-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhelmsman.py
413 lines (364 loc) · 14.8 KB
/
helmsman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
"""
Main script for running Helmsman
"""
from __future__ import print_function
import os
import sys
import argparse
import warnings
import timeit
import random
import multiprocessing
import subprocess
import numpy as np
# from joblib import Parallel, delayed
sys.path.append(os.getcwd())
import util
def main():
#-----------------------------------------------------------------------------
# Initialize pre-log, get version, and process args
#-----------------------------------------------------------------------------
start = timeit.default_timer()
# get latest version from github tags
# via https://stackoverflow.com/questions/14989858
try:
# v_dir = os.path.dirname(os.path.realpath(__file__)) + "/.git/refs/tags"
# files = os.listdir(v_dir)
# files = [os.path.join(v_dir, f) for f in files] # add path to each file
# files.sort(key=lambda x: os.path.getmtime(x))
# version = files[-1]
# version = os.path.basename(version)
version = "1.5.2"
except AttributeError:
version = "[version not found]"
#-----------------------------------------------------------------------------
# Runtime control args
#-----------------------------------------------------------------------------
parser = argparse.ArgumentParser()
num_cores = multiprocessing.cpu_count()
parser.add_argument(
"-c",
"--cpus",
help="number of CPUs. Must be integer value between 1 \
and " + str(num_cores),
nargs='?',
type=int,
choices=range(1, num_cores + 1),
metavar='INT',
default=1)
parser.add_argument(
"-S",
"--seed",
help="random seed for NMF decomposition",
nargs='?',
type=int,
metavar='INT',
default=int(start))
parser.add_argument(
"-v", "--verbose", help="Enable verbose logging", action="store_true")
parser.add_argument(
"-V", "--version", action="version", version='%(prog)s ' + version)
#-----------------------------------------------------------------------------
# Input args
#-----------------------------------------------------------------------------
mode_opts = ["vcf", "maf", "agg", "txt"]
parser.add_argument(
"-M",
"--mode",
help="Mode for parsing input. Must be one of \
{" + ", ".join(mode_opts) + "}. \
Defaults to VCF mode.",
nargs='?',
type=str,
choices=mode_opts,
metavar='STR',
default="vcf")
parser.add_argument(
"-i",
"--input",
help="In VCF mode (default) input file is a VCF \
or text file containing paths of multiple VCFs. \
Defaults to accept input from STDIN with \"--input -\". \
In aggregation mode, input file is a text file \
containing mutation subtype count matrices, \
or paths of multiple such matrices. \
In plain text mode, input file is tab-delimited text \
file containing 5 columns: CHR, POS, REF, ALT, ID",
required=True,
nargs='?',
type=str,
metavar='/path/to/input.vcf',
default=sys.stdin)
parser.add_argument(
"-w",
"--rowwise",
help="Compile mutation spectra matrix from VCF files \
containing non-overlapping samples.",
action="store_true")
parser.add_argument(
"-f",
"--fastafile",
help="reference fasta file",
nargs='?',
type=str,
metavar='/path/to/genome.fa',
default="chr20.fasta.gz")
parser.add_argument(
"-s",
"--samplefile",
help="file with sample IDs to include (one per line)",
nargs='?',
metavar='/path/to/kept_samples.txt',
type=str)
parser.add_argument(
"-g",
"--groupvar",
help="if --samplefile is provided with VCF input, or if \
input is MAF file, specify column name of the \
grouping variable to pool samples by. If left blank, \
matrix will be constructed per sample/tumor ID as usual",
nargs='?',
type=str,
metavar='STR')
parser.add_argument(
"-H",
"--haploid",
help=
"By default, Helmsman assumes diploid genotypes. For data containing \
haploid genotypes (e.g., male X chromosome), you must use \
this flag to ensure alleles are properly counted",
action="store_true")
parser.add_argument(
"-u",
"--impute",
help="if using VCF input mode, missing genotypes \
(i.e., \"./.\") will be imputed as the allele \
