From 297ec2c2a10c093cd1980b241daa010086a6c12e Mon Sep 17 00:00:00 2001
From: PrimozGodec
Date: Thu, 21 Sep 2023 15:23:03 +0200
Subject: [PATCH] Gradient Boosting - Remove try/catch around imports
---
Orange/classification/__init__.py | 10 +--
Orange/modelling/__init__.py | 10 +--
Orange/regression/__init__.py | 10 +--
Orange/widgets/model/owgradientboosting.py | 28 ++-------
.../model/tests/test_owgradientboosting.py | 63 +++----------------
5 files changed, 18 insertions(+), 103 deletions(-)
diff --git a/Orange/classification/__init__.py b/Orange/classification/__init__.py
index 982498d6f40..d120562137d 100644
--- a/Orange/classification/__init__.py
+++ b/Orange/classification/__init__.py
@@ -20,12 +20,6 @@
from .sgd import *
from .neural_network import *
from .calibration import *
-try:
- from .catgb import *
-except ModuleNotFoundError:
- pass
+from .catgb import *
from .gb import *
-try:
- from .xgb import *
-except Exception:
- pass
+from .xgb import *
diff --git a/Orange/modelling/__init__.py b/Orange/modelling/__init__.py
index 206151fcdf2..f5b952b1976 100644
--- a/Orange/modelling/__init__.py
+++ b/Orange/modelling/__init__.py
@@ -11,12 +11,6 @@
from .randomforest import *
from .svm import *
from .tree import *
-try:
- from .catgb import *
-except ImportError:
- pass
+from .catgb import *
from .gb import *
-try:
- from .xgb import *
-except ImportError:
- pass
+from .xgb import *
diff --git a/Orange/regression/__init__.py b/Orange/regression/__init__.py
index 62d24249f4e..be87ff5b42a 100644
--- a/Orange/regression/__init__.py
+++ b/Orange/regression/__init__.py
@@ -14,13 +14,7 @@
from .tree import *
from .neural_network import *
from ..classification.simple_tree import *
-try:
- from .catgb import *
-except ModuleNotFoundError:
- pass
+from .catgb import *
from .gb import *
-try:
- from .xgb import *
-except Exception:
- pass
+from .xgb import *
from .curvefit import *
diff --git a/Orange/widgets/model/owgradientboosting.py b/Orange/widgets/model/owgradientboosting.py
index e99b99b4e21..cfa8f9ba915 100644
--- a/Orange/widgets/model/owgradientboosting.py
+++ b/Orange/widgets/model/owgradientboosting.py
@@ -9,16 +9,8 @@
from Orange.base import Learner
from Orange.data import Table
from Orange.modelling import GBLearner
-
-try:
- from Orange.modelling import CatGBLearner
-except ImportError:
- CatGBLearner = None
-try:
- from Orange.modelling import XGBLearner, XGBRFLearner
-except ImportError:
- XGBLearner = XGBRFLearner = None
-
+from Orange.modelling import CatGBLearner
+from Orange.modelling import XGBLearner, XGBRFLearner
from Orange.widgets import gui
from Orange.widgets.settings import Setting, SettingProvider
from Orange.widgets.utils.owlearnerwidget import OWBaseLearner
@@ -26,27 +18,17 @@
class LearnerItemModel(QStandardItemModel):
- LEARNERS = [
- (GBLearner, "", ""),
- (XGBLearner, "Extreme Gradient Boosting (xgboost)", "xgboost"),
- (XGBRFLearner, "Extreme Gradient Boosting Random Forest (xgboost)",
- "xgboost"),
- (CatGBLearner, "Gradient Boosting (catboost)", "catboost"),
- ]
+ LEARNERS = [GBLearner, XGBLearner, XGBRFLearner, CatGBLearner]
def __init__(self, parent):
super().__init__(parent)
self._add_data()
def _add_data(self):
- for cls, opt_name, lib in self.LEARNERS:
+ for cls in self.LEARNERS:
item = QStandardItem()
- imported = bool(cls)
- name = cls.name if imported else opt_name
+ name = cls.name
item.setData(f"{name}", Qt.DisplayRole)
- item.setEnabled(imported)
- if not imported:
