diff --git a/main.py b/main.py index 9c8df18..3fb8002 100644 --- a/main.py +++ b/main.py @@ -69,8 +69,8 @@ def do_tint_solve(val): dimmer.print_dimmer_state() def do_tint_table_solve(val): - points = 256 - for i in range(points): + points = (256) - 1 + for i in range(points + 1): duty = i * 100 / points tint = dimmer.solve_tint_for_duty(duty) tperc = tint / (dimmer.periode / 2) diff --git a/rms_vs_tinterrupt.ipynb b/rms_vs_tinterrupt.ipynb index 63dc00b..1338cc7 100644 --- a/rms_vs_tinterrupt.ipynb +++ b/rms_vs_tinterrupt.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 4, "source": [ "from dimmer import Dimmer\r\n", "import matplotlib.pyplot as plt\r\n", @@ -12,20 +12,19 @@ "\r\n", "duty_series = np.arange(0, 100, 1)\r\n", "rms_series = [dimmer.solve_tint_for_duty(duty) for duty in duty_series]\r\n", - "plt.plot(duty_series, rms_series)\r\n", - "plt.ylabel(\"time [s]\")\r\n", - "plt.xlabel(\"duty [%]\")\r\n", + "plt.plot(rms_series, duty_series)\r\n", + "plt.xlabel(\"time [s]\")\r\n", + "plt.ylabel(\"duty [%]\")\r\n", "plt.grid()" ], "outputs": [ { "output_type": "display_data", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoBklEQVR4nO3dd3iUZd728e8vnSQEQiKhBAggCkgREjpqsIsNBBREQBQREddd1111n3cf3XX1UdeKHRAru6CIgr0gEQQpCaBU6VUkdAhICVzvHxljRBImJJN7kpyf45iDzD13MqeXA2fueplzDhEREYAQrwOIiEjwUCmIiEg+lYKIiORTKYiISD6VgoiI5AvzOkBJJCYmupSUFK9jsH//fmJiYryOEbQ0PoXT2BROY1O0koxPVlbWdufcaSd6rVyXQkpKCpmZmV7HICMjg/T0dK9jBC2NT+E0NoXT2BStJONjZusLe027j0REJJ9KQURE8qkUREQkX8BKwczGmlm2mS0usKyGmX1hZit9f8b7lpuZjTSzVWb2vZm1DVQuEREpXCC3FF4DLj1u2b3AVOdcE2Cq7znAZUAT32Mo8GIAc4mISCECVgrOuenAzuMWXw287vv6daBHgeVvuDyzgepmVjtQ2URE5MTK+pTUJOfcFt/XPwFJvq/rAhsLrLfJt2wLxzGzoeRtTZCUlERGRkbAwvorJycnKHIEK41P4TQ2hdPYFC1Q4+PZdQrOOWdmxb5vt3NuFDAKIC0tzZ3KebqZ63Yya/UOGiRE0zAxhgYJMVSrEl7sn/MLnU9dNI1P4TQ2hdPYFC1Q41PWpbDVzGo757b4dg9l+5ZvBuoVWC/Ztywgstbv4skvVvxmWXx0OCmJMaQk+B6J0TRIiKFhQgzVok+9MEREypOyLoUpwCDgEd+fkwssH2Fm44EOwJ4Cu5lK3a3nNWZQ5xTW7zjAuh37Wb9jP2u3H2D9jv3MWbOD9xb8to+qR4f7CiKahomxnFUnjpbJ1UiKiwpURBERTwSsFMzsv0A6kGhmm4D7ySuDt83sZmA9cK1v9Y+B7sAq4AAwOFC5fhEVHsqZtapyZq2qv3vt4JGjbNx5gLXb9+cXx7od+5m3bheTv/uRXyarO61qJC3rVqPqkcMcqbmVFnXjqBUXhZkFOr6ISEAErBScc/0KeemCE6zrgNsDlaW4osJDaZJUlSZJvy+M/YdyWbplL4s27WHx5j0s/nEPK7ceYfLqvHswJcZG0KJuNVrVrUa7hjVIbRBPdES5vsWUiFQi+teqmGIiw2iXUoN2KTXyl3325TQSm7Rm0aY9LNq8l8Wb9zB9xTaOfQVhIUbL5Gp0aJhAh0Y1SGsQT9UoHaMQkeCkUigFkWFGaoMapDb4tShyDuWSuW4nc9buZO7anbzyzRpe+no1IQYt6lajY6MEzmmSSPuGNYgMC/UwvYjIr1QKARIbGUb6mTVJP7MmAD8fPsr8DbuYs2YHs9fu5LWZ6xg1fQ3REaF0bpzgW/c0kuOjPU4uIpWZSqGMVIkIpcvpiXQ5PRGAA4dzmb1mB9OWb2PaD9l8uSzv7NwmNWPp1rQmFzdPom39eEJCdNBaRMqOSsEj0RFhnN80ifObJuGcY/W2/WT8kE3GD9t4deZaRk1fQ82qkVxyVi0ua1GL9g1rEBaqm9qKSGCpFIKAmXF6zVhOrxnLkHMasffgEaYtz+bjRVt4J2sjb85eT42YCC5qlsRVZ9ehY6MEQrUFISIBoFIIQnFR4Vx9dl2uPrsuBw7nkvHDNj5d/BMffv8jEzI3khQX6Xu9Ds1rx+m6CBEpNSqFIBcdEUb3lrXp3rI2B48c5ctlW3l/wWbGfpO3i+mMpFh6tkmmV9u61NQV1iJSQiqFciQqPJQrWtXhilZ12Ln/MB8t2sL7Czbz6KfLefzzHzi/aU36tqvHeWecpuMPInJKVArlVI2YCAZ0bMCAjg1YvS2HtzM38m7WJr5YupWkuEj6pNajX4f61K1exeuoIlKOqBQqgManxXLfZc24++Iz+Wp5NhPmbeSFjFW8kLGKC5slMbBTCl1OT9CxBxE5KZVCBRIeGsIlZ9XikrNqsWnXAcbN2cCEeRv5fOlWGp8Ww8BOKfROTSYmUv/bReTEtOO5gkqOj+aeS5sy697zeaJPa2Ijw7h/yhI6P/IVj366nJ/2HPQ6oogEIf3KWMFFhYfSKzWZXqnJZK3fyZgZa3n569WMnr6Gq1rXYeh5jWhaK87rmCISJFQKlcgvN+3bsOMAr85ay4R5G5m0YDMXNK3J8G6Nf3NDPxGpnLT7qBKqnxDN/Veexax7z+dPF57B/A276PXit1z78rfMWLkN54o9dbaIVBAqhUqsenQEd17YhJn3ns/fr2jOhh0HGPDKXHq/9C3TV6gcRCojlYIQHRHGzV0b8vVf03mwRwu27P6ZgWPncs2Ls7TlIFLJqBQkX2RYKAM6NmDaX9J5qGcLsvceYsArc+k7ajaZ63Z6HU9EyoBKQX4nMiyU/h0a8NXd5/GPq85i9bb99H7pWwa/OpelP+71Op6IBJBKQQoVGRbKoM4pTP9rOvdc2pT5G3Zz+bMzuGvCQjbtOuB1PBEJAJWCnFR0RBi3pTdm+l+6MfTcRny4aAvnP/41D320lD0HjngdT0RKkUpB/FYtOpz7LmtGxt3pXHV2HcZ8s5b0x6fx+qx1HDl6zOt4IlIKVApSbHWqV+HxPq356