-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_test_tile.py
263 lines (239 loc) · 12.7 KB
/
main_test_tile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from test.ExperimentTile import Experiment
from test.GoalDQNAgent import GoalDQNAgent
from test.DQNAgent import DQNAgent
from envs.LabEnvV2 import RandomMazeTileRaw
from collections import namedtuple
import argparse
import torch
import random
import os
import numpy as np
import IPython.terminal.debugger as Debug
DEFAULT_SIZE = [5, 7, 9, 11, 13, 15, 17, 19, 21]
DEFAULT_SEED = list(range(20))
# parser function
def parse_input():
parser = argparse.ArgumentParser()
# set the agent
parser.add_argument("--agent", type=str, default="random", help="Type of the agent (random, dqn, goal-dqn)")
parser.add_argument("--dqn_mode", type=str, default="vanilla", help="Type of the DQN (vanilla, double)")
# set the env params
parser.add_argument("--maze_size_list", type=str, default="5", help="Maze size list")
parser.add_argument("--maze_seed_list", type=str, default="0", help="Maze seed list")
parser.add_argument("--fix_maze", action='store_true', default=False, help="Fix the maze")
parser.add_argument("--fix_start", action='store_true', default=False, help="Fix the start position")
parser.add_argument("--fix_goal", action='store_true', default=False, help="Fix the goal position")
parser.add_argument("--decal_freq", type=float, default=0.001, help="Wall decorator frequency")
parser.add_argument("--use_true_state", action='store_true', default=False, help="Using true state flag")
parser.add_argument("--use_small_obs", action='store_true', default=False, help="Using small observations flag")
parser.add_argument("--use_goal", action='store_true', default=False, help="Using goal conditioned flag")
parser.add_argument("--goal_dist", type=int, default=-1, help="Set distance between start and goal")
parser.add_argument("--use_imagine", type=float, default=0, help="Proportion of relabeled imagination goal")
parser.add_argument("--terminal_dist", type=float, default=1e-3, help="Termination distance for one episode")
parser.add_argument("--random_seed", type=int, default=0, help="Random seed")
# set the training mode
parser.add_argument("--train_random_policy", action='store_true', default=False, help="Whether train a local policy.")
parser.add_argument("--device", type=str, default="cpu", help="Device to use")
parser.add_argument("--lr", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--start_train_step", type=int, default=1000, help="Start training time step")
parser.add_argument("--sampled_goal_num", type=int, default=10, help="Number of sampled start and goal positions.")
parser.add_argument("--train_episode_num", type=int, default=10, help="Number of training epochs for each sample.")
parser.add_argument("--total_time_steps", type=int, default=50000, help="Total time steps")
parser.add_argument("--episode_time_steps", type=int, default=100, help="Time steps per episode")
parser.add_argument("--eval_policy_freq", type=int, default=10, help="Evaluate the current learned policy frequency")
parser.add_argument("--dqn_update_target_freq", type=int, default=1000, help="Frequency of updating the target")
parser.add_argument("--dqn_update_policy_freq", type=int, default=4, help="Frequency of updating the policy")
parser.add_argument("--soft_target_update", action='store_true', default=False, help="Soft update flag")
parser.add_argument("--dqn_gradient_clip", action='store_true', default=False, help="Clip the gradient flag")
parser.add_argument("--train_maze_num", type=int, default=1, help="Number of the training mazes")