frequency of the samples with non-missing genotypes",
action="store_true")
#-----------------------------------------------------------------------------
# Pre-filtering args
#-----------------------------------------------------------------------------
parser.add_argument(
"-C",
"--minsnvs",
help="minimum # of SNVs per individual to be included \
in analysis. Default is 0.",
nargs='?',
type=int,
metavar='INT',
default=0)
parser.add_argument(
"-X",
"--maxac",
help="maximum allele count for SNVs to keep in analysis. \
Defaults to 0 (all variants)",
nargs='?',
type=int,
metavar='INT',
default=0)
#-----------------------------------------------------------------------------
# Output args
#-----------------------------------------------------------------------------
parser.add_argument(
"-p",
"--projectdir",
help="directory to store output files \
(do NOT include a trailing '/'). \
Defaults to " + os.getcwd() + "/helmsman_output",
nargs='?',
type=str,
metavar='/path/to/project_directory',
default="helmsman_output")
parser.add_argument(
"-m",
"--matrixname",
help="filename prefix for M matrix [without extension]",
nargs='?',
type=str,
metavar='STR',
default="subtype_count_matrix")
package_opts = [
"deconstructSigs", "maftools", "MutationalPatterns",
"SomaticSignatures", "signeR", "YAPSA"
]
parser.add_argument(
"-k",
"--package",
help="To use the mutation spectra matrix generated by \
Helmsman with a specific mutation signature analysis \
package, this option will print out the code necessary \
to load the Helmsman output into R and reformat for \
compatibility with one of the following packages: \
{" + ", ".join(package_opts) + "}.",
nargs='?',
type=str,
choices=package_opts,
metavar='STR')
#-----------------------------------------------------------------------------
# Decomposition and outlier detection args
#-----------------------------------------------------------------------------
decomp_opts = ["nmf", "pca"]
parser.add_argument(
"-d",
"--decomp",
help="mode for matrix decomposition. Must be one of \
{" + ", ".join(decomp_opts) + "}. \
Defaults to 'none'.",
nargs='?',
type=str,
choices=decomp_opts,
metavar='STR')
# rank_opts = range(2,11)
# ro_str = str(min(rank_opts)) + " and " + str(max(rank_opts))
parser.add_argument(
"-r",
"--rank",
help="Rank for Matrix decomposition. \
If --decomp pca, will select first r components. \
Default [0] will force Helmsman to iterate through \
multiple ranks to find an optimal choice.",
nargs='?',
type=int,
# choices=rank_opts,
metavar='INT',
default=0)
motif_length_opts = [1, 3, 5, 7]
mlo_str = ",".join(str(x) for x in motif_length_opts)
parser.add_argument(
"-l",
"--length",
help="motif length. Allowed values are " + mlo_str,
nargs='?',
type=int,
choices=motif_length_opts,
metavar='INT',
default=3)
#-----------------------------------------------------------------------------
# initialize args and configure runtime logs
#-----------------------------------------------------------------------------
args = parser.parse_args()
# ignore warnings in sklearn 0.19.1 about covariance matrix when performing
# outlier detection using elliptic envelope
# see https://github.com/scikit-learn/scikit-learn/issues/8811
# https://stackoverflow.com/questions/32612180
warnings.filterwarnings("ignore", category=RuntimeWarning)
if args.verbose:
loglev = 'DEBUG'
else:
loglev = 'INFO'
# ignore warning about covariance matrix not being full rank
warnings.filterwarnings("ignore", category=UserWarning)
util.util_log.setLevel(loglev)
log = util.get_logger("helmsman", level=loglev)
log.info("----------------------------------")
try:
# version = subprocess.check_output(["git",
# "describe"]).strip().decode('utf-8')
# v_dir = os.path.dirname(os.path.realpath(__file__)) + "/.git/refs/tags"
# files = os.listdir(v_dir)
# files = [os.path.join(v_dir, f) for f in files] # add path to each file
# files.sort(key=lambda x: os.path.getmtime(x))
# version = files[-1]
# version = os.path.basename(version)
version = "1.4.2"
log.info("%s %s", sys.argv[0], version)
