-
Notifications
You must be signed in to change notification settings - Fork 160
/
Copy patharray.c
566 lines (448 loc) · 13.8 KB
/
array.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/*
# array
C arrays are simply lots of values put side by side on memory.
Because they are side by side, it is simple to get the nth value
quickly (random access), unless like, say, a linked list, in which
you have to go follow lots of links before you reach the searched value.
*/
#include "common.h"
void print_array(int **mat, int m, int n) {
int i, j;
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
printf("%d ", mat[i][j]);
}
printf("\n");
}
}
int main(void) {
/* Basic example. */
{
int is[3];
is[0] = 0;
is[1] = 1;
is[2] = 2;
assert(is[0] == 0);
assert(is[1] == 1);
assert(is[2] == 2);
}
/*
# Create arrays
# Initialize arrays
*/
{
/*
Size only.
*/
{
int is[2];
assert(sizeof(is) == 2 * sizeof(int));
/* Values undetermined since auto storage. */
/*assert(is[0] == 0);*/
/*assert(is[1] == 0);*/
}
/* With static storage however, initialization is guaranteed. */
{
static int is[2];
assert(is[0] == 0);
assert(is[1] == 0);
}
/* No size, only elements. */
{
int is[] = {0, 1, 2};
assert(sizeof(is) == 3 * sizeof(int));
}
/*
Both size and elements, less elements than size.
TODO check remaining are guaranteed to be 0.
*/
{
int is[4] = {1, 2};
assert(is[0] == 1);
assert(is[1] == 2);
assert(is[2] == 0);
assert(is[3] == 0);
/*
But empty initializers are illegal. TODO rationale?
http://stackoverflow.com/questions/17589533/is-an-empty-initializer-list-valid-c-code
C++ allows them.
*/
{
/*int is[2] = {};*/
}
/*
So to initialize to 0 you need this.
http://stackoverflow.com/questions/2589749/initialize-array-to-0-in-c
*/
{
int is[2] = {0};
assert(is[0] == 0);
assert(is[1] == 0);
}
}
/*
More elements than size.
WARN: array too small.
TODO: what does the standard say should happen?
*/
{
/*int is[2] = { 1, 3, 2 };*/
}
/*
ERROR no 0 size array
Exists as a GCC extension.
*/
{
/*int is[0];*/
}
/* ERROR no negative sized array! */
{
/*int is[-1];*/
}
/*
# Maximum array size possible
http://stackoverflow.com/questions/9386979/the-maximum-size-of-an-array-in-c
It is unclear in the standard what happens if:
- if you break `size_t`, as `sizeof` would fail.
- `sizeof(void *)`
As of 2015, no implementation can do this, since `size_t` is 2^64 which is too much memory.
*/
/* Designated initializers are another method to initialize arrays not mentioned here. */
}
/*
Access elements
There is only one rule:
a[b]
is *exactly the same as:
*(a + b).
All the rest follows.
*/
{
/*
TODO What type to use for indexes?
http://stackoverflow.com/questions/3174850/type-for-array-index-in-c99
- I think size_t is always enough
- ptrdiff_t is not
- uintptr_T I cannot say
*/
/*
# Negative index
http://stackoverflow.com/questions/3473675/negative-array-indexes-in-c
Perfectly legal, since:
a[b] = *(a + b).
and pointer arithmetic accepts negative values.
*/
{
int is[] = {1, 2};
int *ip = &is[1];
assert(ip[-1] == 1);
}
/*
# Swap array name and index
# 1[is]
http://stackoverflow.com/questions/381542/in-c-arrays-why-is-this-true-a5-5a
Obscure and confusing access syntax that you should
never use except to surprise your friends.
Perfectly legal because all we know is that:
a[b] = *(a + b).
If a is the int and b the pointer or the contrary
does not matter: all that matters is that one is an int and the other a pointer.
*/
{
int is[] = {1};
assert(0[is] == 1);
}
}
/*
Assign arrays.
TODO why does it not work?
