-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhaloutils.py
750 lines (679 loc) · 30.5 KB
/
haloutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
import os,sys,platform
# Allow plot creation on antares
if 'compute-0-' in platform.node():
import matplotlib
matplotlib.use('Agg')
import numpy as np
import asciitable
#import pickle
import cPickle as pickle
import pandas as pd
import warnings
import glob
from multiprocessing import Pool
import time,subprocess,itertools
#import seaborn as sns
import readsnapshots.readsnapHDF5_greg as rsg
import readhalos.RSDataReader as RDR
import readhalos.readsubf as RSF
import mergertrees.MTCatalogue as MTC
import brendanlib.conversions as bconversions
import pylab as plt
def determinebasepath(node):
if node == "csr-dyn-150.mit.edu":
basepath = '/Users/griffen/Desktop/'
elif node == "Brendans-MacBook-Pro.local":
basepath = '/Users/griffen/Desktop/'
elif node == "spacebase":
basepath = '/bigbang/data/AnnaGroup/'
elif node == "bigbang.mit.edu":
basepath = '/bigbang/data/AnnaGroup/'
elif node == "antares":
basepath = '/bigbang/data/AnnaGroup/'
elif 'compute-0-' in node:
basepath = '/bigbang/data/AnnaGroup/'
elif 'Griffs-Macbook.local' in node:
basepath = '-'
else:
raise ValueError(node+" is not a valid node")
return basepath
cdict = {'red' : ((0., 0., 0.), (0.3,0,0), (0.6, 0.8, 0.8), (1., 1., 1.)),
'green': ((0., 0., 0.), (0.3,0.3,0.3), (0.6, 0.4, 0.4), (1., 1.0, 1.0)),
'blue' : ((0., 0.05, 0.05), (0.3,0.5,0.5), (0.6, 0.6, 0.6), (1.0, 1.0, 1.0))}
cmap = plt.matplotlib.colors.LinearSegmentedColormap('dmdens_cmap', cdict, 1024)
plt.cm.register_cmap(name='caterpillar', cmap=cmap)
global_basepath = os.path.normpath(determinebasepath(platform.node()))
global_halobase = global_basepath+'/caterpillar/halos'
global_prntbase = global_basepath+'/caterpillar/parent/gL100X10'
cid2hid = {1: 1631506,2: 264569,3: 1725139,
4: 447649,5: 5320,6: 581141,
7: 94687,8: 1130025,9: 1387186,
10: 581180,11:1725372,12:1354437,
13:1725272,14:1195448,15:1292085,
16: 796175,17: 388476,18:1079897,
19: 94638,20: 95289,21:1232164,
22:1422331,23: 196589,24:1268839,
25:1599988,26:1195075,27:1631582,
28: 831159,29:1422429,30:1848643,
31: 65777,32:1269057,33:1232423,
34: 94629,35:1232313,36: 196078,
37:1599902,38: 196078,39:1232127,
40: 795802,41:1161558,42: 616647,
43: 795912,44:1080116,45:1354579,
46: 94105,47: 94562,48: 581380,
49: 650016,50: 795405,51: 795648,
52: 831279,53:1104787,54:1105005,
55:1161589,56:1194734,57:1194785,
58:1354730,59:1422249,60:1476003,
61:1507285,62:1697899,63:1725470,
64:1764462,65:1940047}
hid2name = {}
hid2catnum = {}
for k,v in cid2hid.items():
hid2name[v] = 'Cat-'+str(k)
hid2catnum[v] = k
def hid_name(hid):
return hid2name[hidint(hid)]
def hpath_name(hpath):
return hid_name(get_parent_hid(hpath))
def hid_catnum(hid):
return hid2catnum[hidint(hid)]
def hpath_catnum(hpath):
return hid_catnum(get_parent_hid(hpath))
def hidint(hid):
""" converts halo ID to int """
if type(hid)==int or type(hid)==np.int64: return hid
