-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqacc~.c
177 lines (145 loc) · 5.21 KB
/
qacc~.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*
qacc~ - Quaternion accumulator external for Pure Data
2024, Ben Wesch
Functionality:
- Performs cumulative quaternion multiplication (accumulation) on a sample-by-sample basis
- Maintains an internal quaternion state that represents the accumulated transformation
- Normalizes the output quaternion to maintain stability
Usage:
1. Send a 4-channel signal to the inlet (w, x, y, z components of a quaternion)
2. Receive the resulting 4-channel signal from the outlet
3. Use [set 1 0 0 0( message to reset the internal state to identity (or other) quaternion
Note: This code was developed with assistance from the Anthropic Claude AI language model.
*/
#include "m_pd.h"
#include <math.h>
static t_class *qacc_tilde_class;
typedef struct _qacc_tilde {
t_object x_obj;
t_sample f;
t_sample **quat_in; // 4-channel quaternion input
t_sample **quat_out; // 4-channel quaternion output
t_float accum_quat[4]; // Accumulated quaternion state
t_sample *zero_buffer; // Dynamic zero buffer
int buffer_size; // Size of the zero buffer
} t_qacc_tilde;
t_int *qacc_tilde_perform(t_int *w)
{
t_qacc_tilde *x = (t_qacc_tilde *)(w[1]);
int n = (int)(w[2]);
t_sample *qw = x->quat_in[0], *qx = x->quat_in[1], *qy = x->quat_in[2], *qz = x->quat_in[3];
t_sample *ow = x->quat_out[0], *ox = x->quat_out[1], *oy = x->quat_out[2], *oz = x->quat_out[3];
t_float aw = x->accum_quat[0], ax = x->accum_quat[1], ay = x->accum_quat[2], az = x->accum_quat[3];
while (n--) {
// quaternion multiplication (accumulation step)
t_float rw = aw * (*qw) - ax * (*qx) - ay * (*qy) - az * (*qz);
t_float rx = aw * (*qx) + ax * (*qw) + ay * (*qz) - az * (*qy);
t_float ry = aw * (*qy) - ax * (*qz) + ay * (*qw) + az * (*qx);
t_float rz = aw * (*qz) + ax * (*qy) - ay * (*qx) + az * (*qw);
// normalize transformed quaternion
t_float rmag = sqrt(rw*rw + rx*rx + ry*ry + rz*rz);
if (rmag > 0) {
aw = rw / rmag;
ax = rx / rmag;
ay = ry / rmag;
az = rz / rmag;
}
// output normalized result
*ow++ = aw;
*ox++ = ax;
*oy++ = ay;
*oz++ = az;
qw++; qx++; qy++; qz++;
}
// store final accumulated state for the next DSP cycle
x->accum_quat[0] = aw;
x->accum_quat[1] = ax;
x->accum_quat[2] = ay;
x->accum_quat[3] = az;
return (w+3);
}
void qacc_tilde_dsp(t_qacc_tilde *x, t_signal **sp)
{
int quat_channels = (int)sp[0]->s_nchans;
int vec_size = sp[0]->s_n;
// Reallocate zero buffer if necessary
if (x->buffer_size != vec_size) {
if (x->zero_buffer) {
freebytes(x->zero_buffer, x->buffer_size * sizeof(t_sample));
}
x->zero_buffer = (t_sample *)getbytes(vec_size * sizeof(t_sample));
if (!x->zero_buffer) {
pd_error(x, "qacc~: out of memory");
return;
}
x->buffer_size = vec_size;
for (int i = 0; i < vec_size; i++) {
x->zero_buffer[i] = 0;
}
}
// Assign input channels or zero buffer
for (int i = 0; i < 4; i++) {
if (i < quat_channels) {
x->quat_in[i] = sp[0]->s_vec + vec_size * i;
} else {
x->quat_in[i] = x->zero_buffer;
}
}
signal_setmultiout(&sp[1], 4);
for (int i = 0; i < 4; i++)
x->quat_out[i] = sp[1]->s_vec + sp[1]->s_n * i;
dsp_add(qacc_tilde_perform, 2, x, sp[0]->s_n);
}
void qacc_tilde_set(t_qacc_tilde *x, t_symbol *s, int argc, t_atom *argv)
{
if (argc >= 4) {
x->accum_quat[0] = atom_getfloat(argv);
x->accum_quat[1] = atom_getfloat(argv+1);
x->accum_quat[2] = atom_getfloat(argv+2);
x->accum_quat[3] = atom_getfloat(argv+3);
} else {
pd_error(x, "qacc~: 'set' needs 4 float arguments for initial quaternion");
}
(void)s;
}
void qacc_tilde_reset(t_qacc_tilde *x)
{
// reset to identity quaternion
x->accum_quat[0] = 1;
x->accum_quat[1] = 0;
x->accum_quat[2] = 0;
x->accum_quat[3] = 0;
}
void *qacc_tilde_new(void)
{
t_qacc_tilde *x = (t_qacc_tilde *)pd_new(qacc_tilde_class);
x->quat_in = (t_sample **)getbytes(4 * sizeof(t_sample *));
x->quat_out = (t_sample **)getbytes(4 * sizeof(t_sample *));
qacc_tilde_reset(x);
// Initialize zero buffer
x->zero_buffer = NULL;
x->buffer_size = 0;
outlet_new(&x->x_obj, &s_signal);
return (void *)x;
}
void qacc_tilde_free(t_qacc_tilde *x)
{
freebytes(x->quat_in, 4 * sizeof(t_sample *));
freebytes(x->quat_out, 4 * sizeof(t_sample *));
if (x->zero_buffer) {
freebytes(x->zero_buffer, x->buffer_size * sizeof(t_sample));
}
}
void qacc_tilde_setup(void)
{
qacc_tilde_class = class_new(gensym("qacc~"),
(t_newmethod)qacc_tilde_new,
(t_method)qacc_tilde_free,
sizeof(t_qacc_tilde),
CLASS_MULTICHANNEL,
0);
class_addmethod(qacc_tilde_class, (t_method)qacc_tilde_dsp, gensym("dsp"), A_CANT, 0);
class_addmethod(qacc_tilde_class, (t_method)qacc_tilde_set, gensym("set"), A_GIMME, 0);
class_addmethod(qacc_tilde_class, (t_method)qacc_tilde_reset, gensym("reset"), 0);
CLASS_MAINSIGNALIN(qacc_tilde_class, t_qacc_tilde, f);
}