forked from microsoft/calculator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathratpak.h
456 lines (383 loc) · 18.7 KB
/
ratpak.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#pragma once
//-----------------------------------------------------------------------------
// Package Title ratpak
// File ratpak.h
// Copyright (C) 1995-99 Microsoft
// Date 01-16-95
//
//
// Description
//
// Infinite precision math package header file, if you use ratpak.lib you
// need to include this header.
//
//-----------------------------------------------------------------------------
#include "CalcErr.h"
static constexpr uint32_t BASEXPWR = 31L;// Internal log2(BASEX)
static constexpr uint32_t BASEX = 0x80000000; // Internal radix used in calculations, hope to raise
// this to 2^32 after solving scaling problems with
// overflow detection esp. in mul
typedef uint32_t MANTTYPE;
typedef uint64_t TWO_MANTTYPE;
enum eNUMOBJ_FMT {
FMT_FLOAT, // returns floating point, or exponential if number is too big
FMT_SCIENTIFIC, // always returns scientific notation
FMT_ENGINEERING // always returns engineering notation such that exponent is a multiple of 3
};
enum eANGLE_TYPE {
ANGLE_DEG, // Calculate trig using 360 degrees per revolution
ANGLE_RAD, // Calculate trig using 2 pi radians per revolution
ANGLE_GRAD // Calculate trig using 400 gradients per revolution
};
typedef enum eNUMOBJ_FMT NUMOBJ_FMT;
typedef enum eANGLE_TYPE ANGLE_TYPE;
//-----------------------------------------------------------------------------
//
// NUMBER type is a representation of a generic sized generic radix number
//
//-----------------------------------------------------------------------------
#pragma warning(push)
#pragma warning(disable:4200) // nonstandard extension used : zero-sized array in struct/union
typedef struct _number
{
int32_t sign; // The sign of the mantissa, +1, or -1
int32_t cdigit; // The number of digits, or what passes for digits in the
// radix being used.
int32_t exp; // The offset of digits from the radix point
// (decimal point in radix 10)
MANTTYPE mant[];
// This is actually allocated as a continuation of the
// NUMBER structure.
} NUMBER, *PNUMBER, **PPNUMBER;
#pragma warning(pop)
//-----------------------------------------------------------------------------
//
// RAT type is a representation radix on 2 NUMBER types.
// pp/pq, where pp and pq are pointers to integral NUMBER types.
//
//-----------------------------------------------------------------------------
typedef struct _rat
{
PNUMBER pp;
PNUMBER pq;
} RAT, *PRAT;
static constexpr uint32_t MAX_LONG_SIZE = 33; // Base 2 requires 32 'digits'
//-----------------------------------------------------------------------------
//
// List of useful constants for evaluation, note this list needs to be
// initialized.
//
//-----------------------------------------------------------------------------
extern PNUMBER num_one;
extern PNUMBER num_two;
extern PNUMBER num_five;
extern PNUMBER num_six;
extern PNUMBER num_ten;
extern PRAT ln_ten;
extern PRAT ln_two;
extern PRAT rat_zero;
extern PRAT rat_neg_one;
extern PRAT rat_one;
extern PRAT rat_two;
extern PRAT rat_six;
extern PRAT rat_half;
extern PRAT rat_ten;
extern PRAT pt_eight_five;
extern PRAT pi;
extern PRAT pi_over_two;
extern PRAT two_pi;
extern PRAT one_pt_five_pi;
extern PRAT e_to_one_half;
extern PRAT rat_exp;
extern PRAT rad_to_deg;
extern PRAT rad_to_grad;
extern PRAT rat_qword;
extern PRAT rat_dword;
extern PRAT rat_word;
extern PRAT rat_byte;
extern PRAT rat_360;
extern PRAT rat_400;
extern PRAT rat_180;
extern PRAT rat_200;
extern PRAT rat_nRadix;
extern PRAT rat_smallest;
extern PRAT rat_negsmallest;
extern PRAT rat_max_exp;
extern PRAT rat_min_exp;
extern PRAT rat_max_fact;
extern PRAT rat_min_fact;
extern PRAT rat_max_i32;
extern PRAT rat_min_i32;
// DUPNUM Duplicates a number taking care of allocation and internals
#define DUPNUM(a,b) destroynum(a);createnum( a, (b)->cdigit );_dupnum(a, b);
// DUPRAT Duplicates a rational taking care of allocation and internals
#define DUPRAT(a,b) destroyrat(a);createrat(a);DUPNUM((a)->pp,(b)->pp);DUPNUM((a)->pq,(b)->pq);
// LOG*RADIX calculates the integral portion of the log of a number in
// the base currently being used, only accurate to within g_ratio
#define LOGNUMRADIX(pnum) (((pnum)->cdigit+(pnum)->exp)*g_ratio)
#define LOGRATRADIX(prat) (LOGNUMRADIX((prat)->pp)-LOGNUMRADIX((prat)->pq))
// LOG*2 calculates the integral portion of the log of a number in
// the internal base being used, only accurate to within g_ratio
#define LOGNUM2(pnum) ((pnum)->cdigit+(pnum)->exp)
#define LOGRAT2(prat) (LOGNUM2((prat)->pp)-LOGNUM2((prat)->pq))
#if defined( DEBUG_RATPAK )
//-----------------------------------------------------------------------------
//
// Debug versions of rational number creation and destruction routines.
