-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimports.py
53 lines (47 loc) · 1.97 KB
/
imports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import sys
import time
import re
import matplotlib.pyplot as plt
import plotly.express as px
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import pandas as pd
from matplotlib.ticker import FormatStrFormatter
import tensorflow as tf
import numpy as np
from scipy.signal import windows
from threading import Thread
from scipy.io import wavfile
from inspect import currentframe, getframeinfo, stack
from shutil import rmtree, copy, copyfile
# python interp uses and runs C:/Users/FlRE_DEATH/anaconda3/envs/py310tg210gpu/lib/site-packages/keras/api/_v2/keras/
# but inspector uses C:\Users\FlRE_DEATH\anaconda3\envs\py310tg210gpu\Lib\site-packages\tensorflow\python
# from tensorflow.keras import Model, Sequential
# from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
# from tensorflow.keras.layers import Dense, Input, Activation, BatchNormalization, Dropout, Conv2D, Conv1D, Flatten, \
# MaxPooling2D, Softmax, AveragePooling2D, LeakyReLU, MaxPool2D, GlobalAveragePooling2D
# from tensorflow.keras.optimizers import SGD
from keras.api._v2.keras import Model, Sequential
from keras.api._v2.keras.callbacks import ModelCheckpoint, TensorBoard
from keras.api._v2.keras.layers import Dense, Input, Activation, BatchNormalization, Dropout, Conv2D, Conv1D, Flatten, \
MaxPooling2D, Softmax, AveragePooling2D, LeakyReLU, MaxPool2D, GlobalAveragePooling2D
from keras.api._v2.keras.optimizers import SGD
import datetime
# from tensorflow.keras.utils import to_categorical
from keras.api._v2.keras.utils import to_categorical
from sklearn.model_selection import train_test_split
import random
import librosa
import scipy.stats
from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler
from sklearn.utils import shuffle
import sklearn.metrics
from yodel import filter
import soundfile as sf
import taglib
from typing import Any
import pyloudnorm as pyln
from scipy.io import wavfile
from itertools import product
import json