-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
284 lines (222 loc) · 11.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
#os.environ["CUDA_VISIBLE_DEVICES"]="0,7"
import sys
import yaml
import time
import shutil
import torch
import random
import argparse
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.ioff()
import timeit
from torch.utils import data
from ptsemseg.models import get_model
from ptsemseg.loss import get_loss_function
from ptsemseg.loader import get_loader
from ptsemseg.utils import get_logger, show_images
from ptsemseg.metrics import runningScore, averageMeter
from ptsemseg.augmentations import get_composed_augmentations
from ptsemseg.schedulers import get_scheduler
from ptsemseg.optimizers import get_optimizer
from ptsemseg.tree import create_tree_from_textfile, add_channels, add_levels, update_channels, find_depth
#from torch.optim.lr_scheduler import MultiStepLR
from tensorboardX import SummaryWriter
from validate import validate
def train(cfg, logger):
# Setup seeds ME: take these out for random samples
torch.manual_seed(cfg.get('seed', 1337))
torch.cuda.manual_seed(cfg.get('seed', 1337))
np.random.seed(cfg.get('seed', 1337))
random.seed(cfg.get('seed', 1337))
# Setup device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("DEVICE: ",device)
# Setup Augmentations
augmentations = cfg['training'].get('augmentations', None)
data_aug = get_composed_augmentations(augmentations)
# Setup Dataloader
data_loader = get_loader(cfg['data']['dataset'])
if torch.cuda.is_available():
data_path = cfg['data']['server_path']
else:
data_path = cfg['data']['path']
t_loader = data_loader(
data_path,
is_transform=True,
split=cfg['data']['train_split'],
img_size=(cfg['data']['img_rows'], cfg['data']['img_cols']),
augmentations=data_aug)
n_classes = t_loader.n_classes
trainloader = data.DataLoader(t_loader,
batch_size=cfg['training']['batch_size'],
num_workers=cfg['training']['n_workers'],
shuffle=True)
number_of_images_training = t_loader.number_of_images
# Setup Hierarchy
if torch.cuda.is_available():
if cfg['data']['dataset'] == "vistas":
if cfg['data']['viking']:
root = create_tree_from_textfile("/users/brm512/scratch/experiments/meetshah-semseg/mapillary_tree.txt")
else:
root = create_tree_from_textfile("/home/userfs/b/brm512/experiments/meetshah-semseg/mapillary_tree.txt")
elif cfg['data']['dataset'] == "faces":
if cfg['data']['viking']:
root = create_tree_from_textfile("/users/brm512/scratch/experiments/meetshah-semseg/faces_tree.txt")
else:
root = create_tree_from_textfile("/home/userfs/b/brm512/experiments/meetshah-semseg/faces_tree.txt")
else:
if cfg['data']['dataset'] == "vistas":
root = create_tree_from_textfile("/home/brm512/Pytorch/meetshah-semseg/mapillary_tree.txt")
elif cfg['data']['dataset'] == "faces":
root = create_tree_from_textfile("/home/brm512/Pytorch/meetshah-semseg/faces_tree.txt")
add_channels(root,0)
add_levels(root,find_depth(root))
class_lookup = [0,10,7,8,9,1,6,4,5,2,3] # correcting for tree channel and data integer class correspondence # HELEN
#class_lookup = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,48,51,45,46,47,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,65] # VISTAS
update_channels(root, class_lookup)
# Setup models for Hierarchical and Standard training. Note we use Tree synonymously with hierarchy
model_nontree = get_model(cfg['model'], n_classes).to(device)
model_tree = get_model(cfg['model'], n_classes).to(device)
model_nontree = torch.nn.DataParallel(model_nontree, device_ids=range(torch.cuda.device_count()))
model_tree = torch.nn.DataParallel(model_tree, device_ids=range(torch.cuda.device_count()))
# Setup optimizer, lr_scheduler and loss function
optimizer_cls_nontree = get_optimizer(cfg)
optimizer_params_nontree = {k:v for k, v in cfg['training']['optimizer'].items() if k != 'name'}
optimizer_nontree = optimizer_cls_nontree(model_nontree.parameters(), **optimizer_params_nontree)
logger.info("Using non tree optimizer {}".format(optimizer_nontree))
optimizer_cls_tree = get_optimizer(cfg)
optimizer_params_tree = {k:v for k, v in cfg['training']['optimizer'].items()
if k != 'name'}
optimizer_tree = optimizer_cls_tree(model_tree.parameters(), **optimizer_params_tree)
logger.info("Using non tree optimizer {}".format(optimizer_tree))
loss_fn = get_loss_function(cfg)
logger.info("Using loss {}".format(loss_fn))
loss_meter_nontree = averageMeter()
if cfg['training']['use_hierarchy']:
loss_meter_level0_nontree = averageMeter()
loss_meter_level1_nontree = averageMeter()
loss_meter_level2_nontree = averageMeter()
