-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSnakefile
334 lines (294 loc) · 16.8 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import os
# shell.prefix("source config.sh; set -eo pipefail ; ")
configfile: "config.json"
if not os.path.exists("log"):
os.makedirs("log")
modelNAME = config["modelNAME"]
MNM_dist = config["MNM_dist"]
MNM_frac = config["MNM_frac"]
MNM_num = config["MNM_num"]
replicates = config["replicates"]
GeneticMap = config["GeneticMap"]
popIDs = config["popIDs"]
outgrp = config["outgrp"]
rmPopID = config["rmPopID"]
sampleSize = config["sampleSize"]
segmentLength = config["segmentLength"]
# MODELS = ["GutenkunstThreePop", "TennessenTwoPop", "RagsdaleArchaic"]
MODELS = ["GutenkunstThreePop", "RagsdaleArchaic", "TennessenTwoPopNoAncientMig", "TennessenTwoPop", "TennessenTwoPopNoMig"]
MNM_CFG = "mnm%s-%s-%s" % (MNM_dist, MNM_frac, MNM_num)
wildcard_constraints:
replicate = "\d+"
#-----------------------------------------------------------------------------
# Set final targets
#-----------------------------------------------------------------------------
rule all:
wildcard_constraints:
pop = "[afr|eur]"
input:
expand("output/ArchIE/{model_name}/{model_name}_{mnm_status}_{pop}_predicted.rds", # , #, #% (modelNAME, modelNAME),
model_name = MODELS,
mnm_status=[MNM_CFG, "womnm"],
pop=["afr", "eur"]),
# expand("output/ArchIE/{model_name}/{model_name}_womnm_{pop}_predicted.txt" , #, #% (modelNAME, modelNAME), pop=["afr", "eur"]),
# expand("output/ArchIE/{model_name}/{model_name}_mnm%s-%s_{pop}_test_data.txt" % (modelNAME, modelNAME, MNM_dist, MNM_frac), pop=["afr", "eur"]),
expand("output/ArchIE/{model_name}/{model_name}_{mnm_status}_{pop}_test_data.txt" , #, #% (modelNAME, modelNAME),
model_name = MODELS,
mnm_status=[MNM_CFG, "womnm"],
pop=["afr", "eur"]),
# expand("output/sprime/{model_name}/sinaplot_topSegment_wMNM_vs_womnm.out.score.pdf" , #% modelNAME
# model_name = MODELS)
# "output/ArchIE/{model_name}/{model_name}_rep{replicate}_mnm%s-%s.txt" % (modelNAME, modelNAME, MNM_dist, MNM_frac),
# expand("output/ArchIE/{model_name}/{model_name}_rep{replicate}_mnm%s-%s_afr.txt" % (modelNAME, modelNAME, MNM_dist, MNM_frac), replicate=range(1, replicates+1)),
# "output/ArchIE/{model_name}/{model_name}_mnm%s-%s_eur_predicted.txt" % (modelNAME, modelNAME, MNM_dist, MNM_frac),
# "output/ArchIE/{model_name}/{model_name}_womnm_eur_predicted.txt" , #, #% (modelNAME, modelNAME),
#-----------------------------------------------------------------------------
# Simulate and output in EIGENSTRAT format
#-----------------------------------------------------------------------------
rule sim_data_archie:
# input:
# outG = "output/msprime/{model_name}/{model_name}.%s.indID" % (modelNAME, modelNAME, outgrp)
output:
snp = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s.snp" % MNM_CFG,
geno_afr = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s_afr.geno" % MNM_CFG,
geno_eur = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s_eur.geno" % MNM_CFG,
ind_afr = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s_afr.ind" % MNM_CFG,
ind_eur = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s_eur.ind" % MNM_CFG,
snp_womnm = "output/msprime/{model_name}/{model_name}_rep{replicate}.snp" , #, #% (modelNAME, modelNAME),
geno_afr_womnm = "output/msprime/{model_name}/{model_name}_rep{replicate}_afr.geno" , #, #% (modelNAME, modelNAME),
geno_eur_womnm = "output/msprime/{model_name}/{model_name}_rep{replicate}_eur.geno" , #, #% (modelNAME, modelNAME),
ind_afr_womnm = "output/msprime/{model_name}/{model_name}_rep{replicate}_afr.ind" , #, #% (modelNAME, modelNAME),
ind_eur_womnm = "output/msprime/{model_name}/{model_name}_rep{replicate}_eur.ind" , #% (modelNAME, modelNAME)
params:
sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
run:
shell(" python eval_models.py --replicates 1 --replicate_ID {wildcards.replicate} --length {segmentLength} --mnm_dist {MNM_dist} --mnm_frac {MNM_frac} --mnm_num {MNM_num} --demographic_model {wildcards.model_name} --method archie")
#-----------------------------------------------------------------------------
