-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmumfordshah_glasso.py
300 lines (256 loc) · 8.2 KB
/
mumfordshah_glasso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python
import numpy as np
import cv2
from sklearn.cluster import KMeans
import argparse
from os.path import basename
import os.path
import os
def J1(x, h):
return np.sum(np.linalg.norm(grad(x,h), axis = 2))
def chambolle(x, y, tau, sigma, theta, K, K_star, f, res_F, res_G, j_tv, n_iter = 100, eps = 1e-6, im_updates = 0, im_out = None, centers = None):
x_bar = x.copy()
x_old = x.copy()
save_progress = im_updates > 0 and centers is not None and im_out is not None
print('====================================================================\nIter:\tdX:\t\tJ(u):\t\tf:\t\tPrimal objective:')
for n in range(n_iter):
err = np.linalg.norm(x-x_old)
ju = j_tv(x)
fu = np.sum(f*x)
obj = fu + ju
print('%d\t%e\t%e\t%e\t%e'%(n, err, ju, fu, obj))
if (err < eps) and (n > 0):
break
x_old = x.copy()
y = res_F(y + sigma*K(x_bar))
x = res_G(x - tau*(K_star(y)+f))
x_bar = x + theta*(x - x_old)
#If im_updates is greater than 0 then we output our progress every
#im_updates iterations
if save_progress and (n%im_updates) == 0:
#Print to im_out
ms_img = np.dot(x,centers)
ms_img = ms_img.astype(np.uint8)
ms_img = ms_img.astype(np.uint8)
cv2.imwrite('%s_n_%04d.png'%(im_out,n), ms_img)
return x
def grad(u, h):
k = u.shape[2]
p = np.zeros((u.shape[0], u.shape[1], 2, k))
for i in range(k):
p[0:-1, :, 0, i] = (u[1:, :, i] - u[0:-1, :, i])/h
p[:, 0:-1, 1, i] = (u[:, 1:, i] - u[:, 0:-1, i])/h
return p
def div(p, h):
k = p.shape[3]
u = np.zeros((p.shape[0], p.shape[1], k))
for i in range(k):
#u[0:-1,:,i] = (p[1:, :, 0, i] - p[0:-1, :, 0, i])/h
#u[:,0:-1,i] += (p[:, 1:, 1, i] - p[:, 0:-1, 1, i])/h
u[1:,:,i] = (p[1:, :, 0, i] - p[0:-1, :, 0, i])/h
u[:,1:,i] += (p[:, 1:, 1, i] - p[:, 0:-1, 1, i])/h
return u
def project_balls(p):
#print 'Projection onto unit balls'
pt = np.transpose(p, (0,1,3,2))
n = np.linalg.norm(pt, axis = 3)
d = np.maximum(2*n, 1)
for i in range(pt.shape[3]):
pt[:,:,:,i] = pt[:,:,:,i]/d
# pt[n>0.5,i] = pt[n>0.5,i]/(2*n[n>0.5])
p = np.transpose(pt, (0,1,3,2))
return p
#Project onto intersection of unit balls
def project_balls_intersect(p):
eps_p = 1e-6
n_batch = 200
#print 'Projection onto intersection of unit balls'
p0 = p
k = p.shape[3]
r = k*(k-1)/2
#Not sure what to set this to.....
n_iter = r
pairs = np.zeros((r,2), dtype = int)
c = 0
for i in range(k-1):
for j in range(i+1,k):
pairs[c,:] = [i,j]
c += 1
def proj(x, c):
[i,j] = pairs[c,:]
a = x[:,:,:,i]
b = x[:,:,:,j]
d = np.maximum(np.linalg.norm(a-b, axis = 2),1)
xa0 = a[:,:,0]*(1+1/d)/2 + b[:,:,0]*(1-1/d)/2
xa1 = a[:,:,1]*(1+1/d)/2 + b[:,:,1]*(1-1/d)/2
xb0 = a[:,:,0]*(1-1/d)/2 + b[:,:,0]*(1+1/d)/2
xb1 = a[:,:,1]*(1-1/d)/2 + b[:,:,1]*(1+1/d)/2
x[d>1,0,i] = xa0[d>1]
x[d>1,1,i] = xa1[d>1]
x[d>1,0,j] = xb0[d>1]
x[d>1,1,j] = xb1[d>1]
return x
i = np.zeros((p.shape + (r,)))
errs = np.zeros(r)
m = 0
err = eps_p + 1e6
while (err > eps_p) and m < n_batch:
print 'Batch', m, 'errors', errs
n = 0
while n < n_iter:
p = proj(p0 - i[:,:,:,:,n%r], n%r)
errs[n%r] = np.linalg.norm(p-p0)
i[:,:,:,:,n%r] = p - (p0 - i[:,:,:,:,n%r])
p0 = p
n += 1
m += 1
err = np.max(errs)
return p
#No longer a projection onto simplex problem
#Now done with ADMM for group LASSO
def project_simplex_glasso(u):
(ny, nx, k) = u.shape
def proj_prob(xv):
x = np.array(xv)
if not len(x.shape) == 1:
return 1.
D = x.shape[0]
uv = np.sort(x)[::-1]
vv = uv + np.array([1./j - np.sum(uv[0:j])/float(j) for j in range(1,D+1)])
rho = np.max(np.where(vv > 0))
lmbda = (1 - np.sum(uv[0:rho+1]))/float(rho+1)
xp = np.maximum(x + lmbda, 0)
return xp
#Quite slow........could be parallelized
for i in range(ny):
for j in range(nx):
u[i,j,:] = proj_prob(np.squeeze(u[i,j,:]))
return u
def project_simplex(u):
(ny, nx, k) = u.shape
def proj_prob(xv):
x = np.array(xv)
if not len(x.shape) == 1:
return 1.