# set the memory params
parser.add_argument("--memory_size", type=int, default=20000, help="Memory size or replay buffer size")
parser.add_argument("--batch_size", type=int, default=64, help="Size of the mini-batch")
parser.add_argument("--use_memory", action='store_true', default=False, help="If true, use the memory")
parser.add_argument("--use_her", action='store_true', default=False, help="If true, use the Hindsight Experience Replay")
parser.add_argument("--future_k", type=int, default=4, help="Number of sampling future states")
# set RL params
parser.add_argument("--gamma", type=float, default=0.99, help="Gamma")
# set the saving params
parser.add_argument("--model_name", type=str, default='null', help="model name")
parser.add_argument("--save_dir", type=str, default='./', help="saving folder")
# add new strategy
parser.add_argument("--use_rescale", action='store_true', default=False, help='whether rescale the value to [0,1]')
parser.add_argument("--use_state_est", action='store_true', default=False, help='whether estimate the state')
parser.add_argument("--alpha", type=float, default=1.0, help='hyperparameter for the two head case')
# add n steps
parser.add_argument("--n_step_num", type=int, default=1, help='Number of n step return')
return parser.parse_args()
# make the environment
def make_env(inputs):
# set level name
level_name = 'nav_random_maze_tile_bsp'
# necessary observations (correct: this is the egocentric observations (following the counter clock direction))
observation_list = [
'RGB.LOOK_RANDOM_PANORAMA_VIEW',
'RGB.LOOK_TOP_DOWN_VIEW'
]
# set the observation size
if inputs.use_small_obs:
observation_width = 32
observation_height = 32
else:
observation_width = 64
observation_height = 64
observation_fps = 60
# set configurations
configurations = {
'width': str(observation_width),
'height': str(observation_height),
'fps': str(observation_fps)
}
# set the mazes
maze_size_list = [int(m_s) for m_s in inputs.maze_size_list.split(",")]
maze_seed_list = [int(m_s) for m_s in inputs.maze_seed_list.split(",")]
assert set(maze_size_list) <= set(DEFAULT_SIZE), f"Containing invalid maze size. Expect a subset of" \
f" {DEFAULT_SIZE}, but get {maze_size_list}."
assert set(maze_seed_list) <= set(DEFAULT_SEED), f"Containing invalid maze seed. Expect a subset of" \
f" {DEFAULT_SEED}, but get {maze_seed_list}."
# create the environment
lab = RandomMazeTileRaw(level_name,
observation_list,
configurations,
use_true_state=inputs.use_true_state,
reward_type="sparse-1",
dist_epsilon=inputs.terminal_dist)
return lab, maze_size_list, maze_seed_list
# make the agent
def make_agent(inputs):
if inputs.agent == 'dqn':
agent = DQNAgent(dqn_mode=inputs.dqn_mode,
target_update_frequency=inputs.dqn_update_target_freq,
policy_update_frequency=inputs.dqn_update_policy_freq,
use_small_obs=inputs.use_small_obs,
use_true_state=inputs.use_true_state,
use_target_soft_update=inputs.soft_target_update,
use_gradient_clip=inputs.dqn_gradient_clip,
gamma=inputs.gamma,
device=inputs.device
)
elif inputs.agent == 'goal-dqn':
agent = GoalDQNAgent(dqn_mode=inputs.dqn_mode,
target_update_frequency=inputs.dqn_update_target_freq,
policy_update_frequency=inputs.dqn_update_policy_freq,
use_small_obs=inputs.use_small_obs,
use_true_state=inputs.use_true_state,
use_target_soft_update=inputs.soft_target_update,
use_gradient_clip=inputs.dqn_gradient_clip,
gamma=inputs.gamma,
device=inputs.device,
use_rescale=inputs.use_rescale,
use_state_est=inputs.use_state_est,
alpha=inputs.alpha,
n_step_num=inputs.n_step_num
)
else:
raise Exception(f"{inputs.agent} is not defined. Please try the valid agent (random, dqn, actor-critic)")
return agent
# run experiment
def run_experiment(inputs):