if type(hid)==str:
if hid[0]=='H': return int(hid[1:])
return int(hid)
raise ValueError("hid must be int or str, is "+str(type(hid)))
def hidstr(hid):
""" converts halo ID to str Hxxxxxx """
if type(hid)==int or type(hid)==np.int64: return 'H'+str(hid)
if type(hid)==str:
if hid[0]=='H': return hid
return 'H'+hid
raise ValueError("hid must be int or str, is "+str(type(hid)))
def get_parent_zoom_index(filename=global_halobase+"/parent_zoom_index.txt"):
return asciitable.read(filename, Reader=asciitable.FixedWidth)
def get_numsnaps(outpath):
"""
Uses hpath/ExpansionList to get the number of snaps in this halo
"""
if os.path.exists(outpath+'/ExpansionList'):
return sum(1 for line in open(outpath+'/ExpansionList'))
else:
warnings.warn(outpath+"/ExpansionList not found, using default (256)")
return 256
def get_lastsnap(outpath):
return get_numsnaps(outpath)-1
def get_foldername(outpath):
return os.path.basename(os.path.normpath(outpath))
def get_parent_hid(outpath):
hidstr = get_foldername(outpath).split('_')[0]
return int(hidstr[1:])
def get_contamtype(outpath):
return get_zoom_params(outpath)[0]
def get_zoom_params(outpath):
""" return ictype, LX, NV """
split = get_foldername(outpath).split('_')
return split[1],int(split[5][2:]),int(split[7][2:])
def get_outpath(haloid,ictype,lx,nv,contamtype=None,halobase=global_halobase,check=True):
haloid = hidstr(haloid); ictype = ictype.upper()
outpath = halobase+'/'+haloid+'/'+haloid+'_'+ictype+'_'+'Z127_P7_LN7_LX'+str(lx)+'_O4_NV'+str(nv)
if contamtype != None:
outpath += '_'+str(contamtype)
if check and not os.path.exists(outpath):
raise IOError("Invalid hpath")
return outpath
def get_hpath(haloid,ictype,lx,nv,contamtype=None,halobase=global_halobase,check=True):
return get_outpath(haloid,ictype,lx,nv,contamtype=contamtype,halobase=global_halobase,check=check)
def get_hpath_lx(hid,do_lx):
lxpaths = get_lxlist(hid,gethpaths=True)
for hpath in lxpaths:
if 'LX'+str(do_lx) in hpath: return hpath
return None
def get_paper_paths_lx(do_lx):
return [get_hpath_lx(cid2hid[i+1],do_lx) for i in np.arange(24)] #[get_hpath_lx(hid,do_lx) for hid in hid2name.keys()]
def get_paper_paths():
return [global_halobase+"/H"+str(hid) for hid in hid2name.keys()]
def get_good_paper_paths():
hpaths = [global_halobase+"/H"+str(hid) for hid in hid2name.keys()]
hpaths.remove(global_halobase+"/H95289")
return hpaths
def get_scale_snap(hpath,snaps):
snaps = np.ravel(snaps)
if type(snaps[0]) == np.float64 or type(snaps[0])==np.float:
badii = np.isnan(snaps)
else:
badii = snaps < 0
goodii = ~badii
assert np.all(snaps[goodii].astype(int)==snaps[goodii]),'Snaps must be integers'
snaps = snaps.astype(int)
snaps[badii] = -1
numsnaps = get_numsnaps(hpath)
assert np.all(snaps[goodii] < numsnaps) and np.all(snaps[goodii] >= 0), "Snaps must be between 0 and {0}".format(numsnaps-1)
with open(hpath+'/ExpansionList','r') as f:
lines = f.readlines()
#assert(len(lines))==numsnaps
def _get_scale_snap(snap):
if snap == -1: return np.nan