I5zaFY7jvunLOHSp6cz7Ydsr6OJSAmpFOSUNa8Tx7ghHRgzMI1jDga/Oo+bX5vHuu37vY4mIqdIpSAlYmZc2DyJz/54Ln/r3pQ5a3dy8VPTeeST5ew/lOt1PBEpJpWClIqIsBCGntuYr+4+jytb1+Glr1dz4ZNf8/GiLbr4TaQcUSlIqapZNYonrm3Nu7d1onp0BMPHzeeJzEOs1S4lkXJBpSABkdqgBh+M6MIDVzZn9Z6jXPL0dEZOXcmh3KNeRxORIujW2RIwYaEh3NilIdX3reXLndV58osVTF64mYd7tqRDowSv44nICWhLQQKuelQIz13fltcGt+Pw0WNcN2o2901axJ6fdeGbSLDxpBTM7E9mtsTMFpvZf80syswamtkcM1tlZhPMLMKLbBI46WfW5LM/nsvQcxsxYd4GLnryaz5b8pPXsUSkgDIvBTOrC/wBSHPOtQBCgb7Ao8BTzrnTgV3AzWWdTQIvOiKMv3VvxuTbu5IYG8mtb2Yx4j/z2ZFzyOtoIoJ3u4/CgCpmFgZEA1uA84GJvtdfB3p4E03KQsvkakwe0YW7Lz6Dz5ds5aKnpvPBdz/q9FURj5kXfwnN7E7gIeBn4HPgTmC2bysBM6sHfOLbkjj+e4cCQwGSkpJSx48fX2a5C5OTk0NsbKzXMYLWycZn875jvLL4EGv2HCMtKZSBZ0USF2FlmNA7+uwUTmNTtJKMT7du3bKcc2knfNE5V6YPIB74CjgNCAfeB24AVhVYpx6w+GQ/KzU11QWDadOmeR0hqPkzPkdyj7rnp610Tf72sWv7z8/dJ4u2BD5YENBnp3Aam6KVZHyATFfIv6te7D66EFjrnNvmnDsCTAK6ANV9u5MAkoHNHmQTj4SFhjA8/XQ+uKMrtatHMeytLO56eyF7D+oMJZGy5EUpbAA6mlm0mRlwAbAUmAb09q0zCJjsQTbx2Jm1qvLe8C784fzTmbzwRy59ajqzVm/3OpZIpVHmpeCcm0PeAeX5wCJfhlHAPcBdZrYKSABeKetsEhzCQ0O46+IzmTisE1HhofQfM4eHP16mq6FFyoAnVzQ75+4H7j9u8RqgvQdxJEi1qR/Ph3/oykMfLWPU9DXMWLmdZ/qezRlJVb2OJlJh6YpmCWrREWE81LMlrwxKI3vvQa589hvenL1ep66KBIhKQcqFC5ol8ckfz6FjowT+/v5ibnkji137D3sdS6TCUSlIuVGzahSv3tiOv1/RnOkrtnHZMzOYs2aH17FEKhSVgpQrISHGzV0bMml4Z6pEhNJv9Gye/nIFR49pd5JIaVApSLnUom41PrijKz3OrsvTX67khjFzyN570OtYIuWeSkHKrdjIMJ687mz+3bsVCzbuovvIGcxYuc3rWCLlmkpByr0+afX4YERX4qMjGDh2Lk99od1JIqdKpSAVQpOkqkwe0YWeberyzNSVDBo7l+26HbdIsakUpMKIjgjjiT6tebRXS+at28kVI78ha/1Or2OJlCsqBalQzIzr2tVn0vDORIaHcN3Lsxn7zVpd7CbiJ5WCVEhn1anGlBFd6da0Jv/8cCl3jl/IgcO5XscSCXoqBamwqlUJ5+UbUvnrpWfy4fc/0uP5mazdvt/rWCJBTaUgFVpIiDE8/XTeuKkD2/Yd4qrnvuGr5Vu9jiUStFQKUil0bZLIB3d0pX6NaG5+PZNnvlzJMZ22KvI7KgWpNJLjo3n3ts70bFOXp75cwbC3ssg5pOMMIgWpFKRSiQoP5Yk+rfnfK5ozdXk2PZ+fyTodZxDJp1KQSsfMuKlrQ968uT3bc/KOM0xfodtjiIBKQSqxzo0TmTKiK3WqV+HGV+cyZsYaXc8glZ5KQSq1ejXyjjNc3LwW//poGX+d+L3mgpZKTaUglV5MZBgv9G/LHy5owjtZm7h+9BzdN0kqLZWCCHnXM9x10Rk8d30blvy4h6ufm8myLXu9jiVS5lQKIgVc0aoO79zamdxjx+j14iy+WKoL3aRyUSmIHKdlct59k06vGcvQNzMZPV0HoKXyUCmInEBSXBQThnbisha1eOjjZdw3aRFHjh7zOpZIwKkURApRJSKU5/q15fZujRk/byM3vjqXPT8f8TqWSECpFESKEBJi/OWSpjzepzVz1+7kmhdmsmHHAa9jiQSMSkHED71Tk3njpg5szzlMzxdmMn/DLq8jiQSESkHET50aJzBpeGdiIsPoN2o2Hy/a4nUkkVKnUhAphsanxfLe8M60qFuN4ePmM2r6ap2ZJBWKSkGkmBJiIxk3pAOXt6zNwx8v5++TF5OrM5OkggjzOoBIeRQVHsqz/dqQHF+Fl6ev4ac9BxnZrw3REforJeWbJ1sKZlbdzCaa2XIzW2Zmncyshpl9YWYrfX/Ge5FNxF8hIcZ93Zvx4NVn8dXybPqNmq17Jkm559Xuo2eAT51zTYHWwDLgXmCqc64JMNX3XCToDeiUwqgBafywdR/XvDCLtZq0R8qxMi8FM6sGnAu8AuCcO+yc2w1cDbzuW+11oEdZZxM5VRc2T2L80E7kHMrlGp2yKuWYlfWZE2Z2NjAKWEreVkIWcCew2TlX3beOAbt+eX7c9w8FhgIkJSWljh8/vkxyFyUnJ4fY2FivYwStyjQ+W/cf44msg+w+6Ljt7Eja1Cz6GENlGpvi0tgUrSTj061btyznXNqJXiu0FMyshh8/+5jvt3y/mVkaMBvo4pybY2bPAHuBOwqWgJntcs4VeVwhLS3NZWZmFuftAyIjI4P09HSvYwStyjY+23MOcdNr81i8eQ8P9mhB/w4NCl23so1NcWhsilaS8TGzQkuhqF9jfvQ9rIh1QoH6xcyzCdjknJvjez6RvOMHW82stnNui5nVBrKL+XNFgkJibCTjh3bk9nHz+Z/3FrN17yH+dGET8jaARYJbUccUljnnGjnnGhb2AHYU9w2dcz8BG83sTN+iC8jblTQFGORbNgiYXNyfLRIsoiPCGDUwjT6pyYycupL7Ji3StQxSLhS1pdDJj+/3Z50TuQMYZ2YRwBpgMHkF9baZ3QysB649xZ8tEhTCQ0N4rHcrkuKieG7aKrbnHOa569sQFR7qdTSRQhVaCs65gwWfm1kUcANQBfiPc27H8ev4yzm3EDjR/qwLTuXniQQrM+PuS86kZlwk909Zwg1j5vDKoHZUiw73OprICRXnlNRngMPALuD9gKQRqaAGdkrhuX5t+X7THvq8PIuf9pzS71MiAVdoKZjZf82scYFFNYB3gHcBXW0sUkyXt6rNa4Pb8ePug/R6cRarsnO8jiTyO0VtKfwP8KCZPWFm1YHHgfeAT4AHAh9NpOLpfHoi44d25FDuUfq8NIs1u496HUnkNwotBefcGufc9eQVwQSgA3C5cy7dOTexrAKKVDQt6lZj4rDOxEaF8ei8g0xfsc3rSCL5itp9FG9mtwPNgT7kHUv4zMyuLKtwIhVVSmIM7w7rTM3oEG5+fR4ffv+j15FEgKJ3H70P7AYc8KZz7k3gSqCNmX0Q+GgiFVvNuCjubR/F2fWqc8d/F/Dm7PVeRxIpshQSyLva+B2gLoBz7mfn3D/x3XtIREomJtx446YOnH9mTf7+/mKenbpSM7mJp4oqhfuBT/n1NhT5nHOanFaklFSJCOWlAalc06YuT3yxggc/XMaxYyoG8UZRF6+9S97ppyISYOGhITzepzXVoyMYO3Mtu38+zGO9WhEWqhlzpWwVdaD5gZN9sz/riIh/QkKMv1/RjD9fdAaT5m9m2FvzOXhEp6xK2Srq3kdDzGxvEa8b0BddsyBSasyMOy5oQrXocP538hIGvzqP0YPSiI3U3M9SNoraNh0NVC3iEetbR0RK2cBOKTx93dnMXbeT60fPZuf+w15HkkqiqGMK/yjLICLyWz3a1KVqVBjDx83n2pe/5a2bO1CrWpTXsaSC01EskSB2QbMkXr+pPT/tOUjvl2axfsd+ryNJBadSEAlyHRsl8J9bOrD/UC69X/qWH37a53UkqcBOWgpmllAWQUSkcK2Sq/P2rZ0IMbj25W9ZuHG315GkgvJnS2G2mb1jZt1Nk8yKeKZJUlUmDutMtSrh9B89m1mrt3sdSSogf0rhDGAUMABYaWYPm9kZgY0lIidSr0Y07wzrRN34Ktz46jy+XLrV60hSwZy0FFyeL5xz/YBbgEHAXDP72sxOdY5mETlFSXFRTBjaiaa1qjLsrSymfKc7rErp8euYgpndaWaZwN3AHUAi8GfgPwHOJyInEB8TwbghHWjbIJ47xy/gv3M3eB1JKgh/dh99C8QBPZxzlzvnJjnncp1zmcBLgY0nIoWpGhXO64Pbc94Zp3HfpEWMmbHG60hSAfhTCv/POfegc27TLwvMrA+Ac+7RgCUTkZOqEhHKqAFpdG9Zi399tIynv1yhW29LifhTCveeYNl9pR1ERE5NRFgII/u2oXdqMk9/uZKHP16mYpBTVuhtLszsMqA7UNfMRhZ4KQ7IDXQwEfFfWGgIj/VqRWxkGKNnrCXnUC7/6tGS0BCdRS7FU9StF38EMoGrgKwCy/cBfwpkKBEpvpAQ4/4rmxMTGcrz01Zz4PBRHu/TmnDNySDFUNQN8b4DvjOzcc45bRmIlANmxl8uaUpMZBiPffoDBw4f5dl+bYgKD/U6mpQT/tykfaWZ/W4HpXOuUQDyiEgpGJ5+OjERYdw/ZQm3vJHJywNSiY7QnAxycv58StIKfB0F9AFqBCaOiJSWQZ1TiI4I5Z53v2fgK3MZO7gdcVHhXseSIOfPFc07Cjw2O+eeBi4PfDQRKak+afV4tl9bFm7cTf/RczRZj5zUSbcUzKxtgach5G05aDtUpJy4vFVtqkSEMOyt+fQdlTdZT804TdYjJ+bPaQlPFHj8H5AKXBvIUCJSus5vmsRrg9uxadfPXPvyt2zadcDrSBKk/Nl91K3A4yLn3C3OuR9K+sZmFmpmC8zsQ9/zhmY2x8xWmdkEM4so6XuIyK86N07kzZs7sGP/Ya596VvWbtcsbvJ7hZaCmd1V1KMU3vtOYFmB548CTznnTgd2ATeXwnuISAGpDeIZP7Qjh3KP0eelb1n+016vI0mQKWpLoarvkQbcBtT1PYYBbYv4vpMys2TyDlaP8T034Hxgom+V14EeJXkPETmxs+pUY8KtHQkNgb6jZvOdZnGTAuxk90gxs+nA5c65fb7nVYGPnHPnnvKbmk0k7/hEVfJux30jMNu3lYCZ1QM+cc61OMH3DgWGAiQlJaWOHz/+VGOUmpycHGJjY72OEbQ0PoXzcmyyDxzjsXkHyTns+FNqFGfWCK4L3PS5KVpJxqdbt25Zzrm0E73mz1lESUDB89gO+5adEjO7Ash2zmWZWXpxv985N4q8meBIS0tz6enF/hGlLiMjg2DIEaw0PoXzemzO6fIz/cfM4akFPzNqQBrnnnGaZ1mO5/XYBLtAjY8/Zx+9Qd5Maw+Y2QPAHOC1ErxnF+AqM1sHjCdvt9EzQHUz+6WkkoHNJXgPEfFD7WpVePvWTqQkxDDk9Uw+W/KT15HEY/6cffQQMJi8g7+7gMHOuf871Td0zt3nnEt2zqUAfYGvnHP9gWlAb99qg4DJp/oeIuK/xNhIxg/tSPM6cQwfN5/JC/X7WGXm1+0TnXPznXPP+B4LApTlHuAuM1sFJACvBOh9ROQ41aMjeGtIB9qlxPPHCQs1vWcl5umVyc65DCDD9/UaoL2XeUQqs9jIMF4b3J5hb2Vx36RF7D+Uy5BzdN/LykY3WheRfFHhedN7Xt6ytqb3rKR0DyMR+Y2IsBBG9mtDdEQoT3+5kpyDufzP5c3Iu5xIKjqVgoj8TmiI8WivVsREhjHmm7XsP6zpPSsLlYKInNDx03vuP3SUJ67V9J4VnUpBRAr1y/SesZHhPPrpcg4czuW569tqes8KTJUvIid1W3pjHuzRgqnLs7nptXnsP6Rp2ysqlYKI+GVAxwY8eW1r5qzdSf8xc9h9QLO4VUQqBRHxW882ybzYvy1Lf9xL31Gzyd530OtIUspUCiJSLBefVYtXB7djw84DXPuSZnGraFQKIlJsXU5P5K0hHdi5/zC9X/yWVdn7vI4kpUSlICKnpG39eCbc2oncY45rX57Nok17vI4kpUClICKnrFntON4Z1okq4aH0Gz2b2Wt2eB1JSkilICIl0jAxhom3daJWtSgGjZ3L1GVbvY4kJaBSEJES+2WynjNrVWXom1m8t2CT15HkFKkURKRU1IiJYJxvToY/TfiO12au9TqSnAKVgoiUmqpR4bw2uD0XN0/igQ+W6tbb5ZBKQURKVVR4KC/0b0uf1GSe/nIlD0xZwrFjKobyQjfEE5FSFxYawmO9W1E9OpzRM9ay68ARHu/Tmogw/R4a7FQKIhIQZsbfujejRkwkj366nN0/H+GlG9oSHaF/doKZaltEAsbMuC29MY/2ask3K7dx/eg57NqvG+kFM5WCiATcde3q8+INqSzdspfeL81i8+6fvY4khVApiEiZuOSsWrx5U3uy9x2i1wuzWLFV90sKRioFESkzHRol8PatnTjmHL1fnEXmup1eR5LjqBREpEw1qx3Hu7d1JjE2kv5j5vD5kp+8jiQFqBREpMzVqxHNO8M60bR2HMPeyuI/czZ4HUl8VAoi4omE2Ej+e0sHzjvjNP723iKe/EJXPwcDlYKIeCY6IoxRA9Pok5rMyKkruefd7zly9JjXsSo1XUUiIp4K9139XLtaFCO/WkX2vkM8f31br2NVWtpSEBHPmRl3XXwmD/dsyfQV2+g7aja7D2mLwQsqBREJGtd3qM/ogWmsys7hX7MPsio7x+tIlY5KQUSCygXNkhg/tCOHjzp6vTiLOZris0yVeSmYWT0zm2ZmS81siZnd6Vtew8y+MLOVvj/jyzqbiASH1vWq8/eOVUiIjWDAK3OZvHCz15EqDS+2FHKBPzvnmgMdgdvNrDlwLzDVOdcEmOp7LiKV1GnRIUy6rTNn16/OneMX8txXK3XKahko81Jwzm1xzs33fb0PWAbUBa4GXvet9jrQo6yziUhwqR4dwZs3t6dnm7o8/vkK/jrxew7n6gB0IJmXzWtmKcB0oAWwwTlX3bfcgF2/PD/ue4YCQwGSkpJSx48fX1ZxC5WTk0NsbKzXMYKWxqdwGpvCFRwb5xzvrzrC5NVHaFYjhBFtoogJN48Teqskn51u3bplOefSTvSaZ6VgZrHA18BDzrlJZra7YAmY2S7nXJHHFdLS0lxmZmaAk55cRkYG6enpXscIWhqfwmlsCneisXlvwSbumbiI5PgqjL2xHSmJMd6ECwIl+eyYWaGl4MnZR2YWDrwLjHPOTfIt3mpmtX2v1wayvcgmIsGrZ5tk3hrSgV0HDtPjhZnM1plJpc6Ls48MeAVY5px7ssBLU4BBvq8HAZPLOpuIBL/2DWvw/u1dSIiJYMArc3h73kavI1UoXmwpdAEGAOeb2ULfozvwCHCRma0ELvQ9FxH5nQYJMUwa3oWOjRL467vf868Pl3L0mM5MKg1lfu8j59w3QGFHiC4oyywiUn5VqxLOqze2418fLWPMN2tZmZ3DyH5tqFYl3Oto5ZquaBaRcissNIQHrjqLh3u2ZOaq7fR8YSZrtunWGCWhUhCRcu/6DvUZN6QDuw8c4ernZzLtB52ncqpUCiJSIXRolMCUEV2oFx/NTa/N44WMVboC+hSoFESkwkiOj+bd2zpzRas6PPbpD4z4zwL2H8r1Ola5olIQkQqlSkQoI/uezX2XNeWTxVvo+cJM1m7f73WsckOlICIVjplx63mNeeOmDmzbd4irnv2GL5Zu9TpWuaBSEJEKq2uTRKaM6EqDxGhueSOTxz5dTq7mgC6SSkFEKrR6NaKZOKwz/drX44WM1QwcO5dt+w55HStoqRREpMKLCg/l/65pxWO9W5G1fhfdR87QfZMKoVIQkUrj2rR6vH97F6pGhnH96Nk8P20Vx3R7jN9QKYhIpdKsdhxT7ujK5a3q8O/PfmDQq9qdVJBKQUQqndjIMEb2PZtHrmnJ3LU76T5yBjNWbvM6VlBQKYhIpWRm9G1fn8kjulCtSjgDXpnLwx8vq/TTfaoURKRSa1orjg9GdKV/h/qMmr6GXi/OYlV25b2pnkpBRCq9KhGhPNSzJS/dkMqmXQe44tkZvPHtukp57ySVgoiIz6UtavHZH8+lQ8ME/nfyEm58dR4/7TnodawypVIQESmgZlwUrw1uxz+vPou5a3dy8VNfM2n+pkqz1aBSEBE5jpkxsFMKn9x5DmckVeWut79j6JtZZO+t+FsNKgURkUKkJMYw4dZO/K17U6av2MaFT37N25kbK/RWg0pBRKQIoSHG0HMb88md59C0Vhx/nfg9A8fOZf2Oink7bpWCiIgfGp0Wy/ihHXmwRwsWbtjNxU9N57mvVla46xpUCiIifgoJMQZ0bMCXfz6PC5sl8fjnK+g+cgYzV233OlqpUSmIiBRTUlwUz/dvy9gb0ziUe5T+Y+YwfFwWm3f/7HW0EgvzOoCISHl1ftMkOjdOZPT0NTyfsYqvlmcz9NzG3HpuI2Iiy+c/r9pSEBEpgajwUO64oAlT/5zOhc2SGDl1JemPZ/DfuRvK5SxvKgURkVJQt3oVnru+LZOGd6ZBjWjum7SIy56ZwSeLtpSrORtUCiIipaht/XjeGdaJF/u35ahz3DZuPlc8+w1fLt1aLq5vUCmIiJQyM+OylrX5/I/n8uS1rdl/OJchb2Ry9fMz+XjRFo4G8ZZD+TwSIiJSDoSFhnBN22SubF2HSfM38ULGaoaPm0+DhGiGdG1I79R6VIkI9Trmb2hLQUQkwMJDQ7iuXX2++nM6L/ZvS3x0BH+fvITOj0zl4Y+XsSp7n9cR82lLQUSkjISG5O1WurRFLTLX7+KVGWsZ+81aRk1fQ5v61bkurR6Xt6pN1ahwzzIGVSmY2aXAM0AoMMY594jHkURESp2Z0S6lBu1SarA95xDvzd/MhMyN3DtpEf/4YCmdGyfQtkE8qQ3iaZ1cvUx3MQVNKZhZKPA8cBGwCZhnZlOcc0u9TSYiEjiJsZHccm4jhpzTkIUbdzMxaxPfrtnB1OXZAISFGM3rxNG2fl5JpDaIp071KgHLEzSlALQHVjnn1gCY2XjgakClICIVnpnRpn48berHA7Br/2EWbNxF1vq8x4R5G3lt1joAasVF0SPFkR6IHMFy3qyZ9QYudc4N8T0fAHRwzo04br2hwFCApKSk1PHjx5d51uPl5OQQGxvrdYygpfEpnMamcBqb3zp6zLFx3zFW7T7Gqt1HaZ+QS9vkUxufbt26ZTnn0k70WjBtKfjFOTcKGAWQlpbm0tPTvQ0EZGRkEAw5gpXGp3Aam8JpbIoWqPEJplNSNwP1CjxP9i0TEZEyEkylMA9oYmYNzSwC6AtM8TiTiEilEjS7j5xzuWY2AviMvFNSxzrnlngcS0SkUgmaUgBwzn0MfOx1DhGRyiqYdh+JiIjHVAoiIpJPpSAiIvlUCiIiki9ormg+FWa2DVjvdQ4gEdjudYggpvEpnMamcBqbopVkfBo450470QvluhSChZllFnbJuGh8iqKxKZzGpmiBGh/tPhIRkXwqBRERyadSKB2jvA4Q5DQ+hdPYFE5jU7SAjI+OKYiISD5tKYiISD6VgoiI5FMpFIOZXWpmP5jZKjO79wSvn2tm880s1zeTXKXhx9jcZWZLzex7M5tqZg28yOkVP8ZnmJktMrOFZvaNmTX3IqcXTjY2BdbrZWbOzCrNaap+fG5uNLNtvs/NQjMbUuI3dc7p4ceDvNt5rwYaARHAd0Dz49ZJAVoBbwC9vc4cZGPTDYj2fX0bMMHr3EE2PnEFvr4K+NTr3MEyNr71qgLTgdlAmte5g2VsgBuB50rzfbWl4L/2wCrn3Brn3GFgPHB1wRWcc+ucc98Dx7wI6CF/xmaac+6A7+ls8mbWqyz8GZ+9BZ7GAJXlDJCTjo3Pg8CjwMGyDOcxf8emVKkU/FcX2Fjg+SbfMin+2NwMfBLQRMHFr/Exs9vNbDXwGPCHMsrmtZOOjZm1Beo55z4qy2BBwN+/V718u2Unmlm9E7xeLCoFKVNmdgOQBvzb6yzBxjn3vHOuMXAP8P+8zhMMzCwEeBL4s9dZgtQHQIpzrhXwBfB6SX+gSsF/m4GCLZzsWyZ+jo2ZXQj8D3CVc+5QGWULBsX97IwHegQyUBA52dhUBVoAGWa2DugITKkkB5tP+rlxzu0o8HdpDJBa0jdVKfhvHtDEzBqaWQTQF5jicaZgcdKxMbM2wMvkFUK2Bxm95M/4NCnw9HJgZRnm81KRY+Oc2+OcS3TOpTjnUsg7HnWVcy7Tm7hlyp/PTe0CT68ClpX0TYNqjuZg5pzLNbMRwGfknRUw1jm3xMz+CWQ656aYWTvgPSAeuNLM/uGcO8vD2GXCn7Ehb3dRLPCOmQFscM5d5VnoMuTn+IzwbUkdAXYBg7xLXHb8HJtKyc+x+YOZXQXkAjvJOxupRHSbCxERyafdRyIikk+lICIi+VQKIiKST6UgIiL5VAoiIpJPpSAiIvlUCiI+ZlbdzIYXeF7HzCYG4H0eMLPNvvPNC1unse9WyDml/f4iRdF1CiI+ZpYCfOicaxHg93kAyHHOPe7HujnOudhA5hEpSFsKIr96BPjlN/R/m1mKmS2G/MlM3jezL8xsnZmN8E0ctMDMZptZDd96jc3sUzPLMrMZZtb0ZG9qZucVmCRlgZlVDfB/p0ihdJsLkV/dC7Rwzp0N+VsOBbUA2gBRwCrgHudcGzN7ChgIPA2MAoY551aaWQfgBeD8k7zv3cDtzrmZZhZL5ZozQIKMSkHEf9Occ/uAfWa2h7zbFgMsAlr5/kHvzK/3dwKI9OPnzgSeNLNxwCTn3KZSzi3iN5WCiP8K3u77WIHnx8j7uxQC7P5lS8NfzrlHzOwjoDsw08wucc4tL4W8IsWmYwoiv9pH3v37T4lvSs21ZtYHwPK0Ptn3mVlj59wi59yj5N0u+aTHIUQCRaUg4uOc20Heb+qLzexUZ4brD9xsZt8BS/BvTt0/+t7ze/JunV2ZpiqVIKNTUkXKmE5JlWCmLQWRspcDDPXn4jVga5mlEkFbCiIiUoC2FEREJJ9KQURE8qkUREQkn0pBRETy/X9bDf3NsPff3QAAAABJRU5ErkJggg==", "text/plain": [ "
" - ], - "image/svg+xml": "\r\n\r\n\r\n \r\n \r\n \r\n \r\n 2021-08-27T17:23:14.515028\r\n image/svg+xml\r\n \r\n \r\n Matplotlib v3.4.3, https://matplotlib.org/\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoFklEQVR4nO3dd3gVZd7/8fc3jYQWpAUILYQIhg6RHghgwQauHRGxIIuKfVV4dn+21UexNxal2RHLui6rKCoQinRsdAmhIyiioUkJ3L8/zsEniwSSkMnJyXxe15XLM3PmnPneDuTDzD33PeacQ0RE/Csi1AWIiEhoKQhERHxOQSAi4nMKAhERn1MQiIj4XFSoCyis6tWru4YNGxbps3v27KFChQrFW1AY8GO7/dhm8Ge7/dhmKHy7Fy9evN05V+NY74VdEDRs2JBFixYV6bOZmZlkZGQUb0FhwI/t9mObwZ/t9mObofDtNrP1+b2nS0MiIj6nIBAR8TkFgYiIzykIRER8TkEgIuJzngaBmfU2s1VmlmVmw47x/jVm9pOZfRP8GeRlPSIi8kee3T5qZpHASOBMYBOw0MwmOeeWH7XpO865oV7VISIix+flGUF7IMs5l+2cOwBMBPp6uL/jWrYlh3dXHUDTbouI/DcvB5QlAhvzLG8COhxju4vNrBvwPXCHc27j0RuY2WBgMEBCQgKZmZmFLubz9QeZvPYgL7w/lZY1wm4c3UnZvXt3kf6fhTM/thn82W4/thmKt92h/o34H+Bt59x+M/sz8BrQ8+iNnHOjgdEAaWlpriijCDvnHuazRz7lky3lGHpxVyIi7OQqDyN+HHnpxzaDP9vtxzZD8bbby0tDm4F6eZbrBtf9zjn3s3Nuf3BxLNDOq2JioiL4U0oMK37YyaRvt3i1GxGRsONlECwEUswsycxigCuASXk3MLPaeRb7ACs8rIeOtSM5rXZlnvp8FQdyD3u5KxGRsOFZEDjncoGhwBQCv+Dfdc4tM7OHzKxPcLNbzWyZmX0L3Apc41U9ABFm3Nu7CRt3/MaE+fnOvyQi4iue9hE45yYDk49ad1+e18OB4V7WcLTup9agY6OqvDAti/Na1qFGpXIluXsRkVLHdyOLzYz/d34qew7kcu2rC9i172CoSxIRCSnfBQFAszrxjOrfjhU/7OLPbyxmf+6hUJckIhIyvgwCgB5Na/LEJS2Zs+Zn7nznWw4d1kAzEfGnUI8jCKmL2tbl590HeGTyCg4ddjzXrzXloiJDXZaISIny7RnBETd0a8T/Oz+VT5dt5bpXF7J7f26oSxIRKVG+DwKA67sm8dSlrZiXvYP+Y+axfff+E39IRKSMUBAEXdyuLi9f1Y6VW3fR98UvWb5lZ6hLEhEpEQqCPM5ITeD9IZ05dNhxyUtz+HTp1lCXJCLiOQXBUVrUjWfS0C6kJFRiyJuLeeqzVbqjSETKNAXBMdSsHMs7gztyabu6vDAtiwHj5vPTLvUbiEjZpCDIR2x0JE9c2orHL2nJVxt+4dznZzFnzfZQlyUiUuwUBCdwWVo9Pry5C5Vio+g/dj6PfbJSM5eKSJmiICiAprUq89EtXbni9Pq8NGMNF4+aw5qfdoe6LBGRYqEgKKDyMVE8elELXrqqHRt/2cu5z81i7KxsDqsjWUTCnIKgkHo3r8Vnd3QjPaU6D3+8gitGz2P9z3tCXZaISJEpCIqgZqVYxlydxpOXtmLF1p2c/exMxs7K1m2mIhKWFARFZGZc0q4un93RjS7JgbODi0bNYeVWjUgWkfCiIDhJtePjGDswjef7tWHTjr2c//xsHv1kBXsPaPI6EQkPCoJiYGb0aVWHL+7szkVtE3l5RjZnPj2TaSu3hbo0EZETUhAUo1MqxPD4Ja14Z3BH4mIiue7VRdzw+iI27tgb6tJERPKlIPBAh0bVmHxrOsPOacrs1ds54+kZPD91NfsO6pGYIlL6KAg8EhMVwZDuyUy9qzu9TqvJ059/z5nPzODTpVtxTncXiUjpoSDwWJ0qcfyjfzsmDOpAXHQkQ95czFXj5uvuIhEpNRQEJaRz4+pMvjWdB/s0Y+nmnZz73Cz+519L9DQ0EQk5BUEJioqMYGDnhsy4O4OrOzXknYUbyXgik39kZqn/QERCRkEQAlXKx/BAn2ZMub0bHRtV5fFPV9HrqRl8+PVmzV0kIiVOQRBCjWtWZOzA05kwqANVykdz+zvfcMGLs5m9Ws89EJGSoyAoBTo3rs5/hnblmctb8eveg1w1bj4Dxs1n6eacUJcmIj6gICglIiKMP7Wpy9S7uvO3805jyeYczn9hNre8/bVmNxURTykISpnY6EgGpTdixt09GNqjMV8s30avp2bw138tYdvOfaEuT0TKIAVBKRUfF81fzm7CjLsz6Ne+Pu8u2ki3x6fzv5NXsGPPgVCXJyJliIKglKtZOZa/X9icaXdlcH7LOoydlU36iGk8/dkqcn47GOryRKQMUBCEiXpVy/PUZa2Ycns3MprU5PlpWaSPmMaL01aze7+mvBaRolMQhJmUhEqM7N+Wj2/tSvukqjz52fekj5jGqMw17FEgiEgRKAjCVLM68YwdeDr/vrkLrepVYcSnK0l/fDovzVAgiEjhKAjCXKt6VXj12vZ8cFNnmifG89gnCgQRKZyoUBcgxaNt/VN4/br2LF7/C89+8T2PfbKSl2esYVB6Ixod0rQVIpI/T88IzKy3ma0ysywzG3ac7S42M2dmaV7W4wftGpzCG9d34IObOtOqXhWemLKKv8zYy7NffE/OXt1lJCJ/5FkQmFkkMBI4B0gF+plZ6jG2qwTcBsz3qhY/alv/FF69tj3/vrkLKVUiefaL1XQdMY0np6zSOAQR+S9enhG0B7Kcc9nOuQPARKDvMbb7OzAC0LBZD7SqV4Xb28Xy8a1d6ZpSnZGZWXR5bBqPfLycHzVSWUTwNggSgY15ljcF1/3OzNoC9ZxzH3tYhxC4y2jUVe347PZu9G5ei3Gz19L18en87cMlbNyxN9TliUgImVfPzzWzS4DezrlBweUBQAfn3NDgcgQwDbjGObfOzDKBvzjnFh3juwYDgwESEhLaTZw4sUg17d69m4oVKxbps+HsWO3+ce9hPs4+yOzNuTigY+0ozmsUTWLFsnEjmY61f/ixzVD4dvfo0WOxc+6Y/bBeBkEn4AHn3NnB5eEAzrlHg8vxwBpgd/AjtYAdQJ9jhcERaWlpbtGifN8+rszMTDIyMor02XB2vHb/kPMbY2au5e0FG/jt4CHObpbATRmNaVWvSonWWNx0rP3Dj22GwrfbzPINAi9vH10IpJhZErAZuAK48sibzrkcoHqeIjPJ54xAvFM7Po77LkhlaM/GvPrlWl6ds44py7bRpXE1buzemC6Nq2FmoS5TRDzk2XUA51wuMBSYAqwA3nXOLTOzh8ysj1f7laKpWiGGO89qwpfDevI/5zZl9bbdXDVuPn1HfsnkJT9wSI/QFCmzPB1Q5pybDEw+at19+Wyb4WUtUjCVYqMZ3C2ZgZ0b8sFXmxk9M5ub3vqKpOoVGNytERe1TaRcVGSoyxSRYlQ2egal2JWLiqRf+/p8cWd3/tG/LRXLRTH8gyV0HTGdUZlr2LlPg9NEygpNMSHHFRlhnNuiNuc0r8WcNT/z0ow1jPh0JSOnZ9G/Q32u7ZJErfjYUJcpIidBQSAFYmZ0aVydLo2rs3RzDqNnZjNmVjbjv1xL39aJDO7WiFMTKoW6TBEpAl0akkJrnhjP8/3aMOPuHvTv0ICPvtvCWc/M5LpXFzIv+2e8uiVZRLyhIJAiq1e1PA/0acacYb2444xT+Wbjr1wxeh4XjvySj7/TnUYi4UJBICetaoUYbjsjhS/v7cnfL2xOzm8HuXnCV2Q8OZ3X5qxj7wE9F0GkNFMQSLGJi4lkQMcGTL0rg5euakv1iuW4f9IyOj0amPX0x12a5E6kNFJnsRS7yAijd/Pa9G5em8XrdzB6ZjYjM7MYPTObP7VJZFB6EinqWBYpNRQE4ql2Dary8oCqrN2+h3Gzs3l/8SbeWbSRjCY1uCG9EZ2TNYWFSKjp0pCUiKTqFXj4whbMGdaLO888laWbc+g/dj7nPT+bD77axIHcw6EuUcS3FARSoqpWiOHWXinMvrcnIy5uwcFDh7nz3W/p9nhgxLIepylS8hQEEhKx0ZFcfnp9PrujG69cezrJNSsw4tOVdHpsKg9MWsaGn/WwHJGSoj4CCSkzo0eTmvRoUpPlW3YybvZa3pq/ntfnruOs1FoMSk+iXYNT1I8g4iEFgZQaqXUq89RlrbindxNem7OOt+Zv4NNlW2lVrwqDuiZxTvNaREXqJFakuOlvlZQ6CZVjuad3U+YO78nf+zYjZ+8Bbnn7a7o/kcmYmdma+VSkmCkIpNQqHxPFgE4NmXZXBmOuTqPuKXE8MnkFnR+dxkP/Wc7GHepHECkOujQkpV5EhHFmagJnpiawZFMO42Zn8/rcdbw6Zy1nNwv0I7Str34EkaJSEEhYaVE3nmevaMOwc07jtbnrmDB/A58s3UrrelUYlJ5E72bqRxApLAWBhKVa8bHc27spt/RszD8Xb2Lc7LUMnfA1iVXiGNi5AYkHNfOpSEEpCCSsHelHuLJDA6at/JGxs7L538kriY2ERfuWcW3nJOpXKx/qMkVKNQWBlAmRefoRlm7O4X//OY835q7ntTmB8QjXpyeRpvEIIsekIJAyp3liPINbluPpgR15fW6e8Qh147muaxLntqhNtPoRRH6nvw1SZtWKzzMe4cLm7NqXy20Tv6Hb49N5aYbmNRI5QkEgZV75mCgGdGzAF3d2Z9zANJKqV+CxTwLzGt3/76Ws274n1CWKhJQuDYlvREQYvU5LoNdpCSzbksO42WuZsGADr89bzxmnJTCoaxLtk6qqH0F8R0EgvtSsTjxPX9aaYb2b8sa89bw5bz2fL99Gi8R4BqWrH0H8RX/SxddqVo7lrrOaMGdYLx75U3P2HAj0I6SPUD+C+IeCQASIi4mkf4cGfHFHd8Zfk0Zyzf/uR1j/s/oRpOzSpSGRPCIijJ5NE+jZNIHlW3Yydnb27/0IZ6UmMCi9kcYjSJmjIBDJR2qdyr/3I7w+dz1vzl/PlGXb9HwEKXOOGwRmtvMEnzfgB+fcqcVXkkjpUrNyLH85uwk39Ujmn19tZvzstdzydmBeo2u7NOTy0+tRKTY61GWKFNmJ/jmzxjlX+Tg/lQBdPBVfODIeYeqd3Rk9oB2Jp8Tx8Mcr6PToNB7+aDmbf/0t1CWKFMmJLg1dXIDvKMg2ImVGRIRxVrNanNWsFt9t+pUxs9byypx1vDJnHee1qM0N6Y1oUTc+1GWKFNhxzwicc9kAZlbBzCKCr081sz5mFp13GxE/alm3Ci/0a8PMe3pwbeeGTFv5Ixe8OJsrRs9l6optHD6s6bCl9CtoT9dMINbMEoHPgAHAq14VJRJuEqvE8bfzU5kzvCd/Pfc0Nvy8l+tfW8SZz8zg7QUb2HfwUKhLFMlXQYPAnHN7gYuAfzjnLgWaeVeWSHiqHBvNDd0aMeOeHjx3RWtioyMZ/sESuo6YxvNTV7Njz4FQlyjyBwW9fdTMrBPQH7g+uC7Sm5JEwl90ZAR9WyfSp1Ud5mb/zOiZ2Tz9+ff8IzOLy9LqcX3XJBpUqxDqMkWAggfBbcBw4F/OuWVm1giY7l1ZImWDmdE5uTqdk6vz/bZdjJmZzdsLNvDmvPX0bl6Lwd2SaV2vSqjLFJ8r0KUh59xM51wf59yI4HK2c+7WE33OzHqb2SozyzKzYcd4f4iZLTGzb8xstpmlFr4JIuHh1IRKPHFpK2bf25M/d09m1urtXDjySy57WR3LElrHDQIze+BEX5DfNmYWCYwEzgFSgX7H+EU/wTnXwjnXGngcePrEJYuEt4TKsdzbuylzh/fib+edxqYdgY7ls5+dybuLNnIg93CoSxSfOdGloUEnGF1swBXAA8d4rz2QlecW1IlAX2D5kQ2cc3m/uwKgfxKJb1QsF8Wg9EYM7NyQj77bwsszsrnn/e946rNVXN81iX7t62vEspQIcy7/371mdn8BvmO3c+6pY3z2EqC3c25QcHkA0ME5N/So7W4G7gRigJ7OudXH+K7BwGCAhISEdhMnTixAWccodPduKlasWKTPhjM/tjsc2+ycY+n2Q0xee5AVOw4TFwU96kVzVoMoqsQW7Aa/cGz3yfJjm6Hw7e7Ro8di51zasd47bhCcjIIGQZ7trwTOds4NPN73pqWluUWLFhWppszMTDIyMor02XDmx3aHe5uXbMrhpZlr+GTJD0RFRHBxu0QGd0smqfrx7zQK93YXhR/bDIVvt5nlGwRezj66GaiXZ7lucF1+JgKjPKxHJGy0qBvPyCvbsm77HsbMyua9xZuYuHAj5zSvxZDuybSsWyXUJUoZ4uUcuguBFDNLMrMYAn0Jk/JuYGYpeRbPA/5wWUjEzxpWr8Ajf2rBl/f25MbgnUZ9XvyS/mPn8WXWdrw6oxd/8eyMwDmXa2ZDgSkEBp+ND45BeAhY5JybBAw1szOAg8AvwHEvC4n4VY1K5bind1NuzEjmrfkbGDd7Lf3HzqdV3XhuzEjmrNRaREToYTlSNAUKAjM7lcBlmwTnXHMzawn0cc49fLzPOecmA5OPWndfnte3Fb5kEf+qFBvNkO7JXNO5IR98tZmXZ65hyJtfkVyjAkO6J3OKxiJIERT00tAYAiOLDwI4574jcKlHREIgNjqSKzvUZ+qd3Xm+XxuiIyO4+/3vuHfmb7w2Z50muZNCKWgQlHfOLThqXW5xFyMihRMVGUGfVnX45LZ0xl+Tximxxv2TltF1xDRGZa5h176DoS5RwkBB+wi2m1kywQFfwVtDf/CsKhEpFDOjZ9MErEMscQ1aMnJ6FiM+XcmozCyu6ZLEdV0aUqV8TKjLlFKqoEFwMzAaaGpmm4G1wFWeVSUiRWJmdGxUjY6NqvHtxl95cXoWz09dzbhZ2VzVqQE3pDeiesVyoS5TSpkCBUFwmogzzKwCEOGc2+VtWSJyslrVq8KYq9NYtXUXI6dnMWZmNq/NWUe/9vUZ0j2ZhMqxoS5RSomC3jVUBbgaaAhEmQVuUyvIDKQiElpNalXi+X5tuP2MFEZOX8Prc9fz1vwNXJ5WjxszkqlTJS7UJUqIFfTS0GRgHrAE0NSIImGoUY2KPHVZK27rlcKoGVlMXLiBiQs3cGlaPW7snky9quVDXaKESEGDINY5d6enlYhIiahfrTyPXtSSoT1TeClzDe8s3Mi7CzdySbu63NyjsQLBhwp6++gbZnaDmdU2s6pHfjytTEQ8lVgljr9f2JwZ92TQv0N9Pvh6Mz2ezGTYP79j4469oS5PSlBBzwgOAE8Af+X/nhnggEZeFCUiJad2fBwP9m3OjRmNeWnGGiYs2MD7izdxaVrgDKHuKTpDKOsKGgR3AY2dc9u9LEZEQqdWfCwP9GnGkO7JjMrM4u0FG4OBUI+hPRqrU7kMK+iloSxA54oiPlArPpYH+wYuGV1+ej3eW7SRjCcyeWDSMn7cuS/U5YkHCnpGsAf4xsymA/uPrNTtoyJlV+34OB6+sAVDuifz4rQs3pi3nrcXbGBg54YM6Z5M1QoaqVxWFDQIPgz+iIjP1D2lPI9d3JIbM5J5bupqxs7K5q1567muaxKD0hsRH6fnKoe7go4sfs3rQkSkdGtQrQJPX9aaG7sn8+wXq3lhWhavz13/+7TYcTGRoS5Riui4fQRm9m7wv0vM7Lujf0qmRBEpTVISKjGyf1s+uqUrbepXYcSnK+n2xHTemLeeg4c03jQcneiM4MiDY873uhARCS/NE+N59dr2LFi7gyemrOT/fbiUsbOyufPMU7mgZR09MS2MHPeMwDl3ZKrpm5xz6/P+ADd5X56IlHbtk6ry7p87Mf6aNOKiI7lt4jdc8OJsZq3+KdSlSQEV9PbRM4+x7pziLEREwteR5yFMvjWdZy5vRc5vBxkwbgH9x85j6eacUJcnJ3CiPoIbzWwJ0OSo/oG1gPoIROS/REQYf2pTl6l3dee+81NZvmUn578wm9snfq1pK0qxE/URTAA+AR4FhuVZv8s5t8OzqkQkrJWLiuS6rklcklaXlzLXMG72WiYv2crAzg0Y2iOF+PK65bQ0OW4QOOdygBygX8mUIyJlSeXYaO7p3ZQBnRrw9GffM3b2Wt5bvIlbe6ZwVccGxEQV9Oq0eElHQUQ8Vzs+jicubcXHt6TTvE48D320nLOfnclny7binDvxF4inFAQiUmJS61Tmjevb88o1pxMZYQx+YzFXjpnP8i07Q12arykIRKREmRk9mtbkk9vSeahvM1Zu3cl5L8xi+AdL2L57/4m/QIqdgkBEQiI6MoKrOzUk8y89uLZzEu8t2kiPJzIZOytbI5RLmIJAREIqvnw0912Qyqe3d6Ntg1N4+OMV9H52pgaklSAFgYiUCo1rVuTVa09n3MA0cg87BoxbwODXF2n8QQlQEIhIqWFm9Dotgc/u6MbdZzdh1urtnPnMDF6Yupp9Bw+FurwyS0EgIqVOuahIbu7RmC/u6k7PpjV56vPv6f3sTGZ+r8tFXlAQiEiplVgljn/0b8cb17fHzLh6/AJunvAVW3P0yMzipCAQkVIvPaUGn9yWzp1nnsrny7dxxtMzeG3OOg4d1mC04qAgEJGwEBsdya29Uvj8jm60qV+F+yct46J/fMn6neo7OFkKAhEJKw2qVeD169rz3BWt2fzrbzw4dx+PfbJSncknQUEgImHHzOjbOpEv7uxOlzpRvDRjDb2fncncNT+HurSwpCAQkbBVpXwM17cox1uDOnDYQb8x8/jrv5awe39uqEsLKwoCEQl7XRpXZ8rt3RjUNYkJCzZw9jO61bQwPA0CM+ttZqvMLMvMhh3j/TvNbHnwqWdTzayBl/WISNkVFxPJ385P5Z83diY2OoKrxy9g+Ac6OygIz4LAzCKBkQSebZwK9DOz1KM2+xpIc861BN4HHveqHhHxh7b1T+HjW9P5c/dGTFy4QX0HBeDlGUF7IMs5l+2cOwBMBPrm3cA5N905d2QikXlAXQ/rERGfiI2OZPg5p/H+kE5ERRj9xszj7x8t151F+TCvng5kZpcAvZ1zg4LLA4AOzrmh+Wz/IrDVOffwMd4bDAwGSEhIaDdx4sQi1bR7924qVqxYpM+GMz+2249tBn+2+0Rt3n/I8e6qA0zdkEtiRePPLctRv3JkCVbojcIe6x49eix2zqUd803nnCc/wCXA2DzLA4AX89n2KgJnBOVO9L3t2rVzRTV9+vQifzac+bHdfmyzc/5sd0HbPH3lNpf28Oeu8f987EbPWOMOHTrsbWEeK+yxBha5fH6venlpaDNQL89y3eC6/2JmZwB/Bfo45/R4IhHxREaTmky5vRs9mtTkkckrGPjKAn7cpTmLwNs+goVAipklmVkMcAUwKe8GZtYGeJlACPzoYS0iIlStEMPLA9rx8IXNWbB2B+c+N4sZus3UuyBwzuUCQ4EpwArgXefcMjN7yMz6BDd7AqgIvGdm35jZpHy+TkSkWJgZV3VswH9u6Uq1CuUYOH4BT0xZSa6PH48Z5eWXO+cmA5OPWndfntdneLl/EZH8nJpQiQ9v7sKD/1nGyOlrWLj2F57v14Za8bGhLq3EaWSxiPhWXEwkj13ckmcvb83SLTmc/8Is5qzZHuqySpyCQER878I2iUwa2oX4uGiuGjufUZlrjtzR6AsKAhERoHHNSvx7aFfOaV6bEZ+u5MY3v2KPT6anUBCIiARVLBfFi1e24a/nnsZny7dy8ag5bPh574k/GOYUBCIieZgZN3RrxGvXteeHnH30GTmbOVllu99AQSAicgzpKTWYNLQLNSqW4+rxC3h7wYZQl+QZBYGISD4aVKvABzd1pkvj6gz/YAmPfLycQ4fLXieygkBE5DgqxUYzbmAaAzs1YMystdz45uIyN4upgkBE5ASiIiN4sG9z7r8glc9XbKP/2Pn8uvdAqMsqNgoCEZECurZLEi/2a8uSTTlcPGoOm34pG3cUKQhERArhvJa1ef369vy4az+XjJpL1o+7Q13SSVMQiIgUUsdG1Xj3z53IPey47OW5LN2cE+qSToqCQESkCE6rXZn3hnQiLjqSfmPmsWjdjlCXVGQKAhGRIkqqXoF3h3T6fazBwjANAwWBiMhJSKwSx8TBHakVH8s14xeE5ZmBgkBE5CTVrBzLxBs6klA5loHjF7B4fXiFgYJARKQY1Kwcy9uDO1KzcizXjF8YVh3ICgIRkWKSUDmWCTd0oHJcNAPHLyD7p/C4tVRBICJSjGrHx/H69e0BGDBuAT/k/Bbiik5MQSAiUsySa1Tk1Wvbk/PbQa4et4Cc3w6GuqTjUhCIiHigRd14Rl/djnU/7+Hmt77i4KHDoS4pXwoCERGPdE6uziN/asHsrO3cP2lZqX0OclSoCxARKcsuS6vH2u17GJW5hkbVKzAovVGoS/oDnRGIiHjs7rOacE7zWjwyeQWzV5e+x14qCEREPBYRYTx1WSsa16jIbRO/ZmvOvlCX9F8UBCIiJaB8TBSjrmrHvoOHuHlC6eo8VhCIiJSQxjUr8tjFLVm8/hcenbwy1OX8TkEgIlKCLmhVh2s6N2T8l2uZtnJbqMsBFAQiIiVu+LlNaZJQiWH/XFIqnn2sIBARKWHloiJ56rJW7NhzgPv+vSzU5SgIRERCoXliPLf2SmHSt1v4+LsfQlqLgkBEJERuykimVd14/vbhErbv3h+yOhQEIiIhEhUZwZOXtmLXvlye+mxVyOpQEIiIhFBKQiUGdm7IxIUbQ/YwGwWBiEiI3dorharlY3ggRBPTKQhEREIsPi6au89uwqL1vzDp2y0lvn8FgYhIKXBpWj1aJMbz6OSV7D2QW6L79jQIzKy3ma0ysywzG3aM97uZ2Vdmlmtml3hZi4hIaRYZYdx/QSpbd+7jrXkbSnTfngWBmUUCI4FzgFSgn5mlHrXZBuAaYIJXdYiIhIu0hlXpnFyNsbOz