# Run ArchIE on EUR data
# to-do: merge MNM/womnm rules by population
#-----------------------------------------------------------------------------
rule archie_stats_MNM_eur:
input:
snp = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s.snp" % MNM_CFG,
geno_eur = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s_eur.geno" % MNM_CFG,
geno_afr = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s_afr.geno" % MNM_CFG,
ind_eur = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s_eur.ind" % MNM_CFG,
output:
archie_out_eur = "output/ArchIE/{model_name}/{model_name}_rep{replicate}_%s_eur.txt" % MNM_CFG,
params:
sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
run:
shell("python src/ArchIE/data/calc_stats_window_data.py -s {input.snp} -i {input.ind_eur} -a {input.geno_eur} -r {input.geno_afr} -c 1 -b 0 -e 50000 -w 50000 -z 50000 > {output.archie_out_eur} ")
rule archie_stats_womnm_eur:
input:
snp = "output/msprime/{model_name}/{model_name}_rep{replicate}.snp" , #, #% (modelNAME, modelNAME),
geno_eur = "output/msprime/{model_name}/{model_name}_rep{replicate}_eur.geno" , #, #% (modelNAME, modelNAME),
geno_afr = "output/msprime/{model_name}/{model_name}_rep{replicate}_afr.geno" , #, #% (modelNAME, modelNAME),
ind_eur = "output/msprime/{model_name}/{model_name}_rep{replicate}_eur.ind" , #% (modelNAME, modelNAME)
output:
archie_out_eur = "output/ArchIE/{model_name}/{model_name}_rep{replicate}_womnm_eur.txt" , #% (modelNAME, modelNAME)
params:
sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
run:
shell("python src/ArchIE/data/calc_stats_window_data.py -s {input.snp} -i {input.ind_eur} -a {input.geno_eur} -r {input.geno_afr} -c 1 -b 0 -e 50000 -w 50000 -z 50000 > {output.archie_out_eur} ")
#-----------------------------------------------------------------------------
# Run ArchIE on AFR data
#-----------------------------------------------------------------------------
rule archie_stats_MNM_afr:
input:
snp = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s.snp" % MNM_CFG,
geno_afr = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s_afr.geno" % MNM_CFG,
geno_eur = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s_eur.geno" % MNM_CFG,
ind_afr = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s_afr.ind" % MNM_CFG,
output:
archie_out_afr = "output/ArchIE/{model_name}/{model_name}_rep{replicate}_%s_afr.txt" % MNM_CFG,
params:
sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
run:
shell("python src/ArchIE/data/calc_stats_window_data.py -s {input.snp} -i {input.ind_afr} -a {input.geno_afr} -r {input.geno_eur} -c 1 -b 0 -e 50000 -w 50000 -z 50000 > {output.archie_out_afr}")
rule archie_stats_womnm_afr:
input:
snp = "output/msprime/{model_name}/{model_name}_rep{replicate}.snp" , #, #% (modelNAME, modelNAME),
geno_afr = "output/msprime/{model_name}/{model_name}_rep{replicate}_afr.geno" , #, #% (modelNAME, modelNAME),
geno_eur = "output/msprime/{model_name}/{model_name}_rep{replicate}_eur.geno" , #, #% (modelNAME, modelNAME),
ind_afr = "output/msprime/{model_name}/{model_name}_rep{replicate}_afr.ind" , #% (modelNAME, modelNAME)
output:
archie_out_afr = "output/ArchIE/{model_name}/{model_name}_rep{replicate}_womnm_afr.txt" , #% (modelNAME, modelNAME)
params:
sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
run:
shell("python src/ArchIE/data/calc_stats_window_data.py -s {input.snp} -i {input.ind_afr} -a {input.geno_afr} -r {input.geno_eur} -c 1 -b 0 -e 50000 -w 50000 -z 50000 > {output.archie_out_afr}")
#-----------------------------------------------------------------------------
# merge Archie output
#-----------------------------------------------------------------------------
rule archie_merge:
input:
# "output/ArchIE/{model_name}/{model_name}_rep{replicate}_mnm%s-%s_{pop}.txt" % (modelNAME, modelNAME, MNM_dist, MNM_frac)
expand("output/ArchIE/{{model_name}}/{{model_name}}_rep{replicate}_{{mnm_status}}_{{pop}}.txt" , #, #% (modelNAME, modelNAME),
# model_name = MODELS,
replicate = range(1, replicates+1))
# mnm_status = ["mnm%s-%s" % (MNM_dist, MNM_frac), "womnm"],
# pop = ["afr", "eur"])
# "output/ArchIE/{model_name}/{model_name}_rep{replicate}_{mnm_status}_{pop}.txt" , #% (modelNAME, modelNAME)
output:
"output/ArchIE/{model_name}/{model_name}_{mnm_status}_{pop}_test_data.txt" , #% (modelNAME, modelNAME)
params:
sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
run:
shell("cat {input} > {output}")
#-----------------------------------------------------------------------------
# create and train ArchIE model
#-----------------------------------------------------------------------------
rule archie_create_training:
output:
"src/ArchIE/simulations/training_data.txt"
# "output/ArchIE/archie_trained_model.Rdata"
params:
sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
run:
shell("bash src/ArchIE/simulations/create_training.sh")
rule archie_run_training:
input:
"src/ArchIE/simulations/training_data.txt"
output:
"output/ArchIE/archie_trained_model.rds"
params:
sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
run:
shell("Rscript ArchIE_train.R {input} {output}")
#-----------------------------------------------------------------------------
# Use ArchIE to predict archaic ancestry under each population with and without MNMs
#-----------------------------------------------------------------------------
rule archie_predict:
input:
training_data = "output/ArchIE/archie_trained_model.rds",
testing_data = "output/ArchIE/{model_name}/{model_name}_{mnm_status}_{pop}_test_data.txt", #% (modelNAME, modelNAME)
output:
predicted_data = "output/ArchIE/{model_name}/{model_name}_{mnm_status}_{pop}_predicted.rds", #% (modelNAME, modelNAME)
params:
sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
run:
shell("set +o pipefail; Rscript ArchIE_predict.R {input.training_data} {input.testing_data} {output.predicted_data}")
# #-----------------------------------------------------------------------------
# # Get sample IDs per group
# #-----------------------------------------------------------------------------
# rule output_IDfiles:
# output:
# expand("output/msprime/{model_name}/{model_name}.{ID}.indID",
# model_name = MODELS,
# ID=popIDs)
# params:
# sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
# run:
# for outfile in output:
# ID = outfile.split(".")[1]
# with open(outfile, "w") as fout:
# for i in range(sampleSize):
# fout.write("%s_ind%s" % (ID, i) + "\n")
# #-----------------------------------------------------------------------------
# # Simulate and output in VCF format
# #-----------------------------------------------------------------------------
# rule sim_data_sprime:
# input:
# outG = "output/msprime/{model_name}/{model_name}.%s.indID" % outgrp
# output:
# vcf = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s.vcf" % MNM_CFG,
# vcf_womnm = "output/msprime/{model_name}/{model_name}_rep{replicate}.vcf", #% (modelNAME, modelNAME)
# params:
# sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
# run:
# if modelNAME == "GutenkunstThreePop":
# shell(" python eval_models.py --replicates 1 --replicate_ID {wildcards.replicate} --length {segmentLength} --mnm_dist {MNM_dist} --mnm_frac {MNM_frac} --mnm_num {MNM_num} --demographic_model {wildcards.model_name} --method sprime")
# # else:
# # shell(" python eval_models.py {wildcards.replicate} {segmentLength} {MNM_dist} {MNM_frac} | \
# # awk '$1 ~ /^#/ {{print $0;next}} {{print $0 | "sort -k1,1 -k2,2n"}}' | \
# # bgzip -c > {output.vcf}")
# #-----------------------------------------------------------------------------
# # clean up non-MNM VCF
# #-----------------------------------------------------------------------------
# rule process_vcf_womnm:
# input:
# vcf = "output/msprime/{model_name}/{model_name}_rep{replicate}.vcf", #, #% (modelNAME, modelNAME),
# rm_ids = "output/msprime/{model_name}/{model_name}.%s.indID" % rmPopID
# output:
# vcf = "output/msprime/{model_name}/{model_name}_rep{replicate}_womnm.vcf.gz" , #% (modelNAME, modelNAME)
# params:
# sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
# run:
# shell("""awk '$1 ~ /^#/ {{print $0;next}} {{print $0 | "sort -k1,1 -k2,2n"}}' {input.vcf} | \
# vcftools --vcf - --remove {input.rm_ids} --recode --recode-INFO-all --stdout | \
# bgzip -c > {output.vcf}""")
# #-----------------------------------------------------------------------------
# # clean up MNM VCF
# #-----------------------------------------------------------------------------
# rule process_vcf_wMNM:
# input:
# vcf = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s.vcf" % MNM_CFG,
# rm_ids = "output/msprime/{model_name}/{model_name}.