-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
57 lines (50 loc) · 1.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
import torch
from medpy import metric
from scipy.ndimage import zoom
import torch.nn as nn
class DiceLoss(nn.Module):
def __init__(self, Nclasses):
super(DiceLoss, self).__init__()
self.Nclasses = Nclasses
def _one_hot_encoder(self, input_tensor):
tensorList = []
for i in range(self.Nclasses):
temp_prob = input_tensor == i
tensorList.append(temp_prob.unsqueeze(1))
outputTensor = torch.cat(tensorList, dim=1)
return ( outputTensor.float() )
def _dice_loss(self, score, target):
target = target.float()
smooth = 1e-5
intersect = torch.sum(score * target)
y_sum, z_sum = torch.sum(target * target), torch.sum(score * score)
diceLoss = 1- (2 * intersect + smooth) / (z_sum + y_sum + smooth)
return ( diceLoss )
def forward(self, inputs, target, weight=None, softmax=False):
if softmax:
inputs = torch.softmax(inputs, dim=1)
target = self._one_hot_encoder(target)
if weight is None:
weight = [1] * self.Nclasses
assert inputs.size() == target.size(), 'predict {} & target {} shape do not match'.format(inputs.size(), target.size())
class_wise_dice = []
loss = 0.0
for i in range(0, self.Nclasses):
dice = self._dice_loss(inputs[:, i], target[:, i])
class_wise_dice.append(1.0 - dice.item())
loss += dice * weight[i]
return ( loss / self.Nclasses )
def calculate_metric_percase(pred, gt):
prediction = pred
groundTruth = gt
prediction[prediction > 0] = 1
groundTruth[groundTruth > 0] = 1
if prediction.sum() > 0 and groundTruth.sum()>0:
dice = metric.binary.dc(prediction, groundTruth)
hd95 = metric.binary.hd95(prediction, groundTruth)
return ( dice, hd95 )
elif prediction.sum() > 0 and groundTruth.sum()==0:
return ( 1, 0 )
else:
return ( 0, 0 )