// used for debugging allocation errors.
//
//-----------------------------------------------------------------------------
#define createrat(y) (y)=_createrat(); \
{ \
std::wstringstream outputString; \
outputString << "createrat " << y << " " << # y << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
}
#define destroyrat(x) \
{ \
std::wstringstream outputString; \
outputString << "destroyrat " << x << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
} \
_destroyrat(x),(x)=nullptr
#define createnum(y,x) (y)=_createnum(x); \
{ \
std::wstringstream outputString; \
outputString << "createnum " << y << " " << # y << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
}
#define destroynum(x) \
{ \
std::wstringstream outputString; \
outputString << "destroynum " << x << " file= " << __FILE__ << ", line= " << __LINE__ << "\n"; \
OutputDebugString(outputString.str().c_str()); \
} \
_destroynum(x),(x)=nullptr
#else
#define createrat(y) (y)=_createrat()
#define destroyrat(x) _destroyrat(x),(x)=nullptr
#define createnum(y,x) (y)=_createnum(x)
#define destroynum(x) _destroynum(x),(x)=nullptr
#endif
//-----------------------------------------------------------------------------
//
// Defines for checking when to stop taylor series expansions due to
// precision satisfaction.
//
//-----------------------------------------------------------------------------
// RENORMALIZE, gets the exponents non-negative.
#define RENORMALIZE(x) if ( (x)->pp->exp < 0 ) { \
(x)->pq->exp -= (x)->pp->exp; \
(x)->pp->exp = 0; \
} \
if ( (x)->pq->exp < 0 ) { \
(x)->pp->exp -= (x)->pq->exp; \
(x)->pq->exp = 0; \
}
// TRIMNUM ASSUMES the number is in radix form NOT INTERNAL BASEX!!!
#define TRIMNUM(x, precision) if ( !g_ftrueinfinite ) { \
int32_t trim = (x)->cdigit - precision-g_ratio;\
if ( trim > 1 ) \
{ \
memmove( (x)->mant, &((x)->mant[trim]), sizeof(MANTTYPE)*((x)->cdigit-trim) ); \
(x)->cdigit -= trim; \
(x)->exp += trim; \
} \
}
// TRIMTOP ASSUMES the number is in INTERNAL BASEX!!!
#define TRIMTOP(x, precision) if ( !g_ftrueinfinite ) { \
int32_t trim = (x)->pp->cdigit - (precision/g_ratio) - 2;\
if ( trim > 1 ) \
{ \
memmove( (x)->pp->mant, &((x)->pp->mant[trim]), sizeof(MANTTYPE)*((x)->pp->cdigit-trim) ); \
(x)->pp->cdigit -= trim; \
(x)->pp->exp += trim; \
} \
trim = std::min((x)->pp->exp,(x)->pq->exp);\
(x)->pp->exp -= trim;\
(x)->pq->exp -= trim;\
}
#define SMALL_ENOUGH_RAT(a, precision) (zernum((a)->pp) || ( ( ( (a)->pq->cdigit + (a)->pq->exp ) - ( (a)->pp->cdigit + (a)->pp->exp ) - 1 ) * g_ratio > precision ) )
//-----------------------------------------------------------------------------
//
// Defines for setting up taylor series expansions for infinite precision
// functions.
//
//-----------------------------------------------------------------------------
#define CREATETAYLOR() PRAT xx=nullptr;\
PNUMBER n2=nullptr; \
PRAT pret=nullptr; \
PRAT thisterm=nullptr; \
DUPRAT(xx,*px); \
mulrat(&xx,*px, precision); \
createrat(pret); \
pret->pp=i32tonum( 0L, BASEX ); \
pret->pq=i32tonum( 0L, BASEX );
#define DESTROYTAYLOR() destroynum( n2 ); \
destroyrat( xx );\
destroyrat( thisterm );\
destroyrat( *px );\
trimit(&pret, precision);\
*px=pret;
// INC(a) is the rational equivalent of a++
// Check to see if we can avoid doing this the hard way.
