-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSoRB_main.py
291 lines (265 loc) · 14.3 KB
/
SoRB_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""
Implementation of training SoRB. Actually, the training only contains train a goal-conditioned DQN agent.
Currently, I don't use distributional RL. Just use the same model but without discounted factor
"""
from baselines.SoRB_agent import GoalDQNAgent
from baselines.SoRB_experiment import Experiment
from envs.LabEnvV2 import RandomMazeTileRaw
from collections import namedtuple
import argparse
import torch
import random
import os
import numpy as np
import IPython.terminal.debugger as Debug
DEFAULT_SIZE = [5, 7, 9, 11, 13, 15, 17, 19, 21]
DEFAULT_SEED = list(range(20))
def parse_input():
parser = argparse.ArgumentParser()
# set the agent
parser.add_argument("--agent", type=str, default="random", help="Type of the agent (random, dqn, goal-dqn)")
parser.add_argument("--dqn_mode", type=str, default="vanilla", help="Type of the DQN (vanilla, double)")
# set the env params
parser.add_argument("--maze_size_list", type=str, default="5", help="Maze size list")
parser.add_argument("--maze_seed_list", type=str, default="0", help="Maze seed list")
parser.add_argument("--distance_list", type=str, default="1", help="Maze distance list")
parser.add_argument("--fix_maze", type=str, default="True", help="Fix the maze")
parser.add_argument("--fix_start", type=str, default="True", help="Fix the start position")
parser.add_argument("--fix_goal", type=str, default="True", help="Fix the goal position")
parser.add_argument("--decal_freq", type=float, default=0.001, help="Wall decorator frequency")
parser.add_argument("--use_true_state", type=str, default="True", help="Using true state flag")
parser.add_argument("--use_small_obs", type=str, default='False', help="Using small observations flag")
parser.add_argument("--use_goal", type=str, default="False", help="Using goal conditioned flag")
parser.add_argument("--goal_dist", type=int, default=-1, help="Set distance between start and goal")
parser.add_argument("--use_imagine", type=str, default="False", help="Using imagination of goal")
# set the running mode
parser.add_argument("--run_num", type=int, default=1, help="Number of run for each experiment.")
parser.add_argument("--random_seed", type=int, default=0, help="Random seed")
# set the training mode
parser.add_argument("--train_local_policy", type=str, default="False", help="Whether train a local policy.")
parser.add_argument("--device", type=str, default="cpu", help="Device to use")
parser.add_argument("--lr", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--start_train_step", type=int, default=1000, help="Start training time step")
parser.add_argument("--sampled_goal_num", type=int, default=10, help="Number of sampled start and goal positions.")
parser.add_argument("--train_episode_num", type=int, default=10, help="Number of training epochs for each sample.")
parser.add_argument("--total_time_steps", type=int, default=50000, help="Total time steps")
parser.add_argument("--episode_time_steps", type=int, default=100, help="Time steps per episode")
parser.add_argument("--eval_policy_freq", type=int, default=1000, help="Evaluate the current learned policy frequency")
parser.add_argument("--dqn_update_target_freq", type=int, default=2000, help="Frequency of updating the target")
parser.add_argument("--dqn_update_policy_freq", type=int, default=10, help="Frequency of updating the policy")
parser.add_argument("--soft_target_update", type=str, default="True", help="Soft update flag")
parser.add_argument("--dqn_gradient_clip", type=str, default="True", help="Clip the gradient flag")
parser.add_argument("--mix_maze", type=str, default="False", help="If set true, "
"then the training mazes are mixed size")
parser.add_argument("--fold_k", type=int, default=-1, help="Cross validation")
parser.add_argument("--trn_num_each_maze", type=int, default=1, help="Number of the training mazes for each size")
# set the memory params
parser.add_argument("--memory_size", type=int, default=1000, help="Memory size or replay buffer size")
parser.add_argument("--batch_size", type=int, default=64, help="Size of the mini-batch")
