 -> 48686 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79104 -> 79104 bytes master/.doctrees/environment.pickle | Bin 15791444 -> 15791444 bytes master/.doctrees/index.doctree | Bin 42320 -> 42320 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1408 +++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1254 +++---- .../tutorials/datalab/data_monitor.ipynb | 1558 ++++---- .../tutorials/datalab/datalab_advanced.ipynb | 376 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3230 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 656 ++-- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 188 +- .../nbsphinx/tutorials/outliers.ipynb | 428 ++- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 1064 +++--- .../tutorials/token_classification.ipynb | 174 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 232719 -> 232721 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 336275 -> 336271 bytes .../tutorials/datalab/data_monitor.doctree | Bin 286623 -> 286623 bytes .../datalab/datalab_advanced.doctree | Bin 199380 -> 199380 bytes .../datalab/datalab_quickstart.doctree | Bin 149271 -> 149271 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 436294 -> 436294 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3292 -> 3292 bytes .../tutorials/datalab/tabular.doctree | Bin 119368 -> 119368 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 154225 -> 154225 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 210677 -> 210677 bytes .../tutorials/indepth_overview.doctree | Bin 222071 -> 222071 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140179 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104189 -> 104189 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176661 -> 176661 bytes .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/data_monitor.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 4 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1408 +++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1254 +++---- master/tutorials/datalab/data_monitor.html | 16 +- master/tutorials/datalab/data_monitor.ipynb | 1558 ++++---- .../tutorials/datalab/datalab_advanced.html | 6 +- .../tutorials/datalab/datalab_advanced.ipynb | 376 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 50 +- master/tutorials/datalab/image.ipynb | 3230 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 656 ++-- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.html | 2 +- master/tutorials/object_detection.ipynb | 188 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 428 ++- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 1064 +++--- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 174 +- versioning.js | 2 +- 178 files changed, 11693 insertions(+), 11697 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 923c638a2..d3ecc97c6 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: de541479a457922170d5672ec048e2e1 +config: 968a66b0473ab60595f0d504c1ee6a73 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index bf8c3b45caaa3d42cffea8428c7d6cd08f431911..5723bbe9eff31421cf6a334a9409dd718414341c 100644 GIT binary patch delta 117 zcmdlWxj}M6IHRFaaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Ynvs!(g+;RA<_^XHPBOG{axZ5D01M_Jr2qf` delta 117 zcmdlWxj}M6IHO@@YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* WajIFG0T6BOU<}|SLmMaeaz+5=&>>p@ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index 59f904594be2fe380f48e64a523f470189979595..cefe2bfe236e03d76861d4a90f2edc94a050ae21 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhDOC1OjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OQ=7|Po#!0D`DMqG= zNk+!0W@!dMw0Qy}D;e4*JDSIBR$=yIA>Brh*6F%7jQo=YI10(q-oDwA^Di4&TDv!Y z5^!W9Q|o(SR#vjK_H5oL*+HJIJ)6JD)N_z&tC3nKc@fmJxk9^ynM_+(>a&sS*BqlI zWH@-Uqxp4qvK(8od9VFKPBOJJdp(pQOKbe(^?F>J>r(T`i&wDr$#tm$o2TUk$Wq{f zhMs#8R diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index 080a0952c69f36d0aff272b08771e60c0db8025f..12b49e27af9b16a276642bb5baa0839a6923867e 100644 GIT binary patch delta 4197 zcmbuC%}Z2K7{)p0-tnuMt|pEtLKI40lFm#zGntTJ6n*H7)}Wc;sAHmoX%=ZM5;ckt z46blm2nmC#m|NnCVpO0}J5{($HCz0Z5!^PY2`#Il~m zvSyl?!`a_?qqT3Kt;FFjb(ghw1cR=_<>h7VE@y|=M{MIGrAkr_EuE zu@8Vu-~H*Bm~2or-K%XgR+I^U;^==KEN~5y*BGmTxPnRb)j+mBwPY~{o0JsDqW(o| z%nm67Mrg1F>w1e3xV2zOoGRw5szVIBz>syJ!+BZL}aLqld2F!iEb_v$bu8$#y z!R+&Fltqw(U}`B}VfWCYsWOFGVDjfw)((@S8SD;B-mtQVFu5d?eT2!89c&6F$8uN& zOn#Zm!T_1%kUWN=dI5_7&_COQ-tA&vV6txy>w(FQMeI0C_U>iVFnRC*YX;Xq9W|D+ zuX)&>ucNtBY`6jtZ{5b-lzEq3903gEfSseC8N9g!6W8j!@l<+$g!_TVk2z_Z2G6Sa ztL=CNHZjw{Ewtw2#o#q^u&1@oq5E^Phd8+V#va>D7?(Cq7$*{a3#)1GSC|4*SSsH{>7u90ZD_FbU?gy zAoE1bu4L0&RT)>4brI6VP8;dUWor^vBnvu?)} zQm9NIk3`dkq|I4mS(r)0!hW@iCf&+p6WC1Cp_*d4qFl!u>PfcXAdsG9faggC7c#g; bg$3#b8&19$tr&-b4Do$s78oyeO` zY_`2<|um) z$c&vIkBEs@RWp3r7IQ@z52TL%=fQ&4A$g;@8cZsf)L0GX8ysCU4l;LzrBV%Ra#5*fur^lM@B37AC(a zWD$T&vPmApP@{y!0O;@OL2q}k&oJ4)i}k|fwla1UCi`}?DVQAH$2!0<&`fPE_N54$ z^UXAOf(_LI;?2{zhjQ<-^TU9FY_K!*BZqfXVB#jDFPTa24)FkR`LR0fkHOP={&Fi` zfkVu+avQDrc{zAYTV*&%x*SJtB~}g^xXiz0ff;D=D(~Npi34J$kZYo6nHSK;eNOpl z+4LrP7M*&;$Btn(O=8f-@+h**uc00B$Kgtn59gpY%&&8Yxc!sIK?9Noo!NkRb3+!1 zgj30xtGrt2c4i<368l}q+CtVkAg7@3U!Cn~48BBc@eE7GMwJlUgYLeExnDOReC zBbP+WhNR7DWLQ{9#KK;+o+hf5iFR-?Er$k57>aTOb7&#C1p9&XBm+E4E4YxsH7YGp Y&pEK#-6YeWJdnEBdZd$l=#M#n0j4I<+W-In diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index f9adf36d8869b320184c83a503f4edf2187c8aef..20352702850ab396d9accab01229b3d93f74e37a 100644 GIT binary patch delta 3550 zcmZ3xT5#=Z!3~~_hDOC1)-sIKd0-F~xuM#HRR;c!7vUCP*-YBt;i!80-o4+eh zB+t9yn+4Q5n8>tML6e(>Os$)BgUPkE&mfdst=Y!)oFEB~iZ(dh7FNiFy`jh?CC8x(m zF^X=!b@4VQ`DSd^yJKZfy7uXTj~Okd8%Qy-Z@(eUc#8}NAeo?~#(2b-bTJUc_q{KUJs@_hNPPSNk|JS zn3T7Ftzx<=LXin!6PV_b(X@fPL2-NSY^DQ}q`Ltr9Ncy=EifS61h5+>e+W^Y{<(@t zbbI?tCUtQNOxbS5$Q&w2x&dI1ycc3N;2~2lFfp99Azd%T`}1O@wgVIO8ZwFlxB;MC z!MdF}kGX@JbZ3CPKON}(gWK0sF=uF!ZUERB+iRCFKOiGFfi+JDY8Kvpa~HD|nNa|7 zzsL#Zd@=(7nxT8HG4CLwc!C9?#P&TbEc4h%4?=_im$+Hf)X6dc)Vt!}o@UJAt^@!? CCn043 delta 3550 zcmZ3xT5#=Z!3~~_hLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMw7H6LCmGr%GrHXVB)268pHw(i*<`yYfWx zyc@n*K&^v`Oj{K+xmn26x>+}vTwD7LLdn&dZCp>T)*`cOjCvSKq zu{|z|ak&8b`X}q(Vc*`8%_!hXwi)8vxi>P38j-GlJ1`uX`AOFY3O(oTCq6M&>XN6~ zV)8mCjp^rOm_@fgS718LN1-XK+dT}JY(z;n1r&+f>*bkOGHvhmV7g;Sx(Sekw4j1X zdHdHYrmG?pnGiOCX)YN}8@L-3x7W^QIv`298<4`mZ3oi=1JX?ZyJ7N&5asEgtC&Q$ zx4&dk7pK6K?N*G;p@O6v0QSgxA!Y*}GW7xz!&w{B^+LQqFIH+hFj21|qd0&Y0Lm4t z+nMv2JGe=A2FUxC-fSs|ub_w$XGIA4G^K_tQ;q5nfF-wsd1rYa( zoM6r;GXS6&y5}164l;@-SP)8V-^0Q(kB#&oL>O?1n?+5XECWEjEB@_i#w_ki0AsNk AC;$Ke diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 39d9609384afbc876bde255fd9e32cb4f7db35d0..f4d6ead445d1bd230f74d7d30b39baba75406f76 100644 GIT binary patch delta 477 zcmca|p7F|g#tqSohDOC1aMQ=7|Po#!0D`DMqG= zNk+!0W@!dMG`WZI1{t~<1syhDW!k|+p4Q3#SR2UF8Mukvm4!T=lh}nf-{S6LCQEn7 c=C}OGWQ6YKM!~WWvTSq!h7tef^0Zh+0BVPgw*UYD diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index bf770a8047e1b028c4791f565d10636923bd216f..086e20a75c34218fa62a3017fa44b5e4c867b07d 100644 GIT binary patch delta 4228 zcmbuC-%FEG7{@thZMiLN*$?v~vV?x!=(gP6MM#rE%86Qz3=;QlbFGQ8nzmNb4*HSoU?Z z)kDor$T|&BVz^5CNClgc!$`mRgrB8DUC2IZ=>2dng_`!WJADsP>*M}D)H)fJP;2CB zD{4J6s@`=Bw(Ld}4jEc4nj@$Qiz&em@khPC2BR3PtUS{vcej-^l^u+iL zB&&vYPJ~cvXEK3WFQw*C>ofHUYF&M#L($Q6KZ=fLn$fHSQ}0ph!Zh-utY|C2X5OM! z^W0Yy9ei;SICP9;hf!nID=&%~UY`P*71QltU*2?J>(Ie6^ZU)vz0|@Qb3K@~MQO~H zvjd+OkjD$jwy=S`jG71X73@OccNv&@srb=^p~_Ox!fIEF9K+SN=fuoMGo*D3R)C8F z-dd2Y$&>To#8tr>`JZnj3w~{_fL^tH7x9lR6YmDv&~s5`z7m|l={0f=l=I!cNNyYE zRremGMjoPc5_!am)3RP*Y%{%Ejd!q%r}t3<_yxI$@M#Aw*Q+&dTE?TtY25~9py#4W zY&+D3hg-Zfhu!QRRj_+_tczA+N7s{_t>V?aG=+u#k2gi=nz8igTppwoz~fUDTqnPF ilg?R6m#XfhfS*2~5n$iAfQOJ>TmK`!l}j_UhyDXwTl(Gr delta 4228 zcmbuC-%C?r7{__vHFI0q$$pp@ku~VojoWN?~6pBQ;w|KaeCO zLp+QF!EhNSVMXjE-XQFzs77XjnGE zFmb0;#hvtC^VN72zY0)aZ&<*QZHK+NNn6;G||i@U_fZjv7WrpcX+ zY{7D}Wc@}H)fOz0mbNDW+DNrC&0*gJp$cryF{w8C!pJV33FdV5goWYUjXyRU>% z>zRQNYCSwS2w0hs`imNsp$5RHnd9KQb=Lxn1Ifi$%kUC%GLhV6_HOhiQmcuc7`u+t zYNCmY-vOOVK~|sdz^p;7K3~QT ze4a-hFC-Ua2}4HB38S1{DEux3YhEmVv}35YSd^G^xyUhGZ+=c3d?ZW4Td)9J1c*98 zw%Q=)!H(;KwedgSNDf?WGk{f>zKimYEs^L3(y($7Wv&A3!Rb|U4wUoVzes)?=GFHe zq&6O>bP{>QirumnV01IRQ-x=+i)Z%H5^x2%DB;r%TyE8?8)zv{9;Y=M=z*1sD1FXc delta 64 zcmccfmGRD3#ti|ChLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= SNk+!0W@!dMw7HQnx)K1<^c0N% diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 3a939b79bad842694116b2c7c9a337d46fd0688b..a7c6e86d0721d88183473c2417027b938423e96b 100644 GIT binary patch delta 62 zcmZ2yxXy4xHlv|YaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Rnvs!(g+;RA<~fW);s9YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* QajIFG0T6AT!zd&U0AIBdG5`Po diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 4f739859abc01ed6adee16e64f948c86e380efdb..0841dfccd383265367c0f42a3b85aa011b1713d4 100644 GIT binary patch delta 62 zcmdlUw>@q{G^3$WaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Rnvs!(g+;RA<{rk?x&Vb46H)*G delta 62 zcmdlUw>@q{G^1fOV delta 72 zcmbO;nPbjmjt!}dhLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= aNk+!0W@!dM)I5!`eHtU<_GyevY#abDw-ovS diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index cb8683c858650e4cffb2b9618d964c4a6d5400e6..5522e61949acb965d7e2cd1eeb969caa46fc8e0c 100644 GIT binary patch delta 117 zcmX@AbyRDEFQcJRaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Ynvs!(g+;RA<~qjhf@Ek*6TZ&~075Y$=>Px# delta 117 zcmX@AbyRDEFQZ{)YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* WajIFG0T6AjW85xChPE`}`-}h`Dk7f% diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 40aa6201fada6aa896fd96957b6d273549bb96d7..649776641cb083081769a24774e7930353133cf0 100644 GIT binary patch delta 5702 zcmbtYUu;ul6wevlZqV+o>#}SOe>zCVfT>+ux3w^`;kGcsWX%>D!k}9jG*ic5jEw;+ z!zdUHvdO2p1~u-17ZcQ(6Zjs$NTN?BCN+^5HBl2yG=w>$Sz-i<-|Z!2&%ZCZufIR% zoZq?k4t{-L(xbk9*rK1#nZ9Icr-l_ z$wVTtSZp9HCTJc&mDcX&UkhdtK?Sw$yhSC#XN+LV!d+g*<*uvCVR!|1x%YzRm3jql zE8bfGt5@<9-acHtlGpp52i4hKE|x*YN4Uk$7<8PktT}?!JI)^kI2F0FkR%X5mG>Q=j;nWn_0SP?HYc(FFw@IOG|MBIJ(#0Jr{VG9zy_TXiFTj(Dpf5WwtkM)z=`&+4G7vJyn8(2MrM%xowtFsiPG9U z1wWVYVY7GO?(P?{?%D7Kxb#YXCz-{jZVQ_tw9nv=dna-4#o}Dr6kn$9!8JGxeeJt= zw*LZ}f}edJzL6QwfqyVmfF{6J-#WZmLtRXduMiJMzX!Xh4CEQ!PVVAcWA$hv6wT!` zE`H^777c`LBrs*a4xSYMO!>vywl-0Bwhu3h15@*0UwP*IcZHzx%z1bTh`WH>mBaSlhevQGWekq1u z>W&wO=c(WN!8r);U6ZTsy@cHrJ;Gcxx&H4xV362coWdg9CHkuj>*Y8N^6CF7S3m=G zI4TMWyKVAt`C1W;nHus6UuIbq)S)cw?Bbo1;tQstxP2<5ViMN9i!07l*{YUh)@%oEg-{>T2X{C`s;kKX_Q delta 5702 zcmbtYU1$_n6y`){6Wz^Zvmqo)ts7-y)YR^e-I&!#Vv}IR)GP@uVsw*ivmtF`{A)s@ zSz~Fnv{)0pEw@;udGMuR+sHxhgNlMa356|Gq%E|C7FxtKr6o}MBfYaDCC}f$yna9D zobSvWX7-wERzKS*GM-6C4#mdmLa}sxx<6ANeIXKwhWlgDczjb|xNc)Q6Yr14`qI&j znYw|ne#98f0jSd2UHntQ3?itZ^1%mGB7DYSOj)?g%edTic_|F9;12g5(7aZ!;H|}b z3Sjk0e$Ly2t5@=B->aZHyUWEA$oOGy@-qe<; z7wns8YAobCO=H-gQzFso6JMmN#gpc{SPh(L{nCJ-UBbKDBd!k&vcLTfkTy|To2TGc z5@&sv)MK~?o1v$5C(rbr zMpN*E&%@UTUUmZiWT*g5fTg}=c)bI4F*UkOJURLe*hOt1&+uV#C*K^2p^4Bm=a0Mi z?PFOq5SEd^r1d)3ApV^6ijJcI3qJ(u|)4LB)6<4fd3Cv8=0YUqK3kgAg*8g$}B6O=)z1 zmoIIj1u&sn-hvm&uU@1s2OP6ID4=x8JJDEJMl?xK<+kGix0U$YCWO z`FD`ksw)ZFga+)X9giCCq;*9Orc>2UraT*>8r9cL^-k>MnT|(jn>wkY-abO5DtnMJcwTH0>w3vw3~KtQlNDIRrlv;d z5WWnHn5>IPeLCi3EAnhU`A<;CaA?BGR@h8x^9fpuZ$+NOrRGl45WWyLiPR(|Qhx;+ TRrDPSdZ0w^Qu=@Fw@d#6R8@ma diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 9398663972e3e624c68a489fbe3c5957a639877e..72b82dcfc6a919acba1a0757841357bc25750947 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhDOC1HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqCmjF) delta 2705 zcmex*o8{|mmJOkdhLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMw7HFui41L%9Tj6Xi!%3fk!~YM>tsW|1~PTd7Z%RZuCb5&{;GE44nx5oEZO&#j?LGzaY@Mv8%{MvT z$Ac{0;6R@2E5W-t-uE~w*+xigz80KJp4UMx5Sc7jDY*GtXe$Q=F3^r&O}+~xHn%12 zW1_(JFDcBFXkVUwm=f($*-@1ET_snR%uEK1Jc-R83r!x TFn$vvBM5*kyX}HHj87N=&dVUd diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index efe9c7006080598bf323df3563df10ad031e55df..bd761128725d0b87407f5d628f647f790e39ec6c 100644 GIT binary patch delta 1137 zcmZ4agL&l-<_*4#hDOC1 delta 1137 zcmZ4agL&l-<_*4#hLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMw7HJ4g^6@+lOGxuOkN-^uz53!j}Y0~o5|E^B`du7y2K%7^0aTZlC@B1t0WnKKsm2m<+9u9M8Xb-LGm!09aOD761SM diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 9051f5a215aad01bd221f846328aa22862f54d11..86353d945641a59c2d2c7c0a22bb8ad8fc5b54cb 100644 GIT binary patch delta 122 zcmcbsd{=pcKck^haYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj fnvs!(g+;RA<_5;O%tj<@)1Ul+U21bCYY7hk{EH+& delta 122 zcmcbsd{=pcKcit~YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* eajIFG0T69&V4TZrM6x#h$q(42HfOSy@BjeT5+n8i diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 5119b2c408e41d1ad044ff6fe8835c395f44d5af..a46ba56fb34fffacc40f47a2d2efed5e1b0d4d0b 100644 GIT binary patch delta 1125 zcmeBu&(!;#X+t=pp;2*0c~W6Tvc93Yfw^f)T4JKHiJ6&cim_3erLl36g=M0JxutPp zvQe6mk%fgtvf<_qMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0*?NT)W delta 1125 zcmeBu&(!;#X+t=pVP$HPVS#CdnZ9X~MN&$tg^`J&p^-s~sgb3nd7^=taZ;*fijiqz zl96$$S(*V5ZSG){WG7wQxacKi}k;?gEp$^td*EGUO5^-xWY(Qpwcq z5TLzzhetTM5#SJDu=$+tV=_`XFuBHUb_kGXCfnf#o8>|_lNt4!6QX6wOYL!!fm%0f grnA|S?Qq`Br?n*aa+ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 567b14c556c443faaad3cc179137e7090e6e6403..dd5e7ec5932ca4c6cfb2c0724727943f37d0ec37 100644 GIT binary patch delta 62 zcmew$^+9TbE0dv7aYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Rnvs!(g+;RA<}#*VTmXC96FvX{ delta 62 zcmew$^+9TbE0bYmYLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* QajIFG0T692WBSDf0Bund82|tP diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index a2a5729566cb3b54bf2276e5f34a1c60ccf94015..cddf198e2fa23186e551b5a783cef4450cfe794e 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2hDOC1k=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<07G#mF#rGn delta 2628 zcmccdp5?}SmJQL2hLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMG`WZIE*ZKMjp{Z_Fz1nDAyDgN31*?m?yPxaS-g7lL^gI-vb3(>T){J& zJgqY(@7HGC{7~pLFIhH&v~z5(RSY06#6a4GH?LIoWhdMAXtH#!-uzAH7YpfHH!B($ zFp;ipvZB$3%|@nI$kqDXqKCWy-mp2u`V+afs@r#vYwHBZALQDa>AHekTR*w~Bg59s zirziUWW;G>&XURX(ZZ9z>F{k{?7xPL)HE4lgv4f>&`xsv4AZ_ToUG6WYTsNRT}O${ zuVP=35#n%vA57Gv#P&PMk0`Nyb^1~=B5iYH&N(i!lFQ7=4Rzd`RVq}t$<)5UjBWCS zF0Sdt>Wm_jt#TbES5&BOp51boT;~Wl3v9NSP{B{Sb2dMmAIwI&Hekfh-287@83&nK z?KUux;n&TDyF|&UU=Tmb+;Kp*-5 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index f06c95b9c1d179c39e0de89119da8780ecf4f747..e9cfe5d9410f789fc3165b4f11f3be5e1b5bf5b8 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wnoJnlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OUo>Cz${M delta 2632 zcmaERn&s_jmJNZ7ww0+#h6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMq@R+XT&!Q5Us{x$I(eeK@#ce!a~TauHU_A*WICq`BmZO}mO`?$_f1}{ zEVem<^&kt`+Jz?zgs^OW&t<_%rV#>)team8EaoL!JICZu`9EaqK18-o;mH#A_Ey*R zOL7Z9n4IYA+q_!&C1qjHx;b03fxN^6ihWS@v2H%3eUypJaDW*Rr{6=VD-IgIq|_CS zrYk6P#U_i#lsaOU^)hDCLv!;)`%v=o&{}XDo^;J7&+8EF;vV10^EX8MNADs^YG14xde4{++eiFjkO@^kf1o^!q3Kr}1v)&k*4zQ~QP*!OdTa ztN6*&zFDs&nv*=OlM{M)H;47HvQeO2V`>Vywtw*A-5fc8D!I0UwC`SKMy~DtX>5}} ztmBz%5*svqx;UfiW~+^d$V&j(ljF}zPuB70*}Q+x1Tu;mU>brOF?s(U*3IGv*N|8L zW^ax^zlevd*aW#iZS&zfpEStQ-akE_hmm!A6&vGQ4)P2D<|5YZIs%MgWTuDdy;6)E T+r7jYrN|3_lI_5@+Y?3rwsj$_ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index ddfa353a8a7052e9be4f35641226adebeb7f5f4c..b9ddd10a37a96bc6820b62546bcd2a1235d8887b 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wnoJnHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qQ=7|Po#!0D`DMqG= zNk+!0W@!dMq@R+XT&!Q5Us{x$I=OL|@#ce!a~TauHU_9QXL17**JM_fI`VXHR$%?h zLY~&i3an0l55z>Ofn66Dw8kFW81tidkP1+ zMiiNC<|sW(wsxQkHq`KLo>}KYei%TESlz6|NvSWZSN%viZV1 zGJ~*f@`5#jo1<6skymWAZC)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NTIF$9PJ delta 2506 zcmbRCjb++5mJN}NhLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMw7HA%1sU2VJFcjiEYH$Fx`jZUos-u(iEYkjtzsctyYOUz6qe1qxI|dV zGh%axzy@|QwSJP&Auq%_H{XzAQzOsT$uk_I$q3V^X1x{+{!_&_T7{DH=Ff~kf*(CvR}BsX3?3y`AB#CX2%uo zkbHP&N{A5p1->` z2V4{-uXgO(tZ>toOj{@G5cB Q%WhChihuiJW5!~300}exu>b%7 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 1bc5a01b4821d117a731fb26ed7feffea2e0af35..5904cfa629dbde4ea7b6191b8cee2eaaecc975e6 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhDOC1h$65c%L(kb#v4xr+eBFp_b+kvg?cZ>k~@2B$s delta 3034 zcmZ3sg>~5$)(xJFhLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMw7H7$0vXyS8@A+3w}@cmpZtxvkaSyt+Uq7aqzG@;WQ}7XTf6vXUoIh5 z^0aT}6JX&ZPwV7^a!<(AxzbK}bGpK0S+cc9lc^IF*2nD6lONU+n`2xX$V(`on3mYQ z*nJ@r*^Zak%y1yPl@gK!#XIjT`#hh65ESnJeetoxTXYu zGPQ4RNclpZ!{<&uX3w`dAmccB>3z}WSGlg_h4`Y)Oa%|gbM&Ik+lr&fwe?BqIdW}n zt;{3W)??M%$+b10UXNT`0~^)FSzny5tL8f+v znZlc&%{oS=_RTR%qR8`e{p9`G+?xwmHIVCXkoGm3bmhtP_x>W`&2uiDBCq5CIv%K9 z^ZGS1{l0nq-B@z{z5cG?=Ce=5Imz_5{yV|VOW&uG7vJfVH^@j$e*Z^k^SK}Sq*W&3eQ#;fF20icY_x;@aH d@iv+Ir}ujU1L3I;<2Ej`+@G@@*t&kl2mq|vpxyug diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index eaf329a425e5450d5cc4f873973c7bb40e4de74c..8413d40dcd6e0efd3e092ea59af3f16dcfe11c32 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%SSaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Rnvs!(g+;RA<`%|>JOFxl6E6S& delta 62 zcmaDV^HgR-Fr#5*YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* QajIFG0T69&VSLB~0Bi0O3IG5A diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 3a8666b03e881840f7121d5b3e628324adc79b7b..dbb72a518c2af69f89777d6e4409110aa26e3f3a 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahDOC1bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+Q=7|Po#!0D`DMqG= zNk+!0W@!dMw7H7$BN^HzAB=CBe!!TKf3hx1A?daPwa=U^U?jY`n)M(H+1kZ7%W{jc zlBa$1Ux6+T^0ZFwQR3JfDaAxyu+0Q&7v5|k(?zDkf!d?VbT=r#k0}2qKfon6FV$=y z*V_U{5}Vm|E;5nrc!|xs^n1v(eY1cOFEa%;|2JJhrp>@)F0r}O;yoq)jpow7oXhJ=zA;(IqA2zySRgZFNp8l^|B zts7(RlVR)TgYi~mXag4CdpEyKVkR$M_inzGHjRvk*}O1&2Nzj+c-G|iI$WFe%K5p; z)V{VsXtPvv4nLXNv!`<}j+snefj?_9Q1@n|nezq7wEVpe+vHeluFY#!>yzjGqRn;N zw~`mtMU(5c>uhG)vyhi8$Ah#>PhNkWdvngIRvz+=*u4HalO|c(XKk-xWc)#1Lt)l- zdv3-=Hq!0geo>IojGc6Sz-&2ddcO*z;AGbw0^2`JGG62)&yejvL+bd*(%ZBh*eblm F2msQ3K-mBQ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index cab173a23fcec7a5545e0b31aacea67ed6fa9a3d..e6a9ab64f950568f2ac361f1bb2765fc602deea9 100644 GIT binary patch delta 2980 zcmZoa$=ZIBb%Qsfp;2*0c~W6Tvc93Yfw^f)T4JKHiJ6&cim_3erLl36g=M0JxutPp zvQe6mk%fgtvf<_$#_MEgn=CjlZ}KPR2GT7A>s-Jkyjg|yE(>|uH!t9t#Y~pg{K*0A zN}K=it)W2s8JJSPCni6&ELeY5anetzD~UrJAqm+~4X*EdUS zZmVt}Hw-}9FVrq)BHIHJn;jc_$h3WPee+{VY}RRCL8i^%V4K%@loH!@dpjtxy}rMh z65G#A@+YszfFzlx(?TiH&NBNB8IIp9IM1BC0%`%ce3M&JPF{#Zv}Z3nLx!V))dNI3 z@2XTvZ1-5RmlE4=uh*l*_WK*RQeu17)&}wlsNT&hc5#zet29kksOQ>TaL9#&tiq{j z@`jVbo2yQ5BuD$jJCioQyRwN4hi|@kr-PF`2XE$iZcL721?M$Q=6No-nfU`dnKlDM znr*Vc51!5Ee^!#=g6SLC7^iIKWo9fUqfFTj)GW$JdWeB6ZJs_?iIIDIt0-d%51A%x z2byqDgLKWnVxeifpbz6i^72K~IQPd0Hpmw?Q$lvJs`2!v9X6t+c(!YKc>WHo%R)E+6)f1d7Vcov0b;fgA&{8`hwl(v|qe4Y4f`)o5*nZ=8JbaILUMHW}fH97|7D*>2sABxwp59GN$m5X~K4( z2?sSu*9OjUvWa{7U5YBjni!68NZC{+k_=FJvJ*blA diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index 33dc41694199e132bbdbea0fa915b81d142d9752..e20c2c26a565515cad501c53161e01a89bb3c33c 100644 GIT binary patch delta 2688 zcmbuA-77<39LF0wb1d6LazUIzbEDZgdpT2vC{~IaBzZa8T3&8w)70c8DHodNAs6K3 z2Ia!$Cvhd^#*Hf!kz8}La3yaie}V7*fKQ+A_xU})=eb_eUN33mjT%u5_J_SAV?K-3 zS?RR<1BxQq91go*5(6$t^2#nncDf|RCk8}OmSvyS!s^m(Y}3rqfu@tQ{+nk{RfB9L zGlz~d8Z8YwY9qgHO&jH5Y?PXM5 z7e;%IHPoYlC!0JdI^TSc1U^fQGk04NNv%D|9sb41-4;bo`OjQJYaJ(e@DeKPQc|(E zcSBpG_FnH>NX7i=O{CI$B47pw#?}W6)H}3?Ja_8Qgph&GN00QtQmXi)Bb%Jl788h@ zmb0ih_JX|js$Ip;SKg6tO2s!fj1=0MLG3DjuydFJb)TiecnG+0be6a%fQ;iT9@Meu ym7W?epOJaT9v12Sb_jUWDE6Q;fT4vXN1o>dI^(`qp7!7Jb)Y@|#Z%X@+B`LcGTPIZVRgf-Mc^n{?BF4@g7Xw8ufk3%OfA9>9=wPN-Oa4Y zkPBsx5Lc5x4}7I|7OTwY*0_-c1!g2!mQd@0bb(rV+W}yu=f_0@FJ7s7>NJm#=r&?es75vFsK=pG*J&5bq z@~9&Eg1q*MUBR!`Kak&)g70kSQ)qV{wJZ4X{z(qheSykiA>hW*Wjs*|8K+n*s9}*C xEp=R{kap6WJ{v0dM` zgA&_Y>^mv3{gzWGGkHk{9C3f#qAAg?;(dn<$8R?D^Cu&hZQd9xPmXPjVLjydabxg` z&1q33*kolWH@#*NUMK>9=W!LCG95H)>o;mQ=7|Po#!0D`DMqG= zNk+!0W@!dMw7HJ)8X4NAe^g2bLbi7C%`>@VSjp6G zAj`TrU%-=#Z0#JIOQqS!2sW_a4P+0IZL#p=U2+~|>IQ}RDS0V!11&*YV)I7T26BB3 z(*93Ru$%W?)j4*qm>;f)d-G7~iGD_C9kPN^GBQd72X2^=&&S zvAxBr+IfXKlmt?>Z_s1=o674G9cgS%3Wh5ysc# X>bLXa*#2LV@gN!P!R^3ya2yi=;%jp} diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index a2962f6c639860f21195f1192e36255b52c4a934..cc09748e2c0d105a2652de2e5297c33e22e156c2 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%SSaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Rnvs!(g+;RA<`%|>JOFxl6E6S& delta 62 zcmaDV^HgR-Fr#5*YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* QajIFG0T69&VSLB~0Bi0O3IG5A diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 40f85cad05a0a551600da2f91e89d8803e228ec8..9cfb1f2db2225f22c45779279f38258d1e19d15c 100644 GIT binary patch delta 3483 zcmbuC-%C?r7{_^QXIgU;Tj|6SB#4O0v$Ncfi^8jcLOD#tl(4z67NcSlS5(;01yX9^ zVeFzBt5paETRpfJBJ`r@N^&>R&7u)>(M@awby1AY>rLM7yFcLbe4p?4d7k%hsvG+1 zhCbKFtjc8Y%0&38uiNU79XKLQ9E_9+64ur6THQU3WF^r3ZGW~w zP3KAKxF-Q9lQVRo>%6IUl$iVi@yX<8YN*dZcNM9%c2#XL1b!MIwb4?#--M(jW|Q#5 z5W52XJ6J-;`gV98RkfedVHc36uCvRiYHqxWdQJG|P*q*v4WLSu;0g4~TQ4o5>E4MH zfo8SMPpQ49n$&@~S$m>Pk>`Ae}sG%M0{EaDz6Wr2DJ3m-j7B)@QGs)MkrQ#hwXnvjg=0Q z`CHBi#V7ENM3EV2{^wE?USg%l$_F7l#qS?tN6^U?LJd46xUlTT{A#G`KZyajI}Ss7tNIL`NsvJbm3KKW&eb@G*qEDDCewE|DD^_>;s c?MY7@HNVO8@GUmg2Dul%M$LTrAsgQL4>pS@%K!iX delta 3483 zcmbuCUr3Wt7{)oZZ(4H`Tj|6SB#4O0Z=Y?si^8jcLOD#tk}&6Hi_sq!j{ado7f7jv zhp~%ltX3fuZ1v&}gycohmE>-sn?)n&qMO(V>Y^BZ$D6#}Gx%{tC>`z6N}XS>7O>GkS-GI@rOmmw7vJ`m9lRaj-Q9pzTmjYROvwafDN}{`){%nGp z&XUq{PXSP-rs!PTSxe<8G4%!Flc~>mu-im;HKnm~RedoeegYu%(NeO7&b)Ga}Cm>60rx#Jx%y1d?8XKKKRSjdyfGU*&N6}N>cwrt*_f9Ae zG^=lZf_ELSJl(KU ztQ=uqv4gwL$8}y2VK;l;fHx5@4YGb57duX|58E(4{$+x-ily@`42B@|0#C5@otEOw baZeOAzs`&CTWq2UaxZ_4>c!$iHn8;{&kG;3 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 291e2307b99ffaaa9d1e8d21ad39f70d5c58ff1a..b62cf2620b1dbc0bbab5897b2cf42c91f602bed2 100644 GIT binary patch delta 3969 zcmbuB?MqW(7{u>JRwscVE}JpXb@)uy%1+J61y` zbG^6GS=Z#+XR_v5^W7eY!?M4iAm42)Rovldz$F0;pMw%Kehljx%bfb!dY zqCsQi%6JzdUBlZU@f3ee+@*ogH%uuKhK`7eJPo&`KQcgO71xbt>#?#_I$acH>shnA zRtpbM1(8$SZ~BIn7UCvbI~F;_kpnAn(7+-7ROCag?!!CdLF@IBA=H{#Rti|zZ?~cq zO&-4j7=_;+;;d5_(45Vux1v_xnJ(0-KRbukGcrx@FF~)z&+oOq7e=?r}E75AX?zkO(UQCRf0ScYX4DO5pk587W)TKq75zq8>==S zQr>T&pfPso>e2+e4a%)tV(iWy6)K;TPXY+N>Tl~!QHDxsJQq``26o)zLy1J?9T2|5pLM#JoXKlR%85x?fQAYM5ENf?XLm|sb(lo^a(`YG| zHySl1hhQ;MF%LCJFdVZb`D+JPvzaUXII_oh5toJa&gmwr6>>&)M`(bkQt8`JFyd zW3qB-q#Kd0;LVVDjK4;2GePJZrg#NI2Ska@#0|-hk|48z#|)=iu&@j|S>&f%*tEUM z3>Q!akz?E~eZxWvab0dR)^dpF_AEs}1&8=kz7Mr}_HT^@t=9|tP-|*&5nyG%GY5@m z^hh;e6na2)5w-eGwxL$bscAH(=`#VKV1DMl6a`Mv`pS<;v1(vKbV~^w zQPmR-nAN}(t2M1i!UnpdHV24F7^u794rYDJKNy4Hc%sRy}Z3SqrhkaMDwVmSE z_h75(eg)d=#RoRDSGDUhYF*p24z=!7CDiJAyc)2w8t6nWM>R0QX#<~;%Ulf%ipjmJ zggm}R36|3VE`HGw6aJp(q+ppPd`#c8gJRR66n2eg#De(mW1G44T{%#+vS_6t(e%Z_ zlQSRwhZmDGQQYzUAlkyd`UIX>>_r1yxM}6nzY38{!pL98H4#CXiQzARrYE=nOstW7 zNPEA5g4Xb*%R>`vPttB>5@TofpfLCh2MM6*Wq(s=yw+Dl!*O8!247T4SHY1{dSyz~ zo|Y3KKkz$i#avpdcA+`2;d+8uz{W+0siF`osZM3w<#q9C_*27 sWy^CiX>m+Pff+W&Kq+}i=H;`qJxB$bGD1t>E>!NmqFAjlNIz5l0EuGK$N&HU diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 149e8d6639ac5184a593f5ad661af8a869962a61..d0a2f81dd10b064568cb32f65ff36fa6d15696f6 100644 GIT binary patch delta 4920 zcmb_gTS!v@80OT>xz$!pb72=k1j}-B%bh8e2!WB5iuBM_@H(?JlvzeaYi5)tt^B2R zrQUieSN`Ncyi1DR#NqZ7%i-_gkFC*A^zlId!yYz(76 zPN~s$z2dIZ6a)?bab}>;PIjT^@Y;((IFJU>bK!Zt0?a{Wqlz~-6rymW`wJ*+bT8-r zE4k?5Xgo?!MwAfW_E@!o+3R<5}a+%Ex?s?@4y5AlN4*{wqHqk{t@6x=FvPkScY6l z0G|IWltf!B#lLO?4M+^0p>;w!zkjn0X$i>%^N0#*3BSWmnX{UvsSqw5n?Y7E&(J#c z9y$62eI;F*ZU^@F4}qF~ecOYR@c7IYnc(U&0sP{y`y>ZxNFB_JM^bFVKHs!PSObzsSE2Q^=!DO3 zoaW$a>c6tbcR4}`$8Sq}Elf~)GNXiH+)IFhal2#lmuq#sR%T5eHkEVjxrS~H_Gapfzm zEA_8G<*b(+NM0!->dy?svJ5LIO+?Bdq}!QCf`0Za*!lTfzV|%u^Bp$xUN-Yy*1kh9 z9(CA_E_01VZ?`4e&MP9X*w<%iX7@WQ8-Pm!f*t_Uv45liYPUPp>K~Q-XUXgG$ z8ui=D>Y`D9o8*s1J#9rP`ofl`S?6O@=dm>t=$T~}E$P=P*`F~4s*}u8hWVb2xW@W2 znt@->d5yvAS)W@1Y&GA_@5P4Qz-u;rOydU=c|&!?lYvZs!8>=mX{oC1~SWGcNdb^u)B#1YhD40qG=Dgn&Rk} zS8TN0LGC_IQPA)&ZxQ{l7x(wKpSX4WZ<$(RmgoNhKQ?fEQ|$|eZkt<&bV^x6moQ5@B}}*Qx9a0 zeZedMM!sMJ4L``s>A{P_7d%Y*PVJwv_<64tNxVd(BMU$0fySq`R9qnE@HgZCpy~Mzet0+o?Quf- zeVgC`ZA9?;P^(OUDnuNIL~vog0Df^eL!yHMqz>l96DhrMYv{9DNB~L1tW+otZ!&;U~Za{mY8U4VrFKVVr-OVX>6QiVVP)QZfTsD zY?NkXWMN^EY`D3G@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeFvyrZC@rnPn`?t>$qS*X%}c{fS;+Ed(&pUgIx_qTOovIE>*Cos$+9(Oa$gqjWVy`8 L%k_IA8yO&-;0PeBbxoE4lYd?jOA_ zS$Q>?O=fbbJF+HeooUN7)s9G{Gp#CCR8^CD)YP@8YNixRQFL8T$((cTyPacXga>G+ zHjj~f><4Tu^!m^??D!|p2j-R zUN;|(q1HeB?WpzrW7zt3;1LqSN@AAsijUts3)MJJ6ju^epjUPc{Y9o*NzC!`$QocI zfgX;Ipw|CpGk~(3ZpM}}$JGfH?Q`=*4^Zs+h>9=!kQm6Bq{n%BY-60tQ7=&@z*>%w zkH$WNpU!^=iWYWWSe(YD9H)iF2A*GP4S;>$i}^Y7aTK)+{Pw2|_TNcVUTxu@EPK9DUwXNTx;A;>2eo5dA&KoHdPmue4SxI%H wj@#CsU!?;32r&C}z2C>nCCDx=uE4XudyxbRT-t6FTj1Ol_|C;y+Wyvb2HudUIsgCw delta 3077 zcmbuA-%C?r7{{5@p%a%*b`v-dlnoL*=ge(qMrANGjf^8>REly=I}p$PWu>X!9hBx z$zdd)x%{})OP}3SfLK@4yixxN5$ozC|GQOP16Z}-Gk)XiZi3KZ>JA*+Cs_;ruC9?ZJvt2f$*yIpr@pUVqe!#8+1fRZy{${Nt`0Fp|i^@VzIfHQobTPaaOA){A%- z+Us8L7;4?^??A1~k74VF!2u+M<>Xt+DIR`56sWeJC@v=}K(Fk0{s)7=mMh~Sw9mbX9-!FE5fxrNLSi6i443`%SjGgEVs4_0kE2;a z9vbTiemeIJC|cNgeqjoma)Ra;>UnOl)d%){Kknto>L_X#_?@*3_TEWUT5sXoUrfZV z1tl)6A0Yd-P|MuNfjl(zYuvT@5{b$cPWeI|wQaSN|DB6HKP7MmmyP5L=g9rOuB5VE w%WYdPZc>4D1ekql==bna5weSmEAZ)^J|uwxm-ZXQ7C8G0{Ldv=+W*@0AF1}B+W-In diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index f97a2b01d4dad5126b404ac09e028ca9cddd3451..fe1dc9d35315f12fef6a4f60d16f6b974275fecc 100644 GIT binary patch delta 62 zcmew@^;>E~3zMNyaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Rnvs!(g+;RA=B-S}xB!o|6P^G7 delta 62 zcmew@^;>E~3zK1GYLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* QajIFG0T6B8%5;ni0D&qKc>n+a diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index 082f45ba553b3cd6a0beb028a6ca3820caa77838..c1bdefa676596125eff7f3e9b7429ad7349b6e3c 100644 GIT binary patch delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$F)?es delta 1253 zcmdlng>AQ=7|Po#!0D`DMqG= zNk+!0W@!dMG`WuPFzLFc2gouSZC=9kkc~{elV5N)kf+sn@&^Hf&40Kiu#%~N^9O-o zCNlL--XLbW`HpY_x%xM65Zg^gB!Pn47;HC-WIefdgZ0bE?4rp2d^uN&?DtiC&O&b3 ze-Mz}yj4w5m=gW&RtK%f)IWW_HlyU`)>3;BiVSe>H8qN13hAWMo1BH@BdQ7URF;zb{G zwA4&T&5^v-5fPWsAsdTy49syuT2vIXa7lEq=ib|l{L1(K0pIWEob#OLJn#Fw_m($y zC~xdgnm~iixic0{&smffJYZnRz_9ep)YQ<|!o$PTL(Q3yp`p_wB2yyf(*s)VB9&vTjf#toNyYWvE+)&GwmF#Gy2Nlm z#iW)c1|Q436wP|vctwFM5-h=;+E^a=`iQ#|$io`z)e{TF?qhx6TcKfLSc5xlY6D3p zS>yc`_ts0T1^ri0>t(W6rdXy7b+c{{F?+%Cae$JN-?c50(K&|FXF&qJl>mldMYhaV)Mxz>F+45gl4ISHkf6~>{|ZEK&R zRP(w)DAlkb6s2A+o{Ca`DTzU;hc`!~)S^!xqg4NG=_s|w=O$G8^UkHH^!DzVXs-A7 zEI_HW-w%~qzk;cihhXZW!|=`-{cR&!;Tt>zEz{AX@N6nQwjHI`pV){>JDxs+O7kn> zlWz9ewJ6nc?lQWrhAOy+yIi<}QcEswLUXOGd4^J_UfzaM#nrngwfl{kC^evNBue%8 zeLqS~yak_hp?9{T)U10^Xs&VhD^Ti=zsI7~qQ-M5^~q!S8S#&QYfx&^bGVygnxBAF zt|l4}mY6G5`UmAEwjpm+tGUt|RNKc${ZQ>g6E&dP zF6&CGQSS9uXg!**p$8S9+}^!t3#y$GNb8V`I$Nz)^`r49cVP$}LA5`I(jK(Vrf`Y@ zxLgoHXHaI{Aesd*ZI?(~KbXEixqYH(ILbA}QW(m;IgDaa?y0wE9IE|#1Qny&8>0w) zCE)7Ogg#I4m9aDr*ncAC9m-~Ti5mcjS&ESl1vcn=Ts#$mI>eKwlM#s6AvR{x8=!a! z*UY3SSiEZvscl<-Q*H}8k%Jb{>%eg&3O1-?MAB076VLPM3P86Rurw%f0mUM_kW9jO zUCZRUkH{Skj4Pt_3X>Y z(kln%ppqjJ)w6xn+A-P3%N zT*a5Q^ea#Sd*@1ncq1qlA&;nSiw5fafJ)FFVCfYEci+_}I*4vwA;kvvc|qslI^_E( zZk%mY*1`!$hY^U_*2Th_dye8_y~s9$*PL_L35Xo|CNBDjWimMUl7a zDsCmJ0V2yw-3_|1bcqIj2IF{07}Hbjh|WbJ#h%<0pdRc3#%^qFUR|nLxzH^HigF%oHHnXR8g)Sh2L4)D3e;c7z~`)Uwta zu$=h>SD|}_W?=Wd>Q&%A!g2E39E5c6<`w(Z>*!bzcAI78szE#|Q=3~~hL^#xbjj-F zjDx5R)Y^&<>Q#-G)v348Y30c2rB~Bkb!(Wjaruebb($x~`fEPGuLoOHNyfFMpHtC9 zCu{9Rx4o*Tc(6`O=2b~r2>RM!FBMC}XTi>f#*jiR40fD6LyjCyx?Exz;8H^DCl%|SAD`Esxw#!H71 zcqHzL(7jqb0B42i<><-7((4Y|lk6F#d&6BI#YQfT*7N&<4ImE8(W^i$H_g>Ij6lV1 zNA-NPXhMpO>~m5-hd%!CvbHWq-DU!3) zCGo{)dNX{X)z8z#gHv2xMxrau(xDUZR|ES81reViZ{%vaxD>j!zFTeoP+|EulWSi8 E0UUoyy#N3J delta 13101 zcmbuGdvJ_r6vpR#m#|4To2&b!4Pk=F+H@n)k`PUe5`qvVL?kJ3Nl>@AR9XZr5gT4L zw5T$uk=nLL+)YfXlQv~EQ4=E4i@R!5RG8?yyPc7L^XyFieV*Sr=RNOvzwiCB$Lrf1 zuWwVFNc|UQr1i(j?#PPba3qx()VM@FP&M5kMj!8vLcMp?oZOb{B+`hzcP{pLS zC58Z7PO4@ly@DAWVDZoEAxl+GwnP!0m+$CX4-cr zXCN)+knWk#3!vI5rU&SB*!hCHe6vb^E%fDAlsQ zA4)ZBj6kVZ3MZk|pNj^f)FWGBQEI^_k5Ovy_H>lmF5>n!l$v!f2F*48!AX?5^RH1TwV=Knr9OEKKO_GBZxu>Sehzojz{V#al`DzH zfFo#)ZjaK3T0GIQk z=p4$d>qj#HrsEQc@ARk7QErb|8iI07ab!igHwIH2%02rQjYhR!4W&XeuLN8< zg3#wFt{z1>!2S~h-=S=lm$)H-n57u`P~d>R$Ayz1s7pK{jf_CVF0nC_-T=iDxoSGa zz~bGrNNw5tn{r3kN!)V*y$&2lB5$KQQY0^>An`nxssXygfTcl^2PhWV`D7Bt8ZDFS zJ|u6Xe9jo8%>pkphD;m%2x|H3BHGm&6pMxK*HgCJog7Ar+xLz|yNH+yR6ucyYE- zSqCQ|9fl%eM;8lIDtYtRwu(2}%KU3*xL!aPFcZZz}PqSX`K zSE2Js&A{IK)T_XKgzMyYI0)(B&npk8HRxCnPMc-NRfBj`qBb_a3@?LW>5|pW9S2bx zsNcypaRrIm^_nlo1#1Doe-AdPl8kF>m|M}rrf982 zr+uogc(`6m;nm5S8GUVVmWrj}vv7Aq@)5CxvLnNTwLq3}?Q$z5AwzN*vc;y&3Mv04@l(GU}b-wfNRg-weMTH1?FS%a?;4FkU(o!6R{R zl4(DK>I(te)EoYyfd^mRVDT4BB(KAh_5F$`UCmJaQJpBgwnD2Rj%c_UZV!6V{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90AMT)od5s; delta 1676 zcmeDE&D8swX+tohZDnebVS#CdnZ9X~MN&$tg^`J&p^-s~sgb3nd7^=taZ;*fijiqz zl96$$S(*V5>8Io;7wZ@2mlh?bPCnSEGRz;@mn?FdLro`qn87DGr z2Kzf$ZXG4IuTku!#P%o3;gs0^OwExJ+b?M(Q)2rAZA%t1lgtD`{>^I)R&r3F{e>m7 zB$?VBLZvo$1{;$ZbekPQow&%f`Fx`IX4wQia&11JXijdB&6gM5JU`2XOq(ZzwCChh qagycl*v%znGTfwV-F&cdyAJ8vfW>(5=0EESc*xQkwE6w+d5i$0GYPf; diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index e48a674c879f10dbc245ad0b700e37f6fb3913b9..f51a5856b2971b33758085f18a0b58a787f25f88 100644 GIT binary patch delta 117 zcmeyW`Big6IHRFaaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Ynvs!(g+;RA<_<qd2}M8v{H-`kfwnM zf<)_}S1l+Kv|tNruW%4dTOUC|RJti{yAT9d3W*9XywfbQo-=>I_x*lz?>+ZUZnY)1 z+VU&~VP)d<#rXM4iJovY6zxkIv6$K$iS#8^#n4qXuIVu?s;jYtVknBHX^Aku0~-mL zIaoIMK*NqU`-$slMb0>eX=u)zd^c^sFCQ!)qz3lCziU5GTsS#?^~3d~eUwe-;Q}u1 zfgukSe$fxV2}4&)9^Mb~05O@l@^I2Vi{g{jX8W8~_@TKJaN$e=(u5nTF8F>E+NlEk zavLV7@Ou4@8QASe;Cld990|sYu-TE|)GWMqB&g1TPI%txTiEm*N`xV=3+{3FD>*rZ zXAn}vxhvp}5_}>&I#&Gx6R-<+m7$sNb7UDZEc6vTY_1Ak_NWALJhlQMVw(&K*GIzB zTPrgD1AO@M8@P!pnL%NgY^CjEhGqYN8y{EU05!g5DE@=v?X(VQc5aIlV7E%(#g$D` zg}4oA6q+L&?03MQozhv#`U$Rp+f=FOw;w7V%oJN5mSh|~EWIV%1C{`V;0fX23Dz(x LvIo5*(yzAv3wrN( delta 3290 zcmbuBOK1~O6oxs|rt}dfsiBzqj7YFuNM|O^*bxdXiXggZQBe?-4w(c*X+R7bkfwnM zf<)_}S1l+Kv|tNruW%4dTOUE8sB}}@b|DC^6cQC&c&AxpJ!fFH-}nD>@0@!lzuJ~x zZF`;q^|EEE>G&nRFK!N)32Q*>S5-|(#5Kd%JErI{(=rlTe9Y8hmY!6^!|y^T0kelI zNj}uHy~BOtI$D(rO*GV=i-hc+sLZv{NHbXx=4u$|4Z?hFOFuE4&qd~G$tiohSK~d= zXGENj_g?prmdr`s!RPx}3k~OMdel!uAMF23OU?0ZhxKk!YK}Ks$4-*aNxOaF3XwDx zU(-lFv$T&k#gp8AYtYcVJ@J0ZeP2FYIYbQ{{BX~Gpg3^y{MyGG3HKGg3~kb#*?5n3kKnOYiwc53n&wYydk*H;jiT7D?E#k zBF>a7<^ z|9}v_`UZaDN@h_QCfaHHm}R*?;KwI5I7p4J8%qD+L>H|?hMnImMcC~!1aW1fR3&ah z28HJ62KOEC=Wgj7W&H$K#H}%@6m}mfF3c2L8kJp{{i2k=g$BD diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 7c851e5ddc1f71541e2802a6de25c05ef400479b..3e944b14441d83a572882deb3ff6c0b7d030b526 100644 GIT binary patch delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e5UxQ(wfM_;n7A3Vho^3Q6z$hiVzeO5v(D_D7uW8 zsAU;v=}FO+MXaE-KBs0U)k=-FhJeL{L@_jom8ul2q9sO3q-XAp&B~ASoj>6F{p`KZ zKIiN?GgI3WT-y_TG@XTouU=NNr0BKmNnuf;QMR1itgML1k&(8Xi16H)h=?W8F*wh7SPIgGe2Aml z`^QMNoOxIIo|WLhgB-G7f$X~6Q61O?$n4dD>+F^_iet*~7%X2y9x`$+ma`!b{Xr|X zSow~9WIrb zj}jfrq0Q^e^Z3exK(KbFR4vXyr2%UO&|K?F@=$6^=?s*5?sYiVma#ghmMX41x4x`kYUEKhc2QOx89qVtGqS$?RX8~A!G_CA8g;H5BeAV6g z>h~yhdS5J>>ofh$DD}WV21upDjC~1WDN)pm|z1E{uQG>b&*TsW3>pxnOkY%%tlQ%cIy ztP(AgMR$wjgb%S%|vftav76G>tuO2PU<%@Q(0RE_gU2{EX-GGF_ITaNj z;EW@+)DQ3HXrC3V*!NC zW_bC(xxmc)*G;SqOoD{LtNwu4*|_}A1!4sQud`&hfx5fcP~fyQdS8gWY4>ebh3q`N z1^?K~ZUM9O<))@HvIHx=?&nkR-@;yz9{+9 zf|=4|7%v>Yh7(_qD!qf$UEeW6Y^F^a(#wd$>{2O>mSjnLkVe(T<*!JUz)?p+yb0Nt zLbr?x%B0K4{ia8JVViUaO_vL?4-MWS{UX5i&B=QXO1Ydkv+#9UQYw|#NIwArAz@=1 z2jHFULceR4-bOk_?=>Ozq>n$BqEQFh(k9gdIU9St@v1b{2Ti=<-%=ucr3tY=t$HYB zhk|&XHbK4uYU#ZYdCp)!T(nZ2Pxhb6Ly==m7e`HzkBtDy{7#1K#n;c5J3#{y2FER! zIEN+|$b*2qN#wl}nO^mJ<(JFj04UeR!`_rrMgi&STXWd~*_#j4K*iP%24T>E9BMlK zXpG5|>QBq};jvS9i2YFRKsPwo9S(gWdm{_*|17w0@Z`(0Br9dN$WcE;*F!`zm_qwx zv!`1Q7iCk14Rjz8!#oWXJIgtW>f%hPPrKn@riwyS19HzlSr9W94uRDFb5rRgcLH(R zcyr4slLrmkZ)$Qoq;I{p)|tkKxDl5p#eQb$MQ=pC=eckgMIEiC#^GQf6xwSlgDWD$ z{*=&Xx`z%0MizAgCi97liru|h2p2EvHz_^vX94{fSsSEGaPJrq4uO2+ev_3Kd}ex) zYKAEl=t)2yj8$y#@(8gXm4_(nfhpY>yWX0roJ8@|5U;$8j$L$bmNEkF2O%Cz?p|_Q#T+_C!h4H3uxi9YILCMP0n@km=qN{ z<#loET(xHfNajN9$MZf^6EK5P`@l>e%0H_%B1IOLH*SpkW;Kne>zqzAchYJ>VPep$FV2}?#Q11g|61_bEPWRv=bw6;` z@!7Jrg1R58$Y4rByau=`oMp<~-J>eIFQ^JFv}hlJX@6&O+F!ebMna=UYcjB4dK%;y zqg5f~xC||a-wf5R0au4pOPS%?e}IWx{C&{IkLGB>{O)sF2(f21@PDd?3kjEptg z!;d#5YeS8%i%Vb9-Uk-r`+g++rkh=_EQ!i`0#l!pPNJym#=FjZ5_uy1eY+Mp4L3;V uDM22)DEFe406YMG7e?j{Eh@~7Fi3>)fm;!re8wX;5{e*=#9z0+vHlN%6Xl!$ delta 15985 zcmbuGdsI}{6~@=OckaC~2#mu+e39ZKN^9bP4v#iU5MuyMiXst2RB*t6B0_3RFp4fC zCTdy6S$a~mVG%1RtoH?2|}Q-;T4`MTucBj;i{yX2N1wPK4^ z;MhBM3o8BO$9-PzS6Y-T%aJm<9iwL1Qzj30T#Ef8LXOYRv0D-q$ApApgzl2x0#bG< zz3i0qdk@s=%v4Cd$}uqWo*9ysI`%9|MH)LkztmBgy&7q1r}U(40!p>#tp%u#`22Gy z(XkBLyv{t2tvCP#Yj;Z35*sQFS~Y;?TE99UrM8sLK&fZnfOBmrOGBwG8;a3f@4N{I z{Aly9Q0la;v(a3q{_-W18n+!9jGR53up=F%&e-`7&Gnyr7D~NZISHlK?^%gbzp9Ey zseh@SgHq4@<{Ol1t9=!vZmRP~rEv!H>wR8!NO2&XDAy$wH2dS6k6w^F{}gS_KjnUvDchZQl4U! zC^y-{D$sm4Mlw6fJ#A&%Q0=!dtP1VtX;WAt%C$brK1H>439JUFGi`W|oky7u6InXI zbY6bcpUjX4C|x_|MYb2^mZY%xXuhjcnHA;EOJiv$cV0Ss9@Qpgvc0I5FJ#F71teyw zUX*!y30n#5J>IjP74U;aEP$>oWzn8EgiymWmV`Qxh~ej`*qJ~G9e#y9;hDpR)oc^! zP((Fr*f7QYXK)fLum*rV<~V0b$79$z-j5~eIfRxUAI^jvh(y7 z{6jCh2_*kmYvji{GxMpNl{9+y0lPN{^;&O~yl99bb)t0PAm`i>D|BW=u-UP2sZmrCiBlP&E=8dVpU=Sr2pQAa|&5!shQ z_c9fhNtclOO^^8eR_P#`E*D}y8oXV4J;?pd$$Jh+d7L;i@wM4f8kN^bKLr9IVPhQ& z;GOM4zipP@K{`e6H6iw_3x-BFCC8j-DbP9RZU0?M&H+ubVG-f(9fEj+rpA zjV2e$gMhqAIE5_pBDe#fSP0N)PRHUdqcM<85w0w=-oqw02`;{`H<8Wr^cywjgIsrbJ~ zTLV=ebb6xUqg5NQ&aU?pA@(D4xatSI)zNILx*mBt`K(u6KntHyV}jjpa;}Rf8? zuZvsfsy)j=G8f_ip8v6$h#8dH2WI+F!5Os?SuzoR8U3R{jYe)bUEI{DE=MMPU3~Me zY647dyPzW9Tz0N^8C`2p>tXVoi|PV6=Y^NmWSE@ZrtW~rmF;Q^OdfevMZTuts`k=O z75Qx2C7yL%T@UB{MweOw+!!wMd$-kVaKR$(s>pXAT;xOd)q4P$L~oCW(>?G|-3MHC ze73ADr|w58GMJJOuL7MMroL28l2}@+g86PkZG>K@p^r`04g{=Klf>O291u diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 5e4ddd322f160bac7f5caa85f272c8010f9ece09..9641ba4753b27c80c97136fa786a5f1dd8501492 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hDOC1#f$7u)rVXi#hLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMw0RmM9~s&v?^jCMY{`6snRFXLS|^`s*TW> z!kcCJ>&f$S8CZLm;A|!eY+o%BMqa2vY~L+mK#BIHGB3#py3PBQZjcvbm75(^(+$ZA yuGGzT;rasPX`O5rF1%SR!-kDa?FY(bH?!uea*(He^MUeGKC-l?Y(CZ2zz6_|Qzh*H diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 14d045290a428dec86781c2708c43881621d3e60..977f7dde613c6d838a5fb00a090582f881b798bf 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%Qsfp;2*0c~W6Tvc93Yfw^f)T4JKHiJ6&cim_3erLl36g=M0JxutPp zvQe6mk%fgtvf<LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3up?I& delta 1139 zcmeBrz}oeIb%QsfVP$HPVS#CdnZ9X~MN&$tg^`J&p^-s~sgb3nd7^=taZ;*fijiqz zl96$$S(*V5O|D@)K!&c3>IR$VGIev1skM{4fSD|qz^Es(LGPQzjekm(LW{`okcPV}&BiJ@?RA0bJmVb>W+Zl*&K4Una zJne?lFN8A+ZoX&DC`p#}Q2jxnDci``&pNq5LU_9Y52FWp=^X3`up!fdhOln`F2Z;~ pntbO7PJeI1sJz|RkWrtT0#mjFO;Ix>%K(GPo!tD}Tk{xO83Fp@RDA#d diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index cfca97d2bf2361528cfb8e5d77d729edd9b730f2..7824ae7a3f0516427efee391ac213ebe631dc6e4 100644 GIT binary patch delta 117 zcmdm@yhV9~Kck^haYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Ynvs!(g+;RA<_5-YW-_$duvYK@03T!_?*IS* delta 117 zcmdm@yhV9~Kcit~YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* WajIFG0T69&VC-flLz@k21rGrFP9dcL diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 3c14825d5358418258ead4c68442014169944317..35e3f2ae9470a502e67a79506f369cedeec57d38 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^AhDOC1%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?Q=7|Po#!0D`DMqG= zNk+!0W@!dMw0RmM6B*hjGfKp4R%KpBrq;mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi62Spp>h delta 1690 zcmaDdi}lGY)(z2&hLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMG`WZIGa0%batCc@VqVQop4Q0*+zq7b-29Ncha3w(%6D#77jb7I-Nwlv zts3ID$OyV*2!`W9Gky5e-kH5d(7lJlERz2V&0JxTo1Xy z+9%65uy2-6iV!8s1<{lF8bl}e#RzQHsE8sj_@X!SHDt(>Y5N3Ksm(GAxH%}$es)E+ z8d=(7CiCBA+kE=`b{_JyZ|1+7WkH_S?QCL<_2hXvX1kC)qoEF2_67mVcmC~Hy&3x% E0hMX~3IG5A diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index a86e3001f96017d597d62f3dd99968989d044133..a1d102b13d3038aad563ab2e9cc05b2ccd229e70 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghDOC1dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$Q=7|Po#!0D`DMqG= zNk+!0W@!dMw0Q<2D;e4*e`HDAtj|1=JgxUgcjx4Vx>Gh!VH4sYOY4ly`TQ2-xOJiK zjLijt>zT;1b>`-mB9q9ob>?PQ@x$cWdP(Xtxmx?>j*+WXUg-w8em$tNgB|u zs*cP!kDn}{CbgNdwVS+%gJ?JF)*#pM>-)twvrbasA~Wbf+AqvGL9XMwj6^rvE^eVj Ud)i7ya#Gz#mfX#(TW2x?0L1S`L;wH) diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index 635bc3025e2b2a0506050cbb4f3a31db5ca6d49e..f470f53afc4646a92f65c1699a484742904841fd 100644 GIT binary patch delta 5860 zcmb`L>r0eb9LG6F$0kQ-8Y>+$FxzBVBb|$vnHOmU(u*#jtLD194v(Xmm0e~ zR(25h1aOC>cn(+lzKzESv3l#!$9*^PT>H&-eTN z{m$=PIL{)cXA#p4g=};Nzw2rUbo&Y%CH9h{#%4uv6&4p4HM*S59+#`Z?NQt%9+%>C zHaneex7+6^Xl(NZ3xaJOdwoqT?9F9&$wNoXDw3?_83}I*hH4idPzxI{1TdUmO1f^q zP&RJO;4>*5VDKnDXRe``J0G{s;?6eSy5bz@EQ8zl#fNGzG!-h(_S9e#(ZVfd ztyajjg;~lBJhLJbt2c_X4OM0~Q8|bQkP0;r-NWtGC$L?pa(`VfR<+9ezqtd<77u$( z04A>omG5YnL(#dWTgXT%p)>NJGV^2p3}h^oP?*=Zk0Tw{(RX_fA@%BLX=em=jdW{( zD_26B0gUNkn+`&kkd6+i_s}{w9o>fp4jp%)uI(p-sOt}BwgTIn=Y)@>00)Z_^7FF( zH6Y5en^yDmYYr3U%nl5j*zC|>7|jn1uU&?rto=75-+aFvTV8(@uYUL{J$82xc#*gyc1ISND(8;Z`!UyYp7X~gst!?Bva+`cm z$`a-vITuHiEKLf`N2%)~qreW4@4D#PWQma;Vld-vHEG@sV$}L3$x6|6nj|47(}yhc zQest@><0pAKjzaGk$;(3fU7eKYyJ0#QA}JX=Ya!bK_N|K50YtH>>XWD0ES#={n{@R zawW#cC&N8+6U~_`8MbR7gDJ~6fCC|S+U0u za$FyS4LB`I9klW@z;v{VHYCT+X_D&{54<#UP3*9K&WhcKX*y7CluhlWIV)rL)kA;F cHWlZJNsW2{^F@JQBeWcQ3DpYuJ6uZt14R%4G5`Po delta 5860 zcmb`LT}YEr9L70EXVdA{taN5zRuUEFHl4MLGy>_O575%gKE{>{oRu@ttl7tFW#7a& z(aVseh%Wj7s{jYgduFD2V9&g=@qG`Ej(Nf)x#29EQ6rSNM!zQANn+mJVkZTn)73z3e zaT-={7-!jQjcl-_9SqZ2bKXC)53c9 zL6?w*b|??fI+q^WjRp=J$wgiL$LdhmOD9(V+ni?x4<-T!i#y=sg>5rIlx28l@RX}I z1Ln;3b{g17$5)Kzdpl=M#!%*etmn&m{n+yQ!g%S!_bHLP^V;G2h->X|2^X(pCq?ea zYKM!s?ZY0-wTNeaJck^Lnrq${sKXjM{o8V27ldnl{(T2pYuArofUDXQLmJfAD$Not zlq3M=LMj}$0&5#|t!HgnlfU-Ozovj(NXB^ez;=?LcKe7ja5IPNqLu#-zmbAlU;1Qg1Az zRbt_JVgjztFs!ycAbK%)jhq1vjB$lzkKQ@)yG*1JvOk%?)|*h!I&2ZQUXp55M#zPl z1I}1@l?~$95P3Qun=zkiGSm2uB-#S()v-2c0%wz`PUK9X#p#j95OQ4m!3LZV1vXkT z8!+uzOFapZbE@PTM4yYM&5Rt@&RMbj08Ig^4YNtjG;>APzrzLeH$s*3jQ{`u diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index d8485971bc56e2f04613b1c60275432455a22a71..42eeb4c7c27f6020fb504094ccc982653d170662 100644 GIT binary patch delta 1199 zcmey>$@Hs}X+u1tp;2*0c~W6Tvc93Yfw^f)T4JKHiJ6&cim_3erLl36g=M0JxutPp zvQe6mk%fgtvf<1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGmw(PJzC delta 1199 zcmey>$@Hs}X+u1tVP$HPVS#CdnZ9X~MN&$tg^`J&p^-s~sgb3nd7^=taZ;*fijiqz zl96$$S(*V5O`gE`lMG#jJYky!nAeeGAyDh&f@c27A*_XDSzNWbfb9Y+=~_1z^1LR` zz4e=U_~$c`ZsX*MQuUjog__B+6{NLK#GhPSd&Mu4p>^{_sY_&N1N&20&V-CenOw+| zzWKg#069Sf(t2D~REUg-DdY*C++`-QxyFKtjRNg*_Dea))V@ZPYjdba4m$ hlc#-iUczPaA}f4yUIPE-8)SznoR@?Lr2&0F}^QDlO|W`27biKob2qo?dy?VrO@@-XQ=7|Po#!0D`DMqG= zNk+!0W@!dMq@R+XT&!Q5Us{x$I>}IN^A^ThMnjTKnPeC>c@J{~SsFJVXGvlqOXuX{ zEW(p7$g^xd&FM&%3DJ}Fl{qKxl^5Q;g>M~2CP-}N7ui8pz`@)gvAIO-BojH|fH2{e z~E6>GBt`E33$EkL4lA}9!bDO>=8UEg6D5*=1ebJN8iOX$194AMH xos$e9y1Nq^rO30}Kvrt<;W&-Wx2pBYv>#}~=JmB%cI4O(%I5r=H}9!t1OT3dQe*%C diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 63e0808866491d5ce9aa6e590d2a32db8217fbb5..45c91b5a1a8ea5472fd43b5f359065f0be6fb684 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTp;2*0c~W6Tvc93Yfw^f)T4JKHiJ6&cim_3erLl36g=M0JxutPp zvQe6mk%fgtvf<_$#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0F`1j$p8QV delta 1023 zcmZo!!_=~dX@fVTVP$HPVS#CdnZ9X~MN&$tg^`J&p^-s~sgb3nd7^=taZ;*fijiqz zl96$$S(*V5ZLVQlMuxV@7eqoPS54ucyp6e#bW1_HH?Lv&$wHpi$!l1IH`{VmGEt!2 zk5_`30`30<7LuWT^97M=^88%8`KRP6^5Us>bD+!=@`9>%^JIAzR&f59|szuXC|hCf&x#5A0$l+vf^z?#$36CvJh-H{0iK PQzOG>P%f&P(!~e>|4=hj diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index ebd86ae0973121a63390a039678b71266ea0a1ec..2377c5d0ba8a25614ae29ceb4f6113debcb64f45 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hDOC10u kYW*hWCr*~u)%*mT?RlQ>d0Dxhe&Hw-a delta 527 zcmX@{m+{13#tq(#hLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMw7G_H0~y*T$1-0b-LlEHoTZzuvzW4wu6465r!*_++JH7DZGO#H!A_>u iZ(@GpWNA&_d_!+G6Pa4sjqE+h&>G8}y!lquJ7xgMkD7r1 diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 1dc2b0715cba9c3f7e83fe157a7891230541e581..2c9f68c7dd5faf59f75b8403989b19f75a9fdc5f 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhDOC1g=ATrGQ=7|Po#!0D`DMqG= zNk+!0W@!dMG`WuP9vQmgMO`*uWST>cg+Q&7?-cP*{>V~Dmc>bvcXJDG=3rA`B~Sb2 z-Q1_ib2rFliOq(56PU=e8K_-+bGG1NX4189ju+iWo}*JYZx&yoMY@fX<3(L3=krT! Ye(Ds?NrCoLK66#c((bbPPEi>n0D_I#6951J diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 0925ae5129557b61ee57e23059de6598e66e4162..1d403b20aeeed68b2a4637aeabf43c235bbed304 100644 GIT binary patch delta 1705 zcmdlyhh_5|mJP*>wnoJnW4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dcWc{;L20 delta 1705 zcmdlyhh_5|mJP*>ww0+#h6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMq@R+XT&!Q5Us{x$Iyq2EZ}L6HyM`p20@RtcIgEJ$BY9eQJIJ;5qJ%#gwr&oT zdQXOpn+s(>kzpG!CG~GsRwyOIMzGch%k8^1nYR0h@ou&%HX+w`kaqFXIC(N{pD)e6Sz@XZ zxweC}-<_r_OQ!7w+xRwb*`h$E?VAg>Jux89=FK0To0Dnl$pENrd=qnfn7C{($HCJm=hd z&iAGrUows_8Lt+x99wJMn>8(g+6_7R+4&p2K99$qo0qrIYq$9d?DiT*fya?wVE5G8 zd^VfI;i%0~0&Egc%~%WN2-k5;DuQ_$lj730K=OL&))iSGX_L%O+=g^%#@ZxPlDA>? z`lUYYCyeTs9c#CuR9{9pN_}PhPJk+BtiymznX&q1LFNc5{ov^yR63g7hDv|7pGT!n zeLPRC%cJE=s)bcLBuk!F<X*}^6Ya3}#Ibm$3MP-QWwrNpwz|w3n+EV08DjX96+f(mkZEZ8?OF^O8=EDsMJXC9d->@A=J`} zW?49LA_5w^a#=n4t{#&r)uUS3G!`EV$(_op)6r5pTaRsv75Tz%lV*^fz0M$ALEU4x zTyX`pbc?adc+5kbb~7WLPGrAgXXgwX2-QGKnhf^E+SSBxZee|^ilG`L(>^zg(}6LL z-QsJMbi0`hFEJaoFP!3k6HzzCV`;LCnN3g}m-yVn;^?(nmWF*p9~wl}v$wGu>Jr-n zER_=4*bp`$4-Ix5WLelxLQawPA&Vh>H#?6daFS{el>i-pQyD8V)5XiI1?&Hc{*+_` z=ycBi&2(b^2No@&=9!u9-C=!3tP~NlBGpPCw+aL0mr^4I=9mecjZlh^iP#-fuXg%8 zGhmC~8LB5$w9PTA`0)Yz2d^oWs)DS16)AMrGx_?}^rJVEKQ3cc4W)GP$;i zACJPWl@c=ftb`kAte77F_g2V+RFjlQID~=9Ugk$}zJV&Lcn_+dI1o+#S{?z8h7!^T zz5GZrSbx^RRPjtdkE4ut_%vFCYC>J_^Fjj_f;M;aBj^Eky=SK9PjN5043heJ1E>{; zB{zxANN%R+L9PRbiBy*hpjIh7kwC-4{64su!}{DW`8ALqdc|2p{S=R(w%fc3JpZr@ z)!pUoKn&rT<>k~k#lHf2K&p5GfU3XRth`{wp9?%jsB{Z`{X72zi15gYRI5fXi_$l! zejJN=Jk34eSI|$3YC=iNd>#4-&9rEe#Z8k2d}olV{|L-3meMpyE2HR1)MSBeB-Q0; OBDBN`N&P?gd;NdC`f^nO delta 7878 zcmbuE`%jxy7{_x?*A{7|E%*BtoHZfnN(&5@N$WC2(u@ts$eaUg*Rp|7#j*JvyFx9!sZUkGYm%KWSL7Ks6!K+3YZvw5Fv5Sk_ho_nfn92B>naK{XCcR zJm=)?*rIW4(Ri(d<+k{}x%={i1?%#?gn^lQYUt7B!pvr0M5Fk^gtpQn-J&Z~}c(xmrj@VjJ>CcV}sPw7z zepLF*hIX{4r5go6l@@0dAdB?$<_m6AdUo>xG|$18wxQH>rELIJmb+(A;WvEMt_aWRsqM%qiUj=4j;%nhvV7+hn&)^`4M2x{MmYxy3ltKrEcnnsqRbtD7E`a5t?iLwZBm5zp@#X8VNqbuAyp#TE4SM z77w3{f`+bA){MNX$D~Tlh*ma^CdNZ@r}Fw#tkllbVcTL^KL6W<8Km3R7^Ewtdjgj$ zu8@{)Ggg&|d5AM^W~4L8>{qOJ&WM3f4YZ`mVqdIYNf^#etan9Ws0OLD-^~(qU>L`5 z^HoZw!%T)(m>t^}PVv8q*gMJNX`+IeO;9*4@wta3&>Op126l%&GKi^TZ(}FaCAJ1x zIwiHTL2N=E8SFU3ar7Nr%tN*h8v}FD0 zbk6eR0t4ljaw7$2nF*bZa1>z^u`8q=?aVo5 zz!twVoKL!Fon=<><3sijo>MwihgjtbqR`#Q=4)3{kDhG)q_}gJ#S66_disO$IB*M6 zQ#5}XJgY+0CQ+K1p92k)t9}zbpUBI=8r1bH6P%Dl| zZW0~Q+)S|pTn7#lsV)~mtx|k4iH3&w18_4(^m$+M>mWb;inEBiNghY7cX%V%|A-6i zy~o>tFob7@S5m_y{|cx9sp4?}s(!Uue!+@A=Xsn^=@$C>cm4?w!ec8^ts1~sl->dL zaxCSEH2aWWMXwgsgi@CH8uSsGZPBEPTP6+o&LCC)5g5Bz%+RDPkD@18lLMBKRF`AP O&=M;q_5a}S_5T5r0AKn5 diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index c2b50b81e9c0b047e19dd701ef01614a90ce9a57..165bb736908a6ea36662e9fbfbbdc0b9ed2de9b6 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2wnoJnRqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_Vt0 delta 1783 zcmcb6gz4@PrVYW2ww0+#h6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMq@R+XT&!Q5Us{x$I@vH)cJf-reTF2P0@j%zth@OcQyU}s+9&T{z(4sL zOCi}Ngly(y3t=N$d&FjD-fK)0Xs;KTOs4kD3BrfS)mk8So=mNi6NDo-Ka*43u@0Pu{lmll9lX~=D3;7ppcIe?e=EmW|I$o zKAW$(p5Y+R_RSys&XVtM)6EW{JDAC{8JN~hCp&}+Z|;knMTrYm$D8m_;DXih!kbHT z^2v9B-sXfNc^0x=pf@?8NMtjA`E~M>kKSa3Zn@13Z7LMFVzWZGiYVEh(A~U$!8}F) D7Y+_L diff --git a/master/.doctrees/cleanlab/models/fasttext.doctree b/master/.doctrees/cleanlab/models/fasttext.doctree index 885aae14d719dc577d8eb3c262ac0ab45d4158ba..fbc8d2a47f3aecf5c2a6c065d9076843a20db678 100644 GIT binary patch delta 62 zcmZ1|yij<9AETjBaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Rnvs!(g+;RA=6XgY4ggan5y$`l delta 62 zcmZ1|yij<9AERMqYLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* QajIFG0T6AjXH?<<07RP+qW}N^ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 3c9d285d6f886b4d357549797fb7cf227396663e..db36fce0629f5d20f1a394f2664fa1fdfdc50a20 100644 GIT binary patch delta 117 zcmbQJK2d#xH>06ZaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Ynvs!(g+;RA<{HMuY-DH);Be#y00x2~qW}N^ delta 117 zcmbQJK2d#xH=|)?YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* WajIFG0T6AjVO-2chPD6>M{WS&Y#~_y diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index ea68d0b2a3a36d6381cf7933b10accedc029ec8a..f49abab630651a3cbdf14efad1f6914dd901a94d 100644 GIT binary patch delta 4131 zcmbuC(M!`&6vsK`bZ*PcsVpj;)M%LIwqLs6VuBA^8|Vxc(L*7dbFEBbxRtCyiuoW` z2sgMEq7q0?+2DfrNyh4iliu4ebrKlVpm!-Ho5|*XtdJvMO=pGHqQrsY| zxS`yBokg_W4HnWv-{3}!rN&O@szCy<;inl~Wck>y zXFa7jU}Bpurgagx$*#R_LhSGCS`i-1_3pe5iC|vYN0Ujo#NuCSkc*L-R|au0;v*Al zh2%u~D-vF)*~4!$1t__fo~r;I$!u!a;*TX<`~Q1r+40{kxY^tBV42P4LvnR!=}QxI zAU#r6uo7MT0RMOprg0C!ONB`-uc!nIZWrbZ*3B@8+k`oT(qn*3rkug51uh~9xadI` zSw0`FhEK?IcY3co3CJ|`am2SWesAkUS?^;ny_!d+)z84DsR(bGCVX!%4d7;uT2U21wRT(0B7 z(MyZ%P(u5opeGxzdiit&+Oa!&+ldROZd^#_P$maJ!$nk5>~_pz2$vyTSY}^{fgZUJ dg`_rZq01xi0{=`5To^4FPzG);{@OEne*uBv`#Asr delta 4131 zcmbuCUr3Wt7{+HaOt9l3FDM7FZE^Awo9`?V>>!7AbU`tNXnNzT4+HzxO@oeILH9`J%1) zqNE>ex5BFJy0hQa;8fjeDD1YMu-WWN$Z7X@8oLyiLk)XEc4wDrcZ6LLMSN@k`U~@y zkyNXfbr!GJ;-s|WG3+G^_9#joAaS3OEjk_*pyej^$33`PLSEMNeHTv7;=XcC{!*4| z{i)4gCN3(-+`$T5twHwT+}uIjsYD-DQOW>GPUwj;U}U=3B=(Ah1ycsXh=~v#`$u46 zjqxb*nsY^%So@vRvJ|c%zbr+~-NUjJ=@BYRQ9U{-OL1{5B1;i|5R#?n8CPW~u8}s} zP;S4@658Pf3+bhAa3jW&6DNysQnH#TA+6LxmOdNF^XVkcg{>y)kN|A-X$BWr0ru-z zZ#fQ_D5+A~&Ak z^YL2vggker_qyYNOhZ36EAT|>@XHQBhG4GkQ780C5!`cwO=1WuX}cFP$N>_|q>{gH zf(=}bh!)g91!~`2YX_ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index c2f2794937da524e580958de99552bcd04b813cb..d0ead2a82d72f873de384a65a9ff7d35f45d5cd3 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`np;2*0c~W6Tvc93Yfw^f)T4JKHiJ6&cim_3erLl36g=M0JxutPp zvQe6mk%fgtvf<<&#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y&ra``!Qm delta 1709 zcmX@x#dWreYeO`nVP$HPVS#CdnZ9X~MN&$tg^`J&p^-s~sgb3nd7^=taZ;*fijiqz zl96$$S(*V5P3~d5L540zWrxjIncU^c(>i^9GZX*hIZ7p@Yv1gs{DYlzZIcbHDmOpY zzE4gFfwbo6ePANfRyLzYwwAgrBG=Y~o{z~%gpSIIprp^b**a*R7#YC~)z7}UDD%fo^7K!3FyNZr{gzQ= zyOav!4MFk^+1_Wy=#)gd{_Tu28M(Pg*Eb!gFJb%K#f%Z2WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgU9uWe5NO delta 1200 zcmX@z%W}GxWrHuHVP$HPVS#CdnZ9X~MN&$tg^`J&p^-s~sgb3nd7^=taZ;*fijiqz zl96$$S(*V5ZLVV!BtzR|L%FogYRpTRNw*QCb#fwm16evJZC=6=#736ZX`A=*Pbbf- z(>6;B{a_-?*6EvXi|!)N*6EvLC0>(jtANZ0GHl&!C>KXwluq9quB5_BRuI*1*4B8y zL7vvdyA7Sl(wRPa!gr<3r6oH4<=lg=$h02*-F3IG5A diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index a1850ac35b2b5f22feed6feab224081e74de868a..e948836c192a5212e5c4d4448f1d9e6fcba19994 100644 GIT binary patch delta 139 zcmdm@wnc42A)}p9aYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj unvs!(g+;QVeoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6K&i7DX# delta 139 zcmdm@wnc42A){SoYLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* tajIFG0TAh@MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v$1LG; delta 760 zcmaF+p6Ts-rVZ|lhLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMw7G(jgB)!enSL>oZrkLIOv#h&*=xztnJ`&^M{@Fe0pZP+99gUs86mNG zDc=GzybW|e*cF@K3ow!AeV8Z2H*XS=Wg*WKn-e7ek?Z&bNtw;uGQHvC*$j?>cuua( eJ|(&2x&Rc3AR}_iD(%T~1tQ=7|Po#!0D`DMqG= zNk+!0W@!dMG`WUxBN@6Jc!DNxU|K|;&dpbujhM*O3ba&c@*K82vUHbk-ozfuLb}$? a4m>@qq-&e(z>~5$Q7DF&Oszo*b|nBfl!*2K diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index ab67231342700c62ac04f40a2d8672b21ff3ecca..5b51ef4ce83b338213af7698b39fae34b331acc9 100644 GIT binary patch delta 117 zcmeB?>yg_K&uC~=oKc=sSdpx6Xl`I`nv#~7Xl!C;W}0GblxAscoMd5{Xkl(?oS1Bs XW@KbxVUcXOc>-fEIokY~_i+ON0wp2} delta 117 zcmeB?>yg_K&uCbgnq*jDT4APdnq-lbl4@aOVrXb&kYZ|NX=$ElU}l_@YMEkWnwVr{ VoNAV407RQ7F!qw8&5wB>HvruaA;16t diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 90e0536c7e19fb379c927a734700838275778955..538c13689ae9fbbbdbc73e6091b27e42fc9f69e3 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hDOC1Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0CxrYiU0rr delta 1704 zcmdlyiF5NL&JFI2hLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMG`WKDEg8BN3i@q+!eqxpp4RD8-I@3&Z(uDXOMBJkGi)E($a-ea}W(7wBPtvt+ZtR*!PHt)JO5410Qllv8 zHUg8q|KtEUj>!pLl-A12r zCYg?yUZB7vz8x4C)dJ)>0AfJhN=BbN@(kGSCBdY{O`hKAK)rI?g;bbWl*ux{Z#%HW HpT`IQm8SN7 diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index 020812e290dc7231de3358a244d3a5003508097b..fc260b1da743746d4cef345acfab2f25c482f3c5 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgp^)&_&vk=$hD~btoFEe*c2*V_?z*SbdGh>=!BWWx!YG$E?bk$WB z79+D#>cuJ9Ny*OE!Zc#3d@QV#D}TW}f57i~-t(SLXY;_id0;&oV@_!)5)CY_1lyhN z4tG~5tZ8zm%heT8gAeS#QQ0rytubcGLt#E8nr!1c}urU~4jJ2PHY`E>UVUKBGr% zYraQYPg~Z|*0kdoY)vX1prkix4y6UI0+ik;Zvdr?*Ovo5w*)=*T?37J#+#tg!O=XZ zb%ErOs1>CCsly3~suW2jOE9WOQVn!|G1-oB+J1d0!l=IeT0^$aomPw+<02Ee&(3DC zt5W|1h8o#SB{;#6pVb?FJ1gVUJ?sYi7F2GgN^;a(qSUN^MvvOk zc#pQ8Hm#toDaSF`n(#S6NpFgd(mZb-N^g8`0Ht&wm<2tzI6Zb>1C2&H5T~KOp&Y1n zj@*MW3rIubhocZxDVj_aW7LQy>*)MqtQF(5{rXafQDghHimabI%@{XFWG3^VolRj^ zrTz!>*Rx3*IKfef)tVtYE9DcN><0TSs9dCESAY|A&obHAN|tg}W08C;go}`{HFL`! z)>yJUb7u-S&5QQgf|fZJ&r>xV9SvrRNjc^~r`Ub(H~Rp0|Chu?67Rt#;c`&=0@rQ| LTg@+qrLnGGS5e|6 diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index 8b8129a6dafd7305d30a6c8da433e371057ec1ea..a141d7521d29fc65199b1d4962af909d74ca98c4 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+XjGh0o>W+otZ!&;U~Za{mY8U4VrFKVVr-OVX>6QiVVP)QZfTsD zY?NkXWMN^EY&f}&@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WQjFvr9I delta 1486 zcmZo@W@~6>+u+M+Secq+SYTRVrf-^Lk(82ZVPs-xXk?ILYGi3?o@iiZoRn&rVq}__ zWMrIbmSzA%lj|4{lcDQ_n$hMZOsiPP(>i@cEhGQr1MG!lX?NYcoP(7-n_VX_=MdU# z!pqA_md!4c9i&({?-mkZCr|rk2dM~h;^>1K$YzesqB5(vNVj?O2elLA+3L1gUvqaq z={8P=I(TyW&R{ZiFE}Z?*=JW9dC}}LdBI7g&6)delILxR_L~QjnaFm$(&o!YQYo?h z{IM7^ZQs1$qzD_C4xg}>YqRl%17svJaFm0z7u{|*B+vF~VvMZYi+LGM$+RAP|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY Doy1nm delta 2066 zcmZ4ggKhl}whiu#hLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMG`WIt7wNjD2kv6j-#m$Fy9jxDttW34FCjx~Av2@yWCK<0&6_0Nvyrdg zV6(nL78!vx9csV9W_6|2Ok~=>*+BIKMRvET2a;o0W@WmECtS({MS)?`i4qI7D%w%n$D;|LGEIK8OOf8Z!Y5`8PXlL9auHrV*~&? C-cl?8 diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index fb5be6edf577a5097b33af5d909a470149ac9564..e9c0148090fccdb7cad13752d619fc53d5ddd811 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr%SSaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj cnvs!(g+;RA<`%|wGPF&ez$m&oklB+P0FKKd%>V!Z delta 121 zcmbOwJ4<#$Fr#5*YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* aajIFG0T69&VQeQu+vEw1qMHMmJ-GpBoFan& diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index f672aacb8bf303824c9b70452ef14b978795a773..9b290ac65e51a7bd0bceac15f401ceca76f17416 100644 GIT binary patch delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tei_aBjr;XXn{4}x{%JOjFvd&jF!=ZBKBYg zT1VQl7)nxe~27X%iCA_+;%OE-h*tq7y{3feQ!<@J320l)8CYwfky+Iw*}dvP}V zL6hQiMcPj`clWgvIXwGl!*K?pbgm0U zXGR0qNrlAB`5@{#H%=(J?$RWR_C`AZRM=ua0ZcYhNZh?{LD9M!9{^MYZo`h2JFfx9 zbe^Z~9YVV(eE%5gdiv2Bz*RUOXJOMcBo^o$;FvB^?UP$*o|mU~pstZ;Vbpc#MH%Yq zpB_hD_1OgKYMSdoUDv#-KwW>#!(+Q5k&Er-da>|k(he<)dZB%7>okti!vjhJS;&%W zqLqFnoMYUSEA_0F4|FP-l-s4805U<@a$INUMMWc$(x)hZo zR%WKNai#w-q*9|hZkqT$E3@&Ds0=FEz)I+|nI(ag2U1HNEusA1$pc( z9)w0$@|jNqgE$`7xMLT~ps_NhVt1-Wmm(xZt^pT|WTWl`CP=D1{WRae!a#46eCvKU z8LwFCjoeG-AnO3mJOwxLsa~eh+6c1)12?TeQlY~F#Qr=--Az{q*aWb`c?#wdw$l3{ z)|d_0|M^~QrjHlcpkoONg=C&)!&Sx=NM2$grA-AintR&#@6bHj)A(uN4bQOm^%?|mAQRN$e z>9%+UuW3}R`l`(qk!3nuVBGqj#+Sk_2=|KQwqGiU`kjdk5S=Ws+d#Cs>Ns}XUj0&^ zT_35kh=cpIOylnSl%MVAPm9!iVeziqZd^c?D-}ZvM4k}5zhni3Mnv1t1Orhz-;ScQ zBLS>Z5ixtA8Fif>BNW|mc?w0lW32!xZ1JA}CL1Xt?%uGVX#LF(04f6Gu%qS9Yrrv` zXYaiuXctBApF~~HJUR=w3g_c2Y??;IBE16~(??YIN@zM9Ch{2 zjG?ajTmp49&3B=$>t0o&u0Iywv0a(S#dfn#EWVktL(9S^w685~#!-5BNJ$_IS#nLZ z+OI@&jGJ=B$Le^0o03Vn?aFCjv;L=G>rs-MjK?4^Z#}QcS8{pW%+^pWrg*K(Q8{L1 zW;!>a^c{s%YIVmg6F*>OHa;AaK_wfQhd!HG5~z(#EiFed<}*;*>dV{h>w zG`gD4yc!rp$ArcmdsqgImNON*Q?% z6HEOgcayo9wE{Iy!A*R+n`yMZli7iRn^qvH&}soHQ#U z%m(cLJTJD=$BS&hu?&SmGS9G~YU2tdvlsxgucw!GHH1v!zln31xRpL_RQ>4rk$j%z Q?J%CW99I=2U*qwN-_Ab6-T(jq diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index f60616d6289cb9ac70fbeb825baccd4119babbfe..1bc9dc8a4e12a0097b4b31420811315790dcaf0a 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIhDOC1w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7Q=7|Po#!0D`DMqG= zNk+!0W@!dMG`WxQHW|7eh&ye*!}N@cJgt*|d-G3r;VUFdcl6|Y!or(F`2R7Jr+xE1 h;frKw-TXj&8#&?oKs;`Q=7|Po#!0D`DMqG= zNk+!0W@!dMG`WUxr4h-x^d|>$%S`TJHkcgA#y@!zQxBO&Z0=$9XChNC)cRWTwd+pK oR~DMQgGYFC8T(ci3eDNPgXbO_WoC$P)(|jdq#FcIHRFaaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj fnvs!(g+;RA<_^YMMkA87=}(@(BDUF=xt<#U;W;Cf delta 122 zcmX>jdq#FcIHO@@YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* dajIFG0T6BOV60^{B3YaM!f%(t`<_+$QhDOC19@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AsHD^i delta 707 zcmX>!f%(t`<_+$QhLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMG`WKDAsM>lSv@yjW|C$iOY1Q*bnO=?+T6kRkA*C)Wt(+*yvYfi{Q_m1 z<@xf-@aE?I0_!-*a%}wOzfv>#$keK))gDZiR`<#Eo#LBq>P~Z!r+ssM=QSHLw92!F KZoYjioe==RY0^#r diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index ee5986c57df5c52371ce82085bb4baf9d84e9183..99c6efac31db59e88277536f13cfbaf33335a04d 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hDOC1ikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20ZGs@p8x;= delta 1026 zcmbO`n`Q27mJPm)hLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMG`WuP73sRBU*u-=-~58fk%>IL(UZ5b7LupcXR<#R|KtyX!kdq>DY8;# zhWO@Ao=s!~8p!)FcZhGk$Ja(?Fo4b2{6TO&g>I18Y%Eeii5r07DY4mK{3#2$;aM*w zxcQLGZhlJibL;-}B3Hkipy=jl6~Vle=&x?8^Cnk+zNon?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dhS_lKB7t delta 483 zcmX?gh4IuC#tq(#hLx#Fh6Sb-X8NW{7D*|o7Dgt9hDHV{rbd>Q=7|Po#!0D`DMqG= zNk+!0W@!dMG`WWHKN-62vd3=bWM0fdmeyNj>57`1z^A%7oimR-OQSX?@aT`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E0DAK`-T(jq delta 1013 zcmZp8#nSMKWrHuHVP$HPVS#CdnZ9X~MN&$tg^`J&p^-s~sgb3nd7^=taZ;*fijiqz zl96$$S(*V5ZLVWvB1hXsrZr5Y+ctS4Q~cz&thHq6jG4TD3;$$ZQQ^&!>@lnq86mz| zgZBU#-UhlK<_hu6v-#(e7X&aPBsRYhYNfyxn|VcNQ|f{ki5h0|gK~3;%q&Vguu85! znM~X7w1{uM+f+oR?VInk2o{lP^WJYln|r=1l4&3R22R@V$FW(9K=%vo_8Ewh-jVl1v85}-##V@p;eK*iQhf#gztJvag-KhfWFd!Hg0cNF_6{Vst{#N z(}UQKcl1FS(}D*K9FW|vdt$Ht-2SLokUiEZLAOIe-txPlC}9VO+UV?o8Pg=)`*cnk zk}=H#`YyQZL3fqCOXHvGTZKqS*UjN}&hB+_ zyNiZ%N!=p2w2mR%yCPv4wZF#Bi31Y*Ck^0Uhm{aSfF?iJD=sJl@}sR0Aby=$i7*|Y z@4S)@l!ydN-7TWHZN;rzOk^2!^>Ufr>|FP75BFO~Gv`Y3fJ3{IEgSJ7UO2MF(X|@fRs#|f{Q6$lN%jXOr!J* z)i1G6Ps}+srHon_xE>UV;Tji>7C2Bn7Vcn_5vbeUv2shpo!l>7TwH7$7xz9X1oXYo zskkUR_1hxh-12Z;6D$~rH$LZx zE{olUxW}EMVcG((jHX-_0T(+oEW!Pyub^#?7i##t$4{`r9bYXyCn84aNYvj>cJM-NIjB+ z_kz@@ND!T|Rxg}p083pW11E^Eg7}~7Tevr2k;us_a!rbs;GA9uH`}WrF*LS=Q^3bB z7aSHTFaUM8JOfv)SZG0H@d2vOnD&4C9LLDTZFbP1L`Nw%+-v6UxAtJG3&H?)PsA3D z8tha!)Ua!3ceap_LoQC69#qcXmJ|p1&F&P(j!j}>d52OU`qUlV-25|;__hgUo3IA7 zT;q;%u4$VhTwd2OF1~#<*Rh1d=lENS+fj_kxtLBm6!z+XJUt5PE!|w{xxP565iq4EipF=QQ~ zCKKwfDLl1;P@C6oAopeyYGs$rgnBCePb#Xuc-gIl%p^D4AKXr;`-D1?!&AoywI>IX zdrNrg{Xs&VCDgH~!-RTHsGZs)gqlyNMSG7CY7wC-o#Ck*M5RuVjjM5j++0R(e*Eiq zLfs}*#bQ?ol|iVX^?B+zp?224PVPM>)X9r42(^N26upLx?+CS(P{$O15b6M-y1(ZsK&X1!PvqWmLZ!Xrse6Q4 zwfi%<_kvJufBKV9M+lXA=qyjB6SAH6FLHA!p(cC&GZ;t3YC>IWDh*OCp>7ds^XF8ad`Cz}CnveNjZowM z;HhVX>a@Z|?oB1s;R8IifKa=ZxXHaNLOm?+CDcVixp(l?VnPi#$5T@X^({Lrl@z@~ z$X+SogqlI9rMG$N4xz$qMajLZgjyECQ@<0cTHsJ+j{BU3TCi;x57Cyd0@TSC=-w{Qlgb`a`X;37gjB2)>Pb0)sGpHQ-; zmkITnP<8KCNyqp05bF7V9uaCGp$=~uI}6{NODOjVM5Q9~CLw$M=Qg>yhENqQXZ(hX z&LY&S7o|8%y(Col%>}bDb)8V(|Fe)#*@Vh}acB;{_li&tEMpgAYAvA_edd-RYT&e> z&PgdrXmH!7Q+KX;zY2nNT;DVUcu`THw07vwy-)W69Xdp%49!R<-NDR^qSKBZ zucDwB_h-K_?)4%$*KbfmuEYQfw`xEnS8JY`Ti3sgpeuK;e*^CJ92>WCbvSo%Kua!k zg^4>pM$K)WsO1K4?8bfR=M|jf)bmPn6*vF$dHh7*LEX7B6B}}GH!HYv8$(Fx>D=DI zI|aWX7Gu#cP=FY9+JXbP*rDaPM?;DUVo{cpgF{2OK{ILyih-#OLyC*id)(#D4lOM> zf&VISKZ2!jlc)E54Gly+t-s_MjLaP!Rt3WmzAp_=ohV7 zq|GzQx!&VS;h|{|VxbCoCgr(VBSyMjg|uSe)M*+pZ?`EB=jIHCdqsu7LdpzJJ9|xiB-eUw%eV=GT=cgtw_Xj31V{Y=fg_+H{u@kL=ZeVGHRV}#*6G{+u zJ)2k_L5-tk4na^Wh=F&lD2-GU?bE|}E`D`M#4GLsc@AQ^;0@im8dF>Sz)5v3WlDKe z3U!U7)c4eK!f7?osJtl1niOW`s*kD8C9Q1CiI>%s;r`NxgzaIR(Sa*7Q_aN>QGlGI z%>%gd)9pkZ1wtOn95xm(1ObY^+^?ZprZo!(5Q-OXiA!4opYpumP;KV z;fjw{b2I1a@aR{;ZP^~jrOqvZU@sF>UY%zVl;oPMj^J;NftW|2n#kQ%zm z@F)O-;dsD4hGSv(VmDAXZLZ)RF7|@7Ma>jJ$WC~GfO%|(ELw|8%QSKKmbBs?qoTM3 zw&V-s_KO8axQa_lDDW5omo7~tiZAzzjcdQACYQ3bE#hG*cV}4&#~WicO7|07;+iav z6hLm&@(39o3i!nHsqNSp4VSQ50%GpB3*wG0@Nmj`ltu-%qX!Kr(;?uvQEMx532UlzYlo}-#jsj7(mS(}viLhQ7j_H4 zY~WD`W&`UU_X~U0hw*KCCR)}gaD|2&i*cD7+Hhmn+o)Z2sOn9mk?}SESW)(kzoPtG zNTCMsX3z3K@Dof9#HPbT7F5qP2f=hcXdy$va%iBLE3#SlUmX$dR+ev0B9R~(UW-eg zB}ZMCO571GZ*Z|QBar*yA&-yi!vjqi1cj>=tx@FdS#IXkUB%qJ#o>Ohc*ZrEU5OjA zLCr;PH6Z?`;xI*NC8yY`5-dRePblzx{XiMFe02ydmc=D+jp1gltBzQy#Xa1rMvq=3 zP=mHLP~agFmMEG_o9pG?Y*TSxH@LV4+rzj~bE5*&d*D$LzW;;!ZP`9ZfrmCYdo*`% zXD{%rN1h&)#UmV?Ii6%5oI2HvGVwSEXHN8G%E8p0d7(&rJmx`nxI=pffP-!GQ182Y z@V59}0|eZGJtMhYdq;w_wiybpE&RaM+%pW=)QC8-X8^Dq<`hVVgiyc_<^{Xe!7_Ku>l% z`iZ-HI6yE0G?}n@AeVO#-8+`Lt-}$4fJ-_@QP171^X*y z$+=S}Q-F0EN;E-C&=H2 z_^-^@SH%{u&Q-jmm*NRRkGWjSOO*xdw#~WJU-0jjGeLfJw|-mv<=z4Wap1~y83P0w ztr@m)xeEngYivkeZt&gh3?P^fF8;ET%eklF((^tuKp;NaZ!_HgE@pfd>>DL?a7UkH zvOPZl^t1`|+Z@mCNI_od5Dlk#d$|xu_H8Tkj|+LE5g!;4tg9I9h1VM15K+sS?ID@x@f?G6sLM(tZIaBISwv-DV z@=|~XK>~(tiUQTZol3ze38@#PYXwP#5d`iE6|A6q^)?E&77FXWNzjkiFG#Wq5*e`| za>*2`z?XKxpOm{l+=5Mvh}g;Pu&Y1?#|Nf6;*@y#;b`Fix+9R}%$|#6B_0cM%+tvMG$5CM&agQK| zn&kCCq#K^^hDQaBX>#L9e^PnQpX_~6@PZcTepN7unp${6@JdDycHR?ASMXSip9>!I znQ-zCXT@b6HeIlyQ2 z;tpY^s8Dc|Ji?}w_ZP*4Dk@PxwD4z|Oo|hJr*aG|FI-OjBBHAB4lQ7;B|O3E(I9)( zm7);T7k2WC6x>31iCH89H?OrYp2pypcEUY0c`Q+Apd7zS5=K*zO7s-w(xj!YFozcS zd!R5@&ZgG(xa+?nI0R<>uB;1grV2MR;NTGq%t;gKgbWXlekQ647Csd^K*D~Z8jc?; zd@cl;y_;%a+63VP6`ve1Tew@mCo2P?kQQh%Pq>WciWdk!(cGZL{sN9n;oWflvEY-! zITUQ?RiQ%0=jP-Jk5h!zcZFwZa@;+kO2ijf{!loH#k@YL=Cf&}5qSMMSr4)e`cQcH znQ#lw4Ose0IKB{oc6j8qFpFiNi^OR(J14~g;vXvmK;=(DHOMJjPYD)#qXHlze>Ni* zBK_AQjc7h^2v9dvl*Y&{s!I+V>qJLb2KJO$IY0nXxWpi;M~(TXSu}&um=PfJh)h1m zl`Zonu;tmfa*0DwWYZ`e-&+@q0&D=G(tii+u23*E5+*GUG$v> z&Cs66T0CsS-lE$ySs_{UgeFV&71gJ(GX{#fQUvKx(Q{frFkEz=Ci6y!vT1=WX`<1T zu^MAVlX(_k?j(P1@>J19TDHkd(R@Y&WB2Ag1|W~ofW1$J?ZKL65-s?`i2~T%xEsjH zSB1hY86u8XBKT#YXgV8K3LLvg^omB-=uA;pR+!04MV*PdLcsSGqI6c6m{p>Ul$+OU z*tz**tw_fk4_G&f04q1mH;H_0q<$+qH}-9!4^$}6PSH$OZkj>SUJB#b!^{nMwNDfT zU% zvp6@>r6?v9;4iE1#86q|yq2dFRos;Q%eHNT67+UeL3O#UX)f|Sid zGyHB7@1^b68JC!`FC+D+z}_O_Ab7zo2DEJ)>=hrS$p%HlX#ImsCe{=cYv@SkbhP*s zEwCb1yq=CI63U8ODfzOeYl`p5`Q*NaK1SiBCgKw`H=(t-Bn4ZZD859&CUg@2Ol!NB zBrZXdj&5Q!nMkC}vU>32Sg$AS9TwPE2v_zOucEMR2a12EBfhHR#OYL?dy~bx z>2PcP4Doo%ZnZh$d@0XOjYWPn*p`TkP|=#N7TYN2W7dja(q!rev6CjVHi>_t$*)=B zKX@L{CeFPb;ySRwHt|?`GjE4Di8nE9v0JR6xkL7f?X>>Yhr|^qgYS-s6*L)iTCAXt z6*(uqNQIIAE;iBJl2^rBDcHyB;>$Gm=56s8s*Xo@#FZ4hh;dKFe^7)9uf@L3^N%;; z!Su0F@5L(uXxVS#dpyF9Fv*`3D_SVoOpCseNDkB7!!k(3dB2ln zBvn^RH;I%QZ(?srRc3+W`$|;c0@v2e%W|W?M22L6_XbNM3XLg)OGZk1QU|b%_KWdx zj9-kg6D3M2#?omL8)N)82B|ZUNe(QL$UsVZ-_h_aCn+ZJnIv$Yq(q^BAp%}W#Tc;M zFGi!4k}A|1i`PmzQ87X`OERb{!kv;lT42py$vZ}UHUW87NiayR&@m81|KV1{+J_}Q zjlN#v*$p%aBfZA^o04$GArh@3_(o?H+?^}wM42veUox2n&54JS%`|u7Gs!vHpeB8m z)CuGRY`;jFM#HX=TKbyiHnd86SpNMu1JBg21?@?9sCC@cyq8+LaqFE zsB}8@>KUV?Vw$@=O zh4PO1>r81XW%=nWX?yCUErGN)Mll5!Lw$P-qwrm$2JzZ_!FFU)Dzij1rU)h~aWtVBuN5A@uu4wHq+OVy!C=6~d zJ4wqv?d&hRx{JSTd^dmDkRGy3TJ}hazwDTP{<6gf_{+W;DBD2Gt{dSm+kKS3Y)G2F z?B&t2ELwK{fXz6JiWTj$BPQrv-={<5W(`OD@m z_m^F=QkG52rfl$+jo#!hdwsLN?EEdVT-pgv+AWh6CYnm{f%H@5b{bH;a=R8V{h(|o zYm)-eI`u~yGpmlv=2O>da#rS|$*~t@Qwzhc9HQ_^4k>ixz^Tt=zM+%swLdfjZ)Klp zXavaRag^ysO1UpIl)-XeXzWzWeW5WVMBb9xBhMs{W7!TveHgzJ1(&x#Pa>-ajd zp}arK{wxAN$zZ^XtK`4%YuaO5%jX9OP6B(9oMo950kwk_yU2|!y&ZY@UN?EB5HT>O zr+hA(B<?a?D888f#vn=TojFN-oUY0;74?i3#pNAP3H9|gzRRhaL z%G)uUV0s#_0r6P*3|0o5X$?ner@FjP2=ip$K6>PTr3d z17^sl;9#vjNB$aP#m<+nWyR{YKpu@{n!7|kh!F#fS|$$y<_Uq3pwc3_4P-Y!+gdUE zVss#j>#YXiOXZglvwts@f5yyyTq$4w?<<1H6K`TZH>_vZ+lCGDkC=sJS@LE7o&`XH z;nEiQaArrowOu|RN75k39!c|e$>(B>xV`cbtU^@U$J?Szwwz@rj3}bbA$dubSq^%* z3V8ijT?;gxl-~|Ql926u#T9u`#ulmy_|~?g3U0nGe}k+Gm)w@0z|qn5j{F`{6s&ho zo`Acsb&upOeE;lIc|2+fpzXE%8ZP(ojXVM8w|Flx2-tcEs6N4==5hnGUKkC)=f0Yw;Azw(IUIyUd) zV~Q`BzIR%&3!8ENc||Zb)4FSl{`hLYr)YyT4Tn8dTvh#hDIrqwsbHUM9b^IJSezb# zG~$h9RRtWuZ02bKDq-)k8v=-t9vcIQkxp6yhV?YN5BN9MJDmV)UjKB&~?GF&B&{cgV zpaJ&&cDDk~V7o^=;1%-iVZarvfXj~q4&W>IG@uyvn*%Qcdb3ROiMv*8n_CPX_z*D5 z=ON(u#{ezJ_A1P9mN>8k%PNH*7$9INY^ex5g&oGF419yYolgOguh^H_-e`f#a~JJ8lNn#n*240#{;#svZY! z#n(g6dBe?l$s4ZM>%dz0`K|8*e`ogm>=kkku@pp>T4eGW>5ML@6|0c|#)QcFJ#g=2 z2@h(9rAdwodd$6KP$9hVB z9+c0}mp~*_O@q&Yp9d<3v-I!?q!D}=qTGx*$uKG(;Wl8HLpio^zFWepB)SIt-#yV&O$ zB%`Xslayps^>mt&jH(XJRFY+_`5DUD*yUn?avN?M9xhS3u{g4o%DD{U0J4^5+o~u zr9{Uh;|~wefOmJ4i~hY35MlLW=}6FXP2l!N%0VoHBJ%KtC&~>Z6%IM|!4l0&aP9LBhzDZC$VCg{!LX}jN9Q;~YuLWl+4F~|{YbrJ9 z7NS$Z^lqwYO7PNBSqH+qtF$2Rk;)9)4^mYU@@#JyqUy!qFuqDvaOqH$hb7=J0z_=L zl@LbYhH)zNdJ9%1oIF9bLI85+)Cz%BCaD(C+!vEo=sjjqVD40vMb9UXE>+zM}~ALL|x<_XnYF<}YRJFA*n2tYgReNJ_krEx0outyhE z?Wx(DUsADbixgmu_+7>HHdO&av8$?1l$*uZRV?TH3$RYyP#r9sZXCB&=xk)pvMT7* zz#Y{TMoU3t`uxH%5^!IIPK=W#Wzs{{Z;XuKHp&jSJyLlX8(-4O*)N&FmQwQNhirMrOpY^8jOm*RiZ|Aayo@ z56T2zU^HnH0ORx)5CejW!J*}YTQTf9V3XE|jp_#HGV)L#poi69f1JJ!{PuHjN5(OC zec)^w90b1h)5n2I!$RbsN1I?3s60AG3V!ad?*msh3)VApNT5p;)i;8(ehJ>puw)GT zCI%-2f%Q?9b?|ZTV5WUp1koP8O$lBSOkxLSrUjp&qtg*%f`tY?cjmm{N=bY&_gnBi zG06J0N(jsmsgIlZ@$DL$Iy{UokXK!OgymEaF}b6G`k@N!x75)=V;eQ=5TrgpI4Y2H z!6Jq8+NnMK&=sCbR7cZ+wX&Of9~JXvcQrcjh#L-AFIhc@7I-^QeU~QlMyS`&>x*)F;8E zIHzvL*qYbJSO8%u0E#jxe0xE?mG58Rw%^rR)CUJ#Q6C84eXvHJdMQ6Zgdd-%JF-R+ zNJz}pVv{J~o44vrD#(ft>fNk@5JdR$lN!BOM54v=%^yQgzpJBYZn#vliH6hTK+Rsp zl>n?Z^!*KOuo#?p>@~xxTFpcvgC6GUHP2aH!;cCZm^57|n@8*#Ut5sw)EH>)t}qRH z%ZLa%CS0?VChJ9L%Fzbkw-TBGjMIPyv#nQ6aABOLjDR>8cvezFmo!34Yu+(RM^Vda z&};mJ@2Coz2%7BnlV6&Wl{M(CEK*=kHBE6=5x}U1Xi;nUk8^BV-HK_X{&D82N4eN}o0Sq6jnMRwSqti8ySiZ!7y0+>Nt#xh|2+rfxe;b$b zQUYJk*Ax|@48vj#%YiMj1WSKR#0-T?G%5rJHOn*)C4##k_D-}NbQ!rt4ZLeKj2{KG zlV4N-SxxSkVC}VSNzFqB zh|%@yuOXkEg5A7;Xh^+>wI1}NCQjI8c*qqMc-!I^4Qwzaq>GqO9+?q>-drWQ6J~`p zq{)X|$RJvv=iHEw0=_`s`5{GVfprW0W#vmkCQ11MOIL=hHt@+-`$JHNO>oTzLkoe z4%!p2*|$Pml(Q4LAw8&=)nA67uZoZY@J+}{IiKwPIb<_^ti+d)9Rg4_7IF6BuaM?c zidI4`vNUYa8(FthRU8()-apwfE_LcW>=E9VxnVtY5Oh6SU~1Z1Vij z>Dp-e)b5$ub@ZtLv$QuTx9w+ZlVp6^%M1M)YnG|4Mo4sbn!8LK+KHCc%R`G$Jv7vW`W)G$4J}J6PSk~trN;i~3H7-^|L{<~ zf)ASoF`?*-Mx=`MB}4C1vn(zj`iMT3Q8zT1Dk`*LXg{i7&^ELVb=fyvLbX&1ZLiQ* zRDGIZp;ako9mj@7Yxydc%?aH>S?@MK^aCx>dqwDVDqD+Ex_N)dxn6wmx{>X^p~M;(5FS=$d94xgy>rIb7*6R5g1(aHME34 za0cYxA6yqCkJN;L8sAyj4F~c4b&}b7-BXsf_`AM2SY13S6asi|E_NgN{e;N z7;0~#)ph1~+|wjF)N!8y=?Wc7mx6$L!6yN_KUl`zm`~%XC zJ~^WM!l0FZa%P8v!gMKENl(IcEZ;BsFQ$q{=$;jdDTvgy81qvlO2_d1od1??e6;Q+ zR(V3){{n4QDP1Y~FyET#W-(1?F*n)05hISay6)I%_zzvS*Nwo0Ig#CiFe-@djLwmi>!|C> zEF)nK!TinA&kW4gNW)EEe@gRUaC<=V;s(a1aO8x_{2Yk_8*Ok?a0LFq3l65X- zS3(F*5ZP20xB6Ot9kZ4R%GYMPo?y=aofe!MqI1B|K{|0^dj8EzKt6bO z31U#YNT*@-!8w%-61aASZitM!Adsyw2)d zAqD^lKnZ5(^%~HqGirs8ZP7WI8xu4l6vOUN*B-?jJh>MQme6(Uel(Ip*Nq2tXYh6C zA>CGdjXa`5Yldgw?V~#M4#^p~>9}qmzVTj2|t zw!0{T1U8D*-(-yd%!33V1T{pb22@Pz- zbxK?PNY-HR>w|fYlh#!q&d>3yUe;>`@IxnkSFFFbUGys$!vP}95atF0Jsb_I_0W^q zpZ<2UYM@0CPmJy$#x+WD-=IztMqdjBZZd;s5hZ-S@cj}3O-%0UsM>oA?<9^KQ4@0Y9R`eYlY!K3s7jp z!-o6xHxz7&Z3VNA>+7MY;Ah&ZbNY?gQu{8jhDIxxm!luSC{!ze9#(-5m-GySCWyRF zi#jWC>>8`v4@W;e5vhQl8~Xc<5)21fp#nMFeT(<_Qg>KAo&x=LSD(!2@k!wCe#pN`oIYMPHvW%TE zBtVc-@H!<}4x)7ihR6W~CDLM`?}GKy8}Peeh(!==Hn6r3h6o7=Z1H(EPAo$4;jt;G1pSn=Z@By8N!pX}u4Br%d@`x(3-O^yDxfK%(M_JZed;&N?Rh^+dD1X!tS|N-5O+*AYlHWCYpJaH#%K={WG_bq~ zfUw5H%DoMLvov|=;ZY!Kfgu!rO*Wu2Aw-L1`Weu|6iI&TZ@{Mjv2KqIG`!~5hprP0yD1N`lMSm`d6+T9 zaF5Yq<6+ozgP67w719km|2+>7iE^3Q4C^xtFQ^Ju1H+boUp;Pq$3xXT!+S;*jDpB% zmr~E{xX5sldS=CC28Nj_)GRl=Wo)-myB4WYfG(SSUCG(C2K19)IAlPPjjVCPqe6sw zyKsCRf9$mYbdY#F9J|91A_8q^R?@+By9`%&7Ge5613vMK1HAPCf2_N*4W(JeV92ap zLDlrDLGa5_!xcu`QiT2|3_&b!(GVWm|8_M9bnj8z%*%fGsv(rh{^EwA3!~$A1qAk4 zO0W`i`D{=@b*=&ZFfHFY<{8kTF_N5c-+<4xW0n5$$}ke0cg4vE?+x!+7Sgdeu+QIy zb3Fe$;*DpS*+(#D;8cf6;boB#{Qx9k>~EP7p9IG|o>CaYD7)W-jiI!E_3DhJnVm3e z&ec$WoFNXDvlyB7Cx|@>%=8{c*-o3Wmymcdm}@s`fwP;@3^zH9N73s8ScI|RMk~Wu z88=8>fpabj;>P8Sq2w$yK(BSk;P8^hL|WmWalQ)erHx~mt$=HRsFtQwzgsIAk5XGq ztZp37tZIa7hllGLIqK;>8W@*Q?=;67OEKf#Ze|Pt$-5H+KqF3~=6_6}Qw!rIzAgE= zrLi`%Dtyo~&}VfoDXi1lh+f(tcKqDV$h5MK?AQ*Z47j6%d7X_$5kG)cb~D~#Y>ap? zfWV|Mqle#SpOTHUsLkdLFru@kgy{~0j9Y2aJ;b=0aRB~bvl|T@m}-;?!01(xb-|G| z<1&WsmdxWi3`C#wI62z5n#EkBj~i2JqFSdAu^&o*X>_yV2h8RxTB4^Z_EaA2X4<=YN~|C@`9=m&Q&(_sEmBg>baF$_R3 zdVbL(f0^+BOI#tCp}?^j!H_Raj9qK2C+7Le-N?$

29uu(-L88#}zT#hAkz4Q$(P zWLZfq!1C@iUN0OsM|T;~?}-p|W$rbuVetC`Zq)mYX!Jw;H7?u8@0%AG`abW@h6)6`@L}pO^*L;JVTR-UyXn!6++W|n%pim4GrXRD~FiS0dK

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'card_payment_fee_charged'}
+Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'visa_or_mastercard', 'card_payment_fee_charged', 'getting_spare_card'}
 

Let’s print the first example in the train set.

@@ -861,43 +861,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1196,7 +1196,7 @@

4. Train a more robust model from noisy labels -{"state": {"7d4753dd00a1470890074536df93a92a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e4c951b749aa4495a55d6eae29772e4d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7edfe78590ef4c3a984ab1a798182344": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7d4753dd00a1470890074536df93a92a", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e4c951b749aa4495a55d6eae29772e4d", "tabbable": null, "tooltip": null, "value": 391.0}}, "b654d592379849a19a7e326ea71d2057": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c10d03eb0c3d4de696f069fde2d46970": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dd3d27ffacad4ef0800f037d03247265": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b654d592379849a19a7e326ea71d2057", "placeholder": "\u200b", "style": "IPY_MODEL_c10d03eb0c3d4de696f069fde2d46970", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "00a563ce93d8479e98990b9301e38b8c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "40475ed8ae494c92a293af884791506a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "90f96861d524400e9fc05dcc9e59c12e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_00a563ce93d8479e98990b9301e38b8c", "placeholder": "\u200b", "style": "IPY_MODEL_40475ed8ae494c92a293af884791506a", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200762.8kB/s]"}}, "2e2458d3c4b141098dc8dc016f680867": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "87114647d7b244ea81038e535e44e6b7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dd3d27ffacad4ef0800f037d03247265", "IPY_MODEL_7edfe78590ef4c3a984ab1a798182344", "IPY_MODEL_90f96861d524400e9fc05dcc9e59c12e"], "layout": "IPY_MODEL_2e2458d3c4b141098dc8dc016f680867", "tabbable": null, "tooltip": null}}, "ca4466b8266240c7ba985c6949ca8b1b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "956ae5f47baa40a889762a10b5b21b03": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "acb9554b396b4fdaaaf35aa5f83c5e11": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ca4466b8266240c7ba985c6949ca8b1b", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_956ae5f47baa40a889762a10b5b21b03", "tabbable": null, "tooltip": null, "value": 2211.0}}, "7c98da98c82641b58b4c0323e75d3075": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b4ff23fcede45fba29c6d73ac053732": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a3504947bf89448394e112f7f1c88f62": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7c98da98c82641b58b4c0323e75d3075", "placeholder": "\u200b", "style": "IPY_MODEL_6b4ff23fcede45fba29c6d73ac053732", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "1d74a9ac286541eda7ab15da3b86f602": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9e6cc5abc31437aab8692b7e4283e92": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "526fd234b0de4d038d2897a7fda43c9f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1d74a9ac286541eda7ab15da3b86f602", "placeholder": "\u200b", "style": "IPY_MODEL_b9e6cc5abc31437aab8692b7e4283e92", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007380kB/s]"}}, "fc4cd9a185bc4f2b9a59b5b45379e93e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f4fa882d9e14420e8796ac9bc19e2306": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a3504947bf89448394e112f7f1c88f62", "IPY_MODEL_acb9554b396b4fdaaaf35aa5f83c5e11", "IPY_MODEL_526fd234b0de4d038d2897a7fda43c9f"], "layout": "IPY_MODEL_fc4cd9a185bc4f2b9a59b5b45379e93e", "tabbable": null, "tooltip": null}}, "3a1cc1f5d1294daea9a75e6dabcf6d34": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "51429743aebd4f9eae1b41dac2b35875": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "27e756f3ccb347fc9dfa7777fb4387f7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a1cc1f5d1294daea9a75e6dabcf6d34", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_51429743aebd4f9eae1b41dac2b35875", "tabbable": null, "tooltip": null, "value": 665.0}}, "eb79e857b8864183adb657377ac23506": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b9d7402d92e47a89f9bbe899046d166": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "03f976f6fd8b4f3da8f8d65361766803": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eb79e857b8864183adb657377ac23506", "placeholder": "\u200b", "style": "IPY_MODEL_3b9d7402d92e47a89f9bbe899046d166", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "43b0ed8656184de3b856fd2f6f199eb2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "41905e3141474f4fbacb2f74c80a1310": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7fdf9838677b4442aa595d6552ddcb25": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_43b0ed8656184de3b856fd2f6f199eb2", "placeholder": "\u200b", "style": "IPY_MODEL_41905e3141474f4fbacb2f74c80a1310", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007118kB/s]"}}, "50b5fab9821f49c8bc0a982b97d7d42b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "456c676c4b33467c81ad91009e80a507": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_03f976f6fd8b4f3da8f8d65361766803", "IPY_MODEL_27e756f3ccb347fc9dfa7777fb4387f7", "IPY_MODEL_7fdf9838677b4442aa595d6552ddcb25"], "layout": "IPY_MODEL_50b5fab9821f49c8bc0a982b97d7d42b", "tabbable": null, "tooltip": null}}, "f4029eb102f043fd954b9ddc73bae8ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "73b6faa785cc4727acea566993d90add": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4498e4568c6647309d11d1203f855b25": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f4029eb102f043fd954b9ddc73bae8ca", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_73b6faa785cc4727acea566993d90add", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "d6a05bb2370945a5abd0e0f436651fff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0ccee7c58aab4792bd7d5a7e98550a05": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d50952b772cb495ebd41f3be5f9790a1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d6a05bb2370945a5abd0e0f436651fff", "placeholder": "\u200b", "style": "IPY_MODEL_0ccee7c58aab4792bd7d5a7e98550a05", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "8f83c54053de47a1a170d3d710184f7a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eb878c8cb70245d1a8b94dcf434aeed1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "444fb19b8e674deca15d21c87b67193a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f83c54053de47a1a170d3d710184f7a", "placeholder": "\u200b", "style": "IPY_MODEL_eb878c8cb70245d1a8b94dcf434aeed1", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007183MB/s]"}}, "b06d0cd9e16b44849f64ce043c7e5ef5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "732f8bc8287a4549b8e5a68be594c45c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d50952b772cb495ebd41f3be5f9790a1", "IPY_MODEL_4498e4568c6647309d11d1203f855b25", "IPY_MODEL_444fb19b8e674deca15d21c87b67193a"], "layout": "IPY_MODEL_b06d0cd9e16b44849f64ce043c7e5ef5", "tabbable": null, "tooltip": null}}, "6ca0a5d5adc84dc78e144c1373a7e6d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c63fe7e641f44d7f90e707525df89fad": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8c2187e059254dd6a34676832f29f9b6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6ca0a5d5adc84dc78e144c1373a7e6d2", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c63fe7e641f44d7f90e707525df89fad", "tabbable": null, "tooltip": null, "value": 466062.0}}, "bc85a7272ac64c848e73561ca8fa0f8d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3ea5076eb124012a95325920ad8ac77": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e56515b2f9eb48769cb7a4dc806886d7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bc85a7272ac64c848e73561ca8fa0f8d", "placeholder": "\u200b", "style": "IPY_MODEL_d3ea5076eb124012a95325920ad8ac77", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "f6752c44d7d0466bb39f836d9750f809": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8480b84ae6fa4b9da23ce82ff2d45e47": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ac6010c871f74201acb1987747416e65": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f6752c44d7d0466bb39f836d9750f809", "placeholder": "\u200b", "style": "IPY_MODEL_8480b84ae6fa4b9da23ce82ff2d45e47", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20075.81MB/s]"}}, "bf57a612a3c943498f68e0d619ed1fad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a99d98a0e63343a48433514e5710c878": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e56515b2f9eb48769cb7a4dc806886d7", "IPY_MODEL_8c2187e059254dd6a34676832f29f9b6", "IPY_MODEL_ac6010c871f74201acb1987747416e65"], "layout": "IPY_MODEL_bf57a612a3c943498f68e0d619ed1fad", "tabbable": null, "tooltip": null}}, "4b41ee3c50114166bce552756c9927e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "528344507c3e4b69bb7f7fb09bf43404": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ac89ef4a851c4800a2cd053c39d628f5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4b41ee3c50114166bce552756c9927e1", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_528344507c3e4b69bb7f7fb09bf43404", "tabbable": null, "tooltip": null, "value": 48.0}}, "6de076bd9b964e018433dbea03c8ad53": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e27fa851943148ef8cb944b5d637695d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "91e39d530aa145f5b3c9065b9b5928a8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6de076bd9b964e018433dbea03c8ad53", "placeholder": "\u200b", "style": "IPY_MODEL_e27fa851943148ef8cb944b5d637695d", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "31a7d77029d74abe98b0b988f1a4bf8b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52b4a3cadcab44009dfef8cffc01e462": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6a43854016664bebb23affb2fdf945f6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31a7d77029d74abe98b0b988f1a4bf8b", "placeholder": "\u200b", "style": "IPY_MODEL_52b4a3cadcab44009dfef8cffc01e462", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u200710.0kB/s]"}}, "4e4cc08ba6cf4a02aae9cd49d69b90ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b87cb30ce5d4dcaa854942a9fa8b19a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_91e39d530aa145f5b3c9065b9b5928a8", "IPY_MODEL_ac89ef4a851c4800a2cd053c39d628f5", "IPY_MODEL_6a43854016664bebb23affb2fdf945f6"], "layout": "IPY_MODEL_4e4cc08ba6cf4a02aae9cd49d69b90ba", "tabbable": null, "tooltip": null}}, "65b51de7cf4449ca94fa3a257d95244f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "245426f14e014eca9c82576af9b4a2d0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "507686da4a544d3f9b8010ac3d869dd2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_65b51de7cf4449ca94fa3a257d95244f", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_245426f14e014eca9c82576af9b4a2d0", "tabbable": null, "tooltip": null, "value": 231508.0}}, "c0cfef3a63464a848707273469d2397a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "42e967127f284a62948d8f3a7f0b9377": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5e0a3c1909a14ea08a3a6e869796d4d5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c0cfef3a63464a848707273469d2397a", "placeholder": "\u200b", "style": "IPY_MODEL_42e967127f284a62948d8f3a7f0b9377", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "b4dab92075a1417f849f07d12419cf42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b24a10939b6449148ae6a98ec70f393e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fa685d412d3a430fb7a077c3a4673068": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b4dab92075a1417f849f07d12419cf42", "placeholder": "\u200b", "style": "IPY_MODEL_b24a10939b6449148ae6a98ec70f393e", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200731.7MB/s]"}}, "eef5b255fec1499283e47d245a6c6d13": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d132bbefa4ae4456aa672649e532c061": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5e0a3c1909a14ea08a3a6e869796d4d5", "IPY_MODEL_507686da4a544d3f9b8010ac3d869dd2", "IPY_MODEL_fa685d412d3a430fb7a077c3a4673068"], "layout": "IPY_MODEL_eef5b255fec1499283e47d245a6c6d13", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"511cd8d51d574c77881256b004b9cdde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26b18199fe454bcfab7cbbd748debfbc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8614ab07e12c45f5a2696b92486eceda": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_511cd8d51d574c77881256b004b9cdde", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_26b18199fe454bcfab7cbbd748debfbc", "tabbable": null, "tooltip": null, "value": 391.0}}, "57554a7bd18846b1a3d2611e7fe0ac3c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d73703dab8845c4bb83aa8f21fd2ac0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d9306c6ebb1c4290a9bec26e8cb38294": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57554a7bd18846b1a3d2611e7fe0ac3c", "placeholder": "\u200b", "style": "IPY_MODEL_8d73703dab8845c4bb83aa8f21fd2ac0", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "f69151cbba4448eab02794703220c674": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94748dd75dfb42d3bb71113a0985ffa6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "89530782f36a4825b5ea5fd6995f180e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f69151cbba4448eab02794703220c674", "placeholder": "\u200b", "style": "IPY_MODEL_94748dd75dfb42d3bb71113a0985ffa6", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200765.5kB/s]"}}, "cc88f3745d7b40f0be10b65f1a61c53b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "88db1ed782f3468fa38bac950d3092b7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d9306c6ebb1c4290a9bec26e8cb38294", "IPY_MODEL_8614ab07e12c45f5a2696b92486eceda", "IPY_MODEL_89530782f36a4825b5ea5fd6995f180e"], "layout": "IPY_MODEL_cc88f3745d7b40f0be10b65f1a61c53b", "tabbable": null, "tooltip": null}}, "9a788fe502f5407ba8e155ea5e5c2137": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7a83da02a88f44559a8d04bbb0765ca8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7bb11e481b73456c9d4486df66b66d08": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9a788fe502f5407ba8e155ea5e5c2137", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7a83da02a88f44559a8d04bbb0765ca8", "tabbable": null, "tooltip": null, "value": 2211.0}}, "550e485ddfb34ac48c7fa38fe4a55fdb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "657f32507c7b4163ba720b93d001fd5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "696e69955b874e9e98bc2febed0ff152": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_550e485ddfb34ac48c7fa38fe4a55fdb", "placeholder": "\u200b", "style": "IPY_MODEL_657f32507c7b4163ba720b93d001fd5f", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "fe605d7683594f159c812d6850fdeaf3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58a72521dc064dc6b408d067598bf149": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "982ef9e8f8b54273a6d8360202593e4e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fe605d7683594f159c812d6850fdeaf3", "placeholder": "\u200b", "style": "IPY_MODEL_58a72521dc064dc6b408d067598bf149", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007423kB/s]"}}, "3c768fd273824ade906a50c7a96037a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b77e61e755d4f119937e03ca1485b9c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_696e69955b874e9e98bc2febed0ff152", "IPY_MODEL_7bb11e481b73456c9d4486df66b66d08", "IPY_MODEL_982ef9e8f8b54273a6d8360202593e4e"], "layout": "IPY_MODEL_3c768fd273824ade906a50c7a96037a0", "tabbable": null, "tooltip": null}}, "ab4f6f76d3414e73abf4d8ec03d3516c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2dffee1fe1774d419335ccdc19dc5d4a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "aaabad1bacb84378bc109506930c4938": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab4f6f76d3414e73abf4d8ec03d3516c", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2dffee1fe1774d419335ccdc19dc5d4a", "tabbable": null, "tooltip": null, "value": 665.0}}, "1433c4cd47e04df98a78f5175ceed725": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "21fceb25363d4a59a9cbd26b09f9c0f7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "335cdeff3368490c9dacf86a1640f430": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1433c4cd47e04df98a78f5175ceed725", "placeholder": "\u200b", "style": "IPY_MODEL_21fceb25363d4a59a9cbd26b09f9c0f7", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "c97b51894b434f84aed8287f1282e791": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a682da03fb684688a086b672241e96f0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2cc47c0ea394ec5b04de2429472de83": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c97b51894b434f84aed8287f1282e791", "placeholder": "\u200b", "style": "IPY_MODEL_a682da03fb684688a086b672241e96f0", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007135kB/s]"}}, "972dbc96b65e45728767c91d7c18cb35": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27ff10056afe437197e80dcaa26d37ee": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_335cdeff3368490c9dacf86a1640f430", "IPY_MODEL_aaabad1bacb84378bc109506930c4938", "IPY_MODEL_d2cc47c0ea394ec5b04de2429472de83"], "layout": "IPY_MODEL_972dbc96b65e45728767c91d7c18cb35", "tabbable": null, "tooltip": null}}, "dccaa0d8cd394fd8afea397dc79e672c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4e963d20d0d145efb61072037f1c0b5b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "55554045055240c583d2bc190faec835": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dccaa0d8cd394fd8afea397dc79e672c", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4e963d20d0d145efb61072037f1c0b5b", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "5ed30cdd732748b89e88f596fe608d1d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "efc14db7cab848b8bc8de67706902202": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "837385c4dbaa4cd0a99ec70f0f7fc1f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5ed30cdd732748b89e88f596fe608d1d", "placeholder": "\u200b", "style": "IPY_MODEL_efc14db7cab848b8bc8de67706902202", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "13a4673a44e041a9be990dd279b14b81": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "251a6e7067ca496195a9b73f6af43a11": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0ac78e724f5a410091258100cbc42249": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13a4673a44e041a9be990dd279b14b81", "placeholder": "\u200b", "style": "IPY_MODEL_251a6e7067ca496195a9b73f6af43a11", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:01<00:00,\u200731.3MB/s]"}}, "67c70103916041eabd95c923cd979753": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d1c8778b071f488d9b67876bc5569568": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_837385c4dbaa4cd0a99ec70f0f7fc1f4", "IPY_MODEL_55554045055240c583d2bc190faec835", "IPY_MODEL_0ac78e724f5a410091258100cbc42249"], "layout": "IPY_MODEL_67c70103916041eabd95c923cd979753", "tabbable": null, "tooltip": null}}, "5783608143bf4c09bf36a32ccd6dda30": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84abfef1762a40e383897ea9056cfdfa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5879886cc62b4e94a1d1396dd1a96b4f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5783608143bf4c09bf36a32ccd6dda30", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_84abfef1762a40e383897ea9056cfdfa", "tabbable": null, "tooltip": null, "value": 466062.0}}, "63031382547c4484b9d9576e44ec985c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "69f1d3e434ea4aae85d4d61f41a070a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4902e2a667314840ad29c3989fbc3d71": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63031382547c4484b9d9576e44ec985c", "placeholder": "\u200b", "style": "IPY_MODEL_69f1d3e434ea4aae85d4d61f41a070a4", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "eb88da38cb2a41768332b1e1818fbfd7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13bf594da49b4afba0315f15c19cb9b3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8f5cb20b54134883910f7866203179cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eb88da38cb2a41768332b1e1818fbfd7", "placeholder": "\u200b", "style": "IPY_MODEL_13bf594da49b4afba0315f15c19cb9b3", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200731.9MB/s]"}}, "07cffd6ee3cb4ee180c45f9e89a87081": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "944db354360447dc908680f8480dcdc0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4902e2a667314840ad29c3989fbc3d71", "IPY_MODEL_5879886cc62b4e94a1d1396dd1a96b4f", "IPY_MODEL_8f5cb20b54134883910f7866203179cc"], "layout": "IPY_MODEL_07cffd6ee3cb4ee180c45f9e89a87081", "tabbable": null, "tooltip": null}}, "d11d777946f046dbb16da297cdd4ee7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b77b5193f60341b9b68a8057c0d957b7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7091ee4e077b4c53b50d1acf076e85c4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d11d777946f046dbb16da297cdd4ee7f", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b77b5193f60341b9b68a8057c0d957b7", "tabbable": null, "tooltip": null, "value": 48.0}}, "7cd284403909488b9ca34ff7b8026738": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d03c3dd124ec48bdadbec94e624d97ec": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d5b00a2e85b84f9a95e07f055a14f61c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7cd284403909488b9ca34ff7b8026738", "placeholder": "\u200b", "style": "IPY_MODEL_d03c3dd124ec48bdadbec94e624d97ec", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "057aa8cb2fca4d0a965488bc4b12c120": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "314a2fc932ee4e25a10a88ca2e4bd00f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "eadcdb3fd3b14c399ff30a279a5333f4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_057aa8cb2fca4d0a965488bc4b12c120", "placeholder": "\u200b", "style": "IPY_MODEL_314a2fc932ee4e25a10a88ca2e4bd00f", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.97kB/s]"}}, "2d05eeda60f3453d8f85530225404b34": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d17fd6a19048484d9d197a89d97ba550": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d5b00a2e85b84f9a95e07f055a14f61c", "IPY_MODEL_7091ee4e077b4c53b50d1acf076e85c4", "IPY_MODEL_eadcdb3fd3b14c399ff30a279a5333f4"], "layout": "IPY_MODEL_2d05eeda60f3453d8f85530225404b34", "tabbable": null, "tooltip": null}}, "1c17efbeb5004a8da7fabc03d3d9585b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f7c71d10032c4b87875d3ef528a77f2d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "853ceebd1a3c4b059848193e3dc49b97": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c17efbeb5004a8da7fabc03d3d9585b", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f7c71d10032c4b87875d3ef528a77f2d", "tabbable": null, "tooltip": null, "value": 231508.0}}, "f141d248724e4b85bb038a3d25f1dda4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a8bea20f28ff40b38fdaa46b490e0c22": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "525dc09656fc4345922cbe2bab00c17f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f141d248724e4b85bb038a3d25f1dda4", "placeholder": "\u200b", "style": "IPY_MODEL_a8bea20f28ff40b38fdaa46b490e0c22", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "15c367e37d544060a2483da64a2efc7d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "108fa6774b4943129df006d3865c18a0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2ab61373d70f4432bc84390e3e6dc3af": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15c367e37d544060a2483da64a2efc7d", "placeholder": "\u200b", "style": "IPY_MODEL_108fa6774b4943129df006d3865c18a0", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200734.5MB/s]"}}, "a8269b5530b545c3851312f53bbb9eea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7fc93fb206df4074a67da4377661b97d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_525dc09656fc4345922cbe2bab00c17f", "IPY_MODEL_853ceebd1a3c4b059848193e3dc49b97", "IPY_MODEL_2ab61373d70f4432bc84390e3e6dc3af"], "layout": "IPY_MODEL_a8269b5530b545c3851312f53bbb9eea", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index c373aed68..bed7bd792 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:22.547636Z", - "iopub.status.busy": "2024-05-23T02:38:22.547467Z", - "iopub.status.idle": "2024-05-23T02:38:25.459906Z", - "shell.execute_reply": "2024-05-23T02:38:25.459288Z" + "iopub.execute_input": "2024-05-23T15:11:42.361209Z", + "iopub.status.busy": "2024-05-23T15:11:42.360877Z", + "iopub.status.idle": "2024-05-23T15:11:45.186640Z", + "shell.execute_reply": "2024-05-23T15:11:45.186062Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.462623Z", - "iopub.status.busy": "2024-05-23T02:38:25.462329Z", - "iopub.status.idle": "2024-05-23T02:38:25.465586Z", - "shell.execute_reply": "2024-05-23T02:38:25.465124Z" + "iopub.execute_input": "2024-05-23T15:11:45.189175Z", + "iopub.status.busy": "2024-05-23T15:11:45.188733Z", + "iopub.status.idle": "2024-05-23T15:11:45.192058Z", + "shell.execute_reply": "2024-05-23T15:11:45.191634Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.467462Z", - "iopub.status.busy": "2024-05-23T02:38:25.467291Z", - "iopub.status.idle": "2024-05-23T02:38:25.470389Z", - "shell.execute_reply": "2024-05-23T02:38:25.469950Z" + "iopub.execute_input": "2024-05-23T15:11:45.193987Z", + "iopub.status.busy": "2024-05-23T15:11:45.193657Z", + "iopub.status.idle": "2024-05-23T15:11:45.196835Z", + "shell.execute_reply": "2024-05-23T15:11:45.196384Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.472485Z", - "iopub.status.busy": "2024-05-23T02:38:25.472086Z", - "iopub.status.idle": "2024-05-23T02:38:25.542092Z", - "shell.execute_reply": "2024-05-23T02:38:25.541591Z" + "iopub.execute_input": "2024-05-23T15:11:45.198907Z", + "iopub.status.busy": "2024-05-23T15:11:45.198523Z", + "iopub.status.idle": "2024-05-23T15:11:45.233893Z", + "shell.execute_reply": "2024-05-23T15:11:45.233417Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.544103Z", - "iopub.status.busy": "2024-05-23T02:38:25.543923Z", - "iopub.status.idle": "2024-05-23T02:38:25.547549Z", - "shell.execute_reply": "2024-05-23T02:38:25.547108Z" + "iopub.execute_input": "2024-05-23T15:11:45.235873Z", + "iopub.status.busy": "2024-05-23T15:11:45.235696Z", + "iopub.status.idle": "2024-05-23T15:11:45.239078Z", + "shell.execute_reply": "2024-05-23T15:11:45.238632Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.549469Z", - "iopub.status.busy": "2024-05-23T02:38:25.549150Z", - "iopub.status.idle": "2024-05-23T02:38:25.552639Z", - "shell.execute_reply": "2024-05-23T02:38:25.552190Z" + "iopub.execute_input": "2024-05-23T15:11:45.240844Z", + "iopub.status.busy": "2024-05-23T15:11:45.240674Z", + "iopub.status.idle": "2024-05-23T15:11:45.243892Z", + "shell.execute_reply": "2024-05-23T15:11:45.243401Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'card_payment_fee_charged'}\n" + "Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'visa_or_mastercard', 'card_payment_fee_charged', 'getting_spare_card'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.554499Z", - "iopub.status.busy": "2024-05-23T02:38:25.554328Z", - "iopub.status.idle": "2024-05-23T02:38:25.557336Z", - "shell.execute_reply": "2024-05-23T02:38:25.556795Z" + "iopub.execute_input": "2024-05-23T15:11:45.245830Z", + "iopub.status.busy": "2024-05-23T15:11:45.245507Z", + "iopub.status.idle": "2024-05-23T15:11:45.248696Z", + "shell.execute_reply": "2024-05-23T15:11:45.248239Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.559368Z", - "iopub.status.busy": "2024-05-23T02:38:25.559067Z", - "iopub.status.idle": "2024-05-23T02:38:25.562391Z", - "shell.execute_reply": "2024-05-23T02:38:25.561855Z" + "iopub.execute_input": "2024-05-23T15:11:45.250735Z", + "iopub.status.busy": "2024-05-23T15:11:45.250426Z", + "iopub.status.idle": "2024-05-23T15:11:45.253679Z", + "shell.execute_reply": "2024-05-23T15:11:45.253224Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.564473Z", - "iopub.status.busy": "2024-05-23T02:38:25.564065Z", - "iopub.status.idle": "2024-05-23T02:38:30.764752Z", - "shell.execute_reply": "2024-05-23T02:38:30.764074Z" + "iopub.execute_input": "2024-05-23T15:11:45.255640Z", + "iopub.status.busy": "2024-05-23T15:11:45.255321Z", + "iopub.status.idle": "2024-05-23T15:11:51.000423Z", + "shell.execute_reply": "2024-05-23T15:11:50.999865Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "87114647d7b244ea81038e535e44e6b7", + "model_id": "88db1ed782f3468fa38bac950d3092b7", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f4fa882d9e14420e8796ac9bc19e2306", + "model_id": "2b77e61e755d4f119937e03ca1485b9c", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "456c676c4b33467c81ad91009e80a507", + "model_id": "27ff10056afe437197e80dcaa26d37ee", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "732f8bc8287a4549b8e5a68be594c45c", + "model_id": "d1c8778b071f488d9b67876bc5569568", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a99d98a0e63343a48433514e5710c878", + "model_id": "944db354360447dc908680f8480dcdc0", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b87cb30ce5d4dcaa854942a9fa8b19a", + "model_id": "d17fd6a19048484d9d197a89d97ba550", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d132bbefa4ae4456aa672649e532c061", + "model_id": "7fc93fb206df4074a67da4377661b97d", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:30.767416Z", - "iopub.status.busy": "2024-05-23T02:38:30.767222Z", - "iopub.status.idle": "2024-05-23T02:38:30.769986Z", - "shell.execute_reply": "2024-05-23T02:38:30.769498Z" + "iopub.execute_input": "2024-05-23T15:11:51.003086Z", + "iopub.status.busy": "2024-05-23T15:11:51.002708Z", + "iopub.status.idle": "2024-05-23T15:11:51.005623Z", + "shell.execute_reply": "2024-05-23T15:11:51.005128Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:30.772012Z", - "iopub.status.busy": "2024-05-23T02:38:30.771615Z", - "iopub.status.idle": "2024-05-23T02:38:30.774209Z", - "shell.execute_reply": "2024-05-23T02:38:30.773764Z" + "iopub.execute_input": "2024-05-23T15:11:51.007663Z", + "iopub.status.busy": "2024-05-23T15:11:51.007337Z", + "iopub.status.idle": "2024-05-23T15:11:51.009851Z", + "shell.execute_reply": "2024-05-23T15:11:51.009412Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:30.776091Z", - "iopub.status.busy": "2024-05-23T02:38:30.775918Z", - "iopub.status.idle": "2024-05-23T02:38:32.987339Z", - "shell.execute_reply": "2024-05-23T02:38:32.986755Z" + "iopub.execute_input": "2024-05-23T15:11:51.011732Z", + "iopub.status.busy": "2024-05-23T15:11:51.011553Z", + "iopub.status.idle": "2024-05-23T15:11:53.240372Z", + "shell.execute_reply": "2024-05-23T15:11:53.239743Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:32.990252Z", - "iopub.status.busy": "2024-05-23T02:38:32.989550Z", - "iopub.status.idle": "2024-05-23T02:38:32.996764Z", - "shell.execute_reply": "2024-05-23T02:38:32.996321Z" + "iopub.execute_input": "2024-05-23T15:11:53.243298Z", + "iopub.status.busy": "2024-05-23T15:11:53.242690Z", + "iopub.status.idle": "2024-05-23T15:11:53.251209Z", + "shell.execute_reply": "2024-05-23T15:11:53.250768Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:32.998815Z", - "iopub.status.busy": "2024-05-23T02:38:32.998559Z", - "iopub.status.idle": "2024-05-23T02:38:33.002290Z", - "shell.execute_reply": "2024-05-23T02:38:33.001852Z" + "iopub.execute_input": "2024-05-23T15:11:53.253349Z", + "iopub.status.busy": "2024-05-23T15:11:53.253040Z", + "iopub.status.idle": "2024-05-23T15:11:53.256877Z", + "shell.execute_reply": "2024-05-23T15:11:53.256443Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.004218Z", - "iopub.status.busy": "2024-05-23T02:38:33.003887Z", - "iopub.status.idle": "2024-05-23T02:38:33.007124Z", - "shell.execute_reply": "2024-05-23T02:38:33.006673Z" + "iopub.execute_input": "2024-05-23T15:11:53.258809Z", + "iopub.status.busy": "2024-05-23T15:11:53.258494Z", + "iopub.status.idle": "2024-05-23T15:11:53.261793Z", + "shell.execute_reply": "2024-05-23T15:11:53.261337Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.009132Z", - "iopub.status.busy": "2024-05-23T02:38:33.008811Z", - "iopub.status.idle": "2024-05-23T02:38:33.011627Z", - "shell.execute_reply": "2024-05-23T02:38:33.011213Z" + "iopub.execute_input": "2024-05-23T15:11:53.263814Z", + "iopub.status.busy": "2024-05-23T15:11:53.263498Z", + "iopub.status.idle": "2024-05-23T15:11:53.266484Z", + "shell.execute_reply": "2024-05-23T15:11:53.265996Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.013620Z", - "iopub.status.busy": "2024-05-23T02:38:33.013288Z", - "iopub.status.idle": "2024-05-23T02:38:33.020073Z", - "shell.execute_reply": "2024-05-23T02:38:33.019579Z" + "iopub.execute_input": "2024-05-23T15:11:53.268367Z", + "iopub.status.busy": "2024-05-23T15:11:53.268053Z", + "iopub.status.idle": "2024-05-23T15:11:53.276306Z", + "shell.execute_reply": "2024-05-23T15:11:53.275840Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.022157Z", - "iopub.status.busy": "2024-05-23T02:38:33.021835Z", - "iopub.status.idle": "2024-05-23T02:38:33.244015Z", - "shell.execute_reply": "2024-05-23T02:38:33.243456Z" + "iopub.execute_input": "2024-05-23T15:11:53.278297Z", + "iopub.status.busy": "2024-05-23T15:11:53.277985Z", + "iopub.status.idle": "2024-05-23T15:11:53.502080Z", + "shell.execute_reply": "2024-05-23T15:11:53.501482Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.247350Z", - "iopub.status.busy": "2024-05-23T02:38:33.246423Z", - "iopub.status.idle": "2024-05-23T02:38:33.429697Z", - "shell.execute_reply": "2024-05-23T02:38:33.429153Z" + "iopub.execute_input": "2024-05-23T15:11:53.505061Z", + "iopub.status.busy": "2024-05-23T15:11:53.504534Z", + "iopub.status.idle": "2024-05-23T15:11:53.679226Z", + "shell.execute_reply": "2024-05-23T15:11:53.678650Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.433418Z", - "iopub.status.busy": "2024-05-23T02:38:33.432488Z", - "iopub.status.idle": "2024-05-23T02:38:33.437355Z", - "shell.execute_reply": "2024-05-23T02:38:33.436849Z" + "iopub.execute_input": "2024-05-23T15:11:53.681807Z", + "iopub.status.busy": "2024-05-23T15:11:53.681402Z", + "iopub.status.idle": "2024-05-23T15:11:53.685379Z", + "shell.execute_reply": "2024-05-23T15:11:53.684896Z" }, "nbsphinx": "hidden" }, @@ -1113,7 +1113,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00a563ce93d8479e98990b9301e38b8c": { + "057aa8cb2fca4d0a965488bc4b12c120": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1166,7 +1166,60 @@ "width": null } }, - "03f976f6fd8b4f3da8f8d65361766803": { + "07cffd6ee3cb4ee180c45f9e89a87081": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ac78e724f5a410091258100cbc42249": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1181,15 +1234,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb79e857b8864183adb657377ac23506", + "layout": "IPY_MODEL_13a4673a44e041a9be990dd279b14b81", "placeholder": "​", - "style": "IPY_MODEL_3b9d7402d92e47a89f9bbe899046d166", + "style": "IPY_MODEL_251a6e7067ca496195a9b73f6af43a11", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 54.2M/54.2M [00:01<00:00, 31.3MB/s]" } }, - "0ccee7c58aab4792bd7d5a7e98550a05": { + "108fa6774b4943129df006d3865c18a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1207,7 +1260,7 @@ "text_color": null } }, - "1d74a9ac286541eda7ab15da3b86f602": { + "13a4673a44e041a9be990dd279b14b81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1260,49 +1313,25 @@ "width": null } }, - "245426f14e014eca9c82576af9b4a2d0": { + "13bf594da49b4afba0315f15c19cb9b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "27e756f3ccb347fc9dfa7777fb4387f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a1cc1f5d1294daea9a75e6dabcf6d34", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_51429743aebd4f9eae1b41dac2b35875", - "tabbable": null, - "tooltip": null, - "value": 665.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2e2458d3c4b141098dc8dc016f680867": { + "1433c4cd47e04df98a78f5175ceed725": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1355,7 +1384,7 @@ "width": null } }, - "31a7d77029d74abe98b0b988f1a4bf8b": { + "15c367e37d544060a2483da64a2efc7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1408,7 +1437,7 @@ "width": null } }, - "3a1cc1f5d1294daea9a75e6dabcf6d34": { + "1c17efbeb5004a8da7fabc03d3d9585b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,31 +1490,25 @@ "width": null } }, - "3b87cb30ce5d4dcaa854942a9fa8b19a": { + "21fceb25363d4a59a9cbd26b09f9c0f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_91e39d530aa145f5b3c9065b9b5928a8", - "IPY_MODEL_ac89ef4a851c4800a2cd053c39d628f5", - "IPY_MODEL_6a43854016664bebb23affb2fdf945f6" - ], - "layout": "IPY_MODEL_4e4cc08ba6cf4a02aae9cd49d69b90ba", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3b9d7402d92e47a89f9bbe899046d166": { + "251a6e7067ca496195a9b73f6af43a11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1503,61 +1526,94 @@ "text_color": null } }, - "40475ed8ae494c92a293af884791506a": { + "26b18199fe454bcfab7cbbd748debfbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "41905e3141474f4fbacb2f74c80a1310": { + "27ff10056afe437197e80dcaa26d37ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_335cdeff3368490c9dacf86a1640f430", + "IPY_MODEL_aaabad1bacb84378bc109506930c4938", + "IPY_MODEL_d2cc47c0ea394ec5b04de2429472de83" + ], + "layout": "IPY_MODEL_972dbc96b65e45728767c91d7c18cb35", + "tabbable": null, + "tooltip": null } }, - "42e967127f284a62948d8f3a7f0b9377": { + "2ab61373d70f4432bc84390e3e6dc3af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15c367e37d544060a2483da64a2efc7d", + "placeholder": "​", + "style": "IPY_MODEL_108fa6774b4943129df006d3865c18a0", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 34.5MB/s]" + } + }, + "2b77e61e755d4f119937e03ca1485b9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_696e69955b874e9e98bc2febed0ff152", + "IPY_MODEL_7bb11e481b73456c9d4486df66b66d08", + "IPY_MODEL_982ef9e8f8b54273a6d8360202593e4e" + ], + "layout": "IPY_MODEL_3c768fd273824ade906a50c7a96037a0", + "tabbable": null, + "tooltip": null } }, - "43b0ed8656184de3b856fd2f6f199eb2": { + "2d05eeda60f3453d8f85530225404b34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1610,80 +1666,64 @@ "width": null } }, - "444fb19b8e674deca15d21c87b67193a": { + "2dffee1fe1774d419335ccdc19dc5d4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8f83c54053de47a1a170d3d710184f7a", - "placeholder": "​", - "style": "IPY_MODEL_eb878c8cb70245d1a8b94dcf434aeed1", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 183MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4498e4568c6647309d11d1203f855b25": { + "314a2fc932ee4e25a10a88ca2e4bd00f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f4029eb102f043fd954b9ddc73bae8ca", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_73b6faa785cc4727acea566993d90add", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "456c676c4b33467c81ad91009e80a507": { + "335cdeff3368490c9dacf86a1640f430": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_03f976f6fd8b4f3da8f8d65361766803", - "IPY_MODEL_27e756f3ccb347fc9dfa7777fb4387f7", - "IPY_MODEL_7fdf9838677b4442aa595d6552ddcb25" - ], - "layout": "IPY_MODEL_50b5fab9821f49c8bc0a982b97d7d42b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1433c4cd47e04df98a78f5175ceed725", + "placeholder": "​", + "style": "IPY_MODEL_21fceb25363d4a59a9cbd26b09f9c0f7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "config.json: 100%" } }, - "4b41ee3c50114166bce552756c9927e1": { + "3c768fd273824ade906a50c7a96037a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1736,7 +1776,46 @@ "width": null } }, - "4e4cc08ba6cf4a02aae9cd49d69b90ba": { + "4902e2a667314840ad29c3989fbc3d71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63031382547c4484b9d9576e44ec985c", + "placeholder": "​", + "style": "IPY_MODEL_69f1d3e434ea4aae85d4d61f41a070a4", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "4e963d20d0d145efb61072037f1c0b5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "511cd8d51d574c77881256b004b9cdde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1789,33 +1868,30 @@ "width": null } }, - "507686da4a544d3f9b8010ac3d869dd2": { + "525dc09656fc4345922cbe2bab00c17f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_65b51de7cf4449ca94fa3a257d95244f", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_245426f14e014eca9c82576af9b4a2d0", + "layout": "IPY_MODEL_f141d248724e4b85bb038a3d25f1dda4", + "placeholder": "​", + "style": "IPY_MODEL_a8bea20f28ff40b38fdaa46b490e0c22", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": "vocab.txt: 100%" } }, - "50b5fab9821f49c8bc0a982b97d7d42b": { + "550e485ddfb34ac48c7fa38fe4a55fdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1868,103 +1944,33 @@ "width": null } }, - "51429743aebd4f9eae1b41dac2b35875": { + "55554045055240c583d2bc190faec835": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "526fd234b0de4d038d2897a7fda43c9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d74a9ac286541eda7ab15da3b86f602", - "placeholder": "​", - "style": "IPY_MODEL_b9e6cc5abc31437aab8692b7e4283e92", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 380kB/s]" - } - }, - "528344507c3e4b69bb7f7fb09bf43404": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "52b4a3cadcab44009dfef8cffc01e462": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5e0a3c1909a14ea08a3a6e869796d4d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0cfef3a63464a848707273469d2397a", - "placeholder": "​", - "style": "IPY_MODEL_42e967127f284a62948d8f3a7f0b9377", + "layout": "IPY_MODEL_dccaa0d8cd394fd8afea397dc79e672c", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e963d20d0d145efb61072037f1c0b5b", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": 54245363.0 } }, - "65b51de7cf4449ca94fa3a257d95244f": { + "57554a7bd18846b1a3d2611e7fe0ac3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2017,48 +2023,7 @@ "width": null } }, - "6a43854016664bebb23affb2fdf945f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31a7d77029d74abe98b0b988f1a4bf8b", - "placeholder": "​", - "style": "IPY_MODEL_52b4a3cadcab44009dfef8cffc01e462", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 10.0kB/s]" - } - }, - "6b4ff23fcede45fba29c6d73ac053732": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6ca0a5d5adc84dc78e144c1373a7e6d2": { + "5783608143bf4c09bf36a32ccd6dda30": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2111,7 +2076,51 @@ "width": null } }, - "6de076bd9b964e018433dbea03c8ad53": { + "5879886cc62b4e94a1d1396dd1a96b4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5783608143bf4c09bf36a32ccd6dda30", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_84abfef1762a40e383897ea9056cfdfa", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "58a72521dc064dc6b408d067598bf149": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5ed30cdd732748b89e88f596fe608d1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2164,47 +2173,7 @@ "width": null } }, - "732f8bc8287a4549b8e5a68be594c45c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d50952b772cb495ebd41f3be5f9790a1", - "IPY_MODEL_4498e4568c6647309d11d1203f855b25", - "IPY_MODEL_444fb19b8e674deca15d21c87b67193a" - ], - "layout": "IPY_MODEL_b06d0cd9e16b44849f64ce043c7e5ef5", - "tabbable": null, - "tooltip": null - } - }, - "73b6faa785cc4727acea566993d90add": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7c98da98c82641b58b4c0323e75d3075": { + "63031382547c4484b9d9576e44ec985c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2257,7 +2226,25 @@ "width": null } }, - "7d4753dd00a1470890074536df93a92a": { + "657f32507c7b4163ba720b93d001fd5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67c70103916041eabd95c923cd979753": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2310,33 +2297,7 @@ "width": null } }, - "7edfe78590ef4c3a984ab1a798182344": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7d4753dd00a1470890074536df93a92a", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e4c951b749aa4495a55d6eae29772e4d", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "7fdf9838677b4442aa595d6552ddcb25": { + "696e69955b874e9e98bc2febed0ff152": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2351,15 +2312,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_43b0ed8656184de3b856fd2f6f199eb2", + "layout": "IPY_MODEL_550e485ddfb34ac48c7fa38fe4a55fdb", "placeholder": "​", - "style": "IPY_MODEL_41905e3141474f4fbacb2f74c80a1310", + "style": "IPY_MODEL_657f32507c7b4163ba720b93d001fd5f", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 118kB/s]" + "value": "README.md: 100%" } }, - "8480b84ae6fa4b9da23ce82ff2d45e47": { + "69f1d3e434ea4aae85d4d61f41a070a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2377,31 +2338,49 @@ "text_color": null } }, - "87114647d7b244ea81038e535e44e6b7": { + "7091ee4e077b4c53b50d1acf076e85c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dd3d27ffacad4ef0800f037d03247265", - "IPY_MODEL_7edfe78590ef4c3a984ab1a798182344", - "IPY_MODEL_90f96861d524400e9fc05dcc9e59c12e" - ], - "layout": "IPY_MODEL_2e2458d3c4b141098dc8dc016f680867", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d11d777946f046dbb16da297cdd4ee7f", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b77b5193f60341b9b68a8057c0d957b7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 48.0 + } + }, + "7a83da02a88f44559a8d04bbb0765ca8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8c2187e059254dd6a34676832f29f9b6": { + "7bb11e481b73456c9d4486df66b66d08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2417,17 +2396,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ca0a5d5adc84dc78e144c1373a7e6d2", - "max": 466062.0, + "layout": "IPY_MODEL_9a788fe502f5407ba8e155ea5e5c2137", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c63fe7e641f44d7f90e707525df89fad", + "style": "IPY_MODEL_7a83da02a88f44559a8d04bbb0765ca8", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": 2211.0 } }, - "8f83c54053de47a1a170d3d710184f7a": { + "7cd284403909488b9ca34ff7b8026738": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2480,30 +2459,31 @@ "width": null } }, - "90f96861d524400e9fc05dcc9e59c12e": { + "7fc93fb206df4074a67da4377661b97d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_00a563ce93d8479e98990b9301e38b8c", - "placeholder": "​", - "style": "IPY_MODEL_40475ed8ae494c92a293af884791506a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_525dc09656fc4345922cbe2bab00c17f", + "IPY_MODEL_853ceebd1a3c4b059848193e3dc49b97", + "IPY_MODEL_2ab61373d70f4432bc84390e3e6dc3af" + ], + "layout": "IPY_MODEL_a8269b5530b545c3851312f53bbb9eea", "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 62.8kB/s]" + "tooltip": null } }, - "91e39d530aa145f5b3c9065b9b5928a8": { + "837385c4dbaa4cd0a99ec70f0f7fc1f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2518,15 +2498,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6de076bd9b964e018433dbea03c8ad53", + "layout": "IPY_MODEL_5ed30cdd732748b89e88f596fe608d1d", "placeholder": "​", - "style": "IPY_MODEL_e27fa851943148ef8cb944b5d637695d", + "style": "IPY_MODEL_efc14db7cab848b8bc8de67706902202", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": "pytorch_model.bin: 100%" } }, - "956ae5f47baa40a889762a10b5b21b03": { + "84abfef1762a40e383897ea9056cfdfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2542,30 +2522,59 @@ "description_width": "" } }, - "a3504947bf89448394e112f7f1c88f62": { + "853ceebd1a3c4b059848193e3dc49b97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7c98da98c82641b58b4c0323e75d3075", - "placeholder": "​", - "style": "IPY_MODEL_6b4ff23fcede45fba29c6d73ac053732", + "layout": "IPY_MODEL_1c17efbeb5004a8da7fabc03d3d9585b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f7c71d10032c4b87875d3ef528a77f2d", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": 231508.0 + } + }, + "8614ab07e12c45f5a2696b92486eceda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_511cd8d51d574c77881256b004b9cdde", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_26b18199fe454bcfab7cbbd748debfbc", + "tabbable": null, + "tooltip": null, + "value": 391.0 } }, - "a99d98a0e63343a48433514e5710c878": { + "88db1ed782f3468fa38bac950d3092b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2580,16 +2589,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e56515b2f9eb48769cb7a4dc806886d7", - "IPY_MODEL_8c2187e059254dd6a34676832f29f9b6", - "IPY_MODEL_ac6010c871f74201acb1987747416e65" + "IPY_MODEL_d9306c6ebb1c4290a9bec26e8cb38294", + "IPY_MODEL_8614ab07e12c45f5a2696b92486eceda", + "IPY_MODEL_89530782f36a4825b5ea5fd6995f180e" ], - "layout": "IPY_MODEL_bf57a612a3c943498f68e0d619ed1fad", + "layout": "IPY_MODEL_cc88f3745d7b40f0be10b65f1a61c53b", "tabbable": null, "tooltip": null } }, - "ac6010c871f74201acb1987747416e65": { + "89530782f36a4825b5ea5fd6995f180e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2604,67 +2613,98 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f6752c44d7d0466bb39f836d9750f809", + "layout": "IPY_MODEL_f69151cbba4448eab02794703220c674", "placeholder": "​", - "style": "IPY_MODEL_8480b84ae6fa4b9da23ce82ff2d45e47", + "style": "IPY_MODEL_94748dd75dfb42d3bb71113a0985ffa6", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 5.81MB/s]" + "value": " 391/391 [00:00<00:00, 65.5kB/s]" } }, - "ac89ef4a851c4800a2cd053c39d628f5": { + "8d73703dab8845c4bb83aa8f21fd2ac0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8f5cb20b54134883910f7866203179cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b41ee3c50114166bce552756c9927e1", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_528344507c3e4b69bb7f7fb09bf43404", + "layout": "IPY_MODEL_eb88da38cb2a41768332b1e1818fbfd7", + "placeholder": "​", + "style": "IPY_MODEL_13bf594da49b4afba0315f15c19cb9b3", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": " 466k/466k [00:00<00:00, 31.9MB/s]" } }, - "acb9554b396b4fdaaaf35aa5f83c5e11": { + "944db354360447dc908680f8480dcdc0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ca4466b8266240c7ba985c6949ca8b1b", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_956ae5f47baa40a889762a10b5b21b03", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4902e2a667314840ad29c3989fbc3d71", + "IPY_MODEL_5879886cc62b4e94a1d1396dd1a96b4f", + "IPY_MODEL_8f5cb20b54134883910f7866203179cc" + ], + "layout": "IPY_MODEL_07cffd6ee3cb4ee180c45f9e89a87081", "tabbable": null, - "tooltip": null, - "value": 2211.0 + "tooltip": null + } + }, + "94748dd75dfb42d3bb71113a0985ffa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b06d0cd9e16b44849f64ce043c7e5ef5": { + "972dbc96b65e45728767c91d7c18cb35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2717,25 +2757,30 @@ "width": null } }, - "b24a10939b6449148ae6a98ec70f393e": { + "982ef9e8f8b54273a6d8360202593e4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fe605d7683594f159c812d6850fdeaf3", + "placeholder": "​", + "style": "IPY_MODEL_58a72521dc064dc6b408d067598bf149", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 423kB/s]" } }, - "b4dab92075a1417f849f07d12419cf42": { + "9a788fe502f5407ba8e155ea5e5c2137": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2788,7 +2833,25 @@ "width": null } }, - "b654d592379849a19a7e326ea71d2057": { + "a682da03fb684688a086b672241e96f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a8269b5530b545c3851312f53bbb9eea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2841,7 +2904,7 @@ "width": null } }, - "b9e6cc5abc31437aab8692b7e4283e92": { + "a8bea20f28ff40b38fdaa46b490e0c22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2859,7 +2922,33 @@ "text_color": null } }, - "bc85a7272ac64c848e73561ca8fa0f8d": { + "aaabad1bacb84378bc109506930c4938": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab4f6f76d3414e73abf4d8ec03d3516c", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2dffee1fe1774d419335ccdc19dc5d4a", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "ab4f6f76d3414e73abf4d8ec03d3516c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2912,7 +3001,23 @@ "width": null } }, - "bf57a612a3c943498f68e0d619ed1fad": { + "b77b5193f60341b9b68a8057c0d957b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c97b51894b434f84aed8287f1282e791": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2965,7 +3070,7 @@ "width": null } }, - "c0cfef3a63464a848707273469d2397a": { + "cc88f3745d7b40f0be10b65f1a61c53b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3018,7 +3123,7 @@ "width": null } }, - "c10d03eb0c3d4de696f069fde2d46970": { + "d03c3dd124ec48bdadbec94e624d97ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3036,23 +3141,7 @@ "text_color": null } }, - "c63fe7e641f44d7f90e707525df89fad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ca4466b8266240c7ba985c6949ca8b1b": { + "d11d777946f046dbb16da297cdd4ee7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3105,7 +3194,7 @@ "width": null } }, - "d132bbefa4ae4456aa672649e532c061": { + "d17fd6a19048484d9d197a89d97ba550": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3120,34 +3209,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5e0a3c1909a14ea08a3a6e869796d4d5", - "IPY_MODEL_507686da4a544d3f9b8010ac3d869dd2", - "IPY_MODEL_fa685d412d3a430fb7a077c3a4673068" + "IPY_MODEL_d5b00a2e85b84f9a95e07f055a14f61c", + "IPY_MODEL_7091ee4e077b4c53b50d1acf076e85c4", + "IPY_MODEL_eadcdb3fd3b14c399ff30a279a5333f4" ], - "layout": "IPY_MODEL_eef5b255fec1499283e47d245a6c6d13", + "layout": "IPY_MODEL_2d05eeda60f3453d8f85530225404b34", "tabbable": null, "tooltip": null } }, - "d3ea5076eb124012a95325920ad8ac77": { + "d1c8778b071f488d9b67876bc5569568": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_837385c4dbaa4cd0a99ec70f0f7fc1f4", + "IPY_MODEL_55554045055240c583d2bc190faec835", + "IPY_MODEL_0ac78e724f5a410091258100cbc42249" + ], + "layout": "IPY_MODEL_67c70103916041eabd95c923cd979753", + "tabbable": null, + "tooltip": null } }, - "d50952b772cb495ebd41f3be5f9790a1": { + "d2cc47c0ea394ec5b04de2429472de83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3162,68 +3257,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d6a05bb2370945a5abd0e0f436651fff", + "layout": "IPY_MODEL_c97b51894b434f84aed8287f1282e791", "placeholder": "​", - "style": "IPY_MODEL_0ccee7c58aab4792bd7d5a7e98550a05", + "style": "IPY_MODEL_a682da03fb684688a086b672241e96f0", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "d6a05bb2370945a5abd0e0f436651fff": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 665/665 [00:00<00:00, 135kB/s]" } }, - "dd3d27ffacad4ef0800f037d03247265": { + "d5b00a2e85b84f9a95e07f055a14f61c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3238,49 +3280,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b654d592379849a19a7e326ea71d2057", + "layout": "IPY_MODEL_7cd284403909488b9ca34ff7b8026738", "placeholder": "​", - "style": "IPY_MODEL_c10d03eb0c3d4de696f069fde2d46970", + "style": "IPY_MODEL_d03c3dd124ec48bdadbec94e624d97ec", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "e27fa851943148ef8cb944b5d637695d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e4c951b749aa4495a55d6eae29772e4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "tokenizer_config.json: 100%" } }, - "e56515b2f9eb48769cb7a4dc806886d7": { + "d9306c6ebb1c4290a9bec26e8cb38294": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3295,15 +3303,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bc85a7272ac64c848e73561ca8fa0f8d", + "layout": "IPY_MODEL_57554a7bd18846b1a3d2611e7fe0ac3c", "placeholder": "​", - "style": "IPY_MODEL_d3ea5076eb124012a95325920ad8ac77", + "style": "IPY_MODEL_8d73703dab8845c4bb83aa8f21fd2ac0", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": ".gitattributes: 100%" } }, - "eb79e857b8864183adb657377ac23506": { + "dccaa0d8cd394fd8afea397dc79e672c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3356,25 +3364,30 @@ "width": null } }, - "eb878c8cb70245d1a8b94dcf434aeed1": { + "eadcdb3fd3b14c399ff30a279a5333f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_057aa8cb2fca4d0a965488bc4b12c120", + "placeholder": "​", + "style": "IPY_MODEL_314a2fc932ee4e25a10a88ca2e4bd00f", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.97kB/s]" } }, - "eef5b255fec1499283e47d245a6c6d13": { + "eb88da38cb2a41768332b1e1818fbfd7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3427,7 +3440,25 @@ "width": null } }, - "f4029eb102f043fd954b9ddc73bae8ca": { + "efc14db7cab848b8bc8de67706902202": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f141d248724e4b85bb038a3d25f1dda4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3480,31 +3511,7 @@ "width": null } }, - "f4fa882d9e14420e8796ac9bc19e2306": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a3504947bf89448394e112f7f1c88f62", - "IPY_MODEL_acb9554b396b4fdaaaf35aa5f83c5e11", - "IPY_MODEL_526fd234b0de4d038d2897a7fda43c9f" - ], - "layout": "IPY_MODEL_fc4cd9a185bc4f2b9a59b5b45379e93e", - "tabbable": null, - "tooltip": null - } - }, - "f6752c44d7d0466bb39f836d9750f809": { + "f69151cbba4448eab02794703220c674": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3557,30 +3564,23 @@ "width": null } }, - "fa685d412d3a430fb7a077c3a4673068": { + "f7c71d10032c4b87875d3ef528a77f2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b4dab92075a1417f849f07d12419cf42", - "placeholder": "​", - "style": "IPY_MODEL_b24a10939b6449148ae6a98ec70f393e", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 31.7MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fc4cd9a185bc4f2b9a59b5b45379e93e": { + "fe605d7683594f159c812d6850fdeaf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index 8600c29fd..c6e0c5aba 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1333,7 +1333,7 @@

5. Use cleanlab to find label issues -{"state": {"4a333b1bb70f4bbc91863149fe9a0b42": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "550f57b1b6b54818afd734b3b56b4a16": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7e36bbb511df4e9ca9ed8b2cd26ed59b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4a333b1bb70f4bbc91863149fe9a0b42", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_550f57b1b6b54818afd734b3b56b4a16", "tabbable": null, "tooltip": null, "value": 2041.0}}, "4ba364fdf9f249b08eaabb149399f865": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "05ca05e5ae6a44cd9c375449c9ef38b4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "20721703dbd448768c3ed47787e40c77": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4ba364fdf9f249b08eaabb149399f865", "placeholder": "\u200b", "style": "IPY_MODEL_05ca05e5ae6a44cd9c375449c9ef38b4", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "5cff4443dbbe4881874699cb34ea927f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c5405ed40e404f4f91c75a047866a247": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2acb58ceadd54f02ba29d8a356d74bd5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5cff4443dbbe4881874699cb34ea927f", "placeholder": "\u200b", "style": "IPY_MODEL_c5405ed40e404f4f91c75a047866a247", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007494kB/s]"}}, "01d0593b0763498fad9dd0f3bdb6f539": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0739379a906e4934bdd384c498707c44": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_20721703dbd448768c3ed47787e40c77", "IPY_MODEL_7e36bbb511df4e9ca9ed8b2cd26ed59b", "IPY_MODEL_2acb58ceadd54f02ba29d8a356d74bd5"], "layout": "IPY_MODEL_01d0593b0763498fad9dd0f3bdb6f539", "tabbable": null, "tooltip": null}}, "9fefd85cb0674e82bdcbee1a677e483a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "56726cd770a4458a90ebd961e5a4d5a4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0e923a18e47f4ebb8624bc4139e8f420": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9fefd85cb0674e82bdcbee1a677e483a", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_56726cd770a4458a90ebd961e5a4d5a4", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "9a2a2dad449d497b810daeda67511e89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5cfdc8f6140c444698e6723c2e839d4e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "dfd824a4e35041009c3283a0e2c3d49c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9a2a2dad449d497b810daeda67511e89", "placeholder": "\u200b", "style": "IPY_MODEL_5cfdc8f6140c444698e6723c2e839d4e", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "d4b8c02e63d64bcab486f94bd8916170": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9ab9cceda5a94b60b0082f6d7be80afc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "044e638d0f8741b0b696dc006c7b92a9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d4b8c02e63d64bcab486f94bd8916170", "placeholder": "\u200b", "style": "IPY_MODEL_9ab9cceda5a94b60b0082f6d7be80afc", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200791.5MB/s]"}}, "6c21cf5d09184e87a440a1b3a1bd793b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7767118e4ee04421bb987d8d34f99427": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_dfd824a4e35041009c3283a0e2c3d49c", "IPY_MODEL_0e923a18e47f4ebb8624bc4139e8f420", "IPY_MODEL_044e638d0f8741b0b696dc006c7b92a9"], "layout": "IPY_MODEL_6c21cf5d09184e87a440a1b3a1bd793b", "tabbable": null, "tooltip": null}}, "2dbb12ab2da5483eaba36142437fb0b7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec29300d723440fab045877656c12f24": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2c00917d978d4abdab4930c6db70b0c5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2dbb12ab2da5483eaba36142437fb0b7", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ec29300d723440fab045877656c12f24", "tabbable": null, "tooltip": null, "value": 3201.0}}, "36a46be2890e4d8687ef2018f67b9e67": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84821290dfc24be6a89f891387851a95": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3ae27a79cfe84bd6901b0c511a859660": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_36a46be2890e4d8687ef2018f67b9e67", "placeholder": "\u200b", "style": "IPY_MODEL_84821290dfc24be6a89f891387851a95", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "1ed76eaa07ee4546bbde2996920e1c36": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52bb9e053bb348338d6065ae6353e406": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b0b1c94f87fc4f7486fbddf838a54839": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1ed76eaa07ee4546bbde2996920e1c36", "placeholder": "\u200b", "style": "IPY_MODEL_52bb9e053bb348338d6065ae6353e406", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007795kB/s]"}}, "5a3f78c3137e4e08802c36d18428ef04": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c5167aa90c142ceb6c095fd4366bb0b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3ae27a79cfe84bd6901b0c511a859660", "IPY_MODEL_2c00917d978d4abdab4930c6db70b0c5", "IPY_MODEL_b0b1c94f87fc4f7486fbddf838a54839"], "layout": "IPY_MODEL_5a3f78c3137e4e08802c36d18428ef04", "tabbable": null, "tooltip": null}}, "2551da23b1544157a60eb70609f8a866": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2963bed0898143159cdb2b45f3131440": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "64a66290ec804265b967070f99937e67": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2551da23b1544157a60eb70609f8a866", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2963bed0898143159cdb2b45f3131440", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "88b96cdb694c4754aeb3d675442fae18": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "921abee6837146e1bf2126de072b18a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ba9d29719c3a4a16913ef49226c3c136": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_88b96cdb694c4754aeb3d675442fae18", "placeholder": "\u200b", "style": "IPY_MODEL_921abee6837146e1bf2126de072b18a2", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "3f76fc4ca3a047d2a6f54ed6bb146a6d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "faaf3895420e4075bd0c2901cc5d505e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ba1b32d8c6484f7f9b0b159ee3f3f3b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3f76fc4ca3a047d2a6f54ed6bb146a6d", "placeholder": "\u200b", "style": "IPY_MODEL_faaf3895420e4075bd0c2901cc5d505e", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200769.3MB/s]"}}, "10b99dafd1b64eb083f8c82bbf59e0f5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "56036b161aba4dcba6c5426fb4a318fa": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ba9d29719c3a4a16913ef49226c3c136", "IPY_MODEL_64a66290ec804265b967070f99937e67", "IPY_MODEL_ba1b32d8c6484f7f9b0b159ee3f3f3b5"], "layout": "IPY_MODEL_10b99dafd1b64eb083f8c82bbf59e0f5", "tabbable": null, "tooltip": null}}, "8a1c0bd682ed41139bdb1defce330089": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0923bfb2b06d4132b4c019f44ba32323": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6a2531b16ade48bfa3f15f7abbbce21c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8a1c0bd682ed41139bdb1defce330089", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0923bfb2b06d4132b4c019f44ba32323", "tabbable": null, "tooltip": null, "value": 128619.0}}, "4023e6d0f454427ea8446da9ef72db93": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a19d0da3aa044a8b96727f9d135f21f7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "af0dd324e6804d68af6cfe86a0f1e004": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4023e6d0f454427ea8446da9ef72db93", "placeholder": "\u200b", "style": "IPY_MODEL_a19d0da3aa044a8b96727f9d135f21f7", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "fec55286ccdb407e9cf0bb3ae00227c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1545bb03116d4953a229f8ecdfbb2481": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "538b4eb917a440778dd6ca1aa0b7ca17": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fec55286ccdb407e9cf0bb3ae00227c7", "placeholder": "\u200b", "style": "IPY_MODEL_1545bb03116d4953a229f8ecdfbb2481", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20072.91MB/s]"}}, "a71c207e358d412ba1215f18baa7d9b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1108fe5663e24107b8d50fc7ea80b070": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_af0dd324e6804d68af6cfe86a0f1e004", "IPY_MODEL_6a2531b16ade48bfa3f15f7abbbce21c", "IPY_MODEL_538b4eb917a440778dd6ca1aa0b7ca17"], "layout": "IPY_MODEL_a71c207e358d412ba1215f18baa7d9b8", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"53ba703ebe3f488bafb36ef1b5e1e15c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d19d6b52b414436485e07ce221daa4dd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "db96495857dd41dca4b5a125ac1bddf1": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53ba703ebe3f488bafb36ef1b5e1e15c", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d19d6b52b414436485e07ce221daa4dd", "tabbable": null, "tooltip": null, "value": 2041.0}}, "1d7ba7f518794212a4ad3851d4767fb0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "13d42abd327047e58607747246792659": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1f70dfa029cd4b0e9964d17d37bf54b0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1d7ba7f518794212a4ad3851d4767fb0", "placeholder": "\u200b", "style": "IPY_MODEL_13d42abd327047e58607747246792659", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "e545e8fd06544a3fabc2df6ebd4c231e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b6cb51a2809c464eb1c58ab8e31c96a1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6e6baef0f88d4ea5ae627f599696f217": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e545e8fd06544a3fabc2df6ebd4c231e", "placeholder": "\u200b", "style": "IPY_MODEL_b6cb51a2809c464eb1c58ab8e31c96a1", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007477kB/s]"}}, "85ba5c722da4401683083354487e0f3c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e302a4ab69494dea93a7e2a5d582d2e2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1f70dfa029cd4b0e9964d17d37bf54b0", "IPY_MODEL_db96495857dd41dca4b5a125ac1bddf1", "IPY_MODEL_6e6baef0f88d4ea5ae627f599696f217"], "layout": "IPY_MODEL_85ba5c722da4401683083354487e0f3c", "tabbable": null, "tooltip": null}}, "a3dafc711c4d41d2b4b3d300476cb52b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "eae4c63447cd47b5ab13fc807579b9ba": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f6a60d2b426e420d8d25abbca9fdfdaf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3dafc711c4d41d2b4b3d300476cb52b", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_eae4c63447cd47b5ab13fc807579b9ba", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "039e147e0ab94a44ab511f0d44c48272": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ec08a02c4bd6416185871e93828421ab": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cf1afa91f1eb40b2aba4dcef746f1a69": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_039e147e0ab94a44ab511f0d44c48272", "placeholder": "\u200b", "style": "IPY_MODEL_ec08a02c4bd6416185871e93828421ab", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "c2c972c18e9c4a679bd660253ada535a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "92f6ba2ae9f947a19198dcf64b912ae0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "17ab4bf2d800459b85facc79809c794c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c2c972c18e9c4a679bd660253ada535a", "placeholder": "\u200b", "style": "IPY_MODEL_92f6ba2ae9f947a19198dcf64b912ae0", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007257MB/s]"}}, "6692f3e1fecd4a5190e008265e83db9c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32f578baf4f54c46b4525cb49a0111a0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cf1afa91f1eb40b2aba4dcef746f1a69", "IPY_MODEL_f6a60d2b426e420d8d25abbca9fdfdaf", "IPY_MODEL_17ab4bf2d800459b85facc79809c794c"], "layout": "IPY_MODEL_6692f3e1fecd4a5190e008265e83db9c", "tabbable": null, "tooltip": null}}, "02d45ad38b8741448526432351d5eeec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99b76a939b6946918c69bdda4a084bb0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9122e918465a4b0d9f528507dbeecfe9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_02d45ad38b8741448526432351d5eeec", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_99b76a939b6946918c69bdda4a084bb0", "tabbable": null, "tooltip": null, "value": 3201.0}}, "5d1146ca200e41e0b87e8d02b7c0e568": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "80e543f701e445f38d8d20e7547bce68": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f4e5840479864b31b4eca15395813b4e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5d1146ca200e41e0b87e8d02b7c0e568", "placeholder": "\u200b", "style": "IPY_MODEL_80e543f701e445f38d8d20e7547bce68", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "2a608f0281de446bb6b9d3e1f0fcc8ef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a3aec95fbaca47888628b4cfc1607bd8": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f115a412241d4444a70d4927ce8721e1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2a608f0281de446bb6b9d3e1f0fcc8ef", "placeholder": "\u200b", "style": "IPY_MODEL_a3aec95fbaca47888628b4cfc1607bd8", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007853kB/s]"}}, "c05d6a595d7144ee94fa51f5f5133acc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "837d65d479144be3b4a954b3b3c7abf1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f4e5840479864b31b4eca15395813b4e", "IPY_MODEL_9122e918465a4b0d9f528507dbeecfe9", "IPY_MODEL_f115a412241d4444a70d4927ce8721e1"], "layout": "IPY_MODEL_c05d6a595d7144ee94fa51f5f5133acc", "tabbable": null, "tooltip": null}}, "a0e190ac51e64c75896fe92a6ab8a413": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc570a3eada6400ebe54bbc6311f3fdd": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d4730f8c409d4618a70b0cbe8dc1772b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a0e190ac51e64c75896fe92a6ab8a413", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fc570a3eada6400ebe54bbc6311f3fdd", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "32b0b882c64f444ca6b10422ad5a4dd9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a569eb9a5d5b4715946173b57080716f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "95ae6715ec3c4ef9b3fc7b20cc78386b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_32b0b882c64f444ca6b10422ad5a4dd9", "placeholder": "\u200b", "style": "IPY_MODEL_a569eb9a5d5b4715946173b57080716f", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "926dd9b5c8c941ecabc5447d7cb20c1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "06d1c0dd633b4de893979238f4b41c33": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "66e9a5e77f4547bb91e01a179df2918e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_926dd9b5c8c941ecabc5447d7cb20c1e", "placeholder": "\u200b", "style": "IPY_MODEL_06d1c0dd633b4de893979238f4b41c33", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007124MB/s]"}}, "62bfaf4591b648e09fdcaa3fedd50886": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4846b29fb444480c8d270546730853ad": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_95ae6715ec3c4ef9b3fc7b20cc78386b", "IPY_MODEL_d4730f8c409d4618a70b0cbe8dc1772b", "IPY_MODEL_66e9a5e77f4547bb91e01a179df2918e"], "layout": "IPY_MODEL_62bfaf4591b648e09fdcaa3fedd50886", "tabbable": null, "tooltip": null}}, "53c425a26ebf4662857c4853c4b2cc66": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7df1120d6e804074ac9fc4c19ab2fe15": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f1d5848284b945bd8362d354f0edb9a5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53c425a26ebf4662857c4853c4b2cc66", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7df1120d6e804074ac9fc4c19ab2fe15", "tabbable": null, "tooltip": null, "value": 128619.0}}, "4efbade6d6f449ac9b6167c892d8eaa9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b30ba8486c64a52a4712aeebe7baaaa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7624a5525cff4e6dbad04046d0d5ce3d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4efbade6d6f449ac9b6167c892d8eaa9", "placeholder": "\u200b", "style": "IPY_MODEL_6b30ba8486c64a52a4712aeebe7baaaa", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "61ee678dfe4f46cf99358cbd8893e136": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6521ed9a1a34d1f8999049d2347b649": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4f6932ad623843a29fdfe07056c8c4ed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_61ee678dfe4f46cf99358cbd8893e136", "placeholder": "\u200b", "style": "IPY_MODEL_c6521ed9a1a34d1f8999049d2347b649", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200722.9MB/s]"}}, "685e89f25f5d454fbc172a4feb2bd274": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f84662a791cf48ff8f1369f016420dd5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7624a5525cff4e6dbad04046d0d5ce3d", "IPY_MODEL_f1d5848284b945bd8362d354f0edb9a5", "IPY_MODEL_4f6932ad623843a29fdfe07056c8c4ed"], "layout": "IPY_MODEL_685e89f25f5d454fbc172a4feb2bd274", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 69a83bf76..38316148d 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:37.424412Z", - "iopub.status.busy": "2024-05-23T02:38:37.424244Z", - "iopub.status.idle": "2024-05-23T02:38:41.923092Z", - "shell.execute_reply": "2024-05-23T02:38:41.922464Z" + "iopub.execute_input": "2024-05-23T15:11:57.077586Z", + "iopub.status.busy": "2024-05-23T15:11:57.077376Z", + "iopub.status.idle": "2024-05-23T15:12:01.691041Z", + "shell.execute_reply": "2024-05-23T15:12:01.690485Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:41.925785Z", - "iopub.status.busy": "2024-05-23T02:38:41.925420Z", - "iopub.status.idle": "2024-05-23T02:38:41.928528Z", - "shell.execute_reply": "2024-05-23T02:38:41.928098Z" + "iopub.execute_input": "2024-05-23T15:12:01.693619Z", + "iopub.status.busy": "2024-05-23T15:12:01.693116Z", + "iopub.status.idle": "2024-05-23T15:12:01.696158Z", + "shell.execute_reply": "2024-05-23T15:12:01.695726Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:41.930508Z", - "iopub.status.busy": "2024-05-23T02:38:41.930194Z", - "iopub.status.idle": "2024-05-23T02:38:41.934789Z", - "shell.execute_reply": "2024-05-23T02:38:41.934256Z" + "iopub.execute_input": "2024-05-23T15:12:01.697971Z", + "iopub.status.busy": "2024-05-23T15:12:01.697795Z", + "iopub.status.idle": "2024-05-23T15:12:01.702135Z", + "shell.execute_reply": "2024-05-23T15:12:01.701698Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T02:38:41.936743Z", - "iopub.status.busy": "2024-05-23T02:38:41.936438Z", - "iopub.status.idle": "2024-05-23T02:38:43.553038Z", - "shell.execute_reply": "2024-05-23T02:38:43.552297Z" + "iopub.execute_input": "2024-05-23T15:12:01.704241Z", + "iopub.status.busy": "2024-05-23T15:12:01.703842Z", + "iopub.status.idle": "2024-05-23T15:12:03.459813Z", + "shell.execute_reply": "2024-05-23T15:12:03.459194Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T02:38:43.555760Z", - "iopub.status.busy": "2024-05-23T02:38:43.555552Z", - "iopub.status.idle": "2024-05-23T02:38:43.566020Z", - "shell.execute_reply": "2024-05-23T02:38:43.565516Z" + "iopub.execute_input": "2024-05-23T15:12:03.462186Z", + "iopub.status.busy": "2024-05-23T15:12:03.461990Z", + "iopub.status.idle": "2024-05-23T15:12:03.472497Z", + "shell.execute_reply": "2024-05-23T15:12:03.472070Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:43.568206Z", - "iopub.status.busy": "2024-05-23T02:38:43.567830Z", - "iopub.status.idle": "2024-05-23T02:38:43.573683Z", - "shell.execute_reply": "2024-05-23T02:38:43.573101Z" + "iopub.execute_input": "2024-05-23T15:12:03.474652Z", + "iopub.status.busy": "2024-05-23T15:12:03.474293Z", + "iopub.status.idle": "2024-05-23T15:12:03.479712Z", + "shell.execute_reply": "2024-05-23T15:12:03.479270Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T02:38:43.575704Z", - "iopub.status.busy": "2024-05-23T02:38:43.575513Z", - "iopub.status.idle": "2024-05-23T02:38:44.030006Z", - "shell.execute_reply": "2024-05-23T02:38:44.029525Z" + "iopub.execute_input": "2024-05-23T15:12:03.481710Z", + "iopub.status.busy": "2024-05-23T15:12:03.481395Z", + "iopub.status.idle": "2024-05-23T15:12:03.907353Z", + "shell.execute_reply": "2024-05-23T15:12:03.906794Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:44.032362Z", - "iopub.status.busy": "2024-05-23T02:38:44.031912Z", - "iopub.status.idle": "2024-05-23T02:38:45.368925Z", - "shell.execute_reply": "2024-05-23T02:38:45.368308Z" + "iopub.execute_input": "2024-05-23T15:12:03.909621Z", + "iopub.status.busy": "2024-05-23T15:12:03.909270Z", + "iopub.status.idle": "2024-05-23T15:12:04.477713Z", + "shell.execute_reply": "2024-05-23T15:12:04.477093Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-05-23T02:38:45.371453Z", - "iopub.status.busy": "2024-05-23T02:38:45.371144Z", - "iopub.status.idle": "2024-05-23T02:38:45.389472Z", - "shell.execute_reply": "2024-05-23T02:38:45.388927Z" + "iopub.execute_input": "2024-05-23T15:12:04.480200Z", + "iopub.status.busy": "2024-05-23T15:12:04.480017Z", + "iopub.status.idle": "2024-05-23T15:12:04.498410Z", + "shell.execute_reply": "2024-05-23T15:12:04.497909Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:45.391399Z", - "iopub.status.busy": "2024-05-23T02:38:45.391223Z", - "iopub.status.idle": "2024-05-23T02:38:45.394282Z", - "shell.execute_reply": "2024-05-23T02:38:45.393850Z" + "iopub.execute_input": "2024-05-23T15:12:04.500488Z", + "iopub.status.busy": "2024-05-23T15:12:04.500072Z", + "iopub.status.idle": "2024-05-23T15:12:04.503271Z", + "shell.execute_reply": "2024-05-23T15:12:04.502744Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:45.396316Z", - "iopub.status.busy": "2024-05-23T02:38:45.395893Z", - "iopub.status.idle": "2024-05-23T02:38:59.524514Z", - "shell.execute_reply": "2024-05-23T02:38:59.523912Z" + "iopub.execute_input": "2024-05-23T15:12:04.505105Z", + "iopub.status.busy": "2024-05-23T15:12:04.504929Z", + "iopub.status.idle": "2024-05-23T15:12:18.669352Z", + "shell.execute_reply": "2024-05-23T15:12:18.668813Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T02:38:59.527444Z", - "iopub.status.busy": "2024-05-23T02:38:59.526967Z", - "iopub.status.idle": "2024-05-23T02:38:59.530800Z", - "shell.execute_reply": "2024-05-23T02:38:59.530246Z" + "iopub.execute_input": "2024-05-23T15:12:18.672012Z", + "iopub.status.busy": "2024-05-23T15:12:18.671651Z", + "iopub.status.idle": "2024-05-23T15:12:18.675428Z", + "shell.execute_reply": "2024-05-23T15:12:18.674984Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:59.533021Z", - "iopub.status.busy": "2024-05-23T02:38:59.532697Z", - "iopub.status.idle": "2024-05-23T02:39:00.244842Z", - "shell.execute_reply": "2024-05-23T02:39:00.244278Z" + "iopub.execute_input": "2024-05-23T15:12:18.677479Z", + "iopub.status.busy": "2024-05-23T15:12:18.677175Z", + "iopub.status.idle": "2024-05-23T15:12:19.390682Z", + "shell.execute_reply": "2024-05-23T15:12:19.390085Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.247677Z", - "iopub.status.busy": "2024-05-23T02:39:00.247312Z", - "iopub.status.idle": "2024-05-23T02:39:00.251949Z", - "shell.execute_reply": "2024-05-23T02:39:00.251483Z" + "iopub.execute_input": "2024-05-23T15:12:19.393443Z", + "iopub.status.busy": "2024-05-23T15:12:19.392934Z", + "iopub.status.idle": "2024-05-23T15:12:19.398027Z", + "shell.execute_reply": "2024-05-23T15:12:19.397517Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.255093Z", - "iopub.status.busy": "2024-05-23T02:39:00.254063Z", - "iopub.status.idle": "2024-05-23T02:39:00.351971Z", - "shell.execute_reply": "2024-05-23T02:39:00.351348Z" + "iopub.execute_input": "2024-05-23T15:12:19.400288Z", + "iopub.status.busy": "2024-05-23T15:12:19.399949Z", + "iopub.status.idle": "2024-05-23T15:12:19.494951Z", + "shell.execute_reply": "2024-05-23T15:12:19.494354Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.354442Z", - "iopub.status.busy": "2024-05-23T02:39:00.354075Z", - "iopub.status.idle": "2024-05-23T02:39:00.365945Z", - "shell.execute_reply": "2024-05-23T02:39:00.365469Z" + "iopub.execute_input": "2024-05-23T15:12:19.497459Z", + "iopub.status.busy": "2024-05-23T15:12:19.496990Z", + "iopub.status.idle": "2024-05-23T15:12:19.508906Z", + "shell.execute_reply": "2024-05-23T15:12:19.508370Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.368150Z", - "iopub.status.busy": "2024-05-23T02:39:00.367716Z", - "iopub.status.idle": "2024-05-23T02:39:00.375220Z", - "shell.execute_reply": "2024-05-23T02:39:00.374791Z" + "iopub.execute_input": "2024-05-23T15:12:19.510977Z", + "iopub.status.busy": "2024-05-23T15:12:19.510641Z", + "iopub.status.idle": "2024-05-23T15:12:19.518476Z", + "shell.execute_reply": "2024-05-23T15:12:19.517926Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.377259Z", - "iopub.status.busy": "2024-05-23T02:39:00.376845Z", - "iopub.status.idle": "2024-05-23T02:39:00.380809Z", - "shell.execute_reply": "2024-05-23T02:39:00.380290Z" + "iopub.execute_input": "2024-05-23T15:12:19.520438Z", + "iopub.status.busy": "2024-05-23T15:12:19.520119Z", + "iopub.status.idle": "2024-05-23T15:12:19.524289Z", + "shell.execute_reply": "2024-05-23T15:12:19.523824Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.382918Z", - "iopub.status.busy": "2024-05-23T02:39:00.382499Z", - "iopub.status.idle": "2024-05-23T02:39:00.388185Z", - "shell.execute_reply": "2024-05-23T02:39:00.387739Z" + "iopub.execute_input": "2024-05-23T15:12:19.526072Z", + "iopub.status.busy": "2024-05-23T15:12:19.525895Z", + "iopub.status.idle": "2024-05-23T15:12:19.531559Z", + "shell.execute_reply": "2024-05-23T15:12:19.531118Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.390146Z", - "iopub.status.busy": "2024-05-23T02:39:00.389847Z", - "iopub.status.idle": "2024-05-23T02:39:00.498202Z", - "shell.execute_reply": "2024-05-23T02:39:00.497726Z" + "iopub.execute_input": "2024-05-23T15:12:19.533406Z", + "iopub.status.busy": "2024-05-23T15:12:19.533232Z", + "iopub.status.idle": "2024-05-23T15:12:19.643411Z", + "shell.execute_reply": "2024-05-23T15:12:19.642854Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.500222Z", - "iopub.status.busy": "2024-05-23T02:39:00.500019Z", - "iopub.status.idle": "2024-05-23T02:39:00.601963Z", - "shell.execute_reply": "2024-05-23T02:39:00.601405Z" + "iopub.execute_input": "2024-05-23T15:12:19.645602Z", + "iopub.status.busy": "2024-05-23T15:12:19.645255Z", + "iopub.status.idle": "2024-05-23T15:12:19.749188Z", + "shell.execute_reply": "2024-05-23T15:12:19.748636Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.604143Z", - "iopub.status.busy": "2024-05-23T02:39:00.603823Z", - "iopub.status.idle": "2024-05-23T02:39:00.705218Z", - "shell.execute_reply": "2024-05-23T02:39:00.704740Z" + "iopub.execute_input": "2024-05-23T15:12:19.751353Z", + "iopub.status.busy": "2024-05-23T15:12:19.751022Z", + "iopub.status.idle": "2024-05-23T15:12:19.854178Z", + "shell.execute_reply": "2024-05-23T15:12:19.853570Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.707314Z", - "iopub.status.busy": "2024-05-23T02:39:00.706921Z", - "iopub.status.idle": "2024-05-23T02:39:00.806593Z", - "shell.execute_reply": "2024-05-23T02:39:00.806072Z" + "iopub.execute_input": "2024-05-23T15:12:19.856439Z", + "iopub.status.busy": "2024-05-23T15:12:19.856101Z", + "iopub.status.idle": "2024-05-23T15:12:20.171155Z", + "shell.execute_reply": "2024-05-23T15:12:20.170593Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.808560Z", - "iopub.status.busy": "2024-05-23T02:39:00.808356Z", - "iopub.status.idle": "2024-05-23T02:39:00.811422Z", - "shell.execute_reply": "2024-05-23T02:39:00.810939Z" + "iopub.execute_input": "2024-05-23T15:12:20.173386Z", + "iopub.status.busy": "2024-05-23T15:12:20.173067Z", + "iopub.status.idle": "2024-05-23T15:12:20.176285Z", + "shell.execute_reply": "2024-05-23T15:12:20.175735Z" }, "nbsphinx": "hidden" }, @@ -1397,7 +1397,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01d0593b0763498fad9dd0f3bdb6f539": { + "02d45ad38b8741448526432351d5eeec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1450,114 +1450,7 @@ "width": null } }, - "044e638d0f8741b0b696dc006c7b92a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4b8c02e63d64bcab486f94bd8916170", - "placeholder": "​", - "style": "IPY_MODEL_9ab9cceda5a94b60b0082f6d7be80afc", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 91.5MB/s]" - } - }, - "05ca05e5ae6a44cd9c375449c9ef38b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0739379a906e4934bdd384c498707c44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_20721703dbd448768c3ed47787e40c77", - "IPY_MODEL_7e36bbb511df4e9ca9ed8b2cd26ed59b", - "IPY_MODEL_2acb58ceadd54f02ba29d8a356d74bd5" - ], - "layout": "IPY_MODEL_01d0593b0763498fad9dd0f3bdb6f539", - "tabbable": null, - "tooltip": null - } - }, - "0923bfb2b06d4132b4c019f44ba32323": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0e923a18e47f4ebb8624bc4139e8f420": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9fefd85cb0674e82bdcbee1a677e483a", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_56726cd770a4458a90ebd961e5a4d5a4", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "10b99dafd1b64eb083f8c82bbf59e0f5": { + "039e147e0ab94a44ab511f0d44c48272": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1610,31 +1503,25 @@ "width": null } }, - "1108fe5663e24107b8d50fc7ea80b070": { + "06d1c0dd633b4de893979238f4b41c33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_af0dd324e6804d68af6cfe86a0f1e004", - "IPY_MODEL_6a2531b16ade48bfa3f15f7abbbce21c", - "IPY_MODEL_538b4eb917a440778dd6ca1aa0b7ca17" - ], - "layout": "IPY_MODEL_a71c207e358d412ba1215f18baa7d9b8", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1545bb03116d4953a229f8ecdfbb2481": { + "13d42abd327047e58607747246792659": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1652,31 +1539,30 @@ "text_color": null } }, - "1c5167aa90c142ceb6c095fd4366bb0b": { + "17ab4bf2d800459b85facc79809c794c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3ae27a79cfe84bd6901b0c511a859660", - "IPY_MODEL_2c00917d978d4abdab4930c6db70b0c5", - "IPY_MODEL_b0b1c94f87fc4f7486fbddf838a54839" - ], - "layout": "IPY_MODEL_5a3f78c3137e4e08802c36d18428ef04", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c2c972c18e9c4a679bd660253ada535a", + "placeholder": "​", + "style": "IPY_MODEL_92f6ba2ae9f947a19198dcf64b912ae0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 257MB/s]" } }, - "1ed76eaa07ee4546bbde2996920e1c36": { + "1d7ba7f518794212a4ad3851d4767fb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1729,7 +1615,7 @@ "width": null } }, - "20721703dbd448768c3ed47787e40c77": { + "1f70dfa029cd4b0e9964d17d37bf54b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1744,15 +1630,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4ba364fdf9f249b08eaabb149399f865", + "layout": "IPY_MODEL_1d7ba7f518794212a4ad3851d4767fb0", "placeholder": "​", - "style": "IPY_MODEL_05ca05e5ae6a44cd9c375449c9ef38b4", + "style": "IPY_MODEL_13d42abd327047e58607747246792659", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%" } }, - "2551da23b1544157a60eb70609f8a866": { + "2a608f0281de446bb6b9d3e1f0fcc8ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1805,72 +1691,108 @@ "width": null } }, - "2963bed0898143159cdb2b45f3131440": { - "model_module": "@jupyter-widgets/controls", + "32b0b882c64f444ca6b10422ad5a4dd9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2acb58ceadd54f02ba29d8a356d74bd5": { + "32f578baf4f54c46b4525cb49a0111a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5cff4443dbbe4881874699cb34ea927f", - "placeholder": "​", - "style": "IPY_MODEL_c5405ed40e404f4f91c75a047866a247", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf1afa91f1eb40b2aba4dcef746f1a69", + "IPY_MODEL_f6a60d2b426e420d8d25abbca9fdfdaf", + "IPY_MODEL_17ab4bf2d800459b85facc79809c794c" + ], + "layout": "IPY_MODEL_6692f3e1fecd4a5190e008265e83db9c", "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 494kB/s]" + "tooltip": null } }, - "2c00917d978d4abdab4930c6db70b0c5": { + "4846b29fb444480c8d270546730853ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2dbb12ab2da5483eaba36142437fb0b7", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ec29300d723440fab045877656c12f24", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_95ae6715ec3c4ef9b3fc7b20cc78386b", + "IPY_MODEL_d4730f8c409d4618a70b0cbe8dc1772b", + "IPY_MODEL_66e9a5e77f4547bb91e01a179df2918e" + ], + "layout": "IPY_MODEL_62bfaf4591b648e09fdcaa3fedd50886", "tabbable": null, - "tooltip": null, - "value": 3201.0 + "tooltip": null } }, - "2dbb12ab2da5483eaba36142437fb0b7": { + "4efbade6d6f449ac9b6167c892d8eaa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1923,7 +1845,30 @@ "width": null } }, - "36a46be2890e4d8687ef2018f67b9e67": { + "4f6932ad623843a29fdfe07056c8c4ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61ee678dfe4f46cf99358cbd8893e136", + "placeholder": "​", + "style": "IPY_MODEL_c6521ed9a1a34d1f8999049d2347b649", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 22.9MB/s]" + } + }, + "53ba703ebe3f488bafb36ef1b5e1e15c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1976,30 +1921,7 @@ "width": null } }, - "3ae27a79cfe84bd6901b0c511a859660": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_36a46be2890e4d8687ef2018f67b9e67", - "placeholder": "​", - "style": "IPY_MODEL_84821290dfc24be6a89f891387851a95", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "3f76fc4ca3a047d2a6f54ed6bb146a6d": { + "53c425a26ebf4662857c4853c4b2cc66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2052,7 +1974,7 @@ "width": null } }, - "4023e6d0f454427ea8446da9ef72db93": { + "5d1146ca200e41e0b87e8d02b7c0e568": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2105,7 +2027,7 @@ "width": null } }, - "4a333b1bb70f4bbc91863149fe9a0b42": { + "61ee678dfe4f46cf99358cbd8893e136": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2158,7 +2080,7 @@ "width": null } }, - "4ba364fdf9f249b08eaabb149399f865": { + "62bfaf4591b648e09fdcaa3fedd50886": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2211,25 +2133,60 @@ "width": null } }, - "52bb9e053bb348338d6065ae6353e406": { - "model_module": "@jupyter-widgets/controls", + "6692f3e1fecd4a5190e008265e83db9c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "538b4eb917a440778dd6ca1aa0b7ca17": { + "66e9a5e77f4547bb91e01a179df2918e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2244,71 +2201,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fec55286ccdb407e9cf0bb3ae00227c7", + "layout": "IPY_MODEL_926dd9b5c8c941ecabc5447d7cb20c1e", "placeholder": "​", - "style": "IPY_MODEL_1545bb03116d4953a229f8ecdfbb2481", + "style": "IPY_MODEL_06d1c0dd633b4de893979238f4b41c33", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.91MB/s]" - } - }, - "550f57b1b6b54818afd734b3b56b4a16": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "56036b161aba4dcba6c5426fb4a318fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ba9d29719c3a4a16913ef49226c3c136", - "IPY_MODEL_64a66290ec804265b967070f99937e67", - "IPY_MODEL_ba1b32d8c6484f7f9b0b159ee3f3f3b5" - ], - "layout": "IPY_MODEL_10b99dafd1b64eb083f8c82bbf59e0f5", - "tabbable": null, - "tooltip": null - } - }, - "56726cd770a4458a90ebd961e5a4d5a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 15.9M/15.9M [00:00<00:00, 124MB/s]" } }, - "5a3f78c3137e4e08802c36d18428ef04": { + "685e89f25f5d454fbc172a4feb2bd274": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2361,7 +2262,87 @@ "width": null } }, - "5cfdc8f6140c444698e6723c2e839d4e": { + "6b30ba8486c64a52a4712aeebe7baaaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6e6baef0f88d4ea5ae627f599696f217": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e545e8fd06544a3fabc2df6ebd4c231e", + "placeholder": "​", + "style": "IPY_MODEL_b6cb51a2809c464eb1c58ab8e31c96a1", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 477kB/s]" + } + }, + "7624a5525cff4e6dbad04046d0d5ce3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4efbade6d6f449ac9b6167c892d8eaa9", + "placeholder": "​", + "style": "IPY_MODEL_6b30ba8486c64a52a4712aeebe7baaaa", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "7df1120d6e804074ac9fc4c19ab2fe15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "80e543f701e445f38d8d20e7547bce68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2379,7 +2360,31 @@ "text_color": null } }, - "5cff4443dbbe4881874699cb34ea927f": { + "837d65d479144be3b4a954b3b3c7abf1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f4e5840479864b31b4eca15395813b4e", + "IPY_MODEL_9122e918465a4b0d9f528507dbeecfe9", + "IPY_MODEL_f115a412241d4444a70d4927ce8721e1" + ], + "layout": "IPY_MODEL_c05d6a595d7144ee94fa51f5f5133acc", + "tabbable": null, + "tooltip": null + } + }, + "85ba5c722da4401683083354487e0f3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2432,33 +2437,7 @@ "width": null } }, - "64a66290ec804265b967070f99937e67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2551da23b1544157a60eb70609f8a866", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2963bed0898143159cdb2b45f3131440", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "6a2531b16ade48bfa3f15f7abbbce21c": { + "9122e918465a4b0d9f528507dbeecfe9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2474,17 +2453,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8a1c0bd682ed41139bdb1defce330089", - "max": 128619.0, + "layout": "IPY_MODEL_02d45ad38b8741448526432351d5eeec", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0923bfb2b06d4132b4c019f44ba32323", + "style": "IPY_MODEL_99b76a939b6946918c69bdda4a084bb0", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 3201.0 } }, - "6c21cf5d09184e87a440a1b3a1bd793b": { + "926dd9b5c8c941ecabc5447d7cb20c1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2537,75 +2516,64 @@ "width": null } }, - "7767118e4ee04421bb987d8d34f99427": { + "92f6ba2ae9f947a19198dcf64b912ae0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dfd824a4e35041009c3283a0e2c3d49c", - "IPY_MODEL_0e923a18e47f4ebb8624bc4139e8f420", - "IPY_MODEL_044e638d0f8741b0b696dc006c7b92a9" - ], - "layout": "IPY_MODEL_6c21cf5d09184e87a440a1b3a1bd793b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7e36bbb511df4e9ca9ed8b2cd26ed59b": { + "95ae6715ec3c4ef9b3fc7b20cc78386b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a333b1bb70f4bbc91863149fe9a0b42", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_550f57b1b6b54818afd734b3b56b4a16", + "layout": "IPY_MODEL_32b0b882c64f444ca6b10422ad5a4dd9", + "placeholder": "​", + "style": "IPY_MODEL_a569eb9a5d5b4715946173b57080716f", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": "classifier.ckpt: 100%" } }, - "84821290dfc24be6a89f891387851a95": { + "99b76a939b6946918c69bdda4a084bb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "88b96cdb694c4754aeb3d675442fae18": { + "a0e190ac51e64c75896fe92a6ab8a413": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2658,63 +2626,10 @@ "width": null } }, - "8a1c0bd682ed41139bdb1defce330089": { - "model_module": "@jupyter-widgets/base", + "a3aec95fbaca47888628b4cfc1607bd8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "921abee6837146e1bf2126de072b18a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", @@ -2729,7 +2644,7 @@ "text_color": null } }, - "9a2a2dad449d497b810daeda67511e89": { + "a3dafc711c4d41d2b4b3d300476cb52b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2782,7 +2697,7 @@ "width": null } }, - "9ab9cceda5a94b60b0082f6d7be80afc": { + "a569eb9a5d5b4715946173b57080716f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2800,7 +2715,25 @@ "text_color": null } }, - "9fefd85cb0674e82bdcbee1a677e483a": { + "b6cb51a2809c464eb1c58ab8e31c96a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c05d6a595d7144ee94fa51f5f5133acc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2853,25 +2786,7 @@ "width": null } }, - "a19d0da3aa044a8b96727f9d135f21f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a71c207e358d412ba1215f18baa7d9b8": { + "c2c972c18e9c4a679bd660253ada535a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2924,30 +2839,25 @@ "width": null } }, - "af0dd324e6804d68af6cfe86a0f1e004": { + "c6521ed9a1a34d1f8999049d2347b649": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4023e6d0f454427ea8446da9ef72db93", - "placeholder": "​", - "style": "IPY_MODEL_a19d0da3aa044a8b96727f9d135f21f7", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b0b1c94f87fc4f7486fbddf838a54839": { + "cf1afa91f1eb40b2aba4dcef746f1a69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2962,79 +2872,107 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ed76eaa07ee4546bbde2996920e1c36", + "layout": "IPY_MODEL_039e147e0ab94a44ab511f0d44c48272", "placeholder": "​", - "style": "IPY_MODEL_52bb9e053bb348338d6065ae6353e406", + "style": "IPY_MODEL_ec08a02c4bd6416185871e93828421ab", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 795kB/s]" + "value": "embedding_model.ckpt: 100%" } }, - "ba1b32d8c6484f7f9b0b159ee3f3f3b5": { + "d19d6b52b414436485e07ce221daa4dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d4730f8c409d4618a70b0cbe8dc1772b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f76fc4ca3a047d2a6f54ed6bb146a6d", - "placeholder": "​", - "style": "IPY_MODEL_faaf3895420e4075bd0c2901cc5d505e", + "layout": "IPY_MODEL_a0e190ac51e64c75896fe92a6ab8a413", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc570a3eada6400ebe54bbc6311f3fdd", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 69.3MB/s]" + "value": 15856877.0 } }, - "ba9d29719c3a4a16913ef49226c3c136": { + "db96495857dd41dca4b5a125ac1bddf1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_88b96cdb694c4754aeb3d675442fae18", - "placeholder": "​", - "style": "IPY_MODEL_921abee6837146e1bf2126de072b18a2", + "layout": "IPY_MODEL_53ba703ebe3f488bafb36ef1b5e1e15c", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d19d6b52b414436485e07ce221daa4dd", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": 2041.0 } }, - "c5405ed40e404f4f91c75a047866a247": { + "e302a4ab69494dea93a7e2a5d582d2e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1f70dfa029cd4b0e9964d17d37bf54b0", + "IPY_MODEL_db96495857dd41dca4b5a125ac1bddf1", + "IPY_MODEL_6e6baef0f88d4ea5ae627f599696f217" + ], + "layout": "IPY_MODEL_85ba5c722da4401683083354487e0f3c", + "tabbable": null, + "tooltip": null } }, - "d4b8c02e63d64bcab486f94bd8916170": { + "e545e8fd06544a3fabc2df6ebd4c231e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3087,7 +3025,41 @@ "width": null } }, - "dfd824a4e35041009c3283a0e2c3d49c": { + "eae4c63447cd47b5ab13fc807579b9ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ec08a02c4bd6416185871e93828421ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f115a412241d4444a70d4927ce8721e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3102,99 +3074,127 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9a2a2dad449d497b810daeda67511e89", + "layout": "IPY_MODEL_2a608f0281de446bb6b9d3e1f0fcc8ef", "placeholder": "​", - "style": "IPY_MODEL_5cfdc8f6140c444698e6723c2e839d4e", + "style": "IPY_MODEL_a3aec95fbaca47888628b4cfc1607bd8", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": " 3.20k/3.20k [00:00<00:00, 853kB/s]" } }, - "ec29300d723440fab045877656c12f24": { + "f1d5848284b945bd8362d354f0edb9a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53c425a26ebf4662857c4853c4b2cc66", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7df1120d6e804074ac9fc4c19ab2fe15", + "tabbable": null, + "tooltip": null, + "value": 128619.0 } }, - "faaf3895420e4075bd0c2901cc5d505e": { + "f4e5840479864b31b4eca15395813b4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5d1146ca200e41e0b87e8d02b7c0e568", + "placeholder": "​", + "style": "IPY_MODEL_80e543f701e445f38d8d20e7547bce68", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "fec55286ccdb407e9cf0bb3ae00227c7": { - "model_module": "@jupyter-widgets/base", + "f6a60d2b426e420d8d25abbca9fdfdaf": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a3dafc711c4d41d2b4b3d300476cb52b", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_eae4c63447cd47b5ab13fc807579b9ba", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "f84662a791cf48ff8f1369f016420dd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7624a5525cff4e6dbad04046d0d5ce3d", + "IPY_MODEL_f1d5848284b945bd8362d354f0edb9a5", + "IPY_MODEL_4f6932ad623843a29fdfe07056c8c4ed" + ], + "layout": "IPY_MODEL_685e89f25f5d454fbc172a4feb2bd274", + "tabbable": null, + "tooltip": null + } + }, + "fc570a3eada6400ebe54bbc6311f3fdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/data_monitor.html b/master/tutorials/datalab/data_monitor.html index b93af4866..4b6d14a47 100644 --- a/master/tutorials/datalab/data_monitor.html +++ b/master/tutorials/datalab/data_monitor.html @@ -686,7 +686,7 @@

1. Install and import required dependenciesdependencies = ["cleanlab", "matplotlib", "datasets"] # TODO: make sure this list is updated if "google.colab" in str(get_ipython()): # Check if it's running in Google Colab - %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7 + %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f cmd = ' '.join([dep for dep in dependencies if dep != "cleanlab"]) %pip install $cmd else: @@ -1169,7 +1169,7 @@

5. Use DataMonitor to find issues in new data

-
+
@@ -1908,7 +1908,7 @@

8. Looking for both label issues and outliers -{"state": {"0884bc9eaac549769005e300e318f10c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce4daad5cb3f4c749a10466f837cc2b5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "5e0a802df05845e288a3d00ebf2f86c5": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0884bc9eaac549769005e300e318f10c", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ce4daad5cb3f4c749a10466f837cc2b5", "tabbable": null, "tooltip": null, "value": 50.0}}, "06154637606042bf9873f237ff502915": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "557dc092c5b747808e31117c9897da09": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4ab8396f37f84f6885623cb4841a537b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_06154637606042bf9873f237ff502915", "placeholder": "\u200b", "style": "IPY_MODEL_557dc092c5b747808e31117c9897da09", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "b5d301e1df9043edb84538d6d758f84c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d5bfd334cceb49e0a29c76813e3c7254": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "13ea1015b354426c9e7b1813029d5daf": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b5d301e1df9043edb84538d6d758f84c", "placeholder": "\u200b", "style": "IPY_MODEL_d5bfd334cceb49e0a29c76813e3c7254", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.87it/s]"}}, "e69c7448858f499d9a7ce61f5d5619a1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0d07a5744a604bafa1809204bdc20203": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4ab8396f37f84f6885623cb4841a537b", "IPY_MODEL_5e0a802df05845e288a3d00ebf2f86c5", "IPY_MODEL_13ea1015b354426c9e7b1813029d5daf"], "layout": "IPY_MODEL_e69c7448858f499d9a7ce61f5d5619a1", "tabbable": null, "tooltip": null}}, "abf94e3164e54659bf335bec45de1860": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dccc93e1367c44848c20611567c11a51": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1d8add519b1047559278354180f802a7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_abf94e3164e54659bf335bec45de1860", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dccc93e1367c44848c20611567c11a51", "tabbable": null, "tooltip": null, "value": 7.0}}, "9622db9ae0ff4ddfbb7e447101eb09a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "123095cfc97540d99ccd425162e48d35": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "160e936612184dc48ee2bbea4b87b707": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9622db9ae0ff4ddfbb7e447101eb09a7", "placeholder": "\u200b", "style": "IPY_MODEL_123095cfc97540d99ccd425162e48d35", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "340231fb94f24359aff70e3dc8fe9936": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "591374450f744f378405fc409f1f5f68": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8fa859fc795b435a928a84bfbd774f4c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_340231fb94f24359aff70e3dc8fe9936", "placeholder": "\u200b", "style": "IPY_MODEL_591374450f744f378405fc409f1f5f68", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "18e7a896c7664fedb644e826ebfdd979": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d90d91829bf5492c9b60482246243816": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_160e936612184dc48ee2bbea4b87b707", "IPY_MODEL_1d8add519b1047559278354180f802a7", "IPY_MODEL_8fa859fc795b435a928a84bfbd774f4c"], "layout": "IPY_MODEL_18e7a896c7664fedb644e826ebfdd979", "tabbable": null, "tooltip": null}}, "0ac52be9565c4613982bc1a4b0a48566": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2ea0818dd4f54c8dbe62280b5040b66d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1756a59ac4b24fe28a98c60c0e5694fd": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0ac52be9565c4613982bc1a4b0a48566", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2ea0818dd4f54c8dbe62280b5040b66d", "tabbable": null, "tooltip": null, "value": 50.0}}, "03b18274f661420f8c77922f37e66e89": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f20f1c117b26427dad6b44d574447196": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5c1c78dda42b44019e7e06cf559a30e5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_03b18274f661420f8c77922f37e66e89", "placeholder": "\u200b", "style": "IPY_MODEL_f20f1c117b26427dad6b44d574447196", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "5881fb1feed64df6a382434c6565d34b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a0dcb862fcfd4e87ae8637df9698f0a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2712050a0a524d8b961e95c22812dd58": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5881fb1feed64df6a382434c6565d34b", "placeholder": "\u200b", "style": "IPY_MODEL_a0dcb862fcfd4e87ae8637df9698f0a2", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.79it/s]"}}, "7de68b56898649b2908052b9225b4492": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "591d1112ee504f8fbca1e8aa1cb78a4d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5c1c78dda42b44019e7e06cf559a30e5", "IPY_MODEL_1756a59ac4b24fe28a98c60c0e5694fd", "IPY_MODEL_2712050a0a524d8b961e95c22812dd58"], "layout": "IPY_MODEL_7de68b56898649b2908052b9225b4492", "tabbable": null, "tooltip": null}}, "d97417a9e4c243d1abefcada85c778db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e21f8915af341958d018beb5b76b4e8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ce86e00e95104336bb5757d4092e9a86": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d97417a9e4c243d1abefcada85c778db", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7e21f8915af341958d018beb5b76b4e8", "tabbable": null, "tooltip": null, "value": 7.0}}, "29bba12409a9455d9afd53f97dcbc512": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a3f260b3c29f43bd886d7786cef61138": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1fc709fb3b8b437ca4074a25a5e29d50": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_29bba12409a9455d9afd53f97dcbc512", "placeholder": "\u200b", "style": "IPY_MODEL_a3f260b3c29f43bd886d7786cef61138", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "074d5ba8729d4650a31f37a91177d875": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3682290131844fff9c26b8534116467b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b24e37b6937641678a55b91cb428e3cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_074d5ba8729d4650a31f37a91177d875", "placeholder": "\u200b", "style": "IPY_MODEL_3682290131844fff9c26b8534116467b", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.33it/s]"}}, "07d97bcdbef84eca90f0d1a219529cae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "878d51762ee44c02a197f0d7e85e6f5d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1fc709fb3b8b437ca4074a25a5e29d50", "IPY_MODEL_ce86e00e95104336bb5757d4092e9a86", "IPY_MODEL_b24e37b6937641678a55b91cb428e3cc"], "layout": "IPY_MODEL_07d97bcdbef84eca90f0d1a219529cae", "tabbable": null, "tooltip": null}}, "4b65ee22f0cc4308a11272e7b277ea0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "deb03982d40d402aa059872c0ad125d7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9225b218abe04efabe87ff1344d4bebf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4b65ee22f0cc4308a11272e7b277ea0a", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_deb03982d40d402aa059872c0ad125d7", "tabbable": null, "tooltip": null, "value": 50.0}}, "b9856c348a744a73b45bafa55254a209": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "adff3705e80e433ebd405b9569ed7e04": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "991b6ae4d3d64547be812c74de806b08": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b9856c348a744a73b45bafa55254a209", "placeholder": "\u200b", "style": "IPY_MODEL_adff3705e80e433ebd405b9569ed7e04", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "7e3d8b6ee9fe4768a1943171af85f718": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbfabc656ebf4aa6acffacafdbcae7e1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d9f84f64929449d59a8413396cda8b5b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7e3d8b6ee9fe4768a1943171af85f718", "placeholder": "\u200b", "style": "IPY_MODEL_fbfabc656ebf4aa6acffacafdbcae7e1", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.77it/s]"}}, "eafff201bea84307b2c21e20e5e7eae1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1ed7617f879847979167315d314a31ed": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_991b6ae4d3d64547be812c74de806b08", "IPY_MODEL_9225b218abe04efabe87ff1344d4bebf", "IPY_MODEL_d9f84f64929449d59a8413396cda8b5b"], "layout": "IPY_MODEL_eafff201bea84307b2c21e20e5e7eae1", "tabbable": null, "tooltip": null}}, "185746064a794b53a87d9dcf95c7a98c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "903500b82ec5453b82c19b72f4b23c24": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "bb5c5666822a49cca7386197ba8d389f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_185746064a794b53a87d9dcf95c7a98c", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_903500b82ec5453b82c19b72f4b23c24", "tabbable": null, "tooltip": null, "value": 7.0}}, "81ee37e85e9d46a1a11907b98a985e33": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "60b217c8dda04bc0adf981ed612055a2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "da461e619891455faa9a8c2c15e7c307": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_81ee37e85e9d46a1a11907b98a985e33", "placeholder": "\u200b", "style": "IPY_MODEL_60b217c8dda04bc0adf981ed612055a2", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "73cd858dafe241f19f98c1984b156ee7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5653b0590454431aa4e9e9a4a1dc0d7b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c6fc3e5a3d4c4a5f8fb233c714097062": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_73cd858dafe241f19f98c1984b156ee7", "placeholder": "\u200b", "style": "IPY_MODEL_5653b0590454431aa4e9e9a4a1dc0d7b", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "806b657a868148a2bb70659525ef3b3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dd5a2b417e3344658e8085ccaac7f030": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_da461e619891455faa9a8c2c15e7c307", "IPY_MODEL_bb5c5666822a49cca7386197ba8d389f", "IPY_MODEL_c6fc3e5a3d4c4a5f8fb233c714097062"], "layout": "IPY_MODEL_806b657a868148a2bb70659525ef3b3a", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"5409d2f49dca4cbeb4f317d8aa46ccf8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91311a9db9144b9aa10e558e189cd4a0": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6849590b787f421283202c404717945e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5409d2f49dca4cbeb4f317d8aa46ccf8", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_91311a9db9144b9aa10e558e189cd4a0", "tabbable": null, "tooltip": null, "value": 50.0}}, "127fec0dcb96469c9c53edbd54936769": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6263cf40fe84408a83ea1f274ebc1e60": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cda5c6f6caeb4f658082ad1c8880e076": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_127fec0dcb96469c9c53edbd54936769", "placeholder": "\u200b", "style": "IPY_MODEL_6263cf40fe84408a83ea1f274ebc1e60", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "7acf9ef20737443e9b8dcbfc21a46927": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c590be36d4954ecaa3b2bbc36e15f9cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "be0fc8f89d6a4b77a085888eb3b175d5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7acf9ef20737443e9b8dcbfc21a46927", "placeholder": "\u200b", "style": "IPY_MODEL_c590be36d4954ecaa3b2bbc36e15f9cf", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.86it/s]"}}, "05e15a781e20434888b29d4ed732f642": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16691eefb97a44b9af842e7a3d10b82b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cda5c6f6caeb4f658082ad1c8880e076", "IPY_MODEL_6849590b787f421283202c404717945e", "IPY_MODEL_be0fc8f89d6a4b77a085888eb3b175d5"], "layout": "IPY_MODEL_05e15a781e20434888b29d4ed732f642", "tabbable": null, "tooltip": null}}, "023c7da18e424c3883eca2e16626ce7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa424e7743234229a020e325f31202fb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "482868b24e2444cab5ac1f0aa9f96ffc": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_023c7da18e424c3883eca2e16626ce7f", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_aa424e7743234229a020e325f31202fb", "tabbable": null, "tooltip": null, "value": 7.0}}, "a22782d28f2a480a8928d301da6604f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cceeb03436854c30bb382fe0c100c2bd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e840529660dd449d97ecde263592b8e3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a22782d28f2a480a8928d301da6604f4", "placeholder": "\u200b", "style": "IPY_MODEL_cceeb03436854c30bb382fe0c100c2bd", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "daec9da029354970886c65e48fae7895": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a5ebf02f6559407a9eaca07852b1c427": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "432eb75da12a42acb337a242d19442d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_daec9da029354970886c65e48fae7895", "placeholder": "\u200b", "style": "IPY_MODEL_a5ebf02f6559407a9eaca07852b1c427", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "a8c944d022ba4ffebddcb245c6c7d653": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac618b2d864a40b2a628802392854eab": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e840529660dd449d97ecde263592b8e3", "IPY_MODEL_482868b24e2444cab5ac1f0aa9f96ffc", "IPY_MODEL_432eb75da12a42acb337a242d19442d8"], "layout": "IPY_MODEL_a8c944d022ba4ffebddcb245c6c7d653", "tabbable": null, "tooltip": null}}, "931391719e964afa8404ae29bcf23864": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d26b3b25dc8646deb7f7cbf24443577d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "09d5e7bc9eab49e9b97c5cdba0a1578b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_931391719e964afa8404ae29bcf23864", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d26b3b25dc8646deb7f7cbf24443577d", "tabbable": null, "tooltip": null, "value": 50.0}}, "4dbc5fcd543f43feb30c155bf0f058e1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a405194e30d148a08eb08102914cbfba": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e72581f3c51a4ebbbdf921e555ed5e2e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4dbc5fcd543f43feb30c155bf0f058e1", "placeholder": "\u200b", "style": "IPY_MODEL_a405194e30d148a08eb08102914cbfba", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "67aee0d1bdc241de942a18d250abde0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "090b1de60819463abc3ad25011937af5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3b8be4c541aa442592db2470b74e90ad": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_67aee0d1bdc241de942a18d250abde0d", "placeholder": "\u200b", "style": "IPY_MODEL_090b1de60819463abc3ad25011937af5", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.80it/s]"}}, "3f135927f582409e967b53cb2f1d2042": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63e22013b11d44788247c2e6e6e71364": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e72581f3c51a4ebbbdf921e555ed5e2e", "IPY_MODEL_09d5e7bc9eab49e9b97c5cdba0a1578b", "IPY_MODEL_3b8be4c541aa442592db2470b74e90ad"], "layout": "IPY_MODEL_3f135927f582409e967b53cb2f1d2042", "tabbable": null, "tooltip": null}}, "e3e147ed2d574cfd9e0e8c16abc3ee75": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "36a9b636abf14a37a602e2880614146a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "878599986c3e434797dc3d8347ec1b4a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e3e147ed2d574cfd9e0e8c16abc3ee75", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_36a9b636abf14a37a602e2880614146a", "tabbable": null, "tooltip": null, "value": 7.0}}, "454fcdd9458e47bfa8fa5a44c206fcb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ed5dece7b584ef88c91fe936768486d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ea87e8e0c79643a999c896710a7b8792": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_454fcdd9458e47bfa8fa5a44c206fcb3", "placeholder": "\u200b", "style": "IPY_MODEL_8ed5dece7b584ef88c91fe936768486d", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "8b926d8b87db4b57bd13370ea58cf1f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b661eba4067d4e5ab460d8f26c8210e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cd952c51c4cf4754ac8dbf022ed5da35": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b926d8b87db4b57bd13370ea58cf1f6", "placeholder": "\u200b", "style": "IPY_MODEL_b661eba4067d4e5ab460d8f26c8210e7", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.33it/s]"}}, "3283aeca9a6a4cbcb0da1eb270e3d476": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58e53eb1d3b74dbabdda9218003d290e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_ea87e8e0c79643a999c896710a7b8792", "IPY_MODEL_878599986c3e434797dc3d8347ec1b4a", "IPY_MODEL_cd952c51c4cf4754ac8dbf022ed5da35"], "layout": "IPY_MODEL_3283aeca9a6a4cbcb0da1eb270e3d476", "tabbable": null, "tooltip": null}}, "9ee5ebc7814c455baf26064aa901a494": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2469412d11404237880733a58e502569": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f61ae27fb96c4ac794367539d32aaee6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9ee5ebc7814c455baf26064aa901a494", "max": 50.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2469412d11404237880733a58e502569", "tabbable": null, "tooltip": null, "value": 50.0}}, "9cb24280dc444e898cf722661c9629ce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "24d4290400d543cca86065a4fbc5b9ba": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "54dd94e9fb8b40d99e3461d2b59a9fea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9cb24280dc444e898cf722661c9629ce", "placeholder": "\u200b", "style": "IPY_MODEL_24d4290400d543cca86065a4fbc5b9ba", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u20071\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "c205a5c270d94b08b455596bb5a3f641": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "84e85818360e404da06e1195aec4637e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0934764f32164e9bbd42e10008a5d7dc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c205a5c270d94b08b455596bb5a3f641", "placeholder": "\u200b", "style": "IPY_MODEL_84e85818360e404da06e1195aec4637e", "tabbable": null, "tooltip": null, "value": "\u200750/50\u2007[00:05<00:00,\u2007\u20079.76it/s]"}}, "c2c6cc0c4b9d4f02b9547d22829dc155": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7b47b3587b294c218154475b1bd729d3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_54dd94e9fb8b40d99e3461d2b59a9fea", "IPY_MODEL_f61ae27fb96c4ac794367539d32aaee6", "IPY_MODEL_0934764f32164e9bbd42e10008a5d7dc"], "layout": "IPY_MODEL_c2c6cc0c4b9d4f02b9547d22829dc155", "tabbable": null, "tooltip": null}}, "349d6ee3fe994a77ad729d53b7f41ded": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ddf5a0d223314a2ea3a85f4929b8a021": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a31f060f5f424533905faad58462bb52": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_349d6ee3fe994a77ad729d53b7f41ded", "max": 7.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ddf5a0d223314a2ea3a85f4929b8a021", "tabbable": null, "tooltip": null, "value": 7.0}}, "01553c4cc5614aeb8415e2eb5ce5b8ed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b1bb5bc9e73429d9d789f44a451bae2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "77ab1d685ee248379b335bb91dece74f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_01553c4cc5614aeb8415e2eb5ce5b8ed", "placeholder": "\u200b", "style": "IPY_MODEL_3b1bb5bc9e73429d9d789f44a451bae2", "tabbable": null, "tooltip": null, "value": "Streaming\u2007data,\u200750\u2007sample(s)\u2007at\u2007a\u2007time:\u2007100%"}}, "19a30519c45d41b799b40995f920775b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5c9b2a8175b940b095b744707bcb01dd": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "003cda49480d4fd5aa4f036f5db5d6e9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_19a30519c45d41b799b40995f920775b", "placeholder": "\u200b", "style": "IPY_MODEL_5c9b2a8175b940b095b744707bcb01dd", "tabbable": null, "tooltip": null, "value": "\u20077/7\u2007[00:05<00:00,\u2007\u20071.32it/s]"}}, "b4b2cb2adc6a4f9c9d99394dcdc7cebe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "690b859c431e478683cfa895855ea449": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_77ab1d685ee248379b335bb91dece74f", "IPY_MODEL_a31f060f5f424533905faad58462bb52", "IPY_MODEL_003cda49480d4fd5aa4f036f5db5d6e9"], "layout": "IPY_MODEL_b4b2cb2adc6a4f9c9d99394dcdc7cebe", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/data_monitor.ipynb b/master/tutorials/datalab/data_monitor.ipynb index 30967511e..e9f5b56aa 100644 --- a/master/tutorials/datalab/data_monitor.ipynb +++ b/master/tutorials/datalab/data_monitor.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:04.077706Z", - "iopub.status.busy": "2024-05-23T02:39:04.077518Z", - "iopub.status.idle": "2024-05-23T02:39:04.089116Z", - "shell.execute_reply": "2024-05-23T02:39:04.088514Z" + "iopub.execute_input": "2024-05-23T15:12:24.150546Z", + "iopub.status.busy": "2024-05-23T15:12:24.150120Z", + "iopub.status.idle": "2024-05-23T15:12:24.160819Z", + "shell.execute_reply": "2024-05-23T15:12:24.160377Z" } }, "outputs": [], @@ -85,10 +85,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:04.091727Z", - "iopub.status.busy": "2024-05-23T02:39:04.091389Z", - "iopub.status.idle": "2024-05-23T02:39:05.272361Z", - "shell.execute_reply": "2024-05-23T02:39:05.271772Z" + "iopub.execute_input": "2024-05-23T15:12:24.163003Z", + "iopub.status.busy": "2024-05-23T15:12:24.162658Z", + "iopub.status.idle": "2024-05-23T15:12:25.340600Z", + "shell.execute_reply": "2024-05-23T15:12:25.339995Z" } }, "outputs": [], @@ -97,7 +97,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -122,10 +122,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.275092Z", - "iopub.status.busy": "2024-05-23T02:39:05.274623Z", - "iopub.status.idle": "2024-05-23T02:39:05.293263Z", - "shell.execute_reply": "2024-05-23T02:39:05.292779Z" + "iopub.execute_input": "2024-05-23T15:12:25.343043Z", + "iopub.status.busy": "2024-05-23T15:12:25.342752Z", + "iopub.status.idle": "2024-05-23T15:12:25.360826Z", + "shell.execute_reply": "2024-05-23T15:12:25.360279Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.295969Z", - "iopub.status.busy": "2024-05-23T02:39:05.295521Z", - "iopub.status.idle": "2024-05-23T02:39:05.316769Z", - "shell.execute_reply": "2024-05-23T02:39:05.316291Z" + "iopub.execute_input": "2024-05-23T15:12:25.363147Z", + "iopub.status.busy": "2024-05-23T15:12:25.362705Z", + "iopub.status.idle": "2024-05-23T15:12:25.381440Z", + "shell.execute_reply": "2024-05-23T15:12:25.380241Z" } }, "outputs": [], @@ -353,10 +353,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.319123Z", - "iopub.status.busy": "2024-05-23T02:39:05.318926Z", - "iopub.status.idle": "2024-05-23T02:39:05.336367Z", - "shell.execute_reply": "2024-05-23T02:39:05.335908Z" + "iopub.execute_input": "2024-05-23T15:12:25.383401Z", + "iopub.status.busy": "2024-05-23T15:12:25.383143Z", + "iopub.status.idle": "2024-05-23T15:12:25.397293Z", + "shell.execute_reply": "2024-05-23T15:12:25.396833Z" } }, "outputs": [], @@ -369,10 +369,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.338426Z", - "iopub.status.busy": "2024-05-23T02:39:05.338249Z", - "iopub.status.idle": "2024-05-23T02:39:05.353925Z", - "shell.execute_reply": "2024-05-23T02:39:05.353442Z" + "iopub.execute_input": "2024-05-23T15:12:25.399348Z", + "iopub.status.busy": "2024-05-23T15:12:25.398949Z", + "iopub.status.idle": "2024-05-23T15:12:25.411768Z", + "shell.execute_reply": "2024-05-23T15:12:25.411343Z" } }, "outputs": [], @@ -450,10 +450,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.356245Z", - "iopub.status.busy": "2024-05-23T02:39:05.356062Z", - "iopub.status.idle": "2024-05-23T02:39:05.553742Z", - "shell.execute_reply": "2024-05-23T02:39:05.553209Z" + "iopub.execute_input": "2024-05-23T15:12:25.413965Z", + "iopub.status.busy": "2024-05-23T15:12:25.413529Z", + "iopub.status.idle": "2024-05-23T15:12:25.605551Z", + "shell.execute_reply": "2024-05-23T15:12:25.605075Z" } }, "outputs": [], @@ -507,10 +507,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.556220Z", - "iopub.status.busy": "2024-05-23T02:39:05.555789Z", - "iopub.status.idle": "2024-05-23T02:39:05.917556Z", - "shell.execute_reply": "2024-05-23T02:39:05.916951Z" + "iopub.execute_input": "2024-05-23T15:12:25.607849Z", + "iopub.status.busy": "2024-05-23T15:12:25.607567Z", + "iopub.status.idle": "2024-05-23T15:12:25.969203Z", + "shell.execute_reply": "2024-05-23T15:12:25.968623Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.919887Z", - "iopub.status.busy": "2024-05-23T02:39:05.919485Z", - "iopub.status.idle": "2024-05-23T02:39:05.959832Z", - "shell.execute_reply": "2024-05-23T02:39:05.959210Z" + "iopub.execute_input": "2024-05-23T15:12:25.971556Z", + "iopub.status.busy": "2024-05-23T15:12:25.971185Z", + "iopub.status.idle": "2024-05-23T15:12:26.009329Z", + "shell.execute_reply": "2024-05-23T15:12:26.008805Z" } }, "outputs": [], @@ -581,10 +581,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.962479Z", - "iopub.status.busy": "2024-05-23T02:39:05.962076Z", - "iopub.status.idle": "2024-05-23T02:39:07.618790Z", - "shell.execute_reply": "2024-05-23T02:39:07.618179Z" + "iopub.execute_input": "2024-05-23T15:12:26.011919Z", + "iopub.status.busy": "2024-05-23T15:12:26.011553Z", + "iopub.status.idle": "2024-05-23T15:12:27.692533Z", + "shell.execute_reply": "2024-05-23T15:12:27.691912Z" } }, "outputs": [ @@ -667,10 +667,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:07.621108Z", - "iopub.status.busy": "2024-05-23T02:39:07.620799Z", - "iopub.status.idle": "2024-05-23T02:39:07.650628Z", - "shell.execute_reply": "2024-05-23T02:39:07.650068Z" + "iopub.execute_input": "2024-05-23T15:12:27.694950Z", + "iopub.status.busy": "2024-05-23T15:12:27.694635Z", + "iopub.status.idle": "2024-05-23T15:12:27.728895Z", + "shell.execute_reply": "2024-05-23T15:12:27.728320Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:07.652732Z", - "iopub.status.busy": "2024-05-23T02:39:07.652557Z", - "iopub.status.idle": "2024-05-23T02:39:07.686084Z", - "shell.execute_reply": "2024-05-23T02:39:07.685634Z" + "iopub.execute_input": "2024-05-23T15:12:27.731104Z", + "iopub.status.busy": "2024-05-23T15:12:27.730791Z", + "iopub.status.idle": "2024-05-23T15:12:27.762113Z", + "shell.execute_reply": "2024-05-23T15:12:27.761535Z" } }, "outputs": [], @@ -741,17 +741,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:07.688111Z", - "iopub.status.busy": "2024-05-23T02:39:07.687932Z", - "iopub.status.idle": "2024-05-23T02:39:12.788947Z", - "shell.execute_reply": "2024-05-23T02:39:12.788342Z" + "iopub.execute_input": "2024-05-23T15:12:27.764435Z", + "iopub.status.busy": "2024-05-23T15:12:27.764018Z", + "iopub.status.idle": "2024-05-23T15:12:32.868685Z", + "shell.execute_reply": "2024-05-23T15:12:32.868098Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0d07a5744a604bafa1809204bdc20203", + "model_id": "16691eefb97a44b9af842e7a3d10b82b", "version_major": 2, "version_minor": 0 }, @@ -811,17 +811,17 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:12.791134Z", - "iopub.status.busy": "2024-05-23T02:39:12.790742Z", - "iopub.status.idle": "2024-05-23T02:39:18.113675Z", - "shell.execute_reply": "2024-05-23T02:39:18.113096Z" + "iopub.execute_input": "2024-05-23T15:12:32.871153Z", + "iopub.status.busy": "2024-05-23T15:12:32.870821Z", + "iopub.status.idle": "2024-05-23T15:12:38.202836Z", + "shell.execute_reply": "2024-05-23T15:12:38.201810Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d90d91829bf5492c9b60482246243816", + "model_id": "ac618b2d864a40b2a628802392854eab", "version_major": 2, "version_minor": 0 }, @@ -949,10 +949,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.116536Z", - "iopub.status.busy": "2024-05-23T02:39:18.116204Z", - "iopub.status.idle": "2024-05-23T02:39:18.151070Z", - "shell.execute_reply": "2024-05-23T02:39:18.150624Z" + "iopub.execute_input": "2024-05-23T15:12:38.206714Z", + "iopub.status.busy": "2024-05-23T15:12:38.206258Z", + "iopub.status.idle": "2024-05-23T15:12:38.247716Z", + "shell.execute_reply": "2024-05-23T15:12:38.247275Z" } }, "outputs": [ @@ -1185,10 +1185,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.152990Z", - "iopub.status.busy": "2024-05-23T02:39:18.152813Z", - "iopub.status.idle": "2024-05-23T02:39:18.181552Z", - "shell.execute_reply": "2024-05-23T02:39:18.181102Z" + "iopub.execute_input": "2024-05-23T15:12:38.249766Z", + "iopub.status.busy": "2024-05-23T15:12:38.249356Z", + "iopub.status.idle": "2024-05-23T15:12:38.276705Z", + "shell.execute_reply": "2024-05-23T15:12:38.276176Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.183399Z", - "iopub.status.busy": "2024-05-23T02:39:18.183225Z", - "iopub.status.idle": "2024-05-23T02:39:18.227031Z", - "shell.execute_reply": "2024-05-23T02:39:18.226521Z" + "iopub.execute_input": "2024-05-23T15:12:38.278700Z", + "iopub.status.busy": "2024-05-23T15:12:38.278375Z", + "iopub.status.idle": "2024-05-23T15:12:38.318716Z", + "shell.execute_reply": "2024-05-23T15:12:38.318182Z" } }, "outputs": [ @@ -1314,10 +1314,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.229149Z", - "iopub.status.busy": "2024-05-23T02:39:18.228838Z", - "iopub.status.idle": "2024-05-23T02:39:18.254046Z", - "shell.execute_reply": "2024-05-23T02:39:18.253588Z" + "iopub.execute_input": "2024-05-23T15:12:38.320892Z", + "iopub.status.busy": "2024-05-23T15:12:38.320378Z", + "iopub.status.idle": "2024-05-23T15:12:38.343980Z", + "shell.execute_reply": "2024-05-23T15:12:38.343554Z" } }, "outputs": [], @@ -1331,10 +1331,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.256244Z", - "iopub.status.busy": "2024-05-23T02:39:18.255817Z", - "iopub.status.idle": "2024-05-23T02:39:18.280902Z", - "shell.execute_reply": "2024-05-23T02:39:18.280491Z" + "iopub.execute_input": "2024-05-23T15:12:38.346013Z", + "iopub.status.busy": "2024-05-23T15:12:38.345692Z", + "iopub.status.idle": "2024-05-23T15:12:38.368870Z", + "shell.execute_reply": "2024-05-23T15:12:38.368450Z" } }, "outputs": [], @@ -1363,17 +1363,17 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.282929Z", - "iopub.status.busy": "2024-05-23T02:39:18.282532Z", - "iopub.status.idle": "2024-05-23T02:39:28.700224Z", - "shell.execute_reply": "2024-05-23T02:39:28.699661Z" + "iopub.execute_input": "2024-05-23T15:12:38.370823Z", + "iopub.status.busy": "2024-05-23T15:12:38.370500Z", + "iopub.status.idle": "2024-05-23T15:12:48.786078Z", + "shell.execute_reply": "2024-05-23T15:12:48.785492Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "591d1112ee504f8fbca1e8aa1cb78a4d", + "model_id": "63e22013b11d44788247c2e6e6e71364", "version_major": 2, "version_minor": 0 }, @@ -1397,7 +1397,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "878d51762ee44c02a197f0d7e85e6f5d", + "model_id": "58e53eb1d3b74dbabdda9218003d290e", "version_major": 2, "version_minor": 0 }, @@ -1463,10 +1463,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:28.703003Z", - "iopub.status.busy": "2024-05-23T02:39:28.702688Z", - "iopub.status.idle": "2024-05-23T02:39:28.788202Z", - "shell.execute_reply": "2024-05-23T02:39:28.787664Z" + "iopub.execute_input": "2024-05-23T15:12:48.788230Z", + "iopub.status.busy": "2024-05-23T15:12:48.788052Z", + "iopub.status.idle": "2024-05-23T15:12:48.870592Z", + "shell.execute_reply": "2024-05-23T15:12:48.869978Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:28.790562Z", - "iopub.status.busy": "2024-05-23T02:39:28.790208Z", - "iopub.status.idle": "2024-05-23T02:39:28.819813Z", - "shell.execute_reply": "2024-05-23T02:39:28.819384Z" + "iopub.execute_input": "2024-05-23T15:12:48.872878Z", + "iopub.status.busy": "2024-05-23T15:12:48.872579Z", + "iopub.status.idle": "2024-05-23T15:12:48.902790Z", + "shell.execute_reply": "2024-05-23T15:12:48.902346Z" } }, "outputs": [], @@ -1562,10 +1562,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:28.821838Z", - "iopub.status.busy": "2024-05-23T02:39:28.821664Z", - "iopub.status.idle": "2024-05-23T02:39:28.848168Z", - "shell.execute_reply": "2024-05-23T02:39:28.847614Z" + "iopub.execute_input": "2024-05-23T15:12:48.904859Z", + "iopub.status.busy": "2024-05-23T15:12:48.904523Z", + "iopub.status.idle": "2024-05-23T15:12:48.931284Z", + "shell.execute_reply": "2024-05-23T15:12:48.930855Z" } }, "outputs": [], @@ -1594,17 +1594,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:28.850484Z", - "iopub.status.busy": "2024-05-23T02:39:28.850099Z", - "iopub.status.idle": "2024-05-23T02:39:39.317547Z", - "shell.execute_reply": "2024-05-23T02:39:39.316954Z" + "iopub.execute_input": "2024-05-23T15:12:48.933414Z", + "iopub.status.busy": "2024-05-23T15:12:48.933089Z", + "iopub.status.idle": "2024-05-23T15:12:59.401243Z", + "shell.execute_reply": "2024-05-23T15:12:59.400682Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1ed7617f879847979167315d314a31ed", + "model_id": "7b47b3587b294c218154475b1bd729d3", "version_major": 2, "version_minor": 0 }, @@ -1658,7 +1658,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd5a2b417e3344658e8085ccaac7f030", + "model_id": "690b859c431e478683cfa895855ea449", "version_major": 2, "version_minor": 0 }, @@ -1776,10 +1776,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:39.320522Z", - "iopub.status.busy": "2024-05-23T02:39:39.320126Z", - "iopub.status.idle": "2024-05-23T02:39:39.350560Z", - "shell.execute_reply": "2024-05-23T02:39:39.350014Z" + "iopub.execute_input": "2024-05-23T15:12:59.404181Z", + "iopub.status.busy": "2024-05-23T15:12:59.403640Z", + "iopub.status.idle": "2024-05-23T15:12:59.432742Z", + "shell.execute_reply": "2024-05-23T15:12:59.432290Z" } }, "outputs": [ @@ -1863,7 +1863,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03b18274f661420f8c77922f37e66e89": { + "003cda49480d4fd5aa4f036f5db5d6e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_19a30519c45d41b799b40995f920775b", + "placeholder": "​", + "style": "IPY_MODEL_5c9b2a8175b940b095b744707bcb01dd", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "01553c4cc5614aeb8415e2eb5ce5b8ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1916,7 +1939,7 @@ "width": null } }, - "06154637606042bf9873f237ff502915": { + "023c7da18e424c3883eca2e16626ce7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1969,7 +1992,7 @@ "width": null } }, - "074d5ba8729d4650a31f37a91177d875": { + "05e15a781e20434888b29d4ed732f642": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2022,60 +2045,74 @@ "width": null } }, - "07d97bcdbef84eca90f0d1a219529cae": { - "model_module": "@jupyter-widgets/base", + "090b1de60819463abc3ad25011937af5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0934764f32164e9bbd42e10008a5d7dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c205a5c270d94b08b455596bb5a3f641", + "placeholder": "​", + "style": "IPY_MODEL_84e85818360e404da06e1195aec4637e", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.76it/s]" + } + }, + "09d5e7bc9eab49e9b97c5cdba0a1578b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_931391719e964afa8404ae29bcf23864", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d26b3b25dc8646deb7f7cbf24443577d", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "0884bc9eaac549769005e300e318f10c": { + "127fec0dcb96469c9c53edbd54936769": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2128,7 +2165,31 @@ "width": null } }, - "0ac52be9565c4613982bc1a4b0a48566": { + "16691eefb97a44b9af842e7a3d10b82b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cda5c6f6caeb4f658082ad1c8880e076", + "IPY_MODEL_6849590b787f421283202c404717945e", + "IPY_MODEL_be0fc8f89d6a4b77a085888eb3b175d5" + ], + "layout": "IPY_MODEL_05e15a781e20434888b29d4ed732f642", + "tabbable": null, + "tooltip": null + } + }, + "19a30519c45d41b799b40995f920775b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2181,31 +2242,23 @@ "width": null } }, - "0d07a5744a604bafa1809204bdc20203": { + "2469412d11404237880733a58e502569": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4ab8396f37f84f6885623cb4841a537b", - "IPY_MODEL_5e0a802df05845e288a3d00ebf2f86c5", - "IPY_MODEL_13ea1015b354426c9e7b1813029d5daf" - ], - "layout": "IPY_MODEL_e69c7448858f499d9a7ce61f5d5619a1", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "123095cfc97540d99ccd425162e48d35": { + "24d4290400d543cca86065a4fbc5b9ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2223,79 +2276,7 @@ "text_color": null } }, - "13ea1015b354426c9e7b1813029d5daf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b5d301e1df9043edb84538d6d758f84c", - "placeholder": "​", - "style": "IPY_MODEL_d5bfd334cceb49e0a29c76813e3c7254", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.87it/s]" - } - }, - "160e936612184dc48ee2bbea4b87b707": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9622db9ae0ff4ddfbb7e447101eb09a7", - "placeholder": "​", - "style": "IPY_MODEL_123095cfc97540d99ccd425162e48d35", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "1756a59ac4b24fe28a98c60c0e5694fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0ac52be9565c4613982bc1a4b0a48566", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2ea0818dd4f54c8dbe62280b5040b66d", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "185746064a794b53a87d9dcf95c7a98c": { + "3283aeca9a6a4cbcb0da1eb270e3d476": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,7 +2329,7 @@ "width": null } }, - "18e7a896c7664fedb644e826ebfdd979": { + "349d6ee3fe994a77ad729d53b7f41ded": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2401,57 +2382,41 @@ "width": null } }, - "1d8add519b1047559278354180f802a7": { + "36a9b636abf14a37a602e2880614146a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_abf94e3164e54659bf335bec45de1860", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dccc93e1367c44848c20611567c11a51", - "tabbable": null, - "tooltip": null, - "value": 7.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1ed7617f879847979167315d314a31ed": { + "3b1bb5bc9e73429d9d789f44a451bae2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_991b6ae4d3d64547be812c74de806b08", - "IPY_MODEL_9225b218abe04efabe87ff1344d4bebf", - "IPY_MODEL_d9f84f64929449d59a8413396cda8b5b" - ], - "layout": "IPY_MODEL_eafff201bea84307b2c21e20e5e7eae1", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1fc709fb3b8b437ca4074a25a5e29d50": { + "3b8be4c541aa442592db2470b74e90ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2466,41 +2431,18 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29bba12409a9455d9afd53f97dcbc512", + "layout": "IPY_MODEL_67aee0d1bdc241de942a18d250abde0d", "placeholder": "​", - "style": "IPY_MODEL_a3f260b3c29f43bd886d7786cef61138", + "style": "IPY_MODEL_090b1de60819463abc3ad25011937af5", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "value": " 50/50 [00:05<00:00,  9.80it/s]" } }, - "2712050a0a524d8b961e95c22812dd58": { - "model_module": "@jupyter-widgets/controls", + "3f135927f582409e967b53cb2f1d2042": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5881fb1feed64df6a382434c6565d34b", - "placeholder": "​", - "style": "IPY_MODEL_a0dcb862fcfd4e87ae8637df9698f0a2", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.79it/s]" - } - }, - "29bba12409a9455d9afd53f97dcbc512": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -2550,23 +2492,30 @@ "width": null } }, - "2ea0818dd4f54c8dbe62280b5040b66d": { + "432eb75da12a42acb337a242d19442d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_daec9da029354970886c65e48fae7895", + "placeholder": "​", + "style": "IPY_MODEL_a5ebf02f6559407a9eaca07852b1c427", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" } }, - "340231fb94f24359aff70e3dc8fe9936": { + "454fcdd9458e47bfa8fa5a44c206fcb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2619,48 +2568,33 @@ "width": null } }, - "3682290131844fff9c26b8534116467b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4ab8396f37f84f6885623cb4841a537b": { + "482868b24e2444cab5ac1f0aa9f96ffc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_06154637606042bf9873f237ff502915", - "placeholder": "​", - "style": "IPY_MODEL_557dc092c5b747808e31117c9897da09", + "layout": "IPY_MODEL_023c7da18e424c3883eca2e16626ce7f", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa424e7743234229a020e325f31202fb", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "value": 7.0 } }, - "4b65ee22f0cc4308a11272e7b277ea0a": { + "4dbc5fcd543f43feb30c155bf0f058e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2713,43 +2647,7 @@ "width": null } }, - "557dc092c5b747808e31117c9897da09": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5653b0590454431aa4e9e9a4a1dc0d7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5881fb1feed64df6a382434c6565d34b": { + "5409d2f49dca4cbeb4f317d8aa46ccf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2802,25 +2700,30 @@ "width": null } }, - "591374450f744f378405fc409f1f5f68": { + "54dd94e9fb8b40d99e3461d2b59a9fea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9cb24280dc444e898cf722661c9629ce", + "placeholder": "​", + "style": "IPY_MODEL_24d4290400d543cca86065a4fbc5b9ba", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "591d1112ee504f8fbca1e8aa1cb78a4d": { + "58e53eb1d3b74dbabdda9218003d290e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2835,83 +2738,76 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5c1c78dda42b44019e7e06cf559a30e5", - "IPY_MODEL_1756a59ac4b24fe28a98c60c0e5694fd", - "IPY_MODEL_2712050a0a524d8b961e95c22812dd58" + "IPY_MODEL_ea87e8e0c79643a999c896710a7b8792", + "IPY_MODEL_878599986c3e434797dc3d8347ec1b4a", + "IPY_MODEL_cd952c51c4cf4754ac8dbf022ed5da35" ], - "layout": "IPY_MODEL_7de68b56898649b2908052b9225b4492", + "layout": "IPY_MODEL_3283aeca9a6a4cbcb0da1eb270e3d476", "tabbable": null, "tooltip": null } }, - "5c1c78dda42b44019e7e06cf559a30e5": { + "5c9b2a8175b940b095b744707bcb01dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_03b18274f661420f8c77922f37e66e89", - "placeholder": "​", - "style": "IPY_MODEL_f20f1c117b26427dad6b44d574447196", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5e0a802df05845e288a3d00ebf2f86c5": { + "6263cf40fe84408a83ea1f274ebc1e60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0884bc9eaac549769005e300e318f10c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ce4daad5cb3f4c749a10466f837cc2b5", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "60b217c8dda04bc0adf981ed612055a2": { + "63e22013b11d44788247c2e6e6e71364": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e72581f3c51a4ebbbdf921e555ed5e2e", + "IPY_MODEL_09d5e7bc9eab49e9b97c5cdba0a1578b", + "IPY_MODEL_3b8be4c541aa442592db2470b74e90ad" + ], + "layout": "IPY_MODEL_3f135927f582409e967b53cb2f1d2042", + "tabbable": null, + "tooltip": null } }, - "73cd858dafe241f19f98c1984b156ee7": { + "67aee0d1bdc241de942a18d250abde0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2964,7 +2860,80 @@ "width": null } }, - "7de68b56898649b2908052b9225b4492": { + "6849590b787f421283202c404717945e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5409d2f49dca4cbeb4f317d8aa46ccf8", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_91311a9db9144b9aa10e558e189cd4a0", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "690b859c431e478683cfa895855ea449": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_77ab1d685ee248379b335bb91dece74f", + "IPY_MODEL_a31f060f5f424533905faad58462bb52", + "IPY_MODEL_003cda49480d4fd5aa4f036f5db5d6e9" + ], + "layout": "IPY_MODEL_b4b2cb2adc6a4f9c9d99394dcdc7cebe", + "tabbable": null, + "tooltip": null + } + }, + "77ab1d685ee248379b335bb91dece74f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_01553c4cc5614aeb8415e2eb5ce5b8ed", + "placeholder": "​", + "style": "IPY_MODEL_3b1bb5bc9e73429d9d789f44a451bae2", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "7acf9ef20737443e9b8dcbfc21a46927": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3017,24 +2986,76 @@ "width": null } }, - "7e21f8915af341958d018beb5b76b4e8": { + "7b47b3587b294c218154475b1bd729d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_54dd94e9fb8b40d99e3461d2b59a9fea", + "IPY_MODEL_f61ae27fb96c4ac794367539d32aaee6", + "IPY_MODEL_0934764f32164e9bbd42e10008a5d7dc" + ], + "layout": "IPY_MODEL_c2c6cc0c4b9d4f02b9547d22829dc155", + "tabbable": null, + "tooltip": null } }, - "7e3d8b6ee9fe4768a1943171af85f718": { - "model_module": "@jupyter-widgets/base", + "84e85818360e404da06e1195aec4637e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "878599986c3e434797dc3d8347ec1b4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3e147ed2d574cfd9e0e8c16abc3ee75", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_36a9b636abf14a37a602e2880614146a", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "8b926d8b87db4b57bd13370ea58cf1f6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -3086,7 +3107,41 @@ "width": null } }, - "806b657a868148a2bb70659525ef3b3a": { + "8ed5dece7b584ef88c91fe936768486d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "91311a9db9144b9aa10e558e189cd4a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "931391719e964afa8404ae29bcf23864": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3139,7 +3194,7 @@ "width": null } }, - "81ee37e85e9d46a1a11907b98a985e33": { + "9cb24280dc444e898cf722661c9629ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3192,96 +3247,60 @@ "width": null } }, - "878d51762ee44c02a197f0d7e85e6f5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1fc709fb3b8b437ca4074a25a5e29d50", - "IPY_MODEL_ce86e00e95104336bb5757d4092e9a86", - "IPY_MODEL_b24e37b6937641678a55b91cb428e3cc" - ], - "layout": "IPY_MODEL_07d97bcdbef84eca90f0d1a219529cae", - "tabbable": null, - "tooltip": null - } - }, - "8fa859fc795b435a928a84bfbd774f4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_340231fb94f24359aff70e3dc8fe9936", - "placeholder": "​", - "style": "IPY_MODEL_591374450f744f378405fc409f1f5f68", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" - } - }, - "903500b82ec5453b82c19b72f4b23c24": { - "model_module": "@jupyter-widgets/controls", + "9ee5ebc7814c455baf26064aa901a494": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9225b218abe04efabe87ff1344d4bebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b65ee22f0cc4308a11272e7b277ea0a", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_deb03982d40d402aa059872c0ad125d7", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9622db9ae0ff4ddfbb7e447101eb09a7": { + "a22782d28f2a480a8928d301da6604f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3334,30 +3353,33 @@ "width": null } }, - "991b6ae4d3d64547be812c74de806b08": { + "a31f060f5f424533905faad58462bb52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b9856c348a744a73b45bafa55254a209", - "placeholder": "​", - "style": "IPY_MODEL_adff3705e80e433ebd405b9569ed7e04", + "layout": "IPY_MODEL_349d6ee3fe994a77ad729d53b7f41ded", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ddf5a0d223314a2ea3a85f4929b8a021", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "value": 7.0 } }, - "a0dcb862fcfd4e87ae8637df9698f0a2": { + "a405194e30d148a08eb08102914cbfba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3375,7 +3397,7 @@ "text_color": null } }, - "a3f260b3c29f43bd886d7786cef61138": { + "a5ebf02f6559407a9eaca07852b1c427": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3393,7 +3415,7 @@ "text_color": null } }, - "abf94e3164e54659bf335bec45de1860": { + "a8c944d022ba4ffebddcb245c6c7d653": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3446,48 +3468,47 @@ "width": null } }, - "adff3705e80e433ebd405b9569ed7e04": { + "aa424e7743234229a020e325f31202fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b24e37b6937641678a55b91cb428e3cc": { + "ac618b2d864a40b2a628802392854eab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_074d5ba8729d4650a31f37a91177d875", - "placeholder": "​", - "style": "IPY_MODEL_3682290131844fff9c26b8534116467b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e840529660dd449d97ecde263592b8e3", + "IPY_MODEL_482868b24e2444cab5ac1f0aa9f96ffc", + "IPY_MODEL_432eb75da12a42acb337a242d19442d8" + ], + "layout": "IPY_MODEL_a8c944d022ba4ffebddcb245c6c7d653", "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "tooltip": null } }, - "b5d301e1df9043edb84538d6d758f84c": { + "b4b2cb2adc6a4f9c9d99394dcdc7cebe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3540,86 +3561,25 @@ "width": null } }, - "b9856c348a744a73b45bafa55254a209": { - "model_module": "@jupyter-widgets/base", + "b661eba4067d4e5ab460d8f26c8210e7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bb5c5666822a49cca7386197ba8d389f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_185746064a794b53a87d9dcf95c7a98c", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_903500b82ec5453b82c19b72f4b23c24", - "tabbable": null, - "tooltip": null, - "value": 7.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c6fc3e5a3d4c4a5f8fb233c714097062": { + "be0fc8f89d6a4b77a085888eb3b175d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3634,99 +3594,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_73cd858dafe241f19f98c1984b156ee7", + "layout": "IPY_MODEL_7acf9ef20737443e9b8dcbfc21a46927", "placeholder": "​", - "style": "IPY_MODEL_5653b0590454431aa4e9e9a4a1dc0d7b", + "style": "IPY_MODEL_c590be36d4954ecaa3b2bbc36e15f9cf", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" - } - }, - "ce4daad5cb3f4c749a10466f837cc2b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 50/50 [00:05<00:00,  9.86it/s]" } }, - "ce86e00e95104336bb5757d4092e9a86": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d97417a9e4c243d1abefcada85c778db", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e21f8915af341958d018beb5b76b4e8", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "d5bfd334cceb49e0a29c76813e3c7254": { - "model_module": "@jupyter-widgets/controls", + "c205a5c270d94b08b455596bb5a3f641": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d90d91829bf5492c9b60482246243816": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_160e936612184dc48ee2bbea4b87b707", - "IPY_MODEL_1d8add519b1047559278354180f802a7", - "IPY_MODEL_8fa859fc795b435a928a84bfbd774f4c" - ], - "layout": "IPY_MODEL_18e7a896c7664fedb644e826ebfdd979", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d97417a9e4c243d1abefcada85c778db": { + "c2c6cc0c4b9d4f02b9547d22829dc155": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3779,30 +3708,43 @@ "width": null } }, - "d9f84f64929449d59a8413396cda8b5b": { + "c590be36d4954ecaa3b2bbc36e15f9cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e3d8b6ee9fe4768a1943171af85f718", - "placeholder": "​", - "style": "IPY_MODEL_fbfabc656ebf4aa6acffacafdbcae7e1", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.77it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cceeb03436854c30bb382fe0c100c2bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "da461e619891455faa9a8c2c15e7c307": { + "cd952c51c4cf4754ac8dbf022ed5da35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3817,55 +3759,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_81ee37e85e9d46a1a11907b98a985e33", + "layout": "IPY_MODEL_8b926d8b87db4b57bd13370ea58cf1f6", "placeholder": "​", - "style": "IPY_MODEL_60b217c8dda04bc0adf981ed612055a2", + "style": "IPY_MODEL_b661eba4067d4e5ab460d8f26c8210e7", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "dccc93e1367c44848c20611567c11a51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 7/7 [00:05<00:00,  1.33it/s]" } }, - "dd5a2b417e3344658e8085ccaac7f030": { + "cda5c6f6caeb4f658082ad1c8880e076": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da461e619891455faa9a8c2c15e7c307", - "IPY_MODEL_bb5c5666822a49cca7386197ba8d389f", - "IPY_MODEL_c6fc3e5a3d4c4a5f8fb233c714097062" - ], - "layout": "IPY_MODEL_806b657a868148a2bb70659525ef3b3a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_127fec0dcb96469c9c53edbd54936769", + "placeholder": "​", + "style": "IPY_MODEL_6263cf40fe84408a83ea1f274ebc1e60", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "deb03982d40d402aa059872c0ad125d7": { + "d26b3b25dc8646deb7f7cbf24443577d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3881,7 +3806,7 @@ "description_width": "" } }, - "e69c7448858f499d9a7ce61f5d5619a1": { + "daec9da029354970886c65e48fae7895": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3934,7 +3859,23 @@ "width": null } }, - "eafff201bea84307b2c21e20e5e7eae1": { + "ddf5a0d223314a2ea3a85f4929b8a021": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e3e147ed2d574cfd9e0e8c16abc3ee75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3987,40 +3928,99 @@ "width": null } }, - "f20f1c117b26427dad6b44d574447196": { + "e72581f3c51a4ebbbdf921e555ed5e2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dbc5fcd543f43feb30c155bf0f058e1", + "placeholder": "​", + "style": "IPY_MODEL_a405194e30d148a08eb08102914cbfba", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "fbfabc656ebf4aa6acffacafdbcae7e1": { + "e840529660dd449d97ecde263592b8e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a22782d28f2a480a8928d301da6604f4", + "placeholder": "​", + "style": "IPY_MODEL_cceeb03436854c30bb382fe0c100c2bd", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "ea87e8e0c79643a999c896710a7b8792": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_454fcdd9458e47bfa8fa5a44c206fcb3", + "placeholder": "​", + "style": "IPY_MODEL_8ed5dece7b584ef88c91fe936768486d", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "f61ae27fb96c4ac794367539d32aaee6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ee5ebc7814c455baf26064aa901a494", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2469412d11404237880733a58e502569", + "tabbable": null, + "tooltip": null, + "value": 50.0 } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index a26808f97..f55a91905 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1136,7 +1136,7 @@

Functionality 2: Specifying nondefault arguments
-
+

@@ -1532,7 +1532,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"a477c45ded8645078972cf6f21af2f5e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9b7a90ba491d416cb4b0984b29382308": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7ceba6a9ff234fbea09df2ca40cd4ac3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a477c45ded8645078972cf6f21af2f5e", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9b7a90ba491d416cb4b0984b29382308", "tabbable": null, "tooltip": null, "value": 132.0}}, "6460d7d7124b414eaf7a36d031c1b24d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54ceefbed56f47acb2e1c837c8c4d5fa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8785bc955d5347d1bc38f67e9f02c828": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6460d7d7124b414eaf7a36d031c1b24d", "placeholder": "\u200b", "style": "IPY_MODEL_54ceefbed56f47acb2e1c837c8c4d5fa", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "476b4641b4084c1387103f0e5660580f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca4f8b6fd53648f5a198c383f976662a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8af834180c3444c59c627ca469f36bec": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_476b4641b4084c1387103f0e5660580f", "placeholder": "\u200b", "style": "IPY_MODEL_ca4f8b6fd53648f5a198c383f976662a", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713547.56\u2007examples/s]"}}, "af85ac3b5243481ea0ae82114ca05b76": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "461629498ae84286bba8ad4bdbc0d062": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_8785bc955d5347d1bc38f67e9f02c828", "IPY_MODEL_7ceba6a9ff234fbea09df2ca40cd4ac3", "IPY_MODEL_8af834180c3444c59c627ca469f36bec"], "layout": "IPY_MODEL_af85ac3b5243481ea0ae82114ca05b76", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"6042ee3853834a3f98a77b4348678980": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd4dc630750649d5a99e28de873e2e58": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7fc223e421df4b63a990b1b51ad59e4a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6042ee3853834a3f98a77b4348678980", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fd4dc630750649d5a99e28de873e2e58", "tabbable": null, "tooltip": null, "value": 132.0}}, "11d9ffa3e26545198ac985101adedb46": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "20cd3afc55be420b9159cbb92ed1063b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b40e8b57c83c4b61a0e83f26f899863c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_11d9ffa3e26545198ac985101adedb46", "placeholder": "\u200b", "style": "IPY_MODEL_20cd3afc55be420b9159cbb92ed1063b", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "3ef4c5f05301418f8dea9f34b84003ab": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2f295174d6fe4ef28a687af3f4612ef6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b90cf3f03d374af08861ec5b4a4965fc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3ef4c5f05301418f8dea9f34b84003ab", "placeholder": "\u200b", "style": "IPY_MODEL_2f295174d6fe4ef28a687af3f4612ef6", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200711909.48\u2007examples/s]"}}, "1a73aa9dfb644777affa0318eca169ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9c5b31081b541bebfd320d4af6df565": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b40e8b57c83c4b61a0e83f26f899863c", "IPY_MODEL_7fc223e421df4b63a990b1b51ad59e4a", "IPY_MODEL_b90cf3f03d374af08861ec5b4a4965fc"], "layout": "IPY_MODEL_1a73aa9dfb644777affa0318eca169ca", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index c93d8b93b..8859494f0 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:41.806947Z", - "iopub.status.busy": "2024-05-23T02:39:41.806465Z", - "iopub.status.idle": "2024-05-23T02:39:42.975009Z", - "shell.execute_reply": "2024-05-23T02:39:42.974459Z" + "iopub.execute_input": "2024-05-23T15:13:01.982363Z", + "iopub.status.busy": "2024-05-23T15:13:01.982194Z", + "iopub.status.idle": "2024-05-23T15:13:03.125623Z", + "shell.execute_reply": "2024-05-23T15:13:03.125077Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:42.977401Z", - "iopub.status.busy": "2024-05-23T02:39:42.977075Z", - "iopub.status.idle": "2024-05-23T02:39:42.980161Z", - "shell.execute_reply": "2024-05-23T02:39:42.979640Z" + "iopub.execute_input": "2024-05-23T15:13:03.128117Z", + "iopub.status.busy": "2024-05-23T15:13:03.127711Z", + "iopub.status.idle": "2024-05-23T15:13:03.130770Z", + "shell.execute_reply": "2024-05-23T15:13:03.130224Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:42.982303Z", - "iopub.status.busy": "2024-05-23T02:39:42.981981Z", - "iopub.status.idle": "2024-05-23T02:39:42.991501Z", - "shell.execute_reply": "2024-05-23T02:39:42.990923Z" + "iopub.execute_input": "2024-05-23T15:13:03.133141Z", + "iopub.status.busy": "2024-05-23T15:13:03.132751Z", + "iopub.status.idle": "2024-05-23T15:13:03.141674Z", + "shell.execute_reply": "2024-05-23T15:13:03.141124Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:42.993623Z", - "iopub.status.busy": "2024-05-23T02:39:42.993312Z", - "iopub.status.idle": "2024-05-23T02:39:42.998648Z", - "shell.execute_reply": "2024-05-23T02:39:42.998097Z" + "iopub.execute_input": "2024-05-23T15:13:03.143781Z", + "iopub.status.busy": "2024-05-23T15:13:03.143608Z", + "iopub.status.idle": "2024-05-23T15:13:03.148101Z", + "shell.execute_reply": "2024-05-23T15:13:03.147682Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:43.001035Z", - "iopub.status.busy": "2024-05-23T02:39:43.000695Z", - "iopub.status.idle": "2024-05-23T02:39:43.186253Z", - "shell.execute_reply": "2024-05-23T02:39:43.185685Z" + "iopub.execute_input": "2024-05-23T15:13:03.150235Z", + "iopub.status.busy": "2024-05-23T15:13:03.149900Z", + "iopub.status.idle": "2024-05-23T15:13:03.331294Z", + "shell.execute_reply": "2024-05-23T15:13:03.330683Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:43.188635Z", - "iopub.status.busy": "2024-05-23T02:39:43.188294Z", - "iopub.status.idle": "2024-05-23T02:39:43.565644Z", - "shell.execute_reply": "2024-05-23T02:39:43.565074Z" + "iopub.execute_input": "2024-05-23T15:13:03.333781Z", + "iopub.status.busy": "2024-05-23T15:13:03.333475Z", + "iopub.status.idle": "2024-05-23T15:13:03.700850Z", + "shell.execute_reply": "2024-05-23T15:13:03.700262Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:43.567864Z", - "iopub.status.busy": "2024-05-23T02:39:43.567675Z", - "iopub.status.idle": "2024-05-23T02:39:43.591163Z", - "shell.execute_reply": "2024-05-23T02:39:43.590727Z" + "iopub.execute_input": "2024-05-23T15:13:03.703132Z", + "iopub.status.busy": "2024-05-23T15:13:03.702776Z", + "iopub.status.idle": "2024-05-23T15:13:03.725692Z", + "shell.execute_reply": "2024-05-23T15:13:03.725125Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:43.593178Z", - "iopub.status.busy": "2024-05-23T02:39:43.592996Z", - "iopub.status.idle": "2024-05-23T02:39:43.604204Z", - "shell.execute_reply": "2024-05-23T02:39:43.603756Z" + "iopub.execute_input": "2024-05-23T15:13:03.727836Z", + "iopub.status.busy": "2024-05-23T15:13:03.727649Z", + "iopub.status.idle": "2024-05-23T15:13:03.738581Z", + "shell.execute_reply": "2024-05-23T15:13:03.738117Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:43.606174Z", - "iopub.status.busy": "2024-05-23T02:39:43.605997Z", - "iopub.status.idle": "2024-05-23T02:39:45.233822Z", - "shell.execute_reply": "2024-05-23T02:39:45.233184Z" + "iopub.execute_input": "2024-05-23T15:13:03.740471Z", + "iopub.status.busy": "2024-05-23T15:13:03.740299Z", + "iopub.status.idle": "2024-05-23T15:13:05.338002Z", + "shell.execute_reply": "2024-05-23T15:13:05.337455Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.236498Z", - "iopub.status.busy": "2024-05-23T02:39:45.235902Z", - "iopub.status.idle": "2024-05-23T02:39:45.259241Z", - "shell.execute_reply": "2024-05-23T02:39:45.258639Z" + "iopub.execute_input": "2024-05-23T15:13:05.340438Z", + "iopub.status.busy": "2024-05-23T15:13:05.339995Z", + "iopub.status.idle": "2024-05-23T15:13:05.361380Z", + "shell.execute_reply": "2024-05-23T15:13:05.360935Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.261636Z", - "iopub.status.busy": "2024-05-23T02:39:45.261204Z", - "iopub.status.idle": "2024-05-23T02:39:45.283241Z", - "shell.execute_reply": "2024-05-23T02:39:45.282603Z" + "iopub.execute_input": "2024-05-23T15:13:05.363324Z", + "iopub.status.busy": "2024-05-23T15:13:05.363151Z", + "iopub.status.idle": "2024-05-23T15:13:05.382736Z", + "shell.execute_reply": "2024-05-23T15:13:05.382085Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.285372Z", - "iopub.status.busy": "2024-05-23T02:39:45.285175Z", - "iopub.status.idle": "2024-05-23T02:39:45.299592Z", - "shell.execute_reply": "2024-05-23T02:39:45.299021Z" + "iopub.execute_input": "2024-05-23T15:13:05.384962Z", + "iopub.status.busy": "2024-05-23T15:13:05.384535Z", + "iopub.status.idle": "2024-05-23T15:13:05.399326Z", + "shell.execute_reply": "2024-05-23T15:13:05.398755Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.301578Z", - "iopub.status.busy": "2024-05-23T02:39:45.301405Z", - "iopub.status.idle": "2024-05-23T02:39:45.320307Z", - "shell.execute_reply": "2024-05-23T02:39:45.319772Z" + "iopub.execute_input": "2024-05-23T15:13:05.401526Z", + "iopub.status.busy": "2024-05-23T15:13:05.401345Z", + "iopub.status.idle": "2024-05-23T15:13:05.422119Z", + "shell.execute_reply": "2024-05-23T15:13:05.421562Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "461629498ae84286bba8ad4bdbc0d062", + "model_id": "b9c5b31081b541bebfd320d4af6df565", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.322340Z", - "iopub.status.busy": "2024-05-23T02:39:45.322043Z", - "iopub.status.idle": "2024-05-23T02:39:45.336536Z", - "shell.execute_reply": "2024-05-23T02:39:45.336085Z" + "iopub.execute_input": "2024-05-23T15:13:05.424552Z", + "iopub.status.busy": "2024-05-23T15:13:05.424228Z", + "iopub.status.idle": "2024-05-23T15:13:05.438967Z", + "shell.execute_reply": "2024-05-23T15:13:05.438497Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.338674Z", - "iopub.status.busy": "2024-05-23T02:39:45.338286Z", - "iopub.status.idle": "2024-05-23T02:39:45.343931Z", - "shell.execute_reply": "2024-05-23T02:39:45.343509Z" + "iopub.execute_input": "2024-05-23T15:13:05.440908Z", + "iopub.status.busy": "2024-05-23T15:13:05.440649Z", + "iopub.status.idle": "2024-05-23T15:13:05.446601Z", + "shell.execute_reply": "2024-05-23T15:13:05.446039Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.345896Z", - "iopub.status.busy": "2024-05-23T02:39:45.345598Z", - "iopub.status.idle": "2024-05-23T02:39:45.363619Z", - "shell.execute_reply": "2024-05-23T02:39:45.363065Z" + "iopub.execute_input": "2024-05-23T15:13:05.448807Z", + "iopub.status.busy": "2024-05-23T15:13:05.448375Z", + "iopub.status.idle": "2024-05-23T15:13:05.465730Z", + "shell.execute_reply": "2024-05-23T15:13:05.465285Z" } }, "outputs": [ @@ -1431,31 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "461629498ae84286bba8ad4bdbc0d062": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8785bc955d5347d1bc38f67e9f02c828", - "IPY_MODEL_7ceba6a9ff234fbea09df2ca40cd4ac3", - "IPY_MODEL_8af834180c3444c59c627ca469f36bec" - ], - "layout": "IPY_MODEL_af85ac3b5243481ea0ae82114ca05b76", - "tabbable": null, - "tooltip": null - } - }, - "476b4641b4084c1387103f0e5660580f": { + "11d9ffa3e26545198ac985101adedb46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,25 +1484,7 @@ "width": null } }, - "54ceefbed56f47acb2e1c837c8c4d5fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6460d7d7124b414eaf7a36d031c1b24d": { + "1a73aa9dfb644777affa0318eca169ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1579,95 +1537,43 @@ "width": null } }, - "7ceba6a9ff234fbea09df2ca40cd4ac3": { + "20cd3afc55be420b9159cbb92ed1063b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a477c45ded8645078972cf6f21af2f5e", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b7a90ba491d416cb4b0984b29382308", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "8785bc955d5347d1bc38f67e9f02c828": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6460d7d7124b414eaf7a36d031c1b24d", - "placeholder": "​", - "style": "IPY_MODEL_54ceefbed56f47acb2e1c837c8c4d5fa", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "8af834180c3444c59c627ca469f36bec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_476b4641b4084c1387103f0e5660580f", - "placeholder": "​", - "style": "IPY_MODEL_ca4f8b6fd53648f5a198c383f976662a", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13547.56 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9b7a90ba491d416cb4b0984b29382308": { + "2f295174d6fe4ef28a687af3f4612ef6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a477c45ded8645078972cf6f21af2f5e": { + "3ef4c5f05301418f8dea9f34b84003ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1720,7 +1626,7 @@ "width": null } }, - "af85ac3b5243481ea0ae82114ca05b76": { + "6042ee3853834a3f98a77b4348678980": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1773,22 +1679,116 @@ "width": null } }, - "ca4f8b6fd53648f5a198c383f976662a": { + "7fc223e421df4b63a990b1b51ad59e4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6042ee3853834a3f98a77b4348678980", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fd4dc630750649d5a99e28de873e2e58", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "b40e8b57c83c4b61a0e83f26f899863c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_11d9ffa3e26545198ac985101adedb46", + "placeholder": "​", + "style": "IPY_MODEL_20cd3afc55be420b9159cbb92ed1063b", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "b90cf3f03d374af08861ec5b4a4965fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ef4c5f05301418f8dea9f34b84003ab", + "placeholder": "​", + "style": "IPY_MODEL_2f295174d6fe4ef28a687af3f4612ef6", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 11909.48 examples/s]" + } + }, + "b9c5b31081b541bebfd320d4af6df565": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b40e8b57c83c4b61a0e83f26f899863c", + "IPY_MODEL_7fc223e421df4b63a990b1b51ad59e4a", + "IPY_MODEL_b90cf3f03d374af08861ec5b4a4965fc" + ], + "layout": "IPY_MODEL_1a73aa9dfb644777affa0318eca169ca", + "tabbable": null, + "tooltip": null + } + }, + "fd4dc630750649d5a99e28de873e2e58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index ced5f3057..9d678dc59 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:47.976563Z", - "iopub.status.busy": "2024-05-23T02:39:47.976094Z", - "iopub.status.idle": "2024-05-23T02:39:49.150336Z", - "shell.execute_reply": "2024-05-23T02:39:49.149777Z" + "iopub.execute_input": "2024-05-23T15:13:08.011863Z", + "iopub.status.busy": "2024-05-23T15:13:08.011451Z", + "iopub.status.idle": "2024-05-23T15:13:09.157928Z", + "shell.execute_reply": "2024-05-23T15:13:09.157381Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.152989Z", - "iopub.status.busy": "2024-05-23T02:39:49.152484Z", - "iopub.status.idle": "2024-05-23T02:39:49.155660Z", - "shell.execute_reply": "2024-05-23T02:39:49.155117Z" + "iopub.execute_input": "2024-05-23T15:13:09.160433Z", + "iopub.status.busy": "2024-05-23T15:13:09.160019Z", + "iopub.status.idle": "2024-05-23T15:13:09.163038Z", + "shell.execute_reply": "2024-05-23T15:13:09.162585Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.157937Z", - "iopub.status.busy": "2024-05-23T02:39:49.157497Z", - "iopub.status.idle": "2024-05-23T02:39:49.167009Z", - "shell.execute_reply": "2024-05-23T02:39:49.166474Z" + "iopub.execute_input": "2024-05-23T15:13:09.165342Z", + "iopub.status.busy": "2024-05-23T15:13:09.164920Z", + "iopub.status.idle": "2024-05-23T15:13:09.174292Z", + "shell.execute_reply": "2024-05-23T15:13:09.173734Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.168994Z", - "iopub.status.busy": "2024-05-23T02:39:49.168672Z", - "iopub.status.idle": "2024-05-23T02:39:49.173139Z", - "shell.execute_reply": "2024-05-23T02:39:49.172727Z" + "iopub.execute_input": "2024-05-23T15:13:09.176442Z", + "iopub.status.busy": "2024-05-23T15:13:09.176115Z", + "iopub.status.idle": "2024-05-23T15:13:09.180706Z", + "shell.execute_reply": "2024-05-23T15:13:09.180245Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.175281Z", - "iopub.status.busy": "2024-05-23T02:39:49.174953Z", - "iopub.status.idle": "2024-05-23T02:39:49.357764Z", - "shell.execute_reply": "2024-05-23T02:39:49.357137Z" + "iopub.execute_input": "2024-05-23T15:13:09.182843Z", + "iopub.status.busy": "2024-05-23T15:13:09.182524Z", + "iopub.status.idle": "2024-05-23T15:13:09.365121Z", + "shell.execute_reply": "2024-05-23T15:13:09.364638Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.360174Z", - "iopub.status.busy": "2024-05-23T02:39:49.359984Z", - "iopub.status.idle": "2024-05-23T02:39:49.728780Z", - "shell.execute_reply": "2024-05-23T02:39:49.728202Z" + "iopub.execute_input": "2024-05-23T15:13:09.367594Z", + "iopub.status.busy": "2024-05-23T15:13:09.367314Z", + "iopub.status.idle": "2024-05-23T15:13:09.737215Z", + "shell.execute_reply": "2024-05-23T15:13:09.736617Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.731101Z", - "iopub.status.busy": "2024-05-23T02:39:49.730816Z", - "iopub.status.idle": "2024-05-23T02:39:49.733671Z", - "shell.execute_reply": "2024-05-23T02:39:49.733115Z" + "iopub.execute_input": "2024-05-23T15:13:09.739491Z", + "iopub.status.busy": "2024-05-23T15:13:09.739138Z", + "iopub.status.idle": "2024-05-23T15:13:09.741973Z", + "shell.execute_reply": "2024-05-23T15:13:09.741505Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.735621Z", - "iopub.status.busy": "2024-05-23T02:39:49.735328Z", - "iopub.status.idle": "2024-05-23T02:39:49.769831Z", - "shell.execute_reply": "2024-05-23T02:39:49.769260Z" + "iopub.execute_input": "2024-05-23T15:13:09.744001Z", + "iopub.status.busy": "2024-05-23T15:13:09.743687Z", + "iopub.status.idle": "2024-05-23T15:13:09.778838Z", + "shell.execute_reply": "2024-05-23T15:13:09.778249Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.771808Z", - "iopub.status.busy": "2024-05-23T02:39:49.771507Z", - "iopub.status.idle": "2024-05-23T02:39:51.399954Z", - "shell.execute_reply": "2024-05-23T02:39:51.399278Z" + "iopub.execute_input": "2024-05-23T15:13:09.781000Z", + "iopub.status.busy": "2024-05-23T15:13:09.780574Z", + "iopub.status.idle": "2024-05-23T15:13:11.413802Z", + "shell.execute_reply": "2024-05-23T15:13:11.413175Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.402360Z", - "iopub.status.busy": "2024-05-23T02:39:51.402047Z", - "iopub.status.idle": "2024-05-23T02:39:51.420883Z", - "shell.execute_reply": "2024-05-23T02:39:51.420283Z" + "iopub.execute_input": "2024-05-23T15:13:11.416302Z", + "iopub.status.busy": "2024-05-23T15:13:11.415961Z", + "iopub.status.idle": "2024-05-23T15:13:11.435863Z", + "shell.execute_reply": "2024-05-23T15:13:11.435422Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.423111Z", - "iopub.status.busy": "2024-05-23T02:39:51.422672Z", - "iopub.status.idle": "2024-05-23T02:39:51.429109Z", - "shell.execute_reply": "2024-05-23T02:39:51.428587Z" + "iopub.execute_input": "2024-05-23T15:13:11.437904Z", + "iopub.status.busy": "2024-05-23T15:13:11.437569Z", + "iopub.status.idle": "2024-05-23T15:13:11.444686Z", + "shell.execute_reply": "2024-05-23T15:13:11.444155Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.431022Z", - "iopub.status.busy": "2024-05-23T02:39:51.430844Z", - "iopub.status.idle": "2024-05-23T02:39:51.436824Z", - "shell.execute_reply": "2024-05-23T02:39:51.436372Z" + "iopub.execute_input": "2024-05-23T15:13:11.446883Z", + "iopub.status.busy": "2024-05-23T15:13:11.446583Z", + "iopub.status.idle": "2024-05-23T15:13:11.452444Z", + "shell.execute_reply": "2024-05-23T15:13:11.451995Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.438647Z", - "iopub.status.busy": "2024-05-23T02:39:51.438481Z", - "iopub.status.idle": "2024-05-23T02:39:51.448781Z", - "shell.execute_reply": "2024-05-23T02:39:51.448328Z" + "iopub.execute_input": "2024-05-23T15:13:11.454548Z", + "iopub.status.busy": "2024-05-23T15:13:11.454242Z", + "iopub.status.idle": "2024-05-23T15:13:11.464811Z", + "shell.execute_reply": "2024-05-23T15:13:11.464363Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.450827Z", - "iopub.status.busy": "2024-05-23T02:39:51.450424Z", - "iopub.status.idle": "2024-05-23T02:39:51.459425Z", - "shell.execute_reply": "2024-05-23T02:39:51.458985Z" + "iopub.execute_input": "2024-05-23T15:13:11.466881Z", + "iopub.status.busy": "2024-05-23T15:13:11.466586Z", + "iopub.status.idle": "2024-05-23T15:13:11.475380Z", + "shell.execute_reply": "2024-05-23T15:13:11.474932Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.461476Z", - "iopub.status.busy": "2024-05-23T02:39:51.461156Z", - "iopub.status.idle": "2024-05-23T02:39:51.468004Z", - "shell.execute_reply": "2024-05-23T02:39:51.467459Z" + "iopub.execute_input": "2024-05-23T15:13:11.477419Z", + "iopub.status.busy": "2024-05-23T15:13:11.477115Z", + "iopub.status.idle": "2024-05-23T15:13:11.483852Z", + "shell.execute_reply": "2024-05-23T15:13:11.483370Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.470119Z", - "iopub.status.busy": "2024-05-23T02:39:51.469776Z", - "iopub.status.idle": "2024-05-23T02:39:51.478965Z", - "shell.execute_reply": "2024-05-23T02:39:51.478442Z" + "iopub.execute_input": "2024-05-23T15:13:11.485997Z", + "iopub.status.busy": "2024-05-23T15:13:11.485484Z", + "iopub.status.idle": "2024-05-23T15:13:11.495072Z", + "shell.execute_reply": "2024-05-23T15:13:11.494517Z" } }, "outputs": [ @@ -1574,10 +1574,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.483948Z", - "iopub.status.busy": "2024-05-23T02:39:51.483761Z", - "iopub.status.idle": "2024-05-23T02:39:51.496442Z", - "shell.execute_reply": "2024-05-23T02:39:51.496027Z" + "iopub.execute_input": "2024-05-23T15:13:11.497098Z", + "iopub.status.busy": "2024-05-23T15:13:11.496841Z", + "iopub.status.idle": "2024-05-23T15:13:11.508854Z", + "shell.execute_reply": "2024-05-23T15:13:11.508425Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index 8da3adfec..d81fd641f 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -708,25 +708,25 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1039,7 +1039,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1071,7 +1071,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1103,7 +1103,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1899,35 +1899,35 @@

Dark images - is_dark_issue dark_score + is_dark_issue 34848 - True 0.203922 + True 50270 - True 0.204588 + True 3936 - True 0.213098 + True 733 - True 0.217686 + True 8094 - True 0.230118 + True @@ -2077,7 +2077,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index dd807fcbd..46aed05bb 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:54.213575Z", - "iopub.status.busy": "2024-05-23T02:39:54.213225Z", - "iopub.status.idle": "2024-05-23T02:39:57.053053Z", - "shell.execute_reply": "2024-05-23T02:39:57.052451Z" + "iopub.execute_input": "2024-05-23T15:13:14.178877Z", + "iopub.status.busy": "2024-05-23T15:13:14.178703Z", + "iopub.status.idle": "2024-05-23T15:13:17.006136Z", + "shell.execute_reply": "2024-05-23T15:13:17.005566Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:57.055580Z", - "iopub.status.busy": "2024-05-23T02:39:57.055283Z", - "iopub.status.idle": "2024-05-23T02:39:57.058943Z", - "shell.execute_reply": "2024-05-23T02:39:57.058422Z" + "iopub.execute_input": "2024-05-23T15:13:17.008867Z", + "iopub.status.busy": "2024-05-23T15:13:17.008294Z", + "iopub.status.idle": "2024-05-23T15:13:17.012007Z", + "shell.execute_reply": "2024-05-23T15:13:17.011451Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:57.060990Z", - "iopub.status.busy": "2024-05-23T02:39:57.060686Z", - "iopub.status.idle": "2024-05-23T02:39:59.927643Z", - "shell.execute_reply": "2024-05-23T02:39:59.927162Z" + "iopub.execute_input": "2024-05-23T15:13:17.013953Z", + "iopub.status.busy": "2024-05-23T15:13:17.013687Z", + "iopub.status.idle": "2024-05-23T15:13:20.091774Z", + "shell.execute_reply": "2024-05-23T15:13:20.091313Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "46dc450a32324af0897e4d2275a10b42", + "model_id": "69d759b4cea445b9a973a55108546115", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8272f2f1eb954b40a94d03c3c58fb694", + "model_id": "3a39fcf1c68242258be55654be94880e", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "827acfb18fcc4584a08e02f1acb62f96", + "model_id": "e9c2d308abf54d4d984ae58a82d5078e", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "79aa00d18513465d98593e508c76d1c2", + "model_id": "90681addb12b455a9ba630f4d68088b2", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:59.929923Z", - "iopub.status.busy": "2024-05-23T02:39:59.929616Z", - "iopub.status.idle": "2024-05-23T02:39:59.933496Z", - "shell.execute_reply": "2024-05-23T02:39:59.933004Z" + "iopub.execute_input": "2024-05-23T15:13:20.093846Z", + "iopub.status.busy": "2024-05-23T15:13:20.093654Z", + "iopub.status.idle": "2024-05-23T15:13:20.097621Z", + "shell.execute_reply": "2024-05-23T15:13:20.097181Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:59.935608Z", - "iopub.status.busy": "2024-05-23T02:39:59.935228Z", - "iopub.status.idle": "2024-05-23T02:40:11.107879Z", - "shell.execute_reply": "2024-05-23T02:40:11.107347Z" + "iopub.execute_input": "2024-05-23T15:13:20.099530Z", + "iopub.status.busy": "2024-05-23T15:13:20.099340Z", + "iopub.status.idle": "2024-05-23T15:13:31.423568Z", + "shell.execute_reply": "2024-05-23T15:13:31.423019Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c36a43d56a74bd993ca186131553911", + "model_id": "25487563f91749b897153d9eb325490d", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:11.110526Z", - "iopub.status.busy": "2024-05-23T02:40:11.110095Z", - "iopub.status.idle": "2024-05-23T02:40:29.266302Z", - "shell.execute_reply": "2024-05-23T02:40:29.265709Z" + "iopub.execute_input": "2024-05-23T15:13:31.426592Z", + "iopub.status.busy": "2024-05-23T15:13:31.426156Z", + "iopub.status.idle": "2024-05-23T15:13:49.813258Z", + "shell.execute_reply": "2024-05-23T15:13:49.812619Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:29.269275Z", - "iopub.status.busy": "2024-05-23T02:40:29.269071Z", - "iopub.status.idle": "2024-05-23T02:40:29.274794Z", - "shell.execute_reply": "2024-05-23T02:40:29.274365Z" + "iopub.execute_input": "2024-05-23T15:13:49.816008Z", + "iopub.status.busy": "2024-05-23T15:13:49.815622Z", + "iopub.status.idle": "2024-05-23T15:13:49.821547Z", + "shell.execute_reply": "2024-05-23T15:13:49.821047Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:29.276788Z", - "iopub.status.busy": "2024-05-23T02:40:29.276381Z", - "iopub.status.idle": "2024-05-23T02:40:29.280353Z", - "shell.execute_reply": "2024-05-23T02:40:29.279812Z" + "iopub.execute_input": "2024-05-23T15:13:49.823587Z", + "iopub.status.busy": "2024-05-23T15:13:49.823249Z", + "iopub.status.idle": "2024-05-23T15:13:49.827320Z", + "shell.execute_reply": "2024-05-23T15:13:49.826781Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:29.282652Z", - "iopub.status.busy": "2024-05-23T02:40:29.282248Z", - "iopub.status.idle": "2024-05-23T02:40:29.291399Z", - "shell.execute_reply": "2024-05-23T02:40:29.290863Z" + "iopub.execute_input": "2024-05-23T15:13:49.829689Z", + "iopub.status.busy": "2024-05-23T15:13:49.829257Z", + "iopub.status.idle": "2024-05-23T15:13:49.838222Z", + "shell.execute_reply": "2024-05-23T15:13:49.837683Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:29.293387Z", - "iopub.status.busy": "2024-05-23T02:40:29.293067Z", - "iopub.status.idle": "2024-05-23T02:40:29.319216Z", - "shell.execute_reply": "2024-05-23T02:40:29.318757Z" + "iopub.execute_input": "2024-05-23T15:13:49.840412Z", + "iopub.status.busy": "2024-05-23T15:13:49.839978Z", + "iopub.status.idle": "2024-05-23T15:13:49.867196Z", + "shell.execute_reply": "2024-05-23T15:13:49.866751Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:29.321416Z", - "iopub.status.busy": "2024-05-23T02:40:29.320994Z", - "iopub.status.idle": "2024-05-23T02:41:01.537359Z", - "shell.execute_reply": "2024-05-23T02:41:01.536681Z" + "iopub.execute_input": "2024-05-23T15:13:49.869201Z", + "iopub.status.busy": "2024-05-23T15:13:49.868895Z", + "iopub.status.idle": "2024-05-23T15:14:21.536235Z", + "shell.execute_reply": "2024-05-23T15:14:21.535644Z" } }, "outputs": [ @@ -726,21 +726,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.733\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.787\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.602\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.446\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f55266ef46204d7b9d9c7e1e6177f977", + "model_id": "f14eebd8eb0d4e95bac3630f3fe6d0e9", "version_major": 2, "version_minor": 0 }, @@ -761,7 +761,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a9405206aee4db1bb53ba3959317578", + "model_id": "b56ff307f7824e6e9bcf6a01e2e13370", "version_major": 2, "version_minor": 0 }, @@ -784,21 +784,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.796\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.667\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.594\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.671\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e953b46986f48c2887161d3832d9dc5", + "model_id": "248049c7381c4c2ca21235e34a098f2d", "version_major": 2, "version_minor": 0 }, @@ -819,7 +819,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "538061f8630b4ab1a86173a8c066b7af", + "model_id": "657ef4ecc31347e6ba461199c77ccec4", "version_major": 2, "version_minor": 0 }, @@ -842,21 +842,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.739\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.704\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.475\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.377\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "11fa276859ec45c59be20bc9e882ebfb", + "model_id": "7fa980c5195b462fbcc67f69e5d79e5d", "version_major": 2, "version_minor": 0 }, @@ -877,7 +877,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d79bfe70932b4eec85c02d0733cebf82", + "model_id": "37c18899cb7a47beb783877d59772e95", "version_major": 2, "version_minor": 0 }, @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:41:01.540158Z", - "iopub.status.busy": "2024-05-23T02:41:01.539600Z", - "iopub.status.idle": "2024-05-23T02:41:01.556791Z", - "shell.execute_reply": "2024-05-23T02:41:01.556304Z" + "iopub.execute_input": "2024-05-23T15:14:21.538695Z", + "iopub.status.busy": "2024-05-23T15:14:21.538451Z", + "iopub.status.idle": "2024-05-23T15:14:21.554756Z", + "shell.execute_reply": "2024-05-23T15:14:21.554303Z" } }, "outputs": [], @@ -984,10 +984,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:41:01.559175Z", - "iopub.status.busy": "2024-05-23T02:41:01.558839Z", - "iopub.status.idle": "2024-05-23T02:41:02.028182Z", - "shell.execute_reply": "2024-05-23T02:41:02.027552Z" + "iopub.execute_input": "2024-05-23T15:14:21.556886Z", + "iopub.status.busy": "2024-05-23T15:14:21.556543Z", + "iopub.status.idle": "2024-05-23T15:14:22.004751Z", + "shell.execute_reply": "2024-05-23T15:14:22.004127Z" } }, "outputs": [], @@ -1007,10 +1007,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:41:02.030736Z", - "iopub.status.busy": "2024-05-23T02:41:02.030554Z", - "iopub.status.idle": "2024-05-23T02:44:36.900661Z", - "shell.execute_reply": "2024-05-23T02:44:36.900096Z" + "iopub.execute_input": "2024-05-23T15:14:22.007264Z", + "iopub.status.busy": "2024-05-23T15:14:22.007091Z", + "iopub.status.idle": "2024-05-23T15:17:57.570513Z", + "shell.execute_reply": "2024-05-23T15:17:57.569864Z" } }, "outputs": [ @@ -1058,7 +1058,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d872aefd3edf47bdbf1e40052fb19a3c", + "model_id": "c6e9e2c8ad734cec8bbdd869c9f46951", "version_major": 2, "version_minor": 0 }, @@ -1097,10 +1097,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:36.903000Z", - "iopub.status.busy": "2024-05-23T02:44:36.902609Z", - "iopub.status.idle": "2024-05-23T02:44:37.356548Z", - "shell.execute_reply": "2024-05-23T02:44:37.355995Z" + "iopub.execute_input": "2024-05-23T15:17:57.573092Z", + "iopub.status.busy": "2024-05-23T15:17:57.572457Z", + "iopub.status.idle": "2024-05-23T15:17:58.023761Z", + "shell.execute_reply": "2024-05-23T15:17:58.023198Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.359415Z", - "iopub.status.busy": "2024-05-23T02:44:37.358990Z", - "iopub.status.idle": "2024-05-23T02:44:37.420499Z", - "shell.execute_reply": "2024-05-23T02:44:37.419943Z" + "iopub.execute_input": "2024-05-23T15:17:58.026606Z", + "iopub.status.busy": "2024-05-23T15:17:58.026079Z", + "iopub.status.idle": "2024-05-23T15:17:58.089095Z", + "shell.execute_reply": "2024-05-23T15:17:58.088523Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.422810Z", - "iopub.status.busy": "2024-05-23T02:44:37.422421Z", - "iopub.status.idle": "2024-05-23T02:44:37.431103Z", - "shell.execute_reply": "2024-05-23T02:44:37.430650Z" + "iopub.execute_input": "2024-05-23T15:17:58.091322Z", + "iopub.status.busy": "2024-05-23T15:17:58.090982Z", + "iopub.status.idle": "2024-05-23T15:17:58.099604Z", + "shell.execute_reply": "2024-05-23T15:17:58.099176Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.433228Z", - "iopub.status.busy": "2024-05-23T02:44:37.432913Z", - "iopub.status.idle": "2024-05-23T02:44:37.437400Z", - "shell.execute_reply": "2024-05-23T02:44:37.436953Z" + "iopub.execute_input": "2024-05-23T15:17:58.101628Z", + "iopub.status.busy": "2024-05-23T15:17:58.101449Z", + "iopub.status.idle": "2024-05-23T15:17:58.105968Z", + "shell.execute_reply": "2024-05-23T15:17:58.105548Z" }, "nbsphinx": "hidden" }, @@ -1530,10 +1530,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.439431Z", - "iopub.status.busy": "2024-05-23T02:44:37.439116Z", - "iopub.status.idle": "2024-05-23T02:44:37.946820Z", - "shell.execute_reply": "2024-05-23T02:44:37.946237Z" + "iopub.execute_input": "2024-05-23T15:17:58.107985Z", + "iopub.status.busy": "2024-05-23T15:17:58.107659Z", + "iopub.status.idle": "2024-05-23T15:17:58.618614Z", + "shell.execute_reply": "2024-05-23T15:17:58.617887Z" } }, "outputs": [ @@ -1568,10 +1568,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.949031Z", - "iopub.status.busy": "2024-05-23T02:44:37.948851Z", - "iopub.status.idle": "2024-05-23T02:44:37.957133Z", - "shell.execute_reply": "2024-05-23T02:44:37.956627Z" + "iopub.execute_input": "2024-05-23T15:17:58.620891Z", + "iopub.status.busy": "2024-05-23T15:17:58.620541Z", + "iopub.status.idle": "2024-05-23T15:17:58.628720Z", + "shell.execute_reply": "2024-05-23T15:17:58.628291Z" } }, "outputs": [ @@ -1738,10 +1738,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.959320Z", - "iopub.status.busy": "2024-05-23T02:44:37.958893Z", - "iopub.status.idle": "2024-05-23T02:44:37.965877Z", - "shell.execute_reply": "2024-05-23T02:44:37.965435Z" + "iopub.execute_input": "2024-05-23T15:17:58.630903Z", + "iopub.status.busy": "2024-05-23T15:17:58.630580Z", + "iopub.status.idle": "2024-05-23T15:17:58.637500Z", + "shell.execute_reply": "2024-05-23T15:17:58.637078Z" }, "nbsphinx": "hidden" }, @@ -1817,10 +1817,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.967741Z", - "iopub.status.busy": "2024-05-23T02:44:37.967567Z", - "iopub.status.idle": "2024-05-23T02:44:38.443664Z", - "shell.execute_reply": "2024-05-23T02:44:38.443094Z" + "iopub.execute_input": "2024-05-23T15:17:58.639392Z", + "iopub.status.busy": "2024-05-23T15:17:58.639091Z", + "iopub.status.idle": "2024-05-23T15:17:59.084952Z", + "shell.execute_reply": "2024-05-23T15:17:59.084352Z" } }, "outputs": [ @@ -1857,10 +1857,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.446171Z", - "iopub.status.busy": "2024-05-23T02:44:38.445841Z", - "iopub.status.idle": "2024-05-23T02:44:38.461262Z", - "shell.execute_reply": "2024-05-23T02:44:38.460798Z" + "iopub.execute_input": "2024-05-23T15:17:59.087500Z", + "iopub.status.busy": "2024-05-23T15:17:59.087139Z", + "iopub.status.idle": "2024-05-23T15:17:59.102651Z", + "shell.execute_reply": "2024-05-23T15:17:59.102136Z" } }, "outputs": [ @@ -2017,10 +2017,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.463407Z", - "iopub.status.busy": "2024-05-23T02:44:38.463066Z", - "iopub.status.idle": "2024-05-23T02:44:38.469023Z", - "shell.execute_reply": "2024-05-23T02:44:38.468592Z" + "iopub.execute_input": "2024-05-23T15:17:59.104738Z", + "iopub.status.busy": "2024-05-23T15:17:59.104405Z", + "iopub.status.idle": "2024-05-23T15:17:59.109761Z", + "shell.execute_reply": "2024-05-23T15:17:59.109326Z" }, "nbsphinx": "hidden" }, @@ -2065,10 +2065,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.470972Z", - "iopub.status.busy": "2024-05-23T02:44:38.470641Z", - "iopub.status.idle": "2024-05-23T02:44:38.864252Z", - "shell.execute_reply": "2024-05-23T02:44:38.863563Z" + "iopub.execute_input": "2024-05-23T15:17:59.111760Z", + "iopub.status.busy": "2024-05-23T15:17:59.111508Z", + "iopub.status.idle": "2024-05-23T15:17:59.495102Z", + "shell.execute_reply": "2024-05-23T15:17:59.494423Z" } }, "outputs": [ @@ -2150,10 +2150,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.866636Z", - "iopub.status.busy": "2024-05-23T02:44:38.866455Z", - "iopub.status.idle": "2024-05-23T02:44:38.874900Z", - "shell.execute_reply": "2024-05-23T02:44:38.874250Z" + "iopub.execute_input": "2024-05-23T15:17:59.497653Z", + "iopub.status.busy": "2024-05-23T15:17:59.497219Z", + "iopub.status.idle": "2024-05-23T15:17:59.506079Z", + "shell.execute_reply": "2024-05-23T15:17:59.505422Z" } }, "outputs": [ @@ -2178,47 +2178,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2281,10 +2281,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.877119Z", - "iopub.status.busy": "2024-05-23T02:44:38.876946Z", - "iopub.status.idle": "2024-05-23T02:44:38.881614Z", - "shell.execute_reply": "2024-05-23T02:44:38.880930Z" + "iopub.execute_input": "2024-05-23T15:17:59.508583Z", + "iopub.status.busy": "2024-05-23T15:17:59.508111Z", + "iopub.status.idle": "2024-05-23T15:17:59.513464Z", + "shell.execute_reply": "2024-05-23T15:17:59.512886Z" }, "nbsphinx": "hidden" }, @@ -2321,10 +2321,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.883788Z", - "iopub.status.busy": "2024-05-23T02:44:38.883619Z", - "iopub.status.idle": "2024-05-23T02:44:39.063532Z", - "shell.execute_reply": "2024-05-23T02:44:39.062922Z" + "iopub.execute_input": "2024-05-23T15:17:59.515549Z", + "iopub.status.busy": "2024-05-23T15:17:59.515376Z", + "iopub.status.idle": "2024-05-23T15:17:59.688523Z", + "shell.execute_reply": "2024-05-23T15:17:59.687834Z" } }, "outputs": [ @@ -2366,10 +2366,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:39.066019Z", - "iopub.status.busy": "2024-05-23T02:44:39.065605Z", - "iopub.status.idle": "2024-05-23T02:44:39.073391Z", - "shell.execute_reply": "2024-05-23T02:44:39.072920Z" + "iopub.execute_input": "2024-05-23T15:17:59.691135Z", + "iopub.status.busy": "2024-05-23T15:17:59.690737Z", + "iopub.status.idle": "2024-05-23T15:17:59.698702Z", + "shell.execute_reply": "2024-05-23T15:17:59.698153Z" } }, "outputs": [ @@ -2455,10 +2455,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:39.075403Z", - "iopub.status.busy": "2024-05-23T02:44:39.075228Z", - "iopub.status.idle": "2024-05-23T02:44:39.276169Z", - "shell.execute_reply": "2024-05-23T02:44:39.275585Z" + "iopub.execute_input": "2024-05-23T15:17:59.700721Z", + "iopub.status.busy": "2024-05-23T15:17:59.700339Z", + "iopub.status.idle": "2024-05-23T15:17:59.882402Z", + "shell.execute_reply": "2024-05-23T15:17:59.881857Z" } }, "outputs": [ @@ -2498,10 +2498,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:39.278452Z", - "iopub.status.busy": "2024-05-23T02:44:39.278112Z", - "iopub.status.idle": "2024-05-23T02:44:39.282601Z", - "shell.execute_reply": "2024-05-23T02:44:39.282060Z" + "iopub.execute_input": "2024-05-23T15:17:59.884676Z", + "iopub.status.busy": "2024-05-23T15:17:59.884318Z", + "iopub.status.idle": "2024-05-23T15:17:59.889882Z", + "shell.execute_reply": "2024-05-23T15:17:59.889425Z" }, "nbsphinx": "hidden" }, @@ -2538,7 +2538,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0253747b632140cba51287f6708a5f7a": { + "030ce355308a4ae19b32b1803b815312": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2591,7 +2591,107 @@ "width": null } }, - "0a827e9ba1334bc1b30b9965e39053b5": { + "0667b778da0644e3bf432c6ed831b021": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0704c92cb83f453099a319c6760a3785": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "07bf3e196fd244339afe75d5bde48e3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "08653f32acef42e2b00105e4a07cceac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0be90ee02b694223bf88ee128a5982dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0d97ea1a5b604d47b3eae52595afaaa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0ec33797bad14055a1de8a8f992c6134": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2644,7 +2744,7 @@ "width": null } }, - "0ab5774997a04bfaa0b61b22afab4c49": { + "0f5ab466e4f646d38207b242988c32b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2697,7 +2797,48 @@ "width": null } }, - "0bbc7bd1edd444e9befe5b55a59c5185": { + "0fd3562f606b4206957d569480d562aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_db184c07f55141f488cce3ec3fc3159d", + "placeholder": "​", + "style": "IPY_MODEL_a1182345e3c5415db85095ad9e812fc0", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "1b5b85bd29334520a5f30f257261210b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1c9a0ec998694ab98f33e462be441b15": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2750,30 +2891,25 @@ "width": null } }, - "0bcb5380d1614e6bb4deca1e736449fd": { + "1d54ef60f40b42d894c0c93aa023f924": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_28d019833f9b4ded87ab37b356450e01", - "placeholder": "​", - "style": "IPY_MODEL_76a0f7b5bd3642c99f961e05530d7774", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.03it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0c3593f9055a48ee9d3d22eeedeb3958": { + "1e824539d22548dea150f1f6eaac4b1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2788,38 +2924,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0bbc7bd1edd444e9befe5b55a59c5185", + "layout": "IPY_MODEL_ca7021afb6824ca39461db6224a967b1", "placeholder": "​", - "style": "IPY_MODEL_f5df588410aa4c0fa6bfd32b8fc2948e", + "style": "IPY_MODEL_ee5d7d4d67ff43599f10436b84389778", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.81it/s]" + "value": "100%" } }, - "0d07481603214313a619811e46e0b5ee": { - "model_module": "@jupyter-widgets/controls", + "202b1a1d2d12458089afedd08ebd46e2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1e2a94eec3c140d29e80b969cf3ad590", - "placeholder": "​", - "style": "IPY_MODEL_f895a633a0b44e93b6b546912885499b", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0f18eca59b634a91b309f694a26b02bc": { + "208e6713136b4a069253f3c771aaba6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2835,41 +3001,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c5fba3c4c814303ab9cf750f4ba0edc", + "layout": "IPY_MODEL_030ce355308a4ae19b32b1803b815312", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_625784f3eed348699f9e2006f3442851", + "style": "IPY_MODEL_35f3ccfabf0d49caac51395e757e280c", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "11fa276859ec45c59be20bc9e882ebfb": { + "21cccf8e4fcd4f2d94689e3eff05b437": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8f8f40d00401482dab317198ac028d0d", - "IPY_MODEL_a26121d1472d4715acdca14598797750", - "IPY_MODEL_0c3593f9055a48ee9d3d22eeedeb3958" - ], - "layout": "IPY_MODEL_80c2738edb094a798ebaba7dfd2e43e4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "136558e15c144724b1fba387b5ada3fc": { + "224edd0c6d1f4706acb4172cafae63ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2922,7 +3082,25 @@ "width": null } }, - "14a5acb52fc14e0b868e20d70bf0e2f3": { + "22da545dee504e11be27c3f2e6f64a8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2340af9d58c945cf8f396b29d51c5971": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2975,49 +3153,99 @@ "width": null } }, - "15d245a73c644d19a25d83fbf5ad58fb": { + "248049c7381c4c2ca21235e34a098f2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1f8120d5198465aa00745a1a862f19a", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5b490ccba02247d3ba1a682013ad9f79", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a580d919ecc46b788a811b3ead20ba7", + "IPY_MODEL_f886827e67fc4f5ebf2091c3e40b2145", + "IPY_MODEL_f8428265fb9b4bdf9292d5b2ca1bb430" + ], + "layout": "IPY_MODEL_7e8091f57a3e48f0beec85edfd7811da", "tabbable": null, - "tooltip": null, - "value": 5175617.0 + "tooltip": null } }, - "16aa42c84f5c426c890836b1c1350361": { + "24c7415f1d494854a1069f363af31ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "19145420cef8409a8d502b4ddb4a91b5": { + "25487563f91749b897153d9eb325490d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9c0569b3288740e7957046e5602051ab", + "IPY_MODEL_bfd20dfe7ced4745b700d16343e6555b", + "IPY_MODEL_cf990872c7e342e89ab836f3533d98a2" + ], + "layout": "IPY_MODEL_7346b6312fb34127a555f3fec2151b56", + "tabbable": null, + "tooltip": null + } + }, + "25bb8e454c1b4f4d935e13896b5d8274": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0e7582bcb8d4e37a597d96f234740de", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cdff082d070b4b489f5b4ea895722379", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "2600127ce03c42078c96ab55a769f409": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3070,7 +3298,23 @@ "width": null } }, - "19a4b16f193d4c4c9c8ffac2444c079f": { + "2675c73049e44c728866da88db8c3923": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "26e2e4b700c047bab29090430c40724a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3088,83 +3332,56 @@ "text_color": null } }, - "1a827cb5ceaa4829b60b0109eff5b0f8": { + "2942fd8cccc94f7a8056af7f51912fc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f9d9c00bb8ef44f29ba72345c4ce268b", - "placeholder": "​", - "style": "IPY_MODEL_48ae14ae9f9449fdb6ea71c6c83dbc93", + "layout": "IPY_MODEL_acb5a4c79d044476b4db375a95477ab0", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0667b778da0644e3bf432c6ed831b021", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": 40.0 } }, - "1e2a94eec3c140d29e80b969cf3ad590": { - "model_module": "@jupyter-widgets/base", + "2bc382ab8e9c427dadfe8be93c514c5a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e2e023f072f472ea9b18be5fada3997", + "placeholder": "​", + "style": "IPY_MODEL_32d59b7fb1c4448fb76bc68f9d93bb7c", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 66.30it/s]" } }, - "1f57bd7390e24e6aa97659f2524f3915": { + "30a6fba3aeff40458e4522b8d25e2460": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3217,129 +3434,64 @@ "width": null } }, - "20451a4e236f42a185fd5fbcd798bf02": { + "32baef6de51b4d538d24f5ba1bf84895": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7fd0e9c45c74cb28ae53d1c9eafe1a8", + "placeholder": "​", + "style": "IPY_MODEL_1b5b85bd29334520a5f30f257261210b", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "20f6a5a130cc4db5a48b35a7237c4b0e": { - "model_module": "@jupyter-widgets/base", + "32d59b7fb1c4448fb76bc68f9d93bb7c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "21f1137c3a8e4ed5862101c5924dddfb": { - "model_module": "@jupyter-widgets/base", + "35f3ccfabf0d49caac51395e757e280c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "25cc5d78b7bc4b0d8ad589add3abe1a1": { + "36aa2c3c5ff544af9a903931b09909d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3357,48 +3509,71 @@ "text_color": null } }, - "275f74588ef84e948c5c45b4558ea9fb": { + "37c18899cb7a47beb783877d59772e95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6452086a008b42aebee332fbe33f0041", + "IPY_MODEL_b1709cfcfebd4e239b073b0f0613405e", + "IPY_MODEL_dca0375df0034c4fa92f2a4bb7144667" + ], + "layout": "IPY_MODEL_a68d6cb805e84e869e126049bf112c66", + "tabbable": null, + "tooltip": null } }, - "2832834de42b4fe5ae6f876d472ac038": { + "3a39fcf1c68242258be55654be94880e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fe300e135b414c4ca4fffe71b1732157", - "placeholder": "​", - "style": "IPY_MODEL_a67a762b7bab448daae7e62ec6cfb692", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e8fdd33091014c4e9b0f4f4c80d77d9c", + "IPY_MODEL_abb587732c974d45aed41ed4bf011226", + "IPY_MODEL_491545bb08cf4760b4d10904c9b53df4" + ], + "layout": "IPY_MODEL_a356f17edce64e9f82872d52935fddbc", + "tabbable": null, + "tooltip": null + } + }, + "3ba2af3e664b4c97bae98b5db800e998": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "28d019833f9b4ded87ab37b356450e01": { + "3e2e023f072f472ea9b18be5fada3997": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3451,7 +3626,41 @@ "width": null } }, - "28dce778b8ac4f4f9997b022aafa544d": { + "4245c182c418461089ff64122026cf89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44ecddd2f63b459f93beee81622216a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "491545bb08cf4760b4d10904c9b53df4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3466,15 +3675,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a827e9ba1334bc1b30b9965e39053b5", + "layout": "IPY_MODEL_891e83dfcd8a4b29b5cf22c81f04f1e4", "placeholder": "​", - "style": "IPY_MODEL_37f8ce321124454fa0444aecde8ba406", + "style": "IPY_MODEL_24c7415f1d494854a1069f363af31ff8", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 312919.50 examples/s]" + "value": " 5.18M/5.18M [00:00<00:00, 16.9MB/s]" + } + }, + "4c710b91c2f74b6ea9a645d14d858e69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2a7a4015425b449292b0c50f64f2d3b7": { + "4c86ed0a29c94761b734a38448c453eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3527,7 +3754,7 @@ "width": null } }, - "2b24b486c264489a938437f2e89a30aa": { + "4cb4b2dea30d4d719ce0cfc60436bd1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3580,54 +3807,7 @@ "width": null } }, - "2bc2a90c62314f77ae83454af839b596": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_65637dac978c42e6b02b838ec27c60e6", - "placeholder": "​", - "style": "IPY_MODEL_275f74588ef84e948c5c45b4558ea9fb", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 71.3MB/s]" - } - }, - "2c36a43d56a74bd993ca186131553911": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d4e1f6be73945f8ab58e808dce32c7a", - "IPY_MODEL_de284976dbe74c959ec30b5aa4b9ddbe", - "IPY_MODEL_7f69ee68a49c4196abe738c71f19b4e2" - ], - "layout": "IPY_MODEL_eef440e427c74c22b33c6dd1c0800afe", - "tabbable": null, - "tooltip": null - } - }, - "2e50252c131348eebf5ad49b656fdb65": { + "4d7f009af5c44671abfea28928c232a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3680,125 +3860,7 @@ "width": null } }, - "31155c361ed545d48fed379a6cf6c696": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "333260fd82aa4a29bb47b831e780aa40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "37f8ce321124454fa0444aecde8ba406": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "39d0e7ddedf14c85b7a52e465404a66d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3bf91390275e46a8923571af914d66f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f151cd2f497b411bbbff43642e002da7", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d7db34c27aa5475db1a714c869369693", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "3e953b46986f48c2887161d3832d9dc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b63540980aee4b39b981e366db698ff1", - "IPY_MODEL_68d808e8f330432681f920293d27bee8", - "IPY_MODEL_d27f58754bff424dace63c6287c9ce80" - ], - "layout": "IPY_MODEL_8b05b580f24b4954ac37b43fb139ce6c", - "tabbable": null, - "tooltip": null - } - }, - "41b4d085eb1b4ee3af46d5f9f194b66c": { + "4fc726979875440198e98b47d8a460ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3851,7 +3913,7 @@ "width": null } }, - "43d52cecdfe64496bfdc22eb38a879bb": { + "507cadaf20704109acd37c5353daeec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3904,7 +3966,7 @@ "width": null } }, - "452bb79c87bb4e6ea606856d594e4d11": { + "52de047e28024acc9a8a1bcb2d119f80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3957,65 +4019,30 @@ "width": null } }, - "46dc450a32324af0897e4d2275a10b42": { + "58dbeddc86a84451839a6a06a29391e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9479b1cab89247a9a9ed1e0ad9c79b31", - "IPY_MODEL_8d958640e45d487fa1356b218185f788", - "IPY_MODEL_2bc2a90c62314f77ae83454af839b596" - ], - "layout": "IPY_MODEL_4d06f56c41a440f6982e3e93b5006de7", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aaeb70d3af9e48a9861025243e2b186a", + "placeholder": "​", + "style": "IPY_MODEL_0d97ea1a5b604d47b3eae52595afaaa6", "tabbable": null, - "tooltip": null - } - }, - "484616ade5d24066a34fd543156b37b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "48ae14ae9f9449fdb6ea71c6c83dbc93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": " 2/2 [00:00<00:00, 631.48it/s]" } }, - "4a5fc76c786748c4abf073787597f18e": { + "5affffa3c2c74016be203a330fa1116e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4030,55 +4057,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e50252c131348eebf5ad49b656fdb65", + "layout": "IPY_MODEL_0f5ab466e4f646d38207b242988c32b4", "placeholder": "​", - "style": "IPY_MODEL_e6147750ab6b45b6aeef91cf5b173069", + "style": "IPY_MODEL_21cccf8e4fcd4f2d94689e3eff05b437", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.18it/s]" + "value": "100%" } }, - "4a9405206aee4db1bb53ba3959317578": { + "5bb90a1b55c34a21bb9c4e5d6941cc93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2832834de42b4fe5ae6f876d472ac038", - "IPY_MODEL_7dfcc78e07f04a6ea8be611f8f413196", - "IPY_MODEL_4a5fc76c786748c4abf073787597f18e" - ], - "layout": "IPY_MODEL_f5723be682c24206bc18f53ca9f39679", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4cbd90930a4443109ccef7d1ec480f10": { + "5dec51715c864d82b748de330097bc61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4d06f56c41a440f6982e3e93b5006de7": { + "62fa3ddadaff4c599654918619bbacdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4131,7 +4154,54 @@ "width": null } }, - "50cd3e41f61f4355ad08bf6597d8fc6f": { + "6452086a008b42aebee332fbe33f0041": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fbe1888706b24d19b3a94a33c39fdd6e", + "placeholder": "​", + "style": "IPY_MODEL_4c710b91c2f74b6ea9a645d14d858e69", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "657ef4ecc31347e6ba461199c77ccec4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5affffa3c2c74016be203a330fa1116e", + "IPY_MODEL_66dd02178fdf464494297942ea811afe", + "IPY_MODEL_2bc382ab8e9c427dadfe8be93c514c5a" + ], + "layout": "IPY_MODEL_507cadaf20704109acd37c5353daeec9", + "tabbable": null, + "tooltip": null + } + }, + "65b0520e8f194be380ba3213c43130e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4184,106 +4254,57 @@ "width": null } }, - "538061f8630b4ab1a86173a8c066b7af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_663e534633af497bbbcdb29c921c4fe8", - "IPY_MODEL_0f18eca59b634a91b309f694a26b02bc", - "IPY_MODEL_92457b3505c941c192cc40dd2aa117c0" - ], - "layout": "IPY_MODEL_2a7a4015425b449292b0c50f64f2d3b7", - "tabbable": null, - "tooltip": null - } - }, - "586f18e8444448d6bc3de524d0e2cb08": { + "66dd02178fdf464494297942ea811afe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0253747b632140cba51287f6708a5f7a", - "placeholder": "​", - "style": "IPY_MODEL_5b160d387ca0440a9bc19cdf6a03a8bd", + "layout": "IPY_MODEL_d25407a4af2348529af54e69cb4cdb39", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2675c73049e44c728866da88db8c3923", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 31.6MB/s]" - } - }, - "5add8322fd004babbffe08898714d24d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5b160d387ca0440a9bc19cdf6a03a8bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 40.0 } }, - "5b490ccba02247d3ba1a682013ad9f79": { + "69d759b4cea445b9a973a55108546115": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8e061de7b414e0a8911b9b283456372", + "IPY_MODEL_d33300be1bc84be4a49bca8b8c925a8e", + "IPY_MODEL_a10372230a91463d91407f070f2e68fe" + ], + "layout": "IPY_MODEL_4d7f009af5c44671abfea28928c232a0", + "tabbable": null, + "tooltip": null } }, - "5d036011a92b4f319c4dfe49add078bc": { + "6a2f4cef88b74e1eba63c94bb2bd5412": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4301,7 +4322,7 @@ "text_color": null } }, - "5d4e1f6be73945f8ab58e808dce32c7a": { + "6b1f49b491524b529aec41aebcecd597": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4316,70 +4337,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_43d52cecdfe64496bfdc22eb38a879bb", + "layout": "IPY_MODEL_b53ad2c3495a4380a386de2670df193c", "placeholder": "​", - "style": "IPY_MODEL_dd53980ddc684172980298668e5425bf", + "style": "IPY_MODEL_36aa2c3c5ff544af9a903931b09909d1", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "5e525eccb8354d1080b45aa1fc549251": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "625784f3eed348699f9e2006f3442851": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "Generating train split: 100%" } }, - "6311121d81b64e0dbed3004d10284c73": { + "6c492d495c854d4aaa733a6c4a69053a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_14a5acb52fc14e0b868e20d70bf0e2f3", - "placeholder": "​", - "style": "IPY_MODEL_19a4b16f193d4c4c9c8ffac2444c079f", + "layout": "IPY_MODEL_887477fff78b408693fdfa4ab1646952", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c8d9f0fac0f64b38ac62e0a708d58948", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 571.86it/s]" + "value": 60000.0 } }, - "65211f09163d4fdd914cc1ec81a1dd4e": { + "6fd1907ecba34676ae3fd20801ef3e33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4432,7 +4424,7 @@ "width": null } }, - "65637dac978c42e6b02b838ec27c60e6": { + "7346b6312fb34127a555f3fec2151b56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4485,30 +4477,7 @@ "width": null } }, - "663e534633af497bbbcdb29c921c4fe8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d38f3642aa7d4c719f6ae02148d713db", - "placeholder": "​", - "style": "IPY_MODEL_7bea8450f8954148b0ff16ab0cc10ebf", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6882767f87854ef3967eb94dedaf4cca": { + "7a513b0560ff4bf09146696eb95077ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4561,7 +4530,7 @@ "width": null } }, - "68d808e8f330432681f920293d27bee8": { + "7b0db4e438bd4cf0bbb0a609862c8652": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4577,17 +4546,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_452bb79c87bb4e6ea606856d594e4d11", - "max": 40.0, + "layout": "IPY_MODEL_db53115a53044737bff7390360d41ed7", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_484616ade5d24066a34fd543156b37b0", + "style": "IPY_MODEL_44ecddd2f63b459f93beee81622216a0", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 + } + }, + "7bbcbd023d9844fcb11c44b43fba9714": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6e987f4813234f148d73f72872c4e14a": { + "7bd79c63938a4501be1f20daa3a69df5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4605,7 +4627,7 @@ "text_color": null } }, - "7222b62b50b140fba9f6a3e8ef56dec0": { + "7e8091f57a3e48f0beec85edfd7811da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4658,7 +4680,7 @@ "width": null } }, - "72e16de825f7419a944b4a4098da0c73": { + "7edc557e66c5439ab5478477342fee93": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4711,89 +4733,7 @@ "width": null } }, - "73bdde5676a34c1281946f865cd54bf0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb5c826a35d64460bf16188a8d1194d8", - "placeholder": "​", - "style": "IPY_MODEL_743766d119014c17abd146765ec0d750", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "743766d119014c17abd146765ec0d750": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "76a0f7b5bd3642c99f961e05530d7774": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "77807272ebd948ffa6f8284b90a2600e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_41b4d085eb1b4ee3af46d5f9f194b66c", - "placeholder": "​", - "style": "IPY_MODEL_5d036011a92b4f319c4dfe49add078bc", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "79aa00d18513465d98593e508c76d1c2": { + "7fa980c5195b462fbcc67f69e5d79e5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4808,106 +4748,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_94197a7c8ed2404988db00166716c4d9", - "IPY_MODEL_b93f993362ea4040ad08f91b8d5b8863", - "IPY_MODEL_bc6c85d4e4534c2b801d375e07560a2f" + "IPY_MODEL_c91b1e88c68248b0ad788baa0d0e9287", + "IPY_MODEL_208e6713136b4a069253f3c771aaba6b", + "IPY_MODEL_a101c3b6225b4fff860482618c744fe2" ], - "layout": "IPY_MODEL_8d381baef399471da95a9bda27ce8dba", + "layout": "IPY_MODEL_e8d62619eeaa49329fdd0d7210bf3d72", "tabbable": null, "tooltip": null } }, - "7b10525fea564001a54281f611a8ab38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b170d55d6aec428386afd619f28c7eda", - "placeholder": "​", - "style": "IPY_MODEL_b56d6a4838a34ba78261fecf027ebc08", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "7bea8450f8954148b0ff16ab0cc10ebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7dfcc78e07f04a6ea8be611f8f413196": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d576505e3e9e40dda622fbd60fb27d87", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cbd90930a4443109ccef7d1ec480f10", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "7f69ee68a49c4196abe738c71f19b4e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7222b62b50b140fba9f6a3e8ef56dec0", - "placeholder": "​", - "style": "IPY_MODEL_25cc5d78b7bc4b0d8ad589add3abe1a1", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7536.72 examples/s]" - } - }, - "7ffa80b94eaf48758e73b100692f09e3": { + "80c194d7e8024776938ccc9ae9f9514b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4960,7 +4810,7 @@ "width": null } }, - "80c2738edb094a798ebaba7dfd2e43e4": { + "8680cef6bcba41358f0b2245e3ad4f1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5013,89 +4863,60 @@ "width": null } }, - "8272f2f1eb954b40a94d03c3c58fb694": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73bdde5676a34c1281946f865cd54bf0", - "IPY_MODEL_15d245a73c644d19a25d83fbf5ad58fb", - "IPY_MODEL_586f18e8444448d6bc3de524d0e2cb08" - ], - "layout": "IPY_MODEL_65211f09163d4fdd914cc1ec81a1dd4e", - "tabbable": null, - "tooltip": null - } - }, - "827ab65b6e3345ccb7ee0a710546cb7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "827acfb18fcc4584a08e02f1acb62f96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1a827cb5ceaa4829b60b0109eff5b0f8", - "IPY_MODEL_3bf91390275e46a8923571af914d66f2", - "IPY_MODEL_28dce778b8ac4f4f9997b022aafa544d" - ], - "layout": "IPY_MODEL_c9b806bcbd7d4af0b57390bab48158cb", - "tabbable": null, - "tooltip": null - } - }, - "87cd456c1f6547f5a1d9258c4be7fb61": { - "model_module": "@jupyter-widgets/controls", + "86ffa2eef8bf4d15821cd2bdee074613": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8b05b580f24b4954ac37b43fb139ce6c": { + "887477fff78b408693fdfa4ab1646952": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5148,7 +4969,7 @@ "width": null } }, - "8c5fba3c4c814303ab9cf750f4ba0edc": { + "891e83dfcd8a4b29b5cf22c81f04f1e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5201,7 +5022,70 @@ "width": null } }, - "8d381baef399471da95a9bda27ce8dba": { + "8a580d919ecc46b788a811b3ead20ba7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_65b0520e8f194be380ba3213c43130e3", + "placeholder": "​", + "style": "IPY_MODEL_ed16178859c14aeb83a170a1252fd377", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "90681addb12b455a9ba630f4d68088b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa4a8769a3864fa1a03f6b7030801bdb", + "IPY_MODEL_25bb8e454c1b4f4d935e13896b5d8274", + "IPY_MODEL_b52804ea50ca497c9cf1e9c22fd05122" + ], + "layout": "IPY_MODEL_2600127ce03c42078c96ab55a769f409", + "tabbable": null, + "tooltip": null + } + }, + "93da94005ed4434e8248172f689ff1a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "995a2a284fad415bbcb0e0ae2a0e6410": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5254,56 +5138,48 @@ "width": null } }, - "8d958640e45d487fa1356b218185f788": { + "9c0569b3288740e7957046e5602051ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e829f65584844080aa76ea7b31687966", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5e525eccb8354d1080b45aa1fc549251", + "layout": "IPY_MODEL_995a2a284fad415bbcb0e0ae2a0e6410", + "placeholder": "​", + "style": "IPY_MODEL_5dec51715c864d82b748de330097bc61", "tabbable": null, "tooltip": null, - "value": 30931277.0 + "value": "Map (num_proc=4): 100%" } }, - "8f8f40d00401482dab317198ac028d0d": { + "9d8693dbac0647dfb10c6d708f9f06c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21f1137c3a8e4ed5862101c5924dddfb", - "placeholder": "​", - "style": "IPY_MODEL_39d0e7ddedf14c85b7a52e465404a66d", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "92457b3505c941c192cc40dd2aa117c0": { + "a101c3b6225b4fff860482618c744fe2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5318,15 +5194,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0ab5774997a04bfaa0b61b22afab4c49", + "layout": "IPY_MODEL_d2144843ccdf4afe910d3ee09d6225d4", "placeholder": "​", - "style": "IPY_MODEL_6e987f4813234f148d73f72872c4e14a", + "style": "IPY_MODEL_d3982319220a4345b6b31f518ac67059", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.68it/s]" + "value": " 40/40 [00:00<00:00, 66.85it/s]" } }, - "94197a7c8ed2404988db00166716c4d9": { + "a10372230a91463d91407f070f2e68fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5341,15 +5217,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b6eba01b3b354589ae18d1b650616ed2", + "layout": "IPY_MODEL_52de047e28024acc9a8a1bcb2d119f80", "placeholder": "​", - "style": "IPY_MODEL_ccc08f2dc3a24e73bfbd2cb4c113fdf5", + "style": "IPY_MODEL_0be90ee02b694223bf88ee128a5982dd", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 30.9M/30.9M [00:00<00:00, 53.4MB/s]" + } + }, + "a1182345e3c5415db85095ad9e812fc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a1a83560967d4d9086fc1ed8eb4022e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9479b1cab89247a9a9ed1e0ad9c79b31": { + "a26554ac0d4741ee8ce6d488ebdd9557": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5364,15 +5274,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a67b0828ab1a4ea6b4f2f6c3781b798a", + "layout": "IPY_MODEL_be48e01365e04257a83f1b90333fb316", "placeholder": "​", - "style": "IPY_MODEL_b5aa2f27187f4403a1c0666608d9c015", + "style": "IPY_MODEL_5bb90a1b55c34a21bb9c4e5d6941cc93", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 40/40 [00:00<00:00, 69.80it/s]" } }, - "9c31a4ec579f4024b841bdd577346089": { + "a356f17edce64e9f82872d52935fddbc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5425,33 +5335,7 @@ "width": null } }, - "9c8fa30d42274789b11f60bedcc1dd79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af559990b6dd4ca5b20732b178bdc389", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d5c3a5e25966472aa07171f473d21003", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "a0a290775af34aa88c0c31efb1f073a9": { + "a68d6cb805e84e869e126049bf112c66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5504,69 +5388,139 @@ "width": null } }, - "a26121d1472d4715acdca14598797750": { - "model_module": "@jupyter-widgets/controls", + "a71671406e95472faca260d5f99c99d3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ffa80b94eaf48758e73b100692f09e3", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_20451a4e236f42a185fd5fbcd798bf02", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a55e7412bc8145c682508f60156ae10a": { - "model_module": "@jupyter-widgets/controls", + "aaeb70d3af9e48a9861025243e2b186a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a67a762b7bab448daae7e62ec6cfb692": { + "abb587732c974d45aed41ed4bf011226": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_80c194d7e8024776938ccc9ae9f9514b", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b46c85d1bf804de9bc4208ed2bdefad0", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 } }, - "a67b0828ab1a4ea6b4f2f6c3781b798a": { + "acb5a4c79d044476b4db375a95477ab0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5619,7 +5573,25 @@ "width": null } }, - "a7200e30c4134b45b35f1b03dafc1378": { + "add58a12ec0c41d7b7d2aa0c3b7c306d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b1709cfcfebd4e239b073b0f0613405e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5635,41 +5607,56 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9c31a4ec579f4024b841bdd577346089", - "max": 2.0, + "layout": "IPY_MODEL_86ffa2eef8bf4d15821cd2bdee074613", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_333260fd82aa4a29bb47b831e780aa40", + "style": "IPY_MODEL_93da94005ed4434e8248172f689ff1a5", "tabbable": null, "tooltip": null, - "value": 2.0 + "value": 40.0 } }, - "af1932e99e7843a0975c3514b0672ce4": { + "b46c85d1bf804de9bc4208ed2bdefad0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b52804ea50ca497c9cf1e9c22fd05122": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_77807272ebd948ffa6f8284b90a2600e", - "IPY_MODEL_a7200e30c4134b45b35f1b03dafc1378", - "IPY_MODEL_6311121d81b64e0dbed3004d10284c73" - ], - "layout": "IPY_MODEL_20f6a5a130cc4db5a48b35a7237c4b0e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_224edd0c6d1f4706acb4172cafae63ed", + "placeholder": "​", + "style": "IPY_MODEL_4245c182c418461089ff64122026cf89", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 253045.44 examples/s]" } }, - "af559990b6dd4ca5b20732b178bdc389": { + "b53ad2c3495a4380a386de2670df193c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5722,7 +5709,31 @@ "width": null } }, - "afb865dcece34841b69c7b478e87daf3": { + "b56ff307f7824e6e9bcf6a01e2e13370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c04808d07d0c4dd7a2e5a404e28c878e", + "IPY_MODEL_ec1d49c3e119490eb8f6631158151d2b", + "IPY_MODEL_d46b9e0cfa06424eb5df26a312b2f2b6" + ], + "layout": "IPY_MODEL_a71671406e95472faca260d5f99c99d3", + "tabbable": null, + "tooltip": null + } + }, + "b5b59795214044109b8c4485b1502f02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5775,7 +5786,7 @@ "width": null } }, - "b170d55d6aec428386afd619f28c7eda": { + "be48e01365e04257a83f1b90333fb316": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5828,53 +5839,7 @@ "width": null } }, - "b3060e033e844529a5bcbe2b9851a277": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0a290775af34aa88c0c31efb1f073a9", - "placeholder": "​", - "style": "IPY_MODEL_be5b4efc6ced4f6fadf04a6e80366029", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b4e9232ff5d44352a2bc0b45c1916b29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cd7da3ab2c564bada9c1fc825889a877", - "placeholder": "​", - "style": "IPY_MODEL_5add8322fd004babbffe08898714d24d", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.63it/s]" - } - }, - "b56d6a4838a34ba78261fecf027ebc08": { + "be80350116fb40b3bed12b0aff69e95d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5892,25 +5857,33 @@ "text_color": null } }, - "b5aa2f27187f4403a1c0666608d9c015": { + "bfd20dfe7ced4745b700d16343e6555b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8680cef6bcba41358f0b2245e3ad4f1f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3ba2af3e664b4c97bae98b5db800e998", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "b63540980aee4b39b981e366db698ff1": { + "c04808d07d0c4dd7a2e5a404e28c878e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5925,15 +5898,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_50cd3e41f61f4355ad08bf6597d8fc6f", + "layout": "IPY_MODEL_6fd1907ecba34676ae3fd20801ef3e33", "placeholder": "​", - "style": "IPY_MODEL_c23eebacdb724055a5718ef399ad6cf5", + "style": "IPY_MODEL_9d8693dbac0647dfb10c6d708f9f06c3", "tabbable": null, "tooltip": null, "value": "100%" } }, - "b6eba01b3b354589ae18d1b650616ed2": { + "c0873c29df7744be9aa5b33759f993e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5986,33 +5959,7 @@ "width": null } }, - "b93f993362ea4040ad08f91b8d5b8863": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e10e970455ae4e199778951dc545e4bb", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_31155c361ed545d48fed379a6cf6c696", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "bc6c85d4e4534c2b801d375e07560a2f": { + "c6049231a5b448029b1cf256bd07e029": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6027,104 +5974,78 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0d682d4ff4943b4a492c6a8e195de9d", + "layout": "IPY_MODEL_cdf17e98637647809f634113c13917ca", "placeholder": "​", - "style": "IPY_MODEL_87cd456c1f6547f5a1d9258c4be7fb61", + "style": "IPY_MODEL_6a2f4cef88b74e1eba63c94bb2bd5412", "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 276844.44 examples/s]" - } - }, - "be5b4efc6ced4f6fadf04a6e80366029": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c0d682d4ff4943b4a492c6a8e195de9d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null, + "value": " 60000/60000 [00:46<00:00, 1262.85it/s]" } }, - "c23eebacdb724055a5718ef399ad6cf5": { + "c6e9e2c8ad734cec8bbdd869c9f46951": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1e824539d22548dea150f1f6eaac4b1b", + "IPY_MODEL_6c492d495c854d4aaa733a6c4a69053a", + "IPY_MODEL_c6049231a5b448029b1cf256bd07e029" + ], + "layout": "IPY_MODEL_0ec33797bad14055a1de8a8f992c6134", + "tabbable": null, + "tooltip": null + } + }, + "c8d9f0fac0f64b38ac62e0a708d58948": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "c91b1e88c68248b0ad788baa0d0e9287": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_202b1a1d2d12458089afedd08ebd46e2", + "placeholder": "​", + "style": "IPY_MODEL_e5e080478dea430293650d0383c3b261", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "c9b806bcbd7d4af0b57390bab48158cb": { + "ca7021afb6824ca39461db6224a967b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6177,7 +6098,7 @@ "width": null } }, - "cb5c826a35d64460bf16188a8d1194d8": { + "cdf17e98637647809f634113c13917ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6230,7 +6151,7 @@ "width": null } }, - "cbcc046d9a49411280f603912ded63b4": { + "cdff082d070b4b489f5b4ea895722379": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6246,25 +6167,56 @@ "description_width": "" } }, - "ccc08f2dc3a24e73bfbd2cb4c113fdf5": { + "ce3f6ddf3db34c9eb62018f9565b41b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2ada2a6c8424f7e844e74ae447501c5", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_07bf3e196fd244339afe75d5bde48e3e", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "cf990872c7e342e89ab836f3533d98a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4cb4b2dea30d4d719ce0cfc60436bd1b", + "placeholder": "​", + "style": "IPY_MODEL_add58a12ec0c41d7b7d2aa0c3b7c306d", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7664.09 examples/s]" } }, - "cd7da3ab2c564bada9c1fc825889a877": { + "d2144843ccdf4afe910d3ee09d6225d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6317,7 +6269,7 @@ "width": null } }, - "d1f8120d5198465aa00745a1a862f19a": { + "d25407a4af2348529af54e69cb4cdb39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6370,7 +6322,97 @@ "width": null } }, - "d27f58754bff424dace63c6287c9ce80": { + "d33300be1bc84be4a49bca8b8c925a8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_30a6fba3aeff40458e4522b8d25e2460", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0704c92cb83f453099a319c6760a3785", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "d3982319220a4345b6b31f518ac67059": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3a8377a5ef14c2db6ec3506f0bea044": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2340af9d58c945cf8f396b29d51c5971", + "placeholder": "​", + "style": "IPY_MODEL_26e2e4b700c047bab29090430c40724a", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 282603.20 examples/s]" + } + }, + "d46b9e0cfa06424eb5df26a312b2f2b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7a513b0560ff4bf09146696eb95077ed", + "placeholder": "​", + "style": "IPY_MODEL_22da545dee504e11be27c3f2e6f64a8d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.23it/s]" + } + }, + "d8e061de7b414e0a8911b9b283456372": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6385,15 +6427,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_afb865dcece34841b69c7b478e87daf3", + "layout": "IPY_MODEL_e94804474bc641e3abf7d83273142c42", "placeholder": "​", - "style": "IPY_MODEL_f6bff9ec28fe4f1bb5f852b9ca5e9a26", + "style": "IPY_MODEL_be80350116fb40b3bed12b0aff69e95d", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.16it/s]" + "value": "Downloading data: 100%" } }, - "d38f3642aa7d4c719f6ae02148d713db": { + "db184c07f55141f488cce3ec3fc3159d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6446,33 +6488,7 @@ "width": null } }, - "d45410123ddb4f64b0a5a8af0034c0a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19145420cef8409a8d502b4ddb4a91b5", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_16aa42c84f5c426c890836b1c1350361", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "d576505e3e9e40dda622fbd60fb27d87": { + "db53115a53044737bff7390360d41ed7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6525,63 +6541,30 @@ "width": null } }, - "d5c3a5e25966472aa07171f473d21003": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d79bfe70932b4eec85c02d0733cebf82": { + "dca0375df0034c4fa92f2a4bb7144667": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0d07481603214313a619811e46e0b5ee", - "IPY_MODEL_e1621bc5794f470c84662d8c199f9fb9", - "IPY_MODEL_0bcb5380d1614e6bb4deca1e736449fd" - ], - "layout": "IPY_MODEL_136558e15c144724b1fba387b5ada3fc", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7edc557e66c5439ab5478477342fee93", + "placeholder": "​", + "style": "IPY_MODEL_e0d6afceb63747c1a757d7fbdceb43f0", "tabbable": null, - "tooltip": null - } - }, - "d7db34c27aa5475db1a714c869369693": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.23it/s]" } }, - "d872aefd3edf47bdbf1e40052fb19a3c": { + "e03047faf85347f99c053a2b8eaec19c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6596,60 +6579,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7b10525fea564001a54281f611a8ab38", - "IPY_MODEL_d45410123ddb4f64b0a5a8af0034c0a8", - "IPY_MODEL_f2869dec0ad14a97adc2f561a2beb5b8" + "IPY_MODEL_32baef6de51b4d538d24f5ba1bf84895", + "IPY_MODEL_ce3f6ddf3db34c9eb62018f9565b41b6", + "IPY_MODEL_58dbeddc86a84451839a6a06a29391e3" ], - "layout": "IPY_MODEL_72e16de825f7419a944b4a4098da0c73", + "layout": "IPY_MODEL_4c86ed0a29c94761b734a38448c453eb", "tabbable": null, "tooltip": null } }, - "dd53980ddc684172980298668e5425bf": { + "e0d6afceb63747c1a757d7fbdceb43f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de284976dbe74c959ec30b5aa4b9ddbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b24b486c264489a938437f2e89a30aa", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_827ab65b6e3345ccb7ee0a710546cb7c", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e10e970455ae4e199778951dc545e4bb": { + "e0e7582bcb8d4e37a597d96f234740de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6702,51 +6659,7 @@ "width": null } }, - "e1621bc5794f470c84662d8c199f9fb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6882767f87854ef3967eb94dedaf4cca", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cbcc046d9a49411280f603912ded63b4", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "e6147750ab6b45b6aeef91cf5b173069": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e829f65584844080aa76ea7b31687966": { + "e2ada2a6c8424f7e844e74ae447501c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6799,7 +6712,25 @@ "width": null } }, - "eef440e427c74c22b33c6dd1c0800afe": { + "e5e080478dea430293650d0383c3b261": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e7fd0e9c45c74cb28ae53d1c9eafe1a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6852,7 +6783,7 @@ "width": null } }, - "f151cd2f497b411bbbff43642e002da7": { + "e8d62619eeaa49329fdd0d7210bf3d72": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6905,7 +6836,7 @@ "width": null } }, - "f2869dec0ad14a97adc2f561a2beb5b8": { + "e8fdd33091014c4e9b0f4f4c80d77d9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6920,39 +6851,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f57bd7390e24e6aa97659f2524f3915", + "layout": "IPY_MODEL_1c9a0ec998694ab98f33e462be441b15", "placeholder": "​", - "style": "IPY_MODEL_a55e7412bc8145c682508f60156ae10a", + "style": "IPY_MODEL_f617831e108a4706bf348d7559e53793", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:46<00:00, 1202.49it/s]" - } - }, - "f55266ef46204d7b9d9c7e1e6177f977": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3060e033e844529a5bcbe2b9851a277", - "IPY_MODEL_9c8fa30d42274789b11f60bedcc1dd79", - "IPY_MODEL_b4e9232ff5d44352a2bc0b45c1916b29" - ], - "layout": "IPY_MODEL_ffb3d37637ee4b13b9be81064f006324", - "tabbable": null, - "tooltip": null + "value": "Downloading data: 100%" } }, - "f5723be682c24206bc18f53ca9f39679": { + "e94804474bc641e3abf7d83273142c42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7005,7 +6912,57 @@ "width": null } }, - "f5df588410aa4c0fa6bfd32b8fc2948e": { + "e9c2d308abf54d4d984ae58a82d5078e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b1f49b491524b529aec41aebcecd597", + "IPY_MODEL_7b0db4e438bd4cf0bbb0a609862c8652", + "IPY_MODEL_d3a8377a5ef14c2db6ec3506f0bea044" + ], + "layout": "IPY_MODEL_4fc726979875440198e98b47d8a460ac", + "tabbable": null, + "tooltip": null + } + }, + "ec1d49c3e119490eb8f6631158151d2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b5b59795214044109b8c4485b1502f02", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1a83560967d4d9086fc1ed8eb4022e1", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "ed16178859c14aeb83a170a1252fd377": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7023,7 +6980,7 @@ "text_color": null } }, - "f6bff9ec28fe4f1bb5f852b9ca5e9a26": { + "ee5d7d4d67ff43599f10436b84389778": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7041,7 +6998,31 @@ "text_color": null } }, - "f895a633a0b44e93b6b546912885499b": { + "f14eebd8eb0d4e95bac3630f3fe6d0e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0fd3562f606b4206957d569480d562aa", + "IPY_MODEL_2942fd8cccc94f7a8056af7f51912fc2", + "IPY_MODEL_a26554ac0d4741ee8ce6d488ebdd9557" + ], + "layout": "IPY_MODEL_f8781da8d96145e5a854e84da4344723", + "tabbable": null, + "tooltip": null + } + }, + "f617831e108a4706bf348d7559e53793": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7059,60 +7040,30 @@ "text_color": null } }, - "f9d9c00bb8ef44f29ba72345c4ce268b": { - "model_module": "@jupyter-widgets/base", + "f8428265fb9b4bdf9292d5b2ca1bb430": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7bbcbd023d9844fcb11c44b43fba9714", + "placeholder": "​", + "style": "IPY_MODEL_1d54ef60f40b42d894c0c93aa023f924", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.79it/s]" } }, - "fe300e135b414c4ca4fffe71b1732157": { + "f8781da8d96145e5a854e84da4344723": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7165,7 +7116,56 @@ "width": null } }, - "ffb3d37637ee4b13b9be81064f006324": { + "f886827e67fc4f5ebf2091c3e40b2145": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_62fa3ddadaff4c599654918619bbacdb", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08653f32acef42e2b00105e4a07cceac", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "fa4a8769a3864fa1a03f6b7030801bdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c0873c29df7744be9aa5b33759f993e8", + "placeholder": "​", + "style": "IPY_MODEL_7bd79c63938a4501be1f20daa3a69df5", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "fbe1888706b24d19b3a94a33c39fdd6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index a798cfe46..3c6819ed2 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:42.730636Z", - "iopub.status.busy": "2024-05-23T02:44:42.730472Z", - "iopub.status.idle": "2024-05-23T02:44:43.867595Z", - "shell.execute_reply": "2024-05-23T02:44:43.867047Z" + "iopub.execute_input": "2024-05-23T15:18:03.329661Z", + "iopub.status.busy": "2024-05-23T15:18:03.329245Z", + "iopub.status.idle": "2024-05-23T15:18:04.461620Z", + "shell.execute_reply": "2024-05-23T15:18:04.461105Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.870036Z", - "iopub.status.busy": "2024-05-23T02:44:43.869751Z", - "iopub.status.idle": "2024-05-23T02:44:43.888494Z", - "shell.execute_reply": "2024-05-23T02:44:43.887954Z" + "iopub.execute_input": "2024-05-23T15:18:04.464258Z", + "iopub.status.busy": "2024-05-23T15:18:04.463889Z", + "iopub.status.idle": "2024-05-23T15:18:04.482775Z", + "shell.execute_reply": "2024-05-23T15:18:04.482289Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.890714Z", - "iopub.status.busy": "2024-05-23T02:44:43.890470Z", - "iopub.status.idle": "2024-05-23T02:44:43.922079Z", - "shell.execute_reply": "2024-05-23T02:44:43.921508Z" + "iopub.execute_input": "2024-05-23T15:18:04.485239Z", + "iopub.status.busy": "2024-05-23T15:18:04.484734Z", + "iopub.status.idle": "2024-05-23T15:18:04.507036Z", + "shell.execute_reply": "2024-05-23T15:18:04.506428Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.924158Z", - "iopub.status.busy": "2024-05-23T02:44:43.923982Z", - "iopub.status.idle": "2024-05-23T02:44:43.927419Z", - "shell.execute_reply": "2024-05-23T02:44:43.926993Z" + "iopub.execute_input": "2024-05-23T15:18:04.509357Z", + "iopub.status.busy": "2024-05-23T15:18:04.508917Z", + "iopub.status.idle": "2024-05-23T15:18:04.512565Z", + "shell.execute_reply": "2024-05-23T15:18:04.512120Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.929657Z", - "iopub.status.busy": "2024-05-23T02:44:43.929395Z", - "iopub.status.idle": "2024-05-23T02:44:43.936873Z", - "shell.execute_reply": "2024-05-23T02:44:43.936429Z" + "iopub.execute_input": "2024-05-23T15:18:04.514658Z", + "iopub.status.busy": "2024-05-23T15:18:04.514334Z", + "iopub.status.idle": "2024-05-23T15:18:04.522118Z", + "shell.execute_reply": "2024-05-23T15:18:04.521679Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.939040Z", - "iopub.status.busy": "2024-05-23T02:44:43.938710Z", - "iopub.status.idle": "2024-05-23T02:44:43.941341Z", - "shell.execute_reply": "2024-05-23T02:44:43.940882Z" + "iopub.execute_input": "2024-05-23T15:18:04.524308Z", + "iopub.status.busy": "2024-05-23T15:18:04.524005Z", + "iopub.status.idle": "2024-05-23T15:18:04.527061Z", + "shell.execute_reply": "2024-05-23T15:18:04.526631Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.943257Z", - "iopub.status.busy": "2024-05-23T02:44:43.942991Z", - "iopub.status.idle": "2024-05-23T02:44:46.889971Z", - "shell.execute_reply": "2024-05-23T02:44:46.889385Z" + "iopub.execute_input": "2024-05-23T15:18:04.529029Z", + "iopub.status.busy": "2024-05-23T15:18:04.528706Z", + "iopub.status.idle": "2024-05-23T15:18:07.442990Z", + "shell.execute_reply": "2024-05-23T15:18:07.442453Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:46.892551Z", - "iopub.status.busy": "2024-05-23T02:44:46.892161Z", - "iopub.status.idle": "2024-05-23T02:44:46.901966Z", - "shell.execute_reply": "2024-05-23T02:44:46.901526Z" + "iopub.execute_input": "2024-05-23T15:18:07.445702Z", + "iopub.status.busy": "2024-05-23T15:18:07.445319Z", + "iopub.status.idle": "2024-05-23T15:18:07.455041Z", + "shell.execute_reply": "2024-05-23T15:18:07.454557Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:46.903929Z", - "iopub.status.busy": "2024-05-23T02:44:46.903737Z", - "iopub.status.idle": "2024-05-23T02:44:48.613992Z", - "shell.execute_reply": "2024-05-23T02:44:48.613202Z" + "iopub.execute_input": "2024-05-23T15:18:07.457020Z", + "iopub.status.busy": "2024-05-23T15:18:07.456721Z", + "iopub.status.idle": "2024-05-23T15:18:09.213100Z", + "shell.execute_reply": "2024-05-23T15:18:09.212489Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.617004Z", - "iopub.status.busy": "2024-05-23T02:44:48.616322Z", - "iopub.status.idle": "2024-05-23T02:44:48.639456Z", - "shell.execute_reply": "2024-05-23T02:44:48.638944Z" + "iopub.execute_input": "2024-05-23T15:18:09.216724Z", + "iopub.status.busy": "2024-05-23T15:18:09.215605Z", + "iopub.status.idle": "2024-05-23T15:18:09.239920Z", + "shell.execute_reply": "2024-05-23T15:18:09.239435Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.642745Z", - "iopub.status.busy": "2024-05-23T02:44:48.641828Z", - "iopub.status.idle": "2024-05-23T02:44:48.652900Z", - "shell.execute_reply": "2024-05-23T02:44:48.652420Z" + "iopub.execute_input": "2024-05-23T15:18:09.243460Z", + "iopub.status.busy": "2024-05-23T15:18:09.242516Z", + "iopub.status.idle": "2024-05-23T15:18:09.253523Z", + "shell.execute_reply": "2024-05-23T15:18:09.253048Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.656361Z", - "iopub.status.busy": "2024-05-23T02:44:48.655438Z", - "iopub.status.idle": "2024-05-23T02:44:48.667988Z", - "shell.execute_reply": "2024-05-23T02:44:48.667506Z" + "iopub.execute_input": "2024-05-23T15:18:09.256935Z", + "iopub.status.busy": "2024-05-23T15:18:09.256029Z", + "iopub.status.idle": "2024-05-23T15:18:09.268500Z", + "shell.execute_reply": "2024-05-23T15:18:09.268019Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.671510Z", - "iopub.status.busy": "2024-05-23T02:44:48.670597Z", - "iopub.status.idle": "2024-05-23T02:44:48.681670Z", - "shell.execute_reply": "2024-05-23T02:44:48.681180Z" + "iopub.execute_input": "2024-05-23T15:18:09.271942Z", + "iopub.status.busy": "2024-05-23T15:18:09.271025Z", + "iopub.status.idle": "2024-05-23T15:18:09.282057Z", + "shell.execute_reply": "2024-05-23T15:18:09.281577Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.685102Z", - "iopub.status.busy": "2024-05-23T02:44:48.684197Z", - "iopub.status.idle": "2024-05-23T02:44:48.696565Z", - "shell.execute_reply": "2024-05-23T02:44:48.696023Z" + "iopub.execute_input": "2024-05-23T15:18:09.285490Z", + "iopub.status.busy": "2024-05-23T15:18:09.284583Z", + "iopub.status.idle": "2024-05-23T15:18:09.296961Z", + "shell.execute_reply": "2024-05-23T15:18:09.296430Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.698838Z", - "iopub.status.busy": "2024-05-23T02:44:48.698502Z", - "iopub.status.idle": "2024-05-23T02:44:48.706307Z", - "shell.execute_reply": "2024-05-23T02:44:48.705753Z" + "iopub.execute_input": "2024-05-23T15:18:09.299060Z", + "iopub.status.busy": "2024-05-23T15:18:09.298891Z", + "iopub.status.idle": "2024-05-23T15:18:09.305638Z", + "shell.execute_reply": "2024-05-23T15:18:09.305225Z" } }, "outputs": [ @@ -1169,10 +1169,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.708699Z", - "iopub.status.busy": "2024-05-23T02:44:48.708530Z", - "iopub.status.idle": "2024-05-23T02:44:48.715308Z", - "shell.execute_reply": "2024-05-23T02:44:48.714856Z" + "iopub.execute_input": "2024-05-23T15:18:09.307578Z", + "iopub.status.busy": "2024-05-23T15:18:09.307398Z", + "iopub.status.idle": "2024-05-23T15:18:09.313578Z", + "shell.execute_reply": "2024-05-23T15:18:09.313081Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.717407Z", - "iopub.status.busy": "2024-05-23T02:44:48.717062Z", - "iopub.status.idle": "2024-05-23T02:44:48.723412Z", - "shell.execute_reply": "2024-05-23T02:44:48.722968Z" + "iopub.execute_input": "2024-05-23T15:18:09.315564Z", + "iopub.status.busy": "2024-05-23T15:18:09.315393Z", + "iopub.status.idle": "2024-05-23T15:18:09.321703Z", + "shell.execute_reply": "2024-05-23T15:18:09.321251Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index cfb29d608..7ce5ef921 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -772,7 +772,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'card_payment_fee_charged', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire', 'visa_or_mastercard', 'beneficiary_not_allowed', 'apple_pay_or_google_pay'}
+Classes: {'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'visa_or_mastercard'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 020c33c1d..a3c570288 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:51.263538Z", - "iopub.status.busy": "2024-05-23T02:44:51.263143Z", - "iopub.status.idle": "2024-05-23T02:44:53.898469Z", - "shell.execute_reply": "2024-05-23T02:44:53.897836Z" + "iopub.execute_input": "2024-05-23T15:18:11.824777Z", + "iopub.status.busy": "2024-05-23T15:18:11.824605Z", + "iopub.status.idle": "2024-05-23T15:18:14.504599Z", + "shell.execute_reply": "2024-05-23T15:18:14.504085Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.900982Z", - "iopub.status.busy": "2024-05-23T02:44:53.900692Z", - "iopub.status.idle": "2024-05-23T02:44:53.904404Z", - "shell.execute_reply": "2024-05-23T02:44:53.903976Z" + "iopub.execute_input": "2024-05-23T15:18:14.507121Z", + "iopub.status.busy": "2024-05-23T15:18:14.506825Z", + "iopub.status.idle": "2024-05-23T15:18:14.510173Z", + "shell.execute_reply": "2024-05-23T15:18:14.509615Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.906316Z", - "iopub.status.busy": "2024-05-23T02:44:53.906011Z", - "iopub.status.idle": "2024-05-23T02:44:53.909091Z", - "shell.execute_reply": "2024-05-23T02:44:53.908559Z" + "iopub.execute_input": "2024-05-23T15:18:14.512403Z", + "iopub.status.busy": "2024-05-23T15:18:14.512093Z", + "iopub.status.idle": "2024-05-23T15:18:14.515209Z", + "shell.execute_reply": "2024-05-23T15:18:14.514655Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.911024Z", - "iopub.status.busy": "2024-05-23T02:44:53.910854Z", - "iopub.status.idle": "2024-05-23T02:44:53.941996Z", - "shell.execute_reply": "2024-05-23T02:44:53.941499Z" + "iopub.execute_input": "2024-05-23T15:18:14.517314Z", + "iopub.status.busy": "2024-05-23T15:18:14.517017Z", + "iopub.status.idle": "2024-05-23T15:18:14.537637Z", + "shell.execute_reply": "2024-05-23T15:18:14.537152Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.943998Z", - "iopub.status.busy": "2024-05-23T02:44:53.943825Z", - "iopub.status.idle": "2024-05-23T02:44:53.947479Z", - "shell.execute_reply": "2024-05-23T02:44:53.947051Z" + "iopub.execute_input": "2024-05-23T15:18:14.539828Z", + "iopub.status.busy": "2024-05-23T15:18:14.539419Z", + "iopub.status.idle": "2024-05-23T15:18:14.543260Z", + "shell.execute_reply": "2024-05-23T15:18:14.542814Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire', 'visa_or_mastercard', 'beneficiary_not_allowed', 'apple_pay_or_google_pay'}\n" + "Classes: {'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.949609Z", - "iopub.status.busy": "2024-05-23T02:44:53.949217Z", - "iopub.status.idle": "2024-05-23T02:44:53.952249Z", - "shell.execute_reply": "2024-05-23T02:44:53.951732Z" + "iopub.execute_input": "2024-05-23T15:18:14.545089Z", + "iopub.status.busy": "2024-05-23T15:18:14.544915Z", + "iopub.status.idle": "2024-05-23T15:18:14.548143Z", + "shell.execute_reply": "2024-05-23T15:18:14.547673Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.954160Z", - "iopub.status.busy": "2024-05-23T02:44:53.953995Z", - "iopub.status.idle": "2024-05-23T02:44:58.073235Z", - "shell.execute_reply": "2024-05-23T02:44:58.072687Z" + "iopub.execute_input": "2024-05-23T15:18:14.550053Z", + "iopub.status.busy": "2024-05-23T15:18:14.549886Z", + "iopub.status.idle": "2024-05-23T15:18:18.166914Z", + "shell.execute_reply": "2024-05-23T15:18:18.166251Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:58.076082Z", - "iopub.status.busy": "2024-05-23T02:44:58.075592Z", - "iopub.status.idle": "2024-05-23T02:44:58.945975Z", - "shell.execute_reply": "2024-05-23T02:44:58.945398Z" + "iopub.execute_input": "2024-05-23T15:18:18.169601Z", + "iopub.status.busy": "2024-05-23T15:18:18.169376Z", + "iopub.status.idle": "2024-05-23T15:18:19.017896Z", + "shell.execute_reply": "2024-05-23T15:18:19.017318Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:58.948911Z", - "iopub.status.busy": "2024-05-23T02:44:58.948532Z", - "iopub.status.idle": "2024-05-23T02:44:58.951395Z", - "shell.execute_reply": "2024-05-23T02:44:58.950920Z" + "iopub.execute_input": "2024-05-23T15:18:19.020812Z", + "iopub.status.busy": "2024-05-23T15:18:19.020449Z", + "iopub.status.idle": "2024-05-23T15:18:19.023280Z", + "shell.execute_reply": "2024-05-23T15:18:19.022794Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:58.953741Z", - "iopub.status.busy": "2024-05-23T02:44:58.953364Z", - "iopub.status.idle": "2024-05-23T02:45:00.472984Z", - "shell.execute_reply": "2024-05-23T02:45:00.472314Z" + "iopub.execute_input": "2024-05-23T15:18:19.025587Z", + "iopub.status.busy": "2024-05-23T15:18:19.025228Z", + "iopub.status.idle": "2024-05-23T15:18:20.567743Z", + "shell.execute_reply": "2024-05-23T15:18:20.567101Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.476070Z", - "iopub.status.busy": "2024-05-23T02:45:00.475459Z", - "iopub.status.idle": "2024-05-23T02:45:00.498879Z", - "shell.execute_reply": "2024-05-23T02:45:00.498401Z" + "iopub.execute_input": "2024-05-23T15:18:20.572027Z", + "iopub.status.busy": "2024-05-23T15:18:20.570682Z", + "iopub.status.idle": "2024-05-23T15:18:20.596267Z", + "shell.execute_reply": "2024-05-23T15:18:20.595766Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.501243Z", - "iopub.status.busy": "2024-05-23T02:45:00.500874Z", - "iopub.status.idle": "2024-05-23T02:45:00.510252Z", - "shell.execute_reply": "2024-05-23T02:45:00.509774Z" + "iopub.execute_input": "2024-05-23T15:18:20.599843Z", + "iopub.status.busy": "2024-05-23T15:18:20.598765Z", + "iopub.status.idle": "2024-05-23T15:18:20.610446Z", + "shell.execute_reply": "2024-05-23T15:18:20.609941Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.512693Z", - "iopub.status.busy": "2024-05-23T02:45:00.512382Z", - "iopub.status.idle": "2024-05-23T02:45:00.516739Z", - "shell.execute_reply": "2024-05-23T02:45:00.516262Z" + "iopub.execute_input": "2024-05-23T15:18:20.613975Z", + "iopub.status.busy": "2024-05-23T15:18:20.612923Z", + "iopub.status.idle": "2024-05-23T15:18:20.619127Z", + "shell.execute_reply": "2024-05-23T15:18:20.618706Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.519208Z", - "iopub.status.busy": "2024-05-23T02:45:00.518898Z", - "iopub.status.idle": "2024-05-23T02:45:00.525485Z", - "shell.execute_reply": "2024-05-23T02:45:00.525087Z" + "iopub.execute_input": "2024-05-23T15:18:20.621375Z", + "iopub.status.busy": "2024-05-23T15:18:20.620885Z", + "iopub.status.idle": "2024-05-23T15:18:20.627546Z", + "shell.execute_reply": "2024-05-23T15:18:20.627080Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.527466Z", - "iopub.status.busy": "2024-05-23T02:45:00.527221Z", - "iopub.status.idle": "2024-05-23T02:45:00.533800Z", - "shell.execute_reply": "2024-05-23T02:45:00.533423Z" + "iopub.execute_input": "2024-05-23T15:18:20.629614Z", + "iopub.status.busy": "2024-05-23T15:18:20.629324Z", + "iopub.status.idle": "2024-05-23T15:18:20.635706Z", + "shell.execute_reply": "2024-05-23T15:18:20.635150Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.535526Z", - "iopub.status.busy": "2024-05-23T02:45:00.535281Z", - "iopub.status.idle": "2024-05-23T02:45:00.540209Z", - "shell.execute_reply": "2024-05-23T02:45:00.539830Z" + "iopub.execute_input": "2024-05-23T15:18:20.637695Z", + "iopub.status.busy": "2024-05-23T15:18:20.637387Z", + "iopub.status.idle": "2024-05-23T15:18:20.643049Z", + "shell.execute_reply": "2024-05-23T15:18:20.642501Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.542000Z", - "iopub.status.busy": "2024-05-23T02:45:00.541754Z", - "iopub.status.idle": "2024-05-23T02:45:00.548985Z", - "shell.execute_reply": "2024-05-23T02:45:00.548604Z" + "iopub.execute_input": "2024-05-23T15:18:20.644992Z", + "iopub.status.busy": "2024-05-23T15:18:20.644695Z", + "iopub.status.idle": "2024-05-23T15:18:20.653055Z", + "shell.execute_reply": "2024-05-23T15:18:20.652504Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.550832Z", - "iopub.status.busy": "2024-05-23T02:45:00.550538Z", - "iopub.status.idle": "2024-05-23T02:45:00.555766Z", - "shell.execute_reply": "2024-05-23T02:45:00.555232Z" + "iopub.execute_input": "2024-05-23T15:18:20.655060Z", + "iopub.status.busy": "2024-05-23T15:18:20.654763Z", + "iopub.status.idle": "2024-05-23T15:18:20.660041Z", + "shell.execute_reply": "2024-05-23T15:18:20.659490Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.557755Z", - "iopub.status.busy": "2024-05-23T02:45:00.557339Z", - "iopub.status.idle": "2024-05-23T02:45:00.562509Z", - "shell.execute_reply": "2024-05-23T02:45:00.562082Z" + "iopub.execute_input": "2024-05-23T15:18:20.661947Z", + "iopub.status.busy": "2024-05-23T15:18:20.661627Z", + "iopub.status.idle": "2024-05-23T15:18:20.666886Z", + "shell.execute_reply": "2024-05-23T15:18:20.666400Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.564554Z", - "iopub.status.busy": "2024-05-23T02:45:00.564173Z", - "iopub.status.idle": "2024-05-23T02:45:00.567632Z", - "shell.execute_reply": "2024-05-23T02:45:00.567191Z" + "iopub.execute_input": "2024-05-23T15:18:20.668902Z", + "iopub.status.busy": "2024-05-23T15:18:20.668602Z", + "iopub.status.idle": "2024-05-23T15:18:20.672008Z", + "shell.execute_reply": "2024-05-23T15:18:20.671583Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.569758Z", - "iopub.status.busy": "2024-05-23T02:45:00.569396Z", - "iopub.status.idle": "2024-05-23T02:45:00.574709Z", - "shell.execute_reply": "2024-05-23T02:45:00.574130Z" + "iopub.execute_input": "2024-05-23T15:18:20.674040Z", + "iopub.status.busy": "2024-05-23T15:18:20.673742Z", + "iopub.status.idle": "2024-05-23T15:18:20.678904Z", + "shell.execute_reply": "2024-05-23T15:18:20.678310Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 12c7c5d7f..caba51307 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:03.779840Z", - "iopub.status.busy": "2024-05-23T02:45:03.779686Z", - "iopub.status.idle": "2024-05-23T02:45:04.911023Z", - "shell.execute_reply": "2024-05-23T02:45:04.910399Z" + "iopub.execute_input": "2024-05-23T15:18:23.569117Z", + "iopub.status.busy": "2024-05-23T15:18:23.568584Z", + "iopub.status.idle": "2024-05-23T15:18:24.680010Z", + "shell.execute_reply": "2024-05-23T15:18:24.679516Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:04.913889Z", - "iopub.status.busy": "2024-05-23T02:45:04.913372Z", - "iopub.status.idle": "2024-05-23T02:45:04.916375Z", - "shell.execute_reply": "2024-05-23T02:45:04.915832Z" + "iopub.execute_input": "2024-05-23T15:18:24.682646Z", + "iopub.status.busy": "2024-05-23T15:18:24.682170Z", + "iopub.status.idle": "2024-05-23T15:18:24.685078Z", + "shell.execute_reply": "2024-05-23T15:18:24.684631Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:04.918464Z", - "iopub.status.busy": "2024-05-23T02:45:04.918245Z", - "iopub.status.idle": "2024-05-23T02:45:04.930907Z", - "shell.execute_reply": "2024-05-23T02:45:04.930283Z" + "iopub.execute_input": "2024-05-23T15:18:24.687271Z", + "iopub.status.busy": "2024-05-23T15:18:24.686871Z", + "iopub.status.idle": "2024-05-23T15:18:24.698963Z", + "shell.execute_reply": "2024-05-23T15:18:24.698415Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:04.933426Z", - "iopub.status.busy": "2024-05-23T02:45:04.932999Z", - "iopub.status.idle": "2024-05-23T02:45:09.987856Z", - "shell.execute_reply": "2024-05-23T02:45:09.987261Z" + "iopub.execute_input": "2024-05-23T15:18:24.701032Z", + "iopub.status.busy": "2024-05-23T15:18:24.700708Z", + "iopub.status.idle": "2024-05-23T15:18:28.638009Z", + "shell.execute_reply": "2024-05-23T15:18:28.637529Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 4b0c75c7d..658a6499c 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -812,13 +812,13 @@

How can I find label issues in big datasets with limited memory?
-
+
-
+
@@ -1763,7 +1763,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 1fabe616a..bae5aecd3 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:12.020630Z", - "iopub.status.busy": "2024-05-23T02:45:12.020458Z", - "iopub.status.idle": "2024-05-23T02:45:13.122524Z", - "shell.execute_reply": "2024-05-23T02:45:13.121966Z" + "iopub.execute_input": "2024-05-23T15:18:30.779423Z", + "iopub.status.busy": "2024-05-23T15:18:30.779082Z", + "iopub.status.idle": "2024-05-23T15:18:31.876497Z", + "shell.execute_reply": "2024-05-23T15:18:31.875906Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:13.125004Z", - "iopub.status.busy": "2024-05-23T02:45:13.124725Z", - "iopub.status.idle": "2024-05-23T02:45:13.128107Z", - "shell.execute_reply": "2024-05-23T02:45:13.127644Z" + "iopub.execute_input": "2024-05-23T15:18:31.879405Z", + "iopub.status.busy": "2024-05-23T15:18:31.878894Z", + "iopub.status.idle": "2024-05-23T15:18:31.882289Z", + "shell.execute_reply": "2024-05-23T15:18:31.881726Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:13.130103Z", - "iopub.status.busy": "2024-05-23T02:45:13.129775Z", - "iopub.status.idle": "2024-05-23T02:45:16.042028Z", - "shell.execute_reply": "2024-05-23T02:45:16.041401Z" + "iopub.execute_input": "2024-05-23T15:18:31.884374Z", + "iopub.status.busy": "2024-05-23T15:18:31.883963Z", + "iopub.status.idle": "2024-05-23T15:18:34.796466Z", + "shell.execute_reply": "2024-05-23T15:18:34.795858Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.045402Z", - "iopub.status.busy": "2024-05-23T02:45:16.044381Z", - "iopub.status.idle": "2024-05-23T02:45:16.082139Z", - "shell.execute_reply": "2024-05-23T02:45:16.081538Z" + "iopub.execute_input": "2024-05-23T15:18:34.799374Z", + "iopub.status.busy": "2024-05-23T15:18:34.798780Z", + "iopub.status.idle": "2024-05-23T15:18:34.835628Z", + "shell.execute_reply": "2024-05-23T15:18:34.834909Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.084959Z", - "iopub.status.busy": "2024-05-23T02:45:16.084494Z", - "iopub.status.idle": "2024-05-23T02:45:16.116739Z", - "shell.execute_reply": "2024-05-23T02:45:16.116147Z" + "iopub.execute_input": "2024-05-23T15:18:34.838156Z", + "iopub.status.busy": "2024-05-23T15:18:34.837914Z", + "iopub.status.idle": "2024-05-23T15:18:34.873183Z", + "shell.execute_reply": "2024-05-23T15:18:34.872483Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.119225Z", - "iopub.status.busy": "2024-05-23T02:45:16.118994Z", - "iopub.status.idle": "2024-05-23T02:45:16.122060Z", - "shell.execute_reply": "2024-05-23T02:45:16.121519Z" + "iopub.execute_input": "2024-05-23T15:18:34.875734Z", + "iopub.status.busy": "2024-05-23T15:18:34.875501Z", + "iopub.status.idle": "2024-05-23T15:18:34.878527Z", + "shell.execute_reply": "2024-05-23T15:18:34.877990Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.124245Z", - "iopub.status.busy": "2024-05-23T02:45:16.123844Z", - "iopub.status.idle": "2024-05-23T02:45:16.126627Z", - "shell.execute_reply": "2024-05-23T02:45:16.126081Z" + "iopub.execute_input": "2024-05-23T15:18:34.880733Z", + "iopub.status.busy": "2024-05-23T15:18:34.880290Z", + "iopub.status.idle": "2024-05-23T15:18:34.883061Z", + "shell.execute_reply": "2024-05-23T15:18:34.882603Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.128722Z", - "iopub.status.busy": "2024-05-23T02:45:16.128455Z", - "iopub.status.idle": "2024-05-23T02:45:16.152771Z", - "shell.execute_reply": "2024-05-23T02:45:16.152170Z" + "iopub.execute_input": "2024-05-23T15:18:34.885194Z", + "iopub.status.busy": "2024-05-23T15:18:34.884803Z", + "iopub.status.idle": "2024-05-23T15:18:34.910167Z", + "shell.execute_reply": "2024-05-23T15:18:34.909619Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7a0a713a855640b4bc4b02c4dd7a5c52", + "model_id": "8f3c516252c74d63897fb8eee08617d7", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4abe0827381d491cb3d9884ab6f9a9e1", + "model_id": "635547bff7444b9da4fab23636e0c719", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.159827Z", - "iopub.status.busy": "2024-05-23T02:45:16.159398Z", - "iopub.status.idle": "2024-05-23T02:45:16.166228Z", - "shell.execute_reply": "2024-05-23T02:45:16.165673Z" + "iopub.execute_input": "2024-05-23T15:18:34.915862Z", + "iopub.status.busy": "2024-05-23T15:18:34.915687Z", + "iopub.status.idle": "2024-05-23T15:18:34.921935Z", + "shell.execute_reply": "2024-05-23T15:18:34.921532Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.168352Z", - "iopub.status.busy": "2024-05-23T02:45:16.168088Z", - "iopub.status.idle": "2024-05-23T02:45:16.171539Z", - "shell.execute_reply": "2024-05-23T02:45:16.171086Z" + "iopub.execute_input": "2024-05-23T15:18:34.923818Z", + "iopub.status.busy": "2024-05-23T15:18:34.923646Z", + "iopub.status.idle": "2024-05-23T15:18:34.927144Z", + "shell.execute_reply": "2024-05-23T15:18:34.926700Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.173652Z", - "iopub.status.busy": "2024-05-23T02:45:16.173328Z", - "iopub.status.idle": "2024-05-23T02:45:16.179497Z", - "shell.execute_reply": "2024-05-23T02:45:16.179070Z" + "iopub.execute_input": "2024-05-23T15:18:34.929063Z", + "iopub.status.busy": "2024-05-23T15:18:34.928757Z", + "iopub.status.idle": "2024-05-23T15:18:34.934959Z", + "shell.execute_reply": "2024-05-23T15:18:34.934415Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.181397Z", - "iopub.status.busy": "2024-05-23T02:45:16.181086Z", - "iopub.status.idle": "2024-05-23T02:45:16.215164Z", - "shell.execute_reply": "2024-05-23T02:45:16.214486Z" + "iopub.execute_input": "2024-05-23T15:18:34.936789Z", + "iopub.status.busy": "2024-05-23T15:18:34.936503Z", + "iopub.status.idle": "2024-05-23T15:18:34.967120Z", + "shell.execute_reply": "2024-05-23T15:18:34.966451Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.217921Z", - "iopub.status.busy": "2024-05-23T02:45:16.217632Z", - "iopub.status.idle": "2024-05-23T02:45:16.251375Z", - "shell.execute_reply": "2024-05-23T02:45:16.250773Z" + "iopub.execute_input": "2024-05-23T15:18:34.969429Z", + "iopub.status.busy": "2024-05-23T15:18:34.969209Z", + "iopub.status.idle": "2024-05-23T15:18:34.997685Z", + "shell.execute_reply": "2024-05-23T15:18:34.997024Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.254072Z", - "iopub.status.busy": "2024-05-23T02:45:16.253828Z", - "iopub.status.idle": "2024-05-23T02:45:16.375532Z", - "shell.execute_reply": "2024-05-23T02:45:16.374900Z" + "iopub.execute_input": "2024-05-23T15:18:35.000316Z", + "iopub.status.busy": "2024-05-23T15:18:35.000083Z", + "iopub.status.idle": "2024-05-23T15:18:35.122194Z", + "shell.execute_reply": "2024-05-23T15:18:35.121656Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.378671Z", - "iopub.status.busy": "2024-05-23T02:45:16.377819Z", - "iopub.status.idle": "2024-05-23T02:45:19.454492Z", - "shell.execute_reply": "2024-05-23T02:45:19.453865Z" + "iopub.execute_input": "2024-05-23T15:18:35.124994Z", + "iopub.status.busy": "2024-05-23T15:18:35.124205Z", + "iopub.status.idle": "2024-05-23T15:18:38.166808Z", + "shell.execute_reply": "2024-05-23T15:18:38.166236Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.456647Z", - "iopub.status.busy": "2024-05-23T02:45:19.456462Z", - "iopub.status.idle": "2024-05-23T02:45:19.522758Z", - "shell.execute_reply": "2024-05-23T02:45:19.522322Z" + "iopub.execute_input": "2024-05-23T15:18:38.169245Z", + "iopub.status.busy": "2024-05-23T15:18:38.168893Z", + "iopub.status.idle": "2024-05-23T15:18:38.228886Z", + "shell.execute_reply": "2024-05-23T15:18:38.228321Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.524681Z", - "iopub.status.busy": "2024-05-23T02:45:19.524495Z", - "iopub.status.idle": "2024-05-23T02:45:19.565188Z", - "shell.execute_reply": "2024-05-23T02:45:19.564702Z" + "iopub.execute_input": "2024-05-23T15:18:38.231149Z", + "iopub.status.busy": "2024-05-23T15:18:38.230702Z", + "iopub.status.idle": "2024-05-23T15:18:38.270535Z", + "shell.execute_reply": "2024-05-23T15:18:38.269980Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "5f52835e", + "id": "64b3b176", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "92c47f6f", + "id": "1d010710", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "c8fd91f6", + "id": "cb7b6ab8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.567253Z", - "iopub.status.busy": "2024-05-23T02:45:19.567076Z", - "iopub.status.idle": "2024-05-23T02:45:19.662673Z", - "shell.execute_reply": "2024-05-23T02:45:19.662096Z" + "iopub.execute_input": "2024-05-23T15:18:38.272851Z", + "iopub.status.busy": "2024-05-23T15:18:38.272449Z", + "iopub.status.idle": "2024-05-23T15:18:38.348175Z", + "shell.execute_reply": "2024-05-23T15:18:38.347422Z" } }, "outputs": [ @@ -1387,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "ec8a8f8e", + "id": "5bd5118b", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "23ef2947", + "id": "9ad1e59f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.665134Z", - "iopub.status.busy": "2024-05-23T02:45:19.664881Z", - "iopub.status.idle": "2024-05-23T02:45:19.731493Z", - "shell.execute_reply": "2024-05-23T02:45:19.730953Z" + "iopub.execute_input": "2024-05-23T15:18:38.350721Z", + "iopub.status.busy": "2024-05-23T15:18:38.350515Z", + "iopub.status.idle": "2024-05-23T15:18:38.427394Z", + "shell.execute_reply": "2024-05-23T15:18:38.426825Z" } }, "outputs": [ @@ -1438,7 +1438,7 @@ }, { "cell_type": "markdown", - "id": "c09a8d28", + "id": "cb460bc2", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1449,13 +1449,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "7201359e", + "id": "851d8df8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.734299Z", - "iopub.status.busy": "2024-05-23T02:45:19.733720Z", - "iopub.status.idle": "2024-05-23T02:45:19.743001Z", - "shell.execute_reply": "2024-05-23T02:45:19.742573Z" + "iopub.execute_input": "2024-05-23T15:18:38.429899Z", + "iopub.status.busy": "2024-05-23T15:18:38.429722Z", + "iopub.status.idle": "2024-05-23T15:18:38.437290Z", + "shell.execute_reply": "2024-05-23T15:18:38.436749Z" } }, "outputs": [], @@ -1557,7 +1557,7 @@ }, { "cell_type": "markdown", - "id": "d696bba5", + "id": "ef9850ad", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1572,13 +1572,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "9f6aa470", + "id": "7a2c4ea8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.745282Z", - "iopub.status.busy": "2024-05-23T02:45:19.745017Z", - "iopub.status.idle": "2024-05-23T02:45:19.763801Z", - "shell.execute_reply": "2024-05-23T02:45:19.763262Z" + "iopub.execute_input": "2024-05-23T15:18:38.439334Z", + "iopub.status.busy": "2024-05-23T15:18:38.439036Z", + "iopub.status.idle": "2024-05-23T15:18:38.458605Z", + "shell.execute_reply": "2024-05-23T15:18:38.458047Z" } }, "outputs": [ @@ -1586,7 +1586,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding near_duplicate issues ...\n", + "Finding near_duplicate issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Audit complete. 3 issues found in the dataset.\n" ] @@ -1595,7 +1601,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7769/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7745/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1629,13 +1635,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "4261c5aa", + "id": "0458d311", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.765624Z", - "iopub.status.busy": "2024-05-23T02:45:19.765456Z", - "iopub.status.idle": "2024-05-23T02:45:19.768605Z", - "shell.execute_reply": "2024-05-23T02:45:19.768070Z" + "iopub.execute_input": "2024-05-23T15:18:38.460516Z", + "iopub.status.busy": "2024-05-23T15:18:38.460219Z", + "iopub.status.idle": "2024-05-23T15:18:38.463420Z", + "shell.execute_reply": "2024-05-23T15:18:38.462900Z" } }, "outputs": [ @@ -1730,7 +1736,113 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "168f26f4b7f04ad988f7418d68ad8312": { + "08497646f0cb4f63a1c95644d108a07c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3467641639a94f99b2952095c9b6dd73", + "placeholder": "​", + "style": "IPY_MODEL_e343613b5e7f4c8c94ab71069d836c5a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "0f6d3cd136594d1d98d49a8a1c90a774": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "10fedb5640c646ada9ce6b7e377cf1fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5357e45aa1d84b08bc327a15224faeb8", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_28ace186259847d0967935e138b0fd99", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "28ace186259847d0967935e138b0fd99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "314b83f258234697a5cb4b62f93fcaba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7245cef08c6b4b708a5511ae12b2bb5e", + "placeholder": "​", + "style": "IPY_MODEL_6cf456ba92cb444aa203f05ede632b49", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1321290.32it/s]" + } + }, + "3467641639a94f99b2952095c9b6dd73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,7 +1895,49 @@ "width": null } }, - "1a9b3b76daa84667b48e78b398d6491a": { + "3c0cdd450a4b4118b695a96901d22dd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8229e5b2c5c6428eaaeed2221f8e2604", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f2f766355df4a4a851d76a58ee0cd03", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "4f2f766355df4a4a851d76a58ee0cd03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5357e45aa1d84b08bc327a15224faeb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1836,30 +1990,7 @@ "width": null } }, - "1c8c05676fde4dc28df0c336439f308a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4000b4b33a134b28bca06526c6583154", - "placeholder": "​", - "style": "IPY_MODEL_5ab1c206a77247a8b01409902c80f85d", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1075903.96it/s]" - } - }, - "1fd1a66c02cc42f7ba9f306977d93850": { + "550b0d066ae848f29e2fc0f3c630ba44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1912,7 +2043,49 @@ "width": null } }, - "226e5545acc24b949c4d7887c602331f": { + "5715ae6114ca4c89894e8c045de68727": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "635547bff7444b9da4fab23636e0c719": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ef3d01c63f3242188716dd65aefd758b", + "IPY_MODEL_3c0cdd450a4b4118b695a96901d22dd2", + "IPY_MODEL_314b83f258234697a5cb4b62f93fcaba" + ], + "layout": "IPY_MODEL_d707d64aa62b4524b3af277ba4f618f3", + "tabbable": null, + "tooltip": null + } + }, + "6cf456ba92cb444aa203f05ede632b49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1930,7 +2103,7 @@ "text_color": null } }, - "3ca0dadcab9f40caa3e27aea11cf843c": { + "7245cef08c6b4b708a5511ae12b2bb5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1983,7 +2156,7 @@ "width": null } }, - "4000b4b33a134b28bca06526c6583154": { + "8229e5b2c5c6428eaaeed2221f8e2604": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2036,101 +2209,7 @@ "width": null } }, - "474dcd15f7fd4e04860c2031270d0cd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ca0dadcab9f40caa3e27aea11cf843c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ff17341075074d3591ad9d488166a32c", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "4abe0827381d491cb3d9884ab6f9a9e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_82d60ad6c1fc40fe8aa3d7b3313a9fe1", - "IPY_MODEL_73eae9475e5b4aca96b7f8de0f49346b", - "IPY_MODEL_803cb3bb193d490d8ab735828df70e59" - ], - "layout": "IPY_MODEL_e51a67cb7f3f4ede938bbdb7e7521fc5", - "tabbable": null, - "tooltip": null - } - }, - "5ab1c206a77247a8b01409902c80f85d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "73eae9475e5b4aca96b7f8de0f49346b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb9ffba65b6b400bbfe0d61b47eb7ade", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a3af9991459c4b84bdc420247099f65e", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "7a0a713a855640b4bc4b02c4dd7a5c52": { + "8f3c516252c74d63897fb8eee08617d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2145,16 +2224,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c017ecf716a04b52acdea29c96c5ebf2", - "IPY_MODEL_474dcd15f7fd4e04860c2031270d0cd0", - "IPY_MODEL_1c8c05676fde4dc28df0c336439f308a" + "IPY_MODEL_08497646f0cb4f63a1c95644d108a07c", + "IPY_MODEL_10fedb5640c646ada9ce6b7e377cf1fa", + "IPY_MODEL_932ecfacb7ca4cf7b8a5442592bffda4" ], - "layout": "IPY_MODEL_1a9b3b76daa84667b48e78b398d6491a", + "layout": "IPY_MODEL_550b0d066ae848f29e2fc0f3c630ba44", "tabbable": null, "tooltip": null } }, - "803cb3bb193d490d8ab735828df70e59": { + "932ecfacb7ca4cf7b8a5442592bffda4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2169,72 +2248,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a7ae0b4219304b1f858991e22ec2a296", + "layout": "IPY_MODEL_99d7c922a5cf42859fa14f718fef0646", "placeholder": "​", - "style": "IPY_MODEL_91e4afa9d15a4279bdeb4a09a0131fdb", + "style": "IPY_MODEL_0f6d3cd136594d1d98d49a8a1c90a774", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1535587.61it/s]" - } - }, - "82d60ad6c1fc40fe8aa3d7b3313a9fe1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1fd1a66c02cc42f7ba9f306977d93850", - "placeholder": "​", - "style": "IPY_MODEL_fbdc43ebca7b47fe8d6f430301e96a71", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "91e4afa9d15a4279bdeb4a09a0131fdb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 10000/? [00:00<00:00, 1099654.97it/s]" } }, - "a3af9991459c4b84bdc420247099f65e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a7ae0b4219304b1f858991e22ec2a296": { + "99d7c922a5cf42859fa14f718fef0646": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2287,30 +2309,7 @@ "width": null } }, - "c017ecf716a04b52acdea29c96c5ebf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_168f26f4b7f04ad988f7418d68ad8312", - "placeholder": "​", - "style": "IPY_MODEL_226e5545acc24b949c4d7887c602331f", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "cb9ffba65b6b400bbfe0d61b47eb7ade": { + "b7bfe758d7da49789e7d13a74088bfdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2363,7 +2362,7 @@ "width": null } }, - "e51a67cb7f3f4ede938bbdb7e7521fc5": { + "d707d64aa62b4524b3af277ba4f618f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2416,7 +2415,7 @@ "width": null } }, - "fbdc43ebca7b47fe8d6f430301e96a71": { + "e343613b5e7f4c8c94ab71069d836c5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2434,20 +2433,27 @@ "text_color": null } }, - "ff17341075074d3591ad9d488166a32c": { + "ef3d01c63f3242188716dd65aefd758b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b7bfe758d7da49789e7d13a74088bfdb", + "placeholder": "​", + "style": "IPY_MODEL_5715ae6114ca4c89894e8c045de68727", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } } }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 737868f0d..633332eb4 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:22.909654Z", - "iopub.status.busy": "2024-05-23T02:45:22.909464Z", - "iopub.status.idle": "2024-05-23T02:45:24.063188Z", - "shell.execute_reply": "2024-05-23T02:45:24.062583Z" + "iopub.execute_input": "2024-05-23T15:18:41.451137Z", + "iopub.status.busy": "2024-05-23T15:18:41.450666Z", + "iopub.status.idle": "2024-05-23T15:18:42.609707Z", + "shell.execute_reply": "2024-05-23T15:18:42.609088Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:24.065703Z", - "iopub.status.busy": "2024-05-23T02:45:24.065439Z", - "iopub.status.idle": "2024-05-23T02:45:24.242711Z", - "shell.execute_reply": "2024-05-23T02:45:24.242120Z" + "iopub.execute_input": "2024-05-23T15:18:42.612298Z", + "iopub.status.busy": "2024-05-23T15:18:42.612043Z", + "iopub.status.idle": "2024-05-23T15:18:42.790237Z", + "shell.execute_reply": "2024-05-23T15:18:42.789747Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:24.245266Z", - "iopub.status.busy": "2024-05-23T02:45:24.245077Z", - "iopub.status.idle": "2024-05-23T02:45:24.256520Z", - "shell.execute_reply": "2024-05-23T02:45:24.255950Z" + "iopub.execute_input": "2024-05-23T15:18:42.792842Z", + "iopub.status.busy": "2024-05-23T15:18:42.792502Z", + "iopub.status.idle": "2024-05-23T15:18:42.804185Z", + "shell.execute_reply": "2024-05-23T15:18:42.803753Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:24.258732Z", - "iopub.status.busy": "2024-05-23T02:45:24.258425Z", - "iopub.status.idle": "2024-05-23T02:45:24.493464Z", - "shell.execute_reply": "2024-05-23T02:45:24.492862Z" + "iopub.execute_input": "2024-05-23T15:18:42.806115Z", + "iopub.status.busy": "2024-05-23T15:18:42.805801Z", + "iopub.status.idle": "2024-05-23T15:18:43.038896Z", + "shell.execute_reply": "2024-05-23T15:18:43.038291Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:24.495811Z", - "iopub.status.busy": "2024-05-23T02:45:24.495404Z", - "iopub.status.idle": "2024-05-23T02:45:24.522115Z", - "shell.execute_reply": "2024-05-23T02:45:24.521538Z" + "iopub.execute_input": "2024-05-23T15:18:43.041290Z", + "iopub.status.busy": "2024-05-23T15:18:43.040897Z", + "iopub.status.idle": "2024-05-23T15:18:43.067459Z", + "shell.execute_reply": "2024-05-23T15:18:43.066880Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:24.524516Z", - "iopub.status.busy": "2024-05-23T02:45:24.524071Z", - "iopub.status.idle": "2024-05-23T02:45:26.162654Z", - "shell.execute_reply": "2024-05-23T02:45:26.162013Z" + "iopub.execute_input": "2024-05-23T15:18:43.069630Z", + "iopub.status.busy": "2024-05-23T15:18:43.069451Z", + "iopub.status.idle": "2024-05-23T15:18:44.703341Z", + "shell.execute_reply": "2024-05-23T15:18:44.702712Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:26.165059Z", - "iopub.status.busy": "2024-05-23T02:45:26.164726Z", - "iopub.status.idle": "2024-05-23T02:45:26.182556Z", - "shell.execute_reply": "2024-05-23T02:45:26.182125Z" + "iopub.execute_input": "2024-05-23T15:18:44.705621Z", + "iopub.status.busy": "2024-05-23T15:18:44.705268Z", + "iopub.status.idle": "2024-05-23T15:18:44.723382Z", + "shell.execute_reply": "2024-05-23T15:18:44.722908Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:26.184775Z", - "iopub.status.busy": "2024-05-23T02:45:26.184390Z", - "iopub.status.idle": "2024-05-23T02:45:27.552072Z", - "shell.execute_reply": "2024-05-23T02:45:27.551510Z" + "iopub.execute_input": "2024-05-23T15:18:44.725329Z", + "iopub.status.busy": "2024-05-23T15:18:44.725018Z", + "iopub.status.idle": "2024-05-23T15:18:46.105511Z", + "shell.execute_reply": "2024-05-23T15:18:46.104900Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.554683Z", - "iopub.status.busy": "2024-05-23T02:45:27.554032Z", - "iopub.status.idle": "2024-05-23T02:45:27.567240Z", - "shell.execute_reply": "2024-05-23T02:45:27.566710Z" + "iopub.execute_input": "2024-05-23T15:18:46.108458Z", + "iopub.status.busy": "2024-05-23T15:18:46.107728Z", + "iopub.status.idle": "2024-05-23T15:18:46.121958Z", + "shell.execute_reply": "2024-05-23T15:18:46.121504Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.569213Z", - "iopub.status.busy": "2024-05-23T02:45:27.568910Z", - "iopub.status.idle": "2024-05-23T02:45:27.640819Z", - "shell.execute_reply": "2024-05-23T02:45:27.640244Z" + "iopub.execute_input": "2024-05-23T15:18:46.123994Z", + "iopub.status.busy": "2024-05-23T15:18:46.123723Z", + "iopub.status.idle": "2024-05-23T15:18:46.197726Z", + "shell.execute_reply": "2024-05-23T15:18:46.197097Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.643126Z", - "iopub.status.busy": "2024-05-23T02:45:27.642764Z", - "iopub.status.idle": "2024-05-23T02:45:27.851850Z", - "shell.execute_reply": "2024-05-23T02:45:27.851290Z" + "iopub.execute_input": "2024-05-23T15:18:46.199868Z", + "iopub.status.busy": "2024-05-23T15:18:46.199644Z", + "iopub.status.idle": "2024-05-23T15:18:46.412530Z", + "shell.execute_reply": "2024-05-23T15:18:46.411911Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.854072Z", - "iopub.status.busy": "2024-05-23T02:45:27.853737Z", - "iopub.status.idle": "2024-05-23T02:45:27.871426Z", - "shell.execute_reply": "2024-05-23T02:45:27.871015Z" + "iopub.execute_input": "2024-05-23T15:18:46.414915Z", + "iopub.status.busy": "2024-05-23T15:18:46.414504Z", + "iopub.status.idle": "2024-05-23T15:18:46.431542Z", + "shell.execute_reply": "2024-05-23T15:18:46.431077Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.873623Z", - "iopub.status.busy": "2024-05-23T02:45:27.873180Z", - "iopub.status.idle": "2024-05-23T02:45:27.882468Z", - "shell.execute_reply": "2024-05-23T02:45:27.882051Z" + "iopub.execute_input": "2024-05-23T15:18:46.433461Z", + "iopub.status.busy": "2024-05-23T15:18:46.433290Z", + "iopub.status.idle": "2024-05-23T15:18:46.443460Z", + "shell.execute_reply": "2024-05-23T15:18:46.443031Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.884381Z", - "iopub.status.busy": "2024-05-23T02:45:27.884083Z", - "iopub.status.idle": "2024-05-23T02:45:27.969743Z", - "shell.execute_reply": "2024-05-23T02:45:27.969119Z" + "iopub.execute_input": "2024-05-23T15:18:46.445348Z", + "iopub.status.busy": "2024-05-23T15:18:46.445176Z", + "iopub.status.idle": "2024-05-23T15:18:46.530754Z", + "shell.execute_reply": "2024-05-23T15:18:46.530137Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.972190Z", - "iopub.status.busy": "2024-05-23T02:45:27.971863Z", - "iopub.status.idle": "2024-05-23T02:45:28.090196Z", - "shell.execute_reply": "2024-05-23T02:45:28.089671Z" + "iopub.execute_input": "2024-05-23T15:18:46.533006Z", + "iopub.status.busy": "2024-05-23T15:18:46.532769Z", + "iopub.status.idle": "2024-05-23T15:18:46.650360Z", + "shell.execute_reply": "2024-05-23T15:18:46.649795Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.092416Z", - "iopub.status.busy": "2024-05-23T02:45:28.092187Z", - "iopub.status.idle": "2024-05-23T02:45:28.096132Z", - "shell.execute_reply": "2024-05-23T02:45:28.095600Z" + "iopub.execute_input": "2024-05-23T15:18:46.652894Z", + "iopub.status.busy": "2024-05-23T15:18:46.652440Z", + "iopub.status.idle": "2024-05-23T15:18:46.656437Z", + "shell.execute_reply": "2024-05-23T15:18:46.655890Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.098190Z", - "iopub.status.busy": "2024-05-23T02:45:28.097886Z", - "iopub.status.idle": "2024-05-23T02:45:28.101611Z", - "shell.execute_reply": "2024-05-23T02:45:28.101061Z" + "iopub.execute_input": "2024-05-23T15:18:46.658319Z", + "iopub.status.busy": "2024-05-23T15:18:46.658153Z", + "iopub.status.idle": "2024-05-23T15:18:46.662043Z", + "shell.execute_reply": "2024-05-23T15:18:46.661576Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.103513Z", - "iopub.status.busy": "2024-05-23T02:45:28.103218Z", - "iopub.status.idle": "2024-05-23T02:45:28.139767Z", - "shell.execute_reply": "2024-05-23T02:45:28.139212Z" + "iopub.execute_input": "2024-05-23T15:18:46.663845Z", + "iopub.status.busy": "2024-05-23T15:18:46.663676Z", + "iopub.status.idle": "2024-05-23T15:18:46.699910Z", + "shell.execute_reply": "2024-05-23T15:18:46.699449Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.141763Z", - "iopub.status.busy": "2024-05-23T02:45:28.141456Z", - "iopub.status.idle": "2024-05-23T02:45:28.183856Z", - "shell.execute_reply": "2024-05-23T02:45:28.183305Z" + "iopub.execute_input": "2024-05-23T15:18:46.701773Z", + "iopub.status.busy": "2024-05-23T15:18:46.701598Z", + "iopub.status.idle": "2024-05-23T15:18:46.745873Z", + "shell.execute_reply": "2024-05-23T15:18:46.745298Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.185884Z", - "iopub.status.busy": "2024-05-23T02:45:28.185583Z", - "iopub.status.idle": "2024-05-23T02:45:28.273877Z", - "shell.execute_reply": "2024-05-23T02:45:28.273314Z" + "iopub.execute_input": "2024-05-23T15:18:46.748152Z", + "iopub.status.busy": "2024-05-23T15:18:46.747739Z", + "iopub.status.idle": "2024-05-23T15:18:46.841710Z", + "shell.execute_reply": "2024-05-23T15:18:46.841161Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.276550Z", - "iopub.status.busy": "2024-05-23T02:45:28.276114Z", - "iopub.status.idle": "2024-05-23T02:45:28.361779Z", - "shell.execute_reply": "2024-05-23T02:45:28.361154Z" + "iopub.execute_input": "2024-05-23T15:18:46.844254Z", + "iopub.status.busy": "2024-05-23T15:18:46.843958Z", + "iopub.status.idle": "2024-05-23T15:18:46.933588Z", + "shell.execute_reply": "2024-05-23T15:18:46.932983Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.363963Z", - "iopub.status.busy": "2024-05-23T02:45:28.363740Z", - "iopub.status.idle": "2024-05-23T02:45:28.571267Z", - "shell.execute_reply": "2024-05-23T02:45:28.570724Z" + "iopub.execute_input": "2024-05-23T15:18:46.935894Z", + "iopub.status.busy": "2024-05-23T15:18:46.935604Z", + "iopub.status.idle": "2024-05-23T15:18:47.143860Z", + "shell.execute_reply": "2024-05-23T15:18:47.143238Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.573477Z", - "iopub.status.busy": "2024-05-23T02:45:28.573115Z", - "iopub.status.idle": "2024-05-23T02:45:28.739873Z", - "shell.execute_reply": "2024-05-23T02:45:28.739314Z" + "iopub.execute_input": "2024-05-23T15:18:47.146260Z", + "iopub.status.busy": "2024-05-23T15:18:47.145919Z", + "iopub.status.idle": "2024-05-23T15:18:47.314614Z", + "shell.execute_reply": "2024-05-23T15:18:47.314036Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.742132Z", - "iopub.status.busy": "2024-05-23T02:45:28.741898Z", - "iopub.status.idle": "2024-05-23T02:45:28.748025Z", - "shell.execute_reply": "2024-05-23T02:45:28.747495Z" + "iopub.execute_input": "2024-05-23T15:18:47.316952Z", + "iopub.status.busy": "2024-05-23T15:18:47.316583Z", + "iopub.status.idle": "2024-05-23T15:18:47.322849Z", + "shell.execute_reply": "2024-05-23T15:18:47.322419Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.750111Z", - "iopub.status.busy": "2024-05-23T02:45:28.749729Z", - "iopub.status.idle": "2024-05-23T02:45:28.967685Z", - "shell.execute_reply": "2024-05-23T02:45:28.967128Z" + "iopub.execute_input": "2024-05-23T15:18:47.324901Z", + "iopub.status.busy": "2024-05-23T15:18:47.324478Z", + "iopub.status.idle": "2024-05-23T15:18:47.539512Z", + "shell.execute_reply": "2024-05-23T15:18:47.538921Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.969931Z", - "iopub.status.busy": "2024-05-23T02:45:28.969592Z", - "iopub.status.idle": "2024-05-23T02:45:30.026125Z", - "shell.execute_reply": "2024-05-23T02:45:30.025597Z" + "iopub.execute_input": "2024-05-23T15:18:47.541885Z", + "iopub.status.busy": "2024-05-23T15:18:47.541482Z", + "iopub.status.idle": "2024-05-23T15:18:48.632466Z", + "shell.execute_reply": "2024-05-23T15:18:48.631819Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 3e5461985..11ad22099 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:33.376782Z", - "iopub.status.busy": "2024-05-23T02:45:33.376610Z", - "iopub.status.idle": "2024-05-23T02:45:34.474059Z", - "shell.execute_reply": "2024-05-23T02:45:34.473507Z" + "iopub.execute_input": "2024-05-23T15:18:52.007579Z", + "iopub.status.busy": "2024-05-23T15:18:52.007414Z", + "iopub.status.idle": "2024-05-23T15:18:53.114524Z", + "shell.execute_reply": "2024-05-23T15:18:53.113948Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.476736Z", - "iopub.status.busy": "2024-05-23T02:45:34.476230Z", - "iopub.status.idle": "2024-05-23T02:45:34.479378Z", - "shell.execute_reply": "2024-05-23T02:45:34.478833Z" + "iopub.execute_input": "2024-05-23T15:18:53.117150Z", + "iopub.status.busy": "2024-05-23T15:18:53.116730Z", + "iopub.status.idle": "2024-05-23T15:18:53.119784Z", + "shell.execute_reply": "2024-05-23T15:18:53.119337Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.481472Z", - "iopub.status.busy": "2024-05-23T02:45:34.481135Z", - "iopub.status.idle": "2024-05-23T02:45:34.488801Z", - "shell.execute_reply": "2024-05-23T02:45:34.488336Z" + "iopub.execute_input": "2024-05-23T15:18:53.121897Z", + "iopub.status.busy": "2024-05-23T15:18:53.121580Z", + "iopub.status.idle": "2024-05-23T15:18:53.129492Z", + "shell.execute_reply": "2024-05-23T15:18:53.128916Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.490770Z", - "iopub.status.busy": "2024-05-23T02:45:34.490447Z", - "iopub.status.idle": "2024-05-23T02:45:34.537579Z", - "shell.execute_reply": "2024-05-23T02:45:34.537068Z" + "iopub.execute_input": "2024-05-23T15:18:53.131642Z", + "iopub.status.busy": "2024-05-23T15:18:53.131304Z", + "iopub.status.idle": "2024-05-23T15:18:53.183633Z", + "shell.execute_reply": "2024-05-23T15:18:53.183074Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.539619Z", - "iopub.status.busy": "2024-05-23T02:45:34.539306Z", - "iopub.status.idle": "2024-05-23T02:45:34.556261Z", - "shell.execute_reply": "2024-05-23T02:45:34.555697Z" + "iopub.execute_input": "2024-05-23T15:18:53.185644Z", + "iopub.status.busy": "2024-05-23T15:18:53.185466Z", + "iopub.status.idle": "2024-05-23T15:18:53.202072Z", + "shell.execute_reply": "2024-05-23T15:18:53.201584Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.558301Z", - "iopub.status.busy": "2024-05-23T02:45:34.557988Z", - "iopub.status.idle": "2024-05-23T02:45:34.561881Z", - "shell.execute_reply": "2024-05-23T02:45:34.561419Z" + "iopub.execute_input": "2024-05-23T15:18:53.203949Z", + "iopub.status.busy": "2024-05-23T15:18:53.203776Z", + "iopub.status.idle": "2024-05-23T15:18:53.207702Z", + "shell.execute_reply": "2024-05-23T15:18:53.207257Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.564062Z", - "iopub.status.busy": "2024-05-23T02:45:34.563722Z", - "iopub.status.idle": "2024-05-23T02:45:34.577642Z", - "shell.execute_reply": "2024-05-23T02:45:34.577184Z" + "iopub.execute_input": "2024-05-23T15:18:53.209671Z", + "iopub.status.busy": "2024-05-23T15:18:53.209500Z", + "iopub.status.idle": "2024-05-23T15:18:53.224174Z", + "shell.execute_reply": "2024-05-23T15:18:53.223736Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.579601Z", - "iopub.status.busy": "2024-05-23T02:45:34.579276Z", - "iopub.status.idle": "2024-05-23T02:45:34.604529Z", - "shell.execute_reply": "2024-05-23T02:45:34.604112Z" + "iopub.execute_input": "2024-05-23T15:18:53.226035Z", + "iopub.status.busy": "2024-05-23T15:18:53.225859Z", + "iopub.status.idle": "2024-05-23T15:18:53.252043Z", + "shell.execute_reply": "2024-05-23T15:18:53.251607Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.606651Z", - "iopub.status.busy": "2024-05-23T02:45:34.606327Z", - "iopub.status.idle": "2024-05-23T02:45:36.270672Z", - "shell.execute_reply": "2024-05-23T02:45:36.270137Z" + "iopub.execute_input": "2024-05-23T15:18:53.253917Z", + "iopub.status.busy": "2024-05-23T15:18:53.253738Z", + "iopub.status.idle": "2024-05-23T15:18:54.947724Z", + "shell.execute_reply": "2024-05-23T15:18:54.947173Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.273150Z", - "iopub.status.busy": "2024-05-23T02:45:36.272730Z", - "iopub.status.idle": "2024-05-23T02:45:36.279438Z", - "shell.execute_reply": "2024-05-23T02:45:36.278896Z" + "iopub.execute_input": "2024-05-23T15:18:54.950166Z", + "iopub.status.busy": "2024-05-23T15:18:54.949868Z", + "iopub.status.idle": "2024-05-23T15:18:54.956808Z", + "shell.execute_reply": "2024-05-23T15:18:54.956271Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.281603Z", - "iopub.status.busy": "2024-05-23T02:45:36.281252Z", - "iopub.status.idle": "2024-05-23T02:45:36.293500Z", - "shell.execute_reply": "2024-05-23T02:45:36.293056Z" + "iopub.execute_input": "2024-05-23T15:18:54.958969Z", + "iopub.status.busy": "2024-05-23T15:18:54.958598Z", + "iopub.status.idle": "2024-05-23T15:18:54.971034Z", + "shell.execute_reply": "2024-05-23T15:18:54.970497Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.295515Z", - "iopub.status.busy": "2024-05-23T02:45:36.295173Z", - "iopub.status.idle": "2024-05-23T02:45:36.301603Z", - "shell.execute_reply": "2024-05-23T02:45:36.301050Z" + "iopub.execute_input": "2024-05-23T15:18:54.973141Z", + "iopub.status.busy": "2024-05-23T15:18:54.972739Z", + "iopub.status.idle": "2024-05-23T15:18:54.979039Z", + "shell.execute_reply": "2024-05-23T15:18:54.978498Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.303698Z", - "iopub.status.busy": "2024-05-23T02:45:36.303391Z", - "iopub.status.idle": "2024-05-23T02:45:36.305863Z", - "shell.execute_reply": "2024-05-23T02:45:36.305435Z" + "iopub.execute_input": "2024-05-23T15:18:54.981149Z", + "iopub.status.busy": "2024-05-23T15:18:54.980730Z", + "iopub.status.idle": "2024-05-23T15:18:54.983319Z", + "shell.execute_reply": "2024-05-23T15:18:54.982883Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.307851Z", - "iopub.status.busy": "2024-05-23T02:45:36.307530Z", - "iopub.status.idle": "2024-05-23T02:45:36.310884Z", - "shell.execute_reply": "2024-05-23T02:45:36.310384Z" + "iopub.execute_input": "2024-05-23T15:18:54.985204Z", + "iopub.status.busy": "2024-05-23T15:18:54.985028Z", + "iopub.status.idle": "2024-05-23T15:18:54.988357Z", + "shell.execute_reply": "2024-05-23T15:18:54.987848Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.312938Z", - "iopub.status.busy": "2024-05-23T02:45:36.312623Z", - "iopub.status.idle": "2024-05-23T02:45:36.315130Z", - "shell.execute_reply": "2024-05-23T02:45:36.314706Z" + "iopub.execute_input": "2024-05-23T15:18:54.990306Z", + "iopub.status.busy": "2024-05-23T15:18:54.990135Z", + "iopub.status.idle": "2024-05-23T15:18:54.992657Z", + "shell.execute_reply": "2024-05-23T15:18:54.992238Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.317037Z", - "iopub.status.busy": "2024-05-23T02:45:36.316714Z", - "iopub.status.idle": "2024-05-23T02:45:36.320799Z", - "shell.execute_reply": "2024-05-23T02:45:36.320351Z" + "iopub.execute_input": "2024-05-23T15:18:54.994725Z", + "iopub.status.busy": "2024-05-23T15:18:54.994306Z", + "iopub.status.idle": "2024-05-23T15:18:54.998455Z", + "shell.execute_reply": "2024-05-23T15:18:54.998006Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.322805Z", - "iopub.status.busy": "2024-05-23T02:45:36.322488Z", - "iopub.status.idle": "2024-05-23T02:45:36.350601Z", - "shell.execute_reply": "2024-05-23T02:45:36.350173Z" + "iopub.execute_input": "2024-05-23T15:18:55.000343Z", + "iopub.status.busy": "2024-05-23T15:18:55.000170Z", + "iopub.status.idle": "2024-05-23T15:18:55.030450Z", + "shell.execute_reply": "2024-05-23T15:18:55.029992Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.352489Z", - "iopub.status.busy": "2024-05-23T02:45:36.352299Z", - "iopub.status.idle": "2024-05-23T02:45:36.356725Z", - "shell.execute_reply": "2024-05-23T02:45:36.356288Z" + "iopub.execute_input": "2024-05-23T15:18:55.032268Z", + "iopub.status.busy": "2024-05-23T15:18:55.032099Z", + "iopub.status.idle": "2024-05-23T15:18:55.036740Z", + "shell.execute_reply": "2024-05-23T15:18:55.036305Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index e6fa51270..8e6835cb8 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:39.130024Z", - "iopub.status.busy": "2024-05-23T02:45:39.129625Z", - "iopub.status.idle": "2024-05-23T02:45:40.278778Z", - "shell.execute_reply": "2024-05-23T02:45:40.278168Z" + "iopub.execute_input": "2024-05-23T15:18:57.808420Z", + "iopub.status.busy": "2024-05-23T15:18:57.808257Z", + "iopub.status.idle": "2024-05-23T15:18:58.960227Z", + "shell.execute_reply": "2024-05-23T15:18:58.959741Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:40.281333Z", - "iopub.status.busy": "2024-05-23T02:45:40.280878Z", - "iopub.status.idle": "2024-05-23T02:45:40.473030Z", - "shell.execute_reply": "2024-05-23T02:45:40.472389Z" + "iopub.execute_input": "2024-05-23T15:18:58.962688Z", + "iopub.status.busy": "2024-05-23T15:18:58.962364Z", + "iopub.status.idle": "2024-05-23T15:18:59.156572Z", + "shell.execute_reply": "2024-05-23T15:18:59.156070Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:40.475746Z", - "iopub.status.busy": "2024-05-23T02:45:40.475313Z", - "iopub.status.idle": "2024-05-23T02:45:40.488670Z", - "shell.execute_reply": "2024-05-23T02:45:40.488085Z" + "iopub.execute_input": "2024-05-23T15:18:59.159355Z", + "iopub.status.busy": "2024-05-23T15:18:59.158909Z", + "iopub.status.idle": "2024-05-23T15:18:59.171734Z", + "shell.execute_reply": "2024-05-23T15:18:59.171307Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:40.491090Z", - "iopub.status.busy": "2024-05-23T02:45:40.490536Z", - "iopub.status.idle": "2024-05-23T02:45:43.148621Z", - "shell.execute_reply": "2024-05-23T02:45:43.148058Z" + "iopub.execute_input": "2024-05-23T15:18:59.173764Z", + "iopub.status.busy": "2024-05-23T15:18:59.173435Z", + "iopub.status.idle": "2024-05-23T15:19:01.818860Z", + "shell.execute_reply": "2024-05-23T15:19:01.818253Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:43.151026Z", - "iopub.status.busy": "2024-05-23T02:45:43.150556Z", - "iopub.status.idle": "2024-05-23T02:45:44.505977Z", - "shell.execute_reply": "2024-05-23T02:45:44.505441Z" + "iopub.execute_input": "2024-05-23T15:19:01.821210Z", + "iopub.status.busy": "2024-05-23T15:19:01.820917Z", + "iopub.status.idle": "2024-05-23T15:19:03.152098Z", + "shell.execute_reply": "2024-05-23T15:19:03.151598Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:44.508211Z", - "iopub.status.busy": "2024-05-23T02:45:44.508032Z", - "iopub.status.idle": "2024-05-23T02:45:44.512056Z", - "shell.execute_reply": "2024-05-23T02:45:44.511607Z" + "iopub.execute_input": "2024-05-23T15:19:03.154639Z", + "iopub.status.busy": "2024-05-23T15:19:03.154293Z", + "iopub.status.idle": "2024-05-23T15:19:03.158008Z", + "shell.execute_reply": "2024-05-23T15:19:03.157505Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:44.513916Z", - "iopub.status.busy": "2024-05-23T02:45:44.513746Z", - "iopub.status.idle": "2024-05-23T02:45:46.255262Z", - "shell.execute_reply": "2024-05-23T02:45:46.254660Z" + "iopub.execute_input": "2024-05-23T15:19:03.160039Z", + "iopub.status.busy": "2024-05-23T15:19:03.159724Z", + "iopub.status.idle": "2024-05-23T15:19:04.925502Z", + "shell.execute_reply": "2024-05-23T15:19:04.924830Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:46.257943Z", - "iopub.status.busy": "2024-05-23T02:45:46.257333Z", - "iopub.status.idle": "2024-05-23T02:45:46.265200Z", - "shell.execute_reply": "2024-05-23T02:45:46.264739Z" + "iopub.execute_input": "2024-05-23T15:19:04.928071Z", + "iopub.status.busy": "2024-05-23T15:19:04.927589Z", + "iopub.status.idle": "2024-05-23T15:19:04.935028Z", + "shell.execute_reply": "2024-05-23T15:19:04.934522Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:46.267325Z", - "iopub.status.busy": "2024-05-23T02:45:46.266993Z", - "iopub.status.idle": "2024-05-23T02:45:48.855371Z", - "shell.execute_reply": "2024-05-23T02:45:48.854860Z" + "iopub.execute_input": "2024-05-23T15:19:04.937024Z", + "iopub.status.busy": "2024-05-23T15:19:04.936741Z", + "iopub.status.idle": "2024-05-23T15:19:07.521116Z", + "shell.execute_reply": "2024-05-23T15:19:07.520500Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:48.857569Z", - "iopub.status.busy": "2024-05-23T02:45:48.857213Z", - "iopub.status.idle": "2024-05-23T02:45:48.860772Z", - "shell.execute_reply": "2024-05-23T02:45:48.860329Z" + "iopub.execute_input": "2024-05-23T15:19:07.523476Z", + "iopub.status.busy": "2024-05-23T15:19:07.523126Z", + "iopub.status.idle": "2024-05-23T15:19:07.526728Z", + "shell.execute_reply": "2024-05-23T15:19:07.526192Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:48.862795Z", - "iopub.status.busy": "2024-05-23T02:45:48.862499Z", - "iopub.status.idle": "2024-05-23T02:45:48.865883Z", - "shell.execute_reply": "2024-05-23T02:45:48.865453Z" + "iopub.execute_input": "2024-05-23T15:19:07.528912Z", + "iopub.status.busy": "2024-05-23T15:19:07.528509Z", + "iopub.status.idle": "2024-05-23T15:19:07.531928Z", + "shell.execute_reply": "2024-05-23T15:19:07.531495Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:48.867674Z", - "iopub.status.busy": "2024-05-23T02:45:48.867505Z", - "iopub.status.idle": "2024-05-23T02:45:48.870572Z", - "shell.execute_reply": "2024-05-23T02:45:48.870134Z" + "iopub.execute_input": "2024-05-23T15:19:07.533817Z", + "iopub.status.busy": "2024-05-23T15:19:07.533644Z", + "iopub.status.idle": "2024-05-23T15:19:07.536853Z", + "shell.execute_reply": "2024-05-23T15:19:07.536396Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.html b/master/tutorials/object_detection.html index c5a6ecb33..3ed48136a 100644 --- a/master/tutorials/object_detection.html +++ b/master/tutorials/object_detection.html @@ -667,7 +667,7 @@

