-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
51 lines (42 loc) · 1.48 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import pickle
import torch
import numpy as np
import argparse
from dataset import make_dataset
from networks import make_model
from tqdm import tqdm
from utils import init_weights, calc_accuracy
import torch.nn.functional as F
import torchvision.utils as vutils
import os
parser = argparse.ArgumentParser("test")
parser.add_argument('--model', type=str, required=True)
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--n_res', type=int, default=6)
config, _ = parser.parse_known_args()
batch_size = 64
resume = config.model
model_dict = {
'n_res_blocks': config.n_res,
'n_classes': 10,
'n_channels': 128,
}
np_dataset = pickle.load(open(config.dataset, 'rb'))
_, np_val_dataset = np_dataset
val_rel_dataset, _ = make_dataset(np_val_dataset)
val_dataloader = torch.utils.data.DataLoader(val_rel_dataset, batch_size=batch_size,
pin_memory=True, drop_last=False)
net = make_model(model_dict).cuda()
print('load model from {}'.format(resume))
prev = torch.load(resume)
net.load_state_dict(prev['net'])
net.eval()
accuracies = []
with torch.no_grad():
for i, (image, question, answer) in tqdm(enumerate(val_dataloader), desc='val'):
image, question, answer = image.cuda(), question.cuda(), answer.cuda()
pred, _ = net(image, question)
accuracy = calc_accuracy(pred, answer)
accuracies += [accuracy] * answer.size(0)
val_accuracy = sum(accuracies) / len(accuracies)
print(val_accuracy)