-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrom_scratch.py
856 lines (807 loc) · 27.6 KB
/
from_scratch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
import os
import random
import json
from tqdm import tqdm
import librosa
import numpy as np
from essentia.standard import MonoLoader, TensorflowPredictEffnetDiscogs, TensorflowPredict2D
import requests
from numba import cuda
from pydub import AudioSegment
import subprocess
from pathlib import Path
import shutil
import re
import yt_dlp as youtube_dl
import shlex
def install_system_packages():
packages = [
"build-essential", "libeigen3-dev", "libyaml-dev",
"libfftw3-dev", "libtag1-dev", "libchromaprint-dev"
]
for package in packages:
try:
subprocess.check_call(["dpkg", "-s", package], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
print(f"{package} is already installed.")
except subprocess.CalledProcessError:
print(f"Installing {package}...")
subprocess.check_call(["sudo", "apt-get", "install", "-y", package])
print(f"{package} installed successfully.")
# Call the function to install system packages
install_system_packages()
def download_youtube_playlist_audio_only(playlist_url, output_dir):
"""
Download only the audio from a YouTube playlist using yt-dlp.
Parameters:
- playlist_url: str, URL of the YouTube playlist
- output_dir: str, directory where the downloaded files will be stored
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192'}],
'outtmpl': os.path.join(output_dir, '%(title)s.%(ext)s'),
'keepvideo': False,
}
try:
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
ydl.download([playlist_url])
print(f"Downloaded playlist from {playlist_url} to {output_dir}")
except Exception as e:
print(f"Failed to download playlist: {e}")
# Get YouTube playlist URL from user input
playlist_url = input("Please enter the YouTube playlist URL: ")
download_youtube_playlist_audio_only(playlist_url, "./dataset/gary")
# Function to download model weights
def download_model_weights():
model_files = [
("genre_discogs400-discogs-effnet-1.pb", "https://essentia.upf.edu/models/classification-heads/genre_discogs400/genre_discogs400-discogs-effnet-1.pb"),
("discogs-effnet-bs64-1.pb", "https://essentia.upf.edu/models/feature-extractors/discogs-effnet/discogs-effnet-bs64-1.pb"),
("mtg_jamendo_moodtheme-discogs-effnet-1.pb", "https://essentia.upf.edu/models/classification-heads/mtg_jamendo_moodtheme/mtg_jamendo_moodtheme-discogs-effnet-1.pb"),
("mtg_jamendo_instrument-discogs-effnet-1.pb", "https://essentia.upf.edu/models/classification-heads/mtg_jamendo_instrument/mtg_jamendo_instrument-discogs-effnet-1.pb")
]
for file_name, url in model_files:
if not os.path.exists(file_name):
print(f"Downloading {file_name}...")
response = requests.get(url)
with open(file_name, "wb") as file:
file.write(response.content)
print(f"Downloaded {file_name} successfully.")
else:
print(f"{file_name} already exists. Skipping download.")
# Call the function to download model weights
download_model_weights()
# Demucs configuration
model = "htdemucs"
extensions = ["mp3", "wav", "ogg", "flac"]
two_stems = None
mp3 = True
mp3_rate = 320
float32 = False
int24 = False
def find_files(in_path):
out = []
for file in Path(in_path).iterdir():
if file.suffix.lower().lstrip(".") in extensions:
out.append(file)
return out
def separate(inp, outp):
cmd = ["demucs", "-n", model, "--two-stems=vocals", "--mp3", f"--mp3-bitrate={mp3_rate}", "--segment", "4", "-o", shlex.quote(str(outp))]
if float32:
cmd += ["--float32"]
if int24:
cmd += ["--int24"]
files = [shlex.quote(str(f)) for f in find_files(inp)]
if not files:
print(f"No valid audio files in {inp}")
return
print("Going to separate the files:")
print('\n'.join(files))
print("With command: ", " ".join(cmd + files))
p = subprocess.Popen(cmd + files, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = p.communicate()
print("Demucs output:", stdout.decode())
print("Demucs errors:", stderr.decode())
if p.returncode != 0:
print("Command failed, something went wrong.")
