-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathsem.lhs
143 lines (119 loc) · 5.18 KB
/
sem.lhs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
= LC to CL, Semantically =
Compilers abandoned bracket abstraction long ago in favour of generating custom
combinators for each particular program, known as _supercombinators_.
We'll buck this trend, partly for notoriety, but also for novelty:
http://okmij.org/ftp/tagless-final/ski.pdf[a bracket abstraction algorithm
by Oleg Kiselyov] breathes new life into the old approach.
Rather than treating lambda terms as a syntax to be rewritten as combinators,
Kiselyov defines the meaning of a lambda term using combinators. The formal
semantics can be viewed as a bracket abstraction algorithm.
Much of our previous compiler remains the same. We have standard definitions:
------------------------------------------------------------------------
pair x y f = f x y;
just x f g = g x;
foldr = @Y \r c n l -> l n (\h t -> c h(r c n t));
lsteq = @Y \r xs ys a b -> xs (ys a (\u u -> b)) (\x xt -> ys b (\y yt -> x(y @=) (r xt yt a b) b));
------------------------------------------------------------------------
Parser combinators library:
------------------------------------------------------------------------
pure x inp = just (pair x inp);
bind f m = m @K (\x -> x f);
ap x y = \inp -> bind (\a t -> bind (\b u -> pure (a b) u) (y t)) (x inp);
fmap f x = ap (pure f) x;
alt x y = \inp -> (x inp) (y inp) just;
liftaa f x y = ap (fmap f x) y;
many = @Y \r p -> alt (liftaa @: p (r p)) (pure @K);
some p = liftaa @: p (many p);
liftki = liftaa (@K @I);
liftk = liftaa @K;
sat f inp = inp @K (\h t -> f h (pure h t) @K);
char c = sat (\x -> x(c @=));
------------------------------------------------------------------------
Scott encoding of a data structure we use to hold lambda terms:
------------------------------------------------------------------------
-- data LC = R (String -> String) | V String | A LC LC | L String LC
lcr s = \a b c d -> a s;
lcv v = \a b c d -> b v;
lca x y = \a b c d -> c x y;
lcl x y = \a b c d -> d x y;
------------------------------------------------------------------------
Parser:
------------------------------------------------------------------------
com = liftki (char #-) (liftki (char #-) (liftki (many (sat (\c -> @C (c(#
@=))))) (char #
)));
sp = many (alt (char # ) (alt (char #
) com));
spc f = liftk f sp;
spch = @B spc char;
var = spc ( some (sat (\x -> (#z(x @L)) (x(#a @L)) (@K @I) )));
anyone = fmap (@:) (spc (sat (@K @K)));
pre = ap (alt (fmap (@K @I) (char #@)) (fmap (@B @B @:) (char ##))) anyone;
lam r = liftki (spch #\) (liftaa (@C (foldr lcl)) (some var) (liftki (char #-) (liftki (spch #>) r)));
atom r = alt (fmap lcv var) (alt (liftki (spch #() (liftk r (spch #)))) (alt (fmap lcr pre) (lam r)));
apps = @Y \f r -> alt (liftaa @T (atom r) (fmap (\vs v x -> vs (lca x v)) (f r))) (pure @I);
expr = @Y \r -> liftaa @T (atom r) (apps r);
def = liftaa pair var (liftaa (@C (foldr lcl)) (many var) (liftki (spch #=) expr));
program = liftki sp (some (liftk def (spch #;)));
------------------------------------------------------------------------
Finally, something new; conversion to De Bruijn notation:
------------------------------------------------------------------------
-- data DB = Ze | Su DB | Pass LC | La DB | App DB DB
ze = \ a b c d e -> a;
su = \x a b c d e -> b x;
pass = \x a b c d e -> c x;
la = \x a b c d e -> d x;
app = \x y a b c d e -> e x y;
debruijn = @Y (\r n e -> e
(\s -> pass (lcr s))
(\v -> foldr (\h m -> lsteq h v ze (su m)) (pass (lcv v)) n)
(\x y -> app (r n x) (r n y))
(\s t -> la (r (@: s n) t))
);
------------------------------------------------------------------------
And Kiselyov's bracket abstraction algorithm from Section 4 of the paper:
------------------------------------------------------------------------
closed = \t a b c -> a t;
need = \x a b c -> b x;
weak = \x a b c -> c x;
lclo = \r d y -> y
(\dd -> closed (lca d dd))
(\e -> need (r (closed (lca (lcr (@:#B@K)) d)) e))
(\e -> weak (r (closed d) e))
;
lnee = \r e y -> y
(\d -> need (r (closed (lca (lcr (@:#R@K)) d)) e))
(\ee -> need (r (r (closed (lcr (@:#S@K))) e) ee))
(\ee -> need (r (r (closed (lcr (@:#C@K))) e) ee))
;
lwea = \r e y -> y
(\d -> weak (r e (closed d)))
(\ee -> need (r (r (closed (lcr (@:#B@K))) e) ee))
(\ee -> weak (r e ee))
;
babsa = @Y (\r x y -> x
(\d -> lclo r d y)
(\e -> lnee r e y)
(\e -> lwea r e y)
);
babs = @Y (\r t -> t
(need (closed (lcr (@:#I@K))))
(@B weak r)
closed
(\t -> r t
(\d -> closed (lca (lcr (@:#K@K)) d))
@I
(babsa (closed (lcr (@:#K@K)))))
(\x y -> babsa (r x) (r y))
);
nolam x = babs (debruijn @K x) @I @? @?;
------------------------------------------------------------------------
That leaves the code generator and the main function tying everything
together:
------------------------------------------------------------------------
rank ds v = foldr (\d t -> lsteq v (d @K) (\n -> @B (@:#@) (@:n)) (@B t \n -> #0(#1 @-)(n @+))) @? ds # ;
shows f = @Y \r t -> t @I f (\x y -> @B (@B (@:#`) (r x)) (r y)) @?;
dump tab = foldr (\h t -> shows (rank tab) (nolam (h (@K @I))) (@:#;t)) @K tab;
main s = program s (@:#?@K) (@B dump (@T @K));
------------------------------------------------------------------------
The grammar is identical, but the generated code is far smaller.