forked from openai/pixel-cnn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
247 lines (217 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Trains a Pixel-CNN++ generative model on CIFAR-10 or Tiny ImageNet data.
Uses multiple GPUs, indicated by the flag --nr_gpu
Example usage:
CUDA_VISIBLE_DEVICES=0,1,2,3 python train_double_cnn.py --nr_gpu 4
"""
import os
import sys
import json
import argparse
import time
import numpy as np
import tensorflow as tf
from pixel_cnn_pp import nn
from pixel_cnn_pp.model import model_spec
from utils import plotting
# -----------------------------------------------------------------------------
parser = argparse.ArgumentParser()
# data I/O
parser.add_argument('-i', '--data_dir', type=str, default='/local_home/tim/pxpp/data', help='Location for the dataset')
parser.add_argument('-o', '--save_dir', type=str, default='/local_home/tim/pxpp/save', help='Location for parameter checkpoints and samples')
parser.add_argument('-d', '--data_set', type=str, default='cifar', help='Can be either cifar|imagenet')
parser.add_argument('-t', '--save_interval', type=int, default=20, help='Every how many epochs to write checkpoint/samples?')
parser.add_argument('-r', '--load_params', dest='load_params', action='store_true', help='Restore training from previous model checkpoint?')
# model
parser.add_argument('-q', '--nr_resnet', type=int, default=5, help='Number of residual blocks per stage of the model')
parser.add_argument('-n', '--nr_filters', type=int, default=160, help='Number of filters to use across the model. Higher = larger model.')
parser.add_argument('-m', '--nr_logistic_mix', type=int, default=10, help='Number of logistic components in the mixture. Higher = more flexible model')
parser.add_argument('-z', '--resnet_nonlinearity', type=str, default='concat_elu', help='Which nonlinearity to use in the ResNet layers. One of "concat_elu", "elu", "relu" ')
parser.add_argument('-c', '--class_conditional', dest='class_conditional', action='store_true', help='Condition generative model on labels?')
parser.add_argument('-ed', '--energy_distance', dest='energy_distance', action='store_true', help='use energy distance in place of likelihood')
# optimization
parser.add_argument('-l', '--learning_rate', type=float, default=0.001, help='Base learning rate')
parser.add_argument('-e', '--lr_decay', type=float, default=0.999995, help='Learning rate decay, applied every step of the optimization')
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Batch size during training per GPU')
parser.add_argument('-u', '--init_batch_size', type=int, default=16, help='How much data to use for data-dependent initialization.')
parser.add_argument('-p', '--dropout_p', type=float, default=0.5, help='Dropout strength (i.e. 1 - keep_prob). 0 = No dropout, higher = more dropout.')
parser.add_argument('-x', '--max_epochs', type=int, default=5000, help='How many epochs to run in total?')
parser.add_argument('-g', '--nr_gpu', type=int, default=8, help='How many GPUs to distribute the training across?')
# evaluation
parser.add_argument('--polyak_decay', type=float, default=0.9995, help='Exponential decay rate of the sum of previous model iterates during Polyak averaging')
parser.add_argument('-ns', '--num_samples', type=int, default=1, help='How many batches of samples to output.')
# reproducibility
parser.add_argument('-s', '--seed', type=int, default=1, help='Random seed to use')
args = parser.parse_args()
print('input args:\n', json.dumps(vars(args), indent=4, separators=(',',':'))) # pretty print args
# -----------------------------------------------------------------------------
# fix random seed for reproducibility
rng = np.random.RandomState(args.seed)
tf.set_random_seed(args.seed)
