-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFFT.java
242 lines (206 loc) · 7.31 KB
/
FFT.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/******************************************************************************
* Compilation: javac FFT.java
* Execution: java FFT n
* Dependencies: Complex.java
*
* Compute the FFT and inverse FFT of a length n complex sequence
* using the radix 2 Cooley-Tukey algorithm.
* Bare bones implementation that runs in O(n log n) time and O(n)
* space. Our goal is to optimize the clarity of the code, rather
* than performance.
*
* This implementation uses the primitive root of unity w = e^(-2 pi i / n).
* Some resources use w = e^(2 pi i / n).
*
* Reference: https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/05DivideAndConquerII.pdf
*
* Limitations
* -----------
* - assumes n is a power of 2
*
* - not the most memory efficient algorithm (because it uses
* an object type for representing complex numbers and because
* it re-allocates memory for the subarray, instead of doing
* in-place or reusing a single temporary array)
*
* For an in-place radix 2 Cooley-Tukey FFT, see
* https://introcs.cs.princeton.edu/java/97data/InplaceFFT.java.html
*
******************************************************************************/
//import princeton.Complex;
public class FFT {
// compute the FFT of x[], assuming its length n is a power of 2
public static Complex[] fft(Complex[] x) {
int n = x.length;
// base case
if (n == 1) return new Complex[] { x[0] };
// radix 2 Cooley-Tukey FFT
if (n % 2 != 0) {
throw new IllegalArgumentException("n is not a power of 2");
}
// compute FFT of even terms
Complex[] even = new Complex[n/2];
for (int k = 0; k < n/2; k++) {
even[k] = x[2*k];
}
Complex[] evenFFT = fft(even);
// compute FFT of odd terms
Complex[] odd = even; // reuse the array (to avoid n log n space)
for (int k = 0; k < n/2; k++) {
odd[k] = x[2*k + 1];
}
Complex[] oddFFT = fft(odd);
// combine
Complex[] y = new Complex[n];
for (int k = 0; k < n/2; k++) {
double kth = -2 * k * Math.PI / n;
Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = evenFFT[k].plus (wk.times(oddFFT[k]));
y[k + n/2] = evenFFT[k].minus(wk.times(oddFFT[k]));
}
return y;
}
// compute the inverse FFT of x[], assuming its length n is a power of 2
public static Complex[] ifft(Complex[] x) {
int n = x.length;
Complex[] y = new Complex[n];
// take conjugate
for (int i = 0; i < n; i++) {
y[i] = x[i].conjugate();
}
// compute forward FFT
y = fft(y);
// take conjugate again
for (int i = 0; i < n; i++) {
y[i] = y[i].conjugate();
}
// divide by n
for (int i = 0; i < n; i++) {
y[i] = y[i].scale(1.0 / n);
}
return y;
}
// compute the circular convolution of x and y
public static Complex[] cconvolve(Complex[] x, Complex[] y) {
// should probably pad x and y with 0s so that they have same length
// and are powers of 2
if (x.length != y.length) {
throw new IllegalArgumentException("Dimensions don't agree");
}
int n = x.length;
// compute FFT of each sequence
Complex[] a = fft(x);
Complex[] b = fft(y);
// point-wise multiply
Complex[] c = new Complex[n];
for (int i = 0; i < n; i++) {
c[i] = a[i].times(b[i]);
}
// compute inverse FFT
return ifft(c);
}
// compute the linear convolution of x and y
public static Complex[] convolve(Complex[] x, Complex[] y) {
Complex ZERO = new Complex(0, 0);
Complex[] a = new Complex[2*x.length];
for (int i = 0; i < x.length; i++) a[i] = x[i];
for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;
Complex[] b = new Complex[2*y.length];
for (int i = 0; i < y.length; i++) b[i] = y[i];
for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;
return cconvolve(a, b);
}
// compute the DFT of x[] via brute force (n^2 time)
public static Complex[] dft(Complex[] x) {
int n = x.length;
Complex ZERO = new Complex(0, 0);
Complex[] y = new Complex[n];
for (int k = 0; k < n; k++) {
y[k] = ZERO;
for (int j = 0; j < n; j++) {
int power = (k * j) % n;
double kth = -2 * power * Math.PI / n;
Complex wkj = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = y[k].plus(x[j].times(wkj));
}
}
return y;
}
// display an array of Complex numbers to standard output
public static void show(Complex[] x, String title) {
System.out.println(title);
System.out.println("-------------------");
for (int i = 0; i < x.length; i++) {
System.out.println(x[i]);
}
System.out.println();
}
/***************************************************************************
* Test client and sample execution
*
* % java FFT 4
* x
* -------------------
* -0.03480425839330703
* 0.07910192950176387
* 0.7233322451735928
* 0.1659819820667019
*
* y = fft(x)
* -------------------
* 0.9336118983487516
* -0.7581365035668999 + 0.08688005256493803i
* 0.44344407521182005
* -0.7581365035668999 - 0.08688005256493803i
*
* z = ifft(y)
* -------------------
* -0.03480425839330703
* 0.07910192950176387 + 2.6599344570851287E-18i
* 0.7233322451735928
* 0.1659819820667019 - 2.6599344570851287E-18i
*
* c = cconvolve(x, x)
* -------------------
* 0.5506798633981853
* 0.23461407150576394 - 4.033186818023279E-18i
* -0.016542951108772352
* 0.10288019294318276 + 4.033186818023279E-18i
*
* d = convolve(x, x)
* -------------------
* 0.001211336402308083 - 3.122502256758253E-17i
* -0.005506167987577068 - 5.058885073636224E-17i
* -0.044092969479563274 + 2.1934338938072244E-18i
* 0.10288019294318276 - 3.6147323062478115E-17i
* 0.5494685269958772 + 3.122502256758253E-17i
* 0.240120239493341 + 4.655566391833896E-17i
* 0.02755001837079092 - 2.1934338938072244E-18i
* 4.01805098805014E-17i
*
***************************************************************************/
public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
Complex[] x = new Complex[n];
// original data
for (int i = 0; i < n; i++) {
x[i] = new Complex(i, 0);
}
show(x, "x");
// FFT of original data
Complex[] y = fft(x);
show(y, "y = fft(x)");
// FFT of original data
Complex[] y2 = dft(x);
show(y2, "y2 = dft(x)");
// take inverse FFT
Complex[] z = ifft(y);
show(z, "z = ifft(y)");
// circular convolution of x with itself
Complex[] c = cconvolve(x, x);
show(c, "c = cconvolve(x, x)");
// linear convolution of x with itself
Complex[] d = convolve(x, x);
show(d, "d = convolve(x, x)");
}
}