-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdcart.f
335 lines (335 loc) · 10.8 KB
/
dcart.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
SUBROUTINE DCART (COORD,DXYZ)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
INCLUDE 'SIZES'
DIMENSION COORD(3,*), DXYZ(3,*)
COMMON /MOLKST/ NUMAT,NAT(NUMATM),NFIRST(NUMATM),NMIDLE(NUMATM),
1 NLAST(NUMATM), NORBS, NELECS,NALPHA,NBETA,
2 NCLOSE,NOPEN,NDUMY,FRACT
COMMON /DENSTY/ P(MPACK), PA(MPACK), PB(MPACK)
C***********************************************************************
C
C DCART CALCULATES THE DERIVATIVES OF THE ENERGY WITH RESPECT TO THE
C CARTESIAN COORDINATES. THIS IS DONE BY FINITE DIFFERENCES.
C
C THE MAIN ARRAYS IN DCART ARE:
C DXYZ ON EXIT CONTAINS THE CARTESIAN DERIVATIVES.
C
C***********************************************************************
COMMON /KEYWRD/ KEYWRD
COMMON /EULER / TVEC(3,3), ID
COMMON /MOLMEC/ HTYPE(4),NHCO(4,20),NNHCO,ITYPE
COMMON /UCELL / L1L,L2L,L3L,L1U,L2U,L3U
COMMON /DCARTC/ K1L,K2L,K3L,K1U,K2U,K3U
COMMON /NUMCAL/ NUMCAL
C COSMO change
LOGICAL ISEPS, USEPS , UPDA
COMMON /ISEPS/ ISEPS, USEPS, UPDA
C end of COSMO change
CHARACTER*241 KEYWRD
DIMENSION PDI(171),PADI(171),PBDI(171),
1CDI(3,2),NDI(2),LSTOR1(6), LSTOR2(6), ENG(3)
LOGICAL DEBUG, FORCE, MAKEP, ANADER, LARGE
EQUIVALENCE (LSTOR1(1),L1L), (LSTOR2(1), K1L)
SAVE CHNGE, CHNGE2, ANADER, DEBUG, FORCE
DATA ICALCN/0/
DATA CHNGE /1.D-4/
CHNGE2=CHNGE*0.5D0
*
* CHNGE IS A MACHINE-PRECISION DEPENDENT CONSTANT
* CHNGE2=CHNGE/2
*
IF (ICALCN.NE.NUMCAL) THEN
ICALCN=NUMCAL
LARGE = (INDEX(KEYWRD,'LARGE') .NE. 0)
ANADER= (INDEX(KEYWRD,'ANALYT') .NE. 0)
DEBUG = (INDEX(KEYWRD,'DCART') .NE. 0)
FORCE = (INDEX(KEYWRD,'PREC')+INDEX(KEYWRD,'FORCE') .NE. 0)
ENDIF
NCELLS=(L1U-L1L+1)*(L2U-L2L+1)*(L3U-L3L+1)
DO 10 I=1,6
LSTOR2(I)=LSTOR1(I)
10 LSTOR1(I)=0
IOFSET=(NCELLS+1)/2
NUMTOT=NUMAT*NCELLS
DO 20 I=1,NUMTOT
DO 20 J=1,3
20 DXYZ(J,I)=0.D0
IF(ANADER) REWIND 2
DO 130 II=1,NUMAT
III=NCELLS*(II-1)+IOFSET
IM1=II
IF=NFIRST(II)
IM=NMIDLE(II)
IL=NLAST(II)
NDI(2)=NAT(II)
DO 30 I=1,3
30 CDI(I,2)=COORD(I,II)
DO 130 JJ=1,IM1
JJJ=NCELLS*(JJ-1)
C FORM DIATOMIC MATRICES
JF=NFIRST(JJ)
JM=NMIDLE(JJ)
JL=NLAST(JJ)
C GET FIRST ATOM
NDI(1)=NAT(JJ)
MAKEP=.TRUE.
DO 120 IK=K1L,K1U
DO 120 JK=K2L,K2U
DO 120 KL=K3L,K3U
JJJ=JJJ+1
* KKK=KKK-1
DO 40 L=1,3
40 CDI(L,1)=COORD(L,JJ)+TVEC(L,1)*IK+TVEC(L,2)*JK+TVEC
1(L,3)*KL
IF(.NOT. MAKEP) GOTO 90
MAKEP=.FALSE.
IJ=0
DO 50 I=JF,JL
K=I*(I-1)/2+JF-1
DO 50 J=JF,I
IJ=IJ+1
K=K+1
PADI(IJ)=PA(K)
PBDI(IJ)=PB(K)
50 PDI(IJ)=P(K)
C GET SECOND ATOM FIRST ATOM INTERSECTION
DO 80 I=IF,IL
L=I*(I-1)/2
K=L+JF-1
DO 60 J=JF,JL
IJ=IJ+1
K=K+1
PADI(IJ)=PA(K)
PBDI(IJ)=PB(K)
60 PDI(IJ)=P(K)
K=L+IF-1
DO 70 L=IF,I
K=K+1
IJ=IJ+1
PADI(IJ)=PA(K)
PBDI(IJ)=PB(K)
70 PDI(IJ)=P(K)
80 CONTINUE
90 CONTINUE
IF(II.EQ.JJ) GOTO 120
IF(ANADER)THEN
CALL ANALYT(PDI,PADI,PBDI,CDI,NDI,JF,JL,IF,IL
1, ENG)
DO 100 K=1,3
DXYZ(K,III)=DXYZ(K,III)-ENG(K)
100 DXYZ(K,JJJ)=DXYZ(K,JJJ)+ENG(K)
ELSE
IF( .NOT. FORCE) THEN
CDI(1,1)=CDI(1,1)+CHNGE2
CDI(2,1)=CDI(2,1)+CHNGE2
CDI(3,1)=CDI(3,1)+CHNGE2
CALL DHC(PDI,PADI,PBDI,CDI,NDI,JF,JM,JL,IF,IM
1,IL, AA,1)
ENDIF
DO 110 K=1,3
IF( FORCE )THEN
CDI(K,2)=CDI(K,2)-CHNGE2
CALL DHC(PDI,PADI,PBDI,CDI,NDI,JF,JM,JL,IF
1,IM,IL, AA,1)
ENDIF
CDI(K,2)=CDI(K,2)+CHNGE
CALL DHC(PDI,PADI,PBDI,CDI,NDI,JF,JM,JL,IF,IM
1,IL, EE,2)
CDI(K,2)=CDI(K,2)-CHNGE2
IF( .NOT. FORCE) CDI(K,2)=CDI(K,2)-CHNGE2
DERIV=(AA-EE)*23.061D0/CHNGE
DXYZ(K,III)=DXYZ(K,III)-DERIV
DXYZ(K,JJJ)=DXYZ(K,JJJ)+DERIV
110 CONTINUE
ENDIF
120 CONTINUE
130 CONTINUE
IF(NNHCO.NE.0)THEN
C
C NOW ADD IN MOLECULAR-MECHANICS CORRECTION TO THE H-N-C=O TORSION
C
DEL=1.D-8
DO 160 I=1,NNHCO
DO 150 J=1,4
DO 140 K=1,3
COORD(K,NHCO(J,I))=COORD(K,NHCO(J,I))-DEL
CALL DIHED(COORD,NHCO(1,I),NHCO(2,I),NHCO(3,I),NHCO(4,
1I),ANGLE)
REFH=HTYPE(ITYPE)*SIN(ANGLE)**2
COORD(K,NHCO(J,I))=COORD(K,NHCO(J,I))+DEL*2.D0
CALL DIHED(COORD,NHCO(1,I),NHCO(2,I),NHCO(3,I),NHCO(4,
1I),ANGLE)
COORD(K,NHCO(J,I))=COORD(K,NHCO(J,I))-DEL