Finding Label Errors in Object Detection Datasets1. Install required dependencies and download data#

You can use pip to install all packages required for this tutorial as follows

!pip install matplotlib
-!pip insall cleanlab
+!pip install cleanlab
 # Make sure to install the version corresponding to this tutorial
 # E.g. if viewing master branch documentation:
 #     !pip install git+https://github.com/cleanlab/cleanlab.git
diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb
index da92bbc52..02d948ced 100644
--- a/master/tutorials/object_detection.ipynb
+++ b/master/tutorials/object_detection.ipynb
@@ -57,7 +57,7 @@
     "You can use `pip` to install all packages required for this tutorial as follows\n",
     "```ipython\n",
     "!pip install matplotlib\n",
-    "!pip insall cleanlab\n",
+    "!pip install cleanlab\n",
     "# Make sure to install the version corresponding to this tutorial\n",
     "# E.g. if viewing master branch documentation:\n",
     "#     !pip install git+https://github.com/cleanlab/cleanlab.git\n",
@@ -70,10 +70,10 @@
    "id": "0ba0dc70",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:51.279873Z",
-     "iopub.status.busy": "2024-05-23T02:45:51.279703Z",
-     "iopub.status.idle": "2024-05-23T02:45:52.438969Z",
-     "shell.execute_reply": "2024-05-23T02:45:52.438406Z"
+     "iopub.execute_input": "2024-05-23T15:19:09.941298Z",
+     "iopub.status.busy": "2024-05-23T15:19:09.940829Z",
+     "iopub.status.idle": "2024-05-23T15:19:11.097022Z",
+     "shell.execute_reply": "2024-05-23T15:19:11.096453Z"
     },
     "nbsphinx": "hidden"
    },
@@ -83,7 +83,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -109,10 +109,10 @@
    "id": "c90449c8",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:52.441528Z",
-     "iopub.status.busy": "2024-05-23T02:45:52.441062Z",
-     "iopub.status.idle": "2024-05-23T02:45:54.032553Z",
-     "shell.execute_reply": "2024-05-23T02:45:54.031884Z"
+     "iopub.execute_input": "2024-05-23T15:19:11.099863Z",
+     "iopub.status.busy": "2024-05-23T15:19:11.099331Z",
+     "iopub.status.idle": "2024-05-23T15:19:11.953578Z",
+     "shell.execute_reply": "2024-05-23T15:19:11.952908Z"
     }
    },
    "outputs": [],
@@ -130,10 +130,10 @@
    "id": "df8be4c6",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:54.035367Z",
-     "iopub.status.busy": "2024-05-23T02:45:54.035000Z",
-     "iopub.status.idle": "2024-05-23T02:45:54.038397Z",
-     "shell.execute_reply": "2024-05-23T02:45:54.037919Z"
+     "iopub.execute_input": "2024-05-23T15:19:11.956193Z",
+     "iopub.status.busy": "2024-05-23T15:19:11.955987Z",
+     "iopub.status.idle": "2024-05-23T15:19:11.959380Z",
+     "shell.execute_reply": "2024-05-23T15:19:11.958907Z"
     }
    },
    "outputs": [],
@@ -169,10 +169,10 @@
    "id": "2e9ffd6f",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:54.040453Z",
-     "iopub.status.busy": "2024-05-23T02:45:54.040266Z",
-     "iopub.status.idle": "2024-05-23T02:45:54.047429Z",
-     "shell.execute_reply": "2024-05-23T02:45:54.046764Z"
+     "iopub.execute_input": "2024-05-23T15:19:11.961322Z",
+     "iopub.status.busy": "2024-05-23T15:19:11.960978Z",
+     "iopub.status.idle": "2024-05-23T15:19:11.968077Z",
+     "shell.execute_reply": "2024-05-23T15:19:11.967654Z"
     }
    },
    "outputs": [],
@@ -198,10 +198,10 @@
    "id": "56705562",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:54.049984Z",
-     "iopub.status.busy": "2024-05-23T02:45:54.049655Z",
-     "iopub.status.idle": "2024-05-23T02:45:54.541601Z",
-     "shell.execute_reply": "2024-05-23T02:45:54.541015Z"
+     "iopub.execute_input": "2024-05-23T15:19:11.970208Z",
+     "iopub.status.busy": "2024-05-23T15:19:11.969865Z",
+     "iopub.status.idle": "2024-05-23T15:19:12.460372Z",
+     "shell.execute_reply": "2024-05-23T15:19:12.459806Z"
     },
     "scrolled": true
    },
@@ -242,10 +242,10 @@
    "id": "b08144d7",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:54.544210Z",
-     "iopub.status.busy": "2024-05-23T02:45:54.543840Z",
-     "iopub.status.idle": "2024-05-23T02:45:54.548961Z",
-     "shell.execute_reply": "2024-05-23T02:45:54.548526Z"
+     "iopub.execute_input": "2024-05-23T15:19:12.463246Z",
+     "iopub.status.busy": "2024-05-23T15:19:12.462904Z",
+     "iopub.status.idle": "2024-05-23T15:19:12.468057Z",
+     "shell.execute_reply": "2024-05-23T15:19:12.467625Z"
     }
    },
    "outputs": [
@@ -497,10 +497,10 @@
    "id": "3d70bec6",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:54.550976Z",
-     "iopub.status.busy": "2024-05-23T02:45:54.550660Z",
-     "iopub.status.idle": "2024-05-23T02:45:54.554573Z",
-     "shell.execute_reply": "2024-05-23T02:45:54.554031Z"
+     "iopub.execute_input": "2024-05-23T15:19:12.470124Z",
+     "iopub.status.busy": "2024-05-23T15:19:12.469807Z",
+     "iopub.status.idle": "2024-05-23T15:19:12.473501Z",
+     "shell.execute_reply": "2024-05-23T15:19:12.473056Z"
     }
    },
    "outputs": [
@@ -557,10 +557,10 @@
    "id": "4caa635d",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:54.556798Z",
-     "iopub.status.busy": "2024-05-23T02:45:54.556412Z",
-     "iopub.status.idle": "2024-05-23T02:45:55.395282Z",
-     "shell.execute_reply": "2024-05-23T02:45:55.394667Z"
+     "iopub.execute_input": "2024-05-23T15:19:12.475564Z",
+     "iopub.status.busy": "2024-05-23T15:19:12.475235Z",
+     "iopub.status.idle": "2024-05-23T15:19:13.338397Z",
+     "shell.execute_reply": "2024-05-23T15:19:13.337797Z"
     }
    },
    "outputs": [
@@ -616,10 +616,10 @@
    "id": "a9b4c590",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:55.397651Z",
-     "iopub.status.busy": "2024-05-23T02:45:55.397273Z",
-     "iopub.status.idle": "2024-05-23T02:45:55.614342Z",
-     "shell.execute_reply": "2024-05-23T02:45:55.613847Z"
+     "iopub.execute_input": "2024-05-23T15:19:13.340873Z",
+     "iopub.status.busy": "2024-05-23T15:19:13.340423Z",
+     "iopub.status.idle": "2024-05-23T15:19:13.588209Z",
+     "shell.execute_reply": "2024-05-23T15:19:13.587617Z"
     }
    },
    "outputs": [
@@ -660,10 +660,10 @@
    "id": "ffd9ebcc",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:55.616402Z",
-     "iopub.status.busy": "2024-05-23T02:45:55.616129Z",
-     "iopub.status.idle": "2024-05-23T02:45:55.620263Z",
-     "shell.execute_reply": "2024-05-23T02:45:55.619835Z"
+     "iopub.execute_input": "2024-05-23T15:19:13.590484Z",
+     "iopub.status.busy": "2024-05-23T15:19:13.590022Z",
+     "iopub.status.idle": "2024-05-23T15:19:13.594514Z",
+     "shell.execute_reply": "2024-05-23T15:19:13.593949Z"
     }
    },
    "outputs": [
@@ -700,10 +700,10 @@
    "id": "4dd46d67",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:55.622163Z",
-     "iopub.status.busy": "2024-05-23T02:45:55.621993Z",
-     "iopub.status.idle": "2024-05-23T02:45:56.066905Z",
-     "shell.execute_reply": "2024-05-23T02:45:56.066324Z"
+     "iopub.execute_input": "2024-05-23T15:19:13.596553Z",
+     "iopub.status.busy": "2024-05-23T15:19:13.596160Z",
+     "iopub.status.idle": "2024-05-23T15:19:14.053043Z",
+     "shell.execute_reply": "2024-05-23T15:19:14.052450Z"
     }
    },
    "outputs": [
@@ -762,10 +762,10 @@
    "id": "ceec2394",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:56.070178Z",
-     "iopub.status.busy": "2024-05-23T02:45:56.069690Z",
-     "iopub.status.idle": "2024-05-23T02:45:56.401603Z",
-     "shell.execute_reply": "2024-05-23T02:45:56.401007Z"
+     "iopub.execute_input": "2024-05-23T15:19:14.056181Z",
+     "iopub.status.busy": "2024-05-23T15:19:14.055807Z",
+     "iopub.status.idle": "2024-05-23T15:19:14.361904Z",
+     "shell.execute_reply": "2024-05-23T15:19:14.361420Z"
     }
    },
    "outputs": [
@@ -812,10 +812,10 @@
    "id": "94f82b0d",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:56.403887Z",
-     "iopub.status.busy": "2024-05-23T02:45:56.403574Z",
-     "iopub.status.idle": "2024-05-23T02:45:56.737015Z",
-     "shell.execute_reply": "2024-05-23T02:45:56.736430Z"
+     "iopub.execute_input": "2024-05-23T15:19:14.363951Z",
+     "iopub.status.busy": "2024-05-23T15:19:14.363772Z",
+     "iopub.status.idle": "2024-05-23T15:19:14.726648Z",
+     "shell.execute_reply": "2024-05-23T15:19:14.726007Z"
     }
    },
    "outputs": [
@@ -862,10 +862,10 @@
    "id": "1ea18c5d",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:56.739639Z",
-     "iopub.status.busy": "2024-05-23T02:45:56.739462Z",
-     "iopub.status.idle": "2024-05-23T02:45:57.149862Z",
-     "shell.execute_reply": "2024-05-23T02:45:57.149313Z"
+     "iopub.execute_input": "2024-05-23T15:19:14.729639Z",
+     "iopub.status.busy": "2024-05-23T15:19:14.729287Z",
+     "iopub.status.idle": "2024-05-23T15:19:15.170833Z",
+     "shell.execute_reply": "2024-05-23T15:19:15.170240Z"
     }
    },
    "outputs": [
@@ -925,10 +925,10 @@
    "id": "7e770d23",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:57.154117Z",
-     "iopub.status.busy": "2024-05-23T02:45:57.153737Z",
-     "iopub.status.idle": "2024-05-23T02:45:57.578193Z",
-     "shell.execute_reply": "2024-05-23T02:45:57.577581Z"
+     "iopub.execute_input": "2024-05-23T15:19:15.174851Z",
+     "iopub.status.busy": "2024-05-23T15:19:15.174514Z",
+     "iopub.status.idle": "2024-05-23T15:19:15.621270Z",
+     "shell.execute_reply": "2024-05-23T15:19:15.620652Z"
     }
    },
    "outputs": [
@@ -971,10 +971,10 @@
    "id": "57e84a27",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:57.581421Z",
-     "iopub.status.busy": "2024-05-23T02:45:57.581017Z",
-     "iopub.status.idle": "2024-05-23T02:45:57.772147Z",
-     "shell.execute_reply": "2024-05-23T02:45:57.771496Z"
+     "iopub.execute_input": "2024-05-23T15:19:15.624334Z",
+     "iopub.status.busy": "2024-05-23T15:19:15.624147Z",
+     "iopub.status.idle": "2024-05-23T15:19:15.840347Z",
+     "shell.execute_reply": "2024-05-23T15:19:15.839762Z"
     }
    },
    "outputs": [
@@ -1017,10 +1017,10 @@
    "id": "0302818a",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:57.775004Z",
-     "iopub.status.busy": "2024-05-23T02:45:57.774563Z",
-     "iopub.status.idle": "2024-05-23T02:45:57.955208Z",
-     "shell.execute_reply": "2024-05-23T02:45:57.954636Z"
+     "iopub.execute_input": "2024-05-23T15:19:15.842651Z",
+     "iopub.status.busy": "2024-05-23T15:19:15.842224Z",
+     "iopub.status.idle": "2024-05-23T15:19:16.023798Z",
+     "shell.execute_reply": "2024-05-23T15:19:16.023243Z"
     }
    },
    "outputs": [
@@ -1067,10 +1067,10 @@
    "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:57.957498Z",
-     "iopub.status.busy": "2024-05-23T02:45:57.957157Z",
-     "iopub.status.idle": "2024-05-23T02:45:57.960151Z",
-     "shell.execute_reply": "2024-05-23T02:45:57.959597Z"
+     "iopub.execute_input": "2024-05-23T15:19:16.026016Z",
+     "iopub.status.busy": "2024-05-23T15:19:16.025682Z",
+     "iopub.status.idle": "2024-05-23T15:19:16.028740Z",
+     "shell.execute_reply": "2024-05-23T15:19:16.028149Z"
     }
    },
    "outputs": [],
@@ -1090,10 +1090,10 @@
    "id": "3335b8a3-d0b4-415a-a97d-c203088a124e",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:57.962165Z",
-     "iopub.status.busy": "2024-05-23T02:45:57.961845Z",
-     "iopub.status.idle": "2024-05-23T02:45:58.974583Z",
-     "shell.execute_reply": "2024-05-23T02:45:58.974110Z"
+     "iopub.execute_input": "2024-05-23T15:19:16.030740Z",
+     "iopub.status.busy": "2024-05-23T15:19:16.030424Z",
+     "iopub.status.idle": "2024-05-23T15:19:16.998382Z",
+     "shell.execute_reply": "2024-05-23T15:19:16.997802Z"
     }
    },
    "outputs": [
@@ -1172,10 +1172,10 @@
    "id": "9d4b7677-6ebd-447d-b0a1-76e094686628",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:58.976842Z",
-     "iopub.status.busy": "2024-05-23T02:45:58.976405Z",
-     "iopub.status.idle": "2024-05-23T02:45:59.101848Z",
-     "shell.execute_reply": "2024-05-23T02:45:59.101272Z"
+     "iopub.execute_input": "2024-05-23T15:19:17.001300Z",
+     "iopub.status.busy": "2024-05-23T15:19:17.000884Z",
+     "iopub.status.idle": "2024-05-23T15:19:17.176402Z",
+     "shell.execute_reply": "2024-05-23T15:19:17.175818Z"
     }
    },
    "outputs": [
@@ -1214,10 +1214,10 @@
    "id": "59d7ee39-3785-434b-8680-9133014851cd",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:59.104062Z",
-     "iopub.status.busy": "2024-05-23T02:45:59.103791Z",
-     "iopub.status.idle": "2024-05-23T02:45:59.263156Z",
-     "shell.execute_reply": "2024-05-23T02:45:59.262656Z"
+     "iopub.execute_input": "2024-05-23T15:19:17.178618Z",
+     "iopub.status.busy": "2024-05-23T15:19:17.178262Z",
+     "iopub.status.idle": "2024-05-23T15:19:17.349438Z",
+     "shell.execute_reply": "2024-05-23T15:19:17.348931Z"
     }
    },
    "outputs": [],
@@ -1266,10 +1266,10 @@
    "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:59.265667Z",
-     "iopub.status.busy": "2024-05-23T02:45:59.265320Z",
-     "iopub.status.idle": "2024-05-23T02:45:59.934452Z",
-     "shell.execute_reply": "2024-05-23T02:45:59.933875Z"
+     "iopub.execute_input": "2024-05-23T15:19:17.351734Z",
+     "iopub.status.busy": "2024-05-23T15:19:17.351422Z",
+     "iopub.status.idle": "2024-05-23T15:19:18.093586Z",
+     "shell.execute_reply": "2024-05-23T15:19:18.092975Z"
     }
    },
    "outputs": [
@@ -1351,10 +1351,10 @@
    "id": "8ce74938",
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-05-23T02:45:59.936441Z",
-     "iopub.status.busy": "2024-05-23T02:45:59.936263Z",
-     "iopub.status.idle": "2024-05-23T02:45:59.940021Z",
-     "shell.execute_reply": "2024-05-23T02:45:59.939485Z"
+     "iopub.execute_input": "2024-05-23T15:19:18.095774Z",
+     "iopub.status.busy": "2024-05-23T15:19:18.095421Z",
+     "iopub.status.idle": "2024-05-23T15:19:18.098960Z",
+     "shell.execute_reply": "2024-05-23T15:19:18.098495Z"
     },
     "nbsphinx": "hidden"
    },
diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html
index c60b1ca5f..42c000b6b 100644
--- a/master/tutorials/outliers.html
+++ b/master/tutorials/outliers.html
@@ -761,7 +761,7 @@ 

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:02<00:00, 83099579.16it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 90289215.23it/s]
 

-
+
@@ -1105,7 +1105,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index 2e3c58585..864c4a675 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:02.141345Z", - "iopub.status.busy": "2024-05-23T02:46:02.141145Z", - "iopub.status.idle": "2024-05-23T02:46:04.916832Z", - "shell.execute_reply": "2024-05-23T02:46:04.916287Z" + "iopub.execute_input": "2024-05-23T15:19:20.418050Z", + "iopub.status.busy": "2024-05-23T15:19:20.417645Z", + "iopub.status.idle": "2024-05-23T15:19:23.119265Z", + "shell.execute_reply": "2024-05-23T15:19:23.118765Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:04.919515Z", - "iopub.status.busy": "2024-05-23T02:46:04.919198Z", - "iopub.status.idle": "2024-05-23T02:46:05.256970Z", - "shell.execute_reply": "2024-05-23T02:46:05.256356Z" + "iopub.execute_input": "2024-05-23T15:19:23.121949Z", + "iopub.status.busy": "2024-05-23T15:19:23.121462Z", + "iopub.status.idle": "2024-05-23T15:19:23.439157Z", + "shell.execute_reply": "2024-05-23T15:19:23.438540Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:05.259565Z", - "iopub.status.busy": "2024-05-23T02:46:05.259248Z", - "iopub.status.idle": "2024-05-23T02:46:05.263665Z", - "shell.execute_reply": "2024-05-23T02:46:05.263131Z" + "iopub.execute_input": "2024-05-23T15:19:23.441889Z", + "iopub.status.busy": "2024-05-23T15:19:23.441445Z", + "iopub.status.idle": "2024-05-23T15:19:23.445687Z", + "shell.execute_reply": "2024-05-23T15:19:23.445138Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:05.265905Z", - "iopub.status.busy": "2024-05-23T02:46:05.265597Z", - "iopub.status.idle": "2024-05-23T02:46:09.902238Z", - "shell.execute_reply": "2024-05-23T02:46:09.901657Z" + "iopub.execute_input": "2024-05-23T15:19:23.447818Z", + "iopub.status.busy": "2024-05-23T15:19:23.447514Z", + "iopub.status.idle": "2024-05-23T15:19:27.910563Z", + "shell.execute_reply": "2024-05-23T15:19:27.909990Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1703936/170498071 [00:00<00:09, 16995533.02it/s]" + " 1%| | 1736704/170498071 [00:00<00:09, 17162140.37it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8585216/170498071 [00:00<00:03, 47229064.15it/s]" + " 7%|▋ | 11501568/170498071 [00:00<00:02, 64155763.85it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 15138816/170498071 [00:00<00:02, 55372532.04it/s]" + " 12%|█▏ | 20086784/170498071 [00:00<00:02, 74015559.27it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 25657344/170498071 [00:00<00:01, 74928613.86it/s]" + " 17%|█▋ | 29786112/170498071 [00:00<00:01, 82879750.45it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 34045952/170498071 [00:00<00:01, 78093395.82it/s]" + " 23%|██▎ | 38567936/170498071 [00:00<00:01, 84511055.51it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43581440/170498071 [00:00<00:01, 83887826.49it/s]" + " 28%|██▊ | 48037888/170498071 [00:00<00:01, 87861286.88it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52002816/170498071 [00:00<00:01, 82914923.29it/s]" + " 33%|███▎ | 57049088/170498071 [00:00<00:01, 88570456.06it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61014016/170498071 [00:00<00:01, 85149171.66it/s]" + " 39%|███▉ | 66322432/170498071 [00:00<00:01, 89869881.39it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 70057984/170498071 [00:00<00:01, 86762075.95it/s]" + " 44%|████▍ | 75792384/170498071 [00:00<00:01, 91369701.92it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 78741504/170498071 [00:01<00:01, 83822349.16it/s]" + " 50%|████▉ | 85098496/170498071 [00:01<00:00, 91824248.19it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 89063424/170498071 [00:01<00:00, 89588095.69it/s]" + " 56%|█████▌ | 94699520/170498071 [00:01<00:00, 93055008.97it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98074624/170498071 [00:01<00:00, 84805415.54it/s]" + " 61%|██████ | 104038400/170498071 [00:01<00:00, 91300067.76it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 108298240/170498071 [00:01<00:00, 89570445.53it/s]" + " 67%|██████▋ | 113836032/170498071 [00:01<00:00, 93288047.22it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 117342208/170498071 [00:01<00:00, 86579273.33it/s]" + " 72%|███████▏ | 123174912/170498071 [00:01<00:00, 90347951.48it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 126091264/170498071 [00:01<00:00, 84172081.11it/s]" + " 79%|███████▉ | 134283264/170498071 [00:01<00:00, 96381342.24it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 136118272/170498071 [00:01<00:00, 88710088.95it/s]" + " 84%|████████▍ | 143982592/170498071 [00:01<00:00, 93413218.25it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 145063936/170498071 [00:01<00:00, 85525240.13it/s]" + " 91%|█████████ | 155516928/170498071 [00:01<00:00, 99643141.74it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 155025408/170498071 [00:01<00:00, 89396847.62it/s]" + " 97%|█████████▋| 165543936/170498071 [00:01<00:00, 96481236.76it/s]" ] }, { @@ -396,15 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 164036608/170498071 [00:01<00:00, 86551138.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 83099579.16it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 90289215.23it/s]" ] }, { @@ -522,10 +514,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:09.904589Z", - "iopub.status.busy": "2024-05-23T02:46:09.904188Z", - "iopub.status.idle": "2024-05-23T02:46:09.908934Z", - "shell.execute_reply": "2024-05-23T02:46:09.908381Z" + "iopub.execute_input": "2024-05-23T15:19:27.912894Z", + "iopub.status.busy": "2024-05-23T15:19:27.912553Z", + "iopub.status.idle": "2024-05-23T15:19:27.917158Z", + "shell.execute_reply": "2024-05-23T15:19:27.916722Z" }, "nbsphinx": "hidden" }, @@ -576,10 +568,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:09.910995Z", - "iopub.status.busy": "2024-05-23T02:46:09.910667Z", - "iopub.status.idle": "2024-05-23T02:46:10.429202Z", - "shell.execute_reply": "2024-05-23T02:46:10.428638Z" + "iopub.execute_input": "2024-05-23T15:19:27.919088Z", + "iopub.status.busy": "2024-05-23T15:19:27.918790Z", + "iopub.status.idle": "2024-05-23T15:19:28.466696Z", + "shell.execute_reply": "2024-05-23T15:19:28.466159Z" } }, "outputs": [ @@ -612,10 +604,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:10.431616Z", - "iopub.status.busy": "2024-05-23T02:46:10.431191Z", - "iopub.status.idle": "2024-05-23T02:46:10.944539Z", - "shell.execute_reply": "2024-05-23T02:46:10.943933Z" + "iopub.execute_input": "2024-05-23T15:19:28.468957Z", + "iopub.status.busy": "2024-05-23T15:19:28.468602Z", + "iopub.status.idle": "2024-05-23T15:19:28.980865Z", + "shell.execute_reply": "2024-05-23T15:19:28.980281Z" } }, "outputs": [ @@ -653,10 +645,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:10.946747Z", - "iopub.status.busy": "2024-05-23T02:46:10.946341Z", - "iopub.status.idle": "2024-05-23T02:46:10.949698Z", - "shell.execute_reply": "2024-05-23T02:46:10.949253Z" + "iopub.execute_input": "2024-05-23T15:19:28.983104Z", + "iopub.status.busy": "2024-05-23T15:19:28.982884Z", + "iopub.status.idle": "2024-05-23T15:19:28.986615Z", + "shell.execute_reply": "2024-05-23T15:19:28.986093Z" } }, "outputs": [], @@ -679,17 +671,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:10.951562Z", - "iopub.status.busy": "2024-05-23T02:46:10.951242Z", - "iopub.status.idle": "2024-05-23T02:46:23.897490Z", - "shell.execute_reply": "2024-05-23T02:46:23.896904Z" + "iopub.execute_input": "2024-05-23T15:19:28.988717Z", + "iopub.status.busy": "2024-05-23T15:19:28.988399Z", + "iopub.status.idle": "2024-05-23T15:19:41.268144Z", + "shell.execute_reply": "2024-05-23T15:19:41.267376Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "080be58373d14a88b44ede9ac6497e42", + "model_id": "3b8fb0a2765b451f98a1ac53ecb4e164", "version_major": 2, "version_minor": 0 }, @@ -748,10 +740,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:23.899702Z", - "iopub.status.busy": "2024-05-23T02:46:23.899509Z", - "iopub.status.idle": "2024-05-23T02:46:25.650352Z", - "shell.execute_reply": "2024-05-23T02:46:25.649715Z" + "iopub.execute_input": "2024-05-23T15:19:41.270525Z", + "iopub.status.busy": "2024-05-23T15:19:41.270205Z", + "iopub.status.idle": "2024-05-23T15:19:42.992266Z", + "shell.execute_reply": "2024-05-23T15:19:42.991636Z" } }, "outputs": [ @@ -795,10 +787,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:25.653317Z", - "iopub.status.busy": "2024-05-23T02:46:25.652841Z", - "iopub.status.idle": "2024-05-23T02:46:25.909461Z", - "shell.execute_reply": "2024-05-23T02:46:25.908872Z" + "iopub.execute_input": "2024-05-23T15:19:42.994884Z", + "iopub.status.busy": "2024-05-23T15:19:42.994665Z", + "iopub.status.idle": "2024-05-23T15:19:43.223220Z", + "shell.execute_reply": "2024-05-23T15:19:43.222636Z" } }, "outputs": [ @@ -834,10 +826,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:25.912081Z", - "iopub.status.busy": "2024-05-23T02:46:25.911652Z", - "iopub.status.idle": "2024-05-23T02:46:26.573854Z", - "shell.execute_reply": "2024-05-23T02:46:26.573342Z" + "iopub.execute_input": "2024-05-23T15:19:43.225630Z", + "iopub.status.busy": "2024-05-23T15:19:43.225442Z", + "iopub.status.idle": "2024-05-23T15:19:43.863487Z", + "shell.execute_reply": "2024-05-23T15:19:43.863013Z" } }, "outputs": [ @@ -887,10 +879,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:26.576504Z", - "iopub.status.busy": "2024-05-23T02:46:26.576061Z", - "iopub.status.idle": "2024-05-23T02:46:26.916663Z", - "shell.execute_reply": "2024-05-23T02:46:26.916126Z" + "iopub.execute_input": "2024-05-23T15:19:43.866093Z", + "iopub.status.busy": "2024-05-23T15:19:43.865706Z", + "iopub.status.idle": "2024-05-23T15:19:44.203398Z", + "shell.execute_reply": "2024-05-23T15:19:44.202779Z" } }, "outputs": [ @@ -938,10 +930,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:26.919034Z", - "iopub.status.busy": "2024-05-23T02:46:26.918587Z", - "iopub.status.idle": "2024-05-23T02:46:27.162332Z", - "shell.execute_reply": "2024-05-23T02:46:27.161694Z" + "iopub.execute_input": "2024-05-23T15:19:44.205810Z", + "iopub.status.busy": "2024-05-23T15:19:44.205389Z", + "iopub.status.idle": "2024-05-23T15:19:44.439111Z", + "shell.execute_reply": "2024-05-23T15:19:44.438438Z" } }, "outputs": [ @@ -997,10 +989,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:27.165060Z", - "iopub.status.busy": "2024-05-23T02:46:27.164579Z", - "iopub.status.idle": "2024-05-23T02:46:27.254621Z", - "shell.execute_reply": "2024-05-23T02:46:27.254132Z" + "iopub.execute_input": "2024-05-23T15:19:44.441833Z", + "iopub.status.busy": "2024-05-23T15:19:44.441368Z", + "iopub.status.idle": "2024-05-23T15:19:44.520211Z", + "shell.execute_reply": "2024-05-23T15:19:44.519728Z" } }, "outputs": [], @@ -1021,10 +1013,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:27.257208Z", - "iopub.status.busy": "2024-05-23T02:46:27.257010Z", - "iopub.status.idle": "2024-05-23T02:46:37.115239Z", - "shell.execute_reply": "2024-05-23T02:46:37.114653Z" + "iopub.execute_input": "2024-05-23T15:19:44.522662Z", + "iopub.status.busy": "2024-05-23T15:19:44.522298Z", + "iopub.status.idle": "2024-05-23T15:19:54.500962Z", + "shell.execute_reply": "2024-05-23T15:19:54.500349Z" } }, "outputs": [ @@ -1061,10 +1053,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:37.117735Z", - "iopub.status.busy": "2024-05-23T02:46:37.117334Z", - "iopub.status.idle": "2024-05-23T02:46:38.793853Z", - "shell.execute_reply": "2024-05-23T02:46:38.793304Z" + "iopub.execute_input": "2024-05-23T15:19:54.503513Z", + "iopub.status.busy": "2024-05-23T15:19:54.503062Z", + "iopub.status.idle": "2024-05-23T15:19:56.228078Z", + "shell.execute_reply": "2024-05-23T15:19:56.227474Z" } }, "outputs": [ @@ -1095,10 +1087,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:38.796463Z", - "iopub.status.busy": "2024-05-23T02:46:38.796077Z", - "iopub.status.idle": "2024-05-23T02:46:39.008116Z", - "shell.execute_reply": "2024-05-23T02:46:39.007512Z" + "iopub.execute_input": "2024-05-23T15:19:56.230773Z", + "iopub.status.busy": "2024-05-23T15:19:56.230243Z", + "iopub.status.idle": "2024-05-23T15:19:56.429163Z", + "shell.execute_reply": "2024-05-23T15:19:56.428662Z" } }, "outputs": [], @@ -1112,10 +1104,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:39.010568Z", - "iopub.status.busy": "2024-05-23T02:46:39.010225Z", - "iopub.status.idle": "2024-05-23T02:46:39.013320Z", - "shell.execute_reply": "2024-05-23T02:46:39.012827Z" + "iopub.execute_input": "2024-05-23T15:19:56.431632Z", + "iopub.status.busy": "2024-05-23T15:19:56.431214Z", + "iopub.status.idle": "2024-05-23T15:19:56.434445Z", + "shell.execute_reply": "2024-05-23T15:19:56.433868Z" } }, "outputs": [], @@ -1137,10 +1129,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:39.015316Z", - "iopub.status.busy": "2024-05-23T02:46:39.014945Z", - "iopub.status.idle": "2024-05-23T02:46:39.023247Z", - "shell.execute_reply": "2024-05-23T02:46:39.022829Z" + "iopub.execute_input": "2024-05-23T15:19:56.436613Z", + "iopub.status.busy": "2024-05-23T15:19:56.436227Z", + "iopub.status.idle": "2024-05-23T15:19:56.444314Z", + "shell.execute_reply": "2024-05-23T15:19:56.443752Z" }, "nbsphinx": "hidden" }, @@ -1185,30 +1177,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0402176f8aac46c39dac36e19e3dd162": { + "1c081dc855c845ca806a2b2c12fb3457": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c63045a50e44435aa41838ef08114caa", - "placeholder": "​", - "style": "IPY_MODEL_92ab7d4085b54a5fbfde35759126476f", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "080be58373d14a88b44ede9ac6497e42": { + "3b8fb0a2765b451f98a1ac53ecb4e164": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1223,16 +1210,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0402176f8aac46c39dac36e19e3dd162", - "IPY_MODEL_456ddd1dd0c546f9babde386184c4b1f", - "IPY_MODEL_b873bfbeea1442fe976b6c21c297e694" + "IPY_MODEL_b8ba87703fab416f9d70cbc709c4da3f", + "IPY_MODEL_9a7ed5c009c741478561e905be1672f7", + "IPY_MODEL_c1f97f79234649aabff0e34c04779f90" ], - "layout": "IPY_MODEL_3beef4ceb929432f8c1631be93a09ccc", + "layout": "IPY_MODEL_44294bba5289472bbfa0506434dfc622", "tabbable": null, "tooltip": null } }, - "2f8517a90c674fc184376c8c1ad6a932": { + "44294bba5289472bbfa0506434dfc622": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1285,60 +1272,41 @@ "width": null } }, - "3beef4ceb929432f8c1631be93a09ccc": { - "model_module": "@jupyter-widgets/base", + "4979f41862c14d879975f69b3a683d77": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "456ddd1dd0c546f9babde386184c4b1f": { + "7bb947aefbf04918bd7f078ff36abde0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9a7ed5c009c741478561e905be1672f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1354,17 +1322,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f8517a90c674fc184376c8c1ad6a932", + "layout": "IPY_MODEL_a4a51d9305e142b69ea5800c787cf085", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9bcd32d3e2f3453996ac27e16b4df39c", + "style": "IPY_MODEL_7bb947aefbf04918bd7f078ff36abde0", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "55f9384b281945ec82276a1d54a137a4": { + "a4a51d9305e142b69ea5800c787cf085": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1417,41 +1385,30 @@ "width": null } }, - "92ab7d4085b54a5fbfde35759126476f": { + "b8ba87703fab416f9d70cbc709c4da3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9bcd32d3e2f3453996ac27e16b4df39c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f4b8a16ee1de4b8d8f8c9618fd2fcb1d", + "placeholder": "​", + "style": "IPY_MODEL_4979f41862c14d879975f69b3a683d77", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "b873bfbeea1442fe976b6c21c297e694": { + "c1f97f79234649aabff0e34c04779f90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1466,15 +1423,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_55f9384b281945ec82276a1d54a137a4", + "layout": "IPY_MODEL_c352ca37fa08488494329f472fcc29eb", "placeholder": "​", - "style": "IPY_MODEL_ef35a07ffe9147b39b0ebb325933ce48", + "style": "IPY_MODEL_1c081dc855c845ca806a2b2c12fb3457", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 118MB/s]" + "value": " 102M/102M [00:00<00:00, 319MB/s]" } }, - "c63045a50e44435aa41838ef08114caa": { + "c352ca37fa08488494329f472fcc29eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1527,22 +1484,57 @@ "width": null } }, - "ef35a07ffe9147b39b0ebb325933ce48": { - "model_module": "@jupyter-widgets/controls", + "f4b8a16ee1de4b8d8f8c9618fd2fcb1d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 8962a6b37..79ad29265 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:43.282810Z", - "iopub.status.busy": "2024-05-23T02:46:43.282638Z", - "iopub.status.idle": "2024-05-23T02:46:44.439719Z", - "shell.execute_reply": "2024-05-23T02:46:44.439121Z" + "iopub.execute_input": "2024-05-23T15:20:00.713888Z", + "iopub.status.busy": "2024-05-23T15:20:00.713712Z", + "iopub.status.idle": "2024-05-23T15:20:01.884137Z", + "shell.execute_reply": "2024-05-23T15:20:01.883522Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:44.442319Z", - "iopub.status.busy": "2024-05-23T02:46:44.442066Z", - "iopub.status.idle": "2024-05-23T02:46:44.459594Z", - "shell.execute_reply": "2024-05-23T02:46:44.459051Z" + "iopub.execute_input": "2024-05-23T15:20:01.886789Z", + "iopub.status.busy": "2024-05-23T15:20:01.886262Z", + "iopub.status.idle": "2024-05-23T15:20:01.903881Z", + "shell.execute_reply": "2024-05-23T15:20:01.903329Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:44.461707Z", - "iopub.status.busy": "2024-05-23T02:46:44.461331Z", - "iopub.status.idle": "2024-05-23T02:46:44.464304Z", - "shell.execute_reply": "2024-05-23T02:46:44.463794Z" + "iopub.execute_input": "2024-05-23T15:20:01.906014Z", + "iopub.status.busy": "2024-05-23T15:20:01.905623Z", + "iopub.status.idle": "2024-05-23T15:20:01.908690Z", + "shell.execute_reply": "2024-05-23T15:20:01.908171Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:44.466444Z", - "iopub.status.busy": "2024-05-23T02:46:44.466127Z", - "iopub.status.idle": "2024-05-23T02:46:44.584653Z", - "shell.execute_reply": "2024-05-23T02:46:44.584151Z" + "iopub.execute_input": "2024-05-23T15:20:01.910636Z", + "iopub.status.busy": "2024-05-23T15:20:01.910322Z", + "iopub.status.idle": "2024-05-23T15:20:01.976706Z", + "shell.execute_reply": "2024-05-23T15:20:01.976157Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:44.586808Z", - "iopub.status.busy": "2024-05-23T02:46:44.586531Z", - "iopub.status.idle": "2024-05-23T02:46:44.765447Z", - "shell.execute_reply": "2024-05-23T02:46:44.764843Z" + "iopub.execute_input": "2024-05-23T15:20:01.978980Z", + "iopub.status.busy": "2024-05-23T15:20:01.978658Z", + "iopub.status.idle": "2024-05-23T15:20:02.159140Z", + "shell.execute_reply": "2024-05-23T15:20:02.158508Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:44.767789Z", - "iopub.status.busy": "2024-05-23T02:46:44.767489Z", - "iopub.status.idle": "2024-05-23T02:46:45.007577Z", - "shell.execute_reply": "2024-05-23T02:46:45.006971Z" + "iopub.execute_input": "2024-05-23T15:20:02.161735Z", + "iopub.status.busy": "2024-05-23T15:20:02.161393Z", + "iopub.status.idle": "2024-05-23T15:20:02.408259Z", + "shell.execute_reply": "2024-05-23T15:20:02.407696Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:45.009900Z", - "iopub.status.busy": "2024-05-23T02:46:45.009572Z", - "iopub.status.idle": "2024-05-23T02:46:45.013993Z", - "shell.execute_reply": "2024-05-23T02:46:45.013540Z" + "iopub.execute_input": "2024-05-23T15:20:02.410508Z", + "iopub.status.busy": "2024-05-23T15:20:02.410129Z", + "iopub.status.idle": "2024-05-23T15:20:02.414877Z", + "shell.execute_reply": "2024-05-23T15:20:02.414404Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:45.016053Z", - "iopub.status.busy": "2024-05-23T02:46:45.015738Z", - "iopub.status.idle": "2024-05-23T02:46:45.021487Z", - "shell.execute_reply": "2024-05-23T02:46:45.021013Z" + "iopub.execute_input": "2024-05-23T15:20:02.416679Z", + "iopub.status.busy": "2024-05-23T15:20:02.416500Z", + "iopub.status.idle": "2024-05-23T15:20:02.422284Z", + "shell.execute_reply": "2024-05-23T15:20:02.421829Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:45.023520Z", - "iopub.status.busy": "2024-05-23T02:46:45.023183Z", - "iopub.status.idle": "2024-05-23T02:46:45.025773Z", - "shell.execute_reply": "2024-05-23T02:46:45.025326Z" + "iopub.execute_input": "2024-05-23T15:20:02.424407Z", + "iopub.status.busy": "2024-05-23T15:20:02.424109Z", + "iopub.status.idle": "2024-05-23T15:20:02.426792Z", + "shell.execute_reply": "2024-05-23T15:20:02.426231Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:45.027742Z", - "iopub.status.busy": "2024-05-23T02:46:45.027433Z", - "iopub.status.idle": "2024-05-23T02:46:53.155706Z", - "shell.execute_reply": "2024-05-23T02:46:53.155171Z" + "iopub.execute_input": "2024-05-23T15:20:02.428710Z", + "iopub.status.busy": "2024-05-23T15:20:02.428403Z", + "iopub.status.idle": "2024-05-23T15:20:10.585054Z", + "shell.execute_reply": "2024-05-23T15:20:10.584498Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.158466Z", - "iopub.status.busy": "2024-05-23T02:46:53.157941Z", - "iopub.status.idle": "2024-05-23T02:46:53.164946Z", - "shell.execute_reply": "2024-05-23T02:46:53.164390Z" + "iopub.execute_input": "2024-05-23T15:20:10.587881Z", + "iopub.status.busy": "2024-05-23T15:20:10.587316Z", + "iopub.status.idle": "2024-05-23T15:20:10.594690Z", + "shell.execute_reply": "2024-05-23T15:20:10.594103Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.166997Z", - "iopub.status.busy": "2024-05-23T02:46:53.166817Z", - "iopub.status.idle": "2024-05-23T02:46:53.170538Z", - "shell.execute_reply": "2024-05-23T02:46:53.169989Z" + "iopub.execute_input": "2024-05-23T15:20:10.596762Z", + "iopub.status.busy": "2024-05-23T15:20:10.596442Z", + "iopub.status.idle": "2024-05-23T15:20:10.600191Z", + "shell.execute_reply": "2024-05-23T15:20:10.599728Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.172491Z", - "iopub.status.busy": "2024-05-23T02:46:53.172319Z", - "iopub.status.idle": "2024-05-23T02:46:53.175718Z", - "shell.execute_reply": "2024-05-23T02:46:53.175252Z" + "iopub.execute_input": "2024-05-23T15:20:10.602274Z", + "iopub.status.busy": "2024-05-23T15:20:10.601848Z", + "iopub.status.idle": "2024-05-23T15:20:10.605475Z", + "shell.execute_reply": "2024-05-23T15:20:10.604912Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.177545Z", - "iopub.status.busy": "2024-05-23T02:46:53.177376Z", - "iopub.status.idle": "2024-05-23T02:46:53.180408Z", - "shell.execute_reply": "2024-05-23T02:46:53.179829Z" + "iopub.execute_input": "2024-05-23T15:20:10.607598Z", + "iopub.status.busy": "2024-05-23T15:20:10.607293Z", + "iopub.status.idle": "2024-05-23T15:20:10.610357Z", + "shell.execute_reply": "2024-05-23T15:20:10.609904Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.182356Z", - "iopub.status.busy": "2024-05-23T02:46:53.182039Z", - "iopub.status.idle": "2024-05-23T02:46:53.190067Z", - "shell.execute_reply": "2024-05-23T02:46:53.189618Z" + "iopub.execute_input": "2024-05-23T15:20:10.612134Z", + "iopub.status.busy": "2024-05-23T15:20:10.611960Z", + "iopub.status.idle": "2024-05-23T15:20:10.620107Z", + "shell.execute_reply": "2024-05-23T15:20:10.619583Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.192036Z", - "iopub.status.busy": "2024-05-23T02:46:53.191731Z", - "iopub.status.idle": "2024-05-23T02:46:53.194394Z", - "shell.execute_reply": "2024-05-23T02:46:53.193854Z" + "iopub.execute_input": "2024-05-23T15:20:10.622243Z", + "iopub.status.busy": "2024-05-23T15:20:10.621851Z", + "iopub.status.idle": "2024-05-23T15:20:10.624633Z", + "shell.execute_reply": "2024-05-23T15:20:10.624069Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.196301Z", - "iopub.status.busy": "2024-05-23T02:46:53.196130Z", - "iopub.status.idle": "2024-05-23T02:46:53.319491Z", - "shell.execute_reply": "2024-05-23T02:46:53.318959Z" + "iopub.execute_input": "2024-05-23T15:20:10.626725Z", + "iopub.status.busy": "2024-05-23T15:20:10.626413Z", + "iopub.status.idle": "2024-05-23T15:20:10.746726Z", + "shell.execute_reply": "2024-05-23T15:20:10.746183Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.321656Z", - "iopub.status.busy": "2024-05-23T02:46:53.321349Z", - "iopub.status.idle": "2024-05-23T02:46:53.424593Z", - "shell.execute_reply": "2024-05-23T02:46:53.424089Z" + "iopub.execute_input": "2024-05-23T15:20:10.748994Z", + "iopub.status.busy": "2024-05-23T15:20:10.748556Z", + "iopub.status.idle": "2024-05-23T15:20:10.851929Z", + "shell.execute_reply": "2024-05-23T15:20:10.851338Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.426851Z", - "iopub.status.busy": "2024-05-23T02:46:53.426673Z", - "iopub.status.idle": "2024-05-23T02:46:53.911081Z", - "shell.execute_reply": "2024-05-23T02:46:53.910483Z" + "iopub.execute_input": "2024-05-23T15:20:10.854241Z", + "iopub.status.busy": "2024-05-23T15:20:10.854025Z", + "iopub.status.idle": "2024-05-23T15:20:11.349402Z", + "shell.execute_reply": "2024-05-23T15:20:11.348855Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.913639Z", - "iopub.status.busy": "2024-05-23T02:46:53.913452Z", - "iopub.status.idle": "2024-05-23T02:46:53.985444Z", - "shell.execute_reply": "2024-05-23T02:46:53.984876Z" + "iopub.execute_input": "2024-05-23T15:20:11.352034Z", + "iopub.status.busy": "2024-05-23T15:20:11.351640Z", + "iopub.status.idle": "2024-05-23T15:20:11.429647Z", + "shell.execute_reply": "2024-05-23T15:20:11.429097Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.987587Z", - "iopub.status.busy": "2024-05-23T02:46:53.987400Z", - "iopub.status.idle": "2024-05-23T02:46:53.995789Z", - "shell.execute_reply": "2024-05-23T02:46:53.995370Z" + "iopub.execute_input": "2024-05-23T15:20:11.431986Z", + "iopub.status.busy": "2024-05-23T15:20:11.431616Z", + "iopub.status.idle": "2024-05-23T15:20:11.440050Z", + "shell.execute_reply": "2024-05-23T15:20:11.439597Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.997778Z", - "iopub.status.busy": "2024-05-23T02:46:53.997457Z", - "iopub.status.idle": "2024-05-23T02:46:53.999960Z", - "shell.execute_reply": "2024-05-23T02:46:53.999530Z" + "iopub.execute_input": "2024-05-23T15:20:11.441946Z", + "iopub.status.busy": "2024-05-23T15:20:11.441647Z", + "iopub.status.idle": "2024-05-23T15:20:11.444421Z", + "shell.execute_reply": "2024-05-23T15:20:11.443857Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:54.002019Z", - "iopub.status.busy": "2024-05-23T02:46:54.001699Z", - "iopub.status.idle": "2024-05-23T02:46:59.352909Z", - "shell.execute_reply": "2024-05-23T02:46:59.352320Z" + "iopub.execute_input": "2024-05-23T15:20:11.446342Z", + "iopub.status.busy": "2024-05-23T15:20:11.446041Z", + "iopub.status.idle": "2024-05-23T15:20:16.914965Z", + "shell.execute_reply": "2024-05-23T15:20:16.914270Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:59.355285Z", - "iopub.status.busy": "2024-05-23T02:46:59.354898Z", - "iopub.status.idle": "2024-05-23T02:46:59.363260Z", - "shell.execute_reply": "2024-05-23T02:46:59.362784Z" + "iopub.execute_input": "2024-05-23T15:20:16.917193Z", + "iopub.status.busy": "2024-05-23T15:20:16.917010Z", + "iopub.status.idle": "2024-05-23T15:20:16.925745Z", + "shell.execute_reply": "2024-05-23T15:20:16.925203Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:59.365335Z", - "iopub.status.busy": "2024-05-23T02:46:59.364994Z", - "iopub.status.idle": "2024-05-23T02:46:59.433225Z", - "shell.execute_reply": "2024-05-23T02:46:59.432747Z" + "iopub.execute_input": "2024-05-23T15:20:16.927764Z", + "iopub.status.busy": "2024-05-23T15:20:16.927451Z", + "iopub.status.idle": "2024-05-23T15:20:16.992676Z", + "shell.execute_reply": "2024-05-23T15:20:16.992057Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index 4ae9d95d7..fc2ec5138 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -781,13 +781,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1177,7 +1177,7 @@

Get label quality scores -{"state": {"f8c07525285d40e1b34ca024f00bfbff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2e82d878c0949c5ab6c54f6fe3ac61f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f1807c19bdc24b6fabbeebb2b4bef583": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f8c07525285d40e1b34ca024f00bfbff", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b2e82d878c0949c5ab6c54f6fe3ac61f", "tabbable": null, "tooltip": null, "value": 30.0}}, "eb1bb32dc25f476fa6e226261c15559d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c1db1f6d3db54715ae1bda93b503db6e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a9ba72b6d9eb46bd8afe92dc6a7b7ba2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eb1bb32dc25f476fa6e226261c15559d", "placeholder": "\u200b", "style": "IPY_MODEL_c1db1f6d3db54715ae1bda93b503db6e", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "9030482a6d5c4511a19696d7665c2b1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "016a2aa584c54a30a48f5aa98ac19b92": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ed24817521404bf8a9160c8c4db0af03": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9030482a6d5c4511a19696d7665c2b1e", "placeholder": "\u200b", "style": "IPY_MODEL_016a2aa584c54a30a48f5aa98ac19b92", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007742.70it/s]"}}, "39b4cf4d1af6451cab40aee83d8afce1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c4afc0546dd4c56a662e39e3e7a4a49": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a9ba72b6d9eb46bd8afe92dc6a7b7ba2", "IPY_MODEL_f1807c19bdc24b6fabbeebb2b4bef583", "IPY_MODEL_ed24817521404bf8a9160c8c4db0af03"], "layout": "IPY_MODEL_39b4cf4d1af6451cab40aee83d8afce1", "tabbable": null, "tooltip": null}}, "ecc34604a0c9400faf322cccb02a0906": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "50cdfed3960c4485b819a5d78a64e348": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3cc5f6b0b0ac4f108a978a26762ddddb": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ecc34604a0c9400faf322cccb02a0906", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_50cdfed3960c4485b819a5d78a64e348", "tabbable": null, "tooltip": null, "value": 30.0}}, "f4d40f076cba4433ad2ca7b9ee9b978d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "aa711c8fb6614d819e579f39b7542144": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e0627efa20ef403a9f4bd3718a4b12ee": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f4d40f076cba4433ad2ca7b9ee9b978d", "placeholder": "\u200b", "style": "IPY_MODEL_aa711c8fb6614d819e579f39b7542144", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "7b6367d6bc21408b8500160a29f63b24": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4792438008804047863e1e20a529f391": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "04cae20aa93d4a8faa7a664f277282df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b6367d6bc21408b8500160a29f63b24", "placeholder": "\u200b", "style": "IPY_MODEL_4792438008804047863e1e20a529f391", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:22<00:00,\u2007\u20071.30it/s]"}}, "16093126439a4d69b67f58dee7c30aaf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f64b5d2793744982845ae084dacbd8d2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e0627efa20ef403a9f4bd3718a4b12ee", "IPY_MODEL_3cc5f6b0b0ac4f108a978a26762ddddb", "IPY_MODEL_04cae20aa93d4a8faa7a664f277282df"], "layout": "IPY_MODEL_16093126439a4d69b67f58dee7c30aaf", "tabbable": null, "tooltip": null}}, "5474f911771845c5b6970c39c4b5b236": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dfc0062d477b48c59ae03f801e4a406b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "56b4d15683c94f77894d303ad991e833": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5474f911771845c5b6970c39c4b5b236", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_dfc0062d477b48c59ae03f801e4a406b", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "8b9baa96f97243eebc38a3b719e13152": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30f2de75554440b9b936dfd108bccf87": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "640eb6d1b10b4a8c836f6eef2f8b95b8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b9baa96f97243eebc38a3b719e13152", "placeholder": "\u200b", "style": "IPY_MODEL_30f2de75554440b9b936dfd108bccf87", "tabbable": null, "tooltip": null, "value": "100%"}}, "8b764a25fab34d118e387d2f63807d7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7bef79fc2cd545e996b71e810690fbe3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4eb8a87439944e1ba0c2293c5411b096": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8b764a25fab34d118e387d2f63807d7b", "placeholder": "\u200b", "style": "IPY_MODEL_7bef79fc2cd545e996b71e810690fbe3", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154565.69it/s]"}}, "fd4c0312edf041719f1ca12824c5a794": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f061f06e3ec64188a924477da4eed393": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_640eb6d1b10b4a8c836f6eef2f8b95b8", "IPY_MODEL_56b4d15683c94f77894d303ad991e833", "IPY_MODEL_4eb8a87439944e1ba0c2293c5411b096"], "layout": "IPY_MODEL_fd4c0312edf041719f1ca12824c5a794", "tabbable": null, "tooltip": null}}, "725299ed2d2d495e8116c8d2b900f134": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "266d8baebceb456f9de0ecd224a8f07f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0299908f400f4c4f80bfc4f8b91cd860": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_725299ed2d2d495e8116c8d2b900f134", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_266d8baebceb456f9de0ecd224a8f07f", "tabbable": null, "tooltip": null, "value": 30.0}}, "6378b47f9745452085fad301777b1a14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "830d8f4ea65e42bbabd3be8aea0ca004": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2c78627728b1456d8196e74a64c20c11": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6378b47f9745452085fad301777b1a14", "placeholder": "\u200b", "style": "IPY_MODEL_830d8f4ea65e42bbabd3be8aea0ca004", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "7b47a6fec59c4f33919b2b1b1a4d33f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4cea6b9ae47246558816843b27fe144b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5e82d17664134e50b0bf08f130062aa5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7b47a6fec59c4f33919b2b1b1a4d33f4", "placeholder": "\u200b", "style": "IPY_MODEL_4cea6b9ae47246558816843b27fe144b", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200722.15it/s]"}}, "956e217069544145bc2daf387670a6f1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c6d1f24804048e4a9d0a95c7c205c4e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2c78627728b1456d8196e74a64c20c11", "IPY_MODEL_0299908f400f4c4f80bfc4f8b91cd860", "IPY_MODEL_5e82d17664134e50b0bf08f130062aa5"], "layout": "IPY_MODEL_956e217069544145bc2daf387670a6f1", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"3dad1b05b1624573b3133880eff2163f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b453cf1c85cc41e7a4698820cebb73cf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a570f95dbe384aaa96ee3013473e2ebe": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3dad1b05b1624573b3133880eff2163f", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b453cf1c85cc41e7a4698820cebb73cf", "tabbable": null, "tooltip": null, "value": 30.0}}, "ba13899638c54baebf4d5e9da65660b0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9943848dcb643c2a23f4e8cf52def5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5ccaa73ac723461c85d0fdfec6e4e9c9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ba13899638c54baebf4d5e9da65660b0", "placeholder": "\u200b", "style": "IPY_MODEL_b9943848dcb643c2a23f4e8cf52def5f", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "ca3c6bba54884c01bd56c4cd91c8fd71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3cc4259329f74837bd19ac70f0bfd280": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b39104787d44463885c0c905b63ba15": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ca3c6bba54884c01bd56c4cd91c8fd71", "placeholder": "\u200b", "style": "IPY_MODEL_3cc4259329f74837bd19ac70f0bfd280", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007816.61it/s]"}}, "9f52119dcdce4e578fbef81f09977a4a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5ef5c47110ec4f59aeb856c6d3c341a6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5ccaa73ac723461c85d0fdfec6e4e9c9", "IPY_MODEL_a570f95dbe384aaa96ee3013473e2ebe", "IPY_MODEL_7b39104787d44463885c0c905b63ba15"], "layout": "IPY_MODEL_9f52119dcdce4e578fbef81f09977a4a", "tabbable": null, "tooltip": null}}, "7991601db8784f6c9e29101ffb67eadb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "68c71bc1bad94d8d84e927f32499419b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1564ff2b349245b98b6641d891bfd8b3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7991601db8784f6c9e29101ffb67eadb", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_68c71bc1bad94d8d84e927f32499419b", "tabbable": null, "tooltip": null, "value": 30.0}}, "b1b566c302dd4797bc264e8362c45e1c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bdd6e352fd8b4492b50d4a59e384a686": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0cb55221d04844998b3efd90659ba7d8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b1b566c302dd4797bc264e8362c45e1c", "placeholder": "\u200b", "style": "IPY_MODEL_bdd6e352fd8b4492b50d4a59e384a686", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "6cbc832ae4344da0b4821023a5ef412e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cbe48e3cba8a4185a380bca2613cfecb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "adf75e7c04a8438588821d873887cc06": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6cbc832ae4344da0b4821023a5ef412e", "placeholder": "\u200b", "style": "IPY_MODEL_cbe48e3cba8a4185a380bca2613cfecb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.46it/s]"}}, "3d8d61af332845c19a16f7f26036b979": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c79ebbfe831845c1a17b218fa7be7f95": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0cb55221d04844998b3efd90659ba7d8", "IPY_MODEL_1564ff2b349245b98b6641d891bfd8b3", "IPY_MODEL_adf75e7c04a8438588821d873887cc06"], "layout": "IPY_MODEL_3d8d61af332845c19a16f7f26036b979", "tabbable": null, "tooltip": null}}, "7eb64e5ad90643f88016fb9ef67a93fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b995012c5b064376b67bfc740cdab094": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e8bac498633d4753ba3338a097659542": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7eb64e5ad90643f88016fb9ef67a93fc", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b995012c5b064376b67bfc740cdab094", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "68c50245c9504baf95dbb3963b43a8a0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9b123db02fc04548acd586c0cf17798b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b2208a3f273849ab827fae9cd38132f3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_68c50245c9504baf95dbb3963b43a8a0", "placeholder": "\u200b", "style": "IPY_MODEL_9b123db02fc04548acd586c0cf17798b", "tabbable": null, "tooltip": null, "value": "100%"}}, "d9bc553ff2a146208e83cfb4a65cd5aa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bb51f26ffedf41cf941e7bf04717041c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "63318ac9759641a697650e72ba3a1f71": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d9bc553ff2a146208e83cfb4a65cd5aa", "placeholder": "\u200b", "style": "IPY_MODEL_bb51f26ffedf41cf941e7bf04717041c", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007154309.04it/s]"}}, "41dc3879d71e491eb1cad2b61fd7f555": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0411aabf4a7449b7b6097cf29c44f6be": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b2208a3f273849ab827fae9cd38132f3", "IPY_MODEL_e8bac498633d4753ba3338a097659542", "IPY_MODEL_63318ac9759641a697650e72ba3a1f71"], "layout": "IPY_MODEL_41dc3879d71e491eb1cad2b61fd7f555", "tabbable": null, "tooltip": null}}, "556d7a96f68d404da1aceb865b5bcaa3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a45910e9f24846f4a8fd1dbae5f6f01e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0b875393e6884f6da0d17965a84e7e3c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_556d7a96f68d404da1aceb865b5bcaa3", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a45910e9f24846f4a8fd1dbae5f6f01e", "tabbable": null, "tooltip": null, "value": 30.0}}, "0398887f1bfe40b0955c8abea4b49cd1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2094383203b482c95ee7d5c103429ea": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1588d3dd602a4049b726fc99f066d0cc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0398887f1bfe40b0955c8abea4b49cd1", "placeholder": "\u200b", "style": "IPY_MODEL_e2094383203b482c95ee7d5c103429ea", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "bfa54f2e76a94d408a32cd5e4451600f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "07ac41807a0b47a7b26d56207634fd82": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ace77f3dc6c149e1a69150e6d6932650": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bfa54f2e76a94d408a32cd5e4451600f", "placeholder": "\u200b", "style": "IPY_MODEL_07ac41807a0b47a7b26d56207634fd82", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.28it/s]"}}, "910f5814751b4800aa309a91fcfb8c98": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d625e0de09de41e58013bd6ffd10ea65": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1588d3dd602a4049b726fc99f066d0cc", "IPY_MODEL_0b875393e6884f6da0d17965a84e7e3c", "IPY_MODEL_ace77f3dc6c149e1a69150e6d6932650"], "layout": "IPY_MODEL_910f5814751b4800aa309a91fcfb8c98", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 2474fdfa7..2b9c99bed 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:02.431584Z", - "iopub.status.busy": "2024-05-23T02:47:02.431414Z", - "iopub.status.idle": "2024-05-23T02:47:04.100061Z", - "shell.execute_reply": "2024-05-23T02:47:04.099383Z" + "iopub.execute_input": "2024-05-23T15:20:20.082424Z", + "iopub.status.busy": "2024-05-23T15:20:20.082241Z", + "iopub.status.idle": "2024-05-23T15:20:21.026372Z", + "shell.execute_reply": "2024-05-23T15:20:21.025733Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:04.102722Z", - "iopub.status.busy": "2024-05-23T02:47:04.102546Z", - "iopub.status.idle": "2024-05-23T02:47:53.610780Z", - "shell.execute_reply": "2024-05-23T02:47:53.610095Z" + "iopub.execute_input": "2024-05-23T15:20:21.028777Z", + "iopub.status.busy": "2024-05-23T15:20:21.028598Z", + "iopub.status.idle": "2024-05-23T15:20:51.052547Z", + "shell.execute_reply": "2024-05-23T15:20:51.051972Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:53.613343Z", - "iopub.status.busy": "2024-05-23T02:47:53.612992Z", - "iopub.status.idle": "2024-05-23T02:47:54.735895Z", - "shell.execute_reply": "2024-05-23T02:47:54.735362Z" + "iopub.execute_input": "2024-05-23T15:20:51.055280Z", + "iopub.status.busy": "2024-05-23T15:20:51.054910Z", + "iopub.status.idle": "2024-05-23T15:20:52.162805Z", + "shell.execute_reply": "2024-05-23T15:20:52.162199Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:54.738184Z", - "iopub.status.busy": "2024-05-23T02:47:54.737878Z", - "iopub.status.idle": "2024-05-23T02:47:54.741204Z", - "shell.execute_reply": "2024-05-23T02:47:54.740686Z" + "iopub.execute_input": "2024-05-23T15:20:52.165202Z", + "iopub.status.busy": "2024-05-23T15:20:52.164895Z", + "iopub.status.idle": "2024-05-23T15:20:52.168235Z", + "shell.execute_reply": "2024-05-23T15:20:52.167701Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:54.743439Z", - "iopub.status.busy": "2024-05-23T02:47:54.743114Z", - "iopub.status.idle": "2024-05-23T02:47:54.746850Z", - "shell.execute_reply": "2024-05-23T02:47:54.746329Z" + "iopub.execute_input": "2024-05-23T15:20:52.170428Z", + "iopub.status.busy": "2024-05-23T15:20:52.170106Z", + "iopub.status.idle": "2024-05-23T15:20:52.174027Z", + "shell.execute_reply": "2024-05-23T15:20:52.173495Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:54.748930Z", - "iopub.status.busy": "2024-05-23T02:47:54.748622Z", - "iopub.status.idle": "2024-05-23T02:47:54.752162Z", - "shell.execute_reply": "2024-05-23T02:47:54.751652Z" + "iopub.execute_input": "2024-05-23T15:20:52.176309Z", + "iopub.status.busy": "2024-05-23T15:20:52.175863Z", + "iopub.status.idle": "2024-05-23T15:20:52.179639Z", + "shell.execute_reply": "2024-05-23T15:20:52.179192Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:54.754313Z", - "iopub.status.busy": "2024-05-23T02:47:54.753994Z", - "iopub.status.idle": "2024-05-23T02:47:54.757240Z", - "shell.execute_reply": "2024-05-23T02:47:54.756827Z" + "iopub.execute_input": "2024-05-23T15:20:52.181459Z", + "iopub.status.busy": "2024-05-23T15:20:52.181289Z", + "iopub.status.idle": "2024-05-23T15:20:52.184204Z", + "shell.execute_reply": "2024-05-23T15:20:52.183681Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:54.759227Z", - "iopub.status.busy": "2024-05-23T02:47:54.758826Z", - "iopub.status.idle": "2024-05-23T02:48:29.415141Z", - "shell.execute_reply": "2024-05-23T02:48:29.414523Z" + "iopub.execute_input": "2024-05-23T15:20:52.186170Z", + "iopub.status.busy": "2024-05-23T15:20:52.185853Z", + "iopub.status.idle": "2024-05-23T15:21:25.646178Z", + "shell.execute_reply": "2024-05-23T15:21:25.645603Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c4afc0546dd4c56a662e39e3e7a4a49", + "model_id": "5ef5c47110ec4f59aeb856c6d3c341a6", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f64b5d2793744982845ae084dacbd8d2", + "model_id": "c79ebbfe831845c1a17b218fa7be7f95", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:48:29.417834Z", - "iopub.status.busy": "2024-05-23T02:48:29.417624Z", - "iopub.status.idle": "2024-05-23T02:48:30.085655Z", - "shell.execute_reply": "2024-05-23T02:48:30.085085Z" + "iopub.execute_input": "2024-05-23T15:21:25.648967Z", + "iopub.status.busy": "2024-05-23T15:21:25.648546Z", + "iopub.status.idle": "2024-05-23T15:21:26.324304Z", + "shell.execute_reply": "2024-05-23T15:21:26.323688Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:48:30.087982Z", - "iopub.status.busy": "2024-05-23T02:48:30.087467Z", - "iopub.status.idle": "2024-05-23T02:48:32.722049Z", - "shell.execute_reply": "2024-05-23T02:48:32.721506Z" + "iopub.execute_input": "2024-05-23T15:21:26.326858Z", + "iopub.status.busy": "2024-05-23T15:21:26.326289Z", + "iopub.status.idle": "2024-05-23T15:21:28.965724Z", + "shell.execute_reply": "2024-05-23T15:21:28.965149Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:48:32.724231Z", - "iopub.status.busy": "2024-05-23T02:48:32.724051Z", - "iopub.status.idle": "2024-05-23T02:49:05.181219Z", - "shell.execute_reply": "2024-05-23T02:49:05.180646Z" + "iopub.execute_input": "2024-05-23T15:21:28.967904Z", + "iopub.status.busy": "2024-05-23T15:21:28.967720Z", + "iopub.status.idle": "2024-05-23T15:22:01.664155Z", + "shell.execute_reply": "2024-05-23T15:22:01.663577Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f061f06e3ec64188a924477da4eed393", + "model_id": "0411aabf4a7449b7b6097cf29c44f6be", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:05.183502Z", - "iopub.status.busy": "2024-05-23T02:49:05.183090Z", - "iopub.status.idle": "2024-05-23T02:49:19.494831Z", - "shell.execute_reply": "2024-05-23T02:49:19.494273Z" + "iopub.execute_input": "2024-05-23T15:22:01.666491Z", + "iopub.status.busy": "2024-05-23T15:22:01.666070Z", + "iopub.status.idle": "2024-05-23T15:22:16.254913Z", + "shell.execute_reply": "2024-05-23T15:22:16.254325Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:19.497043Z", - "iopub.status.busy": "2024-05-23T02:49:19.496850Z", - "iopub.status.idle": "2024-05-23T02:49:23.195967Z", - "shell.execute_reply": "2024-05-23T02:49:23.195483Z" + "iopub.execute_input": "2024-05-23T15:22:16.257597Z", + "iopub.status.busy": "2024-05-23T15:22:16.257232Z", + "iopub.status.idle": "2024-05-23T15:22:20.098267Z", + "shell.execute_reply": "2024-05-23T15:22:20.097650Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:23.197955Z", - "iopub.status.busy": "2024-05-23T02:49:23.197780Z", - "iopub.status.idle": "2024-05-23T02:49:24.562334Z", - "shell.execute_reply": "2024-05-23T02:49:24.561679Z" + "iopub.execute_input": "2024-05-23T15:22:20.101127Z", + "iopub.status.busy": "2024-05-23T15:22:20.100634Z", + "iopub.status.idle": "2024-05-23T15:22:21.546729Z", + "shell.execute_reply": "2024-05-23T15:22:21.546217Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c6d1f24804048e4a9d0a95c7c205c4e", + "model_id": "d625e0de09de41e58013bd6ffd10ea65", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:24.564444Z", - "iopub.status.busy": "2024-05-23T02:49:24.564265Z", - "iopub.status.idle": "2024-05-23T02:49:24.591252Z", - "shell.execute_reply": "2024-05-23T02:49:24.590763Z" + "iopub.execute_input": "2024-05-23T15:22:21.549131Z", + "iopub.status.busy": "2024-05-23T15:22:21.548947Z", + "iopub.status.idle": "2024-05-23T15:22:21.579374Z", + "shell.execute_reply": "2024-05-23T15:22:21.578871Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:24.593533Z", - "iopub.status.busy": "2024-05-23T02:49:24.593337Z", - "iopub.status.idle": "2024-05-23T02:49:30.541065Z", - "shell.execute_reply": "2024-05-23T02:49:30.540478Z" + "iopub.execute_input": "2024-05-23T15:22:21.581712Z", + "iopub.status.busy": "2024-05-23T15:22:21.581514Z", + "iopub.status.idle": "2024-05-23T15:22:27.685973Z", + "shell.execute_reply": "2024-05-23T15:22:27.685386Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:30.543203Z", - "iopub.status.busy": "2024-05-23T02:49:30.542891Z", - "iopub.status.idle": "2024-05-23T02:49:30.598708Z", - "shell.execute_reply": "2024-05-23T02:49:30.598105Z" + "iopub.execute_input": "2024-05-23T15:22:27.688121Z", + "iopub.status.busy": "2024-05-23T15:22:27.687916Z", + "iopub.status.idle": "2024-05-23T15:22:27.744306Z", + "shell.execute_reply": "2024-05-23T15:22:27.743788Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,84 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "016a2aa584c54a30a48f5aa98ac19b92": { + "0398887f1bfe40b0955c8abea4b49cd1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0411aabf4a7449b7b6097cf29c44f6be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b2208a3f273849ab827fae9cd38132f3", + "IPY_MODEL_e8bac498633d4753ba3338a097659542", + "IPY_MODEL_63318ac9759641a697650e72ba3a1f71" + ], + "layout": "IPY_MODEL_41dc3879d71e491eb1cad2b61fd7f555", + "tabbable": null, + "tooltip": null + } + }, + "07ac41807a0b47a7b26d56207634fd82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1056,7 +1133,7 @@ "text_color": null } }, - "0299908f400f4c4f80bfc4f8b91cd860": { + "0b875393e6884f6da0d17965a84e7e3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1072,17 +1149,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_725299ed2d2d495e8116c8d2b900f134", + "layout": "IPY_MODEL_556d7a96f68d404da1aceb865b5bcaa3", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_266d8baebceb456f9de0ecd224a8f07f", + "style": "IPY_MODEL_a45910e9f24846f4a8fd1dbae5f6f01e", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "04cae20aa93d4a8faa7a664f277282df": { + "0cb55221d04844998b3efd90659ba7d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1097,63 +1174,82 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b6367d6bc21408b8500160a29f63b24", + "layout": "IPY_MODEL_b1b566c302dd4797bc264e8362c45e1c", "placeholder": "​", - "style": "IPY_MODEL_4792438008804047863e1e20a529f391", + "style": "IPY_MODEL_bdd6e352fd8b4492b50d4a59e384a686", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.30it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "0c4afc0546dd4c56a662e39e3e7a4a49": { + "1564ff2b349245b98b6641d891bfd8b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a9ba72b6d9eb46bd8afe92dc6a7b7ba2", - "IPY_MODEL_f1807c19bdc24b6fabbeebb2b4bef583", - "IPY_MODEL_ed24817521404bf8a9160c8c4db0af03" - ], - "layout": "IPY_MODEL_39b4cf4d1af6451cab40aee83d8afce1", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7991601db8784f6c9e29101ffb67eadb", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68c71bc1bad94d8d84e927f32499419b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 } }, - "0c6d1f24804048e4a9d0a95c7c205c4e": { + "1588d3dd602a4049b726fc99f066d0cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2c78627728b1456d8196e74a64c20c11", - "IPY_MODEL_0299908f400f4c4f80bfc4f8b91cd860", - "IPY_MODEL_5e82d17664134e50b0bf08f130062aa5" - ], - "layout": "IPY_MODEL_956e217069544145bc2daf387670a6f1", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0398887f1bfe40b0955c8abea4b49cd1", + "placeholder": "​", + "style": "IPY_MODEL_e2094383203b482c95ee7d5c103429ea", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "3cc4259329f74837bd19ac70f0bfd280": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "16093126439a4d69b67f58dee7c30aaf": { + "3d8d61af332845c19a16f7f26036b979": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1206,64 +1302,7 @@ "width": null } }, - "266d8baebceb456f9de0ecd224a8f07f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c78627728b1456d8196e74a64c20c11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6378b47f9745452085fad301777b1a14", - "placeholder": "​", - "style": "IPY_MODEL_830d8f4ea65e42bbabd3be8aea0ca004", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "30f2de75554440b9b936dfd108bccf87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "39b4cf4d1af6451cab40aee83d8afce1": { + "3dad1b05b1624573b3133880eff2163f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1316,108 +1355,60 @@ "width": null } }, - "3cc5f6b0b0ac4f108a978a26762ddddb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ecc34604a0c9400faf322cccb02a0906", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_50cdfed3960c4485b819a5d78a64e348", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "4792438008804047863e1e20a529f391": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4cea6b9ae47246558816843b27fe144b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4eb8a87439944e1ba0c2293c5411b096": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b764a25fab34d118e387d2f63807d7b", - "placeholder": "​", - "style": "IPY_MODEL_7bef79fc2cd545e996b71e810690fbe3", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154565.69it/s]" - } - }, - "50cdfed3960c4485b819a5d78a64e348": { - "model_module": "@jupyter-widgets/controls", + "41dc3879d71e491eb1cad2b61fd7f555": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5474f911771845c5b6970c39c4b5b236": { + "556d7a96f68d404da1aceb865b5bcaa3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1470,33 +1461,54 @@ "width": null } }, - "56b4d15683c94f77894d303ad991e833": { + "5ccaa73ac723461c85d0fdfec6e4e9c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5474f911771845c5b6970c39c4b5b236", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dfc0062d477b48c59ae03f801e4a406b", + "layout": "IPY_MODEL_ba13899638c54baebf4d5e9da65660b0", + "placeholder": "​", + "style": "IPY_MODEL_b9943848dcb643c2a23f4e8cf52def5f", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": "number of examples processed for estimating thresholds: 100%" } }, - "5e82d17664134e50b0bf08f130062aa5": { + "5ef5c47110ec4f59aeb856c6d3c341a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ccaa73ac723461c85d0fdfec6e4e9c9", + "IPY_MODEL_a570f95dbe384aaa96ee3013473e2ebe", + "IPY_MODEL_7b39104787d44463885c0c905b63ba15" + ], + "layout": "IPY_MODEL_9f52119dcdce4e578fbef81f09977a4a", + "tabbable": null, + "tooltip": null + } + }, + "63318ac9759641a697650e72ba3a1f71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1511,15 +1523,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b47a6fec59c4f33919b2b1b1a4d33f4", + "layout": "IPY_MODEL_d9bc553ff2a146208e83cfb4a65cd5aa", "placeholder": "​", - "style": "IPY_MODEL_4cea6b9ae47246558816843b27fe144b", + "style": "IPY_MODEL_bb51f26ffedf41cf941e7bf04717041c", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.15it/s]" + "value": " 4997683/4997683 [00:32<00:00, 154309.04it/s]" } }, - "6378b47f9745452085fad301777b1a14": { + "68c50245c9504baf95dbb3963b43a8a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1572,30 +1584,23 @@ "width": null } }, - "640eb6d1b10b4a8c836f6eef2f8b95b8": { + "68c71bc1bad94d8d84e927f32499419b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b9baa96f97243eebc38a3b719e13152", - "placeholder": "​", - "style": "IPY_MODEL_30f2de75554440b9b936dfd108bccf87", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "725299ed2d2d495e8116c8d2b900f134": { + "6cbc832ae4344da0b4821023a5ef412e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1648,7 +1653,7 @@ "width": null } }, - "7b47a6fec59c4f33919b2b1b1a4d33f4": { + "7991601db8784f6c9e29101ffb67eadb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,7 +1706,30 @@ "width": null } }, - "7b6367d6bc21408b8500160a29f63b24": { + "7b39104787d44463885c0c905b63ba15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ca3c6bba54884c01bd56c4cd91c8fd71", + "placeholder": "​", + "style": "IPY_MODEL_3cc4259329f74837bd19ac70f0bfd280", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 816.61it/s]" + } + }, + "7eb64e5ad90643f88016fb9ef67a93fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1754,43 +1782,7 @@ "width": null } }, - "7bef79fc2cd545e996b71e810690fbe3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "830d8f4ea65e42bbabd3be8aea0ca004": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8b764a25fab34d118e387d2f63807d7b": { + "910f5814751b4800aa309a91fcfb8c98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1843,7 +1835,25 @@ "width": null } }, - "8b9baa96f97243eebc38a3b719e13152": { + "9b123db02fc04548acd586c0cf17798b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9f52119dcdce4e578fbef81f09977a4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1896,60 +1906,95 @@ "width": null } }, - "9030482a6d5c4511a19696d7665c2b1e": { - "model_module": "@jupyter-widgets/base", + "a45910e9f24846f4a8fd1dbae5f6f01e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a570f95dbe384aaa96ee3013473e2ebe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3dad1b05b1624573b3133880eff2163f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b453cf1c85cc41e7a4698820cebb73cf", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "ace77f3dc6c149e1a69150e6d6932650": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bfa54f2e76a94d408a32cd5e4451600f", + "placeholder": "​", + "style": "IPY_MODEL_07ac41807a0b47a7b26d56207634fd82", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.28it/s]" + } + }, + "adf75e7c04a8438588821d873887cc06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6cbc832ae4344da0b4821023a5ef412e", + "placeholder": "​", + "style": "IPY_MODEL_cbe48e3cba8a4185a380bca2613cfecb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.46it/s]" } }, - "956e217069544145bc2daf387670a6f1": { + "b1b566c302dd4797bc264e8362c45e1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2002,7 +2047,7 @@ "width": null } }, - "a9ba72b6d9eb46bd8afe92dc6a7b7ba2": { + "b2208a3f273849ab827fae9cd38132f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2017,33 +2062,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb1bb32dc25f476fa6e226261c15559d", + "layout": "IPY_MODEL_68c50245c9504baf95dbb3963b43a8a0", "placeholder": "​", - "style": "IPY_MODEL_c1db1f6d3db54715ae1bda93b503db6e", + "style": "IPY_MODEL_9b123db02fc04548acd586c0cf17798b", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "aa711c8fb6614d819e579f39b7542144": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "100%" } }, - "b2e82d878c0949c5ab6c54f6fe3ac61f": { + "b453cf1c85cc41e7a4698820cebb73cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2059,7 +2086,7 @@ "description_width": "" } }, - "c1db1f6d3db54715ae1bda93b503db6e": { + "b9943848dcb643c2a23f4e8cf52def5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2077,7 +2104,7 @@ "text_color": null } }, - "dfc0062d477b48c59ae03f801e4a406b": { + "b995012c5b064376b67bfc740cdab094": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2093,30 +2120,7 @@ "description_width": "" } }, - "e0627efa20ef403a9f4bd3718a4b12ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f4d40f076cba4433ad2ca7b9ee9b978d", - "placeholder": "​", - "style": "IPY_MODEL_aa711c8fb6614d819e579f39b7542144", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "eb1bb32dc25f476fa6e226261c15559d": { + "ba13899638c54baebf4d5e9da65660b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2169,7 +2173,43 @@ "width": null } }, - "ecc34604a0c9400faf322cccb02a0906": { + "bb51f26ffedf41cf941e7bf04717041c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bdd6e352fd8b4492b50d4a59e384a686": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bfa54f2e76a94d408a32cd5e4451600f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2222,30 +2262,7 @@ "width": null } }, - "ed24817521404bf8a9160c8c4db0af03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9030482a6d5c4511a19696d7665c2b1e", - "placeholder": "​", - "style": "IPY_MODEL_016a2aa584c54a30a48f5aa98ac19b92", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 742.70it/s]" - } - }, - "f061f06e3ec64188a924477da4eed393": { + "c79ebbfe831845c1a17b218fa7be7f95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2260,42 +2277,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_640eb6d1b10b4a8c836f6eef2f8b95b8", - "IPY_MODEL_56b4d15683c94f77894d303ad991e833", - "IPY_MODEL_4eb8a87439944e1ba0c2293c5411b096" + "IPY_MODEL_0cb55221d04844998b3efd90659ba7d8", + "IPY_MODEL_1564ff2b349245b98b6641d891bfd8b3", + "IPY_MODEL_adf75e7c04a8438588821d873887cc06" ], - "layout": "IPY_MODEL_fd4c0312edf041719f1ca12824c5a794", + "layout": "IPY_MODEL_3d8d61af332845c19a16f7f26036b979", "tabbable": null, "tooltip": null } }, - "f1807c19bdc24b6fabbeebb2b4bef583": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f8c07525285d40e1b34ca024f00bfbff", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b2e82d878c0949c5ab6c54f6fe3ac61f", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "f4d40f076cba4433ad2ca7b9ee9b978d": { + "ca3c6bba54884c01bd56c4cd91c8fd71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,7 +2339,25 @@ "width": null } }, - "f64b5d2793744982845ae084dacbd8d2": { + "cbe48e3cba8a4185a380bca2613cfecb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d625e0de09de41e58013bd6ffd10ea65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2363,16 +2372,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e0627efa20ef403a9f4bd3718a4b12ee", - "IPY_MODEL_3cc5f6b0b0ac4f108a978a26762ddddb", - "IPY_MODEL_04cae20aa93d4a8faa7a664f277282df" + "IPY_MODEL_1588d3dd602a4049b726fc99f066d0cc", + "IPY_MODEL_0b875393e6884f6da0d17965a84e7e3c", + "IPY_MODEL_ace77f3dc6c149e1a69150e6d6932650" ], - "layout": "IPY_MODEL_16093126439a4d69b67f58dee7c30aaf", + "layout": "IPY_MODEL_910f5814751b4800aa309a91fcfb8c98", "tabbable": null, "tooltip": null } }, - "f8c07525285d40e1b34ca024f00bfbff": { + "d9bc553ff2a146208e83cfb4a65cd5aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,57 +2434,48 @@ "width": null } }, - "fd4c0312edf041719f1ca12824c5a794": { - "model_module": "@jupyter-widgets/base", + "e2094383203b482c95ee7d5c103429ea": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e8bac498633d4753ba3338a097659542": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7eb64e5ad90643f88016fb9ef67a93fc", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b995012c5b064376b67bfc740cdab094", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 } } }, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 81b6e940e..8ee0907f4 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -691,16 +691,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index db160853b..ebb59b56a 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:32.736669Z", - "iopub.status.busy": "2024-05-23T02:49:32.736496Z", - "iopub.status.idle": "2024-05-23T02:49:33.798684Z", - "shell.execute_reply": "2024-05-23T02:49:33.798093Z" + "iopub.execute_input": "2024-05-23T15:22:29.914518Z", + "iopub.status.busy": "2024-05-23T15:22:29.914322Z", + "iopub.status.idle": "2024-05-23T15:22:30.831231Z", + "shell.execute_reply": "2024-05-23T15:22:30.830644Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-23 02:49:32-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-05-23 15:22:29-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,23 +94,37 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.250, 2400:52e0:1a00::1068:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n" + "169.150.236.100, 2400:52e0:1a00::1067:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "HTTP request sent, awaiting response... 200 OK\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", "\r", - "conll2003.zip 0%[ ] 0 --.-KB/s \r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", + "conll2003.zip 0%[ ] 0 --.-KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-05-23 02:49:32 (86.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-05-23 15:22:30 (7.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -130,15 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-23 02:49:33-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.96.73, 54.231.167.113, 3.5.29.33, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.96.73|:443... connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-05-23 15:22:30-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.141, 52.216.32.209, 3.5.27.137, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.141|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -159,17 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 49%[========> ] 8.10M 40.5MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 59.3MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-05-23 02:49:33 (59.3 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-05-23 15:22:30 (154 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:33.800945Z", - "iopub.status.busy": "2024-05-23T02:49:33.800758Z", - "iopub.status.idle": "2024-05-23T02:49:35.020556Z", - "shell.execute_reply": "2024-05-23T02:49:35.019948Z" + "iopub.execute_input": "2024-05-23T15:22:30.834158Z", + "iopub.status.busy": "2024-05-23T15:22:30.833771Z", + "iopub.status.idle": "2024-05-23T15:22:32.090862Z", + "shell.execute_reply": "2024-05-23T15:22:32.090338Z" }, "nbsphinx": "hidden" }, @@ -200,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:35.023091Z", - "iopub.status.busy": "2024-05-23T02:49:35.022733Z", - "iopub.status.idle": "2024-05-23T02:49:35.026083Z", - "shell.execute_reply": "2024-05-23T02:49:35.025628Z" + "iopub.execute_input": "2024-05-23T15:22:32.093433Z", + "iopub.status.busy": "2024-05-23T15:22:32.092981Z", + "iopub.status.idle": "2024-05-23T15:22:32.096296Z", + "shell.execute_reply": "2024-05-23T15:22:32.095875Z" } }, "outputs": [], @@ -279,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:35.028283Z", - "iopub.status.busy": "2024-05-23T02:49:35.027870Z", - "iopub.status.idle": "2024-05-23T02:49:35.031296Z", - "shell.execute_reply": "2024-05-23T02:49:35.030738Z" + "iopub.execute_input": "2024-05-23T15:22:32.098209Z", + "iopub.status.busy": "2024-05-23T15:22:32.098034Z", + "iopub.status.idle": "2024-05-23T15:22:32.100925Z", + "shell.execute_reply": "2024-05-23T15:22:32.100489Z" }, "nbsphinx": "hidden" }, @@ -300,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:35.033321Z", - "iopub.status.busy": "2024-05-23T02:49:35.032893Z", - "iopub.status.idle": "2024-05-23T02:49:43.900988Z", - "shell.execute_reply": "2024-05-23T02:49:43.900439Z" + "iopub.execute_input": "2024-05-23T15:22:32.102888Z", + "iopub.status.busy": "2024-05-23T15:22:32.102593Z", + "iopub.status.idle": "2024-05-23T15:22:41.080012Z", + "shell.execute_reply": "2024-05-23T15:22:41.079429Z" } }, "outputs": [], @@ -377,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:43.903476Z", - "iopub.status.busy": "2024-05-23T02:49:43.903178Z", - "iopub.status.idle": "2024-05-23T02:49:43.908916Z", - "shell.execute_reply": "2024-05-23T02:49:43.908452Z" + "iopub.execute_input": "2024-05-23T15:22:41.082669Z", + "iopub.status.busy": "2024-05-23T15:22:41.082424Z", + "iopub.status.idle": "2024-05-23T15:22:41.088197Z", + "shell.execute_reply": "2024-05-23T15:22:41.087741Z" }, "nbsphinx": "hidden" }, @@ -420,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:43.910874Z", - "iopub.status.busy": "2024-05-23T02:49:43.910549Z", - "iopub.status.idle": "2024-05-23T02:49:44.253034Z", - "shell.execute_reply": "2024-05-23T02:49:44.252456Z" + "iopub.execute_input": "2024-05-23T15:22:41.090445Z", + "iopub.status.busy": "2024-05-23T15:22:41.089999Z", + "iopub.status.idle": "2024-05-23T15:22:41.430405Z", + "shell.execute_reply": "2024-05-23T15:22:41.429873Z" } }, "outputs": [], @@ -460,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:44.255550Z", - "iopub.status.busy": "2024-05-23T02:49:44.255197Z", - "iopub.status.idle": "2024-05-23T02:49:44.259374Z", - "shell.execute_reply": "2024-05-23T02:49:44.258853Z" + "iopub.execute_input": "2024-05-23T15:22:41.432978Z", + "iopub.status.busy": "2024-05-23T15:22:41.432612Z", + "iopub.status.idle": "2024-05-23T15:22:41.437185Z", + "shell.execute_reply": "2024-05-23T15:22:41.436639Z" } }, "outputs": [ @@ -535,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:44.261386Z", - "iopub.status.busy": "2024-05-23T02:49:44.261174Z", - "iopub.status.idle": "2024-05-23T02:49:46.567928Z", - "shell.execute_reply": "2024-05-23T02:49:46.567197Z" + "iopub.execute_input": "2024-05-23T15:22:41.439393Z", + "iopub.status.busy": "2024-05-23T15:22:41.438929Z", + "iopub.status.idle": "2024-05-23T15:22:43.778516Z", + "shell.execute_reply": "2024-05-23T15:22:43.777714Z" } }, "outputs": [], @@ -560,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:46.570862Z", - "iopub.status.busy": "2024-05-23T02:49:46.570305Z", - "iopub.status.idle": "2024-05-23T02:49:46.574754Z", - "shell.execute_reply": "2024-05-23T02:49:46.574288Z" + "iopub.execute_input": "2024-05-23T15:22:43.781921Z", + "iopub.status.busy": "2024-05-23T15:22:43.781015Z", + "iopub.status.idle": "2024-05-23T15:22:43.785016Z", + "shell.execute_reply": "2024-05-23T15:22:43.784574Z" } }, "outputs": [ @@ -599,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:46.576813Z", - "iopub.status.busy": "2024-05-23T02:49:46.576632Z", - "iopub.status.idle": "2024-05-23T02:49:46.582048Z", - "shell.execute_reply": "2024-05-23T02:49:46.581529Z" + "iopub.execute_input": "2024-05-23T15:22:43.787064Z", + "iopub.status.busy": "2024-05-23T15:22:43.786747Z", + "iopub.status.idle": "2024-05-23T15:22:43.791712Z", + "shell.execute_reply": "2024-05-23T15:22:43.791166Z" } }, "outputs": [ @@ -780,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:46.583985Z", - "iopub.status.busy": "2024-05-23T02:49:46.583812Z", - "iopub.status.idle": "2024-05-23T02:49:46.610039Z", - "shell.execute_reply": "2024-05-23T02:49:46.609493Z" + "iopub.execute_input": "2024-05-23T15:22:43.793692Z", + "iopub.status.busy": "2024-05-23T15:22:43.793373Z", + "iopub.status.idle": "2024-05-23T15:22:43.819215Z", + "shell.execute_reply": "2024-05-23T15:22:43.818707Z" } }, "outputs": [ @@ -885,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:46.612179Z", - "iopub.status.busy": "2024-05-23T02:49:46.611868Z", - "iopub.status.idle": "2024-05-23T02:49:46.615837Z", - "shell.execute_reply": "2024-05-23T02:49:46.615307Z" + "iopub.execute_input": "2024-05-23T15:22:43.821421Z", + "iopub.status.busy": "2024-05-23T15:22:43.821097Z", + "iopub.status.idle": "2024-05-23T15:22:43.825769Z", + "shell.execute_reply": "2024-05-23T15:22:43.825258Z" } }, "outputs": [ @@ -962,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:46.617802Z", - "iopub.status.busy": "2024-05-23T02:49:46.617504Z", - "iopub.status.idle": "2024-05-23T02:49:47.972620Z", - "shell.execute_reply": "2024-05-23T02:49:47.972007Z" + "iopub.execute_input": "2024-05-23T15:22:43.827768Z", + "iopub.status.busy": "2024-05-23T15:22:43.827442Z", + "iopub.status.idle": "2024-05-23T15:22:45.254926Z", + "shell.execute_reply": "2024-05-23T15:22:45.254430Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:47.975019Z", - "iopub.status.busy": "2024-05-23T02:49:47.974673Z", - "iopub.status.idle": "2024-05-23T02:49:47.978695Z", - "shell.execute_reply": "2024-05-23T02:49:47.978152Z" + "iopub.execute_input": "2024-05-23T15:22:45.257058Z", + "iopub.status.busy": "2024-05-23T15:22:45.256728Z", + "iopub.status.idle": "2024-05-23T15:22:45.260712Z", + "shell.execute_reply": "2024-05-23T15:22:45.260288Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 3c2066b0b..2de38819f 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.4", - commit_hash: "3effc12d6a686a39d51451c1a99f8654336a8bb7", + commit_hash: "4e2cafbc517f092cd088ca83bf49eef8767d363f", }; \ No newline at end of file

