-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdtrti2.f
147 lines (147 loc) · 4.17 KB
/
dtrti2.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
SUBROUTINE DTRTI2( UPLO, DIAG, N, A, LDA, INFO )
*
* -- LAPACK ROUTINE (VERSION 1.0B) --
* UNIV. OF TENNESSEE, UNIV. OF CALIFORNIA BERKELEY, NAG LTD.,
* COURANT INSTITUTE, ARGONNE NATIONAL LAB, AND RICE UNIVERSITY
* FEBRUARY 29, 1992
*
* .. SCALAR ARGUMENTS ..
CHARACTER DIAG, UPLO
INTEGER INFO, LDA, N
* ..
* .. ARRAY ARGUMENTS ..
DOUBLE PRECISION A( LDA, * )
* ..
*
* PURPOSE
* =======
*
* DTRTI2 COMPUTES THE INVERSE OF A REAL UPPER OR LOWER TRIANGULAR
* MATRIX.
*
* THIS IS THE LEVEL 2 BLAS VERSION OF THE ALGORITHM.
*
* ARGUMENTS
* =========
*
* UPLO (INPUT) CHARACTER*1
* SPECIFIES WHETHER THE MATRIX A IS UPPER OR LOWER TRIANGULAR.
* = 'U': UPPER TRIANGULAR
* = 'L': LOWER TRIANGULAR
*
* DIAG (INPUT) CHARACTER*1
* SPECIFIES WHETHER OR NOT THE MATRIX A IS UNIT TRIANGULAR.
* = 'N': NON-UNIT TRIANGULAR
* = 'U': UNIT TRIANGULAR
*
* N (INPUT) INTEGER
* THE ORDER OF THE MATRIX A. N >= 0.
*
* A (INPUT/OUTPUT) DOUBLE PRECISION ARRAY, DIMENSION (LDA,N)
* ON ENTRY, THE TRIANGULAR MATRIX A. IF UPLO = 'U', THE
* LEADING N BY N UPPER TRIANGULAR PART OF THE ARRAY A CONTAINS
* THE UPPER TRIANGULAR MATRIX, AND THE STRICTLY LOWER
* TRIANGULAR PART OF A IS NOT REFERENCED. IF UPLO = 'L', THE
* LEADING N BY N LOWER TRIANGULAR PART OF THE ARRAY A CONTAINS
* THE LOWER TRIANGULAR MATRIX, AND THE STRICTLY UPPER
* TRIANGULAR PART OF A IS NOT REFERENCED. IF DIAG = 'U', THE
* DIAGONAL ELEMENTS OF A ARE ALSO NOT REFERENCED AND ARE
* ASSUMED TO BE 1.
*
* ON EXIT, THE (TRIANGULAR) INVERSE OF THE ORIGINAL MATRIX, IN
* THE SAME STORAGE FORMAT.
*
* LDA (INPUT) INTEGER
* THE LEADING DIMENSION OF THE ARRAY A. LDA >= MAX(1,N).
*
* INFO (OUTPUT) INTEGER
* = 0: SUCCESSFUL EXIT
* < 0: IF INFO = -K, THE K-TH ARGUMENT HAD AN ILLEGAL VALUE
*
* =====================================================================
*
* .. PARAMETERS ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. LOCAL SCALARS ..
LOGICAL NOUNIT, UPPER
INTEGER J
DOUBLE PRECISION AJJ
* ..
* .. EXTERNAL FUNCTIONS ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. EXTERNAL SUBROUTINES ..
EXTERNAL DSCAL, DTRMV, XERBLA
* ..
* .. INTRINSIC FUNCTIONS ..
INTRINSIC MAX
* ..
* .. EXECUTABLE STATEMENTS ..
*
* TEST THE INPUT PARAMETERS.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOUNIT = LSAME( DIAG, 'N' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTRTI2', -INFO )
RETURN
END IF
*
IF( UPPER ) THEN
*
* COMPUTE INVERSE OF UPPER TRIANGULAR MATRIX.
*
DO 10 J = 1, N
IF( NOUNIT ) THEN
A( J, J ) = ONE / A( J, J )
AJJ = -A( J, J )
ELSE
AJJ = -ONE
END IF
*
* COMPUTE ELEMENTS 1:J-1 OF J-TH COLUMN.
*
CALL DTRMV( 'UPPER', 'NO TRANSPOSE', DIAG, J-1, A, LDA,
$ A( 1, J ), 1 )
CALL DSCAL( J-1, AJJ, A( 1, J ), 1 )
10 CONTINUE
ELSE
*
* COMPUTE INVERSE OF LOWER TRIANGULAR MATRIX.
*
DO 20 J = N, 1, -1
IF( NOUNIT ) THEN
A( J, J ) = ONE / A( J, J )
AJJ = -A( J, J )
ELSE
AJJ = -ONE
END IF
IF( J.LT.N ) THEN
*
* COMPUTE ELEMENTS J+1:N OF J-TH COLUMN.
*
CALL DTRMV( 'LOWER', 'NO TRANSPOSE', DIAG, N-J,
$ A( J+1, J+1 ), LDA, A( J+1, J ), 1 )
CALL DSCAL( N-J, AJJ, A( J+1, J ), 1 )
END IF
20 CONTINUE
END IF
*
RETURN
*
* END OF DTRTI2
*
END