-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathfixity.hs
233 lines (209 loc) · 9.28 KB
/
fixity.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
------------------------------------------------------------------------
-- Supports infix declarations.
--
-- All infix declarations must precede the definitions.
--
-- Supports let expressions.
------------------------------------------------------------------------
data Bool = True | False;
data Maybe a = Nothing | Just a;
ife a b c = case a of { True -> b ; False -> c };
not a = case a of { True -> False; False -> True };
(.) f g x = f (g x);
(||) f g = ife f True g;
(&&) f g = ife f g False;
flst xs n c = case xs of { [] -> n; (:) h t -> c h t };
lstEq xs ys = case xs of
{ [] -> flst ys True (\h t -> False)
; (:) x xt -> flst ys False (\y yt -> ife (x == y) (lstEq xt yt) False)
};
id x = x;
flip f x y = f y x;
(&) x f = f x;
foldr c n l = flst l n (\h t -> c h(foldr c n t));
foldl = \f a bs -> foldr (\b g x -> g (f x b)) (\x -> x) bs a;
undefined = undefined;
foldl1 f bs = flst bs undefined (\h t -> foldl f h t);
elem k xs = foldr (\x t -> ife (x == k) True t) False xs;
find f xs = foldr (\x t -> ife (f x) (Just x) t) Nothing xs;
(++) = flip (foldr (:));
concat = foldr (++) [];
wrap c = c:[];
fst p = case p of { (,) x y -> x };
snd p = case p of { (,) x y -> y };
uncurry f p = case p of { (,) x y -> f x y };
second f = uncurry \x y -> (x, f y);
maybe n j m = case m of { Nothing -> n; Just x -> j x };
pure x = \inp -> Just (x, inp);
bind f = maybe Nothing (uncurry f);
ap x y = \inp -> bind (\a t -> bind (\b u -> pure (a b) u) (y t)) (x inp);
(<*>) = ap;
fmap f x = ap (pure f) x;
(<$>) = fmap;
(>>=) x y = \inp -> bind (\a t -> y a t) (x inp);
(<|>) x y = \inp -> case x inp of
{ Nothing -> y inp
; Just x -> Just x
};
liftA2 f x y = ap (fmap f x) y;
(*>) = liftA2 \x y -> y;
(<*) = liftA2 \x y -> x;
many p = liftA2 (:) p (many p) <|> pure [];
some p = liftA2 (:) p (many p);
sepBy1 p sep = liftA2 (:) p (many (sep *> p));
sepBy p sep = sepBy1 p sep <|> pure [];
between x y p = x *> (p <* y);
satHelper f = \h t -> ife (f h) (pure h t) Nothing;
sat f inp = flst inp Nothing (satHelper f);
char c = sat \x -> x == c;
com = char '-' *> char '-' <* many (sat \c -> not (c == '\n'));
sp = many ((wrap <$> (sat (\c -> (c == ' ') || (c == '\n')))) <|> com);
spc f = f <* sp;
spch = spc . char;
wantWith pred f inp = bind (satHelper pred) (f inp);
want f s inp = wantWith (lstEq s) f inp;
paren = between (spch '(') (spch ')');
small = sat \x -> ((x <= 'z') && ('a' <= x)) || (x == '_');
large = sat \x -> (x <= 'Z') && ('A' <= x);
digit = sat \x -> (x <= '9') && ('0' <= x);
varLex = liftA2 (:) small (many (small <|> large <|> digit <|> char '\''));
conId = spc (liftA2 (:) large (many (small <|> large <|> digit <|> char '\'')));
keyword s = spc (want varLex s);
varId = spc (wantWith (not . lstEq "of") varLex);
opLex = some (sat (\c -> elem c ":!#$%&*+./<=>?@\\^|-~"));
op = spc opLex <|> between (spch '`') (spch '`') varId;
var = varId <|> paren (spc opLex);
data Ast = R String | V String | A Ast Ast | L String Ast;
