-
-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathprocess_clip.py
321 lines (277 loc) · 9.82 KB
/
process_clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import csv
import json
import logging
import multiprocessing as mp
import os
import subprocess as sp
import sys
import click
import cv2
import numpy as np
sys.path.append("/workspace/frigate")
from frigate.config import FrigateConfig # noqa: E402
from frigate.motion import MotionDetector # noqa: E402
from frigate.object_detection import LocalObjectDetector # noqa: E402
from frigate.object_processing import CameraState # noqa: E402
from frigate.track.centroid_tracker import CentroidTracker # noqa: E402
from frigate.util import ( # noqa: E402
EventsPerSecond,
SharedMemoryFrameManager,
draw_box_with_label,
)
from frigate.video import ( # noqa: E402
capture_frames,
process_frames,
start_or_restart_ffmpeg,
)
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
def get_frame_shape(source):
ffprobe_cmd = [
"ffprobe",
"-v",
"panic",
"-show_error",
"-show_streams",
"-of",
"json",
source,
]
p = sp.run(ffprobe_cmd, capture_output=True)
info = json.loads(p.stdout)
video_info = [s for s in info["streams"] if s["codec_type"] == "video"][0]
if video_info["height"] != 0 and video_info["width"] != 0:
return (video_info["height"], video_info["width"], 3)
# fallback to using opencv if ffprobe didn't succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
class ProcessClip:
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
self.clip_path = clip_path
self.camera_name = "camera"
self.config = config
self.camera_config = self.config.cameras["camera"]
self.frame_shape = self.camera_config.frame_shape
self.ffmpeg_cmd = [
c["cmd"] for c in self.camera_config.ffmpeg_cmds if "detect" in c["roles"]
][0]
self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
current_frame = mp.Value("d", 0.0)
frame_size = (
self.camera_config.frame_shape_yuv[0]
* self.camera_config.frame_shape_yuv[1]
)
ffmpeg_process = start_or_restart_ffmpeg(
self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size
)
capture_frames(
ffmpeg_process,
self.camera_name,
self.camera_config.frame_shape_yuv,
self.frame_manager,
self.frame_queue,
fps,
skipped_fps,
current_frame,
)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(
self, object_detector, objects_to_track=["person"], object_filters={}
):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(self.frame_shape, self.camera_config.motion)
motion_detector.save_images = False
object_tracker = CentroidTracker(self.camera_config.detect)
process_info = {
"process_fps": mp.Value("d", 0.0),
"detection_fps": mp.Value("d", 0.0),
"detection_frame": mp.Value("d", 0.0),
}
detection_enabled = mp.Value("d", 1)
motion_enabled = mp.Value("d", True)
stop_event = mp.Event()
process_frames(
self.camera_name,
self.frame_queue,
self.frame_shape,
self.config.model,
self.camera_config.detect,
self.frame_manager,
motion_detector,
object_detector,
object_tracker,
self.detected_objects_queue,
process_info,
objects_to_track,
object_filters,
detection_enabled,
motion_enabled,
stop_event,
exit_on_empty=True,
)
def stats(self, debug_path=None):
total_regions = 0
total_motion_boxes = 0
object_ids = set()
total_frames = 0
while not self.detected_objects_queue.empty():
(
camera_name,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = self.detected_objects_queue.get()
if debug_path:
self.save_debug_frame(
debug_path, frame_time, current_tracked_objects.values()
)
self.camera_state.update(
frame_time, current_tracked_objects, motion_boxes, regions
)
total_regions += len(regions)
total_motion_boxes += len(motion_boxes)
top_score = 0
for id, obj in self.camera_state.tracked_objects.items():
if not obj.false_positive:
object_ids.add(id)
if obj.top_score > top_score:
top_score = obj.top_score
total_frames += 1
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
"total_regions": total_regions,
"total_motion_boxes": total_motion_boxes,
"true_positive_objects": len(object_ids),
"total_frames": total_frames,
"top_score": top_score,
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = cv2.cvtColor(
self.frame_manager.get(
f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv
),
cv2.COLOR_YUV2BGR_I420,
)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0, 0, 175)
if obj["frame_time"] != frame_time:
thickness = 1
color = (255, 0, 0)
else:
color = (255, 255, 0)
# draw the bounding boxes on the frame
box = obj["box"]
draw_box_with_label(
current_frame,
box[0],
box[1],
box[2],
box[3],
obj["id"],
f"{int(obj['score'] * 100)}% {int(obj['area'])}",
thickness=thickness,
color=color,
)
# draw the regions on the frame
region = obj["region"]
draw_box_with_label(
current_frame,
region[0],
region[1],
region[2],
region[3],
"region",
"",
thickness=1,
color=(0, 255, 0),
)
cv2.imwrite(
f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time * 1000000)}.jpg",
current_frame,
)
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default="person", help="Label name to detect.")
@click.option("-o", "--output", default=None, help="File to save csv of data")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, output, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
clips.append(path)
json_config = {
"mqtt": {"enabled": False},
"detectors": {"coral": {"type": "edgetpu", "device": "usb"}},
"cameras": {
"camera": {
"ffmpeg": {
"inputs": [
{
"path": "path.mp4",
"global_args": "-hide_banner",
"input_args": "-loglevel info",
"roles": ["detect"],
}
]
},
"record": {"enabled": False},
}
},
}
object_detector = LocalObjectDetector(labels="/labelmap.txt")
results = []
for c in clips:
logger.info(c)
frame_shape = get_frame_shape(c)
json_config["cameras"]["camera"]["detect"] = {
"height": frame_shape[0],
"width": frame_shape[1],
}
json_config["cameras"]["camera"]["ffmpeg"]["inputs"][0]["path"] = c
frigate_config = FrigateConfig(**json_config)
process_clip = ProcessClip(c, frame_shape, frigate_config)
process_clip.load_frames()
process_clip.process_frames(object_detector, objects_to_track=[label])
results.append((c, process_clip.stats(debug_path)))
positive_count = sum(
1 for result in results if result[1]["true_positive_objects"] > 0
)
print(
f"Objects were detected in {positive_count}/{len(results)}({positive_count / len(results) * 100:.2f}%) clip(s)."
)
if output:
# now we will open a file for writing
data_file = open(output, "w")
# create the csv writer object
csv_writer = csv.writer(data_file)
# Counter variable used for writing
# headers to the CSV file
count = 0
for result in results:
if count == 0:
# Writing headers of CSV file
header = ["file"] + list(result[1].keys())
csv_writer.writerow(header)
count += 1
# Writing data of CSV file
csv_writer.writerow([result[0]] + list(result[1].values()))
data_file.close()
if __name__ == "__main__":
process()