FX$;N%<}o#(kF|+5)uFlD;{1=5Dd&G|>`(s3^wmskKhk^L*cVh? zbyWdMCN#FdY4uEL5)iPvgbu8&YeJj)znaXjQDf5{Mw9c{a9b0Tj!JUl7t=TNgBQ55 zdD_wxOO02ojS0PJ8S{qK=syYP^_dT9?nWL9TO5&z@B4GOdm7*0lTb52`f)94WMo3kx8a7 zn*4K$33W6?^n=q({i*0R(oF*yn;;^N1a_EXswU$3-!acrgU1DmMJAS&9-kx|&FhnxM-vKl_m@Oe1ByBzxAITC(($sGbzQL%6urv;p)VA66GMu3kS1yx(SGJi%TR zG#q?K4jR;`Z-I}to4PSffVjk&7C3LWDM=t$1;6hxnPh^!{OS6H!=?=k4H)XUOMrwS zcLLymBPR6g?aqox8d&9osicrkjyYvAv-GEjE|_}3@@GwGH3dV0@8?ak{ylpT!Mqal zoE*GtYDt+2zh;_1a}V4yF|D*<{s7`n174fV?LnRECRNoQBH4fbGi@9Ds+*>oxd%vj zWTI=nW%5ja^BM&;9-3G_)`I~d0$jl|u_F&}eq~x919gAztb-jsnubtoJpIHJdj#># zXHzSd6;7g@3nsGzy!q9v2ETkYm4S7?nhpo@=CvryPHNKzN^?b;oU1V}WR)GD%2+mm z5u<~k+G3tYcnATT9Ok9}-gN`*1o7V1xUzW`gS-%dt&;QnoUCVFj^1m+Ez*c)X7m9K zlKk}-vyA#oN`kqEjL&`1)tpNU+~{s@BH?o@CYw)5`J`@;`8X}`a-lfzv!Mr4||vs8kb|I#39Qdk7+waom7KyVFqT4A0c1{p`9>VooXnH-E@ z#;4v10lH4z;y}haGs|zI+%s54;ZKIDV9t8;0~Xo*2q0yXnPm$P0n7z=pQ8xQHt0j) zo6Wd|N_!Wj0nY8_hYX?T1GK{zJIpOu+BJgEu!_|J!w#6^l%QxzH2R?E8M9o(GdAJ8 znPnP7V5jRG=;%$3c_X8;=K_oX{*qWU;PxF0TF8koM#1Zs%xjq?^#P6rw{DqPj$`;V zPUpebZkr_%UQ@5`nOR-~_W{~r#sjmGp@9Ph2$LS04+wc~T0S!$WOOKqJhUt;Bk=Ak zGy1(X;?$4cnvXK_fTP3?)8CnyzWP|8k!c@s??$*8`q_M}P~3!lF_&gl3olQ#ujYF^ zH?!j`#|yad^%EaIW3+?KtpDj4jwv|*W*A{DFv z+0z{}VVOt^I`e`Vfo-BJ=tnw9vPg`jGRtXiggXy>uVx7Xo65ROVDUoh0C=LjzlN6; z{WZW!mT;E+4^qR-+7=y1S?!n%YuEFG_pI*+FVoOcg%uoD`PK4`YNSyc%TcNkPdf`b zYe1CqqP@SOoeBQjQ5`Kzzt797tcN88w(D(a!`Q{m1Mz{DK#*|Dx*Wy~vgC^S9^F0M z@|Ll=pop0_yejxH&C-$&7}#!{r54|Oz-^N(X)MEhB5>8yXx}q>u0;+~@~v9vooN{= zB0K~A42u?|oiUr?-QO(ex6z5pf0<(uGsfCHfa`*&uA9`V<^`4u)RbQqTKX`mJO!kk z4vz*-gRLGMz0&e4qn-&&X}EcvU)Hcqmi<)4@3&fRQw`+pv1t7dC$D2#o!JrrKOU`e4ow!Cafl=D_Pb=&ep#wQOww4m*JV!Nr2Eog2;l1-ml zJhZ@sHx~2(36d-QVA)8MM?YKa{J;vn|7y8TWxp-3wr2ITopS3=YWEWXR$mCu46^!o zYN4_&VFiZ=L#jO6 zBa^7A6YnU&j?)zqL9s=)Sddo6s(=lmto>OcN>I(#lOTZ3F; z+9dF0to4Zq33|D-^*Mu}|A4i_1!b-8S;EB!;|0;ptTK?$uc#Jwt726v5ohFu=jjcs zBFyHj#@1bhV3Xi0p}vWgX;SZJ6CyUl3u8yZh#kxvZ0!fqr8btyk&hW_QLjrB|+)I=cdFua}hXkmn;Fef`$w+j(dBRg787oI6^XY1+z0aItXSTA9w7I(Mi z6rQR2J*`Z$6~7H3ipm$5pW=P37YfhMwSLw(mR1q-GiQvo7C&kEKE%2Ud(*Cw%-)2+ z8p2+wR;FK}#@y^2V~xduUvj+lETdis4^Jjozq7gx0k|;PdJ-FG?lfjbcFwTMS!Qq4 zDh*+Ny7f5bVHam*nb7)iy3V#XVQr@8w6(^7tc~dVqiC8j32_6%m!OD5*LRuL(k!zV z%oa#VwiW}<%v|XYQ<$`M)=*r*>V+k8-l^0?|y4Z zaPX`&5`D+ex&!lHcb^r#IlTee4p`9-MQwnO4)WDz9pdRBN6-&-vicydKIOsHP}urB z8W|yU%|$DEuX_W0aEV7>f7$w+Ib<=qbA&YzqN&Jm3GxuqX}-;~wr2J>A0)tY5wPkh z(p8mPx1Pr{QCh$bTt2RY&Tr;pa@h=8X*TSHkR z){m`%yS`Y@VttSQYQ2l~o%G#Wie>KM^U^pFFR`Ihka!yWNoFGs8Wdn75pXTgHj2?h zCV=dKuy(M!!PbmrN`tr~2%-G>&FNNK64v2+hwU6{!QmmV?Ior+6}63E4Ezk>JYcB= zBV%kU7-ljMF&Kax69(0`^_8RRs7AI=GISl(!gdOqrRuM?jI{F8irW)x9#qH9$+pSNkO`x5OZ+fXxjvIX!oO$PmN7dso{-?_gadY*Z<7iH z>+x)-F4(fbwvwTh!&9C)8F!TM)Iytzq18cWBZ`6aTlSwpqepfJSg^##aE{Lhk_3{k z+W1+{&ZV~3BJgH=b99Pfh3(eAm+T*ycDQSm?LI>Y6`({lv&zW~2cQ{F1aL051;90% zY+-V+@N{z>Xq9Et&N*&FUt(0=g`T+o9Tm@(E zw|(W+36~$Tp|77}&BArZZ9N#8t$$(zgss7bZx6Cx+d_ddlVx61fJt0{OpAU!XM4(X z3YuK9?JKkoy!hS5GBNVA1`%tQsac!furaJd7eHOOX?t2Ivm##XaCWYrp<#KpLxt9m z>AsC+LgW_<$FChmKC)e)Y6^O4W7swMFT8cnY%J3vA4(Und6^Y`mp3}R82tT>Z9R3V znI8({QWR7jWVgf8f7n<)w)tQD5h&fCwi{G+-~Y1hXE*4N{H^+G`%nm9`vGdlIQwbJ zUI&r=f5e_tVlPZs{=gpGF0-Gc{7nzA!@{Z$BAfIpM6b~W99&`5f&_UH^v7mz3ioR5 z2N~vC1)h?9%@zQ%FSw=PK-=)HaI4L}onho!fTzBP+HN$pGJ{4nT%F*K2>XOW;pL^} zDuJ`4*@S+-G(rP^Q2KJ7$JAKgD&a&C^f9q5N z(8`Vu-ZZhJ^9iJTUeer-wq8gwwT0cmFk&pICA*Vd15?`D`!gJp_MudVX+7-c3Nc`) z4)RRSQqZ1aM_W}yu8jWn{d6$Waflsl-;mtKBkakA2)pV4@oDC_aI(kRS2Ij}{2~)5 zh_-RYQ8u^Dv!fjx!e-bqJKDh^N!vO*+QA{oC+qEKw}d1&ZM35u9Fn}h-Hvu}NV4N@ zJKDh^N#_AO+QA{o#z*XE2Ztofov{C0C^uHAt!P1JsLcc%ja|*)j&pWTA=KFgpjHQQ zIWe*~47_45#s~$`EWyOEV(v4=&k)TpECO)xd1zho5+ATsG{%BwkL`>n!%KrD8Fv)$ z{1ba0DH!oFG!WK#ZC6V8WQX_mBN9O_f6N=dGRW7q>`(UE-Y&R|gJ3Mpb^xL%V4$U0BLk%TH z$LAL zfJTnPY`m_9D;hgk24TE6RBh^5h8cL!+`%vh;W0+Ea4>BU5qGq=a_q$n+-&1G{_iya z5k@k@K!j)9nBd69b>HadIKfhPCr2HYNE+SWv7X=Wk@s}05F-XQCNr5I0d0fL`Z~Tc zgbYLv55{fDpMxAn{=M*k)SWrR!Sw5hzjDWi(zThglM@IMAwdE*yW&(VQ7G%KeW6GM+m;W}Q4oB%_;60hu?^ zkIBU+x@2JS47C=__~0%DCp~eL@b}!OUpi{CG@``seCSG$^nves`5mj7ZyjjIDi@ym z!;!?Sjt&DIKOUb`e|1d9?Ijs+Y!x_h0|tvpoHm9Akhh_)0u{8%oM_uB7d}%s(Y6)h zJJ9(HbJUQnr81$;#|V*d3s#0YwID_8FvIo+C)0<9h_(?h-Ej&vJJF6)E*xfaq8+DP zSl8`DJ5IT+C+=jN7h1_t~1K2_1j_oJVjOb7T0-{dsip(;-FN#9&pvZfPl zN#(*74V-98DiH;6z(ex$s^mC)$$Ag-g0Q(Uw#$ zJm1@iwxn_)?CTuQVj?tXC>W7zpnRCKmt2s~PZ;)%akBgZIo^zc*<+o-EODfHnXtGegg2@RNhP6P@!#NQ_}qoi`aebOf{zx~4nNu{aNUcoevh=;rrX;I0g3iW0HX z_kM&9R$k^rO?^J7w9?6PlFSFKf?HQP%d-T!9|63~acV$bNpxb{sV>lPXh%`DK|fB7rmb0p|JbVU2`v$z|svVu5Q;mbYdQ z+(LNjx|3;^K^|^>%Za8r`QTHo^8l-Bj=Ae(nq?3MO!u98Fawt#I*+n4ko4Hevcm!h z16`jvcVGr=FP#jdZHO>BGqx-XVfDApQMm3y?^pwHA*}tuc?35u0iT_FSQR+yPv=RD z(fX^CVFQlW_ z#}KvaID;w)h9ShovImLPum)Zab)CQrWExxyJA4pfENAgWQn%9TLdQSy!2vr<-8}y- zoi3(HA7S8y+qDTZFh9)2;>ZM}M7S%KrI$nxPni={yf>T>xZwLlIuNLqND3K-njwVP2PsUYf!Ll2_=aI4|s7OrzL zWE(QPPiyZAWpuMtV9y9Q!FGwRAl#kz=;FGC`|sM_Tzl|U(8Gle0_MZtd%6ze>zv*$ zv;>t8o2Ix*OVM@GAijL(A$)nqFur{LaK8NZk$m}-G*?@Ue{Q^MB+CqkSTlRFOAE4Y zqmQ}0d8<}~glE!FSaF)GF7{EPhq*IcOp~*Jprg0`@mB^n%yOZhG|Pwj4A*FOj(>{y zai^`%eAgk|o)TtjE^!UTL!<-CTues^d8TOvO1N-^3(d*$VfWQ8G$+f4_13z+Gy7S5 zE3~bN_R)I60b5*qS-d{~vTF=~YOuSuwu07^LbGUps__Pbn z;qqbU^RBiGazX_Ei-w_3LC>XwoC_8yR6cQ`DHRkhJO}Jl#;q0zCi7Fy zy=C1D=ga__a#jUXSEFwT-Yw^DCJvk|{?C7U#Gy~}w95bq@9o7wRxQ+~4yoksC5hkU>bTLat5X=R0jc%fk65wthP!LQ1`XX88R89KZeVtEcNr~hvLrH_PnQ4+Z-Vbu&#-iB^y} z4(dDVR5!~kwSbX*X>O*eY5~HHvF9Pd1z=ek)YwFOuU=DV3@wge$&qPr-F5xYvm z@|o@v=tErCpEWDlgNp#FO|A%dbd{U!muPUyUjQ?Its8v^g77tbgPURA$vad5VDu(8 z(=4z+UpeoK7K3-Q+~+7?`?s;XLjhkscet58IqByMR^8=B-_azh>azELp(^u!cLUb$ zjW=Ps5RLicwRZZci!(>v=wlj~L-_W%8+}ZJB=??l$FU5Hc*)aqOOZFx;GK(Zbm)*E z4!-OMuYT37VHvag)e6*T)(g?B_ay}{@ep+#d_BU)ZuG`Hsq*v_f0eVJ`E%R7aObo3 zcf1DiEEl3#Zc#Ci%?j7SUSHf5nFmzF+sGVu>R0ztKHOm?q2~}4B3SHC-jjIt(%g+Q z&w46*_W;jj`dFi2&tsM`F;Q%`)>DapGi#CF<8z6_Mvu=Wrkgz-8Lc**pJ@dY@ibwX zX(9Fq0-b5a75AWni^Rffqde%~BJW>u9&~V#Bs-V&^ks~Z1^kOzcPe|9F`QR~h*J$e z9D=_$_n;Gsgr8dNJm`cXNmfeopc9HDDeLON-`~T5cfOkkolqo6VTuQxP$bDQ13c)2 zB1u*q>Om(INiunqhmMuuuVXw7n9Ys+E&`@Z^5CzOVjjv&_4wlE+cZCC$7XouFjtZH zn}JN6!TsUN=alDXQmLBt1n z;(CvZT7%o{H)6XjepPw5c`7mwjbdoMDp+%e=PcEdYnKO|JSGYg?D5QHZjbSt4Wc=l zMIe~XPg6G^^<*;4vhdC*$Z7AD!F|U(OxvUR=RJKuqj6yl(5I!hJ$Q1`V`Jgtyk{K0 zQF`u_MU`gPND;_Pae(Md-(tlq)APPY+<@t}^$KCR* zXKA{8FdmqB-*Z6>61NZ3!EsMK++yi98W z1>CIc=0&fQU?YM7J-rOSDaQLZ(ao1$UZw?s0&c!1d(p3~5pGWP^X@2=ZW;~nGA#%c zaPxSOcMRob=uq#vLUHqcnD+z?_A{fr8w!P0C(V17VtL1TH!@;DWU~t_gI=Pb^o?Ez z|H@?eRPPqr(>$BW9$f^GyyG}%mRHO&X(`}~z_iHl9--DN2E1DtwFC(r zTqmC9_k;(aw;RjUkib;!?+pdtd!pW`;0?&GN4x`>0Ta@_PX3H+N{`}NP-b%YJlN=h zw~UM*70tWqt;g*6K5Ql2bi@0Y_RA~tyd7DGkia?pn(K#`9q&E%N~Jubf4}sOpaX`< zZ@psXpzzh8gstCs(cFTJCCYyEqPYc08a{ddVD%t?tmlO}-@HFDywQj|wQfIrlF}9! zR*|u(Brv665p@_^8X!_F)P|v@0g~)t3`0u;B-zp$#`N(f!fC-LDOY>KrZJ9EyYXMP zB!_7KDiwx4Nl6$RQ9cYU7m(!ZYGG)(fFvK+3-gT*v+9ST!Au&W#(lCMGDagM+7;UbO4_m;}k>S~K z-pnuwJUk&x`TtnE%D^bDuKfjK#6tvkl594~Zn7Jf-MDA736#>}u7%(&nzm?h%f*Ac z7dTK{f=h4>QY=tfoZ@_E?%ZA4_aA5bYi=ex&pb!&xjN@sTa`oUFFv7^P?NXUrz;eX z_qk80^U}i%AI9U9C;3o%_Xsdq9$inK?6bNeYDG8Q=ORHN2s9IJ6!{#XL>GK`5W8Ml zSEPHX+x;sCwzjw)O7#jgJa?W?kqt8AJ5|yb`{1tRa+bEthq9hzdXo!mTki8CQRRbJ z%U@CD4ynFLn2F6s0|Qt2B%|(N_gbIlltDOWg_yHwil1yAn%zfFWLviRP`-=e7L42O zLmG_nhmY;_nIYMx{T?4e>KH(bcElPq6NVn}!LQQFS=b?;eKal3guRD-NTV$-{GMYz z8zcg~Px|bo68Lb+hcv+A1SX#G87L8OIPXIlbaISeF8J)0fs8?M+QsAMNFMi2c4xg&X*hj1R z9-|DskmF!BETJCX^?L~dePq}KKVSU#vK+kqeevVVa=5OPU$Y`m{=1jTcOT_-x8i*# z@&m5epsO`U!-Oc`qf!;(?e2Fv-y}kC2E-g>ha6j^`!=U^0l5l3ZLj~&t*he=zRe{s z=EOc4efvvx?AO?rv~~4gFTmV3O?+|dYB|*U#uvA)mcxf{eM#dz4(ry{*Oq;{SI-uz zw()&HtS^I^2?m!KrOc9V+W9sx^@mvJ_P!oP?!NeWVi(`alA?PR_*zN*(LQ~B4@=kB zAAE6dYB~51@f{;we=YR=jqK<1NBX)k903YH-#SKi$P;5_2b?k9S4A1hW82g5A7jJw zGkmp_v7rej49?B<#SOaU5WT<`H|Umw{Zd&8FIV_BBzqxlYh4aK*8AcY$>lI)qg>Zg zHu>Vl+H!E(;@h5#jNyatbQO6pSMBh{FOtjQ)Gpr~GG?7pe|xrWVxaiSxoL@vIrxz8 z(n?nI<)y){r+pU^nrOZ>=(Z1cunsxnOWHJ3@3wCN+xEkEF09j8Ul*2q-ghX0#|9g} zS$yzQ?h3jidO(+iUoZ6ddwv`%%`FILzrfe#eAK*EH~3OZ94%k6)>ParO6GM}?WJ z^dk+Zu&xhht@Hex0F!zCWi7kM<4`|JEj42?KCt>R+>f*<^*=D}qx>*`CwE&ztluVr zg8m2aR-B&|p{L9K2WD@)-&Vovm!$uKSFIF3(xTM=@PafyJaCBXYiK6PFaHP7G21VO z&|aGLY&x?FIdp`3;jp9oVk&Bdvi+;DF%wWe*2f z=Z7m_oG;tp_kpTY^e;OwZu3i_EPNrSF8>(ZEGzNTQwBE@4B(M&vxJHQPWs`R7Z>f# z89!X};>CLx{F)G@?DCIe*kZ5yO`@!MaasA&nY8A`Mm12lu){O_aHH1!)Rs{5iQfak z)BA-VE`f2%qu=}C5*RNQS}Sk~j2AO)6}v^Ty1fFI!1!H*s{)t6c=4o%0++yeaa>ge zE`jml_F4*D0^`NS^%Nmw2fbd~&lYeAtP@e0!&%)RMJ4vB4=(Q1Q7f#-FvB7h4$^rB zT_Gb}5l9S>{}^k5Mz8R&vie;f0FIAWP{t(E0B~wyTQ?TFxu+{D9qHo+M-vp$){ejb z`&-6vR=7)H1DUA`{FX5#ULn3^teK@Ce9I_(I2p#=j$ii#r))({N;FGYr}&9oH7F?S zEd1HGUn#^X+4)Ar+lp2tET^&JEg{THXn<%xQ#=$O-Xt&D^>42D(HdF2ZmlSxvDg7C z+bSH1%G?19J1AaOKms#5EA~+dq;*v!Qf8!34fA;NBEW5+H=V6YAfZrETQW-PpB0ob zlnD?|6dkT04Ykb(?8#zALQo_f-xKPp&A;2c{$|9yC+P_?Z`A16F z*j0*iR9k1SQBVfyfLwl(EPG(1;w<&u!#61?gL8)O-T^V7xFZQ)_cz65DuH|36{O)g zCt$x@aYG_dzE^SS%L%~KeTw1aTHf}cV!8Bg$0LdpU;b`cfh9*3e@Yho^`wGwZXee{ z&r-!R38U>f1!a1VW7N5zAdQ6a;d!iJMg976mDqPxu~~||-`}KG29BnLl;0I+Df1;J zK1y)EtGFsz=g<3!^EB%SD%&3@$}OQ10COKHE=yDfJhqTZ%2Netu=`mnZ=NeINmS0f zqWarBD0r=yNDjTh2kQIrGblEv`9Gs{+_)^IvGttgjhBTE{`)9nQV!F4NPTyf+q6av zd3-zH+kY<=3xezWJKLjXrR6u4T+bi#;5hnMhha+p7^&Ub9^_w{>_v#}3G3DVqg|+; z9Q^8zD|54}izm-f!`MR^WM{si~KPMX$fpz>5mC+N+4{VKPI>-f#<*aV}hF!sK3o06Wo-5 z<4%8424Qaf9-|x7l@r`--R~bqQH=ys)DZJ-Vjkjd5OK^unTo=0PAC&2#9e3nH&R^B zy_#|wyV+9V2=Q0_gC*@@0#GN)Mm94NLnM24a%hk(G`r`I=>tok;Y0u7k|kFB<^NK; z7C-ktD7~xWJO7%Ny(|Bde`7+pFq7TfUx|stNl;b6BZ4OkXO4@p_RZ_Jzhuw`(5*0NEY@?JXB_*AYQBL*# zawSQfz@MN-BV}7ht73Wbp`@jfvh{~g0~A&Y@MfP{DGB=w*@AY;RlwRPFB4iRz=wSa z&#{n0%Kh?~{Zt2KLu>Z^>J9G9x~uXHL6wMg4Bm88=2I#=KD>sl9j_EAf0O$vn^(3f zh6N*)4Jyj4&W}-2CWTDEF3@GHvJ+89YXGUer1X|dudl=AGbLp!Gy?3G`}PfHDsS7! zx~NjDJV~|Ct@%pISXXkDW3XV6@=67n!?>kN%BYLOe6?Ij8uRjpYphbf791L`RZ_;? z9On5tC282pA8z=o(p>))pmY=*?m3ZdH;_HJA0UT^S`fbl9c5N%e<>J<30c)#4Z^ z_bZnA68cmuoE28yaEU@ zLpDXdDgmU}$vG&h2mB=hhhHr^2dg>(yU2PtR4?F>;BcT}z;Qw?-Rl!TI#dKzux*Pf zU^2|?{lz@R`n2Ao8s=(#EfNf+17uQR* zVPeaG$CTM8NtB`i0Um(g`YI~nFoMtLtmzZbml!G5ZW$2pNsiy(HZVXZ)xRA z&aiHHz^RIY6@hz8)4lM!feQm(QFgR&1x?zBX7gMhFw;by*{m}u z=<&vY*~B=zmT}<05KvjDxcE0S_g*{9#iU(kF|76kq*11#xEM801-L`x>40jsCL46T zNcTR*;f`Jjz24vcqxO=_{ zh?cui(CUNv&HkSP@Z)2N#O5b~q%2qeda*M!tQcq#(8@OOl91}5T_EWgG7gSm(U#$c zoc=K1EwBkC8sRv8z(027c-IQ-OX&)lV8WnN{XqO2o!hR=ClI&h@Zu_EAa2d!#Tlx= znUqOB{)*3^qwB*1ODO*P8HUfNUQG+c&(S%t=GlR`7l#*5HV(wSIJ|hUd7#M`C$$U| z9syss4#d4U{0Cz@1>#;DUUcjph`XR6{HSiS;4YZNJ zMqgSO*ny%!?lJ|6OZ?QgZqR&mV0SXi!@s@$BMxBlqhOKsKZKiK`q&XLqQ(wL)#!q`;1WC zS?<ZN0C)D)ra;Pu3=?2&IJ`OVA*KH(Apla^Q$Z$DcY7e^bN|mo z`tJyAOKEdIBTU^LxLU9=?hBktGdkCEZCJiP(8V$~y$%L06l@wEu~0Vyj|Nhbiva3o zlr>8jI=~C!E(8t~bPit%{EnuazHsGoU>Z>`eOdQ=fmNXFS|FZ2AUQ9%{2sWCShG0T z6q*#GD($J_?Fl9K11nXOJ^04Mz®)`sv$fus!(+=FjEz+l|-6;^T1YyQ(fOk2aN zc+ks0N}5SCDj+H;VYL}S;#C{m-3s;W$a)`oZQ0~b=-E;BFCR}302J2jNq z1bra-68giIGDmj2X^@6Z*Iud$#~p&kQez^=f=^CCwiV=xSKT$J9$Ctd9zm5@H3yXz zJiUSzk~v8*(7Z~Jwakgl^v1TxcpVgGjJ|u#^v?nTeANEDZ{(PSKSafgyss)NJ>T-f6*c=aP~pMhA&1eKI&G zT2$$3p+S^|AkGf~Ys2ucpbY{mH7aN^Rn>^KgVH%iB172C=O)Q8SXo&?!-Sx*-29c< z-lU*qG)^40HiV`Gkydz2#A?HVw4h&vGq%dKkj`my-LAbVE) zEw1yIHVvvrbY~d`5GKJ&4o5GW1tkzGpp^O3T3t020f%%xE~-&nqX6@ zLl7fq2u^nkvX%WG%6kMICP1*Kiv?2fdiLE|w&n?=y7 zK0avam%{+UXeiEGuQ+JBxnG5$>f^Mai6S`6VTbTnKUmfH}@l)g=Bd`+{R9%_tx}b}4e0sMo zD1%Jtlw15(2IN+0A7{z<+5zV7J zIP4EPNB{$?qd~Ca7*KqN3_N4>D3o9+rW@T2+h6 z65JeAfs~lcdEvt@@YqomEqZ7=XBDM~#w0Kp=&70_w{cLbimHIJs}2YItpVp@+gMpW zl&6JHwewZ7r*&1tFCG2Zp2aFVI9N}$q9U7=Thkp1eN=d)3NLQ*Q;|;Ouxg^pXNOPK zaAAcil{@R8RBfX;hJ^C$fw~&}7N8>S?D`iEQV4CLY6dgZsuEc@tcO-b8Ob4!W(;Ax zncHAZCD;?HsvwkoHbQlufm^@7st#qN15)e4t`1XC9f5rsp{fOLKdN>KZ@4jBHSNn)#3XM3 z#PT5ZG9*{RhkaoGXceAuAgPx%8LOH>BqC!Kk5gSEx*=y{2QE`pEh@;qSU6qfZi#4i z48iQ>^M*AuRMUksT$-(#E1Y5EeAQo+*-c6FTb8JzNX-F0TeJkDSwOa%7jskicr*P} zRd@JqnF^1I?3;4mFZor4OS8PV5mdiBTFsI(Lc2Y!=EEu+AO~(J zJ)r7Pft7|ga);DIst**Q7PzVn?AueSI#P^oGJT*|1GcB5+J?0{s)`~wlmrJ=j;Rh% zjAPSCfAdO@&*y1lT+5+^lj+00el3objW8G!?!kKoz4QoUuPD$`%T-GlUc z$whm?3orF3!C_ogHDz&v!yKxn-b+w{%t2XG-A8a(TU$MyRxNtL-8$-RWDfE5%^VIi zq;q)Zqo(Ei)T+OiH!)lbP~$!s?i4M8)sqOyIIUF|!n_c51wz{k`0yKHi>u*kO0R~$ zzHX#iM|eHs54*;wu@B2tFeOesm8yaZI(0t*(>y`lnF`Y{QGHjybW5QdWOb@~55+sV zMrviKzZD!tXQ?MrMLC?UCLKqJ9NMyZd1_l|)kwXLGF(N3#;ougwIj@Hrk+DZfZgrX z-%wg({(57JYIq3BcPPcGuIfufTQp`83?NL^igKeKSD-G!i4Upwb*G>Dpj>xh`#|-d za`ywa4ORD`>~7+u-FBCG!0s{X^JKmf0-IM}!Io8f@8|(3q z>_m&)Xy~;@P1~7Z)(yfq!K8KS2uqBV!G>>ByRn8Xa|glu&1!E;bW;N+fI6ANhWqlQ z9cmZouv2}8!r?Q*(cS7g!h_!)P?Kg&I9Tyfq|^791#~#VKKh@zCR^hP5+qymOidX;;Il@iw+|LuKA$~TcemkeSkE`=3515x z1Xvs9yj25H98Re=Jo})YDeGqXoZvAQkvU)$Oqv$@EKYyxVBGd8*^FuJg2xis0P4Df zWm-vc490#KCvwC&co>n0Wc1o_-zAvR0RU9X22a*(ad$6>PzLX%OiLg{Q&u=V&K5?g zf_r(&RiIK*@D5QiE~ExGaF*{nG!9-^pC+dk+y(?c^5#@o)A7NW*4;I@I_M?@UnP>( zGDNHkbEgD*g~;^w?+?b)*m-RpTN1ojkd8kayueAm`|L(=TL-z=;bAbdm5a_#gI9~k zjy?;1FMe?GL$JGe>`kSR_Lbz{_V5Tx$e0bN7tPs zAt+UP6!J4ouQC=xEWu0rXNV6`%^b@fet#bFvLfp?UF8Lj{th`p6tXcZb=KIk8f7US ztjDvEmhkI`kSr$-%VxX}@hGaJsSfcD8k|PuRypLP8BS9{W572}rBqO~1*hr4zAg-R zVecP?rpoy?2fJxb$-JPshh~IqC3xnonI?*?y5>hw^slX%XCtfYS_91?N^Jih9zzSY z{i5g6x8)*SS9uDmm%pZ>hpgWbu^P&317h_Ch|^pp>bEz9#cOa5h}(E;qJ}aJ#yR|v zq#?}-@`uw>&3<+=T|<~2281DHLFcb8%+}-!72Gyx#(%k+!-8B*B(Wm)hQWZ@bdhld5oae$zwK`^!CwaW*}AYViA74wKbeLm63cm>>FRu9M@#+kTp_ z1c%n&YbY!EoWsN)H226Hstz`D7&=r#8GLdM>xOAgl50rapEX%R4}(Y0^{{HBhBQ0P z1#lUo=^{9c9!rUnvRmyOr#VTsg=(V4C^$@&$H=w_D$?{69M;UB>*4pA znmc3;UFK?VGYGGn?~65zTE)W`XkL+RacYrfsNm3YsfMzi$K9%EndTuu53pgS=81Uy z#x?ZUKU_FisW;B_D<893X!C~iJ4Q10D*Td_3 zn(ql5V8H{;J@NV(kLXRsi9a=zq@r?s$atbzAvjcgu9-(|Dw1DV&}?shrI{}{bbLdJ z53(rp-)fGNn=9838axA#H<@LhG?e@Z+!bnBX>X7@6j#(95*!BDY8Oy#vE5F4pUfe} zL0c*~_&RGBQ8{#X(b9dg+)aDOWD5`NGAai@FD>aCLvF}bRkXO_gZsmR>RQTYeH`Ym z8ru7W&>%bX_jR=RB_8KcwZ4|zjmvMK9V}pO_-M(E=Tl!T=IZ5ae3V+svK`k*+W_r; zvUeU1GS`s#!P>=C&$u6={faoz*&A*|nyoS{MoVryx5jE~kUgWnUW*&{xGh`~>7J3E zr2SpM#H4EbQq`HCrhO|sqeYgMIM3c2re$lV3O13sTFMe3cd&1b=ID{zNK2TolPllw z##+*ce=>)!wT*=+yT8%?LRIXeZ?$*Hb)|0$?e~JihgMqhmOP(K^{+)KQ5GAufOGytTJ4G+;1p$-LS4*BT>)B6B zpRIa5K#R-pJa7yhsGUr8%#DMznUozss0Z8u7=w#D@nf}e>JJt>73E3~B3 z3)|#H8kz36K9#B0Yo8JP-ULt;e%qiuM%k#y5mbA$mD#F``k_#?U0a2s3ke1gX0hx+ zaC^TtnDPY&r=vWrb%f$mS_evuHBeE$9~k3GCJ_r52_VEd-KWAN_Mhd%I!kW zTFJ%Zl|ob92`b{@^wWW|%CMqFXdkjq7NnqF)-((qLe?xIc*9=5&=Ydo0>#SEYeKeh zfuR*B8)><|T|+~aRL^AiFdkyoD1I2EhKKqJ9~}}K`bPNZsQA$Rf^V~=(0b&$_#rK{ zj&RSQ>`=OUB90@J8bX7}>KfW4^e$Blh7UWzlV+hCg?fH%6*|;~;FR3gU z?+#r-m4)HMmEqBW(8ofcM@K_D6HfJF5|ioc69$3tR_IgN{4D=&C}nIepsL_`;E}e_ z{$A(@5d(Yw8QOyCLtuOrx}B^geAtVX)<-(a-i5jfI)|*nx_MIr4eH&RHPt1!OPwkY zxLP%ADw&-Ls|q;O4x3R!u74U zrwlb@%Svm6JHy9n;aOBga~MFFZj@YxpNXuG33p@j+l8yPM2GuZMh2l)3e$JXFl#U= z%dEjy+2N%^gBK0qk)A|*!K8NKS~699*p2Op!J4#wRN@ctdxvmed)Z&B^$0H$^y~`4 zms192sMmZ}FfzO*TmLlCgB9u`U08uGvN7!cDO^d}<|_dL0%8(b9=M#wgx3%iKXQEd z1<}UTnHpY39NTibcsk>pa7U)!nW%z2v%%%XIAN;g4e4O|}oxR~h#Shk&g#SS7sN@%|i?C;{u7=~Ws818uLZ4INZHTiZ910NX zz3__eW#KEtAl~pq5`7Sc?v5b;>pY_d&6)5`J>-d2fdZ>eB* z@T6|UMoQ`<$(c;*K{@J1xIuD2#0?=`Xi&r*A%}l#geiz`%ZRuvL|T*+@kxmEt1)7g zXf%5^k7#OvNM1!_ToPH6j1pi9k zN0_Sm-#AVJwBGy8%{2dSVvXHmUR)m1)-leMTmXe@O(?eA40mvTg}pW?T%0h=^CGi zxGJQJKOKQb{qcI+@?69N0oL>iT{ohV#icaMpRF@>lyh#IL(bJkqWAP zWuCk1M`C`_gybPmr*@>bMG6JPS|IG*%Qte32+nG4{}9D>Eh4*<`{2W- zBu|3C9+6vw*FEnYNu2;-h*bq}1^^Sj^Ljk1f8RPk{LoBb}8pv0d9D z|Dq0VA?QdXDb0eUA%+jz!||h$9|e=EFC)uE%s%&bq_;5TyEl=~#NChYB43DN#gCB< zMG%a%i~1=1G0iFJl<433c||!`RE?%#8g~Y~hU|$}~CqIxosJIeVm06efG*K0D*1vTK*9%23uhYMQ9%KYbTP*5_ zx)rspg8X{_J5iLK;Q0DN=zTZJj?6(>9)-C&xC-t+jGF%CDqx&L(4(kRq{dJZV9j4q zn+1nHPopTC8##yHo<&tB>tV#ps2+lY_3NmSR6WGJi6VVTCJXQ`YJlL7_%Vu-#f8HR z{uDKd)VseP)fS3vqL0}#rw?7cV37%`O(#2eQ0z_C0TI}y66Zpr%#_QdBK&$=M#2 z-WWZZ%mg2<0R{QdV+9kpZ=#P8J+l#;?{dQqI<|_&?h<#;J>8>8i9fN92r#Ff(YSR; zihZ!Zcl3BsY|}sblgU#DM#l-C+&whfQxxy~WWK8z6O&uFOMHC-QH2d%V$UOb)aL#m>Xn-8y+`oSdKf^`bUm2d6Z$JL&=*O>Hmjr$GA$(!Nt2VFQog&@5fx0u1g=p?2zua zdla)@y81ni*)CmgKaDvlT{pgniIcqY$?KS25>DIqF)q@z*QXd~>Hov5V)fE>cg5JB zrTa;CvF_6EzjBP-E#3EWiJc`~*Sp2~NdLd!5zBep^NQs>u2zY?D)E47v2Uf{ZLAr4 zS-Os^6Z=}aj;J4dSGsodi9IM?HHuh&38#5L>|p77Sruz1U2lcR@9z*6tCs$r9vN#T z{hmd~a=rW<8=EfOKdz5;m+oIrh%J-eyCW&KoYJR3i}Yi=TgTetJ}hq!w$3W1FI>)w z)wr7?P2Co;gYiXdZmU>grRxWX|Bcj>sMaZ#GAcE3bb)rAW9v6WX-AHWJ#XW2(E9)W zZ(OC`9Xht}`CXeXJ*IWNGnFk+hK4e?MX{c2=;F94aAHbqZz*WS&y5`;1)-x0W0y-o ztIvwq0g@X3SRI=wnK^tzY*Xp)iJM|?6T1gojV|nBmsoeHztNJ784~LeGwvcipBKu# zSkC7)dwc8@tSwBnKlUK4-mZqz2V&Qvh^+8%EafzCB(oac9EpvRFtjIPDZN3Car~sr zW6+t{X;fJrosCVBcm!XJ-Sg!bfIPaP)!F!Kv9rJYaj8vS4K~+hRp@WU?xJE``91cN zB*v9{lzIUR?#JrTsoBj(u}7#BM*bC>OquNAI#~9U2Q@bSMeJTGfq+-BF2v5+1lF@( zoc)%Mu^=gt_lu5O#koqBy=D_fbaD>r0x5QJo`?$HI>h-(f#XNlxM(8Hfy}K&oFgl& z8)wG~x(0Z_*eY?e%#5RJ#J!XL2(J@ItPV0hAilH2ctV4?71A}*FYcWb+Cl^4rW5;H z1DP>6&XtuuYloW$6nQpm=>D)a>@Q7RnMvO_wQ)5ieSe6EBi5vUzN1**4-YMligT3s zcZ-c{BWeCbLfm#T|2?%XJF%N>d)sr(^X>m^ReIc26aU#6aZM%uFLL6DEz>||dWQ?- z=EiB9k@8Q?|S2+*rrTs?{1tpPS(u)JqnXXy|3z9iR1teH%2 zhaLSP{o;ZU2v+?NcTDO!3>XyGLSlKoFm4^O3(=p|eHrTs`q6Qn72zRvhObT^lZr(@8zbcB|qdrN8H_ zj~h=ErxPo99PI$dAWk9i=8?sIM_e^xpcHWXcg6iCb=ijQjXNjlz0v--69j^QGa6bK z*7v8n>FoHWIKpZR`#fXhR`Z5CyKy=0F(G_E{TSC2zP=hqI!-`(m^Hi=M;S%%XCFU^ z6W<`;cu>Ix`u`q>X}nu+sO!#>?!|2(io+1KHq5^tcaSnb;|f89vI;VhvPW^0oIED+ zYD4|M;!+54gCRnpJOLBSobdO2ceOuk8z{E+%$k3 zZW3yWq=&B1-B#y=X^mUf^Ma+7bfgTP5)MNgdkApS#moAH!LAanp&BE`d_#ObAtAQmC$?B?yFhGx2W;x+xKf7 zq2~<<^DV{K`RlWr={kzn?{A@_fhU$6~LK|n(e3jXPI;O zbFHpOaG171w}4v3?`_nP@+@-><2UOtpDedU@Kzn=2we_SxJ^gNvn)GPjh$u=yLQt# zxa_rn!-@mux>@ZIy>7NXtRp2`=1RPL%v>)FC+V?z+9?a-WWX662!D8fj_#8w7j(A- zOvGg!<(n6-k*}}lFo^~C&L7L@ZRxS=7PRLrZ|Rl_QM~TZy|cqz>>*OC_~3HgWWk~K zAG-Nen4XVxq>Rhl7NZ~QHV6)x&**xX^;}2FxXd}6eWkfzB_9VO$k z9Id=Qq5z!3^tF1zKto1(XQd})xaDdXVXen(!(0uG?DWg2YFKTrzepbRg*xgt2@Y?Z z_2kAY%T-Uxy3F-(*j;~Ga9HW7Uq;nK1#dkm>oVssrKY5e6RfA~jpNqb z7@{X7T;>mFhUxL30W5OwDmd)zr6(P6%U^%7uYR0(ecu6k@&xMc@AZ^i%d%6< zAEfUtIMf=dC(mGZ7^WvBT;_VX^rP7fdBgSOiJ}=J^q6p&SCgF4dde4(oK3ee`iBCh z<2XHe>TLCRJ$>3LX_9`7;7~S2PubwWMe(1eCna3o`>Vby%U!FN*Es=mEw>X*%Idj# z%4C5Fur^p1>yHbpTMJ1c@iSJ;Vm*E_$_-v=IVqrh#%jGnzd~SDUqh;k5*DD+NSOif z;b+$J;@07sUK>Vu9Y3EvpgQ9!5vS$B^Ar%Ad?Ie{y@+kr=P0)ObnJfH1e^rUKfh$73=- zE?{0}yfyrd6*D+8g%Fv--#@hlv0^tN@ZJU zH!yy+5UuXe_!)$h2#os(ra}%Dm3rtD3sl5YDl4YPx1(r>*PX)UdS}*ZXlOf_I5)l? zq3!?*R6?vQts!DX{0rfDv8&@TLkIUk=e6--4g67^n6x-r&5x7dq z{|YAVi!UM){)*wl?hG?0+rqw*_*g;5^=LdP^^N2U4AUO>g7>H5w+gV5a~3#+ltURX zhjMF*LvT8nJ$EAfej`4ZTwQn$44VhilZxfnO4aqR~aRIa|NZ2Uc+_zr>y)z>vQU*+< zoJeqUNEnuoMd*h!e6AJL9FefGVo}$6mEq>-gxAytfSGe91LjPw=fL&Lwk=Gc%rf$7 zi-5IQ_vHzgk?5zeD7I&LLJ(8`9HwCH7bl#S&6m0)0n;dRKYO_>0n;e+V&#plL2!lld}GrNOPFJu+=B=p3v#K05kJZ zL1yOB>O@SQ%!Q~Pl30!MHU8&UO39NMCQnwuo0!A~6qooH)<*b7mw3CTMand%Q3jjl ziE7IzA=VBU)H2c9SytGjZf1>k{?4q?8a)#+nKIYt`+~%5Pbz)Phpdx^3hyickP|8c zCRE;xsf4Aei~f@m%LKdjQxf-4Mrv)2CADBqD-tnL^S^T`>y{+OQ#LzFfPjF*MIc+S zDiL!jbGj$iC1NgRUfi@f@hN4*%jve76Yd0(2{3Q22{EaDJP#ms0Kqm zCf=5PU~{h|Oq|S#1=uHTl3Oo$QaK3|C-b{I>m_00WL_-xNy5a*a#4|#TUjoCicT78 zi9DDBu5QFC*p-}As}jM{O={sVZt$Za39}}1j=hXYm^GOfJGM%~tjWCis(aF9A_01gjth$arLmI-b8u2Ng0y?GbYCp-IN1JDVJ>-CQ7!2l@pWH!a5I&l1$Cc zz8OiFEt!)YIy=c!nY+(T!feU>?z-Y6%$CfH1q+feTQV;eEla{|$-KC0a}s7t=Ea5E zk}z8`FRtH_gxQjLap}IKUkFM7v_=V0_CavwOj3?`fAFOwv8@y4UrEB`$eh)jYi42g z{hox$k@;P#r%9L`nHT?jk%Y;SdC~E85++CHMVpT#VVG3w0rMi)rt~nShoz*-_28jX zGG;^OOs3UM#%##ExZgk7hoE6LIWoDMoCCRnHu<_7Q`pmpWI}Hf5bIl^uJQr%S{yWRDe0o4kyW|7JSlonN&5GO#x?ah@5{2Rjo-nR|GNz*C8XEC^GG;#J#qWnC zW9DOC?E6#lNJj(~*v%0JYgjWSStVB~_J}1D2JnD@FGa9nvy(rO{C`IB zSFH8$NDojiNjA!k!6q$FrldYbIvlGStX+}pCYSRYsO_0E#^~U5@ln#c>WMi@` zPkRiQ_IQI*wq3xDoG6xYn!r=QmZ+shdooyQ7SYig%3LcCOkIH zq<-~%ifJa*cVG(UI_CUd4oO)sywv>JnpXYx(^KvDI36I;sxpOHS3Dah5!H3l5;8B(m zRzqGEZ}B?Cv>)5^T}mNAUI~%?GA-2w)bCSbpFwGS@eN5RU0!O%g>Ik92 zo)GO|?J+6eM z&KIT`8<%=O6kDgHjuXWX*{K^vaZlsam7+MPdFpggtk*vEwJ0jPn_sc5N9u2$vW`dp zoLXih7YB|>)!OnRyFVdSd>8z9VyX)zY?$;$+2VxHwqU~+rPh@b65X4g>LT3UW=<+) zuaF5)0eN#%4-nmeQ&PaO;?!ZXrC76tWHx}}y|#=<(9+c2g2?*isS|0nLkRV9MQS!> z!AeproLZeaOAr~jE_JF!ME0*wC2dsyY+>WCsbUVAecGHl*CICgkh+|z7RiAXu>QAH z(?;R;J5woJQa?-f+pbj7hP%%Qn!Tx$gr&~zPo;c9{u!%&N$NW}cwv7om9k&$GuE)9 zsaq}6^PeYDP2UHcDotHtk=2!FQV&ttz_9bFrjG==T}q{FocpYnJ(p7#QJQ0pQ0IPX zWj5%w6vzMWU6~F0yLU7A`Bti<$o!Cc(-h%L@1&A)GD~j(e9Lsvgq1ur1xEPl&(xM; zmgB&))GCy53!?V~r2k0de;E8O^#vhb0^*3h@tYr{%@U-h*`_H)@swlQ4$9mxm%f@? z8tFVn{_r#Rv}2Xz<~GeeO*FTkYNXYtn!IRKsy#scGzCFVQs1iu2k6%@?WO1t3{zr} zP?b)nrFCI9+u2rQ#um1XU|>kvTuWf;KxstULo2I$ustg6I|sb_C#MY{7!8n^1K~M_ z&y9e|S!oaW@Ub$C%Sjt2#*F^?Y1VQ`1zqE`S`;}Y)wAI7sV?l))aKRM#D-}DVDz_X zU4<3wTBnf?{yIH7?MK%7RhkF9=#aKL?91&4i118Q?sLULcy~CtAnisKxqrHATUxrP zM^$#GVS0Z)iny>RZH6cg+n2UM6cY}ltrt_i6^@yIyZ5;Hw_Q(~e;ZhuwpRT1j|=AC zuDoRaZKEsZ-+En3+bDi}>38#Q*&Xw5gnpLV*I5^PZj#~iA*=?^G;N{tk23YAtv24g`OLizS@>=6L3yW zUn7)!EJgg(9r~uFn^Yg3k$yvn?VFcQ$;87<&a@L^nx=bGPLM@}QBbLWdN<)wBYrSz zVA!DaPr{=nPEC&&8n`*btbyWLX0g)en8k9Kmp)5ae)D4UZ~HDa|F+h0^KWmgNIxr7 zuzy4P2+HUbGad0PVs+rjw)6~dt1WV}`bDMbUhKiJ3eN27g7Y<4@P%|cR#KYY|I7X3 zbE>qW{m~xmdSQhQtVON1m6`fPlrvj@DczGrpGoiZ<-k&=eGXaoetI<9IY#XO@n_Tj zA`I*PjWnmc0-jdeJHwsXob_(W;xDHY9OIvmZCUA*CSIVvl77@0_51dE`Wefl?Fy4` zrh5}QbN^(8X}xZzudjfFYTZj;PA3GY{^u1D#`BN#C3F~uFkNBjBdke?_3&}}MoY2U zJWXGOSYY!q-QPl|$YwpG+uE|?o&!`+>1{gY!+?LPp2IbRjQ8n(O2SIX5jSULEVf0m zPi!+VW#<;icgk?I!)r^Aj8N%1wR%PxIuBf}ov};$-7KGs8kO+6MV0Z0u#)>vHZiR5 zPPz*lmYZP@hNz5WcR>l3WoAr}_=OuXEHteA3cy!jhVCseDnDZyp_TeK>6_2Wsi?8<#=K&@2(! zGBM*!1)0X}$r+<9q49A_Mhc~$F7%>-3q={YeSoXv&ddzTDBKL?Jv)Omnau$%UG@Uq zqKq|^FNq`o$X=JRg|c!XJb?$~mL!>2nLzOwEi{C-B0it^pL4>Pju<>K3C8DJ$B z_r1tSbL7R%)iVQ}<(o~MGfTx!BfK+5dB}H9`DfyXPm)PtWKiZHU%6PhapoD>_u=I? znQvtZTiRrf@s$5Rt6yewH@RpxGBZrT=1j9$do}oe3X5o;Y z%B-=%uIn{fCdmULvzAg;`cd*+mY0yV#p<%${NyHPEhYrJdgGhaVc7$&SAy)MtRJj{ zHGMh{Xxr=icIuFb;E1sH9ow|ghK7fSwbyDoMrpNeBcs|xMnq}bw9|CdXd)vc+p)bZ zZg@_;G0Ty~UL8=S=wg;VJGQNw3%ih*g~`Fwvs|sLE<>w~EFU|oi89gRMnmn`p^PjS zcFUMW=%+AF`SDj-p6p>>)+-ughR^4+HIZL=!l*`B4J*)5ZqpylVDaB(Re}CrXI-m^ z+G*4*>y*V{2b*WLw6z4~Nwch~aHL(<5gVk$vzlM-oaMpd+h^e+&7M~7aIQ<%Nh^!r zkk&ox7iX)9aOQ_BJoIKF%pa6hj&Fo9KW2@ufY&O+vo=cikB-RdDg7>bYL-U&|93O8 z&P(@`W@TMT+D&2 z)&C9RvXZO{)KFluBv)T3bUB>0MagYGWb7@fyKqFeSZ>1tIud!^;-U!QQpi{(DSGd??1%?>sTx3Xq-4U2t_nZWV% zcB!A&yG}M9tuqdk4YE&2624YuAD6Br8d<_wp|XSp;n`~}kqj{CKR{sFPTwVG`&ueW zzAQjoTJ|dy7dZHmV@ogB2!cSBLcjvX59QUNn>51^BK5l6ZHAW*14~3?7;N99t+T z7@wUXiS^s`?B67D`_0aN=4PpQ@O*XlB1e;vR&D(coEdKI%6=mezFLy~OuC*to*jb3 zx17&DC7G-ALiTRyI_Xk2_J77f(v|Ej()I1t>oavn)0{4pe_&;_p*;&YOnEEFL`>Jimp<=HuV*sUE)YO(k}83F7`PRjvH}o&9!m9Am_A1V_Bb^O%~7y=$F&M5^c2pK4+gqqrsq@ z4HnQ?JUA!C5*piv$utK4ltb+JbEUriIp+Y8#+Fez$rVu%DZg06VDH$REyTe(O3;H9 zF3PcIE-o!SSih+`4cU#bR?dK>L}xa;Y>7O_3diT?P{%aVI{@F&3vCY1mgIQQUHBX3 z_PWdo)~?K%L5~UoCo*wHE(YyBoChwXk{R+}jY1Xly~&74yC34HY+r>7)R z$sajWiRzcoda%-VSsqa9S*#gl3K|?H(3IS@vp%}y9 z3NoR_I>Q7D2r-T~MsH|qIjbp&hLwU-X0 zFptivFAQ#Mu(3c*eIe>=3@tL3{ofeITEfM)nc*_A*_M>k7g!6!VZo)KwShQ&1_)(E zoz3DjDs?ccWNIhFWJ^?Xt+SzlMdpES2HXVC>-pIphBcOOi7YVKQ@aYNmnO`4qQRau z)p>ic8`e6^a^aWP9GZP^u=il^#|L|{6+am86aB#4>ab+2!658tJ;BhEPPz%;JAbsm zr#NXB_IirJofS?rxUu-o_5E4lWJ9S1q$EXf%yD!O5ed?#8CHofZavemoQ4NaW*UCB z$jbue8uki&}}D3y8`=yy0+qv!N?hIUJzkHp3{PoY~u{TmYd~T14a7ZUdehz@yT#zvJd9IBCE$7P($3oTi#ba=qcu?Tld$HSlqO z=jY5Fvcijo`IhLV{F1?n+Ur3s9bxJX!#M}87x@06;Wy$CSyIf`?9@S{J6wNk_)7qm zy*2!05#ah|hMGkVxpte!aZRq0>tHL>Y*j1w7wYW2Of&m|15EJEy=MtcRw|)X^UtkQk#mKdz}&NPz=RM@ zE@mT?Dg-1&tWL*VH&({fI(VFxyOm1b3o0CpKxFItd20&ec;JRY_NX#(QNc zp&D!gs1x8~=UhECFd>&znBOyZngv`^83NRW>%DS&ILMvgD!okgbi&|VI|rQCI8@p= z22PL6?O-q0gS3gcn?#jxnx4DEO1^u!D0iax!4Ji`4a5)DEY8Iplf3#&U7j0lfs3ZH z_@)LsXt^P`tzcSdyNPLq9l5J4QUZt8?aG}ixIWsOyHHg1;)A&}L^1uCS+2pQxrZ(A zY*hQ5T+BFoDR+;Jto8?GCSiWRo|`V3;Fw#v-HFYfW^|UCk?mkAAjcREQp4jr$2McHne2XZ*z$&ds2s)BRRkyZ*zNzA?J4=a~D~t zK?jC--fX?6l|AhHlsk{wRC9htS7Qwp=wKA*zNl@Cn5u?%w;tIWse6IU$biW6ED0wJ z`PGC1cO#~F{=!tRDfJ8QWa zzN#?(LhV_bbmGVm&Ka zop}9*);Y$0qE_F_HCj}w@lCbit<%8GX$`@^KCRxt+DZgP?BF$ zV~U98Ls}aj2@4NwYs4&!T#NnN8|T@{MW61*6rsgI1;!YQ>Ibs2VDO&GZXPqbv-m<| zZF%Gi{f!T0YHZ^m;{r<}feG0cJck%3TjZ7!6d=h9!Xf;AHZJ^csQohBIM8BhlKy<5 zWR&rp;CK2LBm6h~GR7G%TjU?y3c-VomEhoHV>^o~z-OovQ;mPw$swn7wsEj<>lTZQ zWx}nqmK!ne6Zd`LUx~Wzdd*liBzNh;HF?5%YHeO$%dGdWm#|`eKYM5to_Ab? z=wN+bXCc~(uUq8 zhvlVPB!Pqn&3?>lVJAy)Vszd)oT-;44K~iqyCddgmMzI^EUe_TDsQg~-Rt;jZXM|N zTV87`t6lQKbFCeDn}~b;rUuV+m-qV3IoVFEIhWqcb7OmV=Cz@*L`V;|{$5@%tk{*8 zO7wj*2;0#jzYd$eH*b(-Y!cYVGkIeD`OLmNl?^J->Turv{{Xc%3_OzOXrZ8-Uu}pv zp0~XMQv3U49`TzBlja0qlhQmlOQ`{>Zlc6$!uhUG zEBlYAMcv4&OB@YI)Brty0WqSOL`#Fm<#`bmQ7Y-CbWcM07UJfGzqv&QSqS9u}C z7-)J!2rFoOqbj?p{I(h#{ggMH*M_)$UTmgyeq~m;J5PKFH_0adrG>(Lew8f**yop` zvEaQ!ei=qDxZ;$5P`WN~$?rjIjXq1Xwl-4l+Q7#Hc6jE$K<&YXs`>pag$0B?EP)NE zpTA$?8q+ZUSLyoLC%=|t4QFNkHR<|Lm7i(p%b4LSJZ0vu*nC?!8Jb_uGd( zb;FSz-&Cy<+-#MPXF~M2?(PnyZSp%=%f}0hf1giDTEssJzByWQg(f#_V8Rdi zkBD`XAxavv8Jthu(8ZrO{FLtv@k8?WRb+Mis=G6fAM@AKS_jSt5YIq#B0Rt=znzUt zqw$1%>Ru^C=_Jqg&7PP~-M=jfBT%MJ$;U(;Tsi%x=Tm1RKjR%Q%KwJwoSYSu&dk3e z2yLH}Ure`_5YTyEes7}5Btm)Mxg`H9>W~=$(pmiYd{?mEkWXF-`HZ6dHUAF>mie-p z7kl$7*0P(rM%AJ9uKeb<+=OuAKt7(pB3Tob9L%3AyBnk(&)+KUx}D6&P00KQPtN9V z7I(Lt$CxVL{rO`4JWph&XW>?WIJHAa$+ZiEorC0GV6Qrvy8;!vbTD!3NfLV;qX zg%-;1%)PTq`}uyJ@apXI`;Wd}bY^eno;l}z&YU@;7e9J5#O#7+pj6&G9@4^{g9CSX zKIA6~g5-}Og;d5pZ-+FZeE;GeozHsGj^q2F$BlZpdT{h2m-yzW3=EBaOV!vSESjpZ zA~IS-C3x8++M&jC&7vJ@%xx3xP-BO7(GE4%l|?($cv~LrP~%2rv_p;h_R(KaHFoF` zeSuf*s)oIy`BsJ{y`w*;a0v!P*QRi_92~unbqok_ajrWO*^;Bzqwn?(?t>1rh-rzY z8KPNxl}g>s5S(I+W?gHA_XE+?>}U~M9TpRbCKX5Lsus1&&$N+$OxJBVDE8(jbL(59 zyL(ig7#xIb>Crpc+?IpnKzuSI`gb>u+WD;LRCa0@MBeYt5lYC5p2<##U^fuY$dArv zj36DdiO|5b=$d#*Nwl7a%fCE&o@;#ZBoUCL3t`D4qQ#7z&_CJy8_j;BqnC3UsT>!L z{*U<`G(NhVv5$JkZ)EJ1S~z1`^pI*q-S`ZOwz#aS$(}bt@aaX-vg#bopw-c4m-!TW z-S9z4?lFNlcvEy+chvOZ;4l=o5!~SB%xF5O8?`l>bzkp0K;Bi%L>r5B#`iyS|Q|%s-2{7;WHl$FD{Y|G&VYHVWMo z9ghF_K01KM0Z058Ep*v(LGar6!M*6~yv&y$M$0@oSt6e~Wd7l~L*}h7qPOr;<^K`= zinpEN9x)V$i#{{gEahpcQ?01nW z2C97+P0qpEM>x7!%wL|s5I1LIZ4pNP{w0aF>o;c0sgo{ z%$Fps)hVV1`FoSDG3%>A`gPx!!>scHRA0Su^MNr7T;Lpo(z85(ney0}hbd|4!Icf+>^`Ix*ikl&E-n(#!Tn`TK7RrP5!UlpTrDcy$lB!5F^{3nA#}9N9}`3 zD#Jsu>d%;`)p(}5c&Z1xpfR2_2GT*C72&Ra>V7=?3xm}%KKFfXbu~WsIzrus&$Vx& z-X-7!c5kLW$BTKlwYrS4Gb7p(A!rtn=!H~0S5U$CX46loz0g&e`Y_`v7ph3U8G(Hj zY5|-6+o8@K)ZH=MrN9g%UXXk$Qt0&&$-lYPR!kl+@#o)r@OY?J$7j;m)z)79WZl1Zc!)qgfq@@E~<8 zJKibyo5AX9jK+ffW7OYMXapKH+hin#CO%I6gpmzmHz_zMUOk2KvQe*|>k1@(N$OWF z@p9Urh7U$@=38P`vu$~#xLmcUJFxW#9D%-ge}>xXf-rp%5b#2`CaJ^lPnqi1Zm3tB zF$}-7slVbID85jrhN&YWEM8cohAqWhc3_$MCU35|%SiPJwxF{enl?#21g%YuZHs@L zpzg~k2L>vSJ$c4wR*)>m;>=1X<8gD<&FIsLMd}k&oV3Mi*a^&)l`K_nqS@!m)Hi6^ z?^ml2(5GA1s$r^(D{EM zkmW=kdR?u8``3s$?7X8EP;)r(lX?(aL_p?U_2=6*&<{<;1V*W*(e1AfI0y z!irw0S5gV@{pGNW9UEhxQvtSm#yYIL$U9a?CA?F^`E*S{YzQs;RY+_{wsmVNY*eD! z4>d0zEWvl{#VTBqn2^FpB4Qiz65~G_#x{p9$P@KQTE>1(l_qHI%${u%>#+3c?PB43 zFI?HdqFCzDc1mL}QR(lucS^shW9;ebe9_6howT%lo!MsnoMeCM?D{HmqI)}rEzGGoV3j*sWWdeW!Y z>;!8Lw18o;quFM^xiBgo^`9Jj5bbF1(+9;&iCxGR6TW8Z2}4oTomjYBZ3kHTs#a}7 z@ycnjV_4&E2dPN3Yep>N_9nuQ7Q?q(E(9Xse4ikMKZ{+)E}8-VwLJC#n|W~981S@J zu_bOiFX3xr$GgHyuXVA^CyoIZ1CH4kn?rfIusL>=E4;kf63cuvj^kzQ_EyLXJZ-1G!)oPU&n5zxa5Bq%Q}6+LA>rlY%`ba z#eO*!POxyc`{ruwSQm7(s@e5eR#rx2X^i-*o3VDviu!w2_ksbI3|2NcNQFPf&ZBHx zx#yatRQoxW`LI04OV-2Kxs;b$k7FmgpdH-nN$j^SdH?;-Vs}tp#=MASy?%xhYtL`7 zj3aQ`f;zl%;&S&-*Ki4b6U)5UiWBCux3O^d1=oT)xM^I{QJT9Z!X?{n?WGw@c{%K( z8Rv?%p1~%8NEkGsYEOM%C2ZaETYs za7_Z`CAY3-lqu;0*z9gYeW&nqC4FRl_$J-|eh{D=;|*Gkdt!@MrbZG;~Rky55@ARFNScYo@va zRl4j5%FDpPt~uwDAsXgAtekT;t2OWudrn85ajrFdiB_X<373EbCoh{5 zUE}3Ol1AndFT0EyGsUHi#kGzi)~aE>HJcwk`DSQlQeHM@YNoN-E{4#W`4TqHR95F` zMo~68TSAj?v6_VQkm~ zM@`h2d54APOx3{rHfa~wGF=1Hf?T%A49zl{y);v^l4hsR*8D+Vn?Fxe+mkPQ>#@6_gz(_=x>|Fj5s>!A`ZJnB zcU~QL&ueN>CAnSDMA59|iY9_)jW;wu&}`ft%|)8+dJm9dH}%%&$pcLd)I%Lm2iN;W zbHRrfHuaH1Sn2N?)~z_au!KJD|A)q(DkkHt<~FrUy&&!)ecH=A4%Txx8xE)z7hjFf zmIlXd@#V9fBI2wr$$4&HYy%V}jPpT4yD$U~Y#g`Vn-dlXwvH=zp;@*@gfs@yQ>jk& zOXGfIB^a2b6QV)BH-c~rRa`M^Jm#dr-%Q@MLtKt8uUYSp;;1)z{!!dzwxtk=@&?7} zY12P4#6fUVbR6@&u|Tj7?x=}VQ+rsJ5O<8)Ls4Q}Zwl-=W86d9T)wi#ou&oWq{cBf z0jReVI+qpai%YWNKB6LNvK=D1<;G>PcGK@jzs`??o1Hl0URx9g=i|9-K}np$ZOewm z8K{V>M#KeE3{H)WgXK=H>}TWSnz&^BPiDo{#Gg!!gF_y~o8gifabB!~5g&$u;87~m zF%)-_^0|0kTqzZ#)u+yX6 zg384x(oY+V7Btk#@YL$sdW>>#q%e?zJKnf{w?&YaI;^l@?G9GAN*KglYidhfVG99) zI%rUB*npQ@+rc1i5uyE=l`UaoZBGo44Q6Bu1A*%lC{qguPy<_P{aEdi3s4@*LC)&W z287_3?X>-=%g{=-Ofnqn+Kyg)^V!!+Tf-F& z5uu9v_R(&pO``e$?Oy8HE_|Yevsql5T0BU*f@al2w6KYUd+HVAe7aAqbp$ixG}=?N zfI+K0OS9eLov%GhaK5%W(fL|#vh%e8M(qHXpgK5O>y3j_wIRHnU{$8}8Kb%J5gkWx zS+;fsbvJQ&PLvuKXyJewhsV=Gr;N*roHE9hIAv@&%qioWGHtXgGGbr}R`xl6p&ajM z28}0Zce*NQ7*3j`twseco~ni2L!5NoraJ}opWzhg(o8LLB*Ha30xi1be*^lO#ab`C zWUlrF?c&xh)K+uJwwwEbNH9zl)u@ZH;5SkLDmvftHyO{>xU zsO?tG1+*&DZU*D}PqZ(2oN&wMS~X?6;x}zgR~jmi_CWDzaMBZ$;YP#liGMoukn>jC zhSs#nP4|*D8sVB!hrk`s!#fF~mckd*ccRc>j2v)}`JI2-HWlUi*gO-4k_BC@}k{=KE$)kA*I z(n9dJGj%^vs^{kDmbhfMKy@1((=K14J0_^C4?S(^G95%5oPQX(QrDhh{N*~GBXnKA zLH8Z&!5V0etuX9c?CXPG6bJV~Blqi8v+bOWLDRsctgcS(H#>w*8RM zFCLaJ)Bzzl?3J#bzhD(P1|5b@zS0GwiXU|J=7Bu#__i*zj(!-bfz8DPe!SN|K7-Y> z1IxYerqK8pAD+=rR4p_<c%lcA@|Zt>H-9cpF8zrzoCzRLv1g%7QZo^%U_J zyeZ4ryG#5T#6a!1+;Y=5o{cBjfAK!E0x})Or zU2q`^1YLO~YB4eXprDeR`jw%`N%1=vLX@Z78`i{iC&#aLM@Iz(eUR_;c$TX$2pRN6 zHk@@iwLQEpu3r)F@AL1unU(liJ=F24y%rkOGr+$~R)AjNGIAB%$bb$cl#jE3o zxI_AEUHraCNH?91ZxrML`T1<`_C>bA37+WBd-3$5gHbo)Gd)1sC*Q{-S4l?T#&_cn zf|TfopIoDcfx$t9Q2&SVEC-T63GXD0z+)f9OF>Ay=V^Q$FPEfT=#$`s<6p*?`v7y~ zW|AF`6H?qDuW?Tp<|<`>oa~VRx0GTu$~$3!E7UOX`N|6LTWf0iYDD{zT|RhdvqwEKN~7g-T@OgQ5jD=RxEXb3BRbxm08l1#n2C#-di71T3f z0bxbbJ7JAWtc>ZC(8$dt3IqEk*a#~J2PAyv5+UD#2@hCN!QfNp6E1vXT;w8Fov_S< zRSsc7LQT}UqrUB`ow@{OS%AuC#03%OhUUdXtB#T<)WKoN2~XTvIXh@d2*MTS1TiaD zh)_U4!4n1S${U8ySQCr@I2NTPwD)A?3bf{hA7mvcz)^DIVnu;#4#NviwkLcK=;5r= zgl|Z<-@Pp1FiAbj6Iv2~EF7C~nf$IkK4CEtVC}>NRLvCuP{q~+Z#3e&D{#g2tb}ZD zhvw|_9hxg&kZ^)oa|EMzRUoLs2Q4o1^upgSP8doA9rzh9XrmRppg*om7~)FD!qw)3 z4{qde}1Oq34Ix1jmE>zCd_ceE694$VHkriCA24AYswYY z&?OoHX&;n$3mVe=s|gE<-%#9S4PAI@7^q$K2a(%9PUuIP%(xc`l>~zNFB8s_Q0DO) z=FsJD{Gwm3IzpHBUi$iMn#$(`mOyX)2@GU%ubPOI z9raSI5X0vV*z}Ny62^H=z|m5DAaN($?T#v zMo41N=Gw5TH+>*{(&$Z4?+|?RBYlK3SIW&4c zyRp-*AvVdG0D4k>@?r?cX)^0nT?%){=t z`i&HaBDciZtUT; zaJ+?k?Vc{NK5UjJo~LF(Vn7W(D<72zo29s?Uye!a?ZsysPfi?7pYEEP*xQqT8aT`O zbordbP4uaGfs?`?ixP`{__AYGI?L8xlh}vS&DoTwrA%Jknz)Oyz8nU$l*#nniCby5 z&ECX?{yecOCljX(VAHe#B~^dui`{D{Ny2yy^=p$fn^{8~v0=ib&J^F%iX?|xma3Ba zQ8C|iNvc87soN{*S1NH--y{drJNqSVp#_QtCpn<@i%Hr*pPte>pC%?GRnn)PMkj>@ z=A@DIX`6Is*+WB(=$8FvO*G(Ok`FrgZDt5=w=HRFH6HZe_9dNW1f3^~fvh=<=kf4&PSEFGOlknT zN{LaQx|6hn8dSx-Bt%uAe4KQPK5g-9QYZS<{znpQV&h)x|Jq5c;a^FcX~VkXlYD@J zvn@Eeh#}M@JqO2n17w=*R|j9KmwbeRvAt>XBv-&_fWQL%@a-1K4QXo&6(>8)@MlSK zCFOiZr{olB4b^%icca!2|8eq23d5s8$wHcKt4Rh#x{lNZV-GFKa^PInC6~|wWJk>4l6@)Ny{XQpzojSZDAI=Pn8^8NZ!aY_5iEuhJl!gTK%14$+akdzF#GmQnjG3lWQ>AY*%MIc^Ngz>kHxXk|v($ z;Im%MQ0nz$mJ9Z|!1=EWraBP7CHt)EeIuD=yn)oD|TFI>tzJ z?rw4^gEk2j419!np}>HCLFo8{Aly&sXmA z`3?zK}%mJm$}B*lfZy#_=~s6=P6%n+ziWI z$E&V~p^_z*bch#^-hAOx7Z39_H1e5qx?dPl`58jcpkhNEd^^O@$`z60(N|r){PC%p zh6vtt@vC}}xm_$%rNHnr65cKt#u#iVgY90t1;$G-6ICFI+s#@Jn@`v7+&Y`+j^j zcebHdV@4iHyX}Dv#{C$HvvwO6ROh&jIBKZHGP&l^JWmh-K_8U0YN!|fy3@x9lE-PGW=x*O-zbOH44#B-k(Jm)_Ek&)N8C8}G`=vtqY)W+zI(&O!Bq_1ye z*^mSZG~+1|#`cVTk{QJ}Vy!qGS2Q-R@c=~Hw=jOqhHN?l8V&hw=zL3~iqQoAPUdVI z<6}2q>VVL=$91MUi;a_5rvE@O>6J6`Q}C(w#?t!04ooYC;rKY?YnH%^QVT^-Yyn=_ zPj9q)3ZCOJMq?9SNY`c>^Zg)=EHR$@?98;mu!0`=el6OB8`Z;z?Q+tncb zvC?QG&ov8-GXW|5^CDwC@^|m0#zOLZ_zL4|^1O7laXR_!yTLex{GPkX7*5J<-D<4w z1?jn6#_81|O+I3L>qF8njcrIe?OWqiQoi0r<8@O0k1Iw!p%Zu07)}1Z{wL$z(0{KQ z3@D6>;Gqn~adl1e8GX@Iyt$zXHb_0k=4Pfj1d%_4rU)WQcn8yC^1NDCQ)`mSdzvtj z;FsQ}^Q7Ft!6ptlQLKqW?r5BeL+*CGX#y#qo^0|b<%>w`M;l-WqM5b-}R}fUekY%EFx}%c!EeY;h1Tz;3#fz+*E@lPb8!ItRF=A0n3;Ew6ozt=tn zS{GOxFT96vyL+Y=*Ivvx{asF_R!CWQneP;N`&Y;DSLFnZH^XC6M`Vlz(keMk)_=m(C!y(Al-l)SroG_cJ zqg_FfVOal-xju`-`Y*I`;AQjKU=9NOsT|C%wkY;Tn1Bwk&f41_q9^EdBQkV2~u3Wy}Qcjm7sTS-v54e?HZ+{@>S)I2w`DEw34^ zbu2zV!*YNyFk`lbWmg-=z~ecVjm+pr&$H|x3{+caS;>lkWs&6xGXuU$Ek_9h=RRXc zpzR7v6w4?a;7j>ifH!c15ZEf80yW!+iqLDp;_X+_bjmAeHQ-op=B1p zgvF07IX;js|K0L6DQADh(`)*ts36 z#$5o_Ky)?oMkuaZ-+CB0<~Kt9P~QrDUkz&=9NE~)wt2%zxK1Ff zO*ju!Sv7?7)J|5W4dfi>Q8%qVII^epcz{E{e?(hL8I5)zBIFQ|tB<0ZS-o(S#@Y!8 z<3y{KQ;I0n3gh!x_~$e$r|fwdR!-RonbrUz+R!{}T_W0qBEEcli5152vvBw@s}E6n z!_ihR^7j@Ktnl6JS@^e!*0JQhVHN!EzB8@!tHJNP3;6f(BI|xqu5hunObqF-=dGL( zo&3f+pFn56WZl7V7L@omPS!f8-3zNXzi|H5ZR;c_h(n)RTQD{fo-hW&$ppFzj}#6% zlUE7{T|J)^4!YCTQaI?Q`KHt+5UdJH;h;NGlP_OcJB5QTrcMe6oxVW|2c5ZT3J0C2 zc}f|1Z&O?T_b_1!OzF(R!R`6?f9R0HLASh93I|<7TM7r=?>Q-x2y~+gQ;xd=oew@& zo?-wGzXZUCeS6U;6-V-iihsrY92bYmWNKaK83To^sPK} z<1k-dyPJou)?OaEsKY#T&A#BF`t?K#XLTiK`QN?Ir+5-52V6|yT+8jtDT4@<;yXM& z&mVXwkN%i4j#y#8@Kg@UsJf}e1j_l5sR_(bMlQ32L+U}n27dV<(3rZ6p*MaPOiy2!>Vy99DE3EDrc{rIusGu#0PaugTW?@JsD=pF;GcmG53GeK7|2^rG3)XD0y{i8$QULo}N0m8i0E{ zFZF~A)MVIPklKc&*KqJ7!~Kg=FS`LNO-oZ*2D9%7%@~%-w9NdD!pZW~y@Zvqqf%KW z=H3zdd35Sj*H96UPd!Okc|9?eB@lndifM9cwri|RotAoqu#!3>m1QgTJ667)nOfa7 zR?wW(J%p7Zb5qy2WVSo!xvHSQ7N$-ltV~#(%Cf)r9V$1Lq%v)Bd`F?p^3-1mD-Bnr z?qWm*gKHSY;+WoXv1onj8N$WTO-$X-J3`-XPW_xEB6m=zg*G1pXCMCBHw5?Hm6}~0 znBqn-UmZ^U$QApmg@Lf7wO|9j`!uzE6r_>CX}@|w8XBGkgBf^UC+!SLx7ADYAJ$p#n zCFl)sWk+y?8Z<(2PfzT7=rF}dkr1AcUnPY)eVGcrT*WJM}W>`SlK!beZ0sXZJ}v^|qHmKln7 zG-J-E!8mgR-g}XU;`eK5^U3d-cX+L){*ZQqh|>Ef{&)TRX+2qu8YMTn;fn$q!SLDZ zS(=wG6$NQtr@=?sm!{UipS(%?on;n@_X1ApKfg_zO@t`-O6N>|uW$OfFh(ayn1<+> zm|~BH>1H1X{`*>{FJZ=?qsf_~ciZ&ggw=6Up4G#u^o{=io>dG8m})tA3r|k}i;*`g z-e^jn16GE6rlubwny;Roeww5gGSUx_v@$b&HlTo86{d6T{V#huj8Qk>4aMm&M%{pI zrRlqBLfT?xI@cHkv(x+6hTos8Pv`te-Hqv~MB*{q)7?orVGmCyeqTE0cLMjPpCEKD zA4qTE4XOJV{O>PMq}Lo=eoAFKhK2pBqO@Ml3vc-QF1hY-W%tKy#7p&!cU*2uk{B$7YZ`C?qjHX28Ul= z&kPQ~8(tZm2`=?(WVjLk8Wo%Y1IP{dMM#E%$ls=JhCk6y$HXRIN=JvwIGAaw6^%P3@- zPULVLv@x|VN{r2L+%EWWMk6Pf1EMo*jMk|}gfIrelLXfpt5B05Vp_eA4fHN|?+)_npc^v}0Pv z9a8_iIT^?O1e^HLYWn%6tl*&WVU!2!|hn=&fc`0t5;OigZs+s-W+ds(_lV5UD-?#hsRqDkFagyGSj zXBgdhzJ5E9F_ew3A^3-b85>wSBw)vcDpqC$V)>Db(;gfnIQT@ySw`7<;@GnpV;DK< zi3gs~_|%tY;;(BNVwRihK%yILDE36>Du-4_2geSjm%-f|HWbbQaW=DY; zBJknqLtC@NZ%#5ebMDYzeECLZTRzmz;>n%F5D@dhu$g*k0B@a9cxYrbK0D~(P}urI ztOUzX4sA=b1?Pv3=K;Yrz8!kflP~bo<)I^Jw&>>2q1Bo7H({tJPW*Z3PgFqNZ$qE6 zYY~VcAm)wFyd3(uKhNnx@65VXz!QO)n`on)P%qOvh%d0DO{POYr7-gvtG_@a`d;zN|)rQ*yG$?bbgnFurGwpaAiEZtHawGMXO7`yW^25oJk#An zuo3Sbo$28Q>He{qr%5_#LgqzpNR1VlV)FMnvoj5Dp&LE^=YOVD%e7d|*_np4tl8KOaz9uu0$^Vd-@2|_uCk!NR%$&-KK>4Oj zxIShhTwRu#$4Ucj%Tx=%avp8Zd_id4*_FxEB@&su_hd3%?ZcrtZeQjh0!W_&nJhQ& zax{h=%=Bf}NZlh`n?gSw%Us5aX8kWRS&qnH;9f(}-~DAK%hWq3{Hw1r`!f0KlbOB# zwgIETcbPubffa7#+4*MXW5zZ{X_5^X=*JFOu>1B-W(XSledbD(*tMVrhTI>-b&dEr zGrJn3Po8HstpRB*L6)Tjq-8C$u9N5S(yYOrkZw?AX^D&T?wnPNxW34)Sv5&2@1B*$ zH1;@|*#!++kQsm@`edCBb4dJ`K1;}GLOeMHqG_`1aGa>mRyes{Ysh9ghzefJL9=7FAGVmY`vd^18}oS9 z)x|vPQ_FeQZ;r{{!oWH{G%5R#lUFo7yDtO6IA~_}WTN;*^LgfaF5#IQwvuP=%)0E0 zjE2C4SCOc}w(M^OSNX}EPTR9rGjvH1b~c!`xuqxWxFdTHOWWA;S#B8ah_kf@>!}Q4a>V(d}tB>*B75v+uxxgf*o>Sb99WNoxi~2pt4;`k+V8 zvRO{|a|9|fYzp+t%WS$kKJ3@*{XAdj?(f;-S=k~~F;Gonnf7$@wd0&^cQ9y)bLXFi z*cQS;6hI91t7#kI3TJc9*?iEzFn2GUP|Nl?i!nJ_d`D_+xa}EBD{-hX5G^_4?X$Ci zZ4e5pHesz zYn#pBU^rt%M4L`Q5eOPYOfC`4`!qMC!<5DB7q2;B9L$fTgo!pa98n@FuC&@%uH14E z)Z$Yqwi1?g20{UYz+Y2a%geIOa>3TLcwM&bo+~D%#mZb;F6Cx#zHNp}+&nF?9cG1v z*nt+umDqMtZX(NUi(KNyFx)0}jhptPY||+>SH{>_zC7{HWa^HyeZ%U|d2D7)1PZ(X z+o#x8xP;B2sWzs|Z8-xLR@fR)H*TEeA|vZ(+itsNz+z;}p|EV9XJeTpd8eeu^KE{v zDQU?f8#&QPyv)EQE*kKRrMA_sadTt2?K8^F%vCm)*@Ac2TwHBC?3$)Jud~4yS~+Y^ zY;aLi?wf2!UE^lx7F#9dCS<#fWt-SLY@&DAma=LJcimS?gQs1!EpR0a z?0}()ldy4zL_(A9*-p@q#`Lr8GM`;F;GwNL|M$e-YGcG@;M{i!@VMa}|aB{@18**$6Re0rc`PKY00 z#hpGmpV0znP)^GL{^{3AIqpDwfn7MAkOp3pPZnU0&%VvMP?siT$Y6x%c z=Jaxy^G`X)>C=`Ea@;8Zou4{^t@Ydqtl&kCfVzN?w+>);+{|_0y4fw)f$MOOTnDat zuiWVr!8bK>9s0Tukn3o)D}r*DQL~H-$@QaU3+m(sQnV{0a`)4$rBUuTl*hg;bN`@a zW5l^fs1VKNxv*f#=_{s7u8F>OqDQWrWk;PuUrKb&m|Gj!(p$mzI~RrxMt^B@PdXav zHC^r@o+q@?kjt`J!C4K4YO<*$gRHq%DJ&gRa}%jWuglC`>QYO>=kju|I2-1H;@sM< zIT;|=01qq6{fn|ad1NlR&VjVPS>tnMR9Tm&<~lt0j_J8@YMm=!os%0zvs32hmb)Yu zO7@1!JC@k4)!`*D*)Dp=;+%jyMR(T0`#V~L?&N)pV~6BrQ1|n-I`2O9nqO-2Zo)YW z;)(WU=T*=qsV~UeNDI`n=gp_an7=N zQ=MhS)176nRyfNpnwfW$(#@UcEGt^zEPG|4v+Tl8^Y+oQX)By%o3C<~J-^yncGlXw z%d{UX+nVR=vT?QH?W$vEeGqEZSs#lh@5>aUgF#)zzS5c@1cG)Tz7~E{n#Q-Yu*-pErl)E3^M>@EA;Q z2erDIKRK-~@P6K7YIT8vd^uE?wt=br$6P`*5WDVv}i zwFrDbk^hvz5o3VrI8zVbG2g&nbhfZdeylf$K*o-%ynE;S0=zy$@<(_%w}ap#}kx)szw!twduD5^A{ zWfDqIc{2h{82$j!5mb?{Owwc%kr5H%{a&$XJz3`MSkbMU8m(cD!;J@ zU@aV%&vJN@W5+=<0>bkAhb;bukikHv)E`*krYI5@=OYGdM-GNQ;&*>kEYDwALvSA} zw&sTiLOS?xezGs5TffSOqapWk>Dl~DZ%FT7;D2wul;6_}e*bZonQ{3O)OzkuaS+rV*u92HQonZ*mk%lBCbmHZ7RI64-FWM|3G@KyG+3;LlnY=mXJD4;zQ!uucU` zAI~EcF;E=r$20kTzk-3hVsQ6C1!XjQE~dbPW`Bq)(9yDkECnk(`PaNM3U&$j?Af6O z5Y!L|ao2q3(`tnUDe&=G@^s{|f)?R?cJG`5xcH8HT7e4S<0B*sH-*eV1?8x8Okp7E zS6NUGZ9dql2UgE7SW0X2UQ!TG*~wd8(352joJTV8NeBwBZ`I>Z*B2b|=8-JiUeKJc z2W{G2z_M2Eq>WGPDOggCm#_F}0eq~76Sc#sf)f;r(DMcBX@T=s3cjFNthrY3jSpXT z>JJ4lDBxbxJuHw@V3$5G=uC+{d0B9cgrYaBZH4<;8hrj&Q>p!paquHQ2e=f;b9gJ7LY}W0TnGn_H{_(oq9#sfY63`u8IETDHc_Lpf zaWY@7#?-^` zV-tC-(4WZA_EcdKG%-BwOrebYKKf1JQ}TP~rNXT0kT$u)%lPsxFXO5o3*j#J&A9jp z|GfV*{`sHJ3x|^TQ(y5IiT*776X@({V^dxiEIHl#3i-Kg{&aDe92>qcW|1nczI%QE=nF89F<2NAdWQ zJq$U%nDHxvmkzpXk0b=5P*P}d7>Ww$>xJOk8R6JXZ$Hjr?*EM-+@kM~<|W#LkTtj< z5uG#HSw4;a|5C2ajq&gjv;8uBHfLE-5So-~XBpxBFQg;zn>71dmJ!;25FFIr5KeAO z_QZ>`?Mx?({}+Nf+%wny#uw~~xL!1|%nmc!>+E&#=;3w=eB=c%!C#EAWB6DN$xfeS ze+AzJBH4Mf?f1j@?5wr+bXvfFvpvF_f7%J#;nroYY>nOaPic1F9{YNlE#7B`t({zf z9f$45;A2FD?&Q<<+bluUe+bAK;yb&kdC@)%ee<2E4|;gfzK_Aqxp6797N%3Wgg5g2 z1>Etf-6#-ziWgtA5B5UFvdk=$c*n)oE4*ue!61;~xjh!c_ZDumG*a?1x$xZ|CH~}S zl|Db%L)-6S-zN(+$MRcbiyqk@!h!GWSwX1anSJlS7Y+lh_AFE8@ZMCc{oTG1&J2_4 zYyV-N^Y5!i9GQ$i?OWig10aLjytOamDdJm#A`cda03@@?p)V=k|Ty|vZqF#Y~_F~5(xbvKQx~y~2{U&^Np}D9L zoT4TIo=YqGi@tUcr{L@gf0z`px+w*nq(m$h%yGDIy)N7VV>1pX)`fX@OpMi`K%SXdt%p zQBfAlmI+Yv-CLA{Gc+*qu8}rp{o~s5O~wvo1W;cNAc5t-!^aqui~C8 zO%vWTa(8Q1Rxh6N@9RbIegaC4EN;U4m?6H!+dR6gNukTF;uG|>+V`Bu-??90>B}QD>4o#D z`uE~5sg}eZB@T=|y-FO)-R@oTlw!OyxMY|oPoYQc5{Ds#)Nz(QT(`ubyYl)aGRniT z#wGCebxx!8Tb20Gr*d)0Tb3@5L-t9xk|1P1rj}r@9wiE91raj%YR{6cp1f{^AD3*V z0zMsB0*n6~(+ky3S%+$zvewl)Wxb>;X+{MMG?Wz3W>aY@vD0P~k?N%IOPZ6yqKuNA z6by5ovw*a~S>R5gvx+4}CDcn}b6LqJjKDejjUbdbwPcxK8Wv0|iDG~c51C%_ydk{* z(bkfe0!X`TFS%A7(s~CH-0uygzmngdZ7qFCelOfvTGtEGUHeLZ7Le!rOXYP07x)>J2A4|@ z|9hEGkb7BE)c#6oq2L1Ea-}rFQ}7KE-Dnqq26h*C;^#L@JF?ts4pf^}uDa=m_N(Ul zk6(Jf6feC$>`{Q=6i@qL`0zmd`Kw`#7-(al{rgxXom>`$!Y7y2Mc1~?uZPOF&ljQH z+vYby4=0w@M5Wv2cSh?bm(@pCx6Y41-6xgx|95ZX?b;BAu1_v|h(_&#uLd2TRu+s7 ztsP$1y;sCpERVI#N5LlF8&MnOwqt` z)gu*FlS*PWiiL8sRVq|S4RVFq0Dvmwa*%&0+X zc_?l-bmApJ)O)J7pg(>a{>gi*zTIkzu!Te=YAY-&YaP{42G%PzD2!&2QYi(l4HC0h zE&`*rT7(9Zgy(e7{fP-45oU!%A(WU6MkpyWNsUIO#9&Zb#UiU&Y%rnQkH^-=BPOEN zg8C|nP;Qc2j7E`3Dpm;%Dx<|DmRpo2qeLl2g4?re;t^S6*9aotS9?&ka#57B>WYPE z>7}v4Ig`pGBdv0kNG1ZL4N|F8X#rft3Y8R?7K?=@xdPpmjtj+6A(KEDDba;lAv0Tz zQn6WLG%7?Qk;EWWDP>lx0XH}~=YSwmsgg;AoX3zGq)M^OD6<%3V5};Y%qmg}(TwnM zwRg@KyGjsQb;VLN_|jNWWYu-bi5zk?w_17QHnO&|jPC97^bI*3nM_KhRico}%nGAa zXcZbQBB4lT3nxHk4<3L{#m%(BRD|3@6PkpCl+ZSE(PBv?16<-$B}>0RwyX z>Yt>n+CmNgQMzi#EDiOo(d@wTnvw4j3UzB$*#sT@tkNsO0FBIQkqO0C8MJ1jL1_`m zh$1X9lUO9dgC%33#ev5F(-evgP*y6H$y5fV8QP=~nwDH^eb2 zl~tS3mV`N?NcnrJ73k-P(CdcfFg<6H3&AGkN{LJb9iU8Q0%vHJD`i5f*@9;ros$DH zD1mF4SOi^zTxvGS!GJ+Aa)k_7w2F{u6N=(9{Mw04P}d9;j67SHH)|smOa9i_Bqk6DJemSr zmDFIisDyHZOlVRVRC1w2VIXcU6yMrBJHexVmHj_Tjv8ANC(kXPC@8N|JtCR-pG`;6~#nwW=?*%B>0rH>4t|1(aa4O3g}(3EaL!CX(~L0VjNf z*=n^|L{^JPp^%!TB9%lUGeH0#QkhK<4)Og~g|2+EAi`iU7!76-L|aBB^ul18A|b?G za_~YXsS4%vb2d1GvC8UA=t_rj=;7W|wV_(Mu(@0=qdlBRDv_9^CbJZRGpX6C0)tdq zWg>;lWPxxH1@|?(ms_II`GIYo?NA#Ww(fNb3o1iBR%l%M#ukw14 zCJ2aRBBe@dluD!!aTzRTrC6!3io{?73KiNi4~622Nn_(ZA`Nn-7`!0_LBOP3sWd>8 z2BDu=EEQQ)a;vkiUL&Y)GD#ICp~WCkNi8Os5g@XNq0^Qs#Ab^U9SWI4dbpK>sQ1(k zO?mWra2{3GD?~xoISN$xNqM8zlE3$GDyYq9g1|>EgNR81Qppu2mB_3xiAd0Zg8D-g z1a_zQs9$A>OuR%GZFKKZl<=R;sA?mX{70iRi>ri9;^^g~-Xj<|@wiDXBF!cU@`Yxl z$qZVsnw1d$gFYa-R;VnXHNM$(tss2@s1G7Ep;>4aNo5w$uSf{Jf&{F_b7+d#W~}j}ptHBcV^JvRde@ zh3H;lc|fGh0^=zNgcTAoL|8^8cywrOU~|w{D9s|26A1kbEl zg6LSTP=IF;ipA*ApL3vVSUeHB1_?N0h&atgg8>>c#FHwENdbY76@qw?6+>7DP3}E4 zn@J2NjI6p+A-cU3dbe9CcU3G6C_A|Z?gU@RwsXxXfi znN(tl2}WKj1r{tXw|PXqXKcvFReV^ftXfU~5mvs(JZ1lEo>k)}RgnhwVj!v+S+!6y zBuK1mMo7yPB)U+7pN1~ZBvcu#61hPF&DtzCn++1ao9D(o^GyzUa&&Q#?-OcC z+@zM^MxZlSz+hZ%6-wo1h;Zd*gIJ}2o&tbSkg<%TTY#t|qK?!&QF*HZ$ z?92u;%!xqAB^SetmjXTQJ1v}_Jc)o9OlS~;1kfv5AqbU$fL7?lVOr5D7xBg#RdvM@ zCEwXqU8x0;xgd0UeR;D;z!&Cnpp{sm3nM+OTt?)9Sss{|5{Y?tc(C~#2*9KUD5R2z z3G`y%N(e)46EG|_!oc)zgVIQg0cHe^5-ZHEh@{{(R1h?SWD1o*CXq;JxBcFlpSG+N zMS}OKvQ}% zOcfenKxGud5FTbxU~n!m!#K{ULNF5(if`VZbXgEtbCN_trdk%p_rJF?e*L zqrF*0Qjr}R6vEcAT=o(~V8O%(8wacw0=n!QpvDjp^h>b9HCCY%)_<_3S(b z>7i?Tk7E9_v#Q!M75{9O;;ON-l7=P~POAk|QdP-=V4?v!d-K-{w>fuF10Pw4d)$X* zf)C3CAC?LJ%R<(NWrC^~C_XF`d{`#mMJM2|g?nd{`#< zZ>v}zmI*#A6MR@E_}_M8epn`e{azoI3I4bBi4V&JAC?I|EE9ZKCit*Sz%O9^|GZ4l z0WCgN=7Tq#AJNAP{dz6AKC+FN5R98%8WF{Cc8HvIs#R&3=7W+q-SkDx_H6SXzv=b} z_%{;%jl!F5k8a;ta1Z|+ImZ2r+fVE1@ddJrSSW#=!4h&H#0YyPBy!l?0z2Dba|PWc z!Y`n~F$}ZZD1)smB3Mw8!tHmc-OvZSbh<$T!cYmgdY zVHg&NO(G-gbLO{+&_fJWGhjj+e;YFpwhL5UH(41(gO-o||JZvI@F>cx?|T{qLI{wA zeM!1O_9gVbpd+~N0wRu&BG9XXA}FGc3IP?6MF<#jBckAfI}ltbaRZleTp?uag-y^= z)Nv4)#~Gb*`+ldY5<;A*e#W`J@4cSyZLTYNs_U*gRd?O%IsfxNtxACv@J8S{0XKNv zF2EvT++&1ic!3ZmRFMXVjQ7En2B;IqPYhg|6DX)J=m$3d$`OoL$nE#3Bi|Cf;P{}5 z@P$Oc8B2gAC!hm2C$KM&%dP++IAA}#<}C%Ig{#9tcSPx~YgZP%Iv80%p38^N=}{WT zaRvq&gfyY8wygtrx-7p_q!GX~OB-#3mB~_ZfqL{ywpRmU(OXqdUf!Jc7sk0u z_>jP*fns_ifU0rK2c%NnrZYYsj(eki51~~8Sf&?6T%JTU=nVLP9fl$eVATY>0BDf= z5Lx2|5gNn`9*#t!;ZP!muiHeM;T*S88&Un=oHH7zhP7IORI7L2oYU40)Fti`D0Mgj zz>PLaOLQfi#83chaR=o4)PazJjRQOuP(jR3{DLb8015ap7_}fh6_@n%DqPZ0!dMdF zkSpPe6B_{9i{PDDG@b|m6$0L<(J%49XHn}m!JXC`C8orsw)C9S+a7g;X9n34jMIhi zu!nd?f(?A0a13;c&vaFX+zI-RI~)fA?hO#4<_ZO4(S#px9U~3+83}pP$Bfbd*!4)l z9SibBeIcL;iEtG7u5?ibCKI)jMQd2z!ezHss=MDWALRB08hGCQeje2$aD19g81xhv z2PfWZ#u85~BB2N!v^CWd_k=qh1U|r2hB5|^h!;mYV6;%!N&HjT+%RVOCZS{9=~)_L zBUio4x~A%JWu;l(Y5%~DeN^H73!0TW-7&9EMtuo>VXg}L+Z zOw|Ax>tkv__h(TZRIXD&KU!-J>VbG_*k9)KwSyT2MdEY^T``{0ABhmt2&#yYB0=C+ zyaC?N9`=AoC!mh_kg%6fub|%@1kVSun;AM1Yw$j$1lbB~TEZ9@a2R};sJ$UKs}c}F z%s!KLbkJ&=%gmfjeZR#nM;68U>-g1}@89Hei8K9?YR z)8+9H38_bS8Znb#eEh&`10f2s<^rS|A|TWgAs7e4ov|=7(9>DIRs7gKm!*|9?xB|T z7I)RpX4&5C=xpYUGsuLaK3CjN7_2WS2>%dYon;7LNV|5n1mz{7J^;lYfNg-AXw(r} zE;E$h!;}Fo@R%i}H{fBJ67@QX$78PG(?&qW)Bb^B5dxtHHW*9Du(fWF8qjL)=&ZW+ zCFFap=C-v1mZGZ#-BG_6=#)1aCJfdI8b2JPu}Mhp-{-UFB49cm0lEkR&>JAujfV^X zIR&;$a5b@;^}%>{;Qxd%xP0*_Fgaq{fIt$#M+7R+e~?>>dCy#QWzihcab+czn$<_Y z+2~eVubAT~Wf>bI!rK=O0xWgW(+TsI7;Qq2Q7&so;_>_d`iWxjduWRU_%Il<`~@5b z!ps%*n1E@&KhB%Rf&US{OgI`iTc;}wRyvk&Gc@Y4c-rB=>>%*fQYXtsJ?H|+nw8di z)O4}hK9$}ENVehJ=8hzouY4g_giT1CXe^XD1cRGbHxfvevJ^NpzUZfmqri_O2VFf-h?yG%9zEN9t~uz)bCf151u>9VXc*2q;2S8r#h!> zZfjzE2>kNQ6c(#6l?^4r`-&&*j_sBOnIDJRL#ftX^3E2V{B0aKZj6 z95xocYc^I92?Si4C|Q;)fI7J?H|M@(y<_2D6S^N=fG{;rHY_XKf$i?SSSogmR(~a7$R!O z8;ZF-bR;Hc;$1hLwtzPwR^7u8#;33QYG-opT7si^L$s}ho$(c-YCX<}W#IQB}`z8|; z$@1lyb8m01jy%@YM6#4!UE8{;S|3=Er|qsu)7d?oDf2(7{p!)?WGxW z|J+22-a6N1`?oGy@h681mn6ox1RSDxzOkBO4TE_L7dw26L3c#y6tY=M=}e{GiSs_~ z;Rr`@bwn_RV)xXY-`IJfj_`yq_k!0j@0hKW_R+$5QybUHmRR~v^iHfq;8dN7c*PidlqSbUIw|RDcOS=o05BQ51EI58#-O&*IC>Z)7 z90)-@;5Q8KSkwJf7rb?GAu)kw1y`Lb0dZFx6L4JZKQyNfNE8JY5%niI# z1nWUeiaXjFQ1GRiKCLX84Z}M=5G&1o9pvDwdU^gu5PM>5k0;zt*k{3^#lcqaRtXvp zUnJxg&kPrSaK&J{8e+}MGjEADo}Ie~I|1Mn>2 zOaog|51|3AVLjkzM>*7#4%e_VyhY(- z272RlLkj~R6W_}nXV`T6qsLGI+39o;eE`z~&4EJ}kP1KtC{gK>^d!)ICfgmPu6VZm z)Fab??!pB*1v8v83>ZrI4sCyhX4C|2SZYtGlfw(n%c@xCyZfozf;@ZJ?S>#27N7(k zlOS9;4Bf!Gz(|58^1`$zBt*Jrs8qO9pfrLv66g&cFCjz5=K~uid?XPKj}LGtdZN?k z4skJ1N=6~5#-N*|w?It-!mj}#V;0Sjl89f(TB*{#;D>rGxY!;O6oxS9;@I+raBGV< z4mL&zNaBHD$e>^}oItpSBVaoi25^HrVMdJu-GC<w0MLb1rU_a2>GW6 z`c$YT!FGE2uYv2(xx*Y;bo&f`6>F^qTc*zHdjCW7y```j2@5$aKLE<$DrN4%4-PGf zpVsF$+3m8-tY!zx@=ZL)b}(_W{_CcgXhac|rIv!y!N%-_*v|TWjuP92V1Wy{AdiQ# z5lS@Ns&N0r-62@WaW(oIQsfA^DdQvzIIKVXFp~%10s_QF5Ayf|bv!gWhbxmJcmOCm zS(LD#0*e@k!h;Io8h9c|RM$bGYD{HW^n3NG%$`j(?J`u#k|XL%M47YzE93CTO&o># znYITXR!{@(13@9{Ch%@vaHB9{3ehQ@3`Rw83QXTnt?LBp1{@0BMSxEU4~xVwQyhfs z305;q+)zjQ;_f<%Vc<~Kn&SXxAv-P2qFJ2B`V{65;LPUnBC)6-m%t0T8UBE40-}t? zA-EU5pILw2f%lkMi~>ST2*3pTU8sAc9LWWQd)V~=)oi?r2fj=&n^4*@NCFhVqfYAv zG$Z`akoYz5A6siTNq?M{niE7I3px4XRtx$M3OXB1W*!{CCe|4%902c5b}7 zOmD_yX3!2=FHfam>d0OQ%B{asqbbU|X$Bj?G_us2?1dcahR>@y*t5M^{ft%$$&x@~ zV{SbsKq3~3JK?%_frW~CpgnSR6@D@3B|$&%UudsEb_YPHL9NL033_!LiVDal+sPU;`E4=}l^7qqA9S4*2xhtkhbynjjzteKHg0Ka6|;M3|gGyTk4e zW*kTqsT2}XrYIfN6{NSsNKU|q4g#}ap9OjsTrcZN!En?~WKbH$f$IQ&1&s-1E9~Gj z4(Q@w#|wnCYXfV+^=8rN(Q$_*mI~F#I~KTlpc zv4-6Xns>0qj2mnT0Z1~SG1)SIvm17^jyI<-SWta#Mhf6G3AQLOwUZizS=~Gs!y$lm3};dBs9~NRXcMGs-hjLi zC?M+%SUo2)9n1QgG~ywL3eKt>He&S2QeU!Cbg1Qpz6X|Pwd*6@PW)Rj>G2< zWZ4bdDSV|NplFOMA63@TcC!rt6DrtQPw-I4DScN4DJcse$&|tr3*?4Y zNl*l>gRl*vP3n?|5Fo(r8o;E?d{9FZsv=-yv2N7I02s4?4}2nXAFwwdvtX4&adO*8 zaDlLw0|3(}zrqzT58JI(v#=CG@+_L`XEX)`9~(m2A?lfLfswNo1m^1ln8y}I=Y=&8 zu)HUeu8{4<`93T#*^&uEGBlWePe9wzx@xPfG{oQr`qJYDN5tZSXcsmFP9W@<@B^`W z^t`1~CS}1WTk8XPY|di?1~%N2fy`%n4;?EoWiWB>2;0a&%nh?Th5!(4Isy6cof1c6 zZNiWRdR>4@mao&O13~U-)i@h%baXXDJ@CbW>;<6P1 zAPA+Z@hV0v1ZJm*Pu8>~0^vJ{NDdVOrx^D7NLCQn42DSRf+d-N$=F&#aSfc;1Mei{ z^fCo{g;-JIQ!JJ85+A+AX3Scl!4P@4*Mc#20Gu9K)-v)DEEEY4M8M(-kbDR`NI+-q zWZVZ%Nxl=T7C<^dONV?c{#XLCOpmYuHRoY$br=W;refHETi(ZVG2!(1f%-*2vBxF8 zW(ytAQlF6+1afdIea2pL&5sLCpo@S}r7ZbA(1!JikqKsdNe~5AUo9O)7tz;*vfj0@ z-s#yv3}0`S&(H`lk)`=Hn&`4rQ9Zf1!}`4%$?X zYHOF7g<3(Ig@gYCzPLhlSBHgd=B@6uP+Q$;(Ra71XDSzUXgA2w=Xg)(gelXnzj|W) zy7AMZQ?Apds6~IZsR7|93e@XWi|(*2IJD{U6Q_+GZ(cuk{KRR~rpNmZa`dhLMQ*7^ zKD6jwwVJ$qQJFUV{zZLls(RR+tyOB(qDOw=Ej&#e6Q|Xw{+VXuT~Pe7O+E48 zqPhR0vLF7|K`u8RlsO1mOv`y(<`w!W{gOM~1 zayn8-3b&hNA_nRT0uW+>P|(P+raM_m6J%s0xD?tiT%JI0B;zT#GH7nt{6MNvi95!~ zfd>%M4NL%1J}5jujKDU4mjQrF%oieSwm!!jewHliohsgO@db8k&AzIki-+357n92k zUKa?a@Rjf$l3~(?Up5BD)N8ug;T(y1;2y(wEBs`5On~X)IKhGLa{9?XtJ8ns*NBtx z8%_vew!j6(p$Av55GMpFrRQdJWYOq1yqDGr4fe0U+83W@C%qZa89+n;^}HmMq-JrK zddMh-(-pE1aD~uPxFI_MPEKx2NFP9;2Fa=%2t!&55fdReZQS@rE)FEa+FU(m}=)V>|PctQ)?^G6pW zs^)=vnrVwJTRiBOu1My_7tf6^*%YsMbiVEI(Hm>2uPQqI(t8@LxUcVPrJeO{#VH}; zKVktm8NE>=Lf}3E8pBxWW5NQ6?S~r8n98%3(x>uC?xpMV9UjuNCxDbi$#)Mh-3J!a z$C?0&H%S9)1jgK%y_9~(Z+|U!gohG7CIBzOG0W^vZp|>{eWX-`<%*Qy#xrIurQdPx z*-H=SJ3>x>kQq5f23LXSfIbYfqDU~E5xfCZUcaL~ODQ$Vy|jyV@tCDA^eiPKY`{kd z73gBpeUbzlCPA={5dirl)l^f%cg}YpS`{K)cH5bqwL>>8U43PfAZdSxENfr&+0q_O z;RsZt1~2QcUc7Btfg0apSvR%ez|s@`Ss9=9+Q&=V+Zvqe)Mo7X>%&*YuNms_mdTxp zK3V!smh&g7krlTVsBxbzO*SZLJc!G+?3915o-;jFzI$1LcHw7BpKNM(!Ttva6p&+( zgy1j2M4V8^z-XYPiieDk2Hw-UlwK!$zFa!2&=DaKDOqv>V$-k)+!ENfA8t-oeL9rU zxMS8*`W?Ufe(BdOo07X*s=1vyzvZ&ds-(rT{HCBVkFD%67NvYzue@dLY{!&1UcUvk zJYRj^a@p{Ie$K4nt@+D7IHo{@htMnf<`&C_S`;wr``LnJPc#K@2hSOds-B?WGKu&j zs>22UzlMt%EzWXL68C<!3|e-=&kAW2I@@Oc?AI^TYj@m`WhXcO)vVW^ z&SlA;-A7TQGydtXJvEx`rlw?H4MR!`u9emb77I*a6rOCj4FTHmAEO4d6f$dYjbCce z6M#jR#dth`x~>vyzgDW$60&g`PKy?@z_SEwP2EBk8en%#X(fm(aZ-F>xFitmn2RNs~I z>wCA{eRrjr+l*i57FNz`s>T=c>)`exb}Q!B4?2mst`ooB(oMvRx*_(oSMKYmO8u4X z)o@!yOLd$`1wYIiqQWB0_g5CH1w|F@)xG}8GPSq<@X6&fyQ%y@WpSRf%Y&^?iRnTUu|>!9U&-=4Q8BWb@xe*G-S-gUk&$cO-g_~H;NlS=_R0E_UeZeV4vq|phN9@Wqnt* zXIN#M|IIHE-m<=ndTDs&JNiqEJ^Cre>fgdN!u)^mF@Bv7;QE(;j13>G?`9Z*CY@3l z_}~9BebpVORxbJ9+_GLxu5YLIomQFmfBGec{qkm|4-?wj(<@6lspjn&v%eTyd4@~9 zHWu;X#g&f2Qjat2ha{8$3&{|#$GrH67L>p&puQ6Q+`)*-DkWn?6i$H%mMOr@0CB;W zhL|@=-A=rL85(J1!ti+D^pC_{l7Ah$7e*i$`H4v3dS6&)&aKBiTdF4n`rsp#qa9F! zTIu!~z~?28R<^av-ouIU#|y(U{J%txB?w$6-vvNz!p;rMwE^OWSJ~;2urewD=&&b( zO%4`hj7F>kLOv5Z%)*xFq!@udL@2@d9}Kx%1RxN;;bk8X(2NkCENa~n0^=^R)Mr44 zN8Vl4*Y0x@5ywi5CotXwIZEhlkxZeerB`V=7&DIO=v z9%gQKO~yNv5}EHI#)5B6K%k%f3Q;03LS@0_&`+E+LG@x|xn>Ny`^=>V(Gd*27CoQJNlsiUC+$gHidu zl3c;(@|s3h7NyZ3Z1j9hqD5r?gYB4zGni=OiEzwdRi$@l5Iw9n_AV!PLGxh5d{75gs>10B$05l z^d@-2OF|AKSa^SRC1EeHyc0-4RHuXz5Dte8ACoyA2ZHev2|b$IAU4L%kCBC-Ac>pv zJE0kO5nRe3MqFqtp%LaOadXy+y}Ci)ZmrWK=(q2otGWEgFdBzF?4w<&GKS8LBC|h zu#+?=M(PrpH4!)odL0pGI4EeOIF(#cW70B$j*0Xnf)$>G7@^<9>Vy+ylYr-*)D0M( ziasFd*odElVjJ&QEJ02Yc4nA<{P4{L>Arq8leGN?-7brIpE~iWs`HrLtW-m+9sYA= zz#b2f5J?iXkVA+lNJe=259A{RqbK5$v_$7*!RtjV353-l5A&1T8HOf;QQjAD!{PMSb5;G}lVD%$6n7X- zxga}mKN0FaH*_XYCJ-{KduQwf(*+=43Hu`W>Im`#+Gfqbqt-8m_ulB!EWyfph!r{~)K9v#5ACEav z4cS7#Po$D~HhC;K%psgH#&j50JWT0u-sAe@|JVxfyoH6%f+#?jWT&Z{&a!-+MpWQg znq#9rmZjc2b<-K6j^#_qXVs}pnwK)7NoEa}g!C#&50(fJ=|-rdJ{xIAHdhj*g>@+w zgHp&(#swd99gD4aJm~Vf$)x7jse;zvMRejgjeE&qL!z$)+#oE*{Fn#)494O`tPhv7 z6SifgRBhN+HOfI>w^C|OXCt;(71+5Q6a!JB@CY&Wz+eJNgbW9k9k1Gj> zDTm(_3pJij%;@axNh-s7m>7Je$9y^m*TQWdaS;#*PlSsmPHrpa_$WLDMDy}gKC)WW zWgW|^yok_r2jS~hipl!|mA~5ekE$Zort@-#9j+KwvUtsf0fY&S37XJU0{jT(#wukz zs4=Pev8zG?1OW>T6n-nhZkei}nP8E~7C`r&PiO&Me+f~J81rC0!J3PuKH?|42hMpu zRXpret~NB`S=Y>Y+~&xl-DS9{vnU4g4XH+_6&=)jr!H@oMLo^>F^#+( zSlT6>T8Jc8MBoZZ6_M;=fu#`A58WH z>Vd0N-PGo0$pYyC%sk8sI7wJ3U~z}BfGA1HYsRvrZsP{KgO%#II`>G`$ZV=-U#I%0 zt#8gLP+uOYYE??&vVbQ_8%@A=ByOZIvjE%$GGNdNUwsh3haP_19i}w4o^(9EHWN8p zO}Meh$mj|CL)rs>t9q5x5@fW3@Qz(7yeU*EFl)Ow#OwK6TURe4uBav8)OcL<&k#@ynMBWasST0$}=$9@s?f|~P z-tOeP5H-%i-3bW;n>=DtJ8K487s`~ znPhXRF__myh+BWDSR?L|EN#?#EDsR_uT|B#rPHl#wy+~9d@SEeQ7;2Zp)_(rXYQxN zk>3dlKSn;P9p6isuwpg)mbG;m<|JVr>q$Qu$5Rky{y{&4bgWRH4x`T$XM4$Eurlu_EaM)C` zuYoI$OrK5y@Y&nZ6wS@}ILYWjptlb~CGskf2b3Wvz$Pv(W*%NHs;(VQj-9FgDNKHfHHdxDiuCSi>$;g^innk%78%l*^#X|3q<5sxTO(m)?J2Qz( z2Eqgd68mc`Q?RZiqO2i3{s@G2MM6J=BN%ToxFsPukff=w8-&BoC=vc}k=2p5NM0Mp z1a~xmPt6TO1?jwq755Oqk4Ks;NuDK;vdrJAH`In*P~7ItuC zc_BSUVL%B9K%sXby%y_8meFiXA`JbKDvl+GA}?W`ArfaUl!ZY-qqD>la#KtotiZ7{ zMC!N~N}<+dcogFb>z_m*9Hd!>6OtpBtZ@l-B#%kY=v55R7K$O-A9Ta=^I7&=YE^6Y zE+5*RZHzaHWer$`m(d?mAXewBkrH@THP!7x2DWC(4Qj0iqB3&KDMf;?B$ z$foJsrr>A`80AhspjB%e;GahITG1)+-02NF$ z+Q6&>IUwU0R!sUO#uHZkm?L7;jgZlW7~tv`!VYWYpnt94QmRi4*SiAZ<2040S8DMz`pOa7oc`-*}kC!~55f_d~ zwe`E@9Sw35ti^nF25g9`1cT!YLVJZ>kq_pD`N>EyY0O=0T(N|~(1lqV^b0g23BTku zgzJX9qsQbcwA4=gv);?Hsh)l9jy?**T`T3dXL(CIwi@7{5Q5>qz?SR}W0_$xWqlWC z?)8|TGbCkL6iZU;POX#~1Ohf#fO%&Yq%1vv6XURP z!$}86^HHW+Yu&6GbxI^ly%>Td6S;2kZ}sHzo@D`i%?<1$VNyeqBNWaf8Oz<|1g32> zh=~m(6v9U#gld=(tUy1S^Ypo-F3j?k8rkl%G|xu!85uXN>dY@oMXz&lr&8HMCX~}v67nIWllPqu^f#1|^ zWp&RQ-W|YpKy<(wW3dB|@20f~MIH-L+y_PiLu<`gevKI|i(0msPP3o+Xq=GFlIISh zE5Q3CDuktqiH~7Yee}Z}U9^$+uO+oSv}D-Z zAm@xq@?|c8zsDtZK00qiy}Fp4fkBCiMb%2N$Jo+XD-IZ(sJgjddYhe8o}?^@Yk50CY>q&Ss8zAwic^ z)3BehRjW~N?QoZpqS8XCI{DA={OMioDsNSVmRkt7|RNt1CmrSYY^YT-VLh=&TnICE7TT{Wz$--;gG@w zXQi}pcavBh=`Yw4v4>EDAr`A3h1qiAbqbl(5H^oa+Kr1XNtxK6^R72 zrG0V!*|Bs{8*InK58{SDn|(9)3JIAlL#$z{tcx?TRBLdTXVI$kA@JzD<}dR!WPN3F zj>_oH=W)tmE#%|@36HYs1T&JdF2Lp7S+XuJQqjp7qJ))11V>cZ0J zE^0EjQ>pb!i5+Ahpb_>p5X^~7H;mJa?LHsX39T$>XqREA*By%`Y+Pw9IQd!qhhU`V zLy>qL)1iPH)X9Ff6UI_f{M)P&m{8d5uxbG*!kh>K6>48F+x2D;GR|9TH&&8%e4G}V zoyMotSCQD;BII?3xR#X5!s#!rKdM$XC|E8UAVx|d<79P7h6U^l7|8K8`F+lqlTbEH z2#g=P6=XF;ld#gcB6yX9IyOFtAA=z{NFHBGlObF=AKcMp)6zMREN9W~)~C2^ip304 zHC(lVQJPc?q|%LI^JOrM<4PytJn5oIu?xj@{oHoharT%8fCva4?2WSh!QDonAKPQ% z*l>IJ4D;jgCFN{H@yGLiatEx!q`Sqa!d&MHGMtbf*EBz7QSCM6>TFu;%#YqOe_7Di zU~VG^I@I{A8OWGS`UXiAO!6KQ-aB!g#sbDyGPo(N!M*1EX8nPJjpny3t+UZe5?Fv$ zh3Q7eizhGdRGQ_T>dBSuY{3%jNZ=X9+7V-a<#t7NGze)YupQU!bQpLbL1gU+Yrcn_ zEmJ+F=LC~NB7yBq=kL_JTM20%oS2cLLJ7|v#{<@aMD9?E`+kK>d-S!W zgZ-72W?IvV)E1RyRy^F`RtmdAzF z5jI<$$+m9M#qWF=+`huS>c+K3U@6%nSfMiA06`aL+@_P}!ux8i*-X%$O|#xM>(`N` z0<7>cj`{sqa&SKrAsYx{tHNfOfJPT!OC4J%wCC8Kq96r`jsz(lX7~dw1QR-2Y7glV z4q@q^HD7E#q!7U9731;27GRbQv0Vd{5@G+uilBk5#9BMv60!C>vSXX&c;l z)8?mf;#ZM%WY;}w`T#gn~AWqe5OVjbS+yZPjl?FMuHlv3KJ`d zzG)*7w#DmEvyyJ!E;j2xfFUj*Ou}L|VExAw7lDx%`17 zS#N}~Dqvv_sgK5P#2zjy$O!qv*2)RK(Hp3> z-k?||Pb?7>lLSITj~rl&1B$@wV*9D*crc@S?La@+W(yO$u>T9UImva{u1flLEUlVB zWGfDV5YrxxMJ7sSa2A}vV{j2*N5XiFZ4Y1;v!|6t12d9MqrqfL=9}i?#O`0_cON^W z0iVOSDZU{FHz)oxK&I@3v5H{Lc4@Occq~e-13XmqJ(#hLSY=il|N6TS4S#IEp#fSo z%SM*VEVWk8>0q~hCtSF*=J!^loA;}+gvK|T-E!dLddzbUe4GOx zm*>F8S!jeKF)!Ug(V~hKF)!U8{nRE;NyCDTu3y7qM zw(ybb45m7w+Th;}5cf++ikqO(Aas32O=on{Gpw|JYhNq%-m_g=stb1A60tp}RrgvTS3)ZTc`Es1`w}&E)}6)L^VQF^ zZVFHSik52s`}au564p*C>SvgEqKEv5l7R)$LUAJ&X$Nx#; zY0t0gpzeNd<-zc;E9YyQ!Mz zS3<0$t?aBuFPYKV;8K4=TY2d(yhATFc=O6TrAJ-2lo#9f!pal>tt;kz^WsYW?$y3|an&bI+gA-*P5!}EUH*esbKJZs ze_O@hef-_e-)jEWXjA_7z-fJLFEmi|amj;Cf2kU6aNh^-e#rr~AYq+;;`|8+jQJ&C zBteKSVTX_%u-4F1Rb(%vC%;(p$%D7Fa`*`@g^G|k9D;!(A^2GcA$7yE>xa_dX1#Ou>4zIeFSrgrRm*m?9Q`O(8)$kEo1A3muG!lq9jR`P!- z{0E!5`iqBqnny!VvJ>4KfFLhSum;rT#GMh59UugTm>T%qA|?wfeT8{sEi15YQX0}glU|(W%9W|xfe|YBJd%2Aw&wfX_c|CMp5E~vZy7S6ERNqY-$OL z2`Je1dQtI05>gflGzfh4`JB*9LO&HI5RddeWQ9o(b>@-Gn31rMZg$W{elZ`m3hQpD zExl_wybf8uPa^_n>(-fQ6eg6V(sYoS9%F9#O0Wz_l#uW@mj>Ouuh3}t=pAmTatW*_ z@XYOk^uX;`v$qK&q>w3=BnTIUd&tM^O}+t$ouGH~!(qWF6pd-&>z2bW>w&%_22nZz z&u}urLO@I(k#Hd=!QXCzqn8q~X@=ri>Ls*P?`u#lSSWSY)BG5Htu(@jCZw4J+6j## zObr3rVi-;aV%8D{A&kzg1;Y$v?xbKMXpim|f_MbhEI1fru=PVz1!ERu2yh(5h%+V^ znFn$RB5UELA&izQ;rsBx3qHN7vmRq^w^j^k?bzimyU$vwVOgzcQycExbH)tlZJ>tr z5pD;=IRX2S7Scg{F8FPQVhCb-lY0~0DB}gL&g$Km0bY<=fl?_3d(J+)nR{}+<-oAq|##*x(&19C-_7EUokAaP$#T*>7OhYo*>jV!%7iRgz8o30m zTWhQlU09at6MhGWT3%S*!Jg%Lw;#RKKJ5NA3fjXru^ko^V(}qZ+_~z3AUwm zU#Fz0_EV2_rpwjEOW#8K?)Y`z_P2egKDu*pZ?$Cjj2G15Kdo)u;DA_%gHR zzkFyz>t9;)+VFK7MojAB>T~t=Cpeu$oz6kzQI;HCE}zcqsd}`V*;#GvRDF7T+L&(D zkM~sZ71e#U-X~SRm#>~*i`e<>>cidPMTb_7EG+@a)8lg`pz?OXM+QGL*$^OjF^o!C zOX+5+&lAW`B6$qk$kMAE%i~&!Dn`>)0D$LkEAFaEFqG03N*{ z$&q2)kHyVAV4*N%K)xtc?AYI2Fr@hWqz8Zjkhg;UNsaPgZ8Ev8tyTNfH3K(ZLYS4V&#-4VvnZVfTAxjTtk|35Wn8kT$Dltl03Nw?B-9?@X7paG!z7DbnhFTo% z8Eg~=VY|=Vo=0h6WUz*81_DVkSztGEVn>r4D^x_tUShATc z4YU#0T9%4C$_|?C&2;)S$Yug+)pt*}R+~=WcuubG<@#Q(?=_el{@?CkHh=H%_bz|$@%KJ|+ce(` z+e_mPl5~+`HQ;i=$puw7>BmSl;fMJizD4qo`DM8?A0x7LA$_&uan#_HBQ-~y*@IM> zB%2_I5bWM?jt3KA^4*iq&dhP2wUmCx#e-__2#*_A(^ngDZq2Pt)#`#BeYL+_Q1f;x zwdO>`k1v&9zt2OQGfu?+YKGV^QZuca1F~Hqg~iT~dl1rK5(SbJ3C{@B!Q|$N8wS@F26A?Lg0`D>*#ZLtZizCa+3_PEc0-^dVR2W!kz002A!}!lT(kpUi~qco0*Ow z?8BSLk_Eh zqn01EIkKouDCaq~=i6CjTWa07We1#~VM#C+!fOnRCTWs{-_#e!S%5D zw^gK)wbUF@da~n47Nxe!m+LOb%lf;VPSZ2O3KE|PD=t|=MoBhCzLqFFyuy^CK38!j!BpY)K+8 zFOo2qRXwds+wt-ocvq|k7pmUpygc^{K# z{+s2^OF|)+AAezloFEJ~WM6ely5a;Jn`A9DeRv;;LlSmmQg*vwcf{As#)yXJ4v4Fc z7DcwkukWa1zINdrr^}M-DMUXem2!k+P{0ddkS2jq#9*a2wr^~jEVPr@LHb>(-&*zX zfmJTG<>nnN?XW`9$;f==#w#jJluhVMQEh&}oTpX&$-YRlfND>&kwbHn9-Jx7YHl=^5(_p6( zf>3%|+a_+8a$LWl^FXh^K}Yk@bo@}b;-Azf-4L5?vRFaI3r{+!4zE(AHOn&Rnl!vw zK2Gr1j+UiWdX6n^U2jf3cZzhhQtS6oB!nDT5`ZX~L4}SZ+f)c$$yq>N4Ki^A!l6xn zRoAjpC377~2&3c&p$NGGptB_*C?J|xn2cSvk1FeW7x@9;r4{m64{hAXSV<}?kSKsu zNGa?!w!dcYveJtaT5auHd!gN0bx6PqPIbe5JK8`w93`_7OC_F_sZF0%8O0?9E{Rml zRQHZ{`p(-$IueqXf$SjrCg>qpg#C=~(9n|M)M%V`QVrr|$3;$a#G()(5e%545LpL; zE|7|fL`I#B)>)cGvp%&!eQTvuTIUJ&7`f*m`e%FsP(z~YAj3m60Yksv$1{?R`O0$e zLHPSgz{whjTqC6aN-)C3`5;VJ04m|$HL^GG34~o9yHAJ#4*p|40T}|xMGZdE`ACAr@(yzMcqn2AnwUCQVmBY_i{D|$h1UHBVi2?OD796 zS=Ae9qXG8_d0dX~A$+zoT2^Cc5xg<}LJvoOYP5Y{A2Az2ZF2^M1m zH(6@Ew^FkspoL7fYwM5G2*#GBZ8j>MrON6Jkd7=b6;!UBJD$$%({lT?+&=ACGeT~k zmfNT0_GyhRsJVSwZl4y5G~6NP_GtjkvutN_`?TCXEw@k8cZa!sTEngFzqe1jOuI2w zduI#V;|<)uWmnhs{>AR!mx}gx75A_9`t;hpr{%ePL*4G7?vOgPrS{TZ{!kf@3YgAc zhTmwA!%fz{p*}K*4Rw*tZs<^A>jKJ|uJyJ)rlbnLSeq$vP0PK`daTs^@ zI34{0Wh5#OXKH^mwRxOs!&|kds|u|)Up@75?S;KPWgz&1WiGF4ki+LL!%s-WOBu$A zK@R;?pv>h7s3E&*FUdbzRMos*``+NegUbe=3#`b&zlqm4oMr#=FMEp7U>h_dmT;d(Z!^FFrzzthlv6{jsK29a9DWQFnh{UGw|el7IKx|L1*v zLbCSlfAiZf*j*b`OH#F^|2MwwaKWGbff3U3Fwpf*1mfUQ6LT!vDk5?5dl3i50 zvB}};z408bzc*Q`D&^2~J%{f;mh7(DUC!Z)i#S~QR~QpwVS|+EfEgaRTSr`nG=#1 zsYN$%xXqsGp*n^+J9;dKbvG?ki{-bgD){ZIM>-U!AHvBqluPu!a(k+aDvxmXzpmo& zrw39U)HibY*DEcKl)vdB{uDZ>~n-J-VyUVw8JN z4oi2YI;n7+!}ju2Z{1r`q>^ziyEx3@Nr~iT>g^?l)J>%m$>Fvm>eX?{o@&-4s^|PG zxbTxZIbVGR3MNfN(odXpB`3Pi=5X_jbbIxj91f0gxNT1F0@Z6G3Lc1ac-O?_7`6Lm zq%~uAcUC2nDEF~>m(i-rQcip^Za~TMS2E32m#aA0@-}|D^(r2#uUxM8kzm%linK$S%)yy$8Qe^dW`T1@6}%Zy|%Rd{ofkgkJ3(6Tj}tB|REg_3td{mY_3T}p z)Pd_M{IoQ{L!)=KSC>!cFd%2QPN(e+x(GJ(y-adVzu%XPTXUbyGWfijuZX5?k-i!ZskPz!n$%TW^lNC z9*0vN-`zo#%i-nnRQfA?qaRA$>o>i6CTFi)#-ZMrK9j>acX0UfcQnhL`V+i8n-g2*arMiF-^O8F zI^09I@!bM5lRh={c7A(I+KYb0({gB+5#^PQyPfLvJ2<>cTFzs4Bxk8nw<7(pF4;y6 z*?CJVHDTv1%~j2-dz!1Mb0~MJ3>=65u=^ZUGMB@p(xGO}O-@sP{w>myo_jj0vUybO zW74&rpO?H#JtkFrL6?Pob^o2bU_WVVe@ZMKrKWtkySW-SpS$GAYjN$css$WGh?uxB-=f1S06r-o^gGdh}l~2lVgScFN z>?G3XBJ~n!jYuw$J{IXDk$xxAxgxC==@OCN6DcmzpG3M&q?IC-i*%nzi$tms=^l|D z6zLI>_LPhGjEI#YZ58QFk=_^SfJnPU+9c9vB7Gpz*COo{$<`KWiAZfkS|n08k?s+x zpGZ%OlA<_nsMvJswqzNMJ7HP6be-Y_sk)9E0o=9JaR4LNJ3)%tA}tW z)pN=IYU`S*U9|gOOnzWq^3ypx3$!IKC!3nLlv`-r;>WsMo>=!7g$2{vsts?S(L${* z-<_}Jy_VcsSEgR=$V>OO(ptY!_o%wY!q1u>r-pBv)8 z|1wo`^B&{NYF*w=-ei;GV)fMAOe<~uJ5o|V{_2HHD|N;xEge-?=e1D#YLfZdr|%^< z8E3V1+meS3vFd`|t+W?vk_XH)PuC_}H8E~caWc2u^+B?mdF*JCYNh@$JFjikJ$XIU zmX&#Vs(dH+y(ldeq-$+cL6HG}Z{<;2SLU_QIGr@l)O?pTF4ku4PJVe*w|e30f>P~~ zy;AS`Eml9wgHO7?wOu(n?<~^Z*q4mj)a!G0Pcb$HPk)p=OD&$eyO&n_aq>o+h(+q) z3w+8;543KpoVR{>oLci)Ya+PL-&Lgj@sD!#MSXWpX|Q*B=TmO6f1uetH2;C*WSblp ztI~_8jIEy~pEZy5XBpUp9nGxXZJTKuzDT}fo+)3`ny-pmX*GwW6&nlTRDvw9Vfn z|J%Ien5QpMBP)xc0z5$RAO4ARt-%xQ=a1DF51lnDTodA(^~7)wWb(qo4Vcf8hd8y9or{b-?LIj%wGnaliI;A-=CBE-ln>KLle^N71Pd7 zU7(hHUpJ0^dVcB#n;aJ_y*I7C>ce8?$nVfeT{WO-zP4dRO4XfylMZn2RUdX#6E5gb zq}H6#Ay1V?Q$^ZCqf##zWwa@yQ>~jAcbi(a>uB*pHTA*{ZMAJiv!#T4+PUsRxhVTTQ6wVApu?_Zr++abLP~VsE}y7EkRp&xi(v2K`JIZQK>9 zQ%qfl(&&D9VrsKl^61-C^zK-s?(f#Ig?jfO6U4h$rCu@19Ial;G*cJ2I<``a9TeR9 zB?b3RPPxsSU-dLEI%ul-;_a35;@vIPt>ZF9%5h!CPHMwV)cLQkOFeJi_s6AF^sHNq z(@f@*JGNKbZ)OlW@A_20yd}d}J5@1pZ)a`m4XL$tulFkRQrq%WH?`sUj?Go!`i{)# zH>I{2r?n+Fr)D>}yy}gPUDQ5LhZd@PhJkAQjMUu??xS%Zx{dy!xUi3M?(JBtPMq8^ z&v=%^Y#G;{&u2EmOcqv`w`GEJ-jTY)CStJ~zL{sy-*M!mP94?#=`MMj=B8GdXJ<*% z`*JlOV$J+ct+c)KQYrI{-Uw>uOB2`cv&DR;4ytfgr*>M=BKm-FX8-C`KUMQ=r}mn2 zv3z?et}$sBG%?O2dbIJ&Qv1#Flb=p^ulk^qLpg1o^VCTNMR~@w@@Qr1cV-diG#=}{ zF`1&OJ3IAPFVF9kr`~&SPrjC{O0g=?pJ(L5yw{MgQ&PmPhPyj=)e7$s9S3{vEYVuu zo9be!Uv!wSSa@5yNY#w#+)umpzSM=r8I1?8wy8aXGgHK*c)8kuLSu}a^cHwmw`FeHz_{{bCzd4o z_}#BshFp$Is;=O93msiMYx_2)9@Bp-R&`xVKQqXffxmnv^}cz!d{nxps#)B1uo}^| zZ3~UZV*Z}^#-4_=;xiFyM7NfH{X7qN_{zF!nXoxk4&%v{yy)jgQUg`Z_OAU@>FRWm zHs(bc3G_2HdFcVF@KD$O>QG^~R%*$|>0<4-FEfT3r%Ph#0abx+UUldvdfOXYQrpcF z&M%DXf~tH8mvnh8Rb!mdzI#1&Mic#NZSq+de%(e>r)f1;t4vxE&WS>g0tUG zjaI|oNfoH!cX6kQ@7A5sI1@52FF(KwjO^O2pL%6&uQtXa>8I_fH_Uqs{@!?+0cwA< z?#C&|#pxoON7+&-w{rd?*;iXpD^r}VPQTNvv$_pdTW?6W(`J8=`n`GPydP3#RXDqM z&r=heJm;G!>8}sX$dsxHcV;eB_MNG5wx`sQOEbr75A39VZBJ=EcBhJ)@Z&WHQsY&{ z9$uv4V=k@UOD*#Ahu5Z0P*bOLAE52umpUN7?7umELe<#rz0{gb-HTMkS_+@_F^dGb z$0z2gseeqh*Oq*e`cO1*=W|5E2|uJxP=$ANcN$gY|ANoK&qpR18a&3gnENF)XqMJ0 z4yN+u(qRu{PNxH&s;UQ-v`|}GqqO)i709{$FQiUX6T&=D`Ss}z+IfFTy(vG-B^sCX zly`dkc)_wdS}q4OKr=^ELXXeqRz&5^oAKyyQTjAxU)H^O)nOKEHLcT(eEQ7?E#c<+BhS1(-BBwjOw*VQ zwOprhT`yBZ+x_VQ+Q|0lzD-o^sjM9FSaegiPU*AM{im`2p4=(j%O+xxda!f)L-pM` zskYjZF6nR0A6Ilse`5T&uzQ-7O_R@9$LRNHZs#6_U)HT-uCu4Fv&nI>V&op6IeMg7 z&g;jA7xA!%r`h`$y?o5^>6gtjKlNk)XAmyZhWAdlXkrwv8?qU$AGHruvzE|ew)9QE zZeCMkR*VBjN@-Vh=o!1&l)vkr*32@64<=h_+Xtpwnzv*SK3yA9mS%0IKhgUq^F$-( z?LA(jv+<>mdCYEV&90($#*nzyUH=yA{pr)y_~~|YxY+HjJEL)?)KH|M=!_o&qIe}_AvLe|_D?TxOqm6U-`*(L&_nwvZtCH1>J74`ey;6RrH=j`Tjia-wXwu*8 z$$uY~eoaofs-+LC?@_Ag$sM(Ur=;JKpXomI%9DHaH@fn~(|8qrp4yzQEH@gmaBo-j zJ_a9c^BJ@pQ-_*xagSa`Ydv&U`aSu%u8-RF%eKz%(M}bxunatC6?xMXoxZCdbeB`Hg4mXMCtfN9d(BO1r2CZOv#}9>r!qt3Om1HTBNpkJA_@ z89a)6t)9M{~n<)>(ZsmU`UUeorqIy*yoQo3FJW zmu4IA{qxL{x<{?;1PV-e)0`!>TPCDg<8xfB_&x*F){A%;ND683 zMEV3nRQeR-oJaY>gFVg0)n{UwsY$;b7hR~zKC>5S%qZ9{^dHMVK?m0iQ*B?Px4%0% z{jPaNpMdnc4PUmmbya}6>pWFDvaa^fwdsMTTIs2Bi~f2Y>2rxzdA+oIT>~XARI~Ot znz4jTr|Z?1*OLrG5 zMi!UC3Di^TH%soL|0s(ijm6QY=5c+$RfS`Fd5ms-p?S&6}sft!z3N?EElk)SdfADkJ%Ctk(WO{c{BY)^^E`8(b#JHD;ar>|PCU$1dJ zz4dc7ywWJcx|a2h_WIL|=eEx^Zbn!CTzh;|dNfALZ<%a#C*-Wnbj&Hu>pJG2H%q_e zxEK_Gxqeq$|Eq6*V>sOQVtSQ%TJN_t-}M=yro2p_+V^srWtV=TKBI7^yBhKE-e#M& zrav-I=zVBS%f4P?qQ2}k1~}sqx(|!2qP~9Zo;Rc|>GzR&LNQO+mE25w{>}6r^Ni@$ zYTioQniwTn$PUm8sjW}-HHW}6-<5W)->7a13&-~-{)IhEJ%XD}1)ZT;Xvm2aJhkxI1urdeDVr~6lscl_l z_gH$M+CRO&*H}(|`xhBN^fR-XbB60&%6>83^Vffsia&bI)VH`s>PnmYP2JtJ34c$& zXgn&OxinK7pLV#`d}6bBb%t}(@@+GOH}sJJXrb>qMS zt)eLNnR(Yc+hxX@r?2RoiKv-N2eNhPm^o;k=f?@=oibfBmzv_KC7Fv&@dsr~ zGc&>v6(1?0s@;Rk1^U5W8HRrS+28Jy;d|*Kh0Zd?n+9fLP1NLjX-HsAx~W82<}4Ll zg=xIDEW+Ya?PtG{hgue}HrABVT|Fe5^rbv6lo53U{WvblxJnW&mB0seooTpk` zOp(|8nc+?9i)a*~Vd{6SZjI8_qcgo!&2I*`Rrh-b7iwcq$grIM`RUH;g41~JRo+a# zR{84;vzuOK>zItwxO!c5aGthdScWCPoY9t?oKc2a%(pxmPj6SwR|j>_Zagisu1>}1 zbcx!39#3$11((k}Ba`{rnbn(l*|HUN%3nJx!+JqizIjvK)!Xjp`P*E~v;F0q40Duz zdSqp)MC0Z+AANhNAl|lia9iz(5gCkpdcnGS@TkMz4sNNf8kSu1F_HDGNefTV?U2II-aR8PjAOd!t6W*1Kg+~ZM6YcNE6d9ET5Gr zREJilS}SL(A?;Q7)M)GcHr23QrtTpvL=#ZaHgl4`mw96dg9KF`P$(H(uDOhVgpt$ z?$2~p*RR5q_{T+=1;!Z-MSn31t$Ar@Cv9a#hMl2)kr->WYnElcGK=Ce`cn%Yh67JzuvY4)^~=lWc$=xO=D1sEyPlF^ zLeA)~I&*q{7`y+fyyAz5Y7qQ|{xm{ZD89V3scD z9hLs$p=UEJPjuC~O`K|Gkxg;6|6zAaEnkyK<>#kct3m5|iuF}=+d-S_o?heW>*|3j z>7z!z&1!wvOT0+;mt{EAZ=@?9H{DlQ^+TYA=G>COvLGk4pSET&VKh=U{C7Ck_HO4E zC%&FxVW^+3`It|^nVtW<`1W`9=4s=9Z+@u~HT=PytyN*v-A3tma~^OPtF{4_r*q%V zY%*@4S8q+kPs=&zZeg6Qc(<-i;m7P;)y>mMz4Y$hHflp_PYdNt@#;^%FVmX-@Vr%C z6XWT0$M@u|y3PO|&L7>amXD{U>6aYXQC|_dw`b;+`KJ`6g=F6?ey8!*;F5nB-yRE%eLFSr&@Q88d_LhM3Zy|&l^ zDz5qB-ix}jwurjcy8b?A?gQnw-+$hmIcLtCnlook+7u(O5|6e%RPtI1gs>=w@!TsZbjnIzP_sGQORVAn32PDja@#KU)j& z69VVw_a9m7FXk1lF&aS~zZ45L^A++eVG=*I;$mJ%HQ(g*9gEk#DUBSZhHr)P=S-*f zA(PAd`%ix0EYL*An*gr~4t4-6~fVR{nf{I*xN&LCxjPN*4+!(4v%-`Q<(i z{zM9{1{^7M492Mb)8^Rc{n@-c`5lMoxcn<-H)rPilgt_#O?g_=_`b)XDn>}PmWp20 zGW!O!C`PZ}G`H0_c-t6ZUvMFKR6*zw7Yg~Y2oH=(|bBaT(EB=13N@3#^ z9aVdP>rTAn9YUWU-~sS*J7cnLjpSo*#6C@afE%OSXT3vd*F$4v>5!ulY9B#&N^gUw zHlxdUJ5$7M9I@{bw@SO5jR&pCY~qO)$J(?kN@@|c5Os4$xuAneVGc0!N>XZ>mesV( zx804{xN{1dD1vwF`IdF1mqm<_V@}A_W98yG5%I89B^p|@fQMA1m~opmnJss%P7hnP zlFFAb;jh8i2aL*l)TFrt82mUt&yV38B16ru_v%LvHsN7cpxiYhE%Fx zylUk+;TtNGTUurEdfy7#cqR^sLn;|@z|7^keFBY89NY~PUbk>3Q$Oh3H&u+-MpSNz ztrlKMmnNl}5!d~_a(BvIs*4c-j_Vp+t8Ir^*jQ0<_4>7z@k4Ghgq0wy&NSig*2O94 zV{1F9bzS57++=Ynhuo#fYl}BRn|-k1uWy9e%FOxYOng6M6>>T6<0APqG(t~n#jZ2f zr?~Fkc0``APlh)(LQX|Wt|(Wb9>~&S5F`SNrGpgROvqmzv)C|i zJ84ae?*-)5tiGeKBi$eC?II<&GGe30S#q^n6}pz-<0@VCHbQIXF(cne;Fjt8Uv9A- zVH)_#vaR&Ktr6B9XUScYoXI!Ar=;|6dohNb0v%L>BPmms3remX^D4mRC`PWdWOnc}a3S)=hnb8zx^v6ual};%+#)vhR$??pfs+2)SY}N%Xp-60GISFfYiCEJw9@5l} z#*II6kB{l#A$8lFs~BK=;kBEH>l2^X#r$#wvl#m`W(E`5N)(oq+b?;`HpB_pX>LFV zduhV9JORZElbYnyzk{7LZAacbfVqL8y=wH7ChyAYD72!cG-prlbd!)1I|Whj_sXqE z&Xq>7D=HyHq!>-s%87zv7o(ibzvn5aT&tk86n{8(su6cC>RN^(Hg>S1daBrM9m(JK zs9SMz&6W#G*N+)t{d2csPn4_q5G*J~oHD{f;hquZri7&xdpWLfo*bf_V$%MzMm%d^ zLe3a}KDUb{G#Up6oWz#}doO>Vtm0uNlm({t_6~Sqdb5KQ`AqI)ORw*v+Wbbfc$yfS z;J;v3;Ul3@G(J1muKMSiSObB3u>KQ#Aex^#RgIl!Z>t?|-@PH)EJ$)?8|SlfCr^s_ zvy%&@`gg_}aZ|LIx!`irQCqJwhIXz)0gZ;?ZKFHR^gM2h#kl(cb6I-b?ru-*^OcWx zup)b%&aKU`yP`J0JtXWtu?-VJu|;(}Y!WSCw9IQ*tr zxM!RV@@LffXF9!oq@6S&(>NA)4ZU#KfsdgEQT-t6wKiRU2$Rexg+CI-&%1?g;?JXg zdu;Tlj61otd-vEl7cW`wpd-fOwczHVezj;}0X#*$^_OVcI$M}>_>QU!oq38@>Fr?3 z)p=%Iq!U4R+>)7{q>SfAJi%q0&)+5#GTFoA=~|0YPx#@OITPzZ>sO*dOan^{4}H%0 z;R}|IUEP163Cb2rDAV9b%8AUO-R(8P=)dJs(wrP4jB}AJ;k*K~gDJ&XiWKsuqF znj$Jis1#)MoPQnZgR==Lfb)oZD(RK0se%pTQUwnamKjch>aR*6Ut}CDxuZ*y>tc9! zdYZ8E{r}{yPwk}>#Y|X1IfZAXXtI@&cwtSm>zYby+_L|{69(U_{!{5fLDRwjQ6 zx5xFs(pIJ!IuYck+XQQlaWR!7Utbf>JQ&9p2Ts(jy{Q!KE7ub`xvl7~yc7v3 z>#zf{!?7!W;~3TfWh8sxypZ3B-Roe&DUcM|(FBFjXg{d%>EmEpcK}x(nVn6)K^q*v zkt|N_93^x=PQwH)p%)<^oW%2pr)}o?p7>7lMbC2dEvBcf^rE{M1g6OwqgeM|b;);A zPg_E&gH*Ps3HoMLODHmYVi`pB+glZxG`_cKHctQA<9&`8LBa^yOKyElFRhXMRG&-r z9o5T?q6*=Ur(ACJvZdC2!M9I;6D&~9&F3O7^bnlXe|uGJ;w&{@-4{3*! z2(Qf`+BnyQ&5TDco+tbR$Z_-_N_#w)>|AT zw@4GL2F{2t1RRNzvsd?bJ-oz(rHd0piwG@prHstJuDnQVOJK36eASasJxDO;;Zqi7 z=Ibz^2*t$~#7S1Pm@*<+g8umSU&?>_meLq^U1K`-pXAp+4=5tFk2PV7EqI7CFRi-e z?E4j${MY98fCS6qnKd`wFymNd{s3&}H=1y5&UF(bB4I?Z%gA3>seZf(MmR^}2|0$% z8w2B;HlU&ulK7wQaETqIy3^B7xbd2nWWw1L=YuWmC`>@Qd+Vem9#@scq z2$dh)&nhW) z3XVMaVJT)G0O?7rxWev8Ey9e)ziS9tQ|FZcgO(hY6RTje@Wo zWWWj$6r3O-;iHD~UDfW%s&lMwP*JJlZ448WiTg9D^H3R-wp8lPY}`@Grg+YQ@7!=<`~d1QzG$!mp<*6Va}@$E z@{2?Xi8dNH{=m-r5i~6`=kM=A9-Hhn6i0f_v}dvkqbW0}7-cL8wx_3Im=WjxGF{Ya z_y0)hZvx5AYgm9EJvCvk@M#*BM>qy3L;YT09Kz>8#PO9679Ir4QWrchqEsc=R*HLN zGIOMd1S77vjY#*vTNIp6r{s^(nZjRO5rN1UV8b zgQHaD6S{<^-ZAorE=9@r3+mu|7h8foUrZ4=F_y8qu?>(mQ*BAt-{MO?{!A<8tFZq# zS(rW2oNp!^o-ocQ86dAnsr|Fc)9g*KDC}*_uuVCc?OjeDUq&hQ!wbX41ohPfm?J3>pNBY>SRvVotO4G3(o$7AAHBkh=p0c`9k3ZGLhuPMdA*1x=H zN-;A`KLp(+*AnJkI_mHk>nvP445#SV)+LrwN}+PUOG8VG%GKdZ~qjU*WJ0mcxinfv6R^E&?gpoH> zrIHvWCV_RZ{X`YBjmCg=8RrODA6ACaD`DqbqWX`-1ma>;J~0gcBAFCsC)KHGh7nOH z2OZ1a9m>^4-AnzQYt$^MEjkvsX4GIOXD&%0J4O~KHFlI8A-97xvaT6twt`0Tt#9_U z;UHT&e)U1^yGSibuFWymes5^T`Jo`>mT_wK){zCJpr+1_HTnTo$LMlO4NXgszmb-RGM zF{!T^h6rcs-rtOQ%aobZ%+BQGZ?+?^YhxQ~l-C1=Acq#g9tJPPLg-jo>{)ngQ8^eg zYL@N<3mKhy5jBVRkl}RtdhQT+3^7mE30ylFp<1)e<@oz*+acy?YXaM9NGMMmpHFm@ zl%Zx=?wo~H7N^wjC)?5MefZ-0bC?;{ASbf{fn>b?7GGO`7-7C|P0?)RQDz*j2uiju z1s|#Y7&A6mB2H>G&Wv~Q%m~4{Qv3un%oWB1`kV1)V9=hFS$Ckj;8W|jT9OGE()UvzF&sWm16MQba#n4nO>B@ z*8(w1&9Dr*%*6~Dzswv+N>uLTc)3i-FmUWFR|r8DLE@X$O)Jgo@DcABREE{WvDK(d zxwAOtsk+8IO(%lx(%u;JKU$FZwaV3E)38e_K2v+wdU&lFCZixE-YkQqGey@^N=Tp9 znXz-~ZI}Bhmz$ft!Q4rAQ+t&gv=MCu^6RX-WvE5@&P}XGb(=*)tGPm^;jN}3RgOoc zvRz>ZMaM(vH%o02gwW6PGtZ-zTaf13Ggs)hZxKxeZat^GYB!_N4<`tbTZK;MWO0@& z4c=}}(9y>~vHYU>!IbeBD{uBr(Q*Xw=ttZbn$o5>(khm^TTB2>;mc2?l%*RD6ufIH zKGRmp*ef(LC-c)Ia4#Bb?u1YO)~Wd0<%UXO$-G~5iQ8}s9v%I2w;Mj@fg_$*2h5#f zN1)FGQ_S8vgm9L05Gs{Ja}JqjX(3z5yj=^OK4MPMLcbj|$7!L4Cm?j31pO6)}YTd(e+H5aoxN`M@LIy0RNZEpjR2-zq}O2Gw>$H z^RDFhhv@O{^C8)ABD9LK*XLUL+isg{!fsg)OFuf(+*m4h*W6vhrRn#~I1Lg>lDE+e zi=KndW+BiVJYq2~$ML~x)B?VU8qpI4#cqs&sNm?uQ|hCNwgLB$z#8@CVC{!OLOA&G zkr{h+4&HbySe^I`Q!&?>Q8jXW0)B(P;Y=mKe9u#w@x)vodzNpoWsf~I|7s0(c`kBt z?6ViIe7bD^J*=4 zXr^TuPKxHCt8#rZ6{Z6=mQG~9Aa`n&EnsP=6S#*ITF|oC8vIRjt8&&K5lD<=E%07Tor8u!@H$J1_%fe|G>i!xLryd=m@spPm-99YJ^| zsci9;^u;V_JL9$fHg}e4m9R|IaA|KzONuo(p|oX-HCVZ9ZU$*%ISZ@=&RZ(fQd9Ex zvS7EkY%l~L!@8K_N9L-`7L`P)z^y%=TG;}XByg!oRSWi}98{`VAZ#2o)Uc#lg9B?> z_F99b>R38jgOlr8Ffh!q_8^OwRIt9Ku{Ehn0}DR7;-t92mWtBCMwW`!q@#^3P`#W~ zI@D4_%Kq6>%bHZDndOT$*rJ7{lQp=er3Dw&T&10@Etsa9w`DI&S(s3wwLv>z@4}DP z2&%UeuS^`;T9S2#q~mQZ({!=dpaH|cz1u1dkUiPrGvSvkvVOD+YiU|R) zUJEH+JS*kLj&1vj3IVrPD5amJFXQ-h_o2Co)MJ1Jr-C9~dJ<^Cew|4%feT5Of-JqP zNvKb#HHfO{twGcR^1*qNhFGwga$c?ThN1IfcM4r%bt~40jtqy8rtgH1Rvuxgs}n(Y zY3NANeh%8|Ee&k6VCONGZHRp?j$(_HQ2W{qBURh&p!Yzt5m=j@n zXboolW-(iXw-#8gTZ0D|S)d-6LrA1$5qxkYqRnuYwt=c`%~b`SOGR^mdq};bL~}X# zX_=Vb9Q--j($*SWvdXgDN>Fo+<(f6to-DsxV{fdrJhR58ZLl1%#>Q;25rZ46+6T zj#&P+5`-MHT(bs!PFMz73HF?}BvL)=F>BVggZvPq>MK z@3?KTpYeP)@q$ny$zO5(#A>_xCCeZUm)2gk+_473uZn>ZR8n}lWq~zV^t$D+H7MV( z;Cl=vX!eI?sWtY_Ez3M>aO52^P^;rGP;gYYoW{gMBwg=YTIfX3T?#Z>wpxR3W}&V{ zETzA&G?(64Eaj|8l@!Y+Yw)IONwWs`KCtY!2FE@UGmAMEcx?HGZ}H2ZMEJtaFFg7A#Pz(l0b8aery)^n1%dJPo{zi3MMLesuc-YSQuwCYJ9!T5iK*f2rPzn0(?$hltn$&j zFj`X!$x+r|5nCDc%??H_zWe-ZYA<)9nWqZfqO{kZ&aUy zGmFb;wFnZrx|!6oq+HpW6j@5fq-3h@iJ5%iQg*Oal6a%@g5 z873$POV*VWb?g$+Psjcc{R*=)L_b&dgy`qQZV>%!*axDYJ3B!1)4U)0*|O_H5FZ>uHQur`L2I0UEnDAZ*65+ZKB*JeYFyXY&uLyfA^z&qQ zg(z3}Dnth1s1U_x2$y)MoA6QS*Hmv2z?Pj8f{pM@2vXse(62lDBt(AUkP!VOyb*## zxFSRc2|t9$C!7%a*|7&g^o4Lg2-d>)ASi|3L14n^Ab{{Vhzwk8Z z=f!RYfe9aj$S52P0toMdXp?X)h&16>5NzHGP=Fl@f<$-|1SVVwg17J^h{)9f*s=#f zKL>Unh#a?EEPbNd4&W5c@Qj+HI&>)u3%#J zHMXIGw0u&}VnxM>3jSAT6@s5a{Dffy>D!H=#oCKO6G@Mq3d2L9_<4$-Fdiw+vIkM= z_zC0j5mAe5Y~edp{4Bvwn0_-YZ!8ywpX+Un9m|Ia$q-#91SOh9LtsKuqV=}nGYW9x8b!S7c`7po+_Tm@m;hQNCkh#(c-FVzLO#tQD9K6H_N#Bnn*@&6DUm zCT7!jtbIKV6Phnt-yt8?DId0Wh(@W+kq!B<%~p&(lxhUw3IB~t`ft?s|3>ZlZ`9uZ zMkW6@>fn!2;aW8g{}`u59sO_AiT_63u|{cm?&ZUb`7m=nOtxay^3{Ba5AtD;@?nqj zVSnYrp60`z=fhs+!(QiN!v2WXzsW@zdz%k?pAY+x4-;xt2#HX$(X3y;V|SeGI8C^+ zjn?1Khne%R8X{52Lk0FAANFT1CM{_RV^(*DOs(YR0G_P@vdCWpks3HFKo0$*fuFtQ zHo6tk3~%{{&c(XMRpd493ia`otAfiMU%8j=GG+M6?LC*Fred*ZdmoE{r|~B&7OSXw z8#%babxvW&*I3=&X_#0mfF0F+=0mqv%%$P0Bhs8w6pUw49*wv{Wmh_wI| zVbI&5`r~x0tz5=Vn1P6UM2aBXLv`8#?4~*GF*9GL0Ew( zA%i-0lq={GrBNN_(mI`m7IuCE0bBSL<|#X=4|#xlKpA z$Wxz0jpqc=l!bTK~R2!HHi3Nn2aE=Cd#o8WC)4PIU0&VFk@6c_huHEEXMTNNt zPMUF{KLI@(s+TCL8@k{uWr9MNi90W_e@k`!<>DQLk_EjCy&B49oKp+xljA{sdIEl?&%#fs z2>kdg6q)ytXLq^2i%`bkaRS;nRG&jVyUYC>AGBs(`wrAO?*%nFh50@Bgs6L;zgs=} z88)`axq+1Ka`C>xHWkH|@_>!Axd?s=md4K`NO~AstRgY48ln=avxTIU{xj5eDBG|i z{V*{7fCl&}(?Ss4A-@2*3~MLURCu}u(5xvoYJpwVB85>4Oc=EQ!l(r}q5)yk0uw3# zK-jbZ!lngyr2%2n0uweZfLIv-giQ;uqoxLhQ43TUwE)7X1rSCpfG}zSc9L5Uxf@$^ z2HwmWcrO>pTR8*oRQUwQ-Y+zh;NGw2TpZEE0sn}N4&1~z&OylFG=p3T5pHUsb23~U4$c)w=g?V5pi zYX;t|8F;T|;H{d0{mC16pJw1~nt^v|2HvC@c#mel77e>O18>m`Y|$8aHX3+;X5j6a zfp=$-yg4)Q-ps&TGXw9;47@Qjup9VD-jx}6Q)b{jnSr-t2A*OD-jEr1KW5woDAX2Q%;%%)oMQV57vq`!54;zYHwP z2Ht!bSZ)ox^)m3z%fK=kZeSTTu!u&oghukNE0X0ilEpKUr8AN@T#+oB1{Tdomdr>N z%t+pAMY32%vQ!#aC?k2F70KJINEXOQmPZ4NW27C6V$QNc{PCs=L= zEISxHmyzorxxJTIMfF9ndg}YBkc25~=B?2$$^`oPu>DWfv7$~MgfpF0lspJoSJAsc zXw)idHCXNhuuucn2XmT72!p;Mau=i}gvf22R|)Rzf5Oi6oK6=zSgsN4=xR@;$IAAg zs1=I3t)f|>=)6^w8j8MHMa74p`m1Q{5OnM++OL5(L*&}JKjHEg^-iPKLs38)MGi#= zrIBSQdOMA350eJ~EE*>JIi-nG_qIT(0j(%|yj%$mbE_h;T9_OFFe6M3)M!4o1Wnsk zv~rkSPk6+2wAEUjM&*agy+Jxu!m01fDyHas?9{&9@;Qdo&?}B3(WS=;#n|g_E3S@ zoHl(n^6jA)vr&mXG;9uI#yObld#KY~)N>CVn#)+_U*++&#mS$3l7v2cf*)(bpK*Npf`xd0MtMm79ry+)ZV|!G1Tb3`fzssZa!(vzx*rIPzVDJQbLJ zo;<^e*<_sso5knoTZG(~COF=6ra{YOTaXO+O&$+$y%6n?$+Qp|Wa_dAYE7nni!g>Vc`lZR1I%8`8L}43qn%{Y zmIY>1;*N#hES9@cszVhQ8oW#{49ZiHa#%Gc*`$CZ^HFYZw0sOy>y0;p!!;bVFl9MefArwi}XB9*wi7u}~FD6m*)r{>~jd4mMuQg1vZVkA{(2+Ih_86)fBL_Q) zV_m&m#s*{Fh;GKpeiSgMvJ-tXV4Py;RSfDML;YgWni#qmi$RE?`h*^ip$)`b?AOYA zjZ1}E;BuliJiN&b@usVCNh%jp4vv+lqqk$oxEAeI=TaU;ml(iltPsncrig`kZH*jQ`jq-3Oarmrv_dzjr@rO>E<&NxHj#7Vh=D;m;JxUMTj8S`WhaPi-Sv3f#>HbJPKkmqJ}{S%tHSq=rbw;7d)r@uF20gb1= zaq?)24oCN1j6N@T3o7Sx~frS(NVU6AOe2Aab+wOqAARBt}MkNUC&ofJ=lk|0F! zbTJ7PyFibVP=O27cPobf0^Qn*xqpGWZQY*IRc>D4#v`U$kUxK zh^qcO4n;PeViP-0uCF;StG^nv`2ro?2?@GD4R%31F3_%BP)8T2%x;YK1zNfrrN_~( z-SRAeDtqKb0DJaeml;P5_sUBFPVJRf0tD=n*8)7<$0QT>%aOo7?U$DUEKX)n^ne`Y z6esGkezJ`J)KM>SLAB>;y~bowCfkK)MZcgD{A zF8}7mT)u4rmjRn?too}{JWy@Mrqj?va(Cx+QPz$GL^s%GLvO~*6*VVdUk=Gm*qhoN zhJBPyp@*^Nq|;FixJz<~6K5>46B%dk6f%bY;*#Ws8o#9?`r%F+iXIDo@%`&mBzWku zw=TKq)aVH8mvo9g0&z~KXGbuY>D28ggXE)fsK#aUK5%)z&xRTZF22XGM@^@R$G9d} zjzKchspfG8OOHb&)9LwfX4~lm2ILuyIDs|z8SOoR)%qEIK7r-^8Tp+=+IrHT#PYtL zcAdn^wVpnm#PYtL+Mi;u;uH*?^>qIf*5370^E9%rr|G9hTz zl084!ud#ONdU8sYJ8EPHuYs)Ob&!oj<=Okxid5M{ORRAni64GQERQ0xQ&F`Hay^4u zWKiH4)INja&%g-FpeJYKmR=d6_*YrT8uB7{Ko`6Ostsr&wL1%|ERhzUMdK3b(ph9p zB-e8=QxYlo99oq~+s=V|BE2~W?upd&JV!>HXUfaxVO}Lti3=PVdVwQ%USOUtFUakk z6Ga6^dlbMLP^18@d?A-3x48{HX~IQJl0=$$5nYu?7cataO(e%lTvFdlT+&7j`|A=H z(e$$1&55~lAc_neDkEchoY}uYn9}YHG~Bdj=AIhA12!6f~-&nxHCBhvF0znM>trm)DCcuX2Z} zS0ONoR6mWIF*^+=Ya;!T#zj_4hozKAGtwcyh)kCU0@S?*Axxy@*C58|;cHCU<~mHj zL|Stll8MOckhetgy}@bGH@Ls#8(c#54A||7G&)1>q}4Mb81-B37hF7pdZ1DA9|w z@-Ei0i}d$htfLoc@I7XC@gDT-MQV0m9;I=0N(9#;TMLjcWG~l+i$gW*&~d>Hwt}S7 zwgOg#=dlB**5EAiFrqzKG|UJ?HH%Ig#km>Tn>ccy33?@q4w}%`EGle<@tZ{h%^0XG z+HK~@f6Yu8V8N(o(Jl)|ezkC9cNs#HMVn*{a2CCgAv;;rT7l4H(HceecghmI(l!IN zDe#Br?xqB%B>0aC6%w6A%~UQZQsrW0l}l)v$yHjRfxj}D_0JFFZqCf?gbZd4)Bs!nTgoc_~)c zmyaN=S=8lEu1362;_xr9d7C z&;Id>{Im0vnG?dk6Nf(I&fotGd#5Za@SL;ueU8bIMeCn)w>^E1NtQ*8U+};zd?9xL zmi_`0FpEmQ#3nC`!d_zjWYNBt%*EyvNBY0weCu988KMKV$U3jNbHiUV>+2dQn+hx^p;`IhQt1SBU4G+WJH<&Dk>Ak=XQ@0!p_F+oQfvI(vbZ?P%o4npaci*Ov zx2XJWN_s1|26*@u)BQG8dj~ypo94fh>*$Ph;2koopp17YZw1wO4=jp0y$4AYCA~*v z6n%Y6V$ zHvrY<&^j9O0pq`pE`PurT1S;WV)waDu)YYJO@Awq#(##37XFt1)JM4rNdEi?>zPSD zY9MIWb-^i>XY=5pMQAw%g?*3QlQzCN#q zQz-CX2vZ7e{TG9jLb`8qFRiGLFh2FWF42PmN@?+7enr~!4J&F2ZTlwbwnhomrNj(W z#^X0l5rtOPDct}j>6B3b7M)TK$M#=zN_PN18>J6Gf{oG{;JF5x6i|M~2hL*(fN~2h zEueG(xLZI80H{__84R$vpfa$UcnqTNjq^hNPaku~;37iSG2nlu?EevN1Pd!zJNv=| zf`1{!78e733n~5pTMH?DoSACXKggB%tsuD+Qt+P~3wjmJ>xc)`y)f$WoW>Pa`~Z## z>>L>jE4={f*n-nJnq!N|XxdMU~X=l!QTyImq2UXn2XtsGgNSAFv6Xg z?QrL2zIEp|wDdsRw^N{p(iLF4htd<^vj-ZsojMm`u(k+F*iH|Ma9U$erIzjw3h_if ziNZZm35m{mD*jI5IgdVcAzJ%#Azk-W8c@AIOpdu?FHvYwlqk{8qDl{dFGVqe5_K%b zV0AH+A(5pR22!H>#ThIpj!H>%vp9xMqUt3ubP~4S!Kt$^b8(&!41?Y(rS0;;l?%2ibQI_(u~L%O1vW<5yfrBtGjnIr8; zd`d_7l&*O0IP9hC6_tU=RkITFh^T~7*-MuzDZ>EjR8|H6EUt`V_S3e?X!w45Tp5G2 zpXyeDQ0=FQRh0GshpT{OAKej=`=~@!^z}X(R#j;Zu(_(z3cy?yzOA*z9H$e|ZCFv2<1 zr6z+NHNg^;HJPMaEpX1EZM8V^eJu!24t1{0*xK4m@~Sq#sjX;vM~ zgr{_&j?zH4ls<^a4OFZyX4eKd!$u`Gz&8sblj%lX^guF|sE6#yG`t?tk}0_!(r(g? zdKjRaRIxsqzL|pRBXSANt`7lPLbvKGJ-n8PktvNEIDIQ$TdO>{w*jij!yRhh0Fr%& zVj7^Tcj$Qo%#S6*)En_>*b~kVYK=TIU`t|4>SuF*u*oN;x4)c|ThBLu!d5_y<`n zbsHrJPRHrA0FOu(U=Mu}U^kU)41j}1fY!O^d_VB<)L{#%@ktV;Y{RRf?=78KA}=+D zRtio}XukmQbWMN@^jv^AvTp*APSpTfKNEbie*clr!P9wscpF|B`1ew>GV)S0XrADd zNO1yK=%fH^$SlA``XoRW75^Ef92TXN?o;pwK4%7F)zaE>Tck!0`Z2ZZiM$>&(nPR; z;k815DB3H)I!Y5Dg`NsDr`gcAE^M<_Cv(%#*IAzj! z0p8Lw0nXEI0Z!8u0bbKz0Ila`D^lJ@OrlszsHqF6lKMfXOAI%lO zOdABqp`!vEqh>}%>;M&aneKFeBFE)lM<}(+G_oU%gv+$ABl2CQVx7R{GEMKK3;{58LIp2Vd@)}$)?&*d_dlg=Lz!q3VL;aam zsz17F6;7R;9Ea zsG~}ydMcwdf{q|?&TubBJ9|RutCZ6dY*iZ6OBn}nt(P)fqe}&yu84;xb?>d%X;BYc zHQx4%*XXBvK!d6j)my2IYzKNPlkDD!@@o~tzjArrEk(cdQJU%A!G|ZTvP*QDL2O@` zl9#A$U-b7S+SnJ(yA<0GS&xdWrbhTf-INu@DP=P{$Sqj$DuAa-bhRG_{wUS&ugurz zhLypGq>DT%kflFH_$XBvfZjSvzYb8sG=gdPLTp*dBBiM50HrBK4^o_&QP)7UjZ1n{ z6@RW+<8DbB76<}|fl6^LKB*c$m#BsKwgZ*kT2v)`QWkfxNO?Lr5W;nobV14xEoFBd z{OfeRyCrCT5XAf_-3?ME19S;iCIOrbR;Fomb@00X;G&)$TO(`Vr9+aE>9?8q+ zAi3jUh`>?WK3ECYGJ4?Kr`K_wC8=Ww1nelqhbS`vN`-Pc%R@o_C%p<)8aaxGTqB$6 z15@pPqHojT&?S0^Vo%+MC~lw_Gz2EhpOi2J1Mw$49D)guMqP#~%^buPF|v(JwWs>o ziWdb;E?Ov757R0;41W{tJxp;#zok*uP>4nv^%(}iOQY0b$`pVmVVJRLv@r~uuQYNR z4k5y&@^ED;z^mb$)@KB#T^PY>4MuX>_K}M9-g&JzBxtQS`GzUoC~%bGf}Ep9VXV{W z#waL0;L*w$fUBdGu>j4+aOAo%%-nS>N6sCKn%vz!1D3v#2aKYL75IPYXW-q2EEh3xQR*xu-6lnc>oh9DbWBn zla-|a%O@-004`HF-=ZnX1YG)lm;yWU1pPb}?L9%;ra}NtP|0b^e1J{Ul-~fnrla?_ zQRsB&)om0v9aHZ(J<&je8R*~RxV2U00+gGHf{xR!nNTB-$ZnPr==w+-CnJV;@tUY8 za-Xe4VPqb~&Q^AVX3uP87eK!`%68A<0RPVn-hAyIZ=gh zWi_=vgz+H4lP6(dnjm;vJ;^2VkH4!$6_TB zz%NqS3h*XUN!0k%*bhE6_S2aSDA;$g5=budu!Yz|4VEbD0n(Q!8v#ZwRW90jyM3h_UdzHu~7Gp0{R4h`&eKKaH4{hGA;I3_h z(%S`Z{zUiQzlKWPzb3k6f!4h;xvfPNWZJV9y)09=b?8@_UawPP02Z!S2%zi+Eb20@ zLD6Y4_1cKa%JfD9D>gAnwav;b+#M%whFrd(=bO=?xR#E?(*7nk9`cV1=y)X-pn8H5 z2XHw-BvD`@IKQE{iOMQ~MO#qn8!D5;*#0CX3RtVH$`XJ}TN&%U4Q9d{dbkbq+d$si zq1OyV+Yy;WRd%4?l4#}*Ws?(|%cF$(JPQ6EZbAy&_95 zp!{g}17+7l#hEhBV^@4@x3UMs5qp%q0Co3byp!neUPv5n$M-Q-dB3s)*tPvkGCLU> zB8EODD_tDK-8RM|?uBi}|pE|C7Vt&tVSYR{DSv`NJK!T!!lZuFTP@ z8bcpaAdNA!^q{g1pvv#c8h~TJqoZOd;1GH*hMpc`Ec~#t0+_3W&WNE+5@U6apz~ws z)Di5+o{-&9D6}Wk{U~(M6S{F!Sq?Dh7&1Je7spT#F2Ij-r0WS}e?oC56azqwlNgaF zbmAmOc0Hvm26p=trwuxd@p(c|Pbv^N>w5Oyw5;5;_2=g41GL}Jq!7X zCx>&8@_5>L4$R`I`FSR}c^*xPC;bHoV>}hU$XMJ(WtH>y3v1k3Q~Y*xqT5-e2ZgU! z3W4<8B~%Sp=9f|XczSjja`BKlT!CCXq_`_+*#)X|6>@Qb=3T`Uy+D=Ipw}+Y-85*q z3$!?0ISk-^jU%(KDJj6VTvrYO47kCVQwGK#_tY6sk{4*$O~%~+z))YH(|9p4R)-E0#RcfTaX-o|{0BlR}e$I;3=N-99lyUJ+*k9*1mfcy89G=QZ0 z${zsJjZD(aq?`rz#iU#UIA>Br_0C+0Oc>trr*alTO4y<3MaumS*0b|!5 zC?|j|d5Gm9ojyIpZa$sbKf;oePKO@B7EhC=J*!icJ_UY8|8FM-JjI(!o&fwZ}=F;PZ z65*0AbkTu>m~!HW+#lh@Gc~EMt@EVGQz}ggn=pRTlr{Qih*N)6>P-y^v^4tCakC4uR*e&PQ8W=u%0SsGgy)hBXK>w%Eqd{ zo(8^AMraqsI&s;IA8Hc@%O&EqQisaqV8Ow?bPnfOo&(!{J-x|+@vxo(-!eG&7Rzu3 z6?~`EaTS-wnA@Ar@~YaN4m_z>H1<9G+1*HpE@y)m=8NCKuFD|PJDkvDP`&q%g$$bU zUKxZf^u70rw}ZH+1&7^d?aBR%;zyZp8ra(C6KV3_5aUF;@i!`xNR2+AtvLSwfYv3F z@dFN`63P1`Or%8G`cVl5u>Hi5V?J?)j88CF5~k%hjX8xtw)3+x@-B!5BU z5~;>N%1G@>^tmVQtDfV+`HRxsBWzmem^J+HR==z$;+GYrOgptZb^EF~Ay?p6F7(7# zWw@5PTuBg>D;ZM{G;{w|+(EPAU#{&Z0F8#PoY$4p3K$tWX1KKgr;5nyRFT|JaN$uC zrXo6~vWoi0M5}0h%sW-IdXP@l16&$NYD2;{rLgma&`F_V z!={8y!mcQh;%!vXOST2nNdU772)>k6K%EHCzo0r5;CexIIzWd)>TH0sh16dG+7xEW zy@l0rz{=RFGXP?2MIB=8IBATXIudbr?6`nd_No}v4fZO=Ce}d>)!H087?q42thHIY zSmUetL!pR26som(2Dh0iIjUh`VQ>^I=#`@yf)keRPO2|Jv=d6P&<7_}+(M(AQ7a4G zcUH#(baGJ#1MF~7hX6RbBEuT$>Z-N|SmKHd7wI2YwKqTyH+2bs#SJaJNd4W_aDe;n z>SBNp4|NWJ?4ia0OfI4>1^8A(T>-GdQ(Xp7wy3%m;BZkj8lYn_blXKbT?{qLqN>GJ zaqBm>IBJ$fmg4FxfPN(~bXjz!1S*k5jY=W|E__R3D6*(rDRm0K>QZO}?iEXOMs?7lGevaf6`CiaTbEVs!J=bXbu7T4vRs48<Rn-WsrV+1E(}>rU>4loAHC222AybDB51X_`pG85{FaYSR zYU+G|km~9}fUN4O0boK6H45Ns4K8_lO$<&Jy{oA%0+?M(ouOUa#yjA!3qSP0OAVr+ z+NwK}$JORGKd#MH39O@vTjWc1xPx2N<)-hd%grlUkDIr+o;n#MU+OW*xccf)t?oT4 zfO`+T5&2o|=R72I%FvO6Cy$ziyWuQq(*QFei}p0&UM|~^Wne)=F6vD~%#SPzZiM-f zMHd?}^A?Rca$950=iWpefwY-TIP!55?$>@lbEPh7ph;8J2P9K9aHuJ!Y8KUMrq0mn z*1tLG*1tLVHdPzAHb#}iiZZbUA}6+>n~l_d)S)@|M*rsOT;#mloCnRn1=@I+&a_Z_ z0(iE>pdF?a8gOW(E)ZBN)f+d#*ITKz06w=;I{~z7t#$`k-CFGoAh%Wn0P1?96}KtY zTWy9r;~U;;6M#ZKh+IKqeN=yd6Fw+*1vU1?WR9X3U$s4e$rp`@qJTCGF1A6HqNsUW zOv)%a)E2Wpib}PEE{LLtcIudd;_j9vR`oAR-@0|PC8zdk1Du9>w}-f_qx0?6x!Miz zA=n-ILvb{&vx-L{tKjfGyrWu+;2*xMjeZ?n_ytn7jyiWxBLJ>;Kxyl!Lq`T@JF3I& z_?{Jaz|>;x_;G__O>h;j;z@WXhd&|^P!&JTCN(~jijDUDQ1SIn&x z>eCJ5lR_EY(4{HV%wN@OSt^`CQ!AXI9v#utXg{?H&F!u_l2dop19auPL*i0sb$7^S z3Kb0CVt)-_R-Xc(&{D|IgZbO^g#4$_gr1mkDfGD~y8aXm?u8LQMLT*yHcydfZ_J`o zWatfHK1Dei7}!UJrybhV2a-Z$>4UM_f+H!lor5@XMvu)!kNJ*O@vj+?J@GH&ebs_= zs;^ofRImF&*0)e-KPU)3pB{-*fBnceljMf11XoZ5g77(28K}0ld#=@lXkd_9YPDM!{+OU=Z(CY35K{V_ zt`5WmI7elJ)Sm%*2Vwr6qvJv7fOF&(jLwOsb-`*7z~8|Tk!YGUNSz1pZV*&fG))=3mF!1y63Hi6C#!GI=E z&7tZ5fCWRDQXQ&>0&6o2OH~5J4&!_;hcQXVFttA-n|=@_*Yt`07bfdFl% z#$y@8k42NWlifH56UMtL#RDgxukpR#1azxJ>I8I;M7|RlBuqrt;TCx!j3|i)PeLOk zI;nxulhNf8O`8nK#htPS+D?H9BT>Q>h`K}$Q_*P>jnzQLRH(DFRDPP;5@6sosxv>2dm&)nlKmDJx^(K)qVh#enmm2X~nOY zgs17|uaLph)IA)g&1o`)W7T*~r6Mo{uc==In(~@bBQT?XC;NF|{X2D^hkjX2JLjp* zT*a*lrt6FgY`_ns3X8+=z~(p1v(@DP8#1pZ={L-<)l_Rf7S7eQVLmj*YIs&-Y~}(~ zVJ{tD06nmmJ}-d6!OinRRDCaHEkw)r(!fPnjQ7$Xi!fpKQrE>`wwF>DqyP3&)kvt% zy|gnDYs6lvV1VJapN1IJIsnlI)OkM{4Uo(IRBs8EpZyfR1X8`9ZZ1(<;F8B_sag%7 z@lvcw`{>uDpxj5dm#XamN<_gN+ed?=AoBa@a1_LPAGt2WK<%SR%g{My+P@6qWu~Xg zz&eMTFGt7a(9Gq?kV6^EAuTyncLk#ntyYIQ$m z9S>6G8ua}^yxB*I2kF-sh}%;-7J~)$DZPz>TtB7WvFN9z6cY=|rF1J6U9y4jCtr;L z0tv#tfld)9H&FSt5SwJ0wHDo#Oo!HjXEGIChZ&embJu|~nI5deAm5}e>%sFTEnSZh zyh;D8M_o2kw+(7HfDIea2}|hf2K3qzYOxXRT|)adf^rF!--N!nLrXTPZ2_)rf>hvM zdNaoJ4jtMI$~#me4y>1xJ`UAgPCMe%Dgf8xFsGMOp?KBbPJBbJZxCcla}JxU(mX^V zB_kfI`*P}=03ljVX$csWurPl-J;-a zYJXc!SvH<}>{6@KpW85pZ&B^->UJ$lrOCFGFltU;YOq7?sYUrs#baQTxjG%(fy&(? zx1Cs7uhROR7>KL%ekVlqD*5eFXWCsAh2C9cOK}g()#&XmEHYPV{BHGkE#>TT{0)yQ zzMlx*qxQ8EAKU8NZnMQfK|~YE-lJA_6j7MDOD^KRBIA@=oI>`)OL^P9Xx23vvsWFV zW%|0tmKwOu!#{iMMTM?W*L~_9fKU6>bs9kna1FVzwmO~N57FI9b(3L~ZKb4SHPm*i zC^ljTxt&lOk+rnKtX4h7FngXr1m1Z3TYbKa<$d>ls zTHKs^|E~HWCH{A4zpYgHkQ%G|i;f>sM>_tcwc@yF1=y6P_(97HQn$lub32iwZ*&I# zwo$-Rn~oh;J2`Pw?{l_4MU`kr6$&mcPE{mzj7C}Gye;W$Ek1N#QoCqTJulc&hMlDx zbvgo#_ZKA|QP%)8J*ut)xOtSTG4hytPAL{4S(Bua>73sgTEPI+=?l3Lw_ zadeWRZ>nK-;-hx`qF?ODH|kD3s{IFa+$-w&huYhgQ`$78(~4S~jDJ8hIp%&-J9=4S zQ!VOy3k`hre^uRgfJ|2#25_tGE{iA|(O2&!2$ASLT9hDIRxei+b4*`2vFcg}ss-EYws84#I@bWR6=Gw{DeLP{KWU3Wv1W{ou53Hj3X*`xc;RbH+Ev#NB9yzu?{lwcT20 zeYFjxX&K~ptgx`8yY(zysyDkO&-w17$Z_6x!~{%k8|3EQw6Ky}G#-D%&F2f@n^Z6FXLr; zmb>XP-XqU)EBSoUC=UC4i&1>#_bo#4!48kG_iniB$aY3`>c*6z; zxyPR@Zt9M_j<;5`+=thF$5HIQ;ai6y@+O|Zv)nYde18SZ^2Xotr4KNx{q}W`yKC{1 zVXl*a=fy1deuD2FiugOey9oUAuCG7<%DeY)rUk#b@7si8(*xf|6#Wx%nwsujOT?3V zx|`{tZ&Xmc>`H^lK}bG+`U_k)#h)|Y&GHD(hIn_tBfMLScb`A94{nG+vx{~HvwQ~BGVn3KvsEa;q!=p4hL%~)GNW={+` z7KCr|+{UT>GlF(XXR#ZY%NTvSgqtJKpEqEqTP4un2*tQSe=ie|@odsdP>vvfKj{hb zFE%|lE(e*jZSP=zJM`=i_RkEuFM}R`8RQ<#j2kNEr}5_xxbN;ulw^@k4Dtab`*q(Dw@#oHgI}WR*^VdYr_v!rIP~1-E|2bf( zJ21V!KZ+~q{XJ1M$l#AcaW;d0WYALCm8v1ZX4oI!^EWrtJPm#zrtqm^Zg56_X9V}j z=pSo(Dj<0E_ETYQu1x+f4UGm>ZF;(lyE2o%8B=C(-r!GDoL)OH0cshx(X%32y`^;cg|uXoVt82tO*+Yf2cSFs?aLR$!2^Dpy)En0Crkn{BGNFE+E|my7wvs z+$a30Q2PPlz>Z)~(vS&84rxeSB17U7WYQT%J*u$aHQ|^-y*Gpt3X-S-tDI6e89+Fr zP}-A{a!#dYYC^oih#1k7|d`8!U}7{KS>N{nSf z2AIvfkwNSnI9Vq-=Iao+=P9MNUq&eR0f!8#4w==qob@F+WOfBip_BMr3L|n8!W2e@5%McwQk|?)2;earT~LrxR6{VWPC`m3 zU_PBdX$8!t6DX_jNeRM73Yb+V5g#j@C`b5Ip>$~vrK(CyX+jMJOu3UmYAZw=sHcEg zcM{P+VbzC(#tN8yClO5*h8SqEQ=Wf()NdMTr6GsRzP1sNIeE_b@*E`G0{<=@Y|D9M zx;rW4MMh3+w5vi313d&}x}LKd;6aFEg+unSE$8OP9HF1W@=AmO3aOA21_KOIsAFKT zf@F!*_bd{A@}EmDGC8i3DXQ9WtFqR z$aD>fZO)Jx3O~0X%o5OB5O6eeE$}Zl-?p3$tr)*hVZoP#ScPhB2#Y-`7mX}cc+!C( z%N2@tB&<}Z+=;MSVR{$BS_Mg$gZ*5uAn9=c8!dR8l07M2D^8|fgiQ*M4Qvt6TP!fh zb_+cEownr+>CXXnD@+(d*sFj%F|rqb^7+Rh^LAR)Lr5>GeeDMZL&3*5#LX>F12 ztmD{y%mTYl*p_p}ysn&5crlvsXB0Y*C3wz>a5`nP`IHM5IOHYUayIK#2*nj@?jw{``1uf_w8CQpA1Z_&W<)uGwer+C8b_!=koUhl*pIazlUrpkK2^Zf zR)MMloV*%(giyl*2dHIRoZE`{IttTHF}|Kc_-VptyX5@KA+w#KG}MqY1{y0AILC<3 z75*{MOkwzWMzl~!9#3egAlaX=XRQ@(crH@fs7UrFgtQZQBo7zzJqdKMz=Q2*Th1h; zheCH}h2I_!x+)Y&By?9eZ=k1uhuawXkRgtSTrto`VaeZ&=%?_*Q^Ej+EB_D%DNKGw z7_3m`U&0WD(XY+(?`xI&uNg8-q4gWWaDlP%a75t7Hyp3W0w0d=q{WH8a$g*}f3U#r zpKJ?LfZ6@Cf~QI#Wt>V1OaR6RQ3^667%)MhZW_WQg^nSF$qFsg5vC|4%Rrc>P&W%< zI*)^U{y`{ZhK9^BFiWAp`;3?)z)V?baoZpEY`z5^>_XdezRSk$SOv+fh4{q^LkfB* zOI4m1BrI20T8OYxp{{-Wht99WVnGX z3O5aG6Syt^37zV3m7NxN^t)}#*-@U|dlh0nA^fS(=F{YS|9e2CNo9r{QkYeR5T_vd zzHlf<6(q?Q;FyB1CgFs_sak|n3Z6QIGXfqSO0&9@a~g8iK)e8_J?}LKd&vS1)@NJJ znED*xibCHeglh_k25uuoG zSWCha1<5#uL7y6s_rDp#DbFpdvJ8q&QdA+18zUW9ZC8x3Soi0sXXj0y|-5Hc&Y=t~Gy zc-_xD|FWvo9?Xzz3abp{Q1~E{5xEp58OWpHe#3~o0(0fj!W?vYvJWIsZBr zMzX(%?RV1rOem%hWuSyYm9dN{rEtMO8HK2Ej3}#6=`By>Z`gn$Xtgvb# z;S&W(*oH%?tgt4AP*q{^oAr)5^Fyt};PGCQBkFe4Lx3Su`oG}mBy;dQ6B4K?J;P{h2rfk%Z zRjE_RHoOW$0tuTG9vIl7FeQi)+Z6r{ChSl+l9sSb;XsIh$JwJYHa$c3DHP8@*soCY zJ;FhS?=un(D@fu#?E4XghnWd~Dah>=h&XOQo_}&<1>~fLbjV6Lt&sl%!dV5m%>t{O zSNJps;evwX{6oYg1-a`2;8T#>E#&!kMI|slL#`=A6(HPDkmP?D$AmYA4mokJz0?$AHm8Cq=ki+E(PZYu{5S}Uwt3-IF@O@RnzY0TY5?(6gu1k2O z(Dt(weE;`GC3z!;1njZ@-RT+=Qv4r2C!|uiYamb|OLIm9D}3C7kXE7K7ld>I9zKaS zwWegy5J^jj2Q8z5+&==ytROdz074alyAZM}Oz29;rcj_eA&0<4c`-!pLVo{{+X|n& zVYcN+;zDdApF+=mgaQiR^d}TjXgGjSL?PEeLNSGfLkJ}VrbxU+7NM>}jX8w+3iaj@8YoC+MeJE4g%4vrlqMp)bK&d7gk~0auq|xMiCfC< zmI{H(39S`st{}8gD7lN!PNDd2LVE(Ae+!L7Xvk-K7}7~$)m}muh423)bW<3ypU^`= z?%2V>_EM00bpX8;o*gpJzrHFJ;~3IkA?yfYphE0X!dD9O{vt#wNcu-?W~f5u6NGOR z&KdYtz{5xVAxv6HKgLd zgxLzkUlHaioJ^KdMxC#aAthm|hQsI6& z!fFM{afwydD)h@lSg-KW2ZW6ZlIIeuc=yQrFa8HOIVqboWP2{c7KK`Q2-_6ShY@xt z$Zb*>b(g}y!h}5vUlt+kQ@G_ZvR`FLQHC5;NL7q*SYe8RBMSM8GvY6Wbq0PF9kAENAL~R&p|GJd0Pnw2sgxbWkU)i5 zk%VA@^Rm(6-x5MBaHHv^HBq{wOm{{L?9OakPKV)KJ5(S_;&+WQ&%Y0>aE0u)<#hOg zE96v2Ifjs1VK6Sr;!y}wknE>`d8|o4{?V~cPldV{2#x@D8=q}26Z%@<-=)88IZyrU z9;hIf3^C$Y3McS=D#su4P7QA5hB!%dggvkn$ z9To#jQCRneFiqgDY~pfqPbvxd)e5&U)3%)X_}w{l&lcDtEBuj$FwX+x7uc3_EiJnj zDHP8@_)P$>1IX)`nXuG?x&E@;Hl4$v>|d$ydsf0~g)KP{iHGg|Js)aCO3;3Xf|L4k!$* zm5QG~52<`phaqtaQ|b|pDhzEvIHvG#Bf<#nT{*l4iAg`tGB0yt|Xb21_M zBqGvV;9k5ZExfQ|8o24sY=PaO(!xmuxw?>?5^H~80o~YscH49&npcCI3X-B2E96#q zWgtvp+)s?irw}%lP(UHsFN8u0-$fCM5P1I2Ii6BXLrTUFN+=vOP)ecI6h@R$xHpYZ zRv~UWp}a!l8H5S~yXE2Nj_jN=|E-c0K3t#Lmh;tIu24l`{VGB=g)@H;YAE#GPN=1@ zXAhx{!sPvgdIC66;q~Y1LzD(dVqS|H*_P8Xj@?ZZ#vLa#RfsuFXs)pMEa3}*Cvv3Q zFA!Q=;DNT0mWTZb7uny=_B*$36WR;leLynjC4MLr4^>AC9HFzcc1U;lKkV*if!#f9 z%Ng^G-MthZ_u7p6e{-O7Yp2r@wVj*uAZ8&e-l+6*X0V)3X-N8Bg81wZ$_A^u%QLPRao7M@T)?m zHiVf9mAepT13YF&7xbdcm5|l4=UdI5FR;KpUu0X(cKp06cI!8VA^53Rz!HUQ_}N#$ zGKH%630S}ifmO1JlVbsR{aI~=+gNK`PL2s&VZFlXDTIv*)n^mD3OVKxHYprhMA)KG zb1`9?1&{M^DP@NU-f7}RbOm9z1@6{fX+4(iN-NpD-vYZ2+Llvp4Z9C3T;D=CqA=)B z!e0cw{<#Mz$2BA_j&M?8>uJJig{Ef-XBFDV6V5BFzeu>Cko^+jlETQ#srmZnQ*nI^ zxuQ_=3gMc9+_H_o;tho+iG*7M>*eur@e96)xMP8j&pq369^tor(fvRmfv47#m1!fg=RjmNOf_F^ujs3Mue=!+;QltN86?YYCtHVaO?|0DS-(xWY4yQ4=r%Sa<=8P z>B8;`3KQB1c$`Wqxc6Ols0{GmBo4I;3 zqKN@~|G*t>s{Pe_u)l@E+FpcK3cDOa8-Qw|0wVDG z`>hr3)Ck*hQV-_{qZDwLz6?29p=lK1Ck5QCFA-w}j>tA}uf9N(1#V)3Z8_zmJ?xKG z!F~F&!W4xK(+RGEJA*Jo0e9}pDzgP*Wuqgv6XsdqMiW3djc_16)-=HUNPe3UTp-+kE}uHjoxTLhfov!d1cph3Y2ak-$UQ ztzqecWR<@yaJT-kE$8+v4)Cu+t_Otw6oL{1`TpyTN^BxSlJB?M$nu2p4#<9HRA`x!kOhGEA95&-jbzmjq#}@YvMUrbkW1lW8b*XEoHCGK zAu)szg%ljK??nZ0nGqij(s>wC!U`Y4Qqp1?f)07u{hh4rWL12Hipzu@Mb5}S3uSS8Kj{?6Ej8=fo*bN^^nE@5zQ=c z$6MHzGc_-}TkV(YKV0EeK}s79ksJvaAzVQ+BLE^4%9kW`R#;h@&`sg{a)h1=apeiU z6)JknsQpA9$ets6f^24>1@8G*w&m2Q$nGHu$ezLn6zaDY@HoG! zAQ6MCGfQD`IAN~Bdl7^M3P{Z$tHdfGF@wMog|g=8mkZ32ha=L%h*bvc`G1Y}&+o$i z^$KOX5q?)l-;=OOp`An6s?fr~4uy4n8L?YonSp)$t8l-H3}naw4M7eFIh4Z+Ee8>f zDtt7Ua9p9Jfl~@wM>689!m6(c@fJJ|az@BzE?IH@8Ak9cJTP!gq3>`;+*H_LHj|)` z)xbT46$TO&`kFt3=ds9i`NQNI#ZjMH;Q#3}X~j!7@=(ZrzOcaV|7^>N8O`oD3h`qI z$q(28_Tu+|FhDAW8Iyu|{tZ$=)(Qzpt1uZMfbL0m&}}N+}@qg}{dj zc{!-ZDK8Q&JKAy!Ln>O}j#jcQNs1vOR95J>m{3ij-3mfYg%$?tC_LC85s^il`bmW2 zAGVfjHPoP+404(%Af<+ExtRdISz$&EfiEm@Pg~iR^I|*W+bHDNLkL&MY#`!*eE#8( z{1~aLA#y<%~JW6^1DwbB7E$LLurRVUz+gcu2%(g?u*%KMCMVC}#4Ih_MFj>)$Wh zk9;1|KS5#dJwmhs@_I}!!g2-V1(5+(DIhC|z*>c}X$cz?DufvEQrz!a`9EPokoHrU_yff* z>>7##rWkLE$)-4J3ZE(dHU+*Dl@;&}tQ6Nxao7}pnPRIc@O86h!@%6bB7fmt66n~lmUzJLq%&S0g$`tt0R$3EH5oL;BO|i}t^4%>${so160fIul=s+P~XrPb_`6zHDU5Y2BkSo?`?J$L0 zO-4(u8l#Yly(r}JEDE{Si9)VNqL9mf9+YyO4~1OLLV>GPQpmL@6mpFTgyA*@_7hN`Cx!T z-l(IH_v0w!%_<6ctB6A0-=UEA4=Cg;ibBqoDCFFOLSETX$ZH%5c_Bj~uRbW`^#FxD z{n}57jEsy*-K(#=v5o&DWT(5^#$PE=_GnU6ad%*Ee|Gn?-u_JQ;rTQ@b+Tj=rxf9C zPICMA_Lm8P&P~#X?)-3n?$B~&B0elNpkI$E=$ijdSIjYQu&glWUERJJzZ}%gpBAar zWB@nE?ihwGd?(Bu-_9Qryx?8iDK_&Ri)s7^*Piu`hJI8gqMY3;Ts!7rByF!vI0nJx z8_!N#Z<83aM0T+xJB@g?gsC;gXH%oHFY~L2-z6!_w&vL7^_vek-zLl%ua6~USCKzWnak-wyDZeWBz zM~r_*kUWTg*gkiD1U4G6j~iY0uHu$)iCy)sMi^cFj=EtHco;UlZTVt4?%}pJzpH+u zxVp^)jFvqp8T|X(&3rNb-CTA3yV`Ltb>qA0H;U`${~r*Cw3|D>;T?64b;NG2eb>s& zT+Ps(Nqo-@=ut{N=8RgyUEB69@95-D8@&BpyDzrqZ7UeO z=bC31#XF$?ae-D2# zq%_^$)6XQR@`G!!Zke9`;z;rt-qT+iNj9T;`ai@AEJ6yTmJ>=;9(Qfvh|I1p&KDA7 zPA*Y7-Hb(B(GpS#srNSZ!DF=3z1zoM4k_vK^hN5r zrEZ75{#*rkrB3$7d}5HjG;gV8E9RPdtaol-e@xw?2Spws4V+0Jmm;&Rl|te-W5vRx z=54pZfB!^1d7J4>s*D9|3!2#4F63-8maB!WrTo&?(zds?3CP0c>>4w1%oXp%F;~xL z>L%}4odHOKX40p%MfNjO+l{nmrWUfu)> zd5_Gvx+XMWym#c9t5K2N<$bYp^C1?j4R~p56_O*t6>T!|eVJM;5`CH4a%A{2wIji{ zRz0n){hBVR7U>kank?DiDekT&p?SU0g|3yWTt(hkJ1dZ5$YeB%K%yX1J6hG&sv?Px zu`bBXV`_JhamP9A4d`<1i+b(kUAfaL0>au{B(*WMm&j&gYA2A!#?-R*u(e;1x5ij? zC|c+kZiC!u*aob?#^l%L%mm*U0YcqpS<;Vo+0~;Nn}$QS!Y;_baD?x z{1iN;*Iv$6*n95mwe-zG<)eX<vq zBe}b(<|^;)QvdqOqG2l}HpL1=u-15GQZ3SnU&z=RUc`1CbiHi)Q2E4x^gM`Q?G2KI zILp1uM_s>Hwy1pmaHb=vg~^%m8rdvNt==VDOW~KAcjx-+r%Du+4=T>wM-bK?Acush zy+HB^)*_v_oANl#?|-S7JIa$UqxZT0`tZD{#tD< z6K=#cz2Decq?2a>_GC&_SeHKCy!AqFW(W(FkC4t`+;eO0*3G_6YTn)--Te8zv@@iy z8}5X4W_VxMx%pW{o?{|iaEGb6IkhToEj6{ETT=6OkG+}dy-@k&=`_VnqUQF}Qn)$P zS>PSD@#gt_<>ce2GaC1xncLT<;N~+^>yEq5OsyhrH#4+t&KyMlNHqxP!~oytsAC)EdSn)gqm|qf*E-E#ueK3weL* zek;0CH~DPr6k<)gSWwk@JqI}$E6?W+JyL4k zvEjFmXAPL>Z8!LK%TKCCNlflB=wWTbSX-Niwz2w?Y;8Y2htndR<3FU7(gF1TF$rvy2aotQz z&xvC)wcnpz!POE9(8IA5AtSNx4l?e%_J>wt5#u|@drGqwJBuVHG>Puto&T)r^Y z=|W1WdcSO%@JEI`a>>H^;VOi+dw8iewY>NPI@`UaJ0={+8M;uSM&l*U%nk4VL~7oU z5effg2)!bGac>|}i*)Y)hlk9~o4PH2M{P#)VE0(3gw);|;}bqlA8^+jJu{(rmb80h zl{%O>?dpt%crTh2!rGY}w)PNHpN(zDoM%(3j>*o>B=5762{neA*}cyy zLgvdD*D-6^)GA=QvZ+nLJY`c$SJT#_F*Dg%3}z&o+A2&%HnnKXK{mC_jcsiQW*r+F ziRs3sR;4-SlbY&FOfWXJ7noUWYL_sj*wl_;F0rXq!zALQT02`CfN8_V{)n)(iI^vB ztUD$Mn_4%_3^uiSm=erdX{Qz@0~?IMEMQan7Sn%CZ91m?np$4W_jTrbyEVFVpg_6B z@>qoog0R*fGj~m`C8q3}S^-SeHMOThrRME8@Xnxe9!|5}he@(#!fkWRjy1L7V{Gj_ zCdeA=gPF0Wb_P>olh(jgSW}C}lvh*Bjk&I-_DpNBuCH0y9&c-QMVQ_bye-8^DCVgZ>zZb zpNws`Qq~Nq2Vrd(CQ6!GXUvc^wWF9CX=(>CC(_hPU^1kswZbe&Q`_20YThd?ACw%D zM=l9ElfH$pR_;4ndw>ay&T4PTxCfEltE`f!L`+CDa~a#>YLcmaglkBqb{%sMO)VT( zflMvUGO2leWfLFFZ1z~j=z>cPW@2GVd}KGZV)!_0Y7KD>z|`(w2B4{3!_+@h+k!cN zrgjyR{hY_%+@x_}M(Km(pD`)9MZ_dqb3V)#; zbwtDMieBB~%k=DCzQ>MZj)VY3bg4?E%U3E>k*ngiCi)-z|BarStQ-_SWMJ30ZoLMk zCjSsMxL*SK|J^uI-Qv3risG)jyL`WdTrZDJ8`8CJTx|cov0b9N_v$-1ZeS{k+Gj4p zJ&3i6Jlves9`0THB3#MhMMM#3g{O6-$cHYCZtfGOCKp1@%%Vb&F`~owRYoqWSaFoJ zE?dLNi@3Rj!d8(Bxg#T8TvE7&d(=hCY2(~nsY^w;LtYQpscSKj1G#UHazJ?}dhmXb; z-^#7%T8^6#=M|Mh@1kr)QOpL53T_rdqFR+BP?z_PN?hS0MY!#4btq?Qb0x}ZbzjPz zD;|t2(Vf)XwqkA$bvB6#p-Y__7vlQ04@UcX#TmGgmvmgtm=KiZwa5T10+swFJOY$c zRTDCJ$l&;ay<+$_Ra}?8{p_Qu` z8N`+7?&Xg9blkE|E>TrYQZL$OtrjjSikda}u{bxOXSB$GL|@yOxD~O*xKeQzZiKfe zx3!R5tH}fJ7CSh0P~2edVn-Kuyj`?7Zpa|+fy=yOVAPRfU{l-n-S_GKo0-&P8;Wh6 zZ38~?On~dtF_60#p-1W5dJ7lR&4&hD>{=Y9_lk1|B=dZ6U1QB6-Y7+>Xn<^pJs_DE z9)OAyL?cRXmK}y>R~+R*&I+U8ex6lFBKI|KBs`dBNqTfRt(~4*9veYT*xQM>%&^pC zb)Ixxu}LG##>S)YWzra|$*E%r|Y& z(8gW!5of8n?Y;wDx;@IxT`E>Z_usaZnrr~O&`~eYC;uO{r-Evt|G4kv`WJR^zs6e7 z)nW@mQRl5-(A#<%i2>%jqu}R8q>b)G4DMU2d>2ui%k;XzlU(wgFevK)d-MIF@iNyuK{2|Iq!PZZetg9ie~XZbZ7F$%Ni8-zkVYioS7P0%qkroyro%@_M{+ z;byLOk8s+>@|_l~o%kPd7NOGu^%N%_#l7hizN1*La^l2ylK=c?y1apVVy@mS>-~sQ z`t(VZ+DWM|U6U!bf>QP3=20q@Qa2*!Q!0Z}8+R|E)Fnz4&EhFUsZiBYdhax)WHz3f zkw{5pb)H;DsmONA=%d>xl`x*C4p8bh&l-B~3Z>4DUPq~ul=_cl1EpS4%2kD@R`E}+ z+Dh*|qtuqIJheuWNTlDid>g&_g5GSNyn|9{lQz6UdP}MQw8!+`6H3iE zx0h1cl&Y4^Q@NCCsXajNEvD3=ONS`6R`Q=jsQ&QMBa~cCZ>qG%DRrDu&kOO?R!YsS zaEjiWPburfEK2RC)OgbsO0A?+|NmU2)UT8}e)l@1Hc@KyYo6K;RN{2`gg!Uv&71UQ zl;Sa^Zd2+@@h6l@rj)w@PhF&xweE9zZ!V?OoByWNV@l1Q^o3G6{FA9)DRqKU&I3Gk zjZlg5*2e$5Bc^wh-i){)qSOXT{q7Z0>I0?PUX)Sl0i`bOms9F6rJCI3sYR43xl=*! z-J;Z#SxQP}QtGlgkWw2dmAHEePwt^)>ED9r%_EfBc27g8^^_`X3Z>KqO5G~PQ?Do` ztIbnODV5#DLZ94AsZoE}DRrJw@?uU(rBLc*;szHbA5yaW1)f?)sXbfV^xi&7)f?-f z)OAV?UdB^%DAj*bIK6k5QihX7D3wL2)x(QXYC5G{$q|&ol=`$OktYxF1^a3EKnn|g;HA+$HGNm@O;i-9)8dJG6y?2IE2d|Z()HzB$Yh0F6zfdZwJ5Md4)ZNzQ z66wu1l-%K|K&h*gdN_-xexua>i#)ZPQXlW})ND#E-*u9f+d`?3>6?Bd_Oy#qqmI}5 zK&Z`>!VSlNBGhY29V_ziQz9X!QF433>c11}Ii-$w8>lbBu~zw)W^hc#2P7NCYC z2X~80h=ZwP|E|5bmIEt^-f;txjOb-$k;>MoQ?LHL26yTdnJ^+Xg$@U^Q;Q@=MMlCu z^q{h+8287(a3vWS$n_rFyCIFZ4fE|>p~YtI%AoSxiJ^_Tsza?@p*dzQXo#2lYaq<0 zigGoFn^3~;Mrtl$v6OqT{Rh-}!CZx;3ryv>lAB6!r55!Rr}SRIX%?2HNXLgZp(rPY z_T+{v{=W$2HWd-dq;mU)?Gj~x042F{>uPa-t=DihW@=H)AibPhF}yw3ZDd41a!Ib_ zOcz&wL@3mPxN{@Qie}Ki+u(0$nC-)DBij2VEJy-EAE02zMphTaa_{VQxGJL^T-kNC z{|((@R2Qz?row=Ch0C5(mwP-q8Xl?z^hxgJtcKjcagiwJYM~%bG|J1>7^CDSj)@|Z zVI7w+t}0h?NqgNCjHB z$4t3fMY%gMy&Y81m%Bc`HaC17FS6@hgeDO9U&A*Jr=8dyDw;5ND!DB|7w)T6w1y!& zv|P+^x15Z2(1`x$xS=~VoCegCI-v^GoW^aNI9c?TYqpBiuRtz)NFY~cc5NEMWxh^A|;@NvCocBb}0gaqM5TWKpzNcVANXRiYQGNOLV2H5YnEps%bE9DA` zD#>t5M6UzZQI2ajw-$GFWOd+iC2g5Yb4!SRrMYOXrf56YY@Sbz}bLXj0lf#v0!(ZgaZmUYYgBT<6uZ`=x zax(aS110i%WTGg7dzWfMSwYn_-2LtKsKaqXQA@7)0;7@)(nN$(IHJ2;0`T{ z6kQ{da?(xFU>sy9C-6?<_gwlA#ea1H5-7C+O1ZeVn}WID7dPORFD?bwK5%cBx;WQ5 zgQz!pC!XDb>$^0BtCOMO(if|_oFN+S`lfI$imL%knBnmU)UM7h^>U6u3hvX=&T=yP z6KxRFZ@%0^B3dOEvpnh>i|PsbC({D*ShM9`{t;bTTdvipAGn0+a!!<{1ME!hpG_^f z+_VOwja=mwC6r`(KtyWGJwQKj(JKvH{ECtA+z~E&WfbY<1n*xD^gz)oaGMCxQf}<3 zqDnFeASGQ~?7}b<{Se+WTpM3UXh63h`FScz+o@%#p05tla0v@7DD83QK(1?YGhmra z7YNIwDb~%Ztt9gWf*K8|MY*JD3NB%7MbR?90{^A8J?m>hC(#m`te9vYcX3^5QDLs> zdKbzZ3NHvk)|cgWudmIm-q3>h5{Pu2_BkEbJ4JK2vFj^;`|#&gwc&xg^l~wZF?&hR zKyK;wI#9kj+{)tKEUG}8>CH@jP#C(g&^Oxe1)b&u?yntQZp!AL1^dCEG9&kTb`Yw9 z;7wK zi2&7+*$hz~;V922YGs7_0U(^ro^3&qB?rsF>d9rdXeQ+;YP$+WPZ_M_E)OD|@nzzY z99-m-+ts3Z|9<4jl2Ev%hsVxv@!O+ekZUEF#5wA?Lw7V%k~t8OD~fxtz{kDap%yKn zy3So-r+($g2#4}-xaBj9T+)gnFsNwq9dhaR+TdDb9z!6;p=L8?Byedv!<1w)LoQ7s zmnOqAWI97GOd%Hrqs*JL!axmVS_43H^IOyDa2t?*GCaJTR5(d8|8E;(!IX-Ld1x zgJzME%u`66qfxWTTZeF+k0o&r4ke+^JGLme=ZA-LolhvZXUB%E>YOR!a*hUay)%dI z=yY5pLQ$P_6kM+(!??~zleqg(EaylP*ZHs#I3}|l!g1`$XDGdXx`L~DdN?=W#8b4t zYPu3K3Fvh!6mE8EIPh_h+kbkz=nhx?%m{S13-GVcddsC;9L?=MlZZM8Uy^Yp&JX6w zo*gAARlZY6&UN7f7o0U39g59Ta^V+-a>k1zxU}b29tNla(aq!wqIRgYt z(2P5{drL&<(u=VA+_3u@3?PILF6OF=%X*;YQgS{sKmZ>dcNiajl`xh?`^N@2xnob$ z*vbz^ee5E`4(Ic1ndlMs&)Y`@fN|_t^X^0d!1Vnvus|>?J~jlH9j||XC^N&8jD1a@Yw*-OOj%V=p;!KWqevsA^HG3qbk87T#(xE zE|uuC6o8U+q9FwW+8riZO*rac5*;ZJ&_lCmAm|abvWW&T0%5SV1fs6H4v|sHOo5At_DR_gN8>tCq819^s${w-3~wqgnnUzft+I&0m@&BZ zdBWJ%YNB=|4XP>H3+;(d)D>L>$?^P#q9*{4$21ka0MElcTZ=xB>mAyO_Am<2iOc*` zkCyinDbS(P1|7a0D{4ZNOvS0#U36H+rWlHg0k;}qG<%S!5J{yYMO{HzxYu~m6T*1R z6j7gG_6k%eDNv-teNsiot$+qR8wW1>zZU3!X7 zzntUK4wpoKk?U=)ix!YZ`|YOaiyYG29MMuGq_bX#J`sA-Z=zb{xl^A+nS`G9k0=MM zZ)fiS5m8NFS-^Q>jFl7tQdX6q^j7yu;J?EHEP?(eEba_Q6EkXFbOu6Y84v<|q;EC7XD z*ft=Bc+HCr0cS|MGd7?wVf0>HKy}i<_C5ixNg6aDActIkH6);>f=y)|$-sI|v=hy_ zqNCkAX~z#;PkoRt)y4`3)f?zy-ITJkKwi8>z$(BMfE0$v1&cH)G|0q@n2cAFP) zS_Ek%3J4|FYc34fPUsJd0_0*y|6a;p4@nDnTNvoCCj-`!a%-;#nB|aW-V3-+o=5is z?vixyg8&C9$2|&Iz|u;7b{DaU+62A%9B)9GMnf3B|2$wDu!82i4wzQ}GzUKVCLo<< zatN|CnU|GdMKMoQfvDQ=0UDH5{znyB=8Fu(KsK-dceGz!sueE+?V}1|;uJ50bTx+GOK7Z)eq zQL&}CFQM1|EZ$G7ziVf4vJ}$XIB`!>u1zm-2zjnoAMq994ORPzUy-y}y!dyLdIpHw zk@91Qh=-BqKMfcENv^*eDb6No)@X4SxxOMvJcr=}t4m56JzRv&9=2 zTZUL9-_8iyS&Q~P3+RY`X(832KRIzAoALETS?|&1G)NAPAb!!{;jvI)557BTI_ zWZT*KaO@C&AhPIoiI=nLqXic4BN!ojnfXAk_ltvZ>3!nL#MI;Wi}#VV_(Ab5qNIn1 z#T!|fi##eW#yB=6;6ILwXAsFIof2`hSTy7(7n24>z8FDDu(aaX*BRRg2%iH|Th!TtNeEM7+#Soci4{`)n6p{wvRjt2?&hu7j^r0xT6*@X{yCqBn4eEfS}c;hE_`|J9< zxHjV)tvO2n6^6tw+Il)%=c{;x19U-VWoX(zV%V6qHNb+u+9mr)C$-NlVH}lcC2F*< zkR%vi^hglt`g-^zS4mo>kOZRpop?bJiJQzS_C`r=k?W}?CHu(eA5&h^OGU2Nk-Sqt zx~Z{*&R&K$liVP5Oj}7UQjUw2JS63Yc9paxc$eZNRY@AsQv#9XPJFMIWI9VY{O#PS z5AGKZaS>iKNV1k-HX0)NmCT@`CrZ)?ua~AtPLmnV;#rb;gr}18B_fiRUdqd)S}rL^ zc&@WfQiAX{aJ}SjlE!b6M3Xdai=+`rU#ClC0ik5sJ6Sm}u6wumezCp!r}lQE2RkM8 zaHAcP3FN7)osuEYF1YRz?sh?E9fCAHGWE^>QWdGx(NubdCH#g~Z;GOSx~D| zLc|P^s?kNRy@luh)*z{zU_TfpEm~kqIbJ?SN@IqgaXjmf$MdWYnj*Cm*5@QkOE7v} zQkIZt0~keVhH`Au5ENgjOAw0ss8Py7D1v@qj5 zLZ~9-RyQ@?b5GipaBP1lT}V6=Kaw6I^swjBd!)N+^;!B;5Tu*MvJ~Pp)ikny2wl}C z8)^Oi0hr9yo1&~P17Xum@8UX?vP9nuEh;b5p(%}JYSg!_rWtCg6&FKIE6R$4&^6Zv z>v2j&*=9y<(z+b@P7N6>Awc`omccp#3;;jKdXskhr-7_E%SsTHBIW2n4SIQa;5^hM zMwZN~3qTo)vYN>b`>l0ta~W%R$p`Kz>*~NCa7+gos|n`AG{j%K%4m@J%~I`UZw zvN4R^SUzk7s#L#T5;hN!m1Z>IZ?N#~VKOOc+?)}zrNnf{j+KQGnoE*3VC=RiycKQw zdtfLU^|>zC>F-TZ#>T_-%C6x z#x4JYqz$}sIrLJvd1ZMLk>g4Y`9X4hZY}vQB&}RWewd_RevqFc6NM9v`1_NZ@b@EQ z`1`rd=$^Av6`TK3g^7jLh`1{Ak$ur6QNmKdzb*A(8U(ew0Z=K2WKRlJcUw%G+ zKL_#mS1yzvA?4%J`1`(<{QdK*`1`Zh$g{}(&YSrA&Mo}?Q(O7_)3?cAlaXZj9=Wj~ z##@57+bY#MXi@QM9a`g*L-Jj$j*HMt#L8Av?3NqH7QXmr&6uhGLi2Dq8WcKPR+REDEHYp~yHzA{$l* zT)Df##4>yUBOUOAo{F>po`<=86jNDw_@%F+H;V&M9?}LXh6+3s9-?6Bt|?5Zp$Z?1 zXVb!uMkp2vJj@!cn9Qn&m17hgnA>7zQl1{dCMd?T^5B}NxGCkER5@J{&k7@(p@`=_ z1Wlf;VANeis^zwH=nP_77%MLQY>Ue?73JGCCK;7az%GW z7&LaJ0=^TS929}7E>+l3W+PZ4iQXSgK3nXkL4{W+u2SJ~@Jhuqfothn#p3U;4ud*x z3k>hy$gasvn-m`fMz*Ib=6*jTh_>tHZHiIMmVPHgu}JW?$(Y^S7VTCn5MXNWQ}ksO zrRsjgXF(%%GZj-^{xU7&ND1qafw$MZu3A9BMgCiA1k!Nvv;2#D3>M>lS4QK; zwUjUAyp9?-Q1)TPL4e~z&h1JWt{$UY!w6Gyg zoEoa!6~t#}k5@KS@Y$EsmG4aq7BuHWa0PUKXGs}uyjoc{kQWebQHHV@K^_-cWWGS~v26 zvZ0*U!1QOz6YB5R0EX5*9m31qNgh~%#ghP{3E!qRb>LBf;aqKC3BfWWje-6){bUOC zx9Lr5pkMlboPmDnZ+HSX3&rLY3H+eug-Z`ECxrf z3LGj}-oDL&os^6?2yoPR4h|eG=+AK=@SV_OxXuPv5ge@Foxpv9$yEF`PgCm0fyV`% zJbDtiMaZst7HAPn@xrUX4lFMQc%RtvOA*vm8Kgk_YPHqj8y^CP^CpK*d<@i~OrO$% z=SYG|u)NsFs{lgxPz517{6Ww>!5|z@f>sLIOE2=;d+n>d z_8$EvsH}i{ZB;}NF&Im4p<^vxIJmYTU}9u& zHp{T+SMqK=vvlw-p&eV64L&b4Ua4xqM+???{8Fc?Ztz+G{aC$VzenzB9jp{QGAl0F zBFOSr-(Y{c)fpV@Z?_l2g9{1G;vO69_tQ^_!G1qIH!j%kr!ywxWgAS&%POY?HxLlI zB?pgWZrG$d*I+xMGDyz%n4?pJk7@bVZM8PIHjB1sKk0{6;i4OZ{}!X1p>0BO`K`gV z1hq`x#oojiy2bv28+SU8*Sb|t1giz~_UH5TKjmtk{3?WWa3jHQt~?4}EGRPZ zMeqZLK@o$*b&R~yUIeK|v5fNo(F8vVRc#emS#45X69$v%PSv1-c|!@G%I^&y!c~56 zxE!hapLoOOaw@+!bgQ89dqeAbs(pe0o+c`P=rF5=%I^&~+N%8CFs75r--|_eQ~A9? z+Fj-MhC4k}20<|a{ZwiOW5>`pi21Mry&t3!rUH{ksqQfj&P`Euc~u#HK1LNOh*@N! z%0Kzcouu+lJ}*yI`6r*BlU4p%!KK+M|J%t8sj5kWG1ow(B}LK0l5KB~ChQVE4#Rk3`o1TSnY?C>6gKt2ap@O;f6Gh#(yvq^=VP=>fg^Iic4X)l(IaM!VFo@i-MrJnEDH zNay*~P04eQBh?>C`8#FQ?MPa_lDfa{`_+PgL)tb@RJMtFmMDW?7ucE>9)Zd?RWsU} z17*cz2Vr@PTFLSXYMU&i7P2kWI??MPAsW2Bx%v=`1Leacolti~SG%com6JL49p`}8 z043d53tuC6+pCksps@5#>a`4t_oF%R+s^7=S;icSP(4wtKtESA=+N1!g9DM}hFXJq zhU(QgrKdVs1?;VuTuhIO^iqeSoX2Vl?l@EpTgWodlHuyntXxB#YP@2E+RNfkglh~4 z?WLj&ykw#pJ~GL`BPOdeNE$g+y@{lErt#_28S3H&pfgseUj{*%wpl$$25DG^`m(kF z>^l*d#3)t(Y6EnGeA-F%0tsld;yE?L8)KAj1O3jc@3V9;`3R3MsymW~t#et;vL`$r zX!I2|(|1Yv2*s|eyAoDr-BhzIOXLHcyrn)=Fs(T6sv8hidS^2?5QgS{S1>LDAF5$P zcm^8&NWHQEM(4mg9;>~KJu2 zmd_I?14?ViRb~dp*hAJ61`4}E80NBM+=$16-63i+|CrzlNn-0%;_<5R5coVT0}U=3 z!q^+c z7}ADeQH8W*L)@f(2vZnK3L_}2K?h13>cJ+_kS+}KWIU&N2-C+_P_8`+d}{a+&uJC1 zmF1-~6(H?RXb_q?#A-zqOIa4;QC&h>!&HxtmY(zrVOqq_2OjgqqeeXzhp5qC>olR* zFd$?^2uvVTl0xo~iDuvNA)!V{6BmXwj)V04KOyg6LWd8DH8;$VBD-Zfvt+7ma-he7+oy=EM_Q1e00)|)m&3D4CM^mdy@hJV?r zImxOP3WEXWj)9Sp`9UE{-1M{tJ_Qi`NO@kyTbR(lglpmRqYON-u=WH=D;Cw(C(b>-gmxn1+`Q2|+jTQu zQd(OM0BI+To|n?Xx%=ehL0DPsZ;a9ixaGCuV7SMQO4^Df{kaM+fTtSO8QxG+TbY${ zG`2CkF&cHWY&UeOE^vJ3C#@Oea1L1X^0MX)dr)}^-Vf#YNs6sjmi&*TRLe|S-Wivn1_k$ zCiT#sBWBXLul8@^1Pumh`!V*zjc}P!+Kyn0JbUYsw5%~vBV2fbHktG!88fvXSXkhR{{wh#~!v$f|`q&(N^r6{S(P{qG@t-9_GYg~w z_%#d*y4I<=71t>px+H+R_?H&HD;qjfN^`R-hwc&4T$`$)z94i=G^9Q{UOzOw0Ck3- zGa2R}l+&rX2EX|+bYY-q2ACUEe+gGBUJZRJ zWJ_KT-6v$f+z5r0JzDI_tH3~l4?{nx@ zp;(DOLw5?<_kV@95~OGopxYx{^-6U81%#Dy-T6QsAt_YXUAX$YUgy>DSBn?Y`6Yf; zSocX#-}?yN5drK(q|VRp)My>7_fdXhO6giF`7Exi>nGrrt*)CQNO8V#9`3BBx(`A8 zvs^pfJwf7e9rJK&chu5Xr%*T)(ILBxLX1*EJ9xsPIsCMabG7>vDt#R8Mt&lfCy$*9#{5#BF|h zqZ=$peD|HMl3-7T|I{57iv9JMZoY7Jr6jDY@T@@*R!Go8V{Mqwb6{#<*JNLMdIc<)}u{1wknDOr_T7?^S(5QSRkJay;`@*jojv^2QN_r+f^9 z4^bcsC%$|RtHUr$!@qn9D>WiNS>OZke z%W2_}D*c!MVBm9zp5aY2q8Meg`d17LU?}{F)Lq}eUiUEsZ}`(*Ffq;CI#Zu#e&Z8edb-67W&67T1CG z_2sqn{g{;t2!$C7cSdP-^-7eKqL<*#b@kQ)!}P|9_4Tm~ip8Le(Ja9zlf*L=H*Si=k zh9aoYy`g$FD&AaQX5EcJdS=~%I0Dq)E%bfS-obhuIzL?R#9>4A5@vJCG(elLAEURD z0iEvlx;2hBr`8kM&559*_EP|Q@Fe|D%pz0f0Olvs3ua8$4`ptLoS86a=9|^;v)Ikb z57h_1NYVFTwXON{^r7fkyxs!woIao+a;Z?}LOpzO(p+D9-StK6_62eYP+wZ;`=C9G z!M@Hd2m8`3)oYpUE6HF`;Pln{0dm2Za)BXDo8gU(w`;ih{Jj~)A#_6 zII4%2eFyN}WBN-Z-Eu;|pQL?G@%J5P`1=>m>Q9mD=)C@t7t&tu^j8U8?Y(|8YwwEV zKk4DLZ(#0EeMuvvkF*98%j;gh>REQj(z321hG0};v7s2gYBba!Q!TyKu!^;(_oEq5 zT3>|{_plk35lETKz!K>Ei$R!bkE^c4Ke-J*u&lKZEDY?eXIWmNjAZt^9*o=HU8d9_O1uR~Xhk!I&3|h4G zk)aHJw$ZS(AngX)*;lYH!HDYk%{f1i%U$)VPo`2O4h|^CPegx0p zqZ0Lb1002Z0PVlX>>d;}C(AIJRX75G06>jCTsE*AN=RCK*HyzYGC4VZgV_y$j|li_ zg9s(|-ZDHafHV;(Jxrv)d+zX_P$rw%6DUg*Z0>zSJgYYViUIvS5d7fmBg3i!2nL^k z7cn%&EuI>ZnSCMiE{y&&_ZTYS^xxRVE9&4B#y-K&443<8n9jfrhL`qVB%&*1-NcPF zQsXU#-U?Rh3nSNnZ1`AMW_-^8ASz^RkF(@PIQ{VoeylW3299uFwXq1xteAiy0F$9N z2_Xs;r8ly86Ge%z8ijA01{#d;ZPOL>)oe^-6%f#lvP6Ku${2pE+vYaHVbE7l;cz3v zD2D;)Hls#+pjj1+3OuTWv8WUnpzm__lrq9613;8DvP9Ux4MkPs7Uhgg{zwoo@bx?B z1W&GFtN^UxLp6;OVn)Ym8`Xi3UTJJBu7vb!Yd$UB*?5)ZjfkIJC#s=0c0?7A8N({2 zvwu4WaAWv|miKYSr$ncB`WRWZz5~!CT&8{C-BTc9k)gr2{_P#?%wdj?gMl_bvVb z;oN#7{DRaKWZ2B)7kQ8vAnz88sS{6pRs@@DC*cV@jiH1o+C6XBZM;T0#-#m5*b{pN zH#o?9v^LZD1Iru=Snh>$j~SUh%Or&n6b`||Pa5ScABIqkb((uU2=(e++``LyKW*UIZ$fXIF;j3bkk<6K1$xW~y`U>8oG?gWMz6~+?$e&=RL4{2b40BrKugQbkmNJbe6%dC&f0Q=q_zE0lO%s^44kCDP`wE~?U~y$t z(^aDQVYN*23Zh^=s!`9R#7FC!<`UC@_ceOlr;!QXG+)7iF(#JXMMMor_-iW@Y+M(* zga$vE>N3cU0jUs?@>vH{E5-?A2b3^4TaRPSZ%}HB4 zjW?|zTuvKof?ol@f}0LC9U*Dxa1&Lm2OCcEW83=rW?1+B*=)g0nws|((8%~&@Q!9?J(1^hE3=w( zAUA(9*CfqkX=k28u5apO4kz^GF6KtS2zK`5pNs5mu1)R_>~9Vy*B1;jUt#zd_TO@E z9b>j2_zEi!9jw(>gNl{X#^5H2Cnc;QH|B*wA0N9Gl zFEhhWSf9kLSMvPZR-0$af!?su+=F3I{I;5^{3vi~yLl5DWN29*HLcY!620GHX54mN z1T}`ko>8OP4XyZbhPfw0kOJ&k@xndkIFaZj{<_x;Kj6HIAFDebF>m_*eu|9MB~a(# z*@1ZQQS)9g$|~1Fi>seBmkQvs<4>C{4BaR?e9_z&S3GCl$>X4}7tC|MpFIpPuO&Pu zhpw7`5|}D{!#r8Idhm{!>CFe>4-WA$Ytb9Cr6a0$)2y!1TP%m)s@uW-&P!Xw(i7#kL&>GKvH~0Pi z*5DD}em1vZdA~@NbJ1*ZqPIU=G^o`Vb2(i9i}^?p-@I0(#U-?9BbBAHkX@j)EMb)$ zL1j#futhA%{M@LL)zXD$1Z{R&RZv&>sTi-VzKCMxQKzV5tk!Cz)s+AvH|zCj3{WBC%m>(`NL zNf#RLKC(n8(4a}-4qPuLQc$WLQ2hxW6CGfnV;lF#UQOMQB{zX2szLEu~e!3Vrw4@2o{324d(13qy2* zDC$hT6Slf!SvE5&dI2H`=r5^Ni|%Gy;e*VgrbvAAvSmF>kDbR70i1yD+_A81fAA|@ z_{QhPU5iu-YP$Epl2xGQOa0ZNV(I4m{5bH`CzgW&z)HR6mWzz6V6e;btX$yxuPq-5 z1J`mbR~Z=~j^V&5zgd`$3(VI=@<$lcfR$dKE!PUfO8B3avaAZ>g{k?)@&H(w=e1rh z5GOez>pGTU1C+9tpKMH)TaS~jrctn!(N>S(5Vh67sE;Gqq_yUdR{29`y~L)ABXF3l zm1PwSgBnt4e`aN`yOQ0ykFhH|f}c69@YZP!+T*dFWfgvy&)SY5uAJud8Y;&$9SH zv1iw{>QTZv=QLdRM;^9aLmswJV{21ZSX}*Q>pw*PYVEABU4ISMb+E!>{Th6yBM-i| zGf(&LVrANo&FiJN6;8(JXKlwgOf5t)@QWL$^BvnN96i)}k2ozIls%)Yxr}{)fSGp7 zr^X+Xtni*>4Q@Qq+6u7os;Sl#mPtDmw#J$3!6<5h6=v@5Y&z_lZ5=`UjII|MW?6M8 z>8!wKpS<+HNxl2Y8$C;_|llEVd4XXQ9XzHU;WDu!s)#tZvh&P@j2`dOWj{O)N0BqN$Bx zfeZPu;m3lS*_h&Hf`Ea$B8+WBMRTIr!)yalip#~8)ggim#{Wd!g%%1AU%9}0B32{-IxW0~M% zC_F;2%gO_6hgel`W1y`xOD{!C63xB~LvLp&oc5D6@V2^pWX3QNj*p~{WZ-xUXVSYcA=L?r#ZrdxOs>1;* zY~d`y1Ld)X)GkM^w0p8|B8a37HaHQ9Gz(s{DX*G@EjBaDgr8Qke3uP=nDl4sEzvME z;DD_ZI&@AJf#>eE!3klsqM!FeN62SO9JImb-t_9nLwVI_9?rWu^{DM1#@>4tivRVx z9=E*!Qy#tw_az&gltycNe>ty;eOGO_nL7mMXj?Fbuwj&xA3Sq&Y;9Shb*ec6hDf}C z);_aoQR5ai4Z3*CmyEL>*(%C-#w{;x9~zTj zh)I^Pgd@NnMJS7B+U#+HBE>HI0e*DAmwfiS!qtOC?0p%#hCbiKB@xl~)huxd<&=gu zG%i_O)1DykXsc_FRq*yTtBL)ooX<{fZHMFgsJq1cY=ErBjyk&$vU9hV7(RP2gQGRS5Xa6MHnSyG+ zfyvO@DG@e4{2AR*<~W+ zxm2h=d=6n>%P`cF@MwN&whEtKVplVCTd;MZ7)rV0Xn>kLb~w@E<#x8cbrd8H#b3Ac zYc#u7*x!heE1<9zeO+z8^Zk60TP?KmDZ#ZG^&Cucf8yf+(mNa}vl=;RUhE!=R!B##dH37Pb@#pjQXFR8<*=0M! zMD|~xuv&M;&Jup*ptFT*><#)Ye`~+kKNP^$zJb~~(Q!s#uansEKVnZN zbri%czhMt&$Q=-3(oth(po8JNw|}<@hBg^kfKj76I<(rRL!A|c;E&zW9PiUP4lx98 z`CMh*um_^diyj#|*uHQNyxs1|V3_mf<7pm1-wlzP1vRPd?uvI7bxbZ0UQW_I6>^ob znBfO0i)vB7ivwHZX=NP{$I9mvhTktN@AzhvY*E1xRe&i+cSLH#F_j&^$@uZCMJ>lj zhIv}PIuZU zGT4#efGCN|l{&})Q4-B|8Sa26iDsLQcElIJ?P?+5)55RdWKM9bV~CXUIVMmTqNRxf zn>!XdAW))ghOcx$phUCw4GsvDX!hww2LwtqyJfQj0wtP#nBjmxiDtX(aX_F%v#x^< z2$X2H=}`v+N;F&Hq@zKB%vi0l!5f|tb~AD|b+^Df&pW&YP-k}py^fSbM*VQmHAgW< zC=5}8nc+o_zbP7Eh%l@o(R+SpH2lJk99b)yN}}ga9L$^BmZxSb@r9?3{xZ>fT=k8^ zD224ud&haH=kv+@u2dU6+MYw_$q9ZdT;F12@#M(rw?)Tr|p2g~+109ei+#gO%n zV=Y)&j=F0=1G zr)@{VAq0z1htYz2mMbXXR|qs4MMtKh3k{ue+^?Z?iJ&%16X$j|cGuz6O`REuGs~c^KW=$+S8}d2qCG?h|-;(ay>6A|C@xJj0BHSAnUsGgGMkc^4a54&R^tXaH}VUWiayTOFt!l?J`m4j3V^i(w;163!r(y|3J(*y7v(VL4hAcr z)u#=2GW}97Ej(nD6W;by6;v6^&cl^NC)45*C#=;{9?DO0vYd}XVNOkUmSVJr zc^I~yt>SsWgHxRFmYlGItIu_2GfX5A@G~8~UEtK9Y89>1@PNfmcm+=p=P%6zk6rGp z&J3Q|$_dl>X@wTxKi1`eJ2vEjKi}wV$O?|%?r{Di@cYj$=;nCVuk3chOJpj=;=Oql zb>E+NHS(ZyEW?zA*Oq@4wi1V&cB+NiBhTi6e>&$R6GhT02QE0%YJMXiu=G1;QZp*>|7@-o>7(D`s8fItm#feoZoJ{ z(|mExl<+f`?IM@Z@!?8Rmx`h9*R53EjrG6Taq z;BsNECjpdcv?k1@LkSY61$Q*Mm=5}(S_jxL{ydK`i;Dzygwg4C7YXc0_Ggca1a>6* zLm^jVX3L>F@)neE1%>eJpRVj@|8W%;(>{L6K3xerT-^mLVU)*ObzCICBkX20a*+U! zWH+^RkpPcmhqiY4{kH1QE)w98s{=Z@NPtJO@4C83fJd@hd%8$~N3z-dTqM9F*^>iY zLs(i7rYHG|)sn2W3Vw*De8})v>%{ z5hqBo=wtOlan4B>Y}}y5)}D5~6^gAr=bFa!#i*chHIa!Wngyk#^0VCw8R1O=@bas! zrT&Jx;bJ-N4G@>$(>GmA;SVj`_KpieFrp$P&vtELwc_#jT}WwKo8zpQ{&& z9zSxiOui{h+!Ghe8W6GeCAi0P7knE|^-$s!3lA7zx-s@fOK`1R*I1$YOTV%D>=In} zgX^f6m%{SdwSl!Y=ltP1CBXFl;@Zdx^Y9@TgCvTo5eZ- z>lgev(0!Su7o&w&sob!3N-blm#?26%6M25Y#!xrQx+!1yW|$j(*O2m%Zgi)Ae}iD) zVHJyYQr=ZIH*8;_)n9P1RL@KClgrH%nNl8JdfZzC9yWx#SxlS4lql>j$uitR;py`u zi}%BmBi(%&R>Ft|5|O5yI~c<^P{$e8ssx1Bo=_D1z+=X+?)91(CThk#E81VVoDzpL zb?;$RNFs`S>NKFJPaX|k*4lkujy6WZ{3EHOJB-oP5|Jaduo-uVbq5Rcfsx(a@Zo*u z7??2p)YH9Q7|pf4-LM;y7$p9+k9)g+jPK{($eRf6lHd-P@eeE*N)YI?gNM7}hf8TT zYGfXQXmlRJu`vW8Wn-;SJTA%IP~hR-BzHfS(2F*C<}|ksrQeMWMDUC98r1o@EDTpp zcGnN!m9=1&n<;Gk7dFh~$*F{!=D2$a@)t^V4`64xO3`l@6Z-a`bw#Sc z3oG3$%ZI!bX9_i_@RHSTh!!d0h;?p=7HPK4diPsqql{?-3%Iai*ar{Z=HAERBJZxc z$MZpF^#ktmEJK(dL5MGFA8|u`Nk!Xp+zs(1%}zPvhWL_Z2VZbEVh|WZJ*~9gKO7(^ zmx8h`T4h-E)C~b7Wn$J#Hw2I*yX%7+;zxS%^IvX=A8Gc;7q@>FKJBYJLU`bW%meWw zeV}fT2jWMXm1sN=KhkVzy$9k)nzfldg_+GVeyZ2WuM5UGJujGHlJ2^MHNgReJnxuc zG^zLKM_;}1q!Jzv%ZLCIMjD1Xao2JljYyQuuiNb_?_r7AAR?}TW~_r#4)0g+w2%a6 zOaAkp-lgFLp$@4{xJ$)~q4Xc1n;u@(14qcLd6Odi0xpE#MNorU9)@*D3^m5F^z+-A zdIus+F|!6WItnd%aG9qgGS>B|QMle4!eGl3uSOqF44z*PEKQV);v0HCvI6Cd^8A1s zHTGO$a7RQ~!I>>R27pmGt&=B?We%H%fHci)GJG%A zvk>^f!{R(gSc2ex!=cT~JQGlHy_e-(GgTI}TYD+!XK8|mXo&YuMe0qG`lQ%Uks6N5#n`pr0@Hur*eTzfscJ>eDT1k+PSzyfERvJG#7sr^XVn2 z7k+v)7cZ52_Yo1>1bQEl=c8L2af-GWxei*Z;_PbP zl?*#9F)*lwDGNT@(hG-T>Y!_Y3hl5*>d0Bn|i!6|$td2f8-hbT7v`YH!g10|vGBMnV`v2tXh@PJE zvixc)piJb~OV6M7N+n2R8lpwNp7-AS{s{pFtbbT6gh+yCUGwUM>bKwWuK51y5mgAl zROHXRFMY?mk);Fj!+3GpL+?ciip?0J#}l7=E3kxPd0+^@6nOGWZ+~7$EY0;E5K(pG zEAR5ME8crI3s*aR^iGrV5B%|G-UBE9&dbjG$N%ik7QRNpqv=xLBQalUjnY?+q5tId z=qd?6qC;1%f3f(2La7$kor>`B*yvW2kLe`{X=#8?V)1LLODOEdolE=RqeEhsy=uVMz2r~%Sq4kO(AIon0{{q~- z!1o(-N1HF+U~nBElpmv{*)ecJ`TO0QwJ(0oDnt@V{-oiSj5 zk+8gFr9wr|zvm)>cOQHZ`+Bm(brhz?AYT~z+6P9X{4Xzi9Q6%h2JD>TbMbp>6M7fd zp>op-FT_nQ`pU`qS<%Alz8{$l-;b@rTWo& z=-;n=qlF2>v|Jz4x+qn!zXla<`!Ytg%h!(jXH zr0~ToQwNBSxf)}o_{ijNl|-}_XH5?;!_w0s4% z?!qp0fn9oASeDfo6C3s#MQpK?*kf;u9V_-;#@3Iag0XyVR5)Le{JKE69}reK@)`vMUeYbao}L$;tlkEhhZFM3Q1MbLf3(1L<2QXyu4bO?gaRps;#r=UvI!6e(D!Q{C|kRw?WQ{PX# znc%T^5PS+Nr(bG{*vEW>j$>wCz;Q4cmRz6h*S$=`0!7&5;2`)mSx$XIg5YCKIlUnj zU$Y`i{C6*T&;iWrZY2dxV)tQ@LDy=Jp%deRjtNbO^}9c5f>IH|nF8h@Tj1C-D+u+8 zimBks&IbS9PC7v!)I#uLM(nd8sGnfRzD-Bc2^1MTMvMg_SMm;iD=-!@is$dltl z2b?(}NRFAwL*LW!UsJ;iGlNu^si6rbik_br1fP7%sd`}$eDW=)cIBcH-mC~}ga{Ud zSrc}TE~h=#2f@{<<#fnKv8|OJ`ZY#i6CYK(q9(rLfl>e zx1`PuLP*_LC?)+5-rm=E)3HpKwciFQt(l5ie+a^y+ygIIMDKkJLd{!P<-uQqmWWo0 zunfkmYBQ9rHG(l8jwn?ANpxF4MDc@#AA5u~sn*one*4^ORF^L!Q=jA@=`D8i;w zzeES4zC`^GO#8UtE263N3Bj8YvHpMXZY2g=AcnW(e_-|}1#c5+{g(RwL90%BFzP$h z|InhD!COUILvv6r`9FA$xxw*>KGLi$7h!uS9Ik2{JOZrdsDhD__PHhOEv_5!s-)z%a$6p2d85`a{;3+|C-AzI~=UV z%w+@^3fINW7WET)DtI>w!}Q(R;OpXV_b&!FMT*$vUl%GQ+z6hG`MkvhHD9PeMmLnW zkRvmL{mDM+(2CZ69{fn8>GL|cjUBVen2*5^Y+0$qO0r$FQ;v;fuUPW4lQb0nSMMt6 zDGGbaQ?f=ZjjtuC%Z7<`XC2995qU{{Nd#toBsdMZQ8(Cz!Z)r?NEMDC^<)xz@})O? zz6nrBEYL8+VkHj3-EUoKcC;i684v$8o1#js#M8p!usFq=kR-v(JJ=NOc}R#OQ5?Nt zPm;FugbT|@1-j8=$r81d)8YRf4UDI{3`rX+i*@2V*^$87Itk)PAQ9)5CvJFAr(8*G zO#Dh-C;63J(@QWPQ&`>i-%0po*+zrpeGTGDyStN?O(c&Iv0VV905}}ur%-vb_;IdZ z3&}55A`!bb63iwpz}iJuwv{*{Rl18V>L7VzDRNleS%R4+F%FqsB`KKoC#XE1Wh)GcD3llO>R-NboM&a;gNjfU=_7bP0U=XT?i1BsF=pFEb@o zq65%p^CXQh!R9~gFv*7iV6*v4BP1U>xLg7$MOf>Yvr2LZ*E)95+%*!+)SUvIUwPv^ zzfp1!`}z@^C75YDf!FV%@l?l)vGJu4(HIZW|+3F7_@(XIg(C8&8b zaF|buRy1fJwvz+bBwKjc9&;1hLKvWwrr(yF!>q2DC`qaNJ;^n0sZS3ihriuX1l@2p zJ0D3NR);9Db-l zFuN;bOJ>MR%s7yVQ;|^LS=^{u;t+BGGoxiNg+pK+J-?a1zc@Qy;1jYRi$%j5ggD!Y z9d=s%5Z+-AlZM3e&h5A?#1idH0PaQCD?-M&U>!RA?Oj*mW?K)k{lJalu*uBdjcTeeKr zFJ{IX(II4^cq#dU!jMA5WR(Jf6Ca)EyM(|_OeRq69wD$3lNIfYLrO610)Quomsw05 z5V8R?OJxXb|E2f15ZHgo=#)+hf&G`PXg4zi_FoFctqVe6`z8DF*uoIg7;MVo5ZHdn zem%T01h!wYV*0ue*nY{1H8zL9_Dfb&ZV!R&m#pZ&I|P;0n0ZQ%F%9d9X==6|3`xZ3 zO@JwF1erY{H*z-`b37ysi$ZQrtmMyw(tNh3r9&C)&RR49xKIs{4}Au&@SVoosdGU zp}^}6X2@lFeE?ZNq?irZ%sA{rc*9xJJJz5G+cN15gp&i%ae8Zk6f>6=T;w=ixLA7C z5(o?~mm6LHiFZyus1*wgIA-^KMip8+HCS8aaNt0d=rKiQU zgY7q^OKpHf>j%emcK#YILy;urc<2n{vs;0ag+ zgziCW;E(#DkQSfUM)DlP-}hMDAaxhB0*5V{?W;Np6@E}hgW^ciL`N)V;Af2b#gqrwt< zuqN9;zNU9*A7p4)yS0Dl7YNc@hlU=+eBfict?;<)OxKMFJuS2_fe|Sm4kwxGt(W@I zePcqa;AgsEeCQqY3x-Y!^`L#Gg-#V5n2GFP8af**GGTD#vsg@|JLZN$jF7!oO=T3bk?m_J$&ainV0&MzE3B`p{V>!o+%=Nh8lThR#6-QVu+rhI$A(owP%w z+-8^fSG7l^{$g+F_n4I?M!ojwP#&D{7*}n>x*=mDi*Ggrw(9hw3*5q*V!{f{s{8+Izm89xus)c9 zn+Yb0c4`m?XAes0$-po;dr(T}NW9;(K-dUugen~xW-T5!FE0t}fYA|iu_DQ3b{SkZ+G0#tcQnki z31RjW_T!xKvDhW979A}Q!|daQ)uLb$e&>cKp~uv%N%HcrQba^tcqXin)D4i^&>kzo zK4Lb>6d}9Kv zOOI>`dyE;L2?!J@!TqC*NWGn5nDhK!iS*kQ))vz_enptJH*7U$V>l2t4`+0y=el(H z!7!KVvFY`D7+g=wbkpc)HFY!aSQsXI2nF4YwjxgXzHqnL#jt^#&XLPun2U}9tPj0< zB`g!Emp-KX{ji#}@_HDg@fY+$U2cbMN46{mHnkci=3C7UKM1q0AzG>GaoF5y0M@0^ zPr^{U7nld%d<4O`=UZsv`)c}l(FHHUATJH`9@(2POdd%yDg{(jQfM=Rz^g8Ge`off zxgWyHu&Oc%T90(_a?M1i-p9j8eluXXXzJrV)G(^vIli7&=PapP>9YH{l7ZYUtNQ++} zgthJ`3+5qg&Ombr8#M$K!c4F(^!!j6>V{(hfdVlJ#^$Ei^GV0@;j%giGXctY@q{-7 zt<5xNq`58K8!cOj1DsBqjFoNSLCbG~to++yDDYBZoVR|NY=(JU1)=KmblD^x9Oe_0 zK!7-p`pm*bDOP#;9N9$9A#=WL1wtDD(+lJIP;VF+_+I8uTb9dqBlX#zlx?qcpeI(# zf-!yy97F_i(o)`)xUQ33664c{b+T+UrBm}EW(vb461-LR^4nEP7%hhK*iqh%L~fH^ z6ln!)mn}rZ@CjxF|2y3^6x8%w`7bAaw^6aMac2uvC+qsiVe@A%J zZu#X-7jkWw9P0?= z%Sd@0>h_C#5BG+u5%THZt|B6M0|hKk)F?x6C8!)o4~~(;B?f|~Nz-xinMficR@r#@ zb)*|IHn!Adn!KeYIWboS_h!$KyH`gvTLNHq;;p{QnerLj87|L}&*RQ8YJvPIW_450 z{MM!NI8=84bxW5*Gz-mj^CoVRKp&!=ChtyvS|&eaAqt+cLcWLlsP{TKj7?cHIJ`*? z2T)jXBbDEFBrlfxWf9jGzCpzD5IStribL`amSp{1e|MVkhx`*pq=l{uJ^AspJV1!h zO=k@BZbU8+i(9g8~-~Z6CI~e3Yf4rj=-)wKfW*eR|Pnwu&;O8hX)i2Ss~skEKou)JHQ{ zMK5~ASwRpSDEP<){`%1#_}B0BM7>^c(O&emw_-HsFus-o^J#*?{NbzEk5GZgL0VhU zn{!xOS1|+EEPBy<0gCNt4oMBn91bZt-M$wnU zv`AKT#=`VXQQYG&-O}*}S)HNShw)CPkviFmA329HI>jWcC`WP?sM`jCLt8SxKw(2$ zH&(2}OjZG*2`TwO;YjBg41%r_*LDQZOIe%|yt& zr3zQ_TjP8=9lltx0;4N476q&jjE9;L$jO%ZYT9d!0=F;0tQ&xFqLbGtVya`LY%*fI z!i_X)l|P7n+@kQQj&A(vM5;)`uwlMDd6&Y4cG#^ri{bDU;n-e90QcbchZLwa69!gx z4CwSZUJW`7;mS!f9s6^NU`LD9G~$M$8K(Dx4VrbQtsCG+a=&wNreAI<#@SeG6xa6F zEeNzG`(CC8lg|$n$OS$>viG3^^ZlWhces+m@>@j>vLHt9PS5?Nh_)1qe$N%*7*PdC zvgV}%Gl_t@2BNhK=bJuXzEX6zW^72$cZ!LK&d~%|m(G2!ph$5TrMmRxC&esLH#6pj zkF6G&Ll)tvg`uzF^s@?wjh}+eh{`s69Fh$MU3aLSR#F|qVJyao9CZ#Kh9n{wy)J#= z5{?-JP*BSTFOoYr-i@!QF z318FzC#QE#G6T%^PyKA@~)l3Y(h9s>bfLM>tn;PyNA<{c|Fq~S5#c_wj zmvGWa=fW2{iNC(A3U3RabcE*K;c+;z5sS_*!dLTZ$6khi6ztC={ay z4ec5cfEis1kR-q*+?A}q-o}q!DvI#%75(h<*ocdm&h9^mwxph0pbhzcLWDbcJ~hIP z_8lK_++Sp0usq@@*Kz2&h+;TyAn17Q)`&CyI32T~96&72MQpXWObWtkXO*6hSc<@c zzRZVAKBflGdUL~>*j$KsfIyj&tu)Xc7bBKn>>^YqP}zpes*J!)W!c-;-iT1tAV06( z;7*?2ioonBWIORV}6H$)wT!1McMYkhtY2m{N$Ni00J33vMuZ%@D#$r0SiLy0+{gbA63j{P%p2v(LnF>mqE8!a# z^8%+w!ITZe^#C*|b93~A=-bZt&HQ3By z=ujnQ3d%UF8>T#kZXxxCDZi_?phLpg_5gYG?Ejb1$MlyWLp#)AsHV+Nd6c0@aceedW&x4s_uo<$eD8nNRRt#mT>v zm>iyBe8_&TT){cic%__=?JCkaQkbLjXE6CXrT7Q9!UKzCQJpOm{fhsrNX zOr8Yh3Uw@0RcH=nHB@kk1?#r^+o%>|ZL!l<^#IKw-9c5sIRrVY7GpVdcTwSe@}Zjw zZn9u{sPt4V!*U4rR-w)sGDEJase-K^jKe}d73O#!gL&$&dVmNGqC@{2pn?;5j6Vn2&c%BW*)f2hrYnL}qRw3&K@Pu%7WCLiHVT zxwDv7#hR@$EMA4~JhvsN{L!A#Ppg8hd(1OjQt+OUm8!bUVd67XeX!~@W~$(7D#oUz zPK8`;FQ(ITRns_|*nAb{Lm_jp9}VW{k>6N_Sg;ct--sqE)B!+|!}qEtT$H^(sD8sL z_Q{W`d+4^(r={v=&f!yQ6?*YByp0O;m7h*&r#i-8-@T&>v2ZDxVQweY0kjG%x|+?< zvAYVrJ~ZPe)e;(cnz+S+3_`s7iP9>%QA+fWyH|exrRi;%F&ygzRYQb0Ny0q~q)ixfJYX63f zkRl)ju77Z>T9dHx?ce0SpR9uOEX)d@reT}rzX4-ssIDT{__>T_vsE%n(`U9fvsB_| zHkWxS?3y{J2e@{$UzzHn6_b~?T%vl7W;$%7%9Y+*p+enY*rp)XKr|<`8AP#O^%CLv zCV*OW#|G7L%%(+#Am69*AgeBEhtkrWs+t&G2rv|2mWVz??;KQxV@`80I?^*LM_P7T z<$#H@j0qrIvk|T9b6Hi+Nu9i=`rBIk^};RH8fUD+U7eHq(EiU=o4EreyiwJ}jGLIS z0Om&T{;dkajQ*Ig<36iUxgFT+2h~ZMv*lEzy{)L1hqjUDEX3jo`^XG;go;=|{c@<% zgRbz8?2Y!xqIA&9nnsaB(3%AVAG$v{@}$_i&@yS{buQcZut-bHrdp++(UC#iM~5UtzT-YRIw|rX=i59rvOc;ke#(pt;O;5Qjl{br;5gC>eWVPn zuAxmM?_tFtP}zw-Zyvdkt7lW|$e}I>r)0jKI3cN+HtHF|L|Werbha5Q-sclyu=mhIXm(Xv=9>yB=w_b7DuA4Ltu6V1P|J?JTisTIj}Oa z669i_+Wi2}@S z9+@0EM^&Lai3Pt#fpbob^(3QbCYMs_&ryBtnbOJnU!pK8m8=;9>KGnP<3>b5_6cF8 zMIVlea^gknu~8j3{XyfSeiwgTW}E~nW{rA^s{d?>NW#2 z3$0u`Z-Y6WfFy{54vN+2<<&QUHW(vdr_G#zy<|h95g2`XcXQ0;WY*BB!>DF5HJW zH``tzGh7O>I!B{pVy1oh{=H@IFm^|wggbz zXj*7Y6_+kj7IT-&5t0yN3gX+dW3F(K7U#u$;UaA^#H?}@Me5lirdc&a@-FQfV?*|h zNgYR@cZivTSzYF0nUQR$qI*mfH&ox=F{W6a*EePr=WqXWjH#*rJs?KOe^n2TS{H0Bep7C$TI9&d;dWidt7P)1;B{TNU3?09N1J+(Y$ z9ab4z*TocbLc=%5@QvK`)z+9lxpdFAnWgjI8zbk^H8~k`jZ2qwCdQc;Tb+-2#KD?f z#Y-ndMO#wGHVy7;xf9a`If`NthQZXQA0Nid5>G17@{cif#Q`L}U>)m)wSdU+X>6K{ zxKR7WCH9CIk;rAwSmd~rQwCHode1BN5qFxZnz0hBeMO#o8^l7Q(d4utG@x#*Pqh?E z0c#<*cdww>H9R;gRI!uzucxD9A5`xZNeQuCtJAO85=Cp})!K7Gcsi>+w+hd<%=eAUKG!~U{LC_F^%69a` zvDnX?$+b7J4|&W!|97kpH|2+Su`l_rpFhOD=EWMHV;k`x7;78%nfqg=Q`~7jz76({ zbHXlYkiCZV$uL@o+k+fu8UzG4I!zgOfJ@OaDlUk3((@AH#vq%rfjsJ&K7p!o;*@A# z0t9Db=$mds-|6E_YqS3p#F^G+k2a2jtdFb}&HO%Ynj0?Y7)Vi%IKGtZ+9l3|R(6h? z&Kvr#KgD787YIH>0rfa{f!w0F2gt#$fpl7&K8Q9OgE2Kxnh9|J*okurXzE;oQrPmdBy8CbJI-vcE4o(6lviEio|^5WXHu z_NB>N<3hYGu8L_sHXe^#j&LaRVe3+tDi^ZrMBF0;NShmRMk+ZKR}UkUP?;RR7>C&s z2z7b#vj&&r@~uG^#g%b;zFh(eKzXQ-mp9@{XzN>X+b!YUzIRb3fOnVB;(KwnXadrQ zajOLammbG0{dVCABOrSccN*0P3hdWBjoTs+X!jzn97|xw%Q!!@21dS#>md+${dXK@ zOC{4l{JS{R*)djm$A`H70s-acI7});hB5d{++@^P{zhC|T4t?2ZU+R|3Ho6!>f=ab zwk3dMNAJ0*i)&b1rOmw5c2@AWO)c?n*V^i0;op_@)Tf2NYXa3*Ea30xVD(kuZ`%;{ zR^hL2sCtj^_i~up9w}2}lJ8vQONT1egORd`2&B7F?Mv53s?+UF`f<>xV^H1vjkw0- z%a_aE^lFOwXEZB@@MoHOl#PkdD4jYQONb^J)Kk!0pt3(LGO8hA)K%i{^rJV)YNqxe z;Z<>dH1P-Ze6;ZvxK!EFj;+<{&L$!EbyuTOeL~}COch;Dz34h$TC`1Fis;CvwV7U%>i4T#T3C#ys}HDW*;t$w zhb9w_s&^r|QOE<+0OQ*Q#}eT#)f4J-mLxo?raM)gR(HpIY5|;)MEgeFi)bs=uJpoH zwHKzH*1w$4k(N}cr&uvMq`_VF5`;Xn@5-Qi>Wms9;Ms@jU#kyj|5$xrWLWx4 zjoFF+KLoR%t9xNQ9AG+;)gRPRVn*&cZ`G%{oP*x0G5xCmNCB`0=F_){O#tm!Bfbia zP~}-=P4e6!3OsR)FTl+Hm=qUk$5TY}But8u-SNIOF(}@q_Kf&i-n3atyn%b<_KbL> z19c(-DgjhGviBHdID4NN{~3A^q1o9tkALYZ7M;4qx3m|F1N+2VI*P>!!{Tc>h{dgA z<2Tvx2PVh2;Kc`}@pY`lU%ltXw-eofjxCFi7Kzh}#qnwU*T7}*bNRDpSI0ZsiPfHO zj&F{3LJ-ZLeBKd17}vO%Zv2UCSNu*S00jn3FcHvXZ+|*^Z+vWZ5d285{qdNSFeVCq zWXpm0BS-}Z-sMLWhvG34L^A_A=y1H1t>_SwPsG>c?zinyd>!sQ_pioZvk)IRdp&+P zFD|$d57&z@UtVxCK8Qbi=}tWC@L<0_xEFty7q35vKgx?+AH_rZMD{@MC-IwjG3Hr3 zd^uvjzIqYAhZhgLj+cqPy!Bmt8~%pkkMW=R|NrtO{u76tWRalYzn-p<(3?No*fzm} zH--+53G4U+fi4NKX3Ji-&n>~*B&BD9iTPXa1QYW=YbL zK*B>_oY5fR0xu2bvm%Sd_0-J84E0B5D6EJ7Wm^{`u%xcNMm9X~Pi3o#})%5D^gfCp4$M-P}hc0}Opb>qa zJb#j~9ZO`?(}Xn4QWTS7*^2}?`ptY~-s^-7SPr3Y6I_r(&55LE-$c8upA%>e(meo% zc_%CqUAdW`SSKRApP{V|jA}!kDibS31Kd<4*5(Fqj!i_ivwy#&OxqVOS&mC|KGGCn9^cfyDF@7n+}+sB{)- zPi>L7gA3ELFwvO{GpIx2VT3TWSGUCaRwC(TJrlcd()IhGoFBku5v?uEY=-nr*R8}CQwPf8rYWl&AW z`j7Ym0xz(I>(vs&L_oTGR$_C`KBO%1J^wXwNurz&mwT^DlvoqDeKkGkn)Qi;k>YhC zMbFd@^f*nFSh3NT-L6DmWRT@p2lpiI;A6vy`xD^;HRk{A4kqqKaHO!(qjDh!^)6ZD z#N|XxC-!wQ&8>EoJE^*o_zV&KUwlq%M!&z7h`KF7s7xB&O2o{SSlwrj68XXEsz;XA zwBPMS$WVUM+SQ$;-cQ5~zf7og>4FD|zhkDMOd-Il(o!T+`6LmOXy_}E22T^y5kZ9j zLW#H_74|xD4Oh$KzY{Up2>@#h4S$E$$QZirL*f9gk+{!^qrctLC~&xmXeojoy3+18 zn!p;Qc0U(yT5hjFr6m<`2;kV!P$x~2s82fBRlpTIj&AhObVk~#C0TH#vKHM}OA{uN zBvJkvIC^(P<45JSHM1~*2k45h1Ym7w?*KFBLk-NF-v?^S5uE9nP|a0KQJwqbnq}Ou zKSyXVgB}3uO61W%a-LF?jA?Twgqn16q^3r75D@D|^hLC0y{FjNH|A(C>%Ga%G$r(- zPID7OomHNo*Noy;XjGuV#8U>-)2Kluk7kvxG||8k4vW5hzSqn}G;x6W5##IZ^|{S8 z9r^1Iw$xw}NHG}4)|%fjXBJrHU)yQmhCikPn~oSW&@&x1P0+8u*i~Z+vV}k4J#l3Z z4Jr`^Q-QpfSp^$=V^lyG%%?uMD9tKQ?yvcUo1wu#ydJs_(m?WPX3e;vn&NMFXi=0F z!!$QJOx~}W8CaNU!!@Yn(M%%^Mrj~nF%xC(7!79A34^&aR)b2%!zvFPZ|3lNq6U+I zlEEZS)}WF{v&y@sY2ai4(?eJ(UJt#A29-RTakx86GlX*}o{Nc-qFe2qr$KE1VjMIJ zG;kv<)5E4k_+a^Au?CeqnsMmAOf#Hwa9oMkL$g&HRPt!X;jgutQqE!e2F*fj+q}O~ zgGwIFI84~0fh4)i7UA18m>Yr_Ov!c)CV8~zO#Zvg9QN$Rb8y*T4Gt>~ncJrCANaOe zctnHBAkCC`<+!YsN}6$)T1$J4a~SHcU4`XvwYC;N!0r;Dg*490A6hlguEBEH)vy{q znGvLgY)Xtneux(FEssV>wQbN5GF7I9E7jTS^TM^8u`1XYp+#kpX0DJErG?uU7>Ca> z_$Fb913d^Z9^_!Wwg*;}+X>nj-gioqv`ers!;-bAEYeIPuTss8qbfs-`B1=MG+A0y z7HL*FE#GXFe+sndzB9YA7L`Ssaqw=cox?q2e>1#ic>bt`EYi%uY+7nD=TsS+&{kR( zD-kBAtrqivfWgdar-e+ijE!$cE#`4jjg=_ztzKn--NtnsFH3L))2)^07#Z z*v(7#_tK(n?`5yQ)JHp>zrIg@EqVcU@6TFH0%>tTvS5(5JLgbms206~*LbSxI(*vWBIK?wM7Aog3?gg4xsW&D>AFKyEi?uP3wjk4*^6m z9kf#miJ%3Q(6;-uE|~9Z3lD2+VZM3ZTAI{^Li%S7W^N%=7IH_|B9Qud7@c`aI~cQr zpTP+EpDCm&TxEr5HztHy^wo7OBurweoP1N8hB@ucz=ZtI1oA)2N%);)M>6k;_7avC zKnA(qz71eAS3h+TTz~jz@%dqVzGX3QXwYm7__l=^2l_7a18( z97m-%5~VTeF;ep^H#CLZ&^x)a4*W6c9e36dt&$)uG$Y!qO;S9%okBY2o^*7_q~AGi ztFG1XSRpqwf!xqG)bXdJWVG@i$MbaBp>I+rv{XWtXaZTHZD_lJNvpYN^@b+RbU~Ve zLU!kH-l&I8t%izNmT1Y0q;?qXu(ngOT}AszR>(n1qR3*D7Yj;jVm z0gytT>2>}hyIMacH^mx~Ksx6l+O8;hBX{$lzRCE(jF20eLT>03gqzdkVaYngIGjMe z*0lD>WVkGV8LMhc@;ht~K+JidDdd5!@4yhr_C?8k{>iLS|DGw3A)0CQV^K=37nVLGdDaMXg%8yL5VJ&6$P&H9PNdXta!Ms<*M4fs z0nAjb&GFQh#A!teWS{tcqOLS-RSbbb2RDGgFQGbYpPr9p~kD0)4GX?oh?;qH^i7iUc{s!Mw=9{e&p)<7@wAc7E?&#Od*Lg?*1V`QGigB zhGwSy#_9Z?lLq;lna)Ohp9cAxS+P;`v=4~kDKn&ycsY~4E=)rWs+cwZo4Q%N5+S}_ z+96~tZc47{Vz*IEue41_p%{V}9p5hv^6N4Ujr=(c(mAu@&qLDSY%weL`8916W&}ND zCivQun~~tXBlT8v&D1ox*rdo4l7^VUQviI!gAJLJ_66ntGt<5!g(G4;sbXoGL39i< zd3hS!@aSiW@aiZnOwWT#iBIbvFZ07eTprnSZlFhnLB(_C3DX9~HTH%LX>g;u3m zVr;izdir-nel#|UJbapVA2C`m0oW2q znH68xPltTYtoW{BI^=U^MY$~f4R^>$Wjf?@X1{vHrw3tHA_RJLpCKK!Udm*H%C2-< zvvf%1%$SU8o(`#;S@A&I^hKCf%}71&nU1<&iIIZJP86~@o0d|)`#IgTlo~WJ9TGS* zes6}Pufe47f>#uZ*8mE+n+fD@E~MKgrRVT&#B+K&;?q6_)Bvu-Tczn17{v**J_@;; z@oTS;w%MJ&UY>4R)Zef={deq=4*j?@y_Gm>BHa$8V-h&CX)M6FFB^O?om*|f@9B`m znHliZ$#fgcIEgLvKbv*Mo3ewKh_=fZ$yIp5F=HYxc5}_>$BQpL zGE4)92|gJk_^%E8GWzr4$~qZKd9kp5#!&98&l+Z2br*z zn3%y220xpW;er_lnDmC(;{WS%&?$5|@;cjm|Hv_X-$OI^%1@kfvA>Dvc zlF;L28N)-ogY$%BLPxXk%$}@^Nk@d?nCgEBK7wXN5j9knYD?zdJ^y-Y+oXEg+ z8PlpoV;S43r{}*;W|$5L zoUX`NS}m(f&u09AWkZKu$S|D}=yo{+vvcmNTJ~MZSd8h88A8B=3=cBsA0dwaUF<=I z{axIg4!@NF$&rLTXC&jMDZ*FW%|KjNfM(Pcj3 z)5mdnnG^V&F~pc@C5BY0X_8q7Bd4Hx59$zRWEAsfC$UHO2Aip6!`gydBlto4J;2=i;m6N14`GZYXmuHAwJt)RQ@pZF`kY=X%j8TG{jwCb z`20(mmBIBH7@K9%=iRt0lRhWJXPNYwpP03p%k7kAe)f2}`Pn|1=4Yd`v#Pkc(AakXAGd+b|M=Xz60DZnaE8B;7htI4- zCdV`gC5tPvyvd_smd@n+q6_{c{9=|ZIb4y|@7sNZnDeET9#ngh8zq(s1-ZTMWUaRZLUrzE zEyok0p#E1i0LJUjtfhDu0x(_a&?nHC0PFFytc}&hYV#s%FaH(4Robc$TkQ{C2v zl=bW{r}po&FsB3lt$GI6oMwN_`b!X2xFuwZE_;a$kbQ2G-NqXJ8lAEoZQ*Y#&+JIy z?=-*cOmH50t#0-n;kns?+5YzMcdI=63F2$+zuCl-lDkT%fyW+6(7In;j&ookl;%Zdyb9b>8FbTsyJ&{$)0`5Q_(1XJ>^Fz*ik;2wCIb*%V|DWAAr-hqXv>lZb z#bNU%=CrpLe?35QKotzO_Ntr*`~k1cImwvMSSF3z5Pe0CKk4Gw#*6-WC})wasP@=H zIb7|hPvq3XI=7&98wxMD!1WP%KF6fcj~8-&;rf_(EoX&TT$Xh!$5xc_hle>Zsbu1w z|10MtW(>?^d``f%6!*IN)4aDiLmilSTW;#Cuz`%20PV>0oy~0MaBE$WmB`b|LFdFN z*LT&Kyv)Z(H^)JI;6OdyAntJbhPo}>4ZWngam<dG-6_d)1ug=1t;GfLjW8w?cYfCgub%^u%1nRaRNk8gp(th9TuGb)iH3ztpcFlErzn%ZTuzqi$YlRrK zhzQS{>uS-X?Q}=2iGR*OZ*rxx&XXjy*V&WjUKZ~3d>0)m#U7KCVP|&N{pQRhrMCy@ zV8^#0G+jSPciCDj&iX|M$pG1}!6S6AJDe4-j?}g0)pDlk8t`X_%+wv`4>X>wJC5nN zO!o67$I5jxEe;Cqm_=4C)2%}ofwh~WZMiOF+j8As2!LDrbZ`^zO5Fm)(4PpEiEgtF z^BoiFjur=K8@A}0+mL6Qo4AuYyL7v8LQJBwck6r*9R~#>KhzLkuREl}q_P5pNp#s^ zoh7C@v&vnL==NEP9Ms2km~T%EX4(mzCz?aY)4B(oL#wm8Mc-})8gWk74q*YojV941 zmvkff>mOgyjr;c3i!f2wbZZe4Lb3AVTRO-y!8|eXu5LV*!`OSe28j8Nz@ZmWWWs2$ zXmc}9+WEOI!-~v3*2J40e65Q?YL+3o(3St_{t~^MF8`=|V#}nYORaKW@ZvJ3T(}TH zkev>8$%P=tibl6wSZQTNcaPlJNX@n&I}Slq56{en8(Rd?I@HPy=c28wor}sS1j_mf z>r9ISa^dnCMpWG}cQ+TxE;M%+FJ4fZqJ>I503IO zF|zCCF7LfVi)sWd$Qn!uLmhK!YFfce%=5C-2VP~t>{ccUKplX2$jhwsXjpbE>O`p5Aj`q z016RDP)D2O8Erv7wOiy>;$$hKM_cAy#C#hE7G<<&Vcua&AQ06qZ!MO`+E86y==}2rTQJw;4+yv~M0Jdm04-ZEC=~8xG1t zWSkWFFBzPdj@JJ6VR;7x;RpYkhgc~W3H&oW?+}{6_|bXW1On;5;R);?m$wx&iv{if zLP{3r*%23)R-UBqw7f>7Dyp?Jg;I($kYZQ2pIDHGnjQ$~6wrHtc=YAcJWr&Db|-HC zR65bMEAwU|TRBH~wmNT#J(r4vtj_a*f4iQ@+iU}W1J30Qw1U60 zFXf?@{g?=Q{;3Qg(*EJTRBw5F9Cpvp-IjW}11GlC zS$_e|i=hp6(=%RgJ@oz1y!QC$eMpO63jAo8uU=}_TDLm-?PzuaCOuY9KSj`5i-!6+ z$l$|95|7Bn2#+kX_P1~wvO83dxZ0JiXO`wwd6O;2)NM%8)kHo(+7|}Lh6`o-Hi&Mm zAYR{$w2si*P=j1Q3Zp6$0%nN`>h=%^NUN3l*RUro%EO&(h|zDsNz#ux$LTTaD-?*l zgne*P9vEFOat{pgqseGQDGZs@5WCfXuD zPyah?ViIf-)L4(ny9-#O>EI@MYm72j<+$%5D2N;m{-DP!HZd5R=6Y26dRCdV)F0s- ziVF3Zbw>tssEvLCS`YRe%zBvCNk0YQn2f{q&iaOE4z!yd_FXf7IM+kJ=G!??;4lgC zy^i+kuYc)j@tXC3WW@lzCn*fe_oGY4>Gj+&RulC-znu{IWvaeE^`E5gjTve|wIdL+gclRJJQ7fP9Jm73ZK_rpHX~7|i_T`clmJqu{cBk{CGc*6H(k;Ox9v zzYw7ez#{a_7JXNYL0IJ)+x4TlGUn{WbFkX2M=g>v4lnoWg*5U)2QvSFekoQDj)(Lb zv>x35&`;+awjR|l!E$JD962fy3|VwaFI=%F=)v*~-WJ`?>QNV|FgKXy-;Gofg@!)M%-@F6s|kkI$;p3+S&sioWZqJREB&o; z{+((OApp~i#y8EcjTj3NGaGucW&XqJ5dj1zGI^aMl@2V-*P=Q-&@Kfdp>FguiQ-Qt zQbjVo)Hz>^2{6!W|3DY?%%6@?hESP6<$Cl+ulybkrnXnJm#OVd9Gq_}{QO5nlX!Y& zRDK7@ts!`L=A``1+}WLGLBg+BO7kc22L_boH{=hjS&|PM-Pi-umglQ6PRMvB zHPhSDRvYr$0wKD8XZ{nk#0*KZCx0HN^<;nkBHmuhe$SuDi&@9bA`Gs`KZ0@B45p4VCU-=qLATzxTvoZp82Z$Hbdw4zKIbp~cC}H! z3P7}RI>pK$Bry>T_QcMBIU@}SzmfG`7Irkp!BB!}6_5xZxlxBOgOIjR zaHnMo!)o5n+D97fcyUOq;d@Lw6XQc)aOP$jA5T(crEwsI!38bovm`?cCzAk$d4|5c z?cL8eVA`JPJ$31OgW(0H?U@i1|7v@_O$?v7T7sJy(s=|OQfPR>Z8)&4K}b|5=&fIS z!+bacClmv_8`8Pn1{E1l`S?w2kWXg|Ya-dHvcGA#V|W-3gC zzoG_FuOWsh7@sr4P#|}a8$EcqVNvxd{Wiiduv(M^eFf3OqYWQ8uQR_HX!Utzk2hSw z%q+~RBH@D#_Vo8DhIVMjX70dXPEIpCwKX-oiaCbC+-X}bHdJz_)h#y&iEji~c3E%O z!yUYGgP{R7G;U3boq#TnUMHo#UG z#?$q>p*9yJ;f|pOf57m-uoRVE&C~+uAZs9az!D3$RpC1brBgPS8U@J6Mxzfls1^H;RGKAXg3cgsH8drG70%vYW zefI((51!C=n)E8@%!?=c7A(Vz08DlYA*)yBMUtY#KGw8wSV0z=`_1n95Ze5gf|f#H zxYggvEEi7({o3iTc zD!{CavNIInv)si^S#wXdA<4}ju`%|a{P&cot7d8+tUSz-Q*NtW}shR z`&>aU{`&bB3NT+gnH0A!7F@xsnX$@6*9u@n%FOV#63-#7s-PZb*bH9KiFmXLill)L z3c@h$T0o$W9u_3lAolkgd(-$Q1#n(P5QsKf~rVX(6(I>}1@^iyK^w ztuVo#39`1X(Svkt80blNc^O}Gg&nSCY=cFlfOw>aNOE)o<0ej0*T}e-7rz7=ow*I_ zNR20W@x9!r#=ev2zk};4o+cP==&49!eNhS$7sJg#>%|(?m{BOxkbq4AJBkyHOg3x& zLy8e*w9K)#r5PcaH!J$&7-2^Jfo67aM@_wZBe?su?Jn&#CVYZ|DdME z9hhl2aAZ;UIGHlcGK-vUWyE|@VP~OkjxpMkitnl%$%)Or_Vi|JBjlD(nq}!uE7}-4 zS&7B0j>bVX#Nzob#uL1_;V0ulM9`b&KDjn6D>8Pnu-H$^uJ^A=>lPdRY{>M3@+?yF zv#}h}hnYlyrr5N~nob;GM6JoWPc{BXtOpx0OGK=${#T<9O&Vf6P=l1bl)DqpUyPWo zMFJKDEIr0Kpz=U*65M>O@u8JSq{&1hW(x~o{YvLdGGey6QmEX7>!IHaBVwtHu-Bg` zHU5BbGqLjJSw_erz-+N|t`T!`pK)-WZ!AXIqCNFmYWxl}WrR03CrJ~GuGDIS5w)uR z6+yMh_@@Jr6e+yPyG;-xZ)zI*(ZW5(7B);d^yDEUT)iOZi7x%!IK^5lW}Yx^u5XKxv6iY`ds-!o=n#s*A?LaQ6~ z=wE*s+haP{uLz%>8AEC?HPHB1#s^$@)q7(#@ruSKv-w9gHks{K zbYqj**2XqAneG4Bd+)fYj<0|GS)_w>R8)$+#In7pu|=asjVSCcyRg7knhQ%^iU{`D z!8Z05d+%fHCH5Xo?4r>aP3*?R#F+ff+I82BF9-weaCTHv)axiL#AX%I;b!j*Y3c~l{sQ`Uph zV(Q_=#W6Y}oWF+0tgZzf0V328P^-sIbR?I@2x%G*hqV6}!TzISmJ#7U8xyng|4*RN z<6_EaT9|5}k*aI;amJLGAzr+zcpr+%ubo;Zy4?!KrxwIWyn!5VRZL#((DB`Gd7`8` zu>m+}V@wAyJ=|kUjH!02sixU;d(1>a^X$%;=U_(oz}}c6Ja~@XA9I>KV-Ci|k@xG4 z#Jur^=c;dF=8@mMF2`h(=Z@!CpC(l zQwJDo85z5ek{SkT{V1#k1C(TUD4VemOZ!-=W5Iz)I$q6>-3nY_ojA6o8$3rVV!`eY z;Lke8g54j$^*@fSOa9)Xd+a(dcz)9__7F{{mQnS!+zc(6Sxsxh9r2WSCyD))NJ+jlD&I=AehN7do~q zqaiL`7u%3VI1B~fjj=RcPWZMrI=?kG9QEG|c76W2UkEmCik$?#_HV)iXKjzA+FSZh zq7gW0N9+(vzN)cBV8d6jTU{7fsO6s6X>_7y31VQD>K-qrxNy|r*r7Cmxsw6{3hrp% zC2J_|bR^c`h63dgp?EVKJ>kw)z2!2ncdR6Hvz1S{UeKKEj=baPV?zoqL1Ss&{V$X>m;Mqe7^pmUb3mU~p?u0gpEk=0J#MzL75BDc zf$})VP}(9TEYD;Z5-m}}DK1R%F7NlNlrSm6yxp=!3BycGQol|KYX+HQn+?jv zT=LpRr8oE4t8K~yoOF)vRC-XX>~N^KGn#Tt8H|S=Q5Muf&z&()+2jxr`u3<2j%F%W z!ilG6lr|1C@1in-OY*NcxZZKi$@IqSN|-fbm>zmlsc>hLJMJoZoJk!2Q5j9q_*ZlK zR;h$O)eB{MZ8${?mE*rCTe)%;fjob4uq*goxq{>I!CwyB*uFval4D_uo62G9g&ry` z$K&0)&bO=mRl!`|Gr_7Z6iY#>*^Nq6`l8llgGKmWW0kB{JQGs*aD=LE}$g>hC1`;{Yew)t@`a;<&-8F`NXSC{@0-GMF35RRMTKvMQ@q!Xs4BjS0#y ze9fS0=#-#WimE;*0D)CCn!|iFTjj>Rytg3QcC(6RXAutErh=P)nd0kX)hOEHyX{n6p%TGo>U_L+w+iMv84Qc} zsVG7{Rs=Wqt5T@e5)mtScv!WF!!YNlY67hsjvrGUrpCZOt%BVxj2up$RZXPD@W(k7 zO|OI%;>K@O+c*q)->PWFJeW$g_B&N8DtjQhuwPZdx-LczZ?CJyP|9IttD7on2&b!5 zg&YLs_cTs{mF9@MDsO5G{QIgo9ENKT=uOh=Cl%G!Uq+9ak5scc4E3L?#=pNR@P((U zzSJVv_d>OuD}MAV70uBV3>Uk8Rnhc`Ssix%-6?{5Z)ilok_mdNqFUa=F!1HyD%g?F z)QHY5Y6>;57}DyfBdB%J&Rq>>_c9m`d8)_0zbUX79($>&j@J?Rs&8_|NBXNrynpfd zg1I|-UO{jYG`xno0KeC?s7Dc3jD;ua`Z6zc8oJQ)Aw8hV9tmaXRpj)JR zDu`2upy9#j(nmQkz0Kf#G%QzAWvTS;mOHHMuAwTY8Mdo#ToS6S3l zr^qtS$0tKQjl;0Ps-8kySMOx1n^MbRRknI0hoN(xn!2lzk+1%oVmyb~qzd+ys!Lr_ zr|rq1sNM)Q+zixM-4OphT0NJtrm1k$c(sXjHhAV_H4NjHf1DhIEmPHSygl)axJ9KJ zPU~ipSEi}qv~DIjb%y#6?z6db)D7I&w}%(18&QnZ6W+Sv&zGqsby(i6u5j>nWF>VC z?uLM313Ybwx;F>!!A8O$gMa5{H4N-A$-=FK!Q`>PcDwEB<=orvcc>$|&w}=-o6>TH z=9gac#hVVQgS=VR8k};l=6YI9b+9xM7DE;RSr4o`t1hU+a&qs28a7`rOu2lgj^dJ{ zYw8FtX}G2SflJ2SRbS?k-5-F2=&DpV^z3JKUG$04zaeh?ME#v7%Vg?f2b1F8)bl87 z97`Jy_(Sc-DI()<^&L(nc)535g)PvbaW^YYWUs}$q;=#DBbp1nsQBRUQyaTynO zc!-1S#+W!B1^XDtZsN>fX+j)a&cO(?FfpzVC)e|axJO*=IAe)B#bgM=Yf|HS(OATi zyf_2;Oz9ttXJp2;1Z3!Q;-1jU`;P%WAh zSHivhXrc41+v2!`er(>$8{z_KU^6c8+-+3=d!gK@ZA5+y0~I^t=mu4ZQ*}`E#Bifr zf+ven_jTMBj)|xfaXsAGw>jtH!Z|f8z7)5Zf(e{`E$*^Ei(2Efn2OR-`Q^Sm{yXrRM)Y82gI zKq&syS2Nj-bqH+&HJqOb4bp6hEwkTS|Mu9FKBFwp|dng zvz&7uak);JG|$(-_92Fi=LJrVmKHiWiYs<<)O47Wqqn7+7z&OsAc0nni45f99Jby3 z3(XEnwqkM81dSKRR?%b)tVUsY=`q#GmS3flfh*HAR8cUIAG+;#%N_9-K^0#-Tl0!* zi`LB7P+gSkq=}zH;qFm|FNalLY1g`#g zZPA==K-+Uj^uHB>+W)Bu!^2K#esf`qIdR5O%=WXIyVMn((8evl(OluQ@Bf|VEvNnP zD;n7H#u$R@H4U7%!X$lfX$DY;mvt*pT4Q|gjs{MhWr!8r(_G|=(B9Ydpt(VkIMP{Z zRY5rXndUVs8{GD#M#;gg_*GMnqKYwafvhWvPlNq)AbdwCKK_kE?%989+QX_W(jDI9 zqWz5`CSZlqIpCHriuTvK<2Ih!AGuiB;-lpn_#wX9k<{uXv@y_jRF2z$S}CnKP}XPa z`glQo?I6z5f3N4j*dbhdo|=C`76DlgJgKP`4%KHYqh1SbKWd;%|7=rhtuL->tNo7c zn&FdDZ4YY0by7q?(F0HGq~#`Tu;0hpX4F8h570JbyUS;LYV$a;&hFz7>*&5<50qX5 z18r_f4QCIk1;&7kst^>N1Z#RozaCxEsY6iP9&vR^stL|jYB|S;cWJdj)J8x`!B7gf zTm^rl*SgS%b;%rUPZVWRdm}8W*9Z?y(LUmwf;C-RTsw;D2^v3~W7D4DY&1Go3m0B8 z=Gr1(>j;XT6lm{p9iF?xv^uT<7(7DzmZo%Q;=1Gg@x~+H7iq!x(ljkx_R0`DKU2Gy!b~v`d%^V*mo3&h#w3cDYT@)Y zMyexLXghJDJiS)yh#A+d*M3X0hXPuPt{4`l_4DMdW;aTW*r#1ZQN5VW69;Z-ebDIr z+ItiP2H((rhNKt!HpFiaXkBTXJ40dEVJ*!jDfl*z-8pgYYwbZdB8-#TU36>=!>>;Pz=L=oY!u40RZbRYFE$#`1_K!D~0tT2Eb2Ow9^TI;n%fG-yZ-58Xr-rZy0V< zrCm+RzIcbGY!-jhyV_CI%n$idn@<27f2gHdBgzOc@MkU6S}f+{A0BI05&)B*(X0RV zbL~Wm?E*x6iHPqT@5v5RhW@T?><3U_2Wluf@w+w%Rs5jkjj zIGos{Tl`s?;d%xbLoT&%JY24~8ejP=zAYuN{%~GaRUn=k9S>V)SZ(9QG4b6fT?|VO z0XcV^ql%vgO2K~G_$xek{um#>&J~_BlH-3O&oXoT=e0rYjmn;C{n3>(9UI}&jCeSX zV>Mbbwrwb$kQv{zHuzb>Sf3r=pWt7g7Z3aTSL3Xr_;ZAhZYA*>$n(jt_{PwbVV{xl zqbc3NX9yb9NYrM0`~lus5+J}W4-?{Pu6ldkvuQotXkz@TI=n}0q~S9)p5}l6LI@qp zf(->Hw}myr;T7?I6h=Bd@yo`j%XNEw6x}Pq9nYK{--gF~g!j*hzvaeTzykbXQ9R8> zY7D@SY*3r7Esp0AYB!e0uX+EL6lJ&5bwS;3#`~d#>*D>e|H}BOJl+DlXjS}>I`Dk4 zHhxbeJU5<-Zx&b!@-*=hKb($<6mn@Wk=2fygzb?Y2^9M$iS4o4z(DPHci?!If5LBI%y>#@!efAp zheaen`?~;NXqoUCP1nO&0wQ=(7q5gslz1~f5nYW-2u5u?CeW;NaS(0E2J;U(CTt}p zIbWPW6H7a&b-+JK5-!oS(bW_z@`Mti-S0cq5(>Xd!r9tES+)F*-FM5k&fqx&XMU6xo)VNm}B2%;9C0|OJjtVQ+ffPDrfP;HJP zP%!w^xdeqzY%Ni!lnF~|0(3?o{Dg#hsB0Hphm||D3A7rPCV4=C}~1N z9GaZ)j3zi|kR3241mX%)f{+#!A`}o%a6|q(bBE!xmIMO`91GGCs7{%67?3;uIWs{9 zj*?*)%kpdIFx>G(d&2i1J)BvRaFI0oJxdb~k*8Z(LR;dG`C}5UlHcCr5*85#){IX; zG?N8R22jP81P@gH?KLh%}Y2=tvRr47}# zWN|Ow#o|uglhBbmGyv=LK#PvS|DFFDOmx?*fDUNL;e=mlJ(80i270%Nooqgq(2r8A zF?jg7gi1%ef-ILEhB5d`LMP(2CS9WqU1AWB_C$%dAsC-~Jz+la8?q|e(1oRjf!cLH zV7b%Ng#M(;jD3|bi-;inb;1P_$~=8b9lHDjFM4v_5xR78*M-w*iW_|l@X#G60n1e% z-C8&6gGh6T|B$PU)gh6Tg$@lc(f0BGAlw~ST-C1EFm-5#P~f{nB=4dVW0_FrMrqB7C}FJo7dS?&3n1=DZ7XNymm9dff_&kOPm%(0%I&FK|Y# z?r)l)0*Ius0fcv3H8p8Xx0xD%<+<)#0-(z;R3Q-~ee_C4 zwH2EAc*AQ}0_rz9n(-Qj#)?06MrsLs^|x*VkwB_TB27%j0N7I}(L(B5Gmpfvs)*QpyZ1o=ZC-gD6yFr0J|wp%z#RU`*lhDmIu$su8Aq$ z@Eq4S(aQ~-xB5C%pMPW*!8tE)*oN%CFMCbkDS*gZcnvMxMZj!c{h!oqt-C#v1y z88R^urqg%fRg)9dKxfBv_UDY5iTerJ*m-RBpB5yJ_k`bhE7-q#u1<_2pX)a!rjcS# zZApZl!7e-lC&J;qyRi1FL};6L;qcvw>-^w(@~Ww3omxz)WJ!N zy#9C$5ebQ-~NDvIMH@a=Fs)q(1NP?k&OV(iAacj~Rpv{`(uX~bC zQHqWwjDfHTG=aB#%Zl!c%Si%X_`U0H(h(xE@&`#Pi6~n?O?pOthy9W?ko->hBk2;c zi7tP#-v#}Zbby%fMbG4Og!M0jlE0vc*N7ixkTpTZ8NLnijmF7`o!o9~nM`%fZZ%CX z6kmL&O>$FW{;tAg##*k4l2;JOBR)>H6RrNC41s2dC4+> z%_{!du;g@V#S@wsXznHGCXQyg(T`2uLAY)(C3zl^&bC>}+sW_rg~=N7{CatE4$Y-8 zAp9OE>#OAE`1Iyvrg?{R_Cs;>_T=?6p*SIjft-;T>BS?-tq8U^r;{fV$&dRcIh@ky zsspR5yff^a?8e0{;I6C}y<4Hwo5?hXc{9=DU*8!UqQyTXd#>zrE14#OKKQ4hIU&#! z->ORPLSsly3g}itLnJzXFPY|0H$nvi4meTz4BGK?@^y+9z=0&2y$mDiaWd6*|NoFN zJWGa4KhGe;%jCVa2le=uWUBK+{sYS8b@DR;>g6BFG>iNGL#^b`f)_+f)yW8uB0t(z( zs{ft*ZrWLYnmnI&)3^14XTyH_3z3x8g}bNeANX@D;*X2;R9E*hi~%JpDxdkWJ1!cg zf8q_mQpf3k_l2inhF;m65+Ly}pP&PA_akxUSNeHCmThJtzSh^L8B=rUfTf9mrYFi= zIn*8haYFyb4Z!|-PG3l#S>NiX*2aWBL0OG&HA0Iko4BK>`r*O&2M}NRQ-6Zk)6zPI<@IVI?w-UMpW;=pZB0gQzqY7RV?*tlnWXjx z50oBnHz8fPfo81@FmA$=A`Da)Rg#ZUd^6gD({V*}!)jObOr;D&pS3X@q7!a90y0h6 z_T@rbgM!j){*%nP_J*e}EUt5W1I_X(5Y0acb`=^X(2Q>pGP5f4Qt-)6hLUhpS^)=r zYvT-WX#y#ZRtS1#^LNL-I)mMfVG++T7(#v6I78?$Fuu0xXLu4H`DHvmD z#A*!d#v4{}Z$l;uw|5#w~hGE>>RT~YkOOnZOXo~@^_GXf|cN)sP*`)2T;i)H=JZ%W)k_#^xN;wMc zE*s8p6uhq+269EDRvA9w^6vT3a4F>d4G)7fM@Fy;iECt>OX<=k<4sMCTRBvDt&C$h zDS8WxejJN!IvZhE9K(26cVlBN`DriXN{+9;`WO##pPe6UbO^tP%IFaOr8uKQ_|M~w zg&c+AWaD3)kj5L0aopP%DMp9z%hHYCa~X21#sV(G@7c!fTxt7Dj87fOF-F*#!+@MI z&Uk=Jn#UVgamk2@#`RqC#w6oGF1cZfaT%91Rv6&~ABIB1Y0kV?rW>m`IUHYT^lkb6 ziXyI^aZ-`!izCL_sCW0)eG#-7z9`~?(H}i5bE%6ejvA@gVv=YdPd#Szq_lwM)1Pkj zVHb;5+=DUR`43$Du;i?<1CRGTHk~tOxua#5?S0W%-~5)S$9G2B_5uUYFq+;-a6(2dl5%GH!O|EkqOV8ozyiTfji*JDTPJ zzC*a<1LG?fD7(eaMw_;=>(H zaK+q0d{Jmx4a9J1chh}Oc$)f|&hX$V?9V)R3^eU0KM#CvI!K-)qfIc_yATUvOup{$ z?5Z&((e&RLmNuD90Z6WD)B%q%nnqCCb`b_LtGyla$h4V8`2esNC8oxNKmRgQJds1j zDAOhKyZboP0K)I&8LS+dAyy8exh6#Nomyz}AdFpHW?D)!;{%K(Bd8{ksKr*(Y~JpF z1dAQFnP@9NdbG`i-@m?0=dEdk%FC-f(867&K}cmvRiW@RiXgPllp2Vlc9=ZT(H$mv zEeT7}(*%16o`+4FDC*|FFrKU>6g~<#Y6?QhkNR?V^tIY!f{Q>RTQv+sulJiMCKUe# zubO-Wjz4Ik2^#)4y0$=(AU0p;&j(6i(q}{twbP;Hv3d5W_!y_A^vv zHhJK&39eEhQo&hIO+#E&Ixd-v3{39+KwBEeX7oae4naeIS&9Q?-tsKoo z-SR#0>b+)O5U&!iJ!gj9dzHB4f*E%2RpPc6%`k6Si637w`?%=SZ!bfJ9H?73Nr{-)=crN?R{0+%x|DC1R@{Rcb`TgUc<~qOw z{@K&Qymd2z?xCIZxA30=5RB>yfuYaHDX`AwbNI9sdw+f#$ESr6G=N zZlPNP;UwI!mE{M3x}&|tLL`zRvaBM=0~8iDL7w`tg=*n7gFLFr;)x@BS&sTU^!rDQ zrG(OG2O&ZZ0l9D#)ym?Iqtup+E=pp{46hAQ$5$2)b~60T9m@o# z5Qjduw4rpqEMW|UlZogmTvHg)8QoJD(KYr=VMKSzD}@o=6rYp^LZbXy=FQ+iB<<8ZVXd+7CU6!8P53DG^zMnFdSYiLLR7R9hjZ%wvL0}!yH)OJj5Mt%&Jq^_rHxdtIZ6#-RGd|H|ci(f183VG^C;%D1*PJKd{ zZP1ft;_)Y`Hc~Yc`=>H?_0ho8v!sgtF(kDmVXlcfwI5AC8midm2!gmshtpH%r+T74T#Nirlrfd&+MyoiR4s}KXyJ*vq(N5`dY%+RE*Pk!(wO_d zN~gJgVM*U~B}!hE+MW$^r>3V4_Cm=GIt8NVxv4uTMC%|Z!KVDw_B0JgHH86%saN6t zQ-VfXl1j5nzM59$uvDs9>S_un%2Ic8Xl9N~rRhvm)B0&t>g3wVMmR3@1c%0VLMqLc z?rJo~iK$t&Lo<0w>NO5cVPz`K^2};9-%LxTy1c5I0-Bk+i$i0WojRvhR=i_QZ8i1R z{8YGJjj`g{i&AOsJgDaE*5XvE^@!CJ+AmA}g+n7;nM%`_BD65LjFB`Bs~X6Hb*X1L zAj3AME~u4~E^SKPOB1X+(9}npjzBvQ_NPxU?zb~F%NxCk>lBL597_GPHua)D2C|}d zjPCI-&r{n*vB{1>Y4_l2Pw;EFc~}~ZRWZq58m8^zl7}0oy@uOkNrux+(_jvYNiJ-j z)}JOWU=)_sK5e!?%U0u$(-zROg}Zf6`-;Qv)hF#E4rT8FX`gd%mkmif&Nd;qG$AdL zd%ND?=&ndk(OVTF8wYNm`bJjT}lD5Gqk%&!cJ2-}a*qlc0lqPvMZgplbZBJXo zy$!)>?YPng?@c?#y=}8U?J$>od%&5za42mEbrpKHJk=F#5?`;6zdn(sbY(@>;cVI% zYLQh_jJ=R%;g~pe*(oxQn`slcw@dFjt)cLTw6h#*>K~nN+doVb)7Bf5-0YSQ@^1$H zdG{A-?mi4_Nd0G8FuHvxwITleZQ5@%gIcWTankBBj=v&2rg-zd@-Qru09K^DgPEWWVh z^uH+aS?~s9`b@Ycnbe2a)O2#aHc2*2Plxl#ndJS9bhr(INv^P_kM?AfoeR<(F2t`e zo!q=mKHFQA4$}opvb-dHRXsMTn3nFSMu9WZyEI_mCaz0&xUr8mq{nfRnXxVXCFiha z?{XHAu_xW({i61z!^xmb5fAsLhruPaQcE1WXZ*Ja#K3_ zO#W^9EY9s#-AZ3ZF{^?Yn=JpLsx?aA78iy;`ypN7#j0iYlXR+UTB<4jv^&lhxxYz| z!p~o%ukm9suj6Gn8oyz6GC=at1)bmmA-4>2NjPEZiF-x|PMYoOX1w5(%MZ$cIU6Q} zTS!JLPC_3y%J>V;Tqd6lh|GW~87BFnd4@x|M_Oh$BwyS*!y)-k+GZFz3RvKTGfqU{ zFchSc42O(gN;Ba6bLQ=Cxidq0r;It=+mJ39XSsr3_QJ?|448$d@|9=Pf>D)!}7ZroboS8&3MSkKi}$<|7TfF z`Hw7c%D=KW<0xl~siU1m$j3U1_;H+5rpv}VWjb`CGee`vPMIE=l5vs4yLx8E4qx7R zw(FmMp=CRCacKti%v8mf8J8%WtG;BY5FcBXahIlwk&jW`wHY+MNBFiEZoDpIQytWO zl^_t^+?Y{8hrbsBGWD2sh&wiC?51h<0n7j_-?*RT6ChSK30 zf`2%Wv7V+m1vo}ju_7Y?OAlw9a%F(vpyL_mD0%CJRp&BBQzGew2VKZm=);2e>qdr< zX2}+Cbc;@kz0mntL%q>~F+;f%=^hLlx}6mX+Av}$waqxFM&Roshth1KMZ|&`a2UYN z;LOGR#n1`0Wi$d$8b6fk<_;$$BCiPCXwpzChilH1p)><({~>s2>dsIPs^UKXMFee;xXgw$h>VKnwvf4}A9Z(7k>v z()k|NMjV631FRdlO8G@&t4AQ4VR3t_gF!jpdV|(qpz?m#J#dB08tlR9YG+q#Q<~L> zjIIbVI2^$0!R|~jeqw#$%fhupTOV+$Nzz!~a!ISfI?#j7a4O9@(VtEqOv@CBuM}A) zz=GZH?V0F&sg z^LFkR)?*%QGN%Fr%_f)6uny)jcp$5os;WToX!aZ{RRev(8qW@+e>2zmwL60etz2Rq zOQVhxRwF*R)cTyNI*^Y)U2fgO3IheNvQDMNAYE;Zq!gqPKU{0g<1l1yu$IzdDBEZa zsKbhL@fNF*mJHfzRdS~EcANDFj^fLm)^b{k9=ohm=L><68}ZmZ)`OgI;`Upqnq@*} z*a52#wSpQQww~fJ{C31jGylb~5`N4|vzZCQ$7)UuCr(>wCNY@ee?MdGN9DLrSbP6t zSxb{|t)AXUv$!x6cdfEMrL1`zMY5;`-S3>~hc?}{2BR_GTUVgO?)h~wr2gPsSH(}( zBrnFUcl=_lSC@5St$3NrHf(Zo+srfU-*JXGvxgh|cCR9{ALsDucg^%*)rUKF&vfUK zpZ3huP<2jDSi7Ot8zGT32LV=H4pTWnSVW(rI&M3HRC2 zt(gb8470y-O7EwAnX6fo!^;k3cBN{fPgvXI?#D8}aA!qy^Gv3iD#imk2lFFNz(>dspyP1u-q~Ss4M;x0AA7zfERB?NBpye&tTJ@%H7~c3I)9%AE(fO~; z>y#GHQkz(6~%!);+B=~jy4@F48j9^vvzWCLxZx8axVB$aF#=>UxsCk=Bk9e zN!AN4*||;DK<=|S9kOyME4Tn{+;5Gr5 z+}1y<6{o*PgR>m9wW~U76s4vF=<`;$nxZL^tT3FY%aU>U*XXmTHXnnlbWrS)<%`Xx ztiJwi1>2YFWWrqJWMV;?lZmIJvzAaWfe%i|I>@0$Q?vR}NF4`G%bMuP!dySs2{U%F z6Xv89PMEjWW*wt66DH`3L`}A4UE*POfa&9HS*s`l0|HiN>~Fs6!#E}b$%z-S;bxI{E(VNP)8NsH)Dp>v3FFx$c7 zC)$*7n>{duW?5`Boht`H4L+G-E2ddWK`3Bg_#4jFax-nyYf%R@cx{&LL2XP-gXKB4 z91hLyJX>Y0&^*t#9ikNru>%c`E4J<6&_tHnXjYh1D@i}xCaxWtP9tqo88kuY`e+-? zWfawD8jZDGq;==4Y^IL~3akO!C)t+QN>c|X+o+EDWek{KVQa!Ual`al0$Df1cBgg* zEJQZAW|FDb+veD2)k-W+=h}R0r=-OTYzsLwgBI7)fGd~SR@Dy8t!1_^IW*H&+Gti| zRvYl;RklO5(^S{BHncQv?}@+KU{wke z5w(47gJUR|I%6Z3Y}Tbq^*HgK?e_7(2!pB~wlx#T^s>?K@smQVHw zE~aW7lpW0qACC{o{=|nRb~7^j6qom_CfPH&yh*LI9r0I(w%HB2xK7hPdjQAJ4uLbn z7*V#Ci|d|sa=zW)B|F%cE#hw9>@T?tC_1~XKl}EZq-+}pC&rMiU|t3$vTmrp;z)W1wy41d>vgeS#BSj}h6UIN5wV zCi@?DZTc!dcl=H$+xT$w9U*?lnKV1&6kHakj%q zW0q!fMv6aPmJP!-jODqn$#z)jH*2#UR{G`oY=@O*Z_IXBY4ql74QEZeu+zq7eU;sl zvxSETvhQ;R-#(H}wS2SXXi9e-^afOAi0M+UML`uL4(u0mhBnO&=x zjVs0fs>u(py_4O8GlIAGvU@uW`N!;|+}pN4XV>A_@A}*+*7`4t~m~=>fCdta`JmyH^-r^@BDKd)pdDb&Qi`K!R4g$LkFY3G&v{ODtbekbC5-ZHt2I`)=4-E!B9vR$49g!=Q<~pE~z<* zoHeht=Fp5{IeV6Jd_Fhl8doLv7v(glopS+VP4KYN99Xr+NPOamoZmR4)5qmVSh2W7 zUPT8xq=>NJl$=={OWUXBz&QlWHpFe@Y+L(2Vvon4F_0==`Oe-Y8n<9)owE&Dl(?I4402 z1SKxK{n-6-j@7&Fe%Jr`pZxSdkN^1}SWt@s@8pExId^grs4do64guZ{b?V!v99_AW z6O0?&&!M^#;(v>y9X|OW$Bpx>w|~l+%vs6sr#Y_N+v(49y4G4$jnKM3bAnLG>rcTQ z{gxAi%YMt*L2YFY!8F1^btYStw-3oJ;}C!ElIw6kgFSOC)B&uc7#Iq_?4iQh{<*TA zw7t`6TG4lNKf|gaxfz@b`bL@ikaIGp)wxymStqk6E4PBHkh=Wb4P1uC_T1TA@^ISbn9pTK|YLqkY`O(h2)5bdU=1z9z6;5^LyI zIu)L{Gk0gLYn=!MAIc3xOK=dD6Tkbc{08BJh4$-g62Mj6qaKsT%e!d3yGUx%u7l zR35+rIm%?EN1r?&5U=NuymEJVj*rW$PsG0@Auqrio?9$=!C)BpXhz;|zI6ODid~N? zF4pafm~(Xp73a~cuwyo`|Lu}r7xBmCd7!A0JcuO zR0tIeRN!=hxL0*UapIypL}BI*FumAyA{EQ>R@7yf!+o~oc?GaZ{h_>QA2xaDOdjlR zA>8AM=knl^G$#4`ch0wmuH=c`*|#25c?N$rS^OjqPU&LuK6{yWsV+J^CB856b;)1% z{z^f_Krt97%>{(OZ~f_BTe!1EqsQg>BGo83YxEPh{3blKZw_1npW~h%;?A3io_}w* zqF;RTYgdN`Avn6VL({w@)XFcP=F)LqQ2qcM<)2S;EFgl9A5usdKKm3MXpo~`x53y49jm5#wK^q%!j>k%-af-54)t9q-9Qi1((-jaeh2kaPG4FUNi&VtjrRh z1*5QViw-Ybmw(uUm07{I{MIafwDGHanrU$-ZG3!J{$ei{e$m(Yn>n#`KAC@<<0Rxl z{yHwhg=_h+Et6q&^^N?Co@{dR5Bbm!VBTsUXl_U1-b^Z;Sy$b-+j0~;? zvw0^`<;A*v5FA6(4rRI()Xoi6g%rSge)od=6qTfjdqE^R=UpH|^USFsc&|snA({x$ zLFO1OgpKnGI-vaz`@(rTK?U6YqXE7J6|Nwvn*jwBN4p{hlanq6x>TEB{!NC!i@-fX z3s$=TvY+c0&;+pm7fESYK?t?vom{f;erZ%Nm%y7EQ9!eL;s1j7U1WipW)Py9R<~9~ zM(o$BV0IuNV@?3vEiV{cJC=cFJ-oPcL6sZtBrfk!(7+R(bNUs;1NZn<|ANir{mQ`w zmwE6kiz&E5e#dDFZjh%WiG5#JU+}Fv{Jxt~Fxm&6sksGkQrbz}Illl-NIQvtDk$hd z-nScBaGd;pHL74H`F`SfHecdIHecPz1&2xb7iJbrp=nZxs4!@Fx!&A-{NXYN6FBUu}zjs_I$n=J1 zi@Pk3ukW!uuDoAx!3*9OJ!9Vwc)`AZ^Ri$l`9Ae`Rz`w11#f`P_V#uK5p9aQ{VE~b z!^i#^P0LYjMd#*J1>mq?`*0x3TG6^N`-9pDsRII+ zqz-n*ns)Q;b;H!8yTv$%JOGty z>`T#z745hlU!~Sg-Ap{aVh=@*n^b+y?2&{(6iNyy3Pn-={oE1UsS<`=boQe( z#{Pd1gnL%}(40hjAhHDIC!+I4d-(q^P~o%%IPMxRHrcP%LH@hj1)>S5cA7KF{x@ib zbOe5zX8)U_gNFV?FuIdIjGT4th8JbosrEDfKL~1ZuN?bZALRX2`%pB#)D8pKYwZp3 zsNr^zJ0lT%Y_uJ_p^cxk55g4_?61Apw{vFLABM8Y>1*uiZfw$TlRd(NO@55+a1sNN zDX#mKeIb|Jv&#-gA24r=_Sj(sCzITM$bQ6=O-?*zze5v1{f9lq46CiC-evm~6#Uy- z?g;8fm+gBf?1$-rLWQB)7EAz=>n?DY>vjW=w+b)1VIS8NcPYUjruOph*T+XV}4;j_5Pe; zAk>LwfE>P?j5WX6;g*K^$ny{T^7k(rF*GvX*f-bV&Bx(?+qVEMe4bZGb#Dj|%ObnU z#CWHB;WC=8vx5S6{e{`9aHv0;b91>5>b!~Pjqf)ogc~sC<55iuACqTxyFz6EJdbrL zge!RG<7r(Be{TWLNv1-P8$1uB75aI@^IUEroG&^bFUv24z-K*Uoo$FY-hiXIHtQzg>%- zzrS_kChkSOXlfRGXJC#ro#kCba|8l>pMa7hi(0V$VTe!BR#y;>dq5Fgx00pS9*+ww zqB}X8!_ywG3Mty@0#Nkzi&nqCK%pnX>Mb|vw zIiYV+3Gj^F`xjjYi@@IxDuT1#pWrQni=c=01nXmp-jaMt@kQX!p5V5+BD*g^?z1ys~*`s3G)kC_6~UM>Z0*9UXKx;gH{-Rwzg;)u*S-5_5LC=k(>W< zmd~maEFV)&v3&MFQ{+qj9``LP&r6qCd2YJF<}bg+=I?mB=n9dC=L1%L7ata_@PXgO zuh`$ce=E8{n32~jw_-*Q%RGvCB;Sgl;z@4s6g4Pj^i-!I`}Zx4iWzxlg%|fG z^tU%JhCAM$;JP0bHz2=T3XA;%XzSOr9>sykenct4?w=IPs6|W2;Oo7Ly8{EPRQaD3 zZz9~>8B`2CyC-;(lI1Ev&2r_VVYxc4EtUZ{JM_h4h_Q|}7LOyw>X*u9zm>*jpPW&A zlrS5c%f4@(&%VD{z>=vbEIv%Wi!Ciqq-kBjK%8DU5G777UW%IK_6x`1Q;JV)1^D+5#HuaD4|r^H(6-{!-fXhn{^AqvY|{N`@l6jl`OBH&XRb3(_4h&ARqo#S z_iu`0U7SA={A`b>ep}rBzwiFKT-=Q#_W7;iC$229fp?1oxwlyli&frELipOtV%S{3 zpquh*abGU^<7+65eLLVy@wz%}((CWyW}elb_V6eQVx8>6fr~_mZE<`(JyMtnx*p_rVs$`=6J*et+x5{?R2;*zIr1 z1_39Q-1KFWy)sH3z}cAO?Z>u~QyxrmWmsW}51VQ`s>F@`bLTHgcCdfOE)^x)>acH* zO)q)PCC{Uh&K#-6^Gjf&fT8-$l9KCOhJDLRUU12St4kg^-mWi!<;hImty@YSaBtV` zDDi>)*#y_|Jtf!R4j_`;y04^VL!^qI!u7qHTrD~D{-QvEbxK>JPS;8bcsudtYb6nG zXmoV{a5S(d&jY`#D(OOV06fraHEU&+FWRG+?Kf`8!xFsY;jqX4$WUqxN9S9P3c`DT zAJ&Y5G6u@OjX{?2rETHpp3(@kXY1T%=*0NaD70ZhX(OcBIyVY^G@-OU%Gx&96Lp$c z8j9wSER!dehNEA%&K*GeZSKzXq3Gts(no0Cl+qSx)a23z=;F?~k%(uRS0CM;1V77n z&TWL6tQ{VL7Vntr=AEj~Ofe@U+0rsm2Rye4TDD_uV>AlS9bP*MF;hz~Bf+k@P0_`Q z(t1c)0c_u^gyMTvlm?@iU2_|t(A{(Eqsx`0bA+}Hv126fLER@UEm#M5nJ?f zxzMCA3&dg}-z=9Yq+&ObWT4Zu5 zjuIKLw z_~AfX1PY1#YTlhV33Iwdc9bzkmw~6lhmv?3l%b% z&@4vTd&h_13T@d$UZl)yvY2IZiGpvoh>bu)F4h|adYM8lkPAg()MRWKWVMxF;YGcp zY(3ijpzQOgca&{H*_!f>twjn!2YzX3yQroHsYGm&D1;&?67Yh=WoD5O(8>fRAs^jI zfP(=lCX7jNjS%one399}H;O<}W~oAI;Y$@3lUZmIOBFH{m^~{5M|ByymKSL4f9FKTd2D%aRL4#(K9Bc#XfI_Gjg61r8@`XUc zmtvl1?0#OPf^Shst@xODwLuBTrx^_tE zQeH3eT}<^@y1WJA-yY)@X@uG%l^WzisZ=QD8)XKl9ulKeAyycPbHEq&jscA-po*I% z7BT!;FXn?!R>-76y?}3!7=!`?9|aB|Rfwr=dZR%hk$`_yNDX3(Nw3#iL=wGTVv&oC z60-m`Np;q?ca&{FANiCIdS}@O`yxI%;ZyDtAv1#Z06#cmsaRl;$PHp6)CZASCNYWl zSg>${%{7vsvIs>MquFE@ODqO3PNUQ$6Y0VFL^2V+u%{f1Q!kS6!FXi`i(DZV%S8&Y zSs)NvWEO!@F1JYW;2txfdevN@OoDo-z&dL#5cLR~)dD?hTGldBV3LXT3cXP%2Ztdr zoAfg9QxcONJTq7$AM1l=fi4URv(#vm=nY1ZKrE8!_3&4P&>%C5g>sQuK^Qp53zu3< z;M)v*U=n1Ch~vB;>v&%Z4LCTlKEi1ZJ}3nFSRjYZ$xYfK0_9$wy}y-3dg zN8Pd*#YPi2Jh{YR6kCJ_ge?S;|NBfQLl+6sm$+OEQ@XFqy7U93E z%R5X_@bBCbVU04gkjgb9psZfxJGerd_g~;Dmq;%#8U+@KNgz~+O?opZ7aXJ11iG_G zO(MLc``9ek2x!}()q-KZ`*ulFP8Z&F06vsCN`9M)TU2e;!$Lp)zzZXaX=1JJYwdRKhi5W&>zV zE|D4Ja;RQ%k=_K&i%cYw0aBE#x=NeV5!Kqdv>i@~Wt1MrSgQFdP>cxRz{uQCDpNLJoB zQYmdd-8X-CYgEd1OBUL~cqu}cyUULSE5fDqtptgxm&ZW&pvIz2Xz-lne6%LI+%M83)$=6=1B8iug%|=_y}`sc z^DSbLR4NfzEC`%-2#zja4v~n_Xg14?5;-`32&#kzP_YDpN@%(zd_5m8`E}NQUW7@) zS4f~?kO_?jh>(eQ5m-dfF@b8QfHr%}m@pi@Wc*5AWX%OzP~cxP1n(%5br{f$`J&q? zWlbZYE<<}ShBg&iAemmE7s&V!vO*UI>YYXAh~lAV0?oD2Amc+6W)eWi0gloLJVVFA zY+{222zbF+h@ln=NbgE2gL-S!L&GS9##m;M$^_7qEcqBggZz$C^`x2!!fPxP1zedW zM9<2{d!Vg`@=)~n%9y}*;Oz!hhl~ck)WnB|%`AXm0=j1ki&ShhgZ&w0W{DYPPXmX2 zTQC#!RCC`DRjw)v#nJmFjEAtXMrG;$(^l1NrNaLNnc$XclAYe!venF(h3L3#q|~T~ zUI5q|1j?W*nVfXajRJ_BzyhTv)`LbEr6TBbnW3Suh{YzE1v+0czDy#Nm>{CEpw0PX zLU$Z0o5YJS3I%eRnGf9~=p;cEAl-7Q90VsMEeF?JFct0{1q;y^Ipu?+YA%>mcIcd; z*16?%Bcaz0wMHlt>W!d4xma$NiJ)D8z}KSZTjUtr0yJnQ5jYFJObT8GB4hz{o1v2n zaKUlN^+p-#AT+>HtH-S5MVKW}Qz0aVM%*Bl%cKf0Y(2HSb*o zqbRV_h?>hqchsAOC}LQ7WQ0Wuay1euo1l%A8X)wB$|p4`WD>%K9uAmvjRfxa2I%;j z!4VP{sTV>wPA-H{*d&Gl8kP&&_8F@{BT_yy&>(;YPskTQ(^G|(sb&yB)~F!Ue;O-!&9*81chd$&RFmBP(X<(AJ=uvN!D_{f!Mt=lGum-+fXf%O;Hi{G`sZh?kEw*WUN6~^=Gs_3Qvt&W*Zv<$; z%yQ2NsmToW$6!(z6jHI7Gyo!z$zay=MMk+E97Z1LmziNSgFpjK3!o-ipizLHmjOa4 z5mY1z+eR~E9}x-|ZBUpbBEB9*h$I$?0qlb>l^CFJp#VmbJ)n*5{@3s|yr`N>mWY`4 zAhPC?8IQq7Qx=xDj1>5nn*8&W)x~VG(vo6;NXV>h65B_*cC1oniUW>f!zzCNsvP4RBn>PS27D&GtMqY z2YC?^Gaqai`a#fthrxWl9ONQ30|PJy5B-VC;p6x7qTW#)6L0Y&YAjB~wq$h=mN$fv z66hL3%PNyVnF5)GgjReRgx}CHGFmV%byl`(gis6vPYRL3AO($qtAHjAIyz>fjBgPs zL6V*Ri4ri)%ko}`AGn>Ir2_+JX*(eZ$1Bam+m?;69f_eu*(|MP%-~-<=tj>nR z>_|w>>M{MN(vbM228;a9xJk`&lggb{tY)SJ=+4xct&r_Pxx{7WUDU)=5?m+l!zllU zQT`93{QsVT`Y_7>VU+*FDF261{tu)4|F5})52O6tY<10};vYu&KaBE!80G&k%Kv}O zkbD^B|1iq`VU!=HVLpuVa}(GfM*06Szwlv{|HCN%hf)3yqx^z*%`bcy<^T881v|=* zVU&NoJ8uUP-0B#C4ulO4z^$*8M^WtELC@7=BVkPd+_u+h*H*uAo9~pvzY*|nB;I^y zRHv@IpYWr|(RI%99-?QDNB4_>saBE5Ab^Q)SSw{P7!?A!6sC|B7PCUnH;_pq8?3Q} zr4X=kQDBf7Bw|?iueZRGUs$AUkiZfiJ-S^slUrj6y9GqBgaT#-1tyCarb6|w*g$T8 zsd8Ab4~zH_Oz}DfVI6a ziT3}o_a0zURoUM6En?F&bRdWBY7l8+bE>K<88MAICLCn$jG|CcK@p5Iqe3?-AczPE zy%7T#FawS0m}$f4n4!n2E|P$890NFG7_aI5t$j{4O^=^FmDso3V5j;CE|q^VoT(M;*O(&LFoR zA2)tf3XLXeLR51Q$0HyZ9}Yw?3zj$4igXZY7%yb-HUh8=dtx~Kh#Lq60uiqbN3lRP zpmTt7gV>A5{WVF$D~N57Hz0NJ!AEUJWR8-P792$b(i}?FaFoXKx&rm_j2YMLc03qUl0MG!@ z(6J_2CwYz*YJ)||(JiC?^EIYQOir`*hpqZ6EIzW41`#)2Ha2- zY-=LnA?%0#6!KYcz6!rY0mTF$LC*x82+avei68vg=8k&1Gs|+sAZ5* z76roYtpOwM@qsW-)~M38a-~Ln=1ETVH5`ey>9qIB(U|Y$6hrvRR4&Y$s+k7!^f>?mKiVUdhXJNkFaq0!f za7{uY1|*U!=EJ#5^p;nGc<`nVpTj`QQK}7>axS$-kmZJI96V>JJ6;nF#SAYYVsXGD zf-@mRAWU})g+1V>O(KQ(iZI@EprUcGq?`*FQNsZ8#kc{GZA8?wLxGs+LFP6jM2|25 z0As+s0JRW%L==n>AR>eS9`lIr7J$XhQL1|O$E!V5uv4K)6&betK-E}2w};AP<_xVS zO3L5LPaXhs6$3GEFpbmEfX@+c;)&8%0J(zmv=BDIAn*n0Jqci!HH4r5!U@KS;$bEs zvMn2mf{{l|=Rm-HHKu6C}lu#B*`ymR`LJARLP*1c$`6^P?y(gf-jrEjuAfjN}L zfXDzsJb-gWW$WJ4w2&x?7y(s=5vM~^JAl3o1{+lZG>jM(u;e%trhAaiY{D`&8$Kn)-CI~xWiU;?? zx|0M<$dIB#CH93?o!Ma^h;?t+h$mxA0jz1jL+QlCGXMsQsNG98!w(i&bHA&C;66fF z0D>e!bo4;jpr6JVw4lbqfq;d-X;`ZWj&m;Cj(P(e<4|zej(|93j?Yaf4)D(i;E@E- za6T(aL|!;d)Qyqw#C#I?fQmstWEdQ)5Bw$V$5;x0Nn?@r`GI;+)#BeWMmGUvHliK? zjf^xRNx)b#a#<#TY=(5p%UA=w?OdifL5&d|}pu)oz(=8yQ2z^;8@ zb{RoNC}c2K5u6bsf{0K;bIA+xJydOg=%TOzV8t6tL<2G4k+C+w6?(o?UCA)3RF8bMymy83H>ugj&aILW3217nBw)j_@$jJL66e9-s{tuSkOb4AL7)|wbi>~Y|K*O#!r_e*$^l3pR4ghr z%^n6+o8%ufWr>l^RjdYMyK|MQS7t&?3)G*>=MEhm2v@fb7$8s*gfe>$_8(|FMu=z< z(1THcz)Tqy@>aJK8kE8IgC(5lAK2sCs+r)K5wfKQ;@S>zt2N0MTjj4ML}#PJ^m!YlI;ExUbVSnQ+83yQFK_{J$mk` zIg8d2rpH##?OtIJOiJuWl2xDv3^o8ug4)<2CW9=WgkH9jcs>HWc!ka1x1p8aKTs-ec(wL8ob@t+_ZMV-L7)SlGScs zz1QtrZc^#p&7r}$gWZ4-fs%&^BaKHHL+o+^exhShrq>&cwdfik>-{x^BpE)BhgKo* zA>t)01F&U030}EI?fxxL>xL)lS=88i(zVewL}O#0Nh}9JI@Ccl$p4$xelthG_R7rE z>`-V(m1gQas&e?E&gzu0a}OMi3fW45B&a^d)(UkTjmN`o(c`6acmOy9-6o(UJ1GKa z_86fgAsYc7A>bZ^tpF29k{F%{p%PF*phLIBojNyE8vvJc|MaxcJN?cz7Zgph!-LEF z4Rri0W6S1=?U&E!q&CmErAOX0k~fXyO(V9&E^iufGRovlBYD%vKU=NZEKzyWh?8k1 zZyL#)M)IbSylEtF8u>|sOx`r|6E>f`X(VqN$(u&nn(qGROe5xwW9MGq$+fl>KBfA+ zrf%)km}6EJm<^}SE%_NKv`nBX69)~$MxMm+26qWDwh>__fR(@#^T5yvYQqoN0ZuL8 zDdrP1=YG=8j9f9-{FFtCUwah+o@MT}z=f}O~s@XUFYrttJm znfLynN|=veJ`H&xihvE&3#%$m4tc#bc;bB_h`Ka|XReF%1HZm@-fvQs{xC#IkmMy2 zIKq>mBwlI!=}%=U zAcMukZ$B`{Rn`OlcF8rTMJu%*Pr}NDhcieZI}R?KJ8@h(Sl6K&5`tRG+xM@pvK}~e z%QfRGDnX<~FjRZ6HsXm5_(QnWg<~oLFAQv)hOR?+n4B(Bt`2DoY^cXh1W(|X#Pp=9HmG%TxF#tT&cp?x9iX*bG9mb!dWWPoM6a7Z&j4&)Qp0URy~ z&}dvFR3iSkx#1;Yoy<|7COdWKC{Lg+LG|Od1;a;%f>SPT;W>p(mc9Zii+6{B09wXi zED;cLLMV^I!UhH~Nt25?Pc`C*$wHVw6gV|a8_Sze7X0fT+1B&xTw#%Ybd1g)77=fO z4PuJW7s2Ux(8uVYP*El!R*oiMX^tlV4O*ZXHx#t7urJ~9K@TnLUa$bsuRI`(VqgvE zLz=);qboe%(3k_DC1V5z{jkpjL$oh*bCM5LRe;F@ z34#MB48!jjM1wmKF%94S$(`mU{h%1x0Q!NWyUm zObQa8BvS;WB*5b!3rofU-PmX{=e5>CpIWpYIU1skpVqnmMcQ2LTt782aWtiO&cUne z{83p{V5bU}DK8{QkZQ$h0yuVYX`}YQItyvJzXeMn7qgezr2QcC4Hz*4FCG2EzEr~kq0@0HJD?Y>3a?|?>VlmRL)YE7 zri z8b92;)>RIkl~0ba{^1UVundYje7j5$5uX8fmuBbAQK$_H%vGr7HvQqL`KP)4KyD%W zOTwHOsEH@hML{OAFaZo>C9AQqa}fhv0eH(K5J!!$!{H2ZIAq+QT8%6e#0x!;A!L#f zc#r@<3yPC@gqB0o1{K3ijzTRc$m(cakNWK_T;W#hRuCTa5HM|^ zI1tQ7fqH}tTAs#Xl!LFdNRe}?m73wxX3mK@woMxVQjRVe-yap2qt-NY&S}$@_o;CH zD5;JS70e%~mY@r2K*sqX$AoYnQZXhuI%mlA^sj|7D42ln6}+4uR17RhIK2Vc!6t@Q zMc+)Aw9_gV%3COabDtJup<+J*zCDQk#RLiyR3v0|Tx+FrE;Sz2D^+EVVngbPPZk6# z*j$MJonmmZK+w^blTI~EQ1@|O$dz~;pe zk48d4%0O*^77H3x+J$)l%&E|dU)Z6Xof9A=^mNvzWHKD{!l~}3MNl>ZK@%MnPHuD$ z=t_Zw!HOARPXwVXxc8`_?tC#DDC}HV(64rXvB2X7OXE;nR2HbIV9{yIC=d_G=QLp% z83O1Sf8ZDMmuZU`oCKO>NZMBpu~Tnq;Oh5indKTQpLGQ4Ac;p{|*6K&6}ryLX{ z#-TyV1^y2NXVSyY4_tI2YDYKd)hS2O5m}v1u5c_lE_fY7R;R*pczr?OL3PGL6M<0} zcnl^0AUt6Hyf(pSB%Y*KvR@2=i}R60g0G=}v2cPUO&E4qNH`1xjl2v{@df}f2@u@l zWnU2Iwg9M3J=hxF+|0D@Sg4`Ko;}A~;asK_8KRdacE~Iufdp9|fc%4W(manr4{0Gl zZtVwEOkx#^%9@1^RYPKt2tg%exk$z_D6ovSa02s+aSSXh*_bb&iev&{Dg!#kW--Pr z3DoC6h5sdR94k_IDJ!5Vf1G4PmC!TmN?XsiNlMqP&35*U#e$aeyCqMx^o zWO+Js*d8p^##*3qv{4)O#2mdcx&H#?Tx0&I=zw~dC7i#i)vgM5f5LnW5Qag541kD% z#1F&ajJCienav3jHi(aafz}K3j9oMW+=9`dmyj(9t7wH;ce6OfKxN4s7a^=EMvo^= z2vb>v4NEB8dYt7bJEj+_3g@yd(7NoZ+#w-c)%GQs>4mf!{zLHUqK9ILvG9Fv7Ar!l z&}8EP{Dfv5-HAKlrA1@%XB8-PKU5~(o5h*64*)5>GsaibEn;M&umEv6O7vM7B%BMh zl&5_=s-Q1Ms1BJh(4e7T21JP#&3lmGgh7>PLHEIFiDF1Z6Pa-Y&A)X}$r={5TygrN@1jmGdPG^&0I2UW}4l8q%sFyB#ZzVGl2?juA z1HukrLlc}fZ%&gQjND83v`(q_AqqZ_svSUKv*+cL0ne3j6WTAYdM zSwA+Y9LBl4Nic5`^yE!~VnfZF1oI}ryh$)`68u-@$h=7~ZxU?fk8Zu=^5;#0d6Qt? zB$zh|=1qcmlb|+8=1qdO5jAfT%$o%BCP6z}^Z&9*@Cb8kr)zKO?E177inXx&wWEI~ z%h~~|_|cs`=dJ2|JJo{|Dh6tz2ri| z+z-PH;qf@H!FPeN#mFBw0$vMboAWA-i7l$QZr2`n1jaQDFM|O`lC*(s^pg4)8h{8e zOuy}d#Sa3_3WN_JXz>i=5eCDBxgM4u64V>w!(UBWz65L#k+3AMCY>V=Owx*Z#RU$a zD-yH$5w!O)N2v+5B)sTkcaBokrrwJVg54y5AAq!-aPyE17q3tdS|Tz^1B1b3Yw8q< z72tYE1q5LVxpZsDt{U~iiz9HAqxb1Zt>dW=)01cEQ{?F{w0T|YU70jOX}1++vE&(uD67C_V?Ue*Qdhyql7x~ zKs7er6jYO^t?8yV8H;|IA9DF2mmhL02>-)F?hx~<@rx#RRu=^am#a-fuPQU=oUzFB zvo(=h&sx-TUPWRNf7hE8iN*8g!(p-?mu#>0YVz|tyP79`wRn`vto-}pS37wAKu+En z{@(}2_yL3gVZq&v4?YgODNL$Aq40vwiagrF+LJW+*Cv|VcIu8I69K{iQcVJ8BBBFKZGxodlARYQXE@OEMCYsY6R$pg$=9zX9|WE;t|=5)G64D*eRMCMZ6C zq^HY1H?sT0Nf$@XO`LyFWlgpHg!yX4drOXRxZn^q?)@dZ|M}@-KU~s5?diI-Qmy@9 z$-)10-sJp~?P2=$0v1jZK?R!=uo0+vg9*Wa1fhQl2CWJO1MGa2u7Ir{FFCxVvW9*G z*wp~BMTZoQW8fM@n9)$+QiCD=M0bv>)b3Aa_A|fvZpjy2+LOCe?d`PG-`-Cj+^NEOJ-yVe+v7<_yrA-6qhoSG zkA=9?kU+E$c&#Y7`*Y?ka64ZEaHn`yU-Q<0)GSP`QL?|2r4{&l0%k-%;d_J?0UF|Q z==nOfFxN%;flnX1bjF0rIEc&$48#OsvB6+N#?(q;WxrSQ+LNZ%dSI@L^aH!yy7YHv zt20ZMRhjp9yy5&Jb$=hkv1K>Jrl@{pH&mIgTzAN|XEs#VwBP_51iEbFDl{xGk% zx+JiyL`{5dQ$O`!%Wp5sZ?By`tDou=c-frx?kN{dibpOyS8u`-m6cl7_JKk+ zCN&}TY}LFT-HmF3R)H=S5)v3B%QU|g$!{!ep+cR;_vLxLgEQ_$}w1m_qdQipAR z9Hv6nC_ll}Nr?;wmo8C=k3J{K#>rHUaS6~jsjdN}N1&Mu08l053S@Q2GO1Xh9XSdP zsE_Yj29pbG~{ z1^}6-0g<r(qtn3E}KV*W^ z@f74tj}i7p5E3m(dIROUZhn^6lQ1~15GNC;?16YTh$+Sg!d9$B;V3yI_VMVFfZnP2 zgid@}>0EL$s&32738MKnsjE*M|{2VMqPOQStPyP$1ASaIhRVtB|hWgEd`tB8^z`#CAM4z9y4Q#R~KmiXS z{UIn9P~}U%CVG39XF2h{#6<1pHLwT}%t@jRw7yo+RL;f6ZEtBXN7+lxpKqv>Z>X=#P!ys#E6T)H9@G+^vq{}9n=u()t32bBSxMcu_SB&=ZKLYeIEAwH* zElL)KY*dRid*mot=Z-Wg{g4YglpMDPT>188Rik~L>Od>{*?=FTYZ8WYGBc3M1&R%b z0X(R{1QWz{;s{vN+bxj5Y)2D;1Vm&_u{j#5P281pA5FFm%4a*}P<1+DQSum6IDVH- zO_5C%0HLChZ{p3lHw zE2t1p0VME#%uKS6@kQ9%$Ni+|VWdO@=4>Akm=)xz@CDF7i8p5f^wC3!y(Rez%m6ri z)CJp@WtRn_Hp$9E2pYx_oC-+@&RIQcqG32A0)}DUHoO)-a_2$=ngk+Op{KsPY^d5h zxVA{uez|P88-5d<1Na80FbMyN{tdCgi<1HZ=Z80G$F(q>5h6l&29sD>@-pl{tze zS;!B|CK!GewNRi{OfX^C#EGNnNMv6;N_LqLoq~RX%L(6^?N*D(mk{4d@HK&1_{)O+ zm=A6q$zel6gZ)OBbIT<5U(%dAWU$SW7I3Vwps!^~%kfqFA{#59JNJ-~3LcLjUOCJ{ zQCJ{wRC$HKJFYbEgvI-h?~Zg7=rR#btzs4aEt> z@O%Mrhy;g`fIztaS$?Tm>{oUUFX6I*{+^|R(M47(S>O1y7&dI&z;?0_YnAqf;;{rX zM>GU2f@I3VwvCR;v`GXgsVMX!Xs>O~Wm~bs6*-E=rxsM*`>g1tj6uuG3Vh^d@r0}W zYRT^UzHV5eBz`Fdr3OxCNaOwFyTWq~8;^$^U3N=R15Q?GOZ~O^E*zUG*=8u^=%U{J zhiQ(Qi`xUQ51w$RkBX|zqt$SC!bA9c5Ca7{U1|~@S^;l9xkMzKF#*}Om6(XJ?q`-E z@(&$KHe_&uNIo#Q9|AGPo7ViT@fHo^O%4-`4@m_{(AeuhM^AVzq*qa5;9EQNbCexb z$A4Zw&Yi1lTGmj1`Mkc!&Co&7rEdxwkv{~D4E!8S=zi>>WVy3A6)NDt;f=g;l7SGM zjS>Qr3hET9qQ{qvn-?ry&`3};qyuE-iG>nq#s=642tEwM6CghmyNsak(KmCD5{%2O$n12N!HoOk6Y$gg#{6dU`$?+0Y*2HIf;LEjP)= zST*A8pV{k06C_p&SUXEAFOSS6v>7{TnKJ1Vn3tIhNiq^(g*HD=$?}||R124ot56+E ztTPyV-(FP}V9~0nsb(;XE5AabTs=|DouvJPR)qW#aM_T$i8(D1imPWIW1ng1`pzDl z*53Ra%@p2$%w{QSLIwriwm3JH%IT1v16*a_xsren5%=v*k{ zr#?&yBWt^sqtu9A(I9znC{@+%S?;wKG;xBVVX#$6@DbqvWI!;dke!DO8|Dmqu0SV- zcz_HbF`C~4y9At3csJ0^NcrNAn$J$$4670Sk*>=J_@K}rM-jOYg=LOK!AIb}dE24n zadhV>P_JXcR_9b6W_|{tGR|B+)E)GCz4#Te5|DexNRn$t*klr{&tzRp#7wq^Bs%d@ z@%}hV6D$*GRYHa(lL;wJ;70J6P>S*X?CQw4L&QI!+{_gLP7%*d@G#n0lzl_xf_~mUAvqbA5S~F}AL=D($3g^~fK#6~g!cMqHgG)WYX zL?Dj06Z@JGN!p5|WW#cBWLi^(O(x^qJdyp!m2-cLwox;kYc8=bq&UY{?Nb~<3Bf=V zX2s^CK?eDwWJ6N4Y1YDjPi&5$Ia^9Jo`edjW<0cz8uQ<;Vrn~q17+`hcfO`=T65(Hm_pB#=5 z`-EAfu<~GGgeoAoUz|RJ3P-0m34j0k>U3~0J!xb*qS zbqRQpO*57g4`yL|JHD@&xc==a(ZfD*r+@BeZCwULrdp zWUOSCVv>nLVyoewjouBUaC9u#AJp_sISOr+UrvuVFW?q0>oS#wCo+L28mldoVwm7% zH)(Ips9Hd~pn*sgjjc(b7m}Trog?3D1QgjB^)~Zv7n!FaAq)m+8;~kwKBw{@4ZH{|p!F*S3j>c)T70b~n+ps%1*HkDWTd@i4>Uz6L((Uw7S?a-# zZYF8?Kp5^pEQbk90Wi?Ok^~13`g`1C;vYjp!NbOmhBR?vx5w>-p&LlAWONKfeSl)$ zo3ok>j-j~F&xT+Fg&YlogC_~KGT`gD7k;EfYY$qEQa$$gax4`+SM1<2zTAGm+hhl2 z&18A?v9)9m7-gdZLmEJ@Kr29UIT$uJZLoO-`4X~|#>VEDCtg3cvd) z-o!QpJ7bS5#$`)u%+XG5JZL%kXPbfPTxlVr#oXxpO=w5M*p1=iMEmzK^-CgD+%7a! zlGzd3CQ@9-ZTgvj7cd&OZ-^&pcv8O8z}W2JY=-MNv>#Xzi_LtQD3MX&@$2NdpLLHmpcY?FR0r5YY|3ESsVx@#6C& z!6>Jq(CadPkY_lC`6p_bz$-`?h=m~F6Mq24II>QX9X1>z$0`;&d%n>9vVxtwL!rtw zagDcUQB_QWr)VmN^b(S5QrQ(G@0%6 z_mNqZLF0|Fl~lJ)Wz%b!7IC%vfgPZ*kdByu4$LPIXvE393h@rQa}^D5>49p~9r&HjZ&Y2%+2h08%#KbnwPPCyuzmCZFJvyq{GtI9 zb)RfTdn93MB8W3OPJhLg1p3ksKQ#tB*{#_W!8(AbT(n+-v9OoYv&oeXYKF0lZ5;no zT+MhI+n64DZfH>*3Qua2NCn9n910eGV6U}T!#TlHhI-Dv8HQ)JGpMgoS%$+gzb9mK z+Oz3m!D8hT7iNsi>|*(0f6ZD>T$w^4>}T&c*{cHLg;$qkov zL`Yy8?r+>RK_iAT7?32?xD4kQ6AyvhLxLF$J_&?b?71+T;|RJ znQm>%&(Sh%tcW?fV;hS|jylWw%;1Q3{4yN(qCH}B!n^4;Fm1rtk5P*R%k2E)WSth( z&)#vPV8N5lI7#C1B{fC}if>7R&PLsjozB{|SWpl=IZUn|uTLI!`pBP=NN_cDx zHMuk4iD9srN~hmLW#Q1XeQf+d>bTpaO7^kTwC!2pW7gJ&PN5VSFa!&lbhskB7obWDs*6 zJ7>Iwh7|zo=IaAtMwO5y)1<)&ehyp&m`pVVx&6UM)w1DqF4Zpv9dEf~nO6MkxZU+t zYWuJ2dsZ9X>YDwS;)y!OJHeX*(*#)pOhBB1?1v$0jhR4GU>na7NuZY8vk!LV+(d1Z zN9V2?X>)asirYsN@AyqYwflODEwo0RepY=X4=v6^i))v+M9}A<#g&7PANO0Eydw`S zZVhP8LyMgNzLsv7hZeWledVFW{|eQdhZg6d#d&CP9$K7-7CWGt^U&fpcK{y#Ihh+9qm?D7J&=hdAZ=RFl(!QYMMQ{k1t0@n?#GK@Ud@KCq*=9ptv7IgZ# zpK<;1D+{f(BCAeVS#h@d-NP#nP$L)2?4zbXyt1?UWWmf4DtztCzUt#s=W`hO_{xV>kEJuK zRrM1q4=l8b)ukS`n2#R+#7aYbw`68-b=4Cqed@I*Rvz--zIxu5Pp;(eCiBZDZ+_2k zEo#+J1)tvB?`QUe0qXFkon`ZCzq*;fTll+`zg7ILHfz7S&0D1&IjF!+X0xmO_Vz!g zl+yNm`5|x7pNBv3P?33L)$Lb2RY|li)Ko-4`X$zb>~6xAL^Li0IT5lgWHYVgy2?th z@ZRm0cO@}M6#f?p+9P8e>=dxAz`Vwr^Y(C*bhvii zxz(k%4ZE&Ly}R?yf%Z>NwnI>y`_#Pu-8)ZpwH$r?{+;*9k=)nhQd2&<^MIBkbMnV` zo^wbATogu}kPw2#2?&fuV32}9D?xB^jCdfk?jz_^-2_-e4C{epjd-&-QIQ@9mm$t0 z^bEQNSl5Kfi_C2`@mSnLWJeOlC4(SyViw6lNAiF;R0cL(iq3xLTq?ODW;`_iq+G>H z{1TC@#+shxu(Bt;MA}9*{fgAHgqOfFj88gb8ecEJpo81%4J7qrbmu{$fndgy@NKwx;CqC`C`PJPC}xx9sYfh-##QN99$&0(J93f7 z?Ob3|&Aw{$RMq*QHC1k+i=@vH?d~}7{W8KB&S!Vvx#=${C(gpq-OX_#OM_z5s7tkBI0 z=h3HjA1uV?zg}>ytJb-B+OSLJ=#g!a)6R7k!Anu8mY3A_a_9IcO_B$B5P2X;xCcKC z*`*HeKw1c1-F#2g-W4|Fwxgjwi zJhsLQ^DsjkjwT54!UV~}gaj2=*wkql%lQTN)JT{KjmSqB0g3u1qgNPCPM=48-WC1= zD_tfz!|37UxPg&5EChSepwACybUYa(Yo$fzm8(oEg@9v`&>sn-xgKc;K+R6fYOp%c zIz&7H<3IpT-C)v}B$S`1;ZPI}H<$>*3!XH0-%(G8%dsk1Rd2_LJGW9BH${%_*@n^_ zayO@1+sEqV{82GU5>cgQY_9W5dddIHFK7AX>|d^;`Q@y&3XosU^2=F%Ioqdn{J(2C z3!CE~TC=c=>&8~Q>h4dkDgW8~-2shjdYkiKTvO6VozZwwS9SV5oeIr$JJt+8SQVar zZ`HgX`rgIg-R2K{@458@)!g^4D)adt?>Y8#b@Pw+RGFUB?_CpgHKxk>XiSwzoRP2Tvlv8cJsae==krKGH>_o z_wsk2x%>9}y{EYzYE{CKU*A9G=Tsk09H_|a3=UQ(mBy|}Jw-pyC7HE+IZ-4Wf@?tiSSGCM3?cgrAEFmHX8`KO20 z_2{9zTlux!OY4jt>b8dvf4g3+okHln-G6pvHsM7 z>d+;KZydD#;V$ZutJYST_Z}_cjwL+d>XX-B9a2{w%>`rTt?yo_Mie2&mxwr~0`bP1 z)*n!yQa|*xE9c`o)_40kRWEg6j$OO{l&O8ZL(jYTV8b}bFh*5|;G+w}-2?xh8nkCg zf7RHh;h2AU#pdhh^;7=74L|hs9`X|pi0oZ5Oil0CaNbX!Ub19fmFnHU;g3Ik`q{5< z@1fcaXgK^QPn#14G~7E_ow=}~$~^F}hSv(!V`~um9^bHcV5OvsOR&9%u^C>DP)LY= zP}(D;t&-fvw#6yuRode8mt?~w2ddLH^6;w{Htg=IemE3y;fjV)-PGsDA?{q$a7jP) z^qYv6Z)`ZSL?u=rzV~KBkMV9VJ0K7F+{lF%tRX~HxZGiQiDBdkK<#d28Xy4!G?=iw zk&6a4cQ`Erq@5vkE}PppoFrKr5F96Pb(2~GmOrDQ*=Z9qAS z^{VqnZa6Jhv6c;}@x?hsYQQNQirq01#bV-the#-Ug+<;YiQ>o??SZu{%S<2kvPp}R z*AIFyp*@8GEI}d_>{<}o2T2;FO+oONc|BNA*qz2;tcQmTO34733ldP`R>!LS%Y!PM7Ivf^Aa zr0rq}%29I2+MfQZYa0?1tNZrXR3uPeet>jf9^_GXs-;(hM{;t^{2@$Mw zS8tu&E=S9>wE{W!$>je0?@{MUs}Zbf2VZTU3g>TdLJ+h@L-rsl;kZUQw)6cMo4I;qw!GO z){$~vrFEo5qc*LqP^%BwTxFhe!loGJEa6E;!eSo~v9@ z%BkzPnR3oL3-N$1BEEVu;)_L_=d@R=iYWcUlFgr%QDbBah1WX7!iWC^7PmN=HvO?6 z-XQq+l;@Ib=2Q8O7bUFZ?}rcB9O2#wo4dFrX(Xx>1^a=6P;>w{KmbO-7%9Rak^2F4!7ljzX>MRL*4v zEUwswt2Q63f|1Q5EAYF~GrSSV^~rY(K_OXu!htwxX8mNzGF`pqUeKWepC+`?F6e7o@VUmpy2dHy-o`fp>VVNgK zfmZH^u_w>zQGea$?rQSX&1JZkz12aZ74I$TZA~mmwtxtuoQ#T)XbW>b`2?w4Xx%Nc z(Hv8Xd0WGpTV1udB1u~KFPo>0+UVRZLv5nqb5xtoAgR?x=kF0;m7SxN#NxR1AXheE z{x%>gPLf=P^lQKp(3%Z#Q^C}aV_nkMg=r&ldXSY4Qbo!46baNo@NYs{=keaQwQB+s7y@F`lGvK)m5tPv(D5gba@OqTWtqv`PQ8Ehy?nplH_ zoAh*y2GUK@<$`20(h1-od(Ump>5lF@i}kAA+)4@-xK6-5l~+Il5LKvS2G2*qjOu zsK%>i7+83(P4E;L5`3h}h~pdv z6hp!_?jYYReBw+G5NRiMA|yMDjvGi+f_amiLO9MNA=0@9k^%PgY~`b2KTBX|^3Gam zKAejNNVWTm1)ho=MMJl5C*UG+U4XsyX$3y4|7O2g&+Q7vh>f~b+CeU5wihjcA87Rg9a z>B+QBjt8F&dGeANhjhDiU^FUnKtW_|kh9V2mC4cw+V(`9M}cfWV4;N89z+bw9OhNf zCDK93!z{U4FR0I&9&?mkW36&I%5JSkl0*&rZIIyx`L*ARVUaX;0ACd zthFxWDAii)o*CbCScSlL$ahX!c&0ouEs<0hEu2BmYT)y!*$H}@&0fGaM49-6FJ0Kv z0Rmz*CVyIz^v^XmJ3VdcjblJ%!{n$zsSDNIr@rQ%E3a@Tr#ih!W+rbyAT5Ey+r9 zG)@~QVva7^27i{LzWg%8-rqC7w>!s2Svus{cvDa?G2PUSTQ>hPzje!R-SS&E%c79q zy8Y`7V}9$F-@38OBim$t>z3cT?YC>pZ{1qymHDk(e(RRsx;gF_^INx;t?s|Kbu-zz zZS1VlOYXH@!qw+B9r&|d!cUd%>Mt%~^Z84fb{t(`cn_)xALR3@JsX=&FAVvs!#+ zAF@yPsq?lp-B#rZkPX{QJXm$mH>%QKQ|IG}$-c_}eIIJ_ zp#xm|ecuGN>(!>h*3I@WT64pTO}qZ>hCD`n^QWfhf4ep7UT!*b|JEG$TGIrzb1U|U z6`Pv6EBB_RL;l^y{p%}DH~#@h#MD^z>j;PI zZc0_CWpX%n0f(>NlNzXcoXKII-*LF|Pp~=6m&1q8=kSv=QxnyxS0EK%mg=ZxoRu1< zx?IWOxOl3s`t~fY^Igp0S(8%dtML<&R`*N~Q9UMeVpSc7YZsRls9BR!r>TYV_&40? zL8^CzvjdVGW*=Ij7Rhh5*YewEcl9b#-$zovPz`f9eCDcjKUEv$?D)wX{&-uum-<=` zZ@GlS6W`g=Tg`}Z_<+2|<i4EuV+PcMMb?#<{NfTn;O?r2D8y zg2Sm(IQ-L1<)tc>;I{Z>93GZTouRf~Zb<`FbCT;Goz7w1R4V7BvpJk|HHQsn^Y~lm zXHOh<4krfA=J4^E%{|p4au}2bcw^3iMQX?t9$z4Db={QI1a;@dCOC({yvTOnY4(*)!$_Ls*BI(?5GPl zEGXF0UwtlzM@hLSPnh0WRd?MoKwUbW-;O(r-?mKWU7nNPGyU}~gVgV5aN?6caQOY@ zsh(<&9D1a_bnBdR0f(1e#o=e;P8gs*xPWqdUdrJq7p5ko_rHXEl-+o7n zHp(ZC_fFUhJO9M<%-?g{Yf@VOKhQ`|E<{@V2gb(V=OR(R6VyWaCS3tHUB<=l zNXPo&veenCPCjt&3ERrl%F8*?AYFp%PE*6Ae-G=wtwJrmf)g)apS`a0Ob){`{-)o% zjh2(cW2dEts6|t#->>Dc<5elYI&T)z*V18hPx?>}6Vh*=p2S1XspasPYdAb?(8Yb! zJGE5U%V%<^Uvg3%XY1tNaSOKfSKH-qmUK`3rl-#4@J#tO{RS_~;csQ+=zGUr$zi3u z?j2XAqH4@_+1n1fiW6?B9DUn^a`@N`4xibu%}~c&&0$q7hxc5as#EXDt9`#V)m@F* za(P!ZdCTRU)TU>*cTzLvaNRx9mV5ua?U$;2E{DNc9M;WEU8HK{dDjo#-d9!6qjry# zk@MKR)OG5drAR0CyEdS1y@pS{?raYKl3aAEn*RQ_PU@`rJY|?nN!)vQ{Q`~-mi|_I z#CEs3QVzGt*k670_S4nj*K*h-v)+vpwjZi?%HiLn2iJ9Cn2q_z&7;-zBh#JKHIOpKpgpQ=@F$aKAEaq3$2XPGVD*mOW=_5G|3T(^XR9+Z*&i#IkH zYQ_zzPHNav?tMUNX;Y6KN2u52@O^2RF*l@E)PCOKKmKFtAB(#D$JF;kY7*%Yk#>r7 zn@FFCv`nOLM0!}HPTi0;i_}9TB~qnGFN-u)gt~` z#Pj9HmqfZ;q>n|qMx;ALS}xLGM7mw1H6jtu^B+_HD$-LTtrqEJk^U}HTBJQ9y(`iO zBJCCFZIQkgX)jXk)WYtFH_4BEM7m3)AtK!=l1HRJigcJr>qR<2qUpJQcXvtr;DDMRJR_T9%6=WPR(?QSgPut+d}-*?WqcL?=7kK+Wa`Oe!`9} z>hX_LrDkAt>QB~Lv-tMZn0ESZ^OQSN0ZUYS7B<@tYP>6TvrCm6v39{X=d7f0E>K0wl(d_e3Dr22_^pRAVeb1uHxMz%+`q92;##xyn zwSHp?vb5(f?5d2FGdi1>J)YWZovwc*HC#2Wp3%>|^~uy*_ANjDa!ZkU{nM%T_9NvH zCXe_b`^ZDGuTfHTQL$S8@-I58Rkhm+&4TArjoE8jiXC_Qj;?067qYLaODy@YeFru6 zjf=XglILdFHy`<8>LZu>=F+XxWe;$Ms-3;nYFe}3%cdFgMfHT=$AxsgFN< zBGXm<;>a$Q_2(6IRy#MP3eERlOFe3xHP^n8+G~mRCvWR&KCvnFfqmw|rc~E<)*}`l z!6Uc6l^S3lSGG%cRfU({Q=(R_EEuM0xA4rm19jB%iY#Cx!yp#H!OT<$3=@Yc&=^u0}R>l=?cTlT8>_)WJNn155DOg(HJ*Z-X-j%>#cr|!Vwj^_H0 zQm@z->b}-+b*6*b`E9DFx$a~6PW^~!%jgcPKb5L&IaVC^RjWTM>uPS=BO^!7=!b9n zmJ{w1OFA#FDDI5P-AoI8zF+bBip7gcI;*`)$~vpMFVcnP2Y*jJX+OTUE>oi4L2*q- zwRrN5F7@ws@2nbL=ejSyOg(5_XEMybuy5J#-OJUuWo2E|t`E5U`)^Xu+Lyoitqc+U z0Wt#B>PyoFYHwk2FSV;jaaT3zRW2|8A@#C-jf@GYsPacD)1TSD?V7r^Nd0&n_l+G? zT&iZBREkRYR9`;f9&Vo2E^Sw`%m72wXTyt&6eF+DJg>w4XBLks?x4OiiVM`oYD=Mc zZl^Ted)iHC(3SOWkE-0A>a0FEhH=3rw^|+BC4HQF=oedum=ASH_i>3>YHlk`&#=V$ zgVG(9udJ+}d0A00`zO8-&qo=^A6Zl`;y*}Zv>2N%%2KJA_E?{ZzM3i_tsQ**D~R&0LTH~p#n zGW+k_d#LaFr?*%?zc(Pgm!Hj4d3u3M4SkGHVn04b-Tzc}sGm`p9_^CjGIQmi^qIEU z<$&~bTU;f~i7ig{r&(C^6Fv^Kh?j<1MAt#-dG-Y>4^Cfci`9pwFSo@f z4@+NRi^q>mGo#7F)CcA1(T^UPhO_Q>y_;JP-(Me1{T|<^d5HPk(dm9J5lhWaj!B4*ueO4^`t(Mjo(Rl`KqBUvuZ_fJY+ z>XPH0YTT=tF6x;tQw3^9W$!Yz_-M=@Mq#hc>f90S3(fVXq?Nv~Ox3-(rK`H>+_!tH z$tU+JRjYr|t3Xx6(xv7dr>387tY_5UnI2f5*x|OGefH^TW&-`d+LN|+H4mSd?qEM*<9A!Snv>5; zU;R^0WL25jt5Ch(yH{s(OeB5#zGth+i+j0EUi`II&s99PT>Y5bQD{~t(mU)kQi7rc zeWssz*4gPJ?XvbXQ})wS(vRC$?)#d>2lg&iw+`stSzY@kEB&kIrk~N*w5jL=RpZCZ z1v{ptz4jx|eUQ%^HKXNo$3D(_a>ZGhQdN0j?>=h%@2TlSFHApXm-xdHs<-ZP>og1d zwB9|{o0l>1oOp3MXg_k-_h?3or|jr!HeQ-ull`b?d2VrSdVpI0Snp1%WLh}5iK=T znmgvD)AkwN^qc0Vzsnxm-_%Q$)b;6MmM%=Q&gv3&tx6A5n;!1d(=--Ii_4EDi+E8x z>pY^*oU}B(%f5cvgUti$-|ADT3|HR*by!hpfwj`yy)6Al`x4_Kdc|uKGNtv`^ck+6 zp5LcHz4qGnLNisLe#^dO+?~|%m@m?DiCc~J_U&($+}KjakAvwv-EKtfR6Z#G_uec@sE9;EO+c&t>SG`bYF+85BUha)LTX%c3$#J>(e=zdZywK*HLO9VWW-X%0^Cz=THJq-xpPDM9{a~AiB zmZ)?&t1sCBncKO%LEo2U{OKZ&e?2{3jeR9uq{d#ylcv0yJ!5hvY~Nn{0Ut1~|A1lY znKeVYTWZyhZ>C?cpE3G7>upA;T^$E@P?f)KE_L~oE1mW#=87g+19frwNp;5! z7_AyFZSG;tek=WwedfgP({@!D0|yqU$p-KFVp_)Yfv0DtiwS#@+IxCth-Dc5Xjt_a z_(jQX_HT5hPST#fJUm^ELS#{7ph(FHJ3fy%-p9>(qZhACA-V} zs!2!FB&W4&=4pV{<<)X;b3VM`DGtWz_+S z`l3zkE5g+9}nMp^bB7fO7R|K2H7EIXkqcp(eTHxJ=#A zw|R%_@8;}&&7Im=zuY*W`CWdQIj|XpU-im9qLZ6P{Lm-+hzs4#7rNxQOtA!vFe?W& zvsKW?dl&N7doOYiwWfm!2Q)uzpOJ}NF_AOFjCcEV?VEEBY<|u@o$WrX0C&4bs=Di` z<&9O%&)cW7eWVh{OGSUR=OMS<)4v_wY}(h9+@9)czB#hFOFQdb-VQY%V~(kAMqkwL z_WBXL+qii<4lo&?wEKQ9JV349TH3>!Mb~&+zGq#a`4~0n61P3WY^%whF*#FV6=YHn z)7EKKY)G}&>8^vRu3aP9h3d()?2u*@YL3g)`oK2yyyKb!s(ckaA zq%Y}5@bHoLBUGYv)#DnbM4}|x6&@|*k0Psi#D&a&X`Pl z7_a0aGm&gQ*b>2i%jMSCTIO)Ez_^!p2Jn~ zb10mzPHRS`&}a0rrk^%;>5gvoL29}03~4f5EHgb#rZ1FHEsq$k>rAgu=CX@rXz0^i z`72eoy|N>UYjbn9SefgrS8b`eo_}al_7j6^tO-AIIdxip9aV}qbfT(Tk{#*cSl;61mVIrBjADKLsvDZoEcN5111h?zTk&!OlyTz@OB*nU)HiRmUxCYy zR+AqYVo$xNu4u-Hr|)JC7$G8vIh4DY&?(p3jMfJUm_%J1FWe6sq>1E{6H zzNHzh53yA3orD@U;EA_~sKs6Tm6*&6_uFR{+d5~Z+LSr4mm2r|fwqzryiML;-;MS; zN>2B$Z*1;kChw4n&?m6D>Jz=p+BMP{^^Yx2tpDqQXzgE?7g!VCTX##p)0ezFO?3HJ0*l#&gYVq4X_U zYbz+2F5AE>hD<6~cyQKKJ} zT^il`LHe!K2VFSGR9;Z-B;c{?M6;kq3( zjdp;4y_KdpyqI$mX7<6zsUrppUxuew;!P|n(-$tlIk(%e%*4rp7!;_ z_pNE0ziIxZ{Ti|zv7fPTI;{L)_~808aflo~h5y{_#((hU56v-`dg8^c0kx|j9nPXq zPF8bYV()0UGIL!bmYOfM%kYU>{Gvln_UW_xW}<4=l9BAcdS^bh&-3GC`$?JpnbU3YsPfFOZSg*L z<~O$3V{qmaOH}URJgdPw%HBVGIwZqNqu>4Ip&8m#i(EuYY4P_XGx2t6@omhoU~UGe zWOe2^_1PVwWQygksXBwA%5j;(*oNZq=BWP4-88zhI{l_mh2||r<~n`4S}p#PGZQ}^ zRbE{BOvF-MqHjQwGnLsW#Mg7U1IyiHf8ha!+opdz+xw$4&Xf8W6!z!sCoSmPBs7?Pl zx>&7^jV>_PAD%&5(htHDQ*S@WvK=0gaVz85QN7IH9i3TgKO?)Mm8xAQW`?M}D|p7N zUu2lEbrEe&uX>#Ct6o9n=y!SUxD0E8zVL}hn+IBtc;i;yrTedW)xZ5R!_ucuiy6qI zgv+vDCUw&A(&)kFeWzsZvoGSy$0%dl=sxBHr)HQ*^qtusi`A}QWm;FnC*$|42onoZ zq5X8eTtBE-y&4`}q-d@}^N`+T-|y-J7jHB^ky&h?#@E$D?LBG?*2PoD6q_T?mj0!0tgFiut39jI z-IURFOiwki+n56LpeY#^+5B-G^qpq z<3`)UhmEXpM>n;8{+ME=meMmXo}R%7tFPH-O)NQNOp%)8A5*A4?29kqstYohP4zX} zP>W3w3)3NEdYQ8>%CLCtU#xuC0JZBF-u${tGAtYVbnPPEN;|~#*Xa_zK4DBZHOalT z(7gF~EhS_PvlZs`f5>1E)OX8|Cf3>m+Nt%Kv~904x@^7F!p6;<#TZ}JE$asPXjW#9 zOODaE>N4%xX;B)xc=>0>5H)=)C2qbl!%`>LD0wxLSNp4d4_?xGm+IJl$8-y7_uMsf zo#GBVhL|<;Gt*rnigOO++B=?Nb>B4`3eCL>q*u!c^;t8@+mpL8{nf=cvsHU{VP=7S zM*Gzk-JBVqDi8K{HXm3dqeZvV#&6SHYY+Lp5_e-`GnddLfd}bY+_zb_cPyP6p zOqF{3d7Q#`*UJ~^>v6$Vsd1-xyP4}&NR7*n=FFASkM(&e*`#EqVtqX8%}iDOA9s|f zR}W)X_|~nNhwT#-RAn}<&b;30Mx|f*rK#Rx_1%$M3eC4~&#bpjQwde(AMb4Wj8C87 zHD3R{x5#|suFO-`HRetCWWKbYrk&|Oen15jF7g$rLr$Q6KDaM~iB`XrzP)x%O-J?F z9O`H512UcHGy0=vE$|kqAFuTmsPj(YH9lLH*Qb*PY%jW}zvI%Ris)rbex!+;#N~<57=iU)bb@Kd~;Cno#3j zW_xh>Q@r}Xr(5bos#=|OiNB=&`(S6&*qA|g)dlS94gd8DRlDvSzUi=MWiYlWf9xLt zt?hV|#~$*$tQz|Co9|HdoZ0fzm%sVSjskPiOD*kK@(mw5_Vz8^R7uR+UFk;}A9%}D zagd$Z+?O+t+RxGTw<#LHp#G`1vvqp$t1TT3KW@MJ0lq%!saJP&SL?g^Ix8bhr9Ak$ zEPwK5CLfHoMZcu>@J?&gr3P{C{^0Gpe3Gxgy5)n-Ep^0xrynoIC7*TT*|%=xiQV6l znMFTlU0|CYQEV{EeBJA(20QAKO-jb8t}khvfDf8Mr!VQP-gqlmU_IviOa^S$ zfXb+df+BXYKWb30$AV(#%JV#^QDX%aV~g?q>^z6cH^29vo1NX+*)}^nTb?og`g{*jiYx_+mh6)Nb3qx&c|$=XL1T(pk$202se4$ z3R}@XTU8<7-yu>Z{}l>A%iR{Ei{vV_sztWjp_)d_08S8Hs^#1(Uvlh%6E3tlCR8iyNot=!eHRZ^HxVVdR}}J!+%n zcE-KBrINS35nG9#zhUhzcoIFF^41ls-G>~ESTcaS5q3TfG}gn*i6U;|f?s1F5EsnEkQ<~ILYBB2JiVA=X!XOw38&O)}YQzC5^MggB@rygtrjhi#lo4{x z3H(%sr$@xSw$*8Py&`T>sWQeCYckvVT0QQyZ7WqNXT(VkXT%mv<0yGnFyg*gL`vQs zMx60-`j-|+(UpzmtdZD7Sew;kYCAmt70+g>S2bQ_o|UW(zSp(}dA?~21wHdl2`RX` z5eMbWk}V;jK)BiAxvgEvGyp>PvZfJxj!qA5g^5??6-lXW>_XAGc=^EAcDFjB*MYm? z5$!F9tvPj#u+142x6hyI8?mlw_#T|?K`@;t{O@*UDezr8JE>hGBhEs<%klXyx46zm2lA0+Tj@;)BdkNt z!nP6CEGP0w@-8p^+ffW3r)1s3M*t#{a%8!vT_XkbG-44IaT0n3N}^CQh08t=^}a?Nr!zCrSP6}VmCU#p774>* z%}9)A3^IPO(sQj*csYtb@8w9{5@DFR1sV@olfO1M_^#|BISnmT5OJ@nH@uvsCc*#h zKnnKvDnXw2WV<-U%T`-o{f8N0Nq?ytvBbE1@G3418DYdy%B>SyJWO9FDR|@;>HI2R zf|`Omb+DzO=dlJH8Eu3S#vJ*z10)&-#Y-<2@)_B|LBgp!>#eai}?sa)6d(zdLEp4?`(R-Hhrj=98ImVh+@^8v)($Pi23W(*E%h;O( z>CzZ^d%F>@es>~_SXnul^^ItYl=rLgffmU-WzmgVzOX*tWu%4+zYNpYvWETzJ5;QX zg!Qq6GnW4t%|$IKi;OsT61apSu?OZPJXtIkXZqPqn!4V&{#)*e zt2?<#JvJ05hPcP*Y>w-n_@#^a@ecGa_H)c^{k8(4(By)C(Vl~F%SCpY+pCkk6rS=$ zK(TkLN8STF*-6v3S?56|a(a%A%DHHCmnQG{(otwdJ!#Iag6Sq9=WDItua#S|w?G=j z2CAGCvEOL2R!$TYw;1JYIQT_D@di|=Nh$Gg!BiveT-4QrBGz}ZqsFS(m>ntH_o!Q0 za?X>BOIMB=u_54YO-%d37{Q`a#0euz67CtXs!CW@VT1|%s~n=7GE(X(quENx857SG zbg_g+yI6;c?=W`%@pZC_SF2DKnA%%A;py$QPLAX~xr;63W~18tc(?2&F*Z#*!iK^} zRbwc+Q^D=hKbgD+cEasaff|8mzVA{i&SA5wbo(kd7pVnejpJOoi#tX9*`*|9_;tnd zaE%))7~ovRx`<~D@7j=hH6MY)R{P!1nm5Hdob~~4M)(t-cek((2YoKs5s$bn>HyqL z!qEgaOCm_(5$$1!A63d#P6PBD5qn(Y0^OYqC%Te%}u9Yc$ z>u5VEJjXa*M@LG)0K==6p)>?$6WaiEc>kFH zz&KYYg4XBd;l)h$v|+e!eOg!qhm|)TiIzDGL(A~RnFpPGjFv@=C}>&3C&op%ZyAB+ zh-yh$PmQ=(6gWoS9cE7V`jnC8i*Cw+xzg^1XcSYk_4Q1TvRqF4;`5%)-SGOPkHH=d?R-CoFWclq~O1eYjpTb4v+39 z(3MHIs*&Lx8t`(>ts2sscg85BNf9564Q)Vkx4zMX5}TOtu6st0O62lRb~yYAN*GCd z`{R<-p_5u!a`}w8D89Qph$A*noyl3`jQImOQ_E>N@$`Cjk80A=BBt|#F#MF!Lqez8 z2tt7nkjiwTj9(e)w5kZ{2EF)mBJ%3PQjz93e>B&Uu~&KwJ+STdoNAV zKl$Me-atQFsYneI zGU8>wqm*0MG}l^eL5J6;9)o+^NofsCo2-09e@bXFrsLNNM%?IChf;s*Wh==|Ot^m% zDbiK^rIVHDYx_KZ=w0g@&7pp8g1yCza3q2|#a^n1bi1YLp*4~(@wkI?#`)EiDz!FE zg?#tLbmY%E%eOW8QIo)e>A0k=X$G!70x=zNyzU@*dYNGCG5%%3Nj^TNr`E`HVfOdv zh|%3sxexSq2hopAE>a|1z5F+nUkYl_U%V4$%;Fldy#1A%O^LH+?*%bJq327q8FyRHo0X``Aj) zdWzv-8dh>*wBlU*HX@&dKKRr3o>-qM^)W#o$#A4ms9_u+0m*+F4uL~_Lrnpkc8+~o5oj*ACA1Ef2$V@mfDNPyw_N`5yiuSXU z#spvr7iLRY3;NciIg9$*Nxub}pmJmFa88M@WZh}?E0x7g=WUY()Pu($cA-mo7hrz~Vz;H<~pamD>0WH)0Q`o95x!(>us2j)@&;-a%7I zDSD=uJsc^PM``(N(|s!*{1aa4cy0jE`ne`-l?2h&dGkzoD1{I&->8N?yqM zEJKyk{cW}5W_i8|2V~3^rkex3SO!fKvDZ|Tf`1(7@(tl%znQQ>Wx|4$r6hR{7+6~R zbD`;`HHC*^@L07Z9^v{|r(^1^5|T@#2{tQdJo*-sij(tJ4s<>oWx`U%3H;RzTI5Vw zIsVSPaBJ&gnWcrQC!uAF0SOk#6Kiff?=DXnzYW6Xe!U47 z@61w+h=dWro}+LPQj#}rT`bW5lY-oC6f{9~mOM|2vFBvIt%8wcPrdvH zSCs0W{y&OE3cjMx4REGyv!TcboE2)OpB?Ujdb!{3CBF49Ltf`iU36FIWdQDFcAPhz zqY7_fisR$|Kw9yS)fA_o3s^LsNiG+~qOo~yc4gdE-R>=X0+b?$%V3be45aCov5M&u zq`XXwJ|fdU!tivtZo++P^FS;CSujkj(GsHH3B)HKmetP5s#Ba#U}>rIO$-q@RK0Dg zXoJ+AdypDt0*C1Rfp$_vHkxUTmJmH#(8T1T6v2UfastcJm1l!(slv*Kqdymjw~pn z3}rlj{~>6S0D|qAuqEz4HesWXJ086X&j}th;29(-YnBC8;4`th zAgJlUZg}ZL8Ojh_Y2yo%Sxb`Jlnu5iIN(uS_@}Wt{c(y8I!nrAlwa)Z|FM zXWa3ANG+-ETVVxqByWN}-lH>U$Rlhd*e{09N7N%Mui#C{u8*b&ELM5qA&7X-b7`j9 zhOWHE=Z*Xc+v-ok;^SoTc1)V{*@S}=#`zQjs6t+xeHy@7g$7#ikl&9z_sn4Z}XiR^vTh@S9ed^<0P1_+=xzKe-GQ7 zK`<^6yD4`UGun@!E3s(|_7y1l^Yofho~s$_2dCggm-rkHDSPLsb!gj6XrmVHqRi&0 zSiH4nlmW}N`wABCMPE&{04Z3WxWLk@Ukga}C;G!MvABT*udI6Dyj> z>d5911cmE1q!JjpJT2G`U#KK12;6FHfE)G%0iiXujciI4GZqX^=1bqXRn1sm1kO8o zrjBku67ENqhg$c(N_8_b?~f14iWr<}Ps`@Ms{aff=^K-cK+d*^X6yG?%B~ZKKPQ8aKv{ zkPiwh?XyTNPtL6{*A6x_(#bG0-=4}~WRNC9Z zjAfTO!2HBF$s(v3ODGVEopDy|FIt;nJTblz*8!4KyMhw=%Q4Bz+l+n3`?=ZSn%9xB z?J)`yBJfm?75|;~=IJ_tyGd9?adskt#7ka}pUtl{oIm>w>}-Yw&B^?^@YtWs<)w(O zW;{hZw#hu7Y`TMS?JWiKZ$fu5yujTK`D?)f0jH%|?%Z%$T#_?q_zSZhu&e3qG zazFFG)+9c?bMQ0UX#LZP4w5q5EN*d-g$-=tlqLgYJIdXI&)+|Unqlp6vbb;)$#|tM zK01Fp%8a)*B1Os>BSwsg_!>>{keZA$W52|a*z-El+;DSs3Yt5qj1)0Jbk~;@2`PC0 z!g$YtW+!rX}W}?F-UE38|VUdVpHx{vmf;=TA&M}eigF{ zxEt|VKgx2T@Q1mT;%?#;Hh6&;&DwXd`D2aLX%Qst!(AMl>|Z355rVG7+wG`}QyXgf z{g+7AoPR(9;1_2YwYh-R@^%z-lk-KBv$T4N&`sUuLb0-Ln!gMzm8At6q36ql@B+tf zafOg@5hUJ;Cd8Q6;-X7|-K0H($}+lyn(pTOFYNNpmFuYo9XX1MQnqhtnD! ze8ybbhWvsc3UGwvLp9E$V!`1B8Zi32xh_7w35T}2^oOVt2mLRaL#@HgOXd)3&?i$& z04BJ0#ca^g{!-}R|I4Y;i!3p`?v@%9a1A4SL~^(;#O~dnMu_qab1Y>&K+mMyG}ptZ zJ-|`IiX8LzQkmQ4o*FJqyJN=wP$Wt1jOG*8prcu+IF6Mp<`wwZ)ECWyqo(Hcmx23qE;fK5Y%Azd(yQmZtWw{3spGGk4d~y85Uo zJV*7Qldr%!uWi8qG<pv|vkkdLg2I7{G8UHj4JTS#4h`(ZRA;r%Jzfuwcf0bU^#zW^5A~9nt=gKU*;4 z5VX#?+np?!aRQfq=wiW)T6kL%@C1iZYAyRVJTz9xy^6RSV`p2Y*pD;P|jK$J|2NKfvN|#W8JL zO1%eJ7HYWkSAYc@awf&xEhe20wDh$mH5h6U+6r8xjX@T@HCQo3$OgwI53^uR<-BeB zS}I9iBSeLI?lV`S+@Egu`Cq4NM@B+cJ=0N1e4OPj)f{DMh)=W9!G6SOORP0$r?)h* z(PF!evux2({Xbv@u$Q(m6D)p|c)j3-iFtyUXTaU0D&ZC!k#q3IL<=+=2RBc)K#y>6 z##BqXHQ04JhE$7nm}!CDVuE|KEI1tigxBTCllgf*T7g zSFFJUi!9I=92*>I!OhgWx6p#{Cl^oiK3H$WB=;qjMmV1R0NvMbsRc@fgYTD#`Od)~ zqAeY)!Khfvaw|c-RhCR^tUXx{T4S%Su{^QHUW&IIvBs`Wu)N|}cPT#6GTus1VYARV zT*M#AmP6Lq6CrL|7rZqi_*Xo3h* zwWpT$QXjKrpcT)2hD9mgVySE;t)Yl+=3LiR%SCH&&t0MNICjE)Q6LA4J`i0ur!w?8 zoCbQ+-ba`oepR5#J^m6C9YI&RSQ`H=z4x(Dj*PpQEghucPela;E?s_R39u#wRFNA> zBVJhkv?dM8v%t(_swXckan@kWYf&o4Ccd%Ef|z!P+Jmn`U%L4g6-X3M*LkDp^G?Vr zaJ;2{FGP`po*yk?)?m^<7JS;kv9JHNgj$1oogA-Q-3$ipSGR{Ji^zUdvMw%YJd4Ud z=|m8ZA&SXMt-(^ZGK`_vHn82l`bBJMFT>96hy#jfd$}FV=Z-i?VRcr@L58MfeEJ=8 z6DiqIWEZ&feMuSWmXn~)I!N7I(QgpN+o zLNm(B(HtUlZY!xzdAWv`u(*P}LJQUQkXLGPcgjYvo5H1}-BK$dmL^yKg_A(kO?YkeZK*d2V9V|r!AAIM1gUV;=-ZRMG$Oxn(TIK${ux0c zoHL?>gl9(N6K)xO?bs(H`a(El1Z&}q5tPCcBQW8H5kUB0L_RoRocA3XD%>w3zwo{2 z>&cE6feEjR$S7Pc0tkPLXp?ZZh&1785p1FbD8eolK_dJs0u#;^!CQD%M5J)5hz!D~ zqHhUysEB;Rn<6SITq({2jc}ys>%v|Xkx{r%1h_7Mj(sPBsc@W#)(fwRNE0p-ktX~l zB273;M4IrF=xfhz6461zM;<3nGAUfrui6|3h?waDIpm7M>45Dcl}{MEE=eQ{nFrKsY-@Ny5`1YADO zHhb~;!m91<=<@fnCu@OdZt)6GtH{OO5Y6ouQDUA)>q~#H`%Yl&6;n8Tjn@Bcjnc5r zg|NwUHS(uSIkgZr{ab9Fe&)BRes&>jZXs-5A#8pjY{q4+z}H;htU}nFLf9{buz3-M z&|eE-3kqS23Sp6jup@=AV}&pwAEN7oxJ0vn2u#RJwBB~!j3S)4lu`Ram_s4VsSxH| z7@J*`xd`PHt#>Vil`4dlE`*hx4J|Bcqh%~#D6wK8tWqJYN+HY^N?dRe8ZTOJUkGz3 zgbB$Plwu}CizzVg8}#WLEm1g*jn+Regyj~(#4HhP#H@+t>GBm5^X4md5mQEBLgS&p zLYSC9^F*T1c+otSzG7ldeZ@L9)-a*}qV=5$VO;ewfDbK2fmG(Cv<7F{_wYPTGY}1My35X>ee?=(fT`uFk>Oi zTnLk`*gUPD)Iy1O3t{&QVGjynj|yRr3t>+SVb2R;xdj;HAI*PRfHL;F5cZ}J_O=iv zl&cUDp=_gB%YMafIoWZVP^r=S>_V9N3szSoDqm26-7SRuS%67VZD7Fa4w0#?+zPCuem)u@=OPb*&U)7bgu5{ISrTdfm`^dGxWsZ;BSC>RtK5|F* zRj8?0GCE{q5pXwthb7}6)oCveX?l%Q*Z{;DcR|C%!T?P80S6GP0KoDVI;?-k>2P~_ zq3#B??I8Q<&eM_(a@CSzEdWI*^md4TGac(7d)NtM5OG^b5rj{u;ZFdGH0LL|tDR8g zNXw;6V7iA?wxitF&bsF2(WH)ujHk4Y$dEz~KLbmq{y&4nx)P_-USPU7D%wdNrAwo6 zonX}C6sD8xp}S9icR~rfv=a7H=gx9fUA8o)vs_W9Gtt5>a{ZD*Bcu5D(~F?GSLs9- zln^V~b%hbHdqC^EflUq_?Izc%DwHQEbuOqwesE3j20k{iGQ7}?%U@UAZB8-Kd6x1Cn{85_T z9Sl#==I-(~-FE8UL#|)?ipEJORxnJ1o(<6_(9$00f@72e3SA~S`hk5kHS&|ob`nY! zgfjGM2pf>1tRa7+tjM?cdHqQg_`9_Z_iSK&94sQN56w`~-+`75(Z|pdKXA5?C~sEJg|lE4$;o2Q|fyM{7a!f_!_)9;}^EQ{e#|K(ndXv;`(iTL59& z0tnLaG;(Bg=q`)k_I+v zK$y0OG;3fDx%8HMur+7kEuDdPbdkKFGw^=Sz}q8R-ozPr4`<*loPquI8+iX_;O(11|5|8M1Ml7pym>RQ(PQAPn}PlD8+hYp z;C-8cjUWT>+6=sDGw`0xz*{y0@7N5yVKcCweFN{-47^!0@LtWpTQvjk)C}0DVNYk^ zjhcZi8UxQp1Mkudyh$_g9xal$Xa=@d47@=z@czue+cN{Z$B*Q_nSr-v2Hu$&cw=T@ z+r_}!G6V0*47@2bh&|an6fY*0foGI~=Z}G>jDh!K2HuVtcsFL?&6t5L69ezW47?FD zu-qHiC^7IZ%)py41Ix03w_paATLW*v3~ZAdSVrd=SVj#jqLD12ku0E*ET54qo{=n_ zk-Y7SWZ5*ZXhyPRMzUZ=vRp>8SVpo`8dxYJdAAkGo2^I|$VlF58F;4^X~*Iisb51m zedQqhBau%(xw7t03hIZ$ia+Uy23-5g!+}lhFHZpYv%jnd=;;s2Lo~r3OV%OU>o5Nd z@V7sd?jiCSfR*nMMGufW17r_?PCG;m2FiT^<_(m)16&@+k)DHaN^*#%58}u(gXG@8 z$^vVBJa@{xwXM3tRUbY8C{SegcAk7Lv=N+Vs5cI`CDmx6-KS<+;p<@qHss>&TlN;#v z!RIgPeVp12M*+tvayUBZI9Z0Hw~teU5%M5_MI&TiM{%s9-`yIe_G(LcVRChN46cR5 z+M#kUfEl53fJXDK4QM*FrI-?g!E-BRR*}k#Ybq&rz~BK=3Hp z7hu;YuEyI@vJbEyM`P5E)56hm4}cq^(Wc{6ehfzRIE@{Hu|G~H#&Bd&JxBWMIdZ#R zu55QhRQPB=+`75Jf%4d2%H#S#xV&{7E8D>=DLob~y+LEfq82yk%vj{VL1o6Fqi)c+ zadI#~<~R)Z4XQa_9tyBvyd31nOqYbBg(pW+#$5D*)!l5xQd%pS;MzzKR2q%1hE~hf zm?CikY=s+ie1bd#pkf#oGcgQZf1aYl&@Jcbfd*QK%b~y$!{reG#U{$%>z-1ZiJ;s} z0TVH}n`!$*)Oj-%og|M27(WSVTWIMd*fv|}{Umt?z@*9Ybbu$52Tu zc@jX$Szz{r7SDn~^Ms1b=CtXvk?#pTn~h35p%HT!GtR+We?nd6qMlFa&|Jo9{33@n z!1fS-uOgw({=$zoUDA#K)w)!i3+nv@?&0(uxlEGlQ1IhQ4XE-=3}hmC%me#GikXL^ z6RB7Pnv;k(9`Y2*Ns^1vy9l%>k@WNB8IH{9;VE!he40K-$o>@WaL0*;E|YCRGU!)1 z4B*1A@_2xjzcIG;H#rt#Gxti zbS@4f5Km1A-5XEw#9Zvx$a;-S)%xI))_`8FlbhjrSB>&id39y@n4XTVjwj<9G%}vr zuEk7?r=+zQuz0dvhYF=ot##0RDHO2|kty_W9Y|8hHy*{L(BXKF^jI&CbW9PIb@fIu zjqo>E8|2RH(T*~HmF=`NFCU~`?I0S`j9u(e)_mCwT>KI+P$_gM0TPu$?i11gbBe{aA7noRy1(eKH0Y9mTdriO{=&1Bk;h~7*l*Cctkqc{N9-|dBh+VrN7 zjWS-p7~tY9e70Pif?_ZS9wedDlF4rqBs7^$Y?8-Ol~ssuyjdQm<-X*P+`2%~Q%yAw zaBAh+aGEh4ot{i@H_Ib6PQ#Mr;ac8{$#MlbyCTH3&bFmZfwE$r&7-pc|O3k z6pr-U3hk3hm$%9h06n%bc4?bD-6>U6{ND*Ey2TWmxcPDu;V-QzHCc&?ok~ZyL#9%x z=?+LrD(%>Td7MffJ2CL7v}7lGD2{gQlxG3d+$App*tH8A&NyneTV4WiVz(Rv&})yp z2H^1?CJ9fKBZ0k7m6ri5-pio$K6$BQoTy7`4C<1&k}~$oqbav^eJAQU4LuM?_4dnA z0EhO=ivijlK>Ok-{Q$0y;>i0TV69kQ z+LnaqrYSb`GEALruIfm_O8cjULHMwvMLYhYPerK@ccSvU%J^h{8c1gp4Y@$(VSdKT* z?ldgio9IItR{BlkdmL%^Nq-zG{e9YT9E;d}dVd@%{e9|qg29Rtuzl`R_6aP*_o-ew zvfroa>9VhrxUFHeJeHnlv%kr8K@ z@{cpHw6dw(S&j@j%aPm9GSBB{<&I9-q5@;xieN1$RfJ-m$(6}vZZmiMnKC9xHqAVT zuF9r!=U~HTlf!u~$^Sf;v|hs=o#!H2{vr2pWNs5Yz|ByZ+TWGornJoW9;D{Twp!ZS z%1HaCDqTA#!*SuEX2r8dFE)od{KoLhvhK7y2Fc(kcw zo%~m6>@CdMt91Dm`tT}MyA36Jm11sVS-VPq-^S{2m4fatyK{G-XRp$a+42~TtK%kc zEw!Zx`9Ssxe7TgUZ5=u;xak&sxs7;aUqPtrXyp!OcJ5)$?Ed8i*L6IsKE2~^W%N(xK z3JpBUVb(v~m3ufbvosmZnyN);-$VHa5}ri9D56+W?sB!7++!Az_n^gN>8^&gx{v)4 zvnclzERvpU^|4>r!J$CJV(IaHj8ZIh`;)7Z{3m2PmWn=r5f)3MAHeE}r7I6$@u2Px zVc*5lmWNFF`5`1dmI5DP1Y_y+BQDtEFHW2G7xzczUyu?m-&7K(l0)5!QhNw3JG>|n zR-jB{DeN)#@TtdGrkLEf0>}gKp9YDF{Dae!nc<;di9??70Hi*_Rw|Z?JmswZPccDa zY28!qy2np3(PF8^Gaj6U&*VY zi0DKuvSBWF@Vs1ReMJM6@*vZ(G&zr3eL0W0c)r9&E0%tF$wP7bB__-RdLyt0)Z-Nf z`~hux10To(hdf_Hf9Fu}Yg9gml3(NDNDke5jVYf)wez8Ca_F~wxuNbH?aN1o zTa=ZL@@`SxH^5F)mp33eP04Q%d73`GL6uHZ-@oOdPU3lhei2TR^_8P>(d#Nc1Ul_o z{)^b0rVoG1T|Aj=H_Qip+`6LHc{CQLuyr2opkZ$@{yXT8x0pvesQNo>Mt2C-=dh{K z-`GT9AK#~eggBU73#2xmMtp$O=F`~^(82js=c7E%k@Ji^ zfIOiGY2Rn)(t_{!OIXX!r`(T_&wT3o4@N4Vw*DgrYT2gYh*e+w=r`H$;l2IW;)Z@g zALo6sUkp+{=|0PSwW8kPoafFr;Gux=#NdII>` zDE$GFY?Q75Pc`s;5#mLp#S~lI6ZjWX`~bETQ~EnGRqQ{=wdr$FDp^dy zzmY8HTlz~!7^!D*)FXo?6jyu!jtOih8H+1@0UFwZ(@vUWi^!uCZ;RF(rI)s7_fhI* zr}zUT*`eY`>6M+*51_NXG5}zsJu;l46ZUA^DY7r2`~=XWgyIFTw1nafaJd9BoT91@ zN+*EP4oYW$y$&ev6n%D3+5@zAGD=5Wiv9sc> zg)TWO9kr0Vi_!{N{9G`Ir)Z4}vopJJ&Z@2qM!7QAZLZwj*RI@{Hg4#I?G)gqbO+e# zrt|^$;D#1%r>>g%3SusiZ4&^&jvK7mfVD}IjRv5!7vA)5Vs zAzg7-no{HIrZ0;`0)>=Di3zm5w9*^kV`&U!0(CCKU}YJUkwBI*7|{f3QkKDjvZz!7 zT`P+*OrSdDFop>P3*8|z3$*vO8qA9Er2H_s^J<;be^j5>VS4D9a8e0_-ZlRM^ zQ56eSuBP}qS_IqR?kMKR-lX$Xs#EaH(fE@>d}v4b(5`HO60*>hYRX{bs#l$PL{!I+ zSm=-H$_RjlHIzXBi))~mEJ~??hG)@(8W@=@YE%;vl|>V4Djfk1*91uv-4c;eRIU~} zI*LZrf(S;@hFVHn0CO!2UKG`-jlPMZ>9x_UD9Wm>G}cLRb&xxqs?>q(q|@*^s6#sK ztOF+L^tKKJIGx(pMg7u=>Y^Lc=~-P2Z#s3W$6#AMumoj2Ch1WhoYN_#K1aT(56MZV zt_>Jl(|}1{G(dTe$f+TE_z?|m2y7Y6YKUpDjLtSxn(D68TM@aM$~1yTTn#_ksKjbG zZb9Tly4namaFNP2M)r#|vN6&w(%!~MyG&ObV}LGGwI*o#HVSNl$n`Y42?S_8-Dslp z_FOMUrXsH8^lg1?t@7a79;hY{FQ{Wvi02Dh-4s=QK~I}va=f5+&6JkyUW%+$apgU_ z<>;2$>K18-s6!{jS^S?OHLp-=ml|JE57EA6N+q1`Ulm{#Js030IWz~@M|A}_PMrbT z@wqQfo4+Zg;W(VwX{DSOrMwyYZECqA_`6*#^(iF@PMaxRfGs2o@Ps}JkVxfQ0O05m zpk2Yq-#4YW>#!Ns_~eOFQt;I1YfERA`;r<@F@jSHr3#QtnF6HJQvu@0{(FElstwR? zli>64;J17Zq<`VV8}b^!zn1ba>r3i>nlCtI(?$VIbX(=LxWr5(GF(zYB1Ri~?+@w*c+LmAigB zF5JKJ88#alT;szUy%q4UsT<+8UfLQcnRc(|7^4(GmgH({=$~NatHC@Ne~!g4<%1 zen}hJVh#C|?Ak%m;Y~_AWd^{NcFJskZeGeFfNNe#48U-2Wf{OrZ)hdl2>K{(0Ot5W zbsVCrK2W-csBU}cwnMbIy)qo&X?tktL)5v0G72EI16CVc1^$Fp3ipFQaisc_q6gNk zBS-G+sDuJ@{h6^zKQoExXK3OiD%(k^3(&q3)NK+i>;x5;M7KIYk>f_NGn85qjqVH! zA&K^MM!qB}(*<0TXnGfA7=Wn@Dwsqqx-#XjUD1Xlx+cIX^6ZADtfIhfP+qHOe>bSI zgH*&<`5vH^FGvnjq%ZXILAvXU)#@O5bw@J~(s~Vi=&lSbc~A^Y)eqJmn%@@-V^%Mv zq5YW2lc$DGUWHr7T|Ka9AH)+77y<`rxF561@IzM}q#8Y8>>i|fJ(aNlPkW+Q4w8Q_ zrrfQ8qP>+7b|i}V!(B%cx4YJ$RlQ-}5?$(zIucdrqu|4KLC_flPFeVW#O-~c^od^e z0b8P>eU%9SnSGU!8eInHbfw(fsb@dMPK&zhtns#Ayh=aa4H}eaX+Na~vhC}qOtQNm z*w-(Ee+qZMU4ee?ul%UH0Jokn$(B$$gE)T}luM|CKl*zKt@lUsmc$KECfQ>P^PS$* zT=yOIKCq$;?cabNav7p{7Qq81x;OwMzm=K{RDQE#!Vw<$$Z?TdRk94k5O1ZbgV0@D z>6bxDs75diACoOBU#bGN9Hg|Q=%I=eGwL3I#xaMNwRH5n?(On4A^-#>1}kN?_~hF7 z8m~U$I}BF(X;Ibj_1VS)rK-^J!H}-4qzhDrX(>DLsZ(y_+vVuDK*;%4x*e!Y2Iw|K znFMfrh%!y1YlxTs&xg8Krm;h`+EhUD&Y=a#Z;-rv4w5?uK?b(c)*xk`meCF0Lgj9B zFHfC=Az@o7F<6-iP$7iNSsnuNee@zkY3{HO{WrR$J|M&XJNi5wZe5~>DfZN3nBoG8 zp~GOq?4zV%7>Rv!Zy094aq2c)`LTq!I7YV78TQm9Pw}K)lS>zi)5EsP3&me*dyP;W z&~L}-;c&>taq2$;l6RakMkrGNz7NHeJx=RGu?IU&jw2yOxN07$Oa*u`lGFN+;>oWQ z?Qt41Rv8CyajY^P;Ky+sxpo{gcOK7?bH}5mH|VeN*s>AOEAs$KPT_ourYPaK z3Vu5UhU9trVJg~to>Hbl0M1kSY07T^3DcBc0X(Op_n%V8bST!Rv~fD--e&qs15Ib3 ze>dYUSD6b?c_s?lOgm;mk8B~kSxSKO7Hyo27~aLJmM$gN*~(Ik%$B&>%1+Sinyu^r z7%)dk1+bl~>;*V7SJ?-k|Ak4)%u{wb3O4#ygkEn&RCS)RlG>d>uWzC72qgue?0h8| zAZ@;qqS3Zb1a137N?)!tre5=u5%g(^Vh<9B-_WQhwEQ=y!zZNvro=j8rN;ZNO~|le z6S*!{476dk;)GQ9g-Rm8p@k^p2?Z`vwgVJjtRw+!TdZsX@QqZq0KAM;Hfen7rh-r1 zR5}@tf_)Y%0aS86_7G2~X_T@K;Bu6*9$?H8B>}*8DQc5QQA<&qL^3Z`Rsw`A12eu= zjy?fq(I-Tu8po|t29p}86sKNul;R*exLnx^5V%6wL|JFB^(+#tY}E24okYH*la#UW zYd%-dc8gIq1H6bq;fb^~R*46wvy!oME0qnvLRY~^e@#bMp+>K%#A+pw-%ILO!SjV@ zxjU6;$!cYw7Ih9$E*0@tt|j9z{JFF=4k_Z6857f+Hf&XJ^A@l4D~YF;qKC6HQK{@q z(K8FQ9?m6~HK;-^?OKD5&ZQn}(Y3jhyH;5ZuyCD10F~mgu;=1_6#bS0Sz^xI$iAq1qIpt%%H{n%mHC zc{FpIlHkZD^B7@5kAc&kYY+sNJxZw7<~%yH9dexqKV8Z`jq;rxDBszAL)m>3H^TvGJrm z$!C;Clr^-5EoB^5n)5&9VGiQ1dY=;c&CR&%K}`-SbF_NK)7$-!#&}wCKv@e=^PsW{ z;MhU*QatrKgszLH$A=i3cUV~g%vnND#8ZOASi>Xe`FJ{U1Y5EcvO5ZemO?#`LIAOdHQBu}*vs&Ntckp~S7|N|#egZ<@DGDF&L;=TSjir~iRA zB-4{WAR1?>(*=meS=x93?MtPG7a{~1nrhew=ZFAQ)%&Kog7<82}$1G(Ru%lT}m8mr18e^{4G2p3`ejTbQl}6scyiTPOHp83285E9n4kca*aL*>{vn0Lj_Pb%5zcCi&5%oC5aI zq?`vhZDz2@QwEt&nM?0yN<>M%@ZNU-vrhbw z>wO%5W+XSVb(%DJO7%&h;bD`etkQ2Hx92d?H&M^$uvRuv>T~QUHc|N(Sf@A9;ukQk z@6+iQFct69KQC~oaG(0+g5*A($b}_vpK9bWh{}Vlc%NS6VeP+9gI_A6w3}m{xP8VC zwGV~;5|OJkB#&2^_PD5i#W|M0f{A~hUcQ0}ai0QSGdTSki}8Lcny)l;-mlH@4X1c* z?MVCnYFs+*4Sd`ABt=)k1m91K^I_iYCsRI7YW7p(HxP#XG~R%(d)O`6)b;~MCVk+@Vjt0u*%bN_W)JR`KcaQnRQDfcw024Q)Ezfi zPjLnPQR(RxIxS?}Dt?u#Usf9N%Sz*~7q!1qJYsM<3?HwaIA*Bj@8Ho@x{l4Pet_V8Y=3)I$A~R zSLdsu)kAfv9^isb9i!czFK>iw_@U@#D*T2QRhyBYPA%>f9x^FpeCU+WN!T4_Q=*M3 zddaqkItgG_5y6)p7Evbx3@oZn1-MdFoet2cm^vHaR5A4zfcC|ia(8ic0x%C-bq2s{ zTTzENJ5CyBr;bM4Ejuott-UG+HQrvu*u<4kL$o%>1)-90L0X%&Yc?_D`a>azKNO<1 zc?P$csynEmU}10&Ea-)U8jO>co{p*yK(r%DG0|H`RNO>koKPzhWjm>109{I|K>*uI zs>1*roRMKEb$3?V0Yo_?!&UmnS?veV+eM86u(+V5S81TDIu9V*Rb31a?555EklobP z0Fz6pO8`EXQda=1a95WBR4T2m0XSS*jRxpk2Hkd*(#xP`u~e(9D((QsmqpED$x>FG z1u&o-hAx&)mO~|Csd;&1z!h+L3`HzeuAoiV5=*u(*PW+aOCVN zTxMPsE;HDZv0I+%Opx@f%C$SM0q<&@VNW&Y=~10Y;;M7)>}oJ&L=DJ9EWOvTi8Z;! z&uTKykXmYlR?~=F)HEWOay(H}wVrBkKWysAk)e}T>2b4L8v}sOs;&M85L`!H2=K6u zY5)kYt1bojRF_MhUJrv4OZoNGMF6wwt24A~+{6+%^uiC_^;82Xuz~7|osy9fcYT!^yOx0Mb|D!rXtJ}af8cV60>SzYeY_LP1l;M1E^Cg?u~)1)VaucyA=P7| zt-3&9ZB;Ma3twrg)(7~|R_y}tQ#-XMz{+-NR{*)4+6$nO7g~`+abD_=xIw<^rG5`k z%o~xnXuP-T2ax8CVsB9kA57-cwAx4Q2w?I-V@^}A_6*LoN0m-fs}7iyr|D1!%>L6< z;V0;V(-iTOIsxs zRq;$D7FWjeI;-^wZsIH1=y%ZBpCM&CsB0%R0^njNl(vI9b!Kp?vpUkQ;6|8wPrg-} ze(s_+Dj}k;O5?dp{;hesYD=U!@G z%IL0^vL7BYZd_21$n(4#L^+>E`C>fs>4C30N6W)E!_$s@$x{)jmhPBa`P9D$#wVY$ zdZ0`5=|?|RuVtx<^Iv_{lhnI2ni}n^eou3I;tJ8Rr|Jf}Dm@`_`LwbpWHXBX$x_ku#pCqr-MZ_@|zpHJa^Fy->;LmzbgT?*=p5x+~@`a(AEl6ybQqPt}12VuTT zuQV{YzuF%6zX|;zDJRL&A7ix+M^oxgCB)G)dTcIw%xAoc|4NDMgFjLC#|PRc{M9C) z%Jqk=ucMFwP!N1hJsLL|`q3}ph7PZV3X#{OjG~GMh=T?~vm5EuK&W(M+#t*nBZUpZ zTr-ko5ZY>_UIE|=iU1I1P|d+=JG%_6CPae+)e3?!{JI?@0x^Mi((i%jft}V)(%kv0sbBW897RmhN|-c@`pla9i=Hj=+&e2A_#+d zl*R=^9FEfSV6{7r&|8O~rKf0Yh#CNJE=2VQs5DIN4G=aA#h#*5!!V+!sNQgO5Ws@r zOsNi6Lx8m(fwk%s#f{*6&qpvx=TLPZA`?R~k4}+pBx3;@I51M}k4XDbn3Sg|V3gVy zV9zK~UfgIV95fpJa*EPMGs{wA)WN{Q#xQ-x7_<`g(=(IFdd_fJ12xAoubE@jAt1Rk zRt<3E>uXy*&iQTi^ot&2mZ1bV(9O1RYUh~|;BKSePD{qAZE=V2$2dsPc4{%6LE?Bc zc{|xnU=Th57Q%K6k-o$<@G3ElyvM6QQ^o{%z7r0PG0V1-SD4xgu8e1dVT`U&Y8dAI zGrFsRQsJt&FCH9@zQ)&p;po-`Qp3?b@IX9~LDEEY9qy7R!iq|uph;*%0v*>t#mVUM z1e!J(qKlhl4Rn|S8zzC0ra;ycsKiusS^|yNK-N^~vtv|cn%V|n@HFH*Mkl91?2b|M z>7YDDansSzV`MV}=EyM`HUqMBjLy%%{K=%YGf~}4S}+qzC=(}BuplyN?JSrTnN)i= z43JDpoee!0P1WY8KLd=OgZUaw_vc_4jHd9psO~+wG#7e(!v)2b>i&WXY@ijtU?Ogy zYrjAYH&D-cFmE=HX&zRN->E_bM&WlF5P{bGP8kuH)wjuhKDghep7YT)F|>WY`lEA< zHc@7rWh;L0O5F~;xcL=REr$GlMcx>ae#InV91D7O?ASri2=h0sUQ;iVAlC~{tgp^BnO%g{Fxr7nYjN%VLbSf^8~<>2y9CO-ZLVF$_{;FyQIr9?K*V zu~1X#lpD*D{Z_&dOs5ko)e(;ALh6q`#~s$u=Ts$D?Lo6wsily*VihLjBY3bt-#@~e zew6r#epwBHTSmuLV~t%#uUA8|mr=hs^wV`(9S6$mbR!O3vYKj=+5#YeAnvQ_1c7oj zRapbUxk$6tpt~;8p*7%nkxH+{9K1+#*MjmQ-Cc`8zD(WLf#+pfvJNA7nf_Uax@@B! z@oEo%_;_@}dioTPURzJC*Q34bY0r94uBR#q=!+K=m7sP2$V`A#;EH+!#`6Uo+5pNI zRCgm--z5D;RQD!r+o;wAxUvzm`X&`iRQ>F3iY{pyXiIYrn`_a0L?IXFQp`;yhE zc1J`pUB=l`731uR)OCwmS9gRaZ&9b%tq>{8XV}uUh45q9I0f>zf`+8118q5FSs3-+ zq1K^4Q!tBHP=l@NRxL~Q$+qyZHOHTtZd3bcQNC00LfB-kLkG5@ax2JXI~LbHv~D{F zVh_F94iVi$zB|;JcH%Qz{q04zwDGRFHoe|~Wo8eB?NkqHDW{ght+O+}uNbmR^|w1L zh&!a<&%X_~Do~@v_=~~3U1|*n5sw8o>Kv{wvQDUFDL7Siqz=2$w!<`Tw>nD8`Dv9c zWj!&wQ|@lm>M(WRqwdmDXq_#+oc3#1>YA!{)uLLXn3%I`>d>iF$ntJ#v=@fjZc5&( zhS-X)f%OsF$R$l}PTu>_1-|D zlr5>Sv^=V=1-N!pjRP2cOg*48kjL-pLT7_klWf!k zcM1b2spXndal@CFBlGWSBM_BHQ`ZA*O;c0t1g(D99c#BF9!Gl&^!d0-T1uA(w$ymr z3VcL!0=9#JDy74$F;G-GROVySWvIcCtJ3?qh0v22=kr(HZC?@IR{#02p*u9cm|v z(Ko|&WlTDb6U=8}sXr#qa~R;q^vgL|43Eil4p!1*YJVQ;@-fAnhk91YbRL>trSgAZ z2|7chfzlV$-nQbaaD8JJinh(EL#r>SK6V^4-p!6)-i9COPZux=IBH`lJ8c@>ya;W; zQC{wL*-$#MFxjp)~_Y9B4h`+FocqP+QY%29?> zd|4`)1+!u$d1pbftRzDgtc#Uo$%6J=No}veC|XI;*VIru@u|Ch(a(0|v-DPDYH%Hz zZ8`P1uJ*I#l=dwtT~Qm5@j7IUW3usoyj9C5)F=NN|F5h24zTHX`v7jW-DPzf(O2&! z2$AT~B8U}6jaL-pDRxjBEiT-pte!)y6|{PGz_pXUA@hv)EVZpSNl;+^Jh zyn^?=)7*+aUlfW%KHp*#-}-$Ef~Lt4Hg)h9^ew93HouD3y=m^AtGD z@34sr>yPxtPZl?FN8G?$r)loP8@>}LcEb2C4}e>oB>KEm6vbMA{rzHKP}eC#`i zV&W4#V!2i5grF&-mKSoH|AYUpbMAqEd@E55eu}5abMC#Tc)~pAwtVKB9uzD4_-J;J zTYbWrN^XVc_>YQpyFbSh5qn-u4sru>t|;fGdx7VKShvp$ycvvj|9gR#yI8mXzrH9F z_jqQI`zB#UE%&RJzHbe6pM}T9vlX>*^$f2J9Bm)SckOZ!*L{V5*;x1LD_k&%bKCxh zSHC!S=YPJ=L2+_CPv-`?jnnxny4_yme>%?n>oq>}$GKJC;AK0`UHt}U5$6_oi>JIe zck^5P8^%qp;_qa(ZLlfG9iL})&dGcIZGt3agEQqw5HfhLuI}~<@aGOVOw?q(14=Ly*ARu1&nM=>_g-@^oCIG6a; zl0C@ZM|y(%i%n1b75v-Fi)qhbe{1yY3--?lx+H_1copOx&4fi1^HTZq1zd9Xr1G~n zJ#%g)-d9~y`)i_Sd20V4({ljZtXaIGu-iDqUj;oALu}9ar+5O*j@5=$)A(zk=f^bu zE+}rN@&6hy)$O0w-xtNzwEpfW>ZS8XqBxh%KO$(V97>fC{MwWZ`*V7K6GKf>;rCz) zoi6GIXYhAKaIXyhF{Y&=n9p>iD=>NvhC{UF~XG*&(Gx{4dV+Lmk{u1N#*oLW2 z_@Irq3TX9|)(zRCOc4b1vB2(rw&hd}VfO%qbLj{J6%sNM1}S9DK^U^lWA~9hj51V0 zHpouX=O+xez@2(*%h`g=K{%!#6z)_cj8Z7vknpoYokoPw3S*lfV+95oqjI$wLw-|; z3nz?IXxEl7LE*fCD21Bs84<0}rUPNJ!jp~!7vM1`Tkt!|G!5A_lrTeJp4=T{M-paR z;N3CTww$nE**#yO`2@lOg=&)tixiej2Y6zfB`S}9XUH;z%1a3=6n3s5tWtQik+4P~ zZWm#lLcfEA^$K@R68;c~@yNMVN5Uoi88%V?Jhx4@#bgrb-Xg%6UaOH<0P6fnO{HaU#K90g{#37Cm(@^_z_ zA%Ks+l^Dx}^fSA8D}x-65X^RyZIWVQ4uMCWTw0QT%PIRIy8|t-JJ`0I6j|6EqVTza zbPAqgW`v9)I!O+D47I=^v)GmsTY^JoQ@~s~Il`O@!*dbB6h?*-@+n~UoNQ7M;4wR$ zUw~3XLok0%LW(P3;+#M!1x%Y0D5LOcal*$6m_8>FpD3Kf{6D~F3Z+VUC{>MA*e1PQo;R_FkWG3eZoYA5)BBG6moq< zh*1b=M3`a#8LOQ2My6`W!X^xvuJCJ9!c2iv@~4x<1~{8J7WkK&XIswt=Is7mVg5IS zg$h+$5*B+@E*n{@@T4t6mMau#Pgto?sRLoP!qiTLwF;6g2gez!AlY#M8!UL765T0Y zD^A89gpCT14QvwFCuc8c2%hsIoHyBc z9_5k+4jE@#&idcj?NcZcMYyW)z`%8d8t~ z5mN~d6pBnIJW}X8hwwx}rg>tFrwaQFJm2oY+5atfD1I(TLS9OU0MGtE+v2=WbiYxU zvzYNocGv;BEFmOSXtk7(Tw%#FLP~|9%gyU=kjjG<3`wO>ZWSR!K_-skK+-ClUPDN) zknImbMuocuGAl^BBaHC@z{Ave%y0zBDj_nZlxLsawww$bxj{|^nQ@Bv+zJ`D5%MVP zGLTQ9!