-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdecaptcha.py
129 lines (117 loc) · 4.6 KB
/
decaptcha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/usr/bin/env python3
from PIL import Image
from sklearn import svm
import pickle
import logging
class DeCaptcha:
def __init__(self, length=6):
self.__clf = svm.NuSVC()
self.__length = length
self.__is_active = False
self.__BIN_TABLE = [0] * 140 + [1] * 116
def __points_collect(self, bin_image, visited, x, y, points):
for step_x in range(-1, 2):
for step_y in range(-1, 2):
i = x + step_x
j = y + step_y
if i >= 0 and i < bin_image.width and j >= 0 and j < bin_image.height:
if visited[i][j] == 0 and bin_image.getpixel((i, j)) == 0:
visited[i][j] = 1
points.append([i, j])
self.__points_collect(bin_image, visited, i, j, points)
def __remove_noise_point(self, bin_image):
width = bin_image.width
height = bin_image.height
visited = [[0 for i in range(height)] for i in range(width)]
for i in range(width):
bin_image.putpixel((i, 0), 1)
bin_image.putpixel((i, height - 1), 1)
for j in range(height):
bin_image.putpixel((0, j), 1)
bin_image.putpixel((width - 1, j), 1)
for i in range(width):
for j in range(height):
if visited[i][j] == 0 and bin_image.getpixel((i, j)) == 0:
points = []
self.__points_collect(bin_image, visited, i, j, points)
if len(points) >= 1 and len(points) <= 3:
for x, y in points:
bin_image.putpixel((x, y), 1)
def __get_char_images(self, image):
char_images = []
for i in range(self.__length):
x = 25 + i * (8 + 10)
y = 15
child_img = image.crop((x, y, x + 8, y + 10))
char_images.append(child_img)
return char_images
def __preprocess(self, image):
gray_image = image.convert('L')
bin_image = gray_image.point(self.__BIN_TABLE, '1')
self.__remove_noise_point(bin_image)
return bin_image
def __get_feature(self, image):
width, height = image.size
pixel_cnt_list = []
for y in range(height):
pix_cnt_x = 0
for x in range(width):
if image.getpixel((x, y)) == 0:
pix_cnt_x += 1
pixel_cnt_list.append(pix_cnt_x)
for x in range(width):
pix_cnt_y = 0
for y in range(height):
if image.getpixel((x, y)) == 0:
pix_cnt_y += 1
pixel_cnt_list.append(pix_cnt_y)
return pixel_cnt_list
def set_length(self, length):
self.__length = length
def train(self, captcha_text_list):
if not isinstance(captcha_text_list, list):
logging.error(
'captcha_text_list must be list like [[\'./image1.png\', \'WSA23D\'], \
[\'./image2.png\', \'223S2S\']]!')
return False
x = []
y = []
for captcha_path, captcha_text in captcha_text_list:
image = self.__preprocess(Image.open(captcha_path))
char_images = self.__get_char_images(image)
for i in range(self.__length):
feature = self.__get_feature(char_images[i])
digit = captcha_text[i]
x.append(feature)
y.append(digit)
self.__clf.fit(x, y)
self.__is_active = True
return True
def decode(self, image):
if not isinstance(image, Image.Image):
logging.error('image must be instance of Image.Image in PIL!')
return
if self.__is_active == False:
logging.error('train or load_model first!')
return
image = self.__preprocess(image)
char_images = self.__get_char_images(image)
features = []
for i in range(self.__length):
features.append(self.__get_feature(char_images[i]))
result = self.__clf.predict(features)
text = ''.join(result)
return text
def load_model(self, filename):
if not isinstance(filename, str):
logging.error('filename must be a string!')
return
with open(filename, 'rb') as fid:
self.__clf = pickle.load(fid)
self.__is_active = True
def dump_model(self, filename):
if not isinstance(filename, str):
logging.error('filename must be a string!')
return
with open(filename, 'wb') as fid:
pickle.dump(self.__clf, fid)