2Z97qMT26+UZQXsgyzmX7Zw7AEwE+ubdwDm3zjn3HVB6puETEQmhGzOS2bZzP//6anOJ7dPLIEgENuZZ3hRcJyIi+ejauDotEuN5eWY2hw6XzB1EYfGoSjMbDAwGSEhIIDMzs0jfs3v37iJ/Npz5sd1+bDP4s91lsc3dauQy8pv9PPXOVNrXPvav6eJst5dBsBmol2e5bnBdoTnnRgOjAdLS0lxGRkaRCsrMzKSonw1nfmy3H9sM/mx3WWxz+mHHJ5tmMOOnSO6+oitm9odtirPdXl4aWgikmFmSmcUAVwCTPNyfiEiZEBlhDOmezLItO5mz5mfP9+dZEDjncoGhwBRgBfCuc26ZmT1kZn0AzOx0M9sEXAq8bGahn49VRKQU6NO6DpXKRfHvb7zvNPa0j8A5NxmYfNS6+/K8XkjgkpGIiOQRGx3JmakJTFm2jYcvPExMlHcXcDSyWESklDqvZW1yfjvIl2u2e7ofBYGISCnVNaU6lWKjPH9wjYJARKSUKhcVyVmptZiybCsHcr0bd6sgEBEpxc5vWZtd+3KZtfonz/ahIBARKcW6NK5OfFy0p5eHFAQiIqVYTFQEZzdL4PPl29h30JuJ6BQEIiKl3Hkt67Brfy6zVntz95CCQESklOucXI0eTWpQzqOxBGEx6ZyIiJ9FR0bwyrXtPft+nRGIiPicgkBExOcUBCIiPqcgEBHxOQWBiIjPKQhERHxOQSAi4nMKAhERnzPnXKhrKBQz+wlYX8SPVwe8fcJD6eTHdvuxzeDPdvuxzVD4djdwztU41hthFwQnw8wWOefSQl1HSfNju/3YZvBnu/3YZijeduvSkIiIzykIRER8zm9BMDrUBYSIH9vtxzaDP9vtxzZDMbbbV30EIiLyR347IxARkaMoCEREfM43QWBmvc1slZllmdmwUNfjBTOrZ2bTzWy5mS0zs9uC66ua2edmtjr431NCXWtxM7NIM/vazD4KLieZ2fzg8X7HzGJCXWNxM7MqZva+ma00sxVm1sknx/qO4J/vpWb2tpnFlrXjbWbjzexHM1uaZ90xj60FPB9s+3dm1raw+/NFEJhZJDASOAdIBfqZWWpoq/JELnCXcy4V6AjcHGznMGCqcy4FmBpcLmtuA1bkWR4BPOOcawz8Alwfkqq89RzwqXOuKdCKQPvL9LE2s0TgViDNOdcciASuoOwd71eB3kety+/YngOkBH8GA6MKuzNfBAHQHshyzmU75w4AE4G+Ia6p2DnnfnDOfRV8vYvAL4ZEAm19LbjZa8CFISnQI2ZWFzgPGBtcNqAn8H5wk7LY5nigGzAOwDl3wDn3K2X8WAdFAXFmFgWUB36gjB1v59xMYMdRq/M7tn2B113APKCKmdUuzP78EgSJwMY8y5uC68osM2sItAHmAwnOuR+Cb20FEkJVl0eeBe4BDgeXqwG/Oudyg8tl8XgnAT8BrwQviY01swqU8WPtnNsMPAlsIBAAOcBiyv7xhvyP7Un/fvNLEPiKmVUE/gnc7pzbmfc9F7hfuMzcM2xm5wM/OucWh7qWEhYFtAVGOefaAHs46jJQWTvWAMHr4n0JBGEdoAJ/vIRS5hX3sfVLEGwG6uVZrhtcV+aYWTSBEHjLOfdBcPW2I6eKwf/+GKr6PNAF6GNm6whc8utJ4Np5leClAyibx3sTsMk5Nz+4/D6BYCjLxxrgDGCtc+4n59xB4AMCfwbK+vGG/I/tSf9+80sQLARSgncWxBDoXJoU4pqKXfDa+DhghXPu6TxvTQIGBl8PBP5d0rV5xTk33DlX1znXkMBxneac6w9MBy4Jblam2gzgnNsKbDSzJsFVvYDllOFjHbQB6Ghm5YN/3o+0u0wf76D8ju0k4Org3UMdgZw8l5AKxjnnix/gXOB7YA3w11DX41EbuxI4XfwO+Cb4cy6Ba+ZTgdXAF0DVUNfqUfszgI+CrxsBC4As4D2gXKjr86C9rYFFweP9IXCKH4418CCwElgKvAGUK2vHG3ibQB/IQQJnf9fnd2wBI3BX5BpgCYE7qgq1P00xISLic365NCQiIvlQEIiI+JyCQETE5xQEIiI+pyAQEfE5BYEIYGYPmNlfTrBNazM7twjfu9nMHgouXxycOXOWmVULrks2s3fyfCbOzL4xswNmVr0o7REpDAWBSMG1JjAuo7Cecc7dF3x9C3A68DJwZXDdw8DfjmzsnPvNOdca2FLkSkUKQUEgvmVmfzWz781sNtAkz/pMM0sLvq5uZuuCI9IfAi4P/mv98uC88DWC20UE54OvcYLdHiYwAKo8cNDM0oGtzrnVXrRRpCCiTryJSNljZu0ITEnRmsDfg68IzGJ5TM65A2Z2H4FRm0OD39EU6E9g9tMzgG+dcz+dYNePEhgVugW4isAo2CtOpi0iJ0tnBOJX6cC/nHN7XWCG1qLMPTUeuDr4+jrglRN9wDn3uXOunXPuAgKzaE4GTg0+aWyMmZUvQh0iJ0VBIPJHufzf343Y/DZyzm0kMCNkTwIPP/qkoDsI/sK/hsAcMQ8SmERsNoEzDJESpSAQv5oJXBi8Q6cScEGe99YB7YKvL8mzfhdQ6ajvGQu8CbznnDtUiP3fDTzvAlMpxxGYLPAwgb4DkRKlIBBfcoFHer4DfEvgX/IL87z9JHCjmX0N5L19czqQeqSzOLhuElCRAlwWOsLM6gDtnXMfBle9ENz/EGBC4VsjcnI0+6jISQjeXfSMcy49n/cfAHY7554swnevI9A5vf2kihQ5AZ0RiBSRmQ0j8DS44cfZbDcw+MiAsgJ+b5yZfQNE83/PYRbxjM4IRER8TmcEIiI+pyAQEfE5BYGIiM8pCEREfE5BICLic/8fYHDO/ZyM5RgAAAAASUVORK5CYII=" + ] }, "metadata": { "needs_background": "light" @@ -51,10 +50,10 @@ }, "kernelspec": { "name": "python3", - "display_name": "Python 3.9.1 64-bit ('env': venv)" + "display_name": "Python 3.9.1 64-bit" }, "interpreter": { - "hash": "a4046a09f199e48e61396275ea0e14da7d6ee49ffd95343aa82a9cc54eb636e7" + "hash": "0d008810b9c8467bcb3ca39aa2180e5b81b3a9acb136aab30d47954377cc5120" } }, "nbformat": 4, diff --git a/screenshots/fig_3 - Duty vs timepng.png b/screenshots/fig_3 - Duty vs timepng.png new file mode 100644 index 0000000..ae0d499 Binary files /dev/null and b/screenshots/fig_3 - Duty vs timepng.png differ diff --git a/screenshots/fig_3 - Table output.png b/screenshots/fig_3 - Table output.png index 70ab8da..122ce22 100644 Binary files a/screenshots/fig_3 - Table output.png and b/screenshots/fig_3 - Table output.png differ