except AttributeError:
version = "[version not found]"
log.warning(version)
log.info("----------------------------------")
if (args.mode == "maf" and not args.groupvar):
args.groupvar = "Tumor_Sample_Barcode"
log.debug("Running with the following options:")
for arg in vars(args):
log.debug("%s : %s", arg, getattr(args, arg))
random.seed(args.seed)
log.info("random seed: %s", str(args.seed))
#-----------------------------------------------------------------------------
# Initialize project directory
#-----------------------------------------------------------------------------
projdir = os.path.realpath(args.projectdir)
if not os.path.exists(args.projectdir):
log.warning("%s does not exist--creating now", projdir)
os.makedirs(args.projectdir)
else:
log.debug("All output files will be located in: %s", projdir)
#-----------------------------------------------------------------------------
# index subtypes
#-----------------------------------------------------------------------------
subtypes_dict = util.indexSubtypes(args.length)
#-----------------------------------------------------------------------------
# Build M matrix from inputs
#-----------------------------------------------------------------------------
data_in = util.processInput(args.mode, args, subtypes_dict)
data = data_in.data
count_matrix = data.M
samples = np.array([data.samples], dtype=str)
#-----------------------------------------------------------------------------
# Drop samples from M matrix with too few SNVs
#-----------------------------------------------------------------------------
if args.minsnvs > 0:
lowsnv_samples = []
highsnv_samples = []
i = 0
for i in range(0, count_matrix.shape[0]):
if sum(count_matrix[i]) < args.minsnvs:
lowsnv_samples.append(samples.flatten()[i])
else:
highsnv_samples.append(samples.flatten()[i])
i += 1
if lowsnv_samples:
count_matrix = count_matrix[np.sum(count_matrix, axis=1) >= args.
minsnvs, ]
samples = np.array([highsnv_samples])
lowsnv_path = projdir + \
"/helmsman_snvs_lt" + str(args.minsnvs) + ".txt"
lowsnv_fh = open(lowsnv_path, "w")
for sample in lowsnv_samples:
lowsnv_fh.write("%s\n" % sample)
lowsnv_fh.close()
log.info("%s samples have fewer than %s SNVs and will be dropped",
len(lowsnv_samples), args.minsnvs)
#-----------------------------------------------------------------------------
# Get matrix decomposition and write output to files
#-----------------------------------------------------------------------------
paths = {
'M_path': projdir + "/" + args.matrixname + ".txt",
'M_path_rates': projdir + "/" + args.matrixname + "_spectra.txt",
'W_path': projdir + "/W_components.txt",
'H_path': projdir + "/H_loadings.txt"
}
dat_out = util.writeOutput(paths, samples, subtypes_dict)
try:
dat_out.writeM(count_matrix)
log.debug("Spectra count matrix saved to: %s", paths['M_path'])
log.debug("Spectra frequency matrix saved to: %s",
paths['M_path_rates'])
except IOError:
log.warning("could not write W matrix")
if args.decomp is not None:
decomp_data = util.DecompModel(count_matrix, args.rank, args.seed,
args.decomp)
try:
dat_out.writeW(decomp_data)
log.debug("W matrix saved to: %s", paths['W_path'])
except IOError:
log.warning("could not write W matrix")
try:
dat_out.writeH(decomp_data)
log.debug("H matrix saved to: %s", paths['H_path'])
except IOError:
log.warning("could not write H matrix")
#-----------------------------------------------------------------------------
# auto-generate R script to pass data to MSA packages
#-----------------------------------------------------------------------------
if args.package:
util.writeR(args.package, args.projectdir, args.matrixname)
log_message = "To use this mutation spectra matrix" + \
"with the {} R package, ".format(args.package) + \
"run the following command in R: \n" + \
"\n\t\tsource(\"{}/Helmsman_to_{}.R\")\n".format(args.projectdir, args.package)
log.info(log_message)
stop = timeit.default_timer()
tottime = round(stop - start, 2)
log.info("Total runtime: %s seconds", tottime)
main()