# Function to slice and resample audio files
def slice_and_resample_audio(dataset_path, output_dir, chunk_length=30000):
print(f"Slicing and resampling audio in {dataset_path}...")
os.makedirs(output_dir, exist_ok=True)
for filename in os.listdir(dataset_path):
if filename.endswith(".mp3"):
audio_path = os.path.join(dataset_path, filename)
if os.path.exists(audio_path):
audio = AudioSegment.from_file(audio_path)
audio = audio.set_frame_rate(44100)
duration = len(audio)
# Iterate over the audio file in chunk_length increments
for i in range(0, duration - chunk_length, chunk_length):
chunk = audio[i:i + chunk_length]
chunk_filename = f"{os.path.splitext(filename)[0]}_chunk{i//1000}.wav"
chunk.export(os.path.join(output_dir, chunk_filename), format="wav")
# Always take the last chunk from the end of the file to ensure it's full length
last_chunk = audio[-chunk_length:]
chunk_filename = f"{os.path.splitext(filename)[0]}_chunk{(duration - chunk_length)//1000}.wav"
last_chunk.export(os.path.join(output_dir, chunk_filename), format="wav")
print(f"Processed {filename}")
else:
print(f"File {audio_path} not found")
print("All audio files processed.")
# Process the dataset
def process_demucs_output(demucs_output_path, instrumental_output_path):
print("Processing Demucs output...")
os.makedirs(instrumental_output_path, exist_ok=True)
# Traverse through the first level of folders created by Demucs
for folder in os.listdir(demucs_output_path):
# Construct the path to the first level folder (track folder)
first_level_folder_path = os.path.join(demucs_output_path, folder)
if os.path.isdir(first_level_folder_path):
# Further navigate to the model folder inside the track folder
model_folder_path = os.path.join(first_level_folder_path, "htdemucs")
if os.path.isdir(model_folder_path):
# Locate the 'no_vocals.mp3' file within the model folder
instrumental_file = os.path.join(model_folder_path, folder, "no_vocals.mp3")
if os.path.exists(instrumental_file):
# Rename and move to 'instrumental' folder with original filename
output_filename = f"{folder}.mp3"
new_path = os.path.join(instrumental_output_path, output_filename)
shutil.move(instrumental_file, new_path)
print(f"Moved and renamed {instrumental_file} to {new_path}")
else:
print(f"No instrumental file found in {model_folder_path}/{folder}")
else:
print(f"Model directory {model_folder_path} does not exist")
else:
print(f"{first_level_folder_path} is not a directory")
def rename_files_to_remove_spaces(directory):
for filename in os.listdir(directory):
if ' ' in filename:
new_filename = filename.replace(' ', '_')
os.rename(os.path.join(directory, filename), os.path.join(directory, new_filename))
print(f"Renamed {filename} to {new_filename}")
# Process the dataset
def process_dataset(raw_audio_path, demucs_output_path, instrumental_output_path, split_output_path):
# Rename files to remove spaces
rename_files_to_remove_spaces(raw_audio_path)
# Perform Demucs vocal separation using the command-line interface
for file in os.listdir(raw_audio_path):
if file.endswith((".mp3", ".wav", ".flac", ".m4a")):
input_file = os.path.join(raw_audio_path, file)
output_folder = os.path.splitext(file)[0]
cmd = [
"demucs",
"-n", "htdemucs",
"--two-stems=vocals",