*)g#P>|WD^8UAwieyK^s6`aqU4&u^HTDonDExYmP)gykfsYiz4>6*wz!UjP zA3aPcPmuS&JlRjQA5&Q6C_Yob1Xh760-T~6dW2Bj0tfiqwm5?o@wF7DoMwC-h43?k zFLuc5FNe%}mhz>BoHfuuA^&+se5LTrKx2hr7Z}l0A?ZazGX=@~gd=OA5bwE6X{jQa zpAgboKv#SL+FIbrwzn;3B2q)4yQ9LQ`-IL4g&z>QDqJwoUBJVA41UNEM?#YO$pX87u`NvW<<`F{cq#`{#;PR4G+&GmsUY)y0pk^Fry@*LXdgnD zq|hu4Ax0rdI>Ho%+L;Mcc^*9S4?`)_HDtDdnF{$oV8m{hIJdA*>nUiGs}0#-L9P$ot<6;gshZ^1Xq772*xN64)bm$36Va z0tR_wfpPM6+2Zx5OCz{JVcYMd`jt>rA<{r`h00?XQBvWOfzk?*V;NCKq4IBpatd!F z&Ev1U%8hXh`9xvW1j45ZlB5l%Qb}P=G@**Zn8}1{3ZG6P)KG|b2{i>gyn~7%X&XkZ zts#>Q)K!qQZiuKSz{eDJ_Q%HJ%FhL>T zAwrabEGoc>M(>pOpFA!}atE2LA(f91Tm{K*hlptklG6?_Lm|+d+bjWDbl_~p(tJeB zwZLceTkg!qVzJW~&F+q&jqVR7pVVlB{)Px-h`$Ggg&MuWP zX&JIdp;$V?K7|_T2?rE@%s@D#Aj$f0>_-$HW+EI@kOdToIAK5@f3kD}a!NzmW+9wW z$oC=PoPsQ*z$OnZ>~1zAubkH4!bf%zD6T_G|*Aznce{$Y?? z3XoX)^m;LWf(}0ldfAAF{g~A;JfeM+MFd|stlct2! z3I)Ce^)|wfs69| zfP97g{vnqYK6t}y%aLS-*hgN4?tKXP6~60BD5&sdKSE)Joc#$!6@DK?C@v5w8T*~= z_$?#srj(Jy>j580>zEwnFwv{WdugV0)`*iJ$l0v~_B8)>H@U+iK?2ZdF;37r&v z+)L=9Fnk}On}V##!O8YekkvSVo(j(on#W&nl?sO$(pMqu2%*2i!lQ(573LlzL?}qg zN9<;>LZ*|1?-b4(_+G%nd;QcYh78w`hi3>Lg?#4-KPWW3Kp3U4<1*oA1xXi)0~xJQ z-A5Rs5P#h~{(e(w8PAY$3j1#nCMbNKK!{S1l#OU}On~oYRo&1}-SnF3E^X3fs#N;uJcSBlr|jlqXzO z$X9`IUBUB@k$4qZvW0u`mVzwT0wgGu{fux&;Z!ZcJ%t(d2@eF~Af}^0fsH`PR0ayY1N>u-nET??6bVu)ZSz z@4r&0lo`N~K!uqRgkXWaveRPU6GAL-r)i~iM!F+ScLodW&SYCo+hN=~RA86H?-*$w ze;-=m2H9-OY5Nm5$f1yYG$EJ5z%hg{1<7`byCtte$%%yg3XF#HGrpriey2BR1}aU zZOnTLsAPeMRmHZPn#&nqO`$Hnr$>AZg%;}wH5Fvx8zO2eM0hZv2U1sMBPM?V>M30G z66!0+N;pI`RQO;cp^-wQfhG!)B^8@|txyaz1p&=>%j2IXD~shI-)P99-Go*Ok}wq! z;R^fl%_*R*!h*wu_6naICv;S}bdu0n!E*)wxEQ3X%Fh=F-4$wIA~*t91$igQ#?G;-Csd|k_qsw!byDO21EcnX2`&sl)(~$I|ASD;yXx$47I?043ifA zSCcrBHV)k$3+(>EwwyV4**!|3KIYyd{$~YQ&j%Q-BQOChWQ>I1E?~-635m48eT=s) zXZ}l$Fi|1u6=9NsWP`;3F$(M65~c`jmt9;*>PaCX)2whGGi=M5ho7B8_bdVYw_~nG zD#Ba~jGu2?&h^ynUZ7Ac9bu6G{wa~cF%w~_1#|snxotX!LfOAk;g2kY)e4)k6V@u6 z$wi1&_&pC{gF=CV1h2qOIf`UO2!HLC*MAY7$7byx^)dUmD#TSFY*#o~k+4%CM`glp zg@M%wdlep6C+t@k{CNs~{yeDiT`h(jR*0!XII1wX9^tsczx4?x6(ngc{${5YIyEMo zRmj_fa9+T}`{SySiyGo@%8<(nyP6ZODE#pa!LLxD72%pf{?>#W3eDRPZYs=fhu?q2 zvEEjRXwQ(p73y~&+*SCpBjLWnFP#Vv6^e8rJXWaHmGF;3hi-&t0FU{H7~X^OLPKQj zCXVc-z*6~_x!;TM+5-P$-rAOv(3jl-SRQENANMCDQ)u=rA%((c0|9vb4^)vwp4e%y z!ll84)B;E4C^90=BqGvU;8CQP7M^i%Mb30*vcT?8Y2hUlNx6`Q5?g<00o~YtHrsS2 zm}i3=3X+K!8{|@WZ6Hix>@SSSs}MGZkY6FmZ-jyhKSUA=6Zra{V;rTZhLngV6jwN4 zprk_c7)F#54p@GXJfj72aK+*_QL|9BxoqA$Ap^ zs>0bn3Dp&PZzX)Luxl5gmcpccggOF8<*p@jvWXiI5%*q?Bj{jF`kbL%#tjR0OflQ^&NJE6F%+FRfV z9i=r}y2GEbyNd;Oce5>L^mBIiPtnkq`ln(9gDXCHS&pI%ehC#v@tXx6#W>q?23AYS=f4Rmk85*-CNX}! zR#@MZ;3}+cPMD^Uu_a-KLZwcGSpbhY(D^+mb0h@s+3?kYIr8}yc;pLg%h`%wcg0~X zQW%6^dIc;|$ckTm1uRpjf?t3ItPmJ0yErulfajmpR=AI~w&i3W&kbS~&cqNlC{&w8 z@G4}VOW3GzZ~=TmWg47sXM;ws^~f~?5KUol>x;RC`gfm?F_xcC8IMEq@m_s?D1avtHQ zebIeiU>u+SP6q^vJW3Sv$bVv6&RP8MFS?%!;L`)X(nbPezzYl9!AogPmhR`K`?Upj zzqKvLNzSbUuufFs@%+0ugpy3;pp1|eKO~GDq_n^hf^5r~g`XHkcPfQs__<*~h{CnJ zgtP+qNQCD|{Q58=GFae@TWtupXhf!tt*OB?V5) zklkAmKC-|O%i5OHvJ<<@D~xX~;BhLdU}?J?R3(LtZ3$Hs*0&?nP`KKjP)p&H4urZ2 zjm>_)6nHGh`LHJ=8XCa&4?NID+Fz|3`ZV>&n<5qSRn-U@d*+_s#Q!#Ki71uVjsAx9}RiX{A^fW`O{F-G7I*$0;53q)Gr zF2>uIQ!dKG{wNi!z?ThT6xL5AxC&T_FA>ufunu2fmcUBc>4>d_xfZz7`L=~+`Rrau z;Pda1<&-5Ff(80ADG&Kn6{1uWN>h`$7IIRKf|j|cMk zcZ(Gs=r-GurTVhLP6aH~7uchKW%>g96|hKO;E=-ReT1V5H4hR_Bm$oQo*t&0){r(h zE(~%`0GIdhqrdTlixzmCmu<^Ad6L~eg}i48*A%d_Uq*~qIDCyrB&E!AcI1)3TQ-HF268G~ zPQ{2Yh0_M|DLe>aL_r0|9D5M~pWK5_(s&qB+zRi)lG4J}Km1ZyZgziUf!$?o3t0=; zU0wl63*@LPDj;QnKqUnvED)$_!Q(VH`>0{XX_%EEwG_PB2z3>%=OTQm(9n$0P#{_k zybe+oU^k5|@W7kemNPjIyPNNm>p$G!bpc9C4Us$u7$ICivL682DU>Tg=%}!=6rqd4 zk7Wtn6%Lmp^i-(eF{Abo881hUGzqes{uX%T-`bW_y#l)jDIisX#DAwS!VEA>fN2pv z?Z60+1&;VbVhiW*)@J`tw%=*-1!1%T5-Z3)#ww&}Kp3YG-tcgco?zDfPMX6 zqy6(bu|HO!Oc%l*3Te9&HY&7s2%8m<=RuBQo5H%@gq;e@4D8`wg~wI6KSTCw2$Dd^ zAcqv14Ims<_;?`UgaXn+$R?*1Hjf~jQ&=^GaM6OtS!5*6it}tJL;MQ&4O~~~J&X}I z71o>GBq(Gta93f4fd>k`&7Z;ZSY(a-VRDY-s822M|Ma=E&Pg}&P{_Hxw7~BFY|Dur z#qPHX7e^D4?zaQ%#xMV1fD{VTCkFBLH%J9pDCbKZojX$rc@>JxCKOQUGLukP0qHMfjA9B%ej!j& z0jVzpK2pfTK|M}6kvKWfW}6sN!2%DoqHRf13>l%4LZ8KistT=F5NaqiHBd|8{(6as zDD2ctB%J@ywcP4U4Z6u7r=bE;YRH}&3mlRoMMe#QuPyLMo7~sJUZD6O}EpVrfZ8^1%vAeedl5|MC$#6(TPaMk*kKheV80$Qw`iMF3xV0e25V*#r>hV|5GLe zX%oZ5A1Lr`Y!VdnOc7%Wd}k|o!W6D44w&LMQ!F;cT2pK>#VJ$ZYg5_$jw$fPw6t!U zVxfE>K@;CEN`ddSrFdcrS*eB=zN?f1--1f<&=fOFf$y*d@#VG@vQ`4cYE$5QcWG@l z#e7rXt5CrerdTHv^3XhQniowGX$qN*hrUUska-no;mcMj_L>4;=1OaqDVCW+zF!8) zceg0y>s1u;H7W}ErW1vH8;N4MT#!L2UlpQ|@1{^JHN{a=+%<)Kp@BZRkdFda(xs4# z*(l_SH43>hjY6&_qmZk{DCA-<3b{OsLaue9kn52ssg6mro4g7@9}3&x z1G#)2LQ_8DppZA}DCGS(3VE}NLf$H(koR{e6Rom(vavN+E>n?BOuN)|Un~9Od-L-A}`J<0*4bF%=XI0`R@&}W>^>63T9^HO-klb+_ zZJ#@@9ro$l&3)oZGj|ea)W3te`v2)R>bm#T4Qq#cVZ*zYH@f{E?(2{D)o*m|yILZ6 z{kzS)?!WE)se`@mTdDT2Ki{_;4Oep?vF~!8X#aK|<6rNod%Qi45f{(jJx8p2mHT5y zq8@SsI{LG^n=7v&Z+)Lv*EPKBUC!p_h+M;i*#16m>wx3k`M%u~+xD&%2;TB;Gn+f? zm>F$PB5!rubo3VrK9<+wjn2YZ{QmT-qAeZT<&L`app(W ze(3BEbNhDo2M3>c*NOxmc()mrv5egdzR^e=PBzV0*81u9+^x{XpT^VY2;Kv1lbbPe z6Dc>7e$XmdgQXMKc-Q{MZ+%%G#WpdL+ZraIBJ-KNhHw)xurQFn!o5^xBPi}U~ z%>=pe%gt%IX)ZVY<))?FjFg+%asi|4EBE06$_qwhK{wCE z@3XqcyZO^0`KiB~zbKNEZtd=89#i=VwUut^?*3v(z!~1%UkaHqBfI-Q!c!|k@~4zn zj>z2Z+Q8wN+%*-arcEiYA(1)U3`cx9u<3ZWWDkFVl=4y%naRylXnv?91MJ~1lu}+u zB6GO`=ZEG(T&%mLhrcuu-rYxEa(O**{ejkC-hc089eFS5Oss?(*5)^~wH-*zW-Mn@TTA|pt)*^b zYvYk>&Dk(|!sx5s38SxF$k;{RmOA~A>CEIvYlReNrnVEg%}gz1fvvSbGBabBk;Tl^ zQvYRZ&ylyx*jOYiGqn__q~<*`{o0z)fEe$HHP<2|y2_hh=jKD)u-5ODt(8xTELOBh zNa|&33z5ys)RrTSm#G~IwzX=hZEaeb#9D+?@LG~217qAB4MX#IqY7RxTdA_Vdv;bJ zk&sDS)DGEzOzmhDTdRUhJ;pjA0gtKujkG$>7H>eO>tEMteM-h?-VVar9AvIBwO5^N z?Id#57|YVl)_y~B8e`RvgvQiDoWxp$^LdMaBm>?4-Qse(+pA^>^5gvlocC)o-_u-0H@VlBeC_&Z~(dlB1t zz>P9#L*-)ya_}I6wYSIw;>`6fA9>?$nIaFQZz?iZn8X-wkg~$m>crVvGQZTk+hcE> zE?z`FjW}~2L0G$wL=mR;5*Z>`i*OF#l>2F3-?*Y~wTpQ(djIv`_&zjLKDjvSQsMWN zSo;y_4V;JGG0$$C`6~Ae>C2Q8!di;Lwl=1S)V#xM$G^#wTR!bL1*$+;Yk|f2rgjFa z@|{KA>D}Y6lnY%TQNc|hto_%2EMhjbqT_Atp9!{Bd6KO)k4daW zI6sV(ad)(h%j~YXQ2YaLV8G2CnLP4A%^8A4!DhwrE3FO2x?p2}VY#oV<-xLEQ_Hv9 z*1BTZuCXIpJGR3Nusdilt?yRsn0uOl=DmlQ|c? zk>_tt9T$E~wrr1;TxLyI$aGs$zF4hgY$29unVNULt$n#Lu@>Rv8JSET zX&Hu8E9hO+^;T5HF7g4`$%BPgX63{Xthh3@C0J@@YNPYu=Q8{#Q&bGahNCmI=>XrZxR= z$b;KK?LGg<7%%Z^VP>D_z`FrcD~3<>rdA7|QcbM|t{IqG=e@S}2G6p_+8(jB1;=fz zFP`O1?~60GHW$|#jCHt_T&mu08YTRhF85VAl%H_Tz)S_di+^fU%X3p|-cs!o_U8zl zE>WW%L0IeiL~7oU;R*kx3&p^g=umb_wHMr@H$`FjUp$qKv+AQ-PRsrezUQynAmJ;)i9&k z+30P76s8{=i^jBLQ(J}k#-ause!F+!_;D9BQU4f)G9Z@q)}6Sg;~U=_7c;FO)U=dhE44_CJdWeRm>DlthKha zewZ6A$8n7xR8uE9HES8NUYGVXCjGeUCZ5rZyFGdrd75 zCiOZyyp0 z`O}k2b#$|Ze|wuPyc68LEFLhJN{XqeW>)J%%tCYH^r_YHBMm{nYu(8*CRm!enX@pn($ubC zN~NjgE@^8yFp1KM@-{zw@6$1jFUyu8bs($_#cW7Z>xgNPrgjwbA5HB5CO(>4am;u$ zwdR=WXlk2#NX>h-+5HlOa^r~tr}I68wX#3h+I`GYbdGyV9KIjXwenbrdJqF)tre~? zncBy=DrIUnFu~B&!g0;V)KV>zn%7t6!TlMHx5*ftaM8fb9!!o)0H#(HADvC@OMK2Y zwZAdV&(yACexIpr!o)sPyM`Hk&NgqZV-MEnN-Gy9zjf9LA7d diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 095ac4c7d9ddb9d5a4be6629bab6a2a9c4a3c973..796aab398e1a895f847d8bb616712dd5cdf141e6 100644 GIT binary patch delta 64 zcmca`is`~BrVTBOhDOC1Q=7|Po#!0D`DMqG= SNk+!0W@!dMw0SGz?8N}Y_7w8~ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index d5d42faee4c749840e2dfe7eb2bc9a2cb588aabe..fe1ecf9597bb3873a79554c33a2e58558ad77434 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4ULL3%99E!lJyPE4a`kb(h?JmP0Y+pQ;dz$ERBtmEG!c(%q@)* Tla11hj4UiHk_{JMVax#l&YTpS delta 63 zcmca|oAJtR#tn-Z4J%WV3=2#v%=Ar@ERs@EEsRVI4UG&^OpPop%@YmGjFVC=Q;bX# RlZ=d0&C(2jXz>-s900&K6n6js diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 5f22f5457..3c767a52b 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:13.771495Z", - "iopub.status.busy": "2024-05-23T02:38:13.771328Z", - "iopub.status.idle": "2024-05-23T02:38:14.957393Z", - "shell.execute_reply": "2024-05-23T02:38:14.956818Z" + "iopub.execute_input": "2024-05-23T15:11:29.939561Z", + "iopub.status.busy": "2024-05-23T15:11:29.939078Z", + "iopub.status.idle": "2024-05-23T15:11:31.129872Z", + "shell.execute_reply": "2024-05-23T15:11:31.129360Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:14.960250Z", - "iopub.status.busy": "2024-05-23T02:38:14.959562Z", - "iopub.status.idle": "2024-05-23T02:38:14.978583Z", - "shell.execute_reply": "2024-05-23T02:38:14.978018Z" + "iopub.execute_input": "2024-05-23T15:11:31.132569Z", + "iopub.status.busy": "2024-05-23T15:11:31.132124Z", + "iopub.status.idle": "2024-05-23T15:11:31.150874Z", + "shell.execute_reply": "2024-05-23T15:11:31.150275Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:14.980759Z", - "iopub.status.busy": "2024-05-23T02:38:14.980419Z", - "iopub.status.idle": "2024-05-23T02:38:15.269880Z", - "shell.execute_reply": "2024-05-23T02:38:15.269316Z" + "iopub.execute_input": "2024-05-23T15:11:31.153402Z", + "iopub.status.busy": "2024-05-23T15:11:31.152891Z", + "iopub.status.idle": "2024-05-23T15:11:35.097490Z", + "shell.execute_reply": "2024-05-23T15:11:35.096917Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:15.300426Z", - "iopub.status.busy": "2024-05-23T02:38:15.300024Z", - "iopub.status.idle": "2024-05-23T02:38:15.303755Z", - "shell.execute_reply": "2024-05-23T02:38:15.303314Z" + "iopub.execute_input": "2024-05-23T15:11:35.127357Z", + "iopub.status.busy": "2024-05-23T15:11:35.126893Z", + "iopub.status.idle": "2024-05-23T15:11:35.130647Z", + "shell.execute_reply": "2024-05-23T15:11:35.130146Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:15.305726Z", - "iopub.status.busy": "2024-05-23T02:38:15.305454Z", - "iopub.status.idle": "2024-05-23T02:38:15.313689Z", - "shell.execute_reply": "2024-05-23T02:38:15.313067Z" + "iopub.execute_input": "2024-05-23T15:11:35.132706Z", + "iopub.status.busy": "2024-05-23T15:11:35.132528Z", + "iopub.status.idle": "2024-05-23T15:11:35.140756Z", + "shell.execute_reply": "2024-05-23T15:11:35.140328Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:15.315907Z", - "iopub.status.busy": "2024-05-23T02:38:15.315584Z", - "iopub.status.idle": "2024-05-23T02:38:15.318068Z", - "shell.execute_reply": "2024-05-23T02:38:15.317643Z" + "iopub.execute_input": "2024-05-23T15:11:35.142646Z", + "iopub.status.busy": "2024-05-23T15:11:35.142467Z", + "iopub.status.idle": "2024-05-23T15:11:35.145149Z", + "shell.execute_reply": "2024-05-23T15:11:35.144612Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:15.320068Z", - "iopub.status.busy": "2024-05-23T02:38:15.319758Z", - "iopub.status.idle": "2024-05-23T02:38:15.836656Z", - "shell.execute_reply": "2024-05-23T02:38:15.836124Z" + "iopub.execute_input": "2024-05-23T15:11:35.147384Z", + "iopub.status.busy": "2024-05-23T15:11:35.147087Z", + "iopub.status.idle": "2024-05-23T15:11:35.665353Z", + "shell.execute_reply": "2024-05-23T15:11:35.664730Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:15.839111Z", - "iopub.status.busy": "2024-05-23T02:38:15.838782Z", - "iopub.status.idle": "2024-05-23T02:38:17.447203Z", - "shell.execute_reply": "2024-05-23T02:38:17.446602Z" + "iopub.execute_input": "2024-05-23T15:11:35.667934Z", + "iopub.status.busy": "2024-05-23T15:11:35.667744Z", + "iopub.status.idle": "2024-05-23T15:11:37.304742Z", + "shell.execute_reply": "2024-05-23T15:11:37.304102Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.449826Z", - "iopub.status.busy": "2024-05-23T02:38:17.449135Z", - "iopub.status.idle": "2024-05-23T02:38:17.458907Z", - "shell.execute_reply": "2024-05-23T02:38:17.458431Z" + "iopub.execute_input": "2024-05-23T15:11:37.307449Z", + "iopub.status.busy": "2024-05-23T15:11:37.306895Z", + "iopub.status.idle": "2024-05-23T15:11:37.316988Z", + "shell.execute_reply": "2024-05-23T15:11:37.316560Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.460949Z", - "iopub.status.busy": "2024-05-23T02:38:17.460693Z", - "iopub.status.idle": "2024-05-23T02:38:17.464642Z", - "shell.execute_reply": "2024-05-23T02:38:17.464207Z" + "iopub.execute_input": "2024-05-23T15:11:37.319043Z", + "iopub.status.busy": "2024-05-23T15:11:37.318729Z", + "iopub.status.idle": "2024-05-23T15:11:37.322531Z", + "shell.execute_reply": "2024-05-23T15:11:37.322054Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.466705Z", - "iopub.status.busy": "2024-05-23T02:38:17.466297Z", - "iopub.status.idle": "2024-05-23T02:38:17.473515Z", - "shell.execute_reply": "2024-05-23T02:38:17.472952Z" + "iopub.execute_input": "2024-05-23T15:11:37.324416Z", + "iopub.status.busy": "2024-05-23T15:11:37.324160Z", + "iopub.status.idle": "2024-05-23T15:11:37.331172Z", + "shell.execute_reply": "2024-05-23T15:11:37.330632Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.475632Z", - "iopub.status.busy": "2024-05-23T02:38:17.475308Z", - "iopub.status.idle": "2024-05-23T02:38:17.586104Z", - "shell.execute_reply": "2024-05-23T02:38:17.585603Z" + "iopub.execute_input": "2024-05-23T15:11:37.333196Z", + "iopub.status.busy": "2024-05-23T15:11:37.332791Z", + "iopub.status.idle": "2024-05-23T15:11:37.444673Z", + "shell.execute_reply": "2024-05-23T15:11:37.444061Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.588138Z", - "iopub.status.busy": "2024-05-23T02:38:17.587961Z", - "iopub.status.idle": "2024-05-23T02:38:17.590837Z", - "shell.execute_reply": "2024-05-23T02:38:17.590373Z" + "iopub.execute_input": "2024-05-23T15:11:37.446962Z", + "iopub.status.busy": "2024-05-23T15:11:37.446654Z", + "iopub.status.idle": "2024-05-23T15:11:37.449408Z", + "shell.execute_reply": "2024-05-23T15:11:37.448965Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.592892Z", - "iopub.status.busy": "2024-05-23T02:38:17.592561Z", - "iopub.status.idle": "2024-05-23T02:38:19.535083Z", - "shell.execute_reply": "2024-05-23T02:38:19.534464Z" + "iopub.execute_input": "2024-05-23T15:11:37.451353Z", + "iopub.status.busy": "2024-05-23T15:11:37.451177Z", + "iopub.status.idle": "2024-05-23T15:11:39.353760Z", + "shell.execute_reply": "2024-05-23T15:11:39.353151Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:19.538107Z", - "iopub.status.busy": "2024-05-23T02:38:19.537413Z", - "iopub.status.idle": "2024-05-23T02:38:19.549412Z", - "shell.execute_reply": "2024-05-23T02:38:19.548899Z" + "iopub.execute_input": "2024-05-23T15:11:39.356604Z", + "iopub.status.busy": "2024-05-23T15:11:39.356057Z", + "iopub.status.idle": "2024-05-23T15:11:39.367226Z", + "shell.execute_reply": "2024-05-23T15:11:39.366744Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:19.551369Z", - "iopub.status.busy": "2024-05-23T02:38:19.551191Z", - "iopub.status.idle": "2024-05-23T02:38:19.608011Z", - "shell.execute_reply": "2024-05-23T02:38:19.607551Z" + "iopub.execute_input": "2024-05-23T15:11:39.369106Z", + "iopub.status.busy": "2024-05-23T15:11:39.368935Z", + "iopub.status.idle": "2024-05-23T15:11:39.401442Z", + "shell.execute_reply": "2024-05-23T15:11:39.400993Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index c373aed68..bed7bd792 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:22.547636Z", - "iopub.status.busy": "2024-05-23T02:38:22.547467Z", - "iopub.status.idle": "2024-05-23T02:38:25.459906Z", - "shell.execute_reply": "2024-05-23T02:38:25.459288Z" + "iopub.execute_input": "2024-05-23T15:11:42.361209Z", + "iopub.status.busy": "2024-05-23T15:11:42.360877Z", + "iopub.status.idle": "2024-05-23T15:11:45.186640Z", + "shell.execute_reply": "2024-05-23T15:11:45.186062Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.462623Z", - "iopub.status.busy": "2024-05-23T02:38:25.462329Z", - "iopub.status.idle": "2024-05-23T02:38:25.465586Z", - "shell.execute_reply": "2024-05-23T02:38:25.465124Z" + "iopub.execute_input": "2024-05-23T15:11:45.189175Z", + "iopub.status.busy": "2024-05-23T15:11:45.188733Z", + "iopub.status.idle": "2024-05-23T15:11:45.192058Z", + "shell.execute_reply": "2024-05-23T15:11:45.191634Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.467462Z", - "iopub.status.busy": "2024-05-23T02:38:25.467291Z", - "iopub.status.idle": "2024-05-23T02:38:25.470389Z", - "shell.execute_reply": "2024-05-23T02:38:25.469950Z" + "iopub.execute_input": "2024-05-23T15:11:45.193987Z", + "iopub.status.busy": "2024-05-23T15:11:45.193657Z", + "iopub.status.idle": "2024-05-23T15:11:45.196835Z", + "shell.execute_reply": "2024-05-23T15:11:45.196384Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.472485Z", - "iopub.status.busy": "2024-05-23T02:38:25.472086Z", - "iopub.status.idle": "2024-05-23T02:38:25.542092Z", - "shell.execute_reply": "2024-05-23T02:38:25.541591Z" + "iopub.execute_input": "2024-05-23T15:11:45.198907Z", + "iopub.status.busy": "2024-05-23T15:11:45.198523Z", + "iopub.status.idle": "2024-05-23T15:11:45.233893Z", + "shell.execute_reply": "2024-05-23T15:11:45.233417Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.544103Z", - "iopub.status.busy": "2024-05-23T02:38:25.543923Z", - "iopub.status.idle": "2024-05-23T02:38:25.547549Z", - "shell.execute_reply": "2024-05-23T02:38:25.547108Z" + "iopub.execute_input": "2024-05-23T15:11:45.235873Z", + "iopub.status.busy": "2024-05-23T15:11:45.235696Z", + "iopub.status.idle": "2024-05-23T15:11:45.239078Z", + "shell.execute_reply": "2024-05-23T15:11:45.238632Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.549469Z", - "iopub.status.busy": "2024-05-23T02:38:25.549150Z", - "iopub.status.idle": "2024-05-23T02:38:25.552639Z", - "shell.execute_reply": "2024-05-23T02:38:25.552190Z" + "iopub.execute_input": "2024-05-23T15:11:45.240844Z", + "iopub.status.busy": "2024-05-23T15:11:45.240674Z", + "iopub.status.idle": "2024-05-23T15:11:45.243892Z", + "shell.execute_reply": "2024-05-23T15:11:45.243401Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'visa_or_mastercard', 'apple_pay_or_google_pay', 'card_about_to_expire', 'cancel_transfer', 'lost_or_stolen_phone', 'getting_spare_card', 'change_pin', 'beneficiary_not_allowed', 'card_payment_fee_charged'}\n" + "Classes: {'lost_or_stolen_phone', 'cancel_transfer', 'apple_pay_or_google_pay', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'change_pin', 'card_about_to_expire', 'visa_or_mastercard', 'card_payment_fee_charged', 'getting_spare_card'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.554499Z", - "iopub.status.busy": "2024-05-23T02:38:25.554328Z", - "iopub.status.idle": "2024-05-23T02:38:25.557336Z", - "shell.execute_reply": "2024-05-23T02:38:25.556795Z" + "iopub.execute_input": "2024-05-23T15:11:45.245830Z", + "iopub.status.busy": "2024-05-23T15:11:45.245507Z", + "iopub.status.idle": "2024-05-23T15:11:45.248696Z", + "shell.execute_reply": "2024-05-23T15:11:45.248239Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.559368Z", - "iopub.status.busy": "2024-05-23T02:38:25.559067Z", - "iopub.status.idle": "2024-05-23T02:38:25.562391Z", - "shell.execute_reply": "2024-05-23T02:38:25.561855Z" + "iopub.execute_input": "2024-05-23T15:11:45.250735Z", + "iopub.status.busy": "2024-05-23T15:11:45.250426Z", + "iopub.status.idle": "2024-05-23T15:11:45.253679Z", + "shell.execute_reply": "2024-05-23T15:11:45.253224Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:25.564473Z", - "iopub.status.busy": "2024-05-23T02:38:25.564065Z", - "iopub.status.idle": "2024-05-23T02:38:30.764752Z", - "shell.execute_reply": "2024-05-23T02:38:30.764074Z" + "iopub.execute_input": "2024-05-23T15:11:45.255640Z", + "iopub.status.busy": "2024-05-23T15:11:45.255321Z", + "iopub.status.idle": "2024-05-23T15:11:51.000423Z", + "shell.execute_reply": "2024-05-23T15:11:50.999865Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "87114647d7b244ea81038e535e44e6b7", + "model_id": "88db1ed782f3468fa38bac950d3092b7", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f4fa882d9e14420e8796ac9bc19e2306", + "model_id": "2b77e61e755d4f119937e03ca1485b9c", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "456c676c4b33467c81ad91009e80a507", + "model_id": "27ff10056afe437197e80dcaa26d37ee", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "732f8bc8287a4549b8e5a68be594c45c", + "model_id": "d1c8778b071f488d9b67876bc5569568", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a99d98a0e63343a48433514e5710c878", + "model_id": "944db354360447dc908680f8480dcdc0", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b87cb30ce5d4dcaa854942a9fa8b19a", + "model_id": "d17fd6a19048484d9d197a89d97ba550", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d132bbefa4ae4456aa672649e532c061", + "model_id": "7fc93fb206df4074a67da4377661b97d", "version_major": 2, "version_minor": 0 }, @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:30.767416Z", - "iopub.status.busy": "2024-05-23T02:38:30.767222Z", - "iopub.status.idle": "2024-05-23T02:38:30.769986Z", - "shell.execute_reply": "2024-05-23T02:38:30.769498Z" + "iopub.execute_input": "2024-05-23T15:11:51.003086Z", + "iopub.status.busy": "2024-05-23T15:11:51.002708Z", + "iopub.status.idle": "2024-05-23T15:11:51.005623Z", + "shell.execute_reply": "2024-05-23T15:11:51.005128Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:30.772012Z", - "iopub.status.busy": "2024-05-23T02:38:30.771615Z", - "iopub.status.idle": "2024-05-23T02:38:30.774209Z", - "shell.execute_reply": "2024-05-23T02:38:30.773764Z" + "iopub.execute_input": "2024-05-23T15:11:51.007663Z", + "iopub.status.busy": "2024-05-23T15:11:51.007337Z", + "iopub.status.idle": "2024-05-23T15:11:51.009851Z", + "shell.execute_reply": "2024-05-23T15:11:51.009412Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:30.776091Z", - "iopub.status.busy": "2024-05-23T02:38:30.775918Z", - "iopub.status.idle": "2024-05-23T02:38:32.987339Z", - "shell.execute_reply": "2024-05-23T02:38:32.986755Z" + "iopub.execute_input": "2024-05-23T15:11:51.011732Z", + "iopub.status.busy": "2024-05-23T15:11:51.011553Z", + "iopub.status.idle": "2024-05-23T15:11:53.240372Z", + "shell.execute_reply": "2024-05-23T15:11:53.239743Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:32.990252Z", - "iopub.status.busy": "2024-05-23T02:38:32.989550Z", - "iopub.status.idle": "2024-05-23T02:38:32.996764Z", - "shell.execute_reply": "2024-05-23T02:38:32.996321Z" + "iopub.execute_input": "2024-05-23T15:11:53.243298Z", + "iopub.status.busy": "2024-05-23T15:11:53.242690Z", + "iopub.status.idle": "2024-05-23T15:11:53.251209Z", + "shell.execute_reply": "2024-05-23T15:11:53.250768Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:32.998815Z", - "iopub.status.busy": "2024-05-23T02:38:32.998559Z", - "iopub.status.idle": "2024-05-23T02:38:33.002290Z", - "shell.execute_reply": "2024-05-23T02:38:33.001852Z" + "iopub.execute_input": "2024-05-23T15:11:53.253349Z", + "iopub.status.busy": "2024-05-23T15:11:53.253040Z", + "iopub.status.idle": "2024-05-23T15:11:53.256877Z", + "shell.execute_reply": "2024-05-23T15:11:53.256443Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.004218Z", - "iopub.status.busy": "2024-05-23T02:38:33.003887Z", - "iopub.status.idle": "2024-05-23T02:38:33.007124Z", - "shell.execute_reply": "2024-05-23T02:38:33.006673Z" + "iopub.execute_input": "2024-05-23T15:11:53.258809Z", + "iopub.status.busy": "2024-05-23T15:11:53.258494Z", + "iopub.status.idle": "2024-05-23T15:11:53.261793Z", + "shell.execute_reply": "2024-05-23T15:11:53.261337Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.009132Z", - "iopub.status.busy": "2024-05-23T02:38:33.008811Z", - "iopub.status.idle": "2024-05-23T02:38:33.011627Z", - "shell.execute_reply": "2024-05-23T02:38:33.011213Z" + "iopub.execute_input": "2024-05-23T15:11:53.263814Z", + "iopub.status.busy": "2024-05-23T15:11:53.263498Z", + "iopub.status.idle": "2024-05-23T15:11:53.266484Z", + "shell.execute_reply": "2024-05-23T15:11:53.265996Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.013620Z", - "iopub.status.busy": "2024-05-23T02:38:33.013288Z", - "iopub.status.idle": "2024-05-23T02:38:33.020073Z", - "shell.execute_reply": "2024-05-23T02:38:33.019579Z" + "iopub.execute_input": "2024-05-23T15:11:53.268367Z", + "iopub.status.busy": "2024-05-23T15:11:53.268053Z", + "iopub.status.idle": "2024-05-23T15:11:53.276306Z", + "shell.execute_reply": "2024-05-23T15:11:53.275840Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.022157Z", - "iopub.status.busy": "2024-05-23T02:38:33.021835Z", - "iopub.status.idle": "2024-05-23T02:38:33.244015Z", - "shell.execute_reply": "2024-05-23T02:38:33.243456Z" + "iopub.execute_input": "2024-05-23T15:11:53.278297Z", + "iopub.status.busy": "2024-05-23T15:11:53.277985Z", + "iopub.status.idle": "2024-05-23T15:11:53.502080Z", + "shell.execute_reply": "2024-05-23T15:11:53.501482Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.247350Z", - "iopub.status.busy": "2024-05-23T02:38:33.246423Z", - "iopub.status.idle": "2024-05-23T02:38:33.429697Z", - "shell.execute_reply": "2024-05-23T02:38:33.429153Z" + "iopub.execute_input": "2024-05-23T15:11:53.505061Z", + "iopub.status.busy": "2024-05-23T15:11:53.504534Z", + "iopub.status.idle": "2024-05-23T15:11:53.679226Z", + "shell.execute_reply": "2024-05-23T15:11:53.678650Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:33.433418Z", - "iopub.status.busy": "2024-05-23T02:38:33.432488Z", - "iopub.status.idle": "2024-05-23T02:38:33.437355Z", - "shell.execute_reply": "2024-05-23T02:38:33.436849Z" + "iopub.execute_input": "2024-05-23T15:11:53.681807Z", + "iopub.status.busy": "2024-05-23T15:11:53.681402Z", + "iopub.status.idle": "2024-05-23T15:11:53.685379Z", + "shell.execute_reply": "2024-05-23T15:11:53.684896Z" }, "nbsphinx": "hidden" }, @@ -1113,7 +1113,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00a563ce93d8479e98990b9301e38b8c": { + "057aa8cb2fca4d0a965488bc4b12c120": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1166,7 +1166,60 @@ "width": null } }, - "03f976f6fd8b4f3da8f8d65361766803": { + "07cffd6ee3cb4ee180c45f9e89a87081": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0ac78e724f5a410091258100cbc42249": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1181,15 +1234,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb79e857b8864183adb657377ac23506", + "layout": "IPY_MODEL_13a4673a44e041a9be990dd279b14b81", "placeholder": "​", - "style": "IPY_MODEL_3b9d7402d92e47a89f9bbe899046d166", + "style": "IPY_MODEL_251a6e7067ca496195a9b73f6af43a11", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 54.2M/54.2M [00:01<00:00, 31.3MB/s]" } }, - "0ccee7c58aab4792bd7d5a7e98550a05": { + "108fa6774b4943129df006d3865c18a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1207,7 +1260,7 @@ "text_color": null } }, - "1d74a9ac286541eda7ab15da3b86f602": { + "13a4673a44e041a9be990dd279b14b81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1260,49 +1313,25 @@ "width": null } }, - "245426f14e014eca9c82576af9b4a2d0": { + "13bf594da49b4afba0315f15c19cb9b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "27e756f3ccb347fc9dfa7777fb4387f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3a1cc1f5d1294daea9a75e6dabcf6d34", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_51429743aebd4f9eae1b41dac2b35875", - "tabbable": null, - "tooltip": null, - "value": 665.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2e2458d3c4b141098dc8dc016f680867": { + "1433c4cd47e04df98a78f5175ceed725": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1355,7 +1384,7 @@ "width": null } }, - "31a7d77029d74abe98b0b988f1a4bf8b": { + "15c367e37d544060a2483da64a2efc7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1408,7 +1437,7 @@ "width": null } }, - "3a1cc1f5d1294daea9a75e6dabcf6d34": { + "1c17efbeb5004a8da7fabc03d3d9585b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,31 +1490,25 @@ "width": null } }, - "3b87cb30ce5d4dcaa854942a9fa8b19a": { + "21fceb25363d4a59a9cbd26b09f9c0f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_91e39d530aa145f5b3c9065b9b5928a8", - "IPY_MODEL_ac89ef4a851c4800a2cd053c39d628f5", - "IPY_MODEL_6a43854016664bebb23affb2fdf945f6" - ], - "layout": "IPY_MODEL_4e4cc08ba6cf4a02aae9cd49d69b90ba", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3b9d7402d92e47a89f9bbe899046d166": { + "251a6e7067ca496195a9b73f6af43a11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1503,61 +1526,94 @@ "text_color": null } }, - "40475ed8ae494c92a293af884791506a": { + "26b18199fe454bcfab7cbbd748debfbc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "41905e3141474f4fbacb2f74c80a1310": { + "27ff10056afe437197e80dcaa26d37ee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_335cdeff3368490c9dacf86a1640f430", + "IPY_MODEL_aaabad1bacb84378bc109506930c4938", + "IPY_MODEL_d2cc47c0ea394ec5b04de2429472de83" + ], + "layout": "IPY_MODEL_972dbc96b65e45728767c91d7c18cb35", + "tabbable": null, + "tooltip": null } }, - "42e967127f284a62948d8f3a7f0b9377": { + "2ab61373d70f4432bc84390e3e6dc3af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_15c367e37d544060a2483da64a2efc7d", + "placeholder": "​", + "style": "IPY_MODEL_108fa6774b4943129df006d3865c18a0", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 34.5MB/s]" + } + }, + "2b77e61e755d4f119937e03ca1485b9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_696e69955b874e9e98bc2febed0ff152", + "IPY_MODEL_7bb11e481b73456c9d4486df66b66d08", + "IPY_MODEL_982ef9e8f8b54273a6d8360202593e4e" + ], + "layout": "IPY_MODEL_3c768fd273824ade906a50c7a96037a0", + "tabbable": null, + "tooltip": null } }, - "43b0ed8656184de3b856fd2f6f199eb2": { + "2d05eeda60f3453d8f85530225404b34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1610,80 +1666,64 @@ "width": null } }, - "444fb19b8e674deca15d21c87b67193a": { + "2dffee1fe1774d419335ccdc19dc5d4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8f83c54053de47a1a170d3d710184f7a", - "placeholder": "​", - "style": "IPY_MODEL_eb878c8cb70245d1a8b94dcf434aeed1", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 183MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "4498e4568c6647309d11d1203f855b25": { + "314a2fc932ee4e25a10a88ca2e4bd00f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f4029eb102f043fd954b9ddc73bae8ca", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_73b6faa785cc4727acea566993d90add", - "tabbable": null, - "tooltip": null, - "value": 54245363.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "456c676c4b33467c81ad91009e80a507": { + "335cdeff3368490c9dacf86a1640f430": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_03f976f6fd8b4f3da8f8d65361766803", - "IPY_MODEL_27e756f3ccb347fc9dfa7777fb4387f7", - "IPY_MODEL_7fdf9838677b4442aa595d6552ddcb25" - ], - "layout": "IPY_MODEL_50b5fab9821f49c8bc0a982b97d7d42b", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1433c4cd47e04df98a78f5175ceed725", + "placeholder": "​", + "style": "IPY_MODEL_21fceb25363d4a59a9cbd26b09f9c0f7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "config.json: 100%" } }, - "4b41ee3c50114166bce552756c9927e1": { + "3c768fd273824ade906a50c7a96037a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1736,7 +1776,46 @@ "width": null } }, - "4e4cc08ba6cf4a02aae9cd49d69b90ba": { + "4902e2a667314840ad29c3989fbc3d71": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_63031382547c4484b9d9576e44ec985c", + "placeholder": "​", + "style": "IPY_MODEL_69f1d3e434ea4aae85d4d61f41a070a4", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "4e963d20d0d145efb61072037f1c0b5b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "511cd8d51d574c77881256b004b9cdde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1789,33 +1868,30 @@ "width": null } }, - "507686da4a544d3f9b8010ac3d869dd2": { + "525dc09656fc4345922cbe2bab00c17f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_65b51de7cf4449ca94fa3a257d95244f", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_245426f14e014eca9c82576af9b4a2d0", + "layout": "IPY_MODEL_f141d248724e4b85bb038a3d25f1dda4", + "placeholder": "​", + "style": "IPY_MODEL_a8bea20f28ff40b38fdaa46b490e0c22", "tabbable": null, "tooltip": null, - "value": 231508.0 + "value": "vocab.txt: 100%" } }, - "50b5fab9821f49c8bc0a982b97d7d42b": { + "550e485ddfb34ac48c7fa38fe4a55fdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1868,103 +1944,33 @@ "width": null } }, - "51429743aebd4f9eae1b41dac2b35875": { + "55554045055240c583d2bc190faec835": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "526fd234b0de4d038d2897a7fda43c9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1d74a9ac286541eda7ab15da3b86f602", - "placeholder": "​", - "style": "IPY_MODEL_b9e6cc5abc31437aab8692b7e4283e92", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 380kB/s]" - } - }, - "528344507c3e4b69bb7f7fb09bf43404": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "52b4a3cadcab44009dfef8cffc01e462": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5e0a3c1909a14ea08a3a6e869796d4d5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0cfef3a63464a848707273469d2397a", - "placeholder": "​", - "style": "IPY_MODEL_42e967127f284a62948d8f3a7f0b9377", + "layout": "IPY_MODEL_dccaa0d8cd394fd8afea397dc79e672c", + "max": 54245363.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4e963d20d0d145efb61072037f1c0b5b", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": 54245363.0 } }, - "65b51de7cf4449ca94fa3a257d95244f": { + "57554a7bd18846b1a3d2611e7fe0ac3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2017,48 +2023,7 @@ "width": null } }, - "6a43854016664bebb23affb2fdf945f6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_31a7d77029d74abe98b0b988f1a4bf8b", - "placeholder": "​", - "style": "IPY_MODEL_52b4a3cadcab44009dfef8cffc01e462", - "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 10.0kB/s]" - } - }, - "6b4ff23fcede45fba29c6d73ac053732": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6ca0a5d5adc84dc78e144c1373a7e6d2": { + "5783608143bf4c09bf36a32ccd6dda30": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2111,7 +2076,51 @@ "width": null } }, - "6de076bd9b964e018433dbea03c8ad53": { + "5879886cc62b4e94a1d1396dd1a96b4f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5783608143bf4c09bf36a32ccd6dda30", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_84abfef1762a40e383897ea9056cfdfa", + "tabbable": null, + "tooltip": null, + "value": 466062.0 + } + }, + "58a72521dc064dc6b408d067598bf149": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5ed30cdd732748b89e88f596fe608d1d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2164,47 +2173,7 @@ "width": null } }, - "732f8bc8287a4549b8e5a68be594c45c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d50952b772cb495ebd41f3be5f9790a1", - "IPY_MODEL_4498e4568c6647309d11d1203f855b25", - "IPY_MODEL_444fb19b8e674deca15d21c87b67193a" - ], - "layout": "IPY_MODEL_b06d0cd9e16b44849f64ce043c7e5ef5", - "tabbable": null, - "tooltip": null - } - }, - "73b6faa785cc4727acea566993d90add": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7c98da98c82641b58b4c0323e75d3075": { + "63031382547c4484b9d9576e44ec985c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2257,7 +2226,25 @@ "width": null } }, - "7d4753dd00a1470890074536df93a92a": { + "657f32507c7b4163ba720b93d001fd5f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67c70103916041eabd95c923cd979753": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2310,33 +2297,7 @@ "width": null } }, - "7edfe78590ef4c3a984ab1a798182344": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7d4753dd00a1470890074536df93a92a", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e4c951b749aa4495a55d6eae29772e4d", - "tabbable": null, - "tooltip": null, - "value": 391.0 - } - }, - "7fdf9838677b4442aa595d6552ddcb25": { + "696e69955b874e9e98bc2febed0ff152": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2351,15 +2312,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_43b0ed8656184de3b856fd2f6f199eb2", + "layout": "IPY_MODEL_550e485ddfb34ac48c7fa38fe4a55fdb", "placeholder": "​", - "style": "IPY_MODEL_41905e3141474f4fbacb2f74c80a1310", + "style": "IPY_MODEL_657f32507c7b4163ba720b93d001fd5f", "tabbable": null, "tooltip": null, - "value": " 665/665 [00:00<00:00, 118kB/s]" + "value": "README.md: 100%" } }, - "8480b84ae6fa4b9da23ce82ff2d45e47": { + "69f1d3e434ea4aae85d4d61f41a070a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2377,31 +2338,49 @@ "text_color": null } }, - "87114647d7b244ea81038e535e44e6b7": { + "7091ee4e077b4c53b50d1acf076e85c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dd3d27ffacad4ef0800f037d03247265", - "IPY_MODEL_7edfe78590ef4c3a984ab1a798182344", - "IPY_MODEL_90f96861d524400e9fc05dcc9e59c12e" - ], - "layout": "IPY_MODEL_2e2458d3c4b141098dc8dc016f680867", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d11d777946f046dbb16da297cdd4ee7f", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b77b5193f60341b9b68a8057c0d957b7", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 48.0 + } + }, + "7a83da02a88f44559a8d04bbb0765ca8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "8c2187e059254dd6a34676832f29f9b6": { + "7bb11e481b73456c9d4486df66b66d08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2417,17 +2396,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ca0a5d5adc84dc78e144c1373a7e6d2", - "max": 466062.0, + "layout": "IPY_MODEL_9a788fe502f5407ba8e155ea5e5c2137", + "max": 2211.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_c63fe7e641f44d7f90e707525df89fad", + "style": "IPY_MODEL_7a83da02a88f44559a8d04bbb0765ca8", "tabbable": null, "tooltip": null, - "value": 466062.0 + "value": 2211.0 } }, - "8f83c54053de47a1a170d3d710184f7a": { + "7cd284403909488b9ca34ff7b8026738": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2480,30 +2459,31 @@ "width": null } }, - "90f96861d524400e9fc05dcc9e59c12e": { + "7fc93fb206df4074a67da4377661b97d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_00a563ce93d8479e98990b9301e38b8c", - "placeholder": "​", - "style": "IPY_MODEL_40475ed8ae494c92a293af884791506a", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_525dc09656fc4345922cbe2bab00c17f", + "IPY_MODEL_853ceebd1a3c4b059848193e3dc49b97", + "IPY_MODEL_2ab61373d70f4432bc84390e3e6dc3af" + ], + "layout": "IPY_MODEL_a8269b5530b545c3851312f53bbb9eea", "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 62.8kB/s]" + "tooltip": null } }, - "91e39d530aa145f5b3c9065b9b5928a8": { + "837385c4dbaa4cd0a99ec70f0f7fc1f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2518,15 +2498,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6de076bd9b964e018433dbea03c8ad53", + "layout": "IPY_MODEL_5ed30cdd732748b89e88f596fe608d1d", "placeholder": "​", - "style": "IPY_MODEL_e27fa851943148ef8cb944b5d637695d", + "style": "IPY_MODEL_efc14db7cab848b8bc8de67706902202", "tabbable": null, "tooltip": null, - "value": "tokenizer_config.json: 100%" + "value": "pytorch_model.bin: 100%" } }, - "956ae5f47baa40a889762a10b5b21b03": { + "84abfef1762a40e383897ea9056cfdfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2542,30 +2522,59 @@ "description_width": "" } }, - "a3504947bf89448394e112f7f1c88f62": { + "853ceebd1a3c4b059848193e3dc49b97": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7c98da98c82641b58b4c0323e75d3075", - "placeholder": "​", - "style": "IPY_MODEL_6b4ff23fcede45fba29c6d73ac053732", + "layout": "IPY_MODEL_1c17efbeb5004a8da7fabc03d3d9585b", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f7c71d10032c4b87875d3ef528a77f2d", "tabbable": null, "tooltip": null, - "value": "README.md: 100%" + "value": 231508.0 + } + }, + "8614ab07e12c45f5a2696b92486eceda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_511cd8d51d574c77881256b004b9cdde", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_26b18199fe454bcfab7cbbd748debfbc", + "tabbable": null, + "tooltip": null, + "value": 391.0 } }, - "a99d98a0e63343a48433514e5710c878": { + "88db1ed782f3468fa38bac950d3092b7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2580,16 +2589,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e56515b2f9eb48769cb7a4dc806886d7", - "IPY_MODEL_8c2187e059254dd6a34676832f29f9b6", - "IPY_MODEL_ac6010c871f74201acb1987747416e65" + "IPY_MODEL_d9306c6ebb1c4290a9bec26e8cb38294", + "IPY_MODEL_8614ab07e12c45f5a2696b92486eceda", + "IPY_MODEL_89530782f36a4825b5ea5fd6995f180e" ], - "layout": "IPY_MODEL_bf57a612a3c943498f68e0d619ed1fad", + "layout": "IPY_MODEL_cc88f3745d7b40f0be10b65f1a61c53b", "tabbable": null, "tooltip": null } }, - "ac6010c871f74201acb1987747416e65": { + "89530782f36a4825b5ea5fd6995f180e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2604,67 +2613,98 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f6752c44d7d0466bb39f836d9750f809", + "layout": "IPY_MODEL_f69151cbba4448eab02794703220c674", "placeholder": "​", - "style": "IPY_MODEL_8480b84ae6fa4b9da23ce82ff2d45e47", + "style": "IPY_MODEL_94748dd75dfb42d3bb71113a0985ffa6", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 5.81MB/s]" + "value": " 391/391 [00:00<00:00, 65.5kB/s]" } }, - "ac89ef4a851c4800a2cd053c39d628f5": { + "8d73703dab8845c4bb83aa8f21fd2ac0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8f5cb20b54134883910f7866203179cc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b41ee3c50114166bce552756c9927e1", - "max": 48.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_528344507c3e4b69bb7f7fb09bf43404", + "layout": "IPY_MODEL_eb88da38cb2a41768332b1e1818fbfd7", + "placeholder": "​", + "style": "IPY_MODEL_13bf594da49b4afba0315f15c19cb9b3", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": " 466k/466k [00:00<00:00, 31.9MB/s]" } }, - "acb9554b396b4fdaaaf35aa5f83c5e11": { + "944db354360447dc908680f8480dcdc0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ca4466b8266240c7ba985c6949ca8b1b", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_956ae5f47baa40a889762a10b5b21b03", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_4902e2a667314840ad29c3989fbc3d71", + "IPY_MODEL_5879886cc62b4e94a1d1396dd1a96b4f", + "IPY_MODEL_8f5cb20b54134883910f7866203179cc" + ], + "layout": "IPY_MODEL_07cffd6ee3cb4ee180c45f9e89a87081", "tabbable": null, - "tooltip": null, - "value": 2211.0 + "tooltip": null + } + }, + "94748dd75dfb42d3bb71113a0985ffa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b06d0cd9e16b44849f64ce043c7e5ef5": { + "972dbc96b65e45728767c91d7c18cb35": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2717,25 +2757,30 @@ "width": null } }, - "b24a10939b6449148ae6a98ec70f393e": { + "982ef9e8f8b54273a6d8360202593e4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fe605d7683594f159c812d6850fdeaf3", + "placeholder": "​", + "style": "IPY_MODEL_58a72521dc064dc6b408d067598bf149", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 423kB/s]" } }, - "b4dab92075a1417f849f07d12419cf42": { + "9a788fe502f5407ba8e155ea5e5c2137": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2788,7 +2833,25 @@ "width": null } }, - "b654d592379849a19a7e326ea71d2057": { + "a682da03fb684688a086b672241e96f0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a8269b5530b545c3851312f53bbb9eea": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2841,7 +2904,7 @@ "width": null } }, - "b9e6cc5abc31437aab8692b7e4283e92": { + "a8bea20f28ff40b38fdaa46b490e0c22": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2859,7 +2922,33 @@ "text_color": null } }, - "bc85a7272ac64c848e73561ca8fa0f8d": { + "aaabad1bacb84378bc109506930c4938": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ab4f6f76d3414e73abf4d8ec03d3516c", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2dffee1fe1774d419335ccdc19dc5d4a", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "ab4f6f76d3414e73abf4d8ec03d3516c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2912,7 +3001,23 @@ "width": null } }, - "bf57a612a3c943498f68e0d619ed1fad": { + "b77b5193f60341b9b68a8057c0d957b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c97b51894b434f84aed8287f1282e791": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2965,7 +3070,7 @@ "width": null } }, - "c0cfef3a63464a848707273469d2397a": { + "cc88f3745d7b40f0be10b65f1a61c53b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3018,7 +3123,7 @@ "width": null } }, - "c10d03eb0c3d4de696f069fde2d46970": { + "d03c3dd124ec48bdadbec94e624d97ec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3036,23 +3141,7 @@ "text_color": null } }, - "c63fe7e641f44d7f90e707525df89fad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ca4466b8266240c7ba985c6949ca8b1b": { + "d11d777946f046dbb16da297cdd4ee7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3105,7 +3194,7 @@ "width": null } }, - "d132bbefa4ae4456aa672649e532c061": { + "d17fd6a19048484d9d197a89d97ba550": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -3120,34 +3209,40 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5e0a3c1909a14ea08a3a6e869796d4d5", - "IPY_MODEL_507686da4a544d3f9b8010ac3d869dd2", - "IPY_MODEL_fa685d412d3a430fb7a077c3a4673068" + "IPY_MODEL_d5b00a2e85b84f9a95e07f055a14f61c", + "IPY_MODEL_7091ee4e077b4c53b50d1acf076e85c4", + "IPY_MODEL_eadcdb3fd3b14c399ff30a279a5333f4" ], - "layout": "IPY_MODEL_eef5b255fec1499283e47d245a6c6d13", + "layout": "IPY_MODEL_2d05eeda60f3453d8f85530225404b34", "tabbable": null, "tooltip": null } }, - "d3ea5076eb124012a95325920ad8ac77": { + "d1c8778b071f488d9b67876bc5569568": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_837385c4dbaa4cd0a99ec70f0f7fc1f4", + "IPY_MODEL_55554045055240c583d2bc190faec835", + "IPY_MODEL_0ac78e724f5a410091258100cbc42249" + ], + "layout": "IPY_MODEL_67c70103916041eabd95c923cd979753", + "tabbable": null, + "tooltip": null } }, - "d50952b772cb495ebd41f3be5f9790a1": { + "d2cc47c0ea394ec5b04de2429472de83": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3162,68 +3257,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d6a05bb2370945a5abd0e0f436651fff", + "layout": "IPY_MODEL_c97b51894b434f84aed8287f1282e791", "placeholder": "​", - "style": "IPY_MODEL_0ccee7c58aab4792bd7d5a7e98550a05", + "style": "IPY_MODEL_a682da03fb684688a086b672241e96f0", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" - } - }, - "d6a05bb2370945a5abd0e0f436651fff": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": " 665/665 [00:00<00:00, 135kB/s]" } }, - "dd3d27ffacad4ef0800f037d03247265": { + "d5b00a2e85b84f9a95e07f055a14f61c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3238,49 +3280,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b654d592379849a19a7e326ea71d2057", + "layout": "IPY_MODEL_7cd284403909488b9ca34ff7b8026738", "placeholder": "​", - "style": "IPY_MODEL_c10d03eb0c3d4de696f069fde2d46970", + "style": "IPY_MODEL_d03c3dd124ec48bdadbec94e624d97ec", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "e27fa851943148ef8cb944b5d637695d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e4c951b749aa4495a55d6eae29772e4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "tokenizer_config.json: 100%" } }, - "e56515b2f9eb48769cb7a4dc806886d7": { + "d9306c6ebb1c4290a9bec26e8cb38294": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3295,15 +3303,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bc85a7272ac64c848e73561ca8fa0f8d", + "layout": "IPY_MODEL_57554a7bd18846b1a3d2611e7fe0ac3c", "placeholder": "​", - "style": "IPY_MODEL_d3ea5076eb124012a95325920ad8ac77", + "style": "IPY_MODEL_8d73703dab8845c4bb83aa8f21fd2ac0", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": ".gitattributes: 100%" } }, - "eb79e857b8864183adb657377ac23506": { + "dccaa0d8cd394fd8afea397dc79e672c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3356,25 +3364,30 @@ "width": null } }, - "eb878c8cb70245d1a8b94dcf434aeed1": { + "eadcdb3fd3b14c399ff30a279a5333f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_057aa8cb2fca4d0a965488bc4b12c120", + "placeholder": "​", + "style": "IPY_MODEL_314a2fc932ee4e25a10a88ca2e4bd00f", + "tabbable": null, + "tooltip": null, + "value": " 48.0/48.0 [00:00<00:00, 8.97kB/s]" } }, - "eef5b255fec1499283e47d245a6c6d13": { + "eb88da38cb2a41768332b1e1818fbfd7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3427,7 +3440,25 @@ "width": null } }, - "f4029eb102f043fd954b9ddc73bae8ca": { + "efc14db7cab848b8bc8de67706902202": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f141d248724e4b85bb038a3d25f1dda4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3480,31 +3511,7 @@ "width": null } }, - "f4fa882d9e14420e8796ac9bc19e2306": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a3504947bf89448394e112f7f1c88f62", - "IPY_MODEL_acb9554b396b4fdaaaf35aa5f83c5e11", - "IPY_MODEL_526fd234b0de4d038d2897a7fda43c9f" - ], - "layout": "IPY_MODEL_fc4cd9a185bc4f2b9a59b5b45379e93e", - "tabbable": null, - "tooltip": null - } - }, - "f6752c44d7d0466bb39f836d9750f809": { + "f69151cbba4448eab02794703220c674": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3557,30 +3564,23 @@ "width": null } }, - "fa685d412d3a430fb7a077c3a4673068": { + "f7c71d10032c4b87875d3ef528a77f2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b4dab92075a1417f849f07d12419cf42", - "placeholder": "​", - "style": "IPY_MODEL_b24a10939b6449148ae6a98ec70f393e", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 31.7MB/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fc4cd9a185bc4f2b9a59b5b45379e93e": { + "fe605d7683594f159c812d6850fdeaf3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 69a83bf76..38316148d 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:37.424412Z", - "iopub.status.busy": "2024-05-23T02:38:37.424244Z", - "iopub.status.idle": "2024-05-23T02:38:41.923092Z", - "shell.execute_reply": "2024-05-23T02:38:41.922464Z" + "iopub.execute_input": "2024-05-23T15:11:57.077586Z", + "iopub.status.busy": "2024-05-23T15:11:57.077376Z", + "iopub.status.idle": "2024-05-23T15:12:01.691041Z", + "shell.execute_reply": "2024-05-23T15:12:01.690485Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:41.925785Z", - "iopub.status.busy": "2024-05-23T02:38:41.925420Z", - "iopub.status.idle": "2024-05-23T02:38:41.928528Z", - "shell.execute_reply": "2024-05-23T02:38:41.928098Z" + "iopub.execute_input": "2024-05-23T15:12:01.693619Z", + "iopub.status.busy": "2024-05-23T15:12:01.693116Z", + "iopub.status.idle": "2024-05-23T15:12:01.696158Z", + "shell.execute_reply": "2024-05-23T15:12:01.695726Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:41.930508Z", - "iopub.status.busy": "2024-05-23T02:38:41.930194Z", - "iopub.status.idle": "2024-05-23T02:38:41.934789Z", - "shell.execute_reply": "2024-05-23T02:38:41.934256Z" + "iopub.execute_input": "2024-05-23T15:12:01.697971Z", + "iopub.status.busy": "2024-05-23T15:12:01.697795Z", + "iopub.status.idle": "2024-05-23T15:12:01.702135Z", + "shell.execute_reply": "2024-05-23T15:12:01.701698Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T02:38:41.936743Z", - "iopub.status.busy": "2024-05-23T02:38:41.936438Z", - "iopub.status.idle": "2024-05-23T02:38:43.553038Z", - "shell.execute_reply": "2024-05-23T02:38:43.552297Z" + "iopub.execute_input": "2024-05-23T15:12:01.704241Z", + "iopub.status.busy": "2024-05-23T15:12:01.703842Z", + "iopub.status.idle": "2024-05-23T15:12:03.459813Z", + "shell.execute_reply": "2024-05-23T15:12:03.459194Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T02:38:43.555760Z", - "iopub.status.busy": "2024-05-23T02:38:43.555552Z", - "iopub.status.idle": "2024-05-23T02:38:43.566020Z", - "shell.execute_reply": "2024-05-23T02:38:43.565516Z" + "iopub.execute_input": "2024-05-23T15:12:03.462186Z", + "iopub.status.busy": "2024-05-23T15:12:03.461990Z", + "iopub.status.idle": "2024-05-23T15:12:03.472497Z", + "shell.execute_reply": "2024-05-23T15:12:03.472070Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:43.568206Z", - "iopub.status.busy": "2024-05-23T02:38:43.567830Z", - "iopub.status.idle": "2024-05-23T02:38:43.573683Z", - "shell.execute_reply": "2024-05-23T02:38:43.573101Z" + "iopub.execute_input": "2024-05-23T15:12:03.474652Z", + "iopub.status.busy": "2024-05-23T15:12:03.474293Z", + "iopub.status.idle": "2024-05-23T15:12:03.479712Z", + "shell.execute_reply": "2024-05-23T15:12:03.479270Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T02:38:43.575704Z", - "iopub.status.busy": "2024-05-23T02:38:43.575513Z", - "iopub.status.idle": "2024-05-23T02:38:44.030006Z", - "shell.execute_reply": "2024-05-23T02:38:44.029525Z" + "iopub.execute_input": "2024-05-23T15:12:03.481710Z", + "iopub.status.busy": "2024-05-23T15:12:03.481395Z", + "iopub.status.idle": "2024-05-23T15:12:03.907353Z", + "shell.execute_reply": "2024-05-23T15:12:03.906794Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:44.032362Z", - "iopub.status.busy": "2024-05-23T02:38:44.031912Z", - "iopub.status.idle": "2024-05-23T02:38:45.368925Z", - "shell.execute_reply": "2024-05-23T02:38:45.368308Z" + "iopub.execute_input": "2024-05-23T15:12:03.909621Z", + "iopub.status.busy": "2024-05-23T15:12:03.909270Z", + "iopub.status.idle": "2024-05-23T15:12:04.477713Z", + "shell.execute_reply": "2024-05-23T15:12:04.477093Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-05-23T02:38:45.371453Z", - "iopub.status.busy": "2024-05-23T02:38:45.371144Z", - "iopub.status.idle": "2024-05-23T02:38:45.389472Z", - "shell.execute_reply": "2024-05-23T02:38:45.388927Z" + "iopub.execute_input": "2024-05-23T15:12:04.480200Z", + "iopub.status.busy": "2024-05-23T15:12:04.480017Z", + "iopub.status.idle": "2024-05-23T15:12:04.498410Z", + "shell.execute_reply": "2024-05-23T15:12:04.497909Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:45.391399Z", - "iopub.status.busy": "2024-05-23T02:38:45.391223Z", - "iopub.status.idle": "2024-05-23T02:38:45.394282Z", - "shell.execute_reply": "2024-05-23T02:38:45.393850Z" + "iopub.execute_input": "2024-05-23T15:12:04.500488Z", + "iopub.status.busy": "2024-05-23T15:12:04.500072Z", + "iopub.status.idle": "2024-05-23T15:12:04.503271Z", + "shell.execute_reply": "2024-05-23T15:12:04.502744Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:45.396316Z", - "iopub.status.busy": "2024-05-23T02:38:45.395893Z", - "iopub.status.idle": "2024-05-23T02:38:59.524514Z", - "shell.execute_reply": "2024-05-23T02:38:59.523912Z" + "iopub.execute_input": "2024-05-23T15:12:04.505105Z", + "iopub.status.busy": "2024-05-23T15:12:04.504929Z", + "iopub.status.idle": "2024-05-23T15:12:18.669352Z", + "shell.execute_reply": "2024-05-23T15:12:18.668813Z" }, "id": "2FSQ2GR9R_YA" }, @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T02:38:59.527444Z", - "iopub.status.busy": "2024-05-23T02:38:59.526967Z", - "iopub.status.idle": "2024-05-23T02:38:59.530800Z", - "shell.execute_reply": "2024-05-23T02:38:59.530246Z" + "iopub.execute_input": "2024-05-23T15:12:18.672012Z", + "iopub.status.busy": "2024-05-23T15:12:18.671651Z", + "iopub.status.idle": "2024-05-23T15:12:18.675428Z", + "shell.execute_reply": "2024-05-23T15:12:18.674984Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:59.533021Z", - "iopub.status.busy": "2024-05-23T02:38:59.532697Z", - "iopub.status.idle": "2024-05-23T02:39:00.244842Z", - "shell.execute_reply": "2024-05-23T02:39:00.244278Z" + "iopub.execute_input": "2024-05-23T15:12:18.677479Z", + "iopub.status.busy": "2024-05-23T15:12:18.677175Z", + "iopub.status.idle": "2024-05-23T15:12:19.390682Z", + "shell.execute_reply": "2024-05-23T15:12:19.390085Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.247677Z", - "iopub.status.busy": "2024-05-23T02:39:00.247312Z", - "iopub.status.idle": "2024-05-23T02:39:00.251949Z", - "shell.execute_reply": "2024-05-23T02:39:00.251483Z" + "iopub.execute_input": "2024-05-23T15:12:19.393443Z", + "iopub.status.busy": "2024-05-23T15:12:19.392934Z", + "iopub.status.idle": "2024-05-23T15:12:19.398027Z", + "shell.execute_reply": "2024-05-23T15:12:19.397517Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.255093Z", - "iopub.status.busy": "2024-05-23T02:39:00.254063Z", - "iopub.status.idle": "2024-05-23T02:39:00.351971Z", - "shell.execute_reply": "2024-05-23T02:39:00.351348Z" + "iopub.execute_input": "2024-05-23T15:12:19.400288Z", + "iopub.status.busy": "2024-05-23T15:12:19.399949Z", + "iopub.status.idle": "2024-05-23T15:12:19.494951Z", + "shell.execute_reply": "2024-05-23T15:12:19.494354Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.354442Z", - "iopub.status.busy": "2024-05-23T02:39:00.354075Z", - "iopub.status.idle": "2024-05-23T02:39:00.365945Z", - "shell.execute_reply": "2024-05-23T02:39:00.365469Z" + "iopub.execute_input": "2024-05-23T15:12:19.497459Z", + "iopub.status.busy": "2024-05-23T15:12:19.496990Z", + "iopub.status.idle": "2024-05-23T15:12:19.508906Z", + "shell.execute_reply": "2024-05-23T15:12:19.508370Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.368150Z", - "iopub.status.busy": "2024-05-23T02:39:00.367716Z", - "iopub.status.idle": "2024-05-23T02:39:00.375220Z", - "shell.execute_reply": "2024-05-23T02:39:00.374791Z" + "iopub.execute_input": "2024-05-23T15:12:19.510977Z", + "iopub.status.busy": "2024-05-23T15:12:19.510641Z", + "iopub.status.idle": "2024-05-23T15:12:19.518476Z", + "shell.execute_reply": "2024-05-23T15:12:19.517926Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.377259Z", - "iopub.status.busy": "2024-05-23T02:39:00.376845Z", - "iopub.status.idle": "2024-05-23T02:39:00.380809Z", - "shell.execute_reply": "2024-05-23T02:39:00.380290Z" + "iopub.execute_input": "2024-05-23T15:12:19.520438Z", + "iopub.status.busy": "2024-05-23T15:12:19.520119Z", + "iopub.status.idle": "2024-05-23T15:12:19.524289Z", + "shell.execute_reply": "2024-05-23T15:12:19.523824Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.382918Z", - "iopub.status.busy": "2024-05-23T02:39:00.382499Z", - "iopub.status.idle": "2024-05-23T02:39:00.388185Z", - "shell.execute_reply": "2024-05-23T02:39:00.387739Z" + "iopub.execute_input": "2024-05-23T15:12:19.526072Z", + "iopub.status.busy": "2024-05-23T15:12:19.525895Z", + "iopub.status.idle": "2024-05-23T15:12:19.531559Z", + "shell.execute_reply": "2024-05-23T15:12:19.531118Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.390146Z", - "iopub.status.busy": "2024-05-23T02:39:00.389847Z", - "iopub.status.idle": "2024-05-23T02:39:00.498202Z", - "shell.execute_reply": "2024-05-23T02:39:00.497726Z" + "iopub.execute_input": "2024-05-23T15:12:19.533406Z", + "iopub.status.busy": "2024-05-23T15:12:19.533232Z", + "iopub.status.idle": "2024-05-23T15:12:19.643411Z", + "shell.execute_reply": "2024-05-23T15:12:19.642854Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.500222Z", - "iopub.status.busy": "2024-05-23T02:39:00.500019Z", - "iopub.status.idle": "2024-05-23T02:39:00.601963Z", - "shell.execute_reply": "2024-05-23T02:39:00.601405Z" + "iopub.execute_input": "2024-05-23T15:12:19.645602Z", + "iopub.status.busy": "2024-05-23T15:12:19.645255Z", + "iopub.status.idle": "2024-05-23T15:12:19.749188Z", + "shell.execute_reply": "2024-05-23T15:12:19.748636Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.604143Z", - "iopub.status.busy": "2024-05-23T02:39:00.603823Z", - "iopub.status.idle": "2024-05-23T02:39:00.705218Z", - "shell.execute_reply": "2024-05-23T02:39:00.704740Z" + "iopub.execute_input": "2024-05-23T15:12:19.751353Z", + "iopub.status.busy": "2024-05-23T15:12:19.751022Z", + "iopub.status.idle": "2024-05-23T15:12:19.854178Z", + "shell.execute_reply": "2024-05-23T15:12:19.853570Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.707314Z", - "iopub.status.busy": "2024-05-23T02:39:00.706921Z", - "iopub.status.idle": "2024-05-23T02:39:00.806593Z", - "shell.execute_reply": "2024-05-23T02:39:00.806072Z" + "iopub.execute_input": "2024-05-23T15:12:19.856439Z", + "iopub.status.busy": "2024-05-23T15:12:19.856101Z", + "iopub.status.idle": "2024-05-23T15:12:20.171155Z", + "shell.execute_reply": "2024-05-23T15:12:20.170593Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:00.808560Z", - "iopub.status.busy": "2024-05-23T02:39:00.808356Z", - "iopub.status.idle": "2024-05-23T02:39:00.811422Z", - "shell.execute_reply": "2024-05-23T02:39:00.810939Z" + "iopub.execute_input": "2024-05-23T15:12:20.173386Z", + "iopub.status.busy": "2024-05-23T15:12:20.173067Z", + "iopub.status.idle": "2024-05-23T15:12:20.176285Z", + "shell.execute_reply": "2024-05-23T15:12:20.175735Z" }, "nbsphinx": "hidden" }, @@ -1397,7 +1397,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01d0593b0763498fad9dd0f3bdb6f539": { + "02d45ad38b8741448526432351d5eeec": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1450,114 +1450,7 @@ "width": null } }, - "044e638d0f8741b0b696dc006c7b92a9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4b8c02e63d64bcab486f94bd8916170", - "placeholder": "​", - "style": "IPY_MODEL_9ab9cceda5a94b60b0082f6d7be80afc", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 91.5MB/s]" - } - }, - "05ca05e5ae6a44cd9c375449c9ef38b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0739379a906e4934bdd384c498707c44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_20721703dbd448768c3ed47787e40c77", - "IPY_MODEL_7e36bbb511df4e9ca9ed8b2cd26ed59b", - "IPY_MODEL_2acb58ceadd54f02ba29d8a356d74bd5" - ], - "layout": "IPY_MODEL_01d0593b0763498fad9dd0f3bdb6f539", - "tabbable": null, - "tooltip": null - } - }, - "0923bfb2b06d4132b4c019f44ba32323": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0e923a18e47f4ebb8624bc4139e8f420": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9fefd85cb0674e82bdcbee1a677e483a", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_56726cd770a4458a90ebd961e5a4d5a4", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 - } - }, - "10b99dafd1b64eb083f8c82bbf59e0f5": { + "039e147e0ab94a44ab511f0d44c48272": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1610,31 +1503,25 @@ "width": null } }, - "1108fe5663e24107b8d50fc7ea80b070": { + "06d1c0dd633b4de893979238f4b41c33": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_af0dd324e6804d68af6cfe86a0f1e004", - "IPY_MODEL_6a2531b16ade48bfa3f15f7abbbce21c", - "IPY_MODEL_538b4eb917a440778dd6ca1aa0b7ca17" - ], - "layout": "IPY_MODEL_a71c207e358d412ba1215f18baa7d9b8", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1545bb03116d4953a229f8ecdfbb2481": { + "13d42abd327047e58607747246792659": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1652,31 +1539,30 @@ "text_color": null } }, - "1c5167aa90c142ceb6c095fd4366bb0b": { + "17ab4bf2d800459b85facc79809c794c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3ae27a79cfe84bd6901b0c511a859660", - "IPY_MODEL_2c00917d978d4abdab4930c6db70b0c5", - "IPY_MODEL_b0b1c94f87fc4f7486fbddf838a54839" - ], - "layout": "IPY_MODEL_5a3f78c3137e4e08802c36d18428ef04", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c2c972c18e9c4a679bd660253ada535a", + "placeholder": "​", + "style": "IPY_MODEL_92f6ba2ae9f947a19198dcf64b912ae0", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 16.9M/16.9M [00:00<00:00, 257MB/s]" } }, - "1ed76eaa07ee4546bbde2996920e1c36": { + "1d7ba7f518794212a4ad3851d4767fb0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1729,7 +1615,7 @@ "width": null } }, - "20721703dbd448768c3ed47787e40c77": { + "1f70dfa029cd4b0e9964d17d37bf54b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1744,15 +1630,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4ba364fdf9f249b08eaabb149399f865", + "layout": "IPY_MODEL_1d7ba7f518794212a4ad3851d4767fb0", "placeholder": "​", - "style": "IPY_MODEL_05ca05e5ae6a44cd9c375449c9ef38b4", + "style": "IPY_MODEL_13d42abd327047e58607747246792659", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml: 100%" } }, - "2551da23b1544157a60eb70609f8a866": { + "2a608f0281de446bb6b9d3e1f0fcc8ef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1805,72 +1691,108 @@ "width": null } }, - "2963bed0898143159cdb2b45f3131440": { - "model_module": "@jupyter-widgets/controls", + "32b0b882c64f444ca6b10422ad5a4dd9": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "2acb58ceadd54f02ba29d8a356d74bd5": { + "32f578baf4f54c46b4525cb49a0111a0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5cff4443dbbe4881874699cb34ea927f", - "placeholder": "​", - "style": "IPY_MODEL_c5405ed40e404f4f91c75a047866a247", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf1afa91f1eb40b2aba4dcef746f1a69", + "IPY_MODEL_f6a60d2b426e420d8d25abbca9fdfdaf", + "IPY_MODEL_17ab4bf2d800459b85facc79809c794c" + ], + "layout": "IPY_MODEL_6692f3e1fecd4a5190e008265e83db9c", "tabbable": null, - "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 494kB/s]" + "tooltip": null } }, - "2c00917d978d4abdab4930c6db70b0c5": { + "4846b29fb444480c8d270546730853ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2dbb12ab2da5483eaba36142437fb0b7", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ec29300d723440fab045877656c12f24", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_95ae6715ec3c4ef9b3fc7b20cc78386b", + "IPY_MODEL_d4730f8c409d4618a70b0cbe8dc1772b", + "IPY_MODEL_66e9a5e77f4547bb91e01a179df2918e" + ], + "layout": "IPY_MODEL_62bfaf4591b648e09fdcaa3fedd50886", "tabbable": null, - "tooltip": null, - "value": 3201.0 + "tooltip": null } }, - "2dbb12ab2da5483eaba36142437fb0b7": { + "4efbade6d6f449ac9b6167c892d8eaa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1923,7 +1845,30 @@ "width": null } }, - "36a46be2890e4d8687ef2018f67b9e67": { + "4f6932ad623843a29fdfe07056c8c4ed": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_61ee678dfe4f46cf99358cbd8893e136", + "placeholder": "​", + "style": "IPY_MODEL_c6521ed9a1a34d1f8999049d2347b649", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 22.9MB/s]" + } + }, + "53ba703ebe3f488bafb36ef1b5e1e15c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1976,30 +1921,7 @@ "width": null } }, - "3ae27a79cfe84bd6901b0c511a859660": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_36a46be2890e4d8687ef2018f67b9e67", - "placeholder": "​", - "style": "IPY_MODEL_84821290dfc24be6a89f891387851a95", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" - } - }, - "3f76fc4ca3a047d2a6f54ed6bb146a6d": { + "53c425a26ebf4662857c4853c4b2cc66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2052,7 +1974,7 @@ "width": null } }, - "4023e6d0f454427ea8446da9ef72db93": { + "5d1146ca200e41e0b87e8d02b7c0e568": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2105,7 +2027,7 @@ "width": null } }, - "4a333b1bb70f4bbc91863149fe9a0b42": { + "61ee678dfe4f46cf99358cbd8893e136": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2158,7 +2080,7 @@ "width": null } }, - "4ba364fdf9f249b08eaabb149399f865": { + "62bfaf4591b648e09fdcaa3fedd50886": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2211,25 +2133,60 @@ "width": null } }, - "52bb9e053bb348338d6065ae6353e406": { - "model_module": "@jupyter-widgets/controls", + "6692f3e1fecd4a5190e008265e83db9c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "538b4eb917a440778dd6ca1aa0b7ca17": { + "66e9a5e77f4547bb91e01a179df2918e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2244,71 +2201,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fec55286ccdb407e9cf0bb3ae00227c7", + "layout": "IPY_MODEL_926dd9b5c8c941ecabc5447d7cb20c1e", "placeholder": "​", - "style": "IPY_MODEL_1545bb03116d4953a229f8ecdfbb2481", + "style": "IPY_MODEL_06d1c0dd633b4de893979238f4b41c33", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 2.91MB/s]" - } - }, - "550f57b1b6b54818afd734b3b56b4a16": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "56036b161aba4dcba6c5426fb4a318fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ba9d29719c3a4a16913ef49226c3c136", - "IPY_MODEL_64a66290ec804265b967070f99937e67", - "IPY_MODEL_ba1b32d8c6484f7f9b0b159ee3f3f3b5" - ], - "layout": "IPY_MODEL_10b99dafd1b64eb083f8c82bbf59e0f5", - "tabbable": null, - "tooltip": null - } - }, - "56726cd770a4458a90ebd961e5a4d5a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 15.9M/15.9M [00:00<00:00, 124MB/s]" } }, - "5a3f78c3137e4e08802c36d18428ef04": { + "685e89f25f5d454fbc172a4feb2bd274": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2361,7 +2262,87 @@ "width": null } }, - "5cfdc8f6140c444698e6723c2e839d4e": { + "6b30ba8486c64a52a4712aeebe7baaaa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "6e6baef0f88d4ea5ae627f599696f217": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e545e8fd06544a3fabc2df6ebd4c231e", + "placeholder": "​", + "style": "IPY_MODEL_b6cb51a2809c464eb1c58ab8e31c96a1", + "tabbable": null, + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 477kB/s]" + } + }, + "7624a5525cff4e6dbad04046d0d5ce3d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4efbade6d6f449ac9b6167c892d8eaa9", + "placeholder": "​", + "style": "IPY_MODEL_6b30ba8486c64a52a4712aeebe7baaaa", + "tabbable": null, + "tooltip": null, + "value": "label_encoder.txt: 100%" + } + }, + "7df1120d6e804074ac9fc4c19ab2fe15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "80e543f701e445f38d8d20e7547bce68": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2379,7 +2360,31 @@ "text_color": null } }, - "5cff4443dbbe4881874699cb34ea927f": { + "837d65d479144be3b4a954b3b3c7abf1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f4e5840479864b31b4eca15395813b4e", + "IPY_MODEL_9122e918465a4b0d9f528507dbeecfe9", + "IPY_MODEL_f115a412241d4444a70d4927ce8721e1" + ], + "layout": "IPY_MODEL_c05d6a595d7144ee94fa51f5f5133acc", + "tabbable": null, + "tooltip": null + } + }, + "85ba5c722da4401683083354487e0f3c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2432,33 +2437,7 @@ "width": null } }, - "64a66290ec804265b967070f99937e67": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2551da23b1544157a60eb70609f8a866", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2963bed0898143159cdb2b45f3131440", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "6a2531b16ade48bfa3f15f7abbbce21c": { + "9122e918465a4b0d9f528507dbeecfe9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2474,17 +2453,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8a1c0bd682ed41139bdb1defce330089", - "max": 128619.0, + "layout": "IPY_MODEL_02d45ad38b8741448526432351d5eeec", + "max": 3201.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0923bfb2b06d4132b4c019f44ba32323", + "style": "IPY_MODEL_99b76a939b6946918c69bdda4a084bb0", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 3201.0 } }, - "6c21cf5d09184e87a440a1b3a1bd793b": { + "926dd9b5c8c941ecabc5447d7cb20c1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2537,75 +2516,64 @@ "width": null } }, - "7767118e4ee04421bb987d8d34f99427": { + "92f6ba2ae9f947a19198dcf64b912ae0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dfd824a4e35041009c3283a0e2c3d49c", - "IPY_MODEL_0e923a18e47f4ebb8624bc4139e8f420", - "IPY_MODEL_044e638d0f8741b0b696dc006c7b92a9" - ], - "layout": "IPY_MODEL_6c21cf5d09184e87a440a1b3a1bd793b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7e36bbb511df4e9ca9ed8b2cd26ed59b": { + "95ae6715ec3c4ef9b3fc7b20cc78386b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4a333b1bb70f4bbc91863149fe9a0b42", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_550f57b1b6b54818afd734b3b56b4a16", + "layout": "IPY_MODEL_32b0b882c64f444ca6b10422ad5a4dd9", + "placeholder": "​", + "style": "IPY_MODEL_a569eb9a5d5b4715946173b57080716f", "tabbable": null, "tooltip": null, - "value": 2041.0 + "value": "classifier.ckpt: 100%" } }, - "84821290dfc24be6a89f891387851a95": { + "99b76a939b6946918c69bdda4a084bb0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "88b96cdb694c4754aeb3d675442fae18": { + "a0e190ac51e64c75896fe92a6ab8a413": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2658,63 +2626,10 @@ "width": null } }, - "8a1c0bd682ed41139bdb1defce330089": { - "model_module": "@jupyter-widgets/base", + "a3aec95fbaca47888628b4cfc1607bd8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "921abee6837146e1bf2126de072b18a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", @@ -2729,7 +2644,7 @@ "text_color": null } }, - "9a2a2dad449d497b810daeda67511e89": { + "a3dafc711c4d41d2b4b3d300476cb52b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2782,7 +2697,7 @@ "width": null } }, - "9ab9cceda5a94b60b0082f6d7be80afc": { + "a569eb9a5d5b4715946173b57080716f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2800,7 +2715,25 @@ "text_color": null } }, - "9fefd85cb0674e82bdcbee1a677e483a": { + "b6cb51a2809c464eb1c58ab8e31c96a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c05d6a595d7144ee94fa51f5f5133acc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2853,25 +2786,7 @@ "width": null } }, - "a19d0da3aa044a8b96727f9d135f21f7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a71c207e358d412ba1215f18baa7d9b8": { + "c2c972c18e9c4a679bd660253ada535a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2924,30 +2839,25 @@ "width": null } }, - "af0dd324e6804d68af6cfe86a0f1e004": { + "c6521ed9a1a34d1f8999049d2347b649": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4023e6d0f454427ea8446da9ef72db93", - "placeholder": "​", - "style": "IPY_MODEL_a19d0da3aa044a8b96727f9d135f21f7", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b0b1c94f87fc4f7486fbddf838a54839": { + "cf1afa91f1eb40b2aba4dcef746f1a69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2962,79 +2872,107 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1ed76eaa07ee4546bbde2996920e1c36", + "layout": "IPY_MODEL_039e147e0ab94a44ab511f0d44c48272", "placeholder": "​", - "style": "IPY_MODEL_52bb9e053bb348338d6065ae6353e406", + "style": "IPY_MODEL_ec08a02c4bd6416185871e93828421ab", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 795kB/s]" + "value": "embedding_model.ckpt: 100%" } }, - "ba1b32d8c6484f7f9b0b159ee3f3f3b5": { + "d19d6b52b414436485e07ce221daa4dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d4730f8c409d4618a70b0cbe8dc1772b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3f76fc4ca3a047d2a6f54ed6bb146a6d", - "placeholder": "​", - "style": "IPY_MODEL_faaf3895420e4075bd0c2901cc5d505e", + "layout": "IPY_MODEL_a0e190ac51e64c75896fe92a6ab8a413", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fc570a3eada6400ebe54bbc6311f3fdd", "tabbable": null, "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 69.3MB/s]" + "value": 15856877.0 } }, - "ba9d29719c3a4a16913ef49226c3c136": { + "db96495857dd41dca4b5a125ac1bddf1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_88b96cdb694c4754aeb3d675442fae18", - "placeholder": "​", - "style": "IPY_MODEL_921abee6837146e1bf2126de072b18a2", + "layout": "IPY_MODEL_53ba703ebe3f488bafb36ef1b5e1e15c", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d19d6b52b414436485e07ce221daa4dd", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": 2041.0 } }, - "c5405ed40e404f4f91c75a047866a247": { + "e302a4ab69494dea93a7e2a5d582d2e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1f70dfa029cd4b0e9964d17d37bf54b0", + "IPY_MODEL_db96495857dd41dca4b5a125ac1bddf1", + "IPY_MODEL_6e6baef0f88d4ea5ae627f599696f217" + ], + "layout": "IPY_MODEL_85ba5c722da4401683083354487e0f3c", + "tabbable": null, + "tooltip": null } }, - "d4b8c02e63d64bcab486f94bd8916170": { + "e545e8fd06544a3fabc2df6ebd4c231e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3087,7 +3025,41 @@ "width": null } }, - "dfd824a4e35041009c3283a0e2c3d49c": { + "eae4c63447cd47b5ab13fc807579b9ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ec08a02c4bd6416185871e93828421ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f115a412241d4444a70d4927ce8721e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3102,99 +3074,127 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9a2a2dad449d497b810daeda67511e89", + "layout": "IPY_MODEL_2a608f0281de446bb6b9d3e1f0fcc8ef", "placeholder": "​", - "style": "IPY_MODEL_5cfdc8f6140c444698e6723c2e839d4e", + "style": "IPY_MODEL_a3aec95fbaca47888628b4cfc1607bd8", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": " 3.20k/3.20k [00:00<00:00, 853kB/s]" } }, - "ec29300d723440fab045877656c12f24": { + "f1d5848284b945bd8362d354f0edb9a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53c425a26ebf4662857c4853c4b2cc66", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7df1120d6e804074ac9fc4c19ab2fe15", + "tabbable": null, + "tooltip": null, + "value": 128619.0 } }, - "faaf3895420e4075bd0c2901cc5d505e": { + "f4e5840479864b31b4eca15395813b4e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5d1146ca200e41e0b87e8d02b7c0e568", + "placeholder": "​", + "style": "IPY_MODEL_80e543f701e445f38d8d20e7547bce68", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" } }, - "fec55286ccdb407e9cf0bb3ae00227c7": { - "model_module": "@jupyter-widgets/base", + "f6a60d2b426e420d8d25abbca9fdfdaf": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a3dafc711c4d41d2b4b3d300476cb52b", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_eae4c63447cd47b5ab13fc807579b9ba", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 + } + }, + "f84662a791cf48ff8f1369f016420dd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7624a5525cff4e6dbad04046d0d5ce3d", + "IPY_MODEL_f1d5848284b945bd8362d354f0edb9a5", + "IPY_MODEL_4f6932ad623843a29fdfe07056c8c4ed" + ], + "layout": "IPY_MODEL_685e89f25f5d454fbc172a4feb2bd274", + "tabbable": null, + "tooltip": null + } + }, + "fc570a3eada6400ebe54bbc6311f3fdd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb index 30967511e..e9f5b56aa 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb @@ -5,10 +5,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:04.077706Z", - "iopub.status.busy": "2024-05-23T02:39:04.077518Z", - "iopub.status.idle": "2024-05-23T02:39:04.089116Z", - "shell.execute_reply": "2024-05-23T02:39:04.088514Z" + "iopub.execute_input": "2024-05-23T15:12:24.150546Z", + "iopub.status.busy": "2024-05-23T15:12:24.150120Z", + "iopub.status.idle": "2024-05-23T15:12:24.160819Z", + "shell.execute_reply": "2024-05-23T15:12:24.160377Z" } }, "outputs": [], @@ -85,10 +85,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:04.091727Z", - "iopub.status.busy": "2024-05-23T02:39:04.091389Z", - "iopub.status.idle": "2024-05-23T02:39:05.272361Z", - "shell.execute_reply": "2024-05-23T02:39:05.271772Z" + "iopub.execute_input": "2024-05-23T15:12:24.163003Z", + "iopub.status.busy": "2024-05-23T15:12:24.162658Z", + "iopub.status.idle": "2024-05-23T15:12:25.340600Z", + "shell.execute_reply": "2024-05-23T15:12:25.339995Z" } }, "outputs": [], @@ -97,7 +97,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -122,10 +122,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.275092Z", - "iopub.status.busy": "2024-05-23T02:39:05.274623Z", - "iopub.status.idle": "2024-05-23T02:39:05.293263Z", - "shell.execute_reply": "2024-05-23T02:39:05.292779Z" + "iopub.execute_input": "2024-05-23T15:12:25.343043Z", + "iopub.status.busy": "2024-05-23T15:12:25.342752Z", + "iopub.status.idle": "2024-05-23T15:12:25.360826Z", + "shell.execute_reply": "2024-05-23T15:12:25.360279Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.295969Z", - "iopub.status.busy": "2024-05-23T02:39:05.295521Z", - "iopub.status.idle": "2024-05-23T02:39:05.316769Z", - "shell.execute_reply": "2024-05-23T02:39:05.316291Z" + "iopub.execute_input": "2024-05-23T15:12:25.363147Z", + "iopub.status.busy": "2024-05-23T15:12:25.362705Z", + "iopub.status.idle": "2024-05-23T15:12:25.381440Z", + "shell.execute_reply": "2024-05-23T15:12:25.380241Z" } }, "outputs": [], @@ -353,10 +353,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.319123Z", - "iopub.status.busy": "2024-05-23T02:39:05.318926Z", - "iopub.status.idle": "2024-05-23T02:39:05.336367Z", - "shell.execute_reply": "2024-05-23T02:39:05.335908Z" + "iopub.execute_input": "2024-05-23T15:12:25.383401Z", + "iopub.status.busy": "2024-05-23T15:12:25.383143Z", + "iopub.status.idle": "2024-05-23T15:12:25.397293Z", + "shell.execute_reply": "2024-05-23T15:12:25.396833Z" } }, "outputs": [], @@ -369,10 +369,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.338426Z", - "iopub.status.busy": "2024-05-23T02:39:05.338249Z", - "iopub.status.idle": "2024-05-23T02:39:05.353925Z", - "shell.execute_reply": "2024-05-23T02:39:05.353442Z" + "iopub.execute_input": "2024-05-23T15:12:25.399348Z", + "iopub.status.busy": "2024-05-23T15:12:25.398949Z", + "iopub.status.idle": "2024-05-23T15:12:25.411768Z", + "shell.execute_reply": "2024-05-23T15:12:25.411343Z" } }, "outputs": [], @@ -450,10 +450,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.356245Z", - "iopub.status.busy": "2024-05-23T02:39:05.356062Z", - "iopub.status.idle": "2024-05-23T02:39:05.553742Z", - "shell.execute_reply": "2024-05-23T02:39:05.553209Z" + "iopub.execute_input": "2024-05-23T15:12:25.413965Z", + "iopub.status.busy": "2024-05-23T15:12:25.413529Z", + "iopub.status.idle": "2024-05-23T15:12:25.605551Z", + "shell.execute_reply": "2024-05-23T15:12:25.605075Z" } }, "outputs": [], @@ -507,10 +507,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.556220Z", - "iopub.status.busy": "2024-05-23T02:39:05.555789Z", - "iopub.status.idle": "2024-05-23T02:39:05.917556Z", - "shell.execute_reply": "2024-05-23T02:39:05.916951Z" + "iopub.execute_input": "2024-05-23T15:12:25.607849Z", + "iopub.status.busy": "2024-05-23T15:12:25.607567Z", + "iopub.status.idle": "2024-05-23T15:12:25.969203Z", + "shell.execute_reply": "2024-05-23T15:12:25.968623Z" } }, "outputs": [ @@ -553,10 +553,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.919887Z", - "iopub.status.busy": "2024-05-23T02:39:05.919485Z", - "iopub.status.idle": "2024-05-23T02:39:05.959832Z", - "shell.execute_reply": "2024-05-23T02:39:05.959210Z" + "iopub.execute_input": "2024-05-23T15:12:25.971556Z", + "iopub.status.busy": "2024-05-23T15:12:25.971185Z", + "iopub.status.idle": "2024-05-23T15:12:26.009329Z", + "shell.execute_reply": "2024-05-23T15:12:26.008805Z" } }, "outputs": [], @@ -581,10 +581,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:05.962479Z", - "iopub.status.busy": "2024-05-23T02:39:05.962076Z", - "iopub.status.idle": "2024-05-23T02:39:07.618790Z", - "shell.execute_reply": "2024-05-23T02:39:07.618179Z" + "iopub.execute_input": "2024-05-23T15:12:26.011919Z", + "iopub.status.busy": "2024-05-23T15:12:26.011553Z", + "iopub.status.idle": "2024-05-23T15:12:27.692533Z", + "shell.execute_reply": "2024-05-23T15:12:27.691912Z" } }, "outputs": [ @@ -667,10 +667,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:07.621108Z", - "iopub.status.busy": "2024-05-23T02:39:07.620799Z", - "iopub.status.idle": "2024-05-23T02:39:07.650628Z", - "shell.execute_reply": "2024-05-23T02:39:07.650068Z" + "iopub.execute_input": "2024-05-23T15:12:27.694950Z", + "iopub.status.busy": "2024-05-23T15:12:27.694635Z", + "iopub.status.idle": "2024-05-23T15:12:27.728895Z", + "shell.execute_reply": "2024-05-23T15:12:27.728320Z" } }, "outputs": [], @@ -701,10 +701,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:07.652732Z", - "iopub.status.busy": "2024-05-23T02:39:07.652557Z", - "iopub.status.idle": "2024-05-23T02:39:07.686084Z", - "shell.execute_reply": "2024-05-23T02:39:07.685634Z" + "iopub.execute_input": "2024-05-23T15:12:27.731104Z", + "iopub.status.busy": "2024-05-23T15:12:27.730791Z", + "iopub.status.idle": "2024-05-23T15:12:27.762113Z", + "shell.execute_reply": "2024-05-23T15:12:27.761535Z" } }, "outputs": [], @@ -741,17 +741,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:07.688111Z", - "iopub.status.busy": "2024-05-23T02:39:07.687932Z", - "iopub.status.idle": "2024-05-23T02:39:12.788947Z", - "shell.execute_reply": "2024-05-23T02:39:12.788342Z" + "iopub.execute_input": "2024-05-23T15:12:27.764435Z", + "iopub.status.busy": "2024-05-23T15:12:27.764018Z", + "iopub.status.idle": "2024-05-23T15:12:32.868685Z", + "shell.execute_reply": "2024-05-23T15:12:32.868098Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0d07a5744a604bafa1809204bdc20203", + "model_id": "16691eefb97a44b9af842e7a3d10b82b", "version_major": 2, "version_minor": 0 }, @@ -811,17 +811,17 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:12.791134Z", - "iopub.status.busy": "2024-05-23T02:39:12.790742Z", - "iopub.status.idle": "2024-05-23T02:39:18.113675Z", - "shell.execute_reply": "2024-05-23T02:39:18.113096Z" + "iopub.execute_input": "2024-05-23T15:12:32.871153Z", + "iopub.status.busy": "2024-05-23T15:12:32.870821Z", + "iopub.status.idle": "2024-05-23T15:12:38.202836Z", + "shell.execute_reply": "2024-05-23T15:12:38.201810Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d90d91829bf5492c9b60482246243816", + "model_id": "ac618b2d864a40b2a628802392854eab", "version_major": 2, "version_minor": 0 }, @@ -949,10 +949,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.116536Z", - "iopub.status.busy": "2024-05-23T02:39:18.116204Z", - "iopub.status.idle": "2024-05-23T02:39:18.151070Z", - "shell.execute_reply": "2024-05-23T02:39:18.150624Z" + "iopub.execute_input": "2024-05-23T15:12:38.206714Z", + "iopub.status.busy": "2024-05-23T15:12:38.206258Z", + "iopub.status.idle": "2024-05-23T15:12:38.247716Z", + "shell.execute_reply": "2024-05-23T15:12:38.247275Z" } }, "outputs": [ @@ -1185,10 +1185,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.152990Z", - "iopub.status.busy": "2024-05-23T02:39:18.152813Z", - "iopub.status.idle": "2024-05-23T02:39:18.181552Z", - "shell.execute_reply": "2024-05-23T02:39:18.181102Z" + "iopub.execute_input": "2024-05-23T15:12:38.249766Z", + "iopub.status.busy": "2024-05-23T15:12:38.249356Z", + "iopub.status.idle": "2024-05-23T15:12:38.276705Z", + "shell.execute_reply": "2024-05-23T15:12:38.276176Z" } }, "outputs": [ @@ -1258,10 +1258,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.183399Z", - "iopub.status.busy": "2024-05-23T02:39:18.183225Z", - "iopub.status.idle": "2024-05-23T02:39:18.227031Z", - "shell.execute_reply": "2024-05-23T02:39:18.226521Z" + "iopub.execute_input": "2024-05-23T15:12:38.278700Z", + "iopub.status.busy": "2024-05-23T15:12:38.278375Z", + "iopub.status.idle": "2024-05-23T15:12:38.318716Z", + "shell.execute_reply": "2024-05-23T15:12:38.318182Z" } }, "outputs": [ @@ -1314,10 +1314,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.229149Z", - "iopub.status.busy": "2024-05-23T02:39:18.228838Z", - "iopub.status.idle": "2024-05-23T02:39:18.254046Z", - "shell.execute_reply": "2024-05-23T02:39:18.253588Z" + "iopub.execute_input": "2024-05-23T15:12:38.320892Z", + "iopub.status.busy": "2024-05-23T15:12:38.320378Z", + "iopub.status.idle": "2024-05-23T15:12:38.343980Z", + "shell.execute_reply": "2024-05-23T15:12:38.343554Z" } }, "outputs": [], @@ -1331,10 +1331,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.256244Z", - "iopub.status.busy": "2024-05-23T02:39:18.255817Z", - "iopub.status.idle": "2024-05-23T02:39:18.280902Z", - "shell.execute_reply": "2024-05-23T02:39:18.280491Z" + "iopub.execute_input": "2024-05-23T15:12:38.346013Z", + "iopub.status.busy": "2024-05-23T15:12:38.345692Z", + "iopub.status.idle": "2024-05-23T15:12:38.368870Z", + "shell.execute_reply": "2024-05-23T15:12:38.368450Z" } }, "outputs": [], @@ -1363,17 +1363,17 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:18.282929Z", - "iopub.status.busy": "2024-05-23T02:39:18.282532Z", - "iopub.status.idle": "2024-05-23T02:39:28.700224Z", - "shell.execute_reply": "2024-05-23T02:39:28.699661Z" + "iopub.execute_input": "2024-05-23T15:12:38.370823Z", + "iopub.status.busy": "2024-05-23T15:12:38.370500Z", + "iopub.status.idle": "2024-05-23T15:12:48.786078Z", + "shell.execute_reply": "2024-05-23T15:12:48.785492Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "591d1112ee504f8fbca1e8aa1cb78a4d", + "model_id": "63e22013b11d44788247c2e6e6e71364", "version_major": 2, "version_minor": 0 }, @@ -1397,7 +1397,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "878d51762ee44c02a197f0d7e85e6f5d", + "model_id": "58e53eb1d3b74dbabdda9218003d290e", "version_major": 2, "version_minor": 0 }, @@ -1463,10 +1463,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:28.703003Z", - "iopub.status.busy": "2024-05-23T02:39:28.702688Z", - "iopub.status.idle": "2024-05-23T02:39:28.788202Z", - "shell.execute_reply": "2024-05-23T02:39:28.787664Z" + "iopub.execute_input": "2024-05-23T15:12:48.788230Z", + "iopub.status.busy": "2024-05-23T15:12:48.788052Z", + "iopub.status.idle": "2024-05-23T15:12:48.870592Z", + "shell.execute_reply": "2024-05-23T15:12:48.869978Z" } }, "outputs": [ @@ -1546,10 +1546,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:28.790562Z", - "iopub.status.busy": "2024-05-23T02:39:28.790208Z", - "iopub.status.idle": "2024-05-23T02:39:28.819813Z", - "shell.execute_reply": "2024-05-23T02:39:28.819384Z" + "iopub.execute_input": "2024-05-23T15:12:48.872878Z", + "iopub.status.busy": "2024-05-23T15:12:48.872579Z", + "iopub.status.idle": "2024-05-23T15:12:48.902790Z", + "shell.execute_reply": "2024-05-23T15:12:48.902346Z" } }, "outputs": [], @@ -1562,10 +1562,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:28.821838Z", - "iopub.status.busy": "2024-05-23T02:39:28.821664Z", - "iopub.status.idle": "2024-05-23T02:39:28.848168Z", - "shell.execute_reply": "2024-05-23T02:39:28.847614Z" + "iopub.execute_input": "2024-05-23T15:12:48.904859Z", + "iopub.status.busy": "2024-05-23T15:12:48.904523Z", + "iopub.status.idle": "2024-05-23T15:12:48.931284Z", + "shell.execute_reply": "2024-05-23T15:12:48.930855Z" } }, "outputs": [], @@ -1594,17 +1594,17 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:28.850484Z", - "iopub.status.busy": "2024-05-23T02:39:28.850099Z", - "iopub.status.idle": "2024-05-23T02:39:39.317547Z", - "shell.execute_reply": "2024-05-23T02:39:39.316954Z" + "iopub.execute_input": "2024-05-23T15:12:48.933414Z", + "iopub.status.busy": "2024-05-23T15:12:48.933089Z", + "iopub.status.idle": "2024-05-23T15:12:59.401243Z", + "shell.execute_reply": "2024-05-23T15:12:59.400682Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1ed7617f879847979167315d314a31ed", + "model_id": "7b47b3587b294c218154475b1bd729d3", "version_major": 2, "version_minor": 0 }, @@ -1658,7 +1658,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd5a2b417e3344658e8085ccaac7f030", + "model_id": "690b859c431e478683cfa895855ea449", "version_major": 2, "version_minor": 0 }, @@ -1776,10 +1776,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:39.320522Z", - "iopub.status.busy": "2024-05-23T02:39:39.320126Z", - "iopub.status.idle": "2024-05-23T02:39:39.350560Z", - "shell.execute_reply": "2024-05-23T02:39:39.350014Z" + "iopub.execute_input": "2024-05-23T15:12:59.404181Z", + "iopub.status.busy": "2024-05-23T15:12:59.403640Z", + "iopub.status.idle": "2024-05-23T15:12:59.432742Z", + "shell.execute_reply": "2024-05-23T15:12:59.432290Z" } }, "outputs": [ @@ -1863,7 +1863,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03b18274f661420f8c77922f37e66e89": { + "003cda49480d4fd5aa4f036f5db5d6e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_19a30519c45d41b799b40995f920775b", + "placeholder": "​", + "style": "IPY_MODEL_5c9b2a8175b940b095b744707bcb01dd", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" + } + }, + "01553c4cc5614aeb8415e2eb5ce5b8ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1916,7 +1939,7 @@ "width": null } }, - "06154637606042bf9873f237ff502915": { + "023c7da18e424c3883eca2e16626ce7f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1969,7 +1992,7 @@ "width": null } }, - "074d5ba8729d4650a31f37a91177d875": { + "05e15a781e20434888b29d4ed732f642": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2022,60 +2045,74 @@ "width": null } }, - "07d97bcdbef84eca90f0d1a219529cae": { - "model_module": "@jupyter-widgets/base", + "090b1de60819463abc3ad25011937af5": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0934764f32164e9bbd42e10008a5d7dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c205a5c270d94b08b455596bb5a3f641", + "placeholder": "​", + "style": "IPY_MODEL_84e85818360e404da06e1195aec4637e", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.76it/s]" + } + }, + "09d5e7bc9eab49e9b97c5cdba0a1578b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_931391719e964afa8404ae29bcf23864", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d26b3b25dc8646deb7f7cbf24443577d", + "tabbable": null, + "tooltip": null, + "value": 50.0 } }, - "0884bc9eaac549769005e300e318f10c": { + "127fec0dcb96469c9c53edbd54936769": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2128,7 +2165,31 @@ "width": null } }, - "0ac52be9565c4613982bc1a4b0a48566": { + "16691eefb97a44b9af842e7a3d10b82b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cda5c6f6caeb4f658082ad1c8880e076", + "IPY_MODEL_6849590b787f421283202c404717945e", + "IPY_MODEL_be0fc8f89d6a4b77a085888eb3b175d5" + ], + "layout": "IPY_MODEL_05e15a781e20434888b29d4ed732f642", + "tabbable": null, + "tooltip": null + } + }, + "19a30519c45d41b799b40995f920775b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2181,31 +2242,23 @@ "width": null } }, - "0d07a5744a604bafa1809204bdc20203": { + "2469412d11404237880733a58e502569": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4ab8396f37f84f6885623cb4841a537b", - "IPY_MODEL_5e0a802df05845e288a3d00ebf2f86c5", - "IPY_MODEL_13ea1015b354426c9e7b1813029d5daf" - ], - "layout": "IPY_MODEL_e69c7448858f499d9a7ce61f5d5619a1", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "123095cfc97540d99ccd425162e48d35": { + "24d4290400d543cca86065a4fbc5b9ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2223,79 +2276,7 @@ "text_color": null } }, - "13ea1015b354426c9e7b1813029d5daf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b5d301e1df9043edb84538d6d758f84c", - "placeholder": "​", - "style": "IPY_MODEL_d5bfd334cceb49e0a29c76813e3c7254", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.87it/s]" - } - }, - "160e936612184dc48ee2bbea4b87b707": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9622db9ae0ff4ddfbb7e447101eb09a7", - "placeholder": "​", - "style": "IPY_MODEL_123095cfc97540d99ccd425162e48d35", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "1756a59ac4b24fe28a98c60c0e5694fd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0ac52be9565c4613982bc1a4b0a48566", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2ea0818dd4f54c8dbe62280b5040b66d", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "185746064a794b53a87d9dcf95c7a98c": { + "3283aeca9a6a4cbcb0da1eb270e3d476": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,7 +2329,7 @@ "width": null } }, - "18e7a896c7664fedb644e826ebfdd979": { + "349d6ee3fe994a77ad729d53b7f41ded": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2401,57 +2382,41 @@ "width": null } }, - "1d8add519b1047559278354180f802a7": { + "36a9b636abf14a37a602e2880614146a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_abf94e3164e54659bf335bec45de1860", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dccc93e1367c44848c20611567c11a51", - "tabbable": null, - "tooltip": null, - "value": 7.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1ed7617f879847979167315d314a31ed": { + "3b1bb5bc9e73429d9d789f44a451bae2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_991b6ae4d3d64547be812c74de806b08", - "IPY_MODEL_9225b218abe04efabe87ff1344d4bebf", - "IPY_MODEL_d9f84f64929449d59a8413396cda8b5b" - ], - "layout": "IPY_MODEL_eafff201bea84307b2c21e20e5e7eae1", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1fc709fb3b8b437ca4074a25a5e29d50": { + "3b8be4c541aa442592db2470b74e90ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2466,41 +2431,18 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29bba12409a9455d9afd53f97dcbc512", + "layout": "IPY_MODEL_67aee0d1bdc241de942a18d250abde0d", "placeholder": "​", - "style": "IPY_MODEL_a3f260b3c29f43bd886d7786cef61138", + "style": "IPY_MODEL_090b1de60819463abc3ad25011937af5", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" + "value": " 50/50 [00:05<00:00,  9.80it/s]" } }, - "2712050a0a524d8b961e95c22812dd58": { - "model_module": "@jupyter-widgets/controls", + "3f135927f582409e967b53cb2f1d2042": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5881fb1feed64df6a382434c6565d34b", - "placeholder": "​", - "style": "IPY_MODEL_a0dcb862fcfd4e87ae8637df9698f0a2", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.79it/s]" - } - }, - "29bba12409a9455d9afd53f97dcbc512": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -2550,23 +2492,30 @@ "width": null } }, - "2ea0818dd4f54c8dbe62280b5040b66d": { + "432eb75da12a42acb337a242d19442d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_daec9da029354970886c65e48fae7895", + "placeholder": "​", + "style": "IPY_MODEL_a5ebf02f6559407a9eaca07852b1c427", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.32it/s]" } }, - "340231fb94f24359aff70e3dc8fe9936": { + "454fcdd9458e47bfa8fa5a44c206fcb3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2619,48 +2568,33 @@ "width": null } }, - "3682290131844fff9c26b8534116467b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4ab8396f37f84f6885623cb4841a537b": { + "482868b24e2444cab5ac1f0aa9f96ffc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_06154637606042bf9873f237ff502915", - "placeholder": "​", - "style": "IPY_MODEL_557dc092c5b747808e31117c9897da09", + "layout": "IPY_MODEL_023c7da18e424c3883eca2e16626ce7f", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_aa424e7743234229a020e325f31202fb", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "value": 7.0 } }, - "4b65ee22f0cc4308a11272e7b277ea0a": { + "4dbc5fcd543f43feb30c155bf0f058e1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2713,43 +2647,7 @@ "width": null } }, - "557dc092c5b747808e31117c9897da09": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5653b0590454431aa4e9e9a4a1dc0d7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5881fb1feed64df6a382434c6565d34b": { + "5409d2f49dca4cbeb4f317d8aa46ccf8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2802,25 +2700,30 @@ "width": null } }, - "591374450f744f378405fc409f1f5f68": { + "54dd94e9fb8b40d99e3461d2b59a9fea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9cb24280dc444e898cf722661c9629ce", + "placeholder": "​", + "style": "IPY_MODEL_24d4290400d543cca86065a4fbc5b9ba", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "591d1112ee504f8fbca1e8aa1cb78a4d": { + "58e53eb1d3b74dbabdda9218003d290e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2835,83 +2738,76 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_5c1c78dda42b44019e7e06cf559a30e5", - "IPY_MODEL_1756a59ac4b24fe28a98c60c0e5694fd", - "IPY_MODEL_2712050a0a524d8b961e95c22812dd58" + "IPY_MODEL_ea87e8e0c79643a999c896710a7b8792", + "IPY_MODEL_878599986c3e434797dc3d8347ec1b4a", + "IPY_MODEL_cd952c51c4cf4754ac8dbf022ed5da35" ], - "layout": "IPY_MODEL_7de68b56898649b2908052b9225b4492", + "layout": "IPY_MODEL_3283aeca9a6a4cbcb0da1eb270e3d476", "tabbable": null, "tooltip": null } }, - "5c1c78dda42b44019e7e06cf559a30e5": { + "5c9b2a8175b940b095b744707bcb01dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_03b18274f661420f8c77922f37e66e89", - "placeholder": "​", - "style": "IPY_MODEL_f20f1c117b26427dad6b44d574447196", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "5e0a802df05845e288a3d00ebf2f86c5": { + "6263cf40fe84408a83ea1f274ebc1e60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0884bc9eaac549769005e300e318f10c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ce4daad5cb3f4c749a10466f837cc2b5", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "60b217c8dda04bc0adf981ed612055a2": { + "63e22013b11d44788247c2e6e6e71364": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e72581f3c51a4ebbbdf921e555ed5e2e", + "IPY_MODEL_09d5e7bc9eab49e9b97c5cdba0a1578b", + "IPY_MODEL_3b8be4c541aa442592db2470b74e90ad" + ], + "layout": "IPY_MODEL_3f135927f582409e967b53cb2f1d2042", + "tabbable": null, + "tooltip": null } }, - "73cd858dafe241f19f98c1984b156ee7": { + "67aee0d1bdc241de942a18d250abde0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2964,7 +2860,80 @@ "width": null } }, - "7de68b56898649b2908052b9225b4492": { + "6849590b787f421283202c404717945e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5409d2f49dca4cbeb4f317d8aa46ccf8", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_91311a9db9144b9aa10e558e189cd4a0", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "690b859c431e478683cfa895855ea449": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_77ab1d685ee248379b335bb91dece74f", + "IPY_MODEL_a31f060f5f424533905faad58462bb52", + "IPY_MODEL_003cda49480d4fd5aa4f036f5db5d6e9" + ], + "layout": "IPY_MODEL_b4b2cb2adc6a4f9c9d99394dcdc7cebe", + "tabbable": null, + "tooltip": null + } + }, + "77ab1d685ee248379b335bb91dece74f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_01553c4cc5614aeb8415e2eb5ce5b8ed", + "placeholder": "​", + "style": "IPY_MODEL_3b1bb5bc9e73429d9d789f44a451bae2", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "7acf9ef20737443e9b8dcbfc21a46927": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3017,24 +2986,76 @@ "width": null } }, - "7e21f8915af341958d018beb5b76b4e8": { + "7b47b3587b294c218154475b1bd729d3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_54dd94e9fb8b40d99e3461d2b59a9fea", + "IPY_MODEL_f61ae27fb96c4ac794367539d32aaee6", + "IPY_MODEL_0934764f32164e9bbd42e10008a5d7dc" + ], + "layout": "IPY_MODEL_c2c6cc0c4b9d4f02b9547d22829dc155", + "tabbable": null, + "tooltip": null } }, - "7e3d8b6ee9fe4768a1943171af85f718": { - "model_module": "@jupyter-widgets/base", + "84e85818360e404da06e1195aec4637e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "878599986c3e434797dc3d8347ec1b4a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e3e147ed2d574cfd9e0e8c16abc3ee75", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_36a9b636abf14a37a602e2880614146a", + "tabbable": null, + "tooltip": null, + "value": 7.0 + } + }, + "8b926d8b87db4b57bd13370ea58cf1f6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -3086,7 +3107,41 @@ "width": null } }, - "806b657a868148a2bb70659525ef3b3a": { + "8ed5dece7b584ef88c91fe936768486d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "91311a9db9144b9aa10e558e189cd4a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "931391719e964afa8404ae29bcf23864": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3139,7 +3194,7 @@ "width": null } }, - "81ee37e85e9d46a1a11907b98a985e33": { + "9cb24280dc444e898cf722661c9629ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3192,96 +3247,60 @@ "width": null } }, - "878d51762ee44c02a197f0d7e85e6f5d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1fc709fb3b8b437ca4074a25a5e29d50", - "IPY_MODEL_ce86e00e95104336bb5757d4092e9a86", - "IPY_MODEL_b24e37b6937641678a55b91cb428e3cc" - ], - "layout": "IPY_MODEL_07d97bcdbef84eca90f0d1a219529cae", - "tabbable": null, - "tooltip": null - } - }, - "8fa859fc795b435a928a84bfbd774f4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_340231fb94f24359aff70e3dc8fe9936", - "placeholder": "​", - "style": "IPY_MODEL_591374450f744f378405fc409f1f5f68", - "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" - } - }, - "903500b82ec5453b82c19b72f4b23c24": { - "model_module": "@jupyter-widgets/controls", + "9ee5ebc7814c455baf26064aa901a494": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9225b218abe04efabe87ff1344d4bebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b65ee22f0cc4308a11272e7b277ea0a", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_deb03982d40d402aa059872c0ad125d7", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9622db9ae0ff4ddfbb7e447101eb09a7": { + "a22782d28f2a480a8928d301da6604f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3334,30 +3353,33 @@ "width": null } }, - "991b6ae4d3d64547be812c74de806b08": { + "a31f060f5f424533905faad58462bb52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b9856c348a744a73b45bafa55254a209", - "placeholder": "​", - "style": "IPY_MODEL_adff3705e80e433ebd405b9569ed7e04", + "layout": "IPY_MODEL_349d6ee3fe994a77ad729d53b7f41ded", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ddf5a0d223314a2ea3a85f4929b8a021", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "value": 7.0 } }, - "a0dcb862fcfd4e87ae8637df9698f0a2": { + "a405194e30d148a08eb08102914cbfba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3375,7 +3397,7 @@ "text_color": null } }, - "a3f260b3c29f43bd886d7786cef61138": { + "a5ebf02f6559407a9eaca07852b1c427": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3393,7 +3415,7 @@ "text_color": null } }, - "abf94e3164e54659bf335bec45de1860": { + "a8c944d022ba4ffebddcb245c6c7d653": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3446,48 +3468,47 @@ "width": null } }, - "adff3705e80e433ebd405b9569ed7e04": { + "aa424e7743234229a020e325f31202fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "b24e37b6937641678a55b91cb428e3cc": { + "ac618b2d864a40b2a628802392854eab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_074d5ba8729d4650a31f37a91177d875", - "placeholder": "​", - "style": "IPY_MODEL_3682290131844fff9c26b8534116467b", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e840529660dd449d97ecde263592b8e3", + "IPY_MODEL_482868b24e2444cab5ac1f0aa9f96ffc", + "IPY_MODEL_432eb75da12a42acb337a242d19442d8" + ], + "layout": "IPY_MODEL_a8c944d022ba4ffebddcb245c6c7d653", "tabbable": null, - "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "tooltip": null } }, - "b5d301e1df9043edb84538d6d758f84c": { + "b4b2cb2adc6a4f9c9d99394dcdc7cebe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3540,86 +3561,25 @@ "width": null } }, - "b9856c348a744a73b45bafa55254a209": { - "model_module": "@jupyter-widgets/base", + "b661eba4067d4e5ab460d8f26c8210e7": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bb5c5666822a49cca7386197ba8d389f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_185746064a794b53a87d9dcf95c7a98c", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_903500b82ec5453b82c19b72f4b23c24", - "tabbable": null, - "tooltip": null, - "value": 7.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c6fc3e5a3d4c4a5f8fb233c714097062": { + "be0fc8f89d6a4b77a085888eb3b175d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3634,99 +3594,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_73cd858dafe241f19f98c1984b156ee7", + "layout": "IPY_MODEL_7acf9ef20737443e9b8dcbfc21a46927", "placeholder": "​", - "style": "IPY_MODEL_5653b0590454431aa4e9e9a4a1dc0d7b", + "style": "IPY_MODEL_c590be36d4954ecaa3b2bbc36e15f9cf", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.32it/s]" - } - }, - "ce4daad5cb3f4c749a10466f837cc2b5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 50/50 [00:05<00:00,  9.86it/s]" } }, - "ce86e00e95104336bb5757d4092e9a86": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d97417a9e4c243d1abefcada85c778db", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e21f8915af341958d018beb5b76b4e8", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "d5bfd334cceb49e0a29c76813e3c7254": { - "model_module": "@jupyter-widgets/controls", + "c205a5c270d94b08b455596bb5a3f641": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "d90d91829bf5492c9b60482246243816": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_160e936612184dc48ee2bbea4b87b707", - "IPY_MODEL_1d8add519b1047559278354180f802a7", - "IPY_MODEL_8fa859fc795b435a928a84bfbd774f4c" - ], - "layout": "IPY_MODEL_18e7a896c7664fedb644e826ebfdd979", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d97417a9e4c243d1abefcada85c778db": { + "c2c6cc0c4b9d4f02b9547d22829dc155": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3779,30 +3708,43 @@ "width": null } }, - "d9f84f64929449d59a8413396cda8b5b": { + "c590be36d4954ecaa3b2bbc36e15f9cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7e3d8b6ee9fe4768a1943171af85f718", - "placeholder": "​", - "style": "IPY_MODEL_fbfabc656ebf4aa6acffacafdbcae7e1", - "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.77it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "cceeb03436854c30bb382fe0c100c2bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "da461e619891455faa9a8c2c15e7c307": { + "cd952c51c4cf4754ac8dbf022ed5da35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3817,55 +3759,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_81ee37e85e9d46a1a11907b98a985e33", + "layout": "IPY_MODEL_8b926d8b87db4b57bd13370ea58cf1f6", "placeholder": "​", - "style": "IPY_MODEL_60b217c8dda04bc0adf981ed612055a2", + "style": "IPY_MODEL_b661eba4067d4e5ab460d8f26c8210e7", "tabbable": null, "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "dccc93e1367c44848c20611567c11a51": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": " 7/7 [00:05<00:00,  1.33it/s]" } }, - "dd5a2b417e3344658e8085ccaac7f030": { + "cda5c6f6caeb4f658082ad1c8880e076": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_da461e619891455faa9a8c2c15e7c307", - "IPY_MODEL_bb5c5666822a49cca7386197ba8d389f", - "IPY_MODEL_c6fc3e5a3d4c4a5f8fb233c714097062" - ], - "layout": "IPY_MODEL_806b657a868148a2bb70659525ef3b3a", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_127fec0dcb96469c9c53edbd54936769", + "placeholder": "​", + "style": "IPY_MODEL_6263cf40fe84408a83ea1f274ebc1e60", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "deb03982d40d402aa059872c0ad125d7": { + "d26b3b25dc8646deb7f7cbf24443577d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -3881,7 +3806,7 @@ "description_width": "" } }, - "e69c7448858f499d9a7ce61f5d5619a1": { + "daec9da029354970886c65e48fae7895": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3934,7 +3859,23 @@ "width": null } }, - "eafff201bea84307b2c21e20e5e7eae1": { + "ddf5a0d223314a2ea3a85f4929b8a021": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e3e147ed2d574cfd9e0e8c16abc3ee75": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3987,40 +3928,99 @@ "width": null } }, - "f20f1c117b26427dad6b44d574447196": { + "e72581f3c51a4ebbbdf921e555ed5e2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dbc5fcd543f43feb30c155bf0f058e1", + "placeholder": "​", + "style": "IPY_MODEL_a405194e30d148a08eb08102914cbfba", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" } }, - "fbfabc656ebf4aa6acffacafdbcae7e1": { + "e840529660dd449d97ecde263592b8e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a22782d28f2a480a8928d301da6604f4", + "placeholder": "​", + "style": "IPY_MODEL_cceeb03436854c30bb382fe0c100c2bd", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "ea87e8e0c79643a999c896710a7b8792": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_454fcdd9458e47bfa8fa5a44c206fcb3", + "placeholder": "​", + "style": "IPY_MODEL_8ed5dece7b584ef88c91fe936768486d", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "f61ae27fb96c4ac794367539d32aaee6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9ee5ebc7814c455baf26064aa901a494", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2469412d11404237880733a58e502569", + "tabbable": null, + "tooltip": null, + "value": 50.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index c93d8b93b..8859494f0 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:41.806947Z", - "iopub.status.busy": "2024-05-23T02:39:41.806465Z", - "iopub.status.idle": "2024-05-23T02:39:42.975009Z", - "shell.execute_reply": "2024-05-23T02:39:42.974459Z" + "iopub.execute_input": "2024-05-23T15:13:01.982363Z", + "iopub.status.busy": "2024-05-23T15:13:01.982194Z", + "iopub.status.idle": "2024-05-23T15:13:03.125623Z", + "shell.execute_reply": "2024-05-23T15:13:03.125077Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:42.977401Z", - "iopub.status.busy": "2024-05-23T02:39:42.977075Z", - "iopub.status.idle": "2024-05-23T02:39:42.980161Z", - "shell.execute_reply": "2024-05-23T02:39:42.979640Z" + "iopub.execute_input": "2024-05-23T15:13:03.128117Z", + "iopub.status.busy": "2024-05-23T15:13:03.127711Z", + "iopub.status.idle": "2024-05-23T15:13:03.130770Z", + "shell.execute_reply": "2024-05-23T15:13:03.130224Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:42.982303Z", - "iopub.status.busy": "2024-05-23T02:39:42.981981Z", - "iopub.status.idle": "2024-05-23T02:39:42.991501Z", - "shell.execute_reply": "2024-05-23T02:39:42.990923Z" + "iopub.execute_input": "2024-05-23T15:13:03.133141Z", + "iopub.status.busy": "2024-05-23T15:13:03.132751Z", + "iopub.status.idle": "2024-05-23T15:13:03.141674Z", + "shell.execute_reply": "2024-05-23T15:13:03.141124Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:42.993623Z", - "iopub.status.busy": "2024-05-23T02:39:42.993312Z", - "iopub.status.idle": "2024-05-23T02:39:42.998648Z", - "shell.execute_reply": "2024-05-23T02:39:42.998097Z" + "iopub.execute_input": "2024-05-23T15:13:03.143781Z", + "iopub.status.busy": "2024-05-23T15:13:03.143608Z", + "iopub.status.idle": "2024-05-23T15:13:03.148101Z", + "shell.execute_reply": "2024-05-23T15:13:03.147682Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:43.001035Z", - "iopub.status.busy": "2024-05-23T02:39:43.000695Z", - "iopub.status.idle": "2024-05-23T02:39:43.186253Z", - "shell.execute_reply": "2024-05-23T02:39:43.185685Z" + "iopub.execute_input": "2024-05-23T15:13:03.150235Z", + "iopub.status.busy": "2024-05-23T15:13:03.149900Z", + "iopub.status.idle": "2024-05-23T15:13:03.331294Z", + "shell.execute_reply": "2024-05-23T15:13:03.330683Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:43.188635Z", - "iopub.status.busy": "2024-05-23T02:39:43.188294Z", - "iopub.status.idle": "2024-05-23T02:39:43.565644Z", - "shell.execute_reply": "2024-05-23T02:39:43.565074Z" + "iopub.execute_input": "2024-05-23T15:13:03.333781Z", + "iopub.status.busy": "2024-05-23T15:13:03.333475Z", + "iopub.status.idle": "2024-05-23T15:13:03.700850Z", + "shell.execute_reply": "2024-05-23T15:13:03.700262Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:43.567864Z", - "iopub.status.busy": "2024-05-23T02:39:43.567675Z", - "iopub.status.idle": "2024-05-23T02:39:43.591163Z", - "shell.execute_reply": "2024-05-23T02:39:43.590727Z" + "iopub.execute_input": "2024-05-23T15:13:03.703132Z", + "iopub.status.busy": "2024-05-23T15:13:03.702776Z", + "iopub.status.idle": "2024-05-23T15:13:03.725692Z", + "shell.execute_reply": "2024-05-23T15:13:03.725125Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:43.593178Z", - "iopub.status.busy": "2024-05-23T02:39:43.592996Z", - "iopub.status.idle": "2024-05-23T02:39:43.604204Z", - "shell.execute_reply": "2024-05-23T02:39:43.603756Z" + "iopub.execute_input": "2024-05-23T15:13:03.727836Z", + "iopub.status.busy": "2024-05-23T15:13:03.727649Z", + "iopub.status.idle": "2024-05-23T15:13:03.738581Z", + "shell.execute_reply": "2024-05-23T15:13:03.738117Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:43.606174Z", - "iopub.status.busy": "2024-05-23T02:39:43.605997Z", - "iopub.status.idle": "2024-05-23T02:39:45.233822Z", - "shell.execute_reply": "2024-05-23T02:39:45.233184Z" + "iopub.execute_input": "2024-05-23T15:13:03.740471Z", + "iopub.status.busy": "2024-05-23T15:13:03.740299Z", + "iopub.status.idle": "2024-05-23T15:13:05.338002Z", + "shell.execute_reply": "2024-05-23T15:13:05.337455Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.236498Z", - "iopub.status.busy": "2024-05-23T02:39:45.235902Z", - "iopub.status.idle": "2024-05-23T02:39:45.259241Z", - "shell.execute_reply": "2024-05-23T02:39:45.258639Z" + "iopub.execute_input": "2024-05-23T15:13:05.340438Z", + "iopub.status.busy": "2024-05-23T15:13:05.339995Z", + "iopub.status.idle": "2024-05-23T15:13:05.361380Z", + "shell.execute_reply": "2024-05-23T15:13:05.360935Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.261636Z", - "iopub.status.busy": "2024-05-23T02:39:45.261204Z", - "iopub.status.idle": "2024-05-23T02:39:45.283241Z", - "shell.execute_reply": "2024-05-23T02:39:45.282603Z" + "iopub.execute_input": "2024-05-23T15:13:05.363324Z", + "iopub.status.busy": "2024-05-23T15:13:05.363151Z", + "iopub.status.idle": "2024-05-23T15:13:05.382736Z", + "shell.execute_reply": "2024-05-23T15:13:05.382085Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.285372Z", - "iopub.status.busy": "2024-05-23T02:39:45.285175Z", - "iopub.status.idle": "2024-05-23T02:39:45.299592Z", - "shell.execute_reply": "2024-05-23T02:39:45.299021Z" + "iopub.execute_input": "2024-05-23T15:13:05.384962Z", + "iopub.status.busy": "2024-05-23T15:13:05.384535Z", + "iopub.status.idle": "2024-05-23T15:13:05.399326Z", + "shell.execute_reply": "2024-05-23T15:13:05.398755Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.301578Z", - "iopub.status.busy": "2024-05-23T02:39:45.301405Z", - "iopub.status.idle": "2024-05-23T02:39:45.320307Z", - "shell.execute_reply": "2024-05-23T02:39:45.319772Z" + "iopub.execute_input": "2024-05-23T15:13:05.401526Z", + "iopub.status.busy": "2024-05-23T15:13:05.401345Z", + "iopub.status.idle": "2024-05-23T15:13:05.422119Z", + "shell.execute_reply": "2024-05-23T15:13:05.421562Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "461629498ae84286bba8ad4bdbc0d062", + "model_id": "b9c5b31081b541bebfd320d4af6df565", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.322340Z", - "iopub.status.busy": "2024-05-23T02:39:45.322043Z", - "iopub.status.idle": "2024-05-23T02:39:45.336536Z", - "shell.execute_reply": "2024-05-23T02:39:45.336085Z" + "iopub.execute_input": "2024-05-23T15:13:05.424552Z", + "iopub.status.busy": "2024-05-23T15:13:05.424228Z", + "iopub.status.idle": "2024-05-23T15:13:05.438967Z", + "shell.execute_reply": "2024-05-23T15:13:05.438497Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.338674Z", - "iopub.status.busy": "2024-05-23T02:39:45.338286Z", - "iopub.status.idle": "2024-05-23T02:39:45.343931Z", - "shell.execute_reply": "2024-05-23T02:39:45.343509Z" + "iopub.execute_input": "2024-05-23T15:13:05.440908Z", + "iopub.status.busy": "2024-05-23T15:13:05.440649Z", + "iopub.status.idle": "2024-05-23T15:13:05.446601Z", + "shell.execute_reply": "2024-05-23T15:13:05.446039Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:45.345896Z", - "iopub.status.busy": "2024-05-23T02:39:45.345598Z", - "iopub.status.idle": "2024-05-23T02:39:45.363619Z", - "shell.execute_reply": "2024-05-23T02:39:45.363065Z" + "iopub.execute_input": "2024-05-23T15:13:05.448807Z", + "iopub.status.busy": "2024-05-23T15:13:05.448375Z", + "iopub.status.idle": "2024-05-23T15:13:05.465730Z", + "shell.execute_reply": "2024-05-23T15:13:05.465285Z" } }, "outputs": [ @@ -1431,31 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "461629498ae84286bba8ad4bdbc0d062": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8785bc955d5347d1bc38f67e9f02c828", - "IPY_MODEL_7ceba6a9ff234fbea09df2ca40cd4ac3", - "IPY_MODEL_8af834180c3444c59c627ca469f36bec" - ], - "layout": "IPY_MODEL_af85ac3b5243481ea0ae82114ca05b76", - "tabbable": null, - "tooltip": null - } - }, - "476b4641b4084c1387103f0e5660580f": { + "11d9ffa3e26545198ac985101adedb46": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1508,25 +1484,7 @@ "width": null } }, - "54ceefbed56f47acb2e1c837c8c4d5fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6460d7d7124b414eaf7a36d031c1b24d": { + "1a73aa9dfb644777affa0318eca169ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1579,95 +1537,43 @@ "width": null } }, - "7ceba6a9ff234fbea09df2ca40cd4ac3": { + "20cd3afc55be420b9159cbb92ed1063b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a477c45ded8645078972cf6f21af2f5e", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_9b7a90ba491d416cb4b0984b29382308", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "8785bc955d5347d1bc38f67e9f02c828": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6460d7d7124b414eaf7a36d031c1b24d", - "placeholder": "​", - "style": "IPY_MODEL_54ceefbed56f47acb2e1c837c8c4d5fa", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "8af834180c3444c59c627ca469f36bec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_476b4641b4084c1387103f0e5660580f", - "placeholder": "​", - "style": "IPY_MODEL_ca4f8b6fd53648f5a198c383f976662a", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13547.56 examples/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "9b7a90ba491d416cb4b0984b29382308": { + "2f295174d6fe4ef28a687af3f4612ef6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a477c45ded8645078972cf6f21af2f5e": { + "3ef4c5f05301418f8dea9f34b84003ab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1720,7 +1626,7 @@ "width": null } }, - "af85ac3b5243481ea0ae82114ca05b76": { + "6042ee3853834a3f98a77b4348678980": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1773,22 +1679,116 @@ "width": null } }, - "ca4f8b6fd53648f5a198c383f976662a": { + "7fc223e421df4b63a990b1b51ad59e4a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6042ee3853834a3f98a77b4348678980", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fd4dc630750649d5a99e28de873e2e58", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } + }, + "b40e8b57c83c4b61a0e83f26f899863c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_11d9ffa3e26545198ac985101adedb46", + "placeholder": "​", + "style": "IPY_MODEL_20cd3afc55be420b9159cbb92ed1063b", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "b90cf3f03d374af08861ec5b4a4965fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3ef4c5f05301418f8dea9f34b84003ab", + "placeholder": "​", + "style": "IPY_MODEL_2f295174d6fe4ef28a687af3f4612ef6", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 11909.48 examples/s]" + } + }, + "b9c5b31081b541bebfd320d4af6df565": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b40e8b57c83c4b61a0e83f26f899863c", + "IPY_MODEL_7fc223e421df4b63a990b1b51ad59e4a", + "IPY_MODEL_b90cf3f03d374af08861ec5b4a4965fc" + ], + "layout": "IPY_MODEL_1a73aa9dfb644777affa0318eca169ca", + "tabbable": null, + "tooltip": null + } + }, + "fd4dc630750649d5a99e28de873e2e58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index ced5f3057..9d678dc59 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:47.976563Z", - "iopub.status.busy": "2024-05-23T02:39:47.976094Z", - "iopub.status.idle": "2024-05-23T02:39:49.150336Z", - "shell.execute_reply": "2024-05-23T02:39:49.149777Z" + "iopub.execute_input": "2024-05-23T15:13:08.011863Z", + "iopub.status.busy": "2024-05-23T15:13:08.011451Z", + "iopub.status.idle": "2024-05-23T15:13:09.157928Z", + "shell.execute_reply": "2024-05-23T15:13:09.157381Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.152989Z", - "iopub.status.busy": "2024-05-23T02:39:49.152484Z", - "iopub.status.idle": "2024-05-23T02:39:49.155660Z", - "shell.execute_reply": "2024-05-23T02:39:49.155117Z" + "iopub.execute_input": "2024-05-23T15:13:09.160433Z", + "iopub.status.busy": "2024-05-23T15:13:09.160019Z", + "iopub.status.idle": "2024-05-23T15:13:09.163038Z", + "shell.execute_reply": "2024-05-23T15:13:09.162585Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.157937Z", - "iopub.status.busy": "2024-05-23T02:39:49.157497Z", - "iopub.status.idle": "2024-05-23T02:39:49.167009Z", - "shell.execute_reply": "2024-05-23T02:39:49.166474Z" + "iopub.execute_input": "2024-05-23T15:13:09.165342Z", + "iopub.status.busy": "2024-05-23T15:13:09.164920Z", + "iopub.status.idle": "2024-05-23T15:13:09.174292Z", + "shell.execute_reply": "2024-05-23T15:13:09.173734Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.168994Z", - "iopub.status.busy": "2024-05-23T02:39:49.168672Z", - "iopub.status.idle": "2024-05-23T02:39:49.173139Z", - "shell.execute_reply": "2024-05-23T02:39:49.172727Z" + "iopub.execute_input": "2024-05-23T15:13:09.176442Z", + "iopub.status.busy": "2024-05-23T15:13:09.176115Z", + "iopub.status.idle": "2024-05-23T15:13:09.180706Z", + "shell.execute_reply": "2024-05-23T15:13:09.180245Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.175281Z", - "iopub.status.busy": "2024-05-23T02:39:49.174953Z", - "iopub.status.idle": "2024-05-23T02:39:49.357764Z", - "shell.execute_reply": "2024-05-23T02:39:49.357137Z" + "iopub.execute_input": "2024-05-23T15:13:09.182843Z", + "iopub.status.busy": "2024-05-23T15:13:09.182524Z", + "iopub.status.idle": "2024-05-23T15:13:09.365121Z", + "shell.execute_reply": "2024-05-23T15:13:09.364638Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.360174Z", - "iopub.status.busy": "2024-05-23T02:39:49.359984Z", - "iopub.status.idle": "2024-05-23T02:39:49.728780Z", - "shell.execute_reply": "2024-05-23T02:39:49.728202Z" + "iopub.execute_input": "2024-05-23T15:13:09.367594Z", + "iopub.status.busy": "2024-05-23T15:13:09.367314Z", + "iopub.status.idle": "2024-05-23T15:13:09.737215Z", + "shell.execute_reply": "2024-05-23T15:13:09.736617Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.731101Z", - "iopub.status.busy": "2024-05-23T02:39:49.730816Z", - "iopub.status.idle": "2024-05-23T02:39:49.733671Z", - "shell.execute_reply": "2024-05-23T02:39:49.733115Z" + "iopub.execute_input": "2024-05-23T15:13:09.739491Z", + "iopub.status.busy": "2024-05-23T15:13:09.739138Z", + "iopub.status.idle": "2024-05-23T15:13:09.741973Z", + "shell.execute_reply": "2024-05-23T15:13:09.741505Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.735621Z", - "iopub.status.busy": "2024-05-23T02:39:49.735328Z", - "iopub.status.idle": "2024-05-23T02:39:49.769831Z", - "shell.execute_reply": "2024-05-23T02:39:49.769260Z" + "iopub.execute_input": "2024-05-23T15:13:09.744001Z", + "iopub.status.busy": "2024-05-23T15:13:09.743687Z", + "iopub.status.idle": "2024-05-23T15:13:09.778838Z", + "shell.execute_reply": "2024-05-23T15:13:09.778249Z" } }, "outputs": [ @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:49.771808Z", - "iopub.status.busy": "2024-05-23T02:39:49.771507Z", - "iopub.status.idle": "2024-05-23T02:39:51.399954Z", - "shell.execute_reply": "2024-05-23T02:39:51.399278Z" + "iopub.execute_input": "2024-05-23T15:13:09.781000Z", + "iopub.status.busy": "2024-05-23T15:13:09.780574Z", + "iopub.status.idle": "2024-05-23T15:13:11.413802Z", + "shell.execute_reply": "2024-05-23T15:13:11.413175Z" } }, "outputs": [ @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.402360Z", - "iopub.status.busy": "2024-05-23T02:39:51.402047Z", - "iopub.status.idle": "2024-05-23T02:39:51.420883Z", - "shell.execute_reply": "2024-05-23T02:39:51.420283Z" + "iopub.execute_input": "2024-05-23T15:13:11.416302Z", + "iopub.status.busy": "2024-05-23T15:13:11.415961Z", + "iopub.status.idle": "2024-05-23T15:13:11.435863Z", + "shell.execute_reply": "2024-05-23T15:13:11.435422Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.423111Z", - "iopub.status.busy": "2024-05-23T02:39:51.422672Z", - "iopub.status.idle": "2024-05-23T02:39:51.429109Z", - "shell.execute_reply": "2024-05-23T02:39:51.428587Z" + "iopub.execute_input": "2024-05-23T15:13:11.437904Z", + "iopub.status.busy": "2024-05-23T15:13:11.437569Z", + "iopub.status.idle": "2024-05-23T15:13:11.444686Z", + "shell.execute_reply": "2024-05-23T15:13:11.444155Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.431022Z", - "iopub.status.busy": "2024-05-23T02:39:51.430844Z", - "iopub.status.idle": "2024-05-23T02:39:51.436824Z", - "shell.execute_reply": "2024-05-23T02:39:51.436372Z" + "iopub.execute_input": "2024-05-23T15:13:11.446883Z", + "iopub.status.busy": "2024-05-23T15:13:11.446583Z", + "iopub.status.idle": "2024-05-23T15:13:11.452444Z", + "shell.execute_reply": "2024-05-23T15:13:11.451995Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.438647Z", - "iopub.status.busy": "2024-05-23T02:39:51.438481Z", - "iopub.status.idle": "2024-05-23T02:39:51.448781Z", - "shell.execute_reply": "2024-05-23T02:39:51.448328Z" + "iopub.execute_input": "2024-05-23T15:13:11.454548Z", + "iopub.status.busy": "2024-05-23T15:13:11.454242Z", + "iopub.status.idle": "2024-05-23T15:13:11.464811Z", + "shell.execute_reply": "2024-05-23T15:13:11.464363Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.450827Z", - "iopub.status.busy": "2024-05-23T02:39:51.450424Z", - "iopub.status.idle": "2024-05-23T02:39:51.459425Z", - "shell.execute_reply": "2024-05-23T02:39:51.458985Z" + "iopub.execute_input": "2024-05-23T15:13:11.466881Z", + "iopub.status.busy": "2024-05-23T15:13:11.466586Z", + "iopub.status.idle": "2024-05-23T15:13:11.475380Z", + "shell.execute_reply": "2024-05-23T15:13:11.474932Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.461476Z", - "iopub.status.busy": "2024-05-23T02:39:51.461156Z", - "iopub.status.idle": "2024-05-23T02:39:51.468004Z", - "shell.execute_reply": "2024-05-23T02:39:51.467459Z" + "iopub.execute_input": "2024-05-23T15:13:11.477419Z", + "iopub.status.busy": "2024-05-23T15:13:11.477115Z", + "iopub.status.idle": "2024-05-23T15:13:11.483852Z", + "shell.execute_reply": "2024-05-23T15:13:11.483370Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.470119Z", - "iopub.status.busy": "2024-05-23T02:39:51.469776Z", - "iopub.status.idle": "2024-05-23T02:39:51.478965Z", - "shell.execute_reply": "2024-05-23T02:39:51.478442Z" + "iopub.execute_input": "2024-05-23T15:13:11.485997Z", + "iopub.status.busy": "2024-05-23T15:13:11.485484Z", + "iopub.status.idle": "2024-05-23T15:13:11.495072Z", + "shell.execute_reply": "2024-05-23T15:13:11.494517Z" } }, "outputs": [ @@ -1574,10 +1574,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:51.483948Z", - "iopub.status.busy": "2024-05-23T02:39:51.483761Z", - "iopub.status.idle": "2024-05-23T02:39:51.496442Z", - "shell.execute_reply": "2024-05-23T02:39:51.496027Z" + "iopub.execute_input": "2024-05-23T15:13:11.497098Z", + "iopub.status.busy": "2024-05-23T15:13:11.496841Z", + "iopub.status.idle": "2024-05-23T15:13:11.508854Z", + "shell.execute_reply": "2024-05-23T15:13:11.508425Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index dd807fcbd..46aed05bb 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:54.213575Z", - "iopub.status.busy": "2024-05-23T02:39:54.213225Z", - "iopub.status.idle": "2024-05-23T02:39:57.053053Z", - "shell.execute_reply": "2024-05-23T02:39:57.052451Z" + "iopub.execute_input": "2024-05-23T15:13:14.178877Z", + "iopub.status.busy": "2024-05-23T15:13:14.178703Z", + "iopub.status.idle": "2024-05-23T15:13:17.006136Z", + "shell.execute_reply": "2024-05-23T15:13:17.005566Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:57.055580Z", - "iopub.status.busy": "2024-05-23T02:39:57.055283Z", - "iopub.status.idle": "2024-05-23T02:39:57.058943Z", - "shell.execute_reply": "2024-05-23T02:39:57.058422Z" + "iopub.execute_input": "2024-05-23T15:13:17.008867Z", + "iopub.status.busy": "2024-05-23T15:13:17.008294Z", + "iopub.status.idle": "2024-05-23T15:13:17.012007Z", + "shell.execute_reply": "2024-05-23T15:13:17.011451Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:57.060990Z", - "iopub.status.busy": "2024-05-23T02:39:57.060686Z", - "iopub.status.idle": "2024-05-23T02:39:59.927643Z", - "shell.execute_reply": "2024-05-23T02:39:59.927162Z" + "iopub.execute_input": "2024-05-23T15:13:17.013953Z", + "iopub.status.busy": "2024-05-23T15:13:17.013687Z", + "iopub.status.idle": "2024-05-23T15:13:20.091774Z", + "shell.execute_reply": "2024-05-23T15:13:20.091313Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "46dc450a32324af0897e4d2275a10b42", + "model_id": "69d759b4cea445b9a973a55108546115", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8272f2f1eb954b40a94d03c3c58fb694", + "model_id": "3a39fcf1c68242258be55654be94880e", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "827acfb18fcc4584a08e02f1acb62f96", + "model_id": "e9c2d308abf54d4d984ae58a82d5078e", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "79aa00d18513465d98593e508c76d1c2", + "model_id": "90681addb12b455a9ba630f4d68088b2", "version_major": 2, "version_minor": 0 }, @@ -246,10 +246,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:59.929923Z", - "iopub.status.busy": "2024-05-23T02:39:59.929616Z", - "iopub.status.idle": "2024-05-23T02:39:59.933496Z", - "shell.execute_reply": "2024-05-23T02:39:59.933004Z" + "iopub.execute_input": "2024-05-23T15:13:20.093846Z", + "iopub.status.busy": "2024-05-23T15:13:20.093654Z", + "iopub.status.idle": "2024-05-23T15:13:20.097621Z", + "shell.execute_reply": "2024-05-23T15:13:20.097181Z" } }, "outputs": [ @@ -274,17 +274,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:39:59.935608Z", - "iopub.status.busy": "2024-05-23T02:39:59.935228Z", - "iopub.status.idle": "2024-05-23T02:40:11.107879Z", - "shell.execute_reply": "2024-05-23T02:40:11.107347Z" + "iopub.execute_input": "2024-05-23T15:13:20.099530Z", + "iopub.status.busy": "2024-05-23T15:13:20.099340Z", + "iopub.status.idle": "2024-05-23T15:13:31.423568Z", + "shell.execute_reply": "2024-05-23T15:13:31.423019Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2c36a43d56a74bd993ca186131553911", + "model_id": "25487563f91749b897153d9eb325490d", "version_major": 2, "version_minor": 0 }, @@ -322,10 +322,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:11.110526Z", - "iopub.status.busy": "2024-05-23T02:40:11.110095Z", - "iopub.status.idle": "2024-05-23T02:40:29.266302Z", - "shell.execute_reply": "2024-05-23T02:40:29.265709Z" + "iopub.execute_input": "2024-05-23T15:13:31.426592Z", + "iopub.status.busy": "2024-05-23T15:13:31.426156Z", + "iopub.status.idle": "2024-05-23T15:13:49.813258Z", + "shell.execute_reply": "2024-05-23T15:13:49.812619Z" } }, "outputs": [], @@ -358,10 +358,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:29.269275Z", - "iopub.status.busy": "2024-05-23T02:40:29.269071Z", - "iopub.status.idle": "2024-05-23T02:40:29.274794Z", - "shell.execute_reply": "2024-05-23T02:40:29.274365Z" + "iopub.execute_input": "2024-05-23T15:13:49.816008Z", + "iopub.status.busy": "2024-05-23T15:13:49.815622Z", + "iopub.status.idle": "2024-05-23T15:13:49.821547Z", + "shell.execute_reply": "2024-05-23T15:13:49.821047Z" } }, "outputs": [], @@ -399,10 +399,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:29.276788Z", - "iopub.status.busy": "2024-05-23T02:40:29.276381Z", - "iopub.status.idle": "2024-05-23T02:40:29.280353Z", - "shell.execute_reply": "2024-05-23T02:40:29.279812Z" + "iopub.execute_input": "2024-05-23T15:13:49.823587Z", + "iopub.status.busy": "2024-05-23T15:13:49.823249Z", + "iopub.status.idle": "2024-05-23T15:13:49.827320Z", + "shell.execute_reply": "2024-05-23T15:13:49.826781Z" }, "nbsphinx": "hidden" }, @@ -539,10 +539,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:29.282652Z", - "iopub.status.busy": "2024-05-23T02:40:29.282248Z", - "iopub.status.idle": "2024-05-23T02:40:29.291399Z", - "shell.execute_reply": "2024-05-23T02:40:29.290863Z" + "iopub.execute_input": "2024-05-23T15:13:49.829689Z", + "iopub.status.busy": "2024-05-23T15:13:49.829257Z", + "iopub.status.idle": "2024-05-23T15:13:49.838222Z", + "shell.execute_reply": "2024-05-23T15:13:49.837683Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:29.293387Z", - "iopub.status.busy": "2024-05-23T02:40:29.293067Z", - "iopub.status.idle": "2024-05-23T02:40:29.319216Z", - "shell.execute_reply": "2024-05-23T02:40:29.318757Z" + "iopub.execute_input": "2024-05-23T15:13:49.840412Z", + "iopub.status.busy": "2024-05-23T15:13:49.839978Z", + "iopub.status.idle": "2024-05-23T15:13:49.867196Z", + "shell.execute_reply": "2024-05-23T15:13:49.866751Z" } }, "outputs": [], @@ -707,10 +707,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:40:29.321416Z", - "iopub.status.busy": "2024-05-23T02:40:29.320994Z", - "iopub.status.idle": "2024-05-23T02:41:01.537359Z", - "shell.execute_reply": "2024-05-23T02:41:01.536681Z" + "iopub.execute_input": "2024-05-23T15:13:49.869201Z", + "iopub.status.busy": "2024-05-23T15:13:49.868895Z", + "iopub.status.idle": "2024-05-23T15:14:21.536235Z", + "shell.execute_reply": "2024-05-23T15:14:21.535644Z" } }, "outputs": [ @@ -726,21 +726,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.733\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.787\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.602\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.446\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f55266ef46204d7b9d9c7e1e6177f977", + "model_id": "f14eebd8eb0d4e95bac3630f3fe6d0e9", "version_major": 2, "version_minor": 0 }, @@ -761,7 +761,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a9405206aee4db1bb53ba3959317578", + "model_id": "b56ff307f7824e6e9bcf6a01e2e13370", "version_major": 2, "version_minor": 0 }, @@ -784,21 +784,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.796\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.667\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.594\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.671\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3e953b46986f48c2887161d3832d9dc5", + "model_id": "248049c7381c4c2ca21235e34a098f2d", "version_major": 2, "version_minor": 0 }, @@ -819,7 +819,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "538061f8630b4ab1a86173a8c066b7af", + "model_id": "657ef4ecc31347e6ba461199c77ccec4", "version_major": 2, "version_minor": 0 }, @@ -842,21 +842,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.739\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.704\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.475\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.377\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "11fa276859ec45c59be20bc9e882ebfb", + "model_id": "7fa980c5195b462fbcc67f69e5d79e5d", "version_major": 2, "version_minor": 0 }, @@ -877,7 +877,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d79bfe70932b4eec85c02d0733cebf82", + "model_id": "37c18899cb7a47beb783877d59772e95", "version_major": 2, "version_minor": 0 }, @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:41:01.540158Z", - "iopub.status.busy": "2024-05-23T02:41:01.539600Z", - "iopub.status.idle": "2024-05-23T02:41:01.556791Z", - "shell.execute_reply": "2024-05-23T02:41:01.556304Z" + "iopub.execute_input": "2024-05-23T15:14:21.538695Z", + "iopub.status.busy": "2024-05-23T15:14:21.538451Z", + "iopub.status.idle": "2024-05-23T15:14:21.554756Z", + "shell.execute_reply": "2024-05-23T15:14:21.554303Z" } }, "outputs": [], @@ -984,10 +984,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:41:01.559175Z", - "iopub.status.busy": "2024-05-23T02:41:01.558839Z", - "iopub.status.idle": "2024-05-23T02:41:02.028182Z", - "shell.execute_reply": "2024-05-23T02:41:02.027552Z" + "iopub.execute_input": "2024-05-23T15:14:21.556886Z", + "iopub.status.busy": "2024-05-23T15:14:21.556543Z", + "iopub.status.idle": "2024-05-23T15:14:22.004751Z", + "shell.execute_reply": "2024-05-23T15:14:22.004127Z" } }, "outputs": [], @@ -1007,10 +1007,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:41:02.030736Z", - "iopub.status.busy": "2024-05-23T02:41:02.030554Z", - "iopub.status.idle": "2024-05-23T02:44:36.900661Z", - "shell.execute_reply": "2024-05-23T02:44:36.900096Z" + "iopub.execute_input": "2024-05-23T15:14:22.007264Z", + "iopub.status.busy": "2024-05-23T15:14:22.007091Z", + "iopub.status.idle": "2024-05-23T15:17:57.570513Z", + "shell.execute_reply": "2024-05-23T15:17:57.569864Z" } }, "outputs": [ @@ -1058,7 +1058,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d872aefd3edf47bdbf1e40052fb19a3c", + "model_id": "c6e9e2c8ad734cec8bbdd869c9f46951", "version_major": 2, "version_minor": 0 }, @@ -1097,10 +1097,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:36.903000Z", - "iopub.status.busy": "2024-05-23T02:44:36.902609Z", - "iopub.status.idle": "2024-05-23T02:44:37.356548Z", - "shell.execute_reply": "2024-05-23T02:44:37.355995Z" + "iopub.execute_input": "2024-05-23T15:17:57.573092Z", + "iopub.status.busy": "2024-05-23T15:17:57.572457Z", + "iopub.status.idle": "2024-05-23T15:17:58.023761Z", + "shell.execute_reply": "2024-05-23T15:17:58.023198Z" } }, "outputs": [ @@ -1241,10 +1241,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.359415Z", - "iopub.status.busy": "2024-05-23T02:44:37.358990Z", - "iopub.status.idle": "2024-05-23T02:44:37.420499Z", - "shell.execute_reply": "2024-05-23T02:44:37.419943Z" + "iopub.execute_input": "2024-05-23T15:17:58.026606Z", + "iopub.status.busy": "2024-05-23T15:17:58.026079Z", + "iopub.status.idle": "2024-05-23T15:17:58.089095Z", + "shell.execute_reply": "2024-05-23T15:17:58.088523Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.422810Z", - "iopub.status.busy": "2024-05-23T02:44:37.422421Z", - "iopub.status.idle": "2024-05-23T02:44:37.431103Z", - "shell.execute_reply": "2024-05-23T02:44:37.430650Z" + "iopub.execute_input": "2024-05-23T15:17:58.091322Z", + "iopub.status.busy": "2024-05-23T15:17:58.090982Z", + "iopub.status.idle": "2024-05-23T15:17:58.099604Z", + "shell.execute_reply": "2024-05-23T15:17:58.099176Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.433228Z", - "iopub.status.busy": "2024-05-23T02:44:37.432913Z", - "iopub.status.idle": "2024-05-23T02:44:37.437400Z", - "shell.execute_reply": "2024-05-23T02:44:37.436953Z" + "iopub.execute_input": "2024-05-23T15:17:58.101628Z", + "iopub.status.busy": "2024-05-23T15:17:58.101449Z", + "iopub.status.idle": "2024-05-23T15:17:58.105968Z", + "shell.execute_reply": "2024-05-23T15:17:58.105548Z" }, "nbsphinx": "hidden" }, @@ -1530,10 +1530,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.439431Z", - "iopub.status.busy": "2024-05-23T02:44:37.439116Z", - "iopub.status.idle": "2024-05-23T02:44:37.946820Z", - "shell.execute_reply": "2024-05-23T02:44:37.946237Z" + "iopub.execute_input": "2024-05-23T15:17:58.107985Z", + "iopub.status.busy": "2024-05-23T15:17:58.107659Z", + "iopub.status.idle": "2024-05-23T15:17:58.618614Z", + "shell.execute_reply": "2024-05-23T15:17:58.617887Z" } }, "outputs": [ @@ -1568,10 +1568,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.949031Z", - "iopub.status.busy": "2024-05-23T02:44:37.948851Z", - "iopub.status.idle": "2024-05-23T02:44:37.957133Z", - "shell.execute_reply": "2024-05-23T02:44:37.956627Z" + "iopub.execute_input": "2024-05-23T15:17:58.620891Z", + "iopub.status.busy": "2024-05-23T15:17:58.620541Z", + "iopub.status.idle": "2024-05-23T15:17:58.628720Z", + "shell.execute_reply": "2024-05-23T15:17:58.628291Z" } }, "outputs": [ @@ -1738,10 +1738,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.959320Z", - "iopub.status.busy": "2024-05-23T02:44:37.958893Z", - "iopub.status.idle": "2024-05-23T02:44:37.965877Z", - "shell.execute_reply": "2024-05-23T02:44:37.965435Z" + "iopub.execute_input": "2024-05-23T15:17:58.630903Z", + "iopub.status.busy": "2024-05-23T15:17:58.630580Z", + "iopub.status.idle": "2024-05-23T15:17:58.637500Z", + "shell.execute_reply": "2024-05-23T15:17:58.637078Z" }, "nbsphinx": "hidden" }, @@ -1817,10 +1817,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:37.967741Z", - "iopub.status.busy": "2024-05-23T02:44:37.967567Z", - "iopub.status.idle": "2024-05-23T02:44:38.443664Z", - "shell.execute_reply": "2024-05-23T02:44:38.443094Z" + "iopub.execute_input": "2024-05-23T15:17:58.639392Z", + "iopub.status.busy": "2024-05-23T15:17:58.639091Z", + "iopub.status.idle": "2024-05-23T15:17:59.084952Z", + "shell.execute_reply": "2024-05-23T15:17:59.084352Z" } }, "outputs": [ @@ -1857,10 +1857,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.446171Z", - "iopub.status.busy": "2024-05-23T02:44:38.445841Z", - "iopub.status.idle": "2024-05-23T02:44:38.461262Z", - "shell.execute_reply": "2024-05-23T02:44:38.460798Z" + "iopub.execute_input": "2024-05-23T15:17:59.087500Z", + "iopub.status.busy": "2024-05-23T15:17:59.087139Z", + "iopub.status.idle": "2024-05-23T15:17:59.102651Z", + "shell.execute_reply": "2024-05-23T15:17:59.102136Z" } }, "outputs": [ @@ -2017,10 +2017,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.463407Z", - "iopub.status.busy": "2024-05-23T02:44:38.463066Z", - "iopub.status.idle": "2024-05-23T02:44:38.469023Z", - "shell.execute_reply": "2024-05-23T02:44:38.468592Z" + "iopub.execute_input": "2024-05-23T15:17:59.104738Z", + "iopub.status.busy": "2024-05-23T15:17:59.104405Z", + "iopub.status.idle": "2024-05-23T15:17:59.109761Z", + "shell.execute_reply": "2024-05-23T15:17:59.109326Z" }, "nbsphinx": "hidden" }, @@ -2065,10 +2065,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.470972Z", - "iopub.status.busy": "2024-05-23T02:44:38.470641Z", - "iopub.status.idle": "2024-05-23T02:44:38.864252Z", - "shell.execute_reply": "2024-05-23T02:44:38.863563Z" + "iopub.execute_input": "2024-05-23T15:17:59.111760Z", + "iopub.status.busy": "2024-05-23T15:17:59.111508Z", + "iopub.status.idle": "2024-05-23T15:17:59.495102Z", + "shell.execute_reply": "2024-05-23T15:17:59.494423Z" } }, "outputs": [ @@ -2150,10 +2150,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.866636Z", - "iopub.status.busy": "2024-05-23T02:44:38.866455Z", - "iopub.status.idle": "2024-05-23T02:44:38.874900Z", - "shell.execute_reply": "2024-05-23T02:44:38.874250Z" + "iopub.execute_input": "2024-05-23T15:17:59.497653Z", + "iopub.status.busy": "2024-05-23T15:17:59.497219Z", + "iopub.status.idle": "2024-05-23T15:17:59.506079Z", + "shell.execute_reply": "2024-05-23T15:17:59.505422Z" } }, "outputs": [ @@ -2178,47 +2178,47 @@ " \n", " \n", " \n", - " is_dark_issue\n", " dark_score\n", + " is_dark_issue\n", " \n", " \n", " \n", " \n", " 34848\n", - " True\n", " 0.203922\n", + " True\n", " \n", " \n", " 50270\n", - " True\n", " 0.204588\n", + " True\n", " \n", " \n", " 3936\n", - " True\n", " 0.213098\n", + " True\n", " \n", " \n", " 733\n", - " True\n", " 0.217686\n", + " True\n", " \n", " \n", " 8094\n", - " True\n", " 0.230118\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_dark_issue dark_score\n", - "34848 True 0.203922\n", - "50270 True 0.204588\n", - "3936 True 0.213098\n", - "733 True 0.217686\n", - "8094 True 0.230118" + " dark_score is_dark_issue\n", + "34848 0.203922 True\n", + "50270 0.204588 True\n", + "3936 0.213098 True\n", + "733 0.217686 True\n", + "8094 0.230118 True" ] }, "execution_count": 26, @@ -2281,10 +2281,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.877119Z", - "iopub.status.busy": "2024-05-23T02:44:38.876946Z", - "iopub.status.idle": "2024-05-23T02:44:38.881614Z", - "shell.execute_reply": "2024-05-23T02:44:38.880930Z" + "iopub.execute_input": "2024-05-23T15:17:59.508583Z", + "iopub.status.busy": "2024-05-23T15:17:59.508111Z", + "iopub.status.idle": "2024-05-23T15:17:59.513464Z", + "shell.execute_reply": "2024-05-23T15:17:59.512886Z" }, "nbsphinx": "hidden" }, @@ -2321,10 +2321,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:38.883788Z", - "iopub.status.busy": "2024-05-23T02:44:38.883619Z", - "iopub.status.idle": "2024-05-23T02:44:39.063532Z", - "shell.execute_reply": "2024-05-23T02:44:39.062922Z" + "iopub.execute_input": "2024-05-23T15:17:59.515549Z", + "iopub.status.busy": "2024-05-23T15:17:59.515376Z", + "iopub.status.idle": "2024-05-23T15:17:59.688523Z", + "shell.execute_reply": "2024-05-23T15:17:59.687834Z" } }, "outputs": [ @@ -2366,10 +2366,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:39.066019Z", - "iopub.status.busy": "2024-05-23T02:44:39.065605Z", - "iopub.status.idle": "2024-05-23T02:44:39.073391Z", - "shell.execute_reply": "2024-05-23T02:44:39.072920Z" + "iopub.execute_input": "2024-05-23T15:17:59.691135Z", + "iopub.status.busy": "2024-05-23T15:17:59.690737Z", + "iopub.status.idle": "2024-05-23T15:17:59.698702Z", + "shell.execute_reply": "2024-05-23T15:17:59.698153Z" } }, "outputs": [ @@ -2455,10 +2455,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:39.075403Z", - "iopub.status.busy": "2024-05-23T02:44:39.075228Z", - "iopub.status.idle": "2024-05-23T02:44:39.276169Z", - "shell.execute_reply": "2024-05-23T02:44:39.275585Z" + "iopub.execute_input": "2024-05-23T15:17:59.700721Z", + "iopub.status.busy": "2024-05-23T15:17:59.700339Z", + "iopub.status.idle": "2024-05-23T15:17:59.882402Z", + "shell.execute_reply": "2024-05-23T15:17:59.881857Z" } }, "outputs": [ @@ -2498,10 +2498,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:39.278452Z", - "iopub.status.busy": "2024-05-23T02:44:39.278112Z", - "iopub.status.idle": "2024-05-23T02:44:39.282601Z", - "shell.execute_reply": "2024-05-23T02:44:39.282060Z" + "iopub.execute_input": "2024-05-23T15:17:59.884676Z", + "iopub.status.busy": "2024-05-23T15:17:59.884318Z", + "iopub.status.idle": "2024-05-23T15:17:59.889882Z", + "shell.execute_reply": "2024-05-23T15:17:59.889425Z" }, "nbsphinx": "hidden" }, @@ -2538,7 +2538,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0253747b632140cba51287f6708a5f7a": { + "030ce355308a4ae19b32b1803b815312": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2591,7 +2591,107 @@ "width": null } }, - "0a827e9ba1334bc1b30b9965e39053b5": { + "0667b778da0644e3bf432c6ed831b021": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0704c92cb83f453099a319c6760a3785": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "07bf3e196fd244339afe75d5bde48e3e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "08653f32acef42e2b00105e4a07cceac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "0be90ee02b694223bf88ee128a5982dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0d97ea1a5b604d47b3eae52595afaaa6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "0ec33797bad14055a1de8a8f992c6134": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2644,7 +2744,7 @@ "width": null } }, - "0ab5774997a04bfaa0b61b22afab4c49": { + "0f5ab466e4f646d38207b242988c32b4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2697,7 +2797,48 @@ "width": null } }, - "0bbc7bd1edd444e9befe5b55a59c5185": { + "0fd3562f606b4206957d569480d562aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_db184c07f55141f488cce3ec3fc3159d", + "placeholder": "​", + "style": "IPY_MODEL_a1182345e3c5415db85095ad9e812fc0", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "1b5b85bd29334520a5f30f257261210b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1c9a0ec998694ab98f33e462be441b15": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2750,30 +2891,25 @@ "width": null } }, - "0bcb5380d1614e6bb4deca1e736449fd": { + "1d54ef60f40b42d894c0c93aa023f924": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_28d019833f9b4ded87ab37b356450e01", - "placeholder": "​", - "style": "IPY_MODEL_76a0f7b5bd3642c99f961e05530d7774", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.03it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0c3593f9055a48ee9d3d22eeedeb3958": { + "1e824539d22548dea150f1f6eaac4b1b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2788,38 +2924,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0bbc7bd1edd444e9befe5b55a59c5185", + "layout": "IPY_MODEL_ca7021afb6824ca39461db6224a967b1", "placeholder": "​", - "style": "IPY_MODEL_f5df588410aa4c0fa6bfd32b8fc2948e", + "style": "IPY_MODEL_ee5d7d4d67ff43599f10436b84389778", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.81it/s]" + "value": "100%" } }, - "0d07481603214313a619811e46e0b5ee": { - "model_module": "@jupyter-widgets/controls", + "202b1a1d2d12458089afedd08ebd46e2": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1e2a94eec3c140d29e80b969cf3ad590", - "placeholder": "​", - "style": "IPY_MODEL_f895a633a0b44e93b6b546912885499b", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "0f18eca59b634a91b309f694a26b02bc": { + "208e6713136b4a069253f3c771aaba6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2835,41 +3001,35 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c5fba3c4c814303ab9cf750f4ba0edc", + "layout": "IPY_MODEL_030ce355308a4ae19b32b1803b815312", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_625784f3eed348699f9e2006f3442851", + "style": "IPY_MODEL_35f3ccfabf0d49caac51395e757e280c", "tabbable": null, "tooltip": null, "value": 40.0 } }, - "11fa276859ec45c59be20bc9e882ebfb": { + "21cccf8e4fcd4f2d94689e3eff05b437": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_8f8f40d00401482dab317198ac028d0d", - "IPY_MODEL_a26121d1472d4715acdca14598797750", - "IPY_MODEL_0c3593f9055a48ee9d3d22eeedeb3958" - ], - "layout": "IPY_MODEL_80c2738edb094a798ebaba7dfd2e43e4", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "136558e15c144724b1fba387b5ada3fc": { + "224edd0c6d1f4706acb4172cafae63ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2922,7 +3082,25 @@ "width": null } }, - "14a5acb52fc14e0b868e20d70bf0e2f3": { + "22da545dee504e11be27c3f2e6f64a8d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2340af9d58c945cf8f396b29d51c5971": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2975,49 +3153,99 @@ "width": null } }, - "15d245a73c644d19a25d83fbf5ad58fb": { + "248049c7381c4c2ca21235e34a098f2d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d1f8120d5198465aa00745a1a862f19a", - "max": 5175617.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5b490ccba02247d3ba1a682013ad9f79", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a580d919ecc46b788a811b3ead20ba7", + "IPY_MODEL_f886827e67fc4f5ebf2091c3e40b2145", + "IPY_MODEL_f8428265fb9b4bdf9292d5b2ca1bb430" + ], + "layout": "IPY_MODEL_7e8091f57a3e48f0beec85edfd7811da", "tabbable": null, - "tooltip": null, - "value": 5175617.0 + "tooltip": null } }, - "16aa42c84f5c426c890836b1c1350361": { + "24c7415f1d494854a1069f363af31ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "19145420cef8409a8d502b4ddb4a91b5": { + "25487563f91749b897153d9eb325490d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9c0569b3288740e7957046e5602051ab", + "IPY_MODEL_bfd20dfe7ced4745b700d16343e6555b", + "IPY_MODEL_cf990872c7e342e89ab836f3533d98a2" + ], + "layout": "IPY_MODEL_7346b6312fb34127a555f3fec2151b56", + "tabbable": null, + "tooltip": null + } + }, + "25bb8e454c1b4f4d935e13896b5d8274": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0e7582bcb8d4e37a597d96f234740de", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_cdff082d070b4b489f5b4ea895722379", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "2600127ce03c42078c96ab55a769f409": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3070,7 +3298,23 @@ "width": null } }, - "19a4b16f193d4c4c9c8ffac2444c079f": { + "2675c73049e44c728866da88db8c3923": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "26e2e4b700c047bab29090430c40724a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3088,83 +3332,56 @@ "text_color": null } }, - "1a827cb5ceaa4829b60b0109eff5b0f8": { + "2942fd8cccc94f7a8056af7f51912fc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f9d9c00bb8ef44f29ba72345c4ce268b", - "placeholder": "​", - "style": "IPY_MODEL_48ae14ae9f9449fdb6ea71c6c83dbc93", + "layout": "IPY_MODEL_acb5a4c79d044476b4db375a95477ab0", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0667b778da0644e3bf432c6ed831b021", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": 40.0 } }, - "1e2a94eec3c140d29e80b969cf3ad590": { - "model_module": "@jupyter-widgets/base", + "2bc382ab8e9c427dadfe8be93c514c5a": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e2e023f072f472ea9b18be5fada3997", + "placeholder": "​", + "style": "IPY_MODEL_32d59b7fb1c4448fb76bc68f9d93bb7c", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 66.30it/s]" } }, - "1f57bd7390e24e6aa97659f2524f3915": { + "30a6fba3aeff40458e4522b8d25e2460": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3217,129 +3434,64 @@ "width": null } }, - "20451a4e236f42a185fd5fbcd798bf02": { + "32baef6de51b4d538d24f5ba1bf84895": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7fd0e9c45c74cb28ae53d1c9eafe1a8", + "placeholder": "​", + "style": "IPY_MODEL_1b5b85bd29334520a5f30f257261210b", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "20f6a5a130cc4db5a48b35a7237c4b0e": { - "model_module": "@jupyter-widgets/base", + "32d59b7fb1c4448fb76bc68f9d93bb7c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "21f1137c3a8e4ed5862101c5924dddfb": { - "model_module": "@jupyter-widgets/base", + "35f3ccfabf0d49caac51395e757e280c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "25cc5d78b7bc4b0d8ad589add3abe1a1": { + "36aa2c3c5ff544af9a903931b09909d1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3357,48 +3509,71 @@ "text_color": null } }, - "275f74588ef84e948c5c45b4558ea9fb": { + "37c18899cb7a47beb783877d59772e95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6452086a008b42aebee332fbe33f0041", + "IPY_MODEL_b1709cfcfebd4e239b073b0f0613405e", + "IPY_MODEL_dca0375df0034c4fa92f2a4bb7144667" + ], + "layout": "IPY_MODEL_a68d6cb805e84e869e126049bf112c66", + "tabbable": null, + "tooltip": null } }, - "2832834de42b4fe5ae6f876d472ac038": { + "3a39fcf1c68242258be55654be94880e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fe300e135b414c4ca4fffe71b1732157", - "placeholder": "​", - "style": "IPY_MODEL_a67a762b7bab448daae7e62ec6cfb692", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e8fdd33091014c4e9b0f4f4c80d77d9c", + "IPY_MODEL_abb587732c974d45aed41ed4bf011226", + "IPY_MODEL_491545bb08cf4760b4d10904c9b53df4" + ], + "layout": "IPY_MODEL_a356f17edce64e9f82872d52935fddbc", + "tabbable": null, + "tooltip": null + } + }, + "3ba2af3e664b4c97bae98b5db800e998": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "28d019833f9b4ded87ab37b356450e01": { + "3e2e023f072f472ea9b18be5fada3997": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3451,7 +3626,41 @@ "width": null } }, - "28dce778b8ac4f4f9997b022aafa544d": { + "4245c182c418461089ff64122026cf89": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "44ecddd2f63b459f93beee81622216a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "491545bb08cf4760b4d10904c9b53df4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3466,15 +3675,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0a827e9ba1334bc1b30b9965e39053b5", + "layout": "IPY_MODEL_891e83dfcd8a4b29b5cf22c81f04f1e4", "placeholder": "​", - "style": "IPY_MODEL_37f8ce321124454fa0444aecde8ba406", + "style": "IPY_MODEL_24c7415f1d494854a1069f363af31ff8", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 312919.50 examples/s]" + "value": " 5.18M/5.18M [00:00<00:00, 16.9MB/s]" + } + }, + "4c710b91c2f74b6ea9a645d14d858e69": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2a7a4015425b449292b0c50f64f2d3b7": { + "4c86ed0a29c94761b734a38448c453eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3527,7 +3754,7 @@ "width": null } }, - "2b24b486c264489a938437f2e89a30aa": { + "4cb4b2dea30d4d719ce0cfc60436bd1b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3580,54 +3807,7 @@ "width": null } }, - "2bc2a90c62314f77ae83454af839b596": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_65637dac978c42e6b02b838ec27c60e6", - "placeholder": "​", - "style": "IPY_MODEL_275f74588ef84e948c5c45b4558ea9fb", - "tabbable": null, - "tooltip": null, - "value": " 30.9M/30.9M [00:00<00:00, 71.3MB/s]" - } - }, - "2c36a43d56a74bd993ca186131553911": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5d4e1f6be73945f8ab58e808dce32c7a", - "IPY_MODEL_de284976dbe74c959ec30b5aa4b9ddbe", - "IPY_MODEL_7f69ee68a49c4196abe738c71f19b4e2" - ], - "layout": "IPY_MODEL_eef440e427c74c22b33c6dd1c0800afe", - "tabbable": null, - "tooltip": null - } - }, - "2e50252c131348eebf5ad49b656fdb65": { + "4d7f009af5c44671abfea28928c232a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3680,125 +3860,7 @@ "width": null } }, - "31155c361ed545d48fed379a6cf6c696": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "333260fd82aa4a29bb47b831e780aa40": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "37f8ce321124454fa0444aecde8ba406": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "39d0e7ddedf14c85b7a52e465404a66d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3bf91390275e46a8923571af914d66f2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f151cd2f497b411bbbff43642e002da7", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d7db34c27aa5475db1a714c869369693", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "3e953b46986f48c2887161d3832d9dc5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b63540980aee4b39b981e366db698ff1", - "IPY_MODEL_68d808e8f330432681f920293d27bee8", - "IPY_MODEL_d27f58754bff424dace63c6287c9ce80" - ], - "layout": "IPY_MODEL_8b05b580f24b4954ac37b43fb139ce6c", - "tabbable": null, - "tooltip": null - } - }, - "41b4d085eb1b4ee3af46d5f9f194b66c": { + "4fc726979875440198e98b47d8a460ac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3851,7 +3913,7 @@ "width": null } }, - "43d52cecdfe64496bfdc22eb38a879bb": { + "507cadaf20704109acd37c5353daeec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3904,7 +3966,7 @@ "width": null } }, - "452bb79c87bb4e6ea606856d594e4d11": { + "52de047e28024acc9a8a1bcb2d119f80": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3957,65 +4019,30 @@ "width": null } }, - "46dc450a32324af0897e4d2275a10b42": { + "58dbeddc86a84451839a6a06a29391e3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9479b1cab89247a9a9ed1e0ad9c79b31", - "IPY_MODEL_8d958640e45d487fa1356b218185f788", - "IPY_MODEL_2bc2a90c62314f77ae83454af839b596" - ], - "layout": "IPY_MODEL_4d06f56c41a440f6982e3e93b5006de7", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_aaeb70d3af9e48a9861025243e2b186a", + "placeholder": "​", + "style": "IPY_MODEL_0d97ea1a5b604d47b3eae52595afaaa6", "tabbable": null, - "tooltip": null - } - }, - "484616ade5d24066a34fd543156b37b0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "48ae14ae9f9449fdb6ea71c6c83dbc93": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": " 2/2 [00:00<00:00, 631.48it/s]" } }, - "4a5fc76c786748c4abf073787597f18e": { + "5affffa3c2c74016be203a330fa1116e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4030,55 +4057,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2e50252c131348eebf5ad49b656fdb65", + "layout": "IPY_MODEL_0f5ab466e4f646d38207b242988c32b4", "placeholder": "​", - "style": "IPY_MODEL_e6147750ab6b45b6aeef91cf5b173069", + "style": "IPY_MODEL_21cccf8e4fcd4f2d94689e3eff05b437", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 61.18it/s]" + "value": "100%" } }, - "4a9405206aee4db1bb53ba3959317578": { + "5bb90a1b55c34a21bb9c4e5d6941cc93": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2832834de42b4fe5ae6f876d472ac038", - "IPY_MODEL_7dfcc78e07f04a6ea8be611f8f413196", - "IPY_MODEL_4a5fc76c786748c4abf073787597f18e" - ], - "layout": "IPY_MODEL_f5723be682c24206bc18f53ca9f39679", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4cbd90930a4443109ccef7d1ec480f10": { + "5dec51715c864d82b748de330097bc61": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4d06f56c41a440f6982e3e93b5006de7": { + "62fa3ddadaff4c599654918619bbacdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4131,7 +4154,54 @@ "width": null } }, - "50cd3e41f61f4355ad08bf6597d8fc6f": { + "6452086a008b42aebee332fbe33f0041": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fbe1888706b24d19b3a94a33c39fdd6e", + "placeholder": "​", + "style": "IPY_MODEL_4c710b91c2f74b6ea9a645d14d858e69", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "657ef4ecc31347e6ba461199c77ccec4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5affffa3c2c74016be203a330fa1116e", + "IPY_MODEL_66dd02178fdf464494297942ea811afe", + "IPY_MODEL_2bc382ab8e9c427dadfe8be93c514c5a" + ], + "layout": "IPY_MODEL_507cadaf20704109acd37c5353daeec9", + "tabbable": null, + "tooltip": null + } + }, + "65b0520e8f194be380ba3213c43130e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4184,106 +4254,57 @@ "width": null } }, - "538061f8630b4ab1a86173a8c066b7af": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_663e534633af497bbbcdb29c921c4fe8", - "IPY_MODEL_0f18eca59b634a91b309f694a26b02bc", - "IPY_MODEL_92457b3505c941c192cc40dd2aa117c0" - ], - "layout": "IPY_MODEL_2a7a4015425b449292b0c50f64f2d3b7", - "tabbable": null, - "tooltip": null - } - }, - "586f18e8444448d6bc3de524d0e2cb08": { + "66dd02178fdf464494297942ea811afe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0253747b632140cba51287f6708a5f7a", - "placeholder": "​", - "style": "IPY_MODEL_5b160d387ca0440a9bc19cdf6a03a8bd", + "layout": "IPY_MODEL_d25407a4af2348529af54e69cb4cdb39", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2675c73049e44c728866da88db8c3923", "tabbable": null, "tooltip": null, - "value": " 5.18M/5.18M [00:00<00:00, 31.6MB/s]" - } - }, - "5add8322fd004babbffe08898714d24d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5b160d387ca0440a9bc19cdf6a03a8bd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": 40.0 } }, - "5b490ccba02247d3ba1a682013ad9f79": { + "69d759b4cea445b9a973a55108546115": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8e061de7b414e0a8911b9b283456372", + "IPY_MODEL_d33300be1bc84be4a49bca8b8c925a8e", + "IPY_MODEL_a10372230a91463d91407f070f2e68fe" + ], + "layout": "IPY_MODEL_4d7f009af5c44671abfea28928c232a0", + "tabbable": null, + "tooltip": null } }, - "5d036011a92b4f319c4dfe49add078bc": { + "6a2f4cef88b74e1eba63c94bb2bd5412": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4301,7 +4322,7 @@ "text_color": null } }, - "5d4e1f6be73945f8ab58e808dce32c7a": { + "6b1f49b491524b529aec41aebcecd597": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4316,70 +4337,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_43d52cecdfe64496bfdc22eb38a879bb", + "layout": "IPY_MODEL_b53ad2c3495a4380a386de2670df193c", "placeholder": "​", - "style": "IPY_MODEL_dd53980ddc684172980298668e5425bf", + "style": "IPY_MODEL_36aa2c3c5ff544af9a903931b09909d1", "tabbable": null, "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "5e525eccb8354d1080b45aa1fc549251": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "625784f3eed348699f9e2006f3442851": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "Generating train split: 100%" } }, - "6311121d81b64e0dbed3004d10284c73": { + "6c492d495c854d4aaa733a6c4a69053a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_14a5acb52fc14e0b868e20d70bf0e2f3", - "placeholder": "​", - "style": "IPY_MODEL_19a4b16f193d4c4c9c8ffac2444c079f", + "layout": "IPY_MODEL_887477fff78b408693fdfa4ab1646952", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c8d9f0fac0f64b38ac62e0a708d58948", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 571.86it/s]" + "value": 60000.0 } }, - "65211f09163d4fdd914cc1ec81a1dd4e": { + "6fd1907ecba34676ae3fd20801ef3e33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4432,7 +4424,7 @@ "width": null } }, - "65637dac978c42e6b02b838ec27c60e6": { + "7346b6312fb34127a555f3fec2151b56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4485,30 +4477,7 @@ "width": null } }, - "663e534633af497bbbcdb29c921c4fe8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d38f3642aa7d4c719f6ae02148d713db", - "placeholder": "​", - "style": "IPY_MODEL_7bea8450f8954148b0ff16ab0cc10ebf", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6882767f87854ef3967eb94dedaf4cca": { + "7a513b0560ff4bf09146696eb95077ed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4561,7 +4530,7 @@ "width": null } }, - "68d808e8f330432681f920293d27bee8": { + "7b0db4e438bd4cf0bbb0a609862c8652": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4577,17 +4546,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_452bb79c87bb4e6ea606856d594e4d11", - "max": 40.0, + "layout": "IPY_MODEL_db53115a53044737bff7390360d41ed7", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_484616ade5d24066a34fd543156b37b0", + "style": "IPY_MODEL_44ecddd2f63b459f93beee81622216a0", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 60000.0 + } + }, + "7bbcbd023d9844fcb11c44b43fba9714": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6e987f4813234f148d73f72872c4e14a": { + "7bd79c63938a4501be1f20daa3a69df5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4605,7 +4627,7 @@ "text_color": null } }, - "7222b62b50b140fba9f6a3e8ef56dec0": { + "7e8091f57a3e48f0beec85edfd7811da": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4658,7 +4680,7 @@ "width": null } }, - "72e16de825f7419a944b4a4098da0c73": { + "7edc557e66c5439ab5478477342fee93": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4711,89 +4733,7 @@ "width": null } }, - "73bdde5676a34c1281946f865cd54bf0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb5c826a35d64460bf16188a8d1194d8", - "placeholder": "​", - "style": "IPY_MODEL_743766d119014c17abd146765ec0d750", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "743766d119014c17abd146765ec0d750": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "76a0f7b5bd3642c99f961e05530d7774": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "77807272ebd948ffa6f8284b90a2600e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_41b4d085eb1b4ee3af46d5f9f194b66c", - "placeholder": "​", - "style": "IPY_MODEL_5d036011a92b4f319c4dfe49add078bc", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "79aa00d18513465d98593e508c76d1c2": { + "7fa980c5195b462fbcc67f69e5d79e5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -4808,106 +4748,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_94197a7c8ed2404988db00166716c4d9", - "IPY_MODEL_b93f993362ea4040ad08f91b8d5b8863", - "IPY_MODEL_bc6c85d4e4534c2b801d375e07560a2f" + "IPY_MODEL_c91b1e88c68248b0ad788baa0d0e9287", + "IPY_MODEL_208e6713136b4a069253f3c771aaba6b", + "IPY_MODEL_a101c3b6225b4fff860482618c744fe2" ], - "layout": "IPY_MODEL_8d381baef399471da95a9bda27ce8dba", + "layout": "IPY_MODEL_e8d62619eeaa49329fdd0d7210bf3d72", "tabbable": null, "tooltip": null } }, - "7b10525fea564001a54281f611a8ab38": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b170d55d6aec428386afd619f28c7eda", - "placeholder": "​", - "style": "IPY_MODEL_b56d6a4838a34ba78261fecf027ebc08", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "7bea8450f8954148b0ff16ab0cc10ebf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7dfcc78e07f04a6ea8be611f8f413196": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d576505e3e9e40dda622fbd60fb27d87", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4cbd90930a4443109ccef7d1ec480f10", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "7f69ee68a49c4196abe738c71f19b4e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7222b62b50b140fba9f6a3e8ef56dec0", - "placeholder": "​", - "style": "IPY_MODEL_25cc5d78b7bc4b0d8ad589add3abe1a1", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7536.72 examples/s]" - } - }, - "7ffa80b94eaf48758e73b100692f09e3": { + "80c194d7e8024776938ccc9ae9f9514b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4960,7 +4810,7 @@ "width": null } }, - "80c2738edb094a798ebaba7dfd2e43e4": { + "8680cef6bcba41358f0b2245e3ad4f1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5013,89 +4863,60 @@ "width": null } }, - "8272f2f1eb954b40a94d03c3c58fb694": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_73bdde5676a34c1281946f865cd54bf0", - "IPY_MODEL_15d245a73c644d19a25d83fbf5ad58fb", - "IPY_MODEL_586f18e8444448d6bc3de524d0e2cb08" - ], - "layout": "IPY_MODEL_65211f09163d4fdd914cc1ec81a1dd4e", - "tabbable": null, - "tooltip": null - } - }, - "827ab65b6e3345ccb7ee0a710546cb7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "827acfb18fcc4584a08e02f1acb62f96": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1a827cb5ceaa4829b60b0109eff5b0f8", - "IPY_MODEL_3bf91390275e46a8923571af914d66f2", - "IPY_MODEL_28dce778b8ac4f4f9997b022aafa544d" - ], - "layout": "IPY_MODEL_c9b806bcbd7d4af0b57390bab48158cb", - "tabbable": null, - "tooltip": null - } - }, - "87cd456c1f6547f5a1d9258c4be7fb61": { - "model_module": "@jupyter-widgets/controls", + "86ffa2eef8bf4d15821cd2bdee074613": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "8b05b580f24b4954ac37b43fb139ce6c": { + "887477fff78b408693fdfa4ab1646952": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5148,7 +4969,7 @@ "width": null } }, - "8c5fba3c4c814303ab9cf750f4ba0edc": { + "891e83dfcd8a4b29b5cf22c81f04f1e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5201,7 +5022,70 @@ "width": null } }, - "8d381baef399471da95a9bda27ce8dba": { + "8a580d919ecc46b788a811b3ead20ba7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_65b0520e8f194be380ba3213c43130e3", + "placeholder": "​", + "style": "IPY_MODEL_ed16178859c14aeb83a170a1252fd377", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "90681addb12b455a9ba630f4d68088b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_fa4a8769a3864fa1a03f6b7030801bdb", + "IPY_MODEL_25bb8e454c1b4f4d935e13896b5d8274", + "IPY_MODEL_b52804ea50ca497c9cf1e9c22fd05122" + ], + "layout": "IPY_MODEL_2600127ce03c42078c96ab55a769f409", + "tabbable": null, + "tooltip": null + } + }, + "93da94005ed4434e8248172f689ff1a5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "995a2a284fad415bbcb0e0ae2a0e6410": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5254,56 +5138,48 @@ "width": null } }, - "8d958640e45d487fa1356b218185f788": { + "9c0569b3288740e7957046e5602051ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e829f65584844080aa76ea7b31687966", - "max": 30931277.