-
Notifications
You must be signed in to change notification settings - Fork 115
/
scitail.py
174 lines (144 loc) · 5.85 KB
/
scitail.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The SciTail dataset is an entailment dataset created from multiple-choice science exams and
web sentences. Each question and the correct answer choice are converted into an assertive
statement to form the hypothesis. We use information retrieval to obtain relevant text from
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
entails label and 16,925 examples with neutral label.
"""
import os
import datasets
import pandas as pd
from .bigbiohub import entailment_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{scitail,
author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
booktitle = {AAAI}
title = {SciTail: A Textual Entailment Dataset from Science Question Answering},
year = {2018}
}
"""
_DATASETNAME = "scitail"
_DISPLAYNAME = "SciTail"
_DESCRIPTION = """\
The SciTail dataset is an entailment dataset created from multiple-choice science exams and
web sentences. Each question and the correct answer choice are converted into an assertive
statement to form the hypothesis. We use information retrieval to obtain relevant text from
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
entails label and 16,925 examples with neutral label.
"""
_HOMEPAGE = "https://allenai.org/data/scitail"
_LICENSE = 'Apache License 2.0'
_URLS = {
_DATASETNAME: "https://ai2-public-datasets.s3.amazonaws.com/scitail/SciTailV1.1.zip",
}
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
_SOURCE_VERSION = "1.1.0"
_BIGBIO_VERSION = "1.0.0"
LABEL_MAP = {"entails": "entailment", "neutral": "neutral"}
class SciTailDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="scitail_source",
version=SOURCE_VERSION,
description="SciTail source schema",
schema="source",
subset_id="scitail",
),
BigBioConfig(
name="scitail_bigbio_te",
version=BIGBIO_VERSION,
description="SciTail BigBio schema",
schema="bigbio_te",
subset_id="scitail",
),
]
DEFAULT_CONFIG_NAME = "scitail_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
elif self.config.schema == "bigbio_te":
features = entailment_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_train.tsv"
),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_test.tsv"
),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_dev.tsv"
),
},
),
]
def _generate_examples(self, filepath):
# since examples can contain quotes mid text set quoting to QUOTE_NONE (3) when reading tsv
# e.g.: ... and apply specific "tools" to examples and ...
data = pd.read_csv(
filepath, sep="\t", names=["premise", "hypothesis", "label"], quoting=3
)
data["id"] = data.index
if self.config.schema == "source":
for _, row in data.iterrows():
yield row["id"], row.to_dict()
elif self.config.schema == "bigbio_te":
# normalize labels
data["label"] = data["label"].apply(lambda x: LABEL_MAP[x])
for _, row in data.iterrows():
yield row["id"], row.to_dict()