return float(lines[snap].split()[0])
return np.array(map(_get_scale_snap,snaps))
def get_z_snap(hpath,snap):
scale = get_scale_snap(hpath,snap)
return (1./scale) - 1.0
def get_t_snap(hpath,snap,OmegaM=.3175,OmegaL=.6825,h=.6711):
scale = get_scale_snap(hpath,snap)
return bconversions.GetTime(scale,OmegaM=OmegaM,OmegaL=OmegaL,h=h)
def get_available_hpaths(hid,contam=False,
checkgadget=True,
onlychecklastsnap=True,
checkallblocks=False,
hdf5=True,verbose=False,
basepath=global_halobase,
hires=False):
hidpath = basepath+'/'+hidstr(hid)
if contam: hidpath += '/contamination_suite'
if not os.path.exists(hidpath):
raise IOError("Invalid hid: "+hidpath)
hpathlist = []
for foldername in os.listdir(hidpath):
if foldername[0] != 'H': continue
hpath = hidpath+'/'+foldername
if not os.path.isdir(hpath): continue
try:
if checkgadget and not gadget_finished(hpath,onlychecklastsnap=onlychecklastsnap,
checkallblocks=checkallblocks,hdf5=hdf5,
verbose=verbose,hires=hires):
continue
except IOError:
continue
hpathlist.append(hpath)
return hpathlist
def get_lxlist(hid,gethpaths=False):
outlist = []
availablehpaths = get_available_hpaths(hid)
for lx in [14,13,12,11]:
for hpath in availablehpaths:
if 'LX'+str(lx) in hpath:
if gethpaths:
outlist.append(hpath)
else:
outlist.append(lx)
assert len(outlist)==len(np.unique(outlist))
return outlist
def check_last_subfind_exists(outpath):
numsnaps = get_numsnaps(outpath)
lastsnap = numsnaps - 1; snapstr = str(lastsnap).zfill(3)
group_tab = os.path.exists(outpath+'/outputs/groups_'+snapstr+'/group_tab_'+snapstr+'.0')
subhalo_tab = os.path.exists(outpath+'/outputs/groups_'+snapstr+'/subhalo_tab_'+snapstr+'.0')
return group_tab and subhalo_tab
def check_rockstar_exists(outpath,snap,boundbin=True,fullbin=False,particles=False):
snapstr = str(snap)
if fullbin:
halo_exists = os.path.exists(outpath+'/halos/halos_'+snapstr+'/halos_'+snapstr+'.0.fullbin')
elif boundbin:
halo_exists = os.path.exists(outpath+'/halos_bound/halos_'+snapstr+'/halos_'+snapstr+'.0.boundbin')
else:
halo_exists = os.path.exists(outpath+'/halos/halos_'+snapstr+'/halos_'+snapstr+'.0.bin')
if not particles:
return halo_exists
part_exists = os.path.exists(outpath+'/halos/halos_'+snapstr+'/halos_'+snapstr+'.0.particles')
return halo_exists and part_exists
def check_last_rockstar_exists(outpath,boundbin=True,fullbin=False,particles=False):
numsnaps = get_numsnaps(outpath)
lastsnap = numsnaps - 1; snapstr = str(lastsnap)
return check_rockstar_exists(outpath,lastsnap,boundbin=boundbin,fullbin=fullbin,particles=particles)
def check_mergertree_exists(outpath,autoconvert=False,boundbin=True,treedir='trees'):
if boundbin: halodir = 'halos_bound'
else: halodir = 'halos'
ascii_exists = os.path.exists(outpath+'/'+halodir+'/'+treedir+'/tree_0_0_0.dat')
binary_exists = os.path.exists(outpath+'/'+halodir+'/'+treedir+'/tree.bin')
if autoconvert and ascii_exists and not binary_exists:
print "---check_mergertree_exists: Automatically converting ascii to binary"