parser.add_argument("--use_memory", type=str, default="True", help="If true, use the memory")
parser.add_argument("--use_her", type=str, default="False", help="If true, use the Hindsight Experience Replay")
parser.add_argument("--future_k", type=int, default=4, help="Number of sampling future states")
# set RL params
parser.add_argument("--gamma", type=float, default=1.0, help="Gamma")
# set the saving params
parser.add_argument("--model_idx", type=str, default=None, help="model index")
parser.add_argument("--save_dir", type=str, default=None, help="saving folder")
# flag for SoRB
parser.add_argument("--distributional_rl", type=str, default='False', help="Whether use distributional RL or not")
parser.add_argument("--support_atoms", type=int, default='51', help="Number of the support atoms")
parser.add_argument("--run_mode", type=str, default='trn', help="Whether train or evaluate the SoRB")
parser.add_argument("--max_dist", type=int, default=1, help="Max distance")
parser.add_argument("--gpu_acc", type=str, default='False', help="Whether use GPU to boost imagine rendering")
parser.add_argument("--use_rescale", type=str, default='False', help="Whether use pixel value between [0, 1]")
# evaluation
parser.add_argument("--model_maze_size", type=int, default=13)
parser.add_argument("--model_dist", type=int, default=1)
parser.add_argument("--model_seed", type=int, default=0)
return parser.parse_args()
# convert the True/False from str to bool
def strTobool(inputs):
# set params of mazes
inputs.fix_maze = True if inputs.fix_maze == "True" else False
inputs.fix_start = True if inputs.fix_start == "True" else False
inputs.fix_goal = True if inputs.fix_goal == "True" else False
inputs.use_small_obs = True if inputs.use_small_obs == "True" else False
inputs.use_true_state = True if inputs.use_true_state == "True" else False
inputs.use_goal = True if inputs.use_goal == "True" else False
inputs.use_imagine = True if inputs.use_imagine == "True" else False
# set params of training
inputs.train_local_policy = True if inputs.train_local_policy == "True" else False
inputs.use_memory = True if inputs.use_memory == "True" else False
inputs.soft_target_update = True if inputs.soft_target_update == 'True' else False
inputs.dqn_gradient_clip = True if inputs.dqn_gradient_clip == 'True' else False
# set params of HER
inputs.use_her = True if inputs.use_her == "True" else False
# use mixed mazes as training
inputs.mix_maze = True if inputs.mix_maze == "True" else False
# use distributional rl
inputs.distributional_rl = True if inputs.distributional_rl == "True" else False
# use GPU to accelerate
inputs.gpu_acc = True if inputs.gpu_acc == "True" else False
# use rescale value
inputs.use_rescale = True if inputs.use_rescale == "True" else False
return inputs
# make the environment
def make_env(inputs):
# set level name
level_name = 'nav_random_maze_tile_bsp'
# necessary observations (correct: this is the egocentric observations (following the counter clock direction))
observation_list = [
'RGB.LOOK_RANDOM_PANORAMA_VIEW',
'RGB.LOOK_TOP_DOWN_VIEW'
]
if inputs.use_small_obs:
observation_width = 32
observation_height = 32
else:
observation_width = 64
observation_height = 64
observation_fps = 60
# set configurations
configurations = {
'width': str(observation_width),
'height': str(observation_height),
'fps': str(observation_fps)
}
# set the mazes
if len(inputs.maze_size_list) == 1 or len(inputs.maze_size_list) == 2:
maze_size = [int(inputs.maze_size_list)]
else:
maze_size = [int(s) for s in inputs.maze_size_list.split(",")]
if len(inputs.maze_seed_list) == 1 or len(inputs.maze_seed_list) == 2:
maze_seed = [int(inputs.maze_seed_list)]
else:
maze_seed = [int(s) for s in inputs.maze_seed_list.split(",")]
if len(inputs.distance_list) == 1 or len(inputs.distance_list) == 2:
maze_dist = [int(inputs.distance_list)]
else:
maze_dist = [int(d) for d in inputs.distance_list.split(",")]
assert set(maze_size) <= set(DEFAULT_SIZE), f"Input contains invalid maze size. Expect a subset of {DEFAULT_SIZE}, " \
f"but get {maze_size}."
assert set(maze_seed) <= set(DEFAULT_SEED), f"Input contains invalid maze seed. Expect a subset of {DEFAULT_SEED}, " \
f"but get {maze_seed}."