lam r = spch '\\' *> liftA2 (flip (foldr L)) (some varId) (char '-' *> (spch '>' *> r));
listify = fmap (foldr (\h t -> A (A (R ":") h) t) (R "K"));
escChar = char '\\' *> ((sat (\c -> elem c "'\"\\")) <|> ((\c -> '\n') <$> char 'n'));
litOne delim = fmap (\c -> R ('#':(wrap c))) (escChar <|> sat (\c -> not (c == delim)));
litInt = R . ('(':) . (++ ")") <$> spc (some digit);
litStr = listify (between (char '"') (spch '"') (many (litOne '"')));
litChar = between (char '\'') (spch '\'') (litOne '\'');
lit = litStr <|> litChar <|> litInt;
sqLst r = listify (between (spch '[') (spch ']') (sepBy r (spch ',')));
alt r = (conId <|> var <|> (undefined <$> sqLst r) <|> (undefined <$> paren (spch ','))) *> (flip (foldr L) <$> many varId <*> (want op "->" *> r));
braceSep f = between (spch '{') (spch '}') (sepBy f (spch ';'));
alts r = braceSep (alt r);
altize h t = foldl A h t;
cas r = altize <$> between (keyword "case") (keyword "of") r <*> alts r;
thenComma r = spch ',' *> (((\x y -> A (A (V ",") y) x) <$> r) <|> pure (A (V ",")));
parenExpr r = (&) <$> r <*> (((\v a -> A (V v) a) <$> op) <|> thenComma r <|> pure id);
rightSect r = ((\v a -> A (A (R "C") (V v)) a) <$> (op <|> (wrap <$> spch ','))) <*> r;
section r = paren (parenExpr r <|> rightSect r);
isFree v expr = case expr of
{ R s -> False
; V s -> lstEq s v
; A x y -> isFree v x || isFree v y
; L w t -> not ((lstEq v w) || not (isFree v t))
};
maybeFix s x = (s, ife (isFree s x) (A (R "Y") (L s x)) x);
def r = liftA2 maybeFix var (liftA2 (flip (foldr L)) (many varId) (spch '=' *> r));
addLets ls x = foldr (\p t -> uncurry (\name def -> A (L name t) def) p) x ls;
letin r = addLets <$> between (keyword "let") (keyword "in") (braceSep (def r)) <*> r;
atom r = letin r <|> sqLst r <|> section r <|> cas r <|> lam r <|> (paren (spch ',') *> pure (V ",")) <|> fmap V (conId <|> var) <|> lit;
aexp r = fmap (foldl1 A) (some (atom r));
fix f = f (fix f);
lstLookup s = foldr (\h t -> uncurry (\k v -> ife (lstEq s k) (Just v) t) h) Nothing;
data Assoc = NAssoc | LAssoc | RAssoc;
eqAssoc x y = case x of
{ NAssoc -> case y of { NAssoc -> True ; LAssoc -> False ; RAssoc -> False }
; LAssoc -> case y of { NAssoc -> False ; LAssoc -> True ; RAssoc -> False }
; RAssoc -> case y of { NAssoc -> False ; LAssoc -> False ; RAssoc -> True }
};
precOf s precTab = maybe 9 fst (lstLookup s precTab);
assocOf s precTab = maybe LAssoc snd (lstLookup s precTab);
opWithPrec precTab n = wantWith (\s -> n == precOf s precTab) op;
opFold precTab e xs = case xs of
{ [] -> e
; (:) x xt -> case find (\y -> not (eqAssoc (assocOf (fst x) precTab) (assocOf (fst y) precTab))) xt of
{ Nothing -> case assocOf (fst x) precTab of
{ NAssoc -> case xt of
{ [] -> uncurry (\op y -> A (A (V op) e) y) x
; (:) y yt -> undefined
}
; LAssoc -> foldl (\a b -> uncurry (\op y -> A (A (V op) a) y) b) e xs
; RAssoc -> (foldr (\a b -> uncurry (\op y -> \e -> A (A (V op) e) (b y)) a) id xs) e
}
; Just y -> undefined
}
};
expr precTab = fix \r n -> ife (n <= 9) (liftA2 (opFold precTab) (r (succ n)) (many (liftA2 (\a b -> (a,b)) (opWithPrec precTab n) (r (succ n))))) (aexp (r 0));
