-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathbert_model.py
40 lines (31 loc) · 1.02 KB
/
bert_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
language_dim = 768
num_layers = 1
onnx = False
def bert_encoder(net, input, mask, token):
if not onnx:
output = net.predict([input, mask, token])
else:
output = net.run(None, {
'input_ids': input,
'attention_mask': mask,
'token_type_ids': token,
})
last_hidden_state, _ = output[:2]
hidden_states = output[2:]
# outputs has 13 layers, 1 input layer and 12 hidden layers
encoded_layers = hidden_states[1:]
features = np.stack(encoded_layers[-num_layers:], axis=1)
features = np.mean(features, axis=1)
# language embedding has shape [len(phrase), seq_len, language_dim]
features = features / num_layers
embedded = features * mask[:, :, None]
aggregate = np.sum(embedded, axis=1) / np.sum(mask, axis=-1)[:, None]
ret = {
"aggregate": aggregate,
"embedded": embedded,
"masks": mask,
# "hidden": encoded_layers[-1],
"hidden": last_hidden_state
}
return ret