%s.indID" % rmPopID
# output:
# vcf = "output/msprime/{model_name}/{model_name}_rep{replicate}_%s.vcf.gz" % MNM_CFG,
# params:
# sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
# run:
# shell("""awk '$1 ~ /^#/ {{print $0;next}} {{print $0 | "sort -k1,1 -k2,2n"}}' {input.vcf} | \
# vcftools --vcf - --remove {input.rm_ids} --recode --recode-INFO-all --stdout | \
# bgzip -c > {output.vcf}""")
# #-----------------------------------------------------------------------------
# # run sprime on non-MNM data
# #-----------------------------------------------------------------------------
# rule sprime_run:
# input:
# vcf = "output/msprime/{model_name}/{model_name}_rep{replicate}_{mnm_status}.vcf.gz" , #, #% (modelNAME, modelNAME),
# outG = "output/msprime/{model_name}/{model_name}.%s.indID" % (outgrp)
# output:
# "output/sprime/{model_name}/{model_name}_rep{replicate}_{mnm_status}.sprime.out.score" , #% (modelNAME, modelNAME)
# params:
# sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
# run:
# prefix = ".".join(output[0].split(".")[:-1])
# shell(" java -jar src/sprime.jar gt={input.vcf} outgroup={input.outG} map={GeneticMap} out={prefix} minscore=1 ")
# rule sprime_pullTopSegment:
# input:
# "output/sprime/{model_name}/{model_name}_rep{replicate}_{mnm_status}.sprime.out.score" , #% (modelNAME, modelNAME)
# output:
# "output/sprime/{model_name}/{model_name}_rep{replicate}_{mnm_status}.sprime.out.score.top" , #% (modelNAME, modelNAME)
# params:
# sge_opts="-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
# shell:
# " set +o pipefail ; sort -n -r -k8 {input} | head -1 > {output} "
# rule sprime_mergeTopSegment:
# input:
# # expand("output/sprime/{model_name}/{model_name}_rep{replicate}_{mnm_status}.sprime.out.score.top" , #, #% (modelNAME, modelNAME), replicate=range(1, replicates+1))
# expand("output/sprime/{{model_name}}/{{model_name}}_rep{replicate}_{{mnm_status}}.sprime.out.score.top" , #, #% (modelNAME, modelNAME),
# # model_name = MODELS,
# replicate=range(1, replicates+1))
# # mnm_status=["mnm%s-%s" % (MNM_dist, MNM_frac), "womnm"])
# # "output/sprime/{model_name}/{model_name}_rep{replicate}_{mnm_status}.sprime.out.score.top" , #% (modelNAME, modelNAME)
# output:
# "output/sprime/{model_name}/topSegment_{mnm_status}.out.score" , #% modelNAME
# params:
# sge_opts="-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
# # shell:
# # " cat {input} > {output} ; rm {input} "
# run:
# shell(""" cat {input} | grep -v "CHROM" > {output} """)
# # for f in input:
# # shell(" cat %s >> {output} " % (f) )
# # shell(" echo output/sprime/{model_name}/{model_name}_womnm_rep{{1..%s}}.sprime.out.score.top | \
# # xargs cat | \
# # grep -v "CHROM" > {output} ; echo output/sprime/{model_name}/{model_name}_womnm_rep{{1..%s}}.sprime.out.score.top | xargs rm " % (modelNAME, modelNAME, replicates, modelNAME, modelNAME, replicates) )
# # shell(" echo output/sprime/{model_name}/{model_name}_womnm_rep{{1..%s}}.sprime.out.score.top | \
# # xargs cat | \
# # grep -v "CHROM" > {output} ; echo output/sprime/{model_name}/{model_name}_womnm_rep{{1..%s}}.sprime.out.score.top | xargs rm " % (modelNAME, modelNAME, replicates, modelNAME, modelNAME, replicates)
# # shell(""" echo output/sprime/{model_name}/{model_name}_womnm_rep{{1..%s}}.sprime.out.score.top | \
# # xargs cat | grep -v "CHROM" > {output}""" % (modelNAME, modelNAME, replicates))
# rule sprime_plot:
# input:
# top_womnm = "output/sprime/{model_name}/topSegment_womnm.out.score" , #, #% modelNAME,
# top_mnm = "output/sprime/{model_name}/topSegment_wMNM.out.score" , #% modelNAME
# output:
# "output/sprime/{model_name}/sinaplot_topSegment_wMNM_vs_womnm.out.score.pdf" , #% modelNAME
# params:
# sge_opts = "-l h_rt=120:00:00 -l mfree=4G -l gpfsstate=0"
# shell:
# " Rscript plot_sprime_wMNM_vs_woMNM.r {input.top_mnm} {input.top_womnm} {output} "