HEAT=HTYPE(ITYPE)*SIN(ANGLE)**2
SUM=(REFH-HEAT)/(2.D0*DEL)
DXYZ(K,NHCO(J,I))=DXYZ(K,NHCO(J,I))-SUM
140 CONTINUE
150 CONTINUE
160 CONTINUE
ENDIF
C COSMO change A. Klamt
C analytic calculation of the gradient of the dielectric energy A.Klamt
IF (USEPS) CALL DIEGRD(COORD,DXYZ)
C DO 170 I=1,6
C 170 LSTOR1(I)=LSTOR2(I)
IF ( .NOT. DEBUG) RETURN
IW = 6
WRITE(IW,'(//10X,''CARTESIAN COORDINATE DERIVATIVES'',//3X,
1''NUMBER ATOM '',5X,''X'',12X,''Y'',12X,''Z'',/)')
IF(NCELLS.EQ.1)THEN
WRITE(IW,'(2I6,F13.6,2F13.6)')
1 (I,NAT(I),(DXYZ(J,I),J=1,3),I=1,NUMTOT)
ELSEIF(LARGE)THEN
WRITE(IW,'(2I6,F13.6,2F13.6)')
1 (I,NAT((I-1)/NCELLS+1),(DXYZ(J,I),J=1,3),I=1,NUMTOT)
ELSE
WRITE(IW,'(2I6,F13.6,2F13.6)')
1 (I,NAT((I-1)/NCELLS+1),(DXYZ(J,I)+DXYZ(J,I+1)+DXYZ(J,I+2)
2,J=1,3),I=1,NUMTOT,3)
ENDIF
IROT = 2
IF (ANADER) REWIND IROT
C end of COSMO (A. Klamt) changes
IF ( .NOT. DEBUG) RETURN
WRITE(6,'(//10X,''CARTESIAN COORDINATE DERIVATIVES'',//3X,
1''NUMBER ATOM '',5X,''X'',12X,''Y'',12X,''Z'',/)')
IF(NCELLS.EQ.1)THEN
WRITE(6,'(2I6,F13.6,2F13.6)')
1 (I,NAT(I),(DXYZ(J,I),J=1,3),I=1,NUMTOT)
ELSEIF(LARGE)THEN
WRITE(6,'(2I6,F13.6,2F13.6)')
1 (I,NAT((I-1)/NCELLS+1),(DXYZ(J,I),J=1,3),I=1,NUMTOT)
ELSE
WRITE(6,'(2I6,F13.6,2F13.6)')
1 (I,NAT((I-1)/NCELLS+1),(DXYZ(J,I)+DXYZ(J,I+1)+DXYZ(J,I+2)
2,J=1,3),I=1,NUMTOT,3)
ENDIF
IF (ANADER) REWIND 2
RETURN
END
SUBROUTINE DHC (P,PA,PB,XI,NAT,IF,IM,IL,JF,JM,JL,DENER,MODE)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION P(*), PA(*), PB(*)
DIMENSION XI(3,*),NFIRST(2),NMIDLE(2),NLAST(2),NAT(*)
C***********************************************************************
C
C DHC CALCULATES THE ENERGY CONTRIBUTIONS FROM THOSE PAIRS OF ATOMS
C THAT HAVE BEEN MOVED BY SUBROUTINE DERIV.