MTC.convertmt(outpath+'/'+halodir+'/'+treedir,version=4)
binary_exists = os.path.exists(outpath+'/'+halodir+'/'+treedir+'/tree.bin')
return ascii_exists and binary_exists
def check_is_sorted(outpath,snap=0,hdf5=True):
#TODO: option to check all snaps
snap = str(snap).zfill(3)
filename = outpath+'/outputs/snapdir_'+snap+'/snap_'+snap+'.0'
if hdf5: filename += '.hdf5'
h = rsg.snapshot_header(filename)
try:
if h.sorted=='yes': return True
except:
return False
def gadget_finished(outpath,
onlychecklastsnap=False,
checkallblocks=False,
hdf5=True,verbose=False,
hires=False):
numsnaps = get_numsnaps(outpath)
gadgetpath = outpath+'/outputs'
if hires:
numsnaps = 320
gadgetpath = outpath+'/outputs_hires'
if (not os.path.exists(gadgetpath)):
if verbose: print " Gadget folder not present in "+get_foldername(outpath)
return False
if onlychecklastsnap: #only check last snap
snapstr = str(numsnaps-1).zfill(3)
snappath = gadgetpath+"/snapdir_"+snapstr+"/snap_"+snapstr+".0"
if hdf5: snappath += ".hdf5"
if (not os.path.exists(snappath)):
if verbose: print " Snap "+snapstr+" not in "+get_foldername(outpath)
return False
else:
return True
for snap in xrange(numsnaps): # check that all snaps are there
snapstr = str(snap).zfill(3)
snappath = gadgetpath+"/snapdir_"+snapstr+"/snap_"+snapstr+".0"
if hdf5: snappath += ".hdf5"
if (not os.path.exists(snappath)):
if verbose: print " Snap "+snapstr+" not in "+get_foldername(outpath)
return False
if checkallblocks:
for snapfile in glob.glob(gadgetpath+"/snapdir_"+snapstr+'/*'):
if (os.path.getsize(snapfile) <= 0):
if verbose: print snapfile,"has no data (skipping)"
return False
return True
def restrict_halopaths(halopathlist,
require_rockstar=False,
require_subfind=False,
require_sorted=False,
require_mergertree=False,
autoconvert_mergertree=False,
use_fullbin_rockstar=False):
if require_rockstar:
newhalopathlist = []
for outpath in halopathlist:
if use_fullbin_rockstar:
if check_last_rockstar_exists(outpath,fullbin=True,boundbin=False):
newhalopathlist.append(outpath)
else:
if check_last_rockstar_exists(outpath,boundbin=True):
newhalopathlist.append(outpath)
halopathlist = newhalopathlist
if require_subfind:
newhalopathlist = []
for outpath in halopathlist:
if check_last_subfind_exists(outpath):
newhalopathlist.append(outpath)
halopathlist = newhalopathlist
if require_sorted:
newhalopathlist = []
for outpath in halopathlist:
if check_is_sorted(outpath,snap=get_numsnaps(outpath)-1):
newhalopathlist.append(outpath)
halopathlist = newhalopathlist
if require_mergertree:
newhalopathlist = []
for outpath in halopathlist:
if check_mergertree_exists(outpath,autoconvert=autoconvert_mergertree):
newhalopathlist.append(outpath)
halopathlist = newhalopathlist
return halopathlist
def find_halo_paths(basepath=global_halobase,
nrvirlist=[3,4,5,6],levellist=[11,12,13,14],
ictypelist=["BA","BB","BC","BD","EA","EB","EC","EX","CA","CB","CC"],
contamsuite=False,
require_rockstar=False,require_subfind=False,
require_mergertree=False,autoconvert_mergertree=False,
