diff --git a/Orange/preprocess/fss.py b/Orange/preprocess/fss.py index 73483bc86d2..3831141ca23 100644 --- a/Orange/preprocess/fss.py +++ b/Orange/preprocess/fss.py @@ -8,7 +8,6 @@ import Orange from Orange.util import Reprable from Orange.preprocess.preprocess import Preprocess -from Orange.preprocess.score import ANOVA, GainRatio, UnivariateLinearRegression __all__ = ["SelectBestFeatures", "RemoveNaNColumns", "SelectRandomFeatures"] @@ -57,6 +56,10 @@ def __call__(self, data): discr_ratio = (sum(a.is_discrete for a in data.domain.attributes) / len(data.domain.attributes)) + + from Orange.preprocess.score import ANOVA, GainRatio, \ + UnivariateLinearRegression + if data.domain.has_discrete_class: if discr_ratio >= 0.5: method = GainRatio() diff --git a/Orange/preprocess/score.py b/Orange/preprocess/score.py index 1606b8cd93d..b7dc3b7c8d5 100644 --- a/Orange/preprocess/score.py +++ b/Orange/preprocess/score.py @@ -8,6 +8,7 @@ from Orange.data import Domain, Variable, DiscreteVariable, ContinuousVariable from Orange.data.filter import HasClass from Orange.misc.wrapper_meta import WrapperMeta +from Orange.preprocess.fss import RemoveNaNColumns from Orange.preprocess.preprocess import Discretize, SklImpute from Orange.preprocess.util import _RefuseDataInConstructor from Orange.statistics import contingency, distribution @@ -66,6 +67,7 @@ def __call__(self, data, feature=None): f = data.domain[feature] data = data.transform(Domain([f], data.domain.class_vars)) + orig_domain = data.domain for pp in self.preprocessors: data = pp(data) @@ -76,7 +78,14 @@ def __call__(self, data, feature=None): .format(self.friendly_name, self._friendly_vartype_name(type(var)))) - return self.score_data(data, feature) + if feature is not None: + return self.score_data(data, feature) + + scores = np.full(len(orig_domain.attributes), np.nan) + names = [a.name for a in data.domain.attributes] + mask = np.array([a.name in names for a in orig_domain.attributes]) + scores[mask] = self.score_data(data, feature) + return scores def score_data(self, data, feature): raise NotImplementedError @@ -340,6 +349,7 @@ class ReliefF(Scorer): class_type = DiscreteVariable supports_sparse_data = False friendly_name = "ReliefF" + preprocessors = Scorer.preprocessors + [RemoveNaNColumns()] def __init__(self, n_iterations=50, k_nearest=10, random_state=None): self.n_iterations = n_iterations @@ -374,6 +384,7 @@ class RReliefF(Scorer): class_type = ContinuousVariable supports_sparse_data = False friendly_name = "RReliefF" + preprocessors = Scorer.preprocessors + [RemoveNaNColumns()] def __init__(self, n_iterations=50, k_nearest=50, random_state=None): self.n_iterations = n_iterations diff --git a/Orange/widgets/data/tests/test_owrank.py b/Orange/widgets/data/tests/test_owrank.py index c3e401ca41a..8c58a933f89 100644 --- a/Orange/widgets/data/tests/test_owrank.py +++ b/Orange/widgets/data/tests/test_owrank.py @@ -10,7 +10,7 @@ from Orange.regression import LinearRegressionLearner from Orange.projection import PCA from Orange.widgets.data.owrank import OWRank, ProblemType, CLS_SCORES, REG_SCORES -from Orange.widgets.tests.base import WidgetTest +from Orange.widgets.tests.base import WidgetTest, datasets from Orange.widgets.widget import AttributeList @@ -347,3 +347,9 @@ def test_no_attributes(self): self.assertTrue(self.widget.Error.no_attributes.is_shown()) self.send_signal(self.widget.Inputs.data, data) self.assertFalse(self.widget.Error.no_attributes.is_shown()) + + def test_dataset(self): + for method in CLS_SCORES + REG_SCORES: + self._get_checkbox(method.shortname).setChecked(True) + for ds in datasets.datasets(): + self.send_signal(self.widget.Inputs.data, ds)