- python version : Python 3.7.7
- package information : requirements.txt
- train ITGAN model
All parameter (except kinetic, kinetic_every_learn) is in Appendix D. kinetic: 0.1 for ITGAN(Q) of census and ITGAN(Q), ITGAN(L) for cabs, 1.0 for others
example : 'python train_itgan.py --data --random_num --GPU_NUM --emb_dim --en_dim --d_dim --d_dropout --d_leaky --layer_type --hdim_factor --nhidden --likelihood_coef --gt --dt --lt --kinetic --kinetic_every_learn' data: dataset name random_num: random_seed to use GPU_NUM: GPU number to use emb_dim: $dim(h)$ en_dim: $n_{e(r)}$ = 2 -> "256,128", 3 -> "512,256,128" d_dim: $n_d$ = 2 -> "256,256", 3 -> "256,256,256" d_dropout: a d_leaky: b layer_type: $blend[M_i(z,t) = t], simblenddiv1[M_i(z,t) = sigmoid(FC(z⊕t))]$ hdim_factor: M nhidden: K likelihood_coef: $\gamma$ gt: $period_G$ dt: $period_D$ lt: $period_L$ kinetic: kinetic regularizer coef kinetic_every_learn: if 0 apply kinetic regularizer every G likelihood training, else every all G training the name of a file to be saved is combination of each parameter
kinetic_every_learn: 1 for census, 0 for others
-
Check Model Score : Table 1, 2, 3, 4, 5, 6, 8, 9
- You can check the result in json file of last_result/score_info/{data}
- For Training Model(base5~9, ITGAN), the value of the key "best" is the model score
- Also, Check the result with tensorboard log in 'last_result/runs/{data}'
-
FBB Attack Score : Table 7, 10
- FBB Attack Roc Auc scores of the trained model are printed.
example : 'python test_fbb.py --data --GPU_NUM --file --subopt' data: dataset name GPU_NUM: GPU number to use file: file name of model to use subopt: return subopt fbb result
Copyright (C) 2023 Samsung SDS Co., Ltd. All rights reserved. Released under the Samsung SDS Public License V1.0. For details on the scope of licenses, please refer to the License.md file (https://github.com/leejaehoon2016/ITGAN/blob/main/License.md).