*/
{
int is[4] = { 1, 2 };
int is2[4] = { 1, 2 };
/* ERROR incompatible pointer types. */
/*is = is2;*/
}
/*
# Get array length on compile time
*/
{
/* Only possible from the array, not from the pointer. */
{
/* From the array. */
{
int is[2];
assert(sizeof(is) / sizeof(is[0]) == 2);
}
/* From the pointer: not possible. */
{
int is[2];
int *p = is;
assert(sizeof(p) == sizeof(int *));
}
}
}
/*
# Set array length from a variable
Before C99, array length had to be a compile time constant expression (C99 6.6):
therefore you could not use variables for it, even `const` variables
(which can be modified via typecasts).
The two workarounds were:
- enum
- macros
Sometimes you can also get away with `sizeof`, but this is limited.
C99 introduces VLA which allows that, but may introduce a performace overhead.
If the size is not a compile time constant expression, then the array
automatically becomes a VLA.
Bottomline: use enums. Macros have no scope, VLA has overhead.
*/
{
{
#if __STDC_VERSION__ < 199901L
/* ERROR: cannot be initialized */
/*
int n = 2;
int isVla[n] = { 1, 2 };
*/
#endif
}
{
/* ERROR: cannot be initialized */
/*
const int n = 2;
int isVla[n] = { 1, 2 };
*/
}
/* Enum. Seems to be the best general solution. */
{
{
enum N { N = 3 };
int is[N];
assert(sizeof(is)/sizeof(is[0]) == 3);
}
/* Expressions involving enums are also fine. */
{
enum N { N = 3 };
int is[N + 1];
assert(sizeof(is)/sizeof(is[0]) == 4);
}
}
/*
sizeof works well when you want to copy the size of an existing array
that had it size determined by the initialization.
*/
{
int is[] = {0, 1, 2};
int is2[sizeof(is)/sizeof(is[0])];
assert(sizeof(is2)/sizeof(is2[0]) == 3);
}
/*
# Macro
Shares the disadvantage of every macro of having no scope.
Use enum instead.
*/
{
#define DEFINESIZE 3
int is[DEFINESIZE];
is[2] = 1;
}
}
/* # Arrays vs pointers */
{
/*
Pointers and arrays are different types.
(non-VLA) arrays have the size they are allocated to: they ARE the chunk.
Pointers point to some chunk of memory.
*/
{
assert(sizeof(int*) != sizeof(int[3]));
assert(sizeof(int[3]) == 3 * sizeof(int));
}
/*
Almost any expression in which array identifiers appear decays to a pointer implicitly.
sizeof is an exception.
Here, (is + 1) makes is decay to an int* before the sizeof.
*/
{
int is[2];
assert(sizeof(is + 1) == sizeof(int*));
}
/*
# Address of arrays
http://stackoverflow.com/questions/2528318/how-come-an-arrays-address-is-equal-to-its-value-in-c
*/
{
int is[2];
assert(&is == (int(*)[2])is);
}
}
/*
# int []
TODO Is this a type? is it different from int*?
I think int[] is an incomplete type, and can only appear on function declarations,
where it is identical to int*.
*/
/*
# Iterate array
The only way is with the good and old for loop.
No iterator magic, since no objects.
*/
{
int is[] = { 0, 1, 2 };
int i;
for (i = 0; i < sizeof(is)/sizeof(is[0]); i++) {
printf("%d ",is[i]);
}
}
/*
# Bounds breaking
No bound check is done to avoid overhead.
Time to break down the program by making this access memory
locations it should not try to access! =)
Other less fun languages check those things and allow programs to avoid breakdown:
C does not. You try to cheat your OS, and the OS kills you.
The C standard specifies that such actions lead to unspecified behaviour.
It may lead to Segmentation faults or not.
