-
Notifications
You must be signed in to change notification settings - Fork 2
/
hnm_pgd.py
432 lines (306 loc) · 14.1 KB
/
hnm_pgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from PIL import ImageFile
import numpy as np
from PIL import Image, ImageDraw, ImageFont
ImageFile.LOAD_TRUNCATED_IMAGES = True
from torchvision import transforms
from torchvision.utils import save_image
from tqdm import tqdm
import os
from tool.darknet2pytorch import *
from skimage import measure
from utils.utils import *
sys.path.append('../mmdetection/')
from mmdet import __version__
from mmdet.apis import init_detector,inference_detector
from mmdet.apis.inference import LoadImage
import warnings
try:
from mmdet.core import tensor2imgs
except:
from mmcv.image import tensor2imgs
import argparse
import matplotlib.pyplot as plt
import mmcv
import torch
from mmcv.ops import RoIAlign, RoIPool
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from mmdet.core import bbox2roi, multiclass_nms
from mmdet.core import get_classes
from mmdet.datasets.pipelines import Compose
from mmdet.models import build_detector
from mmcv import Config, DictAction
from mmdet.datasets import build_dataloader, build_dataset
from hnm_utils import get_mask_all_small, clamp, count_patch, Image2tensor
def init_patch(metrix, thresh):
metrix =metrix.detach().cpu()
ones = torch.FloatTensor(metrix.size()).fill_(1).cpu()
zeros = torch.FloatTensor(metrix.size()).fill_(0).cpu()
input_map_new = torch.where((metrix > thresh), ones, zeros)
return input_map_new
def read_mask(mask_path):
mask = np.array(Image.open(mask_path))
mask = mask.transpose(2,0,1)
mask = torch.from_numpy(mask).sum(0)
mask = init_patch(mask, 0.1)
return mask
def inference_detector2(model, img_path):
cfg = model.cfg
device = next(model.parameters()).device # model device
test_pipeline = [LoadImage()]+ cfg.data.test.pipeline[1:]
test_pipeline = Compose(test_pipeline)
data = dict(img=img_path)
data = test_pipeline(data)
data = collate([data], samples_per_gpu=1)
if next(model.parameters()).is_cuda:
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
# Use torchvision ops for CPU mode instead
for m in model.modules():
if isinstance(m, (RoIPool, RoIAlign)):
if not m.aligned:
# aligned=False is not implemented on CPU
# set use_torchvision on-the-fly
m.use_torchvision = True
warnings.warn('We set use_torchvision=True in CPU mode.')
# just get the actual data from DataContainer
data['img_metas'] = data['img_metas'][0].data
imgs = data['img'][0]
img_metas = data['img_metas'][0]
return imgs, img_metas
def parse_mmd(result_p):
if isinstance(result_p, tuple):
bbox_results, _ = result_p
result_p = bbox_results
result_p = np.concatenate(result_p)
result_above_confidence_num_p = 0
for ir in range(len(result_p)):
if result_p[ir, 4] > show_score_thr:
result_above_confidence_num_p = result_above_confidence_num_p + 1
# print(result_p[:, 4][result_p[:, 4]>0.3])
return result_above_confidence_num_p
def clamp(X, lower_limit, upper_limit):
return torch.max(torch.min(X, upper_limit), lower_limit)
def getmm_list2(detector,image,img_metas):
x_feat = detector.extract_feat(image)
proposal_list = detector.rpn_head.simple_test_rpn(x_feat, img_metas)
img_shape = img_metas[0]['img_shape']
# img_shape = img_metas[0]['ori_shape']
rois = bbox2roi(proposal_list)
bbox_results = detector.roi_head._bbox_forward(x_feat, rois)
bbox_pred = bbox_results['bbox_pred']
cls_score = bbox_results['cls_score']
if isinstance(cls_score, list):
cls_score = sum(cls_score) / float(len(cls_score))
scores = F.softmax(cls_score, dim=1) if cls_score is not None else None
scoresall = F.softmax(cls_score, dim=1) if cls_score is not None else None
scores = scoresall[:, :-1]
valid_mask = scores > 0.1