require_sorted=False,
checkallblocks=False,
onlychecklastsnap=False,verbose=False,hdf5=True,
use_fullbin_rockstar=False,hires=False):
""" Returns a list of paths to halos that have gadget completed/rsynced
with the specified nrvirlist/levellist/ictype """
if verbose:
print "basepath:",basepath
print "nrvirlist:",nrvirlist
print "levellist:",levellist
print "ictypelist:",ictypelist
halopathlist = []
haloidlist = []
for filename in os.listdir(basepath):
if filename[0] == "H":
haloidlist.append(filename)
for haloid in haloidlist:
try:
hpathlist = get_available_hpaths(haloid,contam=contamsuite,checkgadget=False,
basepath=basepath)
except IOError as e:
print "ERROR: skipping",haloid
continue
for hpath in hpathlist:
ictype,levelmax,nrvir = get_zoom_params(hpath)
if (int(levelmax) in levellist and int(nrvir) in nrvirlist and ictype in ictypelist):
try:
if gadget_finished(hpath,
onlychecklastsnap=onlychecklastsnap,
checkallblocks=checkallblocks,
hdf5=hdf5,verbose=verbose,
hires=hires):
halopathlist.append(hpath)
except IOError as e:
print "ERROR: skipping",hpath
halopathlist = restrict_halopaths(halopathlist,
require_rockstar=require_rockstar,
require_subfind=require_subfind,
require_sorted=require_sorted,
require_mergertree=require_mergertree,
autoconvert_mergertree=autoconvert_mergertree,
use_fullbin_rockstar=use_fullbin_rockstar)
return halopathlist
def _load_index_row(hpath,filename=global_halobase+"/parent_zoom_index.txt"):
haloid = get_parent_hid(hpath)
ictype,lx,nv = get_zoom_params(hpath)
htable = get_parent_zoom_index()
haloid = hidint(haloid); lx = int(lx); nv = int(nv)
idmask = htable['parentid']==haloid
icmask = htable['ictype']==ictype.upper()
lxmask = htable['LX']==lx
nvmask = htable['NV']==nv
maskall = idmask & icmask & lxmask & nvmask
if np.sum(maskall) == 0:
raise ValueError("no such halo in index for %s" % (hpath))
if np.sum(maskall) > 1:
print "FATAL ERROR: duplicate row in index"
exit()
row = htable[maskall]
if row['badflag']+row['badsubf'] > 0:
if (lx != 14) or (lx==14 and row['badflag']>0):
print "WARNING: potentially bad halo match for H%i %s LX%i NV%i" % (haloid,ictype,lx,nv)
return row
def load_zoomid(hpath,filename=global_halobase+"/parent_zoom_index.txt",snap=None):
"""
@param hpath: halo path to load zoom id
@param snap: default None (automatically picks snap with get_numsnaps)
@return: rockstar id of host halo associated with hpath and snap
IMPORTANT: Uses MassAccrPlugin to get main branch MT for snap != last snap.
"""
if snap==None:
snap = get_numsnaps(hpath)-1
if snap==(get_numsnaps(hpath)-1):
try:
row = _load_index_row(hpath,filename=filename)
except ValueError:
if check_last_rockstar_exists(hpath):
print "WARNING: halo is not in index, using halo with most particles (npart)"
rscat = load_rscat(hpath,get_numsnaps(hpath),rmaxcut=False)
# For pandas < 0.13.0, np.argmax returns the array index rather than the pandas index
pdversion = tuple([int(x) for x in pd.version.version.split('.')])