Note however that this does not always happen, as a program may
just access another location inside its legal memory address space
but in a completelly unpredicatable manner, and the os has no way to it did this
This leads to very hard to debug errors, but is inevitable if you want
to avoid the overhead of checking arrays bounds on every dereference
*/
{
int is[2] = { 0, 1 };
volatile int j;
size_t i;
/*
GCC 4.7 is smart enough to warn agains this one.
*/
{
/*j = is[2];*/
}
/*
GCC 4.7 is not smart enough to warn agains this one!
May lead to segmentation faults, but this is unlikely.
Unspecified behaviour.
*/
if (0) {
srand(time(NULL));
i = rand() % 2;
printf("overflow = %d\n", is[2 + i]);
}
/* This will almost certainly lead to a segmentation fault. */
if (0) {
for (size_t i = 0; i < SIZE_MAX; i++) {
is[i] = 0;
/*j = is[i];*/
}
assert(is[0] == 0);
}
}
/*
# Multidimentional arrays
Before using them, always consider using single dimentional arrays,
which are much simpler to handle with some multiplication and modulos.
It is easier to explicily calculate indexes than to deal with the C
type system.
Cases where this would be a better design choice: TODO
*/
{
int *m1[2];
int m11[] = { 1, 2, 3 };
int m12[] = { 4, 5, 6, 7 };
m1[0] = m11;
m1[1] = m12;
/* ERROR: cannot know how much memory to allocate! */
/*int m31[][3];*/
/* Error: = {...} works only at declaration */
/*int m111[2][3];*/
/*m111[0] = &(int*[3]){1,2,3};*/
/* Allocate the exact ammount: 2 pointeres to int[3]. */
int m2[][3] = {
{ 1, 2, 3 },
{ 4, 5, 6 }
};
/* Allocate 3x3, fills only 2x3. The rest is 0 or m3[0] gets a NULL pointer? */
int m3[3][3] = {
{ 1, 2, 3 },
{ 4, 5, 6 }
};
/*
ERROR: last must be there.
This is an array of m[3] arrays!!
the data on an array is sequentially written to RAM
and all of its elements have a fixed size (so they can be indexed!)
If you don't know the `sizeof(m[3])`, (and you don't know the sizeof(m[]!))
you can't put all those m[3] sequentially on the RAM.
The compiler could look at each element of the initialization
and ensure they all have the *same size*, and then take that size,
but this would take a long time, so it just forces the user to input this
*/
{
/*int m3[][] = {*/
/*{ 1, 2, 3 },*/
/*{ 4, 5, 6, 7 }*/
/*}*/
}
/*
Pass multidimentional arrays to functions.
Never do that: pass an array, give m and n and do some operations instead.
*/
{
puts("\npass multidim to func:");
enum { mc = 2 };
/* Two int pointers. */
int* mat[mc];
int mat1[][3] = {
{ 1, 2, 3 },
{ 4, 5, 6 }
};
int i;
for (i = 0; i < mc; i++) {
/* First points to the int at address 0 of the matrix mat1. */
mat[i] = mat1[i];
}
print_array(mat, 2, 3);
}
/* Multidimentional > 2 */
{
int m4[][2][3] = {
{{1, 2, 3}, {4 , 5, 6 }},
{{7, 8, 9}, {10, 11, 12}}
};
/* Allocates exact amount for first: 2x2x2. */
int m41[3][2][3] = {
{{ 1, 2, 3}, {4 , 5, 6 }},
{{ 7, 8, 9}, {10, 11, 12}}
};
/* Allocates one extra for first dimension */
/* ERROR: only first can be empty: */
/*
int m4[][][2] = {
{{1,2},{3,4}},
{{5,6},{7,8}}
};
*/
enum {MC = 2, NC = 4};
int m5[MC][NC];
/*
int m7[mc][nc] = {
{1,2,3},
{4,5,6}
};
*/
}
/* Matrix pattern. */
{
int i, j;
for (i = 0; i < 2; i++) {
printf("\n");
for(j = 0; j < 3; j++) {
printf("%d ", m1[i][j]);
}
}
printf("\n\n");
}
}
return EXIT_SUCCESS;
}