forked from kwea123/nerf_pl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
149 lines (123 loc) · 5.39 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import os
import numpy as np
from collections import defaultdict
from tqdm import tqdm
import imageio
from argparse import ArgumentParser
from models.rendering import render_rays
from models.nerf import *
from utils import load_ckpt
import metrics
from datasets import dataset_dict
from datasets.depth_utils import *
torch.backends.cudnn.benchmark = True
def get_opts():
parser = ArgumentParser()
parser.add_argument('--root_dir', type=str,
default='/home/ubuntu/data/nerf_example_data/nerf_synthetic/lego',
help='root directory of dataset')
parser.add_argument('--dataset_name', type=str, default='blender',
choices=['blender', 'llff'],
help='which dataset to validate')
parser.add_argument('--scene_name', type=str, default='test',
help='scene name, used as output folder name')
parser.add_argument('--split', type=str, default='test',
help='test or test_train')
parser.add_argument('--img_wh', nargs="+", type=int, default=[800, 800],
help='resolution (img_w, img_h) of the image')
parser.add_argument('--spheric_poses', default=False, action="store_true",
help='whether images are taken in spheric poses (for llff)')
parser.add_argument('--N_samples', type=int, default=64,
help='number of coarse samples')
parser.add_argument('--N_importance', type=int, default=128,
help='number of additional fine samples')
parser.add_argument('--use_disp', default=False, action="store_true",
help='use disparity depth sampling')
parser.add_argument('--chunk', type=int, default=32*1024*4,
help='chunk size to split the input to avoid OOM')
parser.add_argument('--ckpt_path', type=str, required=True,
help='pretrained checkpoint path to load')
parser.add_argument('--save_depth', default=False, action="store_true",
help='whether to save depth prediction')
parser.add_argument('--depth_format', type=str, default='pfm',
choices=['pfm', 'bytes'],
help='which format to save')
return parser.parse_args()
@torch.no_grad()
def batched_inference(models, embeddings,
rays, N_samples, N_importance, use_disp,
chunk,
white_back):
"""Do batched inference on rays using chunk."""
B = rays.shape[0]
chunk = 1024*32
results = defaultdict(list)
for i in range(0, B, chunk):
rendered_ray_chunks = \
render_rays(models,
embeddings,
rays[i:i+chunk],
N_samples,
use_disp,
0,
0,
N_importance,
chunk,
dataset.white_back,
test_time=True)
for k, v in rendered_ray_chunks.items():
results[k] += [v]
for k, v in results.items():
results[k] = torch.cat(v, 0)
return results
if __name__ == "__main__":
args = get_opts()
w, h = args.img_wh
kwargs = {'root_dir': args.root_dir,
'split': args.split,
'img_wh': tuple(args.img_wh)}
if args.dataset_name == 'llff':
kwargs['spheric_poses'] = args.spheric_poses
dataset = dataset_dict[args.dataset_name](**kwargs)
embedding_xyz = Embedding(3, 10)
embedding_dir = Embedding(3, 4)
nerf_coarse = NeRF()
nerf_fine = NeRF()
load_ckpt(nerf_coarse, args.ckpt_path, model_name='nerf_coarse')
load_ckpt(nerf_fine, args.ckpt_path, model_name='nerf_fine')
nerf_coarse.cuda().eval()
nerf_fine.cuda().eval()
models = [nerf_coarse, nerf_fine]
embeddings = [embedding_xyz, embedding_dir]
imgs = []
psnrs = []
dir_name = f'results/{args.dataset_name}/{args.scene_name}'
os.makedirs(dir_name, exist_ok=True)
for i in tqdm(range(len(dataset))):
sample = dataset[i]
rays = sample['rays'].cuda()
results = batched_inference(models, embeddings, rays,
args.N_samples, args.N_importance, args.use_disp,
args.chunk,
dataset.white_back)
img_pred = results['rgb_fine'].view(h, w, 3).cpu().numpy()
if args.save_depth:
depth_pred = results['depth_fine'].view(h, w).cpu().numpy()
depth_pred = np.nan_to_num(depth_pred)
if args.depth_format == 'pfm':
save_pfm(os.path.join(dir_name, f'depth_{i:03d}.pfm'), depth_pred)
else:
with open(f'depth_{i:03d}', 'wb') as f:
f.write(depth_pred.tobytes())
img_pred_ = (img_pred*255).astype(np.uint8)
imgs += [img_pred_]
imageio.imwrite(os.path.join(dir_name, f'{i:03d}.png'), img_pred_)
if 'rgbs' in sample:
rgbs = sample['rgbs']
img_gt = rgbs.view(h, w, 3)
psnrs += [metrics.psnr(img_gt, img_pred).item()]
imageio.mimsave(os.path.join(dir_name, f'{args.scene_name}.gif'), imgs, fps=30)
if psnrs:
mean_psnr = np.mean(psnrs)
print(f'Mean PSNR : {mean_psnr:.2f}')