badversion = (0,13,0)
bestid = np.argmax(rscat['npart'])
if pdversion < badversion:
bestid = rscat.data.index[bestid]
return bestid
else:
raise ValueError("No rockstar catalogue for {0}!".format(get_foldername(hpath)))
return row['zoomid'][0]
else:
from caterpillaranalysis import MassAccrPlugin
plug = MassAccrPlugin()
tab = plug.read(hpath)
snaplist = tab['snap']
ii = snaplist == snap
if np.sum(ii) != 1:
raise ValueError("{0} snap {1} does not have a valid main branch rsid ({2} indices match snap)".format(get_foldername(hpath),snap,np.sum(ii)))
return tab['origid'][ii][0]
def load_haloprops(hpath,filename=global_halobase+"/parent_zoom_index.txt"):
row = _load_index_row(hpath,filename=filename)
mvir = float(row['mgrav']) # physical Msun
rvir = float(row['rvir']) # physical kpc
vvir = np.sqrt(4.34e-6 * mvir/rvir) # physical km/s
return mvir,rvir,vvir
def load_pcatz0(old=False):
if old:
return RDR.RSDataReader(global_basepath+"/caterpillar/parent/RockstarData",63,version=2)
else:
return RDR.RSDataReader(global_prntbase+"/rockstar",127,version=6)
def load_scat(hpath):
snap = get_lastsnap(hpath)
if "LX14" in hpath:
try:
return RSF.subfind_catalog(hpath+'/outputs',snap,double=True)
except ValueError:
return RSF.subfind_catalog(hpath+'/outputs',snap)
else:
return RSF.subfind_catalog(hpath+'/outputs',snap)
def load_rscat(hpath,snap,verbose=True,halodir='halos_bound',unboundfrac=None,minboundpart=None,version=None,rmaxcut=True):
if version != None:
rscat = RDR.RSDataReader(hpath+'/'+halodir,snap,version=version,digits=1,unboundfrac=unboundfrac,minboundpart=minboundpart)
else:
try:
rscat = RDR.RSDataReader(hpath+'/'+halodir,snap,version=10,digits=1,unboundfrac=unboundfrac,minboundpart=minboundpart)
except IOError as e: #try to identify a unique valid rockstar version
print e
versionlist = [2,3,4,5,6,7,8,9]
testlist = []
for version in versionlist:
try:
rscat = RDR.RSDataReader(hpath+'/'+halodir,snap,version=version,digits=1,unboundfrac=unboundfrac,minboundpart=minboundpart)
testlist.append(True)
except KeyError:
testlist.append(False)
except IOError:
testlist.append(False)
if sum(testlist) != 1:
raise RuntimeError("Can't determine what version to use {0}".format(get_foldername(hpath)))
else:
version = np.array(versionlist)[np.array(testlist)][0]
if verbose:
print "Using version "+str(version)+" for "+get_foldername(hpath)
rscat = RDR.RSDataReader(hpath+'/'+halodir,snap,version=version,digits=1,unboundfrac=unboundfrac,minboundpart=minboundpart)
if rmaxcut:
zoomid = load_zoomid(hpath,snap=snap)
hpos = np.array(rscat.ix[zoomid][['posX','posY','posZ']])
spos = rscat[['posX','posY','posZ']]
dr = np.sqrt(np.sum((spos-hpos)**2,1))
rscat['dr'] = dr*1000.
badii = rscat['dr']<rscat['rvmax']
badii[zoomid] = False
goodii = ~badii
rscat.badhalos = rscat.data.ix[badii]
rscat.numbad = len(rscat.badhalos)
rscat.data = rscat.data.ix[goodii]
rscat.ix = rscat.data.ix
rscat.index = rscat.data.index
rscat.num_halos = len(rscat.data)
return rscat
def load_rsboundindex(hpath,snap):
return RDR.load_rsboundindex(hpath,snap)
def load_mtc_general(hpath,version,verbose=True,halodir='halos_bound',treedir='trees',**kwargs):
return MTC.MTCatalogue(hpath+'/'+halodir+'/'+treedir,version=version,**kwargs)
def load_mtc(hpath,verbose=True,halodir='halos_bound',treedir='trees',**kwargs):
return MTC.MTCatalogue(hpath+'/'+halodir+'/'+treedir,version=4,**kwargs)
def load_zoom_mtc(hpath,verbose=True,halodir='halos_bound',treedir='trees',**kwargs):
return MTC.MTCatalogue(hpath+'/'+halodir+'/'+treedir,version=4,haloids=[load_zoomid(hpath)],**kwargs)
def make_mtindex_key(snap,origid):
return str(snap).zfill(3)+","+str(origid)
def make_mt_snapid_to_baseidrow(hpath,recalc=False,halodir='halos_bound',treedir='trees'):
