Here’s the extracted text data from the image:
Algorithm | Time Complexity (Training) | Time Complexity (Prediction) |
---|---|---|
Linear Regression (OLS) | ( O(nm^2 + m^3) ) | ( O(m) ) |
Linear Regression (SGD) | ( O(n_{\text{epoch}} nm) ) | ( O(m) ) |
Logistic Regression (Binary) | ( O(n_{\text{epoch}} nm) ) | ( O(m) ) |
Logistic Regression (Multiclass OvR) | ( O(n_{\text{epoch}} nmc) ) | ( O(mc) ) |
Decision Tree | ( O(n \log(n) \cdot m) ) | ( O(n^2 \cdot m) ) |
Random Forest Classifier | ( O(n_{\text{trees}} \cdot n \log(n) \cdot m) ) | ( O(d_{\text{trees}} \cdot d_{\text{tree}}) ) |
Support Vector Machines (SVMs) | ( O(nm^2 + m^3) ) | ( O(m \cdot n_{\text{sv}}) ) |
k-Nearest Neighbors | - | ( O(nm) ) |
Naive Bayes | ( O(nm) ) | ( O(mc) ) |
Principal Component Analysis (PCA) | ( O(nm^2 + m^3) ) | - |
t-SNE | ( O(n^2m) ) | - |
KMeans Clustering | ( O(ikmn) ) | ?? |
Legend:
- ( n ): samples
- ( m ): dimensions
- ( n_{\text{epoch}} ): epochs
- ( c ): classes
- ( d_{\text{tree}} ): depth
- ( n_{\text{sv}} ): Support vectors
- ( k ): clusters
- ( i ): iterations