obj_confs_rcnn = torch.masked_select(scores, scores > 0.05)
return obj_confs_rcnn, scoresall[torch.sum(valid_mask,1)!=0]
def conntet_test(input_img):
ones = torch.cuda.FloatTensor(input_img[0].size()).fill_(1)
zeros = torch.cuda.FloatTensor(input_img[0].size()).fill_(0)
input_img_tmp2 = torch.where((input_img[0] != 0), ones, zeros) + \
torch.where((input_img[1] != 0), ones, zeros) + \
torch.where((input_img[2] != 0), ones, zeros)
input_map_new = torch.where(input_img_tmp2 > 0, ones, zeros)
whole_size = input_map_new.shape[0] * input_map_new.shape[1]
labels = measure.label(input_map_new.cpu().numpy()[:, :], background=0, connectivity=2)
label_max_number = np.max(labels)
total_area = torch.sum(input_map_new).item()
total_area_rate = total_area / whole_size
if label_max_number>10 or total_area_rate > 0.02:
return True, label_max_number,total_area_rate,total_area
else :
return False,label_max_number,total_area_rate,total_area
config = '../mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
checkpoint = './models/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
mmdmodel = init_detector(config, checkpoint, device='cuda:0')
show_score_thr=0.3
cfg = Config.fromfile(config)
model = cfg.model
train_cfg = cfg.get("train_cfg")
test_cfg = cfg.get("test_cfg")
model['pretrained'] = None
detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)
device='cuda:0'
if checkpoint is not None:
map_loc = 'cpu' if device == 'cpu' else None
checkpoint = load_checkpoint(detector, checkpoint, map_location=map_loc)
if 'CLASSES' in checkpoint['meta']:
detector.CLASSES = checkpoint['meta']['CLASSES']
else:
warnings.simplefilter('once')
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
detector.CLASSES = get_classes('coco')
detector.cfg = cfg
detector.to(device)
detector.eval()
resize_small = transforms.Compose([
transforms.Resize((608, 608)),])
center_crop = transforms.Compose([
transforms.CenterCrop(608)])
resize_back = transforms.Compose([
transforms.Resize((500, 500)),transforms.ToTensor()])
resize2 = transforms.Compose([
transforms.ToTensor()])
original_image_path = './select1000_new'
output_image_path = './select1000_new_p'
yoloV4_cfgfile = "models/yolov4.cfg"
yoloV4_weightfile = "models/yolov4.weights"
darknet_model = Darknet(yoloV4_cfgfile)
darknet_model.load_weights(yoloV4_weightfile)
darknet_model = darknet_model.eval().cuda()
anchors = [12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401]
num_anchors = 9
num_classes = 80
anchor_masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
strides = [8, 16, 32]
anchor_step = len(anchors) // num_anchors
files = os.listdir('select1000_new')
files.sort()
fail_image = []
img_path0 = 'select1000_new/104.png'
_,img_metas = inference_detector2(detector,img_path0)
dataset_mean = img_metas[0]['img_norm_cfg']['mean']/255
dataset_std = img_metas[0]['img_norm_cfg']['std']/255
mu = torch.Tensor((dataset_mean)).unsqueeze(-1).unsqueeze(-1).cuda()
std = torch.Tensor((dataset_std)).unsqueeze(-1).unsqueeze(-1).cuda()
unnormalize = lambda x: x*std + mu
normalize = lambda x: (x-mu)/std
sigm = nn.Sigmoid()
# loss = nn.SmoothL1Loss(reduction='sum')
loss = nn.BCELoss(reduction = 'sum')
lossce = nn.NLLLoss(reduction='sum')
count = 0
alpha= 4/255
uprcnn = torch.nn.Upsample(size=800, mode='bilinear')
upyolo = torch.nn.Upsample(size=608, mode='bilinear')
frcnn_hflip = torch.eye(800).flip(0).to(device)
yolo_hflip = torch.eye(608).flip(0).to(device)
def pad_flip(img_608, img_800,ptb):
frcnn_img_0 = normalize(unnormalize(img_800)+uprcnn(ptb))
yolo_img_0 = img_608 + upyolo(ptb)
# yolo_re_size = np.random.choice(a=range(400,600,2),
# size=1, replace=False, p=None).item()
yolo_re_size = 500
yolo_pad_size = (608 - yolo_re_size) //2
yolo_pad = torch.nn.ConstantPad2d(padding=yolo_pad_size, value=0.)
