-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkitti_score.py
32 lines (25 loc) · 1.06 KB
/
kitti_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
### this script measures the KITTI submission scores
# by comparing the results with another top submission
###
import os
import sys
import numpy as np
from PIL import Image
submit_folder = sys.argv[1]
baseline_folder = sys.argv[2]
top_error = []
bottom_error = []
global_error = []
for fn in os.listdir(submit_folder):
submit_disp = np.array(Image.open(os.path.join(submit_folder, fn)))
submit_disp = submit_disp.astype(np.float32) / 256.
baseline_disp = np.array(Image.open(os.path.join(baseline_folder, fn)))
baseline_disp = baseline_disp.astype(np.float32) / 256.
top_error.append(np.mean(np.abs(submit_disp[:128, :] - baseline_disp[:128, :])))
bottom_error.append(np.mean(np.abs(submit_disp[128:, :] - baseline_disp[128:, :])))
global_error.append(np.mean(np.abs(submit_disp - baseline_disp)))
print(top_error[-1], bottom_error[-1], global_error[-1])
print('%s vs %s' % (submit_folder, baseline_folder))
print('top error:', np.mean(top_error))
print('bottom error:', np.mean(bottom_error))
print('global error:', np.mean(global_error))