-
Notifications
You must be signed in to change notification settings - Fork 4
/
generate.py
305 lines (258 loc) · 12 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Translate pre-processed data with a trained model.
"""
import logging
import math
import os
import sys
import numpy as np
import torch
from fairseq import checkpoint_utils, options, scoring, tasks, utils
from fairseq.data import encoders
from fairseq.logging import progress_bar
from fairseq.logging.meters import StopwatchMeter, TimeMeter
def main(args):
assert args.path is not None, '--path required for generation!'
assert not getattr(args, "glancing", False) or args.nbest == args.beam, \
'--sampling requires --nbest to be equal to --beam'
assert args.replace_unk is None or args.dataset_impl == 'raw', \
'--replace-unk requires a raw text dataset (--dataset-impl=raw)'
if args.results_path is not None:
os.makedirs(args.results_path, exist_ok=True)
output_path = os.path.join(args.results_path, 'generate-{}.txt'.format(args.gen_subset))
with open(output_path, 'w', buffering=1, encoding='utf-8') as h:
return _main(args, h)
else:
return _main(args, sys.stdout)
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, 'symbols_to_strip_from_output'):
return generator.symbols_to_strip_from_output
else:
return {generator.eos}
def _main(args, output_file):
logging.basicConfig(
format='%(asctime)s | %(levelname)s | %(name)s | %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
stream=output_file,
)
logger = logging.getLogger('fairseq_cli.generate')
utils.import_user_module(args)
if args.max_tokens is None and getattr(args, "max_sentences", None) is None:
args.max_tokens = 12000
logger.info(args)
# Fix seed for stochastic decoding
if args.seed is not None and not args.no_seed_provided:
np.random.seed(args.seed)
utils.set_torch_seed(args.seed)
use_cuda = torch.cuda.is_available() and not args.cpu
# Load dataset splits
task = tasks.setup_task(args)
task.load_dataset(args.gen_subset)
# Set dictionaries
try:
src_dict = getattr(task, 'source_dictionary', None)
except NotImplementedError:
src_dict = None
tgt_dict = task.target_dictionary
# Load ensemble
logger.info('loading model(s) from {}'.format(args.path))
models, _model_args = checkpoint_utils.load_model_ensemble(
utils.split_paths(args.path),
arg_overrides=eval(args.model_overrides),
task=task,
suffix=getattr(args, "checkpoint_suffix", ""),
)
# Optimize ensemble for generation
for model in models:
model.prepare_for_inference_(args)
if args.fp16:
model.half()
if use_cuda:
model.cuda()
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(args.replace_unk)
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(args.gen_subset),
max_tokens=args.max_tokens,
# max_sentences=getattr(args, "max_sentences", None),
max_sentences=getattr(args, "max_sentences", args.batch_size),
max_positions=utils.resolve_max_positions(
task.max_positions(),
*[model.max_positions() for model in models]
),
ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=args.required_batch_size_multiple,
num_shards=args.num_shards,
shard_id=args.shard_id,
num_workers=args.num_workers,
).next_epoch_itr(shuffle=False)
progress = progress_bar.progress_bar(
itr,
log_format=args.log_format,
log_interval=args.log_interval,
default_log_format=('tqdm' if not args.no_progress_bar else 'none'),
)
# Initialize generator
gen_timer = StopwatchMeter()
generator = task.build_generator(models, args)
# Handle tokenization and BPE
tokenizer = encoders.build_tokenizer(args)
bpe = encoders.build_bpe(args)
def decode_fn(x):
if bpe is not None:
x = bpe.decode(x)
if tokenizer is not None:
x = tokenizer.decode(x)
return x
scorer = scoring.build_scorer(args, tgt_dict)
num_sentences = 0
has_target = True
wps_meter = TimeMeter()
for sample in progress:
sample = utils.move_to_cuda(sample) if use_cuda else sample
if 'net_input' not in sample:
continue
prefix_tokens = None
if args.prefix_size > 0:
prefix_tokens = sample['target'][:, :args.prefix_size]
gen_timer.start()
if getattr(args, "extract_code", False):
hypos = task.inference_step(generator, models, sample, prefix_tokens, extra_code=True)
else:
hypos = task.inference_step(generator, models, sample, prefix_tokens)
num_generated_tokens = sum(len(h[0]['tokens']) for h in hypos)
gen_timer.stop(num_generated_tokens)
for i, sample_id in enumerate(sample['id'].tolist()):
has_target = sample['target'] is not None
# Remove padding
if 'src_tokens' in sample['net_input']:
src_tokens = utils.strip_pad(sample['net_input']['src_tokens'][i, :], tgt_dict.pad())
else:
src_tokens = None
target_tokens = None
if has_target:
target_tokens = utils.strip_pad(sample['target'][i, :], tgt_dict.pad()).int().cpu()