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5e525eccb8354d1080b45aa1fc549251", + "layout": "IPY_MODEL_995a2a284fad415bbcb0e0ae2a0e6410", + "placeholder": "​", + "style": "IPY_MODEL_5dec51715c864d82b748de330097bc61", "tabbable": null, "tooltip": null, - "value": 30931277.0 + "value": "Map (num_proc=4): 100%" } }, - "8f8f40d00401482dab317198ac028d0d": { + "9d8693dbac0647dfb10c6d708f9f06c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21f1137c3a8e4ed5862101c5924dddfb", - "placeholder": "​", - "style": "IPY_MODEL_39d0e7ddedf14c85b7a52e465404a66d", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "92457b3505c941c192cc40dd2aa117c0": { + "a101c3b6225b4fff860482618c744fe2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5318,15 +5194,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_0ab5774997a04bfaa0b61b22afab4c49", + "layout": "IPY_MODEL_d2144843ccdf4afe910d3ee09d6225d4", "placeholder": "​", - "style": "IPY_MODEL_6e987f4813234f148d73f72872c4e14a", + "style": "IPY_MODEL_d3982319220a4345b6b31f518ac67059", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.68it/s]" + "value": " 40/40 [00:00<00:00, 66.85it/s]" } }, - "94197a7c8ed2404988db00166716c4d9": { + "a10372230a91463d91407f070f2e68fe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5341,15 +5217,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b6eba01b3b354589ae18d1b650616ed2", + "layout": "IPY_MODEL_52de047e28024acc9a8a1bcb2d119f80", "placeholder": "​", - "style": "IPY_MODEL_ccc08f2dc3a24e73bfbd2cb4c113fdf5", + "style": "IPY_MODEL_0be90ee02b694223bf88ee128a5982dd", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" + "value": " 30.9M/30.9M [00:00<00:00, 53.4MB/s]" + } + }, + "a1182345e3c5415db85095ad9e812fc0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a1a83560967d4d9086fc1ed8eb4022e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "9479b1cab89247a9a9ed1e0ad9c79b31": { + "a26554ac0d4741ee8ce6d488ebdd9557": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5364,15 +5274,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a67b0828ab1a4ea6b4f2f6c3781b798a", + "layout": "IPY_MODEL_be48e01365e04257a83f1b90333fb316", "placeholder": "​", - "style": "IPY_MODEL_b5aa2f27187f4403a1c0666608d9c015", + "style": "IPY_MODEL_5bb90a1b55c34a21bb9c4e5d6941cc93", "tabbable": null, "tooltip": null, - "value": "Downloading data: 100%" + "value": " 40/40 [00:00<00:00, 69.80it/s]" } }, - "9c31a4ec579f4024b841bdd577346089": { + "a356f17edce64e9f82872d52935fddbc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5425,33 +5335,7 @@ "width": null } }, - "9c8fa30d42274789b11f60bedcc1dd79": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_af559990b6dd4ca5b20732b178bdc389", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d5c3a5e25966472aa07171f473d21003", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "a0a290775af34aa88c0c31efb1f073a9": { + "a68d6cb805e84e869e126049bf112c66": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5504,69 +5388,139 @@ "width": null } }, - "a26121d1472d4715acdca14598797750": { - "model_module": "@jupyter-widgets/controls", + "a71671406e95472faca260d5f99c99d3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7ffa80b94eaf48758e73b100692f09e3", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_20451a4e236f42a185fd5fbcd798bf02", - "tabbable": null, - "tooltip": null, - "value": 40.0 + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a55e7412bc8145c682508f60156ae10a": { - "model_module": "@jupyter-widgets/controls", + "aaeb70d3af9e48a9861025243e2b186a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "a67a762b7bab448daae7e62ec6cfb692": { + "abb587732c974d45aed41ed4bf011226": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_80c194d7e8024776938ccc9ae9f9514b", + "max": 5175617.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b46c85d1bf804de9bc4208ed2bdefad0", + "tabbable": null, + "tooltip": null, + "value": 5175617.0 } }, - "a67b0828ab1a4ea6b4f2f6c3781b798a": { + "acb5a4c79d044476b4db375a95477ab0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5619,7 +5573,25 @@ "width": null } }, - "a7200e30c4134b45b35f1b03dafc1378": { + "add58a12ec0c41d7b7d2aa0c3b7c306d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b1709cfcfebd4e239b073b0f0613405e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5635,41 +5607,56 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9c31a4ec579f4024b841bdd577346089", - "max": 2.0, + "layout": "IPY_MODEL_86ffa2eef8bf4d15821cd2bdee074613", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_333260fd82aa4a29bb47b831e780aa40", + "style": "IPY_MODEL_93da94005ed4434e8248172f689ff1a5", "tabbable": null, "tooltip": null, - "value": 2.0 + "value": 40.0 } }, - "af1932e99e7843a0975c3514b0672ce4": { + "b46c85d1bf804de9bc4208ed2bdefad0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b52804ea50ca497c9cf1e9c22fd05122": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_77807272ebd948ffa6f8284b90a2600e", - "IPY_MODEL_a7200e30c4134b45b35f1b03dafc1378", - "IPY_MODEL_6311121d81b64e0dbed3004d10284c73" - ], - "layout": "IPY_MODEL_20f6a5a130cc4db5a48b35a7237c4b0e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_224edd0c6d1f4706acb4172cafae63ed", + "placeholder": "​", + "style": "IPY_MODEL_4245c182c418461089ff64122026cf89", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 10000/10000 [00:00<00:00, 253045.44 examples/s]" } }, - "af559990b6dd4ca5b20732b178bdc389": { + "b53ad2c3495a4380a386de2670df193c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5722,7 +5709,31 @@ "width": null } }, - "afb865dcece34841b69c7b478e87daf3": { + "b56ff307f7824e6e9bcf6a01e2e13370": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c04808d07d0c4dd7a2e5a404e28c878e", + "IPY_MODEL_ec1d49c3e119490eb8f6631158151d2b", + "IPY_MODEL_d46b9e0cfa06424eb5df26a312b2f2b6" + ], + "layout": "IPY_MODEL_a71671406e95472faca260d5f99c99d3", + "tabbable": null, + "tooltip": null + } + }, + "b5b59795214044109b8c4485b1502f02": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5775,7 +5786,7 @@ "width": null } }, - "b170d55d6aec428386afd619f28c7eda": { + "be48e01365e04257a83f1b90333fb316": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5828,53 +5839,7 @@ "width": null } }, - "b3060e033e844529a5bcbe2b9851a277": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a0a290775af34aa88c0c31efb1f073a9", - "placeholder": "​", - "style": "IPY_MODEL_be5b4efc6ced4f6fadf04a6e80366029", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "b4e9232ff5d44352a2bc0b45c1916b29": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cd7da3ab2c564bada9c1fc825889a877", - "placeholder": "​", - "style": "IPY_MODEL_5add8322fd004babbffe08898714d24d", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 60.63it/s]" - } - }, - "b56d6a4838a34ba78261fecf027ebc08": { + "be80350116fb40b3bed12b0aff69e95d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5892,25 +5857,33 @@ "text_color": null } }, - "b5aa2f27187f4403a1c0666608d9c015": { + "bfd20dfe7ced4745b700d16343e6555b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8680cef6bcba41358f0b2245e3ad4f1f", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3ba2af3e664b4c97bae98b5db800e998", + "tabbable": null, + "tooltip": null, + "value": 60000.0 } }, - "b63540980aee4b39b981e366db698ff1": { + "c04808d07d0c4dd7a2e5a404e28c878e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5925,15 +5898,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_50cd3e41f61f4355ad08bf6597d8fc6f", + "layout": "IPY_MODEL_6fd1907ecba34676ae3fd20801ef3e33", "placeholder": "​", - "style": "IPY_MODEL_c23eebacdb724055a5718ef399ad6cf5", + "style": "IPY_MODEL_9d8693dbac0647dfb10c6d708f9f06c3", "tabbable": null, "tooltip": null, "value": "100%" } }, - "b6eba01b3b354589ae18d1b650616ed2": { + "c0873c29df7744be9aa5b33759f993e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5986,33 +5959,7 @@ "width": null } }, - "b93f993362ea4040ad08f91b8d5b8863": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e10e970455ae4e199778951dc545e4bb", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_31155c361ed545d48fed379a6cf6c696", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "bc6c85d4e4534c2b801d375e07560a2f": { + "c6049231a5b448029b1cf256bd07e029": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6027,104 +5974,78 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0d682d4ff4943b4a492c6a8e195de9d", + "layout": "IPY_MODEL_cdf17e98637647809f634113c13917ca", "placeholder": "​", - "style": "IPY_MODEL_87cd456c1f6547f5a1d9258c4be7fb61", + "style": "IPY_MODEL_6a2f4cef88b74e1eba63c94bb2bd5412", "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 276844.44 examples/s]" - } - }, - "be5b4efc6ced4f6fadf04a6e80366029": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c0d682d4ff4943b4a492c6a8e195de9d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "tooltip": null, + "value": " 60000/60000 [00:46<00:00, 1262.85it/s]" } }, - "c23eebacdb724055a5718ef399ad6cf5": { + "c6e9e2c8ad734cec8bbdd869c9f46951": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1e824539d22548dea150f1f6eaac4b1b", + "IPY_MODEL_6c492d495c854d4aaa733a6c4a69053a", + "IPY_MODEL_c6049231a5b448029b1cf256bd07e029" + ], + "layout": "IPY_MODEL_0ec33797bad14055a1de8a8f992c6134", + "tabbable": null, + "tooltip": null + } + }, + "c8d9f0fac0f64b38ac62e0a708d58948": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "c91b1e88c68248b0ad788baa0d0e9287": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_202b1a1d2d12458089afedd08ebd46e2", + "placeholder": "​", + "style": "IPY_MODEL_e5e080478dea430293650d0383c3b261", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "c9b806bcbd7d4af0b57390bab48158cb": { + "ca7021afb6824ca39461db6224a967b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6177,7 +6098,7 @@ "width": null } }, - "cb5c826a35d64460bf16188a8d1194d8": { + "cdf17e98637647809f634113c13917ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6230,7 +6151,7 @@ "width": null } }, - "cbcc046d9a49411280f603912ded63b4": { + "cdff082d070b4b489f5b4ea895722379": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6246,25 +6167,56 @@ "description_width": "" } }, - "ccc08f2dc3a24e73bfbd2cb4c113fdf5": { + "ce3f6ddf3db34c9eb62018f9565b41b6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e2ada2a6c8424f7e844e74ae447501c5", + "max": 2.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_07bf3e196fd244339afe75d5bde48e3e", + "tabbable": null, + "tooltip": null, + "value": 2.0 + } + }, + "cf990872c7e342e89ab836f3533d98a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4cb4b2dea30d4d719ce0cfc60436bd1b", + "placeholder": "​", + "style": "IPY_MODEL_add58a12ec0c41d7b7d2aa0c3b7c306d", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7664.09 examples/s]" } }, - "cd7da3ab2c564bada9c1fc825889a877": { + "d2144843ccdf4afe910d3ee09d6225d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6317,7 +6269,7 @@ "width": null } }, - "d1f8120d5198465aa00745a1a862f19a": { + "d25407a4af2348529af54e69cb4cdb39": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6370,7 +6322,97 @@ "width": null } }, - "d27f58754bff424dace63c6287c9ce80": { + "d33300be1bc84be4a49bca8b8c925a8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_30a6fba3aeff40458e4522b8d25e2460", + "max": 30931277.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0704c92cb83f453099a319c6760a3785", + "tabbable": null, + "tooltip": null, + "value": 30931277.0 + } + }, + "d3982319220a4345b6b31f518ac67059": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3a8377a5ef14c2db6ec3506f0bea044": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2340af9d58c945cf8f396b29d51c5971", + "placeholder": "​", + "style": "IPY_MODEL_26e2e4b700c047bab29090430c40724a", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:00<00:00, 282603.20 examples/s]" + } + }, + "d46b9e0cfa06424eb5df26a312b2f2b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7a513b0560ff4bf09146696eb95077ed", + "placeholder": "​", + "style": "IPY_MODEL_22da545dee504e11be27c3f2e6f64a8d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.23it/s]" + } + }, + "d8e061de7b414e0a8911b9b283456372": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6385,15 +6427,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_afb865dcece34841b69c7b478e87daf3", + "layout": "IPY_MODEL_e94804474bc641e3abf7d83273142c42", "placeholder": "​", - "style": "IPY_MODEL_f6bff9ec28fe4f1bb5f852b9ca5e9a26", + "style": "IPY_MODEL_be80350116fb40b3bed12b0aff69e95d", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 59.16it/s]" + "value": "Downloading data: 100%" } }, - "d38f3642aa7d4c719f6ae02148d713db": { + "db184c07f55141f488cce3ec3fc3159d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6446,33 +6488,7 @@ "width": null } }, - "d45410123ddb4f64b0a5a8af0034c0a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19145420cef8409a8d502b4ddb4a91b5", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_16aa42c84f5c426c890836b1c1350361", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "d576505e3e9e40dda622fbd60fb27d87": { + "db53115a53044737bff7390360d41ed7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6525,63 +6541,30 @@ "width": null } }, - "d5c3a5e25966472aa07171f473d21003": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d79bfe70932b4eec85c02d0733cebf82": { + "dca0375df0034c4fa92f2a4bb7144667": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_0d07481603214313a619811e46e0b5ee", - "IPY_MODEL_e1621bc5794f470c84662d8c199f9fb9", - "IPY_MODEL_0bcb5380d1614e6bb4deca1e736449fd" - ], - "layout": "IPY_MODEL_136558e15c144724b1fba387b5ada3fc", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7edc557e66c5439ab5478477342fee93", + "placeholder": "​", + "style": "IPY_MODEL_e0d6afceb63747c1a757d7fbdceb43f0", "tabbable": null, - "tooltip": null - } - }, - "d7db34c27aa5475db1a714c869369693": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "tooltip": null, + "value": " 40/40 [00:00<00:00, 67.23it/s]" } }, - "d872aefd3edf47bdbf1e40052fb19a3c": { + "e03047faf85347f99c053a2b8eaec19c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6596,60 +6579,34 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7b10525fea564001a54281f611a8ab38", - "IPY_MODEL_d45410123ddb4f64b0a5a8af0034c0a8", - "IPY_MODEL_f2869dec0ad14a97adc2f561a2beb5b8" + "IPY_MODEL_32baef6de51b4d538d24f5ba1bf84895", + "IPY_MODEL_ce3f6ddf3db34c9eb62018f9565b41b6", + "IPY_MODEL_58dbeddc86a84451839a6a06a29391e3" ], - "layout": "IPY_MODEL_72e16de825f7419a944b4a4098da0c73", + "layout": "IPY_MODEL_4c86ed0a29c94761b734a38448c453eb", "tabbable": null, "tooltip": null } }, - "dd53980ddc684172980298668e5425bf": { + "e0d6afceb63747c1a757d7fbdceb43f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "de284976dbe74c959ec30b5aa4b9ddbe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b24b486c264489a938437f2e89a30aa", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_827ab65b6e3345ccb7ee0a710546cb7c", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e10e970455ae4e199778951dc545e4bb": { + "e0e7582bcb8d4e37a597d96f234740de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6702,51 +6659,7 @@ "width": null } }, - "e1621bc5794f470c84662d8c199f9fb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6882767f87854ef3967eb94dedaf4cca", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cbcc046d9a49411280f603912ded63b4", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "e6147750ab6b45b6aeef91cf5b173069": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "e829f65584844080aa76ea7b31687966": { + "e2ada2a6c8424f7e844e74ae447501c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6799,7 +6712,25 @@ "width": null } }, - "eef440e427c74c22b33c6dd1c0800afe": { + "e5e080478dea430293650d0383c3b261": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e7fd0e9c45c74cb28ae53d1c9eafe1a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6852,7 +6783,7 @@ "width": null } }, - "f151cd2f497b411bbbff43642e002da7": { + "e8d62619eeaa49329fdd0d7210bf3d72": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6905,7 +6836,7 @@ "width": null } }, - "f2869dec0ad14a97adc2f561a2beb5b8": { + "e8fdd33091014c4e9b0f4f4c80d77d9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6920,39 +6851,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1f57bd7390e24e6aa97659f2524f3915", + "layout": "IPY_MODEL_1c9a0ec998694ab98f33e462be441b15", "placeholder": "​", - "style": "IPY_MODEL_a55e7412bc8145c682508f60156ae10a", + "style": "IPY_MODEL_f617831e108a4706bf348d7559e53793", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:46<00:00, 1202.49it/s]" - } - }, - "f55266ef46204d7b9d9c7e1e6177f977": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3060e033e844529a5bcbe2b9851a277", - "IPY_MODEL_9c8fa30d42274789b11f60bedcc1dd79", - "IPY_MODEL_b4e9232ff5d44352a2bc0b45c1916b29" - ], - "layout": "IPY_MODEL_ffb3d37637ee4b13b9be81064f006324", - "tabbable": null, - "tooltip": null + "value": "Downloading data: 100%" } }, - "f5723be682c24206bc18f53ca9f39679": { + "e94804474bc641e3abf7d83273142c42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7005,7 +6912,57 @@ "width": null } }, - "f5df588410aa4c0fa6bfd32b8fc2948e": { + "e9c2d308abf54d4d984ae58a82d5078e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6b1f49b491524b529aec41aebcecd597", + "IPY_MODEL_7b0db4e438bd4cf0bbb0a609862c8652", + "IPY_MODEL_d3a8377a5ef14c2db6ec3506f0bea044" + ], + "layout": "IPY_MODEL_4fc726979875440198e98b47d8a460ac", + "tabbable": null, + "tooltip": null + } + }, + "ec1d49c3e119490eb8f6631158151d2b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b5b59795214044109b8c4485b1502f02", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a1a83560967d4d9086fc1ed8eb4022e1", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "ed16178859c14aeb83a170a1252fd377": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7023,7 +6980,7 @@ "text_color": null } }, - "f6bff9ec28fe4f1bb5f852b9ca5e9a26": { + "ee5d7d4d67ff43599f10436b84389778": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7041,7 +6998,31 @@ "text_color": null } }, - "f895a633a0b44e93b6b546912885499b": { + "f14eebd8eb0d4e95bac3630f3fe6d0e9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0fd3562f606b4206957d569480d562aa", + "IPY_MODEL_2942fd8cccc94f7a8056af7f51912fc2", + "IPY_MODEL_a26554ac0d4741ee8ce6d488ebdd9557" + ], + "layout": "IPY_MODEL_f8781da8d96145e5a854e84da4344723", + "tabbable": null, + "tooltip": null + } + }, + "f617831e108a4706bf348d7559e53793": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7059,60 +7040,30 @@ "text_color": null } }, - "f9d9c00bb8ef44f29ba72345c4ce268b": { - "model_module": "@jupyter-widgets/base", + "f8428265fb9b4bdf9292d5b2ca1bb430": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7bbcbd023d9844fcb11c44b43fba9714", + "placeholder": "​", + "style": "IPY_MODEL_1d54ef60f40b42d894c0c93aa023f924", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.79it/s]" } }, - "fe300e135b414c4ca4fffe71b1732157": { + "f8781da8d96145e5a854e84da4344723": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7165,7 +7116,56 @@ "width": null } }, - "ffb3d37637ee4b13b9be81064f006324": { + "f886827e67fc4f5ebf2091c3e40b2145": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_62fa3ddadaff4c599654918619bbacdb", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_08653f32acef42e2b00105e4a07cceac", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "fa4a8769a3864fa1a03f6b7030801bdb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c0873c29df7744be9aa5b33759f993e8", + "placeholder": "​", + "style": "IPY_MODEL_7bd79c63938a4501be1f20daa3a69df5", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" + } + }, + "fbe1888706b24d19b3a94a33c39fdd6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index a798cfe46..3c6819ed2 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:42.730636Z", - "iopub.status.busy": "2024-05-23T02:44:42.730472Z", - "iopub.status.idle": "2024-05-23T02:44:43.867595Z", - "shell.execute_reply": "2024-05-23T02:44:43.867047Z" + "iopub.execute_input": "2024-05-23T15:18:03.329661Z", + "iopub.status.busy": "2024-05-23T15:18:03.329245Z", + "iopub.status.idle": "2024-05-23T15:18:04.461620Z", + "shell.execute_reply": "2024-05-23T15:18:04.461105Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.870036Z", - "iopub.status.busy": "2024-05-23T02:44:43.869751Z", - "iopub.status.idle": "2024-05-23T02:44:43.888494Z", - "shell.execute_reply": "2024-05-23T02:44:43.887954Z" + "iopub.execute_input": "2024-05-23T15:18:04.464258Z", + "iopub.status.busy": "2024-05-23T15:18:04.463889Z", + "iopub.status.idle": "2024-05-23T15:18:04.482775Z", + "shell.execute_reply": "2024-05-23T15:18:04.482289Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.890714Z", - "iopub.status.busy": "2024-05-23T02:44:43.890470Z", - "iopub.status.idle": "2024-05-23T02:44:43.922079Z", - "shell.execute_reply": "2024-05-23T02:44:43.921508Z" + "iopub.execute_input": "2024-05-23T15:18:04.485239Z", + "iopub.status.busy": "2024-05-23T15:18:04.484734Z", + "iopub.status.idle": "2024-05-23T15:18:04.507036Z", + "shell.execute_reply": "2024-05-23T15:18:04.506428Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.924158Z", - "iopub.status.busy": "2024-05-23T02:44:43.923982Z", - "iopub.status.idle": "2024-05-23T02:44:43.927419Z", - "shell.execute_reply": "2024-05-23T02:44:43.926993Z" + "iopub.execute_input": "2024-05-23T15:18:04.509357Z", + "iopub.status.busy": "2024-05-23T15:18:04.508917Z", + "iopub.status.idle": "2024-05-23T15:18:04.512565Z", + "shell.execute_reply": "2024-05-23T15:18:04.512120Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.929657Z", - "iopub.status.busy": "2024-05-23T02:44:43.929395Z", - "iopub.status.idle": "2024-05-23T02:44:43.936873Z", - "shell.execute_reply": "2024-05-23T02:44:43.936429Z" + "iopub.execute_input": "2024-05-23T15:18:04.514658Z", + "iopub.status.busy": "2024-05-23T15:18:04.514334Z", + "iopub.status.idle": "2024-05-23T15:18:04.522118Z", + "shell.execute_reply": "2024-05-23T15:18:04.521679Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.939040Z", - "iopub.status.busy": "2024-05-23T02:44:43.938710Z", - "iopub.status.idle": "2024-05-23T02:44:43.941341Z", - "shell.execute_reply": "2024-05-23T02:44:43.940882Z" + "iopub.execute_input": "2024-05-23T15:18:04.524308Z", + "iopub.status.busy": "2024-05-23T15:18:04.524005Z", + "iopub.status.idle": "2024-05-23T15:18:04.527061Z", + "shell.execute_reply": "2024-05-23T15:18:04.526631Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:43.943257Z", - "iopub.status.busy": "2024-05-23T02:44:43.942991Z", - "iopub.status.idle": "2024-05-23T02:44:46.889971Z", - "shell.execute_reply": "2024-05-23T02:44:46.889385Z" + "iopub.execute_input": "2024-05-23T15:18:04.529029Z", + "iopub.status.busy": "2024-05-23T15:18:04.528706Z", + "iopub.status.idle": "2024-05-23T15:18:07.442990Z", + "shell.execute_reply": "2024-05-23T15:18:07.442453Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:46.892551Z", - "iopub.status.busy": "2024-05-23T02:44:46.892161Z", - "iopub.status.idle": "2024-05-23T02:44:46.901966Z", - "shell.execute_reply": "2024-05-23T02:44:46.901526Z" + "iopub.execute_input": "2024-05-23T15:18:07.445702Z", + "iopub.status.busy": "2024-05-23T15:18:07.445319Z", + "iopub.status.idle": "2024-05-23T15:18:07.455041Z", + "shell.execute_reply": "2024-05-23T15:18:07.454557Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:46.903929Z", - "iopub.status.busy": "2024-05-23T02:44:46.903737Z", - "iopub.status.idle": "2024-05-23T02:44:48.613992Z", - "shell.execute_reply": "2024-05-23T02:44:48.613202Z" + "iopub.execute_input": "2024-05-23T15:18:07.457020Z", + "iopub.status.busy": "2024-05-23T15:18:07.456721Z", + "iopub.status.idle": "2024-05-23T15:18:09.213100Z", + "shell.execute_reply": "2024-05-23T15:18:09.212489Z" } }, "outputs": [ @@ -484,10 +484,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.617004Z", - "iopub.status.busy": "2024-05-23T02:44:48.616322Z", - "iopub.status.idle": "2024-05-23T02:44:48.639456Z", - "shell.execute_reply": "2024-05-23T02:44:48.638944Z" + "iopub.execute_input": "2024-05-23T15:18:09.216724Z", + "iopub.status.busy": "2024-05-23T15:18:09.215605Z", + "iopub.status.idle": "2024-05-23T15:18:09.239920Z", + "shell.execute_reply": "2024-05-23T15:18:09.239435Z" }, "scrolled": true }, @@ -612,10 +612,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.642745Z", - "iopub.status.busy": "2024-05-23T02:44:48.641828Z", - "iopub.status.idle": "2024-05-23T02:44:48.652900Z", - "shell.execute_reply": "2024-05-23T02:44:48.652420Z" + "iopub.execute_input": "2024-05-23T15:18:09.243460Z", + "iopub.status.busy": "2024-05-23T15:18:09.242516Z", + "iopub.status.idle": "2024-05-23T15:18:09.253523Z", + "shell.execute_reply": "2024-05-23T15:18:09.253048Z" } }, "outputs": [ @@ -719,10 +719,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.656361Z", - "iopub.status.busy": "2024-05-23T02:44:48.655438Z", - "iopub.status.idle": "2024-05-23T02:44:48.667988Z", - "shell.execute_reply": "2024-05-23T02:44:48.667506Z" + "iopub.execute_input": "2024-05-23T15:18:09.256935Z", + "iopub.status.busy": "2024-05-23T15:18:09.256029Z", + "iopub.status.idle": "2024-05-23T15:18:09.268500Z", + "shell.execute_reply": "2024-05-23T15:18:09.268019Z" } }, "outputs": [ @@ -851,10 +851,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.671510Z", - "iopub.status.busy": "2024-05-23T02:44:48.670597Z", - "iopub.status.idle": "2024-05-23T02:44:48.681670Z", - "shell.execute_reply": "2024-05-23T02:44:48.681180Z" + "iopub.execute_input": "2024-05-23T15:18:09.271942Z", + "iopub.status.busy": "2024-05-23T15:18:09.271025Z", + "iopub.status.idle": "2024-05-23T15:18:09.282057Z", + "shell.execute_reply": "2024-05-23T15:18:09.281577Z" } }, "outputs": [ @@ -968,10 +968,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.685102Z", - "iopub.status.busy": "2024-05-23T02:44:48.684197Z", - "iopub.status.idle": "2024-05-23T02:44:48.696565Z", - "shell.execute_reply": "2024-05-23T02:44:48.696023Z" + "iopub.execute_input": "2024-05-23T15:18:09.285490Z", + "iopub.status.busy": "2024-05-23T15:18:09.284583Z", + "iopub.status.idle": "2024-05-23T15:18:09.296961Z", + "shell.execute_reply": "2024-05-23T15:18:09.296430Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.698838Z", - "iopub.status.busy": "2024-05-23T02:44:48.698502Z", - "iopub.status.idle": "2024-05-23T02:44:48.706307Z", - "shell.execute_reply": "2024-05-23T02:44:48.705753Z" + "iopub.execute_input": "2024-05-23T15:18:09.299060Z", + "iopub.status.busy": "2024-05-23T15:18:09.298891Z", + "iopub.status.idle": "2024-05-23T15:18:09.305638Z", + "shell.execute_reply": "2024-05-23T15:18:09.305225Z" } }, "outputs": [ @@ -1169,10 +1169,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.708699Z", - "iopub.status.busy": "2024-05-23T02:44:48.708530Z", - "iopub.status.idle": "2024-05-23T02:44:48.715308Z", - "shell.execute_reply": "2024-05-23T02:44:48.714856Z" + "iopub.execute_input": "2024-05-23T15:18:09.307578Z", + "iopub.status.busy": "2024-05-23T15:18:09.307398Z", + "iopub.status.idle": "2024-05-23T15:18:09.313578Z", + "shell.execute_reply": "2024-05-23T15:18:09.313081Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:48.717407Z", - "iopub.status.busy": "2024-05-23T02:44:48.717062Z", - "iopub.status.idle": "2024-05-23T02:44:48.723412Z", - "shell.execute_reply": "2024-05-23T02:44:48.722968Z" + "iopub.execute_input": "2024-05-23T15:18:09.315564Z", + "iopub.status.busy": "2024-05-23T15:18:09.315393Z", + "iopub.status.idle": "2024-05-23T15:18:09.321703Z", + "shell.execute_reply": "2024-05-23T15:18:09.321251Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 020c33c1d..a3c570288 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:51.263538Z", - "iopub.status.busy": "2024-05-23T02:44:51.263143Z", - "iopub.status.idle": "2024-05-23T02:44:53.898469Z", - "shell.execute_reply": "2024-05-23T02:44:53.897836Z" + "iopub.execute_input": "2024-05-23T15:18:11.824777Z", + "iopub.status.busy": "2024-05-23T15:18:11.824605Z", + "iopub.status.idle": "2024-05-23T15:18:14.504599Z", + "shell.execute_reply": "2024-05-23T15:18:14.504085Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.900982Z", - "iopub.status.busy": "2024-05-23T02:44:53.900692Z", - "iopub.status.idle": "2024-05-23T02:44:53.904404Z", - "shell.execute_reply": "2024-05-23T02:44:53.903976Z" + "iopub.execute_input": "2024-05-23T15:18:14.507121Z", + "iopub.status.busy": "2024-05-23T15:18:14.506825Z", + "iopub.status.idle": "2024-05-23T15:18:14.510173Z", + "shell.execute_reply": "2024-05-23T15:18:14.509615Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.906316Z", - "iopub.status.busy": "2024-05-23T02:44:53.906011Z", - "iopub.status.idle": "2024-05-23T02:44:53.909091Z", - "shell.execute_reply": "2024-05-23T02:44:53.908559Z" + "iopub.execute_input": "2024-05-23T15:18:14.512403Z", + "iopub.status.busy": "2024-05-23T15:18:14.512093Z", + "iopub.status.idle": "2024-05-23T15:18:14.515209Z", + "shell.execute_reply": "2024-05-23T15:18:14.514655Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.911024Z", - "iopub.status.busy": "2024-05-23T02:44:53.910854Z", - "iopub.status.idle": "2024-05-23T02:44:53.941996Z", - "shell.execute_reply": "2024-05-23T02:44:53.941499Z" + "iopub.execute_input": "2024-05-23T15:18:14.517314Z", + "iopub.status.busy": "2024-05-23T15:18:14.517017Z", + "iopub.status.idle": "2024-05-23T15:18:14.537637Z", + "shell.execute_reply": "2024-05-23T15:18:14.537152Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.943998Z", - "iopub.status.busy": "2024-05-23T02:44:53.943825Z", - "iopub.status.idle": "2024-05-23T02:44:53.947479Z", - "shell.execute_reply": "2024-05-23T02:44:53.947051Z" + "iopub.execute_input": "2024-05-23T15:18:14.539828Z", + "iopub.status.busy": "2024-05-23T15:18:14.539419Z", + "iopub.status.idle": "2024-05-23T15:18:14.543260Z", + "shell.execute_reply": "2024-05-23T15:18:14.542814Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'card_payment_fee_charged', 'getting_spare_card', 'supported_cards_and_currencies', 'change_pin', 'cancel_transfer', 'lost_or_stolen_phone', 'card_about_to_expire', 'visa_or_mastercard', 'beneficiary_not_allowed', 'apple_pay_or_google_pay'}\n" + "Classes: {'change_pin', 'getting_spare_card', 'card_payment_fee_charged', 'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'card_about_to_expire', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.949609Z", - "iopub.status.busy": "2024-05-23T02:44:53.949217Z", - "iopub.status.idle": "2024-05-23T02:44:53.952249Z", - "shell.execute_reply": "2024-05-23T02:44:53.951732Z" + "iopub.execute_input": "2024-05-23T15:18:14.545089Z", + "iopub.status.busy": "2024-05-23T15:18:14.544915Z", + "iopub.status.idle": "2024-05-23T15:18:14.548143Z", + "shell.execute_reply": "2024-05-23T15:18:14.547673Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:53.954160Z", - "iopub.status.busy": "2024-05-23T02:44:53.953995Z", - "iopub.status.idle": "2024-05-23T02:44:58.073235Z", - "shell.execute_reply": "2024-05-23T02:44:58.072687Z" + "iopub.execute_input": "2024-05-23T15:18:14.550053Z", + "iopub.status.busy": "2024-05-23T15:18:14.549886Z", + "iopub.status.idle": "2024-05-23T15:18:18.166914Z", + "shell.execute_reply": "2024-05-23T15:18:18.166251Z" } }, "outputs": [ @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:58.076082Z", - "iopub.status.busy": "2024-05-23T02:44:58.075592Z", - "iopub.status.idle": "2024-05-23T02:44:58.945975Z", - "shell.execute_reply": "2024-05-23T02:44:58.945398Z" + "iopub.execute_input": "2024-05-23T15:18:18.169601Z", + "iopub.status.busy": "2024-05-23T15:18:18.169376Z", + "iopub.status.idle": "2024-05-23T15:18:19.017896Z", + "shell.execute_reply": "2024-05-23T15:18:19.017318Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:58.948911Z", - "iopub.status.busy": "2024-05-23T02:44:58.948532Z", - "iopub.status.idle": "2024-05-23T02:44:58.951395Z", - "shell.execute_reply": "2024-05-23T02:44:58.950920Z" + "iopub.execute_input": "2024-05-23T15:18:19.020812Z", + "iopub.status.busy": "2024-05-23T15:18:19.020449Z", + "iopub.status.idle": "2024-05-23T15:18:19.023280Z", + "shell.execute_reply": "2024-05-23T15:18:19.022794Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:44:58.953741Z", - "iopub.status.busy": "2024-05-23T02:44:58.953364Z", - "iopub.status.idle": "2024-05-23T02:45:00.472984Z", - "shell.execute_reply": "2024-05-23T02:45:00.472314Z" + "iopub.execute_input": "2024-05-23T15:18:19.025587Z", + "iopub.status.busy": "2024-05-23T15:18:19.025228Z", + "iopub.status.idle": "2024-05-23T15:18:20.567743Z", + "shell.execute_reply": "2024-05-23T15:18:20.567101Z" }, "scrolled": true }, @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.476070Z", - "iopub.status.busy": "2024-05-23T02:45:00.475459Z", - "iopub.status.idle": "2024-05-23T02:45:00.498879Z", - "shell.execute_reply": "2024-05-23T02:45:00.498401Z" + "iopub.execute_input": "2024-05-23T15:18:20.572027Z", + "iopub.status.busy": "2024-05-23T15:18:20.570682Z", + "iopub.status.idle": "2024-05-23T15:18:20.596267Z", + "shell.execute_reply": "2024-05-23T15:18:20.595766Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.501243Z", - "iopub.status.busy": "2024-05-23T02:45:00.500874Z", - "iopub.status.idle": "2024-05-23T02:45:00.510252Z", - "shell.execute_reply": "2024-05-23T02:45:00.509774Z" + "iopub.execute_input": "2024-05-23T15:18:20.599843Z", + "iopub.status.busy": "2024-05-23T15:18:20.598765Z", + "iopub.status.idle": "2024-05-23T15:18:20.610446Z", + "shell.execute_reply": "2024-05-23T15:18:20.609941Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.512693Z", - "iopub.status.busy": "2024-05-23T02:45:00.512382Z", - "iopub.status.idle": "2024-05-23T02:45:00.516739Z", - "shell.execute_reply": "2024-05-23T02:45:00.516262Z" + "iopub.execute_input": "2024-05-23T15:18:20.613975Z", + "iopub.status.busy": "2024-05-23T15:18:20.612923Z", + "iopub.status.idle": "2024-05-23T15:18:20.619127Z", + "shell.execute_reply": "2024-05-23T15:18:20.618706Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.519208Z", - "iopub.status.busy": "2024-05-23T02:45:00.518898Z", - "iopub.status.idle": "2024-05-23T02:45:00.525485Z", - "shell.execute_reply": "2024-05-23T02:45:00.525087Z" + "iopub.execute_input": "2024-05-23T15:18:20.621375Z", + "iopub.status.busy": "2024-05-23T15:18:20.620885Z", + "iopub.status.idle": "2024-05-23T15:18:20.627546Z", + "shell.execute_reply": "2024-05-23T15:18:20.627080Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.527466Z", - "iopub.status.busy": "2024-05-23T02:45:00.527221Z", - "iopub.status.idle": "2024-05-23T02:45:00.533800Z", - "shell.execute_reply": "2024-05-23T02:45:00.533423Z" + "iopub.execute_input": "2024-05-23T15:18:20.629614Z", + "iopub.status.busy": "2024-05-23T15:18:20.629324Z", + "iopub.status.idle": "2024-05-23T15:18:20.635706Z", + "shell.execute_reply": "2024-05-23T15:18:20.635150Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.535526Z", - "iopub.status.busy": "2024-05-23T02:45:00.535281Z", - "iopub.status.idle": "2024-05-23T02:45:00.540209Z", - "shell.execute_reply": "2024-05-23T02:45:00.539830Z" + "iopub.execute_input": "2024-05-23T15:18:20.637695Z", + "iopub.status.busy": "2024-05-23T15:18:20.637387Z", + "iopub.status.idle": "2024-05-23T15:18:20.643049Z", + "shell.execute_reply": "2024-05-23T15:18:20.642501Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.542000Z", - "iopub.status.busy": "2024-05-23T02:45:00.541754Z", - "iopub.status.idle": "2024-05-23T02:45:00.548985Z", - "shell.execute_reply": "2024-05-23T02:45:00.548604Z" + "iopub.execute_input": "2024-05-23T15:18:20.644992Z", + "iopub.status.busy": "2024-05-23T15:18:20.644695Z", + "iopub.status.idle": "2024-05-23T15:18:20.653055Z", + "shell.execute_reply": "2024-05-23T15:18:20.652504Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.550832Z", - "iopub.status.busy": "2024-05-23T02:45:00.550538Z", - "iopub.status.idle": "2024-05-23T02:45:00.555766Z", - "shell.execute_reply": "2024-05-23T02:45:00.555232Z" + "iopub.execute_input": "2024-05-23T15:18:20.655060Z", + "iopub.status.busy": "2024-05-23T15:18:20.654763Z", + "iopub.status.idle": "2024-05-23T15:18:20.660041Z", + "shell.execute_reply": "2024-05-23T15:18:20.659490Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.557755Z", - "iopub.status.busy": "2024-05-23T02:45:00.557339Z", - "iopub.status.idle": "2024-05-23T02:45:00.562509Z", - "shell.execute_reply": "2024-05-23T02:45:00.562082Z" + "iopub.execute_input": "2024-05-23T15:18:20.661947Z", + "iopub.status.busy": "2024-05-23T15:18:20.661627Z", + "iopub.status.idle": "2024-05-23T15:18:20.666886Z", + "shell.execute_reply": "2024-05-23T15:18:20.666400Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.564554Z", - "iopub.status.busy": "2024-05-23T02:45:00.564173Z", - "iopub.status.idle": "2024-05-23T02:45:00.567632Z", - "shell.execute_reply": "2024-05-23T02:45:00.567191Z" + "iopub.execute_input": "2024-05-23T15:18:20.668902Z", + "iopub.status.busy": "2024-05-23T15:18:20.668602Z", + "iopub.status.idle": "2024-05-23T15:18:20.672008Z", + "shell.execute_reply": "2024-05-23T15:18:20.671583Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:00.569758Z", - "iopub.status.busy": "2024-05-23T02:45:00.569396Z", - "iopub.status.idle": "2024-05-23T02:45:00.574709Z", - "shell.execute_reply": "2024-05-23T02:45:00.574130Z" + "iopub.execute_input": "2024-05-23T15:18:20.674040Z", + "iopub.status.busy": "2024-05-23T15:18:20.673742Z", + "iopub.status.idle": "2024-05-23T15:18:20.678904Z", + "shell.execute_reply": "2024-05-23T15:18:20.678310Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 12c7c5d7f..caba51307 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:03.779840Z", - "iopub.status.busy": "2024-05-23T02:45:03.779686Z", - "iopub.status.idle": "2024-05-23T02:45:04.911023Z", - "shell.execute_reply": "2024-05-23T02:45:04.910399Z" + "iopub.execute_input": "2024-05-23T15:18:23.569117Z", + "iopub.status.busy": "2024-05-23T15:18:23.568584Z", + "iopub.status.idle": "2024-05-23T15:18:24.680010Z", + "shell.execute_reply": "2024-05-23T15:18:24.679516Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:04.913889Z", - "iopub.status.busy": "2024-05-23T02:45:04.913372Z", - "iopub.status.idle": "2024-05-23T02:45:04.916375Z", - "shell.execute_reply": "2024-05-23T02:45:04.915832Z" + "iopub.execute_input": "2024-05-23T15:18:24.682646Z", + "iopub.status.busy": "2024-05-23T15:18:24.682170Z", + "iopub.status.idle": "2024-05-23T15:18:24.685078Z", + "shell.execute_reply": "2024-05-23T15:18:24.684631Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:04.918464Z", - "iopub.status.busy": "2024-05-23T02:45:04.918245Z", - "iopub.status.idle": "2024-05-23T02:45:04.930907Z", - "shell.execute_reply": "2024-05-23T02:45:04.930283Z" + "iopub.execute_input": "2024-05-23T15:18:24.687271Z", + "iopub.status.busy": "2024-05-23T15:18:24.686871Z", + "iopub.status.idle": "2024-05-23T15:18:24.698963Z", + "shell.execute_reply": "2024-05-23T15:18:24.698415Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:04.933426Z", - "iopub.status.busy": "2024-05-23T02:45:04.932999Z", - "iopub.status.idle": "2024-05-23T02:45:09.987856Z", - "shell.execute_reply": "2024-05-23T02:45:09.987261Z" + "iopub.execute_input": "2024-05-23T15:18:24.701032Z", + "iopub.status.busy": "2024-05-23T15:18:24.700708Z", + "iopub.status.idle": "2024-05-23T15:18:28.638009Z", + "shell.execute_reply": "2024-05-23T15:18:28.637529Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 1fabe616a..bae5aecd3 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:12.020630Z", - "iopub.status.busy": "2024-05-23T02:45:12.020458Z", - "iopub.status.idle": "2024-05-23T02:45:13.122524Z", - "shell.execute_reply": "2024-05-23T02:45:13.121966Z" + "iopub.execute_input": "2024-05-23T15:18:30.779423Z", + "iopub.status.busy": "2024-05-23T15:18:30.779082Z", + "iopub.status.idle": "2024-05-23T15:18:31.876497Z", + "shell.execute_reply": "2024-05-23T15:18:31.875906Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:13.125004Z", - "iopub.status.busy": "2024-05-23T02:45:13.124725Z", - "iopub.status.idle": "2024-05-23T02:45:13.128107Z", - "shell.execute_reply": "2024-05-23T02:45:13.127644Z" + "iopub.execute_input": "2024-05-23T15:18:31.879405Z", + "iopub.status.busy": "2024-05-23T15:18:31.878894Z", + "iopub.status.idle": "2024-05-23T15:18:31.882289Z", + "shell.execute_reply": "2024-05-23T15:18:31.881726Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:13.130103Z", - "iopub.status.busy": "2024-05-23T02:45:13.129775Z", - "iopub.status.idle": "2024-05-23T02:45:16.042028Z", - "shell.execute_reply": "2024-05-23T02:45:16.041401Z" + "iopub.execute_input": "2024-05-23T15:18:31.884374Z", + "iopub.status.busy": "2024-05-23T15:18:31.883963Z", + "iopub.status.idle": "2024-05-23T15:18:34.796466Z", + "shell.execute_reply": "2024-05-23T15:18:34.795858Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.045402Z", - "iopub.status.busy": "2024-05-23T02:45:16.044381Z", - "iopub.status.idle": "2024-05-23T02:45:16.082139Z", - "shell.execute_reply": "2024-05-23T02:45:16.081538Z" + "iopub.execute_input": "2024-05-23T15:18:34.799374Z", + "iopub.status.busy": "2024-05-23T15:18:34.798780Z", + "iopub.status.idle": "2024-05-23T15:18:34.835628Z", + "shell.execute_reply": "2024-05-23T15:18:34.834909Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.084959Z", - "iopub.status.busy": "2024-05-23T02:45:16.084494Z", - "iopub.status.idle": "2024-05-23T02:45:16.116739Z", - "shell.execute_reply": "2024-05-23T02:45:16.116147Z" + "iopub.execute_input": "2024-05-23T15:18:34.838156Z", + "iopub.status.busy": "2024-05-23T15:18:34.837914Z", + "iopub.status.idle": "2024-05-23T15:18:34.873183Z", + "shell.execute_reply": "2024-05-23T15:18:34.872483Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.119225Z", - "iopub.status.busy": "2024-05-23T02:45:16.118994Z", - "iopub.status.idle": "2024-05-23T02:45:16.122060Z", - "shell.execute_reply": "2024-05-23T02:45:16.121519Z" + "iopub.execute_input": "2024-05-23T15:18:34.875734Z", + "iopub.status.busy": "2024-05-23T15:18:34.875501Z", + "iopub.status.idle": "2024-05-23T15:18:34.878527Z", + "shell.execute_reply": "2024-05-23T15:18:34.877990Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.124245Z", - "iopub.status.busy": "2024-05-23T02:45:16.123844Z", - "iopub.status.idle": "2024-05-23T02:45:16.126627Z", - "shell.execute_reply": "2024-05-23T02:45:16.126081Z" + "iopub.execute_input": "2024-05-23T15:18:34.880733Z", + "iopub.status.busy": "2024-05-23T15:18:34.880290Z", + "iopub.status.idle": "2024-05-23T15:18:34.883061Z", + "shell.execute_reply": "2024-05-23T15:18:34.882603Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.128722Z", - "iopub.status.busy": "2024-05-23T02:45:16.128455Z", - "iopub.status.idle": "2024-05-23T02:45:16.152771Z", - "shell.execute_reply": "2024-05-23T02:45:16.152170Z" + "iopub.execute_input": "2024-05-23T15:18:34.885194Z", + "iopub.status.busy": "2024-05-23T15:18:34.884803Z", + "iopub.status.idle": "2024-05-23T15:18:34.910167Z", + "shell.execute_reply": "2024-05-23T15:18:34.909619Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7a0a713a855640b4bc4b02c4dd7a5c52", + "model_id": "8f3c516252c74d63897fb8eee08617d7", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4abe0827381d491cb3d9884ab6f9a9e1", + "model_id": "635547bff7444b9da4fab23636e0c719", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.159827Z", - "iopub.status.busy": "2024-05-23T02:45:16.159398Z", - "iopub.status.idle": "2024-05-23T02:45:16.166228Z", - "shell.execute_reply": "2024-05-23T02:45:16.165673Z" + "iopub.execute_input": "2024-05-23T15:18:34.915862Z", + "iopub.status.busy": "2024-05-23T15:18:34.915687Z", + "iopub.status.idle": "2024-05-23T15:18:34.921935Z", + "shell.execute_reply": "2024-05-23T15:18:34.921532Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.168352Z", - "iopub.status.busy": "2024-05-23T02:45:16.168088Z", - "iopub.status.idle": "2024-05-23T02:45:16.171539Z", - "shell.execute_reply": "2024-05-23T02:45:16.171086Z" + "iopub.execute_input": "2024-05-23T15:18:34.923818Z", + "iopub.status.busy": "2024-05-23T15:18:34.923646Z", + "iopub.status.idle": "2024-05-23T15:18:34.927144Z", + "shell.execute_reply": "2024-05-23T15:18:34.926700Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.173652Z", - "iopub.status.busy": "2024-05-23T02:45:16.173328Z", - "iopub.status.idle": "2024-05-23T02:45:16.179497Z", - "shell.execute_reply": "2024-05-23T02:45:16.179070Z" + "iopub.execute_input": "2024-05-23T15:18:34.929063Z", + "iopub.status.busy": "2024-05-23T15:18:34.928757Z", + "iopub.status.idle": "2024-05-23T15:18:34.934959Z", + "shell.execute_reply": "2024-05-23T15:18:34.934415Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.181397Z", - "iopub.status.busy": "2024-05-23T02:45:16.181086Z", - "iopub.status.idle": "2024-05-23T02:45:16.215164Z", - "shell.execute_reply": "2024-05-23T02:45:16.214486Z" + "iopub.execute_input": "2024-05-23T15:18:34.936789Z", + "iopub.status.busy": "2024-05-23T15:18:34.936503Z", + "iopub.status.idle": "2024-05-23T15:18:34.967120Z", + "shell.execute_reply": "2024-05-23T15:18:34.966451Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.217921Z", - "iopub.status.busy": "2024-05-23T02:45:16.217632Z", - "iopub.status.idle": "2024-05-23T02:45:16.251375Z", - "shell.execute_reply": "2024-05-23T02:45:16.250773Z" + "iopub.execute_input": "2024-05-23T15:18:34.969429Z", + "iopub.status.busy": "2024-05-23T15:18:34.969209Z", + "iopub.status.idle": "2024-05-23T15:18:34.997685Z", + "shell.execute_reply": "2024-05-23T15:18:34.997024Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.254072Z", - "iopub.status.busy": "2024-05-23T02:45:16.253828Z", - "iopub.status.idle": "2024-05-23T02:45:16.375532Z", - "shell.execute_reply": "2024-05-23T02:45:16.374900Z" + "iopub.execute_input": "2024-05-23T15:18:35.000316Z", + "iopub.status.busy": "2024-05-23T15:18:35.000083Z", + "iopub.status.idle": "2024-05-23T15:18:35.122194Z", + "shell.execute_reply": "2024-05-23T15:18:35.121656Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:16.378671Z", - "iopub.status.busy": "2024-05-23T02:45:16.377819Z", - "iopub.status.idle": "2024-05-23T02:45:19.454492Z", - "shell.execute_reply": "2024-05-23T02:45:19.453865Z" + "iopub.execute_input": "2024-05-23T15:18:35.124994Z", + "iopub.status.busy": "2024-05-23T15:18:35.124205Z", + "iopub.status.idle": "2024-05-23T15:18:38.166808Z", + "shell.execute_reply": "2024-05-23T15:18:38.166236Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.456647Z", - "iopub.status.busy": "2024-05-23T02:45:19.456462Z", - "iopub.status.idle": "2024-05-23T02:45:19.522758Z", - "shell.execute_reply": "2024-05-23T02:45:19.522322Z" + "iopub.execute_input": "2024-05-23T15:18:38.169245Z", + "iopub.status.busy": "2024-05-23T15:18:38.168893Z", + "iopub.status.idle": "2024-05-23T15:18:38.228886Z", + "shell.execute_reply": "2024-05-23T15:18:38.228321Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.524681Z", - "iopub.status.busy": "2024-05-23T02:45:19.524495Z", - "iopub.status.idle": "2024-05-23T02:45:19.565188Z", - "shell.execute_reply": "2024-05-23T02:45:19.564702Z" + "iopub.execute_input": "2024-05-23T15:18:38.231149Z", + "iopub.status.busy": "2024-05-23T15:18:38.230702Z", + "iopub.status.idle": "2024-05-23T15:18:38.270535Z", + "shell.execute_reply": "2024-05-23T15:18:38.269980Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "5f52835e", + "id": "64b3b176", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "92c47f6f", + "id": "1d010710", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "c8fd91f6", + "id": "cb7b6ab8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.567253Z", - "iopub.status.busy": "2024-05-23T02:45:19.567076Z", - "iopub.status.idle": "2024-05-23T02:45:19.662673Z", - "shell.execute_reply": "2024-05-23T02:45:19.662096Z" + "iopub.execute_input": "2024-05-23T15:18:38.272851Z", + "iopub.status.busy": "2024-05-23T15:18:38.272449Z", + "iopub.status.idle": "2024-05-23T15:18:38.348175Z", + "shell.execute_reply": "2024-05-23T15:18:38.347422Z" } }, "outputs": [ @@ -1387,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "ec8a8f8e", + "id": "5bd5118b", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1396,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "23ef2947", + "id": "9ad1e59f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.665134Z", - "iopub.status.busy": "2024-05-23T02:45:19.664881Z", - "iopub.status.idle": "2024-05-23T02:45:19.731493Z", - "shell.execute_reply": "2024-05-23T02:45:19.730953Z" + "iopub.execute_input": "2024-05-23T15:18:38.350721Z", + "iopub.status.busy": "2024-05-23T15:18:38.350515Z", + "iopub.status.idle": "2024-05-23T15:18:38.427394Z", + "shell.execute_reply": "2024-05-23T15:18:38.426825Z" } }, "outputs": [ @@ -1438,7 +1438,7 @@ }, { "cell_type": "markdown", - "id": "c09a8d28", + "id": "cb460bc2", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1449,13 +1449,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "7201359e", + "id": "851d8df8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.734299Z", - "iopub.status.busy": "2024-05-23T02:45:19.733720Z", - "iopub.status.idle": "2024-05-23T02:45:19.743001Z", - "shell.execute_reply": "2024-05-23T02:45:19.742573Z" + "iopub.execute_input": "2024-05-23T15:18:38.429899Z", + "iopub.status.busy": "2024-05-23T15:18:38.429722Z", + "iopub.status.idle": "2024-05-23T15:18:38.437290Z", + "shell.execute_reply": "2024-05-23T15:18:38.436749Z" } }, "outputs": [], @@ -1557,7 +1557,7 @@ }, { "cell_type": "markdown", - "id": "d696bba5", + "id": "ef9850ad", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1572,13 +1572,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "9f6aa470", + "id": "7a2c4ea8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.745282Z", - "iopub.status.busy": "2024-05-23T02:45:19.745017Z", - "iopub.status.idle": "2024-05-23T02:45:19.763801Z", - "shell.execute_reply": "2024-05-23T02:45:19.763262Z" + "iopub.execute_input": "2024-05-23T15:18:38.439334Z", + "iopub.status.busy": "2024-05-23T15:18:38.439036Z", + "iopub.status.idle": "2024-05-23T15:18:38.458605Z", + "shell.execute_reply": "2024-05-23T15:18:38.458047Z" } }, "outputs": [ @@ -1586,7 +1586,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding near_duplicate issues ...\n", + "Finding near_duplicate issues ...\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "\n", "Audit complete. 3 issues found in the dataset.\n" ] @@ -1595,7 +1601,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7769/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7745/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1629,13 +1635,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "4261c5aa", + "id": "0458d311", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:19.765624Z", - "iopub.status.busy": "2024-05-23T02:45:19.765456Z", - "iopub.status.idle": "2024-05-23T02:45:19.768605Z", - "shell.execute_reply": "2024-05-23T02:45:19.768070Z" + "iopub.execute_input": "2024-05-23T15:18:38.460516Z", + "iopub.status.busy": "2024-05-23T15:18:38.460219Z", + "iopub.status.idle": "2024-05-23T15:18:38.463420Z", + "shell.execute_reply": "2024-05-23T15:18:38.462900Z" } }, "outputs": [ @@ -1730,7 +1736,113 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "168f26f4b7f04ad988f7418d68ad8312": { + "08497646f0cb4f63a1c95644d108a07c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3467641639a94f99b2952095c9b6dd73", + "placeholder": "​", + "style": "IPY_MODEL_e343613b5e7f4c8c94ab71069d836c5a", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "0f6d3cd136594d1d98d49a8a1c90a774": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "10fedb5640c646ada9ce6b7e377cf1fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5357e45aa1d84b08bc327a15224faeb8", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_28ace186259847d0967935e138b0fd99", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "28ace186259847d0967935e138b0fd99": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "314b83f258234697a5cb4b62f93fcaba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7245cef08c6b4b708a5511ae12b2bb5e", + "placeholder": "​", + "style": "IPY_MODEL_6cf456ba92cb444aa203f05ede632b49", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1321290.32it/s]" + } + }, + "3467641639a94f99b2952095c9b6dd73": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1783,7 +1895,49 @@ "width": null } }, - "1a9b3b76daa84667b48e78b398d6491a": { + "3c0cdd450a4b4118b695a96901d22dd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8229e5b2c5c6428eaaeed2221f8e2604", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4f2f766355df4a4a851d76a58ee0cd03", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "4f2f766355df4a4a851d76a58ee0cd03": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5357e45aa1d84b08bc327a15224faeb8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1836,30 +1990,7 @@ "width": null } }, - "1c8c05676fde4dc28df0c336439f308a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4000b4b33a134b28bca06526c6583154", - "placeholder": "​", - "style": "IPY_MODEL_5ab1c206a77247a8b01409902c80f85d", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1075903.96it/s]" - } - }, - "1fd1a66c02cc42f7ba9f306977d93850": { + "550b0d066ae848f29e2fc0f3c630ba44": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1912,7 +2043,49 @@ "width": null } }, - "226e5545acc24b949c4d7887c602331f": { + "5715ae6114ca4c89894e8c045de68727": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "635547bff7444b9da4fab23636e0c719": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ef3d01c63f3242188716dd65aefd758b", + "IPY_MODEL_3c0cdd450a4b4118b695a96901d22dd2", + "IPY_MODEL_314b83f258234697a5cb4b62f93fcaba" + ], + "layout": "IPY_MODEL_d707d64aa62b4524b3af277ba4f618f3", + "tabbable": null, + "tooltip": null + } + }, + "6cf456ba92cb444aa203f05ede632b49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1930,7 +2103,7 @@ "text_color": null } }, - "3ca0dadcab9f40caa3e27aea11cf843c": { + "7245cef08c6b4b708a5511ae12b2bb5e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1983,7 +2156,7 @@ "width": null } }, - "4000b4b33a134b28bca06526c6583154": { + "8229e5b2c5c6428eaaeed2221f8e2604": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2036,101 +2209,7 @@ "width": null } }, - "474dcd15f7fd4e04860c2031270d0cd0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ca0dadcab9f40caa3e27aea11cf843c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ff17341075074d3591ad9d488166a32c", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "4abe0827381d491cb3d9884ab6f9a9e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_82d60ad6c1fc40fe8aa3d7b3313a9fe1", - "IPY_MODEL_73eae9475e5b4aca96b7f8de0f49346b", - "IPY_MODEL_803cb3bb193d490d8ab735828df70e59" - ], - "layout": "IPY_MODEL_e51a67cb7f3f4ede938bbdb7e7521fc5", - "tabbable": null, - "tooltip": null - } - }, - "5ab1c206a77247a8b01409902c80f85d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "73eae9475e5b4aca96b7f8de0f49346b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb9ffba65b6b400bbfe0d61b47eb7ade", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a3af9991459c4b84bdc420247099f65e", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "7a0a713a855640b4bc4b02c4dd7a5c52": { + "8f3c516252c74d63897fb8eee08617d7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2145,16 +2224,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c017ecf716a04b52acdea29c96c5ebf2", - "IPY_MODEL_474dcd15f7fd4e04860c2031270d0cd0", - "IPY_MODEL_1c8c05676fde4dc28df0c336439f308a" + "IPY_MODEL_08497646f0cb4f63a1c95644d108a07c", + "IPY_MODEL_10fedb5640c646ada9ce6b7e377cf1fa", + "IPY_MODEL_932ecfacb7ca4cf7b8a5442592bffda4" ], - "layout": "IPY_MODEL_1a9b3b76daa84667b48e78b398d6491a", + "layout": "IPY_MODEL_550b0d066ae848f29e2fc0f3c630ba44", "tabbable": null, "tooltip": null } }, - "803cb3bb193d490d8ab735828df70e59": { + "932ecfacb7ca4cf7b8a5442592bffda4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2169,72 +2248,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_a7ae0b4219304b1f858991e22ec2a296", + "layout": "IPY_MODEL_99d7c922a5cf42859fa14f718fef0646", "placeholder": "​", - "style": "IPY_MODEL_91e4afa9d15a4279bdeb4a09a0131fdb", + "style": "IPY_MODEL_0f6d3cd136594d1d98d49a8a1c90a774", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1535587.61it/s]" - } - }, - "82d60ad6c1fc40fe8aa3d7b3313a9fe1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1fd1a66c02cc42f7ba9f306977d93850", - "placeholder": "​", - "style": "IPY_MODEL_fbdc43ebca7b47fe8d6f430301e96a71", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "91e4afa9d15a4279bdeb4a09a0131fdb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 10000/? [00:00<00:00, 1099654.97it/s]" } }, - "a3af9991459c4b84bdc420247099f65e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a7ae0b4219304b1f858991e22ec2a296": { + "99d7c922a5cf42859fa14f718fef0646": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2287,30 +2309,7 @@ "width": null } }, - "c017ecf716a04b52acdea29c96c5ebf2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_168f26f4b7f04ad988f7418d68ad8312", - "placeholder": "​", - "style": "IPY_MODEL_226e5545acc24b949c4d7887c602331f", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " - } - }, - "cb9ffba65b6b400bbfe0d61b47eb7ade": { + "b7bfe758d7da49789e7d13a74088bfdb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2363,7 +2362,7 @@ "width": null } }, - "e51a67cb7f3f4ede938bbdb7e7521fc5": { + "d707d64aa62b4524b3af277ba4f618f3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2416,7 +2415,7 @@ "width": null } }, - "fbdc43ebca7b47fe8d6f430301e96a71": { + "e343613b5e7f4c8c94ab71069d836c5a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2434,20 +2433,27 @@ "text_color": null } }, - "ff17341075074d3591ad9d488166a32c": { + "ef3d01c63f3242188716dd65aefd758b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b7bfe758d7da49789e7d13a74088bfdb", + "placeholder": "​", + "style": "IPY_MODEL_5715ae6114ca4c89894e8c045de68727", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 737868f0d..633332eb4 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:22.909654Z", - "iopub.status.busy": "2024-05-23T02:45:22.909464Z", - "iopub.status.idle": "2024-05-23T02:45:24.063188Z", - "shell.execute_reply": "2024-05-23T02:45:24.062583Z" + "iopub.execute_input": "2024-05-23T15:18:41.451137Z", + "iopub.status.busy": "2024-05-23T15:18:41.450666Z", + "iopub.status.idle": "2024-05-23T15:18:42.609707Z", + "shell.execute_reply": "2024-05-23T15:18:42.609088Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:24.065703Z", - "iopub.status.busy": "2024-05-23T02:45:24.065439Z", - "iopub.status.idle": "2024-05-23T02:45:24.242711Z", - "shell.execute_reply": "2024-05-23T02:45:24.242120Z" + "iopub.execute_input": "2024-05-23T15:18:42.612298Z", + "iopub.status.busy": "2024-05-23T15:18:42.612043Z", + "iopub.status.idle": "2024-05-23T15:18:42.790237Z", + "shell.execute_reply": "2024-05-23T15:18:42.789747Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:24.245266Z", - "iopub.status.busy": "2024-05-23T02:45:24.245077Z", - "iopub.status.idle": "2024-05-23T02:45:24.256520Z", - "shell.execute_reply": "2024-05-23T02:45:24.255950Z" + "iopub.execute_input": "2024-05-23T15:18:42.792842Z", + "iopub.status.busy": "2024-05-23T15:18:42.792502Z", + "iopub.status.idle": "2024-05-23T15:18:42.804185Z", + "shell.execute_reply": "2024-05-23T15:18:42.803753Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:24.258732Z", - "iopub.status.busy": "2024-05-23T02:45:24.258425Z", - "iopub.status.idle": "2024-05-23T02:45:24.493464Z", - "shell.execute_reply": "2024-05-23T02:45:24.492862Z" + "iopub.execute_input": "2024-05-23T15:18:42.806115Z", + "iopub.status.busy": "2024-05-23T15:18:42.805801Z", + "iopub.status.idle": "2024-05-23T15:18:43.038896Z", + "shell.execute_reply": "2024-05-23T15:18:43.038291Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:24.495811Z", - "iopub.status.busy": "2024-05-23T02:45:24.495404Z", - "iopub.status.idle": "2024-05-23T02:45:24.522115Z", - "shell.execute_reply": "2024-05-23T02:45:24.521538Z" + "iopub.execute_input": "2024-05-23T15:18:43.041290Z", + "iopub.status.busy": "2024-05-23T15:18:43.040897Z", + "iopub.status.idle": "2024-05-23T15:18:43.067459Z", + "shell.execute_reply": "2024-05-23T15:18:43.066880Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:24.524516Z", - "iopub.status.busy": "2024-05-23T02:45:24.524071Z", - "iopub.status.idle": "2024-05-23T02:45:26.162654Z", - "shell.execute_reply": "2024-05-23T02:45:26.162013Z" + "iopub.execute_input": "2024-05-23T15:18:43.069630Z", + "iopub.status.busy": "2024-05-23T15:18:43.069451Z", + "iopub.status.idle": "2024-05-23T15:18:44.703341Z", + "shell.execute_reply": "2024-05-23T15:18:44.702712Z" } }, "outputs": [ @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:26.165059Z", - "iopub.status.busy": "2024-05-23T02:45:26.164726Z", - "iopub.status.idle": "2024-05-23T02:45:26.182556Z", - "shell.execute_reply": "2024-05-23T02:45:26.182125Z" + "iopub.execute_input": "2024-05-23T15:18:44.705621Z", + "iopub.status.busy": "2024-05-23T15:18:44.705268Z", + "iopub.status.idle": "2024-05-23T15:18:44.723382Z", + "shell.execute_reply": "2024-05-23T15:18:44.722908Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:26.184775Z", - "iopub.status.busy": "2024-05-23T02:45:26.184390Z", - "iopub.status.idle": "2024-05-23T02:45:27.552072Z", - "shell.execute_reply": "2024-05-23T02:45:27.551510Z" + "iopub.execute_input": "2024-05-23T15:18:44.725329Z", + "iopub.status.busy": "2024-05-23T15:18:44.725018Z", + "iopub.status.idle": "2024-05-23T15:18:46.105511Z", + "shell.execute_reply": "2024-05-23T15:18:46.104900Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.554683Z", - "iopub.status.busy": "2024-05-23T02:45:27.554032Z", - "iopub.status.idle": "2024-05-23T02:45:27.567240Z", - "shell.execute_reply": "2024-05-23T02:45:27.566710Z" + "iopub.execute_input": "2024-05-23T15:18:46.108458Z", + "iopub.status.busy": "2024-05-23T15:18:46.107728Z", + "iopub.status.idle": "2024-05-23T15:18:46.121958Z", + "shell.execute_reply": "2024-05-23T15:18:46.121504Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.569213Z", - "iopub.status.busy": "2024-05-23T02:45:27.568910Z", - "iopub.status.idle": "2024-05-23T02:45:27.640819Z", - "shell.execute_reply": "2024-05-23T02:45:27.640244Z" + "iopub.execute_input": "2024-05-23T15:18:46.123994Z", + "iopub.status.busy": "2024-05-23T15:18:46.123723Z", + "iopub.status.idle": "2024-05-23T15:18:46.197726Z", + "shell.execute_reply": "2024-05-23T15:18:46.197097Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.643126Z", - "iopub.status.busy": "2024-05-23T02:45:27.642764Z", - "iopub.status.idle": "2024-05-23T02:45:27.851850Z", - "shell.execute_reply": "2024-05-23T02:45:27.851290Z" + "iopub.execute_input": "2024-05-23T15:18:46.199868Z", + "iopub.status.busy": "2024-05-23T15:18:46.199644Z", + "iopub.status.idle": "2024-05-23T15:18:46.412530Z", + "shell.execute_reply": "2024-05-23T15:18:46.411911Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.854072Z", - "iopub.status.busy": "2024-05-23T02:45:27.853737Z", - "iopub.status.idle": "2024-05-23T02:45:27.871426Z", - "shell.execute_reply": "2024-05-23T02:45:27.871015Z" + "iopub.execute_input": "2024-05-23T15:18:46.414915Z", + "iopub.status.busy": "2024-05-23T15:18:46.414504Z", + "iopub.status.idle": "2024-05-23T15:18:46.431542Z", + "shell.execute_reply": "2024-05-23T15:18:46.431077Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.873623Z", - "iopub.status.busy": "2024-05-23T02:45:27.873180Z", - "iopub.status.idle": "2024-05-23T02:45:27.882468Z", - "shell.execute_reply": "2024-05-23T02:45:27.882051Z" + "iopub.execute_input": "2024-05-23T15:18:46.433461Z", + "iopub.status.busy": "2024-05-23T15:18:46.433290Z", + "iopub.status.idle": "2024-05-23T15:18:46.443460Z", + "shell.execute_reply": "2024-05-23T15:18:46.443031Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.884381Z", - "iopub.status.busy": "2024-05-23T02:45:27.884083Z", - "iopub.status.idle": "2024-05-23T02:45:27.969743Z", - "shell.execute_reply": "2024-05-23T02:45:27.969119Z" + "iopub.execute_input": "2024-05-23T15:18:46.445348Z", + "iopub.status.busy": "2024-05-23T15:18:46.445176Z", + "iopub.status.idle": "2024-05-23T15:18:46.530754Z", + "shell.execute_reply": "2024-05-23T15:18:46.530137Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:27.972190Z", - "iopub.status.busy": "2024-05-23T02:45:27.971863Z", - "iopub.status.idle": "2024-05-23T02:45:28.090196Z", - "shell.execute_reply": "2024-05-23T02:45:28.089671Z" + "iopub.execute_input": "2024-05-23T15:18:46.533006Z", + "iopub.status.busy": "2024-05-23T15:18:46.532769Z", + "iopub.status.idle": "2024-05-23T15:18:46.650360Z", + "shell.execute_reply": "2024-05-23T15:18:46.649795Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.092416Z", - "iopub.status.busy": "2024-05-23T02:45:28.092187Z", - "iopub.status.idle": "2024-05-23T02:45:28.096132Z", - "shell.execute_reply": "2024-05-23T02:45:28.095600Z" + "iopub.execute_input": "2024-05-23T15:18:46.652894Z", + "iopub.status.busy": "2024-05-23T15:18:46.652440Z", + "iopub.status.idle": "2024-05-23T15:18:46.656437Z", + "shell.execute_reply": "2024-05-23T15:18:46.655890Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.098190Z", - "iopub.status.busy": "2024-05-23T02:45:28.097886Z", - "iopub.status.idle": "2024-05-23T02:45:28.101611Z", - "shell.execute_reply": "2024-05-23T02:45:28.101061Z" + "iopub.execute_input": "2024-05-23T15:18:46.658319Z", + "iopub.status.busy": "2024-05-23T15:18:46.658153Z", + "iopub.status.idle": "2024-05-23T15:18:46.662043Z", + "shell.execute_reply": "2024-05-23T15:18:46.661576Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.103513Z", - "iopub.status.busy": "2024-05-23T02:45:28.103218Z", - "iopub.status.idle": "2024-05-23T02:45:28.139767Z", - "shell.execute_reply": "2024-05-23T02:45:28.139212Z" + "iopub.execute_input": "2024-05-23T15:18:46.663845Z", + "iopub.status.busy": "2024-05-23T15:18:46.663676Z", + "iopub.status.idle": "2024-05-23T15:18:46.699910Z", + "shell.execute_reply": "2024-05-23T15:18:46.699449Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.141763Z", - "iopub.status.busy": "2024-05-23T02:45:28.141456Z", - "iopub.status.idle": "2024-05-23T02:45:28.183856Z", - "shell.execute_reply": "2024-05-23T02:45:28.183305Z" + "iopub.execute_input": "2024-05-23T15:18:46.701773Z", + "iopub.status.busy": "2024-05-23T15:18:46.701598Z", + "iopub.status.idle": "2024-05-23T15:18:46.745873Z", + "shell.execute_reply": "2024-05-23T15:18:46.745298Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.185884Z", - "iopub.status.busy": "2024-05-23T02:45:28.185583Z", - "iopub.status.idle": "2024-05-23T02:45:28.273877Z", - "shell.execute_reply": "2024-05-23T02:45:28.273314Z" + "iopub.execute_input": "2024-05-23T15:18:46.748152Z", + "iopub.status.busy": "2024-05-23T15:18:46.747739Z", + "iopub.status.idle": "2024-05-23T15:18:46.841710Z", + "shell.execute_reply": "2024-05-23T15:18:46.841161Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.276550Z", - "iopub.status.busy": "2024-05-23T02:45:28.276114Z", - "iopub.status.idle": "2024-05-23T02:45:28.361779Z", - "shell.execute_reply": "2024-05-23T02:45:28.361154Z" + "iopub.execute_input": "2024-05-23T15:18:46.844254Z", + "iopub.status.busy": "2024-05-23T15:18:46.843958Z", + "iopub.status.idle": "2024-05-23T15:18:46.933588Z", + "shell.execute_reply": "2024-05-23T15:18:46.932983Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.363963Z", - "iopub.status.busy": "2024-05-23T02:45:28.363740Z", - "iopub.status.idle": "2024-05-23T02:45:28.571267Z", - "shell.execute_reply": "2024-05-23T02:45:28.570724Z" + "iopub.execute_input": "2024-05-23T15:18:46.935894Z", + "iopub.status.busy": "2024-05-23T15:18:46.935604Z", + "iopub.status.idle": "2024-05-23T15:18:47.143860Z", + "shell.execute_reply": "2024-05-23T15:18:47.143238Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.573477Z", - "iopub.status.busy": "2024-05-23T02:45:28.573115Z", - "iopub.status.idle": "2024-05-23T02:45:28.739873Z", - "shell.execute_reply": "2024-05-23T02:45:28.739314Z" + "iopub.execute_input": "2024-05-23T15:18:47.146260Z", + "iopub.status.busy": "2024-05-23T15:18:47.145919Z", + "iopub.status.idle": "2024-05-23T15:18:47.314614Z", + "shell.execute_reply": "2024-05-23T15:18:47.314036Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.742132Z", - "iopub.status.busy": "2024-05-23T02:45:28.741898Z", - "iopub.status.idle": "2024-05-23T02:45:28.748025Z", - "shell.execute_reply": "2024-05-23T02:45:28.747495Z" + "iopub.execute_input": "2024-05-23T15:18:47.316952Z", + "iopub.status.busy": "2024-05-23T15:18:47.316583Z", + "iopub.status.idle": "2024-05-23T15:18:47.322849Z", + "shell.execute_reply": "2024-05-23T15:18:47.322419Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.750111Z", - "iopub.status.busy": "2024-05-23T02:45:28.749729Z", - "iopub.status.idle": "2024-05-23T02:45:28.967685Z", - "shell.execute_reply": "2024-05-23T02:45:28.967128Z" + "iopub.execute_input": "2024-05-23T15:18:47.324901Z", + "iopub.status.busy": "2024-05-23T15:18:47.324478Z", + "iopub.status.idle": "2024-05-23T15:18:47.539512Z", + "shell.execute_reply": "2024-05-23T15:18:47.538921Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:28.969931Z", - "iopub.status.busy": "2024-05-23T02:45:28.969592Z", - "iopub.status.idle": "2024-05-23T02:45:30.026125Z", - "shell.execute_reply": "2024-05-23T02:45:30.025597Z" + "iopub.execute_input": "2024-05-23T15:18:47.541885Z", + "iopub.status.busy": "2024-05-23T15:18:47.541482Z", + "iopub.status.idle": "2024-05-23T15:18:48.632466Z", + "shell.execute_reply": "2024-05-23T15:18:48.631819Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 3e5461985..11ad22099 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:33.376782Z", - "iopub.status.busy": "2024-05-23T02:45:33.376610Z", - "iopub.status.idle": "2024-05-23T02:45:34.474059Z", - "shell.execute_reply": "2024-05-23T02:45:34.473507Z" + "iopub.execute_input": "2024-05-23T15:18:52.007579Z", + "iopub.status.busy": "2024-05-23T15:18:52.007414Z", + "iopub.status.idle": "2024-05-23T15:18:53.114524Z", + "shell.execute_reply": "2024-05-23T15:18:53.113948Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.476736Z", - "iopub.status.busy": "2024-05-23T02:45:34.476230Z", - "iopub.status.idle": "2024-05-23T02:45:34.479378Z", - "shell.execute_reply": "2024-05-23T02:45:34.478833Z" + "iopub.execute_input": "2024-05-23T15:18:53.117150Z", + "iopub.status.busy": "2024-05-23T15:18:53.116730Z", + "iopub.status.idle": "2024-05-23T15:18:53.119784Z", + "shell.execute_reply": "2024-05-23T15:18:53.119337Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.481472Z", - "iopub.status.busy": "2024-05-23T02:45:34.481135Z", - "iopub.status.idle": "2024-05-23T02:45:34.488801Z", - "shell.execute_reply": "2024-05-23T02:45:34.488336Z" + "iopub.execute_input": "2024-05-23T15:18:53.121897Z", + "iopub.status.busy": "2024-05-23T15:18:53.121580Z", + "iopub.status.idle": "2024-05-23T15:18:53.129492Z", + "shell.execute_reply": "2024-05-23T15:18:53.128916Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.490770Z", - "iopub.status.busy": "2024-05-23T02:45:34.490447Z", - "iopub.status.idle": "2024-05-23T02:45:34.537579Z", - "shell.execute_reply": "2024-05-23T02:45:34.537068Z" + "iopub.execute_input": "2024-05-23T15:18:53.131642Z", + "iopub.status.busy": "2024-05-23T15:18:53.131304Z", + "iopub.status.idle": "2024-05-23T15:18:53.183633Z", + "shell.execute_reply": "2024-05-23T15:18:53.183074Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.539619Z", - "iopub.status.busy": "2024-05-23T02:45:34.539306Z", - "iopub.status.idle": "2024-05-23T02:45:34.556261Z", - "shell.execute_reply": "2024-05-23T02:45:34.555697Z" + "iopub.execute_input": "2024-05-23T15:18:53.185644Z", + "iopub.status.busy": "2024-05-23T15:18:53.185466Z", + "iopub.status.idle": "2024-05-23T15:18:53.202072Z", + "shell.execute_reply": "2024-05-23T15:18:53.201584Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.558301Z", - "iopub.status.busy": "2024-05-23T02:45:34.557988Z", - "iopub.status.idle": "2024-05-23T02:45:34.561881Z", - "shell.execute_reply": "2024-05-23T02:45:34.561419Z" + "iopub.execute_input": "2024-05-23T15:18:53.203949Z", + "iopub.status.busy": "2024-05-23T15:18:53.203776Z", + "iopub.status.idle": "2024-05-23T15:18:53.207702Z", + "shell.execute_reply": "2024-05-23T15:18:53.207257Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.564062Z", - "iopub.status.busy": "2024-05-23T02:45:34.563722Z", - "iopub.status.idle": "2024-05-23T02:45:34.577642Z", - "shell.execute_reply": "2024-05-23T02:45:34.577184Z" + "iopub.execute_input": "2024-05-23T15:18:53.209671Z", + "iopub.status.busy": "2024-05-23T15:18:53.209500Z", + "iopub.status.idle": "2024-05-23T15:18:53.224174Z", + "shell.execute_reply": "2024-05-23T15:18:53.223736Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.579601Z", - "iopub.status.busy": "2024-05-23T02:45:34.579276Z", - "iopub.status.idle": "2024-05-23T02:45:34.604529Z", - "shell.execute_reply": "2024-05-23T02:45:34.604112Z" + "iopub.execute_input": "2024-05-23T15:18:53.226035Z", + "iopub.status.busy": "2024-05-23T15:18:53.225859Z", + "iopub.status.idle": "2024-05-23T15:18:53.252043Z", + "shell.execute_reply": "2024-05-23T15:18:53.251607Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:34.606651Z", - "iopub.status.busy": "2024-05-23T02:45:34.606327Z", - "iopub.status.idle": "2024-05-23T02:45:36.270672Z", - "shell.execute_reply": "2024-05-23T02:45:36.270137Z" + "iopub.execute_input": "2024-05-23T15:18:53.253917Z", + "iopub.status.busy": "2024-05-23T15:18:53.253738Z", + "iopub.status.idle": "2024-05-23T15:18:54.947724Z", + "shell.execute_reply": "2024-05-23T15:18:54.947173Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.273150Z", - "iopub.status.busy": "2024-05-23T02:45:36.272730Z", - "iopub.status.idle": "2024-05-23T02:45:36.279438Z", - "shell.execute_reply": "2024-05-23T02:45:36.278896Z" + "iopub.execute_input": "2024-05-23T15:18:54.950166Z", + "iopub.status.busy": "2024-05-23T15:18:54.949868Z", + "iopub.status.idle": "2024-05-23T15:18:54.956808Z", + "shell.execute_reply": "2024-05-23T15:18:54.956271Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.281603Z", - "iopub.status.busy": "2024-05-23T02:45:36.281252Z", - "iopub.status.idle": "2024-05-23T02:45:36.293500Z", - "shell.execute_reply": "2024-05-23T02:45:36.293056Z" + "iopub.execute_input": "2024-05-23T15:18:54.958969Z", + "iopub.status.busy": "2024-05-23T15:18:54.958598Z", + "iopub.status.idle": "2024-05-23T15:18:54.971034Z", + "shell.execute_reply": "2024-05-23T15:18:54.970497Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.295515Z", - "iopub.status.busy": "2024-05-23T02:45:36.295173Z", - "iopub.status.idle": "2024-05-23T02:45:36.301603Z", - "shell.execute_reply": "2024-05-23T02:45:36.301050Z" + "iopub.execute_input": "2024-05-23T15:18:54.973141Z", + "iopub.status.busy": "2024-05-23T15:18:54.972739Z", + "iopub.status.idle": "2024-05-23T15:18:54.979039Z", + "shell.execute_reply": "2024-05-23T15:18:54.978498Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.303698Z", - "iopub.status.busy": "2024-05-23T02:45:36.303391Z", - "iopub.status.idle": "2024-05-23T02:45:36.305863Z", - "shell.execute_reply": "2024-05-23T02:45:36.305435Z" + "iopub.execute_input": "2024-05-23T15:18:54.981149Z", + "iopub.status.busy": "2024-05-23T15:18:54.980730Z", + "iopub.status.idle": "2024-05-23T15:18:54.983319Z", + "shell.execute_reply": "2024-05-23T15:18:54.982883Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.307851Z", - "iopub.status.busy": "2024-05-23T02:45:36.307530Z", - "iopub.status.idle": "2024-05-23T02:45:36.310884Z", - "shell.execute_reply": "2024-05-23T02:45:36.310384Z" + "iopub.execute_input": "2024-05-23T15:18:54.985204Z", + "iopub.status.busy": "2024-05-23T15:18:54.985028Z", + "iopub.status.idle": "2024-05-23T15:18:54.988357Z", + "shell.execute_reply": "2024-05-23T15:18:54.987848Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.312938Z", - "iopub.status.busy": "2024-05-23T02:45:36.312623Z", - "iopub.status.idle": "2024-05-23T02:45:36.315130Z", - "shell.execute_reply": "2024-05-23T02:45:36.314706Z" + "iopub.execute_input": "2024-05-23T15:18:54.990306Z", + "iopub.status.busy": "2024-05-23T15:18:54.990135Z", + "iopub.status.idle": "2024-05-23T15:18:54.992657Z", + "shell.execute_reply": "2024-05-23T15:18:54.992238Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.317037Z", - "iopub.status.busy": "2024-05-23T02:45:36.316714Z", - "iopub.status.idle": "2024-05-23T02:45:36.320799Z", - "shell.execute_reply": "2024-05-23T02:45:36.320351Z" + "iopub.execute_input": "2024-05-23T15:18:54.994725Z", + "iopub.status.busy": "2024-05-23T15:18:54.994306Z", + "iopub.status.idle": "2024-05-23T15:18:54.998455Z", + "shell.execute_reply": "2024-05-23T15:18:54.998006Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.322805Z", - "iopub.status.busy": "2024-05-23T02:45:36.322488Z", - "iopub.status.idle": "2024-05-23T02:45:36.350601Z", - "shell.execute_reply": "2024-05-23T02:45:36.350173Z" + "iopub.execute_input": "2024-05-23T15:18:55.000343Z", + "iopub.status.busy": "2024-05-23T15:18:55.000170Z", + "iopub.status.idle": "2024-05-23T15:18:55.030450Z", + "shell.execute_reply": "2024-05-23T15:18:55.029992Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:36.352489Z", - "iopub.status.busy": "2024-05-23T02:45:36.352299Z", - "iopub.status.idle": "2024-05-23T02:45:36.356725Z", - "shell.execute_reply": "2024-05-23T02:45:36.356288Z" + "iopub.execute_input": "2024-05-23T15:18:55.032268Z", + "iopub.status.busy": "2024-05-23T15:18:55.032099Z", + "iopub.status.idle": "2024-05-23T15:18:55.036740Z", + "shell.execute_reply": "2024-05-23T15:18:55.036305Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index e6fa51270..8e6835cb8 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:39.130024Z", - "iopub.status.busy": "2024-05-23T02:45:39.129625Z", - "iopub.status.idle": "2024-05-23T02:45:40.278778Z", - "shell.execute_reply": "2024-05-23T02:45:40.278168Z" + "iopub.execute_input": "2024-05-23T15:18:57.808420Z", + "iopub.status.busy": "2024-05-23T15:18:57.808257Z", + "iopub.status.idle": "2024-05-23T15:18:58.960227Z", + "shell.execute_reply": "2024-05-23T15:18:58.959741Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:40.281333Z", - "iopub.status.busy": "2024-05-23T02:45:40.280878Z", - "iopub.status.idle": "2024-05-23T02:45:40.473030Z", - "shell.execute_reply": "2024-05-23T02:45:40.472389Z" + "iopub.execute_input": "2024-05-23T15:18:58.962688Z", + "iopub.status.busy": "2024-05-23T15:18:58.962364Z", + "iopub.status.idle": "2024-05-23T15:18:59.156572Z", + "shell.execute_reply": "2024-05-23T15:18:59.156070Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:40.475746Z", - "iopub.status.busy": "2024-05-23T02:45:40.475313Z", - "iopub.status.idle": "2024-05-23T02:45:40.488670Z", - "shell.execute_reply": "2024-05-23T02:45:40.488085Z" + "iopub.execute_input": "2024-05-23T15:18:59.159355Z", + "iopub.status.busy": "2024-05-23T15:18:59.158909Z", + "iopub.status.idle": "2024-05-23T15:18:59.171734Z", + "shell.execute_reply": "2024-05-23T15:18:59.171307Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:40.491090Z", - "iopub.status.busy": "2024-05-23T02:45:40.490536Z", - "iopub.status.idle": "2024-05-23T02:45:43.148621Z", - "shell.execute_reply": "2024-05-23T02:45:43.148058Z" + "iopub.execute_input": "2024-05-23T15:18:59.173764Z", + "iopub.status.busy": "2024-05-23T15:18:59.173435Z", + "iopub.status.idle": "2024-05-23T15:19:01.818860Z", + "shell.execute_reply": "2024-05-23T15:19:01.818253Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:43.151026Z", - "iopub.status.busy": "2024-05-23T02:45:43.150556Z", - "iopub.status.idle": "2024-05-23T02:45:44.505977Z", - "shell.execute_reply": "2024-05-23T02:45:44.505441Z" + "iopub.execute_input": "2024-05-23T15:19:01.821210Z", + "iopub.status.busy": "2024-05-23T15:19:01.820917Z", + "iopub.status.idle": "2024-05-23T15:19:03.152098Z", + "shell.execute_reply": "2024-05-23T15:19:03.151598Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:44.508211Z", - "iopub.status.busy": "2024-05-23T02:45:44.508032Z", - "iopub.status.idle": "2024-05-23T02:45:44.512056Z", - "shell.execute_reply": "2024-05-23T02:45:44.511607Z" + "iopub.execute_input": "2024-05-23T15:19:03.154639Z", + "iopub.status.busy": "2024-05-23T15:19:03.154293Z", + "iopub.status.idle": "2024-05-23T15:19:03.158008Z", + "shell.execute_reply": "2024-05-23T15:19:03.157505Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:44.513916Z", - "iopub.status.busy": "2024-05-23T02:45:44.513746Z", - "iopub.status.idle": "2024-05-23T02:45:46.255262Z", - "shell.execute_reply": "2024-05-23T02:45:46.254660Z" + "iopub.execute_input": "2024-05-23T15:19:03.160039Z", + "iopub.status.busy": "2024-05-23T15:19:03.159724Z", + "iopub.status.idle": "2024-05-23T15:19:04.925502Z", + "shell.execute_reply": "2024-05-23T15:19:04.924830Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:46.257943Z", - "iopub.status.busy": "2024-05-23T02:45:46.257333Z", - "iopub.status.idle": "2024-05-23T02:45:46.265200Z", - "shell.execute_reply": "2024-05-23T02:45:46.264739Z" + "iopub.execute_input": "2024-05-23T15:19:04.928071Z", + "iopub.status.busy": "2024-05-23T15:19:04.927589Z", + "iopub.status.idle": "2024-05-23T15:19:04.935028Z", + "shell.execute_reply": "2024-05-23T15:19:04.934522Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:46.267325Z", - "iopub.status.busy": "2024-05-23T02:45:46.266993Z", - "iopub.status.idle": "2024-05-23T02:45:48.855371Z", - "shell.execute_reply": "2024-05-23T02:45:48.854860Z" + "iopub.execute_input": "2024-05-23T15:19:04.937024Z", + "iopub.status.busy": "2024-05-23T15:19:04.936741Z", + "iopub.status.idle": "2024-05-23T15:19:07.521116Z", + "shell.execute_reply": "2024-05-23T15:19:07.520500Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:48.857569Z", - "iopub.status.busy": "2024-05-23T02:45:48.857213Z", - "iopub.status.idle": "2024-05-23T02:45:48.860772Z", - "shell.execute_reply": "2024-05-23T02:45:48.860329Z" + "iopub.execute_input": "2024-05-23T15:19:07.523476Z", + "iopub.status.busy": "2024-05-23T15:19:07.523126Z", + "iopub.status.idle": "2024-05-23T15:19:07.526728Z", + "shell.execute_reply": "2024-05-23T15:19:07.526192Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:48.862795Z", - "iopub.status.busy": "2024-05-23T02:45:48.862499Z", - "iopub.status.idle": "2024-05-23T02:45:48.865883Z", - "shell.execute_reply": "2024-05-23T02:45:48.865453Z" + "iopub.execute_input": "2024-05-23T15:19:07.528912Z", + "iopub.status.busy": "2024-05-23T15:19:07.528509Z", + "iopub.status.idle": "2024-05-23T15:19:07.531928Z", + "shell.execute_reply": "2024-05-23T15:19:07.531495Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:48.867674Z", - "iopub.status.busy": "2024-05-23T02:45:48.867505Z", - "iopub.status.idle": "2024-05-23T02:45:48.870572Z", - "shell.execute_reply": "2024-05-23T02:45:48.870134Z" + "iopub.execute_input": "2024-05-23T15:19:07.533817Z", + "iopub.status.busy": "2024-05-23T15:19:07.533644Z", + "iopub.status.idle": "2024-05-23T15:19:07.536853Z", + "shell.execute_reply": "2024-05-23T15:19:07.536396Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index da92bbc52..02d948ced 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -57,7 +57,7 @@ "You can use `pip` to install all packages required for this tutorial as follows\n", "```ipython\n", "!pip install matplotlib\n", - "!pip insall cleanlab\n", + "!pip install cleanlab\n", "# Make sure to install the version corresponding to this tutorial\n", "# E.g. if viewing master branch documentation:\n", "# !pip install git+https://github.com/cleanlab/cleanlab.git\n", @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:51.279873Z", - "iopub.status.busy": "2024-05-23T02:45:51.279703Z", - "iopub.status.idle": "2024-05-23T02:45:52.438969Z", - "shell.execute_reply": "2024-05-23T02:45:52.438406Z" + "iopub.execute_input": "2024-05-23T15:19:09.941298Z", + "iopub.status.busy": "2024-05-23T15:19:09.940829Z", + "iopub.status.idle": "2024-05-23T15:19:11.097022Z", + "shell.execute_reply": "2024-05-23T15:19:11.096453Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:52.441528Z", - "iopub.status.busy": "2024-05-23T02:45:52.441062Z", - "iopub.status.idle": "2024-05-23T02:45:54.032553Z", - "shell.execute_reply": "2024-05-23T02:45:54.031884Z" + "iopub.execute_input": "2024-05-23T15:19:11.099863Z", + "iopub.status.busy": "2024-05-23T15:19:11.099331Z", + "iopub.status.idle": "2024-05-23T15:19:11.953578Z", + "shell.execute_reply": "2024-05-23T15:19:11.952908Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:54.035367Z", - "iopub.status.busy": "2024-05-23T02:45:54.035000Z", - "iopub.status.idle": "2024-05-23T02:45:54.038397Z", - "shell.execute_reply": "2024-05-23T02:45:54.037919Z" + "iopub.execute_input": "2024-05-23T15:19:11.956193Z", + "iopub.status.busy": "2024-05-23T15:19:11.955987Z", + "iopub.status.idle": "2024-05-23T15:19:11.959380Z", + "shell.execute_reply": "2024-05-23T15:19:11.958907Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:54.040453Z", - "iopub.status.busy": "2024-05-23T02:45:54.040266Z", - "iopub.status.idle": "2024-05-23T02:45:54.047429Z", - "shell.execute_reply": "2024-05-23T02:45:54.046764Z" + "iopub.execute_input": "2024-05-23T15:19:11.961322Z", + "iopub.status.busy": "2024-05-23T15:19:11.960978Z", + "iopub.status.idle": "2024-05-23T15:19:11.968077Z", + "shell.execute_reply": "2024-05-23T15:19:11.967654Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:54.049984Z", - "iopub.status.busy": "2024-05-23T02:45:54.049655Z", - "iopub.status.idle": "2024-05-23T02:45:54.541601Z", - "shell.execute_reply": "2024-05-23T02:45:54.541015Z" + "iopub.execute_input": "2024-05-23T15:19:11.970208Z", + "iopub.status.busy": "2024-05-23T15:19:11.969865Z", + "iopub.status.idle": "2024-05-23T15:19:12.460372Z", + "shell.execute_reply": "2024-05-23T15:19:12.459806Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:54.544210Z", - "iopub.status.busy": "2024-05-23T02:45:54.543840Z", - "iopub.status.idle": "2024-05-23T02:45:54.548961Z", - "shell.execute_reply": "2024-05-23T02:45:54.548526Z" + "iopub.execute_input": "2024-05-23T15:19:12.463246Z", + "iopub.status.busy": "2024-05-23T15:19:12.462904Z", + "iopub.status.idle": "2024-05-23T15:19:12.468057Z", + "shell.execute_reply": "2024-05-23T15:19:12.467625Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:54.550976Z", - "iopub.status.busy": "2024-05-23T02:45:54.550660Z", - "iopub.status.idle": "2024-05-23T02:45:54.554573Z", - "shell.execute_reply": "2024-05-23T02:45:54.554031Z" + "iopub.execute_input": "2024-05-23T15:19:12.470124Z", + "iopub.status.busy": "2024-05-23T15:19:12.469807Z", + "iopub.status.idle": "2024-05-23T15:19:12.473501Z", + "shell.execute_reply": "2024-05-23T15:19:12.473056Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:54.556798Z", - "iopub.status.busy": "2024-05-23T02:45:54.556412Z", - "iopub.status.idle": "2024-05-23T02:45:55.395282Z", - "shell.execute_reply": "2024-05-23T02:45:55.394667Z" + "iopub.execute_input": "2024-05-23T15:19:12.475564Z", + "iopub.status.busy": "2024-05-23T15:19:12.475235Z", + "iopub.status.idle": "2024-05-23T15:19:13.338397Z", + "shell.execute_reply": "2024-05-23T15:19:13.337797Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:55.397651Z", - "iopub.status.busy": "2024-05-23T02:45:55.397273Z", - "iopub.status.idle": "2024-05-23T02:45:55.614342Z", - "shell.execute_reply": "2024-05-23T02:45:55.613847Z" + "iopub.execute_input": "2024-05-23T15:19:13.340873Z", + "iopub.status.busy": "2024-05-23T15:19:13.340423Z", + "iopub.status.idle": "2024-05-23T15:19:13.588209Z", + "shell.execute_reply": "2024-05-23T15:19:13.587617Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:55.616402Z", - "iopub.status.busy": "2024-05-23T02:45:55.616129Z", - "iopub.status.idle": "2024-05-23T02:45:55.620263Z", - "shell.execute_reply": "2024-05-23T02:45:55.619835Z" + "iopub.execute_input": "2024-05-23T15:19:13.590484Z", + "iopub.status.busy": "2024-05-23T15:19:13.590022Z", + "iopub.status.idle": "2024-05-23T15:19:13.594514Z", + "shell.execute_reply": "2024-05-23T15:19:13.593949Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:55.622163Z", - "iopub.status.busy": "2024-05-23T02:45:55.621993Z", - "iopub.status.idle": "2024-05-23T02:45:56.066905Z", - "shell.execute_reply": "2024-05-23T02:45:56.066324Z" + "iopub.execute_input": "2024-05-23T15:19:13.596553Z", + "iopub.status.busy": "2024-05-23T15:19:13.596160Z", + "iopub.status.idle": "2024-05-23T15:19:14.053043Z", + "shell.execute_reply": "2024-05-23T15:19:14.052450Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:56.070178Z", - "iopub.status.busy": "2024-05-23T02:45:56.069690Z", - "iopub.status.idle": "2024-05-23T02:45:56.401603Z", - "shell.execute_reply": "2024-05-23T02:45:56.401007Z" + "iopub.execute_input": "2024-05-23T15:19:14.056181Z", + "iopub.status.busy": "2024-05-23T15:19:14.055807Z", + "iopub.status.idle": "2024-05-23T15:19:14.361904Z", + "shell.execute_reply": "2024-05-23T15:19:14.361420Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:56.403887Z", - "iopub.status.busy": "2024-05-23T02:45:56.403574Z", - "iopub.status.idle": "2024-05-23T02:45:56.737015Z", - "shell.execute_reply": "2024-05-23T02:45:56.736430Z" + "iopub.execute_input": "2024-05-23T15:19:14.363951Z", + "iopub.status.busy": "2024-05-23T15:19:14.363772Z", + "iopub.status.idle": "2024-05-23T15:19:14.726648Z", + "shell.execute_reply": "2024-05-23T15:19:14.726007Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:56.739639Z", - "iopub.status.busy": "2024-05-23T02:45:56.739462Z", - "iopub.status.idle": "2024-05-23T02:45:57.149862Z", - "shell.execute_reply": "2024-05-23T02:45:57.149313Z" + "iopub.execute_input": "2024-05-23T15:19:14.729639Z", + "iopub.status.busy": "2024-05-23T15:19:14.729287Z", + "iopub.status.idle": "2024-05-23T15:19:15.170833Z", + "shell.execute_reply": "2024-05-23T15:19:15.170240Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:57.154117Z", - "iopub.status.busy": "2024-05-23T02:45:57.153737Z", - "iopub.status.idle": "2024-05-23T02:45:57.578193Z", - "shell.execute_reply": "2024-05-23T02:45:57.577581Z" + "iopub.execute_input": "2024-05-23T15:19:15.174851Z", + "iopub.status.busy": "2024-05-23T15:19:15.174514Z", + "iopub.status.idle": "2024-05-23T15:19:15.621270Z", + "shell.execute_reply": "2024-05-23T15:19:15.620652Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:57.581421Z", - "iopub.status.busy": "2024-05-23T02:45:57.581017Z", - "iopub.status.idle": "2024-05-23T02:45:57.772147Z", - "shell.execute_reply": "2024-05-23T02:45:57.771496Z" + "iopub.execute_input": "2024-05-23T15:19:15.624334Z", + "iopub.status.busy": "2024-05-23T15:19:15.624147Z", + "iopub.status.idle": "2024-05-23T15:19:15.840347Z", + "shell.execute_reply": "2024-05-23T15:19:15.839762Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:57.775004Z", - "iopub.status.busy": "2024-05-23T02:45:57.774563Z", - "iopub.status.idle": "2024-05-23T02:45:57.955208Z", - "shell.execute_reply": "2024-05-23T02:45:57.954636Z" + "iopub.execute_input": "2024-05-23T15:19:15.842651Z", + "iopub.status.busy": "2024-05-23T15:19:15.842224Z", + "iopub.status.idle": "2024-05-23T15:19:16.023798Z", + "shell.execute_reply": "2024-05-23T15:19:16.023243Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:57.957498Z", - "iopub.status.busy": "2024-05-23T02:45:57.957157Z", - "iopub.status.idle": "2024-05-23T02:45:57.960151Z", - "shell.execute_reply": "2024-05-23T02:45:57.959597Z" + "iopub.execute_input": "2024-05-23T15:19:16.026016Z", + "iopub.status.busy": "2024-05-23T15:19:16.025682Z", + "iopub.status.idle": "2024-05-23T15:19:16.028740Z", + "shell.execute_reply": "2024-05-23T15:19:16.028149Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:57.962165Z", - "iopub.status.busy": "2024-05-23T02:45:57.961845Z", - "iopub.status.idle": "2024-05-23T02:45:58.974583Z", - "shell.execute_reply": "2024-05-23T02:45:58.974110Z" + "iopub.execute_input": "2024-05-23T15:19:16.030740Z", + "iopub.status.busy": "2024-05-23T15:19:16.030424Z", + "iopub.status.idle": "2024-05-23T15:19:16.998382Z", + "shell.execute_reply": "2024-05-23T15:19:16.997802Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:58.976842Z", - "iopub.status.busy": "2024-05-23T02:45:58.976405Z", - "iopub.status.idle": "2024-05-23T02:45:59.101848Z", - "shell.execute_reply": "2024-05-23T02:45:59.101272Z" + "iopub.execute_input": "2024-05-23T15:19:17.001300Z", + "iopub.status.busy": "2024-05-23T15:19:17.000884Z", + "iopub.status.idle": "2024-05-23T15:19:17.176402Z", + "shell.execute_reply": "2024-05-23T15:19:17.175818Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:59.104062Z", - "iopub.status.busy": "2024-05-23T02:45:59.103791Z", - "iopub.status.idle": "2024-05-23T02:45:59.263156Z", - "shell.execute_reply": "2024-05-23T02:45:59.262656Z" + "iopub.execute_input": "2024-05-23T15:19:17.178618Z", + "iopub.status.busy": "2024-05-23T15:19:17.178262Z", + "iopub.status.idle": "2024-05-23T15:19:17.349438Z", + "shell.execute_reply": "2024-05-23T15:19:17.348931Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:59.265667Z", - "iopub.status.busy": "2024-05-23T02:45:59.265320Z", - "iopub.status.idle": "2024-05-23T02:45:59.934452Z", - "shell.execute_reply": "2024-05-23T02:45:59.933875Z" + "iopub.execute_input": "2024-05-23T15:19:17.351734Z", + "iopub.status.busy": "2024-05-23T15:19:17.351422Z", + "iopub.status.idle": "2024-05-23T15:19:18.093586Z", + "shell.execute_reply": "2024-05-23T15:19:18.092975Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:45:59.936441Z", - "iopub.status.busy": "2024-05-23T02:45:59.936263Z", - "iopub.status.idle": "2024-05-23T02:45:59.940021Z", - "shell.execute_reply": "2024-05-23T02:45:59.939485Z" + "iopub.execute_input": "2024-05-23T15:19:18.095774Z", + "iopub.status.busy": "2024-05-23T15:19:18.095421Z", + "iopub.status.idle": "2024-05-23T15:19:18.098960Z", + "shell.execute_reply": "2024-05-23T15:19:18.098495Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index 2e3c58585..864c4a675 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:02.141345Z", - "iopub.status.busy": "2024-05-23T02:46:02.141145Z", - "iopub.status.idle": "2024-05-23T02:46:04.916832Z", - "shell.execute_reply": "2024-05-23T02:46:04.916287Z" + "iopub.execute_input": "2024-05-23T15:19:20.418050Z", + "iopub.status.busy": "2024-05-23T15:19:20.417645Z", + "iopub.status.idle": "2024-05-23T15:19:23.119265Z", + "shell.execute_reply": "2024-05-23T15:19:23.118765Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:04.919515Z", - "iopub.status.busy": "2024-05-23T02:46:04.919198Z", - "iopub.status.idle": "2024-05-23T02:46:05.256970Z", - "shell.execute_reply": "2024-05-23T02:46:05.256356Z" + "iopub.execute_input": "2024-05-23T15:19:23.121949Z", + "iopub.status.busy": "2024-05-23T15:19:23.121462Z", + "iopub.status.idle": "2024-05-23T15:19:23.439157Z", + "shell.execute_reply": "2024-05-23T15:19:23.438540Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:05.259565Z", - "iopub.status.busy": "2024-05-23T02:46:05.259248Z", - "iopub.status.idle": "2024-05-23T02:46:05.263665Z", - "shell.execute_reply": "2024-05-23T02:46:05.263131Z" + "iopub.execute_input": "2024-05-23T15:19:23.441889Z", + "iopub.status.busy": "2024-05-23T15:19:23.441445Z", + "iopub.status.idle": "2024-05-23T15:19:23.445687Z", + "shell.execute_reply": "2024-05-23T15:19:23.445138Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:05.265905Z", - "iopub.status.busy": "2024-05-23T02:46:05.265597Z", - "iopub.status.idle": "2024-05-23T02:46:09.902238Z", - "shell.execute_reply": "2024-05-23T02:46:09.901657Z" + "iopub.execute_input": "2024-05-23T15:19:23.447818Z", + "iopub.status.busy": "2024-05-23T15:19:23.447514Z", + "iopub.status.idle": "2024-05-23T15:19:27.910563Z", + "shell.execute_reply": "2024-05-23T15:19:27.909990Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 1703936/170498071 [00:00<00:09, 16995533.02it/s]" + " 1%| | 1736704/170498071 [00:00<00:09, 17162140.37it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 5%|▌ | 8585216/170498071 [00:00<00:03, 47229064.15it/s]" + " 7%|▋ | 11501568/170498071 [00:00<00:02, 64155763.85it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 15138816/170498071 [00:00<00:02, 55372532.04it/s]" + " 12%|█▏ | 20086784/170498071 [00:00<00:02, 74015559.27it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▌ | 25657344/170498071 [00:00<00:01, 74928613.86it/s]" + " 17%|█▋ | 29786112/170498071 [00:00<00:01, 82879750.45it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|█▉ | 34045952/170498071 [00:00<00:01, 78093395.82it/s]" + " 23%|██▎ | 38567936/170498071 [00:00<00:01, 84511055.51it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43581440/170498071 [00:00<00:01, 83887826.49it/s]" + " 28%|██▊ | 48037888/170498071 [00:00<00:01, 87861286.88it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52002816/170498071 [00:00<00:01, 82914923.29it/s]" + " 33%|███▎ | 57049088/170498071 [00:00<00:01, 88570456.06it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61014016/170498071 [00:00<00:01, 85149171.66it/s]" + " 39%|███▉ | 66322432/170498071 [00:00<00:01, 89869881.39it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████ | 70057984/170498071 [00:00<00:01, 86762075.95it/s]" + " 44%|████▍ | 75792384/170498071 [00:00<00:01, 91369701.92it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 78741504/170498071 [00:01<00:01, 83822349.16it/s]" + " 50%|████▉ | 85098496/170498071 [00:01<00:00, 91824248.19it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 89063424/170498071 [00:01<00:00, 89588095.69it/s]" + " 56%|█████▌ | 94699520/170498071 [00:01<00:00, 93055008.97it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 58%|█████▊ | 98074624/170498071 [00:01<00:00, 84805415.54it/s]" + " 61%|██████ | 104038400/170498071 [00:01<00:00, 91300067.76it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 64%|██████▎ | 108298240/170498071 [00:01<00:00, 89570445.53it/s]" + " 67%|██████▋ | 113836032/170498071 [00:01<00:00, 93288047.22it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 69%|██████▉ | 117342208/170498071 [00:01<00:00, 86579273.33it/s]" + " 72%|███████▏ | 123174912/170498071 [00:01<00:00, 90347951.48it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 74%|███████▍ | 126091264/170498071 [00:01<00:00, 84172081.11it/s]" + " 79%|███████▉ | 134283264/170498071 [00:01<00:00, 96381342.24it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 80%|███████▉ | 136118272/170498071 [00:01<00:00, 88710088.95it/s]" + " 84%|████████▍ | 143982592/170498071 [00:01<00:00, 93413218.25it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 85%|████████▌ | 145063936/170498071 [00:01<00:00, 85525240.13it/s]" + " 91%|█████████ | 155516928/170498071 [00:01<00:00, 99643141.74it/s]" ] }, { @@ -388,7 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 91%|█████████ | 155025408/170498071 [00:01<00:00, 89396847.62it/s]" + " 97%|█████████▋| 165543936/170498071 [00:01<00:00, 96481236.76it/s]" ] }, { @@ -396,15 +396,7 @@ "output_type": "stream", "text": [ "\r", - " 96%|█████████▌| 164036608/170498071 [00:01<00:00, 86551138.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 83099579.16it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 90289215.23it/s]" ] }, { @@ -522,10 +514,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:09.904589Z", - "iopub.status.busy": "2024-05-23T02:46:09.904188Z", - "iopub.status.idle": "2024-05-23T02:46:09.908934Z", - "shell.execute_reply": "2024-05-23T02:46:09.908381Z" + "iopub.execute_input": "2024-05-23T15:19:27.912894Z", + "iopub.status.busy": "2024-05-23T15:19:27.912553Z", + "iopub.status.idle": "2024-05-23T15:19:27.917158Z", + "shell.execute_reply": "2024-05-23T15:19:27.916722Z" }, "nbsphinx": "hidden" }, @@ -576,10 +568,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:09.910995Z", - "iopub.status.busy": "2024-05-23T02:46:09.910667Z", - "iopub.status.idle": "2024-05-23T02:46:10.429202Z", - "shell.execute_reply": "2024-05-23T02:46:10.428638Z" + "iopub.execute_input": "2024-05-23T15:19:27.919088Z", + "iopub.status.busy": "2024-05-23T15:19:27.918790Z", + "iopub.status.idle": "2024-05-23T15:19:28.466696Z", + "shell.execute_reply": "2024-05-23T15:19:28.466159Z" } }, "outputs": [ @@ -612,10 +604,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:10.431616Z", - "iopub.status.busy": "2024-05-23T02:46:10.431191Z", - "iopub.status.idle": "2024-05-23T02:46:10.944539Z", - "shell.execute_reply": "2024-05-23T02:46:10.943933Z" + "iopub.execute_input": "2024-05-23T15:19:28.468957Z", + "iopub.status.busy": "2024-05-23T15:19:28.468602Z", + "iopub.status.idle": "2024-05-23T15:19:28.980865Z", + "shell.execute_reply": "2024-05-23T15:19:28.980281Z" } }, "outputs": [ @@ -653,10 +645,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:10.946747Z", - "iopub.status.busy": "2024-05-23T02:46:10.946341Z", - "iopub.status.idle": "2024-05-23T02:46:10.949698Z", - "shell.execute_reply": "2024-05-23T02:46:10.949253Z" + "iopub.execute_input": "2024-05-23T15:19:28.983104Z", + "iopub.status.busy": "2024-05-23T15:19:28.982884Z", + "iopub.status.idle": "2024-05-23T15:19:28.986615Z", + "shell.execute_reply": "2024-05-23T15:19:28.986093Z" } }, "outputs": [], @@ -679,17 +671,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:10.951562Z", - "iopub.status.busy": "2024-05-23T02:46:10.951242Z", - "iopub.status.idle": "2024-05-23T02:46:23.897490Z", - "shell.execute_reply": "2024-05-23T02:46:23.896904Z" + "iopub.execute_input": "2024-05-23T15:19:28.988717Z", + "iopub.status.busy": "2024-05-23T15:19:28.988399Z", + "iopub.status.idle": "2024-05-23T15:19:41.268144Z", + "shell.execute_reply": "2024-05-23T15:19:41.267376Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "080be58373d14a88b44ede9ac6497e42", + "model_id": "3b8fb0a2765b451f98a1ac53ecb4e164", "version_major": 2, "version_minor": 0 }, @@ -748,10 +740,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:23.899702Z", - "iopub.status.busy": "2024-05-23T02:46:23.899509Z", - "iopub.status.idle": "2024-05-23T02:46:25.650352Z", - "shell.execute_reply": "2024-05-23T02:46:25.649715Z" + "iopub.execute_input": "2024-05-23T15:19:41.270525Z", + "iopub.status.busy": "2024-05-23T15:19:41.270205Z", + "iopub.status.idle": "2024-05-23T15:19:42.992266Z", + "shell.execute_reply": "2024-05-23T15:19:42.991636Z" } }, "outputs": [ @@ -795,10 +787,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:25.653317Z", - "iopub.status.busy": "2024-05-23T02:46:25.652841Z", - "iopub.status.idle": "2024-05-23T02:46:25.909461Z", - "shell.execute_reply": "2024-05-23T02:46:25.908872Z" + "iopub.execute_input": "2024-05-23T15:19:42.994884Z", + "iopub.status.busy": "2024-05-23T15:19:42.994665Z", + "iopub.status.idle": "2024-05-23T15:19:43.223220Z", + "shell.execute_reply": "2024-05-23T15:19:43.222636Z" } }, "outputs": [ @@ -834,10 +826,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:25.912081Z", - "iopub.status.busy": "2024-05-23T02:46:25.911652Z", - "iopub.status.idle": "2024-05-23T02:46:26.573854Z", - "shell.execute_reply": "2024-05-23T02:46:26.573342Z" + "iopub.execute_input": "2024-05-23T15:19:43.225630Z", + "iopub.status.busy": "2024-05-23T15:19:43.225442Z", + "iopub.status.idle": "2024-05-23T15:19:43.863487Z", + "shell.execute_reply": "2024-05-23T15:19:43.863013Z" } }, "outputs": [ @@ -887,10 +879,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:26.576504Z", - "iopub.status.busy": "2024-05-23T02:46:26.576061Z", - "iopub.status.idle": "2024-05-23T02:46:26.916663Z", - "shell.execute_reply": "2024-05-23T02:46:26.916126Z" + "iopub.execute_input": "2024-05-23T15:19:43.866093Z", + "iopub.status.busy": "2024-05-23T15:19:43.865706Z", + "iopub.status.idle": "2024-05-23T15:19:44.203398Z", + "shell.execute_reply": "2024-05-23T15:19:44.202779Z" } }, "outputs": [ @@ -938,10 +930,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:26.919034Z", - "iopub.status.busy": "2024-05-23T02:46:26.918587Z", - "iopub.status.idle": "2024-05-23T02:46:27.162332Z", - "shell.execute_reply": "2024-05-23T02:46:27.161694Z" + "iopub.execute_input": "2024-05-23T15:19:44.205810Z", + "iopub.status.busy": "2024-05-23T15:19:44.205389Z", + "iopub.status.idle": "2024-05-23T15:19:44.439111Z", + "shell.execute_reply": "2024-05-23T15:19:44.438438Z" } }, "outputs": [ @@ -997,10 +989,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:27.165060Z", - "iopub.status.busy": "2024-05-23T02:46:27.164579Z", - "iopub.status.idle": "2024-05-23T02:46:27.254621Z", - "shell.execute_reply": "2024-05-23T02:46:27.254132Z" + "iopub.execute_input": "2024-05-23T15:19:44.441833Z", + "iopub.status.busy": "2024-05-23T15:19:44.441368Z", + "iopub.status.idle": "2024-05-23T15:19:44.520211Z", + "shell.execute_reply": "2024-05-23T15:19:44.519728Z" } }, "outputs": [], @@ -1021,10 +1013,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:27.257208Z", - "iopub.status.busy": "2024-05-23T02:46:27.257010Z", - "iopub.status.idle": "2024-05-23T02:46:37.115239Z", - "shell.execute_reply": "2024-05-23T02:46:37.114653Z" + "iopub.execute_input": "2024-05-23T15:19:44.522662Z", + "iopub.status.busy": "2024-05-23T15:19:44.522298Z", + "iopub.status.idle": "2024-05-23T15:19:54.500962Z", + "shell.execute_reply": "2024-05-23T15:19:54.500349Z" } }, "outputs": [ @@ -1061,10 +1053,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:37.117735Z", - "iopub.status.busy": "2024-05-23T02:46:37.117334Z", - "iopub.status.idle": "2024-05-23T02:46:38.793853Z", - "shell.execute_reply": "2024-05-23T02:46:38.793304Z" + "iopub.execute_input": "2024-05-23T15:19:54.503513Z", + "iopub.status.busy": "2024-05-23T15:19:54.503062Z", + "iopub.status.idle": "2024-05-23T15:19:56.228078Z", + "shell.execute_reply": "2024-05-23T15:19:56.227474Z" } }, "outputs": [ @@ -1095,10 +1087,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:38.796463Z", - "iopub.status.busy": "2024-05-23T02:46:38.796077Z", - "iopub.status.idle": "2024-05-23T02:46:39.008116Z", - "shell.execute_reply": "2024-05-23T02:46:39.007512Z" + "iopub.execute_input": "2024-05-23T15:19:56.230773Z", + "iopub.status.busy": "2024-05-23T15:19:56.230243Z", + "iopub.status.idle": "2024-05-23T15:19:56.429163Z", + "shell.execute_reply": "2024-05-23T15:19:56.428662Z" } }, "outputs": [], @@ -1112,10 +1104,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:39.010568Z", - "iopub.status.busy": "2024-05-23T02:46:39.010225Z", - "iopub.status.idle": "2024-05-23T02:46:39.013320Z", - "shell.execute_reply": "2024-05-23T02:46:39.012827Z" + "iopub.execute_input": "2024-05-23T15:19:56.431632Z", + "iopub.status.busy": "2024-05-23T15:19:56.431214Z", + "iopub.status.idle": "2024-05-23T15:19:56.434445Z", + "shell.execute_reply": "2024-05-23T15:19:56.433868Z" } }, "outputs": [], @@ -1137,10 +1129,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:39.015316Z", - "iopub.status.busy": "2024-05-23T02:46:39.014945Z", - "iopub.status.idle": "2024-05-23T02:46:39.023247Z", - "shell.execute_reply": "2024-05-23T02:46:39.022829Z" + "iopub.execute_input": "2024-05-23T15:19:56.436613Z", + "iopub.status.busy": "2024-05-23T15:19:56.436227Z", + "iopub.status.idle": "2024-05-23T15:19:56.444314Z", + "shell.execute_reply": "2024-05-23T15:19:56.443752Z" }, "nbsphinx": "hidden" }, @@ -1185,30 +1177,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0402176f8aac46c39dac36e19e3dd162": { + "1c081dc855c845ca806a2b2c12fb3457": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c63045a50e44435aa41838ef08114caa", - "placeholder": "​", - "style": "IPY_MODEL_92ab7d4085b54a5fbfde35759126476f", - "tabbable": null, - "tooltip": null, - "value": "model.safetensors: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "080be58373d14a88b44ede9ac6497e42": { + "3b8fb0a2765b451f98a1ac53ecb4e164": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1223,16 +1210,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0402176f8aac46c39dac36e19e3dd162", - "IPY_MODEL_456ddd1dd0c546f9babde386184c4b1f", - "IPY_MODEL_b873bfbeea1442fe976b6c21c297e694" + "IPY_MODEL_b8ba87703fab416f9d70cbc709c4da3f", + "IPY_MODEL_9a7ed5c009c741478561e905be1672f7", + "IPY_MODEL_c1f97f79234649aabff0e34c04779f90" ], - "layout": "IPY_MODEL_3beef4ceb929432f8c1631be93a09ccc", + "layout": "IPY_MODEL_44294bba5289472bbfa0506434dfc622", "tabbable": null, "tooltip": null } }, - "2f8517a90c674fc184376c8c1ad6a932": { + "44294bba5289472bbfa0506434dfc622": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1285,60 +1272,41 @@ "width": null } }, - "3beef4ceb929432f8c1631be93a09ccc": { - "model_module": "@jupyter-widgets/base", + "4979f41862c14d879975f69b3a683d77": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "456ddd1dd0c546f9babde386184c4b1f": { + "7bb947aefbf04918bd7f078ff36abde0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9a7ed5c009c741478561e905be1672f7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1354,17 +1322,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f8517a90c674fc184376c8c1ad6a932", + "layout": "IPY_MODEL_a4a51d9305e142b69ea5800c787cf085", "max": 102469840.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_9bcd32d3e2f3453996ac27e16b4df39c", + "style": "IPY_MODEL_7bb947aefbf04918bd7f078ff36abde0", "tabbable": null, "tooltip": null, "value": 102469840.0 } }, - "55f9384b281945ec82276a1d54a137a4": { + "a4a51d9305e142b69ea5800c787cf085": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1417,41 +1385,30 @@ "width": null } }, - "92ab7d4085b54a5fbfde35759126476f": { + "b8ba87703fab416f9d70cbc709c4da3f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9bcd32d3e2f3453996ac27e16b4df39c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f4b8a16ee1de4b8d8f8c9618fd2fcb1d", + "placeholder": "​", + "style": "IPY_MODEL_4979f41862c14d879975f69b3a683d77", + "tabbable": null, + "tooltip": null, + "value": "model.safetensors: 100%" } }, - "b873bfbeea1442fe976b6c21c297e694": { + "c1f97f79234649aabff0e34c04779f90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1466,15 +1423,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_55f9384b281945ec82276a1d54a137a4", + "layout": "IPY_MODEL_c352ca37fa08488494329f472fcc29eb", "placeholder": "​", - "style": "IPY_MODEL_ef35a07ffe9147b39b0ebb325933ce48", + "style": "IPY_MODEL_1c081dc855c845ca806a2b2c12fb3457", "tabbable": null, "tooltip": null, - "value": " 102M/102M [00:00<00:00, 118MB/s]" + "value": " 102M/102M [00:00<00:00, 319MB/s]" } }, - "c63045a50e44435aa41838ef08114caa": { + "c352ca37fa08488494329f472fcc29eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1527,22 +1484,57 @@ "width": null } }, - "ef35a07ffe9147b39b0ebb325933ce48": { - "model_module": "@jupyter-widgets/controls", + "f4b8a16ee1de4b8d8f8c9618fd2fcb1d": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 8962a6b37..79ad29265 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:43.282810Z", - "iopub.status.busy": "2024-05-23T02:46:43.282638Z", - "iopub.status.idle": "2024-05-23T02:46:44.439719Z", - "shell.execute_reply": "2024-05-23T02:46:44.439121Z" + "iopub.execute_input": "2024-05-23T15:20:00.713888Z", + "iopub.status.busy": "2024-05-23T15:20:00.713712Z", + "iopub.status.idle": "2024-05-23T15:20:01.884137Z", + "shell.execute_reply": "2024-05-23T15:20:01.883522Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:44.442319Z", - "iopub.status.busy": "2024-05-23T02:46:44.442066Z", - "iopub.status.idle": "2024-05-23T02:46:44.459594Z", - "shell.execute_reply": "2024-05-23T02:46:44.459051Z" + "iopub.execute_input": "2024-05-23T15:20:01.886789Z", + "iopub.status.busy": "2024-05-23T15:20:01.886262Z", + "iopub.status.idle": "2024-05-23T15:20:01.903881Z", + "shell.execute_reply": "2024-05-23T15:20:01.903329Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:44.461707Z", - "iopub.status.busy": "2024-05-23T02:46:44.461331Z", - "iopub.status.idle": "2024-05-23T02:46:44.464304Z", - "shell.execute_reply": "2024-05-23T02:46:44.463794Z" + "iopub.execute_input": "2024-05-23T15:20:01.906014Z", + "iopub.status.busy": "2024-05-23T15:20:01.905623Z", + "iopub.status.idle": "2024-05-23T15:20:01.908690Z", + "shell.execute_reply": "2024-05-23T15:20:01.908171Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:44.466444Z", - "iopub.status.busy": "2024-05-23T02:46:44.466127Z", - "iopub.status.idle": "2024-05-23T02:46:44.584653Z", - "shell.execute_reply": "2024-05-23T02:46:44.584151Z" + "iopub.execute_input": "2024-05-23T15:20:01.910636Z", + "iopub.status.busy": "2024-05-23T15:20:01.910322Z", + "iopub.status.idle": "2024-05-23T15:20:01.976706Z", + "shell.execute_reply": "2024-05-23T15:20:01.976157Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:44.586808Z", - "iopub.status.busy": "2024-05-23T02:46:44.586531Z", - "iopub.status.idle": "2024-05-23T02:46:44.765447Z", - "shell.execute_reply": "2024-05-23T02:46:44.764843Z" + "iopub.execute_input": "2024-05-23T15:20:01.978980Z", + "iopub.status.busy": "2024-05-23T15:20:01.978658Z", + "iopub.status.idle": "2024-05-23T15:20:02.159140Z", + "shell.execute_reply": "2024-05-23T15:20:02.158508Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:44.767789Z", - "iopub.status.busy": "2024-05-23T02:46:44.767489Z", - "iopub.status.idle": "2024-05-23T02:46:45.007577Z", - "shell.execute_reply": "2024-05-23T02:46:45.006971Z" + "iopub.execute_input": "2024-05-23T15:20:02.161735Z", + "iopub.status.busy": "2024-05-23T15:20:02.161393Z", + "iopub.status.idle": "2024-05-23T15:20:02.408259Z", + "shell.execute_reply": "2024-05-23T15:20:02.407696Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:45.009900Z", - "iopub.status.busy": "2024-05-23T02:46:45.009572Z", - "iopub.status.idle": "2024-05-23T02:46:45.013993Z", - "shell.execute_reply": "2024-05-23T02:46:45.013540Z" + "iopub.execute_input": "2024-05-23T15:20:02.410508Z", + "iopub.status.busy": "2024-05-23T15:20:02.410129Z", + "iopub.status.idle": "2024-05-23T15:20:02.414877Z", + "shell.execute_reply": "2024-05-23T15:20:02.414404Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:45.016053Z", - "iopub.status.busy": "2024-05-23T02:46:45.015738Z", - "iopub.status.idle": "2024-05-23T02:46:45.021487Z", - "shell.execute_reply": "2024-05-23T02:46:45.021013Z" + "iopub.execute_input": "2024-05-23T15:20:02.416679Z", + "iopub.status.busy": "2024-05-23T15:20:02.416500Z", + "iopub.status.idle": "2024-05-23T15:20:02.422284Z", + "shell.execute_reply": "2024-05-23T15:20:02.421829Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:45.023520Z", - "iopub.status.busy": "2024-05-23T02:46:45.023183Z", - "iopub.status.idle": "2024-05-23T02:46:45.025773Z", - "shell.execute_reply": "2024-05-23T02:46:45.025326Z" + "iopub.execute_input": "2024-05-23T15:20:02.424407Z", + "iopub.status.busy": "2024-05-23T15:20:02.424109Z", + "iopub.status.idle": "2024-05-23T15:20:02.426792Z", + "shell.execute_reply": "2024-05-23T15:20:02.426231Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:45.027742Z", - "iopub.status.busy": "2024-05-23T02:46:45.027433Z", - "iopub.status.idle": "2024-05-23T02:46:53.155706Z", - "shell.execute_reply": "2024-05-23T02:46:53.155171Z" + "iopub.execute_input": "2024-05-23T15:20:02.428710Z", + "iopub.status.busy": "2024-05-23T15:20:02.428403Z", + "iopub.status.idle": "2024-05-23T15:20:10.585054Z", + "shell.execute_reply": "2024-05-23T15:20:10.584498Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.158466Z", - "iopub.status.busy": "2024-05-23T02:46:53.157941Z", - "iopub.status.idle": "2024-05-23T02:46:53.164946Z", - "shell.execute_reply": "2024-05-23T02:46:53.164390Z" + "iopub.execute_input": "2024-05-23T15:20:10.587881Z", + "iopub.status.busy": "2024-05-23T15:20:10.587316Z", + "iopub.status.idle": "2024-05-23T15:20:10.594690Z", + "shell.execute_reply": "2024-05-23T15:20:10.594103Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.166997Z", - "iopub.status.busy": "2024-05-23T02:46:53.166817Z", - "iopub.status.idle": "2024-05-23T02:46:53.170538Z", - "shell.execute_reply": "2024-05-23T02:46:53.169989Z" + "iopub.execute_input": "2024-05-23T15:20:10.596762Z", + "iopub.status.busy": "2024-05-23T15:20:10.596442Z", + "iopub.status.idle": "2024-05-23T15:20:10.600191Z", + "shell.execute_reply": "2024-05-23T15:20:10.599728Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.172491Z", - "iopub.status.busy": "2024-05-23T02:46:53.172319Z", - "iopub.status.idle": "2024-05-23T02:46:53.175718Z", - "shell.execute_reply": "2024-05-23T02:46:53.175252Z" + "iopub.execute_input": "2024-05-23T15:20:10.602274Z", + "iopub.status.busy": "2024-05-23T15:20:10.601848Z", + "iopub.status.idle": "2024-05-23T15:20:10.605475Z", + "shell.execute_reply": "2024-05-23T15:20:10.604912Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.177545Z", - "iopub.status.busy": "2024-05-23T02:46:53.177376Z", - "iopub.status.idle": "2024-05-23T02:46:53.180408Z", - "shell.execute_reply": "2024-05-23T02:46:53.179829Z" + "iopub.execute_input": "2024-05-23T15:20:10.607598Z", + "iopub.status.busy": "2024-05-23T15:20:10.607293Z", + "iopub.status.idle": "2024-05-23T15:20:10.610357Z", + "shell.execute_reply": "2024-05-23T15:20:10.609904Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.182356Z", - "iopub.status.busy": "2024-05-23T02:46:53.182039Z", - "iopub.status.idle": "2024-05-23T02:46:53.190067Z", - "shell.execute_reply": "2024-05-23T02:46:53.189618Z" + "iopub.execute_input": "2024-05-23T15:20:10.612134Z", + "iopub.status.busy": "2024-05-23T15:20:10.611960Z", + "iopub.status.idle": "2024-05-23T15:20:10.620107Z", + "shell.execute_reply": "2024-05-23T15:20:10.619583Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.192036Z", - "iopub.status.busy": "2024-05-23T02:46:53.191731Z", - "iopub.status.idle": "2024-05-23T02:46:53.194394Z", - "shell.execute_reply": "2024-05-23T02:46:53.193854Z" + "iopub.execute_input": "2024-05-23T15:20:10.622243Z", + "iopub.status.busy": "2024-05-23T15:20:10.621851Z", + "iopub.status.idle": "2024-05-23T15:20:10.624633Z", + "shell.execute_reply": "2024-05-23T15:20:10.624069Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.196301Z", - "iopub.status.busy": "2024-05-23T02:46:53.196130Z", - "iopub.status.idle": "2024-05-23T02:46:53.319491Z", - "shell.execute_reply": "2024-05-23T02:46:53.318959Z" + "iopub.execute_input": "2024-05-23T15:20:10.626725Z", + "iopub.status.busy": "2024-05-23T15:20:10.626413Z", + "iopub.status.idle": "2024-05-23T15:20:10.746726Z", + "shell.execute_reply": "2024-05-23T15:20:10.746183Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.321656Z", - "iopub.status.busy": "2024-05-23T02:46:53.321349Z", - "iopub.status.idle": "2024-05-23T02:46:53.424593Z", - "shell.execute_reply": "2024-05-23T02:46:53.424089Z" + "iopub.execute_input": "2024-05-23T15:20:10.748994Z", + "iopub.status.busy": "2024-05-23T15:20:10.748556Z", + "iopub.status.idle": "2024-05-23T15:20:10.851929Z", + "shell.execute_reply": "2024-05-23T15:20:10.851338Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.426851Z", - "iopub.status.busy": "2024-05-23T02:46:53.426673Z", - "iopub.status.idle": "2024-05-23T02:46:53.911081Z", - "shell.execute_reply": "2024-05-23T02:46:53.910483Z" + "iopub.execute_input": "2024-05-23T15:20:10.854241Z", + "iopub.status.busy": "2024-05-23T15:20:10.854025Z", + "iopub.status.idle": "2024-05-23T15:20:11.349402Z", + "shell.execute_reply": "2024-05-23T15:20:11.348855Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.913639Z", - "iopub.status.busy": "2024-05-23T02:46:53.913452Z", - "iopub.status.idle": "2024-05-23T02:46:53.985444Z", - "shell.execute_reply": "2024-05-23T02:46:53.984876Z" + "iopub.execute_input": "2024-05-23T15:20:11.352034Z", + "iopub.status.busy": "2024-05-23T15:20:11.351640Z", + "iopub.status.idle": "2024-05-23T15:20:11.429647Z", + "shell.execute_reply": "2024-05-23T15:20:11.429097Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.987587Z", - "iopub.status.busy": "2024-05-23T02:46:53.987400Z", - "iopub.status.idle": "2024-05-23T02:46:53.995789Z", - "shell.execute_reply": "2024-05-23T02:46:53.995370Z" + "iopub.execute_input": "2024-05-23T15:20:11.431986Z", + "iopub.status.busy": "2024-05-23T15:20:11.431616Z", + "iopub.status.idle": "2024-05-23T15:20:11.440050Z", + "shell.execute_reply": "2024-05-23T15:20:11.439597Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:53.997778Z", - "iopub.status.busy": "2024-05-23T02:46:53.997457Z", - "iopub.status.idle": "2024-05-23T02:46:53.999960Z", - "shell.execute_reply": "2024-05-23T02:46:53.999530Z" + "iopub.execute_input": "2024-05-23T15:20:11.441946Z", + "iopub.status.busy": "2024-05-23T15:20:11.441647Z", + "iopub.status.idle": "2024-05-23T15:20:11.444421Z", + "shell.execute_reply": "2024-05-23T15:20:11.443857Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:54.002019Z", - "iopub.status.busy": "2024-05-23T02:46:54.001699Z", - "iopub.status.idle": "2024-05-23T02:46:59.352909Z", - "shell.execute_reply": "2024-05-23T02:46:59.352320Z" + "iopub.execute_input": "2024-05-23T15:20:11.446342Z", + "iopub.status.busy": "2024-05-23T15:20:11.446041Z", + "iopub.status.idle": "2024-05-23T15:20:16.914965Z", + "shell.execute_reply": "2024-05-23T15:20:16.914270Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:59.355285Z", - "iopub.status.busy": "2024-05-23T02:46:59.354898Z", - "iopub.status.idle": "2024-05-23T02:46:59.363260Z", - "shell.execute_reply": "2024-05-23T02:46:59.362784Z" + "iopub.execute_input": "2024-05-23T15:20:16.917193Z", + "iopub.status.busy": "2024-05-23T15:20:16.917010Z", + "iopub.status.idle": "2024-05-23T15:20:16.925745Z", + "shell.execute_reply": "2024-05-23T15:20:16.925203Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:46:59.365335Z", - "iopub.status.busy": "2024-05-23T02:46:59.364994Z", - "iopub.status.idle": "2024-05-23T02:46:59.433225Z", - "shell.execute_reply": "2024-05-23T02:46:59.432747Z" + "iopub.execute_input": "2024-05-23T15:20:16.927764Z", + "iopub.status.busy": "2024-05-23T15:20:16.927451Z", + "iopub.status.idle": "2024-05-23T15:20:16.992676Z", + "shell.execute_reply": "2024-05-23T15:20:16.992057Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 2474fdfa7..2b9c99bed 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:02.431584Z", - "iopub.status.busy": "2024-05-23T02:47:02.431414Z", - "iopub.status.idle": "2024-05-23T02:47:04.100061Z", - "shell.execute_reply": "2024-05-23T02:47:04.099383Z" + "iopub.execute_input": "2024-05-23T15:20:20.082424Z", + "iopub.status.busy": "2024-05-23T15:20:20.082241Z", + "iopub.status.idle": "2024-05-23T15:20:21.026372Z", + "shell.execute_reply": "2024-05-23T15:20:21.025733Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:04.102722Z", - "iopub.status.busy": "2024-05-23T02:47:04.102546Z", - "iopub.status.idle": "2024-05-23T02:47:53.610780Z", - "shell.execute_reply": "2024-05-23T02:47:53.610095Z" + "iopub.execute_input": "2024-05-23T15:20:21.028777Z", + "iopub.status.busy": "2024-05-23T15:20:21.028598Z", + "iopub.status.idle": "2024-05-23T15:20:51.052547Z", + "shell.execute_reply": "2024-05-23T15:20:51.051972Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:53.613343Z", - "iopub.status.busy": "2024-05-23T02:47:53.612992Z", - "iopub.status.idle": "2024-05-23T02:47:54.735895Z", - "shell.execute_reply": "2024-05-23T02:47:54.735362Z" + "iopub.execute_input": "2024-05-23T15:20:51.055280Z", + "iopub.status.busy": "2024-05-23T15:20:51.054910Z", + "iopub.status.idle": "2024-05-23T15:20:52.162805Z", + "shell.execute_reply": "2024-05-23T15:20:52.162199Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:54.738184Z", - "iopub.status.busy": "2024-05-23T02:47:54.737878Z", - "iopub.status.idle": "2024-05-23T02:47:54.741204Z", - "shell.execute_reply": "2024-05-23T02:47:54.740686Z" + "iopub.execute_input": "2024-05-23T15:20:52.165202Z", + "iopub.status.busy": "2024-05-23T15:20:52.164895Z", + "iopub.status.idle": "2024-05-23T15:20:52.168235Z", + "shell.execute_reply": "2024-05-23T15:20:52.167701Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:54.743439Z", - "iopub.status.busy": "2024-05-23T02:47:54.743114Z", - "iopub.status.idle": "2024-05-23T02:47:54.746850Z", - "shell.execute_reply": "2024-05-23T02:47:54.746329Z" + "iopub.execute_input": "2024-05-23T15:20:52.170428Z", + "iopub.status.busy": "2024-05-23T15:20:52.170106Z", + "iopub.status.idle": "2024-05-23T15:20:52.174027Z", + "shell.execute_reply": "2024-05-23T15:20:52.173495Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:54.748930Z", - "iopub.status.busy": "2024-05-23T02:47:54.748622Z", - "iopub.status.idle": "2024-05-23T02:47:54.752162Z", - "shell.execute_reply": "2024-05-23T02:47:54.751652Z" + "iopub.execute_input": "2024-05-23T15:20:52.176309Z", + "iopub.status.busy": "2024-05-23T15:20:52.175863Z", + "iopub.status.idle": "2024-05-23T15:20:52.179639Z", + "shell.execute_reply": "2024-05-23T15:20:52.179192Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:54.754313Z", - "iopub.status.busy": "2024-05-23T02:47:54.753994Z", - "iopub.status.idle": "2024-05-23T02:47:54.757240Z", - "shell.execute_reply": "2024-05-23T02:47:54.756827Z" + "iopub.execute_input": "2024-05-23T15:20:52.181459Z", + "iopub.status.busy": "2024-05-23T15:20:52.181289Z", + "iopub.status.idle": "2024-05-23T15:20:52.184204Z", + "shell.execute_reply": "2024-05-23T15:20:52.183681Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:47:54.759227Z", - "iopub.status.busy": "2024-05-23T02:47:54.758826Z", - "iopub.status.idle": "2024-05-23T02:48:29.415141Z", - "shell.execute_reply": "2024-05-23T02:48:29.414523Z" + "iopub.execute_input": "2024-05-23T15:20:52.186170Z", + "iopub.status.busy": "2024-05-23T15:20:52.185853Z", + "iopub.status.idle": "2024-05-23T15:21:25.646178Z", + "shell.execute_reply": "2024-05-23T15:21:25.645603Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c4afc0546dd4c56a662e39e3e7a4a49", + "model_id": "5ef5c47110ec4f59aeb856c6d3c341a6", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f64b5d2793744982845ae084dacbd8d2", + "model_id": "c79ebbfe831845c1a17b218fa7be7f95", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:48:29.417834Z", - "iopub.status.busy": "2024-05-23T02:48:29.417624Z", - "iopub.status.idle": "2024-05-23T02:48:30.085655Z", - "shell.execute_reply": "2024-05-23T02:48:30.085085Z" + "iopub.execute_input": "2024-05-23T15:21:25.648967Z", + "iopub.status.busy": "2024-05-23T15:21:25.648546Z", + "iopub.status.idle": "2024-05-23T15:21:26.324304Z", + "shell.execute_reply": "2024-05-23T15:21:26.323688Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:48:30.087982Z", - "iopub.status.busy": "2024-05-23T02:48:30.087467Z", - "iopub.status.idle": "2024-05-23T02:48:32.722049Z", - "shell.execute_reply": "2024-05-23T02:48:32.721506Z" + "iopub.execute_input": "2024-05-23T15:21:26.326858Z", + "iopub.status.busy": "2024-05-23T15:21:26.326289Z", + "iopub.status.idle": "2024-05-23T15:21:28.965724Z", + "shell.execute_reply": "2024-05-23T15:21:28.965149Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:48:32.724231Z", - "iopub.status.busy": "2024-05-23T02:48:32.724051Z", - "iopub.status.idle": "2024-05-23T02:49:05.181219Z", - "shell.execute_reply": "2024-05-23T02:49:05.180646Z" + "iopub.execute_input": "2024-05-23T15:21:28.967904Z", + "iopub.status.busy": "2024-05-23T15:21:28.967720Z", + "iopub.status.idle": "2024-05-23T15:22:01.664155Z", + "shell.execute_reply": "2024-05-23T15:22:01.663577Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f061f06e3ec64188a924477da4eed393", + "model_id": "0411aabf4a7449b7b6097cf29c44f6be", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:05.183502Z", - "iopub.status.busy": "2024-05-23T02:49:05.183090Z", - "iopub.status.idle": "2024-05-23T02:49:19.494831Z", - "shell.execute_reply": "2024-05-23T02:49:19.494273Z" + "iopub.execute_input": "2024-05-23T15:22:01.666491Z", + "iopub.status.busy": "2024-05-23T15:22:01.666070Z", + "iopub.status.idle": "2024-05-23T15:22:16.254913Z", + "shell.execute_reply": "2024-05-23T15:22:16.254325Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:19.497043Z", - "iopub.status.busy": "2024-05-23T02:49:19.496850Z", - "iopub.status.idle": "2024-05-23T02:49:23.195967Z", - "shell.execute_reply": "2024-05-23T02:49:23.195483Z" + "iopub.execute_input": "2024-05-23T15:22:16.257597Z", + "iopub.status.busy": "2024-05-23T15:22:16.257232Z", + "iopub.status.idle": "2024-05-23T15:22:20.098267Z", + "shell.execute_reply": "2024-05-23T15:22:20.097650Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:23.197955Z", - "iopub.status.busy": "2024-05-23T02:49:23.197780Z", - "iopub.status.idle": "2024-05-23T02:49:24.562334Z", - "shell.execute_reply": "2024-05-23T02:49:24.561679Z" + "iopub.execute_input": "2024-05-23T15:22:20.101127Z", + "iopub.status.busy": "2024-05-23T15:22:20.100634Z", + "iopub.status.idle": "2024-05-23T15:22:21.546729Z", + "shell.execute_reply": "2024-05-23T15:22:21.546217Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0c6d1f24804048e4a9d0a95c7c205c4e", + "model_id": "d625e0de09de41e58013bd6ffd10ea65", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:24.564444Z", - "iopub.status.busy": "2024-05-23T02:49:24.564265Z", - "iopub.status.idle": "2024-05-23T02:49:24.591252Z", - "shell.execute_reply": "2024-05-23T02:49:24.590763Z" + "iopub.execute_input": "2024-05-23T15:22:21.549131Z", + "iopub.status.busy": "2024-05-23T15:22:21.548947Z", + "iopub.status.idle": "2024-05-23T15:22:21.579374Z", + "shell.execute_reply": "2024-05-23T15:22:21.578871Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:24.593533Z", - "iopub.status.busy": "2024-05-23T02:49:24.593337Z", - "iopub.status.idle": "2024-05-23T02:49:30.541065Z", - "shell.execute_reply": "2024-05-23T02:49:30.540478Z" + "iopub.execute_input": "2024-05-23T15:22:21.581712Z", + "iopub.status.busy": "2024-05-23T15:22:21.581514Z", + "iopub.status.idle": "2024-05-23T15:22:27.685973Z", + "shell.execute_reply": "2024-05-23T15:22:27.685386Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:30.543203Z", - "iopub.status.busy": "2024-05-23T02:49:30.542891Z", - "iopub.status.idle": "2024-05-23T02:49:30.598708Z", - "shell.execute_reply": "2024-05-23T02:49:30.598105Z" + "iopub.execute_input": "2024-05-23T15:22:27.688121Z", + "iopub.status.busy": "2024-05-23T15:22:27.687916Z", + "iopub.status.idle": "2024-05-23T15:22:27.744306Z", + "shell.execute_reply": "2024-05-23T15:22:27.743788Z" }, "nbsphinx": "hidden" }, @@ -1038,7 +1038,84 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "016a2aa584c54a30a48f5aa98ac19b92": { + "0398887f1bfe40b0955c8abea4b49cd1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0411aabf4a7449b7b6097cf29c44f6be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b2208a3f273849ab827fae9cd38132f3", + "IPY_MODEL_e8bac498633d4753ba3338a097659542", + "IPY_MODEL_63318ac9759641a697650e72ba3a1f71" + ], + "layout": "IPY_MODEL_41dc3879d71e491eb1cad2b61fd7f555", + "tabbable": null, + "tooltip": null + } + }, + "07ac41807a0b47a7b26d56207634fd82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1056,7 +1133,7 @@ "text_color": null } }, - "0299908f400f4c4f80bfc4f8b91cd860": { + "0b875393e6884f6da0d17965a84e7e3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1072,17 +1149,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_725299ed2d2d495e8116c8d2b900f134", + "layout": "IPY_MODEL_556d7a96f68d404da1aceb865b5bcaa3", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_266d8baebceb456f9de0ecd224a8f07f", + "style": "IPY_MODEL_a45910e9f24846f4a8fd1dbae5f6f01e", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "04cae20aa93d4a8faa7a664f277282df": { + "0cb55221d04844998b3efd90659ba7d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1097,63 +1174,82 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b6367d6bc21408b8500160a29f63b24", + "layout": "IPY_MODEL_b1b566c302dd4797bc264e8362c45e1c", "placeholder": "​", - "style": "IPY_MODEL_4792438008804047863e1e20a529f391", + "style": "IPY_MODEL_bdd6e352fd8b4492b50d4a59e384a686", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:22<00:00,  1.30it/s]" + "value": "number of examples processed for checking labels: 100%" } }, - "0c4afc0546dd4c56a662e39e3e7a4a49": { + "1564ff2b349245b98b6641d891bfd8b3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a9ba72b6d9eb46bd8afe92dc6a7b7ba2", - "IPY_MODEL_f1807c19bdc24b6fabbeebb2b4bef583", - "IPY_MODEL_ed24817521404bf8a9160c8c4db0af03" - ], - "layout": "IPY_MODEL_39b4cf4d1af6451cab40aee83d8afce1", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7991601db8784f6c9e29101ffb67eadb", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_68c71bc1bad94d8d84e927f32499419b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 } }, - "0c6d1f24804048e4a9d0a95c7c205c4e": { + "1588d3dd602a4049b726fc99f066d0cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2c78627728b1456d8196e74a64c20c11", - "IPY_MODEL_0299908f400f4c4f80bfc4f8b91cd860", - "IPY_MODEL_5e82d17664134e50b0bf08f130062aa5" - ], - "layout": "IPY_MODEL_956e217069544145bc2daf387670a6f1", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0398887f1bfe40b0955c8abea4b49cd1", + "placeholder": "​", + "style": "IPY_MODEL_e2094383203b482c95ee7d5c103429ea", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "images processed using softmin: 100%" + } + }, + "3cc4259329f74837bd19ac70f0bfd280": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "16093126439a4d69b67f58dee7c30aaf": { + "3d8d61af332845c19a16f7f26036b979": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1206,64 +1302,7 @@ "width": null } }, - "266d8baebceb456f9de0ecd224a8f07f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c78627728b1456d8196e74a64c20c11": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6378b47f9745452085fad301777b1a14", - "placeholder": "​", - "style": "IPY_MODEL_830d8f4ea65e42bbabd3be8aea0ca004", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" - } - }, - "30f2de75554440b9b936dfd108bccf87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "39b4cf4d1af6451cab40aee83d8afce1": { + "3dad1b05b1624573b3133880eff2163f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1316,108 +1355,60 @@ "width": null } }, - "3cc5f6b0b0ac4f108a978a26762ddddb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ecc34604a0c9400faf322cccb02a0906", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_50cdfed3960c4485b819a5d78a64e348", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "4792438008804047863e1e20a529f391": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4cea6b9ae47246558816843b27fe144b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4eb8a87439944e1ba0c2293c5411b096": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b764a25fab34d118e387d2f63807d7b", - "placeholder": "​", - "style": "IPY_MODEL_7bef79fc2cd545e996b71e810690fbe3", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 154565.69it/s]" - } - }, - "50cdfed3960c4485b819a5d78a64e348": { - "model_module": "@jupyter-widgets/controls", + "41dc3879d71e491eb1cad2b61fd7f555": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "5474f911771845c5b6970c39c4b5b236": { + "556d7a96f68d404da1aceb865b5bcaa3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1470,33 +1461,54 @@ "width": null } }, - "56b4d15683c94f77894d303ad991e833": { + "5ccaa73ac723461c85d0fdfec6e4e9c9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5474f911771845c5b6970c39c4b5b236", - "max": 4997683.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_dfc0062d477b48c59ae03f801e4a406b", + "layout": "IPY_MODEL_ba13899638c54baebf4d5e9da65660b0", + "placeholder": "​", + "style": "IPY_MODEL_b9943848dcb643c2a23f4e8cf52def5f", "tabbable": null, "tooltip": null, - "value": 4997683.0 + "value": "number of examples processed for estimating thresholds: 100%" } }, - "5e82d17664134e50b0bf08f130062aa5": { + "5ef5c47110ec4f59aeb856c6d3c341a6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5ccaa73ac723461c85d0fdfec6e4e9c9", + "IPY_MODEL_a570f95dbe384aaa96ee3013473e2ebe", + "IPY_MODEL_7b39104787d44463885c0c905b63ba15" + ], + "layout": "IPY_MODEL_9f52119dcdce4e578fbef81f09977a4a", + "tabbable": null, + "tooltip": null + } + }, + "63318ac9759641a697650e72ba3a1f71": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1511,15 +1523,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7b47a6fec59c4f33919b2b1b1a4d33f4", + "layout": "IPY_MODEL_d9bc553ff2a146208e83cfb4a65cd5aa", "placeholder": "​", - "style": "IPY_MODEL_4cea6b9ae47246558816843b27fe144b", + "style": "IPY_MODEL_bb51f26ffedf41cf941e7bf04717041c", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 22.15it/s]" + "value": " 4997683/4997683 [00:32<00:00, 154309.04it/s]" } }, - "6378b47f9745452085fad301777b1a14": { + "68c50245c9504baf95dbb3963b43a8a0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1572,30 +1584,23 @@ "width": null } }, - "640eb6d1b10b4a8c836f6eef2f8b95b8": { + "68c71bc1bad94d8d84e927f32499419b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8b9baa96f97243eebc38a3b719e13152", - "placeholder": "​", - "style": "IPY_MODEL_30f2de75554440b9b936dfd108bccf87", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "725299ed2d2d495e8116c8d2b900f134": { + "6cbc832ae4344da0b4821023a5ef412e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1648,7 +1653,7 @@ "width": null } }, - "7b47a6fec59c4f33919b2b1b1a4d33f4": { + "7991601db8784f6c9e29101ffb67eadb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,7 +1706,30 @@ "width": null } }, - "7b6367d6bc21408b8500160a29f63b24": { + "7b39104787d44463885c0c905b63ba15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ca3c6bba54884c01bd56c4cd91c8fd71", + "placeholder": "​", + "style": "IPY_MODEL_3cc4259329f74837bd19ac70f0bfd280", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 816.61it/s]" + } + }, + "7eb64e5ad90643f88016fb9ef67a93fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1754,43 +1782,7 @@ "width": null } }, - "7bef79fc2cd545e996b71e810690fbe3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "830d8f4ea65e42bbabd3be8aea0ca004": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8b764a25fab34d118e387d2f63807d7b": { + "910f5814751b4800aa309a91fcfb8c98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1843,7 +1835,25 @@ "width": null } }, - "8b9baa96f97243eebc38a3b719e13152": { + "9b123db02fc04548acd586c0cf17798b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "9f52119dcdce4e578fbef81f09977a4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1896,60 +1906,95 @@ "width": null } }, - "9030482a6d5c4511a19696d7665c2b1e": { - "model_module": "@jupyter-widgets/base", + "a45910e9f24846f4a8fd1dbae5f6f01e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a570f95dbe384aaa96ee3013473e2ebe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3dad1b05b1624573b3133880eff2163f", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b453cf1c85cc41e7a4698820cebb73cf", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "ace77f3dc6c149e1a69150e6d6932650": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bfa54f2e76a94d408a32cd5e4451600f", + "placeholder": "​", + "style": "IPY_MODEL_07ac41807a0b47a7b26d56207634fd82", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.28it/s]" + } + }, + "adf75e7c04a8438588821d873887cc06": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6cbc832ae4344da0b4821023a5ef412e", + "placeholder": "​", + "style": "IPY_MODEL_cbe48e3cba8a4185a380bca2613cfecb", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:21<00:00,  1.46it/s]" } }, - "956e217069544145bc2daf387670a6f1": { + "b1b566c302dd4797bc264e8362c45e1c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2002,7 +2047,7 @@ "width": null } }, - "a9ba72b6d9eb46bd8afe92dc6a7b7ba2": { + "b2208a3f273849ab827fae9cd38132f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2017,33 +2062,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eb1bb32dc25f476fa6e226261c15559d", + "layout": "IPY_MODEL_68c50245c9504baf95dbb3963b43a8a0", "placeholder": "​", - "style": "IPY_MODEL_c1db1f6d3db54715ae1bda93b503db6e", + "style": "IPY_MODEL_9b123db02fc04548acd586c0cf17798b", "tabbable": null, "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "aa711c8fb6614d819e579f39b7542144": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "100%" } }, - "b2e82d878c0949c5ab6c54f6fe3ac61f": { + "b453cf1c85cc41e7a4698820cebb73cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2059,7 +2086,7 @@ "description_width": "" } }, - "c1db1f6d3db54715ae1bda93b503db6e": { + "b9943848dcb643c2a23f4e8cf52def5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2077,7 +2104,7 @@ "text_color": null } }, - "dfc0062d477b48c59ae03f801e4a406b": { + "b995012c5b064376b67bfc740cdab094": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2093,30 +2120,7 @@ "description_width": "" } }, - "e0627efa20ef403a9f4bd3718a4b12ee": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f4d40f076cba4433ad2ca7b9ee9b978d", - "placeholder": "​", - "style": "IPY_MODEL_aa711c8fb6614d819e579f39b7542144", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "eb1bb32dc25f476fa6e226261c15559d": { + "ba13899638c54baebf4d5e9da65660b0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2169,7 +2173,43 @@ "width": null } }, - "ecc34604a0c9400faf322cccb02a0906": { + "bb51f26ffedf41cf941e7bf04717041c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bdd6e352fd8b4492b50d4a59e384a686": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bfa54f2e76a94d408a32cd5e4451600f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2222,30 +2262,7 @@ "width": null } }, - "ed24817521404bf8a9160c8c4db0af03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9030482a6d5c4511a19696d7665c2b1e", - "placeholder": "​", - "style": "IPY_MODEL_016a2aa584c54a30a48f5aa98ac19b92", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 742.70it/s]" - } - }, - "f061f06e3ec64188a924477da4eed393": { + "c79ebbfe831845c1a17b218fa7be7f95": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2260,42 +2277,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_640eb6d1b10b4a8c836f6eef2f8b95b8", - "IPY_MODEL_56b4d15683c94f77894d303ad991e833", - "IPY_MODEL_4eb8a87439944e1ba0c2293c5411b096" + "IPY_MODEL_0cb55221d04844998b3efd90659ba7d8", + "IPY_MODEL_1564ff2b349245b98b6641d891bfd8b3", + "IPY_MODEL_adf75e7c04a8438588821d873887cc06" ], - "layout": "IPY_MODEL_fd4c0312edf041719f1ca12824c5a794", + "layout": "IPY_MODEL_3d8d61af332845c19a16f7f26036b979", "tabbable": null, "tooltip": null } }, - "f1807c19bdc24b6fabbeebb2b4bef583": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f8c07525285d40e1b34ca024f00bfbff", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b2e82d878c0949c5ab6c54f6fe3ac61f", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "f4d40f076cba4433ad2ca7b9ee9b978d": { + "ca3c6bba54884c01bd56c4cd91c8fd71": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2348,7 +2339,25 @@ "width": null } }, - "f64b5d2793744982845ae084dacbd8d2": { + "cbe48e3cba8a4185a380bca2613cfecb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d625e0de09de41e58013bd6ffd10ea65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2363,16 +2372,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e0627efa20ef403a9f4bd3718a4b12ee", - "IPY_MODEL_3cc5f6b0b0ac4f108a978a26762ddddb", - "IPY_MODEL_04cae20aa93d4a8faa7a664f277282df" + "IPY_MODEL_1588d3dd602a4049b726fc99f066d0cc", + "IPY_MODEL_0b875393e6884f6da0d17965a84e7e3c", + "IPY_MODEL_ace77f3dc6c149e1a69150e6d6932650" ], - "layout": "IPY_MODEL_16093126439a4d69b67f58dee7c30aaf", + "layout": "IPY_MODEL_910f5814751b4800aa309a91fcfb8c98", "tabbable": null, "tooltip": null } }, - "f8c07525285d40e1b34ca024f00bfbff": { + "d9bc553ff2a146208e83cfb4a65cd5aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2425,57 +2434,48 @@ "width": null } }, - "fd4c0312edf041719f1ca12824c5a794": { - "model_module": "@jupyter-widgets/base", + "e2094383203b482c95ee7d5c103429ea": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e8bac498633d4753ba3338a097659542": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7eb64e5ad90643f88016fb9ef67a93fc", + "max": 4997683.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b995012c5b064376b67bfc740cdab094", + "tabbable": null, + "tooltip": null, + "value": 4997683.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index db160853b..ebb59b56a 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:32.736669Z", - "iopub.status.busy": "2024-05-23T02:49:32.736496Z", - "iopub.status.idle": "2024-05-23T02:49:33.798684Z", - "shell.execute_reply": "2024-05-23T02:49:33.798093Z" + "iopub.execute_input": "2024-05-23T15:22:29.914518Z", + "iopub.status.busy": "2024-05-23T15:22:29.914322Z", + "iopub.status.idle": "2024-05-23T15:22:30.831231Z", + "shell.execute_reply": "2024-05-23T15:22:30.830644Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-23 02:49:32-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-05-23 15:22:29-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,23 +94,37 @@ "name": "stdout", "output_type": "stream", "text": [ - "185.93.1.250, 2400:52e0:1a00::1068:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|185.93.1.250|:443... connected.\r\n" + "169.150.236.100, 2400:52e0:1a00::1067:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.100|:443... connected.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "HTTP request sent, awaiting response... 200 OK\r\n", + "HTTP request sent, awaiting response... " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "200 OK\r\n", "Length: 982975 (960K) [application/zip]\r\n", "Saving to: ‘conll2003.zip’\r\n", "\r\n", "\r", - "conll2003.zip 0%[ ] 0 --.-KB/s \r", - "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.01s \r\n", + "conll2003.zip 0%[ ] 0 --.-KB/s " + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-05-23 02:49:32 (86.4 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-05-23 15:22:30 (7.78 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -130,15 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-05-23 02:49:33-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 16.182.96.73, 54.231.167.113, 3.5.29.33, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|16.182.96.73|:443... connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-05-23 15:22:30-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.141, 52.216.32.209, 3.5.27.137, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.141|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -159,17 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 49%[========> ] 8.10M 40.5MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 100%[===================>] 16.26M 59.3MB/s in 0.3s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.1s \r\n", "\r\n", - "2024-05-23 02:49:33 (59.3 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-05-23 15:22:30 (154 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -186,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:33.800945Z", - "iopub.status.busy": "2024-05-23T02:49:33.800758Z", - "iopub.status.idle": "2024-05-23T02:49:35.020556Z", - "shell.execute_reply": "2024-05-23T02:49:35.019948Z" + "iopub.execute_input": "2024-05-23T15:22:30.834158Z", + "iopub.status.busy": "2024-05-23T15:22:30.833771Z", + "iopub.status.idle": "2024-05-23T15:22:32.090862Z", + "shell.execute_reply": "2024-05-23T15:22:32.090338Z" }, "nbsphinx": "hidden" }, @@ -200,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -226,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:35.023091Z", - "iopub.status.busy": "2024-05-23T02:49:35.022733Z", - "iopub.status.idle": "2024-05-23T02:49:35.026083Z", - "shell.execute_reply": "2024-05-23T02:49:35.025628Z" + "iopub.execute_input": "2024-05-23T15:22:32.093433Z", + "iopub.status.busy": "2024-05-23T15:22:32.092981Z", + "iopub.status.idle": "2024-05-23T15:22:32.096296Z", + "shell.execute_reply": "2024-05-23T15:22:32.095875Z" } }, "outputs": [], @@ -279,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:35.028283Z", - "iopub.status.busy": "2024-05-23T02:49:35.027870Z", - "iopub.status.idle": "2024-05-23T02:49:35.031296Z", - "shell.execute_reply": "2024-05-23T02:49:35.030738Z" + "iopub.execute_input": "2024-05-23T15:22:32.098209Z", + "iopub.status.busy": "2024-05-23T15:22:32.098034Z", + "iopub.status.idle": "2024-05-23T15:22:32.100925Z", + "shell.execute_reply": "2024-05-23T15:22:32.100489Z" }, "nbsphinx": "hidden" }, @@ -300,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:35.033321Z", - "iopub.status.busy": "2024-05-23T02:49:35.032893Z", - "iopub.status.idle": "2024-05-23T02:49:43.900988Z", - "shell.execute_reply": "2024-05-23T02:49:43.900439Z" + "iopub.execute_input": "2024-05-23T15:22:32.102888Z", + "iopub.status.busy": "2024-05-23T15:22:32.102593Z", + "iopub.status.idle": "2024-05-23T15:22:41.080012Z", + "shell.execute_reply": "2024-05-23T15:22:41.079429Z" } }, "outputs": [], @@ -377,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:43.903476Z", - "iopub.status.busy": "2024-05-23T02:49:43.903178Z", - "iopub.status.idle": "2024-05-23T02:49:43.908916Z", - "shell.execute_reply": "2024-05-23T02:49:43.908452Z" + "iopub.execute_input": "2024-05-23T15:22:41.082669Z", + "iopub.status.busy": "2024-05-23T15:22:41.082424Z", + "iopub.status.idle": "2024-05-23T15:22:41.088197Z", + "shell.execute_reply": "2024-05-23T15:22:41.087741Z" }, "nbsphinx": "hidden" }, @@ -420,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:43.910874Z", - "iopub.status.busy": "2024-05-23T02:49:43.910549Z", - "iopub.status.idle": "2024-05-23T02:49:44.253034Z", - "shell.execute_reply": "2024-05-23T02:49:44.252456Z" + "iopub.execute_input": "2024-05-23T15:22:41.090445Z", + "iopub.status.busy": "2024-05-23T15:22:41.089999Z", + "iopub.status.idle": "2024-05-23T15:22:41.430405Z", + "shell.execute_reply": "2024-05-23T15:22:41.429873Z" } }, "outputs": [], @@ -460,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:44.255550Z", - "iopub.status.busy": "2024-05-23T02:49:44.255197Z", - "iopub.status.idle": "2024-05-23T02:49:44.259374Z", - "shell.execute_reply": "2024-05-23T02:49:44.258853Z" + "iopub.execute_input": "2024-05-23T15:22:41.432978Z", + "iopub.status.busy": "2024-05-23T15:22:41.432612Z", + "iopub.status.idle": "2024-05-23T15:22:41.437185Z", + "shell.execute_reply": "2024-05-23T15:22:41.436639Z" } }, "outputs": [ @@ -535,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:44.261386Z", - "iopub.status.busy": "2024-05-23T02:49:44.261174Z", - "iopub.status.idle": "2024-05-23T02:49:46.567928Z", - "shell.execute_reply": "2024-05-23T02:49:46.567197Z" + "iopub.execute_input": "2024-05-23T15:22:41.439393Z", + "iopub.status.busy": "2024-05-23T15:22:41.438929Z", + "iopub.status.idle": "2024-05-23T15:22:43.778516Z", + "shell.execute_reply": "2024-05-23T15:22:43.777714Z" } }, "outputs": [], @@ -560,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:46.570862Z", - "iopub.status.busy": "2024-05-23T02:49:46.570305Z", - "iopub.status.idle": "2024-05-23T02:49:46.574754Z", - "shell.execute_reply": "2024-05-23T02:49:46.574288Z" + "iopub.execute_input": "2024-05-23T15:22:43.781921Z", + "iopub.status.busy": "2024-05-23T15:22:43.781015Z", + "iopub.status.idle": "2024-05-23T15:22:43.785016Z", + "shell.execute_reply": "2024-05-23T15:22:43.784574Z" } }, "outputs": [ @@ -599,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:46.576813Z", - "iopub.status.busy": "2024-05-23T02:49:46.576632Z", - "iopub.status.idle": "2024-05-23T02:49:46.582048Z", - "shell.execute_reply": "2024-05-23T02:49:46.581529Z" + "iopub.execute_input": "2024-05-23T15:22:43.787064Z", + "iopub.status.busy": "2024-05-23T15:22:43.786747Z", + "iopub.status.idle": "2024-05-23T15:22:43.791712Z", + "shell.execute_reply": "2024-05-23T15:22:43.791166Z" } }, "outputs": [ @@ -780,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:46.583985Z", - "iopub.status.busy": "2024-05-23T02:49:46.583812Z", - "iopub.status.idle": "2024-05-23T02:49:46.610039Z", - "shell.execute_reply": "2024-05-23T02:49:46.609493Z" + "iopub.execute_input": "2024-05-23T15:22:43.793692Z", + "iopub.status.busy": "2024-05-23T15:22:43.793373Z", + "iopub.status.idle": "2024-05-23T15:22:43.819215Z", + "shell.execute_reply": "2024-05-23T15:22:43.818707Z" } }, "outputs": [ @@ -885,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:46.612179Z", - "iopub.status.busy": "2024-05-23T02:49:46.611868Z", - "iopub.status.idle": "2024-05-23T02:49:46.615837Z", - "shell.execute_reply": "2024-05-23T02:49:46.615307Z" + "iopub.execute_input": "2024-05-23T15:22:43.821421Z", + "iopub.status.busy": "2024-05-23T15:22:43.821097Z", + "iopub.status.idle": "2024-05-23T15:22:43.825769Z", + "shell.execute_reply": "2024-05-23T15:22:43.825258Z" } }, "outputs": [ @@ -962,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:46.617802Z", - "iopub.status.busy": "2024-05-23T02:49:46.617504Z", - "iopub.status.idle": "2024-05-23T02:49:47.972620Z", - "shell.execute_reply": "2024-05-23T02:49:47.972007Z" + "iopub.execute_input": "2024-05-23T15:22:43.827768Z", + "iopub.status.busy": "2024-05-23T15:22:43.827442Z", + "iopub.status.idle": "2024-05-23T15:22:45.254926Z", + "shell.execute_reply": "2024-05-23T15:22:45.254430Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:49:47.975019Z", - "iopub.status.busy": "2024-05-23T02:49:47.974673Z", - "iopub.status.idle": "2024-05-23T02:49:47.978695Z", - "shell.execute_reply": "2024-05-23T02:49:47.978152Z" + "iopub.execute_input": "2024-05-23T15:22:45.257058Z", + "iopub.status.busy": "2024-05-23T15:22:45.256728Z", + "iopub.status.idle": "2024-05-23T15:22:45.260712Z", + "shell.execute_reply": "2024-05-23T15:22:45.260288Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 074a7468e96af69d2967d43044538bb0204468f8..4c62f6dd5af591f622896a8a802da4d43c0195e6 100644 GIT binary patch delta 62 zcmX>tep-A(E~BAQaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Rnvs!(g+;RA=6Q^|TmW!{5^n$i delta 62 zcmX>tep-A(E~8;(YLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* QajIFG0T6AT$EeE%0AczPN&o-= diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index 7e6a7afdc69bd23472e6da19be781913dc1193eb..068110e87a1da9a5aaef36e587c51a267c25f660 100644 GIT binary patch delta 64 zcmcb6i}~&?<_%{!4ULL3%99E!lJyPE4a`kb(h?JmP0Y+pQ;dz$ERBtmEG!c(%q@)* Ula11hj4UiHk_|WiKTv$Y zNYsqsL=6HlQ4?>F#*9(45O0YOMuQJ%h?f`>HJXSo`e4-W%$b(?tDWrwPiFcu&7U)8 zueI0u*80}B=3}2e>l2?o>(L)8``d=!9~yu7a65j_;fuyQ4{sm;>VvNs|NQW!nDTEotw*;BJXK_a5mE?XR|uKYG`-&*w|W zoBq&@UvkgUF}ZikIfJ1m?c51ly7pbw`6K*q{Mga$-SJSJKfdAU3pea{2X0LJ4!--q zxVrb^@z0KK9>=2>jJM(Q$Wi%xz3bS+_a1x2RuerS0!{D~(wAA9+u&z{jTuXR#1X(^+~lv>MmB0M-MjPy2)|MJ8=<%h^q=N)_Y8^6Nq zbk39zsa#HiYie~eBnIc0igBSdEu7NP;r_Hz)LR{=mK7iBU-#1A zRTou1{QAaf`$N^|yFY)tep4$c4benNqtqhcIt^t~c|ru@8)KSmx?yzl%Bu3zApD4% z6h36NjRa7{{B~ccH%n|{%%3CIkN+HGWk-yjH zP7dbL(^c{O?kk_F-`29l=ZDUHv9gUso(iXZq{aw*!|})zMf&DMT;LN}dGktRqUM_L z=scd1L3nStb0#yIBXeO=JybtYty)f0P|1551hd3hp8`|K1kVk#-6LInZugU?tCfzt zY_wt0zP^4CzAQdJba&r5BBk@YXa7>u?lqsQn?XhYZGF6Ijg_2C3xjgPFzID-5~*sf%+!!H zxoXqs+f`dQS4{l?U=|*!x}V-TQr%m=Twl6N?vn3){gt;~zwOA8%iC=s7?ZgcGHNeK zCO%Q(6)bRy2Fd;8k^AZch|}UK)m`$s`n<_c-do>St;NOB65DX zQ8JLFggJac2r1EsBVg$PEG0wN?jD^tVD6z8*YB$uja;Qk80s|_QUx24G$@%qIriW*Lq5!uIu3&I55_Z^fA)VmyKA#Ih^ znKMarK;)_7-f2d><&hA8Pv#E!cmCv2Uw;t*RH@HP>5Uf2CTlzxNb)HXG!Z%3^WFM8 zKwRP6AybRTB2!8CweQy#HaRJRyi|rui;gF4Ks}7gNRnf6dGhdm_021-G%#E;ingFc z3<_zC&?qfoWv0Roemt?Y{zBDS!&0`%WaFh^nmZK@dJH2>TAsv7%q>2c51tech9|oF z*E7|QD+J?nnBxIHp}uKUFX3XcL^(-Gjfk!lT9eNm9u zdL$JR)U1EHbZ;kc*OXjCJ-zJGY2k5RWR*3@hM*!L6h4b+Qb04{lB!vMU@_;EXiijX z5d{SamH`Za+898Crp;>}cg{KQA_d3t23;9>N(tDOLQM+70@2Umu3$ju?*C=q>=ql~ zx~u+N*_H~jTK&S z0nX)8G|cEs8PKC`x9OWF)6*%#P!&OlV5>65fv17^F(zoTDi7_uVIc?|NOIhY6r{%$ zC5A>WG>ggb$s;$9zEd@ePo+~gn!SA@P!%=R!4*+QZhk;L{ntIm?hbzfI2<> z!i-H8EC}6eH`ecH(N7keFl}s~sYV-HnJ_hh2W!s2b}$SlG-HW8L%BAQ#u-;hIZ%ub zI)GI6kNE&%th7cIARucUy49A+v>!BvqXvU^M(-Tp3ub9k(4avX6rSeOFw24&L#CFj zxckRomOtN8Z)?B|g+c)o0>y*&Q5sB0G=OX>dtqhj&fO*Vn+4uBAD_a-Nl6?_B zK{g8kJcVqQvUfdvOILUTkWIm-?x#PhW=&7(o^BYFY;?Ootj}CI4&X->qnpV_aLG8?!xHv7P%oMf-uRREBBHknXf{aZx^aFJwrKx&q5&Sdc?^>60d){aF5{xKHGw8 zblNZ>6oC|I%=9V~p&|x26&9S44=29EE}bt>~B0MaU~)YKlQE(`lNILsw}c$QyAChNHD+ z5LgMnGROc#$gJq8sXHh!1yjsGPzzRs0hepnjCM4*ZD>TmP(~N*o3@g@i%^dsaZxrm zKeZ?y4v$&R`WP_SNie|&xF9?R-Pw>kkb&f&Eqb0I*ieCLW5L1UthP>a&QC)I3bv5J zxuO|UdFB_nzHFD-W%b;w$Rd%LA)F!*kR^{8T_toQhFS~xfe%G<7RSX(=R7P6aSZE$ zR!HGfnrz`3#YtEeToVHb$5Tf-h1{d|M7z9zx`)i|H=KE-nraG zEO!yhUBrLclr47=%U#5B7jfDjAPjTDau+En$iK^7#A)^*%U#6cU*^mh=5iOY z+(i^uBEvwm+(j&R5yO6Exr-QncUIT}3_{Fu7jdefyWB;bT&S&=WR|;#Q}!UsUBq%1 oar$3fFLx2MU)3yk5&vxuvfM>%D@gbMpSy_bCJ)>*`oN3+4Jm3_xBvhE delta 13452 zcmeHNORSw$754w{m4ZCVqZBB#=cg1KvE1(WBR&wKBt)R1#(=iD?q`d@ZD}h?Y%OhZ zfH6{X)L)1~jS(0Sfi&beKwAbfa9~WBU_wMp(}RDT8wN zIcu-I*0;WIt#u!I)d&!G1vPj|_$s?E|HACqB%QbwX=)@nx-_sK>koo76$ zOz`*E-_CgB?*2#iUDZFaZ(V=QzAO4i_ci@@zIJI#VzsLOSNxB|`_}fi@7vISb>C(E zOZH#?pC5ks>%ZKDgceT?bdS=iE_UGTR+!-~3W_>CDEh``f#B zRBQX+y6?9Cor(T=f9&HwuUpd@zvuQn4)>nF%k9~lcH?ewc%|m^)kXbl?!WB( z;1)uppqu!ebwJ=B*V?7TFoY zqD@o?Mv~E1xnO;uHZe|A|1T#Fl@E1a_twu|UC|R#1*KIGo^zpeFw{j$39-o#CrSVA zrw=!UGo#Br@xrSs8qHZYJ{V@S6H-_YFP${VKDV;E;<4%{?Vpd-H}rHA zTJjhPaa3qxEFoG*u41;_SvL651NF|?CW&Ar^;%fxgs{>{8C7zLS*=+TaX|l3KU(#4 ziaBW`ElF7feBKD>snga_!?a;7(=;+7_29Kn)(f*upd=EWJP90ONy>J0)8?316v}GSR@c=R4Nk1BpQxG` zd1N|g7hDu66GKQQT;uah;PK@EXMbK5Ew>MCnjvMwui;et(I3~n24Rqjhh%v)Lfd4G zwZvOaXyV43Fmk0Q2%?svK|&zeEprUf%BK4Wl|;3O+N!~CUap?1dL&zA6a{ezK}fPW z5E(;2_SisK8adJ{*lmw&nxRFj2anWOwjX<>KC^xB)|nOUjZf7Z=GdIM6~acy+WoP>9fan7iRqx6R+Q<>Q~Y zalVk5V)C>tJlgtgo0|5!^E0b^1%JBy+|a(WX6C(30C1G@hAG7a3EBf4GAJu-=&FJr zC#eO#lgt7?cY>h$TCJF)#7obpCwzpo#szPsL?N}xiyWPEnM>znHay5gX?yqa>Vh%U zN|xJo&(~X;lHtyk&F%Bg*Jn05AaJ-oYOfO1OXEcVFnH23a-!wfmF{Ml@f=c2LS~O7 z4JvBxkbxY9c`4o;mjtP-eKuAI!>xc5EbB~zF1(RB-JaerlQ5Nif5cop3}ll_P4MCvY0& z!bFA;I*k|!9&8@G@Ou4=s#mZ(svEv!cj(BGTW3yd|M^O_agH0Z1Zz2n5K#?{^g(3i zt&v2azpjk%B ztcWfl%BYwsB8XW;*TveeDnRg=4H0%!>BgzXPq6%(mCQ30g}YfihBiV*oS5T?El-t~IU)xTtXe zxwptB0+j|P*3Q^$p%yyc5Gqoo-i6tdRgY(slZ*@nWHXP>WD^zGo@#{x%sZ4FuhuPZ zc9fe%tHaz}_eOnLBe*BvDkT*);9Xz~Zy6b`L9I=G2r|&Kpq9u4gh7W0WTi(Ep#q2i zaY#9xpl84-Tf@N^+6zciR6YwuA|;CvpIW5nlI4*rMZ+gyw(w51;cB{+(IhH!cHSCB zGfFuGDM4if+91HAVB@l0lD>mo$E!!H1Edh2N!To(m03@oEI$a)2j+GkgS)!ND0eC@Ek1&$sz!ndzYY9ph9-d_PAHsIjF)AAf1rB2@*$HC>%>%981Rrs?vZZ zlnDyW3nw;G3hd%Vj0E+`rG!?n>)LBp)}KLtu)N_Bq5YtmS=o!q5$VxNYhne&t@Dv2 zk_A^v(wqms?^vKAA*7^(G#~&7E#?tn38@Jlmjqw%F3>vtD2bJz2+e|rUhc{Z&FI-B z00_6~n9mA^^C&@!hKC9I+l%Y)ESMLhCpL7LT6<+I2vb;R=vQe(TSjgLLY^c?3#0B&|b5SOVm>6mF%`BXnjjl zFdJLS>JK;Q-2oq_nF|P=5hiI4j({A_j)0iP{1!P12GI(I2Ev)5jYi*#yP|j)7qniI ztWA;tEXoC_+zX?XMT$GTk0A;q8ub`mld8fbdMXsx5`721A;1A zE#U)cuRU*O)!-eU)aA^tB1O#D9D5?Z=HOMKCsg7ijgTY!bFdb!SPofpT zaE9o>lkf@>Orv}8#QLtPlHus1-EvF4deF?(U#`%=8H*taMng0pFNk9yqG|_jqhcmc z@LlN&t@&(yQ&YHs=s-u>BiGNI-l&)WC?Bo2N~De&IFCL#!h>;9@-gxfCLrAf5p@c5 zW)KFNGY_G~0WBGqBF|z#VewJoFh`PEdL#=`(xc_D%s4YfUdi&99ZH68*)sFFhGVi6 zH7KmpzYg6P>)fj|}K(CDnEx~^{g=vJ;%7L+jW07>N+hZ7ifyvPI2`5pbA+NnbU3HiM zqJ@uo=tc60mmJ>a&I-I1)^@|F7RULXOf#+?G80_h+m0=mOLu({!OQH%+eETj}t zo`D<`+Eo(`KBaRv_?zT6nFvxDjS~8L%=U@F!>9yTFqp?obFuF!7#?e|qTwz-zqfm4 zP26+!zbMkcQ(H4=`lw2Co+v7)SbM94tf6wsG zjuqR!v*Wy5r(1#PR$#gn81Jj5TY>3TV7e9fx10Yl+fBCu)2+a088K2~)2+a0&s~_I zPqzZot-y3Euw*YW-3pwtR+(-ErdxsOR^a5~W^xcR-3s70D5qP2Q`ZsGtpI*kZMqeh dZUv@W0sPkWbSp4grTq6>0X_Ksp_zN%_b@4vGBomaMB{N*93E?@i_KmANPBb{(2*BCWfYqC}~Xw5!E?}Cm=Ri(W5Nq+Oz zq33QLn&9`H^IM0ee?Kvq&fhT8o#!Th8{Yoa^pW0Zj!x*pMOX5kV`Xhim28SE(xmy< z-?jCXuFo=L%SJItB5lc=B3vp;$s8l)Jdba7&rkZy!BQ~ZxSUDm6p2lg%ETl&=PKvN zPIR{>&7i|euTIZ3V-CkIcORL_?2th<5}A{dDpJha8=1*jS9y5rTDLvF^z!rz-Aw9C zDl%Tn33A1FE1V;z$hx4c8E*fsdvM-A(_Nj+WOV}1D^y6CSd@UgvUFKHu7-GyZ@o6@ z8?nW3{r#Qj8)3t6WV;i?r~WWKHY2<$ zHc+5kA{yBh6-_o?WmVL0{=!@Zv+=Rv&eaH9090jpzWFSZ6KJi(@SnFR(T%u~4#_ z$f5Tf0K`()n7L(LVzmUwFg9!}hx zUg#TfLKKok zAhY7LQ0$T@#`-17JpLdJ!IFi@RP9F^5XBjgM=ChBKv^Xy9)WCvNAqgQR8o{iL$0M} z8nxxYU%Wp3G32=scSM?;HKLAre7;xUCtro~GUIZV*>cEZi;9|(FLjwh)Ul*sDo0ob z2j^myXG%3mNHphV3VoFlr9fH0o`fGbmrOyyh%-`-@Nr2x zQK^BU+K!cg1bFQ&FT1l5Gc3BZ5pv8y46oU)hd|k!1DoVi081ozMp!GCT^eIAJ>z#@ zn|`s|u~{aOv&E|5i&{_a#f(k z6~bs-VQC-5!Qu5NX>NG)W8H^NOGT@?rno|_OpuJpqX?LrgvqCtoQ(iiEJ=jG)T~0~ zks7>6U_mDg%suSpDC+;=A6o@m#~tu|V2`e!ZaiMOi#yv$ZXb6$27Lv82d~E!V;{uG z!ETNJWd-uNaihD`%^b!o2`gxe7bG0T6l$U*Lu6Hp9G?E@o_m~CNTY{egYX41pjmBI zhA*$8z%Io33qSAvF%D}7MYVSL>ACKFGwk89Umty}d*4n0%jaUV1>yp3$5vXGe1L5# zF)koCv#bS2T+RZT(O@ocquT<1VA_lEjtAav)!tc!Q=^TkAXA$W0m+liBAZlnUP2G3 zJSaAxH_mH~*zmzmbf4+1EI_-@wSYQosv&6O6CM$;DpD_-a+a)tGUX5@M)fSK4uhZo`y;A`=t0H7BVRulgugE)8OnBogGTeS+dURFhT18q1 zP@_4``svo&?ZfTh^k@OMpM0tFhp*1xap&jayLW$Z@yO$wg~?`NvRRm{Ec4b8xLKIo zyQtYLOg0OX{VmqLb6I0^w+^n&!sLH$Y&Hv%&BElKRn}%d62A delta 8975 zcmeHMO^BUm754VNsicvngVRwL&ix#!L6Xdz_y2uC(TZ9Et(j5^1_|x^+ZI75cB5!1 zp^Ks}v{d|X(YO+nzC-1iZeu$lERFG0e9;2nIVoaVpBf0Xm_&`yK z?&3N29X8XNsW9$2V3v{^&b1_q_IVs7^CJqS51&m4GokkDuS`GF=v1px3UOmm4kfqBc%PzFC3sBF$y_kMR<&=s(PNR4y3FzCJ1GRBsN7zQM*(^&RSIxF$kYsklJLcVoMLOjdu4b z_Ob5D3+&QlHWGTsC5?n0a@l=-x_!#4Z+~Uy;qzOMJaVepBA!Wm8Oa){ysIJmoT^}&-V=$?u>OQ#Zkz>-Z$^(b2JUcEB?@#N957HuKwncZ{u-F5b> zU%T_ZF?=5W^zzDOy>!vdTQxhKA{nc|;h0k_g$H8+ zDJR?TkLf-}wXwpaY%Kwz+MyaHW^Xu9t1`a3x1K}48Y*7Mz+F)ml#9_Bp<+^8`r@h* zbdYi*(L;Oko#{QzSm1$jFTXQAKJ!5YkptM_v+_1NPC1l}bT9&n8~V8kIOpW5;UEoQ zZM-YUO(s#C^tpX&jeV+p^M)fgcl4L(uO_pM3JDcdk(v}I0y%|~fr>~HQMwDi>A5)) z+7Cco9$J+?mwTJ6qDv%-k=dYlAu4C82kxBb1_NL*2z`h?C8VbV{?Sk*a-xDpu{a8~ z#lt>%AdyW{3cu0;;2Vj3w8VlxQcSm5@V zn;>*!aR=7jd5j%vBt*-^A{<77%FaNJsvr)A0au{b06Gj4*&Ort}m(DuP zgYTbsYrFRawl?stk)a41tWUK#VBdHGW)p}Uoc6}hLhZ()55yY@t_QS!d7Yh@@sh29 zR+BA7X=Da>15;zXpu&^v;4gZy6M$kNEhA*mNzlrW=>=SB2?3nDkYC=<*Z~60&{m$j z0{v=I)%L80mQ*L*90D!mW_`}UX5y=}cdpnE#VYT+KZ#F#JS z9ATE33?>R!DyaqbII3-Iz^G3EW-8Gn^15av4XQ$O`?N27W8FGTrxCd7!=E0h+dla= znz6k4F5fm+zD=Pu&q2U%!f0`AgMpq|G6YZt*X`cH_Sj7L-p6Kg-f<Y9T z+JK&=Dlee?GI2Ra^?=Z^xC27R!nRMm&30!1qX8pQfT}8+MS%HIB?Du4YcOs2{8gu1 zLx3ap8cqT%vpQzNfFz!h&KmafY95dhkzF#%foT=?8;$m*$cnEx%$m8&JpLGaYSN6n zAP?D$1s{e8Z03#atN&ytwvFGG2PBVE^gd%sm;ghK)jg? zJQ2pZ6WA3vd?Cy>&!wg!p>qq5)(~7|tRNd1d`g0JiMYoW0+kf_TF4$23oSVc6*By4 zte9(DSBpI>rXqN6fz}uM-AG*DK7E$mJsNjl-kDu?^Njk<7G??>0V7g^gO$wKFsp^a zdbuE8;6B5IO6ZAFp(m@w#^f`X8WgOHt*8l=uvG{cG|UhbCsfnxo(WWWAxz}OYBv(J zz5Q**XCom8n11OT+iGe_S_@|qCJ5++6}b`wEg+;2HtkC{W~9czmz<*;Udtc^#$-vk z#we8QZn?-_oNVfTRV@)Vq&IU|OLI0UaAY2B3f+HRo4z<1jW{rEBp^S)wB5))x4rH8 z0ip%V6BaQTc9_m=m*G2Lj!^6IN{Tl?FGn7ifa?j!R*4}SFgFCJX`=IX+-y0EM+ zEZ4aJ9_H=p!gAfy&LDcL3(M-lviuZwjjpXOEFW^(SzTCG7nb?|Wi_h{%j&|iy0GBJ kv%0Wc_fWOEu&gdDs|(Bg0(N*)`+r|pZ1?w#BY(K*za`!dJpcdz diff --git a/master/.doctrees/tutorials/datalab/data_monitor.doctree b/master/.doctrees/tutorials/datalab/data_monitor.doctree index cdf646ea504c9f1c97e4d47b99838b60b6e923ad..580ceb47b577ccc9256c188558523307d1d303db 100644 GIT binary patch delta 11214 zcmeHMUC3rt73Tf9ND`-kQM2GXrvW2#YW7}x?LWH-`+;D_3`;08-M{@@q+(Dsh*Mr= zHx6P4p~j-CV0S#T;=_N7#3jm^radhXD*S1UD2vUnN_r$ zV~9BiPtpmYGI>$f-)kNkzxU`LXWzcHvyp97+Sy2+6Fww0uBoGp*^zx?V0%`*?3 zziM?k&wqAJZ#>>x`@~8XBx{^XH8`)G)&-UEQ?{)`c+9apIDVE4p zNt;~=Y*MPLaP#7>W$&euGWZ<5TvtCxQ8eB_I-fEJv6}sSesl-oMaOZ~?Cz~;c@10s4A9jAbxU7?8Ye^!f=nWg6d_o0t%$mJ2 z)~sf~8j~<&@K`Kram>O29wo?1mP<^s7%`kVxwv|G;qUV+R(I3l(OH*r(8*Mj!uTvk zJK-o~nE*UdgdOhr>-@;7e|+(yS>L#UA3kV}`TWEw4M~%;&#!{NCG- z-gn=z{;1HnTd+9n*S^1aaCU#A zR^})of8^#*-f{AyAN-}7(IdUk|q5OJKCIfbZ0 zl2wG@t2ec#4fYzr>u}GX<|n#V-0zNkdgzAboBBXx9c6Nr0y}|GL@p~Kb1+75pI8bo$^&a=TD#rL~4y@0CGYb;AoBhs{$;%`scHA z@Ef)%jb18BWXTTW9f)%hy(~fOHHM2jvM-jjlT~4D3?RW6bH$xR@{_GFseX5#i!Rn5N5}UtL_jdg?Fp?_f_k_yT##s1aN5B{;E%;8d04 zn6g!46%}La*{BsjS7ip}?IF14?mCw2$m2g)d}DTht62MS)M(SV|8(R1@-FHcsci_Z zs3O^xOj%n_HTxn8q>34L8Z41874v&D zJsi-I3z$1<#}Hc>xU!b@=IPj(i@B{U&~U|p`z(f%3dk%u^oSI}MyR{7KQ@b4-@3uN zQFji$z;JrDkQ2SR=*eVS}Hf9MD5+!Jts;nz4w3s8&7+F9T0-}+N#+(BSgWpYZ zguVX~X4^^GYr+soC^nQ0hvf3ejWj+?7@m4@e$BL4_Kgde33$y5V3d63dbJmFkQ$)w z-~)Es6jKzS*%Ar4smyjv?CxdP5O#aPc5sPkKYUvKx&QRRuccn!Ce^`7nGMC2f=wi0 zpXS8ign&W`kX`TsQ{7*nID%?miDg5A0!cw8Ls=*kzGy+(43J0{D6Sd_j68%#CBhO44JW-uTZ8y)8M||@ zI_-tW05p*6Bn`3xd&7~zIt^v3GbZFFoksKxdpDyaowb;I_w{?VTq3NINhCNznSuBS z6>2lADJVK@D7%yXwq@V2LDU}fwFPT?RDudl!*{_lid~K5#C2Uz5N$?O{0K|BQeJ47 zfEmnUAnf(DJWSv_ICjY+-<|9lVPB`a9f6fnVTLCS`i14;SdLp@)T!v`c60gkatGd3 z)Z-3pp-LgnGPF@;*m+vUP*xx?EM<5MtZvYI1&Y)u>mhh_goCu^N}goy{AZC`)dJn*R4@U%kiq$Ll26rtxojlw}2lFFB!A0RU z_C;)s*zO|)>?OPn0}w6)Mk+=V*Q~K?R-sJQIchY)G(tCa(7_joV?uJL6@Qea&z)Ml zuLoHZhGNJG^afi8PwtiHoN}_M#LYzP8s6Y^!O1RZ6sPWoSfeQ~qQk~J`CW*$(i$Q5 z&f)AWOFh&F7N6RBm0PcJ>s4N2s_%#D)~meOBi(wHTd(pBedPV%*?N_4WRz~b%B@$~ z_<#020&eS7ZoSG&+|sp(+j^Bp8@Arot8Ds(Td#8KRUYJ&ZoSI=Htg1`+Ocvh zjTsq7jl@SpIt0au13wKuK}<*{I#Hq^2#N%p2pxZzi38Df>%Qt#btQFh?1Q4Jn|JE& zyU*Txt+f~Rwo*_SGtF;TzYB!=AlGYqGl6Qa}-UE36ErB$Q!b({obRx zhc3Nz(|UPo_SjDc7j@CNrCOb$#w}&hl|^(;frZN6^SXz|=Y9E?vv=P(a9~_t@OU6m zRz`FTO_fmD;m+OkyzZg#c~AUd_N|W&x|ZN|XdEI_h#_hptaim}5{nP&#LpsMtcdHLQG}p^saAc!aulxP{!$U%oC|z}FQIV}B z;XW-FUxH)2NM8TrS393w48^5Z&{ro*=AAb1!aJG89B@ynD8^u_ngj~JG zfH|+DtmQ7W-Liu_>qp+XxIDYqtIt`)`@mfvyKu(`-}}DXFLWBz9X{Q=th4u=U)_Cm z{`#SlkY4@zw>vivf~F+&o2QCSbpSzYU8!~RtKjvJ>I1P9uE_QwDh50kHL3>rB z^N(fLrCH4F}=AT$B zO%=tOOCgAl%q3Oy6srX3ppwVYKV9Q79h?_*MW$qMqo`oy>{V9Pd9=)Qbi-rEzknZk z?9Saz=tpMrI4BDwHs}$|0vSwj4j~$Yo~zzh-Y;XrN04_qB;(0|w2DteWfW+bz&K^B zp56H#=s4>PMN=j1#`_7szeiWQm=wZgpIpzhy^u zjy-hKkH0hj>g-~tOxKgr@x56NPh0Q0_NQ&xNow^xh7I~XKz&NAlu^v0CDoRt0PxVO zn5a!rLp8c_)J~cu9UT{?In@Nsgk4%k9oP$NN=hz3Apu)Wjlyey z@Qbr<%!#~uAzvo1CANN3dv%7BS>Q*6-cnKK?g%ysSWOTqMK>Zy3xl$8<}huK_CK!1A;(QDC`wL z42b}UPpRhr%BRlR1M{T<`YdGtG?Z@55*2nZEe4$gc`NHnXBL>R&Kh=L zzIv58JTaZF^oLLPu4;e2hE7s-l8BVNgZ?p1M$$# zG9t=h-7#57(Z-c94cM@UNRU++Q$@Am2V))5*c}UD9NR`7_JU5USTE+wtJshts5e_; z0VzqaiO``9O@xg^jM^~SAf=&Iv2wDinE#rP3;GNciNYA0Ky5xbLlDx12k) zg+cU!&^5F+qu0=5+30GZaqzNIH(OZ8!Za zQGn)*l$-^8mRNFwkN|Y@{&pRebxI{R75<0=u$zokE0_jZ2x6ekn1Q#l^M1rRAuKuQ zc*Y(ZfXc;k+#j=E(22-;F%J+K>k612y{QrUMFT7%${0tr3Lj@Zdk$;#01`7WI7S%= z&u)YWSR<$^7B1!BCmoqG$VF%>Bmf2nKQ<9`XGZGii;OX z01u+V`D{AkHF4coov`}Wy0=rp@qm1^32>(X02o3Msu5~|M8nr9*OS>dXG`C*tqwjE zWfC`RfSY{E&fxBF7HrZmN9P~!8hl%GaceHVvbQ-QN7vfK zux-snnDLWx+?tD9b8%}fZq3D`zUJ0k+?tE8>H%-f#bXW4t+}{07hmBIK@PYcTXS)1 pE*|tYx8~yXCmzT9a9eY6=ox)mbMe)!&8@lk|7b3*VJ^;Y_%CdBV4VN} diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 475144a81c0d30ce4c01c3f2a21efd86e89b4719..80ffa78cd6cbb7be686f4e109436dc7be88cbf53 100644 GIT binary patch delta 2149 zcmeHHJ4lvM80MS=$&7+7E`c8!IryXJekp>69D=SyLt*@$D~X}ypVZcEs-aEJ&=L)< zwtdlHH8r?I{!>(1;8ajcxCC`f4J7Ex-SIm-=X);i`<&)vdvmh=$?L6{G%j7YS8up} zERp0s8bg^7+*1-YrB-R9q^8D^NQhF(;k%%%1a08T*@TC{o?W%#KsVKg#wM;^9uDL6 zh8r6%j|_qDAU&vq`~SqWZs{Iw4Axh#4%UYojfv1xD|-H%EdMP{kAR11A%N}Wd<5q} zT6hdv(`W!w8^7HLi{Zu^;a_|!;xpYRkamoKTmOaKIbK-pxTP2=Y&pX=*qGBpo|!0o z>d(PRyRGmf)(rxnL2GX`&2`LzkhS_*=krzSeiZ5D^D##}pVH3=RgL2X&Qf-|77 z3keTS;Y{d#;(kv$hFWMOXfukEJUJ=P|`#inZP7Ov1Uahmk$y3ROY=vN(mhD z)-c1g;BlRmD&|!y6~rr6rk7xEE7nN&F_k_p!HxnONsZAyTEUoGSmyr;ZLBugi+1T#vRD!F64%r8jeMZ>6v0Jocx3 iKcP&$@8FrrrQht?X3u^<8Jj&@exNqivoiPW>9$|a^pRiy delta 2133 zcmeH{J4lyN7{)m#K`NsNNr=D?3mg!*8gv3d8Oz@NOvIrjBfl_?Y@ZuB$dp7(Kc#eS~_R74d8Vp#iA$4jeHW z95Y-qPD(U~AEI_2ot4(4#5g1uEioZ6Z-Mv#*7NfDGyDnFBJ=zUe5Q_=2UqdYLV_eg z1w|P+pb%|Rmdijm_0%y48|n)IKE_H=5Hf+X-myr%=E`diK_puiukajd*GdcLjSxX_ zP=Pwnb&@KYM3~nsS0-EY-~w(ckA227sFt3|8YZ>yY*%q_zC4fn3Q*F41nPij@RVys z2~Q*nDT&Y|ZQ7|inzWOtk|{waVX4uTRGy5IQnF1ug|RUI`J^`#ZsagQnGBRHMr%1#gLPs=WUa zk2Td!?7H68^658x2VJjuD&5gtbeueQsd4)3@xD_HRWq1>SJ(BeW1u^~Uc?8A8e4L` m9Y^w^?^xxoxA=VR;BRMbJ8MoP3nLRlLnDI}QzJ`D^F#wP;q1N6e!sQWdwJgHefHdY{~7n*f5x3(I*GEwSH0U`cSG1qHPJF==eSTxM$WS3 z+#BnRw%i4l88gNNdi2qgK7YYT*{G%UA|xk-^wwF;os^UqDHNq^w?1~$xUxpB?c2BW z=-bVyCyu$}Hit}uGE6WgjZac4DSWcR7?Rd*d+erBWzErj`<{E^IN87=C&u|KMHJB* z;gU4YuqcT(<&%D|zNkFd-b-J8;@A>psEg54=7p5bdZ#$aA}T|S@vQy0>Z0;-m%jGU z86zo-mWpRfwXir_O(l;udCsJ;B(|T1|LtE?KJCcWFMRWY(Q6O<n2-Q5W zIJk7}nr~k86tADR_SHvDTKnGL{AlC7-OoOF=$-Cu>FNu|VzvDG!^6Q%Yd8GuzWyZ_ zHy^%daMGIj_NO-19XEg0+WC+E>eD>JS!)kIdh*eK{<}{sjHpP-N0U5>B3bEO;N?(x zPAZaQ+f&GuMMn>O_v~$BFICQ*=&a#4NhRw;R*ulb66IWz_M@tc%7I??50{^?s8l&o zxu`VlPILUogE{0W0Y~3xNyXp%%+}GTU0js#-BcC+gM4RvPdCt%7sqKyAre(26PB1 zh;nYD%A&PP_U$_QlApivgasmsA2uI8aj<8RYh8}+{ZI8`>xIqNmIgnXd3Tc^mfyx1 z-cxzMJHzJe69%7}S$W)e>xRuGCk`%p>UZIYlZQ?me0*W7v$KW-N#TV;vFt-oIxCxG z)a5^||5O*@SSPRDHh9jq5!ZnlgLCxS3GI{Dh8wM;v|2NG_N|Zo{-}RRn-nJ(o<6wY z<>LT{PAnJ~HAkWi#`_qJvcYDdtfcMJRTtsu{_q1=4kjPCa^cF@Tz&7tY0ZoOW3b#j z^0kHMHt(SetIeJFF6?Z6aPPt?&95uG`{=!R?SlK(f4u1XgEN|+etqH8X4gG4ubtl9 zaUWj0YV&KqxDOxj<>Rlt>0JxwPX6Vdg@c1%vf=Xv3ujLb{`JCp7LG)B{o4*54%b|t z#^bjhKGgpB*29P2l}_fu2s6eXvdRdzjFtbN{(0T?SRe`0q`XiT2x;2IvkSQ8s{I)Y zC`Twx-z-n~{V&u4a@CHT zzk6}{>E!MM#?N4HN6NGRZ*A@w?Cp7dn`^H7*1{d_4ISLLqJ!-n9X#~Qx}=w$tobw8 zNbf%A8wO`K|NiX-{r_MyYxMeEZIy3!d}rZMyP=KCY47Hjb~U(}|8D%O2hKO1dB|*v zm?Pcq{g35?|Ei~LpFVf_t31Ty=l3r>^vV$@PG#@7OF4^@o05=>c@vpT3~25naq+at z-S;iNd1*v65y7(H4bMU%OIgRMMWIu~ac!C}oQtJ@eDm<;!3yV`5TB?I2H0CTfYjiO zH~4kwOta&MSozS)7Qa6jSL~DKmLD#?c3d$noA+%W?rqeMmbQ-y(kDV_;e!%1aR7K7 z4QHBD!GdUZd;_*`JhpUjX_O4%5~&ggAc*HaMWA!yaw*(a#>p|d_|?G(0Fx*hllB5w zk~m{2_0}`P1t7RCAGmXJ=M9UW8=xQPwauD`zdU3s{Z`9X-Y}9ZCIUpo3}M2BfbPlR zG(C%eSJ}*5%NXZuNlJuyWzq9+pN&b0GUKF0w=&(vilc;UyiJ^?LZMrr0(ch(n^{t( zIdJ=M=j3rS{QO{Cu}vDfeMqWi%RWeR_wM0x^Rj;RvviS}cb%GNHAy z+=O!9$!0(^(F}gJH1*dNp@NZ-;)02YrAHBrm=u|hDZ4m9sNOnQ@m>Ncau%#c-zr^- zh=M45hNCmq?EBd9(5qPX&FRa--xvYU_E~MP6ViNXdHC!Vil-(iSPN(=oJT*wc>)?n z0ua=fd)nD$l5tiPfR-k7`GB`X`3wjJ9zX&sbFc){$V(qxsL&WoWX1xqxErOw$h)h#+ z?26^}q{u|jg33&zK=4Ze4^cLw4|SQ-oSU=Wu(*42J&p#IM-~L(I7UM@VcT%-^b>-Z|@t~{hsu}#%()pvrTy)IAsRa`mVJAe= z;C4_lPz%E3ww1DVqT!Q?T9qRcf^#IQ1XfET)PzaA+d699hv0gNXBA`S(WAQp38NUH z2EnV)3&QVbBCcXvHXlEC`0A?dC;oBq?B;Q~_^fl-Dru8x(zy^GK}a|wii81G#UtV| z;jyVJPPp!`)Jt!$4O}(q7b8xB_sC3YrYNIif^>7&V8odRAW$($3NMu$a6n`bEG72{ zV@s*uJ$d}TrB4q=HQQwSkd7->ednp?vf+6n=g{qvi1@KMYP8jg5+<48iFs<&d}llj^{GCH=epg-yy9; zIEsIE*+|eT89V@y+yRwglc*Nc#McI1<)-B3P^$RqmcXkW-+JJUk&^qi)?V-PyK)zi z>nN2D_z@Au5oTF)OSl4uhdMR6?(OAz5tAXt$g<*~OHl~{&QdZ|F~+EJ6ZgQdlsXc< zNP-(5MaaY>wK|37Ss_&`*&#ik%pYK7uhC}vtA+<^HoHRi7q1#_8{yMjWPuBK8>|EU z8iWc{aNA5#y{6eyIfq3-W-!PC?(DEl%c%!&CN?&M&n}(zmxq@A98X6x0CGulOn4+= zT(Y2WN>DXmd>R}{Tjl`GDwadD?-k2*rDAx;u_e;H_}#-(nlHX?I36)BfO&0{K<7vx z8D-ll6ul^E0N*shbK*vr0v9R}nIyn9y~Bc1yEqAekxVoQ%hM*;es2-A7_nqIU7f4grqeptZ`;j;-nDDXJDUf04^KIX8KwvaXVLu8jl<`T zL=H%CR$Fl5LJ(?Avc?Ov2B0j7o8DQ4^`EVHs{hvX=D^eazWO9k+IxZ<6|b_ZX~iQb zU5251FyP5KF2({qsf@$dg2V~Bv1^uALd=<AMV95=fMn=PQcfVbCm-h!xniG^ugOrDp#(c#^G!A)squc|40$wVGKtrDftc6@8qc;R74&}YTwJz2? z@F%KD!bt+4YX^~_df_GWhExeJ}`tt-4)0IUZb5$g#*Iof@(|Mv^W$fqbvrM#vu75 zjr2lUL9A9XX~Hm=z3c!(9*Yr8q{zGd2c|6{{*MgYd>&ToVfqNY|QR~c5K*B*XVnJho#u7%{pvF|@l7n6`u8X%1 zH{eu8{kDBq=W1rR*15&oho>&XiB^g2iX0H7@&KL~KyhRUWO@mBpHpBIKwfsONDDDn z`lrLqSvPGaRVvrEB?c>AyJdCd7>~!