You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Got loss=nan and sometimes fails and cuda error (again loss calculation cased it) when training on GPU. When i set calculate_training_loss=False - model trains absolutely fine. If calculate_training_loss=True than:
Using GPU: 3
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 15/15 [03:02<00:00, 12.19s/it, loss=nan]
100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 25728193/25728193 [07:42<00:00, 55622.56it/s]
NDCG for qvec 0: 1.26 %
CuPy cache cleared on GPU 3
Using GPU: 4
7%|█████████████▍ | 1/15 [00:12<02:52, 12.33s/it]
Traceback (most recent call last):
File "/home/fkurushin/personal-query-recommendations-research/ndcg_vs_sample_srategy.py", line 74, in <module>
main(args.gpus, args.sparse_matrix_paths, args.n_factors)
File "/home/fkurushin/personal-query-recommendations-research/ndcg_vs_sample_srategy.py", line 53, in main
model.fit(train)
File "/home/fkurushin/venv/implicit/lib/python3.11/site-packages/implicit/gpu/als.py", line 166, in fit
loss = self.solver.calculate_loss(Cui, X, Y, self.regularization)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "_cuda.pyx", line 265, in implicit.gpu._cuda.LeastSquaresSolver.calculate_loss
RuntimeError: Cuda Error: an illegal memory access was encountered (/home/fkurushin/implicit/implicit/gpu/als.cu:276)
terminate called after throwing an instance of 'std::runtime_error'
what(): Cuda Error: an illegal memory access was encountered (/home/fkurushin/implicit/implicit/gpu/matrix.cu:246)
Aborted
And i am pretty sure this problem is not with data types and variables overflow
Additional Information:
implicit: 0.7.2 (built from source)
Python: 3.11.2
CUDA: 12.3
OS: Debian GNU/Linux 12
Scipy: 1.14.0
The text was updated successfully, but these errors were encountered:
Got
loss=nan
and sometimes fails and cuda error (again loss calculation cased it) when training on GPU. When i setcalculate_training_loss=False
- model trains absolutely fine. Ifcalculate_training_loss=True
than:And i am pretty sure this problem is not with data types and variables overflow
Additional Information:
The text was updated successfully, but these errors were encountered: