This repository has been archived by the owner on Dec 30, 2023. It is now read-only.
forked from ajdamico/asdfree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
42-nvss.Rmd
234 lines (182 loc) · 6.53 KB
/
42-nvss.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# National Plan and Provider Enumeration System (NVSS) {-}
[![Build Status](https://travis-ci.org/asdfree/nvss.svg?branch=master)](https://travis-ci.org/asdfree/nvss) [![Build status](https://ci.appveyor.com/api/projects/status/github/asdfree/nvss?svg=TRUE)](https://ci.appveyor.com/project/ajdamico/nvss)
The National Plan and Provider Enumeration System (NPPES) contains information about every medical provider, insurance plan, and clearinghouse actively operating in the United States healthcare industry.
* A single large table with one row per enumerated health care provider.
* A census of individuals and organizations who bill for medical services in the United States.
* Updated monthly with new providers.
* Maintained by the United States [Centers for Medicare & Medicaid Services (CMS)](http://www.cms.gov/)
## Simplified Download and Importation {-}
The R `lodown` package easily downloads and imports all available NVSS microdata by simply specifying `"nvss"` with an `output_dir =` parameter in the `lodown()` function. Depending on your internet connection and computer processing speed, you might prefer to run this step overnight.
```{r eval = FALSE }
library(lodown)
lodown( "nvss" , output_dir = file.path( path.expand( "~" ) , "NVSS" ) )
```
## Analysis Examples with SQL and `RSQLite` \ {-}
Connect to a database:
```{r eval = FALSE }
library(DBI)
dbdir <- file.path( path.expand( "~" ) , "NVSS" , "SQLite.db" )
db <- dbConnect( RSQLite::SQLite() , dbdir )
```
```{r eval = FALSE }
```
### Variable Recoding {-}
Add new columns to the data set:
```{r eval = FALSE }
dbSendQuery( db , "ALTER TABLE npi ADD COLUMN individual INTEGER" )
dbSendQuery( db ,
"UPDATE npi
SET individual =
CASE WHEN entity_type_code = 1 THEN 1 ELSE 0 END"
)
dbSendQuery( db , "ALTER TABLE npi ADD COLUMN provider_enumeration_year INTEGER" )
dbSendQuery( db ,
"UPDATE npi
SET provider_enumeration_year =
CAST( SUBSTRING( provider_enumeration_date , 7 , 10 ) AS INTEGER )"
)
```
### Unweighted Counts {-}
Count the unweighted number of records in the SQL table, overall and by groups:
```{r eval = FALSE , results = "hide" }
dbGetQuery( db , "SELECT COUNT(*) FROM npi" )
dbGetQuery( db ,
"SELECT
provider_gender_code ,
COUNT(*)
FROM npi
GROUP BY provider_gender_code"
)
```
### Descriptive Statistics {-}
Calculate the mean (average) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
dbGetQuery( db , "SELECT AVG( provider_enumeration_year ) FROM npi" )
dbGetQuery( db ,
"SELECT
provider_gender_code ,
AVG( provider_enumeration_year ) AS mean_provider_enumeration_year
FROM npi
GROUP BY provider_gender_code"
)
```
Calculate the distribution of a categorical variable:
```{r eval = FALSE , results = "hide" }
dbGetQuery( db ,
"SELECT
is_sole_proprietor ,
COUNT(*) / ( SELECT COUNT(*) FROM npi )
AS share_is_sole_proprietor
FROM npi
GROUP BY is_sole_proprietor"
)
```
Calculate the sum of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
dbGetQuery( db , "SELECT SUM( provider_enumeration_year ) FROM npi" )
dbGetQuery( db ,
"SELECT
provider_gender_code ,
SUM( provider_enumeration_year ) AS sum_provider_enumeration_year
FROM npi
GROUP BY provider_gender_code"
)
```
Calculate the 25th, median, and 75th percentiles of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
RSQLite::initExtension( db )
dbGetQuery( db ,
"SELECT
LOWER_QUARTILE( provider_enumeration_year ) ,
MEDIAN( provider_enumeration_year ) ,
UPPER_QUARTILE( provider_enumeration_year )
FROM npi"
)
dbGetQuery( db ,
"SELECT
provider_gender_code ,
LOWER_QUARTILE( provider_enumeration_year ) AS lower_quartile_provider_enumeration_year ,
MEDIAN( provider_enumeration_year ) AS median_provider_enumeration_year ,
UPPER_QUARTILE( provider_enumeration_year ) AS upper_quartile_provider_enumeration_year
FROM npi
GROUP BY provider_gender_code"
)
```
### Subsetting {-}
Limit your SQL analysis to California with `WHERE`:
```{r eval = FALSE , results = "hide" }
dbGetQuery( db ,
"SELECT
AVG( provider_enumeration_year )
FROM npi
WHERE provider_business_practice_location_address_state_name = 'CA'"
)
```
### Measures of Uncertainty {-}
Calculate the variance and standard deviation, overall and by groups:
```{r eval = FALSE , results = "hide" }
RSQLite::initExtension( db )
dbGetQuery( db ,
"SELECT
VARIANCE( provider_enumeration_year ) ,
STDEV( provider_enumeration_year )
FROM npi"
)
dbGetQuery( db ,
"SELECT
provider_gender_code ,
VARIANCE( provider_enumeration_year ) AS var_provider_enumeration_year ,
STDEV( provider_enumeration_year ) AS stddev_provider_enumeration_year
FROM npi
GROUP BY provider_gender_code"
)
```
### Regression Models and Tests of Association {-}
Perform a t-test:
```{r eval = FALSE , results = "hide" }
nvss_slim_df <-
dbGetQuery( db ,
"SELECT
provider_enumeration_year ,
individual ,
is_sole_proprietor
FROM npi"
)
t.test( provider_enumeration_year ~ individual , nvss_slim_df )
```
Perform a chi-squared test of association:
```{r eval = FALSE , results = "hide" }
this_table <-
table( nvss_slim_df[ , c( "individual" , "is_sole_proprietor" ) ] )
chisq.test( this_table )
```
Perform a generalized linear model:
```{r eval = FALSE , results = "hide" }
glm_result <-
glm(
provider_enumeration_year ~ individual + is_sole_proprietor ,
data = nvss_slim_df
)
summary( glm_result )
```
## Analysis Examples with `dplyr` \ {-}
The R `dplyr` library offers an alternative grammar of data manipulation to base R and SQL syntax. [dplyr](https://github.com/tidyverse/dplyr/) offers many verbs, such as `summarize`, `group_by`, and `mutate`, the convenience of pipe-able functions, and the `tidyverse` style of non-standard evaluation. [This vignette](https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html) details the available features. As a starting point for NVSS users, this code replicates previously-presented examples:
```{r eval = FALSE , results = "hide" }
library(dplyr)
library(dbplyr)
dplyr_db <- dplyr::src_sqlite( dbdir )
nvss_tbl <- tbl( dplyr_db , 'npi' )
```
Calculate the mean (average) of a linear variable, overall and by groups:
```{r eval = FALSE , results = "hide" }
nvss_tbl %>%
summarize( mean = mean( provider_enumeration_year ) )
nvss_tbl %>%
group_by( provider_gender_code ) %>%
summarize( mean = mean( provider_enumeration_year ) )
```
---
## Replication Example {-}
```{r eval = FALSE , results = "hide" }
dbGetQuery( db , "SELECT COUNT(*) FROM npi" )
```