yolo_img_1 = F.pad(F.interpolate(yolo_img_0, size=yolo_re_size, mode="bilinear", align_corners=False),
pad=tuple([yolo_pad_size]*4), mode='constant', value=0)
# frcnn_re_size = np.random.choice(a=range(600,800,2),
# size=1, replace=False, p=None).item()
frcnn_re_size = 500
frcnn_pad_size = (800 - frcnn_re_size) // 2
frcnn_pad = torch.nn.ConstantPad2d(padding=frcnn_pad_size, value=0.)
frcnn_img_1 = F.pad(F.interpolate(frcnn_img_0, size=frcnn_re_size, mode="bilinear", align_corners=False),
pad=tuple([frcnn_pad_size]*4), mode='constant', value=0)
# return yolo_img_1, frcnn_img_1
# return yolo_img_1.mul(yolo_hflip), frcnn_img_1.mul(frcnn_hflip)
return yolo_img_0.mul(yolo_hflip), frcnn_img_0.mul(frcnn_hflip)
masks_path = 'masks'
if not os.path.exists(masks_path):
os.makedirs(masks_path)
for img_name_index in range(len(files)):
img_name = files[img_name_index]
print()
print(img_name_index,img_name)
img_path0 = os.path.join('select1000_new', img_name)
img_path1 = os.path.join('select1000_new_p', img_name)
img0 = Image.open(img_path0).convert('RGB')
img0_608 = resize_small(img0)
boxes0_all = do_detect(darknet_model, img0_608, 0.5, 0.4, True)
num_box = len(boxes0_all)
print('Yolo detect:',num_box)
result_p = inference_detector(mmdmodel,img_path0)
result_above_confidence_num_ori = parse_mmd(result_p)
print('RCNN detect:',result_above_confidence_num_ori)
mmd_imgs,_ = inference_detector2(detector,img_path0)
ori_imgs_t = resize2(Image.open('select1000_new/'+img_name).convert('RGB')).unsqueeze(0).cuda()
img_mask_path = os.path.join(masks_path, img_name)
# mask = read_mask(img_mask_path).to(device)
num_std = 2.1
flag = 0
while not flag:
num_std += 0.1
mask,flag = get_mask_all_small(5000, ori_imgs_t, mmd_imgs, model=darknet_model,detector =detector,img_metas =img_metas,num_std=num_std)
mask = mask.to(device)
save_image(mask,os.path.join(masks_path, img_name))
img0 = Image.open(img_path0).convert('RGB')
img0_608 = resize_small(img0)
width = img0_608.width
height = img0_608.height
img0 = torch.ByteTensor(torch.ByteStorage.from_buffer(img0_608.tobytes()))
img0 = img0.view(height, width, 3).transpose(0, 1).transpose(0, 2).contiguous()
img0 = img0.view(1, 3, height, width)
img0 = img0.float().div(255.0)
img0 = img0.to(device)
delta = torch.FloatTensor(1, 3, 500, 500).cuda()
torch.nn.init.normal_(delta, mean=0, std=1.)
