forked from DroneSplat/anonymous_code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrender_video.py
174 lines (144 loc) · 5.98 KB
/
render_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import splines
import splines.quaternion
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
from utils.pose_utils import get_tensor_from_camera
from utils.camera_utils import visualizer
import cv2
import numpy as np
import imageio
from scipy.spatial.transform import Rotation as R
import splines
import splines.quaternion
from scene.cameras import Camera
def kochanek_bartels_interpolation(keyframes, num_frames, tension=0.0, bias=0.0, continuity=0.0):
positions = np.array([kf[0] for kf in keyframes])
quaternions = np.array([kf[1] for kf in keyframes])
position_spline = splines.KochanekBartels(
positions,
tcb=(tension, bias, continuity),
endconditions="natural"
)
orientation_spline = splines.quaternion.KochanekBartels(
[splines.quaternion.UnitQuaternion.from_unit_xyzw(np.roll(q, shift=-1)) for q in quaternions],
tcb=(tension, bias, continuity),
endconditions="natural"
)
times = np.linspace(0, len(keyframes) - 1, num_frames)
interpolated_positions = position_spline.evaluate(times)
interpolated_orientations = orientation_spline.evaluate(times)
interpolated_orientations = np.stack([np.array([quat.scalar, *quat.vector]) for quat in interpolated_orientations])
return interpolated_positions, interpolated_orientations
def interpolate_camera_list(camera_list, n_frames, tension=0.0, bias=0.0, continuity=0.0):
keyframes = []
for camera in camera_list:
position = camera.T
rotation = R.from_matrix(camera.R).as_quat()
keyframes.append((position, rotation))
print("len(key_frames):", len(keyframes))
interpolated_positions, interpolated_orientations = kochanek_bartels_interpolation(keyframes, n_frames, tension, bias, continuity)
FoVx = camera_list[0].FoVx
FoVy = camera_list[0].FoVy
new_camera_list = []
for i in range(n_frames):
pos = interpolated_positions[i]
quat = interpolated_orientations[i]
R_matrix = R.from_quat(quat).as_matrix()
original_camera = camera_list[i % len(camera_list)]
new_camera = Camera(
colmap_id=original_camera.colmap_id,
R=R_matrix,
T=pos,
FoVx=FoVx,
FoVy=FoVy,
image=original_camera.original_image,
gt_alpha_mask=original_camera.original_image * 0,
image_name=original_camera.image_name,
uid=original_camera.uid,
trans=original_camera.trans,
scale=original_camera.scale,
data_device=original_camera.data_device
)
new_camera_list.append(new_camera)
print("len(new_camera_list):", len(new_camera_list))
return new_camera_list
def images_to_video(image_folder, output_video_path, fps=30):
"""
Convert images in a folder to a video.
Args:
- image_folder (str): The path to the folder containing the images.
- output_video_path (str): The path where the output video will be saved.
- fps (int): Frames per second for the output video.
"""
images = []
for filename in sorted(os.listdir(image_folder)):
if filename.endswith(('.png', '.jpg', '.jpeg', '.JPG', '.PNG')):
image_path = os.path.join(image_folder, filename)
image = imageio.imread(image_path)
images.append(image)
imageio.mimwrite(output_video_path, images, fps=fps)
def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
makedirs(render_path, exist_ok=True)
print("num views: ", len(views))
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
camera_pose = get_tensor_from_camera(view.world_view_transform.transpose(0, 1))
rendering = render(
view, gaussians, pipeline, background, camera_pose=camera_pose
)["render"]
gt = view.original_image[0:3, :, :]
torchvision.utils.save_image(
rendering, os.path.join(render_path, "{0:05d}".format(idx) + ".png")
)
def render_sets(
dataset: ModelParams,
iteration: int,
pipeline: PipelineParams,
args,
):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, opt=args, shuffle=False)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
render_cameras = interpolate_camera_list(scene.getTestCameras(), args.n_views)
# render interpolated views
render_set(
dataset.model_path,
"interps",
scene.loaded_iter,
render_cameras,
gaussians,
pipeline,
background,
)
image_folder = os.path.join(dataset.model_path, f'interps/ours_{args.iteration}/renders')
output_video_file = os.path.join(dataset.model_path, f'interps.mp4')
images_to_video(image_folder, output_video_file, fps=args.fps)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--get_video", action="store_true")
parser.add_argument("--n_views", default=600, type=int)
parser.add_argument("--fps", default=30, type=int)
args = get_combined_args(parser)
print("Rendering " + args.model_path)
render_sets(
model.extract(args),
args.iteration,
pipeline.extract(args),
args,
)