# energy distance or maximum likelihood?
if args.energy_distance:
loss_fun = nn.energy_distance
else:
loss_fun = nn.discretized_mix_logistic_loss
# initialize data loaders for train/test splits
if args.data_set == 'imagenet' and args.class_conditional:
raise("We currently don't have labels for the small imagenet data set")
if args.data_set == 'cifar':
import data.cifar10_data as cifar10_data
DataLoader = cifar10_data.DataLoader
elif args.data_set == 'imagenet':
import data.imagenet_data as imagenet_data
DataLoader = imagenet_data.DataLoader
else:
raise("unsupported dataset")
train_data = DataLoader(args.data_dir, 'train', args.batch_size * args.nr_gpu, rng=rng, shuffle=True, return_labels=args.class_conditional)
test_data = DataLoader(args.data_dir, 'test', args.batch_size * args.nr_gpu, shuffle=False, return_labels=args.class_conditional)
obs_shape = train_data.get_observation_size() # e.g. a tuple (32,32,3)
assert len(obs_shape) == 3, 'assumed right now'
# data place holders
x_init = tf.placeholder(tf.float32, shape=(args.init_batch_size,) + obs_shape)
xs = [tf.placeholder(tf.float32, shape=(args.batch_size, ) + obs_shape) for i in range(args.nr_gpu)]
# if the model is class-conditional we'll set up label placeholders + one-hot encodings 'h' to condition on
if args.class_conditional:
num_labels = train_data.get_num_labels()
y_init = tf.placeholder(tf.int32, shape=(args.init_batch_size,))
h_init = tf.one_hot(y_init, num_labels)
y_sample = np.split(np.mod(np.arange(args.batch_size*args.nr_gpu), num_labels), args.nr_gpu)
h_sample = [tf.one_hot(tf.Variable(y_sample[i], trainable=False), num_labels) for i in range(args.nr_gpu)]
ys = [tf.placeholder(tf.int32, shape=(args.batch_size,)) for i in range(args.nr_gpu)]
hs = [tf.one_hot(ys[i], num_labels) for i in range(args.nr_gpu)]
else:
h_init = None
h_sample = [None] * args.nr_gpu
hs = h_sample
# create the model
model_opt = { 'nr_resnet': args.nr_resnet, 'nr_filters': args.nr_filters, 'nr_logistic_mix': args.nr_logistic_mix, 'resnet_nonlinearity': args.resnet_nonlinearity, 'energy_distance': args.energy_distance }
model = tf.make_template('model', model_spec)
# run once for data dependent initialization of parameters
init_pass = model(x_init, h_init, init=True, dropout_p=args.dropout_p, **model_opt)
# keep track of moving average
all_params = tf.trainable_variables()
ema = tf.train.ExponentialMovingAverage(decay=args.polyak_decay)
maintain_averages_op = tf.group(ema.apply(all_params))
ema_params = [ema.average(p) for p in all_params]
# get loss gradients over multiple GPUs + sampling
grads = []
loss_gen = []
loss_gen_test = []
new_x_gen = []
for i in range(args.nr_gpu):
with tf.device('/gpu:%d' % i):
# train
out = model(xs[i], hs[i], ema=None, dropout_p=args.dropout_p, **model_opt)
loss_gen.append(loss_fun(tf.stop_gradient(xs[i]), out))
# gradients
grads.append(tf.gradients(loss_gen[i], all_params, colocate_gradients_with_ops=True))
# test
out = model(xs[i], hs[i], ema=ema, dropout_p=0., **model_opt)
loss_gen_test.append(loss_fun(xs[i], out))
# sample
out = model(xs[i], h_sample[i], ema=ema, dropout_p=0, **model_opt)
if args.energy_distance:
new_x_gen.append(out[0])
else:
new_x_gen.append(nn.sample_from_discretized_mix_logistic(out, args.nr_logistic_mix))
# add losses and gradients together and get training updates
tf_lr = tf.placeholder(tf.float32, shape=[])
with tf.device('/gpu:0'):
for i in range(1,args.nr_gpu):
loss_gen[0] += loss_gen[i]
loss_gen_test[0] += loss_gen_test[i]
for j in range(len(grads[0])):
grads[0][j] += grads[i][j]
