-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdofs.f
86 lines (86 loc) · 3.05 KB
/
dofs.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
SUBROUTINE DOFS(EREF,MONO3,N,DD,M,BOTTOM,TOP)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION EREF(MONO3,N), DD(M)
************************************************************************
* *
* DOFS FORMS A NORMALISED, SLIGHTLY SMOOTHED DENSITY OF STATES FOR A *
* 1-D DENSITY OF STATES *
* ON INPUT EREF = REFERENCE ENERGY LEVELS *
* P = POPULATION OF ENERGY LEVELS (=1 FOR ENERGY D.O.S. *
* OR ATOMIC ORBITAL POPULATION FOR PARTIAL D.O.S.) *
* N = NUMBER OF ENERGY LEVELS SUPPLIED *
* M = SIZE OF D.O.S. VECTOR *
* D = ARRAY TO HOLD D.O.S. *
* BOTTOM = BOTTOM OF D.O.S. VECTOR *
* TOP = TOP OF D.O.S. VECTOR *
* *
* ON OUTPUT D = DENSITY OF STATES. THIS ANALYSES IS INDEPENDENT OF N*
* ROUGHNESS WILL OCCUR IF N < CA. 30. *
* *
************************************************************************
C
C FIRST, EMPTY THE DENSITY-OF-STATES (DOS) BINS
C
DO 10 I=1,500
10 DD(I)=0.D0
C
C SPREAD OUT THE ENERGIES OVER THE ENERGY SPECTRUM, TOP TO BOTTOM
C
RANGE=(M+1)/(TOP-BOTTOM)
DO 20 J=1,MONO3
DO 20 I=1,N
X=EREF(J,I)
IF(X.LT.BOTTOM.OR.X.GT.TOP) X=-1.D7
20 EREF(J,I)=(X-BOTTOM)*RANGE
DO 40 II=1,MONO3
DO 40 I=2,N
B=EREF(II,I-1)
IF(B.LT.1) GOTO 40
A=EREF(II,I)
IF(A.LT.1) GOTO 40
IF(B .GT. A) THEN
X=B
B=A
A=X
ENDIF
J=B
K=A
C
C IF J EQUALS K THE INTERVAL FALLS WITHIN ONE BIN
C
IF(J.EQ.K) THEN
DD(K)=DD(K)+1.D0
ELSE
SPREAD=1.D0/(A-B+1.D-12)
PARTJ=(J+1-B)*SPREAD
PARTK=(A-K)*SPREAD
DD(J)=DD(J)+PARTJ
DD(K)=DD(K)+PARTK
C
C IF K EQUALS J+1 THE INTERVAL STRADDLES TWO BINS
C
IF(K .NE. J+1) THEN
C
C IF K IS GREATER THAN J+1 THE INTERVAL COVERS MORE THAN TWO BINS
C
J=J+1
K=K-1
DO 30 L=J,K
30 DD(L)=DD(L)+SPREAD
ENDIF
ENDIF
40 CONTINUE
X=M/((N-1)*(TOP-BOTTOM))
DO 50 I=1,M
50 DD(I)=DD(I)*X
WRITE(6,'(A)')' NORMALIZED DENSITY OF STATES'
C
C THE FIRST 'BIN' HAS LOWER BOUND AT BOTTOM AND UPPER BOUND
C AT BOTTOM+RANGE, THEREFORE THE FIRST 'BIN' IS FOR BOTTOM+0.5*RANGE
C THE LAST 'BIN' HAS BOUNDS TOP-RANGE AND TOP,
C THEREFOR THE LAST 'BIN' IS FOR TOP-0.5*RANGE
RANGE=M/(TOP-BOTTOM)
DO 60 I=1,M
60 WRITE(6,'(F9.2,F12.6)')BOTTOM+(I-0.5D0)/RANGE,DD(I)
RETURN
END