"--mp3",
"--mp3-bitrate", "320",
"--segment", "4",
"-o", shlex.quote(os.path.join(demucs_output_path, output_folder)),
shlex.quote(input_file)
]
print("Running command: ", " ".join(cmd))
subprocess.run(" ".join(cmd), shell=True, check=True)
# Process Demucs output and move instrumental MP3s to a single folder
process_demucs_output(demucs_output_path, instrumental_output_path)
# Perform slicing and resampling on the instrumental MP3s
slice_and_resample_audio(instrumental_output_path, split_output_path)
# Example usage
raw_audio_path = "./dataset/gary"
demucs_output_path = "./dataset/gary/demucs/htdemucs"
instrumental_output_path = "./dataset/gary/instrumental"
split_output_path = "./dataset/gary/split"
process_dataset(raw_audio_path, demucs_output_path, instrumental_output_path, split_output_path)
# @title metadata (labels) for essentia - LONG CELL DONT OPEN
genre_labels = [
"Blues---Boogie Woogie",
"Blues---Chicago Blues",
"Blues---Country Blues",
"Blues---Delta Blues",
"Blues---Electric Blues",
"Blues---Harmonica Blues",
"Blues---Jump Blues",
"Blues---Louisiana Blues",
"Blues---Modern Electric Blues",
"Blues---Piano Blues",
"Blues---Rhythm & Blues",
"Blues---Texas Blues",
"Brass & Military---Brass Band",
"Brass & Military---Marches",
"Brass & Military---Military",
"Children's---Educational",
"Children's---Nursery Rhymes",
"Children's---Story",
"Classical---Baroque",
"Classical---Choral",
"Classical---Classical",
"Classical---Contemporary",
"Classical---Impressionist",
"Classical---Medieval",
"Classical---Modern",
"Classical---Neo-Classical",
"Classical---Neo-Romantic",
"Classical---Opera",
"Classical---Post-Modern",
"Classical---Renaissance",
"Classical---Romantic",
"Electronic---Abstract",
"Electronic---Acid",
"Electronic---Acid House",
"Electronic---Acid Jazz",
"Electronic---Ambient",
"Electronic---Bassline",
"Electronic---Beatdown",
"Electronic---Berlin-School",
"Electronic---Big Beat",
"Electronic---Bleep",
"Electronic---Breakbeat",
"Electronic---Breakcore",
"Electronic---Breaks",
"Electronic---Broken Beat",
"Electronic---Chillwave",
"Electronic---Chiptune",
"Electronic---Dance-pop",
"Electronic---Dark Ambient",
"Electronic---Darkwave",
"Electronic---Deep House",
"Electronic---Deep Techno",
"Electronic---Disco",
"Electronic---Disco Polo",
"Electronic---Donk",
"Electronic---Downtempo",
"Electronic---Drone",
"Electronic---Drum n Bass",
"Electronic---Dub",
"Electronic---Dub Techno",
"Electronic---Dubstep",
"Electronic---Dungeon Synth",
"Electronic---EBM",
"Electronic---Electro",
"Electronic---Electro House",
"Electronic---Electroclash",
"Electronic---Euro House",
"Electronic---Euro-Disco",
"Electronic---Eurobeat",
"Electronic---Eurodance",
"Electronic---Experimental",
"Electronic---Freestyle",
"Electronic---Future Jazz",
"Electronic---Gabber",
"Electronic---Garage House",
"Electronic---Ghetto",
"Electronic---Ghetto House",
"Electronic---Glitch",
"Electronic---Goa Trance",
"Electronic---Grime",
"Electronic---Halftime",
"Electronic---Hands Up",
"Electronic---Happy Hardcore",
"Electronic---Hard House",
"Electronic---Hard Techno",
"Electronic---Hard Trance",
"Electronic---Hardcore",
"Electronic---Hardstyle",
"Electronic---Hi NRG",
"Electronic---Hip Hop",