loss_meter_level3_nontree = averageMeter()
loss_meter_tree = averageMeter()
if cfg['training']['use_hierarchy']:
loss_meter_level0_tree = averageMeter()
loss_meter_level1_tree = averageMeter()
loss_meter_level2_tree = averageMeter()
loss_meter_level3_tree = averageMeter()
time_meter = averageMeter()
epoch = 0
i = 0
flag = True
number_epoch_iters = number_of_images_training / cfg['training']['batch_size']
# TRAINING
start_training_time = time.time()
while i < cfg['training']['train_iters'] and flag and epoch < cfg['training']['epochs']:
epoch_start_time = time.time()
epoch = epoch + 1
for (images, labels) in trainloader:
i = i + 1
start_ts = time.time()
model_nontree.train()
model_tree.train()
images = images.to(device)
labels = labels.to(device)
optimizer_nontree.zero_grad()
optimizer_tree.zero_grad()
outputs_nontree = model_nontree(images)
outputs_tree = model_tree(images)
#nontree loss calculation
if cfg['training']['use_tree_loss']:
loss_nontree = loss_fn(input=outputs_nontree, target=labels, root=root, use_hierarchy = cfg['training']['use_hierarchy'])
level_losses_nontree = loss_nontree[1]
mainloss_nontree = loss_fn(input=outputs_nontree, target=labels, root=root, use_hierarchy = False)[0]
else:
loss_nontree = loss_fn(input=outputs_nontree, target=labels)
mainloss_nontree = loss_nontree
#tree loss calculation
if cfg['training']['use_tree_loss']:
loss_tree = loss_fn(input=outputs_tree, target=labels, root=root, use_hierarchy = cfg['training']['use_hierarchy'])
level_losses_tree = loss_tree[1]
mainloss_tree = loss_tree[0]
else:
loss_tree = loss_fn(input=outputs_tree, target=labels)
mainloss_tree = loss_tree
loss_meter_nontree.update(mainloss_nontree.item())
if cfg['training']['use_hierarchy'] and not cfg['training']['phased']:
loss_meter_level0_nontree.update(level_losses_nontree[0])
loss_meter_level1_nontree.update(level_losses_nontree[1])
loss_meter_level2_nontree.update(level_losses_nontree[2])
loss_meter_level3_nontree.update(level_losses_nontree[3])
loss_meter_tree.update(mainloss_tree.item())
if cfg['training']['use_hierarchy'] and not cfg['training']['phased']:
loss_meter_level0_tree.update(level_losses_tree[0])
loss_meter_level1_tree.update(level_losses_tree[1])
loss_meter_level2_tree.update(level_losses_tree[2])
loss_meter_level3_tree.update(level_losses_tree[3])
# optimise nontree and tree
mainloss_nontree.backward()
mainloss_tree.backward()
optimizer_nontree.step()
optimizer_tree.step()
time_meter.update(time.time() - start_ts)
# For printing/logging stats
if (i) % cfg['training']['print_interval'] == 0:
fmt_str = "Epoch [{:d}/{:d}] Iter [{:d}/{:d}] IterNonTreeLoss: {:.4f} IterTreeLoss: {:.4f} Time/Image: {:.4f}"
print_str = fmt_str.format(epoch,cfg['training']['epochs'], i % int(number_epoch_iters),
int(number_epoch_iters), mainloss_nontree.item(),
mainloss_tree.item(),
time_meter.avg / cfg['training']['batch_size'])
print(print_str)
logger.info(print_str)
time_meter.reset()
# VALIDATION AFTER EVERY EPOCH
if (i) % cfg['training']['val_interval'] == 0 or (i) % number_epoch_iters == 0 or (i) == cfg['training']['train_iters']:
validate(cfg, model_nontree, model_tree, loss_fn, device, root)
# reset meters after validation
loss_meter_nontree.reset()
if cfg['training']['use_hierarchy']:
loss_meter_level0_nontree.reset()
loss_meter_level1_nontree.reset()
loss_meter_level2_nontree.reset()
loss_meter_level3_nontree.reset()
loss_meter_tree.reset()
if cfg['training']['use_hierarchy']:
loss_meter_level0_tree.reset()
loss_meter_level1_tree.reset()
loss_meter_level2_tree.reset()
loss_meter_level3_tree.reset()
# For de-bugging
if (i) == cfg['training']['train_iters']:
flag = False
break
print("EPOCH TIME (MIN): ", epoch, (time.time() - epoch_start_time)/60.0)
logger.info("Epoch %d took %.4f minutes" % (int(epoch) , (time.time() - epoch_start_time)/60.0))
print("TRAINING TIME: ",(time.time() - start_training_time)/3600.0)
if __name__ == "__main__":
torch.multiprocessing.set_sharing_strategy('file_system')
# Set config file here
parser = argparse.ArgumentParser(description="config")
parser.add_argument(
"--config",
nargs="?",
type=str,
default="configs/faces.yml",
help="Configuration file to use"
)
args = parser.parse_args()
with open(args.config) as fp:
cfg = yaml.load(fp)
run_id = random.randint(1,100000)
if torch.cuda.is_available():
#SHARED
else:
logdir = os.path.join('runs', os.path.basename(args.config)[:-4] , str(run_id))
writer = SummaryWriter(log_dir=logdir)
print('RUNDIR: {}'.format(logdir))
shutil.copy(args.config, logdir)
logger = get_logger(logdir)
train(cfg, logger)
print("FINISHED TRAINING")