# create the environment
lab = RandomMazeTileRaw(level_name,
observation_list,
configurations,
use_true_state=inputs.use_true_state,
reward_type="sparse-1",
dist_epsilon=1e-3)
return lab, maze_size, maze_seed, maze_dist
# make the agent
def make_agent(inputs):
# two mode: vanilla goal-conditioned DQN and goal-conditioned DQN with distributional RL
if inputs.distributional_rl:
agent = GoalDQNAgent(dqn_mode=inputs.dqn_mode,
target_update_frequency=inputs.dqn_update_target_freq,
policy_update_frequency=inputs.dqn_update_policy_freq,
use_small_obs=inputs.use_small_obs,
use_true_state=inputs.use_true_state,
use_target_soft_update=inputs.soft_target_update,
use_gradient_clip=inputs.dqn_gradient_clip,
gamma=inputs.gamma,
device=inputs.device,
use_distributional=True,
support_atoms=inputs.support_atoms,
batch_size=inputs.batch_size,
use_rescale=inputs.use_rescale
)
else:
agent = GoalDQNAgent(dqn_mode=inputs.dqn_mode,
target_update_frequency=inputs.dqn_update_target_freq,
policy_update_frequency=inputs.dqn_update_policy_freq,
use_small_obs=inputs.use_small_obs,
use_true_state=inputs.use_true_state,
use_target_soft_update=inputs.soft_target_update,
use_gradient_clip=inputs.dqn_gradient_clip,
gamma=inputs.gamma,
device=inputs.device,
use_distributional=False,
use_rescale=inputs.use_rescale
)
return agent
# run experiment
def run_experiment(inputs):
# create the environment
my_lab, size, seed, dist= make_env(inputs)
# create the agent
my_agent = make_agent(inputs)
# create the transition
transition = namedtuple("transition", ["state", "action", "reward", "next_state", "done"]) if not inputs.use_goal \
else namedtuple("transition", ["state", "action", "reward", "next_state", "goal", "done"])
# create the experiment
my_experiment = Experiment(
env=my_lab,
agent=my_agent,
maze_list=size,
seed_list=seed,
dist_list=dist,
decal_freq=inputs.decal_freq,
fix_maze=inputs.fix_maze,
fix_start=inputs.fix_start,
fix_goal=inputs.fix_goal,
use_goal=inputs.use_goal,
goal_dist=inputs.goal_dist,
max_dist=inputs.max_dist,
use_true_state=inputs.use_true_state,
sample_start_goal_num=inputs.sampled_goal_num,
train_episode_num=inputs.train_episode_num,
start_train_step=inputs.start_train_step,
max_time_steps=inputs.total_time_steps,
episode_time_steps=inputs.episode_time_steps,
use_replay=inputs.use_memory,
use_her=inputs.use_her,
future_k=inputs.future_k,
buffer_size=inputs.memory_size,
transition=transition,
batch_size=inputs.batch_size,
gamma=inputs.gamma,
save_dir=inputs.save_dir,
model_name=inputs.model_idx,
device=inputs.device,
use_rescale=inputs.use_rescale,
eval_policy_freq=inputs.eval_policy_freq,
args=inputs
)
# run the experiments
if inputs.run_mode == 'trn':
my_experiment.train_local_goal_conditioned_dqn()
elif inputs.run_mode == 'trn-her':
my_experiment.train_local_goal_conditioned_dqn_with_her()
elif inputs.run_mode == 'tst-dist':
my_experiment.test_distance_prediction()
elif inputs.run_mode == 'sorb':
my_experiment.run_SoRB()
else:
raise Exception(f"Invalid experiment running mode. Expect one from (trn, trn-her, tst-dist, or sorb), but get"
f"{inputs.run_mode}")
if __name__ == '__main__':
# load the input parameters
user_inputs = parse_input()
user_inputs = strTobool(user_inputs)
# user input model index
input_model_idx = user_inputs.model_idx
input_save_dir = user_inputs.save_dir
# total seed list
total_seed_list = user_inputs.maze_seed_list.split(',')
input_maze_size_list = user_inputs.maze_size_list.split(',')
for s in input_maze_size_list:
# set the random seed for reproduce
random.seed(user_inputs.random_seed)
np.random.seed(user_inputs.random_seed)
torch.manual_seed(user_inputs.random_seed)
# set the maze size list
user_inputs.maze_size_list = s
# print info
print(f"Run the experiment with random seed = {user_inputs.random_seed} using mazes size {s} and seed {user_inputs.maze_seed_list}")
# update the save directory
user_inputs.save_dir = input_save_dir + '/sorb/' + f'{s}x{s}' + f'/{user_inputs.random_seed}'
user_inputs.model_idx = input_model_idx + f'_{s}x{s}_obs_sorb_her'
# check the directory to store the results
#if not os.path.exists(user_inputs.save_dir):
# os.makedirs(user_inputs.save_dir)
# run the experiments
run_experiment(user_inputs)