aType = (undefined <$> paren (some aType <* ((spch ',' *> some aType) <|> pure []) )) <|> (undefined <$> (conId <|> varId)) <|> (undefined <$> between (spch '[') (spch ']') aType);
map = flip (foldr . ((.) (:))) [];
dataDefs cs = map (\cas -> uncurry (\c as -> (c, foldr L (foldl (\a b -> A a (V b)) (V c) as) (as ++ map fst cs))) cas) cs;
dataArgs = (snd . foldl (\p u -> uncurry (\s l -> ('x':s, s : l)) p) ("x", [])) <$> many aType;
adt = between (keyword "data") (spch '=') (conId *> many varId) *> (dataDefs <$> (sepBy ((,) <$> conId <*> dataArgs) (spch '|')));
prec = (\c -> ord c - ord '0') <$> spc digit;
fixityList a n os = map (\o -> (o, (n, a))) os;
fixityDecl kw a = between (keyword kw) (spch ';') (fixityList a <$> prec <*> sepBy op (spch ','));
fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc;
funs precTab = concat <$> sepBy (adt <|> (wrap <$> def (expr precTab 0))) (spch ';');
program = sp *> (((":", (5, RAssoc)):) . concat <$> many fixity) >>= funs;
data LC = Ze | Su LC | Pass Ast | La LC | App LC LC;
debruijn n e = case e of
{ R s -> Pass (R s)
; V v -> foldr (\h m -> ife (lstEq h v) Ze (Su m)) (Pass (V v)) n
; A x y -> App (debruijn n x) (debruijn n y)
; L s t -> La (debruijn (s:n) t)
};
data Sem = Defer | Closed Ast | Need Sem | Weak Sem;
ldef = \r y -> case y of
{ Defer -> Need (Closed (A (A (R "S") (R "I")) (R "I")))
; Closed d -> Need (Closed (A (R "T") d))
; Need e -> Need (r (Closed (A (R "S") (R "I"))) e)
; Weak e -> Need (r (Closed (R "T")) e)
};
lclo = \r d y -> case y of
{ Defer -> Need (Closed d)
; Closed dd -> Closed (A d dd)
; Need e -> Need (r (Closed (A (R "B") d)) e)
; Weak e -> Weak (r (Closed d) e)
};
lnee = \r e y -> case y of
{ Defer -> Need (r (r (Closed (R "S")) e) (Closed (R "I")))
; Closed d -> Need (r (Closed (A (R "R") d)) e)
; Need ee -> Need (r (r (Closed (R "S")) e) ee)
; Weak ee -> Need (r (r (Closed (R "C")) e) ee)
};
lwea = \r e y -> case y of
{ Defer -> Need e
; Closed d -> Weak (r e (Closed d))
; Need ee -> Need (r (r (Closed (R "B")) e) ee)
; Weak ee -> Weak (r e ee)
};
babsa x y = case x of
{ Defer -> ldef babsa y
; Closed d -> lclo babsa d y
; Need e -> lnee babsa e y
; Weak e -> lwea babsa e y
};
babs t = case t of
{ Ze -> Defer
; Su x -> Weak (babs x)
; Pass s -> Closed s
; La t -> case babs t of
{ Defer -> Closed (R "I")
; Closed d -> Closed (A (R "K") d)
; Need e -> e
; Weak e -> babsa (Closed (R "K")) e
}
; App x y -> babsa (babs x) (babs y)
};
nolam x = case babs (debruijn [] x) of
{ Defer -> undefined
; Closed d -> d
; Need e -> undefined
; Weak e -> undefined
};
insPrim = (map (second R) ([(":", ":"), (",", "``BCT"), ("chr", "I"), ("ord", "I"), ("succ", "`T`(1)+")] ++ map (second ("``BT`T" ++)) [("<=", "L"), ("==", "="), ("-", "-"), ("/", "/"), ("%", "%"), ("+", "+"), ("*", "*")]) ++);
rank ds v = foldr (\d t -> ife (lstEq v (fst d)) (\n -> ('@':) . (n:)) (t . (\n -> succ n))) undefined ds ' ';
shows f t = case t of
{ R s -> (s++)
; V v -> f v
; A x y -> ('`':) . shows f x . shows f y
; L w t -> undefined
};
dump tab = foldr (\h t -> shows (rank tab) (nolam (snd h)) (';':t)) "" tab;
compile s = maybe "?" (dump . insPrim . fst) (program s);