"Electronic---Hip-House",
"Electronic---House",
"Electronic---IDM",
"Electronic---Illbient",
"Electronic---Industrial",
"Electronic---Italo House",
"Electronic---Italo-Disco",
"Electronic---Italodance",
"Electronic---Jazzdance",
"Electronic---Juke",
"Electronic---Jumpstyle",
"Electronic---Jungle",
"Electronic---Latin",
"Electronic---Leftfield",
"Electronic---Makina",
"Electronic---Minimal",
"Electronic---Minimal Techno",
"Electronic---Modern Classical",
"Electronic---Musique Concrète",
"Electronic---Neofolk",
"Electronic---New Age",
"Electronic---New Beat",
"Electronic---New Wave",
"Electronic---Noise",
"Electronic---Nu-Disco",
"Electronic---Power Electronics",
"Electronic---Progressive Breaks",
"Electronic---Progressive House",
"Electronic---Progressive Trance",
"Electronic---Psy-Trance",
"Electronic---Rhythmic Noise",
"Electronic---Schranz",
"Electronic---Sound Collage",
"Electronic---Speed Garage",
"Electronic---Speedcore",
"Electronic---Synth-pop",
"Electronic---Synthwave",
"Electronic---Tech House",
"Electronic---Tech Trance",
"Electronic---Techno",
"Electronic---Trance",
"Electronic---Tribal",
"Electronic---Tribal House",
"Electronic---Trip Hop",
"Electronic---Tropical House",
"Electronic---UK Garage",
"Electronic---Vaporwave",
"Folk, World, & Country---African",
"Folk, World, & Country---Bluegrass",
"Folk, World, & Country---Cajun",
"Folk, World, & Country---Canzone Napoletana",
"Folk, World, & Country---Catalan Music",
"Folk, World, & Country---Celtic",
"Folk, World, & Country---Country",
"Folk, World, & Country---Fado",
"Folk, World, & Country---Flamenco",
"Folk, World, & Country---Folk",
"Folk, World, & Country---Gospel",
"Folk, World, & Country---Highlife",
"Folk, World, & Country---Hillbilly",
"Folk, World, & Country---Hindustani",
"Folk, World, & Country---Honky Tonk",
"Folk, World, & Country---Indian Classical",
"Folk, World, & Country---Laïkó",
"Folk, World, & Country---Nordic",
"Folk, World, & Country---Pacific",
"Folk, World, & Country---Polka",
"Folk, World, & Country---Raï",
"Folk, World, & Country---Romani",
"Folk, World, & Country---Soukous",
"Folk, World, & Country---Séga",
"Folk, World, & Country---Volksmusik",
"Folk, World, & Country---Zouk",
"Folk, World, & Country---Éntekhno",
"Funk / Soul---Afrobeat",
"Funk / Soul---Boogie",
"Funk / Soul---Contemporary R&B",
"Funk / Soul---Disco",
"Funk / Soul---Free Funk",
"Funk / Soul---Funk",
"Funk / Soul---Gospel",
"Funk / Soul---Neo Soul",
"Funk / Soul---New Jack Swing",
"Funk / Soul---P.Funk",
"Funk / Soul---Psychedelic",
"Funk / Soul---Rhythm & Blues",
"Funk / Soul---Soul",
"Funk / Soul---Swingbeat",
"Funk / Soul---UK Street Soul",
"Hip Hop---Bass Music",
"Hip Hop---Boom Bap",
"Hip Hop---Bounce",
"Hip Hop---Britcore",
"Hip Hop---Cloud Rap",
"Hip Hop---Conscious",
"Hip Hop---Crunk",
"Hip Hop---Cut-up/DJ",
"Hip Hop---DJ Battle Tool",
"Hip Hop---Electro",
"Hip Hop---G-Funk",
"Hip Hop---Gangsta",
"Hip Hop---Grime",
"Hip Hop---Hardcore Hip-Hop",
"Hip Hop---Horrorcore",
"Hip Hop---Instrumental",
"Hip Hop---Jazzy Hip-Hop",
"Hip Hop---Miami Bass",
"Hip Hop---Pop Rap",
"Hip Hop---Ragga HipHop",
"Hip Hop---RnB/Swing",
"Hip Hop---Screw",
"Hip Hop---Thug Rap",
"Hip Hop---Trap",
"Hip Hop---Trip Hop",
"Hip Hop---Turntablism",
