-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathistn-reg.py
511 lines (420 loc) · 23 KB
/
istn-reg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#
# This is an implementation of the method described in paper
#
# Matthew Lee, Ozan Oktay, Andreas Schuh, Michiel Schaap, Ben Glocker
# Image-and-Spatial Transformer Networks for Structure-guided Image Registration
# In MICCAI 2019
#
# All rights reserved. Copyright 2019
#
import os
import json
import argparse
import torch
import torch.nn.functional as F
from tqdm import tqdm
import yaml
import matplotlib as mpl
back_end = mpl.get_backend()
try:
mpl.use('module://backend_interagg')
import matplotlib.pyplot as plt
print('Set matplotlib backend to interagg')
except ImportError:
print('Cannot set matplotlib backend to interagg, resorting to default backend {}'.format(back_end))
mpl.use(back_end)
import matplotlib.pyplot as plt
except ModuleNotFoundError:
print('Cannot set matplotlib backend to interagg, resorting to default backend {}'.format(back_end))
mpl.use(back_end)
import matplotlib.pyplot as plt
import SimpleITK as sitk
from pymira.nets.itn import ITN2D, ITN3D
from pymira.nets.stn import STN2D, BSplineSTN2D, STN3D, BSplineSTN3D
from pymira.img.processing import zero_mean_unit_var
from pymira.img.processing import range_matching
from pymira.img.processing import zero_one
from pymira.img.processing import threshold_zero
from pymira.img.transforms import Resampler
from pymira.img.transforms import Normalizer
from pymira.img.datasets import ImageSegRegDataset
import pymira.utils.metrics as mira_metrics
import pymira.utils.tensorboard_helpers as mira_th
from tensorboardX import SummaryWriter
from attrdict import AttrDict
separator = '----------------------------------------'
def write_images(writer, phase, image_dict, n_iter, mode3d):
for name, image in image_dict.items():
if mode3d:
writer.add_image('{}/{}'.format(phase, name), mira_th.volume_to_batch_image(image), n_iter)
else:
writer.add_image('{}/{}'.format(phase, name), mira_th.normalize_to_0_1(image[0, :, :, :]), n_iter)
def write_values(writer, phase, value_dict, n_iter):
for name, value in value_dict.items():
writer.add_scalar('{}/{}'.format(phase, name), value, n_iter)
def set_up_model_and_preprocessing(phase, args):
print(separator)
print('Starting {}...'.format(phase))
print(separator)
with open(args.config) as f:
config = json.load(f)
print('Config from file: ' + str(config))
torch.manual_seed(args.seed)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:" + args.dev if use_cuda else "cpu")
print('Device: ' + str(device))
if use_cuda:
print('GPU: ' + str(torch.cuda.get_device_name(int(args.dev))))
if args.transformation == 'affine':
if args.mode3d:
stn_model = STN3D
else:
stn_model = STN2D
elif args.transformation == 'bspline':
if args.mode3d:
stn_model = BSplineSTN3D
else:
stn_model = BSplineSTN2D
else:
raise NotImplementedError('transformation {} not supported'.format(args.transformation))
resampler_img = Resampler(config['spacing'], config['size'])
resampler_seg = Resampler(config['spacing'], config['size'])
if config['normalizer_img'] == 'zero_mean_unit_var':
normalizer_img = Normalizer(zero_mean_unit_var)
elif config['normalizer_img'] == 'range_matching':
normalizer_img = Normalizer(range_matching)
elif config['normalizer_img'] == 'zero_one':
normalizer_img = Normalizer(zero_one)
elif config['normalizer_img'] == 'threshold_zero':
normalizer_img = Normalizer(threshold_zero)
elif config['normalizer_img'] == 'none':
normalizer_img = None
else:
raise NotImplementedError('Normalizer {} not supported'.format(config['normalizer_img']))
if config['normalizer_seg'] == 'zero_mean_unit_var':
normalizer_seg = Normalizer(zero_mean_unit_var)
elif config['normalizer_seg'] == 'range_matching':
normalizer_seg = Normalizer(range_matching)
elif config['normalizer_seg'] == 'zero_one':
normalizer_seg = Normalizer(zero_one)
elif config['normalizer_seg'] == 'threshold_zero':
normalizer_seg = Normalizer(threshold_zero)
elif config['normalizer_seg'] == 'none':
normalizer_seg = None
else:
raise NotImplementedError('Normalizer {} not supported'.format(config['normalizer_seg']))
if args.loss == 'e':
loss = 'explicit'
elif args.loss == 'i':
loss = 'implicit'
elif args.loss == 's':
loss = 'supervised'
elif args.loss == 'u':
loss = 'unsupervised'
else:
raise NotImplementedError('Loss {} not supported'.format(args.loss))
if args.mode3d:
itn = ITN3D(input_channels=1).to(device)
else:
itn = ITN2D(input_channels=1).to(device)
stn = stn_model(input_size=config['size'], input_channels=2, device=device).to(device)
parameters = list(itn.parameters()) + list(stn.parameters())
optimizer = torch.optim.Adam(parameters, lr=config['learning_rate'])
config_dict = {'config': config,
'device': device,
'normalizer_img': normalizer_img,
'normalizer_seg': normalizer_seg,
'resampler_img': resampler_img,
'resampler_seg': resampler_seg,
'stn': stn,
'itn': itn,
'optimizer': optimizer,
'loss': loss,
}
print('File config: {}'.format(config_dict))
return AttrDict(config_dict)
def process_batch(config, itn, stn, batch_samples):
source, target = batch_samples['source'].to(config.device), batch_samples['target'].to(config.device)
source_seg, target_seg = batch_samples['source_seg'].to(config.device), batch_samples['target_seg'].to(
config.device)
if itn is not None:
source_prime = itn(source)
target_prime = itn(target)
if config.loss == 'unsupervised' or config.loss == 'supervised':
source_prime = source
target_prime = target
else:
source_prime = source
target_prime = target
stn(torch.cat((source_prime, target_prime), dim=1))
warped_source = stn.warp_image(source)
warped_source_prime = stn.warp_image(source_prime)
warped_source_seg = stn.warp_image(source_seg)
# Custom Metrics - thresholding at 0.5 is a bit arbitrarily and only makes sense if structure map is in [0,1]
target_seg_binary = target_seg > 0.5
warped_source_seg_binary = warped_source_seg > 0.5
dice = mira_metrics.dice_score(warped_source_seg_binary, target_seg_binary, unindexed_classes=1)['1']
hausdorff_distance = \
mira_metrics.hausdorff_distance(warped_source_seg_binary, target_seg_binary, unindexed_classes=1, spacing=config.config.spacing)[
'1']
average_surface_distance = \
mira_metrics.average_surface_distance(warped_source_seg_binary, target_seg_binary, unindexed_classes=1, spacing=config.config.spacing)['1']
precision = mira_metrics.precision(warped_source_seg_binary, target_seg_binary, unindexed_classes=1)['1']
recall = mira_metrics.recall(warped_source_seg_binary, target_seg_binary, unindexed_classes=1)['1']
# General Loss Calculation
loss_itn = F.mse_loss(source_prime, source_seg) + F.mse_loss(target_prime, target_seg)
loss_stn_u = F.mse_loss(warped_source, target)
loss_stn_s = F.mse_loss(warped_source_seg, target_seg)
loss_stn_i = F.mse_loss(warped_source_prime, target_seg) + F.mse_loss(warped_source_seg, target_prime)
loss_stn_r = F.mse_loss(warped_source_prime, target_prime)
if config.loss == 'explicit':
loss_train = loss_itn + loss_stn_s # ISTN-e
elif config.loss == 'implicit':
loss_train = loss_stn_i + loss_stn_s # ISTN-i
elif config.loss == 'supervised':
loss_train = loss_stn_s # STN-s
elif config.loss == 'unsupervised':
loss_train = loss_stn_u # STN-u
else:
raise NotImplementedError('Loss {} not supported'.format(config.loss))
values_dict = {'loss_itn': loss_itn,
'loss_stn_u': loss_stn_u,
'loss_stn_s': loss_stn_s,
'loss_stn_i': loss_stn_i,
'loss_stn_r': loss_stn_r,
'loss': loss_train,
'metric_dice': dice,
'metric_hd': hausdorff_distance,
'metric_asd': average_surface_distance,
'metric_precision': precision,
'metric_recall': recall}
images_dict = {'source': source,
'source_prime': source_prime,
'source_seg': source_seg,
'target': target,
'target_prime': target_prime,
'target_seg': target_seg,
'warped_source': warped_source,
'warped_source_prime': warped_source_prime,
'warped_source_seg': warped_source_seg}
return loss_train, images_dict, values_dict
def train(args):
config = set_up_model_and_preprocessing('TRAINING', args)
writer = SummaryWriter('{}/tensorboard'.format(args.out))
global_step = 0
print(separator)
print('TRAINING data...')
print(separator)
dataset_train = ImageSegRegDataset(args.train, args.train_seg, args.train_msk, normalizer_img=config.normalizer_img,
normalizer_seg=config.normalizer_seg, resampler_img=config.resampler_img,
resampler_seg=config.resampler_seg)
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=config.config['batch_size'], shuffle=True)
if args.val is not None:
print(separator)
print('VALIDATION data...')
print(separator)
dataset_val = ImageSegRegDataset(args.val, args.val_seg, args.val_msk, normalizer_img=config.normalizer_img,
normalizer_seg=config.normalizer_seg, resampler_img=config.resampler_img,
resampler_seg=config.resampler_seg)
dataloader_val = torch.utils.data.DataLoader(dataset_val, batch_size=1, shuffle=False)
# Create output directory
out_dir = os.path.join(args.out, 'train')
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if args.save_temp:
temp_dir = os.path.join(out_dir, 'temp')
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
for idx in range(0, len(dataset_train)):
sample = dataset_train.get_sample(idx)
sitk.WriteImage(sample['source'], os.path.join(temp_dir, 'sample_' + str(idx) + '_source.nii.gz'))
sitk.WriteImage(sample['target'], os.path.join(temp_dir, 'sample_' + str(idx) + '_target.nii.gz'))
sitk.WriteImage(sample['source_seg'], os.path.join(temp_dir, 'sample_' + str(idx) + '_source_seg.nii.gz'))
sitk.WriteImage(sample['target_seg'], os.path.join(temp_dir, 'sample_' + str(idx) + '_target_seg.nii.gz'))
print(separator)
# Note: Must match those used in process_batch()
loss_names = ['loss_itn', 'loss_stn_u', 'loss_stn_s', 'loss_stn_i', 'loss_stn_r', 'loss', 'metric_dice',
'metric_hd', 'metric_asd', 'metric_precision', 'metric_recall']
train_logger = mira_metrics.Logger('TRAIN', loss_names)
validation_logger = mira_metrics.Logger('VALID', loss_names)
model_dir = os.path.join(out_dir, 'model')
if not os.path.exists(model_dir):
os.makedirs(model_dir)
for epoch in range(1, config.config['epochs'] + 1):
config.stn.train()
config.itn.train()
# Training
for batch_idx, batch_samples in enumerate(tqdm(dataloader_train, desc='Epoch {}'.format(epoch))):
global_step += 1
config.optimizer.zero_grad()
loss, images_dict, values_dict = process_batch(config, config.itn, config.stn, batch_samples)
loss.backward()
config.optimizer.step()
train_logger.update_epoch_logger(values_dict)
train_logger.update_epoch_summary(epoch)
write_values(writer, 'train', value_dict=train_logger.get_latest_dict(), n_iter=global_step)
write_images(writer, 'train', image_dict=images_dict, n_iter=global_step, mode3d=args.mode3d)
# Validation
if args.val is not None and (epoch == 1 or epoch % config.config['val_interval'] == 0):
config.stn.eval()
config.itn.eval()
with torch.no_grad():
for batch_idx, batch_samples in enumerate(dataloader_val):
loss, images_dict, values_dict = process_batch(config, config.itn, config.stn, batch_samples)
validation_logger.update_epoch_logger(values_dict)
validation_logger.update_epoch_summary(epoch)
write_values(writer, phase='val', value_dict=validation_logger.get_latest_dict(), n_iter=global_step)
write_images(writer, phase='val', image_dict=images_dict, n_iter=global_step, mode3d=args.mode3d)
print(separator)
train_logger.print_latest()
validation_logger.print_latest()
print(separator)
torch.save(config.itn.state_dict(), model_dir + '/itn_' + str(epoch) + '.pt')
torch.save(config.stn.state_dict(), model_dir + '/stn_' + str(epoch) + '.pt')
torch.save(config.itn.state_dict(), model_dir + '/itn.pt')
torch.save(config.stn.state_dict(), model_dir + '/stn.pt')
print(separator)
print('Finished TRAINING... Plotting Graphs\n\n')
for loss_name, colour in zip(['loss'], ['b']):
plt.plot(train_logger.epoch_number_logger, train_logger.epoch_summary[loss_name], c=colour,
label='train {}'.format(loss_name))
plt.plot(validation_logger.epoch_number_logger, validation_logger.epoch_summary[loss_name], c=colour,
linestyle=':',
label='val {}'.format(loss_name))
