-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnormal.py
74 lines (53 loc) · 1.38 KB
/
normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
Normal gaussian functions
"""
from math import exp, sqrt, pi
def cdf(x):
"""Normal cumulative distribution function.
From http://en.wikipedia.org/wiki/Bc_programming_language.
Algorithm is from
George Marsaglia, Journal of Statistical Software,
July 2004, Vol 11, Issue 5
"""
s = x
t = 0.0
b = x
q = float(x*x)
i = 1
while s != t:
t = s
i += 2
b *= q / i
s = t + b
return .5+s*exp(-.5*q-.91893853320467274178)
def pdf(x):
"""Normal probability distribution function."""
return exp(-x*x/2)/sqrt(2*pi)
def newtons_method(f, fp, x0, eps=1e-15):
"""Find the root of F with newton's method
http://en.wikipedia.org/wiki/Newton's_method
"""
i = 0
while True:
d = fp(x0)
if d == 0.0:
# derivative is zero. stuck.
raise Exception("Cannot use newton's method")
x1 = x0 - f(x0) / d
if abs(x0-x1) < eps: break
i += 1
if i > 20 : break
x0 = x1
return x1
def invcdf(x):
"""Inverse cdf of the normal distribution."""
# Check the extreme values
if x < 5.5e-16:
return -10.0
elif x >= 0.999999999:
return 10.0
else:
# Then solve.
def f(y):
return cdf(y) - x
return newtons_method(f, pdf, 0.0)