"Jazz---Afro-Cuban Jazz",
"Jazz---Afrobeat",
"Jazz---Avant-garde Jazz",
"Jazz---Big Band",
"Jazz---Bop",
"Jazz---Bossa Nova",
"Jazz---Contemporary Jazz",
"Jazz---Cool Jazz",
"Jazz---Dixieland",
"Jazz---Easy Listening",
"Jazz---Free Improvisation",
"Jazz---Free Jazz",
"Jazz---Fusion",
"Jazz---Gypsy Jazz",
"Jazz---Hard Bop",
"Jazz---Jazz-Funk",
"Jazz---Jazz-Rock",
"Jazz---Latin Jazz",
"Jazz---Modal",
"Jazz---Post Bop",
"Jazz---Ragtime",
"Jazz---Smooth Jazz",
"Jazz---Soul-Jazz",
"Jazz---Space-Age",
"Jazz---Swing",
"Latin---Afro-Cuban",
"Latin---Baião",
"Latin---Batucada",
"Latin---Beguine",
"Latin---Bolero",
"Latin---Boogaloo",
"Latin---Bossanova",
"Latin---Cha-Cha",
"Latin---Charanga",
"Latin---Compas",
"Latin---Cubano",
"Latin---Cumbia",
"Latin---Descarga",
"Latin---Forró",
"Latin---Guaguancó",
"Latin---Guajira",
"Latin---Guaracha",
"Latin---MPB",
"Latin---Mambo",
"Latin---Mariachi",
"Latin---Merengue",
"Latin---Norteño",
"Latin---Nueva Cancion",
"Latin---Pachanga",
"Latin---Porro",
"Latin---Ranchera",
"Latin---Reggaeton",
"Latin---Rumba",
"Latin---Salsa",
"Latin---Samba",
"Latin---Son",
"Latin---Son Montuno",
"Latin---Tango",
"Latin---Tejano",
"Latin---Vallenato",
"Non-Music---Audiobook",
"Non-Music---Comedy",
"Non-Music---Dialogue",
"Non-Music---Education",
"Non-Music---Field Recording",
"Non-Music---Interview",
"Non-Music---Monolog",
"Non-Music---Poetry",
"Non-Music---Political",
"Non-Music---Promotional",
"Non-Music---Radioplay",
"Non-Music---Religious",
"Non-Music---Spoken Word",
"Pop---Ballad",
"Pop---Bollywood",
"Pop---Bubblegum",
"Pop---Chanson",
"Pop---City Pop",
"Pop---Europop",
"Pop---Indie Pop",
"Pop---J-pop",
"Pop---K-pop",
"Pop---Kayōkyoku",
"Pop---Light Music",
"Pop---Music Hall",
"Pop---Novelty",
"Pop---Parody",
"Pop---Schlager",
"Pop---Vocal",
"Reggae---Calypso",
"Reggae---Dancehall",
"Reggae---Dub",
"Reggae---Lovers Rock",
"Reggae---Ragga",
"Reggae---Reggae",
"Reggae---Reggae-Pop",
"Reggae---Rocksteady",
"Reggae---Roots Reggae",
"Reggae---Ska",
"Reggae---Soca",
"Rock---AOR",
"Rock---Acid Rock",
"Rock---Acoustic",
"Rock---Alternative Rock",
"Rock---Arena Rock",
"Rock---Art Rock",
"Rock---Atmospheric Black Metal",
"Rock---Avantgarde",
"Rock---Beat",
"Rock---Black Metal",
"Rock---Blues Rock",
"Rock---Brit Pop",
"Rock---Classic Rock",
"Rock---Coldwave",
"Rock---Country Rock",
"Rock---Crust",
"Rock---Death Metal",
"Rock---Deathcore",
"Rock---Deathrock",
"Rock---Depressive Black Metal",
"Rock---Doo Wop",
"Rock---Doom Metal",
"Rock---Dream Pop",
"Rock---Emo",
"Rock---Ethereal",
"Rock---Experimental",
"Rock---Folk Metal",
"Rock---Folk Rock",
"Rock---Funeral Doom Metal",
"Rock---Funk Metal",
"Rock---Garage Rock",
"Rock---Glam",
"Rock---Goregrind",
"Rock---Goth Rock",
"Rock---Gothic Metal",
"Rock---Grindcore",
"Rock---Grunge",
"Rock---Hard Rock",
"Rock---Hardcore",
"Rock---Heavy Metal",
"Rock---Indie Rock",
"Rock---Industrial",
"Rock---Krautrock",
"Rock---Lo-Fi",
"Rock---Lounge",
"Rock---Math Rock",
"Rock---Melodic Death Metal",
"Rock---Melodic Hardcore",
"Rock---Metalcore",
"Rock---Mod",
"Rock---Neofolk",
"Rock---New Wave",
"Rock---No Wave",
"Rock---Noise",
"Rock---Noisecore",
"Rock---Nu Metal",
"Rock---Oi",
"Rock---Parody",
"Rock---Pop Punk",
"Rock---Pop Rock",
