-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtasks.py
239 lines (212 loc) · 15.6 KB
/
tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from celery.task import task
import json
import datetime
from collections import namedtuple
import decimal
import math
import os
from django.core.serializers.json import DjangoJSONEncoder
import logging
logger=logging.getLogger(__name__)
from NMTK_apps.helpers.config_iterator import ConfigIterator
import numpy as np
import pandas as pd
import numpy.lib.recfunctions as recfuntions
import data_interface as iface
import checks
import csv
import cStringIO as StringIO
@task(ignore_result=False)
def performModel(input_files,
tool_config,
client,
subtool_name=False):
'''
This is where the majority of the work occurs related to this tool.
The data_file is the input (probably spatial) data.
The job_setup is a JSON object that contains the job configuration.
The auth_key is the auth_key as passed by the NMTK server. It needs
to be used to pass things like status or results back to the NMTK server as
the job is processed.
There's no model (yet) for this particular job - everything happens with the
uploaded data file. Later we can store/manage data for the job.
The assumption here is that all relevant authorization/authentication has
happened prior to this job being run.
'''
logger=performModel.get_logger()
logger.debug('Job input files are: %s', input_files)
try:
setup=json.loads(open(input_files['config'][0]).read()).get('analysis settings',{})
# the name used for the File config object for this tool, so we can
# read the file from the config.
file_namespace='data'
failures=[]
if (not isinstance(setup, (dict))):
failures.append('Please provide analysis settings')
else:
logger.debug("Loaded config: %s", setup)
file_iterator=ConfigIterator(input_files, file_namespace, setup)
if subtool_name.lower()=='scn_compare':
file_iterator2=ConfigIterator(input_files, 'data2', setup)
except:
logger.exception('Failed to parse config file or data file.')
failures.append('Invalid job configuration')
if failures:
for f in failures:
logger.debug("Failure: %s",f)
client.updateResults(payload={'errors': failures },
failure=True)
else:
client.updateStatus('Parameter & data file validation complete.')
summ_text = ''
try:
if subtool_name.lower()=='taz_checker':
min = None
max = None
param_iterator=ConfigIterator(input_files, 'parameters', setup)
if param_iterator.iterable:
raise Exception('Parameters cannot be iterable')
else:
parameters=param_iterator.data
bintol = parameters.get('bintol_param')
regional_medinc = parameters.get('medinc_param')
regional_nonwrk_pct = parameters.get('nonwrk_param')
regional_chu5_pct = parameters.get('chu5_param')
client.updateStatus('Obtained run parameters.')
thresh_iterator=ConfigIterator(input_files, 'thresholds', setup)
if thresh_iterator.iterable:
raise Exception('Thresholds cannot be iterable')
else:
thresholds=thresh_iterator.data
client.updateStatus('Obtained run thresholds.')
hh_size_vars = ['hh_size1','hh_size2','hh_size3','hh_size4','hh_size5','hh_size6','hh_size7','hh_size8','hh_size9','hh_size10']
hh_wrk_vars = ['hh_wrk1','hh_wrk2','hh_wrk3','hh_wrk4','hh_wrk5','hh_wrk6','hh_wrk7','hh_wrk8','hh_wrk9','hh_wrk10']
hh_inc_vars = ['hh_inc1','hh_inc2','hh_inc3','hh_inc4','hh_inc5','hh_inc6','hh_inc7','hh_inc8','hh_inc9','hh_inc10']
hh_veh_vars = ['hh_veh1','hh_veh2','hh_veh3','hh_veh4','hh_veh5','hh_veh6']
hh_lfcyc_vars = ['hh_lfcyc1','hh_lfcyc2','hh_lfcyc3','hh_lfcyc4','hh_lfcyc5']
empcat_vars = ['empcat1','empcat2','empcat3','empcat4','empcat5','empcat6','empcat7','empcat8','empcat9','empcat10']
schenr_k12_vars = ['schenr_k12_cat1','schenr_k12_cat2','schenr_k12_cat3','schenr_k12_cat4','schenr_k12_cat5']
req_vars = ['households','population','avgincome','vehicles','employment'] + hh_size_vars + hh_wrk_vars + hh_inc_vars + hh_veh_vars + empcat_vars
req_vars = req_vars + hh_lfcyc_vars + schenr_k12_vars + ['pop_age1','pop_age2','pop_age3','enr_col']
#print req_vars
data_array = iface.toArray(file_iterator, req_vars)
dt = np.dtype([(var,'float') for var in req_vars])
data_array = np.array(data_array,dt)
client.updateStatus('Data conversion to array complete.')