plt.legend(loc='upper right')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
def test(args):
config = set_up_model_and_preprocessing('TESTING', args)
dataset_test = ImageSegRegDataset(args.test, args.test_seg, args.test_msk, normalizer_img=config.normalizer_img,
normalizer_seg=config.normalizer_seg, resampler_img=config.resampler_img,
resampler_seg=config.resampler_seg)
dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=1, shuffle=False)
loss_names = ['loss_itn', 'loss_stn_u', 'loss_stn_s', 'loss_stn_i', 'loss_stn_r', 'loss', 'metric_dice',
'metric_hd', 'metric_asd', 'metric_precision', 'metric_recall']
test_logger = mira_metrics.Logger('TEST', loss_names)
# Create output directory
out_dir = os.path.join(args.out, 'test')
if not os.path.exists(out_dir):
os.makedirs(out_dir)
config.itn.load_state_dict(torch.load(args.model + '/itn.pt'))
config.itn.eval()
config.stn.load_state_dict(torch.load(args.model + '/stn.pt'))
config.stn.eval()
with torch.no_grad():
for index, batch_samples in enumerate(dataloader_test):
loss, images_dict, values_dict = process_batch(config, config.itn, config.stn, batch_samples)
test_logger.update_epoch_logger(values_dict)
source_transformed = sitk.GetImageFromArray(images_dict['source_prime'].cpu().squeeze().numpy())
source_transformed.CopyInformation(dataset_test.get_sample(index)['source'])
sitk.WriteImage(source_transformed,
os.path.join(out_dir, 'sample_' + str(index) + '_source_prime.nii.gz'))
target_transformed = sitk.GetImageFromArray(images_dict['target_prime'].cpu().squeeze().numpy())
target_transformed.CopyInformation(dataset_test.get_sample(index)['target'])
sitk.WriteImage(target_transformed,
os.path.join(out_dir, 'sample_' + str(index) + '_target_prime.nii.gz'))
warped_source = sitk.GetImageFromArray(images_dict['warped_source'].cpu().squeeze().numpy())
warped_source.CopyInformation(dataset_test.get_sample(index)['target'])
sitk.WriteImage(warped_source,
os.path.join(out_dir, 'sample_' + str(index) + '_warped_source.nii.gz'))
warped_source_seg = sitk.GetImageFromArray(images_dict['warped_source_seg'].cpu().squeeze().numpy())
warped_source_seg.CopyInformation(dataset_test.get_sample(index)['target'])
sitk.WriteImage(warped_source_seg,
os.path.join(out_dir, 'sample_' + str(index) + '_warped_source_seg.nii.gz'))
sitk.WriteImage(dataset_test.get_sample(index)['source'],
os.path.join(out_dir, 'sample_' + str(index) + '_source.nii.gz'))
sitk.WriteImage(dataset_test.get_sample(index)['target'],
os.path.join(out_dir, 'sample_' + str(index) + '_target.nii.gz'))
sitk.WriteImage(dataset_test.get_sample(index)['source_seg'],
os.path.join(out_dir, 'sample_' + str(index) + '_source_seg.nii.gz'))
sitk.WriteImage(dataset_test.get_sample(index)['target_seg'],
os.path.join(out_dir, 'sample_' + str(index) + '_target_seg.nii.gz'))
with open(os.path.join(out_dir,'test_results.yml'), 'w') as outfile:
yaml.dump(test_logger.get_epoch_logger(), outfile)
test_logger.update_epoch_summary(0)
if args.no_refine == False:
refine_config = set_up_model_and_preprocessing('REFINEMENT', args)
config.itn.eval()
for index, batch_samples in enumerate(dataloader_test):
print('Processing image ' + str(index+1) + ' of ' + str(len(dataset_test)))
# Set up fine tuning network to have grads but not the stn
refine_config.stn.load_state_dict(torch.load(args.model + '/stn.pt'))
refine_config.stn.train()
optimizer = torch.optim.Adam(refine_config.stn.parameters(), lr=refine_config.config['learning_rate'])
# Fine tune STN
for epoch in range(1, config.config['refine'] + 1):
optimizer.zero_grad()
_loss, images_dict, values_dict = process_batch(config, config.itn, refine_config.stn, batch_samples)
loss = values_dict['loss_stn_r']
loss.backward()
optimizer.step()
with torch.no_grad():
loss, images_dict, values_dict = process_batch(config, config.itn, refine_config.stn, batch_samples)
test_logger.update_epoch_logger(values_dict)
warped_source = sitk.GetImageFromArray(images_dict['warped_source'].cpu().squeeze().numpy())
