-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy patharg_params.py
147 lines (116 loc) · 7.54 KB
/
arg_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import argparse
from generator_multiple_gan import GeneratorMultipleGAN
from generator_single_gan import GeneratorSingleGAN
class IterAction(argparse.Action):
def __init__(self, option_strings, dest, nargs=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super(IterAction, self).__init__(option_strings, dest, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
if option_string=="--iters":
setattr(namespace, "iters", int(values))
setattr(namespace, "log", int(values*0.05))
else:
setattr(namespace, "g_iters", int(values))
setattr(namespace, "g_log", int(values*0.05))
def get_parser():
parser = argparse.ArgumentParser('./main.py', description='Run continual learning experiment.')
parser.add_argument('--seed', type=int, default=10, help='random seed')
parser.add_argument('--method', type=str, choices=['generative', 'exact', 'none', "offline"], dest='replay', default='none', help="method")
parser.add_argument('--generative-model', type=str, help="path to trained generative model")
parser.add_argument('--output-model-path', type=str,help="path for output")
parser.add_argument('--results-dir', required=True, type=str,help="path for results")
parser.add_argument('--task-order', required=False, type=str,help="specific task order")
parser.add_argument('--visdom', action='store_true', help="use visdom for on-the-fly plots")
parser.add_argument('--log', type=int, default=200, help="# iters after which to plot solver loss")
parser.add_argument('--g-log', type=int, default=200, help="# iters after which to plot generator loss")
task_params = parser.add_argument_group('Task Parameters')
task_params.add_argument('--data-dir', type=str, dest='data_dir', required=True, help="default: %(default)s")
task_params.add_argument('--tasks', type=int, default=5, help='number of tasks')
train_params = parser.add_argument_group('Training Parameters')
train_params.add_argument('--iters', type=int, default=1000, action=IterAction, help="# iterator to optimize solver")
train_params.add_argument('--lr', type=float, default=0.001, help="learning rate for solver")
train_params.add_argument('--g-iters', type=int, default=5000, action=IterAction, help="# iterator to optimize generator")
train_params.add_argument('--lr-gen', type=float, default=0.001, help="learning rate for generator")
train_params.add_argument('--batch', type=int, default=50, help="batch-size")
train_params.add_argument('--optimizer', type=str, choices=['adam', 'adam_reset', 'sgd'], default='adam')
train_params.add_argument('--replay-size', type=int, default=500, help="# replayed samples used in each training session")
train_params.add_argument('--rnt', type=float, default=0.5, help="relative importance of new task")
model_params = parser.add_argument_group('Model Parameters')
model_params.add_argument('--solver-fc-layers', type=int, default=3, help="# of fully-connected layers")
model_params.add_argument('--solver-fc-units', type=int, default=500, help="# of units in first fc-layers")
generator_params = parser.add_argument_group('Generator Parameters')
generator_params.add_argument('--critic-fc-layers', type=int, default=3, help="[critic] # of fully-connected layers")
generator_params.add_argument('--critic-fc-units', type=int, default=100, help="[critic] # of units in first fc-layers")
generator_params.add_argument('--critic-lr', type=float, default=0.001, help="[critic] learning rate")
generator_params.add_argument('--generator-fc-layers', type=int, default=3, help="[generator] # of fully-connected layers")
generator_params.add_argument('--generator-fc-units', type=int, default=100, help="[generator] # of units in first fc-layers")
generator_params.add_argument('--generator-lr', type=float, default=0.001, help="[generator] learning rate")
generator_params.add_argument('--generator-z-size', type=int, default=20, help='[generator] size of latent representation')
generator_params.add_argument('--generator-activation', type=str, choices=['sigmoid', 'relu', 'identity'], default='relu', help='[generator] Output function')
component_params = parser.add_argument_group('Additional Component Parameters')
parser.add_argument('--self-verify', action='store_false', help="enable self-verifing")
parser.add_argument('--no-oversampling', action='store_false', dest="oversampling", help="disable oversampling")
parser.add_argument('--solver-ewc', action='store_true', help="enable EWC regularisation")
parser.add_argument('--solver-distill', action='store_false', help="enable knowledge distilling")
parser.add_argument('--generator-noise', action='store_false', help="enable instance noise")
parser.add_argument('--icarl-examplars', action='store_false', help="enable iCarl")
return parser
def get_args():
parser = get_parser()
args = parser.parse_args()
args.oversampling = (not args.oversampling)
return args
def get_generator(model, config, cuda, device, args, init_n_classes=2):
if model == "mp-gan":
return GeneratorMultipleGAN(
input_feat=config['feature'],
model="gan",
cuda=cuda,
device=device,
z_size=args.generator_z_size,
critic_fc_layers=args.critic_fc_layers, critic_fc_units=args.critic_fc_units, critic_lr=args.critic_lr,
generator_fc_layers=args.generator_fc_layers, generator_fc_units=args.generator_fc_units, generator_lr=args.generator_lr,
generator_activation=args.generator_activation,
critic_updates_per_generator_update=5,
gp_lamda=10.0
)
elif model == "mp-wgan":
return GeneratorMultipleGAN(
input_feat=config['feature'],
model="wgan",
cuda=cuda,
device=device,
z_size=args.generator_z_size,
critic_fc_layers=args.critic_fc_layers, critic_fc_units=args.critic_fc_units, critic_lr=args.critic_lr,
generator_fc_layers=args.generator_fc_layers, generator_fc_units=args.generator_fc_units, generator_lr=args.generator_lr,
generator_activation=args.generator_activation,
critic_updates_per_generator_update=5,
gp_lamda=10.0
)
elif model == "sg-cgan":
return GeneratorSingleGAN(
input_feat=config['feature'],
classes=init_n_classes,
model="cgan",
cuda=cuda,
device=device,
z_size=args.generator_z_size,
critic_fc_layers=args.critic_fc_layers, critic_fc_units=args.critic_fc_units, critic_lr=args.critic_lr,
generator_fc_layers=args.generator_fc_layers, generator_fc_units=args.generator_fc_units, generator_lr=args.generator_lr,
generator_activation=args.generator_activation,
)
elif model == "sg-cwgan":
return GeneratorSingleGAN(
input_feat=config['feature'],
classes=init_n_classes,
model="cwgan",
cuda=cuda,
device=device,
z_size=args.generator_z_size,
critic_fc_layers=args.critic_fc_layers, critic_fc_units=args.critic_fc_units, critic_lr=args.critic_lr,
generator_fc_layers=args.generator_fc_layers, generator_fc_units=args.generator_fc_units, generator_lr=args.generator_lr,
generator_activation=args.generator_activation,
)
else:
raise Exception("Unknown model")