-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathinference.py
156 lines (125 loc) · 6.38 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import json
import logging
import os
import re
import time
import torch
import torch.nn.functional as F
from tqdm import tqdm
from transformers.modeling_bert import BertConfig
from config import _C as config
from dataset import COCOCaptionDataset
from modeling import Generator
from utils import mkdir
from utils.checkpointer import Checkpointer
from utils.dataloader import make_data_loader
from utils.logger import setup_logger
from utils.tokenizer import EOS, MASK, tokenizer
def inference(generator, data_loader, device):
logger = logging.getLogger("inference")
logger.info("Start inferencing")
generator.eval()
pred_dict = dict()
eos_penalizers = list()
for l, (low, high) in enumerate(config.boundaries):
pred_dict[str(l + 1)] = dict()
eos_penalizer = torch.ones((1, high - low + 1), dtype=torch.float, device=device)
eos_penalizer *= config.infer.eos_decay[l]
eos_penalizer = eos_penalizer.cumprod(dim=-1).flip(-1)
eos_penalizers.append(eos_penalizer)
end = time.time()
for iteration, batch in tqdm(enumerate(data_loader, 0), total=len(data_loader)):
iteration = iteration + 1
region_features = batch[0].to(device) # (N, 100, 2048), float
region_class = batch[1].to(device) # (N, 100, 1601), float
region_spatial = batch[2].to(device) # (N, 100, 6), float
B = region_class.size(0)
num_regions = region_class.size(1)
pred_list = list()
with torch.no_grad():
batch_id = torch.arange(0, B, 1, device=device).unsqueeze(1)
region_spatial[:, :, [0, 2]] /= region_spatial[:, :, [2]] + 1e-5
region_spatial[:, :, [1, 3]] /= region_spatial[:, :, [3]] + 1e-5
rel_area = (region_spatial[:, :, [3]] - region_spatial[:, :, [1]]) * \
(region_spatial[:, :, [2]] - region_spatial[:, :, [0]])
region_spatial = torch.cat((region_spatial[:, :, :4],
rel_area.clamp_(0), region_spatial[:, :, 5:]), dim=-1)
position_features = torch.cat((F.layer_norm(region_spatial, [6]),
F.layer_norm(region_class, [1601])), dim=-1)
region_type = torch.full((B, num_regions), len(config.boundaries) + 1)
region_type = region_type.to(torch.long).to(device)
for l, (low, high) in enumerate(config.boundaries, 1):
token_type_ids = region_class.new_full((B, high), l, dtype=torch.long)
masked_token_ids = token_type_ids.new_full((B, high), MASK)
attention_mask = rel_area.new_ones((B, high + num_regions))
position_ids = torch.arange(high, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand_as(masked_token_ids)
token_type_ids = torch.cat((region_type, token_type_ids), dim=1)
pred_scores = generator(
region_features, position_features,
masked_token_ids, token_type_ids,
position_ids, attention_mask)
pred_probs = F.softmax(pred_scores[:, num_regions:, :], dim=-1)
pred_probs[:, low - 1:, EOS] *= eos_penalizers[l - 1]
pred_token_probs, pred_token_ids = pred_probs.max(dim=-1)
total_steps = config.infer.steps[l - 1]
for step in range(1, total_steps):
num_mask = max(1, int(high * (1.0 - step / total_steps)))
mask_id = pred_token_probs.topk(num_mask, -1, False, False)[1]
mask_id = (mask_id + batch_id * high).view(-1)
pred_token_ids.view(-1)[mask_id] = MASK
pred_scores = generator(
region_features, position_features,
pred_token_ids, token_type_ids,
position_ids, attention_mask)
pred_probs = F.softmax(pred_scores[:, num_regions:, :], dim=-1)
pred_probs[:, low - 1:, EOS] *= eos_penalizers[l - 1]
new_token_probs, new_token_ids = pred_probs.max(dim=-1)
pred_token_ids.view(-1)[mask_id] = new_token_ids.view(-1)[mask_id]
pred_token_probs.view(-1)[mask_id] = new_token_probs.view(-1)[mask_id]
pred_token_probs = (pred_token_probs + new_token_probs) / 2
# print(tokenizer.decode(pred_token_ids[0].cpu().numpy()))
pred_list.append(pred_token_ids.cpu().numpy()) # 5 * (N, L)
image_ids = list(batch[3].cpu().numpy())
# print(image_ids[0])
for level, preds_per_level in enumerate(pred_list, 1):
for batch_id, image_id in enumerate(image_ids):
pred_per_level = tokenizer.decode(preds_per_level[batch_id], end_flags=[EOS])
pred_per_level = re.sub(r'\b(\w+)( \1\b)+', r'\1', pred_per_level)
pred_dict[str(level)][str(image_id)] = [{'caption': pred_per_level}]
logger.info('batch_time: {time:.4f} batch_memory: {memory:.2f}'.format(
time=(time.time() - end) / iteration,
memory=torch.cuda.max_memory_allocated() / 1024.0 ** 3))
return pred_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="inference")
parser.add_argument("opts", default=None, nargs=argparse.REMAINDER)
args = parser.parse_args()
config.merge_from_list(args.opts)
config.freeze()
save_dir = os.path.join(config.save_dir)
mkdir(save_dir)
logger = setup_logger("inference", save_dir, 0)
logger.info("Running with config:\n{}".format(config))
device = torch.device(config.device)
num_types = len(config.boundaries) + 2
generator = Generator(BertConfig(type_vocab_size=num_types))
generator = generator.to(device)
g_checkpointer = Checkpointer(model=generator, logger=logger)
g_checkpointer.load(config.model_path, True)
dataset = COCOCaptionDataset(
root=config.data_dir,
split='test',
boundaries=config.boundaries
)
data_loader = make_data_loader(
dataset=dataset,
batch_size=config.samples_per_gpu,
num_workers=config.num_workers,
split='test'
)
pred_dict = inference(generator, data_loader, device)
logger.info(f"Saving results to {save_dir}/caption_results.json")
with open(os.path.join(save_dir, 'caption_results.json'), 'w') as f:
json.dump(pred_dict, f)