-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestsplintlogrho.c
113 lines (94 loc) · 2.72 KB
/
testsplintlogrho.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
/*
* This is a simple program to test the Tillotson EOS library.
*
* Test the bicubic interpolation tillCubicInt() in the lookup table. First a table is generated
* and printed to a file, then values between the isentropes are interpolated. The results can be
* plotted with testsplint.py.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <assert.h>
#include "tillotson.h"
#define max(A,B) ((A) > (B) ? (A) : (B))
#define min(A,B) ((A) > (B) ? (B) : (A))
#define INDEX(i, j) (((i)*tillMat->nTableV) + (j))
void main(int argc, char **argv) {
// Tillotson EOS library
TILLMATERIAL *tillMat;
double dKpcUnit = 2.06701e-13;
double dMsolUnit = 4.80438e-08;
double rhomin = TILL_RHO_MIN;
double rhomax = 100.0;
double vmax = 1200.0;
// For vmax=rhomax=25 and nTableV=100, nTableRho=1000 we get excellent results.
int nTableRho = 1000;
int nTableV = 1000;
// double rhomax = 25.0;
// double vmax = 25.0;
// int nTableRho = 100;
// int nTableV = 100;
double rho, v, u;
struct lookup *isentrope;
FILE *fp = NULL;
int i, j;
double k = 0.0;
double l = 0.0;
#ifdef TILL_PRESS_NP
fprintf(stderr, "TILL_PRESS_NP.\n");
#endif
fprintf(stderr, "Initializing material...\n");
tillMat = tillInitMaterial(GRANITE, dKpcUnit, dMsolUnit);
fprintf(stderr, "Initializing the look up table...\n");
/* Solve ODE and splines */
tillInitLookup(tillMat, nTableRho, nTableV, rhomin, rhomax, vmax);
fprintf(stderr, "Done.\n");
fprintf(stderr,"\n");
fprintf(stderr,"rhomax: %g, vmax: %g \n", tillMat->rhomax, tillMat->vmax);
fprintf(stderr,"nTableRho: %i, nTableV: %i \n", tillMat->nTableRho, tillMat->nTableV);
fprintf(stderr,"drho: %g, dv: %g \n", tillMat->drho, tillMat->dv);
rho = 0.0;
v = 0.0;
u = 0.0;
/*
* Print the look up table to a file first.
*/
fp = fopen("lookup.txt","w");
assert(fp != NULL);
for (i=0; i<tillMat->nTableRho; i+=1)
{
rho = tillLookupRho(tillMat, i);
fprintf(fp, "%15.7E", rho);
for (j=0;j<tillMat->nTableV;j+=1)
{
// v = j*tillMat->dv
u = tillMat->Lookup[INDEX(i, j)].u;
fprintf(fp, "%15.7E", u);
}
fprintf(fp,"\n");
}
fclose(fp);
/*
* Interpolate values between the isentropes.
*/
fp = fopen("testsplint.txt","w");
assert(fp != NULL);
for (i=0; i<tillMat->nTableRho-1; i+=1)
{
// Logarithmic spacing
rho = tillMat->rhomin*exp((i + 0.5)*tillMat->dlogrho);
fprintf(stderr, "rho= %15.7E, ", rho);
fprintf(fp, "%15.7E", rho);
for (j=0;j<tillMat->nTableV-1;j+=1)
{
v = tillMat->dv*(j+0.5);
fprintf(stderr, "v= %15.7E\n", v);
u = tillCubicInt(tillMat, rho, v);
fprintf(fp, "%15.7E", u);
}
fprintf(fp,"\n");
}
fprintf(stderr,"Done.\n");
tillFinalizeMaterial(tillMat);
}