warped_source.CopyInformation(dataset_test.get_sample(index)['target'])
sitk.WriteImage(warped_source,
os.path.join(out_dir, 'sample_' + str(index) + '_warped_source_refined.nii.gz'))
warped_source_seg = sitk.GetImageFromArray(images_dict['warped_source_seg'].cpu().squeeze().numpy())
warped_source_seg.CopyInformation(dataset_test.get_sample(index)['target'])
sitk.WriteImage(warped_source_seg,
os.path.join(out_dir, 'sample_' + str(index) + '_warped_source_seg_refined.nii.gz'))
with open(os.path.join(out_dir, 'test_results_refined.yml'), 'w') as outfile:
yaml.dump(test_logger.get_epoch_logger(), outfile)
if __name__ == '__main__':
output_dir = 'output'
model_dir = output_dir + '/train/model'
# Set up argument parser
parser = argparse.ArgumentParser(description='ISTN registration')
parser.add_argument('--save_temp', default=False, action='store_true', help='save temporary files (default: True)')
parser.add_argument('--dev', default='0', help='cuda device (default: 0)')
parser.add_argument('--seed', type=int, default=42, help='random seed (default: 42)')
# Data args
parser.add_argument('--train', default='data/synth2d/train.csv', help='training data csv file')
parser.add_argument('--train_seg', default='data/synth2d/train.seg.csv', help='training data csv file')
parser.add_argument('--train_msk', default=None, help='training data csv file')
parser.add_argument('--val', default='data/synth2d/val.csv', help='validation data csv file')
parser.add_argument('--val_seg', default='data/synth2d/val.seg.csv', help='validation data csv file')
parser.add_argument('--val_msk', default=None, help='validation data csv file')
parser.add_argument('--test', default='data/synth2d/val.csv', help='testing data csv file')
parser.add_argument('--test_seg', default='data/synth2d/val.seg.csv', help='testing data csv file')
parser.add_argument('--test_msk', default=None, help='testing data csv file')
# Logging args
parser.add_argument('--out', default=output_dir, help='output root directory')
parser.add_argument('--model', default=model_dir, help='model directory')
# Network args
parser.add_argument('--mode3d', default=False, action='store_true', help='enable 3D mode', )
parser.add_argument('--config', default="data/synth2d/config.json", help='config file')
parser.add_argument('--loss', default="u",
help='loss type, u=unsupervised, s=supervised, e=explicit, i=implicit',
choices=['u', 's', 'e', 'i'])
parser.add_argument('--transformation', type=str, default='affine', help='transformation model',
choices=['affine', 'bspline'])
parser.add_argument('--no_refine', default=False, action='store_true', help='disable iterative refinement', )
args = parser.parse_args()
# Run training
if args.train is not None:
train(args)
# Run testing
if args.test is not None:
test(args)
# EXAMPLE USAGE FOR 2D SYNTHETIC DATA
#
# STN-u (unsupervised)
# python istn-reg.py --config data/synth2d/config.json --transformation affine --loss u --out output/stn-u --model output/stn-u/train/model
#
# STN-s (supervised)
# python istn-reg.py --config data/synth2d/config.json --transformation affine --loss s --out output/stn-s --model output/stn-s/train/model
#
# ISTN-e (explicit)
# python istn-reg.py --config data/synth2d/config.json --transformation affine --loss e --out output/stn-e --model output/stn-e/train/model
#
# ISTN-i (implicit)
# python istn-reg.py --config data/synth2d/config.json --transformation affine --loss i --out output/stn-i --model output/stn-i/train/model
#
#
# EXAMPLE USAGE FOR 3D BRAIN REGISTRATION
#
# ISTN - i(implicit)
# python istn-reg.py --mode3d --loss i --out output3d/istn-i --model output3d/istn-i/train/model --config data/brain3d/config.affine.json --train data/brain3d/train.csv --train_seg data/brain3d/train.seg.csv --train_msk data/brain3d/train.msk.csv --val data/brain3d/val.csv --val_seg data/brain3d/val.seg.csv --val_msk data/brain3d/val.msk.csv --test data/brain3d/test.csv --test_seg data/brain3d/test.seg.csv --test_msk data/brain3d/test.msk.csv