- item.setToolTip(f"{lib} is not installed")
self.appendRow(item)
diff --git a/Orange/widgets/model/tests/test_owgradientboosting.py b/Orange/widgets/model/tests/test_owgradientboosting.py
index a59de79be60..e18926e8e6d 100644
--- a/Orange/widgets/model/tests/test_owgradientboosting.py
+++ b/Orange/widgets/model/tests/test_owgradientboosting.py
@@ -1,32 +1,18 @@
import json
import unittest
-import sys
from typing import Type
-from unittest.mock import patch, Mock
+from unittest.mock import Mock
from Orange.classification import GBClassifier
-try:
- from Orange.classification import XGBClassifier, XGBRFClassifier
-except ImportError:
- XGBClassifier = XGBRFClassifier = None
-try:
- from Orange.classification import CatGBClassifier
-except ImportError:
- CatGBClassifier = None
+from Orange.classification import XGBClassifier, XGBRFClassifier
+from Orange.classification import CatGBClassifier
from Orange.data import Table
-from Orange.modelling import GBLearner
from Orange.preprocess.score import Scorer
from Orange.regression import GBRegressor
-try:
- from Orange.regression import XGBRegressor, XGBRFRegressor
-except ImportError:
- XGBRegressor = XGBRFRegressor = None
-try:
- from Orange.regression import CatGBRegressor
-except ImportError:
- CatGBRegressor = None
+from Orange.regression import XGBRegressor, XGBRFRegressor
+from Orange.regression import CatGBRegressor
from Orange.widgets.model.owgradientboosting import OWGradientBoosting, \
LearnerItemModel, GBLearnerEditor, XGBLearnerEditor, XGBRFLearnerEditor, \
CatGBLearnerEditor, BaseEditor
@@ -65,16 +51,6 @@ def test_model(self):
self.assertEqual(model.item(i).isEnabled(),
classifiers[i] is not None)
- @patch("Orange.widgets.model.owgradientboosting.LearnerItemModel.LEARNERS",
- [(GBLearner, "", ""),
- (None, "Gradient Boosting (catboost)", "catboost")])
- def test_missing_lib(self):
- widget = create_parent(CatGBLearnerEditor)
- model = LearnerItemModel(widget)
- self.assertEqual(model.rowCount(), 2)
- self.assertTrue(model.item(0).isEnabled())
- self.assertFalse(model.item(1).isEnabled())
-
class BaseEditorTest(GuiTest):
EditorClass: Type[BaseEditor] = None
@@ -146,7 +122,6 @@ def test_arguments(self):
"colsample_bynode": 1, "subsample": 1, "random_state": 0}
self.assertDictEqual(self.editor.get_arguments(), args)
- @unittest.skipIf(XGBClassifier is None, "Missing 'xgboost' package")
def test_learner_parameters(self):
params = (("Method", "Extreme Gradient Boosting (xgboost)"),
("Number of trees", 100),
@@ -160,7 +135,6 @@ def test_learner_parameters(self):
("Fraction of features for each split", 1))
self.assertTupleEqual(self.editor.get_learner_parameters(), params)
- @unittest.skipIf(XGBClassifier is None, "Missing 'xgboost' package")
def test_default_parameters_cls(self):
data = Table("heart_disease")
booster = XGBClassifier()
@@ -178,7 +152,6 @@ def test_default_parameters_cls(self):
self.assertEqual(int(tp["colsample_bylevel"]), self.editor.colsample_bylevel)
self.assertEqual(int(tp["colsample_bynode"]), self.editor.colsample_bynode)
- @unittest.skipIf(XGBRegressor is None, "Missing 'xgboost' package")
def test_default_parameters_reg(self):
data = Table("housing")
booster = XGBRegressor()
@@ -206,7 +179,6 @@ def test_arguments(self):
"colsample_bynode": 1, "subsample": 1, "random_state": 0}
self.assertDictEqual(self.editor.get_arguments(), args)
- @unittest.skipIf(XGBRFClassifier is None, "Missing 'xgboost' package")
def test_learner_parameters(self):
params = (("Method",
"Extreme Gradient Boosting Random Forest (xgboost)"),
@@ -221,7 +193,6 @@ def test_learner_parameters(self):
("Fraction of features for each split", 1))
self.assertTupleEqual(self.editor.get_learner_parameters(), params)
- @unittest.skipIf(XGBRFClassifier is None, "Missing 'xgboost' package")
def test_default_parameters_cls(self):
data = Table("heart_disease")
booster = XGBRFClassifier()
@@ -239,7 +210,6 @@ def test_default_parameters_cls(self):
self.assertEqual(int(tp["colsample_bylevel"]), self.editor.colsample_bylevel)
self.assertEqual(int(tp["colsample_bynode"]), self.editor.colsample_bynode)
- @unittest.skipIf(XGBRFRegressor is None, "Missing 'xgboost' package")
def test_default_parameters_reg(self):
data = Table("housing")
booster = XGBRFRegressor()
@@ -266,7 +236,6 @@ def test_arguments(self):
"reg_lambda": 3, "colsample_bylevel": 1, "random_state": 0}
self.assertDictEqual(self.editor.get_arguments(), args)
- @unittest.skipIf(CatGBClassifier is None, "Missing 'catboost' package")
def test_learner_parameters(self):
params = (("Method", "Gradient Boosting (catboost)"),
("Number of trees", 100),
@@ -277,7 +246,6 @@ def test_learner_parameters(self):
("Fraction of features for each tree", 1))
self.assertTupleEqual(self.editor.get_learner_parameters(), params)
- @unittest.skipIf(CatGBClassifier is None, "Missing 'catboost' package")
def test_default_parameters_cls(self):
data = Table("heart_disease")
booster = CatGBClassifier()
@@ -291,7 +259,6 @@ def test_default_parameters_cls(self):
self.assertEqual(self.editor.learning_rate, 0.3)
# params["learning_rate"] is automatically defined so don't test it
- @unittest.skipIf(CatGBRegressor is None, "Missing 'catboost' package")
def test_default_parameters_reg(self):
data = Table("housing")
booster = CatGBRegressor()
@@ -305,6 +272,7 @@ def test_default_parameters_reg(self):
self.assertEqual(self.editor.learning_rate, 0.3)
# params["learning_rate"] is automatically defined so don't test it
+
class TestOWGradientBoosting(WidgetTest, WidgetLearnerTestMixin):
def setUp(self):
self.widget = self.create_widget(OWGradientBoosting,
@@ -328,7 +296,6 @@ def test_datasets(self):
for ds in datasets.datasets():
self.send_signal(self.widget.Inputs.data, ds)
- @unittest.skipIf(XGBClassifier is None, "Missing 'xgboost' package")
def test_xgb_params(self):
simulate.combobox_activate_index(self.widget.controls.method_index, 1)
editor = self.widget.editor
@@ -350,27 +317,11 @@ def test_xgb_params(self):
def test_methods(self):
self.send_signal(self.widget.Inputs.data, self.data)
method_cb = self.widget.controls.method_index
- for i, (cls, _, _) in enumerate(LearnerItemModel.LEARNERS):
- if cls is None:
- continue
+ for i, cls in enumerate(LearnerItemModel.LEARNERS):
simulate.combobox_activate_index(method_cb, i)
self.click_apply()
self.assertIsInstance(self.widget.learner, cls)
- def test_missing_lib(self):
- modules = {k: v for k, v in sys.modules.items()
- if "orange" not in k.lower()} # retain built-ins
- modules["xgboost"] = None
- modules["catboost"] = None
- # pylint: disable=reimported,redefined-outer-name
- # pylint: disable=import-outside-toplevel
- with patch.dict(sys.modules, modules, clear=True):
- from Orange.widgets.model.owgradientboosting import \
- OWGradientBoosting
- widget = self.create_widget(OWGradientBoosting,
- stored_settings={"method_index": 3})
- self.assertEqual(widget.method_index, 0)
-
if __name__ == "__main__":
unittest.main()