delta.data = clamp(delta, 0. - ori_imgs_t, 1. - ori_imgs_t).mul_(mask)
delta.requires_grad = True
bestloss = 200000
bestdalta = delta.data
for p in range(800):
# yolo_input, frcnn_input = pad_flip(img0, mmd_imgs,delta)
list_boxes = darknet_model(img0+upyolo(delta))
obj_confs_list = []
for idx, box in enumerate(list_boxes):
obj_confs_list.append(torch.cat((box[0][4].view(-1),box[0][4+85].view(-1),box[0][4+170].view(-1)),0))
obj_confs_yolo = torch.cat([obj_confs_list[i] for i in range(len(obj_confs_list))],0)
obj_conf_thresh_rcnn = 0.3
obj_conf_thresh = 0.5
obj_confs_yolo = sigm(obj_confs_yolo)
result_above_confidence_num_yolo = len(obj_confs_yolo[obj_confs_yolo >0.45])
obj_confs_yolo = obj_confs_yolo[obj_confs_yolo > obj_conf_thresh]
obj_loss = 0
frcnn_input = normalize(unnormalize(mmd_imgs)+uprcnn(delta))
obj_confs_rcnn,bk_scores = getmm_list2(detector,frcnn_input,img_metas)
result_above_confidence_num_rcnn = len(obj_confs_rcnn[obj_confs_rcnn >0.25])
obj_confs_rcnn = obj_confs_rcnn[obj_confs_rcnn > 0.1]
if result_above_confidence_num_rcnn==0:
obj_confs_rcnn = []
if result_above_confidence_num_yolo==0:
obj_confs_yolo = []
if (result_above_confidence_num_rcnn+result_above_confidence_num_yolo)<=bestloss:
bestloss = result_above_confidence_num_rcnn+result_above_confidence_num_yolo
bestdalta = delta.data
if (len(obj_confs_yolo)!=0) or (len(bk_scores)!=0) :
if len(obj_confs_yolo):
targets_yolo = torch.ones_like(obj_confs_yolo).to(device)
obj_loss += loss(obj_confs_yolo,targets_yolo)
if len(bk_scores):
targets_bk = torch.LongTensor([80 for i in range(len(bk_scores))]).to(device)
obj_loss -=lossce(bk_scores,targets_bk)
obj_loss.backward()
grad = delta.grad.detach()
d = alpha*torch.sign(grad)
delta.data = clamp(delta+d, 0. - ori_imgs_t, 1. - ori_imgs_t).mul_(mask)
delta.grad.zero_()
else:
with open("hnm_pgd.txt", "a") as output:
output.write(str(img_name_index)+'-hnm_pgd: '+str(img_name)+' pgd break! in round '+str(p)+'\n')
break
save_image(ori_imgs_t+bestdalta,img_path1)
img_new_608 = resize_small(Image.open(img_path1).convert('RGB'))
boxes0 = do_detect(darknet_model, img_new_608, 0.5, 0.4, True)
result_p = inference_detector(mmdmodel,img_path1)
result_above_confidence_num_p = parse_mmd(result_p)
print('hnm_pgd:',img_name,'done!, Yolo detect left',len(boxes0),', RCNN detect left',result_above_confidence_num_p)
img0 = Image.open('select1000_new/'+img_name).convert('RGB')
img1 = Image.open(img_path1).convert('RGB')
img0_t = resize2(img0).cuda()
img1_t = resize2(img1).cuda()
img_minus_t = img0_t - img1_t
unsatified,num_patch,total_area_rate,total_area = conntet_test(img_minus_t)
print(unsatified,num_patch,total_area_rate,total_area)
if unsatified:
print(img_name, 'fail! >10 patch:',num_patch,'area:', total_area_rate)
if img_name not in fail_image:
fail_image.append(img_name)
with open("hnm_pgd.txt", "a") as output:
output.write(str(img_name_index)+'-fail_image: '+str(img_name)+', num_patch: '+str(num_patch)+'-'+str(total_area)+'!, Yolo left '+str(len(boxes0))+', RCNN left '+str(result_above_confidence_num_p)+'\n')
print(fail_image)