# create the environment
my_lab, size_list, seed_list = make_env(inputs)
# create the agent
my_agent = make_agent(inputs)
# create the transition
if not inputs.use_goal:
transition = namedtuple("transition", ["state", "action", "reward", "next_state", "done"])
else:
transition = namedtuple("transition", ["state", "action", "reward", "next_state", "goal", "done"])
# create the experiment
my_experiment = Experiment(
env=my_lab,
agent=my_agent,
maze_list=size_list,
seed_list=seed_list,
decal_freq=inputs.decal_freq,
fix_maze=inputs.fix_maze,
fix_start=inputs.fix_start,
fix_goal=inputs.fix_goal,
use_goal=inputs.use_goal,
goal_dist=inputs.goal_dist,
use_true_state=inputs.use_true_state,
train_random_policy=inputs.train_random_policy,
sample_start_goal_num=inputs.sampled_goal_num,
train_episode_num=inputs.train_episode_num,
start_train_step=inputs.start_train_step,
max_time_steps=inputs.total_time_steps,
episode_time_steps=inputs.episode_time_steps,
eval_policy_freq=inputs.eval_policy_freq,
use_replay=inputs.use_memory,
use_her=inputs.use_her,
future_k=inputs.future_k,
buffer_size=inputs.memory_size,
transition=transition,
learning_rate=inputs.lr,
batch_size=inputs.batch_size,
gamma=inputs.gamma,
save_dir=inputs.save_dir,
model_name=inputs.model_name,
use_imagine=inputs.use_imagine,
device=inputs.device,
use_state_est=inputs.use_state_est,
n_step_num=inputs.n_step_num
)
# run the experiments
if inputs.use_goal:
# train a global goal-conditioned policy
if not inputs.train_random_policy:
my_experiment.run_goal_dqn()
# my_experiment.run_goal_n_step_dqn()
else: # train a local goal-conditioned policy
if not inputs.use_her:
my_experiment.run_random_local_goal_dqn()
else:
my_experiment.run_random_goal_dqn_her()
else:
# train a vanilla policy
my_experiment.run_dqn()
if __name__ == '__main__':
# load the input parameters
user_inputs = parse_input()
# user input model index
input_model_name = user_inputs.model_name
input_save_dir = user_inputs.save_dir
# total seed list
total_seed_list = user_inputs.maze_seed_list.split(',')
""" Experiment Paradigm
- One run for different sizes of mazes
- Sample #train_maze_num mazes for training
"""
# run experiments
input_maze_size_list_init = user_inputs.maze_size_list.split(',') # obtain all maze sizes
input_maze_seed_list_init = user_inputs.maze_seed_list.split(',') # obtain all maze seeds
# loop maze sizes
for s in input_maze_size_list_init:
# set random seed for reproduce
random.seed(user_inputs.random_seed)
np.random.seed(user_inputs.random_seed)
torch.manual_seed(user_inputs.random_seed)
# set the training maze size list
user_inputs.maze_size_list = s
# set the training maze seed list
input_maze_seed_shuffle = input_maze_seed_list_init.copy()
np.random.shuffle(input_maze_seed_shuffle)
if len(input_maze_seed_list_init) > user_inputs.train_maze_num:
user_inputs.maze_seed_list = ','.join(random.sample(input_maze_seed_shuffle, user_inputs.train_maze_num))
else:
user_inputs.maze_seed_list = ','.join(input_maze_seed_shuffle)
# print info
print(f"Run the experiment with random seed = {user_inputs.random_seed} using mazes size {s} and"
f" seed {user_inputs.maze_seed_list}")
# update the save directory
if user_inputs.train_maze_num > 1:
user_inputs.save_dir = input_save_dir + '/few_shot/' + f'{s}-{user_inputs.goal_dist}' + f'/{user_inputs.random_seed}'
else:
user_inputs.save_dir = input_save_dir + '/one_shot/' + f'{s}-{user_inputs.goal_dist}' + f'/{user_inputs.random_seed}'
user_inputs.model_name = input_model_name + f'_{s}x{s}_obs_dist_{user_inputs.goal_dist}'
# check the directory to store the results
if not os.path.exists(user_inputs.save_dir):
os.makedirs(user_inputs.save_dir)
# run experiments
run_experiment(user_inputs)