def make_key(arg):
return make_mtindex_key(arg[0],arg[1])
def make_val(arg):
return arg
#def make_mtindex_val(base_rsid,row):
# return (base_rsid,row)
indexpath = hpath+'/'+halodir+'/'+treedir+'/snap_id_to_baseid_row.p'
if os.path.exists(indexpath) and (not recalc): return
start = time.time()
mtc = load_mtc(hpath,indexbyrsid=True)
allkeys = []
allvals = []
print "Load Time: {0:.1f} sec".format(time.time()-start)
start = time.time()
for base_rsid,mt in mtc.Trees.iteritems():
snaps = mt['snap']
origids = mt['origid']
keys = map(make_key,zip(snaps,origids))
vals = map(make_val,zip(itertools.repeat(base_rsid,len(keys)),itertools.count()))
allkeys += keys
allvals += vals
index = dict(zip(allkeys,allvals))
with open(indexpath,'w') as f:
pickle.dump(index,f)
print "Convert Time: {0:.1f} sec".format(time.time()-start)
subprocess.call(['chmod g+rwx '+indexpath],shell=True)
subprocess.call(['chgrp annaproj '+indexpath],shell=True)
def load_mt_snapid_to_baseidrow(hpath,halodir='halos_bound',treedir='trees'):
indexpath = hpath+'/'+halodir+'/'+treedir+'/snap_id_to_baseid_row.p'
assert os.path.exists(indexpath)
with open(indexpath,'r') as f:
index = pickle.load(f)
return index
def load_pmtc(hpath=global_prntbase,verbose=True,halodir='rockstar',treedir='trees',**kwargs):
return MTC.MTCatalogue(hpath+'/'+halodir+'/'+treedir,version=3,**kwargs)
def load_partblock(hpath,snap,block,parttype=-1,ids=-1,hdf5=True):
#assert check_is_sorted(hpath,snap=snap,hdf5=hdf5),"snap is sorted"
snapstr = str(snap).zfill(3)
snappath = hpath+'/outputs/snapdir_'+snapstr+'/snap_'+snapstr
# if "14" in hpath:
# return rsg.read_block(snappath,block,parttype=parttype,ids=ids,doubleprec=True)
# else:
return rsg.read_block(snappath,block,parttype=parttype,ids=ids)
def load_soft(hpath):
""" plummer equivalent grav. softening = h/2.8 """
try:
fname = hpath+'/param.txt-usedvalues'
if not os.path.exists(fname): raise IOError("Could not find file "+fname)
forceres=-1
f = open(fname,'r')
for line in f:
s = line.split()
if s[0]=="SofteningHaloMaxPhys" or s[0]=="SofteningMaxPhysType1":
forceres = float(s[1])
break
f.close()
if forceres==-1: raise IOError("Could not find force resolution")
except IOError as e:
print "WARNING:",e
ictype,lx,nv = get_zoom_params(hpath)
forceres = 100./2.^lx/80.
return forceres
def load_aqcat(whichAq,snap):
assert whichAq in ['A','B','C','D','E','F']
if snap > 127:
raise ValueError("Aquarius is snaps 0-127")
rspath = global_basepath+'/aquarius/Aq-'+whichAq+'/2/halos'
return RDR.RSDataReader(rspath,snap,version=7)
def get_quant_zoom(halo_path,quant):
htable = get_parent_zoom_index()
halo_split = halo_path.split("_")
haloid = int(halo_path.split("/H")[-1].split("_")[0].strip("H"))
geom,lx,nrvir = get_zoom_params(halo_path.split("/")[-1])
mask = (haloid == htable['parentid']) & \
(geom == htable['ictype']) & \
(int(lx) == htable['LX']) & \
(int(nrvir) == htable['NV'])
if len(htable[mask][quant])>1:
return htable[mask][quant]
else:
return float(htable[mask][quant])
def get_main_branch(hpath):
return pickle.load( open( hpath+"/analysis/main_branch.p", "rb" ) )
def get_halo_header(hpath,snap=None):
if snap==None: snap = get_lastsnap(hpath)
return rsg.snapshot_header(hpath+"/outputs/snapdir_"+str(snap)+"/snap_"+str(snap))
def get_colors(ncolors=12):
colors = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),
(44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),
(148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
(227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229),
(32, 159, 117), (43, 166, 241), (6, 115, 1), (203, 56, 62), (255,255,255)]
assert len(colors)==len(hid2name)
for i in range(ncolors):
r, g, b = colors[i]
colors[i] = (r / 255., g / 255., b / 255.)