# training op
optimizer = tf.group(nn.adam_updates(all_params, grads[0], lr=tf_lr, mom1=0.95, mom2=0.9995), maintain_averages_op)
# convert loss to bits/dim
bits_per_dim = loss_gen[0]/(args.nr_gpu*np.log(2.)*np.prod(obs_shape)*args.batch_size)
bits_per_dim_test = loss_gen_test[0]/(args.nr_gpu*np.log(2.)*np.prod(obs_shape)*args.batch_size)
# sample from the model
def sample_from_model(sess):
x_gen = [np.zeros((args.batch_size,) + obs_shape, dtype=np.float32) for i in range(args.nr_gpu)]
for yi in range(obs_shape[0]):
for xi in range(obs_shape[1]):
new_x_gen_np = sess.run(new_x_gen, {xs[i]: x_gen[i] for i in range(args.nr_gpu)})
for i in range(args.nr_gpu):
x_gen[i][:,yi,xi,:] = new_x_gen_np[i][:,yi,xi,:]
return np.concatenate(x_gen, axis=0)
# init & save
initializer = tf.global_variables_initializer()
saver = tf.train.Saver()
# turn numpy inputs into feed_dict for use with tensorflow
def make_feed_dict(data, init=False):
if type(data) is tuple:
x,y = data
else:
x = data
y = None
x = np.cast[np.float32]((x - 127.5) / 127.5) # input to pixelCNN is scaled from uint8 [0,255] to float in range [-1,1]
if init:
feed_dict = {x_init: x}
if y is not None:
feed_dict.update({y_init: y})
else:
x = np.split(x, args.nr_gpu)
feed_dict = {xs[i]: x[i] for i in range(args.nr_gpu)}
if y is not None:
y = np.split(y, args.nr_gpu)
feed_dict.update({ys[i]: y[i] for i in range(args.nr_gpu)})
return feed_dict
# //////////// perform training //////////////
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
test_bpd = []
lr = args.learning_rate
with tf.Session() as sess:
for epoch in range(args.max_epochs):
begin = time.time()
# init
if epoch == 0:
train_data.reset() # rewind the iterator back to 0 to do one full epoch
if args.load_params:
ckpt_file = args.save_dir + '/params_' + args.data_set + '.ckpt'
print('restoring parameters from', ckpt_file)
saver.restore(sess, ckpt_file)
else:
print('initializing the model...')
sess.run(initializer)
feed_dict = make_feed_dict(train_data.next(args.init_batch_size), init=True) # manually retrieve exactly init_batch_size examples
sess.run(init_pass, feed_dict)
print('starting training')
# train for one epoch
train_losses = []
for d in train_data:
feed_dict = make_feed_dict(d)
# forward/backward/update model on each gpu
lr *= args.lr_decay
feed_dict.update({ tf_lr: lr })
l,_ = sess.run([bits_per_dim, optimizer], feed_dict)
train_losses.append(l)
train_loss_gen = np.mean(train_losses)
# compute likelihood over test data
test_losses = []
for d in test_data:
feed_dict = make_feed_dict(d)
l = sess.run(bits_per_dim_test, feed_dict)
test_losses.append(l)
test_loss_gen = np.mean(test_losses)
test_bpd.append(test_loss_gen)
# log progress to console
print("Iteration %d, time = %ds, train bits_per_dim = %.4f, test bits_per_dim = %.4f" % (epoch, time.time()-begin, train_loss_gen, test_loss_gen))
sys.stdout.flush()
if epoch % args.save_interval == 0:
# generate samples from the model
sample_x = []
for i in range(args.num_samples):
sample_x.append(sample_from_model(sess))
sample_x = np.concatenate(sample_x,axis=0)
img_tile = plotting.img_tile(sample_x[:100], aspect_ratio=1.0, border_color=1.0, stretch=True)
img = plotting.plot_img(img_tile, title=args.data_set + ' samples')
plotting.plt.savefig(os.path.join(args.save_dir,'%s_sample%d.png' % (args.data_set, epoch)))
plotting.plt.close('all')
np.savez(os.path.join(args.save_dir,'%s_sample%d.npz' % (args.data_set, epoch)), sample_x)
# save params
saver.save(sess, args.save_dir + '/params_' + args.data_set + '.ckpt')
np.savez(args.save_dir + '/test_bpd_' + args.data_set + '.npz', test_bpd=np.array(test_bpd))