-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paththesis_berceanu_words.txt
37623 lines (37605 loc) · 226 KB
/
thesis_berceanu_words.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Superfluidity
the
ability
of
fluid
to
flow
without
apparent
viscosity
is
one
of
the
most
striking
consequences
of
collective
quantum
coherence
with
manifestations
ranging
from
metastability
of
supercurrents
in
multiply
connected
geometries
to
the
appearance
of
quantized
vortices
or
the
existence
of
critical
velocity
for
frictionless
flow
when
scattering
against
defect
While
traditionally
investigated
in
equilibrium
systems
like
liquid
He
and
ultracold
atomic
gases
experimental
advances
in
nonlinear
optics
in
particular
regarding
microcavity
exciton
polaritons
paved
the
way
for
studying
superfluid
related
phenomena
in
driven
dissipative
framework
Equally
exciting
is
the
possibility
of
realising
topological
phases
of
matter
such
as
the
integer
or
fractional
quantum
Hall
states
outside
of
traditional
electronic
systems
Photonics
experiments
in
driven
dissipative
resonator
arrays
in
particular
offer
high
degree
of
controllability
and
tunability
as
well
as
unprecedented
experimental
access
to
the
eigenstates
and
energy
spectrum
This
thesis
reports
on
hydrodynamic
effects
as
well
as
topological
properties
of
driven
dissipative
systems
In
particular
we
analyze
the
superfluid
like
behaviour
of
microcavity
exciton
polaritons
as
well
as
the
momentum
space
topology
of
coupled
resonator
arrays
Microcavity
exciton
polaritons
are
quasiparticles
resulting
from
the
mixing
of
excitons
bound
electron
hole
pairs
and
photons
confined
inside
semiconductor
microcavities
While
polariton
fluids
have
been
shown
to
display
collective
coherence
the
connection
between
the
various
manifestations
of
superfluid
behaviour
is
more
involved
compared
to
equilibrium
systems
In
this
manuscipt
we
consider
both
the
case
of
single
fluid
pump
only
configuration
as
well
as
the
three
fluid
optical
parametric
oscillator
regime
that
results
from
parametric
scattering
of
the
pump
to
the
signal
and
idler
states
In
both
cases
we
look
at
the
response
of
the
moving
polaritons
scattering
against
weak
static
defect
present
in
the
microcavity
For
the
single
fluid
we
evaluate
analytically
the
drag
exerted
by
the
fluid
on
the
defect
For
low
fluid
velocities
the
pump
frequency
classifies
the
collective
excitation
spectra
in
three
different
categories
linear
diffusive
like
and
gapped
We
show
that
both
the
linear
and
diffusive
like
cases
share
qualitatively
similar
crossover
of
the
drag
from
the
subsonic
to
the
supersonic
regime
as
function
of
the
fluid
velocity
with
critical
velocity
given
by
the
speed
of
sound
found
for
the
linear
regime
In
contrast
for
gapped
spectra
we
find
that
the
critical
velocity
exceeds
the
speed
of
sound
In
all
cases
we
show
that
the
residual
drag
in
the
subcritical
regime
is
caused
by
the
nonequilibrium
nature
of
the
system
Also
well
below
the
critical
velocity
the
drag
varies
linearly
with
the
polariton
lifetime
in
agreement
with
previous
numerical
studies
The
optical
parametric
oscillator
regime
presents
an
additional
challenge
as
one
is
dealing
with
three
coupled
fluids
The
spontaneous
macroscopic
coherence
following
the
phase
locking
of
the
signal
and
idler
fluids
has
been
already
shown
to
be
responsible
for
their
simultaneous
quantized
flow
metastability
We
find
that
the
modulations
generated
by
the
defect
in
each
fluid
are
not
only
determined
by
its
associated
scattering
ring
in
momentum
space
but
each
component
displays
additional
rings
because
of
the
cross
talk
with
the
other
components
imposed
by
nonlinear
and
parametric
processes
We
single
out
three
factors
determining
which
one
of
these
rings
has
the
biggest
influence
on
each
fluid
response
the
coupling
strength
between
the
three
fluids
the
resonance
of
the
ring
with
the
polariton
dispersion
and
the
values
of
each
fluid
group
velocity
and
lifetime
together
establishing
how
far
each
modulation
can
propagate
from
the
defect
For
the
typical
conditions
of
parametric
scattering
the
pump
is
in
the
supercritical
regime
so
the
signal
and
idler
will
show
the
modulations
of
the
pump
meaning
none
of
the
three
states
manifests
superfluid
behaviour
However
the
signal
appears
to
flow
without
friction
in
the
experimental
study
because
the
three
factors
mentioned
above
conspire
to
reduce
the
amplitude
of
its
modulations
below
currently
detectable
levels
Driven
dissipative
systems
can
show
interesting
phenomena
also
without
interactions
stemming
from
the
nontrivial
topology
of
their
energy
bands
In
the
final
part
of
this
thesis
we
present
realistic
proposal
for
an
optical
experiment
using
state
of
the
art
coupled
resonator
arrays
We
study
theoretically
the
driven
dissipative
Harper
Hofstadter
model
on
square
lattice
in
the
presence
of
weak
harmonic
trap
Without
pumping
and
losses
the
eigenstates
of
this
system
can
be
understood
under
certain
approximations
as
momentum
space
toroidal
Landau
levels
where
the
Berry
curvature
geometrical
property
of
an
energy
band
acts
like
momentum
space
magnetic
field
We
show
how
key
features
of
these
eigenstates
can
be
observed
in
the
steady
state
of
the
driven
dissipative
system
under
monochromatic
coherent
drive
We
also
show
that
momentum
space
Landau
levels
would
have
clear
signatures
in
spectroscopic
measurements
in
such
experiments
and
we
discuss
the
insights
gained
in
this
way
into
geometrical
energy
bands
and
particles
in
magnetic
fields
List
of
Publications
List
of
Publications
The
following
articles
have
been
published
in
the
context
of
this
thesis
Onset
and
dynamics
of
vortex
antivortex
pairs
in
polariton
optical
parametric
oscillator
superfluids
Tosi
Marchetti
Sanvitto
Ant
Szyma
ska
Berceanu
Tejedor
Marrucci
Lema
itre
Bloch
and
Vi
Phys
Rev
Lett
Drag
in
resonantly
driven
polariton
fluid
Berceanu
Cancellieri
and
Marchetti
Phys
Condens
Matter
Chapter
Multicomponent
polariton
superfluidity
in
the
optical
parametric
oscillator
regime
Berceanu
Dominici
Carusotto
Ballarini
Cancellieri
Gigli
Szyma
ska
Sanvitto
and
Marchetti
Phys
Rev
Chapter
Momentum
space
Landau
levels
in
driven
dissipative
cavity
arrays
Berceanu
Price
Ozawa
and
Carusotto
Phys
Rev
Chapter
Conference
proceedings
Momentum
space
Landau
levels
in
arrays
of
coupled
ring
resonators
Price
Berceanu
Ozawa
and
Carusotto
Proc
SPIE
Preface
Preface
How
birds
fly
together
Systems
far
from
thermal
equilibrium
frequently
show
novel
features
when
compared
to
their
equilibrium
counterparts
As
an
everyday
example
consider
group
of
birds
displaying
long
range
ordered
behaviour
manifested
by
forming
flock
under
certain
conditions
This
behaviour
can
be
modeled
by
introducing
time
step
rule
such
that
each
individual
bird
in
group
determines
its
next
direction
on
each
time
step
by
averaging
the
directions
of
its
neighbours
and
adding
some
random
noise
on
top
of
that
It
can
be
shown
that
in