-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup_rag.py
50 lines (40 loc) · 1.16 KB
/
setup_rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from dotenv import load_dotenv
from pinecone import Index, ServerConfig
from openai import OpenAI
import os
import json
load_dotenv()
pc = Index(api_key=os.getenv("PINECONE_API_KEY"))
pc.create_index(
name="rag",
dimension=1536,
metric="cosine",
config=ServerConfig(cloud="aws", region="us-east-1"),
)
with open("reviews.json", "r") as file:
data = json.load(file)
processed_data = []
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
for review in data["reviews"]:
response = client.embeddings.create(
input=review['review'], model="text-embedding-ada-002" # Use a valid model name
)
embedding = response['data'][0]['embedding']
processed_data.append(
{
"values": embedding,
"id": review["professor"],
"metadata": {
"review": review["review"],
"subject": review["subject"],
"stars": review["stars"],
}
}
)
index = pc.Index("rag")
upsert_response = index.upsert(
vectors=processed_data,
namespace="ns1",
)
print(f"Upserted count: {upsert_response['upserted_count']}")
print(index.describe_index_stats())