chkcols = ['chk_bin_hhsize','chk_bin_hhwrk','chk_bin_hhinc','chk_bin_hhveh','chk_bin_hhlfcyc','chk_bin_empcat',
'chk_avginc_ratio','chk_percapita_veh','chk_perwrk_veh','chk_pop_hhsize',
'regchk_empwrk','regchk_wrkage','regchk_schenr']
for newcol in chkcols:
data_array = addStrCol(data_array,newcol)
data_array = addCol(data_array,'temp',0.0)
data_array = addCol(data_array,'workers',0.0)
data_array = addCol(data_array,'pop_hhsize',0.0)
data_array['workers'] = np.sum(iface.recToArray(data_array[hh_wrk_vars]),axis=1)
data_array['pop_hhsize'] = data_array['hh_size1']
for i in range(2,11):
data_array['pop_hhsize'] = data_array['pop_hhsize'] + i*data_array[hh_size_vars[i-1]]
labels1 = ['Bins total matches','Bins total does not match']
labels2 = ['Less than min','Within Range', 'More than max']
#TAZ level checks
data_array['chk_bin_hhsize'] = checks.chkBinTotal(data_array,hh_size_vars,'households',bintol,labels1)
data_array['chk_bin_hhwrk'] = checks.chkBinTotal(data_array,hh_wrk_vars,'households',bintol,labels1)
data_array['chk_bin_hhinc'] = checks.chkBinTotal(data_array,hh_inc_vars,'households',bintol,labels1)
data_array['chk_bin_hhlfcyc'] = checks.chkBinTotal(data_array,hh_lfcyc_vars,'households',bintol,labels1)
data_array['chk_bin_hhveh'] = checks.chkBinTotal(data_array,hh_veh_vars,'households',bintol,labels1)
data_array['chk_bin_empcat'] = checks.chkBinTotal(data_array,empcat_vars,'employment',bintol,labels1)
data_array['chk_avginc_ratio'] = checks.chkRange(data_array['avgincome']/regional_medinc,thresholds.get('avginc_ratio_threshmin'),thresholds.get('avginc_ratio_threshmax'),labels2)
data_array['chk_percapita_veh'] = checks.chkRange(data_array['vehicles']/data_array['population'],thresholds.get('percap_veh_threshmin'),thresholds.get('percap_veh_threshmax'),labels2)
data_array['chk_perwrk_veh'] = checks.chkRange(data_array['vehicles']/data_array['workers'],thresholds.get('perwrk_veh_threshmin'),thresholds.get('perwrk_veh_threshmax'),labels2)
data_array['chk_pop_hhsize'] = checks.chkRange(data_array['pop_hhsize'],0,data_array['population'],labels2)
client.updateStatus('TAZ level checks complete.')
#Regional checks
data_array['regchk_empwrk'] = checks.chkRange(np.array([np.sum(data_array['employment'])/np.sum(data_array['workers'])]),thresholds.get('empwrk_ratio_threshmin'),thresholds.get('empwrk_ratio_threshmax'),labels2)
data_array['regchk_wrkage'] = checks.chkRange(np.array([np.sum(data_array['workers'])]),0,np.sum(data_array['pop_age2']+data_array['pop_age3'])*(1-regional_nonwrk_pct/100),labels2)
data_array['regchk_schenr'] = checks.chkRange(np.array([np.sum(iface.recToArray(data_array[schenr_k12_vars]))]),0,np.sum(data_array['pop_age1'])*(1-regional_chu5_pct/100),labels2)
client.updateStatus('Regional checks complete.')
result_cols = [setup['results'][col]['value'] for col in chkcols]
iface.addResult(file_iterator,result_cols,data_array,chkcols)
client.updateStatus('Updated run results.')
#Write out a summary file for the run
summ_text = 'Description,Value'
summ_text += '\r\n' + 'Total number of TAZs,' + str(len(data_array))
summ_text += '\r\n' + 'Number of TAZs with HH Size bins total mismatch,' + str(len(data_array[data_array['chk_bin_hhsize']==labels1[1]]))
summ_text += '\r\n' + 'Number of TAZs with HH Worker bins total mismatch,' + str(len(data_array[data_array['chk_bin_hhwrk']==labels1[1]]))
summ_text += '\r\n' + 'Number of TAZs with HH Income bins total mismatch,' + str(len(data_array[data_array['chk_bin_hhinc']==labels1[1]]))
summ_text += '\r\n' + 'Number of TAZs with HH Life-cycle bins total mismatch,' + str(len(data_array[data_array['chk_bin_hhlfcyc']==labels1[1]]))
summ_text += '\r\n' + 'Number of TAZs with HH Vehicle bins total mismatch,' + str(len(data_array[data_array['chk_bin_hhveh']==labels1[1]]))
summ_text += '\r\n' + 'Number of TAZs with Employment bins total mismatch,' + str(len(data_array[data_array['chk_bin_empcat']==labels1[1]]))
summ_text += '\r\n' + 'Number of TAZs with Ratio to regional median income outside range min: %s max: %s,' %(thresholds.get('avginc_ratio_threshmin'),thresholds.get('avginc_ratio_threshmax')) + str(len(data_array[data_array['chk_avginc_ratio']!=getRangeLabel(labels2[1],thresholds.get('avginc_ratio_threshmin'),thresholds.get('avginc_ratio_threshmax'))]))
