-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathdata_loader.py
189 lines (148 loc) · 6.58 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
from PIL import Image
from glob import glob
import tensorflow as tf
import numpy as np
import pickle
import os.path
def get_loader(root, batch_size, scale_size, data_format, config=None, is_grayscale=False, seed=None):
if os.path.isfile(root +"/list.txt"):
with open(root +"/list.txt", "rb") as fp:
paths = pickle.load(fp)
else:
for ext in ["jpg", "png"]:
paths = glob("{}/*/*.{}".format(root, ext))
if len(paths) != 0:
with open(root +"/list.txt", "wb") as fp:
pickle.dump(paths, fp)
break
with Image.open(paths[0]) as img:
w, h = img.size
shape = [h, w, 3]
filename_queue = tf.train.string_input_producer(list(paths), shuffle=False, seed=seed)
reader = tf.WholeFileReader()
filename, data = reader.read(filename_queue)
image = tf.image.decode_image(data, channels=3)
if is_grayscale:
image = tf.image.rgb_to_grayscale(image)
image.set_shape(shape)
min_after_dequeue = 5000*config.num_gpu
capacity = min_after_dequeue + 3 * batch_size
queue = tf.train.shuffle_batch(
[image], batch_size=batch_size,
num_threads=4*config.num_gpu, capacity=capacity,
min_after_dequeue=min_after_dequeue, name='real_inputs')
#queue = tf.image.crop_to_bounding_box(queue, 100, 50, 78, 78)
#queue = tf.image.resize_bilinear(queue, [scale_size, scale_size])
if data_format == 'NCHW':
queue = tf.transpose(queue, [0, 3, 1, 2])
elif data_format == 'NHWC':
pass
else:
raise Exception("[!] Unkown data_format: {}".format(data_format))
return tf.to_float(queue)
def get_syn_loader(root, batch_size, scale_size, data_format, config=None, is_grayscale=False, seed=None):
labels = []
if os.path.isfile(root +"/list.txt"):
with open(root +"/list.txt", "rb") as fp:
paths = pickle.load(fp)
with open(root +"/labels.txt", "rb") as fp:
labels = pickle.load(fp)
else:
for ext in ["jpg", "png"]:
paths = sorted(glob("{}/*/*.{}".format(root, ext)))
if len(paths) != 0:
with open(root +"/list.txt", "wb") as fp:
pickle.dump(paths, fp)
for im in paths:
labels.append(int(im.replace('\\', '/').split('/')[-2]))
with open(root +"/labels.txt", "wb") as fp:
pickle.dump(labels, fp)
break
n_id = max(labels)
with Image.open(paths[0]) as img:
w, h = img.size
shape = [h, w, 3]
images = tf.convert_to_tensor(list(paths))
labels = tf.convert_to_tensor(labels)
# Makes an input queue
input_queue = tf.train.slice_input_producer([images, labels], shuffle=False, seed=seed)
#reader = tf.WholeFileReader()
#filename, data = reader.read(input_queue[0])
image = tf.image.decode_image(tf.read_file(input_queue[0]), channels=3)
label = input_queue[1]
#reader = tf.TextLineReader()
#_, latentvar = reader.read(input_queue[2])
#latentvar = tf.cast(tf.string_split(latentvar,"\n"),tf.float32)
#filename_queue = tf.train.string_input_producer(list(paths), shuffle=False, seed=seed)
#reader = tf.WholeFileReader()
#filename, data = reader.read(filename_queue)
#image = tf_decode(data, channels=3)
if is_grayscale:
image = tf.image.rgb_to_grayscale(image)
image.set_shape(shape)
min_after_dequeue = 5000*config.num_gpu
capacity = min_after_dequeue + 3 * batch_size
queue_image, queue_label = tf.train.shuffle_batch(
[image, label], batch_size=batch_size,
num_threads=4*config.num_gpu, capacity=capacity,
min_after_dequeue=min_after_dequeue, name='synthetic_inputs',seed=seed)
#queue_image = tf.image.crop_to_bounding_box(queue_image, 34, 34, 64, 64)
#queue_image = tf.image.resize_bilinear(queue_image, [scale_size, scale_size])
if data_format == 'NCHW':
queue_image = tf.transpose(queue_image, [0, 3, 1, 2])
elif data_format == 'NHWC':
pass
else:
raise Exception("[!] Unkown data_format: {}".format(data_format))
return tf.to_float(queue_image), queue_label, n_id
def get_3dmm_loader(root, batch_size, scale_size, data_format, config=None, is_grayscale=False, seed=None):
if os.path.isfile(root +"/list.txt"):
with open(root +"/list.txt", "rb") as fp:
paths = pickle.load(fp)
else:
for ext in ["jpg", "png"]:
paths = glob("{}/*.{}".format(root, ext))
if len(paths) != 0:
with open(root +"/list.txt", "wb") as fp:
pickle.dump(paths, fp)
break
with Image.open(paths[0]) as img:
w, h = img.size
shape = [h, w, 3]
images = tf.convert_to_tensor(list(paths))
images_3dmm = tf.convert_to_tensor(list([p.replace(root, root+'/3dmm') for p in paths]))
# Makes an input queue
input_queue = tf.train.slice_input_producer([images, images_3dmm], shuffle=False, seed=seed)
#reader = tf.WholeFileReader()
#filename, data = reader.read(input_queue[0])
image = tf.image.decode_image(tf.read_file(input_queue[0]), channels=3)
image_3dmm = tf.image.decode_image(tf.read_file(input_queue[1]), channels=3)
#label = input_queue[1]
#reader = tf.TextLineReader()
#_, latentvar = reader.read(input_queue[2])
#latentvar = tf.cast(tf.string_split(latentvar,"\n"),tf.float32)
#filename_queue = tf.train.string_input_producer(list(paths), shuffle=False, seed=seed)
#reader = tf.WholeFileReader()
#filename, data = reader.read(filename_queue)
#image = tf_decode(data, channels=3)
if is_grayscale:
image = tf.image.rgb_to_grayscale(image)
image_3dmm = tf.image.rgb_to_grayscale(image_3dmm)
image.set_shape(shape)
image_3dmm.set_shape(shape)
min_after_dequeue = 5000*config.num_gpu
capacity = min_after_dequeue + 3 * batch_size
queue_image, queue_3dmm = tf.train.shuffle_batch(
[image, image_3dmm ], batch_size=batch_size,
num_threads=4*config.num_gpu, capacity=capacity,
min_after_dequeue=min_after_dequeue, name='real_3dmm_inputs')
#queue_image = tf.image.crop_to_bounding_box(queue_image, 34, 34, 64, 64)
#queue_image = tf.image.resize_bilinear(queue_image, [scale_size, scale_size])
if data_format == 'NCHW':
queue_image = tf.transpose(queue_image, [0, 3, 1, 2])
elif data_format == 'NHWC':
pass
else:
raise Exception("[!] Unkown data_format: {}".format(data_format))
return tf.to_float(queue_image), tf.to_float(queue_3dmm)