# Either retrieve the original sentences or regenerate them from tokens.
if align_dict is not None:
src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
else:
if src_dict is not None:
src_str = src_dict.string(src_tokens, args.remove_bpe)
else:
src_str = ""
if has_target:
target_str = tgt_dict.string(
target_tokens,
args.remove_bpe,
escape_unk=True,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
)
src_str = decode_fn(src_str)
if has_target:
target_str = decode_fn(target_str)
if not args.quiet:
if src_dict is not None:
print('S-{}\t{}'.format(sample_id, src_str), file=output_file)
if has_target:
print('T-{}\t{}'.format(sample_id, target_str), file=output_file)
# Process top predictions
for j, hypo in enumerate(hypos[i][:args.nbest]):
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo['tokens'].int().cpu(),
src_str=src_str,
alignment=hypo['alignment'],
align_dict=align_dict,
tgt_dict=tgt_dict,
remove_bpe=args.remove_bpe,
extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator),
)
detok_hypo_str = decode_fn(hypo_str)
if not args.quiet:
score = hypo['score'] / math.log(2) # convert to base 2
# original hypothesis (after tokenization and BPE)
print('H-{}\t{}\t{}'.format(sample_id, score, hypo_str), file=output_file)
# detokenized hypothesis
print('D-{}\t{}\t{}'.format(sample_id, score, detok_hypo_str), file=output_file)
print('P-{}\t{}'.format(
sample_id,
' '.join(map(
lambda x: '{:.4f}'.format(x),
# convert from base e to base 2
hypo['positional_scores'].div_(math.log(2)).tolist(),
))
), file=output_file)
if "ref_code" in hypo:
print('RC-{}\t{}'.format(
sample_id,
' '.join(map(
lambda x: '{}'.format(x), hypo['ref_code'].tolist(),
))
), file=output_file)
if "hypo_code" in hypo:
print('HC-{}\t{}'.format(
sample_id,
' '.join(map(
lambda x: '{}'.format(x), hypo['hypo_code'].tolist(),
))
), file=output_file)
if args.print_alignment:
print('A-{}\t{}'.format(
sample_id,
' '.join(['{}-{}'.format(src_idx, tgt_idx) for src_idx, tgt_idx in alignment])
), file=output_file)
if args.print_step:
print('I-{}\t{}'.format(sample_id, hypo['steps']), file=output_file)
if getattr(args, 'retain_iter_history', False):
for step, h in enumerate(hypo['history']):
_, h_str, _ = utils.post_process_prediction(
hypo_tokens=h['tokens'].int().cpu(),
src_str=src_str,
alignment=None,
align_dict=None,
tgt_dict=tgt_dict,
remove_bpe=None,
)
print('E-{}_{}\t{}'.format(sample_id, step, h_str), file=output_file)
# Score only the top hypothesis
if has_target and j == 0:
if align_dict is not None or args.remove_bpe is not None:
# Convert back to tokens for evaluation with unk replacement and/or without BPE
target_tokens = tgt_dict.encode_line(target_str, add_if_not_exist=True)
hypo_tokens = tgt_dict.encode_line(detok_hypo_str, add_if_not_exist=True)
if hasattr(scorer, 'add_string'):
scorer.add_string(target_str, detok_hypo_str)
else:
scorer.add(target_tokens, hypo_tokens)
wps_meter.update(num_generated_tokens)
progress.log({'wps': round(wps_meter.avg)})
num_sentences += sample["nsentences"] if "nsentences" in sample else sample['id'].numel()
logger.info('NOTE: hypothesis and token scores are output in base 2')
logger.info('Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
if has_target:
if args.bpe and not args.sacrebleu:
if args.remove_bpe:
logger.warning("BLEU score is being computed by splitting detokenized string on spaces, "
"this is probably not what you want. Use --sacrebleu for standard 13a BLEU tokenization")
else:
logger.warning("If you are using BPE on the target side, the BLEU score is computed on BPE tokens, "
"not on proper words. Use --sacrebleu for standard 13a BLEU tokenization")
# use print to be consistent with other main outputs: S-, H-, T-, D- and so on
print('Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()),
file=output_file)
return scorer
def cli_main():
parser = options.get_generation_parser()
args = options.parse_args_and_arch(parser)
main(args)
if __name__ == '__main__':
cli_main()