-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathMnasnet.py
151 lines (133 loc) · 5.42 KB
/
Mnasnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import mxnet as mx
import mxnet.ndarray as nd
import mxnet.gluon as gluon
import mxnet.gluon.nn as nn
import mxnet.autograd as ag
def ConvBlock(channels, kernel_size, strides, **kwargs):
out = nn.HybridSequential(**kwargs)
with out.name_scope():
out.add(
nn.Conv2D(channels, kernel_size, strides=strides, padding=1, use_bias=False),
nn.BatchNorm(scale=True),
nn.Activation('relu')
)
return out
def Conv1x1(channels, is_linear=False, **kwargs):
out = nn.HybridSequential(**kwargs)
with out.name_scope():
out.add(
nn.Conv2D(channels, 1, padding=0, use_bias=False),
nn.BatchNorm(scale=True)
)
if not is_linear:
out.add(nn.Activation('relu'))
return out
def DWise(channels, strides, kernel_size=3, **kwargs):
out = nn.HybridSequential(**kwargs)
with out.name_scope():
out.add(
nn.Conv2D(channels, kernel_size, strides=strides, padding=kernel_size // 2, groups=channels, use_bias=False),
nn.BatchNorm(scale=True),
nn.Activation('relu')
)
return out
class SepCONV(nn.HybridBlock):
def __init__(self, inp, output, kernel_size, depth_multiplier=1, with_bn=True, **kwargs):
super(SepCONV, self).__init__(**kwargs)
with self.name_scope():
self.net = nn.HybridSequential()
cn = int(inp*depth_multiplier)
if output is None:
self.net.add(
nn.Conv2D(in_channels=inp, channels=cn, groups=inp, kernel_size=kernel_size, strides=(1,1), padding=kernel_size // 2
, use_bias=not with_bn)
)
else:
self.net.add(
nn.Conv2D(in_channels=inp, channels=cn, groups=inp, kernel_size=kernel_size, strides=(1,1), padding=kernel_size // 2
, use_bias=False),
nn.BatchNorm(),
nn.Activation('relu'),
nn.Conv2D(in_channels=cn, channels=output, kernel_size=(1,1), strides=(1,1)
, use_bias=not with_bn)
)
self.with_bn = with_bn
self.act = nn.Activation('relu')
if with_bn:
self.bn = nn.BatchNorm()
def hybrid_forward(self, F ,x):
x = self.net(x)
if self.with_bn:
x = self.bn(x)
if self.act is not None:
x = self.act(x)
return x
class ExpandedConv(nn.HybridBlock):
def __init__(self, inp, oup, t, strides, kernel=3, same_shape=True, **kwargs):
super(ExpandedConv, self).__init__(**kwargs)
self.same_shape = same_shape
self.strides = strides
with self.name_scope():
self.bottleneck = nn.HybridSequential()
self.bottleneck.add(
Conv1x1(inp*t, prefix="expand_"),
DWise(inp*t, self.strides, kernel, prefix="dwise_"),
Conv1x1(oup, is_linear=True, prefix="linear_")
)
def hybrid_forward(self, F, x):
out = self.bottleneck(x)
if self.strides == 1 and self.same_shape:
out = F.elemwise_add(out, x)
return out
def ExpandedConvSequence(t, k, inp, oup, repeats, first_strides, **kwargs):
seq = nn.HybridSequential(**kwargs)
with seq.name_scope():
seq.add(ExpandedConv(inp, oup, t, first_strides, k, same_shape=False))
curr_inp = oup
for i in range(1, repeats):
seq.add(ExpandedConv(curr_inp, oup, t, 1))
curr_inp = oup
return seq
class MNasNet(nn.HybridBlock):
def __init__(self, num_classes=1000, **kwargs):
super(MNasNet, self).__init__(**kwargs)
self.first_oup = 32
self.interverted_residual_setting = [
# t, c, n, s, k
[3, 24, 3, 2, 3, "stage2_"], # -> 56x56
[3, 40, 3, 2, 5, "stage3_"], # -> 28x28
[6, 80, 3, 2, 5, "stage4_1_"], # -> 14x14
[6, 96, 2, 1, 3, "stage4_2_"], # -> 14x14
[6, 192, 4, 2, 5, "stage5_1_"], # -> 7x7
[6, 320, 1, 1, 3, "stage5_2_"], # -> 7x7
]
self.last_channels = 1280
with self.name_scope():
self.features = nn.HybridSequential()
self.features.add(ConvBlock(self.first_oup, 3, 2, prefix="stage1_conv0_"))
self.features.add(SepCONV(self.first_oup, 16, 3, prefix="stage1_sepconv0_"))
inp = 16
for i, (t, c, n, s, k, prefix) in enumerate(self.interverted_residual_setting):
oup = c
self.features.add(ExpandedConvSequence(t, k, inp, oup, n, s, prefix=prefix))
inp = oup
self.features.add(Conv1x1(self.last_channels, prefix="stage5_3_"))
self.features.add(nn.GlobalAvgPool2D())
self.features.add(nn.Flatten())
self.output = nn.Dense(num_classes)
def hybrid_forward(self, F, x):
x = self.features(x)
x = self.output(x)
return x
if __name__ == '__main__':
net = MNasNet(1000, prefix="")
x = nd.random.normal(shape=(1,3,224,224))
net.initialize()
y = net(x)
net.summary(x)
# save as symbol
#data =mx.sym.var('data')
#sym = net(data)
## plot network graph
#mx.viz.print_summary(sym, shape={'data':(8,3,224,224)})
#mx.viz.plot_network(sym,shape={'data':(8,3,224,224)}, node_attrs={'shape':'oval','fixedsize':'fasl==false'}).view()