return colors
def get_halo_colors(cmap='jet',nhalos=24):
_numfirstbatch = 24
#colors = sns.color_palette("husl",_numfirstbatch)
#print cm
cm = plt.cm.get_cmap(cmap)
ncolors = 24
colors=[]
for i in range(ncolors):
colors.append(cm(1.*i/float(ncolors)))
index = {}
# for i in range(nhalos):
for i,haloi in cid2hid.iteritems():
# index[hid2name.keys()[i]] = colors[i]
index[haloi] = colors[i-1]
return index
def get_colors_for_halos(nhalos=len(hid2name)):
colors = [(31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),
(44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),
(148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
(227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
(188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229),
(32, 159, 117), (43, 166, 241), (6, 115, 1), (203, 56, 62)]
#, (255,255,255)]
assert len(colors)==len(hid2name)
for i in range(nhalos):
r, g, b = colors[i]
colors[i] = (r / 255., g / 255., b / 255.)
index = {}
for i in range(nhalos):
index[hid2name.keys()[i]] = colors[i]
return index
def tabulate(tabfn,lx=14,hids=None,exclude_hids=None,savefile=None,numprocs=1,usecid=False):
"""
@param tabfn: a function whose only argument is hpath. If successful, returns data,names,formats; data is a tuple of the values to go into the array, names is a list/tuple of the column names, formats is the data types (used for np.dtype). All three variables should be of the same length. If unsuccessful, tabfn should return None (e.g., in cases of no rockstar data), then tabulate() will make the DataFrame row be marked with missing data. TODO can I make this happen with exceptions in a nice way? Raising exceptions is better than returning None.
@param lx: which LX to tabulate (default 14)
@param hids: list of hids to tabulate (default, everything in cid2hid)
@param exclude_hids: list of hids to exclude
@param savefile: name of file to save df as a csv to
@param numprocs: if larger than 1, uses multiprocessing.Pool.map() to tabulate
@param usecid: DataFrame index is by Cat-ID rather than hid
@return tab: pandas DataFrame, indexed by hid (or Cat-ID if usecid)
"""
if hids==None: hids = cid2hid.values()
if exclude_hids != None:
for ex_hid in exclude_hids:
ex_hid = hidint(ex_hid)
if ex_hid in hids:
hids.remove(ex_hid)
else:
print "WARNING: H{0} not in hids, not removing"
if numprocs==1:
datalist = map(tabfn,[get_hpath_lx(hid,lx) for hid in hids])
else:
pool = Pool(numprocs)
datalist = pool.map(tabfn,[get_hpath_lx(hid,lx) for hid in hids])
pool.close()
for item in datalist:
if item != None:
data,names,formats = item
first_dtype = np.dtype({'names':names,'formats':formats})
break
rows = []
invalid = [False for item in datalist]
dtype = first_dtype
for i,item in enumerate(datalist):
if item == None:
data = tuple([0 for x in dtype.names])
invalid[i] = True
else:
assert len(item)==3,"tabfn must return data,colnames,types"
data,names,formats = item
assert len(data)==len(names) and len(data)==len(formats),"data,names,formats must be same length"
data = tuple(data)
dtype = np.dtype({'names':names,'formats':formats})
assert dtype==first_dtype,"Not all dtypes the same"
rows.append(data)
dataarr = np.array(rows,dtype=dtype)
if usecid:
myindex = [hid2catnum[hid] for hid in hids]
else:
myindex = hids
df = pd.DataFrame(dataarr,index=myindex)
for i,hid in enumerate(df.index):
if invalid[i]: df.iloc[i] = None
if savefile != None:
df.to_csv(path_or_buf=savefile)
return df