D = x.shape[0]
uv = np.sort(x)[::-1]
vv = uv + np.array([1./j - np.sum(uv[0:j])/float(j) for j in range(1,D+1)])
rho = np.max(np.where(vv > 0))
lmbda = (1 - np.sum(uv[0:rho+1]))/float(rho+1)
xp = np.maximum(x + lmbda, 0)
return xp
#Quite slow........could be parallelized
for i in range(ny):
for j in range(nx):
u[i,j,:] = proj_prob(np.squeeze(u[i,j,:]))
return u
def mumford(fn_in, l=5):
nc = 16
#Params from [1]
theta = 1
tau = 0.05
h = 1 #Not sure this is right...
L2 = 8/h**2
sigma = 1/(L2 * tau)
lmda = l #Not sure what this should be set to....
ny = 200
#Test code
#fn_in = './black_white_orange.png'
fn_in = './butterfly.png'
bn = basename(os.path.splitext(fn_in)[0])
dr = './progress_frames/'
if not os.path.exists(dr):
os.makedirs(dr)
#Load image
img = cv2.imread(fn_in)
(iny,inx) = img.shape[0:2]
img = cv2.resize(img, (int(inx*(ny/float(iny))), ny))
#K-means clustering to get colors and for comparison
ny = img.shape[0]
nx = img.shape[1]
N = nx*ny
X = img.reshape(N, -1, 3).squeeze()
#Cluster image to get 'mean' clusters
km = KMeans(n_clusters = nc).fit(X)
centers = km.cluster_centers_
cl = km.predict(X).reshape((ny, nx))
#Paint the image by the clusters
km_img = np.zeros(img.shape)
for i in range(ny):
for j in range(nx):
km_img[i,j,:] = centers[cl[i,j],:]
km_img = km_img.astype(np.uint8)
cv2.imwrite('%s_kmeans.png'%bn, km_img)
#cv2.waitKey()
#Generate resolvents and such
#res_F = project_balls_intersect
res_F = project_balls
#res_G = project_simplex_
#Need to write a new res_G for group LASSO. Everything else stays the same...
res_G = project_simplex_glasso
K = lambda x: grad(x, h)
K_star = lambda x: -div(x, h)
j_tv = lambda x: J1(x, h)
#Generate set of images, f_l, that are the error measures for each pixel and
#each color, c_l, obtained from k-means
f = np.zeros((ny, nx, nc))
for c in range(nc):
for i in range(ny):
for j in range(nx):
f[i,j,c] = lmda*(np.linalg.norm(img[i,j,:]-centers[c,:]))**2/2
#Init u, p
u = res_G(np.zeros((ny, nx, nc)))
p = res_F(K(u))
#Start with a better initial guess based on k-means clustering
#Test
#u = np.zeros((ny, nx, nc))
#p = np.zeros((ny, nx, 2, nc))
#Run chambolle algorithm
n_iter = 300
u_s = chambolle(u, p, tau, sigma, theta, K, K_star, f, res_F, res_G, j_tv, n_iter = n_iter,\
im_updates = 3, im_out = '%s/%s_MS_lambda_%.02e_niter_%04d'%(dr,bn,l,n_iter), centers = centers)
#Take argmax of u tensor to obtain segmented image
#Paint the image by the cluster colors
#ms_img = np.zeros(img.shape)
#for i in range(ny):
# for j in range(nx):
# col = np.argmax(u_s[i,j,:])
# ms_img[i,j,:] += centers[col,:]
ms_img = np.dot(u_s,centers)
ms_img = ms_img.astype(np.uint8)
cv2.imwrite('%s_MS_lambda_%.02e_niter_%04d.png'%(bn,l,n_iter), ms_img)
return ms_img
if __name__ == '__main__':
usage = """mumfordshah.py [input_image]
###############################
Mumford-Shah image segmentation
###############################
Adds a group LASSO penalty to encourage a sparse number of colors are used.
Based on
[1] "A first-order primal-dual algorithm for convex problems with applications to imaging"
Chambolle, Antonin and Pock, Thomas (2011)
Journal of Mathematical Imaging and Vision. 40(1)
Intersection of convex set projection method based on
[2] "A cyclic projection algorithm via duality"
Gaffke, Norbert and Mathar, Rudolf (1989)
Metrika. 36(1)
Unit simplex projection based on
[3] "Projection onto the probability simplex : An efficient algorithm with a
simple proof and an application"
Wang, Weiran and Miguel, A (2013)
arXiv:1309.1541v1
Ben Lansdell. 2016
"""
parser = argparse.ArgumentParser()
#parser.add_argument('fn_in', default='./jellyfish.jpg',
# help='input video file, any format readable by OpenCV')
parser.add_argument('fn_in', default='./butterfly_part.png',
help='input video file, any format readable by OpenCV')
parser.add_argument('-lambda', default=1, dest='l', type = float,
help='Regulaization term. Lower means smoother, higher means closer to image')
args = parser.parse_args()
#Set up multiprocessing
print '===================================================================='
print 'Chambolle proximal point algorithm for mumford-shah image segmentation'
print 'Regularization (smaller = smoother): lambda =', args.l
mumford(args.fn_in, args.l)