`xU#(#f=^*4aw)J`&^7{Q0&Sy<@hB0_N^mUB z&(KRi>IxUEO+;e=+zI|nfIR`81w-Kpo9x)N{AYs|25v3KLd^grW$g^y*kzqD^22dA z2i}kJ*u`PRG-+P=z2Rjwt4#~it~ok9X$;MP5dmBsR1pG|0@?|{ctEO*sjIYca@z-& zQNJgsID54n*47vkw84;%gNkFtnjkB=1-?nP^aV9d{)7x#Xd)<(C zbmkS`81C6?R}GnI?y}K_MrVMlC@ujcw-lfjBKiZkALG-^Ur{5JTE4U6GVlN5((j`5 z^eB);4wxwO8%GOF&nnoSC1z<}n8MtL|egx7Ku)CleC?=qp zbRAjO;sR(HxFNAh7j+FWDhKp`xIIA_OI_5B(Cva(3t(cvk%Hy+CM)DODh(1^WV7Y3 zVw-hgS1~&ic3^&}B|4#$BdcoVK=Ys$0~98dZa%%yu`PpiP(ScPg>E8yS^%9UAb>Ja zVcl8LG(qSCa1FdCV$_boM{r0W_yf*&+E}#od(ChcbTzwe(2Y?6DECNJ1k)W*z=ir( zRwZvCVgmiwxh0Tjbf6|g*itl0rUZBeWXVin2*f;8 zT`ki!h00aK-6m>wXA0hzE?<8B1&q&xoYNF@13@5eKvHMfLCgXcK^D5i+PEHa71d6c z7&{WPa!Ffe0TtieQsiR)*{OA)Ij(JMCftz39gh)wCTgO=_1%%-h(piK#gNifQYd7r?qAOfL^2m&G_0@AK+i&ikKD^mm`ZJ?lU zfxH})hX8F7b(%NF{%!H}DesO!7;2lP7CI%|0)EFC_&69t#Itv^g`#G=b=y(DY26$+ z+-+!EGyeJF$s=8mb0n;QLV=FmQ)sV%{89IycBHe@1R7B`P?^ypp*BZjQTS2ufIS(+ zeym&Cu`D2B3&kNbW|6{2ylcVWd$f-zn1WCJy3Ht+2bfM1Dz?Q;FqR6q%2&0W3CA+P zvNWTx!&6G*lOQybDdvdENRdJcZ(G%$O&`c3NjO0jCM1TCR{Prcij`{1Oya=^Itcn}m^z9xpS_{O@h+m^ zrU08rO&M7VQbV+RRH3pEjFm8Qa1?|0*}B(n-gjPFHN7SFFg3troMX<-z_H*6EzmSX z!DwkA1GbZnZsv#_>otlu0u#>b(J(+l3{n)tv)5gA+IT;-XTfvDv~IcD=k-}`uDc%-$-8zBPiWeRQ>%OybE1TYlKXK@q<}4?eCP%x+Rx|^ ze3JuV>Dr~0eud_gjBQ5=7@hRp)t2(t>!lbwZNa9#_uSli`5RR>)$%MOkaK8(B={!q zdJbbc@CmqA0+~64&~z4OVxY<4tB@CWn zl+2(ZPH>QG&w|a$15CkY&Gts&`_9G7C$B)kK^;&nR4CBlfak+0A`_H`1`NsUrV@H6 z&{pVKp_=Ce(<~)PB;0UN6l|7nSqYYU46{wEh&LFJARQZzf>H*Ctog_`4CSX>e7}9x z*1nZ~(;eONn_n3|YZQSMpo_%eBa2}t7~)3`nTm}V;>b8#^&*E*1yUkVnx$XDOb-nq zI&0$~E+VpHIJ+4-#_ND07_oxp6Yy38`UX{y8l)GI+e6wp8K1Qb%BA1_G@aB;w+!d4 zj||1CS~YT}+$Dp30BNPdjL3a)*%;QL!scNi%&QZo_ z0N+X}S`>!OAfe!)QKwLsaj~kKk$^(fxL<%_mZ2|Gs3uOKZKB{jA)Lck9|{%UIVxVq z6=B#+FlA!ErwKhHcscwRx+lnbF#VebUd49mKxfVNIv3x8PJovfByyZm;Da#s_UMre zxGxZuIiX&yqi7OAV+Dv7xE4^9JLE+uvpj?$rI7Eq3@G}c;WB0m0fUk9y&giKasVZ4 z(egnYxUU?hQ>n0N{dXQxB(?kED-sSMy12=JZ9NGvFTBL}VmY_}D&V+R!kx(Up;0pTI9 zfT9A@W@u&v=4Oy0bTDT+cIbZq){Px1wr9r<0Z+uJ%f5VvD*&Y-nP7&DIf?^W9|bfUL5G6A9SPK6V3KGm-w6Y| z>^&5HAaT3-!QJmzEc1in-l&lnb)u@G;sdHewS&P0C@PTD$UI*ij8STPtcIzQrDC?t z@l)j{#_8wnRcv$VgT@cz)-tw2<|CNtK^%*g8oUc)kHR@N)Nz$Bl}xi>i#`ET`mSk9 zL900E7G|_^dbXg?*MDocYh2k{+XFwp`SzbI>*ni!zjVc1Jv~=X&(+gUFZAD10O#uI zt(xt*dU~#&o~x(l>glIdZqL=z>)#jZml)5ecSdvd^jtkXS5KG8V*5qCigJ6do_;z_ z_*^|bS5ME?)0?#YbMtf-eeea2ipJy%cTtM6N;3jLb@Evx71=_hNpXJni; z3G-Y%Jy%b+{}9AnJ>8?+o~x(l>glKYhY{!M>A8A(ZjGn7QXL5e1by>-z(#GL`-i#X_ybkAdm>j8uhz(MTH& zSW_F7w317+qtPm<)hIT#otl$atBicrR;y!TW6O_1G@%t!F-@D)XwqlxeeRueuDI8q zR{tCV$#Cwv``v4;_v3k=_c`|VVY%@Y4TPIFNm`u5*~PvCVOQ?`?%VolShsmXdmT5_SEEnH#EW#lL#K|f>$hC zwe_g}Mdi&7Uwzft6K$O%BvKDy>GhzLU=w^A^9XG$|jVqjQp8o#1n_vFwp`jwIIXxU)y?M)5 zU-C4cU%L6FCw6Uq`|rPZ=4a*%q!xi_bqFQ15w^6QU}2JhLt{U46>FS(-m;Ddu* zo963(c4pnS`HMDR_~dhc&MREB`RJ3oPyXjWespClB~vP8p%@WSdmC-gi6%w0&Q|O8 zigIPq$?Lv#@t%o*rx3}AatZ$DsrQn5$1N_2YN<`5qmqTeq zcbbzYF5mfKIm#c*K77&q8J1sa&+xbZ?aH2?&kpc~-~YtUCzsQE?azF8^3f+hxiaC& zVrN2Gqp~o88KbG9ksHpUjX|~>tu87XeccbAy=Nl1A&O?BIHJ{g>fnT$I}?afUc1~r zuDYl^?qxrD-B~N#7DsG8c=q7XP-t1s?)RVW!`2O(udEK>hugoh;E3h7aflCAe%>8o zbMaXNxZ(DbwvD%b*j#z`0I~3NKZPewA3J;Sk(CLh*)gpU)d}e$Nb3_LKG2+-}{?v(GMQ?t5hG zv+E!1)?Lv2^btI{ecq?bXRm+z$|ckPdT{0F;Fn?j(!t8b)1!a4^3Ij<+ik&3nNV9es^&0v&aS`+%mRX5~fM}*)z*$s3&GOw_G(x{(P`+ z4?d!tShE|q+Z=iCV1HRe;Y@0`AxH*g(N*|}6H3kQD-IvOExq)fH=T9EJ#X53*SD@H z|F?V6{qu`{tFyP>s=4)REB76`>BQ0YRF2Lc%h6;1pXYMs4e0fQgUye>zM_ArudzvQ zJFl&5&E9XU9Q%d4iQc-9E&q7vm+cwTpL}!Wu~)1E5!$RIfRqt}7~-5($!X82GTKhv zt!u|u$1+JKQwZL0DI&!(FQjuc2PrI*Q+ImwvBAVdD~%E)2^oda*-yQ{C6R4mfw-RF!BH|l$<=Zu}wo)~6Il@rM+FMu>v;M!2Ht!a*Y zXt-~B|0BaUu8uuk8aPx_yd8GS9WC`xDS}rIgf^$%u(oe{{M*CN4%P+oJPpnp%Y=5; z*%WCat{@rfd4nDAn?7Ym_YKDV=3PV28IeiFvMl?#eypV8I=W!B34$f%3B!?_6qpW* zr0L%84v(*{Yn*1uR4E&gEWm<9Wy6I?lbp@X<8K?CKfUwX(WeGu<^yw<1jRTNS!tA|hAaOhp{ zdhz5CK)=dT1%aCqBm?ZQ1Wd!dBt*qDy)LZYvO2Ex9@D)K4gX|thwZ;1dI-aDp&MS@-1CXyfpPzSbUBXaHIvC`G>!mcZR16)L7!2Y4qT!u zzzofco%7Ol+$HWTct;p~F9PpUrwk*M!~OE~v71I8AB?Gt48N~=Py!)o9h1@U?6Y(c zO;vO1r>py>kG*{Oox!AH+BFxfjecX?Z&f$fomjoNc}fnS(R^WT^sGtnG8m>Dmk}?Z z2yly{#yArxMRRAS@BWqH&8rhFxK?PSs3lYcs-2HiD6No9NYs){PtoC*1{2MFj7j1L zj$;`!c!mOcl_8>E%w&4+Ut<~Kx7TLpqcxLVs1YW)2H;YhQ9*Fn5>|CqnivNkpSus7 z3{?b3Tn9(sw$A!MZHQSpWDw)0e|gF9%YzA0U#2D@i{c*>l@A;{VsQDy0uof&!ru-i z6}z)^Q85{}mjdistUPoeeAfc5~77!~M<6 z-aFbez5j{fy9RgEE@?4_Dh}!wSJzH&7IEhxPxbCE&4ru|yi|lBwatPs;fwOyOX5us>Byob=#lc`m&t;~b@aS@& zs5PayJvo?EY})1{myBLjwOKZC_!723x~xe(yvRr}Ii=;`4vlq`*&=NSuT+?YngpYw zfJB`|XOcNwRK%QwbrJ1}@u3T~vBthM=$Hh0LYSN#;*1&LEpa#p(m4n!8)^cMtJiQB zZ#BD}uU^7NmyW4$5n?OY(-YA1^ENWyAL`j~WdO^7nBr}1K!}j39K?EDhYX*k6 z3IumK+lb;6R2GdW^9m1(K1EKzH&BA@1l{0aTg9znmvV05~3}k+Y0K8)ngny=iU#^pEZuePA%=K3mEyS~i)4azJJrSK#oWh)U%KxL{WD z#{K49bIvPA*VQaPzPd`Azj)yrTUOVFaS4u= zY_>w!9DTvjG^k*B^r71bu;qP&35q@d9g0~(f&m=%D4&E9n{t+(XFq?4yyLaIU_pe z71KZZ_hE}fp3@xPT-)C~dj9A+yEtW*+6_sXKfH5vU>vLm|K)>+cNO~DON||R=Y^rt zAQhGyLnos9SmGHxzGL|Q!5y_LTa2iRr?SP>mGg_+@mJYZi@sa9xwcM8vKoAbbV($N z3(>|(3La4)cKmGrNT3pFN6`e7ReH9J6bi0e1@up9)*c}C?i#FHj%(#yv4qP920}eT z+<6l*Rxql|wH?|_{ic0$-&;r5j%%j3?)Vwa)i)yo5leu>a98A0v_2M*2B7Jc1j(sV z>_WfItOr8~csCXUcT6N;mh2+{7*HkUc{(^TIyD$uK{5T%!6blaBCIjd6GD{&=ZehT z02yqRj*4a0m5yGcF}LjB|R71`Q^cSuhH1; z0tmOyXxntpy1N_i99=R36Nd2qz@4KD#|HSAdJvi1qA{b}v7jlDLg9Zx2RO$u0mfJip>X5CK!v|XvPRCC@1vqo(6Lnp*b;S-XqD@H|ge_VD ztFSo*&j(#w?uLIlI(JQSwV_#8>rw$FAl(pZ za1`tpqX-o-y97-~T%PavDwD?gA#5yM+4+)3g1IjUr z(+QY@d5pR#5_ALBt*v(8GW#vt)?=%dx0s?m&EzM;-QxfZ<`76MNF}^OX+Tv2j{^qN zBAv`gKhRd-uNcb_Jsf}<`h`TW0%K6<4n#+?jIm>&eg>Qzh2WAoFm;8C1|dU1HFuky z+`R?@x7VodVy|NK49&9Eyy2nIp$)R3_*}o2v*)O_;A}CR_LO@J7Y!v!WYC$Ml_qYB zd9F;mXLry>9x!>|b?L>(t2pbCl}! zgJ6Sh0OV-~@dBQ-rL1SXX0L6d+u*C(?aE#ocp3Z-NtjxoWi7;m14zTHmm-az5t1`c z#k>JC5{6oVb^=VFb4e!vV?<)nvUC;T{*P=AW4bT&mM5K+DR)h1Lr;IB0}1ujV#)XZ@w>p1c(5l9$vWPxFU3rPXKVH5${ zGd1)wpvi8`*l)R|FxkO=yKPgAz~V&O4LZ+U8c!r(ImxAofke+?eCh?pN#NV?Ml*_e zT+ttO+2yIOiuGU6j`5tTxa4AZ^&grcCA>y^*Up>NwpE<7o6k)!MMZnSk@XD~9D^NP zS4Miw03!s@Z+h?h*Ff?yXwE>cClDoQ_AIzQ5ZD-Mav_-68ib>qVP@-~HBta@ph+Mi zLEC`oLOan7vsppSWEWtn-(=e#9Bxp*cCT}UG$>Y#@PUCfExit;krXvbQyyns8$#R} zNINqKA(S~BQO4-bd2rTXZnnC%iBeEOVot)#xB+~g_XtR4gJl#XACg2@y3qFb*_?H3 zHJe>8v(e}+|as386xI0n37DY<}%vg~YB+3mnU$mIh zpv-975~G)9n9h)Z;|EG)nC*6;qN>-M{^;#%7BwPXvC#K2W5UygCH;-Ph_Udt;(ToPF%;1`DT(P!$ z9lbq9d}tjF$W$-`3e6&glo0tkMkM`~Oy(AoUX3Ysgja%*gUV7e%qdW&(3YuL17ix1 zC8fu~JRCHjgU|+%3g#SBt4QX!@(JrVI}5FfSulGA7GidRIt8$e?pUA)@Cj(tm)dHB z1cGaYFD-@`qqRasLTxM4&p&jZicDtjttnHf61QAow+Hy>dNo3IOBBcO%We8%V-6HWyL35>Efe?U; zbM!S}RIwX_gRpj97li;sBLh`O5r3dlata|xDWVlaX_@95nws%~9_hH>G(xrQ%@E+Q z!x1r(ps0B+0uAH%nVID zXjtfP&>o;i0I}&HU%+o-47rd|`d@%{NVsCVy_s1k?%uujyvxWuB|>@85+({pMj%Ur z6)C6+tqah;<9Q26Rs_;nkAX{V^fGzNK?GF~15#NY|!1qSm> zf>94x-jjjA;f81VFSx^L|nPSfndEo?Y_>-`%lH2DjfZ+v)7HV^#E>Km5I<)w1D<#(3KRw zydasLjejeO=>qLZvs5lGmCL0IUn-ZE%H^N0oL(xIe^&W@hD2E^mzT=rrE<9ym+#;q zm&)azubN&emzT=r*+68eTwW@dm&#?xrI*U(r&WG0mCH-z@>03nsmd3pZ%gI!PQ~<6 zxx7>^@A&H#m&)Z%a8i?uE|tqW)Y41ka_uh>T`HIHcb6=c%X5P1rE+;r#Z^)E&VPq= zsa)RvI&DQgyi_jZ%co1_@($JXQn|dS#a=3xm&)a(a(PivzsQ~ZUn-ZUP%gjYng0uV Ca&o%> diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index 68d2ba0db21cb5e34bf08139f2671cd42cb4c766..c99984ef63998651ce68572f3fc9959a1a5b99e3 100644 GIT binary patch delta 62 zcmca3c}H?XBBP;EaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Rnvs!(g+;RA=1GiR+yHj%5}N=3 delta 62 zcmca3c}H?XBBNntYLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* QajIFG0T6AT#OTEh0BB6o*G|}nKyY^vex9pY>CM%DeBV|w=>F3ewWNMSv$pH za%YPDSdY5i81l{MKSTYiNz(UMahXpDe5t`lLIe_P2PWjeX?~%6y-+APu`u`q6GJ^I?&$q z)RL0Sy!80ug2bZKc(AQH3X>DEWhWob7M?sgTWRvn+a delta 423 zcmeykh4bSU&J8;_4J%WV3=2#v%=Ar@ERs@EEsRVI4UG&^OpPop%@YmGjFVC=Q;bX# zlZ=d0&C(2jX!A?XWs#E)Co4~0k}NlwF-2=~U$WTbXUWo&wNo4>Z%h%NoRZ=;`9z94 zK{Xy}=O^3$lbWoUE;HTn7^9-Hx{iW+azr;glwuz2}eYm16n z8qg34lTp@D2{z{}tdW#xqftIWAyg74eH*%);t`|KKwZ9Tx!1NZyhgh^#{*4&1mC~Zw_=nmF9)r%U5=e z+!=Le-e{hkU2tdAAHUFC7OhsAGHUN-vKWL7Q2}|W0T^@+wwL#tHy2v4K4xjTJkBB| z;SASNXQ^xuB{|pewx_#$kB<-cC%$aV~(;{HhZ6Q0svWT z1|wz_zygKL#7I&>kKSsT$au}JC1Mh4T7li7RFT&cYT+@Ulr|Wry)#ZozC0xuN;ZhH z0s#k6Rw4W&%D|48N!vthh>onw#1rZXg|(riFqz$p3o9hG&qhj|OrdqwVYX4APT5!j z8aVCKWSfghLh^hR1qjkwk}Pz?Hn^Jl9TLPBC`LWtk|p@>HOiCP3vI}1^^ zxTI1rSO}4gDehM31Z`7^g(!j`xWr~dz!ZM_?%VKI#i@k{uXt~E=I%M)IcLs$JKHNe z+bf%291!p1AYRpPn{^#rNZCmgLPFBgdrM$c$UaF;L8@#D@N47t14pjiK5*eu$A2d) z6gjO8LckC)fQ*=uB^|Zg_~`TZtDCODho#RzgJozl9kE(8h z%MX9BeP!6b(!BO{Yy3dZw|AP^n;)9qr}iuU)bsN8aPWn;Z8rY6y4?R*+9&6i-`YEJ zqv_AQ)E=5W;6^hXf4RK?or(mBQl#JuLL^dITFN9uEDlv1#I5#~rLGiV6$-E#EGDJB zpyU%eCyXH_W6#?j>~G#XSshM()4ths$lGEPy4aF113Cjyf)dg~f|y`>VEAce@_kdq z(BJ&FJyD17^H#gwU;n*5&i3qr~9Rv)a}< z8x2UML>WnK-f5TmPycN1A5J|qxzuzKgw3&7VF)m2Nik)TK6(>%4n>a4_|%t86-fWd zRtsGf2Q!0ybEl;a0d~Eq6bXevy1?=oElo6hXcWBv8BYZosb?bZbO zpn^4t$e}Sdpv%?;0~lM$wW~i0-xgBELjc< zU+cc)@zgL&W(COT-ztv1WIoY<_Q>SOVdATk^C^W_d^ZS=nqz6QlsQViBL=wDo?kk| zD@cVrUyp>+dTuIK0z83GqQClGyW0PQ8Yr%j5ct7dDUcimtF+sVsD-TkDB6@-4MhL( zRx7&y#86V$HR5U1N^57288H{ltXV-D*)*zPPMLKJAqAVQmOOYpyth0#zjV0Lfg|8C znKj+^XRYSn{kvUdaCehgqcu%tzw-FR_NRYopRJbGo|6~FxhT%LbXFUDQJnK%Iqt@D XQJjn7Tofn&c>I4B=fK7J+kJllEZwhj diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 90a3f31f5ebf2f9ff58567a3341ea59deeda107a..5ee5e0e21fda73fbc22c2723ff3d3e7aaeafa633 100644 GIT binary patch delta 76 zcmexsaadwQAfusCaYlJkVMVgOp}B#%X-ZmRqOpmYnQ4l#QJST(agv2)qJ_DoabmJj Rnvs!(g+;RA<|f92TmWaN61@Nb delta 62 zcmX>saadwQAfsVrYLa1rX@!}-X_7@!N~(pCiJ_s9L5iu7rKNeIfthhqs%46iX=0L* QajIFG0T69&Vm!zN09hUqm;e9( diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 297b0bdc772ab4a2f0dfa58f6d0b958c5255723b..3ac2c3997aef822d793e0ee0265eaf3823bc02c1 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4ULL3%99E!lJyPE4a`kb(h?JmP0Y+pQ;dz$ERBtmEG!c(%q@)* cla11hj4UiHk`0^Ra<;$aWZeFilc|#r0HbRd5&!@I delta 72 zcmeyif#cf-jtzS_4J%WV3=2#v%=Ar@ERs@EEsRVI4UG&^OpPop%@YmGjFVC=Q;bX# alZ=d0&C(2jsQE2t`&&-N?Qc1mI{5&TxfksK diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 98fecab56b020644d9d4492e92a76ffa0a1a1d3c..6bf20e6d90b045b113239c85d7395d9fdc83b5ed 100644 GIT binary patch delta 80 zcmaFyo%zLg<_(uPZHqc8=4!Ko2H~CCK{WVnVF^-8>Lwq8z)&< zCR&(V8YdnKe2(K!ld?Q8z1yZxgsiy+Lq?p=I7fPpS*kx zuU_}POj9jGa!!C!G6o%iGRKRU^EP@J6QM-p7$47d_wBDRuVz7 zWQ}9aOA$RnWD1)1pWd!qTIhM!H(NMxk_9WMj0`v`8=W+idTq2%)W~xGIN8}+Y>=U? zg+{cXT}+rLSY|NjM72ptD2E}^pSyKW?vcVe9fS0gTCahDHd3)@sl=>L^Q2dH%a4(C zy^7>Lsn+rN7&%w1;N37eP);<+w(`y;vZF|V*%}oi3o$~DnG|^P$iiAWu-YbI zMsd#|qBG9u^|#oc9bifnIPIZGasy_oZ(sYniisbqtu9=*=M5S&P@Y}^}C zt>F6vp+)8GRj!`G3(36`Iyq{<7_cCC)}1}|p4*6Pk(j531#hJE2Bdd}D#tPN@q_~8 zA4s#L@HtC5Y0Gm{z&eL1(I~)E(AgYIm!aO0eN_@xm@1F2GIf-9Z;(TW1+$H#y_3VW z>FIh=1K<`Aoy-NyaEO^#QUwA+@`{(mIO+Tq%c?dkJJMNRoFN^p2RF$ynL)Ghr>o`r zC(jIyG)^BsF)&h<lRY-D`{8OG`a$E;=?N zZp#7Tv@XFOf-MXt3A)I_wy5zv!^H>q_k0JpvDMgnoPEz z+L3?O_P8H?eCY3?iP`qo*G2n?pX}YK+KvKwDva|1c!0E%VbJ9V?3|(p!Fsr0-oM zpGZ*wfS2FSlB?AKK8}&&<#dbeEg#$<2MRBNqOgKSL3#r{-oacdSrBm){9*UX@ZUURObWg+8cpe$~qRm7BeQX9jML)#v9MMLlOTCiKx6ZV<9XJd?n3V8K%3{ifeG&Q}qJjdR=`C6CCR zip%kOUVY*6$aw40x%0#06-G{fc2}uaA8V8=*GOMc$t^4Mb~l&1x!nBU?B??S$>nJ0 J=soiN&@U}X diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 24a8e39bbd09fe55ab3a0468dd59c2fa793fb594..2f706df6db4efdb68c73e79710d1932f0480c8a4 100644 GIT binary patch delta 68 zcmdmUm~GEtwhdc24ULL3%99E!lJyPE4a`kb(h?JmP0Y+pQ;dz$ERBtmEG!c(%q@)* Yla11hj4UiHk`0@ma&CXh$#{J_04=Z=00000 delta 68 zcmdmUm~GEtwhdc24J%WV3=2#v%=Ar@ERs@EEsRVI4UG&^OpPop%@YmGjFVC=Q;bX# XlZ=d0&C(2jsQD@9_NSbT*QWyj9+DQ@ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index c60e3199f457953c2221b095cfbe6a39bc3071d4..4f1ea4ea4bdb3b88db444738fa9d483cab6d4c65 100644 GIT binary patch delta 7700 zcmeHLORr>A6;A23=_?=t{ZQ#sb^4-c!p*&V?e~^w8>2BK&k`0z#Y{8EAUaKcG!aBw=j)PE}o~64QI)um-C;x!I}p`o8t8 zb#7dL`Ns8^U;E=O$>%S<#FxL94#^2;a*a`GYfVH}S9g!$WR}*4kZ)~zzC8a6a;gMI){ILD%>V-2W=l_1_%sa>X zxCwYk*khQ>%fk!2rg9_lGfF7S^ik_ z)grv(!%_u>%tMHny#$Wuye)rF_GnHc|7KX`6ZJc67 zN_j6zt&*&ozk98FZfB~EN|ll~DZ#6Y+6M2XNGO$4X~3fs!{K+kQ}a9SoxV8fqj3VY z%3PG!F~(p^QHWGKRb)ZlZ$H=FJ?~%Yu1)$z0Cku>IDL4=jR^jFp$k1nQa%K$d@`DW zg{reDA)_wV3Kny?eP(CIA!x+qb7HGil2NLvi%-?a3_LBenZNqy?l+Sj`Nrsgb0>lS zu>e`rTuZV=myp8z>QA~iCQZk~TbDY~^otzC@YCC;4-ETHb@%rvs$`j?(cbGMh%=C_ zQw|8DW=G3xdWDuq6O;_qX|Eh-3W!%!!8J=S284Ke{@P>HUr%O^RUo0AcUfzVI-#K= z1$5sk6mNd@FWsAyrsG96ZNKka=njW-Pj_D+Pxipl(=Qx8|K#44EBpOkK&gpBPC22D z#`(&nda5D>2XMtPwP$x`Epj8X6T@47?{1r4zh`=7^8Hq~_Tc)#Z+-jX!{7Yc*B`pr z0_o=KM(NDnll#NpczSx)NNqq_K0Cbm`|em50$D+sz4Mp`DHMt3P_1lTiNn7p)06Z5 zeE0ay%=+Yr6LHKzXP-T=CtX!i1IZMIcPG;g`jN33^kt<3IL*PcwVJXI1W0&R>-2Ls zjUw}cetjbX9<%a26N6|;37NBY!Eurn#8Or!Z3?9oVmW79l#ydB7>kmP$U2&^7#7ys zHN^HJu`yCo7TV)2Qc07$yl_~I!D3UOA=B= zD2^ssmZ{7V7wwBm9DUT}O;lcRiqaD1Wx-%XXI7&m=ITswN$BV?ehgF-X?X_{x|D=n zW-@Cy9{zNxqrTyG(T)Z8PJKhtecyTE0U^F9#Qqa6N+I0xUpmlsjgbnlvJ|UQav^&m zlC7>vE0pEn!co3ASH}SZ)w&o|T>*F;#peMy-Oz zM(hHBvC(pakBtz9-`zKTv~NV9hqIrberaT_5tsl8;X)4=iVOw7tk(*FJ<`L#Bvoc1 zE5Hf0i76XzAqY z9GnRlkq5~DC z6tiSY(EDo4NUsy~pS{;Tu`_FJmjA7dtfDyU+y zNmYw+p2-DkFo=u8^j_zmX*gc4qYb~q+ZQ|W%46MbFBBGK?<$nHXsn>YnB*gus9A$H zM@w9hV%$lU6yTJ+HlZN9uW*69b|Hw$(g@ zpcN#2vMM<~Nnb=!!M@llf-%K+u`d!I@&`l|Ech(`&b@cinLuYh`f{0BGcdE~th4s| zeXKRNZeF}~^Wy8j-w+o|6ubI6W=BUCb8(V|kd(Fb-Uc!%7N4aKQL17p;q&EN8$Y$9JmQQ}Y&X*M}?(k2)qi}FPk8#u5Zp1QjAa^E`i>N8u%=l^|T>#d`+ zYB=gFtyh-WJLy=5LXLAtF}p0s2Y#=4YK|wqc6Nq~5eU3ZGAx`6UNT#o1DBGOSF4A$ zPAy*V=&<$BPkKrwiz?X>6T8B}X9`{?n_+xe~=1>-_B--R_a8MEkR|IP2LbG~Fc4)zqRwGGf4?W5do%-RAs(k4;~k z^i?>rN%)wPdF>LO_9<_Ba+Zs`#gVhxBJGCSrR#lYO=~vvlZyAh&gx_HQ`4FcXOpXF@OEp=`Sa} zkHN}lvM-ShnjdQMNMM4EHU>Gz(LYX_iHGZ7>!_Xgt!KKO;g$QQj||(-cb}elQs}P? zCZnrbh#=e~UY$uE8Wu_w+q zkg5)zZd{-`_1yOGpC5H60GvZ>8*nclKfSnyl9FOW94L7vs-Y?=Q%aF!AWvp>4VqG} zqhg?8%np()e9+mtV7MrD^T|)UpG~GJC0$J<^fPf4gcjq7G}g$R^YEwL?)ZH6?d}FZ z+sL~h->j8(EX2*wMW#yDq!^f$3Rxyl#FqjDTDQl%5Udc%)o6_1i~@?bz5)kUGa$+P zpgJpLq%Ac_DwRnEUpZ!Fg$o>oEM-N#R^}y4n~C?R_x#L8qm0carjaBrI!ypM1?ejs zPx7iAY@y@I5xIp7TW3@eMN)t}q9U=cl%61{ojO zInCsItlRv8ln;OXg-3`!L$v+X7bTHheidibelDUyuY@$LeBf++G!`l5jYS`zVylS<$#pn(b3AyuajSJj#m&A^+W`MKJzV=;cURArs~5roWvr8q##>6t zCyWCaa`u>*F>C;w87>~#CG9aBsOm_-ikVDYGO^btLff=)3cRk?I?q`F$k}@Vky}|H z9O%%T!*3s+KHWD`4&vt>4d*^Fy?^E+)Gv5by#+quxkcl>YvF#w7k>=OVea%Eu8I%#8Z8qhVZ@FePAJsg1xRDEiveiH9Hs&8T&Schty!=!3~yy4~)9L-~ThX%kNl&X7`a6%Cg3doQf zqqTFwIEGK!T43mLzmA~0G7F5ajK&s?5hYeMNvKgxF~F{Lq?LJ5O5aF4Dxw%3z0hqA z|M<%E!5s_tbg;TrYs@1@K+}RdI(0t{1>N_RjSJxLyF?`OoNj0bDPD i@3wlb7r^xbxY}#i3*dSITrYs<|DOxs91Gwd?)e{PA-R_T diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index dbdf2d893522a8e28300fe5f9e397484f7ebaa94..c79ae97f5bffead7504aea9b69e7ad2e0944a55f 100644 GIT binary patch delta 1352 zcmbRGglp;(t_>$R4ULL3%99E!lJyPE4a`kb(h?JmP0Y+pQ;dz$ERBtmEG!c(%q@)* zla11hj4UiHk_|WiV|GkF>ZTxTSj@#`WME{XYhbEtWUK%&&DcOe!(7kYV)AXDe^3jI4JJSI zb)7svE=JW@&s5LILeJ2|P)EVkNYBX7OwSld8CdElfThg!42{hvU-XFJLa3a~=jJ`R z!LxDlWJf_6oOT+TnoJIeHlM8Osy;0JmFBe(*MCimLveO0np_pi cLpY`aq63DZpDdcUCbVx&VBEenfhi#n0M+1IFaQ7m delta 1422 zcmbRGglp;(t_>$R4J%WV3=2#v%=Ar@ERs@EEsRVI4UG&^OpPop%@YmGjFVC=Q;bX# zlZ=d0&C(2jX!B1_Au|pGBP$b2D`TU{^4_77FNCpjS(xfs8tWPA8JSMzj}c?Em^{(J z1X<83e8=R|ZVGY+hQ(Z5Mg~SEx(24YM#c&-gA_C@%=AnqKk)enGuwD_eB45HLo+=? z3nM*CGd*)-9R*VpJtJd7Jwr2dJwrnv-&oI7&&X2G*m&}f$Os-}wUe#Gy(c@kH0qfG zrG1_Bixq$%Gf%-l&lsx%j1@FMDkld-n@?7CRfjoZczQ6+Ya_A;2|mUoMxpCuZNDU=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 1612c3855..18eee5e9c 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 0ffb69d4d..e6780d9a9 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/searchindex.js b/master/searchindex.js index ba8d8fc4a..162ed3def 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 91, 98, 100, 101], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 91, 98, 100, 101], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 91, 98, 100, 101], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 54, 55, 56, 68, 92, 96, 107], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 90, 96, 104], "benchmark": [1, 37, 83, 84, 89, 90, 91, 98, 100, 101], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 51, 53, 54, 56, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "core": [1, 40, 43, 75, 77], "algorithm": [1, 2, 8, 10, 31, 38, 42, 53, 54, 56, 61, 70, 79, 81, 83, 97, 98, 100, 107], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "introduc": [1, 88, 97, 98], "synthet": [1, 100, 101, 106], "nois": [1, 2, 3, 36, 43, 46, 56, 62, 89, 90, 91, 96, 100, 105], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 90, 99, 103, 104], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 56, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 91, 99, 100, 103, 104, 105, 106], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 90, 94, 99, 100, 104], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 52, 53, 59, 63, 66, 69, 78, 82, 92, 94, 95, 98, 102, 107], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 53, 54, 56, 59, 61, 66, 69, 70, 71, 83, 92, 97, 101], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 51, 53, 54, 56, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 51, 53, 56, 57, 70, 71, 73, 78, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 53, 54, 56, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "matric": [1, 3, 46, 97], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 52, 53, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 53, 56, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 90, 92, 94, 95, 96, 100, 101, 105], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 89, 91, 97, 98, 100, 101, 102, 105, 106, 107], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 56, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 91, 94, 95, 97, 99, 100], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 51, 56, 57, 63, 66, 68, 69, 70, 71, 94, 102, 103], "trace": [1, 89, 90, 91, 98, 100, 101], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 51, 52, 53, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 52, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 106, 107], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107], "noise_matrix": [1, 2, 3, 10, 46, 56, 89, 90, 91, 98, 100, 101], "py": [1, 3, 33, 37, 38, 43, 46, 48, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 90, 98, 100], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 51, 52, 54, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 107], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 54, 56, 61, 69, 70, 71, 75, 94, 95, 98, 100, 107], "true_label": [1, 2, 3, 36, 46, 56, 98, 100], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 91, 97, 98, 100, 101, 102, 103, 106, 107], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 57, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 97, 98, 100, 101, 105], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 54, 68, 73, 87, 91, 95, 97, 98, 100, 101, 102, 103, 105], "achiev": [1, 2, 37, 38, 41, 73, 97, 100, 107], "better": [1, 5, 10, 43, 52, 61, 63, 71, 73, 74, 83, 87, 88, 91, 94, 95, 97, 98, 101, 102, 103, 107], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 51, 61, 71, 73, 86, 88, 89, 90, 91, 92, 94, 97, 98, 100, 101, 103], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 50, 52, 69, 73, 83, 86, 87, 90, 97, 98, 100, 101, 104, 105], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 54, 61, 62, 69, 70, 71, 97, 100, 103], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 91, 92, 95], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 107], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 53, 54, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 96, 97, 98, 101, 102, 103, 106, 107], "condit": [1, 2, 3, 46, 52, 55, 56, 71, 92, 98, 107], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 98, 99, 101, 102, 103, 106, 107], "k_": [1, 2, 3, 46, 56], "k_y": [1, 2, 3, 46, 56], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 50, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106], "fraction": [1, 2, 3, 10, 20, 38, 46, 56, 61, 73, 94, 97], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 100, 101, 102, 104, 105, 106, 107], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 55, 56, 63, 71, 73, 74, 86, 88, 89, 90, 91, 92, 94, 95, 97, 100, 102, 104, 106, 107], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 107], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 56, 57, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 106, 107], "assum": [1, 2, 3, 12, 43, 46, 55, 56, 71, 75, 78, 97, 101, 103, 105, 106, 107], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 52, 55, 56, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 56, 62, 63, 65, 68, 73, 89, 90, 91, 92, 97, 98, 100, 101, 106, 107], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 104], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 55, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 101, 102, 105, 106, 107], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 55, 56, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 56, 61, 62, 63, 65, 66, 82, 87, 88, 91, 92, 94, 95, 96, 97, 98, 105, 107], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 51, 52, 54, 55, 56, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 106, 107], "perfect": [1, 2, 36, 73, 98, 102], "exactli": [1, 3, 10, 36, 37, 41, 43, 64, 70, 90, 91, 92, 94, 95, 98], "yield": [1, 37, 41, 89], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 51, 52, 53, 54, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 54, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 56, 57, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "loop": [1, 3, 46, 56, 92, 102], "implement": [1, 2, 3, 4, 9, 14, 22, 37, 38, 40, 41, 46, 50, 52, 53, 56, 70, 73, 83, 86, 88, 90, 94, 103, 104], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 54, 57, 68, 69, 73, 75, 77, 81, 87, 88, 90, 91, 92, 94, 95, 96, 101, 105, 106], "do": [1, 2, 5, 9, 10, 36, 40, 41, 56, 57, 70, 71, 75, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 60, 73, 87, 88, 90, 91, 92, 94, 95, 96, 98, 103], "pseudocod": [1, 104], "happen": [1, 10, 43, 63, 89, 95, 100, 106], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 89, 92, 95, 96, 97, 100, 101, 102, 105, 106, 107], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 53, 65, 73, 83, 87, 88, 89, 95, 97, 98, 102, 103], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 54, 55, 56, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106], "distinct": [1, 18, 56, 107], "natur": [1, 10, 100, 103], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 106, 107], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 55, 56, 57, 70, 71, 73, 86, 87, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 56, 57, 60, 69, 73, 74, 87, 88, 89, 90, 91, 94, 97, 98, 100, 101, 103, 105], "round": [1, 40, 43, 56, 73, 97, 105], "astyp": [1, 100], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 51, 52, 53, 54, 55, 56, 57, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 90, 92, 102, 103], "rang": [1, 3, 5, 7, 12, 46, 48, 54, 56, 69, 73, 74, 89, 92, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "pragma": 1, "cover": [1, 3, 84, 96, 97], "choic": [1, 8, 43, 52, 54, 92, 97, 101, 103], "replac": [1, 55, 60, 71, 86, 87, 89, 90, 91, 92, 95, 96, 97, 100, 103], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 71, 88, 89, 90, 91], "05": [1, 10, 26, 30, 55, 69, 73, 79, 81, 94, 96, 97, 98, 102, 107], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 91, 98, 100, 101], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 92, 97, 98, 100, 101, 106], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 73, 86, 88, 89, 90, 91, 94, 96, 98, 100, 101], "max_it": [1, 87, 88, 95, 103], "10000": [1, 40, 96, 97], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 53, 55, 56, 57, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 103, 105], "diagon": [1, 3, 5, 43, 46, 56], "equal": [1, 3, 10, 12, 63, 68, 78, 104], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 56, 73, 83, 87, 88, 92, 94, 95, 97, 106, 107], "impli": [1, 10, 36, 62, 69], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 54, 55, 56, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 91, 98, 100, 101], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 54, 56, 61, 62, 63, 66, 86, 87, 94, 95, 98, 101, 102, 105], "maximum": [1, 10, 70, 78, 82, 106], "minimum": [1, 8, 10, 20, 43, 45, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 68, 73, 90, 97, 98, 100, 102, 103], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 90, 92, 97, 105, 106], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 55, 56, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 55, 56, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "necessari": [1, 2, 3, 4, 7, 10, 12, 55, 89, 90], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 60, 61, 62, 64, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 56, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 89, 91, 95, 97, 100, 101, 103, 105], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 51, 53, 56, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 96, 97, 98, 104], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 51, 53, 57, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 89, 91, 92, 95, 96, 97, 101, 102, 105, 107], "when": [1, 2, 3, 4, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 53, 54, 56, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 92, 94, 95, 96, 100, 104, 105, 106, 107], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107], "rate": [1, 2, 3, 10, 38, 56, 88, 107], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 54, 56, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 91, 94, 95, 97, 100, 101, 103, 104, 105, 106, 107], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 56, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 53, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "high": [1, 2, 16, 40, 43, 52, 56, 68, 71, 73, 86, 87, 89, 90, 91, 92, 96, 98, 102, 105, 106, 107], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 51, 56, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "imposs": [1, 10, 98], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 55, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "low": [1, 10, 56, 61, 83, 89, 90, 91, 95, 98, 102, 106], "zero": [1, 3, 5, 37, 41, 45, 56, 57, 90, 92, 101, 102, 103], "forc": [1, 2, 3, 5, 41, 90, 107], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 56, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 92, 94, 95, 97, 98, 101, 102, 103, 105, 106, 107], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 51, 52, 54, 55, 56, 57, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 90, 91, 92, 95, 100, 101, 102, 103, 104, 105, 106, 107], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 59, 84], "produc": [1, 2, 5, 9, 10, 16, 48, 61, 71, 73, 75, 77, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 106, 107], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 54, 60, 61, 62, 73, 91, 95, 97, 102], "opposit": [1, 107], "occur": [1, 3, 10, 36, 55, 68, 90, 91, 92, 97, 103], "small": [1, 3, 10, 36, 40, 48, 51, 54, 56, 62, 69, 87, 92, 95, 96, 101, 103], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 51, 54, 55, 57, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "max": [1, 43, 70, 71, 91, 92, 103], "tri": [1, 37, 41, 104], "befor": [1, 2, 3, 37, 41, 54, 56, 70, 73, 78, 86, 87, 89, 95, 97, 98, 100, 103, 105], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 30, 36, 37, 40, 41, 43, 46, 48, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 90, 91, 92, 94, 97, 98, 101, 105, 106], "left": [1, 2, 43, 45, 54, 56, 63, 66, 69, 89, 90, 91, 101, 102, 103, 106], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 51, 52, 61, 66, 68, 69, 70, 89, 90, 91, 96, 100, 101, 102, 107], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 60, 97, 98, 106], "length": [1, 5, 12, 26, 27, 36, 38, 43, 56, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 101, 103, 106, 107], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 54, 56, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 100, 104, 106, 107], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 56, 57, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 100, 101, 102, 106, 107], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 91, 103], "ensur": [1, 2, 10, 37, 41, 53, 54, 56, 57, 60, 68, 71, 73, 86, 87, 88, 90, 91, 92, 95, 97, 98, 103, 104, 105], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106], "least": [1, 4, 10, 18, 31, 36, 40, 61, 62, 68, 71, 81, 91, 92, 97, 100, 103, 106], "int_arrai": [1, 56], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 101, 102, 103, 104, 105, 106, 107], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 53, 55, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104, 106, 107], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 51, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 107], "regular": [2, 3, 40, 60], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 56, 57, 62, 63, 64, 65, 70, 71, 83, 97, 98, 99], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 54, 56, 61, 63, 71, 73, 83, 87, 88, 89, 95, 96, 97, 98, 101, 103, 105, 106, 107], "cleanlearn": [2, 3, 10, 23, 30, 37, 56, 60, 72, 73, 74, 83, 84, 86, 87, 105], "wrap": [2, 37, 41, 50, 60, 70, 73, 83, 86, 87, 89, 90, 91, 94, 95, 98, 105], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 60, 69, 70, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 102], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 53, 56, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105], "classifi": [2, 3, 41, 48, 56, 61, 64, 70, 71, 83, 84, 86, 87, 88, 94, 95, 97, 100, 101, 103, 104, 106, 107], "adher": [2, 41, 73], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 56, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "api": [2, 3, 14, 60, 66, 69, 70, 73, 84, 97, 105], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 71, 73, 75, 88, 90, 91, 94, 96, 97, 100, 103, 107], "four": [2, 10, 96, 98, 107], "clf": [2, 3, 5, 48, 73, 83, 86, 94, 97, 98, 101], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 51, 53, 59, 60, 70, 72, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105, 107], "sample_weight": [2, 41, 73, 98], "predict_proba": [2, 5, 36, 39, 41, 48, 59, 60, 86, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 103], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 98, 99, 103, 105, 106, 107], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 54, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 103, 105], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 51, 52, 53, 56, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 92, 93, 99, 104], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 51, 56, 57, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 51, 52, 53, 56, 70, 73, 83, 86, 89, 90, 91, 94, 95, 97, 98, 100, 101, 105], "element": [2, 3, 5, 36, 42, 43, 45, 56, 61, 63, 71, 78, 79, 81, 87, 88, 95, 97, 107], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 56, 61, 62, 66, 69, 71, 73, 86, 87, 88, 90, 92, 94, 97, 100, 101, 102, 103, 105, 106, 107], "index": [2, 10, 26, 36, 43, 50, 51, 53, 55, 56, 57, 62, 71, 73, 78, 81, 82, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 51, 53, 54, 55, 56, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 104, 105, 106, 107], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 51, 54, 56, 57, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 103, 104, 105], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 51, 52, 53, 63, 66, 69, 71, 73, 74, 83, 84, 87, 96, 97, 98, 99, 101, 102, 105, 106, 107], "size": [2, 10, 31, 37, 40, 41, 43, 48, 51, 52, 63, 68, 69, 73, 75, 77, 87, 89, 92, 94, 97, 98, 100, 101, 102, 104, 106], "here": [2, 5, 7, 10, 14, 40, 43, 46, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "re": [2, 5, 37, 41, 53, 55, 61, 73, 83, 86, 87, 88, 89, 90, 94, 95, 97, 105, 106, 107], "weight": [2, 10, 37, 38, 41, 48, 51, 61, 68, 71, 73, 87, 88, 89, 90, 91, 95], "loss": [2, 38, 60, 71, 73, 92], "while": [2, 3, 10, 37, 40, 41, 47, 48, 56, 73, 83, 92, 97, 98, 100, 101, 105], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 56, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 104, 106, 107], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 56, 57, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 92, 97], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 53, 56, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 89, 92, 94, 96, 100, 101, 102, 103, 104, 105, 106, 107], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 61, 90, 91, 92, 97, 104, 105], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 57, 62, 63, 68, 69, 73, 75, 87, 95, 97, 101, 102, 105, 106], "clonabl": [2, 73], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 56, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "clone": [2, 73, 101], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 65, 69, 73, 79, 84, 88, 90, 97, 98, 100, 101, 102, 103, 105, 107], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 54, 55, 61, 62, 63, 65, 68, 69, 73, 83, 90, 91, 92, 97, 99, 101, 102, 105], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 51, 56, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "manual": [2, 73, 86, 87, 88, 97, 103, 104, 105, 107], "pytorch": [2, 37, 38, 41, 73, 83, 88, 92, 97, 99, 101, 106], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 56, 60, 70, 73, 87, 88, 89, 90, 91, 95, 97, 98, 101, 103, 104, 105, 106, 107], "__init__": [2, 38, 73, 92], "independ": [2, 3, 10, 62, 73, 95, 104, 105, 107], "compat": [2, 37, 40, 41, 53, 60, 73, 74, 77, 81, 83, 86, 87, 97, 104, 105], "neural": [2, 38, 60, 70, 73, 88, 92, 97, 101, 103, 105], "network": [2, 37, 38, 41, 60, 70, 73, 87, 88, 92, 95, 97, 101, 103, 105], "typic": [2, 37, 41, 53, 70, 73, 86, 87, 88, 91, 92, 94, 95, 103, 104], "initi": [2, 3, 13, 18, 37, 41, 61, 73, 86, 95, 97], "insid": [2, 41, 73, 97, 98], "There": [2, 3, 7, 83, 98, 100], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 53, 56, 66, 68, 69, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 55, 56, 61, 73, 87, 88, 90, 95, 96, 97, 103, 104, 107], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 92, 94, 95, 98, 100, 101, 102, 104, 106, 107], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 56, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "prune": [2, 3, 43, 63, 73, 84, 102], "everyth": [2, 69, 98], "els": [2, 69, 89, 90, 92, 96, 97, 100, 101, 102], "mathemat": [2, 3, 10, 46, 101], "keep": [2, 13, 14, 56, 83, 89, 90, 96, 97, 106], "belong": [2, 3, 10, 36, 43, 45, 46, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 91, 92, 98, 101, 103, 106, 107], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 53, 54, 55, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 104], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 56, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 91, 94, 95, 96, 99], "erron": [2, 3, 36, 43, 46, 56, 62, 63, 71, 73, 74, 75, 103, 105], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 51, 54, 55, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 94, 95, 97, 101, 102, 103, 105, 106, 107], "linear_model": [2, 5, 36, 56, 73, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logisticregress": [2, 3, 5, 36, 56, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logreg": 2, "cl": [2, 14, 30, 73, 83, 86, 87, 97, 98, 105], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 51, 53, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 91, 95, 96, 97, 98, 100, 102, 103, 105], "x_train": [2, 86, 89, 90, 91, 98, 100, 101, 105], "labels_maybe_with_error": 2, "had": [2, 3, 73, 102], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 51, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 93, 99, 100, 104, 105], "pred": [2, 43, 56, 86, 87, 104, 105], "x_test": [2, 86, 89, 90, 91, 98, 101, 105], "might": [2, 5, 10, 61, 73, 78, 86, 87, 90, 91, 92, 97, 102], "case": [2, 3, 10, 13, 36, 48, 61, 73, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 103, 105, 107], "standard": [2, 3, 5, 30, 36, 43, 60, 62, 63, 65, 71, 73, 83, 86, 90, 91, 94, 96, 98, 102], "adapt": [2, 37, 39, 56, 59, 73, 103], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 102], "scikera": [2, 60, 73, 97], "open": [2, 40, 96, 102, 107], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 54, 55, 65, 70, 71, 73, 79, 81, 82, 83, 90, 91, 92, 94, 95, 96, 98, 101, 102, 105, 107], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 53, 55, 60, 66, 68, 70, 73, 83, 84, 86, 87, 90, 91, 95, 100, 107], "made": [2, 5, 16, 37, 41, 52, 73, 86, 87, 92, 95, 97, 100, 102, 104, 105], "easi": [2, 11, 46, 73, 90, 91, 96, 97, 98, 101], "inherit": [2, 7, 38, 73], "baseestim": [2, 41, 73], "yourmodel": [2, 73], "def": [2, 7, 14, 37, 41, 60, 73, 87, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 70, 71, 73, 86, 87, 90, 92, 95, 96, 101, 106, 107], "refer": [2, 10, 16, 37, 41, 42, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 90, 91, 92, 94, 95, 97, 98, 101, 104, 105], "origin": [2, 5, 10, 41, 42, 43, 55, 56, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 90, 92, 94, 95, 97, 98, 102, 103, 105, 107], "total": [2, 3, 4, 36, 40, 56, 62, 82, 89, 92, 97, 106], "state": [2, 3, 5, 37, 38, 41, 47, 73, 98, 101, 102, 107], "art": [2, 38, 98, 101], "northcutt": [2, 3, 36, 70, 71], "et": [2, 3, 36, 38, 70, 71], "al": [2, 3, 36, 38, 70, 71], "2021": [2, 3, 36, 70, 71], "weak": [2, 69], "supervis": [2, 10, 90, 91, 97, 100], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 53, 55, 56, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 90, 99, 104], "uncertainti": [2, 10, 45, 70, 73, 97, 103, 105], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 51, 52, 54, 61, 68, 69, 73, 83, 87, 90, 91, 92, 95, 97, 98, 101, 104], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 55, 56, 57, 60, 61, 71, 73, 83, 84, 87, 89, 90, 91, 96, 103, 105], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 55, 56, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 107], "deep": [2, 39, 41, 59, 60, 73, 95], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 53, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "subfield": 2, "theori": [2, 98], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 54, 59, 73, 86, 87, 90, 91, 96, 100], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 62, 69, 70, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 104, 105], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 56, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "pu": [2, 56], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 55, 56, 57, 60, 69, 73, 83, 84, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "discret": [2, 34, 43, 46, 56, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 56, 70, 71, 83, 87, 88, 90, 91, 92, 94, 95, 98, 101, 102, 103, 106, 107], "would": [2, 3, 5, 37, 40, 41, 43, 52, 56, 63, 73, 83, 87, 89, 90, 92, 97, 98, 103, 105, 107], "obtain": [2, 5, 8, 10, 16, 43, 61, 63, 66, 69, 71, 74, 88, 91, 95, 97, 100, 102, 104, 106, 107], "been": [2, 4, 36, 43, 46, 51, 55, 56, 61, 62, 66, 68, 70, 71, 73, 88, 90, 94, 97, 98, 100, 101, 102, 103, 106, 107], "dure": [2, 10, 16, 53, 70, 73, 86, 87, 88, 89, 94, 95, 97, 98, 101, 104, 105, 107], "denot": [2, 3, 46, 48, 56, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 98, 100, 103, 105, 107], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 56, 61, 62, 65, 66, 69, 73, 74, 81, 87, 90, 95, 96, 97, 101, 102, 103, 104, 106, 107], "converge_latent_estim": [2, 3], "pulearn": [2, 56], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 98], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 91, 96, 105], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 56, 73, 88, 97, 98, 100, 101, 102], "messi": [2, 73, 98], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 91, 96, 97], "robust": [2, 46, 73, 91, 97], "prone": [2, 73], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 51, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 61, 68, 73, 89, 90, 91, 97, 100, 102], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 51, 61, 77, 81, 88, 90, 91, 95, 98], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 100, 102, 104, 107], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 54, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "experiment": [2, 37, 38, 40, 41, 42, 63, 84, 89, 97], "wrapper": [2, 60, 86, 87, 88, 105], "around": [2, 68, 89, 90, 91, 102, 103, 107], "fasttext": [2, 59], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 70, 73, 86, 87, 89, 94, 95, 96, 97, 106, 107], "along": [2, 48, 63, 81, 89, 90, 91, 92, 97, 103], "dimens": [2, 56, 75, 78, 92, 97, 103, 106], "select": [2, 9, 10, 26, 50, 61, 71, 92, 97, 100, 103], "split": [2, 3, 5, 10, 12, 40, 48, 55, 56, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 104, 107], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "fold": [2, 3, 36, 43, 46, 73, 86, 88, 94, 96, 97, 102, 106], "By": [2, 36, 62, 63, 73, 90, 97, 106], "need": [2, 3, 10, 36, 37, 40, 41, 43, 53, 62, 63, 65, 70, 73, 83, 87, 88, 90, 91, 95, 97, 98, 100, 101, 102, 106], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 51, 52, 53, 56, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 90, 91, 96, 98, 99, 102, 103, 105, 106], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 53, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 106, 107], "numer": [2, 3, 4, 5, 10, 13, 22, 30, 34, 48, 51, 52, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 98, 100, 101, 103, 105], "consist": [2, 3, 37, 41, 50, 56, 61, 106, 107], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 54, 56, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105, 107], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 56, 62, 73, 91, 95], "close": [2, 3, 10, 40, 46, 70, 88, 90, 91, 92, 94, 95, 97, 98, 102], "form": [2, 3, 10, 37, 38, 41, 46, 55, 56, 71, 73, 97], "equival": [2, 3, 37, 41, 46, 70, 103, 105], "iter": [2, 3, 36, 37, 41, 43, 56, 62, 63, 73, 89, 97, 100, 106], "enforc": [2, 37, 41, 56], "perfectli": [2, 36, 62, 98], "certain": [2, 3, 5, 37, 41, 60, 69, 73, 89, 90, 91, 96, 102, 103], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 92, 97, 107], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 53, 55, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 90], "filter": [2, 3, 10, 40, 42, 55, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 95, 96, 97, 101, 102, 105, 106, 107], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 101, 102, 105, 106, 107], "particularli": [2, 83, 100, 103], "filter_bi": [2, 3, 40, 43, 63, 84, 97], "frac_nois": [2, 43, 63, 79, 97], "min_examples_per_class": [2, 43, 63, 91, 97, 98], "impact": [2, 4, 10, 90, 91, 92], "ml": [2, 4, 5, 9, 10, 15, 73, 83, 86, 87, 90, 91, 92, 94, 95, 100, 101, 105], "accuraci": [2, 38, 71, 86, 87, 88, 92, 97, 98, 100, 103, 105, 106], "n_job": [2, 40, 43, 63, 75, 77, 79, 97, 103, 106], "disabl": [2, 37, 41, 43, 103], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 55, 61, 63, 69, 75, 77, 79, 87, 88, 89, 90, 97, 100, 104], "caus": [2, 43, 48, 90, 91, 97], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 90, 91, 96, 97, 101, 102, 103, 106, 107], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 98, 101, 102, 106, 107], "adjust_pred_prob": [2, 10, 65, 70, 71, 98], "control": [2, 5, 9, 10, 16, 40, 43, 61, 69, 70, 73, 79, 81, 90, 91, 96, 97], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 56, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 92, 94, 95, 96, 102, 103, 104, 105, 106], "much": [2, 10, 36, 40, 43, 73, 89, 96, 97, 98, 100, 103], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 56, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 90, 92, 95, 96, 97, 102, 103, 104, 105], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 56, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "suppress": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78, 106, 107], "statement": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 40, 63, 69, 73, 98], "limit": [2, 5, 16, 40, 63, 89, 102, 106, 107], "memori": [2, 37, 40, 41, 63, 69, 75, 77, 89, 90, 106], "label_issues_batch": [2, 39, 63, 97], "find_label_issues_batch": [2, 39, 40, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 54, 68, 69, 70, 71, 77, 81, 90, 102, 103, 106, 107], "inverse_noise_matrix": [2, 3, 10, 46, 56, 84, 98], "label_issu": [2, 40, 43, 63, 66, 73, 75, 84, 86, 87, 88, 92, 95, 97, 98, 101, 105], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 92, 94, 95, 98, 100, 102, 104, 105], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 54, 56, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 105, 106, 107], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 103, 105, 106, 107], "final": [2, 10, 73, 86, 94, 102, 104, 105], "remain": [2, 73, 84, 86, 87, 92, 101, 105, 107], "datasetlik": [2, 56, 73], "beyond": [2, 5, 7, 9, 10, 11, 35, 83, 86, 87, 105, 106], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 60, 61, 62, 73, 81, 86, 87, 88, 90, 91, 94, 95, 97, 98, 100, 105, 107], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 56, 57, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105, 106, 107], "scipi": [2, 4, 5, 13, 52, 56, 70], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 51, 56, 57, 91, 92, 94, 95, 98], "csr_matrix": [2, 4, 5, 13, 16, 18, 31, 51], "torch": [2, 37, 38, 41, 87, 88, 92, 95, 96, 103], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 60, 61, 66, 69, 73, 83, 84, 88, 90, 91, 92, 97, 98, 103], "tensorflow": [2, 56, 60, 83, 88, 97], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 51, 53, 56, 57, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 91, 92, 94, 97, 98, 99, 101, 105], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 101, 102, 105, 107], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 56, 71, 78, 82, 86, 87, 88, 92, 94, 95, 97, 101, 102, 103, 104, 105, 107], "wa": [2, 3, 12, 14, 40, 54, 56, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 104, 106, 107], "abl": [2, 3, 10, 73, 88, 97, 98, 100, 101], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 88, 90, 91, 92, 94, 96, 100, 105, 106, 107], "make": [2, 3, 5, 18, 37, 40, 41, 48, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "sure": [2, 5, 40, 43, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105], "shuffl": [2, 10, 56, 88, 92, 95, 101, 103], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 55, 56, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 98, 100, 101, 102, 103, 104, 105, 107], "batch": [2, 40, 56, 60, 61, 75, 77, 89, 92, 97, 103], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 54, 56, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 105, 106, 107], "destroi": [2, 56], "oper": [2, 37, 40, 41, 56, 60, 71, 83, 86, 87, 95, 97, 103], "eg": [2, 5, 10, 56, 66, 69, 90, 91, 97], "repeat": [2, 56, 61, 100, 103], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 55, 56, 65, 70, 79, 86, 87, 88, 89, 90, 91, 92, 94, 97, 100, 101, 103, 104, 105, 106], "array_lik": [2, 3, 36, 43, 56, 63, 70, 74], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 55, 56, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "seri": [2, 3, 40, 56, 57, 73, 81, 97], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 51, 52, 56, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 103, 107], "rather": [2, 3, 5, 26, 36, 56, 60, 61, 68, 77, 81, 87, 96, 100, 104, 105, 106, 107], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 55, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 91, 97, 102, 107], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 51, 56, 61, 63, 66, 68, 71, 77, 81, 90, 97, 100, 102, 103, 105], "cutoff": [2, 3, 52, 103], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 51, 53, 56, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 92, 94, 95, 97, 98, 102, 103, 104, 105, 106], "section": [2, 3, 7, 10, 84, 92, 94, 97, 102], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 52, 54, 55, 56, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 104], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 68, 70, 81, 84, 91, 93, 97, 98], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 51, 60, 68, 70, 71, 73, 77, 81, 89, 98], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 53, 55, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 91, 92, 95, 100, 102, 105], "automat": [2, 3, 5, 26, 36, 83, 86, 87, 92, 94, 95, 96, 97, 100, 101, 102, 105, 106, 107], "greater": [2, 3, 4, 5, 7, 9, 10, 28, 40, 52, 56, 68, 91, 96, 97, 107], "count": [2, 22, 26, 36, 40, 43, 46, 56, 62, 63, 69, 84, 92, 97, 102], "observ": [2, 3, 46, 53, 88, 89, 90, 91, 100, 103, 105], "mislabel": [2, 10, 36, 40, 42, 43, 46, 61, 62, 63, 66, 68, 71, 77, 79, 81, 83, 86, 87, 88, 92, 94, 95, 97, 98, 102, 105], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 107], "get_label_issu": [2, 39, 40, 72, 73, 86, 87, 98, 105], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 52, 61, 63, 68, 70, 71, 75, 77, 89, 91, 97, 101, 102], "boolean": [2, 7, 10, 22, 40, 43, 53, 55, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 91, 92, 95, 97, 102, 105, 106], "label_issues_mask": [2, 43, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 51, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 53, 54, 55, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107], "return_indices_ranked_bi": [2, 40, 43, 63, 79, 84, 86, 87, 97, 98], "significantli": [2, 92, 98, 100, 104], "reduc": [2, 40, 43, 56, 88, 97], "time": [2, 10, 37, 40, 41, 56, 61, 84, 86, 87, 89, 90, 92, 96, 97, 98, 102, 103, 105, 106, 107], "take": [2, 5, 10, 36, 37, 41, 47, 48, 53, 56, 60, 71, 86, 89, 92, 94, 100, 101, 102, 107], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 53, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 107], "skip": [2, 10, 37, 41, 73, 88, 97, 101, 107], "slow": [2, 3], "step": [2, 7, 26, 48, 69, 89, 92, 98, 100, 104], "caution": [2, 5, 97], "previous": [2, 5, 13, 56, 70, 73, 84, 86, 88, 90, 94, 95, 100, 104], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 56, 73, 86, 90, 92, 94, 97, 105, 106, 107], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 61, 65, 68, 71, 73, 79, 81, 84, 86, 91, 94, 96, 97, 100, 101, 102, 107], "still": [2, 40, 41, 56, 70, 86, 88, 92, 97, 103], "extra": [2, 37, 41, 56, 60, 61, 62, 73, 92, 95, 97, 100, 103], "receiv": [2, 10, 37, 41, 42, 62, 65, 66, 73, 75, 79, 91, 102], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 26, 37, 41, 48, 51, 52, 53, 55, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 55, 56, 69, 71, 73, 78, 88, 89, 90, 91, 92, 97, 98, 101, 107], "appropri": [2, 10, 16, 34, 52, 63, 71, 90, 94, 101, 102], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 56, 70, 86, 90, 92, 94, 101, 105, 107], "f": [2, 7, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "ignor": [2, 37, 41, 55, 60, 73, 78, 82, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "allow": [2, 36, 37, 40, 41, 45, 53, 56, 61, 69, 70, 73, 75, 77, 87, 88, 89, 92, 97, 104, 106], "access": [2, 10, 13, 37, 41, 73, 87, 91, 92, 95, 96, 101], "hyperparamet": [2, 65, 70, 92], "purpos": [2, 51, 90, 91, 97, 101, 105], "want": [2, 5, 10, 36, 40, 51, 57, 61, 63, 73, 87, 89, 90, 92, 95, 96, 100, 102, 103, 104, 106, 107], "explicitli": [2, 8, 10, 41, 73, 97], "yourself": [2, 5, 40, 91], "altern": [2, 7, 10, 48, 53, 56, 60, 61, 71, 84, 87, 88, 92, 94, 95, 96, 97, 98, 100, 101, 103, 105], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 51, 56, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 105, 106], "effect": [2, 10, 27, 37, 41, 61, 70, 73, 92, 94, 95, 97, 103], "offer": [2, 5, 9, 10, 87, 88, 90, 91, 95, 97, 98, 101], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 61, 73, 87, 90, 92, 95, 97, 98, 100, 102, 103, 104, 105, 106], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 53, 70, 73, 86, 90], "label_issues_df": [2, 73, 92], "similar": [2, 10, 36, 37, 41, 53, 56, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 92, 94, 95, 97, 98, 102, 103, 106], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 55, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 56, 66, 73, 90, 91], "were": [2, 3, 5, 36, 41, 62, 68, 81, 86, 88, 94, 97, 98, 100, 102, 104, 106], "present": [2, 3, 5, 10, 12, 13, 20, 36, 56, 70, 78, 83, 92, 94, 97, 103], "actual": [2, 3, 5, 36, 51, 61, 62, 71, 91, 97, 98, 107], "num_class": [2, 36, 40, 56, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103], "uniqu": [2, 31, 56, 78, 90, 97, 101, 103], "given_label": [2, 5, 25, 30, 36, 46, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106, 107], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 54, 55, 56, 71, 97, 98, 103], "trick": [2, 97], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 54, 61, 69, 70, 71, 83, 89, 90, 91, 92, 94, 95, 102, 103], "account": [2, 36, 61, 65, 70, 71, 87, 95, 97, 98, 100, 101, 103, 105], "word": [2, 3, 55, 81, 82, 97], "remov": [2, 10, 31, 36, 37, 41, 43, 73, 83, 86, 87, 91, 92, 94, 95, 96, 97, 98, 101, 103, 105], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 56, 61, 62, 68, 71, 73, 77, 81, 88, 90, 91, 92, 95, 98, 101, 103, 106], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 56, 60, 71, 73, 75, 83, 84, 86, 87, 88, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 54, 55, 56, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 92, 95, 96, 97, 98, 103, 104, 105], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 54, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 90, 93, 96, 99, 101, 105, 106, 107], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 56, 71, 73], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 51, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 26, 41, 48, 51, 60, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 104, 105, 107], "expect": [2, 3, 37, 41, 43, 48, 61, 70, 71, 73, 86, 87, 97, 98, 100, 101, 102, 105, 107], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 69, 73, 86, 87, 88, 90, 91, 92, 97, 98, 100, 104, 105, 106], "simpli": [2, 10, 36, 71, 87, 90, 91, 94, 95, 97, 98, 101, 105, 106, 107], "quantifi": [2, 4, 5, 7, 10, 13, 43, 65, 70, 73, 83, 91, 92, 94, 95, 98, 102], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 36, 43, 55, 63, 66, 69, 71, 73, 75, 77, 84, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "cach": [2, 87, 95], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 56, 57, 60, 61, 62, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 100, 105, 106], "unlik": [2, 10, 43, 45, 48, 60, 62, 63, 65, 81, 90, 100, 101, 103, 105], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 56, 61, 63, 71, 75, 77, 82, 83, 90, 92, 97, 98, 100, 107], "mask": [2, 40, 43, 55, 56, 63, 66, 71, 73, 75, 77, 78, 83, 89, 96, 97, 100, 102, 106, 107], "prefer": [2, 71, 79, 101], "plan": 2, "subsequ": [2, 3, 37, 41, 53, 87, 95, 97, 98, 102], "invok": [2, 37, 41, 98, 104], "scratch": [2, 73], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "share": [2, 71, 73], "mostli": [2, 56, 68, 73, 101, 105], "longer": [2, 34, 47, 48, 55, 73, 84, 87, 95, 97, 102], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 73, 81, 90, 91, 96, 107], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 61, 62, 65, 69, 73, 78, 81, 88, 90, 92, 94, 95, 96, 97, 98, 100, 103], "docstr": [2, 36, 37, 41, 56, 73, 96, 98], "unless": [2, 37, 41, 51, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "is_label_issu": [2, 30, 73, 87, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "entir": [2, 10, 26, 40, 43, 46, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 91, 97, 102, 103, 104, 106, 107], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 52, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 91, 92, 94, 95, 97, 100, 105], "label_qu": [2, 61, 73, 87, 98, 100, 105], "measur": [2, 5, 36, 61, 62, 73, 83, 86, 96, 97, 98, 100, 101, 105, 106, 107], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 105], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 54, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "eas": 2, "comparison": [2, 37, 41, 69, 98, 100], "against": [2, 37, 41, 90, 94, 97, 100, 101], "predicted_label": [2, 5, 25, 30, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106], "ad": [2, 37, 41, 89, 91, 100, 105], "precis": [2, 52, 54, 63, 66, 69, 96, 97, 98, 106, 107], "definit": [2, 7, 34, 48, 73, 86, 94], "accessor": [2, 73], "describ": [2, 10, 18, 61, 70, 71, 73, 79, 81, 98, 100, 101, 102, 104, 107], "precomput": [2, 4, 5, 46, 73, 91, 92, 94, 95, 96, 98], "clear": [2, 37, 41, 53, 73, 87, 95, 105], "save": [2, 5, 16, 37, 40, 41, 69, 73, 97, 102, 106, 107], "space": [2, 5, 10, 70, 73, 92, 94, 96], "place": [2, 37, 41, 56, 73, 86, 100], "larg": [2, 9, 10, 40, 51, 73, 92, 94, 95, 97, 102, 103, 106, 107], "deploi": [2, 9, 10, 73, 92, 94, 95, 97], "care": [2, 10, 37, 41, 73, 95, 97, 98], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 53, 73, 89, 97, 98, 100, 102, 105], "cannot": [2, 5, 12, 14, 56, 104, 107], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 73], "__init_subclass__": [2, 39, 41, 72, 73], "set_": [2, 41, 73], "_request": [2, 41, 73], "pep": [2, 41, 73], "487": [2, 41, 73], "look": [2, 5, 7, 16, 37, 41, 56, 73, 78, 86, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 106, 107], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 53, 56, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 90, 94, 95, 96, 98, 100, 103, 106, 107], "__metadata_request__": [2, 41, 73], "infer": [2, 41, 56, 73, 78, 82, 86, 87, 92, 100, 101], "signatur": [2, 37, 41, 73], "accept": [2, 37, 41, 53, 54, 71, 73, 90, 91, 97], "metadata": [2, 41, 73, 92, 94, 95, 107], "through": [2, 5, 7, 41, 73, 87, 88, 89, 91, 95, 96, 97, 100, 102, 103], "develop": [2, 9, 41, 53, 73, 97, 98, 107], "request": [2, 41, 73, 86, 87, 91, 95, 96, 101, 107], "those": [2, 3, 4, 10, 40, 41, 43, 50, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 92, 97, 102, 106], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 53, 56, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "www": [2, 41, 73, 103], "org": [2, 4, 18, 37, 38, 41, 53, 56, 70, 73, 97, 98, 107], "dev": [2, 41, 73], "0487": [2, 41, 73], "get_metadata_rout": [2, 39, 41, 72, 73], "rout": [2, 41, 73], "pleas": [2, 37, 41, 60, 73, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 105, 107], "guid": [2, 7, 10, 41, 73, 84, 92, 93], "mechan": [2, 37, 41, 73], "metadatarequest": [2, 41, 73], "encapsul": [2, 16, 41, 68, 73], "get_param": [2, 39, 41, 59, 60, 72, 73], "subobject": [2, 41, 73], "param": [2, 10, 37, 41, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "set_fit_request": [2, 39, 41, 72, 73], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 51, 52, 53, 54, 55, 56, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 90, 97, 100, 101, 102, 107], "unchang": [2, 37, 41, 73, 107], "relev": [2, 16, 26, 41, 73, 92], "enable_metadata_rout": [2, 41, 73], "set_config": [2, 41, 73], "meta": [2, 41, 73], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 54, 73, 88, 97], "alia": [2, 37, 41, 73], "metadata_rout": [2, 41, 73], "retain": [2, 41, 56, 73], "chang": [2, 32, 34, 37, 40, 41, 45, 73, 81, 86, 87, 88, 90, 95, 97, 102, 103, 107], "version": [2, 4, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 56, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "sub": [2, 41, 68, 73], "pipelin": [2, 41, 73, 105], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 52, 54, 55, 56, 63, 73, 75, 77, 78, 82, 87, 95, 97], "updat": [2, 13, 37, 40, 41, 60, 73, 84, 89, 90, 92], "set_param": [2, 39, 41, 59, 60, 72, 73], "simpl": [2, 37, 41, 43, 61, 71, 73, 86, 87, 89, 90, 91, 92, 94, 95, 100, 103, 105], "well": [2, 3, 9, 10, 37, 41, 45, 46, 61, 63, 69, 71, 73, 78, 81, 82, 84, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103], "nest": [2, 37, 41, 42, 57, 73, 79, 81, 82, 107], "latter": [2, 37, 41, 73, 103], "compon": [2, 41, 73], "__": [2, 41, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 89, 94, 97], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 61, 70, 71, 75, 77, 81, 91, 92, 94, 96, 97, 98, 102, 107], "channel": [3, 88, 98], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 56, 62, 87, 91, 96], "inv": 3, "confident_joint": [3, 22, 36, 43, 56, 62, 63, 84, 97, 98], "un": 3, "under": [3, 10, 37, 41, 62, 69, 70, 91, 103], "joint": [3, 36, 43, 46, 56, 62, 63, 96], "num_label_issu": [3, 40, 43, 63, 78, 82, 84], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 56, 57, 63, 101], "don": [3, 83, 91, 92, 94, 95, 98, 102, 105], "statis": 3, "compute_confident_joint": [3, 36, 43, 56, 63, 98], "off": [3, 43, 56, 68, 92, 98, 102, 103], "j": [3, 5, 36, 37, 41, 42, 43, 63, 66, 69, 70, 79, 81, 82, 89, 90, 91, 98, 106, 107], "confident_learn": [3, 43, 63, 98], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 56, 61, 100], "cj": [3, 46, 56], "axi": [3, 31, 46, 48, 54, 75, 78, 88, 89, 90, 91, 92, 97, 98, 100, 101, 103, 105, 106], "bincount": [3, 89, 90, 91, 98, 100, 101], "alwai": [3, 10, 37, 41, 56, 86, 87, 88, 98, 105], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 68, 69, 75, 77, 86, 91, 92, 94, 96, 97, 98, 103, 105], "As": [3, 7, 83, 90, 91, 95, 98, 105, 107], "add": [3, 5, 7, 12, 13, 37, 41, 60, 69, 87, 88, 89, 90, 91, 92, 95, 97, 98, 101], "approach": [3, 36, 40, 43, 60, 86, 89, 94, 98, 101, 103, 105], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 55, 71, 87, 91, 95, 98, 105], "know": [3, 10, 90, 91, 92, 94, 95, 97, 98, 100, 105], "cut": [3, 68, 83, 98], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 102, 103, 107], "underestim": 3, "few": [3, 9, 10, 69, 83, 91, 97, 100, 101, 102, 103, 107], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 55, 65, 66, 68, 69, 71, 74, 81, 96, 97, 101, 106, 107], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 101, 103, 107], "num_issu": [3, 7, 40, 88, 89, 90, 91, 92, 94, 95, 98], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 50, 60, 61, 87, 89, 96, 97, 102, 105, 107], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 98], "v": [3, 10, 40, 62, 63, 65, 71, 89, 90, 91, 101, 102, 103, 104], "rest": [3, 5, 7, 9, 10, 11, 35, 62, 63, 65, 73, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 36, 62, 63, 66, 94, 107], "calibrated_cj": 3, "c": [3, 10, 54, 55, 63, 71, 83, 86, 88, 90, 91, 94, 95, 97, 98, 101, 102, 103, 104, 105], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 55, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 106, 107], "truli": [3, 103, 106], "estimate_joint": [3, 36, 98], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 98, 102, 104, 106, 107], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 61, 62, 69, 78, 102, 103], "done": [3, 10, 60, 73, 90, 97, 98, 101, 103, 104], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 92, 94, 95, 104], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 56, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 90, 97, 98, 101, 102], "baselin": [3, 37, 43, 87, 103, 105], "proxi": 3, "union": [3, 5, 12, 26, 48, 51, 52, 53, 56, 57, 63, 69, 73, 81, 97], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 55, 56, 61, 63, 69, 77, 79, 81, 82, 88, 107], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 40, 46, 52, 61, 70, 75, 77, 83, 87, 89, 92, 97, 106], "practic": [3, 86, 87, 91, 92, 98, 103, 105], "complet": [3, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "gist": 3, "cj_ish": 3, "guess": [3, 46, 98, 100], "8": [3, 5, 7, 8, 47, 48, 49, 55, 65, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "parallel": [3, 43, 69, 79, 96], "again": [3, 60, 86, 97, 103], "simplifi": [3, 14, 97], "understand": [3, 9, 10, 36, 62, 69, 91, 98, 99, 105, 106, 107], "100": [3, 4, 37, 41, 51, 52, 54, 70, 71, 86, 87, 90, 91, 92, 94, 96, 97, 98, 101, 102, 103, 107], "optim": [3, 37, 38, 41, 60, 92, 100], "speed": [3, 43, 87, 96, 97, 105], "dtype": [3, 23, 25, 26, 31, 37, 41, 55, 56, 65, 81, 88, 102], "enumer": [3, 37, 41, 88, 89, 90, 91, 92, 107], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 56, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "num_confident_bin": 3, "argmax": [3, 43, 71, 75, 78, 88, 97, 98, 102, 103, 106], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 56, 57, 65, 74, 86, 88], "eqn": [3, 46], "margin": [3, 43, 46, 48, 71], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 62, 98, 104], "poorli": [3, 46, 86], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 98], "variabl": [3, 7, 14, 27, 56, 73, 74, 88, 90, 94, 98, 101, 105], "exact": [3, 46, 86, 89, 90, 91, 92, 94], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 63, 68, 77, 79, 81, 90, 91, 92, 97, 102, 106], "percent": 3, "often": [3, 36, 46, 62, 97, 98, 104, 106], "estimate_confident_joint_and_cv_pred_proba": 3, "multi_class": 3, "auto": [3, 9, 10, 86, 87, 89, 91, 96, 97, 105], "mani": [3, 9, 10, 56, 57, 69, 86, 87, 88, 89, 90, 92, 94, 95, 97, 101, 102, 103, 105], "wai": [3, 5, 51, 60, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 104], "pro": 3, "con": 3, "pred_proba": [3, 104], "combin": [3, 36, 90, 92, 96, 97, 98, 104, 105], "becaus": [3, 46, 52, 56, 68, 95, 97, 98, 100, 102], "littl": [3, 40, 96, 102, 107], "uniform": [3, 71, 96, 97, 98], "20": [3, 7, 42, 82, 88, 89, 92, 95, 96, 97, 98, 102, 105, 106, 107], "Such": [3, 92, 103], "bound": [3, 23, 25, 37, 41, 55, 65, 66, 68, 69, 102], "reason": [3, 22, 37, 41, 52, 70], "comment": [3, 55, 107], "end": [3, 5, 37, 41, 53, 69], "file": [3, 5, 12, 39, 40, 59, 69, 86, 88, 90, 94, 95, 96, 97, 102, 103, 106, 107], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 98], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 52, 53, 84, 86, 87, 89, 90, 91, 92, 94, 95, 98, 106, 107], "five": [3, 66, 69, 98, 102], "estimate_cv_predicted_prob": [3, 98], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 102], "confident_threshold": [3, 10, 22, 23, 40, 70], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 51, 53, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 69, 83, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 100, 101, 105, 106, 107], "u": [4, 86, 87, 88, 90, 92, 94, 97, 98, 100, 101, 104, 105, 106, 107], "assess": [4, 102], "contribut": [4, 10, 18, 102], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 44, 50, 94], "metric": [4, 5, 10, 18, 19, 26, 31, 44, 50, 51, 53, 54, 56, 60, 69, 70, 86, 87, 88, 92, 94, 95, 98, 105], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 51, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 51, 52, 53, 54, 70, 91, 95, 103], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 44, 51, 52, 53, 54, 70, 90, 91, 92, 94, 95, 97, 98, 103], "knn": [4, 10, 13, 18, 26, 31, 50, 51, 52, 53, 54, 70, 94, 103], "graph": [4, 5, 10, 13, 16, 18, 26, 31, 50, 51], "calcul": [4, 10, 18, 26, 40, 48, 50, 51, 54, 61, 65, 66, 68, 69, 70, 73, 77, 92, 96], "directli": [4, 5, 14, 16, 33, 34, 40, 53, 60, 61, 87, 91, 95, 97, 101, 102, 105], "lowest": [4, 10, 61, 69, 91, 92, 97, 100, 101, 102, 106], "fall": [4, 10, 68, 77, 81, 98, 103], "flag": [4, 10, 22, 26, 43, 48, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 103, 105, 106], "approxim": [4, 10, 18, 40, 53, 70, 100], "top": [4, 5, 10, 36, 40, 42, 43, 56, 63, 66, 69, 71, 78, 82, 83, 87, 88, 90, 91, 94, 95, 96, 97, 98, 102, 103, 105, 107], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 103, 105, 107], "arxiv": [4, 18, 98], "ab": [4, 18, 98, 102], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 70, 83, 87, 88, 90, 91, 94, 95, 98, 101, 105], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 51, 63, 83, 87, 88, 90, 91, 92, 95, 97, 98, 103], "suppli": [4, 101, 102, 105], "2d": [4, 5, 16, 32, 40, 48, 49, 55, 56, 61, 86, 88, 101], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 62, 88, 89, 90, 91, 92, 94, 95, 98], "num_featur": [4, 5, 16, 37, 41, 60], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 51, 52, 53, 54, 68, 70, 94, 103], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 50, 51, 53, 60], "nearestneighbor": [4, 5, 10, 18, 51, 53, 70, 94, 103], "cosin": [4, 10, 51, 52, 54, 70, 103], "dim": [4, 70, 92, 106], "euclidean": [4, 5, 10, 51, 52, 54, 68, 70, 94], "dimension": [4, 26, 52, 56, 88, 98, 103], "scikit": [4, 41, 52, 53, 56, 70, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 105], "fewer": [4, 10, 43, 56, 70, 102], "stabl": [4, 15, 21, 24, 29, 39, 44, 53, 56, 59, 70, 84], "exce": [4, 89, 92], "transform": [4, 10, 32, 48, 51, 54, 56, 70, 71, 86, 87, 91, 92, 95, 103, 107], "rel": [4, 10, 36, 61, 62, 70, 90, 91, 92, 94, 95, 98, 103], "adjust": [4, 38, 43, 65, 70, 71, 83, 98], "closer": [4, 10, 68, 102], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 37, 41, 54, 56, 69, 96, 103], "convers": 4, "neg": [4, 10, 68, 69, 90, 91, 96], "valueerror": [4, 5, 12, 13, 34, 45, 48, 54, 97], "neither": [4, 5, 10, 14, 52, 102], "nor": [4, 5, 10, 14], "larger": [4, 18, 52, 73, 75, 77, 89, 92, 95, 96, 97], "55": [4, 55, 96, 102, 105], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 88, 92, 93, 94, 95, 97, 98, 101, 102, 105], "kind": [5, 6, 7, 10, 88, 89, 90, 92, 94, 95, 96, 98], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 51, 53, 57, 61, 69, 78, 79, 86, 87, 88, 90, 94, 95, 98, 100, 103, 104], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 56, 59, 63, 70, 73, 74, 83], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 59, 60, 75, 77], "pip": [5, 7, 9, 11, 35, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "github": [5, 7, 9, 11, 35, 37, 38, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 56, 70, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "egg": [5, 7, 9, 11, 35, 83, 96], "label_nam": [5, 7, 8, 10, 12, 18, 31, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 53, 83, 97, 98], "librari": [5, 10, 41, 53, 66, 69, 70, 83, 87, 90, 95, 96, 97], "goal": [5, 105], "track": [5, 7, 13, 14, 83, 89, 90, 96, 97, 98], "intermedi": [5, 9, 91], "statist": [5, 10, 13, 22, 26, 36, 61, 62, 69, 91, 94, 95, 98], "convert": [5, 10, 12, 34, 37, 41, 49, 54, 57, 61, 68, 77, 81, 84, 87, 88, 92, 95, 96, 97, 100, 101, 102], "hug": [5, 10, 12, 92], "face": [5, 10, 12, 16, 92, 96, 101], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 61, 62, 68, 70, 89, 90, 91, 92, 95, 97, 98, 100, 102], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 56, 61, 62, 74, 78, 81, 82, 87, 94, 95, 97, 100, 101, 107], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 56, 61, 62, 65, 66, 68, 69, 90, 91, 94, 95, 98, 100, 101, 102], "path": [5, 12, 37, 40, 41, 69, 88, 90, 97, 102], "local": [5, 7, 10, 12, 37, 38, 41, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 70, 79, 81, 82, 83, 85, 90, 91, 93, 96, 97, 98, 99, 100, 103], "txt": [5, 12, 107], "csv": [5, 12, 86, 87, 94, 95, 105], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 56, 61, 101], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 87, 89, 90, 91, 95, 99, 100, 103], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 101], "imag": [5, 9, 36, 41, 66, 68, 69, 70, 75, 77, 78, 83, 90, 91, 93, 96, 97, 99, 100, 101, 102, 104, 106], "field": [5, 10, 37, 41], "themselv": [5, 86, 87, 105], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 55, 79, 81, 91, 92, 97, 99, 101, 106], "load_dataset": [5, 12, 92], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 89], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 62, 69, 78, 82, 83, 96, 98, 102, 106, 107], "empti": [5, 12, 46, 61, 91, 97, 101], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "sort": [5, 16, 40, 43, 48, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 105, 106, 107], "common": [5, 13, 16, 91, 93, 96, 97, 98, 101, 102, 106], "real": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "world": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "interact": [5, 16, 95, 97], "thereof": [5, 16], "insight": [5, 16, 69, 100], "best": [5, 9, 10, 16, 47, 61, 71, 86, 87, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 107], "properli": [5, 10, 40, 47, 56, 57, 75, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 105, 106], "respect": [5, 37, 41, 66, 69, 88, 89, 90, 91, 92, 94, 95, 98, 101, 102], "lexicograph": [5, 47, 56, 88, 89, 90, 91, 92, 94, 95, 98, 101], "squar": [5, 56, 73, 96, 105], "csr": 5, "evenli": 5, "omit": [5, 68, 69, 92, 102], "itself": [5, 32, 37, 41, 102], "three": [5, 10, 36, 61, 62, 73, 78, 86, 88, 89, 90, 91, 94, 96, 98, 100, 104, 105, 106, 107], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 83, 94, 101, 107], "th": [5, 42, 47, 55, 56, 61, 63, 66, 68, 69, 70, 79, 81, 82, 95, 101, 102, 107], "ascend": [5, 36, 62, 92, 98], "segment": [5, 75, 77, 78, 99], "reflect": [5, 86, 87, 94, 95, 100, 102, 103, 105], "maintain": [5, 60], "kneighbors_graph": [5, 18, 53, 94], "illustr": 5, "todens": 5, "second": [5, 48, 56, 69, 71, 90, 97, 98, 107], "duplic": [5, 9, 21, 22, 37, 41, 51, 83, 89, 90, 98, 105], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 61, 97, 100, 107], "unspecifi": [5, 16, 43, 63], "interest": [5, 16, 22, 78, 82, 86, 87, 95, 98, 105, 106, 107], "constructor": [5, 10, 16, 23, 30, 51, 53], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 53, 73, 74, 96, 105, 107], "random_st": [5, 86, 88, 89, 90, 91, 92, 98, 101, 103], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105], "comprehens": [5, 83, 92, 101, 105], "nbr": 5, "n_neighbor": [5, 10, 18, 51, 53, 70], "mode": [5, 11, 18, 37, 40, 41, 103], "4x4": 5, "float64": [5, 26, 37, 41, 81], "compress": [5, 10, 56, 75, 77], "toarrai": [5, 51], "NOT": [5, 40, 95], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 91], "suppos": [5, 10, 66, 86, 87, 103, 105], "who": [5, 68, 86, 94, 98, 107], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 60, 90, 97], "clean_learning_kwarg": [5, 10, 23, 30, 97, 105], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 84], "prune_by_noise_r": [5, 43, 63, 98], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 82, 83, 88, 89, 90, 91, 94, 95, 97, 98, 101, 105, 107], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 105, 106, 107], "show": [5, 7, 26, 37, 41, 47, 56, 69, 78, 82, 86, 89, 91, 92, 94, 95, 96, 97, 98, 100, 103, 105, 106, 107], "suffer": [5, 10, 13, 22, 63, 71, 82, 107], "onc": [5, 22, 36, 37, 41, 86, 89, 90, 97, 98, 101, 102], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 102, 107], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 102, 103, 107], "compar": [5, 61, 70, 81, 90, 91, 94, 98, 102], "issue_summari": [5, 7, 10, 13, 89, 90], "With": [5, 9, 10, 40, 87, 95, 97, 98, 100, 105, 106, 107], "usag": [5, 40, 60], "usual": [5, 12, 32, 33, 92, 100, 105], "ti": [5, 61], "exhibit": [5, 7, 10, 13, 78, 91, 92, 94, 95, 98, 102], "ie": [5, 73], "likelihood": [5, 10, 40, 42, 43, 63, 68, 70, 71, 75, 79], "wherea": [5, 56, 63, 86, 87, 104], "outlier": [5, 9, 14, 21, 22, 31, 44, 51, 71, 83, 90, 91, 98, 99, 105], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 98, 105], "global": [5, 7, 22, 37, 41, 96], "non_iid": [5, 10, 14, 26, 91, 92, 94, 95, 98], "hypothesi": 5, "iid": [5, 7, 9, 26, 94, 98], "never": [5, 88, 98, 101, 103, 104], "someth": [5, 7, 10, 37, 41, 71, 102], "123": [5, 89, 90, 91], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 48, 49, 60, 79, 81, 86, 87, 88, 90, 91, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 65, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "distance_to_nearest_neighbor": [5, 90, 91, 92, 94, 95, 98], "789": 5, "get_issu": [5, 10, 13, 88, 89, 91, 92, 94, 95, 97, 101, 105], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90, 91], "focu": [5, 10, 13, 95, 106, 107], "full": [5, 10, 13, 40, 60, 69, 89, 92, 107], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 62, 78, 82, 83, 106], "specific_issu": [5, 13], "lie": [5, 10, 70, 71, 87, 88, 90, 91, 92, 94, 95, 98], "get_issue_summari": [5, 13, 89, 91], "get_info": [5, 13, 91, 95, 96], "yet": [5, 17, 27, 60, 96, 100], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 90], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 88, 90, 92], "load": [5, 12, 40, 69, 92, 96, 97, 98, 102, 103, 106, 107], "futur": [5, 10, 22, 37, 41, 61, 83, 87, 88, 90, 95, 97], "overwrit": [5, 90], "separ": [5, 36, 48, 65, 90, 91, 92, 97, 102, 104], "static": 5, "rememb": [5, 95, 97, 98], "part": [5, 10, 37, 41, 43, 66, 68, 69, 88, 90, 96, 106, 107], "ident": [5, 10, 22, 56, 89, 95], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 83, 86, 87, 96, 97, 100, 105], "walk": 7, "alongsid": [7, 37, 41, 90, 97], "pre": [7, 8, 10, 37, 41, 90, 91, 105], "runtim": [7, 37, 40, 41, 73, 75, 77, 88, 92, 97], "issue_manager_factori": [7, 14, 90], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "thing": [7, 41, 87, 98, 105], "next": [7, 61, 83, 86, 87, 88, 89, 94, 95, 97, 100, 102, 105, 107], "dummi": 7, "randint": [7, 31, 48, 89, 90, 91, 97], "mark": [7, 10, 84, 102, 103, 105], "regard": [7, 91, 98], "rand": [7, 48, 51, 89, 90, 91], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "whole": [7, 26, 37, 41, 91], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "popul": [7, 91, 95], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 102], "raw_scor": 7, "bit": 7, "involv": [7, 40, 78, 82, 89, 97, 101], "intermediate_arg": 7, "min": [7, 48, 68, 81, 90, 97, 103], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 52, 75, 81, 95, 97], "easili": [7, 46, 84, 86, 87, 88, 89, 91, 94, 95, 98, 100, 101, 103, 104, 105, 106], "hard": [7, 41, 96, 103], "sai": [7, 10, 37, 41, 101, 106], "anoth": [7, 22, 36, 40, 52, 55, 68, 71, 87, 94, 95, 97, 98, 100, 103], "try": [7, 9, 10, 40, 43, 60, 61, 75, 77, 83, 89, 91, 92, 94, 95, 97, 98, 106], "won": [7, 37, 41, 90, 91, 97, 101], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 90], "instanti": [7, 16, 40, 60, 70, 87, 88, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 46, 56, 69, 88, 89, 90, 91, 92, 94, 95, 98], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 103, 105, 106, 107], "003042": 7, "058117": 7, "11": [7, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "121908": 7, "15": [7, 54, 60, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "169312": 7, "17": [7, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 98], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 96, 102, 107], "dbscan": [8, 10, 31, 97], "hdbscan": [8, 97], "etc": [8, 10, 22, 32, 37, 41, 46, 60, 61, 79, 83, 90, 91, 94, 95, 97, 98, 101, 105], "sensit": [8, 10, 54], "ep": [8, 31, 69], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 97], "your_data": 8, "get_pred_prob": [8, 89], "n_cluster": [8, 31, 97], "cluster_id": [8, 10, 31, 97], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 91, 92, 94, 95, 97, 98], "search": [9, 10, 20, 26, 27, 44, 50, 51, 52, 55, 73, 97, 104], "nondefault": 9, "Near": [9, 97], "imbal": [9, 21, 65, 70, 71, 91], "null": [9, 14, 21, 91, 92, 95, 98], "togeth": [9, 10, 46, 87, 90, 91, 92, 94, 95, 98, 105, 107], "built": [9, 48], "own": [9, 37, 39, 41, 53, 59, 65, 66, 69, 75, 79, 86, 87, 88, 91, 92, 94, 95, 97, 100, 101, 105, 106, 107], "prerequisit": 9, "basic": [9, 41, 60, 94, 95, 103], "fulli": [9, 10, 37, 41, 60, 97], "platform": [9, 10, 83, 92, 94, 95, 97], "write": [9, 10], "code": [9, 10, 37, 41, 46, 56, 60, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "being": [9, 10, 13, 36, 37, 41, 43, 48, 55, 56, 71, 86, 94, 97, 98, 105, 106], "100x": [9, 10], "faster": [9, 10, 40, 70, 73, 75, 77, 97, 98], "intellig": [9, 10], "quickli": [9, 10, 38, 86, 88, 92, 94, 95, 97, 101, 103, 106, 107], "fix": [9, 10, 61, 87, 89, 95, 98, 105], "scientist": [9, 10], "million": [9, 10, 107], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 103, 105, 107], "suggest": [9, 10, 36, 61, 62, 68, 87, 92, 95, 97, 105], "power": [9, 10, 92, 94, 95, 96, 98, 107], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 89, 92, 94, 95, 106], "foundat": [9, 10, 83], "improv": [9, 10, 61, 86, 87, 91, 92, 96, 97, 98, 105, 106], "click": [9, 10, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "tune": [9, 10, 87, 88, 95, 96, 103], "serv": [9, 10, 13, 16, 100], "free": [9, 10, 83, 88, 91, 92, 94, 95, 97, 98], "page": [10, 91, 97, 98], "variou": [10, 13, 30, 39, 57, 59, 83, 86, 90, 91, 94, 95, 96, 97, 98, 100, 102], "why": [10, 89, 95], "matter": [10, 36, 62, 87, 95], "didn": 10, "plu": [10, 105], "_score": 10, "badli": [10, 68, 86, 87, 107], "issue_scor": 10, "outlier_scor": [10, 28, 89, 90, 91, 92, 94, 95, 98, 103], "atyp": [10, 70, 90, 91, 92, 94, 95, 98, 103], "datapoint": [10, 31, 43, 48, 56, 71, 74, 83, 86, 87, 88, 90, 91, 94, 95, 97, 104, 105], "is_issu": [10, 22], "is_outlier_issu": [10, 89, 90, 91, 92, 94, 95, 98], "annot": [10, 36, 47, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 92, 94, 95, 98, 102, 105], "due": [10, 40, 43, 71, 75, 77, 88, 89, 90, 91, 92, 94, 95, 98, 105], "appear": [10, 36, 47, 62, 63, 66, 74, 91, 92, 94, 95, 105, 106], "now": [10, 40, 84, 86, 87, 88, 89, 91, 100, 102, 103, 105, 107], "token": [10, 42, 55, 77, 78, 79, 80, 81, 82, 97, 98, 99], "hamper": [10, 92, 96], "analyt": [10, 83, 97, 100], "lead": [10, 68, 71, 92, 102], "draw": [10, 89, 90, 91], "conclus": [10, 95], "veri": [10, 36, 62, 66, 68, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105], "rare": [10, 43, 69, 89, 90, 91, 92, 94, 95, 97, 98], "anomal": [10, 71, 89, 90, 91, 92, 94, 95, 98], "articl": [10, 40, 97], "blog": 10, "unexpect": [10, 37, 41, 95], "consequ": 10, "inspect": [10, 87, 88, 89, 91, 92, 98, 102, 105], "extrem": [10, 90, 91, 92, 94, 95, 97, 98], "record": [10, 37, 41, 88, 94, 105], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 90, 91, 93, 97], "minor": [10, 55], "variat": 10, "translat": 10, "d": [10, 54, 86, 94, 95, 97, 98, 101, 105, 107], "constant": [10, 31, 73], "median": [10, 30, 54], "question": [10, 22, 83, 98], "nearli": [10, 22, 91, 92, 94, 95], "awar": [10, 84, 98], "presenc": [10, 53, 98], "near_dupl": [10, 14, 19, 89, 90, 91, 92, 94, 95, 97, 98], "signific": [10, 94, 95, 98], "violat": [10, 94, 95, 98], "assumpt": [10, 94, 95, 98], "changepoint": [10, 94, 95, 98], "shift": [10, 53, 94, 95, 98], "drift": [10, 91, 94, 98], "autocorrel": [10, 94, 95, 98], "almost": [10, 94, 95, 98], "adjac": [10, 51, 94, 95, 98], "tend": [10, 36, 46, 94, 95, 98, 106, 107], "sequenti": [10, 37, 41, 60, 92], "realli": [10, 87, 95, 100, 106], "mere": 10, "highlight": [10, 78, 82, 89, 90, 91, 94, 106], "necessarili": [10, 61, 69, 95, 98], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 91, 95, 97, 98, 102], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 55, 56, 81, 86, 94, 95, 96, 97, 98, 104, 107], "x1": [10, 66, 69, 102], "x2": [10, 66, 69, 102], "10th": 10, "100th": 10, "90": [10, 81, 86, 94, 98, 104, 105], "similarli": [10, 37, 41, 90, 92, 94, 97, 102], "math": [10, 92], "behind": [10, 70, 98], "proper": [10, 56, 61, 66, 69, 86, 92, 95, 97, 100, 102], "scenario": [10, 53, 71, 89, 90, 91], "underli": [10, 42, 53, 70, 79, 81, 107], "stem": [10, 70, 103], "evolv": 10, "influenc": 10, "act": [10, 68, 90], "accordingli": [10, 32], "emploi": [10, 101, 103], "partit": [10, 104], "ahead": 10, "good": [10, 37, 41, 54, 60, 62, 68, 71, 75, 77, 78, 83, 89, 92, 94, 95], "problem": [10, 32, 40, 48, 78, 83, 90, 91, 92, 95, 97], "deploy": [10, 86, 87, 98, 105], "overlook": [10, 68, 102], "fact": 10, "thu": [10, 36, 41, 62, 86, 88, 94, 95, 98, 104, 107], "diagnos": [10, 91, 97], "rarest": [10, 91], "q": [10, 102], "subpar": 10, "special": [10, 55], "techniqu": [10, 102], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 91, 92, 94, 95, 98], "excess": [10, 92], "dark": [10, 106], "bright": [10, 107], "blurri": [10, 92], "lack": [10, 60], "unusu": [10, 102, 103], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 83, 91, 92, 94, 95, 99], "get_self_confidence_for_each_label": [10, 48, 71], "r": [10, 40, 73, 89, 90, 91, 105, 106], "tabular": [10, 83, 85, 90, 91, 93, 97, 100], "categor": [10, 70, 85, 86, 90, 91, 93, 97, 105], "encod": [10, 49, 69, 75, 78, 86, 87, 94, 95, 97, 105, 106], "miss": [10, 27, 37, 41, 56, 66, 68, 89, 94, 97, 102, 105], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 56, 70, 97], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 37, 41, 42, 43, 77, 79, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 107], "ood_kwarg": 10, "outofdistribut": [10, 28, 70, 103], "outsid": [10, 97, 101], "outlierissuemanag": [10, 14, 21, 28, 90], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 51, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106], "howev": [10, 37, 41, 56, 86, 87, 88, 92, 94, 95, 100, 104, 106], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 88, 90, 96, 100, 102, 107], "vice": [10, 62], "versa": [10, 62], "light": [10, 92, 96, 102, 106], "29": [10, 89, 92, 96, 100, 101, 102, 106, 107], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 89, 90, 96, 100, 101, 102], "odd_siz": [10, 92], "doc": [10, 37, 41, 70, 83, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "studio": [11, 83, 91, 92, 94, 95, 97], "data_issu": [11, 15, 16, 33, 90], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 60, 71, 89, 90, 91, 92, 100], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 69, 100], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 92], "dataissu": [13, 15, 16, 33], "central": [13, 107], "repositori": 13, "strategi": [13, 48, 97], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 56, 63, 66, 69, 73, 75, 77, 89, 90, 91, 97], "recomput": [13, 87], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 62, 83], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 70, 90], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 75, 77], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 98, 102, 106, 107], "creation": [16, 41], "execut": [16, 37, 41, 90, 97, 102], "coordin": [16, 66, 68, 69, 102, 107], "behavior": [16, 36, 37, 41, 69, 89, 97], "At": [16, 69, 97], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 53, 60], "valuabl": 18, "vstack": [18, 56, 92, 96, 97, 98, 100, 101], "25": [18, 26, 37, 48, 54, 89, 91, 92, 96, 98, 100, 101, 102, 107], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 55, 56], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 89, 90, 91, 92, 97, 98, 100, 101], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 87, 95, 103], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 55, 56, 86, 88, 90, 92, 96, 98, 101], "near_duplicate_set": [19, 21, 90, 91, 92, 94, 95, 97, 98], "occurr": [19, 20, 22, 26, 27, 28, 31, 55], "median_nn_dist": 19, "near_duplicate_scor": [19, 90, 91, 92, 94, 95, 97, 98], "class_imbalance_scor": [20, 91], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 68, 83, 98, 107], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 70, 71, 89, 90, 91, 92, 95, 98, 103], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 106], "priori": [22, 98], "abstract": [22, 32], "applic": [23, 61, 97, 98, 100, 107], "typevar": [23, 25, 37, 41, 55, 65, 68, 69], "scalartyp": [23, 25], "covari": [23, 25, 73, 105], "summary_dict": 23, "label_scor": [23, 25, 30, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 51, 71, 75, 77, 102, 106], "empir": [26, 47, 61], "cumul": 26, "ecdf": 26, "histogram": [26, 94, 105], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 91, 94, 95, 98], "null_track": 27, "extend": [27, 49, 60, 92, 102, 103, 107], "superclass": 27, "arbitrari": [27, 36, 77, 81, 90, 103, 105], "prompt": 27, "address": [27, 87, 90, 91, 95, 97], "enabl": [27, 41, 53], "null_scor": [27, 91], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "issue_threshold": 28, "multipli": [30, 54], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 56, 69, 87, 107], "50": [31, 41, 89, 97, 98, 100, 102, 103, 105], "keepdim": [31, 97], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 88, 100], "npt": 31, "int_": 31, "id": [31, 61, 90, 92, 97, 100], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 91], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": [32, 53], "mainli": [32, 103, 107], "content": [32, 70, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "fetch": [32, 40, 88, 91, 97], "datset": 33, "exclud": [33, 42, 78, 82, 90, 97, 107], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 89, 90, 91], "continu": [34, 60, 86, 87, 92, 95, 97, 100, 102, 105, 107], "binari": [34, 48, 56, 63, 65, 98, 107], "simultan": [34, 105], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 90, 91], "typeerror": [34, 48], "12": [34, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 61, 62, 71, 89, 90, 91, 92, 96, 102, 104, 106], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 86, 87, 88, 91, 92, 94, 95, 100, 102, 103, 105, 107], "modifi": [36, 37, 40, 41, 53, 56, 97, 98], "rank_classes_by_label_qu": [36, 91], "merg": [36, 55, 83, 96, 97, 107], "find_overlapping_class": [36, 97, 98], "problemat": [36, 62, 78, 82, 88, 102, 107], "unnorm": [36, 62, 98], "abov": [36, 37, 40, 41, 53, 56, 61, 68, 69, 71, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 105, 106, 107], "model_select": [36, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 105], "cross_val_predict": [36, 41, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 104, 105], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 98], "cv": [36, 48, 86, 88, 89, 90, 91, 94, 98, 100], "df": [36, 56, 82, 88, 97], "overall_label_qu": [36, 62], "col": 36, "prob": [36, 55, 98, 104], "divid": [36, 62, 71], "label_nois": [36, 62], "human": [36, 96, 106, 107], "clearli": [36, 71, 92, 102, 106], "num": [36, 62, 96, 98], "overlap": [36, 83, 96, 97, 98], "ontolog": 36, "publish": [36, 107], "therefor": [36, 71], "vehicl": [36, 96], "truck": [36, 96, 103, 106], "intuit": [36, 62, 89], "car": [36, 96, 102, 106], "frequent": [36, 61, 94, 97, 105], "characterist": 36, "l": [36, 37, 41, 66, 68, 69], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 56, 62, 64, 78, 96, 97, 103, 104, 107], "cat": [36, 56, 62, 64, 96, 97, 103, 104], "captur": [36, 88, 102, 103, 106], "co": [36, 37, 38], "noisy_label": [36, 89, 90, 91, 101], "overlapping_class": 36, "descend": [36, 37, 41, 48, 62, 69], "overall_label_health_scor": [36, 62, 98], "half": [36, 37, 39, 41, 62, 96, 107], "health_scor": [36, 62], "classes_by_label_qu": [36, 91], "cnn": [37, 39, 41, 92], "cifar": [37, 38, 96, 103], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 69, 89, 90, 97, 100, 103, 104, 106, 107], "forward": [37, 38, 39, 41, 92, 100], "overridden": [37, 41], "although": [37, 41, 70, 86, 94], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 57, 62, 69, 77, 81, 97, 100, 101, 102, 104, 107], "former": [37, 41], "hook": [37, 41, 96], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 69], "recurs": [37, 41, 48], "submodul": [37, 41, 50], "children": [37, 39, 41, 107], "nn": [37, 38, 41, 92], "init": [37, 41, 98], "no_grad": [37, 41, 92, 103], "init_weight": [37, 41], "linear": [37, 41, 87, 92, 95], "fill_": [37, 41], "net": [37, 41, 88, 92, 96], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 92], "tensor": [37, 38, 41, 87, 88, 92, 95, 103], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 88], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 103], "compil": [37, 39, 41, 60], "cpu": [37, 39, 41, 43, 88, 92], "move": [37, 41, 48, 84, 96], "cuda": [37, 39, 41, 88, 92], "devic": [37, 41, 88, 92], "gpu": [37, 41, 87, 88, 95], "live": [37, 41], "copi": [37, 41, 73, 86, 88, 89, 90, 91, 94, 97, 101, 104, 105], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 92, 101, 103], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 83, 90, 96, 100, 103, 107], "get_buff": [37, 39, 41], "target": [37, 38, 41, 73, 74, 103, 105], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 95], "resolv": [37, 41, 89, 107], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 51, 92, 106], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 92], "break": [37, 41, 92, 102], "pickl": [37, 41, 102], "get_paramet": [37, 39, 41], "let": [37, 41, 70, 71, 86, 87, 88, 89, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 92], "16": [37, 41, 48, 60, 77, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 106, 107], "33": [37, 41, 96, 102, 107], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 71, 89, 96, 102, 107], "diagram": [37, 41, 104], "degre": [37, 41], "queri": [37, 41, 51, 53, 91, 92, 97, 101], "named_modul": [37, 39, 41], "o": [37, 41, 54, 55, 88, 89, 90, 91, 96, 97, 98, 101, 102, 107], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 100], "preserv": [37, 41, 56], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 56, 57, 69, 90, 92, 97, 98, 100, 102, 103], "named_buff": [37, 39, 41], "prefix": [37, 41, 88, 107], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 87, 88, 95, 97], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 86, 94], "fire": [37, 41, 96], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 90, 91], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 92, 94, 105], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 87, 88, 95], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 60, 84, 88, 97], "design": [37, 41, 89], "ordereddict": [37, 41], "detach": [37, 41, 92], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 62, 68], "complex": [37, 41, 88], "integr": [37, 41, 53, 83, 97], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 87, 95, 96], "desir": [37, 41, 51, 55, 69], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 88], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 87, 95], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 92], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 102], "noisili": [38, 98], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 60, 92], "decim": [38, 56], "forget": [38, 48, 107], "rate_schedul": 38, "epoch": [38, 39, 41, 92, 97], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 71, 97], "250": [38, 90, 91, 98, 102, 107], "epoch_decay_start": 38, "80": [38, 86, 94, 101, 105], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 87, 92, 95, 98], "train_load": [38, 41], "model1": [38, 98], "optimizer1": 38, "model2": [38, 98], "optimizer2": 38, "dataload": [38, 92, 103], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 59, 107], "wish": [39, 59, 103, 106, 107], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 97], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 76, 77, 78, 79, 80, 81, 82, 106, 107], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 75, 77, 89, 92, 97, 103, 106], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 92], "loader": [39, 41, 92], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 84], "mini": [40, 75, 77, 97], "low_self_confid": [40, 43, 63], "self_confid": [40, 43, 44, 48, 63, 65, 71, 79, 81, 86, 87, 97, 98], "conveni": [40, 53, 86, 87, 88, 95], "script": 40, "labels_fil": [40, 97], "pred_probs_fil": [40, 97], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 61, 106], "read": [40, 45, 91, 97, 98, 103, 107], "zarr": [40, 97], "memmap": [40, 106], "pythonspe": 40, "mmap": [40, 97], "hdf5": 40, "further": [40, 42, 62, 63, 65, 68, 69, 77, 78, 88, 97], "yourfil": 40, "npy": [40, 96, 97, 106], "mmap_mod": [40, 106], "tip": [40, 43, 60, 97], "save_arrai": 40, "your_arrai": 40, "disk": [40, 96, 97], "npz": [40, 107], "maxim": [40, 61, 75, 77, 106], "multiprocess": [40, 43, 63, 75, 77, 92, 97], "linux": [40, 75, 77], "physic": [40, 43, 75, 77, 102], "psutil": [40, 43, 75, 77], "labels_arrai": [40, 57], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 69, 90, 97, 102, 103], "store_result": 40, "becom": [40, 103], "verifi": [40, 53, 97, 100, 103], "long": [40, 61, 70, 100], "enough": [40, 56, 97], "chunk": [40, 104], "ram": [40, 96], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 97], "shortcut": 40, "encount": [40, 43, 75], "1000": [40, 88, 95, 97, 103], "aggreg": [40, 44, 48, 61, 65, 68, 71, 81, 97, 98, 100], "seen": [40, 89, 97, 103, 107], "far": [40, 61], "label_quality_scor": [40, 65, 68, 71, 74, 98, 102], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 63, 65, 71, 79, 81], "low_normalized_margin": [40, 43, 63], "issue_indic": [40, 68, 92], "update_num_issu": 40, "arr": [40, 97], "chunksiz": 40, "convnet": 41, "bespok": [41, 60], "download": [41, 88, 97, 103], "mnist": [41, 83, 88, 96], "handwritten": 41, "digit": [41, 88, 96], "last": [41, 48, 66, 69, 89, 90, 91, 97, 100, 102, 107], "sklearn_digits_test_s": 41, "64": [41, 86, 92, 94, 98, 102], "01": [41, 71, 73, 88, 98, 101, 102, 107], "templat": 41, "flexibli": 41, "among": [41, 61, 98], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 56, 103], "train_label": [41, 87, 103], "span": 42, "sentenc": [42, 55, 79, 81, 82, 87, 95], "token_classif": [42, 55, 79, 81, 82, 97], "encourag": [43, 63, 71, 74], "multilabel_classif": [43, 62, 63, 65, 71, 97, 101], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 63, 71, 98], "num_to_remove_per_class": [43, 63], "bad": [43, 51, 63, 68, 71, 95, 97], "seem": [43, 98, 101], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 63, 65, 71, 79, 81], "label_issues_idx": [43, 71], "entropi": [43, 45, 47, 48, 70, 71], "prune_by_class": [43, 63, 98], "predicted_neq_given": [43, 63, 98], "prune_counts_matrix": 43, "smallest": [43, 71], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 83, 87, 97], "too": [43, 48, 51, 70, 91, 92, 97, 102], "thread": [43, 63], "window": [43, 88, 96], "shorter": [43, 66], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 56], "clip_noise_r": [44, 56], "clip_valu": [44, 56], "value_count": [44, 56, 97], "value_counts_fill_missing_class": [44, 56], "get_missing_class": [44, 56], "round_preserving_sum": [44, 56], "round_preserving_row_tot": [44, 56], "estimate_pu_f1": [44, 56], "confusion_matrix": [44, 56], "print_square_matrix": [44, 56], "print_noise_matrix": [44, 56, 98], "print_inverse_noise_matrix": [44, 56], "print_joint_matrix": [44, 56, 98], "compress_int_arrai": [44, 56], "train_val_split": [44, 56], "subset_x_i": [44, 56], "subset_label": [44, 56], "subset_data": [44, 56], "extract_indices_tf": [44, 56], "unshuffle_tensorflow_dataset": [44, 56], "is_torch_dataset": [44, 56], "is_tensorflow_dataset": [44, 56], "csr_vstack": [44, 56], "append_extra_datapoint": [44, 56], "get_num_class": [44, 56], "num_unique_class": [44, 56], "get_unique_class": [44, 56], "format_label": [44, 56], "smart_display_datafram": [44, 56], "force_two_dimens": [44, 56], "latent_algebra": [44, 84], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 101], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 101], "onehot2int": [44, 49, 101], "multilabel_scor": [44, 65], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 65], "softmin": [44, 48, 65, 68, 77, 81], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "default_k": [44, 50, 51], "features_to_knn": [44, 50, 51], "construct_knn_graph_from_index": [44, 50, 51, 53], "create_knn_graph_and_index": [44, 50, 51], "high_dimension_cutoff": [44, 50, 52], "row_count_cutoff": [44, 50, 52], "decide_euclidean_metr": [44, 50, 52], "decide_default_metr": [44, 50, 52], "construct_knn": [44, 50, 53], "transform_distances_to_scor": [44, 54], "correct_precision_error": [44, 54], "token_classification_util": [44, 107], "get_sent": [44, 55, 107], "filter_sent": [44, 55, 107], "process_token": [44, 55], "merge_prob": [44, 55], "color_sent": [44, 55], "assert_valid_input": [44, 57], "assert_valid_class_label": [44, 57], "assert_nonempty_input": [44, 57], "assert_indexing_work": [44, 57], "labels_to_arrai": [44, 57], "labels_to_list_multilabel": [44, 57], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 60, 61, 83, 100], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 56, 88], "behav": 45, "unnecessari": [45, 97], "slightli": [45, 86, 87, 89], "interv": [45, 48, 103], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 56, 73, 88, 100, 106, 107], "increas": [46, 54, 68, 70, 71, 88, 90, 97, 100, 101, 107], "dot": [46, 81, 97], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 61], "ensembl": [47, 48, 61, 71, 86, 94, 97, 101, 103, 105], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 61], "format_multiannotator_label": [47, 61, 100], "formatted_label": [47, 56], "old": [47, 56, 84, 88, 96], "check_consensus_label_class": 47, "consensus_label": [47, 61, 100], "consensus_method": [47, 61], "consensu": [47, 61, 83, 99, 107], "establish": [47, 60, 87, 105], "compute_soft_cross_entropi": 47, "soft": [47, 96], "find_best_temp_scal": 47, "coarse_search_rang": [47, 73, 97], "fine_search_s": [47, 73, 97], "temperatur": [47, 48, 68, 77, 81], "scale": [47, 54, 86, 96, 97, 103, 106], "factor": [47, 48, 54, 75, 77], "minim": [47, 68, 103], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 96], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 71], "get_confidence_weighted_entropy_for_each_label": [48, 71], "75": [48, 89, 90, 91, 96, 100, 101, 102, 105, 107], "scorer": 48, "alpha": [48, 65, 68, 89, 90, 91, 98, 101, 105], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 63, 94, 95, 98, 107], "formula": [48, 54], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 71, 98, 100, 106], "recent": [48, 107], "success": 48, "previou": [48, 92, 97, 102], "discount": 48, "s_ema": 48, "175": [48, 92, 98, 102], "underflow": 48, "nan": [48, 61, 86, 94, 100, 105], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 65], "n_sampl": 48, "n_label": 48, "worst": [48, 100], "class_label_quality_scor": 48, "42": [48, 95, 96, 102, 107], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 64, 65], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 88], "wider": 48, "splitter": 48, "kfold": [48, 92], "onevsrestclassifi": [48, 101], "randomforestclassifi": [48, 98, 101], "n_split": [48, 91, 92, 101], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 63, 69, 75, 78, 86, 94, 96, 97, 105, 106], "onehot_matrix": 49, "pairwis": [50, 52, 70], "reli": [51, 70, 87, 88, 89, 90, 91, 95, 102, 103, 105], "sklearn_knn_kwarg": 51, "701": 51, "900": [51, 86, 94, 105], "436": 51, "000": [51, 87, 92, 95, 96, 107], "idea": [51, 71, 89, 102], "dens": [51, 60], "33140006": 51, "76210367": 51, "vari": [51, 68, 91], "suitabl": [52, 61, 86, 94], "slower": 52, "decid": [52, 61, 87, 95, 96, 100, 105, 107], "predefin": 52, "met": [52, 107], "euclidean_dist": [52, 70], "spatial": [52, 70], "decis": [52, 86, 89, 90, 91], "That": [52, 98, 101], "cosine_dist": 52, "knn_kwarg": 53, "html": [53, 56, 66, 69, 70, 94, 97, 98], "kneighbor": 53, "metric_param": 53, "n_features_in_": 53, "effective_metric_params_": 53, "effective_metric_": 53, "n_samples_fit_": 53, "__sklearn_is_fitted__": 53, "conduct": 53, "is_fit": 53, "trail": 53, "underscor": 53, "avg_dist": 54, "scaling_factor": 54, "exp": [54, 70, 71, 90], "dt": 54, "right": [54, 66, 69, 87, 95, 101, 102, 103], "strength": [54, 69], "pronounc": 54, "differenti": 54, "ly": 54, "rule": [54, 55, 96], "thumb": 54, "ood_features_scor": [54, 70, 103], "88988177": 54, "80519832": 54, "toler": 54, "minkowski": 54, "noth": 54, "epsilon": 54, "sensibl": 54, "fixed_scor": 54, "readabl": 55, "lambda": [55, 88, 90, 97, 100], "long_sent": 55, "headlin": 55, "charact": [55, 56], "s1": 55, "s2": 55, "processed_token": 55, "alecnlcb": 55, "entiti": [55, 83, 97, 107], "mapped_ent": 55, "unique_ident": 55, "loc": [55, 89, 90, 91, 92, 107], "nbitbas": [55, 65], "probs_merg": 55, "0125": [55, 81], "0375": 55, "075": 55, "025": 55, "color": [55, 78, 89, 90, 91, 94, 98, 101, 103, 105, 106], "red": [55, 69, 89, 90, 91, 96, 98, 101, 102, 103, 106], "colored_sent": 55, "termcolor": 55, "31msentenc": 55, "0m": 55, "ancillari": 56, "class_without_nois": 56, "any_other_class": 56, "choos": [56, 71, 86, 94, 97, 98, 105], "tradition": 56, "new_sum": 56, "fill": 56, "come": [56, 89, 90, 91, 97, 106], "major": [56, 61, 84, 89, 92, 103], "versu": [56, 98], "obviou": 56, "cgdeboer": 56, "iteround": 56, "reach": 56, "prob_s_eq_1": 56, "claesen": 56, "f1": [56, 69, 95, 98], "BE": 56, "left_nam": 56, "top_nam": 56, "titl": [56, 89, 90, 91, 98, 101, 103], "short_titl": 56, "round_plac": 56, "pretti": [56, 89, 98], "joint_matrix": 56, "num_possible_valu": 56, "holdout_idx": 56, "extract": [56, 70, 87, 88, 95, 100, 103, 106], "allow_shuffl": 56, "turn": [56, 83, 102], "shuffledataset": 56, "histori": 56, "pre_x": 56, "buffer_s": 56, "csr_matric": 56, "append": [56, 88, 89, 92, 96, 97, 98, 100, 101, 102, 103, 107], "bottom": [56, 66, 69, 102], "to_data": 56, "from_data": 56, "taken": 56, "label_matrix": 56, "canon": 56, "displai": [56, 69, 78, 82, 87, 88, 89, 95, 98, 107], "jupyt": [56, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "notebook": [56, 61, 88, 89, 91, 96, 97, 98, 100, 101, 102, 106, 107], "consol": 56, "allow_missing_class": 57, "allow_one_class": 57, "length_x": 57, "labellik": 57, "labels_list": [57, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 101], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 107], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 95, 103], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 98, 100, 101], "get_label_quality_multiannot": [61, 100], "vote": 61, "crowdsourc": [61, 83, 100], "dawid": [61, 100], "skene": [61, 100], "analog": [61, 89, 96, 100], "chosen": [61, 71, 97, 100], "crowdlab": [61, 100], "unlabel": [61, 92, 94, 95, 100, 103, 106], "get_active_learning_scor": [61, 100], "activelab": [61, 100], "priorit": [61, 68, 102, 106, 107], "showcas": 61, "main": [61, 89], "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 94, 98, 100, 105], "majority_vot": 61, "broken": [61, 69, 96, 105], "highest": [61, 69, 90, 92, 104], "0th": 61, "consensus_quality_scor": [61, 100], "annotator_agr": [61, 100], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 100], "agre": 61, "prevent": [61, 97], "overconfid": [61, 104], "detailed_label_qu": [61, 100], "annotator_stat": [61, 100], "model_weight": 61, "annotator_weight": 61, "warn": [61, 90, 91, 92, 94, 95, 97, 98], "labels_info": 61, "num_annot": [61, 100], "deriv": [61, 100], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 100], "num_examples_label": [61, 100], "agreement_with_consensu": [61, 100], "worst_class": [61, 100], "trustworthi": [61, 100, 105], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 105], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 90, 100], "get_majority_vote_label": [61, 100], "event": 61, "lastli": [61, 94], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "mutual": [62, 101], "exclus": [62, 101], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 92, 98], "anim": [64, 103], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "manner": [65, 86, 87, 100, 105], "box": [66, 68, 69, 96, 102], "object_detect": [66, 68, 69, 102], "return_indices_ranked_by_scor": [66, 102], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 102, 106, 107], "bbox": [66, 69, 102], "image_nam": [66, 69], "y1": [66, 69, 102], "y2": [66, 69, 102], "later": [66, 69, 70, 87, 107], "corner": [66, 69, 102], "xyxi": [66, 69, 102], "io": [66, 69, 88, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 102], "detectron": [66, 69, 102], "detectron2": [66, 69, 102], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 92, 105, 107], "draw_box": [66, 69], "mmdetect": [66, 69, 102], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 91], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 102, 106, 107], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 102], "bounding_box_size_distribut": [67, 69, 102], "class_label_distribut": [67, 69, 102], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97], "chose": [68, 100, 102], "imperfectli": [68, 102], "dirti": [68, 71, 74, 105], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 94, 95, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 106], "discov": [69, 91, 107], "abnorm": [69, 92, 102], "auxiliari": [69, 103, 106], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 91, 98, 101, 103, 105, 106], "sorted_idx": [69, 103], "class_to_show": 69, "hidden": [69, 89, 103], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "matplotlib": [69, 78, 89, 90, 91, 92, 98, 101, 102, 103, 105], "pyplot": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "prediction_threshold": 69, "overlai": [69, 102], "figsiz": [69, 89, 90, 91, 92, 98, 101, 103], "save_path": [69, 102], "blue": [69, 96, 98, 102], "overlaid": 69, "side": [69, 96, 102], "figur": [69, 98, 101, 103, 105], "extens": [69, 98, 100], "png": [69, 102], "pdf": [69, 70], "svg": 69, "num_proc": [69, 92], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 98, 100, 105], "truth": [69, 98, 100, 105], "bias": 69, "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 94, 96, 98, 105], "per_class_metr": 69, "Of": 70, "li": 70, "smaller": [70, 89, 101, 102], "find_top_issu": [70, 71, 103], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 92], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 103], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 95, 103], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 90, 91, 94, 95, 103, 104], "order_label_issu": [71, 84], "whichev": [71, 104], "argsort": [71, 87, 92, 95, 98, 102, 103, 105], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 98], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 95], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 103], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 95], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 105], "linearregress": [73, 97, 105], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 90, 100, 103], "bootstrap": [73, 97, 105], "resampl": [73, 88, 97], "epistem": [73, 97, 103, 105], "aleator": [73, 97, 105], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 95, 103], "grain": 73, "grid": 73, "varianc": [73, 98], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 102, 105], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 91, 92, 96, 97, 100, 102, 103, 105], "aka": [74, 88, 98, 102, 105, 107], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 99], "pixel": [75, 77, 78, 92, 103, 106], "h": [75, 77, 78, 106], "height": [75, 77, 78, 106], "w": [75, 77, 78, 106], "width": [75, 77, 78, 106], "labels_one_hot": [75, 78, 106], "stream": [75, 89, 103, 107], "downsampl": [75, 77, 106], "shrink": [75, 77], "divis": [75, 77, 90], "common_label_issu": [76, 78, 80, 82, 106, 107], "filter_by_class": [76, 78, 106], "segmant": [77, 78], "num_pixel_issu": [77, 106], "product": [77, 92, 97], "pixel_scor": [77, 106], "enter": 78, "legend": [78, 89, 90, 91, 101, 102, 105, 106], "colormap": 78, "background": 78, "person": [78, 97, 102, 106, 107], "ambigu": [78, 82, 87, 88, 95, 96, 98, 107], "systemat": [78, 82, 100], "misunderstood": [78, 82], "issues_df": [78, 92], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 107], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 107], "converg": 81, "toward": 81, "_softmin_sentence_scor": 81, "sentence_scor": [81, 107], "token_info": 81, "70": [81, 94], "02": [81, 90, 91, 98, 102, 103, 107], "03": [81, 94, 96, 98, 102, 107], "04": [81, 94, 102], "08": [81, 98, 102, 105, 107], "commonli": [82, 84, 90, 91, 101, 107], "But": [82, 95, 98, 105, 107], "restrict": [82, 97], "reliabl": [83, 86, 88, 97, 100, 106], "thousand": 83, "imagenet": [83, 96], "popular": [83, 100, 102], "centric": [83, 92, 94, 95, 99], "capabl": 83, "minut": [83, 86, 87, 88, 94, 95, 96, 100, 101, 102, 105, 106, 107], "conda": 83, "feature_embed": [83, 103], "Then": [83, 86, 87, 92, 97], "your_dataset": [83, 88, 90, 91, 92, 94, 95, 97], "column_name_of_label": [83, 88, 90, 91, 92, 94, 95], "plagu": [83, 91], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 91], "sklearn_compatible_model": 83, "framework": [83, 101, 102], "complianc": 83, "tag": [83, 101, 107], "sequenc": 83, "recognit": [83, 88, 97, 107], "train_data": [83, 86, 87, 103, 105], "gotten": 83, "test_data": [83, 86, 87, 89, 98, 101, 103, 105], "deal": [83, 91], "tutori": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "feel": [83, 88, 91, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 105], "welcom": 83, "commun": [83, 97], "guidelin": [83, 102], "piec": 83, "smart": [83, 92, 94, 95, 97], "edit": [83, 97], "easier": [83, 98], "unreli": [83, 86, 88, 94, 95], "link": [83, 88, 96, 102], "older": 84, "outlin": 84, "substitut": 84, "v2": [84, 86, 94], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 94, 96, 107], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 98], "research": [84, 98], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "sql": [86, 94], "databas": [86, 94], "excel": [86, 94], "parquet": [86, 94], "student": [86, 94, 105, 107], "grade": [86, 94, 105], "exam": [86, 94, 105], "letter": [86, 94, 107], "hundr": [86, 94], "mistak": [86, 87, 92, 94, 95], "No": [86, 87, 95, 97], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "preprocess": [86, 87, 91, 94, 103, 105], "standardscal": [86, 94, 103], "labelencod": [86, 87], "train_test_split": [86, 87, 89, 90, 91, 103], "accuracy_scor": [86, 87, 88, 95, 98], "grades_data": [86, 94], "read_csv": [86, 87, 94, 95, 105], "demo": [86, 91, 94, 101], "head": [86, 87, 88, 91, 92, 94, 95, 96, 98, 100, 105], "stud_id": [86, 94], "exam_1": [86, 94, 105], "exam_2": [86, 94, 105], "exam_3": [86, 94, 105], "letter_grad": [86, 94], "f48f73": [86, 94], "53": [86, 89, 90, 91, 94, 96, 101, 102], "00": [86, 90, 91, 94, 96, 103], "77": [86, 90, 91, 94, 102], "0bd4e7": [86, 94], "81": [86, 94, 95, 102, 105, 107], "great": [86, 89, 94, 96], "particip": [86, 94], "cb9d7a": [86, 94], "61": [86, 94, 98, 102, 105], "94": [86, 94, 96, 98, 102, 105], "78": [86, 94, 96, 98, 102, 105], "9acca4": [86, 94], "48": [86, 94, 96, 98, 102], "x_raw": [86, 94], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 105], "x_encod": [86, 94], "get_dummi": [86, 94, 105], "drop_first": [86, 94], "numeric_featur": [86, 94], "scaler": [86, 94, 103], "x_process": [86, 94], "fit_transform": [86, 94], "bring": [86, 87, 92, 94, 95, 100, 105], "byod": [86, 87, 92, 94, 95, 100, 105], "tress": 86, "held": [86, 88, 94, 95, 96, 102, 103, 104], "straightforward": [86, 88, 94], "benefit": [86, 88, 104, 106], "num_crossval_fold": [86, 88, 94, 100], "tabl": [86, 94, 96, 100], "212": [86, 98], "review": [86, 87, 91, 94, 95, 96, 97, 98, 102, 105, 106, 107], "iloc": [86, 87, 88, 94, 95, 105], "58": [86, 91, 94, 96, 98, 102], "92": [86, 90, 98, 102], "93": [86, 96, 102, 105, 107], "827": 86, "99": [86, 96, 98], "86": [86, 91, 92, 94, 98, 102, 105, 107], "74": [86, 102, 105], "637": [86, 94], "79": [86, 96, 102], "65": [86, 90, 102], "cheat": 86, "0pt": 86, "120": [86, 90, 91], "97": [86, 96, 97, 98, 102, 105, 107], "233": 86, "68": [86, 96, 98, 102], "83": [86, 98, 102, 105, 107], "76": [86, 89, 98, 101, 102, 105], "suspici": [86, 94], "carefulli": [86, 92, 94, 95], "examin": [86, 89, 90, 91, 94, 102], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90, 91], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 105], "14": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "acc_cl": [86, 87], "8095238095238095": 86, "especi": [86, 87, 89, 92, 97, 105], "blindli": [86, 87, 88, 97, 105], "trust": [86, 87, 88, 97, 98, 100, 104, 105], "effort": [86, 87, 105], "intent": [87, 95], "servic": [87, 95, 97], "onlin": [87, 95], "bank": [87, 95, 96], "banking77": [87, 95], "oo": [87, 95], "categori": [87, 92, 95], "shortlist": [87, 95, 105], "scope": [87, 95], "logist": [87, 89, 90, 91, 95, 100, 103], "probabilit": [87, 88], "drop": [87, 97, 100, 105], "earlier": [87, 107], "sentence_transform": [87, 95], "sentencetransform": [87, 95], "payment": [87, 95], "cancel_transf": [87, 95], "transfer": [87, 95], "fund": [87, 95], "cancel": [87, 95], "transact": [87, 95], "my": [87, 95], "revert": [87, 95], "morn": [87, 95], "realis": [87, 95], "yesterdai": [87, 95], "rent": [87, 95], "tomorrow": [87, 95], "raw_text": [87, 95], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "39": [87, 88, 90, 92, 95, 96, 97, 102, 105, 106, 107], "supported_cards_and_curr": [87, 95], "visa_or_mastercard": [87, 95], "apple_pay_or_google_pai": [87, 95], "card_about_to_expir": [87, 95], "lost_or_stolen_phon": [87, 95], "getting_spare_card": [87, 95], "change_pin": [87, 95], "beneficiary_not_allow": [87, 95], "card_payment_fee_charg": [87, 95], "card": [87, 95, 96], "utter": [87, 95], "encond": 87, "test_label": [87, 98, 101, 103], "suit": [87, 95, 96, 97], "electra": [87, 95], "discrimin": [87, 95], "googl": [87, 89, 95], "train_text": 87, "test_text": 87, "home": [87, 90, 91, 95, 96], "runner": [87, 90, 91, 95], "google_electra": [87, 95], "pool": [87, 95, 97, 103], "opt": [87, 88, 91, 92, 94, 95, 98], "hostedtoolcach": [87, 88, 91, 92, 94, 95, 98], "x64": [87, 88, 91, 92, 94, 95, 98], "lib": [87, 88, 91, 92, 94, 95, 98], "python3": [87, 88, 91, 92, 94, 95, 98], "site": [87, 88, 91, 92, 94, 95, 98], "_util": [87, 95], "831": [87, 95], "userwarn": [87, 88, 90, 91, 95], "typedstorag": [87, 95], "untypedstorag": [87, 95], "untyped_storag": [87, 95], "fget": [87, 95], "__get__": [87, 95], "owner": [87, 95], "leverag": [87, 88, 95, 97, 98, 100], "computation": [87, 88, 95], "intens": [87, 88, 95], "400": [87, 89, 95], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 105], "lowest_quality_label": [87, 88, 95, 98, 105], "to_numpi": [87, 95, 97, 105], "44": [87, 96, 101, 102], "646": 87, "390": 87, "628": 87, "121": [87, 89, 98], "702": 87, "863": [87, 88], "135": 87, "337": [87, 102], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 95], "cash": [87, 95], "holidai": [87, 95], "sent": [87, 95, 107], "mine": [87, 95], "expir": [87, 95], "fight": 87, "hors": [87, 96, 103], "duck": [87, 96], "me": [87, 95], "whoever": [87, 95], "consum": [87, 105], "18": [87, 88, 89, 95, 96, 97, 98, 102, 103, 105, 106], "baseline_model": [87, 105], "87": [87, 91, 92, 102, 105], "acceler": [87, 105], "19": [87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 105, 106], "89": [87, 89, 90, 94, 102, 105], "spoken": 88, "500": [88, 103, 107], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 90, 91, 92, 97], "voxceleb": 88, "speech": [88, 107], "your_pred_prob": [88, 89, 90, 91, 94, 95], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 94, 98, 100], "command": 88, "wget": [88, 102, 106, 107], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 107], "v1": 88, "tar": [88, 103], "gz": [88, 103], "mkdir": [88, 107], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 89, 92, 97], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "pulldown": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "colab": [88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "tfio": 88, "pathlib": 88, "ipython": 88, "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": 88, "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 92], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 92], "embeddings_arrai": 88, "650": 88, "stft": 88, "return_complex": 88, "view_as_r": 88, "recov": 88, "trigger": 88, "aten": 88, "src": 88, "nativ": 88, "spectralop": 88, "cpp": 88, "_vf": 88, "n_fft": 88, "hop_length": 88, "win_length": 88, "attr": 88, "512": [88, 92], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "24": [88, 89, 96, 98, 100, 102, 105], "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 90, 96, 97, 98, 102, 105, 107], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 89, 92, 96, 98, 102, 105, 107], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 98, 101], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "investig": [88, 89], "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 95], "sort_valu": [88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 105], "516": 88, "1946": 88, "469": 88, "2132": 88, "worth": [88, 98], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 103], "22": [88, 89, 90, 92, 96, 97, 98, 101, 102, 107], "load_ext": 89, "autoreload": 89, "ve": [89, 96, 97, 98, 100, 102], "prove": 89, "monitor": [89, 96], "ran": 89, "data_monitor": 89, "your_datalab": 89, "new_data_batch": 89, "your_label": 89, "get_your_label": 89, "your_featur": [89, 95], "get_featur": 89, "websit": [89, 96], "todo": 89, "get_ipython": 89, "3effc12d6a686a39d51451c1a99f8654336a8bb7": 89, "cmd": 89, "dep": 89, "dependencies_test": 89, "missing_depend": 89, "__import__": 89, "importerror": 89, "sep": [89, 107], "npleas": 89, "toi": [89, 90, 91, 92, 96, 98, 100], "mid": [89, 90, 91], "workflow": [89, 99, 105], "unseen": 89, "inf": [89, 90, 91], "bins_map": [89, 90, 91], "create_data": [89, 90, 91], "800": 89, "y_bin": [89, 90, 91], "y_i": [89, 90, 91], "y_bin_idx": [89, 90, 91], "y_train": [89, 90, 91, 98, 105], "y_test": [89, 90, 91, 98, 105], "y_train_idx": [89, 90, 91], "y_test_idx": [89, 90, 91], "slide": [89, 90, 91, 96], "frame": [89, 90, 91], "x_out": [89, 90, 91], "tini": [89, 90, 91], "concaten": [89, 90, 91, 97, 104], "y_out": [89, 90, 91], "y_out_bin": [89, 90, 91], "y_out_bin_idx": [89, 90, 91], "exact_duplicate_idx": [89, 90, 91], "x_duplic": [89, 90, 91], "y_duplic": [89, 90, 91], "y_duplicate_idx": [89, 90, 91], "noisy_labels_idx": [89, 90, 91, 101], "train_x": 89, "test_x": 89, "train_y_tru": 89, "test_y_tru": 89, "train_i": 89, "test_i": 89, "train_y_idx": 89, "test_y_idx": 89, "scatter": [89, 90, 91, 98, 101, 105], "black": [89, 90, 91, 96, 105], "cyan": [89, 90, 91], "plot_data": [89, 90, 91, 98, 101, 105], "fig": [89, 90, 91, 92, 96, 103, 105], "ax": [89, 90, 91, 92, 103, 105], "subplot": [89, 90, 91, 92, 103], "set_titl": [89, 90, 91, 92, 103], "set_xlabel": [89, 90, 91], "x_1": [89, 90, 91], "fontsiz": [89, 90, 91, 92, 98, 101], "set_ylabel": [89, 90, 91], "x_2": [89, 90, 91], "set_xlim": [89, 90, 91], "set_ylim": [89, 90, 91], "linestyl": [89, 90, 91], "circl": [89, 90, 91, 98, 101], "misclassifi": [89, 90, 91], "zip": [89, 90, 91, 92, 102, 107], "label_err": [89, 90, 91], "180": [89, 90, 91, 102], "marker": [89, 90, 91], "facecolor": [89, 90, 91], "edgecolor": [89, 90, 91], "linewidth": [89, 90, 91, 103], "title_fontproperti": [89, 90, 91], "semibold": [89, 90, 91], "first_legend": [89, 90, 91], "align": [89, 90, 91], "markerscal": 89, "second_legend": [89, 90, 91], "46": [89, 94, 96, 98, 102], "gca": [89, 90, 91], "add_artist": [89, 90, 91], "tight_layout": [89, 90, 91], "ideal": [89, 90, 91], "simplic": [89, 101], "327": [89, 102], "9297": 89, "000124": 89, "259": 89, "000725": 89, "269": 89, "000794": 89, "002061": 89, "125": [89, 90], "002908": 89, "fly": [89, 96], "feed": [89, 97], "simul": 89, "tqdm": [89, 92], "sleep": [89, 96], "generate_stream": 89, "sleep_tim": 89, "desc": 89, "singleton_stream": 89, "seamless": [89, 97], "singleton": 89, "batched_stream": 89, "processed_singleton": 89, "suggested_label": [89, 95], "250997": 89, "285757": 89, "43": [89, 90, 96, 98, 102], "120906": 89, "principl": 89, "processed_batch": 89, "51": [89, 90, 91, 94, 96, 98, 102], "002748": 89, "189996": 89, "093505": 89, "037250": 89, "149": [89, 102], "076397": 89, "154": 89, "294010": 89, "160": [89, 95, 105], "073622": 89, "166": [89, 92], "140832": 89, "167": [89, 96, 98, 102, 107], "041743": 89, "181": 89, "169429": 89, "127304": 89, "235": [89, 102], "090310": 89, "254": [89, 96, 102], "183343": 89, "256": [89, 96, 97, 102], "048720": 89, "263": [89, 101, 102], "138820": 89, "292": 89, "239609": 89, "295": [89, 102], "022075": 89, "306": 89, "103040": 89, "343": 89, "234755": 89, "354": 89, "001612": 89, "359": 89, "068359": 89, "367": [89, 105], "015793": 89, "368": 89, "029022": 89, "391": 89, "106761": 89, "troublesom": 89, "623844": 89, "812647": 89, "816854": 89, "661968": 89, "632244": 89, "395": 89, "474599": 89, "396": 89, "653901": 89, "397": 89, "584554": 89, "398": 89, "817287": 89, "399": 89, "881545": 89, "183": 89, "937927": 89, "309": 89, "939505": 89, "133": 89, "947290": 89, "177": 89, "952187": 89, "314": [89, 102], "997293": 89, "27": [89, 94, 96, 98, 102, 107], "655501": 89, "3603": 89, "173": [89, 102], "000330": 89, "000626": 89, "296": 89, "002004": 89, "304": 89, "165496": 89, "275": [89, 101], "179811": 89, "001317": 89, "005943": 89, "001426": 89, "320": [89, 102], "186355": 89, "349": 89, "187305": 89, "393": 89, "169838": 89, "185770": 89, "369889": 89, "285297": 89, "406162": 89, "516543": 89, "440142": 89, "476283": 89, "382757": 89, "466786": 89, "522078": 89, "276298": 89, "328181": 89, "409633": 89, "281425": 89, "518102": 89, "360596": 89, "underneath": 90, "hood": [90, 97], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "dup": [90, 91], "45": [90, 91, 96, 98, 102], "remaind": 90, "modal": [90, 91, 97, 100], "132": [90, 91, 98, 102], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96], "014828": 90, "107": [90, 91, 98, 101], "021241": 90, "026407": 90, "notic": [90, 98, 100, 102], "3558": [90, 91], "126": [90, 91, 98, 102], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "is_near_duplicate_issu": [90, 91, 92, 94, 95, 97, 98], "131": [90, 91, 106], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 98, 102, 105], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 101, 106, 107], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 98, 100, 102, 107], "54": [90, 96, 98, 102, 107], "039122": 90, "044598": 90, "105": [90, 102], "105196": 90, "133654": 90, "168033": 90, "101107": 90, "37": [90, 96], "183382": 90, "109": [90, 96, 102], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 102], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 102], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 98, 102, 107], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 98, 100, 102], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 98], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 98], "246": [91, 92, 94, 95, 98, 102], "efficiencywarn": [91, 92, 94, 95, 98], "sort_graph_by_row_valu": [91, 92, 94, 95, 98], "warn_when_not_sort": [91, 92, 94, 95, 98], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "is_class_imbalance_issu": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "is_null_issu": 91, "is_non_iid_issu": [91, 94, 95, 98], "is_underperforming_group_issu": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 97], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 107], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 96], "952381": 91, "666667": 91, "portion": 91, "huge": [91, 98], "worri": [91, 95], "critic": 91, "60": [92, 98, 105], "torchvis": [92, 103], "tensordataset": 92, "stratifiedkfold": [92, 101], "autonotebook": 92, "fashion_mnist": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 96], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 101, 103], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 103], "energi": 92, "trainload": [92, 103], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 105], "acc": [92, 98], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 107], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "733": 92, "329": [92, 102], "88": [92, 96, 97, 98, 101, 102, 105], "195": 92, "602": 92, "493": 92, "060": 92, "796": 92, "330": [92, 102], "505": 92, "594": 92, "476": 92, "340": 92, "739": 92, "328": [92, 102], "310": 92, "475": 92, "reorder": 92, "hstack": [92, 97, 98, 100], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 98, 102, 107], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 96], "shirt": [92, 96], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 96, 103, 104], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 107], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 96], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 103], "nrow": [92, 103], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 103], "cmap": [92, 105], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 101, 102, 103, 104, 106], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": 92, "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 97], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 102, 106], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "28": [92, 95, 96, 98, 100, 107], "difficult": 92, "disproportion": 92, "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 97, 100, 105], "xgboost": [94, 97, 105], "think": [94, 95, 97, 101, 106, 107], "nonzero": 94, "358": 94, "294": [94, 102], "941": 94, "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 102, 107], "187": [94, 96], "898": 94, "0014": [94, 96], "595": 94, "702427": 94, "147": [94, 98, 102], "711186": 94, "157": [94, 98], "721394": 94, "771": 94, "731979": 94, "740335": 94, "0014153602099278074": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 101, 102, 105, 107], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 105], "96": [94, 96, 98, 101, 102, 105, 107], "lt": [94, 95, 96, 100, 103], "style": [94, 106], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "690": 94, "perhap": [94, 98, 100], "twice": 94, "67": [94, 96, 102, 105], "wari": [94, 95, 97], "dive": 95, "text_embed": 95, "data_dict": [95, 98, 100], "85": [95, 102], "38": [95, 96, 102], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 96], "000224": 95, "971": 95, "000507": 95, "980": [95, 96], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "0000": [95, 96, 98], "313": [95, 102], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 98, 100, 102], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 96], "gone": 95, "gt": [95, 100, 107], "samp": 95, "br": 95, "press": [95, 107], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "pai": 95, "go": [95, 96, 98], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "refin": 96, "instruct": 96, "studi": [96, 102], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 107], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 107], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 102], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 103], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 107], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "yellow": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 103], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 107], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "flat": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 107], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 107], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 106], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 107], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 102], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 106], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 102], "carousel": 96, "tool": [96, 98, 100], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 107], "chain": 96, "fenc": [96, 106], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 103], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "center": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 106], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 98], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 102], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 107], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 106], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "school": 96, "bu": [96, 106], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 107], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 107], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 106], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 107], "tenni": 96, "thatch": 96, "roof": 96, "front": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": 96, "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 106], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 102, 106], "sign": [96, 106, 107], "dust": 96, "jacket": [96, 102], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "orang": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 103], "automobil": [96, 103], "deer": [96, 103], "cifar100_test_set": 96, "aquarium_fish": 96, "babi": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 107], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 106], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 106], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 102], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 105], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 102], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 107], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "alt": 96, "atheism": 96, "comp": 96, "graphic": [96, 106], "misc": [96, 107], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "sci": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 107], "talk": [96, 107], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "interpret": [96, 97, 98, 101, 105], "capit": 96, "29780": 96, "780": 96, "medic": [96, 107], "doctor": 96, "359223": 96, "640777": 96, "184": [96, 98], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "670000": 96, "251": [96, 102], "252": 96, "112": 96, "253": [96, 102], "022989": 96, "049505": 96, "190": [96, 98, 102], "66": 96, "002216": 96, "000974": 96, "59": [96, 102, 107], "000873": 96, "000739": 96, "32635": 96, "32636": 96, "47": [96, 102], "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "36": [96, 107], "41": [96, 102, 105], "71": [96, 98, 102, 105], "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 98], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 102], "98": [96, 97, 105], "452381": 96, "459770": 96, "72": [96, 98, 101, 105], "523364": 96, "460784": 96, "446602": 96, "57": [96, 98], "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "82": [96, 98, 102, 105], "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 98], "188": [96, 98, 101], "189": [96, 98], "snippet": 97, "nlp": [97, 107], "mind": [97, 98], "alphanumer": 97, "facilit": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "from_dict": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 102], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 98], "game": 97, "speedup": [97, 103], "flexibl": 97, "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 98, 107], "successfulli": 97, "meaning": [97, 103], "virtuou": [97, 100], "cycl": [97, 100], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 98], "true_error": [97, 98, 101], "101": [97, 102], "102": [97, 101, 102], "104": [97, 98, 102], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98], "max_depth": [97, 98], "magnitud": 97, "coeffici": [97, 105], "optin": 97, "environ": [97, 98], "rerun": [97, 98], "cell": [97, 98], "unabl": [97, 98], "render": [97, 98], "nbviewer": [97, 98], "nbsp": [97, 98], "cleanlearninginot": [97, 98], "fittedcleanlearn": [97, 98], "linearregressionlinearregress": 97, "n_init": 97, "fit_predict": 97, "continuous_column": 97, "categorical_column": 97, "data_df": 97, "feature_a": 97, "feature_b": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "tolist": [97, 101], "issubset": 97, "frozenset": 97, "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "idxmin": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 103], "kept": 97, "ids_to_remove_seri": 97, "tmp": 97, "ipykernel_7769": 97, "1995098996": 97, "deprecationwarn": 97, "dataframegroupbi": 97, "include_group": 97, "silenc": 97, "assist": 97, "streamlin": 97, "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "depth": 98, "survei": [98, 107], "focus": [98, 100, 101, 105], "scienc": 98, "multivariate_norm": [98, 100, 101], "make_data": [98, 100], "cov": [98, 100, 101], "avg_trac": [98, 101], "py_tru": 98, "noise_matrix_tru": 98, "noise_marix": 98, "s_test": 98, "noisy_test_label": 98, "purpl": 98, "val": 98, "namespac": 98, "exec": 98, "markerfacecolor": [98, 101], "markeredgecolor": [98, 101, 105], "markers": [98, 101, 105], "markeredgewidth": [98, 101, 105], "realist": 98, "7560": 98, "637318e": 98, "896262e": 98, "548391e": 98, "923417e": 98, "375075e": 98, "3454": 98, "014051": 98, "020451": 98, "249": [98, 102], "042594": 98, "043859": 98, "045954": 98, "6120": 98, "023714": 98, "007136": 98, "119": [98, 102], "107266": 98, "103": [98, 102], "033738": 98, "238": [98, 102], "119505": 98, "236": [98, 102], "037843": 98, "222": 98, "614915": 98, "122": [98, 102], "624422": 98, "625965": 98, "626079": 98, "118": 98, "627675": 98, "695223": 98, "323529": 98, "523015": 98, "013720": 98, "675727": 98, "646521": 98, "anyth": 98, "enhanc": [98, 100, 102], "magic": 98, "liter": 98, "identif": 98, "x27": 98, "logisticregressionlogisticregress": 98, "ever": 98, "092": 98, "040": 98, "024": 98, "004": 98, "surpris": 98, "1705": 98, "01936": 98, "ton": 98, "yourfavoritemodel1": 98, "merged_label": 98, "merged_test_label": 98, "newli": [98, 100], "yourfavoritemodel2": 98, "yourfavoritemodel3": 98, "cl3": 98, "takeawai": 98, "randomli": 98, "my_test_pred_prob": 98, "my_test_pr": 98, "issues_test": 98, "corrected_test_label": 98, "pretend": 98, "cl_test_pr": 98, "69": [98, 105], "fairli": 98, "label_acc": 98, "percentag": 98, "offset": 98, "nquestion": 98, "overestim": 98, "answer": 98, "experienc": 98, "knowledg": 98, "prioiri": 98, "known": 98, "versatil": 98, "label_issues_indic": 98, "213": [98, 102], "218": [98, 102], "152": 98, "197": [98, 102], "196": [98, 102], "170": 98, "214": 98, "164": [98, 101], "198": [98, 102], "191": [98, 102], "63": [98, 102, 105], "117": [98, 105], "62": [98, 102, 105], "206": [98, 102], "115": [98, 102], "193": 98, "194": 98, "201": [98, 102], "174": 98, "163": 98, "150": [98, 100, 102], "169": 98, "151": [98, 102], "168": 98, "precision_scor": 98, "recall_scor": 98, "f1_score": 98, "true_label_issu": 98, "filter_by_list": 98, "718750": [98, 100], "807018": 98, "912": 98, "733333": 98, "800000": 98, "721311": 98, "792793": 98, "908": 98, "676923": 98, "765217": 98, "892": 98, "567901": 98, "702290": 98, "844": 98, "gaug": 98, "label_issues_count": 98, "155": [98, 102], "156": 98, "172": [98, 101], "easiest": 98, "modular": 98, "penalti": 98, "l2": 98, "model3": 98, "n_estim": 98, "cv_pred_probs_1": 98, "cv_pred_probs_2": 98, "cv_pred_probs_3": 98, "label_quality_scores_best": 98, "cv_pred_probs_ensembl": 98, "label_quality_scores_bett": 98, "superior": [98, 104], "timm": 99, "glad": 100, "multiannotator_label": 100, "300": [100, 107], "noisier": 100, "111": [100, 105], "local_data": [100, 101], "true_labels_train": [100, 101], "noise_matrix_bett": 100, "noise_matrix_wors": 100, "transpos": [100, 103], "dropna": 100, "zfill": 100, "row_na_check": 100, "notna": 100, "reset_index": 100, "a0001": 100, "a0002": 100, "a0003": 100, "a0004": 100, "a0005": 100, "a0006": 100, "a0007": 100, "a0008": 100, "a0009": 100, "a0010": 100, "a0041": 100, "a0042": 100, "a0043": 100, "a0044": 100, "a0045": 100, "a0046": 100, "a0047": 100, "a0048": 100, "a0049": 100, "a0050": 100, "na": 100, "60856743": 100, "41693214": 100, "40908785": 100, "87147629": 100, "64941785": 100, "10774851": 100, "0524466": 100, "71853246": 100, "37169848": 100, "66031048": 100, "multiannotator_util": 100, "crude": 100, "straight": 100, "majority_vote_label": 100, "736118": 100, "757751": 100, "782232": 100, "715565": 100, "824256": 100, "quality_annotator_a0001": 100, "quality_annotator_a0002": 100, "quality_annotator_a0003": 100, "quality_annotator_a0004": 100, "quality_annotator_a0005": 100, "quality_annotator_a0006": 100, "quality_annotator_a0007": 100, "quality_annotator_a0008": 100, "quality_annotator_a0009": 100, "quality_annotator_a0010": 100, "quality_annotator_a0041": 100, "quality_annotator_a0042": 100, "quality_annotator_a0043": 100, "quality_annotator_a0044": 100, "quality_annotator_a0045": 100, "quality_annotator_a0046": 100, "quality_annotator_a0047": 100, "quality_annotator_a0048": 100, "quality_annotator_a0049": 100, "quality_annotator_a0050": 100, "070564": 100, "216078": 100, "119188": 100, "alongisd": 100, "244981": 100, "208333": 100, "295979": 100, "294118": 100, "324197": 100, "310345": 100, "355316": 100, "346154": 100, "439732": 100, "480000": 100, "a0031": 100, "523205": 100, "580645": 100, "a0034": 100, "535313": 100, "607143": 100, "a0021": 100, "606999": 100, "a0015": 100, "609526": 100, "678571": 100, "a0011": 100, "621103": 100, "692308": 100, "wors": 100, "improved_consensus_label": 100, "majority_vote_accuraci": 100, "cleanlab_label_accuraci": 100, "8581081081081081": 100, "9797297297297297": 100, "besid": 100, "sorted_consensus_quality_scor": 100, "worst_qual": 100, "better_qu": 100, "worst_quality_accuraci": 100, "better_quality_accuraci": 100, "9893238434163701": 100, "improved_pred_prob": 100, "treat": [100, 101, 105, 107], "analzi": 100, "copyright": 101, "advertis": 101, "violenc": 101, "nsfw": 101, "celeba": 101, "make_multilabel_data": 101, "boxes_coordin": 101, "box_multilabel": 101, "make_multi": 101, "bx1": 101, "by1": 101, "bx2": 101, "by2": 101, "label_list": 101, "ur": 101, "upper": 101, "inidx": 101, "logical_and": 101, "inv_d": 101, "labels_idx": 101, "true_labels_test": 101, "dict_unique_label": 101, "get_color_arrai": 101, "dcolor": 101, "aa4400": 101, "55227f": 101, "55a100": 101, "00ff00": 101, "007f7f": 101, "386b55": 101, "0000ff": 101, "y_onehot": 101, "single_class_label": 101, "stratifi": [101, 104], "kf": 101, "train_index": 101, "test_index": 101, "clf_cv": 101, "x_train_cv": 101, "x_test_cv": 101, "y_train_cv": 101, "y_test_cv": 101, "y_pred_cv": 101, "saw": 101, "num_to_displai": 101, "09": [101, 102, 105], "267": 101, "225": 101, "171": 101, "234": 101, "165": 101, "227": [101, 102], "262": [101, 102], "266": [101, 102], "139": 101, "143": [101, 102], "216": [101, 102], "265": 101, "159": [101, 102], "despit": [101, 107], "suspect": 101, "888": 101, "8224": 101, "9632": 101, "968": 101, "6512": 101, "0444": 101, "774": 101, "labels_binary_format": 101, "labels_list_format": 101, "surround": 102, "scene": 102, "coco": 102, "everydai": 102, "has_label_issu": 102, "insal": 102, "nc": [102, 106, 107], "s3": [102, 106, 107], "amazonaw": [102, 106, 107], "objectdetectionbenchmark": 102, "tutorial_obj": 102, "pkl": 102, "example_imag": 102, "unzip": [102, 107], "_separate_label": 102, "_separate_predict": 102, "begin": 102, "image_path": 102, "rb": 102, "image_to_visu": 102, "seg_map": 102, "334": 102, "float32": 102, "bboxes_ignor": 102, "290": 102, "286": 102, "285": 102, "224": 102, "231": [102, 107], "293": 102, "289": 102, "282": 102, "281": 102, "271": 102, "280": 102, "277": 102, "279": 102, "287": 102, "299": 102, "276": 102, "307": 102, "321": 102, "326": 102, "333": 102, "261": 102, "319": 102, "257": 102, "283": 102, "243": 102, "303": 102, "316": 102, "247": 102, "323": 102, "226": 102, "228": 102, "232": 102, "219": 102, "239": 102, "240": 102, "209": 102, "242": 102, "202": 102, "230": 102, "215": 102, "220": 102, "229": 102, "217": 102, "237": 102, "207": 102, "204": 102, "84": [102, 105], "205": 102, "223": 102, "153": 102, "140": 102, "124": 102, "268": 102, "273": 102, "108": 102, "284": 102, "110": 102, "136": 102, "145": 102, "297": 102, "317": 102, "192": 102, "332": 102, "324": 102, "203": 102, "199": 102, "291": 102, "000000481413": 102, "jpg": 102, "42398": 102, "44503": 102, "29968": 102, "336": 102, "21005": 102, "9978472": 102, "forgot": 102, "drew": 102, "label_issue_idx": 102, "num_examples_to_show": 102, "138": 102, "candid": 102, "97489622": 102, "70610878": 102, "98764951": 102, "88899237": 102, "99085805": 102, "issue_idx": 102, "95569726e": 102, "03354841e": 102, "57510169e": 102, "58447666e": 102, "39755858e": 102, "issue_to_visu": 102, "000000009483": 102, "95569726168054e": 102, "addition": [102, 106], "visibl": 102, "missmatch": 102, "likelei": 102, "agnost": 102, "vaidat": 102, "inconsist": 102, "000000395701": 102, "033548411774308e": 102, "armchair": 102, "tv": 102, "000000154004": 102, "38300759625496356": 102, "foreground": 102, "000000448410": 102, "0008575101690203273": 102, "crowd": 102, "alon": 102, "explor": [102, 103], "resembl": [102, 103], "000000499768": 102, "9748962231208227": 102, "000000521141": 102, "8889923658893665": 102, "000000143931": 102, "9876495074395956": 102, "bonu": 102, "uncov": 102, "irregular": 102, "anomali": 102, "object_detection_util": 102, "calculate_bounding_box_area": 102, "num_imgs_to_show": 102, "lab_object_count": 102, "pred_object_count": 102, "000000430073": 102, "000000183709": 102, "000000189475": 102, "label_norm": 102, "pred_norm": 102, "area": [102, 106], "lab_area": 102, "pred_area": 102, "lab_area_mean": 102, "lab_area_std": 102, "max_deviation_valu": 102, "max_deviation_class": 102, "deviation_valu": 102, "deviation_class": 102, "mean_area": 102, "std_area": 102, "class_area": 102, "deviations_awai": 102, "max_deviation_index": 102, "num_imgs_to_show_per_class": 102, "class_num": 102, "sorted_indic": 102, "000000422886": 102, "000000341828": 102, "000000461009": 102, "train_feature_embed": 103, "ood_train_feature_scor": 103, "test_feature_embed": 103, "ood_test_feature_scor": 103, "ood_train_predictions_scor": 103, "train_pred_prob": 103, "ood_test_predictions_scor": 103, "test_pred_prob": 103, "pylab": 103, "rcparam": 103, "baggingclassifi": 103, "therebi": 103, "rescal": 103, "transform_norm": 103, "totensor": 103, "root": 103, "animal_class": 103, "non_animal_class": 103, "animal_idx": 103, "test_idx": 103, "toronto": 103, "edu": 103, "kriz": 103, "170498071": 103, "83099579": 103, "16it": 103, "5000": 103, "plot_imag": 103, "visualize_outli": 103, "txt_class": 103, "img": [103, 105], "npimg": 103, "show_label": 103, "data_subset": 103, "resnet50": 103, "corpu": 103, "2048": 103, "embed_imag": 103, "create_model": 103, "strang": 103, "odd": 103, "train_ood_features_scor": 103, "top_train_ood_features_idx": 103, "fun": 103, "negat": 103, "homogen": 103, "bottom_train_ood_features_idx": 103, "test_ood_features_scor": 103, "top_ood_features_idx": 103, "inevit": 103, "trade": 103, "5th": 103, "percentil": 103, "fifth_percentil": 103, "plt_rang": 103, "hist": 103, "train_outlier_scor": 103, "ylabel": 103, "axvlin": 103, "test_outlier_scor": 103, "ood_features_indic": 103, "revisit": 103, "return_invers": 103, "train_feature_embeddings_sc": 103, "test_feature_embeddings_sc": 103, "train_pred_label": 103, "9702": 103, "train_ood_predictions_scor": 103, "test_ood_predictions_scor": 103, "lost": 103, "unsuit": 104, "ok": [104, 107], "convention": 104, "aforement": 104, "hypothet": 104, "contrast": 104, "tradit": 104, "disjoint": 104, "out_of_sample_pred_probs_for_a": 104, "out_of_sample_pred_probs_for_b": 104, "out_of_sample_pred_probs_for_c": 104, "out_of_sample_pred_prob": 104, "price": 105, "incom": 105, "ag": 105, "sensor": 105, "histgradientboostingregressor": 105, "r2_score": 105, "student_grades_r": 105, "final_scor": 105, "true_final_scor": 105, "homework": 105, "3d": 105, "hue": 105, "mpl_toolkit": 105, "mplot3d": 105, "axes3d": 105, "errors_idx": 105, "add_subplot": 105, "z": 105, "colorbar": 105, "errors_mask": 105, "feature_column": 105, "predicted_column": 105, "x_train_raw": 105, "x_test_raw": 105, "randomforestregressor": 105, "385101": 105, "499503": 105, "698255": 105, "776647": 105, "109373": 105, "170547": 105, "481096": 105, "984759": 105, "645270": 105, "795928": 105, "141": 105, "659": 105, "318": 105, "305": 105, "560": 105, "657": 105, "688": 105, "view_datapoint": 105, "concat": 105, "preds_og": 105, "r2_og": 105, "838": 105, "found_label_issu": 105, "preds_cl": 105, "r2_cl": 105, "926": 105, "favorit": 105, "968627e": 105, "228799": 105, "646674e": 105, "402962": 105, "323818e": 105, "952758": 105, "422144e": 105, "456908": 105, "465815e": 105, "753968": 105, "791186e": 105, "110719": 105, "485156e": 105, "670640": 105, "225300e": 105, "749976": 105, "499679e": 105, "947007": 105, "067882e": 105, "648396": 105, "synthia": 106, "imagesegment": 106, "given_mask": 106, "predicted_mask": 106, "set_printopt": [106, 107], "sky": 106, "sidewalk": 106, "veget": 106, "terrain": 106, "rider": 106, "pred_probs_filepath": 106, "1088": 106, "1920": 106, "label_filepath": 106, "synthia_class": 106, "maunal": 106, "100000": 106, "244800": 106, "leftmost": 106, "middl": [106, 107], "infact": 106, "rightmost": 106, "discrep": 106, "3263230": 106, "783381": 106, "275110": 106, "255917": 106, "78225": 106, "55990": 106, "54315": 106, "33591": 106, "24645": 106, "21054": 106, "15045": 106, "14171": 106, "13832": 106, "13498": 106, "11490": 106, "9164": 106, "8769": 106, "6999": 106, "6031": 106, "5011": 106, "mistakenli": 106, "class_issu": 106, "aim": [106, 107], "domin": 106, "bunch": 107, "conll": 107, "2003": 107, "love": 107, "n_i": 107, "optional_list_of_ordered_class_nam": 107, "deepai": 107, "conll2003": 107, "rm": 107, "tokenclassif": 107, "2024": 107, "2400": 107, "52e0": 107, "1a00": 107, "1068": 107, "connect": 107, "443": 107, "await": 107, "982975": 107, "960k": 107, "959": 107, "94k": 107, "kb": 107, "mb": 107, "directori": 107, "inflat": 107, "182": 107, "113": 107, "17045998": 107, "16m": 107, "octet": 107, "26m": 107, "3mb": 107, "bert": 107, "read_npz": 107, "filepath": 107, "corrsespond": 107, "iob2": 107, "given_ent": 107, "entity_map": 107, "readfil": 107, "startswith": 107, "docstart": 107, "isalpha": 107, "isupp": 107, "indices_to_preview": 107, "nsentenc": 107, "eu": 107, "reject": 107, "boycott": 107, "british": 107, "lamb": 107, "00030412": 107, "00023826": 107, "99936208": 107, "00007009": 107, "00002545": 107, "99998795": 107, "00000401": 107, "00000218": 107, "00000455": 107, "00000131": 107, "00000749": 107, "99996115": 107, "00001371": 107, "0000087": 107, "00000895": 107, "99998936": 107, "00000382": 107, "00000178": 107, "00000366": 107, "00000137": 107, "99999101": 107, "00000266": 107, "00000174": 107, "0000035": 107, "00000109": 107, "99998768": 107, "00000482": 107, "00000202": 107, "00000438": 107, "0000011": 107, "00000465": 107, "99996392": 107, "00001105": 107, "0000116": 107, "00000878": 107, "99998671": 107, "00000364": 107, "00000213": 107, "00000472": 107, "00000281": 107, "99999073": 107, "00000211": 107, "00000159": 107, "00000442": 107, "00000115": 107, "peter": 107, "blackburn": 107, "00000358": 107, "00000529": 107, "99995623": 107, "0000129": 107, "0000024": 107, "00001812": 107, "99994141": 107, "00001645": 107, "00002162": 107, "brussel": 107, "1996": 107, "00001172": 107, "00000821": 107, "00004661": 107, "0000618": 107, "99987167": 107, "99999061": 107, "00000201": 107, "00000195": 107, "00000408": 107, "00000135": 107, "2254": 107, "2907": 107, "19392": 107, "9962": 107, "8904": 107, "19303": 107, "12918": 107, "9256": 107, "11855": 107, "18392": 107, "20426": 107, "19402": 107, "14744": 107, "19371": 107, "4645": 107, "10331": 107, "9430": 107, "6143": 107, "18367": 107, "12914": 107, "todai": 107, "weather": 107, "march": 107, "scalfaro": 107, "northern": 107, "himself": 107, "said": 107, "germani": 107, "nastja": 107, "rysich": 107, "north": 107, "spla": 107, "fought": 107, "khartoum": 107, "govern": 107, "south": 107, "1983": 107, "autonomi": 107, "animist": 107, "region": 107, "moslem": 107, "arabis": 107, "mayor": 107, "antonio": 107, "gonzalez": 107, "garcia": 107, "revolutionari": 107, "parti": 107, "wednesdai": 107, "troop": 107, "raid": 107, "farm": 107, "stole": 107, "rape": 107, "women": 107, "spring": 107, "chg": 107, "hrw": 107, "12pct": 107, "princ": 107, "photo": 107, "moment": 107, "spokeswoman": 107, "rainier": 107, "told": 107, "reuter": 107, "danila": 107, "carib": 107, "w224": 107, "equip": 107, "radiomet": 107, "earn": 107, "19996": 107, "london": 107, "denom": 107, "sale": 107, "uk": 107, "jp": 107, "fr": 107, "maccabi": 107, "hapoel": 107, "haifa": 107, "tel": 107, "aviv": 107, "hospit": 107, "rever": 107, "roman": 107, "cathol": 107, "nun": 107, "admit": 107, "calcutta": 107, "week": 107, "ago": 107, "fever": 107, "vomit": 107, "allianc": 107, "embattl": 107, "kabul": 107, "salang": 107, "highwai": 107, "mondai": 107, "tuesdai": 107, "suprem": 107, "council": 107, "led": 107, "jumbish": 107, "milli": 107, "movement": 107, "warlord": 107, "abdul": 107, "rashid": 107, "dostum": 107, "dollar": 107, "exchang": 107, "3570": 107, "12049": 107, "born": 107, "1937": 107, "provinc": 107, "anhui": 107, "dai": 107, "came": 107, "shanghai": 107, "citi": 107, "prolif": 107, "author": 107, "teacher": 107, "chines": 107, "16764": 107, "1990": 107, "historian": 107, "alan": 107, "john": 107, "percival": 107, "taylor": 107, "di": 107, "20446": 107, "pace": 107, "bowler": 107, "ian": 107, "harvei": 107, "claim": 107, "victoria": 107, "15514": 107, "cotti": 107, "osc": 107, "foreign": 107, "minist": 107, "7525": 107, "sultan": 107, "specter": 107, "crown": 107, "abdullah": 107, "defenc": 107, "aviat": 107, "jeddah": 107, "saudi": 107, "agenc": 107, "2288": 107, "hi": 107, "customari": 107, "outfit": 107, "champion": 107, "damp": 107, "scalp": 107, "canada": 107, "reign": 107, "olymp": 107, "donovan": 107, "bailei": 107, "1992": 107, "linford": 107, "christi": 107, "britain": 107, "1984": 107, "1988": 107, "carl": 107, "lewi": 107, "ambigi": 107, "punctuat": 107, "chicago": 107, "digest": 107, "philadelphia": 107, "usda": 107, "york": 107, "token_issu": 107, "471": 107, "kean": 107, "year": 107, "contract": 107, "manchest": 107, "19072": 107, "societi": 107, "bite": 107, "deliv": 107, "19910": 107, "father": 107, "clarenc": 107, "woolmer": 107, "renam": 107, "uttar": 107, "pradesh": 107, "india": 107, "ranji": 107, "trophi": 107, "nation": 107, "championship": 107, "captain": 107, "1949": 107, "15658": 107, "19879": 107, "iii": 107, "brian": 107, "shimer": 107, "randi": 107, "jone": 107, "19104": 107}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "neighbor"], [54, 0, 0, "-", "outlier"], [55, 0, 0, "-", "token_classification_utils"], [56, 0, 0, "-", "util"], [57, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[51, 0, 0, "-", "knn_graph"], [52, 0, 0, "-", "metric"], [53, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[51, 7, 1, "", "DEFAULT_K"], [51, 1, 1, "", "construct_knn_graph_from_index"], [51, 1, 1, "", "create_knn_graph_and_index"], [51, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[52, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [52, 7, 1, "", "ROW_COUNT_CUTOFF"], [52, 1, 1, "", "decide_default_metric"], [52, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[54, 1, 1, "", "correct_precision_errors"], [54, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, 1, 1, "", "color_sentence"], [55, 1, 1, "", "filter_sentence"], [55, 1, 1, "", "get_sentence"], [55, 1, 1, "", "mapping"], [55, 1, 1, "", "merge_probs"], [55, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[56, 1, 1, "", "append_extra_datapoint"], [56, 1, 1, "", "clip_noise_rates"], [56, 1, 1, "", "clip_values"], [56, 1, 1, "", "compress_int_array"], [56, 1, 1, "", "confusion_matrix"], [56, 1, 1, "", "csr_vstack"], [56, 1, 1, "", "estimate_pu_f1"], [56, 1, 1, "", "extract_indices_tf"], [56, 1, 1, "", "force_two_dimensions"], [56, 1, 1, "", "format_labels"], [56, 1, 1, "", "get_missing_classes"], [56, 1, 1, "", "get_num_classes"], [56, 1, 1, "", "get_unique_classes"], [56, 1, 1, "", "is_tensorflow_dataset"], [56, 1, 1, "", "is_torch_dataset"], [56, 1, 1, "", "num_unique_classes"], [56, 1, 1, "", "print_inverse_noise_matrix"], [56, 1, 1, "", "print_joint_matrix"], [56, 1, 1, "", "print_noise_matrix"], [56, 1, 1, "", "print_square_matrix"], [56, 1, 1, "", "remove_noise_from_class"], [56, 1, 1, "", "round_preserving_row_totals"], [56, 1, 1, "", "round_preserving_sum"], [56, 1, 1, "", "smart_display_dataframe"], [56, 1, 1, "", "subset_X_y"], [56, 1, 1, "", "subset_data"], [56, 1, 1, "", "subset_labels"], [56, 1, 1, "", "train_val_split"], [56, 1, 1, "", "unshuffle_tensorflow_dataset"], [56, 1, 1, "", "value_counts"], [56, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[57, 1, 1, "", "assert_indexing_works"], [57, 1, 1, "", "assert_nonempty_input"], [57, 1, 1, "", "assert_valid_class_labels"], [57, 1, 1, "", "assert_valid_inputs"], [57, 1, 1, "", "labels_to_array"], [57, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 92, 94, 95, 97, 98, 101, 107], "count": [3, 98], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 88, 89, 90, 91, 92, 93, 94, 95, 98, 101], "creat": [7, 89, 90, 91, 98, 100], "your": [7, 83, 90, 91, 95, 97, 98], "own": 7, "issu": [7, 9, 10, 21, 30, 83, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 90], "us": [7, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "gener": 8, "cluster": [8, 97], "id": 8, "guid": [9, 11], "type": [9, 10, 98], "custom": [9, 90], "cleanlab": [9, 10, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "studio": [9, 10], "easi": [9, 10, 83, 92, 94, 95], "mode": [9, 10, 83, 92, 94, 95], "can": [10, 89, 91, 96, 97, 98, 100], "detect": [10, 88, 91, 92, 94, 95, 97, 98, 102, 103], "estim": [10, 98, 100, 101], "each": 10, "label": [10, 23, 25, 30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "outlier": [10, 28, 54, 70, 89, 92, 94, 95, 101, 103], "Near": [10, 91, 92, 94, 95], "duplic": [10, 19, 91, 92, 94, 95, 97, 101], "non": [10, 95], "iid": [10, 95], "class": [10, 84, 98, 106], "imbal": [10, 20], "imag": [10, 92, 103], "specif": [10, 21, 106], "underperform": [10, 97], "group": [10, 97], "null": [10, 27], "data": [10, 12, 83, 86, 88, 89, 90, 91, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "valuat": 10, "option": 10, "paramet": [10, 98], "get": [11, 89, 90, 91, 100, 101, 102, 106, 107], "start": [11, 96], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 97, 98], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 72, 73, 74, 97, 105], "prioriti": 30, "order": 30, "find": [30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "underperforming_group": 31, "model_output": 32, "report": [33, 92], "dataset": [36, 62, 83, 87, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102, 103, 105, 106, 107], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 63, 66, 75, 79, 98], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "neighbor": 50, "knn_graph": 51, "metric": 52, "search": [53, 90], "token_classification_util": 55, "util": 56, "valid": [57, 92, 104], "fasttext": 58, "model": [59, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105], "kera": 60, "multiannot": [61, 100], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 98], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 89, 91, 97, 98], "segment": [76, 106], "token_classif": [80, 107], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "instal": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "2": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "common": [83, 84, 107], "3": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "handl": [83, 97], "error": [83, 87, 92, 97, 98, 100, 101, 102, 105, 106, 107], "train": [83, 86, 87, 88, 97, 103, 105], "robust": [83, 86, 87, 98, 105], "noisi": [83, 86, 87, 98, 105], "4": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 102, 103, 105], "curat": 83, "fix": [83, 97], "level": [83, 96, 98, 107], "5": [83, 86, 88, 89, 91, 92, 94, 98, 100, 105], "improv": [83, 100], "via": [83, 98, 100], "mani": [83, 98], "other": [83, 100, 102, 105], "techniqu": 83, "contribut": 83, "how": [84, 97, 98, 100, 101, 107], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 91, 98, 105], "pre": [84, 88, 97, 103], "function": [84, 90], "name": 84, "chang": 84, "modul": [84, 98], "new": [84, 89], "remov": 84, "argument": [84, 90], "variabl": 84, "cleanlearn": [85, 97, 98], "tutori": [85, 93, 96, 99], "structur": 86, "tabular": [86, 94], "requir": [86, 87, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "depend": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "load": [86, 87, 88, 89, 90, 91, 94, 95, 105], "process": [86, 94, 103, 105], "select": [86, 94], "comput": [86, 88, 92, 94, 95, 97, 100, 104], "out": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "sampl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "predict": [86, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 104], "probabl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "more": [86, 87, 89, 91, 98, 105], "text": [87, 95, 107], "format": [87, 95, 97, 101, 102], "defin": [87, 92, 95, 105], "potenti": [87, 100, 105], "an": [88, 92, 97], "audio": 88, "import": [88, 89, 90, 91, 92, 96, 98, 100], "them": [88, 96, 98], "speechbrain": 88, "featur": [88, 92, 103], "fit": 88, "linear": 88, "datamonitor": 89, "leverag": 89, "statist": [89, 100], "audit": [89, 90, 91], "skip": [89, 91, 96, 98, 100], "detail": [89, 91, 96, 98, 100], "classifi": [89, 90, 91], "6": [89, 98], "about": [89, 91], "addit": [89, 91], "7": [89, 92, 98], "8": [89, 96, 98], "look": 89, "both": 89, "workflow": [90, 98], "instanti": 90, "object": [90, 102], "increment": 90, "specifi": [90, 97], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 98], "kind": [91, 102], "inform": [91, 92], "fetch": [92, 96], "normal": 92, "fashion": 92, "mnist": 92, "prepar": 92, "k": [92, 94, 104], "fold": [92, 104], "cross": [92, 104], "embed": [92, 103], "view": 92, "most": [92, 107], "like": 92, "exampl": [92, 97, 98, 103], "sever": 92, "set": [92, 98], "dark": 92, "top": [92, 106], "low": 92, "numer": 94, "categor": 94, "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": 94, "drift": [95, 101], "understand": 96, "evalu": 96, "health": [96, 98], "popular": 96, "faq": 97, "what": [97, 98, 104], "do": [97, 98], "i": [97, 98, 104], "infer": 97, "correct": 97, "ha": 97, "flag": 97, "should": 97, "v": 97, "test": [97, 98, 103], "big": 97, "limit": 97, "memori": 97, "why": 97, "isn": 97, "t": 97, "work": [97, 98, 100, 107], "me": 97, "differ": [97, 102], "clean": [97, 98], "final": 97, "hyperparamet": 97, "tune": 97, "onli": 97, "one": [97, 98, 101, 106], "doe": [97, 100, 107], "take": 97, "so": 97, "long": 97, "slice": 97, "when": [97, 98], "identifi": [97, 102], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "The": 98, "centric": 98, "ai": 98, "machin": 98, "find_label_issu": 98, "line": 98, "code": 98, "visual": [98, 102, 103, 106], "twenti": 98, "lowest": 98, "qualiti": [98, 100, 101, 102, 106, 107], "see": 98, "now": 98, "let": 98, "": 98, "happen": 98, "we": 98, "merg": 98, "seafoam": 98, "green": 98, "yellow": 98, "too": 98, "you": 98, "re": 98, "One": 98, "score": [98, 100, 101, 102, 106, 107], "rule": 98, "overal": [98, 106], "accur": 98, "thi": 98, "directli": 98, "fulli": 98, "character": 98, "nois": 98, "matrix": [98, 101], "joint": 98, "prior": 98, "true": 98, "distribut": 98, "flip": 98, "rate": 98, "ani": 98, "again": 98, "support": 98, "lot": 98, "method": 98, "filter_bi": 98, "automat": 98, "everi": 98, "uniqu": 98, "num_label_issu": 98, "threshold": 98, "found": 98, "Not": 98, "sure": 98, "ensembl": 98, "multipl": [98, 100], "predictor": 98, "consensu": 100, "annot": 100, "initi": 100, "major": 100, "vote": 100, "better": 100, "compar": 100, "inspect": 100, "retrain": 100, "further": 100, "multi": 101, "beyond": 101, "mislabel": [101, 106, 107], "given": 101, "hot": 101, "binari": 101, "without": 101, "applic": 101, "real": 101, "download": [102, 106, 107], "objectlab": 102, "exploratori": 102, "analysi": 102, "pytorch": 103, "timm": 103, "cifar10": 103, "some": 103, "pred_prob": [103, 106, 107], "wai": 105, "semant": 106, "which": 106, "ar": 106, "commonli": 106, "focus": 106, "token": 107, "word": 107, "sentenc": 107, "contain": 107, "particular": 107}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [54, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[50, "neighbor"]], "knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "search": [[53, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "util": [[56, "module-cleanlab.internal.util"]], "validation": [[57, "module-cleanlab.internal.validation"]], "fasttext": [[58, "fasttext"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [105, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [105, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [105, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[89, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[89, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [100, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[89, "2.-Create-and-load-the-data-(can-skip-these-details)"], [91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[89, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[89, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[89, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[89, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[89, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[89, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [98, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[97, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[98, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[98, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[98, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[98, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[98, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[98, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[98, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[98, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[98, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[98, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[98, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[98, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[98, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[98, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[98, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[98, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[98, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[98, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[98, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[99, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[100, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[100, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[100, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[100, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[100, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[100, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[100, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[100, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[100, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[101, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[101, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[101, "2.-Format-data,-labels,-and-model-predictions"], [102, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[101, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [106, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[101, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[101, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[101, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[101, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[101, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[102, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[102, "1.-Install-required-dependencies-and-download-data"], [106, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[102, "Get-label-quality-scores"], [106, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[102, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[102, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[102, "Other-uses-of-visualize"]], "Exploratory data analysis": [[102, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[103, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[103, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[103, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[103, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[103, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[103, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[104, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[104, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[104, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[105, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[105, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[105, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[106, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[106, "2.