#define INC(a) if ( (a)->mant[0] < BASEX - 1 ) \
{ \
(a)->mant[0]++; \
} \
else \
{ \
addnum( &(a), num_one, BASEX); \
}
#define MSD(x) ((x)->mant[(x)->cdigit-1])
// MULNUM(b) is the rational equivalent of thisterm *= b where thisterm is
// a rational and b is a number, NOTE this is a mixed type operation for
// efficiency reasons.
#define MULNUM(b) mulnumx( &(thisterm->pp), b);
// DIVNUM(b) is the rational equivalent of thisterm /= b where thisterm is
// a rational and b is a number, NOTE this is a mixed type operation for
// efficiency reasons.
#define DIVNUM(b) mulnumx( &(thisterm->pq), b);
// NEXTTERM(p,d) is the rational equivalent of
// thisterm *= p
// d <d is usually an expansion of operations to get thisterm updated.>
// pret += thisterm
#define NEXTTERM(p,d,precision) mulrat(&thisterm,p,precision);d addrat( &pret, thisterm, precision )
//-----------------------------------------------------------------------------
//
// External variables used in the math package.
//
//-----------------------------------------------------------------------------
extern bool g_ftrueinfinite; // set to true to allow infinite precision
// don't use unless you know what you are doing
// used to help decide when to stop calculating.
extern int32_t g_ratio; // Internally calculated ratio of internal radix
//-----------------------------------------------------------------------------
//
// External functions defined in the math package.
//
//-----------------------------------------------------------------------------
// Call whenever decimal separator character changes.
extern void SetDecimalSeparator(wchar_t decimalSeparator);
// Call whenever either radix or precision changes, is smarter about recalculating constants.
extern void ChangeConstants(uint32_t radix, int32_t precision);
extern bool equnum(_In_ PNUMBER a, _In_ PNUMBER b ); // returns true of a == b
extern bool lessnum(_In_ PNUMBER a, _In_ PNUMBER b ); // returns true of a < b
extern bool zernum(_In_ PNUMBER a ); // returns true of a == 0
extern bool zerrat(_In_ PRAT a ); // returns true if a == 0/q
extern std::wstring NumberToString(_Inout_ PNUMBER& pnum, int format, uint32_t radix, int32_t precision);
// returns a text representation of a PRAT
extern std::wstring RatToString(_Inout_ PRAT& prat, int format, uint32_t radix, int32_t precision);
// converts a PRAT into a PNUMBER
extern PNUMBER RatToNumber(_In_ PRAT prat, uint32_t radix, int32_t precision);
// flattens a PRAT by converting it to a PNUMBER and back to a PRAT
extern void flatrat(_Inout_ PRAT& prat, uint32_t radix, int32_t precision);
extern int32_t numtoi32(_In_ PNUMBER pnum, uint32_t radix );
extern int32_t rattoi32(_In_ PRAT prat, uint32_t radix, int32_t precision);
uint64_t rattoUi64(_In_ PRAT prat, uint32_t radix, int32_t precision);
extern PNUMBER _createnum(_In_ uint32_t size ); // returns an empty number structure with size digits
extern PNUMBER nRadixxtonum(_In_ PNUMBER a, uint32_t radix, int32_t precision);
extern PNUMBER gcd(_In_ PNUMBER a, _In_ PNUMBER b );
extern PNUMBER StringToNumber(std::wstring_view numberString, uint32_t radix, int32_t precision); // takes a text representation of a number and returns a number.
// takes a text representation of a number as a mantissa with sign and an exponent with sign.
extern PRAT StringToRat(bool mantissaIsNegative, std::wstring_view mantissa, bool exponentIsNegative, std::wstring_view exponent, uint32_t radix, int32_t precision);
extern PNUMBER i32factnum(int32_t ini32, uint32_t radix);
extern PNUMBER i32prodnum(int32_t start, int32_t stop, uint32_t radix);
extern PNUMBER i32tonum(int32_t ini32, uint32_t radix);
extern PNUMBER Ui32tonum(uint32_t ini32, uint32_t radix);
extern PNUMBER numtonRadixx(PNUMBER a, uint32_t radix);
// creates a empty/undefined rational representation (p/q)
extern PRAT _createrat( void );
// returns a new rat structure with the acos of x->p/x->q taking into account
// angle type
extern void acosanglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
// returns a new rat structure with the acosh of x->p/x->q
extern void acoshrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
// returns a new rat structure with the acos of x->p/x->q
extern void acosrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
// returns a new rat structure with the asin of x->p/x->q taking into account
// angle type
extern void asinanglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void asinhrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
// returns a new rat structure with the asinh of x->p/x->q
// returns a new rat structure with the asin of x->p/x->q
extern void asinrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
// returns a new rat structure with the atan of x->p/x->q taking into account
// angle type
extern void atananglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
// returns a new rat structure with the atanh of x->p/x->q
extern void atanhrat( _Inout_ PRAT *px, int32_t precision);
// returns a new rat structure with the atan of x->p/x->q
extern void atanrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
// returns a new rat structure with the cosh of x->p/x->q
extern void coshrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
// returns a new rat structure with the cos of x->p/x->q
extern void cosrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
// returns a new rat structure with the cos of x->p/x->q taking into account
// angle type
extern void cosanglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
// returns a new rat structure with the exp of x->p/x->q this should not be called explicitly.