"Rock---Pornogrind",
"Rock---Post Rock",
"Rock---Post-Hardcore",
"Rock---Post-Metal",
"Rock---Post-Punk",
"Rock---Power Metal",
"Rock---Power Pop",
"Rock---Power Violence",
"Rock---Prog Rock",
"Rock---Progressive Metal",
"Rock---Psychedelic Rock",
"Rock---Psychobilly",
"Rock---Pub Rock",
"Rock---Punk",
"Rock---Rock & Roll",
"Rock---Rockabilly",
"Rock---Shoegaze",
"Rock---Ska",
"Rock---Sludge Metal",
"Rock---Soft Rock",
"Rock---Southern Rock",
"Rock---Space Rock",
"Rock---Speed Metal",
"Rock---Stoner Rock",
"Rock---Surf",
"Rock---Symphonic Rock",
"Rock---Technical Death Metal",
"Rock---Thrash",
"Rock---Twist",
"Rock---Viking Metal",
"Rock---Yé-Yé",
"Stage & Screen---Musical",
"Stage & Screen---Score",
"Stage & Screen---Soundtrack",
"Stage & Screen---Theme",
]
mood_theme_classes = [
"action",
"adventure",
"advertising",
"background",
"ballad",
"calm",
"children",
"christmas",
"commercial",
"cool",
"corporate",
"dark",
"deep",
"documentary",
"drama",
"dramatic",
"dream",
"emotional",
"energetic",
"epic",
"fast",
"film",
"fun",
"funny",
"game",
"groovy",
"happy",
"heavy",
"holiday",
"hopeful",
"inspiring",
"love",
"meditative",
"melancholic",
"melodic",
"motivational",
"movie",
"nature",
"party",
"positive",
"powerful",
"relaxing",
"retro",
"romantic",
"sad",
"sexy",
"slow",
"soft",
"soundscape",
"space",
"sport",
"summer",
"trailer",
"travel",
"upbeat",
"uplifting"
]
instrument_classes = [
"accordion",
"acousticbassguitar",
"acousticguitar",
"bass",
"beat",
"bell",
"bongo",
"brass",
"cello",
"clarinet",
"classicalguitar",
"computer",
"doublebass",
"drummachine",
"drums",
"electricguitar",
"electricpiano",
"flute",
"guitar",
"harmonica",
"harp",
"horn",
"keyboard",
"oboe",
"orchestra",
"organ",
"pad",
"percussion",
"piano",
"pipeorgan",
"rhodes",
"sampler",
"saxophone",
"strings",
"synthesizer",
"trombone",
"trumpet",
"viola",
"violin",
"voice"
]
# Function to filter predictions based on threshold
def filter_predictions(predictions, class_list, threshold=0.1):
predictions_mean = np.mean(predictions, axis=0)
sorted_indices = np.argsort(predictions_mean)[::-1]
filtered_indices = [i for i in sorted_indices if predictions_mean[i] > threshold]
filtered_labels = [class_list[i] for i in filtered_indices]
filtered_values = [predictions_mean[i] for i in filtered_indices]
return filtered_labels, filtered_values
# Function to create comma-separated unique tags
def make_comma_separated_unique(tags):
seen_tags = set()
result = []
for tag in ', '.join(tags).split(', '):
if tag not in seen_tags:
result.append(tag)
seen_tags.add(tag)
return ', '.join(result)
# Function to get audio features using Essentia
def get_audio_features(audio_filename):
audio = MonoLoader(filename=audio_filename, sampleRate=16000, resampleQuality=4)()
embedding_model = TensorflowPredictEffnetDiscogs(graphFilename="discogs-effnet-bs64-1.pb", output="PartitionedCall:1")
embeddings = embedding_model(audio)
result_dict = {}
genre_model = TensorflowPredict2D(graphFilename="genre_discogs400-discogs-effnet-1.pb", input="serving_default_model_Placeholder", output="PartitionedCall:0")
predictions = genre_model(embeddings)
filtered_labels, _ = filter_predictions(predictions, genre_labels)