C
C***********************************************************************
COMMON /KEYWRD/ KEYWRD
1 /ONELEC/ USS(107),UPP(107),UDD(107)
COMMON /EULER / TVEC(3,3), ID
COMMON /NUMCAL/ NUMCAL
SAVE ICALCN, WLIM, UHF
CHARACTER*241 KEYWRD
LOGICAL UHF, CUTOFF
DIMENSION H(171), SHMAT(9,9), F(171),
1 WJ(100), E1B(10), E2A(10), WK(100), W(100),
2 WJS(100), WKS(100)
DOUBLE PRECISION WJS, WKS
DATA ICALCN /0/
IF( ICALCN.NE.NUMCAL) THEN
ICALCN=NUMCAL
WLIM=4.D0
IF(ID.EQ.0)WLIM=0.D0
UHF=(INDEX(KEYWRD,'UHF') .NE. 0)
ENDIF
NFIRST(1)=1
NMIDLE(1)=IM-IF+1
NLAST(1)=IL-IF+1
NFIRST(2)=NLAST(1)+1
NMIDLE(2)=NFIRST(2)+JM-JF
NLAST(2)=NFIRST(2)+JL-JF
LINEAR=(NLAST(2)*(NLAST(2)+1))/2
DO 10 I=1,LINEAR
F(I)=0.D0
10 H(I)=0.0D00
DO 20 I=1,LINEAR
20 F(I)=H(I)
JA=NFIRST(2)
JB=NLAST(2)
JC=NMIDLE(2)
IA=NFIRST(1)
IB=NLAST(1)
IC=NMIDLE(1)
J=2
I=1
NJ=NAT(2)
NI=NAT(1)
CALL H1ELEC(NI,NJ,XI(1,1),XI(1,2),SHMAT)
IF(NAT(1).EQ.102.OR.NAT(2).EQ.102) THEN
K=(JB*(JB+1))/2
DO 30 J=1,K
30 H(J)=0.D0
ELSE
J1=0
DO 40 J=JA,JB
JJ=J*(J-1)/2
J1=J1+1
I1=0
DO 40 I=IA,IB
JJ=JJ+1
I1=I1+1
H(JJ)=SHMAT(I1,J1)
F(JJ)=SHMAT(I1,J1)
40 CONTINUE
ENDIF
KR=1
IF(ID.EQ.0)THEN
CALL ROTATE (NJ,NI,XI(1,2),XI(1,1),W(KR),KR,E2A,E1B,ENUCLR,100.
1D0)
ELSE
CALL SOLROT (NJ,NI,XI(1,2),XI(1,1),WJ,WK,KR,E2A,E1B,ENUCLR,100.
1D0)
IF(MODE.EQ.1)CUTOFF=(WJ(1).LT.WLIM)
IF(CUTOFF)THEN
DO 50 I=1,KR-1
50 WK(I)=0.D0
ENDIF
DO 60 I=1,KR-1
WJS(I)=WJ(I)
WKS(I)=WK(I)
60 CONTINUE
ENDIF
C
C * ENUCLR IS SUMMED OVER CORE-CORE REPULSION INTEGRALS.
C
I2=0
DO 70 I1=IA,IC
II=I1*(I1-1)/2+IA-1
DO 70 J1=IA,I1
II=II+1
I2=I2+1
H(II)=H(II)+E1B(I2)
70 F(II)=F(II)+E1B(I2)
DO 80 I1=IC+1,IB
II=(I1*(I1+1))/2
F(II)=F(II)+E1B(1)
80 H(II)=H(II)+E1B(1)
I2=0
DO 90 I1=JA,JC
II=I1*(I1-1)/2+JA-1
DO 90 J1=JA,I1
II=II+1
I2=I2+1
H(II)=H(II)+E2A(I2)
90 F(II)=F(II)+E2A(I2)
DO 100 I1=JC+1,JB
II=(I1*(I1+1))/2
F(II)=F(II)+E2A(1)
100 H(II)=H(II)+E2A(1)
CALL FOCK2(F,P,PA,W, WJS, WKS,2,NAT,NFIRST,NMIDLE,NLAST)
EE=HELECT(NLAST(2),PA,H,F)
IF( UHF ) THEN
DO 110 I=1,LINEAR
110 F(I)=H(I)
CALL FOCK2(F,P,PB,W, WJS, WKS,2,NAT,NFIRST,NMIDLE,NLAST)
EE=EE+HELECT(NLAST(2),PB,H,F)
ELSE
EE=EE*2.D0
ENDIF
DENER=EE+ENUCLR
RETURN
C
END