-Get-data,-labels,-and-pred_probs"], [107, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[106, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[106, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[106, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[107, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[107, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[107, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[107, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[107, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.neighbor"], [51, "module-cleanlab.internal.neighbor.knn_graph"], [52, "module-cleanlab.internal.neighbor.metric"], [53, "module-cleanlab.internal.neighbor.search"], [54, "module-cleanlab.internal.outlier"], [55, "module-cleanlab.internal.token_classification_utils"], [56, "module-cleanlab.internal.util"], [57, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[50, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[53, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[54, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[56, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[57, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 91, 98, 100, 101], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 91, 98, 100, 101], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 91, 98, 100, 101], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 54, 55, 56, 68, 92, 96, 107], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 53, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 90, 96, 104], "benchmark": [1, 37, 83, 84, 89, 90, 91, 98, 100, 101], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 51, 53, 54, 56, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "core": [1, 40, 43, 75, 77], "algorithm": [1, 2, 8, 10, 31, 38, 42, 53, 54, 56, 61, 70, 79, 81, 83, 97, 98, 100, 107], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "introduc": [1, 88, 97, 98], "synthet": [1, 100, 101, 106], "nois": [1, 2, 3, 36, 43, 46, 56, 62, 89, 90, 91, 96, 100, 105], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 90, 99, 103, 104], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 56, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 91, 99, 100, 103, 104, 105, 106], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 90, 94, 99, 100, 104], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 52, 53, 59, 63, 66, 69, 78, 82, 92, 94, 95, 98, 102, 107], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 53, 54, 56, 59, 61, 66, 69, 70, 71, 83, 92, 97, 101], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 51, 53, 54, 56, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 51, 53, 56, 57, 70, 71, 73, 78, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 104, 106, 107], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 53, 54, 56, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "matric": [1, 3, 46, 97], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 52, 53, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "learn": [1, 2, 3, 4, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 53, 56, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 90, 92, 94, 95, 96, 100, 101, 105], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 89, 91, 97, 98, 100, 101, 102, 105, 106, 107], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 56, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 91, 94, 95, 97, 99, 100], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 55, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 51, 56, 57, 63, 66, 68, 69, 70, 71, 94, 102, 103], "trace": [1, 89, 90, 91, 98, 100, 101], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 51, 52, 53, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "more": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 52, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 106, 107], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 106, 107], "noise_matrix": [1, 2, 3, 10, 46, 56, 89, 90, 91, 98, 100, 101], "py": [1, 3, 33, 37, 38, 43, 46, 48, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 90, 98, 100], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 51, 52, 54, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 107], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 54, 56, 61, 69, 70, 71, 75, 94, 95, 98, 100, 107], "true_label": [1, 2, 3, 36, 46, 56, 98, 100], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 91, 97, 98, 100, 101, 102, 103, 106, 107], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 57, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 97, 98, 100, 101, 105], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 54, 68, 73, 87, 91, 95, 97, 98, 100, 101, 102, 103, 105], "achiev": [1, 2, 37, 38, 41, 73, 97, 100, 107], "better": [1, 5, 10, 43, 52, 61, 63, 71, 73, 74, 83, 87, 88, 91, 94, 95, 97, 98, 101, 102, 103, 107], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 51, 61, 71, 73, 86, 88, 89, 90, 91, 92, 94, 97, 98, 100, 101, 103], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 50, 52, 69, 73, 83, 86, 87, 90, 97, 98, 100, 101, 104, 105], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 54, 61, 62, 69, 70, 71, 97, 100, 103], "amount": [1, 3, 92], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 91, 92, 95], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 107], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 53, 54, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 96, 97, 98, 101, 102, 103, 106, 107], "condit": [1, 2, 3, 46, 52, 55, 56, 71, 92, 98, 107], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 98, 99, 101, 102, 103, 106, 107], "k_": [1, 2, 3, 46, 56], "k_y": [1, 2, 3, 46, 56], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 50, 55, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106], "fraction": [1, 2, 3, 10, 20, 38, 46, 56, 61, 73, 94, 97], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 100, 101, 102, 104, 105, 106, 107], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 55, 56, 63, 71, 73, 74, 86, 88, 89, 90, 91, 92, 94, 95, 97, 100, 102, 104, 106, 107], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 53, 55, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 107], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 56, 57, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 106, 107], "assum": [1, 2, 3, 12, 43, 46, 55, 56, 71, 75, 78, 97, 101, 103, 105, 106, 107], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 52, 55, 56, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 56, 62, 63, 65, 68, 73, 89, 90, 91, 92, 97, 98, 100, 101, 106, 107], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 104], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 51, 53, 54, 56, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 55, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "return": [1, 2, 3, 4, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 101, 102, 105, 106, 107], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 55, 56, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 56, 61, 62, 63, 65, 66, 82, 87, 88, 91, 92, 94, 95, 96, 97, 98, 105, 107], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 51, 52, 54, 55, 56, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 106, 107], "perfect": [1, 2, 36, 73, 98, 102], "exactli": [1, 3, 10, 36, 37, 41, 43, 64, 70, 90, 91, 92, 94, 95, 98], "yield": [1, 37, 41, 89], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 51, 52, 53, 54, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 54, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 56, 57, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "loop": [1, 3, 46, 56, 92, 102], "implement": [1, 2, 3, 4, 9, 14, 22, 37, 38, 40, 41, 46, 50, 52, 53, 56, 70, 73, 83, 86, 88, 90, 94, 103, 104], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 54, 57, 68, 69, 73, 75, 77, 81, 87, 88, 90, 91, 92, 94, 95, 96, 101, 105, 106], "do": [1, 2, 5, 9, 10, 36, 40, 41, 56, 57, 70, 71, 75, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 60, 73, 87, 88, 90, 91, 92, 94, 95, 96, 98, 103], "pseudocod": [1, 104], "happen": [1, 10, 43, 63, 89, 95, 100, 106], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 51, 52, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 89, 92, 95, 96, 97, 100, 101, 102, 105, 106, 107], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 53, 65, 73, 83, 87, 88, 89, 95, 97, 98, 102, 103], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 54, 55, 56, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106], "distinct": [1, 18, 56, 107], "natur": [1, 10, 100, 103], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 106, 107], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 54, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 55, 56, 57, 70, 71, 73, 86, 87, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 56, 57, 60, 69, 73, 74, 87, 88, 89, 90, 91, 94, 97, 98, 100, 101, 103, 105], "round": [1, 40, 43, 56, 73, 97, 105], "astyp": [1, 100], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 51, 52, 53, 54, 55, 56, 57, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 90, 92, 102, 103], "rang": [1, 3, 5, 7, 12, 46, 48, 54, 56, 69, 73, 74, 89, 92, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "pragma": 1, "cover": [1, 3, 84, 96, 97], "choic": [1, 8, 43, 52, 54, 92, 97, 101, 103], "replac": [1, 55, 60, 71, 86, 87, 89, 90, 91, 92, 95, 96, 97, 100, 103], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 71, 88, 89, 90, 91], "05": [1, 10, 26, 30, 55, 69, 73, 79, 81, 94, 96, 97, 98, 102, 107], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 91, 98, 100, 101], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 92, 97, 98, 100, 101, 106], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 73, 86, 88, 89, 90, 91, 94, 96, 98, 100, 101], "max_it": [1, 87, 88, 95, 103], "10000": [1, 40, 96, 97], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 53, 55, 56, 57, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 92, 94, 96, 97, 98, 100, 101, 103, 105], "diagon": [1, 3, 5, 43, 46, 56], "equal": [1, 3, 10, 12, 63, 68, 78, 104], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 56, 73, 83, 87, 88, 92, 94, 95, 97, 106, 107], "impli": [1, 10, 36, 62, 69], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 54, 55, 56, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 91, 98, 100, 101], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 54, 56, 61, 62, 63, 66, 86, 87, 94, 95, 98, 101, 102, 105], "maximum": [1, 10, 70, 78, 82, 106], "minimum": [1, 8, 10, 20, 43, 45, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 68, 73, 90, 97, 98, 100, 102, 103], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 90, 92, 97, 105, 106], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 55, 56, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 55, 56, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "necessari": [1, 2, 3, 4, 7, 10, 12, 55, 89, 90], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 60, 61, 62, 64, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 56, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 89, 91, 95, 97, 100, 101, 103, 105], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 51, 53, 56, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 96, 97, 98, 104], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 51, 53, 57, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 89, 91, 92, 95, 96, 97, 101, 102, 105, 107], "when": [1, 2, 3, 4, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 53, 54, 56, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 92, 94, 95, 96, 100, 104, 105, 106, 107], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 107], "rate": [1, 2, 3, 10, 38, 56, 88, 107], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 54, 56, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 91, 94, 95, 97, 100, 101, 103, 104, 105, 106, 107], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 56, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 53, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 104, 105, 106, 107], "high": [1, 2, 16, 40, 43, 52, 56, 68, 71, 73, 86, 87, 89, 90, 91, 92, 96, 98, 102, 105, 106, 107], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 51, 56, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "imposs": [1, 10, 98], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 55, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "low": [1, 10, 56, 61, 83, 89, 90, 91, 95, 98, 102, 106], "zero": [1, 3, 5, 37, 41, 45, 56, 57, 90, 92, 101, 102, 103], "forc": [1, 2, 3, 5, 41, 90, 107], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 56, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 92, 94, 95, 97, 98, 101, 102, 103, 105, 106, 107], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 51, 52, 54, 55, 56, 57, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 90, 91, 92, 95, 100, 101, 102, 103, 104, 105, 106, 107], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 59, 84], "produc": [1, 2, 5, 9, 10, 16, 48, 61, 71, 73, 75, 77, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 106, 107], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 54, 60, 61, 62, 73, 91, 95, 97, 102], "opposit": [1, 107], "occur": [1, 3, 10, 36, 55, 68, 90, 91, 92, 97, 103], "small": [1, 3, 10, 36, 40, 48, 51, 54, 56, 62, 69, 87, 92, 95, 96, 101, 103], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 51, 54, 55, 57, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "max": [1, 43, 70, 71, 91, 92, 103], "tri": [1, 37, 41, 104], "befor": [1, 2, 3, 37, 41, 54, 56, 70, 73, 78, 86, 87, 89, 95, 97, 98, 100, 103, 105], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 30, 36, 37, 40, 41, 43, 46, 48, 51, 53, 54, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 90, 91, 92, 94, 97, 98, 101, 105, 106], "left": [1, 2, 43, 45, 54, 56, 63, 66, 69, 89, 90, 91, 101, 102, 103, 106], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 51, 52, 61, 66, 68, 69, 70, 89, 90, 91, 96, 100, 101, 102, 107], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 60, 97, 98, 106], "length": [1, 5, 12, 26, 27, 36, 38, 43, 56, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 101, 103, 106, 107], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 54, 56, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 100, 104, 106, 107], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 56, 57, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 100, 101, 102, 106, 107], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 91, 103], "ensur": [1, 2, 10, 37, 41, 53, 54, 56, 57, 60, 68, 71, 73, 86, 87, 88, 90, 91, 92, 95, 97, 98, 103, 104, 105], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106], "least": [1, 4, 10, 18, 31, 36, 40, 61, 62, 68, 71, 81, 91, 92, 97, 100, 103, 106], "int_arrai": [1, 56], "can": [2, 3, 4, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 51, 52, 53, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 90, 92, 94, 95, 101, 102, 103, 104, 105, 106, 107], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 53, 55, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 91, 96, 99, 104, 106, 107], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 51, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 89, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 107], "regular": [2, 3, 40, 60], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 56, 57, 62, 63, 64, 65, 70, 71, 83, 97, 98, 99], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 54, 56, 61, 63, 71, 73, 83, 87, 88, 89, 95, 96, 97, 98, 101, 103, 105, 106, 107], "cleanlearn": [2, 3, 10, 23, 30, 37, 56, 60, 72, 73, 74, 83, 84, 86, 87, 105], "wrap": [2, 37, 41, 50, 60, 70, 73, 83, 86, 87, 89, 90, 91, 94, 95, 98, 105], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 60, 69, 70, 73, 78, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 102], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 53, 56, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105], "classifi": [2, 3, 41, 48, 56, 61, 64, 70, 71, 83, 84, 86, 87, 88, 94, 95, 97, 100, 101, 103, 104, 106, 107], "adher": [2, 41, 73], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 56, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "api": [2, 3, 14, 60, 66, 69, 70, 73, 84, 97, 105], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 71, 73, 75, 88, 90, 91, 94, 96, 97, 100, 103, 107], "four": [2, 10, 96, 98, 107], "clf": [2, 3, 5, 48, 73, 83, 86, 94, 97, 98, 101], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 51, 53, 59, 60, 70, 72, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 104, 105, 107], "sample_weight": [2, 41, 73, 98], "predict_proba": [2, 5, 36, 39, 41, 48, 59, 60, 86, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 103], "predict": [2, 3, 4, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 55, 56, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 98, 99, 103, 105, 106, 107], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 54, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 103, 105], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 51, 52, 53, 56, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 92, 93, 99, 104], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 51, 56, 57, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 51, 52, 53, 56, 70, 73, 83, 86, 89, 90, 91, 94, 95, 97, 98, 100, 101, 105], "element": [2, 3, 5, 36, 42, 43, 45, 56, 61, 63, 71, 78, 79, 81, 87, 88, 95, 97, 107], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 56, 61, 62, 66, 69, 71, 73, 86, 87, 88, 90, 92, 94, 97, 100, 101, 102, 103, 105, 106, 107], "index": [2, 10, 26, 36, 43, 50, 51, 53, 55, 56, 57, 62, 71, 73, 78, 81, 82, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 51, 53, 54, 55, 56, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 104, 105, 106, 107], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 55, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 51, 54, 56, 57, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 103, 104, 105], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 51, 52, 53, 63, 66, 69, 71, 73, 74, 83, 84, 87, 96, 97, 98, 99, 101, 102, 105, 106, 107], "size": [2, 10, 31, 37, 40, 41, 43, 48, 51, 52, 63, 68, 69, 73, 75, 77, 87, 89, 92, 94, 97, 98, 100, 101, 102, 104, 106], "here": [2, 5, 7, 10, 14, 40, 43, 46, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "re": [2, 5, 37, 41, 53, 55, 61, 73, 83, 86, 87, 88, 89, 90, 94, 95, 97, 105, 106, 107], "weight": [2, 10, 37, 38, 41, 48, 51, 61, 68, 71, 73, 87, 88, 89, 90, 91, 95], "loss": [2, 38, 60, 71, 73, 92], "while": [2, 3, 10, 37, 40, 41, 47, 48, 56, 73, 83, 92, 97, 98, 100, 101, 105], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 56, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 104, 106, 107], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 56, 57, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 92, 97], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 53, 56, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 89, 92, 94, 96, 100, 101, 102, 103, 104, 105, 106, 107], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 61, 90, 91, 92, 97, 104, 105], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 57, 62, 63, 68, 69, 73, 75, 87, 95, 97, 101, 102, 105, 106], "clonabl": [2, 73], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 56, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 51, 52, 54, 55, 56, 57, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "clone": [2, 73, 101], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 65, 69, 73, 79, 84, 88, 90, 97, 98, 100, 101, 102, 103, 105, 107], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 54, 55, 61, 62, 63, 65, 68, 69, 73, 83, 90, 91, 92, 97, 99, 101, 102, 105], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 51, 56, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105], "manual": [2, 73, 86, 87, 88, 97, 103, 104, 105, 107], "pytorch": [2, 37, 38, 41, 73, 83, 88, 92, 97, 99, 101, 106], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 56, 60, 70, 73, 87, 88, 89, 90, 91, 95, 97, 98, 101, 103, 104, 105, 106, 107], "__init__": [2, 38, 73, 92], "independ": [2, 3, 10, 62, 73, 95, 104, 105, 107], "compat": [2, 37, 40, 41, 53, 60, 73, 74, 77, 81, 83, 86, 87, 97, 104, 105], "neural": [2, 38, 60, 70, 73, 88, 92, 97, 101, 103, 105], "network": [2, 37, 38, 41, 60, 70, 73, 87, 88, 92, 95, 97, 101, 103, 105], "typic": [2, 37, 41, 53, 70, 73, 86, 87, 88, 91, 92, 94, 95, 103, 104], "initi": [2, 3, 13, 18, 37, 41, 61, 73, 86, 95, 97], "insid": [2, 41, 73, 97, 98], "There": [2, 3, 7, 83, 98, 100], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 53, 56, 66, 68, 69, 84, 87, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 55, 56, 61, 73, 87, 88, 90, 95, 96, 97, 103, 104, 107], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 56, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 92, 94, 95, 98, 100, 101, 102, 104, 106, 107], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 56, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "prune": [2, 3, 43, 63, 73, 84, 102], "everyth": [2, 69, 98], "els": [2, 69, 89, 90, 92, 96, 97, 100, 101, 102], "mathemat": [2, 3, 10, 46, 101], "keep": [2, 13, 14, 56, 83, 89, 90, 96, 97, 106], "belong": [2, 3, 10, 36, 43, 45, 46, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 91, 92, 98, 101, 103, 106, 107], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 53, 54, 55, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 104], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 56, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 91, 94, 95, 96, 99], "erron": [2, 3, 36, 43, 46, 56, 62, 63, 71, 73, 74, 75, 103, 105], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 51, 54, 55, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 94, 95, 97, 101, 102, 103, 105, 106, 107], "linear_model": [2, 5, 36, 56, 73, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logisticregress": [2, 3, 5, 36, 56, 83, 87, 88, 89, 90, 91, 95, 97, 98, 100, 103], "logreg": 2, "cl": [2, 14, 30, 73, 83, 86, 87, 97, 98, 105], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 51, 53, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 91, 95, 96, 97, 98, 100, 102, 103, 105], "x_train": [2, 86, 89, 90, 91, 98, 100, 101, 105], "labels_maybe_with_error": 2, "had": [2, 3, 73, 102], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 51, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 93, 99, 100, 104, 105], "pred": [2, 43, 56, 86, 87, 104, 105], "x_test": [2, 86, 89, 90, 91, 98, 101, 105], "might": [2, 5, 10, 61, 73, 78, 86, 87, 90, 91, 92, 97, 102], "case": [2, 3, 10, 13, 36, 48, 61, 73, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 103, 105, 107], "standard": [2, 3, 5, 30, 36, 43, 60, 62, 63, 65, 71, 73, 83, 86, 90, 91, 94, 96, 98, 102], "adapt": [2, 37, 39, 56, 59, 73, 103], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 102], "scikera": [2, 60, 73, 97], "open": [2, 40, 96, 102, 107], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 54, 55, 65, 70, 71, 73, 79, 81, 82, 83, 90, 91, 92, 94, 95, 96, 98, 101, 102, 105, 107], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 53, 55, 60, 66, 68, 70, 73, 83, 84, 86, 87, 90, 91, 95, 100, 107], "made": [2, 5, 16, 37, 41, 52, 73, 86, 87, 92, 95, 97, 100, 102, 104, 105], "easi": [2, 11, 46, 73, 90, 91, 96, 97, 98, 101], "inherit": [2, 7, 38, 73], "baseestim": [2, 41, 73], "yourmodel": [2, 73], "def": [2, 7, 14, 37, 41, 60, 73, 87, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 70, 71, 73, 86, 87, 90, 92, 95, 96, 101, 106, 107], "refer": [2, 10, 16, 37, 41, 42, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 90, 91, 92, 94, 95, 97, 98, 101, 104, 105], "origin": [2, 5, 10, 41, 42, 43, 55, 56, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 90, 92, 94, 95, 97, 98, 102, 103, 105, 107], "total": [2, 3, 4, 36, 40, 56, 62, 82, 89, 92, 97, 106], "state": [2, 3, 5, 37, 38, 41, 47, 73, 98, 101, 102, 107], "art": [2, 38, 98, 101], "northcutt": [2, 3, 36, 70, 71], "et": [2, 3, 36, 38, 70, 71], "al": [2, 3, 36, 38, 70, 71], "2021": [2, 3, 36, 70, 71], "weak": [2, 69], "supervis": [2, 10, 90, 91, 97, 100], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 53, 55, 56, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 90, 99, 104], "uncertainti": [2, 10, 45, 70, 73, 97, 103, 105], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 51, 52, 54, 61, 68, 69, 73, 83, 87, 90, 91, 92, 95, 97, 98, 101, 104], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 55, 56, 57, 60, 61, 71, 73, 83, 84, 87, 89, 90, 91, 96, 103, 105], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 55, 56, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 107], "deep": [2, 39, 41, 59, 60, 73, 95], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 53, 56, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "subfield": 2, "theori": [2, 98], "machin": [2, 4, 5, 9, 10, 14, 16, 33, 39, 54, 59, 73, 86, 87, 90, 91, 96, 100], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 62, 69, 70, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 104, 105], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 56, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "pu": [2, 56], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 55, 56, 57, 60, 69, 73, 83, 84, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "discret": [2, 34, 43, 46, 56, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 56, 70, 71, 83, 87, 88, 90, 91, 92, 94, 95, 98, 101, 102, 103, 106, 107], "would": [2, 3, 5, 37, 40, 41, 43, 52, 56, 63, 73, 83, 87, 89, 90, 92, 97, 98, 103, 105, 107], "obtain": [2, 5, 8, 10, 16, 43, 61, 63, 66, 69, 71, 74, 88, 91, 95, 97, 100, 102, 104, 106, 107], "been": [2, 4, 36, 43, 46, 51, 55, 56, 61, 62, 66, 68, 70, 71, 73, 88, 90, 94, 97, 98, 100, 101, 102, 103, 106, 107], "dure": [2, 10, 16, 53, 70, 73, 86, 87, 88, 89, 94, 95, 97, 98, 101, 104, 105, 107], "denot": [2, 3, 46, 48, 56, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 98, 100, 103, 105, 107], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 56, 61, 62, 65, 66, 69, 73, 74, 81, 87, 90, 95, 96, 97, 101, 102, 103, 104, 106, 107], "converge_latent_estim": [2, 3], "pulearn": [2, 56], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 98], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 91, 96, 105], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 56, 73, 88, 97, 98, 100, 101, 102], "messi": [2, 73, 98], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 91, 96, 97], "robust": [2, 46, 73, 91, 97], "prone": [2, 73], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 51, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 61, 68, 73, 89, 90, 91, 97, 100, 102], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 51, 61, 77, 81, 88, 90, 91, 95, 98], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 98, 100, 102, 104, 107], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 54, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "experiment": [2, 37, 38, 40, 41, 42, 63, 84, 89, 97], "wrapper": [2, 60, 86, 87, 88, 105], "around": [2, 68, 89, 90, 91, 102, 103, 107], "fasttext": [2, 59], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 70, 73, 86, 87, 89, 94, 95, 96, 97, 106, 107], "along": [2, 48, 63, 81, 89, 90, 91, 92, 97, 103], "dimens": [2, 56, 75, 78, 92, 97, 103, 106], "select": [2, 9, 10, 26, 50, 61, 71, 92, 97, 100, 103], "split": [2, 3, 5, 10, 12, 40, 48, 55, 56, 73, 86, 88, 89, 90, 91, 92, 94, 95, 96, 98, 101, 104, 107], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 105, 106, 107], "fold": [2, 3, 36, 43, 46, 73, 86, 88, 94, 96, 97, 102, 106], "By": [2, 36, 62, 63, 73, 90, 97, 106], "need": [2, 3, 10, 36, 37, 40, 41, 43, 53, 62, 63, 65, 70, 73, 83, 87, 88, 90, 91, 95, 97, 98, 100, 101, 102, 106], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 51, 52, 53, 56, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 90, 91, 96, 98, 99, 102, 103, 105, 106], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 53, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 106, 107], "numer": [2, 3, 4, 5, 10, 13, 22, 30, 34, 48, 51, 52, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 95, 98, 100, 101, 103, 105], "consist": [2, 3, 37, 41, 50, 56, 61, 106, 107], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 54, 56, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105, 107], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 56, 62, 73, 91, 95], "close": [2, 3, 10, 40, 46, 70, 88, 90, 91, 92, 94, 95, 97, 98, 102], "form": [2, 3, 10, 37, 38, 41, 46, 55, 56, 71, 73, 97], "equival": [2, 3, 37, 41, 46, 70, 103, 105], "iter": [2, 3, 36, 37, 41, 43, 56, 62, 63, 73, 89, 97, 100, 106], "enforc": [2, 37, 41, 56], "perfectli": [2, 36, 62, 98], "certain": [2, 3, 5, 37, 41, 60, 69, 73, 89, 90, 91, 96, 102, 103], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 92, 97, 107], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 53, 55, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 90], "filter": [2, 3, 10, 40, 42, 55, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 92, 95, 96, 97, 101, 102, 105, 106, 107], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 101, 102, 105, 106, 107], "particularli": [2, 83, 100, 103], "filter_bi": [2, 3, 40, 43, 63, 84, 97], "frac_nois": [2, 43, 63, 79, 97], "min_examples_per_class": [2, 43, 63, 91, 97, 98], "impact": [2, 4, 10, 90, 91, 92], "ml": [2, 4, 5, 9, 10, 15, 73, 83, 86, 87, 90, 91, 92, 94, 95, 100, 101, 105], "accuraci": [2, 38, 71, 86, 87, 88, 92, 97, 98, 100, 103, 105, 106], "n_job": [2, 40, 43, 63, 75, 77, 79, 97, 103, 106], "disabl": [2, 37, 41, 43, 103], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 55, 61, 63, 69, 75, 77, 79, 87, 88, 89, 90, 97, 100, 104], "caus": [2, 43, 48, 90, 91, 97], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 90, 91, 96, 97, 101, 102, 103, 106, 107], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 98, 101, 102, 106, 107], "adjust_pred_prob": [2, 10, 65, 70, 71, 98], "control": [2, 5, 9, 10, 16, 40, 43, 61, 69, 70, 73, 79, 81, 90, 91, 96, 97], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 56, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 92, 94, 95, 96, 102, 103, 104, 105, 106], "much": [2, 10, 36, 40, 43, 73, 89, 96, 97, 98, 100, 103], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 56, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 90, 92, 95, 96, 97, 102, 103, 104, 105], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 56, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 92, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "suppress": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78, 106, 107], "statement": [2, 40, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 40, 63, 69, 73, 98], "limit": [2, 5, 16, 40, 63, 89, 102, 106, 107], "memori": [2, 37, 40, 41, 63, 69, 75, 77, 89, 90, 106], "label_issues_batch": [2, 39, 63, 97], "find_label_issues_batch": [2, 39, 40, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 54, 68, 69, 70, 71, 77, 81, 90, 102, 103, 106, 107], "inverse_noise_matrix": [2, 3, 10, 46, 56, 84, 98], "label_issu": [2, 40, 43, 63, 66, 73, 75, 84, 86, 87, 88, 92, 95, 97, 98, 101, 105], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 92, 94, 95, 98, 100, 102, 104, 105], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 54, 56, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 105, 106, 107], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 90, 91, 92, 94, 95, 96, 98, 101, 103, 105, 106, 107], "final": [2, 10, 73, 86, 94, 102, 104, 105], "remain": [2, 73, 84, 86, 87, 92, 101, 105, 107], "datasetlik": [2, 56, 73], "beyond": [2, 5, 7, 9, 10, 11, 35, 83, 86, 87, 105, 106], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 60, 61, 62, 73, 81, 86, 87, 88, 90, 91, 94, 95, 97, 98, 100, 105, 107], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 56, 57, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105, 106, 107], "scipi": [2, 4, 5, 13, 52, 56, 70], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 51, 56, 57, 91, 92, 94, 95, 98], "csr_matrix": [2, 4, 5, 13, 16, 18, 31, 51], "torch": [2, 37, 38, 41, 87, 88, 92, 95, 96, 103], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 60, 61, 66, 69, 73, 83, 84, 88, 90, 91, 92, 97, 98, 103], "tensorflow": [2, 56, 60, 83, 88, 97], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 51, 53, 56, 57, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 91, 92, 94, 97, 98, 99, 101, 105], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 101, 102, 105, 107], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 56, 71, 78, 82, 86, 87, 88, 92, 94, 95, 97, 101, 102, 103, 104, 105, 107], "wa": [2, 3, 12, 14, 40, 54, 56, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 104, 106, 107], "abl": [2, 3, 10, 73, 88, 97, 98, 100, 101], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 56, 57, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 88, 90, 91, 92, 94, 96, 100, 105, 106, 107], "make": [2, 3, 5, 18, 37, 40, 41, 48, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "sure": [2, 5, 40, 43, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105], "shuffl": [2, 10, 56, 88, 92, 95, 101, 103], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 55, 56, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 94, 95, 98, 100, 101, 102, 103, 104, 105, 107], "batch": [2, 40, 56, 60, 61, 75, 77, 89, 92, 97, 103], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 54, 56, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 105, 106, 107], "destroi": [2, 56], "oper": [2, 37, 40, 41, 56, 60, 71, 83, 86, 87, 95, 97, 103], "eg": [2, 5, 10, 56, 66, 69, 90, 91, 97], "repeat": [2, 56, 61, 100, 103], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 55, 56, 65, 70, 79, 86, 87, 88, 89, 90, 91, 92, 94, 97, 100, 101, 103, 104, 105, 106], "array_lik": [2, 3, 36, 43, 56, 63, 70, 74], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 55, 56, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 104, 105, 106, 107], "seri": [2, 3, 40, 56, 57, 73, 81, 97], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 51, 52, 56, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 103, 107], "rather": [2, 3, 5, 26, 36, 56, 60, 61, 68, 77, 81, 87, 96, 100, 104, 105, 106, 107], "leav": [2, 43], "per": [2, 3, 5, 7, 10, 13, 36, 40, 43, 48, 55, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 91, 97, 102, 107], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 51, 56, 61, 63, 66, 68, 71, 77, 81, 90, 97, 100, 102, 103, 105], "cutoff": [2, 3, 52, 103], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 51, 53, 56, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 92, 94, 95, 97, 98, 102, 103, 104, 105, 106], "section": [2, 3, 7, 10, 84, 92, 94, 97, 102], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 52, 54, 55, 56, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 104], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 68, 70, 81, 84, 91, 93, 97, 98], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 51, 60, 68, 70, 71, 73, 77, 81, 89, 98], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 53, 55, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 91, 92, 95, 100, 102, 105], "automat": [2, 3, 5, 26, 36, 83, 86, 87, 92, 94, 95, 96, 97, 100, 101, 102, 105, 106, 107], "greater": [2, 3, 4, 5, 7, 9, 10, 28, 40, 52, 56, 68, 91, 96, 97, 107], "count": [2, 22, 26, 36, 40, 43, 46, 56, 62, 63, 69, 84, 92, 97, 102], "observ": [2, 3, 46, 53, 88, 89, 90, 91, 100, 103, 105], "mislabel": [2, 10, 36, 40, 42, 43, 46, 61, 62, 63, 66, 68, 71, 77, 79, 81, 83, 86, 87, 88, 92, 94, 95, 97, 98, 102, 105], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 54, 56, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 100, 103, 104, 105, 107], "get_label_issu": [2, 39, 40, 72, 73, 86, 87, 98, 105], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 52, 61, 63, 68, 70, 71, 75, 77, 89, 91, 97, 101, 102], "boolean": [2, 7, 10, 22, 40, 43, 53, 55, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 91, 92, 95, 97, 102, 105, 106], "label_issues_mask": [2, 43, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 51, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 53, 54, 55, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 104, 105, 106, 107], "return_indices_ranked_bi": [2, 40, 43, 63, 79, 84, 86, 87, 97, 98], "significantli": [2, 92, 98, 100, 104], "reduc": [2, 40, 43, 56, 88, 97], "time": [2, 10, 37, 40, 41, 56, 61, 84, 86, 87, 89, 90, 92, 96, 97, 98, 102, 103, 105, 106, 107], "take": [2, 5, 10, 36, 37, 41, 47, 48, 53, 56, 60, 71, 86, 89, 92, 94, 100, 101, 102, 107], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 53, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 107], "skip": [2, 10, 37, 41, 73, 88, 97, 101, 107], "slow": [2, 3], "step": [2, 7, 26, 48, 69, 89, 92, 98, 100, 104], "caution": [2, 5, 97], "previous": [2, 5, 13, 56, 70, 73, 84, 86, 88, 90, 94, 95, 100, 104], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 56, 73, 86, 90, 92, 94, 97, 105, 106, 107], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 61, 65, 68, 71, 73, 79, 81, 84, 86, 91, 94, 96, 97, 100, 101, 102, 107], "still": [2, 40, 41, 56, 70, 86, 88, 92, 97, 103], "extra": [2, 37, 41, 56, 60, 61, 62, 73, 92, 95, 97, 100, 103], "receiv": [2, 10, 37, 41, 42, 62, 65, 66, 73, 75, 79, 91, 102], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 26, 37, 41, 48, 51, 52, 53, 55, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 55, 56, 69, 71, 73, 78, 88, 89, 90, 91, 92, 97, 98, 101, 107], "appropri": [2, 10, 16, 34, 52, 63, 71, 90, 94, 101, 102], "earli": [2, 92], "stop": [2, 92], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 22, 36, 56, 70, 86, 90, 92, 94, 101, 105, 107], "f": [2, 7, 86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "ignor": [2, 37, 41, 55, 60, 73, 78, 82, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "allow": [2, 36, 37, 40, 41, 45, 53, 56, 61, 69, 70, 73, 75, 77, 87, 88, 89, 92, 97, 104, 106], "access": [2, 10, 13, 37, 41, 73, 87, 91, 92, 95, 96, 101], "hyperparamet": [2, 65, 70, 92], "purpos": [2, 51, 90, 91, 97, 101, 105], "want": [2, 5, 10, 36, 40, 51, 57, 61, 63, 73, 87, 89, 90, 92, 95, 96, 100, 102, 103, 104, 106, 107], "explicitli": [2, 8, 10, 41, 73, 97], "yourself": [2, 5, 40, 91], "altern": [2, 7, 10, 48, 53, 56, 60, 61, 71, 84, 87, 88, 92, 94, 95, 96, 97, 98, 100, 101, 103, 105], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 51, 56, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 92, 94, 95, 97, 101, 102, 103, 104, 105, 106], "effect": [2, 10, 27, 37, 41, 61, 70, 73, 92, 94, 95, 97, 103], "offer": [2, 5, 9, 10, 87, 88, 90, 91, 95, 97, 98, 101], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 61, 73, 87, 90, 92, 95, 97, 98, 100, 102, 103, 104, 105, 106], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 53, 70, 73, 86, 90], "label_issues_df": [2, 73, 92], "similar": [2, 10, 36, 37, 41, 53, 56, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 92, 94, 95, 97, 98, 102, 103, 106], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 55, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 56, 66, 73, 90, 91], "were": [2, 3, 5, 36, 41, 62, 68, 81, 86, 88, 94, 97, 98, 100, 102, 104, 106], "present": [2, 3, 5, 10, 12, 13, 20, 36, 56, 70, 78, 83, 92, 94, 97, 103], "actual": [2, 3, 5, 36, 51, 61, 62, 71, 91, 97, 98, 107], "num_class": [2, 36, 40, 56, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103], "uniqu": [2, 31, 56, 78, 90, 97, 101, 103], "given_label": [2, 5, 25, 30, 36, 46, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106, 107], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 54, 55, 56, 71, 97, 98, 103], "trick": [2, 97], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 54, 61, 69, 70, 71, 83, 89, 90, 91, 92, 94, 95, 102, 103], "account": [2, 36, 61, 65, 70, 71, 87, 95, 97, 98, 100, 101, 103, 105], "word": [2, 3, 55, 81, 82, 97], "remov": [2, 10, 31, 36, 37, 41, 43, 73, 83, 86, 87, 91, 92, 94, 95, 96, 97, 98, 101, 103, 105], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 56, 61, 62, 68, 71, 73, 77, 81, 88, 90, 91, 92, 95, 98, 101, 103, 106], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 56, 60, 71, 73, 75, 83, 84, 86, 87, 88, 91, 92, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 54, 55, 56, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 92, 95, 96, 97, 98, 103, 104, 105], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 54, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 90, 93, 96, 99, 101, 105, 106, 107], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 56, 71, 73], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 51, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 26, 41, 48, 51, 60, 73, 83, 86, 87, 89, 90, 91, 92, 94, 95, 104, 105, 107], "expect": [2, 3, 37, 41, 43, 48, 61, 70, 71, 73, 86, 87, 97, 98, 100, 101, 102, 105, 107], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 69, 73, 86, 87, 88, 90, 91, 92, 97, 98, 100, 104, 105, 106], "simpli": [2, 10, 36, 71, 87, 90, 91, 94, 95, 97, 98, 101, 105, 106, 107], "quantifi": [2, 4, 5, 7, 10, 13, 43, 65, 70, 73, 83, 91, 92, 94, 95, 98, 102], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 36, 43, 55, 63, 66, 69, 71, 73, 75, 77, 84, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "cach": [2, 87, 95], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 56, 57, 60, 61, 62, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 100, 105, 106], "unlik": [2, 10, 43, 45, 48, 60, 62, 63, 65, 81, 90, 100, 101, 103, 105], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 56, 61, 63, 71, 75, 77, 82, 83, 90, 92, 97, 98, 100, 107], "mask": [2, 40, 43, 55, 56, 63, 66, 71, 73, 75, 77, 78, 83, 89, 96, 97, 100, 102, 106, 107], "prefer": [2, 71, 79, 101], "plan": 2, "subsequ": [2, 3, 37, 41, 53, 87, 95, 97, 98, 102], "invok": [2, 37, 41, 98, 104], "scratch": [2, 73], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 104, 105, 106, 107], "share": [2, 71, 73], "mostli": [2, 56, 68, 73, 101, 105], "longer": [2, 34, 47, 48, 55, 73, 84, 87, 95, 97, 102], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 73, 81, 90, 91, 96, 107], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 61, 62, 65, 69, 73, 78, 81, 88, 90, 92, 94, 95, 96, 97, 98, 100, 103], "docstr": [2, 36, 37, 41, 56, 73, 96, 98], "unless": [2, 37, 41, 51, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "is_label_issu": [2, 30, 73, 87, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "entir": [2, 10, 26, 40, 43, 46, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 91, 97, 102, 103, 104, 106, 107], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 52, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 91, 92, 94, 95, 97, 100, 105], "label_qu": [2, 61, 73, 87, 98, 100, 105], "measur": [2, 5, 36, 61, 62, 73, 83, 86, 96, 97, 98, 100, 101, 105, 106, 107], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 105], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 54, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "eas": 2, "comparison": [2, 37, 41, 69, 98, 100], "against": [2, 37, 41, 90, 94, 97, 100, 101], "predicted_label": [2, 5, 25, 30, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 98, 105, 106], "ad": [2, 37, 41, 89, 91, 100, 105], "precis": [2, 52, 54, 63, 66, 69, 96, 97, 98, 106, 107], "definit": [2, 7, 34, 48, 73, 86, 94], "accessor": [2, 73], "describ": [2, 10, 18, 61, 70, 71, 73, 79, 81, 98, 100, 101, 102, 104, 107], "precomput": [2, 4, 5, 46, 73, 91, 92, 94, 95, 96, 98], "clear": [2, 37, 41, 53, 73, 87, 95, 105], "save": [2, 5, 16, 37, 40, 41, 69, 73, 97, 102, 106, 107], "space": [2, 5, 10, 70, 73, 92, 94, 96], "place": [2, 37, 41, 56, 73, 86, 100], "larg": [2, 9, 10, 40, 51, 73, 92, 94, 95, 97, 102, 103, 106, 107], "deploi": [2, 9, 10, 73, 92, 94, 95, 97], "care": [2, 10, 37, 41, 73, 95, 97, 98], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 53, 73, 89, 97, 98, 100, 102, 105], "cannot": [2, 5, 12, 14, 56, 104, 107], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 73], "__init_subclass__": [2, 39, 41, 72, 73], "set_": [2, 41, 73], "_request": [2, 41, 73], "pep": [2, 41, 73], "487": [2, 41, 73], "look": [2, 5, 7, 16, 37, 41, 56, 73, 78, 86, 90, 91, 94, 95, 97, 98, 100, 101, 102, 103, 106, 107], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 53, 56, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 90, 94, 95, 96, 98, 100, 103, 106, 107], "__metadata_request__": [2, 41, 73], "infer": [2, 41, 56, 73, 78, 82, 86, 87, 92, 100, 101], "signatur": [2, 37, 41, 73], "accept": [2, 37, 41, 53, 54, 71, 73, 90, 91, 97], "metadata": [2, 41, 73, 92, 94, 95, 107], "through": [2, 5, 7, 41, 73, 87, 88, 89, 91, 95, 96, 97, 100, 102, 103], "develop": [2, 9, 41, 53, 73, 97, 98, 107], "request": [2, 41, 73, 86, 87, 91, 95, 96, 101, 107], "those": [2, 3, 4, 10, 40, 41, 43, 50, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 92, 97, 102, 106], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 53, 56, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "www": [2, 41, 73, 103], "org": [2, 4, 18, 37, 38, 41, 53, 56, 70, 73, 97, 98, 107], "dev": [2, 41, 73], "0487": [2, 41, 73], "get_metadata_rout": [2, 39, 41, 72, 73], "rout": [2, 41, 73], "pleas": [2, 37, 41, 60, 73, 83, 87, 88, 89, 90, 91, 92, 95, 96, 97, 98, 100, 101, 103, 105, 107], "guid": [2, 7, 10, 41, 73, 84, 92, 93], "mechan": [2, 37, 41, 73], "metadatarequest": [2, 41, 73], "encapsul": [2, 16, 41, 68, 73], "get_param": [2, 39, 41, 59, 60, 72, 73], "subobject": [2, 41, 73], "param": [2, 10, 37, 41, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105, 106, 107], "set_fit_request": [2, 39, 41, 72, 73], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 51, 52, 53, 54, 55, 56, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 90, 97, 100, 101, 102, 107], "unchang": [2, 37, 41, 73, 107], "relev": [2, 16, 26, 41, 73, 92], "enable_metadata_rout": [2, 41, 73], "set_config": [2, 41, 73], "meta": [2, 41, 73], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 54, 73, 88, 97], "alia": [2, 37, 41, 73], "metadata_rout": [2, 41, 73], "retain": [2, 41, 56, 73], "chang": [2, 32, 34, 37, 40, 41, 45, 73, 81, 86, 87, 88, 90, 95, 97, 102, 103, 107], "version": [2, 4, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 56, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 107], "sub": [2, 41, 68, 73], "pipelin": [2, 41, 73, 105], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 52, 54, 55, 56, 63, 73, 75, 77, 78, 82, 87, 95, 97], "updat": [2, 13, 37, 40, 41, 60, 73, 84, 89, 90, 92], "set_param": [2, 39, 41, 59, 60, 72, 73], "simpl": [2, 37, 41, 43, 61, 71, 73, 86, 87, 89, 90, 91, 92, 94, 95, 100, 103, 105], "well": [2, 3, 9, 10, 37, 41, 45, 46, 61, 63, 69, 71, 73, 78, 81, 82, 84, 90, 91, 92, 94, 95, 97, 98, 100, 102, 103], "nest": [2, 37, 41, 42, 57, 73, 79, 81, 82, 107], "latter": [2, 37, 41, 73, 103], "compon": [2, 41, 73], "__": [2, 41, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 89, 94, 97], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 61, 70, 71, 75, 77, 81, 91, 92, 94, 96, 97, 98, 102, 107], "channel": [3, 88, 98], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 56, 62, 87, 91, 96], "inv": 3, "confident_joint": [3, 22, 36, 43, 56, 62, 63, 84, 97, 98], "un": 3, "under": [3, 10, 37, 41, 62, 69, 70, 91, 103], "joint": [3, 36, 43, 46, 56, 62, 63, 96], "num_label_issu": [3, 40, 43, 63, 78, 82, 84], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 56, 57, 63, 101], "don": [3, 83, 91, 92, 94, 95, 98, 102, 105], "statis": 3, "compute_confident_joint": [3, 36, 43, 56, 63, 98], "off": [3, 43, 56, 68, 92, 98, 102, 103], "j": [3, 5, 36, 37, 41, 42, 43, 63, 66, 69, 70, 79, 81, 82, 89, 90, 91, 98, 106, 107], "confident_learn": [3, 43, 63, 98], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 56, 61, 100], "cj": [3, 46, 56], "axi": [3, 31, 46, 48, 54, 75, 78, 88, 89, 90, 91, 92, 97, 98, 100, 101, 103, 105, 106], "bincount": [3, 89, 90, 91, 98, 100, 101], "alwai": [3, 10, 37, 41, 56, 86, 87, 88, 98, 105], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 68, 69, 75, 77, 86, 91, 92, 94, 96, 97, 98, 103, 105], "As": [3, 7, 83, 90, 91, 95, 98, 105, 107], "add": [3, 5, 7, 12, 13, 37, 41, 60, 69, 87, 88, 89, 90, 91, 92, 95, 97, 98, 101], "approach": [3, 36, 40, 43, 60, 86, 89, 94, 98, 101, 103, 105], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 55, 71, 87, 91, 95, 98, 105], "know": [3, 10, 90, 91, 92, 94, 95, 97, 98, 100, 105], "cut": [3, 68, 83, 98], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 102, 103, 107], "underestim": 3, "few": [3, 9, 10, 69, 83, 91, 97, 100, 101, 102, 103, 107], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 55, 65, 66, 68, 69, 71, 74, 81, 96, 97, 101, 106, 107], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 53, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 101, 103, 107], "num_issu": [3, 7, 40, 88, 89, 90, 91, 92, 94, 95, 98], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 50, 60, 61, 87, 89, 96, 97, 102, 105, 107], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 98], "v": [3, 10, 40, 62, 63, 65, 71, 89, 90, 91, 101, 102, 103, 104], "rest": [3, 5, 7, 9, 10, 11, 35, 62, 63, 65, 73, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 105], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 36, 62, 63, 66, 94, 107], "calibrated_cj": 3, "c": [3, 10, 54, 55, 63, 71, 83, 86, 88, 90, 91, 94, 95, 97, 98, 101, 102, 103, 104, 105], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 55, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 103, 106, 107], "truli": [3, 103, 106], "estimate_joint": [3, 36, 98], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 98, 102, 104, 106, 107], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 61, 62, 69, 78, 102, 103], "done": [3, 10, 60, 73, 90, 97, 98, 101, 103, 104], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 92, 94, 95, 104], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 56, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 90, 97, 98, 101, 102], "baselin": [3, 37, 43, 87, 103, 105], "proxi": 3, "union": [3, 5, 12, 26, 48, 51, 52, 53, 56, 57, 63, 69, 73, 81, 97], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 55, 56, 61, 63, 69, 77, 79, 81, 82, 88, 107], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 40, 46, 52, 61, 70, 75, 77, 83, 87, 89, 92, 97, 106], "practic": [3, 86, 87, 91, 92, 98, 103, 105], "complet": [3, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "gist": 3, "cj_ish": 3, "guess": [3, 46, 98, 100], "8": [3, 5, 7, 8, 47, 48, 49, 55, 65, 79, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "parallel": [3, 43, 69, 79, 96], "again": [3, 60, 86, 97, 103], "simplifi": [3, 14, 97], "understand": [3, 9, 10, 36, 62, 69, 91, 98, 99, 105, 106, 107], "100": [3, 4, 37, 41, 51, 52, 54, 70, 71, 86, 87, 90, 91, 92, 94, 96, 97, 98, 101, 102, 103, 107], "optim": [3, 37, 38, 41, 60, 92, 100], "speed": [3, 43, 87, 96, 97, 105], "dtype": [3, 23, 25, 26, 31, 37, 41, 55, 56, 65, 81, 88, 102], "enumer": [3, 37, 41, 88, 89, 90, 91, 92, 107], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 56, 81, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "num_confident_bin": 3, "argmax": [3, 43, 71, 75, 78, 88, 97, 98, 102, 103, 106], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 56, 57, 65, 74, 86, 88], "eqn": [3, 46], "margin": [3, 43, 46, 48, 71], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 62, 98, 104], "poorli": [3, 46, 86], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 98], "variabl": [3, 7, 14, 27, 56, 73, 74, 88, 90, 94, 98, 101, 105], "exact": [3, 46, 86, 89, 90, 91, 92, 94], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 63, 68, 77, 79, 81, 90, 91, 92, 97, 102, 106], "percent": 3, "often": [3, 36, 46, 62, 97, 98, 104, 106], "estimate_confident_joint_and_cv_pred_proba": 3, "multi_class": 3, "auto": [3, 9, 10, 86, 87, 89, 91, 96, 97, 105], "mani": [3, 9, 10, 56, 57, 69, 86, 87, 88, 89, 90, 92, 94, 95, 97, 101, 102, 103, 105], "wai": [3, 5, 51, 60, 83, 84, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 101, 102, 104], "pro": 3, "con": 3, "pred_proba": [3, 104], "combin": [3, 36, 90, 92, 96, 97, 98, 104, 105], "becaus": [3, 46, 52, 56, 68, 95, 97, 98, 100, 102], "littl": [3, 40, 96, 102, 107], "uniform": [3, 71, 96, 97, 98], "20": [3, 7, 42, 82, 88, 89, 92, 95, 96, 97, 98, 102, 105, 106, 107], "Such": [3, 92, 103], "bound": [3, 23, 25, 37, 41, 55, 65, 66, 68, 69, 102], "reason": [3, 22, 37, 41, 52, 70], "comment": [3, 55, 107], "end": [3, 5, 37, 41, 53, 69], "file": [3, 5, 12, 39, 40, 59, 69, 86, 88, 90, 94, 95, 96, 97, 102, 103, 106, 107], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 98], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 52, 53, 84, 86, 87, 89, 90, 91, 92, 94, 95, 98, 106, 107], "five": [3, 66, 69, 98, 102], "estimate_cv_predicted_prob": [3, 98], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 102], "confident_threshold": [3, 10, 22, 23, 40, 70], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 51, 53, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100], "valuat": [4, 9, 18], "help": [4, 36, 37, 41, 69, 83, 84, 86, 87, 88, 90, 92, 94, 95, 96, 97, 100, 101, 105, 106, 107], "u": [4, 86, 87, 88, 90, 92, 94, 97, 98, 100, 101, 104, 105, 106, 107], "assess": [4, 102], "contribut": [4, 10, 18, 102], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 44, 50, 94], "metric": [4, 5, 10, 18, 19, 26, 31, 44, 50, 51, 53, 54, 56, 60, 69, 70, 86, 87, 88, 92, 94, 95, 98, 105], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 51, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 51, 52, 53, 54, 70, 91, 95, 103], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 44, 51, 52, 53, 54, 70, 90, 91, 92, 94, 95, 97, 98, 103], "knn": [4, 10, 13, 18, 26, 31, 50, 51, 52, 53, 54, 70, 94, 103], "graph": [4, 5, 10, 13, 16, 18, 26, 31, 50, 51], "calcul": [4, 10, 18, 26, 40, 48, 50, 51, 54, 61, 65, 66, 68, 69, 70, 73, 77, 92, 96], "directli": [4, 5, 14, 16, 33, 34, 40, 53, 60, 61, 87, 91, 95, 97, 101, 102, 105], "lowest": [4, 10, 61, 69, 91, 92, 97, 100, 101, 102, 106], "fall": [4, 10, 68, 77, 81, 98, 103], "flag": [4, 10, 22, 26, 43, 48, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 103, 105, 106], "approxim": [4, 10, 18, 40, 53, 70, 100], "top": [4, 5, 10, 36, 40, 42, 43, 56, 63, 66, 69, 71, 78, 82, 83, 87, 88, 90, 91, 94, 95, 96, 97, 98, 102, 103, 105, 107], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 101, 103, 105, 107], "arxiv": [4, 18, 98], "ab": [4, 18, 98, 102], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 70, 83, 87, 88, 90, 91, 94, 95, 98, 101, 105], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 51, 63, 83, 87, 88, 90, 91, 92, 95, 97, 98, 103], "suppli": [4, 101, 102, 105], "2d": [4, 5, 16, 32, 40, 48, 49, 55, 56, 61, 86, 88, 101], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 62, 88, 89, 90, 91, 92, 94, 95, 98], "num_featur": [4, 5, 16, 37, 41, 60], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 51, 52, 53, 54, 68, 70, 94, 103], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 50, 51, 53, 60], "nearestneighbor": [4, 5, 10, 18, 51, 53, 70, 94, 103], "cosin": [4, 10, 51, 52, 54, 70, 103], "dim": [4, 70, 92, 106], "euclidean": [4, 5, 10, 51, 52, 54, 68, 70, 94], "dimension": [4, 26, 52, 56, 88, 98, 103], "scikit": [4, 41, 52, 53, 56, 70, 83, 86, 87, 88, 89, 90, 91, 94, 95, 97, 105], "fewer": [4, 10, 43, 56, 70, 102], "stabl": [4, 15, 21, 24, 29, 39, 44, 53, 56, 59, 70, 84], "exce": [4, 89, 92], "transform": [4, 10, 32, 48, 51, 54, 56, 70, 71, 86, 87, 91, 92, 95, 103, 107], "rel": [4, 10, 36, 61, 62, 70, 90, 91, 92, 94, 95, 98, 103], "adjust": [4, 38, 43, 65, 70, 71, 83, 98], "closer": [4, 10, 68, 102], "highli": [4, 91, 92], "influenti": 4, "posit": [4, 5, 37, 41, 54, 56, 69, 96, 103], "convers": 4, "neg": [4, 10, 68, 69, 90, 91, 96], "valueerror": [4, 5, 12, 13, 34, 45, 48, 54, 97], "neither": [4, 5, 10, 14, 52, 102], "nor": [4, 5, 10, 14], "larger": [4, 18, 52, 73, 75, 77, 89, 92, 95, 96, 97], "55": [4, 55, 96, 102, 105], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 88, 92, 93, 94, 95, 97, 98, 101, 102, 105], "kind": [5, 6, 7, 10, 88, 89, 90, 92, 94, 95, 96, 98], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 51, 53, 57, 61, 69, 78, 79, 86, 87, 88, 90, 94, 95, 98, 100, 103, 104], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 56, 59, 63, 70, 73, 74, 83], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 59, 60, 75, 77], "pip": [5, 7, 9, 11, 35, 60, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "github": [5, 7, 9, 11, 35, 37, 38, 56, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 56, 70, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "egg": [5, 7, 9, 11, 35, 83, 96], "label_nam": [5, 7, 8, 10, 12, 18, 31, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 102, 105], "image_kei": [5, 10, 92], "interfac": [5, 9, 10, 53, 83, 97, 98], "librari": [5, 10, 41, 53, 66, 69, 70, 83, 87, 90, 95, 96, 97], "goal": [5, 105], "track": [5, 7, 13, 14, 83, 89, 90, 96, 97, 98], "intermedi": [5, 9, 91], "statist": [5, 10, 13, 22, 26, 36, 61, 62, 69, 91, 94, 95, 98], "convert": [5, 10, 12, 34, 37, 41, 49, 54, 57, 61, 68, 77, 81, 84, 87, 88, 92, 95, 96, 97, 100, 101, 102], "hug": [5, 10, 12, 92], "face": [5, 10, 12, 16, 92, 96, 101], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 61, 62, 68, 70, 89, 90, 91, 92, 95, 97, 98, 100, 102], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 56, 61, 62, 74, 78, 81, 82, 87, 94, 95, 97, 100, 101, 107], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 56, 61, 62, 65, 66, 68, 69, 90, 91, 94, 95, 98, 100, 101, 102], "path": [5, 12, 37, 40, 41, 69, 88, 90, 97, 102], "local": [5, 7, 10, 12, 37, 38, 41, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 70, 79, 81, 82, 83, 85, 90, 91, 93, 96, 97, 98, 99, 100, 103], "txt": [5, 12, 107], "csv": [5, 12, 86, 87, 94, 95, 105], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 56, 61, 101], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 87, 89, 90, 91, 95, 99, 100, 103], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 101], "imag": [5, 9, 36, 41, 66, 68, 69, 70, 75, 77, 78, 83, 90, 91, 93, 96, 97, 99, 100, 101, 102, 104, 106], "field": [5, 10, 37, 41], "themselv": [5, 86, 87, 105], "pil": [5, 92], "cleanvis": [5, 10], "level": [5, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 55, 79, 81, 91, 92, 97, 99, 101, 106], "load_dataset": [5, 12, 92], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 89], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 62, 69, 78, 82, 83, 96, 98, 102, 106, 107], "empti": [5, 12, 46, 61, 91, 97, 101], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 83, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 105], "sort": [5, 16, 40, 43, 48, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 105, 106, 107], "common": [5, 13, 16, 91, 93, 96, 97, 98, 101, 102, 106], "real": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "world": [5, 16, 83, 90, 91, 97, 98, 100, 105, 106], "interact": [5, 16, 95, 97], "thereof": [5, 16], "insight": [5, 16, 69, 100], "best": [5, 9, 10, 16, 47, 61, 71, 86, 87, 90, 91, 92, 94, 95, 97, 100, 101, 103, 105, 107], "properli": [5, 10, 40, 47, 56, 57, 75, 88, 89, 90, 91, 92, 94, 95, 97, 98, 101, 103, 105, 106], "respect": [5, 37, 41, 66, 69, 88, 89, 90, 91, 92, 94, 95, 98, 101, 102], "lexicograph": [5, 47, 56, 88, 89, 90, 91, 92, 94, 95, 98, 101], "squar": [5, 56, 73, 96, 105], "csr": 5, "evenli": 5, "omit": [5, 68, 69, 92, 102], "itself": [5, 32, 37, 41, 102], "three": [5, 10, 36, 61, 62, 73, 78, 86, 88, 89, 90, 91, 94, 96, 98, 100, 104, 105, 106, 107], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 83, 94, 101, 107], "th": [5, 42, 47, 55, 56, 61, 63, 66, 68, 69, 70, 79, 81, 82, 95, 101, 102, 107], "ascend": [5, 36, 62, 92, 98], "segment": [5, 75, 77, 78, 99], "reflect": [5, 86, 87, 94, 95, 100, 102, 103, 105], "maintain": [5, 60], "kneighbors_graph": [5, 18, 53, 94], "illustr": 5, "todens": 5, "second": [5, 48, 56, 69, 71, 90, 97, 98, 107], "duplic": [5, 9, 21, 22, 37, 41, 51, 83, 89, 90, 98, 105], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 61, 97, 100, 107], "unspecifi": [5, 16, 43, 63], "interest": [5, 16, 22, 78, 82, 86, 87, 95, 98, 105, 106, 107], "constructor": [5, 10, 16, 23, 30, 51, 53], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 53, 73, 74, 96, 105, 107], "random_st": [5, 86, 88, 89, 90, 91, 92, 98, 101, 103], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 105], "comprehens": [5, 83, 92, 101, 105], "nbr": 5, "n_neighbor": [5, 10, 18, 51, 53, 70], "mode": [5, 11, 18, 37, 40, 41, 103], "4x4": 5, "float64": [5, 26, 37, 41, 81], "compress": [5, 10, 56, 75, 77], "toarrai": [5, 51], "NOT": [5, 40, 95], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 91], "suppos": [5, 10, 66, 86, 87, 103, 105], "who": [5, 68, 86, 94, 98, 107], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 60, 90, 97], "clean_learning_kwarg": [5, 10, 23, 30, 97, 105], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 84], "prune_by_noise_r": [5, 43, 63, 98], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 62, 82, 83, 88, 89, 90, 91, 94, 95, 97, 98, 101, 105, 107], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 92, 94, 95, 96, 98, 102, 105, 106, 107], "show": [5, 7, 26, 37, 41, 47, 56, 69, 78, 82, 86, 89, 91, 92, 94, 95, 96, 97, 98, 100, 103, 105, 106, 107], "suffer": [5, 10, 13, 22, 63, 71, 82, 107], "onc": [5, 22, 36, 37, 41, 86, 89, 90, 97, 98, 101, 102], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 102, 107], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 102, 103, 107], "compar": [5, 61, 70, 81, 90, 91, 94, 98, 102], "issue_summari": [5, 7, 10, 13, 89, 90], "With": [5, 9, 10, 40, 87, 95, 97, 98, 100, 105, 106, 107], "usag": [5, 40, 60], "usual": [5, 12, 32, 33, 92, 100, 105], "ti": [5, 61], "exhibit": [5, 7, 10, 13, 78, 91, 92, 94, 95, 98, 102], "ie": [5, 73], "likelihood": [5, 10, 40, 42, 43, 63, 68, 70, 71, 75, 79], "wherea": [5, 56, 63, 86, 87, 104], "outlier": [5, 9, 14, 21, 22, 31, 44, 51, 71, 83, 90, 91, 98, 99, 105], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 98, 105], "global": [5, 7, 22, 37, 41, 96], "non_iid": [5, 10, 14, 26, 91, 92, 94, 95, 98], "hypothesi": 5, "iid": [5, 7, 9, 26, 94, 98], "never": [5, 88, 98, 101, 103, 104], "someth": [5, 7, 10, 37, 41, 71, 102], "123": [5, 89, 90, 91], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 48, 49, 60, 79, 81, 86, 87, 88, 90, 91, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 65, 79, 81, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "distance_to_nearest_neighbor": [5, 90, 91, 92, 94, 95, 98], "789": 5, "get_issu": [5, 10, 13, 88, 89, 91, 92, 94, 95, 97, 101, 105], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90, 91], "focu": [5, 10, 13, 95, 106, 107], "full": [5, 10, 13, 40, 60, 69, 89, 92, 107], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 62, 78, 82, 83, 106], "specific_issu": [5, 13], "lie": [5, 10, 70, 71, 87, 88, 90, 91, 92, 94, 95, 98], "get_issue_summari": [5, 13, 89, 91], "get_info": [5, 13, 91, 95, 96], "yet": [5, 17, 27, 60, 96, 100], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 90], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 88, 90, 92], "load": [5, 12, 40, 69, 92, 96, 97, 98, 102, 103, 106, 107], "futur": [5, 10, 22, 37, 41, 61, 83, 87, 88, 90, 95, 97], "overwrit": [5, 90], "separ": [5, 36, 48, 65, 90, 91, 92, 97, 102, 104], "static": 5, "rememb": [5, 95, 97, 98], "part": [5, 10, 37, 41, 43, 66, 68, 69, 88, 90, 96, 106, 107], "ident": [5, 10, 22, 56, 89, 95], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 83, 86, 87, 96, 97, 100, 105], "walk": 7, "alongsid": [7, 37, 41, 90, 97], "pre": [7, 8, 10, 37, 41, 90, 91, 105], "runtim": [7, 37, 40, 41, 73, 75, 77, 88, 92, 97], "issue_manager_factori": [7, 14, 90], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 107], "thing": [7, 41, 87, 98, 105], "next": [7, 61, 83, 86, 87, 88, 89, 94, 95, 97, 100, 102, 105, 107], "dummi": 7, "randint": [7, 31, 48, 89, 90, 91, 97], "mark": [7, 10, 84, 102, 103, 105], "regard": [7, 91, 98], "rand": [7, 48, 51, 89, 90, 91], "is_": [7, 10, 90], "_issu": [7, 10, 90], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "whole": [7, 26, 37, 41, 91], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 90], "popul": [7, 91, 95], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 102], "raw_scor": 7, "bit": 7, "involv": [7, 40, 78, 82, 89, 97, 101], "intermediate_arg": 7, "min": [7, 48, 68, 81, 90, 97, 103], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 52, 75, 81, 95, 97], "easili": [7, 46, 84, 86, 87, 88, 89, 91, 94, 95, 98, 100, 101, 103, 104, 105, 106], "hard": [7, 41, 96, 103], "sai": [7, 10, 37, 41, 101, 106], "anoth": [7, 22, 36, 40, 52, 55, 68, 71, 87, 94, 95, 97, 98, 100, 103], "try": [7, 9, 10, 40, 43, 60, 61, 75, 77, 83, 89, 91, 92, 94, 95, 97, 98, 106], "won": [7, 37, 41, 90, 91, 97, 101], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 90], "instanti": [7, 16, 40, 60, 70, 87, 88, 91, 94], "477762": 7, "286455": 7, "term": [7, 10, 46, 56, 69, 88, 89, 90, 91, 92, 94, 95, 98], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 102, 103, 105, 106, 107], "003042": 7, "058117": 7, "11": [7, 60, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "121908": 7, "15": [7, 54, 60, 73, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "169312": 7, "17": [7, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 90, 91, 96, 98], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 96, 102, 107], "dbscan": [8, 10, 31, 97], "hdbscan": [8, 97], "etc": [8, 10, 22, 32, 37, 41, 46, 60, 61, 79, 83, 90, 91, 94, 95, 97, 98, 101, 105], "sensit": [8, 10, 54], "ep": [8, 31, 69], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 97], "your_data": 8, "get_pred_prob": [8, 89], "n_cluster": [8, 31, 97], "cluster_id": [8, 10, 31, 97], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 91, 92, 94, 95, 97, 98], "search": [9, 10, 20, 26, 27, 44, 50, 51, 52, 55, 73, 97, 104], "nondefault": 9, "Near": [9, 97], "imbal": [9, 21, 65, 70, 71, 91], "null": [9, 14, 21, 91, 92, 95, 98], "togeth": [9, 10, 46, 87, 90, 91, 92, 94, 95, 98, 105, 107], "built": [9, 48], "own": [9, 37, 39, 41, 53, 59, 65, 66, 69, 75, 79, 86, 87, 88, 91, 92, 94, 95, 97, 100, 101, 105, 106, 107], "prerequisit": 9, "basic": [9, 41, 60, 94, 95, 103], "fulli": [9, 10, 37, 41, 60, 97], "platform": [9, 10, 83, 92, 94, 95, 97], "write": [9, 10], "code": [9, 10, 37, 41, 46, 56, 60, 83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 103, 105, 106, 107], "being": [9, 10, 13, 36, 37, 41, 43, 48, 55, 56, 71, 86, 94, 97, 98, 105, 106], "100x": [9, 10], "faster": [9, 10, 40, 70, 73, 75, 77, 97, 98], "intellig": [9, 10], "quickli": [9, 10, 38, 86, 88, 92, 94, 95, 97, 101, 103, 106, 107], "fix": [9, 10, 61, 87, 89, 95, 98, 105], "scientist": [9, 10], "million": [9, 10, 107], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 103, 105, 107], "suggest": [9, 10, 36, 61, 62, 68, 87, 92, 95, 97, 105], "power": [9, 10, 92, 94, 95, 96, 98, 107], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 89, 92, 94, 95, 106], "foundat": [9, 10, 83], "improv": [9, 10, 61, 86, 87, 91, 92, 96, 97, 98, 105, 106], "click": [9, 10, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "tune": [9, 10, 87, 88, 95, 96, 103], "serv": [9, 10, 13, 16, 100], "free": [9, 10, 83, 88, 91, 92, 94, 95, 97, 98], "page": [10, 91, 97, 98], "variou": [10, 13, 30, 39, 57, 59, 83, 86, 90, 91, 94, 95, 96, 97, 98, 100, 102], "why": [10, 89, 95], "matter": [10, 36, 62, 87, 95], "didn": 10, "plu": [10, 105], "_score": 10, "badli": [10, 68, 86, 87, 107], "issue_scor": 10, "outlier_scor": [10, 28, 89, 90, 91, 92, 94, 95, 98, 103], "atyp": [10, 70, 90, 91, 92, 94, 95, 98, 103], "datapoint": [10, 31, 43, 48, 56, 71, 74, 83, 86, 87, 88, 90, 91, 94, 95, 97, 104, 105], "is_issu": [10, 22], "is_outlier_issu": [10, 89, 90, 91, 92, 94, 95, 98], "annot": [10, 36, 47, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 99, 102, 106], "dissimilar": [10, 94, 95], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 92, 94, 95, 98, 102, 105], "due": [10, 40, 43, 71, 75, 77, 88, 89, 90, 91, 92, 94, 95, 98, 105], "appear": [10, 36, 47, 62, 63, 66, 74, 91, 92, 94, 95, 105, 106], "now": [10, 40, 84, 86, 87, 88, 89, 91, 100, 102, 103, 105, 107], "token": [10, 42, 55, 77, 78, 79, 80, 81, 82, 97, 98, 99], "hamper": [10, 92, 96], "analyt": [10, 83, 97, 100], "lead": [10, 68, 71, 92, 102], "draw": [10, 89, 90, 91], "conclus": [10, 95], "veri": [10, 36, 62, 66, 68, 87, 89, 90, 91, 92, 94, 95, 97, 98, 100, 103, 105], "rare": [10, 43, 69, 89, 90, 91, 92, 94, 95, 97, 98], "anomal": [10, 71, 89, 90, 91, 92, 94, 95, 98], "articl": [10, 40, 97], "blog": 10, "unexpect": [10, 37, 41, 95], "consequ": 10, "inspect": [10, 87, 88, 89, 91, 92, 98, 102, 105], "extrem": [10, 90, 91, 92, 94, 95, 97, 98], "record": [10, 37, 41, 88, 94, 105], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 90, 91, 93, 97], "minor": [10, 55], "variat": 10, "translat": 10, "d": [10, 54, 86, 94, 95, 97, 98, 101, 105, 107], "constant": [10, 31, 73], "median": [10, 30, 54], "question": [10, 22, 83, 98], "nearli": [10, 22, 91, 92, 94, 95], "awar": [10, 84, 98], "presenc": [10, 53, 98], "near_dupl": [10, 14, 19, 89, 90, 91, 92, 94, 95, 97, 98], "signific": [10, 94, 95, 98], "violat": [10, 94, 95, 98], "assumpt": [10, 94, 95, 98], "changepoint": [10, 94, 95, 98], "shift": [10, 53, 94, 95, 98], "drift": [10, 91, 94, 98], "autocorrel": [10, 94, 95, 98], "almost": [10, 94, 95, 98], "adjac": [10, 51, 94, 95, 98], "tend": [10, 36, 46, 94, 95, 98, 106, 107], "sequenti": [10, 37, 41, 60, 92], "realli": [10, 87, 95, 100, 106], "mere": 10, "highlight": [10, 78, 82, 89, 90, 91, 94, 106], "necessarili": [10, 61, 69, 95, 98], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 91, 95, 97, 98, 102], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 55, 56, 81, 86, 94, 95, 96, 97, 98, 104, 107], "x1": [10, 66, 69, 102], "x2": [10, 66, 69, 102], "10th": 10, "100th": 10, "90": [10, 81, 86, 94, 98, 104, 105], "similarli": [10, 37, 41, 90, 92, 94, 97, 102], "math": [10, 92], "behind": [10, 70, 98], "proper": [10, 56, 61, 66, 69, 86, 92, 95, 97, 100, 102], "scenario": [10, 53, 71, 89, 90, 91], "underli": [10, 42, 53, 70, 79, 81, 107], "stem": [10, 70, 103], "evolv": 10, "influenc": 10, "act": [10, 68, 90], "accordingli": [10, 32], "emploi": [10, 101, 103], "partit": [10, 104], "ahead": 10, "good": [10, 37, 41, 54, 60, 62, 68, 71, 75, 77, 78, 83, 89, 92, 94, 95], "problem": [10, 32, 40, 48, 78, 83, 90, 91, 92, 95, 97], "deploy": [10, 86, 87, 98, 105], "overlook": [10, 68, 102], "fact": 10, "thu": [10, 36, 41, 62, 86, 88, 94, 95, 98, 104, 107], "diagnos": [10, 91, 97], "rarest": [10, 91], "q": [10, 102], "subpar": 10, "special": [10, 55], "techniqu": [10, 102], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 91, 92, 94, 95, 98], "excess": [10, 92], "dark": [10, 106], "bright": [10, 107], "blurri": [10, 92], "lack": [10, 60], "unusu": [10, 102, 103], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 83, 91, 92, 94, 95, 99], "get_self_confidence_for_each_label": [10, 48, 71], "r": [10, 40, 73, 89, 90, 91, 105, 106], "tabular": [10, 83, 85, 90, 91, 93, 97, 100], "categor": [10, 70, 85, 86, 90, 91, 93, 97, 105], "encod": [10, 49, 69, 75, 78, 86, 87, 94, 95, 97, 105, 106], "miss": [10, 27, 37, 41, 56, 66, 68, 89, 94, 97, 102, 105], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 56, 70, 97], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 91], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 37, 41, 42, 43, 77, 79, 81, 83, 86, 87, 88, 89, 90, 91, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 107], "ood_kwarg": 10, "outofdistribut": [10, 28, 70, 103], "outsid": [10, 97, 101], "outlierissuemanag": [10, 14, 21, 28, 90], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 51, 90, 91, 92, 95, 96, 97, 98, 100, 101, 102, 105, 106], "howev": [10, 37, 41, 56, 86, 87, 88, 92, 94, 95, 100, 104, 106], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 88, 90, 96, 100, 102, 107], "vice": [10, 62], "versa": [10, 62], "light": [10, 92, 96, 102, 106], "29": [10, 89, 92, 96, 100, 101, 102, 106, 107], "low_inform": [10, 92], "odd_aspect_ratio": [10, 92], "35": [10, 89, 90, 96, 100, 101, 102], "odd_siz": [10, 92], "doc": [10, 37, 41, 70, 83, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "studio": [11, 83, 91, 92, 94, 95, 97], "data_issu": [11, 15, 16, 33, 90], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 60, 71, 89, 90, 91, 92, 100], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 69, 100], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 92], "dataissu": [13, 15, 16, 33], "central": [13, 107], "repositori": 13, "strategi": [13, 48, 97], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 56, 63, 66, 69, 73, 75, 77, 89, 90, 91, 97], "recomput": [13, 87], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 62, 83], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 70, 90], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 75, 77], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 98, 102, 106, 107], "creation": [16, 41], "execut": [16, 37, 41, 90, 97, 102], "coordin": [16, 66, 68, 69, 102, 107], "behavior": [16, 36, 37, 41, 69, 89, 97], "At": [16, 69, 97], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 53, 60], "valuabl": 18, "vstack": [18, 56, 92, 96, 97, 98, 100, 101], "25": [18, 26, 37, 48, 54, 89, 91, 92, 96, 98, 100, 101, 102, 107], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 55, 56], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 56, 89, 90, 91, 92, 97, 98, 100, 101], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 87, 95, 103], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 55, 56, 86, 88, 90, 92, 96, 98, 101], "near_duplicate_set": [19, 21, 90, 91, 92, 94, 95, 97, 98], "occurr": [19, 20, 22, 26, 27, 28, 31, 55], "median_nn_dist": 19, "near_duplicate_scor": [19, 90, 91, 92, 94, 95, 97, 98], "class_imbalance_scor": [20, 91], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 68, 83, 98, 107], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 70, 71, 89, 90, 91, 92, 95, 98, 103], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 106], "priori": [22, 98], "abstract": [22, 32], "applic": [23, 61, 97, 98, 100, 107], "typevar": [23, 25, 37, 41, 55, 65, 68, 69], "scalartyp": [23, 25], "covari": [23, 25, 73, 105], "summary_dict": 23, "label_scor": [23, 25, 30, 88, 89, 90, 91, 92, 94, 95, 98, 101, 105], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 51, 71, 75, 77, 102, 106], "empir": [26, 47, 61], "cumul": 26, "ecdf": 26, "histogram": [26, 94, 105], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 91, 94, 95, 98], "null_track": 27, "extend": [27, 49, 60, 92, 102, 103, 107], "superclass": 27, "arbitrari": [27, 36, 77, 81, 90, 103, 105], "prompt": 27, "address": [27, 87, 90, 91, 95, 97], "enabl": [27, 41, 53], "null_scor": [27, 91], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "issue_threshold": 28, "multipli": [30, 54], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 56, 69, 87, 107], "50": [31, 41, 89, 97, 98, 100, 102, 103, 105], "keepdim": [31, 97], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 88, 100], "npt": 31, "int_": 31, "id": [31, 61, 90, 92, 97, 100], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 91], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": [32, 53], "mainli": [32, 103, 107], "content": [32, 70, 88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "fetch": [32, 40, 88, 91, 97], "datset": 33, "exclud": [33, 42, 78, 82, 90, 97, 107], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 89, 90, 91], "continu": [34, 60, 86, 87, 92, 95, 97, 100, 102, 105, 107], "binari": [34, 48, 56, 63, 65, 98, 107], "simultan": [34, 105], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 90, 91], "typeerror": [34, 48], "12": [34, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 105, 106, 107], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 61, 62, 71, 89, 90, 91, 92, 96, 102, 104, 106], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 86, 87, 88, 91, 92, 94, 95, 100, 102, 103, 105, 107], "modifi": [36, 37, 40, 41, 53, 56, 97, 98], "rank_classes_by_label_qu": [36, 91], "merg": [36, 55, 83, 96, 97, 107], "find_overlapping_class": [36, 97, 98], "problemat": [36, 62, 78, 82, 88, 102, 107], "unnorm": [36, 62, 98], "abov": [36, 37, 40, 41, 53, 56, 61, 68, 69, 71, 77, 81, 86, 87, 88, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 104, 105, 106, 107], "model_select": [36, 48, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 103, 105], "cross_val_predict": [36, 41, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 100, 104, 105], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 98], "cv": [36, 48, 86, 88, 89, 90, 91, 94, 98, 100], "df": [36, 56, 82, 88, 97], "overall_label_qu": [36, 62], "col": 36, "prob": [36, 55, 98, 104], "divid": [36, 62, 71], "label_nois": [36, 62], "human": [36, 96, 106, 107], "clearli": [36, 71, 92, 102, 106], "num": [36, 62, 96, 98], "overlap": [36, 83, 96, 97, 98], "ontolog": 36, "publish": [36, 107], "therefor": [36, 71], "vehicl": [36, 96], "truck": [36, 96, 103, 106], "intuit": [36, 62, 89], "car": [36, 96, 102, 106], "frequent": [36, 61, 94, 97, 105], "characterist": 36, "l": [36, 37, 41, 66, 68, 69], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 56, 62, 64, 78, 96, 97, 103, 104, 107], "cat": [36, 56, 62, 64, 96, 97, 103, 104], "captur": [36, 88, 102, 103, 106], "co": [36, 37, 38], "noisy_label": [36, 89, 90, 91, 101], "overlapping_class": 36, "descend": [36, 37, 41, 48, 62, 69], "overall_label_health_scor": [36, 62, 98], "half": [36, 37, 39, 41, 62, 96, 107], "health_scor": [36, 62], "classes_by_label_qu": [36, 91], "cnn": [37, 39, 41, 92], "cifar": [37, 38, 96, 103], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 69, 89, 90, 97, 100, 103, 104, 106, 107], "forward": [37, 38, 39, 41, 92, 100], "overridden": [37, 41], "although": [37, 41, 70, 86, 94], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 57, 62, 69, 77, 81, 97, 100, 101, 102, 104, 107], "former": [37, 41], "hook": [37, 41, 96], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 69], "recurs": [37, 41, 48], "submodul": [37, 41, 50], "children": [37, 39, 41, 107], "nn": [37, 38, 41, 92], "init": [37, 41, 98], "no_grad": [37, 41, 92, 103], "init_weight": [37, 41], "linear": [37, 41, 87, 92, 95], "fill_": [37, 41], "net": [37, 41, 88, 92, 96], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 92], "tensor": [37, 38, 41, 87, 88, 92, 95, 103], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 88], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 103], "compil": [37, 39, 41, 60], "cpu": [37, 39, 41, 43, 88, 92], "move": [37, 41, 48, 84, 96], "cuda": [37, 39, 41, 88, 92], "devic": [37, 41, 88, 92], "gpu": [37, 41, 87, 88, 95], "live": [37, 41], "copi": [37, 41, 73, 86, 88, 89, 90, 91, 94, 97, 101, 104, 105], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 92, 101, 103], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 83, 90, 96, 100, 103, 107], "get_buff": [37, 39, 41], "target": [37, 38, 41, 73, 74, 103, 105], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 95], "resolv": [37, 41, 89, 107], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 51, 92, 106], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 92], "break": [37, 41, 92, 102], "pickl": [37, 41, 102], "get_paramet": [37, 39, 41], "let": [37, 41, 70, 71, 86, 87, 88, 89, 91, 92, 94, 95, 97, 100, 101, 102, 103, 105, 106, 107], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 92], "16": [37, 41, 48, 60, 77, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 102, 103, 106, 107], "33": [37, 41, 96, 102], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 71, 89, 96, 102, 107], "diagram": [37, 41, 104], "degre": [37, 41], "queri": [37, 41, 51, 53, 91, 92, 97, 101], "named_modul": [37, 39, 41], "o": [37, 41, 54, 55, 88, 89, 90, 91, 96, 97, 98, 101, 102, 107], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 100], "preserv": [37, 41, 56], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 56, 57, 69, 90, 92, 97, 98, 100, 102, 103], "named_buff": [37, 39, 41], "prefix": [37, 41, 88, 107], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 87, 88, 95, 97], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 86, 94], "fire": [37, 41, 96], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 90, 91], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 92, 94, 105], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 87, 88, 95], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 60, 84, 88, 97], "design": [37, 41, 89], "ordereddict": [37, 41], "detach": [37, 41, 92], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 62, 68], "complex": [37, 41, 88], "integr": [37, 41, 53, 83, 97], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 87, 95, 96], "desir": [37, 41, 51, 55, 69], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 88], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 87, 95], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 92], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 102], "noisili": [38, 98], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 60, 92], "decim": [38, 56], "forget": [38, 48, 107], "rate_schedul": 38, "epoch": [38, 39, 41, 92, 97], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 71, 97], "250": [38, 90, 91, 98, 102], "epoch_decay_start": 38, "80": [38, 86, 94, 101, 105], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 87, 92, 95, 98], "train_load": [38, 41], "model1": [38, 98], "optimizer1": 38, "model2": [38, 98], "optimizer2": 38, "dataload": [38, 92, 103], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 59, 107], "wish": [39, 59, 103, 106, 107], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 97], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 76, 77, 78, 79, 80, 81, 82, 106, 107], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 75, 77, 89, 92, 97, 103, 106], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 92], "loader": [39, 41, 92], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 84], "mini": [40, 75, 77, 97], "low_self_confid": [40, 43, 63], "self_confid": [40, 43, 44, 48, 63, 65, 71, 79, 81, 86, 87, 97, 98], "conveni": [40, 53, 86, 87, 88, 95], "script": 40, "labels_fil": [40, 97], "pred_probs_fil": [40, 97], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 61, 106], "read": [40, 45, 91, 97, 98, 103, 107], "zarr": [40, 97], "memmap": [40, 106], "pythonspe": 40, "mmap": [40, 97], "hdf5": 40, "further": [40, 42, 62, 63, 65, 68, 69, 77, 78, 88, 97], "yourfil": 40, "npy": [40, 96, 97, 106], "mmap_mod": [40, 106], "tip": [40, 43, 60, 97], "save_arrai": 40, "your_arrai": 40, "disk": [40, 96, 97], "npz": [40, 107], "maxim": [40, 61, 75, 77, 106], "multiprocess": [40, 43, 63, 75, 77, 92, 97], "linux": [40, 75, 77], "physic": [40, 43, 75, 77, 102], "psutil": [40, 43, 75, 77], "labels_arrai": [40, 57], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 69, 90, 97, 102, 103], "store_result": 40, "becom": [40, 103], "verifi": [40, 53, 97, 100, 103], "long": [40, 61, 70, 100], "enough": [40, 56, 97], "chunk": [40, 104], "ram": [40, 96], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 97], "shortcut": 40, "encount": [40, 43, 75], "1000": [40, 88, 95, 97, 103], "aggreg": [40, 44, 48, 61, 65, 68, 71, 81, 97, 98, 100], "seen": [40, 89, 97, 103, 107], "far": [40, 61], "label_quality_scor": [40, 65, 68, 71, 74, 98, 102], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 63, 65, 71, 79, 81], "low_normalized_margin": [40, 43, 63], "issue_indic": [40, 68, 92], "update_num_issu": 40, "arr": [40, 97], "chunksiz": 40, "convnet": 41, "bespok": [41, 60], "download": [41, 88, 97, 103], "mnist": [41, 83, 88, 96], "handwritten": 41, "digit": [41, 88, 96], "last": [41, 48, 66, 69, 89, 90, 91, 97, 100, 102, 107], "sklearn_digits_test_s": 41, "64": [41, 86, 92, 94, 98, 102], "01": [41, 71, 73, 88, 98, 101, 102, 103], "templat": 41, "flexibli": 41, "among": [41, 61, 98], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 56, 103], "train_label": [41, 87, 103], "span": 42, "sentenc": [42, 55, 79, 81, 82, 87, 95], "token_classif": [42, 55, 79, 81, 82, 97], "encourag": [43, 63, 71, 74], "multilabel_classif": [43, 62, 63, 65, 71, 97, 101], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 63, 71, 98], "num_to_remove_per_class": [43, 63], "bad": [43, 51, 63, 68, 71, 95, 97], "seem": [43, 98, 101], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 63, 65, 71, 79, 81], "label_issues_idx": [43, 71], "entropi": [43, 45, 47, 48, 70, 71], "prune_by_class": [43, 63, 98], "predicted_neq_given": [43, 63, 98], "prune_counts_matrix": 43, "smallest": [43, 71], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 83, 87, 97], "too": [43, 48, 51, 70, 91, 92, 97, 102], "thread": [43, 63], "window": [43, 88, 96], "shorter": [43, 66], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 56], "clip_noise_r": [44, 56], "clip_valu": [44, 56], "value_count": [44, 56, 97], "value_counts_fill_missing_class": [44, 56], "get_missing_class": [44, 56], "round_preserving_sum": [44, 56], "round_preserving_row_tot": [44, 56], "estimate_pu_f1": [44, 56], "confusion_matrix": [44, 56], "print_square_matrix": [44, 56], "print_noise_matrix": [44, 56, 98], "print_inverse_noise_matrix": [44, 56], "print_joint_matrix": [44, 56, 98], "compress_int_arrai": [44, 56], "train_val_split": [44, 56], "subset_x_i": [44, 56], "subset_label": [44, 56], "subset_data": [44, 56], "extract_indices_tf": [44, 56], "unshuffle_tensorflow_dataset": [44, 56], "is_torch_dataset": [44, 56], "is_tensorflow_dataset": [44, 56], "csr_vstack": [44, 56], "append_extra_datapoint": [44, 56], "get_num_class": [44, 56], "num_unique_class": [44, 56], "get_unique_class": [44, 56], "format_label": [44, 56], "smart_display_datafram": [44, 56], "force_two_dimens": [44, 56], "latent_algebra": [44, 84], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 101], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 101], "onehot2int": [44, 49, 101], "multilabel_scor": [44, 65], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 65], "softmin": [44, 48, 65, 68, 77, 81], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "default_k": [44, 50, 51], "features_to_knn": [44, 50, 51], "construct_knn_graph_from_index": [44, 50, 51, 53], "create_knn_graph_and_index": [44, 50, 51], "high_dimension_cutoff": [44, 50, 52], "row_count_cutoff": [44, 50, 52], "decide_euclidean_metr": [44, 50, 52], "decide_default_metr": [44, 50, 52], "construct_knn": [44, 50, 53], "transform_distances_to_scor": [44, 54], "correct_precision_error": [44, 54], "token_classification_util": [44, 107], "get_sent": [44, 55, 107], "filter_sent": [44, 55, 107], "process_token": [44, 55], "merge_prob": [44, 55], "color_sent": [44, 55], "assert_valid_input": [44, 57], "assert_valid_class_label": [44, 57], "assert_nonempty_input": [44, 57], "assert_indexing_work": [44, 57], "labels_to_arrai": [44, 57], "labels_to_list_multilabel": [44, 57], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 60, 61, 83, 100], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 56, 88], "behav": 45, "unnecessari": [45, 97], "slightli": [45, 86, 87, 89], "interv": [45, 48, 103], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 56, 73, 88, 100, 106, 107], "increas": [46, 54, 68, 70, 71, 88, 90, 97, 100, 101, 107], "dot": [46, 81, 97], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 61], "ensembl": [47, 48, 61, 71, 86, 94, 97, 101, 103, 105], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 61], "format_multiannotator_label": [47, 61, 100], "formatted_label": [47, 56], "old": [47, 56, 84, 88, 96], "check_consensus_label_class": 47, "consensus_label": [47, 61, 100], "consensus_method": [47, 61], "consensu": [47, 61, 83, 99, 107], "establish": [47, 60, 87, 105], "compute_soft_cross_entropi": 47, "soft": [47, 96], "find_best_temp_scal": 47, "coarse_search_rang": [47, 73, 97], "fine_search_s": [47, 73, 97], "temperatur": [47, 48, 68, 77, 81], "scale": [47, 54, 86, 96, 97, 103, 106], "factor": [47, 48, 54, 75, 77], "minim": [47, 68, 103], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 96], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 71], "get_confidence_weighted_entropy_for_each_label": [48, 71], "75": [48, 89, 90, 91, 96, 100, 101, 102, 105, 107], "scorer": 48, "alpha": [48, 65, 68, 89, 90, 91, 98, 101, 105], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 63, 94, 95, 98, 107], "formula": [48, 54], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 71, 98, 100, 106], "recent": [48, 107], "success": 48, "previou": [48, 92, 97, 102], "discount": 48, "s_ema": 48, "175": [48, 92, 98, 102], "underflow": 48, "nan": [48, 61, 86, 94, 100, 105], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 65], "n_sampl": 48, "n_label": 48, "worst": [48, 100], "class_label_quality_scor": 48, "42": [48, 95, 96, 102, 107], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 64, 65], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 88], "wider": 48, "splitter": 48, "kfold": [48, 92], "onevsrestclassifi": [48, 101], "randomforestclassifi": [48, 98, 101], "n_split": [48, 91, 92, 101], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 63, 69, 75, 78, 86, 94, 96, 97, 105, 106], "onehot_matrix": 49, "pairwis": [50, 52, 70], "reli": [51, 70, 87, 88, 89, 90, 91, 95, 102, 103, 105], "sklearn_knn_kwarg": 51, "701": 51, "900": [51, 86, 94, 105], "436": 51, "000": [51, 87, 92, 95, 96, 107], "idea": [51, 71, 89, 102], "dens": [51, 60], "33140006": 51, "76210367": 51, "vari": [51, 68, 91], "suitabl": [52, 61, 86, 94], "slower": 52, "decid": [52, 61, 87, 95, 96, 100, 105, 107], "predefin": 52, "met": [52, 107], "euclidean_dist": [52, 70], "spatial": [52, 70], "decis": [52, 86, 89, 90, 91], "That": [52, 98, 101], "cosine_dist": 52, "knn_kwarg": 53, "html": [53, 56, 66, 69, 70, 94, 97, 98], "kneighbor": 53, "metric_param": 53, "n_features_in_": 53, "effective_metric_params_": 53, "effective_metric_": 53, "n_samples_fit_": 53, "__sklearn_is_fitted__": 53, "conduct": 53, "is_fit": 53, "trail": 53, "underscor": 53, "avg_dist": 54, "scaling_factor": 54, "exp": [54, 70, 71, 90], "dt": 54, "right": [54, 66, 69, 87, 95, 101, 102, 103], "strength": [54, 69], "pronounc": 54, "differenti": 54, "ly": 54, "rule": [54, 55, 96], "thumb": 54, "ood_features_scor": [54, 70, 103], "88988177": 54, "80519832": 54, "toler": 54, "minkowski": 54, "noth": 54, "epsilon": 54, "sensibl": 54, "fixed_scor": 54, "readabl": 55, "lambda": [55, 88, 90, 97, 100], "long_sent": 55, "headlin": 55, "charact": [55, 56], "s1": 55, "s2": 55, "processed_token": 55, "alecnlcb": 55, "entiti": [55, 83, 97, 107], "mapped_ent": 55, "unique_ident": 55, "loc": [55, 89, 90, 91, 92, 107], "nbitbas": [55, 65], "probs_merg": 55, "0125": [55, 81], "0375": 55, "075": 55, "025": 55, "color": [55, 78, 89, 90, 91, 94, 98, 101, 103, 105, 106], "red": [55, 69, 89, 90, 91, 96, 98, 101, 102, 103, 106], "colored_sent": 55, "termcolor": 55, "31msentenc": 55, "0m": 55, "ancillari": 56, "class_without_nois": 56, "any_other_class": 56, "choos": [56, 71, 86, 94, 97, 98, 105], "tradition": 56, "new_sum": 56, "fill": 56, "come": [56, 89, 90, 91, 97, 106], "major": [56, 61, 84, 89, 92, 103], "versu": [56, 98], "obviou": 56, "cgdeboer": 56, "iteround": 56, "reach": 56, "prob_s_eq_1": 56, "claesen": 56, "f1": [56, 69, 95, 98], "BE": 56, "left_nam": 56, "top_nam": 56, "titl": [56, 89, 90, 91, 98, 101, 103], "short_titl": 56, "round_plac": 56, "pretti": [56, 89, 98], "joint_matrix": 56, "num_possible_valu": 56, "holdout_idx": 56, "extract": [56, 70, 87, 88, 95, 100, 103, 106], "allow_shuffl": 56, "turn": [56, 83, 102], "shuffledataset": 56, "histori": 56, "pre_x": 56, "buffer_s": 56, "csr_matric": 56, "append": [56, 88, 89, 92, 96, 97, 98, 100, 101, 102, 103, 107], "bottom": [56, 66, 69, 102], "to_data": 56, "from_data": 56, "taken": 56, "label_matrix": 56, "canon": 56, "displai": [56, 69, 78, 82, 87, 88, 89, 95, 98, 107], "jupyt": [56, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "notebook": [56, 61, 88, 89, 91, 96, 97, 98, 100, 101, 102, 106, 107], "consol": 56, "allow_missing_class": 57, "allow_one_class": 57, "length_x": 57, "labellik": 57, "labels_list": [57, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 101], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 107], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 95, 103], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": 61, "analyz": [61, 83, 98, 100, 101], "get_label_quality_multiannot": [61, 100], "vote": 61, "crowdsourc": [61, 83, 100], "dawid": [61, 100], "skene": [61, 100], "analog": [61, 89, 96, 100], "chosen": [61, 71, 97, 100], "crowdlab": [61, 100], "unlabel": [61, 92, 94, 95, 100, 103, 106], "get_active_learning_scor": [61, 100], "activelab": [61, 100], "priorit": [61, 68, 102, 106, 107], "showcas": 61, "main": [61, 89], "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 94, 98, 100, 105], "majority_vot": 61, "broken": [61, 69, 96, 105], "highest": [61, 69, 90, 92, 104], "0th": 61, "consensus_quality_scor": [61, 100], "annotator_agr": [61, 100], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 100], "agre": 61, "prevent": [61, 97], "overconfid": [61, 104], "detailed_label_qu": [61, 100], "annotator_stat": [61, 100], "model_weight": 61, "annotator_weight": 61, "warn": [61, 90, 91, 92, 94, 95, 97, 98], "labels_info": 61, "num_annot": [61, 100], "deriv": [61, 100], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 100], "num_examples_label": [61, 100], "agreement_with_consensu": [61, 100], "worst_class": [61, 100], "trustworthi": [61, 100, 105], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 105], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 90, 100], "get_majority_vote_label": [61, 100], "event": 61, "lastli": [61, 94], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "mutual": [62, 101], "exclus": [62, 101], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 92, 98], "anim": [64, 103], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "manner": [65, 86, 87, 100, 105], "box": [66, 68, 69, 96, 102], "object_detect": [66, 68, 69, 102], "return_indices_ranked_by_scor": [66, 102], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 102, 106, 107], "bbox": [66, 69, 102], "image_nam": [66, 69], "y1": [66, 69, 102], "y2": [66, 69, 102], "later": [66, 69, 70, 87, 107], "corner": [66, 69, 102], "xyxi": [66, 69, 102], "io": [66, 69, 88, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 102], "detectron": [66, 69, 102], "detectron2": [66, 69, 102], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 92, 105, 107], "draw_box": [66, 69], "mmdetect": [66, 69, 102], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 91], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 102, 106, 107], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 102], "bounding_box_size_distribut": [67, 69, 102], "class_label_distribut": [67, 69, 102], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97], "chose": [68, 100, 102], "imperfectli": [68, 102], "dirti": [68, 71, 74, 105], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 94, 95, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 106], "discov": [69, 91, 107], "abnorm": [69, 92, 102], "auxiliari": [69, 103, 106], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 91, 98, 101, 103, 105, 106], "sorted_idx": [69, 103], "class_to_show": 69, "hidden": [69, 89, 103], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "matplotlib": [69, 78, 89, 90, 91, 92, 98, 101, 102, 103, 105], "pyplot": [69, 78, 89, 90, 91, 92, 98, 101, 103, 105], "prediction_threshold": 69, "overlai": [69, 102], "figsiz": [69, 89, 90, 91, 92, 98, 101, 103], "save_path": [69, 102], "blue": [69, 96, 98, 102], "overlaid": 69, "side": [69, 96, 102], "figur": [69, 98, 101, 103, 105], "extens": [69, 98, 100], "png": [69, 102], "pdf": [69, 70], "svg": 69, "num_proc": [69, 92], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 98, 100, 105], "truth": [69, 98, 100, 105], "bias": 69, "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 94, 96, 98, 105], "per_class_metr": 69, "Of": 70, "li": 70, "smaller": [70, 89, 101, 102], "find_top_issu": [70, 71, 103], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 92], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 103], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 95, 103], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 90, 91, 94, 95, 103, 104], "order_label_issu": [71, 84], "whichev": [71, 104], "argsort": [71, 87, 92, 95, 98, 102, 103, 105], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 98], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 95], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 103], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 95], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 105], "linearregress": [73, 97, 105], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 90, 100, 103], "bootstrap": [73, 97, 105], "resampl": [73, 88, 97], "epistem": [73, 97, 103, 105], "aleator": [73, 97, 105], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 95, 103], "grain": 73, "grid": 73, "varianc": [73, 98], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 102, 105], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 91, 92, 96, 97, 100, 102, 103, 105], "aka": [74, 88, 98, 102, 105, 107], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 99], "pixel": [75, 77, 78, 92, 103, 106], "h": [75, 77, 78, 106], "height": [75, 77, 78, 106], "w": [75, 77, 78, 106], "width": [75, 77, 78, 106], "labels_one_hot": [75, 78, 106], "stream": [75, 89, 103, 107], "downsampl": [75, 77, 106], "shrink": [75, 77], "divis": [75, 77, 90], "common_label_issu": [76, 78, 80, 82, 106, 107], "filter_by_class": [76, 78, 106], "segmant": [77, 78], "num_pixel_issu": [77, 106], "product": [77, 92, 97], "pixel_scor": [77, 106], "enter": 78, "legend": [78, 89, 90, 91, 101, 102, 105, 106], "colormap": 78, "background": 78, "person": [78, 97, 102, 106, 107], "ambigu": [78, 82, 87, 88, 95, 96, 98, 107], "systemat": [78, 82, 100], "misunderstood": [78, 82], "issues_df": [78, 92], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 107], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 107], "converg": 81, "toward": 81, "_softmin_sentence_scor": 81, "sentence_scor": [81, 107], "token_info": 81, "70": [81, 94], "02": [81, 90, 91, 98, 102], "03": [81, 94, 96, 98, 102, 107], "04": [81, 94, 102], "08": [81, 98, 102, 105, 107], "commonli": [82, 84, 90, 91, 101, 107], "But": [82, 95, 98, 105, 107], "restrict": [82, 97], "reliabl": [83, 86, 88, 97, 100, 106], "thousand": 83, "imagenet": [83, 96], "popular": [83, 100, 102], "centric": [83, 92, 94, 95, 99], "capabl": 83, "minut": [83, 86, 87, 88, 94, 95, 96, 100, 101, 102, 105, 106, 107], "conda": 83, "feature_embed": [83, 103], "Then": [83, 86, 87, 92, 97], "your_dataset": [83, 88, 90, 91, 92, 94, 95, 97], "column_name_of_label": [83, 88, 90, 91, 92, 94, 95], "plagu": [83, 91], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 91], "sklearn_compatible_model": 83, "framework": [83, 101, 102], "complianc": 83, "tag": [83, 101, 107], "sequenc": 83, "recognit": [83, 88, 97, 107], "train_data": [83, 86, 87, 103, 105], "gotten": 83, "test_data": [83, 86, 87, 89, 98, 101, 103, 105], "deal": [83, 91], "tutori": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "feel": [83, 88, 91, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 105], "welcom": 83, "commun": [83, 97], "guidelin": [83, 102], "piec": 83, "smart": [83, 92, 94, 95, 97], "edit": [83, 97], "easier": [83, 98], "unreli": [83, 86, 88, 94, 95], "link": [83, 88, 96, 102], "older": 84, "outlin": 84, "substitut": 84, "v2": [84, 86, 94], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 94, 96, 107], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 98], "research": [84, 98], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 100, 101, 102, 103, 105, 106, 107], "sql": [86, 94], "databas": [86, 94], "excel": [86, 94], "parquet": [86, 94], "student": [86, 94, 105, 107], "grade": [86, 94, 105], "exam": [86, 94, 105], "letter": [86, 94, 107], "hundr": [86, 94], "mistak": [86, 87, 92, 94, 95], "No": [86, 87, 95, 97], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105], "preprocess": [86, 87, 91, 94, 103, 105], "standardscal": [86, 94, 103], "labelencod": [86, 87], "train_test_split": [86, 87, 89, 90, 91, 103], "accuracy_scor": [86, 87, 88, 95, 98], "grades_data": [86, 94], "read_csv": [86, 87, 94, 95, 105], "demo": [86, 91, 94, 101], "head": [86, 87, 88, 91, 92, 94, 95, 96, 98, 100, 105], "stud_id": [86, 94], "exam_1": [86, 94, 105], "exam_2": [86, 94, 105], "exam_3": [86, 94, 105], "letter_grad": [86, 94], "f48f73": [86, 94], "53": [86, 89, 90, 91, 94, 96, 101, 102], "00": [86, 90, 91, 94, 96, 103], "77": [86, 90, 91, 94, 102], "0bd4e7": [86, 94], "81": [86, 94, 95, 102, 105, 107], "great": [86, 89, 94, 96], "particip": [86, 94], "cb9d7a": [86, 94], "61": [86, 94, 98, 102, 105], "94": [86, 94, 96, 98, 102, 105], "78": [86, 94, 96, 98, 102, 105, 107], "9acca4": [86, 94], "48": [86, 94, 96, 98, 102], "x_raw": [86, 94], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 105], "x_encod": [86, 94], "get_dummi": [86, 94, 105], "drop_first": [86, 94], "numeric_featur": [86, 94], "scaler": [86, 94, 103], "x_process": [86, 94], "fit_transform": [86, 94], "bring": [86, 87, 92, 94, 95, 100, 105], "byod": [86, 87, 92, 94, 95, 100, 105], "tress": 86, "held": [86, 88, 94, 95, 96, 102, 103, 104], "straightforward": [86, 88, 94], "benefit": [86, 88, 104, 106], "num_crossval_fold": [86, 88, 94, 100], "tabl": [86, 94, 96, 100], "212": [86, 98], "review": [86, 87, 91, 94, 95, 96, 97, 98, 102, 105, 106, 107], "iloc": [86, 87, 88, 94, 95, 105], "58": [86, 91, 94, 96, 98, 102], "92": [86, 90, 98, 102], "93": [86, 96, 102, 105], "827": 86, "99": [86, 96, 98], "86": [86, 91, 92, 94, 98, 102, 105], "74": [86, 102, 105], "637": [86, 94], "79": [86, 96, 102], "65": [86, 90, 102], "cheat": 86, "0pt": 86, "120": [86, 90, 91], "97": [86, 96, 97, 98, 102, 105, 107], "233": 86, "68": [86, 96, 98, 102], "83": [86, 98, 102, 105, 107], "76": [86, 89, 98, 101, 102, 105], "suspici": [86, 94], "carefulli": [86, 92, 94, 95], "examin": [86, 89, 90, 91, 94, 102], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90, 91], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 105], "14": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "acc_cl": [86, 87], "8095238095238095": 86, "especi": [86, 87, 89, 92, 97, 105], "blindli": [86, 87, 88, 97, 105], "trust": [86, 87, 88, 97, 98, 100, 104, 105], "effort": [86, 87, 105], "intent": [87, 95], "servic": [87, 95, 97], "onlin": [87, 95], "bank": [87, 95, 96], "banking77": [87, 95], "oo": [87, 95], "categori": [87, 92, 95], "shortlist": [87, 95, 105], "scope": [87, 95], "logist": [87, 89, 90, 91, 95, 100, 103], "probabilit": [87, 88], "drop": [87, 97, 100, 105], "earlier": [87, 107], "sentence_transform": [87, 95], "sentencetransform": [87, 95], "payment": [87, 95], "cancel_transf": [87, 95], "transfer": [87, 95], "fund": [87, 95], "cancel": [87, 95], "transact": [87, 95], "my": [87, 95], "revert": [87, 95], "morn": [87, 95], "realis": [87, 95], "yesterdai": [87, 95], "rent": [87, 95], "tomorrow": [87, 95], "raw_text": [87, 95], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "39": [87, 88, 90, 92, 95, 96, 97, 102, 105, 106, 107], "lost_or_stolen_phon": [87, 95], "apple_pay_or_google_pai": [87, 95], "supported_cards_and_curr": [87, 95], "beneficiary_not_allow": [87, 95], "change_pin": [87, 95], "card_about_to_expir": [87, 95], "visa_or_mastercard": [87, 95], "card_payment_fee_charg": [87, 95], "getting_spare_card": [87, 95], "card": [87, 95, 96], "utter": [87, 95], "encond": 87, "test_label": [87, 98, 101, 103], "suit": [87, 95, 96, 97], "electra": [87, 95], "discrimin": [87, 95], "googl": [87, 89, 95], "train_text": 87, "test_text": 87, "home": [87, 90, 91, 95, 96], "runner": [87, 90, 91, 95], "google_electra": [87, 95], "pool": [87, 95, 97, 103], "opt": [87, 88, 91, 92, 94, 95, 98], "hostedtoolcach": [87, 88, 91, 92, 94, 95, 98], "x64": [87, 88, 91, 92, 94, 95, 98], "lib": [87, 88, 91, 92, 94, 95, 98], "python3": [87, 88, 91, 92, 94, 95, 98], "site": [87, 88, 91, 92, 94, 95, 98], "_util": [87, 95], "831": [87, 95], "userwarn": [87, 88, 90, 91, 95], "typedstorag": [87, 95], "untypedstorag": [87, 95], "untyped_storag": [87, 95], "fget": [87, 95], "__get__": [87, 95], "owner": [87, 95], "leverag": [87, 88, 95, 97, 98, 100], "computation": [87, 88, 95], "intens": [87, 88, 95], "400": [87, 89, 95], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 105], "lowest_quality_label": [87, 88, 95, 98, 105], "to_numpi": [87, 95, 97, 105], "44": [87, 96, 101, 102], "646": 87, "390": 87, "628": 87, "121": [87, 89, 98], "702": 87, "863": [87, 88], "135": 87, "337": [87, 102], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 95], "cash": [87, 95], "holidai": [87, 95], "sent": [87, 95, 107], "mine": [87, 95], "expir": [87, 95], "fight": 87, "hors": [87, 96, 103], "duck": [87, 96], "me": [87, 95], "whoever": [87, 95], "consum": [87, 105], "18": [87, 88, 89, 95, 96, 97, 98, 102, 103, 105, 106], "baseline_model": [87, 105], "87": [87, 91, 92, 102, 105], "acceler": [87, 105], "19": [87, 88, 89, 92, 95, 96, 97, 98, 102, 103, 105, 106], "89": [87, 89, 90, 94, 102, 105], "spoken": 88, "500": [88, 103, 107], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 90, 91, 92, 97], "voxceleb": 88, "speech": [88, 107], "your_pred_prob": [88, 89, 90, 91, 94, 95], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 94, 98, 100], "command": 88, "wget": [88, 102, 106, 107], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 107], "v1": 88, "tar": [88, 103], "gz": [88, 103], "mkdir": [88, 107], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 89, 92, 97], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "pulldown": [88, 89, 90, 91, 92, 96, 98, 100, 101, 103, 105, 107], "colab": [88, 89, 90, 91, 92, 96, 97, 98, 100, 101, 103, 105, 107], "tfio": 88, "pathlib": 88, "ipython": 88, "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": 88, "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 92], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 92], "embeddings_arrai": 88, "650": 88, "stft": 88, "return_complex": 88, "view_as_r": 88, "recov": 88, "trigger": 88, "aten": 88, "src": 88, "nativ": 88, "spectralop": 88, "cpp": 88, "_vf": 88, "n_fft": 88, "hop_length": 88, "win_length": 88, "attr": 88, "512": [88, 92], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "24": [88, 89, 96, 98, 100, 102, 105], "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 90, 96, 97, 98, 102, 105, 107], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 89, 92, 96, 98, 102, 105, 107], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 97], "cv_accuraci": 88, "9708": 88, "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 98, 101], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "investig": [88, 89], "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 95], "sort_valu": [88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 105], "516": 88, "1946": 88, "469": 88, "2132": 88, "worth": [88, 98], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 103], "22": [88, 89, 90, 92, 96, 97, 98, 101, 102, 107], "load_ext": 89, "autoreload": 89, "ve": [89, 96, 97, 98, 100, 102], "prove": 89, "monitor": [89, 96], "ran": 89, "data_monitor": 89, "your_datalab": 89, "new_data_batch": 89, "your_label": 89, "get_your_label": 89, "your_featur": [89, 95], "get_featur": 89, "websit": [89, 96], "todo": 89, "get_ipython": 89, "4e2cafbc517f092cd088ca83bf49eef8767d363f": 89, "cmd": 89, "dep": 89, "dependencies_test": 89, "missing_depend": 89, "__import__": 89, "importerror": 89, "sep": [89, 107], "npleas": 89, "toi": [89, 90, 91, 92, 96, 98, 100], "mid": [89, 90, 91], "workflow": [89, 99, 105], "unseen": 89, "inf": [89, 90, 91], "bins_map": [89, 90, 91], "create_data": [89, 90, 91], "800": 89, "y_bin": [89, 90, 91], "y_i": [89, 90, 91], "y_bin_idx": [89, 90, 91], "y_train": [89, 90, 91, 98, 105], "y_test": [89, 90, 91, 98, 105], "y_train_idx": [89, 90, 91], "y_test_idx": [89, 90, 91], "slide": [89, 90, 91, 96], "frame": [89, 90, 91], "x_out": [89, 90, 91], "tini": [89, 90, 91], "concaten": [89, 90, 91, 97, 104], "y_out": [89, 90, 91], "y_out_bin": [89, 90, 91], "y_out_bin_idx": [89, 90, 91], "exact_duplicate_idx": [89, 90, 91], "x_duplic": [89, 90, 91], "y_duplic": [89, 90, 91], "y_duplicate_idx": [89, 90, 91], "noisy_labels_idx": [89, 90, 91, 101], "train_x": 89, "test_x": 89, "train_y_tru": 89, "test_y_tru": 89, "train_i": 89, "test_i": 89, "train_y_idx": 89, "test_y_idx": 89, "scatter": [89, 90, 91, 98, 101, 105], "black": [89, 90, 91, 96, 105], "cyan": [89, 90, 91], "plot_data": [89, 90, 91, 98, 101, 105], "fig": [89, 90, 91, 92, 96, 103, 105], "ax": [89, 90, 91, 92, 103, 105], "subplot": [89, 90, 91, 92, 103], "set_titl": [89, 90, 91, 92, 103], "set_xlabel": [89, 90, 91], "x_1": [89, 90, 91], "fontsiz": [89, 90, 91, 92, 98, 101], "set_ylabel": [89, 90, 91], "x_2": [89, 90, 91], "set_xlim": [89, 90, 91], "set_ylim": [89, 90, 91], "linestyl": [89, 90, 91], "circl": [89, 90, 91, 98, 101], "misclassifi": [89, 90, 91], "zip": [89, 90, 91, 92, 102, 107], "label_err": [89, 90, 91], "180": [89, 90, 91, 102], "marker": [89, 90, 91], "facecolor": [89, 90, 91], "edgecolor": [89, 90, 91], "linewidth": [89, 90, 91, 103], "title_fontproperti": [89, 90, 91], "semibold": [89, 90, 91], "first_legend": [89, 90, 91], "align": [89, 90, 91], "markerscal": 89, "second_legend": [89, 90, 91], "46": [89, 94, 96, 98, 102], "gca": [89, 90, 91], "add_artist": [89, 90, 91], "tight_layout": [89, 90, 91], "ideal": [89, 90, 91], "simplic": [89, 101], "327": [89, 102], "9297": 89, "000124": 89, "259": 89, "000725": 89, "269": 89, "000794": 89, "002061": 89, "125": [89, 90], "002908": 89, "fly": [89, 96], "feed": [89, 97], "simul": 89, "tqdm": [89, 92], "sleep": [89, 96], "generate_stream": 89, "sleep_tim": 89, "desc": 89, "singleton_stream": 89, "seamless": [89, 97], "singleton": 89, "batched_stream": 89, "processed_singleton": 89, "suggested_label": [89, 95], "250997": 89, "285757": 89, "43": [89, 90, 96, 98, 102], "120906": 89, "principl": 89, "processed_batch": 89, "51": [89, 90, 91, 94, 96, 98, 102], "002748": 89, "189996": 89, "093505": 89, "037250": 89, "149": [89, 102], "076397": 89, "154": [89, 107], "294010": 89, "160": [89, 95, 105], "073622": 89, "166": [89, 92], "140832": 89, "167": [89, 96, 98, 102], "041743": 89, "181": 89, "169429": 89, "127304": 89, "235": [89, 102], "090310": 89, "254": [89, 96, 102], "183343": 89, "256": [89, 96, 97, 102], "048720": 89, "263": [89, 101, 102], "138820": 89, "292": 89, "239609": 89, "295": [89, 102], "022075": 89, "306": 89, "103040": 89, "343": 89, "234755": 89, "354": 89, "001612": 89, "359": 89, "068359": 89, "367": [89, 105], "015793": 89, "368": 89, "029022": 89, "391": 89, "106761": 89, "troublesom": 89, "623844": 89, "812647": 89, "816854": 89, "661968": 89, "632244": 89, "395": 89, "474599": 89, "396": 89, "653901": 89, "397": 89, "584554": 89, "398": 89, "817287": 89, "399": 89, "881545": 89, "183": 89, "937927": 89, "309": 89, "939505": 89, "133": 89, "947290": 89, "177": 89, "952187": 89, "314": [89, 102], "997293": 89, "27": [89, 94, 96, 98, 102, 107], "655501": 89, "3603": 89, "173": [89, 102], "000330": 89, "000626": 89, "296": 89, "002004": 89, "304": 89, "165496": 89, "275": [89, 101], "179811": 89, "001317": 89, "005943": 89, "001426": 89, "320": [89, 102], "186355": 89, "349": 89, "187305": 89, "393": 89, "169838": 89, "185770": 89, "369889": 89, "285297": 89, "406162": 89, "516543": 89, "440142": 89, "476283": 89, "382757": 89, "466786": 89, "522078": 89, "276298": 89, "328181": 89, "409633": 89, "281425": 89, "518102": 89, "360596": 89, "underneath": 90, "hood": [90, 97], "alert": 90, "introduct": 90, "mayb": [90, 91, 95], "your_feature_matrix": [90, 91], "dup": [90, 91], "45": [90, 91, 96, 98, 102], "remaind": 90, "modal": [90, 91, 97, 100], "132": [90, 91, 98, 102], "9318": 90, "006940": 90, "007830": 90, "40": [90, 91, 95, 96], "014828": 90, "107": [90, 91, 98, 101], "021241": 90, "026407": 90, "notic": [90, 98, 100, 102], "3558": [90, 91], "126": [90, 91, 98, 102], "006636": [90, 91], "130": [90, 91], "012571": [90, 91], "129": [90, 91], "127": [90, 91], "014909": [90, 91], "128": [90, 91, 92], "017443": [90, 91], "6160": [90, 91], "is_near_duplicate_issu": [90, 91, 92, 94, 95, 97, 98], "131": [90, 91, 106], "000000e": [90, 91], "000002": [90, 91], "463180e": [90, 91], "07": [90, 91, 92, 94, 98, 102, 105], "161148": [90, 91], "859087e": [90, 91], "30": [90, 91, 92, 96, 97, 101, 106, 107], "3453": 90, "029542": 90, "031182": 90, "057961": 90, "058244": 90, "348": 90, "378": 90, "357": 90, "34": [90, 96, 98, 100, 102, 107], "54": [90, 96, 98, 102], "039122": 90, "044598": 90, "105": [90, 102], "105196": 90, "133654": 90, "168033": 90, "101107": 90, "37": [90, 96], "183382": 90, "109": [90, 96, 102], "209259": 90, "211042": 90, "221316": 90, "average_ood_scor": 90, "34530442089193386": 90, "52": [90, 96, 102, 107], "169820": 90, "087324e": 90, "259024": 90, "583757e": 90, "91": [90, 102], "346458": 90, "341292e": 90, "specfi": 90, "new_lab": 90, "scoring_funct": 90, "div": 90, "rem": 90, "inv_scal": 90, "49": [90, 96, 98, 102], "superstitionissuemanag": 90, "unlucki": 90, "superstit": 90, "to_seri": 90, "issues_mask": 90, "summary_scor": 90, "9242": 90, "is_superstition_issu": 90, "superstition_scor": 90, "26": [90, 92, 96, 98, 100, 102], "047581": 90, "090635": 90, "129591": 90, "164840": 90, "lurk": [91, 92, 98], "_split": 91, "776": 91, "thoroughli": 91, "904": 91, "_base": [91, 92, 94, 95, 98], "246": [91, 92, 94, 95, 98, 102], "efficiencywarn": [91, 92, 94, 95, 98], "sort_graph_by_row_valu": [91, 92, 94, 95, 98], "warn_when_not_sort": [91, 92, 94, 95, 98], "8561": 91, "001908": 91, "003564": 91, "007331": 91, "008963": 91, "009664": 91, "0227": 91, "is_class_imbalance_issu": 91, "022727": 91, "conceptu": 91, "856061": 91, "355772": 91, "616034": 91, "821750": 91, "901562": 91, "betweeen": 91, "is_null_issu": 91, "is_non_iid_issu": [91, 94, 95, 98], "is_underperforming_group_issu": 91, "859131": 91, "417707": 91, "664083": 91, "970324": 91, "816953": 91, "375317": 91, "641516": 91, "890575": 91, "531021": 91, "460593": 91, "601188": 91, "826147": 91, "752808": 91, "321635": 91, "562539": 91, "948362": 91, "090243": 91, "472909": 91, "746763": 91, "878267": 91, "examples_w_issu": [91, 97], "013445": 91, "025184": 91, "026376": 91, "inde": [91, 95], "miscellan": [91, 107], "428571": 91, "111111": 91, "571429": 91, "407407": 91, "592593": 91, "337838": 91, "092593": 91, "662162": 91, "333333": [91, 96], "952381": 91, "666667": 91, "portion": 91, "huge": [91, 98], "worri": [91, 95], "critic": 91, "60": [92, 98, 105], "torchvis": [92, 103], "tensordataset": 92, "stratifiedkfold": [92, 101], "autonotebook": 92, "fashion_mnist": 92, "num_row": 92, "60000": 92, "transformed_dataset": 92, "with_format": 92, "255": [92, 96], "cpu_count": 92, "torch_dataset": 92, "quick": [92, 101, 103], "super": [92, 94, 95], "relu": 92, "batchnorm2d": 92, "maxpool2d": 92, "lazylinear": 92, "flatten": 92, "get_test_accuraci": 92, "testload": [92, 103], "energi": 92, "trainload": [92, 103], "n_epoch": 92, "patienc": 92, "criterion": 92, "crossentropyloss": 92, "adamw": 92, "best_test_accuraci": 92, "start_epoch": 92, "running_loss": 92, "best_epoch": 92, "end_epoch": 92, "3f": [92, 105], "acc": [92, 98], "time_taken": 92, "compute_embed": 92, "compute_pred_prob": 92, "train_batch_s": 92, "num_work": 92, "worker": [92, 107], "train_id_list": 92, "test_id_list": 92, "train_id": 92, "test_id": 92, "embeddings_model": 92, "ntrain": 92, "trainset": 92, "testset": 92, "pin_memori": 92, "fold_embed": 92, "fold_pred_prob": 92, "finish": 92, "482": 92, "720": 92, "787": 92, "329": [92, 102], "88": [92, 96, 97, 98, 101, 102, 105], "195": 92, "446": 92, "493": 92, "060": 92, "667": 92, "330": [92, 102], "505": 92, "671": 92, "476": 92, "340": 92, "704": 92, "328": [92, 102], "310": 92, "377": 92, "reorder": 92, "hstack": [92, 97, 98, 100], "vision": 92, "grayscal": 92, "max_preval": 92, "7714": 92, "3772": 92, "3585": 92, "3651": 92, "27080": 92, "873833e": 92, "40378": 92, "915575e": 92, "25316": 92, "390277e": 92, "06": [92, 98, 102, 107], "2090": 92, "751164e": 92, "14999": 92, "881301e": 92, "9569": 92, "11262": 92, "000003": 92, "coat": [92, 96], "shirt": [92, 96], "19228": 92, "000010": 92, "dress": 92, "32657": 92, "000013": 92, "bag": [92, 96, 103, 104], "21282": 92, "000016": 92, "53564": 92, "000018": 92, "pullov": 92, "6321": 92, "30968": 92, "001267": 92, "30659": 92, "000022": [92, 107], "47824": 92, "001454": 92, "3370": 92, "000026": 92, "54565": 92, "001854": 92, "9762": 92, "258": 92, "47139": 92, "000033": 92, "166980": 92, "986195": 92, "997205": 92, "sandal": [92, 96], "948781": 92, "999358": 92, "54078": 92, "17371": 92, "000025": 92, "plot_label_issue_exampl": 92, "ncol": [92, 103], "nrow": [92, 103], "ceil": 92, "axes_list": 92, "label_issue_indic": 92, "gl": 92, "sl": 92, "fontdict": 92, "imshow": [92, 103], "cmap": [92, 105], "grai": 92, "subplots_adjust": 92, "hspace": 92, "outsiz": 92, "outlier_issu": [92, 95], "outlier_issues_df": 92, "depict": [92, 101, 102, 103, 104, 106], "plot_outlier_issues_exampl": 92, "n_comparison_imag": 92, "sample_from_class": 92, "number_of_sampl": 92, "non_outlier_indic": 92, "isnul": 92, "non_outlier_indices_excluding_curr": 92, "sampled_indic": 92, "label_scores_of_sampl": 92, "top_score_indic": 92, "top_label_indic": 92, "sampled_imag": 92, "get_image_given_label_and_sampl": 92, "image_from_dataset": 92, "corresponding_label": 92, "comparison_imag": 92, "images_to_plot": 92, "idlist": 92, "iterrow": 92, "near_duplicate_issu": [92, 97], "closest": 92, "counterpart": 92, "near_duplicate_issues_df": 92, "plot_near_duplicate_issue_exampl": 92, "seen_id_pair": 92, "get_image_and_given_label_and_predicted_label": 92, "duplicate_imag": 92, "nd_set": 92, "challeng": 92, "dark_issu": 92, "reveal": [92, 102, 106], "dark_scor": 92, "dark_issues_df": 92, "is_dark_issu": 92, "34848": 92, "203922": 92, "50270": 92, "204588": 92, "3936": 92, "213098": 92, "733": 92, "217686": 92, "8094": 92, "230118": 92, "plot_image_issue_exampl": 92, "28": [92, 95, 96, 98, 100, 107], "difficult": 92, "disproportion": 92, "lowinfo_issu": 92, "low_information_scor": 92, "lowinfo_issues_df": 92, "is_low_information_issu": 92, "53050": 92, "067975": 92, "40875": 92, "089929": 92, "9594": 92, "092601": 92, "34825": 92, "107744": 92, "37530": 92, "108516": 92, "lot": 92, "histgradientboostingclassifi": 94, "cat_featur": 94, "boost": [94, 97, 100, 105], "xgboost": [94, 97, 105], "think": [94, 95, 97, 101, 106, 107], "nonzero": 94, "358": 94, "294": [94, 102], "941": 94, "7109": 94, "000005": [94, 95], "886": 94, "000059": 94, "709": 94, "000104": 94, "723": 94, "000169": 94, "689": 94, "000181": 94, "3590": 94, "051882e": 94, "683133e": 94, "536582e": 94, "406589e": 94, "324246e": 94, "6165": 94, "582": 94, "185": [94, 96, 102], "187": [94, 96], "898": 94, "0014": [94, 96], "595": 94, "702427": 94, "147": [94, 98, 102], "711186": 94, "157": [94, 98], "721394": 94, "771": 94, "731979": 94, "740335": 94, "0014153602099278074": 94, "issue_result": 94, "000842": 94, "555944": 94, "004374": 94, "sorted_issu": 94, "73": [94, 96, 101, 102, 105], "deserv": 94, "outlier_result": 94, "sorted_outli": 94, "56": [94, 96, 105], "96": [94, 96, 98, 101, 102, 105], "lt": [94, 95, 96, 100, 103], "style": [94, 106], "font": 94, "18px": 94, "ff00ff": 94, "bac": 94, "unintend": [94, 95], "duplicate_result": 94, "690": 94, "perhap": [94, 98, 100], "twice": 94, "67": [94, 96, 102, 105], "wari": [94, 95, 97], "dive": 95, "text_embed": 95, "data_dict": [95, 98, 100], "85": [95, 102], "38": [95, 96, 102], "9710": 95, "981": 95, "974": 95, "000146": 95, "982": [95, 96], "000224": 95, "971": 95, "000507": 95, "980": [95, 96], "000960": 95, "3584": 95, "994": 95, "009642": 95, "999": 95, "013067": 95, "013841": 95, "433": 95, "014722": 95, "989": 95, "018224": 95, "6070": 95, "095724": 95, "148": 95, "006237": 95, "546": 95, "099341": 95, "514": 95, "006485": 95, "481": 95, "123418": 95, "008165": 95, "0000": [95, 96, 98], "313": [95, 102], "564102": 95, "572258": 95, "574915": 95, "31": [95, 96, 98, 100, 102], "575507": 95, "575874": 95, "792090": 95, "257611": 95, "698710": 95, "182121": 95, "771619": 95, "data_with_suggested_label": 95, "withdraw": 95, "monei": 95, "lowest_quality_outli": 95, "OR": 95, "636c65616e6c616220697320617765736f6d6521": 95, "phone": [95, 96], "gone": 95, "gt": [95, 100, 107], "samp": 95, "br": 95, "press": [95, 107], "nonsens": 95, "sens": 95, "detriment": 95, "duplicate_issu": 95, "fee": 95, "pai": 95, "go": [95, 96, 98], "strongli": 95, "p_valu": 95, "benign": 95, "curat": 95, "refin": 96, "instruct": 96, "studi": [96, 102], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 107], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 107], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 102], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 103], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 107], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "yellow": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 103], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 107], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "flat": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 107], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 107], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 106], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 107], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 102], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 106], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 102], "carousel": 96, "tool": [96, 98, 100], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 107], "chain": 96, "fenc": [96, 106], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 103], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "center": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 106], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 98], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 102], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 107], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 106], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "school": 96, "bu": [96, 106], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 107], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 107], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 106], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 107], "tenni": 96, "thatch": 96, "roof": 96, "front": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": 96, "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 106], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 102, 106], "sign": [96, 106, 107], "dust": 96, "jacket": [96, 102], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "orang": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 103], "automobil": [96, 103], "deer": [96, 103], "cifar100_test_set": 96, "aquarium_fish": 96, "babi": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 107], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 106], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 106], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 102], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 105], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 102], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 107], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "alt": 96, "atheism": 96, "comp": 96, "graphic": [96, 106], "misc": [96, 107], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "sci": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 107], "talk": [96, 107], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "bytesio": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "interpret": [96, 97, 98, 101, 105], "capit": 96, "29780": 96, "780": 96, "medic": [96, 107], "doctor": 96, "359223": 96, "640777": 96, "184": [96, 98], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "670000": 96, "251": [96, 102], "252": 96, "112": 96, "253": [96, 102], "022989": 96, "049505": 96, "190": [96, 98, 102], "66": 96, "002216": 96, "000974": 96, "59": [96, 102], "000873": 96, "000739": 96, "32635": 96, "32636": 96, "47": [96, 102], "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "36": [96, 107], "41": [96, 102, 105], "71": [96, 98, 102, 105], "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 98], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 102], "98": [96, 97, 105], "452381": 96, "459770": 96, "72": [96, 98, 101, 105], "523364": 96, "460784": 96, "446602": 96, "57": [96, 98], "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "82": [96, 98, 102, 105], "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 98], "188": [96, 98, 101], "189": [96, 98], "snippet": 97, "nlp": [97, 107], "mind": [97, 98], "alphanumer": 97, "facilit": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "from_dict": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 102], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 98], "game": 97, "speedup": [97, 103], "flexibl": 97, "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 98, 107], "successfulli": 97, "meaning": [97, 103], "virtuou": [97, 100], "cycl": [97, 100], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 98], "true_error": [97, 98, 101], "101": [97, 102], "102": [97, 101, 102], "104": [97, 98, 102], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98], "max_depth": [97, 98], "magnitud": 97, "coeffici": [97, 105], "optin": 97, "environ": [97, 98], "rerun": [97, 98], "cell": [97, 98], "unabl": [97, 98], "render": [97, 98], "nbviewer": [97, 98], "nbsp": [97, 98], "cleanlearninginot": [97, 98], "fittedcleanlearn": [97, 98], "linearregressionlinearregress": 97, "n_init": 97, "fit_predict": 97, "continuous_column": 97, "categorical_column": 97, "data_df": 97, "feature_a": 97, "feature_b": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "tolist": [97, 101], "issubset": 97, "frozenset": 97, "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "idxmin": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 103], "kept": 97, "ids_to_remove_seri": 97, "tmp": 97, "ipykernel_7745": 97, "1995098996": 97, "deprecationwarn": 97, "dataframegroupbi": 97, "include_group": 97, "silenc": 97, "assist": 97, "streamlin": 97, "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "alter": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "depth": 98, "survei": [98, 107], "focus": [98, 100, 101, 105], "scienc": 98, "multivariate_norm": [98, 100, 101], "make_data": [98, 100], "cov": [98, 100, 101], "avg_trac": [98, 101], "py_tru": 98, "noise_matrix_tru": 98, "noise_marix": 98, "s_test": 98, "noisy_test_label": 98, "purpl": 98, "val": 98, "namespac": 98, "exec": 98, "markerfacecolor": [98, 101], "markeredgecolor": [98, 101, 105], "markers": [98, 101, 105], "markeredgewidth": [98, 101, 105], "realist": 98, "7560": 98, "637318e": 98, "896262e": 98, "548391e": 98, "923417e": 98, "375075e": 98, "3454": 98, "014051": 98, "020451": 98, "249": [98, 102], "042594": 98, "043859": 98, "045954": 98, "6120": 98, "023714": 98, "007136": 98, "119": [98, 102], "107266": 98, "103": [98, 102], "033738": 98, "238": [98, 102], "119505": 98, "236": [98, 102, 107], "037843": 98, "222": 98, "614915": 98, "122": [98, 102], "624422": 98, "625965": 98, "626079": 98, "118": 98, "627675": 98, "695223": 98, "323529": 98, "523015": 98, "013720": 98, "675727": 98, "646521": 98, "anyth": 98, "enhanc": [98, 100, 102], "magic": 98, "liter": 98, "identif": 98, "x27": 98, "logisticregressionlogisticregress": 98, "ever": 98, "092": 98, "040": 98, "024": 98, "004": 98, "surpris": 98, "1705": 98, "01936": 98, "ton": 98, "yourfavoritemodel1": 98, "merged_label": 98, "merged_test_label": 98, "newli": [98, 100], "yourfavoritemodel2": 98, "yourfavoritemodel3": 98, "cl3": 98, "takeawai": 98, "randomli": 98, "my_test_pred_prob": 98, "my_test_pr": 98, "issues_test": 98, "corrected_test_label": 98, "pretend": 98, "cl_test_pr": 98, "69": [98, 105], "fairli": 98, "label_acc": 98, "percentag": 98, "offset": 98, "nquestion": 98, "overestim": 98, "answer": 98, "experienc": 98, "knowledg": 98, "prioiri": 98, "known": 98, "versatil": 98, "label_issues_indic": 98, "213": [98, 102], "218": [98, 102], "152": 98, "197": [98, 102], "196": [98, 102], "170": 98, "214": 98, "164": [98, 101], "198": [98, 102], "191": [98, 102], "63": [98, 102, 105], "117": [98, 105], "62": [98, 102, 105], "206": [98, 102], "115": [98, 102], "193": 98, "194": 98, "201": [98, 102], "174": 98, "163": 98, "150": [98, 100, 102, 107], "169": [98, 107], "151": [98, 102], "168": 98, "precision_scor": 98, "recall_scor": 98, "f1_score": 98, "true_label_issu": 98, "filter_by_list": 98, "718750": [98, 100], "807018": 98, "912": 98, "733333": 98, "800000": 98, "721311": 98, "792793": 98, "908": 98, "676923": 98, "765217": 98, "892": 98, "567901": 98, "702290": 98, "844": 98, "gaug": 98, "label_issues_count": 98, "155": [98, 102], "156": 98, "172": [98, 101], "easiest": 98, "modular": 98, "penalti": 98, "l2": 98, "model3": 98, "n_estim": 98, "cv_pred_probs_1": 98, "cv_pred_probs_2": 98, "cv_pred_probs_3": 98, "label_quality_scores_best": 98, "cv_pred_probs_ensembl": 98, "label_quality_scores_bett": 98, "superior": [98, 104], "timm": 99, "glad": 100, "multiannotator_label": 100, "300": [100, 107], "noisier": 100, "111": [100, 105], "local_data": [100, 101], "true_labels_train": [100, 101], "noise_matrix_bett": 100, "noise_matrix_wors": 100, "transpos": [100, 103], "dropna": 100, "zfill": 100, "row_na_check": 100, "notna": 100, "reset_index": 100, "a0001": 100, "a0002": 100, "a0003": 100, "a0004": 100, "a0005": 100, "a0006": 100, "a0007": 100, "a0008": 100, "a0009": 100, "a0010": 100, "a0041": 100, "a0042": 100, "a0043": 100, "a0044": 100, "a0045": 100, "a0046": 100, "a0047": 100, "a0048": 100, "a0049": 100, "a0050": 100, "na": 100, "60856743": 100, "41693214": 100, "40908785": 100, "87147629": 100, "64941785": 100, "10774851": 100, "0524466": 100, "71853246": 100, "37169848": 100, "66031048": 100, "multiannotator_util": 100, "crude": 100, "straight": 100, "majority_vote_label": 100, "736118": 100, "757751": 100, "782232": 100, "715565": 100, "824256": 100, "quality_annotator_a0001": 100, "quality_annotator_a0002": 100, "quality_annotator_a0003": 100, "quality_annotator_a0004": 100, "quality_annotator_a0005": 100, "quality_annotator_a0006": 100, "quality_annotator_a0007": 100, "quality_annotator_a0008": 100, "quality_annotator_a0009": 100, "quality_annotator_a0010": 100, "quality_annotator_a0041": 100, "quality_annotator_a0042": 100, "quality_annotator_a0043": 100, "quality_annotator_a0044": 100, "quality_annotator_a0045": 100, "quality_annotator_a0046": 100, "quality_annotator_a0047": 100, "quality_annotator_a0048": 100, "quality_annotator_a0049": 100, "quality_annotator_a0050": 100, "070564": 100, "216078": 100, "119188": 100, "alongisd": 100, "244981": 100, "208333": 100, "295979": 100, "294118": 100, "324197": 100, "310345": 100, "355316": 100, "346154": 100, "439732": 100, "480000": 100, "a0031": 100, "523205": 100, "580645": 100, "a0034": 100, "535313": 100, "607143": 100, "a0021": 100, "606999": 100, "a0015": 100, "609526": 100, "678571": 100, "a0011": 100, "621103": 100, "692308": 100, "wors": 100, "improved_consensus_label": 100, "majority_vote_accuraci": 100, "cleanlab_label_accuraci": 100, "8581081081081081": 100, "9797297297297297": 100, "besid": 100, "sorted_consensus_quality_scor": 100, "worst_qual": 100, "better_qu": 100, "worst_quality_accuraci": 100, "better_quality_accuraci": 100, "9893238434163701": 100, "improved_pred_prob": 100, "treat": [100, 101, 105, 107], "analzi": 100, "copyright": 101, "advertis": 101, "violenc": 101, "nsfw": 101, "celeba": 101, "make_multilabel_data": 101, "boxes_coordin": 101, "box_multilabel": 101, "make_multi": 101, "bx1": 101, "by1": 101, "bx2": 101, "by2": 101, "label_list": 101, "ur": 101, "upper": 101, "inidx": 101, "logical_and": 101, "inv_d": 101, "labels_idx": 101, "true_labels_test": 101, "dict_unique_label": 101, "get_color_arrai": 101, "dcolor": 101, "aa4400": 101, "55227f": 101, "55a100": 101, "00ff00": 101, "007f7f": 101, "386b55": 101, "0000ff": 101, "y_onehot": 101, "single_class_label": 101, "stratifi": [101, 104], "kf": 101, "train_index": 101, "test_index": 101, "clf_cv": 101, "x_train_cv": 101, "x_test_cv": 101, "y_train_cv": 101, "y_test_cv": 101, "y_pred_cv": 101, "saw": 101, "num_to_displai": 101, "09": [101, 102, 105], "267": 101, "225": 101, "171": 101, "234": 101, "165": 101, "227": [101, 102], "262": [101, 102], "266": [101, 102], "139": 101, "143": [101, 102], "216": [101, 102, 107], "265": 101, "159": [101, 102], "despit": [101, 107], "suspect": 101, "888": 101, "8224": 101, "9632": 101, "968": 101, "6512": 101, "0444": 101, "774": 101, "labels_binary_format": 101, "labels_list_format": 101, "surround": 102, "scene": 102, "coco": 102, "everydai": 102, "has_label_issu": 102, "nc": [102, 106, 107], "s3": [102, 106, 107], "amazonaw": [102, 106, 107], "objectdetectionbenchmark": 102, "tutorial_obj": 102, "pkl": 102, "example_imag": 102, "unzip": [102, 107], "_separate_label": 102, "_separate_predict": 102, "begin": 102, "image_path": 102, "rb": 102, "image_to_visu": 102, "seg_map": 102, "334": 102, "float32": 102, "bboxes_ignor": 102, "290": 102, "286": 102, "285": 102, "224": 102, "231": 102, "293": 102, "289": 102, "282": 102, "281": 102, "271": 102, "280": 102, "277": 102, "279": 102, "287": 102, "299": 102, "276": 102, "307": 102, "321": 102, "326": 102, "333": 102, "261": 102, "319": 102, "257": 102, "283": 102, "243": 102, "303": 102, "316": 102, "247": 102, "323": 102, "226": 102, "228": 102, "232": 102, "219": 102, "239": 102, "240": 102, "209": [102, 107], "242": 102, "202": 102, "230": 102, "215": 102, "220": 102, "229": 102, "217": 102, "237": 102, "207": 102, "204": 102, "84": [102, 105], "205": 102, "223": 102, "153": 102, "140": 102, "124": 102, "268": 102, "273": 102, "108": 102, "284": 102, "110": 102, "136": 102, "145": 102, "297": 102, "317": 102, "192": 102, "332": 102, "324": 102, "203": 102, "199": 102, "291": 102, "000000481413": 102, "jpg": 102, "42398": 102, "44503": 102, "29968": 102, "336": 102, "21005": 102, "9978472": 102, "forgot": 102, "drew": 102, "label_issue_idx": 102, "num_examples_to_show": 102, "138": 102, "candid": 102, "97489622": 102, "70610878": 102, "98764951": 102, "88899237": 102, "99085805": 102, "issue_idx": 102, "95569726e": 102, "03354841e": 102, "57510169e": 102, "58447666e": 102, "39755858e": 102, "issue_to_visu": 102, "000000009483": 102, "95569726168054e": 102, "addition": [102, 106], "visibl": 102, "missmatch": 102, "likelei": 102, "agnost": 102, "vaidat": 102, "inconsist": 102, "000000395701": 102, "033548411774308e": 102, "armchair": 102, "tv": 102, "000000154004": 102, "38300759625496356": 102, "foreground": 102, "000000448410": 102, "0008575101690203273": 102, "crowd": 102, "alon": 102, "explor": [102, 103], "resembl": [102, 103], "000000499768": 102, "9748962231208227": 102, "000000521141": 102, "8889923658893665": 102, "000000143931": 102, "9876495074395956": 102, "bonu": 102, "uncov": 102, "irregular": 102, "anomali": 102, "object_detection_util": 102, "calculate_bounding_box_area": 102, "num_imgs_to_show": 102, "lab_object_count": 102, "pred_object_count": 102, "000000430073": 102, "000000183709": 102, "000000189475": 102, "label_norm": 102, "pred_norm": 102, "area": [102, 106], "lab_area": 102, "pred_area": 102, "lab_area_mean": 102, "lab_area_std": 102, "max_deviation_valu": 102, "max_deviation_class": 102, "deviation_valu": 102, "deviation_class": 102, "mean_area": 102, "std_area": 102, "class_area": 102, "deviations_awai": 102, "max_deviation_index": 102, "num_imgs_to_show_per_class": 102, "class_num": 102, "sorted_indic": 102, "000000422886": 102, "000000341828": 102, "000000461009": 102, "train_feature_embed": 103, "ood_train_feature_scor": 103, "test_feature_embed": 103, "ood_test_feature_scor": 103, "ood_train_predictions_scor": 103, "train_pred_prob": 103, "ood_test_predictions_scor": 103, "test_pred_prob": 103, "pylab": 103, "rcparam": 103, "baggingclassifi": 103, "therebi": 103, "rescal": 103, "transform_norm": 103, "totensor": 103, "root": 103, "animal_class": 103, "non_animal_class": 103, "animal_idx": 103, "test_idx": 103, "toronto": 103, "edu": 103, "kriz": 103, "170498071": 103, "90289215": 103, "23it": 103, "5000": 103, "plot_imag": 103, "visualize_outli": 103, "txt_class": 103, "img": [103, 105], "npimg": 103, "show_label": 103, "data_subset": 103, "resnet50": 103, "corpu": 103, "2048": 103, "embed_imag": 103, "create_model": 103, "strang": 103, "odd": 103, "train_ood_features_scor": 103, "top_train_ood_features_idx": 103, "fun": 103, "negat": 103, "homogen": 103, "bottom_train_ood_features_idx": 103, "test_ood_features_scor": 103, "top_ood_features_idx": 103, "inevit": 103, "trade": 103, "5th": 103, "percentil": 103, "fifth_percentil": 103, "plt_rang": 103, "hist": 103, "train_outlier_scor": 103, "ylabel": 103, "axvlin": 103, "test_outlier_scor": 103, "ood_features_indic": 103, "revisit": 103, "return_invers": 103, "train_feature_embeddings_sc": 103, "test_feature_embeddings_sc": 103, "train_pred_label": 103, "9702": 103, "train_ood_predictions_scor": 103, "test_ood_predictions_scor": 103, "lost": 103, "unsuit": 104, "ok": [104, 107], "convention": 104, "aforement": 104, "hypothet": 104, "contrast": 104, "tradit": 104, "disjoint": 104, "out_of_sample_pred_probs_for_a": 104, "out_of_sample_pred_probs_for_b": 104, "out_of_sample_pred_probs_for_c": 104, "out_of_sample_pred_prob": 104, "price": 105, "incom": 105, "ag": 105, "sensor": 105, "histgradientboostingregressor": 105, "r2_score": 105, "student_grades_r": 105, "final_scor": 105, "true_final_scor": 105, "homework": 105, "3d": 105, "hue": 105, "mpl_toolkit": 105, "mplot3d": 105, "axes3d": 105, "errors_idx": 105, "add_subplot": 105, "z": 105, "colorbar": 105, "errors_mask": 105, "feature_column": 105, "predicted_column": 105, "x_train_raw": 105, "x_test_raw": 105, "randomforestregressor": 105, "385101": 105, "499503": 105, "698255": 105, "776647": 105, "109373": 105, "170547": 105, "481096": 105, "984759": 105, "645270": 105, "795928": 105, "141": [105, 107], "659": 105, "318": 105, "305": 105, "560": 105, "657": 105, "688": 105, "view_datapoint": 105, "concat": 105, "preds_og": 105, "r2_og": 105, "838": 105, "found_label_issu": 105, "preds_cl": 105, "r2_cl": 105, "926": 105, "favorit": 105, "968627e": 105, "228799": 105, "646674e": 105, "402962": 105, "323818e": 105, "952758": 105, "422144e": 105, "456908": 105, "465815e": 105, "753968": 105, "791186e": 105, "110719": 105, "485156e": 105, "670640": 105, "225300e": 105, "749976": 105, "499679e": 105, "947007": 105, "067882e": 105, "648396": 105, "synthia": 106, "imagesegment": 106, "given_mask": 106, "predicted_mask": 106, "set_printopt": [106, 107], "sky": 106, "sidewalk": 106, "veget": 106, "terrain": 106, "rider": 106, "pred_probs_filepath": 106, "1088": 106, "1920": 106, "label_filepath": 106, "synthia_class": 106, "maunal": 106, "100000": 106, "244800": 106, "leftmost": 106, "middl": [106, 107], "infact": 106, "rightmost": 106, "discrep": 106, "3263230": 106, "783381": 106, "275110": 106, "255917": 106, "78225": 106, "55990": 106, "54315": 106, "33591": 106, "24645": 106, "21054": 106, "15045": 106, "14171": 106, "13832": 106, "13498": 106, "11490": 106, "9164": 106, "8769": 106, "6999": 106, "6031": 106, "5011": 106, "mistakenli": 106, "class_issu": 106, "aim": [106, 107], "domin": 106, "bunch": 107, "conll": 107, "2003": 107, "love": 107, "n_i": 107, "optional_list_of_ordered_class_nam": 107, "deepai": 107, "conll2003": 107, "rm": 107, "tokenclassif": 107, "2024": 107, "2400": 107, "52e0": 107, "1a00": 107, "1067": 107, "connect": 107, "443": 107, "await": 107, "982975": 107, "960k": 107, "959": 107, "94k": 107, "kb": 107, "mb": 107, "directori": 107, "inflat": 107, "137": 107, "17045998": 107, "16m": 107, "octet": 107, "26m": 107, "bert": 107, "read_npz": 107, "filepath": 107, "corrsespond": 107, "iob2": 107, "given_ent": 107, "entity_map": 107, "readfil": 107, "startswith": 107, "docstart": 107, "isalpha": 107, "isupp": 107, "indices_to_preview": 107, "nsentenc": 107, "eu": 107, "reject": 107, "boycott": 107, "british": 107, "lamb": 107, "00030412": 107, "00023826": 107, "99936208": 107, "00007009": 107, "00002545": 107, "99998795": 107, "00000401": 107, "00000218": 107, "00000455": 107, "00000131": 107, "00000749": 107, "99996115": 107, "00001371": 107, "0000087": 107, "00000895": 107, "99998936": 107, "00000382": 107, "00000178": 107, "00000366": 107, "00000137": 107, "99999101": 107, "00000266": 107, "00000174": 107, "0000035": 107, "00000109": 107, "99998768": 107, "00000482": 107, "00000202": 107, "00000438": 107, "0000011": 107, "00000465": 107, "99996392": 107, "00001105": 107, "0000116": 107, "00000878": 107, "99998671": 107, "00000364": 107, "00000213": 107, "00000472": 107, "00000281": 107, "99999073": 107, "00000211": 107, "00000159": 107, "00000442": 107, "00000115": 107, "peter": 107, "blackburn": 107, "00000358": 107, "00000529": 107, "99995623": 107, "0000129": 107, "0000024": 107, "00001812": 107, "99994141": 107, "00001645": 107, "00002162": 107, "brussel": 107, "1996": 107, "00001172": 107, "00000821": 107, "00004661": 107, "0000618": 107, "99987167": 107, "99999061": 107, "00000201": 107, "00000195": 107, "00000408": 107, "00000135": 107, "2254": 107, "2907": 107, "19392": 107, "9962": 107, "8904": 107, "19303": 107, "12918": 107, "9256": 107, "11855": 107, "18392": 107, "20426": 107, "19402": 107, "14744": 107, "19371": 107, "4645": 107, "10331": 107, "9430": 107, "6143": 107, "18367": 107, "12914": 107, "todai": 107, "weather": 107, "march": 107, "scalfaro": 107, "northern": 107, "himself": 107, "said": 107, "germani": 107, "nastja": 107, "rysich": 107, "north": 107, "spla": 107, "fought": 107, "khartoum": 107, "govern": 107, "south": 107, "1983": 107, "autonomi": 107, "animist": 107, "region": 107, "moslem": 107, "arabis": 107, "mayor": 107, "antonio": 107, "gonzalez": 107, "garcia": 107, "revolutionari": 107, "parti": 107, "wednesdai": 107, "troop": 107, "raid": 107, "farm": 107, "stole": 107, "rape": 107, "women": 107, "spring": 107, "chg": 107, "hrw": 107, "12pct": 107, "princ": 107, "photo": 107, "moment": 107, "spokeswoman": 107, "rainier": 107, "told": 107, "reuter": 107, "danila": 107, "carib": 107, "w224": 107, "equip": 107, "radiomet": 107, "earn": 107, "19996": 107, "london": 107, "denom": 107, "sale": 107, "uk": 107, "jp": 107, "fr": 107, "maccabi": 107, "hapoel": 107, "haifa": 107, "tel": 107, "aviv": 107, "hospit": 107, "rever": 107, "roman": 107, "cathol": 107, "nun": 107, "admit": 107, "calcutta": 107, "week": 107, "ago": 107, "fever": 107, "vomit": 107, "allianc": 107, "embattl": 107, "kabul": 107, "salang": 107, "highwai": 107, "mondai": 107, "tuesdai": 107, "suprem": 107, "council": 107, "led": 107, "jumbish": 107, "milli": 107, "movement": 107, "warlord": 107, "abdul": 107, "rashid": 107, "dostum": 107, "dollar": 107, "exchang": 107, "3570": 107, "12049": 107, "born": 107, "1937": 107, "provinc": 107, "anhui": 107, "dai": 107, "came": 107, "shanghai": 107, "citi": 107, "prolif": 107, "author": 107, "teacher": 107, "chines": 107, "16764": 107, "1990": 107, "historian": 107, "alan": 107, "john": 107, "percival": 107, "taylor": 107, "di": 107, "20446": 107, "pace": 107, "bowler": 107, "ian": 107, "harvei": 107, "claim": 107, "victoria": 107, "15514": 107, "cotti": 107, "osc": 107, "foreign": 107, "minist": 107, "7525": 107, "sultan": 107, "specter": 107, "crown": 107, "abdullah": 107, "defenc": 107, "aviat": 107, "jeddah": 107, "saudi": 107, "agenc": 107, "2288": 107, "hi": 107, "customari": 107, "outfit": 107, "champion": 107, "damp": 107, "scalp": 107, "canada": 107, "reign": 107, "olymp": 107, "donovan": 107, "bailei": 107, "1992": 107, "linford": 107, "christi": 107, "britain": 107, "1984": 107, "1988": 107, "carl": 107, "lewi": 107, "ambigi": 107, "punctuat": 107, "chicago": 107, "digest": 107, "philadelphia": 107, "usda": 107, "york": 107, "token_issu": 107, "471": 107, "kean": 107, "year": 107, "contract": 107, "manchest": 107, "19072": 107, "societi": 107, "bite": 107, "deliv": 107, "19910": 107, "father": 107, "clarenc": 107, "woolmer": 107, "renam": 107, "uttar": 107, "pradesh": 107, "india": 107, "ranji": 107, "trophi": 107, "nation": 107, "championship": 107, "captain": 107, "1949": 107, "15658": 107, "19879": 107, "iii": 107, "brian": 107, "shimer": 107, "randi": 107, "jone": 107, "19104": 107}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "neighbor"], [54, 0, 0, "-", "outlier"], [55, 0, 0, "-", "token_classification_utils"], [56, 0, 0, "-", "util"], [57, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[51, 0, 0, "-", "knn_graph"], [52, 0, 0, "-", "metric"], [53, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[51, 7, 1, "", "DEFAULT_K"], [51, 1, 1, "", "construct_knn_graph_from_index"], [51, 1, 1, "", "create_knn_graph_and_index"], [51, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[52, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [52, 7, 1, "", "ROW_COUNT_CUTOFF"], [52, 1, 1, "", "decide_default_metric"], [52, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[54, 1, 1, "", "correct_precision_errors"], [54, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, 1, 1, "", "color_sentence"], [55, 1, 1, "", "filter_sentence"], [55, 1, 1, "", "get_sentence"], [55, 1, 1, "", "mapping"], [55, 1, 1, "", "merge_probs"], [55, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[56, 1, 1, "", "append_extra_datapoint"], [56, 1, 1, "", "clip_noise_rates"], [56, 1, 1, "", "clip_values"], [56, 1, 1, "", "compress_int_array"], [56, 1, 1, "", "confusion_matrix"], [56, 1, 1, "", "csr_vstack"], [56, 1, 1, "", "estimate_pu_f1"], [56, 1, 1, "", "extract_indices_tf"], [56, 1, 1, "", "force_two_dimensions"], [56, 1, 1, "", "format_labels"], [56, 1, 1, "", "get_missing_classes"], [56, 1, 1, "", "get_num_classes"], [56, 1, 1, "", "get_unique_classes"], [56, 1, 1, "", "is_tensorflow_dataset"], [56, 1, 1, "", "is_torch_dataset"], [56, 1, 1, "", "num_unique_classes"], [56, 1, 1, "", "print_inverse_noise_matrix"], [56, 1, 1, "", "print_joint_matrix"], [56, 1, 1, "", "print_noise_matrix"], [56, 1, 1, "", "print_square_matrix"], [56, 1, 1, "", "remove_noise_from_class"], [56, 1, 1, "", "round_preserving_row_totals"], [56, 1, 1, "", "round_preserving_sum"], [56, 1, 1, "", "smart_display_dataframe"], [56, 1, 1, "", "subset_X_y"], [56, 1, 1, "", "subset_data"], [56, 1, 1, "", "subset_labels"], [56, 1, 1, "", "train_val_split"], [56, 1, 1, "", "unshuffle_tensorflow_dataset"], [56, 1, 1, "", "value_counts"], [56, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[57, 1, 1, "", "assert_indexing_works"], [57, 1, 1, "", "assert_nonempty_input"], [57, 1, 1, "", "assert_valid_class_labels"], [57, 1, 1, "", "assert_valid_inputs"], [57, 1, 1, "", "labels_to_array"], [57, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 92, 94, 95, 97, 98, 101, 107], "count": [3, 98], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 88, 89, 90, 91, 92, 93, 94, 95, 98, 101], "creat": [7, 89, 90, 91, 98, 100], "your": [7, 83, 90, 91, 95, 97, 98], "own": 7, "issu": [7, 9, 10, 21, 30, 83, 86, 88, 89, 90, 91, 92, 94, 95, 96, 97, 98, 101, 102, 106, 107], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 90], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 90], "us": [7, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "gener": 8, "cluster": [8, 97], "id": 8, "guid": [9, 11], "type": [9, 10, 98], "custom": [9, 90], "cleanlab": [9, 10, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "studio": [9, 10], "easi": [9, 10, 83, 92, 94, 95], "mode": [9, 10, 83, 92, 94, 95], "can": [10, 89, 91, 96, 97, 98, 100], "detect": [10, 88, 91, 92, 94, 95, 97, 98, 102, 103], "estim": [10, 98, 100, 101], "each": 10, "label": [10, 23, 25, 30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 96, 97, 98, 100, 101, 102, 105, 106, 107], "outlier": [10, 28, 54, 70, 89, 92, 94, 95, 101, 103], "Near": [10, 91, 92, 94, 95], "duplic": [10, 19, 91, 92, 94, 95, 97, 101], "non": [10, 95], "iid": [10, 95], "class": [10, 84, 98, 106], "imbal": [10, 20], "imag": [10, 92, 103], "specif": [10, 21, 106], "underperform": [10, 97], "group": [10, 97], "null": [10, 27], "data": [10, 12, 83, 86, 88, 89, 90, 91, 94, 95, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107], "valuat": 10, "option": 10, "paramet": [10, 98], "get": [11, 89, 90, 91, 100, 101, 102, 106, 107], "start": [11, 96], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 97, 98], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 72, 73, 74, 97, 105], "prioriti": 30, "order": 30, "find": [30, 83, 86, 87, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105, 106, 107], "underperforming_group": 31, "model_output": 32, "report": [33, 92], "dataset": [36, 62, 83, 87, 88, 89, 91, 92, 95, 96, 97, 98, 101, 102, 103, 105, 106, 107], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 63, 66, 75, 79, 98], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "neighbor": 50, "knn_graph": 51, "metric": 52, "search": [53, 90], "token_classification_util": 55, "util": 56, "valid": [57, 92, 104], "fasttext": 58, "model": [59, 83, 86, 87, 88, 92, 94, 95, 97, 98, 100, 101, 102, 103, 105], "kera": 60, "multiannot": [61, 100], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 98], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 89, 91, 97, 98], "segment": [76, 106], "token_classif": [80, 107], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "instal": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "2": [83, 84, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "common": [83, 84, 107], "3": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 101, 102, 103, 105, 106, 107], "handl": [83, 97], "error": [83, 87, 92, 97, 98, 100, 101, 102, 105, 106, 107], "train": [83, 86, 87, 88, 97, 103, 105], "robust": [83, 86, 87, 98, 105], "noisi": [83, 86, 87, 98, 105], "4": [83, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 100, 102, 103, 105], "curat": 83, "fix": [83, 97], "level": [83, 96, 98, 107], "5": [83, 86, 88, 89, 91, 92, 94, 98, 100, 105], "improv": [83, 100], "via": [83, 98, 100], "mani": [83, 98], "other": [83, 100, 102, 105], "techniqu": 83, "contribut": 83, "how": [84, 97, 98, 100, 101, 107], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 91, 98, 105], "pre": [84, 88, 97, 103], "function": [84, 90], "name": 84, "chang": 84, "modul": [84, 98], "new": [84, 89], "remov": 84, "argument": [84, 90], "variabl": 84, "cleanlearn": [85, 97, 98], "tutori": [85, 93, 96, 99], "structur": 86, "tabular": [86, 94], "requir": [86, 87, 89, 90, 91, 92, 94, 95, 100, 101, 102, 103, 105, 106, 107], "depend": [86, 87, 88, 89, 90, 91, 92, 94, 95, 96, 98, 100, 101, 102, 103, 105, 106, 107], "load": [86, 87, 88, 89, 90, 91, 94, 95, 105], "process": [86, 94, 103, 105], "select": [86, 94], "comput": [86, 88, 92, 94, 95, 97, 100, 104], "out": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "sampl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "predict": [86, 88, 89, 90, 91, 92, 94, 95, 100, 101, 102, 104], "probabl": [86, 88, 89, 90, 91, 92, 94, 95, 100, 104], "more": [86, 87, 89, 91, 98, 105], "text": [87, 95, 107], "format": [87, 95, 97, 101, 102], "defin": [87, 92, 95, 105], "potenti": [87, 100, 105], "an": [88, 92, 97], "audio": 88, "import": [88, 89, 90, 91, 92, 96, 98, 100], "them": [88, 96, 98], "speechbrain": 88, "featur": [88, 92, 103], "fit": 88, "linear": 88, "datamonitor": 89, "leverag": 89, "statist": [89, 100], "audit": [89, 90, 91], "skip": [89, 91, 96, 98, 100], "detail": [89, 91, 96, 98, 100], "classifi": [89, 90, 91], "6": [89, 98], "about": [89, 91], "addit": [89, 91], "7": [89, 92, 98], "8": [89, 96, 98], "look": 89, "both": 89, "workflow": [90, 98], "instanti": 90, "object": [90, 102], "increment": 90, "specifi": [90, 97], "nondefault": 90, "save": 90, "ad": 90, "A": 91, "unifi": 91, "all": [91, 98], "kind": [91, 102], "inform": [91, 92], "fetch": [92, 96], "normal": 92, "fashion": 92, "mnist": 92, "prepar": 92, "k": [92, 94, 104], "fold": [92, 104], "cross": [92, 104], "embed": [92, 103], "view": 92, "most": [92, 107], "like": 92, "exampl": [92, 97, 98, 103], "sever": 92, "set": [92, 98], "dark": 92, "top": [92, 106], "low": 92, "numer": 94, "categor": 94, "column": 94, "construct": 94, "nearest": 94, "neighbour": 94, "graph": 94, "drift": [95, 101], "understand": 96, "evalu": 96, "health": [96, 98], "popular": 96, "faq": 97, "what": [97, 98, 104], "do": [97, 98], "i": [97, 98, 104], "infer": 97, "correct": 97, "ha": 97, "flag": 97, "should": 97, "v": 97, "test": [97, 98, 103], "big": 97, "limit": 97, "memori": 97, "why": 97, "isn": 97, "t": 97, "work": [97, 98, 100, 107], "me": 97, "differ": [97, 102], "clean": [97, 98], "final": 97, "hyperparamet": 97, "tune": 97, "onli": 97, "one": [97, 98, 101, 106], "doe": [97, 100, 107], "take": 97, "so": 97, "long": 97, "slice": 97, "when": [97, 98], "identifi": [97, 102], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "The": 98, "centric": 98, "ai": 98, "machin": 98, "find_label_issu": 98, "line": 98, "code": 98, "visual": [98, 102, 103, 106], "twenti": 98, "lowest": 98, "qualiti": [98, 100, 101, 102, 106, 107], "see": 98, "now": 98, "let": 98, "": 98, "happen": 98, "we": 98, "merg": 98, "seafoam": 98, "green": 98, "yellow": 98, "too": 98, "you": 98, "re": 98, "One": 98, "score": [98, 100, 101, 102, 106, 107], "rule": 98, "overal": [98, 106], "accur": 98, "thi": 98, "directli": 98, "fulli": 98, "character": 98, "nois": 98, "matrix": [98, 101], "joint": 98, "prior": 98, "true": 98, "distribut": 98, "flip": 98, "rate": 98, "ani": 98, "again": 98, "support": 98, "lot": 98, "method": 98, "filter_bi": 98, "automat": 98, "everi": 98, "uniqu": 98, "num_label_issu": 98, "threshold": 98, "found": 98, "Not": 98, "sure": 98, "ensembl": 98, "multipl": [98, 100], "predictor": 98, "consensu": 100, "annot": 100, "initi": 100, "major": 100, "vote": 100, "better": 100, "compar": 100, "inspect": 100, "retrain": 100, "further": 100, "multi": 101, "beyond": 101, "mislabel": [101, 106, 107], "given": 101, "hot": 101, "binari": 101, "without": 101, "applic": 101, "real": 101, "download": [102, 106, 107], "objectlab": 102, "exploratori": 102, "analysi": 102, "pytorch": 103, "timm": 103, "cifar10": 103, "some": 103, "pred_prob": [103, 106, 107], "wai": 105, "semant": 106, "which": 106, "ar": 106, "commonli": 106, "focus": 106, "token": 107, "word": 107, "sentenc": 107, "contain": 107, "particular": 107}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [54, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[50, "neighbor"]], "knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "search": [[53, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "util": [[56, "module-cleanlab.internal.util"]], "validation": [[57, "module-cleanlab.internal.validation"]], "fasttext": [[58, "fasttext"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [92, "Easy-Mode"], [94, "Easy-Mode"], [95, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [95, "1.-Install-required-dependencies"], [105, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [94, "2.-Load-and-process-the-data"], [105, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [94, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [95, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [105, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [94, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[89, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[89, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [92, "1.-Install-and-import-required-dependencies"], [100, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[89, "2.-Create-and-load-the-data-(can-skip-these-details)"], [91, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[89, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [91, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[89, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [91, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[89, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[89, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "7. Finding outliers in new data": [[89, "7.-Finding-outliers-in-new-data"]], "8. Looking for both label issues and outliers": [[89, "8.-Looking-for-both-label-issues-and-outliers"]], "Datalab: Advanced workflows to audit your data": [[90, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[90, "Install-and-import-required-dependencies"]], "Create and load the data": [[90, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[90, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[90, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[90, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[90, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[90, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[90, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[91, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[91, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[91, "Get-additional-information"]], "Near duplicate issues": [[91, "Near-duplicate-issues"], [92, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[92, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[92, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[92, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[92, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[92, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[92, "7.-Use-cleanlab-to-find-issues"]], "View report": [[92, "View-report"]], "Label issues": [[92, "Label-issues"], [94, "Label-issues"], [95, "Label-issues"]], "View most likely examples with label errors": [[92, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[92, "Outlier-issues"], [94, "Outlier-issues"], [95, "Outlier-issues"]], "View most severe outliers": [[92, "View-most-severe-outliers"]], "View sets of near duplicate images": [[92, "View-sets-of-near-duplicate-images"]], "Dark images": [[92, "Dark-images"]], "View top examples of dark images": [[92, "View-top-examples-of-dark-images"]], "Low information images": [[92, "Low-information-images"]], "Datalab Tutorials": [[93, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[94, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[94, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[94, "Near-duplicate-issues"], [95, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[95, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[95, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[95, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[95, "Non-IID-issues-(data-drift)"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [98, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[97, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[98, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[98, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[98, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[98, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[98, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[98, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[98, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[98, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[98, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[98, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[98, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[98, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[98, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[98, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[98, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[98, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[98, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[98, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[98, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[98, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[99, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[100, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[100, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[100, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[100, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[100, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[100, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[100, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[100, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[100, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[101, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[101, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[101, "2.-Format-data,-labels,-and-model-predictions"], [102, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[101, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [106, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[101, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[101, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[101, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[101, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[101, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[102, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[102, "1.-Install-required-dependencies-and-download-data"], [106, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[102, "Get-label-quality-scores"], [106, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[102, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[102, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[102, "Other-uses-of-visualize"]], "Exploratory data analysis": [[102, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[103, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[103, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[103, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[103, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[103, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[103, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[104, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[104, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[104, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[105, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[105, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[105, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[106, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[106, "2.-Get-data,-labels,-and-pred_probs"], [107, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[106, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[106, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[106, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[107, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[107, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[107, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[107, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[107, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.neighbor"], [51, "module-cleanlab.internal.neighbor.knn_graph"], [52, "module-cleanlab.internal.neighbor.metric"], [53, "module-cleanlab.internal.neighbor.search"], [54, "module-cleanlab.internal.outlier"], [55, "module-cleanlab.internal.token_classification_utils"], [56, "module-cleanlab.internal.util"], [57, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[50, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[51, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[51, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[52, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[52, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[53, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[53, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[54, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[54, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[55, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[55, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[56, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[56, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[57, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[57, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index 5f22f5457..3c767a52b 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:13.771495Z", - "iopub.status.busy": "2024-05-23T02:38:13.771328Z", - "iopub.status.idle": "2024-05-23T02:38:14.957393Z", - "shell.execute_reply": "2024-05-23T02:38:14.956818Z" + "iopub.execute_input": "2024-05-23T15:11:29.939561Z", + "iopub.status.busy": "2024-05-23T15:11:29.939078Z", + "iopub.status.idle": "2024-05-23T15:11:31.129872Z", + "shell.execute_reply": "2024-05-23T15:11:31.129360Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@3effc12d6a686a39d51451c1a99f8654336a8bb7\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@4e2cafbc517f092cd088ca83bf49eef8767d363f\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:14.960250Z", - "iopub.status.busy": "2024-05-23T02:38:14.959562Z", - "iopub.status.idle": "2024-05-23T02:38:14.978583Z", - "shell.execute_reply": "2024-05-23T02:38:14.978018Z" + "iopub.execute_input": "2024-05-23T15:11:31.132569Z", + "iopub.status.busy": "2024-05-23T15:11:31.132124Z", + "iopub.status.idle": "2024-05-23T15:11:31.150874Z", + "shell.execute_reply": "2024-05-23T15:11:31.150275Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:14.980759Z", - "iopub.status.busy": "2024-05-23T02:38:14.980419Z", - "iopub.status.idle": "2024-05-23T02:38:15.269880Z", - "shell.execute_reply": "2024-05-23T02:38:15.269316Z" + "iopub.execute_input": "2024-05-23T15:11:31.153402Z", + "iopub.status.busy": "2024-05-23T15:11:31.152891Z", + "iopub.status.idle": "2024-05-23T15:11:35.097490Z", + "shell.execute_reply": "2024-05-23T15:11:35.096917Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:15.300426Z", - "iopub.status.busy": "2024-05-23T02:38:15.300024Z", - "iopub.status.idle": "2024-05-23T02:38:15.303755Z", - "shell.execute_reply": "2024-05-23T02:38:15.303314Z" + "iopub.execute_input": "2024-05-23T15:11:35.127357Z", + "iopub.status.busy": "2024-05-23T15:11:35.126893Z", + "iopub.status.idle": "2024-05-23T15:11:35.130647Z", + "shell.execute_reply": "2024-05-23T15:11:35.130146Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:15.305726Z", - "iopub.status.busy": "2024-05-23T02:38:15.305454Z", - "iopub.status.idle": "2024-05-23T02:38:15.313689Z", - "shell.execute_reply": "2024-05-23T02:38:15.313067Z" + "iopub.execute_input": "2024-05-23T15:11:35.132706Z", + "iopub.status.busy": "2024-05-23T15:11:35.132528Z", + "iopub.status.idle": "2024-05-23T15:11:35.140756Z", + "shell.execute_reply": "2024-05-23T15:11:35.140328Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:15.315907Z", - "iopub.status.busy": "2024-05-23T02:38:15.315584Z", - "iopub.status.idle": "2024-05-23T02:38:15.318068Z", - "shell.execute_reply": "2024-05-23T02:38:15.317643Z" + "iopub.execute_input": "2024-05-23T15:11:35.142646Z", + "iopub.status.busy": "2024-05-23T15:11:35.142467Z", + "iopub.status.idle": "2024-05-23T15:11:35.145149Z", + "shell.execute_reply": "2024-05-23T15:11:35.144612Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:15.320068Z", - "iopub.status.busy": "2024-05-23T02:38:15.319758Z", - "iopub.status.idle": "2024-05-23T02:38:15.836656Z", - "shell.execute_reply": "2024-05-23T02:38:15.836124Z" + "iopub.execute_input": "2024-05-23T15:11:35.147384Z", + "iopub.status.busy": "2024-05-23T15:11:35.147087Z", + "iopub.status.idle": "2024-05-23T15:11:35.665353Z", + "shell.execute_reply": "2024-05-23T15:11:35.664730Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:15.839111Z", - "iopub.status.busy": "2024-05-23T02:38:15.838782Z", - "iopub.status.idle": "2024-05-23T02:38:17.447203Z", - "shell.execute_reply": "2024-05-23T02:38:17.446602Z" + "iopub.execute_input": "2024-05-23T15:11:35.667934Z", + "iopub.status.busy": "2024-05-23T15:11:35.667744Z", + "iopub.status.idle": "2024-05-23T15:11:37.304742Z", + "shell.execute_reply": "2024-05-23T15:11:37.304102Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.449826Z", - "iopub.status.busy": "2024-05-23T02:38:17.449135Z", - "iopub.status.idle": "2024-05-23T02:38:17.458907Z", - "shell.execute_reply": "2024-05-23T02:38:17.458431Z" + "iopub.execute_input": "2024-05-23T15:11:37.307449Z", + "iopub.status.busy": "2024-05-23T15:11:37.306895Z", + "iopub.status.idle": "2024-05-23T15:11:37.316988Z", + "shell.execute_reply": "2024-05-23T15:11:37.316560Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.460949Z", - "iopub.status.busy": "2024-05-23T02:38:17.460693Z", - "iopub.status.idle": "2024-05-23T02:38:17.464642Z", - "shell.execute_reply": "2024-05-23T02:38:17.464207Z" + "iopub.execute_input": "2024-05-23T15:11:37.319043Z", + "iopub.status.busy": "2024-05-23T15:11:37.318729Z", + "iopub.status.idle": "2024-05-23T15:11:37.322531Z", + "shell.execute_reply": "2024-05-23T15:11:37.322054Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.466705Z", - "iopub.status.busy": "2024-05-23T02:38:17.466297Z", - "iopub.status.idle": "2024-05-23T02:38:17.473515Z", - "shell.execute_reply": "2024-05-23T02:38:17.472952Z" + "iopub.execute_input": "2024-05-23T15:11:37.324416Z", + "iopub.status.busy": "2024-05-23T15:11:37.324160Z", + "iopub.status.idle": "2024-05-23T15:11:37.331172Z", + "shell.execute_reply": "2024-05-23T15:11:37.330632Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.475632Z", - "iopub.status.busy": "2024-05-23T02:38:17.475308Z", - "iopub.status.idle": "2024-05-23T02:38:17.586104Z", - "shell.execute_reply": "2024-05-23T02:38:17.585603Z" + "iopub.execute_input": "2024-05-23T15:11:37.333196Z", + "iopub.status.busy": "2024-05-23T15:11:37.332791Z", + "iopub.status.idle": "2024-05-23T15:11:37.444673Z", + "shell.execute_reply": "2024-05-23T15:11:37.444061Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.588138Z", - "iopub.status.busy": "2024-05-23T02:38:17.587961Z", - "iopub.status.idle": "2024-05-23T02:38:17.590837Z", - "shell.execute_reply": "2024-05-23T02:38:17.590373Z" + "iopub.execute_input": "2024-05-23T15:11:37.446962Z", + "iopub.status.busy": "2024-05-23T15:11:37.446654Z", + "iopub.status.idle": "2024-05-23T15:11:37.449408Z", + "shell.execute_reply": "2024-05-23T15:11:37.448965Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:17.592892Z", - "iopub.status.busy": "2024-05-23T02:38:17.592561Z", - "iopub.status.idle": "2024-05-23T02:38:19.535083Z", - "shell.execute_reply": "2024-05-23T02:38:19.534464Z" + "iopub.execute_input": "2024-05-23T15:11:37.451353Z", + "iopub.status.busy": "2024-05-23T15:11:37.451177Z", + "iopub.status.idle": "2024-05-23T15:11:39.353760Z", + "shell.execute_reply": "2024-05-23T15:11:39.353151Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:19.538107Z", - "iopub.status.busy": "2024-05-23T02:38:19.537413Z", - "iopub.status.idle": "2024-05-23T02:38:19.549412Z", - "shell.execute_reply": "2024-05-23T02:38:19.548899Z" + "iopub.execute_input": "2024-05-23T15:11:39.356604Z", + "iopub.status.busy": "2024-05-23T15:11:39.356057Z", + "iopub.status.idle": "2024-05-23T15:11:39.367226Z", + "shell.execute_reply": "2024-05-23T15:11:39.366744Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-05-23T02:38:19.551369Z", - "iopub.status.busy": "2024-05-23T02:38:19.551191Z", - "iopub.status.idle": "2024-05-23T02:38:19.608011Z", - "shell.execute_reply": "2024-05-23T02:38:19.607551Z" + "iopub.execute_input": "2024-05-23T15:11:39.369106Z", + "iopub.status.busy": "2024-05-23T15:11:39.368935Z", + "iopub.status.idle": "2024-05-23T15:11:39.401442Z", + "shell.execute_reply": "2024-05-23T15:11:39.400993Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 6253c2830..231062205 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -798,7 +798,7 @@