filtered_labels = ', '.join(filtered_labels).replace("---", ", ").split(', ')
result_dict['genres'] = make_comma_separated_unique(filtered_labels)
mood_model = TensorflowPredict2D(graphFilename="mtg_jamendo_moodtheme-discogs-effnet-1.pb")
predictions = mood_model(embeddings)
filtered_labels, _ = filter_predictions(predictions, mood_theme_classes, threshold=0.05)
result_dict['moods'] = make_comma_separated_unique(filtered_labels)
instrument_model = TensorflowPredict2D(graphFilename="mtg_jamendo_instrument-discogs-effnet-1.pb")
predictions = instrument_model(embeddings)
filtered_labels, _ = filter_predictions(predictions, instrument_classes)
result_dict['instruments'] = filtered_labels
return result_dict
# Autolabelling and creating train/test split
print('Autolabelling...')
split_dataset_path = "./dataset/gary/split"
output_dataset_path = "./dataset/gary"
def extract_artist_from_filename(filename):
match = re.search(r'(.+?)\s\d+_chunk\d+\.wav', filename)
artist = match.group(1) if match else ""
return artist.replace("mix", "").strip() if "mix" in artist else artist
with open(os.path.join(output_dataset_path, "train.jsonl"), "w") as train_file, \
open(os.path.join(output_dataset_path, "test.jsonl"), "w") as eval_file:
dset = os.listdir(split_dataset_path)
random.shuffle(dset)
for filename in tqdm(dset):
try:
result = get_audio_features(os.path.join(split_dataset_path, filename))
except:
result = {"genres": [], "moods": [], "instruments": []}
y, sr = librosa.load(os.path.join(split_dataset_path, filename))
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
tempo = round(tempo[0]) if isinstance(tempo, np.ndarray) else round(tempo)
chroma = librosa.feature.chroma_stft(y=y, sr=sr)
key = np.argmax(np.sum(chroma, axis=1))
key = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'][key]
length = librosa.get_duration(y=y, sr=sr)
artist_name = extract_artist_from_filename(filename)
entry = {
"key": f"{key}",
"artist": artist_name,
"sample_rate": 44100,
"file_extension": "wav",
"description": "",
"keywords": "",
"duration": length,
"bpm": tempo,
"genre": result.get('genres', ""),
"title": filename,
"name": "",
"instrument": result.get('instruments', ""),
"moods": result.get('moods', []),
"path": os.path.join(split_dataset_path, filename)
}
if random.random() < 0.85:
train_file.write(json.dumps(entry) + '\n')
else:
eval_file.write(json.dumps(entry) + '\n')
if cuda.is_available():
device = cuda.get_current_device()
device.reset()
else:
print("No CUDA devices available. Skipping device reset.")
# Create YAML configuration file
config_path = os.path.join(output_dataset_path, "train.yaml")
package_str = "package"
yaml_contents = f"""#@{package_str} __global__
datasource:
max_channels: 2
max_sample_rate: 44100
evaluate: egs/eval
generate: egs/train
train: egs/train
valid: egs/eval
"""
with open(config_path, 'w') as yaml_file:
yaml_file.write(yaml_contents)
def cleanup_directory(directory_path):
try:
shutil.rmtree(directory_path)
print(f"Successfully cleaned up {directory_path}")
except Exception as e:
print(f"Error cleaning up directory {directory_path}: {e}")
# After all processing is done and you're ready to clean up
cleanup_directory_path = "./dataset/gary/demucs"
#cleanup_directory(cleanup_directory_path)