summ_text += '\r\n' + 'Number of TAZs with Per capita vehicles outside range min: %s max: %s,' %(thresholds.get('percap_veh_threshmin'),thresholds.get('percap_veh_threshmax')) + str(len(data_array[data_array['chk_percapita_veh']!=getRangeLabel(labels2[1],thresholds.get('percap_veh_threshmin'),thresholds.get('percap_veh_threshmax'))]))
summ_text += '\r\n' + 'Number of TAZs with Per worker vehicle outside range min: %s max: %s,' %(thresholds.get('perwrk_veh_threshmin'),thresholds.get('perwrk_veh_threshmax')) + str(len(data_array[data_array['chk_perwrk_veh']!=getRangeLabel(labels2[1],thresholds.get('perwrk_veh_threshmin'),thresholds.get('perwrk_veh_threshmax'))]))
summ_text += '\r\n' + 'Number of TAZs with Population less than that implied by HH Size bins,' + str(len(data_array[data_array['chk_pop_hhsize']!=labels2[1]]))
summ_text += '\r\n' + ' , '
summ_text += '\r\n' + ' , '
summ_text += '\r\n' + 'Regional employment-workers ratio within range min: %s max: %s,' %(thresholds.get('empwrk_ratio_threshmin'),thresholds.get('empwrk_ratio_threshmax')) + str(len(data_array[data_array['regchk_empwrk']==getRangeLabel(labels2[1],thresholds.get('empwrk_ratio_threshmin'),thresholds.get('empwrk_ratio_threshmax'))]) == len(data_array))
summ_text += '\r\n' + 'Regional workers less than working age population,'+ str(len(data_array[data_array['regchk_wrkage']==getRangeLabel(labels2[1],0,np.sum(data_array['pop_age2']+data_array['pop_age3'])*(1-regional_nonwrk_pct/100))]) == len(data_array))
summ_text += '\r\n' + 'Regional enrollment less than school age population,'+ str(len(data_array[data_array['regchk_schenr']==getRangeLabel(labels2[1],0,np.sum(data_array['pop_age1'])*(1-regional_chu5_pct/100))]) == len(data_array))
elif subtool_name.lower()=='scn_compare':
thresh_iterator=ConfigIterator(input_files, 'thresholds', setup)
if thresh_iterator.iterable:
raise Exception('Thresholds cannot be iterable')
else:
thresholds=thresh_iterator.data
client.updateStatus('Obtained run thresholds.')
req_vars = ['tazid','households','population','vehicles']
data_array = iface.toArray(file_iterator, req_vars)
dt = np.dtype([(var,'float') for var in req_vars])
data_array = np.array(data_array,dt)
req_vars = ['tazid2','households2','population2','vehicles2']
data_array2 = iface.toArray(file_iterator2, req_vars)
req_vars = ['tazid','households2','population2','vehicles2']
dt = np.dtype([(var,'float') for var in req_vars])
data_array2 = np.array(data_array2,dt)
chkcols = ['pctchg_hh','pctchg_pop','pctchg_veh']
for newcol in chkcols:
data_array = addCol(data_array,newcol,0.0)
#print data_array.dtype.fields
data_array = iface.leftjoin(data_array,data_array2,'tazid')
data_array['pctchg_hh'][data_array['households']>0] = checks.pctChange(data_array,'households','households2')
data_array['pctchg_pop'][data_array['population']>0] = checks.pctChange(data_array,'population','population2')
data_array['pctchg_veh'][data_array['vehicles']>0] = checks.pctChange(data_array,'vehicles','vehicles2')
result_cols = [setup['results'][col]['value'] for col in chkcols]
match_arr_col = 'tazid'
match_result_col = setup['data'][match_arr_col]['value']
iface.addMatchResult(file_iterator,result_cols,match_result_col,data_array,chkcols,match_arr_col)
except Exception, e:
# if anything goes wrong we'll send over a failure status.
print e
logger.exception('Job Failed with Exception!')
client.updateResults(payload={'errors': [str(e),] },
failure=True)
# Since we are updating the data as we go along, we just need to return
# the data with the new column (results) which contains the result of the
# model.
#result_field=setup['results']['chk_bin_hhsize']['value']
#units='HH size bins total check'
if summ_text == '':
client.updateResults(result_field=None,
units=None,
result_file='data',
files={'data': ('data.{0}'.format(file_iterator.extension),
file_iterator.getDataFile(),
file_iterator.content_type)})
else:
client.updateResults(result_field=None,
units=None,
result_file='data',
files={'data': ('data.{0}'.format(file_iterator.extension),
file_iterator.getDataFile(),
file_iterator.content_type),
'summary': ('summary.csv',
summ_text,
'text/csv')
})
for namespace, fileinfo in input_files.iteritems():
os.unlink(fileinfo[0])
def addCol(arr, col, factor):
return recfuntions.append_fields(arr,col,np.ones(len(arr))*factor,usemask=False)
def addStrCol(arr, col):
return recfuntions.append_fields(arr,col,np.repeat('',len(arr)),dtypes='|S50',usemask=False)
def getRangeLabel(label, minval, maxval):
return label + ' [' + str(minval) + ', ' + str(maxval) + ']'