extern void _exprat( _Inout_ PRAT *px, int32_t precision);
// returns a new rat structure with the exp of x->p/x->q
extern void exprat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
// returns a new rat structure with the log base 10 of x->p/x->q
extern void log10rat( _Inout_ PRAT *px, int32_t precision);
// returns a new rat structure with the natural log of x->p/x->q
extern void lograt( _Inout_ PRAT *px, int32_t precision);
extern PRAT i32torat( int32_t ini32 );
extern PRAT Ui32torat( uint32_t inui32 );
extern PRAT numtorat( _In_ PNUMBER pin, uint32_t radix);
extern void sinhrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void sinrat( _Inout_ PRAT *px );
// returns a new rat structure with the sin of x->p/x->q taking into account
// angle type
extern void sinanglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void tanhrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void tanrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
// returns a new rat structure with the tan of x->p/x->q taking into account
// angle type
extern void tananglerat( _Inout_ PRAT *px, ANGLE_TYPE angletype, uint32_t radix, int32_t precision);
extern void _dupnum(_In_ PNUMBER dest, _In_ const NUMBER * const src);
extern void _destroynum( _In_ PNUMBER pnum );
extern void _destroyrat( _In_ PRAT prat );
extern void addnum( _Inout_ PNUMBER *pa, _In_ PNUMBER b, uint32_t radix);
extern void addrat( _Inout_ PRAT *pa, _In_ PRAT b, int32_t precision);
extern void andrat( _Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void divnum( _Inout_ PNUMBER *pa, _In_ PNUMBER b, uint32_t radix, int32_t precision);
extern void divnumx( _Inout_ PNUMBER *pa, _In_ PNUMBER b, int32_t precision);
extern void divrat( _Inout_ PRAT *pa, _In_ PRAT b, int32_t precision);
extern void fracrat( _Inout_ PRAT *pa , uint32_t radix, int32_t precision);
extern void factrat( _Inout_ PRAT *pa, uint32_t radix, int32_t precision);
extern void modrat( _Inout_ PRAT *pa, _In_ PRAT b );
extern void gcdrat( _Inout_ PRAT *pa, int32_t precision);
extern void intrat( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void mulnum( _Inout_ PNUMBER *pa, _In_ PNUMBER b, uint32_t radix);
extern void mulnumx( _Inout_ PNUMBER *pa, _In_ PNUMBER b );
extern void mulrat( _Inout_ PRAT *pa, _In_ PRAT b, int32_t precision);
extern void numpowi32( _Inout_ PNUMBER *proot, int32_t power, uint32_t radix, int32_t precision);
extern void numpowi32x( _Inout_ PNUMBER *proot, int32_t power );
extern void orrat( _Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void powrat( _Inout_ PRAT *pa, _In_ PRAT b , uint32_t radix, int32_t precision);
extern void powratNumeratorDenominator(_Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void powratcomp(_Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void ratpowi32( _Inout_ PRAT *proot, int32_t power, int32_t precision);
extern void remnum( _Inout_ PNUMBER *pa, _In_ PNUMBER b, uint32_t radix);
extern void rootrat( _Inout_ PRAT *pa, _In_ PRAT b , uint32_t radix, int32_t precision);
extern void scale2pi( _Inout_ PRAT *px, uint32_t radix, int32_t precision);
extern void scale( _Inout_ PRAT *px, _In_ PRAT scalefact, uint32_t radix, int32_t precision);
extern void subrat( _Inout_ PRAT *pa, _In_ PRAT b, int32_t precision);
extern void xorrat( _Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern void lshrat( _Inout_ PRAT *pa, _In_ PRAT b , uint32_t radix, int32_t precision);
extern void rshrat( _Inout_ PRAT *pa, _In_ PRAT b, uint32_t radix, int32_t precision);
extern bool rat_equ( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_neq( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_gt( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_ge( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_lt( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern bool rat_le( _In_ PRAT a, _In_ PRAT b, int32_t precision);
extern void inbetween( _In_ PRAT *px, _In_ PRAT range, int32_t precision);
extern void trimit( _Inout_ PRAT *px, int32_t precision);
extern void _dumprawrat(_In_ const wchar_t *varname, _In_ PRAT rat, std::wostream& out);
extern void _dumprawnum(_In_ const wchar_t *varname, _In_ PNUMBER num, std::wostream& out);